# /// script # requires-python = ">=3.11" # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "pillow", # "toolz", # "torch", # "tqdm", # "transformers", # "vllm>=0.6.5", # ] # /// """ Classify images using Vision Language Models with vLLM. This script processes images through VLMs to classify them into user-defined categories, using vLLM's GuidedDecodingParams for structured output. Examples: # Basic classification uv run vlm-classify.py \\ username/input-dataset \\ username/output-dataset \\ --classes "document,photo,diagram,other" # With custom prompt and model uv run vlm-classify.py \\ username/input-dataset \\ username/output-dataset \\ --classes "index-card,manuscript,title-page,other" \\ --prompt "What type of historical document is this?" \\ --model Qwen/Qwen2-VL-7B-Instruct # Quick test with sample limit uv run vlm-classify.py \\ davanstrien/sloane-index-cards \\ username/test-output \\ --classes "index,content,other" \\ --max-samples 10 """ import argparse import base64 import io import logging import os import sys from collections import Counter from typing import List, Optional, Union, Dict, Any import torch from PIL import Image from datasets import load_dataset, Dataset from huggingface_hub import login from toolz import partition_all from tqdm.auto import tqdm from vllm import LLM, SamplingParams from vllm.sampling_params import GuidedDecodingParams logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def image_to_data_uri( image: Union[Image.Image, Dict[str, Any]], max_size: Optional[int] = None ) -> str: """Convert image to base64 data URI for VLM processing. Args: image: PIL Image or dict with image bytes max_size: Optional maximum dimension (width or height) to resize to. Preserves aspect ratio using thumbnail method. """ if isinstance(image, Image.Image): pil_img = image elif isinstance(image, dict) and "bytes" in image: pil_img = Image.open(io.BytesIO(image["bytes"])) else: raise ValueError(f"Unsupported image type: {type(image)}") # Resize if max_size is specified and image exceeds it if max_size and (pil_img.width > max_size or pil_img.height > max_size): # Use thumbnail to preserve aspect ratio pil_img = pil_img.copy() # Don't modify original pil_img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) # Convert to RGB if necessary (handle RGBA, grayscale, etc.) if pil_img.mode not in ("RGB", "L"): pil_img = pil_img.convert("RGB") # Convert to base64 buf = io.BytesIO() pil_img.save(buf, format="JPEG", quality=95) base64_str = base64.b64encode(buf.getvalue()).decode() return f"data:image/jpeg;base64,{base64_str}" def create_classification_messages( image: Union[Image.Image, Dict[str, Any]], prompt: str, max_size: Optional[int] = None, ) -> List[Dict]: """Create chat messages for VLM classification.""" image_uri = image_to_data_uri(image, max_size=max_size) return [ { "role": "user", "content": [ {"type": "image_url", "image_url": {"url": image_uri}}, {"type": "text", "text": prompt}, ], } ] def main( input_dataset: str, output_dataset: str, classes: str, prompt: Optional[str] = None, image_column: str = "image", model: str = "Qwen/Qwen2-VL-7B-Instruct", batch_size: int = 8, max_samples: Optional[int] = None, max_size: Optional[int] = None, gpu_memory_utilization: float = 0.9, max_model_len: Optional[int] = None, tensor_parallel_size: Optional[int] = None, split: str = "train", hf_token: Optional[str] = None, private: bool = False, ): """Classify images from a dataset using a Vision Language Model.""" # Check GPU availability if not torch.cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error("If running locally, ensure you have a CUDA-capable GPU.") logger.error("For cloud execution, use: hf jobs uv run --flavor a10g ...") sys.exit(1) # Parse classes class_list = [c.strip() for c in classes.split(",")] logger.info(f"Classes: {class_list}") # Create default prompt if not provided if prompt is None: prompt = f"Classify this image into one of the following categories: {', '.join(class_list)}" logger.info(f"Prompt template: {prompt}") # Login to HF if token provided HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") if HF_TOKEN: login(token=HF_TOKEN) # Load dataset logger.info(f"Loading dataset: {input_dataset}") dataset = load_dataset(input_dataset, split=split) # Validate image column if image_column not in dataset.column_names: raise ValueError( f"Column '{image_column}' not found. Available: {dataset.column_names}" ) # Limit samples if requested if max_samples: dataset = dataset.select(range(min(max_samples, len(dataset)))) logger.info(f"Limited to {len(dataset)} samples") # Log resizing configuration if max_size: logger.info(f"Image resizing enabled: max dimension = {max_size}px") # Auto-detect tensor parallel size if not specified if tensor_parallel_size is None: tensor_parallel_size = torch.cuda.device_count() logger.info(f"Auto-detected {tensor_parallel_size} GPUs for tensor parallelism") # Initialize vLLM logger.info(f"Loading model: {model}") llm_kwargs = { "model": model, "gpu_memory_utilization": gpu_memory_utilization, "tensor_parallel_size": tensor_parallel_size, "trust_remote_code": True, # Required for some VLMs } if max_model_len: llm_kwargs["max_model_len"] = max_model_len llm = LLM(**llm_kwargs) # Create guided decoding params for classification guided_decoding_params = GuidedDecodingParams(choice=class_list) sampling_params = SamplingParams( temperature=0.1, # Low temperature for consistent classification max_tokens=50, # Classifications are short guided_decoding=guided_decoding_params, ) # Process images in batches to avoid memory issues logger.info(f"Processing {len(dataset)} images in batches of {batch_size}") all_classifications = [] # Process in batches using lazy loading for batch_indices in tqdm( partition_all(batch_size, range(len(dataset))), total=(len(dataset) + batch_size - 1) // batch_size, desc="Classifying images", ): batch_indices = list(batch_indices) # Load only this batch's images batch_images = [] valid_batch_indices = [] for idx in batch_indices: try: image = dataset[idx][image_column] batch_images.append(image) valid_batch_indices.append(idx) except Exception as e: logger.warning(f"Skipping image at index {idx}: {e}") all_classifications.append(None) if not batch_images: continue try: # Create messages for just this batch batch_messages = [ create_classification_messages(img, prompt, max_size=max_size) for img in batch_images ] # Process with vLLM outputs = llm.chat( messages=batch_messages, sampling_params=sampling_params, use_tqdm=False, # Already have outer progress bar ) # Extract classifications for output in outputs: if output.outputs: label = output.outputs[0].text.strip() all_classifications.append(label) else: all_classifications.append(None) logger.warning("Empty output for an image") except Exception as e: logger.error(f"Error processing batch: {e}") # Add None for failed batch all_classifications.extend([None] * len(batch_images)) # Ensure we have the right number of classifications while len(all_classifications) < len(dataset): all_classifications.append(None) # Add classifications to dataset logger.info("Adding classifications to dataset...") dataset = dataset.add_column("label", all_classifications[: len(dataset)]) # Push to hub logger.info(f"Pushing to {output_dataset}...") dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN) # Print summary logger.info("Classification complete!") logger.info(f"Processed {len(all_classifications)} images") logger.info(f"Output dataset: {output_dataset}") # Show distribution of classifications label_counts = Counter(all_classifications) logger.info("Classification distribution:") for label, count in sorted(label_counts.items()): if label is not None: # Skip None values in summary percentage = ( (count / len(all_classifications)) * 100 if all_classifications else 0 ) logger.info(f" {label}: {count} ({percentage:.1f}%)") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Classify images using Vision Language Models", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Basic classification uv run vlm-classify.py \\ username/input-dataset \\ username/output-dataset \\ --classes "document,photo,diagram,other" # With custom prompt uv run vlm-classify.py \\ username/input-dataset \\ username/output-dataset \\ --classes "index-card,manuscript,other" \\ --prompt "What type of historical document is this?" # HF Jobs execution hf jobs uv run \\ --flavor a10g \\ https://huggingface.co/datasets/uv-scripts/vllm/raw/main/vlm-classify.py \\ username/input-dataset \\ username/output-dataset \\ --classes "title-page,content,index,other" """, ) parser.add_argument( "input_dataset", help="Input dataset ID on Hugging Face Hub", ) parser.add_argument( "output_dataset", help="Output dataset ID on Hugging Face Hub", ) parser.add_argument( "--classes", required=True, help='Comma-separated list of classes (e.g., "cat,dog,other")', ) parser.add_argument( "--prompt", default=None, help="Custom classification prompt (default: auto-generated)", ) parser.add_argument( "--image-column", default="image", help="Column name containing images (default: image)", ) parser.add_argument( "--model", default="Qwen/Qwen2-VL-7B-Instruct", help="Vision Language Model to use (default: Qwen/Qwen2-VL-7B-Instruct)", ) parser.add_argument( "--batch-size", type=int, default=8, help="Batch size for inference (default: 8)", ) parser.add_argument( "--max-samples", type=int, default=None, help="Maximum number of samples to process (for testing)", ) parser.add_argument( "--max-size", type=int, default=None, help="Maximum image dimension in pixels. Images larger than this will be resized while preserving aspect ratio (e.g., 768, 1024)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.9, help="GPU memory utilization (default: 0.9)", ) parser.add_argument( "--max-model-len", type=int, default=None, help="Maximum model context length", ) parser.add_argument( "--tensor-parallel-size", type=int, default=None, help="Number of GPUs for tensor parallelism (default: auto-detect)", ) parser.add_argument( "--split", default="train", help="Dataset split to use (default: train)", ) parser.add_argument( "--hf-token", default=None, help="Hugging Face API token (or set HF_TOKEN env var)", ) parser.add_argument( "--private", action="store_true", help="Make output dataset private", ) args = parser.parse_args() # Show example command if no arguments if len(sys.argv) == 1: parser.print_help() print("\n" + "=" * 60) print("Example HF Jobs command:") print("=" * 60) print(""" hf jobs uv run \\ --flavor a10g \\ -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\ https://huggingface.co/datasets/uv-scripts/vllm/raw/main/vlm-classify.py \\ davanstrien/sloane-index-cards \\ username/classified-cards \\ --classes "index-card,manuscript,title-page,other" \\ --max-size 768 \\ --max-samples 100 """) sys.exit(0) main( input_dataset=args.input_dataset, output_dataset=args.output_dataset, classes=args.classes, prompt=args.prompt, image_column=args.image_column, model=args.model, batch_size=args.batch_size, max_samples=args.max_samples, max_size=args.max_size, gpu_memory_utilization=args.gpu_memory_utilization, max_model_len=args.max_model_len, tensor_parallel_size=args.tensor_parallel_size, split=args.split, hf_token=args.hf_token, private=args.private, )