File size: 8,583 Bytes
62ece39
 
8fba5e8
 
 
 
e07f153
0ff3780
e07f153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff3780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81331c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18682cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e07f153
 
 
 
 
 
 
0ff3780
 
 
 
 
 
81331c4
 
 
 
 
 
18682cb
 
 
 
62ece39
 
 
 
afcc48d
62ece39
 
2080706
 
 
 
62ece39
 
8fba5e8
 
62ece39
8fba5e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ece39
 
8fba5e8
 
 
 
 
 
 
 
 
 
dab90be
 
 
 
 
 
 
 
 
 
 
 
 
 
afcc48d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
license: mit
task_categories:
- text-to-speech
language:
- pt
dataset_info:
- config_name: audioCorpus
  features:
  - name: audio_name
    dtype: string
  - name: file_path
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: start_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: duration
    dtype: float64
  - name: quality
    dtype: string
  - name: speech_genre
    dtype: string
  - name: speech_style
    dtype: string
  - name: variety
    dtype: string
  - name: accent
    dtype: string
  - name: sex
    dtype: string
  - name: age_range
    dtype: string
  - name: num_speakers
    dtype: string
  - name: speaker_id
    dtype: float64
  splits:
  - name: train
    num_bytes: 1321925619.759
    num_examples: 7941
  - name: validation
    num_bytes: 81865796.0
    num_examples: 500
  download_size: 1397176842
  dataset_size: 1403791415.759
- config_name: automatic
  features:
  - name: path
    dtype:
      audio:
        sampling_rate: 16000
  - name: name
    dtype: string
  - name: speaker
    dtype: string
  - name: start_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: text
    dtype: string
  - name: duration
    dtype: int64
  - name: most_common_speaker
    dtype: string
  - name: __index_level_0__
    dtype: int64
  splits:
  - name: train
    num_bytes: 1355301836.348
    num_examples: 8021
  - name: validation
    num_bytes: 66393070.0
    num_examples: 382
  download_size: 1403414447
  dataset_size: 1421694906.348
- config_name: prosodic
  features:
  - name: path
    dtype:
      audio:
        sampling_rate: 16000
  - name: name
    dtype: string
  - name: speaker
    dtype: string
  - name: start_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: normalized_text
    dtype: string
  - name: text
    dtype: string
  - name: duration
    dtype: float64
  - name: type
    dtype: string
  - name: year
    dtype: int64
  - name: gender
    dtype: string
  - name: age_range
    dtype: string
  - name: total_duration
    dtype: string
  - name: quality
    dtype: string
  - name: theme
    dtype: string
  splits:
  - name: train
    num_bytes: 1365221237.321
    num_examples: 7527
  - name: validation
    num_bytes: 82345917.0
    num_examples: 473
  download_size: 1436686693
  dataset_size: 1447567154.321
- config_name: test
  features:
  - name: path
    dtype:
      audio:
        sampling_rate: 16000
  - name: name
    dtype: string
  - name: speaker
    dtype: string
  - name: start_time
    dtype: string
  - name: end_time
    dtype: string
  - name: text
    dtype: string
  - name: duration
    dtype: int64
  splits:
  - name: train
    num_bytes: 2179301.0
    num_examples: 29
  download_size: 2125875
  dataset_size: 2179301.0
configs:
- config_name: audioCorpus
  data_files:
  - split: train
    path: audioCorpus/train-*
  - split: validation
    path: audioCorpus/validation-*
- config_name: automatic
  data_files:
  - split: train
    path: automatic/train-*
  - split: validation
    path: automatic/validation-*
- config_name: prosodic
  data_files:
  - split: train
    path: prosodic/train-*
  - split: validation
    path: prosodic/validation-*
- config_name: test
  data_files:
  - split: train
    path: test/train-*
---

## How to Load the Dataset

There are 4 configurations: **"prosodic"**, **"automatic"**, **"audioCorpus"** and **test**. To load the dataset with the HuggingFace *datasets* library, use the following code: 

``` python
prosodic = load_dataset("nilc-nlp/NURC-SP_ENTOA_TTS", name="prosodic")
automatic = load_dataset("nilc-nlp/NURC-SP_ENTOA_TTS", name = "automatic")
audioCorpus = load_dataset("nilc-nlp/NURC-SP_ENTOA_TTS", name = "audioCorpus")
test = load_dataset("nilc-nlp/NURC-SP_ENTOA_TTS", name="test")
```

## Parameters of each configuration

### Prosodic Parameters
- path: The path to the audio file.
- name: The name of the original audio.
- speaker: The speaker in the segment (each different speaker in the original source was given an integer id). This field was automatically writter by WhisperX, so it might not be accurate.
- start_time: The time the audio segment starts in the original source in seconds.
- end_time: The time the audio segment ends in the original source in seconds.
- normalized_text: The human-made trancription without prosodic markings for the given audio.
- text: The human-made trancription with prosodic markings for the given audio.
- duration: The duration of the audio segment in seconds.
- type: The type of the audio according to the original NURC-SP classification.
- year: The year the audio was recorded
- gender: he speaker's sex. Divided into 'F', 'M', 'F e F', 'F e M' and 'M e M' ('F' stands for female and 'M' stands for male). Note that some audio sources have more than one speaker, so in that case the sex refers to the main speaker or speakers.
- age_range: The speaker's age range. Divided into 'I' (25 to 35), 'II' (36 to 55) and 'III' (over 55). Note that some audio sources have more than one speaker, so in that case the age range refers to the main speaker or speakers.
- total_duration: The duration of the original audio in minutes.
- quality: The human-determined quality of the audio
- theme: The theme of the speech.
- audio: The audio data of the segment.

### Automatic Parameters
- path: The path to the audio file.
- name: The name of the original audio.
- speaker: The speaker in the segment (each different speaker in the original source was given an integer id). This field was automatically writter by WhisperX, so it might not be accurate.
- start_time: The time the audio segment starts in the original source in seconds.
- end_time: The time the audio segment ends in the original source in seconds.
- text: The automatic trancription for the given audio.
- duration: The duration of the audio segment in seconds.
- audio: The audio data of the segment.
  
### AudioCorpus Parameters
- audio_name: The name given to the audio in the database. All audios extracted from the same source have the same name.
- file_path: The path to the audio file.
- text: The human-verified trancription for the given audio.
- start_time: The time the audio segment starts in the original source in seconds.
- end_time: The time the audio segment ends in the original source in seconds.
- duration: The duration of the audio segment in seconds.
- quality: Whether or not the audio had parts that could not be transcribed properly. Audios without this characteristic are rated 'high' and audios with it are rated 'low'.
- speech_genre: The speech genre of the original source of the segment. Divided into 'dialogue', 'interview' or 'lecture and talks'.
- speech_style: The speech style of the original source of the segment. All segments are categorized as 'spontaneous speech'.
- variety: The audio language. All segments are categorized as 'pt-br'.
- accent: The speaker's accent. All segments are categorized as 'sp-city'. Note that some audio sources have more than one speaker, so in that case the accent refers to the main speaker or speakers.
- sex: The speaker's sex. Divided into 'F', 'M', 'F e F', 'F e M' and 'M e M' ('F' stands for female and 'M' stands for male). Note that some audio sources have more than one speaker, so in that case the sex refers to the main speaker or speakers.
- age_range: The speaker's age range. Divided into 'I' (25 to 35), 'II' (36 to 55) and 'III' (over 55). Note that some audio sources have more than one speaker, so in that case the age range refers to the main speaker or speakers.
- num_speakers: The number of speakers in the original source of the segment. This field was automatically writter by WhisperX, so it might not be accurate.
- speaker_id: The speaker in the segment (each different speaker in the original source was given an integer id). This field was automatically writter by WhisperX, so it might not be accurate.

### Test Parameters
- path: The path to the audio file.
- name: The name of the original audio.
- speaker: The speaker in the segment (each different speaker in the original source was given an integer id). This field was automatically writter by WhisperX, so it might not be accurate.
- start_time: The time the audio segment starts in the original source in seconds.
- end_time: The time the audio segment ends in the original source in seconds.
- text: The automatic trancription for the given audio.
- duration: The duration of the audio segment in seconds * 16000 (sampling rate).
- audio: The audio data of the segment.