File size: 4,527 Bytes
61d7a28
 
 
 
 
 
c9dfc89
 
61d7a28
 
 
 
 
 
 
 
 
 
 
 
c9dfc89
61d7a28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9dfc89
 
 
 
 
 
 
 
 
 
 
 
61d7a28
 
 
 
 
 
 
 
c9dfc89
 
 
 
 
 
 
 
 
61d7a28
 
c9dfc89
61d7a28
 
 
 
 
 
 
 
 
 
 
 
 
c9dfc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61d7a28
 
c9dfc89
 
 
 
 
 
 
61d7a28
 
 
 
 
 
 
c9dfc89
61d7a28
c9dfc89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import rasterio
import torch
import numpy as np
from pyproj import Transformer
from datetime import date

S3_OLCI_SCALE = [0.0139465,0.0133873,0.0121481,0.0115198,0.0100953,0.0123538,0.00879161,0.00876539,
                    0.0095103,0.00773378,0.00675523,0.0071996,0.00749684,0.0086512,0.00526779,0.00530267,
                    0.00493004,0.00549962,0.00502847,0.00326378,0.00324118]

BIOMASS_MEAN = 93.8317
BIOMASS_STD = 110.5369


class S3OLCI_BiomassDataset(Dataset):
    '''
    4000/1000 train/test images 94x94x21 (full dataset is 25K)
    CCI biomass regression 282x282
    nodata: -inf
    time series: 1-4 images / location
    
    '''


    def __init__(self, root_dir, split='train', mode='static'):
        self.root_dir = root_dir
        self.split = split
        self.mode = mode
        self.img_dir = os.path.join(root_dir, split, 's3_olci')
        self.biomass_dir = os.path.join(root_dir, split, 'biomass')

        self.fnames = os.listdir(self.biomass_dir)

        if self.mode == 'static':
            self.static_csv = os.path.join(root_dir, split, 'static_fnames.csv')
            with open(self.static_csv, 'r') as f:
                lines = f.readlines()
                self.static_img = {}
                for line in lines:
                    dirname = line.strip().split(',')[0]
                    img_fname = line.strip().split(',')[1]
                    self.static_img[dirname] = img_fname
                


    def __len__(self):
        return len(self.fnames)
    
    def __getitem__(self, idx):
        fname = self.fnames[idx]
        biomass_path = os.path.join(self.biomass_dir, fname)
        s3_path = os.path.join(self.img_dir, fname.replace('.tif',''))
        
        if self.mode == 'static':
            img_fname = self.static_img[fname.replace('.tif','')]
            s3_paths = [os.path.join(s3_path, img_fname)]
        else:
            img_fnames = os.listdir(s3_path)
            s3_paths = []
            for img_fname in img_fnames:
                s3_paths.append(os.path.join(s3_path, img_fname))
            
        imgs = []
        img_paths = []
        meta_infos = []
        for img_path in s3_paths:
            with rasterio.open(img_path) as src:
                img = src.read()
                chs = []
                for b in range(21):
                    #ch = cv2.resize(img[b], (94,94), interpolation=cv2.INTER_CUBIC)
                    ch = cv2.resize(img[b], (282,282), interpolation=cv2.INTER_CUBIC)
                    chs.append(ch)
                img = np.stack(chs)
                img[np.isnan(img)] = 0
                for b in range(21):
                    img[b] = img[b]*S3_OLCI_SCALE[b]
                img = torch.from_numpy(img).float()

                if self.meta:
                    cx,cy = src.xy(src.height // 2, src.width // 2)
                    #crs_transformer = Transformer.from_crs(src.crs, 'epsg:4326')
                    #lon, lat = crs_transformer.transform(cx,cy)
                    lon, lat = cx, cy
                    img_fname = os.path.basename(img_path)
                    date_str = img_fname.split('_')[1][:8]  
                    date_obj = date(int(date_str[:4]), int(date_str[4:6]), int(date_str[6:8]))
                    delta = (date_obj - self.reference_date).days
                    meta_info = np.array([lon, lat, delta, np.nan]).astype(np.float32)
                else:
                    meta_info = np.array([np.nan,np.nan,np.nan,np.nan]).astype(np.float32)


            imgs.append(img)
            img_paths.append(img_path)
        
        if self.mode == 'series':
            # pad to 4 images if less than 4
            while len(imgs) < 4:
                imgs.append(img)
                img_paths.append(img_path)
                meta_infos.append(meta_info)

        with rasterio.open(biomass_path) as src:
           biomass = src.read(1)
           biomass = cv2.resize(biomass, (282,282), interpolation=cv2.INTER_CUBIC) # 0-650
           biomass = torch.from_numpy(biomass.astype('float32'))
           biomass = (biomass - BIOMASS_MEAN) / BIOMASS_STD # 0-center normalized
        if self.mode == 'static':
            return imgs[0], meta_infos[0], biomass # 94x94x21, 282x282
        elif self.mode == 'series':
            return imgs[0], imgs[1], imgs[2], imgs[3], meta_infos[0], meta_infos[1], meta_infos[2], meta_infos[3], biomass # 94x94x21, 94x94x21, 94x94x21, 94x94x21, 282x282