dataset script
Browse files- sagan-mc.py +107 -0
sagan-mc.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
_CITATION = """
|
| 7 |
+
@inproceedings{gebhard2022inferring,
|
| 8 |
+
title={Inferring molecular complexity from mass spectrometry data using machine learning},
|
| 9 |
+
author={Gebhard, Timothy D and Bell, Aaron C and Gong, Jian and Hastings, Jaden J. A. and Fricke, G. Matthew and Cabrol, Nathalie and Sandford, Scott and Phillips, Michael and Warren-Rhodes, Kimberley and Baydin, Atilim Gunes},
|
| 10 |
+
booktitle={NeurIPS Workshop on Machine Learning and the Physical Sciences},
|
| 11 |
+
year={2022}
|
| 12 |
+
}
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
_DESCRIPTION = """
|
| 16 |
+
SaganMC is a molecular dataset designed to support machine learning research in molecular complexity inference. It includes over 400,000 molecules with computed structural, physico-chemical, and complexity descriptors, and a subset of ~16k molecules that additionally include experimental mass spectra.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_HOMEPAGE = "https://huggingface.co/datasets/oxai4science/sagan-mc"
|
| 20 |
+
_LICENSE = "CC-BY-4.0"
|
| 21 |
+
|
| 22 |
+
_URLS = {
|
| 23 |
+
"sagan-mc-400k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-400k.csv",
|
| 24 |
+
"sagan-mc-spectra-16k": "https://huggingface.co/datasets/oxai4science/sagan-mc/resolve/main/sagan-mc-spectra-16k.csv",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
class SaganMC(datasets.GeneratorBasedBuilder):
|
| 28 |
+
VERSION = datasets.Version("1.0.0")
|
| 29 |
+
|
| 30 |
+
BUILDER_CONFIGS = [
|
| 31 |
+
datasets.BuilderConfig(name="sagan-mc-400k", version=VERSION, description="Full dataset with ~400k molecules"),
|
| 32 |
+
datasets.BuilderConfig(name="sagan-mc-spectra-16k", version=VERSION, description="Subset with mass spectra (~16k molecules)"),
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
DEFAULT_CONFIG_NAME = "sagan-mc-400k"
|
| 36 |
+
|
| 37 |
+
def _info(self):
|
| 38 |
+
features = datasets.Features({
|
| 39 |
+
"inchi": datasets.Value("string"),
|
| 40 |
+
"inchikey": datasets.Value("string"),
|
| 41 |
+
"selfies": datasets.Value("string"),
|
| 42 |
+
"smiles": datasets.Value("string"),
|
| 43 |
+
"smiles_scaffold": datasets.Value("string"),
|
| 44 |
+
"formula": datasets.Value("string"),
|
| 45 |
+
"fingerprint_morgan": datasets.Value("string"),
|
| 46 |
+
"num_atoms": datasets.Value("int32"),
|
| 47 |
+
"num_atoms_all": datasets.Value("int32"),
|
| 48 |
+
"num_bonds": datasets.Value("int32"),
|
| 49 |
+
"num_bonds_all": datasets.Value("int32"),
|
| 50 |
+
"num_rings": datasets.Value("int32"),
|
| 51 |
+
"num_aromatic_rings": datasets.Value("int32"),
|
| 52 |
+
"physchem_mol_weight": datasets.Value("float"),
|
| 53 |
+
"physchem_logp": datasets.Value("float"),
|
| 54 |
+
"physchem_tpsa": datasets.Value("float"),
|
| 55 |
+
"physchem_qed": datasets.Value("float"),
|
| 56 |
+
"physchem_h_acceptors": datasets.Value("int32"),
|
| 57 |
+
"physchem_h_donors": datasets.Value("int32"),
|
| 58 |
+
"physchem_rotatable_bonds": datasets.Value("int32"),
|
| 59 |
+
"physchem_fraction_csp3": datasets.Value("float"),
|
| 60 |
+
"mass_spectrum_nist": datasets.Value("string"),
|
| 61 |
+
"complex_ma_score": datasets.Value("int32"),
|
| 62 |
+
"complex_ma_runtime": datasets.Value("float"),
|
| 63 |
+
"complex_bertz_score": datasets.Value("float"),
|
| 64 |
+
"complex_bertz_runtime": datasets.Value("float"),
|
| 65 |
+
"complex_boettcher_score": datasets.Value("float"),
|
| 66 |
+
"complex_boettcher_runtime": datasets.Value("float"),
|
| 67 |
+
"synth_sa_score": datasets.Value("float"),
|
| 68 |
+
"meta_cas_number": datasets.Value("string"),
|
| 69 |
+
"meta_names": datasets.Value("string"),
|
| 70 |
+
"meta_iupac_name": datasets.Value("string"),
|
| 71 |
+
"meta_comment": datasets.Value("string"),
|
| 72 |
+
"meta_origin": datasets.Value("string"),
|
| 73 |
+
"meta_reference": datasets.Value("string"),
|
| 74 |
+
"split": datasets.ClassLabel(names=["train", "val", "test"])
|
| 75 |
+
})
|
| 76 |
+
return datasets.DatasetInfo(
|
| 77 |
+
description=_DESCRIPTION,
|
| 78 |
+
features=features,
|
| 79 |
+
homepage=_HOMEPAGE,
|
| 80 |
+
license=_LICENSE,
|
| 81 |
+
citation=_CITATION,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def _split_generators(self, dl_manager):
|
| 85 |
+
url = _URLS[self.config.name]
|
| 86 |
+
data_path = dl_manager.download_and_extract(url)
|
| 87 |
+
return [
|
| 88 |
+
datasets.SplitGenerator(
|
| 89 |
+
name=datasets.Split.TRAIN,
|
| 90 |
+
gen_kwargs={"filepath": data_path, "split_name": "train"},
|
| 91 |
+
),
|
| 92 |
+
datasets.SplitGenerator(
|
| 93 |
+
name=datasets.Split.VALIDATION,
|
| 94 |
+
gen_kwargs={"filepath": data_path, "split_name": "val"},
|
| 95 |
+
),
|
| 96 |
+
datasets.SplitGenerator(
|
| 97 |
+
name=datasets.Split.TEST,
|
| 98 |
+
gen_kwargs={"filepath": data_path, "split_name": "test"},
|
| 99 |
+
),
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
def _generate_examples(self, filepath, split_name):
|
| 103 |
+
with open(filepath, encoding="utf-8") as f:
|
| 104 |
+
reader = csv.DictReader(f)
|
| 105 |
+
for idx, row in enumerate(reader):
|
| 106 |
+
if row["split"] == split_name:
|
| 107 |
+
yield idx, row
|