# /// script # requires-python = ">=3.12" # dependencies = [ # "numpy", # "einops", # "torch", # "transformers", # "datasets", # "accelerate", # "timm", # ] # /// try: # Load model directly from transformers import AutoProcessor, AutoModelForImageTextToText processor = AutoProcessor.from_pretrained("CohereLabs/command-a-vision-07-2025") model = AutoModelForImageTextToText.from_pretrained("CohereLabs/command-a-vision-07-2025") messages = [ { "role": "user", "content": [ {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"}, {"type": "text", "text": "What animal is on the candy?"} ] }, ] inputs = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ).to(model.device) outputs = model.generate(**inputs, max_new_tokens=40) print(processor.decode(outputs[0][inputs["input_ids"].shape[-1]:])) with open('CohereLabs_command-a-vision-07-2025_2.txt', 'w') as f: f.write('Everything was good in CohereLabs_command-a-vision-07-2025_2.txt') except Exception as e: with open('CohereLabs_command-a-vision-07-2025_2.txt', 'w') as f: import traceback traceback.print_exc(file=f) finally: from huggingface_hub import upload_file upload_file( path_or_fileobj='CohereLabs_command-a-vision-07-2025_2.txt', repo_id='model-metadata/custom_code_execution_files', path_in_repo='CohereLabs_command-a-vision-07-2025_2.txt', repo_type='dataset', )