Datasets:
Delete NURC-SP_ENTOA_TTS.py
Browse files- NURC-SP_ENTOA_TTS.py +0 -303
NURC-SP_ENTOA_TTS.py
DELETED
@@ -1,303 +0,0 @@
|
|
1 |
-
import csv
|
2 |
-
import datasets
|
3 |
-
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
4 |
-
from pathlib import Path
|
5 |
-
|
6 |
-
_PROMPTS_PROSODIC_URLS = {
|
7 |
-
"dev": "prosodic/validation.csv",
|
8 |
-
"train": "prosodic/train.csv",
|
9 |
-
}
|
10 |
-
|
11 |
-
_PROMPTS_AUDIO_CORPUS_URLS = {
|
12 |
-
"dev": "audioCorpus/validation.csv",
|
13 |
-
"train": "audioCorpus/train.csv",
|
14 |
-
}
|
15 |
-
|
16 |
-
_PROMPTS_AUTOMATIC_URLS = {
|
17 |
-
"dev": "automatic/validation.csv",
|
18 |
-
"train": "automatic/train.csv",
|
19 |
-
}
|
20 |
-
|
21 |
-
_PROMPTS_TEST_URLS = {
|
22 |
-
"test": "test/test.csv",
|
23 |
-
}
|
24 |
-
|
25 |
-
_ARCHIVES_PROSODIC = {
|
26 |
-
"dev": "prosodic/audios.tar.gz",
|
27 |
-
"train": "prosodic/audios.tar.gz",
|
28 |
-
}
|
29 |
-
|
30 |
-
_ARCHIVES_AUDIO_CORPUS = {
|
31 |
-
"dev": "audioCorpus/audios.tar.gz",
|
32 |
-
"train": "audioCorpus/audios.tar.gz",
|
33 |
-
}
|
34 |
-
|
35 |
-
_ARCHIVES_AUTOMATIC = {
|
36 |
-
"train": "automatic/nurc_cm_automatic_segmented_audios.zip",
|
37 |
-
"dev": "automatic/nurc_cm_automatic_segmented_audios.zip",
|
38 |
-
}
|
39 |
-
|
40 |
-
_ARCHIVES_TEST = {
|
41 |
-
"test": "test/test.zip",
|
42 |
-
}
|
43 |
-
|
44 |
-
_PATH_TO_CLIPS = {
|
45 |
-
"dev": "",
|
46 |
-
"train": "",
|
47 |
-
"test": "",
|
48 |
-
}
|
49 |
-
|
50 |
-
|
51 |
-
class NurcSPConfig(BuilderConfig):
|
52 |
-
def __init__(self, prompts_type, **kwargs):
|
53 |
-
super().__init__(**kwargs)
|
54 |
-
self.prompts_type = prompts_type
|
55 |
-
|
56 |
-
|
57 |
-
class NurcSPDataset(GeneratorBasedBuilder):
|
58 |
-
BUILDER_CONFIGS = [
|
59 |
-
NurcSPConfig(name="audioCorpus", description="Audio Corpus audio prompts", prompts_type="audioCorpus"),
|
60 |
-
NurcSPConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
|
61 |
-
NurcSPConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
|
62 |
-
NurcSPConfig(name="test", description="Test audio prompts", prompts_type="test"),
|
63 |
-
]
|
64 |
-
|
65 |
-
def _info(self):
|
66 |
-
if self.config.name == "prosodic":
|
67 |
-
return DatasetInfo(
|
68 |
-
features=datasets.Features(
|
69 |
-
{
|
70 |
-
"path": datasets.Value("string"),
|
71 |
-
"name": datasets.Value("string"),
|
72 |
-
"speaker": datasets.Value("string"),
|
73 |
-
"start_time": datasets.Value("string"),
|
74 |
-
"end_time": datasets.Value("string"),
|
75 |
-
"normalized_text": datasets.Value("string"),
|
76 |
-
"text": datasets.Value("string"),
|
77 |
-
"duration": datasets.Value("string"),
|
78 |
-
"type": datasets.Value("string"),
|
79 |
-
"year": datasets.Value("string"),
|
80 |
-
"gender": datasets.Value("string"),
|
81 |
-
"age_range": datasets.Value("string"),
|
82 |
-
"total_duration": datasets.Value("string"),
|
83 |
-
"quality": datasets.Value("string"),
|
84 |
-
"theme": datasets.Value("string"),
|
85 |
-
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
|
86 |
-
}
|
87 |
-
)
|
88 |
-
)
|
89 |
-
elif self.config.name == "audioCorpus":
|
90 |
-
return DatasetInfo(
|
91 |
-
features=datasets.Features(
|
92 |
-
{
|
93 |
-
"audio_name": datasets.Value("string"),
|
94 |
-
"file_path": datasets.Value("string"),
|
95 |
-
"text": datasets.Value("string"),
|
96 |
-
"start_time": datasets.Value("string"),
|
97 |
-
"end_time": datasets.Value("string"),
|
98 |
-
"duration": datasets.Value("string"),
|
99 |
-
"quality": datasets.Value("string"),
|
100 |
-
"speech_genre": datasets.Value("string"),
|
101 |
-
"speech_style": datasets.Value("string"),
|
102 |
-
"variety": datasets.Value("string"),
|
103 |
-
"accent": datasets.Value("string"),
|
104 |
-
"sex": datasets.Value("string"),
|
105 |
-
"age_range": datasets.Value("string"),
|
106 |
-
"num_speakers": datasets.Value("string"),
|
107 |
-
"speaker_id": datasets.Value("string"),
|
108 |
-
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
|
109 |
-
}
|
110 |
-
)
|
111 |
-
)
|
112 |
-
elif self.config.name == "automatic":
|
113 |
-
return DatasetInfo(
|
114 |
-
features=datasets.Features(
|
115 |
-
{
|
116 |
-
"path": datasets.Value("string"),
|
117 |
-
"name": datasets.Value("string"),
|
118 |
-
"speaker": datasets.Value("string"),
|
119 |
-
"start_time": datasets.Value("string"),
|
120 |
-
"end_time": datasets.Value("string"),
|
121 |
-
"text": datasets.Value("string"),
|
122 |
-
"duration": datasets.Value("string"),
|
123 |
-
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
|
124 |
-
}
|
125 |
-
)
|
126 |
-
)
|
127 |
-
elif self.config.name == "test":
|
128 |
-
return DatasetInfo(
|
129 |
-
features=datasets.Features(
|
130 |
-
{
|
131 |
-
"path": datasets.Value("string"),
|
132 |
-
"name": datasets.Value("string"),
|
133 |
-
"speaker": datasets.Value("string"),
|
134 |
-
"start_time": datasets.Value("string"),
|
135 |
-
"end_time": datasets.Value("string"),
|
136 |
-
"text": datasets.Value("string"),
|
137 |
-
"duration": datasets.Value("string"),
|
138 |
-
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
|
139 |
-
}
|
140 |
-
)
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
def _split_generators(self, dl_manager):
|
145 |
-
if self.config.prompts_type == "prosodic":
|
146 |
-
prompts_urls = _PROMPTS_PROSODIC_URLS
|
147 |
-
archive_link = _ARCHIVES_PROSODIC
|
148 |
-
elif self.config.prompts_type == "audioCorpus":
|
149 |
-
prompts_urls = _PROMPTS_AUDIO_CORPUS_URLS
|
150 |
-
archive_link = _ARCHIVES_AUDIO_CORPUS
|
151 |
-
elif self.config.prompts_type == "automatic":
|
152 |
-
prompts_urls = _PROMPTS_AUTOMATIC_URLS
|
153 |
-
archive_link = _ARCHIVES_AUTOMATIC
|
154 |
-
elif self.config.prompts_type == "test":
|
155 |
-
prompts_urls = _PROMPTS_TEST_URLS
|
156 |
-
archive_link = _ARCHIVES_TEST
|
157 |
-
else:
|
158 |
-
return
|
159 |
-
|
160 |
-
prompts_path = dl_manager.download(prompts_urls)
|
161 |
-
archive = dl_manager.download(archive_link)
|
162 |
-
|
163 |
-
if self.config.prompts_type == "prosodic" or self.config.prompts_type == "audioCorpus":
|
164 |
-
return [
|
165 |
-
SplitGenerator(
|
166 |
-
name=Split.VALIDATION,
|
167 |
-
gen_kwargs={
|
168 |
-
"prompts_path": prompts_path["dev"],
|
169 |
-
"path_to_clips": _PATH_TO_CLIPS["dev"],
|
170 |
-
"audio_files": dl_manager.iter_archive(archive["dev"]),
|
171 |
-
"split_name": "validation"
|
172 |
-
}
|
173 |
-
),
|
174 |
-
SplitGenerator(
|
175 |
-
name=Split.TRAIN,
|
176 |
-
gen_kwargs={
|
177 |
-
"prompts_path": prompts_path["train"],
|
178 |
-
"path_to_clips": _PATH_TO_CLIPS["train"],
|
179 |
-
"audio_files": dl_manager.iter_archive(archive["train"]),
|
180 |
-
"split_name": "train"
|
181 |
-
}
|
182 |
-
),
|
183 |
-
]
|
184 |
-
elif self.config.prompts_type == "automatic":
|
185 |
-
return [
|
186 |
-
SplitGenerator(
|
187 |
-
name=Split.VALIDATION,
|
188 |
-
gen_kwargs={
|
189 |
-
"prompts_path": prompts_path["dev"],
|
190 |
-
"path_to_clips": _PATH_TO_CLIPS["dev"],
|
191 |
-
"audio_files": dl_manager.iter_archive(archive["dev"]),
|
192 |
-
"split_name": "validation"
|
193 |
-
}
|
194 |
-
),
|
195 |
-
SplitGenerator(
|
196 |
-
name=Split.TRAIN,
|
197 |
-
gen_kwargs={
|
198 |
-
"prompts_path": prompts_path["train"],
|
199 |
-
"path_to_clips": _PATH_TO_CLIPS["train"],
|
200 |
-
"audio_files": dl_manager.iter_archive(archive["train"]),
|
201 |
-
"split_name": "train"
|
202 |
-
}
|
203 |
-
),
|
204 |
-
]
|
205 |
-
elif self.config.prompts_type == "test":
|
206 |
-
return[
|
207 |
-
SplitGenerator(
|
208 |
-
name=Split.TEST,
|
209 |
-
gen_kwargs={
|
210 |
-
"prompts_path": prompts_path["test"],
|
211 |
-
"path_to_clips": _PATH_TO_CLIPS["test"],
|
212 |
-
"audio_files": dl_manager.iter_archive(archive["test"]),
|
213 |
-
"split_name": "test"
|
214 |
-
}
|
215 |
-
),
|
216 |
-
]
|
217 |
-
|
218 |
-
def _generate_examples(self, prompts_path, path_to_clips, audio_files, split_name):
|
219 |
-
examples = {}
|
220 |
-
csv_paths = []
|
221 |
-
|
222 |
-
with open(prompts_path, "r", encoding="utf-8") as f:
|
223 |
-
if self.config.prompts_type == "test":
|
224 |
-
csv_reader = csv.DictReader(f, delimiter=";") # Explicitly set delimiter
|
225 |
-
else:
|
226 |
-
csv_reader = csv.DictReader(f)
|
227 |
-
|
228 |
-
if self.config.prompts_type == "prosodic":
|
229 |
-
for row in csv_reader:
|
230 |
-
file_path = Path(row['path']).as_posix()
|
231 |
-
examples[file_path] = {
|
232 |
-
"path": row['path'],
|
233 |
-
"name": row['name'],
|
234 |
-
"speaker": row['speaker'],
|
235 |
-
"start_time": row['start_time'],
|
236 |
-
"end_time": row['end_time'],
|
237 |
-
"normalized_text": row['normalized_text'],
|
238 |
-
"text": row['text'],
|
239 |
-
"duration": row['duration'],
|
240 |
-
"type": row['type'],
|
241 |
-
"year": row['year'],
|
242 |
-
"gender": row['gender'],
|
243 |
-
"age_range": row['age_range'],
|
244 |
-
"total_duration": row['total_duration'],
|
245 |
-
"quality": row['quality'],
|
246 |
-
"theme": row['theme'],
|
247 |
-
}
|
248 |
-
csv_paths.append(file_path)
|
249 |
-
elif self.config.prompts_type == "audioCorpus":
|
250 |
-
for row in csv_reader:
|
251 |
-
file_path = Path(row['file_path']).as_posix()
|
252 |
-
examples[file_path] = {
|
253 |
-
"audio_name": row['audio_name'],
|
254 |
-
"file_path": row['file_path'],
|
255 |
-
"text": row['text'],
|
256 |
-
"start_time": row['start_time'],
|
257 |
-
"end_time": row['end_time'],
|
258 |
-
"duration": row['duration'],
|
259 |
-
"quality": row['quality'],
|
260 |
-
"speech_genre": row['speech_genre'],
|
261 |
-
"speech_style": row['speech_style'],
|
262 |
-
"variety": row['variety'],
|
263 |
-
"accent": row['accent'],
|
264 |
-
"sex": row['sex'],
|
265 |
-
"age_range": row['age_range'],
|
266 |
-
"num_speakers": row['num_speakers'],
|
267 |
-
"speaker_id": row['speaker_id'],
|
268 |
-
}
|
269 |
-
csv_paths.append(file_path)
|
270 |
-
elif self.config.prompts_type == "automatic":
|
271 |
-
for row in csv_reader:
|
272 |
-
file_path = Path(row['path']).as_posix()
|
273 |
-
examples[file_path] = {
|
274 |
-
"path": row['path'],
|
275 |
-
"name": row['name'],
|
276 |
-
"speaker": row['speaker'],
|
277 |
-
"start_time": row['start_time'],
|
278 |
-
"end_time": row['end_time'],
|
279 |
-
"text": row['text'],
|
280 |
-
"duration": row['duration'],
|
281 |
-
}
|
282 |
-
csv_paths.append(file_path)
|
283 |
-
elif self.config.prompts_type == "test":
|
284 |
-
for row in csv_reader:
|
285 |
-
file_path = Path(row['path']).as_posix()
|
286 |
-
examples[file_path] = {
|
287 |
-
"path": row['path'],
|
288 |
-
"name": row['name'],
|
289 |
-
"speaker": row['speaker'],
|
290 |
-
"start_time": row['start_time'],
|
291 |
-
"end_time": row['end_time'],
|
292 |
-
"text": row['text'],
|
293 |
-
"duration": row['duration'],
|
294 |
-
}
|
295 |
-
csv_paths.append(file_path)
|
296 |
-
|
297 |
-
id_ = 0
|
298 |
-
for path, f in audio_files:
|
299 |
-
path = Path(path).as_posix()
|
300 |
-
if path.startswith(path_to_clips) and path in examples:
|
301 |
-
audio = {"path": path, "bytes": f.read()}
|
302 |
-
yield id_, {**examples[path], "audio": audio}
|
303 |
-
id_ += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|