Datasets:
				
			
			
	
			
	
		
			
	
		
		
		tillwenke
		
	commited on
		
		
					Commit 
							
							·
						
						463a104
	
1
								Parent(s):
							
							90328a9
								
before creating dataset
Browse files- .gitignore +2 -1
- .ipynb +277 -0
- README.md +10 -1
- data/passages.parquet/part.0.parquet +3 -0
- data/test.parquet/part.0.parquet +3 -0
- bioasq_ir_pubmed_corpus_subset.py → generate.py +27 -19
- requirements.txt +39 -0
    	
        .gitignore
    CHANGED
    
    | @@ -1 +1,2 @@ | |
| 1 | 
            -
            /env
         | 
|  | 
|  | |
| 1 | 
            +
            /env
         | 
| 2 | 
            +
            credentials.json
         | 
    	
        .ipynb
    ADDED
    
    | @@ -0,0 +1,277 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
             "cells": [
         | 
| 3 | 
            +
              {
         | 
| 4 | 
            +
               "cell_type": "code",
         | 
| 5 | 
            +
               "execution_count": 9,
         | 
| 6 | 
            +
               "metadata": {},
         | 
| 7 | 
            +
               "outputs": [],
         | 
| 8 | 
            +
               "source": [
         | 
| 9 | 
            +
                "import pandas as pd\n",
         | 
| 10 | 
            +
                "a = pd.read_parquet(\"data/test.parquet\")\n",
         | 
| 11 | 
            +
                "b = pd.read_parquet(\"data/passages.parquet\")"
         | 
| 12 | 
            +
               ]
         | 
| 13 | 
            +
              },
         | 
| 14 | 
            +
              {
         | 
| 15 | 
            +
               "cell_type": "code",
         | 
| 16 | 
            +
               "execution_count": 13,
         | 
| 17 | 
            +
               "metadata": {},
         | 
| 18 | 
            +
               "outputs": [
         | 
| 19 | 
            +
                {
         | 
| 20 | 
            +
                 "data": {
         | 
| 21 | 
            +
                  "text/html": [
         | 
| 22 | 
            +
                   "<div>\n",
         | 
| 23 | 
            +
                   "<style scoped>\n",
         | 
| 24 | 
            +
                   "    .dataframe tbody tr th:only-of-type {\n",
         | 
| 25 | 
            +
                   "        vertical-align: middle;\n",
         | 
| 26 | 
            +
                   "    }\n",
         | 
| 27 | 
            +
                   "\n",
         | 
| 28 | 
            +
                   "    .dataframe tbody tr th {\n",
         | 
| 29 | 
            +
                   "        vertical-align: top;\n",
         | 
| 30 | 
            +
                   "    }\n",
         | 
| 31 | 
            +
                   "\n",
         | 
| 32 | 
            +
                   "    .dataframe thead th {\n",
         | 
| 33 | 
            +
                   "        text-align: right;\n",
         | 
| 34 | 
            +
                   "    }\n",
         | 
| 35 | 
            +
                   "</style>\n",
         | 
| 36 | 
            +
                   "<table border=\"1\" class=\"dataframe\">\n",
         | 
| 37 | 
            +
                   "  <thead>\n",
         | 
| 38 | 
            +
                   "    <tr style=\"text-align: right;\">\n",
         | 
| 39 | 
            +
                   "      <th></th>\n",
         | 
| 40 | 
            +
                   "      <th>question</th>\n",
         | 
| 41 | 
            +
                   "      <th>answer</th>\n",
         | 
| 42 | 
            +
                   "      <th>relevant_passage_ids</th>\n",
         | 
| 43 | 
            +
                   "    </tr>\n",
         | 
| 44 | 
            +
                   "    <tr>\n",
         | 
| 45 | 
            +
                   "      <th>id</th>\n",
         | 
| 46 | 
            +
                   "      <th></th>\n",
         | 
| 47 | 
            +
                   "      <th></th>\n",
         | 
| 48 | 
            +
                   "      <th></th>\n",
         | 
| 49 | 
            +
                   "    </tr>\n",
         | 
| 50 | 
            +
                   "  </thead>\n",
         | 
| 51 | 
            +
                   "  <tbody>\n",
         | 
| 52 | 
            +
                   "    <tr>\n",
         | 
| 53 | 
            +
                   "      <th>0</th>\n",
         | 
| 54 | 
            +
                   "      <td>Is Hirschsprung disease a mendelian or a multi...</td>\n",
         | 
| 55 | 
            +
                   "      <td>Coding sequence mutations in RET, GDNF, EDNRB,...</td>\n",
         | 
| 56 | 
            +
                   "      <td>[20598273, 6650562, 15829955, 15617541, 230011...</td>\n",
         | 
| 57 | 
            +
                   "    </tr>\n",
         | 
| 58 | 
            +
                   "    <tr>\n",
         | 
| 59 | 
            +
                   "      <th>1</th>\n",
         | 
| 60 | 
            +
                   "      <td>List signaling molecules (ligands) that intera...</td>\n",
         | 
| 61 | 
            +
                   "      <td>The 7 known EGFR ligands  are: epidermal growt...</td>\n",
         | 
| 62 | 
            +
                   "      <td>[23821377, 24323361, 23382875, 22247333, 23787...</td>\n",
         | 
| 63 | 
            +
                   "    </tr>\n",
         | 
| 64 | 
            +
                   "    <tr>\n",
         | 
| 65 | 
            +
                   "      <th>2</th>\n",
         | 
| 66 | 
            +
                   "      <td>Is the protein Papilin secreted?</td>\n",
         | 
| 67 | 
            +
                   "      <td>Yes,  papilin is a secreted protein</td>\n",
         | 
| 68 | 
            +
                   "      <td>[21784067, 19297413, 15094122, 7515725, 332004...</td>\n",
         | 
| 69 | 
            +
                   "    </tr>\n",
         | 
| 70 | 
            +
                   "    <tr>\n",
         | 
| 71 | 
            +
                   "      <th>3</th>\n",
         | 
| 72 | 
            +
                   "      <td>Are long non coding RNAs spliced?</td>\n",
         | 
| 73 | 
            +
                   "      <td>Long non coding RNAs appear to be spliced thro...</td>\n",
         | 
| 74 | 
            +
                   "      <td>[22955974, 21622663, 22707570, 22955988, 24285...</td>\n",
         | 
| 75 | 
            +
                   "    </tr>\n",
         | 
| 76 | 
            +
                   "    <tr>\n",
         | 
| 77 | 
            +
                   "      <th>4</th>\n",
         | 
| 78 | 
            +
                   "      <td>Is RANKL secreted from the cells?</td>\n",
         | 
| 79 | 
            +
                   "      <td>Receptor activator of nuclear factor κB ligand...</td>\n",
         | 
| 80 | 
            +
                   "      <td>[22867712, 23827649, 21618594, 23835909, 24265...</td>\n",
         | 
| 81 | 
            +
                   "    </tr>\n",
         | 
| 82 | 
            +
                   "    <tr>\n",
         | 
| 83 | 
            +
                   "      <th>...</th>\n",
         | 
| 84 | 
            +
                   "      <td>...</td>\n",
         | 
| 85 | 
            +
                   "      <td>...</td>\n",
         | 
| 86 | 
            +
                   "      <td>...</td>\n",
         | 
| 87 | 
            +
                   "    </tr>\n",
         | 
| 88 | 
            +
                   "    <tr>\n",
         | 
| 89 | 
            +
                   "      <th>4714</th>\n",
         | 
| 90 | 
            +
                   "      <td>Is PPROM a condition that occurs in males or f...</td>\n",
         | 
| 91 | 
            +
                   "      <td>Preterm premature rupture of fetal membranes (...</td>\n",
         | 
| 92 | 
            +
                   "      <td>[23599878, 23573382, 24304137, 18301713, 23179...</td>\n",
         | 
| 93 | 
            +
                   "    </tr>\n",
         | 
| 94 | 
            +
                   "    <tr>\n",
         | 
| 95 | 
            +
                   "      <th>4715</th>\n",
         | 
| 96 | 
            +
                   "      <td>What is EpiMethylTag?</td>\n",
         | 
| 97 | 
            +
                   "      <td>EpiMethylTag is a fast, low-input, low sequenc...</td>\n",
         | 
| 98 | 
            +
                   "      <td>[31752933]</td>\n",
         | 
| 99 | 
            +
                   "    </tr>\n",
         | 
| 100 | 
            +
                   "    <tr>\n",
         | 
| 101 | 
            +
                   "      <th>4716</th>\n",
         | 
| 102 | 
            +
                   "      <td>What is the target of Sutimlimab?</td>\n",
         | 
| 103 | 
            +
                   "      <td>Sutimlimab is a novel humanized monoclonal ant...</td>\n",
         | 
| 104 | 
            +
                   "      <td>[30635392, 31229501, 33826820, 32176765, 31114...</td>\n",
         | 
| 105 | 
            +
                   "    </tr>\n",
         | 
| 106 | 
            +
                   "    <tr>\n",
         | 
| 107 | 
            +
                   "      <th>4717</th>\n",
         | 
| 108 | 
            +
                   "      <td>Can parasite infections by Schistosoma japonic...</td>\n",
         | 
| 109 | 
            +
                   "      <td>A peptide named as SJMHE1 from Schistosoma jap...</td>\n",
         | 
| 110 | 
            +
                   "      <td>[26840774, 34703270, 28614408, 31496071, 18654...</td>\n",
         | 
| 111 | 
            +
                   "    </tr>\n",
         | 
| 112 | 
            +
                   "    <tr>\n",
         | 
| 113 | 
            +
                   "      <th>4718</th>\n",
         | 
| 114 | 
            +
                   "      <td>Describe Multilocus Inherited Neoplasia Allele...</td>\n",
         | 
| 115 | 
            +
                   "      <td>Genetic testing of hereditary cancer using com...</td>\n",
         | 
| 116 | 
            +
                   "      <td>[30580288]</td>\n",
         | 
| 117 | 
            +
                   "    </tr>\n",
         | 
| 118 | 
            +
                   "  </tbody>\n",
         | 
| 119 | 
            +
                   "</table>\n",
         | 
| 120 | 
            +
                   "<p>4719 rows × 3 columns</p>\n",
         | 
| 121 | 
            +
                   "</div>"
         | 
| 122 | 
            +
                  ],
         | 
| 123 | 
            +
                  "text/plain": [
         | 
| 124 | 
            +
                   "                                               question  \\\n",
         | 
| 125 | 
            +
                   "id                                                        \n",
         | 
| 126 | 
            +
                   "0     Is Hirschsprung disease a mendelian or a multi...   \n",
         | 
| 127 | 
            +
                   "1     List signaling molecules (ligands) that intera...   \n",
         | 
| 128 | 
            +
                   "2                      Is the protein Papilin secreted?   \n",
         | 
| 129 | 
            +
                   "3                     Are long non coding RNAs spliced?   \n",
         | 
| 130 | 
            +
                   "4                     Is RANKL secreted from the cells?   \n",
         | 
| 131 | 
            +
                   "...                                                 ...   \n",
         | 
| 132 | 
            +
                   "4714  Is PPROM a condition that occurs in males or f...   \n",
         | 
| 133 | 
            +
                   "4715                              What is EpiMethylTag?   \n",
         | 
| 134 | 
            +
                   "4716                  What is the target of Sutimlimab?   \n",
         | 
| 135 | 
            +
                   "4717  Can parasite infections by Schistosoma japonic...   \n",
         | 
| 136 | 
            +
                   "4718  Describe Multilocus Inherited Neoplasia Allele...   \n",
         | 
| 137 | 
            +
                   "\n",
         | 
| 138 | 
            +
                   "                                                 answer  \\\n",
         | 
| 139 | 
            +
                   "id                                                        \n",
         | 
| 140 | 
            +
                   "0     Coding sequence mutations in RET, GDNF, EDNRB,...   \n",
         | 
| 141 | 
            +
                   "1     The 7 known EGFR ligands  are: epidermal growt...   \n",
         | 
| 142 | 
            +
                   "2                   Yes,  papilin is a secreted protein   \n",
         | 
| 143 | 
            +
                   "3     Long non coding RNAs appear to be spliced thro...   \n",
         | 
| 144 | 
            +
                   "4     Receptor activator of nuclear factor κB ligand...   \n",
         | 
| 145 | 
            +
                   "...                                                 ...   \n",
         | 
| 146 | 
            +
                   "4714  Preterm premature rupture of fetal membranes (...   \n",
         | 
| 147 | 
            +
                   "4715  EpiMethylTag is a fast, low-input, low sequenc...   \n",
         | 
| 148 | 
            +
                   "4716  Sutimlimab is a novel humanized monoclonal ant...   \n",
         | 
| 149 | 
            +
                   "4717  A peptide named as SJMHE1 from Schistosoma jap...   \n",
         | 
| 150 | 
            +
                   "4718  Genetic testing of hereditary cancer using com...   \n",
         | 
| 151 | 
            +
                   "\n",
         | 
| 152 | 
            +
                   "                                   relevant_passage_ids  \n",
         | 
| 153 | 
            +
                   "id                                                       \n",
         | 
| 154 | 
            +
                   "0     [20598273, 6650562, 15829955, 15617541, 230011...  \n",
         | 
| 155 | 
            +
                   "1     [23821377, 24323361, 23382875, 22247333, 23787...  \n",
         | 
| 156 | 
            +
                   "2     [21784067, 19297413, 15094122, 7515725, 332004...  \n",
         | 
| 157 | 
            +
                   "3     [22955974, 21622663, 22707570, 22955988, 24285...  \n",
         | 
| 158 | 
            +
                   "4     [22867712, 23827649, 21618594, 23835909, 24265...  \n",
         | 
| 159 | 
            +
                   "...                                                 ...  \n",
         | 
| 160 | 
            +
                   "4714  [23599878, 23573382, 24304137, 18301713, 23179...  \n",
         | 
| 161 | 
            +
                   "4715                                         [31752933]  \n",
         | 
| 162 | 
            +
                   "4716  [30635392, 31229501, 33826820, 32176765, 31114...  \n",
         | 
| 163 | 
            +
                   "4717  [26840774, 34703270, 28614408, 31496071, 18654...  \n",
         | 
| 164 | 
            +
                   "4718                                         [30580288]  \n",
         | 
| 165 | 
            +
                   "\n",
         | 
| 166 | 
            +
                   "[4719 rows x 3 columns]"
         | 
| 167 | 
            +
                  ]
         | 
| 168 | 
            +
                 },
         | 
| 169 | 
            +
                 "execution_count": 13,
         | 
| 170 | 
            +
                 "metadata": {},
         | 
| 171 | 
            +
                 "output_type": "execute_result"
         | 
| 172 | 
            +
                }
         | 
| 173 | 
            +
               ],
         | 
| 174 | 
            +
               "source": [
         | 
| 175 | 
            +
                "a"
         | 
| 176 | 
            +
               ]
         | 
| 177 | 
            +
              },
         | 
| 178 | 
            +
              {
         | 
| 179 | 
            +
               "cell_type": "code",
         | 
| 180 | 
            +
               "execution_count": 11,
         | 
| 181 | 
            +
               "metadata": {},
         | 
| 182 | 
            +
               "outputs": [
         | 
| 183 | 
            +
                {
         | 
| 184 | 
            +
                 "data": {
         | 
| 185 | 
            +
                  "text/html": [
         | 
| 186 | 
            +
                   "<div>\n",
         | 
| 187 | 
            +
                   "<style scoped>\n",
         | 
| 188 | 
            +
                   "    .dataframe tbody tr th:only-of-type {\n",
         | 
| 189 | 
            +
                   "        vertical-align: middle;\n",
         | 
| 190 | 
            +
                   "    }\n",
         | 
| 191 | 
            +
                   "\n",
         | 
| 192 | 
            +
                   "    .dataframe tbody tr th {\n",
         | 
| 193 | 
            +
                   "        vertical-align: top;\n",
         | 
| 194 | 
            +
                   "    }\n",
         | 
| 195 | 
            +
                   "\n",
         | 
| 196 | 
            +
                   "    .dataframe thead th {\n",
         | 
| 197 | 
            +
                   "        text-align: right;\n",
         | 
| 198 | 
            +
                   "    }\n",
         | 
| 199 | 
            +
                   "</style>\n",
         | 
| 200 | 
            +
                   "<table border=\"1\" class=\"dataframe\">\n",
         | 
| 201 | 
            +
                   "  <thead>\n",
         | 
| 202 | 
            +
                   "    <tr style=\"text-align: right;\">\n",
         | 
| 203 | 
            +
                   "      <th></th>\n",
         | 
| 204 | 
            +
                   "      <th>passage</th>\n",
         | 
| 205 | 
            +
                   "    </tr>\n",
         | 
| 206 | 
            +
                   "    <tr>\n",
         | 
| 207 | 
            +
                   "      <th>id</th>\n",
         | 
| 208 | 
            +
                   "      <th></th>\n",
         | 
| 209 | 
            +
                   "    </tr>\n",
         | 
| 210 | 
            +
                   "  </thead>\n",
         | 
| 211 | 
            +
                   "  <tbody>\n",
         | 
| 212 | 
            +
                   "    <tr>\n",
         | 
| 213 | 
            +
                   "      <th>21495810</th>\n",
         | 
| 214 | 
            +
                   "      <td>OBJECT: Factors determining choice of an acade...</td>\n",
         | 
| 215 | 
            +
                   "    </tr>\n",
         | 
| 216 | 
            +
                   "    <tr>\n",
         | 
| 217 | 
            +
                   "      <th>26869762</th>\n",
         | 
| 218 | 
            +
                   "      <td>Castleman disease (CD) is a rare, heterogeneou...</td>\n",
         | 
| 219 | 
            +
                   "    </tr>\n",
         | 
| 220 | 
            +
                   "    <tr>\n",
         | 
| 221 | 
            +
                   "      <th>28049410</th>\n",
         | 
| 222 | 
            +
                   "      <td>BACKGROUND: Data extraction and integration me...</td>\n",
         | 
| 223 | 
            +
                   "    </tr>\n",
         | 
| 224 | 
            +
                   "    <tr>\n",
         | 
| 225 | 
            +
                   "      <th>24510469</th>\n",
         | 
| 226 | 
            +
                   "      <td>Flecainide is recommended as a first-line anti...</td>\n",
         | 
| 227 | 
            +
                   "    </tr>\n",
         | 
| 228 | 
            +
                   "    <tr>\n",
         | 
| 229 | 
            +
                   "      <th>8650761</th>\n",
         | 
| 230 | 
            +
                   "      <td>Primary intestinal lymphangiectasia (PIL), fir...</td>\n",
         | 
| 231 | 
            +
                   "    </tr>\n",
         | 
| 232 | 
            +
                   "  </tbody>\n",
         | 
| 233 | 
            +
                   "</table>\n",
         | 
| 234 | 
            +
                   "</div>"
         | 
| 235 | 
            +
                  ],
         | 
| 236 | 
            +
                  "text/plain": [
         | 
| 237 | 
            +
                   "                                                    passage\n",
         | 
| 238 | 
            +
                   "id                                                         \n",
         | 
| 239 | 
            +
                   "21495810  OBJECT: Factors determining choice of an acade...\n",
         | 
| 240 | 
            +
                   "26869762  Castleman disease (CD) is a rare, heterogeneou...\n",
         | 
| 241 | 
            +
                   "28049410  BACKGROUND: Data extraction and integration me...\n",
         | 
| 242 | 
            +
                   "24510469  Flecainide is recommended as a first-line anti...\n",
         | 
| 243 | 
            +
                   "8650761   Primary intestinal lymphangiectasia (PIL), fir..."
         | 
| 244 | 
            +
                  ]
         | 
| 245 | 
            +
                 },
         | 
| 246 | 
            +
                 "execution_count": 11,
         | 
| 247 | 
            +
                 "metadata": {},
         | 
| 248 | 
            +
                 "output_type": "execute_result"
         | 
| 249 | 
            +
                }
         | 
| 250 | 
            +
               ],
         | 
| 251 | 
            +
               "source": [
         | 
| 252 | 
            +
                "b"
         | 
| 253 | 
            +
               ]
         | 
| 254 | 
            +
              }
         | 
| 255 | 
            +
             ],
         | 
| 256 | 
            +
             "metadata": {
         | 
| 257 | 
            +
              "kernelspec": {
         | 
| 258 | 
            +
               "display_name": "env",
         | 
| 259 | 
            +
               "language": "python",
         | 
| 260 | 
            +
               "name": "python3"
         | 
| 261 | 
            +
              },
         | 
| 262 | 
            +
              "language_info": {
         | 
| 263 | 
            +
               "codemirror_mode": {
         | 
| 264 | 
            +
                "name": "ipython",
         | 
| 265 | 
            +
                "version": 3
         | 
| 266 | 
            +
               },
         | 
| 267 | 
            +
               "file_extension": ".py",
         | 
| 268 | 
            +
               "mimetype": "text/x-python",
         | 
| 269 | 
            +
               "name": "python",
         | 
| 270 | 
            +
               "nbconvert_exporter": "python",
         | 
| 271 | 
            +
               "pygments_lexer": "ipython3",
         | 
| 272 | 
            +
               "version": "3.10.12"
         | 
| 273 | 
            +
              }
         | 
| 274 | 
            +
             },
         | 
| 275 | 
            +
             "nbformat": 4,
         | 
| 276 | 
            +
             "nbformat_minor": 2
         | 
| 277 | 
            +
            }
         | 
    	
        README.md
    CHANGED
    
    | @@ -11,5 +11,14 @@ tags: | |
| 11 | 
             
            - information-retrieval
         | 
| 12 | 
             
            - question-answering
         | 
| 13 | 
             
            - biomedical
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 | 
             
            ---
         | 
| 15 | 
            -
            Derives from http://participants-area.bioasq.org/Tasks/11b/trainingDataset/ we generated our own subset using `generate.py`.
         | 
|  | |
| 11 | 
             
            - information-retrieval
         | 
| 12 | 
             
            - question-answering
         | 
| 13 | 
             
            - biomedical
         | 
| 14 | 
            +
            configs:
         | 
| 15 | 
            +
            - config_name: text-corpus
         | 
| 16 | 
            +
              data_files: 
         | 
| 17 | 
            +
              - split: passages
         | 
| 18 | 
            +
                path: "data/passages.parquet/*"
         | 
| 19 | 
            +
            - config_name: question-answer
         | 
| 20 | 
            +
              data_files: 
         | 
| 21 | 
            +
              - split: test
         | 
| 22 | 
            +
                path: "data/test.parquet/*"
         | 
| 23 | 
             
            ---
         | 
| 24 | 
            +
            Derives from http://participants-area.bioasq.org/Tasks/11b/trainingDataset/ we generated our own subset using `generate.py`.
         | 
    	
        data/passages.parquet/part.0.parquet
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c288905f142dde9c3c21207333380a81d3f34603584851be02ccf7e543041934
         | 
| 3 | 
            +
            size 12581
         | 
    	
        data/test.parquet/part.0.parquet
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:12679e03615d16b423b5554f8b2a6eb334f4cad89e62d202da5cc43cb9aeafb0
         | 
| 3 | 
            +
            size 1290026
         | 
    	
        bioasq_ir_pubmed_corpus_subset.py → generate.py
    RENAMED
    
    | @@ -4,19 +4,23 @@ import pandas as pd | |
| 4 | 
             
            from Bio import Entrez
         | 
| 5 | 
             
            from retry import retry
         | 
| 6 | 
             
            from tqdm import tqdm
         | 
|  | |
| 7 |  | 
| 8 | 
             
            # provided your NIH credentials
         | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
|  | |
|  | |
|  | |
| 11 |  | 
| 12 |  | 
| 13 | 
             
            # change output file names here if necessary
         | 
| 14 | 
            -
            RAW_EVALUATION_DATASET = "training11b.json"
         | 
| 15 | 
            -
            PATH_TO_PASSAGE_DATASET = "./passages.parquet"
         | 
| 16 | 
            -
            PATH_TO_EVALUATION_DATASET = "./ | 
| 17 |  | 
| 18 | 
             
            # only use questions that have at most MAX_PASSAGES passages to control the size of the dataset
         | 
| 19 | 
            -
            # set to None to use all  | 
| 20 | 
             
            MAX_PASSAGES = None
         | 
| 21 |  | 
| 22 |  | 
| @@ -42,43 +46,47 @@ if __name__ == "__main__": | |
| 42 | 
             
                eval_df = eval_df.rename(
         | 
| 43 | 
             
                    columns={
         | 
| 44 | 
             
                        "body": "question",
         | 
| 45 | 
            -
                        "documents": " | 
| 46 | 
             
                        "ideal_answer": "answer",
         | 
| 47 | 
             
                    }
         | 
| 48 | 
             
                )
         | 
| 49 | 
             
                eval_df.answer = eval_df.answer.apply(lambda x: x[0])
         | 
| 50 | 
             
                # get abstract id from url
         | 
| 51 | 
            -
                eval_df. | 
| 52 | 
            -
                    lambda x: [url.split("/")[-1] for url in x]
         | 
| 53 | 
             
                )
         | 
| 54 | 
             
                if MAX_PASSAGES:
         | 
| 55 | 
            -
                    eval_df["passage_count"] = eval_df. | 
| 56 | 
             
                    eval_df = eval_df.drop(columns=["passage_count"])
         | 
| 57 |  | 
| 58 | 
             
                # remove duplicate passage ids
         | 
| 59 | 
            -
                eval_df. | 
| 60 | 
            -
                eval_df. | 
| 61 |  | 
| 62 | 
             
                # get all passage ids that are relevant
         | 
| 63 | 
            -
                passage_ids = set().union(*eval_df. | 
| 64 | 
             
                passage_ids = list(passage_ids)
         | 
| 65 | 
             
                passages = pd.DataFrame(index=passage_ids)
         | 
| 66 |  | 
| 67 | 
             
                for i, passage_id in enumerate(tqdm(passages.index)):
         | 
| 68 | 
             
                    passages.loc[passage_id, "passage"] = get_abstract(passage_id)
         | 
| 69 |  | 
| 70 | 
            -
                    #  | 
| 71 | 
            -
                    if i %  | 
| 72 | 
            -
                        passages.to_parquet(PATH_TO_PASSAGE_DATASET)
         | 
|  | |
| 73 |  | 
| 74 | 
             
                # filter out the passages whos pmids (pubmed ids) where not available
         | 
| 75 | 
             
                unavailable_passages = passages[passages["passage"] == "1. "]
         | 
| 76 | 
             
                passages = passages[passages["passage"] != "1. "]
         | 
| 77 | 
            -
                passages. | 
|  | |
| 78 |  | 
| 79 | 
             
                # remove passages from evaluation dataset whose abstract could not be retrieved from pubmed website
         | 
| 80 | 
             
                unavailable_ids = unavailable_passages.index.tolist()
         | 
| 81 | 
            -
                eval_df[" | 
| 82 | 
             
                    lambda x: [i for i in x if i not in unavailable_ids]
         | 
| 83 | 
             
                )
         | 
| 84 | 
            -
                eval_df. | 
|  | |
|  | 
|  | |
| 4 | 
             
            from Bio import Entrez
         | 
| 5 | 
             
            from retry import retry
         | 
| 6 | 
             
            from tqdm import tqdm
         | 
| 7 | 
            +
            import dask.dataframe as dd
         | 
| 8 |  | 
| 9 | 
             
            # provided your NIH credentials
         | 
| 10 | 
            +
            # read from .json file
         | 
| 11 | 
            +
            with open("credentials.json") as f:
         | 
| 12 | 
            +
                credentials = json.load(f)
         | 
| 13 | 
            +
                Entrez.email = credentials["email"]
         | 
| 14 | 
            +
                Entrez.api_key = credentials["api_key"]
         | 
| 15 |  | 
| 16 |  | 
| 17 | 
             
            # change output file names here if necessary
         | 
| 18 | 
            +
            RAW_EVALUATION_DATASET = "./raw_data/training11b.json"
         | 
| 19 | 
            +
            PATH_TO_PASSAGE_DATASET = "./data/passages.parquet"
         | 
| 20 | 
            +
            PATH_TO_EVALUATION_DATASET = "./data/test.parquet"
         | 
| 21 |  | 
| 22 | 
             
            # only use questions that have at most MAX_PASSAGES passages to control the size of the dataset
         | 
| 23 | 
            +
            # set to None to use all questions
         | 
| 24 | 
             
            MAX_PASSAGES = None
         | 
| 25 |  | 
| 26 |  | 
|  | |
| 46 | 
             
                eval_df = eval_df.rename(
         | 
| 47 | 
             
                    columns={
         | 
| 48 | 
             
                        "body": "question",
         | 
| 49 | 
            +
                        "documents": "relevant_passage_ids",
         | 
| 50 | 
             
                        "ideal_answer": "answer",
         | 
| 51 | 
             
                    }
         | 
| 52 | 
             
                )
         | 
| 53 | 
             
                eval_df.answer = eval_df.answer.apply(lambda x: x[0])
         | 
| 54 | 
             
                # get abstract id from url
         | 
| 55 | 
            +
                eval_df.relevant_passage_ids = eval_df.relevant_passage_ids.apply(
         | 
| 56 | 
            +
                    lambda x: [int(url.split("/")[-1]) for url in x]
         | 
| 57 | 
             
                )
         | 
| 58 | 
             
                if MAX_PASSAGES:
         | 
| 59 | 
            +
                    eval_df["passage_count"] = eval_df.relevant_passage_ids.apply(lambda x: len(x))
         | 
| 60 | 
             
                    eval_df = eval_df.drop(columns=["passage_count"])
         | 
| 61 |  | 
| 62 | 
             
                # remove duplicate passage ids
         | 
| 63 | 
            +
                eval_df.relevant_passage_ids = eval_df.relevant_passage_ids.apply(lambda x: set(x))
         | 
| 64 | 
            +
                eval_df.relevant_passage_ids = eval_df.relevant_passage_ids.apply(lambda x: list(x))
         | 
| 65 |  | 
| 66 | 
             
                # get all passage ids that are relevant
         | 
| 67 | 
            +
                passage_ids = set().union(*eval_df.relevant_passage_ids)
         | 
| 68 | 
             
                passage_ids = list(passage_ids)
         | 
| 69 | 
             
                passages = pd.DataFrame(index=passage_ids)
         | 
| 70 |  | 
| 71 | 
             
                for i, passage_id in enumerate(tqdm(passages.index)):
         | 
| 72 | 
             
                    passages.loc[passage_id, "passage"] = get_abstract(passage_id)
         | 
| 73 |  | 
| 74 | 
            +
                    # intermediate save
         | 
| 75 | 
            +
                    if i % 1000 == 0:
         | 
| 76 | 
            +
                        dd.from_pandas(passages, npartitions=1).to_parquet(PATH_TO_PASSAGE_DATASET)
         | 
| 77 | 
            +
             | 
| 78 |  | 
| 79 | 
             
                # filter out the passages whos pmids (pubmed ids) where not available
         | 
| 80 | 
             
                unavailable_passages = passages[passages["passage"] == "1. "]
         | 
| 81 | 
             
                passages = passages[passages["passage"] != "1. "]
         | 
| 82 | 
            +
                passages.index.name = "id"
         | 
| 83 | 
            +
                dd.from_pandas(passages, npartitions=1).to_parquet(PATH_TO_PASSAGE_DATASET)
         | 
| 84 |  | 
| 85 | 
             
                # remove passages from evaluation dataset whose abstract could not be retrieved from pubmed website
         | 
| 86 | 
             
                unavailable_ids = unavailable_passages.index.tolist()
         | 
| 87 | 
            +
                eval_df["relevant_passage_ids"] = eval_df["relevant_passage_ids"].apply(
         | 
| 88 | 
             
                    lambda x: [i for i in x if i not in unavailable_ids]
         | 
| 89 | 
             
                )
         | 
| 90 | 
            +
                eval_df.index.name = "id"
         | 
| 91 | 
            +
                eval_df = eval_df[["question", "answer", "relevant_passage_ids"]]
         | 
| 92 | 
            +
                dd.from_pandas(eval_df, npartitions=1).to_parquet(PATH_TO_EVALUATION_DATASET)
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,11 +1,50 @@ | |
|  | |
|  | |
| 1 | 
             
            biopython==1.81
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 2 | 
             
            decorator==5.1.1
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 3 | 
             
            numpy==1.26.1
         | 
|  | |
| 4 | 
             
            pandas==2.1.2
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 5 | 
             
            py==1.11.0
         | 
|  | |
|  | |
| 6 | 
             
            python-dateutil==2.8.2
         | 
| 7 | 
             
            pytz==2023.3.post1
         | 
|  | |
|  | |
| 8 | 
             
            retry==0.9.2
         | 
| 9 | 
             
            six==1.16.0
         | 
|  | |
|  | |
|  | |
| 10 | 
             
            tqdm==4.66.1
         | 
|  | |
| 11 | 
             
            tzdata==2023.3
         | 
|  | |
|  | 
|  | |
| 1 | 
            +
            asttokens==2.4.1
         | 
| 2 | 
            +
            backcall==0.2.0
         | 
| 3 | 
             
            biopython==1.81
         | 
| 4 | 
            +
            click==8.1.7
         | 
| 5 | 
            +
            cloudpickle==3.0.0
         | 
| 6 | 
            +
            comm==0.1.4
         | 
| 7 | 
            +
            dask==2023.10.1
         | 
| 8 | 
            +
            debugpy==1.8.0
         | 
| 9 | 
             
            decorator==5.1.1
         | 
| 10 | 
            +
            exceptiongroup==1.1.3
         | 
| 11 | 
            +
            executing==2.0.0
         | 
| 12 | 
            +
            fsspec==2023.10.0
         | 
| 13 | 
            +
            importlib-metadata==6.8.0
         | 
| 14 | 
            +
            ipykernel==6.26.0
         | 
| 15 | 
            +
            ipython==8.16.1
         | 
| 16 | 
            +
            jedi==0.19.1
         | 
| 17 | 
            +
            jupyter_client==8.5.0
         | 
| 18 | 
            +
            jupyter_core==5.4.0
         | 
| 19 | 
            +
            locket==1.0.0
         | 
| 20 | 
            +
            matplotlib-inline==0.1.6
         | 
| 21 | 
            +
            nest-asyncio==1.5.8
         | 
| 22 | 
             
            numpy==1.26.1
         | 
| 23 | 
            +
            packaging==23.2
         | 
| 24 | 
             
            pandas==2.1.2
         | 
| 25 | 
            +
            parso==0.8.3
         | 
| 26 | 
            +
            partd==1.4.1
         | 
| 27 | 
            +
            pexpect==4.8.0
         | 
| 28 | 
            +
            pickleshare==0.7.5
         | 
| 29 | 
            +
            platformdirs==3.11.0
         | 
| 30 | 
            +
            prompt-toolkit==3.0.39
         | 
| 31 | 
            +
            psutil==5.9.6
         | 
| 32 | 
            +
            ptyprocess==0.7.0
         | 
| 33 | 
            +
            pure-eval==0.2.2
         | 
| 34 | 
             
            py==1.11.0
         | 
| 35 | 
            +
            pyarrow==13.0.0
         | 
| 36 | 
            +
            Pygments==2.16.1
         | 
| 37 | 
             
            python-dateutil==2.8.2
         | 
| 38 | 
             
            pytz==2023.3.post1
         | 
| 39 | 
            +
            PyYAML==6.0.1
         | 
| 40 | 
            +
            pyzmq==25.1.1
         | 
| 41 | 
             
            retry==0.9.2
         | 
| 42 | 
             
            six==1.16.0
         | 
| 43 | 
            +
            stack-data==0.6.3
         | 
| 44 | 
            +
            toolz==0.12.0
         | 
| 45 | 
            +
            tornado==6.3.3
         | 
| 46 | 
             
            tqdm==4.66.1
         | 
| 47 | 
            +
            traitlets==5.12.0
         | 
| 48 | 
             
            tzdata==2023.3
         | 
| 49 | 
            +
            wcwidth==0.2.8
         | 
| 50 | 
            +
            zipp==3.17.0
         | 
