add extraction file
Browse files- extract_data.py +94 -0
extract_data.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Script to generate splits for benchmarking text embedding clustering.
|
| 2 |
+
Based on data from GermEval 2019 Shared Task on Hierarchical Tesk Classification (https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc.html)."""
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import random
|
| 6 |
+
import sys
|
| 7 |
+
from collections import Counter
|
| 8 |
+
|
| 9 |
+
import jsonlines
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from bs4 import BeautifulSoup
|
| 13 |
+
|
| 14 |
+
random.seed(42)
|
| 15 |
+
|
| 16 |
+
# path to "data" folder, can be retrieved from here: https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/germeval-2019-hmc/germeval2019t1-public-data-final.zip
|
| 17 |
+
DATA_PATH = sys.argv[1]
|
| 18 |
+
|
| 19 |
+
INCLUDE_BODY = (
|
| 20 |
+
True # True: combine title and article body (p2p), False: only title (s2s)
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
NUM_SPLITS = 10
|
| 24 |
+
SPLIT_RANGE = np.array([0.1, 1.0])
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_samples(soup, include_body=INCLUDE_BODY):
|
| 28 |
+
d1_counter = Counter([d1.string for d1 in soup.find_all("topic", {"d": 1})])
|
| 29 |
+
|
| 30 |
+
samples = []
|
| 31 |
+
for book in soup.find_all("book"):
|
| 32 |
+
if book.title.string is None or book.body.string is None:
|
| 33 |
+
continue
|
| 34 |
+
|
| 35 |
+
d0_topics = list(set([d.string for d in book.find_all("topic", {"d": 0})]))
|
| 36 |
+
d1_topics = list(set([d.string for d in book.find_all("topic", {"d": 1})]))
|
| 37 |
+
|
| 38 |
+
if len(d0_topics) != 1:
|
| 39 |
+
continue
|
| 40 |
+
if len(d1_topics) < 1 or len(d1_topics) > 2:
|
| 41 |
+
continue
|
| 42 |
+
|
| 43 |
+
d0_label = d0_topics[0]
|
| 44 |
+
d1_label = sorted(d1_topics, key=lambda x: d1_counter[x])[0]
|
| 45 |
+
|
| 46 |
+
text = book.title.string
|
| 47 |
+
if include_body:
|
| 48 |
+
text += "\n" + book.body.string
|
| 49 |
+
|
| 50 |
+
samples.append([text, d0_label, d1_label])
|
| 51 |
+
|
| 52 |
+
return pd.DataFrame(samples, columns=["sentences", "d0_label", "d1_label"])
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_split(frame, label="d0_label", split_range=SPLIT_RANGE):
|
| 56 |
+
samples = random.randint(*(split_range * len(frame)).astype(int))
|
| 57 |
+
return (
|
| 58 |
+
frame.sample(samples)[["sentences", label]]
|
| 59 |
+
.rename(columns={label: "labels"})[["sentences", "labels"]]
|
| 60 |
+
.to_dict("list")
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def write_sets(name, sets):
|
| 65 |
+
with jsonlines.open(name, "w") as f_out:
|
| 66 |
+
f_out.write_all(sets)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
train = open(os.path.join(DATA_PATH, "blurbs_train.txt"), encoding="utf-8").read()
|
| 70 |
+
dev = open(os.path.join(DATA_PATH, "blurbs_dev.txt"), encoding="utf-8").read()
|
| 71 |
+
test = open(os.path.join(DATA_PATH, "blurbs_test.txt"), encoding="utf-8").read()
|
| 72 |
+
|
| 73 |
+
soup = BeautifulSoup(train + "\n\n" + dev + "\n\n" + test, "html.parser")
|
| 74 |
+
|
| 75 |
+
samples = get_samples(soup)
|
| 76 |
+
|
| 77 |
+
sets = []
|
| 78 |
+
# coarse clustering
|
| 79 |
+
for _ in range(NUM_SPLITS):
|
| 80 |
+
sets.append(get_split(samples))
|
| 81 |
+
|
| 82 |
+
# fine grained clustering inside top-level category (d0)
|
| 83 |
+
for d0 in samples["d0_label"].unique():
|
| 84 |
+
sets.append(
|
| 85 |
+
(samples[samples.d0_label == d0])
|
| 86 |
+
.rename(columns={"d1_label": "labels"})[["sentences", "labels"]]
|
| 87 |
+
.to_dict("list")
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# fine grained clustering
|
| 91 |
+
for _ in range(NUM_SPLITS):
|
| 92 |
+
sets.append(get_split(samples, label="d1_label"))
|
| 93 |
+
|
| 94 |
+
write_sets("test.jsonl", sets)
|