Convert dataset to Parquet (#6)
Browse files- Convert dataset to Parquet (5e5f553e977ee62568debf772272d382e54a360f)
- Delete loading script (5611843f4bc8fccc5c6d97eafb5845741900d120)
- README.md +17 -8
- plain_text/test-00000-of-00001.parquet +3 -0
- plain_text/train-00000-of-00001.parquet +3 -0
- plain_text/validation-00000-of-00001.parquet +3 -0
- snli.py +0 -110
README.md
CHANGED
|
@@ -22,6 +22,7 @@ task_ids:
|
|
| 22 |
paperswithcode_id: snli
|
| 23 |
pretty_name: Stanford Natural Language Inference
|
| 24 |
dataset_info:
|
|
|
|
| 25 |
features:
|
| 26 |
- name: premise
|
| 27 |
dtype: string
|
|
@@ -34,19 +35,27 @@ dataset_info:
|
|
| 34 |
'0': entailment
|
| 35 |
'1': neutral
|
| 36 |
'2': contradiction
|
| 37 |
-
config_name: plain_text
|
| 38 |
splits:
|
| 39 |
- name: test
|
| 40 |
-
num_bytes:
|
| 41 |
num_examples: 10000
|
| 42 |
-
- name: train
|
| 43 |
-
num_bytes: 66159510
|
| 44 |
-
num_examples: 550152
|
| 45 |
- name: validation
|
| 46 |
-
num_bytes:
|
| 47 |
num_examples: 10000
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
---
|
| 51 |
# Dataset Card for SNLI
|
| 52 |
|
|
|
|
| 22 |
paperswithcode_id: snli
|
| 23 |
pretty_name: Stanford Natural Language Inference
|
| 24 |
dataset_info:
|
| 25 |
+
config_name: plain_text
|
| 26 |
features:
|
| 27 |
- name: premise
|
| 28 |
dtype: string
|
|
|
|
| 35 |
'0': entailment
|
| 36 |
'1': neutral
|
| 37 |
'2': contradiction
|
|
|
|
| 38 |
splits:
|
| 39 |
- name: test
|
| 40 |
+
num_bytes: 1258904
|
| 41 |
num_examples: 10000
|
|
|
|
|
|
|
|
|
|
| 42 |
- name: validation
|
| 43 |
+
num_bytes: 1263036
|
| 44 |
num_examples: 10000
|
| 45 |
+
- name: train
|
| 46 |
+
num_bytes: 65884386
|
| 47 |
+
num_examples: 550152
|
| 48 |
+
download_size: 20439300
|
| 49 |
+
dataset_size: 68406326
|
| 50 |
+
configs:
|
| 51 |
+
- config_name: plain_text
|
| 52 |
+
data_files:
|
| 53 |
+
- split: test
|
| 54 |
+
path: plain_text/test-*
|
| 55 |
+
- split: validation
|
| 56 |
+
path: plain_text/validation-*
|
| 57 |
+
- split: train
|
| 58 |
+
path: plain_text/train-*
|
| 59 |
---
|
| 60 |
# Dataset Card for SNLI
|
| 61 |
|
plain_text/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4696deda851c4d2385f26b58f2e13f9ed9f08ea7b42a3f4c2b97a9d08448878c
|
| 3 |
+
size 411531
|
plain_text/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef9a7b25d97390a62aeda7abe26aec8640600f50b818eaeb9107097d60ac6620
|
| 3 |
+
size 19614612
|
plain_text/validation-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00f5ed8deaed007fef3022f0215b287efbab815b1bb31ac3f3ff4f4129d41ffe
|
| 3 |
+
size 413157
|
snli.py
DELETED
|
@@ -1,110 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""The Stanford Natural Language Inference (SNLI) Corpus."""
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
import csv
|
| 21 |
-
import os
|
| 22 |
-
|
| 23 |
-
import datasets
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
_CITATION = """\
|
| 27 |
-
@inproceedings{bowman-etal-2015-large,
|
| 28 |
-
title = "A large annotated corpus for learning natural language inference",
|
| 29 |
-
author = "Bowman, Samuel R. and
|
| 30 |
-
Angeli, Gabor and
|
| 31 |
-
Potts, Christopher and
|
| 32 |
-
Manning, Christopher D.",
|
| 33 |
-
editor = "M{\\`a}rquez, Llu{\\'\\i}s and
|
| 34 |
-
Callison-Burch, Chris and
|
| 35 |
-
Su, Jian",
|
| 36 |
-
booktitle = "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
|
| 37 |
-
month = sep,
|
| 38 |
-
year = "2015",
|
| 39 |
-
address = "Lisbon, Portugal",
|
| 40 |
-
publisher = "Association for Computational Linguistics",
|
| 41 |
-
url = "https://aclanthology.org/D15-1075",
|
| 42 |
-
doi = "10.18653/v1/D15-1075",
|
| 43 |
-
pages = "632--642",
|
| 44 |
-
}
|
| 45 |
-
"""
|
| 46 |
-
|
| 47 |
-
_DESCRIPTION = """\
|
| 48 |
-
The SNLI corpus (version 1.0) is a collection of 570k human-written English
|
| 49 |
-
sentence pairs manually labeled for balanced classification with the labels
|
| 50 |
-
entailment, contradiction, and neutral, supporting the task of natural language
|
| 51 |
-
inference (NLI), also known as recognizing textual entailment (RTE).
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
_DATA_URL = "https://nlp.stanford.edu/projects/snli/snli_1.0.zip"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
class Snli(datasets.GeneratorBasedBuilder):
|
| 58 |
-
"""The Stanford Natural Language Inference (SNLI) Corpus."""
|
| 59 |
-
|
| 60 |
-
BUILDER_CONFIGS = [
|
| 61 |
-
datasets.BuilderConfig(
|
| 62 |
-
name="plain_text",
|
| 63 |
-
version=datasets.Version("1.0.0", ""),
|
| 64 |
-
description="Plain text import of SNLI",
|
| 65 |
-
)
|
| 66 |
-
]
|
| 67 |
-
|
| 68 |
-
def _info(self):
|
| 69 |
-
return datasets.DatasetInfo(
|
| 70 |
-
description=_DESCRIPTION,
|
| 71 |
-
features=datasets.Features(
|
| 72 |
-
{
|
| 73 |
-
"premise": datasets.Value("string"),
|
| 74 |
-
"hypothesis": datasets.Value("string"),
|
| 75 |
-
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
| 76 |
-
}
|
| 77 |
-
),
|
| 78 |
-
# No default supervised_keys (as we have to pass both premise
|
| 79 |
-
# and hypothesis as input).
|
| 80 |
-
supervised_keys=None,
|
| 81 |
-
homepage="https://nlp.stanford.edu/projects/snli/",
|
| 82 |
-
citation=_CITATION,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
def _split_generators(self, dl_manager):
|
| 86 |
-
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
| 87 |
-
data_dir = os.path.join(dl_dir, "snli_1.0")
|
| 88 |
-
return [
|
| 89 |
-
datasets.SplitGenerator(
|
| 90 |
-
name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_test.txt")}
|
| 91 |
-
),
|
| 92 |
-
datasets.SplitGenerator(
|
| 93 |
-
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_dev.txt")}
|
| 94 |
-
),
|
| 95 |
-
datasets.SplitGenerator(
|
| 96 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_train.txt")}
|
| 97 |
-
),
|
| 98 |
-
]
|
| 99 |
-
|
| 100 |
-
def _generate_examples(self, filepath):
|
| 101 |
-
"""This function returns the examples in the raw (text) form."""
|
| 102 |
-
with open(filepath, encoding="utf-8") as f:
|
| 103 |
-
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
| 104 |
-
for idx, row in enumerate(reader):
|
| 105 |
-
label = -1 if row["gold_label"] == "-" else row["gold_label"]
|
| 106 |
-
yield idx, {
|
| 107 |
-
"premise": row["sentence1"],
|
| 108 |
-
"hypothesis": row["sentence2"],
|
| 109 |
-
"label": label,
|
| 110 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|