|  | import kornia as K | 
					
						
						|  | import torch | 
					
						
						|  | from torchgeo.datasets.geo import NonGeoDataset | 
					
						
						|  | import os | 
					
						
						|  | from collections.abc import Callable, Sequence | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | import numpy as np | 
					
						
						|  | import rasterio | 
					
						
						|  | import cv2 | 
					
						
						|  | from pyproj import Transformer | 
					
						
						|  | from datetime import date | 
					
						
						|  | from typing import TypeAlias, ClassVar | 
					
						
						|  | import pathlib | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  |  | 
					
						
						|  | logging.getLogger("rasterio").setLevel(logging.ERROR) | 
					
						
						|  | Path: TypeAlias = str | os.PathLike[str] | 
					
						
						|  |  | 
					
						
						|  | class SenBenchLC100S3Seg(NonGeoDataset): | 
					
						
						|  | url = None | 
					
						
						|  |  | 
					
						
						|  | splits = ('train', 'val', 'test') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | static_filenames = { | 
					
						
						|  | 'train': 'static_fnames-train.csv', | 
					
						
						|  | 'val': 'static_fnames-val.csv', | 
					
						
						|  | 'test': 'static_fnames-test.csv', | 
					
						
						|  | } | 
					
						
						|  | all_band_names = ( | 
					
						
						|  | 'Oa01_radiance', 'Oa02_radiance', 'Oa03_radiance', 'Oa04_radiance', 'Oa05_radiance', 'Oa06_radiance', 'Oa07_radiance', | 
					
						
						|  | 'Oa08_radiance', 'Oa09_radiance', 'Oa10_radiance', 'Oa11_radiance', 'Oa12_radiance', 'Oa13_radiance', 'Oa14_radiance', | 
					
						
						|  | 'Oa15_radiance', 'Oa16_radiance', 'Oa17_radiance', 'Oa18_radiance', 'Oa19_radiance', 'Oa20_radiance', 'Oa21_radiance', | 
					
						
						|  | ) | 
					
						
						|  | all_band_scale = ( | 
					
						
						|  | 0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161, | 
					
						
						|  | 0.00876539,0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512, | 
					
						
						|  | 0.00526779,0.00530267,0.00493004,0.00549962,0.00502847,0.00326378,0.00324118) | 
					
						
						|  | rgb_bands = ('Oa08_radiance', 'Oa06_radiance', 'Oa04_radiance') | 
					
						
						|  |  | 
					
						
						|  | LC100_CLSID = { | 
					
						
						|  | 0: 0, | 
					
						
						|  | 20: 1, | 
					
						
						|  | 30: 2, | 
					
						
						|  | 40: 3, | 
					
						
						|  | 50: 4, | 
					
						
						|  | 60: 5, | 
					
						
						|  | 70: 6, | 
					
						
						|  | 80: 7, | 
					
						
						|  | 90: 8, | 
					
						
						|  | 100: 9, | 
					
						
						|  | 111: 10, | 
					
						
						|  | 112: 11, | 
					
						
						|  | 113: 12, | 
					
						
						|  | 114: 13, | 
					
						
						|  | 115: 14, | 
					
						
						|  | 116: 15, | 
					
						
						|  | 121: 16, | 
					
						
						|  | 122: 17, | 
					
						
						|  | 123: 18, | 
					
						
						|  | 124: 19, | 
					
						
						|  | 125: 20, | 
					
						
						|  | 126: 21, | 
					
						
						|  | 200: 22, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | root: Path = 'data', | 
					
						
						|  | split: str = 'train', | 
					
						
						|  | bands: Sequence[str] = all_band_names, | 
					
						
						|  | mode = 'static', | 
					
						
						|  | transforms: Callable[[dict[str, Tensor]], dict[str, Tensor]] | None = None, | 
					
						
						|  | download: bool = False, | 
					
						
						|  | ) -> None: | 
					
						
						|  |  | 
					
						
						|  | self.root = root | 
					
						
						|  | self.transforms = transforms | 
					
						
						|  | self.download = download | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert split in ['train', 'val', 'test'] | 
					
						
						|  |  | 
					
						
						|  | self.bands = bands | 
					
						
						|  | self.band_indices = [(self.all_band_names.index(b)+1) for b in bands if b in self.all_band_names] | 
					
						
						|  |  | 
					
						
						|  | self.mode = mode | 
					
						
						|  | self.img_dir = os.path.join(self.root, 's3_olci') | 
					
						
						|  |  | 
					
						
						|  | self.label_dir = os.path.join(self.root, 'lc100') | 
					
						
						|  |  | 
					
						
						|  | if self.mode == 'static': | 
					
						
						|  | self.static_csv = os.path.join(self.root, self.static_filenames[split]) | 
					
						
						|  | with open(self.static_csv, 'r') as f: | 
					
						
						|  | lines = f.readlines() | 
					
						
						|  | self.static_img = {} | 
					
						
						|  | for line in lines: | 
					
						
						|  | pid = line.strip().split(',')[0] | 
					
						
						|  | img_fname = line.strip().split(',')[1] | 
					
						
						|  | self.static_img[pid] = img_fname | 
					
						
						|  |  | 
					
						
						|  | self.pids = list(self.static_img.keys()) | 
					
						
						|  |  | 
					
						
						|  | self.reference_date = date(1970, 1, 1) | 
					
						
						|  | self.patch_area = (16*10/1000)**2 | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return len(self.pids) | 
					
						
						|  |  | 
					
						
						|  | def __getitem__(self, index): | 
					
						
						|  |  | 
					
						
						|  | images, meta_infos = self._load_image(index) | 
					
						
						|  |  | 
					
						
						|  | label = self._load_target(index) | 
					
						
						|  | if self.mode == 'static': | 
					
						
						|  | sample = {'image': images[0], 'mask': label, 'meta': meta_infos[0]} | 
					
						
						|  | elif self.mode == 'series': | 
					
						
						|  | sample = {'image': images, 'mask': label, 'meta': meta_infos} | 
					
						
						|  |  | 
					
						
						|  | if self.transforms is not None: | 
					
						
						|  | sample = self.transforms(sample) | 
					
						
						|  |  | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _load_image(self, index): | 
					
						
						|  |  | 
					
						
						|  | pid = self.pids[index] | 
					
						
						|  | s3_path = os.path.join(self.img_dir, pid) | 
					
						
						|  | if self.mode == 'static': | 
					
						
						|  | img_fname = self.static_img[pid] | 
					
						
						|  | s3_paths = [os.path.join(s3_path, img_fname)] | 
					
						
						|  | else: | 
					
						
						|  | img_fnames = os.listdir(s3_path) | 
					
						
						|  | s3_paths = [] | 
					
						
						|  | for img_fname in img_fnames: | 
					
						
						|  | s3_paths.append(os.path.join(s3_path, img_fname)) | 
					
						
						|  |  | 
					
						
						|  | imgs = [] | 
					
						
						|  | img_paths = [] | 
					
						
						|  | meta_infos = [] | 
					
						
						|  | for img_path in s3_paths: | 
					
						
						|  | with rasterio.open(img_path) as src: | 
					
						
						|  | img = src.read() | 
					
						
						|  | img[np.isnan(img)] = 0 | 
					
						
						|  | chs = [] | 
					
						
						|  | for b in range(21): | 
					
						
						|  | ch = img[b]*self.all_band_scale[b] | 
					
						
						|  |  | 
					
						
						|  | ch = cv2.resize(ch, (282,282), interpolation=cv2.INTER_CUBIC) | 
					
						
						|  | chs.append(ch) | 
					
						
						|  | img = np.stack(chs) | 
					
						
						|  | img = torch.from_numpy(img).float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cx,cy = src.xy(src.height // 2, src.width // 2) | 
					
						
						|  | if src.crs.to_string() != 'EPSG:4326': | 
					
						
						|  |  | 
					
						
						|  | crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326', always_xy=True) | 
					
						
						|  | lon, lat = crs_transformer.transform(cx,cy) | 
					
						
						|  | else: | 
					
						
						|  | lon, lat = cx, cy | 
					
						
						|  |  | 
					
						
						|  | img_fname = os.path.basename(img_path) | 
					
						
						|  | date_str = img_fname.split('_')[1][:8] | 
					
						
						|  | date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8])) | 
					
						
						|  | delta = (date_obj - self.reference_date).days | 
					
						
						|  | meta_info = np.array([lon, lat, delta, self.patch_area]).astype(np.float32) | 
					
						
						|  | meta_info = torch.from_numpy(meta_info) | 
					
						
						|  |  | 
					
						
						|  | imgs.append(img) | 
					
						
						|  | img_paths.append(img_path) | 
					
						
						|  | meta_infos.append(meta_info) | 
					
						
						|  |  | 
					
						
						|  | if self.mode == 'series': | 
					
						
						|  |  | 
					
						
						|  | while len(imgs) < 4: | 
					
						
						|  | imgs.append(img) | 
					
						
						|  | img_paths.append(img_path) | 
					
						
						|  | meta_infos.append(meta_info) | 
					
						
						|  |  | 
					
						
						|  | return imgs, meta_infos | 
					
						
						|  |  | 
					
						
						|  | def _load_target(self, index): | 
					
						
						|  |  | 
					
						
						|  | pid = self.pids[index] | 
					
						
						|  | label_path = os.path.join(self.label_dir, pid+'.tif') | 
					
						
						|  |  | 
					
						
						|  | with rasterio.open(label_path) as src: | 
					
						
						|  | label = src.read(1) | 
					
						
						|  | label = cv2.resize(label, (282,282), interpolation=cv2.INTER_NEAREST) | 
					
						
						|  | label_new = np.zeros_like(label) | 
					
						
						|  | for k,v in self.LC100_CLSID.items(): | 
					
						
						|  | label_new[label==k] = v | 
					
						
						|  | labels = torch.from_numpy(label_new.astype('int64')) | 
					
						
						|  |  | 
					
						
						|  | return labels | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SegDataAugmentation(torch.nn.Module): | 
					
						
						|  | def __init__(self, split, size): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | mean = torch.Tensor([0.0]) | 
					
						
						|  | std = torch.Tensor([1.0]) | 
					
						
						|  |  | 
					
						
						|  | self.norm = K.augmentation.Normalize(mean=mean, std=std) | 
					
						
						|  |  | 
					
						
						|  | if split == "train": | 
					
						
						|  | self.transform = K.augmentation.AugmentationSequential( | 
					
						
						|  | K.augmentation.Resize(size=size, align_corners=True), | 
					
						
						|  | K.augmentation.RandomRotation(degrees=90, p=0.5, align_corners=True), | 
					
						
						|  | K.augmentation.RandomHorizontalFlip(p=0.5), | 
					
						
						|  | K.augmentation.RandomVerticalFlip(p=0.5), | 
					
						
						|  | data_keys=["input", "mask"], | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.transform = K.augmentation.AugmentationSequential( | 
					
						
						|  | K.augmentation.Resize(size=size, align_corners=True), | 
					
						
						|  | data_keys=["input", "mask"], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, batch: dict[str,]): | 
					
						
						|  | """Torchgeo returns a dictionary with 'image' and 'label' keys, but engine expects a tuple""" | 
					
						
						|  | x,mask = batch["image"], batch["mask"] | 
					
						
						|  | x = self.norm(x) | 
					
						
						|  | x_out, mask_out = self.transform(x, mask) | 
					
						
						|  | return x_out.squeeze(0), mask_out.squeeze(0).squeeze(0), batch["meta"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SenBenchLC100S3SegDataset: | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | self.dataset_config = config | 
					
						
						|  | self.img_size = (config.image_resolution, config.image_resolution) | 
					
						
						|  | self.root_dir = config.data_path | 
					
						
						|  | self.bands = config.band_names | 
					
						
						|  | self.mode = config.mode | 
					
						
						|  |  | 
					
						
						|  | def create_dataset(self): | 
					
						
						|  | train_transform = SegDataAugmentation(split="train", size=self.img_size) | 
					
						
						|  | eval_transform = SegDataAugmentation(split="test", size=self.img_size) | 
					
						
						|  |  | 
					
						
						|  | dataset_train = SenBenchLC100S3Seg( | 
					
						
						|  | root=self.root_dir, split="train", bands=self.bands, mode=self.mode, transforms=train_transform | 
					
						
						|  | ) | 
					
						
						|  | dataset_val = SenBenchLC100S3Seg( | 
					
						
						|  | root=self.root_dir, split="val", bands=self.bands, mode=self.mode, transforms=eval_transform | 
					
						
						|  | ) | 
					
						
						|  | dataset_test = SenBenchLC100S3Seg( | 
					
						
						|  | root=self.root_dir, split="test", bands=self.bands, mode=self.mode, transforms=eval_transform | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return dataset_train, dataset_val, dataset_test |