# /// script # requires-python = ">=3.12" # dependencies = [ # "numpy", # "einops", # "torch", # "transformers", # "datasets", # "accelerate", # "timm", # ] # /// try: from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "HuggingFaceTB/SmolLM3-3B" device = "cuda" # for GPU usage or "cpu" for CPU usage # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device) with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'w') as f: f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_3.txt') except Exception as e: with open('HuggingFaceTB_SmolLM3-3B_3.txt', 'w') as f: import traceback traceback.print_exc(file=f) finally: from huggingface_hub import upload_file upload_file( path_or_fileobj='HuggingFaceTB_SmolLM3-3B_3.txt', repo_id='model-metadata/custom_code_execution_files', path_in_repo='HuggingFaceTB_SmolLM3-3B_3.txt', repo_type='dataset', )