| seed
				 stringlengths 25 2.89k | seed_api
				 stringlengths 14 102 | index
				 int64 0 14.8k | 
|---|---|---|
| 
	import tensorflow as tf
def fc_layer(layer_name, x, out_nodes):
    '''
    Wrapper for fully connected layers with RELU activation as default
    '''
    shape = x.get_shape()
    if len(shape) == 5: # FC 3D
        size = shape[1].value*shape[2].value*shape[3].value*shape[4].value
    elif len(shape) == 4:
        size = shape[1].value*shape[2].value*shape[3].value
    else:
        size = shape[-1].value
    with tf.variable_scope(layer_name):
        w = tf.get_variable(name='weight',
                            shape=[size, out_nodes],
                            initializer=tf.constant_initializer(0.0))
        b = tf.get_variable(name='bias',
                            shape=[out_nodes],
                            initializer=tf.constant_initializer(0.0))
        # batch?
        flat_x = tf.reshape(x, [-1,size])
        x = tf.nn.bias_add(tf.matmul(flat_x,w), b)
        x = tf.nn.relu(x)
 | 
	tensorflow.variable_scope | 0 | 
| 
	import tensorflow as tf
            ch_emb = tf.reshape(tf.nn.embedding_lookup(
                self.char_mat, self.ch), [N * PL, CL, dc])
            qh_emb = tf.reshape(tf.nn.embedding_lookup(
                self.char_mat, self.qh), [N * QL, CL, dc])
            ch_emb = tf.nn.dropout(ch_emb, 1.0 - 0.5 * self.dropout)
            qh_emb = tf.nn.dropout(qh_emb, 1.0 - 0.5 * self.dropout)
			# Bidaf style conv-highway encoder
            ch_emb = conv(ch_emb, d,
                bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = None)
            qh_emb = conv(qh_emb, d,
                bias = True, activation = tf.nn.relu, kernel_size = 5, name = "char_conv", reuse = True)
            ch_emb = tf.reduce_max(ch_emb, axis = 1)
            qh_emb = tf.reduce_max(qh_emb, axis = 1)
            ch_emb = tf.reshape(ch_emb, [N, PL, ch_emb.shape[-1]])
            qh_emb = tf.reshape(qh_emb, [N, QL, ch_emb.shape[-1]])
            c_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.c), 1.0 - self.dropout)
            q_emb = tf.nn.dropout(tf.nn.embedding_lookup(self.word_mat, self.q), 1.0 - self.dropout)
            c_emb = tf.concat([c_emb, ch_emb], axis=2)
            q_emb = tf.concat([q_emb, qh_emb], axis=2)
            c_emb = highway(c_emb, size = d, scope = "highway", dropout = self.dropout, reuse = None)
 | 
	tensorflow.reduce_max | 1 | 
| 
	import tensorflow as tf
  def testGPU(self):
    if not tf.test.is_built_with_cuda():
      return
    save_path = os.path.join(self.get_temp_dir(), "gpu")
    with tf.Session("", graph=tf.Graph()) as sess:
      with sess.graph.device("/gpu:0"):
        v0_1 = tf.Variable(123.45)
      save = tf.train.Saver({"v0": v0_1})
      tf.initialize_all_variables().run()
      save.save(sess, save_path)
    with tf.Session("", graph=tf.Graph()) as sess:
      with sess.graph.device("/gpu:0"):
        v0_2 = tf.Variable(543.21)
      save = tf.train.Saver({"v0": v0_2})
      tf.initialize_all_variables().run()
      self.assertAllClose(543.21, v0_2.eval())
      save.restore(sess, save_path)
      self.assertAllClose(123.45, v0_2.eval())
  def testVariables(self):
    save_path = os.path.join(self.get_temp_dir(), "variables")
    with tf.Session("", graph=tf.Graph()) as sess:
      one = tf.Variable(1.0)
      twos = tf.Variable([2.0, 2.0, 2.0])
      init = tf.initialize_all_variables()
      save = tf.train.Saver(tf.all_variables())
      init.run()
      save.save(sess, save_path)
 | 
	tensorflow.initialize_all_variables | 2 | 
| 
	import tensorflow as tf
                'learning_rate', tf.reduce_mean(learning_rate),
                step=global_step)
            return tf.contrib.summary.all_summary_ops()
      # To log the loss, current learning rate, and epoch for Tensorboard, the
      # summary op needs to be run on the host CPU via host_call. host_call
      # expects [batch_size, ...] Tensors, thus reshape to introduce a batch
      # dimension. These Tensors are implicitly concatenated to
      # [params['batch_size']].
      global_step_t = tf.reshape(global_step, [1])
      total_loss_t = tf.reshape(total_loss, [1])
      total_rpn_loss_t = tf.reshape(total_rpn_loss, [1])
      rpn_score_loss_t = tf.reshape(rpn_score_loss, [1])
      rpn_box_loss_t = tf.reshape(rpn_box_loss, [1])
      total_fast_rcnn_loss_t = tf.reshape(total_fast_rcnn_loss, [1])
      fast_rcnn_class_loss_t = tf.reshape(fast_rcnn_class_loss, [1])
      fast_rcnn_box_loss_t = tf.reshape(fast_rcnn_box_loss, [1])
      mask_loss_t = tf.reshape(mask_loss, [1])
      learning_rate_t = tf.reshape(learning_rate, [1])
      host_call = (host_call_fn,
                   [global_step_t, total_loss_t, total_rpn_loss_t,
                    rpn_score_loss_t, rpn_box_loss_t, total_fast_rcnn_loss_t,
                    fast_rcnn_class_loss_t, fast_rcnn_box_loss_t,
 | 
	tensorflow.reshape | 3 | 
| 
	import tensorflow as tf
    b1 = tf.matmul(state, hyper_b_1)
    w1_reshaped = tf.reshape(w1, [-1, n_agents, n_h_mixer]) # reshape into batch of matrices
    b1_reshaped = tf.reshape(b1, [-1, 1, n_h_mixer])
    # [batch, 1, n_h_mixer]
    hidden = tf.nn.elu(tf.matmul(agent_qs_reshaped, w1_reshaped) + b1_reshaped)
    
    # Second layer
    w_final = tf.abs(tf.matmul(state, hyper_w_final))
 | 
	tensorflow.matmul | 4 | 
| 
	from tensorflow.contrib.boosted_trees.proto import learner_pb2
        num_trees=1,
        examples_per_layer=3,
        model_dir=model_dir,
        config=config,
        feature_columns=[core_feature_column.numeric_column("x")],
        use_core_libs=True)
    model.fit(input_fn=_train_input_fn, steps=15)
    model.evaluate(input_fn=_eval_input_fn, steps=1)
    model.export(self._export_dir_base)
  def testFitAndEvaluateDontThrowExceptionWithCoreForClassifier(self):
    learner_config = learner_pb2.LearnerConfig()
    learner_config.num_classes = 2
    learner_config.constraints.max_tree_depth = 1
    model_dir = tempfile.mkdtemp()
    config = run_config.RunConfig()
    classifier = estimator.GradientBoostedDecisionTreeClassifier(
        learner_config=learner_config,
        num_trees=1,
        examples_per_layer=3,
        model_dir=model_dir,
        config=config,
 | 
	tensorflow.contrib.boosted_trees.proto.learner_pb2.LearnerConfig | 5 | 
| 
	import tensorflow as tf
                       "below 1.1.0")
    soft_placement = False
    if FLAGS.num_gpus > 1:
      soft_placement = True
      util.auto_parallel(metagraph, m)
  with tf.Graph().as_default():
    tf.train.import_meta_graph(metagraph)
    for model in models.values():
      model.import_ops()
    sv = tf.train.Supervisor(logdir=FLAGS.save_path)
    config_proto = tf.ConfigProto(allow_soft_placement=soft_placement)
 | 
	tensorflow.Graph | 6 | 
| 
	import tensorflow as tf
        transpose=transpose)
    if w_project is not None:
        x = tf.conv2d(x, w_project, strides, padding='SAME')
    # Set shape for BN in the residual function.
 | 
	tensorflow.conv2d | 7 | 
| 
	import tensorflow as tf
    if FLAGS.use_tpu:
        estimator = tf.contrib.tpu.TPUEstimator(
 | 
	tensorflow.contrib.tpu.TPUEstimator | 8 | 
| 
	from tensorflow.python.ops.rnn_cell_impl import _Linear
            [inputs, state],
            2 * self._num_units,
            True,
            bias_initializer=bias_ones,
            kernel_initializer=self._kernel_initializer)
    value = math_ops.sigmoid(self._gate_linear([inputs, state]))
    r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
    r_state = r * state
    if self._candidate_linear is None:
      with vs.variable_scope("candidate"):
        self._candidate_linear = _Linear(
            [inputs, r_state],
            self._num_units,
            True,
            bias_initializer=self._bias_initializer,
            kernel_initializer=self._kernel_initializer)
    c = self._activation(self._candidate_linear([inputs, r_state]))
    u = (1.0 - att_score) * u
    new_h = u * state + (1 - u) * c
    return new_h, new_h
def prelu(_x, scope=''):
 | 
	tensorflow.python.ops.rnn_cell_impl._Linear | 9 | 
| 
	from tensorflow.contrib.layers.python.layers import utils
    # Only make the ops if we know that `is_training=True`, or the value of
    # `is_training` is unknown.
    is_training_const = utils.constant_value(is_training)
    if is_training_const is None or is_training_const:
      update_mean_op, update_second_moment_op = utils.smart_cond(
          is_training,
          build_update_ops,
          build_no_ops,
 | 
	tensorflow.contrib.layers.python.layers.utils.smart_cond | 10 | 
| 
	import tensorflow as tf
    self._train_op = optimizer.apply_gradients(
        zip(grads, tvars),
        global_step=tf.train.get_or_create_global_step())
    self._new_lr = tf.placeholder(
        tf.float32, shape=[], name="new_learning_rate")
    self._lr_update = tf.assign(self._lr, self._new_lr)
 | 
	tensorflow.placeholder | 11 | 
| 
	import tensorflow as tf
    with self.test_session() as session:
      @dynamic_batching.batch_fn
      def f(a, b):
        return a + b
      output0 = f(tf.constant([1]), tf.constant([2]))
      output1 = f(tf.constant([[2]]), tf.constant([3]))
      tp = pool.ThreadPool(2)
      f0 = tp.apply_async(session.run, [output0])
      f1 = tp.apply_async(session.run, [output1])
      time.sleep(_SLEEP_TIME)
      coord = tf.train.Coordinator()
      tf.train.start_queue_runners(coord=coord)
      with self.assertRaises(tf.errors.CancelledError):
        f0.get()
        f1.get()
      with self.assertRaisesRegexp(tf.errors.InvalidArgumentError,
                                   'Shapes of inputs much be equal'):
        coord.join()
  def test_output_must_have_batch_dimension(self):
    with self.test_session() as session:
      @dynamic_batching.batch_fn
      def f(_):
 | 
	tensorflow.train.Coordinator | 12 | 
| 
	import tensorflow as tf
    if tf.version.VERSION[0]=="2":
        gpus = tf.config.experimental.list_physical_devices('GPU')
        tf.config.experimental.set_memory_growth(gpus[0], True)
        tf.config.experimental.set_virtual_device_configuration(gpus[0],
            [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=memory_limit)])
    else:
        gpu_options = tf.GPUOptions(allow_growth=allow_growth,
                                  per_process_gpu_memory_fraction=fraction)
        config = tf.ConfigProto(gpu_options=gpu_options)
        session = tf.Session(config=config)
        K.set_session(session)
def multi_gpu(model, gpus=None, cpu_merge=True, cpu_relocation=False):
    '''Takes as input the model, and returns a model
 | 
	tensorflow.ConfigProto | 13 | 
| 
	import tensorflow as tf
        stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
        update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
        update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
        update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
        reset_ph = tf.placeholder(tf.bool, (), name="reset")
        eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
        param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
        param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
        # Unmodified Q.
        q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
        # Perturbable Q used for the actual rollout.
        q_values_perturbed = q_func(observations_ph.get(), num_actions, scope="perturbed_q_func")
        # We have to wrap this code into a function due to the way tf.cond() works. See
 | 
	tensorflow.constant_initializer | 14 | 
| 
	import tensorflow as tf
        with tf.variable_scope(name):
            filt = self.get_conv_filter(name)
            conv = tf.nn.conv2d(bottom, filt, [1, 1, 1, 1], padding='SAME')
            conv_biases = self.get_bias(name)
            bias = tf.nn.bias_add(conv, conv_biases)
            relu = tf.nn.relu(bias)
            return relu
    def fc_layer(self, bottom, name):
 | 
	tensorflow.nn.bias_add | 15 | 
| 
	import tensorflow as tf
            gru_fw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
            gru_bw = tf.contrib.cudnn_rnn.CudnnGRU(1, num_units)
            init_fw = tf.tile(tf.Variable(
                tf.zeros([1, 1, num_units])), [1, batch_size, 1])
            init_bw = tf.tile(tf.Variable(
                tf.zeros([1, 1, num_units])), [1, batch_size, 1])
            mask_fw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
                              keep_prob=keep_prob, is_train=is_train, mode=None)
            mask_bw = dropout(tf.ones([1, batch_size, input_size_], dtype=tf.float32),
                              keep_prob=keep_prob, is_train=is_train, mode=None)
            self.grus.append((gru_fw, gru_bw, ))
            self.inits.append((init_fw, init_bw, ))
 | 
	tensorflow.ones | 16 | 
| 
	import tensorflow as tf
        x = tf.nn.conv2d(input, filters, strides=[1, stride, stride, 1], padding=padding, name='zero-conv_' + id,
                        dilations=(1, dilation, dilation, 1))
        if use_bias:
            bias = tf.get_variable("bias", [channels], initializer=tf.constant_initializer(0.0))
            x = tf.nn.bias_add(x, bias)
        return x
        
    def t_conv(self, id, input, channels, size=3, stride=1, use_bias=True, padding="SAME", init_stddev=-1.0):
            # good old t-conv. I love it!
 | 
	tensorflow.nn.bias_add | 17 | 
| 
	import tensorflow as tf
          raise ValueError('Variables to load is empty.')
        return tf.train.Scaffold()
 | 
	tensorflow.train.Scaffold | 18 | 
| 
	import tensorflow as tf
  def find_hard_distances(distance_matrix, indicator_matrix):
    distance_matrix = tf.where(
        tf.stop_gradient(indicator_matrix), distance_matrix,
        tf.fill(tf.shape(distance_matrix), distance_matrix.dtype.max))
    hard_distances = tf.math.reduce_min(distance_matrix, axis=-1)
    return hard_distances
  hard_negative_mining_distances = find_hard_distances(
      anchor_match_mining_distance_matrix, indicators)
  indicators &= tf.math.equal(
      anchor_match_mining_distance_matrix,
      tf.expand_dims(hard_negative_mining_distances, axis=-1))
  hard_negative_distances = find_hard_distances(anchor_match_distance_matrix,
                                                indicators)
  return hard_negative_distances, hard_negative_mining_distances
def compute_hard_negative_triplet_loss(
    anchor_positive_distances,
    anchor_match_distance_matrix,
    anchor_match_negative_indicator_matrix,
 | 
	tensorflow.expand_dims | 19 | 
| 
	import tensorflow as tf
                    lambda: param_noise_scale.assign(param_noise_scale * 1.01),
                    lambda: param_noise_scale.assign(param_noise_scale / 1.01),
                )
            return update_scale_expr
        # Functionality to update the threshold for parameter space noise.
        update_param_noise_threshold_expr = param_noise_threshold.assign(tf.cond(update_param_noise_threshold_ph >= 0,
            lambda: update_param_noise_threshold_ph, lambda: param_noise_threshold))
        # Put everything together.
        deterministic_actions = tf.argmax(q_values_perturbed, axis=1)
        batch_size = tf.shape(observations_ph.get())[0]
 | 
	tensorflow.cond | 20 | 
| 
	import tensorflow as tf
    y += dense(hidden, encoder.attn_size, use_bias=False, name='U_a')
    if encoder.position_bias and input_length is not None and time is not None:
        src_pos = tf.tile(tf.expand_dims(tf.range(time_steps), axis=0), [batch_size, 1])
        trg_pos = tf.tile(tf.reshape(time, [1, 1]), [batch_size, time_steps])
        src_len = tf.tile(tf.expand_dims(input_length, axis=1), [1, time_steps]) # - 1
        pos_feats = tf.to_float(tf.stack([src_pos, trg_pos, src_len], axis=2))
        pos_feats = tf.log(1 + pos_feats)
        y += dense(pos_feats, encoder.attn_size, use_bias=False, name='P_a')
 | 
	tensorflow.expand_dims | 21 | 
| 
	import tensorflow as tf
  filename = _DATA_URL.split('/')[-1]
  filepath = os.path.join(dataset_dir, filename)
  tf.gfile.Remove(filepath)
 | 
	tensorflow.gfile.Remove | 22 | 
| 
	import tensorflow as tf
        elif self.hidden_init == 'zeros':
            l1_h2 = tf.zeros(x_shape, dtype=self.dtype)
            l2_h2 = tf.zeros(l2_shape, dtype=self.dtype)
            l3_h2 = tf.zeros(l3_shape, dtype=self.dtype)
        else:
            raise RuntimeError
 | 
	tensorflow.zeros | 23 | 
| 
	import tensorflow as tf
def main(argv=None):
    start1 = time.time()
    import os
    os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
    if not tf.gfile.Exists(FLAGS.checkpoint_path):
        tf.gfile.MkDir(FLAGS.checkpoint_path)
    else:
        if not FLAGS.restore:
            tf.gfile.DeleteRecursively(FLAGS.checkpoint_path)
            tf.gfile.MkDir(FLAGS.checkpoint_path)
    input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
    input_score_maps = tf.placeholder(tf.float32, shape=[None, None, None, 1], name='input_score_maps')
    if FLAGS.geometry == 'RBOX':
        input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 5], name='input_geo_maps')
    else:
        input_geo_maps = tf.placeholder(tf.float32, shape=[None, None, None, 8], name='input_geo_maps')
 | 
	tensorflow.gfile.DeleteRecursively | 24 | 
| 
	import tensorflow as tf
  """
  mean, var = tf.nn.moments(
      x, reduction_axes, shift=None, name=None, keep_dims=False)
  if sorted(reduction_axes) == range(ndim(x))[:-1]:
    normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, epsilon)
  else:
    # need broadcasting
    target_shape = []
    for axis in range(get_ndim(x)):
      if axis in reduction_axes:
        target_shape.append(1)
      else:
        target_shape.append(tf.shape(x)[axis])
    target_shape = stack(target_shape)
    broadcast_mean = tf.reshape(mean, target_shape)
    broadcast_var = tf.reshape(var, target_shape)
    broadcast_gamma = tf.reshape(gamma, target_shape)
    broadcast_beta = tf.reshape(beta, target_shape)
    normed = tf.nn.batch_normalization(x, broadcast_mean, broadcast_var,
                                       broadcast_beta, broadcast_gamma, epsilon)
  return normed, mean, var
def ones(shape, dtype=None, name=None):
  """Instantiates an all-ones tensor variable and returns it.
  Parameters
  ----------
  shape: Tuple of integers, shape of returned Keras variable.
 | 
	tensorflow.reshape | 25 | 
| 
	import tensorflow as tf
    Arguments:
    - *indicator*: a 1-dimensional boolean tensor indicating which elements
        are allowed to be sampled and which are not.
    - *num_samples*: int32 scalar tensor
    Returns:
    A boolean tensor with the same shape as input (indicator) tensor
    """
    indices = tf.where(indicator)
    indices = tf.random.shuffle(indices)
    indices = tf.reshape(indices, [-1])
    num_samples = tf.minimum(tf.size(indices), num_samples)
    selected_indices = tf.slice(indices, [0], tf.reshape(num_samples, [1]))
    selected_indicator = ops.indices_to_dense_vector(selected_indices, tf.shape(indicator)[0])
    return tf.equal(selected_indicator, 1)
def sample_balanced_positive_negative(indicator, sample_size, labels, positive_fraction=0.5):
    """Subsamples minibatches to a desired balance of positives and negatives.
    Arguments:
    - *indicator*: boolean tensor of shape [N] whose True entries can be sampled.
    - *sample_size*: desired batch size. If None, keeps all positive samples and
 | 
	tensorflow.size | 26 | 
| 
	import tensorflow as tf
                                   pos_weight = pos_weight,
                                   norm = norm)
        # Normalization and preprocessing on adjacency matrix
        adj_norm = preprocess_graph(adj)
        adj_label = sparse_to_tuple(adj + sp.eye(adj.shape[0]))
        # Initialize TF session
        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        # Model training
        print(f"Training {model_name}...")
        t = time.time()
        print_every = 50
 | 
	tensorflow.Session | 27 | 
| 
	import tensorflow as tf
        e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/eval_net')
        e_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/eval_hyper')
        t_params += tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name + '/mixing_net' + '/target_hyper')
        with tf.variable_scope('soft_replacement'):
            self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
        current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
        train_log_dir = 'logs/' + current_time
        self.summary_writer = tf.summary.FileWriter(train_log_dir, self.sess.graph)
    def _build_net(self):  # we use parameter sharing among agents
        with tf.variable_scope(self.name):
            # ------------------ all inputs ------------------------
            self.S = tf.placeholder(tf.float32, [None, self.num_global_s], name='S')  # input Global State
            self.s = tf.placeholder(tf.float32, [None, self.num_s], name='s1')  # input state for agent1
            self.S_ = tf.placeholder(tf.float32, [None, self.num_global_s], name='S_')  # input Next Global State
            self.s_ = tf.placeholder(tf.float32, [None, self.num_s], name='s1_')  # input next state for agent1
            self.R = tf.placeholder(tf.float32, [None, ], name='R')  # input Reward
            self.a = tf.placeholder(tf.float32, [None, self.num_a], name='a')  # input Action onehot for agent1
            self.done = tf.placeholder(tf.float32, [None, ], name='done')  # input Done info ???
 | 
	tensorflow.summary.FileWriter | 28 | 
| 
	import tensorflow as tf
    self.num_replicas = num_replicas
    self.name = name
    self._create_params()
    arc_seq_1, entropy_1, log_prob_1, c, h = self._build_sampler(use_bias=True)
    arc_seq_2, entropy_2, log_prob_2, _, _ = self._build_sampler(prev_c=c, prev_h=h)
    self.sample_arc = (arc_seq_1, arc_seq_2)
    self.sample_entropy = entropy_1 + entropy_2
    self.sample_log_prob = log_prob_1 + log_prob_2
  def _create_params(self):
    initializer = tf.random_uniform_initializer(minval=-0.1, maxval=0.1)
    with tf.variable_scope(self.name, initializer=initializer):
      with tf.variable_scope("lstm"):
        self.w_lstm = []
        for layer_id in range(self.lstm_num_layers):
          with tf.variable_scope("layer_{}".format(layer_id)):
            w = tf.get_variable("w", [2 * self.lstm_size, 4 * self.lstm_size])
            self.w_lstm.append(w)
      self.g_emb = tf.get_variable("g_emb", [1, self.lstm_size])
      with tf.variable_scope("emb"):
        self.w_emb = tf.get_variable("w", [self.num_branches, self.lstm_size])
      with tf.variable_scope("softmax"):
        self.w_soft = tf.get_variable("w", [self.lstm_size, self.num_branches])
        b_init = np.array([10.0, 10.0] + [0] * (self.num_branches - 2),
 | 
	tensorflow.variable_scope | 29 | 
| 
	import tensorflow as tf
                if self.multiplicative_excitation:
                    if self.lesion_kappa:
                        setattr(
                            self,
                            'kappa_%s' % layer,
                            tf.constant(0.))
                    else:
                        setattr(
                            self,
                            'kappa_%s' % layer,
 | 
	tensorflow.constant | 30 | 
| 
	import tensorflow as tf
def conv3d(layer_name, x, out_channels, kernel_size=[1,3,3], strides=[1,1,1,1,1], data_format='NDHWC', is_pretrain=True):
    '''
    Convolution 3D op wrapper, use RELU activation after convolution
    '''
    in_channels = x.get_shape()[-1].value
    with tf.variable_scope(layer_name):
        w = tf.get_variable(name='weight',
                            trainable=is_pretrain,
                            shape=[kernel_size[0],kernel_size[1],kernel_size[2],in_channels,out_channels],
                            initializer=tf.contrib.layers.xavier_initializer())
        b = tf.get_variable(name='bias',
                            trainable=is_pretrain,
                            shape=[out_channels],
                            initializer=tf.contrib.layers.xavier_initializer())
        x = tf.nn.conv3d(x, w, strides=strides, padding='SAME', data_format=data_format, name='conv3d')
        x = tf.nn.bias_add(x, b, name='bias_add')
        x = tf.nn.relu(x, name='relu')
    return x
def conv(layer_name, x, out_channels, kernel_size=[3,3], strides=[1,1,1,1], is_pretrain=True):
    '''
    Convolution op wrapper, use RELU activation after convolution
    Args:
        layer_name:
        x: input tensor
 | 
	tensorflow.contrib.layers.xavier_initializer | 31 | 
| 
	import tensorflow as tf
                    filter_size[1] - input_.get_shape().as_list()[2], 0
                ], [-1, -1, -1, -1])
        if bias:
            biases = variable_on_cpu("biases", [dim_out], tf.constant_initializer(0.))
            res = tf.nn.bias_add(res, biases)
        if nonlinearity is not None:
            res = nonlinearity(res)
    return res
def max_pool_2x2(input_):
    """Max pooling."""
    return tf.nn.max_pool(
        input_, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
def depool_2x2(input_, stride=2):
    """Depooling."""
    shape = input_.get_shape().as_list()
    batch_size = shape[0]
    height = shape[1]
    width = shape[2]
    channels = shape[3]
    res = tf.reshape(input_, [batch_size, height, 1, width, 1, channels])
    res = tf.concat(
        axis=2, values=[res, tf.zeros([batch_size, height, stride - 1, width, 1, channels])])
 | 
	tensorflow.nn.max_pool | 32 | 
| 
	import tensorflow as tf
    # Make a matrix where each row contains [0, 1, ..., max_sequence_len]
    r = tf.range(0, max_sequence_len, 1)
    range_row = tf.expand_dims(r, 0)
    range_tiled = tf.tile(range_row, [batch_size, 1])
    # Use the logical operations to create a mask
 | 
	tensorflow.tile | 33 | 
| 
	import tensorflow as tf
      # I.e., 0.1 dropout
      output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
    logits = tf.matmul(output_layer, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    probabilities = tf.nn.softmax(logits, axis=-1)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    return (loss, per_example_loss, logits, probabilities)
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
                     num_train_steps, num_warmup_steps, use_tpu,
                     use_one_hot_embeddings):
  """Returns `model_fn` closure for TPUEstimator."""
  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
 | 
	tensorflow.reduce_mean | 34 | 
| 
	import tensorflow as tf
    vocab_path = self.vocabulary_file_by_name(vocab_filename)
    if not vocab_path:
      raise ValueError(
          'Could not compute vocabulary size for {}, does not exist'.format(
              vocab_filename))
    elif vocab_path.endswith('tfrecord.gz'):
      dataset = tf.data.TFRecordDataset(vocab_path, compression_type='GZIP')
      def reduce_fn(accum, elem):
        return tf.size(elem, out_type=tf.int64, name='vocabulary_size') + accum
      return _get_tensor_value(
          dataset.batch(tf.int32.max).reduce(
              tf.constant(0, tf.int64), reduce_fn))
    else:
      with tf.io.gfile.GFile(vocab_path, 'rb') as f:
        return sum(1 for _ in f)
  def vocabulary_by_name(self, vocab_filename: str) -> List[bytes]:
 | 
	tensorflow.size | 35 | 
| 
	import tensorflow as tf
def get_assignment_map_from_checkpoint(tvars, init_checkpoint, num_of_group=0):
  """Compute the union of the current variables and checkpoint variables."""
  assignment_map = {}
  initialized_variable_names = {}
  name_to_variable = collections.OrderedDict()
  for var in tvars:
    name = var.name
    m = re.match("^(.*):\\d+$", name)
    if m is not None:
      name = m.group(1)
    name_to_variable[name] = var
  init_vars = tf.train.list_variables(init_checkpoint)
  init_vars_name = [name for (name, _) in init_vars]
  if num_of_group > 0:
    assignment_map = []
    for gid in range(num_of_group):
      assignment_map.append(collections.OrderedDict())
  else:
    assignment_map = collections.OrderedDict()
  for name in name_to_variable:
    if name in init_vars_name:
      tvar_name = name
    elif (re.sub(r"/group_\d+/", "/group_0/",
 | 
	tensorflow.train.list_variables | 36 | 
| 
	import tensorflow as tf
        x = tf.placeholder(tf.float32, [None, shape[0]])
        w = tf.Variable(tf.zeros(shape))
        b = tf.Variable(tf.zeros(shape[1]))
        self.x = x
        self.w = w
        self.b = b
        y = tf.nn.softmax(tf.matmul(x, w) + b)
        y_ = tf.placeholder(tf.float32, [None, shape[1]])
        self.y_ = y_
        cross_entropy = tf.reduce_mean(
            -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])
        )
 | 
	tensorflow.matmul | 37 | 
| 
	import tensorflow as tf
        target_label = sess.run(labels)
        adv = attack_carlini.attack(input_data, target_label)
        (logits_part_nor, logits_part_adv, labels_part) = sess.run([logits_nor, logits_adv, tf.argmax(labels, 1)],
                                                                   feed_dict={adv_image: adv})
        logits_all = np.concatenate((logits_all, logits_part_nor), axis=0)
 | 
	tensorflow.argmax | 38 | 
| 
	import tensorflow as tf
                 stddev=0.02, data_format='NDHWC') :
        with tf.variable_scope(name) :
            assert(data_format == 'NDHWC')
            self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim],
                                initializer=tf.truncated_normal_initializer(stddev=stddev))
            self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0))
            self.strides = [1,1,1]
            self.dilates = [d_t, d_h, d_w]
 | 
	tensorflow.truncated_normal_initializer | 39 | 
| 
	import tensorflow as tf
        loss = None
        with tf.name_scope(name, "softmax_loss",[output]):
            label_dis = labels / tf.reduce_sum(labels, 1, keep_dims=True)
            loss = tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=label_dis) * tf.reduce_sum(labels, 1)
        return tf.reduce_sum(loss) / tf.reduce_sum(labels)
    def get_normalized_weights(self, propensity):
 | 
	tensorflow.reduce_sum | 40 | 
| 
	import tensorflow as tf
  print('===== Decompress =====')
  # load model.
  model = importlib.import_module(model)
  synthesis_transform = model.SynthesisTransform(latent_points)
  hyper_encoder = model.HyperEncoder()
  hyper_decoder = model.HyperDecoder()
  entropy_bottleneck = EntropyBottleneck()
  conditional_entropy_model = SymmetricConditional()
  checkpoint = tf.train.Checkpoint(synthesis_transform=synthesis_transform, 
                                    hyper_encoder=hyper_encoder, 
                                    hyper_decoder=hyper_decoder, 
                                    estimator=entropy_bottleneck)
  status = checkpoint.restore(tf.train.latest_checkpoint(ckpt_dir))
  zs = entropy_bottleneck.decompress(z_strings, z_min_v, z_max_v, z_shape, z_shape[-1])
  print("Entropy Decoder (Hyper)")
  def loop_hyper_deocder(z):
    z = tf.expand_dims(z, 0)
    loc, scale = hyper_decoder(z)
    return tf.squeeze(loc, [0]), tf.squeeze(scale, [0])
  locs, scales = tf.map_fn(loop_hyper_deocder, zs, dtype=(tf.float32, tf.float32),
                          parallel_iterations=1, back_prop=False)
  lower_bound = 1e-9# TODO
 | 
	tensorflow.train.latest_checkpoint | 41 | 
| 
	import tensorflow as tf
const_var = tf.Variable(tf.constant([8, 6, 7, 5, 3, 0, 9]))
const_fill_var = tf.Variable(tf.constant(-1, shape=[row_dim, col_dim]))
sess.run(const_var.initializer)
 | 
	tensorflow.constant | 42 | 
| 
	import tensorflow as tf
  def testStrWorksCorrectlyScalar(self):
    # Usually we'd write np.float(X) here, but a recent Eager bug would
    # erroneously coerce the value to float32 anyway. We therefore use constants
    # here, until the bug is resolved in TensorFlow 1.12.
    normal = tfd.Normal(loc=tf.constant(0, tf.float16),
                        scale=tf.constant(1, tf.float16))
    self.assertEqual(
        str(normal),
        "tfp.distributions.Normal("
 | 
	tensorflow.constant | 43 | 
| 
	import tensorflow as tf
                         '`rightmost_transposed_ndims` and `perm`.')
      if rightmost_transposed_ndims is not None:
        rightmost_transposed_ndims = tf.convert_to_tensor(
            value=rightmost_transposed_ndims,
            dtype=np.int32,
            name='rightmost_transposed_ndims')
        rightmost_transposed_ndims_ = tf.get_static_value(
            rightmost_transposed_ndims)
        with tf.control_dependencies(_maybe_validate_rightmost_transposed_ndims(
            rightmost_transposed_ndims, validate_args)):
          rightmost_transposed_ndims = tf.identity(rightmost_transposed_ndims)
        perm = tf.range(
            start=rightmost_transposed_ndims - 1,
            limit=-1,
            delta=-1,
            name='perm')
      else:  # perm is not None:
        perm = tf.convert_to_tensor(value=perm, dtype=np.int32, name='perm')
        rightmost_transposed_ndims = tf.size(
            input=perm, name='rightmost_transposed_ndims')
        rightmost_transposed_ndims_ = tf.get_static_value(
            rightmost_transposed_ndims)
 | 
	tensorflow.range | 44 | 
| 
	import tensorflow as tf
    def hgru_ops(self, i0, x, h2, layer, layer_idx):
        """hGRU body."""
        var_scope = '%s_hgru_weights' % layer
        # Circuit input receives recurrent output h2
        c1, g1 = self.circuit_input(
            h2=h2,
            layer=layer,
            var_scope=var_scope,
            layer_idx=layer_idx)
        with tf.variable_scope(
                '%s/c1_bn' % var_scope,
                reuse=self.scope_reuse) as scope:
            c1 = tf.contrib.layers.batch_norm(
                inputs=c1,
                scale=True,
                center=False,
                fused=True,
                renorm=False,
 | 
	tensorflow.variable_scope | 45 | 
| 
	import tensorflow as tf
    act: (tf.Variable, bool, float, bool, float, bool) -> tf.Variable
        function to select and action given observation.
`       See the top of the file for details.
    """
    if param_noise_filter_func is None:
        param_noise_filter_func = default_param_noise_filter
    with tf.variable_scope(scope, reuse=reuse):
        observations_ph = U.ensure_tf_input(make_obs_ph("observation"))
        stochastic_ph = tf.placeholder(tf.bool, (), name="stochastic")
        update_eps_ph = tf.placeholder(tf.float32, (), name="update_eps")
        update_param_noise_threshold_ph = tf.placeholder(tf.float32, (), name="update_param_noise_threshold")
        update_param_noise_scale_ph = tf.placeholder(tf.bool, (), name="update_param_noise_scale")
        reset_ph = tf.placeholder(tf.bool, (), name="reset")
        eps = tf.get_variable("eps", (), initializer=tf.constant_initializer(0))
        param_noise_scale = tf.get_variable("param_noise_scale", (), initializer=tf.constant_initializer(0.01), trainable=False)
        param_noise_threshold = tf.get_variable("param_noise_threshold", (), initializer=tf.constant_initializer(0.05), trainable=False)
        # Unmodified Q.
        q_values = q_func(observations_ph.get(), num_actions, scope="q_func")
 | 
	tensorflow.placeholder | 46 | 
| 
	import tensorflow as tf
    super(TweetSeqModel, self).__init__(batch_size, max_sequence_len,
                                        out_vocab_size, c2v,
                                        dropout_keep_prob)
    weights = tf.constant(weights, dtype=tf.float32, name='class_weights')
    def GetCell():
      """Creates an LSTM cell with dropout."""
      c = tf.nn.rnn_cell.LSTMCell(hidden_size,
                                  use_peepholes=model_params['peepholes'],
                                  num_proj=proj_size)
      if dropout_keep_prob is not None:
        c = tf.nn.rnn_cell.DropoutWrapper(c, input_keep_prob=dropout_keep_prob)
      return c
    # Create the bi-directional LSTM
    with tf.variable_scope('wordrnn'):
 | 
	tensorflow.nn.rnn_cell.LSTMCell | 47 | 
| 
	import tensorflow as tf
        'image/object/bbox/xmax':
            tf.io.VarLenFeature(tf.float32),
        'image/object/bbox/ymin':
            tf.io.VarLenFeature(tf.float32),
        'image/object/bbox/ymax':
            tf.io.VarLenFeature(tf.float32),
        'image/object/class/label':
            tf.io.VarLenFeature(tf.int64),
        'image/object/area':
            tf.io.VarLenFeature(tf.float32),
        'image/object/is_crowd':
            tf.io.VarLenFeature(tf.int64),
    }
    if include_mask:
      self._keys_to_features.update({
          'image/object/mask':
              tf.io.VarLenFeature(tf.string),
      })
  def _decode_image(self, parsed_tensors):
    """Decodes the image and set its static shape."""
    image = tf.io.decode_image(parsed_tensors['image/encoded'], channels=3)
 | 
	tensorflow.io.VarLenFeature | 48 | 
| 
	import tensorflow as tf
  total_loss = tf.reduce_sum(lm_loss * tgt_mask) / tf.reduce_sum(tgt_mask)
  monitor_dict["total_loss"] = total_loss
  return total_loss, new_mems, monitor_dict
def get_loss(FLAGS, features, labels, mems, is_training):
  """Pretraining loss with two-stream attention Transformer-XL."""
  if FLAGS.use_bfloat16:
    with tf.tpu.bfloat16_scope():
      return two_stream_loss(FLAGS, features, labels, mems, is_training)
  else:
    return two_stream_loss(FLAGS, features, labels, mems, is_training)
def get_classification_loss(
    FLAGS, features, n_class, is_training):
  """Loss for downstream classification tasks."""
 | 
	tensorflow.tpu.bfloat16_scope | 49 | 
| 
	import tensorflow as tf
            raise Exception("The input dimension must be rank 2")
        n_in = int(self.inputs.get_shape()[-1])
        self.n_units = n_units
        with tf.variable_scope(name):
            W = tf.get_variable(name='W', shape=(n_in, n_units), initializer=W_init, dtype=LayersConfig.tf_dtype, **W_init_args)
            b = tf.get_variable(name='b', shape=(n_units), initializer=b_init, dtype=LayersConfig.tf_dtype, **b_init_args)
            # self.outputs = act(tf.matmul(self.inputs, W) + b)
            LayersConfig.set_keep[name] = tf.placeholder(tf.float32)
            W_dropcon = tf.nn.dropout(W, LayersConfig.set_keep[name])
            self.outputs = act(tf.matmul(self.inputs, W_dropcon) + b)
        # self.all_layers = list(layer.all_layers)
        # self.all_params = list(layer.all_params)
        # self.all_drop = dict(layer.all_drop)
        self.all_drop.update({LayersConfig.set_keep[name]: keep})
        self.all_layers.append(self.outputs)
        self.all_params.extend([W, b])
 | 
	tensorflow.matmul | 50 | 
| 
	import tensorflow as tf
    elif isinstance(ob_space, Box):
        input_shape = (batch_size,) + ob_space.shape
        input_x = tf.placeholder(shape=input_shape, dtype=ob_space.dtype, name=name)
        processed_x = tf.to_float(input_x)
        return input_x, processed_x
    else:
 | 
	tensorflow.to_float | 51 | 
| 
	import tensorflow as tf
            scope='BoxEncodingPredictor')
        if self._use_dropout:
          net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
        class_predictions_with_background = slim.conv2d(
            net, num_predictions_per_location * num_class_slots,
            [self._kernel_size, self._kernel_size], scope='ClassPredictor',
            biases_initializer=tf.constant_initializer(
                self._class_prediction_bias_init))
        if self._apply_sigmoid_to_scores:
          class_predictions_with_background = tf.sigmoid(
              class_predictions_with_background)
    combined_feature_map_shape = shape_utils.combined_static_and_dynamic_shape(
        image_features)
    box_encodings = tf.reshape(
        box_encodings, tf.stack([combined_feature_map_shape[0],
                                 combined_feature_map_shape[1] *
                                 combined_feature_map_shape[2] *
 | 
	tensorflow.sigmoid | 52 | 
| 
	import tensorflow as tf
# TODO: move to ops
def _rank(x):
    return len(x.get_shape())
def _apply_dropout_mask(tensor_shape, keep_prob=1.0, normalize=True):
    random_tensor = keep_prob + tf.random_uniform(tensor_shape, dtype=tf.float32)
    binary_mask = tf.floor(random_tensor)
    if normalize:
        binary_mask = tf.reciprocal(keep_prob) * binary_mask
    return binary_mask
def _global_keep_prob(keep_prob):
    keep_prob = tf.convert_to_tensor(keep_prob, dtype=tf.float32)
    keep_prob = tf.cond(_phase, lambda: keep_prob, lambda: keep_prob * 0.0 + 1.0)
    return keep_prob
def layer(func):
    class Layer(object):
        def __init__(self, *args, **kwargs):
            self.func = func
            self.args = args
            self.kwargs = kwargs
            self.name = self.kwargs.get("name", self.func.__name__)
 | 
	tensorflow.convert_to_tensor | 53 | 
| 
	import tensorflow as tf
    input_props.append((tf.int32, [None])) # Gold ends.
    input_props.append((tf.int32, [None])) # Cluster ids.
    self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props]
    dtypes, shapes = zip(*input_props)
    queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes)
    self.enqueue_op = queue.enqueue(self.queue_input_tensors)
    self.input_tensors = queue.dequeue()
    self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors)
    self.global_step = tf.Variable(0, name="global_step", trainable=False)
    self.reset_global_step = tf.assign(self.global_step, 0)
    learning_rate = tf.train.exponential_decay(self.config["learning_rate"], self.global_step,
                                               self.config["decay_frequency"], self.config["decay_rate"], staircase=True)
    trainable_params = tf.trainable_variables()
    gradients = tf.gradients(self.loss, trainable_params)
    gradients, _ = tf.clip_by_global_norm(gradients, self.config["max_gradient_norm"])
    optimizers = {
      "adam" : tf.train.AdamOptimizer,
      "sgd" : tf.train.GradientDescentOptimizer
    }
    optimizer = optimizers[self.config["optimizer"]](learning_rate)
    self.train_op = optimizer.apply_gradients(zip(gradients, trainable_params), global_step=self.global_step)
  def start_enqueue_thread(self, session):
    with open(self.config["train_path"]) as f:
      train_examples = [json.loads(jsonline) for jsonline in f.readlines()]
    def _enqueue_loop():
 | 
	tensorflow.trainable_variables | 54 | 
| 
	import tensorflow as tf
    def call(self, inputs):
        """Evaluates the QNode on input data using the initialized weights.
        Args:
            inputs (tensor): data to be processed
        Returns:
            tensor: output data
        """
        if len(tf.shape(inputs)) > 1:
            # If the input size is not 1-dimensional, unstack the input along its first dimension,
            # recursively call the forward pass on each of the yielded tensors, and then stack the
            # outputs back into the correct shape
            reconstructor = []
            for x in tf.unstack(inputs):
                reconstructor.append(self.call(x))
            return tf.stack(reconstructor)
        return self._evaluate_qnode(inputs)
    def _evaluate_qnode(self, x):
        """Evaluates a QNode for a single input datapoint.
        Args:
            x (tensor): the datapoint
        Returns:
            tensor: output datapoint
 | 
	tensorflow.unstack | 55 | 
| 
	import tensorflow as tf
    # Only make the ops if we know that `is_training=True`, or the value of
    # `is_training` is unknown.
    is_training_const = utils.constant_value(is_training)
    if is_training_const is None or is_training_const:
      update_mean_op, update_variance_op = utils.smart_cond(
          is_training,
          build_update_ops,
          build_no_ops,
      )
      # Every new connection creates a new op which adds its contribution
      # to the running average when ran.
      tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
      tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_variance_op)
  def _build_update_ops_second_moment(self, mean, second_moment, is_training):
    """Builds the moving average update ops when using the moving second moment.
    Args:
      mean: The mean value to update with.
      second_moment: The second_moment value to update with.
      is_training: Boolean Tensor to indicate if we're currently in
        training mode.
    """
    def build_update_ops():
      """Builds the exponential moving average update ops."""
 | 
	tensorflow.add_to_collection | 56 | 
| 
	import tensorflow as tf
    return_dict["end_top_index"] = end_top_index
  # an additional layer to predict answerability
  with tf.variable_scope("answer_class"):
    # get the representation of CLS
    cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
    cls_feature = tf.einsum("lbh,bl->bh", output, cls_index)
    # get the representation of START
    start_p = tf.nn.softmax(start_logits_masked, axis=-1,
                            name="softmax_start")
    start_feature = tf.einsum("lbh,bl->bh", output, start_p)
    # note(zhiliny): no dependency on end_feature so that we can obtain
    # one single `cls_logits` for each sample
    ans_feature = tf.concat([start_feature, cls_feature], -1)
    ans_feature = tf.layers.dense(
        ans_feature,
        xlnet_config.d_model,
        activation=tf.tanh,
        kernel_initializer=initializer, name="dense_0")
    ans_feature = tf.layers.dropout(ans_feature, FLAGS.dropout,
                                    training=is_training)
    cls_logits = tf.layers.dense(
        ans_feature,
        1,
        kernel_initializer=initializer,
        name="dense_1",
        use_bias=False)
    cls_logits = tf.squeeze(cls_logits, -1)
 | 
	tensorflow.concat | 57 | 
| 
	import tensorflow.contrib.graph_editor as ge
        d_xs_new = dv[len(checkpoints_other):]
        for j in range(len(xs)):
            if d_xs_new[j] is not None:
                if d_xs[j] is None:
                    d_xs[j] = _unsparsify(d_xs_new[j])
                else:
                    d_xs[j] += _unsparsify(d_xs_new[j])
    return d_xs
def tf_toposort(ts, within_ops=None):
    all_ops = ge.get_forward_walk_ops([x.op for x in ts], within_ops=within_ops)
    deps = {}
    for op in all_ops:
        for o in op.outputs:
            deps[o] = set(op.inputs)
    sorted_ts = toposort(deps)
    # only keep the tensors from our original list
    ts_sorted_lists = []
    for l in sorted_ts:
        keep = list(set(l).intersection(ts))
 | 
	tensorflow.contrib.graph_editor.get_forward_walk_ops | 58 | 
| 
	import tensorflow as tf
  def build_trainer(self, child_model):
    child_model.build_valid_rl()
    self.valid_acc = (tf.to_float(child_model.valid_shuffle_acc) /
                      tf.to_float(child_model.batch_size))
    self.reward = self.valid_acc
    if self.entropy_weight is not None:
      self.reward += self.entropy_weight * self.sample_entropy
    self.sample_log_prob = tf.reduce_sum(self.sample_log_prob)
    self.baseline = tf.Variable(0.0, dtype=tf.float32, trainable=False)
    baseline_update = tf.assign_sub(
      self.baseline, (1 - self.bl_dec) * (self.baseline - self.reward))
    with tf.control_dependencies([baseline_update]):
      self.reward = tf.identity(self.reward)
    self.loss = self.sample_log_prob * (self.reward - self.baseline)
    self.train_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="train_step")
    tf_variables = [var for var in tf.trainable_variables() if var.name.startswith(self.name)]
    print("-" * 80)
 | 
	tensorflow.assign_sub | 59 | 
| 
	import tensorflow as tf
def deconv2d(input_, output_shape,
       k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
       name="deconv2d", with_w=False):
    with tf.variable_scope(name):
        # filter : [height, width, output_channels, in_channels]
        w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
 | 
	tensorflow.variable_scope | 60 | 
| 
	import tensorflow as tf
                vz_keys = tf.reshape(tf.Variable([], collections=[], dtype=tf.string), (-1, 1))
                x_t = tf.gather(x, l)
                x_t_len = tf.strings.length(x_t)
                x_t = tf.string_split([x_t], delimiter='').values
                z_t = tf.gather(y, m)
                z_t_len = tf.strings.length(z_t)
                z_t = tf.string_split([z_t], delimiter='').values
                for i in tf.range(start=0, limit=x_t_len - self._p + 1, delta=1, dtype=None, name='range'):
                    u = tf.string_join(x_t[i:i + self._p], '')
                    vx_keys, r = tf.cond(
                        tf.greater(vx.lookup(u), -1),
                        true_fn=lambda: (vx_keys, tf.add(vx.lookup(u), 1)),
                        false_fn=lambda: (tf.concat([vx_keys, tf.reshape(u, (-1, 1))], axis=0),
                                          tf.constant(1, dtype=tf.int64, name='constant'))
                    )
                    vx.insert(u, r)
                for i in tf.range(start=0, limit=z_t_len - self._p + 1, delta=1, dtype=None, name='range'):
                    u = tf.string_join(z_t[i:i + self._p], '')
 | 
	tensorflow.string_join | 61 | 
| 
	import tensorflow as tf
        # now to upscale to actual image size
        deconv_shape1 = image_net["pool4"].get_shape()
        W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1")
        b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1")
        conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"]))
        fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
        deconv_shape2 = image_net["pool3"].get_shape()
        W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
 | 
	tensorflow.shape | 62 | 
| 
	from tensorflow.python.framework import ops
      name or 'root_mean_squared_error')
  root_mean_squared_error = math_ops.sqrt(value_tensor)
  with ops.control_dependencies([update_op]):
    update_op = math_ops.sqrt(update_op)
 | 
	tensorflow.python.framework.ops.control_dependencies | 63 | 
| 
	import tensorflow as tf
TRAIN_STEPS = 1
CONFIG = tf.ConfigProto(device_count={"GPU": 0})
class UnidirectionalSequenceLstmTest(test_util.TensorFlowTestCase):
  def setUp(self):
    tf.reset_default_graph()
    # Import MNIST dataset
    self.mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    # Define constants
    # Unrolled through 28 time steps
    self.time_steps = 28
    # Rows of 28 pixels
 | 
	tensorflow.reset_default_graph | 64 | 
| 
	import tensorflow as tf
# Date: 2018/12/22 下午4:06
# 10.3 TensorFlow的并发执行
# 1. 为了能够找到TensorFlow的什么操作正在使用什么设备,我们在计算图会话中传入一个config参数,将log_device_placement设为True。当我们在命令行运行脚本时,会看到指定设备输出
import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
a = tf.constant_initializer([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Runs the op.
print(sess.run(c))
# 2. 从控制台运行下面的命令
 | 
	tensorflow.constant_initializer | 65 | 
| 
	import tensorflow as tf
        param_eta = tf.placeholder(dtype=tf.float32, shape=[], name="param_eta")
 | 
	tensorflow.placeholder | 66 | 
| 
	import tensorflow as tf
        tvars = tf.trainable_variables()
        initialized_variable_names = {}
        scaffold_fn = None
        if init_checkpoint:
            (assignment_map, initialized_variable_names
             ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
            if use_tpu:
                def tpu_scaffold():
                    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
                    return tf.train.Scaffold()
                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
        tf.logging.info("**** Trainable Variables ****")
        for var in tvars:
            init_string = ""
 | 
	tensorflow.train.init_from_checkpoint | 67 | 
| 
	import tensorflow as tf
      # Creates a graph.
      v0 = tf.Variable(0.0)
      var = tf.Variable(10.0)
      tf.add(v0, var)
      @function.Defun(x=tf.float32)
      def minus_one(x):
        return x - 1
      minus_one(tf.identity(v0))
      save = tf.train.Saver({"v0": v0})
      tf.initialize_all_variables()
      # Generates MetaGraphDef.
      meta_graph_def = save.export_meta_graph()
      ops = [o.name for o in meta_graph_def.meta_info_def.stripped_op_list.op]
 | 
	tensorflow.identity | 68 | 
| 
	import tensorflow as tf
          tf.OpError, lambda e: "uninitialized value v0" in e.message):
        sess.run(v0)
      with self.assertRaisesWithPredicateMatch(
          tf.OpError, lambda e: "uninitialized value v1" in e.message):
        sess.run(v1)
      # Restore the saved values in the parameter nodes.
      save.restore(sess, save_path)
      # Check that the parameter nodes have been restored.
      self.assertEqual(10.0, v0.eval())
      self.assertEqual(20.0, v1.eval())
    # Build another graph with 2 nodes, initialized
    # differently, and a Restore node for them.
    with self.test_session() as sess:
      v0_2 = tf.Variable(1000.0, name="v0")
      v1_2 = tf.Variable(2000.0, name="v1")
      save2 = tf.train.Saver({"v0": v0_2, "v1": v1_2})
      tf.initialize_all_variables().run()
      # Check that the parameter nodes have been initialized.
      self.assertEqual(1000.0, v0_2.eval())
      self.assertEqual(2000.0, v1_2.eval())
      # Restore the values saved earlier in the parameter nodes.
      save2.restore(sess, save_path)
      # Check that the parameter nodes have been restored.
      self.assertEqual(10.0, v0_2.eval())
      self.assertEqual(20.0, v1_2.eval())
  def testInt64(self):
 | 
	tensorflow.Variable | 69 | 
| 
	import tensorflow as tf
  def to_ids(example):
    sentence = tf.reshape(example['tokens'], shape=[1])
    words = tf.strings.split(sentence, sep=' ').values
    truncated_words = words[:max_seq_len]
 | 
	tensorflow.strings.split | 70 | 
| 
	import tensorflow as tf
    tf.summary.scalar('cross_entropy_loss', cross_entropy)
    loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred))
    #loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
    loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1))
    loc_loss = tf.identity(loc_loss, name='location_loss')
    tf.summary.scalar('location_loss', loc_loss)
    tf.losses.add_loss(loc_loss)
    # Add weight decay to the loss. We exclude the batch norm variables because
    # doing so leads to a small improvement in accuracy.
    loss = cross_entropy + loc_loss + params['weight_decay'] * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()
       if 'batch_normalization' not in v.name])
    total_loss = tf.identity(loss, name='total_loss')
    if mode == tf.estimator.ModeKeys.TRAIN:
        global_step = tf.train.get_or_create_global_step()
        lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
        learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
                                                    [int(_) for _ in params['decay_boundaries']],
                                                    lr_values)
        truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype))
 | 
	tensorflow.nn.l2_loss | 71 | 
| 
	import tensorflow as tf
    return model_utils.update_exponential_moving_average(
        rl_step_baseline, momentum=rl_baseline_momentum)
  rl_baseline = update_rl_baseline()
  rl_advantage = rl_reward - rl_baseline
  rl_empirical_loss = -tf.stop_gradient(rl_advantage) * log_prob
  rl_entropy_loss = -rl_entropy_regularization * rl_entropy
  enable_rl_optimizer = tf.cast(
      tf.greater_equal(target_global_step, FLAGS.first_pretrain_steps),
      tf.float32)
  rl_learning_rate = FLAGS.rl_learning_rate * enable_rl_optimizer
  rl_learning_rate = tf.train.piecewise_constant(
      target_global_step, [800,],
      [rl_learning_rate, rl_learning_rate * 0.1])
  optimizer = tf.train.AdamOptimizer(rl_learning_rate)
  target_train_op = optimizer.minimize(
      rl_empirical_loss,
      target_global_step,
 | 
	tensorflow.greater_equal | 72 | 
| 
	import tensorflow as tf
    decided to use the (x_min, y_min, x_max, y_min), forcing use to switch to
    TensorFlow's every time we want to use a std function that handles bounding
    boxes.
    Args:
        bboxes: A Tensor of shape (total_bboxes, 4)
    Returns:
        bboxes: A Tensor of shape (total_bboxes, 4) with the order swaped.
    """
    with tf.name_scope('BoundingBoxTransform/change_order'):
        first_min, second_min, first_max, second_max = tf.unstack(
            bboxes, axis=1
        )
        bboxes = tf.stack(
            [second_min, first_min, second_max, first_max], axis=1
        )
        return bboxes
 | 
	tensorflow.name_scope | 73 | 
| 
	import tensorflow as tf
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    # batch norm updates
    with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]):
        train_op = tf.no_op(name='train_op')
    saver = tf.train.Saver(tf.global_variables())
    summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph())
    init = tf.global_variables_initializer()
    if FLAGS.pretrained_model_path is not None:
        variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path, slim.get_trainable_variables(),
                                                             ignore_missing_vars=True)
    config = tf.ConfigProto()
    custom_op = config.graph_options.rewrite_options.custom_optimizers.add()
    custom_op.name = "NpuOptimizer"
    custom_op.parameter_map["use_off_line"].b = True  # 在昇腾AI处理器执行训练
    config.graph_options.rewrite_options.remapping = RewriterConfig.OFF  # 关闭remap开关
    if FLAGS.allow_mix_precision:
        custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision")
    if FLAGS.auto_tune:
        custom_op.parameter_map["auto_tune_mode"].s = tf.compat.as_bytes("RL,GA")
    
    with tf.Session(config=config) as sess:
        if FLAGS.restore:
            print('continue training from previous checkpoint')
            ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
 | 
	tensorflow.ConfigProto | 74 | 
| 
	import tensorflow as tf
    input_images = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='input_images')
 | 
	tensorflow.placeholder | 75 | 
| 
	import tensorflow as tf
      (assignment_map, initialized_variable_names
      ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
      if use_tpu:
        def tpu_scaffold():
          tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
          return tf.train.Scaffold()
        scaffold_fn = tpu_scaffold
      else:
        tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
      init_string = ""
      if var.name in initialized_variable_names:
        init_string = ", *INIT_FROM_CKPT*"
      tf.logging.info("  name = %s, shape = %s%s", var.name, var.shape,
                      init_string)
 | 
	tensorflow.train.init_from_checkpoint | 76 | 
| 
	import tensorflow as tf
    if coeff <= 0:
        return y
    x = np.zeros(y.shape[0], dtype=np.float32)
    x[0] = y[0]
    for n in range(1, y.shape[0], 1):
        x[n] = coeff * x[n - 1] + y[n]
    return x
def read_and_decode(filename_queue, canvas_size, preemph=0.):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
                'wav_raw': tf.FixedLenFeature([], tf.string),
                'noisy_raw': tf.FixedLenFeature([], tf.string),
            })
    wave = tf.decode_raw(features['wav_raw'], tf.int32)
 | 
	tensorflow.TFRecordReader | 77 | 
| 
	import tensorflow as tf
        tf.equal(phase, 'train'),
        datasets.train.get_next,
        datasets.test.get_next)
    if not isinstance(data, dict):
        data = {'data': data}
    if 'length' not in data:
        example = data[list(data.keys())[0]]
        data['length'] = (
                tf.zeros((tf.shape(example)[0],), tf.int32) + tf.shape(example)[1])
    return data
def train(model_fn, datasets, logdir, config):
    """Train a model on a datasets.
    The model function receives the following arguments: data batch, trainer
 | 
	tensorflow.shape | 78 | 
| 
	import tensorflow as tf
        resnet_size=18, num_classes=class_num, mode='se', data_format=None)
    inputs= network(inputs=inputs, is_training=training)
    feat = tf.nn.l2_normalize(inputs, 1, 1e-10, name='feat')
    inputs = tf.layers.dense(inputs=inputs, units=class_num)
    # inputs = tf.layers.dense(inputs=feat, units=class_num)
    inputs = tf.identity(inputs, 'final_dense')
    return inputs, feat
# image_size = 32, img_channels = 3, class_num = 10 in cifar10
x = tf.placeholder(tf.float32, shape=[None, image_size, image_size, img_channels])
label = tf.placeholder(tf.float32, shape=[None,])
one_hot_labels = tf.one_hot(indices=tf.cast(label, tf.int32), depth=class_num)
training_flag = tf.placeholder(tf.bool)
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
logits, feat = resnet_model_fn(x, training=training_flag)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=one_hot_labels, logits=logits))
 | 
	tensorflow.placeholder | 79 | 
| 
	import tensorflow as tf
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
def conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0):
    with tf.variable_scope(name):
        l2_regularizer = lambda t: l2_loss(t, weight=weight_decay)
        kernel = tf.get_variable("weights", [kH, kW, nIn, nOut],
            initializer=tf.truncated_normal_initializer(stddev=1e-1),
            regularizer=l2_regularizer, dtype=inpOp.dtype)
        cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType)
        
        if use_batch_norm:
            conv_bn = batch_norm(cnv, phase_train)
        else:
            conv_bn = cnv
        biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype)
        bias = tf.nn.bias_add(conv_bn, biases)
        conv1 = tf.nn.relu(bias)
    return conv1
 | 
	tensorflow.variable_scope | 80 | 
| 
	import tensorflow as tf
tf.app.flags.DEFINE_string('eval_data_path', '',
                           'Filepattern for eval data')
tf.app.flags.DEFINE_string('train_dir', '',
                           'Directory to keep training outputs.')
tf.app.flags.DEFINE_string('eval_dir', '',
                           'Directory to keep eval outputs.')
tf.app.flags.DEFINE_integer('eval_batch_count', 10,
                            'Number of batches to eval.')
tf.app.flags.DEFINE_bool('eval_once', False,
                         'Whether evaluate the model only once.')
tf.app.flags.DEFINE_string('log_root', '',
                           'Directory to keep the checkpoints. Should be a '
                           'parent directory of FLAGS.train_dir/eval_dir.')
tf.app.flags.DEFINE_integer('num_gpus', 0,
                            'Number of gpus used for training. (0 or 1)')
tf.app.flags.DEFINE_integer('num_residual_units', 5,
 | 
	tensorflow.app.flags.DEFINE_bool | 81 | 
| 
	import tensorflow as tf
        l3=tf.matmul(l2, self.w3)+self.b3
        l3=tf.nn.relu(l3)
        out=tf.matmul(l3, self.w4)+self.b4
        return out
    
    def valid_inference(self,images):
        images=tf.cast(images,tf.float32)/255.0
        l1 = tf.matmul(images, self.w1)+self.b1
        l1=tf.nn.relu(l1)
        l2 = tf.matmul(l1, self.w2)+self.b2
        l2=tf.nn.relu(l2)
        l3=tf.matmul(l2, self.w3)+self.b3
        l3=tf.nn.relu(l3)
        out=tf.matmul(l3, self.w4)+self.b4
        return out
    
    def softmax_loss(self,predicts,labels):
        predicts=tf.nn.softmax(predicts)
        labels=tf.one_hot(labels,classnum)
        loss=-tf.reduce_sum(labels*tf.log(predicts))
        return loss
 | 
	tensorflow.matmul | 82 | 
| 
	import tensorflow as tf
    row_norms = tf.sqrt(tf.reduce_sum(tf.square(var_matrix), 1))
    scaling = maxnorm / tf.maximum(row_norms, maxnorm)
 | 
	tensorflow.maximum | 83 | 
| 
	from tensorflow.python.framework import ops
  """
  with ops.op_scope([value, bias], name, "BiasAddV1") as name:
    value = ops.convert_to_tensor(value, name="input")
    bias = ops.convert_to_tensor(bias, dtype=value.dtype, name="bias")
    return gen_nn_ops._bias_add_v1(value, bias, name=name)
ops.RegisterShape("BiasAddV1")(common_shapes.bias_add_shape)
ops.RegisterShape("BiasAddGradV1")(common_shapes.bias_add_grad_shape)
def relu6(features, name=None):
  """Computes Rectified Linear 6: `min(max(features, 0), 6)`.
  Args:
    features: A `Tensor` with type `float`, `double`, `int32`, `int64`, `uint8`,
      `int16`, or `int8`.
 | 
	tensorflow.python.framework.ops.RegisterShape | 84 | 
| 
	from tensorflow.python.ops import math_ops
        # Create slots for the global solution.
        for v in var_list:
            self._zeros_slot(v, "vstar", self._name)
            self._zeros_slot(v, "gold", self._name)
    def _apply_dense(self, grad, var):
        lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
        mu_t = math_ops.cast(self._mu_t, var.dtype.base_dtype)
        
        vstar = self.get_slot(var, "vstar")
        gold = self.get_slot(var, "gold")
 | 
	tensorflow.python.ops.math_ops.cast | 85 | 
| 
	import tensorflow as tf
        if modality.top_is_pointwise:
          return tf.squeeze(logits, axis=[1, 2, 3])
      # -1 due to the pad above.
      current_output_position = common_layers.shape_list(ids)[1] - 1
      logits = logits[:, current_output_position, :, :]
      return tf.squeeze(logits, axis=[1, 2])
    initial_ids = tf.zeros([batch_size], dtype=tf.int32)
    if self.has_input:
 | 
	tensorflow.squeeze | 86 | 
| 
	import tensorflow as tf
            x = tf.transpose(x, perm=[3, 1, 2, 0])  # (batch_size, num_nodes, input_size, order)
            x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices])
            weights = tf.get_variable(
                'weights', [input_size * num_matrices, output_size],
                dtype=dtype,
                initializer=tf.contrib.layers.xavier_initializer())
            x = tf.matmul(
                x, weights)  # (batch_size * self._num_nodes, output_size)
            biases = tf.get_variable("biases", [output_size],
                                     dtype=dtype,
                                     initializer=tf.constant_initializer(
                                         bias_start, dtype=dtype))
            x = tf.nn.bias_add(x, biases)
        # Reshape res back to: (batch_size, num_node, state_dim)
        return tf.reshape(x, [batch_size, self._num_nodes, output_size]) | 
	tensorflow.constant_initializer | 87 | 
| 
	import tensorflow as tf
        print('logit: {}'.format(logits.get_shape()))
        # Compute loss
        if mode != 'gen':
            neg_log_lhoods = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=targets)
            if target_weight_strategy == 'rect':
                avg_neg_log_lhood = tf.reduce_mean(neg_log_lhoods)
            else:
                neg_log_lhoods = tf.multiply(neg_log_lhoods, target_weights)
                # be careful to have at least one weight be nonzero
                # should we be taking the mean elem-wise by batch? i think this is a big bug
                avg_neg_log_lhood = tf.reduce_sum(neg_log_lhoods) / tf.reduce_sum(target_weights)
            neg_log_lhoods_inspect = tf.reshape(neg_log_lhoods, [batch_size, rnn_nunroll])
        # Train op
        if mode == 'train':
            lr = tf.Variable(0.0, trainable=False)
            self._lr = lr
            self._lr_summary = tf.summary.scalar('learning_rate', self._lr)
            tvars = tf.trainable_variables()
            grads = tf.gradients(avg_neg_log_lhood, tvars)
 | 
	tensorflow.reduce_sum | 88 | 
| 
	import tensorflow as tf
    for i in range (dim):
        dg_i = tf.gradients(flat_grads[i], par) #for each element of grads evaluate the gradients
        dg_i_flat = flatten(dg_i) #flatten the resulting hessian onto a 1 d array
 | 
	tensorflow.gradients | 89 | 
| 
	import tensorflow as tf
        return choices
      samples = multinomial_squeeze(logits, self.hparams.sampling_temp)
    return samples, logits, losses
  def _shard_features(self, features):  # pylint: disable=missing-docstring
    sharded_features = dict()
    for k, v in six.iteritems(features):
      v = tf.convert_to_tensor(v)
      v_shape = common_layers.shape_list(v)
      if not v_shape:
        v = tf.expand_dims(v, axis=-1)
        v_shape = [1]
      if v_shape == [1]:
        v = tf.tile(v, [self._num_datashards])
      sharded_features[k] = self._data_parallelism(tf.identity,
                                                   tf.split(
                                                       v, self._num_datashards,
                                                       0))
    return sharded_features
  def _to_features_per_datashard(self, features):
    datashard_features = []
 | 
	tensorflow.expand_dims | 90 | 
| 
	import tensorflow as tf
    random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64)
    chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps
    perturbed_stochastic_actions = tf.where(chose_random, random_actions, perturbed_deterministic_actions)
    stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions)
    perturbed_output_actions = tf.cond(stochastic_ph, lambda: perturbed_stochastic_actions,
                                       lambda: deterministic_actions)
    output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions)
    update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
    updates = [
        update_eps_expr,
        tf.cond(reset_ph, lambda: perturb_vars(original_scope="model", perturbed_scope="perturbed_model/model"),
                lambda: tf.group(*[])),
        tf.cond(update_param_noise_scale_ph, lambda: update_scale(), lambda: tf.Variable(0., trainable=False)),
        update_param_noise_thres_expr,
    ]
 | 
	tensorflow.cond | 91 | 
| 
	import tensorflow as tf
    return tf.clip_by_value(combined_idx, 0, 9)
  def get_slow_antecedent_scores(self, top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb):
    k = util.shape(top_span_emb, 0)
    c = util.shape(top_antecedents, 1)
    feature_emb_list = []
    if self.config["use_metadata"]:
      top_antecedent_speaker_ids = tf.gather(top_span_speaker_ids, top_antecedents) # [k, c]
      same_speaker = tf.equal(tf.expand_dims(top_span_speaker_ids, 1), top_antecedent_speaker_ids) # [k, c]
      speaker_pair_emb = tf.gather(tf.get_variable("same_speaker_emb", [2, self.config["feature_size"]]), tf.to_int32(same_speaker)) # [k, c, emb]
      feature_emb_list.append(speaker_pair_emb)
      tiled_genre_emb = tf.tile(tf.expand_dims(tf.expand_dims(genre_emb, 0), 0), [k, c, 1]) # [k, c, emb]
      feature_emb_list.append(tiled_genre_emb)
    if self.config["use_features"]:
      antecedent_distance_buckets = self.bucket_distance(top_antecedent_offsets) # [k, c]
      antecedent_distance_emb = tf.gather(tf.get_variable("antecedent_distance_emb", [10, self.config["feature_size"]]), antecedent_distance_buckets) # [k, c]
      feature_emb_list.append(antecedent_distance_emb)
 | 
	tensorflow.get_variable | 92 | 
| 
	import tensorflow as tf
        if data_format_ == 'NHWC':
            inputs = tf.transpose(inputs, [0, 2, 3, 1])
        ksize = int(6 * sigma + 1.)
        x = tf.expand_dims(tf.range(ksize, delta=1, dtype=tf.float32), axis=1)
        y = tf.transpose(x, [1, 0])
        kernel_matrix = tf.exp(- ((x - ksize/2.) ** 2 + (y - ksize/2.) ** 2) / (2 * sigma ** 2))
        #print(kernel_matrix)
        kernel_filter = tf.reshape(kernel_matrix, [ksize, ksize, 1, 1])
        kernel_filter = tf.tile(kernel_filter, [1, 1, inputs_filters, 1])
        #kernel_filter = tf.transpose(kernel_filter, [1, 0, 2, 3])
        outputs = tf.nn.depthwise_conv2d(inputs, kernel_filter, strides=[1, 1, 1, 1], padding='SAME', data_format=data_format_, name='blur')
        if data_format_ == 'NHWC':
            outputs = tf.transpose(outputs, [0, 3, 1, 2])
        return outputs
cpn_backbone = cpn.cascaded_pyramid_net
if 'seresnext50' in FLAGS.backbone:
    cpn_backbone = cpn.xt_cascaded_pyramid_net
def keypoint_model_fn(features, labels, mode, params):
 | 
	tensorflow.nn.depthwise_conv2d | 93 | 
| 
	import tensorflow as tf
        start_x = tf.random.uniform(shape=(1,), minval=0, maxval=im_width, dtype=tf.int32)
        start_y = tf.random.uniform(shape=(1,), minval=0, maxval=im_height, dtype=tf.int32)
        mask = tf.pad(mask, [[cutout_size + start_y[0], im_height - start_y[0]],
                            [cutout_size + start_x[0], im_width - start_x[0]]])
        mask = mask[cutout_size: cutout_size + im_height,
                    cutout_size: cutout_size + im_width]
        mask = tf.tile(tf.reshape(mask, (im_height, im_width, 1)), (1, 1, 3))
        image = tf.where(tf.equal(mask, 0), x=image, y=tf.zeros_like(image))
        return image
    def _add_drop_path(self, X, keep_prob):
        with tf.variable_scope('drop_path'):
 | 
	tensorflow.reshape | 94 | 
| 
	import tensorflow as tf
    def regularization(self):
        return self.model_lam * (
            self.model_prob * tf.reduce_sum(tf.square(self.model_W)) +
            tf.reduce_sum(tf.square(self.model_b))
 | 
	tensorflow.square | 95 | 
| 
	import tensorflow.contrib as contrib
            dropout3_1 = contrib.layers.dropout(stitch3_1, keep_prob=keep_prob, is_training=is_training,
                                                scope="dropout3_1")
            dropout3_2 = contrib.layers.dropout(stitch3_2, keep_prob=keep_prob, is_training=is_training,
                                                scope="dropout3_2")
 | 
	tensorflow.contrib.layers.dropout | 96 | 
| 
	import tensorflow as tf
    """Step the batch of environments.
    The results of the step can be accessed from the variables defined below.
    Args:
      action: Tensor holding the batch of actions to apply.
    Returns:
      Operation.
    """
    with tf.name_scope('environment/simulate'):
      if action.dtype in (tf.float16, tf.float32, tf.float64):
        action = tf.check_numerics(action, 'action')
      observ_dtype = self._parse_dtype(self._batch_env.observation_space)
      observ, reward, done = tf.py_func(
          lambda a: self._batch_env.step(a)[:3], [action],
          [observ_dtype, tf.float32, tf.bool], name='step')
      observ = tf.check_numerics(observ, 'observ')
      reward = tf.check_numerics(reward, 'reward')
      return tf.group(
 | 
	tensorflow.name_scope | 97 | 
| 
	import tensorflow as tf
    if not white:
        q_mu = tf.matrix_triangular_solve(Luu, q_mu, lower=True)
        Luu_tiled = tf.tile(Luu[None, :, :], [num_func, 1, 1])  # remove line once issue 216 is fixed
        q_sqrt_r = tf.matrix_triangular_solve(Luu_tiled, q_sqrt_r, lower=True)
    Li_eKuf = tf.matrix_triangular_solve(Luu, eKuf, lower=True)  # M x N
    fmean = tf.matmul(Li_eKuf, q_mu, transpose_a=True)
    eKff = expectation(pXnew, kern)  # N (psi0)
    eKuffu = expectation(pXnew, (kern, feat), (kern, feat))  # N x M x M (psi2)
    Luu_tiled = tf.tile(Luu[None, :, :], [num_data, 1, 1])  # remove this line, once issue 216 is fixed
 | 
	tensorflow.matrix_triangular_solve | 98 | 
| 
	import tensorflow as tf
      d *= noise
    z = tf.layers.dense(d, final_filters, name="unbottleneck")
    return layer + z, 0.0
 | 
	tensorflow.layers.dense | 99 | 
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.