Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
100K - 1M
License:
Commit
·
9fd6e32
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/plain_text/1.0.0/dummy_data.zip +3 -0
- imdb.py +122 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"plain_text": {"description": "Large Movie Review Dataset.\nThis is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.", "citation": "@InProceedings{maas-EtAl:2011:ACL-HLT2011,\n author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},\n title = {Learning Word Vectors for Sentiment Analysis},\n booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},\n month = {June},\n year = {2011},\n address = {Portland, Oregon, USA},\n publisher = {Association for Computational Linguistics},\n pages = {142--150},\n url = {http://www.aclweb.org/anthology/P11-1015}\n}\n", "homepage": "http://ai.stanford.edu/~amaas/data/sentiment/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["neg", "pos"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": null, "builder_name": "imdb", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 32660064, "num_examples": 25000, "dataset_name": "imdb"}, "train": {"name": "train", "num_bytes": 33442202, "num_examples": 25000, "dataset_name": "imdb"}, "unsupervised": {"name": "unsupervised", "num_bytes": 67125548, "num_examples": 50000, "dataset_name": "imdb"}}, "download_checksums": {"http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz": {"num_bytes": 84125825, "checksum": "c40f74a18d3b61f90feba1e17730e0d38e8b97c05fde7008942e91923d1658fe"}}, "download_size": 84125825, "dataset_size": 133227814, "size_in_bytes": 217353639}}
|
dummy/plain_text/1.0.0/dummy_data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:570a8f885827a2f340aec4a9f8b3452d037ee361ae00aa97c12d85bf3fc59e6a
|
| 3 |
+
size 4699
|
imdb.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""IMDB movie reviews dataset."""
|
| 18 |
+
|
| 19 |
+
from __future__ import absolute_import, division, print_function
|
| 20 |
+
|
| 21 |
+
import os
|
| 22 |
+
|
| 23 |
+
import datasets
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
_DESCRIPTION = """\
|
| 27 |
+
Large Movie Review Dataset.
|
| 28 |
+
This is a dataset for binary sentiment classification containing substantially \
|
| 29 |
+
more data than previous benchmark datasets. We provide a set of 25,000 highly \
|
| 30 |
+
polar movie reviews for training, and 25,000 for testing. There is additional \
|
| 31 |
+
unlabeled data for use as well.\
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
_CITATION = """\
|
| 35 |
+
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
|
| 36 |
+
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher},
|
| 37 |
+
title = {Learning Word Vectors for Sentiment Analysis},
|
| 38 |
+
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
|
| 39 |
+
month = {June},
|
| 40 |
+
year = {2011},
|
| 41 |
+
address = {Portland, Oregon, USA},
|
| 42 |
+
publisher = {Association for Computational Linguistics},
|
| 43 |
+
pages = {142--150},
|
| 44 |
+
url = {http://www.aclweb.org/anthology/P11-1015}
|
| 45 |
+
}
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
_DOWNLOAD_URL = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class IMDBReviewsConfig(datasets.BuilderConfig):
|
| 52 |
+
"""BuilderConfig for IMDBReviews."""
|
| 53 |
+
|
| 54 |
+
def __init__(self, **kwargs):
|
| 55 |
+
"""BuilderConfig for IMDBReviews.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
**kwargs: keyword arguments forwarded to super.
|
| 59 |
+
"""
|
| 60 |
+
super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class Imdb(datasets.GeneratorBasedBuilder):
|
| 64 |
+
"""IMDB movie reviews dataset."""
|
| 65 |
+
|
| 66 |
+
BUILDER_CONFIGS = [
|
| 67 |
+
IMDBReviewsConfig(
|
| 68 |
+
name="plain_text",
|
| 69 |
+
description="Plain text",
|
| 70 |
+
)
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
def _info(self):
|
| 74 |
+
return datasets.DatasetInfo(
|
| 75 |
+
description=_DESCRIPTION,
|
| 76 |
+
features=datasets.Features(
|
| 77 |
+
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
|
| 78 |
+
),
|
| 79 |
+
supervised_keys=None,
|
| 80 |
+
homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
|
| 81 |
+
citation=_CITATION,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def _vocab_text_gen(self, archive):
|
| 85 |
+
for _, ex in self._generate_examples(archive, os.path.join("aclImdb", "train")):
|
| 86 |
+
yield ex["text"]
|
| 87 |
+
|
| 88 |
+
def _split_generators(self, dl_manager):
|
| 89 |
+
arch_path = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
| 90 |
+
data_dir = os.path.join(arch_path, "aclImdb")
|
| 91 |
+
return [
|
| 92 |
+
datasets.SplitGenerator(
|
| 93 |
+
name=datasets.Split.TRAIN, gen_kwargs={"directory": os.path.join(data_dir, "train")}
|
| 94 |
+
),
|
| 95 |
+
datasets.SplitGenerator(
|
| 96 |
+
name=datasets.Split.TEST, gen_kwargs={"directory": os.path.join(data_dir, "test")}
|
| 97 |
+
),
|
| 98 |
+
datasets.SplitGenerator(
|
| 99 |
+
name=datasets.Split("unsupervised"),
|
| 100 |
+
gen_kwargs={"directory": os.path.join(data_dir, "train"), "labeled": False},
|
| 101 |
+
),
|
| 102 |
+
]
|
| 103 |
+
|
| 104 |
+
def _generate_examples(self, directory, labeled=True):
|
| 105 |
+
"""Generate IMDB examples."""
|
| 106 |
+
# For labeled examples, extract the label from the path.
|
| 107 |
+
if labeled:
|
| 108 |
+
files = {
|
| 109 |
+
"pos": sorted(os.listdir(os.path.join(directory, "pos"))),
|
| 110 |
+
"neg": sorted(os.listdir(os.path.join(directory, "neg"))),
|
| 111 |
+
}
|
| 112 |
+
for key in files:
|
| 113 |
+
for id_, file in enumerate(files[key]):
|
| 114 |
+
filepath = os.path.join(directory, key, file)
|
| 115 |
+
with open(filepath, encoding="UTF-8") as f:
|
| 116 |
+
yield key + "_" + str(id_), {"text": f.read(), "label": key}
|
| 117 |
+
else:
|
| 118 |
+
unsup_files = sorted(os.listdir(os.path.join(directory, "unsup")))
|
| 119 |
+
for id_, file in enumerate(unsup_files):
|
| 120 |
+
filepath = os.path.join(directory, "unsup", file)
|
| 121 |
+
with open(filepath, encoding="UTF-8") as f:
|
| 122 |
+
yield id_, {"text": f.read(), "label": -1}
|