Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -13,4 +13,62 @@ tags:
|
|
| 13 |
- rgb
|
| 14 |
size_categories:
|
| 15 |
- 1K<n<10K
|
| 16 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- rgb
|
| 14 |
size_categories:
|
| 15 |
- 1K<n<10K
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Shoe-Net-10K Dataset
|
| 19 |
+
|
| 20 |
+
The **Shoe-Net-10K** dataset is a curated collection of 10,000 shoe images annotated for multi-class image classification. This dataset is suitable for training deep learning models to recognize different types of shoes from images.
|
| 21 |
+
|
| 22 |
+
## Dataset Details
|
| 23 |
+
|
| 24 |
+
* **Total Images**: 10,000
|
| 25 |
+
* **Image Size**: Varies (typical width range: 94 px to 519 px)
|
| 26 |
+
* **Format**: Parquet
|
| 27 |
+
* **Split**:
|
| 28 |
+
|
| 29 |
+
* `train`: 10,000 images
|
| 30 |
+
* **Modality**: Image
|
| 31 |
+
* **License**: Apache 2.0
|
| 32 |
+
|
| 33 |
+
## Labels
|
| 34 |
+
|
| 35 |
+
The dataset includes 5 distinct shoe categories:
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
labels_list = [
|
| 39 |
+
'Ballet Flat',
|
| 40 |
+
'Boat',
|
| 41 |
+
'Brogue',
|
| 42 |
+
'Clog',
|
| 43 |
+
'Sneaker'
|
| 44 |
+
]
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
Each image is labeled with one of the above shoe types.
|
| 48 |
+
|
| 49 |
+
## Usage
|
| 50 |
+
|
| 51 |
+
You can load this dataset using the Hugging Face `datasets` library:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
from datasets import load_dataset
|
| 55 |
+
|
| 56 |
+
dataset = load_dataset("prithivMLmods/Shoe-Net-10K")
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Access individual samples as follows:
|
| 60 |
+
|
| 61 |
+
```python
|
| 62 |
+
sample = dataset["train"][0]
|
| 63 |
+
image = sample["image"]
|
| 64 |
+
label = sample["label"]
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## Applications
|
| 68 |
+
|
| 69 |
+
This dataset can be used for:
|
| 70 |
+
|
| 71 |
+
* Image classification
|
| 72 |
+
* Shoe-type detection
|
| 73 |
+
* Retail recommendation systems
|
| 74 |
+
* Style and fashion recognition models
|