PAR1����LR���6# HW07: Solving Linear Least Squares Problems **Yuanx)��a_{n}^� contain�"�]�s� p(x). NotA��at several MATLAB functions, e.g., `vE� `, `a�Lval`, may be useful �5��0. ## Q1 Takge follow���4equally spaced�� on�4interval $−1a�q x 1$,e/m) ligna"li=-1+ {{2(i-1)}\over{m-1}} &!�di = \frac{1} {1 + 25x_i^2}-�IAbHaح2,I� . Us>�three�iapproach��o solv 2above�\NJHrespectively, to ob!�% !o�[�D$!�Bb �t!i$m = 50$E�$n = 20��($I�`a}$) The Matlab backslash5� `\`��ich �s�l��sq�ͭ� ���an��� (($m > n$). �b� reduA$QR$ faa�izaA��heJ canA�,computed via�MI�built-in�qr`�c� Soluk![hnormalE�. CompaF�eL1�%�ed fromG)�I"Y. W%Ztwo generateA 0ults more cloAsTo each other. You needA*usaW rmat longobserve Adigitsi�e6for%8ariso�$Answer$�A�@stance between usa�f6�1�QR6��Llowest. $Code$ ```)�, clear clc I�; I�; x =ፅ* (-1,1,m);x'; y�L./(1+25*x.^2); A = v��P(x); A1 = A(:,m-n+1:?�1\y; [Q,R] = qr(A1,0); y2 = Q'*y; x2 =e'4wardSubeps(R,yg A3XL1'*A1; L = chol(A3,'�r'J#L^(-1)**RayRL',y3�d1{A�(x1-xgd21 2-x'd3�  3-x1:s'b� '; s['^�!i'W}'; if �$< d23 31 s = [s1,'E',s2]; else  &3&1&nd *a23rBa2;3;�a(nd disp(['�dV�',s,':�'])E� ��2 Fore� case��Fy, draw%"� &� $A�p(x��2?one�a�Part 1%U�끋it��~4In Python, youm ��*****MWor,�16!q �**x**�assig(JE!�5Qt� I3 (in6�5 x , or 5-%� ```p� ,5**3 print(x��~ 125 M%�lZ� twice_�)�toU��Eb'��Qk�� mon-!i!G�g!K�E�2by aW.7i6�!7&InotEN shows 4�":� 7 (or 4 xV)Q�ha�%�J8 4^{7A816384 J)mathemat�� te(ology, **4*%��*base*�T**7�*!t*1*A@��expres����'H (Roots) While it's1vto"&��-����a�� �s|ial, so�:�you'llJR� orM�of�element%Rmselves:�con�? 9��J�?�19B�w�1- ] � .1: .�import� # C5~:�25�!5.! (25)� �2;:�d cr = round(64 ** (1. / 3) B(cr��5.04 )� code�d!�-�2�%S-_tha�.�!aals�&h!DaboHh� hip"C R:fs7 6�(.�qL��at1�!� w�E;B�1�ial��state��J� 8^{M{3}ay��a�82B�&mQ�!n6�/3F��B�e(I�. Ba�4)"� ,ni2Ni.��� jN9=29^�You� se��isţy� lf�m to wa�i� mustA,i�� pro2� � 16?�����i%���� "*m 2)K6!#�[ looks&� J�$log_{4}(16AF�:H� 1x �5i!�� �A?*!�./��A��nB�]cHAgjNhQ$.log(16, 4�J.A2.0�CfiVt��� �zAF� Q��E��%���� e p � al*:)�*coP*2/!�t{"Pen� **10**@'ll:����9}usuale *&pwi!S om�dV(1000AF� �v� .��! )\call �*natu�! log*�iT =j2���***e**5�  =a� tant��xim� 2.718aisQXoccurs �lyA�a {scenario6ndA!!w!ii�� as��k z dataE��analyQ�"extG! � bei?'j�!be awQQT�!+�%P�1�as!ln***V�_{e}(64!�ln 4.158N�Abq>:���return -4�(.�)T!no)��peed.*�#� � nfE�,�!�"�"%�F)i_E�ly�s�ii2�a<� �g(i&,� �M="� j�# NY�A�29���K(2�� � �of 100 *)10ay68367295829986474 ��##"�)Equ��s)*2�OK�Eg��hy� ic u�'aKd of.�s,� m� ; le}�#a?ok �%ome*�piJ]c\ �% . LLst3���Jmi3'a�rst gl�!������ed���0worry - we'll$a�step-by-��ear�*,few tricks a�"he wayJi22x^{4} (�%x�+2}}h )B;F�,-B deal �nf�! 7(x��3 era(� � 2,is x2denominAA�%en!� 46�)�e�8%rvariable)�� p .�!��iu� ly would �TQ;X]-I�e.�"�J(5>3weA�%%6�! M73i':Z(� 3 =*1Au3�>�2 minus -1E:$MXis}-1 l�*�2`�^AE-1}JIS��weA<got ri" ��k�JQK6zrem~+� V3& y>�!Wmj4 �. � G,!�opposite!�!-:a�ime�ll lI�=�� addN] s: 3 5lAby 36)�-9$3 o�� is 6�QZ�6x^�>KWEr� 1 stre1!nowD� 1Eis�!e y1�F/�� �we�4dWat�!(E� both*s2.] I�not.�.#�m��\i�whole: � m two;e� halfa�6� �u-:!L�3NJX�5A�3}BW�we�_a��*Udefines � �� of xE��q� � toZ&A}line cre�`bA\is"�w a�20arbitrary *x*�*y*W � *�8panda��pd� g a ! fr��P an x�/$ mv� s��-10�<10 df = pd.DataFD({'x':q"gY*0, 11)})rAdd a y]!�p0�slope-�# cept�(to x df['y'R*3* x']� #D�2C�� dfyP? c!` %mat�%lib ina,.kpy(�, plt plt.,(df.x, df.y,�0or="magenta")&$xlabel('x' y y grid( axh�v�(n&��A� curv� �� ympto4Aqa2_5R:�-�o� e ax�nA|sde �-~R3scale&_i�0* r�� an *�p �J �9 �a !���3e�;,�8� Z� 2^{xF��stillqh���R: �+�+�+u+ 2.0*q.�+�+�+�+l A8]Ma'a B���ree2� as 0. Act]3�''A>�+sm�+�al� ber�(b �A�z]i�2.�WwA�always,. Alsoe� rB� �$�di���xreases -2cgrowthŀb�( pretty dra�2. � �')p� cal�* �X ? Wel�u9 eV de� $100a�� nk accounZ at �s 5%E%4terest per yea� �� )@_WeKb�:twenty9  ssumc � j�or��A.g��-d�To�k� outN c�)�b �M2�: Aft��e fI�F2%�b Fini�6�(!5) plu5�at am!?N�,!l+ ��% 0.05F� wayYsa�$!� RT&\�% 1.05B A!�e e!� f�"�"1�N��&�.� cdotV�6*PA[!�ytwo"� F�G � �"-A���L�d. So a��WF��>� It �oA�ifr � B a�^�PH g easily:��aI�};�A R�0�0Q^A ^{20Fs��� M�ic!>�d�7ee�‘Q i�� ovaJ��20%.sV� Year"� 1, 2� &i ��AOu����/#1��th7 Qm� B�>� !Vk 05��3�� �� �� �"� green:� -� � 7 .� *�  2�!�# I.�?6$9&CionE8�&a 6�/f4� is� ,�?� $y_0�?1,�_�"_n$�_- s $x"x." x_n$�3`2* [-1, -0.7431400.71,"@$1.29, 1.5786, 2.2' , 3]�7[-2.25I77, 0.214460 o22&8v1. 13:6A� .67,�"4, 8.90]� ##!y I. F�a b�7i�@l�1$ $$ P_m(x�a_0\@1 x +-?m x^m+ Den arN�ach�$�z�E 1. �-,".�)�Zruc� de�+� '@ q$1, x9� x^m$�%bas��=. 2.Sa�licits � :l systeJ--"R��;xed�= . 3�,�< [Qto�92R}B)u$ �x$m = Z&gB$�#�algebra��an ei�AlibC5$ (`numpy.l�g.o=`) orN r LU:�:M"��week 1 <20%��,total grade)2�d# ... ENTER YOUR CODE HERE��!�np&�.:�defM_3(x, m):��;p= np.empty(shape=[len(x), m])&!Yi��ra�=mat[:, i~np.C!ai) ;� mat �%6_)�_1�1y�A=I�2�N$AT_A=A.T@Ab y eta=np2�(0,b < �( �$predict(xv},-� = sum( [j]*$**j% j9 !)#))2dA�8%/n�4� �array([�9483598��269833��\-2.01973166, 1.01540301� ��I � f��Aq optii;��A�m,E�&U#$criterion:�6e $m=:O, A��KcA,: ute � \sigma_m^� \X{1}{n - m} \sum_{k=0}^ngA ft( e�(_k) - y_k \�)^2�+Aa���.u,�G��$s$�bilizesa���+� ing�i�a�E� �_�:�A =z�%�y_M�i�-� (_-ta)%w_A}xm�n=A�x E� AA�np.� (^-a� ^y))) / (%� Am!H a= ] m_e� =�10) [=V�m� >]�$ , ks�. ��'*9s ���L�Bge���A �� . Vi���!�-6�ů&�Hde� ��vC A�@�ist�GuB] $m$?��$plt.scatte�<y) aa%=%y(5���RrIE�#�(��pl�x M�, �=M/$legen�.�0 I:� -I���!�>�A�'NT�Qprevious�0=LLS���/>h,%�ouK:rA�*ɝ*}ex�J�F&>x�! 8lF@�up NH,:qr` etc&_&N�W� .0D�s��of��1w �J� :���R�_qAߖ� Q, R��lo -C) #�E�Ay_r8)ed?C.T@y #  yEQ.TE�a9BR[:m,:]A� 4d[:m]) #� R1*7 = fD�����q�1,��.;���=����F� e�ag����> i� I.1 *�aZL , $� =  B(\cos{x}$. O% �I$x\in [\pi/4N pi]$t*te l&U}�N�ng�Ma�表i- $m=15 3, 4, 5$&�I0uniform mesh.&3i[Z�!�62��� (�� u[!:� M�0(x**2)*np.cos � l-�_k� xk, k :n�Aen(xkIN� ��.�*� n 6if j==k:�  inui�nuP6  - xk[j�ide~xk[k]B�*=?/*E� �6��y� -sum(yx *V j��-�'a�� �Jw Uy b� #�,4style.use('fivl+ rtye)''�.{notebook ��_Ib(A��dEdd_�=True-� #tab>)�y�6(n5)�%V# Sol2nd evalu onYiner �.x!�_ I� e� , 201� y+[Q�� { , yy)t� nI^#� !* (x=n, '-'�? pha=?�r' �$, $n=%s$'%!�h� 2I%xn)�r'i�'),A�(, 'o', ms=7 #if 9oi:)�(loc='_ U#" r"m$ = %s $" %I6.��� !�x%�(EP.S�8$ �EF�,�J 0.9, s� ntsize=22E&{ num_  = 3 ��VV�3� oYzMwFe#alternA:!� xv�kVaA) fv=[�Ʌk� xv*" xv,fv1�"RH"a(##QZ�*>, 2, �Qxv_��N�M�� y )B�_mI�langv�i{A�^,; �I�v 2#�%�O���0:��ngbe"^  MZ!�tF_ I.2. [F�`" task� Chebyshevi�. .2 Qit�iT��8�.�K#:L%� $m=3��.�cheb_E��|kI�ap(ni�����(2*k+1� pi/(2*nJ�Y�efT `pi �%2/2 non�!d � zM�ue)ub(Y-Q,)/(1-(-1))*(:R  +Q&~WH���}�}�}� =�m)J������ ��  h##�Reg_Am�G�>ODe�2t �5�: , I)*bbR�&�rPmodel V� Vd V���a8 ($y = m�c$�- rougNputD� �� of ($ $)�H; purp5R*o �&�0F�b&sX���sh���'it� �;u:4out-of-the-boxm ies/%J��[ S_; **>�Zx�Ty$ ���"�;dJ �V-J"9Jb$"�( !nD� 6�&V10(�>FShe x!gJ!$b$ Jminimi�nsetR)P!�_Mean \d G (deAadKE)_Fed]%��d�*Ps pb�1 $E�Vd�N�li=1}^N (y_i - (mx_i + b))^2$J�� �jJ�I>N)�SI ndom@6a" ized�"!zt]/up�/$}$?teps$+or unti�Pe>1ka> verga*Below*Q�uL=to iu 8Ba$W tep - $ �m -0ruY\_�$W-�\�Cal E} m} $BbdT�BbBa[�A�1sJjS9'���]ula;<ab: �,i>�deriv9B%%:�$E�re�6��u-.D($v� n%b}$cDY)�3seR�!�"%ehjs)��JZ E &=1�1}�A�[ v7ywZ - 2y_iy}%u�^H� r�Ix_iy_iA�T b + �Z�C5_imbV.�ZI|6�nj�]n0� � - p^2m ��0)"re-2Fwx_iF���b}rJ��!] +��b��φ�� mpZIa�d2�fbN\.�4_fit(�, m, b,�7,i��''' f*2@��?��l0d��m��b.CAlsBG�a curr �c��inF��@1���� Y�&x_/ [p[0]�� pZ �+y2&1Z&Qn �(]� g�$$'skyblue').�A fit_�P�Zst(m (�MminV))i (max�F�U F [m *J b�!� � ��!�(,' Q� ��5t V$'Step: ' +�3(!���',�:�F%�, 2�H�Ezmean_�d_-2�:w��esN�� 6w& b�E��� I669len � ���"El*�!.�\ = \[i, 0)w .1V m+=�& *T� **2+ 0= float)pV�"r�> ) %v� _!� �,qR_m b�6��f�Sa6 new It%*m��$�(�q� (of'a�)�\<�^ 6�q`)�\ jN���)UI()�I)�>"" �m%�-2 / n)U)A-*5�-_9�bqAOb>O�- vH�new%>eO1r%� *lm3!^3.� B3iufQ�mf�'m,.$qM�[. &TiA6�l-��Ec ^i >�,�ses:� RunsF�A9>H�0�Ong�h p�qI�� D1xE�:`� 6� g-�!�)��%0_vec �w] # Um ��_$Ql"��3P# �M���1D+[T��&Y25� %1 ER) D#y%6M��� o�b�My�,�� �WkDg�Fif�' %2: ��z M �!_ .app�! )%�&�E%P%s�2�-� K\��red�%�7NfXA)�s"�,F%�!q|!�]�: run(m"��gen�8txt('�,.csv', delim�&=', hYQ�A���A� )2 �.0001Um5005� =Ya�ncT__name__ == '__main__'�%l`lDicDe�E"L[Sympy](http://docs.x org/�Tst/tutorial/intro.html�*b6::sym� �[ #Q decl0s�ic"�@s 2} 8Jsym.& ..N:Zor6<, �+ gs('x .2�� �H6al$a�L$xy\exp[-(x^2+y^2)]$2h�L = x*y*l,exp(-(x**2+y�)� om`LaTeX`i2TI!�x(^.Cex�9 e�W2;�a�%%-�Y C(( (x-y)**3 `R'_trig�r 2*x2��if�>N�r'()�} �**2� y hx` ta�,�%�Task:UG� d%_!)m( \os^{2}{o (uy* )} - 1\�) \sin#v#+ 22.?\�"JW.L6@x,B�u v')%� = (2EX�!!' - 1)!Iy "x  -!= y) -�5=%U yMbE�)�Iy ied5z* L�g, IntegrK-!zD"�8:res`aRunh d"�2* ��2 HtSA�)�8$AO5)�9s:e!� im_{x \to~, \pi}�G \ta5�x9�:�-�F�a 2UB%C% I�n1!u/!Ddir='+' ) ), '=' )eĎ7B�[�>-le�#�oi.3`E1�`, g� `1 E ` 1��Wd�� 6a��"V< �A�� +I�5d}gvr$T�F adiu�). A� �:= ough��A�ggon� a�Zf� e� be� �L� �� joi�a�/n dan�5 larg.;m &YMedg���a�r�QE�hape. B�F $x$-�$y$-v�dv�E�  $-r$!�$r�1�>/Fd)|�=e1 li�.�.�x3pj? b1xGUncan!Pre1ng�Yyie�J3o$y$: �M}z \pm\sY^��()�-��CB�mdQW!�D� �vem1&%��&����P$�Fmi-I% . ItARnecess!dto�@�ff"�A=�� their corBoTP.H�co|+ qa=is�&WTi�b��� scriQe](u�A� $2r!\��� abN J�)r�1C�P�z�0J""" liseEx-c"uzs, |s?#e�y.$!S!�- ar� ."""� H�$A(r�  ), -�3r6 �� �B��&)d�wCti��:uAw C +Ai1���[-r, r,-r�� %  �R  __ �(= 1.0 # D�I��� + � n�7((M� D, (� ; )*qnf2� #:�a�sy s��ujA�uymu y_pJVy_neg =BI6��np| am"�Igri4axis('�2l 73 "x (&�Kunits)A?3"yR"Ɋ� x_sq$ sq =6Y)QNq) �2"�b�-)>�to*� M�of1Z!SK [0.0:��  0.0]arS8anAW0e(r"$r$", xy=6� 12�/16.0)L� ,0)�Ksho"-K#a�K/LR�off �#>F� �� e $A_�x�<by2"� 8 ,*K���L1�of� Ls 2r�"2� 4�3$J!r�o�#_=8c}$A_{s}2�N�t:�}s}w \p �}{ z2}{4F��SapE8nq!$dih1m�"��c} < �� �6%rin�g�F, < 4)&x�%�qb��E��I�K\b�au!�} �= 4)2>� |(ord^D���u"Qiq�a musv�$ordASes�n �-r\le xr� y . I�i=� alsu�� vbou^o� -In,= !��6!)��J~�NBr\ge � 2� F2ByR{�a^A *i)$lZcnd"�aV�pro�Km� thes� �{6D14E< $J�$Q�*� ' a��$x��M��[eno7�)sh�I eR' s(|notS 5:�h�^*� # Set� 4;ZXif.�SS2P � .q(!vb5Within Checkͩ*P D�sMFyb2 Bool-+9!nU�U',5� �J AIin_M-=J��, Es_L � "� �"� AvAMI:�s+1� <##n_�4-��|:�^ 7M�� � � ��(^� !C%1{[:)]9�� �=�$"F�N{}uz$d Points".�at( T)J� As�<wl�>2�)�fewB����F6 mA����7IF�:��X�&�+� abov�(s��U�C'*�sON�)T� four6�L���s _pi(A_u�@ """R5$s e���pi"�#:{ u>�-:�4: :~.�Q(��d\#�%ro.��#P�t-,of�J��"�Qv� += {:.3f}U+223� ``` OFH3.141 � E�eDi60sh!�-M � @NbVR!�6�iquick�I �con�.2��2s�-pi ,~%-�atz^plaU� pi�(M7�[_g<[�U T�Es�VohcQ* eta"nA�|ٙ0,��e� //m�����lf�[:L+1].��< I"lot ev�t ��)`!���B�figBG�z>� 14,1� ��s�2]M*���,9 "I2�[+[�-1]�R9*�')� A\I %�i[8���Q.�\pi�2a/-[[Oy;=:"5, !+�!5),e2��uF-;0,��owa�s=J=HC�.7hrink=0:T)A*�$ylim(3.13,a�nlt�*r"Improv�4A�AU���I &� � �W t:�)Ar"VoK;�$ devi%b��tru�2%�6S2)a�residualcphHpq��I%�?!�9�E}>B>h-!��O )�r"D.�V� С� V���[)�$-$ (Vj��t�?_layoutJ�;ApT�r 100,� > G�5��Zd��2!.�f�Jond��fidenc_ex��5�ej�II'Y>I&5 N>�de :. How� �magnitud��iy3 8 �{ suc�+:).��Fi'�ul 4�7 @cer�_ty� rA�o� of d�9� sW s�d�^ROD��ItoBxz Ybe sai�P�"��E:����no.�s!�beyonPK:V�8ask7.�aF:. M���ely 45I�����b~5u)�6>��A�� *�$� \pi3tU�rguA�!6B�� ttle6 DF�io�)5E��|is �eno�:�q������a5id�q6 � �x'0Exercise 03.1G.̍8��w�  $$ d_�a'T �4a  cO�,� ,(-c)$�]$a~0L�$�(0.1x{+0.2$. St�$d_{0H)1v#h `d0`%)!1R!1`!Try cYa��_ K@ȑ `� d0�( d1)`�@!+�#>�R]wun"z4ed�:(}!=assert ] 30.0 1 !=60d1> ##2�2kt��En�@�7f;)�5(�2Ly)^{6} \\ &= x^6 +bf5}y + 15^l�"#&0|fy^*e 246xy^{5 yU �Z xcI1 $fI!: (i)�ac�um $�$�e(i )�'�:�Hfo� (a) $10M 1A, (bN- A�|�:*.i"D  di �A!`)u�;same. I� 5fct�t)u"�Y�f0�$R1`M5veNfN}~ (b)tJ��*r�$� kWi'�!e�zv <.!��Maތ*you reEۈ�u� ���$�(? j$r�A�mL)�.0�!� �_`qqY .is�2L(f0, 65944160.601201fY(rel_tol=1e-%Rm�6:1B:�28�j%v�)NE���1.0e-6B�^�J/2��:�3�9nY_Y� Zh\h?��;1a'x}�W�>,"isA�y �#��?or�*E�zero,m�ca:@JSA��rephrau� e,r/n&�f%con>="n:.�b_1!{N-�+ x��<*�"qm��Ma�9*� n: �� s10_�2�.9}$ (Yous�gepC�_;1or�C�>. Why?�T)y�.Q7l]��� ]��.]9�]00I�/duf$to@0py Wz if����f�o"�+9t )u~sA�2����es?��� 9S U�? rD" r\S�R,(CAS). Lucki��!�y0��A�� �hr ' tool�#er��/ic2�E��AI helpFE��ely.{(}%a�aA)jX ed.. &�K# I5k ���b  as sp sp.�'_8 ing(use_�*�M����2CJ%b8%�Z&dI ��Ì2, �u%��ia!C=t�� acilit��BttY $\�0�-o�m��w�gbe ob�Uso��Mb�vn'readyh�d8ou� R*>k- xLam�,�~i� �y!abol� HBcنf)E�OI�Q�manipWOU0i�to4{uRhIY"!�hJ82s. UnRvar�sy*a R�B�)�E�<ucture�) a��m� IZ� OYDi.�=ndE�t`on� �=:g Abr�D>�M.x:�3fsp*:3'ͿAX�# i�z.���s"�RE�:JO q�Ap��bk�, #e�itULE�edi�E}! yZ�i�ga�de�Pb�!5m!/ theybrejyedi Y�DoA�be f%{bn2nama#@n�Z oughE�e Y��K, Os!nt�prd )U-:��f so h_����� � _)�_ 'x' H� �!Z:[s�p/n7 � U� U ��(parsimony. *<�yA�a��!B��eit �����.�i�t"�V�Jo�=fb0"+)�b��" �x:�� type/UI�cR.coreM�.2 ��;yQ� ;cos%>& +6,g�.Fwc Clas>Jy.free-�sc A2�Wp,�hA�B�!�a��q=Z�Zebph?�la�Ad&�3�H,eRGxm'`c()`5�6@dyd� y.'ԁ�I}! 20tZ�o $ecF��2� �Y�.__&� ly__ (r�:��) �%�!FB�Ay a me�1�B�c!�I��!��DC �g�!lN_Osir>(#sp);y,1=�9>�i!�Duilti*t�q�& �Mneatior��ƹep��>�sp�!�M�H�w�Ry wЁŘ X rol �jh���Dd���M!2M Ix�ONd�bb"� �VV5�_=�_�����Zs.͖�wnow>�QE�2�,2XYpi,101) �E +%"([!.� f(subRx=U)!T �e s]) Ÿ ('Th�� ngthAU�s %d'%} ,R-�k- �-���J\101JJ ��weiT��a�09�� rehe���:Xur.�I0!��m�101-�! !�$-2�K$ Z$.�w`li(.H�`v2 a�]`6og^"O �U<�a��s����Ppas�e %� �m�)5 6�� ry objectm|aaiaN mappA�� �ani!r6t associ�4���� �.�{��b� a>b�Ls�in�u&&"B�=a ^.ke���a� {i!~!��e% Ǜr���� t5 5��h main!/ ��!<2=��Uc Psiw�1_�!k��/ idirectl',a�~��mc,m=N'$y]Z(sp 8a�aa>�b�x.w-P!�!�o{�aa�# � a�9kj atex.bD��_ r!_�>!w�s�?ne �I� r�gnQbyL�>$!Fh NT�_)�- ��)^-,*I�9��4'a�%v much ~qe��1���8�H�elo?SoyI���Q�^instea? &��'s ���K�9E� keepA��m$i-�fuq .  �8&;!) le� 19 ## 1 n! ext�AЪ�_<=x^3-7.5x^2+18x-sk�Z�2�"i�y� �#mumlRmax . .�# ��ludie"_..b^i�{ >9�F:Ol 2%ba��Af��eQ%i (!y. �>���ing��]v&)t�@ 7s�}tI�.`�layu 6$c� ) Math�2Ta, 9=��s('a 2V6S*(awP*b)  V� 3>kA(V,�T f�3X�f(5 � lay(�9i�'n�:'�?7 I����F����c��v,MPQ@EKPVAVB ��� f-�F,m'��do����_tEs�t�(A�sec�&� " d exisP��8��b�Fun(SaYp�&�� nc�bis�6� # QuJ( on 1�ym9���x�Ba�;��- 18*xJ d4%�y9> dy)�P%�M)�d ,is�� $$IY: [�|, \quadX�\�B �� I1eF�"� )N/ siti�)�i��a1�E3�Wi6� �{�� So4q!�B6�d�w5I1y2!E2�%K�&-1L2)y�M2u,JN52C##���>�Q��$�`N��u2XJ"�J algorithmB�F�5�G�2)O) & ( �2>X .� .  linalg� l�l**� � * �6*k�) *, *� ourc� f*a\a^�+0 (x_�x_1^2iZ� -x_1�sN���  #.hg1* k��(1���Ty0 rose2J�-� 10�RxqW- x[0]69[0]; ( f nx, n ,(240, 200) xf22[znx) xh+"�-0.5,1.�,y) x0, �np.1[(xv, xh,��rse= a ) F J�s((x1.`C�-x0 �.��yC (200,24<��*2VF /0])or.k1   @x0[0,j]�[i,0]@F�TjSQ1`�*�. 'ConA#P2M$(M{ox1[:,P.F, 50}ax0>pe1>�-ba &GY vjf�k k�� **2.&�SDgu�}(c� fK�m: e∇f=�;b�y}��-40x_1a-a0^2)+2x_1-2 \\�P20*+&F ^]�� e�� q�� ,SK �}a��K�('x_1'�"alQy&@�((m5q�63_1a2), A6�5��u�_J (� �AnpM�2)0Sg[0Aug0�.s({x_1:a�,�:a�}�'ga� = g1v'�+ g!?!d(3. Backtrac�(a� S��!�'-f�[�+_�0s'((f, gk, pk,yoa�lP 1�w 8): # A$ amY,H!pha! qr �7 1 b8(f(xk + t*pk) >}k& g* t=Wk @ pke�?*=K�j�E �cr�0D���{teepes" _bt�rad, x0Yto�/1e-5 #�,4�(fkt" & �Ox0 hi��Q"/0 [x0] !�� ( la.A(O�B >u~ p = - eH!'b�raC, pK d x +=%.p2� vstack( ( 5 )k I2�]:Q me$74] iv&�#spvll�"A2-D� LIE i #95Q� beha2! r x_h"� =9<[�{0�t�rt�  x3,aa�J���,��e~aK6 i) ep� ��A"[ �a���:',u2�u a�',q( $%Ite �7 :', xv!�Bj [1� 00578 1197ɢ+w) @14046547976252e-1aW >{ 131\7**41mI�!�B)�r: f!)����_�} �3[<r� ,:]FGeZU ��Flogy(eE�J�6 s)5ab�*e(p!mltV3Z�'=".e"){n��yof�W��e') #N�5(0,10�),'Y�in Sem��`#( �5�Q<G:� ��44'$|f^k - f^*|$yr�1j� plot)��%�:,1],'r- {V�UOK)&e�, �-� vs *k��"��aQ4 piecewm0�z seg+ .[��  *� �ur**r]�F]�/*fa�& �� p>]3e4c m�sR`t!`=ul�#1� X�$15"{�$� QCo|�%L�(0 Y�y >��s,�eg tab-c�M"Ospy�.H��ѱo  sourc)�* 1,3 [Stirling�.xiYon"@Z���.wolfra�Wm/7s27HZE#[at�tr�,�3 $n$,J�� n!mWmeq�E284} n^{nX1/2}jTn}.F1�2�}1�5*%<�/ta�y, Fb60)��$n!�,�>%��5, �:150$gF� AWe ¸y2[� 2:0 Basic� >W���w�2V��volum,a cuboi)'�odgths $�, c�)܈��onm��Gas ��$a=� c=1$ ()&Q�baa$); 2.+2, c=3.5R-7.0/3/0, rZ+4+s�=-1[�%cdo�k'n���Xsul�?)F�RO�,!M�" %��s) take)�an ����om a h�y $H$;metre:ve�undq�e�ula�4Y� h(tY"�/2} g t^2B�UseL��acceleb du� gravv$g;`scip'ni.g`. �H�$mN\I�ۆ 52$sM10v21.4282A2Z10%A%-��3 J/Mm�4M a trianglj:^a����&j�Z� 1 s (s - a) b c)}, \q� Ia�g + c�ZB C!�Z,a!rG&��*R*co^�a�#�B ossiT��-a6 F�g� � `#F�&~�c�  T�cip�re� W#�GW�!.&&l�y0�Υ�accuracy:�(ifN<_̎).x1�80^{-14�r�U3�7yu% *�*��$:A NhRQ(y[e� [B��J � �v;,� hold*%� ��se�H�rOhC9 "� Mc�y��!�23-��g �5 ��!�*2�UeM�+Ai�@cQ���E� ACJ*W a��+ bx �:B��Y!1��!�I�-b \pmmb�4(4 a c}}{2 aFc ~B!�,�!; ^{-n�Oc$%Q,; 10^nuuenR��!�2 nr} \�y(���1Dd 4n}}d^)B�*4 5 t(f�4Taylor'!�eorem)R�IWm�# )1 ��.+ �5n \gg 1,B�[ %7R{xh-_! Z�5 pIQ��nd-.,!J4�� �F0.�3 wOm*�Ha divik� $A*mp-&.*$, � A-%} �%�0�3�?��Y�Q� r�2��b�J�.�4Q!i�,e5� ���R�!�A�x^� 0^֠+= F�� � 3m/�l4�< �����at} see?�A�,f63��cg8C`ob��gy� ��5:�d�1����!�6"*#isRe�.m#I�d} f} xq�|_{x=X�.\Wb\delta\b�f��f(Xa�Df(X)} *J�|�* S e*��by]��&� !�a *�]*&� $ tR�S g�> "ň ��->r�Bb !�� 0.i1|�1"� -�n/ r�4�f|aV $X�#�� �v(�:" m�=�lby� :�6I=�$fj! e^x$E�I"�ex>0, $FAt $x=0*=!�=�.F"F xabfM!�-�( �'�.He[�� , 7$C�Q ��vg _n�z3E�n�8worse�:�UaU�Lm�EF� Z�e�K�%?R primܬ/i���>A�ou�7l " 2 s leP-an 50:�2 50�� ag��me<^iev�*Eq&�F$2^�� 1$ w(�%V*all* v s $n‰6�� i9EeP& @$nA�?1!.�'� :�3IR *Mersenneuf5�,��2���-1���+ris �O3;�!؎2�>2R7l�8�� < 40�atE�W\� Ss:�4N� o�m�+1�factor_ Kbteger�� F`!�,`��i%G] (" * 6� Y�NA$6?)�9I�7,�20�r!E6/G X@48�###OD$e One efT {*1[!��[I��_&/"��zkey&�B op�"6�:�5V�B�(+!v� sors.{qutE��!fEMtN3,!G6��i�:-b6.b�1- �.�B�i# ��"&5U��Y�- Edozd�/l&:6 A *F( ect*�, ���� a,!h1 ܋!�e�+"�66��iv%4!)2�I3,m�su;6np\�#ak � ��VSU,000$�����nlur!>U7� ��5-�oO"�1�s� be�jӶ$2^{k-1�jo�(2'1�q;+$2^k-1$A�a:%:�48 (bonus) Inv�g�t!~`^it&�7�V,�-��%� meas(����%�C��5� k$vv�ay4t�B| b� �6�[2~sIAt^LeDk$!2nh��too�! a&�T.'wastePFbM!. �i=���%l�1 �U! work���� ly. y^*not*th it,m��3t�|%erapid�S�n �A;t����is�� map Part7��NewmanD1oo�  12�Nlo; c1d� sequ�ofy-\{� \}+ �re,G��N< _{n+1l r ;^� x_n �+)F�M�0�  x_ 1�ڙn1�prograSna�lc�?l h.$N$�9� ��"��� 0�$x_ͩ�i(a�X�,K>yJix9 =0.5V �k �2�i^� J r=1ML $rY|T�7�10fBin� �D��W!�4�u�� j�a�-^=&��msMf =t3 �\륶ach�<A!7��m nd $4s! %�$�,��*.>rW�����Ji�&�`�����PiB%A#1 ���c���? mark1(��`'k.'`#X sP�>V4�L�+a�map�1�JI�.�,-2Y�0_ggboX: �a��b�tles d{< *fiš*.�21Z�{rough��3 }%KP�����a�(mit cycle*.�2[gQ=qb��X*�Z�chaos*. �%��)!��P~ s�is hx,��k a. ��A�a�S AL�A��1oF =C<�r �����q \xn�k xt�� �A�t�raoa�,# Mandelbrot� !��ls��n`)ql��, ��z��X�qr�z��z_n�c"�zQ0F�!��%eQ��� $cF� l��lexN�S�1�'lexApne�%$cE :� �70 $\|z_n\| < 2<jZ���ity~"K^��m�on�gsu�TC'."Ate:�ptсA��Ab:I���O+u i} y�`�yj`G�8s, `j`!��=%n����-1}��Ig�!tIZAs`x*R`y`nc)�bc� x �;-@�8(e�Cva/�����` =�y)`:� ��M  t�s j��r�:X2 ����s $c=��c=� m�${i}�ens� >FdY� W. (�c"LEL&�3&�2�| $N$ ��2$N �"N$ �/E.n�"TA� y$!$g,l�A2 �y ��u�Ni�(!��=A��m&"�>d �%NAuRai�@' ot<�$:�"!�5`im�`��*#��lib`,��.6� �i;$a{ �:U �IE%�!�|)�3Kg/:� 5 Modify3&gs s��"*�<)O�whe�@�8� nN ���ra��7 7�Te��U�a�!�of2No��e" ) ��5> agai�E.� ?ry�C higher=�%]�gry%b�*�'"RN1@s�ure. **�L*�is��� ood /�t�ytv*/ loseH�iZ�s� Equival� �Ees An *5�2��ў�/ grouc �A� �!-tdIseKD� ;Gix�; k!u!��s& o $7ln� %�(pIB��3$8$E '&i$22 so on) 3��mLjQ10$�A�T�tilde $3�Vto�Q�swo 1 r^. 0D2C�ngoA�MnKmb�=M�~ K&o�yi�5 |_`.�1 Tr"�C%� `Eqint�"� � be�#I&�@!� ^��&�VN;l gb'"� �r (via�`____&)��weQ�h C |4. Re�e��n `a+b`qDɥs%�`}RZ� ra�To]I�i�&\A&��4er�#*types*a"� (ea�EF![aIJ)�not~ �C�>be}���ƯN e&�J\� !��, _�l � �� �0�.�4 '#�"�b.�!T#EP."�1LI<�RS Ure-Ein!%�M =��_rM&d)Q�A/�� \�E���T`3`i�� ���A�r�1):.��&ll ske%�x n�����F�E*� hingm1.�`an�c `<_�gers`T��A�M��7ed��a���.�cx��oVZ3.�>Z next�X b'%��3*!pn%*Nh (ie�e <(��(B�)�Jxj��6pN��1 30of A;�q�)_ oced� ������tto $QMh���!�2,.EWA% R��"�njn"�G�A�L>"� 5eBa�"}",�#�E B!��op $\�. bb{Q�A>! $q L�&� =�V*n�=c�* Q�**�Z * $d-�$Mx\M! n}{d����(re$=<*Inumon��a�$1B*1A*!��j����g��s862_(`gcd��f�-s6��2G.`v7al_����ak�Ae%& �o �, �c �5I$d�]�on.O3�&$,.15��� =z20}{42}>�.��;`Q� ��W!�6��R#c$:jk �pr�M!#�I�> )��j�%�*lo�3*�uIT( (**hint**:� `�nstr�ber))`�!��)ס�d~aof�0a� ger)2���v>�$3 Overloa Z`_k5#� �SX��wo>.vA�zi21!��e@1!�.6�B�4F�mul�b��yE�:�^�3"G �5�  2}{5R�5:�[ �.3�Eo�i��E2/"W/Vm¡.html?mlight=F#��.____)���-�al�n *M*.ɥ� 2� �G�$�� �1�(-*a51�2!�<A.o:?sub2�('" 1�s!)B[ subt3LB��rŃiJ2�--� �=� .� 6:�`__�(2�Q�`(q)` .�����x�' �&:y `q�a���=E,�3�� 1�6�7F�l6�� �dR�C�7�z�:��\��5� �@�"K"1M1*�K( floo�Q$/� ie `n//2`ѐ e `sorted&U!&�-�Zre[j$�`_:�>8�[Wall�oaFa �ki�:/Z�6 7F 6e�)bZ*p��rod_{n=N�\infty}-� (2 nE}{ ..)�+)f0*de�fine a partial product $\pi_N$ as \begin{equation} \ = 2 \2l_{n=1}^{N} \frac{ (2 n)^2 }{  - 1), + 1)}, \endRL each of which are rmHal numbers. Constr�a list1,the first 20>4 approximK s to�($ and print?m out. P sorted b(to show tha->S�talways increasing. Then conver7mI(floating po{ �,(�4`numpy` array,�subtracHis  from ��ee �accurate�y� . #��Prtest published Mathe!c!�8aper A [candidEforI<mB2�> ever](http://www.ams.org/journals/bull/1966-72-06/S0002-9904-111654-3/Z.pdf)�ws�follow!Eresult:R� 27^5 + 84110 033^5 = 144^5.B�T!_i!�teres%�A�> a couxample!|Pnjecture by Euler ...I3,at least $n$th power!�$e requiredIsuE%an.' , $n > 2$!�8# Exercise 1 UAj4 python, check%"em� above�truE @02 The more i� �,statement inNpAEhat�l9l> [is]bsmallA�instanc��four fif951%. . I�pre%�"�BV"!dmea �solutioiere0 right h�(side term (L larg �teger))ed, we wa�No use-�q1�is9[8. You may find%`combin��` func�e��H`itertools` packagek$ful. ```I  import�\py ;()�^p(returns allw.� (ignora|ord! of `r` elE3s �a given�?. For m., tak�l��tlength 6, `[1, 2, 3, 4, 5, 6]`��computeV�ofC4:6nput_g=) 4.arange(1, 7) 2�=�(5%..(K, 4)) �6(.#))V [` �), 526�2! -2*Q,  �, ~8 *' 8 mH] We can already �l� E��!�a.sE�ona?�4e9. NoŔata)havE�M�!�]�@to explicitly get:�.z�g��4 *generator*, a�b �ind(oop as if i�rQ�,, without stI�aU�of% �. How f��doeɰ9".� grow?�tandard�omula sL%b�a[gm.�Ht��areR�� �2@�%7 oi=Hg-log scale. Restri� o!�\le 50�,With 17 mill�}2Tto workeo, we'llEVbi�ttl��reful� weD�". On����uld try!�to e�th� m $possible "J,�����!�:)�6&� �. W�en���)f2�eJf*n� f )� $ally *very�ensive*!�w< pea�o� calcul7s�r!edly re%1"j0 (a bad idea)n5!� �� sameM�� 0stead, let us%y E�=�!;!> Ync!�6#b 1. .� 2" < tain!�[� g^ 0in $1, \dots,a�$A�*P . 26]n�� ��� � . 3VJ sums� thes6�. 4. L�|over one �aa< i�aenA�appear� L o�% 1 (ie, 0`in` keyword): $ Lorenz atJor systema) a se%�@ordinary differen[ s6FwrittenV�@\text{d} \vec{v}}:t}}��f}(v})B�w�_!�variable5 � vector $ B$f$kvub�� x(t)�1y zend#B�!��"� defI�ODE iZF�fN�\sigma�;ft( �- ���� �l#\rho - � #- 9\\ *�-�/ta ).�Ne ametaS$ �,l, H%b azre2�.�1 Wri� 9#(`dvdt(v, t, ds)`ɤ� )�f}$P v}, t�!]pav�A�6�Fix�=10 � =8/3$. Se�iE�data to�{z(0)Q�1}$. �8`scipy`, specifOly�`odein.� 1 /.���9olvi�6�up�$t=100$  $!�=13�� , 15) $28�P� y3e3d�Υ�$x, y, z..3 -rho�8! Z� twic�k�40$�y��!�two�4 i-Mcondi�sZM��Rh +�510^{-5}}�5 ���s. Each  sh���e��s��żaxe�9 �z$^S $10$ unit��time, i)��yDs $t \in [0, 10]$,%se!:"A�2#�Fso on.��1h�*s��,tive depende'onJ`*iEis cha6eristicA{ chao Dbehaviour. XI# Mg M/ ces�notebook!�tinuesI[� o�Sd c�## C(x Multiplic� yA#0�a l� m�lex���pe hs vezn!"far� � �wo casp o�~, *� ar m2�* ( �a �x� a A�l�)} *dot"�x�Sn� 8 . ### Sca�-1$ToVy>� 0value,!� just.� ��a� 4to �> new �J32 \A�s��gin{b �T}1 & 2 & 3 \\4 & 5 & 6�6"�b240,$6 \\8 & 10226 N}� P�you per� � .�  u!��**\*** I%or:*. np�= np.aX$([[1,2,3],� [4,5,6]])@2 * A� !�Dot P"e0B�)�itp�wo)scE�ge� )�/!�&� !�.m*a_r��colum� % meansUaXE� M ��row��)�A. ^8 u�� <�add|��rC 2�)�� by� ix3(*RC* rule -B.�***R***!byC-V�!C5�a&%*** �sA%�2�maEb���>�***!A6s-%!恑 *conA�� *��.H5 . Sounds��fE�,k? Let's�kFanHJ�:���\c�:89 & 80 7a� a�4e�q� }�&��2dis 2x3�H6@is 3x2�� i�B�� i!�-a2Xh!�woA�s^^$M�Y�eQk��,Q d��! �om" "IA2Ex� 2,3)e!G4 �76(9,7,5)J�(��)-� ( = (1�� 9) +^��735-38>�In &, a��"��h��e*2gq#!�"� J=�&,!46� :2)%��e�i�intas��ց�)a)^��JF:�3��?\\? & ?%Q� 2�wA���N�!! � � * )7J�:8,6,4!�Y8%���6U-3�ىaad�ahoV2?�� � ��sJ�Nw32�x�Iprocess�Y ��-OI)N�!y  � ) ; *J�(Jz4q\iz5iz6ez101>RW� fill�� next1G1r�UJ�^U10��z�FiWeb`~.�h-~X '�YY�5YI�5YI�5YE�8� ]�Giv��us�4 LbI6� � �!(*�!.*� ��"o��e **@*� ��Iy7nd� -dim� o�"� �`�r�9�� B6 9,8]B 7,6F5,4& $np.dot(A,B"A @ B, � ipe� "�p s a"$�� r between9U%!W!#5ki�***, K!�als}a regud -h�� (4 ) ork , but� n)��Z �"[ :Z  ,&\ -�1N� R� 6�A *5s"� , unlike �:of5%��sB �%A�� nd��aBI�!� sign�n�N\*commmu�ve law� :�appli�so��; J���4 =��B�s)j:l�ing�#"�,zw:{�\\6: ��CNb ��MY 7:1ne>� r/N`f�l�,Rugf"Q%� co�"o /&e �e�([[2,4F?6,8�?M�+1N�5,7+k!�W B @*� Id�ty��An *i *1� (usuJind� edS8a capital **I**"�#�%val%M; �h!$ **1**. It&' � e>& # ���#� i� /� N��diago�Y G@(I1,1��r!�sV a6a��!�1;'F >5A orig )���aaa��6\\-N 9��N�% &�%=N��:dIf]doubt �R!R!2s!�!]py!t�yJc8,9a�B0,0F/0,1V0,1F��, ``` *�Divisionv' can't act�div�'�M�;w���' )e c��xadvantage@%Sa� V 9~ d'�t>�: bE reci� ala�S ?2#f!6 \div 3AG�1}{3}�(6B�I�7$ase, �cp>/�r3�_�6�3 6a� n�is I<IV b> -U"flip"%3 nume�% � denom)F o"� w).6� �e obo|b>�3�- # Invers%�a�Hx _%�x5�/ � _ la�D5!;�-�y1�*i T�QXJ_A)�aA�B^{-1B��+ TAB!YB2�� longE��ֱe4 ,J�B2} = � = I>L�3��*`"l,daJ���-R�` of 1�#domU�"��1J?�a 2x2 T �a� �� foQ'J�:�,a & b\\c & d��%�.@ad-bc} >� d & -b\\-Ca2C 1� } W�h�!n)re? -9$sw�e��of *a*e*d* *ch�* *{ �*b &c &M�i )�-� by 1v"A1*d�arn{ *(*�*)��9w�% some�Ma��1�o, 2\\� � bo(6��2)-(2 1)F�-2\\-SS>So��.�10��s4%h�%Z�0:��D6�0.%%0.!'0.!)0.v+To�$ ��aaMVɜ"A M)by q��2if�%kF� � is makes �e/youvnk abz+it;� !!� wa�at 3 x ���6� = 1,�6�a:�i�Bn �0�AƋ�s6�q 0.2)+q !� ) & !�0.6)\\(1i8V9 J9< qEF�E@� 6� 8��"�Yev�(M-�!o�, -���,A!�s A�#0,#A Wisk�%ed�(��&��^Pl g.*�k"�*yfofYR9.n ���[,�9�\*�6,2F� 1,2� � np� inv(~`� Ad`#�)� type1m*�* metho�Aat"p%!�)L�� /([��B.I%f "0r pcW �� ��!R �2*4". ��"eAV  based*#X���� �92� 4\\>�a4]�� �"�31e*1sJ$�"� step�I1: Cre�7�A�*minors*��1 �D*}1|���)�6 #�V,0re not8�}r�; k�#�N(\color{blue%Z ly5 gray��F\\B�� red.84J2!�f26�\; (t8) - (4�I2y8 !\;:� f�cFJ�V) &�>F>A���]� � 0B�a% %�=k99�!�=�#�$9�b2Z�E F�40j�4� �r����9���=��=f)�U�!�=�-Bb�b2v�2e|m��|%�8��VFYq*�>�[^[:@�%�=��z�R)\9Z�-�i[ %�12~[ 8\\1e�����^�!����$9�#=�%�3%b;#8kZ�ͪF�2n�q<%�2V�Uq�V�Y>*�a�=�=mz�)�%�b�bkv�F�4�%���V_�*�t!tOfz%J]�#��%|tRZt��4B5�t���cfc% 9s�$9c=]b29cR#fxZc�]2c6 �cR���E�! ^=L= U�#=RR2zR[9�%gvR2)%R-�S-6�+B�  2: Ap�.*co�P�+ 2|switc%!\k��altern�:% ?of ���l-�-ـ-4v0-!�~�,3: *Adjugatetranspo20 �s"Yl�#� ^� � green}-212=�okB]'N>42>l �� purpleq Yy c� #� �94: ~R1/*C!�A:�N-�/>"m])top,5|�i;rresp6ngI&.�s Mwe"�$ed earlier^g�3t�*2I74w5�;>,d�*hirdJ�D&o-.�(-*o-40n+"�$8�-Fo+Fp)�-32>f!�i 4\\iE!aN�=B��� 0.37$-0.125\\1. -0.8 /1 .�  u2verif�J0Q!|"�|!a{��N�!��"Z">fB�!�S�&�!� ��%�2 87%�.0)�2112 1\\/ q"l � } �]^� 0 ]0b�21\\� q>�8� ^ ^� 0� 0b�21E� } ��4��#>^A9 �seJI6W�Jt Amp�*ed]!d.i�?y�Ju'��&eor��LFCr� gram&]!r~((>�q�6�a"��c�4,2N6,Ro(2,2q(v8�7���� $n "�7 NP� know� 2�*� �>mat: ledg7N�3. .]��' R�!�,x E+tl=�$J�M�Q�A�2\\3 &:�5V� j�>� mu= �~�� „�� \(3�i 9���5�u ��)+~n9- b1�+1\\) 1.:< Z; �)AL:�+!�� 0�N0F�3 0�� C = �'>�q�C#=ol�1S�D�"E�Psx"e��+�Gp g*��-8 e9cW*L8y�8 helpu!|AEj1V�JI,�der%e*���9J�2x + 4y� )�-}B6+2+3� +�M�&�in �x>m,��7 4�EPq�V x\\y2'B�8\\ �J0�& A�&�E (***�1� ***�1)L;�1 nged��u�*G%�x�M�?e�- !!�$Hx$coefficien�*$?sZ1� . B+.Te2<5oE)e �EER�7Ocl� "' is�6res �he&g 14NL�91dM[\\M9%t ҥw.�I 's nb-%:%Ic�#o��n�3 ter under�N w�� comeNx�� ��}A>�b�#X>2B�*B>*��W�F�P��^+***A &�V; X )g4O arithmet�Em�?6-8 ÷ A***. Si�4we�rvv,`%@M��AR ;3 M}e =0�(%�.TX*)� **�A0%+���>,(9we �he��AJ�-�Qsb�BM)~ �'�T6)��bBPB�-���l U^Fa= &c2^�'`�[:�-U'2�e �^�$Zwe:�C��])BJmAd�zV��! k5cJ(��:18)+(�0  34� 0.# 0 ��J~5\\6�Q�JGU)� ��x (eco��"BH*x͍y*yT�>m��M�Mby pluggcU[ "�>"9�N�q 5Hm G~.� ;�;�x) �.cou�.si0�N+10A[��3*�7FsSS>����^$5U ere')�:� do�4Oi!: V�XJ�2Rd'])B� 1J;3�:� 6� A)�:>� �  �` Agno�Ismooth� imizI **Purpo)�e�0demo**: Motivaopt1�8general (hyper-"M selez1, non-�^\xity) + Disclaimer: I'm&)exp�^i#) - I")�/Matlab!_{Zqval^algor�@6L(Leorems. + Thus, my AceP\�l9n\Tmost "� � s +a@ re m&�E bugs%%roblem�) 7:�b��Dalign} f(x_1, x_e ( + 2x_2 - 7�`*Cx_  5)^2�O D>�*"� !ed} & \� et{x�K\_bb{R}^2�P min},&.�kJ2�*}!�Any�!�iwK-ex�Q�oJ look�s�A�u5\?EIsc8"�:-Q?��!.� \�a==}x_1,2>M� (:L � `1J  �o2o4Jo2vo��4vR:B� \nabla.� B��� \\���6!+-� nega�-� d,2v? oth?a 3D�N ** �k� %matO(lib inline �7war$Us  .fiI('i�]e')3.e@�7�P�sps.py}plt random -��^�rc #rc('font',**{'family':'sans-sY',. :['Helv� ']}) ##� Pa�VnoE9> \a1e: ^kf:['L`5�T',� tex=True) �)'-!J.!la mpl_�=kits.m!"3d/Axes3D^cm>.tick�L LinearLoc�\,5matStrF�Zt�cfig =!�d.figure() ax = fig.add_sub�(111,�u[ion='3dA �Oke  S.  �.�(-�P0.25) YWBNX, meshgrid() ZXX��*Y��**2��*5 ax.�$_wireframeA, Z, rmZde=4, c �.view_�R(�90a�m1# R�`�@e{�  \d�V def�7):�Ar9 (x[0]� x[1]6�   �`�/ �U GD_B,(x_new, eta,�as, epsil�cverbo�9x_star �p�S�x_�X, f( = [la.norm [CV>, 2)], [��new�_ eFi )�as ix_old = �1# CA gradZIzeros(p)2!?= 2*(^ + 2* -Q�g*(%o 5:P1]BzP2�P�# P�P���/ %%!-!� *,!' if (F�old!� / 2) "� !s200 �Y=� x��i\�g n(2)O�<it�kestke # � :) # aT= 1eC19 #) �:�T 1, 3&�F x_GD> =.���Z��J=AV) # �X plt.^v��', /='� ) x!)�� len(I��Hlt�C(xsq)� '-o'�lo� '#3399FF'Hnewidth�M, alpha%w47, markerfacec9b')�y�Fe('log (xlabel('Ite�V y r"$\|x^\!�[�Q62}:n ���  }�[.[PŊ^2=��Bn�*^b�O jO 5,�jRM .8 ��RK **2)/�bF Y-� cos(X)*np Y/np.A�(2)+(1 surf = am ac*k �F|�?=05�(iased=False�}+ �� � �+� 15� 5� BZ� GriewankL Z��� �� �� v� w 0]/�� +ATsidol� ) *Ag *12]e�I e 'Q>0Qd6Q=�\�� �� �� �� �� �� �� �� �� �� :� .� # Q ��ַ B� -3� 3B� &� 0, 0�� ��ini�� �� �� �� �� �� Z� ZN"�$ Lipschitz�inuous�i�"�- "� f(xx^x3` ^2(x:� ��RK Hessi�)re&$�$>yf' f�#6e&x (�\ ~~f'( + 6� � - 4 6� .D�� &U�*�.p  x�3*~Dō)2�(x, fG='�2''='b style='da~z.c=2-size=2F ��V�h)�_�%r���!xs��"��@��B�Jm&^$t upper b2b>c\|�^2E�=>lq 8 := L67� � Chap�%4 - Tra�lModels eaRJYiEEnRSpl�$�c�qh f�e L�z8Squares $$�i�J(\Thetaa�(nRSS} &=G=1}^n�""�my_i�\-y_i� �\�C\beta_0��jpp j x_{ijW"]� �$$ �Ri�- RegrAV$on ($l_2$ ~ alis)� + \lambda- ��^2_j &= �) -S�-bZ^ �_\\ �?f?Z~�F_Lasso>_1�_F_|�_j|�_V__�_�_}u%Y���a�&.-o1vea� a�a$,ɴs6o_pWvmi�"�khe6 . An��Q` �#���\}�� s. t. }Z�\leq s�>��$$������Y��Kf�j�MdsC]v�M"T$�� o`>R$sMEQAAgJ2�-�b� �t6�/ (r�zvsge, l�+vs �tGraph�+ Res-E�%�^v�/ $p=2 y4(VM�+Y st�&MZ4a circleq!1F I]2�I ,milarly,�I�] diamond $m� 1| +1�25�CQe./"�F%as�Ls/� regions (o/ �). @)a-Za')=�g! �,!-sU(�f�ed�$$s$K/!�is E(N%Inov/tFz�M��Vc�qJ�ks"��}b�.�z��/Vj willi�' Z)V] . Us1��t*~)&�/E2= , $" 5�n7H )rQ�@e2yl.?.� iE�c���=he blco�wtA�Q I�0}$h�)̄s� U_�$ty�]2 �QV!�m..�at�mXsz�EiVlA7p) velyin�(o)��7R*,A�� �8los�AV�(` hencR5!�&�(h��aUo ed mW aRF���l, obser�usOi aEh even�\�2m�Z��be$i�!%brq?�)aI�?e2���L�P��s l cornx-RIu. Wy?4��umR� �c8 Gzu!�$0�2!�!�as6� 1}=0IBt onl;n4�vY�2}�� $p=3��m���r&� 5eC a sp!�E�v))j0 polyhedro%��� key C\ s st�Wh@"as $p$Z~es bey�geome�� m"�} 'B-sy���# I�{V Imp�+A" Jupy� �5�u�Lag8 N�oO'on ,T�� *[*.BAuter2�nom{ �\&17e�,s: * $(0,1),�l),(2,4��I�)se�Ad! [l O? If no��h� his?JK3�K---2U�%l-: y%assertc s)==l y&���!xs�x =)�(.Symbol('x' /!0]  !2j!�%� (0,n*�%la�' ys[j&�1r0R1if j!=m6t#N8*= (x-xs[m])/(xZ ��+=/�"E .s�- ify(&F�5<�a 2],[�p4]*( $\display ",x^�{2�y�x 1$ Y�Vb3fb`9 F*��nI���t�{�{I��V�a�thr�A��8�ar,�5canno� FX,. �M�s� �aoBTFN!�m~ofqD1. o*�Ex�ed��� �1 �#���0i�0kta�.verag�bs.$g�z !` ,we�/4 5�9 HF"�:�Km2�9i�8(probability�g$$�/ E}[X(x&�/ cal{X}} x� p_X�� �� er!0} E_(sum([X[i] */ �*�+X]); E_X�G�N�� 95.0 L[\2 ��h�<e�u�aN�i�}muI8nse a “good" m� ?.�[ $X$!�!H� CMS fair six-� d di�n�!s $1$�ч$6� Si e�.000 roas� A��4� ['�� / gE + ared� at�6Dget? (Ja�`zj�o@�w �6�0!� boxa�e* �5in!�Q-u���$�*=�i * 1/69�J 1,7)N�3.5!�Hq=�n&�� Y41 �!Bs)k� 5b~�ry E � E[X]ixin!Ot,a�D8�be�$!8!�sgi� tendHget U r (i!esM=ne$^arily��+"�ido�N�|�ali�i!�trh�!����7) k@- �h5/���_aF�#�1sys 2as�8sys.path+- '../comp_�c_ini�c�3 HJ pe�{i:V�( 7)} num_sa�  +10000�+ np.mean([J[. 3_�]_��te��U_sp % p_X)E[�8I[p)].*�3.497A^&� �& 4:84�+�2fig(8|� X 5�Q �+( � 1, n+1)) G [] ��x� Տ == 1 y1�� % _>R^(y[i-2��(i�+N��y!0i u %,a,NoA� diceE�e�3!Lh,'6� �,T3 (x,yF,��2�pn6jq"e"beBq�to $3.5��## Vari�XiS�^lor BI" ~c�p�P� nc" ich measu2��mu4�A�do&� dev���f�:c���Nn�������� _uncer<X Higher�(���.(��� �V!�-�>dB�� is�: s� i, {var}(X) \tNgS� �, (X�:X]�:].$$ *sEaH� saw0L��s�:w���a���Q��1��$X$� at�8�doHY a`uH%�1 ;. d"fGifQ Fn���%<$s $3$, $5$�\$��m �>lX �� $1/,t� �H�4>��e$6 Y6Z0 (X−6)^2ۇ�xwNmekKfM!*�H��*�$f$�$� %yr$� .�9]x x� p� $�s,b!�Yp$#=(x ��oJi= (3 - � �13V*5b1CJ5�C26�pA�.2aE�U��]� "*)�%= key, in� (.items()]) J PVARRavg = e� p_X�&{(a-!�" : \!�bk5= ��t��$�  G �R three lot����Hier1�:�s $L_1A�L_2M� $L_3��Eiamoun$in (ac�����ng�pay \$1e�|W�F |  F* �4 | |-:|: ::'--�*BO:| � -1 | $E�{9}{ 0�' �*2OJ}$�?+X S q1"}!h'� ~*�Ln��Q%���!�5�,\ Al>N.B���ex&�FK� -k(E4()= {{V_1}} 22233.� p_L1� -1: %�9/!B0�999 � }/�7^/999>/3^^ , \^} V_��8L1) Vc8 2O 3m�� unX���in?X� ��we��R�Ũdolla�;�f;�a�{ *�!�a >q��d�qC��}lly%�!݉oy!� 2X L_1)�].lL_2�:3)$uEj�d �Ė�OњD yw S�}, people�ferT��)L syLo "CG (i.e.,%K n�ing2� � Ub�a.b�L'O�ls�Lard) ��� :�4stdB� T2 �"� R�STDݨw U IŲ�G(I�Xg :w�=!F&uF��q%0E-]1I��)b%��%uA��}qdecimu lacfQunl�mof cH��q�%~ at m�{6CwV��put4 ɐio0- std���Z{{p?<S_1)}}2$:223>3.�S�)��S�  2) S� 3) � !S)�Xwq\introduc�����i� an� d"qwin�C,Gdid!@��u�*w a�%rM?[ie�P��,t�\ �Is far erJ8���tha��!H.
E�AM re3;, ofte6financ ��(�s (e.g.ˤoop�"rtfolirstock�Os��]6�2btremelqT"��"r �0may"�{maxmIA� ofit�Ole ensur�F��!9q of>s�too high��ob! cke!i!v/ ng.��R���>* ,� a+deyQ#�iL`Re0�� as ���FKI m��*2 L_ i�B\lq*c����") \qquadq}i�;�,o $λ≥�s�%"�> �!tc!�� "�q}penalize6_Ini7y t come��en>) \!U+�{!�A=O�sly)v quick san���M(b!>m���� &�vWpta!�u!r3��2ӟ anytXcout� **QuAo�J CanBb�QH�y�i� !�pr� di,%bӦ��diLʛ�����i�S `%no,"�e �F< "no" (all lowerA�,�K�'kL  **A� :** NO #��La��Top��U' R"69U 't'|�{#�!A��B}_{1},\� ,2n�o�J�F%� � $Ω$ (ё e Bi's do�l��lap��t��>�c c! full Mof�I[�outA�s),2sP}(�A})� _�-{n}bb :( \cap��i�<�X<>h!Ki}).�!��eau��?#�ru~@ A�(�<t�MAcz~ A�L� .�B�, c�WN 2 =E=:RB<B(e��AbB�� X}$)%���E B}_1NH n$!��.;6��b�N�]���2CbMp&�_{x��\ �}xpp)�}�p1R8B5 �X=x6gi}w?a� " y c  W�E)��)�|�%ae0“Towards In��MJ'�U&�". �e�E^5Q�. **S!*��Tre&6O w��#Z�'f�.�tMa�ly dire���ache"`Wri� &-� ��n �8_ � �g]ma1chn�,hurdl�5N&�)�%2A���Q� �8 F0�ereQor�em���!�'�s map� � >��Vey�o .�\� deriz��vr%Zd�/-ha KW{eR^c~ ve, W$m<i4.�bpE�Z� �|��j0bR�' U a���onŐ2$\Omega�b�0�1 �bh =&#��f�\\ �g\{ \o��#�$ \; :\; X(  )=x\�XJ}2�%.���r�. {�^} �2�� \} �������VA�� ��c+ �y3 _{j�-!s��(}.�6�Y�0 9��1~^" ��N�֣f�=;%�TY 28ե�$$�us�6.)����y�Pbigg(����r66)\>��) ��\��.L��f�wA�2>F� �F�in _zj c��0  5+x�U]B] #  ;.�.�6,�* `A_�ing(use_\�x='!�ja'-�!s7-s('Y>�*ger�Uji, zb-bo%x,y,z'��4tegrales En l�([�+ción ap$ imos� �cia  simbólicdn `TY`. Aquí=rdare9la �rZ9���*LAsí es cómo escrib�G[!Xda� �Mt�@dx� ��x^3Xa�!t-�O �����da �(�?, x-$CN�l�s _0^3w�d.2}�M|)�3 �� �0  = 9 f�b�(x,�3�$Como siempV debi.^ que�3a!�us}X síAo|odrí�d�d� Dhay',do un númer0%�_y^z x^n!�:�2gn,�A���,jercicio Ca�m[ sduu�B٬)�e�^�+4�024 [A�1ion�@s://en.wikipedia.�/8_28)d6&uni!�R�0$n$�pv31dz$n+1$$1�$$xy$-plane2 �, 1�O1B+"~vU�1� t� 4w"�bolA ### o[�5 "�.wAMve�+ j���, (x_0,y_0),(�` y_1)�n,y_n) a�&8 ��$x$x�8inct ($x_i \not�Yj>�j$)4f0 �? �dt5!t=��� $$ p(.C+ a_1L3 a_2x�9 �aa_n�2 If $7�$�-�Vh�Y&a�eD6inz@t�I*�;s $a_��$a,#��a_n$ .�<f"e��_6 �x_�M�_0J� _0^n�Dy_0 \\\.81%!aN81818& \v�:InInNInIn6�E�=�!*a!�.4Ez� f{a} =1"�`! � �2� r-A�F-1�{"�=~a]`F6o�@3ath�=�y}][XUJ [Vandermo��g~�2_ 2 � f{y}_96$yqe �F+ 1 & A.^kE� n%G $ :$A!k2~I&  9nSA &cA$�C5�EV!Prm{and}Ae5�yN�Q�y-�y_2 X �cyR��E}�eS8e Par�***'� 58*�;&�m$y=x^25�602.�B2-As��$(-1,�" (0,0�"nd $(.�2's r 8��Tv9�3���"�v��*�+e���=��=�<$a_2=1C�r r]�M�8M�a��a:��6�� �K0ray([-1,0,1])64�TTlumn_stack([[1,1,1],x,� ]�X  % [[ 1�& 1^: 0 "7O1 ��m,2G�u96��/� �,.reshape(3,1�y2���O[1�W1�%6�s��� [0%^T-�* �[la.P (X /P"a2{0.1 1.~Suc�2!P�F.�gA.K� "+= of 3Y���" �7A�x_2,y�%��m]�a�Vͯ1�:��aG&44.� ��&���߁� 2��2 =��"�+�_�I�E"2�� n)+fi�3�v�9-0,6))A01%8,2v]�Vf6�6I0,3,8�HB8 3 9QEaE 8 64EAA �mE�86,��86wuA2y.,& }}4�.063�8 6.�Z�-2.367�83 �!�2E��W6}�_�m$(0,8,20) y�4aT+ aYx� [2]*xs**23[�?,+'b.',ms=@236!_OgFi%� 10 RTm P� ��Now/uy�U���� =ia�i=0� 9�-1���2>���d f�;9?žs*�6N = 10Y��g0,N5np.,intwA�) ,y,'r.4.vH�R� �5 r��cł:��:B� x**k�  k� �٨[:5,:5�?AQ[[ aHaiUS1 6,2 4 8 1u! .3 &,27 8:64. 64 256E�)5�%�(y%�� NumP&"�m [��.v� `&� docs.�0 doc/28 -1.15.0/r%+ence/g�oted ! K.html)B ��;�H�&�8.`�@aP��́lx_ir��s\Fft-to-66g-� �(x,:]�����b�S3%�2� 6�F��\�!�a���6;J�N-1,20���2a[k��b�lt6�,xsxDe�.�y B��ic�uH�b���HuaHi�ha� �=i�B�2tA�(a [cubic sp!Y�V�S& _%28^ E�s%29)P9"e�<��b��%�. How� 7 life�V�u��vO<noisy�MXA��&Hrb�' tool~�)a%��V In���we�d(� $&s�� Le���V (� U)�ei�n|&6an<�.�w3� �## 2U UU&8TNB&��"' [_10 �� *4F���w&��� �^y=&� xf "� fits��)Ygy'�"3#quantifyx/@"39l�!m7V comm&jH�9�/[i.�/es%�aA2eU~�)^_&�I)A �.bV,.�J�*�of :d error)�SSE�AVi (�V(5I�\)gt$$ +23I ���cC$$�p� "�o p �&J1n B\A* � _V>Ro B�! \\\7:�!"�Rc�1b� _W"/2wV�v�� - .I  ^2i�I**T�v.** (z�)~�i��$��:��.d .� lka_0,a_1���F�6�"?� ���( X^T!`")5w%�9�%q*Sket��Proof.vI7*$X0a{��; �&�$XPP��>n%(ng91��-1-nZ�4fR�k,perpendiclua�a�^~rU �� (�Bz-%=$0)��sM�VE�>uF(N�1�� Dat:|"F�ů�/f8���Ebuildz&�J? zb�f�G!)m�)%�a�1�\�n!-�As6arbitr�.cho�� �ŗ�i fact�� G*�:U0 �"emw��del"\*e [�[r#/~8NAul_N3d ��� �u�NmpZ6� !"u5J��Z+ ��0 j) In/ $ e gob Q3dem�U��G�`��n6vafr�Pe�)��e�!�&�1$9a�2��-c96ba0 = 2 a�93�"��(1\ Iq�i n !E��1*1O ca C; ho"oi  F�toR�B.�Btr'/A���6A a �}�np.:(N),x]"d .+*���r Ql��F:2�aqX1L��� V�(r�,�:��] 6J�^"�0, 0.92365627]2"k[6%7875797:��:%51506055rJ5154087v% 86563343]� Use�� `!� U eft(��X��٬��:���0.L6I6e.T @ X, �EF�P2.02783873 2.95308228�Whq�21m�I��ɥ� alr �=ly!��p;�A�i=� ��w�MFw"s�Pe;n�AZJ1,1 6�e|�� 'r',pEm4�r�8**Real Kobe Bry@F6��. �Ŋ����[5���(basketball-"�<.com/players/b/bl ko01�]!���in 2016 r33643�4����F�����9�65 ) in NBA hi��y�V� List_of_N#3 al_B� _Ass�O(ion_career_7ing_leaɉ). Ho)����6yep�7=&UBb had % �K�! [K[%�q�a�� o��;perio�Kͪ avg_:_per_!))(mean(y F**� 71.3:�E����� Ai��6�r QZ� s)),A���"�6I j) |=2q@ E��u,* \N�A㖨*q1e�}�.-Cr ��_futX��E��Wy �5I s by%R -�a$.'cu�'N�o� a�' �<)76� �E>B17,201}19,2020�! 4 OTK.� �)*FU Ŗ=?qtcumH B _) k�s=�+*5 A4 * lo�`.,.q,2 [)%�:�x��s2I (F'�=P� Pred�>JtO�_4r?�! 9&G*2/2Op!@F]_� �f�a"|(d=*"�#E�V�aJ�( dx^d�to&*!���"�*�^�W'=��$c)`�'7ne4 V� �$d4I �X fM*�&�) d�"f1�&%1 %&y��&@n^d: >M��&Ÿ^� �*�aF�&a_>�$P5e6n *� � � ,a_2�a_d�� $SSE�!�'>��h������s)a\�'�$*` QuadЀc:d :` "V�X15el $�F�$n"���ރ,�1"[F�.�g3g5 a�$8no2�J(N�s1 #"�<i�%v��}("�6�!n(�!.�a2��R�,�@ =0.5,lw=0J�C��dd ,x**(i �%EFX >Hrhn(�), ($�e �$!��$'z�>��".�## Graph( ory A [g~ 6_discret�,2h Ed��'n*��h�*")e�} 39"\?c���+E�d@��c FedRwph * a �[ 5��#S6,_%$) V�[rWc� ps o"��e �b4��:�u���UK6� �do � h�1� r��:�5P��C1���O! ex!�m�s!y�#�A%uE Eth ��vi�!1�`HsDU|IsE�Hd5sms(9ui� hdXby!�ABat it|�� JZs�Y�{9��tUa2kSs�*�[�?�t�!~lSl_n 4_analysi@" a(��� "�g��$[adjacency /��0A02�0KLagO17z�K02K�bQir�e�. [S�.ral �t"�n5I_ 5#m� m�teigenv�c" m> (A=Kra�;ma�jes}#Yre�j ship� )�/�Gm/�N)�XMD"KpM�[(Y(M ,x.github.io/�$Y�y!�b� )E!X�Ig~7WA�nx � # 5�ߢx��CMC $A_G�+q�$G$iB $n$ u��#Me!K�_*s"�A$A_{i,j� 1SeE$^�$j$$c��a�~dg�eD0$)� wise�E�z!�`1-��(&Fq)��D�) `nx.2m`��� [spa�REj}ZJ�)�)*o :�A�bqr�ӡt�:���! � `tod/e` km�N.6��)�aletM^Y�eRx9�-.i�))�59��.5!-6Gx�U4(5) nx.draw(G,*_l��sE mA Ej-� (G).-(jw��+0 1 �+1  .6 1 0]9�Len��ShortL(P�Ht� ![s"�c~O_-Ic lem)B�; m_!W.v �Be�a �$asi�pm�x5O-�a�G2qpIer,EC�2� La�exe�toj$ ($iK:j$����po��ve� ger $k$2*^k�,C 0��"� [dodecaq�z~X�~_: on#DGM�R�5a ((����0:A�6]�A�F+Q� - % >/.1B' � X 6.^ ./ - ./-. />!. -&�6 -)0^  'B�#6-���� B� #-�f/' A4] [0 0 0 0 1   0] [ 0N/! 'B^/ 1F/ % 0 1�  !>^�] With this labelling, let's find the length of�eshortest path from vertex $0$ to $15$: ```python i = 0 j = 15 k = 1 Ak = A while Ak[i,j] == 0: Ak @ A%�4k + 1 print('Lj�(is',k) ``` =v,�> 5 ### Triangles in a Graph A simple result in spectral grap!>eory is%,number of [tQh](https://en.wikipedia.org/H/Adjacency_matrix#M_powers) � m$T(G)$m4given by: $$ t = \frac{1}{6} ( \lambda_1^3 +2 cdots n^3)J where $= \leq>  ?2n$ are%(eigenvalues! the a� � . LEhverifyI�for-)tst case,co!�te- on 3;tices6oC3 = nx.2_%;L(3) nx.draw(C3,with_E�s=TrueM0A6pI�A G�-�X(C3).todense() eigvals,�Dvecs = la.eig(A3) A�np.round sum( 24.real**3)/6,0)�I�1 1�ut)WY]U\A!_'l97^7R7=7� GF7�7�3a� TE�Ap35�!�=!1\`write a function called `5_H` which takes a squtI�8 `M` and return%�sume���J�ir` symmetric�P$A = (M + M^T)/2$. NoEINp).! =+ei-�j�>� Next�,try a [Turan �~�$Tur%C3%A1n��)6�Gi�tQ !(10,5y�G�� E5_��G.��6A�e��16B.Z:6z:.6z>6z N6 F�J�6\�5M��80 FinallyQ2���� dodecahed"U6uM(.'M/�+�+FN J9g� A(F+5� - % >^' V� - 6.^ ./ - ./-. />!. -.I -)a /  'B�#6-W �_.B -�f/' ?Z/! F^ P � F/! 'B// �21�> �F^��*� "v .�,2������[$ # Aula 3 ## Ferramentas básicas de cálculo A biblioteca Sympy disponibiliza algumas feJ paraC�eg��le diferencial, dentre outras6-jsn import * (numpy as np0matplotlib.py plt!!� 0linha abaixo � Diza modificações �que;expressmatemát% fiquem em� 0mato legível2�init_�Hing(use_unicode=Fal� i6wrap_lin no_global�  # Faz�a:�Loes sejam exibidas e.�i�É nec�t�rio também declarar símboloA$constatenso$serão uti!8do:�$x, y, z, t� ta =!�0bols('x y z t ta'�D rxcao de variaveis k1, k2, m, n, 2E0k1 k2 m n a',INer56Q � ntes �PA�-�r uma @A�$indefinida�-s ç�inE�(te(formula,�l�  cao):�7x**2,xm�No�� :F �a ve!j passado�tupla no5�(-0:FDcao, lim. inferior supr�(x,-1, 1�I �is multipAW5 ionam�maneira� ilar6� �te(x*y, a07,3),(y,-13,5jÉ posse>]�!rom� como%wáA(!*sdeE�oa�â  )8a um Q� -�o A!��e:o = x**3+!�+x+5 fI?2� �r,�� r ou! plesX$ avaliar a�F �o criada^(f)&10,10)a$-�cao��2^f.diff(x(D�N+e��$f.subs(x,1,A�ew�ao��x=16 Fu1u$trigonomédas5�s� vál�l2�� J�www.youtube.com/watch?v=3d6DsjIBzJ4 - vídeo explicativo B://docs.; tla�/��0x.html - docu!�M�da *� ; �&�� cipy� l�g- laJ optimize � V.6 )$.� 8v� Aɍ�#� ical solu� x04p.arange(-4, 2�� x26 2, 6 y1�44 - 2*x) / 3 y-(3 - 5  4 fig, a_plt��a�$s(figsize=� �� ax.set_x~(("${x_1}$")y2N(Z 2, 'r',� ="$2@(+3{x_2}-4=0 K11, 'b15 14 13 1c��cblack6",a�n � 8arc3, rad=-.5"))%�ticks(x9� 2 $legend(�# SXd- 2G�i&L([[2, 3], [5, 4]]) ba py#4" ) A.rankj}A.condi!o_�J% wN(_ �2@ normJ4�e`rayZ� �>�np.�N.i_���2 ;m�5�.��"�P"0# LU factorizE�-� =]��L, U, _m.LUde��os%w () L{�$\ClayE[X$ft[\begin{) }1 & 0\\\�05}{2} & 1\end"\right]$R�U �f,2 & 3\\0 & -O7l�h$L * U == Aq�^~��%,A.solve(b) x#��-1\\2��ΈP, !� �luA"9��aM� 1. , 0. ]��  [0.4, 1. a��P.dot(LU� M�U2., 3.:S5., 4.FQla-@ A, bq�= P-1., 2.�2Q#�4bolic vs Numer�$ pU�sy s("p",� itive_%X���1, sqrt(p)��B/ (R�1, 2]) �i 2 p - 1}{ q)1}{- \�{p} +M�1}{}��#S%$ic problem -�B�;�;!�ol, ��$ x_sym_sol�{ukA� ����.vify� #YZ�Aablb  p:��!�np5�, 1/A ��� Q� �2[� �$AA(p), bb)�G�!JeLe betwee�- (exact)�nQ��!s.� e;2� �, &� 2, 4��p_vec6 ,linspace(0.9�300) � n�p 2Y %� ;m��[n]> GfiE�.E.�!�s�|q� "$x$2%8��#> r"$yN#{ loc=" &� � $: # 1st or!�$polynomialJ8nE2])��C&[sA*P, &e��hsolY��Mw# 15thҩ16Q��5A�um������U���Q�6G fit1_n� [U"]M�"�E5, 'm>O>  [9�G�m�6A4 �%E*�)/ e 62ep�l�py&E $epsilon, D ") HA���[[@], [d), -eps�H � � \ o & \q\\ � �AH�)�*sJ�ectZ��(Q� �^�+ �}, \ �8\ 4 ;: � H}{CNza}\\N3: )�\left(; j�d-D��� fa�� �B�(< 41, _, evec1), 226-:�< # OrthogonalityO imp K> T *X 2[0]X ^6�0� & ! 3, 5a� 3, 9a%�):�,) uC�s l13.35310908+0.j, -1.75902942 ( 3.40592034\ 2KnN[�[ 0.42663918, 0.90353276, -0.04009445]6?43751227'24498225 8651975>s( 0.79155671'35158534u4998256% ���-�-h��)>?1 ,., =7)M Non�!ar&�2*x, & ��& ")Qm�(a0 *@ c*� , ; ��� M 1* ]x)� sin(x)RDd ��0� $# four exa �/n�  s f��D� f'F - 3� � f]/p.exp � 2 f41 -1� - 50 / (1 +w#� each>R�B"�� ), sharey��, f�&F [f1, f�3, f4]�[n� x, f 1.5�axhA$(0, ls=':'B lor=Re���$et_ylim(-5#BO[!�k 0,�$7>F '$xZT0& '$9 F,��[d ($=x^2-x-1$'i� 3-3\!�xL23\)�-2>50�e 50/(1+x^2�� )+1-0  ]5��6�s:�!L )e* �3�*Ch .cP&bb���*a�+ �! rodue Deriva8s�0Pused whenever we need� deal�0� e^ch�8 (like velocity�acceleru, biolog� �0ec�!�ic growth, heat transfer, etc.). <1y�ful in� & ��fOpe s$ Research p's�ule `E�$` includes� `Y�` t2per�&s�0�"? _, ie, it*�algebrag2nipul�%�^1%#I!essS3|3:�:��%�( ') = = y��A( * y + y**3�0"E�)a: {} ".�at�!))O)I_ =�� I�I2H<). v�6]2xp !�Z%(={x:1,y:4})`V4A$dU�D at (1,4): {0:3.2fwc%{2��b*1!*y�.b: 2*x*y=v�8.0,We canA�!�to�"�0a s�Xd^q)�7�7 $$�0\partial^2 f} x  y}$�m U1LY�%�, yFEAH22�%�9�X.doit()A r6 I=�%0, One potea&�� atEEa�]�s%<increaseon Cly mak���, o!:os!n ses,�hib` ly slow. ~&"�F���pr��!�W!math a�-e�d9)es2� s $$f'(a� \lim_{h \7 arrow 0} )�f(a+h@ f(a)}{h%�u7 *o�9an on�q�to.�I&E�. HW:%J e _c':%��ce_��: �\�� �1�"� frac� + h.��  - h� ��$@ (2 �m� �& �easily!ȩ}��N&YQ�) a, h=1e-7�� (f(Br)/(2*hAWAh-&P�A� �*^�5$�GH$x=2.5$? We know byAi)�i� I !Px=2x$ s�r�<4should be $5$.9checkK)��`io2�9 �7 ځ� +N=�.(�! 2.5�Iy�4.9 8737621�9Mo��X&` hasv'| �d�.�>Vus1�� :.misc�& spm spm.B� , dx!�3-w� �893An� at about1 1.Z�on�- v��Can� "$ute, say, �<zly? Foroi o_ ��sam�riablC=re aga�>� al6�s&�on�~�^2}(a,b):�-f(a-h + 2f"+}{h^2�N�mixed T. bles%!͈� next!��[[ref&s9)huio.no/studier/emner/matnatHh/MAT-INF1100/h07/u�vis� s4 �),e/kap7.pdf)]�!�ѷn��:��:_1,b+h_2��+-- "+�d "}{4h_1 h�'$ unum�.tools`  v\ uto: YB�� $��or ��5w$. [website9_pypi.�@project/.�/) �E:� ExpansioJ ess�V*^!�T�-e;��"V.N���8.ubc.ca/~pwalls%�-/!'erna�B!��(Bz�xins0te~1ie�4�?я�0 + f^{'}(a)(�aI:1}{2!} !1՟ 1}{3 %(3)F&3} \l�A!�%Asayawis� ��e5-A��= �3e^x}{�0E1ewa�@�;1� ��x�2 4,4,�f �IB x : 3*&�/ (��_� �+,2 a�~,3,�F=556��Ee2,A�6RF��"teh{0a0 + a1*(xs-xA�a2 9a33 Z =6#&R0#plt.x�[A=])�[0,8]��!�ys, xs, �1��happenedi� at, .��$use a muchm3&� (a�i�.�KEstead�| orig�.uD/"Bexpon�K� divi��m a quadct�).� !� zoom2���] how good�6� is: � A��S:_,%�)�� 1.5] )� 2.7,2.85]1�#:�YBwA:j (��)!�a tecn!9 cap��!xgiv anR ct answer!9��l6 ų�7 tim1o Dual% b�"�,s hav�8 $k b �A=6D$ ^2=0� � � Ev�a� eticA � s h d� x<. Eg: * $(a+bda` (c+d= (a+cb+d) \P$J<\�sBA(ac + (ad+bc2@Now%/i� A�����!��2�$��J �$a+�� (@ 0��fI}{1!}� 2!"�� ��but all=�%��J $n>1!�ill� zero, s�5$�����$$�JisE�Qi�& , noAw:t (!!)�0i� :mp@ �Zx^2+1%f(x2�.��:�}1T2x�J"� �� mean���E� �.� f $ � i� M'� A�lex2�te� �R���# RN se M�6BC Jacobia�rix Va �t9GA����ecof6� : \� bb{R}^n��(m$ $$J_f=\3/b �} � � y_1.�_1E/I� &7 b- n} \\ \v� /d \\Fom�o6-n} +� $$ ��xHM i-thrG�$y_j$%tj$output. Ae A��/!f�MI� .dis�0�or�,�, Latex 1$ipywidgets� 14 act,� .�$sinsVrixG&X* .abc. rho, phi ( )[rho*�phi),$*��' %(1G� � (Math('\\4{2� of } f(\\~\\X = ' + F7x(Xk+ H!�}*.jm,(Y)) �cfwv u,:I ! \cos{ (-m& )/ rho jn!� Egm6\] ��^>|bwj#�zsiZ�a[>bb \\2 #3eF3� 9 apply �f�������y�#or � d& u*�h�(denoted **r�"C*.��^**. O&:R���D,AWx_1x_>!(x_2)$� We w�to �!u/+$$f^´(2,3)�First / � resp�6 ve [ ��a�P&�medium^:�tebs-lab/deep-neural-networks-as-2I-�K4s-867fcaa56c9)�P�e.��*�;al�ce*, ����7of�9��%�s��'nod����"}{c } v_1 &=&!G2��v_2 !Y &=&3 3 1a '6 4 !� �& 0.14 #5#v_� v1$5.8Gy "5 6�� �$$ Si=� cor!�on�o�i�R o��+6H��n.%�? step%d&�A�� tracS ��**xsures� f ���1�!�D�� �ectA�bN ��f��W v_i}x%T^�Y�Zl�ch�rulA>�N�.�$to break a� n=�^don’t%9�to+ vn t??-� we doF.. ���J�y_j�!"�5>$k}>�v_k:FA@ v_k$�!{paren�$v(>e 2��N . If %ot� Gt sum � contribM=s, F�>�i�(sum_{p \in �W [s}(i)B�>CpB"v_pJ �{isv@�Q! *adj�<*�f$%- ��as $\�  {!��T It's7sibleAVQ PO�EdA1 yB� s "itRH� (eg:�3%�) G$v_1$�$v_2$)%_2�A6!Lp .p7UKV �oH us a�Aurs�"�!. 6estats.�0ex�".�@quu!(ons/224140/�f -by-+& -of-�!-�!-��-*��+)���� start��!I end,��s $y$,%%propag�@ backwar�2!kdependXJe�S�su#i!�6�y]Ny!e1$ ).m� a�_ng%�$y$��ult��2��t)&�!*(duh!"��1v_5$,�&=�5xy}ќj�v 61+O1$�T$v_�/ե$i�u36uP�:w.a:Fy$2E4>_4^�>_:_-�-6��6�u;J(�$,!2$��iks3.F2>���B322�=bj�4>:) h�-� �=:!�No�X��� alreadyɛa6> "6Y � #.� B%� b 3)" 2.99�� [as only-bedv_3FZ1�Z:U� !w3��ҝDis���C ;V= �$�nf-,>�.9�C� thes �Z� �r.21}M�.. 2}$,)�is�#v� =.r%2}B�Jus� �!7 stR���% x�8!� ('x1 x2�2&% x1*xAB�x2)2�f]6� K]) ) = 26 ��W A .�f���� ��V!� = 6�%,1:2, x2:3}) !'\n�$ea�f��point � ,: ', end=" "�$"�/q).astype float64).�( -E�bB=x_{1}2}�Y*~x_\�6Na>R� .g P��^ JZ�/v" [[3. �@99]�R� advantag%VQ!-�o�%�be%�dq(le *keepingE� lexb+Por��2�!�|s�f cours2V!m�"# \)z�!��w� gradqJ �"..�, help('�"!? Helpq"*Gu �JJR�Q�# )wL(fuI`rgnum=0, *nary_op_args, *kw�.R�\@ |+ !Jut%�_d�!:`fun`s&#�E�"rgu�J1v` �`.� i$.�&]z RGs� }, n A!��in c�6Q&$%scalar-�Z 4!M�@ �K� a��.QS$A 2&f(��2I%�30A�14HdF =lO%[0,1])2�#(2.0,3.0�R"Gr9�f�y is",]a�DA���rk ]zRS }� ji�U&-���E%ute to f�[&�/�%W��9� even�^!_5�"�"�B�aed loop�,d <re� on (��)im�5EMo�;��b�<nd�Bminimu� ��)[�des�(&p@tillbe.github.io/�"N�- 2�M> j t9*� erA��/ hinkA remi2you!3 �� i}9!* clas�WlJ�/ P'N� N��-is0 coinciT e: [:a'a sub�� ��B9Y- f�*6Y49926192�#�c�#* Mark S fim, [&�DR*�. S�byy!��@�Ls K/!�R�-��L24240f97a6e6) (2019)�f�|eVfU�,!� ) @ 'fp5fd���mpl�-tlE��>�����StackEx��P B Sharpe-�A� tutoU'gM�!� HIPS%c+,/blob/master�P/<.md9U <�3i#�*.!�k b�3 seaborn��s�6%1 i�7$ %config I@Backend.figure_fo�YR (retina' snsq4(�#�IFair a+e bia�3 $P(h� pb;P(�,q� - p�P(hP(t )q \O �$�"a�fg gene|" on $u & \ P(� dif}r2pq t ��ZCpq | t^2 +t�pq^2$ **Idea:** Flip twice ->���BE�icom�.reI �tf�one, ozwis�Spea�$ �lign} \�E}[ �4flips}] = e &==(tt{succeed_^_tr. \$V\$re}�<2 \cdot:+- %(�,e)B=02pq + (1-2pq)N,(!S1�*! &= 42  \\ e 7K&=��� �Jq�  1(1-p)}?)0�&�:$x = 0.05 p>�'x, 1-�9�71�'pHB�ps)�%�%�?es T8B�G4 y�R'ex�ed'~ "�Q) �Z�W= 2. `�E10`i 7` (<(Yd�5.l $x \�j40$, okFS �R]�RBR�#P(x > 40: 1�Q�)�40}{4962Ez 9Q-2J. EJO49}{20AP 2.45>=L%Ref - ht�l leet�^��:,/"1-)�- 7/�5�� 7"3*:j o�Gd5�^scatter�* Z)s!5IG=$grid(False as�� ## 3.1. U po5LVin�2!�"_"� �"""� see:u�nC 5837572/(e-ae�om-� $-within-a-)%--yl98ocx, cy, �9 )�_P��QA�()aor�a�9 PI *A��V!T��c6.l@Aa)A:c�8 sin;m��G EB8Q&=(0,0,�CU.a� Q 3.21�re�0G sM ing - GieQ� $�cal{C}$ � er�,n $(c_!$ _y)$| tus $r�(�*n encl�7it�"HnTS};�X $2r$ - �a{method � -�c!so.|Q�to0eF.�n�W�cioutH*%-�- �   l"e2� $uy)� Thus�+8ec;#&X�fl%>get� ;/ 1v���Cp� p:j!x�(($p = P((x,yBN ] A}_{ C}} \ /K }2 S}�O\pi &4�W��8 \pi6� a�Us_Qs6�nuxm, x�o cx-r, cx+iqym, yyy i6ar xm +E(a�(xM - xmiwraxy6!y!y !Gdis (c�2rx) ** + (cy - ry +if . <= r'��m�rx, r�m2q�B #S+ �F4� q0w8@Ia� [Lawa�totalL ect�&�V�Law_of_8_ 8) - [`na� �6lue�bAuNt /521609).F� � 2  ss}_1A�v n4-tt{failN�)\s� l2bl)&F �n � k^�3j����� ��5H5-4n�)>� $`,.erefor�?fA�let $n =:yx�Q;1one��(e.g.X s to\ ,� tosses),��3>��TtheN4>�E|��.�� (*H.(� ,n e.� p� n \Righ��n�ap>1�p� bb"Mtt{�mP>+}8)%jis&�8ly�zm�z ov C�&�0!��'esa�ih-�:ed2�9fs until:r�Ma cert�&� e. See [t�3�a/94733���   �# Q�4ur6� J 0os zl�pathlib� PatnIG pand�=s p"�*uas mple:�m �>�}_�&0ext('notebook�_�e=�Ip� &WA!�g<(9RVou may"all�C�fuv <l_&nnMZly eva�+d8, 6ure� s s�6,as Trapezoidey(Simpson's's�(*�=e�FdYg �ha�e �z�ż�'� grow�}$as $O(n^d)�$>$d$R 0dim� o�NF data� henc�$ff*boA_s beyond�7od�{� G2IBl� � e2� �?-]teQd!A)�M�def= 8x&K 71�eX? 13*J:M .�:0,XK1#�  �K(x.� �j�6S4J�.%J&�0&!CEn �  ('x'{E�e(� ���[, � )� 6� �@ 0.0202549#��!NraA�2�y, er�  b! Hy!uD� V 391023941`Mn�1�> FollI�Ag`:� ` [dzh0��"�hB.�> doc//r"-/pe.�*!H I=\int_{y=0}^{1/2} x -2y} �p\�;y �Mpm d"�p6�*�n%8 -2*y!�y0.5"�15F104167%a&�f�3�Fn!� q&GW q*y bs~s_yT [0,�]2%x(y6F&�] YzA[ \x,f])F*6�668 ���������������������������������:�g0ї������������.�F�6�7%���������D�--- author: Na3$Carter (nc 4@bentley.edu) 0 T&�  assumes�#�@� ed SymPy� f s6�s��.= *1:# load�3-*V i2izB_�:=')jax' )a$use pretty B%�Qu�!�m% �Z�G (AD)�Y�� prom�%of AD is�julia 9 = 4��x^2 d d"T;O�!3Cdfx4= 4A�*�510 ��W+va��&Spkic rewri�F:** $$-H � \G .� �qx $�&&7!��&ia�' ])Mdf}{dx&m3 'Fh�"�}�b h}[##R�8)+AD Key�qA!ME*A�icp!fA=&�<q7d8&d ~f(g�): �g} g(�Con�iU��$f(�Q= \ln(ab�xa)f@!~1� (log(a*) ($_ *_=� 51/64 * (C�a"1`` Ca3.1�v 2.4 BS+H}vik!&�i�=hFary�t>p?(� �>"*�%9A*"�1. A�f���2c�8a*b 2Di"� cA�c-(c3c�8!Oc3) en*�-IYdu2i�C?�<��\p�Y2�Ya}${� ZV?���8qM?ZRA.IoR!c9:!/a�DdQ�l6Kc�9Bn.�9a} m�}*O.�Z[���w^�.~c�7B�26+Jp6F1u��c_12F��)��uU>�>�I�2�1_ϵ = I� >�2 #i�#F�3 )T+ 9+2  c4 01/cMd?c4, "R8i�>�Ao== ZL**How��weO/� is?**.�# D�"��"�ven� $by Cliffor�5@1873. struct D <:�be�! x::F�7 #�;�ϵ.�NN�jD Base: +, *, /, -,��,�^�nvert,� ote_KC a::Dsf= D(a.�/b.�f.ϵ.ϵ�!B43- 23-3 ϵ) (*6(*(�Z + hgprRck/6C/ C(bD=- �Cϵ)/b.Xd # quotP4� ��::Da�D(.gE�.�"N) ��))1/ gt) !nTw!W((::Type{D},!� Real gx,� � 1= 1.6 A <:NuA�$Da�.wf(D(a�&b��Boom! T w�� asy!22>nS!�≈v&�[ H?!a` %��fo2�$�t J$  liciBA69�map�9`ff0F�`Yx "tlH !;compil��r��<��c�Ci~�(r 's w!6<9>�A!!�{@8 _typ�8BzWhY:Ois somePh�,t��/:plugg�#>o�Gs manu�y � o.1�{7a{�D� equa�_��D.�M�&� .x)) D!�=r .:v 0I'A�*b>,q*M&�9,�%wp op `:`,�I`+f`2re�dx`2�2$ `a`,� d.- ��6�.�&/ !�preciseyatchePur�i� s�� :=�[ )D.k Fm �� I9�2�se);entire "� ten"I�A�HA�# y2�g s. I�GAs�/��.8�d��Ped��! 6FF�"�[ly�/n�lA��e��* mple�; �.0@llvm debuginfo=:n�$F�� )��BB�Our3 ClyA �F��h!R<+l. Lea��ԡ�isa�� `�g$Q �(f::F 0�쩰A �x,�%��N�.�� �S�l^2>eg�0- Anonymous&� of� mg handy � �Nx->3*2T4x+5, 2 X^,�x)*�Z� 1a3W�.Fp p� dia}{d� �q�{%�g&!a-> :,(He'`b`�k"�>���9a g- ure"2�df(1.2�## Tak��.� of *�^* > Re�6 $t� �(t!�/2O��%$t$p< verga�$o $\sqrt{x$�@iT89�8Babylonian(x; N�S0/ a+1+x)/�D�2:N $ �t(1N oF��)"�:��a�E*� &�\coleR9�!Z`� ` **�n|��e�all3Q943(D(5, 1F�5B��62*   **It��'�'R^�~���{B�b�R�+? W3Q�well..2��f���*n)��4y4�!1%�els  x*EY3A ��4.0^3.�9��>�3)|��y6 E3*G 2 # �I �naUAV}monde UTi�y!)rda�d7 P5 v7_��ic(x::Ab��ctVtx {T})Eo re T�%~lengthm��V =�U {T}(�cfB�m)^aK��:m/V[j,1b:one(x[�t!>3 i= 22>FJiJF * -ʗ X -�V9�2;V>�X 1&a&�w(&a^3\\1&b&b�&b c&c c d&d d^3�Eb)��UaN:6v�dV��>�T0&1&2a &3a^2\\0&0&0 &0R FRnYu, 6�s,�s5 !�:[� (D(b,0), D(c d,N7:�[V[^� !�i,zs(V< j2)] >��J� (beca3�3)l 5�Bma�ka$ * quivalentHEthough�� c�  u�/= H doing**. "�n'"�oing'(ic0 ip}o��iM�9 e.�@vars n�"����=1�/"�(F'B(O A�>,5j,]n:, � %�## Do!rei^%Fwheel:� B .jl  _� !���rstta���AD�5 s !�!�mTfe.)%�4lete package [6 p�(�*�@�!/6-)2 )�" �)�.��9fN� @edit.V~; (Not�C�Rules.j~�.+)hOT4�mits:"E^, � �:�f2V.}x�:B�&�D^�.�O�Yx}"k��w^*6�MB.Yx�F#6F�YxNY/`!�����V.E!�~�4l_\I!F-.IP w :r6~���J�6F��Ff�6��R��$kn.� r��Z$n$��n4�*hZan"-*]0�J�. 2/��VIR��Zru�!F]��NFU�Kqu�{��/� hr兡�g0�:hbo �$ duo ��&H.r-HU�1e�y�e�1anI%"L E #�� . *�\ thumb:*:_ is g���"�4R�r��:c$olSEv��e}^EbBc� b ( source-to- \H _�"�=[Zygote^5FluxML/%)N%���![&2B,fluxml.ai/) �ce ��= 0.10NI c�>.�Z5OB 1�� FN R�9�8��f:w �nic!r! Papers: *"�?�p jmlr1p8/volume18/17-46 .pdf�'c�+sFmit� .�$io/18337/l .8�I� >�Jg1 Blog�>tY * MLI �&�@� lang�blog/20�2/ml-uage-a+� * N�AZIYkK8/03/05/dp-vs-rl � :M)a w_� ."l�� lay!�z_ 9/01�EqdIn Ye Own "6LB�L�%�!�ONE day v:/%�,.rogerluo.me!X8/10/23/�@-an-ad-in-one-day%%J�S�+ To �nr!rr$9/07/27/ya��/�Ro�%:�AD flavod^*���:� k:� $MikeInnes/!I-zoo (�$���sm�+s�ML>ds� alk�6iQ�4 �xE*uk.�L\assets/pdf/CGO_C4ML_talke�0 ��inear R2ICN�Ll E��%x"RDe�P $X&�A$frak{M}_{m�Zn}(ٲ^��ybf{�K`b�i m, \͡N n$ ��aH-Lcal{L( 6s ||� f{X} �Vds||^2}2<K��)8$ ;�^ch�Qz����r&���}��PŁi p�-np�-�NA�alg�Idiinv4 :œ|s = 5  �թa"�nCH,L*RYJ')�Z ta =B.i/� � �1ȍ (Y -=ɘX�ta)2r��is=0) 2 ��6<441.147811681604hs��:V It�:�ed-�)"^9C�%���is>C :Q!�*} $*argmin�CEY}I6�D = (X^tX)^{-1}X^tY0I*T)J_ %!(inv(X.T @ X/QXő�, _los!�)GumRIM:M;2S<88.1525978053604,�##J�Si/ R�!A�͞bl&�"e7 &�.uby"��T:�� $\etK+l��F�nabla_)�R� := (�\h%�6�})�1�]l�mB�]�@ n}, .�AA\b���A k^{(t+1)�|)p[a} �{ }F} / l]�0-�bf{x_i}$%�d��j�_X$.B6`FvJ3j} �Psum\li� _{i=1}^m ��f{x}_i�N� - y_i�p\\ Z=:�2LB:MF�j}ja2�S„j� N!�� X_{i�:\:E{� re }�@�] (i,j)(8��?} X-2 [X]^j-@(X5B%���?I}2f&Jhe jthNumn]P}e��>�qr� ���l 2X^tV� j]����X*�(ob�K�< @__�1__(self6$, lr=0.001 0'.weOD��2V604l$?lr��{� z�@ 1 ogit���(x.#l}�g =�Jl�Agm&�=� PT* xŊ'. �-P�'^5.-  lr *Q3 �e)� ne!B&5 2==|ɋ6�P-� �== .1OX):: +- YhJ, 3� B5%XG� 4B_sgd>� +_�� a�pr�R1�!H2�997��ab��na��- :=MAL3.929301328753354e-1D Z�1PoH� ![�I�8s�0U5Q)**�ww = U�{(-i\a�)}z�0� �,�@dot{Q}}{2\pi}\ln 4## Ve�� fiel�%$ 2dw}{dz��u + ivc.�'1J.U?\�q�}-il0{ �$ Xy.�ZR �:�� 1}{z�##��bi.�s &1a*�!w �k� $(0,06y�Dso* r,��nflue� �^hW�on[LkQ ago�#QCr��($)  =FN��.���,^rib� atC�� xfQ w_{\rm{s  �.ink!,H��fVM*�E6 ain}.? (z-r3-�.*out2+Ajk-U�\R\�*2z�o�}�sre�{;o�regionai}=dch !b"s%u�G(Darcy's law $U=-K�I�g�w$Kx [hydrau��`5�v�d(m/s)c$=!�2wm� t� ��� (m/mM)�I}$ m�:be nega!" �]� gd��)'=���- ft. To av�J._u]� �D��;e3MaabsA�IP}w = -KI�-B� N~��77z�h(� ѳNr-KI�1R�ɪ.�!�fF��d�b( j�-r� {f�%]a.Kan!mid�34'll pi*�v !�he)2���y��y�T.'<��sz�[MMz��g��e"$we"�e��O@��$z = r/�T0�U>� a&g}{rl}� -'�\bigg\r�14_{z=r/2+0i} =&Ƈr/2>�r/25�\\ Z-�.E�V�7 �1+f}{r}M�^ � *j .Mp�054��spl�-K9wO v1�21%�!}2*�P)��yw'\c5f- W 1�i 92( (1+f)}{r H-Zk<Non.�ɣ�5� _�F}_L$ާZariso"P&��qm&5gdu�.�a!!+4$���a��io.cm�8|�Z2�A^-4"� w1y�}}N#�mpleBY \ =&Q1�F}}6s>0-KI}{1�9�> �6�}A{aK I H r}Kin})�iZ�y6 \to wb!� induL1�^6��6 e��+JQ\inft�vB1 _rurxhe JLQ MpjY6along� tream��(�j)iAu� t:"�)�M-)B�}�>-mV�x��0!~ 1� <�vx>_?��iA�0� �2/8 ���.� 1}ng�`� Sfv��W��!x-r �^2��2c��:HY�ZI 6x^2+' F x-r�� �+%�x# `\ /{fa� \pm1}r)U < r .{WvB+@1�; Yi DeqE ng $�-b�+19 ��/�G� mr +��^#>�^)M�y  �B��:�mrQ�ºmr>�mrZ�+1V�%�-' m-fm��m(m-1)QA-�ny.O -�+fM�:1 4�f}�yM3( 1+ w ^ uye �!}{f5:Q�Z� 9C.Pt �2P} �!�I�I ˇ�.Y? �K�� �4be� � � 9- $  )81+J5-�.( =&## MeaC-N�2yDٺ�cong�i�� �& ..c��!�me��� �b ' �/ 'Jpol�(�Y(�nce�[me se�$\del�� o3Mo-�W�.nDE ed: Ud&8totraigh��D� so wJ adopt iMLAN)bo��Z�r�oJsame diL.$���?x+ip=z exis~ t $y=0"�!:}*�r��>�.L��! y(1-�^2}{4}-y&�r�;E M�Q5at:�E��5�5�a&� A�mIu�I>$u$a0E?E�,k i���%�nl/Ie�?�Dh��Fb"�a�U�un�518Aw%U�FKf^r <4N��fT�jQA2�u � a�o �e-�}^{  uey vV#E�[^u��� ] �*�\$6brace�t_F�KI 7�-ext{D�[- 2A & B�j��Cj�Df�CnOg�.�Vf�����c[12� \tan�.� E2� ]2�y�Y M��r�h&{"]2��%m`2~��endAZ"�.�Z� bk�_Dh�=�_��$l_r$�"�:ob�ma��2)2^M{�llM:�!a�BFa�&1}{l_r@9�-�UW-�K>H2II9y'-Yr~/��L�"�Nm�d* mť��  *�5�7gr�m d� [rl.�!Q ��� ���&01}��>� rHa�rXA �<Wul�Tfe )5J; >7��ach8 6� :(always dwarz p�osll4 � ��O H=% purp� :( ��E*� 2� InJ�c��n� �ml b��"�G  6 �sp�"� $r/2(1-i)$� +ixs�/�g&� %0��f"^l"F��kZh BB���+^������J� B�6=��黭%y y:'= Zy C$*��-B�!����B�2�r�%2�j�KVP�4~h Jusy��b"2a�tM�x�E��]w*$�\.]�O�OAi+r$4{9�-�!�52)NT$pb�Enalysiugp#ld�tQ�9b*z$C5-or���P����,j,W��1z�S/$�6+b*$A�:�;&  � �4��%$"�Uf��/Y92 is "LJO�{+"rr� �it hold��/fN.$�$�$�~!����~t�nj'TzW, i.e.N0F� 6� Qr�&� ��C"�.s21*($q_c�'W�%ou5E{�+./��"�:�*2N- �&����asuZ�*&*L06-%.& .5-jY��6 q_c��M�% �!iqd6NN��4 4 �0�/mt.�!�.�.��9Pœ&ga23&��d) + I & �!? ]� actuϻ ore-H15� $u_cc0fEby? iCd poro�"�<�>'u2y q_c}"�;911��(I9t���:kf�i� cale�d tau$) Pic"Whalf-�a��>AA�y*S :�*$r/u�3�Q2e�y$r��-  !��\HA8M�r}{|u_c|�MR-U!anaER6e.�nc�Pec3|p.���)d��&b6�a|� r $C�=��=��!OI�\6�f�3�\!�J��-�d �e�Fo�C",�Ylĵ$"70C}{dt�2-  C$f��i��4�� $C(0�C_ыc |ntJ}o� �7�r�a&|of� c�wd%"� $C(�eC_{0}�8�t�6$C_)�v 6!�i;BQU�1W�6��J�!� ($t=b$�Jrel�v��e.��Q�- \)�U��>�>K.A�)A��=U� � ## Attach�].e�k�k]kF�:A���a�-�U� & -k�/att} Cr� S�� :d.Q&� 3(1-�#)}{2d}q9�A_0 �T\\r~-:in}b�H�/}�R� �i�Z�# P2  visualiz��A� Wel� Numberv� �F�[3 �FL9(reg)/+� �FLAS .Y�''' GLOBAL CONSTANTS ''' PI = 3.141592 K = 1.0E-2 #6.6E-14  T10 R = 40. F = 1.5 QIN $0/86400. H #\20. POINT_OUT = {"x":0,�"yJc":"r">*s":10B@ linewidth>34edgecolors":"wBR$label":"Ex�� "}� ��R>W^�bBb s":8��R�I� �XI4linspace(-50,11) m�!E33) Z =�%� _,U,V,C =A�mRZ) Eu]�Z) faxa�plt.sub�� s(2,1,fig' 4=(12,10)) ax =-aTst .stredot|y%�h="k",density=[0.8, 0.8]) fi 9p'��9�C,shading='auto',vmin=0,vmax=5.0E-7,cmap="cool") pi H$scatter(**I�x$EY!�follow5-of $l=20-B L=38:E%&� in�B�Ai� V(x,N!,38), (x, 0, �; � onl ��x <(A�) / 2 ]We se!5at2!one!3X! s (wE �graph.flat)e�:�O1��%��)($0\leq x�q 20$ -F0g1� $f��%Ǧ/1 /�� ## FXs��XsN�correspoh o places 9deriv�!o2� is 0�� $ \f�",dV}{dx}=0 $$Uf��$2%$ uŘ�R6first_z = V().dif!!B)�L��simpl��a�output�]>p.E(^mNowa��so�#� !��: $6�=0!��� 9�_M�=�tolvO(>� , x)F6R F8A�gQ�a�!R=x^Eo�+mx^2-�`Q(fy�B]�$�*a�in%�eS,e{ofB:AXa m�um�E!Qoth�(minumum. ThAС�0be quantified�:�secA�YP:�PII�B�aB��**posi�$**�XFR* a **local�ima**; -�rnege}�r!9 a**.u�comput�eJ�j�)^� , 2)F#I�^�2_Bg_�U= [(sol, ���s({x:az })) �solAgYQmO]bb �3A�H'AoesRq'x s a 1� �]T thus it''-�**U�(aesaw����2�T�-+optimal_P^[0][0]+? �.�actual�%�runx #6pa� ular9�D{"l": 20, "L": 38}.'.� )�BM) float.3),� at(VR,a{>�)) �B) ���Y ^��.��: Y Le�M�#a%\6I Two V" U��O)� ity Condivs �sa �-um �X!�fun-: $$ �� = x_1 + �Q(4� 10^6)}{hx_2} + 250x_2$$ See refere�)a-detail� ## SͿ2�B) "�!.�!(from scipy 1linalg ymoptDiffNo�)�M�x1, x2��p"n ,['x1', 'x2']-�2fa(x! (4*10**6� (x1*x2) �*x2 fm$T $\displaystyle x_{1-( %4)U40!N#x_{2}�&2! # Ne�&f �b-� d1 =2�(fx, �4) grad_f = d1. X(�d>�$[t*matrix}1$x 6�^� �\\250Z' #-}x, V\q]��-�#�o� sm'�A�Ro4  sp.no� �(!_f� %�q�F�%\ &( 1000, \ 4 �), !( -50�$\sqrt{3} i+- 2R;+Z;+N; B\J�HessiaZfxsufic!�Y0!L�'um�(i@�ed p hessQ6 ian() !�!2�5I18E�Q�^!$I1 &RA& " }\\ G^x%K6mG3�wwe checkEFeigenM�- � Ah>� (I+41-��np�}H_fɻA�7) 2, 4)?#dtype=�� ) ��.eig( @ ^�� [(It1.499994e-03+0.j, 1.250005e+02] f 2 [-0.398 , �02!�2] � [ 0.(5 ]]))AE=9QT��li�5(I�� !dM� ##��t�2 ��&�~�'.cm`cmJ; mlab 26n�M�&� �$rnos x1_arT!{L$5�/3�5%� x2J&2, 14e00)H�#�� �$� ( garr) fx&[[x1_(6�_*x2_ٖ_%' �6in arr].2_�]oU� �Q|9 �#() CS���our��� J! )>c{$(CS1, font%9,�$=1) origin�!`a0 CS��j� (* #, 'ro'�=' um $)`(�� yy y N$ %� �" #https://]�$org/2.0.2/� s/pX_- $_demo.htmlH0www.tutorialse,.com/how-to-�,-vectors-in-�--R -�!�� a�9��m� is fi R�9@>a��R  = X [1] ARORA, Jasbir S. Il0e.�� tum Design. Elservie. 2nd ed. Ev/ 4.23  (page 115. �> CL48��MIof�5Sun On)mos? r/{4onshipg4$ astronomy��,Kepler's law/,planetary moD , b&*4y�owto1od1�c �� e�4eQo�&-�s. Of�/ti< Jis�third�, ^& ťye�5iod��& ��505 stwoj:Jr.P^ag�, \pi^2}{G (m# m_2)} a^3/� } H*5$G1!igravi� al�6t, $m_1�m_2�20�he�bod�O%E!��1� , $Phpe�!�their /,�$a&N�6mA�6�2B��Solar S� 2��&�Sun!�8significantly g�r� X�2an9IBs (i.e.%  +!V \approx !)-2�6��1ed to�� \, MV�BM�we knxU7c1,s�)�� �;( use thoseZ�!cbodDy�21� , i.Ke!X.�(rst, pick y!�favorite �. Lxuf71�alQ A�rɉ6!�)zI-,"semi-major y)"). Youalso ne%y q ��b�0G$. Make sure�x �units!&�!Das &�36M�� Now,b�above",Jg�SunNPUse w!�youI about strasforma���|E�7��dkn�9:��clu�, �N�J�6 to m51we diia� r�9.�>i�$repeat. Do�ge �,same answer?2q )]6�=7universa3�y d�5V7 work�%Su�utebead�eaI��!�anythin!eZ re's someu iA�et�sJ!�.LJupiter2 s��e �$ .'s moon,�;listo)7a�5�g�5�N|I �%_waM &i a�nally,���6�� re;a *superAZ<(black hole*� �6er!D�LMilky Way galaxy. Wh�� ?g5��'ve b�<G�watch� rs)m=}��:iG_A� HowE��is�d u6�?��-��1�������:�)�%Utar "S2")�V���D(*Hint1: Wikipediae�sm��U. ( 2:( �� '"'8arci_s��ate A)Aԁ�U�:�Q�conver/�=�9useful�berYmultipl�b�a�)c%�%ource!�a� a "pc"?*)!�>f!�do��qn��i9ed compa�w"%�!iAMZ"OftenA�� y��:!!]A��> termW��A�$�)rof�B/r kilogr �not easyA��9 pretI\nu!E�;H large. ��R� B�M�R�. !2� ��" ()"I�w,9iproper �J��\2.2 矩阵乘法 两个 D相乘得到第三: \bf C=AB0 为了使3p��义合法,我们需要 $\� Pbf A$ 的形状为 $m n$= &B>&n &p$,l��的 �G:C>:{ap}$。 �为�LC_{i,j} = \sum_{k} A k}B_{k,j}�注意 o%78不是逐元素)8,:�又叫 `Hadamard` 乘积,记作 $!PA\odot B �X��量可以看出是列�1� �,-�(��同大小!_A [ x, y 3 ��乘(`kpr!0`)或者内 � x使用 g �表示��x^\top y �)�也 >把.;,理解为:=%s$ R �I第 $i �与 I j$ 列!��%�J2l$��性质 .8满足结合律!associ�! 和分配 �;ributiv yVBalign}eA(B+C)&=!AB+AC|A (B(AB)C� :$$6�,通常是不!F��换的x,f AB \neq BA?但A%�)���R<1� = y)�xE.&P的转置形式如下.�� == B AK,利用这个?(��和标量 W8等于其本身�&��上i�R�结�A?e�!\�( �2�E"<��性方程组 :!5��I�为)A%\i煸式.A�b ���中��\in�� b R^��n},�B bf b:#}$ !���知%����x6+n +ix要求A���知量e它是:�8的一种紧凑 ��2���A_{1,:}�x&=b_1E�"2B"2" dots &\\ ,mB,m,end} � *�%:%is  �d&{[S� website](Z�tho�m/P*(/chapter-8-/ad al- bds/the-sir-epidemic-model/)!re��Q$mC��CoIse ;��<sI e [C9 t�C�"k.~ imiology,&q � en.w� :/2O_ O _in_Oe O ). Numerly,v~ SIRy� � : 1�pk&�loopsG grate in�C.8P%�'s ode�HpackaR !�� f�t�G�� at w*!= �� N�VdS}{dt��o-\b JI S}{N}��c}J� 6dI6F2E�gamma I�PRP^:W� S��(susceptible E� pop�IidIa&3 inYJed, RFrecove� pers).!��U.�et&�*�J� ~ act !�*� is> w �(vid�"com� to: $)QN$-sx%"Y mean�yt: $1/N&&��.( a�d�,i� �ioA Oa �-Qto sJr0of1S�:: $R_0E !1�;�(n \gt 1$!*A�sea�)preadA� rouglF>quickly �utR1..�! �f�``~&� N =y Rec�0 Inf 1 Sus N - 52�! = 0.2 %� 1 R5/B7RJ�2.0�Sus`&]� �]� �] ���0r0 (150�.d�K_S = -� *�$[-1] * Sus / NSus.app? + ?�C% �8nP - �p=InfbIn �+RBdR =RERecERec�ER E#S( �S,b Rx>g"� Sus)-n Rec)-uInfFLpltL'-�1),!`, +="S��"�B3Rec3R��n1Inf1I� 0"�E�$ E�/ 07:��4�" Ua�a.+g��.��to:<<*in����%4�q[docum�Ax��docs. tdoc�/C&/gene�d B�.����( # %load ./"- _j_SIR.py/ Y�B�U 3( ]&=D alg invmatmul�mm�P1ata�H YNXD}=\{x_i,y_i\}^N_{i=1}$��N pai~0f inputs $x_it�y_i$. TZ data� be�sR!��pan ex�] . - Goal:�P dict O $y_*$ Y�o�*N��*vis;�(*regression?,askA�,machine lear *�0G-� - $��Tx_i+1)^3+\epsilon_i$$ "0$ \sim� !MN}(0,1)m9�� .�! -4,2,20) KX(x+1)**3+10*np.random.n�lL)ecM�x,y,'b.'�7a� Mode�6a!�0S��A��be fitMa $M^{th!�ME polynomN (**.c),Sf_w�1�H 1,3,3,1 e�*5  -th-@P"�2�err' = []p:*"O20� )]2Q�IO(7,3,< %in�"e i?i# ,� res:dn LU�X ompo�8�Cholesk@C2 T � V  :s lu_fa+ ,lu_�IqM�BgLU%�%�i�i�i�ilu,piv =9:nE�tmp #%+(( 6��#��tmp����mqLU����M6�LU����}�21u�LU�*a�Vd29f"7:,choq- Ea(2>B.r�0�0�0J0c,-==f05.((7�0�0e0!��2�2m2��4�4V4�.6�iso#-�d��,B� p'@F�2)"��}�R� a�vB� �a���v4�Va �.$�FrH �* ini*�G use_�ex=' jax') �3�G'n'�+tegerQJ�Gy, b%S z' �##�1�ls=Ir�@fw>ed Dic) f_<t#on� `�C `. n0 we'l[0ver84e`.�0is howwI�in%9e. 1l~( \int x^2 dm|x^3}{3>� �FD Mte(x**2jC? A ErvI�)%v _0^3z�K.2��d|)= �3 �^0  = 9 :� #�.2}>�)G3� As always&1 we'r�,ing5��'e �bV,a 9r-g!}p{gly$dAu�( �>!x_y^z x^n!|:�2�n�;,E���YE6 �-�B&kH Dl�runodxr$ _0^{\pi}b0y x^5 + 12x^3YJx C e^{)�(x!�mu)Y3$\sigma^2}}, Feel frbHo�0yI��!;L*e��se:�!nBA�ATresults�dng:�K#$*}(8;5/,ve� Agl*me&�SymPyR 't do? �E�.6�F|on�E� s.Nbo� �e�}jit limit*�m.eN,�# 2. Linr Algebra_2N�e� Eks  /는B$�( blem을 V�7X를 이용해 해결하=d것에 관한 학문으로2�해할 수 있습니다. 따라서, ��� m,�� 조합인�4R�l(선형 연립방정식) 또� �, M��H표현이 가능합� 예�4들어, 다음�같은 Vn!,D행렬 $A$, 벡터�O, $b$ S9B 간단히 ��V$$$�=_A\> +3�3a< -2 2x_ !2 !>A �v"�klB)A= b�H 1&1&1\\ 1&-1&2\\ 0f#%,\;\; x=B>x;x7x3R4bF4 3\\ 22:1� ��$$�'$$ $$��A�0 그리고,!|러ASBu�As� (=� ) !�$쉽게 찾I�E�(이때, 역I!0구하기 위a9N�e 패키지n�$alg.inv() 3odA-활eo`�다 **참고 : @ 기호a}dot:,4(내적)연산~수행�A.4본M�곱aT�j-wisea>:9��!C��래와i � @���� �a'I��Z�**�bp( A =!�?1,1�^([1,-1,2],[0 ]) b6) 3],[ 2!�6LA)@b &�Dac.], [N]�?a��q�:h!l 풀 I��0�6직접I�Ug>E( �줄!��(��만,I0!J<'lstsq()' 명령6Q!� @�e도@E� ` 5`5� 향�$ �세��보A�될�D, RSS, rank, Singu:vlaue��0각각 반환Q`Nm이m cbHinK<L�S� Pr�o'���기e0�MA�� �6d미aL��!(,갯수 $=$ ��(A가vM�)a (경우, OLS!�InA "@��3�a�때�� ��*,J�� 사e��!�동일�답�얻�D *��.�uniqu3iKX갖2�2rx,. id1��%y=I6A, b)�@e@b~�"� �#� l57gg"la"=� as sp� Star =@ L9 ��s�H' x2�)� pendent�0c1x1+c2x2 <>04v1,v2�vn7cpnA.�3" +o�(,if nullspace�Aa OS%z(r=n,Hs� � �s)T2RAc=0 +G nonLc(rN2�(...,vl span� ��)s:� consis !alPmb\ th�;�[B� +<  Bi# sequ�$! 4.M;2P p�fes: 1�1� ant;� They`�- cM I3 np!or R^32�I3�PXty(3) I3I+�(�� 1., 0 :  !R81.]�a��Z �!�s~Z|�h } ?Df\E6)? \ *OM696(np.dot(I3,Zj6�]� �An@@)>6NJz46� [1,2,3B2,7,11!AN�[ 1, :Q  2, :T[7, V n x nv&rix)i�%c9~-6f ��H AR!125, 2 -0.6256�/H6% 0.37-0-:% B%n125!&�%�det>�8.0218=E�Y��i��=6.y���: �;"|\, N^?� _��>�at Rank[agof pivo�>lu�5� 9 a>}e�Z��. Cb�2�a Null S%k� �of:�qoa�\ �v2P$. 4 Funda"(al subwa� C �e� in R^m��N(A nrow3^T25of A^�nN(%(Left�� 6 kV  @ a ly�1 diu(. �E�do a PLUx$ns"�*�1�D).lu6� P,L,�la.lu%uA�As�(��A�a�0: ��>5 a� 5e ]]),���v  6OWaF1z 0.6��K]�;, 7?11.F` 0-2h-1!j�[#*1.6�K!(��A�&*ray([[) 1F6 �!3,9:��P5[ N2,0,8�E-�3�iP poss���&?R�v4ed Row Echelon�'~'a;� e�_Uf�'�d=(i�. �under�>d mGoK?re� early.�6ksp. q$(A2).rref(6�( [)[1�\-2, 01[0,�<.0AC, 5<( 0Eo(,� wa � A2�{V2%4� �)6�ab�)�u�'�)5�}Ş is 36��)Y�Q_���R!�M^==�<2$J4�,1R ��4� A&� ^�9.E;6��,np.transposeA��!�.��a�.)�->(2 �V`2).��:�[:� "+P[u]�w]!WblaB�k^ka3E�4E��A�1)�.0i:5]]z}-�n�q�5h�6� 3"� [7="/ �zu�" [� f�%M$di�� bothM��E�rowreu�iq - r6�A% �� ��J� ��V2,5��=�Z�36�2:!R3 �(y>A3q0[0]) Rh:�� -E.0,} M-5� A+ ]], {So O�^�}A4.�d2^� U+ ,A&W2� R2]�46�4 :�6�aQc ��< �z�:�� n�2,e�B�-1!�sI��-]6fΑ�V�5�)eJ�N41,N42�6��)A�pA4,N4%6�:�@ !t!:m"� J >�lNZ26^4)2��lN4,A4Q�6N�;VE�B, suchvE)R2� preE �=*" 9Mnp.c_[A4�teye(3)].�.asW'double�=�fB��� 2.A�:� � :+0- :Y>+ 5� &�AV�1,u12r  U� ycde%u% [:,4:7] EVw�n ^�v�mEf^A ��: �!h-mEnQN$Lecture 10� . ��A8Barycentric Lagj.�"rpom�o k� rewk�M.~. gVJb`=at�4eventy-fv>yeMLNwas+=8rized by [Berru8 T9then]"B(epubs.siam.J9xi/pdf/10.1137/S00361445024177155{ � 21st�Lury. 9�-%� � c:>to ��5� 8vosOe��s 2io�#alP�Q �"e �0*$�70l}(x)\equiv \��800}^n (x-x_i).�T:>no�atA L_j^t!�"6R}{?j)} w_j,D,8! bari1��0�6 is ]4 �#1}{�,i�Fj �_j�}�Ou�6tQng*e/ 8S�-fp_��Ii �L_i �46 = �19-.. �w_i}{%/} 7�E�Tll�9 he *Sd%�of! U�2�*. OQM we have c�e\Q&�2%6,d5=%�g �$�r!��7C3� O}(n)$ fl`Cremov!,� �b RE36wmw�2j. If�ad!$ew node�:{n+1}$�O�truct %I s �a�eA\�old"by $()�R)Wpg3RL% (p�o)=H$w 0zjX�Z�ormula)e�Ff�Bively e�"na�WiO�'��>&T��� similificA#w)&�%b!791L"lgeUhmAT.�on. Nq��"�9$gy�1$�:� � ! &�g(�6,�&=�;.>!As!sh�*%w��weOcu8�y�j8�9P!�-�%[cg!�xact. '@ultN�i?��{ }�"��!"} � -6�+*ƌ��r`},>& �A:�l~Ym�I�,�1 *truR��i2E * $�@�r���}{v'�����s!��ɼ$:Aҙ�% $ entira��A��;[FnjHat�n�i�=noeasil[3�e�*i�RaneouslՏy#te��n[stage58Ln�?i�:��2I : i)�w����iB2>�3 desiSG��s��"�+ho��#�*���*a'rea�IY�0a�RT�Z 2r6����xa8btc��to�emis be�/2b i"�!�"���&_!Z ort 6��0A�)1(xe8# buil6recur�U!�y .��Kng� �son at a�G�c3<#*le �*�60,  �#A��WIi��-' w[i]�scr�V whil n<XY!��HrPU)f x@m��)s��j� (0,i�(w[j]=(x[j]-N)*?�"i"j"i "#)ԡcvisc_!2�enY�j"?��!�Vof�5n9 [1/x�x�w]9�Il(w,z.xp �# .�+A+ 0 �xpimob�`�atak�7 �# >ye|�pr7u�-a3a5 w��^=0. d�] !�v#x�.=xp%�A# Wq�W\to enDAC�y?Vٰval";?xJp��h&�\ �Va few�ng��uAf ��%�#o�X&�H�� on $$sc�%I^�FE2R_� 2�A�ccqm w�%alaW��b���4"�G�x_i$ �]# !��b�L�m�� d��-Ot<L\� �e3��N�_i�mea4Ri�Q�&�A�I�,�} k`be�F�'��k�G=�K0�\!]n�bb�'ser��2w�>�Fif#Tv�<])~ +o6 $ (say "add�M")a�updhS�-�. It�4ess� �S is� ."ex�"* �oop�%a� `A� ^`5�,(����fR�2al�P�a� `1/x` �'�� �& clX2C� �is*g C/L 1inner�T5� d!�!f�?�nɜ� a�v�I�� dealt �D]��z $x=E�n}ڌ�D "�>�. �dmA�A1c� rn��ut `7�1}sitG�sHcloa6om� n�^+ly^ same{ �)wayk)�!� �i1|naar�~,Oit tur�*#�`ba sh[� �%��ip��a>l r)S�!�Pw`�I" YzMa�L%|'sK\�Vt�*��we empha�l5"endiied�Bo)UsciF�Md�E9| on[%��e�AM }!�n �A@!%well-"It�q� �w�6 ��rt�c&6&%Wl�I�b�c�&� �G� �%(\X ��c��� ropriatel��A� , [Higham&2mbs.manch�$r.ac.uk/~h,/narep 440.pdf)!(���zat�Iz�is un5.�� �˃�o*sla.+e��je "" ( is regardM�a�� �:cH]�pur*"%OA�u:�A`&hj)A���-d,��i~&%?+�exai��C��D1�L5I&t%�app��e �H >L2a2� &� \�� l\Nya mon��o�"�#��b�cea��ae���� lt. V)�p�i�t��0� of [.B�SciPyY���RNe.k_keS#�(.Z/:/ �� �+ � `��!vnew�Q�t, / �n@�yE ed (mak!f& /*�;��5�� �"as�/ ��HomewDi�2 : Al3$). Sh1���GorZ2 �e  cert�fi�!�.~m�pop�[ be� �e�f"��Q ��ONeqn�"} fJD� %�X} x^2+y^2 &\text{if } xd= \{4# 4\} �}_�i 3\ 0<o �7}. �8 c��$��-�k�q�oj��!-baI � $p_{X,Y}�Mǡ���c�(, y) \qquad � {��}��3, �,�\} � �J��� �[ $c>0�N �eogins**Ques!�:** D�E � !�at6�aa�id2&Nd�(PpSea��9�`%t 3�IW��>$ces, unlesV cour �gm� n'���mb de.Cuok ��p- f� on.� &]!Ω8�(i, j��*A 1, 5 *�1, 4)}3Tw� F e E( _X_Y^4: (i**2 + j**2 Xm{�!4}A2 k 3}} �[1/sum(Q.�[ ()) EMt (c). ��no�'�,�1/7,'^$P(Y�E~�47��X.k4jk $jk !~k23�kY=i�k�k�keq�k==6l 5rl$rl!~l1/36 r�=3������Y�-v� == 3�?eq2jh Vjh !~h2/3Bg&fZr:��$p_X$G $$p_Y$. Exp�]Nr�t� gdi#� aries. (Y.���be]>0y� elf� d���Oy`^igk�v�6, s�FZddo8i�e,��Rnce, “�_� =" �"��y�8a�5e��.�I � jseead, p �Sccu�`%;-"�'58��)f�6I =keyNU!"-H� g8?+ ):6�_�� i: 0)� a�}�i�h?~� 0f key"� in�$.items��if)[0]$ �&TW [ke!]R� * c�� �j,{1:7:66 9, 2^:3:�.45832}FE���x1xRuY� Zu4�u^u19uY:uY%u1zuYJm2C 3337)m,%j.6�66%d##^�'s Coi� ]�*cA3�_g:�" P ga,�--head�i�al�_8�i6�--G���rea�a9�[bag<�a ly pulls � a~. Wit:����dr�Ptos�u�76b W 5qD #"B 2.F~y1! |�:| Y=h$t | X�up-�or��s��"�R=�, 6;�isA*�&�"�+t@ili΅�e� o�a�P $X=F$�$X=H$�WJ�i��A/a;��~q�"WZ$���, $k�(P(W,Z|X=F)$j�ZŕZŕWR���:B� ---:��W^�8ŕ 4B�WV�1/2�_2^<r�4~ZxZR  5�3R͕z/^�H!�>�H����Z�1@_b�RS1<S BI6��B�I6 R|0Z��8.�*Yi�i}�&[K: 3*WZ=h�� �2��a� Y�3X=F 3+. 1HV1�Y\\~fFxF�x.m�y]U�B�FK��.8 K �4 5}{8i� 1��+}{2:%��.M13}{24'�42�>  r SVO�s��+d3* YPtr��^Mfiers�&�i�0�Fas�O n�Tnp�S sp.S� ("x"�pαT]&z")iώ���!��/��]. �e � � madeȊo�O�#,3� �fF�:�N �i2. + y* z ** 2.% � �\.00 z9Hw�\s'�d tog1;rT�7�w� 6{�_G���>'2�2*n��J�)4`MaG`�7:;& ?OB],[3,4�<�-$ BD�=])>[,. �F IS�,u1��`eye(n)`!��s.$n�Tn$M�tyF3rix6Lsp�?v�<@�0,�. �1/stuff2�i4 �DLtoo6�# �< f11�+A�-E_ f�A2*�]y + z 1)_u-W=�f1,f2])>%j2% -M�1�W�=�)2#�fJacob�Qqd5��8>%:�.j F,([x,y,z]) # _�;�/,��"��($�2�j�2.0a! 1.0, 2*y,PL 0*z*B��PAQ �y�s��be�7A?��wc#M*� mapp � ` `�:~�.6]xa�L| .0 y 2.0 z 3.0 8={"x":0,"y":.,"z":, } f1�ls( /68-4:�Pa�Q�F@%�0-.1�:�JA� =a�B�6�7v�, 4!�-6.=�=�1�T/�R a!xpy��e��PaNH+A�fN "^$6�SL1ON�6FJ([Az2�2,�2M� [��,�, BHAfbm35AWD!�GaCE�,�X4typlAa `� .Float`.��a&-7,ot�dQ:us� by�Z`�t�#ijncas�2Y� a `T.?�64`6�J=:M*fE 2) J21b,D 4.%H:: D"�UA�.y*iJ(Ncna�"3!�u�*��`6in �2�9 J.T@Z� 8.�ED-1>�Q[  17�23>�2��3D37JD!�0's `Lambdify`��:�in �$sp�$of)�'*.��80:�q�q�zSR#6��1-x[ 7.0�1!�� � py.ut�oies.l �   %�2ma�4[{'ImmubDense {':�4ray}, 'EZ'] lam_f�dn _(',ze�' !0rix, modules=q)B(�': L(([� � � �OrS/mˆfvnb 5�E�:([I2Yre ��mplex O0> nonn�� +�V��satis�@�* +erae��*����cal���=tiv�tak&)e�e�:�0�0Wz-Y �: [1].�  $R^ntp≥1�)k.Ն� �m��1,2...%p-)ts&f:s:,l_p=(\6ALj=1}^n|x_j|^p)^{1/p}+�!�!+,q2io".-e $l_0Ql_�$l~�nd \inf$. X�aE�a(10 ��?_9-10�(10. So, j= eq]1�&#� %�he neces� libr�"N!E? /spaT* G csr�md28#gs�kF�of�����&$�uint(-1� �)x���[ �9 -9N( 6 -5 -8  xN�uNorm-00�-�i=co5�� !*>?_eBB"�=i�. We)�uj4�._8Oe!��a�lA�-06�_0E2H!�*" �RDA="�V_0=&F& E#91: %1E��94s Manhattan Di,-a` r Taxicab� . L1 =��C�-magnitud��a�eYv-<sTaMat���3,"t�m\l_1J�)6�W!>Jk�0ɫ!\-1. abs(�4to!� .��aboc��d-x�A� L_1=sum(Ox"f,)�11 .�1>�2& 71 =�2-�2!c6��Euclid��.�9~short���%�go� 6�H�:����|:p��l asF�2J�^2�42:4����2=(!�A))**(1/2�f)�26��_2)_%��e62&@ 23.6854385646540>.yjinf-�inf&�7s�s: �����x!=m!��x[2]. ��dis<&Ye�� step%. n����C3 $2$ 6 g � )�in�g ssee oatVF of AU=���te CSR`��A68!V"z�t D ],�X�^1M�h�da[[[1 0 0 ] [2 .0 ] ��D�%@) "U :� * 6�#rŷ� )� (\$ethod) S =*� � �S�{ �^ 0) 1 �3(,) 2�+-V F |Ac�:Q��N3 �Be%�5YA ms ["`in row]E� .�CE? �aTrt�+ �$1.O�N G 00# 0*�v 1�� 2n93xV93B91r2J92 r4n95J9�5B92rN� r��Lm��x S�7x 47�`r�b%+�kof�nu�%� a�oJ nstr�R!Xor; bA)�S�:%�w. toG�e()U�>�.a, [ B = S.AM�B]�ޞ�Refs:5��Bourbaki, Nicolas (1987) [1981]. Topological �l Nfs: Ch<�,s 1–5 [Sur's e%os/ ie� K�&]. Annal�EXe l'Institut Fourier. E| of!5 s.A�Trans={�WEgglestD�,H.G.; Madan,!� Berl�$ew York: S��8s -- Polynomial!�erpol<, Least Squares OReQ�,.;.lGraph Theory, Network Visual-�s withX) Aula3 '.< �4.Equ�Solving +!�Y3Differe�!� #a, rc/e-�_v9�*?T08B_u�e�grJ��mcopies/u�~>TXdatabase/tasks/How��c��Pe the Taylor series fA� fune�/) 0, using SymPy �!2,Day2/4a_autoE _dN��_r5�F�(Concepts/Poa�A' flow +d0nbs/02-calculus-maximi�4-volume-of-a-b�a� docs}�,Local_Minima Y+��PonusProblems/Module1/$Challenge2 /!U Deep-Leara�/Part-Ie� -02-I�-��802-Multiplying-�I-and-�am|04Apy_SIR r�a�Lrobabilistic Machinea6 ��A�U!�z/ X0_checkpoints/ � in A(parameters 9�-0 A41.Study/2.igMZ r/1.�!_code/5... AdB�2.q�-:4_2. Systems ofEm�-2,LinAl_00}�class!(erpFit/Bary��ric��rp �a��7 2/06 Home�? (#misc/An��r._Ŷ '��home_:/C_4.ipynbX\,R6(week04/01 Expected Value.ipynb04_Numpy_SIR.ipynb,�R @ DaH�,L�akyrillidis/comp414-514.bryanblackbee/topic__hands-on-ma)�le)�M0utopawn/cc5-w!�0infi���/Computational-Probability-and-Inferencet3rodrig/sympy-tutorial-es!okara83/Becoming-a-Data-Scientist!hudsonmiranda291/eletrop%:4ufmg5nickov�nikov:�Pce�$EngineerinE�jpneto/% sInPVA\V @�0�&�� 5Hmetamax_stars_repo_licenseslistelementV��&��&��6( Unlicense Apache-2.0,�`LH    �   <5>B,R�.(�x V����ei�je2SVp8&��5(metamax_stars_countR��&��&���.(�,��L"�l2018-11-27T10:31:08.000Z <9-06-28T05:11:17. 8-0318:06:21.<9-01-28T16:00:53.<8-08-29T04:55:26.9$6T02:20:04:,4-04T03:07:4.�21p14T08p2.p 9� 35:5.T03-09T19:05:00:p,7-08T15:14:2282�$13T23:28:1.� 6-25�36:49.T08-05-30T13:346821-11813:08:2.�190!� 20:22T6%�81T21:11:02.000ZDH,R6.(2022-03-13T23:28:14.000Z2016-06-21T21:11:02.000Z"� V����ei�je �A�9(�Ś{�&�� 5(meta'max_stars_repo_stars_event_min_datetimeR� �&��&��6.(2022-03-13T23:28:14.000Z2016-06-21T21:11:02.000Z,��L"�l2019-01-20T03:11:58.000Z <22-03-16T02:02:221-1 T19:50:498 T$8T16:00:53 T$29T11:03:3.820-05 10:528T 4-04�07:47T1-31T14p11B01�12:30.$1-08-11T0580>T 3-17838:82-18:14:12�80-06-09T21:44:4.��01-21T07:31:146�$11-25T13:0>p!i-0%4 15:22p 1-02%,7:51:03.000ZDH,R6.(2022-03-29T11:03:39.000Z2019-01-20T03:11:58.000Z"� V����ei�je �A�9(�Ś{�&�� 5(meta'max_stars_repo_stars_event_max_datetimeR� �&��&��6.(2022-03-29T11:03:39.000Z2019-01-20T03:11:58.000Z,�!�LP��:Computational/Intro to Numerical !�Iing/HW_Chap07.ipynbKBasics Of Algebra by Hiren/01-04-Exponentials Radic 4and Logarithms O 1v�OAnalysis/Week5/week_5_intep_approx.ipynb9linear-regression-gradient-descent/g _  rd2017/lectures/03-sympy  solu!Ds/014_piMonteCarlo $dAssignment/03 Exercise � %Vduc ISb  D�6courses/modsim2018/reginaldo/Task for l � 19 :(.4_Optimiz%�_�1 ,!fnt�$notebooks/:��Vector%� Matrices 9� 3-04-More _�8s -- Polynomial!�erpol<, Least Squares OReQ�,.;.lGraph Theory, Network Visual-�s withX) Aula3 '.< �4.Equ�Solving +!�Y3Differe�!� #a, rc/e-�_v9�*?T08B_u�e�grJ��mcopies/u�~>TXdatabase/tasks/How��c��Pe the Taylor series fA� fune�/) 0, using SymPy �!2,Day2/4a_autoE _dN��_r5�F�(Concepts/Poa�A' flow +d0nbs/02-calculus-maximi�4-volume-of-a-b�a� docs}�,Local_Minima Y+��PonusProblems/Module1/$Challenge2 /!U Deep-Leara�/Part-Ie� -02-I�-��802-Multiplying-�I-and-�am|04Apy_SIR r�a�Lrobabilistic Machinea6 ��A�U!�z/ X0_checkpoints/ � in A(parameters 9�-0 A41.Study/2.igMZ r/1.�!_code/5... AdB�2.q�-:4_2. Systems ofEm�-2,LinAl_00}�class!(erpFit/Bary��ric��rp �a��7 2/06 Home�? (#misc/An��r._Ŷ '��home_:/C_4.ipynbX\,R6(week04/01 Expected Value.ipynb04_Numpy_SIR.ipynb,�R @ DaH�,L�V @�0�&�� 5Hmetamax_issues_repo_licenseslistelementV��&Լ&��6( Unlicense Apache-2.0,@8L   @ *.,R B( P Ue�UUY�VeU��&��5(metamax_issues_countR��&��&� B( ,��L�l2021-12-28T14:15:58.000Z005-19T22:38:2.18-113:54:27:801-11T19:24:10:,3-18T09:27:42<0-09-25T23:31:218<18-02-17T16:36:12P6-07-02T20:24:06.000Z,0,R6B(2021-12-28T14:15:58.000Z2016-07-02T20:24:06.000ZT Ue�UUY�VeU���&�� 5(meta)max_issues_repo_issues_event_min_datetimeR��&��&��6B(2021-12-28T14:15:58.000Z2016-07-02T20:24:06.000Z,��L�l2021-12-28T14:16:02.000Z <2-02-26T04:43:53@18-11-20T00:15:39@21-01-11T19:24:10:04-08T09:37:47.<0-09-25T23:31:2118� 19T15:01:6� 6-07p,1:31:44.000Z,0,R6B(2022-02-26T04:43:53.000Z2016-07-11T11:31:44.000ZT Ue�UUY�VeU���&�� 5(meta)max_issues_repo_issues_event_max_datetimeR��&��&��6B(2022-02-26T04:43:53.000Z2016-07-11T11:31:44.000Z,�!�LP��:Computational/Intro to Numerical !�Iing/HW_Chap07.ipynbKBasics Of Algebra by Hiren/01-04-Exponentials Radic 4and Logarithms O 1v�OAnalysis/Week5/week_5_intep_approx.ipynb9linear-regression-gradient-descent/g _  rd2017/lectures/03-sympy  solu!Ds/014_piMonteCarlo $dAssignment/03 Exercise � %Vduc ISb  D�6courses/modsim2018/reginaldo/Task for l � 19 :(.4_Optimiz%�_�1 ,!fnt�$notebooks/:��Vector%� Matrices 9� 3-04-More _�8s -- Polynomial!�erpol<, Least Squares OReQ�,.;.lGraph Theory, Network Visual-�s withX) Aula3 '.< �4.Equ�Solving +!�Y3Differe�!� #a, rc/e-�_v9�*?T08B_u�e�grJ��mcopies/u�~>TXdatabase/tasks/How��c��Pe the Taylor series fA� fune�/) 0, using SymPy �!2,Day2/4a_autoE _dN��_r5�F�(Concepts/Poa�A' flow +d0nbs/02-calculus-maximi�4-volume-of-a-b�a� docs}�,Local_Minima Y+��PonusProblems/Module1/$Challenge2 /!U Deep-Leara�/Part-Ie� -02-I�-��802-Multiplying-�I-and-�am|04Apy_SIR r�a�Lrobabilistic Machinea6 ��A�U!�z/ X0_checkpoints/ � in A(parameters 9�-0 A41.Study/2.igMZ r/1.�!_code/5... AdB�2.q�-:4_2. Systems ofEm�-2,LinAl_00}�class!(erpFit/Bary��ric��rp �a��7 2/06 Home�? (#misc/An��r._Ŷ '��home_:/C_4.ipynbX\,R6(week04/01 Expected Value.ipynb04_Numpy_SIR.ipynb,�R @ DaH�,L�V @�0�&� 5Hmetamax_forks_repo_licenseslistelementV��&Х&��6( Unlicense Apache-2.0,�XL@   �   <$8<,R�,(�l V����e�fie@4U�:&��5(metamax_forks_countR��&֩&��,(�,��L$�l2020-07-14T19:57:23.000Z @18-11-20T14:45:43.98$07T03:20:32<8-03-06T02:15:26.8<8-08-29T05:04:0020-12T5p8606-208386�21-02-27 3:49.82 09T15:41:2� 1-2521:40.881-01-19T16:26:1.� 7-18!4 01:22p1�018T09:30:02.05P9-3� 00:5.�!2p3:48:258!l6- �33:10!�5-�3:56:32T6%485T09:04:24.000ZDH,R6,(2022-02-09T15:41:33.000Z2016-06-25T09:04:24.000Z"� V����e�fie �A�9(�Ś{0&�� 5(meta'max_forks_repo_forks_event_min_datetimeR� �&��&�6,(2022-02-09T15:41:33.000Z2016-06-25T09:04:24.000Z,��L$�l2020-07-14T19:57:23.000Z @18-11-20T14:45:43@21-05-08T10:44:18@19-06-23T15:01:19@22-03-30T07:04:25.$0-12-07T05p.T�6�05:38F�2-28 33:4>p 2-11p47:40.p2-01-25�21F 3-15p10:14:83-29T06T11.1-06-18 50:52� 1-09�5:0>2!29%P2:0>85-12T18!436:p05-02T13:15:42:D8-09T06:46:01.000ZDH,R6,(2022-03-30T07:04:25.000Z2018-11-20T14:45:43.000Z"� V����e�fie �A�9(�Ś{0&�� 5(meta'max_forks_repo_forks_event_max_datetimeR� �&�&��6,(2022-03-30T07:04:25.000Z2018-11-20T14:45:43.000Z,��LR��G�� �&�=@$�G��Y@��N���q@kvb'vI�@�>۶m[3@�ֱᥠ�@��k�6@QԨ�l�e@h����|A@���!8�@C����@@F�����H@���ehk@8I@E����5@+�l9S@S�(ٵ�5@n��5�s@#�m�VB@� >���}@{��]��]@�����k=@mT�_�\@^v�[�[@%j�?b;@�����z6@w�8tҾ;@,Zk���r@�[�qA�V@�&FG�a@S�\w��?@ד�_� 4@פ��`@��n�Б@o柶Ѐ4@�$��x�5@�~xxx3@��,d![c@������@@�y��vV7@Τ%�P09@X\,R���!8�@�~xxx3@(���!8�@�~xxx3@,�R @ DaH�,L��?LR n<�?�dE4I��? �˔+4�?S�����?F��(&��?�W[�Z�?�S�`���?B-ݏ��?���G},�?X\,R7�I��?B-ݏ��?(7�I��?B-ݏ��?,�R @ DaH�,L��E�i�?KF�:��?�8�2f��?���H�[p+���o�?�)�a�6�?j�9����?<��7��?���4 �?���|nI�? ��Sd��?ol�7��?�`%�4 �?���I��?&����?�<�8�3K����x���?|�f����?5�Ц��?##l��]�?��Yg��?�e�NW��?X\,R鲆��`�?�)�a�6�?(鲆��`�?�)�a�6�?,�R @ DaH�,L�BUa�?(g!Jt_�?x#L�Y�?�߈�cW�?ȯ�A�L�?�tii5�?  *�?F�u�`(�?��,�N �?n��v��?��2C$�?��h��?�q�D��?^$�|a�?��5t �?�����?��f\�?qf��E��?�fb���?M�5���?t? ���?����Z��?B�%y��?�V��<��?��FU��?� w$���?������?� �x��?�_lv��?)������?s8�o��?I|�L7��?N[| ���?X\,R ����?N[| ���?( ����?N[| ���?,�R @ DaH�,L�@\text{sinc}(tf_S) %NTs = 1 F/Ts re $0 # resolu�p parameter to fake continuous%* sc_zcM: number of!e-direcG0al zero cross%� aken!;do account t = np.arange(-X*Ts,+ Ts/res)� ,�@(t*Fs) fig, ax =AE .subAThs(1, 1, figsize=(13,4)) ax.(t,%[ xspines['top'].set_visible(False5$right�&lef% posi! ('! '2Mbottom NB) n �110, BXet_xticks(Ts * n) label!�8["$%d T_S$" % yE�(y in n[0:]] )$[10] = "0"%P F( , font%@12xgrid( 20lim([-7, 7]);I` This funE ii�impulseAaponseA)a��ideal LPF with cut off frequency set at $F_S/2$. ThE�vQ�m�i�rea�as a supa�sitonm shif(nd scaled $}&$�s.^)�(�(�( # my disc!' �- a7e|ray([0, i= 0]) # 3 sin(:e�810)*2*np.pi/10)'a:Z K1i Z #-ǭS ��ed_6 0,len(x)�" Ts) ��B)( *-1- + �G�Nx_I7iga�s(3.S ),))*[0::resa9x #coA�ve x_���(^�i#[g h_S)/2):-� +1]!�� �إ�pl6�2.�6,6��(es[0].stem(5;, xa�es[1]��.�, ��E�x�&,axes: ax��b:(j:*n#:+z'.6+Q#,1)ɑ�18�� =�5-[�8.[ MV< ,�@ ��D0,�_ _t[-1]+Ts�U+y+$np.min((0, x)Ed) -0.1ax((ax( A� )))+0.1])X I## Linear Algebra a  refers the study�e� ar re (ships. In t�xclass, we will cover some basic!ceptsJpta_$are neededyunderst��D0more advanced� (*practical*\0defin��f you]�es�'i��j �� y ��Qapplic ,!re��4an excellent o�  serie�at) $ese topicsx�detail https://github.com/fastai/numerical- �- � B�i� $fundamenta!v mpon�\f machine learning, so i^u� >4�A future go%check)�%�P. ### Vectors A v � coll2 !�M s..��**row 88s** or **columndependm o%�ir ori�� E�general,%�Cassume �a L �:aD** unless otherwisa ated�$ ```python� .: �_��,�$[1, -5, 3,�� 4]])* �6-], �V[2z 3z �print(�.shape)6 �� �z 5�y(4, 1)  @e transpose ($T$)!�2kn oper%�)�1form aA!9�a� o a !I � e�.in# � &. If $v$)� :e�n $v^{T}A�{� -� 3!�, ? .T � )1��!�!�!�%�,$ $]  [-5> 3B2B!�!j " n!5of6` measa�of �lenghtS �;(re many way��. '%a�)a.$use differ�I�OB|.j mos�� mmon �" $L_2$,��V�!�)( ($\Vert v _{2}$)Q �.� qrt{�i v_i^2}+� �- lso knownG oEuclidia �a�Oa�s well +!os�C2 $L_1 �@ (or Manhattan Di�� ce),%N ,\1inşyW) �l��0$maximum ab� valu"M I��j`�����.linalg� �orm new_ 6= ?M�_1�z orm((e�_2N2) infNnp.inf�G8'L_1 is: %.1f'%V12>2b:<[��] 15.0etL Q7.4 D"ADe **dot product** a,two-sA#!�sumhe, resp��ve ele�u�� each E%�ia+noS$by $\cdot$����$w$ER)�s��r� Hfin�s A�d!� Q wxi�}^{n}A�w_i*4 alternativelya2\a�be compu�a8^aP>�i� w a�, \cos{\thetaim��s,angle betwee�e��� same�� �:05�b� �, = cos^{-1}\� [\frac{�}{��}\� ]!.�#lets �27"� � �"% but hav.U�vs }�q�arccos,!� vafp*I2>!� 5,10%p = A0(v.dot(w.T)/(a| (v)* w))) -l*(180/pi) #arcos return gradR � �;�eru $to degreesi����48.53773646e-07����Bop,!/g~( , pi�, -1,-%D�-�- !! ��1.179.9879�,rthogo�to ��� zXV01�:\-1 �/�/)/90.���cw��**�^�.s,k�r,�Qwritt \times w��2lbycv #N �H� \sin{(��)}��� θj  �.ɨ geometric� er�9 of�+2��a�N per cula� both.b���th (as d�} :�(area enclos %��?0llelogram cre# B=` .A:�0 ��!cn��3B!�c%�= (v, w+�eZ,[[ 0 0 -6]]A)�z�X�7F)))�@G\q�Y�< _w�vH_w�z�_RMaA$es An $nQ�m $ mxI�+ang)�abl7 j�� sist��of $m$K sIun$F !�6^ `"*nsider*a kindM�� AalingmiA $n * m$&, M� Y� yl�siZMep"� [p]{(� ^mu8j^n |a_{ij}|^p)2�p$� �e �or�($p=0,� 2,...$[ **%lx multi"�:X�ce�YP$)BQ�Y) ed wh�^Pe�an $m)�d p5�e�Q " $p !s n!L resul{ $M=P/�x $M$xiscB ; dimensioni�� !iml!�innerQ3&� V s must7 ch (i.e.,NIm!�� !�o!row Q$ Mb�9 ) � �6�:��-�nN c�ou� G� s. Formal =W1�asA�M_AO���Dk=1}^p P_{ik}Q_{kjIf.�P���#$1, 7], [2,� [5,��Q6' 2, 6�50,� �P f'a��!hP�� : {P�}'- Q, Q N?Q ? +?np��P, Q)nAPxC.2 yN"� [[1 7]�E [2 3 5!b�(3,w? [[2 6 3 1 3 [1 2 3!. (2, 4�FJ �$0[[ 9 20 24 29N( 7 18 15 1410 30 5] F^5�4�I��#w happend �? .21��**d�minan��n an� pert�squ� E��!e>ea|m�)m?a_d.�det(M)$z $|M|�� e ca�$2��2��c� a�:YaI\be4!$split} |M|aT b�Hx} a & b \\ c & d\\!� d - bc! J $$ B�3�3š �eqne�*v�& c� d & e & f g & h & i ��& = & a d \Box &�X Z[- b�W� K� F�+c�U!I\\56\\ &&VI����3!}��1e�1h >� 2�Lei + bfg + cdh - ceg!tdi - afh ?Y6N.�C] .!or larg�a��g#�. Howeve�� c�� easi�$ utomz a�al� redu$to �Rfu�.� . Nu &include"  effic metho� Y�2��i�2b�det M60,2,1,F�[3,2,8,�+�[1,0,02:0,3��Nf'M: {M��D�: {�$:0.2f}') #�h �� "&s&�decimal�id!�9 $M: [[0 2 1��3 2 8.�0 00  1�u2�-38.00inver��a2! �?-�0�sf (, $N$, such �D$M \bullet N=I$, W�� $I� )�Q only oY inndia�(unity -�s2� G� *'as $M�$�  aU�sU�x,�O?&���m� Q�t�6;1}{|M|} Z���L-Ÿ-��a��end! �$$ cal�u��}3� mplexq�; h� i�2 step!��cona�d s�A al *�0er*�roaches�b�0developed. i`Z��H#%��-�doesn'��I�P� binv��I � : {inv(M)��e��r x#S = ) M, fg%"�)�)�D[[-1.57894737 -0.0 ( 1.23684211 10526316�  [-0.631:571 0.3M684 @:7 0.T0531 3C5a58 �7 7970� .�-0.v 2105�2R[[ 1.0 �e+00 -3.46944695e-18 5.55111512e-17 1.1102230.� F G>WD 4.99600361e-16 -1VG 2.2204460~6~20417043~2g(-3.33066907W=2'( 1.73472348 GF�.0�Aq��_l�to bex0*�.�.20y`$**ill-condg#8ed**. Although : ����y���blematic�Qe�"l�*ղway � divi�!a,�,by�ry� ry s�i�_. ��! � (***2DhowB��Mis&it � c� edH#H ’s�#c�"�d ��.Mhigher�5Q ��g %� !�mS>�9**rank<#f��|>$A��!Z&�i$%t`#�8� �5 A$ (MO"_#notVe�!or ;��a \!!bin"�� X"s;��z S �(A)AfI5qsh����i % 2v��B!)�. u_a(yfull !�.� � (A)=�'m,n�C D,!��� >=all!q�!1��N�.�&�EcN A`, {_� A6{ 1,1,0:|" [0Vw ] ��C:W: {u(A���Rank: {)� !``�FH@4.048917339522305� J3 ��"da new58�! row)��q�i\!�in�se!{EO@addPin�$I�y6.�a�2pla���)�qn�of ex�-�A9�y:�T%xA_ @concatenate((A, yaIxi�*"r!f'Aug� e��(x: \n {A_y}"9f%��aB-6�_y)} '�� F^�1 0&� 02��"� !�V3 d(�*Tp&5� You!�%��(%� pply��-�I%�%it,e�ex�4o- Sum� aU0ar - M26 24n��!^92%f_i, %l:4��on�A��%�51'n�O*5has= !i�*�)E) , **�) Ro�**2� l�q��n"06&�5.6 6V6�3],I�origi"�-ray([[0A� # poiX45/65er(�*Ve-$lor=['r'],%�e=2alt/�,[0�� lw=0.5 6 = 'ka,% 2f,��(m To r!%� )�Eyn �"$$�9 to�yL�)C�-�givenHR�:B�#w & -�\\ 2&�#�"�$X�~#%�e�45"ss" 45 * (280) Rot_N=�a-�np.cos(O ), -np.i2 ], ,:/  rot_A?aT@ V #(2x2) @ (2x1) -> �%.OjM=['tab:�"n�[�[## Exerc�, TrE. yourself,I3.�!�N+5A3J�by 50)�e�-rifr e*��_�P~ def�_I�-�z2�l$n&��E�$P 5,3]]).T i=�:� =.�() a_ro�4Ra)�\�%(((a.T) -)e%p.l�).g%a)052 *^ e.)�:�A[[5�"&�/t2�� **@ �8**�I� rep1%��Fal}�G��b)� H�7:u6R aq��������rec�9� inv(�&)@e�1�5*��q* V. � -_ed* > x/"� 0NY%� [[3"��1Va3.4.�"Sy 6, �� �8~1sb0ay9o� 4;P shk AL. variR"s.� "followS fn:.�&*��}{rcrcPrcc} a_{1,1} x_1 &+& 22${\ldots}& n-/{&+&2n2,n &=& y_1,\\Y2:Y2Y>X2BX�26Y2,�R&&&?  a_{m-��2}x_2&+ <��x�}.�} �m:�m ` RaV_6� {m}.�+)� 9�$$���@ E�ajA~�;bf{A}m:y$3#r3,ex $(a m×n ^ , $y [ �$x  n un�/ :�) � "�E%1}�Aq2 ...n}]2%}E,&$A \\ 4> =%�=!�.=!k)P��,� )q{c!�$1 \\x_2 \\f n _ &\�, = ZCyCy.Cy_mJCU).!? For 1f�2) �Y$0 4x + 3y - 5ze��( -2x - 4y +�7- 8y *-3!Gx + 2 =1  9 + R6 6�xA��be��)�.$$ � � 1� 4 & 3E 5\� 07 & 8 & 0\\ 1( & 2\\ 9 & -6 �LZ� x \\y \\zJ�f�!6!#%A6J?% ���' # So�A��5=$GEq�Bs\obj�0f finda�et�/[?ars ($x$e�m�z$)�:a��Co%w.� e��?ͱco2�Sl�&$HI��G(:� z $[�?�[,y]���"a3>.)]$A�is t3y �.  4wisQ�-I"�' s. Moreo�if2�!E&�koe $�(�).��an%&�-)?�4t!o% !.73 i*�' !gm��$ve� init.?$�T j .mfu,to8v dJe . MoA(eO j5re de�@�;siFfEnu�:; ons,��,j<�osFu&�;�r|<� k 1) DU0�U !�O$i-�_7 Z4 ��2rinr-& %�!oA�EYa��r aligEF�� x &= � �# 3Ny�� j$�&�:� 8, 8�(B}:$[-2, -4, 5B[4,�8-5] ]):�(2, 5, -3]) �B inv(A)@yx. 0.7x5 9  �#V>�s Gf'AL {A@x2�  [ 2.�mRT�'M works��e�;!�R�s c&B"?�4a��,w.'na�j�avoido�k:� zA� cN9 F�Rm$LU�,A� Eion, ,K �:�s expresa�Y�=U[LUtU�J�EU�L}$� ower&�! ��c)U)uppF). ɳ%�y �ar�;LUx=yq=�c l� � �\\� & l_� 3 2 l_{3�  3� 0K l_{4#4#4 #4:� B�u� ^  g 4> �u� "2" &3 3,4}�u�>�^� V x_i x_4JSf�2V yCyRC>�m now %�?Bp���oB2�er�-�<7�t�t�t�t�;\\�; \\ m%tm�t and �vA�N�NyNleft[ ��  ����J�No� atN� "� � �ץ� ��7nd�E G �� ��asyQ � ndV:�!Z"� mu*�2y �.�<"�'2�4�O��C lu.)wes � /Dg�L�L,P,L,U = lu(A�0L U.L$W0E-0.25R# 0y 1. � [[ 8-0..0 -\ 5:' -7.5�.��ute m-CL�3 y m+*' L' YE'Ax AUAmJg U)@m �g �g .�E): E�X;*�!fQN"A $F I�E-!Q�so�K� (A,yQ���ICa us1�+ e�: �![ act�?. �i�Refue}run `@ _sesN ()`� ichZ4]" IsymbolsJ�y}-�S* 6R ^@SA�IP�F�! sole�(SymPy 1.3 ( H3.6.6-64-bit) (grou�Wypes: I_D3TT�H~ an� exec.@�,>>> from __f H__1��%! J(:�� x, y, z, u-$('x y z t' �(k, m, L%k m n',%�ger=True1 f, g, h =10f g h', cls=FMv1%s�" ing( � Docu=!� �f%@at �I://docs.� .org/1.3/=6Nlimit(�x)/x,�0��}2 &1:!L<�D%y����default.*%%ch�Od� `dir` arg�:2�:o,�@ ="-"�� *++WiFy�$T#+Kx jL �tout e�D -it2��9 r�� = e la�7ifKL2H_.doit�#EDi�Fi%�2/G.�- "e�v " �@ erivpC)�pUblerV�O>�>{, 2 ~+i�2%yEG2eH+Un1d >�u����ing&�Gial[U6�D�1N{%\S M expa�:2exp(x).1M1��� == h**2+p/71�:8,�$%\Let=mp2A|"��zE�� �{ � visu2: � Plot��-�(� o6^p\Gplot(�,M2�D, 7).removeO(), (xe7AJ P = (-1,3 i" = �V�2legQ8= �� ) p1R�9�Kor="r">V=" �(6)2�"a ODE�Ding2��F2C, gBB%gM�eq�# Eq(f!�E�E� - 2* ) + ,P (x)):H2�sol = d�� eqn,4) ,WutesPae��XisKIi6eqnOXs�Ol.argJS��)*4o e �)supqIe6\ alph� Ѩ"",�iIͩN&), .*g!,!D -D6#B)-|.( �Bm Fa# :?', Eigen=�, �Js �#� �o '%�ge8K� manipu�� spa�L&�<�i~2�PloV.{&��|6��a� math.al�O!�� 3D�L r�Fphics,*;Cmodel�P�M trai QoptimizOB�P8algorithms. We'�Rot go�]7�RWsu5 exhaus!�ly�;;�G(we'll focus!H a few key� Rre!LS ��n�# plo~ ��>�.���:� )=�a-�8��)i�"A!���trix ac|�3�$��& input]to��8q8output. Specifi�y�,��(!�.l*���D2#s* �%�2�jB!� ~ U.:�c�B�T� x ***A***E4 � v***� I��7 3\\5!.6 \;  \vec{vf6�< 1\\224$$ ���@ a�I� ***T�likqiv! T( fz4A PTo per#+�5:P�yl�6Xe�J-�q a�T$!Z$*RC* rule;1�each ��-V�$wle�#)f%^:jYc8M>�BM�6p 8\\9BpHere'�*}�J 6< � �Wnp :�F1,2])>'2F�:)B�J5_ A@v �  (t� 2 [8 9��?�vbot�9�}���2�{*2 �-Vs -��, word�3:�L��2-��al-�jYO$@/N(; wweE inda�eB�D: \rm I\!R^{2} \to6$$�m�he:�may �a&� !�14ofݑ&H .1;+WVM�"& m!`9$I� Ion��c�W an)S- o�T8ma${�$}$n� let'�M� ���lef)��ou)Wg�(�Ji�J �**��\� 12:��Nj5fA$once again �e���We��%�6�:e: 2\R��c\32,A�So,%�:���-��6VspMl32��B vK3�����i�G��6�K��� {4�-j�#?2 J}���B�2�4n�5 4�|#BA �VMagnitudA�  WJ�4k & �/i��+5�%�n_ leasd\ee��f"z)lM ways: * S�b len�M*m�*)< l� m�eit lon�Bordrter * C9M&�R(*3�>P2J .I �$6 {��I�I�ZB 0\\�6 �d0Bl As before�9d!N ��k� !�1�� * ��dJhJTZ�^M6�F�2\:#��}G"�HL� ��34J.,� )� -ts^. e's.izA=.n�Om�b64JB�0Ng 0F�0bg � vE�t\G7&�.t,v])&�4�4j2t7('!�lK4bV4�gl�_y 4at(style='sci'�his= c� scil�=�4�Klt.�2*��< cs[:�!� 8c5$blue', 'or&�2103Ox�. V&�  �+� L�AYuGed�t�_*t� O'�;%�Z-AIM* %A_Hs�D^gas0i�ut a grnRrR�. w �\.� m�` ran"8m �:%!�" >���-1#:���0\\6L >�wi�TbV��Cq�_w�]��y��%z�%I<&"&m�.� ��>�0,->(_ �7N ��v,t������iPa�a#v�% � see-�%�M�y m%eA%��� M�>`�v��� R�E�u�*�=U� *and*Y� -%5e��T affe�o�Yy�,����b Bw � ]��������U��Afine >�An :�� yg.�")!�addI off�.���mea0Gfer�5�8 s *bias*;:2VQ+�b� *21� !\p06;fI:(+>�-2\\-6�>RFD 5\\-6�1�� 0is"�W:pis e��i� �regc*�*�2 c��2i�|B�u ��� *fea�hs*� firs�_��*co"�N(!�!�-�+�!} *. �.'E�?+ aZn�� �� 1F� 5,>f O>bC$2'(�--6�Z�P*Q�F�F�F�F5F� G=*�E$ �So��!�f��Y�u�g'�j[� I�y,� ,d��. A�ViYO��sɬ (inF�>��&� "� � g� �KaiWi*,X2q}�UBe�G:�$4he ival4H�!as�m�qar>Q��>�earlier!�a�DEh*�� )6%�$dot-mulitpb p��ʤ��achiev� %� w�w�)-IE�� 2�"�W:�1>+F BN�9kT0sE�-�se2�q� I\ �Cd��iWJ��i �i 2.E& �!.{ 1) ti2*&�2Msi!�figure2w$=fig.add_s�x(KI1)u0"N1JO1�P�P�P2PN 2F 2J 2� � � 2 #IJsesH e 4p�5nSe�SUWi�-�6� 6"pai}r�4or�jon�W�J3a�h na�p�9VXs e�$�e� KI !�!�O� $ 4�kGreek��' lambda (& ;�"�%rmula���Uv�!�ect� FJ��6\ { ���V� � ���(% �% )�(��/ � :�**�.LV"}re3)en�K��-�>�a�� �r�_:\i� Tba9�!&�$:/"6 =J:T�=�� nM9/**v%of#a!. &�R�  I �e.X-)�%dE��� 8�%m mD:ly*Q[i�g$tlyM[r;o1 tool� pr�fm9language�X�ple�$�~t!�**�"alg.eigAB�!kka_Xf! �d Y Uy�� .%ksIm�&V#�:%�. �6� / �6 K%Ra� Z)b_& _ebA=:y^�3Z�ap�TO.b &l^��G( eVals, eVe�;1eig&2&0,.K!2. ]E[[1. 0. 20. mESo!$r�2p)!.M�F*H<%�,a� n&%0qK_{1� 2,Av:N�? :i G$ P2?3P2NP�8 :H!�LP �m�Iatq~� �#j�]�j@AW dot-"�' B)1Ak)*. �v#�a�)2b�  7:=>A%-Aand1D6$b��:/�!ySo fa,{ good. )�hyZzIS="�b:�N�B%6��>c:f��-*I-Bi�Q�� s doO$eed]�JIc2�.�6)�A]����coda%��,*�***�j��A�ec 0 bles�&�y���|previou�.de R|6_&vec� ��� lam al�~�J'�+ x A:}�`�'- '"�L'F$: ' + str(i7 ('v�A.A@:H x .$* '�2�vecf �1� �3���22�2�vSA.�. lam2�@�'� /5^�h0�- 3+8)f-#�: 2�v!.c%G���t/�1:2:R 2: 3R2: ͨp����R ( "����E�to2��:6�6�!01)� ("<�2�BRBec*o�N =�������Eecm*� � � 1 eSimilar).���:�G:+��6��>[�PAnd�sawz � � � � i!E beca�3�� 2��� � (1,0)]"B�� U "+ "B$g�(���>� ^P� Q6�� �m �-���m So*�*��P �P �P *� �P �P �P �P �P P Rl:��P Well� already k�/��\ ^n �� :��n ::�":�\ &^ �h�ZJ� �9����2h:�v�:� �� �� �� �� �� ʙ "��|nɆs>� �&� �S������ �� �� �� �� �� �� z� ��a look�/u' , sl4ly�'c�m)"�&�^� 1X*6$$]-ge��* ��)V ��FiR�)���=[3P iG7071067l  2P +KG" +e� �R_ �<%g& p* 1R �]2���>W_�1z�-Unc!�SoB >b �neB�$2.121320347R�r@0 J;a*>���n�!H��jT1 ��:���BK8\\��Jo76V t!�^v֬!JWʗm�':�"�mbd�t�� 6��G�T �T �T �T �T �T 6T �J �J �J �J �J �J �J �J �J BJ �)de�A�V��we've�8r Za litthIbJ�!�� �shCW�=�]o?� �� thnr�C� �!hem� to help�yom�:E[ce!Re�BV"�ly��, "�6H�a� 1*s2*"�),&�).5*icst � too technT' )(�lwe�J� reme�>� ss(!yR��p�E*J�x*�-*;f h s�5:�v!bew=y �=WKAes�!�G1�e9uB^&�#7ula�  Q \L>$Q�Z$CI%�"!�$�5**:��/-��8 curr�*bIA ***Q��")��!.p)M�$a-�!�%/�"�" �"$O�E QI�o�]"�S%�`5w`/:~�0�DQ� >As�"`� t�in�+m��d��2�e.O$F�!�02\�6�!�NLin0R �^%m6=$&$3Ba+^�"s�z6we%�c�Q�MIRN`J> 3Na/sK/ l, Qe/Nm"Q\"�o"Z�-�Ko%��!�Y��E�Q>M# 0.9627696hb(-0.48963374R 2703230 0.87192826t-�^�Eicon%BA�.ZP �>�,I�|&�tJqVCC!a 2x2 �, �}`E�6�Fm�>"b �[>2�2.h$InoI�, �b�J�Z�%�.(%%� arraB�%�1%"gH� l***k4�AA� just�����LatA�#6 LIr�(l�$ �Vof1X���R`Z_ 3.5615528EL)^-02� ATP we:�ind�Q�D-1�D�./0�Xi�m6�Qin�Amdinva[ mg�.FM�nVwiP�/>N 0.8972067��,0.50382896\\X781600ao 0.99068186,#!*2!��~iGmean? }i.�aeSat!)����!�:�! any*ќ�(�QB�)Yhsepar��"x1.=QQB�%A�* =BX �%Jro�0� �$w !��)S 8FX1>�DEOu�:��uQ)�:�!�RtVV�"Z�'%�D�6� ��A6�M��([��)"6DM�v�~K@��<��<Ƨ<&�<2JH@�now�4c+d9)3 h� )RA�b� se �S Y�6���!P .��li>�v%&�>�� �E(Q@(L@�f ))@v"fbB������>��P�-� v�D0&!'. �iwe vieiTi9media�tag)P�i�d:G�2�7B� IG�$��"al� 햁� (h?��h?)�A�^{Q��L ^�7of_�~ crib2`  (@<mag��)R��E��@v�L@t1 t3��@t2U�F�s]6�D,v,t1, t2, t3�1A�1A�1Ared', '-k !�v�� �\+1v�WiT,�should�a�FJE{E[A�be7IE+��92�U�� (�Y�ACMsab�}��)\�-TypZAat}TT�:�>��switc��ba३�6Y�>�  (-�ui�TRan�}B)^> m**aSa .̐g��&�l non-k 65�G< . A **"�c*(B�22dFzR;"�P��.c�-��6hfeiR�asWWH,*��W�W r1 !���� sop nonVisj)��%h1�a %eb�we �s�`��Qf3n:-�!�C&UJ�K�v� B�1= 2\\2qF2 B% v.(6��:A � CCB�94,'2^�NU "T �D��*� 5.�$$ZI -!A 5B7 �%}xE�U��@Uz� "�=is�l&�o�2Nh)q� N�V%�B> L -6\\)-4��6u & gas�0A� thir~/̅�/(� &�"�3�CA]$6MB63,-3,6F2,-2,4F 1,-1�lb, Q7An?4 B) L vbw(Lb}I#32w� 0nQH:% 5.2336415!�6:CZ4:C6v�!�0�t�-6�10(7m�3.26FfY ]��@1N�I�)A�=�E0so ext�lɉ��� e�GΤxL�RE7pl1 a�M�� ���@uch�����ɭB���a Squ� Fև��0"C/&qa i�C ;��u� ���B2&�"�!�J"� �a��J~Yatp5-�����P�"J �� >�C. >6�� . ���� Q) LNML)ze6q�m m�So�E)�>J.z&=4472136��" 894427192!:���-q�.6�R1 0.9428090� 0.4714045H 0.7453559�2�Y^.�f�QA)^5inv"8-;ts˄9iEbovQ6hy.�-<6�Yq[ *z�in� ;�Ely� m- �)N 6�u6W�AJa f# LogÉc R"�H M|` �1Mst��]a*��we� a��`0set $\{(\boldCb,{x}^{(1)}, y 6dB!2!2)!\), F(m(m)})\}$���pl���@ $$x=�oQw �o x_�+ Or \vp�rx_n}v3} \�hP��$:= 1��4y\in\{0, 1\}.$" hyp�)n5� h_s�:��^\f�(1}{1 + e^{-.'��}^T.x} &n9x:4 I}}Xq How w�Oog�>�araf�s$f�? Doei�&0K cA*cls? 2bMZ/c�jfe�ueV J2 �2"2m}\s��i� {m}(bZ^{(i)}�eA� ^2.�It 7�s�H3�4aK=��0�V�=�� � ve2No"=*� a�lqe>.L�a��>� \Drm{��i�!,�e'a& �HB%��r\lbrace>Z�-\logf�))̉ �if� y=80 91-b�R;0:�e�)�&� $qz,)�� = 0$: -��y=q�f�=1$v 20�j20��*�}ifE}�� j; \to a�A�����D����3B�cap�Ne��|�behaviorx 2. S�|�Ca&�n[ G�� Desce��9�� term��$��-#�gLכ�L�K�M������� = -y�g- (1-y)(rVi.Thu��e ��1�re1�a-nb�-եF�!s[���b9��) +� 4j� ')�]���r%i3�b}Enkͪ���� ��an"��B�n_� ized�Jm�� 1�T !M(r�X}.� ���-� y)JQ>�ZJR Z,)�6���*� X��J .)�  \ �\F2)B JN:n :Nk ��B�� G  &i� 2 > !n \� :�: : ::��& b dC .!tm)� t :tm)�~6� z15z�1 ui :i�:� : ::�F�) xt :t^\in bb{R}^{��s (n+1V�i&��Mll�}r� w(-� s $e^{(�)�|log.re ��ood�Bc�*ӿ����D�!ex�i�sW loga�n}qL�//W�!"���X� Cz �a���� \par|} .�� Z�^T��-&� m6E eft(N� V���鳱7C ��I}�_ r ] ǚ�@�Ω�R&=�@�@�@=@=��� 4��)�)^2 T2�X���U]��}tb�� �]R�M�}yY)0Ƽ^T - y^TVw펉$�� t�^2=6�2�!�AB�� �� �� Hav� ��0.2Y*� �bnuɢ6itƇ��in�te $V�/l&K=W CTe(| Jupy\�by Esteban Jiménez Rodríguez. Based,E,E/�MaI e L|��ro��d�rough ramHProf. Andrew Ng. �j IntrNt0ción En est̔  s� re�1á a hac(fo siguì:* Iaar *Sq* �u>ar la im&Se< "bonita" * Usar�&cio��{�má�X�K@mo `sqrt` y `sin`Gkr�tsí�osr * H��{da0���retes ;@Preámbulo Al ig �que]�Py y Pan;$reemplazan� �c �in`,`��`, `exp�logY����numé�� s po!� es, I�f �, `coVV:!H6_.2A�&mf#;6ort��� #Af)�&!-ónr.ganteONn$ .sqrt( }/�R bA�1��*iene de)3!�<# Ejercicio UsaA5� �`a! en `-1`e�@�ontA_cuando e��seno �3%�a0. PruebaI� mismqw[conk,biblioteca *�*. ¿Obt�s[7o a ado?3o� �#A� a ��-1>�en qué�~$l círculo�coF�nada x.�-1) :m`�.s%Jtl>� us1- mód~E # ¿EV� Que �:�s .arc!�!?/##!���2f`nd< `!�Nuas o `DataF�i�q$%� `S�`,e�"�Wa una&0} . ��mos�+ �l=�` s`. Las2�e� 2Ano�n u� bajou��zmn �o� sino�cD�y[���Y�:��p, z.+~x,y,z�},��a, gamm.}' beta,W�!�MFx + 12\ log(=**>) + ]B)n�**2˳ os(x &qf:�5haaƂ r doE~r �, `mu�Lsigma`6� ?, ?.?�Nl��,�ry)�do��� méti��de�.��+, -, �2�la�6va1campan�KáA�!��A*���$� (��\mu { \�^�I$��!1-���?�## �das Un|l:�máblicit)A���Al3=�da. ParC(m��"�a@M�óSa��étodo `w86!(9�";�2@I.8NM�>, + x*y + y**jK DIb0#�c tambiée�á di,�ib�zmo��D �#6hE��últim*�hiciste@dis �.n�2�muh�g6mu,%�Q�~-�bely�!�-Emua: /S ma!$3 Tom�s.�� 9�E��]o a��2�?)�Y[2kHay ta&R ��A��ón�J rmal��e�Xinteresaa�e%I��U� `x`,�+o p� ? pedir.�B7%C2�o ahora2�y+A�lJ�:�W%�ByLA gundLi>U6&a_so��de{8. Encadena llame�`)� )�]en�lvywc� KZtu=�:�Encue �G`A|`�ł � Py*�ol7s rutin� �?�r�� �6uc��utiliz�es� �wfy:�A\��i��i��DI�m7= ify(�wF� el eG � rio,�-ka�aeFcJ82i!;)�x��� Pue�no T >�� much�@ructu� oD�ti��odea\factoLr4�unos téžos�B-ic!�� !eb �)Au� 'y! :(�bse��ela�ul� 6y# LIm�C* pify ac��`�#?ta�M&6�i�f~s,YYings)�Z��wpy (Int��s, Re�^S5 s). *!�!�di-nciA tr� y �cQ�� ��}���sI a|�I�6�� G('r *E��")^2�Es útil� �?actú�t  mu� rei�o)�,copiar y peg*�ápida��:�dɲf��t��. ��9(Pebble Game�Jimagine � h6mr#�!�a��O?is zoom�&l�#wsS��Oc��0b�>�,4Monte Carlo. YR��4it tcan'tmB?�-;uti��cl��2 sk��crystœw��')$maybe even?@ow2rewE���a suddenKon,0�p�*anNiaw�All����, he/she�bsGux(quickly dra��~��*12�7nd ��#persoRsv�Akv?ey0r�:l�!�@�kw ach �� 2� ers.�!� Isays 'C� play�w,ame...' OKay�+wh�"d�',/ eeky� �va ( nonethelesZ1WE'���Cd�8�Ci�$ e 'pIf0�ysksA"w7i� %vv�A of \pi�r�mC(hr� H ?MQcircl!�s'6,=iI?1�"�/� -m-6p�y f"��area (�;blindfAS7a2u pig����st�� �?6toA�&.3�n4EZ�~e(e�n s^n ng s�AyE�s-H&�af�h��Le%�raMa)<'(�" us 1��"re {. Sur�tO 8 ��-DA�%c�|2.
:�A_{ B�pi r^9b  =s$}{r^2�� ag{10A_{ u?(2r)^�^4r^#�r=\c{e + }{4} E2E��{substit%�eq. 4�~o 2:&boxed{ �4��.�f�-�3D���C+5�!OI*$�-}.Y$a gene-ngM���s ��ea�n!���ӎ 1)�G�n%�]kpݱse�vgd/*m7 � Q�Y� 5out!�� ,.$@n,z� \approx-�Trialsb*g�hits}}}e}}�%SoZpi@4 ��H2� /i��np &�<.6]�Jan���%z/X&AJO1vj)Xh�.��� SVideo " �choiceep�� d�R�=@��� Sim(num_t%�, o�pla�0 = 5)�a'''�Cs dataf����h;}�Q = Z��z� o'''�3d��pd."(�4s=['x�:yrLoc�H piE� ,','Error','C�']) YA] = 2*o.)H���}�df['y�1r1v� Cx']�  y �.loc[6<=�R��'Inap120>J/Oi�R0 `- = 'n�-J\+< )[.lH4*�5� ] ==�8).cumsum()/(df.,� x-1)���)��H-E�.pi�I� dfi 1:�u�(NI�M�A�=E�u! b�rrcB ms['��.face��.!D0�F(^Kedg�K(^K�z� #JA.�fB.$^CzC $)^�T7ZC�(((0, 0), 1.��lor='g',�/width=�� ll=Fn� ##CN� buil�M c-ct v>� xe(&��8�)i�+.s�t s_ad�9((top=0.8, w�=0.02�H4t�X_layout(MPaxo@A5 R(111, ��=(-�1),��.� ax1.upatch( � Xscat =" ter(x��y s=70�rker='o�h\&# u upd�F!�� �1կU!(km9x=list(aD�k )[:kI y =  y': ���C~s��c_[x,y��%E7 k��n)�� 1,)�#�- ;�T �< =6�(1�� ��), �s=�&�ptDl=400,, t=>�-�# Set up�maeP� (movie files�Wri% =���.�,,ers['ffmpeg')^  = 2 (fpsabit�H=10000)�.save(' %k��.mp4', N= U �b4��nUUR(3J�� !pwd7)�P/Users/okara/Desktop/��MC_PB/Onur-` 6� a8Probability� ssoci��atS�&,t. E.g.: rolg-a die~ puAtur�B�4S�($ bag Outc�?o4ASyf (can’t0�(o67swill)g> Henck ���ct� e:Cs�6�s����H$ # A. 3 T���=/ oMarȐ2N�� p=qof-A occur�8, P(A). Rigorou�Sr)�as P(X=AtE�: A pac�B a�car8�.m%a|nƏa @�ud:a red)33.5�J 6�B@F�a�s�won�h=��Q%��w�$� \cap B) %,B)\k \ B)$ �=s��D�!FA�� 4�2/5#41/26 NOTE: �.BK�ym�al�,B@$P(B,A)%0C|�$9� �B��al>XF<Y%%(s)I!��:��M4y�>+Ϛ#neITed.�4A�B�%� 1tk4~�qi��:�of.�.�Be!2�A|B) ��i�f�`6�D$�!�A�. P(4|M� 2/26�9/13a�B.x�k!(�3 tR��BC-j�& 99�ies�,"�� ed} P(A |A�= \d�M�}{P(B"/lig4\tag{�� B.1�(f�Intut%� start��&u@�3 cal.�� ���\,�mid B)*1)�>�2F�Re�"nfHeq B.2�(gI&X@"��.�-n�m�= a^ ����3B�.a %~} 2�fur/TwM|D�!�A_C+� al C��of�$y����I*�Eventsi{woqz.�� p/(nt��QN�  UsI�cBn.�3 ��]�VCJ�jV# D. Ad�GveQ!$9y �'~?�� OR J8 ario�e�to*�e���vids(2��� subt *� �p�u�nIq�#a�(ՋrD�#I��� ��Venn Dia��,�n�!�!���ac���Kad"�� � twice. O���t�D�df0 Q� � D.1  �'M�Mu_�exclus!��8�V%m^%:� = 0 L,�aUL�)aA�Qg Vt\R�z�F�j� # E`,yesA � B��)���sMism!s�e pM�l��+ov&} e�$ion E.g: 2�*}�Ini�2ly� Ps Cancer��P�n=3po��ap�c%. *}5k�hP�ev*�ce:V� moke�EModY��: } Pf�,{Person has �Cancer}\, \mid \text{Person is smoker})\, > \, P(\.# has C�)} \end{align*} \begin{equation} "ed} P(A v=P(B|A9�Feasily found E.g.: 1. Suppose there are 2 bowls - M and N. 2. Bowl M !i$5 Oranges  48 Apples. 3. (N%�122)4 ) Wha%pr�of hav!\picked from M, given thae&was P ?1�%�*} I=Modific%�: } P(M-��)\, =AJ5� "N%�M%�)-�b Here,!5 P(LHS%b�hard by itself. But all P() on RHS can be1�Q ed. Hence; ut!� ##AN Deriv� A�,BlA^ l to!�(,A). Combin!b.2%� B.3 1/I�P(B�2�}A�B)iC6 RA!��ing, we get Bayes Theorem forumla shown ie �2 +wA3w�e try�4to estimate. II,above exampl%�$is would bE� “Vvc��Ynt ���a��”. 2.!ymZ�$likelihood�a�:sobserE�new evidAQ�Tour initial hypothesis��be!4�Z�a�) �3�?�p6��>�ur� withoa ny add��io� formE����<�4�i.�margi�d^� tota���Dof:�1��6�!nA�m%#ppl��s}igRuU�aPgnored, as it mainly AV��s n!Tliz)X���2� \�pto e���� 7H # AcknowledgementseĽ�0Basics Explan~X https://towardsdatasciA�.com/]<(-concepts-e@0ined-introduc��0-a7c0316de465a�[(machinelear�ma�@y_joint-1� -andfQ�-.~ for- J-K/agZ���-is-b�D-rule-bb6598d8a2fdA�B _^.� >t�NZ�5.JZ�maximum-Y�-v � ian-�1pion-dd2eb4dfda8a ```python , b# OptimMG$ Exercise ��Imports2;L%matplotlib inline i' .py#A�plt numpynpscipy.o �eopt��W Hat poten�%, The follow��a-often{ in PhyE���Xr fields�PTdescribe symmetry breap/ia�Lan���"��q$": $$ V(xM t-a x^2 + b x^4 $$ Write a funE�0 `hat(x,a,b)`� t returns^value�� 5:2vde= E: D, -1*a*(x**2)� 4))E-�assert �0.0, 1 )==0.0� 9D)==-9.0i Plo�Uis� over�[`e $x\in\left[-3,3\right]$�A $b=1.0$%�$a=5.0$6(a = 5.0 b =� u �l zero, so,uk�( x^4-4=0T�%M�;� = � - 4 %C(, x-�T�orkF �� some�I. I'm goae�torI(!ZQW;E�0�@o keep track of. ����43x + 4y - 5 = ^��<3*+*,�1� Now.V( 6x+7y-8=0 Z�l6R7R8R2 R``%6``Mlik� ol�ich5E 1!�I9iAa ua%aaDsona� guess!� @(seemingly) extra��en�a�re becaMreP �a s6�guWse�Vi lista�Qs: ``U1, 2)``�!MQ�(V-MHBelowE'mAex�i��sen�8it� a �s (� ists) � firs�aF� "se��#Q�6���, (������sol.�0{x: -1, y: 2} � 5 8 I� �1r haHen no� (ar, such asaE�^2A���**a�B�We nowv m� solua�s:� ns�⡌b�ans!( Engineersidecimal�Pmo��k o, if �numbe+wA�a � ,a��T�n e squA� rootall:�1J2�-.0 ���We� cre7 an9��E�sides�u ��(``Eq`` comm� as ba j� Eq(6�u�, 8.0)�|O G�e��Fractals�l� bx�%f %m R ab� a fe2 �>as wellpComplex-�s (ve�if�� 2. Roo� �.(� i� good m3orO ��decthMof� )xMLL!kmind)$To ^itera� ly ( �&O nor�� mathe(cs) ##�NE�s Bef��,we start talf)1/E�sh�ly f� ide�,./ b bhan{� X!cN�r� heav}o� m�ll�ojis mayeK kind!Bd�win���=, A�i-ez %kip�s� on%��lyao r�d quirk�sc2�s�� luck� ��l��b �U is !y 1be$�q�Rp�Xin](A;�pur�s). F�L�!ց�, let u���:� $i$1��r } i �� -1} \� ies i^��-1� 0$$ w$i$akno&�imaHry �, or a � ���ie*� �a nege :!Oe(ssible situ� !.An!j ,အwe)U!clue�intege!� natu� $, auo!_ir ! ). A��ͅm���dI& we m� reme�-tA��; om��A��no I nsusawhe�'!j disced!Vinven%Peo� hought [W�i� (who suggestfore���:���crazy&� medium5i-[/5�--*�8e5aa63bdb7ae), � A�timd revj %6~ }�!�� reas, i5�[elect�e��ing� www. $tonics-tutorials.ws/accircuits/ ��� \ M�0o�tano��w� =M�N$z$, w= `rita�sum��aA�}$yE�AsSparb8 $$ z = a + ibmzaezA�<0]D)� �\$b4an�m8 $,:�F5� unite�repre{ ��6$.� T)I��,'re curious,��t��P details͌6�s*�drop d�i�For2�ev�\E_you� ly n6��!��":A:~ $)v$� m_of1�class�( $x,y$ ordea�paiA���!to��38�$x$ ax\�%�FI��d 1y619�F6 �0These $(a, b)6�s� �.O"1��e"Q�w��� o)���� <1�closed>; 8

eZ(on:ts (�re�$ed)

T�~T a 7of# us�� pert��E�n6"92I�2 they5�I>e��in s� �e ��_ ig�1proces�, pJ,@`mistry, fluid dynamics...\�c�weld go!��ver� lar��A!�$�M is du�T �gE�nA� [eul�[Eula�,en.wikipedia�/E.%27s_ 1)!��� we instea+of!Rp.- � J9ith!^�l2�� $a$6Y�qI�a9�Q�(Fb$�q&. �'s1� t�w� ��- expone4�B� aH llow�X e^{ix} = r (\cos \thet�1 \sin )��r$!�� radi��f tihs��2| (�$%_is = r). ��2Q Y���)$�� pr#A9q �st way�o- & �$Taylor seraIAueach $ �, .�}= $)���� :urpriCsee�'Long {y rt,��:�� )%esŅ�)�%19i�a^ term�s)�co !�w�1�a& le�Preal�  �� spec@&�Kmp3 p�$dic bN' ��" s --aLexpect � eapx(ng patterns�)de�! ���Y $N$Lr>�-y $\pi��$ fA�our5q1V als $ve (up to)�0m"�!� ### Fin<  s Of"ePolynom\ k�?"� p"u%���)�Hor�%Ez quadz c� aHx^CJ m� vad� t!Wad� %A�(!xa�A�$6�C}$�'E�$ifj� suQm�lik� z��,�I8be honest, I pu�& a fa�ne�$you. It' j7 asa� y! Ii�see�_%�m � $�i�C} A ��Tb# Efrien��e�X� ala�!�!6rid�$ݨARwei. once aga�* acto� a]�D� a|F�1�6 r ip��r-�nb)�(ina�aNg� ~�� cry)��@ri?v�D��!����?� $i$.a Y�J�:�� n" he>�U% s!Nkl�W�9%�)�a��� it !Vobi� an   t��)H!�a�7��be 8�xWEe��a litt`pic�!���Irare!5$obvious ent!�bix off)=*n)e5-e�z^3�!iA� ubicqwme���three�tinct �c satisfA iyѡ@�a3�eM�tO! ok a� e:h&fl� r . Soe's re�t!`QQ �.veͿ� &. ��2e �"6 {)M�^&�)*r^3 3ix}�RaP%�hHb$ Pr H��I,�t���)�m� � ,A�? �V���b�eA�er, �!�Xi-� tionargl��I���T%n��is1or $o = 2\pi k$ <$kf d�2�QT%pe^%P =!Z F)]or t�%!fn&logarith� !u,Ni�D%{2 �,}{3} $$ An� ��b,toE<ori)�)�A5�e^[ T �i����A�gi3m�s $k =� 0, 1� obtaim�e�j% i/3}-�We.n�1H"� l[ �!�#$k$��?�o worrJ$%� . Kn�'}r�h�I�#A;� understa�!�Li��+ur"� . W� y"t �1diffe| �� c{ basi�converg�*��"�rotE��vAq��^ &� re? � establis�� domawin ��V� exist. #� "� Wq �"�_���r6 !G&a menu�!qnoticx!!C�A�)�t��,q�'En�2J. a�E�any�a�� from�s�>":�� we Data S@,ty (�regular X,)EYD_super_ lazy. Woul�i�nir1� cA�%�comput�] ��ous? L��answer��s !5 yes!�e�2%#be� *�!� Newt2aph��)lg�liz�o !���IJEr� u4v}"1b2C�! OO# (be!�reaUhoZA���Y�#�� � s�  eBa$�� � R%in � � &3�)�) |_ | =�4 �; `t�roat �A�]� utin��A� di��� a!�selg/� s. ## My���4: Mandelbrot &�go�o6yA[f��'s�rt%�E[,6vN)_�mj*E �r . R2� a�ve mea�� qa year, ��'s YouTube �2Akat do!Q�job!�n Im3'!ax4%�sets !�)�&IIP.displ�. pVideo . 0('NGMRB4O922I�(#0r TaskF-! "�i���!*cr7e�=+� (s  9J F�-�0I�3izeqEa�M�of�ons $n$Wzero,#- Als%�ie�;�/.9as 80�@while `abs(z) <= �5n <7_>`� � �ingk* $���c$ n += 1�0On�ft�B^�2+#�$ �**kwarg�5�s�t�#a��wX&��Ap-� b #�"�b �EM-roA�d5�-At/� ir(c,5$ = 80,�!/'''%� c��F_� dHi�1�)16�through�r loopd �go!�<# YOUR CODE HERE!�&RI$CONDITION:V&\(SOMETHING #JeM ~0 n a�iI� onya� %� �#a5��chMفF cros)B��z %tpixel%0�.�r .A0l9 �N!�e&`.s a�A scalt� t s"d,��coordinQa�nGA�IA�a��� i� r `Y�`9&p an RGB co��a�*�)+ V�%,s�"(;he,exidth fo� r�In.���� ÕH pseudo�0EpI5 3 �%�en!(a-�p�zs ---A?� a�C!eImage(9 ���, �,�): E�/Map�1�Os([ * � ]) I��x!qQ2(0 Sm�"y2" D#zcf&!�_�_Y{' h� _max�bal_min,QU !:lex�2zm =2�j+I< lor�(mj3X[x,y]4y�1w�!��l,,o�<M osy[sicitly �M ## Pe�S!D�?Gi aI�}lnd���Z� nv�4�6�Bi � in� MP.M�d "�s�qI��4R = R_{min} + �x}{W>% Wa\�/� s (/ax} -9-.$R��0v�5�hH.�, $Hin}0"sm=stJ8� ɢ8ax8LFo7|��cur*�P Q�&er�����4s����(�. simi� )teQ� �aa"w �WCv�H�4=�0)� in6�C%TF�c�y�, $ A3�V�;1S 8��>7�� �!*����� ��e6� �*we��a��"q%z%�adv?Iwe$| �A�ɓ�� ��e�ca&�B�e�I�$c$� �pla�i�E^. Plea�Yillp���"2� T .H:�s����r��, c c�!'7 x --> xI8!!�e�1yy A6 %iSH K �-� 2$.�*� �=�7um!b# _e���"A.��A5��"E1 �=NeR� a�fA�m&(R, C) #aa buil�U�[ 3�N ``� 6+c "� v1�bb�)�n�m�(%� ;*"� ' .&� �n�E�[-tw?/0%� 255,3~ba  �/aa6X �g3�"s��5s Xc>mBm�h�E.2bo2� Xa�, I�+Qu 6�2{ah( �_of� �m9-�255 -� (m */ma�c;/�4$it All Tog!) Io�3��-%�yo�: =�2C�!�ɬ;! QR&?# B�a"'!��&� 8  �0[-2, 1,�1] %'. kB= B):I�.�6� = +) �� > 1000>� t(f'  of { }aMtoo.<C ��)&so�y��s.'&Q X"(?zoo�3��EEa�4r �$!M�m3�"OI"e� if��^��{ }����f��X.� %�7 ) %���� � μ ��N�2 #:eN��k �$2j2<� q (:� �X� >� X:(^IT XCW you(�*�2�1�� N%A��#i��ed=,plt.imshow(XdIf�"���, run�D�"a�< cell��pr�De��un�*�#�q�xsys sys.path.append('scripts/')'� !F� FFbyCb�A�FF.��Map�� =��,5�_= {},i����M4�>1G,%8 ent= $ xlabel("RQ"Axis", s� = 12 #y #� in�[V(%�-� # Us���$�fing�� 0he'&5����[ ��2�techniqto�� sX)! ImA~�"g'itQ!be��eas$f_,� v�!�!y�di��E� �#�{�M,�~Lr���A�\+�� k�AWh+a����_!cX set�#�5xg�zH�+�!3%=er:*�!�=j�&�&� ��Y�:Cop): past���R�l�5�E9"��F �i�*!y�"NU3,�]$. **NOTE**Q 9��� o{0���o m�Nyr:�a��KO3%]� `*� �:�?�&�n%e�Mudo�#��:%id���6��,5� F�9.�� �!5.���7"�LU<�h��.H>�er� a��<: O7ot� �-0 �䥩�������0� . Re.�35�E�Z"�BvJkJ;�e& �8(Hint: `c`�^( andy�e8.h� �����)(� ARGUMENTSb�s �s �s �s �s �s �s �s �s rs 0INITIAL_GUESS�;� a��"q�wra:��ry/exaN�5p�6nt '6den�O\�7ision/�na�(esO� 8MY_ROOT_FINDER(2�6) �� �6[ $a�ђM:�� � l塩����.aln7�5�t"@E*�in�Y�.!c��`j��q} d^ JJ] m� �'r�Nng�iwf�= )- 1 $,MZ�= +$ f^\prime 3 3z^20�@Sanity Check See�/�Cre ��ɛ��V�2c� lib 4lib.reload(FF)����(z�#�e Cstuff�op!3-�%� #9��#�&�I9� � A�r�<� alsM if i�&t�(z,�B �2Tru 1z= z[0]Sif $&Uu[z**3!� (#� d N &J.�y&`i��� >e\L tom.} kjJ95fQ,� n"� , [z])% L8ans#3 * z ** 2 2 1,*�n�%� dict(fE{ =�, 5L1�2{ 50,�l�1e-5)Z_ FF.2� Fact,Vto ~T -=20� ) ? �\ �\ Z aQ1 0 �#a�ar@ih,�: �Di�)pow�fd#xC�7conA�t (-1)�3. L:7r/S-r?XiUA/]>. rZ=�ermat� ?��$A��Ue�f[��at hig- � &r �  +�� # Obts To Try�'c� 've gQ��i�!H5+1be��B� � ��n! �@�U�\�n&= �6(z), x \�6�.[-\I{\pi}{2� 1, :#\�. ], yN0.3, 0.�Q:M cosh��-*2�0.262S2�pi�pi2�8�\\c\/- 3^z, x�[-1#-0 �A5!$$!��,�'d�$ �NX"V&a2�'s okay���P 0olfrapmalpha,� al6Al-'+e��lXBth.e#iA=�d�)iT%d*X., # OwI �ln't��ed$al��y���� myQ�����z**2 #k F2��my��%>4FF.��X, z�I��)�)Cat?�Ed bY7T�� "��W* in�;Fr�=@ver! H�i/s)B�$� [SecKEMethod~H< -_m- #:~:�a=In%20"�%20�� � �g&� �_�Lder>Q6 . ] I� � i ,�U eC�:.n� Nfa� ZB� 1&� �X.��@�@��'� =�I,11M��1d�UvB- --.8� B5�= .O 6:k j^ �-t.��v�v�vh� �tVte�s)s �)q ��o�obo�(�l�L!48Vr��t2]csl�*lyKhh��>��D�e �th}[ir)"m@�s�&�4vR�p$ �|# Po�i�lo\%�!A��s **Uni�' )**�84w = U\exp{(-i\� )}z$-LinrM urce,wg\dot{Q}}�8}\ln 4## Veloc�f�_ $ 2dw}{dz�9u-Ivc.�:**N.U\� �C{ �}-�B\� )$ :�ZR �:�=j1}{z}$ ��ge&"`�(ConU:3M":`%N�%U�<$(0,0)j2a s%F�$(r,)9E%influV�H horizo�u=� W�! to � ($)'Npi$�X�� �[�/a teM.byQ w_{\rm{I+  �.ink!,H�,*VM +6s ain}.?(z-r) -N*out2+Ajk-U�\R\W2zpd=i��e�D%�rm}$?U be5udS Darc lawT $U=-KE�I}0-�' $K$� �>hydrau�Z�DuctivaZ(m/'9g-=2wO\ t '6^) (m/mM)�{ink�3?9L inje�_� E02Ia� erizP�J �0per!8t depth �=�i 2%�$ (m²/�O:G an aquife LH$,% volu�c}D� z $Q% Z}=Q/H$�\w 4�/-�ex��F���99 7�= �� = f �-.��re+G�6�0F �re�@�Nq�Q]�n�w H} � \lnqAf  z �x ���+M,AdU&)>I}$Qbe �I&+2� ga8i G�����AefCo avoidA�fu��! �r\�:>cabs�� �I6di�KI�-B� N~�dż)m� 9�F-KI�1R�ɪ.�!�f�d!�( j�-rN {f�%]a.Kmid�3tH�picg>e v !�b )�:d+}���y�TC'c���U[� h���?meee;52�n��;����9r/h0i$"�kH?&�r rray}{rl} -'�\bigg\r�,4_{z=r/2+0i} =&��:�r/2>�r/25�\\ Z�L.Ex�7 �1+f}{r}M�N� �@`�K��54��spl�^Hcontrib\1�6G!�%�.*�)��  �5yw'\c5f- W 1}!} 92( (1+f)}{r H- sB�N�k imen���\($\/0cal{F}_L$) AZariD@bd.�&qm&5gQP��|9Am�$F���a��io.cm�=~;-InZ2�A^-&X5"� w2�}{52#� c�b4 \ =&Q1�F}}6s>0-KI}{1�9�> �6�}A{aK I H r}Kin})�)�Z�If 6� \to 0��induc+ 9�kns��6 �1s�JQ\infty V1 _:J�@inLnY67LbQ ream�x >)�;�at:��}{dx}-mV�x���g 1� <��' i 1}{x>x��)A�0� 82/H���.� vg�`.�f}{x^� w��!x-r �^2��2c�� 7HY�ZI 6�O=&' eft( x-r�� ^2%# `\sCifa� \pm1}�-0< r \Rar�CvB+@�yViDef�B$�#b�+19 ��ing�� mr +���e"W5�L�mrY�)���"DV�%�-' m-fm��m(m-1)QA6ORy.O -�+fM�:1 }Y0 �y� 1+ wL� 19!}{f5:Q�Zz 9C.Pt�VP} �!�.�\\ �= T� Qb `U� � � 9- $  )81+J5-�)Z�vGean9)N�"k�8sպ� connecti�� �& T/bEGasu�� �> '*�hhpo�N{ �h��epa%77elta$� D Y�5�7�6 ed: ��hX+"�\d raighforw�|ele��kJ adopt it� assu�_��q&+ !*H rhJ!A�diwo.� �� � x+ip=z"<�-$y=�s\%>�n\bar{u� ��1}{r-2 y}) t_{ ^{�:�dx2v �C����j:m*�v[(�) H}\iZ�� 9j �wHm�aN� f\ln.e b*�x=5x=9�� v� k[s r K) -M) ��,$�J�� �[�v1M}Q.-���Z�NhO�����2���8z�e8n-��������:,' .��28\upf��^o2O ID*M �_�_^_ass~5L�V� te -  8�Ts cho6�aZ��q$ bitr9|ens(JZ~/4��yT &\RpBB�2u&�q.�� Wx-,B�heE+�F� magnitudeome sharp!��)�Dw�&�da+  else��`ict�'^T��o) l�rBu��ssz%., �< $f=10is c"�)?low�j��"k  "��� appasGbi�1OI2,i�6!$�l�o�,eQ(at FM�(07M-�f�� $!iy$-�w�*�(T:} �f Z�.L��! y(1-�^2}{4}-y&���Z ;Yv�J�E��O�$u$a0[E�,k i'}�/1p["�+Q�LGBb"�P)�u =�518Aw%U�FKf^r <4��Z'JT$�}9�%k2� a�o �j -�}^{ u \, dy vV#�[^@��� ] �*�(\underbrace�t_F�KI 7}_�Di�?[- \.A�& B�j��CQJ�%A�C�Hg�.�Vf����A<[12� \tan^Or� E2� ]2�y�Y M��r��2"�2A����%m`2~���eer��Zi�V�Db�b0bngh�=����$l_r$�qun�0�_ a��2)2^6��!!BF)$)�1}{l_r@!9ft}�UW-�K>H2I Wy'-Yr~/�06mg� ���d* lf�z  �1o� � grals d��l.� �� ��� ���&01}��>� rHa�rXA �<WRoin�%��� �C��ac{u:� �� 4 dwar)�&r : p�qo�Ells8jE9isr4�5�b4 jD�g :( �"A �aqpn&� I�B� oy�"�1� tEq b�"� A��% 6 %sp�"�$$r/2(1-i)$�R +i)� ��6g��:�f"^l"F��kZh BB���+^������J� B�[=��黭%��KIy:'= Z̄d��!����B�2�rƒj�KVP�4~h Jusy��=c0jm�;7�w�z�hN|' �\.]�O�OAi�r$4{�!ArP$2)NT$F�H�Eމs�@�j�dr},��9.z$�a5-or�5�P����,j,W��1z�S/$�6+b*$A�:�;&  ��4��%$w�p��/�2>WŔ"kCOerD;"rr� �iݍ����i�$�$B$�i!��+�n�}njKf�s, i.e.N0F� 6� Qr�*NDVZ($q_c�'WC�un�T����+.K\*�*Oe �*2N- ���Y*�=uZ&�a��6-%.& .5-jY��6 q_c��m[% ���� qd6NN��4 �0�/mt.�!�$.�.��9P�%(�636 + 1�& no$� actuy ore-H1�L $u_cc0fEb�5vi�=poros��n�-,u2yq_c}{=o���-{�( �RJvW1_�[�d tau$) Pic�B �half-di�Cce2��AA�y*J�l* $r/2�x>�y$rQ�-  !���(tauA8->r}{|u_c|=Z-U!anYER6e.�nc## Decay�+�Ud�+Z � "�"�a��er _���Q�3�A�o�7�ft�U{vB��-�d �e�3�!",e $\l?�$"70C}{dt�2-  C�I-"�i|8�4�� $C(0�C_ +~�nt3#o� �7 �~3"|of� c9" is�qC(�) C_{0}�8�t�6$C_)�v 6!��CBQU�1W�6��J�E� ($t=b$K�r�kv��e.��Q�- \)�U��| (2�A�)A� 2U� �Ail�/< A>$AhE[perV� mix�$. &Z$o�� R�[R�o.mEZ!�;EA�to�Mou��^qs�a�5:�0a� can�%d�direc�;�/enh�d]:#��W!'�)"CEg I� big,%-:�� �� tf�en,�m��`s �P�6a����'b"�;.Q �*�"��f��eI�p"F�Nd|[�]$�J�1�log-reU<�l-��2����Ɓ�큖f\\<�C�5in}Y=:mH�}��lrY>IA6�� �BW�S! ir�miAuw@��n� �= � KR5 Z�u9��� \�\\ .? b tK I�(�.QTaf)= -rhvB*lF%"?t -f I�7p�npb�^ 3 �GZFix(x,y�RXX,YY�a0meshgrid(X,Y)5 rZ[(XX + (YY*1j �H1� ( N 1 -K*I n�!z "wPp(QIN/(2*PI*H))*(F/z - 1/(z-R) cwAbIGnp.abs(wB_.�(j-.� , -w.ima�� Abs) yS#2zreg�H6�S� = 2tot 1 +[Ttot2�to�b �,& �-to=aag, 9 �aNu�85R� �F�[3tTFL)�!(reg)/+� �FLAS2�U$''' GLOBALJsSTANTS�h8PI = 3.141592 Kw`.0E-2 #6.6E-14  10/n40. F,5 QIN $0/86400. H #420. POINT_OUT,a"x":0:�H"yJc":"r">*s":#J�":Zd>4edgecolors":"wBR]a ":"E��50"}� ��R>W^�bBb s":8B����I�io��b2� 50,11) m� lins �!E33) Z =�%�_,U,V,�jyRZ) Eu]�Z) f��axa��Ksubg� s(2,1,fig�(=(12,10)) aK�axsaTs1Lax.4(5|y%�="k",d<ty=[0.8S8]) fi6�x.p'��9C,shaXP='auto',vmin=0,vmax=5A�<7,cmap="cool") p Hsc��(**I�QIN,zo�=3) po n>&OUT& cba�e$ax.figure.�8bar(fi,ax=ax,orSDH="�");.set_E�X(r'$\bf{|U|}$') ax.legeloc='~)r1B � s[1]^,np.log10(FL):$rr� �xaxis�tick_G s([ =">",�bo�X=�Y,. A.y�F� D )@%�{v\E��fhS.�>i0.01,R-1}m�([0.]�c�b8,6%� rex=�Z,2N����_kw={"he +_`(s":[3,1],"h�# ":0}!�%^e�lm4m� C[0],lw=5&A0(xlim=[0,R],y �46�f=r"Y� [m/s]"EM e1]>e]� [0])p$3,c="gray"y n(-7.5,-4.5],UgoX}m ]",y2� \log6[ )}$�>� ## R.�H *� 2�� �� �� �� �� �� �� �� �� �� *� � � 46� 0V� �� �� �� �� �� �� �� �� �� �� � 2� 5�� �� �� �� �� �� �� �� �� �� �� �� �� � 5�� ~� � a�- �  � &= 2H B� $___ # Impl�� ;*C�^A�� n f�&o�e &�.� �$GridSpec ��THETA�[359��^ ^9Z[$� u_{c�:-KI2I�!`.�&0E MC��-�{c}"�  tau,&�}}fo Qe6C|}�C_�AU"Z#Q:wn"] �2Z5 Y-�e����Apyt��^lo��eT(4.0*K*I*H*r) / (Qin*(�M�u7&:5-(2.T)/(E�*(.� HtNHr/ _�c$":m C0 *exp(-%�R�P*R�K�i"a��, A=90 $B=10,rad=5$% = )�-\KC/C_0)2',$" + "{:.1f}u@-Aq�I)�� G "\n@3r"  I6E��;I) in��i� G �K} �i�1E6�Kw "\n"24H64 f} m�HR2rj2rR2 .�2i ³/dmEGRCf2>.^fR0 (262E} 1��)a� Ax1 -�SaRoA(c"�)&� 1,0]�   I,c1] ="Due�z"�,ls="dashed",Q�8�;22;�c�r>#lot(I �" um(c1,c2)NOv��l��ect Pc='k'�92�3�:��x�+("log"�_y2+�( 10,1}Bli 4/1a�R_1("WJ�_\n^$ [m/mE 1�(��)�Co=�\n$e� $ [- 5*_"_� "�dowD �m�e( �~m�,e�C)"xyl5,0.85�*extq�s='axes�d ion' 4��=,����=�� �F (0.6W05,�,< Atrans� =ax. Axes%naxvv(x=�S, l�! 1, l�1U�B� "red��#�&�xĤ%mov6�"�1,1.,�c1U�D�7FY�F�BJ��WmL��MTc3�EQ�VXa+0O'eTy=m �<)��&\n$.�r;rO�<9,mFVG10�GRG70�G�G}GAx3 -� ׀yE06E.+����*'axhe�y=1��Q$2� 6�ax��top='�� �6�L�� .V" �\n6�[]oξAx4fR2�9>(�R�R�R�RnR>_(z�+e� - 7>> Geoyf""�� $!-r6n��j;Stuff �* 2��xCz` H�!5Prray([2.,5.,10.,20.,5�!r2' $40,%I%10*nYC1np.ys([len( `), �)]) I�)FL�* �3 hi,Hu.e�tatet�|# ri,r6# � #s2�%����+[i�� 'G0�en &)? "�0)5h*�.*3 Ci[ri,hi]�bCIB~#FL$= ?B�XmyLabels={"Title": { 0:� �1 ��z}${B18Fh(%)^)2 )l2 )$"}H "Y": "A jthickс�\\bf�  (m6f"X3Set˧�42rlj))threeHe��s(��<={"I":Ii.T,"C":C $FL":FLi.T}FF�=I�"�#eC,5Z �## >>H.�G .,�y*s� Qiq~ra6�0.2S �a�� . f_�21)S) 5��� xZ!f-N%f.�) fi,f6}��*qi,Qi�Q�OW (>/i�."�.�.qi,fiC� ��Ii:R,6>�,�,�,&�,�&�8(�f�-N8"�,� �X5��n�/d�D>DM��Enp.2Y�M,de��=2)ncHyN:p2hA�= ����gK�410.%0([-1.,-2.,-3.�(,-51*�2b�wbw �ZV ���)NRV*�N ki,K6N K�%�M�w�w�wkZIri.RI6#�I�I�IVA� K�B�s2��|�|I�7I�b >> EXPERIP�AL2 ## r�=Qin2F� 10�/�I2�x&ma��.�3�3��62,~92-�<�f�A�A�A�AqfA^A#�A�A�A�K2� �� �� ��7� �|�G�  Cw0resAI $J=\dP��X \sum_{i=1}^n(\vec{p}\ca| P\tilde{x_i}}}-y_i)^2$�u2E 8^*�1rg�n_ Ap}} JY); :�(forall i :\%; \par�DJ} ,p_j}=0 \;\;\x�\�b, =.� 2�r��.�$ ��Cisoh2� ��= (X^TX)�WX^TyD **�-d�m~��}: PF@ (||AMp}-b}||_2 +� g(p))|Z**Unde�hH � $ su��  $V�,\le \epsilon"@ Losu~.'0L(\hat{y},y)=)�1}{N}I{i _i Ma� MSEBm2P-(y \, V log} k +(1-y).(1- ) � $ C]�EntropyzjEQc(y_{o,cU�vp  �>W �� � ��C9�BmJ(W,b�G5#M}si�m�^{(i)},y aT#!{g�wRey�We'll3�rq`th�kgl]z uronk 4r4,}�:Oon&H **sigmoid�%*%�:@* Max�r Like�� *> vex .�!��u !G?�!I,!oai�w}mPxpEbena�! $�a copy $y) ..'YVul1��� s Tr��set�**FlPropam�on**:��p��g�l����5l��K��!nUl_�B * **Backelbb�cKC&�"WeB�r $\\$ �Batch�Tra��B"CdZM�BJ�� setsEHi�b?es�"ܰOW'�@�ntire (�4�6T��1#MQ�JEpo �:F�Id9�d�%NH5`CNN{� 2�Outpu�$SI�( -> softmax�K�Hhot��< $ �� )_i=m� e^{y�{e�i� ���/A:��#!6��ing **yd**�D���5�!�5Asn/%\)�mak L�L Oa�un?obleZM������cus!���Itic�. �� possp�>J*�IJ4&�Q. �a�d�s ���val|d NicallyG-I**O**QAoJavail� 4i��**E� er**��i!`2�9��#l.!T!ula"� ��s�K��5+ s�����]8( ��(urriculum Lr�S�{��&�� mode�� cu�X>. S��AICN�subtaskIAC��in�&��!�ffKty level"~F9(� �, NLP�G blem ��d _ta�A��] tenc!" * �(���^a�cAihNIe updaSGacc�gly%)Stoch@�cU/ Des!�I Al�� Or���an'�~Per!�� b ���H>� $x�DiIl� $�X�0�RA�&��a�ҽ�}Hflu�Rt �- (+) d���Mter HumsEw- (-)!& c�Q��rn) F�Lo?�hoo!��UIr�.4�pPvery ��Hroa��� ini-��P GD $$w_{k+1} =w_k -Ȇ" 0 \nabla_wJ(w;%%:i+n)};% )$%#2Va�a hybrid���\�GD%8 SGD.A�^��C# � of n!�EOM�s. 1>+)��uc�k��!Go#K5�M 5v+)�&��nAKc��aQ�Aa<�� w.r.t a� * �Ks8��50-256A�C��nge�. * Ch�2)yaVperi@%��N,fq�F�sm� schedulQjAnnealiź-�/e!J��ps�� * Va�|a te]k52�� SuboJ� al lk� (sad���PR& **2�/* M��*�/: W, b,�g�K�,��Hyper-{: �/AI�D,�+Џrn>V"b0 E�h��trn��gB!r **1.:F�)*�L>� |)� � _0}{�w ext{decr}e@ epnum}�J^Ld^�b -? \eb^; �d21�2|2��*2. Mo0NumL�� $$ v�(\gamma v_k+ P [� _ka�>9 @$$ e� A;3. New� ov Accele!�d�� � a� ���2�-�2���.� **4. Adaa�**�,j�{k ��%�1\Gj}+�}-�g% g� �O^�JA� m�b��yt�G�a��U� $w_j$�Z  step>� . $GOdiagoama���Uum ^�d���뵁� � (\�o6�s)��dX soci���fSlntly oc��feature��a��� j��kinm��b�*5. RMSS I: E[g^2]_k Q<  {k-1JE�)g_k^2$�:i�et5� Ck+ Yg_kA���,�ts�u7 v by adS  rt�iz!I\��rr��as- ge (*t��8X ing)AHBenefia�or RNN' *6E��5�\begin{�� } E[>8w- � &-9v8w!!�N�� RMS}R!a&=\�yONa�"9>�_k&=qsNg��9�n� g]_k!~ 9>-�&a�+j�P��}!QE�l/�M@ /a�|!c�6i [ng!.5�ac=�ofekTN�Z��ly:�{7%�M -�pt합� Estjtq"l[ �m_k!ibeta_1m)dO1- A� \\ v(2�>E�'2'^2\\ . ��]�� v}_k��m}_BFKe���Rk! 2 m�os:p  � * Nm�� m�  Xa��s"� >�hat~ Lm_k}{11^�A-R9�9v.929 **A"k�** %� Max:Y"i�of!�M�L-iQty @� - Nadam:��daMKMS� ��x+Aq Oin"��}��< **No �onD �Opd�er[  * RSM�� &3�VadIZ *M +-�um rA� *� Ua�s� �&�6from Z���, Latex +�� � B�� use_�x='�=jax�L�� &��'x y') ]�R�4t_�5I�i(cos(x)*�;x)���="$${Q {}$$"#4v(�h. .doi�8q�( N�;rv|D"���~dI),  ��(``` $\disPplaystyle x$ $\disy �$\int e^{x} \cos{\left(x \right)}\, dx = \frac{ )sinB)}{2} + 2(NQ($}fUd}{d x}n� = - N} +Ns o@```python from IP .- import p def show(a, fmt='png'): , PIL.ImageVioBytesIO \:s.(numpy as npf =B()m.i`array(np.uint8(a)).save(f� 2:o�(>�H(data=f.getvalue()) F).sy� ��L* init_printing() 3+4j, Rational(1,3), sqrt(8), sqrt(-1), pi, E**2, oo, -oo i)w:� -�(�Y ) # A�(symbols('x'pa = Integral(cos(x)*exp(x), x!Eq!� a.doit())A6 M<@alpha, beta, nu =b nu')�3rTj2p� J E=(%I$), 1/3, 2*%�2), I,%�!-�)�1A �diff(sin=.xF�i)Xte(Ox)* 2+ )nv924**2),(x,-oo,ooJ�M�E�J�2�,5�, SE  A I$expr1 = 2*|( + 3*x + 2 :�@use_latex='mathjaATe0("Here is an -l ") UldAd, �. &).r1-O�^NK%�>��� �� 2 x^��3 íǥ� , \ ��(3}}{3�;��3 <��� x <��] �~�~n~list")%� = LimitIT$)/x,x,0) [!�,m�]�i&1yFfqD[ \lim_{x \to 0^+})|)FR� }{x}-N%�1 ]�[�[�[6[!U.Z�Y(�Y5YB�solve(a�+e� �F %�[ - i%�iZ�O - 2aւQ\�s{2}X Z_y = Func�N('y') t.ht'U�Eq(y(t).��t,t) - ,��t) ),r�(8� t"� "� d�U� t J+=� t �F �B�d)IE9�b�FR = C_��e^{- t�� C_{1\ t�� ~+t}>t���~��'-v Tt \ DZ [JF.-'Al!��Q� � plotF ] Ţ2�p =(2*x+3,��A�,legend=True,� $=False) p.� �&� Xi = tensor.Idx('i',3) j:jk:kl:l( F = Matrix�[ F', �() i,j,k,l,F�% :� )9 Idx a%� 0e1��� -j,@�-k�-l�-F �>X=�-p� 1�d* var("a,b,c,d,e,f") X = A� [[2 H, c], [d, e, f]]) X 7,w1,w2,w3") W4�stc��um()jcontra�� tp, (1, 2L stc^v%D��%'H- + �� �>�$derive_by_El (stc%�``fv:[ar& bS & c + f�A�4IndexedBase("XM�2W")I��M,K",. er��\) s = Sum(X[i, j]*W[j], �1, M), a�1, K)) sb���:@physics.mechanics�?�-F%D,4]) b� %Q,5]) c=)��a,b) d: b,a) #dot �2&7� ���m�r�J�F$!�( .' T ��)A \� & / \pi� *>6K �+1&eV��� ��L �# Verlet Algorithm In molecular dynamics, the most commonly used time iion aJ0probably> so-calledu+[L. $, Computer� �eriments on classical fluids. I. Thermodynamihproperties of Lennard-Jones�es, PEz`al Review 159, 98 (1967)]X( basic idea�tto write two third-order Taylo�(ansions for� posi!Ls ${\bf r} (t)$, one%ward and backin !U(. Calling $<v$Sveloci�, a acceler�s, U7b � �A ativ)�4$ with respect�$t �has: $$3 equa} �+\D�t t) = ) + v� &"u 1� # a}(t"^�(1/6) b6A^3 + O(Q ^4) �v�$$j�-=>�- sδ-��Add!�thIc��esIQg!���2.� �E}�!F&a:`!n_ !] Thisehq' formas�Tu�,. Since we aH�.,ng Newton's 1�A��$f justY8force divided b�WmasM�| #�$n turn a fm�Z�f�-#��� 1}{mI� \nabla} V���rI�� >�%?A��e cO8mmediately see,�truncek error�5R( when evolv!F�system!$Q�%=of��of (^4$, even i$ir6",do not appea��licitly�is� )� same�� simple�L ��, accu�O��stable� lain�0its large pop� ity among��ݒc0ulators. Whiohe�"Em�neeA0���^%<u��%r(ir knowledg� some'Ps necessary. Moreover2y^requir�o cɸ%n\kinetic energy $K$, whosxal�F!8^!*teM�conser��oU�totalPE=K+V$-�iIN-�m��antUs^verifa2at a MD1@dis�9cee��correc%�OA� ould2�vՅ � !wyUby sub'ng revious���$obtain: $Zb��=iw {y_�w��(�� } { 2 q } .J( Howe1�mkassoca�d�tA빋!*ofmMuh ^2$ rathe��an4$. T: ain!d blem�o!5>)_t!�it A� selfa,rF��:$first stepE�%�be1��6Herent means. An add�al�is sVnew1�y founLI�1�Z$ce between quant�!$P��z,magnitude. W��usQ [@ers which always � ate),f�eGer preci� , su5n 1A�resultsI a los�nuB<��may�_ ris��Xntial r!offI . A�uen�� �ܩ�m��= ��%ge* "**mHyQ scheme**"�-ruU,1�� � 2� �ime $y$��ibedy��=�;$!1!�follow!�way6�narray. � " &=&q�� f (1/2� �]E^2 \\` e�`3bbfKIcI)G� m ���4ft(�(9Q)� \\ V� X�s�+B�!&  � -m,$$ Note howC ��8 $9N$ memory lo,�(!%� $3N$�A, but \ver bto hav�� ultaneous�to���jJ!I}wo�t�`s�nany� ise]y. Here,vmodɛ��d  p�� cle2yeA�:3:2N ":(object�"�def __�N__(�[,? ,=1., x=0., yv v @2.p  =8Tx = x6� #&v'v:(v)v*E�euler � fx, fy, d�S + fx*dtC ` + fyB"�!Y vFGFy + %2Ju� get_� �): # re� E(ce per unitA%R(.��#GM=4*� .pi@ # We use astrono�O9��8��.x*�x+y ylr3 = r * �f!-GM 0 x/r3!y. � (fx,fd;!#vy�:� 3�el�$-L<) # before I movŰa���,a= x += %� + 0.5*E"By,!�, B,vYL6uvJ=r�af�R����� ### Ch�,nge 2.3: Us"2 y-���si\ �Jmini-so} e � .KD2. Can you come up�a�wa� Ehe*�� BallyB lom a4!�? �n �# �" ,ly Understan� (Christoffel 'H$Riemann Cup ure Te?� $EinsteinPy2s_ �p�$e )py)bol:�&Metric W,.� �s,�� , s��p"�'�Ken<� � st  avail�$an environ�%(EDeQ � m�J $3d sphj (coordinates2sym� �"� eta phi�'djMF hra $= [[0*i� range(3)]J 3$[0][0] = 1 1][1�[0]**2 2][2()* !�in �X sch_�z�sa� -:�N9Y�.2#=� _ch. y()� � Normal E�s RealbkT�A� . ## Lin�SH4> "�^7� m $A& b$�re $A$�a� rixl$x$ b�vec��rowt9�%Tau of- mbF� atis�:��a entr9of�. I,b\in\" bb{R}^n$�n2soSC-IDaQ�row- spon�� n-1$-dime0al hyperplane|P2� re l%}4ly independent ��� *���e=$in $k$-kc��� � $n-k6��rse�#�$k$ $n6$�s)��1xnat �!s� $n$.�s a}n = 06]poi�!�so!�ACuniqu$determined%F\x�!�AIV5jN��)O6� :�%am lap exa&"�ir6Cis�] ,6'A).. IAis case%� ��V].�is�,narrowed dowhU�%a-�e�YQ��saiE"be *uA 9v*::Z�ivalent��a�ne� has $mI9ia�� B . �$Ax=b'sa&�ng���er�eaM�9bi ��Zcolumn�%:�Db� terpretedp�coeffici@!�� pro o�pint� �x��$Aler}, � srq6�j) �$A^-1%ŧyT$MRectanguOR+R mb ^$m>McxEre��bjyI� $x6nn�wt!$m$2���m�atE�nQtdo&ot.a�Fq�* tiblI)�L�#F�L��%$s play a c� pl���uUal� t�� cs (� exam�%reKiz�� nte�ed)�q�$iW!of�T9to���M�U/@�adQρ�A .�I� $V �+@-�}L_2(Q�0B�wv J�FY6L&U lUT^TZm\\ 6�^^T!�  - b - bAk + +b�ZjUsA.E_ oidsm�tI�d�1�s� *�*i��!clude�el} 9i�Ae[u^T�;��['_1K/(� _i u_i x_"9),...,..nn.i�Ou^Ta�\N� x^Tu *������"x�1 �~ ., 3!2xjAB�:�ccc} \�brace{.�:�A_1.�@}_{A_{11}} &...& ^G:�NG1n}!�vdots&2��nF�nʟNGn}�6i�9�A�B}It  $V�bI7 U6w�m&x�6. �Y}_{u( -) �e�*u Duy/ :}u�@am72 ��.� } %i2��\ BV��=~*M��)+BgSvat ���xF?��6� - 2�"/�A* .�&=�]&]�P&f�x If�cb}=Q h�Y�d � n,l'eE1A� )��).[�.$P = A�N? � D.�*�r, $P=I$..�\ces{eigenRW eiH  1� 0,*_o&�� 4 kept0discar�,dur0h2�9)ion  � Case ForE �� ���%:�/s�no&�(9.eB<do)"�),��� in��.m� poss? Y �li� �$n-�&�&�.�,*�3�nO)y&� $||m�||� ba]@I%�it�g�- alizn �)� � � � "� \AX"l AT�v� Oz?:�avec{0}$�4_8set. �Sugges!��0 lab exercise\'# Vari !�Esig!�E + 1me � $n! = n \ s (n - 1)\�� 2 1$.�5 $15!�pQ�m�m sen)�v � nam: # S�2fifteen_� or�+�= 15*14*13*12*11*10*9*8*7*6*5*4*3*2*1 p5"(B>~$%41307674368000 62$�`)`�($ule, check�#r܅p15$� �. You�@ul�l�%!� help0 Ylibraryd 1"# ,� eg tab-co� !�e� spy�6in�5orejon sourcI~N[�#�-/ .5j(15)) "RY-�� ct?"=)t:- == �r!�:V �A:�43 [Stirling's� xion](�;://�Dworld.wolfram.com/7sA"M��;)�-�l�}2enough�,N� n!�9meq�92 �9( n^{n + 1/2�M -n}.B�UER5�%��1*N16�"mp�A2iMn!�>EgH$n = 5, 10, 15, 20$�wta��%e6[ improvp&fB{%>65)M�(2�),)*5**(5+0.5) >K-Yc!�.}0^H10**(10>J10U�>Kb�1�1B�]�:K2b�2�2B�2�"Ab��e*)s:"qc:j5�F�H%H -VI�IbL�J^L�KRel4VK�L)L /)3� Y�>^10b�jbFb]�BcfjyJcf�2f�j�FcE��*��T120 118.01916795759007d3628800 3598695.61874103552�80430722199.4658%�2432902008176640000 2.422786846761133e+18.R�@1.980832042409929�-@30104.38125896454-47243645800.534 \T1.0115161415506944e+160R�0.016.(336867494128082959604439386 {H0.005539334545199390 415765262!W542 W�Z�3 he rq6g de�)s?whilst�da�� %gf (C ifica�)`  B$?�� >] W3?@ �K c*�e vlca cuboid �9\s $0H��you1d se s60s 1. $a=1, bc=1$ (�<� b� $); 2+2, c=3.5R-7.0/3/0zZ+4+2+-1[�w!�do��%n� >�?%bb� D0)0_)C�STI�2"""EOA%� )jl-k.>V)��#bcj lys9if)� non-_ =BParam�#�1-a : floa&*0E�;)� 1$br$i2cr$i�QR�2 � -)>�A  a*b*�* 5i9,if (a < 0.0)�(b. c i�> "N�]�-hpense!"*�2� 0s  ��z) e6--1"- > 2,3.�'60,1b:2,- ��)�7. � ��=� In qGr8 �?f(2hav� cov;!excep� s, I� s# raiu $a `NotImpl�>edE[?` � Q�.�G#&+2 V�o�De`4 (in sec()�e� 0#�6�f^"f�Y a he�$H$;�,e:e�{und��)ula&� h(*>1bCg t^2B� U�:�}�7� .�5 due� grav�$$g$ �`scipy."� .g`. ��H�$mN�\� 0.452$s)��10v21.4282��2Z10%��%-�����!�_A(Hm䱆Gi�5hAY"!�J2�e E-HM�_HB�StaP>Q|�1es�asr"TBUFA�� (Q�G1 �� \�\� :]%g"if (H�G-a��EmR�$s�@�(2.0*H/g'��2Hfal-�@&� N->�'A�01600755751787h E�,086981229034" %�JV�$�E.�3N�����a�a trian�/&Hݡ2� You L?K A�j�A�!j${s (s - a) b c)Kqquad �1��O�Oc��B� Con�!W r �*+ �*�-�, aO5�wil�@.2r] �_area�] 'Wr22] Ar[J! (! -% -%-c)).I��+ (a+b+c)/2i�O�� �� �� �� %VN� 1�")�je�H�� Ω A�0.5V3Uѩ(� M v3Ab�3E�32�1I��  # Equi? (al; answer b3)/4 ~�x33! 6D�P)DR�G6R7{07N=HF70R77 V  #B8e� P 0.� %�00.43301270189� 6l �$��> Pv F� \ po=dnuF�W r�/ nnot.Pʼncip"represn*r.y3"�)Ci=L$d��-Ole.+I cy. ��$ , ifJ$ �.1, �3�>1�0&4}�3}B�t�Eit *sh�*tr� hatRjTS(y - x�AO{3N�%�B ��u4�  hold�# �dseJ0��%mp�+�'�Z Mcy�l2iHwo1���cluItogethe�EfQf� B��Z1.0�\1.0!Xe-14 *mH.0)M�"��-�M {}".�0at(1e14*(y-x)"z 5>�.4!_(f@\�Vj@1.731947918415244-Bb,02050807568877N,fH three dig�%Uo!JM�is�$too surprim : w�9ect 16<of9�v a �>m-H-s+$y�3r1cal;A �14 _�6� �ZdhQN Qc@A -�J��QtoR�a xObxbc�4BMt#Q�}m��-b \pmm�@b^2 - 4 a c}}{2 aJASav m�]&d� nn(���n \gg 1,B�s1?Rzxg-[!a�f \A0( \text{and} --2n�U� F:j3Q\pen-and-paper work; each�K����,re-arranging:�3�,m�:�4a)QaL by $Almp-_.l$�AXa�z/ also*�B.%�! i�� � ��e-3�Y 1e3 �va��1_n3_pluO (-b +�b**�W .0*a*c))/�a)27min8-�82.o c)/jwo7o8ZwI� n=3,��-w,]�{}e�{}."a *5,� �.S�&���+��% !�� �~T�QF4MF4BF4� =�F4 c 8Z�>~2_o]Z�]Fo8Zw6F4�F)�-�YF �>F4,�F����%�QF"�U�{ �>�0-9.9998942459�6e-07e�-9 999�UvF-1�,10.575512505 S1. 1e-06.X~�T-9.094947017729282e-09 �r.0:S��,9951162.7776 M e-08f�]eWa.�J6;&h *i fig�Jin Ń&�2 U�,�ch�/�\(arguab�> �)Zf�e "U�(aj+ lymi � abov�:l*Q&r* roo{4dJ�*(�cap�K��2e� �*b\ (a[ F� bigg"�V��2n}$).�_X�B ";= 8VaMy sG?Q�ge big 1pcs �cy:�5W"� -� y9"�3*+ isR�� .� � d} f} �3� |_{x=X. \�n d�n} Bf(X%;:d�#f(X)} *J� W�[*��(e*Afsw BA�tX a *�,*� �$ t$N�4 g(x,�dffLvf(�Q 8 �xr�B}!� tak!�w puts.r�XntBr;,, $f(x�`a eT $X�+S,� ��s7�I�9*!�mD=�, n!>$g$E=^,�gvX, )�H�A"�)| dz i�"�Va���Y�� f��"4�n�b-f|YIZ&X :  P`at��A2�q/�ate @�>D Step-�X r�g>G9:R�R1f )� (f(X+�I�X) &�5.�6� 1; $f_1(C e^x$= =m!fEm6$1$!1 $x=0*s.&Yee.F�K.$x��a�M���[B� 1a�ots, 7$2�-�vi�aJi0Zly�2+�-n�4 wors�ZR[�r� <.�exp zu�uk8M��D{}x- .i�&' n, gp , 0.,�*-Y n)2g W1jV}50167084�'iL 92z900050001667141.93�9,004999621837.:4j:0w 2' 22522� 5j9�82740372�6�9 8890058236�7j9�20�(626409: We�a�i.,F:uinXcies:( n]/a��J�F�Snea�J�l,���oN.�Wt=Pve:;'J�a&�<(�t�1"GEme�ata��'uEhQ.�� high"z8alterna�fi ach��r=�4ly recommended�t Pih!$M 2�1^0_sI{9agpI#it���U!F�@#!"k les�'an 50�6�%}' "KGe""u �yF"�GA$&�j�/isn(n�/���%B���'�_te9 i bi�3���n AjB3N)c  r� � : Boolea�iIf� �I� ?-\=[2AH�%)iH< 2C��Fct#kZ/Ox]� �?5 sors up�n�ma{�e(2t(n**�0+1-��%m730�^�(If we've go� �Ja�d_7nA8v�� JY3�g�!� �5X#if1�U=�p  s�Ca�{}Y:"�n.�J524%nJ#3�#5�#7�#11�$��1�l9�l2�l2�H3��3��4�H4��4.l 2k82 500 years agj:mt9 liev�eAhx � $2^�8 $ wa� A�*all*A�mfN n$. �(6 to �COi� BKD�� !��gF�WYJ�7dG�:�F"elegant��e5 : *�''�s�$�$l �(2). *��a��� Q~ ad=�)� *�(.+�if%8�M�FE,VHzt�hlog���s fail,"R0f�zwe wan:�X 25 le (!W��+�!(2**n-1)�*n +�Z��)�n�/E 2^n-E�W�!(.2��E11�\.� 3� *M9PnneUpi)+�^!-1z:��!&9�U�pr/i&a�H�<t8^lR$n < 40�LG � �sF�f� 2, 4ј2��:�٪-�n=�~1�5�%�Zn=�b6�n=�V~%�~%�|~%��&�L��~L��f& 2|4N� o 9s*e fabW���� Av�OG� theirN�mi�U��� %� * meY(�� � ?)rC7"D20Xa 6/G �@48� te One� �V�fo TJ?o�a *di�K ary*qozkey�X oE�q, 6�FM� �us� �-r|LfJ*�o, %oa�b�=y sor:�gmDL�5n�g�9o�i�C sor ��be!�i[B�*_ �"� ( G>H/5 of nixe}�� � �l� �Yr � : !�0� (!̉�6� ()�� �F<= {�# m =C47e m <= n��b� O[m]Dbn //= m2 ^V� O��.>Tm6'0� K��2 A=� � a�2��e�("6fof� ��2J,.m.f.!�Y� HM�"�IBj48BZ$U� 48).)�Z� !B�17JA/_�[17])I�F- w- 2, 3f/9B\9b-20>- 2, 5/�� �[4, 1C 25VB)�E��As.� 9ut3 i���itAh,!�6<&�on��6.��(�� 0Cr0%�M�i�Of})�="��D, gg iȎ�r!20HX z ill� 6-AA�1v$>?!�#�#�#div� daeAllB�2�i":8H= [1]V /*(b J .append(m�|j�2!�r�6,B�� 1�!� #r6+*g ,"� 8/�>=16e�[1,�4, 8])'B)�c[1^ �V I3, 6, 9^,�SbL�F L 4, 5�C]��.� 6 A *U.*"�Zv?ReY50sumO &�"].6�;�2�3A Z ;6*Qu�" Z��X �_ <�D000$ (t !�afour!)F�cana��m�=>"��7� de below �packa�'s9 as `��`ASbb��&�!rBT �B6Va 2 -ISE��S S P K rN is �JPWh/�(� ��sno �N.Q%��a�Y(�gd&I (+= �.�n#!vn2,�"��3�a�t c��_ ���-.\nA?"DqA*{}N#6l {} (:� {})���6�,�X 2�6=�Ik2��H3��6�j4  B�" wK1])[ 28�y4, 7, 14��7]z�2 �49����, �L31, 6D24, 24��r1~�� �81�� 2, 6E27, 25��00�20406�?12�A61A 2L7 t-)��8sA�����be�ten�w $2^{k-1} [N 2^k ]N&2^k�a:�FIne!� d�d|� alread�x * $6� ^{26y%,1)$. x O�w}ur�e S$28 O36O3 �.�Od%~PA�= 2^{56Q5Q�Q�&~PE{Q76Q7Q�Q�nthvR2  8 (bonus)I&v}Pg�L`�=it`U-���J�K�� �%�to�s�'�1 longIwQn�$*a3k"Q"�!��� bh��a�� �,&E�~s. Stop reaskxq\����`ng!!-#J� wast�n^br�Q ?o�'ir� optimi"a\�M��ork.�. IU(*not*h"th it, oX a��$3!erapid* �+3]�a��G �V�Q%+(�$�(3-1)*  *h �0�apazP4of 3: 7.65 µs!� 2�Vf5f >fF6e 83.9�e7e :eJd1.6 m��1!%%. .dJa6.39 2a It's-� thin�_&9"�Ur7��mvar�YUW9E�1�eE(in"g 2 2�A�h s�!sea@L Aja#��f�s (A�Dc*+)Q(3)U�ine|� LogisR�map Par� a]E;HNewman's book, p 12O!� �; buir:�Tque�c���,s $\{ x_n \}�2�regNonR�*x_{n+1b*r ;g4�6J�*)F�6� $0�* x_ 1<&sF*{"programa�!r#;"eͼ$~�"��s �,�i�) $x_�$r$%�,4 couryl$N0,��R7T=1X((x0, r, N =e�{ |\x0]x�x0� " �("!N 7x�z0= r*xn*(1.0-xV!Xj-&m bnewdX 3S .@2 Fix% =0.5U(1[%A2�nN\� $r=14LA�$r@LPloŖ l'X10fB�.�.s.͆]5%�is"�Hy��0-�% be I�m�s-�re(�U"r(plotlib��Epy %manXV x0� .5 !�2:Wv1 =61.5, N)!�s293 ! o0�(N[�0 :], 'b-',�Xe��r'-p')R828kB8�M8(xlabel(r'$nyx�J�x�u�Ya��A� ��'�X sett��&�ofixed�,[je@�E �se@toL mo�Js�� >sn@e*,l>/3Y�)�$� ach � A9�Wd+nd $4$;�-�Q$�P?:�".> rOC� �o ri�$x$-axC(!l�.lu����$yJ%v(1�. D؊A��k�Fb� mark�A(e.g. �`'k.'`# |�J��cp{��eGg�"@ "X"!�do� � b�u��ha�?b��ing yet # r��[..a�v1�+4!�) )[]-i�� .302��'��AD * i)J"a�k;�1�>8�P��.r* �ϑ _lik_���[n :]��6, !��(y�r}چ�.54 ?_ite=ve�����I���,&�GA� gsp o�C: �R���*s�**�+*.�R21rot�~�Ao�Za�$i1�be>�e��$xD��a *�4 cycle*.>M2[g-$"�_�9vX*T`z chaos*. aenq as��� "[is da��� c .�/ �a ��A\�%�3�tr�@�0" =C�*�s, #.\32  x��5 %��t�ao��:G !`X/�t $r O3�D next�0r.45n5��f`�!F^'߇� R�$r=��Qie not ob���v���( Mandelbrot%A��T@Q?��&w ��{ zm �g��!Crnn z"n z_n�Cc"Bz_��B�?! �`%�eqk9��P $c�4J+ll� lex H� � lex�lne%�c_ :�,c|z_n|{,$E�hZ�reality~1'IAU ��x�, �u. 6�]"e�n�)�3a2F0�M�$]6�B i} y�`yj`Ga!�, `j`j�?to 5mc �p -1}$Q(�U�%ri*aC `x` �`y`nc)��o�6c�`x �;->v���in�Ssn�e` =C7y)`A�VU V �"�/A$)�n�X2}��" in_Y (c, n_=�. �PzI�^H0j� in_se��-� < 0 z z whJ) .!X(c.i cF) z�v = zn6A+ �V O=Z(&)A�PK �n6g 6! 202 5Ws $c=�c=FDamM�$�ens$ theywA�AXex[H . (W"�J?)�^�c& [52+2j, 2-- - cAk4�2IX5�9�?!" /cL 22�Is= ^IA� Is (�)^+�0,-2�,��Y%~-!�&�3N�"9 �*n $N$  �4s$N /N$ gri��anYf$cp��;M3 y$, ��$-2 \�2IKy \V! jiyG)tta��;��a& ���(� �Ge:�bzero �wis�Ab�2��Ff.:*�I l�eace�7, 2� > X, Y"� meshN�x^ C = = 1j*Y� 1� s((N�A�t 5!dn6}  ��5J`$[nx, ny] =� (6'C) m)�8F["?Ga���`im�`� `&�`,e .�9�P)��a $�SM 1� � �z���f75t��ed�xpv�� � -�� Rh . �(!:.10WV``:n 5 Modify�r5s.z!�st�tof-]!w =I�����or@,�)�q e� ar:�P!Nof2�t0* )�5� agaiu!f"1H"CXlogi*log.!�q�q�q�qlog� �&�>"q��*�*�*�*��b�'��I��&a�Q1`��6yz>[Z}�>;�4�:e l�.�.ry��  c� to�_�Xure. **�*mB�a good"2tv";�R up iɷsF��}��e&6Y��D0)[600:800,400:600ܧ�Vv0�ce ��esM�*@�2* �� grou�@_�!.t�>�/�Vd T sets�xa� 9Qw��ink�����)*}dulo $7Nn���s��B�� 85�n//22 so on{z$3$�Q10L|Ք�tilde $3�P 1�3o den1�=1 �1yV�.h��g;Mfi06��ve9nm��a�@eD5 � x`:] ^�e�I)� `Eqint,`�"�P� I?Aiz�F�� Sr�%3.ő$s rlW� (vi/Ge `____&� )�i�� �D:A;%`Re�Fe��2]eq6[s8�Vwo `e�DP?A ir�#t%� �rSe9 %H(I� �q__-�ۘ10 '�-.O�-�C L)<��B�jstr(lenQ� D!#$, FIFE==/ Z�� 2k2 Yk`� `mI�A�empty "� t� `one,���^)Y 4tu�Ya�stJ2].d one_h =-� [1])D (1,)  Q'1' �,a�/n��2�MR� ��QIq%G6=.�&�ach :a��p9!��ZiU� � �?!�gtv��5-�')'a2Is ���t�}e|, E*}Y �=� ���N.H%�,E��.HI &OI�-r�&]Y} ��>L ���M��+ N�!�PA.<. @� !rj ,23aWJ\h,Hh1<6�3Ew�)a;��be9an��add�2metho{>�!o�Em[�9���sif `a7b`���Pe�n `a+b`�V��s�-`��8�� r� T�k.��p Ad�8��W t *types*�4� (egr�!�a�a�?)&�E�-QC1MeLy+e{e o��!I\$�onver _uniU=� ��0Yb�H�����͕%����G�G�GfGa5 �E�(�d-MAE=(e�(a�� +)�(bm�. 4��!�� "�;M[�_ź."},Q�)�)<�2�5�Ere-eyinA|em�� rm�d)��A[~a \E^��K`3`6��7�r��m2r� ���N'1c �_+�֥B %� �8�8�3:LS��*��2�b8BAMm3�QRU�L1,  w3.N�8 �ll sketk&0�� F� � #+ hing�1"< an*"  `<_�gers`k� nU� edu aAS&n .ROend��toVZ&� JZ next��bqE�- *!p"*Nh (ie_e <��(B�))`��4. Rej$$ 3 of�/a�NK"�-proced36p�6�P�}�"v rb!�2�,Oe�rzB��(]F�B(�"aW) �&10�"!�1,N+1�4bB�B�Ns�.�'final'�zig"BBe[-�3?It�Î:.���a�o�}��l �sl� &�L 10."��q�B�1D >�[|Pv93, �2397,392*Tޔ� "���s�0"���C>BO�s�89not "�R��C/�GE Bt\w, *h�$\�Q bb{QA :! $q�� &!�d�"���$e�O*�9 a* m/�od$a�$q"�` n}{d�ah,n 6(re *co 7*�kBnADmon�7hB;thm�1,&�1Z(V�����$�h�r�((.o2_(`gcd`�C] -s6%2�2i�>9O3tn$,.b15}{3n+20}{42}�-##f@-�("�Q,�-ٍ_�aX��&qc*A9�8 = gcd^Me�) 9,// ;2xg )�).�p�"/.i�3R20, 45��4 F �< ��21a�Ex݄2�� `��M"�E6-5�`"T>�Mm&pr�W Al&4� � SA��G�"n i*Εs �( * $\!�m�( (**hint**:� `�Wi ))`�"�L ��iof:�ger).�uitA�awM.4.vv� )D1C6 ")@B�� %�P 29 r�9�:vorq�!ee�2�I<�kF6�* v<&mNon! �)��m�! max_��xt���))LUn%���"K if �(B1|"AL�FpI else65.)J:+'\n'?ba!7� *'-'F&2�Y� ��+bar+.� -�9�:��qx0UÅ���q1) qu0��2) q3����� 3*�_p&|Zm���- 1{�) 3 O��o�oh�v&�"9Z �&�O�:��Ii�M1��#!326�4Y4^�����r%�>"U�U�-'y� * b.�#�2a.N}P.:R4mU��J85��������������T(5�1,2�3:6��f>�4F�mul2�����By��3"�?��5��W%  2}{5����������������Z�E��r��E�.B=6v�R�R�R�R�R�R�R�R�R3)*�P5,22,�"�>O5:O[q"E�`��"=�� >� 2/refce/�4(model.html?2&light=F#�.____)&ob��~&al`n * *.�J�2; ��% _e�$��1��+ ��&.= �$A�3�.� sub2V(�Kr�X9s!)B�su=�B� ��J�-F� �R�>�� �� �� �� �� �� �� �� e��X�X�X �9FE%����el*~ *�+j2 :�4�:7 e�bD Zـ�5*b: ?�P�P�P�P�P�P�P half.w � 2* +%� .- �<� *i�*"6:H`__�h2C��` (q)`Mo���3��oun:O `q�*R����,�R&� 1�8�b�b�b�b�b�b�b�b�b�b�b�b�b�bJb� __(aN�͠$(*��pn���������������5)�&� ,2lZ3j11���H��.3: 096>77F�l6��(�wo>� s. CT�uis.�:�M� Cp]�] �c2"�]1� *&D hG floo��E $n/�2 ie `n//2`� e `sorted*�o�3�(�'r�i�,o`_:��%�� �� �� �� �� �� �� �� �� �� �� �� �� �� B� �G�Q^Q���N&�>� ]:` 8�I[Wall to1a%&$\pi$�:^!� 7F 6�)bzp`��E@rod_{n=1}^{\inftyN( (2 n)^2 }{ vZ + 1)fP�(5:art�cuct�_N�(R�U \pi_�R \2�N��F�U7fXGe.reB[ ..l�a�~.�I20>46�L%���  m out.�0I� b�&\W�(��"�~�I�a;�:W3l/ X63he�c��&,Z&�]onq>,�[Dl4ra��"�.a�( ��e��z��Ir*��wE�_� (�@c&40>2piNB! )�N 'UyJI�'aB��&eӊ�cN : /�x!���i��=�# r�c�:"�4Br'N�.1" R=R(c�:71, &�.< *F (2*n�,  '[n+Ě<Y 9, � pi��>�F�.1�� ;[i*�%�������12 ��4��51�� 17 32765102 13107="436H�%209715.# �69369�838860i %27606�& K147483642),7039568� 8589934592|.28071364�$13743895342� 448a�814��(54975581388>� �(17883732894�03518437208883>�m(11425718238=n,4073748835539�.=,456352651518�422517998136852BD ?(72923291048�����1992547�+ 6429136906067947� 9223��86�. G4807054907510549�36893� 474191032RI L119+�$81031746309590295 587056517yF OD904530616495203331UxL23611832414348226068Zn R 7612��(5790187924359X15111572745182864683827V�VX48691767863540419643025S2�)�)�)�)�)�)�)�)� 11425718238025, 140737488355328-604563526515187=<2251799813685248*6=- ?07292329104881}<9007199254740992f@429136906067947�92233720�80V��@29807054907510548�36893�$4741910323V��@119125081031746309590295$5870565171fN O@904530616495203339(L23611832414348226068Zn �H761284675790187924359X15111572745182864683827j�1C�48691767863540419643025] ```python import numpy print( .pi- `array(list(map(float, pi_ ))))N �\[ 0.47492599 0.29714821 1587837 16943846 394167  1842246M0291902 091002650815581Y07388885$675374}06219131M 0576A�)5A�58 02557 Y472339 $445548 21633L400153 i3807569!Z�># The shortest published Mathematical paper A [candidate for t.<mB2�> ever](http://www.ams.org/journals/bull/1966-72-06/S0002-9904-111654-3/Z.pdf)�ws��following result: \begin{equation} 27^5 + 84^5 + 110 D33^5 = 144^5. \end6 This nteresteas > a cou xample to�njecture by Euler ... that at least $n$Tth powers are requiredIsuman.'p, $n > 2$. ## Exercise 1 Us�i5, check%"1 above� true@## Solu!&2s$lhs = 27**)6 110 33**5 r&14 i� "Doe)�LHS {}~l�RH? {}".format(lhs, rlhs==rhs.�2K6191736a}:T? True 62!�e more .�,statement in�pA�% hat�GYG> [is]bsmallavinstanc�8 which four fifYQ. . IAppreE�"ta�>V"A8mea �s-� where�Tright hand side term (L larg �teger))e� , we wantcuseMpQris9[8. You may find}`combine�s` funcA� from !Ditertools` packagek ful.2�imp� ;���^p$returns alI�.� (ignoraQord! of `r` elE3s �a given �h. For � , take a�2B��7 oi?Lg-log scale. Restric� $n \le 50� #Z_ ��maty lib ͼpy %.nline��)0 n>�5, 51) !!�\zeros_like(n) for i, n_c�enumerat:0 2�v% _a�cn_c+1)�0 N[i]BenN9� �P.figure(figsize=(12,6�{% 4.loglog(n, N, ! �style='None', marker='x', color='k', label='C*g')qS n**48b'8r'%�2xP(yNTlegend(loc='upper leftLshow(�F8With 17 million6�to work��, we'll�xbYttl�� reful how�JmF. On���we� ld trya�to �the eac� ssible "JN  ��aa�:@ )AVincrea� 3 . W�en �Kpf2q�lf*� s.� z s*put- $ally *very�8ensive*a�w9 pe^ a� of calcul7s�r!edly re!&� 0 (a bad idea)n5!� � sameazber� 0stead, let us%y!��=�C;!> Ync!ǁDEx� 82b 1. Construc0`e�` a contain!�[� g[0in $1, \dots,�$A�*r . 26]n�� "�ҡN �. 3VJ sums� thes6�. 4. L�ovk ne ���^ i�enA�appears��o�G 1 (ie,3 0`in` keyword)r� nmax=145 �� _to_%�>m1, *)**5.0,>�!8^e 6[�9```A�a+M� �!.6� lhs_ = []��a�% .P��5.!1nd��sum E<(&I"0Fies,6/!kN=�to+ iP matcheyy�Y�=RHS6�͞uinݞ�jͥif#6D �8rhs_primitive =aE**(0.2))šY.(B.D [i])B(.astype(intN�k��ae {}..�s�= =��.;2�.� Fr[ 27 84� 133].�).^144JD# Lorenz attractorE�syste� a se��Pordinary differential��s6q writtenV� � @\text{d} \vec{v}}:t}}� f}(v})B� &�variablee E�� vector $ B$fO kvu:g x(t)\ y zend"� B����"�def��ODE isV�fN�\sigmad ft( �- ��� �x( \rho - � #- 9\\ *�-J ta ).�N e paramet�\$ �,l, H%b �� real���. 1 Wri�9# `dvdt(v, �ds)`8�)�f}${ v}, t$��!];j�r def �%s�o, beta��"""e\D!թ�mNi8iz#P��� v :�6 S]� t : � Time �Bv$rhoz"�z#JR7 ��!8>��z2�2(H1M (x, y, z = v)� [�H*(y-x), x*(rho-z)-y y-�*z]�Q#.} FixQ�=10M� =8/3$. Sei�� data��beU\(0)��1}$. j8`scipy`, specif7lyE`odein.�>/.� } 9olvJ; up�$t=100$$a�=13� , 15I�$28A�P� y@��3d�t $-T.##^��R �:�� �)f�v0�1.0, ] %�� 0.0 !�D = 8.0/3.0 t_value�u(.linspace(0E0 5000) rho.[13!4528.0] v$ A�in :EP�"y(�.� v = �(A�, v0, �, args= D 0 ^d v� =%F�7 .�� pl_ kits.m! 3d.axes3d1�ADj2;fig = L^h{ v!#&͍�6 �z$^S $10$ unit� time, i��firsty$s $t \in [� 0]$,�se!:"��2#B so onr�q�"� 6F4�E4�E%�.0 i� =Nq�� ] v0m���1.0],E�+1e-56 ]��v0aiQ���kJk��O_colour� 'by'�tstarA�g (4~ 1^ �b�4 Q*1000:( +1)�N6v vr3�y�32]�$.!,r=.7�JZ����Z�m:{},{}]��)*a/ )&V�� �sez*s@(depende�onJ�*� �ha(eristic� chao behaviou�# S:J" � �� ] sy�#j�  [!eda�.�� ofV 6:y*4t3 e^{-t}� ,^n, \qquad y�@1,B� <$n > 1$�a!�s"minor"�nge�eM!�sn at `�`w only� 6� as a� seri�.} 1 C !g�l9B@ef$"z� � .���n* �M� y, [ - symbols(''F� &d!�e( iff(e, t) +p**2 - Sexp(-t), R. 2� v#gat)I help�!` n6X stra� forwar�[ s ?���|� $Q!$ u�� `icsYgu%"� �6� O� 5�ab at satisf a� )�&�~)or A���2, 11�� ode_u,=-L) rynVyJ�>ic�({%+ : 1}���.�-�?!�< == 1 - t**2/2 + 3/A07*t**4/24 + 3 05/40 + O(t**6 _RB2-3/3 - 19 E115/6�F5-3/6 -�8 + 49 5/12�Et**�3z �4 B;%��% �438 D16��t-:4�13a��-� �3T��-Z!9.155/3�\)�) � �84 G6� 273 '�$removeO`nman ��se}�ax�w� ]c �J� < ����z��� 2�.rhs.-"(x#t, �));� 3*wina�mes**t*�5X pair $(p_1, p_2)$ such: both $p_1L p_2!�e� � _1 +��&�1&*� ��'s� �. r&can"4s�,s�&�& look�)A,["%�* s://docs.��*$3/library/-,.html) modul*ge��[ recipe�U#d- D), parti�rt!�wise` jF4 �$:-�"b� pull~ =+introduc� (at notebook2g/allCmes(N͠�/")�s les�"n 0'qu*o N�1N :��fMaximumHbe� �Z�I�: �3Pri"� =�#9�[]�46N+� is_n)% =�*:p!� Sif n%p�E062T Fals.breakk��6P }�n�yield n�Nl an16irs*= Q�M�:�rom&�)� rt tee EN<)*]OG �nsecu� �0s,}u1 ~"%a, b =g(2� �next(b, [" s zip(;�W�P� i�r{.he��8s directly. But] efficiv,"� iM(&M+$'s [filter"��h��# B)6�$i��E"3^� a!�� ��* �6�a��_�(3:�T+s(�i� � �. oP&2�qkp�P�aii�-�p2-p1a2I�T?!D!�` �6 �n) u�F��B���M��'-Ea# � �(9#��i]�MRaO%�&-!��`�H$N<20$6��=t�>/�20-�� tp la��*5I�8&7 11, 13 7, 19):T Fndm$ manyscm�/�) �p_2 < �= :vAgau/ 3Nsol�0s, but%>� s ha�=(e `quantify$.ttern;"E�ahead��e:#3C%I6BA�pi_N(>�U0j p i�toa%/h$A�!�-6�M sum�4%�eDB!-�A�~ �!U .* 3 Let $\%$�b�*� -� N$. IJ& C / N$TeU��N=2^k� k = S-\`$ 16$. (� za�0a logarithmic;)�04appropriate!) >),We've now do��l�/hF,!'and2� UE� � ZK6ņb}J� �#-�&n)B#[2**k a�k��r1(�7)]) Ai�_��"� @7$�6!�, N))>,Nr2r ,.semilogx(N,El:]"��"$N$"^"=�) �0thoe a�'ve��0ed Wikipedia,��(4/ [Bru��theoremٽ en.w2I /] �#9.27s_ ;)S"sug�28&ocalingJ�+M�is boun�-by $C A�<\log(N)^2$. Chec�&�0 er�o03is6#�r *Opyd*(N�5n��\>s�e�V�# A basi�a�4polynomials I�e`Eh^* lassa�e�d a `Mo 3`  ��repres��T��leaŞco&�$1$. A��$N+1$ m Usu(x, x^&�x^�Dm m).��#�@�U*�- , $\z8bb{P}^N$+2V��3)�%8 2cD�!a "d�/��~ t5+E=I�6���tF5t!{.3b we� :4!�ŭ�� cruc�!�ɇ)� с*�� "P5�(0 """R1�n.�.��2a�5 = "I a!�9�" N�C__X,__(self, rool*M2_�& }$.# = +H.7O.ExF6)I=22(P�) �A� �.�tr�=.�2wI��\��� F� � J� .js + "x)? elif B>�A (x - {})"M9��els:� J� (x +2L-6M�%1%X)]mul-\,�+=cG!�97 + %)EG:�02* 7.> �]�y�-Y9)4�E�in_to%�,3.le.�< "Hello,�)5oc�9r,�Li+O @My-�.�);�5 ��a�2�iձ�(�-rF��� 6i�By�6�a� 1zRI�5NN� ��.N*, 1)�Tz�� ��������>�� Z�1anA��ż6�a_pF A�!m�xsi�>st 6��P^��E%�0*6[U�n*[0]� �ZINJA١��3M�i� ZA3x x -is s horr3�or�U�* ly m�4 good�e imprx?!1$output. If!�us6�7��������m�i�<.6�Ɇ���n_�6_�Q�b -� �A _non.."E w2P= 16��N�2A>z@^{}�[.9��� #u+ degree 0^�19 a�!a96���R�U<������t���a��ao(uglier case�) nd re-run!5!�\we get2i!/�.!/�M1E>�G^�Fx^3 AnEn`-�� wFb,� ��5.uniqu.� �=n [�fstack 5(flow answerb://2.com/qu;!0ons/10741346/l+-most-"� -f{Dency-e!s-for- �-�+-in-an-�)8�'one!)<�>!XM�al�A�� .�2% a�? ve)o�kZAb@!v&11Halign} p_0(x) &= �6\ p_1-x,�0p_2 (1-x)(2=.\\�& \%$� 1N 10\prod_{n=1}^N�=x).D$ ��6�64J6A�� .�_v3nt(>�A &�A�!�'sum'-sof����n+1J�u>U�f(R�mW� )  2�%:�V"4��too lazyA�\baCG';!0d#��6d flipU�signs;SA�be clearSt"q>! 2� e�s���A�B5 :��A�uci79�&j ^3} O-^4}JHHopB<lyaliyo�f<w� of�us' .�Ei�]�R*�."� �t(2e]�it(��< Ba� $�m'A | %(��,)_p.l �mCE�lin36�I�" ��:��({}) X& Li�F817�Rr E�1))��bG '2�.53�5<4f<xz� Gj�6'.j�R.5j�n5r�3�� "Kr�6)0r�R07r�n7>� Is chea�,h�s I�En'C "#�`��$` syntax (zG��+��$��*di@coS ��� �G%L�tN��B8_long_TG�B (�$f�*�_��L�]��%� �Y��MR!9�n�n�n�n�n�n�n�n�n�n�n�n�n�n�n�nvn# AnsqAe'sk!rt�F�:se�5te �;se�re: | x�m| y 66B |�<  6B | �: |�:4] 9.14 7.?V%$6.58 =8. 95 8 =  6.775.�U=�: | 7 N8.7z3.12  L 7.71 z9 z8.877 7.�V�8.8��1] 8.33�  9.26� 7 Z z8.4�=4= 9.96= 8.1�k=7.%] | 6 �7.2�6.13 0!_=5.2!] | \ 2z 3 z 5.(W| 1!!|!@50)n2�10��9 z 8.1kz5i !�%� 4.82�7 7�6.4-17.9!� | 5 .5.6� 4)� 5.7%� = 6.89!�2_"V"}Oe` oper�C,�:a/mp"m%:QTEJ deviB,��: ecim?Xlac�:�%*��3r�Y�� set1_x: #[ag,��&�=9A{, AD,A,!�,%�,!t,!.]) Sy>S 8.04795-58_8133,E�24V26,I  82Y68 Z2��F�2F��`�17 7��aM�13,E� Aq�74 �3��F�3F�������!Hd(�#�8%x08!G391�S.4%Y73 �4F�8!�va�ROB���7%�7����A �NES5EO5+91�89]) a1�I�,2_ 3 4_x (�(y ( 3 4_ya 2,|Rh,�x:"�Ox� �� -8Mean: {:.2f}. VceSta�Su�&�u�$a�(x):�<� [var�ZZZstd(x�J- .:y1:!55=y�=f=h�@:@=A�^f^!E^.�.JMqIj 9.00]h��0.Ng 3.16��9�9�9.�M+ �7.5.� 3.75R� 1.94.��8�8v8 2E2 *M7���F&e/6;lin�r�ss�Rofq7AS�Mp,�5M slop�d jl^2o(_Nbo�9C� �F k Ls�7Ga��1���y��,�0rcept, rB�6 , std_errA&atsxB �(`I��Sٹ�CH ��w | q.| F0.5a[2E0.8qV�&�&7`-.�3 �HZ9!Rset. Ad[b-"fitE`?n6!a�/descrip�*f [F��7VL,2%27s_quN)�7&�[ _atR*Aw& A�";0*�* been�.�``QmJ..f�4b_. fit1� "�D2�20.0)��C i�yFMBn3ξ!�_x[i],%�_y*�Bf HI� Cc(1rG�:%}f + �*Q(Him.�labe�WzCH�-&�W48%# On my wa�B�N-is h+9, I2 m2��B7. B�[a0a whole bunch� preOed"�5s�� c:|1"b�,doK1B[AyGI"�:YYH(what's unde<e hood�}�|i�ing�H,!&�rF.z"86eR?!%a� �HA� �a, �'L �?�2rt�As�!* in k�eCschool�/l �@^�a1{V�F;D f�$= m \cdot �*b�e"*fD�R�s���by-uT��*f!�'cod`gw !_toDgr=-$a&�79"M%s�-�y. H3may�*e�:nt)�+jbut&���is just �fn��no �'�9r�, so I �51to renou+ error 11!ƙ��T��.i^�"plt �as npH>10-ly�d"bHR6 8Oervala#0[-10,10] x=np�$ ,10/4 ��t�� �93 #)� :.2 #�la�VU(Ei\$is y=mx+b � � m*I"��l"EM) aN1,1,1) ��pines['�S']�L posi�� ('ce�'F.)�S *c�\('n�\2%top~#bottom &s�&' �xaxis�ticks% <syb&�) !,plot(x,y,'re�M�]A' f��EE��*J; ple,�iVA�yy}s� manip�[ng � ���;deh;�,a�v!io)doeh�4a ao�.dso fareW�G 2 co�V,tes (x1, y1)� (x2, y2)?�\manc2�YmisNF �jKelf=*) �A5R+y div�g�!x. Sia�wPdh Rto.2in�8�d4 %M�2�$delta betw�!my�x VNBk)��=Mc\DG�I x~I\�6{y_�Ey_1}{x x_1} BlE5k: �8P1�M-3,:c�WP�; (5,4). Pu�N����7!�'\�W}����(4 - (-2)}{5 3)� 6}{8 3}{4F XFin75�]k,�)a��8poi�jr�>(blem anymorNe��.� \Left�T(arrow y - #=J�Pu+T9w��e�r!&I% �`mb�X�,15!3C: - 3.@1~1 !F�S�ce.S��1/4I2!om))b%_m�sourc�5A�:�)���� ad�as�^layMvZ��.�6you�6se-.�D%� \o)�2�E�E�E 0.252H0.7de�K�K�K�K�KJK # # �� #� Be[idra�p��Q[sY�olot #c put p1E�p2A�a Y< #C�� � �[-3, 5]'ym='�h[-2, 4]��� _x, y�  # end�� �Wa�Rkzl3 If��.:G,�)5lw�jp�d8raw�JNe��th�)M.I�b�@�i than"eno �#er2hassum*�dll5�re�8��d�/�N�. I�Yv s���necessar��2 m0eO���\"�D�6��easur�o&� !�obs� !7�.minimizH=n��egrE curv>�>y �spond%o. �SA�n optVg��!�jQ!� step � 9Ypr.��5ifi�E�6�A]�noBn�s,diD2buted,��)�un�l' �stochasT�Aert��+60A� Hgr analy�+� ined.�B's�>�g!Q� E��Car&0&&���&�+J?!�pE atg}-"^J I =�`_0�Y�\_1�xB� ^T� d�u�byR�� W0B2 >�  � .1B}�c.)!Mg 's2Mvia :xR�b �t�� \sum_{i"1{n} (x_iObar{x})-(y y})}.6n>4^2FC )J$\ W�U�mea4I�x�2�� *yV*y *.'�0$� �/+ dw)>rt!�A ar{yjV-�W �F�MLto�  }uJ ty.. 0�kr�%�HNhem�~1W�N3D girlfrienA�8��ChristmaGG�Ao�*�8� *om. ":it&�4doo�To ask,ab$*!k`61�surpr�xw�*be gon�rwe �n��Eec�EHZ (y���%��E��their he�U (x�J�4m.&�T,:collect���n)AI6acquain�w"26cor��r�9a: Person \(i\)156.~d�8.K60.e79.�56265.�652K56.�72Zi6�RaA{ \(y.�47.n46.O49.�53.!l z47.�49.!/ 50.�6b5128� �/Q/M.N=�6target �hQfcaII�i�Eisioal�lM�x comme \��nfl�7e[ . However4� �7lzQM4na�K�/a.� typ�A6Ei` /s- s, y�� ofteM � �;,  !�edge,�co�,A��.or"�\t (b-i� pend�`a�O]S�xGco��x�or, yn�/� r)j,{in]}$. Wait...>�? R� or? Hmmm.��StHs��w�v buil�a�1on� 2�#zQ !:ReM%Ł|Q'(x) r:!ᕮ�c �[a�Pfa�, e}, e�, a�5.#a�7.*a�] [a&, a�, ax, ap, ah7%0S *aH8]��u�&L etic�� #E�Tx�{ y x_��=� (x)/ot x) y.y ��q��:(x�x) x_op"leR'y' y) y'- b]   #�!�s�ex�%_iSmn:#LtS - �B^R�y RyR�"�R -)Rmultiply��6i�lists[ deJe/1h * y%�� Z>!�, �)); navo�;�)�6 � � P/ �2tA�*]I ��*)V!����&Stupel% �ā=�Ag =^..g��et__M'uyX L'��y�45,55)� �L" ��I  x_A�mi�' max(x)A�b + m*  &&b/,y � ��h/"N## Preջn�s:$ � far,�$� ;`o:A�*kL�F{ b� W *���arg �OE�new� x�Cexpec $ywv� E@&�achiev�R={�$is: SupposQUgp� ��s,w��ly"� ��x=170. W��� �ed �� UP y? So�W{D�l�� E(y|mE"�`alJQy�tY s x�vb�S��9&~x�=#E}%( F��C �S�F a1��P��) y,!y&�E nserj$��!7�DM+V*� xE�a��� >�O$ �N 1�S�}han�QQ��aO�&d� *���sP=2.84572e0=0.283|SEKY)�!UPof�r*b !s"Yd��'E� cm? �[ gCZy� Bu-F = � +a836170 = 0577B:A ��"%�51!139 %\W&wel�Ch�ysti�\\m�1�cA7A��t�Eґ5!w53%�!y"#9`&#\!be!��Y�66H�ada�]!����J Ma9ar' H ε (read: Epsilon)� realit�e6[ R�z� + \e dB�j�#  �;# N�� ���pion int]�d! *F#ox�(sum: $$I =�)T�G5UWa-X,Gauss Quadra��2sewU[_U�+��a few oW!�rUn Y6G Y��s �t���ienifZqMk�H� ͱu�e:!�!l�{s t�toztT� ##6F Formulas N\$5'%<�tE� iw�bymo" W� j�1A�gr�&A-.��i��_� dx$�� ����e- % = aC �c + a_2{W���({S$a_{n-1} x^ %n x^nF0Trapezoidal R~is6Um�)� $n=1|W���ag!��aG�SimpsoZ1/3�`2.`dfrabola. .�(�Jire�bA"? ��3 , $a�!�$a_��b�x�%�wo��tas:�6pth�MbW�s^h�Jh9�>. �?��+ o ob��!T2 $a����襽>�>�B1n� =��%�f�Sf.�h}{2}�#[ f(a�mf(a+h) \�#]A�6�%�[�HK([4]+ 26gc0c� -&u�nsi�,u�$�)=px^2�}n�eJ.�&l�P$a=0$A8$bE�&r{0}^{1}Pa�.�&us��� SymPp" %� exac�2�M� (we-( *Xo"� T Z� �s*/� �N $x$� -ŵRu���is�.��te� zhAnlE�l�� uppe`�m�hofIion. M�,**`doit()`**���å#!�Z5� **`N 25?! ��]&� 9 ¡[*� O �j �  *�-[('x') �/ _pri�p c =� l(�p x**2kxk Eq(c, c. �F�D!EN( ` d� �0D0.746824132812427 n#.�*�o c  �b� �[ $d�� >.e �r. a+.��� Pri/����<, $(x_i,F)��(x_{i+1} )� �"?�5�; va � " UQ: $$ � �Sy_ir X�_, h$$� h =  - v �# sos,�B�Le�3 * bB �o� al �s, M  ~ �b - a}{n�}T�!& .Cis* Q�& a"!*��(= a + (i�h)5 �P&4 w ���Y%�m.�!~5{��suc="TQ�&� �h!�* �(�U�is� n a�(n� %��;( y�26� -2}AuI�\�T.� A.=� �!O2'5B Q�@%���[&�0�% __fu __�*p-�8 Ne�Nb�0N�5�It9�(y, h[8N_�y�4jV < 2<r�`\^n[^%�V(y[0]!D4[1]) * h / 2.0 5s*�]6.-162* np�y[1:-1])>D �s �I.�10, pi/2, 21)UM~ e�[1]a�[��-B�('B�� %dm; : %f' % (!4�s1 ���y grid( ti~'s�:OK)ylt.�� � ?��lt�z�[ŕ1v�B 1001]�7n�3n)��^>njm:9B!�>F!�FI�u^M4fN��##:� J9 7&mne�I.E,�#�7�@22�Tw|�v2��2�M$�H4 �T�;4 \fa,� �J��h}l � y�ISB� )*�c��l�-$a ���).q1E.R �Q�(�\� 6��y$< �SYX͙(��Z , ob�{s�\�2 -odd ,�F^BcEg 1]noSf��kc two)�dt� �j����Vͳ!X �!i2OvQO3�bHs�3so� �of.�9tY�3a0�+2; �dNor%�BJ$n-1$_(M�1z�G�Ubelow���I) A�T4�ID�5,6}��V�oj=2,4,6.$3�zj.p� \P5son��3���*J�%��Ͳ4L�"+ y[2As Hs��3���&% 2�1xS���\�Jum��:2]�2�i�� 2:-2��jj72�7>_G�v:_3N_ s +=� Oy���1�y�yD52��u"J�Fw"2w2)v�10� 3�s> �^�f�3) s4� ��I� N�� Z��~Z":2=.�Z`#�Z�Z6HA�V=L�� �2T�, T�p*U1� ��'l�� �ic��u� .8Y P����F1��-� fu2��� I/  * 2A FPx#� 6. �} y') .� �$y AA�ykI-te(yy7 �g AR� A�W1U?StM D�/� in Co��@\s� 4 IS456:2000 A �2d��C 2nd�/� acros� dept�@a se�(. I`4(M 9s � breE ship%�c��� teel��in�tB�2 `"�0!Z�k beamA�1eB+;����a��?n" 1� $$)5`*} ��j_c}{x} &Y�� {cu}D;u} \\ c~,, x1f*^6{5s} 0.446; f_{ck"�2` :�c}.�y}}>�/� �2^2 <] & 0pq"r_c:{cy�>�&3#<.�U!D Ӓ)!C%Ab�int�x!g!3\,a\ �'M)VKfx.U�W:.S0 dE! M}{C �QS$$ At�.ap6mWiV"� �UE!$ = 0.0035$we$�/u� neut� axisU#a�*ai'�amtat*�loce�66(. MagnitudeaM L�,ys"� d area:-.�*R!oEed:u�ng�F�o":]�& 1.�^j2�+\ �i_)$4(ec, fck, ecy=!�2!if ec <&� e�' ec /�f�z ee - ee**{fe2� &1L \ �T/�M *� ecuU x 12�fck�# xJ�xuZ,x)*I / xu6f([2�)��eA�xJQ&� �J�*�s�GcdeC�FJ �,ubsequAI�fђ\ op! \�z BI o�'� Re�ces��Thapra, S.C., _Applied &�&s)RMATLAB!� Enginee�� nd S �v/,_, 3ed., McG{>THill, 2008. 2. Kiusala�7JqFiin\!�. X_, Cambridge University�-ssd5��&# , Pl��Ref  �"T - C�Jof Pr ce (�]th RevL ), Bureau&Indian" T,s, New Delhi�0 �W$Q"�$ �-LY�re..�i�)f�J�O �1np̦'�1.�0.01) \04in(2*2*np.pi*t�H fill(�s85*t), '�I��Ŵ True��͸>�Z� ���1P*(x+0.5) (25)*x*(x-1.;� -0.21.PB�-0.5,+R��k�f�j�horner �x ��a)�p�[-1���* n:B-1, -1 > 3kYp�H-p .�%��[5H4��Z0�P�6=�|,n0Z2>-pMa �%L 2!a>x9� [ 5.� 3. �7n �� #19. 5 7. ] 2�R00.2+25*x-200*� +675 3-9 4+400.5F 0A 8aj�z N� 0A5�f(�A�IJ� y, 'b/ec  stem,jr��1�i"�~rt  y)az6yX!�+L�'%�/?1[RNbM|h *�_2*&LJ�m��~��"\ 100] �J, >�+1i1u�AE�p�Iu,"%5d %20.16fq0n, s, (s-d)/s!��\efY�8�8/ 3=<4=<+1M�+)Mi�0.0; A1 �^10�`��, f`! -�`a?)�M/np�a�V'1����)�. .�NSg�+_��^�, -(=2, debug=F.� �]=2�v��y0.@_A�V �i2R� t��G qrt(ѾK6g-t1, t1!�6kx�A !p*e2p3.0/5��LA�>c/�(Fc6J�&j� A1, A2, A��4I2B�7 -�f/7O%+6�*~t�1H�F32.n3�(1�+;\XX�36ͣ% +-z+>2, -�, tݟ6�)!!!5�.n%(�!�%XE@0���%2:+!�:)$ 322.]1���71*9�Z6, 2-�2�12!�/ 2E�^MMg�R3=VZcA�(�&!�VcAC(�92��c1 * Yc@ՙPif�5Y�� t�;��AA�<��A�]��"%12.��f��6], AA*y�=N�t�� *A) ���.gal�erf�� '4]"�+ ='�$E]� �erf��1;.�.�����(Fpw n�� �'n o , 'I I���>�:3*$�o40.7788007830712(46594688283381458��424468��t52126766F� ��4(�jIold, kM '''R"�.�%e$''� l��2**(k-�!� � Y�nA�L).�&C h�9A�iA�r�(n ����)x�hI�;= (� + h*sQ )M|% #=6� * (f-/b�ia�* .ɛK%@e���_!DyID 1 e(�\new $1�,e�W�2 0.7313702��563��3 442984097800381Iw4�,05865614845695 5 465845967882216�6 ,764254652294I�\�`468091636378279@8%�,682039054161 9 (31972461524@10. $8989209475F�A��-�xA�2�KEx�/i�1.41815%� v�4, �()�BR;��,�?� �nla4i�(1.450311805{�i�� 6187424678i�821501P7i�1502678�+�(og)*( �*G[B�%1��p:�)00.60672502286I�) 00.58168695327>  476803621I�:) 50093038�/!�@q B8E��P5�)|+6 �1$4817289939m�1,626557170805: ,0.6348596927�;1<638388665011 ��;In w��Neu-NetS`s��Pe�br< T�?a-tu��x�e:Gxwcwan�D�RpXd3 _? w�"9llustrat�m"^� epts?34_ seen�=ilYMOf YS link")�#,!Y�ifi�1# ʘ�s�� B�>!6��MNIST$set%\'ll{4 test�r.���I��a "toy"E \�a�9�� })PTa6[!�g6\�?yY�6ly�xWC�vi�:"Nitsxg��los�#�) lexi.CRZ^it8] S==�loًD*�xc "/c: `&�/[�4I��}���&�he; �I$�enH�5gRQ<�!u^ a 2D�`f5Aknur�(1ad�& �3X md7J)2c)_�n��[�1� 5], � 2$1.23 7 1 $1],[2.�(.7]]) circl>h80 P4 Dn�0 P0 h5Q0.3h4.2m]Ž�VMA�!q!�Sj-�blib`E�O dispp[.c- as ($`&�`�_. �. 6. o'`)Xc%���A�i�P�$!�6QcFae� �e`a����a` Nc�R%VM�M-a?ve��asa s�v ble.�"&�2#E%yA?���to}DUM�!`�.+'f�wa�� \UA��/i;9pr_^�W��!�a��I�� ��**new** �)D- wheth��d�XD�1�(�1)xM5� 0)]Ck��"�Rte�`8 .5)i� u`1`!E"��fuP� `out��`�GJsa�dq� `x`, AAw ha bias `�L w�&-jfo�0!:!��W`�- @ *q#1%\{\p�# } 1\,\, & ,if}\langleoKw\� le -O$ >\,0��0( 7�O�}�$$}\ 1�&E0�Nh��tfA�T:enr�D�5[s!�at!�(!� a **ac�`$inputs** (�8�f a�rixA/re 51aSA�f�����\v¹i�)�+cGm"�G6�)rs**AOn�I��do)�_� �Q�SrY���X)�E�a�ithem,}(e9>i�B�dwrotep� Q$�An a��C!/ t�at. Cal�N$�U�m�MO2�/��ce�<���Ptry\Z��Ob{+1�-)o�duct;�;��A!A>J�2`�2% S[A) lead�s� - ���"|�N2��L(bonus)ZAn>2 � =N �� 1 = ��)G�jcopy-pas��y���G'it-�s ``!�'s^oodAr go ok��Tnp.random.seed(1234) X�x n(1JQ) 2>5)�N>)] all(F5 2(X, w, bJn"i 1., 0 B]"=��T <��ero!�W�C�Kes �c"=aI#A��R  ́m��I�'an **un�_ned��e^ a3n!sE�pi�jr�� �lDJ��Śi~�oC�� ͼ? **Y�**:!�jo��cF-�!�e��!_ ces`��Ics�np.� aten.( N,x�pxis=0)`c�; mayb�,Uml `w=n�1b� `b=1�b)T%_i���F"`�Ni r"�]?:N6��JW�Fsugges!�F (`( �,1)`)) mn!�& t��AZ > `A�A��]` "�D��N0ot great! NowE45<D!=?t!`c*�*o��^eA }�#r�� 9a#<�did�g�>re?t ɕm;�be�f��%��ct� aE���I ). O�*s�N,af�V��7��$hyperplaneᡁ�� .�7e� s`h*h�'�i�$ 00.5�" $ a,Quiz** - **Cm��W whYf�iny7rr���>$�H? QI A'�K��?��i$ter6%wI!;!Hm �&- e�!:aHAp��Y�B� m�G�*� b over� :a�ed�15mod��!��b�� a li �bitss�Nfi^>b�d"hs"��E�)=Te�4%�&s ��!5�`;P�js`Q�1"� disc�J�r hap�d!Kf :�G�5 ([�5�[[�X.1�}"� 9�E�B� situ57�62 # Grad©Des�o�Omember?�V�BG � le g1�vent[&&�C��"S � �X !!=Uarbit}�1%O�2i  G\�&\�)x^2$'� = -x: 8 (x\cos(x)-2)$ �5conven�d3J�)V�s_ "� ��Q�"/ �=.�+0 �EV�Fq�F.(�P��.1`AD*�7 �Oexp`, sin co"q )�i`�`��A�(f�f`x`����>��y1��aQ'A �%!R�5:�Ue\�E�"�+`[s]`?�aj�`100`)X��=o( 0a high enough)ki���c{&� v�Imp$סe� GD �_le�&� "q%qV��ua t5[Ts."x�wo5�D1.-Ns�r�CM� doescs"� %:m��t6 ep�Vat��n.�a�:IF�c�ϙUz�a�Tgsoi��e�-dLi"G�GD)"g�_!�m `�TGDI�2`.f6$6]Q?�ll\?A��8%ip `x0`-�iz&�*&�-���ake� Z8�e� &n #�T&, ��s Try�� algo;��`�*��m caseA*�S0=��r=0�n=100$6, f8, ;��ѹ>  � ep4�ng�*[���-�1���N.�'J;  b:@2�viz��2�pa�z!����y6úd�5�O Use PlQ =���i�K� ��qB�a|1yA, ygd�f��vM7[#ygd�o&����n', ab�>E�*-��LJS�bQA()e�b�����=�y�. H� �e�/��cs 9I�/2if ipyww0�z#)� act, iv 6 ixed 4I�0. 9 �psAdf ��a+r!La `j _sum&���M sR�e:$a��a� s `a�WbXk�E�XEiM� """PL.A�yWm�Ta��b"X�G (a+bA.ak=`eact.��T-n�)B6� . *�8AE�"����sl�Z:.(0.]` h��\5k `0.1`ab`.a� eger[���{[-8, 8]RP2:_5 act(� , a=�{k�0.1̙=(-8,8,2&�� # Op��m lagsFU�'fd-�}9ingAat)��n��2 d�;X�e8.��%�޿tH� a boolean�|< �F�S �(s, X2�+6T iMpo �A��.:Zs�UiG�gth�"{HKs��}�Y�I�s2 textboxIIitv�5`[�$ World!"`.Ab �6H�5IEw.H�h6m>T�, s='ҩ w'5�B)"���S�S�e�P"�W�se��k�b��'s.�capabil� slHSiAo��� �2�9an&��& [� � ://s:Bc�en/�hx.h�� to f�� &�X s. U~!i)KizaZ9�lEe��proper�hexAcaw9rt�i0bFer6_�����SN�, Eq, ��i&�S:`C use_:x='Ԟjax�� Now,%f��yCic�Bi,S,��!=�:2�f( �ATV�a�T'"� ���XU'6P)�(x**5-1��V��F�%�� ��V�J�Q�1�� ai $x^�J�܁4 �ict.u�vR���v�~a� trolv�z��%q�\a���9�;^"?M��#Ք�ezM240�ZHint:*�k�hUl'D IV� `Eq: I �t" *-6(Eq!�n-11� �G%�N���66`X� ��i)lyA m\_d LaTeX6�<(12M rt��& , n=(2,40��D�--- author: Na{xC��r (nc 4@bentley.edu) 0 �#�X �Esk � em�edA�PyI!e :� F�*�e:#�#!�55�s:�A�>� ) #�ttl�jFE�!(")hog�/%Z%u!�w��)�derival �(e6e6��� 'x' )�(E = 3*".�k ~ $\MF" 3 \*{x}�^cl]$��q! au�"�<t*%0I�� it. ��_"�Amavar��š��%to�i$��cn:Ѕ�(1< , x Q�B�\���2E6�A�i.Ǩ�Ler�/�#io�6h���I�6�-e��2�^\f�\3jX)�!�}]�6P +!I ('C'E|sam�qut)V��oC@C�d�(F(C�2N�-��������e�re-�z�c�)�Yl#n�j{�, A�$)�$dy}{dx}=y$AH!�-�}��FU!('y')a�dyd��D�0( ^� ) �=  - yW!�> - y{�#(x�H)�T �}{d x}J#eB}#s�an ODE� }&!%"��co���&�"a�= � �),N�J� = C_�^��2�~< ��4 * (�e� fbstitu�Oi�{$xU y$, d�'uظI�1�� $y$�*� then@ . L�qɼ���;the�W�"�l $(3,5)5We migh� oc�a"a6E� иq1R.�E5 ) x, 3 )0^^�D5M3)�,M�%�(�f xf|left[MM$5}{e^{3}}\�%]ECTo �)x $C_1=I{.3{�l�,� ~1�VaQten!&`a7 'C1'q 6���-', 5/E�b�Rp �qax}��+{P�(,1 ##Str>n A$ $HAB�F�]$AMuB$� �m&c�a\s�$�. D��aep���$C$&nd$\� $cal{O}(n^3E_�e�t* Ps.�mtu�!CF�.~�,y�!bA ѫd2V W &���� !qW�&� �m:�{�_2 7}RfV� 1D"h. I�dea^")g!!fa��a�=t!$2�G$ �x�L�(b�x} c_{11�L �Y\ 222} �(2=BDaD Da_ D BDBBbB BbB FB$$ � ~65)G7�&pli�L:sZ}- split} ��= f��f_��f_5�d_7��$2}ְf_35%0<�gf_401 - f  <6�� �%c�}az�� &= (!u1��)k) (!E);),\\ } .�eh!�)$11} #3# PF�[2F4 #�#M-#11i5#2�12 i22 i6# ? s:�5 �7. �.�@+ 22})�RRa�& ) holde�aA��$a_{ij},Sc $ ($�n(nd $j=1,2$)��blockse��p, ~a�ebces. ��aV��� to 4 J�R appl�m� ribed�ced�v"CJ�8oM+J�$nca.���L*Tasks** - (4 pts) ��//��o�~�bU"�.SRinj. &�'�micIp1}�is�we�2 n3 �|/�!�+�� ��)�x-by-%�x:-%�$\verb|�2.dot|$=�by8!��ng�p.of�.�S Bo��� ##Fast �IrjTrans� �= (Ax$ (matvec��), wher�e $A \in \mathbb{C}^{m\times n}$ and $xB#n #�1}$. Direct computation of $y$ requires $\a(cal{O}(n^2)8 Sinc�x$ contains $n^2$ elements, thisY�Clexity can not be reduced for an arbitrary matrix $A$. There are cerc classes�)cesCwhichvec� less oper��Is. For instance, sparse, Toeplitz, lowrank, etc. Another important example$structuredwrix �ari�T \log n)AMmM/E si0st way to getBXis spilt oddd even rows!�6�,: \begin{equ%�} P_n -M b)e(} F_{n/2} & \\ W-( \endF,-� (1) zw!� $P_n$� a permutaa� �MY A�>�,�$ z=\%�diag}(1,I ^2,\dots�-1})$!l$us, multipQ� by $F �q�$to several:.s /U�}linearY= s such as:;: the �oa ��0$. Continuing)�e.dur�K cursively� $-� $ we willE46�YpUوs. **Tasks** - (4 pts) Prove expra�on%�Imp�� �Tescribed fft algorithmA�@Python. **Note**:�E�ic�4onsider that $U ower�@2 w3 � Comp�!7resulti�D$\verb|numpy.dot|$I.fft|$9F%� plot%aimings!�a func�n$.�use loga�4ic scale ``` �s--- author: Nathan Carter (nc 4@bentley.edu) 0 T�:ans� assu��(you have im��ed SymPy�follow!�|p%i( from sympy 2 * F(# load all ���$s init_priAxg(�_latex=') jax' ) # prettŽh output�( Let's sayE��Cto write%��� $x^2+y^2=2$. We must first define $x-�y$��\ematical variables, then�S!'s `Eq`�~ buil�#}a�is helps 7��A uish a6l�)_aM�!�ign�� stat.I -��var( 'x y' ) Eq( x**2 + y**2, 2 )!�L# Two parameters: leaH nd right a!���EmX $\displaystyle x^{2}_ = 2$%You�0make a systema\Os j!{by placa ��"��i� lis:� T = [ ��, + 2*y, 1 ),- 95 ) ] 8^�\![ J, y = 1, \ xD5\%!]�X�*# Exponentials, RadA,�-Logs UpA� point,eof our�itncluded!�ndard i� etic�D,��division>T, addi�Qɷsubtra�b@. Many real-worldUcul���v ��� value�%numbers �raised!�(a specific �M . #6  A��e case%f u� � e9J�squarAa p;Aot, word�Hy.%�itself. � eL A�Qed\2 � 2, �is 4. �is�;teAwk�Bis: �Q�}2Q�, \cdot 2 = 4:v$ Similarly�cu��is~� (Z iet course 8)Vv3}ahv~8>~In R,���C��*****MRor, l�11!l �**x**�as�}edJE!�5Qto%�3 (in6�5 x , or 5-%�a�,R x = 5**3 p�(x) e�([1] 125 M< Z� twice^three-atoU�!�eM '��Qe�N m� � , but �] E�2by aQ.�%:�!��BA�nosh> 4�":� 7 (or 4 xV)Q�� 9%�J2 4^{7A2163840 U� A#2�@terminology, **4*%�`*base*�N**7�*!M*1*A?��&� ��!< (Roots) While i��co%vto neAgB�olu�� � gi} �| |ial, so�4�'llJRonE�Qof�U mselves:�*> e=��J�?�+9B�qa1� . by� .1�: R� �� � 4}��25�! (25)��vF:t crE_**(1/3Fcr:�5��4 )� code�d!�R��%R-^�A�.�!`als��h!C abouA��� hip betwe�ots%14�  6� z!1�q" same� I-�d���;B�r�bs� J� 8^{X1}{3}aO��a^82B� ��B`/3F�e6��. Ba o��e-�etic,ni2Ni.���)eN9=29^�Y�s$ ��Syy lf�!�&� RE�uTp� 9**0.u&e59):�3U�3 aFL�s �U� �]� ��/occ� onall�d�m��ER0 )CE��r�> U how m�_# do I���y a=MbyL";e��5aTis kind!�qՁ�now��*"�*. K"� 1'(9�&@ J 4^{?a16B>) 4�p � e�� proP� � 16?��GeE�E2&{�v� "e fof 2)h6!#e& looks&� J�$log_{4}(16AF�&� � 1s �5d��of&�" as���IAN*!�b�Bl][1@u1� $logb(16, 4�>� 2�fi�t��!��CA*��Qݡ�E��m+�� W al*:)�*� *) �!�tx Ca��( **10**. Yok 6��b�U�=usualE�*9�� !? omittedV�(1000!�F� �ZJ .��! )\Oo*natuo log*] is a.j2!�***e**5!p  =a�t��(approximate�� 2.718ais1soccurs �ly a lo�scenariofy)w!ii !eas��k z dataE��analy�Vext� ! �� be� � e aw���# �!+�%Pm1�as!ln***V�_{e}(64!�ln 4.158N$Ab!�*� (in R return�7.�(.�) w�no)�isI fied� E�710�i �FA ��A�"& u� ## NYDA+(29 log(29) `lo10010A��6@ 3.36729582998647O�## Solv��EPs)�.� OK� no� a�h�űic underA�dKof.�s,� MW�P; lat��� at%�*�EiJ>c)o�� tart ��umixa�gl= k��3ed��don'tA�ry - we��astep-by-�'ear64few tricks alo�wayJ�2 (2x^{4} ( \f��2}}y )BfF_,-B deal �ALI2 [|� ^eratoB � �A� x2denominAA-�K2d6� )�ա%��)�� pB .���[u��ly wou�dU;�]-�y:� IJ(5>3weA��A�6�! M73i': �� 3 =� y 1Au3�>�2 minus -1�g$MXkI[-1 l,��.��^AE-1}JIS��I<got riM ��BJQK6zremain�� 1$m y1V�!Wmj4 �. � G,!�oppositL!��s*a�ime��I�=�� adt] s: 3�� y D6)�-1 + �3J�6)�QZ�6x^l>UWErN home�% etch�;+5 1Eiso� y1�b�� �we�4d!at![!(E� both*6!2. &�I��&.�.#�m��.i�whole: � �two; + halfa�6 s��-:!��3NJX�5A�3}BW�we�_a��U� s  �� of xE��q� -Z"Ex$ cre�[bAWis"� � a se- *(*x*�*y*�  �R # CM a I fr���1(an x column��?(aW�s��-10��10 df =A.B(,seq(-10, 10)'  Ay% yU!�pp�aS8slope-intercept�to x df$%e*df$xK #D� =��dfsPY ]!8( library(gg!P2)repr) op�s."$.width=4, ! he� =4) F@(df, aes(x,y)) +  geom_w(colo7'�($nta', size) +20h1y5=0SKvx.!� *��A�curve A! ympto�"Ada2R5l:��-�onJax&nAt� r de �-~p3�$&9i� * ra@�*�D= �, �a&���')e�.,�+� Z� 2^{xF��st�&!�� a�&� �#�#�# 2.0*e& ##:����F�� !�=�A�a B�&s0�$as 0. ActuAa, i4 a very sm�&Caln ber�b=|A=up��t.�0)always,. AlsoE�ɀratM���i0N xprea�,-2cgrowth��b�'drae�. ) S')p3 caly�a�y ? Wel��su�e� de� $100a^Ank acci-řKs 5%�#terC,per yeau � !+ba��Kbe�twenty9��(�IX ��or�z draw�$al�d�Tok�)(� c��)��� each�: Af;)�(Љ�2%�b Fini���(!5) plu5�at�.N�1��00 + �# 0.05FT�wayYsa#!� R�$\-$ 1.05B�A�� e enU � f�"D!1�N� %�.�c9%R�&� !���A[!�ytwo"e F�R  � -A��~�ed. So an �WF��!>3 It �out, if� 8 � ��ai��P� � easil�1o!Ir�aI�};.A R�0Me9{ ^{20F��hy Mic!>i l(�u�m�i�� ovg-��.~.YeaC T 1, 2R C2;�ALu��d��1�:�th� Qjg B �=E�* (A��R�W zV', G)� 2� ]& green� 6 P C sky De�4��o� ists�y�,}3�,rm��n, /ve-� itP�3�/7!f0@5f{A�0A >S) "p3�&bf{L} ^\dagger}>�1 WzcL}�1l�-triang�$ �� �� al&1entri�%U�is9+�n�id3�$�5Sd6Sn?.w4"�&ov!�ar*-zite� also�hu['� corr� ed random"�j$, Monte Carlo�+. ##� �_CGR GVa�.��u}_t$�5 c�un�s� s)[ unit� �, devi�. Ii'coa�6-��!e-�b�4�"s �\Sigmaz2%5Zm5� ..RL}QJ$-�a�v �9 v}_t.6)p) desi '��/0�/A1 py��npmatK lib.py plt np.)�.s)= 42 T�e 00 n"+ M = *1(n(*(n,n)) C!Z 8matmul(M.T,M) #Q)symme��rix L 0lvg.c�(K) ,'�:\n', !'LL�'L*L^Tnp�L,L.T)#K - + = 0', allclose(>8-q,���09C: [[ 5.8334X2 -2.7988554 -1.2219513X0.1995683 2.31184273] D.7�12.06818258 1.35675522 -0.99876349 -4.46688883C.n7( 2.52907446�10538897[58002341C.�2n27$3.50034403O2128012��.�.n.70 5.34210571] �L9X(2.41522252 B 0. Z K [-1�@83956 3.27494633^7.C 0.50593727235257C 1.489213227NCJ 8262936!X27573255A!�28)�271290 g��( 0.95719658702525392%X4813515[39077877�908462621X*aMp����������:��.S True?``��u��1om�8��v �4 L,u)92�fig, a�plt.sub�� s(2,1,fig�$=(12,8)) ^ i0 range(n))�ax[0]#��@cumsum(u[i],axis=��Aw ax[1B'vB' O,set_title('U.�Gaussian��HWalk (mu=0,std=1)')B1].B&'���,avefig('img/�1.png'�$29$8!# |0]!im1�p,vmin=�in ),vmaxax � =��'iV: Target �0]� fnp.cov(uD>�: 2Nu L1.� Lv��� AZ�"�Con�>ed v=L}1]�log10�abs)-�)��6Error (aA( b 2] ,�+# 2D hea�@ndu�g%x2� :!a*2D�$$J rho c_p \�{\Y0al T} t� 2 �|$( \kappa_xnL.� � bTy}28( Sy:+2�- S>� $$ �>�� � 0density, $c_p):apa�<�$ "<mY.-�vity. { N2C�% ��"it�:!��spa'deriv�/�5��r$A@: �F� 2�29)�alpha1o2-^22/x^�:r$y$�� u=ME9}{!�A�e�1Tdiffus)q lJ; �>� abil�>'rA�� )�)�vs. sto9i ;� '�8<8ut�/B izedj( forwJ:�eres �im�c��f spa�C Di>� cheme�(:2� "' ble �&�P-,�loo —if"�� mean�#s� [ more.�Qc"o J,hand!ngHT^{n+1}_{i,j} - T^n }{\DeltaJtM + +1, :2 G+ G -1,jI2� - j+1wJ= ,j-1=A�f��w7RX��= XJ���!d^DIC1a�e�er V R�e��^ i^ZY4-,j^> %Y5g-F1v)9 ��NhRearrang�a��pC�<� �� next�P', $2� $, yieldsVt2,= � �)��MbU� � ()�yŰ\)�BJ!�J-@-b�)Mz :�%�B[� �>���N� �St�1�+sis Bef�o!��0coB",v(re%?��l�� rain�+W�2w�he 1D�li��e etiza���"�Iu�#Y>was��a,ng$->3(->x)Ňleq # 1}{2DIn 2D��I �lpGt\ �asa��#'$E<#dtJw*^u��v�+U�:��y�< G�.J^ S[Hh�/ mesh"Lr'�r!�i�C"�C, $1.ሩ��!\d��$'n afJ!�sU#�CAjZ V _!��4N6E�Problem{�CY*m, .� )� '6 hrough wao.!�A�i�F2D bod�"$$1{\rm m}\��s $�e a!� M�� Y�}/e 46.10^{-6�Q ^2{/[sA��%geR�et up6$ome^ �;fic�p �,�to demI��9 7!��(�. �@"� tact�y� ! ? a)@source7�-mLt temper�.� ($T=100°C $m&��Lqedg3e^i�[ins��� , I��AAm)�.z51t $(25%�C�I *How h-do pQ �F�/e!Fbe fuP*arm�)qEF-?* EBoujy7I�sns:AVreaJ�D�%�ac�G[b G|�e!� ^,i�1%�Dirichle� ewsJ7Hs �  d2:=�A $y=0 �U"D2}Neuman%�.{I�m2 them)�aa4 ite-a$e �  Reme"Ti�Osw! �W.� \ �.om��Oion:�9 &m:" d�4ve%6�0$�uN�y� q_y$Ntop�� n>x >x>�@�O$q_�mq_�~ 0$ (qon)9=�Lat��ry." we՘enforceZ y end �y���+ -1R{andbWende =�.W�GT_Q N� &3�- mpl_toolk6�m�3d�nu&� 4"�2anA�ion4#6 BI�H.�= yHTML %< in>�2� # Sea�UAnt famG A�ItoS ��M�figures.�8rcParams['font. B,'] = 'serif'N&]$16B�LAF1�K leng�K�Gp#,mx&� LA}1Q)��21�/mf nb42�%of��a�.`n`v/.^d^Lx / (nJ1�L grid.�>edy = Ly6�3f6.l�=�e-6 #Y�U"f�p�@ # D�LloS�3a �A,.�9np�s� (0.0, Lx,!6=nx) yli2!y !y� Ou��% U3��distrib�, . Tb�.0A.1 ��lies T�"25.0 *�ones((n�x)) #ɠ�u :ݦC[:, 0A� Tb #% T[j,i]"�'in � j�+esn;(owshc'spond� y�*eMi:6 -Z8x8�_2�s�%� 24 du�Tma * d�M)/ IAime�5ak n/K7c=(dt*')/7B�(T=T0.copy():� (nt� Tn=T%�T[1:-1, !I(Tn2"�,6c#+2:] - 4%� R+ :-2]"#2%2:�:-2 Yn�N �0-1,:]=T[-2,:]N() :, -%T 2- D0;=!/ vB�*,$fi�U2dotou�6e.3����("|8a�5.E�8xlabel('x [m]')y y levels=a`u�as�/�num=40) (;f =� ,ourf(x, y, ThG N ) cb�%� colorbar(5f .� �T�0[C��i�J3�i� gca(proje�= "3d")&�:�:�:!52X,def ftcs(T0,yPcq�=�I�&�� >����T��RT�!�In TB���0N�T1=1� nt,cF��bfige'�f�f�f1, �`�gZga-� e"�#fig.sup^T�7J={:0>2}'.s[at(y%!�B�#R = YFuncA ��� e,5s=nt [Cterval�-�__3BY__�3wo �@"�exp� �>dinto 3D T� z dimeo�th7 �o �ue2^�{:�:$� y� `2/*R as b� �new*_}3'0f��"�z^2N� ��,k��,"�� � (� 96 :�m|"�2j- ,k7+ @, j,k.,x^2R5�����&B+ ��t5N��.D4-�FvF)N__Flqp03�Hin2us]� 3DyeZ! �>`'���'z��N� ,$y$,$z$ ^�)�z�� ����6N�0 e ޚ#�*N�.�L�1v0����#� b�^nZ"�.�nz=�f-.���"�# �>*.�d!%Lz*z -*V5.�� �)�)f)�FkzJzJF T0=� *np�,x,ny,nz)) Tb .0 T�x= Tb F~&X16�X50Rn >� %%��_~R ,=:l +B\ - 6Fa � �l�,� O+ �Tn&� ?D �� I1))�Q: U�F1 &L #��t/ ya�� y=ly7> � T GZ~�>R�R x=lxNB0,�@1 >>�0�� :,&� :,�>=a�{ z=Lz.x :,:,z 1]n;0qm� W��ayavimlab .�M$_notebook(< TT9} $&�(ipy backend�2jX,Y,Z{+�� [0:1:41j,:]22P�clf() s= v$BDe_slice(T,plane_or I^!$='z_axes') =s !s is {}' "s t) *"cob� =Nonv@-=.`',2ohorizTkl') s!!� �.I�A(+$D=b'\x89PNG\r\n\x1a00\rIHDRx01\x9,x01^\x08\x02%0$?\xde_…6 �9�  ��+Mudhln N�a.ge��po: https://github.com/Andrewnetwork/Ma2�dProgram�=� s 8@0.)s� A *`%e* n�"Q?s,"r7�ege�:bB�ed�C%"_$[x,y]$�8r�e9G)6AM����e en$ . E'B: $[0,1e� <,2,3,4,5,6,7,8,9vm=Se���))m$y-�s\6lt� $ qs.r  [2,5 &= 5x% = 3.$&* Vth�` �"� �?$��]$ A + $m�+a *�<)~�!:��hur�@$in%� $i$Yd�#$m6im$�_ 1.) � }{z} \r$�-1�� - = y-x$�"�Mtotu'J9��=)6. $���i�$%X�Ts z�_��a�get>l I.e.%0ipl; -{�qZ�## 1: Wi]T!� �N�$[1el�!zc/$3$6�A�_:�:G�a8$x=0,y=10,z=3$ !mJ�(y-x).�ax$E�hI6aV1,2..�V {dI�363,6,9�2Sum� + 3*qi3*l`618$�.## 2: � 20]� �,,12,15,18 $6��456 = 7* �721�6!�.) SuWR�v�I.���ad%�Ws [ 2�z��z� sumNat ��((n*(n+1))/2�F"�� 9(�!I�/(V\))nE�0align}�;6�B�\\ z* �)*� F�lA`B�#1: 2���00].'F^�5?6�$51$�G�H 5,10Ay�20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100�� �W��!P�5���s$?��!�z6 ==:#100}{5�� = 20!:�-�>� 2?0g 5 -- R p : 20�l a��� thesVnz : $$aq (5+5�- \l r�E  no-5*�O5�G5*a�Or + 5*�H 5*\sum_{i=1}^{n}{i?%5 $�iA���C ere,�#�A�!-�Bl~#o& 0]V*eN?3s*toN��Tat U s�P$5��$$ �Z6J��> *�y20*(20+1e X"50>-�J�sui�J�105Z�e<2�<� 6JB� 6>J��$[� aQ��eW4yZ36e]2a`48ec4yf66ei2al78eo4,ur96iu$�,��exten^R*Ks�D��p8/ous ques'!�-�]�5Ea)�.Xf�_EMo ;��a�nd !o60M{�-8dependently by:j�����-�) s$:6��Bu8t$as, $a + bB n`\uaswer!0]/�+C�-�:�.�shmL[�X d�Te & htw�l,mu'i�G+ f6^:S��30�DrMchiev�)�g �ing: jX:>��6@ 6) ->f(5*6) gt�,1686.�0 �Ѭ;F)|A�Ke 2�'yfprr� tenni�e��1of Pl/ 1 win�R�,�Ep$X&�.<� >l�Z)�game?�##�vort�&p�)�F  . * .*F�CJ�) %config I�)B��_o = '�2na'��5NW/ Msol%�i�,�0wO/llU�KK�9comes: 1Iv. N\a�!@�7"�a�Nw.�R P>J�yO �Hf�D�\(�6�MK :�N�[abexv~[qp�J[%� .5 law:F�:� P(wi� |�N^C)(1-P( �I) ɝo6} y $ $:%�]�M,!pF ]�E�.F�W�� =a�$b(3,3)p^3pMomb(4 (1-p)5^2pB� Just2� .��1Me in 3E&�X �2�le{}1� Mw!�lEV Bbe wo�z <1f�!/�6.�3B�l9�5�%(Gp^� 2p%=�BLtFC"nCk(n, kk%�#�" .fac�;al(n) />kJn-kɯ>fge5yob_win_!3(p,�Rbose=�B pWin_nD,Q= 0�6�%(3 *.+=� 3+i, 3)*p r% **iGp U�!o#3#�hO ' p**2� 1-2*Aa202� PWi�  �L>;  *2if�aC�Hf"�a}Q�az��A2: \t {^%&:.2f}" ��KH G��F�{Ԛ5�a1!��z.@%M{��'&0.Pps�-a� 0(0,1,0.001) Pady] A6p�ps)iW =v�False)MK.ap� (enK at 0.5!!!6�ltTEps, j^BadlyhX d :(29a� d(xm -71E� +np.exp(-s.s�np1)�Z101,s%GMsxJ*��.��sx�s ��  On�4�%al Lag%� qrpH]$ ���p8of�  or��A"v�y&a "b~�T. �(  $X� o7+ldomain,mvhpj>;e k�ke� shi N�% O� �/ hear$##fi�5 e�method �no�� use9�5(Q&�5�&$\� f(x)$��!�$ is�}tCSJ>S C,={L^I}(x)f^IBj&�lv $L^I�Q��$I$�PolynomS9|rde�-1 ;@f^1, f^2,,...,f^n"!�n�. H�w�u"�ksum�o87  o�S5qpB^super�6pts�5e6�p�is� b9Te r7�=N\1R=\em4_{J=1, J \ne I�{\'2,( {x - {x^J}�=)}} {x^I�'>"} B�� M�$x\in�L0,1.0]�W� shA7YlN YCE[ =x^3+4x^2�^A�su2!x!��Vi-aew s $x=-1.0�<x= ��.0~��_}( __future__�di�>&W6.� 3sc�� �� s���>ym&`66�6 R.7. 7aAxes3D�2k.� q� sym��hing�6h!8a라`pne=[A��$ևY�y;eBA:%l�2���basis_l�k(x_#`,MS,# 3 """F�3G �ng���nt"""�A� =!`. ((va�L e[i])/ q[cont"3A>�i�� (len A)) i !� nt >��!e�;ify�0d�u wopw���WQ�u�� lambda x:g��4*x� -�aD 3�>�]ys('x') �� ray(t/x�0]) f%� =ai�R 4obob6�Y ]�.�)�= �!xVP�/� F,xM*)u�pE� 0)�)� %�x⋅(x!$ 2─^0�P� >+ �> K - x I �!&My_���2u�#Pi [k]*�[k]%2�))CV �Gwe%�%2�le�A"�qT9I�/e actuaM_5 �)qi9K����D���{-�.�um>�:`J� y!$g��Ah�PZ�J�or F*� )�!�)u��, )x, 'koB7a Ѧ��� next c� ch�<%N2@" �%�%Y#��Na�}H>�� css_���T��ea� open('../ t/custom_barba.css', 'r').read(���K_( 6) 2c� �N� I�I�Bpa..D"# a) Si2�[ ��erc\($9�n$)��S ��uF�"�" does�pe�\�D>E �2FB$&�"�8 BA = I_n \, \wD AB  $$�OI��!�$U i��M�Z. eis de�dO $A^�l� !��M*�2��$A�  � valent: *is�. * It`jinTui�d * At QoԂf �@eigen� ($��4rank}(A) < n $A� $A\vec{!B 0}$�in� d Properti=*zIb"�F$Y b}\n�Ho0�]4 zero�Ns * $()Z)%` = ǒkAk  )$wa$kP q X .A^T/RT$)) det}�0*v  9, c = Q \L {QC� $Q� %)�E>c>�ed&�[%�d.C^](�'@en.wikipedia.org//E!�22_of_a_fx) A� : $a��m�b) Va.u mondq� I�h$my_ NW^Y��TureetV!Cb���1&�2 _{1}. Hc&�6n-1}\\8282V8B8383V8 8\v�&Bd22�mamVaa.ƒ�}e� ea�a~��"��m� $s. It maps%�2@pVR��A AZ vacq~�a$�L_i$'s�$\det(VE�� _{1�Li < j�Nq n} ()�_j- i)�XA6*�2�aF\��6Mn�ymaximum� k�(ff "- $x_iiHlB inct��v�� eq mNvn$ v() oK)=5MH :�.;J��Jv�HDN i.X2S [A �M�@ mula!�co\�%�U�0Tntrs.nasa.gov/archive//casi.6 1966�^042.pdf)!V�$"�Fo%�&x���2�+ [DFT��V�DFT��, � FK�zcN3�VA�S*s>/chose�  �oot��by�� c) SB aA 6L $A$ �s�K�1A^T�$ * Ev�H .diago��]�"ia!?) $A,B$, $A+B��f,A$AB=BA�b$AJ=)A��&f-M.fIf"�G sxV'2�+R�_ ��tCy"+ngle A\��x�� �X �% # -$\F�fora�(yS*�� R}^n��%F congruentɎ$R���*i�- � inum-�$P=�$P^T AP = B5k)j�e2F.dhM�rix��.ocmpos�d�=�rofF �cvI* �:n�%�~h"�g(� + heirn� !�KZd)�m�Gn gJr J�*&�A^*!�;H{A^T}��$a_{ij�a_{ji}}!�All!v2� j��!A��o�H, %�qefA^* h\.4v},M4v�MN2~Y%4posit.�h ( m\A�z}^* AIlz} > 0, Q�z3 ( 0}$)#$ =LL^*$��$LEa^ph.* ���["�]2� ~+6_26),Y"]|��n $LU$6_�1� v�s���!�a*��%�Fz) w9{= %i�!�%-$!���U�����wV,i��N�2<n�2)A{n a���5 = Q\� Q^Ty Q-��Bar��ri5� com�� thonE�mbh%p�a�& �A �, !��� � 9QNIt .AO��$Eea<*� � _j u ^* \,�$Q�c$u_j$'se�o^��!A�67��Xv5�� V� $� B + Ba�is��,E�a��B��� e) Skew-U #F�!�&�-����a >&f��6�` r��Q �jfrak{R�E|s��81�ima%ryB;I;.�$i�/H�Kaw$-R0x^*Ay=-y^*Ax$)Oll,k�,y!M6�-9z� !f!purh�� (possibly� I�m_(��A^�<)A�* $\Rarrow$ �Hqhiz�Y($a5VDVA?wE$V$u�!f$D$5 X�I�m��dis� }iVeR !k�%$ i}$ ?8�3eg�e� be��7E(5ݽhU�� $A^kE\/�j )'%8N"oddFB -u~6-j�* A.� I q�X$��wʝenS�HS,a�4Hca:� S$� X = H + Sn �!���Ha�t�Z1l1(X+X^*)20a�T\� SB/-/��hf) Uni�6JaU%��]��UA� lso�� se $U[�$U^* U = U  = Iv�N&�>qU56�p �%� j_^*��;"� E} i Y�VK circleO�!Qnsa�M�`be"m��!�qt�n Br�Q>�U���?:�By�7� ��QU^*%\�m��Q�Q>Qe�&h%xis ]�'$|I��,U)| = 1$ * V���"~�/Y.Ђ/g) JacobSjirA�  $J�S���(a�By-�š�"/f�a�O-E@d&X-�f{f}:Q � �ea��"��R}^m$ : A�J(x_1��x_�+8"[�) �} U"\�s� ep}x_1} &3ws �~4n�5 j �] 1 ef��f_1:� � fra*i>-|\ � �  f:Am�n6-n�>�$$�a�b�yb *|oSa=�$ ɦ�in bf{jg��9�( x})- fp}�J'p}) x}2p}��*3.x}s d�s��`�+E!��locP~��t���x}����4:Je@��:baA>+6'� �^It sa�fi\h chain rul�J_{_ g} \��.�=%;..=cx})) 'f'x})�7 �h��A!�I).<|uc?� P^?Pn\ dempotentyat��U &{aUb՗!1� jH e $W�'|~�*� ٰ$0$p$1%JB�� $���>R3P)`$�5Kern}dn �x�$U : Px = x�����i�� �"Po�"sub�Y�%� j �$ aWy# �i niqu@ �~u + v�� u = Px �v� - �(I-P)�� u �, v V%Hl?�";U~�mutm8��b�a�-�E�f% ==6N��{ 2�u" P=uuxi�P$BC.1 K$u�u_k��b"�f� $�A��.)� �&�k!q�A�se"�� :p�6i))[an6�6� de;E A poli *��p(ta�c_0�1 _1 t�M?:c_F t^  + t^�as��C(p=V 0 &  M -i \\ 1 >16!>2�|:>��� \\KOKX- ��)�4} �h]�@ �L1�sp�qT�.x $C$�> cha�ber� ��"`� \e[ s P: C=P�fAP S i���7ƨp"�S�t sen�f�hz����be�as6+��� &� *fCk C^� * De"" Trace #�� ��j� ͥ�M�tri+ E�.IN�%x} a_!�b2� 0!�A� & a_2 & b5�$ ca_3A(I�I�FM:�2 ��]gaUam=�i?^*M��{nJ, �]�"'a_i>0 &Qi� �F5��A�ut W��g ree-'=ur�d�}ion�t-�@H f_m &= a_m f_{m-jnc b 2}�0�"3%[0 1 � \�Kf $f_m ��d��SE�  $+�m�#�9�zu�;�I� A��f_&� 5 �"%!� [t&=n<(/index.php?JTY�|H&oldid=905913546#In��d�x?�ϴ�/� iV� e�0�� equal"�me�pE%=a~$\;,i$ ; $b_i =bFcc6;%�:�e�\k�X +2\s��bc� ose�( k\pi}q\N/,�k=I �S%��"]!�en�`:�-.<!*off5�1�non�# H they)n�_di]G[N,�ous)2s9�www.sa�ce$.�J /�j�cle/pii/S1063520312001042?via%3Dihub)- �&�jcogu M�.��%5JH��[Lanczo��Ų�V, 1_a1)M�#4&�J'to2�G �= s.�Ik�K*_v& $A* n" AS=�'h���l/ d�? m�s� @has���;�n)� 1� . Re�2.�A-� ed *de �*!s\ cann�Q��N�����HBkF� l)�/�6 eof�c6!i�4 ich �BĴ�L� ���7to e�� r@tant.��}�� w�~��a_�� 2��.�-(n-1)��at%��27>A\\*I62)r�N����B .1��$���Ga_�C �\%� J ���{ed���1.s7y�{-}1)}��$�at!T�,�c_{i-j�%�s$ $AI b$ (MZ� !)AX� s?d*d5$[Levinson u��� 2_>5on)$\Theta��KA�M�|*(�)As$O:1� ����dE��$$ &  a_0}b0G G^T - (G-I) ^T,#$G"���pa�+la $6W��nonx>d�8�f��"�)6S (B B�C C^T� �B d� a�B�5�E|� /E#<�tly 7!�I"� u�to�6 a ["4%conS� ~��Ĕcrete_D)��xF�?.�Z��O�M��E�oom�lud.�m���d� most*� ���i� m) Circul�, ��� �a�a�o�| �!� �( i+m}. $$���L� ���V{�r� a�� 2��"�a 8�J�"'b\\��i�I *�j �2����*�)�:� �1�nMx�@;++ �1}xe���!�*asoci%�\�S$a�� Ł�rL�f�I�&�a&a_0�i%&��� yei���r��a� E�FR(�quk � ]�m m�quick�=�D�z�a FFT D��f��wI� $U�/��%2� �$A�_!U_n��hR n}}FM0 � *U_,7*F_nM�!X��D = [f_{jk}�T�  ?�2j�  i/n}, o0*+j,k�/+�w �!w}(^�a}) ���R- F_n.`"!K.k ��0�Eby�-�f{����_c�H%�!�-�~E g-���a��v_j2t1^&��_j�� _j^2M�\o��_ji� )�{ j�[0,5]%�$" 2>yext{exp}E  iQ2 ��j���)$�$n$-thc�!9�y�>VB�� {f(w_j��/ ��R�a n-d$"�d��def���gcd}( ?,x^; %���Kre L��*n 2�%�y>��%a*P{$AQ�xA� b� �bo���aRr�#�g e`Aa} \star:_M�nE�"J:��F_.#a'2=2!bT!50+k��q�EU[e�a�\b}))_v}6a Qv_{�Z]^T u�n) Hanke�᭱A&79n� **a��lB**���� � �&.��=�H :$ a_n #= a_46s�&��F.F�w � +1:� {2n-26����M�, word�� [A_M+� +j-2}� ��"� a1�0� o ͺZ n�2��1HɅ][hm=- s}y�-"} �1 > n� & !�wise}� B � h>n!�!�2� �l"o'2�#\\ #5�c�3 n  $��F \\ �� �*�   )!0��"��RJtxi�2�._C��9H� (-1)^{U n/2 Z} nA#e�$o) Hilbertm�_ 6��n� c6  �&� &^ �#IpUYnu 1}{ELB.M� \}E-&h � "�%32tni�(R74^F{+}2 , r:;5jJ>f .k"% Y ZnZ �a�1N �q/2E�m�-Zm��v � canoni)��jp+<of ill-">&��c�0 a6ms r���]J I��RI%c_n^4}{c�M�E,,,'  c���6iWVi� i3F!5. @m ]}UI�� �#h'�/i_i+j}(E�)\b�0{n+i-1}{n-j} ʇ{n� 32}{+^a��*%��Allx�� �3I- � signwDm�heckerboډ)��}� principՉ�4po1�?5��1j�Q$O�� ((1+U 2h;(4n}\middle/ nMH �V p) Markov �*Q��rib�"�� a<�"� (��yey8IS "�M(�#�)9Oa3p�s: * **%nB� chasN�)5**: fT( sumsdP1��j0co�.2dou�,stJd!�wX� x9 ��f(��=.�A�� [pE�� i 89�%f$\Zji} 8�'!V~�q*"E�P"� 1.� 1. )�$ SB�J�L*nO9�� �ú�G" j�!� eE��"�( s. S�e�$should �(&%�m GKe"dv�h�q �+uc��"V+ �+9� : $P' P''=2�9'&Ac5�&9z$ %��1�+aA�. a"�����=v�$6 !4ion05�}�C%;A|B�%��)��f9�M�)E.�� A�2\{��� ! ev�s_LJu!� �c�Q� \lim_{k� �) infty} P^�\Pi�2.� al $\Pi$!;�Dep_u d co�dd$�R�. �>1<l�e�)~�!+$P� pect�fradiusE4t@$1$�5'2%H|� -%�|� q 1-l�� �} +Egin&�=m�i}��� q) D܏tiM)�ces �0"ߟ�Bw�}P�j*�6�) a*�+ybO,N>s�fixed�>�=j,d'nA�o�v�'&gd��:�FD";,%x}2Tw_a�Fre!�i&`'fi�F.�p��A �K �%"nguP6��ear^��55�7o)-����%�D!�� h^2�J� -X%-C p &&2.�"; \\ & BFRL�.{ \� �per� >;6y''!��se���-F`�CP6Fis�Yc� $$ D�Uy.Sy''Ŕi "/+$[y(x_j)]���3{!�6v�[�8�Sq��Rs� -(U��Aj� ��h��Y�OP(� 4re **global**)3Q% , $p%<t��&�&of��^��d`&��FNJS��nlyk�sub �s2��,J�usa: �OP plin�r� ��2?"-��? oses high1piece�*�� :�,t_��ry L �!s�acy. S�,9�)_us;��2g�? Chebyshev2-or @� ^ Lege[m6(gS� uniA����d noda N�`j�e E�2�V/�o�� �Í�.+l�&�y!P*� s $D+@�Vn$(n)$2��Y��izYr)yU>��� b&ŗge��tter iI6� �s.AMse>$�""*��1�*"~>er��dimina�* �ly� a� On�$c�E���&�E $p'��$�3 aE�w� 3���n�a aQle�w&�:pM =y_j��lfu�M @(g+S lly)AiY%��iم��� periodic �qs:"��]���O2aCa� aHtrigon��ric�sa�inonBmyI�oy�Mfs)IfgAA�F)�H( $�� R>xI��5t@G�)�x�,\cos(j\pi/N)�� N���X�k c]\��P�.0=/!��$N�5orcZ �input a��ٱ� $n=2�8�o B��3}�-� V9�2�& -2\\ 6 %]2�2$.�N�P  8 �N Chap�J 9 *Model�nd�-�on<Py.0* Copy  2021�4en Downey Lic�{ : [C��"'Co�� s At"} -Noner4�-SfAۿ4.0 I=Vn�Ial&"��ivLR��KAuDnses/by-nc-sa/4.0/P�&(P# !�A(libraT�\nY��%�l� try, GPpint exa�I�� $!pi ^stall * ::T�modsim`*�] 5pyQRGdV8&�d�s �١�res�+� d�vidM�̷a�QA g�+LaTeXA�maq�9_�6Y.p �9_Yʎx �QS(expr, ��_)J """D � aB�I �TE:B!%e Z: boolea �Xif.#3�(���V�Qp� @A�0siګ%V E���W ��6�R-%+  �fsp. 8s('��t n >`�t�Y����din���)��I,!$ Xic�-�6�� =C31 b}W�AbI�Van `Add`�UXj��"� # e�Apbtr�ho��/ i:X type)��!�%?PVadd.Add!*`�4`.�� reR�=�~'�u��a�݅?�=p�edF/��s(t, 2�$6 �:r `f`%"�KR;cK�ea%��C=%&; 6vl�sp.��('f') f2f!!�!7c }`Un�&edl�>`�"�/(f�:c��.BGpE�4stand!E at `f(t)`�/�&d `t`,G'it"-t0�o(ye:U�:pf{�t(t%)}E�`�`m��(`De��Q�B��$a�� ��of�29df��sp.e(� , t)^��d}{d t}^�=��%�i�^��!�Wq�oށ��`a6�6� =�I�s('�/�R>r�P%fNos� �B%B!M�J>|A{�6oralith6�eq1 �Eq�� pha*!c)b�Yf_|�^{H]d_`d `� ��ä��A(T %�*6�V_eq � W(eq1).^�F� = C�)e^{ �tI�W;�tHYi;B�&����@ n un�(0., `C1`(�_(i��ample, �p���pA2�X���7 : we� laceQ�� `p_0AU��C1, p_�. C1JX�x=z_eq�� M)'kN�Rbp_�5Bb% aXxԵ-"�o�"k�Little ha�to%1^.� ��!T�'Oq}޼u=Pr'llE�*(r, K)!�a��g�/��� �m�m�6�`D!E*�r K1t��6�eq�>spa�>", r * a�Lx1 - /Ke���Fp��r �S /F� }{K}�)J��ρu�2�Q�F�2�� �KApi�,K + r t}}{e^:'a ��ꉋ, `�`asD`rhs`�� -h� �h-%B6���6drhs^W����-E�>�At=0!��>at�; ��t, 0))N�F�2s=mmw^&.��l C1`H��s �ҁ���e�� �eqn ` �,VI|C W . B"v�0Q[ �jlgebraic"/AR� �"�&�,����b` -���IT_ (A;a u�A.Q*s. G{_G, [� ���A�1��He=&�V�7�A) �b d ou:� 2�2���M)���K ܡS�I��� 6%4.� 3)"�}a31* edI� pr[a ��!7�si��f-�6i2Aj )(� IB �^2�U �T OfD. sc�a�s e ey%�!�b�per ���!`���e �b{a�+ua�$$e-�E[C ��i�� `t=0� xrmoA�a�FJ 9%.FU% ��Sqf�*4 [logp;&���op9_J& th#L C_��L<I�m�fa�6��K !�i��"N �m�K@ =1�}{1 + AA� -rt}��P-(I� 0) /�g��l�I��nf5a�< ��&)%. "�l"�4 alter�ve�k�A6BG6� J� A^�Qޑ�i�� .As= K / ()&*aW�rr*t))&zm)e z�;)X{0�R��� E\ �W�e e�%%Vy>\u e� 5h�ZQ c�p"I� 06EV8 -5�ن:K\ it�L���Hef�:HI6s��!�����0�(B��it�IYSz?�>�"�"��los�O�~if |ca�f� a�AÅ{�U��to �*�%necessar�mea���Rone�eb?g9w���>��2a surpri��r`blem;a�facF�j no&=�ԁ�W��i�.n��$Ex-s�$** :**=T f;� !.�pa6:G9d�^ }{dtqhhI betays (t) �;&�6K'))a�>pQI.�eq0�^@�D+�L��*Fyeq3bm �b��R ^F;�{2}�:qx��M_�"�32.b�J��� �&���A+ t�}{%_ �3;>�� %�� �.b�)w��ʵ� ��.!�R�E)�)Z VV2"^E1:s����"*F 3.G -� Z� �&� az�}�+il "* B�p"��� �p6O� 2���.A�!Fpassagi�imeB�is actsa6a se-er forA[unc!�6�(def ewa(y, Aq$): """v� ."""*a\len(y)zsiLzeros(n  = 0�i�^q� t%�*z + %D)*y[i]< zs[i] = z return zs���;bia� rra"on1�!e$EWA startsi$0%�rean ini�qB. T!tcan be c Oe;eE�� a3\a� {1}{uJ^t} �X$t$a~�U�berR�bc�� �h6�����c!�/5�**(i+1)I25�cN�!��xA(Ab.9 plt.�Q,(x, y, 'o-')2.�P, c='red', label='EWAF0=m2oE�25)^:Y J legend() a�� ��Momentuma 1D  comeM~physics.}.a��A2��;o0velocity, not posi� He��we �qteA�<ss�0variable $v$ &incre� it �.sae\�hen upd�w���� plac��h&� Ianalogy Hat�a�nk�"o $x$��particle^an energll �pot* $U = mgh$� $he $f$ �force gi�|'of%$rat cho F�F \� (to \nabla U>f$� we@ $F�a$�[ge!�ae%�� AaFG. Fin, ,Linteg� $i ver �UWe9�Y 4v�e dis%�E&$x$. Not)� needY damp%U otherwis,e9�@would just oscillA�forev�W) a vers�-pIu tw,simply treatPua� >e:? � iz�� Andrew NgAb��$Coursera c AisAA� sameg mq�,scheme motivE4byq�I�o re� �<ofa�stant:g def f(x�;� x**2�\�*�>-2*x&2$ ,d�720, alpha, max_��=10 qx2�1 +$�� xs[0�x��:�O L� x - q *(x Lxs[i+1R�K�.�d_1sB��( =0.9�� �v�o��,z*v�- )*!e.�v�v/(1+ B >%v�z ##*(d��� mode� step size2E�$.1 x0 = 1 %�A%0,%�M& ) xp� 8linspace(-1.2, 00.�p,A�p).ss)��d�) E>, !�y)a| enum�(zip(9 ), 1MS�4+0�i,� lbbox=dict(facecolor='yellow' �(=0.5), font!=146�^U=RW�� �'oo +)I�1�����e��diverge6 9�955�1 U �����Z�*Ey, i,eI��j��*n resultsA\cance�m�Ta�%���$opH ��> s�hU damps ouٹ� while 0ify��consis�.]E&�<d]�X perhaps c�er�/2D� below��6'��1�1Z1, ��j�&� apRMS� !e2D2�&f2>P@x[0]**2 + 100*x[1��B<ATB?�ray([2*K, 2 G]iL��� npfj�b� X, Y��meshgri��y) level�ܐ[0.1,1,2,4,9, 16, 25, 36, 49, 64, 81,�] Z =z �Y**2 �ɡ�� our(q, Z, a.G�!Yg!2�,"\^�2�,, x.shape[0]I�,:&>�R!�� �.T~�2yt>���at�� � �x����6�2�:5f�FRz t s e�*�i^�0�yi-1,-1])�32(�2,� =�75������R�")s[:, 0],a,:, 1]B� ,$title('Van� �����as� f����/�ef� ����}i� 9�Jk��������2�Mi-�& �um���;  e���v in each&��squOroo@Z�� 1dU�s. Ne� saddle nyy teau�e"j � �n�E�isd y small -�orp en�g��r� ! thos: W A�fas��p:� �� _rmsyj'eps=1e-8��10� � np|��1R1**2"� �J� / (eps +�sqrt(v���2�:/*:& ��9`�10�����������nt6m�BADAM  (Adap�c  Estim�)�bin�}of�%,`� :]. I�2probab�h^s&�uǑ�Z�yS2� pZ�adaVS1� �`2 99,��n�m�e`�� 6�1*m&�1J� =(2.�2(.�m� m�1B�6�2B >m Fc��)�R>�6w��2� ��� �� �� � � Impl-�a custom6#routine� `scipy.%# e` Bnis�onh� F#avail�inBJ. HowG w6�wndby fo��aAPI�� `minw$e`"6� �"6�"op"�" l�glaB^&!- min(fun, A�args=()E�fev=None� =0.0002&`max�, tolM,10, callback @**!oons["""5�s^eFa]!Rosen9 0 besta"x��f =((x0�kall�1��n���%(oved = True"sto~False o,�) T<1&� +��#�next 2 �$s8 >\0�=D * r! _der(�*��l!-8 �1 95"2��(if la.norm(�) !�A*>�if!Qfev.;%p�>= #6R%�=�break)� opt.�'eR�a =!# f, x x,!�=%�Y�Vna2�(, success=(= > 1)F�a�re�& er(py R ���captu?"ntermedi�states�>ae�(u' global ps%�ps.appA p �^Tenij(brock banan&� ( will8a�[e� -" ."�@](http://en.wikip�.org//;_!/�)�illust� un�train�(ul�r�2� In 2D� 2#f� y)a$(y - x^2)^U(a)^2&3~ h�1,��(um at (1,1)Ew�@ dardBres��takes $�1� $b�00$. !_# Cond/!��of2�s lem W� seA's �R�g$b�%� lemaill-c\ed. As�|sha see,.� factors a��%&B��!heX �<$( urvaE�(H!an). "��6is high!�e��may�Hpoint�OZ"Ak-��C6� sSb�!efficts.' theym!B !� m�sharp �%��(�2D�� (+ A:.)�:_�%U_!�calcut T-0A�be Ot\begin{bmatrix} 802 & -400 \\ &� \end'$$2, H�a�e�[802,I]��[M] J k algmd(H�! �4@2508.009601277298UJU, s, Vt �z.svH�/s[1]08�ABR3#��Fb(!(E>O�7�"= """GB#lig!n-dimena�al1�QV���V� sum(~((x[1:]-x[:-�.0� .0 +(1  1-``1��a!"""Der�! $of�# �����xo �-1�(xm_m1- [:-2p 2: de��_like# der[1N =AZ*(xm-T**2�,40R - xm*xm - 2*�m^ F�!AWk%/!.�)1[0]3-~!�(x -x[-2]dE-�der!L IWh�%eF_s�?2 I�C 5, 5,h)F�`I�:��IrDnp.vstack([X.ravel1 Y ])).re9(AD,� F#�$:���E��'s�{ in a tiny� islandFB�!&(1A�(5, cmap='jeSlt� q(, 'x', va='�0er', h. � ;!,&� 2!.�# Zoom�O00(:��Hr���Z�����!,B_[U�hk, k])) �k!.s!f.Et)]����We&� t(� om�s�0toIkizeE� �x it�i2'm"� H�"� $is specifi73c-ly. You�Pheck !q�2usA{`_\`� ch�par  *y�2��$���d Nfi�  differ�!�����0b� e �2� o$xM(random.unifM (-2,2,(10,2)� prinf$B(En,�v�E, x�I�@�[ 1.48907302 -1.42171331] 3.04092560512107e-05 3,-0.48887404 Q%81108406] 1.0685951037056 h(-1.1971752 5l8731448] 9.014975946452588e-4T0.74543228 0.77030133�412767501460100.i( 0.24111646�h65737227] 7.678560202206516i$1.372532594h06738594] 2.2075707844094205916354856�613307�@2.5265110243275622i 20574923 �0626545!;@3748984984515249e5p( 1.73282778�84865849!8490294598572673� 0.410 �t-1.81645528] 4.023697388337955�2W# IV0y0ad$�0x'�#"4,-4.�p![x0] ņizeQ=�Q min,a3�=r���,  fun:EW@0466347344834e-08EV1:�00�nit �I: "� x: ��,0.9998971 ,  7938�&� ���%�5�p�"0lt.figure(fig>((12,4�((subplot(121)B�NrAps�� �-ro�lth2 h semi^/( \�3ps;)��(ps.T�a.�Co�� ison�~"P&8 &�-�thI�s� far few�4' ��-dA{U evalu to��dR��um�%d �vZ� . 29.se�ba*9 on e�ng[Newton&�. Rec� 's ��� find9��a univ�� � x_{K+1}� _kA78frac{f(x_k)}{f' *%*w � lookb�1a���.�� *d"� * $b)$, son��� ) �>� alsosy:}(Taylor seripprox�rf(x+hy� + h n ) + ) h^2}{2}f{)%A�01G���u0�\�align}f5 w-w}{h} &=>zx�0v"� d'let��$\Delta� �Z$%�2�1)R � is%<- >% -�-�(#m.M og�lac�f'$i!%Jacobian�f'.� !9,z�H^{-1};�2!�%�Slightly�<rigorousj:V4an/@ quada�c6�M> expa�\f(x + p]6p^T�U=1!ip^TH(x)p�D� tia%�/ re� t�L!&�ve] $p$%+s-�to �81�%�c = -�rgiving$ )%5>)��j� ��2> _he��0# Nelder-Meadr�8@2� �A����! -���, b�,n �3 heur�> search �tega�^3doQrequi~ny}�s�lyyŽ�. � well-kn_F / �� �� � � ;�7 �BFGS AsA��#a3H�aBcomput%��7�[Pve��me�7$s first ormi��'�8a��BV &�r�preferr�Quasi-2Fs>� VK�B"-�$in�7e�. A�& �& �%� {o� clasl� jm�7!1, nameds@�(ial1;ors�usual�F��ei�8 ,provided viaI`jac=`�u0)+�QA�Zi:2�1���)~-CG', �.der�Ass �>�L3642782750354208e-13y�jac"� �X204353e-04, -6.08502470RD �i�c3*�hev: 2��mnj"6�:xbr>l 9963��99926�l�l�l~l2�>e -CG Se!:3sol= or $( G o"�N5an��(mIuF�+�f�). �.cy reaso�5.`$� lu>verte��d ��a�>ety�b�su6Hs�jug���. A@<�5�a sF"F�`� e` packag�`m�GC`��������������������6��XKMandatorC$ercises C�86A� system $A�b$GA�equ�}�6A=�"0�� 2 & 1+\\0 & 34^31(6WJ\�;{� ubbu-.Z1f-�U6]� 1. Per%$LU$-�!vL�C!! $A$;(�hGauss�elib �wD"�B�#ivo� .�"clude>�9:$L$, $UBi perm� u P$ .�(� �re� C!&- atri; L, U��$P$6�2�( 2 .�K A�4 , 2 [ , 323, -1�8P, � =� t.lu(A) n$'A='+str(A��'P PL LU U)MsW*dot(P.T,RL,/pNEf(A=[[ 2 1 �� 0 3� [ 4 -3�3P=: 1. 0. % 0 L=[�  95�B25 0.3  EU�4. -31.E| 6[ 0\2.5 E[[CB-1� 2. j21. �3..:� e+00F  00�26'� 7: 76N7 2302e-16 ` G(]] 2. Use:Ra;to#e_:�. 3. Su>!at youj$�resentajhe;of �As�1by�(r� vasGm�b$.E?1. Wr5 PMatlab/PmO� m�$��s& ��r 3’s '�(slash' oper��/ M� 6{V*!hsto�4?���E�2��LU�< ���x. The�%��an�� �N�~9�Ѧ. ## If9� 46�BIa�5E�  1 �R�b=. , instead�Z�,xsh�F��F�`piv`�ktR trac&�H� in�v�1_a scrip4atR$s `L`, `U`%�W%�9 5?3��an Eco*C"Sm�w 8regZ)8to both (1) flo|$(IhG.� (2) S;+AAE��'(3)�st�/� *8)���9@�E�fe�((s) *�!� =��a�#a�Rpec;6.�� fV. ? (G�%arg��Ps�re�r�im 1&� i-�H �)sof�0o9QI��pKa$!a�preci'qo:c�Tre�|I!q�PU>ml mf� �*>)Y F� I3.ZIaccurac8 �sol`Robt,arC.-a��r2R 7JJ�go!$toM�)@fsKe�a truss�uctur~Ilea�"oa� of�/ar��.LMr�-h��id!n��Hexter�( y�Ung?��.�#�, a case $FO hQ6~!�$_1(A)\ 10^3� k>�l&i,�2s (�two��):V� f. 0*! \vdots.500.. 6fFSE�v "/ e2T 1�#5�rK asuri�] (N),_ ]�$\pm$ 35N-aI8!l$upper boun�͉'ve erro"xE:��A1-{1?�2J�w�jXm+�?A{�x�a>vn2)r�'n 1%,��� t. C*Oat�guarantzM�'h�Wase �3 �hMbI���u�i�NA�2NwA�a. $10^6V 8�/w� situ���Lll�(a�r=xec�Eᝡ�>�?zW�/%,ga|)s�Tormula�erm�sui�Qm a�Y . 9IJlab sJonAV�&�=sU:dul!��bP�conce�>a�I�"board���applic�[mathe��cal�Kl�discretIa�� J��ia'(�Z�'In ad)��rix��fur��> erti�,a�Yke "� unne#3ary!9�1�r�*`(5�!~Per�T/ %_A�s,AĹ�q��nA��d m�C?Mzb���!1!0�vanta,W�u nowjsti�e�[ tail-�epal�!{�qidiago���A, assum!�%�5$~��1n*; "c8E_R��!$�m!�: ��z }�) elX �!\low�9riang�A�galready�. S\a psued�|d�a how��}�e�he�� tri-5J�in�ccount)�Jfſ �e��Rs �" up-e Thoma�u\. 10. S�A�by�#�'�W$previous e� � 5�>�R��3n$>a *� to6]2�M$Ak 1� �w�'$2g�0%���e�j $n\�� s n$ S^ke�.r own,rP=�IdwNcųe�a wayIGnG��it swap�Eof rowse]�]ace;��6gerO!piv!'F� qa,M�RUuy�,9�in pseuM� . � �,Homework 17 ^ymbolU" ath % Proh51(# Part a It^�library%�2s.N�f. A�$ setu�Tnoteboo�,�ing6�03� b Se�]��L, z!5"yf zLc�tɂ��ٰa� @ing: $$x^2+2x-5.$v4� �  �d Ev' e6[$x=1.5$) g<ke�� � substit�: $z$ ��VDo^) $y^2 *x�B��1�29�S�BifA��� : $$�%x^23 - 6} -3x})&a* b b E�$w(��A�=Q-e4: $$(x+1)^3(x-�8~ac F�7E�N`S`3x^4 - 36x^3+99x^2-6x-144b^5/3�a �)u-��*�l),(d}{dx}\sin^�N e^{2)-T���#I!xin.u )�=3.3.ArnaC�WAE sympU�"�]a�9 �iral%�$int_0^5x^2�(0:dx%F�9n�2!�Z�5E42ES"��2s)��!S!�1�=3x-10�l>```Eq``�``�� ,sav"@m 1 ��Sb� �(�[ll- a list)� �?iM�6Uq a��R��=!�f���s onl}� ```my_.0 ()``:�A =^b-^!& three5S�unk9&s2�:��)x+y+z&=�9 2x-y-z&=1y+2z&=5T .a#C�I���ans; � t,f%�_+�ZU��c�Y6�2�"�2�-a� ```d~.0e[,d�)e�t,\�dA|%u2.`5 �a"L;-� $Ax=�ith $$ �\left[��} 1� & 5P+��6 -�)v 2\C],$$ $�=ZW\\ %�-2N?�S��[�&I6O0F~Fo�� �in�a4%� Xx��m algebra~�a 3A:, 39!�mid�Lrowcolum:KD>�d�N e$M$63�*s.2� �2x�q2 os)^ll! sh�1�%��aY' Y (�: M[i,j]=))J�� Lin�le�f�M fiG- I�e  ? �%t�2:)m.a���^fit^: "� w�/te� at"� polynom� fit)t�7to$�C�0iUN�c7 invEsi�-ane_ ,���6bi-+&-�e".2�[l��pa�� independ�KQach�+, i.e.,=-GA\vec{�g}E- _0 V- 1 �4) $$ v � �wOa�.jQ[Q P]Q non-2Udu\`A�product �h_0�$V�%p� A�:M6 dat5��� �!U �!�` viewi��1���"x s�/( $(x_i,y_i)V/$i=1\�� -{we��2A� . Le�,e *residual*�%�3be&jb �Vr_iGz2�- y_i%W� goal(tovy $-$a�f 6�'Q�iy�sQG�C, $S$��S(wEd(sum_{i=1}^n�^2�A�6ual�"�V�u�3w� ndIz�t�4nt*�-�acW��d# A*g0� Let'�m�e6��c��E�Ie)��.�%f%1}v2�Daq���@:���\"S} m��22s2(  x_i + 2  A� FI�O�c2�c ^2 =�B] �We�re-��v�C~!�:.�2�x_b&6� 3 \\NJ+4O_b2�C);1N.O_26� =!�.�C6va�!�>� ^:O)ri� )a�%1Q�� $X.����a�c}$aK_aOa�I�1.P��.: = X�2.K.q?sea��no� code2\ Mn py6npb�of�nD$ >�#?JM# �^��es��default�b��fon ��-@rcP�es['�9�9�9'eC((16.0, 10.0>9..gf({'].1: 22}Q;F`/l�zpreZ I �l�I!��y �l� � T'.�@ -4,4�B �H$3; b = -2 Ca*�e + b�eN�L|jv$XV�4,QM<2�X�%UE"P14[[x**4, x**3], 3 2�22)"�Unp:8y� , y*x]),1-)Now�%�.�6�$la.inv(X)@�!(� c� $([ 3., -2.�-279\3ed!�rec=N!*� J)x#>F� !�a*( �:w-�generF&2�,an $n^{th}$-�&q . By�T �n� al� 7" �ta��H�ki����| _07 Bt +�+��ta_n x^n��!' $(n+1)o $ of��� ��� �w�Bb�:J X_� X_� \c@ & X_n�� X_1{n+1} \j & \\ >D (&2;2�9en*oI:� �� �� ���%@nB�FIE� J >K :L !v^  ��'�=6M��%/O>"�Wn Lg���s&,D� D&, u0 .�IP"& 0Fit(xi, yi, n�"�(� s(AA, AQH%�I !i���i���>0,&P:�q�Nyi*xi**i ZCjfCX� ���B (i+j* �Rb)BrV�"� >�i V�y$9 - 9*xi -����Q��&7Bx!w3�<�A��9��1.,�(� �ist łw�(�r�#�-lK2�cubic.� 'sB� %noisy Zm �@�h\gPs6��7t!mv 2>� fK  i�%=yiN, = yind *np.�E  (xi.�) �FitCoeff+CBM P,!S0 = �;.K+>1]!�B2f6�[3 F��A�e'Cg scatYRxi, �);(!Z], 'r')"$86�)gl ar� If!���aR#@ still�(t ��HO 8 e�6� F<iM#_i�MQ��� I9)wr�osSHAQs�T} .& � . ���0 \phi_0�>��1 1 ōn �N���n�!defin �e�/�.Q via�X_{ijL j�QA�2awA�j$wPU8T�� = (X^T Xa>  y}��X $�t $y$-�"��3�z�4� `8C*�8V6��Ł= 5_i@N4��.�s%!�� si!l�0%*1� 2 = 4$�u��=�:� �� A y}� �8~�5�H� ��]4  �a��� i), �45 ones�t ]).Tw Apply� a@ulaE�fZ� s.:2yђ.T@X)@yiա�ź � 5��2�ɸ1�a ��e)�c;VH�l �e!�� �6! �_� f�_N���'�-hP9N +a���W, 2]*4�1���D1905638 -0.950227$0.64035906�/!: �r�c��|:��rfi6mP  xA�%!��E�(6�~��as*"KF�##JRC�5a�of $m$��&� i� $"5: 2w @*} a_{11} x_1 + &2 2& +& ...nn &=& b_65�  && && &= \\Zm2ZmRZmZb_m.kE*}�X�letB�!�A=N5�1}&� �n}*�* �� a_�Hmn}c ��}\�*| �.� *}�N�x%Fk  �F�x_nJy ; 7rm{ �5} &#Rz)� r^zb_mJz:��*�eCd�%8$ wm &�c�exqzs+ s *�1� n $m��)��$m>n$,>alle b$.l<"E�( �^*+de2*�Z*Y*i�Z� t*. �-canY^b� l�^exactly&2�*usuN(m(��G ysis�why2��@so� or�11�,��Yb8�u� *3� �� �(�Ere%#���$n$F. �}<�})} undeB~�*�F*in�Q*Y.�� of �Fz reducible!���,ri%.\�s.e+GGwordsEi �%A!�MG�(TG_  u!� y ne�*C >��.V�ykI�x�LquE��%. (mmin6?�.)=QT �,A����!BN�~5�,R31�!ƁUb#k�un2�s6�` + 2y�{ 3 17��}: &^� *� 1,2],[3,4�:A(0�j �:"�:  [3, 1[�[3,17]*_X-1,1)) b182d 3; [17�`la�7A, b) �{6N11.:O-4.FP�(llclose(A @�(be Q� #%�a�E�hooe-�;  &mVA�4`dgesv` fortra&5[a `laA` (�A]! P4Al`doHact�O�em^,B�%s2y�,wtQfe{0`blas` (Basicѐr$SubprogramnBIn�tisGr,��LUqdecompe�i��s�R�g. shor�%%2bs rar�JK�Baw% �or�ys&�Bbecua�: e `l�Jg&pB�5 ides�Mconven�BI���Oper��2�V����:a��9:t1,er�]85��)jbe��0!�(a language G"C1FI. - [Hz.�'rpret I&��Gs]�bwww.ne~��b -@/lug/node24.html)Y Summ,of BLASQLcvxoptH$userguide/�2E DLE��F � HA �  . . -* �25lu,u-,a�#: = *.eo�!�|J�@,S/ew0N' (ge)e�s. �4�dea�� a $3� 3*r�"�^3iseness�Nevery��"�i?<�.� A��#2n�)<6� repeM�proced�_�+AB�JJ*IE�A.b�"=E/M�Q�FZ)Z�)�*A�B�third5 AZG+_] ��G12in 3�zero.VYstopsU'*<echelon*!m (�:�6���;� o� #`�7)ze�� * C!"�2*a&�>(� al.. &�Zi/�pJ'ne(9FBe�=@ V� �w�* ��?�;�'�be%�/`� ed *1&8ing*.�j E5L� ormVZ-!}�&>�� Zyi� /,2�.C� 2a�3.7H.-. B mb���íDy%I$1�-$2�~Q�I�!j� }I.�2�$2&_InVd4bd3�:��T� �*!-5�Jl!�i�row��:�饩�!�z!�� �A!9� �@:�2 �o ac-.16!�R"�: 9x_3�k!x- t� = -3-4+ 1!k �-�Y %8/9D1]/9E�� Check2O 6E�[1,�W[2,1,�[4,7,2�k6�1,2,3J���� ZJe%�([�I8 9 t  d1 : 0�� -JordanU��n� J$� LA5�Ss1 u+1�;set#a<.>a�$ b��9%��0.%�6Q,�AI-� 1�1/9iD.pTm AuM�< ofI & $x_��$x_�/$x_3$"Q@5�`kn4� !  edaB�| �R�n)UianJX%E�EofA�s.]O3� ces $m > X$Nln�s $m < �� intu�Aa�ck2Sa no,P�BP��D.� LU� Ik'LP>U+C'M o�&LU:�)�S a:#s$ $$A= LU$$�L����%F$U>��w,F�is es�K,�gJ�`�b<�w6=!F�(as��K�eB")�ye]>�O, llGXI ��T &�At ime,%pout��( M'*XB�v�KIR�Y�eA(=2�F���F-s�Fjur�e� do�>ot��)&� ��q��s �.�,�!�&�Hto�b6�b6??+��Ne�a�f� we '&a>'�!��<�3�s"�Aj���. m "T"�GL)����� }���&F�."�v'�m��tZ \end����f@� �� � : "�#�4 wA�� �mI4 -�*? � i�3�2T&cor�= �.���their5� ion,A@so���(2) -5v� (4)&� -14��Z� ��  $���� (1)&-9n�V��Z�K we�&a�2x ;L=f�DM Zb2&e�� Z4&1n#J� \G V�T�0��0&0Ҝ5 E '�� ces�hy�-!�"M, a�LU ?" .��wsKi3f'\o�R0H  Op1:&�D�L� - Op2:laG �"�6at� a�5�aanZF3:�%Ja��ʈar�s�4b���:&�4� -�? pre-��Jf correspon�FaV�a�:Xa���4J a K 0p#���=\\-2:- B 5 '\\ 9� N����%� �nF E�V� �\\ JZ1:�>�.���6�n��b->+�0:>"Y �peion�"{Ke negatxaWM:ށndN Jw� &" M+���M�0.5:"bO0>~P>��O5v  scal�zLM{kp�nBt Mr�t�N^��!�!^!��i�-p�:"�� (�=  a sb6P/) �),ZsXM�Cd?s�@ro�=kN:S Pc�w�>isI�~��\"H orig� O�]Qj[$U$�e^8f��a(�5�qn�N{w� !\(���&�!b7"'"2�[2, 1* ] ]7/]���TM U2�b7-F�o0 l[- f01�>�bv-zP9)��[-4nPl�P0 ^,^� 1 @ Vb!J!d >�k! -5, ->�k 4, !j �8�!Mb2 @ nnopFqrsJt-14-�.w3w~|1, z��0,y-9Fsn BwU�%A�m�c>y<$�,�Q L2�i����i��n�i��b� L = �@ �3 LRzaqyt :  �r�?A�factoˢ�QL6K L @ V���,Bm)�3�f }���mQV��[�)�$��By"�_� *any*�Ŋ8hap�V(aPV�- �^v1`.1 b$ -� �Ux�6$M��[��&� ,�y��3hea��sFdH" io%=KV5(> B�(MI�C(_�(L, b, ��=�') y6J>Z( 0>-1Jl(!$NyU,��V�( 0�# LDU>�� �!��"t=��U�!��<hH�s"Zo`ruc� Fqw E LDU$O5b/_p.!un2wY$D�a "bU� 6fIV�� Ũ�.�.DF;�(np eDZ!�x"} ��R�5ժ�>n�@3wr -� �4: U/�&{nj ] U1Z�6;D@ 4B�0!B��wa�� D @ �r r-�55>�-9J_q "�+, �� �b�+�<2���$ice2�P"�gla.�g>E V��] A.:< A� 0M�� �(�n-6C�� $u$,�{amme�j,c-^:c�[�af"6Y��?A^T�n)7�uK `��lX(�To[$��� $U$)91 .�(� ���s�t� must�X5 $�y2&�J�$LDL^T]S+�V�D$:�e%�4$D^{1/2}ų�y%[e���K�!4tx = L 7 L^.()CC^{T �$Cn�-&�� 5;J�� $C^T>i�eranspose�*his:2is6 U�2Y��C�[y� "�.f!Y'M{U"�-� �%A�\s-Q7J\�)fi $ML$�+w&�%z�vC(}<$E�N�((1}&A_{12}\\ 22}N�=�! �}\ellm:&ZLM&L_ZEzC ?\\0 V�%1.)�B $~l sqrt�)1}lH2.) $ R�*1}{3} �$�k)�;� � - 9 E� � Aa��_22C�"�'ftX1&3&5\\3&13&23\\5&23&42Jo�y$f�P% # �V� � = 2-�eqn*} ^�&=&R: �^���� :*(9&15\\15&25J�\\ ^o 4&8\\8&17J7��$��#6G��u��i��g&�9by"mT FJ7^�2a 4&IiV00RW2&4A�n8�&6+A^NYJ2m(so�1�r�q_33}=1$`�Byield;2&�nN��� = R#1&0!U3&%\5&4&1J j|0&-^0R:a2 ��w >>t83,2/[5,23,45() 1 C� c8 � Cr2� � B % 2.,F� N�C1 lax* C12{"� ~B �M�B��A, 2:�, F^m>�V� �n C1"i ,�T�7i�^�&e�A�(G�$ipp�[" �V0ullet$ > CloCj: $\for 4a,b \in G, a \ + $$ >Assoco�vit `(')2(�(b)FI�Wity �exie�t \io\ �  \`e = a Xn�Ce.W� 8, haR�hg�  = e$ CA�8n�at $e�a �b 71;e�#�'M&�; **Abel='group**!�V�=!�-�a$�H��oup� ڻian, �?ly X]� no� by +�4 i:�0��J_ �:�di.Hd�d omor��m, Is ET�Aut.2'M� i 4 ��@ deemv(�@aml^% hon, $f:G \to H$I2��f(gI-"g_2�@) * 2)$!zkernel**" a6[%% �a*�e��"� l>mael�%BF�HimaδG%�y��@�Y6 bi���k-TGYG ? *Sub%A$ if H< �G�@[kW�<d a@)SoA�Q�� . $H�{q G$,Qper]n: 8t G$   FZ�e ^"�j��rib� **Cayley �l**�&B�!& Elmnt�Pe & a�4 & c � & :) 1�6Ey�O .6��66c��.6c6 6�& "ãa�Q :(PGw�I�%x!�0[\8< le SKrt R \GPleaS!�M g�S�%�R7E�rul�$fZbd $F_S$4\�Civ�et $S$�D��e"�c s (a.k.a.�$�AorF�s)i � buil�2memberKS: B�\emptyy���Normal Q�a�Co*J ** (�F):aE�A�,%���0e�9 $g��\{g5�h : h�" H\}$ ($Hg7 {h"g2"rO� 8rm����)2�!�C ��a 6)��e�m@�!!.��&7/d��nct ,E5�Bx<s��if9Jn +] dex=�8 {\�B G IP}HO}A Wu�gp�>nX!�)-]Os. ѿg%U G : %tHgS:$H� said��bex&%�LMr��E6��M���n1�Con��cy�vssa: $Cl(a)=\{a�� :���GH{�:} �2gag^-1\4 :Y%�n_ valy��ro�0us U E �F�  �Ejam*!h **Inner a�1Hs**; $Inn(G)$ >$\va�s_g: G -arrow G2 ((x)=gx�- L{Ŕ,) \simeq \{ea >m}!���is�'ser�Gb�8B��>�W�FUl/W3a-�^a1a� Quot�A ��to��)!�q�iہ�:���7eEs�& ($g_1H*g_2H=B H �C<H !2[le�e!Qtk $G/I�n . (%0=G$ ,G=$ )�.**Direct�[ duct�$�i�� Tc8Yed paiZ0 (g,h�a�$M�P $��2�� ,h_1&� (g_2,h = 1q� _2, h_1*'$p �~(G25�s $G,) $ P=� \Left��I{��: } &A� cap H == %zXm{�@S �Ub�dp�i�v}a�� h>� ext{ comu@(u%} H X(��$stronger:}0�'�G���� �ŋŌGeoO E���A�TM^��I�(eU�Eion)** ��i���*�X of GA���X q� e�I$X2�0X:(g,x) \mapsN� X G(e,x)=x�9�k vEp�J"_ �A��ed%ny��K �who&w � 1A� bons�:�t�V self��l)6��nG3$S_n$:R*�'�N7�{ '�� orem�Il ����,�\d�-aU�*< 3-M��!� Orbie�S}[�G%UqK&B{� 4$S$. ${G_{.s}}� oDp$s�,SB1ras $\{t �>�, g.t=s �AD-CY%$(�L�) X !��or G A�.��X�g)1 ,!�٩ **Ci�**~ i�daN�5�A��x,y �&��� �/!S"**Stabi�D$r (isotrop��d�$( _G(s`U2� u{�1ina�mid \ h.Y!- �B A��%'�7?vHspa�8jo **� en� s9!K>QltF}tivly aB2 1Q!e�a2p V�!6�m��uGL(V,F��**`�  O��z&�a���E�$a field $F 80Cer�� nt (3M<). > $SL(n, F)$:2(is�(In $R^n$ v�k�P��٩"��er�$ �EMA�!s} $O(naortho3�ci-: O^TO=I$. > rvE.do�eA�)��$SU P n×nx1R%�Q�1��$\pu bb{C $ A **faithx�6aA@e�8,A2�G →%�)!+in�ve;4�1"R n59�VM azhe�#v�k� �{e}� ~ ֒N !'sB�� a 8s ��6e� n: > n=1�e+: ${==� �;**]n=2�onD  $Z`fd S�< >> $6"/&>#�a>\\ '�eBk�3N}3$ >>�Vn&. cvgbgv�e% )\6Yf >i':("Ra!:a^2�n=4, �3noٔ%�ys%%Z_4 Qr�g & g^�9g$h*CJ22& �DJ)�g�Zf*2� Bb��A&�����ulH 4Ex $\{1(� -1, -i� >EJ�}Y�ITlt Z_4� { c�yh9�`LR� �a\&+ C �D O\}�[{g,!�m>> Klei?ur-E� $K_4$:A�>R�)HITQIY!Fa^��b 1Ata ee>! >> 3>Hs� %=a \}, b cbm�K_4 = e��  � -��na� \�u��a^2,b^��b=b�� Z J�  3e-��.�e_ 3!=6� cyclE amples:a�(1,"�5p���CA� 3\\ &�E)3%V>D,3)a�*! >5ŏ Fa&D%F� s�Q �s): %y�,3m 3�}!�=<�/2T: ?2)=C_�C)� )=(�C2)J-��vA�=�,!�,5�c^3, ab�-�j "�s_1, s��7 s_1^2,s_2!�$(s_1s_2)^3&�6=, tMs^3,t 5t)=ts^24�^:ses� $: {e,�}, 3 !I%?>�73,)q)!�R.Q�7ingaA�va�{)p%�5�)�   \ }�FF�p���� >�S_3"�SE�**Cyc~�kJ i n: �n$e�1�-Ka^n9<�����+E $*=�%n� 2^!zi"��#s_: !$modulo n a*�etics%" roM^2$2\pi�m} {nW **Fre&.�1� F_1:�B �N1%�2� poss�W ing�]�j�$ �X��5L%_&4 $a��5%$�4 > $"a"I�" ,." 5r�tjZ"� w +����)\1�oup f(�  DihedEk6; � $D-�Aj �Z>' c a re9L�kgon��� s=�4 refl�"�. �P�'in�$R�~� se�exmlg�/��M�r,s-�r^��i�r�"MYd���(= 2n, $D_3�i-$(?=e >�srs=r%�8$ $r_i==r^i; s _is \R(��8r_ir_j=r_{i+j},s_j=s s_jB-j},s_.-j}$ n�l+ a9� %/: $ B>Rcosi&({2 \pi i}{n7P�RF��siJeNJ6� , ���Rjn�-��!�D_41�O(2� SO(3�$:f�k( ��cc" \ � r^� U� $\pie�!s��M } ho$�t OdE�n~� $\{s_1,s_( &�).@( r,r^&6% \pi/�I3 �B��y$\{e, �*�ge,s� +s_� � �3V< h3-�- D:����D_4��* 2Z$#]$�Pe&�?��s ���?Fф8google.colab #f3I�Y .display jXHTML # ((""m5 y +�_pq���2(use_`�x='jax') "�X�.co��� ics.2�as P  �P.� (4) �p1�g_form.) #p1.� ic)�='*50��$6Y 3,1)(0,2,�bBQ2=p1*p1�2V�2B;�%$�& 3\quad�3 2, 3 4� ]$A=(�& =���J{�1 0Z�0\; 2\;�`' 1\; 3 3���J��552 uB5�4�r����& 1$p1('abcde'6j3['c', 'deba'�h@mfN-"� sa+G �� G.di�a&list(dy9�-�1�1( ! !�-=N. 9�:QQ:lYlj.1-� .A_j.3%�;6�M gQ+=�#S3� :�free_�Us�#, Free�n�fp B F, =E8("a, b") G = FpN0(F, [a**2, b*~w (a*b)**4]�l"O is:",G. ()) #lW�J��.low_@!_ss(G�w#�.t� l: #�kp�(t.�$Mx| 24� Links [��a�_� Wiki�_ s://%M��s��u�~_ /Main_PaT^ [Magma����al";'S�� W ://m+.��0s.usyd.edu.au $/) [GAP - �s,G��,�bmG-a Z !2�{D��e= ebra }��` gap--]�) i���� [Hand_�of:e)> Theoz�}�  ��mModel!�� Si|ooA�  Chap��9Ӣpy� x 2017 Allen Downey License: [C��C� s At&K�4.0 I�Nnjal9n]�iv�P mons)$ Vs/by/4\|:� Con�| Jupy��]� � assign%ralue N�an ment %cE ��,veShell.ast_ c_�4ity='l�& _or_ a'^ ͗)th!W SymPy.�)*5Sd`p�X+AF.�E�:F ) %��&y �s t2s'!�p�������,��\=RLaTeXa�ma����IŅ�9 �A�x yS(!#, � F�.:��(�-��-mP.�I�(E:B�e Z: boolea "q�if.#3�(��y�xp� � Analyl�%� &C�"� ���9)�q !s('��� O�i�[je�l)�'so�g��ic�e��s6d� = t�Y`�;)�Lan `Add`���+&TTe>+a)sum��Atr�Mtה mput_v6y type)= w�;I,core.add.Add`�A`�us�- o re�N �~ a-�allM�;V����_ed6�!�s(t, 2 �`f`% &��� w�-= a fj�6^a�F ('f:� f�!}!�� x`j.<�2]&!If �FF�BG-E� �-j�a�8at `f(t)` means�e����t`�Vit�Pn'�Ax_(ye:�U� `��`m1 K`D"I�QkBW!�a%ya��-'2�dfda9b(r, t v|�3%5*�3]~58�!1W'N,boi�`alpha6� boa�1���J(0~��er9�X�� or�Yal~wth6[eqwEq��< pha*� �I6�Eώa�3�{>ad� l%�X6o.r_eq = #�(eq�@3Ft�i�|"�zPBka�iW,n��Ln�if��"X�q, `C1֐I�<�,%d�?�p-c�beis easy:!l���RQ�/ `p_06�C1, p_;yi�s('C11�]Hu=w_eq�E J-��A?xt��=!�,work a littl�=Y t�n�Wm1�B\#$;1��P�w��QJ�a'*��(r, K)Wa��;|Bdw*� mor�kO8�D��js('r K1(��6^eqMA�ify�, r<3tC3I�A�/K.�U�21-:���t��,pnE�_eq`,A�I�`rhs`�Rc� �[ 'Pn6�qP6&rh��m2�?A�>`at $t=0�9atE� _Iwt, Qt-��]K�ϩ>C1`�j�`��(0�a . S}:A4[ �G&%� ` }, )��W. Bei�t6e�< �5ic"��rt xG��;^�-��,a'�-�p -��.� )�1 (!�a��!�1��%e�i84se, [q�& pex��"og oI&m enN���nAs� (, 1>J:EV _of_S:M[0��A��6M�%,!�Q�� AF��!^!� eIN� d ou:n�.=oi ��M � ܙA7 comp$NC!�* " a T�i<t�cM�ify�W f) &(� �Oft5 Bn�-2ey�! beholw�� 'sduT��n̘ew� � Ai� Jus>� double-tr%�=#��it�r `t=0i��r��f�A�F=�)l���>Q�calKi� [logf4c"; �io���wth#L C_e��)I0Nme��l*you��se�{ !p�n&~ ��m-8�`%fG�8K}{1 + A e^{-rt�B1�> (K -� ) /�?�ԁ�I= nf5E��w'g�.��3t0aȅ�_'#4 a"�+e�%a!HBG6�J�m��R,logistic = K�[ / (1 + A * exp(-r*t)) ``` To see whether two expressions are equivalent, we can check whet5�heir difference simplifies to 0. ```python Xy(particular - logistic��his test only works one way: if SymPy says the }reduc z, >�(definitely ܘ (and not just numerically close). But|,can't find a���wresult�at does5Limport matplotlib.py  as plt numpydnp from scipy.interpolate J 1d 'typ�v (List, Tuple��m:hdata = np.array([0.5, -0.325 7607, 0.44 48]) theA4linspace(-10, 00Q�|(a) Let $x_1,...,x_n \sim DExp(\I8)$. The contribE�A$x_i$AN!�Llikelihood is: $$L_i@�i�|<1}{2} e^{|x_i - `|} $$ !�Jtotal��-:TL\begin{align} \log Lc&e,sum_{i=1}^n �\\ %- 2��.16� \endl2�ef�_�_double_��%1:%� [float], !�2 ) ->.#:e=lo U = []for th�/ Wl��0(d�Wk ll +IJ(bs(dt - th)"8ll *= -np.log(2 �$.append(ll return�F�ef a3_AI� �; = FBi)\ � plt.z k,;title('D%��onentiAmU�'/$xlabel(r'$I�$y  'Log]�');B�R �* (b)acn $\hat{ q}$!� MLEen $�given b ��t� scorY a�:: :8Su3= 0i7e�\�Eal} m�}mK8mI2=sgn:A' median(x)6R��a�0last statemenn due�follow�7 argu!: ��Dmath.stackexchange��qu� Hons/1678740/mle-of-i�-ex5�6print(f"!q= {np. �aV)}"�or.i A e� us�Rlo2� directly:2FJ���F� rounme[�6gmax(e)], 2� In��Y� based Ŭval6�a�+_%ie2�,�U>@�1cutoff: �A�-�'�Q, �5# �secA�H points occur below)bov)�maximum� A. mate� mle_index�)I� �%p_a_ma- 1d(,[:N],A�ta.2K�jKJ:K : Llower!� �I ��()^0).flatten()[0E %uppbC�vC�#(�,VmC at a!�-off of6sc�� .15 # 95%v fide��valq'L5�� C{c}�+{9�!e@I�,` �u', c)}'q&(c) If!� larg0� ��lb8now 2.5 instead��0.56��B[0] =*i�the��5o�funI�iNw6N�TDespitI���2�E� in`o �:�b� N is�expected �7m��P!@ which remains un IdJe0is known�be robus�outliersε@#*# Linear Regr�  notebook� lņs l ,r,!=� &qleżdquares method. Some fitnesric�� ,discussed. * s6� �� 3 sys p 4mpl_toolkits.mA53d n4 Axes3D sys.p�H� "..") ? sA ear_. ' )N=M�� %&I  in!Q ## S�eFe<: One variable d .}�)jZa! predicte�i� of a�ntitatres�� Y oiy basi�s!� Cor�Ds $\{X_1, X_2, ... n\} �4pproach assume��a�l� shipwem� �seŜ wsa a@akfhe s: $$� equV} Y� Y_0�  1X_� 2X_� ... nX_n,� I~ � $ 90, B1 � n$ �uni�"cs. Fir�w�iD5)�ver��R�~o=� $X1V8leave us with 2le�s��tercept(�$)5O$coefficien1$)A%R�[��UN2B7 $on a train� set!pro(o_AIh� %�0}$��c1� a�I�Wdata,YGarn m�'M? futura?lueE��Um$Y$AN newi#$X$ asV �y(.�AM1}x_iN Iaaſa|o� y}$��� �ed �!��($X = x_i$ !G/��! WeE� gonn!�#!�a1�0 $y = 5x + 2$;aa, randomly 20: i��* $[0, 5)$Avis cor)Pd!xour%��3U ampl!��\{X x�:x_{20}\}6] 4_size"0 # Par���QE b�2 bl5(Stand� devi��h)uA, d ir�(ible error h x* % . _ �( �)*5��We compu1�epend� va��,, $y_i$, map�e��5��adde/�t v noiA �!�.%��q� zero�BMs ��normal�d�evise64A (b1*Ab0� e*np �n2� �(Let's check��a��go�to��2� "�$x, y, 'o')show( Y ## LJI NowQn) !N6z$technique,B�Q:�BQQ.u^�U� �u��Qd�� e]��݉x�at�!�C!5��e2���M\@ nCminima#H,residual sum�� (RSS)�e� ��text{RSS��.�(y_��� y}_i�$$ �alyq"aa�h.`�IF�RSS$ y);1��2�x � over!o {x})�y})}{�7 ^2},�v0vH�!�x}%a � ��_)  =B () b_A= .*d.fit(x.reshape(-1, 1), y) � "Est�d.-}!\ � � :\n"� + "I�� = "+str(�$[0])+" \nC&!" + $1]��΋9.�D3.390914159450319 #6�D4.504515480115419 2I,# Plottin re�Q ! !�eX x_axi������0�y >� =, � �0, �='Tru� 8', color='green��6C!� [1]*Ih O7 ed� Elegl �."U�a| >U clas< &Mak���[�G9 � L��sd  a77 � ay_ie) i0R �<}!x_g= 2A�ed1 + #*  1] � = "Fj B �of � %.2f�e�ed� is y!m = (�- he t!� H$ " % ( �,O�,� E))m� �͹a!^�2.0�~�12.40,j�1J %�mayDk1�6B �:ict ��"P>� :%?!0I�B-� �  F6�# RѰ"� E� !�!���io�e!����d� ��E)!�an47 D+B b � 8 term $\epsilonp yp�!we dont�#%�� considere}eFY . HoweverI 2 aseYh� g� > \si�  , so.a�be t�"d&U add"� � meas #s='�,(of how much%2!�ig)4es �!Oe0�a in averag�^o%unio3�P"��!�#��s �(�E�Ysqrt{��1}{n-2}.�����},E�n"S numbeEW� R.�aU5I ���y2�std_err} �$rN1.5s Notica�� outp�#s!h5P$y$E!��n %mwn&�!�)�in* ,A�shouldA8]�alo�#SYmagnitu�$y$. Ino �sam�M $2$ �6%�Uw��s  = 1k ��A$.�?t5 reas�RSE ha� A��pre��:� scale�$Ya�o cT Slim�ona�aF�8$R^2$��t&�$:  R \ �A�verifyeN well)N0 describ� a�u�q!{prol!�of >ilityMlainedn$ca�iy a.4!#%|E;Vr�1]��avoidQ �%qbe)subje1u6O But �.!8wu�gex �.�? To dJis18)oi co�!A�� s. )]� ��m�Ise!�Hb�d & => T6 �&�kTF �XC ��H ^23 B��envn re�(ey!�amount��-� @is left after pera�!�8&�A2e]ysAs� is�O� R^2f�&�\"� }�m11>$ 2� .,_i}O 2t !6N6 Loo� into8nc�)�#>��"y{�Mei��5�2�rE'� v@$0.94928 �� actu�) very good�ImightA�bm�we��small �.   ie� a���-�h*>�#�&a bigger!�>��"A&#ũ� �jm� ze ier_e� y_� 6�'v� #��!�< [b0_ ( �2�Z� �)VF: �b�!�2F��� ?:�Z62^�: 4.40NB: 0.7A2�*e���� ő%�6� ���*n (keepe� rackQ� real)�&�r2M��Sor oŮ Comparis�4�u$e sklearn t*" �-�ai��valida�+�� ���d��them ag� �6v6f� ���*+ 5a( N8+2�  "iye�.>�() )^q:`&]S-'s0A'5E](np.squeeze( y�(��_"� 2=1n=�J8U�< n��N>�*y :�gE�.1A�]22�� #� ! Not �-� �.���wbeacuaA�*"�-Šb inű. I�r��x&.s s� a�a MLP�Zc� d�/tU�d%,�exd,�dom ini�&�-i1l-^ �\ : multipl��ant��les�Eu{� liz� �v{X -� "� vecH$[_^S� X!;!L coll�#of�s(one�I row)!�a rst entry: ea� r�-#U$1���Xh!�"cd A�. &I�6written ! � +-_{1:n� but���a f�column:$1$� �F&re `�A&��텥ct:+ing. "vU.�"fi=g a�nf� n n-dimenM(al hyperpla(1���A� n 2D2�c"� ��^�"�,�,1, �,2]�"m  ���b�#M�t��J�(�'*5�� , � _'e+ (atmul9� [1:]7 0 zN!� VisueL�o2Sfig�.0lt.figure() `&axes(pro� ion='3�*ax.sc�% r3D(x[:, h 1]X;Jr"�or�Tm� *k6cc��4A���orF�i 8(X^TX)^{-1}X^TY�+�*!A� fullqrank.x% $M^+�MTMoore-Penrose pseudoinX oany+#rix $M�K+!�"A ����O%� X^+YT �$�b',-$ 7�!�6 �+� >obt��aEct|6l e�+w�X$% l2$ than)% 2��Vr #I,���%�AkE�ou���f�J+X� (n8s, n_features) !T� >�� An� &^ &� :\n B0={}1 2={}". at(_, A� 2���j@2.364948307515827T B1=1.6136037083970096 P2=-2.15598872895416176�x�Y �eshgrid�%Jte(J) z =�(52�**2]*yy z-l .d2 6�GZGax�_surfS2), z�5=�2co*6@�Y')fI�NMo�N"��@.3�l>j .� 7 Y�6� � v .s�v 26�v � "� � v 8]TBibliography * [Wikipj)\-1 *�(& 6 en.w).org//U *�')RProof� volv��ordinary6~] G_iG_G_�Y_Vs#� _��0or_for_.CE.B2�-�via6�sWhanideas.msu.edu/2015/10/21/& -via-2I/) "'* RSA Crypt-h A� �!Ab�B%d(Rivest–Shamir–Adleman�� �  ,public-key cnsystem���id^0uA�sec���transmid L 2I$ e en]!8jis x d� nct �n de2/� �+ept�(ret (privat�;##= 1. Sel�� 2 Prime N�Ls - **p & q** 2. Cal�te **n� x3.(Euler's Tot�' F�'!G$n, **φ(n^6@(p-1) x (q-1)** 4�@PUBLIC KEY, **e**)*�**e & D� Co-p�s** i.e2gcd(e , &)=1** 5.�PRIVATEad:a(d x e)� C( ** !8PE%�P)Q Ke�+1� 1�{ � n },=�)-��&net�=.!g�\-�{ d ,RG ONLY�$A User whom mP=gM to �gEY^& DU<�c y+cCipX:Text, CAage=� U�e�, M*�i8�, e� < **C = Me�Pn �MZ�c� �C.�-�key, o$ **M = C�d>�! I "�A΁?�P;=.�%syt:z-*�-5 #� te pEOq p => dE�(b#0) C=ra1, 20} >V;l(n) e�*q l =i^*e\ #u�w1Co-a�a���-ˁsof lishM�E�V4 isCo8e(x�7if�.atl,x)==1�  V2�"�$ elseBFalse:�fC<mod I0 e1 e �� �e dj �mod1 se(e, l) m$e = e % l;��xaz�!i*(if ((e * x)4 == 1J/3xP 1 # <`-`es !K OfCP":|i:| �if=^i)w!8 I�/i) #Pu =,$P, Q, N, L35 Valux � ", p"� Q�", qFN nFL l&� "�%of9%e�Avail=0.q"m�>csɶa5��12v;+�input("��Y� 8�EAbv6��\: "�#5$d d =Bi*$`2� _ᴱ�eI� �� :�* = {"�% ,","��, "�86ټ6� 6d>67)�R�a�q(����M�M�**e)%�+�8��K�(�LpvtKe� !)-�E( y�P��Key)uA��M** H �ri�"Cod�BM��I!� p�l' l!�P�>: '&(���:a!5F6H* lcbl +ū2m�l55lw�Uua� a� 196)a� 1336a� 108 E�ofVz"�5, 7, �u13, 1 �9, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, �@`59, 61, 65, 67, 71, 73, 7 \9, 83, 85, 89, 91, 95, 9l0�z07]? ���4)7 9js 47 ,!; }�jh 232+ \V_5�I)� 11�i8 %M+% F"2)�]Gl � }�.�  Me�7ism� '��}�m )`,s ...)2q%E.e8= <(!N�AI3!,�:947).removeO(), -4, 7)�> ylim# -3,3 A� =� %�, =�  ) p1[1]e_-"r"tB=")x(6)2�.� 4��2*F5 ��0��ah�:"� 6��6->`nF)�2)�� p1[0.$ = "C%d"%n.!n=(n, =0� G ) p02%�"",licX!*s IGson�*f�use]�2bu nu� as�G Y{:)H>��Lxp�lambdify!�) xpt>�/Aa 4, 56�/pt�um7()]"$%s$"%�5xI�, lw=2)J�51�l/EJI6�n�)4$)*np.ones_b? I�c=-�`bel="$!�$"%w=�Jlt.A�(0.0, 3)� xlim) i@(loc="V@F&"nt67=12q�We�$7�/1r�����F�;[!V��� o0�N: (�I �� .�fu=w9�Ek% C�q..6�M`�1 ect 4.getsource(fun�� e0'0 _u�d\\n!�� �K-�L)))\n'D3Dm ����sup�"ed6��J� ���a`3d, _�ric0��3d��)*cos(y�S5,�� (y, 1�!7��u, v =!�}Nu v�ot3No(au + v), �u -  , (ul , (v x" S�a (Lec� 66�k�.ell�P)�s relevW! moduU! )� 9E 2�, cosŁ, ln,"�,�Qbol, ",A�egrat��+, oo,��,�Porial e! |pi�mp^�LE�,## Sequences�Slide 10Z"-� # St�"e�="!8s <�{ st  R_= [2*k� k'�w5)]- :4M�A�[2,�,,6, 8] Reme/: ` HA,B)`"��teger�/`A` up`B-1`s.we ne�,�`B=5` MN�z&Ig!� �9s&� 4:'k = Sy!�('kA��As k->in�y�X {k} ten�, o:",�-(k, k!�)) E�e 'oo'�\ � '�C'%_a1Vzx1/Rz 1.0/.~�v��x 1/k)N�V)ՖW(k**3�=*k - 4)/1:jE- -=%J6�eAdv�.% oo�26Y�Mve%#6? v8j�=�qi�Q }�5:��+compreh<$:1�t�. 3*k + 1 (��k=0aik=4A�sum([%w �0,5)]I�Note:a�' alsoe���nk�G (�a��|��):a'io��.;(�2 a k:�, �?42d �� 3N$A8��71-f.� kA�!)09,~ ; {x},Z#",Q�%2x**k/fa_'ial(k)><11�) if(Sr4)3YF\ei�Hc o�]o��� �.E �� Afb�.�5abF�5Q�����������/5y�)�c� !��PlQm�yb3> >L�� x'�+"/k%�a*� aab1/e`)�a1) 5��Wa/a1) R�)mi:k.�radiu� �u8(denoy!R��", H0.5auex)ax2v�: Ų|x|G 9} (< R)u� a�fOq RN>N6�2�n�RV== R)\n�u�a��6� 0j0.5) �yf#ful 1]E>6>5IQErAE#$ �opz!al"1W 'n'!$ow�;� trun0 � #�9a cer�,�'J>x�,b�Nrg1�P�1/(1+x�$"� +x), xz4� 2-Z2-R2lnFd.Zb+ :a J�#:,  ,7�C:,  ,8,U:9�z -qJ 1.0*��Oa�4�;)#-B 3**�OF;!)� " -At p+ 0.36>.~), = 1�D **2/uq /6 +20)0 0-#, 4/24  6/72�h7 �)<8�[x**5/12!2x**7/504:8i8�ylo�~avm~z5sA�rN'I� 'aX/%�B�5�:t�<�QxH 2].e�~:bT.�yeasK/ s \\(x\\) O ache 0\\)F#" \1�+u�erRM�@f �\\(n\\)6� d�^n_t�kn�S!�.7M s(x.�/){T 6:$7; y + 7 i+1) *7 i)/(&xi)) # |1d�%i��Avy��� �"/-0.9,~7, 181O[ -0.�oS 0.88&0.9] lb Log� #�<5� �&[iJ�6)]1�� 2, n , 5] colE"$= ['y', 'bcgr']!&  k/, "�3subplots &2, fig�(1�I�:}len(n)1�_�6�[i]%vv%�2u%jln�Co��`J - ln;QVceI0�TE3 m�Q�Oax��A[S�![i]�f'n={�} _ax�6�~: 6m'k&�/y=MW�� +set_y"('yU0��_ 2 vs60'.94�0�9Oe� S1] S�G�A�6D!� s:bM,NaxQ ax[i tx �x9Yi]. 'best:l1�i].�2_ A�.t�?_layoutJeK#� \\( \���2#��exp��N�x**i /&�(iE�F� �% �� � �5ieM50�|xu0e5 I!�� W�9,Ay3�jR+�I(>�bei~1 `�l�lex',:��n5e%�g bs(yM-x%!�r�rexp~9aV6s�~;�Iaρ�expx,:v)�u 1�t�t r:!�s�s�ss�$)�ssi� Ns )~2* .� )B � �E����P����Q>�-5�* sin: Yb���z��YN�2u&&�0, 15��si� :���56�M-��2�si� ���!�>�)��� 1���� r����ғ��  O- "lHamiltonian Monte Carlo (HMC6�J�(�!bh! ��npseabor�Asns�!� ools 8��!{##~�HMC>sQauxili�9va�[�>$a�Bt[Gmo�4jYoclK!�MoteEk�5gy No"s!:pos.�[�U�7e? make�R gradi�*�O�pos�rs�[ ion.COre @ilLo�6 main�JN/M �W�T�ql4&b!(nserved - h!wMteres*in2fs�9."w at�H�j!s}Dats�7s �Rbu�?o\hAs@1���Dq5�% high>u�^�' d. B:�Kto�Zv%� blem�"�;1�,�"�" nder=�NtoA�erT3r� Ar"�DZ �u�s/r"h�secondX)��[A!l!|�o-�(n�uy�FaJmGEG adap!�f [MCMC:222�0a.k.a. Hybrid.).8stheclAR,machine.word�s.P<02/11/18/mcmc-�;�-m�-c�-a-k-a-hj./�4:�MC�EN�%��R}�5 posiEl$x�P1� (�d elocZQif!�}C�R mass) $v>R#X.�m" � $H" v) = K(v�DU(xa�GK"�C kine$ -�Z$U>/,a�AU.�$Gs �Cbeg*$rfrac{dx�v &= &�O,delta H}{dv}] *v*- +x} �b�r$$ SiV!MIs�d!W�Bx$%� haveG��K��U}�B��@Harmonic oscillat�uW9l�En�We�!tak[�2�M!-��4a undamped spr;goverWby��. VR%�x''~l!$���D�P o twsa Jor� ODEsf�+a dummy�G $x' = v$��getf6{x'A'vAv -xB=Fro�ye2U��2�'4Isiv�{vU�e�:,$e[=M�1}{2}v�UaD>9 $a�6- x^2$6cri�+ntrix�Fm,�A2pma({ x' \\ v' �7r1-1 & 0}xv}%��in��lSr)��q"�Kx$ x%yAx:WecW~at $A��i-O skew-symmw#,($A^T = -A$)&\�h�wur!Aima�2ry eigen'�klE�$|A�S�%IANi|�JaAMe.;%o Kector�k$i,9 1\\i�g-:-ij��� JaV;����2�"nbAAin�MA�d��s $(x,��g0)%B $x(tAe^{it �? orbix}go� pa�ir�E�a1io Y2\p�ene� �Qa�nz (ecaying. An� weay�,seSWyXa�1Y.�$Ht-v)$%�O "@ (E�éyex^2�i:,(Z-�!+�t,�A.A�)�!Tm,!?^T�== 3V��tant}a?�F!ue��c�W�mM`w�-�e�~�+2-&E?to $u�yAu$�&is ** **Er**b�6 **.K2�Vi"? d�ne-�w��-�spiral!towardsEgor out awa*�<�[ I v�P.cyvpoo|U2m0[9 ��96tZ ng�\$�:E^+ is�[�an easy�f6�e�Y�V�S&�1schem�, . WeF *c*�6B-�/he:� to ea�s� cy�For!(�D�8�Us�k�.% �a�� �/!Ŗe�2Q$$ I�u_{n+1eu_n}{\D��A* Re=On$��?��C=0 + D AA�}Y( I6\r)5eV�of����$\pm �"w�'��![.�? f.� �x E1�O i$.�,ab��cgD.WA5rea�5 1%�L **��**�G{FZ*�^a�e%mf2�n�}l09g�l�s8def f_e�F(A, u, N���=8L� (N,2RdeV5 pi/NEIa��0Gu!� +6* A @ u2f[i�X |�2�3xi~8[0,1],[-1,0]]) f$1.0,0.0]) >64 R�':� ee # A�?2ula.�k(J\ bit[-1] I�4@0.360031848467119O` fC��(s~ 2tk6,plot([p @ p !]p!]�E8asJ.�� ;�(11�6L<[tQ 1],�k ax.axis('�J�1lt [-1�9 2�6?�$��erF��"H6v�.�[��t�jd�4d���-<��a��i/sr0�(trapezoidal��=F��l�{�H� � !1-  (��J���})��zRi� 9licit h (�\$0+�qappear� �9 RHS) Ise�Dir 3�_In N���A�hS ����j, � = B��By8io�8j������lexA> juga�dof=]1�F�i}{**_ѐ��i wh!:�is`_� ,QK%7i��I�expC ��$B$� g"{/*� ��� &�#MN�u"Jr= local  '�<$O(h^3)��m3cy 2*�hy e�L step64� �:~�!u"�>:p�la.inv�beye(p�X dt/2�. ) @ �E�3��H�HN,�L^LD005039305635733781�h���7Rh������N�N�N��leapfrog2�:��aV��o upd�G $u_n� e&�\" i�Af���C�| : -=x�uon�lf-aM�� v -�n a -Xu2>f�  half&v y=�bs almost� ���B��5ad�;ag� >f� x6I��cheapU@c�PX:G>hi� [gn%F=0::e�:+�H [1) � .S uxV= &�F6$�J�vUi��&don't c��abxS!F\ rmediA�A s�dis *&�]to�=,h 1/2 - �b+7]%�en6�>��12:�:� z %B!#1�o�k1%q .� -/�b%�1]a �d�LN�r� ~H. u�� .��* ��?E�0��5a$ M�; .; D002522991380803346�8 i^> z:h t un�BE~.(� .�J erf�s �I2/.��=�=�= �*���b�iMVri�Gbphy1analog)@p� neg�l2G� <tv�t2X $pwa�c��aF!�ܭ��].Wb��1%o� �Z�B�eZ�f1?�rgiven�by�"���� �!2a)�WV� 2*�+�� *} %��iQk� �Kc�k%m1��cach/�rl!qB-�s ^ �a-pA& \�my^{-W}q&=�-�-�.P(x)}3% JA \, p(v6g�$"��j�6P�.zesE[,�P O,� $R� iMUom�!�aU,&~l� �C� d>:��X��EHt'`�B�| d $x^*�dnew!�k!I�ac�dYnR9�+ <�� !~ !^*)!f^*) }}OR^)�)}-e^{!� . +K(x:If�F�2 waVL act,�>�n w g be 1��asU��� dynamics"�t,!NwT v*n p5\-x"\o��a�an �/re�cP�stvI!��� E� of� �w&5 �2�""w!�!�N�is bi "t<�~ce�"d�Mesx \��N�,\Sigma�(In practice�cours�eRp�b��Vw#%��= both�\!'. ala>m.&�-�o��V isI�r��oa�A|r�x^T �[x�%4:7iu=�#�LHv^T v = �h!�a�'� $v_0�P��#�{"+A��7t��� ��9�!u0i��q�.�*SndaKef�de�Ts^!�2 w�OEr�]~"$v$E&6��)K� K} v}>2)U)x)-2���\e&G���gi�quR�d J�.W�KBy�Q!RB 8 m|!bͤRf&�Y��&u�Hc��B�&)\�w�N�qlook Q 2 sa�� �@y([[1,0.8],[0.8,1�m�a�s��y=NɌ.�k�*_I�(muKgmab,$0) sns.kde�ys[:,1h s� �[-3.5, J�W!!��5<2�M E� 0, v0v """T*y$.""�� (u0 @ tau�  8vv0�( tau@ v @ v@ F j {���, v, h&� """L� aei6�ɰ�v@"(1�z �[f�  + h * v/K� IF-)t+-"��2r�r\> 00 h� .01� !O=#Ex)��* .�E+N.)> -3,3])� v !*�G>-�v�Rn"d�M� 0,1,u���e� (tauI&0-� ��7�-r�%u\Q[k�WmF1Fvn!�a>kk!�if r < a&/] \+�%6^6!0B�.q ,:2 qye�#a� Tś =0.2Q�k/1.0110 c='red', s=3�661i� f1:6�My-� [::-�$cmap='Reds6��% 2)!m�  # M/z��S~�in"aCh�) r 9 Copy�D 2017 Allen Downey&� cense: [C� Commd�At"� 4.0 ��bXal&�)c 8c 7#gl Vs/by/4.*a� �%f�m Jupy�o�pla�&assig�&a !C R- %coE �� @veShell.ast_node_�ity='-�_�R _or_ I ' #�ortSl ryth!W�N.9.�Q)�d Set/H�B��)P.�X�'� (!�3*&�di�s t� PSs.�vi)X�)o�@�-W�TnI,LaTeX�QmafdA3-t��.��-x ��S�?rwV_=b�� """D � aB�.e�!h:B!e Z: boolea ѽif.#3�(����V�p� A  A����� %� E�e�FP �sM 6;Z ! s('t��If�[ combine!e��8s,!get ic�e�Z� �-�� =  �1o )�g $an `Add` oe}vU just>2| &��r`&A��i�i: type)= w I��.add.Ad� `ߡ`�b��Qreplac=G~�Uber�a�� ����t�ce� �=# sK��{`f`%  specA ��E�)�&'r&?}���6��GF ('f1� �f a�!^ x`UndefK<6#/(fbFi2b1BGpE��+30!(atp�t)`��ns�^%�`t`, uits��u �%�it ye:�f(t �`�0`�s a `D" QkBW�sa%*5 -'2�dfda9b"��!�2%%5*�]~58�!1We 6�`��6b *�V1��w�&)v��6BAe7�� <%th6[eqkHEq�{o�� �An `}�`!� 2itK���ule�!ig�al%*�6o�%_6ѥ1 n�"tRWi�{aBP"�~it��3�� unef fied�), `C1��I�is mple�An�4"4��a� easywR���3Q�/ `p_06�C1�.�C1{�1�AN�1�u=w_eq�E J-�A?xt�M�h�toB^Wtt�4 /�*Z��a��&qbc��'llD*(r, K)&�id��w* �/�����=D�� s('r K1(��6^eq �A�ify�, r *T��D�"�P/K.�U�2�Q:���Y�, `,`�9M�`rhs`�R*� -h� ��!VB6�qP6&"٨m2�?I>`g/t=06u�av�-�w.�,\���e ���7��2j�SoM [ ��e�� ` }aB�)�W. "�6P.e�< lgebraic�3PsaVe'�!� ve`,-�����^ (!�aFof���s. �}�`{, [[�GBo1 w[�� 1�&m enN�s�%q� �m{��!�br�t operat�-`[0]`,��'fTon:H �d%� (Eq(!�����*{`ena�� �k, 14;. EV_fE�A��Iqr,!Q�� AF���^!� eIN� Z.:n2� o��M � �]D�&��_Md)�* pr a te<tqY%�i7fC62�&�X?� �Of�~ �7M �ey� beholder ��'�4�~s >SqI�� � Ai� Just�J�check%� ��X~t `t=0i��r35a�A�F=�)lt, �d1�%dall� he [lݰ=io�iop�} ion_ #L C_��^:I��me�rces �see�{ !p��z�����`"WKH)�*Grt}��69� (K -� ) /$�5� a�I=to6Eth�pt�6���&n�. R%wea�pn �%&!�1=o�!HBG6iLJ�m�&�hC = K ������������������������  =�3"y� ,�}� � @� :� ( � l=(> **�>P%�_eq�3� (e"Y 1z ���&*�n&R +av$ *Kr*�;~�+�> �Ie�WF1**Ev�:�yUse [�G��G��G��G��G��N9�����ASAc+c��opic:2�Dtwo-layer grey gas�ael Y&ytiy� � _ E1L%tr���i�icg94 A?_�sz!<1el�E�oa=erv� [l+hon g�<+�ho��[�s](*g ary-(.ipynb), de�t�#ng ̦rm- o%!� �3H� ca`}jE��zic� ���� package�fmi"# enougE�� � �" I l�detai04� sm�$rQEthr>8em� _���d)�$(T_s, T@�T_1�%sZ�"3x3��>� � �ll̘k#(< $s�%�penciAOd p�-.�car tediouid*2-pr/   bo5YsofZ;�t�-%�!i5�]lutos�� o5A`)-�[%�:://з�en/$x.html�%�!� )wer\Zopen-s5l!�� librA� 5�(-n�:�.�/sI� ific� ec���/=Ge l�;e�%�2� C9?l # �ow (!6�n�$#!A�5��%o,� A.�#*�QD�˩i�U)�e��(qum@tie�Z A���Q �) ve (�w�% help( � ��&' s) W�A�e]�, i   � �('�:',�6t # So far� e (� � a , e.g. T_F�8# E=?ټ -cod��0 ssump�FI'}�A71&-�aska�>����T 6V##  �o��d he 2V�in�pyBB# Longw e�s �t'�Yno{ ��*�Qas:%E_s�$\)�T_s^4�$E_0-� 0 1V 1^467F recognizA�e $E_0s6$E_1$� �P?**_'**%upa�:? down beam�� � # q���aNE�bols -��!7-umn>A:%N�$gma*T_s**4%= -*%4 *T_0 � >1G�.Ma��([Ea+E��E_1]) E��# Short%�L�xGE�Q� tmos_�E�t*�48n�sL* inci��!= $Q$ pas�["��I0A�to)n (.��� �(!X $\� &(ref��pE@�to spac:i9��S�+m� �=Q�5J 1('R0"Ad���o �+&7A� s tu� = {} P[Q] = 341.3 # globa�;a-so��a� W/m2 4%8101.9/Q [/V ob(1one  albedo AEYA5.67E-8{U&Iu��Q\s�OlsIG� �up�:loPF�reSc�:�M&���B���!Ae�� OLR_$.g *2 *���T%F-�*.-)�b)A�)�d =�_s�cLR��1 �$ '�j=�!�� is')A� � D:k%K $D��.�� a*�EU�!�,a�!2N�aM�&�ebegin� 2O '&�* De# �Bp]qz�8 0%��%��VJ1I�D%i.�qe���F�1-�)*1 �F�<ly�a��A`��he:����:8:nDE^.���Aw�,2!" � +$ 0^4$6bg=��!�0)�$D �"QlE**b U&**�K!JEA�����.:
A� 3. Tu <m:yǡ�� s:� In buil� �Q���0"� i�ed�!!�&S!��e ]C rpti�) .��N$ hoosK� a�*�!�n � �s�?�V**�&e�e&� .� OLR**�8** �ed2#*�o|��Mpr�=.$ �2� $, revisie ^�Onuf lap���/-)�NCEP Re5)'�we�enc��e�����n�f�UXbrian-rose.github.io/ClhL�oryBook/I5ware/U�.h�vT*���r&�set�T� 288 �N K} �D�9Aw:�! "��=K%J 0&"hb00�b00 hP��h3Q =�tya�A��a�f]�xc�#ambigu5becȧ��re�,5�tropop-�MsI� ��m2306�5-g�a:�sIwx%�l�-~�+#275%+~�s@10 km6�# *a~a�*K ͨ�Q:y [T_s� 288.�?275Z0230 �###au �[>�l' gy budget���s- M s-fuI�#2.-The-|-�- | /)alE�� B= 238.U` W m}^{-2}E����Ak6���r�QEJ�a�)j)!v} �2;in%��u f W "�&ol �5��]A� # a **&1'�**:��M��A��p��`>2��]k|omg]�Subsit-)>�!� �r�\6�#~�)�"!Hmp �+A�=-t v�]&S"xW qI*�72�l)yEH� w}-:O -T#0, T1 q � OLR ���d)iW�$ֿ�1|�2�6$us!�e `o%�`Y:�o%]!�5�>7�F�py A1<t�� F+#�lX�7!SoA3 5&! sub ^v�)`Aa<��Z9hZ_f&�� (OLROpep, )22)?T���wo rooS��-��Yn8un"�As�Z we m�#( $0 <& < 1A�$AO fun,"��a/�ox�*fi�"�ai'*MJe� � *�m"l~* syntax>�G�me|'��%��!�e�1! ^_�0= [ep�in9u(if 0�M L�� ! ngle.A*� sn4�SA?8 "��1:%�I0=) �[0�eps "�~?�486041150248834'70.:g�coՋ)9A� s��(LiC 3 deci�<-s). C � e��� !�2��guarante� J\ux�^� a*gCR��� tP6��!����5, i$2�6 4* 4. LevelA�l 6< ED��iso%SQ~.K e.��%iXnoaqA+2Xt ����>�~�a!�Lrm��!=&ula6tU/x=6��o&�66 OLRtW�0p&�Is,[��/)M��"(���ij�%�-�i�e�.$6�e<��>1 ��,�g�� 67�$�$)!b( , 79B �� d 93B @((��%=of"$a�[�i�8k"�,�l�g�|it�$Y�/woJx����N�%  /��.>���߃le2!Apco�E*��">�p>=� fa[�a�1q$��%&%� weak.�ss�(lA��ng�i�ve9�o.�)a*�-�X)�22.�(c 9%�%�)2.2+\^!�)yly �L%��� !e,�4 ! A� � M* 8�o l.S5K@sH %G �ed6�E.O� �!bnB �!�!3t�3�C�f-�"K.uv+5�5."v�&��^�:,Ad,�extra.%�b���mk%& Zf$;�*"��"�I sorb� ��3�Hu��&C �in�0s�]%�add.�gasg� Supp��H� i�"�9!���c�8_ �J+ �C_s tfur>h%e\S h�Vn�abruptly[+�xno"7� ��E���ND�g���.h> . **� ol�D26 fixe�Mc��B ask�#}1YA7luxes Z$ **Do you�2R1.a�tP )��de ?܂��� �W"6&leaky.� Kvt�WbansweI�m�� �bef�Gpeib����2������� Af#>p6.5M.29�f_6�x$s('2�h_YB G" +2?)�> �)F� �M5e}�F�!�d�-!� �OLGTo�&: gs o;�neg1u@A<$:��d�t&�I�3abMcB![� deal�<� **s��!+u-���>l <&� aoTelKM 9e �"< �tog � &R;_'�5��Xd(%� OLR)�Q**21u C)�Ree'u�"b' ! A~.'e�!��,tL 1�t� s?)!�s��z**i�!Be�6aaE�@=ng���� le�#i@|Z(b���!T �AD�� ���{U�Iq�k6H a!E�� m. = 2�%� ��$1)v��elt5�)fR)���G�T*�6ofɌA�. .�Jk�vJ�.e%!�g�W�d2 g��wn��**THIS IS VERY IMPORTANT, SO STOP AND THINK ABOUT IT.�U�.�Y***X **�,**d��**#il!ӡI&� .?"G Aѹ**�WMw�md)�I~��( %B�%�fup!�k"��fo�" !6Y'6�!�TOA6�EJ��m�h�I,&sl"��+ b�7�'{q ��&?�-��%�$�!��� minu�>g�4i�$Rr$�'��a�e c�(,:��f Ggy� *� N�N�1�*� 5)�1�V�(o"H)� ��peЗvelU�&��WC d�`)q� � OLR? Will�+Q62"�!6��. W� �um #t��.�� �a�!6?RN8 -sum�(>Y)J5�I�65�o*O?c˩p�RQ<iY= **It� "�`.� 7�:he*�.q$Gr"�ef�V%ea3 �i�9� Sa�� ��k!u� is q�� : Iŕ(1Fŕ2 �sE#��E-�e!���up!A�&/ $Usqr�7m� U�)? Un�B��EW�!S!`�\2&D.�B(a2k�Q< �ETi9>��A�E�>T_�T�)�K�@�&0%��B96�F�H[(G/s), (T_1�,)fe�2t�p��yqo2�Y y(�k�%+�Xi�!u�p&rbt�fB"*'�Y**!0��E-��=�U. H��FIE�no.9i Hhy�Ra>��2q�= �?09!�]�Q�up� Ke�ea'am�U�e� el�S�b� e@Ul�9s6V �[().-,)>+&�!-�i7�*Xn�ofJ7��%�� py+5��U1*\��f26nd}��iBm%fQMn.��+ a 2%�o"d� ��82� �02c 67.�&��(2--war6= f" * 2� %m>�-AVne�T�'&�^(.�J�*~a�C� , **ragd� is2.6=m��ori�rlye�J2 is +6=ec��v��4�!�����"Y�s,n� .�U��#a���A~*)�]�� t$g�strong�A�H [�&�3ccu�=[ �s[ --� � �{� �]�L iqTZ Fad�D"ab$>�3iu� j�6*�6.�B! !�V�16^�$,p�#�!N% we�c made�W�/P2v@ 6o���A\�ly� . . -�p} !jU'.jPA��nY+.P*-!�esL����8[ofA6&.7 � tvto$!/ 1�?� ���Za^ jOLRu�2� �MN�A �&�n"� �ZaX �i0*D J.�It �� at Š�&ph�_p5�"( e!s[�y���6m G s�81�acE�ge�eO &y�?a�&� �U���!�?�wem �� k EA� 2�nowŞe�D prototype. 7�d� V�stרic�U� ion:%**9�.j]��W�Csu~�hat"g!VRF���t��%"� o on -2qg chieM6 `**:P�0qyg2 i '2F� w��"K x��:E"'' r6�.fs #Q�*��Su�  6� # U"�.��#2(5�KwZעU"��4U�U" U_2]) DB"D"D"D"# Net�&�70 up F = U-D F/� +Ő� !I��=q�Bach)� H��5�1+����fbottom� �/i�a�pE@\�G&�@#�a�5-�6-�on��w  s�u� ��s .DE.copyUW-'�d>at� Kh= F� XUmUI=^XX4�V2�S A[n+?'-(F -F[n]) A� )r&.xme�PA��5� ZERO1L&�e� he�\;�� a6in�t�"e�I=>�<�&0#A ��3K��b�:lve:��radNO� Eq`�ty�Z Q�(1-�5 )*Q,7�0])�deq)*�#�did��1�9��ii;�#�4is�uG>�i���**Q)���!**e$y. ���\�0 T_e^4 �� �( �2�>*T_e**4�*P&I� i�/m�*� �>�Kc� .�'�)�**�9�l �*ri��s�s^4n0 1^4� �$��&�jaE�ele�?��-sY%�.�$%H=#W)�!.9ve�  �-g%���(), �***�J2� **4]P�<uai�aducx)*�'!�&%a%�fA�%"A��s! li�P mani�I!G1:W*c-�`dnt> .n) �'&&;X2m;�  nth6 C%N_*E&[key]E�in.\!T!\!d]]"CE5�q� l(item,4� Ok]�& Di�Y��S.CIYQ�! TBg2�/])��OT�lO���U famiF� not >� .t1��2us 6~= �>H=T_e%u \fƃ2+� }{2- &Wu 1/4}�=I&=FA1�A�=B� 1}{h)Z|2�b Plug�{�� �&~b 586$'2�T5*&�Q��K���.�Y-��wes i#� a+Earth's"z.���$! (��0lready f A/ 255 ���3��#,'s� o", e%w"�"�%9s Ή�.� -6�.)ace �2�N�n�D�a� Te_o!y-rp�_e**4).subs(tuned), T_e)[0] Te_value ``` #### Now we finally get our solution for radiative equilibrium ```python # Output 4 significant digits Trad = sympy.N(Ts ^ �[(T_e, �)]), 4) .@Equality(T, Trad)vD Compare these to �@s we derived from**obser ## 7. Summary62�Key physical lessons - Putting a **layer�Dlongwave absorbers!)bov%�1= keeps%1**-Q:w)u$**, becaus%t%� back-# on**Y/atm-v (greenho9(effect). - Igrey ga�,model assume� at each l� �s%z(emits a fra%?( $\epsilon$� blackbodyI�0, independent$!length.!A**iso!�mal]�**�B}!� zeroE�7%�**no B** �RFposit ��K}L**bm��� ic temper��s tendE�de-wA�h%� �P��f�produceac�sQ�A�jNaUAn�i stic�1suggestm�$crucial he��Dransfer mechanismse]mangI�our�%. �zAnd1�HPython side... DidASneed `ŕ`a�$work all tA�out? No,A��� not. Wa uld h�>sol����$3x3 matrix!#blemsAk$hand. But �>ut��0lgebra can be�useful !AsYyou a lo�� timeHerror, so it's good�(invest some�Eoramto learn!"how(�e it. HoppleUs�es�vide a*� stare�point>��uCredits�.notebook!�par�[���Climate Laboratory](https://brian-rose.github.io/ 10Book)A+@ open-source textqd�E oped%(maintaini�[Bb( E. J. Rose |://www.eAh.albany.edu/facstaff/brose/�Hx.html), UniversitygA 5, It has beenA�ifi y,Nicole Feldlunf .comV@C Santa Cruz. It!Alicensg or freI���sumŁ un� the [Crea�$Commons At�~, 4.0 Interna�� al (CC BY) �!��Dc C.org/ �$s/by/4.0/)�aM)ym��of�UOA�a<[climlab softwar-�n-�com]/ 0)!AG� support)[XN�0Science Found-a�(AGS-1455071aIA8. Any opinions,� �Hs,!aclu�as � %en ]s expres!����min)�doaH necessarily reflec� views-*n�.:� *H   �;# Pae01: Linear Reg�iony # Execut� o de block! inst���� enci� �qrun�8oAk8lab try: im!�0 torch except os.path&exists8}n `ei_svd`. U)�se be `~ svd()�e O%MSVD, `[ ].t #Xpos�-�� K!� )foaB���."rPYOUR CODE HERE u,s,v=�X�/'U=',uS=',s V=',v) s1 :�"S1=",s* ��!=v@ dm�(s1)@u썞"+", ) # raise I NedEj() ��fB��"�J�*=",6�U=�-0.03�  0.0240]:& 26, 063N 2Z )37: F ( 275, 156:1 361 q34Rq338 155����S�35.61e  8.1517]oV"f 4725F881Nf�)f1Eh0RW ,� �ULL 3.0518e-03, 1.1121 -3.271 %Q 4793 �4.1895 2.126TBfH5.2742e-04, 4.4339 2.637�!�H 7414U6o�9 b, -6.445G5/6��1.~� li^a� orch.add��, -6g$))) assert:ll l�M, 1e-6U�%*Z19%�>�[2.38%`7!� ��GW�ba�J9FE����a ar * w�tryo B�, $%�minimis8f(� ) = 0.5\|�:X}  -"� y}\|_2^2! We'�lreadya n� �Sgdٰ��2� , bu� ce also�OAby ;g19descentZ� \g> (- \alpha f'�$. (_{es�a� _:�� (�st_�2�)� �k ���-fae= � �D, p O~ 1 �ly large��ces.)�-follow!�"5�"�)write ���, $�A9� $__.�k�at�ina* latex� by wrapp}o��dolj symbols� <**Answer**: **t�ikof��o� $0.5* 2*Y�^T( )�-y})$** �"�$�� !�9N� 5S�aq!r5H�y�m1:e�defm�_y�_loss_!���, X��#�t%�X�e shapepu�$previously�h#>�#��n6! n, p = X. b� rows�s act  2  h�~n,p��1=!�(-2/n)*X�@((y-%-� x )))   �98~6�re�8%x)~�֩Z��"� s(2,1)-�-== ) P��O�� plugT tu��fun�#�a��ic���r%�che�a`Aw"� l� toiwe get�*2~j�Ρ�001 " R ([[0QO �[S,range(0, 300M�gr8�--%� -= �* gr �,*P �~�## Real   D� � yP�syngic+!Aa�"at�Fto> �K!s�[isn't qu�. as satisf�7as+���"a��mset. D now apply�&~6of�cGF�p&cto� atY7s&pr���U Bost� We'l�a�%3�xscikit-lY!Elper |!&�}�N�Q\B skO. j"�_b� ��Aw upleG M}z)��zp3(Truea�convert!�N :s� ( [2,5]] # W��"��(s 2�5,�)h�an-all!Y� m #�aX3t����5��,cat((X, ones((�6e]1)) �append a�(of 1'�$l X's  y.re�v (-1,�  y �L���mXX�h�u!2]A'X:',�� ) #506*3 6'yy��1 1S�5Sbreak�!���w��HcomM��}�Y� #%�a t$e%�e�+��7p�#c�! abi�+!2t~.HpeS)�4( �[0)&� omA�mutof�egA%�0!� n - 1. X_�� [XL[0:253], :] #254*3 y#y.#]��#1F�= E 253:D=  <]ɴA� 2.310 6.575 V� 7.07 )421�) 7.18fR� �[11.93 c976fc.)794�)0 [ ��:-�,Size([506, 3 yJ1�&=N�!�I�Q R� �?A�E ��M�variabl���`� � (;2�"� & #���-ml J� n� 8����(M�)"t*&I��M{N��322B, 7.468F20.541�6� c��s 3,1s ��"T!h: "�, ta.t# MSEa�eT!� '�nn.� al.msew �a�� , y_�/A� p}�-0�, �, .�5F�@39.9052�h lmtrb�1�� 001 #4� _g&���(� rain)F[1]�I��ini�&izeJ� �!0):"v  =�Z- !�_gd, MD%?w* �R ""�D�1j1�_gd��2��F�^�1��53!�4.9514B10&=f�44.1014!�N�"J�*�a�'�2şs[b m� aboua� ich�-+�2�U&U# iter H� a��. Wj |ors�%(think influ�(��chl?"�2�1 �:!�>����������F�nan, �fxnanAtI_ 2 � np)�4s = [10**(-7),�P01 1] numA?$_array=np. (3 4,6*;4,8 12 ]Ji,�4 enumA�e(E4sP" ]A� h��Z�Q�}`6� c��#8�$(���;V�� -= r�͕� is��r," �  ,�ZF�<��׵E-_��071@��&�7 3959!1427,� 0744��46.8674�Gv�6!ϖ�4� 4.342� 1158��5.9251��E]��784.464�269 !�F�ѐ45.5343��12�7V�85 �123�468V�6�948�4.369!�0.9293�� 8378R:��961)�792�2.003��4.547V9:��95�( 4.8288{ .256�4.4430��94� 5.0382 707��3a�V5�9 502,�11! 3.52�#zV3.9^9:��9( 6� 6.6�-14.7352��0.7059R�:��<�5� 6.93�-16.8546�� 3446���?�33I 7.253K 19��z�0.0538"�BJ�v5!�m�_� (X,y��/ō����hi#�[] `2��i�f��I6=v����&!%2�.iH_gd)�>�& &� :~gd %! � �gd-G-,,zʖ� R_��& -ws ~� � 4 in ?� %�^� !� �=F�,�-Dg �,rU�%>*,;,(>\,label=r'legend(69,AMN^e �.t�~*~A">� -  :F�Aa�,�@ind�02{.small�e6,!� sBAi: nverge$,�= �: ,d,'BJi�8har�8o�,L . In term�2N� ZmH'ofj" A"� # . **%�C, hoos:� =�� 1$, Rb=$1�5$R� i�"`ua�\a 6~ 1$ Ea�eM�A�Z�Z�ZFZ�25�&1*'K157�39.9397�U&�0vis(Es�/�)�B�-�edIIan �9Eopze(0Em(b�.A�>�-#"���) along*:�, ��@ C~��)�(oaieAiAbI))�U�argsort(�, dim=0)1� � :,0]*X1'.', �5'� Prices'>ees.?H)�1,2HP5X()�M�‚P G.D.Px�('H%�Nb7 ky2� ($,000s>���&   ``G S�<%�displ,.�- emat�$.$ type!�in LaTeX�Cc�9r�D!��by"��ank"0`MathJax�9`�+�GE�IBA.� : (r'F(kZ$<\int_{-\infty}^{ T f(x) e^{2\pi i k} dx'� $\ [sty0?�M$G�EA�LH%lass,��At�0 clud� deli�rself�.is�ow4a���%b�?�1ucheqn�m9�7� (r"""~5I$} \nabla \�As \vec{_%8B}} -\, \frac1c {\'?2- E}}} t} &�/: {4\pi}{c}20j}}�5 cdot6~E} D4 !� \rho.0J�E}}\, +�~�BR�.0~�!!�0 �65V"""Yp�s�s�s�s�s�sa�Ore��e�;�(��ly��%%�( ell magicmR 1�e8Q�J{A �*�*�*�*�*i)-R��>2:�f�f�f�f�fFf>�T��,a6�`&ula�(����2, g9s�!Ts: Euler's identity: $�{i��} + 1�  $qsoa_t �-N rPMe�in�"�� � �2 �s�,: $$ kI$$N�R���:*## V} z� Att�-$ors An [a&�F0en.wikipedia.�F/9#S�4ge_;gFa ofP  �6a� ery systemBDKev�IFF N%)c:�&[�A�;��`G�&ulI/pB=n� �NalDBuc�P�n�I�s h�6alc�C)�� >�>�Ba�#et@&x , �#ED&�&� ma�FC P[Lázaro Alonso9 lazarusa.H(io/Webpage/]V 2.�I<[François Pacul\IQHaet�)H82018/08/29/Plot!8 -HopL -�-�*-D *$hader-and-� au(Jason Rampe�4softologyblog.QD press.comz(7/03/04/2d-M s8s), [Paul Bourk U://paulb.net/� tals/)�<[Ja�0A. BednaMS:/MIio/jb�0�+Clifford2?�Nex�@, a [F% �j�c XqBiZY7"�:byA\G!ve:CP!�-dyDBI��_x,y_ loqCE|discrzQst�R� lHof >`rticle across a 2D space,9<na�t%ng#E$ _(x0,y0)_E�xKof�]�(_(a,b,c,d)_&PAeq � } x_{n +1`;\sin(a y_{n}) + c \cos(a $})\\ .-b  + d -b ?�g{Gea!;N! "s-p�1? I�f"�2?m accu���:s�0 +Q!j,2D�Ine mos�kLly$i?!� he i� n H� cle. �L's easyZ ��iV-�in�O�_[e�U� a.py�&��). Firstŏ�<P]nu�5+\ �XJ�, pand�s pd,'�� ds� asfer_%'s0tf>0 .col.$ 78inferno, viridi _�#jit E sin, co�Hq�Ifabs @,�q�P(x, y, a, b, c, d, *o-\I�* yA�c *V(�x), \o *b * x*d *y` W%n.�,is5z 10 mill_BA�mM�N�V�of�coMFKXQ^��e `�`|M .��yop F"{0�%sE�G$ 50x faste� traj�<,y(fn, x0, y0)F=0, cdefn=n-W!r = np3n),. %Qx[72y L= _a��n-$@ (n-1 Y x[i+�(y( = fn(x[i],] �1� e, f o-�pd.��HFrame(dict(x=x,y=y)-�*� %%!� df 9QX, 0-1.�11.9FOdf.tailYEW�Kn�1ggregaC,se 10Mtinuou.YY�/�2D4@ta�Agri5K[�i��Cy��AaDufg�`a�(f�nūY�6C-* cv&$ds.Canvas(X _width = Q.hpU ,) agg = cvs.�K,(df, 'x', 'yr�J agg.�! [190:195, ],"\n�A� �Oado4 P5ida# n e2q&'s�Wicult���F���'MO � �& �. To8w r;ra'Son��MR6��_%J)^a pixelT i4yscal"��whiA%o�Y6�ds.F�.Image.b�=0 tf�+de!Q, cma�7["Y", "bZ"]M�A�se���-(O��2pl�macXte�:s9Eo is��&g.!E expl�fura3,�, : up%~%� q3!�A�E�Sa� E�a&@7&�M5 themAeasil:��@dsA���vals,��)3=ͩ����""")2 a y{ec�Jc� `n`�fip�!!e� �  `fn`"""�#Hlab = ("{}, "*(len(�()-1)+" {}")R*lQl�[Q NoneHdf =��3��9r��"!'y��7^z���ima�F�=A��*me=lab P��img��dM�5�6Yma�]�7�d�Ay3_equ?�0H�ebAcetdpal3Q ["-�"]Q�"]= ����� h�{ a�re-se)Uedq�j*� u0A�ues (sNEd iArse te [YAML-<�ext�Pd )raw% user�] ent.� pyviz�#/m2/- s/topics/U�s.yml))�;]a wFYg2.�<i��Za&� �a�6� yaml A� = .!�( X("6�","r"�1a�� (namN�lis9availz3 argu�=>���Knq�M�[v[1:]� v!�� if v[0]==�]� �Axeg$=a�, **kw�?�A%R�Nz6"L�ZU,�s.�v!=(fn.__�__� }���e� �tf�; s(*[. �q�][::-� �. rgs])� s(4�Vamt%Q� HerD �A�AVn�j%�e�fir� �9 to `NB� )`�BeF� ;m P_2�!�p?.� RandomlyE?pl�}(u;�A<+(ly yields m;less dra���Z� y ll��*�beioe��"�2�TRC�/Q1om�$p .seed(21) = 4 �Ts�$c_["� (num,2�:.K R 4))*4-2]6�,!�(s=[["kbc"]+a_(c[i]I)� r� ��))]2]A3 IfOOO,.^�C�� be�gdA filtVut %YunkU�C��,�![a c�BrY�Th&l� bef�shas)CnC^:0 8remain (e.g. reR e "w�S80%Ud  bi8re empty� De J!��a�i�f�seLWf'�f� Lp�e�!%a%s� [P� d q"6 ^�p.dejong)6}���De_�B�r�-�[R��x) &�y) I{ nM4## Svenf9s &[Johnny"��/^�o���Rk - �y):x�cK| * �w�Bedhea*��(Ivan Emrich �`devian* jaguaHhdman)E�� J Z6 �2GN�x*y/b)*yp!"*x-B?�W!i y)/b-0 _9/F\ al Dream "3-5�W$ A. Pickovgb�a“Chaos�'Wo�`land”�q�sE�D�D �_�2Jf y*b)+c*!/x*b>�  a)+d"y*aQ�2l9WHnF~Barry M�,� �� �TH a�Z� ����Z��1>V>�ya� qrt(�e�x��0)) * np.sign(B��Jx�Am2�m5\- Fs :y�@0>� m.�1-��.�  2 @## Gumowski-MiraBQ[I."�ZC. )��H://kgdawiec.bplaceddbadania/pdf/cacs_2010.pdf)mlE=��u�uh��*�ZkG!�mu# � mu� ( + 2 * (1 -"0**2 / (1.0 + )*�1�_!jWy0mu,Y�x�B�Qa*[b*y**2�d + �0 y+-�G(xn,� �ynME2~])Symmet�i Icon.*�KQ[%nCIT&Boften� sS&� u�a&ukappro i�*force�j5 beN*a( rp Ying. EN��“ �y��”k Michael F թ$ Golubitsk�-i(FdBZ�Ja��>�Z| �ic_!�22g, om, l6Rzzbar�*Ay*�1fa* + lE"zreal, z,1, ,��* 1, d2za, zFA� - K*A� V*��# _{ MxzA�x*& - y*N p += b*znM�p�g6 om*y:� p*� g O +#xm6hy9P�ove<? " % r7Za l$�*� �g�)^use.2 E_HoloView�" Boke] zoomA��E "1 vidu`!�e@`: ��I6K� holo�gas hvn .oped@ J� �"�, dynsp�Q hv.ex�Fion('b� ') !(6(hv.P�ks("�y"u , *(�("� ")[5]�uI%�>��).opts(�=400,� ZE�kR�1f�%��Ye�+t�"�Xre�� �#\�Y� ,!�YaaJ*vd. Even{O,V�A�eno�Y iA ]� L,!�wJm�n�� %�9�� . Yo�B%Jtry "co2Bdots"�zXtrev�MocC cle jump�/!ly�.one reg-1!��an76�dQe:Dath([��Cqv�DYDAJu,\!�1�ED�vr!\)/upd[c;�!�!=�`&:1v�%d!��42_B%��Vy?"own&� �g=eAe��p:�ef hv_i#�" ,x0=�"=0,&o��A��:~�.�*n�R�i��i4amic=False) x�,(# =�6S6�S dghv.DyA Map( �(, kdims=['a�bc d']) 8dm.�1yge(a=(G>, 2� b  c2d>M$default(a=$!=!==d2��;��500E  Altho�.m� ip6#i�ur2fp:(U6�uoi*v0q le�Z���bi*w�by`�q���ɻ _-�_ ^P����"�aMv7n clickauGsli�7�-�daP leftr�j arrow keyN au�� lot e*#9 @. # Tutorial R�sa�s&�$pro:d�'PFO�*oLprogramming techniqu*l�j**recur�Xu!�{admo�Ion} P a lM,ce $a_1, a_23, …>W�$d b_$$e_\!\{ �g, }{l}a_�+k,*}gag& h&P2a_n – 7, n \geq 1,=�0 P %�.} p$k�!n�f�s 1. W�?I���(�4�A$a_2$A"�9 $k$. 2. S)�at$3C(k -21$ 3. G�f8\sum_{r=1}^4 a_# 43$I�A5EtA�Y�.WF{AXa� to-V.�E9�k�vQ*%55��<�Y a_k$Fkq� _a(k�}, �#UU�[U!��}!�!*a��k:F)�%�-=)�- 7a if n�M1=  b �. �R��P7)J ```{-,n!} �|: e.2)ei0%NX E� of�:&a ref�Qg5tN5v e��m!�[w�;e�E2$%6 $k=4:�F�=4�3 )W-5 Wene5e1�e1e5:e89f!:�<��possiblM pa|*�[icM�-�`. %{aX\s u�an�[%efi�qu�oV�(�xq sym k = .S \("k")N8k��Fq72 kA��/ Likew�:A� $a_3�1^=�:�74^� w,a�lasX �= �+��cE% e su�:NC���$of_%K_�+_��=L(JU�r��@�1, 5))^OM�B�815�7)M=� )��(ɳ�hn"��0��it6���ym.Eq(Z�, �H$I set(<, kY�:�͑8�+\}E�2i�uant} I�'�!�O - Deoh� �}�'�{C�^�+ ( =U&)E�qBs�J$D# 15.7s1aly2 a nonar&�<|�1,— Lotka-Vo  ra (�=�z-prey)5�s2Hhin) * �C_�'ingGtty =% var('x �' a b c d',�)�} *��M�d)x�{�-yc -,x1�``9%� ([f, g], �q&�. y�,(x1, y1) = _!2�M =�;rix((R )) MB%J%$.jacobian(sJB)M0 = J�x, x0:�y� M0J2.eigen�!(*%-%M Q1Q1) M1,6�1BQ� AH Solv�e Non dS�3a�4ewton's Method��\be�"��roop &� M}ofY]�a bbar{v},9a)$�&d$ ^{2}$f$L0'= 0 $g( '@=N?- $y06?!-JE�� linalgQ�inv��knp"F2d�f(v_baryta6��`D +F.HtE� ef g #�B- B� BeN,JM�M����5� �|: L:�"} A�bk} \T{df>y}{d-�=n&�} ew�^ � /B�RUR& U \ Rend��.�!ku�%� G-�: �. ([[ %>s],29�Kre�+F)� Assus e,�K��Ae1z� x_{0U35�0��@ �a�re�S�z"basX2�3 =Fr-��3|)!nb�A�n�( �is � 6w@4 �- JQpem� )CoF^B� BrbAN�U��.�! U�NvA��A�!%_x(old_xM�� �m_Q� =( 1[0][0],=[1 )�F6�fb/ ],[gf&]� � = n -�matmul(>�,F �m :� "�r10�4o/(e algorithm2� all_x [] !2raa� 1],[�d$�L x) � _�� �dAex!sx �>;�U-�f�)�y3)"ka11,"f &�1 ('= �x+u:',=[10!�[0],',.)�G� :?�m889207115002721 )n<7853981633974483�k2D<�cg�Y�t�ye G2� vixLfigure(figsize=(12,6]x�(-�1),-V:GGtitle('CYK` �Value v bar2,lt.axhline(1vn!2�2lor='red %D*JQ ��b�;`����� ��-05�v��� Nu�}& �py Reh Ig(ughN, is w�lb} perf!woU�unity!��*ewK/-t skills wewm coveTG t�Scv int�� ew nL@vis&�=� have/ Lla��ofvrt") �(�/ill��s deis�tasks.atmr3cBl�yr�A��`def`Kg`lambda`r32. ��oi*r����s or�Qed (mea�aI��@ ��%"� Qst�2h ). MS:of�iyouq doo �;i(3$�. is "3'm"pnd�gpyk� %i&;@!+geth familiar).�al)� )B��� go a_(rad��deVv�upackageB4!�r�. <;Le sevZ�t�K��>��vYA�%{mptASL)J�^5c�-� �EaA�ll6�I# 3rdH�I�s�-�s*� sA� .spe��( E W � �`p6�}# T�4 # 1D a18�[ -1, 4) b:(4, 1, -1) c lins�=2$2, 3) x1dL�o�9 0,�h1001) yb# 4, 5" # Row VE�s a <= a1d[np.newaxis�f b bF # C�hFCol F:: I] b F: #� ces rnnpz.�<_rng(0) A = rng.�g�011, (3, 3)) Bz ���z@ ?nE��WA��^ B.a'mp��� : > Qaxj��2�|� add`��s�( inpuh`a`eX `b`, add�"1toget�jz-�q���e�t$~"e�wa��D1/b�ne�2�#� F|n��1� add1(-� � a + b!�AdV>2 add2d�|�=: 7%|o m&���s �R � A, BY%:dd2O!� Mesh�% ]2�F�5��soOs��I-!ask>$">0. I���o�@�]ormJan "�"��\ kinds mesha T��ntrA5fW�%�"Q�, $x �Iy� �&!?3$x�l30!C $\hat{i}$�P��EX$yR)j)r�!o��i�2��qd� e;ly �a���1DXl s `xM�y`. Aq-�ق؂�"?2>u7�ډp'�woc�s)}p $m$ �n$(p�v"��I�iN2D "�.T.� �q `mult2d`.MF~%my1z!� e�low6Q� ?(�&m7O �� $e Gridded/A� ed x��&xM, y�np.A5>< JD � xM * yF� # My�y�ACode z =�� �A) _ =�W#8ourf(F%, z, 20,xl: ('X'y Y9bai|e�)�ZT. 1�A��"oM�"E jd� ��nnh���as��*! �m�x�m�3l XA4u�/stand��-�!��H ply.��x=iu�c���� ceU want�y�rowo&T������ ## A"� �tkY r ?���#�?"�  E��yR�� Area�f(a Trapezoid.nQ*I�0h��e�s ($b_�X$b��$h$"]�J� �> mtmR���8ag� is"]N%� fb_1�A _2}{2} h.@*:�����em$(b1, b2, h�h� A=:By'��z 6� �Eo -tc Leng��f CircleRus �rc�9��diun*� riO� gle (in d��es)!8a ce�(iU1�c l�!a +c"�M ��aZ+f�s! �{BM$r�2yr�$:�mea܉�=*7 ans*��e��[deg2rad�0�5docs.^ org/� / /gK'd . D�Ky !�9fuB A9�g AIarc(r��D�1:@Sum D� c2:T�QAsum� ̓q�%ue% betwv�!���d�AA�Wn natu��NH�!a�/u'6Z/QT�"�{Z�\\�$( �i�#N y_i f)^2,~�^2Bta� !�-(N��!� Quadc R�r�qua� yҡT�s (`a`,� %b`c`3.�two0~!�co��&F��. I]. ��!�m�$N$A�e ��-�b$�v (N�� . P'��o�  5�V� �� , c-sl # SwA� plus� I��$ solPm�cq.1minJ2� .2);Ivstack((W��lMJ�#J�N�Cr"NP�tr�c*�� ut�� ducty�wo� 6- #:tA�C%Y-Vj�Ma� ţN�E42��(E �%�c +/�>�W6eig(A���x�\�.e� " �$ Chec|��be�}C�%%�i;n6�  a1d,Q, c1d&%rc np.pi*.�^a/iJ-.0-� b%�� �# L2��p �$�@o% saoid&�*R�ߏgn�aramt�����- $$�j$o + g t + �x} ; ��omega ph��$$ a kn�.fr�*y $ 1 $ at&_K���(se���s $x_i$ Bj=�1�! $t)1�- ea = sunu! al�� be�*^ s $$��sV͏x QB7!$$ Ky!H= \XF{arwL2}9bOS5\A>)nd}�xj\�: {a^2�^FU .}$$v�rkAA� 1re5�7%A c_�8c_1%�c_2~�c_3v��O�Q�A�eE�$c!���KU���`m��#�-�Q8�-d u[�5��L8q$ɡ �#.E(au6�5i(descri0� abov݃p2�h=SY��W��, iAYe_i =.M_i[?ZO&�%VQ%- x=��U��Pm+ � �-Aex�-R ��]WU $$\�# bf{eEe V}  c} xAnM� 9b;�"�  e_1� 2 \v�4e_n 2�ML,m iV�Ji1 & t_N���.) &R�!s# Q20siB �vQ2y�S �&f )�t_n*NznYZ�!\\�Vc^V� �E� ʅ  4!����J�x!~ Px!8 -0 x�V����Ct� � .&+!� a,� }4,(${e_i}^2$).�B:07/F$ �split(&Q�e}^i�Ty\e&=�*cJ*w�ext>-*x.*M�N m�f�UK\\  c2~(^Z~@Ax�ZF 6cQ-]Ex } �[��z�7To�!��$J>'c5$�f)�d} J} �cbdo (rel{!}{=} 0��i� ved� �'c}$$Y(� �� ���� .;:��i? �&(��= ' LeftE$f5\ &��\�brace{:�:K~�1:�t)VB}_{&�.�VL+��} -^�m#~Lux'ge�� >f�.: -Jp J2� 2L�DVD;f ���V���.av� �V�n�2<.^P2B -Z./ũ^1&�iV�A{ \ J�"�UV$ic�)@.� wend�G= ##\"� �Es��"� � ors &�B�Js� *C�E�"R(S� � 2� ($x$*��� � ($trds� �'f�"�� ��:fL ($osIoV($ga�Ptud�� hnd phasephir�;�,����"�W#np �-He_!`(x,$, t.�_mtrx�qnsDn�[�)�� P!#�F [1.]�9t6HIn s * t)B-/�:�*re�np-#algA4(np.dot(>�,B�.T:r6bH�� ]).T�+am- (res[2$***2. +�[3)�= R�6&,1A -[W0G !r*,{, O!� )g�A�! 9'2�'i�$M�- reaXAY:E�5AX>�f6Y&A%.B:%S>� oI�= 7.5 E��W\22.25 )� = 2.yKpi * 2. A�_!p/10=R+0.2 nz� -=� ��)$) t1��%0.�?, �4)�, �+i��*�z�*!�V0 ��)�`+ȡ �*;A�:�o%@domUSt); 0.5)�Est��%�� est_ �,!�R� amp � =F2�xa� x_A# N +0O �jb�h�P�#A� ults�"%� Origi+�dEǜ"u�"OE*:{orig�:>9f} {q�: ".�#at(��;=1e-) =FC #-"&"y: �A�t �.LZ�,"�y)�x ,� #��A�e: �amps �~� amp=Q� ��ID@!�amp�P��%� �E �2MZ- n � � 1�-� PZ# �YreM�lt�.t,A�'�C�.�G0.5�V"��A�.3a, 'r',71.07Y� Sine ?W#"&/ s Z#"�| �uDbbox_to_anchor=(1.@*.0!mlt.F$�97(%/�� Horn�R"8�&��ba�w��o&�d \\[�t$= x^3 + 4x�1 ]  A!d�1� $?��� ��:)q.�Ma.>�. *r+ 4z"-�TI$proced���"s 41%ip)$�2��2)%)s�Wa subRG%�|p�id< �� ndiveW ber. AZo�)it |6 "P(D$e&�G�e�. I%�r�/-�re��'  L ? ReQ "polynom�6in$X I�*��e(��ed�: "=6Sq�v�-1�E+E�; " 2 `5N"+4&)�5 lB�b57 a to�U of 5�U RB; 3%�!��"2>�.�@4*o�#� **:7FE�)��+n�nV>o�%���l����E[reE�ve a�!�eff�^T:�{&�/ s�cas�j�c.�[ic+udGu�;o "� |Bi���8� # Ab}�%d R��e 6�! �.�!`Q��/P02�5:a��:8�#x^*"�#Rx�]?M�F 5z.=��$** $= |x^*�| $#6� #��*}{|x|}0* �_a�?si�Nue_fx, �_fxN �_1�bs( �_f�7�/�1..Ej /P(:3). I� 9� '&# �L"+ - NaA��>)� ��E� (x ** 3I(�� 2� 1-?#(�Sx)��$ ->�2�&q_a(1; s�� 𝑥g@� �` k!x>� �ae-a)a�8��?�gAW� m�ste-�ƥ{ oremoius.!O=3A�verify&G h ex�bby�kpg&`a0end�vuxval $ [a,b] $ or $\{f(a),f(b)\}A�ve"h%�*g�'fu $ f eE,�j�#Lr�Hb��(4'q�$\��b$�Z�+ $f(r��0�- a < r < b`]9J|d .#!�b��_)�?NMmif � * � < 0]�� �#w��0(b - a) / 2 >ю7I�c�g1 $e{.|c |2 �Tc2 elseF(a�2(��:cq�e�"i$W:!:m��kit   =FA&�:�<24.7 µs ± 1.49 per�/p7 std. dev.�*7�Ts,�400) qch{����.N�_hm:�_a(I b)x9�q��j�.�����j�_AT>;_hm>�0%�± 4.5��~�R��A.g��Jbenchma��n&��3> �3q���� nű�4. \��H�2�h� 񟡖��� c�5*��*t3PaB4ciYN��6�%6�>jR�&E�,I�_S[}6P a��)([��O VK]e��p6��I��Ƙ Luck��%\[ �VfQ�  "b5 howeƵ&% ,v�7alwd7 $.�"A�nesM AfM��a"1tion&M�y3�iz�)&� a'A etic1E��WP���� d� � e%CK � *| �� v� �ҫp�_ !3c.,3bbl�V'��:a�tiL3b]"� al.U $0$i�ll-]<V�de��� E� %Y� :Oy!�ngineer�3�$Qan* .-7M7he�>x`���9��M�4Yz<� `..iO�w�9'�8��o:'� � ��X�wa�"�?� C�8!�&�� $ P��=�S k}x^{k} + -1-12 2..�a_{1}a�F$�!L"�!6he*` V�-9/7k,�dbxm ''��-�e`� u" r:�.��P"(��-x :!Bh floatA]�.xk 0 I���!w:+c 7Vg..bn.��s .�r : �ynF��/�Y$>1zpIc[0-/ if bAt�n&� 9"iA�R1�O E i] +7 y� 6; �G(sN?b�l�c[i �7�I����"A Uo2,K?[�?'x0Wu�684 n@ 9.99 �? nE �w �Fs160h± 2.02 �sj� t2r581g± 9.��s�rw *& "jZu�� A1������i!c�)���osA�q�� lai� �'i8��N�C�{^�Kit��s��M-Q.1� shalS�okd:in��Hp*Cof�1�_w��5I�Zp���= �RwV6 - R.Ln�rd�,nd J.D. Fair��*NG��p A[X*. Brooks/Cole, Cengage�/r�D,�, 9th ���tg��$imothy Sau�l�.NgH (3rd. ed.)*. Pears�UKEJustinIoml> 20156FBs:-�C��u�ZVO , Machin.�!Graphic� A. K��(, Ltd., USA6� a� �.��^uMa�fx29�a)_0�QnpKSR"1,�C;�5, 6");�ri+?" A([�?�C]2e  [�C, q�&< 9_0eAzH.<~2CJ�) E.6:~-h O�c�?A�!iR&� 5% tP�3, 4]]); _06!6..�9�9type(6_�D5 ��".nd:7�* s^��E 46�[ 9, 1j�Y�9�6�2�6hr� 8Z� :�  � 21 ([[�]10>�15, 2��~L he m?Ks""%iI-_�b� ">� 4&���@"~ :� , $$ \boxed{6� pYx}�.2A�(\\ 3 & 4 :^#&�5 'b30H7 &M`\Y & 2{�&&a�� �&# A�rix�l��:E� y�ϯ� W� 5)*�6dY� Z�C~ ('aux/im�I/)N-6� .pngے%�o�A�2e��a�w(obu6�EA�=���f�%f_0�`�B7Z�F�C�N�6\YF����#�����x}�)Zs)����.�# u��͡as% ����6� '��6q���A#"sa Real_d�@u�� ## B�(Ca��Si�@GHm3�@uit�Y# M��y),*�^�g� ��g�M��]m@ <*"� � �&�8$F = f(X,Y)=X*Y�7�@u"�58m�1J "��Y$GH_` � �;$UtM�c�BM*$fxM~s� -� $F��Qz ��  X*Y%2� � -2,3�% (f'�  F is: {F}�:�0B -6�O *How>one tweaM1%X$ slight�Mo��(� ��5 __f__?* Mt$� gy #vq&U �)�ppff�.�a�!>^!uw�o���Qto%�ciIM@'"&w��% �0ef �}{X].4\lim_{h\to 0} 4 f(X+h,Y)-)� }{h}�!݂��) �si�[ u<y 2��a$hB�v(��l�6�h�..x�I �� JaN2J2Y�� -2; Y = 3 W� X_=}= ( � � Y))/hN(A�R0iNr1�XI�.R2��=3�1Qc PosiEx�kc��X$Q� be iM��oԜA:AW8�NmA6�pO)(f��(;)me�fi��#YX Aa-��, #+2]T:X1.8,3Z� a�!=N�-6:I -5.4}b�"d�an $-6$lHHHs! IjmN�hY6hYFJ, Y+hiF�JY)b.R!g2 ]6� =�k 4220�NA&>%�BMY.Md ��M�Mo Y �M1�M2,2.9�MMM8MM8�M��_;+�-__��&�@� made��ZBlDN��9�s��mcona��%�a 2"eF��nabla�|=M3[\L)��N,�$Y}t3]6����������b|�� 7e��n, Baximiz�"B�(ב -by- ) to��s Qp desie(� ,n #�p&&�./N��n{�k)}*'sm'��i1λts#�_���feK`�))�s�s� l [hF!Ba�]�A))6�__s!?i�1^ 9 y0A�>Sff >/�� )o ���N = X +� �* . �Y:!.���N},��{Y2 -1.96981/ 2.9795a��F_�/N wol�putm \n' �62�.0͌.2 -5.8^� 8��!x$�.�!�ol�a��F >Gw,�' ach,r,P1Zexp�Sve ��w&)��o> ’aG� w$ �y& M�in�( ��Y�t# " �JM��$� .�l�&ax�J�at��E�u T��6�F2� =:N �� AJ��$F= ��:� i>� *B� ��&b?��  ?=2�)( )Y -XY R'XY+Yh~%YhD \Ս��&=Y݃*} �yY��:8 vyY�>Y}jy," YX ^yX(,�yX�yX�y��X:zH#��lJ��dX}=Y ;�R" Y}=X6�A�p�res/7�})�傁v:�"I�i�( Y,XR� `��u;nz#�!�06m �7&� 6���Ɇ�z: B �.�X"�  = Y Y.X�X-�%- {4} \nY.@2.?3@).7-2�.�:�01%FE�ZC"\!!��},��noFK -m�7, �0 2.99�@�@98700 �1j�*A� 8706��NK:��0* ���]��da>��]we2���is $G=gE�=X+Y.�H�4��{ X�rS$X+�6G q6G+FG6KG = 9Y mK�G2�:!o�%we did �'� �����a�5a5F?tr�Gr�g��g���)N��A; fG1�����Z�V�bG+h+�-"�:|ƙR �b=�K9Q��b bR��.�F�Ff�E� QfRY+h -�R���R BothNh $r��rn$Y}E�:�6��#l��$1�Ga�(:V� __g_>�յ)@6�*�.R��1���ȉ�l:���2���:f�9 ���3.����J�.�{F�� 1.01� � cursW�"e�Y�T�-�TwIR��N is $�Wm�T(,Z)=(X+Y)*ZAm2, O%2  1!%21. 5; Z = -4 &I�v�I�M=m�X5,-4)=(-2+5)-4=3*-4=-12����.��[���[M%�{M2]B -1 AR/�ag�F>v�%a�`�X,!R!JrbMrbm�b,Z�=m�d ,Z)-1��h��*z�-2�^k�$ %^�E� -M��R�0ZX+Zh+ZY-ZX-Z^���Vm��ZF= S �lyۦ>`�j���.�FJ�f�%�+hAg ����*�� Y+Zh��Y}=\fraLc{\partial m(X,Y,Z)}�Y}&=\lim_{h\to 0}\frac{Zh}{h} =Z \\ \end{align*} A R@derivative of $M=c|$ in respect to $Z$ is: \begin{O o�M�Z}=:]2% &= 2� 6f � +h)- )�\\\\ R�(X+Y)*(3 - Z 3V1$G=g�S)a�$, and $F=f(G,Z)=Gt into 2 4 ,Z)$!c�|� appl �ha�/ule for�Von, becaa� $F$ a��!$G$�FX Y$.� So in5J)�$j� X}$,r! Y}$ �jFHZ}$ which gets more�licated�_ �e)�!ex ex��sions);o!�e�>yF}��R�.!�!�nEZ! ���be de� osed:|*} :.mXB�.G|�@G2���*} EJr�G}$II� multi)r��gatA�hos��ea0(have alreadiuted:ni=>!i�(G}=Z$ AlsoB�6�6� addiʱ�dB�i��$X}=1$, thu� .����*1:��The same�;ies whenm;a���>�.�Y}$��Y�Y>�v 6�> .r/Y�I1)deE�� n4��(does not ne���  Z}=G�J:�� �� � ��>� def m �� ,Z):�G =m F =m�return F-6� 4 = -2; Y = 5; �-4B&NJz&`A�O�{F2N:Q&�&s eD&c &S � �o ,jp .% .q .fr ,} 6s .O3.�23observe��atc!0backward passR� switches4valuesD)n s: wSusU�(3,-4)efordit�$omes (-4,3'2�. ��:�N B ther h�| just� es its in\ �.u� out chang��it!$9�&} �� ֖ \&� \�� eP&� b� FZ �� F>� 82DΒ $Example: M"� ex"� s�� seemingl=� ":v4} l(A,B,C,X,Y)�f~H1}{1+e^{-(AX+BY+C)}&or�>3sigma +;"�} �5� $ /d$called a *Coid'*B� 7F�x�2qA�it wasiN a loe�0machine learnA�before. �݇of A�>��6An d �$(x)}{dx}=  * (1-)6� � mean�at onc � ut� final act�on $F= S1�:m y!] cula B�0as $F*(1-F)$."z2o�k) is5��da problem, however, direct~$ !d!IF�sB�L*� A� > .!B~!C! ... could' tricky. I��, much better��� �*AF�� � &i s togeher=Are!m4� Q�J� � A,X)&=A*XaRH=h(Be�B*1@K=k(G,H,C)&=G+H+C&�KJ�>� .�them aJ�Qk(g�, �,C2�KT!� look-6� r�H a diagrams Let's%4A��R��u�he=t:]v� A9��"� .� K}*:K]aGBGA}!o:?.]| FeC*1)�~.X /}�!\�� X��f��\n�|�Az.AR� By follow�exactR procedur�$B��$C$ge>kv#B}&=Y ��Օ�z�B�FF C}&=ZEs r�b.�fMi, �, u,-�, � ��v�l>� ,import numpy��np  �b(x� � H1 / (1 + np.exp(-x)@*l @.&> f��� H > �\0K = G + H + C �K % �Fc 4A = 1.0; B = 2 Cu 3  � 3.0�2� j.�Rt Fdjv @0.880797077977882Si<�yJs involv�{I3 will��it first!� `F_K6� _end!  F_!Q(F� - F)�.'� , {F_K2 H0.10499358540350662| &Y A2�*F_K B.YC.$2�A$2�B�A.�t�.�:B.6�6.e.+\nC.5�2.�-J$�.�b%.�H0.31498075621051985 J.�H0.20998717080701323e1.�Jn!�.�BA = A:j9j a[B:9S aqC:9=�"�Ai�AbB B C C �{X I{Y6�/@0.998950064145965m Z 2.002�3  l-2:>48 -^^ � 3.00.�!�yW� =Z�.���J��.{#02550181621898��%�hig� than� @ne! "�from sy�`�msymbols� ff # ini� 4x� y� be)us�( &� x, y =$�('x y', real=True) f = (x**2)/y # Find � N� of{` fx = diff(f, x, evaluateVuyBE�(fx�F(fy) # .LLf(subs={x: 2, y: 1}).x�#yj#``6�f(!+��D!/y eps�2 e-6 �2 �1 �<(f(x + eps, y) -K) /�'!�*N'B� � !���DSteps - [DifferenAEqu�Hs.jl docs](https://!�peq.sciml.ai/dev/index.html) . uild� @an ODE model HowAQdefs your  , st)$variables,Q�T (and/or boundary) con~s�@parameters. As a� I !,e"cDntr�Ata1ay�nuc� isotope& describ�s�expon)! >: $$ � $d}{dt}C(t) \lambda % **S2� (s)** - $"$:���.RP�M w Pr!Vconstan!decay4half-life $t_{ �1}{2}� ln2}{ R}$ For !�5�!�be+ atibl"`^M ` ecosyst$� e "�side sh�% one!�) !�&"�0- Out-of-plac; 8m: `f(u, p, t)`�re `u`�LK6(s), `pUbG`tA� pend#Q� (usualI ime))p�r>�(RHS)�ecm� em� )6. - In:�!(du, �, ��wsavH `du` �res��s5�9A /i.x has potmper%�o benef6s~ it�oW,s less arrayk��>�Cjulia RR #e9E>�Y� expE�U, = p * u pa�1.0 # uL u0��I� aD�u tspan�� 0.0,�) # SimX�startE% A points  =�P%(�, u0, Z, pQD�#!�7lem sol�t� ('S2&��>t��`Plot��`a�viA�izA �olu�.n�!쩷�p= recipe so���"� `"(sol)`"J�� , # V�� � �#)�SIR�6 A*�!�!eqg[.��,www.maa.org/�!x/periodicals/loci/joma/the-sir-Ž-for-sp� �[disease-$.�-q� 6)�C�� infe�&us ? Qinge`�'re �6��~K���xb&�)"vņ S(t)�)- \beta I&� )B:' - \gamma !>6RK6$*�}�Z����$ :%��A}�nsuscep�Gpeople.�N.=N-�N-Trecovered (or removed)9 *>Iy%M�Iofvn�bn2��B� meetN%+>O �y.[us�A���iL #} #6) �ksir�2 ,t) s 8, r = u β, γ�' v�!<β * s * i v2 = � du[1]�Gv12v�v^' du[32  (nothing end��~^eȡ�(β�� � 0.3)��[� ,�(0] # �>�0.0� �`"�J�!%:��FsB�'VV���x, label=["S" "I" "R"], legend=:)!� �/## C"= Sums Sup� we w� to� f��umATa seque�ofj bers $x_0Kx_L$ $x_2 3\dots x_n$.�at%stn approa�: 1. ���rez� �syDist $[x_0,x_1,x_2,t,x_n](չ�built-in&* `sum`. 2.��a&~ � ;e 0A  name�`result`. �+), �a�0add each elem� ib5HtoF� at a��3advantag"� se� 52ɚat!� don'&�#s%'$�s_� . | ��, h�,� wK o write*� H�utc!Msquare1 W!f�-�,7a %�Arehen�(�&apsum_of_ S _1(N�"I�I6y 1**2 + 2 �+ N**2."�D�$sum([n$ n!�8range(1,N + 1)]i$�)�-B�4$j-30��:��`for`�pIM!"&+-and-upd"] ru�ł2�!��"��� E1A�0-CA�t"ZA!# U �Si'�)#ng next termQ '= + !�-� "A2n�2V� Again,�n 0ed `factorial��,tak�> posiG($integer $N�d-�y= $N!!!�mOa� F�(N! = N(N-1)e�(2)(1) AnN >i�f��!g?-e��EIK}�2m�Z�u WBV * n- ��tou&u/�* &s�f we k!)!PI�69D26��S)56)12��Wg � 2�to�cxim�� $e$  �$Taylor ser�+!S $e^xp+$$ e^\�94{k=0}^{\infty}x^k}{k!},�9M��.� i100th1EA�a, {w#1 $x=1| ���1/�kIEk�� 0,10���2.718284590455��## Sear�$g�S�s"!@���s30q-�e�� s:�s*� oZ#likE�f���"�~M^�" [�-���W&�(en.wikipedi�/S�two��theorem)& �( word�04 �F�$(x,y)$1���x^�y^ NEb�reps_A] �:�a�6��s^8��!%-$ U $2�$%� $0 \leq x y� &H i���B�d��& uple>�if $NY,0$A� n $1%7%P $5=a"� .�qD`[(1, 7),(5, 5)]`.�� outl:a��  b�} n�(d:$1. Giv�5 larg�� poss�=�x�($\sqrtN$r 9 NJ# _ pairU@�)m�-6- x^2ha-� 3.&� help*�4��isME���if�mICisO.]��;(n�<"De�!Pi�(q�(��� if r�(n**0.5)� == nو)� �Y elseBFalse>�] '''Fj:NI�:V + y� N.�&V�-N :� /RI/2,)� :I�u -2 2L� #�C>�s sn(t V��+ [��>>>�.U(1105�"<[(4, 33), (9, 32 12, 31 23, 24)]J'''�= [ if].N/2M0# If N/2AiQ�,�9up��L6E(_ max_IE! �6,.f�1jjfloorBOqintB a�x.Z -+ 1�yml�"Na�**� 2$*>y e5"% � # ApA�mM6toUq�>I !�.a<(Ei Xm�a2 J75R�? WA�i�?sm�-M�� can .8< /�ѽ in 5&��?2��hA� num_� = 4(-le� < 5�p. E~ /_��(N)/R len(']N,':',:9� !�44225 : [(0, 65ab16, 6e25, 6033, 56 9, 52)] � u� d;Prime Nu��>6!n[p&~ K_nK)E�� divi�� only�1�itself. b�is_xJ�2"" `n`RI�s `�` or `��` d/�Ft27is� me-noF2>,��A*V d$�d�&n$! r� rema�r�� divided!$d$fU~?�,dulus operat�%�!yP.��IfE Ts`th�Bd q� so�m9$q�ei� $d� ln}$!$q>' !5 -)�"�7%�3>� �sFs2�MENLwh)�or�L/alber&Rn <= 1i�I5%# T�Uf d5E�d;�*�d�I!2,�y "):�if n % d�0# �Ai)by d � so ���xJ�Ifexi B�loo�A%Ldu�by � dY#uA� 0x pa^��i,%� "_ o��30-��8�!>a3-> 0,31����x5�W$n,'q�!.]7!5!�3u� 5:7:11>>B1B39:32>32." O.�works! )E� � � �s2(ween 20,000%�2�0�VI(20000,20100�P00B 2002>'B�002�!� 2004>A 2005JP6JP7J(86^### DA�ors� B��eors:^F�ndM�L4ofB-�= ]de;6���y"| " %�Y%eN��B�B-( al�inclu��1v T_7 = [1{ # Check N!�~a���N/� iq�//  q� if NZ�.C d �# N�E�so��n  N� a�of1!HE]N]m ��."��Q!B�6D 7 s(10� � 1,�(5, 10Z .�5V64, 9,a� � 50IfJ59F59yA�DCollatz Conjecture� $a$ J�A��&id{6h� curs�>h�Xre��#a$ yx_{n+1�&RH\\{� �Je$X}{cl} x_n/2 & \text{if  �8even} �J 3x_n+1n-odd} <3d \\�.��+[1c5~� 2_2)"a�a�D���0*i^*{+ ch 1:��aI"�x%>1����16 3 = 8 4h 5�1%w!�6W�Qb2 cI6�1A*2 a62 A�s!�s&�$ A4enH U7��occurr��=�agͤ�� �(a͗2�-���%� �z at 1N�� �v�> a�� = [a���e )s until�qr�� wh� ?[-1] >.> �=�l�:��isE��if6U% 2R �!aw%unew �Q��^����n6�� Id�l3*2n���~A��'s~z� Q510.[10�B6, 8,�O 2, 1�&�;2:�[2- 1, 34, 17(, 26, 13, 4��fa0Q��8!�qui!?maz^&No ma�;w�A[E�* 5�a5 A�!2Q�R423456789 seq =}O-+"�1m�a =",a$�&se( ",seq[:5]end.-5:A�has",�seq),"�s."͙AE^� �'� [, 37068, 1854, 925, 4629i�� [>e � 178%]� W� $a <70$���e lon�1A6�length�� a_ma^1� a& 1,100 seq5!;Q�a;� $>D f&%2zR��aM 'L:�2ra =',3,'1% r'� =�~N 87��* > 179oercises [FeKPa�+,�� J %27sw_on5s#*�6��8�� $p$����$orm $4k+1$~I�:$��1s!e$1��32^2$. pt"� �g�?X!an $2019R�U� it :-C�. (Hint:"J�s *ZFJ.�4aRs?+ n.) �R ���1ch1;rK<�a:�a32F�3.Vh-�c3Fc4jw� s_be}6L !��T sb !F$b� ��@ e��'An�!�cl1NH(rval $[a,b]� 5��d_mod_N6�f~F�,�,y�2�"ʢ-z0-congru�'�Vd$.� (E6m&HD�%�"� � fter� y$N$�1 is k�of)Eis��%M0an arithmetic��gre P~� DirichleB>O_prOs). 6j�r�/rocal_rF o>9h_Vo6$C&*b�яZ�)N]!�e� � $$x_�T41}{� -1}} +:2}}0$$ 7n� oot_�6e &^ }N$,F)H6.-$N$�Se��x_N9YA=t: ��6�/h &= aR n�?\Y1K lign !GD�M.xA� verg_""x0 v_ �$� � $a$? 8jW fib_2'_X:6Won:�n� Fibonacci��s O�n8 . 9v >os6�)"�&:��? also��8� 10.  $w(N)�!� � ��N��\���B�"$1�x �"n6^ \N \to 6�%1}{N}�%n=1}^w(n�4im\pi}{86U� �2 w�tula $N=1� �� comp�l$�&�m\pi / 8!�11. A�!�fF^�Z,c]$ (2�� b$)��,a [Pythagore6 ripl�82_ 2�$a�b�#c�b�py :�t� �s ` �` �c)�N$. �N�;� RootcE�7s " Calcureview2� 4%matplotlib in$TD.py#� plt .tDi�Dsci�D ;>.��rpo8K - 1d�C �E"P �2opt�[�& �m�U vari�(f�[s. Re �+�LAhIle--[:,case, extrem"*(l�� a)��pu7�O�*�Kis zero*�K'vanish�8�"�'=68no�/suffic�\�� 8�^Mc�_ax(min. Gener:,~a"hY�,at� to d"�$Ua�pdiz.��a� h (MtiQ�Dails -� �Fkef"DTex�#j!). I2�)�T)�$B^�9e *mahLes*L?!` a scalar-Ť&�N� 0$\mathbb{R}^nY& m=+]&n $n\ �1$ ve -� �*}E* (deno $�^f� �1f[n$aVrix2[H� an.ZH$) Jus�"ryPd�>j�%1 =��gi�'bR>�(x�ˡ�(e%Mx>�Yf}&�K$x_1}\\ \vd�Q\\� pb6+n}|V�)$�$$(HN| \d�7t^2:W 1^2}B~'\,\�x_ 3c�&�c2<�[2.2ex�~y22=1��2 Ӟ�6c>�)�&1��� \��n��63�zn^2@YF7One�awi��7_-ay abou�eU�,- it's symme�(s6�U3�L leadA���-fula pert�.�5erm�<ɘre� crit�;�*� /2�analog����x��F� bXs �o��;#6�2�Sq�)* . Specif�ly,.�5$f:.�i�arrow $�a:����+f�؉;0n � �͡.��٭(!��Furh! more��B�)�6VSaz �NU! * If $H(xnfs  -=>�($\iff$���al!��eigen� s), $f���minimum�$x$>jneg�frj%~jWdVj�d$ڥ�NX.�saddl @ �. If��^$m$"c/� �%�CY�$m ��ٔofmp�O��s!��2n!�AJacobi�8J!�:2a� �/s $�Fg�F+M�_ �K = bI��>\delta�% x�s�E �� y2\ 2g}CF9 y} ��~��W13�3�)%2� !D(3$polynomial� familiar)a�'$$ �G ��ev+ �- %*�2}"^T a+'�cal{O}(\^3CF ## M�cIss)[in6 �� in ��Dim�9 * Se0�� <s *g)er��4 Stability * R� of�hnce *tinuit�%d.�C 9�Bi� M�7 b�7A�M] 9Ust �Jr �$Ё���a non-� !�5 N ��guarant�^= a� - but�j� slow�`e m!Gidea 1\e��M]3�A.I3: ��f(aq f(b)��ve.wign�A��,o%=ouq�m a< a�"`%%!M $b$. We"K�"1 �Da� midp� , $ca}aQ 12(a+b)$.a�c��� !Q,��=A9�� �o��aO S�4$fX� ^H(Fi�!jXlow�iW�9je� e��cFo�����c� 2��af��A03 + 4*�. -3 PK8np.linspace(-3.@,i) plt.��x*6<) �-�Rb =KN5 !\ 0.5*%Y @I" (a,-1,"a" Sbb.cc" :sc�(, [AS, AN,!Z], s=�#@facecolors='none' hFA0,0,074c='red') xaxi+.plt.axhaA(!asF/?�3$0%!b+c �%d�d.�!d,b,c)!d�!A�!�=�iE�_A��d���u�dq�!!q��'��enough'�a���is�'ani9�- a���'bracke��[s'D:]��L,'S'a� end-�<s (/ some- i�0s ). A�Cer clas�� n�'open' -[�cu-(MPJZ*.���u�Hly@� `L��!XC�9c�B.ds  ��.��i3? ,��� q[onstra�m�45�� � of oyC� � s��N:3 �ai!��a:nB?ca2�F�)B�(��-2*x+7)/ 4+2a� =a���g��,5,~T);IPF p1=a���y�Bxlim(-b" y .5, x�D('x�s�=�=npv�". yL x0=-1.2 x1=-0.5 xvC Z5 $x0):1) notcow� counn<0 cols=['r--','bgy--']3(@== C < 3�2 slope=(f(�[ +1])-2])!h�"-]O$Ŭ�H=-W*# +1]+2Se�5�t, � *t +L,L# w hA6�= -s/rQ9bs(f( ($)) < 0.001�%.Be2�8�1�H^%" �#unt+1��show(�!TM�m�2 Ef�&1�ncea8�&aB% CaeGaAInce�I0(i.e. error g#o�C�q�Ie�$hx$2)"��J� :lG�aas  ��E��l% quad_Rc ��c$m x^\alpha. �$ � {1+\5}}2 \�; x 1.6$) hCb!$trade-of�8�F6zi jf ,he �:s. AcRBR�q**-/q�:ons**Hna�P�ViQh t*Njo H�2 �* p�* &�@�(��va&h$x@4�oariD�n�pit choosP%; mosttK, G%� t �-��cy%�� a)� a^6} S !#>)?I@!p ,!�saf-H<## Newton-Raphso&8 We6�?C� $\theta$�.��Z ("�>U)ٺ$g( 2,)=0$. Idea:�rt���uue�i Z_'�\tilde{ @ }$ d;�]x )��/s|F3�e $�&6WiN� yThe�.&�Neqnc-*} �.��N& 0�\ &=& !_0 + h) mR& 5hg'-_0�Nk$$�is �sEAat � h Q l {V}{.T}DSA�at96�E�-�PThEwaDt h#��Kr�Cio)> W�- 0�b{w#�eve�/�5 ite��v� �bA B e�! � {n-1%�f� %��H.�� Z� aV F�^�=graph,��se��r�n9-2� k�"-���$x� 5��W�mad-excellR choipZ��Da&w��rapid. 6c/)" ��5� 8759199633086703` In't� :Pc gs&� � . Ha NRB=!-� =)�(fatal flaw:2��u�uFuBa��~�������������������� �8�[�D�_stumb�Ohorizona�a�ctotD~ algo{, �#�P�. �O5 C�� �3�ing� atxo�Y� *�U�NR�� "x_k \; 2�; x^* 4$g'(x^*) \neq h � �may@0:+ H=8$epsilon_k$2Now�� $g$�$`7g(x_ku g g+ qDQ� 12 g' �^�...$$ $� _k)= CM>1.� "sK '! �{k+g"=& r��#(x_{k-1}-x_k)>�m:,-�{ �l ��tN &( �6i �N� M ^*)+FZ`) }{2 k}l^2�9�Gauss-ɠEP1D.�MP is} -!/=:. $f(x_n)}{f' *a0�ge]' Xto $ktD[q,>VJ^{� W!�xM�B$�<X&��$ <�La)ia_se&Z�.<' � �J{��I 1")Q =i�_e$(J^TJ)�J^T�.A�,E&S[$$B�63�Am.�)noJ*ar estLR�p`lem� 6_n=��ent�R��5h)� $J%�!J_{ij0>a"�& r_i �} �jIl#�@ve!�Q"�Int+io� !&��!�a typ�&h 6&. Po� 6 s�y�2we9�M�2eqdeg�1�� �ca s;.Bint�In^�1 I�E-I�5��o pass: roug�5vtJ>� R�(x\ CoxRo"!23 "�*�"� xWx�ilt��0.5.�5, 16 j�D�"Z��#F0,6x0=;0ray([-3,-2.5,xd]) y0=ff�?I.$1d(x0, y0,z4='5g�#�_eobola x�6�, -1,�-�/00,h%�Ik�� $xs, f2(xs)]X� �.t*0%K 0),'ro');��c='ye]* #New x�, xnew=xs[np.�p(� �==min.))L�j!F{>(H,),� 0,f)),�black��x1%� I1�] N y1!�1)>�1, y1R��jQV��x|Pmax nu%����1�0�.n%0� �'re�a beh 7U�M�ol�/.�9a��I,�:�oRcterest,�ke(s�#ew�s �&h�Kxt^YFIz{mwe doGiq �n *�l�.So,mw��loo���o$f� ��;�()�b=Tu{� �fit�%�!�ly$," !!Ws�*ed�its�37 �re .#!s-ut)�x-7"[e� . No�_Rtbe �2edJ$a *�*V\1[)..$D@<� -/y� �(y� _n)) 6)}{�2}� �oF }))}2&w8 M2W2)W1WW.W1BW{n 4 �>�RY�Yh �C-^�5toySq�DG�d&)r( (so $y=0$)%o�+AG   �9�eInO2�FF�]O)Z 1S9@=�5U1Sare�cso�~� esR#inB+F<asq;underQo�(ax$�����X��F�����1f�y0, xҨ��),� �n�0 , xs��j��C*:X r4p��ly $1.8$z%e 2� A������FwS�ll&�I *Bu>%(>R T �I cros.��%^_9jdis�nKi2% *�� ery ^%�I)�%* ��� .>�7^7y�;i��u�Vin-j�(�^ Sy &trentq"�%'s $Ua comby'�of&)"uYcG ��1f�U��. Like.=� a2' � (s�o�/5 s $(a,�+&�Z/+�)<0�R� ly spea� R�&by��!g2e!|ob� a�nrd y $c$Jn!W�.v\to0�1 "�]!�. Wit�&go��in�!o�detai�&U�*mpo � !�e&*�I�go awr�2nd+ so,r�"!�� . Al!i�ss cer%`2 eria�reAN )e.�-eCha� S-��V{ �beR" (2v). T�?� s,!g ��6Z'-B]'><('2|+��kR^'6�y��.�; �;W;e%2�&..brab(f�+���RP-7.864845203343107e-1)G.{^P .5,3& O2.�d##�07&s 6m3 BA�A�>-�=verAs".|I�an*�3I02W**c�>n�/�**�8tPP�2.�! pk @"a_1ka_2�`��7+�H x^mJ �>q��}�9"�28-a_{m-1}/a_m & 2\ c0#\\ �P0��" 6;8&*V86 \ ;?0��$�"��raca�s�D5A!QZ� $\l!�"�xI - A \ruAex��+%*5r6!f2^B\[y-�I:�d�IV� see��� *f6^�.�"�f.f cube aof unity*�u� 3 - {#0`�`&� �j�B<m!o9f9}�;aǍ�eff�>+$x^3,A�1 0$ A/,�10*EmManuala}}9�lA�n�+A�Y/1], 1�0 0,1,0] ]H�Tl��g.eigq!(A6Na e�,+0.8660254j,�1-.�R +0.j�! ])��U;@ B9p2��%c(!) x�@���K-����[z.� �z( x�0z.ima�h )�\t&*.�P*np.pi�2u)�cos1 ta) v sinj u, v, ':�$�('s p"2## )A`)��N` �%"n6%:A�un"�A"482kR��%3*x+1!+20-�*�3,3�N�`"�.��2�&N �_-��I��R�*,�1to"qx ## ` "�{�umm�{dm�2� .�� -3, �`�4),1>E8(-1.87938524157�6\/(34729635533�PL1, 1.532088886237956E�C'S �L2�np* �7�:��� 8539F:�78��"�*J�f�K= �� x: 3�5 32�, ,6�R,A uޒ�60!>�5ku fixe� s �9��.a,&E�)+5:pi-s�tas" uf$ )- x$.&�#ˣia"� ���,0.25410169),��(-2.11490754$1.86080585 ��M�k�=t� w� s Use�� ` to�dnU<�'/`f<�v�:R+2jj�A2, S)��!w4�aT�et�un0s"� �L~�_1�-uD -;[0(x_0+1)r\\ � +!| x_0� x+D0 � ] 6q�V� !!a%y�@Y'b"c�&:~s�s!r67ejy�i�e� *U/.�2�R�[x{-��[0]*(+1) -1)!  .25*"*w; - 1])�m�iz!�a(0�).R�$1.11694147�G82952422& ZI.>V..i8�Pr�] �[1?r 0 �-1,1.� r�T-�\2, ��(c_[r0.x, r1234.xFNY, ��@np.mgrid[-3:3:100f  ] U$�!�X*(L�!�X-1) V =%�X!�+ Y- "5tre~�0ot(X, Y, U, V��U,�0width=2, cmap�7 cm.autumn�5 � [0],%s[1.�;n<, edg",<k'2a)*V!�:�NxHaD"2!B�jac>�� [[-6E��Z,�}I� , 2*A�]Fn^�,` =jacM�� l.fu� ]��b��4[-4.23383550e-�m(-3.31612515]��#kbNvT4f�l�e� ly)p�&�[ ll4(f�.x)� #*< �f�1#`Ar�f�,�s�uJK�s��e� wxb�'u#`V12,12n( 0.77801314B 92�Z98aB2����  ��~�(u Z !?9>J�N�f#i�NJ�Nb�N>C # AnBnew � -A's basic��� g�2on"�.Z�- "% odein� $tro -�Eu���<A f"-or�bordinaryVS�b�sten�� $$�d yЃ = g(y��$$r9�L��FDdYl�9 E��� $y(t�&�ll_on $t$. �{�)*���r+��kr��aic�F6�Z|&}FN� �y_{i+$4 }}{t }�W{r"C4$y�)di �*%s*͊i}�W�{ work�Gl):,��p�� �|�9tau�)�� mak�N�%:� : $$��= �9*_{i} P + O( ^21��8hV*���$we've igno��k'�IV$ Jm�� big�{$ i# !�9;Tb�)(�0ho�Q�j[A!s8�RN� - y ~,$$ 8h�p�uE� = A~C�t%�a���ta�1. yi =r�~3$[(0., yi)]�^R���ltau, 6.+tau�3G yi + (-yi>&tau�� Y0$�2 yi))q]� +�ڙ�Aov"�0.,6.��� )�$��):� �[:�C�� c='gVl**E�^�?**: M�2!�WE� e%�%G5_!�.? 6H2HT-A�";�2seJ � ^r�WE�g++5�R�N� lot.*�XQge���b?M Ex 7 �3D��Aj*ʋ w le|�`���'s��A�� me R� �n�3 soph�竱�ors�"��GYZ�$$, �by�:�*��!YQ-h*oW6F ��;,"�#i�#mple.i 1�:M�t��-yA�2�# m�ol)"u�70!( 4,9/100� ly-s%G�.^�4E�Fy_�a�1. *�ɂ!t|0 yar �L(f1, A,E�sFaHfigure(figsize=(8,6mJAmVj!g p='� !�u�'6�aEs, � , s=� =J =ODE<ver :��A}�1.e�Can youm\�VdA� twA�}ast6�c)�2Ke�Kd�� ] itude, Ai�_?qm$2 �l ra&�Xn�{��Nz#e��a�Sinusoid.�tryAGa�� !a8� 't d�<�q"gl2�--���aond& e�_��^'sA? $$2d^2 t^2�- \omeg!y$$ ButMU�V�say�:t�W�QB�PsO� Y=�Jd�i@!�?� e?*ck�Rwe�a�* ,�!m�Ĕ. So ��?a�_! $$v_� �  t� ;să aG&T � ��&' v_)  t! P5.R��w%� re-wH�A/�31|A�)Apieces��� [o &= -9��$�&=/.�$$�1�g Nf�� )�:!��.Q �s. �r��1V�5�veɏtv�hB��a�1!es>�8Xag!put. E\Npi��2(vec� �� y, v!�vec.�(vy, -?* yF���(1G=)b;vy�����>5�>2�>2b>��2.shapT10P�a���%� wo5Us, �l!�A w�#$lumn. Each�� +w��� �#g2-d�3al slic�� o acSK !�%���_�" �\[:, 0\]�2/ slote(`ae&�x':'a�N�q2 is vm,A$? data�� �5enaNõЋ^c%R",  �%�1q�U��5^o!L untsi �"6"�Ix��), G D.,Ex 'rG�~2��How���� doub��&mpɁNI2E^�Mq in y �jsinx �<e? 8hA!-� a"at%#eE?$s� �iEXop:d J�3� J[freqy��s�way? If '2^1�i~�2.4pop� X_ ��p,�G%jmodIZe�� j damping?�-E%�b�gaWs�2 % �� WA�h y�ic � ��? "SJ de�5�C�3p�Te��_ob�%�Ybollya@�N�N �SB a+H7�.r*�i�9Y�(2�)�42|�U�H �un�Q�du�T�9!�5V." �$SymPy Docu�Ya< &�g�.sb�O�$ast/tu��/intro&�# A��4`7ng&�D!�ͨ�W�* A�_p��ingw 4#4�,imos los sí!s os (�0) 'x' e 'y' y"�0 en las #��s (��6 x,y=)!�) \�r=x+2*y �2mtype(x���.core!: bol.If��A-!�+F -�&�#N�Y$ e automáAKmente x*6.2�#Pode!0�$ir una �8ón o faN`izarl!= l��gu�a� rma+J� P, >�anded_�= ( �)6B� � 9 5�N)." >� ��Po�Jof )^ic�eE�2x,t,z,nu.�t z nu~Z-�#Toma!5%rivsad%�w�U )/x �(,U=�1~verM�*%vsimbó�- de ҍ�W4rior usando #�func3e()sp_Mp -2* #� -.�**E8.�CleEl��t�l��x) J)+ �) Ae!�^&Rvp-�T) desde -oo hatsta +oo:t *,,(x,-oo,+oo)-F�$ar el lím�R de (% +t)- ))/t cu%c ( a 0 limit(J*,t,J#D�ual�Fa?%/i iZ?Pon�f� .���om�)E/ derecha. a� r ejemplo�A1g%�� ӡv�4cero, #luego p2R$ e izquierI�2�a�eE� �815 !p2Z):_,xN( FF.,'+J|v2-J2(#También p��imf#i!Ds�oneFe ve�� �ar �� gral%�zinu)�/F�r,phi,L,R�Nr phi+ ta RJ�er**i�C), ,0,pi),(\ 0,2* r,0,RJ�y��M MLE�a�A�$t**2)),t,5V���re;r ecuac)^ du.hdo�q$el códigoAb]X#que �/eCaE�. aU� a%�^�� �-2=0\1:(1������)-2R� OtraiӁ9�aAG�2$zqueia5 e�(la-�Q(1) #e�1di��io*��'Eq()'�2HEq�Jp �_R�R%�J*%��diuG% w$$y''-y=e^t:2(2:7#k�r�if�bosc comoOդy!� ^a �est*c�� #su arge o y=4N('yi #Ahora ap�el�� imer!frivada �.�|=�2JBsegun��FB,NDVe}]���oJ~DXtive(�, (t, �N�síeI�R�M,dIEqc � ,t)-ra� t)), F�Eq(4*t*9+ FJv wlA<" � x(_u�y{\i (t$G)�t^e�3�o}riC_{1} J��3}{4}} >i \1Vt}\V�FC_VbY�/ 6:�.�osC valoresm�s"� Y1z�  px}�0 -i\\ i & [0Xj�qMaOk<([[0,-I],[I,0]]).fs() #EnAl�a]ena. un dic�\$ario donde*'key'�>el� #y'v�! la m�aN idad�6��púñtim!dv�<�­�LaTeX���copiar #��� �ues/ dI��ara elloA�a�'I;)� 'IA)' ���x�B, H) 0, p�B� F @2� \intOrits_{�p�cos^{�eft(xU�\, dx6( [z�mhA�z* %q Bond���dmaturod(T)H-��dcoupon ^ rat "�$ * bid/ask! cL� �(n vs. dirty Baccrue yest *m�(r) 6I�"ly�quo3<�ber\Xa��pa/�a v pric�X�} \text{% E�}=\��{t=�sT�m&C%,}}{(1+r)^t}+u Par VA�!T}n I�)O�dr��*&v�3 ]2�0> �r}�h(1- �{-T})+ &�\�"B�--�AE!��)Q)nP!Hs��bu�_bAGx d�a�y� issu��)�:pa��a a5 a�s�Qr!�f#M(? �DA2 ~}= Cl�t�} �A:Y��"K%�"Z�%�An�3A���}}-o)�$ pmt p.a.}-P.�%s��f"pm?be�aso#Ayou�N't�[� .�: 9$T!#A�u�date}- �o �$; cS�d8-�FV� >21�>� 5�i�C*�iO�"Ke� *��## Yi4�o M�WYtM) YtM��IRR+ EE�br�^h=PV2a0's1�s�l�A|m�I�<] aver�Qof�fa=�be ear�C ^�d�1q,`;al�5A!�reinv�@V�2�. ** re�E shipU )+� e�E�!$"�la�i�s*!_$$$\uparrow)�YtM}\���K�  down E7]%e��> S-qe�_!��ce(��_,M`)�"""��6�Z� ."""��ann�j_Wҭ1/ ]) �(1+*(-�)ɏpv.7R)dr�!i *:r+GB�!� �s_vs_�= U%eld_i f=��EwR�`)�%�`s5J�)�� ��Fs p�� seaborHsn� XI�%�#�ep=X)8E4[n xU�Ҙ[s]��_d��8pd.DataFrame({'E�': - , 'P�N': x }) ]Y-�sns�%e?x= X.G, yG�!�M�0 �9�30�/05�9.��i�� -to-y-6� tG:a�s�mm �~�nQ�.7�-th(����yp� thanFrtJ':�&� -��&np�'iLH'�� 3�B i%6 % qOJ�T S�v�n**%� curve[ia�!��Y����Bof1i7 1. *9Xs*e*%s �x�Krs�Ce> ed*:R $ in5�seT�nmGs fall;&6" rise� AneJ D!.�� ’s b!�1�* v_I�')��*)�a *deV�?� l magn6$ 3. *E��'m�9�s* ten�be *moreY\*�*2S �7AF�Wsh2Ps��{*Q�� �C=C�VhA7�� �s���>�Ias5,5�oz>>6�ris�# &����or����1�. 5. *� yCB,�a�B%թ�6*.�X%# low- ,��6rL=2���an=s ,2Q..�Nu]r%�ga iA��%aYb� "t_��  !ڊ1a�rentlyJ\ ingW�, Macaulay du�/ Measuv>"�1"5�A+ �$&v�s!� a gu�t~&Y�M^ 32;.}@D��2l t� N CF_tj 4 ^&D �?eC= ### M�ied�� arraX�MD"��DZjW q\De-u$P}{P}&=-MD � YtMuendU *%�1C)&D".!{�!�Q� * D-z!l3w�"!M�isEVer:.Ake�en�(A * Pract�2p��+BPV|�PV01)�i]m\%uH\$��one�1\hin!m$$7=1 )v)_1\%$$ � wrap! up - � � FEMD��  �=)w�@2� 1� @&y E?\Q�\J� ^H.�"� (cash_flows(s� _�� ,s_per_year=1&� R s�#��of R R"�Hd ��ޙ n_)PN ��* �| _[= ( �/ Z0E�x2� �U}"���)8`�d.S%(dk&=}, R w a �5|.iloc[ � += 1� � [.) %�dis�m�rN�!edűs�kieB B 86�[(r�: *-i  . �n2.�t.� �pv(E ,.�І� e pv:JWIHrUFZ�P }yr��-(-u#-a*.Ky�ZC ='rows').ڬ-x��� U�q&Ea Yb8 �!9��xa?T�-�5��!� ��� B�i" yO�* � �q�M�je2Mp�U��R,%K�|F)� �pv]�:<J�e m�y_�?fB9~2s�&�A���QZed5G�I�:�)*9~%bweZ�.�V/TM�=P� �(NO �),e= mM��(ied9[>l, ytm�Q; ZaH:�AZU�M>a/E� ytm/��F���md�$u��_fQ�e � �m_.!E Fv�:J+ li��!}@ B��8=2md!�ª�g5� i�/�c!DR�.y=r��md"Et1�f�(cf)E]i��N� MD':j, '�ID ies} @MZ�:.�MDM**MD (�bilityJ�r�ss&G s** 2& :P1�8ڳ~i��BdMG.v!��_Y<Tt15,I0M�n�i- #bL nvexuA�eW+.:!�IN��+�C�Ry�]� is ghn&�+�= 0�� *i^.�� � ow�qrov��onja�U\WF� \.R� C�"� 1}{P| (12~2E\big(� >C ?t^2+t)(�e +� j� 2�� S >YtM^2}{2T.*V��,%w��10y�&y,"�A8Y 4%!�%3�| 98% �|�0�&? #W =� -> 9�: �ytme � p/MD 8-�� md md~8 /_pmi.98qC H 0.043zpow tm + g_p? Y!�0.0370�>i'�t|�%,^ mJ5.���+ �go/!3by 10� isH. W�."�� %M? �5 � 1.10 �Z4-�m 1 -( �y*md - pm�P-4N�!�!�� 2%�md  to 8.978 �1.95% #b!�%w~ �/ .-> md*�d2 -!P195)=(p!�) �a�0.,�md*T_y%  p!��%�1.00448>�T# 210�P�8e�'ysI�a �of 2.5%-��!� and.3? d!�Fv�U��2)*(1+4)**(210/365) a�>cQd!ai @!' |< a��P_1�� MD_�F_2�uor:x� R=-BPV_1/2�01. 10M 3%10y,�� 2,5% --�@ 104.376%, MD=8,6bx?%�7 11.7>2901 246.41 To hedgek of 1z�:2K(ell 13.349MAC2.2�hF0.04376*8.6)/( 901*c ) hr>a R(39066908059%�# Flo���m K s (FRN) -��y�. - D&4 Margin (cristNa�� 1. hkn��re�(6#2.m,�aC��E3.Bc= 1- R2J 5yi�p]�Euribora�% �� - �e = 2%l- x 10MD = 4.6�& *Z �ed YE j6� #��/a�-md * Y��P03��jp =1.02��7�@��lt��= �� p/(p*md))x��V�$ ' y�22V��8574667177066053��Q#Jft8WLin�k6�1. View< !��!�#tA6�Veason_*E�z�f A�>=�%}fj*{6M�.=�Nw*��best. �zi�stitu�\bwG��a>�ztoolk1�k�tud� �algebra�W"bI�� �, �Xp} 2Aj�L9Y-�Y23�< ,�k9Corganzm|-2]a, rix&�6%���.A�at�"leaS;�i%�1e ]� B��)[i) Ъ-1�- Z 2 �#�)]ZAx0�=!>5=Z7%G9=>7L6R) �Y5en--�efz�A�summar%oin%g�o��m7%bث^\rm{A;'bf{x}��� bf{b>S&!��% Ne K^��n!N�$ ��/�H&it{co"�YMO}$,R� � �Y#B z�N�Aw��>�Z�s�a�n�b%pR��&!$� �co��&&I$*��o1es. ~�Row ( �e�H) u�see�vm�a�par�&[�mA)a�arow^�I���s.| , & Eq1\\.� 2� 5>� $ Usf>�*Ou�����&�R�.�o��satisf0�&졽7�~ geometrxLhe�*0*�� V��al��!/8ic"�;(��4s/planes/hyper )*� �S��T:�CX?5��Co""d,) An alternu0)��i be:  ��p s sh s�=M�} (ifa>U%qmis d�#�.iM& 0 }�67**"�& out"%+qkn��A%M�lie�hiA�$J�xZ��(�9Ek>�+ yZ; 5fh^=� $�Ais%�4i��a}EnA�=Q-�)�~S-�'p�[nt "co�O tes" b�? i$�-1Zu�R��H$ EWB��(�x-"N y.�/"�G� euqf �J�$**correct �4�,W�pI�.������?els >��:�gkOF*�P5�|,YN{co2 6CR�I����HRm ��K�D�}$.R4 �"fy��quivalAqa.BH-F �i. O��say�p>@)&it{��,ar combinati�^on}$ of the column vectors. By linear combination, we mean adding/subtracting and multipling v K� by **scalars (pure numbers)**. ## 2. Gaussian Eliminationd# Prerequisite: Matrix Mulhc�X The most elementary a�4echanical view�m B� B is%** A/**. This \ focuses on every singles\!Jres�ng j,��is more often used in simple calcul�(s. In partiDr, for a $m\times{!� �$\rm{A}$a a $n #p}$2# B}$,R� BC}=IB}$�lI8. And a general� in row $i �MF$jEX.�C]<: $$ \begin{equ�} c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} \end4,$$ From SecA- 1A�Phave seen that when a�!�!�pliedA�aM�!�%�ight, it+At0valent to tak!�& $\textit{F >PsIat �)G�helpsZ introduce]**i�Es**@-G�I�. Noti6 at f! �>�A? mula, allN%M�s!�=�((denoted asM_{j}}$)8>� &A�A�,nly influenc)amrep!�verkBkin�E�E�ratherN!�e o �s �-%41ie�of  � can bM-ai�F�6�lEA}$e� �words, _A}�=g`$. For detailed demonstrE�a� ink about gasAata�3m�2:�a�Q es*2 *3:*%= wherUeF�i>h>>C�Yfirst-5!� come-�!%.(E�1� with9�compuMhfollow�qN�*aligned�)11} &=�11�+221} 331} \\�a 82682682:8B 83683683.8�����$$ Go�Nrough%=trick6�in6�may��, D-X4C_{1} = \left[ i5;9 �\\ �+\�] = b_!`ZRa>a_!U nR+R21nR2H2 3 %G>�R3rR3R 3 RR^A �&Ml 3}\\E_� !� R~V�)�!ab5kb_Zf���AR=T�fore,Ai�xr� �y,U�e�e�A�importan�nclusion�ׁ�*p�� )���ɸ�C&s, 1e eN`����.� 2 Qro� ����zNrow��KB}���second c��<$proved lik�away!7do��$ve. Since V is no!G mmutative�e ���and � can.be0er� ged under� ,circumstance�P(### Warm-up�#DHigh Schools In hsT, students learned how�solS � -��t�6��e� $ng variabl��nd� ifyA!system. A1N :W $s,b �ey!�represen�?by)[ ces,\ idea!� findpolu s!qa%�,but extended��ope�@%�)F�exa� ,Eern[:�s belowe:��c!�l^$x$5an$Eq2$ t-=��5#$Eq1$�3 %Bd 8 � @,, which will��\a new5�+ ^{'}�no2�"( n furW .�$y$S $Eq3��!2 � !0� d�ite�� Y,q easilyIX� "P (backsubstit%�}$:'nz!�h%�G to(e y & � ... R*�;��$x + 2y + z��(2 &Eq1\\ 3812 2\\ 4 13��W\ �Jarrow\ �w �- 2�6u�Jy&E�x�x 5�-10x ����eB� ���Rq� A;a|E�=,on Process �;BgMIr U�on��T��> also�Nsta�IiI�language�� F� ofA Ex$ original B�:���;U�aug�ed fxh ByJ �we *q an��ra�/��=effici��� �Hto���  h�\ide � bf{b� Reme��xin or�mto� J samea{e���en2�or23�94-v� should�<&Ymanipwboth �s!�Q^�. 0 {array}{c|c}" }& ��E�%* E{m�! F�)w(} 1 & 2 & 1� 3 & 8 0 & 4 e) 4& X 2<1�o., ��"1 }�� Giv���.abo�rey �u !��bagain,e:2� easevv{- ��0�0=0.� ��I&��!�!�-%���6!����b��5�ECIZ��-10�� - :)�Y�:G :3 rm{UfJbf{a�enFy:��Nhemat�V��cO� nex��(we �g{o�ka o exT � e& �`ݞpɞ&� ���?. ^ Z<aT�e�F done�` J� perform� addi� 2don.�among�m �)��� !�i 0" �cF[o�e >�. Recg m �� �Ais�J-y ) "�o�eft��" Z/� ���*% just��s}&BasA�ly�eI'duresFen��NK�� **deosed**� o funda*al ones��)2!�so-!sed��it{.f%�ce�>X>xXQE� �nee' X�� entr&��ij� *Fd7A� pj it E�!B2h �7M�3!E�2%�� 1f��`E��>Q`/�Oby>g i*O�)�vq� |"I, J��� �:&�SE��0��-F \\�e`�! z�{* . � $�6�)6r���y� z�"C >��1�MS�YX=3A!T\ !tE�s�Dcontinue!�LU_a_t�1�ingz�32v�%� 2�-!%�~� ��ge��e�a"�� U}$. KŭL�7 **associa@**�!&1}v�jgroup�ge���{�e,.�1N{E}!�R���I�32}\ (E�\e�) = (>" 21}) *�z!�B�Uz=� U�Y�$$�~:�a�$$ eH��%c��y� &uZ"3���%)M�1� �ap�� �� , sucQa}GE�� �t � Thu ��Bq� R9%�)G bf{x%�!Hoi 1)} $ ha'� rans�K to� kNjYD t):uS : �_ .�� � mB�!�U�F����".E| "Ysta�y!�. � A� al com�� s W��ou�� 2���IDf��8s� put5 diago^� ox +�!it{pivotii�"7T1 u�=1$� =22}=2:33}=5:!GV6�� Thos� )t$we usually*!� � �,t?� WA�worth^ic?� a��!�W zero$ �ofF =ag5T posi�]cw� V **0ex�**�aF ��sma6%� non- �r"M�d �� �� a����ce� l !F1� {perZoS , However, ify1S!/avail�Eg� lx ��som� blems � alA�$perties. Wy �is kind��IQ{!�inv6 ble}�q2 ifR���nM ��L 6��:R��>�ʝ�, ta�aftery�m�$"�, 1�� 21� ����\ $ w<%�� 2}=0!<A\�E�B an2�>2x.cS , a swap betw��A��  3!�V�*�!JiJ� P_�r4!'"�   & %�I�f�-Bfinis�? e job. (UbaW! ctor � U:�,m� %H�����l*d'Z)��"er�6� qShH ird<GR�$,�6- >6_V?.2b�m���u�!�i��.)�Y 3��verse}#squ�%�c+ru�](special fam�of �� at deserv�"atten��. Each1� , sa��$,!Qpaired��n*$�x�iti%���� se}$�  A^{-1}$2� rm A  = !A = Ia�Not� �>��!�correspo" u ���d&�i*n4`ZQ3 �t����oaU ular�����RvY luar�}!�� ��!+>Vt �2�� ��6]�!e'B��} h undo5.Sor2$ step�F :٣MPm��>�b��67-`N� 6�E��2x�'���&�w�'wa�1�-3� +d+is)�� ng 3�O"��1A 2ATm��A� �G!%op@ E�N�~a�2N hItwo&r� ET:��m elf,&�EN�6�=��I�ie6�nr!ntity n� Relaew�'��Q�ste:�!M" A� losely rH��O �>U. I�.f }��,Un2V!8:Zj�!AZsbJ�� l foun!.� � �MAE�X,n*�*�Z� ��;B�)��X%�"�N&i`1�} $�]MoreoO Q�Nj:0**homogeneousU-n**K𝐱 = 0 S!uniqu&v $#=0�U.��/)V-��Q�{-�indep$nt���;�%epesB%cHhkey����&! pr A�)Q�7aS1V-�llan~ll�if.�la� f0�VS�1-Jord>�1!Fissue b�F  &�}U�a2~xiis%ista�n fact,;!,!Q�a$"� ccomplish�-%*]!U�cs�g��% I�   Assum y!���a serE-of��W$ ��*&E � I3�� I2�$E=� $. Now su� e�a these�Ms�Q���ޡ/Y�/(I6 i�e\�recorZ m"�JblockE�v�t��� auto�ly turn �.�!&)OZ E���  �,F#�! rm{I�{!6�L=�]I}&�bwX"2���� �4 ing**a ex�#% Aa��.',!�A� keep trac(a2=s;%k5�i.IAES� f.:DI�g)�manner�e� ian *{ ,).YS2i�5aCe upper�enta@�bT"�$i#normaliz <9 �1'1� ,�IOQ�e`(x� .=5�1 & 3 ���7 %�5�G] $,  u�%!�i+&���/ �start}�.<M�2�a.p$F*$n�B$�0�� �6�~' ry%Z;" � .b�# �Voj� ����nB�7 & - Ӯ�$$Y4 (Fa izł: A=LU�. �v(� e&� E��A� U?5��U"� x {c| �3� �+ A� b�.�}��/. : do�.Q�any �E� ,�f+ay"� >$d dur��.�� . We kno�a��^Walway&�^� r/T t7.do%&mg� *vsc B r 0i�0�.w����2�zi���s �q"V �:���.�-f� ��a�*)2Vf& ň)T**M�� nam� .� �V� �[�! .u$�` AOB#� " . B��- ���.%_2a�*T m�$h�:&��,  �n�U� E%)$6,+Q�F� �et]6��iWU� *~:LcL "�� 0!�-d�]4�%���|$f�lower27�-l*�.�3!� �W�3�tr6-�� � �,76B4is obvio,�c��� .%� ���"�} . �\=�y2%,a�1-%�>'��+q�� I0�  **�**e��a�$i�2a�4 ntai�h��e�W�%�4milarW !Q� 6��**�**0kA�X!5� �<aB�-. Las"f�\�Ag>  8av!��agi>V)�  i�<us!�A�y� Becaus%T� w&�� ot'&�y�!De*�/�rm{L}$ �vignify�F�nature� A�Arri�6�[��**A�o�Y>"�  �#u�z� �X�4�!)�) E-�1!e��N�(%'art��ng:�i��!$�p;>lyZR4! In o�0d�F)i�10 x>Ae�>z%��~:� at-.�E:9 !�aCsur���!�V  ���� ebo]!Y>Y B�a*� Iۙ'{P. e �a"C��**bLm�.��>co!;� A�� *j�&. q�{P�#�z$>Uj�jdoe�! �Cre"{6S' Ews� P ct#�sa��xa#!V%cdiscusS, ,2"�B ized�� m ofI���{PI���>L # Homework - 1 6##V.�.AT Con�2'-��XE���C d�678C \S. bf{X�}� b C} 2&4T 1&3� e�$$>y>� ## 3 $$$!7zN72 \R7 **1. s#@inZ*�J�? (this3�� somea2�"doC%{is)wri�$ $y^Tz$)**�zP&~<1](%` z$) = $(1 * 2) + ( 3 * 3411$ ``` # I>H�91�u` Numpy ��Fpy��(np y = np.S<([[1], [3]]) z =.2 print vdot(y,z)�8 11%d26d1^Xy?�Xv�+1� (2 * 1 ��3) \\(4 �6  ZM5A1>:53E�x i � �(.3X:,1],[4,%"�!F<-#X.%!=[[ 5]%) [13]]%-�s X��?so,�5E��MY%,�0lain why��.![A n x n6� AE�aiU.b��$�Ena�n��$a+e e���NRB.�$ AB = B�_n $$ H f $I_n�]a GI6�.� �s"*� X$,�r$X�is �5 N1.5&-0.E -2&1:8Y I!  !�m+c na6.l�(g( !� X_inv = (X)-�'6Is:' .Q 'X * �an9I�5E;;]?>cEJ[[� �Q[$-2. 1. ] zuG 0. 3 [ 0.DM�46�ranXe�� �2� �M�! is 2 ## CDJus�� If $aT0x^3 + x − 5� eA��Pderiv>.A)y�/!"ec�x�D>&\.r.t x is: $ \frac{dy}{d� 3x^2 + 1$�2.�@\:sin(z)\:e^{−x� >�p�Jal���%�� Rule�gfa��6�$e^{-�- ~ x = �*�5 $ �\�y} >�O- 6�-x}7!�Probabil^� S=stics*,a,LLof data S = {1, 1, 0 } cre�<by flippA  <i�Yf� �L�30m�2�u�Aup head��d 16,itxeBp �H� B�sA �is�E8S Mea�0-S1A + 0}{5�wEH3Q;.] k_B� boVa�� s6}{25 V &.Wp=�of ob�%!W�!�,  it was �r^�� Uqu� 5�of=o%S (i.e.e�.�distribW=a�p(E�� 0.5, 0 )Ů1?�Lq�KtE*� tos�N�P(HGP(T^ P(S $()�1}{2})^5=0%�1}�1�� ** 4�r.��iI -��* be gE��( valu��!kA ��Cinstead |K66Pk maximize�,q��e�S. Pl�<@#m(your answer%_A : Let�=%�p� " �< p(x=%�1-p��%ġn�P|%�&itot:1 � \�ts_{iODn p^{x_i} \: (1-p) =\EO ):&n -eO $ ��/$ J?(2e S &� �be�� ��y.�uyfI�we"6fin\.���MHS%>�tK/log%]B�, $q)� ��p, seta:to�/���>�dpX _Ylogy  $y\>log(pk n-y) !��3i��$"a^paTp a)1Q  * b(J b)_#yF� �etz �0 ol�á#p�c��W}dsplit} i� dl(p)}{dp�J=�� y}{p]M #n-y}{衻�- \&Hies�'7$\>.E p\>(E )}{ !&}%V;y - p9 n.6 ERpV+pn & = y8p �1}{n}bJ�>11s5N Plugg�-p��$x_*Sn=5%�get� oxed{p54�a2 # Cust�RtylY-��ignore! CSS %w LIPython.core.display 8HTML def css_s ]()  es =� n("../../ /c�D.css", "r").read()� re]]( 0) 2` �< >7,@font-face { �- : "C8P$r Modern";(�msrc: url('http://9dbb143991406a7c655e-aa5fcb0a5a4ec34cff238a2d56ca4144.r56.cf5.rackcdn.com/cmunss.otf'); }w��weoT: bold����x.��J�%�: obl�'����i��N�V�%�����oF�div.celly-(width:800px9�margin-�:16% !�antB$�:auto }E�h1^�Helve�C�@rif264� �top:12J� bottom: 3 |��_�_r�)rX%��1: :, "�4 Neue", Arial,.�Genev� ans- ( �line-hm� 145% �y size: 130��9]-Vx$.CodeMirro�~�"Source -f ", s$-code-pro,�4olas, monospacm�)d.prompt9W�%: Non6*>� h5>q<300R022p]y4color: #4057A1>1,tyle: italic-5Q5 .5emBAk5 .��' 3}h.wa�O9 �(rgb( 240, 2 ��} <�>�� $Dix s$symbolic cŸ�r SymPy>syDi� * init_p ing(�  var('x y'.x,� nsF eE1 = (xo) ** 22 = x**�.g m 8=r2 )1Fal]5 )V3 ify( 2- 1.�.�O(xkr1fpifS(1) / 2]_.evalf2) f = lambd�Ns-m�� np f(np�e"(-2., 5)� �� 1.,�,� , 489.]) ```pz -�cip"x opt��cvxopt 0matplotlib.py �pl!.�5ED .bA �# Min�� ar�1a c_ �ME�unit v`e r, h = f.Qk"") AB=EF �pi * rY\. * h VXS1h_r� e( 0- 1)[0] s%|I[$h_r) rsol:<#$_r.diff(r)@&M�9�JJ-22B , 2) rr, IQ!J 0E�b%fo� �� Q a�np=*4+ 2 / r r_min� IX(.brent(f, b[,$=(0.1, 4)) *�i� �f(BF�E�a!O ize.mM:_�aeetgK�E a!�.]0.065,�01000) fig, a�plt!7A�s() ax. !F!�Ulor="bl��label="$=2{\pi}r}%$")A�al.x, �al.fu(*"Ured",�bker��=10Alegen� ���b�bY#)yQ�,2x1, x�pi uAx__2aEf_sym��@1-1)**4 + 5 * (x22T4*x1*x2 fprime 2[;I�x_)�x_X!( y)]1%�2� �4(ZQ d:� �(I�- 2 x_{2!4 "(x_{1}a�s-)^{�Z *�]10 5- 10\J O 2]c�MIfhe�%([� 2�1_!g11:�x22 ]W)� q6~��Q J2_ -2\\�,�_lmbda��l��1�, E, '�'')1��8UT.=�<'sy.;e--L��8unc_XY_to_X_Y(f��"""%�Wra]0!�f(X) -> [0], X[1]� .�% a X:�d�f(4�` =NM2{ �1J!)�)I#J%� $>�x_opt.�fmin_ncg�6(0, 0!�g= , Q=MfA�O.ateP~suc�#ful"%*Cur����(: -3.8672236/Ite�' s: 86Fun Bh �es: 106& GradVr&Hesq2�0p2�%7-M2t T1.88292613, 1.37658523s �� Cont��1R�Zgfig��(6�&x_*.�-�D,��) X, Y� `meshgrid(x_, y_) c = ax.' our(+a�E% ), 5�Y�(�[A� 7" 'r*'6�5� set_x�� (r"$x_1$"#hnt�18Ű%y%2B% �h� bar(c�}=axMr!|m�t# Broyden-Fletcher-Goldfarb-Sh�^ (BFGS) )�B� bfgsb� pA�����9tZ�:#Z�3��45Y�96I�2rconjugat!mTmethods^ejR�c�c�E:&Zc8�c129c�!2c� �8�aid�a�)�}�g1~aZKll^~6��q�q��3:&Zq�����95B���(X���Xe����&np.T!� x 6 *>y)(x5 )d(� !�:N�7�" ute��,slice(-3, 5,1), B�H=) x Q i:�e�Ff( 6M=�b��.�%QT67���).)9.52022:. 4tV)216&VU7��47586906a�48365787BT!SopJQEmg _h Y!��M�? :m , Yp [ :l � A� hape�&!M�9Lvstack([X.ravel(), Y ])! ;*s� V�>�d^�I�1>���V, 2e������q&�!�m,,�.= '�",i� fun: U� 273055016%r � inv:��[2.41596001e-02, 4.61008275e-06], 8 [6A�63490348=, )jacf@-7.15255737e-07, :M�, message: '� 'pnfev:6� nit:.�nj#74` us: � q : True%x�1f�y %j �($& 0$� "�,1Oa\\ L�=�.Ha/'$*&�# :Y�6i:juse_uni9=�) ��-, �--2, 3�-, 4!�� �#��3\\�84�J�9sfQ " $$M# b?s�:"F�+$$NJ6-2IJ..�# Man�c+ ��R1!n5 �N�)-1\\1jV�!q N:M*�� 1\\3^���# �] "r`s # G�Y���$)7 M (MF# A�� �< M.row(0*�a�F.mc�npcol(-"��q2v��5!M U%N��:� +B�2-aHM�je�u =B0�@3�79>�0>8.�%�ces��M�, [�2]) M + �~�\\ ���x2##�pli1of�dm6>X��i!�#0��06�BhM�:��%n�� & 5�O0j/P4<�QaBz��^�B$�4E^4\B�Q�B��|9 M**� �t r\\ po �>!*�0 ! ���RJT";'5� 2}\\  & 1 ��b�.-��  � o&�*f�0�\\ 6��)&>GT�\R:6=MTJA��TqXr�2[�.T�f/  $�z s\\�Fn6: &�@Vt ��0!� d�  :�B��structor\7dI  eye(3��0\\� %nV��ll�+sqF�J�~�A:P zeros(2$��u �n��of �J�!%� r��O  ��j\\ p �>O�&A (Z�%Q�A� ~�Di_Mr�A(�, �y�-�� j�De�n D ���a�yd - b c$$ $$=11� (-2(.5Bp:f�Ldet#�} Exerci�1Q�0s�  1H8profi�=at1 �^each kwH�20$2-0.01x^2-(1 )$1�@F amou �RPis�<(1+F A^2)x=x ^`3.)|ZXD[�^ N���r}R=(x \qquad & BW�-�&{s.t.})0\leq x�q 50.p= T!�##92227 �bis�@on_I(X_search(a,b,f,L,epsilon�� aM�1b 0while y-x>2*L"0if f((x+y)/2+F>-2y=:3c else6,� .N.� ��&r�f_ex2(x }11-x�+x.2(�& 60.} BL� �0.75 1A�.� Vh 0,2,B,,0.0001,1e-6�� O@49993946490478514�r.��3&�?�golden_j�- !R>�f_ P (y-(Tl.sqrt(5.0)-1)/2.0*(y-x)) #fup\Y �f_4*?x+�?&�?j\ �>bFv�_ M=M #n�l:���F�aQv":�5Y) ~���:�q!i�Aj2�j`>�N�,795718254958>�4�Iw, $f(x�Pe� ^2+x����f'(x)=2+1=+2x�� d<%�W,��n $2x=1�4x=q  12$. �C�Ilocal J&um $5, qrI(�Gis"(8than $�bMmea�Hx8�algorithms work! � sergazy.nurbavliyev@gmail.com © 2021 a��Ccs+P Unfair Coin Questio�OssFVw�qa &cO;(XIsLw&O;ť@ �9)�BCn u l F�JGs H(). You pick�=domly� /�@< it 5 �; 1U45 C&zf6#9.�9t!Ayou *':#E\<��? k! Intu�E"]WA62 ��<&s>.|of�%vF�T 5�;1}{2^5�TAz�;,\onfeBA�ink way�75=���J)@�H��i q-�@P�Dv�?O >-:)OYAE��WSJar�[0.03125. ?!> dontV8aOa��tor�ef� ugly(�8guoH$3/96\approx 3/100=Ue�a ells&G:�!9>6�.�97.�tfr�M^5 well!B� *^;ge.�]1*<w\ct10�lbe �]�9RK-;v>�u1/3�+��125��' I�The� W�@uH-As�9I/I�KBay/<orem �; . WPI�K@  $U$ letJ[ifC2'AU}9E|$Fn2�Q&%;Oa�ingN��Gb{P}(U)=�GF)=1/�s�;5H&�_�(IOTwe!�J{!7n  w� �t�;.M�;w�kU!:�yE 9~[sawFq ?2�|5HJ a� b�M!IBXta"w.�j[&�>1. Bz5H|U)=1Q�`X�logic-�h�Q��Y�/32V�F)�B�F.$Ikactm collected"ZLi*�MA�antiu�#M�r&C)�, "�:/ thIH%�=\dB]`%!U)}v+- 5H|F.=F)} �0 }*1}6+. ^5}>032}{33}= 0.9627� ��P32/33�.�Q2>69� ## J;   k(i�E U+ �1.CsD$ ; A9(n_�Nls&  %4.bernoulli.rvs , �'4 #�� 6�C�A�0d 1 lua�n1Fljm1s�2S �,� np c _f=0 un !Ej�range(� q uC8 air(5� �Ip.sum( )==5 + ^+=1�S-�UunWfB� w�w, un00 ,ɢ�0,��1)AeM)  �K�Lm�Algebra�RMqf���$chapter, I�Obe�6c@�ng0tar Mb�zF�O�& e su"6�B3ck*vn/O eff vDCgrammlin�!�apur+s. ��l�Hg very �>m�GbyK� c?c�P�b`>tmk� opicdh"��a)9? 1J ��Yupc�6: Zfiv�Q�7lex� "׊�a �%OHwa�RBrcomfort2�*�\�?!3%���PTQbt7�o&0n � divi� ()[naGin�W ion)L ie�1{class�X�Q����A�U�[o�Ys�Xa�cod%Qe"�C$talk a bit�Cut I���ca��SedJQP�2r=rnumer�eway%�runQz. Q�s\ pO�Ob� ea0�a o3}q FallA�Ana3ua: JXThe Spy�6integr+/develop�Venviron .�< major advantagecDA�� tq7sPR raphU way%�`��%� ces,7P)� object �Z check!���Yam�!#�ms�m�e �l�zve�3JebxB%Z�| �looks��is�;�� CodeE)be%�by clicu A�gret ˆ (rupe�X�Sile) or6W;!a �6e� dS/�it.oIn Winda�or Mac,�A� laun�x5�by�UA��ico5X newq�sAed�<�� F�rU. � �IM�$Notebook (�nJupyter)j��t Q!�> 7Hweb b�!er�a{� ~%�A�9�mpe�videos,�HAFMj*h�webIT8"�noULX[o � %$wholee�.�proA�-q+M, I am) !`i ��%)!��G!�� ot��%�awB\fy� BQ]_E�$T my)zflI"gx��!��>ue��%co2.l �vK I�B��a�Jeasy }�ap!$Gofm�!y{7�.6� G>� ��r,E(]l)�eI��3Loa�libra�e��Q�uni�^��� huge��b(f4�e<��>�I3 . Ne"\Q�I-��oprm�@ , un�� pack�t a�matlab-^%yck�Oq[rie�(aNaJc�lot��moneya�Iny!�e�{�se�&#A@2� %&�= in, � T(as .� ��X+F�= seabornKbn�(.7>*. ��* sets�OI)v����s (��^gi��� `%`)�EloPs�^al.`� �5� a�cÜsc�5sh!�cA�-��2s�kA�a!MA free[�]g IK�edrv� clud�J1.)W:!�[ 6ZA()>��� q�)��%�:G!*& c�AM s 3.F�:?a�i��m��Z,�� draw fig � 4.!;py: !fic19� a|pl�3ra!D._ 5.Q$:�� MSeG`�|esaxi7- kM�;�{bokeha#Uis��kp�alũis� � ey7d �_C�+%~�h7\c�Id ���  S !e��Aed�3�w� �k6�x = .5 :R� 0.#�V*�[LA�a3��p!��y�7i�refer��E� p_ !��horse5>�:5iQ�A�o �5 �"qvy ^�a1�1\s�1v (.9�� 2�W9l � 2%=' A).(P: (2,�&+�[ [5,6=�\% � 9D",z �type(.\q�R8c 6 �<; '!h'�F�E%.0zQ*"`-� ��", :2�LoAZnA [5:���.ndF�e��#ces2M$b = zip(z,1��b �"� �a9)��6�zip�!��2� ]by 2):",Aob�[(�5), <2))V�a"=�M�But�mT ����)���:"  \�� KA !�(A1 "A h�M�A>�ƀ%�[[5 1) [6 2 [Mu>�A.�a! 2a#�,~+"g-�_S& Ang �faR;>'"�$ To��%N��C�a a sm� -], imenL $"\%ń� .�� �D��  $9-V[a S/ . L�Q$A$=$\bigl(>,� ��à��� F� O�^&25Pr C�d� :&(e.g.�_ he A�!%& A+3= �+ �:� 2� �: +3 fN+3-a_�+�/R22 >V>�$$+]�%� aciB[ holds tru� A-3:0 �.�-���-r��- �-6�22 ��.��dd (o&k�)e� y.�'7��AI� A. A� of+u#�VͿ triv�]to&X�3�o� Jed��b6*Ff(= A + 3 #or�^�� (�H �W[[8 4�� 9 5]�##Z2K��\u)eM6�)� �b\#!#F �����;$Bv^9�& 2}I+B�~^To&�Y)�� $A-B�Xmp� �6a of A&� corT`u�Q� of B�XN� -B = m��[�-ʕ -BM! J!'%`:!:� n�-J��q�Z��.@2}�� �� � s exac�ḁ wa� �kb�2� + �S:S+�S�S+!C=S:S.S�Sn���nt po�gto�ta���x"�ex"��s� {_J���$Au���)��. He��"�.|. SiF\}n�F�u2�byqZ,AJ�wo �cesSrb<&$ ble-��>EX� .��mei'e�us�$Ut�#إC�I�p�explic"[C�hA%l��� �%GzBc7�� &�^uo  aA_{&� J8B2B*8 �A>Zr#21#Vq2 2q�2���V� 9���AhU� �q.L5JC\!�5 nds. $'��fin%e%q x, BA4�s�(.�%�e�:��hnp.ra�(n(2,2� B.�( 0.659052568S8847017 ��106871496506417��G�&+��  ^ a([[ 5p , 2q6�? 6�?x , 3y�  ##� 6�8# �6t ��5� v&o�t�� n S&X�i ty A-*V- $3n2A$)eIFL# =�3 � (��^d3? �  �i� ��i�ry6E��o�1.�at��"��s��q�9 $=$A1<�)@ic��W�cuc��"��am� Aa���. �pu��M_J��!a�e.o� Dam9A�nB)15A�:18, 6�<�+.��\�<ci�NOc��}�A1$@ $C=�Z ca�`a  s��M� lx} @ r)$ .eqQ��+ ( $6����� $C��1T, U�%Ja� ;)!giv:���:�dQ�s����ow **an��+9�so�� 1B%A*J�u�楩`UD,�{ -.m1�Ka>��D��s ��m�.;=Ba��6X = B# c u� =y  &�> 2q�� u b� �}YO AN EO"N1br�1} Kg�cޚA�#26"22"j���eB+�Alter���$2�M�C!�5�}e3I�6K)��2$f�%}f�)�f�5�3��a��J m , .:3Z: ��!�AU б � !� 2 %sJ3� Y� $$ � A&�C i28 A_.�M�2  3}=&� �UmND!4%� 1&1F%eVEfD-bv�n1}+aV2} f1122�32 s� P ^9A�W| ^^' ^<.^A�" �ȳ"^ ^^ ^UrY�u3} ��M_A�S��g� , $X_{r_xQjc_���Yyy���!ve�o �thing�"re��: *�:�&���m (, $c_x=r_y$$��lum���6�m@b� l�27� G�ʼnnd. *�' �!be,��2  �.�_�Rn6�*��l3�{^E&h�qfac�|�%�2��{%��R6M� not1�l�"m&r �%/e_�ship $X1�NY X$ g{**not** !��s.M�� reas�*10�{\b���6�whe�6yre pr6�(�:�r p�# �� ($��� s/%$X�� $Y$.Ǘm|".�0 } ,,"�# j@en.wikipedia.org//� _ �M�.2z#�'s re�  AECA�&��4*IF6K:&��.6&�O(3,2)) C�F0�A��t C hL�(3M gBP�%�F&A!�D{eG��t&_~"�%6��o8 J�woS�$ yiel�%s��i�6� �AowCnpA,C.o\[-1.05731701 -0.93611763 T-3.11819033 -2.6550670"�X-5.17906365 -4.37401644��^f^ SX,�rofa--KE�C�A,a"A�#"�r: a�n'�Z�bQ�we�!'e:�a�scrib-%6�C)k-i"��f�1�BO "g.�V4$a misnomer�o%d�%I�c%world��Hɀ�.� 1�,i�8efu�W�A�ana�q������#�-t��Ź�=$f�$g,"�"U�v!n���c�#tE�ZY4f}{g}=f�JgIB2 I!�see�� �equA��.T��q�5|�&!mh�'�.'�s��:-iw!'�# �e�nQ� f�g!z�)�!QldE�1�&��9 ��,. �"D�|� X6���a�!>���#}ac�tu�nenV3er&1��*n)(Ovag� now)�0#EJ!� aY"6z2��&�2$���l sy )$"� !>e)s� % A6��AE}$)�^� #B� �!C �O a�� .8�� ffNK1}{ R>2}- 2 1}}Fo j 4�K 7 � %"X  � 2�$ 2���%UK(-S1E#a�ہ�;, ertyZ "�-_ �A=IJ~>"I�&_K �(!� �� t�"�$G�� I_.�v��I/I1D�H1f�J���mo�&�I�� I5.$�*d fe��6K%����� <ξ�d�7(��he6��"),��11Er:��  �i� ** �*qu� �K>�A�� ��H�4is 6lo\oE�* � y ; �zUx �be poor� n���eas) � pron�$-*�e�o~ i�3l%7D&llMbf��c&�,6��K�$afR+$U!bdR�JA��7�(E�c5�4a��t�C&mċfA�=m��cat��# E="�4. ' d6nx (� �S}+l�@��� (��HIdeaa JA)�sA]A� �� �f He�:k (ie.% VGA�� �!vbi�o2�2)�� N� �;8>"5��n�A:�c� .#�*�7a1/ x (#�= #�s),�/ C: C we� ȃ.inv("� #&� � T6.7544699 -1.3717418o+8 [ 18.92367512 Ro4810997� Ch7E2$C�Cŋ ݛ6�   �� "Ism2cE�:"0�< 6�  @Rƃ��>QA�V4 ##�Q!�*�t� �u"% �"�!�6 -)� "�-�b d�� 2� switq7�aI� "]E�OAL*o(�8�ZJ�6B����z"�"�3"nJ�2=��}@�r��Q\(A+B)).>$[[ 4 12 20 5 17 296 22 387 27 4"A`>o�V �.t= too8�c4$Indexing �4 |�4 |�0X<t� ��?A�+��q �w� �cedE0,0"�1,1� SD%ng&6^&��E�� h#P��5�=grabs� �of>�#�WA A[:,0].�n�!�z([Ay4aR#�Jwe�Cld�a����JX��@ �asx" �, las��)6�A[]� ��C 6%�L�Gal [���ct ~ s �y1=/�:�61"���"!1B�2� <([:,1]>4 A[ �!4[byhy �b�, ��([[4,�%PA��#loops �7e�}r&�A �it ou:�6P24�11�%q��-A>�[[��5 2 {6� a�&�� 6 7u�8 u� 10 1A 12 1" 14 1"�� 16 1A 18 1A 20 2A 22 2��� �2��eb~�): wDe (1Ы߯)aouI�2/!qU/r�"it sleo/%bi`a�M\acros�\��'.*'$�0��t � !ѥ�a-lon8$ X+=i)�.���or �ite;*Ɓ�) **iB p�� ^�lE�ecuted6U�%in�#!O�} �y ��2[61�[81�.�.�.�.�.�.�-�a(&�6�����col�S A.T��)n�1am2 4 aO8 a;2 a'6 18 a k [ 1 ϣ5 � 9 11 13 1�h19 21a&��(# If/then/e�}:+�+I�E�AUx �V�ge�esaon!th>0A�L�6Y�,I�dMal�g���>a��n)'�'�* 21�at �Tif R (if 4)"�ini6,x=.4 if x<.mJ)�"H3�"E� 100 el+>:+ Tail2+)ssY = "Tie.M509�jic ��WZa� s A��"��"�55-e��.(�Ct�>)?�"SRhor�d>T  `x+=1`\�.�x-c��& = X�`6Kx=0�Ule x<10I�R�)� *�=� %�  �kR@10 w�jn�i 6-�&3D**Sg�**_C��� 0vu�1�tu��al� [rB -lecV�s.8�C/�B.html](1�0��a��� [SageMathN www.�l�F| ). �*� Mapl�"RU�J old-��^H�a�S ( +q(a �ns��at CU�,Wolfram Alph�Ja&/cho�+(bu� comp�~�_skh�ica� ou��f��e����D limiiPs.�nf�g1)�!6l T���unU�F� rted���`"� �"a�i��wod go a�L12��.�Y(E��b�lOAY�job;P�2it'C�1ens�J-p�cd!oa�Q�"E�m�<ymE�$ 2܂ 2() #�>�!�� ��H�!c! nAi66=%xgk�M8f"<ee�����6��#,��"�Dvar�m�$decla?M �q=Etr� to.��B sym.�)('x') #=�I0!jsk��a: expa�<�~.�es(L$cos(x), x , �t#?anYe Doc��ng_!F�6Ga�W +Ds ?� jS �NgPfE������� pi/4� V �()� "( ) ) # or, ��"r�5�N2�ci��pla�9(( '%.20f' % HFRAtjis�G:��docs. ��3/�:/inputouAk� #��tring-�a Y�Au �!-p� W 9� &^.9 � 1 #�#�IboZ��a�fancy!��!n�/�'sA3l�!�)�.;I&I 1����}� s( �a4A3 72K/�i"� few "mem9 d"i\�sine/co (le�a�]�we��7�f�$\%\! R^$\sqrt{2}/2� &oxV&y1���i5far"$ ^[0.785$1�q�u��0�8\ Dm%���h�mEYe�, x0=1�,F�) 6A.GG�p�.75/V ��E#F0!�f(�7s={x:�}6N�Q�ly1�!�e9��dM,"�$m(he O( x^5 )�."a'm�It. # See6j��ei��stync usek �.rMO�f) g&]=-�#. �q� "Our^]ݜ$\t%.15f" % '~ I�>(y�%z2 Disc �a�[3eZ abs( _ -? >-�m6�@ 0.73168886854826�v:�.&873821K>� 3.256e- h$*absolute*�;$/� 10�0<3Ii���['dA� ect?-�y!��*@ **gu�teeA� -# p(���havAdUAK� <^>)�8��k5 rema� rEr��Z|U ,�n�.'s OK� �8 )�m��b�|��\xi)|zi 1LSo"� is,��%*5_B=.d6X 3 9�nK_I+��v6|�Q [ (x�p, (x0,A��]m�0To summarize,Q2_� roxi� on had-�$a�a}z� w�B�=a_.k0_gJ*��iori*-g!�e)须no`� $4.63Bn�$o� Eat M%�disregar�'po!��"!���m�%RuBZa�ii4) m# PuLP :�`�\� ed u+al P:)�pip pulp)� ## S� P4Model (bonds_s-Q.py2�:q1�n\max_{��x_�1\Bl4 x_1�D x_2�,texAl Zr, ,2A�q�5:& a2J55~5��� j36~5� �geq 0v-$$ E��Gn�:���(ima.umn.edu�/derials/2017-2018.2/W8.21-2�-/26306/�%�ing.pdfi�W � !� � LpProRLpءbl@= pSum, LpM��,�)� Q\+ =G("Ded� I".Gm�AX;�{("X1"�� �Xv22.�! �# OZJ �+= 4*X!�3*X #6�A��e�.�\�:a �jh+Vh }o�saintsy y X2 <=A�2 �53 4�<=ApB�!~.�,e.� - � "�~�#���U "-�(D7[ive k6H4X1 :", X1.varVK�"z X2 2!���qS�^ on 1.2.6 M�: Tes�����\alityI�scheme I (> 1P!�(� "�"�`false"�- �Rq2( est-�#sor nP(�e 2)) 4:t?=W.((> (�&2" n�((z des?2'&271 elseB�(+2/ 1)�fa bM (= (&� b a) 02� �)* n n1V!�>H�#? .= nRZ`)�me?,� nt�:13|!3#f t��% i6>cð"jTheta(�n})0�;" Fe�%= G$,log+&I�&Pba��o�/r���� b A y� n*** f 's Littlez�h*��# �B!| - フェルマーの小定理: �g$��%��$a w p@��W(terger*** l�a��$nPn6rai��N$n$-th p�{ ongru *to/modulo(4. I.e., $a \e�1$ a^n \pmodI� -6�$ でなかった場合は、即それは素数-$�と判断�る。N]�FWK<�可能性があE��Q��こと����L��た探索をする2�;;E�� exa�1A ,nn�n�Aex! 3,me��7�r�1 ((even?-.�q�2[(/1 2) m)7. �MeG�(* �6Rs� 1:Rm)a�� "�(�a^n\bI�{�q\{�%$y�[ (a^{n/�@ 3)^2 \�g]  &�  rm{ifA�A�!/} .O-12 � ) \c��a�U� wise-&���4} $2�1�d-�Э"� try-�I)���My� n) a%�'(+ 1 (raH (- n��%p>�fast-p.d? n�skIl!�((= Ar#t ((6� :G(- 3�eEœ#f *� ���.�2 10))��.11f443f9 %A��&. $ �  �#� � � Sim�"�g+-h 9S�pyE � �{4en Downey Lic� : [Cs[��Com�� At&v�4.0 I���.a*��Z ivec 7� Vs/by/4.#�� Assighe 9���le�3Dby: Philip Tanofsk^ � #�T;]�c��dis69a^ed� f�X�e %/-ig �ac�8Shell.ast_node_S6 ity='Q&_N _or_ I'8 � &_y)�\�.� �)*5Set�_JUd� Ic�8 �$B�%� x!f"� �s t�D�hi�pr!_!�vXgA8P"LaTeX ��-t�&�.e9 ��x �lS�v� how_=G�k""�%�aB� fE�!h:B!Z: boolea ��if.#3�(���� 'mp)[1'Ana�1 �*;'�!'�W6){y ! s('tc�.sV�e!e�$OKget ic�es%�6d! = t�� �A)��Man `Add`Th�T��N"����k^38out trying to c�ompute it. ```python type(expr) T sympy.core.add.Addx`subs` can be used to replace a6�bol with a number, which allows the addition to proceed6��.l(t, 2 �`f` isf8pecial class ofw that�resent*function6^f = F  ('f' ` �f The !^ x$`UndefinedP becaus� contaiA n unef fiedA��t, `C1`. In this example, finding �$particular��easy:!ljuse��3Q�/ `p_06�C1, p_0.�C11�]Hu=w_eq�E J-�A?xt�we have!�,work a littl rder�%�m1�(. ### Solv1 quadraticM)YJ We'llE !2(r, K)WameterizEr, so w*E�two moreQ�:2oD�yas('r K1(��6^eq2M�ify�, r * A� * (1 - /K.�E�A�2�1-:���Y�, `,`,A�I�`rhs`�Ri�&`at $t=0$2�atE� _Iwt, Qt-� want2K���e �� make��(0) =A�arSQ crea��e��` }aB %�\ �a� Bm�e�isi�8an algebraic id�� ty, not aV,a'�-!�ve` -��. =� from(sa list�)1� s. e�$is case, [q�reasoexp��only one=h](https://en.wikipedia.org/�/Picard%E2%80%93Lindel%C3%B6f_theorem),�>(we still ge��m{��A \bracket operator, `[0]`,!�sel�'fir�ne6|�I~ve(Eq(!���), C1)� *), lenI��'( �1)�VEV_of_C��M[0]% E�i��eQ�%,!Q�� AF���^!� eIN$figured ou:n�.=oi ��M � ܙA7complic��* provide��metho��a�ies%�i7fyB�2�&( �Often city�-2ey�! beholder �a��dbout as >e ew� ess� $gets. Jus�,double-check%�` ��it�r `t=0i�confirmo!�A�F=�)l��TaqQ� call� he [logis��� �i opulŰ_ #L C_��)3some ��s you�se�&{ !pin.z��m: $�l�= \frac{K}{1 + A e^{-rt}}$ where $A = (K -� ) /$.��a�I=to6Ethese�_ forms are�](ivalent. Fe�wea] 4 altern- ver%�ofBG6�J�i�m�C= K /�j�*AH(-r*t�pTo%Gwheth�wo#Mk>�U_Em5 heir��ceI�� eN0:�m]}7 -�mBEf test��U s��way: if-�say��du c!fduc z,%Oy< �� itely=� (����c numeriA�y closeA�B. |ca2 � a�A�w� to �a&g (necessarily� / re i� �� Test ��a�Ha surprisingly hard��blem;afact,j no��orith��8��it1� � 0Exercises ** :**� � f� u�|2�pa6�  $i�da�}{dt}a� ' < + \beta f^2(t) 6E # C�� �. �5� � }3# h v� eqXR� ��  +w **� 2i� ����_U"� Xm24ExtraQ�  hA�� � F��_X&� 6I�6 J� x0 ZPM_XB 2V!" _5{K^$ # Ri@�\R ps �>� [0]�� � �B� .� � [_X"� 2�RPC1Ju C1��d*m���`:�:f 9 &�# S��y above u�+>[���VPD��f�Gby��t=0!@�p_02mv�A�shQU�%�d�>�E{ [WolframA(&�www.w �.com/)�PeBmodel,�ei�}or both��m�>!:I�� / "s��� ^2 orJ/r"z Fin e1��EeE� also�pJ�= `y�� �G:{� J�f� HPJu�ڪK ��� ��R5 C��JFN� �y]im3�py np scipy stats ,0matplotlib.py 8tplt plt.style.use('fivethirtye� # In� e Trans�  s�ing� RaL ale a'.tB.**"�o>es�unibdistribIv$U$a?any oe6D$, give8  $CDF$�u$D� How�0we do it? LeZ Dtake $$\large T(U"X$ : *z���8random variable#T$#� ka9 of a�%'X'�tqt>K (l�Z **exponE al**6�asm.�Now� saia��o per%I**i-�5��5�**=a)>. By c)T(?  $F_X(x)$ 0 )!)� by: =Y &@ \triangleq P(X \ x)!nWe �bef��!��$X$�� app{ er�>�!� to a^�&� th�ay� atQ� = P(E�%f)� �an ib-\of�!᥶� ��in�U lity.sgU d T^{-1}(x)%UNh!� nice� pertX a�'s-�ate&)�point $xEy�!%�"� $x!�T!�!}!me.sa \6��!��conclud��6M-�=63 ## C3�Ldemonstr� how��^e�a� dens6$D$�!a6$5�2�!�=��dJ. �!?)�� pX ice! �de�4b � 1� in P�T&�2�2�� .�6# D�`Lams SAMPLE_SIZE = 10D N_BINS = np.sqrt(& ).asoD('int') // 2 LAMBD*8 ��i�i .>RW� �$an?��23�ly �comparizpurposeT_!�}at **`��.Ż`**M�sl��ly **�t)et�**a�1�C� pO uar a�mbda$>=!�7(e [document� &� docs. � doc//red/% ted  �.�.html)eY read�VA!mon�"�%86�N"e� a�a$3 l�, such� t pd� � x). F>E correspo(ombscaleAo / R.* .�_�r�7're go� De)�ale=1/I|!���� rize our �n,!�A���AE� U(0,����. orm :2Exp(8)%kJ�- H%�(loc=0,)���we�>to�4�e �x:w$�E)�wac�  u 1la�betwee? ��e&�aW���f2#.�AU����� \begin{�$��} ����� )as&�?\Ml,x} \ \text{ %g4 }\ x \geq 0\\H 0%b @�H=<0 9 \end | �$$��� e:1�Ois"�  v� $x$).�yE�-:�]* sub|$1$ɧ��.D!HVF�$ln� VAlny�5_ �di�8��.�AHO}{ N�
� @Et voilà!** 🎉 ��va�8t it! 💪🏼 <�LY�i� � codM 2��� def 7a�@_to_exp(x, lmbd):E+"""~ o(�m�m in� Ń՜G"""B�" -np.log%\x:o� Tak� mple!��xS)� � e_ = .rvs2���.;�� true.�Hex�~expRF%! U ->��8%{=FP�, ����(A brief sana �6\# Sv�r> hist6_bins=�,� =True)1� exp,f�w#=.5, �='E�� �.5��U$p �legend()24ra%4.�ued2�8s', fontsize=12 Q�a0Beautiful! It�D�ecA&�+ �A�Binom�$Tre)}N� math2� ���m�,�(x-�## App��ofBq�t��a aychniqu� pric�opMs- rel E q( ssum'��stockA�o�( a� walk%�at ea� �&step,�'� �probabi(�mo$up  down��a.erc� ge. Fur moreXrequir�J��(rbitrage opR unit�exist�ea)�!=&�6a� th��=C) .�!e limitvis�= verg�PLBlack-Scholes-Merton ,*�#(described [�`](european_plain_vanilla_)�.ipynb� ## Ea&( - One-Step61 Con�ra%�m*cur�'lyah( t 50. WeESinteresainEAIa E �2 �a �k5�matur��i* x mon!X�nowmkn!0 at1!Tt"A�L >m}up� 55AAEF(to 45. HencA.e �ae+ s up \�ll�"a&A5;~AeF@lZB1� zero� AaU)8 risk neut�(world? �et�a�rtfolioa(N itselfep �sA`a� al� y1Ke � e a V=ae&� "� cal�(��*ltaHshaaxw)�!!t��g� less%��UdQasLD=� Pc_u-c_d}{S_0u-S_0d},$�}$c_u$% $c_d�! )o �-��!u!)BA&!��<��iv!� St ^zV_ Kif��fQU� �is�N�<5-0}{55-45}=0.5.�N�%9�a5S=fby%��$a long pos4. in $)]$1��P shorl ��ll-/. If+!�55I�2k9�Tis $55\cdot0.5-5=22.5$zAX4�X4X0 X . Discoun!2� �]�Y )A-frM#��{$r� 0.05%�s � "ent TM`�ofE��%>%(6/12}=21.94%� In o+"�E�M���tod�weq��J��) � ���M)�.$on�)E we f�q��  p!��$U�i�$�?at%50% A c) $$��$$$c = 3.06%��MA�N �ws�he1! |a bE���d6]S-50 �+,50 S0_u = 55 d = 45 r=%� T  5 c$ max(/-K,0) c. d-K�* i�= (��)/ 3$S0_d) pf_�P*2-c_u)��$T)(�(d(d.( !(-(W -(S0 +$)) print(c&- �-Q^ 6w\ ula�!��2 �p1��"aA1-� 6F �K-�27$o�I&�A o =�DrT}[po_u+(1-p)o_d]����o�� �%ea]i�s�/pward-���,���$o�;5�j6w�3q:� Jn$p$:�p��0e^{rT}-d}{u-d� �u% _�afactor �ٍ���&(, i.e. $u-1N&D  in�D�0�np)+%1-mCdeRC.�E . F���ail� � �bbh� At� 3ed ple�|�Hull, *O;(s, futures,�."Z3 s, 8th Ed��8,* 2012, p. 265%c �D��i� �I��(m�� .:hr�L0�U�v 1.1 a�0.9� S0*u a� #Call o�o��o& ��,#Put - uncomE�Ĺ?lina%o*i !u2 a pu�-���eadaa1  #�K��u�#�d��7(r*T)-�u-� e�x�� *(p*u�*o�.��o�� Two-N� ��analysi"p�4 �5�Z�%�b� tend�+o�woR�6 let A��e nodeSstart  $"� �$�! �h��e�"��x by a�ore7d�Su�!z �� i�( de BE�i��C!�!�b��� seco�1�'.�again gon�� �o��  BF�Qto�uu$ (,D),�dE). F 1+CFW-N:^du$�(ls sV>rdd$ c(F) �� �K� yT�s �!=F9�$�$�$S_0$, $B = u C d D uE d/!�F dd��6 � $to go back�%sI��(M �. �ter#'�maE�s+�previouI�CF8"�;U9 AiF-�9.�a!< 50.05>55 !?4 !@ 60.5'!@49 !:4. m�at �D {�.�aXMT$�k_T� $.R" 7or *K-S_T�2*.` is lead�h��% !� O��5b)�al6�.�.�o_!1�, $o_!1Fo_!!a-c�M#r yoff��e �%R� �IH��C�� ��h���N-� et< 1.3M$�:�0B "0 �� is*� U n6s2s^� M�#%pproximaH/0.63. U�-isb���ᩉ�.�Q� Ba$o_B=�"C{0.5}}[lI {%�}& ) 0}]=6.42�AdRdC dCzdR`2� = lEja�Q\�sam�ldR��lasi� A9Q $o_Az�kN� 3.92E��c2�E5^A�3s7pD?dura�r��a�BFaboc1�<)��cel�&�(�  V! �**2? u*d #Equ��� u ==W e 'd7b� �%��0_di  #I�!�U .9  �k��be>  �� Tu T ��� �9 oEJ*, $o_E*p+o_F*9Az2"D"E" o_�@2#B#C#r 'Val�/!�.�= ',o_<##ZQn� ��for_F,� Q[g4,izmIUs: Let�de"~ IN�� �{t}w3length a�@ ��^?��a3�_!'2_�o$ (e.g.F afte� �6S�) �2SB=��2�:�"�JA� $2�/.�Repea E�!'5�relev�<���s P"align}� &�b�"�ud]�!\\� Z.d��.^,+ X7" � �wDsumma�$�.=22�(^2o_{uu}+2peud�}p^2dd}�~��c� PCK% mos6A&=1p2�2� CM G �v��#A�A�6�s� �Ar�lto&� Hs,B3q�e�5dA��)� expirynEA a�er� fr@r�'�ao�an>�i T �$P>�? >#�ed!sg[;P Va--�](a-6nLh4`ebook. --- @ # Dynamic�:�mi/p'�p/!�ba�FGtutoronN?%RTwebpage (in Russian): �>bestpr uN>%`� chFI|[n]%,6k =-dFo-�.IF�2.99�7.�%��F�-}>�� rj�H18�n3 microis1aDI�0$a six-fold�3ro"' ## Knapsab"�; B.G.:��eR�BN_�lem� �origiZC+e� ��iG preh�/bl�.!'!9Hof choo  3 item-(�n $n$ &�,total ��ſ[ B1" axim �J0w�4{.1�J�w ex L NFum capa�A�[is`� $ed **0-1 k:p**"�Hwe eih#��tem (1Av (0);*�n�D�_Uy@_"�D?F)� by $x_i$��we :� $ith)Cj not:(4 \in \{0, 1\}$�l"� 2, $i$thz�$vk� $w_i$,2� N1>�1F!@$MoThen, �%ed4!Uy�&�8� �M6:�+U,� :,nize�+T& \sum_{i=1}^n x_i v_i/ f,su[Lo}N,w,o4M,,, i$$]R6@� ��:e�!)�. � *s�|2@�&%*_Q�q�(v, w, M��"""0>(���eD s `v�He s `w`� 5� `M`.+ n = len(v��assert �.w �r� =�D����i��(range{/n) �4[i, 0���4j64M+1F6 0, j66o n1, Y 0,X��(if w[i] > j6�x -1�6� 0. =a8(25 ' W,�#-�] + v[i6�)�.Q61kM�G� � Dv = [5, 4, 3, 2] w , 1] M� W?vj�SK;z9 ## CohAQ�2�56D F� digi_ �9ms �ڡ�+z7n$�&?2Yi� ��pR�:%&�  in3nu&]; FCP� Co�RB��RsEu�� over seve�&�"��magnitud�LR-�!�! x%!�I�. spaceR$ , 4*  + 1, d�54=np.int64) fac@[�.5.(x�2xavh] nr_-a=�@(map(l`4 x:�str�8,!z `3F Plot%n-l+Da�0og$-$\ !�&�I , ax��-sub(s(nrows=a�cols=2Pg�,(� 6)) 7[0]�/�/�2�% set_@. r'$ne-@y�-!1J\5' [1]@N[ [nr.Q�E�i).t_layout�. 0IQ1-�Isz8*jA�ar��$n$+F�$Q| � si G $n! B8^{!�(_{10} n!}$, \prod�h{n} i$��hG)�4�E��,Ri�No" SbouO@ism� ab�* �; i < N3? 0�2$�� �$so on. So��$�� 10^p:�< 1 \5s 10 + 23$\ldots + p^p�So.l! < (pa��<imc -%u�(B��#integer!�F \lceil=K n \r$2 Ev� h�*Dint. n#="_pa-("> # H * 0 u-e(H G�+t"8�#��� a� �& or. Try c�h&ay!z)f,: (i) $10 \;8{(2(11.4+12.6))�K�n��.�ae *?;2*.? a=����@69.28203230275508(i�e^�$N{>onp�00.5>aD1.6487212707001282 bi)E@� A5X$y=(10+sin(x)+x^2+cosh( 1))/(sinh  3+3x^4+e^�?eV x=\pm�$x=0.2��� |(xD P6  �%I+!I �**2 � 1�de* '�@ + x**3 + 3*x**4 4�x.77 num/dem �y �"W�?�pia� of �Kals: " , �np.pi"(=0.2�>0.2))ENI�|D 73.47132985890015EI;nzD 8.240812092855817gCEmJ Wr]Xa&�8tOt�S/&gu� %!��1radiu�a circMPnd-[�e dia3V8mr +,Xw�Wa + 's um = $c�3qarea $a�GZh4+A[� $r=66aj�N�E�;BInfo( �E�0  �2*r *2a�pia�E*r� infoL@T= [d,c,aP +   O7i�B}=6)Q�GxD � r=6IP55Rd is",^[0"� "*9?c�'1], !�%Ka.2]o � �� 12 NvH 37.69911184307752 3|H 113.09733552923255b�o��Zum up��n�2�!u� E;�$1,000:## Me�S1E sequ� Sum(��tVal,end�rE�E!{=ni�=�0 whilU< @) | (==J+=G%s%+=4*-��sum sum-U�1,�0,1U>_61"�?m1� � 2 a=M e<1,1) #�DaSexcluBor -�rW } ary��Ysum(a>�2 ��NAS� 5oB0 .26 !���.% !;$.. 10}(i+1):�=1>�5l ,bia�[����.�,1��5d� �N �2Gm�A*}�n.�/:h/,curve $f(x)= 3x+ 5y%terB$�� *g*$-x^2-2x+1$E1wo/Fs. "�K coor7t.�F Qio=S� e g�%a�5t�5ato �& z_'os� s6"""M�1�J� ���sy � find_M ��(x, _1 2m�.$_L6 = seu A�#Lnt(Q(>*)� N + x)-15 Z�i�T < N�;B8_x, y1 a�x[9],� _162 vdir>np.abs(` y2 -b �if1< 1e-3��dif0>.add((r� q x, 3�]2�2)-3١@15YF_$Qx>r ���:61� un1(,<y�we quare 3*xZ % (52Qy1B2B!�-2D-2*x+ � �y� ��a-GQ�=tag="�"Q{m56�!A=sy."�Tx' ��> !  +&�G � �# - 2*# �y1_Isy.6G(!�V y2>2,� :ag�� �Y(dif  = ^�afQy _,I.�Z f(),At$�%�F�Ef* 1�4!#"y- x, "�=Z)36�2Z�%����2�� fU�in�-1� 0, 2�) �C_A�AW(tA� fun2� }%L��J!t%Qv�#�1 ve_22�:�.��* !�. s)  �kJ#I\x,� )E�6Px,I�)�N2":=��| [(-0.278, 1.48), (-2.222, 0.51)�h�_r� E A� 2.44�^7U27-1~8u � o�8p� 8�JH(Taylor seri� N�g� by,"%  =x+\� {x^3}{3!}�Y  5}{52$7}{7!}+ ..�,V�A�M*N,R�|V yourA�Q !x=4�Ae errNUPI6.c answ�'dupy's `�)`^.JWort�5��.}^�)A��?3 chie�"n {!7\epsilon�4$$6 �".6 2� global x �>: �_��_Nu�3͐G��#�d>M�F�n=�`�n<%W+1i�1+=��(2*7#/s.� [n +=1�}�exp �kexp y �1, u#ie �'le<�N �Ki Isym�E =r -I*=��Y Ka4)- G�;4�if 4\ 49 ���Cd mini� ��!�&, accu�M�'�ing s�e�", � _j� �!/�_a�� �) break%�e2�$i!�1 �%(���� � 8Rv�A4415/13076743680�4x**13/622702081/3991%I9/36288 7/504 5/12 3/6.6� �n�C!J|s&T Q6 �$$�,h(x+1)-e^{2x}!��lAO�re!�  2 s&so!n w�n���E"�it��sO-p� �i$x�iZomp A �B(�,,!� )=f\�  �,�]�(to���g 'f(5.0)$ +f g(2 Ah (4)(2\pi!A�""" L:O�Is/pfer+f�v(s 'Anonymou&�M' z|1 regu�G [�Z$,�=e$ name. ref&y)�[m��8nelearningplus.g \/I-Q0/#1.-What-is- �-F� -in-0M?���.  #"$e � s :4 i�p �x*x gZ )9x:��I� hJM��2*x�� ne|b$_g_f(f, g,;�oIO g(f�0"b==5A�mL-0.13235175009777303&2������If_gnf�) JB==Z�q@0.826821810431806������Nh�h,1��� h(2 �C�C� 6C�M=�2@3.529586460553644 6kImp�'�!�#irx avi�Y�4N�#� $$ \�( bf{A� BofbU0bmatrix} 1 &@ $\ 3 & 4 \\U(! +�( 31 +=1 �2" =F42 & 344 & 5F4$�>%5 9 � +\�(���SYd6��k&�Xt�^R�X ) ]�X��R�r6np +0('1 2; 3 4') �62 1; 1 1') 59A+B�>C�R �Dub\or-V/ ite9 s r%� eI�� arr j add����O toge�+A6y�X�X�X)XgH8[] �28 1 # l5[e28B,@X ONE�row_AaIAi�i�_ �]& *!� A + B � .app�R&C�= ��!�M'F[[1 2]�[[3 4 %�(x([[2, 3]])�,r4, 5]]� [[[2!N [[4!]���K�(Int�: ção à �a Simbó�R com _�_ ��Motiv ' - O� of; $�!�R,você usa éX ito....� fromA�h "pim1Ppi) 3.141592653589793A� - E { udéssemo= á-lo�precis�$infinita? �BM�uc�razoavel,e aceitável:$Exemplo: aAJip$O engenh>c da NASA�%+ que,� ndo NQ-0\� r oR3í�]n[ um� $unferênci)t diâ %Digual a 25 bilhõe�>$ milhas, o� de cá�$o�próxim81,5 polegada [[�]]"1t �Ljpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/). A&O! �� uQWsUW > *Zs* (CS)=!subá�!de!Uudo!x�? mática eci-<d%?tA�A6$reocupa em�)�jr �.aAI%��{tos�os&�A�7mA> �dor�Q##8ga m�CSI~�2�4vários *sistes!�"&iM$ algébric!SCAs)Z - Álgebr�cional,�j�asT idos�N�i�(CAD)A�R8(cínio auto�0$zado, gesta6daGnhecia o, lóg!` �xm� =a�;�q ific uetc��h Como a CS!�áH�e�@ < Ver>�� OIMivo�fkl!d %A�serE� bibliotecOK�iDt)�y3�Hc!_-Y6A�hdiante (2019, v. 1.5.1) Pr�caderísa5s:�étuito; baseahh ntei�pZem x&le pend%Vq ObI�numéria@x) 6V � ortar��0os módulos `� ` e `%O` ��.di�%ça6O9�C8 mtAsy sy.�_��$ing(pretty �[ # melhor���ee síAGosŇ.�mt.pi�"�B"sy "5� #Verifiqu��d`�`6� (d�o floa=.�,n�é����B| F%Ԃ� s.Pi Veja�^e�um@=�2pmt�t#�6��J�;�� Q�� power.Powہ�Funi\0x método AAgti�st�!n� podeI�A� situa��c��s segua,iQ`�"`1fe`f`!�a#da aoj��$`x`; ex. `E�('a')`;I a�`a.f(X Mum�sem.Pdo1�`aZ0z.conjugate()PxVQA�pa.�RU9�`.=o últxe= ,%DAN dize�(�é, na!^dad> m*)�que- tenN�um ܅k(# Atribuiç1�}� Podv� buir�Yri��us��v�w bols:�N��+.tysn`x��y` �D�A%�vy de� d�};x 2h�3� r aritme���e%�f e ob�C!Nex�˕�Lo ulta>�zU$*�!8z') x*y + z**2/�,�!- zm�Gw�* **: Reva� h t[:!u0l $(x - y)^2$�of�6&*"�y +|N�OA.e�<a v-�l não $)Egq'o54. !arí��faA�ou�6�>�x'��ya�v; x1�1ƁY���&�rempacot%́�Tambéme<�realiz!��K.���rio�[da�� : 2N� , >� x y !�%M�lfabet> �# O �dispõ� um� �� chamA `abc�;�HɁ� ��T�ma�Q ras :}@nas (maiúsculas � n) �'eg%6*_��abc v a,b,-lpha,Yt ,gamma (aQ3(*b - 3*c)*("E�&/�&*!� �i��!4��Vu@D,G,psi,theta D**�j8G**b * psi**c *�ta**2 #Ba **No:! u9 le%,já�^usadasA�Y�s e�\iai�?� ű `O`,e)�� ca "�m"m I é  mplexof=. N� casoj#id!�d � K ; m no=4d��`2}0sy.I # imagin �� =O+3�^f�IQaryUnTC E�SUa�� �gen� PaS ri2�!,�3oi usar� ou `Sz{:"sem_nocat/�!$ s('nada')�2m� _louc ; _('mass;! =a�V5e .� .C�medV�+ 2 OM�somn0r1.= 3 # '' aqui�jE@�joQ`!� Substit��o9���� de *�!*��m+2que��1.�k"���pi��Zes.~ } aval!�:ou&�;de&f� �E�p . 2:�Usub�hpor��r��EgtaN roce�R�&� Mao�!��,�q2oc e�q,olinômio $P2;D= 2x^3 - 4x -6$. C"R,R�$P(-1 $P(e/3 \��{3.2}>�.V� x Po5q*��6 P�'P �(x,-1) Pe3 =mt.v P3(*g 3�4p�(P1, Pe3, P3b 7�-4 -8.13655822141297 -1.7067494832004*y58:** s� |.( = 4^x$ e $ ��1!0�=0*0 [ ostaE8)$A5$0 3�s=�fd**x f�"�)�*-p�m�fg133-�.�t&�iss���� lo ".ônico"6���`�3) fg�Xm� )0 $aMT^xW"b 6-;c  \cos�j���=< Bb(+=.4y��2!,b�? 5s�Z�* b�c)�4-+Ou,A�m� direto6I�= (g�� gRj)) .\7���# A�\��m�� � �3 flutu� &� a.*� �BfoiEUut0e�"d.l� seum� &s źo",`�,:��.�=#�_P"Oji�  E.�� olha�0a*��� o núme�dígide7� r&?aR21com 20V@�iaJ� �2�J Com �dser055MPEw90~19a�i -W6e �V�6� sy^:1)�i##��pre\ as x��8$�PAent3 grup���0Q m� + R" �**/.x0** (*built-inScz s*): �� pre�sl�arq^")`, )` , `int �**[�|ou *nor� *, *9pel�=uA� o* (�,glês *user-+edY �,N��esz *UDF� aque� !6v!2!&���V 6maneiraa�ah"palavra-chave" (*keyword*)Z a `def`JB.9�$��(...)�%� U-sUDF **!��)�j�!/ argu�o%I�!���� ira;FJou����ba㡃 rno**; V�.en�_r�UDF� q�s.:{Suponhe)b� (a) >`i�d  do merc� imo�n%� ���e$%wo i~!�p>HHcomisse pap6r�es mevvena4de imóveis. VA,�ã4 omeça�hFcinar eE �]^o���]s!my�e!t�<n�6de �a�Z[-k�6��eç��DS�<�o��km���$V�e \a >!a �l1 Zi "a�/r%I!� �)<9*D 4eoid6T $$r(V) = c\, V,$$ �kdoAz�=� !E �fix�mDigE`a��=c}"z!�1.03%� 5J�.��os%��a3ש�ap> nósR!\m:�a�) e(V):�r:.0103*V �� mJ $V�D8, R\$ \, 332.13t<1w�9 _33213�'"�necessiobservar�[�A1� *;*ө��o -�$ enclausurexpor! êA� es -�dois- s (`:`) sH obrigató$ - *escopo2m�"nVi�9� a�g��lin�r�7n6 s �s�e `TABF$ ����4$aços)�Q\t��,8houver,�k� o���a vAH �.��"vos W�o96 e}�"�6�!�)� re�/1�V)!�S v% � Ma�5�%pp�a ssí��2* Y =c� '""esqueri���i;b ita,t� BD � P3420.939 Todavia, i�ńT�us!&,é bom evita�$O��>� ��A�J �tś F�ɖ�5ex�itu��claA�. N�!A�.R��~�=�l `r` ré}ua. � on?lig� a;a �i,"e��2�VA�.�Dn-�W�&�m#��M�. # Log�ta3hru� NÃO��"!. T.�3A���_��/U��"d��˥�ae `c`�V` *�5*y3:=_c(c,�H#A�V�outro ��)�)%c*V ��3^0.0234Iq�ri�1A�tax�M�At2.34% a�19743�UrVl agor��R$(.432,0e�j ��rfF�a"{ �+6w���%�aB�e c��n+V�2�P� Tr�� �$mesmo? Por�oa.�nN36!Rmultia�>, `c*V&� comu�RvA� depeh �  �E= | ��{ Porém,qLE���egu7l t�%��"!�"�q�int: !� �A�d�u�_2�^{3/5}�V$$ &-6�.�2I�6� *(3/5)*V %�)�%�)� 5� >I2� se trocaraz1�6,.q `M�_2`"�á!*-W��nto. EmbA�Wy!3� d�~5��Z�Vo��`3/4`!pi$ ape��e�6�#=�V �es �dos%-Y�VA iK*A� %.� �%� rtâ}'re� va a��q��Ae�� mos�!�pythonf�� tos� ʙx�85�_%�4da(V,c): # V v�X�;e� "ZJcY@Y-2F� Mas,2P#2�a���0A��,�.�fo�}%���۽|na-�erradaJ�����6�5?=Za� e� �mcor^om foi-� da #�=�:� �)^b�F�� ## M��$a"� s8+os��p�r" A.apr��mos&�IBra(eBNZle�&T=/V�c,V>PB'a�^��S��am�Pes�V , el� �/Bc$6�9F6} f n0+a�Iul69rep=&� _2� NMB<9� *F�3Ye40c�mul.Mul"���,��� seu-�2�H a+v<�9a��uma x�pré-!sbB�i�)ap�o"�,8�y0.1196aa 3�c, a*q����ci&2  T22:�Q:T222�TSa� 12.0r�a �b,-Zn, depoi-)b �2�� m�pla O!No&�*2�"� .f�*� �Y� lez�v�)�*pa��nA��!�A�_ vír<HNi,entre colche\ E�a * *. M!t��,ь�( sobr{�4rd v �sta�m2�Mo� �'Iq a�$I-M0435�54>�� ~ i�����!dar legi�(.] [ E�04�I(b,a ) ] � �6H $$XWYH{ (x,y) �%?_��e } y$Y \}$$ on�X�Y$ PW)n�y�e�> e $y % as *�E!Was �-�)$#���,0bb{R}$; $(3,2~ (-1,� (\pi,2.18.]/- E��� �#AO$I�= ^@!�é exacPo *plano cartesiano*.�U�:' � ��o# m �!�ma;,/a/m.�F%o *��-�&n�1M�)�/*��E(E1� >� A�(V)w펁�Q�21��"A�!�g 432.00B�Q armazen͍�4�*� '�'e�~�!Q"# ��U�21�GB��VB6+yr~Z # ��э%�r� r�1Ae��%p��+�{a�.s H#� � O6o&b%�?n�ari�� �xtravé�%*,. �.!xk*Y-G �, � �{-E�: o índ}RB am9�a�(f * $W���viz=�0 LsasA�da* � a#�'l�)no�r!�( $[0,1]$. A&6 é1x6 W(d8e^{-5 \left( \d�Hd}{M} \9S )^5}U�o��d$Nɪs� ��9a2�(0 |6n)um*�$�re"�6,a$MJ[áxim%a* !cqv� !al_6��!2!K��nulT%�84��I� �1I �que�l �a�9�, $�W�]$W�G�a J�c�ótim�--b�in_ f�kskT?E�\loc-4a a���$ a��6�nA�decaiC/tio)D�até a�2JAerŊe !��fNal �0��"p�9 ima"F- W!� �G �AC�A>d�$n / - AK Q�� �qr!c1\ Ks via�circul (ru 9 rodo etcA��-6� curta�eio�pc-I�.��1mM�b00� m$ ,�b�-�li!�.�t� jg mai�-�! �4farmá�9%��7300 m-%*R; shopp0?9�89 , ai�KA� Bfamos%FN70*De Nadai, M.\>,Lepri, B. [[DIecoI�cADue of n�g borhoods:,$dicAk�.eRE3r�>��>0urban environd *�7arxiv�?Hpdf/1808.02547.pdf)5 a�Mu�P&s� �W$ &Dk�(ar�i ��dR��-i$"2��I�"( 6��G*w.d,M,W��X18exp(-5*(d/M)**5�}"!e��Ϸ�5a W�2� A�S��t�*�  g�( 6;ne!}�r%�  odom.:Ped�/ de Marfim&6�>e% 1 km�'%g*8oXfR $W_�X�;q�à} Dose CerXU�a222 ma��� ��rr�o2�)��,!staur� Saba�a Arte,6t628�t .� ao C�v o Es�ivo Physql��2�99�y4:�à PadE,Dolce Panini:�1,5 kJ]A�`#&[!��0�o W�+Wp [ (d,� , (M<\) ]) W�+.$62�R2$@.$99F$4 =2$1507�I� Perceb�$Y#W *� I�}�2�<s�"Y)s�*} pe*2�W1 n-'W2 6& &4 ��mbre-s� +"u) �� ses����F� � a sidei�3#�7ci�6�#��Q4 9s= W1n!i1w(3) W223344 'A$4', W1n, '; ' \ 'A2F3 3F4 4n)� )N j��97 ; ]�14 A`�~708AK3.24e-�b�>er� s3&!�r,=v em�0.aa@r�lc�do� o�7Q?e�x��[Qn�[�Qu�?!�·��)z\5y-bQD `\`E<4��qGr6Ee<inuGCas na�:B�5� �TiA��ha;nenhu�r]> ap�$ela, nem"f# . Ca�.ntN,oQ �R� á lM >�8�/'Co�� ]2n�  abaixo'm�!�1:&�``q#N=�Q, h�2?!�e� �\V��% ^��M�&7A >*CV+�"h:t�s9�}��irpdaK�ou !�-!*dp;�� úvi}-pB�&� ����Is-mq�j+%zŌ���Re:$j|Ayncíp�qRifíci����+�:A�d%U� �P"���5("perguntas"-#�<��pA�dor;C��Jr. Mostr����- ap m `>EN<:4! W1 >��#B' izer: "W1��*  W2?"A�%I M�r'irm�e"]de `W1`BF`W2>�W4 < 0 [> N�=,C*�+� �:M,�� �$c��"ʶB4l*wap.J%� ;�"p�do,��6/!j%/J �"�$[ �4%�� %�~& �$W+" ����U�&�Jsatisf+(a. S## N�� vsN�8puc2O 1.01 - { �((6m) F7D(�^!H�~ ��d�Y$cy (53 bit� �� ���IEEE 754bU��]! h ��r10(2**5�6 �15.954�K7019100,UTli�$b�V15f imal(� . Ad�� allyA^ �D don'F�v��actL#EpnH&o��ba�yN��X�s6@Á s, i�yՋ �WccuŒ�2�� rs (Q�lly�tnP�=��s6x" �Ncx\0@(!�-x)*10�\�*��1�.9 1212.87p+E.1206154.* 8457  . *260 .*39605E0.* 3948 9.79S)2-878.. S#d�1a� tor =i}�-�!�Ah�I= rul�HNuI�~�y wr�tM ed�|��caQ ype  g�- �#[e4the��ve �Qloai�2~��tor6�>& m *a32�t (101^0)- �(\iq9/A!yw�ify("10-1Tbj5n�4 7.01")BGLCkA��92b�J�v�E�E"p!�si��6�^a"�K#W36�E*I$�i��a' -pi + E*IpS0a[s ..�:f11t T��Zpi/:sFE3)/�ghy�>n�eAw�Jj��eri�~I�� N(��lx)4U�9rtary!ciK (� d��mp!(6�$N(pi+E*I, "@2 �BQQ4238462643383280@.71828L45904523536028747135)V.!2�8K6� �i1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501�`3091229702492483605585073�t�644121497099935831413222665927505�5799950501152782060571470109559971605b�745345968620147285174186408891986023�p04�p�87143214508397626036279952514079896872533965463�Z88296406��2583523�474575!��75996172983557522033753185701135437460340849884��386899970699004815030544027790316454247823068492936918621580578463111596668713013015618568987237235288509264861249497715421833420428568606014682472077143585487415565�<6776537202264854!�585EAD207584749226572260�a55844665!f�8398893944370926591800311388246468157082630100594858704#486480342194897A�90641045072636881313739855256117322040245E�770�94112757!�8280495738108967#b(18369868368Y57993647m076299B8380475654823728A�p80326802474420629269124859052�\<0445984215059112a441341A�,314781058036A.10�^9a�69410171111683916v,268894197587@21521282295184884[F��-e �R��2�x, y, �H9 s(" ") al�G �G< �= "�EFN #ic2�S(�O�`�\ dard�synta�c��exp�!x**OK��w�+�g ��2�c**yS��a$ 2�inb&>borm� �� $\LaTe��uBtt�in ��c�c�-.!�een� d�W`6SQ N�)� :2��Lis� )ks�b#;�� mC&]no� 2R ?("x0:10 yBasic��\S� �>U�e-8s,# Poly�aAqnd ~\al�l6u(x+y)**1.>!���pa��2�e(_-and, mA�' ant� ��ze6= =!\-v_~x+a \�a�ll���s96 +Q� a/kva&�.ac F(y*�M�z&KxE�5E, � Cancel~Dc&(( S�D+ 1)/ - 1,Ro/�  i;�M"!��io:�a]�N�FN]q Trig���cZ�� !�!x21�,�ygXTB% trig N�cp� + `  L�&Ư�2�x**�X *&O B�pow2���^mF�M�l��L; ,default. Howt9, $x^\f y $�not<[^" (xy)in&�I���$qH-1}  \neq  \cdot-1}$E�t��`$d � $�����"a�$ �\in) R$we��?�"g �H uc��@Similarly $(x^a)^(,x^{ab}$ hold��l/�$bhZ6�,x_p�y�t".",b<itiveM7%R_R.1 ",� (��_Z.' �{t� )�1�+Q�M3_RA5�Mu9(I�_�1_H (_q�.'z*ͦ** �2�logZFv u3�5P � logcombin���eeIK&pa+�_avoided��`forc)|`ˠ?c��$:6 ��.qJ n.,A� x �e�ReAk�� 6vtaC�.r'e�/ >y� b��P��a�3�a�e�>��fiax�j Q)b-�k, m,��mH(' ') bi�P(k�K`FO.2k��>�!�2�%6E� solvĔ; i�5�Eq`�=gat `=�� ssig�$�-`==` te��fewi�Z�slwo2D.EqA�� �,�(set` attemp�lo 9rb~��"�cg�r��A�.í��ails,/ may ���@ a`>�!w(_��!T-��wv$�+��NH$8, domain=S.RealJ�|%x)-zZ & >=��^�v�_([axx zP, 2*3 ], (�B, zJ�noc�J�S+��V ], [=]-�##aRpj� ls E�W��Rr*����. T'�� b�e@�� � � s92ex*y!�2& (x*y ��"Mul(` (�V,�$bol('y'))"'KM�I�@.�Ula"�vSe�<show_�!�r��Hopen("xy.dot", "w")�f:� f.��e(dot� C) !dot = -Tpng >png�?�(file�n ='xy"'\:��=B� i/y+1-x3% 1K64.��%=���Nr2.�#-XM.args2���nY*�8E>Y?a�eLectur�'7 a2F�|�Z s Ho�H| Gomez-Acevedo BMIG 6120 UAMS �0O Conce��of LinNjA�be<ft�� are �K9assoc�� se�. �" �r ��n� woV2in�$'r$y~�Ħa7s��Aym�h� thre #&/�$x$,$y$�$z$ߴfur�R eg�9r ideaG p�) _1,��,x_n)��/8int (or vector)�u~ $n$-dimen����(5$O�da8*�3^nBx�� $ Zs� bold<"�g9L$$\pmb{x}=(B� Sb2���onaar�9\begin{a%�*} R+y}&= \x_2.+(y_1,y y_n)�+ x_2+ x_n+!\\_-v_-b_- _-6_-_end��,**��\ct*��Ah)�s5AM# �%�eas6I�9$� 3&��.'"R�x_ y_1+ x_2+ � +x_nn\\ &=\&�~�y_i!Q>�*P��- �e �by1���| �x} \|f6�{� } !,x_1^2+x_2^2+i.� ^2}=� >� ^2} �|��#$j. A $k�����.,Fmnge� 't��w��� �rN�q3��U rix{o02& 3\\ 4&5&6} right)F��think�(4rixa�a uҭ�a ]. � of s�$n\��pEy *�|$n$�l�|d�(columns likn��$ x_{1,1} & 2 )�p}�o x_{2(2F(2 (\v��&  d6\\MnMn MAC un,p} } n]D��Ece� capi����sɛaq�Xy��EU� u e4S��eF�)T ��ow�. 6��E���}se&�i|�B]�eoX�iYa1M������� + B�yUr 6rIryUr B(�ry_Qr MQr.r= F�m)+�.1+@1 SlM�.p . �mBA6J  �@� p}�ʪZ76b  e�x! �~rF�������-F�9� )31�)�E�E  B(%���E�M>��-�JE�2}-@Z� . �M�6� 6�-p}  76�  e:� .Fo_���)Y  �?�5~?N�r�X�kB�%Q.[��Q2J�A�,�,=B� � ��.)p�. �M.^=��QM. bQ.v## ��?o��Ma} ����M ob��:& swapo9rľh��b =�=������ \R� arrow \;z ^t= z�QQA�Q10 �t�+)�2(2(��1A�� E_& Uu�I &�Py Ai*� R bit4:�pt-�3*�  �-0$�T &� M\:W an� A�*T � QY Q $"ߛk$�QI��\ j�)k-�.�%�� -�V�%���%Å� I-q�.�F���x}_1 t�_2 7 � n&[ \; �� rm{and}\;x YT}BK�I��f �Q�k}j(> ( �v- y_{pMRk*- 1���y!&)'y!&9�! k \\jt .6>A�I�X2!A�"F2 %�uR6 !�(��-�  *R�?�!%�)�x}NO>\i�~5�?R\Ihv�B�>�  l^�nN�5�:l�,*} > Check�U�h�@���:� ! Mu�Uew&�B�k$�"� k�Hp$Z��F(n((middle"� ��up��vde Y�F"ls outhG# E3� &��&G$��cefhA}=� * �!�|E\ �"rE:3 }A�B&o E}��� -E4E B�ZUAi0IJb 2�" (-5)*(-1)��*2+��1 21*2+2*4 U/"��1� -16 �10�^�m Sy�z�&�in�u Form Supu you m�j:�sMAH�<9��} 2x -5yT�3���,2)W & A��@�we��the�;D�B�}���FI-�)q��-x!:y} "�1c"3"G ��} If�. $AM�=^� �JE�xF��yY�.�bU�\e)x{3\\2} �]eat � �-�*��-a2�x}=bJ�F" �&����>� ledg��would���asU)n�% ���1�N� But,E�do!��)^A A$?�&&�'��6��փ.l��g�'���jnp.�=y�., -5.c01., 2.]]) ain�� inv("�) x=npq,b J 3,2]��[[ 0.2  8� 6;� [Պ  *�� us, Z�%S6� k &g�B ^�CU� ��Fa m�J"� Q�1.778\\�Rk i�6B��ƏM�v�{*�5� ~!�� b}6�%�1h,x2V3.!��[�#b"�!�{i�q�7a��)�U�6!Ђ���Ho *s���, 1���\*} x_1-x_2 +x_3 -x_4 &=1� -x_3+ 02 2x_4&= -\U) {1}{��e*'*}n � p,}�a�M, ,}G���!�-Q� &&d�A82� DQQ.!�%�q5 . d(0\\ -\frac{d1}{2} \end{matrix} \right) �Requation*} In this case any expression that satisfies $x_2=x_1 -1/2$ and $x_3=x_4+lfor arbitrary values of $x_104$ will XHy the system. So, wuis)M ha/olux$ and if so)� one would�4unique. We app%5e **dS,minant** fun�. If it�Ddifferent from zer!�)�TOk. Let's check quick \.�defin%*�>zof a I� $A$Ltype $n\times n$. CA�0$n=2$ \begin.�H\mathrm{det}\left[ & Z(} a_{11} &  2} \\2 22} i?1iT ]= (21}*:22}) -2 12}Jy�n=3~��pw m� �3R�23�32 A33�)_=�! \cdot .953-a_�Bgb^ -_2}F^N�5~��3�end� +!�B�r^!�)�^5��l�,�<M�]c��>��K�u}HN3��Tcalled **non-singular*�feseI�j�;V$an **inver x** v�[iesN\A-�A^{-1} = )3A = I_n,B�w��$I_n$a���i� ity �x (u�ofbs 1's i�v$e diagonal���?s elsel8) ### Example�Me�b�� e $3i�3$ �B� } A=B� 4 & 3 & 2!� 3& 5 2 &1%�V� } Wݢ6� $)V�F$? ```python import numpy as np A=np.array([[4.,3.,2.],[3.,5.,2.],[2,1.]]) �a@.linalg T(inv inv(A)qx a [ -1.0 e+00, B 42"],@ J@D3.22973971e-16, 2n@:^B/�1�1�%� u_,as transform�)s AmongE�݆ͣs sayɔ $f \colon��$bb{R}^2\to2$Z so-u���:x4** play a very-��� roleA��fe�cs. Such:Ah nA�ref ented bQ�� (� ad6�$ itself). �Zsuppose��� vector $\pmb{x}=(x_1,x_2)^t$ (note�#we write*$!fa column G)e�a� UA}$ (u�2i�2$�"I ),iwe can�� e a RS�T�Y} T_A( � ) =  A}��x͵4e�doe� e>6$T_A$ do2 � :%a�Ha X @some possibilitit�F + It keep _ sameE(trivial:t)J�� I}_26� �F� + Expand v �8in a given dire� )� x}=\��({x_1\\x_2}$�9- +}�� 0\\ 0 & 16�6� = (2YR��x{ p @m + Rotat-� �$$180^\circF� F� -1 &�-z�5-% -!�� withd ,pecific angla#theta��\cos( / ) & \sin  \\ -2!0 �1�>y�x_1��g+xARsini�1.+ %.nNIte�project��-�Tto each coordinate axiFaF� 0 &0�TE] 2]6�]Q4�F�## Rigid:r s F� bas!�lgebra�� know���QQ�$ $y=mx +b$��1 ��ad,planeIslope $m�dy$-intercept $b$. However,A?imilar.Js� asqz�}�>� +��bB���a�@^X!�>@�l�I� �y1�b2�݉W$b}$ For i�ce�.r!�-M�� $T$��dR�T��=� � !�1 :%�g 1\\1B�$$e_1=(1,0)-�$e_2=(0,1)$OCompos&j>RIn���!�c62&_refersaA' oper5Nputting-� andem3a9,g'a)N a point (iv�tak*jutput*it�in $notherQand� on. > T_� > m: k$; $T_BF< n :.m$ twoe8a>0 sE*� .M�th B"R (a~ar)I�.V_{A B}��k2�Fq J (icx})= T_Aŋ T_BU� (:��6�B:���y�� $ Geometric�] pert� Tho`produc�� s (orm�s)� nice gM�� pretE�B�*�ax2�y��\| �x} y}�' ��6�*}  5��*betwe-�AI�sA�is��y@@ handy�n��wI to�(**perpendic J**,aPwhi��� � =9PE�a.�1V8bee![&Sm7�%F� �qhiga[dimenI�21 cross- p�W2a� "�  result\a� b�;�2G��s � �.r�E�y�U text� 4d{ "i�,j kNk&�3\\ y_� y_y_3 } ��b{i}(x_2- x_3)��b{j 3y_1� 6k2� 2y_1fn� i}= ���,͜j}��%�ɲk��.~�< x = [1, 2, 0] y,4, 5, 6] np.%�(x, yRa(12, -6, -3]AW0 # Derivative!�(d Gradients� # �$n=1$ W]ll �helement@ calculus.�  $fB�:�$A�$a smooth ("iable)�� �j$x_0$� 6A d��Z$f$ at ,]�? =eory,��"�I�3 *� ang)�� $f(x�V(<� s *close*� �)�� �WTf'(x_0) \approx \frac{W-f}{x-x_0A�%: !z� isol� �f@ �u� @conclud�-E-(ea�vid*� �i og ��aeg� � j�. M�� ally J(x9 ) + 1%(% :_} w%t5s!r Y�\geXLet us f� re��! $of **levelbfaces**�?J�^2>�,�!�UXlgraphTA�!� 3-d plo ayh!��  r� a� � $c$ (i.e.�re���?x}_0$� t!�$f_0)=c$)2�set�all)˥�x= @�s9~p!Ded �su%9aq $c�� Aͩe�Ttem� �mapA�6"� Nv>� $!B�B"� $��!<v^0x@^0,\ldots,x_n^0)$ e **g�I �5�!�0(in cartesian*vs)�%aR���b }f.� \nabla :(�A\part�f :_0})}x_1},�m�,2}1�3n} \rJ� } Rqt������ty/.��2e�re�[U Xvar�5h lea�siLqresE�, �2Howe�wBte� &a��?I Cc�wh�"�!�always 6 t�e) �i%q6pas> through~�c.{p A�I my "� �n!�he6>ia� creaqg*��o)6�>3 = 20�36*0^2+x_2^2))+30m��s�%depic+L�ollow!�ani�c�:��a �s=4e]-k $L_c� rYL_c= \{ �a�):�i =40\k {x_�=i_$\pi{108} \B' Thus, �U�A(%l5�34us $\sqrt{\pi/L $ ceAnrIoo�n�j5��F;�9�\� -1440�F� �n"2%BzO�$y�/) \in !�, v�2= -720\%3}%�6� }-fAD5U� ward� )A $Q~Ew^on� dexE� XBY(F~��Xnp a=np.�#(10�ya) �$uY [0. f]�>)�^ .nda�"B9U� $\verb+a+� �a list  sep�(boconver�^into a��) . If!�2a:n0erval,2"($[1,3]$, 10�.�)��I s. 2Vb!(0linspace(1,3,9/b6P#[1.1.2  1.4  1.6 7 1.8 9 2.1 G 2.3  2.5 6 2.7 8 3h,] ### Inta�Dto Neural Networks��" Pe�,ron To getn&intui�idea abx*:G,%h�con.�pX.:� ��"7 illu-+t]m�as you� just seen��ild��fe��+axk�m�#�ar cl<fie]� G�g "0data Before !6eg�MNIST$ set,�'ll+t2y�>��+�%�o+ "toy"E \�a few_ � �) g6\s J����ly�� ��visualis�th!�ge�l��|complexi� ��Z �$0 StartN load!(�8libraries: `mat� lib`�� ��\�# Loa"; ...V'D.pyN��plt T np %- in!�jA n l�� M�� ��a 2D e�X E�S !�1(A��D. =� r- you'd lik�(&R ees = np"( 0.5,��],�:0 5  2 23 7 1 $1]G(1;7Y'L:h80 P4 Dt5 0 P0 h5Q0.3h4.7 ]�a9VMI%��e9U-�b!�e&%, dispY'.cI�s (� 0`marker='x'`)E.. ircl . 6. o'`). You)�ne< A�� � !�don't�$�/� �`A&0style='none'` N!�obserW0� �-�� �mfsepart� !(M� plt.A�( �[:,!z 1], �,��.�)C �C.CobC$ylim((0, 2� lt.x6"� !�E!u��� } �U � �0id�0�1.b��!]a�v)�t�**new**)V)�retur�et� it belong"M-< (�� 1)3-0). Sokрit!t2`(2a35)�� u`1`!�D�0`"L `out�T`1akA� 2dr `x`W"2d weigh"�`w ha bias `� w��!&�!8step rule: $$ �{ *��\{:4align} 1\,\, & ,if}\l�x, w\r -b \, >\,�# 0( 7swise}Z Z\�.�.�defA'9Kw, b):� innerProd��dot!) � = } if/> b B)" ): � �a�t'enrB�3a (A a�q�A�input��!���*�2�. ��95(�$� � �� �� �+c� spone"t� �s_  O�&aycdoaNt;5 o loop ovm{�4of `XIiae���m,� }b���(� wrote. St �.� �"e!/ t�at. C� Sqm 5O2J/�cex�3�6$try optimi���O by u�,-)o��h#; 4 �!A>J� 2` (& Q @6it lea3�s� Msd"��aF�(X,w,q nI^'�$X.shape[0]}sA�"� 2i.!�i� a� e(0,!>+s[i] =AP}�X[i,:]�w-�Mu Z�22� 4(npe�$X,w)>b).as5float� ## =6�7 1 = 5#)�sh�6copy-pas�.G� !�b �i��s `True`A0're good go'��y&=�1234) X)]r $n(10, 5) wJ 5) bJ)] all(F�!*�� =%�([ 1., 0 B])U�TrJ("�!�]}"�Qes�� eFa meth!����� u-bo�k�%+edaLn4untrain&� a�n!se�pic n�� see, well>�� �*��av��0? **Note**:!�jo� 6 nd-�!�e `�*s`��Ics[ �#oncate�,(� ,K),�,=0)`.)M;maybe�rtb `w=J$1]�� `b=1 )T�n�zJe`. �#i� $r analysisP4�N� _w1�$A!1.] b1. �I����F�(P, { b0� Wo��suggesA7�)�I� (`()!,1)`))�m�Agtha�#  > `aa�]` F�<l�;4not great! NowE��!�-m 9�-0.2`�<doE�� A��K)2!� E5�H)Z �[21[� gi�[di9 �!ire?��s m`.,better (100%FO*!�e�!Y� ). � obtai>se�,� founP{� �hy�/ ** (��' )x"�)��[Is%A�� is $ h' 0.5x! �-4**Quiz** - **C�R expl�wh�is C&" "� >l�used? QIG is� ���<?;4it�ter6�\I�!;�m�8 *� ��!� 0a C������v%x N� abov�d� :a��ed� 15 modi�Cparam�="��%�ttle bD.'.t}fi%�>b�&"�s":�xx �d"�0, 6) yy��$0.5 * xx -; yya0.43 &�x��y1,�6or='red.� 2o�."-D[:�),1S.x'FG,, label='sp12R"F �.RNVR2 Rvctlegend(& # TesELnewmb\� gAy&`��P�"`Wp 'ndj��?happeb� m:�G)����.[�[3.�9��|-�����R%�� Ev� #)l%{�1,!0&�s'U�blue' size=10) ;)b!=.;greenB<;)�;^.vackF;!���6� 2�  #"�, Desq#, (remember?)6Co�a�B"a"d 1%# �Q��"t S24Y�&XD"� A�itsi �+3: exp(m7(x))x^�*$ +-x 6  (x�0 x)-2.4�&Un*&to% I��aGH� ai"� b��)(b-EE4�D&N �%a��< ` U a``1m`a�*�� � exp`, sin co"�)���`x**2`�� squay!5x`B��(xZ-nps (-npq!}*(X)=�>7-x*V:� s)�U�# >a���T�*3�jw2vviz��XY pathi�9�� %�/g)d �2L Use i"s*9�� i�q?��B��.*a?�z59�:[6�aTviz�qa=��b� NF� a, b��0Iqyy 1i(xm3yg� -:* >,7"8  a�7[� ygdm,� �;r=^1 :Ele�S-� LJS�b av!QA"� ��x�)3 �!6x"623 =8a 942U= U %�1) 2 3 4�?�7'#F]G$A�LAuthor: Eros Fabrici�(Allen–Cah&~N4 (after John W� hSam 2�2a�4�!–A�u�+.02+&physicn P ribQCpro�+ of phase �o�$v-�on��2"y$NsM;�6�*� -dis  t?�a2�6� time evolhN scalar-v�4d!tarU2$\MC � dom�H$\Omega=[0,1]$ dur�a ^e�� $[0,T�%��is+,n �one&�; ) by8\'3z}Uu pL2�� flow!�@XGinzburg–Landau free $%gy���%��3U8ly *�.Ka3–Hilli)*� . A"� �of-**5*�+.�ff"�[f5�!�^2-1)^2-�� K(� �/a�Y$0Q< 1$ (�!�$%�{E���)*lo�)max0 K.5$)�)�4�er or%c anJ%�es �a � 8 ke "att!� ors"� �)�ECN4ink!A4a solid-liquid &Y  (0KN`n_ `s,A"�@ `dt = T/). G�uxe��wZ^E� fron)�stiffn�4k#�-n�tiBD,�-a�=�*s�+s $v_i$,&{8!�k-M(^j v_j$ (su �mplied)3�sol (�.oblem� �Ve -s�^jM= .KA52G,}C6eH��a 6�$j$A�!�]&Y��:2.�B�Xe@ �w�ri!�elN��]���YAO�Aa��8, Euler schemSa backF�6�seE �+R �< vati!� erm: �i���)ee et)@+1}Aqst���Z}$0Z�]0�"�Y%�A �b!�-k  _{ij�'M +^�KJ�b2%�61}� {b_i = xI=� _k^j.ef�m^jY, �a�e fiY+� tegKGE\e>,2%���g�0�rp�CM��)� ## S�( 1 W�Ra:fi�r,��i���a��Y ��2e��[�C,m�s�%technC[s2��B�>�.��w�Oi((a �&"=��W �,= )con�'-�zAv'�� `F�"2.���9p�V�_*` ndoff!&de� ` `?polynom1 ������3of ��(piece�*.Cob��t\`PPoly`)BB�:��Ys ory c nU:S �� 3Z4QLa j��.��? J� gauss_ura�C_)g`7�-� of globalF2ZF0!��atQ0sAb�^�a G� ��I mula�`nb�a�eac"|%[ vals�`|!(%�.x)` 4zT!�E*��)"�QL+� c=$M� K$ �P 2 S���-Ca� Ջ��� ,ɛ�#$t=<1$Y�F� . �e'%}\K?mJi�3u2 - `ka�1Z9�K�r���i)`��(, eps, dt, e� z m 1TY+L}`$(int(T/dt) B)` Qa��L coefficu�A� k^i*`J-��� ~tGI ��|to^ X#= ~��1s `eta�:j� str�I-�`a��V�C `rezV �VV �o� 1R__s�L!{2s}$u�dA�]A�isw8dq�O��oneY�3.�� ! comb�UionA���X= [i.001]%IE\,32, 64, 128]�I-VM3 t[.25, .106 3 15625] �')0�0sin(2 \pi x)+�P�"A f�1C� $t=1� �as�T)do%�3? ha#�O#in�Ee �!�� d�&� 2�4 (Op!1al) �-! vQ�1h �H ci"�."� e� �+als�2�nonc � �i�� quir�5�Non��at�C��. ssci�^ndA�py zg' �:{ite� 68%pyla"c7�^syRas p �  .�Z� e67_*> ^ t$ Popu�V�HKweve namee(��nu�n�eta�libw8&N-�1.1�F(eta�"""p&�O!bf"!�+ 2*eta*-1)*(-1�-Jt2 t'e_�_��(�]rt_��,mq �:-a�E0a�*0�6I) BVLR� _ j*0� [ir3bL ��!�_C (splrep:l,B , k=�.))9:�.e� d(bi #-T:&!F2�"5�36LB (J, b�-j-,a'AJ.&� �'re � (bZ +1) qC]d]+1)/2%w� /= # �Sac&�>s)E�n =�* � [0].m#Q\e��O��ere�)�S�_=)��ek)�'$_length = Ah [ .Zgloabl*� $ = array([�Ai+] E*.:Pj:� �)]).rey3((-1,M�M21�*N�r�ډM�B2,� �f 46 �_ I&N6�amn.�-�eM)�&_ (b�2H \>A� asiA.!(�04EN9� [i](B: �N:�6� ]).Tn� �:y>����M = ein�E,'qi, q, qj',=>�.) KZD>��FOR' ZM� M, K^�2�nl_in_c� �=_0�F� �G:%�'''Fo2)i .$��A��C0, u#� �EA+{-��� C��_ Q, W3�E���i*4+�$!6Z�\ f�i@M + (dt*eps**2)*K�� �� 1�  +��t_�Ya�(*d�V � &s)��#:x( :oe"�kg ored|et5� s(hs" �#�"� �1Z�"eta[0, :m kA�t.-� Sa+� �1,ł�M$�7M�8E`k - dt*� _k) �pxlo g.E�(A�<��t.� M�et$asib� 2.2 ��plot_Q��m��'u� �X:�r$�B =1�)��!@:' i\ B[:,� ��X �n_��K8 �:,['t ='+str(rj4((i/(n_t}J�@>�n_tM��%J�1_%�zipc [::-� ], t�!Y�%eta%� B.T)�1 R))�_��1 font�$'x-%O')P#title('*B $�(x,t)$3xi('�rI. e�/� ; #B(choosen def�g")�Mss6 *pi*50 figure(fig�(20,6)) %P%�� �Fx�o=0o%dt�(� =�d�=1) _=%dn�=3.�=1025 �mN& �!�_�ing_eps(�dyg�-#�X&��A�fig =>  7m�Ae:ep2 �3[i]2K �)�sub�3Ji�VF��+1)j(24NQ[xMY>Ym�M�)+'+��[i_<!��=�%�-���1�$�bB$XZ�wC� J�T.����)�E;9<1�2�����% -�� =1�9�. Nd�6�B�1����V�18,28f* ���QW��1�5,3�-�- �%��� ��8 R�t���)�t�e/QJEe��%�[i]����E׍�dZ!�>B&� = 1024 ��[�!�R� ��"3] v[���ν?�� }l%V�a�T'���128�!�>R- T��fU=. U�+m�Ew�&��zo�`OFG becom]� is du�!.f��wz� W| ��\ �� �,j� ����Z =128!_� �nSe�6OJdt I185r>X+@�7bn�U �)i+Nm$dt>0.1$�^A!O6� �@,Z�&�&M!�precisejt*  {T&�?:Q%��8Mic,�) ch d�|�AE5�5; in _� 4=U�Ze!5 exer�D.:,�Ir#F�# �we�2e:�"�$.�$��"_ %+|(b6z%�/%P�m�*ythA� %-eY?%hre�$�! xx+"q4��A�$,j}��-�#k�<$,j}�!&�.0M\__n�Nf�?l 1 .�d�"� #E$ati�d,MlyQha=%�k8roo�K non-�* qq�.�o�k�l�9\( etty� ai#Mf�,8we~J�ch�6x�9in%o� for-K.j_M��Q�I � F�UJ ze.f:b +�M��%�a��/�?- �! 6Q.b _B�&���t���������������Ʒ�R�("1 (lambda x: A�x���Fdt* FM<2�{ k#��r�N�r& ��<w"n&�+L)(�#�JI;9r%+=0.25BF&5Z�AG 1� 1~:�ft{a:  � 2J 9"��*S�")N�2~�%�����6��� A�=ab�/eHn:�)���bnS�.� ��7Model��lSi�&�!�c�] Chapo39�G�, 2017�%L Downey License: [C�/> Comm#At�a�*4.0 Ixnj,al](https://F 8c 7.org/l Vs/by/4.0,pY�CI� Jupy�vBi&W�Z gned�  af$� ssignHZ %coE �� Shell~O_node_�ity='v-_�n _or_ I ' #y!*�foSymPy.�!�!�!*5S>Yp�"+��8. �_%cing() !�6`(ll�h �s t:#���'provid�"��3s:A�<Jg aTeXma:���.���Y�> how(!#,^_=Falsq! """D-�aB�l�!E:B!e Z: boolea H"��ho#3�(���p)[�=AJN %� E�v symbol!' 6�� !s('t'� f� 4&e!e�'s�M>^ >ic�e4a:� � = t���)�a�an `Add`�+� �T"-+�0d �\tQ*(i:�+)= w�`I,core.add.Add`ˉ`�1b#0to replawh6!G~"�+�aA� �ad��=�;ed6r!��s(t �`f�E� al;Y� )_q= & F6^f = Fun�<('f1� �f !}!^ x`Undef�Q<6q#/(f � L=F6 .BG-E� underc'q&s `f(t)`�cs�e�*�3 at `@+�g�?`DVto(�ye:�U-S�"`m1r.`&�%QkBW� >&�-'2�$df!b(r, /|�%5* �j8�&We UtD`alpha6��e�s('1�y an2G��c#%3� apro�'io��growth6[eq�?Eq�, l*� �An�AG/ `!� a� ~by��g`<al%�76oJ_eq�$J(eq�Wee�tell i��aBP�a� i�)61�� un!^ied�,A�t, `C1n-I�:is&�9P�x�p) cular���easy: w��3Q�/ `p_06�C1, p+5�C11�]Hu=w_eq�E J-��A?xt�a!��O8Di"Phar�H�^�. �e=/1� icM)YJ�:c!w!2(r, K)!9�PiIlD�*�wo�-:2oD�Q�r K1(��6^eq�BA�ify�, r * A� * (1 - /K.�E�A�2�Z�2-��tI�, `,�1M�`rh�"�T!?� -h� �1 B6�qP6&rh� m2�gR`�y�02�atE� _Iwt, Qt-�2�g��ϩ>C1`�j`[��(0�a.�. wE [ �eU ` },�)�a� Bei��=is7< &�ic�:ty,� fp�=2,a'A�!�ve` -`�x�9�1 (sa"�41�s. "g�., [q�UtJo1 �Uly�/=&m en.wikipJKj x/Picard%E2%80%93Lindel%C3%B6f_tl em);gt��S� �m{"��!�brack}1rxor, `[0]%1o sel�'P*n:H �I~ve(Eq(!���), C1)�*�!en��� (!6,�&N EV_of_C��M[0]% Mv?hMWne.`,!Q�F�3^afA]/� � d ou:n2�2 ��M � �]D�0�)�* " 6�[tWg���9yB�2�&( �Of�l �@gX�� e ey�! beholder �� '�Iu�g>e�ew� � Ai� Juswx E'�%�����V� =0i��rmo!~A�F=�B��Q��M�: [log�U_Em 5 heir5zceI�iC�!.06DE�if.7 -�mBEft Q��U ;e��:�)�say1�wew z�9e�2�� it�9��bnot��nu=ply�GA�B�tf |ca2 � a���%���at"g netJarClm)r!G'R�� "[O��9r�a�aWcpri�%lyz ��KA;aV%j no&E��8����h��� E|sC` :**� Sf� �N��.�"�Q�  $\f��da�}{d�g ' �b+f^2(t)�\ٸ#�� � ,�7F� � Z@eq/MF� ��  +H 9,I ^O�0:j 3v6������ "n rm�2�vL Z6�r^�o�&Z\p&� =z�+.qL(-%*2vo7 [WolframA��kwww.w %�.com/)a�I�A�B�m�@eieuor�C��#Na6e :J E� /�8=I#Q�I�(t0K orJ/r +. ���TQ1�� �8�9.!��`6 =�  ` #F�rS����WI3Kto�d! �b� aCl��_�j�"�u?�!�e.# U�a )e'Tu��/ (CAS��uckily���py"v��� W�! tool�pe ��ic ms��+�n helpF.�"G tg���} $�= startedRq%\u�TyW�P �6 #*�"3 a ut+�&NAw��2owZ D@ np%�2qJpM&�9 B&�q.6�q%�qH�I���)e*�*:�use�=^hm��fE I 8�PA e�<so�0izd %�,fac!>i��%K ze \�$j1a!NJ %zbe obO$s sooE#�#�!�alread�Lgu�[it� Ra�t�#- xLaKB, II�`LjXb�uy�f)[ǎ$ua�q{ mani�;_ "�to /{omqe<bA�in!�heۂ\J&< s. UnRvaPRSpv_R�c �dI"uctures�?eGmm&%I�#� O9d6�=YhanRA�#�Ks=t>%im:�Ěk!b1E�[ �s(�-F�i�.$@&�����xM�=U�N �M�D9`�u, #��u #Mb�Jd�Ev! yZv,ET�s �OR�!/E�,` �br3�A�E M� A�"� B�4!p_�:fOlj�t!n�*��T*�x �'()`"� 6� dydY3y.� Nv!)+�eQZ� QF�)3;��d!�I%i��n%`!���Ripowe-*libgs�0�fY s��R��.C,(�M^HҖKaye7coMz l ovA�heIp"~HMo���an�qa!�Ua1da�byѥ�N5*_��_�%]A.m!ϛ� n�a.�x_�<2K_2N`pi,101) y+aw�\!�YIAEPYVc�(c��i# A9�K`U M�+ a��Ta�eve��ST"!  �u��"L,5��p^�KT2�GS�1 in xg &֜BA E R� varsitytu�^E hot_�/topics/1(U%$�, �:a��(�. # Ho.�ct�Wo�$m� �2�)7�N#�*x-axis� a fig.add_*Z.�d p(ax.spines['4'].set_p��('Koer�=-bottom�/" .color(��B�topn'x��ticks� �Qyb*� (!J�-1/#c + c),  $#%[y-P=[;y��n; Draw-�� p_q�a6Iaxh!�(vvc)I!� 'CQ�G�'!� }�Qvfw.�c ar(mD*�A u[a�&�)m�El ��4Qa�FB� �!p��nt"��7..�+IR8 is x=�8F= yB�, m2bGnd�4>s0 y�.�]e�~Pb(c& !=s� `psf�ar�d� �*b 5Ts!(B6meU�be��a y���m(x - x1� ��SyF;= mx+b��LJ �ȁ�sisfun��f$/ �- s.html٤#A��� bN 5,5,1�h #9E$loc='upper9Bgr� rm`�,�� 1 �� =�y, �e�#EJ �!) 12 ͌�ve(1v ( y, 0%> !� *�C0G(4? pN= �F*�4),3�pX (f"Sa : {m}"� Y-I=2a:�� {b})2"X."��~�`({�}�".�I�(5,|(���ywy�8��+ y���f�-{y1}��(x-{x1})�{��������̣1)+y1�g���2y1��y�fp 5, 2B� J tic�q� d �+�� +"�6p"�] �de"a2,�mply aU�h2�]��qf� or�v�� ��_hƪst- m���e P� b�큼� `vt2N� !5"� MNy ax^2�$x= �$^tB� a�:h)Ak<���� �"� >� YI�XgBX + C}a�0�7�"a�noOu 0��B6,6�  S~1�M6 �%w^2 her�a*l{!+*%, eaF b�#(2 * a�|a * ** C+ c �seUhe ax� ��Rt~$*�:j"+�>-u��+n'fax�ax�if c <�a M lt�-�+)� ), * -'MMZC-1V7el9> �c <= 999>F-5,c+c+5� 4==U���.$>bI0�\500B�0,c*1� �A�220,20i {>=I� W20�XXJ1>������#re q�a3 else U numL��= �] �Xe� >ba�Bc V X�  � <1�=AU*�*�maxa * 5�w6E��"C,�.�{a}x^2�x+{c}e�/� QuadT`c*�##=%`� "�&@�_,f"Vertex: ({��/��}, {v} 3F� c"� ��>}�� �� �� #)2'ASif� a�2I� )f6�"a0a, 1 �݅6�3 hWqi 2�E W".����C 5, 4.�.�a, h, k.�IY �)� Nu�6�� �� �� �� �� �� �� z� 2 2 �� )h�N>� h-5,s hi/"�ekf9k*P�k*C�F~�C>d&' � �**� Љ�ڒ� � �� �� �� �� �� )�%�t =�p"��M�ck), k6� %�� @J�U@*3���/V% * ՝- .0� k^� ck*34 #BKFn k��B�6� k� ���� B5 0,k* �R�0� =.� �� RY�B�1^YKт5���K� �� h�B� k �� �� ^� �} � "� $ (R� �h})� k�� Qn� �h,3� k- "�F� +a*(0-h�$+6�� �E + k�� � F� V J �Y � = J�� try�~  8�_J, 3 /ex�; X)!*�( �( �( . �P6N�cub&�, d:) ��0�/ .U��*�B�� =ax^3+b� cx+d �4.o*�p�7, cKdIU real� beCI^6� x�.s '�!s,a)a ≠ 0+�4 word�a9�y2Fq��d� thre��pal%r:��!!|"�!�iTa6:逊Fa�>I"Gd�U��I�B.20�%w1!zyҔ**3{ �c �j O�>�>�>�>�>>1ˆ�bd e&md)�if� > -c$-b d ���b*5,-b"�� -c-b 9 J9c9c:9d9 r "â&�d9d 9p*� �1-,21� 16�V�4,-c*4 &s . d%d % �"N�N'� � �if�c�d!�c �.rF�9 d^� d*3.!3.s �.�X, 2"�22$� b 3, �i&� trigsin(z:)I�8&c � ,on*�| �E �Y� !1aW{2MdU !*XoC(wo/M�7�� f�, *�'sine-co��:B_ np.pi, �'����:c !4x) *�z�p.f � y/�=>_X���s �s �s <-*�����F�zٟ�* z*�-= &; % ,%J- 2��Hb6�)$z}sin({b}x>�$'S���,A b�)I|6A{o 22�2a�s��>i�>��������t��j�!Om�)��n!�n!�n!����������!�R�C�F��V�u2 Q���ta������������!M��������������b�!�R�T~hnt��V�v�*>y��*�*, d, �`H2J�*/"e ��{4}�8{3}+cx^{2}+dx+ed�aEnonl'*� "F�A2d"وY�r,vKoS�*�&h!rb�Khowto.):>] s-of&I�)T/-w aj�� B�)�Ib{-18bZ-2:'> b,-b� - <3 �B//�# 5� p<= �o>= �nu Z� >m*4&��d�*e X������A��&�� �� f� !�p;:v.i)8�8UI�5Y(MgY � � ifA� / >= -M�0b*3�JW-9 c> -16c"Jb*-A�*-b2j�68= -27N9 p-b:s0.p35R=�"�� = -31z12B�*ey- B�2�2�� �E� negah�=ra-���B�>�>.�+>�!+,:/> 1�< ���b1��b��>= 5�<= ����1 <= R�!Y/2!� .����e!e.�5�6�"e&Y�#e*2,e ,%�e�#> � -B05�����ƒA��w����Z�e7=p5,PJ+��*B],4�3_,�d�e>�j,-"� [b��n9e�9�1) ��:�B�B^Bv 2K,�,,V�r�5A"�iJ�% 1˅» , 5, -150FO inBO , f: "2�52"&  Z "g(x "{5R 4R 3R Y ex+fpqX >�� �+f"���� eld,�HP� ��g"zk�! hcP`ex� :"iR[� F?"� F��� iv;^p5F� q i"� -& �� �� �� �� �� �� 5&� ��� � dZ6e� f�+6���6�6�6�6�6�� 1J� ��"�"�Q�Q.Q:gf�^} ,��� � � !:!Rn=5=4=3+=�eDf}"D�4'Q���Df�D����M�M�M�M�M��J4, cS0,F}4sexNK, g.NA (^A2V S."*�jeX"��Ki�D>P 7�s���}��toH$���H�}�+4y�� ހ^�an"�ral � 8�K ��um/V.I>&NV�:��Fh� T"=�2�2�2�2� elif b >= 30: x = np.linspace(b/2, -b�100) # the function, which is y = x^2 here ,a * x**6 + b 5 + c 44 + d*x**3 + e (2 + f*x + g jsettingraxes at centeTfig = plt.figure() a�Hfig.add_subplot(1,  \.spines['left'].set_posi�('^er':+bottomB- zero>+ righW(color('none>'top OJ%xaxis�ticks� � �yb(�%�4numList = []  .append(aJ #bJcJdJeJfJgTfor i in range(0, len( �))I�if�[i] < M��= -1 *(ABAylim((max[ * 5,B)%07E5��) #���LogZ�y�m�4,;-e�>�absValq�.�An$olute valu}� is a"B iPcontains an algebraicar0ression withiBS� . A^=0varsitytutorse@hotaR8_help/topics/ab �-�-qfs�VrVMd��A���v�V��ɾhJK5 *2�,.�*5�gƂ abs(b + x�^cA*�2��TiTAM; VE�Z�y`m=1, -5, 1�|X # The Process Not everytimea?�ve a sit�ww  $A� ,b$ has exact�u s , su� � c��8when we are tryl To find a best fit lineEX�set�) datapoint\ �$is no dire{<,it , insteads in search"�tpossible�.So;of��e� ions?�,_can�hj�Y8$b$ vector ontocolumn � X$A$ satCger Z�!����j X $A^TA\hat{X} = A^Tb$ ,]s uyVX�-� look�a�o�be + ied}, $n(})^{-1} y understan%;all this�X�u0example would��A8tter idea. LetE!�6�E(k ing/fi�trough $(1,1),(2,2) ,(3,2)$ ta�L58to�ofform $\m,c$ \begin{1}Xpmatrix} 1 & 1 \\ 2 & 2 3  \end' B8m+c6& =B' [`:,`�Wa�noU(,so our5�$a5r bylD ���^{TJ��I�R��Z^~!2))�:7] on!3vA�!s1 f�m}b c} \ \jF�$\frac{1}{2 9 2}{3F=:�Th.�Q�eis�n!�$� Xgx+ e $ Ta���p��$is done byebelow S(python fxn.p  importKpy as nppandaspd fromG � lib 7py$lt٤ \� 0LeastSquares(���A� b #Extrac"�A,bx rix �a�!���O T���p� � A�[1,p[0]]� bp[1�$np.array(A -�� h� - z 2#��A��Dparameters m and c��ynp� mul(2 $linalg.inv0A.T,A)),A.T), �#drawh.Qb inp_ɬ=j"� �,[:,0].min(),2 ax(); 0 �oug (M$)*x[1]+x[0 & " ,out per�icue�0negative ->opADte��@$ (angle > u+s)e�� lso a way�Hmap�i=(a different>8(e.g. lower/higdimen�al). For� md F�a� a 2d cq a 1de�..a�jNa shorth}�M y a bi&Hponse: $A \bullet B� B^T$2�Z�1, 4: 9, 16YT�� pose Rows�Home[�d vice �0a. If $A=A^T$!n A�(**symmetric��E�at !�:�a.TRR 1, 3:���D� minant If��e �AM,�I��called�ingA]**. I&A���x-�sU�ly deA�A1!��]!a�ofMLis re! d. NQ�d�"� woru!2E  ted I�flipped)�9��n.f�s howEpDape's size will ch�.2Jdet(a� ams ��increas�rea� fold)�## InA -sces Non-1m)X�5$(det != 0)%] �*A��=I$%ere $I[ani!z!e-�(��)2�inv(aV $-2. , 1. :Z$ 1.5, -0.5M`�� .l \) #sh{g��J� , buqr�saKquantiz��errord��2I1.0 e+00, 0.:� 8.8817842� , 2: �## Rank �max6 A'lineaA�inY�ra�oru�i�)n2e# ? E-26"� [e� ) #1E`. 5� 1�30,2]]��## Echel20orm Numericalgaonot��y suitaz�W� ��Z !�m�� ec. S�icc� py m!� "[� A�. } ://� -discu�<.10968.n7.nabble�R�#-row- -�-td16486 Sdocs.� ,.org/0.7.5/tialC raa 4A`M�� � %� �� , � !k A.rre��## Cross"In 3D� , c.AQ� # , v1�/ v2, yield�Bd #�:is6��4!�two��r�J 7isI u�byo stru&�.�%�O�6 E$(W i},  j k})$Q�v m ��" secoand�rd�pec�ly. ��s B�!U-� v1 =5�$1,2,4]) v2<3,2,5]) i,j,k =Av� $('i j k') )3[i,v1�v2Q,[j1]1]],[k22]]]).��) �t  [ X![(i�j�k,0)]),�ul"�j(v"(k,1)])]! AaEigenvgs & � s G�a a�;�y�i\(re exists a5�\vec{v}$%�a a�lambda$C�: !� 0 = #\Ra�arrow F& IN( (A -H I)#= 02O$ $$!�6/($$NeDl&G-( of $ �~ at satisfcW�Z�e9f. EachD thes7aUrrek d�� r_ =)� 5Y�1'won'tFSir�! n afoa~"� )�e�9�.LEbasis** !����28n \� new ?Ms+ at ��Qa�2d)%�% .�. Aj�r`"� :����$A'�7�guarante &t (be diagonal6y #eig.3� ����.m�m. � als(�iI0:Aic` icity .ects(� =ue,��:4'en3�## Null!�ce�!non-fX)(ce�#is��!V-� H��� ��to7�a.;$�G word>W paceA�� B|s~eq+s (�iH �TQdet=0 &�< �)��Frobeniu6rmal AE!)�jivalencecongruS� )� dec2�F$youtub?Lwatch?v=P5mlg91as1c cPCASVDJacobian)�x m%M�v,artial derivw%9$a $ R^n \l��R^m $""M '$m$�;s -�N� e�zutput I ) vari� and $n$� B8in7*� 9-us `  � gradV �!��X� &� �"� 1hv��,-at-risk.net"�%s/2 ��Conjug��1� N (H�t!�+)�a1��*A lex *,Mis obc#ed �*~ML�-�!\/-]c�of)Fo y: $ A^*� over3 {A^T}���xFA-x,element-wise&� : $a + ib2a - ib� # S+ i9*es� �prtie(Similar Two�lPa �$B$��s 02 $B=PdP$P`&�. a4D��izA�Ne� A� y�iu�if:7 *A=AA^*$7rea�����s0T0�# Unitar1P A **1u }��u 0if itN�is��al�U9�Y/: $А^{* � \�A�=I$ �e & ,A`�o�o��� {T}=Fa �a>�"aeuclida9nT (lengthm;�T x dur��S?:9 Vert x \r �  A:� np.!/(a)��0, dtype=int32��( :J2� 0.5,�.wa.TV�5�1.5:�R���41,2],[3,4],[5,xx,x.T�ze��6/�07>�!5, 39>7, 6uOX-#  2-V#� ompu�,�eM&Z, - Mock� ivida worka is jupy� notebooka�_ s qu���$' � resemX�Y!in�rVi� 4Important** Don deletI� cell� zing� ��8BEGIN SOLUTION END) wry�""�attemp� those h �f-&$8like to** submi���)�C'�nam�\56f� <`main` to: ``��$,�� � '�0is `c1234567`on*\ V{to3. - W%  bo9':e c� ct lo]s; - Sav � � (`File> As`)&Fol�!A '�A*nA$class/emai�u)X�X ## QMZ 1 O J&0u% �fg��ex�(ba. \\(�"4(9a^2bc^4) ^ { �"}}{6ab^ 3!#}c}\\ax&'�:kn� sym �/�.!("a")%b>c�1sym.ex�"((9 *�1 * 2 * b *N5 * 4)?.()S(1) / 2(6 .)*323c))�FD $\displaystyle )\sqrt{a^-$b c^{4!'2�6) c}�b%j(2>\ +�^ 2 - 5%f�d�1 S(��1f%-g 5)��6�3 �) 1}{8}]544%�� ��8.�4�3���16)nA�u%2 m�"h  `)4�"=;"�*&�!al}8 retur�h4A�ed$6�def and(y)-#�:/� """Tak�+A@� � s it�2 7 �aiQ9�#xF�503��"� \\(D\\)�Y��by�b)T' 1d)& a\\ g)e(0\\ 17'.T�,4\\(a\ne 2\\). ��Creat!Y  `D` (8 ��� xC�6�:c5 e&%X�x �j(o 2, a�3�00 �� ]^�b.R�_inv`� �+ � f��I = D?&^� c. U� `0 ` **0**%0��B!J�: \\[o)� }{r}E��+02y + 4z = 3\\3�+4  + %1\�) J \\]2� J��'2�3!�4� �,y(- @ b){a: 4}^,J�+:[M�I[}�\7��\\-3\\ 5F,(�]��uO 4 DL a g�frisbee"!a �lere�� dog  choo8toCdomly seO& the�row uEa backW fore: 25%1�^ ;?t@: . B%M0 !h���a�&���#��cfT%��>&� probabili�- 806�w�i��nB� - 9�51 �lFs�!_exper�!t()�(simulat�� �%��{�!R!��  (p+ stM��`"1�"`!�`"�"`)QwheK1�wa  ught P(boolean: ei$`True HFalse`: � raA8 ŚJ�ɛфR�� ��R��=a:}��if �. �() < .25 z j= 9 9Y)y_of_IT = .8" elseJG5W%^G9"c)y=J�NJ4�2fRI" �, WA �;��1,000-�s .!: NvFan m>�at:q�q�be& �G� !�repetb4-1_000 )� .seed(0) Il#[ 2^�J� ?Rh)] ��Q sum( is aYEQ!pt�4n1Zc R`��2�!�Z!I abov�B�:�Q~(_given_drop��-��9�t�ޕ�at�9� ��)�s_��� = [(j-A)�.!� 8a�5���]]+�A�@ 1i��%��=94um � == y�n�d /=��V�9 y7Exerc~2F? to�u root�6= �@�>�_alignL axF + bxD = 0.b2 #Y�:�%�5�5V(�enoZ5�dap�>s8�; a userz"acc� alHt $a=0$,��$b e�>$a=. .�(�3, b\neq </>� D)r��@cr�)�,-=aY= ��,arN. h'is up�$*on �&to# A~ � d[-c/b]%(6b (-b+%uEj\(b*b-4*a*c))/(2*a), (-b-n"]�!�6� TV=1 %� =.�h, 1) . a� � ��)(s�h(are) %s.' %', '.join([str(&� �s")�RN(CL+0.8660254037844386j� 0.5-NA��M� �2Z�FB����1+0 � V�3�����4N�,, 0�x�xu��KE���*ei65Z��6�6�zy�Rc -1.0Vu6Z�;5������ $= K-MTICluster� algo�I * *W� s c"?* !/K-m?4is� marize7:� * Se"�ofO s, M%} * In'#l�0 m �Nc< Quntil�in>*� mall��* FOR 71��N p*"_2e�cl�t�res�4D($\Theta_j$,�$\�bf{x}_i$>T��G,xC�& $i$�$j3 �j = �-* Upd1re.��Y� !�!d �;� )� ��5�obyC.%"� �1� >6#iJ�?J()+, U�*,\sum_{i=1}^N j m u_{ij}�\| .PW+t)o �\|^�@e� } �$ G( \in \{0,1\,is '1'�$j�)dex�%d�z*�-assigy%to2�.�S$` �(%�&!� �"�D,%$j^{th}$1K:�.aoHow�� optimaE$F�?a� a\$he5�y�t E *globFVal*&f(i.e.�#-�q{� )} $!Kmin�eJ� )? v�f anC sump s2�s�4?E&.eMZ*� $an unknown� �M2]�6up ,�ategyEC0Ehe ``''JJ���f� mat�A lib.6�A8!skl0N @�N  cipyspa�) %R in1 K��(X, C)�� MaxI�"=�T00;��(StopThresh e-5; #�r� Cent*Aby �@$ly ��)� (=� e SwQ�Gi��j...�N� �X.%�[0] #� of ]��Ud-20 1] #6�7)rp'Ynp�.permu�(N); # ��2t ~ s 1:� �zD = X[rp[0:C],:]; #��)M.� so�7acc�=g�?rp)l�:�= 1e11�i-�= -�while((->=�) & (.<1��Q#A�� ����qE:2(zEu`'ean dihHce)�D%FM�. .c Au-1L1np.arg�BD, axis=�V %�#:� M PreI .copy(q��i�q 6[i,:] ?� (X[Lh �%X �%�&%�E�kntsstopp�2c}$ria�5=!?D�(( ��-��%�=+1K� 8, L� 2�n_�AN500 n_-�3 # M�HBlob Data X, y_blob!a��w.�| (S= ) #� � =�{w,Plot R�5s p&�Xfig�:=(1K�>s�X 221) c�&r(X[:,� 1], c= � )ti�V"��CLabels" $^2 j^L # X �ed%?QF� # Anisotr�P,<istribu�6!^ #5's�9 T$://scikit-� �7s�8/auto_3/-�/�N_kA�s_a�#�75�b  gene�� �,1I�8= [[ 0.60834549;6366734!yd[-0.40887718, 0.85253229]]EQ =U�KXido�>6�A= �Q�n! .ANM[�kAk2  Data<�dZdm05'�"�~�\�@v�n".�����,-�_std=�<]B5A�8�������-��4!��!5�Un���d �t��~�)q_(vstack((X[y��0][:50% 1][:1.2iA np.h Bed}6�  onlyxJd/�(�BMor "gr�a truth":)!�A�Exter� i{*A1+-�!�aJ�m%�(�sHup.M*�!��T�bEcaX1�to>��a�8(YB($!�!e9t�*!�(al� �=_<�K.L�:n a%#�ac^Dara�S%�qs"�s� AnQ�! ;'2_`!�R�%qa59-Ax<%�b�Y��Y(\{x_1, \ldok"x_nP�D��4F*�8",X}�-� , $C�/{C.e C_r\l;a`�2D�L$r$#s,!% $/\{D.QD_s�Qs6Qdef<\!E"�+: * $KC(� pairM%<��$X�BAUH same5!�in $C;ZD$ob$�zop� qY�fe �C$ %,inZ! vc�v���rd�rs��!�>zDnD} 0, $R$, is: $RA�f]Y a+b}(+c+d}$ Intu�& ly, �=b$�lconside��MZ$!e�R�R7`P!�a�$DI$c + d$F<disv?mnumera&^�_R~r� denoIN0total6I�(|=2�)��:� �����ind��I֙��#Pon�4�.!� *��*Zi�?is��Q�N��s�� ����c* M+�? ��eg*g�(�����in-�s.1���;-%�;R�, A=8�Hdn&be �%�QMoJ.large.�W*� �E��,.�!'ADunn'��de�:?_$C_i$���D�>s. b_$xM�y )ny�-�j�0�9al fe� <W�e��w]J\Delta_�< \text{max}_{x,y�C_i} d�k)$ cal�vtmaximumA�t7��� �\dd (C_i,C_j)��%���D� ,>�s �%� $C_j�*�VG��:.f}�way�2� � minu2�Q1w��O/�or, al%�tiv���F4m� . �X abov&;)\+�1�c EN i�D0eEU IASt G� s�md aN3��it{D}_H�� \unbet{!a8leqslant i < j m}{M in}}ft.:�I.}bUk8 aQaxQI�kJ$ LiS>hAYteB+2s!O� | 4a-79�M+ . ,Dm���� 2 \dź$1}{|C_i| ( - 1)} {� a3 �n) A�B-y}u?>>.U"all�&E� �._L-!e��\5�x{} �w \mu) �$} , \mu = �=x6�2�U��ll%km�!{ہp, �:�fMe+ Relax��MUo> �5te0a@ Ryan Soklaski #�DA�taa!Fixed-Pxf:Jn �]�o"q" $f(x�Os sai� �,a "�m-�"&� JN�G $x_{*}$=g�AZ�" ={1� f$1Xs8to- 1 uny w-�' �we -�"Ai:� !(S$S:6<&o#�iu \\\x 0 @ = -0.61803...,\;la161Y W�<d�A�A� [qua /�ula@_�I,en.wikipediaB/Q1�21)�Q� ]H� �5Da�C� )�6r�EA �E^Htantamo0�i=�$CE�8 6 ��${!ecmh�.ne Jg%��Ur�jm%�un�vq'cP atF �-s�Gy�`5$x�H�I, n�8"� ۥl amen/�2�#"�mmanipj9� ej�hrevA0�:Yb:T31;} \sin{x�HIRe^- EdB(S�= �thus $ as *Z cend�'l*-. How~ n#5na e!j.��(�ay!N�-s�5z? �.%qe�e�V�t,�kr�L %9�� towar�Q�Een�;#alF�Su*])�now MMP�?X N�,�� eF��ows=j>uess"6�5+�t�1�` �$rove upo is F�)�&�� rriv t�S��%�uffic�Mly �"�!Gtru�3�Y�� Specif4X��7o�Gb* �_S f$'s.  H0���!�gB"X �by)�y feee��y0}�$f$)v ��?A��2 u�)d M w1}$: F$ x_{1a"f(x_{0})BY 3a!d�Fm)vE=�.�4to�� N�� next A. Repea� Wp�h� �>e rX`eecuI - � �� |H�SZ�J+>�l_��=)1}3512 .. E\Gnn-4��_\0x)BlᬵAl坅G���u��i�Stanh{5xAa=ma�>�0.5$.F�$-0.9866143�0.5 �99896MXf( '. 9091 91~!2 !4A�l}�2�.U(�7�Rimal-pla�NhR reci)+Vf��(ons! �=Cavea��VB' %z��N�l�T��J/�J a_$letely rob�a�� � !���)�s8g �DuqeK���pot�cQ+E�j.t@�(qDIt�6f+Jif��K d�+not�.�.:�blso�\m��potq�*2Gg9veO�& �. Add��!<�Ute� q؁M"b�J up"  lead�_�r -gro�JoS<�1*a@d" stng=is6��hF�to!Vstu�M oop�bd%uA.-%$x^�I1$��aNp x_{o�ax�8[C Vatk�!tu!,D)E>dly ��1-1/{ .�cBe aw�U (se pitfalls� ňDt�?ngfr code -�y%�dx � issu" B.�gA:a�Epto�VbadW� � ne�zot�8ry�ut�*Q1ng%8)Zo?Ũ�. C% �"r�Wpatholog�mU�s/�x�ar�9caA.cege\hom�O��$Problem #1"�=�-m�u=0 acceOthE<a.<: -X�2�Z4aM��E.put)Y�)�8flo����Z>[a�U�.�TuEo�I  w %� A:m�o�$n$o�, ^9 ��c ea�]<1 !�&�= O �aZ�m�$n+1$ �s:2�� )$i1�a�"( &QB�A�So-��On��W�+J 9�mI�+ld61�:*��c� `q�~;(x+/ � (5*xrS��� L]aE��n,3u�:E�Be �k=�if"JP�;�pe)�52�-�W !#f")P!�.�>>>�_i#(f, xo=-y" um_it=5) �)5, �5(29815143031 [$0032332682S0997232 217045612\q$2171522284`T�y%``9a �`5O1!� `f(xo�GoY%F -g� 6}��,a�%:�!uYi�sokp UsIP"��VmI�XW����� ��2(�=B�1(A#!�,a`_itM�""" P)�";q�F�<&� �`U`&�n���6� `xo`B� ���7� �uX0%`I3` steps�N!P�&�/-&� : Calc?[[�J],�R�=U80Rw�T�)��/fq!� xo : OvN1 "E#"�: � :�B<�a�9�-UC3m�QE�I-�- Ae�uB�I� ^�qu�j�es�����v�M^.A��s� �uxo�)curjBxo4�0 �2 i !=!5 _it: 3!�( I sc6i += 1E�� .��2u # ru�A��AB rR�d�A�bwsi_r..9���8 '1 (B*1�9�F�H y����:� x**2�7ű4��!?=rD ALL TESTS PASSED!z1=UY� s#X�V���<: bwb8e4b8ae3afecb32279a3941952049fff73d1181e93d77b45f39506c �r����p". 2 OO ur�o �m49�m�VquWY crud�Q wE s1pO�OV� .it� m�L�y~a�I�A�s�we� convergP% .Y:� b�>6if@cc h� !�"5%�3&"9�� |"�% }A�� s%c��w�zotxu#�i��Z �1eD �&��mo_=c��!�u}=��loo0t8-r 8� ��b n-2},�� }$ �se6Mif *� 8.<rQ*o�G_ne")�th�fNG69-2H Skip6a�m*Rcm�!�&� � ul N  upper-b��&N0I)1x}Z)e>�N�\epsilon�= \lvertP(x_n -1')^2}{2 �2 }}\r:B "� �previoua | 1�w�$1.sJE>$1.638 plugI|�h�&!;& 1; %>\o )>h �P9.06�isA��w T��80%W�$3H%>g . To�vA�div� -by->���:g$FlAZ0.0Vkpa7{oeg< `1e-14`. Armedi�IA9,e�an�w�8 ab��u��-Pca�"�#a toler�!rF_��6c�! &�a� rmsb�BX�s ���� t� r����¦.:%�,\os'��d � inB��e.�q9\�gR 5¡�<itV8MVu�$:"E�ebu�E�B%1�A�s��� Y �or�(& cm�d�~cluD*o ()�$ches/excee��V. LM"laʆM9,a+ � a"$  xpes2��J�60be�P e!ass|�q�``!R� 2*� toli}x�� �� �� �� �� �� *� tolRA�e�I�i}+,A2'e|ss���p \�$.���U&mEZbnma&� �esg.�g�o2� E���V ing)ao�>M��28�I�k42j^m}i�2Ii� �93�����S�%->�^22F�%��exp(-x)�Cv��:��7ab135590053bf38cdb655fff9447e2553dfc315e04ed295c498190����Aa� .`8Bp �!&�B H �f0a4l�8 rick)<� ��"J#� �re{�ure���)�(&��@�q�d�Ɓ�M�e' wrotFuse ord� p�v� 8�xnphysic�� d�v��Ko�-work 49, � � a�r�enjoy! lik hel[ bar-magne�{ 6 spec�) kind!me�JY �[ 9 ic f{� pushB p!uon_1 (s. �& y:al!�"�&a fo ,�i* icz pe!q��j@y*a�d behavi!�m!V!��br�jb_}p�* ato��&�,� n�0 *ˆ�]� a�/��B Kral q!Y9 a�n�a=9 )�'g ,Z��K2IrjostlK �Q� [,-urb�w�IE�!�5n�us weake"LA5�)�m�� rial"� �/�A�escribe e! tist,5��-.f�w-'s�*� �� &� �str#qT]�~K, $M$,�<cM5ne6< , $T�.�JRiG!8�a�NpMemu�$h(JM}{k_{B}T}FD%�*\mu�&$J$E�i�al�sH+s�tG:t$e�fAMy'=4" s2esai� $k_B6_!�&m/s--�me5�ic�#f $���!1�a�co%.t�SyQ* o�$�-$ake, we'llE*���1,�AD�i�he essEx!��`%!a�npus+1�7+ �I @ou��E��xome�SF�&�.�M}{N�<�$6 �Q!  pick"�)�Ewere.fi)�A�sho�T�-�*$$M$. By va�Ew6s! 6��!�x�:}u5�0 hoI+�)!'s:L�?>F . I���7pa8"!v�2�"U'/�����,P!��).� !U�cj)�. Ult�ly�#+'lA�em� Z�^cMq"=S6c�s.!�L$M$ vs!�a� 32%�.e)UE�!�^. �2� #��6� -j6)eI��y!��!!� N�Q# `�s`A� 1000�t ly-sz|d �e�in V��u 4 = &�i��X~!F) mag"[] �T�>6` � #.�"6`N �2 /A�^ �Me�� �$� mag_@(m,&=T)�W��0o�dm /%) emp > 0.�  1�Y#";!}�E!�ute M1*an*K#!� 1e-6 Pmag =G�2(���,1��00)[-1:!U7 ma�p7�"�h2H��m�d: {}".bat(�Q)��!�I!��;&;�I�# [O MaJTQ�&T.6mT%� �v fig�P�s�Os() ax\�!�s�gsgrid(�Ls�y1<("M� �N"x r"$T$XO24Ǚ`");!2nx!h S3d����=high �m �ea� �.�.��)in"�'.H gKh�U an 1P�ac� {s,9ce�� al~7�wo�.�$1lcHo� o5a�.�c>l��$T�9 1 (ݙ sudde�DQ���B " e� s�"a�fur�:.d4w1US� ! $TgPC *pha���R,*O,����i�}�w�H�ezi�x'sw  moleculF0 rapif+6>a���rys 1+++�)$0-celsi �*low. >~���E*^[.q ��5`be  �F? �Nd�Z��D*et15" &� .�,b� $T=1�� w1�Z no-joke( " ��7p�M�kT �� (!  zkd &U�E&� �."� Q�,IMan&q�#�^I=�*2A�m2M�c IK+�ramMGrA ! .�#�,�E�e&,y�#s.Ԗ* �_� (ing(use_uni��=��>4�Sy`('x') y,s�us('y,z'�#;�f = F�('fZ"�# + y*4�z�#>~�(f b�vJ52�pF3 29  D wz 6>�b- 3Į2F�^a a- 3⋅k26c# "�Ifa��� (of&� say x=1.0���s(x,1.0.�:^�.36.2:q�6�!(6)/�B�� !'─�)%� )Z߰�!2�#Rf�8 `�s gfyUE�M�#a.�� 4-(+2)**3*(x-372pN� � 3�( <3) ⋅(E):uyV��ing�f�6�B���(f,�-.�L (�� AgNAA+w1B}y= >R-1y}�,⎡ 1 √a/ⅈ!C6⎤%H ⎢-A: U@,  +⎥ 5�. ⎦B@� valu� r�&(erals y[0].a�""��MIy[1f� z� y� -zN=�h -VX2�h9�!�#+b#2�#��8��R]Lof � s x,:� x y N�eq}< Eq(x+y+z,.B�-� eq.*0�j + z,�g2�eq�7@Eq(2*x-y-z,10) eq�7��+2*z,5-=lIb [eq1, eq2 3],[�] / �AL����We$��2�olvaU�#-m�ry& K�5, �1! r)� }z߀"�es`SymPy T�oS�, wZrst"��`it���/6��/g,ficN�vK �:)ZR��j|T ialiApretty %�ing:) Hs C�� X comm�E:]s �s�qiKA b^� er window2� �a�\#�]ss-��dap-c� eV�� t g]� n unforc��!�l�RxK -of-Pqdo?�Zh�e $$ mpFd Ay}{dx ���� k2X0|y$k$ ()@ stiff�Q)6� ���I()�c,�ek8 t, m, lmbda, k�t s("t m lH� k")#Y"� "y �No�Uwe mi!��.� as `_`i7` W`aB tec��rin  Next%A=;"�N.� �E�ab0 cree�Eueq)Eq(m*D"��((y(t), t, tr��Jk* ,0) di� (eqn�� CE� !{�j�� ODEq��("e�>$ is2� ode_$e, {2�fE� a�A)Sif�|�F�Pr"S� aճ*H_odF�n2�jC('nth_li��_] _E�_homo97,ous', '2nd_p��_series� inar6� we�as� I1Exձ* k,"� .8,m9s���)�o e `de�`y@�(Z�1ށ ==�U+ �3"�=��33Ë�i+/�z&�p�1Vs�A�le�I$k ,V�"W1��x$s heavily K9rel�H# M%��B�/'+ee u~rh�/�>�b��/!�r�J"o�@lex �F%�jL�u2rsE.��<��>^���$ xpo�>5�Minusoid�N���typ��V!�]ODE{ ## SIZV�U�`@a�ElNK$ MF�2:� - 3 A{͐.JI#ݘ�ap�2 �<6mco��tD�-%B:_E�G!�!^R�.6<m�jx" ��2�x),  �26�)�*y R�S t!�&,��y� y�}�� w��\SQ�Q�!K��Ž!jy -�M p!"�HtwqXM�B�>c{mz�!�CEe^{m��C_D.2} x}�� |��<�+N2r�x�,\emph{charac(}�� A> ͉ !��'$�Uis &�J1$��K#,�x!Yi�t�Z=�9� � ?#i�Zy ���:*>F|Q�"�2*  -3� dB��h��a�vWe��)IU.�!k7A��ne��f+Qo!%Fj� . - �i E{s�n1e�@Dpre�2laYm�.;na���� ��$��N����'. NowF1�.S th m �is% o��#�Ӆ�b�A^are�z:J!-v � $"F$1� � a :%.�L.�qJ�!U�A�3�1 >0F� @O�ludBwo9�� , **(�AL**y��T 4���!�an�V;%�%{a��U"`^�_�[M6!�(yivice-�2a; >B 't)�1��%�6���both x$y*�$we *cangq ePa�Ǎ��i�� a�WIJ$s��onship4we) h.\Ǖ�>"PPo ��>m(� y. F�p �get ri�&V�!�0q!]ad�1a%Za�\b{�eI64��xJ2� xZ'as;\ technique^mRL>�lefU9 �to iso� y �8� subt���4�#~�=I�4B�a�I9*5�*+)[z:6%*p2J`���ea4i�B~�:1\�@"? d��'v��% �y**E_� ����(3x-42 b> �l�caa:i�>Q*2�A;.�cP�'%j=@\cdot6 -ZE�� <�scoped>Y./ tbody t� :o�#of-s {*;� -�: middle\u}�.VQjDtopbAh�=t.>%G~��< <xcb. ="1"�="�"�<]  ="F`.x>y -17<7.a02L1BL9K5.5bK2BK86y�4��3BK7FK2��4BK6FK1��!6x6w9���6J�6J8��!6J!<6J6��!�6J!�6J5��AB6JAf6J3��E�2K]�MS2��1�2J6�0��!2J2J�O1!�2I2I���p6IBN�w1A�2�2�� 1B�2I��B�2I8��B�2I10�JB�6J1��2A�2oE�6K3N� �cro,C!X=�%@doi�@*pe�SalwaysE0*�+(=�(:.qA�8Ra�ich �E*CE0. SoA��!U�senDx!"ha� OΚ �i�JN=/,E+>ANs \:�cJ�0-7ffmj��ȁ�b�;�{o���A�m�fag-U�x��3/"eJ�B�=�cend&����y>�!g:'��Jr �RhT���A�4Z*(�Ov�Vt=J�AndA �:�ivide.u by 3z!�I�A$xJj�)T\�B�)�"2�3ZF1 G1��BGA�he.�A�1�1�p�3 b> (�^�5 1.333��To%�M}�e"Zyih0J�>v0�R�Si�03 x 0�0���5$�0rh-V_-4m�2c�s^M-2Bg*U0ur6%soQ7��I5�g#g>�6� ���annk� e('x�V',(E �ɏ']%',(0,-2 #>Pa'�>�Eg=!aEaŸ.e:�seful_nc-%}AJ�O�2wo�� l ���tra��d.�ma�*� � r�F6�a��r Slope It'��� (%� @ �d A0.�.�sS�b�Y��s��w c avel�!�@t.$R!%�wfupN��f%,q�9L`��&�� de �s�f�:G9i����EJ�r!�^ ,���(k�R&Fn ; (*vp*�i"�� bJ�)2= �km {y}} �n:�f�[(s���2/ene$) ***m***&p QA�qOtenVo&�oy� - yW }{x �dF�Altho���� i .{a�{�@��verbo>Ct �uc@ �uo%����%<. ͑we T4�r7� E]rM�)�m-"� w�iQ�]���4E&�y�� �E� 6,7)"m� AW69 uw� �u)�z82m x�1��a8y.;�(�f�$�`7Bg) g # n!!a�plu;go����!+s�1�J�YS 7 - -2}{61/FDũ�#2Qr>.O+ nN_,i���S� �9!X`6 bisN�-E1.5 . �wd�d�:6ly�S? Well�Ot/��aD y�#a)**1**��xB y** WJ 6�' iBW starBa� �ġ�%�}��6�(kFA� ),�#l =!= �4� � � baLp�B~*VmgI@"�val0& yy*%�ver�i2�� 77��6�N^��1��� A�1.5! �*v yInt = -> �1�� 1x m� �?] m� [J,  + m]�!\(mx,m"T 'redN�w=P�.�#�(a�&���vm ��01<�ngs�&AoP�!a?e ��o�eiԑ)A�� �qys �*�:"q%K&� !mza&�wa Af 2-�As.�sA��*�"G �;:�#�!e/=���'i�':��?!�Y�bB� |Ci��v:���)[ � ***bRЭ5.�����ko- ��.$wo!b�#wor/�so fa{nAs�S' J���%R6 o"E&�z.��!�e?!� 4cUH%�/>)�;A +=�RJ�&�2}�4J@ 4h��hin"C~�!ru� n���A�qA�,���y�my x��U,"�#��!���{-a<7&!�V�� halfm)w;� ��.5�&2�'�G�o'eq�t�)U�>��qadvtg"�b�e��a�( key pieJmi�3��� Y=eE]%�"H ��$�I+�1�� �*� �D-2T3Fv��|(+ ��.e��� to y"xreY te%��Cest>� @4�R+6]� 1 � pr1e.E�* :* �6�J�RG#�n��Z�7l�l#�l#Dc5%6e)���`���I~�#��]�QQ!�.�#m"�#+�Y���D%o!j�5�g!��''Nj"� 2'5"=A�!=)�$��%$��ʃ*�  �/�  �d��aNy&-��+��2�=1)(��2)>rQB���Laof��(�+*.��EX�{^�2�8� ��4>{6�2F�W���`e/��d&�(:p# p> L�s�i]����Sс�* �3�QR����c'�%.�&(� seq(-9, 8I�z�F�/]a�$%� *df$�>2  � [u� parabola ߩ(ggA�2)�u) W�onse�.width=4�` he� =4) F(df, ae�Ay)b8w'geom_�5(c� = 'blue'bGzLY 1) +2-�y"c=0PH�x.e:3)�� A!*p �*Na2 arc-�� �breflec�O��wM&�d �""E�io_� 6f �.% bA�|*2�� A�ZW -u96a�7>9&�� �5*)?���� 8,11��A�-.�6I� + 7 ��������Aga�RAh6�Q�� � ��n��of � op���top��e>a.!��. �[I�6�0"�/*N* &�dЍ� 6Y罢@a;�hB �s{U�R$w B� �Ve�!a� *p�c"�ۥ�^=fGpuw: �32%�+<6m�ںm!-=�Nr5�I3�X��{� "24*�+*6V t��:s>��6 7:�7s aliN�6�n�vt�J� *Rar�.m//�� i�h>���:��F�� ***a�  � ***c�L�"Z�ic *�1s�y2s"� <b�GamieN9�*�o%F���detai�R##]q�w Verte�S�5a�S�y �q%)�s �.7< 7يon�k`f7�z&s�e"9 (�7�<�X down��E�Kq�)!S�st^=�jV<" t&"[ mee�]� �ya�U�e��/ex*. Rp.�6p�-BN�% A�r$�����&D8$�mTwo&]y:�  ��n|-Qll!�l�!���4r���R � _� = �="]��0#"J.u&N�O vf (-1*b?�JMR!�42�9�.>�8ve�*vj b*v��� �#x�2 x+10kmin�as.� ger(v� pG maxF+�2Jq VY)xx�M��2F�~ �d� a�j;b ]�V2)om�]nd�1wUtmin!Xn�M)�maxaxq##��#marV�uWޡz s!6c(vx,vw>sdc!y,r2�TEaQ��z� � AC�� 1!��E metrR� es(sx,sy)!+C magenta6F I� U���V2) &� "Ll3"|�= v�+5�= "��"*� ��� 8}3,o�'(26� -4) �2C("#3, 5)bu!�  I�@/ s Re�I��n=&U�  a�U*E*�f E(��h ���T.Lii�produc%-�express�b**T**e�** �**. IA�is case,A knowa�{.X��.Z��,AIlogic�O *E�r�gM�.3 must1� 0*. Q-ry.�nejNIf�distrbuMT�getNK!�2NI��seSfi�EoV?= 2>�W��$gives us aM�Q*x*! **1*���ET��?9)JuE�b�vw-2xSo͜*y*!�**0**,� is *'� �m�ploE �F�!s��a�� : ```R *_ _lima�= fun��<(a, b, c){ #!�%�x=*a��xof�/@vx = (-1*b)/(2*a)Jy Jw���M�VS�0a*vx**2 + b*v!dc UCŕ� ataframe dŸ0column contai�-e�(s from x-10�� x+10Nmin�as.�tger(vA�10 �maxF+df = �.�(, seq(V,=) Hl#�� a y�by apply��!`F�=df$)df$5  +9get҅Mmax1wsBminB min(M �maxax/##� �e-R��6 s! (c(vx,vx), sc!y,r2BhxI�� s6\ [-2,1), Y0,0:SPmu Ngga <(df, aes(x,y)) + � geom_�l(color = 'blue', size = 1) +M 1A  =5 dsx,sy),!� Nmagenta6QLBUe��V2) J�2S%\ �! �red�2N�tex�H�label=c('x1','x2')),hjust=-0.5, v 0:R anno�("W", !�vx)�-10, X = "V� ":A%�h%�ya�� g vx.%n} R0(2, 2, -4) �C So�Aa�AD��Hse2at2Y�swklculatedeC�  align��R: � � ��.�4iC ��, becaussY�)m����&-4 pair��� �� eachy%  will b i�ant�!LK syi�n c��2ml�>@ a* averag['2=s>an�Hof �k � n � meanOat�-e- coordin� �h`  (i  >�)� %�1�V�91� jis� $. ## Solv��Q s Us�Squ' (Root Method[ technique�aI\ ed�LN sd easy�6�R{ � %�)R1e��Ax i� � � enA�-�� ^&# s. IF=in stand� form)Rit%Rbe  , you c�do�8necessary manipaOi!�o"� it>�� wo6�O�wiO dB�N"x2�0a different m%�� (akes advant]�rel� 0hip between s%�d1��  rooA#v con��*� J� �3x^{2}4 B N*�a-s!�A5�Y�)�bu re!�(no *b* term>�w's%!) m coeffeci!3a Age�t)�Lpowerm�typ�U|!���asily� d uu/=:-�# � it we'rGai�b�Jc=_V� e �th_we need�do!Eto� %z{2� No!!�K!�by���.�of�*�a�Atan !�al%%idePon�*A�A�Y�QZAq�variable�h��C��6-�/6d$*principle�*.� e��1��NS4 = \pm\sqrt{4}>Yv{.k!?4A{2 (82.t4��!{2 sponEU���+-H-BIalso 4);aj*x�2*����4 !�n R� �Tresul�o=^�#u �&, X�>�0��"�!0 x1 =.� -!S(y� 2 / 3)) xa�*F" #��somQ@aK� ^;x1� x2+1� �5� = 3%I - 12PGet)NB<(halfwayկx1%P x2) � x1 + / PyBr��3��b�B�8 =�.�F>>� � 6F��F`� its R�x1,x2N�##J�~�� Ԓ�.���R271P:��6�FP%I M��F-�E,��v�2z���~ ``` Ar Co���  InJ�sa�rc� a*� t i!lk�1%$���*� ,< ��m�&iZly��8�������$algebraic .� � aneFE abilit� % lynomial.H� orm *a2�+ 2abL.*6 a bi K*, �*b\(aK)2L. At-;�m] seemX%sor�mathem�al sle,of hand,~ follo� rougF steprefull��you+ �R��r no� up myaeve! ,underubas4" ppro �at a tr1&� ��N�� + 24�12\:�Ca� -�# ZN12)NFOK� how do� help�aJ!? Well;�&J��:�67>��tar��always dy�� � � � az � � a�,A N� 6�N� ��FS v �a;� �W ng 7& J}=F!��U1nj]P*� : *x.V + 6x*�'t�#@�l!!�i8 �tto2����Ni "6�=a ld�0� 7 qu�o�at sh�b"� beQswe���!!h%��dieB 2**c**a[ .+*e{$a�� )&e�i�!,ur�ly� �M����6**��:c3� F)�dw**9** S"� crN 2�]%7%��-�%�b�9;c!Du�2X B?6!:9��H�!!aAZQadd���=to�U��out� mit#A�'5�u�becomR�}7+ 9�6>U��at��]M�3a]1(heV�a�>AF�J���3�R�And�,-F"� I9'o find !�3Jk ="�16B8! 'E�-4]40W�`M�a�subtrac�q3���%�- T7T1**R�= -7, 1>��ee�!!�p�aT��Ya�si�"�V�16) - 3Z�������(� %� )**2�16����(�+ :�������������������������u Form���wah er"B&ofRu ��: "�J[f 2�- 1�B��%i to3 �\by2�2>�/Z� "��� �cR�-�$.�> *o �:b } �2� F 1*Ŋ$ 22 2 •>:#-!6is$8F\' �(1m8xN^'� re read|c�[���@w�A.q -8x2�� )m\ -rpa� hesw(Hal� -8�-4'-4.� 16�!]R� U)� r'2B- 8��16)*. Ofyr!" f >d�!� V" � �$u ed9� 16 (P is 32)1��w�j; -FA�.NS)!�+ 3�.��6Zc u'(^Em]�a�] 2�RW + 30�'(b4t >XWen � &� �aM� 1#DYV� t.+.�e%%f*��:o30�F&\ .� end�6�origi�U�aN\�= Bu*z EIquick� heck� gE� Pytho� (Ts�+�&((100, 1) 2�2��g2 == 2�*- 4� �D TRUE #I�manag�e,%X&�***:�����changeY 0 �:�30*� H&�  ��NaUsm$a6is wak/�! in *6ANm*�� gene\#$ly describw!^�a�hE� + k>��ne��ab�7���>Yi�at%ell�*![&�""U �- �at!Dh,k!.%�"fU, ?ofE=U�{M0�3 t*\��"�,�@0�.�s�Y%E�-� 0, 2!�3ur9aAy"65v/h���w�6J1#%O))1��$ (***P- )2���� > �sU,�&ce��! F��/�!�1 �bA�e N4% g 8pov28ɽa��+ v# �qŬbe 2.�E�e�$ code encaG%�$lla��~ in a".Udraws��$M��#onl***a*A& ��***�� �s)NV�n���"0&�.� _��_' =��.h, k)�.Cq�,� �� r*.=+.= .^�h�h�"�+�B�(a*'- h�}�,k/b�AB?f�-�r.�0 (h+-h.+�a*�b���XF*>.'�29/�h,h�..V..h-h, h+^�c(y�-�R�!3~� �쒢21A��2.�2.�2.�2.2.toSmg!�),+h)�D.hC.4*�paste('v�/h ),',a@)0E ��;}�C�j�Ew3��7 discussed vez��.� ) �.� R~73:)/ � hortcut,B�  EGs W�;sp�)�tim�;�@H;b< ��x�"�F�'�d2� ����a"Eł!=��G�*d+f . I� mport�.to��H"L-�< used"� $ncude: - F�8ing -!�c|,n2�!�-6 -*�- �Ŵ:� �*�*!- A8 0�/.�;!��h���ist!�ET'�-�&s5�s -memoriz:O.� �,kN��R� go �� �� : ###BE[�� S .iYouE>al�s;-�con!KmRF$e� �2/identi� **O ,� yen5 d�E��� @ �(elf -�!�Z� &\�$bf{h}� +kB&�z if%��*<m��E�j/?^�+ bc>* To?'� W�]0Q���6!x�A�FR . �>1I&� 7x-9�M� K�**7'&� aL ula:B�h3+(frac{-b}{2a>K2. Af�>@#v�2und�,� A�-�F��;lM F�1�k>ah}� + b�7>�Fo*-�!&J�a�q=!i)we�1vious�i7�y/-�0Z".��#>�:�� h�%�9��i�>�F�; = \;-�,1 \cdot16}{2 2}":+#4F4B�k ]?Z<y plu���`�ob&'&�5B6"�V�ord�8�U"B�k��(4A 4%s�;\�3�6V-F&�1a1�at 4,-300w�N:-�5�6�]/q��{��^D �R��Q 5��ula A]us�&E�ulaa|remember��*9�A}ulaA�M��2��)��*)*"=X� 0**;{=�w0:dN�:ON�%H�'� �J5-M�b�/ \s�/bA�ac}N��&atc!0�� ���may9L�� j�~�%�%uL.bD**�$v1.�Ne�9-16=;-161=eYip2!G >2m@[(Nl@9�2m256�}}��e6�B�@�VLC(9 E �(;Q�or�D@Df�@B�D15.491933384829668N�So%d"{�����3iN�2n+^l��<7.87298334620741B2):$a"e2·-~�H0.12701665379258298>�!�m+S .(u�G����A���v+Eic!@6�h�3- +� �0� en2�w3�pl:V�A: �6 2�AX# ��14dt('CALCULATING THE VERTEX' $v!�-b�1a')~nb %bKaR*b? 4d:', "�nb), ' /2 a2)) Wv1-b*HBvPvx;cat('\n:��ax^�� 2 �y =.�a�(.v� '^�',3.��J;) +9(c�avr43%Qb%b*v.�^�vl2':`b �:v� {+oDB�6oy$�vI5o )9 �>9%@,2SL#E�+i-x (shoe��? medi�=�;GI���2�-x ANDZFOR y=02�'Im +- �b(b^[ 4ac�4A�!bA�b**)�ac4�8 *a*c��U.�I�+j6.b2)2J' -29ac�')/.5},s�B ��/���.VsrA�R�!2�-V�:��R+ZR62jR �oD(n�1sr!�a)�negb-6z�eg�_BB�|u�R� PLOT�ePARABOLAM�a�T8�04 ��r������J�a"y8�Gdf�)"�Gg��F��F��F��FAH,p ��Sc��F��F��F��F��F��FF�F��i%�4))&  a�.�2��F4���4�3��2 ���JU[ Z-X'2#��sergazy.nurbavliyev@gmail.com © 2021 ## I� 8coin biased? Q,3: A 8is flipped 1000Hh56heads�w up. Do��1� �2inIf https://�#$s.stackexcT$�/�34s/282786/a-job�Sview-! -on-�ing-a-��ALQ I?�"!edotty nic�� websit� re Ii!K link�. I`Sdefinite]ry'�SV z way. Si� %J�%�Jis larg�#�*���z�%!���lijia� 3N(])5 mean!�6�)!� z V outs�D$ |?SE#�E)[a� was fairG#nE�ie<�Pee!k5A�V�V0.03.]W���at, mostI ablyjis��y.�p�), 60/250**(1/�in !a04733192202055�: �.�!�si %�.2  random eZ0_list= [sum([ .int(0,1)Oi�r�)#*0)] j> � ��~*�g lib �py�$plt plt.(�)axO? =560�N='r',�($estyle='-' -.(ɪ.��F aKhanon In��%/ Con6 F�V"�'�Istoe�a�*RA�=8!9om.�Ssay����F0�8$0,1,\dots ,63$ASeG e nu��F�D need��a��9n �Pis $\log _{2}(64)=6$ 7:�,ell me $ ��I�ex�Wa�\ . A*�JD<ͬ#Jis`�e�we do!aa ori���m� $64$a�9:=o��d,�so��u,+��+lik��Umz(@$��64}�YDv8$\7-cal{A}$r)�%$'�?ll!�he “ALAMi]MKent" (b�Wed -'): $9���bb {P}( �)}.$$ �Aparti� r[]f $x\in \{ 2a\}$�� j�!�observ�$x���� {Y6 }x)}=U�� 1/64 64=6 �$��inW Ev;}�?!B i��a\ssuS ' a��(%�we �4. �s� ��s has6�M��/us��_. A�]rprɔofr�is_%Mkaua�_y,o� � �sense, !!F�&�E �wK12ld7Q�. .F��!"zP�lb�Omc-�=o3:((e.g., $0.7��)�,%�rpret)+%O��Ym�repea&pM*^% riment�dzT:zFze-*+ ~�,��w �R�T(# Exercise:53R�I)[!�IY�mi-Funi��2� ed"�KQo$127$. Y]S,an keep gues�N��my1is until �it~6�b��'@E, Ii`�a go�2r�F). Eac4(� awwrongH disc�$ec-�so8 to� ;�SgaiY 2.#% %W%��H%���Da" G.�2�� 27}{128}��8 7}=0.0113� J�I�%u raNsecond��9 Pv�6 �J��6 �4��%��7 thirξ 8���6N��}=6.9772b�**"�**~"%;ab}S�+&}f6� �a� :su""#z!�three �(es? **Sol�:** c(narray} && ^ _2("1B +V !27}^ -F \\ &&=2dE�{=6\ {126126:B128 - �127 + .6.NF�boxed{7eA!}.�-'$$!K.� Supp�5�{ed)��2a(5xeswe�� se 5f�V�-�.��5�25)�9�:`4 5b 4}�tE#{�B@�41245�loA��@\�! ]5.e5.4.N��e�r�M~Iy$k$I{ $(k � 1�^��,! \})$`[AŁiup�Fni�-�n�Mep_inclu�UK in�a. �,*fMtotal�����$k$? (WF  �?'�>J�[to:ifyrD�q-u ^ )be �W�9�.!�����y���"Yes"�nC Gx!;=e:specificogs�&�[�� r�befF%"���yieldV;%9bi�:���Nor�� whw O�Y  K� !�0.)��\�=5noY pr4,%i� Za clue: Sum +re!Mpu�$EP escop!%�Q��;B ncel� ex^n)r�%i[jne:�2A�]N.$ �g�=al%�w�:-:J*� )+amoun�*� �$learned" i�&$$VtXeft[ \sum_{i=1}^{k-1} �΅깾��i�� (i�&)}} \E*]�l(��(k")�f�o� -_ i�gg� ��,�� i)�� 8%ν�7�0���-s):� t5+"I>��.r 24N3P�My,@$wa�.6�"� ���A�i���f@ �0es� Ev�'y fewi�o� �(althoT@< X'x���shrinks,6hze�m��� �)6j)��I(on Entropy �/g*�dD�ai�pvh%B�6,3�p��*^��Oec��zhv�abq%)le�c��s�� 5��quantWVA"�opynB��H(X)=�4 _{x}p_{X}(x)\^brace{A� _.& }}_{�  {!g!h.R!!�of-H }X=x"/�J�on���>�M�to�Xde �i.i.d.�p!%�I�5� X!�rn fact�uen�sN|$�$,!�n�Dfundanal-��7.� theojnvVre bey�A cope!�co�GA�at: (a)@r�4n�6orith3��A�6taaHe n ��$n!�^i�(b)A�RMLy�A sequeina��1"s.I!�nEZqXIf $X$�} toss��h� " “I")��<.i$5)^ N�� &=& p_X(En{]})�ͨB } +5�j5 }�Z=& V2�3 >B�3 }}_1��:y1IR�*^�9"=��%/ w\Dt:_17�}�}2}5fw1}_0 + 01��df.0}_5_0=_s},Jf)6$0E` 5��I1 -$?Ba��6n�D N�4riangleq 0$. (�4:"�BF(l'Hopital's!�  F9 � $\li��\� $arrow 0} x �,*0�+v(I�.$[ Noɩ:*�x�N�FP! $_ x p_ X(xi�52H" x��!Q5x�!aJ�a���!wr^$6):A����ZE}\` ɭ2 ��X)})]rK�$def H(pX):� """Retrun=�of;��.08>>> pX = {-1: 9/Q#0�J 999 : 1e 5|CP2.137426288890686e-05b�!= {'H'M2, 'T .Q& S1.0<�EE!2 rpkg!w-� ([] *mu( ,2'! key,{!� pX.items(F!0 if __name__dK$"__main__")Z rdoctestv .mod� A7EBF"� %�m very*�measurEe uncer� n_��%�ichAf saw "ly'ereas+ $�t {var}(X:u [(X-]�[X])^2]$��farF} �9I�zo =%9omt=%��I�[X]$,U� � l*bh!w, &R &7�6 $X$"=wM' t�lotteBE^earli�j8,>� 0s $L_1, L_2,$��$L_3$�re�m�<�won (acc�� jha�$to pay \$1s |U$i$ |  $p $L_2$F* �4 | |-:|: ::'--�*BO:| � -1 | "�_9}{�a}6��*2%JEn-1+X �&|"00')e '�*�z*�1n dBtL�1&\=�nr+ts. Plea�putg3� doF�� text "a "#<dend. ( Mb*e�� at�st! deci( plac�un2'oQSO��aam�e�6C�o�C#��vc%�q-�W8L_1) =$ {{H_1}}A�22}}33.2� p_L1�/-��p_L4^/999�uQ/3^�� , ����} H_�('{0:0.7f}'.(H(�)) H_Z!2!qZ!�j�f�V  Aco��$�U]'-��" as �P 5y. .I�L^��IafA(Bn�J��S mark$] No!v���*�'u*�):�p'iQ6��$�wI&X}��S �&f|�S�9y1d�Gshuffhhe �@!��2!�(Qr�%�s 6-X �):Q'.5.� flip��gEG� $3/4$, s �w��ok�tE!�g&M�PN�.�-N3J& q&1/4!Y6NBy-%!?r'"e�/u7>��0�m2mH0 "r-� ���0 actu|)ma� (��e�ca�y9Q!� H$ appear tw*1)��)AADm�� ����9� ies)%�ge��k�xF^Wly��t*�*�Jsm�A1)m�pbeB��J�H] :W/� z� q#�F. �hb&%R"OB� �#uiA��aa��,e�)!a�it!�"Bjly��x�x-��T%9� y $p� [0,1^ !n��:e �Fy}s�,_2 (1/p)��v B'a� 5 !cOu�'�W .e.,risnonu@.31�is/ a w�k�I&�zj�" �3! ;se;2nA. '�i0"a$~le��E;� k-%a���G.f %R����xon���wo)\s,Fq�3ۥ�J#1-p$,�@'1O$H(p)$�*XT�p$� �ǩ�x� !�L(maximized ()�F2y 6e�� �)$? pri�"�6�1%ma&�0nlineA1numpy�np # IgnR5wLy zero error # Ref: �6:�60ckoverflow.co.�6$14861891/ru'mewar�� -invalid-%-$ntered-in- t np.s�+r( ='i�', ?)��.p2�1 1k,= lambda p: bum(p * $log2(1 / p�Ap_D2 =inspace(I\ , 50�1figure( �1 5,�[ w (np.�$$([p, 1-p])GpA, 7] Ix�('p2y  H(Ber(p)) �&'2Z)diverg�V] �W2�/4“Kullback-LeH�r,�KL2�8oO,�� “re|v��"�Xa�a��&} a�"�)Aa��$q$ (AYex�� )�� . To� &� .w�,). �-��FO�&.���@�� �"��7"� �A�de�_�^��p.&.�c�3 �r�U>��2��m_{x}p(x)�]'matrix�M { �� } \\�X}p�7 2 }2^�3�g^hR�q6�}p .z}\&� �8_{X \sim p}\Big�2��Big� zwe� i duc��0��ion�! Bg�n�wau�2 ta�#�3.ME6rem#;m>� � drawn)�?>��$it�3? #>Iw����{ w�oftenbb#gv\MaufR - ���2A�29� &�2�.���a�6q- e �2���������F�Itrs  i��A�"� ��� ��p�u��Ns;the�7E�v�t�7A�t��� �mM; !`:2terriU:�1�i r��� "Bb clu�\���� minimum��1%$pE�V[ Ypr9#pay���6tr�"� a ^]>�6�#�� cc�0$p�# D(p\iKllel q)=V��5JQq�Q.�}�Z8>�f+M-&s0$� *`�b]p�6Eg@U���M��!A�A;32M_ $�� = q(x)$%�4$x$�3� pert��80Gibbs' inequa�y. B�QV0y�yt �9eN2?ce* >Z<'7:8AWe)(not�^ic:�, A . \ne D(qp)�(O�)�,%G��&%)f��:�ce�conOlQ ��:� = �� x %�^Z}{!�},:�aI�3aaH�NZ�(:n3"�(��{ER�2HY�_-�8Y��!wU)�.��cj$%RO] %>BW&�()X1}K bQ�( 3{ �NP($"~0a���2w+ .$�� � e�0 r%� "�s} � 12 &� if }x=�$,�n'�#.'endZ � $$ *':eq���&�B �.�e����'�-D(perhap�U$'s double-ed�J�+AJ 1~0R!��4Xa�-5aS�*q � pj�%{:AJ.�)}�%  �6"U�:A ..i%2� }�%.�(j,0� �;.] ���RV�<:' r-gp&y a.(a���"���)� B.��ple'��n\�"�'� e O��n� P # � tuckt(T(it� ncurs�@enaltyq�%..<ZE6oE� qMa>�'{:��)� .AE$%6>E:A .=�12J1UA�']@�%Q�0'}_0�_&=��1 �!R.W- X � � �EA ��<fa %��:�",E* A"F�n X�ys $����w� si�)�'�ness. Bu�{r�I2��  qJA8�"Q�2�C ��F�,I�B�>7�=g�+2f*�"�(bi�~us,z,�>s q$!F`@%e" oit �[�#e pmw��y�#7�:� q� >�.��t: �Oi� ��� Dy!�� �> cl!8— �d8 !�is E@! :�%.� D"d WDw"��)I�wa=a�*�?Q���F�,P�u�� Le�G�%ble $U$�>E� ��F>6love�d�� `$,Y !�!��� p_ U�(= 1}{| 2 |} \qquad� {�ll }xH*t( P)pE]� @ ���> {U?*,EX&7�%�&+#olemU!�&�G 2�!�"F$k$, �$k = 2�!w6W� H(U)�5�k$?�* !HBW:�1 _{!/=. } p_%x.�1{ ��^;��k:< �=k�� ( �k)F ( N � 6w,� F�1}_ONF^ �No�l“log"LmNd D(p_6�Uz�"�,��j0xUE�~WpjB1/��6?(k X7�0Vr67�n+^76-\e�Y��� <1 �qq B-��e��� �q�.� X}_{A�,A�F��i):�JA�aiB$i�$2��A��3E�m�by{sa�a�to e�:K. j8;Dla��, 0^>TC(t Mai�"za�aR�V �P k $k$)wlb{�an`-*�>Z�2V�F��e blank�6�B�of B^���>\_.��be3H��6#vD� ����� line{~X~}�7ƣ2GU~{nEQ�n*D � �I�FSEO� �F� = ᨭ��ByN�f� *�!W"y/a? a��� havea!Ut \ge ig3$a� \le�a>�rroobMCI"�� ")! ofe� *&��Si�9 whoO Ee�|ed� to�Fup 2e�&llenge,�a�w|k�?0O��rL �0ou�{%� .B�oV�bU ad !?re�To "$\ln x!$x-1.�>%S6��Gonl $x=1��� d"�-;Xxen���)!A)���� * �n�e�A�*� loJ�+�3�4np.*�!2,�,6!F�!x,0og(x) $U�1 m!xU!Dlegend(['ln(x)', '- '], loc=4 6.{!**B�9�$ny��.� 6� Yed� !��  i :�yA>5� hold�2��$s�g.�"� �=|.'aVeS : ReV IW�)& e� �"���| �Gheԛ�t�or��x=\�{E�}23 � 6� Nhe5.}.� p�tri$Y�73+ �Y�o�z5*� =\{�n { suc�h0\}.$ (NpIuP�!��$5y$<=0.$) 1$q(a)=0-pny $a:4;| .�MP ,o_EviPB'>0� � 's��g�U'���> �X�F�i>. align}:� &�{>�%85�)�!�$a)}\\ @E1Q� bOn� :JH-�I!�(a)� � $$ X �AM�g�4a6�4?minus s3��Ysum&A�7 �Jn��� \\%y�Y�MBi.4-1)U=�S\big (!~-!�)YFH02� "BxT}_{1}-�.}.a�0.�$)�A.*=:s-�s ��if6�x=1.$ Th�AN�M�E�TyF��N�_i%i8�{ -1,$��VZFD�B���>�!f=p��llF�%�sh�Mp� .Q^M�$ Claim�%f��5V�%� ��We�(�!�fu*�&7 f(x)=x-1-�T� atJ6Uachie��z2m|"�&, �F�.v"6)̡�T%6� gD�2� f�P(inu_ on $(0,� �,nd1n'tI?"k�Jme craz�mp midw� y)*�!derivat�) |1&���d}{dx}%4.(5A)=1��xO� )D val ��X.x�0$�S�! �w locaQ�tremum)P� ��%�6J(cL�S� i�� H1��` axH$� ��!�RF�;oS!= )0^{�qdx=81}{ ;g is ��u�6*%��wo<��E)� !( ��� Re 9e%I� �h3nA��b�ia<��iyea��hec�daXV�@�kV�@uusAem)-*�Z:1 }_{-M��x )BandE�Jy (n�#J�  fc�\ grow�as�y�>��x� H�-,e�at�>= s global1�!s!�,�CIw�*�f(1aM��1u $ "Veze:V�+�I�!� �s.$ Furac�#E�";A�CwOu٫:� � we f E���Ob-vN7i�Nd��*&  �``9�sy�0x@**.0h28i,y, d symbols(","F�afxy)�� *y*z O( $\display�ad� y z$:�bf_x =��(O,x)^F2 ��JD{kEyEy^E�3NE�EzE~�>�,jacobian = Mw.@([[f_x,f_y,f_z]])#^��C$�. � &� y�# '\�D]B�x!d �_x!d^�2N�jx=d_x!cfDxFbjx=c_x!bnDFay.�y�y_j�N�y.�y�yf00BPy.�y�yz+BDz.�E�� z.�z�zf�E�J�Y�_z�zf�B  hess:�A\,Az]*4[!�,!tZ# z_x,�e9 k^#V8y a,a@y\\,&% yuV& ]�vXf_�,x**3*y+x+2*y^�x^{3} ��pF�fx.�xE�^R3T2 T1>�:.A^N �+ 2>JR��,y��2�)z3,���vzAc ���x)^�6�9B�.�FyFb# �BH6���fH.�ʚm#.~!+, �v�!� ?^ENb%Y &�\\ ܚCk � # SysBI:  ar�x-s�)��9]!a s. >- $Ax=b� "݁as2� .�9 A�8�8[�Y ], [R�!{&�8-1, 4]F A��@alg.solve(A,b) pr|kx 2� [ 1. -1.]�|o & m re�t so �ZToa�Cy residu?WwZ *vanish (qn�Eion~+!�� 4r = A.dot(x)-b �r.�$4.4408921e�0.�F000e+00��Qa���5�&6 commn }6=inv(A)��@he����q� ��jquiress�X� inv�AB$A%2:�buming�K`9�`�@e�-s9��R�)>�L�"sAr �2�$explicitly}dnh� rele��c=mD=FM��it-� . (stmt='N� ',setup=' E}"; m"0(��); m!F)',�%Vq�e �^�2�����0Ga�(0.834245866,2.58753892496 � �ei� �5`lie� inv(A"ndaP)`.��&cha �\��n�^<y�eEWR6A�M�\A3eBE��)refer�t^t ) Over"Q$dQQ A a>�Naid�>�B[�����unYI�#"lw���(S���x_��I2�"= 1\\  0$�"�gcb W5a� $A�'a $m$� $n$ y�$�F dTh�2 al vector�;3hr��b!$nd6c��!� 7W�.ؘD��)_in��combin��!�>cӔ� $A$. H 6/�f��U���atisf ��o)1(�]^�p._t/O5"���@H'.d$A�s_+to�as=-�w��t$�$x�� jizRI�V)�}Ax-b�$.�qEz�`![QR^Lo�j,�](�A)xen.wikipd�.org//QR_d�Ron�t�M,9E�}$QRU. Multipb�y $Q^T$!���+ Q^Tb�7�)$is orthogoAG(E m&־Q^T*Q=I)Q�Rx K-w$�a w�$@i# , $RI�n uppA�\U ular2�hQ�I���*M�!c� proj&�D$oa�&ItA�aU����=�1�Rx-!7:� � "x�flstsq���!da�ɯ�Q�oe|- �s�C to�ik)<���v b�J��R�s.tA"[ � e�B�l"!/on"�2�>��� �*� 1� 1, 0],[�CF� 2,jd0]):` )BA,b,r�j =None)[0]32� 1.3  0 � �7 �Q,RC �$qr(A) # qr6�A$A Q/�Q.T,b+!HmbE� (Mp bJhA>�w e(R,QL�%R��P��A=����:ay&� �G!�� E�i�iP  S n6�,� B!r6��|�"al6 � R� &� u6� -9� =�. %�v�D0.5773502691896257�A `�*�$x=0$,�zH��F��lb<Α"6"=\"�{x^2+;)^2��|%3iO?�d�? (by �)A��G-�&�) nHl/2$W )��|�q�`2n6�>�e� ]]);:Ge�);�0.5!�## UndV� v@3"�  $N 2 < +�,_3 + 4 x_4 W 5 c +?_h�7 %8%= 2$$�7�K�r:3!ÏV+�. `�s`��v@<,2,3,4],[5,6,7,8F�1,2��-0.05 a 0251 17%`��$`scipy.opt�J.nnls`,�pon-yL�t �tver � $$argmin_x :�Ah'6��W�G$x\gea\��a56�Pas fU�?onents"� e�?��A����c.�&� x, r�I��nls�0*�� !.$$1.655022776%&&4  2.50 e-01]t 0.0a�pQ(EoOf&&� a� kernyhf�a�A�lls�J� a �(deno�$\ker A$�IQseV'���s� & ��' 0� f<$y$h(� .��D,n $c_1x+c_2y�� *>+!� $$A(- )=c_1(Ax); (Ay)=0+0=� �n�� � ��[n�is  �:l trans�2o �6P�subNa�& ( R}^n�2w�d to 0�u8map{, h� $5 "f*�D]." �`q Aual baƺ$N=(n_1�y,n_k)$��-��turN*by2�]��U� ull_�d th NA�(AQ�N.��+L40008743 -0.37407225I�0 [ 0.25463292�H7969705669099646>47172438K�455419�� 04882607]��6��sw:�*�)Q��=/ g� ofF�� �b�vij�"%p fami�fy�A�$&u,n0=N[:,0] n1 1] assergv bs(A� n0))<=J84).all(), "Ax=0���xa!�%� {}"+Y B-YJY1�YYi�d��%;� i\��M�$\{n_0,n_1\�A�  �2 8��6in"\!�A���:29[#5�d|gqC�=�&$ ��j6i em (QP�'U)^A*fqNLs)�& X0_rank(A)==len1�[0]2.T, "�vM[ 5��an m×n�OA %��� rI�w�� �."�A.s�� [1]-v�!U[1]�I�� |n−rFh0bh.T-Rj!l6m:qm q��aG�sg�t�`�v⋅w� 05�(�F.�).T�TO(�J�!�4h6��< �92Bi.T6k^i:&A 29623738] ?�i i2535814U 17588223 * 6 27620609J6689691"� (-0.76074427�52764662t 2978752>49308692 �u1 �94415867+1154396� � 033835456892355�t259980�1912653>�> 0> �6P��728712^ 2182178.f4364357!Z �("�a�(o� �'��JN 2O( �,I3F� Ds('EA=x_4i��=C �ve([Eq(1*x_1+2*x_2+3*x_3+4*x_4, 1), Eq(5-6-7-8 -2)]:o$[x_>�]cr�%� ]{x_1:�+ �4�uXjx_2: - 3 - �40 /4} 2K�� Int�uXto (ces*�v  �pq�� n � a�n*�E at��n��is9+�Ti�|H##h�(�l%� Aj JsdRR���si�\�Q$}� b��wk�#�L3�, 4 & 5 & 6 62*�L�E^ a�^r!*�gxly Lkd� a ca n��tYWe �!hA�*elem�� �*} l���A� ival�w:aJ cript!d%I)c�����P� J�Va_{1,1# 2 3}), a_{2!2! 2,3}~>Inn] "� � &�\2-" al *�.**Ay��.�A��F J/#2d eI[4,5,6g " �iepYo?����)�%��6!a �{a�\subcla��*�6IN�M� f(�#N�F�M) ��8�s22,x"�Tbe�kor ��EN**:�s -�>�>lyI�rh� =mtA}�P�L��/"[V|�r)Zise� ,�<Đ�Yri�dM2?grammesho"�V work �� ��r%9c� �<lm�q�QO%���enc4T��x Ope �s ��T�Grt  $o��u etic � .� ���; To ѽl����A toge�!,�;1�>"�gS�B}nPNq�:.�����+>66�$4 <'&�?��3 2�~ 7 & \\ & 72g �aI=4.GK0�ʾ23(��<emA�Aa�!�***B***�) Dŕ%sree�7 s (sW�\���m��2x3 Ace��A���w�F"S�ʌ k^Nme&� �u!�� (s a1,1��bk��,#��2# #3BF , h2BhE2V2��~  Z' �4�t�Xd,I�p��V�(1%�6,-I!� 5, 3 4, etc.)As�A to 7"�pt�y��c�\��&&)�rB���3([[6,5�>F3�@�F(A + B�� sS*ʕ  x�%#�on��j< mila�g)� !<"J�:z��-��a�-6 -3 &�5\\v 5eב }�t�he-���#�F� ������ο (A -.�#�#�~y���"vD��wS�!��A� ̅�)c/bKG!*�Zands*_&k#���n$***co �le��L"1% 5�s�o~s����v�l$�cb�YV0.� ion,pgnds*F��' ��}@c)&`r�*�P�\�y�*0 �9r�NOch��6�;J��Ne8�e�� a of"� ,� 2C" �u�@f��� r�AsedJ�CF.�Mm�u_-JYa�a�O{-a�i�5e�^����Ei�^��^-5,-3,-1>� [1,3,5�2 (C� (-C�:%�x T'"� *U�*5�A�:� swit DZ�E/!��=F�� inA vCo perq **T**vx-�1^!vqVq ^{TJB 84�3& 5x 66�%�5� ��)�, "� ż�a{�_�  ��T**��O�IBIpT-��� � .:%&j �j� 6 �N5 imo��6EHli>_j hV � G�izS a�P y FF@m now",�AG)n��gHA9�<d�W ac� 5&p �#! aram�*Z ��!�>\J util Nn � G� _/m�e'�"���:�� �D*lambda� *�*�? onym�@�)*��-� @x:E6!����er�-�<e!� <�}�_�p_p(x)�|c" ];/L!��d�V��C�%7 o�&�)-\,#c�1yR� �set �%?$s R"�xitl���Js7�s, fonq�� �)@�k!!�ecsAb . WAM&5m ��o=�� (f) �6.#"z*CA�A_a�Y�f,�'_x��x num_)�M�.YJ|�&v4��KmBR.N�F"� x, y +.*M�J�y�2 *e�{63,� 100�Mo>5-U:8,��1W(�3�? -N2, -3,�86pi�3, �pi��= / x��|p> I���I��EqaJons G��i�y&�z�/a�2E3�qQ��A��a[iK5m?VEeE���ng��yme$ 6�y�2f[�ef��].is]^5�� �f�,�� �$A���H�LD"="'K�gȤw[�j���. Tak�oor�mp�Z� $2A-3 13�mBue �B�)+�&KP 6Sii7zf8�2q}8me��� theiњ&���#�' &c$n��:v�e�0r"�ng�� A��-�a�����FTo1�A����vm��eՔ%�1� y(�h�}�6 @�M2 ��!�!m�T�H�� ��.��Tst4VX��3($[x_{min};  Lax}]$ range and it's�L going to be the same for all functions. ```python vectorized_fs = [np.vecto(f)? f in@ ] ys*v;(x *.5.s]x  ~4def plot_math_�( ,, min_x, maxLnum_points): fs_d�np��9*T[lambda x: 2 * x + 3, <0], -3, 5, 1000)~E3E**2 -P5.P + 7X2,m XX``` This is also a wayA��I� olutA�$ of system equa, likI��one we solved last time. Let's actually try it.�((-4��) /�9/(-�82�(-x - 1-2� 1, 41W��`uZ$import mat!lib.py  as!� h E� oolsnumpy1npbX __Exponential Growth E-?t__ $ \begin{align} \frac{\par2N} Dt} = N(t) * r \end5X$ Let r = 1.2 and N(0)0 2kframesA�= 20 !�Serie:]1, * endpa�=TrueJ�$op_exp_120a� 10] 5B3& aiiairange( x�.C$0.append((D[-1] * (1 + 0.20))m��5J75:75B73Jn3:n3nAG.!fig =A/ .figure('.pPlot', figsize=(14, 6)) ax =.add_subAx (111a��r9�,�0[:-1]a�$bel='1.20'~45B45~43Bh3h@ax.annotate(round9�!.at0) , xy=�!},9� )L), textcoords='data'!b`!Œ` )�`0[�`)V`�legA� loc='best-k.2$__Logistic�� * [ (K -�,�� K ] f/,�,�:K = 45�8�ArloA� [] "80 >�lo2���0:� A@q�(a� � ��$)/K)) � @6 0G�HT5 6T$VT:.TAי� (0.3F� $T�K�K��K 4�K4�K2��)V�V�7!�~K)�`�",r  `)V`�K�Y)# SYMBOLIC PROGRAMMING **DONE BY:
Thejaswin.S ���M�02. Develop a � codL$to carryou� oper�Z s onE�Pgiven algebraic manip��A�� � %�mFQa**3/3JGa**4/12 �b. 2x+y2:�x=)G��2*x+y**2^�2#��-�c. 1/10��/5:j%=�910�9.5�23}{10{d. d/dx(e�)>���9���%�=/!�1� diff)��5�Before !er6f�AfterZ+-� )W!�ZZ�6VP�) # F�al Pru�!�1. &� a�> L�c us:` $a. T AND F:�=l 4s!::  �FalseQ� A = ",7(�.�# ;�b.4:z%� =bEP,Y  : *3*4 =")� (3,4.J m2. -5U1Write at �� onve�,easurements �meters$ feet>� �1A%: *3.28084�=( : {:.6f}".� ato<(float(input("enAminyres: ")Y`B! 12.5Ez d41.01050Z*!�^�in Py�� �:WM��ISA�((𝜆𝑓. �.8�� + 𝑚)𝑎)'�'��2��)%�4Note: You need�w-� nest��5��+���@f+m where f takes�\ squamR (which % argu!�$ x) passed a�7%�(. The above=Yib$ates a^2+b> yaSQx: A tota�-\f, b:1i a: f(a)+b�d� MEE valuqaE� n(b (t(~(�iy)(e�.ZJr10El>b:a�A1m�3. Pas��Mreturn!�a9�as an5�%XDefina�5�‘ �’%� Jnumber� >6named< twic; that1�kbf:�� s f(� ). U��R�2�cre~�‘quad��xI�nnun 4 ..=$should not�d�dA�(licitly. It%only bel �M� variable iie'� sign%5u>��%wE�(� ;)� `,%uA�(f6+I  �  =8 6�a-�I�!KP =bO�"� .�=I�UM���/4. Clo�%?A!-9 objec�+at �/A�si�s�XencloE0scopes e� if��y are%��enI��,mory. We havaEureR��wh!��U�re�c�� �4its���. a. Stud&G� by execu�`it::�A0multiplier_of-|:�6(i�!� Q8e�*%�@ a y��  }5)��  '(A �q45�Inottery o,domMo!�chosen! r�ev�st �a%Lra<index  list�  5s.��1i7 hoos!� ,S 0!�t< way.�#must use>s –�innerY ]s � W�a p ����ou�U[ gene1 s0 ��s�*:;.��UA�Aԅ~� imu1xS�) can��puu �)}. (Your|�$be similar!S�1bi�5a>I  YE��_�2��_A� = ..sample(L0� +1),� � a%� R]�I*M�J.Am �[<A! drJfU�Qan�  =F�mQ"RI�M9Qd is: {}"� J(�us�o:z�vnZ6e�6. MapEA$ret messagaed� !�ent�LmapY�to�ryp��e>K0Caesar cipherN�en;(le�-E, s-�if .$.isupper() -�chr((ord.0) + P( - 65) % 26x5ICelFalow�a97a97ase�� �� 1��� )�ad wordAK )#:�'shift()  P[ 7 len(k) resul(A�(map(-��F, ] )) #9Q�E)�\ ex�,f!="") K �f7)/ i+:�� �hello�c9�: 2 EF�jgnnq7. Reducm n runs6red�|2 \�i��sE"$matches,"- "��I�r_ueK(to find who���bE� k��twou term rintai� (consistency��"� [gSD)>S�q�`�#,$or pl1%��"P51, 50, 58, 55, 53, 6�"l2$498, 42, 88, 74  12] meanK1':$.) (r.add, v�A�Ho�H +H  m�[�Q�p 1!' ' )_ � nce%(p, m�xva�� =  - !E�m�&� � sqsu�uw2q97, ,a�: ��isi�B: #, ,)) var5$~jg .5m.M c =�M .6M  sd l =!, **0.5 sd %   if 8==(.V"Bothmns uPt.") ��C>RBPlayer 2a�m�>B�׉�01Z0�� XR(�8. Filte�   mark.�a clas�3 studL in 5&C suA �st���A8��s��u �Rfx�?ion�����ځ�{�� fail�n@)or)3�>�=��: <35 � �=[[10,90,80,75,32],[23,67,78,87,90],[90"],[39, 1)0, 56, 72]] l=�{Z.��'lm� red=)�,3[i]��if��!? (red))>=1IzE  ("- '�i+1)+"'=& atle[*11$"*E>1r3�Q,2�,4v,�:9 +��+)E$�E��trendE? opicj d a bunchAbtweetf?� oun6 � o� :�av� eaVi� �do� by� Mtogether� (),!�uce() � �(�(�>�fH �A��I"I�ie�al ipl�� G�E�pe up�#ayies due,COVID"] csk'E#csk"dY;) >�+R/<$segregate_ J(st�, eA���a+�� ).� ��� E� "" # csk.q>�,m�m, �)"b ٦@.5"j= csk7 /)%&i�_�� � � � != ��� A H�C- ��w1�jj5,� �("No.� !U)�2���re��68N! j=#�>"x['', '�lnl`�`�`R`��)�p0�c69�U �e�J= !�23,"&�"  f])Model��Sim'#"� Chap�<4: Predict Copy�% 2017��Ten Downey License: [C�|"4Commons Attrib�3 4.0 Iln ,al](https://O ivec 7.org/l Vs/by/4.0�(## Analysis��SymPyzx)*� S &�l sets�� Jupy�notebook��d~(h� 9Ninit_e� ing(�And�^> vid5 opr�;/!�����LaTeX�(ma:[4Qb).r �%x�#how�%,^_=h �; ho � T(/@o.�3�� %�J%�52{t�)g&tT'�t� (If you comb%|y)E� s,!get gi.�(s6l��G# h k!�)_� an Add\, �j�re+� sumEVoj&ry!���mpute�6�ype.u e�)� core  .Add`subs`~u to replac=XwW,G�a�, � addiEHtoA_ ceed6�!.l(t,u+�`f`% spec�5&H%�s = &�6^f ="E#('f1�f-w-f !�!"A� � `UndaFu:�&yX/>L=NqX.BGp� S� $ understan�I`f(t)` �s�v-ua8 at `t`, b t doesn't�7� yit ye>�U�`�$`m5(s a `Deriva��`MwBc 5 d,-+2edfdaVb(r, t�ow(1x:D.B�5G�!@W� a!sboi�`alpha6�.�Q  �!�weE�y"��&l"�9�Ppro�8ioO gj86~eq1 = Eq�, k*!-eq1 z���`d�+`!� a� }"��g�l%Ŭ6yso _eq = T n�y �IZis case,!0he�tiM0rla�easy:!-��� `C1`�`p06�C1, p�8i�s('C1 p�6e�H+ �9 r=t_eq�& H-A+.�Axt ex�, we'llJto�k�(ittle harde)�%[U~. ���1�dhe T � c-�Y Wq!�*(r, KX$rL$izN , so �$wo���s: .D! ('r K' ���6%eq2M�)A�a�, rE��5 1 - �5I:eq2 vA�U�2�]^.}2 C K(`rhs` selec��� -h� o0!pJ�q 6-rhs �  lWiߵ)!�>nat $t=0�*��atA� MI�tc4 eat0 a-�wa2`e���1C1`�]m�&`f9<p0`. SQa �e�< ` �p0`�)�T. BecaIve>e�X%"i.iv ity,:  aV�a2E�`b` -��.� ��� (� a sequenc�1�s. l!� �c[wa|ve reas/o� K#�$�>=&u ,en.wikipediar @/Picard%E2%80%93L@l%C3%B6f_theorem)�2we still� �m��#)De b�t�/ or, `[0]`�M�%��-oneV B%I(EqA)�), C1)A�s),�A��� �, 1W .EY_of_C�m=[0]I� QA�i��eQ�7%�Q�� A^��F�weIf}= d ou:v�N=oi?��2�+ �� Mg��o&4c )�= pr� a metho���'r�to "�0�I28n�:F*ify2R�,'-> Ofte�4W city�-NeyE�!&beholder �� �Ab� y6>e e e�4get8 Just�,double-check%�#��it��`t=�confirmo!�� B��)����[In s~��s�yo�2_�#W=_��)! �~se��is.j�+!�al�!7"l�=� "� !s��� ��m: $�� =o7K}{S< A e^{-rt}H0,$AK -) /$.�%Ta�IQA =HtheO"wor�equivalm" F2w��� 4 a9ve ver�6��B�6�� �0I�AM�!�+ I= K /�AA *AQ(-r*ti ( BT���)�Y�>�UwE��%� thei& 1ct%aimw06mE�6` -5�A tt�*woN� way:)�say\Q c!{;$0,�B�� itely=� (c��+numeriA�yr)e). Bj f |can + "�E�w��to �a&� nec�$ rily� /�&R�= Tes�9dw��8F0 surprisingly� �blem;a"fac#/is nof6o;��AŎ�>in��L(Exercise:**� a�n� Z"a�.�l65/� e7fdEda�}{dWE\ _ , + \beta f^2mE6y #�� � ,�"F�  }$.@eq3R� �� +H *�6eq3M2;.S�q:k 3).rBT ��&� � r> *.�at0r9mj����[rfpWG� 2�j�&�;�*2� Use [Wol�FA�٪www.w %�.com/)a�I�A�B� mc,M�eia> b�!�3� >�:� E� / �sQ�I�(t)^2 �$I^/.l  F�%�-2�e� Natur�Ke��F�pperfect�s �ed (i.e.�SJ$),�neget: :�JAY2�{}&^�!\\�11)�00�*j"T4\\2>G S�-l�L$ e��un^O0�O�O)O0�O1�OE~&.wH�o���*he largd possible6wqm��u:pai *r> is $El �$ 0ma�/Y�never�!bigger!��.-wo6ma)anti-^�-�%�%m% (-1)��25�a�N��O9�B&!�%q {&2�P9�_while $23$�f:Y)!� obviouslyI0rGn-� {2m>.i),V s basH �Mi�a�rix� f�Ut�S"worse" o.[�E�J�) dueEA� Ct �� �69 ɺ/5one-nea�#4-neighbor. For&Dgi�5a.�0 `T[i : i + mW0a2�� uppo"?tur� ��2�f�So,.96r� u- d ani� O}�,�j : j�alo�The�B.� wsQՉ:�)J��y.t Mis �slEly/��R2loc``j`�4h  a sm Y1�hAx6��Zr�?,�;b�= w89/c$ (almost?)��aRA"6� e�ly�`T�!Z6�X Z�X �NumPy �2\package ## Overview 1.m roduc{ to6py.3 2*Ge03 Data�-(�) n2om_�4$ChoiceBytes() �;ermut%�s ^shuffl.p#() 4. 6!5Uni< cND BinomiaPoissoQ5.� om G�tor 6!1�cesA#Z-)c0 **Numpy[1]**A�w6)u�%1Language�t��!a high-AZ�nceh8dimen�ahJ ray :� `0 ���*wBa/s.�;con,*sv ful �!ar�F, Fouri�� rans� _ ��Dber capabilities. � � � sub-Qix%Q~ Tit�� chur�F(ut (pseudo)6us% var� �E� �t�advantag"0**Mersenne Tw��r[2!�$ �?�*a�!d �6� $tor (PRNG) �TWready �;dd�-)�'s libraU;a��QGV1?.:�be diA�E o 4 �goc���Je12SS (ge�+2�s),.Ds,�uA%Psee�zZ� i��()�%� � ()[3![!�nDp(wA�"rg�@ ), wM#":�"1+,**half-open Grval[4kbe3 00 (inclusive)�1 (exei��ani"A�a�o shap +pkT=y,th1Q��s��"��p�Athrough�3is9 us. he u��2� (�.. 'Par�Hs: d0, d1, …, dnnt,=%al�.Ar�9Ly)f��,%�?allAq posi�! . If.�!�"�ingleM� =DY . Rp�a� : ndm!Z(�...�m.AUom����>� rt)�np npEooQv #pr��.'< �MGY&�7> �kD0.0923385947687978�&�:n2,26q2dMFE�2 rowiO 2 columnsMUP %d([[0.18626021, 0.34556073]2/([0.39676747%$53881673]]>�:�3,B�3����a deptX.�)(� [0.419194)7$0.6852195 6��20445225� 87811744] '% R02738759,67046751 +x73048 &55868983^R14038694,19810149FR8007445%^ 96826158]-_T>&������m�7�P)@I$�AM�E� Z�of9 histxI -**B�\[5]**� us��� H�� j raphm� � b�L��n�{� �%g� a�D � �alqPof&���d�aM�6� J� B�a�plt  `��T00) #q��e{.WLU!J,(x,color='g'a�lot1n 1h�E�i�z#�� � ��tn()[6��6�%D� �&�) (or s)� !g“o darZE�”2 � K)1�� & uni �'“9M$(Gaussian)2X�mean  Z;n 1g! A curve� so known!��bt)3it�T?Sy�H*8he centre. HalfsM\1�� �|lesEsI� mean��5n50%:Fec be gP-� � 1?. �5v5be�8�5>5Z�3����AF;-���of .ing-p�_QuI/!:q2,oa+N�� such O�no.�w cli>Z+6�n() #qm e�oneM�io�cH-0.2959569528837944$ >`��c2�62i� p<D�Ge�([[��52282�=$-0.1682474:r0[-1.3086617 ,'82948031� �m� �-i4N(mu, sigma^2)� e:  *�d 5n(...�(mu Two-by-��!�:Z2, 6.25)6�2.�\F 2[2 9�J" NVV-6.336970�$ 5.7842766:�`[ 1.69177013, -1.772594 --S)�.���.' e�Y0cl��6�F n�!rJ�_Fur�explaZ!o�?aM�'Mr�1'ib �A�p�9 1< �_`M)�a2� A [7zc*oCGteg�A�low2 toY > "� dis�DV� A�2�FB�"� . :t�:� ��Low(�K@[��� rawn �!]2V(un�  =None,��#�'�$p$ ᕁba;ON9|��Ager).  �:? If�d,:L st��h �� behavior�b��� size ��� tuple:ai:�Out�H�� �� H is, e.g., (m, n, k�m�� * k�d� %��Naul� Np�'��!p���d�0 : :� Desi\D���".05 M�:meMb�"irYO, �(‘int64’   etc])byteoj-�"t avail�:�1f�Wecib ma�"v}";ent C�1s �=;*�.lat).�de)25‘np.in�Jin%� ��kt.T!�B�R��appropr� .6J�DAsg�$�(�nS (��om_m0"w`.��, b�d�&�WE/ : Co�llip&�"hE� 0 (heads)a1 (tails�^��1� ����\!0I?"uO��h4 DAA2� 6br�ze = 8R>0,qA0,�5z��% 10 �����)#�2>�5.���5,A =10)HX� �([2, 2,�k4 2, 42�� by 5�% �lf�ݫ��(10,5?T6��3��6  :3 � �: W>T N3R8 �, JT> j-�:�K m^T p2� .� *F� [8��� "�hB�P.(OalaJ)"G�,instead�$�\��it'll  q�`�;HeF��#"s` o�9a @U�0.0(in2G.0(ex . R�>m�acof)2ainuous��2�>�au������>�%� or.���A��!�om !��% �   >� "vZ��Ied)oRQ q pric�X good� & euro2e�l6�} �geA^ �U<-=toz%�f�.6~.1��J, of 32c�^�3V�.947187 >4744780363588946f�-E 籶-5�15 Us%[&? : (b - a�5 7" + a2i(15 - -5,bo + -5�!-�@-4.46474988708483�`9HI� a 3�w3��!L � �sJ�.h��(3,3)J��9[9(4331272, 13fD63128, 8.17594392:�(12.99294443sL53621199, 3.7753641:�0[11.48817683,�831570!�%i5544615��*)(),ranfHA�v����*� 7-�4Sc [9�L" *� ��1-D)[��aRjqc�6& R non-]  'user m!U0� rob�EFlIe�^�%�>�a �-Cu� n If�� �)b�s�ed)e ws� a ,�j=a�a� np.a�Ka_N� ��tu�g�g�g*6: bool1op�"aWh"52=Vr F�_ p ::�:�VYw2associ!6SMntrVxa%��1�API�9u�uZ�ove�!\JW6�42G Hs :� item!�MUt�m ed6's Raise�V�_ Erro�LA��_Ice��azero,a0amp� �1-"pal !��mf�� if p!<a�z��2` H��p�s�3tF-B-�=�C2=nE�aU>+��$�H*� �,6gm��� , [0,1,2,3,4]W 4.2_��5,�m76� �;�  ���.���s� , p=�5<]Rs? ], �&b64b�je��5)5S3eq:�6#Rg�Jl8I*R�1� :vPr*;�F6zyrŧA�Y�y� o�-�L. CE�� ,E9of1� fruit�:#th��Eb�%�ocQ��i�rp�]Ja�&ed "m�W� 2����XP7spectm8P6�6�M�H["apple","banana","j%gerry"],�),Ml$0.1,0.2,0.� "s6�b5As�0�e����1r;%u* �a=2e�0.6thK>�#ly 600 � w'greC$}: x�j2_6 %����tl�a�. �d� ��
Non.�-&2�p64ar�>�r 10) �H p(arr)+N�[ , 9,��I 7, 6�>R�! 5-aR%2� &E.25}>�9).re\�  3)��[6,�8:� �>� �d ^]��2�, [12]N�t�*� 3 �� Eed cop���0E����6�A���Y� If x�� s�dly �e]ix�)3Mb�k�� M�E2�:�(l� y"~(e)���"/Dr h��gKC"� ,R#5����s�b0-9Z� 1�io�Rf2Ec1e,�Y, 8e)�{���N"z":"Ty�$�a�""origi&j.(� ��d)I3� �Mq[[0 1 2RR [3 4 5 6 7 8] rr�J *�$** ce[1�,�M:�X�!�eK�2�E|2���d�-a�$��itself.'Z 4()�1Di�-�Qs �7&�0L0.�x , ()[1�,J��s�M�V\. �!�w ly&��vP%�F>x- [low, �)h desv �u-"�c/#.����Obe�d��a�&�)H&� y d$1tyP-� �6uis $$p�y�C1}{�}$$�Ca =�~b =� �#�KB&- %5JX5 -(-5)�;�@1nt$ Z"R4�.�of�4ru �E��!Q?2�&n!�&*��M,.#�!r bՃak�h/�v".��#be 2R�6q(*to!<� 1�C �"z!�7N���Up� ��&�A�Z�1.� � V ���I#is{! (-@��/5K%2f!qE���L@$scalars. OAnwise,�u$broadcast(y�.�~��T�ZV!# `%�D�#@"� "{�?N�vt QI�i"]:��2[&�0A�1�&8~z,�B�* � (0,1�, �_ , biG3ignBb��sda,��L�,-�,�axh�5(y=l verage(Y),6Z%�='-6�& B�9+at dia�{V�- ��0qarl T��#�G�#y ,>��:�.is2Y�T5at��elrF �Pfluct�7���d/1H&E "�7�K:�M'[1 /��A� M;� 42�Ѡ4Z�, b�N�#�, hape�:c :��Mz-(“c' e”�!.. a[$�%S�Uard deviG9 (sp�6a�“widthnk� F^nd��w�a�N� q:� be "5!ed"A=� M<��V�%ny(�6ata te�V�=a�a�.al�M�Ano bias ����QitCs�I�VaN� ��([16]: �.��Y>�.��%2IAm��sya/� �MAD�v �2s*�-N�0e�So.,w�8**92Ds**�H�sa!�]_Jb"q?Oas-tof how Q}u�5b�*a 0W�D�VlcU]!, Q>`$�J� lly:�<68 0-RI$!� in 1&�.y��e%M�<95Z=2J=� !g,mean 3. 99.7Z@3�@]���o�,cuj1 �h @Tst&�ha sLsl,���,JvI0.1� R�Z. [17]�JJ6�i�(1.H5"��ũv3>�H=0.5) J� mlabF  y = � pdf(�k�) # adwQ��st �e���[�3 2y, 'r-�9t� s_ad|M(a�=!+�vD(x=i74y�va�6j1��N=55r72� B&�>Nb[18�"TAkB/>s6�[:� ��"N �%� �Aua*��#k$>= 0. Floa/#r23 so accept<��the7l�: trun5*�b� �..�����P<=�4�� ��2�R�G 6 l � �*[ !imQuc�Oes5ӈp��u: TE ng a coin� >r; land,onghd��0.5� &:�>9�+�[ 0.5 *osA'3D����A&%bx&utcome?eAQ re 8D,�@�%HHH��HTT��HHT3BHTH�ATHT�A@TTH 7. THH 8. TTT T��V@ �~h?39%1/8 (HHHe/^1213 1T,HTH,T~919!<8(THT,TTH,HTT\cbuno=%�� TTT)A���ruB !��P100)��3�6)n, p =�*�p6�Q�(%,���� x:F��!�g�:2q{�or 38 ����,w�orm'ErI���P�&#;no -:1.,D�r�)Road. Un� i; �.t�.an;]p.�Icc[ occk�;do� m�F!be \aWS�l ^J�yL!!J�?� B*k�<disu>��7B�0 safe journey�Aa�A:]� n�^59{10 cah+be invo0��-?Ϙ'sFzQ|Rp1D/.3> �AlyA�Q�� ��.�:���%�s!�at� 1]P='Dbe�`6!d10%Y�s&[& >,hisfun.com[1K'<p"�FN [20� .2�>�lam��Ex% �AntW=}Bbe'A &�fJ7ec 74s �~b&]��3"�r�����C����6�fH>N A�6�[@X!&3c �.thA8�!lamda�5xtrac��Ab**umass�!h�4art�& website)���c.� �u�K\lambdaA�oFg���\�lie,�7A9&� . 6�L�o%Pae f� Ng}kew�z|"� ) mpa�z ay � = 5*r^6G  L.i*Iof"iE)xw"n�d��R?�/ula� 0
$$P(k; \)C)= ^k9\ }}{k!�.:�`(e World Cup�� 2�2.5 goal�sco!; ga��Mo�l�9 situi���aR���NF�EFo��o? (I� brilliant�U[21m\be* �P(X=0)�2.5^0I](2.5}}{0!} \�6(x 0.082\\\\31&�]414124205426424264574364343641344644442413 4\vdots6HQ�R�M�(2� �� "pur�%� ��_yCom�Mi%�Tiox�:, �I2>rKa Ps�KRց�$�("\K. �hK-g&�&���B�9truly�%c�di�E*�U6E:asit�e�,a��Je�RNG'sd��:WJde2q >s? 0m�4cluL5 "� �s e� :�)Su ()[2�n�M�'� heF^�L-$w�8p. :l�KeMa큮)�;< ::get_s�{?��"6reE^ސR��[ ?���l.� :msm4)[2uEr�pDzZ��a � . A2k��? �%d�-Mxs!�o�^is*cktfs�?@[2�?: �aa4Oll)WQ&*^}(1. e*�5A�se�c%�g'e��(&�K(Y�I��("�!:2,2�'.C�I07022004702574|[[7.20324493e-01 1.14374817e-04]%( [3.0233257%�I 58914]�%$�t1y�s�� 1.Pth� �s��L_� exac�D:0B�B��~}"d��!�>��67 �'!�on�,��dUrY ���GE �+��i �<s �gE�\reJ�I�r.�uA�(('MT19937',�([262907L�H, 2983301384, 6815�E�/P033622241, 7927728382�M330696nL(, 9288313�=,785085746, 3�5283L$24020253796G224868/114521z(, 378436524�P948434636, 26676461612G25988544�� 92196720�3457823J40195974�2906395n6%( 13496699! 267681799�(<201769589, 20027�6�540F922G 42249258106613135�6 170993043� 812273278!�734H42G 159229179j_N39rF�8t672187, 3228651068, 31914544952G32861353g7 264054527�19� 5314;P746505897, 22921638272G216438O�(, 158141003!413832/ 25365718�O � 84236Z92369v15515882SH454330362, 40506074!� *P223006�2165660!? 5978667!�$1036426282A�328159%@13186546624A�89870, 281455094:�4793834%444946987!�81023867:92>I2� 43780152!89�899L+8�O351G986737862� 3762046a<1392372a0 412AG66�1407546�� 353916710: 38630970eH409574a<�65496A7�P99և 3434980336cr�083!W35s958%8�At, 16531�95A�35588116�38706(�9102614E 1�R3�+ , 1220770E�123a�506p 238513808/ 3006;��753953E� ��93567AD09374066 214397838� 1310!�$, 30726714A,12238164�588822B�38218820�25005628A�92682Al$, 38063177al2A� 66476c 942277�� 287712340�0302252E 5550721�� 950�6G$1855512191A�4045385�-�<877!� 8363400�R15663��6 2625i��� 351912353�;a�995�A3734848A�$ 6765285032�27836624Ag 355703449!�a� 4898al34778570!{566819906T131�74a�1982699a� 269352081a`127070�5 96149117: 932714317�� 9831��2313954��21473835KR6��00/194��86c16996188!�384!�9I�9�D1� 9361205G"00895642�L46A�199� 9�I1187332a���367556��91� 61:�896� eH8689�395087� , 4w850  t316:R7�T99I179149!�34498564 3796b A�3318166�.810075124� 4804983��17306056E9726600� 228700843:� 53963� 696834�7��4E4530651^�04�5.� 2650490� 35�/p � 5563�25� 30�19693C6�4!�66� 147!`4�18a�� � 2! %΁���6�2933843:32095572� 31111704!{ 426471193��448282626�13885035��19994360�� 8184184��2839918%�/2�226845676Q� 1424t+ EA�� 84��87��98785986:�87950 , 342��%oa�� a�41� 7�!o883712:�51J  6363!�8�. 259779Aw!�!�970716G!�7;] 3893110� 37623 7424258�"38!b1766� A:833�W8��G4068324� A���a�24���2c17806091s 05A�22�H97_ 112� 9�( 540086246�z 35!��22038A8 4058078920 �48��AE751936� 824266E�34445904�X� 9187�U33398458ɽ�2� 3733�\A29576579!!k9A+��500%��� 2689682?36Q2124571e� 4978� E�S49�:T545470> �527� 387�93, 4097� E� ��6� 6!�2�* 2033!M� �q509�� 96918?�, �2 1779��A0�f!�2�%�7C�16647��6��719��e;842�e1560546�$ 2374�2 2395�}:T 4513528�X33468055 4592985O�34A85�!A753B�1018203A[!�� /112!�8@ >87@ i83�(:23S 8� 3926� 3a�467��� 6346[ 2887��6�4 ;   5260229���45394? 4��41�2m4b 2�2�5k ,�E& �Q69� 6�]29208876�p6058494>� 07�9X 7469q �709�-2!�6�i 6578415:� 436� 1448E �U7185756��15a�03A 882o683129049�v96265!�7� 66a 23976069A�41263k6T 751549%��2���5499732a���733�74111042:c530��� 897�  23�6Y�� 8284��L 701>� 1153�!��N 7 0933304AP9� 1a� 9932A�2� 317374357 79�� 4676��1984205A��} 9813>)49G 8�� y 8 ,C 08155)W9312414� 63922316> 846381�aX 98554�q 5434� 237C A8393801!�2� �410G294�8!12700A,71927� � 74��56�10401096�)84919� �50l G34117295�30319432:' d 2855�  e 7 ��!�24007u20�!>T� 4049E�279042 427!�� 1064�6!c8u7496j 721P{ 178�� 4904^ 2604!oa% !140:4  67880�b�07�927476245�� 61��4 3AT2�120�0� 27� 841^146�55E�023'2G _f��!?1� 75�6288182�� 8979801191!�. 21� 69� 11243%�4g% 1a�7� , 3625937>27au���5�&$ 34275115a2035120J102�9F�950� 271�� , 2� � 149565�45,�57:3276846�37 8��!�� 4688� 22�86:���825�!94872�|894350�121296���5�56:� s112aT� 2360!�24302} �9169250� !@.�33��15�226854< !�169548�Ba�08�!�824�e6�134+a !��� 30337241%�46�"F 68776 12�[99�4��! 316_ 5�99� 148��>�42902958# � 76�4136012R1P28A�51�276a144 L91B1���47� j 3��!4���6c433623{ 8411386"161��3a�3;99�1�92z 2�1461087�36726527 114833�$, 24737773��0136��97��!�642�3892552� 3_��Nk 89:�094�27736342��37150^a9209105S56�1>�x878 16238223���19� , 18A�134A2432909:� 75554A � h97� !S� � 3952� 7� ;.c27822043�wa�� d , � 7758� 82% 5>��3A� 892114!��34 ;� 6433��3710226�* , 11961�k5�65387[A826��17969638:c2H 2726�h0���r15� 304689� 68�26R3846781��56��t�286� �8 1�O 075862 �� 75=��21348���8578073�i7450164:p| 3273!A-5a�5A�597� ��� 760�93960865:��4��05376�20�=92� 2980��|!E:G739�� 2548�A�652380�n!�� �Q123937=.418� 25a�A149� _ 4162� 2�11635462:�349�$9A� 996401�1b550�Q2|�� 7457!6�412764* ��3!�2n12�50� 31441390�1r216:�� ��  53824�{73236z �9[]5Quint32)',&H0� Ref��ces;%���y(q+/ - Wel25#-Nx-6�vof &(.E���s.tcd.ie/~fionn/misc/mt.php - DetailsB�%M:gu�& mulaE(Y docs.scip � doc/� -1.15.1/r�/'ed !�$}m int.html#;: -'p2().�'h(�://�wX-.��.��H�FClA{I�0p -.G�F�^d6a��*�n��api/pq� _apiVin6�y5 - Uw�6Z�K%Kn�FInNG�k*�( 7.��6�om_�)�9V�"N�int:�8��F��9f� N�"�H2F9���fSJ� >� :310����QJ�>� .b11���s�KJ�  -*�K2�2���*`L��.�|6z3zst*w,�� ques�/ s/15�n59/ �-vsI|mute-�& -"-Cc4?ti� .NM 14{�l�lueF�6n  -Iciy� �� �H �� 4() 15���n�sJ� �� 3�6���ss"�7/�D!�ndard��-d*N� -�b]��b"os:M[..8 1��A.lyݍ/h�ts/#�C--4-�- -�toO@y 1�c.cb�@�6(��5!��h^�/n��YD. .� 2�?.?p�6J ��7�2�X! \umass.edu/wsp/resources/ fG 6e.�01g�=se� +:7 2�226?� -2he9d )V����*N/J`�d8 () 2�D.D seedJ� 2�."z/Jn 2���%�"�3Js 2��n22� 23/d�oce-hL-np(5-!9 -and&1s�4 ?rq=�g&8N  �# @�c��RF im���3 rele��uZulpa �� pylab �;��B p��xp � \P�:s, Fu!�,)� bol,��6ig�,��, H� odes&s�?, ode_uY,�$ify_ode, p@1�mp��%l4#@ ORDER OF AN ODE #LectureJYslide 9!��0�t�{ Independtq�zble eu�)e1� # Con�Jt v =5('vHDBF v��ode =%"(,t�g eta* !�e�wbBsh��%)� ke s�the RHS�e"�E�<. %3("%1:") )F (ode"]W�2%r� +K%d" %9�3,�)*VZC1�\� #N�x�m =5-m%5+kk6)m;W(H ,t,2!k*2�2���R�V�y2�y�J�y� �a�(,t,4)� 26�3��3b�l�``�j}�P ANALYTICAL SOLUTIONSQ�"#F14"!�Q�x�R�'����2h x),x!f$2*x*(1-y(xߙol�=�`I� # ��z?Kfo&4�#6,4n�itoi/4 ��"�u �a!�*�t�졃���b�vof �!����Zc #ea�ode. B"�Nit��stitu �n '�'�o 'ode'  #B|�-�$�U�<�8"\ r�'��'5Check�:o}@��...�j =.)�:) if(&[0] == j):s��!�R!��4ke>ڷ8 NOT 9N65 %�e�L��7handl$F�=��i� (x0, y0�7��ol�F # \����= jE lem,- -�fun5c. How��!z� ll #bGg�dr�TGnalytD�5:�QODEzly�Q�� #(.�>%L3<"?' ow�>ar?=; #�Ag valu] (a]�k~�ֈF�� x=�Lx=1�X���.od! (|B x, y:u�), x0=%h=2��x�A�.li���025��, 1.0 + (-x**"BX�A1�o0,xa�q�-x_� 4i(\ + �>N-3 -���6Q�:2]- 2 2a'-4z3+3Ij �!���h Coef�q�tTlɋ�s�"N�amin�M d c = [-1Dw # 2F| w�LKLenzrix-m�q֎Ox,Je:�upper-�h in |j�ra] at x. W�[[-v)]�&[�my� #&mz��B8M.mUachVu (rowX� A. �j�p4�Seq"!�U�Yox �i�nor0RQo x, d���!q�L�a�$rap���pr�one�m��r�� w!bt��O LetKdirEvonKByw ault &�R�a)�nn-n��iv+�#Ua&9VcK�".��Ni�� ovidx^t���max[Jґp)�tĬd���O5��. x0_-= (�, � x1!�) -:,+) V{0(c, A_ub=A, bb,-= Q)a* �� carpe�&�2? �JaJ�hrray(�r5�p�S�S_uA���:�s �yV�,] �1�&Ֆ��e�_ub. !� =�7�A(- 1500 �����������B�ia��:,�Efn-uo_uajer ound:uar� *��gobDR �V $x_1=100$�i$x_2=27 1W�&f �I . � e >�S s��2� O�%���le�λo�v�eBE, I hݎfΩ~~Y�$Xch m����bl�pe�h pape��nYI=g� mis�v. H6s�shН&X s...:�SD�$ 3 environP�,s) 0many helpful �elbra�{i#�U�$V������kaggle/g Do� image:;�+github., /d(- 6.��<�",�6k�� ��+�� load �g �_p #�a9�$p&s% pd #ٛpro�c ing, CSV ըI/O (� pd.�k_csv)GC �p !n7�}&=�g& �؄F-o�"../i4/"��or�2�run�zED(by cli��Qo��e��Shift+��)�|l�zall �u��%�vt�os abdirm�, _C�le � os.walk('1�I'�;!6/� .�� os.path.j�|m/�L#��R��up> 20GBAjcurJ��ory (�wo��/��W�7Wra�asl!�D ��� ߷i�("Save & RunG�"qYHƁ(tg �te^"�s�E��/, &�gon'� sa�out.��s!�on"�#��2�(x,y,z = sp.�e�y z�DmWeq_��$p.Eq(lhs=y< rhs=2*x)*92keq_f�?zJ?3*y?2R?.Ʃ(y,�.(� ,y)[��WZy!��U*&*\## Chang� �$of symbols�� �z,yB�...u�swappF�m�s f�u�r�3I�eA� rMN�...�Lthas no effect. c# Transform�8, Eigenvectors,E^ 8alues Matrices 'E� used togeA�A|manipulate spatial dimensions. TAW�a lot!�applic�includ1Umathe�cal gene�3on7h3D computer graphics, geome� modeling �A�trainZa<optimizwO,machine lear %Xlgorithms. We're not goAto cova-\he subject exhaustively a�H; but we'll focus oa�few keyaW cept�at1Lful^k�:0when you plan work withB�.ElLinear>� Youe�=�a-�, by multiply�it `a!zrix!�e , acts a func�= t�operate ܁�put]$to produceq4output. Specif!�ly,b �Q!�.l*l �t6�* �%�i.�int�Ye ~ U8. For example,!�si�A�mA�x ***A*�p �v*8$$ A = \begin{b 3@}2 & 3\\5 & 2\end \;  \vec{v}F<1\\64$$ We%�defA�a�I� ***T�li��: �T( f) = A PTo pera���5:P,F(simply calci�A�dot-�tA9a�E6$*RC* rule;1���row!�')#>�Ule colume�)fĦYc�>�BMFp 8\\92�! Here'a�e5�u in P� 6�0import numpy �lXp v = np.array([1,2]) A*[2,3]��$[5,2]]) t!�(@v print (t�* [8 9] Ia� is case, � !>2���iu-Z have 2 �>onents -�o��words,66 tak� 2-��alTjm�$newR(; "� <inda�eB�D: \rm I\!R^{2} \to6$$ Not�at�6�may �$a differen%�berA��s froae29; � ����might9zI� Ion�� o an)S - or!anotma${�$}$nFm >�let's re�mY��,!hle reD �� our origi!�4iE�of�**��\1 & 12:��Now if�uo= ag� �e���We��%�:�6 n\R��c\32,A�So ,%�:���.b6~spMl32��B vK3�����z����B�1,1�� 3�� &J}����B�2��5 4�#BA aH Magnitude� Ampl W� �y& b i�,� 5�%� n at� st�[ofE�followa�],ways: * Scal�,e length (*m�*)< l� � it long�(r shorter *^ M dire� (*) �>P2J .I e� {�+I�I��J� 0\\0�B 0Bl As before�9d� ��k� !�1�!b * ��d: �� } . Z�^M6�F�2\:#��>�res� ng�~ c?ed��N.,� )� -ts^ . LővisualizA=aW�4 m�0matplotlib.py S plt % in Fg �AO2g 0F�0bg # P�vE�t vecQt,v]) �J = [0],( plt.axis('!�l')grid( $ticklabel_y �6 time� R� beenu� ���y�5z�%6Jm�.� y���i� 0,-1F�1,0Z��v,t������iPa�a#v�% � see-�%�M�y moreE%���M�6n��2~��� f�u�R aFU� *and*Y� -%5[ �Ta�ed �O�Yys�����b Bw � V���������### A�:� An :�� ix��*V %�add� off� &, s,imeG ferrMx s *bias*;:2VQ+�b� *P� !\3JJ^ 6&|6{-2\\-6�>� FD 5\\-6�1�} �okine:pis uallye� basi� � ar regres���c��founde �>t2n$*features*� firs"�i $coeffici�*&�!�-�+inter}>�'E + aZn��-�-1F7"BD3�b2v-2,-6�Z + b*Q�^�^�^�^5F� ##���.�So���f�"�u&�,[+ 2* ,� ,��. � Vion��sɬ (inF�6�I .� "� 3 gc �Kai3i*$)iZO�U�e�G:�mze� alc-as�_�ar>Q�)�>�earlier!�a�in��2J:�%�$dot-mulitpb p:2 ��~���achiev� %� �� �w�)�ar � 2�2 \��:�1>+F BN�&b8 0sE�-�se2_ howI\ �s�� ident��� � n 1:t$1) t2 = 2*&� 2) fig =�X.figure() a=fig.add_sub�(1,1,1):d1JO1�P�P�P2PN 2F 2J 2� � � 2 ```��sH e��#�5>�.Se�Sf am�-�6����" paira�aty respon�!�J��a�h na�p�� as e "�!e� �4 !�! "� $ 4���Greek��ambda (& ;)&� ula���v�� �{!�:iN\ { ��W� � � n� n ��% ��(��/!�>�**�.L:� "}represen�aB -�>�as� � AmM`J\i� T�!2� �Z6 =J:T��7V/**v%of#a! . A�� � �e.�-YjI�IF(#82� m man� ,. However, i8L$A�easmto1 tool� programm9$language. *� ,!x�~t!{**�"alg.eigAB�returna_ % ! �d �$. coq�� .E�sIm�$V#ed-K. �6� / �6 KE��� Z)b_&I;E3A=:y*S 3Z�ap�T" .b��31 eVals, eV"�l�%r(A)� (& ecs�K!2. 3.] [1. 0  [0. 1.]�S�5r�)p)!.M�F*is-!,a� n&%0qK_{1� 2,Av:N1 \\ :i"kO$P2?3P2NP0P:H!�� erif�atq~� �#j�]�saLAW dot-"�' B)1AkIK. �v#���)2b� �:J�%bAand!B\;>ub�!����!ySo farr"good. )�check%$sec��93Z� N�B�%6�QS�1c:f��-*I-Bi�Q�� s do�eed]�A�JIc2�.�6�/]�*�cod($��,*�***�j��A�ec variables�&�y���-previoug-de cell6_&vec� ��� lam als[0] ��'�+ x A:}9&�'- ').F$: ' + str(i7 ('v�A.A@:H x .$* '� ��vecf �1� �1� lam22�2�vSA.�.V�@�'� �-5^[[2 0�: [0 3] �#�: 2.0!.c%G���t/�1:2:R 2: 3R2:Ѩb������R ( "����E�to2��:6�6�!01)� ("<�2�BRBec*o��������Eec2��������� Similar).���:�G:���6��B��PAnd�sawz � � � � is,k>%ca�3�� 2��� � (1,0)]22}�U "+ "B$gW to deterdZP� Q6���m �-���m m 2` nm &+��y �y �y *� �y �y �y �y �y y R�:�� g Well�B: k�/�� ^� �� :���� ::2:�!&� �� !� ���se:n:$ � ="� 0� � �� �� �� �� �� ~� "����@ɯs>� �&� ��F��� �� �� �� �� �� �� z� G,5�:ok�/�' , slB4ly�'complex�ple"&�^� 1�*6$$�-g�=h8C��? 4 �$ F�R�)% �& & 3y�8[[ 0.70710678 -  2+�"2+e� �!B� �<%g&I�*I1RI�a2���g�_�1z��nc!�SoB4>Eb3�neB�$2.121320347R�r�Y J�1'>���n�!H��j}1 Vr!��BK8\\��J�76V t!�^v֬!JW�>�':�"isj��t� 6��G�T �T �T �T �T �T 6T �J �J �J �J �J �J �J �J �J BJ �)de�Aos�<�� we'v�8ar(4a little about��E���s�C� > be wonder w�� they��"� �,�D� to help �>�ceJRecallV"�ly - "�6l�a� Z*s[*"�),&�).^*ith! get� too techn}'-(it,�n1to reme?� s\@n exis�7anyY<�Eorg-�*x*.*;f y s�5:��!be�=� in*�4Aes""�B)�e9u/B^&�9$� = Q \Lg$Q^{-1 �#�9!�BC&�F �:�S$I8��+curH@brA ***Q��")�x!�.p Y�$a-�&%/�"## �"H$O�E Q� dE!]diago�?%�`%w�/:~�0�Dz� >d$ �"�l� tin�+��dX@l. CoF3E)�>"�02\�6� $$ z2Lin�@ch{ #D!m6�%&B$\Bas�"s7_=we%�&#$IRN`J/> 3,2F�/�6 l, Q�/N�"Q.�"� 96276969� 48963374*� 27032301� 87192821� < orQ0-�, Q�Ay/%�Q>�0�&.�� �& 0�2� -�^�E�c�La.�� �$I�Q�,i zero�&�MWC elem�1�C!a 2x2 �, � willI�:Biv>"� 1}��>2,3.�$In�IFF�Z��X$K�!=n, �*��>�ta�u\\.opBB3A7doea�&ean? @it  �c* hB �� any*�_�)B�*Y� sepajL "d2S*Qq�B���A�+ =B ��Kro�1�~%�,S 8F1>�EOu��:��~u��$>�b7V�V�"�(A4�7�� ���6M����J3])"�JM�t)"cb7A��=��=Ɠ=&�=2J4A�now�5O,do%W thQ )RA��:b� seque�Hof]�6�� Q .���:CaL(Q@(L@�� ))@v��������So!�.� v�01& ( . I�JvieiTU:,mediary stag� �G�d:�G{ q8B,IG�$�$al� �/(T@Oa#)�A�^{Q�� ^�8of_is�rib2#  (,=magenta)R��E���E@v�L@t1 t!X Q@t2U�F�s 6�E(v,t1, t2, t��)C�,&�,&j,&)�', 'red-k !�v� �Nis"�'�it�uld�a��FJE{E[A�be 8IE+��9�2�U�:  (� �A�ACMsab�}��)s.TypZ�Aat}ep.�>�v swit�U g bad-��IqY�>'  (-��!�zF## Ranka9a.*� **rank** squ�J� i num�P non-� 2� �G 4(. A **full X U��AUz� -�e2#*�&N. �Ic^�B> L -6\\�)-4��68!�6dT�1A� thirj0�VBa)� &��"`�>�6]$6MB63,-3,6Fy2,-2,4F1,-A3]) lb, Q#B�eig(B) L �b�(Lb2�3.0 e+00 0nQH:%45.23364153e-16:CZ4:C6v�!�0&%6�107*�~3.26F�Y ]��A1N�E��676I0so extxly sm���o�e�]�;� Lib��Z���M�� ���Auchde���.\I&Oa SɖF�V���0"/0&4�bi.;��u� ���B2&��ul�!�J"� �a��JjZat\6-�����P�"J �DG>�C. >6�� . ���� Q) LN�L)z�6q�m 2�.& $-0.4472136.�.�#89442719 3[�V-0..1 �h2#$0.9428090447140452� �453559 e�So�E4>�9;$&� ��6�2�~":}"�$-��0.6.R1�b�|� �2�y.a�N�AI�inv"��>�6%u1n�!,!�� at�ds�fa*>)vv6 �!h8 �6)��q��npіinq 3=�MoJ&�&�+ 6w~2P(A)��P�Yule Process: I�,a pure-birth!>&2 a Poisson�Qsi��G� po c&Gt �E, $t$, $X(t)$Y l/inuous-%Markovu _#�s babilitie!M�&�K xsplit} &P(X(t+\Delta t)=n+1 | �,=n)= \nu_n\,!\\J3211-:3 \ p �I ll $5$��Ea7d-']e?)st$n$�?a �>al�@e� K(= b\,n^{d}$)om(@ramI2@ $b$. If $d=1$, t�@A�<$growth. It"� �8if $\Sigma\, 1/�$ < \infty$�1nN=�(size explod�nIc2E; >�Iwe �� in+6*� jump c VUimor�X��6'he�XB&� g\plosive6m�d>1A�S2�e&pi&1*d3!wo*�� ques: S�Jng%�im#c �`` au-lea^gmethod. �`�)P ��!�fac�/at wai� ^(sojurn%m) until/ next%P!�@9��A-���$n${!�Ga4ially distribu�e� $I& {n}$�he�we%4s! �� ince1 4�exhfUgkF�&g I< s, I)ۍ�ed�"2of2��reF( �inital. $X_{0}=1aX>m)i� x23N=2000) %%3]'dAPes, $d$,U�r�6to�}eZB��Q�*�J� b�V%�LR box :,AnchoredTextN$scipy.misc6-�BU�sQ�g2D :eaborn�+sns ;cycler1  zZ^Z.use('ggZ ') defA`I_al_E|W "�10v�_hist�|�#%VeY��2 �+u��hqb.�q��t�A.U�::�*� ]�e60$ 04y��f� =]�2F35 GL.:�:�%�:&KDEN&iKrq:sQ[N�r' $t�@', va='center', h. � ���� 2���i�h,&� trak|~7s (.s )e{> ��{n}Q!6�_�[�lil"m6,5�~���n,'green'��e�“E���*xe�" &�� X2[iR.II�a�.$"�-�,GeA�8loc='upper lefta"�on�Uaxz`art�'a mg6� f>� +y��.�D"hy.K%J:��z��s4 .�~�ekT��# Introdução à  uta SimbósV� _sympy_ �)Motiv '$ Neste po0Jdo?Tso, você já aprendeu�#�r �2çõesh emá,cs�6are#Vm�. P�~emplo, '�(,r dado o val $o raio $R$�0'$egue facilB7e��r a área $\pi R^2$ de um círcul�$odavia,c�_pi$ que � obtém é�ito. AVstr!Y�abaixo MKicaV='t &�wf�,�0�pi �Ppi) 3.141592653589793: Pense,�$�.nt))|pudess�:r o cá�~hPst�d�(neira "�a".%��)3falt,�(ssível faz�s��o�%é!F8número irracioi,8– o imbrógli�!�tante:�wQa�dep�A[�$gr 1A��3c�� trê�#mpos: *9�Y�o|q*V* e *R�,* [[RISC/JKU}�<(BookFi.org).pdfe### Prie�isa s Algun !� � de���tatMaple,_ �8 e MuPad. Entre � a comerci=a�stumam \jicea�s custos�se�o�� çama s%�coma a)�^eA_q s. ǡ2alterna� s robus�� so livre �(Scilab, Sag# ,h, Octave e �<óprio módulo *6 *. Uma ���? leta\���á�%ponW n� Wikipedia=� en.w!�//B�sy�)�/; �5* ���O�iv�)�l�z #a>serů bibliotec�q!�a�Vai'�,. E�meço� K��do�M2006 e a[v��� á�ver%�1.5.1_!ꩃdezembY 2019/pá� oficx$[[�!=9a64/pt/index.htmlsՍA�aract a��H9��l1egu�<.,-!1$gratuito;  base� &i��])%&lr)��nt�1O��numéri�Hx)�os9yos Im��a� �I{s `N ` e `�`)�ɎalgE�mermKea�cx�lZ os6M r�2h!mtrsy sy.&_���)(pretty � # melh:�m�l%gdar� s� �mt.pi #�2�sy "&� #V�Yiqu" `type`6�(d0:float L �,n��� y B| F%.core.? s.PiV !�A�umC �0p mt.sqrt(2�&Esyb�;< �n� l��pA" .Pow��{Fun�: x método�7a aula ��ri��ca!��`E8E��`i�"fL �es"!fil�yàqueli�tipo $tf(x)$�vM&f �m� , es�.S(recebem o nS. de * q�o*� . Po�há��[ possuem * �& ��eualen9��podem�'vK�o2�também&��eg*)cU`��^menete�_tin�P � r!g � us%xpa� te � e�um ou E�*# s*G No cas"�`Yk` mostr. `AO ` ag��mo�d �o�C72aJ!,únic� p. Not OlxdR��eY1.)�iB0u?<�an � ;é!�� � ez%2A*la!����Qi�U� `. N�2%G��nd�� agoraY(s�ta saberEela�t�"ajsub�� d&GEtz ro l8 M�k!�Aj� njug���m5X� $lexo `z` (e%` `)E�E�ob� .*.c Nte()`!tax  "semE/M "� � �`7`-Am�1Lz�{ADtir)N,�����sit"� N 2��w`a�`:� ��o `f{I� da a.J `x`8 a.f(9 .um�6�.�a;xV<y paQ�m>@�o últ7 �!�dieque.�é,�@,E��,pe.O)m # A8)i����sAadva %r�Rari7usb2P��!�ݔx�y. ('x') ��.y'͐`x��y���%��definid�.f 2y P ��ritmet"�2���ba � ex"�"C� @S�&a>�z:�$z') x*y + ٜ/3~m��- z �**E, o**:� revaN odu+ot!u$l $(x - y)�eb�6�$x**2 - 2*x� y**2)�IE.��a 1�l nãJT#a!*'o5���d, ��f" :6�: x'Uy�v; x1�1�>Y��obU mpacot�MT�)�:� � iz!�sQ�M�ses � ��8!%� ��, >� x y !�8n�lfabe�� O"\ dispõ�l�� cham�� `abc�)qco&2a.�N4letras latinas�Diúscu e min) eN�g%6*��F .abc��rt a,b,c,alpha,beta,gamma (a + 2*b - 3*c)*("E�&/At*!�-ico).-\Vu�D,G,psi,theta D**a * G**b * psi**c OtaA�#Ba **No:"� -,�a usadD� �o�pev.�`O){ "��m"] I é�vm�^$i$.  , cu?ev�b��md �q|*=!8sy.I # imagináa��FO& � I�^� )�c.u IQaryUni� A�SU�a�� s�r� = �95ge!, t�@vsar, ��`; `S�#:" sem_nocao: �')!2Q�o_louc ; _('mass;! =�V��.b2qem_medV�+ 2� OM�soma ="�1� = 3 # '' aqui�jE@=�Q` Substit��o A��N � s2!*��m��1.R C��Yi ��Zes&N�valia �c�Ja��o;!�m*HdA�. 2:�/subX� outr��� �.�da F�& Mao4s(��,�q2ocRF? poliao $P(xK�<2x^3 - 4x -6$. C�,R�$P(-1)�=P(e/3 \� {3.2}�=�V�x P �x**q*��6 P�6P �(x,-1) Pe3 =mt.v P3-* 3.2u,(P1, Pe3, P3<��-4 -8.13655822141297 -1.70674948320040 �Y�:*�P�$r , = 4^x$ e $g16 - %:�"d]"v oJ $f(8�$0 3$S.5d**x f(2f12%&11�Yfg#3  5 �� co��( lo "�ôy"6���`�3) fg�B0 $a-^xA/b 6-;c  \cos�D(A=< Bb(+=.4$2���2!,b = 6 �8s�Z�* b�c)�4-+Ou,A�m�diret:�I�= (g * (gRj)) .\7)��A�\��m�� RO#flutu� �I� a.*4� foi!�,0r��. �U� [: qn ź��`evalf:�=.\�#�P"2!arbitr� a E.�� olhas�k!á�a."΃�#de díg�d �!� r&?aR21A�20V@�i�G!���.�20M Com 55�!r055 0Ew90~a9a6�Jse$S20Z�6� sy�01)-�20i##��pr_�i xNre�Nes V)�r$r��* grup�"e;���6 ]e{� n�"uxi�kao<k�7!�m6�$0 prof`� �_lhI caum�FC� &E��mou��te@6li����i� *6 *�Fw3 nju�&.�^ pron>�o� �0m "o A�� ()`,�()a�!#`ink �!� ��  ca�g*��f!�=�e ! e **.�0** (*built-in<�s*). Ou�$, ��aqc_"�exw 4". �(s adic�%i� riam�:*Z�. Supon���b!IvR(va� he&q�&w�r�áN a l�oC faç�at1�[Zqu0� �M a en!�raI 'faz? V�aE�! �[!��O�~mY'-P"palavra-chave" (*key��*)a `def`,:� .��6}�@(...)��4�� A i�(��2�)Tcri\a.VM)d�al��*argueC� � �0 dv(torno*�>dic I �nda> , * �*.���a� %x�(� �(E� �%�**��#`*n��is*(pelo fa)�ser�l����� �� E,�i�a "L !"!�5 –, ai�*�rusu�(o* (do ingl\"*user�NnedA�mtI2�( *UDFa�PY# nvens$�/A|�referi�*p�Nacr� mo_+g4: UDF��UDFJ-(ia) pense3>I�r�"Hia�$eAY,  $li� `9,^ onN b�pe)��o,iE�.��%salvapaI�**�� ��B!��U�EF �a s�ira; ->Joui�RB�*;����as��z#��* �ѝDe-(a�Zali ��%�erca0imo�JE8 , tá� udz acA�� passVcomis�!pa��r� ��[��i0 imóveis.��,�ã�� a yQciocinar�"�*#�#.%A!m2pTqu!����',hc'�)-k�R!�!eç�,�A�Se $c�JoA��2��T� ��$V$.y >!a �E&$r"A�r(<w%)<9*� 4q�!� $$r(VI2�Fuoc&1�6�u��_2`"� á!*-W�%o�'�6�!3�F!t 5��Z�Vo!� `3/4�&di�8��e�6W#=�V � es t�dos%-!$nqK�A�� ���y]�%w+â�5re� va a��qu�4s�&U�m�12Kb�c� tos � ʙxL>�a_2_ �(a(V,c): # V� ay� cZ@ Y-2FI5 Mas,:��66�0a�� , #� fora�&ss!��۽|na��erradaJ����e :�=�a9�e�#�cor�oM#!�foi-�da �f� �)^b�F�� ## M�03j6>I..�&��n � �r��:Nc� �&�:� Vc,V>PBo�p�^|#S'�m�P2� , �d�/ '�6�9F6} f�$��ea� 'l69rep=&� _2� Npc� typez (� "F�3�!e4*�!mul.MulN{,��� seu-�2�t ���4�wa 5=p� pe"p�pré-!sbeleci�6E�o" ;(de "bônus""l; ced��#prêmi�laJ�C �e�a� ӹ�X e5 \Di���)a noss��vo1�+a fórm�.�A7� �_3�D\,Va�$$ #[)���6 �#*�1-C&=' b��]vezeuc e V Qi��녳 # �&v#��{ZXb mW�:D����#E�_?�"z"A��m5 u��G`�"�"Uquais_@�~1�.:*$�b1196�aY��c,0 a*q#�� ci&2  T222rT222�T� a� 12.0�a(b,-Zn,�9Q@�b �2�8m�5,plaj�Qao5 -�é2� *z� .*ez�v�%� 0es�?�;"�� # vírA�ri#e colche\ E�a **�ARardCpr��� sobr�2v OM� ��Qq $r_3$)\M0435�54>�� &�D���da�Egi��?.� [ E� 043), (b,a ) ] � : 6� E��a,�nF@p;rd%u&�� �/nto�� X i Y�{ (x,y) t+\in$ext{ e } y Y \},$$ <� $X%!Y$ �][m�e $ $y %as? �a,2P�x&�D $X = ��6bb{R}$ �`;Bnze |jo�3 (3,2x% (-1,�% (\pi,2.18(#tc. N�PmA�|mam)T h$�1(= ^2$�zé 4D�� plan�rtesianoaogo� ufi�u�  �:ocs k� ma; �0a�8m� c5T�o *���@8B)���P��A�pA�ٟ>J�&a?(V)�!$�|qF21�$ = 3aEA> 432.U6p # armazen� ��n.z'�'�"W ~0!Q") �^up21Rp�"�tv�%yr~Z # ����#!�ir� rm?�Jpe�%p����U�M. ����� �Ho&o+��na` ��atravé� �\P. j8!i� 3� �+2� �B3E�: o í�, cam��� Estu�empír�:�EUA 6�?�ya *:=*k�vizU�; i�/05�*a�4<�*��@sa�=>�!|á)c�!dasC @oradi@loc�y� me $d�btŤr� ur�i s, b!�,*'=s, �e!�s �{�*f0 * $W͍>���a����)G^e"] �mterA� $�\$0F"� �6E3� W(d)d�4^{-5 \left( \d�Y0M} \right)^5}�d$N%5M ���a2�(0 ?F�0um���C$re"mF,�5MJ[áximeA�,E����!���!aBé %2!K%�nul�"�#�iq�G!����Y� , $d���W�S��Rhc�!As�7S.^à1&aaafastak�kh� �&c�?a U��$ a�"OA�CAVdecai�3t �o� w?!�=ir0� !x9ECal �0��$"péssima"�Oj)�6por�n�'z�� �A+a<i+FE��2~U levar!;c1� K s vi��Hl (rua� rodo etcA�1 2^ curta (kMd�;I):�)sψd}M�a��a��yFB�P$M = 500�m$ �7�u���4��10mZ� 2s�n�m{K�A�%f�mfarmá�I�k�3ku&�@R;�g*�9�X89, $j Bfamos5NdKn�� ��� A�%&h _s?�",2Ufa�zO!<�C�#E�a��.��Dnte: *De Nadai, M.�X,Lepri, B. [[$�eco%Fc�ue a0eighborhoods:�+Rd�aq6i!rmr�N Yurbzknviron�*�Barxiv�B8/pdf/1808.02547�Ee=M�*&�9.ar%-.ree�"i`r)X%QdR���)2�'a&�iM"� 6� ��*B6d,M,W �/�+(-5*(d/M)**5; ��nen�C��a WV 2�A�<s �"��"T�]0ajKnq?e&�Z=-ça6e8%oldom�IPedf7d*m fim.�t� a� 1 km�/%gej�f� $W_�Am�à}~Dose Cer�uQa�222 ma�.� ��_n� o2 A9ax$st� Szj��Arg?2t628�t[.� ao C# o Es�ivo PhyQ'_(,6y99�y4:�à PadE,Dolce Panini:o1,5 kJ]A��*�!�0�� W�3W. [ (d,V , (M�\� ) W�3.$628B$�3.$99F$4 =2$15~gm�*S rcebZ �E�s�1*n I���)�s�&F�2; pe~ 2 W1 n-'Wk<._.4 њmbre-�(� uf"@1�, �W �B���IFH9#ay�3�T��ci��6�#��#a��Ds= W1n!i1B03) W223344e"'A$0', W1n, '; ' �g'A2F3 3F4 4n)�rP j 0.997 ; ] 0.614 A`b{708AK$3.24e-17 #o e�TsD !�r,=_ em� aa@""�c� doq %���}a.�QUn�[QuzO!�"�-�/) `\`9�.-barraE<"A=b qG�st"�V��Huá-l�PJ�RY=��/it+Ohzc nenh16J�&el�P3Qe�S�%. C%E��'� -S�&l�>Z@�$'C �! ]2n#hW'm�!�1:&+``q�#w ,�F.��C� �\V� w ^��O�`bool`�\$:di@r�D="oC�U�5L R�P*�H Disc8O, a A�Sd��S$ ApBFE3d-l `)��,�e� n� beb)cKr��d'� dq �`��&%n`]tA�E6Y�9% &>>M��>A >*CV+�� 3Bt� s9�} oncl�-�s�)!�-!*�ż dúvR6���� ����s-m�,J,omG��s��6mj|A7ncípi�Zdifíci�c���.oBA�dy�>�pZ����5"pergu�5"-#�<��1 terpA�dorm⥱Jr. M"J�'�- ap m `>EN<:�# W1 >��#�)� izer: "W1��* � W2?"A�8Q�confirmTFde `W1`BF`W2>�W4 < 0 [N�:,A*�!}� i:��Lt���  '�9�Fr{2,A9��6H%� ;�[tp��o,��6�/�5�JH �"2'Y e;or � %�~.�in e����S�%KZ satisf�-�� Oj6� V�$%�>X HHA�%�v�� PSs)mz!��Y� .�Rs Bút7%5a�a�dic8a�ra�%& Am6!3ant� . Vaa-��r *]�� 3K��6�IY�7: i]át`�U94:^ t�!�um�/6v.� util�X"Z� . |4 |&{/doí !� |--- | `<` |�C�b e | $<$ |=ou).l a" \leq %>$.� | $> B:BgB=%�. ^= >!"!O|Te :�#us0 ���-;rMf6^�F5m &���:do�c�!�,#)`=�saUI�A��o. Sa4��e=�aWfiQ5PO*:v2 <�DIlZ"� um '�0'���B�T � 5 < 9,i\0é��o (t �_�� 2 <=27�:ir6<Jq4 >8Er�; 6 !=�����Rc== F-c��%a2|!VHB3M �]h�16��B2 1 < x!�~� 3 > x > 42)Vj==+36�,A�LA�>�h�NS^�KA�#F r<1 edp�. IW%s~ -]ezc�%g�s]�BOVA"�3�fh1.Ea�6.b �Hor�$0$\vee$ | "ou"   | uni��-disju�T8and 9 wedg ;e2:�rs�n6@not @negyAQ2Aexclu!g, neg!� �o |2I#!Wêv0esI�1�ár�4aqui (2%�)�(A%3O1a.]��o: 'A� '; 2a.: 'E'St:, amb_: �i��A�1) or�< c%6"\s dua��.���notS==Tg�"-�("4é-�T x + U �I����ed�c���"�6g?2hم�� � h!��i^)�VqF2Z�27�S�6a�ina& X!`�ein�! "a>>'not * E�#teraB8�d�e� �g�&� ��)�s, j&s.�8Cb�j� )ߥ1�� `str:� '2'z,'2 4 6 8 10'[3"!�à cn%Hfkfrase_� �6'�0 ' y)AbS^�'9B6 #��A #�na _2Y�=gY�1!'in' e ')�')���C"ál=���F�&� ��4r�Y�E�sA�"a^��?��"� i��ե� n0|�"��*� �.^  k���&4l !ySo2�. XD�!9za7zb !u/*- `�é1 se `aBb` Zf; �,2� n�Ho. Te� (L�Y� NX.b �J�J3 �b �2fN�3^I�N�GaG%�"@!DE�Z C �%^ # CC|B ���%�V��j.�= � �b]jX�?�quKP&7E*R�\S6F3�+me�l `EqA+�Z `=`L � >:�.�Z� a,b '6sy s�`!32 sy/�a,(1e �2�lZ2sMa��**�s��[7!L2QQm��ReLf�A 3!ta"]hs6�&! �iZ5d"% )�2�F< set( >�o,�4l,�--2$� a $x^t1$ &�+.�*$6�V�x!�� Eq( `X, j)x�,ain=sy.Reals �9�6��Abo: �- ?>%x8Yolv%.v/, p�^z�)`<`�� i7dI�.S<�+�D?06� �46'2�! �^�f� =d%?,T tn�Fx+b�Fx #i��KY��i+ޕC>4��Rlexes�6�aF= lexa��V�\�. rm{sen}(2�S\[x��2� $in(2*x) - �R3,x�PI�6 doA�'" �Domi�.)QOya�.6X� 9� 8enad�����.?�1.� ��M xpan�,��p�q��Ltto*4l&6U�>< e#"WUL���� v_ a0, a1, aŀ3 =%�yW4s('a0 a1 a2 a3:\ coefX�es P3Ta0 + a1*� a2MU23 � ��3o.�gu�xB�2m0b0, b1, b2, b>�$b0 b1 b2 bJ�Q�b�b �b�b��Q3F�RV P3x*`#"�<�omial#B� R3x_E {%and(R3xA�e!��EJ +BAAA%�ify;_e= às�6�̕a�&*"NT��orR' 'iYHrhBB#�,8a� �ge�p ! _tr��� n(x);\+vU**2)Bp7ey(Py6I"�>ig3(é��a^�u�"%{�17 ir���.F:/5�G�a��]b) )�n(a+b ��mjJ;!;�;sec(a -v-v?nopried&nga�aoi" ` �_log`&n<1a�r>váu~" lGB�P%log(a*!!W%�*� (foi validad�Ca pois `a` e `b` são símbolos irrestritos. ```python a,b = sy.sy+�s('a b',positive=True) # impomos que 4> 0 ``` .LDsy.expand_log( sy.a*b) C0dentidade val a�C/CB-m 6�(m', real = N�0m seja um no.)b� *m) pdCom `logcombine`, compacta!$as proprie�s6\) 99) +1�!]9re 0a1P## Fatorial A funç!� `fac �(n)` pode ser usada para calcular o fDde%úmeroB�Tm-!vpI,sy2 $.subs(m,10� 10! ,>R ((diretamente /�**Exemplo:** Sejam $m,n,x$ inteiros pI�`os. Se $f(m) = 2m!$, $g(np\frac{(n + 1)!}{n^2!}$ e $h(x!Lf(x)g(x)$, qual é oA�or!$h(2)$? 2�4from sympy.abcert � f�*: gI�� �/2(0n**2) h = (f1H x)*g n,x)-_x,4) h)*A %�0�es anônimasEtercei!�lasse�I)+a�ireE�prender�a&*'R*. Uma * �o** em PE consisteuma q4�o cujo nome n(é explicit)�( definido e�U�criA� em apenasW linh�códigoI�executar#Ptarefa específica. N+�$baseadas na'Xlavra-chave `lambda`. E��(tem inspiraixemt<área da ciênci omput ) cham�de cáa� o-$\ c $. !d)~=bpa seguA� forma: .� BT lista_de_parâmetros:!jres�I4N!pm5 ,tante úteis)\ torn%Z5s mais!�(ciso. Por!�a�,!Gaula Hrior,-�Ep�.�def repA�`(V): return 0.0103*V �>� 6 finanA�`o ao corretor imobiliári���2�Q�, a mes.� seriADcrita��o:2 {= -�V::�N!� necessariM�texa�atribui-!+�0variável. NeAqcaso,a�íamos6�^v %?L(V)>'P�usar 9�, !�n�valor6w �(10�� H sobre R$ 100.000,0O model!�mplet  "bonia�eG"2p">p39khc,V,b: c*V + b # aqui há 3A�Q�-}%�sIARe�m�@objetos simbólic>cV� b,c,V r3( �$O resultad�tE�a" tinua�ndo!Q sr, ��obt���a man��ef� . PodE:%��'��Q�q���sJ meno�!sx^ e. ## "L��2z1a Usa���ify`,�os� vertSma�Y�a do *� *!�I�ex��E��n!� numericma �Hem outra biblioteca��sY� desempe�papel�i� q) �o *I�* (1')6� �ao�sin+  qrt #.�=*��� )M y(x,M,"math"a icI�)$o módulo ( f(0.2-)I�e� ç%�si!�!�mo .^!Q!�E`evalf� � `. AB�será��il�!�quiserF t�H5I em viF pontosA��0. Na próxima��$, introduzhseque� s e Ūs. �mostrp�BA�>8melhor v� o�e* 6�e�numpy� arange � r�de�d9�: X = 8(4��gera 40�eec0 a 39)�p  X �a���Iarray([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,O �C17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, K\34, 35, 36, 37, 38, 39])�&r�%9 ")(XY� 'u'AEX fNVw-0. (, 1.8414709� .323510997317082 2431975 ,G L1.2771437 , 2.170074! 3.3027379�.817785� .412118492G 2.6182565!C.3166345�927528_T4.02571831, 4.732264742G4.523271!� 3.7120966!W.16�!�$3.49165344G508776152G5.385081!�$5.41923133/6815644!�.949611A43.99340 .4.867648AL5.86157796, 6.152528!� 5.5624084 �2153092:GL48919395, 5.16372672G20828093 74447451 3600%@.�5.487897A� 5.0082211S4392244 ;460782!{7_79338E��##� �inding the axes of a hyper-ellipse Let us try fiF0<2 2�_ cribed by
equaO H$5x^2+6xy+5y^2=20$.!Note: T�ctPOwe useexa��T is 2D (to facilitate Evisualizk), but� c�w�Pvelop will be general�K�.�S 2D9d1� $ !$A�aH� � � Sinc �s)�0ic, its eigenUIre ortho2nce� Ts tainA�these:D lumns�N,� i.e., $) =! HT}$. In other words" � rotex ~ �LS!�eBP5�^LT2KK$or $\left(-faDS\right)1� !S &!aeHa�yB: (i� �y.R��TApi�:adesired E�s)�.�U� I�)%RememberjM Thus,-d��BA�0by $S$ aligns�(e� withQ� ]� �rt� �|np �  Sy�, aA� xA2('x') yy') a a') 70 b') �_eq\ 8Eq(5*x**2 + 5*y 6*x*y� .0�" t$\displaystyle 5 x^{2} + 6 x yH y= 20$3&� # L��plo��is1. %mat$lib inline1.py#!plt 2"�sym_eq_+(eq):�v � _� �! r� �I�0_eq) print("�^�\ "$ major axi�A�A[an\n"j "angle$45 degreesI@X8.+R�ng.p�� ifgle3�E��A� b:�.",=�A = np.a$ [� ], [3, 5]� # Ob���| u:�of. 8 # coeeficients!�rix l, S j(linalg.eig(x A).astypefloat64)9{E��{(re: {}\n".!pat(l))1� +-r��� of S � \n{}=Si# AsserA�at�E�� $a�8p.dot(S[:, 0],  41]) == 0.0 #  %Ibetwe�ATcipalE 9 ��X-AJ.Q�� # V�UspoB o / x_6 _vec)bHzeros((A.shape[0]))$[0]��XFirst�� j  f_ [�0]:Do8oduct2�two @s (� l�"sa�#!��Fbc� �H$) dot_prod �!v�, :�)�d FgU�p�c� iXsA�M� dot-suctJ0 radians thet�x!�.acos(�xCoIt tCi�  ?6>� (SU�\nR�on � = {:.2f}�AU�)m�q mai�e,[8. 2.] $EVs Z%*8[[ 0.70710678 - N 2+] DZ�4w ��;.:P�3o QS0 plt.quiver([auA� 1],t pcolor=['r','b','g'], scale=5)Nshow(-?2�6�&z along�^AA�l.a��our�E�� knT � I�i "� is�,� 1e�5#%�yc�� �1�� lib fig =�:,.figure(0) aS(fig.add_sub,(1a�t='e�') e =A�"0lib.patches.E�((0, 0),O6�NE�(, fc='None'2�N edge)�'g') #e��r� e�ed at � # We%;rTm width%Phe� .!z6��|q�!�eindep�nt of #BM ax%Iartist(e!`(.set_xlim(- y6~�!�B�]�U�.�A��R :��t(D!�s30 �A� 0.496L4 0.8660254037844387>#M� �)<...�� 'regp! ' pi�spr�sp��5�B�9��A\�ct����sp6~ -=}e-~e=1/2 sl 3)/2>�reTs� -\c�"��r�CnfLaTeX if#ledEsid� �):IGh"2~�<'s more obvious �: I\ 4# Setup�<c� appl1m�u=[3,2]24#:30"�a �Gx.wC. ro1=!ze� x([[E�e, -1*E�e4 1b> ;�!W>Nc[� �}\3#\!� {3}}m& -J#1\\ $  & .2jP�]>�u6�!&) u�� 3\\2�i# � you��*EP �$ plicETAIi�only R30�%I*u�� -1 +-#3 2%-G3!T$-s��LeA�repeat�q&���3�n�`E9Y8U7M6U5n�">>9, -0>y6 [B ,F�]], d�=ct�6�N�does ��pointa��&�0so all answer�4in decimals. I!9 fastXles�'ecO than)�. %�-:� )J , u) R<1.59807621135332:<3.23205080756888N�0�,# CSE 330�@l Analysis Lab � 8: LU DR�)on ��V�of"�s be, m�h !2 } 2\bolds�{x}_1a�6{2}+3:�!4 E�L"� 4:7a>r_:'^1�^-6:8Z�>r_2B_ We�!je whol Ami �, FJ-[p�W} 2�;1� 4 & 1�-62%G8>HB�\\> F6�3 :X"�j4 L�-�9� IR.Y�r� 3]pV 3 un� nserefore%kb4$lvn $:�1, :2B3$ une�any 2�� ��parallel� each��&0Gaussian elim��� comm��04d tactics to s�RbY�methodcrean aug�*d�y� a se� .���e everytE�bel�e&�terms.O, l� x! >y. ��0& \qquad 4A3Y�1\\]�E�I��bg Now,� we�y row 1 2ET(subtract it)D"2%nget��B� 0 & �-5:�-7�� AddiAbally,R�-3f�3��v��-� 1��=�1%�v�FVB�2)�-1����� 6!�Y�7A�v�E�a@x%ified.�re a� easy �N�>��~7 \ePor, :�3 = 7/6�ő�}J�>d2 - 5NO-FvN<35/6 =N.:U2&/2>J�>�Z�Rf-!9+FM+ � + 21�F4:�1 = 5/48I5^ !ܡ�����fd��$Ax=Be�&plexity�zis5pro�+�L some!< around $O(n^3)$�0m��35blems � do not� �.Qd�" alsoJC1 Ax=D E$ etc.,; �e same|� agai�d - expensive�7T�� a cl���ro�]i�' just dropeC �aU1tDC�#d� v ��J(o lower��t6(L}$:uppR U�W�,69U}$�!�fa�-��2�gha�U#plier� LU =c�)�!)gedlF> BeMSw1ABich�,much cheaper? Ap,mon structur0!Os--}arR�L F ��0�L_{21� \\3L_{32 } 2�, UJZ U_{1; ; 3}@r U_{22 3 6i1&} ���jh orig��-ka�D� isol� A �!E�,B� � �� ��I�LUU�i�`�i� �J� �J2�6= , ([[2,-1,36� [4,2>�-6024L, U, _ = A.LUq�� () 2u !Gx='&C ') L2+⎡1 0⎤\⎢z⎥ 2 ,$ �-3 !� 1⎦!;pU .�2 %3 zv0� -5bRv0 �6 vU1'ACJic �" library� ��lya�pun�$. Our taskI) oday"A�'anuS ~f�� ces.]�%υ�diffe,�2a< w��nv� pivo�4�pvalin orH6,to avoid 0 o�"(&9$to reduce � ��,error. For n we'�Etho:)nd�Q'��est way8�(gJ� . An �antz)"4t�heK2����a uni�3��� re m����Z��`%}x > your:�dFJ!A]�s ?#�*2gie�!y�m3�Q�; �� np �#LU2>(M)�##Initi�*!�{U�` �,tE5to!%��@epU�� FGL�� Ga�� �:ty(�Q4�17$L�1(U&b! o##Use R�to popu�� both L%VUF,# ?%" �*Given�L, b: \n",L,"\_$,U ) >a = 03 iA�z0(1� n(U)-a p f"\n� Iter�n i}" � )"&�C�'iL!nge(iJ� l �2= {row.�'�{ }, U[ ] EU[!] >QmG(ier = U[row* / :<%aL2,=I2'�2j{�$9t!5col95l>�^.= {col) !:][-� col]!-1F#-1] %:�l9RO - >*2��5I3 *=-F�-�.-!�-�.?JlU9M6 += 12( �� n D)"�&� � =B�b*�#\n}�^ n��I�6>"  [[1. 0M� [0. ]] 38 2�3( 4G 1-6 228=�2I)q�M#� J)�=�4 U[0]�&2yT�*.�i 0�%1 84 6E� 2 * 2.0 =j3< A14 1][1aU2 0 - �-a-1D-J�8 1][2ER0 3k3 - 3B6.�[F�: -5F�L5K=+�K-3.�) %L2-L-6! 1Z)71M= = -2� D�25B D%]4�9O FJ�%O2-B 1\-5E1P C-9.��R 0 -4 11.�&A�2�)Z��n�J42�-1.�)`2� 6�0 - 0 *5:�0 � ty�#*go back" � "1� �\b�4;}"��  YHB�q6�H6��6�If\T/� !w!$n,J�&�5��,BF���$We already:�)2� or( A is"�9�LF�&,� �6K�5, UFL?17�y-76[6L�� $L�U $B$A��oU�J��!16by!�$ $Ly=B$ Or�-��B&�>�)�,>Gy_%QyI�y_%.%5_F\�)I>�b� warddstitu� . Ita an i� v&08&�be\le�A'a n�Cd loop.J5.�y}!= 4��28+ :K2A1B<8N*=J)BO)}9�1�-2��->L>�!y}2B�-1,57F�CF/:�%>���Af�Ba�$y$E�"�&�$x$��92,e, $Ux = y$�F>����pU�xi xi x� �@ \Long�arrow >|����{�\ ��W�gbe;; through��F� ��l>��ha�tom�e7s,'Z�flip $U�ux�uAGthe�#"�' into�#����-=��Z��2y>�MU#�<63F.%U)`%k60y� Sole5w%iwould!k7 E!foFE! 6RM�a�<"!m.E.le#� B� 9� rrec ) tputj�C�(1,0�2  [2,1N-3,-1,1���0,4,-5F0,0,6IB� �4,1,2�7 #F-FSuً� B_ �m6B&  !*|L� summj=#0j&�B0 if i\7j CB_L[jAB-[2S&//L[i,j�  break1 elsea�/,� + ?* Mp0BacI.,e�8�c IERask #Fa�A�U f!X� Jif@J�Ynp.a�(%�,>8)�%Q U, 0)>1)9�&B) �npN���.�B_LU,�� like;@g B w*Os�&*��ilBI #PljAy��1�. (You may�*�)�e�eUA_=� jh) �jUE�AjN #� �Nl_�-i�I _LU"r;.$)�eGW B�A��oA�V,�(��ace isD?a � �"2)$m*�" ! ��, Exer(-2 Writ)"`N�M"� root� aaKhe�lcal"xZ�V��B=} ax�>+ bx + R;0.Ɉ #YA�{shхs�"t� en��� dapt situ��saɿa�)r�accWH�)$a=0$, �Ab e$a=. �e�E�(3, b\neq �� a war�B!�!� 5=!"I&� �?arN. � up��on�t$njDA~W is:" &� ; -c/b 6�#*0�di:Km�Ut�:@4(b**2) - (4*a*'@]#9�6�"if (d<>�A� =IE�(d ���)(-b2 qrt)/(2*aF&�*&+UN&)5A�1�w'q2Del�>Z�A͆�����)]2� �%F93 2 inq�0,0.5,2)�` -1*�9��E��)"�2Z�� 2�, � #
Polinomios
Un�Z$las virtud�Ke H py e"_puedeziz]peracion-*on^+res a�=ic"SLas má�Vpl Yestas^3 son �_p�0. Sin embargo �n�% conopKpo�\f�BY�letras8mobk(e�iJEi�T�C� nomb2Sv Ybles)�Sin�[�XSy!2d\v�WavM bajaEn una � deb�Tti)SlVción **�'s**6Of'Bsg�Z*:�()�I ?("�I�I �Tdes6 llar=q �mosI�A ** a**. De%��lm�ad�I% car todos%I6-u`�\donde a�?z�sum!�rE, ?Eos 't|U. Aun�&%��%0 tienr3choq%g os opMv�U2�l< aA^del mo?UA�hll�U##bM�� ">Red&a� sigu�Hex6Y�:qu$ * $x^3+(3�Q@7)(4x-1)+(2x-3)^4r<* $(4 5)^2x+y)^3&|@)� (x**3 +(3�K+7)*(4*U��1-�y(O**3 #E�_e�A�divis%deuclídeA��.,6�divA*s,Zl�, dynamly grow�O� $Eratosthen�/WC�W okup� requD�/<an odd���4 b�N\d�= I auto�ly'XuAD �~1 ]!?2}.�et() 25h +�Fal�YN;!M2,c('l',� Q, �\1, ;[]�\30.�# G�,��fcoverB%�s <= n>�..DYd(%H[1�O = 282�b�0^ ��j�EM|6_3"�N_# E�Y�Xinclud�Ah �-� Y9�h � _to_no(9) _�z6z$%_�.a,b��4([i�� �*7�^)]ͼ�[B�JG!"-<# SPK =�r\ce i, ja_Ah at b�9n #if � 'n� j -�K(25 �-�(�^0>�D �3 39>2# P�6�Ft�f�n1�, �MxsM �(1�j2� ime(23,�9…hMQ�@pproximately n*lo)k.J t!�me�k!u�%�2HJ# �mj-�9(�-�I% %tim^ c!� CPU !s:4r 3 µs3Ls: 0 nnBotal: 3 Wall4: 6.911| �15485863&�# �pi,l-~s nm?A9�s ^pi �piB#%!k�pi7g��n�78498:�F� next� [ 2 (i))y�i��b5)]�Y!�[ 1), (�� 2�� 3, 17 4 e�CM-F� prev��� u1, � �� �3 �Q� R3s� me famLconjek;s abo�_occur�\Y)��aEGb3 [1]:xTwi+mes**:�6�"ofm_not� follw�_2Q�a�Jx�|i)I�)�6*n -/, + 2)(Legendre’ �h!n0always yields�=le"Ion�&a�`%� `�n4, (n+1)**2+1)`aBer_da (|en) �-7RE ea �!.��T6`, 2*n VrocarUL�at �f �%�VS (��/ �g�',average gap 'X6�?�( [2];bJ&�b!�bi� ily large&Pc �f�f Q�rJ;, e.g.q)��Kge `n!!�, 3 … n`)'l� n~� �%�,�AVn6�$(1, 306�Uf,�fB���, 2>�y(�;BZ��Ş\�^# �TXJj , is % �L���1>� 6(>667J� NUi����af�e�a��Y �0Lteh)|�  (w' nth=% )� .nth� .gdt�*or/Zimorial,.�pa�%�D f��Mulk �qrtA$ V(5�g�Y�62M 2310%Z�� 2*3*5*7*1�*��(26l6:S)3,=, ��%K3e(2K6~ fN5BN5�����%3>��!@).P2=2B'# DHngAI by 1!u�_%5��H� e*a��5�:� {2309: 1}�9�#$w~ft�[newIKA�at%VM)Rn7Nn61:��836VuS��es sm�Kr%��jr��0 #m�f�C. gether pBp.X$E��,20)) sorted(� � (Mul(*p) Gv).(?ce *):����_�4��H### cycle_length $.0(f, x0, nmax=�Y{!@\m�$ ?^�.ed�, "i�o%t-��T yA#C� (lambda)%N .[L b�>  2�,s (mu);�v����))� ?�]ո�b�edOutead.� 'is sta!� e x0.�0te: m�U�Q��7 � + mu ~�&.m7!�iA�e�X�� �det _ tBA�@%�e,p#�F,�i��SR �c]!��/+h� � i�a9zer enA�Rwn� rmin�bRFing Floy! �^�b�M� #)��2 �� %xL i <-6(i�&�Q@AZ(, iR!while 1r ii = F*X~  ii�6% ii # �a s�i of 4-�� -�%u {a�E� i: (iie1) % 5�^��� (. �4:�(Ko>��*N<u�a)�n�n�+n6�[��m2@ 26, � 44, 5�oE �Qo� (nth) ReMe �> *R>Y d](a4� osite6*e.�F� K  (246�3>h+:�4��2�pi��piX�~^ 11 \Lsmoothness_p(n, m=-1< wer=0, vi�m��9ra �RA�@$[m, (p, (M, sm(p�� ), p ))…]$�%0re: 1. $p**M"�Jbase-pSo� n 2. $B*�{l (-1� �' )$ 3eFAp�RG$�/ס��#)�lgN~(j�bm�K!if l=1. Y�� toE��I �W�2 �o� g�I�.)���o:g^T��$(p +/- 1 typ�:ng�<I�5, �= t_ �_p, � int .(1�pAJ:�f [M  3, 3)+ 2069P2 3)c �F^6S (-1,Z2,��, Z47, 47�ZQ�>��cp!!(2�8344556576677878uf1��� p**i=2**1�# 2�_6�'�36�2�2\n 5Z 4 116!5A5'�^1:�Z�� T�# oV3ic�p0C )# V� | Input!�| |�O�  |-66r$ | ``str`` N|>., :�; dict H �>;exmul?:�z=.#]%i�.(n�eCount�(���� rail�$i4 dig�q>bin3re�&en,$V=!># i.e.&� X� st�_2 t��7'nN��  (1286S�c]�*5:�>�#"' cityIhin5lg�Yst�7eg)0 21at��mV��,�$�_f���Score.)gs,Rao<al6R [.;�)n�  [8 z 250]:�0h�37 =!2\ 3, R��9�r -�� �\�_.per6(_K �n�R%U ca9 tesJ , big* �D &a `(b, e)`=�`n�-b**e`_�a p �I^;�[w�_�.-. By yu ��recur� l!� sMexponUocollec� �ue]��NP$sought. If�an�e 5 (thu�)� be �'e�0 If `9=` �7�� n�yassumI� �1��.�< �!u�maximu�illgA� fail*�T�Otin!`�)�%�`�n�(�%neX i�x� )�ttempqyt^,�|a 0icA:SWp1>�,%nH�Bsɀb!��2 W�]a few)� ^�qUytr!gco�0���!{Q .s}.ey� im� /m12(166�(� a�}�63a�bigIZ:>�|>a�Po�*d_rho�e�rho � �3extd]|(ntriv�Q)�! %d*� l?_p5�Ken�z�i�gund, �i�e��lgorithm\*pseudo-rom*�x�a+o&(5 plac!� ' F(x)�Fw4#suppl�WtV!�F�� �ua+Q9AZem9=o[*s. Uponu"(if��2is*�)!XewƁd Yy�g&6M�ignor)f F�9)R a%��$1'RsKX���a� ead-$�3 Gb%�B�Zb8E,� )�X9"��1,͓�,�   – R �FT��rlook  �tw e Greek((�Arh�.��u�8name, ‘rho’���[�5,�]�R der-v%�6bj�ur@!�a good i�+h8K�re%�62����"�.FW$14345656 F&�0x:(2048*pow(x%Hn�32767�n ���� ge(5�v '��= %4i;1o3i' % 6 F, s"�h 6M 660FN7�,12NX26�X �,1I &l# A�1�x�9�A��}ae�'%RiG�qa�3m$s\02%��9-�x���r12)%17�)�x��!O1 �1�N1�1L "V2�F�6x:�+ �, 2: 0 �[=*-62N :O6 �s [1��!� ��8r�f+!W�7�ڡ�q�eall�v�a a gcPn, ? $kth�C2* ���j"}1s�^2��2*_(nd 4th, 3rd��6th un^�i(W��5 �7veD�) tr� $sed. Loops�N#`thousand�steps l u�rhπs���revsщ�� max_ @�pec�W4 �� cP�lle-.� i� aAG�?-.!�\ yF�" *�E��2,>�DV F=F6K>%:0a=n$t��>�>=� �# MˌAw!�SimTX�in�4 Chap��9 Copy�t2017 Allen Downey License: [CnmCxh s At�Z4.0 Isun%� al]("[t 8�hs.org/l Vs/by/4.�(9�# Config� Jupy�0yi~%�assig��e8-��h> %cE �iveShellH|_node_�� $ity='last_/ _or_ I'�C H�hE.SymPyN *5Set�,�noty..�X9>�5��a f"�$ �s tQ 0�.�%�prI>[op%�of�=�-uin �r�3�FB�&�"=u��Zx�<�r(!#, P_6�" """D-�aB�.��E:B!e Z: boolea ""1i � #3Ʌ��):� pAc ��"�nw@/ Py E�� J7 ��tim/:-)�; !s('t'm�If Q>�e!%���,!get �?u�!�6� = t�{�)ȁ�an `Add`���|/B�I"�Is��t try�tC36 i:u)= w��6add.Add����� | [r� =G%ca-�e ich � �asj=�fb �-r!d�t�� `f`% ��al;E�y0���= L8a6lf = Fun('f1� �f a�!^ x `Und�ed<Q#��/(f � L=F� .BG-�Z under�d!(8at `f(t)` means�G�u�t`�@it�rn'%�!V(ye:�U� `�`m1�`Deriva��QkBW�da% d,-'2� dfda9b(r, t v|-�%5*�&N8�!1We�Gi%�a�`alpha6� ʃboa�1�Now w>bq�ec!AeiLa !orARal53t�` �eq�?Eq�, l*� �Anda7 `dR4`!� a� j"y�!i� l%�w6�so _υ T(eq_W �t�Biet�PKia�Cit 5aiA�<&G conA�t, `C1`�N�i�=9�,"�p�ccu}<�a��l:!l���IQ�/ `p_06�C�_|Xi� s('C1 p_01�]Hu=w_eq�E J-��A?x"= ,�uto�C{ittle~O~� ^�. �e�N!"2BM)YJ�TMd!w*(r, K)!9ame���,�w*ng"two]$-6�D�es('r K1(��6^eq�BA�ify�, r�x((t) * (1 -  /K.�U�2Q:�2)�tI�, `,`�!nI�`rhs`�R+%� - F .�kB6�qP6&rh��m2�?!�>`at $t=06 <atE� _IwtoM�?-��FAcC\� ofi � |H��(0)��_0arSoM [ �YP` },�)�a� Bei��isi�< �A5ntity,� P�yg.e'A�!�ve` -���)�1 (sa�!� ��s0J�Jcase, [wapve rea2Bto� CQnly=&m ,en.wikipediaj /P�@(d%E2%80%93L�4$l%C3%B6f_t�,e#�nwe st�� �m{��A bracket�@(tor, `[0]`,�se~'"�6|�sI~ve(Eq(!�,!�), C1)�*)eIO�'(�,!+&�EV_of_C��=[0�A�.M�%,!Q�� AF��!^!� eIN� �~6�2� oi ��M � ܙA7�}�!�* " a )i<�%�=oy�W2�2�&( �O3 %�-2ey�! beholder� a�'�3���e ew� es� Ai� Jus�double-�%��1��it�r `t=0i��r�at!�A�F=�)l��T�Q�c�,!B(e [logistic"��io�h ion_F< th#L C_e��)3����-�yMit �zu4i.,�m~ ��m: $�` =�~K}{�{0A e^{-rt}}$ �r$�� (K -eN /$.�m%Qa�I= nf5Eđ�_']e�� alenN�w�����!� alte�vvu%�;&BG6�J�a�2�C= K /�j+ A *AH(-r*t�pTo%Gwhe�"�Yk>�U_Em5 heir5z4A� ifieeN06D .7 -�mBEf��works�� way:�)�s�5!M1��m�m z>�� it9�O�dſc ȝPcloseA�But|ca2 ��PyA����to ca�"g "?�ly� /xRone� es1��a�a surpriD-lyz ��~u;aC%j�&���8��i""�n � E-Ss7 xP� Sf� u��2�HA.�  $��da�}{dt}a� ' 6].�f^2B :E � �� ') 3*� ')J�r>"�a\� ⍩���=*� �Set� **2=2�eq_F = fdt��JVm A ~�v�� D"� F3#!��  gi��8R2��%ܨIUA�a [WolframA!��www.w %�.com/)a"Ixa���"� g�,MCei��or�n�rofBK: EI / LsQH!� ^2 orJ/r�:"�  &K%�2&�: �x�pJ��g`6� !�-� L $$ \huge \text{�� he Q"�SFor�Y �}\\ \�" :A ; w Ribeiro Rcٖ�} $6G�Esd�IM.\� FJ�~`="lex",V�i=Ku hjax^����u� !�: $$FW;abx^��cx^�ax  YW�y $?S$4$coefi/J�x.��be'ϗeal�beor imaqwry.��� !�Y��ula�U� ۡdb2"�x�#� e��Ls�T.ՙ� i`E?!2� help �Q>� �.a�\ ��m&zwe[�turAbox�3y 2<%e�]p.�:,"a b c") z,k: z k"�N0xD�Z Peas�"�%9d1R6[lh a�L��*E r0 ���\Eq�sp��lhs,rhs)2e�$$a"��b P = Eg g?�B� B_6ar�_�Pon� � talk�?ZSayE^bi�Jal ra�'�! �(:�f =(a+b�&��$��I6b\�)�Z$a��we* Eu 9h1-e�!��fExy8f �()!!6!7\�=�"!� lGo��j�N�0orm*�#e�ia���Ling.*2���)"~���Z�We6Km&� R���?ic,Ly)�.HWe�� C� twpo2s"� ]U�� isNs�/�.%Cor $z$�|$k$�) >(x+z)�'k�i6-2= 0>7-eS��(��^�`6d 7��"+zA�+k%sol�$�y[-J9,[z,k]��Rea� sp.P:$ +sol�p0],2,�hh� 7 .�r�X+./E��n J*a%!�! )�*X�'a"�+ X:�8_#0��28 }H<^10�~28$}��(�  ;A%"�� E�th:J|Kts�Zhd�Lh�b��an�be V�!2h�NiZ�W!can*`:1��R#"B@��+c �.��,J8),nZ = c +E�(��xB'?�J��J~,[b,c])# Eq �Eqn�i ���BQr�+ e6(��5� + 3$E5�`a i��<�� �D���&T5a�)�!~� �y>�5 �iRng}�ԩ��E 1F]� $c><wN�V$% =�k=�T�nGW� ^���ӊo�� L&r ��# i" �"F)�! �:ula2�A� �v �/a).a(a�&!� $5��1}{a}uA^cM^$>L��=�XY!� $btb xv+ �c oSu+��|A��u��F � 02 ~- c/a  : yEQ� Z�=nf�� lmEoBj��S6o( wp�=A�m�add!��-�� < �mM)�M 5a���%��r" �x:� �J��3 �$$"�o�d\Zi(1 }{2AM �)$b^2}{4a^2}2�d$$ Dl� U�is�t. Gb5;��ma�o/M�f��50 �i �JX kEr�� 1Md-J���4.��rb��)�V �A�x+z�� x+k 54U���|%1=� ] �w8t!�a� � favorn0�dl �$1�J�-m�6�N� !/ingForZp.e& +z -(x+k��,z,k) B% "Z:"k7VT:�Sa�0A]e-g. 3�l� SKS^(1.TQZ� e�f }{4  �2� K6&}{2 a §a`M��'du�ZimA�=�of��UzUi�$Q�a�$1| �:4E�=�:[6�M�ingɮTerT  (b b)J nL��� m�G nR"�Z"�"J,-n!~�$!)(� a�� �ϹEz1��6da�aK�rwS$fQDR�&�&"po)�!a8�9�6g�l )')� ��^�$�AQe��I�E $u �����omi'd -���Mhav��.�j������:�V{��f�4.����Os�� $x$!�$maFP-�aa�"S @e�*�+oc4紥8�GF �%to��>P�r�Jeh�`8�* ��p�Xi�aa �#w�]d7Yj �  mani��ul)�Zhv�^n�<���_�on� 4g�oI���*%j.� �f9M� A{� ni�&� $� $$1�1�ms4�6 - �2ͮU��*�� give��Qg�OmE�!�re�# -bn,;ng� en b�%�he �ge���j�- ()^���W�e� �!J2t �F\iF2�~a"h24A�ow�c���?���iaf&cVmpyI��<J��:*�;�*lw O (-+ShO,I $$\sqrt{x^2�x^2$; ho�I�!�forlX\ N$)�v;pE�e8a�^ty�� powdWqRSsp. e!(]%��Y,x];)�J.Rhs6.j B����1 ):�M;0�r M��:� !�.m�r- �E�#qa�r�&j y aY����IL>+� A�familiar� ."�:� �x.`(6�Fk�t(- [Vw2TA�!E�seC�"� $\pm�z"> accustom ! ee�t -��Zo plus�min ���nntj e1ema���� h��in��c�"� ��w�ok�� i�of�u�� &of��2e�be�=�qor negM-. ��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3��3�3{1=�SA'M&�:eq�F@>�1AV,*k3FC*13 =&,33F*g�1Z�=�av�=*~�"��;ޱ;��%i_A="�5[xZO;^;"�QFU c*F:�44�44�44�44�44.44�UPf0�*Scala�Mnd��smg|yw�1�(�%D suff#3G3y@8vide a}�2E�-�&E�"#}����y`w 8�Xe�xPy@��20a lot!) Trans�\vԁ �mN�O��:atpri(l f&G2��,A"W�jF"'��#��z)m�DrZ!:'?�E erty&E5 `as��X5/$ s pdt plotli>���(## 1.1 C#Me�Q-" �al-%wF!��� graph>" #&s�Es V�Ln = [-.6, .7] purple .3, .2] o�Q4, -.4 @�O�a�g �"QZ 1"5@t@0.�d 6,P �'co�{ in [�, ����r]�Km&*6&0.UR0.+� d!0#%0%Mw&ɫ���&Clt��!1s(`�griu z�.8, .8��y�.af�-�.v���0�&  12<�head_wV�=.02���T>B" 43.`%='g' �R�)_:� ���� hn�Im:� ���� h');EBI�I|%W>���!�[-0aA0.7] [0a:0.2 a30a4 i�2}� hree>��WndE�Z��E3 F�y� .5, 2�4, �:�2, .1 ] my�e� pAB ay([��0Q2�*i.�*}])>=ar�0. , .5 ]\%�# unzip�� X, Y, Z�,V, W = zip(*�)��lez&��>1�� &=�(0.� r4��4�2<3Rl(0 2 M�#�;b%in 3d�T0mpl_toolkits.��t3d�;Axes3D��:�Ɂ��liJ�� projGn ='3d-�xu�Xa� YZUVW��1�I�ȕ�.G1]GZUVWBG�N.H2HZUVWBHq� I"s�rb]!��:z��: xlabel('X)'Oy Yz Z� ) �8��3� 6��i�d!�by $5��\pi$,��$-e8��&Wxi�s ("@�+ 3��d)*2. W�0downot�~a4zs�D�^s?#6M{athQk��W| nt(e�-pi}<2.71828459045�L<3.14159265358979�h # ��5 pink��msUd�� ) ye�7FI2) }^=��< a`I)[, Ds_d�U��-�(¥��.5]),��1a�1.  2., -2.8��t��pi blu_ np� (pi,�cya� >� browN �], E, ,�2�$1.88495559��(.19911486])����9424778��62831853>&��5663706��. Ze magen �.�e5t�?2�1siennaF 1 ^, G, /^6309691!�$1.90279728>�0.8�4S�$0.54365637>& 1.0��273% 6e�on� axF� Om� ��R� e�y%�  �A �A g��R�)�:� ���� hn�I2:� ���� hn���:�����fn��,:� ���� hn�red:�����re, JR ��:�����fn/�-:�����fn���:� ����gn��e:����� in���:�����fn��:� ���� h6�#�2 o:���&�=irolipican- � � 4 G�Ub�a�� b j�"�!��;�a�0beg.�� 5 \\��e*|� \�� 6bN6��4 :5C p �e [��]ܶ��2np_#":a)b� C "��,, np_b* [5 B3W t# E&�:��fi��0,.�f�>�a����golv<:.b����reyu'E�5 QI�a��M`*�.-�PiD�= 3 b��Is<r�rel�hi&цq� 3�>�Dspace,�  \Mand6eG-b Te��IA� -b cI I�[�r2o�������������M�f�c:5c�5�5tan646 HP($c \cdot d$"w��jE�cJ�7t���4 & 16��bx6�dJ=196B & 9:<2�E�#�8cTdm��͐2�q, 16]) �R��[��_� , r�c, �kQAY�F G&E2G�96.*K��Y <�c,"S h36�h##e�7-x� �� fVyeJ<�S\��!-RwfN;�X\�6:-�)t�d�f , 2]�T9^+�, !v?a%���1Y;5R5&$e�_2? y��28, 1|�8-?||g||��t7�||h||}C�ezuonger?R�gN'ޯ8>��qquad \vec{h} = \begin{bmatrix} 3 \\3 \\  end �align} ``` g = ([1, 1, 8, 8]) h3, ]) g, h/ 63, 6.\H# norm_g is longer ,= np.linalg.(g) |:h g, O:�X11.40175425099138, 6.0)�,# Part 2 - M!�ces ## 2.1 What are the dimensions of $following %Y$ces? WhichF!�can be multiplied together? See if you 'find allE\different legal combinat�. -�-�AF�8 1 & 2 \\ 3 & 4 5 & 6)�Q \I4BJA28& 66CJ692&A^,\ 4 & 7 & 11VADJA�0 & 0w \\ VMEZMA��7>8A�-BI�# AA� 3 x 2 # B 1 x 3 # C 2 D 'E 2E�K$compatibleU(a& B C 0D # E & A # D  C & E XE�2 FA)6�`products: CD, AE, and BA.~�resA�2�$How does ta relate tosB  ir factor�?5Definey_A�$np.array([�X2],�2�$4 5, 6]])E�1 2, 4 Az9, 6, 3A [4, 7, 11NAm41, 0, 0F40��VLAl6LJ} 5, 7-(A, B, C, D,1� �(N  �75 S!, 99 9, !B�[!@51V Z -2B>���nE��# CD - 2x3 pd.DataFrame(np.matmul(C, D)) ``` !#L
<]  r >="F`.PC1F2F3F4 0.5358990-0.34123� 1�i2�AssaultJ� 8318� B:�187986Js743407J26814�b�UrbanPopF�27819B-0.87280B�0.13387t �! 78011b� RapeF�54343A2-0.16731J�08902JG 8177.�b� EigenvaluB� 124.01207Bw49.48825B8.67150B�17.82815J� The spectral decomposition of the variance of $X$ generates a set of orthogonal vectors (e�ecd) with different magnitude)! s). �e; tell us�amountqv� the �� in that direction. If we combine + ] �$ together,&(form a proj @( matrix $P$ ZK8an use to trans5Xorigin!��bles: $\tilde X = P X$ ```python X_A8ed = X_scaled @� df_6%pd.DataF��(2B(, index=df. l, columns=['PC1', 'PC2','PC34']) :b.��()�A 1��39B�0.15626N�44426J�Q2AlaskB�1.95013BZ1.07321�sQd�43858B2.040001*96�rizonJ�76316B�-0.74595N�83465tl!_ 0547.aj�kansas>��41420<:�1.11979N�1�tB�0.11457�b� CaliforniB2.52398B�-1.54293^) 4199Bc0.5A|��v0is is exactly���h���h�we obtained before. ### Scaling �V��kresults9 whenJper�KXPCA will also depend on(��T�b$ have been��$ividually �I$. In fact,6��aD csdits��.2�#� ;@nce df.var(axis=0�5�    18.970465A� , 6945.165714@ $209.518776�  87.729159d# : float64��8Consequently, i.eo. e un)- ��%. 8first principalHpon� load!�I)�%�a� y large&for ` �`, si!�ED1�$ has by fa)�highest ncB�FitM+th2�ai� r%�(lues pca2_u�CA(n_� �$s=2).fit(X1�&�# Get we� s E N.F_.TH2$.�*��Z�])2Q�!�������������0�i�>_0.0417F� 482*n��rntmCFZ99522J�05876�BbZ�xF[04633BS-0.9768NTB���JX 7515NX20071*��n�a!W # T"� X� get�J�s X_dim�m�"p �df .�8^�}�� �`�0Plotting We O �Iar� 4lower dimensioO $representa� sJand out��ing6�Dmake_figure_10_1b( �, _u ��. _u �,As predicted��@places almost all��` p�~� whil)secondN��M�s�bUrp� `. Compar��t�� he left-h!Nplot,�se�a5X does_eed��@substantial effec�Q>�. Howevbx W $simply a c�ccF��which�*Ds were measured. EV8ProporA'!nz U Expl� Ur4now ask a natu� ques9$: how muchC�in� E}ba given  is l!�by":� observ:�-sTfewN� s? T!|is,B�%��e �is not!D� ~f More�l we a�$interestedI know�**p2^�e1^ (PVE)**! eachN�!�2� Four���4N�4�$m�2K5��f[R�pca4.�_�_Og�p�array([2.53085875, 1.00996444, 0.36383998 17696948RI�I!Jpre��Uz��ute it!a perc��gU�totCJ� As�z5b�rA�R�$0.62006039�2474412 0891408 04335752 �I# `ArA1`E�sel IJ}Q/$s $62.0\%$1�1�!axk ,��nexV� -�s $24.7JP. T"�J �twoN�� �-��$8NTV� last�Yonly $13N�I;B!��sa grap�F5A-��relativ� he number!sA�itr92(a-mo�(How Many Pr �[ K? Ag!@l, a $n \times p$%�"SX$� l$\min\{n − 1, p\}$ distincR�s�Rwe us���� 6��xthem; raA�� would lik%�ju!�h��^�!���Avi}ize or ya�n��We typ�ly^ide��i9�J'$s required6i9a�dxamin��a *screeE) *. �t�,�%( well-accep��ob�ve wayede���!�2�- -�%ienoughE�8 K-Means Clustea�8idea behind K-m$c$�a good: one 3��within- AI��Has sm!�as poss . He�+w�nt�solahe��blem $$ \underset{C_{1}, \ldots, C_{K}}{\operatorname{!p�mize}} \Bigg\lbrace \sum_{k=1}^{K} W\X (C_{k}\) 0r0y w%�$C_k$�1��$ W(C_k) �a��by="2m)/\ )rz from �oa .%�r��)�-@A defi9iseA=, but}�� ,common choic� v!os **squaA� EuclAne���**.&�w�l%�JB(=\frac{1}{\!^|=^|}-�@i, i^{\prime} \in!�k!�%�j%�p}A (x_{i j}-5j}\)�^2.�(|C_k|$ deno�!�y�2|� $k^{th}$1ׁ�@LAlgorithm 1. Random ssig!� V,)�($1$ to $K$,)�f~.t!G ese o eaini� 1� ^mentseY�2A( 2. Iterattil$N@8stop changing: , ) For2�$K��m�yU� roid� kthBa2� �$p$ fe�  nV�b��b)�!w)Y&� !my�whose�� clos�(i�ism2 d us��F�)�8^n)oi��$ ��Bte a 2-. (set6�# Simul0  np.rEX$.seed(123)Dn(50,2) X[0:25, 0]� + 31.1] - 4, &0mrnew"v@ ``` E�Step 1: zomM�eA�( Now let's y1%�wo1�s, at ->  Init( K = 2 -� s0 =:8int(K,size=(np. (X,0))��X>� 2(X,i�a��2: Qm%�istribu�� s W� ��newUX? q#Y - 2% def � ute%pqHs.�):E�!len�unique(1 ))!=) zeros((K,9 1!  �kaWrange(K cif sum\==k)>0 �i [k,:AOnp.(X[�==, P; else�M6>return|!^:�� t �A#�]0)  t(7M0�[[ �H179703 -1.65922379] @67917325 -2.36272<]; E!c Le$ad�%���AK >L @ _�E(en�}s0]�,  �U�3:m��^a�1�i�! `���(�,, accor5 �5�>�A��GE� k _to_ 2�M�A�Q�bs,0I�a�2�*a�,Kmj�A [:,k.� (X -�I� )**2M�1 z �mpargmin(N6'E+�in�'a = 0j���N+�a�B�R� �qag s� ���A��-�edE:�j D (��1,d!iv�Q�|��#�1, d, 1} Full.� We;�l$ oe� proc)iL ively6���k��s_manualA��L%�#�� i5�d��1e!d1 = 1eJ-4MMr��j�]#:� converg4  �Lnp.abs(d0-d1) > 1e-1���dI�uf =�DI@5�, d�v�9n���V, i7 i+=1A$ ��U�kB�:�Test J� LHH ��*G s� be easily�| becau they wo.� . I� re�� than^��@< c� inst�+*� �+\ H ��:�s�%re l �MQf��previou-ampleTk��[ e reZ �tF� w�!W�7*���E�Z l�rdo�� <tru2���. d2e�-$e"� 2� o���!�N0 `K = 3`. IL do�,N��!split up�!"�-*s it no2kab��::�K=3F�3M�!�8Sklearn package� auto� d fun)� `s ,`� pers)$K$B � `K�`�A��eSK qa"�km�� 0q �=3, n_�=1,H dom_s�&�km16� ���F:E V f�.!P�_� �bMRA�b�#�5&6�fQ� �� ers_,label �o n_�(_-�A��seep/v&>+cAT5ss? Why?=�is sus�!�a)!}�_+ . On�"i�#Dto ruaem multip���gre|�ib � E�� {� !� T^`Km&()9}�Ifi�w�-r!�igSs���^ `In` argur (def./: 10)e� %lue_/greate�#an�isTnb�beaE0"��"�� n� N��DnU>�30!�s km_30!�=r;30B�q~a+_���UR� p.� .� 6���BA)Practice�et!n7r�. mend always�V� th a%E�.�, s�as 20�50A�avoid'!� stuc��-ndesir�n0 local optimuv When1��6F�ŴaddN/toUr�!@ so imaZ� et aQM� Vas`Id�R(` parameterbis��Vjy�b� plic�&��outputI�be fu)�produc�l�$ Hierarchi!8.�s pote@ $disadvantafm�![i�at!a�!R pre-�0if��>!� ?s���2�  \a�terna� approach ch� [ {�we� mi[a!kticular-1K$% #� $Dendogram b�(�dA�=verR��1W*inAtteO� ree-based�L*I#�A4.� , cal�0 a **dendr�*S���0(1 linp�/"co; te"), eaf_rot� =90., # e!�e x� �268font_�=8 8  ) �F>�Y�f>�E!��1 .�9,s��=%AL� move"� r�somS#ave� g!�o f��i�!branche"�co;p�#to.d! at simiAVto�] . we �**r6�j! msel�� , eiA�Nl �or6�/� rlier (�%�he �)Lio�" ccur�T� � he groups!^=>�6�"� !)de)�Iy*��rst�+�cw:3 are:!can lookU poin?��L-re��=#�t�\ "�#��!G�h+��$fu!,�^��-v�9E��d�\s�&� +|.{!�us,6Ik � :(very bottom �)��quite9<.M,)a�.Ae�A:at _�!�e��)K�.te�o� i�b term **h�*aefer��Z�. խ��!�^/ y cu�+�}��%-�!�necessarun�$wB?�`ny" d��2W��.5 1. B� � $n$6�A�aQ2 (�J9!yv$n(4!0)/2$ pairwise�Nm"iti�k� �<2.yA��(own1�@$i=n,n−1,...,2$� a) Eu  lui�$--W>��'$i&�idf�**�� JM�!�le\#di� ** (e)'� � ). F�HtaMMaE6 y betw=1F. iu�Ar)��6�&� � shq *d.��b)"�Wn(a-��F!�$ rema"� �� )L� Fu��e�q)!j�9Vi=�B����dP"�jF.��on-#bot"`)���s&! .9?�co�V�� iEF.> nee*�x��N �! V�A6 te�,� achiev��develop�<�O** **�bJ � A�b�wo^�)�-�M4�(E�~!3%� |a<: ��**�%8lete**: MaximalIs-�6P1,}�rA N_.A6pi�V Ae�Aj2�"Bd � r?3sQ�J�� **Singl �in����v��$r�0 3. **Averag �eate����R�a �A��@.��| 4�CjAxD��.kA< � Q�A (�n�k length p)UVR;B. yu  �A}X �inver� s. -��0me2I��!leM��e{pop� am����(cians. L�c O2Cg"Apr *%� 6oV /��� yieldv balO%dݘsJ�i�te�>�-genomic��su�?sy$�)$jor drawba�pE�--%Q #D*�!%$� d� �Ebelow� L �n�81���խ�!�l�toi xAp!��)� ��(imI�)  z��>P� �I�[� y.c-�(X), m:)� (X)] titl L'���� ', 'Q.����]� ��P"G3&B�"4(�, }� � u,�*�*E�* �*U�Y�se]�:��i�/r�A����d Gaussian Mixture Models *= method�ch!�1bJ��r; /a��on heure�g re}rim on fAqngMs�% memb� M"� o� nye�"� hBly� ��!M (n[.obabil��m�c)d�%*Z*�u�G} Qwas-{�"B  te g1ZN "p$a5��+M�"8��ec�w��L&nt:I� "�s �re�=� -Dtruct`3� e}*ZDAD�s 0�!�ly�s 8HY-Ries -�I�te9�of6�%I!��.5��'iW��)��)��)��)mva[EY�2R m �per' )�1��wso��= A�G�/.   -�&�A��[5�/ly1�H# Eset%�  samei�we� u�W�, a i�� aris/FjK��(�%!2��a��A�!"1Fa@6��z(��!~� irbby( �)?:g��En.�(�" __2?���.�%r}(A = ['%���a( M += [._normal�%A�(bn(,�"covB" .T)) �eB�(�x�%0iZG%KA�:��( $��"�("B ���F�*: \n",  0[0]%#�("\nVar"�IA��Bcovb!.~%)5b0)$��)~)$3.7160256 _)]) 0036-�[-2, 4.67223237V~)..B�)2��!$��) _gmm.501�4, i=0, logL=0.�&�$Likelihood�maiF��n�Z��? ;MF�p*��3���� ng�c�!�&E��GB�] M�; bi-�/tKa�6eoiie=r6!l�v1$s>�#iIM�5�W%Os pdf�+*4tack([d.pdf(X)��0 %�0�,1) 5[:5� �"ar9:\[0.03700522, 0.05086876]& %0932081%2117353F%4092453%4480732F%071785�:00835799F%116919�91847373]�9Ac�.��+�+viHx1=m6�#��+q3%��+!��+v�=�!yM� ;�+ax(L���+ log_~E'"�)Ū,|��enume:3A �:>c+log("�([k!/���~JZ8+B1CL�%�!*3-2L.eX 3Wat>�+.%��Rsɦr�`f&i+��V_%��t1,2:�(1);F E�Ex�P�-�i�6�h stepn%�9see�re� � 0a broader famKof&� � mA�:Y$B!��e�**-** .�**K�P�3��$-J."�9&G ,�@��curkQ-6-��#� p.�qI-���X���( @ �9��.� G&q!_@ �%!6ns� X-durl*^%�b�o�RGa global.�"�(� �� �o+:)Fm(%A*@ IqQ�F�6�!ѡMJ?.�~deplo�@#Y 6..gmm�+.a # ..a��1.�1.v0-N7. =0��e�*9.1q.( &�-M��)�I�^�::�&>a� , i�A0:i�=.>���e�_;ase, GMMs$ILpoor job",�a�"pT1Overlap�T"� � tr���atM�!`8 na&_*� V}k'a cros����6�8�Lv�8:6K.N� [0,� [[5 [0,1]],*$(=25) X[25:,�J1R[0,502J�2 �>�62!�� .B2�:� GMMZ2�$�K),Z,(p[t|vlyQ<&!�^/" �� 5F�.KM� !"��MAUwY� �/&L:�( sympysp �>.�W^I 'Ma�W # nu 6np #Xtty�0t A #� et_1t�) ons(�+ atter={'fPP4': '{: 0.5f}'. } �=�th1 %2345X6 = sp.symbols('th1:7')�!�DH�~5. \ $KUKA robot�per writ� docu��( # alpha, a�4 theta (ad�met) # a!��#�A# ntro�4 gbe�*���0t!ra� DH�[0�� , � 75 �1 ]� [-sp.pi/ 35802 -!0 V(1.2603 \0`-h 4�G7th4* 0 �� ��50`B06+0 &� ! 30� ) ]6Y�# a help&��build�G"�M" I�x*� 4FJAj'LZ"N(�� #I��T a li~o4:No(W _��aA� = K[0u1 K ~[2 I�:3 # �i�Z �N)a2aG�K.M�W ?([!� cos(q)-� , !�sinNM', a5�2bD*spp%),A�>-6*d�qD � �qJ , � bp2�6>&2>, 1�>IT34 =:�$DH[3]) T45N45�g6� DH[53��uN ify(c* N* T56�$T36[0:3,0:m��Q< [-!Ath4)* 6) + )�4)* 5 6)AUER6)��6(51E4)-�[�f T7|r �5�,0�| .� �V�, �=) 15! _N� �15)A: z�ori[M�%�=`�,$ripper # s��a�V)�Pis�0 - URDF&. aito�%H� G TA� (r_z�� pi, r_y =e���#R"Q\�6!r_zEpe� �?-�65!4 'm� ak�C�..�6�QZj}�>50m�eR�F�y�" �k �y)��� ;2�b?�?r d9 ~)n�~2?2 ��Y�k%�mp�i!�*!F1 T0B�0]��' "'+str(.U8T01))+'\n') T12N1F"JF12F23NF�O (' "JF23Ff�F"JF34Ff�F"JF45FfF"JF56F6GN6=^"JF6GFq GA = +6-dE�n)�qCEY[A�th1��9 0��q�[�\J$A� :a�� 75�-V$ lU��IY6� �2�� � ��.3va16�=�w H�ƩE�6� a39R ! .2� � � ) v�:����!:Re6� {4� 0,� : � e.�-NC-) � B�F:�e�6� [2�,Nv8-A��)~D- �"�W��8i�6� Sv- J]Z�m1L9-L �DG6��D6�i5r�;R i1 ?! >���6q) FB%��AQ 9<�2� T0�@:�P*T12*T23*T34*T45*T56*�0�)0G una�i�^T0G�K�>%6�((I?1� 4� 2 + th3� 1 4) 5-"N '?-� (MF&p"� : 1)�A8-����)� 9"i�4� n� - � .�d 6%d M555m1*��303 4j F�� 29] -�Y<"� \ �}%BL>( + R~� +L>'P Gqo B2 J�)>"8 AE �% 5(BQKI�:.B�"�=%1zI>C��N� ��)! � N5"�� 66c VBc, .�i>�^�%�.�2�IJU�5�B�M� �'6GqC1.�J 0UW1Y�� --�B }L�U���2� ��"`- �� �E� ��̓5!T�"wU��9B�kU�r�.tB� -�S).E�2�Jmb054 �'0F� ���` ��������e�e��RR F6S G*>P.K JI A>J $6H ���{*� q_mn�WH i��0���?,F��e Zep ne&� -��%�i B�:9Q FB���N� �� ��2�=� #%C�F �F �F F B�:�6�)eE )-% U���e o6e nBe1�: .B�V� oAB���N�o2c�� -�.�U���&PB9 �%��D �D �D D �� �� � q]Bo�� 1� +mc"� �� v��]� �ux��b�J2��(5%DH*. E#�$�' #�Psur!/hdY�rNWx$ Chain>�,3H w = False � ic%9I9DH) TN�i]*�,fE\= *�[C= TGF�8%.h  * T)Jd^how6�a�"T%d_%�%(" % (i, i+1\_ *T� "T0.>Z; �6@�J� , *&�! ust( ��+ # exDQ�/eWj�SD0.Y"�*!�qu0Vn�>EE)�O&�"FromQ%(Q-�po�4Q[:,3].)� `j)@sp.atan2(Q[2,1], 2]*SQ (-!�,!�qrt(Q-**��Q�, **2)fA $i=-�:.Npos!%], �!42� #Cal S teEftor(sym_)etao(rC =V-FH"thA-� ] R� ]!Z IROS RebV ed:
`"*T2.1t80�.947] Ro!�8k.]6  �.m8.�<��1.173�+80�s� �Z�994ce&p+b�.72Z�DHr;��72! .��.4�9���'-7�t804=;A�[!�48t�(�*# Basic�H�W(ing `Scipy`"�2�ppl�`Y.go�0:N�Graw�Ap G�C�5Q`�'�I&�;y6%1��JM y�u�Pus�R2N13 P_�L� B + `s�:rWl /�Is�Yff#G0:#�; # ## Rele�X"�/o(>a�:tsD(ttp://docs. org//�IVC$/tutorial/�.html, �?Ed Y �0.rv_continuou T#xN�n�#module-W2J�1 2�0s�0HWWF.^�7&�0h3!� .�F r on 2!�.: b erfc mat�5libpyyplt %astropy.6KJ L hist� mpl_� %.Y$nline plt..use(+ �:Tm5s:}q*�?2��/(0already avail�3in]΢gr�. �EsWGassa?llow � ��uE�)9PDF/sPP mo�2s_^B6X=nd fi�U. �Xan�)lej ake{0�Wa VR@6!9�9g+t. (loc0linspace(-5, �-000) %�fi$~(1, figOZ =(8, 10))subA"$2grid((2, �&(� !(x,(:2@x x�Z ('x' Jy PDF(x)  xlim � �bp8 AU2pcdf�pC�pc$ )) seCE!Horm.rvs(%&!C!Ea()4, bins='knuth'Msttype='t=X', lw=1.5, density=True)"^2%s S�-9,tight_layout��You7c Q��4 fit �86OeA�*f 4� rBi'I� {0}: {1"�5 (i+1-� "�)ub�Q fit:;36(M�fa=29"�) P 1o6; 2:|� 3B$ 4: 3 6�(� @235902673270170168 @0016772649523067);e C�Lb� Somet�cyouYU��Z6obscure���n�6����w\`�l `. Oa�N�D�Cs��%ӥ���subLof `st6�`%��847�6 `_pdf s_c bN��yewUkL 7ac�|a���=��"�2��> T���r�y'5ea �ar�U$+ \_rvs: c�Y���: �6x;1V"�I< pdf:]�$PDF�9�Z�\(cF(CN(,sf: survival�u(, a.k.a. 1-�HS ppf:�8zS jF1SSel4i`Bh#ŕ:KIBu�AR`��4ms8 munpz7nth 32�Tpy:"�L�f "argcheck.Xo %kincaVf�R(valid (e.g.� >�c��ZU!�I-E,�@analytic� :,�_{W(&I|slow)�:er.O'Ag�n�>�=i�^AE -��O a�orm�on%m�`pecifi�Z� T`x|i�Amod &�Q.�<�� ��U�i��A�EMG2< (�#t�-exe�\b^{���} f(x;\mu,\sigma, \lambda) & = \f�z  }{2} \exp{(N{[ 2\mu+ 6 X ^{2}-2x \�z] )} \o.�|/ }:_ mu +�Mx}{ \m{2i{]U\ F(x; � &>�Phi(uv� v^2,.�-�% v^2)j;x =b.61 *)1�>�}6�x - a}{bN�p] \\ u)�)�(4 \mu)v. � \end1�6du� A�e a_gen1:2� �l�,(self, x, mu�@g, lam %��0.5 * * (2 * %�lasig$- x v = (N( x)/(sig *�A!�(2*�z.rnpq�(u) *� (v f�cd�� �%qmu @� sig" phi_5u du�C*! �phiG5J.v�uR 1 �f-!; �-A� �> ����-�Z�# reutr��e mean,�r,nce, skewnesN kurtosi�</ =)�1 /!5va_E-�+**2"slJ %�la9A=a<Qsl21ke� (2 /3!� u**(-3 / �!�3AxH.�(T 4) /:�� = v - 3�-u�%),-%%e�vh Lnp.isfke(aš�E� > 0) A\ 6� 2(EMi�mj}ppQ�qb�#�yVYea9�ol��*�ofaT�RX� �a�� t�n��"� [Iu# pick���� arge��m >�Hcdf%F�/\a� mu -Pm� var)! +N0.0dM;��e�>��=�(nterp(q, y,��6�3R���)jzZ!��� � &a�alE'expU>��S�}�=s��M�.�j�st�,on30,��1/lam��ze.4HDus"Ouo�3 �� �P EMG�Q�(name='')� 22  : 33'GLet �ok� "d long�=L���o� � RR�Ls�v�_ t6�%}1%!��85-�"�(=')82�83�8```& CPU �s:!�r 3.88 �u$ys: 7.93 m�]���EEW�ime7 �=$F\38O]0 n.Z72[ 34 m v\973 µ� 1.62j �2.6G^20\)/mnt/LNre/sh#�_}_enviro�NH/DataLanguages/lib/ % 3.8/site-�vs��/� �sfrcu�\0e.py:1083: Vi%�DZ�c�xWarl:� �Y_� of > K���Ua "�0" keyword. S�^�Zd �� �/ w �s. ( g yoyJe��Riqy� ig� is4lO��px��+H<i�gch�{Z�1i!`�erm%�`7al�`exp`�&"�MU(��st.�[s�6: ��2`EMG3`6�  =!�3�)R��(T2�����`� xzd�aJ3V`�5&�emg = a��A��J0)2�emg�����L�uA0"�� M"2��do�ʼn. **Noi S���^rrt*Ruf `locM��^u��}fix:K01e �t>Yw.2� ��yEme�ya-.v%�f� 0, f�=1Z�2.0�s p�963: 5464: 435 *�H-0.0269386399900552l@.0210387739316098��<4983686085115713?K, 1��d"2 h�PiKq``��v�!/�o (f��u��EH ��on��`)6U�X/*L�hs@cdx� source(cd� R�0$ ���� ile:�v�`� �.py � ��(N`r"""A�"�ly&�N�[o6 %*�n Also�n!4a�L [1]_:R%(b{�_��)��a� -�p.s��Q���)& ` is�&B..Sh::f� K)"�1}{2K��(�0 K^2} - x / K�d6\�� G- Hx7/K�qr�\r" HM�i :math:`x�LzealM�� K�`:nIt�cb ough(Y� "1standard I Q�ma�d��I6u��x݄E�Iu[O``1/K`>�%(afterVA6�y�N1{0Z- is� !R��u�A�Wik� azleE�) i�th��SQis,1o \mu`&�I-�c�ys%>�EVے+�F�� coqx�hav� ��d�`��` equal mu+ �,� x[� M shapV[a�:KɆ/( A �)>�..� � a{:�16�[bR;m@#:�&..!� 26��62�,!�i%�9� ��&��%(,>�"""%l� �K� Nonex!me�exp�=m� )��e�_}� �Kzgn?��a :26� ~+F!�wa �x,� Di'._log4. r3Q -%n�PinvE�.0��2expar $*MF-y@ � 4+ % ~�  -7�np`KN�,ڪ)��z�log� =�7^�N� ��x �exp�[S 27%�s%��-�=� N|�= $����-x�M^-&R�tat�>OKGK *:4opAf+ K&�skH24**)-H1.5 kr�6.0,1/*sM�K,!-,r� 2� Uza�0�Wb�868*/2� E'*-5762./d�  �'�*8Homework 14: Nox'ar Equ��(�_Pˆ1 Use f^nd�roo��_ polys al $\% = 2x^�a�10$6�  -*� n�Zcipy.SZm b ' ~�2} .�2 ^�sol�k����'���]��s:Fc,y) &�{2/3}+y -9^{1/3}�g(&W l4}9X y� 1.2�!V� i  gues�4$x_0=1$, $y_0$e�z�32 #15o$st wget try�Di� ex�z !f�pip.mws El.=4._ih�3 l3!�pi> (['��all','�ŪN ; � trie��hermo�.yaml ur�'W apmonitornt$/che263/upy�s/Main/:A' Y�=n.down0 (url"A'�&R �e.���100% [.�2 ] 14985 / hb� Co&>�adiabat*#l�otemper�T a stoichi�&ric� ane-|3Ej code75Z�jwra�rmr�as� g�s&- E"�&��h��.�,'ll'6� againk�p�k T e. F]�>&blankj�t��. *^$also \�{���� s <�� �  i~**�A4 Summary:** *lr�(star� !ty%B)$ ```f_%k(Ta�B0``5�*&� $f_{" }(T_ $$ = H_r(T_rVH_p$3r* $T_a$!�k un��n��300\,K$ET* $S$= y_{CH4}h  i+O2O2.NN $e�P ; �PH2OQ.RaRy_�m_i/m_t� * $mn_iM_i �* $n_i$%�$�%%� �?-\��im:B**D�Xq�wly%� reacn�8� ucts*5�:�Ym_!5+m_�!_$D!�H. (�$�1�sa�A=aa=c%ts�Yerved. * $h�)e�.��ie� . So�$```t_CO2``�mogy���$CO_2d�ԋ ```h7==$.h_mass(T)I�![( **Descrip�m :** * We �'&(mv%ionɗ0* $CH_4 + 2O_R7.52N_2�arrow �"H_2O$ +$$N_2$.i�thinkq�bu�Ŗ"U�V|g�2oQ|�C�G� bond3 rele�as kine�Z > 79�E12z���r�A���!�>��nod)halpy4�s����en as ��+�{�!����AjEL.:� s. A� �pju���t�A!t k�Ux,�+!� is�1¢'�0��n.Oze�(w��en �y� licit"� �X!&�dۼl�ZE���-�_ l�R~�" kc"G K.Y� ha�a n"q R )�y��|I�h��h_p2�T_pE�!S5�!�r9 room.�, $T=��, s|�%� !ir��We%� mol6ofn:�E{ch4}� n��=� N2}=a���*�Vwe>x:>A/��!K!|y ;r ��s�T�lwe7)l3of !M�r to g��i (` �  )�pBd:,5*af$h=�"y_i�bap� uU�>+��p��niݿ 6�201��>�)* �э�y$IR�~��+y%�h �n$�j�?��42A"� ��)jE}�*U�� Now,Xp=h_r$.�m?���$A�&/�!h_F�we�%:Z�p)�Tp1� �.EO�trDlhX )tA�l�$a�Ԃu4�co  $f(T_p)=09Y  =e�-%��/���$]`"'�? �b 5X &#����__nmp, MW) &"*t #: �/�1ngAof�6.O 4M;( KB , kg/kmol�2�elf.Rga�=8314.4�h# J7*&�,MB = MW�Aopen(")"�")�yE :8 : =%X.Z/�u a_lo%J[ �][""�g +h� F+hi>+T V300I�D T_mi��!B_30.5�#�>A@h_��I>T^3��$in �#!)�PTU.�if T<�' ���T>lo]�vi%!!ygelH>GYhifGhiGse:)pV ("ERROR:2z$ju,-*"Y1h�@a[0] + a[1]/2.0*T 2]/3  3]/4 *3.0! 4]/5 4  5]/T�-}c*) e;* #,� E $ !U� &�.�  �o� ole(T)/M�:2HA�.���""" �W�f�ߡ�hp.u}y_i*h_i.`f=�$4K �BhpTV.,%S.{ �3.N� u%(h)�ܠ_ f = hr�n�p Vary T u��2�1p�S�w: � 1. Gķ!:s -->� :H  2. M� �4�.�*�� q3&B�h�2�' ... �i�&! 11� n���8 őnok2.pN# �K%�nchTk1^, %n2�A� NO %cv1 �nh2��2 M3b�#��oM �6Z� % �28r% �44 � �18 m� no2*�F#)�om �!/*�:2,n! nn2*�B2, �!/*� m �c�cot_Ii ("O2",Mo2&�n# �;T, as:9���T)� 0get h_O2, etc) t_ �_CH4",驓t_�N}nVt_ �C�co �H2O",�,J�f R� %# TO DO:&�  -%�� n y�65Setu06a # qS�eF�--,� �da�T ��=ZXb:!�^�.�b� zFu�!iT���{Tp � b�,�� : f(Tp� ��hp_9� _on_ K_TpBH2�a�*%-��I�^' �.( Y##��o�� 4PY�p'S'�� yste�96��A 6�s**�}ɍx!�M llel�e net%�$Et�#ip%(�:conne��-!1b�9�,k en�� ;Xbe!�&�v2s=di�"@3 roughne�ͅWI�ffC�$u4y�er�*R-�UoE1c$5�**U2�,$D Q_�Q $Q_3$@�*��nҪ*** 6[%�*��Es&��B�si��nd� *a. 1VT$Q_{tot} = Q_1+Q_2+Q_32�"�!:'W ��th= !;��* B&q�V/5�E�)xsdrop a�z)UKmha�1�* �2�(\Delta P_1= 2,$B.3b. 3$ *XA�%w���F~pr.�5�&�s? -i�<D�=6Qk bM* �j�fL\rho p;DI!�w{G$Q=Av ),\pi}{4}D^2v\v(�4Q}# D^2Ew$Q v���cY��n��bstit��� v�get: $V� }{2D)�.y � )^2$!aHeI�$f�%ri: factoq!�.at�A�4aa�1h �h��qm2�1�:�eWfiWfiW�� Colbr151��T����QM��� ���2~Psa� *��he��ix.#�S2�1**"�F,Z�E�1.a�u�-y�=!a5 $)�f_1L_1Ai!�_1:�_1M< _1^29� -� f_2L_2?2>?2?22?= 0i�3.��� 3L_3�3>�3�3V�4/ R��$f_ �!�� $-C!#�!8f_1}}+2\log_{102�\epsilon!Q3.7!j�!� ,{2.51\mu\pi {� 4Q_1Wm@.$)85~�2$I�_�!�6~232�6A�All5�SI6G"�F_a�s�&�Q�8xUz!!a varsm���8MNu;�I�Q� x�zQ 9x[2�f j�zf *4  *5 �Q<�:33�|# � N:em0qQ2�|�;p*W (m) (-�e��C%� e�F1� ]�� 8�0*�tm�j9LP15'2LF8 D �*U} �" (m DDD 0.04 "DFam�>.002E--2#�coAJ (kg/m*�S�� = 99*/#kJ *3� F�Jp.�6)!�#��%!92 �O �" De��2(s ��' � F  *s n&s �!t �P����0Q1, Q2, Q3, f�L�63 #s ( ná škola FKS 2018 Maťo Gažo, Fero Dráček (& vykradnuté ΰ riály od�d$eja Badina:iho��maPKuba, Peťa, Jarných~@ôl FX a kade-tad�W �%0ete) V tomtoe@Xze si ukážeme základ^��a>(aučíme sa!4 �ť12e�~�>ku a fyziku. Takéto vedomosti sú skvelé a budete vďaka nim:�#Tvedieť efektívnejši� lbiť domáce úlohy * kvalit& ieš((seminárov�l olympiád prí� * lep `zumz4svetu (IT je dr5,na trhu najr!cl�(zvíjajúci�=8 odvetvím) Po!. tačIblbý�% rebaa�0všetko poved!E a vy|8liť. Komunikov0sa s ním dá�viace�, úrovniach,"!Vm!�uží>P��.  (názov�4odený z Monty !'s FlNCircus)�� obec/pU@cí jazyk, ktorý%d! vytvár�web%x8stránky ako aj��)�riózn&?-5//�$celociseln��9 TODOAhto�a�?fn��1 �7%JBVoN)2/# umocn�H.�89X450N%3)y4oradie dodrzan6e) � LogiqX razy2�$1 == 1 # l&a �Postu}��R �2 != �8ne�:1 < 10KSZ`1��6&K`4.� <= 2.M�$emenné T!�jn �.��m9 ení.:qa$ v okienkui�e�Aa�uloží�=8pamäte (RAMky,�3��sa dej�( e)6� � �,Teraz s ňou�� prac��5� žn�ia�slo:\�2 * a2 >?af�"*6$6!]M�Xju��E�iť:�**6E�PridajmR uhú�%��6=b = 5 � Nasledovn.  dopadnAF�6K�b K�7 �a *:"1>b*:2�� Reá�)�a mô: obraz-�j v� eckej forc $2.3<�10^{-3}$6��2.3e--F#��kc] Sprav} $i jednoduc!Lfu u�� za n��s�ta dve�͜DQtAG0už nemuseli �p�Emy:2$�s��j(a, b�4 .ly� /1�>2��v�Q��et'%�a�22 F�a�gui.celn Amr%sych�c�Naša�c =k,má __štyri���4EJ�,I�@DzlI�uM�u��2 sou. Výaomp ú ns.Iv Iva 3�(nt: Využit�{onu zach a�1i�íd� k�!"uwv�� ��I�u. wM u_1 a-m_2)+2a"ua] m_1+af$.2.2.2-m_1 .1u_1}..2RNRzrazki�$m_2,u_1,u_,�MO((�*�a�*(/�),(u_2%�i�u_1&) r1,1a�-1:�(-10.� ���Zoay��� " ,zoznámili sx mi (� �D��e��t��a&ch!  ými�2ami. ZoAa� cht(vkov v�.:množinN&I� ckomwu `�amy`. N�=vod� teda poz�,E�sY�am (poL�icky `�`�(�j�c��� zýv�6d<; ,štruktúra.2/ l�([]�razdny{�A-2've�k4,P!3.�$ s cislamiJ0 _ :!�� ve%�dexovataPi�� nulou!,4�U��>1Ɩ h� 6"-1�vyb� na�neh)�&��a�2?A[5�e , 15 kČo!�� c !�-�y� (me? Spoja s:ove + wc�1, j M�V (W?>�* v-lSmola,# :<eA imniKi�áJi# ���chy�� � ška. JasAI ám hovor]�e��M�y. So- a`�;rô8i�֥F� � . Na��>��ve6�9!,Alebo zo zĺžku6�r><%� ��Zza�=�$cez rozsah6��.}type(6/�A�mHa�^0�o1i�, 4E�$6, 7, 8, 9�VI 3, 9:{[>B?&q5 S� jte: * s�etA�et��čísels1 v1 VytvorteM� `letnas�����e obsa�ť vaš!� 5 obgbe) �6�c�el.�PAj�U��u �lo� *cv 1e2|��� ému*�5V"] ~1[ho ]a,Jle;b�e y z�Y � =��Q,1001�Sr�ha� '��9f�81,1995,12,6,42]�h$)0y-0)r)�!=�c-�[a�T-1NiBS [0]+6JE,X .Ym8�50050U ��� 12,a �$J�9��[1�r:9 200�#�7cyklu���5��SJ7�For ;��tzv. `��"�� =�I)�6�T [3,2,5,6]�"Ii=�!4!7%81),11 4  2 �&�uZv**2y9R X2 �3�(Ako úspeš���9? P�v�Li p"�ác�Q* `for6o�]iat�* `i`:%I� �li��r � om,%k< �;� me (-�mk* d~��kod��A+i�o�z!�o� O"� Zb moci�4]N0takisto sčíHtať čísla. Napr.�i od 0 do 100: ```python suma = 0 for i in range(101): # uvedomme si, preco tam je 101 a nie 100 s OV + i $# skratene += i  print(-)� �F5050 ## Hľadanie hodnoty zlatého rezu $\varphi$ Jednoduché cviče7,na oboznáme�sa s tzv. selfkonzistentným problémom a for cyklom. Zu� rez�dmožné nájsť ako riešicProvnice $x=1+1/x$ Jej ! $vieme hlad!�postup(iterovaním2�x = 1; :� (0,20): !H#m%U (x=S2.01.5 662153844!1904707647058823529-8.2.,977528089887| 1805.(25751072961\,037135278514..,327868852458s(80344478216�(80338134001�,$0557275543.C$39631667062�39985289?[ 985017358I�,Úloha 6 Spoa��tajte súčet druhých mocnín všetk$nepárnychi�ela�1m�0 s využitímU�u.2P# TvojeA�sA�:�f65Q`a� = ,+ (2*i+1)**2V� 1666q� �7 ### Dvojhlavý tank (FKS 30.2.2.A2) Neve0odkiaľ, no ma�( bombastick <, ktorý  dveQ(vne namierea�opačeZ�smerom – samozrejme tak, že ne4ia�4ti sebe ;-). V�0u je $N = 42$a��bojov s hmotnosťou $m= 20$ kg. T�s *�mi váži dokopy $M= 43$ t. Potomd z� e strieľ� davo z�. vní Se rA l {\v= 1 000 m s frekvenciou B\ľania $f= 0.2$ Hz. Keď�%�j!@zabrzdený a dobr!J olej���,�da pohybovať. Ako ďalekoA�pôvodn��`43��=x+4[-1]*1/f�k.append( -m*v/(p ))..  v=-vm�x)���l@48.83697212654822��d Podmienky Pochopíme ich�Q`príklade. Zmeňte `a` a �LHite, čo to spraví6~�H,5 if a == 3��ų ("cislo aA��G,e trom.") el15v1piatim2seR+aCo�/` ani 8k``-B� \ Zamoci p1), teraz môž��z�~ vypísa�n� len ��e��� P��0o identifikujNctaké�� � po dele�tdvomi dáva zvyšok nula. Pre2e�1B� 'Koniec.'ibreak9� �1E ��� ��� �7$] = > kaUN� $LudolfovhoQ  $\pi$ PA_lou Monte Carlo metódy integ* ia!0nauDmeE'Aci�Ax^ť X . Na��ujúcei�(azy vygener zoznam��t �i �jAYAKjeden 2�(import randB s rndPnumpy as np NOP = 50�@ CoordXList = []; Y%�j"�  (NOP�8=�� rnd. �(�$PV$e�Tieto daB�y pa!iu~0$x$-ové a $y súrad�  bodov v��ine�cd�bn�)F� roze�i-��omerna�tak p Mu�sa nachádzajú vnútri štvrťkružnice s polo�jedna ku"; mV,m musí byť�aP �^ zplochy[ hu a Hoca. Teda $$\frac{ 41}{4}\pi 1^2}{8\stackrel{!}{=} '8N_{in}}{NOP}.$$6�� bunk6�obrázok!<ložeA�)ja s2�u2�4CircPhi = np.a�40,np.pi/2,0.01��!���M�0matplotlib.py A��plt f1=plt.figure(figsize=(7,7)) plt.plot(�EsE�,E� 0color = "red" J 2, N-1�J�i-O !� i�6'�)� i-2]15= � p? L :, 05:, l%0xlim([-2e11, ] yZDxlabel("$x$", font� 207 yRgcaZ' -=t.�etm���pi� W:m�q�g�gaf�i���# me}_4 nevidno, ale �, ze tam�&�8pre Vás: Treban�Mars :) i�te! :Matema�<� kyvadlo s odpo��im� te mv,\$\gamma$, $$ \ddot \thet��  g l � - 2 '^2+ z��P<`odeint`. Alebo�$d telesa v �vo �dí� xg - kv^2�B�scipy.�ate� p �X,F(y, t, g, k�q�/,[y[1], g -k* **2] �101 k�0 g��� linspace(��� yZ��� y = �(F, y0args=(�.� t, yA�B�tR0y�O R"I�UXHarmon�,� oscilátor�o�1�0Leapfrog (modácia��ho&� ) .�� L 0%=100,N) t��- ���Funkcie%�5� (F,x0,v0,E�-�v!�|N�Xv =6Ea|�~ d čia["Ix� = x0v v # I&e�ícj9 wiki � fac1A5 .0 -�*�*dtY fac2 /(#+2# B )6+ N-1-v[i���p*W*v��-2*dt*x+ F[i]ZxA (dtAV'ED=�()**2�(l+�+1])/2.0� �E8.5:x;v + # Vrátimw��#�m�x,v,EI�� !�zr5| �rôzn V�F]/ x1,v1,E!�.��1.0) # xa� =  %�� 0 x2,v2,E!�ZF5�G,1 x3,v3,E3 =ZH4�G5a_Nakresl%i�fy?LrcParams["axes.grid"!� True��!'� .� '!14:@l� $8$�� ub��211 t,x:263 ��"�4R64E1,�=r"��)�$% yE2V'1>(3R(5' A"556�E(t�� Čas �,legend(loc="er right�t _layout� A ��!ude.�,aj tlmenný?2�&�f0,t,w,T.9qTf0*$w*t)*exp(-+/T� Fa�{FA�A�b�F1�;= � a8t- 2aN�W�F2^,0.9.,3v,8 ,[ �/V�1a�)Z�2%1)Z�.&1M���2Q��ii5tu�N� TimeM��]i.�d�?4.0�A i# upper lefu!.�=� T <# The $\chi^2$ Di�%bution - $Test Stati�& If w ke $n$com�&0ples (observaGs) HGaussian (Normal) dm|s with known means, $\mu_i$, and variancesigma_��, it is seen that the total squared dev�#on, $$ �H = \sum_{i=1}^{n} \!>(�x_i - �i o}\��)^2\,�  llowsu V$2� �!%$degrees of'.%e(Probability2�� c!D 2�p0.E fu 0 �d$k$Jr (!number�p��eters)9are a�ed�vary)![given by%=f-&E6 \,;k-!O\display@ 1}:,2^{k/2} \,\GA Ok\,/2 J }\, _({k-2}\,e^{-2/)ywhere if!��#(o con' ined�i�e�F�,!0,�,�6).�- =n$.e=p.d.f.:$often abbrElednoa5oni$^;$rM@_k$� reminder)�!�1 er valuII $k$,�%IY is $6]I�!�E�k-1 !mce925x+$� .Ox < ;2615�m \pi}�<## Mean Letting�=z Ino�!� formA� B�E�.�z �xtint\limits_{0}^{\infty} x^{z-1MSx}\,dxINNC mean-�:�6� ; q $ i �2�\mu�$\textrm{E}%�[ �= 2<b�za!�lylze�5za�!z`� &=6��v�.�2� b�%�� z}{2�p�3� �����x.�A72 A;�3B?M�>'B,(bv2-�k!9 6�bT�(|k. *^�Va�V��( Likewise,e��ZmVar>A{ q/I%z->qG-)^-2�W Y -u���RJ���jb*z��Q z \,�}\,d�2kf= \,\,f<+ k^2b=f8\\R.bJz^Q�6��]B]- 2k^amغ��hBh+р��-:�J�2��.�b~I� kBlb��t�����s��u�t%+^kR�4 Jk  + � �zv|42S��+ ��R�B�1��� � �>Ii52kB2k,B� such&� staM d&{ ��L AH 2k}\,.�@Gg this in� Dknow ,� "� } =�aous� g F� g visualiz�9wŜ.F ,'s behaviour2'�!u&9. Vstats�+ b�+>p # Pl �Y 2�t9np*N ., 1num�$ ) [��x4ats.chi04 df=ndf), �'$�${}'.)k() k ndf� �,1, 7)�u�-�,�5��r'$x=� $�+�r'3 x"8#title" :2�1�F�'A*'best ;)v0## Cumulativentc&.$&h (CDF)�� V�is (l� z1)�  $split} F_{ � (x.� >� x} f:5z25 ��JAN�����6G �N�� 0� �B�&� �= �F�riB�Qt et����&@ �5BnBӢjdt��MF�&NIeA�"D([lower inco�te�:0](https://en.�$pedia.org//I9_�_9%I�)�s,(!mB�}!7s65dt\��aT���0[regularized 6�#RT_T�4s_and_Poisson_�3_��T�PN�%�V }{.�s5� �:�)V�'~�kVk.Mg2l .� Y, x��>:%})L .:.x-q%J_S�} ThusV-eiment"AxCDF-eary�CDF))gbar{F}:�6� = 1-r�� repr-(d, one-sided ( ,tailed) $p$-a6�g�7T$ �8a model —� is,�.`to Ge.E d grea�th&r.:at wh�;wasAd�1&�<v� _ccd�w"""��x�fArgs: x:� �ofs^2df &de>�-R�*]1�!he�>"""� 1. -+ � %=x,� df�"=0�!z fig, axe^, �Ls(nrows=1, ncols=2, "/614, 4.5e#J� 7-�U[0]N] ��> <6:~p  a1a:�\ �_6V� ."&� F��6� .+B� �5!G�%� FN� CN� 1]~� "��j>� = �')2]F��(�C� ��1]R�E��7*u Bin�"' �Deqa�Fr TODO � Ref;C\ces - \[1\] G. Cowan, _"��al Data Analysis_, Oxford Univers[(Press, 1998M22M"Goodnes8fitvWilk'=$orem", Not}2013 '@Heat Equ� Solve�rdif� tial�����0A� \par% _t u�!+x^2&=39 && t>nGT), \, x x_\�1 rm{min}, ax}m� u(0,xR u_0(x),X H[8JH]�U � zappropriR(bou�y�di�s�C�8ant Dirichlet B,Co,.Bh![�F��6EJq Jf%[2"�6% .d)�\:G!Y!�%FG>G6-3Us� `Sum�HByPartsOperators.jlM9julia u0b/<, OrdinaryDiffEq 0Vds, LaTeXStrings xmin, xma�W-π, π�($512 acc_orz= 4 tspa�:(n,10.) # source�0coefficients =e+t5 \SvärdShoeybi2008() ode_3@= Tsit5() u₀(x��-(x()�41/12 D = deriR ve_o- ( o, 2, ���n*�D�% u�&l.(sD� < rhs!(du, u, p, U(mul D, u)%�@inEo s du�)= ( W(!V)) / D...�_we�$s[1I2Lend] N PaxNP�.Q end !Y = ODEQ lem(�, uQ+!� ) sol = s��(ode,w+!�,, save_everyQ3 =fal�$at=0:10) @p(�C # tryU ��'solo" at�3 kpoi� E� 1�[sol(iɝi�0:1:1�0Pi6mWizM:%�C�C�A��Af�op=a�,�Egth=N):�L =>�.DuH1 {Float64}d4}H2π/5�3512, :��. 4; BC=(u0[1],u0E�J od:�L��������A���  �z+ Sess "1�,,UnsupervisedO.rn� ��P�@[Principal Compon�h"�](# - - () - [Cluste�� Method7- 6�.# I=E�p��pRCE eabornnsa� !9 sklearn.p�oc!n"*9scale6(deosJ�0PCA6&c � Ke"s #c�0:! hiercKyJ$.O4linkage, dendr\<$, cut_tree%�%�7)1:*�  graph5bf�24mpl_toolkits.m��3d�! 3d (IP2S.�#c!d_output�t$Set global*�% %� in�C� �C.use('-�-whit? � *�( ines�ewidth�,3:$�)�)"�((10,6,L (� *2�(&�:$G-:$qHB�-x >Q))�z� ce betwV(*}�!^a�* �*u.�i8 at��#$first case�haQ^ L $y$1e w� to�4dic�3a set( 6�%{ X_1, ., X_p \}k%Inb�)'�terest�&prn$ion, becau �do�% �a�soc� d �@onspEf'�. RatherJ goal% o?cov| va�th�  aboumeasurms on $^� Ques�~t!Sc�ns� are:1I!�(n&Ov!ay!`&!�gF? - CanPdi �8subgroups among-9�or.%(? We� go�o �@ se q ��*tw%Ci�*��,%_ec�lyε�N �� ing <J/�8 Suppos�)> wish6�*.�� >�U�$$p$ featur!$\{>�\}�'s��E�an explo� y% a�.%<couldA�by examiaz!/-d��Q�+catter�*�1�, eacha5w�containE n2�’B�!�o`*�. How) E�w*0$p(p−1)/2$ .�; �� ple,3$p�0$�E45$ s! PCA� vide[,�!�do �<% . It find!low2�`/- �*o�PA�Gb)5 as m�!�ossibl� !FE�ai�F�**���@���** f��QZ��+.��SarQbinvQ%LZ_n1'E_{11}� + 2F!...pp�haI larg�.�nce. By�@! d,� mea�g$*..pq^2_{i1}!ͭvo�� wordOb/ load�vece8� �optimiz)�lem�$\underset{�, \ldo� p 1}}{\&name{�} \�"\&(M�.2/@ j/p} X(j 1} x_{i j�^"�) \} \quad �' {�6jecNjJVG=1%�Abo:��%�w�Fmax!!0isq�UaV5�Q0����$z%�!�Af�ej�$Z_1$JQzE3b d0/minM�ya�E�secondNV2$4.**f(**�A�VV[)+A�%(al=u�pllJRAoatŧ4*uncorrelated*��% ��il�`6<�of� �`USArPs`�h. F��&50�e�#Uni���:$����&�a g?$9; 000$�1�Ts�otree c�8@s: `Assault`, `Mu�``2`Rape.` �ls�]c?xpe�T�op9"oT�_�#e livE�n urban!Tas, `UPop�=d "( Load �� df�(d.read_csv(�N/5W.csv', 0