# /// script # requires-python = ">=3.12" # dependencies = [ # "numpy", # "einops", # "torch", # "transformers", # "diffusers", # "datasets", # "accelerate", # "timm", # ] # /// try: # Use a pipeline as a high-level helper from transformers import pipeline from transformers import AutoTokenizer model_id = "HuggingFaceTB/SmolLM3-3B" tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline("text-generation", model=model_id, tokenizer=tokenizer) messages = [ {"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}, ] pipe(messages) messages = [ {"role": "system", "content": "/no_think"}, {"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}, ] pipe(messages) from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "HuggingFaceTB/SmolLM3-3B" device = "cuda" # for GPU usage or "cpu" for CPU usage # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device) # prepare the model input prompt = "Give me a brief explanation of gravity in simple terms." messages_think = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages_think, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the output generated_ids = model.generate(**model_inputs, max_new_tokens=32768) # Get and decode the output output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] print(tokenizer.decode(output_ids, skip_special_tokens=True)) prompt = "Give me a brief explanation of gravity in simple terms." messages = [ {"role": "system", "content": "/no_think"}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the output generated_ids = model.generate(**model_inputs, max_new_tokens=32768) # Get and decode the output output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] print(tokenizer.decode(output_ids, skip_special_tokens=True)) tools = [ { "name": "get_weather", "description": "Get the weather in a city", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}} ] messages = [ { "role": "user", "content": "Hello! How is the weather today in Copenhagen?" } ] inputs = tokenizer.apply_chat_template( messages, enable_thinking=False, # True works as well, your choice! xml_tools=tools, add_generation_prompt=True, tokenize=True, return_tensors="pt" ).to(model.device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f: f.write('Everything was good in HuggingFaceTB_SmolLM3-3B_0.txt') except Exception as e: with open('HuggingFaceTB_SmolLM3-3B_0.txt', 'w') as f: import traceback traceback.print_exc(file=f) finally: from huggingface_hub import upload_file upload_file( path_or_fileobj='HuggingFaceTB_SmolLM3-3B_0.txt', repo_id='model-metadata/custom_code_execution_files', path_in_repo='HuggingFaceTB_SmolLM3-3B_0.txt', repo_type='dataset', )