Commit
·
a7a851e
1
Parent(s):
f051c94
Refactor image_to_data_uri and main functions for improved readability and consistency
Browse files- vlm-classify.py +52 -46
vlm-classify.py
CHANGED
@@ -63,9 +63,11 @@ logging.basicConfig(level=logging.INFO)
|
|
63 |
logger = logging.getLogger(__name__)
|
64 |
|
65 |
|
66 |
-
def image_to_data_uri(
|
|
|
|
|
67 |
"""Convert image to base64 data URI for VLM processing.
|
68 |
-
|
69 |
Args:
|
70 |
image: PIL Image or dict with image bytes
|
71 |
max_size: Optional maximum dimension (width or height) to resize to.
|
@@ -77,17 +79,17 @@ def image_to_data_uri(image: Union[Image.Image, Dict[str, Any]], max_size: Optio
|
|
77 |
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
78 |
else:
|
79 |
raise ValueError(f"Unsupported image type: {type(image)}")
|
80 |
-
|
81 |
# Resize if max_size is specified and image exceeds it
|
82 |
if max_size and (pil_img.width > max_size or pil_img.height > max_size):
|
83 |
# Use thumbnail to preserve aspect ratio
|
84 |
pil_img = pil_img.copy() # Don't modify original
|
85 |
pil_img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
86 |
-
|
87 |
# Convert to RGB if necessary (handle RGBA, grayscale, etc.)
|
88 |
if pil_img.mode not in ("RGB", "L"):
|
89 |
pil_img = pil_img.convert("RGB")
|
90 |
-
|
91 |
# Convert to base64
|
92 |
buf = io.BytesIO()
|
93 |
pil_img.save(buf, format="JPEG", quality=95)
|
@@ -102,7 +104,7 @@ def create_classification_messages(
|
|
102 |
) -> List[Dict]:
|
103 |
"""Create chat messages for VLM classification."""
|
104 |
image_uri = image_to_data_uri(image, max_size=max_size)
|
105 |
-
|
106 |
return [
|
107 |
{
|
108 |
"role": "user",
|
@@ -132,50 +134,52 @@ def main(
|
|
132 |
private: bool = False,
|
133 |
):
|
134 |
"""Classify images from a dataset using a Vision Language Model."""
|
135 |
-
|
136 |
# Check GPU availability
|
137 |
if not torch.cuda.is_available():
|
138 |
logger.error("CUDA is not available. This script requires a GPU.")
|
139 |
logger.error("If running locally, ensure you have a CUDA-capable GPU.")
|
140 |
logger.error("For cloud execution, use: hf jobs uv run --flavor a10g ...")
|
141 |
sys.exit(1)
|
142 |
-
|
143 |
# Parse classes
|
144 |
class_list = [c.strip() for c in classes.split(",")]
|
145 |
logger.info(f"Classes: {class_list}")
|
146 |
-
|
147 |
# Create default prompt if not provided
|
148 |
if prompt is None:
|
149 |
prompt = f"Classify this image into one of the following categories: {', '.join(class_list)}"
|
150 |
logger.info(f"Prompt template: {prompt}")
|
151 |
-
|
152 |
# Login to HF if token provided
|
153 |
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
154 |
if HF_TOKEN:
|
155 |
login(token=HF_TOKEN)
|
156 |
-
|
157 |
# Load dataset
|
158 |
logger.info(f"Loading dataset: {input_dataset}")
|
159 |
dataset = load_dataset(input_dataset, split=split)
|
160 |
-
|
161 |
# Validate image column
|
162 |
if image_column not in dataset.column_names:
|
163 |
-
raise ValueError(
|
164 |
-
|
|
|
|
|
165 |
# Limit samples if requested
|
166 |
if max_samples:
|
167 |
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
168 |
logger.info(f"Limited to {len(dataset)} samples")
|
169 |
-
|
170 |
# Log resizing configuration
|
171 |
if max_size:
|
172 |
logger.info(f"Image resizing enabled: max dimension = {max_size}px")
|
173 |
-
|
174 |
# Auto-detect tensor parallel size if not specified
|
175 |
if tensor_parallel_size is None:
|
176 |
tensor_parallel_size = torch.cuda.device_count()
|
177 |
logger.info(f"Auto-detected {tensor_parallel_size} GPUs for tensor parallelism")
|
178 |
-
|
179 |
# Initialize vLLM
|
180 |
logger.info(f"Loading model: {model}")
|
181 |
llm_kwargs = {
|
@@ -184,25 +188,25 @@ def main(
|
|
184 |
"tensor_parallel_size": tensor_parallel_size,
|
185 |
"trust_remote_code": True, # Required for some VLMs
|
186 |
}
|
187 |
-
|
188 |
if max_model_len:
|
189 |
llm_kwargs["max_model_len"] = max_model_len
|
190 |
-
|
191 |
llm = LLM(**llm_kwargs)
|
192 |
-
|
193 |
# Create guided decoding params for classification
|
194 |
guided_decoding_params = GuidedDecodingParams(choice=class_list)
|
195 |
sampling_params = SamplingParams(
|
196 |
temperature=0.1, # Low temperature for consistent classification
|
197 |
-
max_tokens=50,
|
198 |
guided_decoding=guided_decoding_params,
|
199 |
)
|
200 |
-
|
201 |
# Process images in batches to avoid memory issues
|
202 |
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
203 |
-
|
204 |
all_classifications = []
|
205 |
-
|
206 |
# Process in batches using lazy loading
|
207 |
for batch_indices in tqdm(
|
208 |
partition_all(batch_size, range(len(dataset))),
|
@@ -210,11 +214,11 @@ def main(
|
|
210 |
desc="Classifying images",
|
211 |
):
|
212 |
batch_indices = list(batch_indices)
|
213 |
-
|
214 |
# Load only this batch's images
|
215 |
batch_images = []
|
216 |
valid_batch_indices = []
|
217 |
-
|
218 |
for idx in batch_indices:
|
219 |
try:
|
220 |
image = dataset[idx][image_column]
|
@@ -223,24 +227,24 @@ def main(
|
|
223 |
except Exception as e:
|
224 |
logger.warning(f"Skipping image at index {idx}: {e}")
|
225 |
all_classifications.append(None)
|
226 |
-
|
227 |
if not batch_images:
|
228 |
continue
|
229 |
-
|
230 |
try:
|
231 |
# Create messages for just this batch
|
232 |
batch_messages = [
|
233 |
-
create_classification_messages(img, prompt, max_size=max_size)
|
234 |
for img in batch_images
|
235 |
]
|
236 |
-
|
237 |
# Process with vLLM
|
238 |
outputs = llm.chat(
|
239 |
messages=batch_messages,
|
240 |
sampling_params=sampling_params,
|
241 |
use_tqdm=False, # Already have outer progress bar
|
242 |
)
|
243 |
-
|
244 |
# Extract classifications
|
245 |
for output in outputs:
|
246 |
if output.outputs:
|
@@ -249,35 +253,37 @@ def main(
|
|
249 |
else:
|
250 |
all_classifications.append(None)
|
251 |
logger.warning("Empty output for an image")
|
252 |
-
|
253 |
except Exception as e:
|
254 |
logger.error(f"Error processing batch: {e}")
|
255 |
# Add None for failed batch
|
256 |
all_classifications.extend([None] * len(batch_images))
|
257 |
-
|
258 |
# Ensure we have the right number of classifications
|
259 |
while len(all_classifications) < len(dataset):
|
260 |
all_classifications.append(None)
|
261 |
-
|
262 |
# Add classifications to dataset
|
263 |
logger.info("Adding classifications to dataset...")
|
264 |
-
dataset = dataset.add_column("label", all_classifications[:len(dataset)])
|
265 |
-
|
266 |
# Push to hub
|
267 |
logger.info(f"Pushing to {output_dataset}...")
|
268 |
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
269 |
-
|
270 |
# Print summary
|
271 |
logger.info("Classification complete!")
|
272 |
logger.info(f"Processed {len(all_classifications)} images")
|
273 |
logger.info(f"Output dataset: {output_dataset}")
|
274 |
-
|
275 |
# Show distribution of classifications
|
276 |
label_counts = Counter(all_classifications)
|
277 |
logger.info("Classification distribution:")
|
278 |
for label, count in sorted(label_counts.items()):
|
279 |
if label is not None: # Skip None values in summary
|
280 |
-
percentage = (
|
|
|
|
|
281 |
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
282 |
|
283 |
|
@@ -309,7 +315,7 @@ Examples:
|
|
309 |
--classes "title-page,content,index,other"
|
310 |
""",
|
311 |
)
|
312 |
-
|
313 |
parser.add_argument(
|
314 |
"input_dataset",
|
315 |
help="Input dataset ID on Hugging Face Hub",
|
@@ -389,15 +395,15 @@ Examples:
|
|
389 |
action="store_true",
|
390 |
help="Make output dataset private",
|
391 |
)
|
392 |
-
|
393 |
args = parser.parse_args()
|
394 |
-
|
395 |
# Show example command if no arguments
|
396 |
if len(sys.argv) == 1:
|
397 |
parser.print_help()
|
398 |
-
print("\n" + "="*60)
|
399 |
print("Example HF Jobs command:")
|
400 |
-
print("="*60)
|
401 |
print("""
|
402 |
hf jobs uv run \\
|
403 |
--flavor a10g \\
|
@@ -410,7 +416,7 @@ hf jobs uv run \\
|
|
410 |
--max-samples 100
|
411 |
""")
|
412 |
sys.exit(0)
|
413 |
-
|
414 |
main(
|
415 |
input_dataset=args.input_dataset,
|
416 |
output_dataset=args.output_dataset,
|
@@ -427,4 +433,4 @@ hf jobs uv run \\
|
|
427 |
split=args.split,
|
428 |
hf_token=args.hf_token,
|
429 |
private=args.private,
|
430 |
-
)
|
|
|
63 |
logger = logging.getLogger(__name__)
|
64 |
|
65 |
|
66 |
+
def image_to_data_uri(
|
67 |
+
image: Union[Image.Image, Dict[str, Any]], max_size: Optional[int] = None
|
68 |
+
) -> str:
|
69 |
"""Convert image to base64 data URI for VLM processing.
|
70 |
+
|
71 |
Args:
|
72 |
image: PIL Image or dict with image bytes
|
73 |
max_size: Optional maximum dimension (width or height) to resize to.
|
|
|
79 |
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
80 |
else:
|
81 |
raise ValueError(f"Unsupported image type: {type(image)}")
|
82 |
+
|
83 |
# Resize if max_size is specified and image exceeds it
|
84 |
if max_size and (pil_img.width > max_size or pil_img.height > max_size):
|
85 |
# Use thumbnail to preserve aspect ratio
|
86 |
pil_img = pil_img.copy() # Don't modify original
|
87 |
pil_img.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
|
88 |
+
|
89 |
# Convert to RGB if necessary (handle RGBA, grayscale, etc.)
|
90 |
if pil_img.mode not in ("RGB", "L"):
|
91 |
pil_img = pil_img.convert("RGB")
|
92 |
+
|
93 |
# Convert to base64
|
94 |
buf = io.BytesIO()
|
95 |
pil_img.save(buf, format="JPEG", quality=95)
|
|
|
104 |
) -> List[Dict]:
|
105 |
"""Create chat messages for VLM classification."""
|
106 |
image_uri = image_to_data_uri(image, max_size=max_size)
|
107 |
+
|
108 |
return [
|
109 |
{
|
110 |
"role": "user",
|
|
|
134 |
private: bool = False,
|
135 |
):
|
136 |
"""Classify images from a dataset using a Vision Language Model."""
|
137 |
+
|
138 |
# Check GPU availability
|
139 |
if not torch.cuda.is_available():
|
140 |
logger.error("CUDA is not available. This script requires a GPU.")
|
141 |
logger.error("If running locally, ensure you have a CUDA-capable GPU.")
|
142 |
logger.error("For cloud execution, use: hf jobs uv run --flavor a10g ...")
|
143 |
sys.exit(1)
|
144 |
+
|
145 |
# Parse classes
|
146 |
class_list = [c.strip() for c in classes.split(",")]
|
147 |
logger.info(f"Classes: {class_list}")
|
148 |
+
|
149 |
# Create default prompt if not provided
|
150 |
if prompt is None:
|
151 |
prompt = f"Classify this image into one of the following categories: {', '.join(class_list)}"
|
152 |
logger.info(f"Prompt template: {prompt}")
|
153 |
+
|
154 |
# Login to HF if token provided
|
155 |
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
156 |
if HF_TOKEN:
|
157 |
login(token=HF_TOKEN)
|
158 |
+
|
159 |
# Load dataset
|
160 |
logger.info(f"Loading dataset: {input_dataset}")
|
161 |
dataset = load_dataset(input_dataset, split=split)
|
162 |
+
|
163 |
# Validate image column
|
164 |
if image_column not in dataset.column_names:
|
165 |
+
raise ValueError(
|
166 |
+
f"Column '{image_column}' not found. Available: {dataset.column_names}"
|
167 |
+
)
|
168 |
+
|
169 |
# Limit samples if requested
|
170 |
if max_samples:
|
171 |
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
172 |
logger.info(f"Limited to {len(dataset)} samples")
|
173 |
+
|
174 |
# Log resizing configuration
|
175 |
if max_size:
|
176 |
logger.info(f"Image resizing enabled: max dimension = {max_size}px")
|
177 |
+
|
178 |
# Auto-detect tensor parallel size if not specified
|
179 |
if tensor_parallel_size is None:
|
180 |
tensor_parallel_size = torch.cuda.device_count()
|
181 |
logger.info(f"Auto-detected {tensor_parallel_size} GPUs for tensor parallelism")
|
182 |
+
|
183 |
# Initialize vLLM
|
184 |
logger.info(f"Loading model: {model}")
|
185 |
llm_kwargs = {
|
|
|
188 |
"tensor_parallel_size": tensor_parallel_size,
|
189 |
"trust_remote_code": True, # Required for some VLMs
|
190 |
}
|
191 |
+
|
192 |
if max_model_len:
|
193 |
llm_kwargs["max_model_len"] = max_model_len
|
194 |
+
|
195 |
llm = LLM(**llm_kwargs)
|
196 |
+
|
197 |
# Create guided decoding params for classification
|
198 |
guided_decoding_params = GuidedDecodingParams(choice=class_list)
|
199 |
sampling_params = SamplingParams(
|
200 |
temperature=0.1, # Low temperature for consistent classification
|
201 |
+
max_tokens=50, # Classifications are short
|
202 |
guided_decoding=guided_decoding_params,
|
203 |
)
|
204 |
+
|
205 |
# Process images in batches to avoid memory issues
|
206 |
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
207 |
+
|
208 |
all_classifications = []
|
209 |
+
|
210 |
# Process in batches using lazy loading
|
211 |
for batch_indices in tqdm(
|
212 |
partition_all(batch_size, range(len(dataset))),
|
|
|
214 |
desc="Classifying images",
|
215 |
):
|
216 |
batch_indices = list(batch_indices)
|
217 |
+
|
218 |
# Load only this batch's images
|
219 |
batch_images = []
|
220 |
valid_batch_indices = []
|
221 |
+
|
222 |
for idx in batch_indices:
|
223 |
try:
|
224 |
image = dataset[idx][image_column]
|
|
|
227 |
except Exception as e:
|
228 |
logger.warning(f"Skipping image at index {idx}: {e}")
|
229 |
all_classifications.append(None)
|
230 |
+
|
231 |
if not batch_images:
|
232 |
continue
|
233 |
+
|
234 |
try:
|
235 |
# Create messages for just this batch
|
236 |
batch_messages = [
|
237 |
+
create_classification_messages(img, prompt, max_size=max_size)
|
238 |
for img in batch_images
|
239 |
]
|
240 |
+
|
241 |
# Process with vLLM
|
242 |
outputs = llm.chat(
|
243 |
messages=batch_messages,
|
244 |
sampling_params=sampling_params,
|
245 |
use_tqdm=False, # Already have outer progress bar
|
246 |
)
|
247 |
+
|
248 |
# Extract classifications
|
249 |
for output in outputs:
|
250 |
if output.outputs:
|
|
|
253 |
else:
|
254 |
all_classifications.append(None)
|
255 |
logger.warning("Empty output for an image")
|
256 |
+
|
257 |
except Exception as e:
|
258 |
logger.error(f"Error processing batch: {e}")
|
259 |
# Add None for failed batch
|
260 |
all_classifications.extend([None] * len(batch_images))
|
261 |
+
|
262 |
# Ensure we have the right number of classifications
|
263 |
while len(all_classifications) < len(dataset):
|
264 |
all_classifications.append(None)
|
265 |
+
|
266 |
# Add classifications to dataset
|
267 |
logger.info("Adding classifications to dataset...")
|
268 |
+
dataset = dataset.add_column("label", all_classifications[: len(dataset)])
|
269 |
+
|
270 |
# Push to hub
|
271 |
logger.info(f"Pushing to {output_dataset}...")
|
272 |
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
273 |
+
|
274 |
# Print summary
|
275 |
logger.info("Classification complete!")
|
276 |
logger.info(f"Processed {len(all_classifications)} images")
|
277 |
logger.info(f"Output dataset: {output_dataset}")
|
278 |
+
|
279 |
# Show distribution of classifications
|
280 |
label_counts = Counter(all_classifications)
|
281 |
logger.info("Classification distribution:")
|
282 |
for label, count in sorted(label_counts.items()):
|
283 |
if label is not None: # Skip None values in summary
|
284 |
+
percentage = (
|
285 |
+
(count / len(all_classifications)) * 100 if all_classifications else 0
|
286 |
+
)
|
287 |
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
288 |
|
289 |
|
|
|
315 |
--classes "title-page,content,index,other"
|
316 |
""",
|
317 |
)
|
318 |
+
|
319 |
parser.add_argument(
|
320 |
"input_dataset",
|
321 |
help="Input dataset ID on Hugging Face Hub",
|
|
|
395 |
action="store_true",
|
396 |
help="Make output dataset private",
|
397 |
)
|
398 |
+
|
399 |
args = parser.parse_args()
|
400 |
+
|
401 |
# Show example command if no arguments
|
402 |
if len(sys.argv) == 1:
|
403 |
parser.print_help()
|
404 |
+
print("\n" + "=" * 60)
|
405 |
print("Example HF Jobs command:")
|
406 |
+
print("=" * 60)
|
407 |
print("""
|
408 |
hf jobs uv run \\
|
409 |
--flavor a10g \\
|
|
|
416 |
--max-samples 100
|
417 |
""")
|
418 |
sys.exit(0)
|
419 |
+
|
420 |
main(
|
421 |
input_dataset=args.input_dataset,
|
422 |
output_dataset=args.output_dataset,
|
|
|
433 |
split=args.split,
|
434 |
hf_token=args.hf_token,
|
435 |
private=args.private,
|
436 |
+
)
|