avocadoali commited on
Commit
87a3e98
·
verified ·
1 Parent(s): 1e52993

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-03c66d73-198a-4dbe-97c8-033faa017f891753179432483-2025_07_22-12.17.22.136/source.csv +0 -0
  2. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-05830693-fec2-4daa-bf9a-df97d3f440b31752570818732-2025_07_15-11.14.44.738/source.csv +0 -0
  3. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-0d5e2cbe-83a2-48a0-b2d9-a8e41912bfb61753114173405-2025_07_21-18.09.45.514/source.csv +0 -0
  4. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-15e0d6d5-3ae8-440c-b7a5-a1cb5029f9c91754397775073-2025_08_05-14.43.03.950/source.csv +0 -0
  5. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-2a9bf505-97e2-485f-ae8a-8a5d3e22aceb1753782197393-2025_07_29-11.43.57.848/source.csv +0 -0
  6. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-2ce89d07-b6c0-4b91-ae17-a146e664ff651753363875203-2025_07_24-15.31.17.845/source.csv +0 -0
  7. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-2f5b13c7-61f7-4340-b581-9edac6a53f1f1753015255059-2025_07_20-14.41.09.478/source.csv +0 -0
  8. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-400c1369-388a-4663-9475-37c30815fb401752229095376-2025_07_11-12.18.28.454/source.csv +233 -0
  9. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-41b294b4-b89c-4c1d-8a02-14afc9168dc41753085667665-2025_07_21-10.15.04.628/source.csv +0 -0
  10. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-46a4cc9d-ac37-44ff-ae8d-547db76d96f31752072213286-2025_07_09-16.43.57.848/source.csv +0 -0
  11. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-4719c5f9-1b15-4792-8afd-690761108bda1751617825355-2025_07_04-10.31.22.581/source.csv +0 -0
  12. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-55c207a6-ee6d-464d-8f77-e1220855a4f41754396844541-2025_08_05-14.27.33.594/source.csv +81 -0
  13. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-59af9530-ed37-4620-9980-6c646b3d58821751599132847-2025_07_04-05.19.59.945/source.csv +0 -0
  14. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-5b1a6152-1602-4538-a4b1-6fa9507221151753212707189-2025_07_22-21.32.36.855/source.csv +0 -0
  15. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-6829bcbf-f7fb-4481-92ea-521e9af7eabb1754058671446-2025_08_01-16.31.17.606/source.csv +4 -0
  16. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-6a683910-8d55-4299-9066-894bbed6c97c1754399347661-2025_08_05-15.09.15.958/source.csv +0 -0
  17. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-6cc07fef-c3ba-4457-9c7c-5fe5347d53561751545506463-2025_07_03-14.26.06.366/source.csv +283 -0
  18. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-823236e5-d9b8-4c96-ab4a-24b8972648001754120306348-2025_08_02-09.38.34.668/source.csv +0 -0
  19. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-847ad052-cbff-45db-a343-a2c6b2d212411753383716687-2025_07_24-21.02.30.722/source.csv +24 -0
  20. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-895267d6-5fbc-45e8-bc56-0d7c756881181750708632303-2025_06_23-12.57.13.921/source.csv +0 -0
  21. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-8a8d866a-4152-4c47-8a5f-a8a6a4c71f3e1753768819993-2025_07_29-08.00.29.05/source.csv +0 -0
  22. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-a775c5ce-801a-4b55-897a-6c0b6f3448081754127102402-2025_08_02-11.31.50.147/source.csv +0 -0
  23. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-ac1e2da2-a2d2-4327-aaa3-5900bc2b3a561753469517123-2025_07_25-20.52.05.763/source.csv +0 -0
  24. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-b08d92a3-9c0a-4526-b12f-c973e9c3c43f1752071802867-2025_07_09-16.36.43.962/source.csv +267 -0
  25. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-b2ff9c32-0980-46be-b0f1-51dff76665011752660866284-2025_07_16-12.14.34.814/source.csv +10 -0
  26. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-cc98355f-a627-4bb1-8368-cc01d32ba9141754309337509-2025_08_04-14.09.04.547/source.csv +0 -0
  27. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-cdede756-87c5-47af-85f8-bc9bf1c41bac1750785125700-2025_06_24-22.05.07.988/source.csv +0 -0
  28. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-d5ccbc8d-af3a-4c10-ab81-61e24d56bad31754400813118-2025_08_05-15.33.50.504/source.csv +0 -0
  29. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-d9c3341f-490f-4227-8214-c68384e56a1f1753945239481-2025_07_31-09.00.53.845/source.csv +0 -0
  30. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-dca3235c-6967-4aac-8b57-97fa2f10e0ad1753259782320-2025_07_23-10.36.33.63/source.csv +0 -0
  31. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-df82217c-210f-4b7f-897f-6f53642cf7c81754033699441-2025_08_01-09.35.08.848/source.csv +0 -0
  32. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-e7d20f74-415c-47d0-ad95-3f6da31696d51753194904459-2025_07_22-16.35.52.74/source.csv +0 -0
  33. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-f0382786-979c-4a6d-8e9b-f5977f18eb4f1753726151187-2025_08_02-06.58.58.573/source.csv +4 -0
  34. 1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-f23be3cf-4da5-450c-91f1-df9de045459c1752656830830-2025_07_16-11.08.01.978/source.csv +0 -0
  35. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-000d5684-56eb-441c-a6df-7ac4df8ff5c71752846982966-2025_07_18-15.57.40.939/source.csv +0 -0
  36. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-005af936-919b-4c44-b3af-2ed3459192121752831699789-2025_07_18-11.43.38.119/source.csv +0 -0
  37. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-05016444-b54b-4934-b340-97e6db49021a1753717457401-2025_07_28-17.45.12.572/source.csv +0 -0
  38. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-08c8f2de-5ecb-431d-b59f-5255a2b202341751712939209-2025_07_05-12.56.07.377/source.csv +0 -0
  39. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-08ecc06e-32e0-4a9b-b785-5fb84b3f32de1751802304467-2025_07_06-13.46.47.722/source.csv +0 -0
  40. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-12b522dd-8518-4c62-b207-ca1ed4ce90571752782954186-2025_07_17-22.10.14.626/source.csv +60 -0
  41. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-12e65989-9ed0-4f2d-9e6c-43231178a0e21751536307695-2025_07_03-11.53.05.72/source.csv +0 -0
  42. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-1dc733b8-f415-4be5-b7dd-dc5953da5bb91753973887840-2025_07_31-16.58.50.401/source.csv +0 -0
  43. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-21374577-8901-4de5-b364-53d577190c6a1752060363988-2025_07_09-13.26.43.890/source.csv +0 -0
  44. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-25569aaa-6e77-4ce2-b9b6-8ae8c33420051753180192494-2025_07_22-12.30.11.399/source.csv +16 -0
  45. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-268e2d5f-0a66-4008-8495-15de70c8a2e51751028407664-2025_06_27-14.47.06.44/source.csv +0 -0
  46. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2d2437e1-caa5-4315-a7d9-4d9478073a161750944609503-2025_06_26-15.30.55.51/source.csv +0 -0
  47. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2f5e552b-d86c-4a34-a644-139d05fcf0731753100718217-2025_07_21-14.25.46.738/source.csv +0 -0
  48. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-30efafeb-a59f-45ff-9626-651f3a2526631753351953527-2025_07_24-12.13.09.956/source.csv +0 -0
  49. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-35296db0-5985-4518-8394-cca2184ed6c11751305990184-2025_06_30-19.53.48.49/source.csv +0 -0
  50. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-3553d16e-f1c9-4e9c-9425-6b663caf1f311753957765078-2025_07_31-12.30.02.749/source.csv +0 -0
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-03c66d73-198a-4dbe-97c8-033faa017f891753179432483-2025_07_22-12.17.22.136/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-05830693-fec2-4daa-bf9a-df97d3f440b31752570818732-2025_07_15-11.14.44.738/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-0d5e2cbe-83a2-48a0-b2d9-a8e41912bfb61753114173405-2025_07_21-18.09.45.514/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-15e0d6d5-3ae8-440c-b7a5-a1cb5029f9c91754397775073-2025_08_05-14.43.03.950/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-2a9bf505-97e2-485f-ae8a-8a5d3e22aceb1753782197393-2025_07_29-11.43.57.848/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-2ce89d07-b6c0-4b91-ae17-a146e664ff651753363875203-2025_07_24-15.31.17.845/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-2f5b13c7-61f7-4340-b581-9edac6a53f1f1753015255059-2025_07_20-14.41.09.478/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-400c1369-388a-4663-9475-37c30815fb401752229095376-2025_07_11-12.18.28.454/source.csv ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,3,"experiments/tokenizer_optimal_batch_size.sh",0,0,"#!/usr/bin/env bash\nsource .venv/bin/activate\n\ndata_dir=""$PWD/data_arrayrecord/dummy""\nckpt_dir=""$PWD/checkpoints/tokenizer_openai_grain_checkpointing""\n\nexport XLA_FLAGS=--xla_gpu_autotune_level=0\nsrun python train_tokenizer.py \\n --batch_size 12 \\n --ckpt_dir $ckpt_dir \\n --num_steps 300000 \\n --warmup_steps 10000 \\n --seed 0 \\n --min_lr=0.0000866 \\n --max_lr=0.0000866 \\n --data_dir $data_dir",shellscript,tab
3
+ 2,862,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:18:28 PM [info] Activating crowd-code\n12:18:28 PM [info] Recording started\n12:18:28 PM [info] Initializing git provider using file system watchers...\n12:18:29 PM [info] Git repository found\n12:18:29 PM [info] Git provider initialized successfully\n12:18:29 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 3,2102,"experiments/tokenizer_optimal_batch_size.sh",0,0,"",shellscript,tab
5
+ 4,8512,"TERMINAL",0,0,"squeue",,terminal_command
6
+ 5,8563,"TERMINAL",0,0,"[?25l[?2004l\r]633;E;squeue;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;C[?25h",,terminal_output
7
+ 6,25189,"TERMINAL",0,0,"salloc --gpus=4 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G",,terminal_command
8
+ 7,25260,"TERMINAL",0,0,"[?25l\r]633;A[franz.srambical@hai-login2.haicore.berlin:~/jafar] $ ]633;Bsalloc --gpus=4 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G\r]633;A[franz.srambical@hai-login2.haicore.berlin:~/jafar] $ ]633;B\r\n\r\r\n[?2004l\r]633;E;salloc --gpus=4 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;C[?25hsalloc: Granted job allocation 13338\r\n",,terminal_output
9
+ 8,25684,"TERMINAL",0,0,"salloc: Nodes hai002 are ready for job\r\n",,terminal_output
10
+ 9,25771,"TERMINAL",0,0,"Running inside SLURM, Job ID 13338.\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
11
+ 10,27256,"TERMINAL",0,0,"exit",,terminal_output
12
+ 11,28213,"TERMINAL",0,0,"[?25le[?25h",,terminal_output
13
+ 12,29203,"TERMINAL",0,0,"\r\n[?2004l\rbash: exite: command not found\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
14
+ 13,30079,"TERMINAL",0,0,"exite",,terminal_output
15
+ 14,30263,"TERMINAL",0,0,"e",,terminal_output
16
+ 15,30475,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
17
+ 16,30561,"TERMINAL",0,0,"[?25li[?25h",,terminal_output
18
+ 17,30724,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
19
+ 18,30970,"TERMINAL",0,0,"[?25l[?2004l\rexit\r\n[?25hsrun: error: hai002: task 0: Exited with exit code 127\r\nsalloc: Relinquishing job allocation 13338\r\n]0;franz.srambical@hai-login2:~/jafar]633;D;127]633;P;Cwd=/home/franz.srambical/jafar",,terminal_output
20
+ 19,45408,"TERMINAL",0,0,"salloc --gpus=8 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G",,terminal_command
21
+ 20,45451,"TERMINAL",0,0,"[?25l\r\r\n[?2004l\r]633;E;salloc --gpus=8 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;C[?25hsalloc: Granted job allocation 13339\r\n",,terminal_output
22
+ 21,45818,"TERMINAL",0,0,"salloc: Nodes hai002 are ready for job\r\nRunning inside SLURM, Job ID 13339.\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
23
+ 22,47437,"TERMINAL",0,0,"[?25lexi[?25h[?25lx[?25h[?25li[?25h",,terminal_output
24
+ 23,47884,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
25
+ 24,47931,"TERMINAL",0,0,"[?25l[?2004l\rexit\r\nsalloc: Relinquishing job allocation 13339\r\n[?25h",,terminal_output
26
+ 25,58411,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=1 --mem=100G",,terminal_command
27
+ 26,58424,"TERMINAL",0,0,"\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=1 --mem=100G;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;Csalloc: Granted job allocation 13340\r\n",,terminal_output
28
+ 27,58433,"TERMINAL",0,0,"salloc: Nodes hai002 are ready for job\r\n",,terminal_output
29
+ 28,58572,"TERMINAL",0,0,"Running inside SLURM, Job ID 13340.\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
30
+ 29,61650,"TERMINAL",0,0,"[?25lsru[?25h",,terminal_output
31
+ 30,61803,"TERMINAL",0,0,"[?25lru[?25h[?25ln [?25h",,terminal_output
32
+ 31,66115,"TERMINAL",0,0,"[?25l-[?25h",,terminal_output
33
+ 32,66370,"TERMINAL",0,0,"[?25l-[?25h[?25ln[?25h",,terminal_output
34
+ 33,66419,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
35
+ 34,66544,"TERMINAL",0,0,"[?25la[?25h[?25ls[?25h",,terminal_output
36
+ 35,66670,"TERMINAL",0,0,"[?25lk[?25h",,terminal_output
37
+ 36,66915,"TERMINAL",0,0,"[?25ls[?25h",,terminal_output
38
+ 37,68509,"TERMINAL",0,0,"[?25l=[?25h",,terminal_output
39
+ 38,68723,"TERMINAL",0,0,"[?25l9[?25h[?25l [?25h",,terminal_output
40
+ 39,69523,"TERMINAL",0,0,"[?25l8[?25h",,terminal_output
41
+ 40,69623,"TERMINAL",0,0,"[?25l [?25h",,terminal_output
42
+ 41,76724,"experiments/tokenizer_optimal_batch_size.sh",220,0,"",shellscript,selection_command
43
+ 42,77004,"experiments/tokenizer_optimal_batch_size.sh",208,0,"",shellscript,selection_command
44
+ 43,77140,"experiments/tokenizer_optimal_batch_size.sh",201,0,"",shellscript,selection_command
45
+ 44,77260,"experiments/tokenizer_optimal_batch_size.sh",196,0,"",shellscript,selection_command
46
+ 45,77780,"experiments/tokenizer_optimal_batch_size.sh",199,0,"",shellscript,selection_command
47
+ 46,78055,"experiments/tokenizer_optimal_batch_size.sh",200,0,"",shellscript,selection_command
48
+ 47,78141,"experiments/tokenizer_optimal_batch_size.sh",200,0," ",shellscript,content
49
+ 48,78141,"experiments/tokenizer_optimal_batch_size.sh",201,0,"",shellscript,selection_keyboard
50
+ 49,80576,"experiments/tokenizer_optimal_batch_size.sh",200,1,"",shellscript,content
51
+ 50,80683,"experiments/tokenizer_optimal_batch_size.sh",199,0,"",shellscript,selection_command
52
+ 51,89691,"experiments/tokenizer_grain_checkpointing.sh",0,0,"#!/usr/bin/env bash\nsource .venv/bin/activate\n\ndata_dir=""$PWD/data_arrayrecord/dummy""\nckpt_dir=""$PWD/checkpoints/tokenizer_openai_grain_checkpointing""\n\nexport XLA_FLAGS=--xla_gpu_autotune_level=0\nsrun python train_tokenizer.py \\n --batch_size 48 \\n --restore_ckpt \\n --save_ckpt \\n --log_checkpoint_interval 5 \\n --ckpt_dir $ckpt_dir \\n --num_steps 300000 \\n --warmup_steps 10000 \\n --seed 0 \\n --min_lr=0.0000866 \\n --max_lr=0.0000866 \\n --data_dir $data_dir",shellscript,tab
53
+ 52,92956,"experiments/tokenizer_grain_checkpointing.sh",466,0,"",shellscript,selection_command
54
+ 53,93385,"experiments/tokenizer_grain_checkpointing.sh",441,0,"",shellscript,selection_command
55
+ 54,93386,"experiments/tokenizer_grain_checkpointing.sh",416,0,"",shellscript,selection_command
56
+ 55,93386,"experiments/tokenizer_grain_checkpointing.sh",399,0,"",shellscript,selection_command
57
+ 56,93389,"experiments/tokenizer_grain_checkpointing.sh",374,0,"",shellscript,selection_command
58
+ 57,93389,"experiments/tokenizer_grain_checkpointing.sh",347,0,"",shellscript,selection_command
59
+ 58,93399,"experiments/tokenizer_grain_checkpointing.sh",313,0,"",shellscript,selection_command
60
+ 59,93399,"experiments/tokenizer_grain_checkpointing.sh",288,0,"",shellscript,selection_command
61
+ 60,93443,"experiments/tokenizer_grain_checkpointing.sh",270,0,"",shellscript,selection_command
62
+ 61,93563,"experiments/tokenizer_grain_checkpointing.sh",249,0,"",shellscript,selection_command
63
+ 62,93852,"experiments/tokenizer_grain_checkpointing.sh",246,0,"",shellscript,selection_command
64
+ 63,99523,"experiments/tokenizer_grain_checkpointing.sh",246,2,"",shellscript,content
65
+ 64,100143,"experiments/tokenizer_grain_checkpointing.sh",246,0,"9",shellscript,content
66
+ 65,100144,"experiments/tokenizer_grain_checkpointing.sh",247,0,"",shellscript,selection_keyboard
67
+ 66,100232,"experiments/tokenizer_grain_checkpointing.sh",247,0,"6",shellscript,content
68
+ 67,100232,"experiments/tokenizer_grain_checkpointing.sh",248,0,"",shellscript,selection_keyboard
69
+ 68,100483,"experiments/tokenizer_grain_checkpointing.sh",247,0,"",shellscript,selection_command
70
+ 69,104563,"experiments/tokenizer_grain_checkpointing.sh",214,0,"",shellscript,selection_command
71
+ 70,104683,"experiments/tokenizer_grain_checkpointing.sh",208,0,"",shellscript,selection_command
72
+ 71,104811,"experiments/tokenizer_grain_checkpointing.sh",201,0,"",shellscript,selection_command
73
+ 72,106363,"experiments/tokenizer_grain_checkpointing.sh",201,0,"-",shellscript,content
74
+ 73,106364,"experiments/tokenizer_grain_checkpointing.sh",202,0,"",shellscript,selection_keyboard
75
+ 74,106364,"experiments/tokenizer_grain_checkpointing.sh",202,0,"-",shellscript,content
76
+ 75,106364,"experiments/tokenizer_grain_checkpointing.sh",203,0,"",shellscript,selection_keyboard
77
+ 76,106364,"experiments/tokenizer_grain_checkpointing.sh",203,0,"n",shellscript,content
78
+ 77,106365,"experiments/tokenizer_grain_checkpointing.sh",204,0,"",shellscript,selection_keyboard
79
+ 78,106365,"experiments/tokenizer_grain_checkpointing.sh",204,0,"t",shellscript,content
80
+ 79,106365,"experiments/tokenizer_grain_checkpointing.sh",205,0,"",shellscript,selection_keyboard
81
+ 80,106443,"experiments/tokenizer_grain_checkpointing.sh",205,0,"a",shellscript,content
82
+ 81,106444,"experiments/tokenizer_grain_checkpointing.sh",206,0,"",shellscript,selection_keyboard
83
+ 82,106539,"experiments/tokenizer_grain_checkpointing.sh",206,0,"s",shellscript,content
84
+ 83,106539,"experiments/tokenizer_grain_checkpointing.sh",207,0,"",shellscript,selection_keyboard
85
+ 84,107223,"experiments/tokenizer_grain_checkpointing.sh",207,0,"k",shellscript,content
86
+ 85,107224,"experiments/tokenizer_grain_checkpointing.sh",208,0,"",shellscript,selection_keyboard
87
+ 86,107311,"experiments/tokenizer_grain_checkpointing.sh",208,0,"s",shellscript,content
88
+ 87,107312,"experiments/tokenizer_grain_checkpointing.sh",209,0,"",shellscript,selection_keyboard
89
+ 88,108179,"experiments/tokenizer_grain_checkpointing.sh",209,0,"=",shellscript,content
90
+ 89,108179,"experiments/tokenizer_grain_checkpointing.sh",210,0,"",shellscript,selection_keyboard
91
+ 90,108400,"experiments/tokenizer_grain_checkpointing.sh",210,0,"8",shellscript,content
92
+ 91,108400,"experiments/tokenizer_grain_checkpointing.sh",211,0,"",shellscript,selection_keyboard
93
+ 92,108771,"experiments/tokenizer_grain_checkpointing.sh",210,0,"",shellscript,selection_command
94
+ 93,108923,"experiments/tokenizer_grain_checkpointing.sh",211,0,"",shellscript,selection_command
95
+ 94,108987,"experiments/tokenizer_grain_checkpointing.sh",211,0," ",shellscript,content
96
+ 95,108987,"experiments/tokenizer_grain_checkpointing.sh",212,0,"",shellscript,selection_keyboard
97
+ 96,109163,"experiments/tokenizer_grain_checkpointing.sh",211,0,"",shellscript,selection_command
98
+ 97,110511,"experiments/tokenizer_grain_checkpointing.sh",210,0,"",shellscript,selection_command
99
+ 98,110683,"experiments/tokenizer_grain_checkpointing.sh",209,0,"",shellscript,selection_command
100
+ 99,110803,"experiments/tokenizer_grain_checkpointing.sh",203,0,"",shellscript,selection_command
101
+ 100,110963,"experiments/tokenizer_grain_checkpointing.sh",201,0,"",shellscript,selection_command
102
+ 101,111571,"experiments/tokenizer_grain_checkpointing.sh",203,0,"",shellscript,selection_command
103
+ 102,111572,"experiments/tokenizer_grain_checkpointing.sh",209,0,"",shellscript,selection_command
104
+ 103,111572,"experiments/tokenizer_grain_checkpointing.sh",210,0,"",shellscript,selection_command
105
+ 104,115151,"TERMINAL",0,0,"",,terminal_output
106
+ 105,115695,"TERMINAL",0,0,"[?25lb[?25h",,terminal_output
107
+ 106,115763,"TERMINAL",0,0,"[?25la[?25h[?25ls[?25h",,terminal_output
108
+ 107,115891,"TERMINAL",0,0,"[?25lh[?25h",,terminal_output
109
+ 108,115995,"TERMINAL",0,0,"[?25l [?25h",,terminal_output
110
+ 109,116611,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
111
+ 110,116883,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
112
+ 111,117263,"TERMINAL",0,0,"[?25le[?25h",,terminal_output
113
+ 112,117443,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
114
+ 113,117611,"TERMINAL",0,0,"[?25lp[?25h",,terminal_output
115
+ 114,117763,"TERMINAL",0,0,"[?25le[?25h[?25lr[?25h",,terminal_output
116
+ 115,117923,"TERMINAL",0,0,"[?25li[?25h",,terminal_output
117
+ 116,118047,"TERMINAL",0,0,"ments/",,terminal_output
118
+ 117,118523,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
119
+ 118,118643,"TERMINAL",0,0,"[?25lok[?25h",,terminal_output
120
+ 119,118723,"TERMINAL",0,0,"enizer_",,terminal_output
121
+ 120,119899,"TERMINAL",0,0,"[?25lg[?25h",,terminal_output
122
+ 121,120099,"TERMINAL",0,0,"[?25lr[?25h[?25la[?25h[?25li[?25h",,terminal_output
123
+ 122,120191,"TERMINAL",0,0,"[?25ln[?25h",,terminal_output
124
+ 123,120291,"TERMINAL",0,0,"_checkpointing.sh ",,terminal_output
125
+ 124,120807,"TERMINAL",0,0,"[?25l[?2004l\r[?25hsrun: error: Unable to create step for job 13340: More processors requested than permitted\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
126
+ 125,132623,"TERMINAL",0,0,"e",,terminal_output
127
+ 126,132691,"TERMINAL",0,0,"x",,terminal_output
128
+ 127,132823,"TERMINAL",0,0,"it",,terminal_output
129
+ 128,134760,"TERMINAL",0,0,"\r\n[?2004l\rexit\r\nsrun: error: hai002: task 0: Exited with exit code 1\r\nsalloc: Relinquishing job allocation 13340\r\n]0;franz.srambical@hai-login2:~/jafar]633;D;1]633;P;Cwd=/home/franz.srambical/jafar",,terminal_output
130
+ 129,141531,"TERMINAL",0,0,"salloc --gpus=8 --cpus=8 --mem=100G",,terminal_command
131
+ 130,141532,"TERMINAL",0,0,"[?25l[?2004l\r]633;E;salloc --gpus=8 --cpus=8 --mem=100G;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;Csalloc: option '--cpus=8' is ambiguous; possibilities: '--cpus-per-gpu' '--cpus-per-task'\r\nTry ""salloc --help"" for more information\r\n]0;franz.srambical@hai-login2:~/jafar]633;D;255[?25h",,terminal_output
132
+ 131,150389,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-gpu=1 --mem=100G",,terminal_command
133
+ 132,150447,"TERMINAL",0,0,"[?25l\r\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-gpu=1 --mem=100G;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;C[?25hsalloc: Pending job allocation 13341\r\nsalloc: job 13341 queued and waiting for resources\r\n",,terminal_output
134
+ 133,163548,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=8 --mem=100G",,terminal_command
135
+ 134,163651,"TERMINAL",0,0,"[?25l\r\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=8 --mem=100G;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;C[?25hsalloc: Pending job allocation 13342\r\nsalloc: job 13342 queued and waiting for resources\r\n",,terminal_output
136
+ 135,184827,"TERMINAL",0,0,"exit",,terminal_command
137
+ 136,184878,"TERMINAL",0,0,"[?25l[?2004l\r]633;E;exit;8d3c1446-1b1d-4023-8f8d-e68e552459ae]633;Cexit\r\n[?25h",,terminal_output
138
+ 137,186518,"TERMINAL",0,0,"",,terminal_focus
139
+ 138,198439,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=4 --mem=100G",,terminal_command
140
+ 139,198518,"TERMINAL",0,0,"[?25l\r\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=4 --mem=100G;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C[?25hsalloc: Pending job allocation 13343\r\nsalloc: job 13343 queued and waiting for resources\r\n",,terminal_output
141
+ 140,210058,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=1 --mem=100G",,terminal_command
142
+ 141,210116,"TERMINAL",0,0,"\r\n\r\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=1 --mem=100G;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;Csalloc: Pending job allocation 13344\r\nsalloc: job 13344 queued and waiting for resources\r\n",,terminal_output
143
+ 142,217717,"TERMINAL",0,0,"^C",,terminal_command
144
+ 143,217732,"TERMINAL",0,0,"^C[?2004l\r[?2004h[?2004l\r\r\n]633;E;;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C",,terminal_output
145
+ 144,219775,"TERMINAL",0,0,"squeue",,terminal_command
146
+ 145,219776,"TERMINAL",0,0,"[?25l\r]633;A[franz.srambical@hai-login2.haicore.berlin:~/jafar] $ ]633;Bsqueue\r\n[?2004l\r]633;E;squeue;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C JOBID USER PARTITION NODES CPUS ST SUBMIT_TIME START_TIME TIME TIME_LIMIT NODELIST(REASON)\r\n[?25h",,terminal_output
147
+ 146,231205,"TERMINAL",0,0,"salloc --gpus=8 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G",,terminal_command
148
+ 147,231250,"TERMINAL",0,0,"[?25l[?2004l\r]633;E;salloc --gpus=8 --ntasks-per-node=4 --cpus-per-task=1 --mem=100G;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C[?25hsalloc: Pending job allocation 13345\r\nsalloc: job 13345 queued and waiting for resources\r\n",,terminal_output
149
+ 148,243682,"TERMINAL",0,0,"salloc: job 13345 has been allocated resources\r\nsalloc: Granted job allocation 13345\r\n",,terminal_output
150
+ 149,243813,"TERMINAL",0,0,"salloc: Nodes hai002 are ready for job\r\n",,terminal_output
151
+ 150,244111,"TERMINAL",0,0,"Running inside SLURM, Job ID 13345.\r\n",,terminal_output
152
+ 151,244202,"TERMINAL",0,0,"]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
153
+ 152,374723,"TERMINAL",0,0,"[?25lsr[?25h[?25lr[?25h",,terminal_output
154
+ 153,374876,"TERMINAL",0,0,"[?25lu[?25h[?25ln[?25h",,terminal_output
155
+ 154,374975,"TERMINAL",0,0,"[?25l [?25h",,terminal_output
156
+ 155,377109,"TERMINAL",0,0,"[?25l-[?25h",,terminal_output
157
+ 156,377347,"TERMINAL",0,0,"[?25l-[?25h",,terminal_output
158
+ 157,377526,"TERMINAL",0,0,"[?25ln[?25h",,terminal_output
159
+ 158,377674,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
160
+ 159,377836,"TERMINAL",0,0,"[?25la[?25h[?25ls[?25h",,terminal_output
161
+ 160,378034,"TERMINAL",0,0,"[?25lk[?25h[?25ls[?25h",,terminal_output
162
+ 161,378294,"TERMINAL",0,0,"[?25l=[?25h",,terminal_output
163
+ 162,378467,"TERMINAL",0,0,"[?25l8[?25h",,terminal_output
164
+ 163,378714,"TERMINAL",0,0,"[?25l[?2004l\r[?25hsrun: fatal: No command given to execute.\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
165
+ 164,381944,"TERMINAL",0,0,"[?25lba[?25h",,terminal_output
166
+ 165,381996,"TERMINAL",0,0,"[?25la[?25h",,terminal_output
167
+ 166,382073,"TERMINAL",0,0,"[?25ls[?25h",,terminal_output
168
+ 167,382134,"TERMINAL",0,0,"[?25lh[?25h",,terminal_output
169
+ 168,382242,"TERMINAL",0,0,"[?25l [?25h",,terminal_output
170
+ 169,382287,"TERMINAL",0,0,"[?25le[?25h",,terminal_output
171
+ 170,382501,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
172
+ 171,382564,"TERMINAL",0,0,"[?25lp[?25h",,terminal_output
173
+ 172,382650,"TERMINAL",0,0,"[?25le[?25h",,terminal_output
174
+ 173,382713,"TERMINAL",0,0,"[?25lr[?25h",,terminal_output
175
+ 174,382783,"TERMINAL",0,0,"[?25li[?25h[?25lm[?25h",,terminal_output
176
+ 175,382949,"TERMINAL",0,0,"ents/",,terminal_output
177
+ 176,383082,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
178
+ 177,383249,"TERMINAL",0,0,"[?25lo[?25h[?25lk[?25h",,terminal_output
179
+ 178,383400,"TERMINAL",0,0,"enizer_",,terminal_output
180
+ 179,384268,"TERMINAL",0,0,"[?25lg[?25h",,terminal_output
181
+ 180,384457,"TERMINAL",0,0,"[?25lr[?25h",,terminal_output
182
+ 181,384620,"TERMINAL",0,0,"ain_checkpointing.sh ",,terminal_output
183
+ 182,384835,"TERMINAL",0,0,"[?25l[?2004l\r[?25hsrun: warning: can't honor --ntasks-per-node set to 4 which doesn't match the requested tasks 8 with the maximum number of requested nodes 1. Ignoring --ntasks-per-node.\r\nsrun: error: Unable to create step for job 13345: More processors requested than permitted\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
184
+ 183,402218,"TERMINAL",0,0,"e",,terminal_output
185
+ 184,402417,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
186
+ 185,402489,"TERMINAL",0,0,"[?25li[?25h",,terminal_output
187
+ 186,402572,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
188
+ 187,402688,"TERMINAL",0,0,"[?25l[?2004l\rexit\r\n[?25hsrun: error: hai002: task 0: Exited with exit code 1\r\nsalloc: Relinquishing job allocation 13345\r\n]0;franz.srambical@hai-login2:~/jafar]633;D;1",,terminal_output
189
+ 188,410925,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=4 --mem=100G",,terminal_command
190
+ 189,411026,"TERMINAL",0,0,"\r\n\r\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=4 --mem=100G;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;Csalloc: Granted job allocation 13346\r\nsalloc: Nodes hai002 are ready for job\r\n",,terminal_output
191
+ 190,411346,"TERMINAL",0,0,"Running inside SLURM, Job ID 13346.\r\n",,terminal_output
192
+ 191,411439,"TERMINAL",0,0,"]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
193
+ 192,412564,"TERMINAL",0,0,"e",,terminal_output
194
+ 193,412716,"TERMINAL",0,0,"[?25lx[?25h",,terminal_output
195
+ 194,412797,"TERMINAL",0,0,"[?25li[?25h",,terminal_output
196
+ 195,412896,"TERMINAL",0,0,"[?25lt[?25h",,terminal_output
197
+ 196,412956,"TERMINAL",0,0,"[?25l[?2004l\rexit\r\nsalloc: Relinquishing job allocation 13346\r\n]0;franz.srambical@hai-login2:~/jafar]633;D;0[?25h",,terminal_output
198
+ 197,415898,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=5 --mem=100G",,terminal_command
199
+ 198,415959,"TERMINAL",0,0,"[?25l\r\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=5 --mem=100G;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C[?25hsalloc: Pending job allocation 13347\r\nsalloc: job 13347 queued and waiting for resources\r\n",,terminal_output
200
+ 199,419258,"TERMINAL",0,0,"",,terminal_focus
201
+ 200,422599,"TERMINAL",0,0,"squeue",,terminal_command
202
+ 201,422607,"TERMINAL",0,0,"\r]633;A[franz.srambical@hai-login2.haicore.berlin:~/jafar] $ ]633;Bsqueue\r\n[?2004l\r]633;E;squeue;6def2f5c-c4a9-4ad4-8a90-ea797733dc74]633;C JOBID USER PARTITION NODES CPUS ST SUBMIT_TIME START_TIME TIME TIME_LIMIT NODELIST(REASON)\r\n",,terminal_output
203
+ 202,426751,"TERMINAL",0,0,"salloc",,terminal_focus
204
+ 203,479574,"TERMINAL",0,0,"^Csalloc: Job allocation 13347 has been revoked.\r\nsalloc: Job aborted due to signal\r\n]0;franz.srambical@hai-login2:~/jafar",,terminal_output
205
+ 204,481639,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=5",,terminal_command
206
+ 205,481686,"TERMINAL",0,0,"[?25l[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=5;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C[?25hsalloc: Pending job allocation 13348\r\nsalloc: job 13348 queued and waiting for resources\r\n",,terminal_output
207
+ 206,483620,"TERMINAL",0,0,"bash",,terminal_focus
208
+ 207,487752,"TERMINAL",0,0,"salloc",,terminal_focus
209
+ 208,489649,"TERMINAL",0,0,"bash",,terminal_focus
210
+ 209,491295,"TERMINAL",0,0,"squeue",,terminal_command
211
+ 210,491312,"TERMINAL",0,0,"\r\n[?2004l\r]633;E;squeue;6def2f5c-c4a9-4ad4-8a90-ea797733dc74]633;C JOBID USER PARTITION NODES CPUS ST SUBMIT_TIME START_TIME TIME TIME_LIMIT NODELIST(REASON)\r\n 13348 franz.sram interacti 1 5 PD 2025-07-11T12:26:30 N/A 0:00 1-00:00:00 (QOSMaxCpuPerUserLimit)\r\n",,terminal_output
212
+ 211,494054,"TERMINAL",0,0,"salloc",,terminal_focus
213
+ 212,539208,"TERMINAL",0,0,"salloc --gpus=8 --cpus-per-task=4 --mem=100G",,terminal_command
214
+ 213,539279,"TERMINAL",0,0,"\r\n[?2004l\r]633;E;salloc --gpus=8 --cpus-per-task=4 --mem=100G;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;Csalloc: Granted job allocation 13349\r\nsalloc: Nodes hai002 are ready for job\r\n",,terminal_output
215
+ 214,539594,"TERMINAL",0,0,"Running inside SLURM, Job ID 13349.\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
216
+ 215,541451,"TERMINAL",0,0,"[?25lba[?25h",,terminal_output
217
+ 216,541656,"TERMINAL",0,0,"[?25la[?25h[?25ls[?25h",,terminal_output
218
+ 217,541684,"TERMINAL",0,0,"[?25lh[?25h",,terminal_output
219
+ 218,541864,"TERMINAL",0,0,"[?25l [?25h[?25le[?25h",,terminal_output
220
+ 219,542070,"TERMINAL",0,0,"[?25lxp[?25h",,terminal_output
221
+ 220,542292,"TERMINAL",0,0,"[?25le[?25h[?25lr[?25h",,terminal_output
222
+ 221,542392,"TERMINAL",0,0,"[?25lim[?25h",,terminal_output
223
+ 222,542544,"TERMINAL",0,0,"ents/",,terminal_output
224
+ 223,542712,"TERMINAL",0,0,"[?25lt[?25hok",,terminal_output
225
+ 224,542904,"TERMINAL",0,0,"[?25lenizer_[?25h",,terminal_output
226
+ 225,543085,"TERMINAL",0,0,"g",,terminal_output
227
+ 226,543284,"TERMINAL",0,0,"rain_checkpointing.sh ",,terminal_output
228
+ 227,543784,"TERMINAL",0,0,"\r\n[?2004l\rsrun: error: Unable to create step for job 13349: More processors requested than permitted\r\n]0;franz.srambical@hai-login2:~/jafar[?2004h[[email protected]:~/jafar] $ ",,terminal_output
229
+ 228,850377,"TERMINAL",0,0,"[?25lexi[?25h[?25lx[?25h",,terminal_output
230
+ 229,850735,"TERMINAL",0,0,"[?25li[?25h[?25lt[?25h\r\n[?2004l\rexit\r\n",,terminal_output
231
+ 230,851043,"TERMINAL",0,0,"srun: error: hai002: task 0: Exited with exit code 1\r\nsalloc: Relinquishing job allocation 13349\r\nsalloc: Job allocation 13349 has been revoked.\r\n",,terminal_output
232
+ 231,853283,"TERMINAL",0,0,"squeue",,terminal_command
233
+ 232,853285,"TERMINAL",0,0,"\r\n[?2004l\r]633;E;squeue;55d01655-a60b-4820-915a-c4f2af7e0b4c]633;C",,terminal_output
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-41b294b4-b89c-4c1d-8a02-14afc9168dc41753085667665-2025_07_21-10.15.04.628/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-46a4cc9d-ac37-44ff-ae8d-547db76d96f31752072213286-2025_07_09-16.43.57.848/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-4719c5f9-1b15-4792-8afd-690761108bda1751617825355-2025_07_04-10.31.22.581/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-55c207a6-ee6d-464d-8f77-e1220855a4f41754396844541-2025_08_05-14.27.33.594/source.csv ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,631,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"2:27:33 PM [info] Activating crowd-code\n2:27:33 PM [info] Recording started\n2:27:33 PM [info] Initializing git provider using file system watchers...\n2:27:33 PM [info] Git repository found\n2:27:33 PM [info] Git provider initialized successfully\n2:27:33 PM [info] Initial git state: [object Object]\n",Log,tab
3
+ 3,4851,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\nfrom typing import cast\n\nimport einops\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\nimport flax.nnx as nnx\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = (\n 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n )\n warmup_steps: int = 5000\n lr_schedule: str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n tokenizer_ffn_dim: int = 2048\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 4\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n lam_ffn_dim: int = 2048\n latent_action_dim: int = 32\n num_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 4\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_ffn_dim: int = 2048\n dyna_num_blocks: int = 6\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n param_dtype = jnp.float32\n dtype = jnp.bfloat16\n use_flash_attention: bool = True\n use_gt_actions: bool = False\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(\n model: Genie, inputs: dict\n) -> tuple[jax.Array, tuple[jax.Array, dict]]:\n """"""Compute masked dynamics loss""""""\n gt = jnp.asarray(inputs[""videos""], dtype=jnp.float32) / 255.0\n inputs[""videos""] = gt.astype(args.dtype)\n model.train()\n outputs = model(inputs, training=True)\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n gt = gt.clip(0, 1).reshape(-1, *gt.shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = jnp.asarray(pix.psnr(gt, recon)).mean()\n ssim = jnp.asarray(pix.ssim(gt, recon)).mean()\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n if args.use_gt_actions:\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_actions, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n else:\n codebook_usage_lam = None\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(\n model: Genie, optimizer: nnx.Optimizer, inputs: dict\n) -> tuple[jax.Array, jax.Array, dict]:\n """"""Update state and compute metrics""""""\n\n def loss_fn(model: Genie) -> tuple[jax.Array, tuple[jax.Array, dict]]:\n return dynamics_loss_fn(model, inputs)\n\n (loss, (recon, metrics)), grads = nnx.value_and_grad(loss_fn, has_aux=True)(model)\n optimizer.update(grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.key(args.seed)\n\n # --- Initialize model ---\n rng, _rng = jax.random.split(rng)\n rngs = nnx.Rngs(_rng)\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n tokenizer_ffn_dim=args.tokenizer_ffn_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n lam_ffn_dim=args.lam_ffn_dim,\n latent_action_dim=args.latent_action_dim,\n num_actions=args.num_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_ffn_dim=args.dyna_ffn_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n use_gt_actions=args.use_gt_actions,\n rngs=rngs,\n )\n\n _, params, _ = nnx.split(genie, nnx.Param, ...)\n param_counts = count_parameters_by_component(params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(\n args.lr_schedule,\n args.init_lr,\n args.max_lr,\n args.decay_end,\n args.num_steps,\n args.warmup_steps,\n args.wsd_decay_steps,\n )\n tx = optax.adamw(\n learning_rate=lr_schedule,\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n optimizer = nnx.Optimizer(genie, tx)\n del genie\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n\n model_state = nnx.state(optimizer.model)\n model_sharded_state = jax.lax.with_sharding_constraint(\n model_state, replicated_sharding\n )\n nnx.update(optimizer.model, model_sharded_state)\n optimizer_state = nnx.state(optimizer, nnx.optimizer.OptState)\n optimizer_sharded_state = jax.lax.with_sharding_constraint(\n optimizer_state, replicated_sharding\n )\n nnx.update(optimizer, optimizer_sharded_state)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeSave, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointSave,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointRestore,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n image_shape = (args.image_height, args.image_width, args.image_channels)\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n use_gt_actions=args.use_gt_actions,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n abstract_optimizer = nnx.eval_shape(lambda: optimizer)\n abstract_optimizer_state = nnx.state(abstract_optimizer)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(abstract_optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator), # type: ignore\n ),\n )\n restored_optimizer_state = restored[""model_state""]\n nnx.update(optimizer, restored_optimizer_state)\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n optimizer = restore_genie_components(optimizer, replicated_sharding, rng, args)\n # NOTE: We have to remove the (unused) tokenizer vq dropout due flax.nnx lazily initializing modules.\n # Specifically, the first dynamics model checkpoint will contain the vq dropout module,\n # but the first full restore will fail due to nnx not initializing the module when\n # dropout is set to 0.0.\n del optimizer.model.tokenizer.vq.drop\n\n # --- TRAIN LOOP ---\n dataloader = (\n jax.make_array_from_process_local_data(videos_sharding, elem)\n for elem in grain_iterator\n )\n print(f""Starting training from step {step}..."")\n while step < args.num_steps:\n for videos, actions in dataloader:\n # --- Train step ---\n rng, _rng_mask = jax.random.split(rng, 2)\n inputs = dict(videos=videos, actions=actions, mask_rng=_rng_mask)\n loss, recon, metrics = train_step(optimizer.model, optimizer, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) / 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n optimizer_state = nnx.state(optimizer)\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeSave(optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointSave( # type: ignore\n grain_iterator # type: ignore\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
4
+ 4,5815,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\nfrom typing import cast\n\nimport einops\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\nimport flax.nnx as nnx\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = (\n 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n )\n warmup_steps: int = 5000\n lr_schedule: str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n tokenizer_ffn_dim: int = 2048\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 4\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n lam_ffn_dim: int = 2048\n latent_action_dim: int = 32\n num_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 4\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_ffn_dim: int = 2048\n dyna_num_blocks: int = 6\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n param_dtype = jnp.float32\n dtype = jnp.bfloat16\n use_flash_attention: bool = True\n use_gt_actions: bool = False\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(\n model: Genie, inputs: dict\n) -> tuple[jax.Array, tuple[jax.Array, dict]]:\n """"""Compute masked dynamics loss""""""\n gt = jnp.asarray(inputs[""videos""], dtype=jnp.float32) / 255.0\n inputs[""videos""] = gt.astype(args.dtype)\n model.train()\n outputs = model(inputs, training=True)\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n gt = gt.clip(0, 1).reshape(-1, *gt.shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = jnp.asarray(pix.psnr(gt, recon)).mean()\n ssim = jnp.asarray(pix.ssim(gt, recon)).mean()\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n if args.use_gt_actions:\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_actions, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n else:\n codebook_usage_lam = None\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(\n model: Genie, optimizer: nnx.Optimizer, inputs: dict\n) -> tuple[jax.Array, jax.Array, dict]:\n """"""Update state and compute metrics""""""\n\n def loss_fn(model: Genie) -> tuple[jax.Array, tuple[jax.Array, dict]]:\n return dynamics_loss_fn(model, inputs)\n\n (loss, (recon, metrics)), grads = nnx.value_and_grad(loss_fn, has_aux=True)(model)\n optimizer.update(grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.key(args.seed)\n\n # --- Initialize model ---\n rng, _rng = jax.random.split(rng)\n rngs = nnx.Rngs(_rng)\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n tokenizer_ffn_dim=args.tokenizer_ffn_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n lam_ffn_dim=args.lam_ffn_dim,\n latent_action_dim=args.latent_action_dim,\n num_actions=args.num_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_ffn_dim=args.dyna_ffn_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n use_gt_actions=args.use_gt_actions,\n rngs=rngs,\n )\n\n _, params, _ = nnx.split(genie, nnx.Param, ...)\n param_counts = count_parameters_by_component(params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(\n args.lr_schedule,\n args.init_lr,\n args.max_lr,\n args.decay_end,\n args.num_steps,\n args.warmup_steps,\n args.wsd_decay_steps,\n )\n tx = optax.adamw(\n learning_rate=lr_schedule,\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n optimizer = nnx.Optimizer(genie, tx)\n del genie\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n\n model_state = nnx.state(optimizer.model)\n model_sharded_state = jax.lax.with_sharding_constraint(\n model_state, replicated_sharding\n )\n nnx.update(optimizer.model, model_sharded_state)\n optimizer_state = nnx.state(optimizer, nnx.optimizer.OptState)\n optimizer_sharded_state = jax.lax.with_sharding_constraint(\n optimizer_state, replicated_sharding\n )\n nnx.update(optimizer, optimizer_sharded_state)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeSave, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointSave,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointRestore,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n image_shape = (args.image_height, args.image_width, args.image_channels)\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n use_gt_actions=args.use_gt_actions,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n abstract_optimizer = nnx.eval_shape(lambda: optimizer)\n abstract_optimizer_state = nnx.state(abstract_optimizer)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(abstract_optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator), # type: ignore\n ),\n )\n restored_optimizer_state = restored[""model_state""]\n nnx.update(optimizer, restored_optimizer_state)\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n optimizer = restore_genie_components(optimizer, replicated_sharding, rng, args)\n # NOTE: We have to remove the (unused) tokenizer vq dropout due flax.nnx lazily initializing modules.\n # Specifically, the first dynamics model checkpoint will contain the vq dropout module,\n # but the first full restore will fail due to nnx not initializing the module when\n # dropout is set to 0.0.\n del optimizer.model.tokenizer.vq.drop\n\n # --- TRAIN LOOP ---\n dataloader = (\n jax.make_array_from_process_local_data(videos_sharding, elem)\n for elem in grain_iterator\n )\n print(f""Starting training from step {step}..."")\n while step < args.num_steps:\n for videos, actions in dataloader:\n # --- Train step ---\n rng, _rng_mask = jax.random.split(rng, 2)\n inputs = dict(videos=videos, actions=actions, mask_rng=_rng_mask)\n loss, recon, metrics = train_step(optimizer.model, optimizer, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) / 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n optimizer_state = nnx.state(optimizer)\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeSave(optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointSave( # type: ignore\n grain_iterator # type: ignore\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
5
+ 5,39197,"train_dynamics.py",1557,10990," num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 4\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_type: str = ""maskgit"" # supported options: maskgit, causal\n dyna_dim: int = 512\n dyna_ffn_dim: int = 2048\n dyna_num_blocks: int = 6\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n param_dtype = jnp.float32\n dtype = jnp.bfloat16\n use_flash_attention: bool = True\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(\n model: Genie, inputs: dict\n) -> tuple[jax.Array, tuple[jax.Array, dict]]:\n """"""Compute masked dynamics loss""""""\n gt = jnp.asarray(inputs[""videos""], dtype=jnp.float32) / 255.0\n inputs[""videos""] = gt.astype(args.dtype)\n model.train()\n outputs = model(inputs, training=True)\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n gt = gt.clip(0, 1).reshape(-1, *gt.shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = jnp.asarray(pix.psnr(gt, recon)).mean()\n ssim = jnp.asarray(pix.ssim(gt, recon)).mean()\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_latent_actions, fill_value=0\n )\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(\n model: Genie, optimizer: nnx.Optimizer, inputs: dict\n) -> tuple[jax.Array, jax.Array, dict]:\n """"""Update state and compute metrics""""""\n\n def loss_fn(model: Genie) -> tuple[jax.Array, tuple[jax.Array, dict]]:\n return dynamics_loss_fn(model, inputs)\n\n (loss, (recon, metrics)), grads = nnx.value_and_grad(loss_fn, has_aux=True)(model)\n optimizer.update(grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.key(args.seed)\n\n # --- Initialize model ---\n rng, _rng = jax.random.split(rng)\n rngs = nnx.Rngs(_rng)\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n tokenizer_ffn_dim=args.tokenizer_ffn_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n lam_ffn_dim=args.lam_ffn_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_type=args.dyna_type,\n dyna_dim=args.dyna_dim,\n dyna_ffn_dim=args.dyna_ffn_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n decode=False,\n rngs=rngs,\n )\n\n _, params, _ = nnx.split(genie, nnx.Param, ...)\n param_counts = count_parameters_by_component(params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(\n args.lr_schedule,\n args.init_lr,\n args.max_lr,\n args.decay_end,\n args.num_steps,\n args.warmup_steps,\n args.wsd_decay_steps,\n )\n tx = optax.adamw(\n learning_rate=lr_schedule,\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n optimizer = nnx.Optimizer(genie, tx)\n del genie\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n\n model_state = nnx.state(optimizer.model)\n model_sharded_state = jax.lax.with_sharding_constraint(\n model_state, replicated_sharding\n )\n nnx.update(optimizer.model, model_sharded_state)\n optimizer_state = nnx.state(optimizer, nnx.optimizer.OptState)\n optimizer_sharded_state = jax.lax.with_sharding_constraint(\n optimizer_state, replicated_sharding\n )\n nnx.update(optimizer, optimizer_sharded_state)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeSave, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointSave,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointRestore,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n image_shape = (args.image_height, args.image_width, args.image_channels)\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n abstract_optimizer = nnx.eval_shape(lambda: optimizer)\n abstract_optimizer_state = nnx.state(abstract_optimizer)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(abstract_optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator), # type: ignore\n ),\n )\n restored_optimizer_state = restored[""model_state""]\n nnx.update(optimizer, restored_optimizer_state)\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n optimizer = restore_genie_components(optimizer, replicated_sharding, rng, args)\n # NOTE: We have to remove the (unused) tokenizer vq dropout due flax.nnx lazily initializing modules.\n # Specifically, the first dynamics model checkpoint will contain the vq dropout module,\n # but the first full restore will fail due to nnx not initializing the module when\n # dropout is set to 0.0.\n del optimizer.model.tokenizer.vq.drop\n\n # --- TRAIN LOOP ---\n dataloader = (\n jax.make_array_from_process_local_data(videos_sharding, elem)\n for elem in grain_iterator\n )\n print(f""Starting training from step {step}..."")\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng_mask = jax.random.split(rng, 2)\n inputs = dict(videos=videos, mask_rng=_rng_mask)\n",python,content
6
+ 6,40187,"train_dynamics.py",0,0,"Switched from branch 'gt-action-prepending-support-maskgit' to 'causal-spatiotemporal-kv-cache'",python,git_branch_checkout
7
+ 7,47544,"train_dynamics.py",10520,0,"",python,selection_keyboard
8
+ 8,50404,"utils/nn.py",0,0,"import math\nfrom typing import Tuple, Callable, List\n\nfrom flax import nnx\nimport jax\nimport jax.numpy as jnp\nimport einops\n\n\nclass PositionalEncoding(nnx.Module):\n """"""https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/JAX/tutorial6/Transformers_and_MHAttention.html""""""\n\n def __init__(self, d_model: int, max_len: int = 5000):\n self.d_model = d_model\n self.max_len = max_len\n\n pe = jnp.zeros((self.max_len, self.d_model))\n position = jnp.arange(0, self.max_len, dtype=jnp.float32)[:, None]\n div_term = jnp.exp(\n jnp.arange(0, self.d_model, 2) * (-math.log(10000.0) / self.d_model)\n )\n pe = pe.at[:, 0::2].set(jnp.sin(position * div_term))\n pe = pe.at[:, 1::2].set(jnp.cos(position * div_term))\n self.pe = nnx.Variable(pe)\n\n def __call__(self, x: jax.Array) -> jax.Array:\n x = x + self.pe[: x.shape[2]]\n return x\n\n\nclass STBlock(nnx.Module):\n def __init__(\n self,\n dim: int,\n ffn_dim: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n rngs: nnx.Rngs,\n ):\n self.dim = dim\n self.ffn_dim = ffn_dim\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n\n self.spatial_pos_enc = PositionalEncoding(self.dim)\n self.spatial_norm = nnx.LayerNorm(\n num_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.spatial_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.dim,\n qkv_features=self.dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=False\n ),\n rngs=rngs,\n decode=False,\n )\n\n self.temporal_pos_enc = PositionalEncoding(self.dim)\n self.temporal_norm = nnx.LayerNorm(\n num_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.temporal_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.dim,\n qkv_features=self.dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=True\n ),\n rngs=rngs,\n decode=False,\n )\n\n self.ffn_norm = nnx.LayerNorm(\n num_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_dense1 = nnx.Linear(\n in_features=self.dim,\n out_features=self.ffn_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_dense2 = nnx.Linear(\n in_features=self.ffn_dim,\n out_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n @nnx.remat\n def __call__(self, x_BTNM: jax.Array) -> jax.Array:\n # --- Spatial attention ---\n z_BTNM = self.spatial_pos_enc(x_BTNM)\n z_BTNM = self.spatial_norm(z_BTNM)\n z_BTNM = self.spatial_attention(z_BTNM)\n x_BTNM = x_BTNM + z_BTNM\n\n # --- Temporal attention ---\n x_BNTM = x_BTNM.swapaxes(1, 2)\n z_BNTM = self.temporal_pos_enc(x_BNTM)\n z_BNTM = self.temporal_norm(z_BNTM)\n z_BNTM = self.temporal_attention(z_BNTM)\n x_BNTM = x_BNTM + z_BNTM\n x_BTNM = x_BNTM.swapaxes(1, 2)\n\n # --- Feedforward ---\n z_BTNM = self.ffn_norm(x_BTNM)\n z_BTND = self.ffn_dense1(z_BTNM)\n z_BTND = jax.nn.gelu(z_BTND)\n z_BTNM = self.ffn_dense2(z_BTND)\n x_BTNM = x_BTNM + z_BTNM\n\n return x_BTNM\n\n\nclass STTransformer(nnx.Module):\n """"""\n Dimension keys:\n B: batch size\n T: number of frames\n N: number of patches per frame\n I: number of input features\n M: model dimension\n D: FFN dimension\n O: number of output features\n """"""\n def __init__(\n self,\n input_dim: int,\n model_dim: int,\n ffn_dim: int,\n out_dim: int,\n num_blocks: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n rngs: nnx.Rngs,\n ):\n self.input_dim = input_dim\n self.model_dim = model_dim\n self.ffn_dim = ffn_dim\n self.out_dim = out_dim\n self.num_blocks = num_blocks\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n\n self.input_norm1 = nnx.LayerNorm(\n num_features=self.input_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_dense = nnx.Linear(\n in_features=self.input_dim,\n out_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_norm2 = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n self.blocks = []\n for _ in range(self.num_blocks):\n self.blocks.append(\n STBlock(\n dim=self.model_dim,\n ffn_dim=self.ffn_dim,\n num_heads=self.num_heads,\n dropout=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n )\n\n self.output_dense = nnx.Linear(\n in_features=self.model_dim,\n out_features=self.out_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n def __call__(self, x_BTNI: jax.Array) -> jax.Array:\n x_BTNI = self.input_norm1(x_BTNI)\n x_BTNM = self.input_dense(x_BTNI)\n x_BTNM = self.input_norm2(x_BTNM)\n\n for block in self.blocks:\n x_BTNM = block(x_BTNM)\n\n x_BTNO = self.output_dense(x_BTNM)\n return x_BTNO\n\nclass TransformerBlock(nnx.Module):\n def __init__(\n self,\n model_dim: int,\n ffn_dim: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n decode: bool,\n rngs: nnx.Rngs,\n ):\n self.model_dim = model_dim\n self.ffn_dim = ffn_dim\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n self.decode = decode\n\n self.temporal_pos_enc = PositionalEncoding(self.model_dim)\n self.spatial_pos_enc = PositionalEncoding(self.model_dim)\n self.temporal_norm = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.spatial_norm = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_norm = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.temporal_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.model_dim,\n qkv_features=self.model_dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=True\n ),\n rngs=rngs,\n decode=self.decode,\n )\n self.spatial_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.model_dim,\n qkv_features=self.model_dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=True\n ),\n rngs=rngs,\n decode=self.decode,\n )\n self.ffn_dense1 = nnx.Linear(\n in_features=self.model_dim,\n out_features=self.ffn_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_dense2 = nnx.Linear(\n in_features=self.ffn_dim,\n out_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n @nnx.remat\n def __call__(self, x_BTNM: jax.Array, pos_index: Tuple[jax.Array, jax.Array] | None = None) -> jax.Array:\n # --- Spatial attention ---\n B, T, N, M = x_BTNM.shape\n z_FNM = einops.rearrange(x_BTNM, ""b t n m -> (b t) n m"")\n z_FNM = self.spatial_norm(z_FNM)\n if self.decode:\n assert pos_index is not None\n z_FM = z_FNM[:, pos_index[1]]\n z_F1M = jnp.reshape(z_FM, (B * T, 1, M))\n z_F1M = self.spatial_attention(z_F1M)\n z_FM = jnp.reshape(z_F1M, (B * T, M))\n z_FNM = z_FNM.at[:, pos_index[1], :].set(z_FM)\n else:\n z_FNM = self.spatial_attention(z_FNM)\n z_BTNM = einops.rearrange(z_FNM, ""(b t) n m -> b t n m"", t=T)\n x_BTNM = x_BTNM + z_BTNM\n # --- Temporal attention ---\n z_PTM = einops.rearrange(x_BTNM, ""b t n m -> (b n) t m"")\n z_PTM = self.temporal_norm(z_PTM)\n if self.decode:\n assert pos_index is not None\n z_PM = z_PTM[:, pos_index[0]]\n z_P1M = jnp.reshape(z_PM, (B * N, 1, M))\n z_P1M = self.temporal_attention(z_P1M)\n z_PM = jnp.reshape(z_P1M, (B * N, M))\n z_PTM = z_PTM.at[:, pos_index[0], :].set(z_PM)\n else:\n z_PTM = self.temporal_attention(z_PTM)\n z_BTNM = einops.rearrange(z_PTM, ""(b n) t m -> b t n m"", n=N)\n x_BTNM = x_BTNM + z_BTNM\n # --- Feedforward ---\n z_BTNM = self.ffn_norm(x_BTNM)\n z_BTND = self.ffn_dense1(z_BTNM)\n z_BTND = jax.nn.gelu(z_BTND)\n z_BTNM = self.ffn_dense2(z_BTND)\n x_BTNM = x_BTNM + z_BTNM\n\n return x_BTNM\n\nclass Transformer(nnx.Module):\n """"""\n Dimension keys:\n B: batch size\n T: number of frames\n N: number of patches per frame\n I: number of input features\n M: model dimension\n D: FFN dimension\n O: number of output features\n F: number of frames in batch\n P: number of patch positions in batch\n """"""\n def __init__(\n self,\n input_dim: int,\n model_dim: int,\n ffn_dim: int,\n out_dim: int,\n num_blocks: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n decode: bool,\n rngs: nnx.Rngs,\n ):\n self.input_dim = input_dim\n self.model_dim = model_dim\n self.ffn_dim = ffn_dim\n self.out_dim = out_dim\n self.num_blocks = num_blocks\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n\n self.pos_enc = PositionalEncoding(self.model_dim)\n self.input_norm1 = nnx.LayerNorm(\n num_features=self.input_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_dense = nnx.Linear(\n in_features=self.input_dim,\n out_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_norm2 = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n self.blocks: List[TransformerBlock] = []\n for _ in range(self.num_blocks):\n self.blocks.append(\n TransformerBlock(\n model_dim=self.model_dim,\n ffn_dim=self.ffn_dim,\n num_heads=self.num_heads,\n dropout=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n decode=decode,\n rngs=rngs,\n )\n )\n self.output_dense = nnx.Linear(\n in_features=self.model_dim,\n out_features=self.out_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n def __call__(self, x_BTNI: jax.Array, pos_index: Tuple[jax.Array, jax.Array] | None = None) -> jax.Array:\n x_BTNI = self.input_norm1(x_BTNI)\n x_BTNM = self.input_dense(x_BTNI)\n x_BTNM = self.input_norm2(x_BTNM)\n x_BTNM = self.pos_enc(x_BTNM)\n\n for block in self.blocks:\n x_BTNM = block(x_BTNM, pos_index)\n\n x_BTNV = self.output_dense(x_BTNM)\n return x_BTNV\n\ndef normalize(x: jax.Array) -> jax.Array:\n return x / (jnp.linalg.norm(x, ord=2, axis=-1, keepdims=True) + 1e-8)\n\n\nclass VectorQuantizer(nnx.Module):\n """"""\n Dimension keys:\n D: B * T * N\n K: number of latents\n L: latent dimension\n """"""\n def __init__(\n self, latent_dim: int, num_latents: int, dropout: float, rngs: nnx.Rngs\n ):\n self.latent_dim = latent_dim\n self.num_latents = num_latents\n self.dropout = dropout\n\n self.codebook = nnx.Param(\n normalize(\n nnx.initializers.lecun_uniform()(\n rngs.params(), (self.num_latents, self.latent_dim)\n )\n )\n )\n self.drop = nnx.Dropout(self.dropout, rngs=rngs)\n\n def __call__(\n self, x_DL: jax.Array, training: bool\n ) -> Tuple[jax.Array, jax.Array, jax.Array, jax.Array]:\n # --- Compute distances ---\n x_DL = normalize(x_DL)\n normalized_codebook_KL = normalize(self.codebook.value)\n distance_DK = -jnp.matmul(x_DL, normalized_codebook_KL.T)\n if training:\n distance_DK = self.drop(distance_DK)\n\n # --- Get indices and embeddings ---\n indices_D = jnp.argmin(distance_DK, axis=-1)\n z_DL = self.codebook[indices_D]\n\n # --- Straight through estimator ---\n z_q_DL = x_DL + jax.lax.stop_gradient(z_DL - x_DL)\n return z_q_DL, z_DL, x_DL, indices_D\n\n def get_codes(self, indices_E: jax.Array) -> jax.Array:\n return self.codebook[indices_E]\n\n\ndef _create_flash_attention_fn(use_flash_attention: bool, is_causal: bool) -> Callable:\n """"""\n Create an attention function that uses flash attention if enabled.\n\n flax.nnx.MultiHeadAttention provides tensors with shape (batch..., length, num_heads, head_dim),\n but jax.nn.dot_product_attention expects (batch, length, num_heads, head_dim). We reshape to\n ensure compatibility. cuDNN's flash attention additionally requires a sequence length that\n is a multiple of 4. We pad the sequence length to the nearest multiple of 4 and mask\n accordingly. Note that cuDNN requires the mask to be broadcast before calling the attention\n function due to strict shape checking.\n """"""\n\n def attention_fn(query_BTHD, key_BSHD, value_BSHD, bias=None, mask_B111=None, **kwargs):\n implementation = ""cudnn"" if use_flash_attention else None\n\n def _merge_batch_dims(x):\n return einops.rearrange(x, ""... l h k -> (...) l h k"")\n\n def _pad(x, pad_size):\n return jnp.pad(x, ((0, 0), (0, pad_size), (0, 0), (0, 0)))\n\n original_shape = query_BTHD.shape\n T = query_BTHD.shape[-3]\n S = key_BSHD.shape[-3]\n\n # Pad to nearest multiple of 4\n Q = ((T + 3) // 4) * 4\n pad_size_Q = Q - T\n K = ((S + 3) // 4) * 4\n pad_size_K = K - S\n\n query_BQHD = _pad(_merge_batch_dims(query_BTHD), pad_size_Q)\n key_BKHD = _pad(_merge_batch_dims(key_BSHD), pad_size_K)\n value_BKHD = _pad(_merge_batch_dims(value_BSHD), pad_size_K)\n B = query_BQHD.shape[0]\n\n attention_mask = jnp.ones((Q, K), dtype=jnp.bool_)\n attention_mask = attention_mask.at[Q:, :].set(False)\n attention_mask = attention_mask.at[:, K:].set(False)\n\n # Handle causal mask for cached decoder self-attention (from nnx.MultiHeadAttention)\n if mask_B111 is not None:\n # FIXME (f.srambical): Why do we need this?\n mask_B111 = _merge_batch_dims(mask_B111)\n # We need to broadcast T and S dimensions to target_seq_len since cudnn attention strictly checks the mask shape\n # https://github.com/jax-ml/jax/issues/28974\n # https://github.com/jax-ml/jax/blob/08c7677393672ccb85c10f1ed0bd506905c3c994/jax/_src/cudnn/fused_attention_stablehlo.py#L1830\n # https://github.com/jax-ml/jax/blob/08c7677393672ccb85c10f1ed0bd506905c3c994/jax/_src/cudnn/fused_attention_stablehlo.py#L337\n mask_B1TS = einops.repeat(mask_B111, ""... 1 1 -> ... t s"", t=Q, s=K)\n mask_B1TS = mask_B111.astype(jnp.bool)\n else:\n mask_11TS = attention_mask[jnp.newaxis, jnp.newaxis, :, :]\n mask_B1TS = jnp.broadcast_to(mask_11TS, (B, 1, Q, K))\n\n bias_4d = _merge_batch_dims(bias) if bias is not None else None\n\n # NOTE: jax.nn.dot_product_attention does not support dropout\n output_4d = jax.nn.dot_product_attention(\n query=query_BQHD,\n key=key_BKHD,\n value=value_BKHD,\n bias=bias_4d,\n mask=mask_B1TS,\n implementation=implementation,\n is_causal=is_causal,\n )\n return output_4d[..., :T, :, :].reshape(original_shape)\n\n return attention_fn\n",python,tab
9
+ 9,51623,"utils/nn.py",4285,0,"",python,selection_command
10
+ 10,52308,"utils/nn.py",6901,0,"",python,selection_command
11
+ 11,177589,"utils/nn.py",7044,0,"",python,selection_command
12
+ 12,179216,"utils/nn.py",7320,0,"",python,selection_command
13
+ 13,179299,"utils/nn.py",7330,0,"",python,selection_command
14
+ 14,185317,"utils/nn.py",7508,0,"",python,selection_command
15
+ 15,193669,"utils/nn.py",11253,0,"",python,selection_command
16
+ 16,196652,"utils/nn.py",12324,0,"",python,selection_command
17
+ 17,198509,"utils/nn.py",12311,58,"",python,content
18
+ 18,198539,"utils/nn.py",12319,0,"",python,selection_command
19
+ 19,199494,"utils/nn.py",12910,0,"",python,selection_command
20
+ 20,200159,"utils/nn.py",12912,0,"",python,selection_command
21
+ 21,200399,"utils/nn.py",12921,0,"",python,selection_command
22
+ 22,200449,"utils/nn.py",12970,0,"",python,selection_command
23
+ 23,200463,"utils/nn.py",13011,0,"",python,selection_command
24
+ 24,200504,"utils/nn.py",13043,0,"",python,selection_command
25
+ 25,200533,"utils/nn.py",13077,0,"",python,selection_command
26
+ 26,200553,"utils/nn.py",13123,0,"",python,selection_command
27
+ 27,200598,"utils/nn.py",13165,0,"",python,selection_command
28
+ 28,200775,"utils/nn.py",13211,0,"",python,selection_command
29
+ 29,200911,"utils/nn.py",13253,0,"",python,selection_command
30
+ 30,201154,"utils/nn.py",13303,0,"",python,selection_command
31
+ 31,201188,"utils/nn.py",13341,0,"",python,selection_command
32
+ 32,201214,"utils/nn.py",13407,0,"",python,selection_command
33
+ 33,201254,"utils/nn.py",13442,0,"",python,selection_command
34
+ 34,201289,"utils/nn.py",13473,0,"",python,selection_command
35
+ 35,201319,"utils/nn.py",13491,0,"",python,selection_command
36
+ 36,201354,"utils/nn.py",13505,0,"",python,selection_command
37
+ 37,201392,"utils/nn.py",13545,0,"",python,selection_command
38
+ 38,201424,"utils/nn.py",13585,0,"",python,selection_command
39
+ 39,201469,"utils/nn.py",13624,0,"",python,selection_command
40
+ 40,201504,"utils/nn.py",13666,0,"",python,selection_command
41
+ 41,201522,"utils/nn.py",13696,0,"",python,selection_command
42
+ 42,201570,"utils/nn.py",13719,0,"",python,selection_command
43
+ 43,201584,"utils/nn.py",13721,0,"",python,selection_command
44
+ 44,201624,"utils/nn.py",13730,0,"",python,selection_command
45
+ 45,201673,"utils/nn.py",13840,0,"",python,selection_command
46
+ 46,201705,"utils/nn.py",13882,0,"",python,selection_command
47
+ 47,201724,"utils/nn.py",13924,0,"",python,selection_command
48
+ 48,201761,"utils/nn.py",13966,0,"",python,selection_command
49
+ 49,201810,"utils/nn.py",13996,0,"",python,selection_command
50
+ 50,201834,"utils/nn.py",14005,0,"",python,selection_command
51
+ 51,201863,"utils/nn.py",14039,0,"",python,selection_command
52
+ 52,201966,"utils/nn.py",14077,0,"",python,selection_command
53
+ 53,201966,"utils/nn.py",14086,0,"",python,selection_command
54
+ 54,201967,"utils/nn.py",14129,0,"",python,selection_command
55
+ 55,201993,"utils/nn.py",14143,0,"",python,selection_command
56
+ 56,202049,"utils/nn.py",14152,0,"",python,selection_command
57
+ 57,202090,"utils/nn.py",14194,0,"",python,selection_command
58
+ 58,202105,"utils/nn.py",14260,0,"",python,selection_command
59
+ 59,202149,"utils/nn.py",14261,0,"",python,selection_command
60
+ 60,202184,"utils/nn.py",14270,0,"",python,selection_command
61
+ 61,202194,"utils/nn.py",14303,0,"",python,selection_command
62
+ 62,202235,"utils/nn.py",14313,0,"",python,selection_command
63
+ 63,202266,"utils/nn.py",14333,0,"",python,selection_command
64
+ 64,202389,"utils/nn.py",14313,0,"",python,selection_command
65
+ 65,202644,"utils/nn.py",14303,0,"",python,selection_command
66
+ 66,202684,"utils/nn.py",14270,0,"",python,selection_command
67
+ 67,202706,"utils/nn.py",14261,0,"",python,selection_command
68
+ 68,202746,"utils/nn.py",14260,0,"",python,selection_command
69
+ 69,202774,"utils/nn.py",14194,0,"",python,selection_command
70
+ 70,202840,"utils/nn.py",14152,0,"",python,selection_command
71
+ 71,202859,"utils/nn.py",14143,0,"",python,selection_command
72
+ 72,202879,"utils/nn.py",14129,0,"",python,selection_command
73
+ 73,202902,"utils/nn.py",14086,0,"",python,selection_command
74
+ 74,202948,"utils/nn.py",14077,0,"",python,selection_command
75
+ 75,202973,"utils/nn.py",14039,0,"",python,selection_command
76
+ 76,203009,"utils/nn.py",14005,0,"",python,selection_command
77
+ 77,203049,"utils/nn.py",13996,0,"",python,selection_command
78
+ 78,203404,"utils/nn.py",13966,0,"",python,selection_command
79
+ 79,204040,"utils/nn.py",13958,38,"",python,content
80
+ 80,211356,"utils/nn.py",0,0,"",python,tab
81
+ 81,211357,"utils/nn.py",12311,0,"",python,selection_command
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-59af9530-ed37-4620-9980-6c646b3d58821751599132847-2025_07_04-05.19.59.945/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-5b1a6152-1602-4538-a4b1-6fa9507221151753212707189-2025_07_22-21.32.36.855/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-6829bcbf-f7fb-4481-92ea-521e9af7eabb1754058671446-2025_08_01-16.31.17.606/source.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,3,"utils/nn.py",0,0,"import math\nfrom typing import Tuple, Callable, List\n\nfrom flax import nnx\nimport jax\nimport jax.numpy as jnp\nimport einops\n\n\nclass PositionalEncoding(nnx.Module):\n """"""https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/JAX/tutorial6/Transformers_and_MHAttention.html""""""\n\n def __init__(self, d_model: int, max_len: int = 5000):\n self.d_model = d_model\n self.max_len = max_len\n\n pe = jnp.zeros((self.max_len, self.d_model))\n position = jnp.arange(0, self.max_len, dtype=jnp.float32)[:, None]\n div_term = jnp.exp(\n jnp.arange(0, self.d_model, 2) * (-math.log(10000.0) / self.d_model)\n )\n pe = pe.at[:, 0::2].set(jnp.sin(position * div_term))\n pe = pe.at[:, 1::2].set(jnp.cos(position * div_term))\n self.pe = nnx.Variable(pe)\n\n def __call__(self, x: jax.Array) -> jax.Array:\n x = x + self.pe[: x.shape[2]]\n return x\n\n\nclass STBlock(nnx.Module):\n def __init__(\n self,\n dim: int,\n ffn_dim: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n rngs: nnx.Rngs,\n ):\n self.dim = dim\n self.ffn_dim = ffn_dim\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n\n self.spatial_pos_enc = PositionalEncoding(self.dim)\n self.spatial_norm = nnx.LayerNorm(\n num_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.spatial_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.dim,\n qkv_features=self.dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=False\n ),\n rngs=rngs,\n decode=False,\n )\n\n self.temporal_pos_enc = PositionalEncoding(self.dim)\n self.temporal_norm = nnx.LayerNorm(\n num_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.temporal_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.dim,\n qkv_features=self.dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=True\n ),\n rngs=rngs,\n decode=False,\n )\n\n self.ffn_norm = nnx.LayerNorm(\n num_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_dense1 = nnx.Linear(\n in_features=self.dim,\n out_features=self.ffn_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_dense2 = nnx.Linear(\n in_features=self.ffn_dim,\n out_features=self.dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n @nnx.remat\n def __call__(self, x_BTNM: jax.Array) -> jax.Array:\n # --- Spatial attention ---\n z_BTNM = self.spatial_pos_enc(x_BTNM)\n z_BTNM = self.spatial_norm(z_BTNM)\n z_BTNM = self.spatial_attention(z_BTNM)\n x_BTNM = x_BTNM + z_BTNM\n\n # --- Temporal attention ---\n x_BNTM = x_BTNM.swapaxes(1, 2)\n z_BNTM = self.temporal_pos_enc(x_BNTM)\n z_BNTM = self.temporal_norm(z_BNTM)\n z_BNTM = self.temporal_attention(z_BNTM)\n x_BNTM = x_BNTM + z_BNTM\n x_BTNM = x_BNTM.swapaxes(1, 2)\n\n # --- Feedforward ---\n z_BTNM = self.ffn_norm(x_BTNM)\n z_BTND = self.ffn_dense1(z_BTNM)\n z_BTND = jax.nn.gelu(z_BTND)\n z_BTNM = self.ffn_dense2(z_BTND)\n x_BTNM = x_BTNM + z_BTNM\n\n return x_BTNM\n\n\nclass STTransformer(nnx.Module):\n """"""\n Dimension keys:\n B: batch size\n T: number of frames\n N: number of patches per frame\n I: number of input features\n M: model dimension\n D: FFN dimension\n O: number of output features\n """"""\n def __init__(\n self,\n input_dim: int,\n model_dim: int,\n ffn_dim: int,\n out_dim: int,\n num_blocks: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n rngs: nnx.Rngs,\n ):\n self.input_dim = input_dim\n self.model_dim = model_dim\n self.ffn_dim = ffn_dim\n self.out_dim = out_dim\n self.num_blocks = num_blocks\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n\n self.input_norm1 = nnx.LayerNorm(\n num_features=self.input_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_dense = nnx.Linear(\n in_features=self.input_dim,\n out_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_norm2 = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n self.blocks = []\n for _ in range(self.num_blocks):\n self.blocks.append(\n STBlock(\n dim=self.model_dim,\n ffn_dim=self.ffn_dim,\n num_heads=self.num_heads,\n dropout=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n )\n\n self.output_dense = nnx.Linear(\n in_features=self.model_dim,\n out_features=self.out_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n def __call__(self, x_BTNI: jax.Array) -> jax.Array:\n x_BTNI = self.input_norm1(x_BTNI)\n x_BTNM = self.input_dense(x_BTNI)\n x_BTNM = self.input_norm2(x_BTNM)\n\n for block in self.blocks:\n x_BTNM = block(x_BTNM)\n\n x_BTNO = self.output_dense(x_BTNM)\n return x_BTNO\n\nclass TransformerBlock(nnx.Module):\n def __init__(\n self,\n model_dim: int,\n ffn_dim: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n decode: bool,\n rngs: nnx.Rngs,\n ):\n self.model_dim = model_dim\n self.ffn_dim = ffn_dim\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n self.decode = decode\n\n self.temporal_pos_enc = PositionalEncoding(self.model_dim)\n self.spatial_pos_enc = PositionalEncoding(self.model_dim)\n self.temporal_norm = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.spatial_norm = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_norm = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.temporal_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.model_dim,\n qkv_features=self.model_dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=True\n ),\n rngs=rngs,\n decode=self.decode,\n )\n self.spatial_attention = nnx.MultiHeadAttention(\n num_heads=self.num_heads,\n in_features=self.model_dim,\n qkv_features=self.model_dim,\n dropout_rate=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n attention_fn=_create_flash_attention_fn(\n self.use_flash_attention, is_causal=True\n ),\n rngs=rngs,\n decode=self.decode,\n )\n self.ffn_dense1 = nnx.Linear(\n in_features=self.model_dim,\n out_features=self.ffn_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.ffn_dense2 = nnx.Linear(\n in_features=self.ffn_dim,\n out_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n @nnx.remat\n def __call__(self, x_BTNM: jax.Array, pos_index: Tuple[jax.Array, jax.Array] | None = None) -> jax.Array:\n # --- Spatial attention ---\n B, T, N, M = x_BTNM.shape\n z_FNM = einops.rearrange(x_BTNM, ""b t n m -> (b t) n m"")\n z_FNM = self.spatial_norm(z_FNM)\n if self.decode:\n assert pos_index is not None\n z_FM = z_FNM[:, pos_index[1]]\n z_F1M = jnp.reshape(z_FM, (B * T, 1, M))\n z_F1M = self.spatial_attention(z_F1M)\n z_FM = jnp.reshape(z_F1M, (B * T, M))\n z_FNM = z_FNM.at[:, pos_index[1], :].set(z_FM)\n else:\n z_FNM = self.spatial_attention(z_FNM)\n z_BTNM = einops.rearrange(z_FNM, ""(b t) n m -> b t n m"", t=T)\n x_BTNM = x_BTNM + z_BTNM\n # --- Temporal attention ---\n z_PTM = einops.rearrange(x_BTNM, ""b t n m -> (b n) t m"")\n z_PTM = self.temporal_norm(z_PTM)\n if self.decode:\n assert pos_index is not None\n z_PM = z_PTM[:, pos_index[0]]\n z_P1M = jnp.reshape(z_PM, (B * N, 1, M))\n z_P1M = self.temporal_attention(z_P1M)\n z_PM = jnp.reshape(z_P1M, (B * N, M))\n z_PTM = z_PTM.at[:, pos_index[0], :].set(z_PM)\n else:\n z_PTM = self.temporal_attention(z_PTM)\n z_BTNM = einops.rearrange(z_PTM, ""(b n) t m -> b t n m"", n=N)\n x_BTNM = x_BTNM + z_BTNM\n # --- Feedforward ---\n z_BTNM = self.ffn_norm(x_BTNM)\n z_BTND = self.ffn_dense1(z_BTNM)\n z_BTND = jax.nn.gelu(z_BTND)\n z_BTNM = self.ffn_dense2(z_BTND)\n x_BTNM = x_BTNM + z_BTNM\n\n return x_BTNM\n\nclass Transformer(nnx.Module):\n """"""\n Dimension keys:\n B: batch size\n T: number of frames\n N: number of patches per frame\n I: number of input features\n M: model dimension\n D: FFN dimension\n O: number of output features\n F: number of frames in batch\n P: number of patch positions in batch\n """"""\n def __init__(\n self,\n input_dim: int,\n model_dim: int,\n ffn_dim: int,\n out_dim: int,\n num_blocks: int,\n num_heads: int,\n dropout: float,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n decode: bool,\n rngs: nnx.Rngs,\n ):\n self.input_dim = input_dim\n self.model_dim = model_dim\n self.ffn_dim = ffn_dim\n self.out_dim = out_dim\n self.num_blocks = num_blocks\n self.num_heads = num_heads\n self.dropout = dropout\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n\n self.pos_enc = PositionalEncoding(self.model_dim)\n self.input_norm1 = nnx.LayerNorm(\n num_features=self.input_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_dense = nnx.Linear(\n in_features=self.input_dim,\n out_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n self.input_norm2 = nnx.LayerNorm(\n num_features=self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n self.blocks: List[TransformerBlock] = []\n for _ in range(self.num_blocks):\n self.blocks.append(\n TransformerBlock(\n model_dim=self.model_dim,\n ffn_dim=self.ffn_dim,\n num_heads=self.num_heads,\n dropout=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n decode=decode,\n rngs=rngs,\n )\n )\n self.output_dense = nnx.Linear(\n in_features=self.model_dim,\n out_features=self.out_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n rngs=rngs,\n )\n\n def __call__(self, x_BTNI: jax.Array, pos_index: Tuple[jax.Array, jax.Array] | None = None) -> jax.Array:\n x_BTNI = self.input_norm1(x_BTNI)\n x_BTNM = self.input_dense(x_BTNI)\n x_BTNM = self.input_norm2(x_BTNM)\n x_BTNM = self.pos_enc(x_BTNM)\n\n for block in self.blocks:\n x_BTNM = block(x_BTNM, pos_index)\n\n x_BTNV = self.output_dense(x_BTNM)\n return x_BTNV\n\ndef normalize(x: jax.Array) -> jax.Array:\n return x / (jnp.linalg.norm(x, ord=2, axis=-1, keepdims=True) + 1e-8)\n\n\nclass VectorQuantizer(nnx.Module):\n """"""\n Dimension keys:\n D: B * T * N\n K: number of latents\n L: latent dimension\n """"""\n def __init__(\n self, latent_dim: int, num_latents: int, dropout: float, rngs: nnx.Rngs\n ):\n self.latent_dim = latent_dim\n self.num_latents = num_latents\n self.dropout = dropout\n\n self.codebook = nnx.Param(\n normalize(\n nnx.initializers.lecun_uniform()(\n rngs.params(), (self.num_latents, self.latent_dim)\n )\n )\n )\n self.drop = nnx.Dropout(self.dropout, rngs=rngs)\n\n def __call__(\n self, x_DL: jax.Array, training: bool\n ) -> Tuple[jax.Array, jax.Array, jax.Array, jax.Array]:\n # --- Compute distances ---\n x_DL = normalize(x_DL)\n normalized_codebook_KL = normalize(self.codebook.value)\n distance_DK = -jnp.matmul(x_DL, normalized_codebook_KL.T)\n if training:\n distance_DK = self.drop(distance_DK)\n\n # --- Get indices and embeddings ---\n indices_D = jnp.argmin(distance_DK, axis=-1)\n z_DL = self.codebook[indices_D]\n\n # --- Straight through estimator ---\n z_q_DL = x_DL + jax.lax.stop_gradient(z_DL - x_DL)\n return z_q_DL, z_DL, x_DL, indices_D\n\n def get_codes(self, indices_E: jax.Array) -> jax.Array:\n return self.codebook[indices_E]\n\n\ndef _create_flash_attention_fn(use_flash_attention: bool, is_causal: bool) -> Callable:\n """"""\n Create an attention function that uses flash attention if enabled.\n\n flax.nnx.MultiHeadAttention provides tensors with shape (batch..., length, num_heads, head_dim),\n but jax.nn.dot_product_attention expects (batch, length, num_heads, head_dim). We reshape to\n ensure compatibility. cuDNN's flash attention additionally requires a sequence length that\n is a multiple of 4. We pad the sequence length to the nearest multiple of 4 and mask\n accordingly. Note that cuDNN requires the mask to be broadcast before calling the attention\n function due to strict shape checking.\n """"""\n\n # FIXME (f.srambical): keys and values could have different dimensionalities\n def attention_fn(query_BSHD, key_BSHD, value_BSHD, bias=None, mask_B111=None, **kwargs):\n implementation = ""cudnn"" if use_flash_attention else None\n\n def _merge_batch_dims(x):\n return einops.rearrange(x, ""... l h k -> (...) l h k"")\n\n def _pad(x):\n return jnp.pad(x, ((0, 0), (0, pad_size), (0, 0), (0, 0)))\n\n original_shape = query_BSHD.shape\n original_seq_len = query_BSHD.shape[-3]\n\n # Pad to nearest multiple of 4\n T = ((original_seq_len + 3) // 4) * 4\n pad_size = T - original_seq_len\n\n query_BTHD = _pad(_merge_batch_dims(query_BSHD))\n key_BTHD = _pad(_merge_batch_dims(key_BSHD))\n value_BTHD = _pad(_merge_batch_dims(value_BSHD))\n B = query_BTHD.shape[0]\n\n attention_mask = jnp.ones((T, T), dtype=jnp.bool_)\n attention_mask = attention_mask.at[original_seq_len:, :].set(False)\n attention_mask = attention_mask.at[:, original_seq_len:].set(False)\n\n # Handle causal mask for cached decoder self-attention (from nnx.MultiHeadAttention)\n if mask_B111 is not None:\n mask_B111 = _merge_batch_dims(mask_B111)\n # We need to broadcast T and S dimensions to target_seq_len since cudnn attention strictly checks the mask shape\n # https://github.com/jax-ml/jax/issues/28974\n # https://github.com/jax-ml/jax/blob/08c7677393672ccb85c10f1ed0bd506905c3c994/jax/_src/cudnn/fused_attention_stablehlo.py#L1830\n # https://github.com/jax-ml/jax/blob/08c7677393672ccb85c10f1ed0bd506905c3c994/jax/_src/cudnn/fused_attention_stablehlo.py#L337\n mask_B1QK = einops.repeat(mask_B111, ""... 1 1 -> ... t s"", t=T, s=T)\n mask_B1QK = mask_B111.astype(jnp.bool)\n else:\n mask_11QK = attention_mask[jnp.newaxis, jnp.newaxis, :, :]\n mask_B1QK = jnp.broadcast_to(mask_11QK, (B, 1, T, T))\n\n bias_4d = _pad(_merge_batch_dims(bias)) if bias is not None else None\n\n # NOTE: jax.nn.dot_product_attention does not support dropout\n output_4d = jax.nn.dot_product_attention(\n query=query_BTHD,\n key=key_BTHD,\n value=value_BTHD,\n bias=bias_4d,\n mask=mask_B1QK,\n implementation=implementation,\n is_causal=is_causal,\n )\n return output_4d[..., :original_seq_len, :, :].reshape(original_shape)\n\n return attention_fn\n",python,tab
3
+ 2,333,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"4:31:17 PM [info] Activating crowd-code\n4:31:17 PM [info] Recording started\n4:31:17 PM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,381,"extension-output-pdoom-org.crowd-code-#1-crowd-code",150,0,"4:31:17 PM [info] Git repository found\n4:31:17 PM [info] Git provider initialized successfully\n4:31:17 PM [info] Initial git state: [object Object]\n",Log,content
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-6a683910-8d55-4299-9066-894bbed6c97c1754399347661-2025_08_05-15.09.15.958/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-6cc07fef-c3ba-4457-9c7c-5fe5347d53561751545506463-2025_07_03-14.26.06.366/source.csv ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,4,"generate_arrayrecord_dataset.py",0,0,"#!/usr/bin/env python3\n""""""\nGenerate ArrayRecord dataset compatible with train_tokenizer.py\n\nThis script creates synthetic video data and saves it in ArrayRecord format\nthat can be used by the tokenizer training script.\n""""""\n\nimport os\nimport pickle\nimport numpy as np\nimport grain\nfrom array_record.python.array_record_module import ArrayRecordWriter\nimport argparse\nimport multiprocessing as mp\nfrom functools import partial\nimport time\n\n\ndef generate_synthetic_video(\n seq_len: int = 16,\n height: int = 90,\n width: int = 160,\n channels: int = 3\n) -> np.ndarray:\n """"""\n Generate synthetic video data with random frames for training.\n \n Args:\n seq_len: Number of frames in the video sequence\n height: Height of each frame\n width: Width of each frame\n channels: Number of color channels\n \n Returns:\n Video array of shape (seq_len, height, width, channels)\n """"""\n video = np.random.rand(seq_len, height, width, channels).astype(np.float32)\n \n return video\n\n\ndef create_single_arrayrecord_file(\n file_info: tuple,\n output_dir: str,\n seq_len: int,\n height: int,\n width: int,\n channels: int,\n records_per_file: int,\n seed: int\n) -> tuple:\n """"""\n Create a single ArrayRecord file with synthetic video data.\n \n Args:\n file_info: Tuple of (file_idx, start_idx, end_idx)\n output_dir: Directory to save ArrayRecord files\n seq_len: Number of frames per video\n height: Frame height\n width: Frame width\n channels: Number of color channels\n records_per_file: Number of records per ArrayRecord file\n seed: Random seed for reproducibility\n \n Returns:\n Tuple of (file_path, num_videos_created, success)\n """"""\n file_idx, start_idx, end_idx = file_info\n videos_in_file = end_idx - start_idx\n \n # Set seed for this process (add file_idx to make each file different)\n np.random.seed(seed + file_idx)\n \n file_path = os.path.join(output_dir, f""videos_{file_idx:04d}.array_record"")\n \n try:\n writer = ArrayRecordWriter(file_path, ""group_size:1"")\n \n for video_idx in range(videos_in_file):\n video = generate_synthetic_video(seq_len, height, width, channels)\n \n # Convert to uint8 format as expected by the dataloader\n video_uint8 = (video * 255).astype(np.uint8)\n \n # Create record in the format expected by ProcessEpisodeAndSlice\n record = {\n ""raw_video"": video_uint8.tobytes(),\n ""sequence_length"": seq_len\n }\n \n writer.write(pickle.dumps(record))\n \n writer.close()\n return (file_path, videos_in_file, True)\n \n except Exception as e:\n print(f""Error creating file {file_path}: {e}"")\n return (file_path, 0, False)\n\n\ndef create_arrayrecord_dataset(\n output_dir: str,\n num_videos: int = 1000,\n seq_len: int = 16,\n height: int = 90,\n width: int = 160,\n channels: int = 3,\n records_per_file: int = 100,\n seed: int = 42,\n num_processes: int | None = None\n):\n """"""\n Create ArrayRecord dataset with synthetic video data using multiprocessing.\n \n Args:\n output_dir: Directory to save ArrayRecord files\n num_videos: Total number of videos to generate\n seq_len: Number of frames per video\n height: Frame height\n width: Frame width\n channels: Number of color channels\n records_per_file: Number of records per ArrayRecord file\n seed: Random seed for reproducibility\n num_processes: Number of processes to use (None for auto-detect)\n """"""\n os.makedirs(output_dir, exist_ok=True)\n \n num_files = (num_videos + records_per_file - 1) // records_per_file\n \n print(f""Generating {num_videos} videos across {num_files} ArrayRecord files..."")\n print(f""Each file will contain up to {records_per_file} videos"")\n print(f""Video dimensions: {seq_len} frames × {height}×{width}×{channels}"")\n \n # Prepare file information for each worker\n file_infos = []\n for file_idx in range(num_files):\n start_idx = file_idx * records_per_file\n end_idx = min((file_idx + 1) * records_per_file, num_videos)\n file_infos.append((file_idx, start_idx, end_idx))\n \n # Set number of processes (use CPU count if not specified)\n if num_processes is None:\n num_processes = min(mp.cpu_count(), num_files)\n \n print(f""Using {num_processes} processes for parallel generation..."")\n \n start_time = time.time()\n \n # Create partial function with fixed arguments\n worker_func = partial(\n create_single_arrayrecord_file,\n output_dir=output_dir,\n seq_len=seq_len,\n height=height,\n width=width,\n channels=channels,\n records_per_file=records_per_file,\n seed=seed\n )\n \n # Use multiprocessing to create files in parallel\n with mp.Pool(processes=num_processes) as pool:\n results = pool.map(worker_func, file_infos)\n \n end_time = time.time()\n \n # Process results\n total_records = 0\n successful_files = 0\n \n for file_path, num_videos_created, success in results:\n if success:\n print(f""✓ Created {file_path} with {num_videos_created} videos"")\n total_records += num_videos_created\n successful_files += 1\n else:\n print(f""✗ Failed to create {file_path}"")\n \n print(f""\nDataset generation complete!"")\n print(f""Total videos generated: {total_records}"")\n print(f""Successful files: {successful_files}/{num_files}"")\n print(f""Files created in: {output_dir}"")\n print(f""Generation time: {end_time - start_time:.2f} seconds"")\n\n\ndef verify_dataset(output_dir: str, num_samples: int = 5):\n """"""\n Verify the generated dataset using Grain's ArrayRecordDataSource.\n \n Args:\n output_dir: Directory containing ArrayRecord files\n num_samples: Number of samples to verify\n """"""\n print(f""\nVerifying dataset in {output_dir}..."")\n \n # Find all ArrayRecord files\n array_record_files = [\n os.path.join(output_dir, f) \n for f in os.listdir(output_dir) \n if f.endswith('.array_record')\n ]\n \n if not array_record_files:\n print(""No ArrayRecord files found!"")\n return\n \n print(f""Found {len(array_record_files)} ArrayRecord files"")\n \n # Use Grain's ArrayRecordDataSource as shown in the documentation\n try:\n data_source = grain.sources.ArrayRecordDataSource(array_record_files[0])\n print(f""Number of records in first file: {len(data_source)}"")\n \n # Load and verify a few samples\n for i in range(min(num_samples, len(data_source))):\n record_bytes = data_source[i]\n record = pickle.loads(record_bytes)\n \n # Reconstruct video from raw_video bytes\n video_shape = (record[""sequence_length""], 90, 160, 3) # Hardcoded for now\n video = np.frombuffer(record[""raw_video""], dtype=np.uint8).reshape(video_shape)\n \n print(f"" Record {i}: video shape = {video.shape}, dtype = {video.dtype}"")\n print(f"" Value range: [{video.min()}, {video.max()}]"")\n print(f"" Mean: {video.mean():.1f}"")\n print(f"" Sequence length: {record['sequence_length']}"")\n \n except Exception as e:\n print(f""Error reading ArrayRecord file: {e}"")\n print(""This might indicate a file format issue."")\n\n\ndef main():\n parser = argparse.ArgumentParser(description=""Generate ArrayRecord dataset for tokenizer training"")\n parser.add_argument(""--output_dir"", type=str, default=""data_arrayrecord/dummy"",\n help=""Output directory for ArrayRecord files"")\n parser.add_argument(""--num_videos"", type=int, default=1000,\n help=""Total number of videos to generate"")\n parser.add_argument(""--seq_len"", type=int, default=16,\n help=""Number of frames per video"")\n parser.add_argument(""--height"", type=int, default=90,\n help=""Frame height"")\n parser.add_argument(""--width"", type=int, default=160,\n help=""Frame width"")\n parser.add_argument(""--channels"", type=int, default=3,\n help=""Number of color channels"")\n parser.add_argument(""--records_per_file"", type=int, default=100,\n help=""Number of records per ArrayRecord file"")\n parser.add_argument(""--seed"", type=int, default=42,\n help=""Random seed for reproducibility"")\n parser.add_argument(""--num_processes"", type=int, default=None,\n help=""Number of processes to use (default: auto-detect)"")\n parser.add_argument(""--verify"", action=""store_true"",\n help=""Verify the generated dataset"")\n \n args = parser.parse_args()\n \n # Generate the dataset\n create_arrayrecord_dataset(\n output_dir=args.output_dir,\n num_videos=args.num_videos,\n seq_len=args.seq_len,\n height=args.height,\n width=args.width,\n channels=args.channels,\n records_per_file=args.records_per_file,\n seed=args.seed,\n num_processes=args.num_processes\n )\n \n # Verify if requested\n if args.verify:\n verify_dataset(args.output_dir)\n \nif __name__ == ""__main__"":\n main()\n",python,tab
3
+ 2,857,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"2:26:06 PM [info] Activating crowd-code\n2:26:06 PM [info] Recording started\n2:26:06 PM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,1273,"extension-output-pdoom-org.crowd-code-#1-crowd-code",150,0,"2:26:06 PM [info] Git repository found\n2:26:06 PM [info] Git provider initialized successfully\n2:26:07 PM [info] Initial git state: [object Object]\n",Log,content
5
+ 4,11151,"TERMINAL",0,0,"/usr/bin/python3 /ictstr01/home/aih/franz.srambical/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /ictstr01/home/aih/franz.srambical/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt",,terminal_command
6
+ 5,11204,"TERMINAL",0,0,"]633;E;/usr/bin/python3 /ictstr01/home/aih/franz.srambical/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /ictstr01/home/aih/franz.srambical/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt;f19a05cb-78d0-4a81-8f50-34faa4bc2da0]633;C",,terminal_output
7
+ 6,11340,"TERMINAL",0,0,"]0;franz.srambical@hpc-submit02:/ictstr01/home/aih/franz.srambical/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash]633;D;0",,terminal_output
8
+ 7,886202,"generate_arrayrecord_dataset.py",0,0,"",python,tab
9
+ 8,890778,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"",Log,tab
10
+ 9,892360,"generate_arrayrecord_dataset.py",0,0,"",python,tab
11
+ 10,894839,"TERMINAL",0,0,"",,terminal_focus
12
+ 11,920424,"TERMINAL",0,0,"salloc --reservation=haicu_stefan -p gpu_p --time=05:00:00 --job-name=interactive_bash --qos=gpu_normal --gres=gpu:2 -w gpusrv69,gpusrv70 --cpus-per-task=8",,terminal_command
13
+ 12,920476,"TERMINAL",0,0,"]633;E;salloc --reservation=haicu_stefan -p gpu_p --time=05:00:00 --job-name=interactive_bash --qos=gpu_normal --gres=gpu:2 -w gpusrv69,gpusrv70 --cpus-per-task=8;b5dce3d8-bcc4-44ac-80e5-c959aa4597d3]633;C",,terminal_output
14
+ 13,921927,"TERMINAL",0,0,"salloc: Granted job allocation 26644011\r\n",,terminal_output
15
+ 14,922030,"TERMINAL",0,0,"salloc: Nodes gpusrv[69-70] are ready for job\r\n",,terminal_output
16
+ 15,922403,"TERMINAL",0,0,"]0;franz.srambical@hpc-submit02:/lustre/groups/haicu/workspace/franz.srambical/jafar[?2004h[franz.srambical@gpusrv69 jafar]$ ",,terminal_output
17
+ 16,927055,"TERMINAL",0,0,"",,terminal_focus
18
+ 17,927129,"TERMINAL",0,0,"\r[franz.srambical@gpusrv69 jafar]$ \r[franz.srambical@gpusrv69 jafar]$ \r[franz.srambical@gpusrv69 jafar]$ ",,terminal_output
19
+ 18,929329,"TERMINAL",0,0,"squeue --me",,terminal_command
20
+ 19,929379,"TERMINAL",0,0,"\r\n[?2004l\r]633;E;squeue --me;4c3d9cf3-b25c-4150-bc4d-a9e63f089437]633;C",,terminal_output
21
+ 20,929566,"TERMINAL",0,0," JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)\r\n 26644011 gpu_p interact franz.sr R 0:09 2 gpusrv[69-70]\r\n]0;franz.srambical@hpc-submit02:/lustre/groups/haicu/workspace/franz.srambical/jafar]633;D;0",,terminal_output
22
+ 21,935053,"TERMINAL",0,0,"srun",,terminal_focus
23
+ 22,948254,"generate_arrayrecord_dataset.py",9202,0,"",python,selection_command
24
+ 23,948388,"generate_arrayrecord_dataset.py",8306,0,"",python,selection_command
25
+ 24,948546,"generate_arrayrecord_dataset.py",6926,0,"",python,selection_command
26
+ 25,948662,"generate_arrayrecord_dataset.py",6026,0,"",python,selection_command
27
+ 26,948820,"generate_arrayrecord_dataset.py",5145,0,"",python,selection_command
28
+ 27,948956,"generate_arrayrecord_dataset.py",4369,0,"",python,selection_command
29
+ 28,949094,"generate_arrayrecord_dataset.py",3265,0,"",python,selection_command
30
+ 29,949227,"generate_arrayrecord_dataset.py",2598,0,"",python,selection_command
31
+ 30,961387,"generate_arrayrecord_dataset.py",2577,0,"",python,selection_mouse
32
+ 31,965056,".gitignore",0,0,"*.pyc\n*.npy\n*.png\n*.gif\n*.tfrecord\n\nwandb_key\ncheckpoints/\nwandb/\n__pycache__/\nvs-code-recorder/\n",ignore,tab
33
+ 32,965498,".gitignore",6,0,"",ignore,selection_command
34
+ 33,965818,".gitignore",12,0,"",ignore,selection_command
35
+ 34,965819,".gitignore",18,0,"",ignore,selection_command
36
+ 35,965820,".gitignore",24,0,"",ignore,selection_command
37
+ 36,965824,".gitignore",35,0,"",ignore,selection_command
38
+ 37,965857,".gitignore",36,0,"",ignore,selection_command
39
+ 38,965890,".gitignore",46,0,"",ignore,selection_command
40
+ 39,965924,".gitignore",59,0,"",ignore,selection_command
41
+ 40,965958,".gitignore",66,0,"",ignore,selection_command
42
+ 41,965995,".gitignore",79,0,"",ignore,selection_command
43
+ 42,966175,".gitignore",97,0,"",ignore,selection_command
44
+ 43,971038,".gitignore",97,0,"d",ignore,content
45
+ 44,971039,".gitignore",98,0,"",ignore,selection_keyboard
46
+ 45,971119,".gitignore",98,0,"a",ignore,content
47
+ 46,971120,".gitignore",99,0,"",ignore,selection_keyboard
48
+ 47,971211,".gitignore",99,0,"t",ignore,content
49
+ 48,971211,".gitignore",100,0,"",ignore,selection_keyboard
50
+ 49,971270,".gitignore",100,0,"a",ignore,content
51
+ 50,971271,".gitignore",101,0,"",ignore,selection_keyboard
52
+ 51,971605,".gitignore",101,0,"_",ignore,content
53
+ 52,971606,".gitignore",102,0,"",ignore,selection_keyboard
54
+ 53,971794,".gitignore",102,0,"a",ignore,content
55
+ 54,971795,".gitignore",103,0,"",ignore,selection_keyboard
56
+ 55,971934,".gitignore",103,0,"r",ignore,content
57
+ 56,971935,".gitignore",104,0,"",ignore,selection_keyboard
58
+ 57,972020,".gitignore",104,0,"r",ignore,content
59
+ 58,972021,".gitignore",105,0,"",ignore,selection_keyboard
60
+ 59,972118,".gitignore",105,0,"a",ignore,content
61
+ 60,972119,".gitignore",106,0,"",ignore,selection_keyboard
62
+ 61,972276,".gitignore",106,0,"y",ignore,content
63
+ 62,972277,".gitignore",107,0,"",ignore,selection_keyboard
64
+ 63,972670,".gitignore",107,0,"r",ignore,content
65
+ 64,972671,".gitignore",108,0,"",ignore,selection_keyboard
66
+ 65,972782,".gitignore",108,0,"e",ignore,content
67
+ 66,972783,".gitignore",109,0,"",ignore,selection_keyboard
68
+ 67,973180,".gitignore",109,0,"cord/",ignore,content
69
+ 68,973361,".gitignore",113,0,"",ignore,selection_command
70
+ 69,976836,"generate_arrayrecord_dataset.py",0,0,"",python,tab
71
+ 70,977502,"generate_arrayrecord_dataset.py",0,0,"",python,tab
72
+ 71,978906,"generate_arrayrecord_dataset.py",0,0,"",python,tab
73
+ 72,978910,".gitignore",0,0,"",ignore,tab
74
+ 73,981026,"train_tokenizer.py",0,0,"from dataclasses import dataclass, field\nimport os\nimport time\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax\nfrom orbax.checkpoint import PyTreeCheckpointer\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\n\nfrom models.tokenizer import TokenizerVQVAE\nfrom utils.dataloader import get_dataloader\n\nts = int(time.time())\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 300_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = ""data_tfrecords/coinrun""\n checkpoint: str = """"\n # Optimization\n vq_beta: float = 0.25\n batch_size: int = 48\n min_lr: float = 3e-4\n max_lr: float = 3e-4\n warmup_steps: int = 10000\n # Tokenizer\n model_dim: int = 512\n latent_dim: int = 32\n num_latents: int = 1024\n patch_size: int = 4\n num_blocks: int = 8\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.01\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_tokenizer""\n tags: list[str] = field(default_factory=lambda: [""tokenizer""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 10000\n log_gradients: bool = False\n time_measurement_interval: int = 50\n\n\nargs = tyro.cli(Args)\n\n\ndef tokenizer_loss_fn(params, state, inputs):\n # --- Compute loss ---\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mse = jnp.square(inputs[""videos""] - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n\n # --- Compute validation metrics ---\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean()\n ssim = pix.ssim(gt, recon).mean()\n _, index_counts = jnp.unique_counts(\n jnp.ravel(outputs[""indices""]), size=args.num_latents, fill_value=0\n )\n codebook_usage = (index_counts != 0).mean()\n metrics = dict(\n loss=loss,\n mse=mse,\n q_loss=q_loss,\n commitment_loss=commitment_loss,\n psnr=psnr,\n ssim=ssim,\n codebook_usage=codebook_usage,\n )\n return loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(state, inputs):\n grad_fn = jax.value_and_grad(tokenizer_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""encoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""encoder""]\n )\n metrics[""vq_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""vq""]\n )\n metrics[""decoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""decoder""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n if args.log and jax.process_index() == 0:\n wandb.init(\n entity=args.entity,\n project=args.project,\n name=args.name,\n tags=args.tags,\n group=""debug"",\n config=args\n )\n\n # --- Initialize model ---\n tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=jnp.float32,\n ),\n )\n init_params = tokenizer.init(_rng, inputs)\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4)\n train_state = TrainState.create(apply_fn=tokenizer.apply, params=init_params, tx=tx)\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Load checkpoint ---\n step = 0\n if args.checkpoint:\n restore_target = {""model"": train_state}\n restore_args = orbax_utils.restore_args_from_target(restore_target)\n train_state.params[""params""].update(\n PyTreeCheckpointer()\n .restore(args.checkpoint, item=restore_target, restore_args=restore_args)[\n ""model""\n ]\n .params[""params""]\n )\n # Assume checkpoint is of the form tokenizer_<timestamp>_<step>\n step += int(args.checkpoint.split(""_"")[-1])\n\n # --- TRAIN LOOP ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n dataloader = get_dataloader(\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n array_record_files,\n args.seq_len,\n args.batch_size,\n *image_shape,\n num_workers=8,\n # FIXME: try buffer size of 16\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n print(f""Starting training from step {step}..."")\n start_time = time.time()\n \n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n\n videos_sharding = NamedSharding(\n mesh, PartitionSpec(""data"", None, None, None, None)\n )\n videos = jax.make_array_from_process_local_data(videos_sharding, videos)\n\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n if step % args.time_measurement_interval == 0:\n jax.block_until_ready(train_state)\n elapsed_time = (time.time() - start_time)\n avg_step_time = elapsed_time / args.time_measurement_interval\n print(f""Step {step}, loss: {loss}, avg step time: {avg_step_time:.2f}s"")\n if args.log and jax.process_index() == 0:\n wandb.log({""avg_step_time_s"": avg_step_time, ""step"": step})\n start_time = time.time()\n else:\n print(f""Step {step}, loss: {loss}"")\n\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n # NOTE: Process-dependent control flow deliberately happens\n # after indexing operation since it must not contain code\n # sections that lead to cross-accelerator communication.\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[0])),\n recon=wandb.Image(np.asarray(recon_seq[0])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n if step % args.log_checkpoint_interval == 0:\n ckpt = {""model"": train_state}\n orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n save_args = orbax_utils.save_args_from_target(ckpt)\n orbax_checkpointer.save(\n os.path.join(os.getcwd(), args.ckpt_dir, f""tokenizer_{ts}_{step}""),\n ckpt,\n save_args=save_args,\n )\n if step >= args.num_steps:\n break\n",python,tab
75
+ 74,981028,"train_tokenizer.py",1544,0,"",python,selection_command
76
+ 75,981908,"train_tokenizer.py",0,0,"from dataclasses import dataclass, field\nimport os\nimport time\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax\nfrom orbax.checkpoint import PyTreeCheckpointer\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\n\nfrom models.tokenizer import TokenizerVQVAE\nfrom utils.dataloader import get_dataloader\n\nts = int(time.time())\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 300_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = ""data_tfrecords/coinrun""\n checkpoint: str = """"\n # Optimization\n vq_beta: float = 0.25\n batch_size: int = 48\n min_lr: float = 3e-4\n max_lr: float = 3e-4\n warmup_steps: int = 10000\n # Tokenizer\n model_dim: int = 512\n latent_dim: int = 32\n num_latents: int = 1024\n patch_size: int = 4\n num_blocks: int = 8\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.01\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_tokenizer""\n tags: list[str] = field(default_factory=lambda: [""tokenizer""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 10000\n log_gradients: bool = False\n\n\nargs = tyro.cli(Args)\n\n\ndef tokenizer_loss_fn(params, state, inputs):\n # --- Compute loss ---\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mse = jnp.square(inputs[""videos""] - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n\n # --- Compute validation metrics ---\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean()\n ssim = pix.ssim(gt, recon).mean()\n _, index_counts = jnp.unique_counts(\n jnp.ravel(outputs[""indices""]), size=args.num_latents, fill_value=0\n )\n codebook_usage = (index_counts != 0).mean()\n metrics = dict(\n loss=loss,\n mse=mse,\n q_loss=q_loss,\n commitment_loss=commitment_loss,\n psnr=psnr,\n ssim=ssim,\n codebook_usage=codebook_usage,\n )\n return loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(state, inputs):\n grad_fn = jax.value_and_grad(tokenizer_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""encoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""encoder""]\n )\n metrics[""vq_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""vq""]\n )\n metrics[""decoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""decoder""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n if args.log and jax.process_index() == 0:\n wandb.init(\n entity=args.entity,\n project=args.project,\n name=args.name,\n tags=args.tags,\n group=""debug"",\n config=args\n )\n\n # --- Initialize model ---\n tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=jnp.float32,\n ),\n )\n init_params = tokenizer.init(_rng, inputs)\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4)\n train_state = TrainState.create(apply_fn=tokenizer.apply, params=init_params, tx=tx)\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Load checkpoint ---\n step = 0\n if args.checkpoint:\n restore_target = {""model"": train_state}\n restore_args = orbax_utils.restore_args_from_target(restore_target)\n train_state.params[""params""].update(\n PyTreeCheckpointer()\n .restore(args.checkpoint, item=restore_target, restore_args=restore_args)[\n ""model""\n ]\n .params[""params""]\n )\n # Assume checkpoint is of the form tokenizer_<timestamp>_<step>\n step += int(args.checkpoint.split(""_"")[-1])\n\n # --- TRAIN LOOP ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n dataloader = get_dataloader(\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n array_record_files,\n args.seq_len,\n args.batch_size,\n *image_shape,\n num_workers=16,\n prefetch_buffer_size=2,\n seed=args.seed,\n )\n print(f""Starting training from step {step}..."")\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n\n videos_sharding = NamedSharding(\n mesh, PartitionSpec(""data"", None, None, None, None)\n )\n videos = jax.make_array_from_process_local_data(videos_sharding, videos)\n\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n start_time = time.time()\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n elapsed_time = (time.time() - start_time) * 1000\n print(f""Step {step}, loss: {loss}, step time: {elapsed_time}ms"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n ""step_time_ms"": elapsed_time,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n # NOTE: Process-dependent control flow deliberately happens\n # after indexing operation since it must not contain code\n # sections that lead to cross-accelerator communication.\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[0])),\n recon=wandb.Image(np.asarray(recon_seq[0])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n if step % args.log_checkpoint_interval == 0:\n ckpt = {""model"": train_state}\n orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n save_args = orbax_utils.save_args_from_target(ckpt)\n orbax_checkpointer.save(\n os.path.join(os.getcwd(), args.ckpt_dir, f""tokenizer_{ts}_{step}""),\n ckpt,\n save_args=save_args,\n )\n if step >= args.num_steps:\n break\n",python,tab
77
+ 76,981910,"train_tokenizer.py",1511,0,"",python,selection_mouse
78
+ 77,981922,"train_tokenizer.py",1510,0,"",python,selection_command
79
+ 78,983151,"train_tokenizer.py",2328,0,"",python,selection_command
80
+ 79,983839,"train_tokenizer.py",3215,0,"",python,selection_command
81
+ 80,984087,"train_tokenizer.py",4035,0,"",python,selection_command
82
+ 81,984118,"train_tokenizer.py",4850,0,"",python,selection_command
83
+ 82,984151,"train_tokenizer.py",5926,0,"",python,selection_command
84
+ 83,984182,"train_tokenizer.py",6754,0,"",python,selection_command
85
+ 84,984216,"train_tokenizer.py",7582,0,"",python,selection_command
86
+ 85,984321,"train_tokenizer.py",8600,0,"",python,selection_command
87
+ 86,984322,"train_tokenizer.py",9570,0,"",python,selection_command
88
+ 87,985205,"train_tokenizer.py",0,0,"",python,selection_command
89
+ 88,985604,"train_tokenizer.py",583,0,"",python,selection_command
90
+ 89,985771,"train_tokenizer.py",1212,0,"",python,selection_command
91
+ 90,985994,"train_tokenizer.py",1877,0,"",python,selection_command
92
+ 91,986119,"train_tokenizer.py",2819,0,"",python,selection_command
93
+ 92,986294,"train_tokenizer.py",3725,0,"",python,selection_command
94
+ 93,986457,"train_tokenizer.py",4532,0,"",python,selection_command
95
+ 94,986617,"train_tokenizer.py",5551,0,"",python,selection_command
96
+ 95,986778,"train_tokenizer.py",6420,0,"",python,selection_command
97
+ 96,987528,"train_tokenizer.py",0,0,"",python,selection_command
98
+ 97,991567,"train_tokenizer.py",0,0,"",python,tab
99
+ 98,991704,"experiments/tokenizer_time_measurement_grain.sh",0,0,"#!/usr/bin/env bash\nsource .venv/bin/activate\n\n\ndata_dir='data_arrayrecord/dummy'\n\n# FIXME: the `time_measurement_interval` line is only for debugging and should be removed\nsrun python train_tokenizer.py \\n --time_measurement_interval 10 \\n --batch_size 48 \\n --num_steps 300000 \\n --warmup_steps 10000 \\n --seed 0 \\n --min_lr=0.0000866 \\n --max_lr=0.0000866 \\n --data_dir $data_dir",shellscript,tab
100
+ 99,994012,"utils/dataloader.py",0,0,"import jax\nimport numpy as np\nimport grain\nfrom typing import Any, Optional\nfrom array_record.python.array_record_module import ArrayRecordWriter\nimport tensorflow as tf\nimport os\nfrom pathlib import Path\nimport pickle\nimport multiprocessing as mp\nfrom functools import partial\nimport logging\n\ngrain.config.update(""py_debug_mode"", True)\n\n# Configure logging to see debug output\nlogging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n\ndef _convert_single_tfrecord(\n tfrecord_file: Path,\n output_folder: str,\n feature_description: dict,\n) -> str:\n """"""\n Convert a single TFRecord file to ArrayRecord format.\n \n Args:\n tfrecord_file: Path to the TFRecord file\n output_folder: Output folder for the ArrayRecord file\n feature_description: Dictionary describing TFRecord features\n \n Returns:\n Path to the created ArrayRecord file\n """"""\n output_filename = tfrecord_file.stem + "".array_record""\n output_file = os.path.join(output_folder, output_filename)\n \n dataset = tf.data.TFRecordDataset(str(tfrecord_file))\n \n def parse_tfrecord(example_proto):\n """"""Parse a single TFRecord example.""""""\n parsed_features = tf.io.parse_single_example(example_proto, feature_description)\n raw_video_bytes = parsed_features['raw_video'].numpy()\n sequence_length = int(parsed_features['sequence_length'].numpy())\n \n return {\n 'raw_video': raw_video_bytes,\n 'sequence_length': sequence_length,\n }\n \n record_count = 0\n writer = ArrayRecordWriter(output_file, ""group_size:1"")\n for record in dataset:\n parsed_record = parse_tfrecord(record)\n writer.write(pickle.dumps(parsed_record))\n record_count += 1\n writer.close()\n \n print(f""Converted {tfrecord_file.name} -> {output_filename}: {record_count} records"")\n return output_file\n\n\ndef convert_tfrecords_to_arrayrecords(\n tfrecord_folder: str,\n output_folder: str,\n feature_description: Optional[dict] = None,\n num_workers: Optional[int] = None,\n):\n """"""\n Converts TFRecord files to ArrayRecord format for use with Grain.\n Creates one ArrayRecord file per TFRecord file using multiprocessing.\n \n Args:\n tfrecord_folder: Path to folder containing TFRecord files\n output_folder: Path to output folder for ArrayRecord files\n feature_description: Dictionary describing TFRecord features. If None,\n uses default description for video data.\n num_workers: Number of worker processes. If None, uses CPU count.\n \n Returns:\n List of paths to created ArrayRecord files\n """"""\n if feature_description is None:\n feature_description = {\n 'raw_video': tf.io.FixedLenFeature([], tf.string),\n 'sequence_length': tf.io.FixedLenFeature([], tf.int64),\n }\n \n os.makedirs(output_folder, exist_ok=True)\n \n tfrecord_files = list(Path(tfrecord_folder).glob(""*.tfrecord""))\n if not tfrecord_files:\n raise ValueError(f""No TFRecord files found in {tfrecord_folder}"")\n \n print(f""Found {len(tfrecord_files)} TFRecord files"")\n \n if num_workers is None:\n num_workers = min(mp.cpu_count(), len(tfrecord_files))\n \n print(f""Using {num_workers} worker processes for conversion"")\n \n convert_func = partial(\n _convert_single_tfrecord,\n output_folder=output_folder,\n feature_description=feature_description\n )\n \n with mp.Pool(processes=num_workers) as pool:\n arrayrecord_files = pool.map(convert_func, tfrecord_files)\n \n print(f""Conversion complete! Created {len(arrayrecord_files)} ArrayRecord files"")\n return arrayrecord_files\n\n\nclass ProcessEpisodeAndSlice(grain.transforms.RandomMap):\n """"""\n A Grain Transformation that combines parsing, slicing, and normalizing.\n """"""\n\n def __init__(self, seq_len: int, image_h: int, image_w: int, image_c: int):\n """"""Initializes the transformation with processing parameters.""""""\n self.seq_len = seq_len\n self.image_h = image_h\n self.image_w = image_w\n self.image_c = image_c\n\n def random_map(self, element: dict, rng: np.random.Generator) -> Any:\n """"""\n Processes a single raw episode from the data source.\n\n Args:\n element: A dictionary representing one record from the DataSource.\n Expected to contain 'raw_video' (bytes) and 'sequence_length' (int)\n rng: A per-record random number generator provided by the Grain sampler.\n\n Returns:\n A processed video sequence as a NumPy array with shape\n (seq_len, height, width, channels) and dtype float32.\n """"""\n assert isinstance(element, bytes)\n element = pickle.loads(element)\n \n video_shape = (\n element[""sequence_length""],\n self.image_h,\n self.image_w,\n self.image_c,\n )\n episode_tensor = np.frombuffer(element[""raw_video""], dtype=np.uint8)\n episode_tensor = episode_tensor.reshape(video_shape)\n\n current_episode_len = episode_tensor.shape[0]\n if current_episode_len < self.seq_len:\n raise ValueError(f""An episode has length {current_episode_len}, which is ""\n f""shorter than the requested sequence length {self.seq_len}."")\n \n max_start_idx = current_episode_len - self.seq_len\n \n start_idx = rng.integers(0, max_start_idx + 1)\n\n seq = episode_tensor[start_idx : start_idx + self.seq_len]\n\n processed_sequence = seq.astype(np.float32) / 255.0\n\n return processed_sequence\n\n\ndef get_dataloader(\n array_record_paths: list[str],\n seq_len: int,\n global_batch_size: int,\n image_h: int,\n image_w: int,\n image_c: int,\n num_workers: int = 1,\n prefetch_buffer_size: int = 1,\n seed: int = 42,\n):\n """"""\n Creates a data loading pipeline using Grain.\n """"""\n if not array_record_paths:\n raise ValueError(""array_record_paths list cannot be empty."")\n\n num_processes = jax.process_count()\n\n if global_batch_size % num_processes != 0:\n raise ValueError(\n f""Global batch size {global_batch_size} must be divisible by ""\n f""the number of JAX processes {num_processes} for proper sharding.""\n )\n per_process_batch_size = global_batch_size // num_processes\n\n source = grain.sources.ArrayRecordDataSource(array_record_paths)\n \n sampler = grain.samplers.SequentialSampler(\n num_records=len(source),\n shard_options=grain.sharding.ShardByJaxProcess(drop_remainder=True),\n # FIXME: check whether the global shuffle is the reason why the dataloader is so slow\n # shuffle=False,\n # num_epochs=100, # FIXME: is there an equivalent to tf.data.repeat(None)?\n seed=seed,\n )\n\n operations = [\n ProcessEpisodeAndSlice(\n seq_len=seq_len, image_h=image_h, image_w=image_w, image_c=image_c\n ),\n grain.transforms.Batch(batch_size=per_process_batch_size, drop_remainder=True),\n ]\n\n read_options = grain.ReadOptions(\n prefetch_buffer_size=prefetch_buffer_size,\n # FIXME: `If the data is already loaded in memory, we recommend setting this to 0 to\n # avoid Python GIL contention by multiple threads.`\n num_threads=1,\n )\n dataloader = grain.DataLoader(\n data_source=source,\n sampler=sampler,\n operations=operations,\n worker_count=num_workers,\n # FIXME: think about whether we should tune this\n worker_buffer_size=1,\n read_options=read_options,\n )\n\n return iter(dataloader)\n\n",python,tab
101
+ 100,994120,"utils/dataloader.py",278,0,"",python,selection_command
102
+ 101,999045,"utils/dataloader.py",278,6652,"\n\n\ndef _convert_single_tfrecord(\n tfrecord_file: Path,\n output_folder: str,\n feature_description: dict,\n) -> str:\n """"""\n Convert a single TFRecord file to ArrayRecord format.\n \n Args:\n tfrecord_file: Path to the TFRecord file\n output_folder: Output folder for the ArrayRecord file\n feature_description: Dictionary describing TFRecord features\n \n Returns:\n Path to the created ArrayRecord file\n """"""\n output_filename = tfrecord_file.stem + "".array_record""\n output_file = os.path.join(output_folder, output_filename)\n \n dataset = tf.data.TFRecordDataset(str(tfrecord_file))\n \n def parse_tfrecord(example_proto):\n """"""Parse a single TFRecord example.""""""\n parsed_features = tf.io.parse_single_example(example_proto, feature_description)\n raw_video_bytes = parsed_features['raw_video'].numpy()\n sequence_length = int(parsed_features['sequence_length'].numpy())\n \n return {\n 'raw_video': raw_video_bytes,\n 'sequence_length': sequence_length,\n }\n \n record_count = 0\n writer = ArrayRecordWriter(output_file, ""group_size:1"")\n for record in dataset:\n parsed_record = parse_tfrecord(record)\n writer.write(pickle.dumps(parsed_record))\n record_count += 1\n writer.close()\n \n print(f""Converted {tfrecord_file.name} -> {output_filename}: {record_count} records"")\n return output_file\n\n\ndef convert_tfrecords_to_arrayrecords(\n tfrecord_folder: str,\n output_folder: str,\n feature_description: Optional[dict] = None,\n num_workers: Optional[int] = None,\n):\n """"""\n Converts TFRecord files to ArrayRecord format for use with Grain.\n Creates one ArrayRecord file per TFRecord file using multiprocessing.\n \n Args:\n tfrecord_folder: Path to folder containing TFRecord files\n output_folder: Path to output folder for ArrayRecord files\n feature_description: Dictionary describing TFRecord features. If None,\n uses default description for video data.\n num_workers: Number of worker processes. If None, uses CPU count.\n \n Returns:\n List of paths to created ArrayRecord files\n """"""\n if feature_description is None:\n feature_description = {\n 'raw_video': tf.io.FixedLenFeature([], tf.string),\n 'sequence_length': tf.io.FixedLenFeature([], tf.int64),\n }\n \n os.makedirs(output_folder, exist_ok=True)\n \n tfrecord_files = list(Path(tfrecord_folder).glob(""*.tfrecord""))\n if not tfrecord_files:\n raise ValueError(f""No TFRecord files found in {tfrecord_folder}"")\n \n print(f""Found {len(tfrecord_files)} TFRecord files"")\n \n if num_workers is None:\n num_workers = min(mp.cpu_count(), len(tfrecord_files))\n \n print(f""Using {num_workers} worker processes for conversion"")\n \n convert_func = partial(\n _convert_single_tfrecord,\n output_folder=output_folder,\n feature_description=feature_description\n )\n \n with mp.Pool(processes=num_workers) as pool:\n arrayrecord_files = pool.map(convert_func, tfrecord_files)\n \n print(f""Conversion complete! Created {len(arrayrecord_files)} ArrayRecord files"")\n return arrayrecord_files\n\n\nclass ProcessEpisodeAndSlice(grain.transforms.RandomMap):\n """"""\n A Grain Transformation that combines parsing, slicing, and normalizing.\n """"""\n\n def __init__(self, seq_len: int, image_h: int, image_w: int, image_c: int):\n """"""Initializes the transformation with processing parameters.""""""\n self.seq_len = seq_len\n self.image_h = image_h\n self.image_w = image_w\n self.image_c = image_c\n\n def random_map(self, element: dict, rng: np.random.Generator) -> Any:\n """"""\n Processes a single raw episode from the data source.\n\n Args:\n element: A dictionary representing one record from the DataSource.\n Expected to contain 'raw_video' (bytes) and 'sequence_length' (int)\n rng: A per-record random number generator provided by the Grain sampler.\n\n Returns:\n A processed video sequence as a NumPy array with shape\n (seq_len, height, width, channels) and dtype float32.\n """"""\n assert isinstance(element, bytes)\n element = pickle.loads(element)\n \n video_shape = (\n element[""sequence_length""],\n self.image_h,\n self.image_w,\n self.image_c,\n )\n episode_tensor = np.frombuffer(element[""raw_video""], dtype=np.uint8)\n episode_tensor = episode_tensor.reshape(video_shape)\n\n current_episode_len = episode_tensor.shape[0]\n if current_episode_len < self.seq_len:\n raise ValueError(f""An episode has length {current_episode_len}, which is ""\n f""shorter than the requested sequence length {self.seq_len}."")\n \n max_start_idx = current_episode_len - self.seq_len\n \n start_idx = rng.integers(0, max_start_idx + 1)\n\n seq = episode_tensor[start_idx : start_idx + self.seq_len]\n\n processed_sequence = seq.astype(np.float32) / 255.0\n\n return processed_sequence\n\n\ndef get_dataloader(\n array_record_paths: list[str],\n seq_len: int,\n global_batch_size: int,\n image_h: int,\n image_w: int,\n image_c: int,\n num_workers: int = 1,\n prefetch_buffer_size: int = 1,\n seed: int = 42,\n):\n """"""\n Creates a data loading pipeline using Grain.\n """"""\n if not array_record_paths:\n raise ValueError(""array_record_paths list cannot be empty."")\n\n num_processes = jax.process_count()\n\n if global_batch_size % num_processes != 0:\n raise ValueError(\n f""Global batch size {global_batch_size} must be divisible by ""\n f""the number of JAX processes {num_processes} for proper sharding.""\n )\n per_process_batch_size = global_batch_size // num_processes\n\n source = grain.sources.ArrayRecordDataSource(array_record_paths)\n \n sampler = grain.samplers.IndexSampler(\n num_records=len(source),\n shard_options=grain.sharding.ShardByJaxProcess(drop_remainder=True),\n # FIXME: check whether the global shuffle is the reason why the dataloader is so slow\n shuffle=True,\n num_epochs=100, # FIXME: is there an equivalent to tf.data.repeat(None)?\n",python,content
103
+ 102,1000009,"utils/dataloader.py",832,0,"",python,selection_mouse
104
+ 103,1000041,".gitignore",0,0,"",ignore,tab
105
+ 104,1000365,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"",Log,tab
106
+ 105,1001816,".gitignore",0,0,"",ignore,tab
107
+ 106,1018336,".gitignore",0,0,"Switched from branch 'grain-dataloader' to 'main'",ignore,git_branch_checkout
108
+ 107,1062644,"generate_arrayrecord_dataset.py",0,0,"#!/usr/bin/env python3\n""""""\nGenerate ArrayRecord dataset compatible with train_tokenizer.py\n\nThis script creates synthetic video data and saves it in ArrayRecord format\nthat can be used by the tokenizer training script.\n""""""\n\nimport os\nimport pickle\nimport numpy as np\nimport grain\nfrom array_record.python.array_record_module import ArrayRecordWriter\nimport argparse\nimport multiprocessing as mp\nfrom functools import partial\nimport time\n\n\ndef generate_synthetic_video(\n seq_len: int = 16,\n height: int = 90,\n width: int = 160,\n channels: int = 3\n) -> np.ndarray:\n """"""\n Generate synthetic video data with random frames for training.\n \n Args:\n seq_len: Number of frames in the video sequence\n height: Height of each frame\n width: Width of each frame\n channels: Number of color channels\n \n Returns:\n Video array of shape (seq_len, height, width, channels)\n """"""\n video = np.random.rand(seq_len, height, width, channels).astype(np.float32)\n \n return video\n\n\ndef create_single_arrayrecord_file(\n file_info: tuple,\n output_dir: str,\n seq_len: int,\n height: int,\n width: int,\n channels: int,\n records_per_file: int,\n seed: int\n) -> tuple:\n """"""\n Create a single ArrayRecord file with synthetic video data.\n \n Args:\n file_info: Tuple of (file_idx, start_idx, end_idx)\n output_dir: Directory to save ArrayRecord files\n seq_len: Number of frames per video\n height: Frame height\n width: Frame width\n channels: Number of color channels\n records_per_file: Number of records per ArrayRecord file\n seed: Random seed for reproducibility\n \n Returns:\n Tuple of (file_path, num_videos_created, success)\n """"""\n file_idx, start_idx, end_idx = file_info\n videos_in_file = end_idx - start_idx\n \n # Set seed for this process (add file_idx to make each file different)\n np.random.seed(seed + file_idx)\n \n file_path = os.path.join(output_dir, f""videos_{file_idx:04d}.array_record"")\n \n try:\n writer = ArrayRecordWriter(file_path, ""group_size:1"")\n \n for video_idx in range(videos_in_file):\n video = generate_synthetic_video(seq_len, height, width, channels)\n \n # Convert to uint8 format as expected by the dataloader\n video_uint8 = (video * 255).astype(np.uint8)\n \n # Create record in the format expected by ProcessEpisodeAndSlice\n record = {\n ""raw_video"": video_uint8.tobytes(),\n ""sequence_length"": seq_len\n }\n \n writer.write(pickle.dumps(record))\n \n writer.close()\n return (file_path, videos_in_file, True)\n \n except Exception as e:\n print(f""Error creating file {file_path}: {e}"")\n return (file_path, 0, False)\n\n\ndef create_arrayrecord_dataset(\n output_dir: str,\n num_videos: int = 1000,\n seq_len: int = 16,\n height: int = 90,\n width: int = 160,\n channels: int = 3,\n records_per_file: int = 100,\n seed: int = 42,\n num_processes: int | None = None\n):\n """"""\n Create ArrayRecord dataset with synthetic video data using multiprocessing.\n \n Args:\n output_dir: Directory to save ArrayRecord files\n num_videos: Total number of videos to generate\n seq_len: Number of frames per video\n height: Frame height\n width: Frame width\n channels: Number of color channels\n records_per_file: Number of records per ArrayRecord file\n seed: Random seed for reproducibility\n num_processes: Number of processes to use (None for auto-detect)\n """"""\n os.makedirs(output_dir, exist_ok=True)\n \n num_files = (num_videos + records_per_file - 1) // records_per_file\n \n print(f""Generating {num_videos} videos across {num_files} ArrayRecord files..."")\n print(f""Each file will contain up to {records_per_file} videos"")\n print(f""Video dimensions: {seq_len} frames × {height}×{width}×{channels}"")\n \n # Prepare file information for each worker\n file_infos = []\n for file_idx in range(num_files):\n start_idx = file_idx * records_per_file\n end_idx = min((file_idx + 1) * records_per_file, num_videos)\n file_infos.append((file_idx, start_idx, end_idx))\n \n # Set number of processes (use CPU count if not specified)\n if num_processes is None:\n num_processes = min(mp.cpu_count(), num_files)\n \n print(f""Using {num_processes} processes for parallel generation..."")\n \n start_time = time.time()\n \n # Create partial function with fixed arguments\n worker_func = partial(\n create_single_arrayrecord_file,\n output_dir=output_dir,\n seq_len=seq_len,\n height=height,\n width=width,\n channels=channels,\n records_per_file=records_per_file,\n seed=seed\n )\n \n # Use multiprocessing to create files in parallel\n with mp.Pool(processes=num_processes) as pool:\n results = pool.map(worker_func, file_infos)\n \n end_time = time.time()\n \n # Process results\n total_records = 0\n successful_files = 0\n \n for file_path, num_videos_created, success in results:\n if success:\n print(f""✓ Created {file_path} with {num_videos_created} videos"")\n total_records += num_videos_created\n successful_files += 1\n else:\n print(f""✗ Failed to create {file_path}"")\n \n print(f""\nDataset generation complete!"")\n print(f""Total videos generated: {total_records}"")\n print(f""Successful files: {successful_files}/{num_files}"")\n print(f""Files created in: {output_dir}"")\n print(f""Generation time: {end_time - start_time:.2f} seconds"")\n\n\ndef verify_dataset(output_dir: str, num_samples: int = 5):\n """"""\n Verify the generated dataset using Grain's ArrayRecordDataSource.\n \n Args:\n output_dir: Directory containing ArrayRecord files\n num_samples: Number of samples to verify\n """"""\n print(f""\nVerifying dataset in {output_dir}..."")\n \n # Find all ArrayRecord files\n array_record_files = [\n os.path.join(output_dir, f) \n for f in os.listdir(output_dir) \n if f.endswith('.array_record')\n ]\n \n if not array_record_files:\n print(""No ArrayRecord files found!"")\n return\n \n print(f""Found {len(array_record_files)} ArrayRecord files"")\n \n # Use Grain's ArrayRecordDataSource as shown in the documentation\n try:\n data_source = grain.sources.ArrayRecordDataSource(array_record_files[0])\n print(f""Number of records in first file: {len(data_source)}"")\n \n # Load and verify a few samples\n for i in range(min(num_samples, len(data_source))):\n record_bytes = data_source[i]\n record = pickle.loads(record_bytes)\n \n # Reconstruct video from raw_video bytes\n video_shape = (record[""sequence_length""], 90, 160, 3) # Hardcoded for now\n video = np.frombuffer(record[""raw_video""], dtype=np.uint8).reshape(video_shape)\n \n print(f"" Record {i}: video shape = {video.shape}, dtype = {video.dtype}"")\n print(f"" Value range: [{video.min()}, {video.max()}]"")\n print(f"" Mean: {video.mean():.1f}"")\n print(f"" Sequence length: {record['sequence_length']}"")\n \n except Exception as e:\n print(f""Error reading ArrayRecord file: {e}"")\n print(""This might indicate a file format issue."")\n\n\ndef main():\n parser = argparse.ArgumentParser(description=""Generate ArrayRecord dataset for tokenizer training"")\n parser.add_argument(""--output_dir"", type=str, default=""data_arrayrecord/dummy"",\n help=""Output directory for ArrayRecord files"")\n parser.add_argument(""--num_videos"", type=int, default=1000,\n help=""Total number of videos to generate"")\n parser.add_argument(""--seq_len"", type=int, default=16,\n help=""Number of frames per video"")\n parser.add_argument(""--height"", type=int, default=90,\n help=""Frame height"")\n parser.add_argument(""--width"", type=int, default=160,\n help=""Frame width"")\n parser.add_argument(""--channels"", type=int, default=3,\n help=""Number of color channels"")\n parser.add_argument(""--records_per_file"", type=int, default=100,\n help=""Number of records per ArrayRecord file"")\n parser.add_argument(""--seed"", type=int, default=42,\n help=""Random seed for reproducibility"")\n parser.add_argument(""--num_processes"", type=int, default=None,\n help=""Number of processes to use (default: auto-detect)"")\n parser.add_argument(""--verify"", action=""store_true"",\n help=""Verify the generated dataset"")\n \n args = parser.parse_args()\n \n # Generate the dataset\n create_arrayrecord_dataset(\n output_dir=args.output_dir,\n num_videos=args.num_videos,\n seq_len=args.seq_len,\n height=args.height,\n width=args.width,\n channels=args.channels,\n records_per_file=args.records_per_file,\n seed=args.seed,\n num_processes=args.num_processes\n )\n \n # Verify if requested\n if args.verify:\n verify_dataset(args.output_dir)\n \nif __name__ == ""__main__"":\n main()\n",python,tab
109
+ 108,1096486,"experiments/tokenizer_cross_node_checkpointing_test.sh",0,0,"",shellscript,tab
110
+ 109,1099987,"experiments/tokenizer_time_measurement_grain.sh",0,0,"#!/usr/bin/env bash\nsource .venv/bin/activate\n\n\ndata_dir='data_arrayrecord/dummy'\n\n# FIXME: the `time_measurement_interval` line is only for debugging and should be removed\nsrun python train_tokenizer.py \\n --time_measurement_interval 10 \\n --batch_size 48 \\n --num_steps 300000 \\n --warmup_steps 10000 \\n --seed 0 \\n --min_lr=0.0000866 \\n --max_lr=0.0000866 \\n --data_dir $data_dir",shellscript,tab
111
+ 110,1100040,"experiments/tokenizer_time_measurement_grain.sh",0,406,"#!/usr/bin/env bash\nsource .venv/bin/activate\n\n\ndata_dir='data_arrayrecord/dummy'\n\n# FIXME: the `time_measurement_interval` line is only for debugging and should be removed\nsrun python train_tokenizer.py \\n --time_measurement_interval 10 \\n --batch_size 48 \\n --num_steps 300000 \\n --warmup_steps 10000 \\n --seed 0 \\n --min_lr=0.0000866 \\n --max_lr=0.0000866 \\n --data_dir $data_dir",shellscript,selection_command
112
+ 111,1100205,"experiments/tokenizer_time_measurement_grain.sh",405,0,"",shellscript,selection_command
113
+ 112,1100851,"experiments/tokenizer_cross_node_checkpointing_test.sh",0,0,"",shellscript,tab
114
+ 113,1101359,"experiments/tokenizer_cross_node_checkpointing_test.sh",0,0,"#!/usr/bin/env bash\nsource .venv/bin/activate\n\n\ndata_dir='data_arrayrecord/dummy'\n\n# FIXME: the `time_measurement_interval` line is only for debugging and should be removed\nsrun python train_tokenizer.py \\n --time_measurement_interval 10 \\n --batch_size 48 \\n --num_steps 300000 \\n --warmup_steps 10000 \\n --seed 0 \\n --min_lr=0.0000866 \\n --max_lr=0.0000866 \\n --data_dir $data_dir",shellscript,content
115
+ 114,1101556,"experiments/tokenizer_cross_node_checkpointing_test.sh",405,0,"",shellscript,selection_command
116
+ 115,1101889,"experiments/tokenizer_cross_node_checkpointing_test.sh",380,0,"",shellscript,selection_command
117
+ 116,1102080,"experiments/tokenizer_cross_node_checkpointing_test.sh",355,0,"",shellscript,selection_command
118
+ 117,1102082,"experiments/tokenizer_cross_node_checkpointing_test.sh",330,0,"",shellscript,selection_command
119
+ 118,1102118,"experiments/tokenizer_cross_node_checkpointing_test.sh",313,0,"",shellscript,selection_command
120
+ 119,1102145,"experiments/tokenizer_cross_node_checkpointing_test.sh",288,0,"",shellscript,selection_command
121
+ 120,1102179,"experiments/tokenizer_cross_node_checkpointing_test.sh",263,0,"",shellscript,selection_command
122
+ 121,1102212,"experiments/tokenizer_cross_node_checkpointing_test.sh",229,0,"",shellscript,selection_command
123
+ 122,1102245,"experiments/tokenizer_cross_node_checkpointing_test.sh",196,0,"",shellscript,selection_command
124
+ 123,1102279,"experiments/tokenizer_cross_node_checkpointing_test.sh",106,0,"",shellscript,selection_command
125
+ 124,1102316,"experiments/tokenizer_cross_node_checkpointing_test.sh",82,0,"",shellscript,selection_command
126
+ 125,1102447,"experiments/tokenizer_cross_node_checkpointing_test.sh",71,0,"",shellscript,selection_command
127
+ 126,1102634,"experiments/tokenizer_cross_node_checkpointing_test.sh",47,0,"",shellscript,selection_command
128
+ 127,1102791,"experiments/tokenizer_cross_node_checkpointing_test.sh",71,0,"",shellscript,selection_command
129
+ 128,1110387,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,0,"",shellscript,selection_command
130
+ 129,1110528,"experiments/tokenizer_cross_node_checkpointing_test.sh",56,0,"",shellscript,selection_command
131
+ 130,1110801,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,0,"",shellscript,selection_command
132
+ 131,1111074,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,1,"d",shellscript,selection_command
133
+ 132,1111133,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,16,"data_arrayrecord",shellscript,selection_command
134
+ 133,1111319,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,17,"data_arrayrecord/",shellscript,selection_command
135
+ 134,1111463,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,22,"data_arrayrecord/dummy",shellscript,selection_command
136
+ 135,1117872,"experiments/tokenizer_cross_node_checkpointing_test.sh",82,0,"",shellscript,selection_mouse
137
+ 136,1118489,"experiments/tokenizer_cross_node_checkpointing_test.sh",48,0,"",shellscript,selection_command
138
+ 137,1118660,"experiments/tokenizer_cross_node_checkpointing_test.sh",56,0,"",shellscript,selection_command
139
+ 138,1118777,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,0,"",shellscript,selection_command
140
+ 139,1118919,"experiments/tokenizer_cross_node_checkpointing_test.sh",74,0,"",shellscript,selection_command
141
+ 140,1119567,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,22,"",shellscript,content
142
+ 141,1120989,"experiments/tokenizer_cross_node_checkpointing_test.sh",58,0,"d",shellscript,content
143
+ 142,1120990,"experiments/tokenizer_cross_node_checkpointing_test.sh",59,0,"",shellscript,selection_keyboard
144
+ 143,1121070,"experiments/tokenizer_cross_node_checkpointing_test.sh",59,0,"a",shellscript,content
145
+ 144,1121071,"experiments/tokenizer_cross_node_checkpointing_test.sh",60,0,"",shellscript,selection_keyboard
146
+ 145,1121134,"experiments/tokenizer_cross_node_checkpointing_test.sh",60,0,"t",shellscript,content
147
+ 146,1121135,"experiments/tokenizer_cross_node_checkpointing_test.sh",61,0,"",shellscript,selection_keyboard
148
+ 147,1121282,"experiments/tokenizer_cross_node_checkpointing_test.sh",61,0,"a",shellscript,content
149
+ 148,1121283,"experiments/tokenizer_cross_node_checkpointing_test.sh",62,0,"",shellscript,selection_keyboard
150
+ 149,1121512,"experiments/tokenizer_cross_node_checkpointing_test.sh",62,0,"_",shellscript,content
151
+ 150,1121513,"experiments/tokenizer_cross_node_checkpointing_test.sh",63,0,"",shellscript,selection_keyboard
152
+ 151,1121694,"experiments/tokenizer_cross_node_checkpointing_test.sh",63,0,"t",shellscript,content
153
+ 152,1121695,"experiments/tokenizer_cross_node_checkpointing_test.sh",64,0,"",shellscript,selection_keyboard
154
+ 153,1121840,"experiments/tokenizer_cross_node_checkpointing_test.sh",64,0,"f",shellscript,content
155
+ 154,1121840,"experiments/tokenizer_cross_node_checkpointing_test.sh",65,0,"",shellscript,selection_keyboard
156
+ 155,1122344,"experiments/tokenizer_cross_node_checkpointing_test.sh",65,0,"r",shellscript,content
157
+ 156,1122345,"experiments/tokenizer_cross_node_checkpointing_test.sh",66,0,"",shellscript,selection_keyboard
158
+ 157,1122437,"experiments/tokenizer_cross_node_checkpointing_test.sh",66,0,"e",shellscript,content
159
+ 158,1122438,"experiments/tokenizer_cross_node_checkpointing_test.sh",67,0,"",shellscript,selection_keyboard
160
+ 159,1122606,"experiments/tokenizer_cross_node_checkpointing_test.sh",67,0,"c",shellscript,content
161
+ 160,1122607,"experiments/tokenizer_cross_node_checkpointing_test.sh",68,0,"",shellscript,selection_keyboard
162
+ 161,1122749,"experiments/tokenizer_cross_node_checkpointing_test.sh",68,0,"o",shellscript,content
163
+ 162,1122750,"experiments/tokenizer_cross_node_checkpointing_test.sh",69,0,"",shellscript,selection_keyboard
164
+ 163,1122855,"experiments/tokenizer_cross_node_checkpointing_test.sh",69,0,"r",shellscript,content
165
+ 164,1122856,"experiments/tokenizer_cross_node_checkpointing_test.sh",70,0,"",shellscript,selection_keyboard
166
+ 165,1122892,"experiments/tokenizer_cross_node_checkpointing_test.sh",70,0,"d",shellscript,content
167
+ 166,1122892,"experiments/tokenizer_cross_node_checkpointing_test.sh",71,0,"",shellscript,selection_keyboard
168
+ 167,1122950,"experiments/tokenizer_cross_node_checkpointing_test.sh",71,0,"s",shellscript,content
169
+ 168,1122951,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,0,"",shellscript,selection_keyboard
170
+ 169,1123161,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,0,"/",shellscript,content
171
+ 170,1123161,"experiments/tokenizer_cross_node_checkpointing_test.sh",73,0,"",shellscript,selection_keyboard
172
+ 171,1123264,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,0,"",shellscript,selection_command
173
+ 172,1124458,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,1,"",shellscript,content
174
+ 173,1126526,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,0,"/",shellscript,content
175
+ 174,1126529,"experiments/tokenizer_cross_node_checkpointing_test.sh",73,0,"",shellscript,selection_keyboard
176
+ 175,1126530,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,0,"",shellscript,selection_command
177
+ 176,1127573,"experiments/tokenizer_cross_node_checkpointing_test.sh",72,1,"",shellscript,content
178
+ 177,1128315,"experiments/tokenizer_cross_node_checkpointing_test.sh",74,0,"",shellscript,selection_command
179
+ 178,1128405,"experiments/tokenizer_cross_node_checkpointing_test.sh",99,0,"",shellscript,selection_command
180
+ 179,1131243,"experiments/tokenizer_cross_node_checkpointing_test.sh",75,90,"",shellscript,content
181
+ 180,1131585,"experiments/tokenizer_cross_node_checkpointing_test.sh",108,0,"",shellscript,selection_command
182
+ 181,1131863,"experiments/tokenizer_cross_node_checkpointing_test.sh",108,37,"",shellscript,content
183
+ 182,1131871,"experiments/tokenizer_cross_node_checkpointing_test.sh",112,0,"",shellscript,selection_command
184
+ 183,1132063,"experiments/tokenizer_cross_node_checkpointing_test.sh",79,0,"",shellscript,selection_command
185
+ 184,1132391,"experiments/tokenizer_cross_node_checkpointing_test.sh",80,0,"",shellscript,selection_command
186
+ 185,1132613,"experiments/tokenizer_cross_node_checkpointing_test.sh",113,0,"",shellscript,selection_command
187
+ 186,1132906,"experiments/tokenizer_cross_node_checkpointing_test.sh",135,0,"",shellscript,selection_command
188
+ 187,1133661,"experiments/tokenizer_cross_node_checkpointing_test.sh",160,0,"",shellscript,selection_command
189
+ 188,1133921,"experiments/tokenizer_cross_node_checkpointing_test.sh",187,0,"",shellscript,selection_command
190
+ 189,1133936,"experiments/tokenizer_cross_node_checkpointing_test.sh",202,0,"",shellscript,selection_command
191
+ 190,1133969,"experiments/tokenizer_cross_node_checkpointing_test.sh",227,0,"",shellscript,selection_command
192
+ 191,1134004,"experiments/tokenizer_cross_node_checkpointing_test.sh",252,0,"",shellscript,selection_command
193
+ 192,1134595,"experiments/tokenizer_cross_node_checkpointing_test.sh",227,0,"",shellscript,selection_command
194
+ 193,1134853,"experiments/tokenizer_cross_node_checkpointing_test.sh",202,0,"",shellscript,selection_command
195
+ 194,1134871,"experiments/tokenizer_cross_node_checkpointing_test.sh",187,0,"",shellscript,selection_command
196
+ 195,1134979,"experiments/tokenizer_cross_node_checkpointing_test.sh",160,0,"",shellscript,selection_command
197
+ 196,1134981,"experiments/tokenizer_cross_node_checkpointing_test.sh",135,0,"",shellscript,selection_command
198
+ 197,1135046,"experiments/tokenizer_cross_node_checkpointing_test.sh",113,0,"",shellscript,selection_command
199
+ 198,1136383,"experiments/tokenizer_cross_node_checkpointing_test.sh",113,0,"",shellscript,selection_command
200
+ 199,1136520,"experiments/tokenizer_cross_node_checkpointing_test.sh",114,0,"",shellscript,selection_command
201
+ 200,1136711,"experiments/tokenizer_cross_node_checkpointing_test.sh",125,0,"",shellscript,selection_command
202
+ 201,1136907,"experiments/tokenizer_cross_node_checkpointing_test.sh",128,0,"",shellscript,selection_command
203
+ 202,1137641,"experiments/tokenizer_cross_node_checkpointing_test.sh",125,0,"",shellscript,selection_command
204
+ 203,1137791,"experiments/tokenizer_cross_node_checkpointing_test.sh",114,0,"",shellscript,selection_command
205
+ 204,1138172,"experiments/tokenizer_cross_node_checkpointing_test.sh",125,0,"",shellscript,selection_command
206
+ 205,1143530,"experiments/tokenizer_cross_node_checkpointing_test.sh",125,2,"",shellscript,content
207
+ 206,1143727,"experiments/tokenizer_cross_node_checkpointing_test.sh",125,0,"2",shellscript,content
208
+ 207,1143727,"experiments/tokenizer_cross_node_checkpointing_test.sh",126,0,"",shellscript,selection_keyboard
209
+ 208,1143784,"experiments/tokenizer_cross_node_checkpointing_test.sh",126,0,"4",shellscript,content
210
+ 209,1143785,"experiments/tokenizer_cross_node_checkpointing_test.sh",127,0,"",shellscript,selection_keyboard
211
+ 210,1144074,"experiments/tokenizer_cross_node_checkpointing_test.sh",126,0,"",shellscript,selection_command
212
+ 211,1147732,"train_tokenizer.py",0,0,"from dataclasses import dataclass, field\nimport os\nimport time\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax\nfrom orbax.checkpoint import PyTreeCheckpointer\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\n\nfrom models.tokenizer import TokenizerVQVAE\nfrom utils.dataloader import get_dataloader\nfrom utils.parameter_utils import count_parameters_by_component\n\nts = int(time.time())\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 300_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = ""data_tfrecords/coinrun""\n checkpoint: str = """"\n # Optimization\n vq_beta: float = 0.25\n batch_size: int = 48\n min_lr: float = 3e-4\n max_lr: float = 3e-4\n warmup_steps: int = 10000\n # Tokenizer\n model_dim: int = 512\n latent_dim: int = 32\n num_latents: int = 1024\n patch_size: int = 4\n num_blocks: int = 8\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.01\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_tokenizer""\n tags: list[str] = field(default_factory=lambda: [""tokenizer""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 10000\n log_gradients: bool = False\n\n\nargs = tyro.cli(Args)\n\n\ndef tokenizer_loss_fn(params, state, inputs):\n # --- Compute loss ---\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mse = jnp.square(inputs[""videos""] - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n\n # --- Compute validation metrics ---\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean()\n ssim = pix.ssim(gt, recon).mean()\n _, index_counts = jnp.unique_counts(\n jnp.ravel(outputs[""indices""]), size=args.num_latents, fill_value=0\n )\n codebook_usage = (index_counts != 0).mean()\n metrics = dict(\n loss=loss,\n mse=mse,\n q_loss=q_loss,\n commitment_loss=commitment_loss,\n psnr=psnr,\n ssim=ssim,\n codebook_usage=codebook_usage,\n )\n return loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(state, inputs):\n grad_fn = jax.value_and_grad(tokenizer_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""encoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""encoder""]\n )\n metrics[""vq_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""vq""]\n )\n metrics[""decoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""decoder""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=jnp.float32,\n ),\n )\n init_params = tokenizer.init(_rng, inputs)\n\n param_counts = count_parameters_by_component(init_params)\n\n if args.log and jax.process_index() == 0:\n wandb.init(\n entity=args.entity,\n project=args.project,\n name=args.name,\n tags=args.tags,\n group=""debug"",\n config=args,\n )\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4)\n train_state = TrainState.create(apply_fn=tokenizer.apply, params=init_params, tx=tx)\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(\n mesh, PartitionSpec(""data"", None, None, None, None)\n )\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Load checkpoint ---\n step = 0\n if args.checkpoint:\n restore_target = {""model"": train_state}\n restore_args = orbax_utils.restore_args_from_target(restore_target)\n train_state.params[""params""].update(\n PyTreeCheckpointer()\n .restore(args.checkpoint, item=restore_target, restore_args=restore_args)[\n ""model""\n ]\n .params[""params""]\n )\n # Assume checkpoint is of the form tokenizer_<timestamp>_<step>\n step += int(args.checkpoint.split(""_"")[-1])\n\n # --- TRAIN LOOP ---\n tfrecord_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".tfrecord"")\n ]\n dataloader = get_dataloader(\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n tfrecord_files,\n args.seq_len,\n args.batch_size,\n *image_shape,\n seed=args.seed,\n )\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in dataloader) # type: ignore\n print(f""Starting training from step {step}..."")\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n # NOTE: Process-dependent control flow deliberately happens\n # after indexing operation since it must not contain code\n # sections that lead to cross-accelerator communication.\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[0])),\n recon=wandb.Image(np.asarray(recon_seq[0])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n if step % args.log_checkpoint_interval == 0:\n ckpt = {""model"": train_state}\n orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n save_args = orbax_utils.save_args_from_target(ckpt)\n orbax_checkpointer.save(\n os.path.join(os.getcwd(), args.ckpt_dir, f""tokenizer_{ts}_{step}""),\n ckpt,\n save_args=save_args,\n )\n if step >= args.num_steps:\n break\n",python,tab
213
+ 212,1148136,"train_tokenizer.py",0,0,"",python,selection_command
214
+ 213,1149197,"train_tokenizer.py",321,0,"",python,selection_command
215
+ 214,1149921,"train_tokenizer.py",345,0,"",python,selection_command
216
+ 215,1150231,"train_tokenizer.py",876,0,"",python,selection_command
217
+ 216,1150404,"train_tokenizer.py",1543,0,"",python,selection_command
218
+ 217,1150890,"train_tokenizer.py",876,0,"",python,selection_command
219
+ 218,1151918,"train_tokenizer.py",1543,0,"",python,selection_command
220
+ 219,1153375,"train_tokenizer.py",1520,0,"",python,selection_command
221
+ 220,1153938,"train_tokenizer.py",1516,0,"",python,selection_command
222
+ 221,1154015,"train_tokenizer.py",1516,1,"c",python,selection_command
223
+ 222,1154122,"train_tokenizer.py",1516,8,"ckpt_dir",python,selection_command
224
+ 223,1154212,"train_tokenizer.py",1516,0,"",python,selection_command
225
+ 224,1156641,"experiments/tokenizer_cross_node_checkpointing_test.sh",0,0,"",shellscript,tab
226
+ 225,1157702,"experiments/tokenizer_cross_node_checkpointing_test.sh",129,0,"\n ",shellscript,content
227
+ 226,1158257,"experiments/tokenizer_cross_node_checkpointing_test.sh",130,4,"",shellscript,content
228
+ 227,1158405,"experiments/tokenizer_cross_node_checkpointing_test.sh",130,0,"ckpt_dir",shellscript,content
229
+ 228,1158408,"experiments/tokenizer_cross_node_checkpointing_test.sh",137,0,"",shellscript,selection_command
230
+ 229,1158930,"experiments/tokenizer_cross_node_checkpointing_test.sh",130,0,"",shellscript,selection_command
231
+ 230,1159003,"experiments/tokenizer_cross_node_checkpointing_test.sh",138,0," checkpoints/tokenizer_cross_node_checkpointing_test \",shellscript,content
232
+ 231,1159003,"experiments/tokenizer_cross_node_checkpointing_test.sh",130,0," --",shellscript,content
233
+ 232,1159005,"experiments/tokenizer_cross_node_checkpointing_test.sh",198,0,"",shellscript,selection_command
234
+ 233,1159837,"experiments/tokenizer_cross_node_checkpointing_test.sh",197,0,"",shellscript,selection_command
235
+ 234,1160031,"experiments/tokenizer_cross_node_checkpointing_test.sh",157,0,"",shellscript,selection_command
236
+ 235,1160307,"experiments/tokenizer_cross_node_checkpointing_test.sh",156,0,"",shellscript,selection_command
237
+ 236,1160315,"experiments/tokenizer_cross_node_checkpointing_test.sh",145,0,"",shellscript,selection_command
238
+ 237,1160669,"experiments/tokenizer_cross_node_checkpointing_test.sh",156,0,"",shellscript,selection_command
239
+ 238,1160832,"experiments/tokenizer_cross_node_checkpointing_test.sh",157,0,"",shellscript,selection_command
240
+ 239,1161032,"experiments/tokenizer_cross_node_checkpointing_test.sh",197,0,"",shellscript,selection_command
241
+ 240,1161156,"experiments/tokenizer_cross_node_checkpointing_test.sh",203,0,"",shellscript,selection_command
242
+ 241,1161551,"experiments/tokenizer_cross_node_checkpointing_test.sh",197,0,"",shellscript,selection_command
243
+ 242,1175160,"experiments/tokenizer_cross_node_checkpointing_test.sh",166,0,"",shellscript,selection_mouse
244
+ 243,1176327,"experiments/tokenizer_cross_node_checkpointing_test.sh",157,0,"",shellscript,selection_command
245
+ 244,1176510,"experiments/tokenizer_cross_node_checkpointing_test.sh",197,0,"",shellscript,selection_command
246
+ 245,1176691,"experiments/tokenizer_cross_node_checkpointing_test.sh",203,0,"",shellscript,selection_command
247
+ 246,1178426,"experiments/tokenizer_cross_node_checkpointing_test.sh",134,0,"",shellscript,selection_command
248
+ 247,1178747,"experiments/tokenizer_cross_node_checkpointing_test.sh",198,0,"\n ",shellscript,content
249
+ 248,1179447,"experiments/tokenizer_cross_node_checkpointing_test.sh",203,0,"-",shellscript,content
250
+ 249,1179448,"experiments/tokenizer_cross_node_checkpointing_test.sh",204,0,"",shellscript,selection_keyboard
251
+ 250,1179582,"experiments/tokenizer_cross_node_checkpointing_test.sh",204,0,"-",shellscript,content
252
+ 251,1179583,"experiments/tokenizer_cross_node_checkpointing_test.sh",205,0,"",shellscript,selection_keyboard
253
+ 252,1179962,"experiments/tokenizer_cross_node_checkpointing_test.sh",205,0,"log_checkpoint_interval 10000 \",shellscript,content
254
+ 253,1180203,"experiments/tokenizer_cross_node_checkpointing_test.sh",235,0,"",shellscript,selection_command
255
+ 254,1180737,"train_tokenizer.py",0,0,"",python,tab
256
+ 255,1182128,"train_tokenizer.py",1539,0,"",python,selection_command
257
+ 256,1182682,"experiments/tokenizer_cross_node_checkpointing_test.sh",0,0,"",shellscript,tab
258
+ 257,1183280,"experiments/tokenizer_cross_node_checkpointing_test.sh",229,0,"",shellscript,selection_command
259
+ 258,1184039,"experiments/tokenizer_cross_node_checkpointing_test.sh",229,5,"",shellscript,content
260
+ 259,1184259,"experiments/tokenizer_cross_node_checkpointing_test.sh",229,0,"1",shellscript,content
261
+ 260,1184260,"experiments/tokenizer_cross_node_checkpointing_test.sh",230,0,"",shellscript,selection_keyboard
262
+ 261,1184351,"experiments/tokenizer_cross_node_checkpointing_test.sh",230,0,"0",shellscript,content
263
+ 262,1184351,"experiments/tokenizer_cross_node_checkpointing_test.sh",231,0,"",shellscript,selection_keyboard
264
+ 263,1184456,"experiments/tokenizer_cross_node_checkpointing_test.sh",230,0,"",shellscript,selection_command
265
+ 264,1185468,"experiments/tokenizer_cross_node_checkpointing_test.sh",199,0,"",shellscript,selection_command
266
+ 265,1194648,"TERMINAL",0,0,"b",,terminal_output
267
+ 266,1194778,"TERMINAL",0,0,"as",,terminal_output
268
+ 267,1194884,"TERMINAL",0,0,"h",,terminal_output
269
+ 268,1195014,"TERMINAL",0,0," e",,terminal_output
270
+ 269,1195229,"TERMINAL",0,0,"xp",,terminal_output
271
+ 270,1195414,"TERMINAL",0,0,"er",,terminal_output
272
+ 271,1195480,"TERMINAL",0,0,"i",,terminal_output
273
+ 272,1195561,"TERMINAL",0,0,"m",,terminal_output
274
+ 273,1195704,"TERMINAL",0,0,"ents/",,terminal_output
275
+ 274,1195979,"TERMINAL",0,0,"tok",,terminal_output
276
+ 275,1196085,"TERMINAL",0,0,"enizer_",,terminal_output
277
+ 276,1197093,"TERMINAL",0,0,"c",,terminal_output
278
+ 277,1197185,"TERMINAL",0,0,"h",,terminal_output
279
+ 278,1197356,"TERMINAL",0,0,"",,terminal_output
280
+ 279,1198951,"TERMINAL",0,0,"",,terminal_output
281
+ 280,1199518,"TERMINAL",0,0,"r",,terminal_output
282
+ 281,1249444,"TERMINAL",0,0,"oss_node_checkpointing_test.sh ",,terminal_output
283
+ 282,2381813,"experiments/tokenizer_cross_node_checkpointing_test.sh",0,0,"Switched from branch 'main' to 'fix-distributed-checkpointing'",shellscript,git_branch_checkout
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-823236e5-d9b8-4c96-ab4a-24b8972648001754120306348-2025_08_02-09.38.34.668/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-847ad052-cbff-45db-a343-a2c6b2d212411753383716687-2025_07_24-21.02.30.722/source.csv ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,3,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\n\nimport einops\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\nimport flax.nnx as nnx\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = (\n 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n )\n warmup_steps: int = 5000\n lr_schedule: str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n tokenizer_ffn_dim: int = 2048\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 4\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n lam_ffn_dim: int = 2048\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 4\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_ffn_dim: int = 2048\n dyna_num_blocks: int = 6\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n param_dtype = jnp.float32\n dtype = jnp.bfloat16\n use_flash_attention: bool = True\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(model, inputs):\n """"""Compute masked dynamics loss""""""\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n model.train()\n outputs = model(inputs, training=True)\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean() # type: ignore\n ssim = pix.ssim(gt, recon).mean() # type: ignore\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_latent_actions, fill_value=0\n )\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(model, optimizer, inputs):\n """"""Update state and compute metrics""""""\n\n def loss_fn(model):\n return dynamics_loss_fn(model, inputs)\n\n (loss, (recon, metrics)), grads = nnx.value_and_grad(loss_fn, has_aux=True)(model)\n optimizer.update(grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n rng, _rng = jax.random.split(rng)\n rngs = nnx.Rngs(_rng)\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n tokenizer_ffn_dim=args.tokenizer_ffn_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n lam_ffn_dim=args.lam_ffn_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_ffn_dim=args.dyna_ffn_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n\n _, params, _ = nnx.split(genie, nnx.Param, ...)\n param_counts = count_parameters_by_component(params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(\n args.lr_schedule,\n args.init_lr,\n args.max_lr,\n args.decay_end,\n args.num_steps,\n args.warmup_steps,\n args.wsd_decay_steps,\n )\n tx = optax.adamw(\n learning_rate=lr_schedule,\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n optimizer = nnx.Optimizer(genie, tx)\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n\n model_state = nnx.state(optimizer.model)\n model_sharded_state = jax.device_put(model_state, replicated_sharding)\n nnx.update(optimizer.model, model_sharded_state)\n optimizer_state = nnx.state(optimizer, nnx.optimizer.OptState)\n optimizer_sharded_state = jax.device_put(optimizer_state, replicated_sharding)\n nnx.update(optimizer, optimizer_sharded_state)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeSave, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointSave, grain.checkpoint.CheckpointHandler) # type: ignore\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler) # type: ignore\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n image_shape = (args.image_height, args.image_width, args.image_channels)\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n abstract_optimizer = nnx.eval_shape(lambda: optimizer)\n abstract_optimizer_state = nnx.state(abstract_optimizer)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(abstract_optimizer_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )\n restored_optimizer_state = restored[""model_state""]\n nnx.update(optimizer, restored_optimizer_state)\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n optimizer = restore_genie_components(\n optimizer, replicated_sharding, rng, args\n )\n\n # --- TRAIN LOOP ---\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator) # type: ignore\n print(f""Starting training from step {step}..."")\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng_mask = jax.random.split(rng, 2)\n inputs = dict(videos=videos, mask_rng=_rng_mask)\n loss, recon, metrics = train_step(genie, optimizer, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) / 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n optimizer_state = nnx.state(optimizer)\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeSave(optimizer_state),\n dataloader_state=grain.checkpoint.CheckpointSave(\n grain_iterator\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
3
+ 2,818,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"9:02:30 PM [info] Activating crowd-code\n9:02:30 PM [info] Recording started\n9:02:30 PM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,1049,"train_dynamics.py",0,0,"",python,tab
5
+ 4,1061,"TERMINAL",0,0,"bash",,terminal_focus
6
+ 5,61246,"genie.py",0,0,"from typing import Dict, Any\n\nimport optax\nimport jax\nimport jax.numpy as jnp\nimport flax.nnx as nnx\nfrom flax.training.train_state import TrainState\nimport orbax.checkpoint as ocp\n\nfrom models.dynamics import DynamicsMaskGIT\nfrom models.lam import LatentActionModel\nfrom models.tokenizer import TokenizerVQVAE\n\nimport grain\n\n\nclass Genie(nnx.Module):\n """"""Genie model""""""\n\n def __init__(\n self,\n in_dim: int,\n tokenizer_dim: int,\n tokenizer_ffn_dim: int,\n latent_patch_dim: int,\n num_patch_latents: int,\n patch_size: int,\n tokenizer_num_blocks: int,\n tokenizer_num_heads: int,\n lam_dim: int,\n lam_ffn_dim: int,\n latent_action_dim: int,\n num_latent_actions: int,\n lam_patch_size: int,\n lam_num_blocks: int,\n lam_num_heads: int,\n lam_co_train: bool,\n dyna_dim: int,\n dyna_ffn_dim: int,\n dyna_num_blocks: int,\n dyna_num_heads: int,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n rngs: nnx.Rngs,\n dropout: float = 0.0,\n mask_limit: float = 0.0,\n ):\n # --- Tokenizer ---\n self.in_dim = in_dim\n self.tokenizer_dim = tokenizer_dim\n self.tokenizer_ffn_dim = tokenizer_ffn_dim\n self.latent_patch_dim = latent_patch_dim\n self.num_patch_latents = num_patch_latents\n self.patch_size = patch_size\n self.tokenizer_num_blocks = tokenizer_num_blocks\n self.tokenizer_num_heads = tokenizer_num_heads\n # --- LAM ---\n self.lam_dim = lam_dim\n self.lam_ffn_dim = lam_ffn_dim\n self.latent_action_dim = latent_action_dim\n self.num_latent_actions = num_latent_actions\n self.lam_patch_size = lam_patch_size\n self.lam_num_blocks = lam_num_blocks\n self.lam_num_heads = lam_num_heads\n self.lam_co_train = lam_co_train\n # --- Dynamics ---\n self.dyna_dim = dyna_dim\n self.dyna_ffn_dim = dyna_ffn_dim\n self.dyna_num_blocks = dyna_num_blocks\n self.dyna_num_heads = dyna_num_heads\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n self.dropout = dropout\n self.mask_limit = mask_limit\n\n self.tokenizer = TokenizerVQVAE(\n in_dim=self.in_dim,\n model_dim=self.tokenizer_dim,\n ffn_dim=self.tokenizer_ffn_dim,\n latent_dim=self.latent_patch_dim,\n num_latents=self.num_patch_latents,\n patch_size=self.patch_size,\n num_blocks=self.tokenizer_num_blocks,\n num_heads=self.tokenizer_num_heads,\n dropout=0.0,\n codebook_dropout=0.0,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n self.lam = LatentActionModel(\n in_dim=self.in_dim,\n model_dim=self.lam_dim,\n ffn_dim=self.lam_ffn_dim,\n latent_dim=self.latent_patch_dim,\n num_latents=self.num_latent_actions,\n patch_size=self.lam_patch_size,\n num_blocks=self.lam_num_blocks,\n num_heads=self.lam_num_heads,\n dropout=0.0,\n codebook_dropout=0.0,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n self.dynamics = DynamicsMaskGIT(\n model_dim=self.dyna_dim,\n ffn_dim=self.dyna_ffn_dim,\n num_latents=self.num_patch_latents,\n latent_action_dim=self.latent_action_dim,\n num_blocks=self.dyna_num_blocks,\n num_heads=self.dyna_num_heads,\n dropout=self.dropout,\n mask_limit=self.mask_limit,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n\n def __call__(self, batch: Dict[str, Any], training: bool = True) -> Dict[str, Any]:\n tokenizer_outputs = self.tokenizer.vq_encode(batch[""videos""], training=False)\n lam_outputs = self.lam.vq_encode(batch[""videos""], training=False)\n latent_actions = jax.lax.cond(\n self.lam_co_train,\n lambda: lam_outputs[""z_q""],\n lambda: jax.lax.stop_gradient(lam_outputs[""z_q""]),\n )\n outputs = dict(\n video_tokens=jax.lax.stop_gradient(tokenizer_outputs[""indices""]),\n latent_actions=latent_actions,\n )\n outputs[""mask_rng""] = batch[""mask_rng""]\n dyna_outputs = self.dynamics(outputs, training)\n outputs.update(dyna_outputs)\n mle_indices = jnp.argmax(outputs[""token_logits""], axis=-1)\n outputs[""recon""] = self.tokenizer.decode(\n mle_indices, batch[""videos""].shape[2:4]\n )\n outputs[""lam_indices""] = lam_outputs[""indices""]\n return outputs\n\n def sample(\n self,\n batch: Dict[str, Any],\n seq_len: int,\n steps: int = 25,\n temperature: float = 1,\n sample_argmax: bool = False,\n ) -> Any:\n """"""\n Autoregressively samples up to `seq_len` future frames, following Figure 8 of the paper.\n\n - Input frames are tokenized once.\n - Future frames are generated autoregressively in token space.\n - All frames are detokenized in a single pass.\n\n Note:\n - For interactive or step-wise sampling, detokenization should occur after each action.\n - To maintain consistent tensor shapes across timesteps, all current and future frames are decoded at every step.\n - Temporal causal structure is preserved by\n a) reapplying the mask before each decoding step.\n b) a temporal causal mask is applied within each ST-transformer block.\n\n Dimension keys:\n B: batch size\n T: number of input (conditioning) frames\n N: patches per frame\n S: sequence length\n A: action space\n D: model latent dimension\n """"""\n # --- Encode videos and actions ---\n tokenizer_out = self.tokenizer.vq_encode(batch[""videos""], training=False)\n token_idxs = tokenizer_out[""indices""] # (B, T, N)\n B, T, N = token_idxs.shape\n pad_shape = (B, seq_len - T, N)\n pad = jnp.zeros(pad_shape, dtype=token_idxs.dtype)\n token_idxs = jnp.concatenate([token_idxs, pad], axis=1) # (B, S, N)\n action_tokens = self.lam.vq.get_codes(batch[""latent_actions""])\n\n maskgit_step = MaskGITStep(\n dynamics=self.dynamics,\n tokenizer=self.tokenizer,\n temperature=temperature,\n sample_argmax=sample_argmax,\n steps=steps,\n )\n\n def maskgit_loop_fn(carry, module, x):\n return module(carry, x)\n\n scanned_maskgit_loop = nnx.scan(\n maskgit_loop_fn,\n in_axes=(nnx.Carry, None, 0),\n out_axes=(nnx.Carry, 0),\n length=steps,\n )\n\n def generation_step_fn(carry, step_t):\n rng, current_token_idxs = carry\n rng, step_rng = jax.random.split(rng)\n\n # Mask current and future frames (i.e., t >= step_t)\n mask = jnp.arange(seq_len) >= step_t # (S,)\n mask = jnp.broadcast_to(mask[None, :, None], (B, seq_len, N)) # (B, S, N)\n mask = mask.astype(bool)\n masked_token_idxs = current_token_idxs * ~mask\n\n # --- Initialize and run MaskGIT loop ---\n init_carry_maskgit = (\n step_rng,\n masked_token_idxs,\n mask,\n action_tokens,\n )\n # FIXME (f.srambical): test whether sampling works with this\n final_carry_maskgit, _ = scanned_maskgit_loop(\n init_carry_maskgit, maskgit_step, jnp.arange(steps)\n )\n final_carry_maskgit = carry\n updated_token_idxs = final_carry_maskgit[1]\n new_carry = (rng, updated_token_idxs)\n return new_carry, None\n\n # --- Run the autoregressive generation using scan ---\n initial_carry = (batch[""rng""], token_idxs)\n timesteps_to_scan = jnp.arange(T, seq_len)\n final_carry, _ = jax.lax.scan(\n generation_step_fn, initial_carry, timesteps_to_scan\n )\n final_token_idxs = final_carry[1]\n\n # --- Decode all tokens at once at the end ---\n final_frames = self.tokenizer.decode(\n final_token_idxs,\n video_hw=batch[""videos""].shape[2:4],\n )\n return final_frames\n\n def vq_encode(self, batch, training) -> Dict[str, Any]:\n # --- Preprocess videos ---\n lam_output = self.lam.vq_encode(batch[""videos""], training=training)\n return lam_output[""indices""]\n\n\nclass MaskGITStep(nnx.Module):\n def __init__(\n self,\n dynamics: DynamicsMaskGIT,\n tokenizer: TokenizerVQVAE,\n temperature: float,\n sample_argmax: bool,\n steps: int,\n ):\n self.dynamics = dynamics\n self.tokenizer = tokenizer\n self.temperature = temperature\n self.sample_argmax = sample_argmax\n self.steps = steps\n\n def __call__(self, carry, x):\n rng, token_idxs, mask, action_tokens = carry\n step = x\n N = token_idxs.shape[2]\n\n # --- Construct + encode video ---\n vid_embed = self.dynamics.patch_embed(token_idxs) # (B, S, N, D)\n mask_token = self.dynamics.mask_token.value # (1, 1, 1, D,)\n mask_expanded = mask[..., None] # (B, S, N, 1)\n vid_embed = jnp.where(mask_expanded, mask_token, vid_embed)\n\n # --- Predict transition ---\n act_embed = self.dynamics.action_up(action_tokens)\n vid_embed += jnp.pad(act_embed, ((0, 0), (1, 0), (0, 0), (0, 0)))\n unmasked_ratio = jnp.cos(jnp.pi * (step + 1) / (self.steps * 2))\n step_temp = self.temperature * (1.0 - unmasked_ratio)\n final_logits = self.dynamics.dynamics(vid_embed) / step_temp\n\n # --- Sample new tokens for final frame ---\n if self.sample_argmax:\n sampled_token_idxs = jnp.argmax(final_logits, axis=-1)\n else:\n rng, _rng = jax.random.split(rng)\n sampled_token_idxs = jax.random.categorical(_rng, final_logits)\n gather_fn = jax.vmap(jax.vmap(jax.vmap(lambda x, y: x[y])))\n final_token_probs = gather_fn(jax.nn.softmax(final_logits), sampled_token_idxs)\n final_token_probs += ~mask\n # Update masked tokens only\n token_idxs = jnp.where(mask, sampled_token_idxs, token_idxs)\n\n # --- Update mask ---\n num_unmasked_tokens = jnp.round(N * (1.0 - unmasked_ratio)).astype(int)\n idx_mask = jnp.arange(final_token_probs.shape[-1]) > num_unmasked_tokens\n sorted_idxs = jnp.argsort(final_token_probs, axis=-1, descending=True)\n mask_update_fn = jax.vmap(lambda msk, ids: msk.at[ids].set(idx_mask))\n new_mask = mask_update_fn(mask, sorted_idxs)\n\n new_carry = (rng, token_idxs, new_mask, action_tokens)\n return new_carry, None\n\n\n# FIXME (f.srambical): add conversion script for old checkpoints\ndef restore_genie_components(\n optimizer: nnx.Optimizer,\n sharding: jax.sharding.NamedSharding,\n rng: jax.Array,\n args,\n):\n """"""Restore pre-trained Genie components""""""\n rngs = nnx.Rngs(rng)\n\n # dummy values since we only use tx to initialize the dummy train states\n dummy_tx = optax.adamw(\n learning_rate=optax.constant_schedule(args.max_lr),\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n )\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n step_format_fixed_length=6,\n )\n tokenizer_checkpoint_manager = ocp.CheckpointManager(\n directory=args.tokenizer_checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n dummy_tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.tokenizer_dim,\n ffn_dim=args.tokenizer_ffn_dim,\n latent_dim=args.latent_patch_dim,\n num_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n num_blocks=args.tokenizer_num_blocks,\n num_heads=args.tokenizer_num_heads,\n dropout=args.dropout,\n codebook_dropout=args.dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n dummy_tokenizer_optimizer = nnx.Optimizer(dummy_tokenizer, dummy_tx)\n dummy_tokenizer_optimizer_state = nnx.state(dummy_tokenizer_optimizer)\n abstract_sharded_tokenizer_optimizer_state = _create_abstract_sharded_pytree(\n dummy_tokenizer_optimizer_state, sharding\n )\n restored_tokenizer = tokenizer_checkpoint_manager.restore(\n step=tokenizer_checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(\n abstract_sharded_tokenizer_optimizer_state\n ),\n ),\n )[""model_state""]\n nnx.update(dummy_tokenizer_optimizer.model, restored_tokenizer.model)\n optimizer.model.tokenizer = dummy_tokenizer_optimizer.model\n tokenizer_checkpoint_manager.close()\n\n if args.lam_checkpoint:\n lam_checkpoint_manager = ocp.CheckpointManager(\n directory=args.lam_checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n dummy_lam = LatentActionModel(\n in_dim=args.image_channels,\n model_dim=args.lam_dim,\n ffn_dim=args.lam_ffn_dim,\n latent_dim=args.latent_patch_dim,\n num_latents=args.num_latent_actions,\n patch_size=args.lam_patch_size,\n num_blocks=args.lam_num_blocks,\n num_heads=args.lam_num_heads,\n dropout=args.dropout,\n codebook_dropout=args.dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n dummy_lam_optimizer = nnx.Optimizer(dummy_lam, dummy_tx)\n dummy_lam_optimizer_state = nnx.state(dummy_lam_optimizer)\n abstract_sharded_lam_optimizer_state = _create_abstract_sharded_pytree(\n dummy_lam_optimizer_state, sharding\n )\n restored_lam_optimizer = lam_checkpoint_manager.restore(\n step=lam_checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(\n abstract_sharded_lam_optimizer_state\n ),\n ),\n )[""model_state""]\n nnx.update(dummy_lam_optimizer.model, restored_lam_optimizer.model)\n optimizer.model.lam = dummy_lam_optimizer.model\n # Remove the LAM decoder to save memory and avoid unnecessary computation.\n del optimizer.model.lam.decoder\n lam_checkpoint_manager.close()\n\n return optimizer\n\n\ndef _create_abstract_sharded_pytree(pytree_template, sharding_spec):\n """"""Replaces arrays in a pytree with ShapeDtypeStructs having the given sharding.""""""\n\n def map_fn(leaf_template):\n if hasattr(leaf_template, ""shape"") and hasattr(leaf_template, ""dtype""):\n return jax.ShapeDtypeStruct(\n leaf_template.shape, leaf_template.dtype, sharding=sharding_spec\n )\n return leaf_template\n\n return jax.tree_util.tree_map(map_fn, pytree_template)\n",python,tab
7
+ 6,66037,"genie.py",0,0,"",python,selection_command
8
+ 7,76889,"genie.py",2749,0,"",python,selection_command
9
+ 8,79971,"train_dynamics.py",0,0,"",python,tab
10
+ 9,83215,"train_dynamics.py",0,0,"",python,selection_command
11
+ 10,88186,"train_dynamics.py",371,0,"",python,selection_command
12
+ 11,91116,"train_dynamics.py",377,0,"",python,selection_command
13
+ 12,91330,"train_dynamics.py",384,0,"",python,selection_command
14
+ 13,91580,"train_dynamics.py",5260,0,"",python,selection_command
15
+ 14,92840,"train_dynamics.py",5266,0,"",python,selection_command
16
+ 15,93026,"train_dynamics.py",5268,0,"",python,selection_command
17
+ 16,109627,"genie.py",0,0,"",python,tab
18
+ 17,119781,"train_dynamics.py",0,0,"",python,tab
19
+ 18,119787,"genie.py",0,0,"",python,tab
20
+ 19,157100,"genie.py",14249,0,"",python,selection_command
21
+ 20,162875,"genie.py",14265,0,"",python,selection_command
22
+ 21,162876,"genie.py",14266,0,"",python,selection_command
23
+ 22,162877,"genie.py",14270,0,"",python,selection_command
24
+ 23,162878,"genie.py",14271,0,"",python,selection_command
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-895267d6-5fbc-45e8-bc56-0d7c756881181750708632303-2025_06_23-12.57.13.921/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-8a8d866a-4152-4c47-8a5f-a8a6a4c71f3e1753768819993-2025_07_29-08.00.29.05/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-a775c5ce-801a-4b55-897a-6c0b6f3448081754127102402-2025_08_02-11.31.50.147/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-ac1e2da2-a2d2-4327-aaa3-5900bc2b3a561753469517123-2025_07_25-20.52.05.763/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-b08d92a3-9c0a-4526-b12f-c973e9c3c43f1752071802867-2025_07_09-16.36.43.962/source.csv ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,53,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"4:36:43 PM [info] Activating crowd-code\n4:36:43 PM [info] Recording started\n4:36:43 PM [info] Initializing git provider using file system watchers...\n4:36:43 PM [info] No workspace folder found\n",Log,tab
3
+ 3,94480,"/Users/franzsrambical/.ssh/config",0,0,"Host login.haicore.berlin\n HostName login.haicore.berlin\n User franz.srambical\n\nHost hpc-build01.scidom.de\n HostName hpc-build01.scidom.de\n User franz.srambical\n\nHost horeka.scc.kit.edu\n HostName horeka.scc.kit.edu\n User tum_dbd0378\n\nHost juwels-cluster.fz-juelich.de\n HostName juwels-cluster.fz-juelich.de\n IdentityFile ~/.ssh/id_ed25519\n User srambical2\n\nHost hpc-submit02.scidom.de\n HostName hpc-submit02.scidom.de\n User franz.srambical\n\nHost hpc-submit01.scidom.de\n HostName hpc-submit01.scidom.de\n User franz.srambical",plaintext,tab
4
+ 4,95685,"/Users/franzsrambical/.ssh/config",26,0,"",plaintext,selection_command
5
+ 5,95929,"/Users/franzsrambical/.ssh/config",58,0,"",plaintext,selection_command
6
+ 6,95947,"/Users/franzsrambical/.ssh/config",81,0,"",plaintext,selection_command
7
+ 7,95981,"/Users/franzsrambical/.ssh/config",82,0,"",plaintext,selection_command
8
+ 8,96015,"/Users/franzsrambical/.ssh/config",109,0,"",plaintext,selection_command
9
+ 9,96048,"/Users/franzsrambical/.ssh/config",142,0,"",plaintext,selection_command
10
+ 10,96082,"/Users/franzsrambical/.ssh/config",165,0,"",plaintext,selection_command
11
+ 11,96117,"/Users/franzsrambical/.ssh/config",166,0,"",plaintext,selection_command
12
+ 12,96150,"/Users/franzsrambical/.ssh/config",190,0,"",plaintext,selection_command
13
+ 13,96184,"/Users/franzsrambical/.ssh/config",220,0,"",plaintext,selection_command
14
+ 14,96221,"/Users/franzsrambical/.ssh/config",190,0,"",plaintext,selection_command
15
+ 15,96485,"/Users/franzsrambical/.ssh/config",166,0,"",plaintext,selection_command
16
+ 16,96514,"/Users/franzsrambical/.ssh/config",165,0,"",plaintext,selection_command
17
+ 17,96547,"/Users/franzsrambical/.ssh/config",142,0,"",plaintext,selection_command
18
+ 18,96575,"/Users/franzsrambical/.ssh/config",109,0,"",plaintext,selection_command
19
+ 19,96607,"/Users/franzsrambical/.ssh/config",82,0,"",plaintext,selection_command
20
+ 20,96638,"/Users/franzsrambical/.ssh/config",81,0,"",plaintext,selection_command
21
+ 21,96671,"/Users/franzsrambical/.ssh/config",58,0,"",plaintext,selection_command
22
+ 22,96705,"/Users/franzsrambical/.ssh/config",26,0,"",plaintext,selection_command
23
+ 23,96739,"/Users/franzsrambical/.ssh/config",0,0,"",plaintext,selection_command
24
+ 24,100915,"/Users/franzsrambical/.ssh/config",0,25,"Host login.haicore.berlin",plaintext,selection_command
25
+ 25,101063,"/Users/franzsrambical/.ssh/config",0,57,"Host login.haicore.berlin\n HostName login.haicore.berlin",plaintext,selection_command
26
+ 26,101231,"/Users/franzsrambical/.ssh/config",0,80,"Host login.haicore.berlin\n HostName login.haicore.berlin\n User franz.srambical",plaintext,selection_command
27
+ 27,101369,"/Users/franzsrambical/.ssh/config",0,81,"Host login.haicore.berlin\n HostName login.haicore.berlin\n User franz.srambical\n",plaintext,selection_command
28
+ 28,101616,"/Users/franzsrambical/.ssh/config",0,82,"",plaintext,content
29
+ 29,106243,"/Users/franzsrambical/.ssh/config",0,0,"",plaintext,tab
30
+ 30,106263,"/Users/franzsrambical/.ssh/config",454,0,"\n",plaintext,content
31
+ 31,108988,"/Users/franzsrambical/.ssh/config",454,1,"",plaintext,content
32
+ 32,112261,"/Users/franzsrambical/.ssh/config",0,0,"",plaintext,tab
33
+ 33,112284,"/Users/franzsrambical/.ssh/config",454,0,"\n",plaintext,content
34
+ 34,117860,"/Users/franzsrambical/.ssh/config",0,0,"",plaintext,tab
35
+ 35,119181,"/Users/franzsrambical/.ssh/config",27,0,"",plaintext,selection_command
36
+ 36,119428,"/Users/franzsrambical/.ssh/config",60,0,"",plaintext,selection_command
37
+ 37,119459,"/Users/franzsrambical/.ssh/config",83,0,"",plaintext,selection_command
38
+ 38,119491,"/Users/franzsrambical/.ssh/config",84,0,"",plaintext,selection_command
39
+ 39,119521,"/Users/franzsrambical/.ssh/config",108,0,"",plaintext,selection_command
40
+ 40,119553,"/Users/franzsrambical/.ssh/config",138,0,"",plaintext,selection_command
41
+ 41,119587,"/Users/franzsrambical/.ssh/config",157,0,"",plaintext,selection_command
42
+ 42,119621,"/Users/franzsrambical/.ssh/config",158,0,"",plaintext,selection_command
43
+ 43,119654,"/Users/franzsrambical/.ssh/config",192,0,"",plaintext,selection_command
44
+ 44,119688,"/Users/franzsrambical/.ssh/config",232,0,"",plaintext,selection_command
45
+ 45,119721,"/Users/franzsrambical/.ssh/config",265,0,"",plaintext,selection_command
46
+ 46,119755,"/Users/franzsrambical/.ssh/config",283,0,"",plaintext,selection_command
47
+ 47,119788,"/Users/franzsrambical/.ssh/config",284,0,"",plaintext,selection_command
48
+ 48,119821,"/Users/franzsrambical/.ssh/config",312,0,"",plaintext,selection_command
49
+ 49,119855,"/Users/franzsrambical/.ssh/config",346,0,"",plaintext,selection_command
50
+ 50,119889,"/Users/franzsrambical/.ssh/config",369,0,"",plaintext,selection_command
51
+ 51,119922,"/Users/franzsrambical/.ssh/config",370,0,"",plaintext,selection_command
52
+ 52,119958,"/Users/franzsrambical/.ssh/config",398,0,"",plaintext,selection_command
53
+ 53,119991,"/Users/franzsrambical/.ssh/config",432,0,"",plaintext,selection_command
54
+ 54,120022,"/Users/franzsrambical/.ssh/config",455,0,"",plaintext,selection_command
55
+ 55,128496,"/Users/franzsrambical/.ssh/config",455,0,"\n",plaintext,content
56
+ 56,128583,"/Users/franzsrambical/.ssh/config",456,0,"ssh [email protected]",plaintext,content
57
+ 57,128584,"/Users/franzsrambical/.ssh/config",496,0,"",plaintext,selection_keyboard
58
+ 58,130098,"/Users/franzsrambical/.ssh/config",495,0,"",plaintext,selection_command
59
+ 59,131052,"/Users/franzsrambical/.ssh/config",456,40,"ssh [email protected]",plaintext,selection_command
60
+ 60,132210,"/Users/franzsrambical/.ssh/config",495,0,"",plaintext,selection_command
61
+ 61,132523,"/Users/franzsrambical/.ssh/config",455,0,"\n",plaintext,content
62
+ 62,132854,"/Users/franzsrambical/.ssh/config",456,0,"H",plaintext,content
63
+ 63,132856,"/Users/franzsrambical/.ssh/config",457,0,"",plaintext,selection_keyboard
64
+ 64,133188,"/Users/franzsrambical/.ssh/config",457,0,"o",plaintext,content
65
+ 65,133191,"/Users/franzsrambical/.ssh/config",458,0,"",plaintext,selection_keyboard
66
+ 66,133287,"/Users/franzsrambical/.ssh/config",458,0,"s",plaintext,content
67
+ 67,133290,"/Users/franzsrambical/.ssh/config",459,0,"",plaintext,selection_keyboard
68
+ 68,133387,"/Users/franzsrambical/.ssh/config",459,0,"t",plaintext,content
69
+ 69,133389,"/Users/franzsrambical/.ssh/config",460,0,"",plaintext,selection_keyboard
70
+ 70,133432,"/Users/franzsrambical/.ssh/config",460,0," ",plaintext,content
71
+ 71,133434,"/Users/franzsrambical/.ssh/config",461,0,"",plaintext,selection_keyboard
72
+ 72,146263,"/Users/franzsrambical/.ssh/config",460,0,"",plaintext,selection_command
73
+ 73,146405,"/Users/franzsrambical/.ssh/config",456,6,"",plaintext,content
74
+ 74,146409,"/Users/franzsrambical/.ssh/config",495,0,"",plaintext,selection_command
75
+ 75,146556,"/Users/franzsrambical/.ssh/config",455,41,"",plaintext,content
76
+ 76,148933,"/Users/franzsrambical/.ssh/config",455,0,"\n",plaintext,content
77
+ 77,149329,"/Users/franzsrambical/.ssh/config",456,0,"H",plaintext,content
78
+ 78,149331,"/Users/franzsrambical/.ssh/config",457,0,"",plaintext,selection_keyboard
79
+ 79,149492,"/Users/franzsrambical/.ssh/config",457,0,"o",plaintext,content
80
+ 80,149495,"/Users/franzsrambical/.ssh/config",458,0,"",plaintext,selection_keyboard
81
+ 81,149560,"/Users/franzsrambical/.ssh/config",458,0,"s",plaintext,content
82
+ 82,149562,"/Users/franzsrambical/.ssh/config",459,0,"",plaintext,selection_keyboard
83
+ 83,149610,"/Users/franzsrambical/.ssh/config",459,0,"t",plaintext,content
84
+ 84,149612,"/Users/franzsrambical/.ssh/config",460,0,"",plaintext,selection_keyboard
85
+ 85,149655,"/Users/franzsrambical/.ssh/config",460,0," ",plaintext,content
86
+ 86,149657,"/Users/franzsrambical/.ssh/config",461,0,"",plaintext,selection_keyboard
87
+ 87,153162,"/Users/franzsrambical/.ssh/config",461,0,"l",plaintext,content
88
+ 88,153164,"/Users/franzsrambical/.ssh/config",462,0,"",plaintext,selection_keyboard
89
+ 89,153299,"/Users/franzsrambical/.ssh/config",462,0,"o",plaintext,content
90
+ 90,153301,"/Users/franzsrambical/.ssh/config",463,0,"",plaintext,selection_keyboard
91
+ 91,153371,"/Users/franzsrambical/.ssh/config",463,0,"g",plaintext,content
92
+ 92,153371,"/Users/franzsrambical/.ssh/config",464,0,"",plaintext,selection_keyboard
93
+ 93,153460,"/Users/franzsrambical/.ssh/config",464,0,"i",plaintext,content
94
+ 94,153461,"/Users/franzsrambical/.ssh/config",465,0,"",plaintext,selection_keyboard
95
+ 95,153530,"/Users/franzsrambical/.ssh/config",465,0,"n",plaintext,content
96
+ 96,153531,"/Users/franzsrambical/.ssh/config",466,0,"",plaintext,selection_keyboard
97
+ 97,153785,"/Users/franzsrambical/.ssh/config",466,0,"@",plaintext,content
98
+ 98,153786,"/Users/franzsrambical/.ssh/config",467,0,"",plaintext,selection_keyboard
99
+ 99,154547,"/Users/franzsrambical/.ssh/config",466,1,"",plaintext,content
100
+ 100,155018,"/Users/franzsrambical/.ssh/config",466,0,".",plaintext,content
101
+ 101,155020,"/Users/franzsrambical/.ssh/config",467,0,"",plaintext,selection_keyboard
102
+ 102,155700,"/Users/franzsrambical/.ssh/config",467,0,"h",plaintext,content
103
+ 103,155701,"/Users/franzsrambical/.ssh/config",468,0,"",plaintext,selection_keyboard
104
+ 104,155757,"/Users/franzsrambical/.ssh/config",468,0,"a",plaintext,content
105
+ 105,155760,"/Users/franzsrambical/.ssh/config",469,0,"",plaintext,selection_keyboard
106
+ 106,155841,"/Users/franzsrambical/.ssh/config",469,0,"i",plaintext,content
107
+ 107,155843,"/Users/franzsrambical/.ssh/config",470,0,"",plaintext,selection_keyboard
108
+ 108,155901,"/Users/franzsrambical/.ssh/config",470,0,"c",plaintext,content
109
+ 109,155902,"/Users/franzsrambical/.ssh/config",471,0,"",plaintext,selection_keyboard
110
+ 110,156007,"/Users/franzsrambical/.ssh/config",471,0,"o",plaintext,content
111
+ 111,156008,"/Users/franzsrambical/.ssh/config",472,0,"",plaintext,selection_keyboard
112
+ 112,156111,"/Users/franzsrambical/.ssh/config",472,0,"r",plaintext,content
113
+ 113,156112,"/Users/franzsrambical/.ssh/config",473,0,"",plaintext,selection_keyboard
114
+ 114,156168,"/Users/franzsrambical/.ssh/config",473,0,"e",plaintext,content
115
+ 115,156169,"/Users/franzsrambical/.ssh/config",474,0,"",plaintext,selection_keyboard
116
+ 116,156248,"/Users/franzsrambical/.ssh/config",474,0,".",plaintext,content
117
+ 117,156249,"/Users/franzsrambical/.ssh/config",475,0,"",plaintext,selection_keyboard
118
+ 118,156396,"/Users/franzsrambical/.ssh/config",475,0,"b",plaintext,content
119
+ 119,156397,"/Users/franzsrambical/.ssh/config",476,0,"",plaintext,selection_keyboard
120
+ 120,156584,"/Users/franzsrambical/.ssh/config",476,0,"e",plaintext,content
121
+ 121,156586,"/Users/franzsrambical/.ssh/config",477,0,"",plaintext,selection_keyboard
122
+ 122,156644,"/Users/franzsrambical/.ssh/config",477,0,"r",plaintext,content
123
+ 123,156645,"/Users/franzsrambical/.ssh/config",478,0,"",plaintext,selection_keyboard
124
+ 124,156709,"/Users/franzsrambical/.ssh/config",478,0,"l",plaintext,content
125
+ 125,156710,"/Users/franzsrambical/.ssh/config",479,0,"",plaintext,selection_keyboard
126
+ 126,156824,"/Users/franzsrambical/.ssh/config",479,0,"i",plaintext,content
127
+ 127,156825,"/Users/franzsrambical/.ssh/config",480,0,"",plaintext,selection_keyboard
128
+ 128,156896,"/Users/franzsrambical/.ssh/config",480,0,"n",plaintext,content
129
+ 129,156896,"/Users/franzsrambical/.ssh/config",481,0,"",plaintext,selection_keyboard
130
+ 130,157332,"/Users/franzsrambical/.ssh/config",481,0,"\n",plaintext,content
131
+ 131,157969,"/Users/franzsrambical/.ssh/config",482,0," ",plaintext,content
132
+ 132,158635,"/Users/franzsrambical/.ssh/config",484,0,"H",plaintext,content
133
+ 133,158636,"/Users/franzsrambical/.ssh/config",485,0,"",plaintext,selection_keyboard
134
+ 134,158766,"/Users/franzsrambical/.ssh/config",485,0,"o",plaintext,content
135
+ 135,158768,"/Users/franzsrambical/.ssh/config",486,0,"",plaintext,selection_keyboard
136
+ 136,158794,"/Users/franzsrambical/.ssh/config",486,0,"s",plaintext,content
137
+ 137,158797,"/Users/franzsrambical/.ssh/config",487,0,"",plaintext,selection_keyboard
138
+ 138,158853,"/Users/franzsrambical/.ssh/config",487,0,"t",plaintext,content
139
+ 139,158855,"/Users/franzsrambical/.ssh/config",488,0,"",plaintext,selection_keyboard
140
+ 140,159080,"/Users/franzsrambical/.ssh/config",488,0,"N",plaintext,content
141
+ 141,159083,"/Users/franzsrambical/.ssh/config",489,0,"",plaintext,selection_keyboard
142
+ 142,159245,"/Users/franzsrambical/.ssh/config",489,0,"a",plaintext,content
143
+ 143,159247,"/Users/franzsrambical/.ssh/config",490,0,"",plaintext,selection_keyboard
144
+ 144,159281,"/Users/franzsrambical/.ssh/config",490,0,"m",plaintext,content
145
+ 145,159283,"/Users/franzsrambical/.ssh/config",491,0,"",plaintext,selection_keyboard
146
+ 146,159432,"/Users/franzsrambical/.ssh/config",491,0,"e",plaintext,content
147
+ 147,159434,"/Users/franzsrambical/.ssh/config",492,0,"",plaintext,selection_keyboard
148
+ 148,164462,"/Users/franzsrambical/.ssh/config",492,0," ",plaintext,content
149
+ 149,164464,"/Users/franzsrambical/.ssh/config",493,0,"",plaintext,selection_keyboard
150
+ 150,165235,"/Users/franzsrambical/.ssh/config",493,0,"l",plaintext,content
151
+ 151,165237,"/Users/franzsrambical/.ssh/config",494,0,"",plaintext,selection_keyboard
152
+ 152,165387,"/Users/franzsrambical/.ssh/config",494,0,"o",plaintext,content
153
+ 153,165391,"/Users/franzsrambical/.ssh/config",495,0,"",plaintext,selection_keyboard
154
+ 154,165462,"/Users/franzsrambical/.ssh/config",495,0,"g",plaintext,content
155
+ 155,165465,"/Users/franzsrambical/.ssh/config",496,0,"",plaintext,selection_keyboard
156
+ 156,165536,"/Users/franzsrambical/.ssh/config",496,0,"i",plaintext,content
157
+ 157,165538,"/Users/franzsrambical/.ssh/config",497,0,"",plaintext,selection_keyboard
158
+ 158,165626,"/Users/franzsrambical/.ssh/config",497,0,"n",plaintext,content
159
+ 159,165628,"/Users/franzsrambical/.ssh/config",498,0,"",plaintext,selection_keyboard
160
+ 160,165774,"/Users/franzsrambical/.ssh/config",498,0,".",plaintext,content
161
+ 161,165777,"/Users/franzsrambical/.ssh/config",499,0,"",plaintext,selection_keyboard
162
+ 162,166016,"/Users/franzsrambical/.ssh/config",499,0,"h",plaintext,content
163
+ 163,166018,"/Users/franzsrambical/.ssh/config",500,0,"",plaintext,selection_keyboard
164
+ 164,166062,"/Users/franzsrambical/.ssh/config",500,0,"a",plaintext,content
165
+ 165,166064,"/Users/franzsrambical/.ssh/config",501,0,"",plaintext,selection_keyboard
166
+ 166,166165,"/Users/franzsrambical/.ssh/config",501,0,"i",plaintext,content
167
+ 167,166167,"/Users/franzsrambical/.ssh/config",502,0,"",plaintext,selection_keyboard
168
+ 168,166294,"/Users/franzsrambical/.ssh/config",502,0,"c",plaintext,content
169
+ 169,166296,"/Users/franzsrambical/.ssh/config",503,0,"",plaintext,selection_keyboard
170
+ 170,166400,"/Users/franzsrambical/.ssh/config",503,0,"o",plaintext,content
171
+ 171,166402,"/Users/franzsrambical/.ssh/config",504,0,"",plaintext,selection_keyboard
172
+ 172,166494,"/Users/franzsrambical/.ssh/config",504,0,"r",plaintext,content
173
+ 173,166496,"/Users/franzsrambical/.ssh/config",505,0,"",plaintext,selection_keyboard
174
+ 174,166569,"/Users/franzsrambical/.ssh/config",505,0,"e",plaintext,content
175
+ 175,166571,"/Users/franzsrambical/.ssh/config",506,0,"",plaintext,selection_keyboard
176
+ 176,166623,"/Users/franzsrambical/.ssh/config",506,0,".",plaintext,content
177
+ 177,166625,"/Users/franzsrambical/.ssh/config",507,0,"",plaintext,selection_keyboard
178
+ 178,166811,"/Users/franzsrambical/.ssh/config",507,0,"b",plaintext,content
179
+ 179,166812,"/Users/franzsrambical/.ssh/config",508,0,"",plaintext,selection_keyboard
180
+ 180,166871,"/Users/franzsrambical/.ssh/config",508,0,"e",plaintext,content
181
+ 181,166873,"/Users/franzsrambical/.ssh/config",509,0,"",plaintext,selection_keyboard
182
+ 182,166947,"/Users/franzsrambical/.ssh/config",509,0,"r",plaintext,content
183
+ 183,166948,"/Users/franzsrambical/.ssh/config",510,0,"",plaintext,selection_keyboard
184
+ 184,166988,"/Users/franzsrambical/.ssh/config",510,0,"l",plaintext,content
185
+ 185,166989,"/Users/franzsrambical/.ssh/config",511,0,"",plaintext,selection_keyboard
186
+ 186,167052,"/Users/franzsrambical/.ssh/config",511,0,"i",plaintext,content
187
+ 187,167054,"/Users/franzsrambical/.ssh/config",512,0,"",plaintext,selection_keyboard
188
+ 188,167115,"/Users/franzsrambical/.ssh/config",512,0,"n",plaintext,content
189
+ 189,167117,"/Users/franzsrambical/.ssh/config",513,0,"",plaintext,selection_keyboard
190
+ 190,167392,"/Users/franzsrambical/.ssh/config",507,6,"berlin",plaintext,content
191
+ 191,167715,"/Users/franzsrambical/.ssh/config",513,0,"\n ",plaintext,content
192
+ 192,169941,"/Users/franzsrambical/.ssh/config",516,0,"U",plaintext,content
193
+ 193,169943,"/Users/franzsrambical/.ssh/config",517,0,"",plaintext,selection_keyboard
194
+ 194,170103,"/Users/franzsrambical/.ssh/config",517,0,"s",plaintext,content
195
+ 195,170105,"/Users/franzsrambical/.ssh/config",518,0,"",plaintext,selection_keyboard
196
+ 196,170170,"/Users/franzsrambical/.ssh/config",518,0,"e",plaintext,content
197
+ 197,170172,"/Users/franzsrambical/.ssh/config",519,0,"",plaintext,selection_keyboard
198
+ 198,170250,"/Users/franzsrambical/.ssh/config",519,0,"r",plaintext,content
199
+ 199,170251,"/Users/franzsrambical/.ssh/config",520,0,"",plaintext,selection_keyboard
200
+ 200,171002,"/Users/franzsrambical/.ssh/config",520,0," ",plaintext,content
201
+ 201,171005,"/Users/franzsrambical/.ssh/config",521,0,"",plaintext,selection_keyboard
202
+ 202,171222,"/Users/franzsrambical/.ssh/config",521,0,"f",plaintext,content
203
+ 203,171223,"/Users/franzsrambical/.ssh/config",522,0,"",plaintext,selection_keyboard
204
+ 204,171374,"/Users/franzsrambical/.ssh/config",522,0,"r",plaintext,content
205
+ 205,171379,"/Users/franzsrambical/.ssh/config",523,0,"",plaintext,selection_keyboard
206
+ 206,171397,"/Users/franzsrambical/.ssh/config",523,0,"a",plaintext,content
207
+ 207,171398,"/Users/franzsrambical/.ssh/config",524,0,"",plaintext,selection_keyboard
208
+ 208,171500,"/Users/franzsrambical/.ssh/config",524,0,"n",plaintext,content
209
+ 209,171501,"/Users/franzsrambical/.ssh/config",525,0,"",plaintext,selection_keyboard
210
+ 210,171581,"/Users/franzsrambical/.ssh/config",525,0,"z",plaintext,content
211
+ 211,171583,"/Users/franzsrambical/.ssh/config",526,0,"",plaintext,selection_keyboard
212
+ 212,171700,"/Users/franzsrambical/.ssh/config",526,0,".",plaintext,content
213
+ 213,171701,"/Users/franzsrambical/.ssh/config",527,0,"",plaintext,selection_keyboard
214
+ 214,171772,"/Users/franzsrambical/.ssh/config",527,0,"s",plaintext,content
215
+ 215,171773,"/Users/franzsrambical/.ssh/config",528,0,"",plaintext,selection_keyboard
216
+ 216,171831,"/Users/franzsrambical/.ssh/config",528,0,"r",plaintext,content
217
+ 217,171833,"/Users/franzsrambical/.ssh/config",529,0,"",plaintext,selection_keyboard
218
+ 218,171914,"/Users/franzsrambical/.ssh/config",529,0,"a",plaintext,content
219
+ 219,171916,"/Users/franzsrambical/.ssh/config",530,0,"",plaintext,selection_keyboard
220
+ 220,171943,"/Users/franzsrambical/.ssh/config",530,0,"m",plaintext,content
221
+ 221,171945,"/Users/franzsrambical/.ssh/config",531,0,"",plaintext,selection_keyboard
222
+ 222,172140,"/Users/franzsrambical/.ssh/config",531,0,"b",plaintext,content
223
+ 223,172143,"/Users/franzsrambical/.ssh/config",532,0,"",plaintext,selection_keyboard
224
+ 224,172186,"/Users/franzsrambical/.ssh/config",532,0,"i",plaintext,content
225
+ 225,172188,"/Users/franzsrambical/.ssh/config",533,0,"",plaintext,selection_keyboard
226
+ 226,172245,"/Users/franzsrambical/.ssh/config",533,0,"c",plaintext,content
227
+ 227,172247,"/Users/franzsrambical/.ssh/config",534,0,"",plaintext,selection_keyboard
228
+ 228,172289,"/Users/franzsrambical/.ssh/config",534,0,"a",plaintext,content
229
+ 229,172291,"/Users/franzsrambical/.ssh/config",535,0,"",plaintext,selection_keyboard
230
+ 230,172390,"/Users/franzsrambical/.ssh/config",535,0,"l",plaintext,content
231
+ 231,172391,"/Users/franzsrambical/.ssh/config",536,0,"",plaintext,selection_keyboard
232
+ 232,172556,"/Users/franzsrambical/.ssh/config",535,0,"",plaintext,selection_command
233
+ 233,172719,"/Users/franzsrambical/.ssh/config",503,0,"",plaintext,selection_command
234
+ 234,172910,"/Users/franzsrambical/.ssh/config",513,0,"\n ",plaintext,content
235
+ 235,173988,"/Users/franzsrambical/.ssh/config",516,0,"I",plaintext,content
236
+ 236,173989,"/Users/franzsrambical/.ssh/config",517,0,"",plaintext,selection_keyboard
237
+ 237,174082,"/Users/franzsrambical/.ssh/config",517,0,"d",plaintext,content
238
+ 238,174084,"/Users/franzsrambical/.ssh/config",518,0,"",plaintext,selection_keyboard
239
+ 239,174148,"/Users/franzsrambical/.ssh/config",518,0,"e",plaintext,content
240
+ 240,174150,"/Users/franzsrambical/.ssh/config",519,0,"",plaintext,selection_keyboard
241
+ 241,174271,"/Users/franzsrambical/.ssh/config",519,0,"n",plaintext,content
242
+ 242,174273,"/Users/franzsrambical/.ssh/config",520,0,"",plaintext,selection_keyboard
243
+ 243,174746,"/Users/franzsrambical/.ssh/config",516,4,"IdentityFile",plaintext,content
244
+ 244,175993,"/Users/franzsrambical/.ssh/config",528,0," ",plaintext,content
245
+ 245,175995,"/Users/franzsrambical/.ssh/config",529,0,"",plaintext,selection_keyboard
246
+ 246,176464,"/Users/franzsrambical/.ssh/config",529,0,"~",plaintext,content
247
+ 247,176467,"/Users/franzsrambical/.ssh/config",530,0,"",plaintext,selection_keyboard
248
+ 248,177648,"/Users/franzsrambical/.ssh/config",530,0,"/",plaintext,content
249
+ 249,177649,"/Users/franzsrambical/.ssh/config",531,0,"",plaintext,selection_keyboard
250
+ 250,177830,"/Users/franzsrambical/.ssh/config",531,0,".",plaintext,content
251
+ 251,177832,"/Users/franzsrambical/.ssh/config",532,0,"",plaintext,selection_keyboard
252
+ 252,177940,"/Users/franzsrambical/.ssh/config",532,0,"s",plaintext,content
253
+ 253,177942,"/Users/franzsrambical/.ssh/config",533,0,"",plaintext,selection_keyboard
254
+ 254,178078,"/Users/franzsrambical/.ssh/config",533,0,"s",plaintext,content
255
+ 255,178081,"/Users/franzsrambical/.ssh/config",534,0,"",plaintext,selection_keyboard
256
+ 256,178173,"/Users/franzsrambical/.ssh/config",534,0,"h",plaintext,content
257
+ 257,178175,"/Users/franzsrambical/.ssh/config",535,0,"",plaintext,selection_keyboard
258
+ 258,179348,"/Users/franzsrambical/.ssh/config",535,0,"/",plaintext,content
259
+ 259,179351,"/Users/franzsrambical/.ssh/config",536,0,"",plaintext,selection_keyboard
260
+ 260,179561,"/Users/franzsrambical/.ssh/config",536,0,"i",plaintext,content
261
+ 261,179563,"/Users/franzsrambical/.ssh/config",537,0,"",plaintext,selection_keyboard
262
+ 262,179646,"/Users/franzsrambical/.ssh/config",537,0,"d",plaintext,content
263
+ 263,179648,"/Users/franzsrambical/.ssh/config",538,0,"",plaintext,selection_keyboard
264
+ 264,179919,"/Users/franzsrambical/.ssh/config",538,0,"_",plaintext,content
265
+ 265,179922,"/Users/franzsrambical/.ssh/config",539,0,"",plaintext,selection_keyboard
266
+ 266,180693,"/Users/franzsrambical/.ssh/config",536,3,"id_ed25519",plaintext,content
267
+ 267,181818,"/Users/franzsrambical/.ssh/config",545,0,"",plaintext,selection_command
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-b2ff9c32-0980-46be-b0f1-51dff76665011752660866284-2025_07_16-12.14.34.814/source.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,3,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\n\nimport einops\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.parameter_utils import count_parameters_by_component\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n min_lr: float = 0.0\n max_lr: float = 3e-5\n warmup_steps: int = 5000\n # Tokenizer\n tokenizer_dim: int = 512\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 8\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 8\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_num_blocks: int = 12\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n param_dtype: jnp.dtype = jnp.float32\n dtype: jnp.dtype = jnp.bfloat16\n use_flash_attention: bool = True\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n action=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len), dtype=args.dtype\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n\n param_counts = count_parameters_by_component(init_params)\n\n if args.log and jax.process_index() == 0:\n wandb.init(\n entity=args.entity,\n project=args.project,\n name=args.name,\n tags=args.tags,\n group=""debug"",\n config=args,\n )\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4, mu_dtype=args.dtype)\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(\n mesh, PartitionSpec(""data"", None, None, None, None)\n )\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add('model_state', ocp.args.StandardSave, ocp.handlers.StandardCheckpointHandler)\n handler_registry.add('model_state', ocp.args.StandardRestore, ocp.handlers.StandardCheckpointHandler)\n handler_registry.add('dataloader_state', grain.checkpoint.CheckpointSave, grain.checkpoint.CheckpointHandler) # type: ignore\n handler_registry.add('dataloader_state', grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler) # type: ignore\n \n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n \n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n \n # --- Restore checkpoint ---\n if args.restore_ckpt:\n # Restore full dynamics model\n abstract_train_state = jax.tree_util.tree_map(ocp.utils.to_shape_dtype_struct, train_state)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_train_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n )\n )\n train_state = restored[""model_state""]\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n train_state = restore_genie_components(\n train_state, replicated_sharding, grain_iterator, dummy_inputs, rng, args\n )\n\n # --- TRAIN LOOP ---\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator) # type: ignore\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng, _rng_dropout, _rng_mask = jax.random.split(rng, 4)\n\n inputs = dict(\n videos=videos,\n rng=_rng,\n dropout_rng=_rng_dropout,\n mask_rng=_rng_mask,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.StandardSave(train_state),\n dataloader_state=grain.checkpoint.CheckpointSave(grain_iterator),\n )\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()",python,tab
3
+ 2,223,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:14:34 PM [info] Activating crowd-code\n12:14:34 PM [info] Recording started\n12:14:34 PM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,271,"extension-output-pdoom-org.crowd-code-#1-crowd-code",153,0,"12:14:34 PM [info] Git repository found\n12:14:34 PM [info] Git provider initialized successfully\n12:14:34 PM [info] Initial git state: [object Object]\n",Log,content
5
+ 4,360,"benchmark_batch_sizes_tokenizer.py",0,0,"from dataclasses import dataclass, field\nimport os\nimport time\nimport json\nfrom typing import List, Dict, Any, Optional\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport grain\n\nfrom models.tokenizer import TokenizerVQVAE\nfrom utils.dataloader import get_dataloader\nfrom utils.parameter_utils import count_parameters_by_component\n\n\ndef create_mock_dataloader(batch_size: int, seq_len: int, image_height: int, image_width: int, image_channels: int, num_devices: int):\n """"""\n Create a mock dataloader that generates instant dummy data.\n This eliminates IO bottlenecks to test if you're memory-bound.\n """"""\n per_device_batch_size = batch_size // num_devices\n \n def mock_dataloader():\n """"""Generator that yields dummy video data instantly.""""""\n while True:\n # Generate random dummy data with the correct shape\n # Using jax.random for consistency with JAX\n dummy_videos = jax.random.randint(\n jax.random.PRNGKey(0), # Fixed key for deterministic but random data\n (per_device_batch_size, seq_len, image_height, image_width, image_channels),\n minval=0,\n maxval=255,\n dtype=jnp.uint8\n )\n yield dummy_videos\n \n return mock_dataloader()\n\n\n@dataclass\nclass BenchmarkArgs:\n # Model parameters (same as train_tokenizer.py)\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = ""/home/franz.srambical/jafar/data_arrayrecord/dummy""\n \n # Tokenizer parameters\n model_dim: int = 512\n latent_dim: int = 32\n num_latents: int = 1024\n patch_size: int = 4\n num_blocks: int = 8\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.01\n dtype: jnp.dtype = jnp.bfloat16\n param_dtype: jnp.dtype = jnp.float32\n use_flash_attention: bool = True\n \n # Benchmark parameters\n batch_sizes: List[int] = field(default_factory=lambda: [8*1, 9*1, 10*1, 11*1, 12*1, 13*1, 14*1, 15*1])\n warmup_steps: int = 10 # Steps to warm up before measuring\n measure_steps: int = 30 # Steps to measure\n num_iterations: int = 10 # Number of iterations to average over\n output_file: str = ""batch_size_benchmark_tokenizer_flash_attention.json""\n use_mock_dataloader: bool = False # Use mock dataloader instead of real one\n \n # VQ parameters\n vq_beta: float = 0.25\n\n\nargs = tyro.cli(BenchmarkArgs)\n\n\ndef tokenizer_loss_fn(params, state, inputs):\n # --- Compute loss ---\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mse = jnp.square(inputs[""videos""] - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n return loss, outputs[""recon""]\n\n\[email protected]\ndef train_step(state, inputs):\n grad_fn = jax.value_and_grad(tokenizer_loss_fn, has_aux=True, allow_int=True)\n (loss, recon), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n return state, loss, recon\n\n\ndef benchmark_batch_size(batch_size: int, tokenizer, train_state, mesh, videos_sharding) -> Optional[Dict[str, Any]]:\n """"""Benchmark a specific batch size and return throughput metrics.""""""\n print(f""\nBenchmarking batch size: {batch_size}"")\n \n num_devices = jax.device_count()\n per_device_batch_size = batch_size // num_devices\n \n # Create dataloader for this batch size\n if args.use_mock_dataloader:\n print("" Using mock dataloader (instant dummy data)"")\n image_shape = (args.image_height, args.image_width, args.image_channels)\n mock_dataloader = create_mock_dataloader(\n batch_size, args.seq_len, args.image_height, args.image_width, args.image_channels, num_devices\n )\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, np.array(elem)) for elem in mock_dataloader)\n else:\n print("" Using real dataloader"")\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n image_shape = (args.image_height, args.image_width, args.image_channels)\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator)\n \n rng = jax.random.PRNGKey(args.seed)\n step_times = []\n \n # Warmup phase\n print(f"" Warming up for {args.warmup_steps} steps..."")\n for step in range(args.warmup_steps):\n try:\n videos = next(dataloader)\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n train_state, loss, recon = train_step(train_state, inputs)\n jax.block_until_ready(train_state)\n except StopIteration:\n print(f"" Warning: Dataloader exhausted during warmup at step {step}"")\n break\n \n # Measurement phase\n print(f"" Measuring for {args.measure_steps} steps..."")\n start_time = time.time()\n for step in range(args.measure_steps):\n try:\n videos = next(dataloader)\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n train_state, loss, recon = train_step(train_state, inputs)\n jax.block_until_ready(train_state)\n \n if step > 0: # Skip first step as it might include compilation time\n step_times.append(time.time() - start_time)\n start_time = time.time()\n \n except StopIteration:\n print(f"" Warning: Dataloader exhausted during measurement at step {step}"")\n break\n \n if len(step_times) < 5:\n print(f"" Warning: Only {len(step_times)} step times measured, results may be unreliable"")\n return None\n \n # Calculate metrics\n avg_step_time = np.mean(step_times)\n std_step_time = np.std(step_times)\n throughput = batch_size / avg_step_time\n \n print(f"" Results: avg_step_time={avg_step_time:.4f}s ± {std_step_time:.4f}s, throughput={throughput:.2f} samples/s"")\n \n return {\n ""batch_size"": batch_size,\n ""avg_step_time"": avg_step_time,\n ""std_step_time"": std_step_time,\n ""throughput"": throughput,\n ""num_measurements"": len(step_times),\n ""dataloader_type"": ""mock"" if args.use_mock_dataloader else ""real""\n }\n\n\ndef main():\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n # Check if all batch sizes are divisible by number of devices\n for batch_size in args.batch_sizes:\n if batch_size % num_devices != 0:\n raise ValueError(\n f""Batch size {batch_size} must be divisible by number of devices {num_devices}.""\n )\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n )\n \n # Initialize with smallest batch size for model setup\n min_batch_size = min(args.batch_sizes)\n per_device_batch_size_for_init = min_batch_size // num_devices\n \n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n )\n init_params = tokenizer.init(_rng, inputs)\n\n param_counts = count_parameters_by_component(init_params)\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(0.0, 3e-4, 1000, 10000)\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4, mu_dtype=args.dtype)\n train_state = TrainState.create(apply_fn=tokenizer.apply, params=init_params, tx=tx)\n\n # Setup sharding\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # Run benchmarks\n results = []\n for batch_size in args.batch_sizes:\n result = benchmark_batch_size(batch_size, tokenizer, train_state, mesh, videos_sharding)\n if result is not None:\n results.append(result)\n \n # Save results\n benchmark_data = {\n ""num_devices"": num_devices,\n ""param_counts"": param_counts,\n ""results"": results\n }\n \n with open(args.output_file, 'w') as f:\n json.dump(benchmark_data, f, indent=2)\n \n print(f""\nBenchmark results saved to {args.output_file}"")\n \n # Print summary\n print(""\nBatch Size vs Throughput Summary:"")\n print(""Batch Size | Avg Step Time (s) | Throughput (samples/s)"")\n print(""-"" * 55)\n for result in results:\n print(f""{result['batch_size']:9d} | {result['avg_step_time']:15.4f} | {result['throughput']:20.2f}"")\n\n\nif __name__ == ""__main__"":\n main() ",python,tab
6
+ 5,2163,"benchmark_batch_sizes_tokenizer.py",1993,0,"",python,selection_mouse
7
+ 6,2168,"benchmark_batch_sizes_tokenizer.py",1992,0,"",python,selection_command
8
+ 7,3127,"benchmark_batch_sizes_tokenizer.py",0,0,"",python,selection_command
9
+ 8,4003,"benchmark_batch_sizes_tokenizer.py",0,10804,"from dataclasses import dataclass, field\nimport os\nimport time\nimport json\nfrom typing import List, Dict, Any, Optional\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport grain\n\nfrom models.tokenizer import TokenizerVQVAE\nfrom utils.dataloader import get_dataloader\nfrom utils.parameter_utils import count_parameters_by_component\n\n\ndef create_mock_dataloader(batch_size: int, seq_len: int, image_height: int, image_width: int, image_channels: int, num_devices: int):\n """"""\n Create a mock dataloader that generates instant dummy data.\n This eliminates IO bottlenecks to test if you're memory-bound.\n """"""\n per_device_batch_size = batch_size // num_devices\n \n def mock_dataloader():\n """"""Generator that yields dummy video data instantly.""""""\n while True:\n # Generate random dummy data with the correct shape\n # Using jax.random for consistency with JAX\n dummy_videos = jax.random.randint(\n jax.random.PRNGKey(0), # Fixed key for deterministic but random data\n (per_device_batch_size, seq_len, image_height, image_width, image_channels),\n minval=0,\n maxval=255,\n dtype=jnp.uint8\n )\n yield dummy_videos\n \n return mock_dataloader()\n\n\n@dataclass\nclass BenchmarkArgs:\n # Model parameters (same as train_tokenizer.py)\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = ""/home/franz.srambical/jafar/data_arrayrecord/dummy""\n \n # Tokenizer parameters\n model_dim: int = 512\n latent_dim: int = 32\n num_latents: int = 1024\n patch_size: int = 4\n num_blocks: int = 8\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.01\n dtype: jnp.dtype = jnp.bfloat16\n param_dtype: jnp.dtype = jnp.float32\n use_flash_attention: bool = True\n \n # Benchmark parameters\n batch_sizes: List[int] = field(default_factory=lambda: [8*1, 9*1, 10*1, 11*1, 12*1, 13*1, 14*1, 15*1])\n warmup_steps: int = 10 # Steps to warm up before measuring\n measure_steps: int = 30 # Steps to measure\n num_iterations: int = 10 # Number of iterations to average over\n output_file: str = ""batch_size_benchmark_tokenizer_flash_attention.json""\n use_mock_dataloader: bool = False # Use mock dataloader instead of real one\n \n # VQ parameters\n vq_beta: float = 0.25\n\n\nargs = tyro.cli(BenchmarkArgs)\n\n\ndef tokenizer_loss_fn(params, state, inputs):\n # --- Compute loss ---\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mse = jnp.square(inputs[""videos""] - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n return loss, outputs[""recon""]\n\n\[email protected]\ndef train_step(state, inputs):\n grad_fn = jax.value_and_grad(tokenizer_loss_fn, has_aux=True, allow_int=True)\n (loss, recon), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n return state, loss, recon\n\n\ndef benchmark_batch_size(batch_size: int, tokenizer, train_state, mesh, videos_sharding) -> Optional[Dict[str, Any]]:\n """"""Benchmark a specific batch size and return throughput metrics.""""""\n print(f""\nBenchmarking batch size: {batch_size}"")\n \n num_devices = jax.device_count()\n per_device_batch_size = batch_size // num_devices\n \n # Create dataloader for this batch size\n if args.use_mock_dataloader:\n print("" Using mock dataloader (instant dummy data)"")\n image_shape = (args.image_height, args.image_width, args.image_channels)\n mock_dataloader = create_mock_dataloader(\n batch_size, args.seq_len, args.image_height, args.image_width, args.image_channels, num_devices\n )\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, np.array(elem)) for elem in mock_dataloader)\n else:\n print("" Using real dataloader"")\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n image_shape = (args.image_height, args.image_width, args.image_channels)\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator)\n \n rng = jax.random.PRNGKey(args.seed)\n step_times = []\n \n # Warmup phase\n print(f"" Warming up for {args.warmup_steps} steps..."")\n for step in range(args.warmup_steps):\n try:\n videos = next(dataloader)\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n train_state, loss, recon = train_step(train_state, inputs)\n jax.block_until_ready(train_state)\n except StopIteration:\n print(f"" Warning: Dataloader exhausted during warmup at step {step}"")\n break\n \n # Measurement phase\n print(f"" Measuring for {args.measure_steps} steps..."")\n start_time = time.time()\n for step in range(args.measure_steps):\n try:\n videos = next(dataloader)\n rng, _rng, _rng_dropout = jax.random.split(rng, 3)\n inputs = dict(videos=videos, rng=_rng, dropout_rng=_rng_dropout)\n train_state, loss, recon = train_step(train_state, inputs)\n jax.block_until_ready(train_state)\n \n if step > 0: # Skip first step as it might include compilation time\n step_times.append(time.time() - start_time)\n start_time = time.time()\n \n except StopIteration:\n print(f"" Warning: Dataloader exhausted during measurement at step {step}"")\n break\n \n if len(step_times) < 5:\n print(f"" Warning: Only {len(step_times)} step times measured, results may be unreliable"")\n return None\n \n # Calculate metrics\n avg_step_time = np.mean(step_times)\n std_step_time = np.std(step_times)\n throughput = batch_size / avg_step_time\n \n print(f"" Results: avg_step_time={avg_step_time:.4f}s ± {std_step_time:.4f}s, throughput={throughput:.2f} samples/s"")\n \n return {\n ""batch_size"": batch_size,\n ""avg_step_time"": avg_step_time,\n ""std_step_time"": std_step_time,\n ""throughput"": throughput,\n ""num_measurements"": len(step_times),\n ""dataloader_type"": ""mock"" if args.use_mock_dataloader else ""real""\n }\n\n\ndef main():\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n # Check if all batch sizes are divisible by number of devices\n for batch_size in args.batch_sizes:\n if batch_size % num_devices != 0:\n raise ValueError(\n f""Batch size {batch_size} must be divisible by number of devices {num_devices}.""\n )\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n )\n \n # Initialize with smallest batch size for model setup\n min_batch_size = min(args.batch_sizes)\n per_device_batch_size_for_init = min_batch_size // num_devices\n \n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n )\n init_params = tokenizer.init(_rng, inputs)\n\n param_counts = count_parameters_by_component(init_params)\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(0.0, 3e-4, 1000, 10000)\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4, mu_dtype=args.dtype)\n train_state = TrainState.create(apply_fn=tokenizer.apply, params=init_params, tx=tx)\n\n # Setup sharding\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # Run benchmarks\n results = []\n for batch_size in args.batch_sizes:\n result = benchmark_batch_size(batch_size, tokenizer, train_state, mesh, videos_sharding)\n if result is not None:\n results.append(result)\n \n # Save results\n benchmark_data = {\n ""num_devices"": num_devices,\n ""param_counts"": param_counts,\n ""results"": results\n }\n \n with open(args.output_file, 'w') as f:\n json.dump(benchmark_data, f, indent=2)\n \n print(f""\nBenchmark results saved to {args.output_file}"")\n \n # Print summary\n print(""\nBatch Size vs Throughput Summary:"")\n print(""Batch Size | Avg Step Time (s) | Throughput (samples/s)"")\n print(""-"" * 55)\n for result in results:\n print(f""{result['batch_size']:9d} | {result['avg_step_time']:15.4f} | {result['throughput']:20.2f}"")\n\n\nif __name__ == ""__main__"":\n main() ",python,selection_command
10
+ 9,4181,"benchmark_batch_sizes_tokenizer.py",10793,0,"",python,selection_command
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-cc98355f-a627-4bb1-8368-cc01d32ba9141754309337509-2025_08_04-14.09.04.547/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-cdede756-87c5-47af-85f8-bc9bf1c41bac1750785125700-2025_06_24-22.05.07.988/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-d5ccbc8d-af3a-4c10-ab81-61e24d56bad31754400813118-2025_08_05-15.33.50.504/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-d9c3341f-490f-4227-8214-c68384e56a1f1753945239481-2025_07_31-09.00.53.845/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-dca3235c-6967-4aac-8b57-97fa2f10e0ad1753259782320-2025_07_23-10.36.33.63/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-df82217c-210f-4b7f-897f-6f53642cf7c81754033699441-2025_08_01-09.35.08.848/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-e7d20f74-415c-47d0-ad95-3f6da31696d51753194904459-2025_07_22-16.35.52.74/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-f0382786-979c-4a6d-8e9b-f5977f18eb4f1753726151187-2025_08_02-06.58.58.573/source.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,1,"sample.py",0,0,"from dataclasses import dataclass\nimport time\nimport os\nimport optax\n\nimport dm_pix as pix\nimport einops\nimport jax\nimport jax.numpy as jnp\nimport flax.linen as nn\nimport numpy as np\nimport orbax.checkpoint as ocp\nfrom PIL import Image, ImageDraw\nimport tyro\nfrom flax import nnx\n\nfrom genie import Genie\nfrom utils.dataloader import get_dataloader\n\n\n@dataclass\nclass Args:\n # Experiment\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = ""data/coinrun_episodes""\n checkpoint: str = """"\n # Sampling\n batch_size: int = 1\n maskgit_steps: int = 25\n temperature: float = 1.0\n sample_argmax: bool = True\n start_frame: int = 0\n # Tokenizer checkpoint\n tokenizer_dim: int = 512\n tokenizer_ffn_dim: int = 2048\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 4\n tokenizer_num_heads: int = 8\n # LAM checkpoint\n lam_dim: int = 512\n lam_ffn_dim: int = 2048\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 4\n lam_num_heads: int = 8\n # Dynamics checkpoint\n dyna_dim: int = 512\n dyna_ffn_dim: int = 2048\n dyna_num_blocks: int = 6\n dyna_num_heads: int = 8\n param_dtype = jnp.float32\n dtype = jnp.bfloat16\n use_flash_attention: bool = True\n\n\nargs = tyro.cli(Args)\n\nif __name__ == ""__main__"":\n """"""\n Dimension keys:\n B: batch size\n T: number of input (conditioning) frames\n N: number of patches per frame\n S: sequence length\n H: height\n W: width\n E: B * (S - 1)\n """"""\n jax.distributed.initialize()\n\n rng = jax.random.key(args.seed)\n\n # --- Load Genie checkpoint ---\n rngs = nnx.Rngs(rng)\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n tokenizer_ffn_dim=args.tokenizer_ffn_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n lam_ffn_dim=args.lam_ffn_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=False,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_ffn_dim=args.dyna_ffn_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeSave, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n checkpoint_options = ocp.CheckpointManagerOptions(\n step_format_fixed_length=6,\n )\n checkpoint_manager = ocp.CheckpointManager(\n args.checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n dummy_tx = optax.adamw(\n learning_rate=optax.linear_schedule(0.0001, 0.0001, 10000),\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n dummy_optimizer = nnx.Optimizer(genie, dummy_tx)\n\n abstract_optimizer = nnx.eval_shape(lambda: dummy_optimizer)\n abstract_optimizer_state = nnx.state(abstract_optimizer)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(abstract_optimizer_state), # type: ignore\n ),\n )\n restored_optimizer_state = restored[""model_state""]\n nnx.update(dummy_optimizer, restored_optimizer_state)\n\n # --- Define sampling function ---\n def _sampling_fn(model: Genie, batch: dict) -> jax.Array:\n """"""Runs Genie.sample with pre-defined generation hyper-parameters.""""""\n return model.sample(\n batch,\n args.seq_len,\n args.maskgit_steps,\n args.temperature,\n args.sample_argmax,\n )\n\n # --- Define autoregressive sampling loop ---\n @nnx.jit\n def _autoreg_sample(rng, video_batch_BSHWC, action_batch_E):\n input_video_BTHWC = video_batch_BSHWC[:, : args.start_frame + 1]\n rng, _rng = jax.random.split(rng)\n batch = dict(videos=input_video_BTHWC, latent_actions=action_batch_E, rng=_rng)\n generated_vid_BSHWC = _sampling_fn(genie, batch)\n return generated_vid_BSHWC\n\n # --- Get video + latent actions ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n args.batch_size,\n args.image_height,\n args.image_width,\n args.image_channels,\n # We don't use workers in order to avoid grain shutdown issues (https://github.com/google/grain/issues/398)\n num_workers=0,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n dataloader = iter(dataloader)\n video_batch_BSHWC = next(dataloader)\n gt_video = jnp.asarray(video_batch_BSHWC, dtype=jnp.float32) / 255.0\n video_batch_BSHWC = gt_video.astype(args.dtype)\n # Get latent actions for all videos in the batch\n batch = dict(videos=video_batch_BSHWC)\n action_batch_E = genie.vq_encode(batch, training=False)\n\n # --- Sample + evaluate video ---\n recon_video_BSHWC = _autoreg_sample(rng, video_batch_BSHWC, action_batch_E)\n recon_video_BSHWC = recon_video_BSHWC.astype(jnp.float32)\n gt = gt_video[:, : recon_video_BSHWC.shape[1]].clip(0, 1).reshape(-1, *gt_video.shape[2:])\n recon = recon_video_BSHWC.clip(0, 1).reshape(-1, *recon_video_BSHWC.shape[2:])\n ssim = jnp.asarray(\n pix.ssim(gt[:, args.start_frame + 1 :], recon[:, args.start_frame + 1 :])\n ).mean()\n print(f""SSIM: {ssim}"")\n\n # --- Construct video ---\n true_videos = (gt_video * 255).astype(np.uint8)\n pred_videos = (recon_video_BSHWC * 255).astype(np.uint8)\n video_comparison = np.zeros((2, *recon_video_BSHWC.shape), dtype=np.uint8)\n video_comparison[0] = true_videos[:, : args.seq_len]\n video_comparison[1] = pred_videos\n frames = einops.rearrange(video_comparison, ""n b t h w c -> t (b h) (n w) c"")\n\n # --- Save video ---\n imgs = [Image.fromarray(img) for img in frames]\n # Write actions on each frame, on each row (i.e., for each video in the batch, on the GT row)\n B, S, _, _, _ = video_batch_BSHWC.shape\n action_batch_BSm11 = jnp.reshape(action_batch_E, (B, S-1, 1))\n for t, img in enumerate(imgs[1:]):\n d = ImageDraw.Draw(img)\n for row in range(action_batch_BSm11.shape[0]):\n action = action_batch_BSm11[row, t, 0]\n y_offset = row * video_batch_BSHWC.shape[2] + 2\n d.text((2, y_offset), f""{action}"", fill=255)\n imgs[0].save(\n f""generation_{time.time()}.gif"",\n save_all=True,\n append_images=imgs[1:],\n duration=250,\n loop=0,\n )\n",python,tab
3
+ 2,2823,"sample.py",5162,0,"",python,selection_mouse
4
+ 3,2829,"sample.py",5161,0,"",python,selection_command
1f15334ab7e6820c9fda17c961659882ef9853cc80f7356b9a9b22f286fd7389/crowd-code-f23be3cf-4da5-450c-91f1-df9de045459c1752656830830-2025_07_16-11.08.01.978/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-000d5684-56eb-441c-a6df-7ac4df8ff5c71752846982966-2025_07_18-15.57.40.939/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-005af936-919b-4c44-b3af-2ed3459192121752831699789-2025_07_18-11.43.38.119/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-05016444-b54b-4934-b340-97e6db49021a1753717457401-2025_07_28-17.45.12.572/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-08c8f2de-5ecb-431d-b59f-5255a2b202341751712939209-2025_07_05-12.56.07.377/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-08ecc06e-32e0-4a9b-b785-5fb84b3f32de1751802304467-2025_07_06-13.46.47.722/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-12b522dd-8518-4c62-b207-ca1ed4ce90571752782954186-2025_07_17-22.10.14.626/source.csv ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,4,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\n\nimport einops\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n warmup_steps: int = 5000\n lr_schedule : str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 8\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 8\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_num_blocks: int = 12\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n use_maskgit: bool = False\n param_dtype: jnp.dtype = jnp.float32\n dtype: jnp.dtype = jnp.bfloat16\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n logits = outputs[""token_logits""]\n targets = outputs[""video_tokens""]\n\n # if not args.use_maskgit:\n # logits = outputs[""token_logits""][:, :, :-1]\n # targets = outputs[""video_tokens""][:, :, 1:]\n # mask = outputs[""mask""][:, :, 1:] \n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n logits, targets\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = logits.argmax(-1) == targets\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(logits)\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean() # type: ignore\n ssim = pix.ssim(gt, recon).mean() # type: ignore\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_latent_actions, fill_value=0\n )\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=logits.max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\[email protected]\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n use_maskgit=args.use_maskgit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n action=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len), dtype=args.dtype\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n\n param_counts = count_parameters_by_component(init_params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(args.lr_schedule, \n args.init_lr, \n args.max_lr, \n args.decay_end, \n args.num_steps, \n args.warmup_steps, \n args.wsd_decay_steps)\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4, mu_dtype=args.dtype)\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.StandardSave, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.StandardRestore, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointSave, grain.checkpoint.CheckpointHandler) # type: ignore\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler) # type: ignore\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n # Restore full dynamics model\n abstract_train_state = jax.tree_util.tree_map(\n ocp.utils.to_shape_dtype_struct, train_state\n )\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_train_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )\n train_state = restored[""model_state""]\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n train_state = restore_genie_components(\n train_state, replicated_sharding, grain_iterator, dummy_inputs, rng, args\n )\n\n # --- TRAIN LOOP ---\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator) # type: ignore\n while step < args.num_steps:\n # for videos in dataloader:\n videos = np.load(""overfit_dir/corner_8repl.npy"")\n videos = jax.make_array_from_process_local_data(videos_sharding, videos)\n while True:\n # --- Train step ---\n rng, _rng, _rng_dropout, _rng_mask = jax.random.split(rng, 4)\n\n inputs = dict(\n videos=videos,\n rng=_rng,\n dropout_rng=_rng_dropout,\n mask_rng=_rng_mask,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) #/ 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.StandardSave(train_state),\n dataloader_state=grain.checkpoint.CheckpointSave(\n grain_iterator\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
3
+ 2,590,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"10:10:14 PM [info] Activating crowd-code\n10:10:14 PM [info] Recording started\n10:10:14 PM [info] Initializing git provider using file system watchers...\n10:10:14 PM [info] Git repository found\n10:10:14 PM [info] Git provider initialized successfully\n10:10:14 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 3,3709,"TERMINAL",0,0,"/bin/python3 /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt",,terminal_command
5
+ 4,3743,"TERMINAL",0,0,"]633;E;2025-07-17 22:10:18 /bin/python3 /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt;541e3580-6a0f-4f0b-bb4c-198841a406f7]633;C",,terminal_output
6
+ 5,3850,"TERMINAL",0,0,"]0;tum_cte0515@hkn1991:/hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash]633;D;0",,terminal_output
7
+ 6,21978,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",0,0,"",python,tab
8
+ 7,21982,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2750,0,"",python,selection_mouse
9
+ 8,25341,"TERMINAL",0,0,"queue",,terminal_command
10
+ 9,25354,"TERMINAL",0,0,"]633;E;2025-07-17 22:10:39 queue;8a8d6fe6-a600-49ab-ad7b-e3418768748b]633;C",,terminal_output
11
+ 10,25432,"TERMINAL",0,0,"[?1049h(B[?7hEvery 1.0s: squeue --mehkn1991.localdomain: Thu Jul 17 22:10:39 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3353884 accelerat interact tum_cte0 R 7:01:56\t 2 hkn[0508,0517]",,terminal_output
12
+ 11,26402,"TERMINAL",0,0,"407",,terminal_output
13
+ 12,27450,"TERMINAL",0,0,"18",,terminal_output
14
+ 13,28557,"TERMINAL",0,0,"29",,terminal_output
15
+ 14,29633,"TERMINAL",0,0,"32:01",,terminal_output
16
+ 15,29809,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
17
+ 16,34077,"TERMINAL",0,0,"scancel 3353884",,terminal_command
18
+ 17,34117,"TERMINAL",0,0,"]633;E;2025-07-17 22:10:48 scancel 3353884;8a8d6fe6-a600-49ab-ad7b-e3418768748b]633;C]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
19
+ 18,100445,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2966,0,"",python,selection_mouse
20
+ 19,102391,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2912,0,"",python,selection_command
21
+ 20,102556,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2858,0,"",python,selection_command
22
+ 21,102702,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2827,0,"",python,selection_command
23
+ 22,102897,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2858,0,"",python,selection_command
24
+ 23,103038,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2912,0,"",python,selection_command
25
+ 24,103183,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2966,0,"",python,selection_command
26
+ 25,103313,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2912,0,"",python,selection_command
27
+ 26,103461,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2858,0,"",python,selection_command
28
+ 27,103646,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2827,0,"",python,selection_command
29
+ 28,103749,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2858,0,"",python,selection_command
30
+ 29,103907,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2912,0,"",python,selection_command
31
+ 30,104034,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2966,0,"",python,selection_command
32
+ 31,104150,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",3010,0,"",python,selection_command
33
+ 32,104180,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2966,0,"",python,selection_command
34
+ 33,104347,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2912,0,"",python,selection_command
35
+ 34,104508,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2858,0,"",python,selection_command
36
+ 35,104634,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2827,0,"",python,selection_command
37
+ 36,104768,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2800,0,"",python,selection_command
38
+ 37,105312,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2801,0,"",python,selection_command
39
+ 38,105809,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2802,0,"",python,selection_command
40
+ 39,106322,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2803,0,"",python,selection_command
41
+ 40,106363,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2804,0,"",python,selection_command
42
+ 41,106416,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2805,0,"",python,selection_command
43
+ 42,106454,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2806,0,"",python,selection_command
44
+ 43,106498,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2807,0,"",python,selection_command
45
+ 44,106499,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2808,0,"",python,selection_command
46
+ 45,106500,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2809,0,"",python,selection_command
47
+ 46,106539,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2810,0,"",python,selection_command
48
+ 47,106557,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2811,0,"",python,selection_command
49
+ 48,106584,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2812,0,"",python,selection_command
50
+ 49,106634,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2843,0,"",python,selection_command
51
+ 50,107209,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2897,0,"",python,selection_command
52
+ 51,107343,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",2951,0,"",python,selection_command
53
+ 52,109636,"slurm/jobs/mihir/horeka/yolo-runs/sampling.sh",0,0,"\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\n# source .venv/bin/activate\n\narray_records_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_new/open_ai_minecraft_arrayrecords_chunked\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=$ws_dir/checkpoints/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\ntokenizer_ckpt_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer-lr-scaling/train_tokenizer_lr_sweep_1e-4\ndynamics_ckpt_dir=$1\necho $dynamics_ckpt_dir\n\nenv | grep SLURM\n\npython sample.py \\n --checkpoint $dynamics_ckpt_dir \\n --dyna_dim=128 \\n --dyna_num_blocks=2 \\n --dyna_num_heads=4 \\n --seq_len=2 \\n --data_dir $array_records_dir\n\n",shellscript,tab
54
+ 53,114762,"TERMINAL",0,0,"",,terminal_focus
55
+ 54,121002,"TERMINAL",0,0,"salloc --time=10:00:00 --partition=accelerated --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=5",,terminal_command
56
+ 55,121089,"TERMINAL",0,0,"]633;E;2025-07-17 22:12:15 salloc --time=10:00:00 --partition=accelerated --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=5;2fac4da8-d4f0-4d83-a6ce-f6776ed5ed51]633;Csalloc: Granted job allocation 3355871\r\n",,terminal_output
57
+ 56,121223,"TERMINAL",0,0,"salloc: Waiting for resource configuration\r\n",,terminal_output
58
+ 57,148351,"TERMINAL",0,0,"salloc: Nodes hkn0508 are ready for job\r\n",,terminal_output
59
+ 58,149414,"TERMINAL",0,0,"]0;tum_cte0515@hkn0508:~/Projects/jafar[?2004h[tum_cte0515@hkn0508 jafar]$ ",,terminal_output
60
+ 59,165129,"TERMINAL",0,0,"\r[tum_cte0515@hkn0508 jafar]$ ",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-12e65989-9ed0-4f2d-9e6c-43231178a0e21751536307695-2025_07_03-11.53.05.72/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-1dc733b8-f415-4be5-b7dd-dc5953da5bb91753973887840-2025_07_31-16.58.50.401/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-21374577-8901-4de5-b364-53d577190c6a1752060363988-2025_07_09-13.26.43.890/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-25569aaa-6e77-4ce2-b9b6-8ae8c33420051753180192494-2025_07_22-12.30.11.399/source.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,5,"slurm/jobs/mihir/horeka/yolo-runs/sampling.sh",0,0,"\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\n# source .venv/bin/activate\n\narray_records_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_new/open_ai_minecraft_arrayrecords_chunked\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=$ws_dir/checkpoints/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\ntokenizer_ckpt_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer-lr-scaling/train_tokenizer_lr_sweep_1e-4\ndynamics_ckpt_dir=$1\necho $dynamics_ckpt_dir\n\nenv | grep SLURM\n\nsrun python sample.py \\n --checkpoint $dynamics_ckpt_dir \\n --dyna_dim=128 \\n --dyna_num_blocks=2 \\n --dyna_num_heads=4 \\n --seq_len=16 \\n --start_frame=10 \\n --data_dir $array_records_dir\n\n# srun python sample.py \\n # --checkpoint $dynamics_ckpt_dir \\n # --start_frame=0 \\n # --batch_size=12 \\n # --seq_len=2 \\n # --data_dir $array_records_dir\n",shellscript,tab
3
+ 2,446,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:30:11 PM [info] Activating crowd-code\n12:30:11 PM [info] Recording started\n12:30:11 PM [info] Initializing git provider using file system watchers...\n12:30:11 PM [info] Git repository found\n12:30:11 PM [info] Git provider initialized successfully\n12:30:11 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 3,1898,"slurm/jobs/mihir/horeka/yolo-runs/sampling.sh",0,0,"",shellscript,tab
5
+ 4,8030,"TERMINAL",0,0,"cd checkpoints/big-runs/",,terminal_command
6
+ 5,8072,"TERMINAL",0,0,"]633;E;2025-07-22 12:30:19 cd checkpoints/big-runs/;5fcdc89e-3b1c-4d05-a6d2-6f1ce0ba6ffb]633;C]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs]633;D;0",,terminal_output
7
+ 6,10557,"TERMINAL",0,0,"cd tokenizer-lr-scaling/",,terminal_command
8
+ 7,12047,"TERMINAL",0,0,"ls",,terminal_command
9
+ 8,12130,"TERMINAL",0,0,"]633;E;2025-07-22 12:30:23 ls;5fcdc89e-3b1c-4d05-a6d2-6f1ce0ba6ffb]633;Ctrain_tokenizer_lr_sweep_1e-4 train_tokenizer_lr_sweep_5e-5\r\ntrain_tokenizer_lr_sweep_1e-4_8nodes train_tokenizer_lr_sweep_5e-5_8nodes\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer-lr-scaling]633;D;0",,terminal_output
10
+ 9,16772,"TERMINAL",0,0,"cd train_tokenizer_lr_sweep_1e-4",,terminal_command
11
+ 10,16797,"TERMINAL",0,0,"]633;E;2025-07-22 12:30:28 cd train_tokenizer_lr_sweep_1e-4;5fcdc89e-3b1c-4d05-a6d2-6f1ce0ba6ffb]633;C]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer-lr-scaling/train_tokenizer_lr_sweep_1e-4]633;D;0",,terminal_output
12
+ 11,17848,"TERMINAL",0,0,"ls",,terminal_command
13
+ 12,17849,"TERMINAL",0,0,"]633;E;2025-07-22 12:30:28 ls;5fcdc89e-3b1c-4d05-a6d2-6f1ce0ba6ffb]633;C",,terminal_output
14
+ 13,17862,"TERMINAL",0,0,"020000 060000 100000 140000 145000 146000.zip\r\n040000 080000 120000 144000 146000\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer-lr-scaling/train_tokenizer_lr_sweep_1e-4]633;D;0",,terminal_output
15
+ 14,21855,"TERMINAL",0,0,"cursor .",,terminal_command
16
+ 15,21897,"TERMINAL",0,0,"]633;E;2025-07-22 12:30:33 cursor .;5fcdc89e-3b1c-4d05-a6d2-6f1ce0ba6ffb]633;C",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-268e2d5f-0a66-4008-8495-15de70c8a2e51751028407664-2025_06_27-14.47.06.44/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2d2437e1-caa5-4315-a7d9-4d9478073a161750944609503-2025_06_26-15.30.55.51/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2f5e552b-d86c-4a34-a644-139d05fcf0731753100718217-2025_07_21-14.25.46.738/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-30efafeb-a59f-45ff-9626-651f3a2526631753351953527-2025_07_24-12.13.09.956/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-35296db0-5985-4518-8394-cca2184ed6c11751305990184-2025_06_30-19.53.48.49/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-3553d16e-f1c9-4e9c-9425-6b663caf1f311753957765078-2025_07_31-12.30.02.749/source.csv ADDED
The diff for this file is too large to render. See raw diff