PAR1�ǎ��sL�㣇xB�Probabilistic Programming =� and Bayesian Methods for Hackers ' #\Version 0.1 Welcome to *nE�*. The full Github repository is available at [gi#/2�-�-and-p- �-for- �$](https:// KP.com/CamDavidsonPilon�`) �(other chapt!*�can be found on the project's [homepage� camd �p�. �io�P/). We hope you enjoy�book, !�we encourage any contributions! Ch� 1I&= *** !�0Philosophy ofY:(Inference -X > You are a skilled!E�ler, but bugs still slip into��r code. After a particularly diff ,t implementa��0an algorithm,J decidE� test ]!�0a trivial exaL,. It passes.�4!�� 3harder� blem2D once again. And iLB^ ,is makes log! sens r mh�ies� 牖be�<s)Xa���to �st�heM�s have�Z�It!@ s. C͆�� ofte!�sig��" �to�����$lec�? �AH itself only happen! ]Bs get ar�:I�by invok�o�� real ��say! cros�? thes&I2A� define�9�e3�s,���� hand,)ba�re*ui��$ approach.�WsyH� 5RVNf*,��ѥce,A �X ��,S_,:T1  summare,�ypiniow < individual who a�gns��F fl0!�qhasAG���eI���%Q;&versel�EB%�� ]1� A�e�!T��b� ��7�i)B�(s between 0E1�Bow � weigh{ E�)��sm�%���, agrees with�.�of!g23�_khav�ob� ��� .�6=��.�'�(lief should��eq!�to)*M, excludo�7outa��orm��.Ai ,� iQ��]�beOrI s,J ��ea!�ful�speak �D!�( 8) _e�nt.���::�� candid�*A*I\win? No �8![ paragraph�� IM�-{ � (�y)��toAP*Yx*,� to N�NeMis����teresAI,��i�7I9(leaves roomE a,lic0 �!�I�u s. A ���]s�;pri�ATw���lyI�s:��Pt.MA�5 )E��G ?a:,�Mausa�e� � �U <*inUK$ !uworld!7 ist�>!�:vdoe�6te�aatA�on wro��v\followE�m!bmonstr= �re� hipu�9R�9�(ies: - I fFa coin,% oth gu! cN &wi� �!�su*FA# fair!�}x� Head� 1/2. AA�%�$at I peek >U. Now IP E�E� is:U�2x1.��ei� �8or Tails (which� i�) p] is *�*-K�{s�M ? My� ledgE#�Z�2t changm�?'s��|u� �%]B2�a�Z�� - Y"� ���a��~ra�7 we do�:Nich�tru%� ough1: մ����e�or� �bug. Ac A med� patiea�s exhibi�@symptoms $x$, $y$E�$z$eW*�diseas� at cI��usa-!�em �d a l�>� �tYdoctor%8q� �Es Pa s^ d5Z%!sl�\q�8 M!� T��*? �rei� (�K9�� ��!� huma� We employ!�/tanwaE@� ac�����%V% @ p,al!�th� gaepr���. A& ����to� *trained*�k\2? ! To alJ ou �(a*o.nom  deno�"7-��� $A$!$P(A)$����s quant�A�*prior.gT*. John Maynard Keyne� g!� !� omis��� nk,said "Wg Y�sm�, I  myz. WA�d�( do, sir?" Equ�ref7 } way a"6 Ks AIA��# <se�"3E=4— especi�ie)9�u��!ƥwa� i�nZd��8can be ignore�e.�� �1� |X )$,I�[&G.of%�gi�!f� $X2�e>h-*posteB� s� ��astaOI��:!:Aax�cNb� #:m� f abov; amplEmf�3 ��2�: 1\.I�: \;\;$I�N�� a 50 perc�j�pcŎ� ū > | X): AYou loo2s, ��7^ land!�m�tA�* !�G(l� :7y� W�0�T�. 2\. 6�i#big, co!-xv�C� u��.�-%� code�d�'$X$Gs;!Dre�m��A��C��i�e��is � }now. 3��z-Vr��ɦ�.� &���.�)�Per�Aa blood� generaa*.,,�E6�_A�pj0Q� Iu�in each� did��-�� disc�-je2I� Iɍ�.�!u)Swe *re-� D�Bincorpo�^2D(i.e.Aput FF(n) �� sus��  B� roduc!?� *�a�ut�`I�� dmit��!�9 wrTs pot� ly= � �y�data,5���}a��L�?�it� ~*E�p*O U !�.=��U/r� ��S , whatyp� ly�try�7be *m�ra0*�� �ٰ"�ANP�ice If�S�X�; cArre�!�fun�!��inputHs%�al5k��e two� e*\ in��t� return�!" user!4e2�&0� W =� ,��0E� stim�(9Ma"���U�s� avexetc.)-�a55V�*�ies�2i{r debugg!C�slemA�@; ! k%�m!� argu�"M[be8 !bu+?">@*YES*. O)�ih^as�A�F�"O�` -.� j����N� gi�"�:%1O����E�*NOer� I��WI(: > �,w!� Oy 0.8;ER2 P i���a8t��%� nswe��6�5� �� I��:F^accep��0d"1� : *Z�"%�arameter�f� *. �����1���vtelU�F�to�5lud.A�u$e situ�� TnA��6�IxF_is op�al��"�&�itE|0��hc`�!#I��a`e�  A� acqui��\� in� cg3,e )/���*washed *2!S.?��� � expectA 6  %  _yridt ous,��"I Mtsu�M expl�today"ɫ[dayE!�pro$ū` l�"E��\�~ correc�!�0atz� a� ��'tt��5�MWL� � Dq$NZ%K"fR��"u es3%�ZanH inite* ami �69�s� s $N \�U0arrow \infty$)�� s (o��)T��.� '. H�E- $N$,�w/�BceADEtor� ob�$iveR�SsmwS9W�\uch L*uA�ble*:2�e�` ve ,varia�A���#/��va/9�"�5analyshce(�c&� ai4I��a�����(!�ead!�a scalar��e����*6 *I�2�O��.�2{>5N se7OnS ���#at%z%)zLB!�nէ"A� "k s si!P�offer�#i�5�)# leaa� ward�� ux onV-�#.��"oda � "k�hi s3��1"Xf"by(%Lrew Gelman (2005)[1]�f�1mak!�sAya�%d:�oSQ sizes�un�%B.� a� o-�to� suC&�$ly-preciseU ��`!ge� �  (�kM��p�E} Bi#!� x"� enw,"��%��!sub%=�!�_to!�r!&(a�-UA�ublic � poll�c�'� g]q�EVa� r !untry �A_)among m nd w�!6rGnK#sou,&< , age groups,� .1)�)� ��$w " %'�d&D)e;'e�� !�you)���!A. � Ar6$ M�P�b0then? **No.�(*�/��,%usez&4tate-of-the-ar� � ,areas. ToolsM�s!�st squar!,inear regresA�, LASSO2!e���-maximiz &�(I�power�9 fast&��a�))�1 quesa� solvA��0lem� �s&�esA-no� by illumi�%�(�^"l� systemɽma� flex&' mode� �O, A�Z)D*Big Data* Paradox� ,'%�'�$����,�!� actu����yTvX��.G[2][4]C �a �atN{o�* ty&li! a�*A8d^ �.�}� !��keHP���Lo$!� exec�+abi) . (�@�d also�i�K'"�'�O ask "Do Id"kveX ?" )� e ���z��2r�"lve *um%�1 ,.�troublei ,$)�ca� *. U��iɰ!��as ��,�=16�*�Otb##dilQ,!�n� -:b���es ��0e *not-quite-.V�se�� Our&�f 7) WeE�6Y� ��Al���&�A�.�$b"af  h!�a�io&��v+$A���/mi previou� ��V, e.g.� 2| 3wpc�b�pe"��*�S[dSwe� e �&A� tinu �y-cW ��:!��-l fC want�2B@6pis%4" @ ) a�&T*ES� . U�,� 1!� via=&�eq�**(%�'=or�IOl0overer Thomas ,$: \begin{� } P( �X ) = & \frac{ P(X | A)  } {P(XH\\\\[5pt] & \propto6,� (\text{� ropor�H$o } ) \end��/e� A:ula! &un�J!u�J2"p :A�! m�Aq! fa�u��#F@��T me*.;iE conn9I��)¡P�$ɍaud� BF/M )$N ## E� : Mandator.in-n!M� E�.!�s ![ m�.con�.�8pa� <, I'll��� � i�-VA�� adwidth� @�+AF ve-w� ��(3 0E�, ^�2 shifFd mW 3.�&���*5U � �jxA s)�.0�%Q�:los� nd  r}3� val�8f $p=0.5$ (mark)Ta h'ed A�)[ >Y!$)��always *=08)at 0.5�6 n�7a�it!U1:� all�Qed �#�t��o�2!�S = �"U7if<1�� extrem)�,�8Z s%[o��13di�)Z�G>�lW&� biaQ*away�8lum� -e0.5 (wU no���,` E0]5 \� �:be�#o� }.� ; �a�8 ta&�1�)E�Y- accu�tawe h1+$A .�Z'a�&& � Eh ough�!�o�;.i��=� ao�,mp� &�/o%�al&S �e"p Ao!*}BugjRsweet�2b�' fe�1? Le<+"�'u(z� � �**C>**�� it. >X$Z>�>^ �6d"t"tes� ��now��lA2<.rofA!g�'/b# &���$!RX#|X)$, 2�Va,u*!:�]�9 �a�)��e�,ie�,is�� �A<$ ��c2L!v%B *+w�<�-� ? We�i1ql��1,�,d� 1�!�E�_!I$0$�adbMrickier:T LX$S d[7ed �A> iaD!,1"�6 ti *ind�< has*)�(I�(d $\sim A\;�poken��*��rRt%.�_"E> ($A$y �� .)aF^G) & =%�}\+F �)*h>|A)� 5|*P( 3.�o |A)p>. (1-p:y�C� MdEf |A)$I�R�! �%�su�: 5�!-E$E �C� z!`�Aʥ>etE���+�reduc�"N��!i�4p��nt��M&�! �Z� d6�!lic��3{��m8�a�8I@%ԩ�%|-� =��a�hen>{P( I x(1\cdot p}{   +��!� }E AP 0 2, 1+p}2N� �N8 y.[0e��x�#"�%of%ĥU , $p]"u 1]$�L fiO(12� 4) pR� 50)� �H(p, 2 * p / (1 + p)�-:� lw=3) #� 2� >*p/(1+8{ =| face� (["#A60628"] vsca�# (0.2 { � 1s=140, c&I 6 xlim? y6� P< ,!�A!�p$ >y� P� $�J�ZF3 aI�yin�(?"� W�4nl!�biggest 9s:�  �ct�a8� �of 0.20�aa� ��� 20%:c�� 8[�5*�w��>�+H�� &�a2�zBm�� nd"�f�B�le�pi�?� 20� %�u�� 3) }*d�* 0.33�BRe� T 5a!� ��:� #.�> re *��*%� $1-p��_n<A�*. SFy��`!�E2�,Y��)�26h�i�:d�Q saw&VE�*!�$1-P(eL: �5J�[�:Ked*.6�.��?2?owqaAwr:b�: �AKA#q�L� �V8��ur*��� i�= [i0.80] i= [1. /M2]�r bar().7]�io�'70!�dth=0.25&K�r=urs[0]"� �.� *�lw="3", �:<.B� � + p .7 �12,��0.7�L �:�1]&bKƪB%7xticks(-l.9�["BSL Absent", P�'nt�l���E�] -aR�>5Y� � loc="uppen)ft");EN2=�w�� X$3 ��6+ of ����W  )"�A�:K ,j� �C {ce2A@ 1).���1��)� T#��F�%f�4 e. U tunaw4 �.necess�Cto �c��Q2o�/3�"�"VBepg)0;fi>9�(tru4- c�<- �a�.2��P(yp��al#�*�d�$u� �. F=J!�m�broade�1% ŔOsqF de��*.�.�fQI�-%�- familiar,[�Lto�Op�("c-skim)�$2n4AIYext��+sahial. _  ##} Dis"Es r'L�quickl�%�F�2�2� is:**� $Z$-�r'K"2%;n� ocdBd)42!�f="Tr�A�A�ѳi��(AR�1o�Lsbaatake. G�C�r������NB�aA#tQD�N�he�axa�O��A�m�s� #fE�fig�NW8i�<�R��W� �>cF%O�J�?]-3*-q�"rete**:A FPp?��� >I� �<fi��(Things pop&�P movi\��nd�vot�r�'m'Z�.j��S�RV9� ZLtn<th�(�Q2 �!inuous! Con > %�AD� rbitrar�&ex1#�s:�<tempe�Qre,� 0i�C�� Pde�Sa%R�l�%c�+�A:p,Vessd"�-S �) !f�dB-. - 5�mixed�M >��:I7.2w�"�;escrib {:-�� :�N�2TAp a�"�  �wa^�9e�6I 2L!�CnsaG�B ppea�M�vin�1EsmA� needA�&� 2$����-b!���3�0is *Poisson*-�O���expon�8al�.���jJ��uC2>T����f_Z(z��i=� .�  z � \; z\ge 0��LC^b� �m�>�T���2�IF.3:u�k� }.�.U*any*NV*:7AA�u�ral u"�84.�401!zp�s5|a poo�bo�ScD: �%"� �Z &�� nMc=� <*� (, a Kelvins,Iaurs�=�PnyHDx! d�� *5A��:EUb/shows .H> Y����s #NaB�U �D:�.�I�"�^�� A=�V7 E eBC Exp&C A�GZMac�.ca�:& �>v��&�W�8� :5A�Lez$E[\; Z \;|2O I f�41}{m�}�$��:,4,,! �� 2�j,1] , l, c� zip(i�_�sur,�R} �M.-+'cale=�l)�=3�aU=c"o�2�&�*f.+Jxp^mZ�F.33�RPDF] $zB".2�QJ>�!� an Efh;\ m�a�$"�� ?� %-� \;$?� "t3MA8motiv�'0*B5**0`A��R,u=hidHX/u���t$Z�N��go backw�@o �Jw de�^in*]�:�$r>1@ulAc(�one-to-8ma�5�� to�.A6��A�"�>h�#b�[�c� solv@ �of�?2|���A1o%|?"�;)GnjZ�p��ue ��x`!YM f "�(�ber))��?sTY%����5R8Tan%�f �X-��e�*tal�[:\i���2o�bW !+6� 2�2��)is �T oddah_ "�h�'� is f�; �r(� ily)�%! H�2we�4UAc&�8to񥡓�:X ? Ah�'E2falle  old,��b pTZink� .� �?&D&�V`*ca[� "C �*W�Sa �-�_7�h�5nti�9qJ�)��>,a�J� �U. +�N��b�i�ers9-msgS +'sQek*�`e�=A"%,a��M�BZeAia�rR�nd�-ei�V� �� > YkF#�er!Fof da�3�Z �Q fo�rUA��{ �,�4W ,�ear�%Pch!��cur>to�5V}6!)ex�!hab9%�9Q5 pe�[graqaly� su��ly.U�T)z� ? (��9 fj#^K|)��i�[m��r�WasR�7.�1<63.5) %M_!,�&oadtxt(" /txt .csv") n_2. len(�?!&7.1)`un l 2)' >�(Time (days) y�("p!�)sgsQXd *��Di;=�=�)�Y�&�,'2�� B�?w 8A2%�/9�L�j!ġ�8ut�.by z ��Iu$ . Wo�0=�i�5= �i6o\ba�due�A&Ea�iod? �<"Q2�.?-�2I��n�G"se�&l :_A�a�,!�` h�& � *%�*e�. ZL!day $i$6Lei�!/8$C_i$, $$ C_i: �&� oa��Y�=%��0HE3h*��G7 l�3, how I . Loqf��!�r�3c��� !D7�hig�Z!!�}\}p�Y�l^�quival�| �f8�F�t�pointY-#d s. (.�a�5Z������T�r"��^� � �� �.;{l�a���AxA� s��)��day��]�"�.IV.B.["ly?� '2"Jjo WAmu62#-� (o�$\tau$)�]#9)�� jumpK[6W . So�$MUef0B��s:�Ii3q� b�g �Cd2&�!ZVP.�4 lite��K�n�m3��e�VPM`l�switchE[*� � = yC$}_1 vC!�,{if } t \lt !M \cr'2B&ge& GC U�If�%HityJ-|a�npb0maK *11f_1&�_2wW"$�Mta�9&S0���� ab���. ��d� esW*+DP�� e unnh�+13F F n�1�fH �)yH � �" p�Ze�5�*5��L�(Va .�A�B_1�b-� _2$?2 $���|[",A 9aw earli��.�*6g "�@� "-B�p6ns ,it�� �M*Tš�{�_i$^r_%�m��"t='��p.�� own�we�D1�id+ 4D@ur �.�����($\�cEmu�F&1�1.� 4 |3)2f)iz Z t���a_ *hyper-�*� *q>nt"I��xl .ftI�v��influe�U���ur 0T��`8 �$&LLD%�%� t�P�/s���� 'aMi�O1�I.�ee'rul+umb��e�}#:&�5 �'A9i&��Z_e�P  SiX* we'r1%�MU�$ �e6q.��:k �Yl:�4: sh5 m��get��"b@N}\sum_{i=0}^N \;p � x E�Mo�!�E� ]�cf�}$$ An��t��!�t�& I*Xy��P�l,��to)��=���/KW2�C�da�/^�s��GUV�G"�Ta�uie�0��\� ��z� 0)�K���/ca!�M nois�?��hA'k 'X%f]N�+ick� aU�*ie' W��E��nU3�ia *uni�!2�*f ��VAA � �P9B� >���.uH&U s(1,70) }�7�KR�a�WP( == k�KUd706 6 So a=dh<�jat�$!��%*2@�E!h�Qs�� ? Frank�K*i Vn'tx te�[�:0,s�sS i!�PK��c*�-��/VR symb�$�.L�-�"lovy@n��)&1get ugliaG�P�$.m! �!�((ome. Regard�,)X?� c�I��A�N( A�e �,tC` PyMC��E �H�.�erAja�" �R.�s!Ba�g"�A.� ner!rE��In '`�� hamm�;�u}  �aR��)�J� [3].�|� FTaRll-mai�L�+b�a-�$ ly u&�/�6� �2)oc�Q� Xlac&in l4U6+Rho�TA�bri�!�ga& obLne�1h��'&�nl$ ook'�vin go9/!�o"Oa"KV��5to de%��why%Z;\So# E�Ep�u ����!�!%v).|l-� &��6.%*�2_mis�2�1vogwid;bof�ly-geNf�6? �a�l�anfu^8fr��e!�Is �AF� fiel qL�t k�!ax��Jen1�����*ty)As-0.��c%k'�,m�bT�o� �Ce-�.�m � �!�&�Sa[0B. Cronin [5]%(��ary(pY<' ��:�Z An� :zA!�`is:&�:"m�9��4,��ru,:�for�BL2���)U.�!�ru�L-aB?!�Le�n(t�Smpu"L"3Wc� S�/%& �-aiiw "�n�gu%� �I� "�E. i~so ���$ata �5s-p0�`an�p(N1rm, �b�[A.ll�/v�P  "�B�z%�2E.! t� effiX\ �ao)�I6� B6* Eus�en�HeVe v v3I� refr!%5k it*( %�5y ���Ay��u:� ��'sgit�>i*eG�easGrea�+E� nove�!aABb� syntax��d I�N%grup� Z�'xpl��^�y5sb mp;4S)��k��UU}A6Eu2C (S ,� _1 2$ )�}���e``` pr��S.mean() .U/�'19.7432 74�eP�+ pymcp pm h  =Pm/Fk #��a�*pP^#�)-holdsOtxb. unts�(`pm.* ("H!1"S pha)-2�EV-2- tau )>, "tau�K�\ =0, 99=.OQ?IiFE �o,!��]!�E�5�d spon %*�J0; �34W0yMC's *stocha�`]a)o-���-waA�t&� �� +!�os/�mou5*��act�mM�0ir built-in ` R ()` �s. I�"R"74output:", tau.5nE�E�6C 56 51 45Q� @pm.C!ň de>,0mbda_(tau=tau0#1=QK22�O�+= $zeros6j�out[:tau�Oa gAt y19 tau:929ar (��� ing)6Hi�dd�)'�E�I�Inew&�(` �_`�!�  !�^�;)�Up: A�:"$$��e.*&4Q�{1`, 2`��`tau`E� ]!`��B]EAi"�@]** fixA� vari�s S `B`!��cp��\ ellsi�E�| 2J5@P � w�]]gumׂFb67z!6ЈnotA�� e&�68aNll %�.�=��0("Q��E[_, d=��, ;edVPņ EM� ([ ";u }e�]m�|r1g `:` b^��" , `�`,9�0o� &* m sche18�po �`� roM!J`�` keywor!vK T �ed = WQ`�R!�1�!�e  stayAS�)�A8=�f, ;�]: Qcol\w#�3Q��Mn�!E�i� a `%}` i�h��l:ˋe��*� life�}�9 retr��^`K}�s!��l!u=� �V�3�I�wa�jsEx�t��i!��dom�)B9*��$* stepa7fh chinC1B@mz��c*Markov�Pin Monte Carlo* (MCMCi� I)�delayށuntil?E< 3ygd!7urL# ousa7#"�Uj�"A]VBA"6� ��� ��!#�st� s]��we�=E�^*>.�3Q�Zs/ssedD{cesZO !KGG/)� o h�AI�x# MBe�#EW�&VO. mcmc�\ CMC(�l). �(4000gW �W. [-> 100%>-] D!E �et� 15.1� ��21_ ~2E�.trace('')[:]-2v-2 -tauZ(tau #] �6$10�J5m�!� � : a>X,311) ax.set_"-Vy_on(F�WX#Rh,�,i='a�,ed'�fns=30G =0.8*�E�3Y��2� _1$"&\$>K<�c�g�#/,B�DB$r""&�J2<ec!��sE%�,\;�2 S ""�$c$[�530] q�$BE/�3Jr2vr�.qU6�qNq2.q7A68A6�q�2=�s�Z313) w"]�.�;[0] *( ones_�o q )�%-:M�.a Q�1,%��&=r>�%�'�."#46782�ys=w, rw�H2. ��5ZA'6�.V��.(I5U^im([35,>�' - 2:�r"� (in�B�'" ty"'*Re�! ing*�V����Ɲ6.0��������������������������������������R�It�s F��! 30 I��g 2�Q"�9 olog�Jt� a *.�"*.pwwr�w�.!�,�}�$�\Ʉ�&�weT ed? Immed�Jl."�3e�e6�_{r 4es!wim")*�%�e "wV&c b�R��3W z�. lau6!v8_�g. "4$�:�l�v_18�  2$25f} �#.S�t�����[�5 X"h8�H)( &4�%eB�.!C>�-"l2 ?�*�Q}CF?�Mo)� orig��.�, dZLӓRm&son[/}`%��=�.�9�=+&��!NA�&2>�[ �AE.�#Vs.kw�*�$l�W*Zf�!��. �4ny H! �w4cogniz�%�5=��(! 's OK!�iOI�&e benef� A@a� �)m*~s , �aj[k�<]$ �o��Z2�!a�e�#l`e�. tuck�unal�e s�Hac5}B#y)2�. <(V%>�{Ev�A�"Q+to6���z. X��"E^�&2�!���IA�R=#Eb�l�l��a]i8�&�i�pR'N�**�$�&� K,�vL|�Ʃ@at |w//45�u�5:�X�m�u�' . Ha6� "�&�aha�$R1�-%�5�%�2|Z�A��!�Y?m�$spi�,�l ���W4i���"p�i� `�I��N�.�*:"r&�~a�]�4�Oor�r m���!�to �Ai�/ed@###Why �I��Y!UZ*yWe;<vG dealiJe�"K<�%� rema��r!P$J�8�&�ps�yFa$�LAg�#l�wu�� )ama�m1vK�b[Ze�&"LQ ��]�վ'-8B$t$*? 2 rtv5��ex5K�s9f2�. G,A�$t�A"�,vh&ll>��_i$Mo5f$,�$F,�({1,i}$ if $!�@2F(It&�>t�$�+ye� ed),Dlwv&& _2s2s"�65 2 �*� "d�1ain # NFb corr&qVp N =.v"��AE�_E�_per_!�ba�!in�gEn.�K # ixA`a��AA�ll��6�&q#e*24��t aU�'day'BiI�<d�# Each=^@/1=�pa W�� < .d̥a�0�j�n���Twhe� �/"" Ga�)�41 "regime") or # " ":,2,B=�?h !Y �YL 1/2>ore*� m| �u� ?%,a?0E2=+ �q%i��A��R$e| "e &>-"AFdo&A5��2ed�#� !a��x( ��9�)KB` �:� �-6[day] = Bp[ix.pz+ �y�[~AucN �C('M2]L[)~6�3E4&�E24A33.2Y"�:�?s�4R?�<G0,6�-aDa�]P=E �a�ex\� &�#�?b��0, 60 �6>:8>)! b>y0.6*-"V D��O^p�z)�=2� '3VEr߃s>zr]��:A�6� d� (��1F� Zo��� .j%2*R <, ��)� ��|u2��:u<c< than"D (as.�-K/�  U�ly pea�o�z.��[Z@Z��Dp �2 �: Hbea!~!�Q��3E�n|(a� -to-' subscrip�  perharo$re&�. ("�o! 45th!�ݓ��Christma�+=)Dqd�-to Toro�[�0month �� a girlfri� behind�<� YCer�s �����!"6$�g�=e"�p� mX�aGj�6��OUd2(H�# B>@pde*!. �&G 1q:',���6�)0�Ta.0"�0{�� �b4 17.7762281378.! S0 22.750929651 '2D�*-��peҗ���>aCA=2d s? `hint:�#"�-1c1��/ ��`.&/ 9�iVl�BT-B[ `6r( ��-� 5l N9m4[ 18.07416657  4139842 !z093452054 ...,53167431 61569359%� 40877459][!� 93195407  4839888 88113611 ^(22.4690996652596545K66481803 ^3X!)Z� �ray([Vy]) �wky�q,x*1.0/y[fnt)mx,>O1�5w)-1-c>+ A5�2 -1� oo&O8?.��l0.6 7 0.75 )40.281516817076%<,0.2798513540e#3\.2"m�=� 1$ *h*�awe�F��A���+45. T��,��se2��ŀ�&�)*��>�͋2�Dp8&� � lR�� :�$now? (You �J=red��&parŰu1�� �&�/��)Z  < 45`�ρ�Z�� *� 66$>  np.sizeQu& ix )Mk!� mA�+^K**�$FjibA^[F}# .�True I�K22709954A15317TJ Re�cc�� - [1]p�,��. N.p.+Db. 22 Jan 2013. [NA|dMHD|��://an܎geێ.��<2005/07/31/n_is_<_</).2] Norv�4Peter. 2009. [a(Un�] Eff�ven٥of Data{� ic.google� �ent�me /research % en//pubs/0ive/35179.pdf�L[3] Patil, A., D. Hu/��C.Jnnesbeck� 10. 02:&mS&O/M+lMin�8. Jour�� of S�y/�al Software, 35(4), pp. 1-81. - [4] Jimmy Lin�0Alek Kolcz. L�^-S�Q M ) Lear�(at Twit%lProcee�"%82012 ACM SIGMODRe4al�cM@uManageP-� ( 7G�aC�,793-804, MayP, Scottsdale, ArizonaA�6�6, Beau.��y�*�5*� MFq$s." 24 Mar_ 3. GE, O���j!xto  Q�5%� 3. <��G��.'�u/0/107971134877020469960/posts/KpeRdJKR6Z1>.7#�2�� dispG* 3HTML =0css_styA(�I(o:C�ca�.cs�-"r").$()0�[( B) 2]�1<> �"@�}-face {  mily: "CDer A� rn";)$src: url('!A�F://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcd�B,cmunss.otf') r} y����%: bold ^��~�x��^�%�: oblX�����i��^�Z�%�����oN�div.cell}A(:800px=�@margin-left:16% !�antF%�<:�+ M�h1b�Helve��, zQf:94� �top:12N� bottom: 3. ��� _�_r�xr\%�Lmy: :<, "� Neue",���, Genev� ans-.�line- l: 145% �{� : 130.��=k-"^�$.CodeMirro.���"Source .��"�-�.(-pro,Consol�monos'� �-o.prompt=b�O: X�:->� h5B1q[300 >�)=22p.��* : #4057A1B3ĊI� alic-BQJ .5emFA�f 2�block 5-�.w�= �rgb( 2Cy20, 20 ) 2} <�� > �@/��'� ��� aV�:!3�jname =i�"F��}ume4��!Wi!�. 7�'s�r|�no�D 93�&ap�=��2 pyth�hIP�E�,�f�8R1g�# I�&ata% �n.�;(China's GDP�196� 2014

I$�AF��iT?

A�``` ��=.v� WF# lib.6q�J�� T+L>B!v very�K4�[�!�"leaL&���C !-��Ut�M�m)�=��l�kdelb#at<�A%��#-��u>�9p��* M yeNa!BxW#ae@e . f���!��$2x$ + 3!�!=-�"5R#(-5.0, 0.�##QcQ%d�AKsl��a�$ce[@o!qifzz�&%1g"b�2*(x)� y_�Je = 2d166.n��l(�=x) y!T = y + 8 #�1,W(z=(8,6)6AH(t�;, 'bo'2y, 'r') ��'D5rVart; 5 'Ind^#]�NN �)�beI>��Y "�%hR' $y$ 58�ܡF2fuJ�A�e��ETvm�n�+�2�ZQ�!�b Cs�cf~Is�"Be=A.polynom)�k��'�(m{�umc�x`� $$ \\E�Xa x^3 + b x^2 + c x + d$$�y���#*�el-�^�)s,B��Zh� f(�� �>'$mC : $$�\\log(xdOr�Ln,<&�T6� ed sN�s :�� 7Z�M��fa�':��bi&�='siM����1*(x**3a� 2 !�2�0��a�����A]A�see%�`qOhaa�^3i� $x^2-qN��_lso�%�icA�o Qmp6� aighi{�!aC2Do(n X;�-}�KAS3�E� �j*� v��}E� QuadfGa:$$$ Y = X^2ec�.�.�/np.�(x,2)�3�3�X�XIX!k*�E �R*�-5��( basekg�fi1,by��!��mb c^X$��b ≠Ņ > 0 �g ≠1���%��al{ b��d, c���tAy�, x!7%��&*HXJ&�o�HrH Y�&exp(X�!�.X,Y��Z�!�Lo�0a$!9�'(y$aulÙa�  l7�f^ ����1���-~ R� v�5  A�&��'re g��"j�����0 down�dE � �]1columns��P, a y�� �   )Ͼ,"66�*annual��ss domS./mRJ'p%��` pd #�o � !w�)-nv -O �Da_gdp�e�t4s3-api.us-geo.��dstorage.softlayer.net/cf-c�mes-`/C64tiveC��@/ML0101ENv3/labs/2o�df>Cd:_csv("2%(") df.head(EB�**Did�_ ?** p�{foBk,/[0ike~�$Qk!w(� e1%� s�,�OesV4�H��you host �1ta? IBM��\lRa��op�unzS!�Q(w10 Tb�1CCloud��!q : [S�jup� EI�"ncocl.u9k-IBM-O�-CC�g�� Plot����set#zYA&!� "�6�okinVu3 a��hq�+�2� N .MgrowthnHr�f,we6n����S70% signVqanl nd f�7ly,!�$decelerate&�:�R 2010�EAB�pltJ&5)) xfP, y�+,df["Year"].v�-�� f["V .E:BPdPGDP:A` .1!� Choo}�� del From!��^!�!ǡ�P"bK�:y5�1��-ld �`�6xi/� on, �R��^�t-�arEXE�a%�-�,]'a-�-�middl>n�)ed�%J*agI � end;�st!��low� =�v�����O�.^�np" -X�� � ula%FF��("s4N_( \\hat{Y} =.1{1+e^{, ta_1(X- 2:$ 1$��Z�����+eep���a\x�$_2$: Slide�Ϝa�!�x-axie=A� Buil�P��lk4's Q&7.� !�M�Y:2�4�6.�defa�? (x�!� �P?1%� +5�B+*(x 2)(� � yA9TVJD_�0s���,�E�!�':�%E�S 0.10 �S 1990.0 #B� Y_ �Wu% (�3 K��ta_2) �.�n9�Md���ha-sk6��ՁO h *150F2)�푫�i�.t����A�o�qe� TWp�d�8�<R. Let�q rst �!� xE y:A# 16+!i x =) /max �"� � Z"Ûow��z�!��? *� **e5_fixQ� ��*5H t h�%"9�rUL�j,� . Op��l �L�=Ns�(�su&2Kϲ�psg��UB], \*popt�G�!�minɲed.  >!�o� ized|)A�'=$��. � 5U, pcov =( �, �� ) #p`+aL��} ("q = %fq  �(�y� 1])-�Now!�A�����&CM�6?�l�� �PK557�xEcx��F_9� �)�}�)�%ii9/bel='���(x�A�w�I3}�2 'fit **oL'a� �c P�ce Can� �V.�1a��S5��AAe�!<]2# �><0-q D��-clsd**�\�To�sols�. #�GG �(AUTHOR: Mor�!0Hjorth-JensenXDepart�"Hof Physics, Univers�+Oslo &V,t AstronomyN�al Super��ng Cyclo* Labora* ,, Michigan S�R{! �Author: **N�**,V�R�*R���V�< Date: **Sep 28� 8*�+pyC[( 1999-2018,R� . ReWd�2 CC Attrib -Non,0rcial 4.0 lic!��P%Kadd own�Gor DNN!X  %Ne`#nets Art�^Mn6�ju�al�� at�E� to �& tasks�w ide�vH ?�outZ$( programmed�%K-spk" rul#\e supp4[� 0imic a biolog�_ �ere�Teur&�4act�sg^ng_3^#theema(?3e"al"JVe�7(layers. All %cmT$ an arbitrOnu/Tof%ao�A� each1n�"�#,�  a we&"� �=## :�CeB!fie�Pf af�h�6$hisa��Ydevelop�%�.d�Yco�1��advY/�I$ er s\(�0`u)�general�H�6:�!� was s_ �% McCullocAd Pit % 1943A�5�'alAI�5!�' he b�8%r��Yrn'}BA �+ � ide�%UcAFalu;`humIbfArS#is !E�of billh E��&commun�FthI� by Q�electrI�i�9s. Each Nuu!s 2incomingdOnal�"�m�excee]) .$Mbthreshol� yEHan�put. I�� %� ov��me�" � remai�)n`e, �*!} zeroUA�� haviour!inspi�9"�%2�I<��ea2� on. �E\_ 5.s~�Ma�links�
dJ}y = f\Ua(\�{i�` n w_ix_i\��)$(u) \�{>c$} \tag{1} F He�\A�olg$y$A:n��!�!�%m嗕�Q�a*aA�put�VD<u��MU $x_i, |], ,x_n$ recei=-by $n$M� �9C�jp�*,w&elpfula8divide069t:r ? ies:f3g�' pura=B9!�srvi1a�}( k3�.f�&d&�Z�wC imagc&�*I�b.pra9�-ʹ!_c$>Zɮ�+vI(al�SN�S (CNNs), UN>�^*(.�! su�� s Re�-A�Y� (RR�� 4NNVunJ\4Deep Boltzmann� !�In nau+��,1sm �M?lready�; �. appl�����% s,st��pl they G�,5e�kdet�+(phase trans�] 2D I���OPo���s61t�(gau�,heoAD)!�?t V�vpolymer�rP(v� aC8Navier-Stokes e�:$5ea�!!� ecas'. %GQw���-�<^�%En=Nquantum -.�d�/  �_5�'be-"��8\udied u%DN=�, top" %Q)� even non-equilibrium many-body local�#} ���!��&s s2 tom� phy1 amwRso�1�7imSs� ev9L reven*q$oteiof g�%acili5 $�� of�M��./0E����EhU(�>n�J�  g�R">E�� ~���i~A�NE�{(chromodyname %�hav�Zen�'E�EB��onj%�ji�>gaLh'X �9I*PCA fai�C�9u�%���g m�:��rM,�S�(rat>�.�2allq*ip�2s,�7he �B!� life�Le�mpin� ##��� i� 2 2��� (NN),��a3 *� �L p st� �c"� !�| or *n�`*. :O "� �)uM nerv��In� lete!� Zi�act w� �  � �m� T�.� fur�p6p A w�Svarie�2���Um� P�/��i�m!sis� a��'%5�Cx �}�B�� ��-l,(lled *hiddea *> !��M� J !�}d)T-�a j A 'E ssociK1%oaJ+ �FMis (��8led%�Ibs�al-�  n�5arIek)Jc. 72see, !� \ ���O��sq�,!,p8r. ext�cE�h �,��ma�ds /a�a--��t reg"1!7!� soft-max <@Feed-d4�T1f" (FFNN) este�AkNN� � �-G -�, =.�moEFin�2one dir:a'�!.>6E��NA=��"m.9circl�� whil� �7 rows��pla�Ylyp�Em��B!� ��.�flow. A"�Du5ea� s correspo4#toF��$t�ed �. .9 !�� R�!*a)a ũ�*all*&a��subx 4, ma*-)�a so-m*fully-R* !�KQ A�o���Cof!)�*pi& :^* !�ch����cisp pasGn q��pt!�ni� visu3q rtexAXe l[�Z2)IU-�!��\uli�� �7sub-r�t DY��a p� . T�maD 7�;8 -sui-��.oi�2Og spa ly � I&.res� �� i� � �.xEh v8 W4xJd2^ ly =� ;G=!�� eQ�b"�&���-#c%�!�ex8ca0a *�*k�2���A΅�adjac�i�:�ode i�@.w %6��6e]E����C�pD;A, \�ra���Be :E�. O9, ���Cs�IE�B�+��-�fe!� ��e,��>z��+e 5 �g� 00%jQ��pR7e�e��I8� F>� E_?�oA�og� on � &�Al���6S6�u%� iofn�� >2%�V�. *bq * on�Bh �D,�N��E 6bsp ���cy�!*m�>� 'ofAter�memory��76#Amcn9.�odC"t calc�1��efore;%�� is dependA� �4U�K�s� "&Ns�tW ����.�by� a�A+s;?^� A�ye!�a�a Kc;re�`el " �s�� �ue3��.�is �>Ö́r2�e��.B<!�wMOdpeech@Q��=O��%�Zvs2 reM?ki�ofE�E'"G �ed. OneS #=?��"p� po�ʁbmulti.�m� �8h�+d!�basis"� (RBF)�. RBF�dtyp` ly made u�three�/s: ��Y , a h*� �nF r � symm�5c�:Oay M���('' J''� mean�}a:��2:a#TJ�Nb�ey9%%r>,A�-� no ce��us)@B� a!OE�>O FFNN�e�h�O u��Yre� as a1�tM EJ8=he un3N�� ## MA)IOepBs AqYPof�&� >�j� s�Io� r5N(>� ��$.0sa6)�l�a�*yAYa J��S� q�%� �aS��e7B* (MLPs�L#�AV'?U7:�e*}�<'K" n *em*a+jOi:jI� ngle2*!�! af�QBE��e tinui�.-�p&YxAcy,� su��Jl��A�.��~ a **!�?tant, b�Q�n�c noto� in�!{1 �� **. *�^mrru�/N�.��oa�2�a�e�7� � lway��L� �}inear6>� to�ric{ Y)A���GA�We-���M!)�c��an��*one* � E�. �Kr��, �zeasily!>�= Ce2employsR*wd �satis�L�D.i,��l�atS ��at� �nm� �J��� *do*:Faltho�Eu@"^H�s%�)D)h �&*�%F:V R dFsa|"yzyab< � ings�=�p�ice: A O �_%�st�be"� 6��V&@D� bly ��xava�A�flexib��fit~Y*uA_ ��� X ����2"� + b��2�2R�Ik�;ab� !�z!0T,*m$e�i�� fE6 5!� p��m]Fu* zan MLPw:hm>�HUiv?ed sumbu ��R7.��b?yery N�FF��T�ode $iB`n �= ��14 :� $u_i^1"� co�� $x_j$,�Y_auto1zN�fVj82 w_{ij}^1 x_j IR^1  XM<3R<F���q! argu� �J� $f_) )\%�!^, "du�L)�d1=� 0%�EZ 1�8 _LA ~>y�# _1(%J0 _1\*V nT\e 1Z.z-`4R`��L�2�w%A8) �;�Y��R�,*�Kno�o%�l$�g %Hz�!G�kf_l%Gl)GlBG {N_{l-1}}Q�l y_j^M�l:T.�-T5jT $N_l��Ai*� 1X)O$l$Le�)�~%!�9/ F�- �%e-�� ��J� ��b��I�#d �[rth unti>[ )K�ged+^�"�mBarAB �2i�us�M�-��_i^Ƃf_2B�31�2%�1-�2-�6���6R�T)�T$)E�v� � �[�O�:k�mjk�mk�j^�i�]J'�7R��'e�AU titu� $y_m�y� . Fi�h� NNQ>&��3��1^3%83V�1m}^3%�2% 1^3R�3m�8R��E�4r�-� �B�1j�:�%�E!�2 :mUkmIm�k6jQ 1� 5U$ �-9R�J� �k�8iz�^1Z"�h��� A?� �0 �����W+�i�S�2RNNr�, y^{l+1}_1\!�!f_\!Ed[\!}�{N_l}\!�e1�l )()%��{ -1��{1 u'u1 qn!�0{N_0} \!w_{mn)�n\!�P!ba�\!M� \!�' \!+ (k^2( A >]�95M 10R�"�\%$�c��a_,� s:FinC ent E�:����� ��$�(fZ 2 confir�.Id,�p{)'c�:�-^"nׇm#t�O� �1ticU�,6Q(a map\Iof1l-�d�A}{ccchN, w^2_{11} & 2 � �@2$2$2:$3$3$3$�0 ���] \cdo�BR� � y^1_1N "cO 36({\�y�@�9�wb^2Bw>w�w ~<�label��6a-�12R. GSMeAQ�Q� ��X�A�F�g�7z�y^2_ih 2\Bigr(E@i1}!�S 2j 33c A;>�&83 6j} �W 7%�:`71`jAis!V�� ��� act"�*[akful�intui�%wa�wkw|� �3i�"dby a BVofr��O��a;(�&at�@ us����+�5.% s. ���4w � 2��Xy}��$�/movKXZ)"�A�ActB  A&� �9char eriz� n2D:,+n�  c*�'t ��choic�y�(s)c+de�] bed �q8f"����#�C!<#zj/:� �a�� ulfW"� *i�#0orem * Non"4 B8 MZ9 Co� bk,�ti�+A�Hyperbol�\�"�U.��7lu��U 5KA&.7in t �� 2J�s,I_Qs�+y�;F0 :�3N E�a� �  Regardles"z &� Z�!�?!�NN sjbe � �.auq0 o T�!w�-"* �2�#3 �� mfNN ** *"6 s T�#� &�"�- *Sigmoid*֭�Poidy�Fu 0z�fv "旡\e^{-x}},s b\�jVKA�!�*hY�t nt&��� tanh��=(x)�FL�V����?v�<�*-&ۅem(&w>ly plau ae� eAj;�'�,��;.  #Jx# # one-V?d**�ciZq�.en.�4!�9� -�a$a�0h-��, � �"�m��. �% �\+L2popula!7 *d`86�s*2�P%m"+[ ig ""��zM� 8w�uAcurve)�ha uz�t.a�Gŗ:um?, z 顁�  (0,1). G@us��j :�%azatU�N,��w�.� z�� 0M!�*�i#,R;n,da�.g��Js\ 9B.py�Q�!*m\\mt z�Sumpy.a�"(-5, 5, �Q!pa_f�W #�Hize(lambda z: 1/(1+ exp(-z�T: A�fn(z) �IcRfigur�KuR fig.add_syR(111) ax7Rz,%�a�Eylim([-0�O 1.1]x 5,5 grid(�Q"abel('z'�Q'�oid�!'�KltkQE�Sg��Q""f: 02) �X�:.0�Iz >�1Hh] >!>teE�=tep�5<\W.-(!U�<!q�N9inez9 2*mt.pi,  0A��QIZsi�t>1.pL.0I+=�  �Kn0�yJPlo�hgrapha�� �Ps�$5I�t��Ic�8ed� unitV�2,�R!<�-u� s(�U z)) �@)Wmax([, z|Uxis=0�y>g2!g2Ng2�`R:� t:h�M�!split �A##�r�*�N+-N ��O+m%E�\�rscipy0 �=Se �?C8_�?�Pect�MLdef __init__(self, L�> =0):��#Dq�� ��A.� 6SB= 26 ��.!16!h�-.!*#WVFs (� �W�"&+\randn�:�,.:v>L�RL:8 M:�M�Regz�> "�U&�M�)��%�@ !�9�, X-�#Propo>%��o�(L(Ciz �dot(X, W*�X%a% ͕w.z2�z�npMa2S+yHa�F!6P3) ��R-� �.7, z.� Appl�W� R� to�ar,�,8.�b Jp"G �Prime�,2�G�03of�; `[/(�j**-33n cost�� n X, y.�C��+A# * X,y,��� y5CEI�gn �4&��%�!|��elf@Zk(X)JW�$.5*sum((y-'3�/X&��+�xlfM� /2)*�^74W1�+��um 2k-.J%  >=�b�KOv�HZAW�W2%9a1;y:��j��`mm)1ply(-2-m!M��.z3= #Add�dQPr6H&o�dJd��a�%fa2.T, �:� �i* W��6��m� � �W2.T) /e5e� A�get��s%s.�0�W1ELW2 Rollewto��9����Znv\nfHs(S(.W1.ravel()9z ]. � K��s2�, $.�*{��E81le -��v �W1_stara0lW1_u}=Ia:2I.Ţ��:I�-��Kape��s[k: _],v�Z �}6j->:�=CW2 � f + �:1 �:�:�m4F��� g��:~ �:��!�;uteёI�B%.1��J�u���tZMk>�KQ�mm �C� �er�� N.�Mw�LHOe�����Y�ERN = Nx�%allbackFedJ =� m�iZ9!J�[N2; a y-- test�?&C YG�*&Wr�er}�B��n�RQ:�6 gra�_ QBtX,y92r��\,9� !�E � X, Y, � estYBaF�<va$`���1�"�:$X = fX����Y !�=est:<YX�G I�empty l�F� t�iing% c\ix *C_Z:�I�09�٧*�^?�= {'max��<': 200, 'disp' :Kd}X#^ =9mize.m�`�A6�9M�Q�0, jac(k�cHr='BFGS'��args=(%#A�RY),� ons= �,5�= �q��.��.xY�!Qm� R&x�+�)!6�Two�NU�2W�rt��np #@ sg�G(x,� =FalseM� if (� =%I m[x*(1- � 2� x�a#� �q x=np�`[�i1],[0,al,[1,01]) #�x <y<3,0]).T���om�b,L�J��Z@�A&f2(1b�i�M&� �,mean=0 syn0=(� ` ((3(m-��A��K�m0--#E2�!Bl0= l1=-�� l0,v�yl1_cx=y-l1:#� PsU&"�8tG 8l1_Q =S�:lin(l1,0�#ϑ� �+!~" l0# MI� pe�O�after�aG� l1 )I�dZ'| [[6.55109972e-03 9.93684857e-01925710$6.62304973- f( [1.7108216C751644 4$9.97766376C 1.8268592aC 2.05800964�&2114C548919 1.7736299-� 5.3565984%44932083�910076wD1 4.87503198e-04]]�Z&�J� I��m�6�%o����7Zze.� ��J�s=2�j>~=Y<�'=� �n(y,1�e�} 9 [1:]-% >R?x ?x,A�n E:-�i 1:]@c#c��'�6$"*� a��,<;n_1st) =3, n_2nd.3rmi�4 net=1v�p,� #�3)� �� �md-��, Gaussia ��\e�m��,, stdev=1 #z�a ! a �X�{!��?�)�a��#��s w/ 'a'�#a� W'� b, w��%�i �,2�_a=�i��w,b)+b�3 � { Wa StochSTc N  De��t (SGD)V �SGD �u_�o$, epochs, 8_b��_A',O�� )=f�y��s!��G-�B+IcorpoH$ng~L!� -�! e��C gain@Ih&� P �ڭ0�$�,ɃpYal�;�N^W�l�� ut (*i=��!���L&�f "sl�M� �|."��if�% : n_�� 9�n !!in)j�jA*x� �>�%shuffleh FK9� es=[2t[k:k+ %�]��> � o,n,:%)���"�yY$.E��&_*( E^92_BR%� ("EA� {0}:8�/{2}"UojmjQS=���!�1els:�eBk�4k:I� aoF�!.f)�Vs w�b ��pr&Թ�L6D!Piq.a�A�A�lFd �t.q�nabla_bń�s(b�BU!)���Y 9w9w.9���ѧ:A9͚��`�q _ cb,2w4 1(x.� 6=[nb+dnbonEn͡� #6Yb:� %� w+dn2� nw,  inHelt�wH. =[w-��/'�))* ] w, n%7�.:,�>Z)�=[b^Y �b, �Y 9X.�U�5a1, x6� """R'$a tuple ``9W-;)``&;S��.��i�AA��"� C_x. `` Kb`` an&�wr{D-by� �� S.�t4��ϑ`�-Mnd �``:#0 � =Ȱ�22;�4#.���2ot# [x] #%��al�=*,)) � ezEfDzQ fB!�� m$�w,�)+b�z"�xz6?�bxf$F7O#eh p��e�^� A�_�ativeIs[z y) *: �_p�z)wMo> = m{ w -)�.-s[-2].@+�`(ݦ # No&�H���&a���W��Hu�,+ttl&� #&�U�L~4e" / in Chap�2W V�� �b�# uA1� a�sr@&� ,'�0K>�-l5�'so on�8t'�'r�obe?h�8AB# schemn [�, �5Wa=C��ftagZ.�f�[B#?(Pytho5U��negE�:ic e�*�a%%x� �&`*aA/l�ZspA�I�QUYPE#�#i[E���[-l+12., /A�s}{I b[-lF� w m|:�l-6s�� FY�def", �, � w &Q٬!�&�,�!!~N8$5��� Ey�VFZ� ult.:JVA'"6�ms._LvindexA��?S�jjaM)��� �P high%[��2��8t[[arg�%E.�x))��}>!,�yZ6Y�-�3 D�x�uyP :8�rOe!�>C�G put_�s�^��of" ��s \ C_x /y�U%TFv2T � �:�-N] #qs?m�(z� P1.0/(1.0v!#+ .5u�) 7R]) �L"uS*,# %loadM�-M�s-and-�--? /src/mni� oader.py ](. ~�3lib�lto 6%]MNIST XA?. l4i�il� A� �Nu�Xt�4 ��Fm�+oc�Z�MA�``lE�``Z0_w�``�n"�M,V%a�� � "�S�ed5 �>i��0code.%�/# L%ies #�pnY�-�C�legziy \rd-A��!MF�� s�aD�(M#6)z!Z�� {QaiO� (�!ev6ϥ�d�,.���``2y`%GI��6|w�;wo ent��$C�H�P���ac:baIIsQ�)!j��h50,f�Ti2�lyD�eur�;e�JB784! uesZ��=�  28 *='BpixelI"�S)�E�=0���FDo �B6�l=�B�Those^S7 �?%� digi�'{ es (0...9��!�c"g`��sm/#&%��)Ob ��``YGm� y AFre6il(^np [a�pI _61)� �iM n8A� �2a�Tu�'� _��q��n'� �gFc&� F�F�" Q�a{ don� %'�|&�J� ()``�� � P�m��'ׁ$.open('../㩜0.pkl.gz', 'rb�yq*%_,!��� 5{( = cPickle.�I(f f.�q( i� 6�nV��Rq��F��]�``~i%�)��B+�=^!T!�A�-�isq5A*�;�BM���8�\a�!�:5Mv�K�]r�M2w�A stmA�aPi��2-e�s�t� ``x<7842�Ʌ�.��C=9�GeRyJ10.I;2MB�b*�7f-6E �� tr_d�,te_�$��`�_E��� eO�a(784, 1)ɣx��W[0&Ac v ized (� &?1>?�U =�S �*5 d�9[ ){��va_�C��6?A��� �s!{90es�z� MV_dg��F~jB� a:�2r� a %�he jth��~E��uqlse�HE� ���n�� ai�D�i�+lpOw�we�j��P,*�&aer �%p��� l��ydANe�L�W*nn#U9�o�85��/c�l�"�B�x earlA�W�. Even�^se,��!� 5�.�.,!f1��g dC2��Ma�>)7� ��W�a��(a; hypoa|�8%�LY�b�in�@%�:�s3�e��!��� �� ��o n|h p-�,�m�xinser<�t!}慑%&!�6 . At��LdN^A��A� %ofE��eYn f �i�[cEd"j�of)�-�a#� @d�b%F>n%t��+e�-�@�!*a�a�x%��in ��rM�avera"*sțf/Zt��} keptU�+#� �A�!Irse>g �r�-� �Ae�Ra���� �c�� redui�& )q$vs!�!m.6(a��Ray !F��$�"�V cerI Eq�#�i aR�w�9-mf�:92T���IL6�Iqr�sɊ/Ui~%��BAaW4U 2[ "Jf. a�,[Sergey Ioff�mChrkH0an Szegedy, "Jv: Accele&D�C  TM�oR!|ing IA�!rC� te SNR", ICML�&��arxiv��8abs/1502.03167)2�-#quSie�i� setu"��!�Nu�bHC��cs231n.+�fc_net\l.*2(��_ut  _(get_CIFAR10� 2/N!_check3�$_n���k_%,^_a'2Y(�rQSolver NvECrc�3['�C�C��'� (10�?8.0) #!Y�a�#a7 plot�I�9r�lN 'nearest':y 0 cmap 'gray' #��b-rem�bwEGm���M�://stack�f�u com/��$s/1907993/Q P -of- G-in-ip W _ext| + %7 2�rel�.�y&  &Q �.K= np�A�*bs(x -p/ 12 mum(1e-8,)") + y)�5 9�&_�Y_std(x,�Ai(' �C: ', x.-('� *stds: *R$F)) � G ��� !�e>�RiBfqor�gd (�&* �%wA^$up.py buil)� --inplaceg>����y��AP)9y��kernel6[.g�a�(& ed) m��. a� =B�() _ k, v? &.items ->%!c %'Z'9'X_�$: (49000,|�32, 32�y>! X_val6m1J5.2�vj32�S#[2t"my�g!�f�U`)�/ős.py`,�lll'N��-�#!BOuDE `2|_ (`dqce!��V�so,Jn� fIm �a�. :�A�upa ink Na��in> A`beE>\�C��E%� ing-�`6���(paj� va�� #�7"$b�� c P2%6� ��#0��:xA�a t"*5�> 4@231) N, D1, D2, DP?�650, 6Aa x7�an�.n(3) "F<. L) "�;2e) aV��� 0, Xe3 W1)) 2�I^3'B-mN:'6ř�a�� "'�#$��, 1 &b&wM�JEA�6��'�' �Z, '�.�.=Hjg �8� [ -2.3814598 -13.18038246 1.91780462] 7!�G�[27.18502186 34.21455511 37.6861176 49�T0�X5.99520433e-17 6.938893�5@17 8.32667268e-19�#�0.9  1.! 1s��, [1. 2. 3.] -� [11.AfAd] B�.e Z� �9 2 1>���estV��B� z "8* !�I � warm^J7C4qq�he���*J �2��Qa�:�. ��� bn_param�<6�.q�jD3Fg7 �' 3 ge(5/:jc �� V+ �H�)�['�� 'A'n����������Z�bA"F�[t�d�.R�?�\j�!E{)Ng6s�E�Pm�e<: [-0.03927354  4349152 10452688i۝ $1.01531428�<1238373 0.9781991^sBF�:". NowB� c&+.M N��#N� }1�4To�(� � ���X�`��#cnJ� j1phb��eU��youg1�fK|med�-^ s. S��.���g=�g�� branches;��o *�d2s acr��e21$�!�.�z.� fini��Z� "#wN !7rBTA�? #&A9 1%�f 66bD8 = 4, 5 x = 5 *- 2�  �12.�2#D.>d�8� 2W��Rlf�lam�UxA�tc�"@ x"P E �e[0] f�U >aZ>"z 6:b�� xbZ:� ,,22; dx� =v� (fx,�4! ) da�4g �.cH�,?b�?b�:> _�BchU<�b dx, d-d!2� q(� a) #��ex�et �iv4s��1e-13e���dx\�&�)|, dx)9 (' �V/%w�3��>a%j, �)*��D 1.667460487534142�@9�6�D 7.417225040694815� ).�Z�07944694995962� 2j� alternati�Rve backward In class we talked about two different implementations for the sigmoid P| pass. One strategy is to write Za compu K graph osed of sm opera nand��prop through all intermediate values. AnotherB�ork���derivatives on paper. For example, you can +e a very�formulaPsi) func�'s�!c% b ;ifying�dient~\ Surprisingly, it turns �at �o a� ilarplific%,�4batch normaliz 2� too! A!for�, givenfet!��inputs $X=\begin{bmatrix}x_1\\x_2\\...\\x_N\endL$, we first calcul!�q$mean $\mu$%�Dvariance $v$. With$v$>d,A�!�6Q0standard devi � $\sigma$ c1Led data $Y$. The equ0s'I� illuE�Dion below describe�.�($y_i$E�$he i-th ele/!=vectorr ). -E�align} & \mu=\frac{1}{N}\sum_{k=1}^N x_k & v=^"4(x_k-\mu)^2 \\O�H=\sqrt{v+\epsilon} & y_i sx_i>}{ 7} %� � %!mea�8our problem durA�AUa�ag%C%o-e $ �(\partial L} XAIi!#upstream!�e!�receive,rI$Y6�.)D0unknown/hart !!+> >; We A� find݁IiN��!�step-by-%�local5Gs at >iv6�Fa\mA�!�!�BDM19�v!�B'.� 3$,ej>�2*mu}$, ��then usmx9�Mho se�0(which appear!�A ��a�i�s!) ropr�?lyPuJ�.�X}!�If it'sAalleng!�t�30rectly reason�Mh.�over $X�� $Y$ �require �[ multipl�� , trUk��2Xin �s�$individual�� s $x��!R��EH:7�_cas�� will need� come up w��qEye�>�.�x_i!�b�l��onEC%�Ra�to �m�� 2�>dAYxf,>�.�R!M�:G$� n assemblEtse piece�4�>�y_i:Mt$. You should make sure each!�!P�ryU�2fare�as��� s possib�f�aseU@ m� �After doA:so,"�q ifT�7Aehe"� `3�[_� D_alt`Eh�%�2Q 6���runE�#,following. Y�kN3-KZa�0nearly identi��(results, bu �altern� :�Lb� �Cbit faster. ```python np.random.seed(231) N, D = 100, 500 x = 5 * ,3Pn(N, D) + 12 gamma = >#D) betZd/ F4W� bn_param = {'mode': 'train'} out, cache =)�%�� (x, �, ~, L0) t1 = time. () dx1, d/ 1#F�(�, v ) t2BH2H H#FHA@:L3:L( print('dx � ce: '��l_error( � x2)).�j2 � .:�j987try: o ��>speedup: %.2fx' % ((t2 - t1) / (t3 - t2))) except ZeroDivisionE� PassA� ^:�T 7.666703093523215e-13 *�2� 0.0 �V�x1.92x ## Fully Connected Nets�Bu N.u  Now �_� haJ � ��6 ��E"� �f , gog �*y�`�� Net`��,ile `cs231n/���Prs/fc_net.py`. Modify L:�to adnB? (. Concrete� whe��`aY"e ` flag� ; to `"�%"�constru i��insert aN( layer befo�A$ReLU nonli�ity. � outp� from �X last ?ofnet!�xnot���ed�ce!"�}done,��=���gr� -check2r:T. HINT:�� might� it� fulG define an!iu al helper �si�t� � ъ.�%$_utils)�If� decide<do�do�NCZ5��, H1, H2, C = 2, 15, 20, 30, 10 Xb�yB��8s[t],�bose=Fal h=1e-5� �%s relD �]:��e��E.wn}- e�� if!� == 0: [)��b/ ɧ6@H 2.2611955101340957%W1B�1.10e-04 2B 3.11e-06 3B 4.0�I �bF`5.55e-09@bF`6.66e-08 F`1.0e� etaFc 7.33cetaFf 1.89#e�FG6.9� �$FH2.4! $�f�a�#:�<6.99653322010830�R�989{N�2�b�2.7 -[F�~� 4.44n�2E;1�R�6.6=�R�3.3�)S%wF� 6.276�F5.2!.9� m ���? deep�� s RuJ� �ix-�(0�a sub�of 1000 .� s both������ � 6"�,# Tryc\�\ Y� hidden��a[w F] � �� 0 small_�= { 'X !':[][:>]�'y:*F*X_valRD ly ], }ٔ+e-2� f=:�wK,6�6��]>]None)"� Sol�A)��:')�s = &(bn �, 9�!v6!�$epochs=10, V_ 50F.update_�='adam'F$0optim_config=A>'learA�_�':Q 3FH}Fve�FTrue,��_e3=20=.E�(97\n)%96Q!<>9%��6�6�6^6=7 �54``�=3IIlŋ(Iter� 1 / 200)j :2 9707ɲ(EAY 0 / 10)��< acc: 0.102000; G 700� :]B:354>:279:�2?�1.979541 � �2N�43Bb30�� :b4Bb77613�K b3Rb8�2�3!Bb6Bb 6380�� b4Rb9B�2>�8Bb378472 ()&5Nb58�6�13J�10Bc 4764r c6Nc62A6c4N�1F�053952�7Rc96>N32!;)9�1F�20063x �8Nc72F�!(Fc>�0.8842v c9Rc6J�R)>�0.750285 �)�1R�805>*29�;�4:g.N>7 30261 �R�1%�210� a :]B718B�168J�>K2.248002R72a6�2� �YKFJ977622�R725B21N�>I2.037952�R724A�2`2e�)`�>H2.000312&R7I46b37J�J7748182�R736!�6cR"J7724042�R734Fc5N�J7696782�R73F�25v>�B71.53926�R74E�6)56N�>�1.462402�V740FR7�� VD visu" liwoQ sO� bove���a�_ J@ �sb��(nverge muchR�def plot� 8ing_history(tit%labelH se3�c s, :@fn, bl_marker='.'$.Ds� �:"""qity&��t��  �"""E' plt.� �)xe( �lot _fn(bn �)o� sbl_7 =�>- `j bnheY-s �iTrange( * ��='� _�'�if sc1 )4= +=�& � s[i] y!#��=�, A=G 6 � )� �z�4:�0 ��)C] J~.Llegend(loc='lower ce�'', ncol=)B +1) > 5sub�$(3, 1, 1) F�'T�AL=','��', I�, [5� ], \5�6Q x: x�q,�='o6o'�t:�2Nv�(accuracy','�eN� R�-:�-V�3b�Valid? ��.�K ��E gcf().set�_inches(U15�t.showE �� � nd i{ ) We�"ow�a�Srim�*to study���!a�) N�f�:m�%l# cell {%� 86�s�d u�>�t �s��V�secondR�#ah �aV1�,�Q��0a� as a��bR� �� z  50, V]�"�"�"��s_w��{})d�#@np.logspace(-4, 00���69��enume�(2L���("� !)� %d / %di�", �: $ ���R����nD�_��5��� P�� �� �� �� N� "� E"�0a5Ɉ(2A�[.]}$� ���9P���M�M�MjM)=J RG &�)om�]2� R n �n �n Un n �n �n In r!~B1~C1~D1~E1~F1~G1~H1~I1~J22(A�,)# Plot"of6��"_ bes� � �)n_: = [], [] -A +)final5 _�* >/�ws�iF͹� :�.J.nd(max(i�i�s]i��� )�jC�zF ��j� #R� 2?F� &2B �2U�np.mean>!xC[-100:]1>�>JF�^M J3P 'Best val"�  v�6t:� �:� y'W�*y4Ji Jsemilogx6 o+st5�, � ,�*�� ^Cm+-�FFtc8 G�{2, *�r!�$F��6N� �P�Pk_ v �b!U5a�F �WjHRY��2�`5@F���A���^�Jkz�>���IZ?!> gca(�ylim(1.O(5-\�# I+ QuesK* 1: D.�7��isݚ. H�7o�1he�'�!><aff�)� -/6`&�"�A,Hwhy? T-Answer:m7ode NI BN egiv�4don't � I4 a la�b�s. BN�fai:1�,istently:,er(5r],3Ci�again duS+fa�-)~%�97�3.% is a4o~2ens�4j���3 rlie�,04 stop)�d=�f�d�"��^�br�6��&�rs��%ev&�.�i�2!Q&�3  run_u!H_& s(�u��$� C�3o.�39��&2*}s F�&.�+�x�&A&%�&"�&U&�&B�&'�&.V.b�&�&J�&�& }�n&��4U �&J%��%5,10,5- lr%**(-3�0q _b!�Q�I ?�,#� ('No6�: leHx..K� �>^>���2�1Q�tc �=.�F�&� '� ''�1M'': lrVvJ''S)s �9 A h &\E��� ��(e])m�bE=[i DU!*AB C ���J�JyE-" Y4�v�'�GvR; �V��9�=�AZEJI552P"i9t%}rejC1&L]O  �ӕ�Xs��?68f�')A#'*1z� � 2v7:��#�.vG:�� � �4���  (�.6r)B"5DG5d���U�2�-^6�=�s.H8� �!R�JA������%�jo 0- .vFo 2�o W #p \ mply*�@w4onship�6�6e'6�# ' ? WhzHU2Eobserved6y Inter.}G !"> fa� trial (Regardless,=� � � esM5iL he&� v� �m�s9(po� iay;�nguharsherV5 ularizer)q �s�Fown"}� �  Omay4Bc� �;�&.u8�F�!ed�m�:I-!|:� eIB� "XDw� ��l N� # L�:2� �4!}"�  h Arov�Bbe&f 9mal<J%s eas� G:�&)@(dependency �Gr ELBes/:%�us�:NFomplex[wuD�<capH�?I=hardw A limiKs�AS90�&�@L �>��K�9�DDKto mitig)�is�G; o�K?& technique�Jh, [2]. Instea�Ku!��D��Uefeatur� In otA� word�2;=�J{,I ?�E$ correspon^�= !le�3 poinPG�e�=PL 5sumHerm��;at:k�. [2] [Ba, Jimmy Lei, Jamie Ryan Kiros�FPGeoffrey E. Hinton. "J�."�J�t 1050 (2016): 21.](https://arxiv.org/pdf/1607.06450.pdf) Jf 3: WEq��D�4 preproces! H�nalogou^I �I��./1\�� ? 1. Sca;e� imagerA�set �ORGB0Gnn�u�row�pixwit!�an Psums up!� 1. 2�t tA�l$ 3. Subt�#ng�m^ �)w�*b . 4. Se)�! v�N�eie!0�1��sBH�JA� reshold. .21)mE!� 223)&8 42 Va: I��m>F �A you'oON�isEq�.�{�NMr�D,��conceptu��A8cEfE�lmost*�E��a�of�����@e�OnOnt"vc�+o;P�PBA�J���dKt kX9Akp�mov!�mo!$si7t�ng phas�W&�F�eGi��#,CBr�N�dLJ"�Nd Aa\��ZA ere'e P�Ido: *�{ C�A>H-��PZ����P `PAu"�G`��{:�&b8O1&B|.��VH��6� '��.D1H~@ifi6UD�9D%6�!;J�D. W� !KU�JGDZ%�GD4:� bvGD&�.third:(r_<$ &]�� d��� &�# CE�� ing-�A�DJ)�by=BaXmea nd"( s #a�*=) �(a�JJ�q # Si�Sti�BaJ6�b J,1, D2, D3 =4}(6�b�C 1) WDIBJI) WIBb) }Laximum(0, X.dot(W1)) 28!IB)�J:%_!Z8_std(a,axis=1) .�Jones(D3.�Ji # M%�& clo�Oo�!� stds one x('Ab�(g0K=11 ta=0)') a_/, _�/ A`"�Ja:�JBKJ� PN�0asarray([3.0, ].! 5.0, ]) # �H!PsN@J�'��! , '�'�'"�;jZU )�: [-59.06673243 -47.60782686 -43.31137368 -26.40991744�A<: �?X.07429373 28.39478981 3A360729 �C1831507 @��f0� 4.810966&BD16 -7.40148683e-17�D20446!D@6 -5.92118946e-16 � �0.9 5  9 1.�69 <��� [3. ] m2 [5. ] B� b�2 �85  98 9 5d2I # GrJ���$a�6�bK = �C�TO�TOl*TO } fx�kzGx:�E˕u>GO?)�fg>aZ>{O eta,::b:bZ:�5, b:; dx}G =^H_��8fx, x, dout) da�4g�{.copy()?b�?bI�:> _3P�ye�b d�-d!E2@6 6HP #*�S�ct� see"� �H2QK12�� 1e-8��dx (�Irel"sP! , dxBuP7I'.+I)xQ3�R2%k, �)*%��F,727749295656&{F)/YP 4.519489546032799e-1$;2� 2.5�=$3762989942��2^B%,& B� � previ�)%�r~3io6E  i&� :a�&d ComqT�V2h!� ]2qO!�a �8dly"�influe2"eV� V� �8!2lB��"�Z�Frb� '"�>�'��%7"_(J�)blF��l�l�l�����l�l*l4e*E06 lik6&t��Q well�w& 1. U,i�&>�I3wHa��I� da�s!_of"� 6-high re����=#"�&1,�dZoRy��a�s��RNN�c&be viewz=s"PJ�#F\nroll� Fbt. 2hQ*_R�e�� e�:[ argu. 32? �:�l4\in�t��]/r+h V/  D# b,Index **Pre3\Hsites** - [Introdu�8 to pas&f;sci��.quant8vi: .html) `Out�[ [Underca ho�U!~dexMuj��`� - K`9-o�%nd�e�Yi>(>[.l�s�L�\�sli�'o� Ucolumns>M"� DataFrame� 0sQs also 2� ## Out#?%U5v](#The-%�!& - [So�Uis ?](#So-� -is-� 7?8 �Q43 -tBf Re-s 21J4 Choo�he a Car�ly](# 6-�,Exercises](# E�M�# Uncoma  f�[ !�1.1�Lde� >=0!�� H�����e�G�| |2.8�k6$-itertooG�L6v7.�ulxm���>!/��5�4.4��,pytz>=2017.2�p �Qk 2019��patsyAf4.0�z��0.� retr�g>=1.3.3΁�uy|H��numba�38�xAh# {0.4��sy�*��v1�� jdca����.r��et-xml�a��Jy�� joblib!�1�<.� 0.13�3 c�'et<��0,>=3.0�����J�� 4idna<2.9,>=2.5΁B}2.8�[$urllib3!=1 0, 1,<1.26,a�21.ҚB� 1.24��ertifi�i 4.17�)�n9.1�^cyclerE��q&h U�X�` kiwis!�0քJ�1.1��pyparT!=2.0.4,1.2 A�J�2.�llvmlite!�29.0devҡ�X->F�0]�Gmpmath�19Ϊ�fN���setup� Bn->J�41})6-impor sndDL s pdgas np!## Vj Eg] SeriesA)"�.J**.� told�( wa�< “�2 ” ''�.�s�0s t�]dn`!�� �0�S� kn RJ rowsJe pur�-?#  ur>( to u&s�).$w{*� K[ | doc�l&� .py�og,%v-docs/st�0/ds* says >%O!�!ntrinsic�)e�k�"�1):�k�0 n`j brok�I/Uj so���by!� In px+ce81�W6�re"&_q!/~is /e�>�edw)nx%^ng�kse�)%V��Nsomewb)ab�*ct�*!�x.�B1�ood by eIz(… Let’Ugin�loa�+Z �on GDPZ>onz�we�As1 rom �$World BankW Develop%�$Indicators�se,*aI�  ur�M"}.!,Vsts! /wdiLc.csv" d�hpd.�@_csv(url) df.infoCdf.head�Q <=) 'I|.core.f�.u�'>*RmU: 72 eAr�0a71$4!�(total 7: coun:u D72 non-null objectJy&v.&int64%GovEx#2 ).%fFj'ConsumpxB b'Ex��s#^NI�#�'A;^N�js:�(5)_kt64(1),-(�Pmemory usage: 4.1+ KB��P
<]  r >="F`.)(Consumption>Exports>ImRGDP* ��Rea%\Canada2017>0.372665>1.09547B0.582831>00.6000F1.8681640�!P-{ �6' 0.364899>1.05842J057639oH 5757F�1.8140.xn�J358303J�35208>0.56885B�0�9JH794270Hn�J�35348B�1.01198N� 5032B��234B`1.782252��JW35154JL98640�5� 1804N 5863B 1.7327.n>�o35434J 9612R| 0596N� 4775J�69342=�n�J&35188J�94314B�0.49234N� 2822BH1.6642.nn�J�34733N>219.41n 4699R�003F% 1.61!��|0J�33968B�0.89007=�� 4069J�43979BH1.56529=�j>N)33076BW0.88960J�50635J�50228� �!>286Hn�B0.31877Ja�NK53045=� �A�80F�1.59687�n�'W31138�82764J�52446B&0.4709N� 5646.�n�J� 3030N�79439N�199N�44722B�1Ϣ�B�0.29985J!<5J� 5086N 4167FH1.4773.�n>J�29433JV741J�0.4819F\0.3841N[43308�2n�B}0.2860N�72197JV 4904F� �86Fs1.40772�n�J�279767�7q69423J| 4846F��20F+1.3665.�n�Jo 2705N) 6777NC49952N808R�428.�^�j^ 0United States>INe 2.4057F�12.0192F�2.28707B�3.0699JS7.3486.�^��B/�79J'1.72213B�2.2aTBG2.9360FT 16.9C �Xn�]�I�2.3731F�1a�CB�.2pI 8813F�16.7104.� n�B�2.334J�11.00061�O�20955J� 7322F�16.2422�n�J� 3533J�0.6872N�11863J�60019BZ15.8532�n�B92.39887B�10.5340F� 2.0455F� 2.5606F�15.56703�n�B}2.4343F 10.378060>�1.97808B�2.4931F#15.2242n�Bp2.5101Jg0.1858N! 84628JI 3601F�14.9920.�j�R�07J�10.0106F� 1.6464FE 2.0862J�4.6172n�] q��]Fx!B 3784B�1.7973F�Q0Jm %B6 n�Bp2� 9J)0.1593J.7010F�2.a However, suppose we wan� 8to extract the = for all �0ies, but only% �s 2005,7, and �9. We cannot do this using `wdi.loc` becauseK K is on4second level, E$outer-most l of our index. To get aroun� is limita�,�can u o`pd.I:�Slice` helper. Here’s an example. ```python �[2A[:, [.42009]], :] ```!{ <%�<� scopeV.h&�:!f-of-typej�middle}B�QjDt����������������3��F� 0�h��"B��b�b6bB�0����"�&�> German����ʁ�>�0.645R� 9083F<1.2605J�.1219FL3.4.An5J 60562B- 1.8942F� 1.4424N� 2138F;3.4413.�n�J 59118N�66R� 1752F|1.028J;3�2n^�f �Kingdom>V 5197J" .5871N� 6538F�`90RO116.�^��J 5045F0347F9 0�Ju0.7676Fq 2.52?9+n�J49080F .578J"a�00F� �595JH 4033.�^��^�F42.����6�=�����:B���n_ $Notice thaE `:` i� $first part� `1 H"A", "D"]]` instruc� pandas� give usE{"� valuesF�    3 � 2�`just before `]` said grab� JLcolumns. ### Multi-S C $ The funcS ality�`+M 0` also applie�Y name^Leta 8see how it work, p"g T = n LT # .T means "trans� $" or "swap)!| �" wdiTO�{ �{ �{ { :�'.'lef�w'w'>: a�hZ�&!\(& 0" h(&�*)&2�'...�&[nD�[�G 8Z�hRC'6 ; �20�}>�T>{>�>/>�[>:�>F2F:�p 2'2�!>��>�B>JJ>(J2>(J� (1�A��(2�)2y 'Nk(KN�'0Z]'N�&1RO&($F@0RA%34V�$^3$V�#I 2^A/7Jx^�2Zf^_2ZV2Z�2ZF2Z��66Q4a˝�d:�+2^t*^�)1.Vf)1b�(^X(^�'9ZJ'^�&^<&V�%J!f 0.1V�^�^r^�^b^�^R8Z�FBb$&�-2 f|,b�+^n+^�*^`*Z�)^R)^�(^D(V�'N ZoN�^�^w^�1Zg�V�^W21V�286Gb&�/:V�.�,N�- F�N�,0.Ve,0.V�+0.VW+0.V�*0ZI*0N�)J^�^N�^�!N|2.V�bl^�^\^�.7:Lb�12F�0��d:�/>t/:�.:f.>�-:X-:�,>J,6:�+ JJ! ,J� F F�>� Fr336� 2Bd>��Vp>5y× 72� umns�1>1 5B�0>0>�/ F�.>v.9:�- 5Bf- �_ �_ �_ _ "�)�*� [:� , "�@"]�� �� �� � ��������������������������������������������������������������������������������������������������������������368>�Z�(j�F810)����������:�&�P2S2�&pZ bp*J�).Oa��(RM(F�q �2'0Z�&:�Ab_bm%V�$F�bZb�#V#F=bZR�!Z?!F�Wn0$## Re-sett��)/K/$`df.reset_h/8` method will m�one o�/re% q/F1 back int`<e DataF�U$as a norma�<� �<(ith no addi�/( arguments,�/rs0D0sa ofpb/ sets returned� �defaul�0P `range(df.shape[0])`Bh .()�E��/��/��/�/.|<.�/�8W�8W8W�>�82N� �SW�SW�:��2�% &w6�7H!2*^Q.^H,f@*V;(F:&B/2�b��/2*^�.^�,�(��V^�V>vb��0>�� W� W W�02�b�722*0N[0fR.bJ,RE*�1WB�b�B��V 1^/b�,�XWJ�(��b�FQ>i 2+2s36.��G��G&�G.bE�C~�BH^2^0f .��G�GFWY~�B�^�2^�0�HnH7B�~�Bb^�3^�1!�V{/�JHJHFt#~�BFC4I�F72 �yHvyH p>72�+s$,Z)## Choo�G H Carefully So, now�; we k. �G � `�+�+ �9z �H, “r;shouldL pick&� ?”�H4a natural ques, � askgHuid�<� �  answZIwe� lis=f�<�,componp H to [Hadley Wickham<$](http://h,.nz/) descri�an [tidy �.(vita.had.co3papers/(-(8.html): 1. Eac�:umn1e-n vari�b. 0rowV-observbI0 If!str�=to Wur%��-a �!�m (we W),!�n�- cA !�"� �I-�set: -�labels (E)tTbe a unique identifiers�I� !P!" R..L @y2 For J2NKa�ook�[0on interest r�V. .�m S2; k0*S0 J1: S3 +!tD0; k5*S3*S3 J2: S2(3; k6*S2 J30 ->; k9*S2(4:%1V�ik0 = 6+0.9011095014634776 k5 = 1.4823891153952284 k6 = -10+15.149868787476994 k9 = 91.19197034598812 k10 =S So$1.0 S1 = 5 23 3 = 3 4y 0.0 ! 4RR = te.loada(%%# H�S F�G6�(# Create di��ary rel�N���G�Bpspecies def mkStoichiometryEx�  Dct(rr):,Fs.$m .col�]Ub�͑q . � =F=row\-dct = {} � idx,1/� $enumerate(.X-%$sym = eval")Men!("%d*%s" % (>�[rn],6< [n])�%![ len(2�)))!e5�St!�(" + ".join(��dct[sym]�2:R'��$.simplify(A ,V$ # Tests 2�D%drwRR)F4 �@�${S0: -J0 +��S2: J0 -�� S3: -2*J123 4}>&�V# Do ��e  lEigenInfo(rr, title="", k10R=None,��P�4Idx=1, **kwargQ a�� PlotA7f�[+ domine et�K V *%�� L�ca3L". ParameterI�-Trr: ExtendedRoadrunner�:��:If� k10y�:� � ,�(� �n� *)%:��f� � ad�L�al%'1Pif�%��!����aa15Av%AvLi26o!,���M�� subI� {k0:��k0, k5 5, k6 6, k9 9E 10�; key, �� �.items(�0if isNance(4st�vnewKe�:s�AT �.keys()Hs.�ɡUkey][0� ls=)Rke)� �[ �:* �%)xv�N[ d real imagEE7Dct.or c10%m`:I� |k1�((wq:Real =EB Imag>m5  ="' D(REDUCED_STATE_DCT� bs= { , is�$vecs=False��# ! I=,IdxY�*!G.ap4(��FK[-Idx].eK Dct)�v�5U��9!�B�>p��Entb 6���o� �2l62,8 plex}?.A�,E}�� u.asA"A @6�FL = �B�A� = Y� if (Q���) or �l >2�Z�2D=�R�(�$ = np.abs(��xvU0c10�I�#IB#l ##��E�@���8_, ax = plt.sub�gs(1 ?ax.(xvs, �!�$lor="blue"J&�&� :'[xvs[0],�([-1]], [0,  line�^="--"F lackF legend(["! k6t"�ax.�#�6(�x�("k10 Q=#�&edi��!%#sl =H(y�a�[0]�� hnOCOLOR� "red�green ))��a�g xa�*� �]�y��f[]=f46� Z2�y!�c%� �� 9J-j[) 2`"Fi!0�=s-P !Fiz 6�%`�  dɀAs��� RR��V =[10:5*B<5)]��� %�="DZ�2n2�."� *z y runSim��=� 4, endTime=100,!�rt0Bb AIdx(a� me=�"""��se�Ew� ��V simu%@on results array.q bes�E2���marria -_I�Uj��wYj6:, 0]�if�� 5 T <vFN6�24%�.�idxM9 �>�J# A� %Yp6t �� �in�� R.core bol.�:� ��� �F�*.� rr*�  .� #rr��rr� A"ea�I�U�, 10*M���a%7.70V/�n� starMv2�a Cena =6%�f!�idx!� | ar&U�)=f��A�o� i,�DNb+1B�Bg���s �k9=0.5.�9a� �=9�� Damped � 22��B`a�var S0 1 2 3 4 5 6 7 ext S8�4> 7+S5�4 �z4+S4; k1}� .3+�2*.� 2 34"�Y4�5: S5� 0 5*S506�5 J7:+. 7*S8�8  S6 � 9: S635L�9*S6*O1�7��87 #1W 5+S6�1o1�Y1Y�12Z 1 J1! r3 M!�S74 1T4*S1*S7�L2.5920480618068815 kK422Zi,8070204247 k!�2d#88192374985912 khL29.723263589242986 kw@21.041149960988825111236�zO6,14.363185343�r44 k7�8.82311261691128w8�4�268+`�b2D58.17954213283633 %=  G�,014127339 k1�194.082�R41920%�T15.989508525207631 k13K3.18661\s1gxK�35.6758256382��S5�7�!��6� �6?2) NX)Fma��MNzl)4�$eS�_FLUX� =vvrr)B4O2g nullspaceNat."�-.` Kine.�� ry k g��4, 1: �] 2�V 3�O 4�K 5�B 6a� 7�5 8�. 9�% �*j*� �������q�, }!=2o"��s: >�[s]U s(9V(#>.I  }XBr�H.&� Fixe�"śMw# Need��� near�binof$ �)AG EX # sD"�` �& hold.SQN8� s, M�. J%N - M��.>��c c_0 c_1 c_2 c_3 c_4 c_5 c_6") cp � m�[c_0,123456]e�>8�� ).re1(15, 7 - * c >N105/7B# S�!�log(S*) �D[ j - b j, b�zip]"s s(),#*c) ]>eIP{R�3: 0}ITeKg] )�e2s, [ S5]��**A�**[%$N$ = 2 }rixM5A $N$,Substitute 0� any 0""I+m�b zero )8ll vectors $M \� c$.V.>nx_n$ � tY)� term� lo *J* flux�1. We*�'A� �a4�s�in.�,&re $c$0a � �9$|^ I prev�#(5�to (4m$Md�o�� �� �X$c_n$. Issue: How do Ii��$c_i$? =� 2)�9EJWJ$2�E6[1]B�:(N�)N-MuP4 (matMlT�|g2} 7!�U���F_# Looklq ke Idqmanually"i��eBQ����� J4/k͠xS1: (J12/k12) /((J9 / k9) / (J6 6))�8a�J1�[a�J88 "4/ k� S5: F "6pJd 710C102� !8!7 7  � ), �J�de�D ����F6hF ol���IE�6-ICT�'),�͊Dcv)) QBiE�� ![jJ�-��Dc!e�ja� 5��] NBd#J��5 Ae �8 duceB6%6}"N�"")>9��"��"��"� �"J�",/J�"4]&M !�F&F�1 x� ��"��"��"��"�">��'�'(N�#)�V�#(V�#)�B�# t�%* ��/�k15� $@200 # 164, 165 in�;�ji ��d�to�T�oscill9 s*�2L$A�NzVy0� ))\!&� :�k10=14&��0F!N65�6�1(k0=�Vo=0.6 9 basxFwq�m�e��^<! 2!����a�k0 * S�gJ1:(*��,�k6�3:I+S2'4:!h*�u # I�i"*`mass � ?AJ`# Qk"+ L wrong�ZS2. S2$be - S2*k69�s: ^vr^6͉}FoBh.���T�B�F"!��d" r�M� Ff.��,[f ��e._.�F7# Verif\|/seP1.. Xp^Yprint(�%p*�%� fp�)*� F5Y s()b� �/�\ if ! ���n�[1]Z# ? Y@I.  � � F� ��-�>�[ .�� �1 non-�]/)1.<.�.� �4c�, urn, 4.� f1$�1 &1. Se�a�-of.,Ao�] a po�~ve�~��� A�&signific�&�im*�1$Gb �h�no�*onship���*/$ behavior �-!a//"�& V%� Given��-�'nd ��&��.IA�:�2t f�/en+6�Bc�rr.k0 c� 5 c� 6 c9�!r.k9 �$+0'A�in �&�*�) 50)]Iq$�yv&cs&cp&cm&cj&cg&�#.�B�2�$aU�s= ?.�>��hij9",JJ N]�k#� 6�,�x2�y2y�� 00/2 slThv"u.<�=6�=9B ZC99�, �G7B��G2F�G4.5�2*np.piF�� � �  *6,+�'=[# +VB}!(K��{!90af�r 94+= " %s: %3.2f �rx))�)i%�Comn&��,� (,b*�!�&� � 569=1F0w� AFo� !d� )E�2� QZ0^<E�a1y$" $Am i exclu����J&?q-�s%��� . j�6,Manufacturedu or BP3-l� problem 5�F1is go�Ito exact"��fol�7 LP: $$ \begin{aligned}%�-\�,{\��Pial\sigma_{ij}(\bolds.4{u})}%4 x_j} &= 0 & \�9{�}Omega \\]N/cX kl} 6t u_k2]lJjXu_iPu_i^*u +on �Gamma_D�u_1^- -+7�63F32 32 3S_2^h53 53 5 -S_1�6-(\ta�� )�(-< n^0- ,)f(|V|,\psi))CDV_i}{|V|} + \eta V!1�Z� ;dG }{dt%�gZ8 + s(\vec x, t)n� )�EBdSMVb4 \endY� $$ w�7 N� � �%Xa \cdot \mathrm{asinh}\�y( �! ({2V_0} \exp.F(}{a}\right) 1�)k Ob K {L} J:T f_0- XbX - <�?:j)]{x})^= -}^*| ^*!� �%�^*)ZqUA01A$Q {13}22M6{12i�n21}F��EY���8* init_@ ing(��We&Adefine4bol�: gene�Ax}s�:are��be_fied lat̉*� x, y, z, S ��4s('x y z t') t��w{D('t_e t_w') V0, Vp.@V_0 V_p') a, sn, aA=Xa ma_n') K ="�6,('K')(t) V1_g 2V_1^*')(�) tauJ$%�>&pr 7( %0K ) snj�-�G>? AE, nu.�E nu'�,=True,"3 t) lamda = E*nu/((1-2*nu)*(1+nu�!N E/(2`&�$a^*$����"�6� psi�a *�((2*V0/-X ) * a�((%G�+  %v+!� * ./ (a*(1+ - sn4)1k � We n�he�) deriC ve $F}6�K.i (t)N(36m $��)so��ndisplace46 k.�kr��f = K*x*exp(-k*x) phi = cos(k*z)*f phi %��m�sxT(phi �(z, 2) szz =x x-+x) 3�E(L- A1-AszzA(-nu**2)/E eX(_2(xx:(ksxzMG/E ux)�= vCgr�8$exx, x) uzJzz, z)8B�= ?n#"8 �� + >%�x��2*exz-� Let'�!tro��rp:2Muxm�]su�" , -k� �6xp:> uz 2�6t = A�,([,!u m ]) I#[1*�,]h0, 1]]) JQ,permutedims(e;e_by_e-(u, [��]), (DRtrainY'5e�m4Ju�8u.0 pose<&stress''5���* tensorLDa7( Z, �)�4I + 2.�mul{ ) eq2R e[0,0]5�+�6| [0,1 y!�22 z)V��V1VV1bV1:V�'BV2VV2bV22V (eq1, eq23M�A3�"!�U-I[EQh�-�-j-2��-M-B=Q�-�2--�)i�x, A� 7 $\��y�3A [\� m�(}� \\4- 4.0 k \nu K{r t ? } \cos k z& @ D k�>� � j]�� $S����on-�V �N�S�_fua�-(�] -U;.'.;)=$� 2 shp'q�6=s"+e�(��i�za�� x)*� �s13=�.�"q+ �Check~tinuity6�6�iG z �.� �$� N5BYI�>4�m,+ 2*mu�=6?x!?qO6G&� !�11ZC� (�AZ�69 +�.�Slip-s $V^*a&>i � = ]�)�& "8 Accele=Gon"[ V� b^P�O9{&�l�7f a�"V  $K$ m?necess.C5��H:K� =�,8(atan((t-te)/tw!_pi/�% pi , ��1B)�t�26!te^"S tz&.�%" � 4 . � �$Hb�G�4mpl_toolkits.mj3d�Axes3D (s�+!V, S�gnu&�H]!BasicJ�EV6�$ Algorithm�Lab}I�. Just.�&�J"�LPU�< f(z1,z2,...,zn)E�A�ai doe��@J on. �)s:�Hvergenc3A$not always�nted. ,^mOthan 2�m!B�y$ third cel�<N vail�".%$ a'3 #��+d&�s , [)e(('z'+str(i+� �i�5n)] #),ic�.G . � @0.6*z[0]**4+2*z[1 3 3- 2 +30 +3 #�b� mf�;(T -2)*8 1]-1-z[2]* +o-1)nM #ON K�r6>�np.d<Rae ons(\D0ter={'float':��Dbda x: "{0:0.3f}". )P(x)}) gradient=[f.A�(zi z%�z!��Lo delA/0 e f'! hessian=[@ Ij:I!�z�(z]{x=[�>l �-1]!�itera!�e��l m�96�,�o" Licial x[0]=(2,1) #t-$ #va"�$paso fijo ��!)10�%�Go ma  { %d("Ini��<: "E�p)) ��aM�Jte�C$nablaf_xk=�nf.Hf(� =3,(zip(z,x[k])�!nK"1� ],dtype="%�32") #F uar 6 en,:-�}� ([[hij��hi%�hi]%�hE U��qz2a��x�B� -np.�Ddot(np.linalg.inv( i�),5F,1)Ri$< 5� ())<0>�01: #�/in!�l�5moB-�O��o9�k�9 mbreak4e2GE >IA��Ik+1)+",5�X�a�ML oe�p:sa!00U( 00 -�] (y1.n[-2! %  A: [<  % I1R!2���0ly.graph_objeW?ak xdA�lin�2F) ,5,101) y:5X,Y4@meshgrid(xd,yd) Z�%[f9 [x,yu:�;xdI��$yd]).asaB(eA ) fi)Cgo.Figur�6fig.add_3 �e(go.Surface(z=Z, x=X, y=Y, opacity=0.3�xp���([p�L���%�@y61 �z �j�Y,p[T� C:�J�ca�3d(x=xp� <�i~��.�2 22 =� id="33fe5040-c915-4a33-82b7-3d51101b9959" cle�i�-e�-div"Y�):!(px;)6">w{� yAr: S x A�ar�^\] bb{RAA� �� Pari90�d�5V�u5�Pcal{A}, O}%�E}��:�ZA}��..z%+O Y)aE٭xA#oE#.8zc��R��-�E �emi�Weح���o_t���~~dWA}zn-�<�^be�T�dso(d�{2d�_2_ac�7���etru�`��F �goa qreiIUV lear�d(# TX�ar#`6 {/ }(a|s): s2�a $ AS K e environw �/N�8e= p(s^{'}| 7:2gkJ9V 2�distrib�(ove�! ��� (tral ory21na�=it�!horizo~p2 s_1AW1, \dors_TT )$ =E'(s_1) \prod\$^t��=1}^TNW p.9It)1O� al2� � ^{�?��argAixj "} E_{T�%m p9��) }[\sum2t r(s_ {]Z ) $!�Sc� I^1<. )H��Z%seq�/@0%�2z.%� ���T?�fZ"p0�) neMga;expect�sac�b�*�stochaSab�I�Z� ��A*i��2ze1�`7ZJ�sum � a���FmeQ[ cas7X ate-I�j al~`augaGed 3 �2�(} )X�\�([ bm�]*�'} �eqn�*��6kE_{Y�B�U� �]�6��)wInf^yio}3.>���{m���R�- Assu��f2- ergodia� - $\:'(T\mu, (T-I) 0� !x A.�CA�T�b 84 1!%M &�m�i�y�4 IQNm,�ial�AFc�@afincrel+gm�qys (�s)a�Wh�_Ne� hms Ƴ� mizew5smoothm�"� s:- mainly2l� z�ofnI� e�D��. (How?�  R2�L�zf/" ��anatomyya V��Al��%threeIic ~/I/ 1. G,+te+�pl!e i.e.WS�ĩD{&t �{ge� (sa7� � A�Z!, typ{e� onO8(d� �ixE�2�7t ak5/ amm�dwR. (eit6i�5-�1d (�7XR#cit # �R-��3.�erJz^ �. (Ch�^�mak� be!.QE�s - Di�i"8car�I]7Z��Ƀstage �1. (P� "- Run ��b.a� $ Ea�! �B Im � %^-4-���!�$�V_��up���B#tr9 goodYQ� $|2ly]I%�!��s�92. RLA! back� (M�<)�)!� &i"�s 1. :TD_re�2��8i�!�abA�ive 2. ?9 o:Y�!s*o or QUVa�M�"� ��Sy�t-�@) 3. Actor-critic�b�)�,;Ai:`i2� . 4.�R � RLj�* eM,%�the�n d%sE� plan��(nJ�A[- TQVfl��� /1��rol (&|iin�fs��es6 �Q agOa�R ize\~[ ��a�s�in  0 v�W.g., MSn Carlo t�Q�!j-Jr<licy (�ogA_��Y- R& km�Qick� �eworA j!�%��� 9娑��- D�egramming�� dA�eri� !� jf�l-1 Zs�f�"� n R6ut,�V�I� J_�step a��E$ck�radeoff\ntwe�<�!s (Why��'tQ�b �ORLy��!t%@2 ,all tasks)\ A ��tn �S��effic! y�K۶ �s�Kw�/��o{! boY-LB8eF ease�u� 4Multiple hyper" %�s�n2�aB� S"� �vdetN[n�Co5(�porU� Epis/ i:" ?2}%�� easy1h�e51A��1@EasGst�>� ] �Z&Es %IU-�E5� -jM^�to߽ɇI�M���?�u:,De]8off8I�O: �#e�`a� f: ��4t� newU5E*tC@ 0]��: &e .Vis�nged, eva q bit,U��5tA�vei�#9 w�r�veaRessU��$g�%? Wa1clock ��p�a�a8cy$ DEV�AWo%it��W%!�And� �%o what �"!oime? �i� & ?�-&1�??JSupervis�5t ::� �� descena�6� 9o|tnotF5I�=arison:2� - co�o #1: Z�)B%�� 5 � - 6� fi�Bmethod)�-�%z iti��f Ԅng re9c!�J� 2: e�%� �O�� pureM�9 6�.�9i�"�-R3:A1�r b nes� �^V@:(�rq�Iv��!�&� �q3m �- v- �Q-�, DQN Tevr�w��c �� 9Fit"��%� �$ ] REINFORCE N{��U Tr�)reg& #� � (TRPO� -�ximal�#�  (P)�H �H � Asynchron�cadvan� a*�  (A3C� Soft:SA DDPg� ��� � �Guided1\� .,7%���,8Jun-629/20MA5732�,$src%5CHw5_9 _9 z�,uR 1� �z* 1*,��ign| or $\�G\pi(N)�. comp�V�!0U���Z+py��np bCmcELF~+ 0 � �'� (N x�c$random.uni* (-1,�gYbnpf �hx�*y< 1 Z n^C1 � 4*n/N � ��A�3.121�`=93�GPi.i.d $\{\alpha_i : i�41, 2, ..., N\}8W $$\bar 0Np!$frac{1}{N}�_{i�N$i$$ as6=�ofA�}�^athbb E[ W1])�us qetavk( 9i�>.�)^2 z o� $Var7 1)$.���7 $ L1% L^4$ ! �[�; � bias�-� $.#@J_z $L^2$.0 Can �z�oa n un P�?�,__Proof:__ -��2e 8,F<o�~w�9` �@f6�8 �e�z! 0. B� ]"\}_{i\in U {N}}%EK.c Md�M �*�u��}="�C NA.�]@�~k]w@&=�@N�LM�R3�AN.�A6�g>N1],%\.�.B~�B2�^0AsuyXH �Z/2�0t\6_}6 \\^�^2%�N6�+^q�.]^2!2�:p6= �1 8F_ �F2+ � D)*�]FY8A��} NowC � $Bias(m)��LM��2;:�Zp1Y@^��N�B�W.Mc.DW^2- 2�� 2�!�.�^2)�s-�i^)v2u]6a +yw6�z.��IiA>E�#Z�bu9V \E�-.t:�-6�-�2�>"neq 0.a�e.�F]�T�Ffore,N.�&Tf'� 27J����B2GMSEu" \to 0+�$NFEmeU�n25.@ :)!�S.$$e�wem�ᑒ@�ee�:f�split} Ev���tm�I� :�:zͩgFF]aVe�2-N5 �RMG)�2�?:% ���J}a�Zg6}Ea-) ]mNowE�$� $T :�p$(n-1)S^2}{<`$\sim \chi !�A� $�[�-1:= ��a$.L� �� Zv�'�6� � wFt Plu�GI&.x T]� -1,%T72 �.�L%B)���%d� Sq� (N-!�}{5�r!�� ;2]9�}d�M #_]/)���rH+ mjFaD I)A :�i�,��t (fty��Z�^�����&b ��h�# &S :��� -�A%�϶�$f"�  pE'�bqf�IIB�-1��y��%bigg (Bs1��n� :):�A�&=6> =�j�W2,&at�i��1F[ 0. __Q.E.D.__��5 (N,Mr�n��pi_-[ =�{Z &�7m9M@ � ![i6pi_��= n/N�ZU m +=.�[iA, :*; � = m/��  �SRJ �6$300252864054 +7 b > �[]�9&  (5,1�y1�2**i)) $[2**n�.�W;]:y) �x(loglog(x,y)���T�6@ c(a,�1,b2,x): �]�!  2� h"w�=n t�!�Yend}\�XT( iveld�@1 == 0_:# 0_M�Min�Sed�R2 R a������ �N�  �i 6!K�oRg8h#5ig�/2}^Sub�0 dead 6 Ast lab s�@o�{�A�Xon Wednesday 25.10.17**Kr|: 1:�1 bonus�a!�\ Down����noS��X�s� n Jupyter(.Cby clo�$htt�EnEyE�d$&s, 42 45 0o7Ean� 5-�rpick a7a�� (w'�A3:�@�<)7all f��=box�*�r� iR e]G��f�=c��Bbo �i?�hȆeda� �X:4B%>J g5��has{,r a sen �+( of z2nd=y t�.�!�4Ebola virus. M]i A�m�" i�!8imprecise, yiel��1%A�f��:it$s (healthy6�bP t��)%q�I.HnegxL ( .�E0 �� ` C4r���j�i�)!�As �:jaF in�dt,�=s &")�it occur�.$��.�.ill�.peopl�X Eu�<dj� Waydom 6a��h#�)en%�)?%�%� �,�= ed af1 rierA2&2an����T1mP I� &�onE4jus!� arri;E�a �5ry��r�/�; housa 1 �mc<I*How much��b!V!. 2 A��]8(3.3a!t�&� 9!�,% a 80%.=At#9 Uu( in a Europ�ean? ## 1A $A$ - red ball had been picked up $B$ - wasLfrom box #1 $p(B|A)OPprobability, that the A came.8D if we happened to` a� Z�X6^��qA|^swe've�e% %8= x ```python pA=7/20. pB=.5 pAH*2/10 pBA=pAB*pB/pA7 , 0.1428578## 2 -�tChoosen European is a carrier -�N%not2)+!�(Test resultI,positive $-J nega�\begin{equation} p(A|+) = \frac{p(+|A)p(A)} +,B)p(B)} \endA#### AAT-|AM0.01$%�+ 1-p= 0.99B6,;1/10^6 "B)=9A)=6$o=�,PA=1-.01 pPB,PA pA=D .**6!�1-!�(AP=pPA*pA/( +pP!�H) print pAP*100,"%"_ -�@00989902989507 % a� ## B��3$6Fr�3 #nowA�keq8one of thousand!�Yp����09.01639344262�C6�-q-�80%F� .8 # trueYq�y^y03!�8800004 �� Problem 2 [2p + 1b] Naive Bayes ClassifiaPTh '��4orem allows us��construce\l8T in which we model howB data!�8generated. Here!�Xwill describe a simple !�(popular exa$of such a u call�N he n� �"8. Despite its `icity Ie�queffeca� for >ce�yltext documents (e.g. as spam� non- ). Le!. � sequencE�|words $D=W_1,W_2,\ldots,W_n$ We))C-3ioN�a� two-stage��,cess. First,�4category $C_j$!�Ldrawn at random with@��A�(C_j)$, also.g$*a priori*.1(. To define%�%C-condi�al.-^D| `w�ake a-�fying (%�) assumpH�fevery%HAv!�5nis �@independently at Z�0 $p(W_i|C)$: >�*} p � = +>� | � \approx $�.2 )�n.6 *} !Ainfer�%@Aza�we apply!I�the�:F� �C_j|D�ѣ)vpŧD)}������}{p;F�Please�xAat siA��!�ed on!� finaxnumber��!��15A�6�(3����62Aba 7.69�47A5E�P4.953!�5y727\nu�r5�311e~A!�� 3.63��1e�a� 3.23�91!�0� 9!�97e26a200a 160\nv�1�^.83%�4�13�b�Q90a209�95V4����2.8a�3E�a�2.2�(344\nw|2.36��07�z9E|0�N3-�33E14�81��5EG69��016\nx��P4�A����0��A1159Eb��03��02�0��03a0!]ya7'1 !3!.!"A�6MA�3%� 0.70���a���69Y9:7e/043\nz!Y32)Te46!H47�49!�.5007��8�w.3�5I�Z503\nà�_mM���t�  \nâ .@� 6 \ná.50!�1a�%)�867\nå  1.3AG|�X9!F3|`� $��TE 3� \nã.7I%  \ną .6 �  \næ F�0� \nœ.�� N \nç.08��|0��,�E2 \nĉ .65l  \nć ..7$  \nč V.4� ďV.015\nðB4.3I%�� .271 .2��  \né%�5as�!�.3i�&.64%.6lê2Ql.4a�6 \nëi� N \nęJ1.0. \něJ&R1.2� ĝAV= \nğ  1.12M &2,.02J� \nî2.04:@ \nì .03  \ní, 0.13>t��"1.6��ï.0� F \nı: 5.11�� \nĵ�5J� \nł.& 2.10�f \n�r� 6 \nń6 � !�ň V� \nò6.0�6 \nö .4.�.7�39F&4�ô6 R.J� \nó.8��29�^1.1� 9� !f24\n�=z.04"&. \nø.. .9�z\n�NN  \n�6(3� $ \n�F(78  $!�R�.8.b\n�լ:6.688\n� r.3i 6$ \n�2� ..0� þ.2 1.4I� \nù .058 �  \nú .1� 2F�� !�4���2.0Q  N\n�u� .5q   \nü ����02I^ 1.85B�Ņ 6N� \nýN .2` o � �5  .07=:\n� � .7� \n�f�$L.721""" df = pd.read(.(&-),U='|',Dx_col=0) df.head()�<