Copernicus-Bench / airquality_s5p /old /dataset_airquality_s5p.py
wangyi111's picture
Rename airquality_s5p/dataset_airquality_s5p.py to airquality_s5p/old/dataset_airquality_s5p.py
5c03f91 verified
raw
history blame
4.08 kB
import torch
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import rasterio
import numpy as np
from pyproj import Transformer
from datetime import date
class S5P_EEAAirQualityDataset(Dataset):
'''
1973/494 train/test air quality dataset for NO2 and O3, measure from S5P, label from EEA
annual: 1x56x56x1 annual avg
seasonal: 4x56x56x1 seasonal avg
s5p nodata: -inf
label nodata: -3.4e38 # this needs to be masked out for loss and metric calculation
'''
def __init__(self, root_dir, modality='no2', mode='annual', split='train', meta=False):
self.root_dir = root_dir
self.mode = mode
self.modality = modality
if self.mode == 'annual':
mode_dir = 's5p_annual'
elif self.mode == 'seasonal':
mode_dir = 's5p_seasonal'
self.img_dir = os.path.join(root_dir, modality, split, mode_dir)
self.label_dir = os.path.join(root_dir, modality, split, 'label_annual')
self.fnames = sorted(os.listdir(self.label_dir))
self.meta = meta
if self.meta:
self.reference_date = date(1970, 1, 1)
def __len__(self):
return len(self.fnames)
def __getitem__(self, idx):
fname = self.fnames[idx] # label filename
label_path = os.path.join(self.label_dir, fname)
img_path = os.path.join(self.img_dir, fname.replace('.tif', ''))
img_fnames = os.listdir(img_path)
img_paths = []
for img_fname in img_fnames:
img_paths.append(os.path.join(img_path, img_fname))
# img
imgs = []
meta_infos = []
for img_path in img_paths:
with rasterio.open(img_path) as src:
img = src.read(1)
img = cv2.resize(img, (56,56), interpolation=cv2.INTER_CUBIC)
img[np.isnan(img)] = 0
img = torch.from_numpy(img).float()
img = img.unsqueeze(0)
if self.meta:
cx,cy = src.xy(src.height // 2, src.width // 2)
crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
lon, lat = crs_transformer.transform(cx,cy)
#lon, lat = cx, cy
img_fname = os.path.basename(img_path)
date_str = img_fname.split('_')[0][:10]
date_obj = date(int(date_str[:4]), int(date_str[5:7]), int(date_str[8:10]))
delta = (date_obj - self.reference_date).days
meta_info = np.array([lon, lat, delta, 0]).astype(np.float32)
else:
meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)
imgs.append(img)
meta_infos.append(meta_info)
if self.mode == 'seasonal':
# pad to 4 images if less than 4
while len(imgs) < 4:
imgs.append(img)
img_paths.append(img_path)
meta_infos.append(meta_info)
# label
with rasterio.open(label_path) as src:
label = src.read(1)
label = cv2.resize(label, (56,56), interpolation=cv2.INTER_CUBIC) # 0-650
label[label<-1e10] = np.nan
label[label>1e10] = np.nan
#label[np.isnan(label)] = -1e10
label = torch.from_numpy(label.astype('float32'))
#nan_mask = (label > -1e10)
if self.mode == 'annual':
return imgs[0], meta_infos[0], label#, nan_mask #,label_path
elif self.mode == 'seasonal':
return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], label#, nan_mask #,label_path
if __name__ == '__main__':
dataset = S5P_EEAAirQualityDataset(root_dir='./airquality_s5p', modality='no2', mode='annual', split='train')
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
for i, data in enumerate(dataloader):
print(data[0].shape, data[1].shape, data[2].shape, data[3].shape)
break