{"text": "function out = isdecay(f)\n%ISDECAY Test if a SINGFUN decays faster than a single root at endpoints.\n% ISDECAY(F) returns a 1x2 row vector each of which indicates whether F\n% vanishes at one of the endpoints faster than a single root. An entry TRUE is\n% returned if F has a boundary root with multiplicity larger than one, FALSE\n% otherwise. \n%\n% Note that ISDECAY is designed for and expected to be called only by UNBNDFUN\n% class for handling functions defined on unbounded domains.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nout = isdecay(f.smoothPart);\n\n%% Left endpoint:\n\nif ( ~out(1) && f.exponents(1) > 1 )\n out(1) = 1;\nend\n\n%% Right endpoint:\n\nif ( ~out(2) && f.exponents(2) > 1 )\n out(2) = 1;\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@singfun/isdecay.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.39999754232136026}} {"text": "function lax_wendroff_2d_display ( )\n\n%*****************************************************************************80\n%\n%% LAX_WENDROFF_2D_DISPLAY illustrates the Lax-Wendroff procedure in 2D.\n%\n% Discussion:\n%\n% A sequence of ball and stick drawings is displayed in steps 0 through 9.\n%\n% Hitting return causes the next item to be drawn.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 28 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n for frame = 0 : 9\n%\n% Clear the plotting frame.\n%\n clf\n%\n% Make all the subsequent plotting \"cumulative\".\n%\n hold on\n\n if ( 0 == frame )\n title ( 'Lax-Wendroff 2D scheme' )\n end\n%\n% Central nodes on the blue level.\n%\n if ( 1 <= frame )\n plot3 ( 0.0, 0.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n end\n if ( frame == 1 )\n title ( 'A node where we have the solution.' )\n end\n%\n% The region associated with the central node, blue level.\n%\n if ( 2 <= frame )\n plot3 ( [ -0.5, 0.5 ], [ -0.5, -0.5 ], [ 0.0, 0.0 ], 'b', 'LineWidth', 3 )\n plot3 ( [ 0.5, 0.5 ], [ -0.5, 0.5 ], [ 0.0, 0.0 ], 'b', 'LineWidth', 3 )\n plot3 ( [ 0.5, -0.5 ], [ 0.5, 0.5 ], [ 0.0, 0.0 ], 'b', 'LineWidth', 3 )\n plot3 ( [ -0.5, -0.5 ], [ 0.5, -0.5 ], [ 0.0, 0.0 ], 'b', 'LineWidth', 3 )\n end\n if ( frame == 2 )\n title ( 'The region associated with the node.' )\n end\n%\n% Neighbor nodes on the blue level.\n%\n if ( 3 <= frame )\n plot3 ( -1.0, 0.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 1.0, 0.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, -1.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, 1.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n end\n if ( frame == 3 )\n title ( 'The neighboring nodes.' )\n end\n%\n% Midside nodes on the blue level.\n%\n if ( 4 <= frame )\n plot3 ( -0.5, 0.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.5, 0.0, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, -0.5, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, 0.5, 0.0, 'o', 'MarkerFaceColor', 'b', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n end\n if ( frame == 4 )\n plot3 ( [ -1.0, +1.0 ], [ 0.0, 0.0 ], [ 0.0, 0.0 ], 'b', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ -1.0, 1.0 ], [ 0.0, 0.0 ], 'b', 'LineWidth', 3 )\n end\n if ( frame == 4 )\n title ( 'Values at midsides by averaging.' )\n end\n%\n% Center node on the green level.\n% Line from center node on blue to center node on green.\n%\n if ( 5 <= frame )\n plot3 ( -0.5, 0.0, 0.5, 'o', 'MarkerFaceColor', 'g', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.5, 0.0, 0.5, 'o', 'MarkerFaceColor', 'g', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, -0.5, 0.5, 'o', 'MarkerFaceColor', 'g', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, 0.5, 0.5, 'o', 'MarkerFaceColor', 'g', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( [ -0.5, 0.5 ], [ -0.5, -0.5 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n plot3 ( [ 0.5, 0.5 ], [ -0.5, 0.5 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n plot3 ( [ 0.5, -0.5 ], [ 0.5, 0.5 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n plot3 ( [ -0.5, -0.5 ], [ 0.5, -0.5 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n end\n if ( frame == 5 )\n plot3 ( [ -0.5, -0.5 ], [ 0.0, 0.0 ], [ 0.0, 0.5 ], 'k', 'LineWidth', 3 )\n plot3 ( [ 0.5, 0.5 ], [ 0.0, 0.0 ], [ 0.0, 0.5 ], 'k', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ -0.5, -0.5 ], [ 0.0, 0.5 ], 'k', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ 0.5, 0.5 ], [ 0.0, 0.5 ], 'k', 'LineWidth', 3 )\n end\n if ( frame == 5 )\n title ( 'Values at midside, half time step.' )\n end\n%\n% Lines from midside nodes to center.\n%\n if ( 6 == frame )\n plot3 ( [ 0.5, 0.0 ], [ 0.0, 0.0 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n plot3 ( [ -0.5, 0.0 ], [ 0.0, 0.0 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ 0.5, 0.0 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ -0.5, 0.0 ], [ 0.5, 0.5 ], 'g', 'LineWidth', 3 )\n end\n if ( frame == 6 )\n title ( 'Estimate fluxes' )\n end\n%\n% Carry neighbor nodes to green level, and draw lines.\n%\n if ( 7 <= frame )\n plot3 ( 0.0, 0.0, 0.5, 'o', 'MarkerFaceColor', 'g', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n end\n if ( frame == 7 )\n title ( 'Estimate derivative at node, half time step.' )\n end\n%\n% Advance solution to full time.\n%\n if ( 8 <= frame )\n plot3 ( [ 0.0, 0.0 ], [ 0.0, 0.0 ], [ 0.0, 1.0 ], 'k', 'LineWidth', 3 )\n plot3 ( 0.0, 0.0, 1.0, 'o', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( [ -0.5, 0.5 ], [ -0.5, -0.5 ], [ 1.0, 1.0 ], 'r', 'LineWidth', 3 )\n plot3 ( [ 0.5, 0.5 ], [ -0.5, 0.5 ], [ 1.0, 1.0 ], 'r', 'LineWidth', 3 )\n plot3 ( [ 0.5, -0.5 ], [ 0.5, 0.5 ], [ 1.0, 1.0 ], 'r', 'LineWidth', 3 )\n plot3 ( [ -0.5, -0.5 ], [ 0.5, -0.5 ], [ 1.0, 1.0 ], 'r', 'LineWidth', 3 )\n end\n if ( frame == 8 )\n title ( 'Take full step to new time.' )\n end\n%\n% Advance all data.\n%\n if ( 9 <= frame )\n plot3 ( [ -1.0, -1.0 ], [ 0.0, 0.0 ], [ 0.0, 1.0 ], 'k', 'LineWidth', 3 )\n plot3 ( [ 1.0, 1.0 ], [ 0.0, 0.0 ], [ 0.0, 1.0 ], 'k', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ -1.0, -1.0 ], [ 0.0, 1.0 ], 'k', 'LineWidth', 3 )\n plot3 ( [ 0.0, 0.0 ], [ 1.0, 1.0 ], [ 0.0, 1.0 ], 'k', 'LineWidth', 3 )\n plot3 ( -1.0, 0.0, 1.0, 'o', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 1.0, 0.0, 1.0, 'o', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, -1.0, 1.0, 'o', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n plot3 ( 0.0, 1.0, 1.0, 'o', 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'k', 'MarkerSize', 12 )\n end\n if ( frame == 9 )\n title ( 'Advance all data to new time.' )\n end\n\n xlabel ( '- X -' )\n ylabel ( '- Y -' )\n zlabel ( '- Time -' )\n\n axis ( [ -1, +1, -1, +1, 0, 1] )\n view ( 3 )\n%\n% \"Release\" the plotting screen.\n%\n hold off\n\n pause\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/ball_and_stick_display/lax_wendroff_2d_display.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5774953797290153, "lm_q2_score": 0.6926419704455589, "lm_q1q2_score": 0.39999753773871144}} {"text": "function M = ply_read(filename)\n% Read PLY-formatted data from disk\n% FORMAT M = ply_read(filename)\n%\n% filename - PLY-formatted file name\n% M - data structure\n%__________________________________________________________________________\n% \n% Stanford Triangle Format Specification:\n% https://en.wikipedia.org/wiki/PLY_%28file_format%29\n%__________________________________________________________________________\n% Copyright (C) 2017-2019 Wellcome Trust Centre for Neuroimaging\n\n% Guillaume Flandin\n% $Id: ply_read.m 7676 2019-10-22 10:19:29Z guillaume $\n\n\nfid = fopen(filename,'rt');\nif fid == -1\n error('Cannot open %s.',filename);\nend\n\nM = struct('vertices',[],'faces',[]);\n\n%-Read header\nisvertex = false;\nnval = 0;\nwhile true\n l = fgetl(fid);\n if strcmp(l,'end_header'), break; end\n [l,r] = strtok(l);\n if strcmp(l,'element')\n [l,r] = strtok(r);\n switch l\n case 'vertex'\n nv = str2double(r);\n isvertex = true;\n case 'face'\n nf = str2double(r);\n isvertex = false;\n end\n elseif strcmp(l,'property')\n if isvertex\n nval = nval + 1;\n end\n end\nend\n\n%-Read data\nM.vertices = fscanf(fid,'%f',[nval nv])';\nM.vertices = M.vertices(:,1:3);\nM.faces = fscanf(fid,'%d',[4 nf])';\nM.faces = M.faces(:,2:4) + 1;\n\nfclose(fid);\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/@gifti/private/ply_read.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.3999975349934193}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETERS Returns a data structure containing the parameters of the\n% example 4 DOF planar robot.\n%\n% Author: Arturo Gil. Universidad Miguel Hernandez de Elche. \n% email: arturo.gil@umh.es date: 05/03/2012\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Copyright (C) 2012, by Arturo Gil Aparicio\n%\n% This file is part of ARTE (A Robotics Toolbox for Education).\n% \n% ARTE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% ARTE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with ARTE. If not, see .\nfunction robot = parameters()\n\nrobot.name='Example 4DOF planar arm';\n\n%kinematic data DH parameters\nrobot.DH.theta='[q(1) q(2) q(3) q(4)]';\nrobot.DH.d='[0 0 0 0]';\nrobot.DH.a='[1 1 1 1]';\nrobot.DH.alpha='[0 0 0 0]';\n\n%number of degrees of freedom\nrobot.DOF = 4;\n\n%Jacobian matrix\n% if not defined, compute it with manipulator_jacobian\nrobot.J=[];\n%the proper rows of J to compute manipulability\nrobot.selJ =[1,2,6];\nrobot.kind=['R' 'R' 'R' 'R'];\n\n\n%Function name to compute inverse kinematic\nrobot.inversekinematic_fn = 'inverse_kinematics_4dofplanar(robot, T, q)';\nrobot.directkinematic_fn = 'directkinematic(robot, q)';\n\n%minimum and maximum rotation angle in rad\nrobot.maxangle =[deg2rad(-180) deg2rad(180); %Axis 1, minimum, maximum\n deg2rad(-180) deg2rad(180);\n deg2rad(-180) deg2rad(180)]; %Axis 2, minimum, maximum\n \n %minimum and maximum rotation angle in rad\nrobot.maxangle =[deg2rad(-90) deg2rad(90); %Axis 1, minimum, maximum\n deg2rad(-90) deg2rad(90);\n deg2rad(-180) deg2rad(180)]; %Axis 2, minimum, maximum\n \n%maximum absolute speed of each joint rad/s or m/s\nrobot.velmax = []; %empty, not available\n\nrobot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time\n% end effectors maximum velocity\nrobot.linear_velmax = 0; %m/s, example, not available\n\n%base reference system\nrobot.T0 = eye(4);\n\n%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION\n%position, velocity and acceleration\nrobot=init_sim_variables(robot);\nrobot.path = pwd;\n\n%this is an ad hoc transformation between the piece and the robot's end\n%effector\n% robot.Tcoupling=[-1 0 0 0;\n% 0 1 0 0;\n% 0 0 -1 0;\n% 0 0 0 1];\n% Tc1 = [cos(-pi/2) 0 sin(-pi/2) 0;\n% 0 1 0 0;\n% -sin(-pi/2) 0 cos(-pi/2) 0;\n% 0 0 0 1 ];\n% Tc2 = [1 0 0 0;\n% 0 cos(pi) -sin(pi) 0;\n% 0 sin(pi) cos(pi) 0;\n% 0 0 0 1];\n% robot.Tcoupling =Tc1*Tc2;\nrobot.Tcoupling = eye(4);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%GRAPHICS\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%read graphics files\nrobot.graphical.has_graphics=1;\nrobot.graphical.color = [255 20 40]./255;\n%for transparency\nrobot.graphical.draw_transparent=0;\n%draw DH systems\nrobot.graphical.draw_axes=1;\n%DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for\n%bigger robots\nrobot.graphical.axes_scale=1;\n%adjust for a default view of the robot\nrobot.axis=[-3.5 3.5 -3.5 3.5 0 1]\nrobot = read_graphics(robot);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%DYNAMIC PARAMETERS\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nrobot.has_dynamics=1;\n\n%consider friction in the computations\nrobot.dynamics.friction=0;\n\n%link masses (kg)\nrobot.dynamics.masses=[1 1 1] ;\n\n%COM of each link with respect to own reference system\nrobot.dynamics.r_com=[-0.5 0 0; %(rx, ry, rz) link 1\n -0.5 0 0;\n -0.5 0 0];%(rx, ry, rz) link 2\n\n%link masses\nm1 = robot.dynamics.masses(1);\nm2 = robot.dynamics.masses(2);\nm3 = robot.dynamics.masses(3);\n\na=eval(robot.DH.a);\nL1 = a(1);\nL2 = a(2);\nL3 = a(3);\n\n%Momentos de inercia de cada eslabon.\n% Ixx\tIyy\tIzz\tIxy\tIyz\tIxz, por cada fila\nrobot.dynamics.Inertia=[0 m1*L1^2/3 m1*L1^2/3 0\t0\t0;\n 0 m2*L2^2/3 m2*L2^2/3 0\t0\t0;\n 0 m3*L3^2/3 m3*L3^2/3 0\t0\t0];\n \n%Actuator rotor inertia\nrobot.motors.Inertia=[0 0 0];\n%Reduction ratio motor/joint speed\nrobot.motors.G=[1 1 1];\n%consider friction\nrobot.friction=0;\n%Viscous friction factor, motor referred\n%robot.B = [1e-3 1e-3 1e-3];\nrobot.motors.Viscous = [10 10 10];\n%Coulomb friction, motor referred\nrobot.motors.Coulomb = [0 0;\n 0 0;\n 0 0];\n \n%SPECIAL PARAMETERS TO SOLVE THE INVERSE KINEMATICS\nrobot.parameters.step_time=0.1;\n%Error in XYZ to stop inverse kinematics\nrobot.parameters.epsilonXYZ=0.01;\n%Error in Quaternion to stop inverse kinematics.\nrobot.parameters.epsilonQ=0.01;\nrobot.parameters.stop_iterations=500;\n\n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/robots/example/4dofplanar/parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455589, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.39999752766547825}} {"text": "classdef LevelSetWithCircleInclusion < LevelSetSphereNdim\n \n methods (Access = public)\n \n function obj = LevelSetWithCircleInclusion(cParams)\n obj.fracRadius = cParams.fracRadius;\n obj.compute(cParams);\n end\n end\n \n methods (Access = protected)\n function computeLevelSetValue(obj)\n ls = 1 - obj.dist;\n obj.levelSet = ls;\n end\n end\n \n \nend\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/DesignVaribleInitializer/LevelSetInitializer/LevelSetWithCircleInclusion.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39996096144165316}} {"text": "function tests = test_ft_preproc_detrend\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_preproc_detrend\n\nif nargout\n % assume that this is called by RUNTESTS\n tests = functiontests(localfunctions);\nelse\n % assume that this is called from the command line\n fn = localfunctions;\n for i=1:numel(fn)\n feval(fn{i});\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction testOptions(testCase)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnchan = 8;\nnsample = 1000;\ndat = randn(nchan, nsample) + 1;\n\nresult = [];\nresult{end+1} = ft_preproc_detrend(dat, 1, 1000);\nresult{end+1} = ft_preproc_detrend(dat, 1, 900);\nresult{end+1} = ft_preproc_detrend(dat, 101, 1000);\nresult{end+1} = ft_preproc_detrend(dat, 101, 900);\n\n% all iterations were done with (slightly) different options, hence the results should not be equal\nfor i=1:numel(result)\n for j=(i+1):numel(result)\n assert(~isequal(result{i}, result{j}), 'the results %d and %d should not be equal', i, j);\n end\nend", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_preproc_detrend.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39996096144165316}} {"text": "classdef GradientSurfPerimeterComputer < handle\n\n properties (Access = private)\n outPutFolder\n iMesh\n figureID\n gExperiment\n end\n\n properties (Access = private)\n inputFiles\n outputFolder\n levelSetParams\n circleCase\n end\n\n methods (Access = public)\n\n function obj = GradientSurfPerimeterComputer(cParams)\n obj.init(cParams)\n end\n\n function compute(obj)\n for im = 1:numel(obj.inputFiles)\n obj.iMesh = im;\n obj.createGradientVariationExperiment();\n nEpsilon = length(obj.gExperiment.regularizedPerimeter.epsilons);\n for iEpsilon = 1:nEpsilon\n obj.plotSurf(iEpsilon);\n obj.addXYlabel();\n obj.addTitle(iEpsilon);\n obj.printSurf(iEpsilon);\n end\n end\n end\n\n end\n\n methods (Access = private)\n\n function init(obj,cParams)\n obj.inputFiles = cParams.inputFiles;\n obj.outputFolder = cParams.outputFolder;\n obj.levelSetParams = cParams.levelSetParams;\n obj.circleCase = cParams.circleCase;\n end\n\n function createGradientVariationExperiment(obj)\n s.levelSetParams = obj.levelSetParams;\n s.inputFile = obj.inputFiles{obj.iMesh};\n s.iMesh = obj.iMesh;\n g = GradientVariationExperiment(s);\n obj.gExperiment = g;\n end\n\n function addXYlabel(obj)\n xlabel('$x$','interpreter','latex')\n ylabel('$y$','interpreter','latex')\n end\n\n function plotSurf(obj,iEpsilon)\n coord = obj.gExperiment.backgroundMesh.coord;\n x = coord(:,1);\n y = coord(:,2);\n dPer = obj.gExperiment.regularizedPerimeter.perimetersGradient;\n z = dPer(:,iEpsilon);\n tri = delaunay(x,y);\n f = figure();\n h = trisurf(tri,x,y,z);\n shading interp\n obj.figureID = f;\n ar = get(gca,'DataAspectRatio');\n obj.plotBoundaryCutMesh(tri,x,y,z)\n set(gca,'DataAspectRatio',ar);\n view(-60,25);\n end\n\n function plotBoundaryCutMesh(obj,tri,x,y,z)\n m = obj.computeBoundaryCutMesh();\n %nodes = unique(m.connec(:));\n Xi = m.coord(:,1);\n Yi = m.coord(:,2);\n Zi = interptri(tri,x,y,z,Xi,Yi);\n s.coord = [Xi Yi Zi];\n %s.connec(:,1) = 1:length(Xi);\n %s.connec(:,2) = 2:length(Xi)+1;\n %s.connec(end,2) = 1;\n %s.coord = m.coord;\n s.connec = m.connec;\n s.kFace = -2;\n mB = Mesh(s);\n hold on\n mB.plot\n % axes(axes_h)\n % axis(axis_h)\n % view(a,b)\n end\n\n function mBCut = computeBoundaryCutMesh(obj)\n g = obj.gExperiment;\n s.backgroundMesh = g.backgroundMesh;\n s.boundaryMesh = g.boundaryMesh;\n uMesh = UnfittedMesh(s);\n uMesh.compute(g.levelSet);\n bCut = uMesh.boundaryCutMesh;\n mBCut = bCut.mesh;\n end\n\n function printSurf(obj,iEpsilon)\n part1 = [obj.outputFolder,obj.circleCase,'GradientMesh',num2str(obj.iMesh)];\n part2 = ['Epsilon',num2str(iEpsilon)];\n outFile = [part1,part2];\n printer = surfPrinter(obj.figureID);\n printer.print(outFile)\n end\n\n function addTitle(obj,iEpsilon)\n epsilons = obj.gExperiment.regularizedPerimeter.epsilons;\n h = obj.gExperiment.backgroundMesh.computeMeanCellSize;\n epsStr = num2str(epsilons(iEpsilon)/h);\n firstStr = 'dPer^R_\\varepsilon \\ \\textrm{with} \\ \\,';\n secondStr = '\\varepsilon/h \\, = \\, ';\n thirdStr = '\\ \\textrm{and} \\ h/L \\, = \\, ';\n L = obj.gExperiment.domainLength;\n [n,d] = rat(h/L);\n if n == 1\n hStr = [num2str(n),'/',num2str(d)];\n else\n hStr = num2str(round(h/L,3));\n end\n titleStr = ['$',firstStr,secondStr,epsStr,thirdStr,hStr,'$'];\n title(titleStr,'interpreter','latex');\n end\n\n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Applications/PerimeterExperiments/GradientSurfPerimeterComputer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39996096144165316}} {"text": "classdef AllEdges2CutEdgesComputer < handle\n \n properties (GetAccess = public, SetAccess = private)\n nCutEdgeByElem\n end\n \n properties (Access = private)\n isEdgeCutInElem\n end\n \n methods (Access = public)\n \n function obj = AllEdges2CutEdgesComputer(cParams)\n obj.init(cParams)\n end\n \n function edge = compute(obj,allEdges)\n nElem = size(allEdges,1);\n allEdges = transpose(allEdges);\n cutEdges = allEdges(obj.isEdgeCutInElem);\n cutEdges = reshape(cutEdges,obj.nCutEdgeByElem,nElem);\n edge = transpose(cutEdges);\n end\n \n \n end\n \n \n methods (Access = private)\n \n function init(obj,cParams)\n obj.isEdgeCutInElem = cParams.isEdgeCutInElem;\n obj.nCutEdgeByElem = unique(sum(obj.isEdgeCutInElem,1));\n end\n \n end\n \n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/FEM/Mesh/Unfitted/AllEdges2CutEdgesComputer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.399960953793424}} {"text": "function z = ge(x,y)\n%GE Greater than or equal for sptensors.\n%\n% See also SPTENSOR.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2015, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2015) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\n%% Observations for sparse matrix case.\n% The result of a >= 5 is sparse.\n% The result of a >= 0 is sparse.\n% The result of a >= full(a) is sparse.\n\n%% Case 1: One argument is a scalar\nif isscalar(y)\n subs1 = x.subs((x.vals >= y),:);\n if y <= 0\n subs2 = setdiff(allsubs(x),x.subs,'rows');\n else\n subs2 = [];\n end\n z = sptensor([subs1;subs2],true,size(x));\n return;\nend\n\n% Call back with the arguments reversed.\nif isscalar(x)\n z = le(y,x);\n return;\nend\n\n%% Case 2: Both x and y are tensors of some sort\n% Check that the sizes match\nif ~isequal(x.size,y.size)\n error('Size mismatch');\nend\n\n% Case 2a: Two sparse tensors\nif isa(x,'sptensor') && isa(y,'sptensor')\n z = le(y,x);\n return;\nend\n\n% Case 2b: One dense tensor\nif isa(y,'tensor')\n\n % x zero \n subs1 = find(y <= 0);\n subs1 = setdiff(subs1,x.subs,'rows');\n \n % x nonzero\n subs2 = x.subs(x.vals >= y(x.subs,'extract'),:);\n \n % assemble\n z = sptensor([subs1;subs2],true,size(x));\n \n return;\n \nend\n\n%% Otherwise\nerror('The arguments must be two sptensors or an sptensor and a scalar.');\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u5206\u7c7b\u7b97\u6cd5/DEEP-TENSOR-FACTORIZATION-FOR-HYPERSPECTRAL-IMAGE-CLASSIFICATION-master/code/tensor_toolbox_2.6/@sptensor/ge.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.399960953793424}} {"text": "function w = drfiLearnSaliencyFusionWeight( train_dir, gt_dir, num_segmentation, is_resize )\n % Assume that all training images are placed under train_dir.\n % The saliency maps of i-th segmentation are under the folder \"i\" (e.g., \n % saliency maps of 3rd segmentation are under the folder \"3\").\n % Detailed introduction on learning the saliency fusion weight can be\n % found in our supplementary material.\n \n M = num_segmentation;\n \n % Resize all training images to a fixed size 200*200\n sub_dir_list = dir(fullfile(train_dir, '*'));\n \n ind = [];\n for m = 1 : length(sub_dir_list)\n if strcmp(sub_dir_list(m).name, '.') || strcmp(sub_dir_list(m).name, '..')\n ind = [ind, m];\n continue;\n end\n end\n \n % Remove '.' and '..'\n sub_dir_list(ind) = [];\n \n normh = 200;\n normw = 200;\n \n % Resize\n if is_resize\n for m = 1 : length(sub_dir_list)\n image_list = dir(fullfile(train_dir, sub_dir_list(m).name, '*.png'));\n sub_dir_name = sub_dir_list(m).name;\n\n parfor n = 1 : length(image_list)\n image = imread(fullfile(train_dir, sub_dir_name, image_list(n).name));\n\n image = imresize(image, [normh, normw]);\n\n imwrite(image, fullfile(train_dir, sub_dir_name, image_list(n).name));\n\n% if mod(jx, 500) == 0\n% fprintf( 'sub_dir: %s, jx: %d\\n', sub_dir_name, jx );\n% end\n end\n \n fprintf( '%d / %d\\n', m, length(sub_dir_list) );\n end\n end\n \n image_list = dir(fullfile(train_dir, sub_dir_list(end).name, '*.png'));\n num_image = length(image_list);\n \n % prepare H and f\n H = zeros(M, M);\n f = zeros(M, 1);\n \n for ii = 1 : M * M\n [m, n] = ind2sub([M, M], ii);\n sub_dir_name_n = sub_dir_list(n).name;\n sub_dir_name_m = sub_dir_list(m).name;\n if m >= n\n temp = zeros(1, num_image);\n parfor k = 1 : num_image\n image_name = image_list(k).name;\n Akm = im2double(imread(fullfile(train_dir, sub_dir_name_m, image_name)));\n Akn = im2double(imread(fullfile(train_dir, sub_dir_name_n, image_name)));\n \n if size(Akm, 3) > 1\n Akm = rgb2gray( Akm );\n end\n \n if size(Akn, 3) > 1\n Akn = rgb2gray( Akn );\n end\n \n Nk = 1;%size(Akm, 1) * size(Akm, 2);\n temp(k) = sum(sum(Akm .* Akn)) / Nk;\n % fprintf( 'ix: %d, jx: %d, n: %d\\n', ix, jx, n );\n end \n H(m, n) = 2 * sum( temp );\n else\n H(m, n) = H(n, m);\n end\n \n fprintf( 'Computing H, m: %d, n: %d\\n', m, n );\n end\n H = H / num_image;\n save( 'H.mat', 'H' );\n% load( 'H.mat' );\n\n for m = 1 : M \n temp = zeros(1, num_image);\n sub_dir_name = sub_dir_list(m).name;\n parfor k = 1 : num_image\n image_name = image_list(k).name;\n Akm = im2double(imread(fullfile(train_dir, sub_dir_name, image_name)));\n if size(Akm, 3) > 1\n Akm = rgb2gray(Akm);\n end\n \n A = imread(fullfile(gt_dir, image_name));\n A = imresize(A, [normh, normw]);\n A = im2double( A );\n if size(A, 3) > 1\n A = rgb2gray(A);\n end\n \n A( A > 0.5 ) = 1.0;\n A( A < 0.5 ) = 0; \n \n % f(ix) = f(ix) - 2 * sum(sum(A .* Ani));\n % temp = temp - 2 * sum(sum(A .* Ani));\n Nk = 1;%size(A, 1) * size(A, 2);\n temp(k) = - 2 * sum(sum(A .* Akm)) / Nk;\n end \n f(m) = sum( temp );\n fprintf( 'comupting f, m: %d\\n', m );\n end \n f = f / num_image;\n save( 'f.mat', 'f' ); \n \n % Solve the quadratic programming problem\n w_init = ones(M, 1) / M;\n \n Aeq = ones(1, M);\n beq = 1;\n \n lb = zeros(M, 1);\n ub = ones(M, 1);\n \n opt = optimset( 'Algorithm', 'interior-point-convex' );\n w = quadprog(H, f, [], [], Aeq, beq, lb, ub, w_init, opt );\n \n w( w < 1e-6 ) = 0;\nend", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u68c0\u6d4b\u7b97\u6cd5/drfi_matlab-master/train/drfiLearnSaliencyFusionWeight.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.399960953793424}} {"text": "%% Copyright (C) 2014-2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym acos (@var{x})\n%% Symbolic acos function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = acos (x)\n%% @result{} y = (sym) acos(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = acos(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('acos', x);\nend\n\n\n%!error acos (sym(1), 2)\n%!assert (isequaln (acos (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 1;\n%! x = sym('1');\n\n%!test\n%! f1 = acos(x);\n%! f2 = acos(d);\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = acos(A);\n%! f2 = acos(D);\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = acos (d);\n%! f = acos (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/acos.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.39975629619724684}} {"text": "function ret=writesdpa(fname,A,b,c,K,pars)\n%WRITESDPA Take a problem in SeDuMi format and writes it in SDPA format \n%\n% Usage:\n%\n% ret=writesdpa(fname,A,b,c,K,pars)\n%\n% fname Name of SDPpack file, in quotes\n% A,b,c,K Problem in SeDuMi form\n% pars Optional parameters.\n% pars.printlevel=0 No printed output \n% pars.printlevel=1 (default) Some printed output.\n% \n% ret ret=0 on success, ret=1 on failure.\n%\n% Notes:\n%\n% Problems with complex data are not allowed. \n%\n% Quadratic cone and rotated cone constraints are not supported. \n%\n% Nonsymmetric A.s and C.s matrices are symmetrized with A=(A+A')/2\n% a warning is given when this happens.\n%\n% Free variables are not supported.\n%\n% Floating point numbers are written out with 18 decimal digits for\n% accuracy.\n%\n% Please contact the author (Brian Borchers, borchers@nmt.edu) with any\n% questions or bug reports.\n%\n% Third Version: 3/3/06. Corrected a bug in the handling of\n% nonsymmetric constraint matrices.\n%\n% Second Version: 7/14/04. Modified to vastly speed up operations on sparse\n% matrices. On some problems, this version is 100 times \n% faster! \n%\n% First Version: 7/14/03. Modified from old writesdp.m which wrote problems\n% in SDPPack format.\n%\n%\n%\n\n% This file is part of the Matlab Toolbox for Dimensionality Reduction.\n% The toolbox can be obtained from http://homepage.tudelft.nl/19j49\n% You are free to use, change, or redistribute this code in any way you\n% want for non-commercial purposes. However, it is appreciated if you \n% maintain the name of the original author.\n%\n% (C) Laurens van der Maaten, Delft University of Technology\n\n\n%\n% First, check to see whether or not we should be quiet.\n%\nif (nargin > 5)\n if (isfield(pars,'printlevel'))\n if (pars.printlevel == 0)\n quiet=1;\n else\n quiet=0;\n end\n else\n quiet=0;\n end\nelse\n pars.printlevel=1;\n quiet=0;\nend\n%\n% First, check for complex numbers in A, b, or c.\n%\nif (isreal(A) ~= 1)\n if (quiet == 0)\n fprintf('A is not real!\\n');\n end\n ret=1;\n return\nend\nif (isreal(b) ~= 1)\n if (quiet == 0)\n fprintf('b is not real!\\n');\n end\n ret=1;\n return\nend\nif (isreal(c) ~= 1)\n if (quiet == 0)\n fprintf('c is not real!\\n');\n end\n ret=1;\n return\nend\n%\n% Check for any quadratic cone constraints.\n%\nif (isfield(K,'q'))\n if ((~isempty(K.q)) & (K.q ~= 0))\n if (quiet == 0)\n fprintf('quadratic cone constraints are not supported.\\n');\n end\n ret=1;\n return\n end\nend \n%\n% Check for any rotated cone constraints.\n%\nif (isfield(K,'r'))\n if ((~isempty(K.r)) & (K.r ~= 0))\n if (quiet == 0)\n fprintf('rotated cone constraints are not supported.\\n');\n end\n ret=1;\n return\n end\nend \n%\n% Check for any free variables.\n%\nif (isfield(K,'f'))\n if ((~isempty(K.f)) & (K.f ~= 0))\n if (quiet == 0)\n fprintf('Free variables are not supported.\\n');\n end\n ret=1;\n return\n end\nend \n%\n% Find the number of constraints.\n%\nm=length(b);\n%\n% Deal with the following special case. If A is transposed, transpose\n% it again so that it is of the right size.\n%\n[Am,An]=size(A);\nif (Am ~= m)\n if (An == m)\n if (quiet==0) \n fprintf('Transposing A to match b \\n');\n end\n AT=A;\n A=A';\n%\n% Also swap Am and An so that they're correct.\n%\n temp=Am;\n Am=An;\n An=temp;\n else\n%\n% In this case, A is just plain the wrong size.\n%\n if (quiet==0)\n fprintf('A is not of the correct size to match b \\n');\n end\n ret=1;\n return\n end\nelse\n%\n% No need to transpose A, but we'll need AT.\n%\n AT=A';\nend\n%\n% Deal with the following special case: if c==0, then c should really\n% be a zero vector of the appropriate size.\n%\nif (c == 0)\n if (quiet==0)\n fprintf('Expanding c to the appropriate size\\n');\n end\n c=sparse(An,1);\nend\n%\n% If c is empty, then act as if it was zero.\n%\nif (isempty(c))\n if (quiet==0)\n fprintf('Expanding empty c to zeros of the appropriate size\\n');\n end\n c=sparse(An,1);\nend\n%\n% If c is a row vector, make it a column vector.\n%\n[cm,cn]=size(c);\nif (cn > cm)\n c=c';\nend\n%\n% Get the size data.\n%\n%\n% First, the size of the LP block.\n%\nif (isfield(K,'l'))\n nlin=K.l;\n sizelin=nlin;\n if (isempty(sizelin))\n sizelin=0;\n nlin=0;\n end\n if (K.l == 0)\n nlin=0;\n sizelin=0;\n end\nelse\n nlin=0;\n sizelin=0;\nend\n%\n% Get the sizes of the SDP blocks.\n%\nif (isfield(K,'s'))\n nsdpblocks=length(K.s);\n sizesdp=sum((K.s).^2);\n if (isempty(sizesdp))\n sizesdp=0;\n nsdpblocks=0;\n end\n if (K.s == 0)\n nsdpblocks=0;\n sizesdp=0;\n end\nelse\n sizesdp=0;\n nsdpblocks=0;\nend\n%\n% Figure out the number of blocks.\n%\nnblocks=nsdpblocks;\nif (nlin>0)\n nblocks=nblocks+1;\nend\n%\n% print out some size information\n%\nif (quiet==0)\n fprintf('Number of constraints: %d \\n',m);\n fprintf('Number of SDP blocks: %d \\n',nsdpblocks);\n fprintf('Number of LP vars: %d \\n',nlin);\nend\n%\n% Open up the file for writing.\n%\nfid=fopen(fname,'w');\nif (fid==-1)\n if (quiet==0)\n fprintf('Could not open file for output!');\n end\n ret=1;\n return\nend\n%\n% Print out m, the number of constraints.\n%\nfprintf(fid,'%d \\n',m);\n%\n% Next, the number of blocks.\n%\nfprintf(fid,'%d \\n',nblocks);\n%\n% Print out the block structure.\n%\nif (K.s > 0)\n fprintf(fid,'%d ',K.s);\nend\nif (nlin > 0)\n fprintf(fid,'%d ',-nlin);\nend\nfprintf(fid,'\\n');\n%\n% Next, b, with all on one line.\n%\nfprintf(fid,'%.18e ',full(b));\nfprintf(fid,'\\n');\n%\n% First, the C matrix.\n%\n%\n% First, calculate where in c things start.\n%\nbase=sizelin+1;\n%\n% Next, work through the SDP blocks.\n%\nfor i=1:nsdpblocks\n%\n% Get the current block of C.\n%\n I=find(c);\n II=find(I>=base);\n I=I(II);\n II=find(I<=base+K.s(i)^2-1);\n I=I(II);\n II=I-(base-1)*ones(size(I));\n work=sparse(II,ones(size(II)),c(I),K.s(i)^2,1);\n work=reshape(work,K.s(i),K.s(i));\n\n%\n% Check this block for symmetry.\n%\nif (norm(work-work','fro') ~= 0)\n if (quiet==0)\n fprintf('Non symmetric C.s matrix!\\n');\n end\n work=(work+work')/2;\nend\n% \n% Write out the C.s matrix. \n%\n work=triu(work);\n [II,JJ,V]=find(work);\n cnt=length(II);\n if (cnt ~= 0)\n fprintf(fid,'%d %d %d %d %.18e\\n',[zeros(size(II)) i*ones(size(II)) II JJ -V]');\n end\n\n%\n% Next, update to the next base.\n%\n base=base+K.s(i)^2;\nend\n%\n% Print out the coefficients for the linear block of C.\n%\nfor i=1:nlin\n if (c(i) ~= 0.0)\n fprintf(fid,'%d %d %d %d %.18e\\n',[0 nsdpblocks+1 i i -full(c(i))]);\n end\nend\n\n%\n% Now, loop through the constraints, one at a time.\n%\nfor cn=1:m\n%\n% Print out the SDP part of constraint cn.\n%\n base=sizelin+1;\n rowcn=AT(:,cn);\n for i=1:nsdpblocks\n I=find(rowcn);\n II=find(I>=base);\n I=I(II);\n II=find(I<=(base+K.s(i)^2-1));\n I=I(II);\n II=I-(base-1)*ones(size(I));\n work=sparse(II,ones(size(II)),rowcn(I),K.s(i)^2,1);\n\n work=reshape(work,K.s(i),K.s(i));\n\n if (norm(work-work','fro') ~= 0)\n if (quiet==0)\n fprintf('Non symmetric A.s matrix! \\n');\n end\n work=(work+work')/2;\n end\n%\n% Ignore the lower left triangle.\n%\n work=triu(work);\n%\n% Get the nonzero entries.\n%\n [II,JJ,V]=find(work);\n cnt=length(II);\n if (cnt ~= 0)\n fprintf(fid,'%d %d %d %d %.18e\\n',[cn*ones(size(II)) i*ones(size(II)) II JJ V]');\n end\n%\n% Next, update to the next base.\n%\n base=base+K.s(i)^2;\n end\n%\n% Finally, the linear part.\n%\n I=find(rowcn);\n II=find(I<=nlin);\n I=I(II);\n workrow=sparse(I,ones(size(I)),rowcn(I),nlin,1);\n [II,JJ,V]=find(workrow);\n if (length(II) > 0)\n fprintf(fid,'%d %d %d %d %.18e\\n',[cn*ones(length(II),1) (nsdpblocks+1)*ones(length(II),1) II II V]');\n end\nend\n%\n% Close the file.\n%\nfclose(fid);\n%\n% Return success\n%\nret=0;\nreturn\n", "meta": {"author": "tobyma2020", "repo": "cluster", "sha": "c9c3706523859f8c34f9741be94fb2dd89fa4cc0", "save_path": "github-repos/MATLAB/tobyma2020-cluster", "path": "github-repos/MATLAB/tobyma2020-cluster/cluster-c9c3706523859f8c34f9741be94fb2dd89fa4cc0/dr/drtoolbox/techniques/writesdpa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6619228758499942, "lm_q1q2_score": 0.39975629619724684}} {"text": "% gammaScanScript\nglobal planC\nindexS = planC{end};\n\n[newXgrid, newYgrid, newZgrid] = getScanXYZVals(planC{indexS.scan}(1));\ndeltaX = abs(newXgrid(2) - newXgrid(1));\ndeltaY = abs(newYgrid(2) - newYgrid(1));\ndeltaZ = abs(newZgrid(2) - newZgrid(1));\ndoseAgreement = 15;\ndistAgreement = 0.3;\nthresholdAbsolute = 4000;\ndoseArray1 = single(planC{indexS.scan}(1).scanArray);\ndoseArray2 = single(planC{indexS.scan}(2).scanArray);\ngammaM = gammaDose3d(doseArray1, doseArray2, [deltaX deltaY deltaZ], doseAgreement, distAgreement, [], thresholdAbsolute);\n\nnewDoseNum = length(planC{indexS.dose}) + 1;\n%Remove old caching info.\nplanC{indexS.dose}(newDoseNum).cachedMask = [];\nplanC{indexS.dose}(newDoseNum).cachedColor = [];\nplanC{indexS.dose}(newDoseNum).cachedTime = [];\n%Set coordinates.\nplanC{indexS.dose}(newDoseNum).sizeOfDimension1 = length(newXgrid);\nplanC{indexS.dose}(newDoseNum).sizeOfDimension2 = length(newYgrid);\nplanC{indexS.dose}(newDoseNum).sizeOfDimension3 = length(newZgrid);\nplanC{indexS.dose}(newDoseNum).horizontalGridInterval = newXgrid(2)-newXgrid(1);\nplanC{indexS.dose}(newDoseNum).verticalGridInterval = newYgrid(2)-newYgrid(1);\nplanC{indexS.dose}(newDoseNum).depthGridInterval = newZgrid(2)-newZgrid(1);\nplanC{indexS.dose}(newDoseNum).coord1OFFirstPoint = newXgrid(1);\nplanC{indexS.dose}(newDoseNum).coord2OFFirstPoint = newYgrid(1);\nplanC{indexS.dose}(newDoseNum).coord3OfFirstPoint = newZgrid(1);\nplanC{indexS.dose}(newDoseNum).zValues = newZgrid;\nplanC{indexS.dose}(newDoseNum).doseUnits = 'Gy';\nplanC{indexS.dose}(newDoseNum).doseArray = gammaM;\nplanC{indexS.dose}(newDoseNum).doseUID = createUID('dose');\nplanC{indexS.dose}(newDoseNum).fractionGroupID = 'Gamma Scan 4mm, 50HU';\n%Switch to new dose\nsliceCallBack('selectDose', num2str(newDoseNum));\n\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Utilities/gammaScanScript.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8056322076481139, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.39966916703726385}} {"text": "function r = gen_rand_hash(k,n,m);\npersistent buffer\npersistent loc\ntry\n % Preallocate 100 samples everytime and empty that buffer first\n if isempty(buffer) || length(buffer) < loc + n*m\n % Previous approach does not work with parallell toolbox!\n s = rng;\n rng(k);\n buffer = rand(n*m+100,1);\n r = reshape(buffer(1:n*m),n,m);\n loc = 1;\n rng(s);\n end\n r = reshape(buffer(loc:n*m+loc-1),n,m);\n loc = loc + n*m;\n \ncatch\n % but rng is not available in all versions...\n s = rand('state');\n rand('state',k)\n r = rand(n,m);\n rand('state',s);\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/gen_rand_hash.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39965098268500965}} {"text": "classdef HomogVoigtPlaneStressHomogenizer < SequentialLaminateHomogenizer\n\n properties (Access = private)\n end\n\n methods (Access = public)\n\n function obj = HomogVoigtPlaneStressHomogenizer(c0,c1,dir,mi,theta)\n obj.init(c0,c1,dir,mi,theta);\n obj.computeAnisotropicTensors();\n obj.homogenize()\n obj.transformToVoigt()\n obj.makeHomogenizedTensorPlaneStress();\n end\n end\n\n methods (Access = protected)\n\n function transformToVoigt(obj)\n t = obj.homogTensor;\n t = Tensor2VoigtConverter.convert(t);\n obj.homogTensor = t;\n end\n\n end\n\n\nend\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Sources/Homogenizer/SequentialLaminateHomogenizers/HomogVoigtPlaneStressHomogenizer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7577943712746407, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39959749329714844}} {"text": "function varargout = pivotplot(varargin)\n%PIVOTPLOT Semilogy plot of pivot values.\n% PIVOTPLOT( F ) semilogy plot related to the pivots values taken during\n% the construction of the CHEBFUN2 F.\n%\n% H = PIVOTPLOT( F ) returns a handle H to the figure.\n%\n% PIVOTPLOT( F, S ) allows further plotting options, such as linestyle,\n% linecolor, etc. If S contains a string 'LOGLOG', the pseudo sig will be\n% displayed on a log-log scale.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n[varargout{1:nargout}] = pivotplot@separableApprox(varargin{:});\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun2/pivotplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.7577943658046608, "lm_q1q2_score": 0.3995974904127376}} {"text": "function neg_base_exponent(base)\n%\n%\n%\nglobal C\nC = 0;\n\nfigure;\nset(gcf,'position',[350 400 850 350])\n\nsubplot(1,2,1);\nset(gcf,'windowButtonMotionFcn',@fun_mouseMove)\nline([-3 3],[0 0],'color','k','linewidth',3)\n\n\nfunction fun_mouseMove (object, eventdata)\n\nC = get(gca, 'CurrentPoint');\ntitle(gca, ['(X,Y) = (', num2str(C(1,1)), ', ',num2str(C(1,2)), ')']);\n\nsubplot(1,2,2);\ny = base.^C(1,1);\nplot(real(y), imag(y),'ro');\n\nxlim([-5 5])\nylim([-5 5])\n\nend\n\nend\n", "meta": {"author": "angeloyeo", "repo": "gongdols", "sha": "7be9fbd988dec6edab1dc881cb22d63e6f69398d", "save_path": "github-repos/MATLAB/angeloyeo-gongdols", "path": "github-repos/MATLAB/angeloyeo-gongdols/gongdols-7be9fbd988dec6edab1dc881cb22d63e6f69398d/\uae30\ucd08\uc218\ud559/\ubc11\uc774_\uc74c\uc218\uc778_\uc9c0\uc218\ud568\uc218\uc758_\uc2dc\uac01\ud654/neg_base_exponent.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3994874076196448}} {"text": "function navego_nav2csv(nav)\n% navego_nav2csv: exports navigation data to a .csv file.\n%\n% INPUT\n% nav, INS/GNSS estimations.\n%\n% OUTPUT\n%\t.csv file, with the following columns: time (seconds), roll (deg), \n% pitch (deg), yaw (deg), vel N (m/s), vel E (m/s), vel D (m/s),\n% latitude (deg), longitud (deg), altitude (m). \n%\n% Copyright (C) 2014, Rodrigo Gonzalez, all rights reserved.\n%\n% This file is part of NaveGo, an open-source MATLAB toolbox for\n% simulation of integrated navigation systems.\n%\n% NaveGo is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License (LGPL)\n% version 3 as published by the Free Software Foundation.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n%\n% You should have received a copy of the GNU Lesser General Public\n% License along with this program. If not, see\n% .\n%\n% References:\n%\n%\n% Version: 002\n% Date: 2021/12/09\n% Author: Rodrigo Gonzalez \n% URL: https://github.com/rodralez/navego\n\nR2D = (180/pi); % Radians to degrees\n\n% File name\nif(is_octave)\n dtime = datestr(date, 'yymmdd_HHMMSS' ); \nelse\n dtime = datetime('now','TimeZone','local','Format','yyMMdd-HHmm');\nend\n\nfile_name = sprintf('navego_%s.csv', dtime);\n \n% Headline\nht = 'time (seconds), ';\nha = 'roll (deg), pitch (deg), yaw (deg), ';\nhv = 'vel N (m/s), vel E (m/s), vel D (m/s), ';\nhp = 'latitude (deg), longitud (deg), altitude (m),';\n\n% Navigation data\nnav_data = [nav.t nav.roll*R2D nav.pitch*R2D nav.yaw*R2D ...\n nav.vel(:,1) nav.vel(:,2) nav.vel(:,3) ...\n nav.lat*R2D nav.lon*R2D nav.h ]' ;\n\n% Navigation data precision to be saved\npt = '%.6f, ';\npa = repmat('%.3f, ', 1, 3); \npv = repmat('%.3f, ', 1, 3); \npp = repmat('%.7f, ', 1, 2);\nph = '%.3f, ';\nformat_pattern = [pt pa pv pp ph '\\n']; \n\n% Saving the .cvs file\nfprintf('navego_nav2cvs: saving navigation data to file %s ... \\n', file_name)\n\nfd = fopen(file_name, 'w');\n\n% Saving headline\nfprintf(fd, '%s%s%s%s \\n', ht, ha, hv, hp);\n\n% Saving data\nfprintf(fd, format_pattern , nav_data ); \n \nfclose(fd);\n\nend", "meta": {"author": "rodralez", "repo": "NaveGo", "sha": "3de9a74ab1597be13255d4649892e68aeff9a8b7", "save_path": "github-repos/MATLAB/rodralez-NaveGo", "path": "github-repos/MATLAB/rodralez-NaveGo/NaveGo-3de9a74ab1597be13255d4649892e68aeff9a8b7/performance-analysis/navego_nav2csv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3994874076196448}} {"text": "% navego_example_real_mpu6000: post-processing integration of MPU-6000 \n% IMU and Ekinox GNSS data.\n%\n% The main goal is to integrate MPU-6000 IMU and Ekinox-D GNSS measurements.\n%\n% Sensors dataset was generated driving a car through the streets of \n% Turin city (Italy).\n%\n% Copyright (C) 2014, Rodrigo Gonzalez, all rights reserved.\n%\n% This file is part of NaveGo, an open-source MATLAB toolbox for\n% simulation of integrated navigation systems.\n%\n% NaveGo is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License (LGPL)\n% version 3 as published by the Free Software Foundation.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n%\n% You should have received a copy of the GNU Lesser General Public\n% License along with this program. If not, see\n% .\n%\n% References:\n%\n% SBG Systems. SBG Ekinox-D High Accuracy Inertial System Brochure, \n% Tactical grade MEMS Inertial Systems, v1.0. February 2014. \n%\n% InvenSense Inc. MPU-6000/MPU-6050 Product Specification. Document \n% Number: PS-MPU-6000A-00. Revision: 3.4. Release Date: 08/19/2013.\n%\n% R. Gonzalez and P. Dabove. Performance Assessment of an Ultra Low-Cost \n% Inertial Measurement Unit for Ground Vehicle Navigation. Sensors 2019, \n% 19(18). https://www.mdpi.com/530156.\n%\n% Version: 006\n% Date: 2021/12/08\n% Author: Rodrigo Gonzalez \n% URL: https://github.com/rodralez/navego\n\n% NOTE: NaveGo assumes that IMU is aligned with respect to body-frame as\n% X-forward, Y-right and Z-down.\n%\n% NOTE: NaveGo assumes that yaw angle (heading) is positive clockwise.\n\nclc\nclose all\nclear\nmatlabrc\n\naddpath ../../ins/\naddpath ../../ins-gnss/\naddpath ../../conversions/\naddpath ../../performance-analysis/\naddpath ../../misc/\naddpath ../../plot/\n\nnavego_print_version;\n\nfprintf('\\nNaveGo: starting real INS/GNSS integration... \\n')\n\n%% PARAMETERS\n\n% Comment any of the following parameters in order to NOT execute a \n% particular portion of code\n\nINS_GNSS = 'ON';\nPLOT = 'ON';\n\nif (~exist('INS_GNSS','var')), INS_GNSS = 'OFF'; end\nif (~exist('PLOT','var')), PLOT = 'OFF'; end\n\n%% CONVERSION CONSTANTS\n\nG = 9.80665; % Gravity constant, m/s^2\nG2MSS = G; % g to m/s^2\nMSS2G = (1/G); % m/s^2 to g\n\nD2R = (pi/180); % degrees to radians\nR2D = (180/pi); % radians to degrees\n\nKT2MS = 0.514444; % knot to m/s\nMS2KMH = 3.6; % m/s to km/h\n\n%% REF DATA\n\n% Reference dataset was obtained by processing Ekinox IMU and Ekinox GNSS \n% with tighly-coupled integration by Inertial Explorer software package.\n\nfprintf('NaveGo: loading reference data... \\n')\n\nload ref\n\n%% MPU-6000 IMU \n\nfprintf('NaveGo: loading MPU-6000 IMU data... \\n')\n\nload mpu6000_imu\n\n%% EKINOX GNSS \n\nfprintf('NaveGo: loading Ekinox GNSS data... \\n')\n\nload ekinox_gnss\n\n% ekinox_gnss contains the lever arm with respect to Ekinox IMU.\n% ekinox_gnss.larm has to be changed for MPU-6000 IMU.\nekinox_gnss.larm = [-0.369, 0.0, -0.219]'; \n\nekinox_gnss.eps = mean(diff(mpu6000_imu.t)) / 2; % A rule of thumb for choosing eps.\n\n%% NAVIGATION TIME\n\nto = (ref.t(end) - ref.t(1));\n\nfprintf('NaveGo: navigation time is %.2f minutes or %.2f seconds. \\n', (to/60), to)\n\n%% INS/GNSS INTEGRATION\n\nif strcmp(INS_GNSS, 'ON')\n \n fprintf('NaveGo: processing INS/GNSS integration... \\n')\n \n % Execute INS/GNSS integration\n % ---------------------------------------------------------------------\n nav_mpu6000 = ins_gnss(mpu6000_imu, ekinox_gnss, 'dcm');\n % ---------------------------------------------------------------------\n \n save nav_mpu6000.mat nav_mpu6000 \nelse\n \n load nav_mpu6000\nend\n\n%% TRAVELED DISTANCE\n\ndistance = gnss_distance (nav_mpu6000.lat, nav_mpu6000.lon);\n\nfprintf('NaveGo: distance traveled by the vehicle is %.2f meters or %.2f km. \\n', distance, distance/1000)\n\n%% ANALYSIS OF PERFORMANCE FOR A CERTAIN PART OF THE INS/GNSS DATASET\n\ntmin_rmse = ref.t(1); \ntmax_rmse = ref.t(end); \n\n% Sincronize REF data to tmin and tmax\nidx = find(ref.t > tmin_rmse, 1, 'first' );\nfdx = find(ref.t < tmax_rmse, 1, 'last' );\nif(isempty(idx) || isempty(fdx))\n error('ref: empty index')\nend\n\nref.t = ref.t (idx:fdx);\nref.roll = ref.roll (idx:fdx);\nref.pitch = ref.pitch(idx:fdx);\nref.yaw = ref.yaw (idx:fdx);\nref.lat = ref.lat (idx:fdx);\nref.lon = ref.lon (idx:fdx);\nref.h = ref.h (idx:fdx);\nref.vel = ref.vel (idx:fdx, :);\n\n%% INTERPOLATION OF INS/GNSS DATASET\n\n% INS/GNSS estimates and GNSS data are interpolated according to the\n% reference dataset.\n\n[nav_i, ref_n] = navego_interpolation (nav_mpu6000, ref);\n[gnss_i, ref_g] = navego_interpolation (ekinox_gnss, ref);\n\n%% NAVIGATION RMSE \n\nrmse_v = print_rmse (nav_i, gnss_i, ref_n, ref_g, 'MPU-6000 INS/GNSS');\n\n%% RMSE TO CVS FILE\n\ncsvwrite('mpu6000.csv', rmse_v);\n\n%% NAVIGATION DATA TO CSV FILE\n\nfprintf('\\n');\nnavego_nav2csv(nav_mpu6000); \n\n%% PLOTS\n\nif (strcmp(PLOT,'ON'))\n \n navego_plot_main (ref, ekinox_gnss, nav_mpu6000, gnss_i, nav_i, ref_g, ref_n)\nend\n\n%% PERFORMANCE ANAYSYS OF THE KALMAN FILTER\n\nfprintf('\\nNaveGo: Kalman filter performance analysis...\\n') \n\nkf_analysis (nav_mpu6000)\n\n", "meta": {"author": "rodralez", "repo": "NaveGo", "sha": "3de9a74ab1597be13255d4649892e68aeff9a8b7", "save_path": "github-repos/MATLAB/rodralez-NaveGo", "path": "github-repos/MATLAB/rodralez-NaveGo/NaveGo-3de9a74ab1597be13255d4649892e68aeff9a8b7/examples/real-data/navego_example_real_mpu6000.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3994874076196448}} {"text": "\n\n\nHEURISTICS = 0;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%\n% Normalize %\n%%%%%%%%%%%%%%%%%%%%%%%%\n\nNormalize = @(x) (x - min(x(:)))/(max(x(:)) - min(x(:)));\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Input images %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Img = 'lena';\nImg = 'clena';\n\n switch lower(Img)\n\n case{'lena'}\n Ig = double( imread('gray_imgs/lena_gray_512.png') ) / 255;\n\n case{'peppers'}\n Ig = double( imread('gray_imgs/peppers_gray.png') ) / 255;\n\n case{'goldhl.'}\n Ig = double( imread('gray_imgs/goldhill_gray.png') ) / 255;\n\n case{'clena'}\n Ig = double( imread('color_imgs/lena_color_512.png') ) / 255;\n\n case{'none'}\n disp(' ');\n disp('Select a test image (see code for an example)...');\n disp(' ');\n disp('Exiting test_adaptL1 code...');\n return;\n\n otherwise\n error('Not a valid image\\n');\n\n end\n\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % noisy images %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n Ig_01L1 = imnoise(Ig, 'salt & pepper', 0.1);\n Ig_02L1 = imnoise(Ig, 'salt & pepper', 0.2);\n Ig_03L1 = imnoise(Ig, 'salt & pepper', 0.3);\n Ig_05L1 = imnoise(Ig, 'salt & pepper', 0.5);\n Ig_07L1 = imnoise(Ig, 'salt & pepper', 0.7);\n Ig_09L1 = imnoise(Ig, 'salt & pepper', 0.9);\n\n\n\n Ig_05L2 = imnoise(Ig,'gaussian', 0, ((5/255)^2) );\n Ig_10L2 = imnoise(Ig,'gaussian', 0, ((10/255)^2) );\n Ig_20L2 = imnoise(Ig,'gaussian', 0, ((20/255)^2) );\n Ig_30L2 = imnoise(Ig,'gaussian', 0, ((30/255)^2) );\n\n InCell{1} = imnoise(Ig_10L2, 'salt & pepper', 0.2);\n InCell{2} = imnoise(Ig_20L2, 'salt & pepper', 0.2);\n InCell{3} = imnoise(Ig_30L2, 'salt & pepper', 0.2);\n InCell{4} = imnoise(Ig_10L2, 'salt & pepper', 0.4);\n\n % -----------\n\n InCell{5} = imnoise(Ig_05L2, 'salt & pepper', 0.3);\n InCell{6} = imnoise(Ig_05L2, 'salt & pepper', 0.5);\n\n InCell{7} = imnoise(Ig_10L2, 'salt & pepper', 0.3);\n InCell{8} = imnoise(Ig_10L2, 'salt & pepper', 0.5);\n\n% snr_noisy12 = snr(Ig, In);\n\n% figure; imagesc( Normalize(In) ); \n% axis image; axis off; colormap gray;\n% title(sprintf('Noisy - L1/L2. SNR: %4.1fdB.\\n ', ...\n% snr_noisy12));\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% pre-processing\n\nInputDims = size(Ig);\n\nif(length(InputDims) == 2)\n lambdaS_l2 = [ 0.0185, 0.03, 0.045, 0.0185, 0.0075, 0.0075, 0.0185, 0.0185 ];\nelse\n lambdaS_l2 = 1.5*[ 0.0185, 0.03, 0.045, 0.0185, 0.0075, 0.0075, 0.0185, 0.0185 ];\nend\n\n\nfor k=1:length(InCell)\n\nIn = InCell{k};\n\n tstart = tic;\n\nS0 = adaptMedian(In);\n\nif(length(InputDims) == 2)\n\n if(HEURISTICS)\n lambda_l1l2(:,:,1) = 0.85*(S0 == 3) + ...\n 1.1*(S0 == 5) + 1.2*(S0 == 7) + 1.4*(S0 == 9);\n else\n lambda_l1l2(:,:,1) = 1.5*(S0 ~= 0);\n end\n\n lambda_l1l2(:,:,2) = lambdaS_l2(k)*(S0==0);\n\n planes=1;\nelse\n\n if(HEURISTICS)\n\n for d=1:InputDims(3),\n lambda_l1l2(:,:,d) = 1.05*(S0(:,:,d) == 3) + ...\n 1.3*(S0(:,:,d) == 5) + 1.4*(S0(:,:,d) == 7) + 1.6*(S0(:,:,d) == 9);\n end\n else\n\n for d=1:InputDims(3),\n lambda_l1l2(:,:,d) = 1.75*(S0(:,:,d) ~= 0);\n end\n end\n\n for d=1:InputDims(3),\n lambda_l1l2(:,:,3+d) = lambdaS_l2(k)*(S0(:,:,d)==0);\n end\n\n planes=3;\nend\n\n% ---------- Setup for IRN_L1L2 ------------------\n\npars_irn_adapt = irntvInputPars('l1tv_l2tv');\n\npars_irn_adapt.adapt_epsR = 1;\npars_irn_adapt.epsR_cutoff = 0.01;\npars_irn_adapt.adapt_epsF = 1;\npars_irn_adapt.epsF_cutoff = 0.05;\n\npars_irn_adapt.pcgtol_ini = 1e-4;\n\npars_irn_adapt.loops = 1;\n\npars_irn_adapt.U0 = In; % necessary the for adapt case\n% pars_irn_adapt.U0 = lmu; % necessary the for adapt case\n\n\n Ig_L1L2 = irntv(In, {}, lambda_l1l2, pars_irn_adapt);\n\n\nloops = 6;\n% \nfor m = 2:loops\n \n for d=1:InputDims(3)\n lambda_l1l2(:,:,3+d) = (0.975^(m-1))*lambda_l1l2(:,:,3+d);\n end\n Ipass = Ig_L1L2; \n dI = Ipass - In; \n lambda_l1l2(:,:,1:planes) = adaptLambda(dI, lambda_l1l2(:,:,1:planes), 0.5, S0, 0.8); \n pars_irn_adapt.U0 = Ipass;\n Ig_L1L2 = irntv(In, {}, lambda_l1l2, pars_irn_adapt);\n\nend\nl1l2_time(k) = toc(tstart)\n% \nfigure; imagesc( Normalize(Ig_L1L2) ); axis image; axis off; colormap gray; \n\npsnr_l1l2(k) = psnr(Ig, Ig_L1L2)\n\n\nend\n\npsnr_bing = [32.84, 30.23, 27.33, 29.96]; \npsnr_xiao = [36.20, 33.93, 33.19, 31.51];\n\n[ psnr_l1l2' [psnr_bing'; psnr_xiao']]", "meta": {"author": "xingchenzhang", "repo": "VIFB", "sha": "7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa", "save_path": "github-repos/MATLAB/xingchenzhang-VIFB", "path": "github-repos/MATLAB/xingchenzhang-VIFB/VIFB-7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa/methods/GTF/source/test_snpG.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3994874076196448}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the HEART-TUBE-EXAMPLE geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction HeartTube()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 128; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nNy = 128; % # of Eulerian Grid Pts. in y-Direction (MUST BE EVEN!!!)\nLx = 5.0; % Length of Eulerian Grid in x-Direction\nLy = 5.0; % Length of Eulerian Grid in y-Direction\n\n\n% Immersed Structure Geometric / Dynamic Parameters %\nds = Lx/(2*Nx); % Lagrangian Spacing\nd = 1.0; % Diameter of the tube\nL = 3.0; % Length of the heart-tube\nstruct_name = 'HeartTube'; % Name for .vertex, .spring, etc files.\n\n\n% Call function to construct geometry\n[xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(ds,L,d,Lx,Ly);\n\n\n% Plot Geometry to test\nplot(xLag(1:end/2),yLag(1:end/2),'r-'); hold on;\nplot(xLag(end/2+1:end),yLag(end/2+1:end),'r-'); hold on;\nplot(xLag,yLag,'*'); hold on;\nxlabel('x'); ylabel('y');\naxis([0 Lx 0 Ly]);\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n\n% Prints .spring file!\nk_Spring = 1e7;\nprint_Lagrangian_Springs(xLag,k_Spring,ds,struct_name);\n\n% Prints .muscle file! [ a_f * Fmax *exp( -( (Q-1)/SK )^2 ) * (1/P0)*(b*P0-a*v)/(v+b); Q = LF/LFO ]\nLFO = d; SK = 0.3; a = 0.25; b = 4.0; Fmax = 1e5;\nprint_Lagrangian_Muscles(xLag,LFO,SK,a,b,Fmax,struct_name)\n\n\n% Prints .beam file!\nk_Beam = 7.5e7; C = 0.0;\nprint_Lagrangian_Beams(xLag,k_Beam,C,struct_name);\n\n\n% Prints .target file!\nk_Target = 1e6;\nprint_Lagrangian_Target_Pts(xLag,k_Target,struct_name);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints Vertex points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag); % Total Number of Lagrangian Pts\n num = 1; % Number of target points on each end\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', 4*num );\n\n %Loops over all Lagrangian Pts.\n %for s = 1:N\n \n \n %Left Bottom Target Points\n for s=1:num\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n %Right Bottom Target Points\n for s=(N/2)-(num-1):N/2\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n %Left Top Target Points\n for s=(N/2+1):(N/2+1)+(num-1)\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n %Right Top Target Points\n for s=N-(num-1):N\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n\n\n %end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called rubberband.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N - 4 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N/2-1\n % Bottom of tube\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n elseif ( ( s >= N/2+2 ) && ( s <= N-1 ) )\n % Top of Tube\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n end\n end\n fclose(beam_fid); \n \n \n \n\n \n \n\n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints MUSCLE points to a file called \"struct_name\".muscle\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Muscles(xLag,LFO,SK,a,b,Fmax,struct_name)\n\n N = length(xLag); %Number of Lagrangian Pts. Total\n\n muscle_fid = fopen([struct_name '.muscle'], 'w');\n\n fprintf(muscle_fid, '%d\\n', N/2-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %MUSCLES BETWEEN VERTICES\n for s = 2:N/2-1\n fprintf(muscle_fid, '%d %d %1.16e %1.16e %1.16e %1.16e %1.16e\\n', s, s+N/2, LFO, SK, a,b,Fmax); \n end\n fclose(muscle_fid);\n \n \n \n \n \n \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called rubberband.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,k_Spring,ds_Rest,struct_name)\n\n N = length(xLag); %Number of Lagrangian Pts. Total\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N/2 \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n elseif ( ( s >= N/2+1 ) && ( s < N ) )\n %Case s=N\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n end\n end\n fclose(spring_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(ds,L,d,Lx,Ly)\n\n% The immsersed structure is a straight heart-tube %\nx1 = [-L/2:ds:L/2 L/2]; % Constructs x-Values for bottom of tube\ny1 = -d/2*ones(1,length(x1)); % Constructs y-Values for bottom of tube\n\nx2 = x1; % Constructs x-Values for top of tube\ny2 = -y1; % Constructs y-Values for top of tube\n\nx1 = x1 + Lx/2; % Shift into correct box\nx2 = x2 + Lx/2; % Shift into correct box\n\ny1 = y1 + Ly/2; % Shift into correct box\ny2 = y2 + Ly/2; % Shift into correct box\n\nxLag = [x1 x2];\nyLag = [y1 y2];\n\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_HeartTube/3_Element_Muscle_Model/HeartTube.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3994874076196448}} {"text": "function y = vl_nnreshape(x, shape, varargin)\n% VL_NNRESHAPE Feature reshaping\n% Y = VL_NNRESHAPE(X, SHAPE) reshpaes the input data X to have\n% the dimensions specified by SHAPE. X is a SINGLE array of\n% dimension H x W x D x N where (H,W) are the height and width of\n% the map stack, D is the image depth (number of feature channels)\n% and N the number of of images in the stack. SHAPE is a 1 x 3 cell\n% array, the contents of which are passed in order to the MATLAB\n% reshape function. As a consequence, `[]` an be used to specify a\n% dimension which should be computed from the other two. The batch size\n% (the fourth dimension of the input) is left unchanged by this\n% reshaping operation.\n%\n% Alternatively, SHAPE can be specified in the \"caffe style\", as an\n% array, using `0` to indicate that a dimension should be preserved and\n% `-1` to indicate a dimension that should be computed from the others\n% (this serves the same role as [] in the standard MATLAB convention).\n%\n% Example:\n% Inputs: X with shape [100 100 3 5] and SHAPE = { 100 3 [] }\n% will produce an output Y with shape [100 3 100 5]\n%\n% DZDX = VL_NNRESHAPE(X, SHAPE, DZDY) computes the derivatives of the\n% block projected onto DZDY. DZDX and DZDY have the same dimensions\n% as X and Y respectively.\n%\n% Copyright (C) 2017 Samuel Albanie and Andrea Vedaldi.\n% Licensed under The MIT License [see LICENSE.md for details]\n\n [~, dzdy] = vl_argparsepos(struct(), varargin) ;\n\n if isnumeric(shape) % apply caffe style conventions if needed\n shape_ = num2cell(shape) ;\n if numel(shape_) == 2, shape_{3} = [] ; end\n k = find(shape == -1) ; if k, shape_{k} = [] ; end\n k = find(shape == 0) ;\n if k, rep = arrayfun(@(i) {size(x,i)}, k) ; shape_(k) = rep ; end\n shape = shape_ ;\n end\n\n batchSize = size(x, 4);\n\n if isempty(dzdy)\n y = reshape(x, shape{1}, shape{2}, shape{3}, batchSize) ;\n else\n y = reshape(dzdy{1}, size(x)) ;\n end\n", "meta": {"author": "ShuaiBai623", "repo": "MFT", "sha": "8762f8cdf494ce0b1a1c3d431660c5c8fd91744a", "save_path": "github-repos/MATLAB/ShuaiBai623-MFT", "path": "github-repos/MATLAB/ShuaiBai623-MFT/MFT-8762f8cdf494ce0b1a1c3d431660c5c8fd91744a/external_libs/matconvnet/contrib/mcnExtraLayers/matlab/vl_nnreshape.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370111, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39948740761964474}} {"text": "function varargout = WFTKernel(varargin)\n% Function: Windowed Fourier transofmr (Kernel)\n% Initially Developed: Dr Qian Kemao (16 May 2009)\n% Last modified: Dr Qian Kemao (17 May 2009)\n% Version: 1.0\n% Copyrights: All rights reserved.\n% Contact: mkmqian@ntu.edu.sg (Dr Qian Kemao)\n\n%WFTKERNEL M-file for WFTKernel.fig\n% WFTKERNEL, by itself, creates a new WFTKERNEL or raises the existing\n% singleton*.\n%\n% H = WFTKERNEL returns the handle to a new WFTKERNEL or the handle to\n% the existing singleton*.\n%\n% WFTKERNEL('Property','Value',...) creates a new WFTKERNEL using the\n% given property value pairs. Unrecognized properties are passed via\n% varargin to WFTKernel_OpeningFcn. This calling syntax produces a\n% warning when there is an existing singleton*.\n%\n% WFTKERNEL('CALLBACK') and WFTKERNEL('CALLBACK',hObject,...) call the\n% local function named CALLBACK in WFTKERNEL.M with the given input\n% arguments.\n%\n% *See GUI Options on GUIDE's Tools menu. Choose \"GUI allows only one\n% instance to run (singleton)\".\n%\n% See also: GUIDE, GUIDATA, GUIHANDLES\n\n% Edit the above text to modify the response to help WFTKernel\n\n% Last Modified by GUIDE v2.5 16-May-2009 10:09:25\n\n% Begin initialization code - DO NOT EDIT\ngui_Singleton = 1;\ngui_State = struct('gui_Name', mfilename, ...\n 'gui_Singleton', gui_Singleton, ...\n 'gui_OpeningFcn', @WFTKernel_OpeningFcn, ...\n 'gui_OutputFcn', @WFTKernel_OutputFcn, ...\n 'gui_LayoutFcn', [], ...\n 'gui_Callback', []);\nif nargin && ischar(varargin{1})\n gui_State.gui_Callback = str2func(varargin{1});\nend\n\nif nargout\n [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});\nelse\n gui_mainfcn(gui_State, varargin{:});\nend\n% End initialization code - DO NOT EDIT\n\n\n% --- Executes just before WFTKernel is made visible.\nfunction WFTKernel_OpeningFcn(hObject, eventdata, handles, varargin)\n% This function has no output args, see OutputFcn.\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n% varargin unrecognized PropertyName/PropertyValue pairs from the\n% command line (see VARARGIN)\n\n% Choose default command line output for WFTKernel\nhandles.output = hObject;\n\n% Update handles structure\nguidata(hObject, handles);\n\n% UIWAIT makes WFTKernel wait for user response (see UIRESUME)\n% uiwait(handles.figure1);\n\n\n% --- Outputs from this function are returned to the command line.\nfunction varargout = WFTKernel_OutputFcn(hObject, eventdata, handles)\n% varargout cell array for returning output args (see VARARGOUT);\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Get default command line output from handles structure\nvarargout{1} = handles.output;\n\n\n\nfunction edit_sigmax_Callback(hObject, eventdata, handles)\n% hObject handle to edit_sigmax (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_sigmax as text\n% str2double(get(hObject,'String')) returns contents of edit_sigmax as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_sigmax_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_sigmax (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_wxl_Callback(hObject, eventdata, handles)\n% hObject handle to edit_wxl (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_wxl as text\n% str2double(get(hObject,'String')) returns contents of edit_wxl as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_wxl_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_wxl (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_wxi_Callback(hObject, eventdata, handles)\n% hObject handle to edit_wxi (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_wxi as text\n% str2double(get(hObject,'String')) returns contents of edit_wxi as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_wxi_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_wxi (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_wxh_Callback(hObject, eventdata, handles)\n% hObject handle to edit_wxh (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_wxh as text\n% str2double(get(hObject,'String')) returns contents of edit_wxh as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_wxh_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_wxh (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_sigmay_Callback(hObject, eventdata, handles)\n% hObject handle to edit_sigmay (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_sigmay as text\n% str2double(get(hObject,'String')) returns contents of edit_sigmay as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_sigmay_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_sigmay (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_wyl_Callback(hObject, eventdata, handles)\n% hObject handle to edit_wyl (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_wyl as text\n% str2double(get(hObject,'String')) returns contents of edit_wyl as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_wyl_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_wyl (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_wyi_Callback(hObject, eventdata, handles)\n% hObject handle to edit_wyi (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_wyi as text\n% str2double(get(hObject,'String')) returns contents of edit_wyi as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_wyi_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_wyi (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_wyh_Callback(hObject, eventdata, handles)\n% hObject handle to edit_wyh (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_wyh as text\n% str2double(get(hObject,'String')) returns contents of edit_wyh as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_wyh_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_wyh (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n\nfunction edit_thr_Callback(hObject, eventdata, handles)\n% hObject handle to edit_thr (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of edit_thr as text\n% str2double(get(hObject,'String')) returns contents of edit_thr as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction edit_thr_CreateFcn(hObject, eventdata, handles)\n% hObject handle to edit_thr (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))\n set(hObject,'BackgroundColor','white');\nend\n\n\n% --- Executes on button press in push_WFTRun.\nfunction push_WFTRun_Callback(hObject, eventdata, handles)\n% hObject handle to push_WFTRun (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nload result\nH=findobj('Tag','radiobutton_wff'); val=get(H,'Value');\nif val==1\n g.AlgorithmType='wff';\nelse\n g.AlgorithmType='wfr';\nend\nH=findobj('Tag','edit_sigmax'); sigmax=str2num(get(H,'String'));\nH=findobj('Tag','edit_sigmax'); sigmax=str2num(get(H,'String'));\nH=findobj('Tag','edit_wxl'); wxl=str2num(get(H,'String'));\nH=findobj('Tag','edit_wxi'); wxi=str2num(get(H,'String'));\nH=findobj('Tag','edit_wxh'); wxh=str2num(get(H,'String'));\nH=findobj('Tag','edit_sigmay'); sigmay=str2num(get(H,'String'));\nH=findobj('Tag','edit_wyl'); wyl=str2num(get(H,'String'));\nH=findobj('Tag','edit_wyi'); wyi=str2num(get(H,'String'));\nH=findobj('Tag','edit_wyh'); wyh=str2num(get(H,'String'));\nH=findobj('Tag','edit_thr'); thr=str2num(get(H,'String'));\ng0=wft2fw(g.AlgorithmType,g.f,sigmax,wxl,wxi,wxh,sigmay,wyl,wyi,wyh,thr);\nif strcmp(g.AlgorithmType,'wff')\n g.filtered=g0.filtered;\nelse\n g.wx=g0.wx;\n g.wy=g0.wy;\n g.r=g0.r;\n g.phase=g0.phase;\n g.filtered=g.r.*exp(sqrt(-1)*g.phase);\nend\nsave result g;\nH=findobj('Name','Windowed Fourier Transform (WFT)');figure(H);imagesc(angle(g.filtered));\nH=findobj('Name','WFT Kernel');close(H);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/24892-windowed-fourier-transform-for-fringe-pattern-analysis-with-gui/WFTgui/WFTKernel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.7057850216484839, "lm_q1q2_score": 0.3994874041168236}} {"text": "% LFDecodeLensletImageSimple - decodes a 2D lenslet image into a 4D light field, called by LFUtilDecodeLytroFolder\n%\n% Usage:\n%\n% [LF, LFWeight, DecodeOptions, DebayerLensletImage, CorrectedLensletImage] = ...\n% LFDecodeLensletImageSimple( LensletImage, WhiteImage, LensletGridModel, DecodeOptions )\n%\n% This function follows the simple decode process described in:\n% D. G. Dansereau, O. Pizarro, and S. B. Williams, \"Decoding, calibration and rectification for\n% lenslet-based plenoptic cameras,\" in Computer Vision and Pattern Recognition (CVPR), IEEE\n% Conference on. IEEE, Jun 2013.\n%\n% This involves demosaicing, devignetting, transforming and slicing the input lenslet image to\n% yield a 4D structure. More sophisticated approaches exist which combine steps into joint\n% solutions, and they generally yield superior results, particularly near the edges of lenslets.\n% The approach taken here was chosen for its simplicity and flexibility.\n%\n% Input LensletImage is a raw lenslet iamge as found within Lytro's LFP picture files. Though\n% this function is written with Lytro imagery in mind, it should be possible to adapt it for use\n% with other lenslet-based cameras. LensletImage is ideally of type uint16.\n%\n% Input WhiteImage is a white image as found within Lytro's calibration data. A white image is an\n% image taken through a diffuser, and is useful for removing vignetting (darkening near edges of\n% images) and for locating lenslet centers. The white image should be taken under the same zoom and\n% focus settings as the light field. In the case of Lytro imagery, the helper functions\n% LFUtilProcessWhiteImages and LFSelectFromDatabase are provided to assist in forming a list of\n% available white images, and selecting the appropriate image based on zoom and focus settings.\n%\n% Input LensletGridModel is a model of the lenslet grid, as estimated, for example, using\n% LFBuildLensletGridModel -- see that function for more on the required structure.\n%\n% Optional Input DecodeOptions is a structure containing:\n% [Optional] ResampMethod : 'fast'(default) or 'triangulation', the latter is slower\n% [Optional] Precision : 'single'(default) or 'double'\n% [Optional] LevelLimits : a two-element vector defining the black and white levels\n%\n% Output LF is a 5D array of size [Nj,Ni,Nl,Nk,3]. See [1] and the documentation accompanying this\n% toolbox for a brief description of the light field structure.\n%\n% Optional output LFWeight is of size [Nj,Ni,Nl,Nk]. LFWeight contains a confidence measure\n% suitable for use in filtering applications that accept a weight parameter. This parameter is kept\n% separate from LF rather than building in as a fourth channel in order to allow an optimization:\n% when the parameter is not requested, it is not computed, saving significant processing time and\n% memory.\n%\n% Optional output DebayerLensletImage is useful for inspecting intermediary results. The debayered\n% lenslet image is the result of devignetting and debayering, with no further processing. Omitting\n% this output variable saves memory.\n%\n% Optional output CorrectedLensletImage is useful for inspecting intermediary results. The\n% corrected lenslet image has been rotated and scaled such that lenslet centers lie on straight lines, and\n% every lenslet center lies on an integer pixel spacing. See [1] for more detail. Omitting\n% this output variable saves memory.\n%\n% A more direct version of this function LFDecodeLensletImageDirect does not generate the \n% intermediate corrected lenslet image.\n%\n% User guide: LFToolbox.pdf\n% See also: LFLytroDecodeImage, LFUtilDecodeLytroFolder, LFDecodeLensletImageDirect\n\n% Copyright (c) 2013-2020 Donald G. Dansereau\n\nfunction [LF, LFWeight, DecodeOptions, DebayerLensletImage, CorrectedLensletImage] = ...\n LFDecodeLensletImageSimple( LensletImage, WhiteImage, LensletGridModel, DecodeOptions )\n\n%---Defaults---\n % LevelLimits defaults are a failsafe, should be passed in / come from the white image metadata\nDecodeOptions = LFDefaultField( 'DecodeOptions', 'LevelLimits', [min(WhiteImage(:)), max(WhiteImage(:))] );\nDecodeOptions = LFDefaultField( 'DecodeOptions', 'ResampMethod', 'fast' ); %'fast', 'triangulation'\nDecodeOptions = LFDefaultField( 'DecodeOptions', 'Precision', 'single' );\nDecodeOptions = LFDefaultField( 'DecodeOptions', 'DoDehex', true );\nDecodeOptions = LFDefaultField( 'DecodeOptions', 'DoSquareST', true );\n\n%---Rescale image values, remove black level---\nDecodeOptions.LevelLimits = cast(DecodeOptions.LevelLimits, DecodeOptions.Precision);\nBlackLevel = DecodeOptions.LevelLimits(1);\nWhiteLevel = DecodeOptions.LevelLimits(2);\nWhiteImage = cast(WhiteImage, DecodeOptions.Precision);\nWhiteImage = (WhiteImage - BlackLevel) ./ (WhiteLevel - BlackLevel);\n\nLensletImage = cast(LensletImage, DecodeOptions.Precision);\nLensletImage = (LensletImage - BlackLevel) ./ (WhiteLevel - BlackLevel);\nLensletImage = LensletImage ./ WhiteImage; % Devignette\n% Clip -- this is aggressive and throws away bright areas; there is a potential for an HDR approach here\nLensletImage = min(1, max(0, LensletImage));\n\nif( nargout < 2 )\n clear WhiteImage\nend\n\n%---Demosaic---\n% This uses Matlab's demosaic, which is \"gradient compensated\". This likely has implications near\n% the edges of lenslet images, where the contrast is due to vignetting / aperture shape, and is not\n% a desired part of the image\nLensletImage = cast(LensletImage.*double(intmax('uint16')), 'uint16');\nLensletImage = demosaic(LensletImage, DecodeOptions.DemosaicOrder);\nLensletImage = cast(LensletImage, DecodeOptions.Precision);\nLensletImage = LensletImage ./ double(intmax('uint16'));\nDecodeOptions.NColChans = 3;\n\nif( nargout >= 2 )\n DecodeOptions.NWeightChans = 1;\nelse\n DecodeOptions.NWeightChans = 0;\nend\n\nif( nargout > 3 )\n DebayerLensletImage = LensletImage;\nend\n\n%---Tranform to an integer-spaced grid---\nfprintf('\\nAligning image to lenslet array...');\nInputSpacing = [LensletGridModel.HSpacing, LensletGridModel.VSpacing];\nNewLensletSpacing = ceil(InputSpacing);\n% Force even so hex shift is a whole pixel multiple\nNewLensletSpacing = ceil(NewLensletSpacing/2)*2;\nXformScale = NewLensletSpacing ./ InputSpacing; % Notice the resized image will not be square\n\nNewOffset = [LensletGridModel.HOffset, LensletGridModel.VOffset] .* XformScale;\nRoundedOffset = round(NewOffset);\nXformTrans = RoundedOffset-NewOffset;\n\nNewLensletGridModel = struct('HSpacing',NewLensletSpacing(1), 'VSpacing',NewLensletSpacing(2), ...\n 'HOffset',RoundedOffset(1), 'VOffset',RoundedOffset(2), 'Rot',0, ...\n 'UMax', LensletGridModel.UMax, 'VMax', LensletGridModel.VMax, 'Orientation', LensletGridModel.Orientation, ...\n 'FirstPosShiftRow', LensletGridModel.FirstPosShiftRow);\n\n%---Fix image rotation and scale---\nRRot = LFRotz( LensletGridModel.Rot );\n\nRScale = eye(3);\nRScale(1,1) = XformScale(1);\nRScale(2,2) = XformScale(2);\nDecodeOptions.OutputScale(1:2) = XformScale;\nDecodeOptions.OutputScale(3:4) = [1,2/sqrt(3)]; % hex sampling\n\nRTrans = eye(3);\nRTrans(end,1:2) = XformTrans;\n\n% The following rotation can rotate parts of the lenslet image out of frame.\n% todo[optimization]: attempt to keep these regions, offer greater user-control of what's kept\nFixAll = maketform('affine', RRot*RScale*RTrans);\nNewSize = size(LensletImage(:,:,1)) .* XformScale(2:-1:1);\nLensletImage = imtransform( LensletImage, FixAll, 'YData',[1 NewSize(1)], 'XData',[1 NewSize(2)]);\nif( nargout >= 2 )\n WhiteImage = imtransform( WhiteImage, FixAll, 'YData',[1 NewSize(1)], 'XData',[1 NewSize(2)]);\nend\nif( nargout >= 4 )\n CorrectedLensletImage = LensletImage;\nend\n\nLF = SliceXYImage( NewLensletGridModel, LensletImage, WhiteImage, DecodeOptions );\nclear WhiteImage LensletImage\n\n%---Correct for hex grid and resize to square u,v pixels---\nLFSize = size(LF);\nHexAspect = 2/sqrt(3);\nswitch( DecodeOptions.ResampMethod )\n case 'fast'\n fprintf('\\nResampling (1D approximation) to square u,v pixels');\n NewUVec = 0:1/HexAspect:(size(LF,4)+1); % overshoot then trim\n NewUVec = NewUVec(1:ceil(LFSize(4)*HexAspect));\n OrigUSize = size(LF,4);\n LFSize(4) = length(NewUVec);\n %---Allocate dest and copy orig LF into it (memory saving vs. keeping both separately)---\n LF2 = zeros(LFSize, DecodeOptions.Precision);\n LF2(:,:,:,1:OrigUSize,:) = LF;\n LF = LF2;\n clear LF2\n \n if( DecodeOptions.DoDehex )\n ShiftUVec = -0.5+NewUVec;\n fprintf(' and removing hex sampling...');\n else\n ShiftUVec = NewUVec;\n fprintf('...');\n end\n for( ColChan = 1:size(LF,5) )\n CurUVec = ShiftUVec;\n for( RowIter = 1:2 )\n RowIdx = mod(NewLensletGridModel.FirstPosShiftRow + RowIter, 2) + 1;\n ShiftRows = squeeze(LF(:,:,RowIdx:2:end,1:OrigUSize, ColChan));\n SliceSize = size(ShiftRows);\n SliceSize(4) = length(NewUVec);\n ShiftRows = reshape(ShiftRows, [size(ShiftRows,1)*size(ShiftRows,2)*size(ShiftRows,3), size(ShiftRows,4)]);\n ShiftRows = interp1( (0:size(ShiftRows,2)-1)', ShiftRows', CurUVec' )';\n ShiftRows(isnan(ShiftRows)) = 0;\n LF(:,:,RowIdx:2:end,:,ColChan) = reshape(ShiftRows,SliceSize);\n CurUVec = NewUVec;\n end\n end\n clear ShiftRows\n DecodeOptions.OutputScale(3) = DecodeOptions.OutputScale(3) * HexAspect;\n \n case 'triangulation'\n fprintf('\\nResampling (triangulation) to square u,v pixels');\n OldVVec = (0:size(LF,3)-1);\n OldUVec = (0:size(LF,4)-1) * HexAspect;\n \n NewUVec = (0:ceil(LFSize(4)*HexAspect)-1);\n NewVVec = (0:LFSize(3)-1);\n LFSize(4) = length(NewUVec);\n LF2 = zeros(LFSize, DecodeOptions.Precision);\n \n [Oldvv,Olduu] = ndgrid(OldVVec,OldUVec);\n [Newvv,Newuu] = ndgrid(NewVVec,NewUVec);\n if( DecodeOptions.DoDehex )\n fprintf(' and removing hex sampling...');\n FirstShiftRow = NewLensletGridModel.FirstPosShiftRow;\n Olduu(FirstShiftRow:2:end,:) = Olduu(FirstShiftRow:2:end,:) + HexAspect/2;\n else\n fprintf('...');\n end\n \n DT = delaunayTriangulation( Olduu(:), Oldvv(:) ); % use DelaunayTri in older Matlab versions\n [ti,bc] = pointLocation(DT, Newuu(:), Newvv(:));\n ti(isnan(ti)) = 1;\n \n for( ColChan = 1:size(LF,5) )\n fprintf('.');\n for( tidx= 1:LFSize(1) )\n for( sidx= 1:LFSize(2) )\n CurUVSlice = squeeze(LF(tidx,sidx,:,:,ColChan));\n triVals = CurUVSlice(DT(ti,:));\n CurUVSlice = dot(bc',triVals')';\n CurUVSlice = reshape(CurUVSlice, [length(NewVVec),length(NewUVec)]);\n \n CurUVSlice(isnan(CurUVSlice)) = 0;\n LF2(tidx,sidx, :,:, ColChan) = CurUVSlice;\n end\n end\n end\n LF = LF2;\n clear LF2\n DecodeOptions.OutputScale(3) = DecodeOptions.OutputScale(3) * HexAspect;\n \n otherwise\n fprintf('\\nNo valid dehex / resampling selected\\n');\nend\n\n%---Resize to square s,t pixels---\n% Assumes only a very slight resampling is required, resulting in an identically-sized output light field\nif( DecodeOptions.DoSquareST )\n fprintf('\\nResizing to square s,t pixels using 1D linear interp...');\n \n ResizeScale = DecodeOptions.OutputScale(1)/DecodeOptions.OutputScale(2);\n ResizeDim1 = 1;\n ResizeDim2 = 2;\n if( ResizeScale < 1 )\n ResizeScale = 1/ResizeScale;\n ResizeDim1 = 2;\n ResizeDim2 = 1;\n end\n \n OrigSize = size(LF, ResizeDim1);\n OrigVec = floor((-(OrigSize-1)/2):((OrigSize-1)/2));\n NewVec = OrigVec ./ ResizeScale;\n \n OrigDims = [1:ResizeDim1-1, ResizeDim1+1:5];\n \n UBlkSize = 32;\n USize = size(LF,4);\n LF = permute(LF,[ResizeDim1, OrigDims]);\n for( UStart = 1:UBlkSize:USize )\n UStop = UStart + UBlkSize - 1;\n UStop = min(UStop, USize);\n LF(:,:,:,UStart:UStop,:) = interp1(OrigVec, LF(:,:,:,UStart:UStop,:), NewVec);\n fprintf('.');\n end\n LF = ipermute(LF,[ResizeDim1, OrigDims]);\n LF(isnan(LF)) = 0;\n \n DecodeOptions.OutputScale(ResizeDim2) = DecodeOptions.OutputScale(ResizeDim2) * ResizeScale;\nend\n\n\n%---Trim s,t---\nLF = LF(2:end-1,2:end-1, :,:, :);\n\n%---Slice out LFWeight if it was requested---\nif( nargout >= 2 )\n LFWeight = LF(:,:,:,:,end);\n LFWeight = LFWeight./max(LFWeight(:));\n LF = LF(:,:,:,:,1:end-1);\nend\n\nend\n\n%------------------------------------------------------------------------------------------------------\nfunction LF = SliceXYImage( LensletGridModel, LensletImage, WhiteImage, DecodeOptions )\n% todo[optimization]: The SliceIdx and ValidIdx variables could be precomputed\n\nfprintf('\\nSlicing lenslets into LF...');\n\nUSize = LensletGridModel.UMax;\nVSize = LensletGridModel.VMax;\nMaxSpacing = max(LensletGridModel.HSpacing, LensletGridModel.VSpacing); % Enforce square output in s,t\nSSize = MaxSpacing + 1; % force odd for centered middle pixel -- H,VSpacing are even, so +1 is odd\nTSize = MaxSpacing + 1;\n\nLF = zeros(TSize, SSize, VSize, USize, DecodeOptions.NColChans + DecodeOptions.NWeightChans, DecodeOptions.Precision);\n\nTVec = cast(floor((-(TSize-1)/2):((TSize-1)/2)), 'int16');\nSVec = cast(floor((-(SSize-1)/2):((SSize-1)/2)), 'int16');\nVVec = cast(0:VSize-1, 'int16');\nUBlkSize = 32;\nfor( UStart = 0:UBlkSize:USize-1 ) % note zero-based indexing\n UStop = UStart + UBlkSize - 1;\n UStop = min(UStop, USize-1); \n UVec = cast(UStart:UStop, 'int16');\n \n [tt,ss,vv,uu] = ndgrid( TVec, SVec, VVec, UVec );\n \n %---Build indices into 2D image---\n LFSliceIdxX = LensletGridModel.HOffset + uu.*LensletGridModel.HSpacing + ss;\n LFSliceIdxY = LensletGridModel.VOffset + vv.*LensletGridModel.VSpacing + tt;\n \n HexShiftStart = LensletGridModel.FirstPosShiftRow;\n LFSliceIdxX(:,:,HexShiftStart:2:end,:) = LFSliceIdxX(:,:,HexShiftStart:2:end,:) + LensletGridModel.HSpacing/2;\n \n %---Lenslet mask in s,t and clip at image edges---\n CurSTAspect = DecodeOptions.OutputScale(1)/DecodeOptions.OutputScale(2);\n R = sqrt((cast(tt,DecodeOptions.Precision)*CurSTAspect).^2 + cast(ss,DecodeOptions.Precision).^2);\n ValidIdx = find(R < LensletGridModel.HSpacing/2 & ...\n LFSliceIdxX >= 1 & LFSliceIdxY >= 1 & LFSliceIdxX <= size(LensletImage,2) & LFSliceIdxY <= size(LensletImage,1) );\n \n %--clip -- the interp'd values get ignored via ValidIdx--\n LFSliceIdxX = max(1, min(size(LensletImage,2), LFSliceIdxX ));\n LFSliceIdxY = max(1, min(size(LensletImage,1), LFSliceIdxY ));\n \n %---\n LFSliceIdx = sub2ind(size(LensletImage), cast(LFSliceIdxY,'int32'), ...\n cast(LFSliceIdxX,'int32'), ones(size(LFSliceIdxX),'int32'));\n \n tt = tt - min(tt(:)) + 1;\n ss = ss - min(ss(:)) + 1;\n vv = vv - min(vv(:)) + 1;\n uu = uu - min(uu(:)) + 1 + UStart;\n LFOutSliceIdx = sub2ind(size(LF), cast(tt,'int32'), cast(ss,'int32'), ...\n cast(vv,'int32'),cast(uu,'int32'), ones(size(ss),'int32'));\n \n %---\n for( ColChan = 1:DecodeOptions.NColChans )\n LF(LFOutSliceIdx(ValidIdx) + numel(LF(:,:,:,:,1)).*(ColChan-1)) = ...\n LensletImage( LFSliceIdx(ValidIdx) + numel(LensletImage(:,:,1)).*(ColChan-1) );\n end\n if( DecodeOptions.NWeightChans ~= 0 )\n LF(LFOutSliceIdx(ValidIdx) + numel(LF(:,:,:,:,1)).*(DecodeOptions.NColChans)) = ...\n WhiteImage( LFSliceIdx(ValidIdx) );\n end\n fprintf('.');\nend\nend\n", "meta": {"author": "doda42", "repo": "LFToolbox", "sha": "5dd4a8acf6555ae362a7c5b8d5bd4b9827790a4e", "save_path": "github-repos/MATLAB/doda42-LFToolbox", "path": "github-repos/MATLAB/doda42-LFToolbox/LFToolbox-5dd4a8acf6555ae362a7c5b8d5bd4b9827790a4e/SupportFunctions/LFDecodeLensletImageSimple.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125737597971, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39947612807612753}} {"text": "function cur_shift = WardGetExpShift(img1, img2, ward_percentile, shift_bits)\n%\n%\n% cur_shift = WardGetExpShift(img1, img2, ward_percentile, shift_bits)\n%\n% This function computes the Ward's MTB.\n%\n% Input:\n% -img1: the target image\n% -img2: the image that needs to be aligned to img1\n%\n% Output:\n% -cur_shift: shifting vector for aligning img2 into img1.\n%\n% Copyright (C) 2012-15 Francesco Banterle\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n%\n\nif(~exist('ward_percentile', 'var'))\n ward_percentile = 0.5;\nend\n\nif(~exist('shift_bits', 'var'))\n shift_bits = 6;\nend\n\ncur_shift = zeros(2, 1);\nshift_ret = zeros(2, 1);\n\nwhile(shift_bits > 0)\n %computing MTB\n sml_img1 = imresize(img1, 2^(-shift_bits), 'bilinear');\n sml_img2 = imresize(img2, 2^(-shift_bits), 'bilinear');\n \n [tb1, eb1] = WardComputeThreshold(sml_img1, ward_percentile);\n [tb2, eb2] = WardComputeThreshold(sml_img2, ward_percentile);\n\n min_err = size(sml_img1, 1) * size(sml_img1, 2);\n\n tb1 = logical(tb1);\n eb1 = logical(eb1);\n\n for i=-1:1\n for j=-1:1\n xs = cur_shift(1) + i;\n ys = cur_shift(2) + j;\n\n shifted_tb2 = logical(imShift(tb2, [xs, ys]));\n shifted_eb2 = logical(imShift(eb2, [xs, ys]));\n\n diff_b = bitxor(tb1, shifted_tb2);\n diff_b = diff_b & eb1;\n diff_b = diff_b & shifted_eb2;\n\n err = sum(diff_b(:));\n\n if (err < min_err)\n shift_ret = [xs; ys];\n min_err = err;\n end\n end\n end\n \n shift_bits = shift_bits - 1;\n cur_shift = shift_ret * 2;\nend\n\nend\n", "meta": {"author": "banterle", "repo": "HDR_Toolbox", "sha": "a2b45dc48b7169192fb633097a83879e71a0c0f2", "save_path": "github-repos/MATLAB/banterle-HDR_Toolbox", "path": "github-repos/MATLAB/banterle-HDR_Toolbox/HDR_Toolbox-a2b45dc48b7169192fb633097a83879e71a0c0f2/source_code/Alignment/util/WardGetExpShift.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3994405360165211}} {"text": "function test_suite = test_angle2Points\n%TESTCLIPLINE One-line description here, please.\n% output = testAngle2Points(input)\n%\n% Example\n% testAngle2Points\n%\n% See also\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@inra.fr\n% Created: 2009-04-22, using Matlab 7.7.0.471 (R2008b)\n% Copyright 2009 INRA - Cepia Software Platform.\n\ntest_suite = functiontests(localfunctions);\n\nfunction testHoriz(testCase) %#ok<*DEFNU>\n% all points inside window, possibly touching edges\n\np1 = [0 0];\np2 = [10 0];\nangle = angle2Points(p1, p2);\ntestCase.assertEqual(0, angle, 'AbsTol', .01);\n\nangle = angle2Points(p2, p1);\ntestCase.assertEqual(pi, angle, 'AbsTol', .01);\n\nfunction testVert(testCase)\n% all points inside window, possibly touching edges\n\np1 = [0 0];\np2 = [0 10];\nangle = angle2Points(p1, p2);\ntestCase.assertEqual(pi/2, angle, 'AbsTol', .01);\n\nangle = angle2Points(p2, p1);\ntestCase.assertEqual(3*pi/2, angle, 'AbsTol', .01);\n\n\nfunction testMultiMulti(testCase)\n% all points inside window, possibly touching edges\n\np1 = [0 0;0 0;0 0;0 0];\np2 = [10 0;10 10;0 10;-10 10];\nangle = angle2Points(p1, p2);\ntestCase.assertEqual(size(p1, 1), size(angle, 1), 'AbsTol', .01);\n\nres = [0;pi/4;pi/2;3*pi/4];\ntestCase.assertEqual(res, angle, 'AbsTol', .01);\n\nfunction testOneMulti(testCase)\n% all points inside window, possibly touching edges\n\np1 = [0 0];\np2 = [10 0;10 10;0 10;-10 10];\nangle = angle2Points(p1, p2);\ntestCase.assertEqual(size(p2, 1), size(angle, 1), 'AbsTol', .01);\n\nres = [0;pi/4;pi/2;3*pi/4];\ntestCase.assertEqual(res, angle, 'AbsTol', .01);\n\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/tests/geom2d/test_angle2Points.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5583269943353745, "lm_q2_score": 0.7154240079185319, "lm_q1q2_score": 0.3994405360165211}} {"text": "function d = generate(a)\n\nif a.seed>0 rand('seed',a.seed); end;\nx=(rand(a.l,a.n)-0.5)*2;\nw=ones(1,a.n); \nprem=a.n-min(a.relevant_n,a.n);\nw(1:prem)=0;\ny=sign(x*w');\n\n\n\n\nd=data([get_name(a) ' '] ,x,y);", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/External/spider/basic/@toy/generate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3994405292411902}} {"text": "function [coordinate, rgb] = getPointsFromRGBD(RGBDframe)\n\nX = reshape(RGBDframe(:,:,[1 2 3 5 6 4]),[],6)';\nvalid = X(6,:) > 0;\n\ncoordinate = X(4:6,valid);\nrgb = X(1:3,valid);\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/depthImproveStructureIO/getPointsFromRGBD.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.39944052246585926}} {"text": "function [ Psi ] = buildPsi2( options, psi, configuration )\n%BUILDPSI functions creates vector \\Psi(I, S) for given configuration\n% Detailed explanation goes here\n% \n% INPUT\n% options ... structure holds info about components (size, count) and S (statistics of component position)\n% psi ... cell Mx1 contains matrices \\Psi^q(I, S_i)\n% configuration ... matrix 2xM [x0, ..., x_{M-1}; y_0, ..., y_{M-1}] with positions of components\n% \n% OUTPUT\n% Psi ... vector [\\Psi_0^q(I, S_0); ... ; \\Psi_{M-1}^q(I, S_{M-1}); g(S_0xS_1); ... ; g(S_0xS_{M-1})];\n% \n% 10-08-10 Michal Uricar\n% 11-07-11 Michal Uricar, corners dataset modificatoin\n\n indices = zeros(1, options.M);\n \n Psi = [];\n\n for i = 1 : options.M\n psi_si = psi{i};\n P = configuration(:, i) - [options.S(1, i) - 1; options.S(2, i) - 1];\n siz = [options.S(4, i) - options.S(2, i) + 1; options.S(3, i) - options.S(1, i) + 1];\n indices(i) = (P(1) - 1)*siz(1) + P(2);\n Psi = [Psi; psi_si(:, indices(i))];\n end;\n \n % g\n %for i = 2 : options.M - 2\n for i = 2 : options.M - 3\n dxdy = configuration(:, i) - configuration(:, 1);\n g = [dxdy; dxdy.^2];\n Psi = [Psi; g];\n end;\n % g5\n dxdy = configuration(:, 6) - configuration(:, 2);\n g = [dxdy; dxdy.^2];\n Psi = [Psi; g];\n % g6\n dxdy = configuration(:, 7) - configuration(:, 3);\n g = [dxdy; dxdy.^2];\n Psi = [Psi; g];\n % g7\n dxdy = configuration(:, 8) - configuration(:, 1);\n g = [dxdy; dxdy.^2];\n Psi = [Psi; g];\n \nend\n", "meta": {"author": "uricamic", "repo": "flandmark", "sha": "ecf122f93f73504fe7d8faccca525c6b1e98fdcd", "save_path": "github-repos/MATLAB/uricamic-flandmark", "path": "github-repos/MATLAB/uricamic-flandmark/flandmark-ecf122f93f73504fe7d8faccca525c6b1e98fdcd/learning/code/Functions/buildPsi2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.39944052246585926}} {"text": "%SerialLink.ikine6s Analytical inverse kinematics\n%\n% Q = R.ikine(T) are the joint coordinates (1xN) corresponding to the robot\n% end-effector pose T which is an SE3 object or homogenenous transform\n% matrix (4x4), and N is the number of robot joints. This is a analytic\n% solution for a 6-axis robot with a spherical wrist (the most common form\n% for industrial robot arms).\n%\n% If T represents a trajectory (4x4xM) then the inverse kinematics is\n% computed for all M poses resulting in Q (MxN) with each row representing\n% the joint angles at the corresponding pose.\n%\n% Q = R.IKINE6S(T, CONFIG) as above but specifies the configuration of the arm in\n% the form of a string containing one or more of the configuration codes:\n%\n% 'l' arm to the left (default)\n% 'r' arm to the right\n% 'u' elbow up (default)\n% 'd' elbow down\n% 'n' wrist not flipped (default)\n% 'f' wrist flipped (rotated by 180 deg)\n%\n% Trajectory operation::\n%\n% In all cases if T is a vector of SE3 objects (1xM) or a homogeneous\n% transform sequence (4x4xM) then R.ikcon() returns the joint coordinates\n% corresponding to each of the transforms in the sequence.\n%\n% Notes::\n% - Treats a number of specific cases:\n% - Robot with no shoulder offset\n% - Robot with a shoulder offset (has lefty/righty configuration)\n% - Robot with a shoulder offset and a prismatic third joint (like Stanford arm)\n% - The Puma 560 arms with shoulder and elbow offsets (4 lengths parameters)\n% - The Kuka KR5 with many offsets (7 length parameters)\n% - The inverse kinematics for the various cases determined using ikine_sym.\n% - The inverse kinematic solution is generally not unique, and\n% depends on the configuration string.\n% - Joint offsets, if defined, are added to the inverse kinematics to\n% generate Q.\n% - Only applicable for standard Denavit-Hartenberg parameters\n%\n% Reference::\n% - Inverse kinematics for a PUMA 560,\n% Paul and Zhang,\n% The International Journal of Robotics Research,\n% Vol. 5, No. 2, Summer 1986, p. 32-44\n%\n% Author::\n% - The Puma560 case: Robert Biro with Gary Von McMurray,\n% GTRI/ATRP/IIMB, Georgia Institute of Technology, 2/13/95\n% - Kuka KR5 case: Gautam Sinha,\n% Autobirdz Systems Pvt. Ltd., SIDBI Office,\n% Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh.\n%\n% See also SerialLink.fkine, SerialLink.ikine, SerialLink.ikine_sym.\n\nfunction thetavec = ikine6s(robot, TT, varargin)\n \n if robot.mdh ~= 0\n error('RTB:ikine:notsupported','Solution only applicable for standard DH conventions');\n end\n \n if robot.n ~= 6\n error('RTB:ikine:notsupported','Solution only applicable for 6-axis robot');\n end\n \n \n %\n % % recurse over all poses in a trajectory\n % if ndims(T) == 3\n % theta = zeros(size(T,3),robot.n);\n % for k=1:size(T,3)\n % theta(k,:) = ikine6s(robot, T(:,:,k), varargin{:});\n % end\n % return;\n % end\n %\n %\n % if ~ishomog(T)\n % error('RTB:ikine:badarg', 'T is not a homog xform');\n % end\n \n TT = SE3(TT);\n \n \n L = robot.links;\n \n if ~robot.isspherical()\n error('RTB:ikine:notsupported', 'wrist is not spherical');\n end\n \n \n \n % The configuration parameter determines what n1,n2,n4 values are used\n % and how many solutions are determined which have values of -1 or +1.\n \n if nargin < 3\n configuration = '';\n else\n configuration = lower(varargin{1});\n end\n \n % default configuration\n \n sol = [1 1 1]; % left, up, noflip\n \n for c=configuration\n switch c\n case 'l'\n sol(1) = 1;\n case 'r'\n sol(1) = 2;\n case 'u'\n sol(2) = 1;\n case 'd'\n sol(2) = 2;\n case 'n'\n sol(3) = 1;\n case 'f'\n sol(3) = 2;\n end\n end\n \n \n % determine the arm structure and the relevant solution to use\n if isempty(robot.ikineType)\n if is_simple(L)\n robot.ikineType = 'nooffset';\n elseif is_puma(L)\n robot.ikineType = 'puma';\n elseif is_offset(L)\n robot.ikineType = 'offset';\n elseif is_rrp(L)\n robot.ikineType = 'rrp';\n else\n error('RTB:ikine6s:badarg', 'This kinematic structure not supported');\n end\n end\n \n for k=1:length(TT)\n \n % undo base and tool transformations\n T = inv(robot.base) * TT(k) * inv(robot.tool);\n \n % drop back to matrix form\n T = T.T;\n \n %% now solve for the first 3 joints, based on position of the spherical wrist centre\n \n \n switch robot.ikineType\n case 'puma'\n % Puma model with shoulder and elbow offsets\n %\n % - Inverse kinematics for a PUMA 560,\n % Paul and Zhang,\n % The International Journal of Robotics Research,\n % Vol. 5, No. 2, Summer 1986, p. 32-44\n %\n % Author::\n % Robert Biro with Gary Von McMurray,\n % GTRI/ATRP/IIMB,\n % Georgia Institute of Technology\n % 2/13/95\n \n a2 = L(2).a;\n a3 = L(3).a;\n d1 = L(1).d;\n d3 = L(3).d;\n d4 = L(4).d;\n \n % The following parameters are extracted from the Homogeneous\n % Transformation as defined in equation 1, p. 34\n \n Ox = T(1,2);\n Oy = T(2,2);\n Oz = T(3,2);\n \n Ax = T(1,3);\n Ay = T(2,3);\n Az = T(3,3);\n \n Px = T(1,4);\n Py = T(2,4);\n Pz = T(3,4) - d1;\n \n %\n % Solve for theta(1)\n %\n % r is defined in equation 38, p. 39.\n % theta(1) uses equations 40 and 41, p.39,\n % based on the configuration parameter n1\n %\n \n r = sqrt(Px^2 + Py^2);\n if sol(1) == 1\n theta(1) = atan2(Py,Px) + pi - asin(d3/r);\n else\n theta(1) = atan2(Py,Px) + asin(d3/r);\n end\n \n %\n % Solve for theta(2)\n %\n % V114 is defined in equation 43, p.39.\n % r is defined in equation 47, p.39.\n % Psi is defined in equation 49, p.40.\n % theta(2) uses equations 50 and 51, p.40, based on the configuration\n % parameter n2\n %\n if sol(2) == 1\n n2 = -1;\n else\n n2 = 1;\n end\n if sol(1) == 2\n n2 = -n2;\n end\n \n V114 = Px*cos(theta(1)) + Py*sin(theta(1));\n r = sqrt(V114^2 + Pz^2);\n Psi = acos((a2^2-d4^2-a3^2+V114^2+Pz^2)/(2.0*a2*r));\n if ~isreal(Psi)\n theta = [];\n else\n \n theta(2) = atan2(Pz,V114) + n2*Psi;\n \n %\n % Solve for theta(3)\n %\n % theta(3) uses equation 57, p. 40.\n %\n num = cos(theta(2))*V114+sin(theta(2))*Pz-a2;\n den = cos(theta(2))*Pz - sin(theta(2))*V114;\n theta(3) = atan2(a3,d4) - atan2(num, den);\n end\n case 'nooffset'\n a2 = L(2).a;\n a3 = L(3).a;\n d1 = L(1).d;\n \n px = T(1,4); py = T(2,4); pz = T(3,4);\n \n %%% autogenerated code\n if L(1).alpha < 0\n if sol(1) == 1\n q(1) = angle(-px-py*1i);\n else\n q(1) = angle(px+py*1i);\n end\n S1 = sin(q(1));\n C1 = cos(q(1));\n \n if sol(2) == 1\n q(2) = -angle(a2*d1*-2.0+a2*pz*2.0-C1*a2*px*2.0i-S1*a2*py*2.0i)+angle(d1*pz*2.0i-a2^2*1i+a3^2*1i-d1^2*1i-pz^2*1i-C1^2*px^2*1i-sqrt((a2*d1*2.0-a2*pz*2.0)^2+(C1*a2*px*2.0+S1*a2*py*2.0)^2-(d1*pz*-2.0+a2^2-a3^2+d1^2+pz^2+C1^2*px^2+S1^2*py^2+C1*S1*px*py*2.0)^2)-S1^2*py^2*1i-C1*S1*px*py*2.0i);\n else\n q(2) = -angle(a2*d1*-2.0+a2*pz*2.0-C1*a2*px*2.0i-S1*a2*py*2.0i)+angle(d1*pz*2.0i-a2^2*1i+a3^2*1i-d1^2*1i-pz^2*1i-C1^2*px^2*1i+sqrt((a2*d1*2.0-a2*pz*2.0)^2+(C1*a2*px*2.0+S1*a2*py*2.0)^2-(d1*pz*-2.0+a2^2-a3^2+d1^2+pz^2+C1^2*px^2+S1^2*py^2+C1*S1*px*py*2.0)^2)-S1^2*py^2*1i-C1*S1*px*py*2.0i);\n end\n S2 = sin(q(2));\n C2 = cos(q(2));\n \n if sol(3) == 1\n q(3) = -angle(a2*-1i+C2*d1-C2*pz+S2*d1*1i-S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py)+angle(a3*1i-sqrt((-a2+S2*d1-S2*pz+C1*C2*px+C2*S1*py)^2+(-C2*d1+C2*pz+C1*S2*px+S1*S2*py)^2-a3^2));\n else\n q(3) = -angle(a2*-1i+C2*d1-C2*pz+S2*d1*1i-S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py)+angle(a3*1i+sqrt((-a2+S2*d1-S2*pz+C1*C2*px+C2*S1*py)^2+(-C2*d1+C2*pz+C1*S2*px+S1*S2*py)^2-a3^2));\n end\n else\n if sol(1) == 1\n q(1) = angle(px+py*1i);\n else\n q(1) = angle(-px-py*1i);\n end\n S1 = sin(q(1));\n C1 = cos(q(1));\n \n if sol(2) == 1\n q(2) = -angle(a2*d1*2.0-a2*pz*2.0-C1*a2*px*2.0i-S1*a2*py*2.0i)+angle(d1*pz*2.0i-a2^2*1i+a3^2*1i-d1^2*1i-pz^2*1i-C1^2*px^2*1i-sqrt((a2*d1*2.0-a2*pz*2.0)^2+(C1*a2*px*2.0+S1*a2*py*2.0)^2-(d1*pz*-2.0+a2^2-a3^2+d1^2+pz^2+C1^2*px^2+S1^2*py^2+C1*S1*px*py*2.0)^2)-S1^2*py^2*1i-C1*S1*px*py*2.0i);\n else\n q(2) = -angle(a2*d1*2.0-a2*pz*2.0-C1*a2*px*2.0i-S1*a2*py*2.0i)+angle(d1*pz*2.0i-a2^2*1i+a3^2*1i-d1^2*1i-pz^2*1i-C1^2*px^2*1i+sqrt((a2*d1*2.0-a2*pz*2.0)^2+(C1*a2*px*2.0+S1*a2*py*2.0)^2-(d1*pz*-2.0+a2^2-a3^2+d1^2+pz^2+C1^2*px^2+S1^2*py^2+C1*S1*px*py*2.0)^2)-S1^2*py^2*1i-C1*S1*px*py*2.0i);\n end\n S2 = sin(q(2));\n C2 = cos(q(2));\n \n if sol(3) == 1\n q(3) = -angle(a2*-1i-C2*d1+C2*pz-S2*d1*1i+S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py)+angle(a3*1i-sqrt((-a2-S2*d1+S2*pz+C1*C2*px+C2*S1*py)^2+(C2*d1-C2*pz+C1*S2*px+S1*S2*py)^2-a3^2));\n else\n q(3) = -angle(a2*-1i-C2*d1+C2*pz-S2*d1*1i+S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py)+angle(a3*1i+sqrt((-a2-S2*d1+S2*pz+C1*C2*px+C2*S1*py)^2+(C2*d1-C2*pz+C1*S2*px+S1*S2*py)^2-a3^2));\n end\n end\n \n theta(1:3) = q;\n \n case'offset'\n % general case with 6 length parameters\n a1 = L(1).a;\n a2 = L(2).a;\n a3 = L(3).a;\n d1 = L(1).d;\n d2 = L(2).d;\n d3 = L(3).d;\n \n px = T(1,4); py = T(2,4); pz = T(3,4);\n \n %%% autogenerated code\n if L(1).alpha < 0\n \n if sol(1) == 1\n q(1) = -angle(-px+py*1i)+angle(d2*1i+d3*1i-sqrt(d2*d3*-2.0-d2^2-d3^2+px^2+py^2));\n else\n q(1) = angle(d2*1i+d3*1i+sqrt(d2*d3*-2.0-d2^2-d3^2+px^2+py^2))-angle(-px+py*1i);\n end\n S1 = sin(q(1));\n C1 = cos(q(1));\n \n if sol(2) == 1\n q(2) = angle(d1*pz*2.0i-sqrt(d1*pz^3*4.0+d1^3*pz*4.0-a1^4-a2^4-a3^4-d1^4-py^4-pz^4-C1^4*px^4+C1^2*py^4*2.0-C1^4*py^4+a1^2*a2^2*2.0+a1^2*a3^2*2.0+a2^2*a3^2*2.0-a1^2*d1^2*2.0+a2^2*d1^2*2.0+a3^2*d1^2*2.0-a1^2*py^2*6.0-a2^2*py^2*2.0+a3^2*py^2*2.0-a1^2*pz^2*2.0+a2^2*pz^2*2.0+a3^2*pz^2*2.0-d1^2*py^2*2.0-d1^2*pz^2*6.0-py^2*pz^2*2.0+d1*py^2*pz*4.0+C1^3*a1*px^3*4.0+S1^3*a1*py^3*4.0-C1^2*a1^2*px^2*6.0+C1^2*a2^2*px^2*2.0+C1^2*a3^2*px^2*2.0+C1^2*a1^2*py^2*6.0+C1^2*a2^2*py^2*1.0e1-C1^2*a3^2*py^2*2.0-C1^4*a2^2*py^2*1.2e1+C1^6*a2^2*py^2*4.0-C1^2*d1^2*px^2*2.0+C1^2*d1^2*py^2*2.0-C1^2*px^2*py^2*6.0+C1^4*px^2*py^2*6.0-C1^2*px^2*pz^2*2.0+C1^2*py^2*pz^2*2.0+S1^6*a2^2*py^2*4.0+C1*a1^3*px*4.0+S1*a1^3*py*4.0+a1^2*d1*pz*4.0-a2^2*d1*pz*4.0-a3^2*d1*pz*4.0-C1*a1*a2^2*px*4.0-C1*a1*a3^2*px*4.0-C1*S1*px^3*py*4.0+C1*a1*d1^2*px*4.0+C1*a1*px*py^2*1.2e1+C1*a1*px*pz^2*4.0+S1*a1*a2^2*py*4.0-S1*a1*a3^2*py*4.0+S1*a1*d1^2*py*4.0+S1*a1*px^2*py*4.0+S1*a1*py*pz^2*4.0-C1*S1^3*px*py^3*4.0+C1*S1^3*px^3*py*4.0-C1^3*a1*px*py^2*1.2e1-S1^3*a1*a2^2*py*8.0+C1^2*d1*px^2*pz*4.0-C1^2*d1*py^2*pz*4.0-S1^3*a1*px^2*py*4.0-C1*a1*d1*px*pz*8.0-S1*a1*d1*py*pz*8.0-C1*S1*a1^2*px*py*1.2e1-C1*S1*a2^2*px*py*4.0+C1*S1*a3^2*px*py*4.0-C1*S1*d1^2*px*py*4.0-C1*S1*px*py*pz^2*4.0-C1^2*S1*a1*a2^2*py*8.0+C1^2*S1*a1*px^2*py*8.0+C1*S1^3*a2^2*px*py*8.0+C1^3*S1*a2^2*px*py*8.0+C1*S1*d1*px*py*pz*8.0)-a1^2*1i-a2^2*1i+a3^2*1i-d1^2*1i-py^2*1i-pz^2*1i-C1^2*px^2*1i+C1^2*py^2*1i+C1*a1*px*2.0i+S1*a1*py*2.0i-C1*S1*px*py*2.0i)-angle(-a2*(a1*-1i+d1-pz+C1*px*1i+S1^3*py*1i+C1^2*S1*py*1i));\n else\n q(2) = angle(d1*pz*2.0i+sqrt(d1*pz^3*4.0+d1^3*pz*4.0-a1^4-a2^4-a3^4-d1^4-py^4-pz^4-C1^4*px^4+C1^2*py^4*2.0-C1^4*py^4+a1^2*a2^2*2.0+a1^2*a3^2*2.0+a2^2*a3^2*2.0-a1^2*d1^2*2.0+a2^2*d1^2*2.0+a3^2*d1^2*2.0-a1^2*py^2*6.0-a2^2*py^2*2.0+a3^2*py^2*2.0-a1^2*pz^2*2.0+a2^2*pz^2*2.0+a3^2*pz^2*2.0-d1^2*py^2*2.0-d1^2*pz^2*6.0-py^2*pz^2*2.0+d1*py^2*pz*4.0+C1^3*a1*px^3*4.0+S1^3*a1*py^3*4.0-C1^2*a1^2*px^2*6.0+C1^2*a2^2*px^2*2.0+C1^2*a3^2*px^2*2.0+C1^2*a1^2*py^2*6.0+C1^2*a2^2*py^2*1.0e1-C1^2*a3^2*py^2*2.0-C1^4*a2^2*py^2*1.2e1+C1^6*a2^2*py^2*4.0-C1^2*d1^2*px^2*2.0+C1^2*d1^2*py^2*2.0-C1^2*px^2*py^2*6.0+C1^4*px^2*py^2*6.0-C1^2*px^2*pz^2*2.0+C1^2*py^2*pz^2*2.0+S1^6*a2^2*py^2*4.0+C1*a1^3*px*4.0+S1*a1^3*py*4.0+a1^2*d1*pz*4.0-a2^2*d1*pz*4.0-a3^2*d1*pz*4.0-C1*a1*a2^2*px*4.0-C1*a1*a3^2*px*4.0-C1*S1*px^3*py*4.0+C1*a1*d1^2*px*4.0+C1*a1*px*py^2*1.2e1+C1*a1*px*pz^2*4.0+S1*a1*a2^2*py*4.0-S1*a1*a3^2*py*4.0+S1*a1*d1^2*py*4.0+S1*a1*px^2*py*4.0+S1*a1*py*pz^2*4.0-C1*S1^3*px*py^3*4.0+C1*S1^3*px^3*py*4.0-C1^3*a1*px*py^2*1.2e1-S1^3*a1*a2^2*py*8.0+C1^2*d1*px^2*pz*4.0-C1^2*d1*py^2*pz*4.0-S1^3*a1*px^2*py*4.0-C1*a1*d1*px*pz*8.0-S1*a1*d1*py*pz*8.0-C1*S1*a1^2*px*py*1.2e1-C1*S1*a2^2*px*py*4.0+C1*S1*a3^2*px*py*4.0-C1*S1*d1^2*px*py*4.0-C1*S1*px*py*pz^2*4.0-C1^2*S1*a1*a2^2*py*8.0+C1^2*S1*a1*px^2*py*8.0+C1*S1^3*a2^2*px*py*8.0+C1^3*S1*a2^2*px*py*8.0+C1*S1*d1*px*py*pz*8.0)-a1^2*1i-a2^2*1i+a3^2*1i-d1^2*1i-py^2*1i-pz^2*1i-C1^2*px^2*1i+C1^2*py^2*1i+C1*a1*px*2.0i+S1*a1*py*2.0i-C1*S1*px*py*2.0i)-angle(-a2*(a1*-1i+d1-pz+C1*px*1i+S1^3*py*1i+C1^2*S1*py*1i));\n end\n S2 = sin(q(2));\n C2 = cos(q(2));\n \n if sol(3) == 1\n q(3) = angle(a3*1i-sqrt(d1*pz*-2.0+a1^2+a2^2-a3^2+d1^2+py^2+pz^2+C1^2*px^2-C1^2*py^2+C2*a1*a2*2.0-C1*a1*px*2.0-S2*a2*d1*2.0-S1*a1*py*2.0+S2*a2*pz*2.0-C1*C2*a2*px*2.0-C2*S1*a2*py*2.0+C1*S1*px*py*2.0))-angle(a2*-1i-C2*a1*1i+C2*d1-C2*pz+S2*a1+S2*d1*1i-S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py);\n else\n q(3) = -angle(a2*-1i-C2*a1*1i+C2*d1-C2*pz+S2*a1+S2*d1*1i-S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py)+angle(a3*1i+sqrt(d1*pz*-2.0+a1^2+a2^2-a3^2+d1^2+py^2+pz^2+C1^2*px^2-C1^2*py^2+C2*a1*a2*2.0-C1*a1*px*2.0-S2*a2*d1*2.0-S1*a1*py*2.0+S2*a2*pz*2.0-C1*C2*a2*px*2.0-C2*S1*a2*py*2.0+C1*S1*px*py*2.0));\n end\n else\n if sol(1) == 1\n q(1) = -angle(px-py*1i)+angle(d2*1i+d3*1i-sqrt(d2*d3*-2.0-d2^2-d3^2+px^2+py^2));\n else\n q(1) = -angle(px-py*1i)+angle(d2*1i+d3*1i+sqrt(d2*d3*-2.0-d2^2-d3^2+px^2+py^2));\n end\n S1 = sin(q(1));\n C1 = cos(q(1));\n \n if sol(2) == 1\n q(2) = angle(d1*pz*2.0i-sqrt(d1*pz^3*4.0+d1^3*pz*4.0-a1^4-a2^4-a3^4-d1^4-py^4-pz^4-C1^4*px^4+C1^2*py^4*2.0-C1^4*py^4+a1^2*a2^2*2.0+a1^2*a3^2*2.0+a2^2*a3^2*2.0-a1^2*d1^2*2.0+a2^2*d1^2*2.0+a3^2*d1^2*2.0-a1^2*py^2*6.0-a2^2*py^2*2.0+a3^2*py^2*2.0-a1^2*pz^2*2.0+a2^2*pz^2*2.0+a3^2*pz^2*2.0-d1^2*py^2*2.0-d1^2*pz^2*6.0-py^2*pz^2*2.0+d1*py^2*pz*4.0+C1^3*a1*px^3*4.0+S1^3*a1*py^3*4.0-C1^2*a1^2*px^2*6.0+C1^2*a2^2*px^2*2.0+C1^2*a3^2*px^2*2.0+C1^2*a1^2*py^2*6.0+C1^2*a2^2*py^2*1.0e1-C1^2*a3^2*py^2*2.0-C1^4*a2^2*py^2*1.2e1+C1^6*a2^2*py^2*4.0-C1^2*d1^2*px^2*2.0+C1^2*d1^2*py^2*2.0-C1^2*px^2*py^2*6.0+C1^4*px^2*py^2*6.0-C1^2*px^2*pz^2*2.0+C1^2*py^2*pz^2*2.0+S1^6*a2^2*py^2*4.0+C1*a1^3*px*4.0+S1*a1^3*py*4.0+a1^2*d1*pz*4.0-a2^2*d1*pz*4.0-a3^2*d1*pz*4.0-C1*a1*a2^2*px*4.0-C1*a1*a3^2*px*4.0-C1*S1*px^3*py*4.0+C1*a1*d1^2*px*4.0+C1*a1*px*py^2*1.2e1+C1*a1*px*pz^2*4.0+S1*a1*a2^2*py*4.0-S1*a1*a3^2*py*4.0+S1*a1*d1^2*py*4.0+S1*a1*px^2*py*4.0+S1*a1*py*pz^2*4.0-C1*S1^3*px*py^3*4.0+C1*S1^3*px^3*py*4.0-C1^3*a1*px*py^2*1.2e1-S1^3*a1*a2^2*py*8.0+C1^2*d1*px^2*pz*4.0-C1^2*d1*py^2*pz*4.0-S1^3*a1*px^2*py*4.0-C1*a1*d1*px*pz*8.0-S1*a1*d1*py*pz*8.0-C1*S1*a1^2*px*py*1.2e1-C1*S1*a2^2*px*py*4.0+C1*S1*a3^2*px*py*4.0-C1*S1*d1^2*px*py*4.0-C1*S1*px*py*pz^2*4.0-C1^2*S1*a1*a2^2*py*8.0+C1^2*S1*a1*px^2*py*8.0+C1*S1^3*a2^2*px*py*8.0+C1^3*S1*a2^2*px*py*8.0+C1*S1*d1*px*py*pz*8.0)-a1^2*1i-a2^2*1i+a3^2*1i-d1^2*1i-py^2*1i-pz^2*1i-C1^2*px^2*1i+C1^2*py^2*1i+C1*a1*px*2.0i+S1*a1*py*2.0i-C1*S1*px*py*2.0i)-angle(-a2*(a1*-1i-d1+pz+C1*px*1i+S1^3*py*1i+C1^2*S1*py*1i));\n else\n q(2) = angle(d1*pz*2.0i+sqrt(d1*pz^3*4.0+d1^3*pz*4.0-a1^4-a2^4-a3^4-d1^4-py^4-pz^4-C1^4*px^4+C1^2*py^4*2.0-C1^4*py^4+a1^2*a2^2*2.0+a1^2*a3^2*2.0+a2^2*a3^2*2.0-a1^2*d1^2*2.0+a2^2*d1^2*2.0+a3^2*d1^2*2.0-a1^2*py^2*6.0-a2^2*py^2*2.0+a3^2*py^2*2.0-a1^2*pz^2*2.0+a2^2*pz^2*2.0+a3^2*pz^2*2.0-d1^2*py^2*2.0-d1^2*pz^2*6.0-py^2*pz^2*2.0+d1*py^2*pz*4.0+C1^3*a1*px^3*4.0+S1^3*a1*py^3*4.0-C1^2*a1^2*px^2*6.0+C1^2*a2^2*px^2*2.0+C1^2*a3^2*px^2*2.0+C1^2*a1^2*py^2*6.0+C1^2*a2^2*py^2*1.0e1-C1^2*a3^2*py^2*2.0-C1^4*a2^2*py^2*1.2e1+C1^6*a2^2*py^2*4.0-C1^2*d1^2*px^2*2.0+C1^2*d1^2*py^2*2.0-C1^2*px^2*py^2*6.0+C1^4*px^2*py^2*6.0-C1^2*px^2*pz^2*2.0+C1^2*py^2*pz^2*2.0+S1^6*a2^2*py^2*4.0+C1*a1^3*px*4.0+S1*a1^3*py*4.0+a1^2*d1*pz*4.0-a2^2*d1*pz*4.0-a3^2*d1*pz*4.0-C1*a1*a2^2*px*4.0-C1*a1*a3^2*px*4.0-C1*S1*px^3*py*4.0+C1*a1*d1^2*px*4.0+C1*a1*px*py^2*1.2e1+C1*a1*px*pz^2*4.0+S1*a1*a2^2*py*4.0-S1*a1*a3^2*py*4.0+S1*a1*d1^2*py*4.0+S1*a1*px^2*py*4.0+S1*a1*py*pz^2*4.0-C1*S1^3*px*py^3*4.0+C1*S1^3*px^3*py*4.0-C1^3*a1*px*py^2*1.2e1-S1^3*a1*a2^2*py*8.0+C1^2*d1*px^2*pz*4.0-C1^2*d1*py^2*pz*4.0-S1^3*a1*px^2*py*4.0-C1*a1*d1*px*pz*8.0-S1*a1*d1*py*pz*8.0-C1*S1*a1^2*px*py*1.2e1-C1*S1*a2^2*px*py*4.0+C1*S1*a3^2*px*py*4.0-C1*S1*d1^2*px*py*4.0-C1*S1*px*py*pz^2*4.0-C1^2*S1*a1*a2^2*py*8.0+C1^2*S1*a1*px^2*py*8.0+C1*S1^3*a2^2*px*py*8.0+C1^3*S1*a2^2*px*py*8.0+C1*S1*d1*px*py*pz*8.0)-a1^2*1i-a2^2*1i+a3^2*1i-d1^2*1i-py^2*1i-pz^2*1i-C1^2*px^2*1i+C1^2*py^2*1i+C1*a1*px*2.0i+S1*a1*py*2.0i-C1*S1*px*py*2.0i)-angle(-a2*(a1*-1i-d1+pz+C1*px*1i+S1^3*py*1i+C1^2*S1*py*1i));\n end\n S2 = sin(q(2));\n C2 = cos(q(2));\n \n if sol(3) == 1\n q(3) = angle(a3*1i-sqrt(d1*pz*-2.0+a1^2+a2^2-a3^2+d1^2+py^2+pz^2+C1^2*px^2-C1^2*py^2+C2*a1*a2*2.0-C1*a1*px*2.0+S2*a2*d1*2.0-S1*a1*py*2.0-S2*a2*pz*2.0-C1*C2*a2*px*2.0-C2*S1*a2*py*2.0+C1*S1*px*py*2.0))-angle(a2*-1i-C2*a1*1i-C2*d1+C2*pz+S2*a1-S2*d1*1i+S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py);\n else\n q(3) = -angle(a2*-1i-C2*a1*1i-C2*d1+C2*pz+S2*a1-S2*d1*1i+S2*pz*1i+C1*C2*px*1i-C1*S2*px+C2*S1*py*1i-S1*S2*py)+angle(a3*1i+sqrt(d1*pz*-2.0+a1^2+a2^2-a3^2+d1^2+py^2+pz^2+C1^2*px^2-C1^2*py^2+C2*a1*a2*2.0-C1*a1*px*2.0+S2*a2*d1*2.0-S1*a1*py*2.0-S2*a2*pz*2.0-C1*C2*a2*px*2.0-C2*S1*a2*py*2.0+C1*S1*px*py*2.0));\n end\n end\n \n theta(1:3) = q;\n \n \n case 'rrp'\n % RRP (Stanford arm like)\n \n px = T(1,4); py = T(2,4); pz = T(3,4);\n d1 = L(1).d;\n d2 = L(2).d;\n \n %%% autogenerated code\n if L(1).alpha < 0\n if sol(1) == 1\n q(1) = -angle(-px+py*1i)+angle(d2*1i-sqrt(-d2^2+px^2+py^2));\n else\n q(1) = angle(d2*1i+sqrt(-d2^2+px^2+py^2))-angle(-px+py*1i);\n end\n S1 = sin(q(1));\n C1 = cos(q(1));\n \n if sol(2) == 1\n q(2) = angle(d1-pz-C1*px*1i-S1*py*1i);\n else\n q(2) = angle(-d1+pz+C1*px*1i+S1*py*1i);\n end\n S2 = sin(q(2));\n C2 = cos(q(2));\n \n q(3) = -C2*d1+C2*pz+C1*S2*px+S1*S2*py;\n \n else\n if sol(1) == 1\n q(1) = -angle(px-py*1i)+angle(d2*1i-sqrt(-d2^2+px^2+py^2));\n else\n q(1) = -angle(px-py*1i)+angle(d2*1i+sqrt(-d2^2+px^2+py^2));\n end\n S1 = sin(q(1));\n C1 = cos(q(1));\n \n if sol(2) == 1\n q(2) = angle(-d1+pz-C1*px*1i-S1*py*1i);\n else\n q(2) = angle(d1-pz+C1*px*1i+S1*py*1i);\n end\n S2 = sin(q(2));\n C2 = cos(q(2));\n \n q(3) = -C2*d1+C2*pz-C1*S2*px-S1*S2*py;\n end\n theta(1:3) = q;\n \n case 'kr5'\n %Given function will calculate inverse kinematics for KUKA KR5 robot\n \n % Equations are calculated and implemented by\n % Gautam Sinha\n % Autobirdz Systems Pvt. Ltd.\n % SIDBI Office,\n % Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh\n % 208016\n % India\n %email- gautam.sinha705@gmail.com\n \n \n % get the a1, a2 and a3-- link lenghts for link no 1,2,3\n L = robot.links;\n a1 = L(1).a;\n a2 = L(2).a;\n a3 = L(3).a;\n \n % Check wether wrist is spherical or not\n if ~robot.isspherical()\n error('wrist is not spherical')\n end\n \n % get d1,d2,d3,d4---- Link offsets for link no 1,2,3,4\n d1 = L(1).d;\n d2 = L(2).d;\n d3 = L(3).d;\n d4 = L(4).d;\n \n % Get the parameters from transformation matrix\n Ox = T(1,2);\n Oy = T(2,2);\n Oz = T(3,2);\n \n Ax = T(1,3);\n Ay = T(2,3);\n Az = T(3,3);\n \n Px = T(1,4);\n Py = T(2,4);\n Pz = T(3,4);\n \n \n \n % Set the parameters n1, n2 and n3 to get required configuration from\n % solution\n n1 = -1; % 'l'\n n2 = -1; % 'u'\n n4 = -1; % 'n'\n if ~isempty(strfind(configuration, 'l'))\n n1 = -1;\n end\n if ~isempty(strfind(configuration, 'r'))\n n1 = 1;\n end\n if ~isempty(strfind(configuration, 'u'))\n if n1 == 1\n n2 = 1;\n else\n n2 = -1;\n end\n end\n if ~isempty(strfind(configuration, 'd'))\n if n1 == 1\n n2 = -1;\n else\n n2 = 1;\n end\n end\n if ~isempty(strfind(configuration, 'n'))\n n4 = 1;\n end\n if ~isempty(strfind(configuration, 'f'))\n n4 = -1;\n end\n \n \n % Calculation for theta(1)\n r=sqrt(Px^2+Py^2);\n \n if (n1 == 1)\n theta(1)= atan2(Py,Px) + asin((d2-d3)/r);\n else\n theta(1)= atan2(Py,Px)+ pi - asin((d2-d3)/r);\n end\n \n % Calculation for theta(2)\n X= Px*cos(theta(1)) + Py*sin(theta(1)) - a1;\n r=sqrt(X^2 + (Pz-d1)^2);\n Psi = acos((a2^2-d4^2-a3^2+X^2+(Pz-d1)^2)/(2.0*a2*r));\n \n if ~isreal(Psi)\n warning('RTB:ikine6s:notreachable', 'point not reachable');\n theta = [NaN NaN NaN NaN NaN NaN];\n return\n end\n \n theta(2) = atan2((Pz-d1),X) + n2*Psi;\n \n % Calculation for theta(3)\n Nu = cos(theta(2))*X + sin(theta(2))*(Pz-d1) - a2;\n Du = sin(theta(2))*X - cos(theta(2))*(Pz-d1);\n theta(3) = atan2(a3,d4) - atan2(Nu, Du);\n \n % Calculation for theta(4)\n Y = cos(theta(1))*Ax + sin(theta(1))*Ay;\n M2 = sin(theta(1))*Ax - cos(theta(1))*Ay ;\n M1 = ( cos(theta(2)-theta(3)) )*Y + ( sin(theta(2)-theta(3)) )*Az;\n theta(4) = atan2(n4*M2,n4*M1);\n \n % Calculation for theta(5)\n Nu = -cos(theta(4))*M1 - M2*sin(theta(4));\n M3 = -Az*( cos(theta(2)-theta(3)) ) + Y*( sin(theta(2)-theta(3)) );\n theta(5) = atan2(Nu,M3);\n \n % Calculation for theta(6)\n Z = cos(theta(1))*Ox + sin(theta(1))*Oy;\n L2 = sin(theta(1))*Ox - cos(theta(1))*Oy;\n L1 = Z*( cos(theta(2)-theta(3) )) + Oz*( sin(theta(2)-theta(3)));\n L3 = Z*( sin(theta(2)-theta(3) )) - Oz*( cos(theta(2)-theta(3)));\n A1 = L1*cos(theta(4)) + L2*sin(theta(4));\n A3 = L1*sin(theta(4)) - L2*cos(theta(4));\n Nu = -A1*cos(theta(5)) - L3*sin(theta(5));\n Du = -A3;\n theta(6) = atan2(Nu,Du);\n \n \n otherwise\n error('RTB:ikine6s:badarg', 'Unknown solution type [%s]', robot.ikineType);\n end\n \n if ~isempty(theta)\n % Solve for the wrist rotation\n\n % we need to account for some random translations between the first and last 3\n % joints (d4) and also d6,a6,alpha6 in the final frame.\n\n T13 = robot.A(1:3, theta(1:3)); % transform of first 3 joints\n\n\n % T = T13 * Tz(d4) * R * Tz(d6) Tx(a5)\n Td4 = SE3(0, 0, L(4).d); % Tz(d4)\n Tt = SE3(L(6).a, 0, L(6).d) * SE3.Rx(L(6).alpha); % Tz(d6) Tx(a5) Rx(alpha6)\n\n R = inv(Td4) * inv(T13) * SE3(T) * inv(Tt);\n\n\n % the spherical wrist implements Euler angles\n\n if sol(3) == 1\n theta(4:6) = tr2eul(R, 'flip');\n else\n theta(4:6) = tr2eul(R);\n\n end\n if L(4).alpha > 0\n theta(5) = -theta(5);\n end\n\n % remove the link offset angles\n for j=1:robot.n %#ok<*AGROW>\n theta(j) = theta(j) - L(j).offset;\n end\n\n % stack the rows\n thetavec(k,:) = theta;\n else\n warning('RTB:ikine6s:notreachable', 'point not reachable');\n thetavec(k,:) = [NaN NaN NaN NaN NaN NaN];\n end\n end\nend\n\n% predicates to determine which kinematic solution to use\nfunction s = is_simple(L)\n alpha = [-pi/2 0 pi/2];\n s = all([L(2:3).d] == 0) && ...\n (all([L(1:3).alpha] == alpha) || all([L(1:3).alpha] == -alpha)) && ...\n all([L(1:3).isrevolute] == 1) && ...\n (L(1).a == 0);\nend\n\nfunction s = is_offset(L)\n alpha = [-pi/2 0 pi/2];\n s = (all([L(1:3).alpha] == alpha) || all([L(1:3).alpha] == -alpha)) && ...\n all([L(1:3).isrevolute] == 1);\nend\n\nfunction s = is_rrp(L)\n alpha = [-pi/2 pi/2 0];\n s = all([L(2:3).a] == 0) && ...\n (all([L(1:3).alpha] == alpha) || all([L(1:3).alpha] == -alpha)) && ...\n all([L(1:3).isrevolute] == [1 1 0]);\nend\n\nfunction s = is_puma(L)\n alpha = [pi/2 0 -pi/2];\n s = (L(2).d == 0) && (L(1).a == 0) && ...\n (L(3).d ~= 0) && (L(3).a ~= 0) && ...\n all([L(1:3).alpha] == alpha) && ...\n all([L(1:3).isrevolute] == 1);\nend\n", "meta": {"author": "petercorke", "repo": "robotics-toolbox-matlab", "sha": "bd7a9d75176c660f43fc799b24d838f70b02250c", "save_path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab/robotics-toolbox-matlab-bd7a9d75176c660f43fc799b24d838f70b02250c/@SerialLink/ikine6s.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7745833945721304, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.3993906246297293}} {"text": "function World = doMapping(World, sen, r_new, scan_data, handles)\n\n %%%%%%%%%%%%%%%%%%%%%%%%% MAPPING SETTINGS %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Amount by which to increment/reduce cell value when obstacle is detected:\n map_augment = 20;\n % Amount by which to reduce cell value when no obstacle is detected:\n map_reduce = 20; \n map_max = 255; % Maximum value that a grid cell can take\n map_min = 0; % Minimum value that a grid cell can take\n map_isOccupied = 150; % Value at which cell is in occupied state\n map_isEmpty = 50; % Value at which cell is in empty state\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n scan_polar = getMeasurement(scan_data);\n % Determine the region in the scan that was detected as being emtpy\n empty_region_pol = ones(2, size(scan_polar, 2) * ...\n (round((sen.range - sen.range_min)/World.map_res) + 1)) * -1;\n position = 1;\n for i = 1:size(scan_polar, 2)\n empty_region_r = sen.range_min : World.map_res : scan_polar(1, i) ...\n - World.map_res;\n empty_region_a = repmat(scan_polar(2, i), 1, length(empty_region_r));\n empty_region_pol(:, position : position + length(empty_region_r) - 1) ...\n = [empty_region_r; empty_region_a];\n position = position + length(empty_region_r);\n end\n empty_region_pol = empty_region_pol(:, empty_region_pol(1, :) ~= -1);\n % Map the empty region of the scan onto the global frame\n empty_region = invScanPoint(r_new, empty_region_pol);\n\n scan_global = transToGlobal(r_new, scan_data);\n gridmap_occupied = zeros(size(World.gridmap));\n gridmap_empty = zeros(size(World.gridmap));\n scan_global = interp1(World.map_vals, World.map_vals, scan_global, 'nearest');\n empty_region = interp1(World.map_vals, World.map_vals, empty_region, 'nearest');\n\n for i = 1:length(World.map_vals)\n for j = 1:length(World.map_vals)\n if ~isempty(scan_global)\n gridmap_occupied(i, j) = sum(scan_global(1,:) == World.map_vals(j) & ...\n scan_global(2,:) == World.map_vals(i));\n end\n gridmap_empty(i, j) = sum(empty_region(1,:) == World.map_vals(j) & ...\n empty_region(2,:) == World.map_vals(i));\n end\n end\n \n World.gridmap_counter = World.gridmap_counter ...\n + map_augment * gridmap_occupied ...\n - map_reduce * gridmap_empty;\n \n % Set the gridmap counter such that the max value is 255 and min value\n % is 0:\n \n World.gridmap_counter(World.gridmap_counter > map_max) = map_max;\n World.gridmap_counter(World.gridmap_counter < map_min) = map_min;\n \n gridmap_occupied = World.gridmap_counter > map_isOccupied;\n gridmap_empty = World.gridmap_counter < map_isEmpty;\n World.gridmap = ones(size(World.gridmap_counter)) * 0.5;\n World.gridmap(gridmap_occupied) = 1;\n World.gridmap(gridmap_empty) = 0;\n \n World.gridmap_greyscale = mat2gray(World.gridmap_counter, [map_min map_max]);\n \n imagesc(flipud(World.gridmap_greyscale), 'parent', handles.map1, [0 1]);\n set(handles.map1, 'XTick', [], 'YTick', []);\n imagesc(flipud(World.gridmap), 'parent', handles.map2, [0 1]);\n set(handles.map2, 'XTick', [], 'YTick', []);\n \nend", "meta": {"author": "jaijuneja", "repo": "ekf-slam-matlab", "sha": "d0746d0396aa2c24eee6633f3dfc5e1b9f1d7f87", "save_path": "github-repos/MATLAB/jaijuneja-ekf-slam-matlab", "path": "github-repos/MATLAB/jaijuneja-ekf-slam-matlab/ekf-slam-matlab-d0746d0396aa2c24eee6633f3dfc5e1b9f1d7f87/tools/doMapping.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7745833841649232, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3993906192635659}} {"text": "function [xVals, yVals, zVals] = getUniformizedXYZVals(planC)\n%\"getUniformizedXYZVals\"\n% Return the X Y and Z vals of the uniformized dataset.\n%\n% These are arrays, with a value for each row, col and slice in the\n% uniformized dataset.\n%\n% In case of any error accessing the data 0 is returned for all vals.\n%\n% JRA 11/14/03\n%\n% Usage: [xVals, yVals, zVals] = getUniformizedXYZVals(planC)\n\nindexS = planC{end};\n\n[xVals, yVals, junk] = getScanXYZVals(planC{indexS.scan}(1));\n\nscanInfo = planC{indexS.scan}(1).scanInfo(1);\nsizeArray = getUniformizedSize(planC);\n\nuniformScanInfo = planC{indexS.scan}(1).uniformScanInfo;\nnZSlices = sizeArray(3);\nzVals = uniformScanInfo.firstZValue : uniformScanInfo.sliceThickness : uniformScanInfo.sliceThickness * (nZSlices-1) + uniformScanInfo.firstZValue; \n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/IMRTP/recompDose/MC/getUniformizedXYZVals_plnChk.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5851011542032313, "lm_q1q2_score": 0.3993746798334607}} {"text": "function test_bug2137\n\n% MEM 2gb\n% WALLTIME 00:30:00\n% DEPENDENCY\n\n\n% the following lines are for interactive/manual testing\nif false\n restoredefaultpath\n clear all\n addpath(dccnpath('/home/common/matlab/fieldtrip'));\n ft_defaults\nend\n\ncfg = [];\ncfg.dataset = dccnpath('/home/common/matlab/fieldtrip/data/ftp/test/ctf/Subject01.ds');\ndata = ft_preprocessing(cfg);\n\ncfg = [];\ncfg.detrend = 'no';\ncfg.resamplefs = 150;\ndata = ft_resampledata(cfg, data);\n\ncfg = [];\ncfg.channel = {'MEG'};\ncfg.numcomponent = 60;\ncomp = ft_componentanalysis(cfg, data);\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug2137.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.39937467983346064}} {"text": "function [N,Vn]=trinorm(F,V)\n\n%% function [N,Vn]=trinorm(F,V)\n% ------------------------------------------------------------------------\n%\n%\n% 2021/09/14 Labelled as depricated\n% ------------------------------------------------------------------------\n\n%%\n\nwarning('The trinorm function is depricated. Use patchNormal instead.'); \n[N,Vn]=patchNormal(F,V);\n\n%% Old\n\n% %N.B. if F does not describe triangles this functions uses first three\n% %vertices as a triangular description\n% \n% \n% %Getting triangle surface normal (cross product of two edge vectors)\n% vec1=[V(F(:,2),1)-V(F(:,1),1) V(F(:,2),2)-V(F(:,1),2) V(F(:,2),3)-V(F(:,1),3)];\n% vec2=[V(F(:,3),1)-V(F(:,1),1) V(F(:,3),2)-V(F(:,1),2) V(F(:,3),3)-V(F(:,1),3)];\n% N=cross(vec1,vec2,2);\n% \n% %Normalizing vector length\n% N=N./(sqrt(sum(N.^2,2))*ones(1,size(N,2)));\n% \n% %Midface coordinates for normal vectors (mean of each face)\n% X=V(:,1); Y=V(:,2); Z=V(:,3);\n% Vn=[mean(X(F),2) mean(Y(F),2) mean(Z(F),2)];\n\nend\n\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/trinorm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105587468141, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3993716714886666}} {"text": "function varargout = iff(varargin)\n%IFF Logical equivalence\n%\n% IFF(X,Y) creates a mixed integer representation of\n% the constraint X <--> Y, i.e. Y is true iff X is true.\n%\n% Syntax\n% F = iff(X,Y)\n%\n% Input\n% X : binary SDPVAR variable or a set of linear (in)equalities\n% Y : binary SDPVAR variable or a set of linear (in)equalities\n%\n% Output\n% F : Constraint object\n%\n% Examples\n%\n% binvar X,Y; F = iff(X,Y);\n% sdpvar X;binvar Y; F = iff(X>=5,Y);\n% sdpvar X;binvar Y; F = iff(Y,X==5);\n%\n% Overloading\n%\n% The iff overloads == for logic constraints.\n%\n% sdpvar X;binvar Y; F = ((X>=5) == Y);\n% sdpvar X;binvar Y; F = (Y == (X==5));\n%\n%\n% Note\n% The function IFF is not complete, but will be\n% improved upon in future releases.\n%\n% See also @SDPVAR/AND, @SDPVAR/OR, IMPLIES\n\nX = varargin{1};\nif nargin < 2\n help iff\nend\nY = varargin{2};\n\nswitch class(varargin{1})\n case {'lmi','constraint','sdpvar'}\n varargout{1} = setupMeta(lmi([]), mfilename,varargin{:});\n\n case 'char'\n varargout{1} = iff_internal(varargin{3:end});\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/operators/iff.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7461390043208003, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39925780874908473}} {"text": "function cS = plus(cS,v)\n\n% crystal shape should be first argument\nif ~isa(cS,'crystalShape'), [cS,v] = deal(v,cS); end\n\n% shift should be vector3d\nif isa(v,'double') \n if size(v,2)==2, v = [v,ones(size(v,1),1)]; end\n v = vector3d(v.');\nelse\n v = v(:).';\nend\n\n% extent shift by number of vertices of the crystal\nv = repmat(v,size(cS.V,1),1);\n\n% extend the crystals by the number of shifts\nif size(cS.V,2) == 1\n cS = repmat(cS,size(v,2));\nend\n\n% shift vertices\ncS.V = cS.V + v;", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@crystalShape/plus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.39925626355850713}} {"text": "function t=bdt2time(week,sec)\n\nbdt0 =[2006,1, 1,0,0,0]; %beidou time reference\nt0=epoch2time(bdt0);\n\nif sec<-1e9||sec>1e9,sec=0;end\n\nt.time=t0.time+week*7*86400+fix(sec);\nt.sec=sec-fix(sec);\n\nreturn;", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/common/bdt2time.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.39925626355850713}} {"text": "function [engine, loglik] = enter_evidence(engine, evidence, varargin)\n% ENTER_EVIDENCE Add the specified evidence to the network (hmm)\n% [engine, loglik] = enter_evidence(engine, evidence, ...)\n%\n% evidence{i,t} = [] if if X(i,t) is hidden, and otherwise contains its observed value (scalar or column vector)\n%\n% The following optional arguments can be specified in the form of name/value pairs:\n% [default value in brackets]\n%\n% maximize - if 1, does max-product (not yet supported), else sum-product [0]\n% filter - if 1, does filtering, else smoothing [0]\n% oneslice - 1 means only compute marginals on nodes within a single slice [0]\n%\n% e.g., engine = enter_evidence(engine, ev, 'maximize', 1)\n\nmaximize = 0;\nfilter = 0;\noneslice = 0;\n\n% parse optional params\nargs = varargin;\nnargs = length(args);\nif nargs > 0\n for i=1:2:nargs\n switch args{i},\n case 'maximize', maximize = args{i+1}; \n case 'filter', filter = args{i+1}; \n case 'oneslice', oneslice = args{i+1};\n otherwise, \n error(['invalid argument name ' args{i}]); \n end\n end\nend\n\n[ss T] = size(evidence);\nengine.maximize = maximize;\nengine.evidence = evidence;\nbnet = bnet_from_engine(engine);\nengine.node_sizes = repmat(bnet.node_sizes_slice(:), [1 T]);\n\nobs_bitv = ~isemptycell(evidence(:));\nbitv = reshape(obs_bitv, ss, T);\nfor t=1:T\n onodes = find(bitv(:,t));\n if ~isequal(onodes, bnet.observed(:))\n error(['dbn was created assuming observed nodes per slice were '...\n\t num2str(bnet.observed(:)') ' but the evidence in slice ' num2str(t) ...\n\t ' has observed nodes ' num2str(onodes(:)')]);\n end\nend\n\nobslik = mk_hmm_obs_lik_matrix(engine, evidence);\n\n%[alpha, beta, gamma, loglik, xi] = fwdback(engine.startprob, engine.transprob, obslik, ...\n[alpha, beta, gamma, loglik, xi] = fwdback_twoslice(engine, engine.startprob,...\n engine.transprob, obslik, ...\n 'maximize', maximize, 'fwd_only', filter, ...\n 'compute_xi', ~oneslice);\n\nengine.one_slice_marginal = gamma; % gamma(:,t) for t=1:T\nif ~oneslice\n Q = size(gamma,1);\n engine.two_slice_marginal = reshape(xi, [Q*Q T-1]); % xi(:,t) for t=1:T-1\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/dynamic/@hmm_inf_engine/enter_evidence.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.39925626355850713}} {"text": "function Q = vbpcamv(Y, d, varargin)\n% Modified RPPCA by Jaakko Luttinen\n% Uses separate outlier models for each observed signal.\n% p(y|W,x,mu,u,tau) = N(y | W*x+mu, diag(1/u*1/tau))\n% Uses hierarchical models and variational learning.\n%\n% If you have troubles with bad minima, you may want to try changing the\n% time when the algorithm starts to update the hyperparameters\n% (startupdatehyper) and/or to rotate (startrotate).\n\n% Last updated 13th February 2009, Jaakko Luttinen\n\nopts = struct( ...\n 'init', [],...\n 'prior', [], ...\n 'hiermean', false, ...\n 'rotate', true, ...\n 'commonnoise', true, ...\n 'startrotate', 1, ...\n 'startupdatehyper', 1, ...\n 'autosavetime', 0,...\n 'autosavefile', 'vbpcamv_autosave',...\n 'testset', [], ...\n 'fixw', false, ...\n 'maxiters', 1000, ...\n 'convergence', eps);\n\n[ opts, errmsg, wrnmsg ] = argschk( opts, varargin{:} );\nif ~isempty(errmsg), error( errmsg ), end\nif ~isempty(wrnmsg), warning( wrnmsg ), end\n\n[m,n] = size(Y);\n\n% Missing values\nif issparse(Y)\n Obs = Y~=0; %spones(Y);\nelse\n Obs = ~isnan(Y);\nend\n[ObsI, ObsJ] = find(Obs);\n\n%%%%%%%%%%%%%%%%%%%\n%% INITIALIZATION\n\nnmv = sum(Obs,2);\n\n% NAMING CONVENTION:\n% variables are named without '_': e.g. a->tau->mu ==> ataumu\n% but the values of posterior distribution parameters are named with one\n% '_': e.g. a->tau->mu ==> a_taumu\n% So, priors (or hyperparameter variables) have no '_'. Understand the\n% difference!\n% But for clarity mu_W is just W and mu_X is just X and so on. That is,\n% plain variable name (W,X,mu,tau,logtau,U,logU) refers to posterior\n% expectation if there is no naming conflict.\n\n\n% Mean (mu)\n% $$$ mumumu = 0; % prior for hierarchical stuff\n% $$$ taumumu = 1e-5; % prior for hierarchical stuff\nv_mumu = 0;\nataumu = 1e-3; % prior for hierarchical stuff\nbtaumu = 1e-3; % prior for hierarchical stuff\nmumu = 0; % init posterior or prior if no hierarchical mean\ntaumu = 1e-6; % init posterior or prior if no hierarchical mean\nv_mu = 1e0*ones(m,1); % init posterior\nmu = zeros(m,1); % init posterior\n \n% Loading matrix (W)\n%aw = 1e-16; % prior\n%bw = 1e-13; % prior\naw = 1e-10; % prior\nbw = 1e-5; % prior\na_w = aw * ones(1,d); % init size\nb_w = bw * ones(1,d); % init size\nw = 1e-6 * ones(1,d); % init posterior\nlogw = nan * ones(1,d); % init size\nW = orth(randn(m,d)); % init posterior\nCovW = 1e-0*repmat(eye(d),[1,1,m]); % init posterior\nvarW = nan*ones(m,d); % init size\n\n% Observation noise\natau = 1e-4; % prior\nbtau = 1e-4; % prior\na_tau = nan * ones(m,1);\nb_tau = nan * ones(m,1);\ntau = 1e2 * ones(m,1); % init posterior (THIS SEEMS TO BE IMPORTANT!!!)\n%tau = 1./varmv(Y,2) * (m^2)/((m-d)^2) % adhoc init posterior\nlogtau = nan * ones(m,1); % init size\n \n% Outlier parameters\n% $$$ nu = 10 * ones(m,1); % variable init\n% $$$ a_U = nan * ones(m,n); % init size\n% $$$ b_U = nan * ones(m,n); % init size\nU = ones(m,n); % init posterior\n% $$$ logU = nan * zeros(m,n); % init size\n\n% Initialize sizes\nX = nan * zeros(d,n); % init size\nSv = cell(n,1);\nSv(:) = {nan*zeros(d,d)};\nCovX = nan*zeros(d,d,n);\nXX = nan*zeros(d,d,n);\nUXX = nan*zeros(d,d,m);\n\n\n% Prior information\nif isstruct(opts.prior)\n if isfield(opts.prior, 'mumumu')\n mumumu(1) = opts.prior.mumumu\n end\n if isfield(opts.prior, 'taumumu')\n taumumu(1) = opts.prior.taumumu\n end\n if isfield(opts.prior, 'ataumu')\n ataumu(1) = opts.prior.ataumu\n end\n if isfield(opts.prior, 'btaumu')\n btaumu(1) = opts.prior.btaumu\n end\n if isfield(opts.prior, 'aw')\n aw(1) = opts.prior.aw\n end\n if isfield(opts.prior, 'bw')\n bw(1) = opts.prior.bw\n end\n if isfield(opts.prior, 'atau')\n atau(1) = opts.prior.atau\n end\n if isfield(opts.prior, 'btau')\n btau(1) = opts.prior.btau\n end\nend\n\n% Use given initialization (size matching is checked by using ':' )\nif isstruct(opts.init)\n if isfield(opts.init, 'W')\n W(:,:) = opts.init.W;\n fprintf('Using old W.\\n');\n end\n if isfield(opts.init, 'CovW')\n CovW(:,:,:) = opts.init.CovW;\n fprintf('Using old CovW.\\n');\n end\n if isfield(opts.init, 'w')\n w(:) = opts.init.w\n fprintf('Using old w.\\n');\n end\n if isfield(opts.init, 'X')\n X(:,:) = opts.init.X;\n fprintf('Using old X.\\n');\n end\n if isfield(opts.init, 'CovX')\n CovX(:,:,:) = opts.init.CovX;\n fprintf('Using old CovX.\\n');\n end\n if isfield(opts.init, 'Sv')\n Sv(:) = opts.init.Sv;\n fprintf('Using old Sv.\\n');\n end\n if isfield(opts.init, 'mu')\n mu(:) = opts.init.mu;\n fprintf('Using old mu.\\n');\n end\n if isfield(opts.init, 'v_mu')\n v_mu(:) = opts.init.v_mu;\n fprintf('Using old v_mu.\\n');\n end\n if isfield(opts.init, 'mumu')\n mumu(1) = opts.init.mumu;\n fprintf('Using old mumu.\\n');\n end\n if isfield(opts.init, 'taumu')\n taumu(1) = opts.init.taumu;\n fprintf('Using old taumu.\\n');\n end\n if isfield(opts.init, 'tau')\n tau(:) = opts.init.tau;\n fprintf('Using old tau.\\n');\n end\n if isfield(opts.init, 'nu')\n nu(:) = opts.init.nu;\n fprintf('Using old nu.\\n');\n end\n if isfield(opts.init, 'U')\n U(:,:) = opts.init.U;\n fprintf('Using old U.\\n');\n end\nend\n\nWW = zeros(d,d,m);\nfor i=1:m\n WW(:,:,i) = W(i,:)'*W(i,:) + CovW(:,:,i);\nend\n\n% Log-likelihood\nlogP = -Inf;\n\nIm = eye(m);\nId = eye(d);\n\nlastsave = now;\n\nN = 1:n;\nvM = 1:m;\nm_mv = sum(Obs,1);\nn_mv = sum(Obs,2);\nnm_mv = sum(Obs(:)); % number of observations\n\nlog2pi = log(2*pi);\n\noldcosts = -inf;\n\n% Monitor the overall time of the iteration\nstarttime = cputime;\nduration = nan*zeros(opts.maxiters,1);\nrmse = nan*zeros(opts.maxiters,1);\nrmse_test = nan*zeros(opts.maxiters,1);\n\ncost = nan*zeros(opts.maxiters,1);\nfor k=1:opts.maxiters\n \n itertime = cputime;\n \n % This is used to monitor the rotation of the subspace after each step\n W_old = W;\n \n % Update X\n for j=1:n\n imv = Obs(:,j);\n UTau = diag(U(imv,j).*tau(imv));\n UWWTau = 0;\n for i=vM(imv)\n UWWTau = UWWTau + U(i,j)*tau(i) * WW(:,:,i);\n end\n CovX(:,:,j) = inv(UWWTau + Id);\n X(:,j) = CovX(:,:,j) * W(imv,:)' * UTau * (Y(imv,j)-mu(imv)); \n XX(:,:,j) = CovX(:,:,j) + X(:,j)*X(:,j)';\n Sv{j} = CovX(:,:,j); % only for backward compatibility..\n end\n\n for i=1:m\n jmv = Obs(i,:);\n\n % Update sum_j()\n UXX(:,:,i) = 0;\n for j=N(jmv) % sum over observed time instances\n UXX(:,:,i) = UXX(:,:,i) + U(i,j)*XX(:,:,j);%(CovX(:,:,j) + X(:,j)*X(:,j)');\n end\n\n % Update W\n CovW(:,:,i) = inv(UXX(:,:,i)*tau(i) + diag(w));\n W(i,:) = (U(i,jmv).*(Y(i,jmv)-mu(i))*X(:,jmv)') * CovW(:,:,i) * tau(i);\n WW(:,:,i) = W(i,:)'*W(i,:) + CovW(:,:,i);\n \n % Update mu\n v_mu(i) = 1 / (taumu + sum(U(i,jmv))*tau(i));\n mu(i) = v_mu(i) * (taumu*mumu + U(i,jmv)*(Y(i,jmv)-W(i,:)*X(:,jmv))'*tau(i));\n\n end\n \n % Rotate\n % THINK/TODO: WHAT WOULD BE A GOOD TIME TO START ROTATING??\n % (rotating too early may lead to bad local minima and not rotating\n % makes converging very slow) should one measure how \"converged\" the\n % loglikelihood is and then decide whether to start rotate?\n if opts.rotate && k>=opts.startrotate\n% $$$ before = trace( sum(CovX,3) * sum(CovW,3) )\n [W,CovW,X,Sv,CovX,mu] = orthogonalize(W,CovW,X,Sv,CovX,mu,opts.fixw,tau,Obs);\n% $$$ after = trace( sum(CovX,3) * sum(CovW,3) )\n% [W,CovW,X,Sv,CovX,mu] = orthogonalize_TEST(W,CovW,X,Sv,CovX,mu,tau(1)); false\n% [W,CovW,X,CovX,mu] = RotateToPCA(W,CovW,X,CovX,mu);\n end\n\n \n for i=1:m\n jmv = Obs(i,:); % observed\n \n WW(:,:,i) = W(i,:)'*W(i,:) + CovW(:,:,i);\n varW(i,:) = diag(CovW(:,:,i));\n \n % Update sum_j()\n UXX(:,:,i) = 0;\n for j=N(jmv) % sum over observed time instances\n UXX(:,:,i) = UXX(:,:,i) + U(i,j)*(CovX(:,:,j) + X(:,j)*X(:,j)');\n end\n\n % Update tau\n UWXXW = sum(sum( WW(:,:,i) .* UXX(:,:,i) ));\n a_tau(i) = atau + 0.5*sum(jmv);\n b_tau(i) = btau ...\n + 0.5 * (UWXXW + ...\n sum(-2*W(i,:)*X(:,jmv)*(U(i,jmv).*(Y(i,jmv)-mu(i)))') + ...\n sum(U(i,jmv).*(Y(i,jmv)-mu(i)).^2) + ...\n sum(U(i,jmv)*v_mu(i)));\n \n end\n \n % \"AD HOC\"(?): Use common variance\n if opts.commonnoise\n a_tau(:) = sum(a_tau-atau) + atau;\n b_tau(:) = sum(b_tau-btau) + btau;\n end\n tau = a_tau./b_tau;\n logtau = psi(a_tau) - log(b_tau);\n % TODO: DEBUGGING: USE ML ESTIMATE\n% $$$ logtau = log(tau);\n\n % Update hyperparameters for mu\n if ~opts.hiermean\n logtaumu = log(taumu);\n else\n a_taumu = ataumu + 0.5*m;\n b_taumu = btaumu + 0.5*sum( (mu-mumu).^2 + v_mu + v_mumu);\n taumu = a_taumu ./ b_taumu; % posterior mean of accuracy hyperparameter\n logtaumu = psi(a_taumu) - log(b_taumu);\n end\n\n % Update hyperparameter for W (you can try to start updating these\n % hyperparameters only after some iteration if some problems seem to\n % appear.)\n if ~opts.fixw\n if k >= opts.startupdatehyper\n a_w(:) = aw + 0.5*m;\n b_w(:) = bw + 0.5*sum(W.^2 + varW, 1);\n end\n w = a_w ./ b_w; % posterior mean of precision hyperparameter\n logw = psi(a_w) - log(b_w);\n else\n logw = log(w);\n end\n \n % Change of the principal subspace (in radians)\n angle = subspace(W,W_old);\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Calculate lower bound of the log-likelihood\n\n % Cost from Y\n cost_Y = 0;\n for j=1:n\n imv = Obs(:,j);\n for i=vM(imv)\n mean_muY = W(i,:)*X(:,j)+mu(i);\n var_muY = W(i,:)*CovX(:,:,j)*W(i,:)' + X(:,j)'*CovW(:,:,i)*X(:,j) ...\n + sum(sum( CovX(:,:,j).*CovW(:,:,i) )) + v_mu(i);\n tauY = tau(i);\n logtauY = logtau(i);\n cost_Y = cost_Y + cost_gaussian(Y(i,j),[], mean_muY,var_muY, ...\n tauY,logtauY);\n end\n end\n \n % Cost from W\n cost_W = 0;\n for i=1:m\n cost_W = cost_W + cost_gaussian(W(i,:)',CovW(:,:,i), 0,0, w',logw');\n end\n \n % Cost from X\n cost_X = 0;\n for j=1:n\n cost_X = cost_X + cost_gaussian(X(:,j),CovX(:,:,j), 0,0, 1,0);\n end\n \n % Cost from mu\n cost_mu = cost_gaussian(mu,diag(v_mu), mumu,v_mumu, taumu,logtaumu);\n\n % Cost from tau\n if opts.commonnoise\n cost_tau = cost_gamma(tau(1),logtau(1),a_tau(1),b_tau(1),atau,btau);\n else\n cost_tau = sum(cost_gamma(tau,logtau,a_tau,b_tau,atau,btau));\n end\n \n % Cost from w\n if ~opts.fixw\n cost_w = sum(cost_gamma(w,logw,a_w,b_w,aw,bw));\n else\n cost_w = 0;\n end\n \n if opts.hiermean\n cost_taumu = cost_gamma(taumu,logtaumu,a_taumu,b_taumu,ataumu,btaumu);\n end\n \n oldlogP = logP;\n \n % Lower bound of loglikelihood\n logP = cost_Y + cost_W + cost_X + cost_mu + cost_tau + cost_w;\n %logP = cost_Y;\n costs = [cost_Y; cost_W; cost_X; cost_mu; cost_tau; cost_w];\n \n cost(k) = logP;\n \n % Show progress\n time = cputime - itertime;\n if k > 1\n duration(k) = duration(k-1) + time;\n else\n duration(1) = time;\n end\n fprintf('Step %d: loglike=%e, angle=%e (%f seconds)\\n', ...\n k, logP, angle, time);\n \n % Debugging..\n if logP < oldlogP\n% diff_costs = costs - oldcosts\n% error('Log-likelihood bound not improved! Bug in code or likelihood?');\n warning('Log-likelihood bound decreased! Bug in code or likelihood?');\n end\n oldcosts = costs;\n \n % RMSE\n Yh = W*X + repmat(mu, 1,n);\n err = Y-Yh;\n err = err(~isnan(err));\n rmse(k) = sqrt( mean(err(:).^2) );\n if ~isempty(opts.testset)\n err = opts.testset-Yh;\n err = err(~isnan(err));\n rmse_test(k) = sqrt( mean(err(:).^2) );\n end\n\n % Check whether to save the results\n if (now-lastsave)*3600*24 >= opts.autosavetime && opts.autosavetime > 0\n fprintf('Saving to %s...', opts.autosavefile);\n loglikelihood = logP;\n if opts.hiermean\n save(opts.autosavefile, 'W','CovW','w','a_w','b_w','X','CovX','Sv', ...\n 'mu','v_mu','mumu','v_mumu','taumu','a_taumu','b_taumu','tau', ...\n 'a_tau','b_tau','U','a_U','b_U','nu','loglikelihood');\n else\n save(opts.autosavefile, 'W','CovW','w','a_w','b_w','X','CovX','Sv', ...\n 'mu','v_mu','tau', 'a_tau','b_tau', 'loglikelihood', 'cost', ...\n 'duration', 'rmse', 'rmse_test');\n end\n lastsave = now;\n fprintf(' done.\\n');\n end\n \n% $$$ if angle < 1e-14\n% $$$ fprintf('Stopping iteration: only minor change in subspace\\n');\n% $$$ break\n% $$$ end\n improvement = abs((logP - oldlogP) / logP);\n if improvement < opts.convergence && k > opts.startupdatehyper\n fprintf('Stopping iteration: only minor improvement in loglikelihood\\n');\n break\n end\n\nend\n\nfprintf('Saving to %s...', opts.autosavefile);\nloglikelihood = logP;\nif opts.hiermean\n save(opts.autosavefile, 'W','CovW','w','a_w','b_w','X','CovX','Sv', ...\n 'mu','v_mu','mumu','v_mumu','taumu','a_taumu','b_taumu','tau', ...\n 'a_tau','b_tau','U','a_U','b_U','nu','loglikelihood');\nelse\n save(opts.autosavefile, 'W','CovW','w','a_w','b_w','X','CovX','Sv', ...\n 'mu','v_mu','tau', 'a_tau','b_tau', 'loglikelihood', 'cost', ...\n 'duration', 'rmse', 'rmse_test');\nend\nfprintf(' done.\\n');\n\n% Results as a struct if desired\nif true %nargout == 1\n results.W = W;\n results.CovW = CovW;\n results.w = w;\n results.a_w = a_w;\n results.b_w = b_w;\n results.X = X;\n results.CovX = CovX;\n results.Sv = Sv;\n results.mu = mu;\n results.v_mu = v_mu;\n if opts.hiermean\n results.mumu = mumu;\n results.v_mumu = v_mumu;\n results.taumu = taumu;\n results.a_taumu = a_taumu;\n results.b_taumu = b_taumu;\n end\n results.tau = tau;\n results.a_tau = a_tau;\n results.b_tau = b_tau;\n% $$$ results.U = U;\n% $$$ results.a_U = a_U;\n% $$$ results.b_U = b_U;\n% $$$ results.nu = nu;\n results.loglikelihood = logP;\n results.cost = cost;\n results.time = duration;\n Q = results;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction c = cost_gaussian(x,Covx,mu,Covmu,tau,logtau)\n% c = cost_gaussian(x,Covx,mu,Covmu,tau,logtau)\n%\n% Calculates the difference between - \n% where expectation is over q(X).\n%\n% A lower bound for a Gaussian:\n% p(X) = N(MU,1/TAU)\n% q(X) = N(x,Covx)\n% \n% Rest of the parameters are defined as:\n% q(MU) = N(mu,Covmu)\n% = tau\n% = logtau\n%\n% If Covx==[], then the term is not calculated.\n% This is useful when X is, e.g., observations.\n\n\nc = 0;\n\n% Cost from q-posterior\nif ~isempty(Covx)\n entropy = entropy_gaussian(Covx);\n c = entropy;\nelse\n Covx = 0;\nend\n\n% Cost from prior\nerr2 = ((x-mu).^2 + diag(Covx) + diag(Covmu));\nc = c + 0.5 * sum( -log(2*pi) + logtau - tau .* err2 );\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction c = cost_gamma(x,logx,apost,bpost,aprior,bprior)\n% A lower bound for a Gamma distributed X:\n% p(X) = G(aprior,bprior)\n% q(X) = G(apost,bpost)\n% = x\n% = logx\n\n% Cost from prior\nc = aprior*log(bprior) - gammaln(aprior) + (aprior-1)*logx - bprior*x;\n% Cost from q-posterior\nc = c + entropy_gamma(apost,bpost);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction H = entropy_gaussian(Cov)\n% Cov is covariance matrix\nd = size(Cov,1);\n\nlog2pi = log(2*pi);\n%H = 0;\n\n%for j=1:size(Cov,3)\nL = chol(Cov);\nH = d/2*log2pi + 0.5*2*logdettri(L) + d/2;\n%end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction H = entropy_gamma(a,b)\n% a is shape, b is inverse scale\n\nH = a - log(b) + gammaln(a) - (a-1).*psi(a);\n%H = sum(H(:));\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [ A, Av, S, Sv, mu ] = ...\n RotateToPCA( A, Av, S, Sv, mu);\n\nn1 = size(A,1);\nn2 = size(S,2);\n\n% TODO: Take into account the prior for Mu, A???\nmS = mean(S,2);\ndMu = A*mS;\nS = S - repmat(mS,1,n2);\nmu = mu + dMu;\n\ncovS = S*S';\nfor j = 1:n2\n covS = covS + Sv(:,:,j);\nend\n\nR = 1;\n\n% w.r.t. S\ncovS = covS / n2;\n[VS,D] = eig(covS);\nRA = VS*sqrt(D);\nA = A*RA;\ncovA = A'*A;\nfor i = 1:n1\n Av(:,:,i) = RA'*Av(:,:,i)*RA;\n covA = covA + Av(:,:,i);\nend\nR = diag(1./sqrt(diag(D)))*VS';\n\n% $$$ % w.r.t. A\n% $$$ covA = covA / n1;\n% $$$ [VA,DA] = eig(covA);\n% $$$ [DA,I] = sort( -diag(DA) );\n% $$$ DA = -DA;\n% $$$ VA = VA(:,I);\n% $$$ A = A*VA;\n% $$$ for i = 1:n1\n% $$$ Av(:,:,i) = VA'*Av(:,:,i)*VA;\n% $$$ end\n% $$$ R = VA'*R;\n\nS = R*S;\nfor j = 1:length(Sv)\n Sv(:,:,j) = R*Sv(:,:,j)*R';\nend\n\nreturn\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [W,CovW,X,Sv,CovX,mu] = orthogonalize(W,CovW,X,Sv,CovX,mu,fixw,tau,Obs)\n[m,c] = size(W);\nn = size(X,2);\n\nWW = W'*W + sum(CovW,3);\n\n% $$$ old_recon = W*X + repmat(mu,1,n);\n\n% Use ML zero mean (mu should be updated after this function!!) ..\nif false\n disp('Using complicated but exact mean translation');\n tau = reshape(tau,[1,1,m]);\n nom = 0;\n denom = 0;\n I = eye(c);\n for j=1:n\n imv = Obs(:,j);\n tmp = I + sum(bsxfun(@times,tau(1,1,imv),CovW(:,:,imv)),3);\n nom = nom + tmp * X(:,j);\n denom = denom + tmp;\n end\n dmu = denom \\ nom;\nelse\n dmu = mean(X,2);\nend\n% .. or my analytic zero mean with proper fix to mu:\n% $$$ dmu = inv(n*eye(c)+taumu*WW) * (sum(X,2) + taumu*W'*(mumu-mu));\n\n% Move bias\nX = X - repmat(dmu,1,n);\nmu = mu + W*dmu;\n% $$$ nobiasmove = true\n\nQx = 1;\n\n% Whiten w.r.t. X\nXX = X*X' + sum(CovX,3);\nif fixw\n [Vx,Dx,tmp] = svd(XX/(n-m)); % USE THIS IF FIXED w ??\nelse\n [Vx,Dx,tmp] = svd(XX/n);\nend\nQx = diag(1./sqrt(diag(Dx))) * Vx';\nQw = Vx*sqrt(Dx);\nW = W * Qw;\nfor i=1:size(CovW,3)\n CovW(:,:,i) = Qw'*CovW(:,:,i)*Qw;\nend\nX = Qx * X;\nfor j = 1:size(CovX,3)\n Sv{j} = Qx*Sv{j}*Qx';\n CovX(:,:,j) = Qx*CovX(:,:,j)*Qx';\nend\n\n% Check that XX is really whitened! (because of numerical issues!!)\nXX = X*X' + sum(CovX,3);\nif fixw\n [Vx,Dx,tmp] = svd(XX/(n-m)); % USE THIS IF FIXED w ??\nelse\n [Vx,Dx,tmp] = svd(XX/n);\nend\nif Dx(1) > 1.1\n warning('Needs to whiten X again. See vbpcamv->orthogonalize');\n % Whiten w.r.t. X AGAIN\n Qx = diag(1./sqrt(diag(Dx))) * Vx';\n Qw = Vx*sqrt(Dx);\n W = W * Qw;\n for i=1:size(CovW,3)\n CovW(:,:,i) = Qw'*CovW(:,:,i)*Qw;\n end\n X = Qx * X;\n for j = 1:size(CovX,3)\n Sv{j} = Qx*Sv{j}*Qx';\n CovX(:,:,j) = Qx*CovX(:,:,j)*Qx';\n end\nend\n\nQx = 1;\n% Diagonalize w.r.t. W\nWW = W'*W + sum(CovW,3);\n[Vw,Dw,tmp] = svd(WW);\n%[Dw,I] = sort(diag(Dw), 'descend');\n%Vw = Vw(:,I);\nQx = Vw' * Qx;\nQw = Vw;\nW = W * Qw;\nfor i=1:size(CovW,3)\n CovW(:,:,i) = Qw'*CovW(:,:,i)*Qw;\nend\nX = Qx * X;\nfor j = 1:size(CovX,3)\n Sv{j} = Qx*Sv{j}*Qx';\n CovX(:,:,j) = Qx*CovX(:,:,j)*Qx';\nend\n\n% $$$ xx = X*X' + sum(CovX,3)\n% $$$ ww = W'*W + sum(CovW,3)\n\n% $$$ new_recon = W*X + repmat(mu,1,n);\n% $$$ \n% $$$ mse = mean((old_recon(:) - new_recon(:)).^2)\n\nreturn\n% $$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% $$$ function [W,CovW,X,Sv,CovX,mu] = orthogonalize_TEST(W,CovW,X,Sv,CovX,mu,tau)\n% $$$ [m,c] = size(W);\n% $$$ n = size(X,2);\n% $$$ \n% $$$ WW = W'*W + sum(CovW,3);\n% $$$ \n% $$$ old_recon = W*X + repmat(mu,1,n);\n% $$$ \n% $$$ % Use ML zero mean (mu should be updated after this function!!) ..\n% $$$ % $$$ dmu = mean(X,2);\n% $$$ % $$$ tau*sum(CovW,3)\n% $$$ dmu = inv(n*eye(c)+tau*n*sum(CovW,3)) * (sum((eye(c)+tau*sum(CovW,3))*X, 2));\n% $$$ %(dmu2-dmu)./dmu\n% $$$ % .. or my analytic zero mean with proper fix to mu:\n% $$$ % $$$ dmu = inv(n*eye(c)+taumu*WW) * (sum(X,2) + taumu*W'*(mumu-mu));\n% $$$ \n% $$$ % Move bias\n% $$$ X = X - repmat(dmu,1,n);\n% $$$ mu = mu + W*dmu;\n% $$$ \n% $$$ Qx = 1;\n% $$$ \n% $$$ % Whiten w.r.t. X\n% $$$ XX = X*X' + sum(CovX,3);\n% $$$ [Vx,Dx] = eig(XX/n);\n% $$$ %[Vx,Dx] = eig(XX/(n+m));\n% $$$ %[Vx,Dx] = eig(XX/(n-m));\n% $$$ Qx = diag(1./sqrt(diag(Dx))) * Vx';\n% $$$ Qw = Vx*sqrt(Dx);\n% $$$ W = W * Qw;\n% $$$ for i=1:size(CovW,3)\n% $$$ CovW(:,:,i) = Qw'*CovW(:,:,i)*Qw;\n% $$$ end\n% $$$ \n% $$$ % Whiten w.r.t. W\n% $$$ WW = W'*W + sum(CovW,3);\n% $$$ [Vw,Dw] = eig(WW);\n% $$$ [Dw,I] = sort(diag(Dw), 'descend');\n% $$$ Vw = Vw(:,I);\n% $$$ Qx = Vw' * Qx;\n% $$$ Qw = Vw;\n% $$$ W = W * Qw;\n% $$$ for i=1:size(CovW,3)\n% $$$ CovW(:,:,i) = Qw'*CovW(:,:,i)*Qw;\n% $$$ end\n% $$$ \n% $$$ X = Qx * X;\n% $$$ for j = 1:size(CovX,3)\n% $$$ Sv{j} = Qx*Sv{j}*Qx';\n% $$$ CovX(:,:,j) = Qx*CovX(:,:,j)*Qx';\n% $$$ end\n% $$$ \n% $$$ new_recon = W*X + repmat(mu,1,n);\n% $$$ \n% $$$ mse = mean((old_recon(:) - new_recon(:)).^2);\n% $$$ \n% $$$ return\n% $$$ \n", "meta": {"author": "jluttine", "repo": "matlab", "sha": "63406c7782b0869948f06e1dbc594460c165d24e", "save_path": "github-repos/MATLAB/jluttine-matlab", "path": "github-repos/MATLAB/jluttine-matlab/matlab-63406c7782b0869948f06e1dbc594460c165d24e/pca/vbpcamv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583124210897, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.399256256323067}} {"text": "% GAINSANDREFERENCES compute gains matrices, references and other control\n% related quantities for each state of the state machine.\n\n%% --- Initialization ---\n \n% CoM gains\nGain.KP_CoM = [50 100 5 % state == 1 TWO FEET BALANCING\n 50 100 5 % state == 2 COM TRANSITION TO LEFT \n 50 100 5 % state == 3 LEFT FOOT BALANCING\n 50 100 5 % state == 4 YOGA LEFT FOOT \n 50 100 5 % state == 5 PREPARING FOR SWITCHING \n 50 100 5 % state == 6 LOOKING FOR CONTACT\n 50 100 5 % state == 7 TRANSITION TO INITIAL POSITION \n 50 100 5 % state == 8 COM TRANSITION TO RIGHT FOOT\n 50 100 5 % state == 9 RIGHT FOOT BALANCING\n 50 100 5 % state == 10 YOGA RIGHT FOOT \n 50 100 5 % state == 11 PREPARING FOR SWITCHING \n 50 100 5 % state == 12 LOOKING FOR CONTACT\n 50 100 5];% state == 13 TRANSITION TO INITIAL POSITION\n\nGain.KD_CoM = 2*sqrt(Gain.KP_CoM)/20;\n\n% Angular momentum gains\nGain.KI_AngularMomentum = 3;\nGain.KP_AngularMomentum = 2*sqrt(Gain.KI_AngularMomentum)/5;\n\n% Postural task gains\n% % TORSO %% LEFT ARM %% RIGHT ARM %% LEFT LEG %% RIGHT LEG %% \nGain.KP_postural = [10 30 20, 10 10 10 8, 10 10 10 8, 30 30 20 20 100 100, 30 50 30 60 100 100 % state == 1 TWO FEET BALANCING\n 10 30 20, 10 10 10 8, 10 10 10 8, 30 30 20 20 100 100, 30 50 30 60 100 100 % state == 2 COM TRANSITION TO LEFT \n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 30 60 100 100, 30 30 20 20 100 100 % state == 3 LEFT FOOT BALANCING\n 30 30 30, 10 10 10 10, 10 10 10 10,100 200 100 400 100 100,100 50 30 100 100 100 % state == 4 YOGA LEFT FOOT \n 30 30 30, 5 5 10 10, 10 10 20 10,200 250 20 20 10 10,220 550 220 200 65 300 % state == 5 PREPARING FOR SWITCHING \n 30 30 30, 10 10 20 10, 10 10 20 10,100 350 20 200 10 100,220 550 220 200 65 300 % state == 6 LOOKING FOR CONTACT\n 30 30 30, 10 10 10 8, 10 10 10 8, 30 50 60 30 5 5, 30 30 30 20 5 5 % state == 7 TRANSITION TO INITIAL POSITION \n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 60 30 100 100, 30 30 30 20 100 100 % state == 8 COM TRANSITION TO RIGHT FOOT\n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 30 60 100 100, 30 30 20 20 100 100 % state == 9 RIGHT FOOT BALANCING\n 30 30 30, 10 10 10 10, 10 10 10 10,100 50 30 100 100 100,100 200 100 100 10 10 % state == 10 YOGA RIGHT FOOT \n 30 30 30, 10 10 10 10, 10 10 10 10,220 550 220 200 65 300,200 250 20 20 10 10 % state == 11 PREPARING FOR SWITCHING \n 30 30 30, 10 10 10 10, 10 10 10 10,220 550 220 200 65 300,100 350 20 200 10 100 % state == 12 LOOKING FOR CONTACT\n 30 30 30, 10 10 10 10, 10 10 10 10,220 550 220 200 65 300,100 350 20 200 10 100];% state == 13 TRANSITION TO INITIAL POSITION\n\nGain.KD_postural = 2*sqrt(Gain.KP_postural(1,:))/20; \n\n% symmetric gains\nGain.KP_postural(10,18:23) = Gain.KP_postural(10,18:23)*1.5; \nGain.KP_postural(10,1:3) = Gain.KP_postural(10,1:3)*2;\nGain.KP_postural(4,12:17) = Gain.KP_postural(4,12:17)*1.5; \nGain.KP_postural(4,1:3) = Gain.KP_postural(4,1:3)*2;\nGain.KP_postural(4,4:11) = Gain.KP_postural(4,4:11)*1.5;\nGain.KP_postural(7,2:3) = Gain.KP_postural(7,2:3)*1.5;\n\n%% Smoothing times\n\n% Smoothing time gain scheduling\nConfig.SmoothingTimeGainScheduling = 2;\n\n% Smoothing time CoM references\nStateMachine.CoMSmoothingTime = [1; %% state == 1 TWO FEET BALANCING\n 1; %% state == 2 COM TRANSITION TO LEFT FOOT\n 1; %% state == 3 LEFT FOOT BALANCING \n 0.65; %% state == 4 YOGA LEFT FOOT\n 2; %% state == 5 PREPARING FOR SWITCHING\n 2; %% state == 6 LOOKING FOR CONTACT \n 1; %% state == 7 TRANSITION INIT POSITION\n 1; %% state == 8 COM TRANSITION TO RIGHT FOOT\n 1; %% state == 9 RIGHT FOOT BALANCING \n 0.65; %% state == 10 YOGA RIGHT FOOT\n 2; %% state == 11 PREPARING FOR SWITCHING\n 5; %% state == 12 LOOKING FOR CONTACT \n 10]; %% state == 13 TRANSITION INIT POSITION\n\n% Smoothing time for joints references \nStateMachine.jointsSmoothingTime = [1; %% state == 1 TWO FEET BALANCING\n 1; %% state == 2 COM TRANSITION TO LEFT FOOT\n 1; %% state == 3 LEFT FOOT BALANCING \n 0.65; %% state == 4 YOGA LEFT FOOT\n 2; %% state == 5 PREPARING FOR SWITCHING\n 2; %% state == 6 LOOKING FOR CONTACT \n 1; %% state == 7 TRANSITION INIT POSITION\n 1; %% state == 8 COM TRANSITION TO RIGHT FOOT\n 1; %% state == 9 RIGHT FOOT BALANCING \n 0.65; %% state == 10 YOGA RIGHT FOOT\n 2; %% state == 11 PREPARING FOR SWITCHING\n 5; %% state == 12 LOOKING FOR CONTACT \n 10]; %% state == 13 TRANSITION INIT POSITION\n\n% scale factor smoothing time multiplies the smoothing factor during the\n% Yoga (state 4 and 10). The purpose is to reduce the time necessary for \n% the reference to converge to the next position, but without changing also\n% the valuse stored in Sm.joints_leftYogaRef/Sm.joints_rightYogaRef\nStateMachine.scaleFactorSmoothingTime = 0.9;\n \n%% CoM delta\n\n% To be summed to the reference CoM position\nStateMachine.CoM_delta = [% THIS REFERENCE IS USED AS A DELTA W.R.T. THE POSITION OF THE LEFT FOOT\n 0.0, 0.00, 0.0; %% NOT USED\n 0.0, 0.00, 0.0; %% state == 2 COM TRANSITION TO LEFT FOOT\n 0.0, 0.005, 0.0; %% state == 3 LEFT FOOT BALANCING \n 0.0, 0.005, 0.0; %% state == 4 YOGA LEFT FOOT\n 0.0, 0.00, 0.0; %% state == 5 PREPARING FOR SWITCHING\n 0.02, -0.08, 0.0; %% state == 6 LOOKING FOR CONTACT \n 0.0, 0.00, 0.0; %% state == 7 TWO FEET BALANCING\n % THIS REFERENCE IS USED AS A DELTA W.R.T. THE POSITION OF THE RIGHT FOOT\n 0.0, 0.00, 0.0; %% state == 8 COM TRANSITION TO RIGHT FOOT\n 0.0, 0.00, 0.0; %% state == 9 RIGHT FOOT BALANCING \n 0.0, -0.01, 0.0; %% state == 10 YOGA RIGHT FOOT\n 0.0, 0.00, 0.0; %% state == 11 PREPARING FOR SWITCHING\n 0.0, 0.09, 0.0; %% state == 12 LOOKING FOR CONTACT \n 0.0, 0.00, 0.0]; %% NOT USED\n\n%% Joint references\nStateMachine.joints_references = [ zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED \n [-0.0348,0.0779,0.0429, ... %% state == 2 COM TRANSITION TO LEFT \n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630, ... % \n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 3 LEFT FOOT BALANCING\n 0.1253,0.8135,0.3051,0.7928, ... % \n 0.0563,0.6789,0.3340,0.6214, ... %\n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630, ... % \n 0.0005,0.0793,-0.0014,-0.0051,-0.1060,-0.1151]; % \n zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED \n [-0.0348,0.0779,0.0429, ... %% state == 5 PREPARING FOR SWITCHING\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630, ... % \n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 6 LOOKING FOR CONTACT\n 0.1253,0.8135,0.3051,0.7928, ... %\n 0.0563,0.6789,0.3340,0.6214, ... %\n 0.0107,-0.0741,-0.0001,-0.0120,0.0252,0.1369, ... %\n -0.0026,0.0225,0.0093,-0.0020,0.0027,-0.0277]; % \n zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED\n [ 0.0864,0.0258,0.0152, ... %% state == 8 COM TRANSITION TO RIGHT FOOT\n 0.1253,0.8135,0.3051,0.7928, ... %\n 0.0563,0.6789,0.3340,0.6214, ... %\n 0.0107,-0.0741,-0.0001,-0.0120,0.0252,0.1369, ... %\n -0.0026,0.0225,0.0093,-0.0020,0.0027,-0.0277]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 9 RIGHT FOOT BALANCING\n 0.1253,0.8135,0.3051,0.7928, ... % \n 0.0563,0.6789,0.3340,0.6214, ... %\n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151, ... % \n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630]; % \n zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED \n [-0.0348,0.0779,0.0429, ... %% state == 11 PREPARING FOR SWITCHING\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.1493,0.8580,0.2437,0.8710, ... %\n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151, ... % \n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 12 LOOKING FOR CONTACT\n 0.1253,0.8135,0.3051,0.7928, ... %\n 0.0563,0.6789,0.3340,0.6214, ... %\n -0.0026,0.0225,0.0093,-0.0020,0.0027,-0.0277, ... %\n 0.0107,-0.0741,-0.0001,-0.0120,0.0252,0.1369]; % \n zeros(1,ROBOT_DOF)]; %% THIS REFERENCE IS IGNORED \n \n\n% YOGA MOVESET (joint references during state 4 and 10)\nq1 = [-0.0790,0.2279, 0.4519, ...\n -1.1621,0.6663, 0.4919, 0.9947, ... \n -1.0717,1.2904,-0.2447, 1.0948, ...\n 0.2092,0.2060, 0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3484,0.4008,-0.0004,-0.3672,-0.1060,-0.0875];\n\nq2 = [-0.0790,0.1279, 0.4519, ...\n -1.1621,0.6663, 0.4965, 0.9947, ...\n -1.0717,1.2904,-0.2493, 1.0948, ...\n 0.2092,0.2060, 0.0006,-0.1741,-0.1044,0.0700, ... \n 0.3714,0.9599, 1.3253,-1.6594,-0.1060,-0.0614];\n \nq3 = [-0.0852,-0.3273,0.0821,...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092,0.2060, 0.0006,-0.1741,-0.1044,0.0700, ...\n 0.3714,0.9599, 1.3253,-1.6594, 0.2443,-0.0614];\n \nq4 = [-0.0852,-0.4273,0.0821,...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.3473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq5 = [-0.0790,-0.2273, 0.4519, ...\n -1.1621,0.6663, 0.4965, 0.9947, ...\n -1.0717,1.2904,-0.2493, 1.0948, ...\n 0.2092, 0.4473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq6 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq7 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253, -1.6217, 0.2443,-0.0614];\n \nq8 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq9 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 0.0107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq10 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq11 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n\nq12 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 0.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq13 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 1.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq14 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 0.0107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq15 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 1.5514, 0.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq16 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.2514, 0.0107,1.3253,-0.0189, 0.2443,-0.0614];\n \nq17 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n -0.3514, 0.3107,1.3253,-0.0189, 0.2443,-0.0614];\n \nStateMachine.joints_leftYogaRef = [ 0, q1;\n 1*StateMachine.jointsSmoothingTime(4),q2;\n 2*StateMachine.jointsSmoothingTime(4),q3;\n 3*StateMachine.jointsSmoothingTime(4),q4;\n 4*StateMachine.jointsSmoothingTime(4),q5;\n 5*StateMachine.jointsSmoothingTime(4),q6;\n 6*StateMachine.jointsSmoothingTime(4),q7;\n 7*StateMachine.jointsSmoothingTime(4),q8;\n 8*StateMachine.jointsSmoothingTime(4),q9;\n 9*StateMachine.jointsSmoothingTime(4),q10;\n 10*StateMachine.jointsSmoothingTime(4),q11;\n 11*StateMachine.jointsSmoothingTime(4),q12;\n 12*StateMachine.jointsSmoothingTime(4),q13;\n 13*StateMachine.jointsSmoothingTime(4),q14;\n 14*StateMachine.jointsSmoothingTime(4),q15;\n 15*StateMachine.jointsSmoothingTime(4),q16;\n 16*StateMachine.jointsSmoothingTime(4),q17;\n 17*StateMachine.jointsSmoothingTime(4),q10;\n 18*StateMachine.jointsSmoothingTime(4),q11;\n 19*StateMachine.jointsSmoothingTime(4),q12;\n 20*StateMachine.jointsSmoothingTime(4),q13;\n 21*StateMachine.jointsSmoothingTime(4),q14;\n 22*StateMachine.jointsSmoothingTime(4),q15;\n 23*StateMachine.jointsSmoothingTime(4),q16;\n 24*StateMachine.jointsSmoothingTime(4),q17;\n 25*StateMachine.jointsSmoothingTime(4),q8];\n \nStateMachine.joints_rightYogaRef = StateMachine.joints_leftYogaRef;\nStateMachine.joints_rightYogaRef(:,1) = [0;\n 1*StateMachine.jointsSmoothingTime(10);\n 2*StateMachine.jointsSmoothingTime(10);\n 3*StateMachine.jointsSmoothingTime(10);\n 4*StateMachine.jointsSmoothingTime(10);\n 5*StateMachine.jointsSmoothingTime(10);\n 6*StateMachine.jointsSmoothingTime(10);\n 7*StateMachine.jointsSmoothingTime(10);\n 8*StateMachine.jointsSmoothingTime(10);\n 9*StateMachine.jointsSmoothingTime(10);\n 10*StateMachine.jointsSmoothingTime(10);\n 11*StateMachine.jointsSmoothingTime(10);\n 12*StateMachine.jointsSmoothingTime(10);\n 13*StateMachine.jointsSmoothingTime(10);\n 14*StateMachine.jointsSmoothingTime(10);\n 15*StateMachine.jointsSmoothingTime(10);\n 16*StateMachine.jointsSmoothingTime(10);\n 17*StateMachine.jointsSmoothingTime(10);\n 18*StateMachine.jointsSmoothingTime(10);\n 19*StateMachine.jointsSmoothingTime(10);\n 20*StateMachine.jointsSmoothingTime(10);\n 21*StateMachine.jointsSmoothingTime(10);\n 22*StateMachine.jointsSmoothingTime(10);\n 23*StateMachine.jointsSmoothingTime(10);\n 24*StateMachine.jointsSmoothingTime(10);\n 25*StateMachine.jointsSmoothingTime(10)];\n\n% if the demo is not \"yogaExtended\", stop at the 8th move\nif ~StateMachine.yogaExtended\n \n StateMachine.joints_leftYogaRef = StateMachine.joints_leftYogaRef(1:8,:);\n StateMachine.joints_rightYogaRef = StateMachine.joints_rightYogaRef(1:8,:);\n StateMachine.joints_leftYogaRef(8,1) = 15*StateMachine.jointsSmoothingTime(4);\n StateMachine.joints_rightYogaRef(8,1) = 15*StateMachine.jointsSmoothingTime(10);\nend\n\n% MIRROR YOGA LEFT MOVESET FOR RIGHT YOGA\t\t\t\t\t \nfor i = 1:size(StateMachine.joints_rightYogaRef,1)\t\n \n\tStateMachine.joints_rightYogaRef(i,2:4) = [StateMachine.joints_rightYogaRef(i,2) -StateMachine.joints_rightYogaRef(i,3) -StateMachine.joints_rightYogaRef(i,4)];\n\trightArm = StateMachine.joints_rightYogaRef(i,end-15:end-12);\n\tStateMachine.joints_rightYogaRef(i,end-15:end-12) = StateMachine.joints_rightYogaRef(i,end-19:end-16);\n\tStateMachine.joints_rightYogaRef(i,end-19:end-16) = rightArm;\n\trightLeg = StateMachine.joints_rightYogaRef(i,end-5:end);\n\tStateMachine.joints_rightYogaRef(i,end-5:end) = StateMachine.joints_rightYogaRef(i,end-11:end-6);\n\tStateMachine.joints_rightYogaRef(i,end-11:end-6) = rightLeg;\nend\t \n\n%% References for CoM trajectory (COORDINATOR DEMO ONLY)\n\n% that the robot waits before starting the left-and-right \nConfig.noOscillationTime = 0; \nConfig.directionOfOscillation = [0;1;0];\nConfig.amplitudeOfOscillation = 0.02; % [m] \nConfig.frequencyOfOscillation = 0.2; % [Hz]", "meta": {"author": "robotology", "repo": "whole-body-controllers", "sha": "90ff965a523f0a120e6a8981b71326c1485e7742", "save_path": "github-repos/MATLAB/robotology-whole-body-controllers", "path": "github-repos/MATLAB/robotology-whole-body-controllers/whole-body-controllers-90ff965a523f0a120e6a8981b71326c1485e7742/controllers/floating-base-balancing-torque-control/app/robots/iCubGenova02/gainsAndReferences.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8175744761936437, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.3992080411430459}} {"text": "function EmergencyTrajectory = calcEmergencyVelocityProfile_veldep(TargetTrajectory, ...\n drag_coefficient, roh_air, vehiclemass_kg, ...\n P_VDC_AccLimits_v_mps, P_VDC_AccLimits_ax_mps2, P_VDC_AccLimits_ay_mps2)\n\n% Authors: Alexander Wischnewski\n%\n% Description: \n% calculates a brake velocity profile to a given target trajectory to generate a reasonable\n% emergency backup\n\n% Inputs:\n% TargetTrajectory Trajectory to be checked (see tests for format)\n% drag_coefficient Vehicle drag coefficient\n% roh_air air density \n% vehiclemass_kg vehicle mass \n% P_VDC_AccLimits_v_mps: Acceleration limit map - velocity interpolation points\n% P_VDC_AccLimits_ax_mps2: Acceleration limit map - long. acc. limits\n% P_VDC_AccLimits_ay_mps2: Acceleration limit map - lat. acc. limits\n%\n% Outputs: \n% EmergencyTrajectory True if trajectory complies with all specs \n\n% copy target trajectory\nEmergencyTrajectory = TargetTrajectory; \n% only if the trajectory is a driving trajectory \nif(EmergencyTrajectory.v_mps(1) > 1) \n % calculate new velocity profile starting with the fifth element to ensure that the trajectory\n % does not begin prior to switching on it as this might cause serious issues\n for i = 6:1:50\n % distance to next point \n dS = double(EmergencyTrajectory.s_loc_m(i) - EmergencyTrajectory.s_loc_m(i-1)); \n % update acceleration limits \n EmergencyTrajectory.ax_lim_mps2(i-1) = interp1(P_VDC_AccLimits_v_mps, P_VDC_AccLimits_ax_mps2, EmergencyTrajectory.v_mps(i-1)); \n EmergencyTrajectory.ay_lim_mps2(i-1) = interp1(P_VDC_AccLimits_v_mps, P_VDC_AccLimits_ay_mps2, EmergencyTrajectory.v_mps(i-1)); \n % calculate allowed longitudinal deceleration \n ax_mps2 = -(1 - abs(double(EmergencyTrajectory.kappa_radpm(i-1))*double(EmergencyTrajectory.v_mps(i-1)).^2/EmergencyTrajectory.ay_lim_mps2(i-1)))*EmergencyTrajectory.ax_lim_mps2(i-1); \n % add acceleration from drag \n ax_mps2 = ax_mps2 - 0.5*drag_coefficient*roh_air*EmergencyTrajectory.v_mps(i-1)^2/vehiclemass_kg;\n % calculate time needed to travel there using pq formula \n p = 2*EmergencyTrajectory.v_mps(i-1)/ax_mps2; \n q = -2*dS/ax_mps2;\n % check if the solution is still valid\n if((p/2)^2 > q && EmergencyTrajectory.v_mps(i-1) > 0.2)\n v_next = (-p/2 - sqrt((p/2)^2 - q))*ax_mps2 + EmergencyTrajectory.v_mps(i-1); \n else\n v_next = 0; \n end\n % set calculated speed and start next step with this speed\n EmergencyTrajectory.v_mps(i) = single(v_next);\n EmergencyTrajectory.ax_mps2(i-1) = ax_mps2; \n end\n % set final acceleration to value of before\n % use a lot less as this might lead to issues with the safety checks otherwise\n % speed should be zero here anyway\n EmergencyTrajectory.ax_mps2(50) = 0.5*EmergencyTrajectory.ax_mps2(49); \nelse\n % set speeds and acceleration to zero if the initial planning speed is too slow for driving\n EmergencyTrajectory.v_mps = zeros(50, 1); \n EmergencyTrajectory.ax_mps2 = zeros(50, 1); \nend\n", "meta": {"author": "TUMFTM", "repo": "mod_vehicle_dynamics_control", "sha": "48b12705b72740b0c1574b0da2eab66fe0c75127", "save_path": "github-repos/MATLAB/TUMFTM-mod_vehicle_dynamics_control", "path": "github-repos/MATLAB/TUMFTM-mod_vehicle_dynamics_control/mod_vehicle_dynamics_control-48b12705b72740b0c1574b0da2eab66fe0c75127/softwareEmulation/src/calcEmergencyVelocityProfile_veldep.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8376199633332891, "lm_q2_score": 0.476579651063676, "lm_q1q2_score": 0.399192629849348}} {"text": "function [pnt, tri] = triangulate_seg(seg, npnt, origin)\n\n% TRIANGULATE_SEG constructs a triangulation of the outer surface of a\n% segmented volume. It starts at the center of the volume and projects the\n% vertices of an evenly triangulated sphere onto the outer surface. The\n% resulting surface is star-shaped from the origin of the sphere.\n%\n% Use as\n% [pnt, tri] = triangulate_seg(seg, npnt, origin)\n%\n% Input arguments:\n% seg = 3D-matrix (boolean) containing segmented volume. If not boolean\n% seg = seg(~=0);\n% npnt = requested number of vertices\n% origin = 1x3 vector specifying the location of the origin of the sphere\n% in voxel indices. This argument is optional. If undefined, the\n% origin of the sphere will be in the centre of the volume.\n%\n% Output arguments:\n% pnt = Nx3 matrix of vertex locations\n% tri = Mx3 matrix of triangles\n%\n% Seg will be checked for holes, and filled if necessary. Also, seg will be\n% checked to consist of a single boolean blob. If not, only the outer surface\n% of the largest will be triangulated. SPM is used for both the filling and\n% checking for multiple blobs.\n%\n% See also KSPHERE\n\n% Copyright (C) 2005-2012, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% impose it to be boolean\nseg = (seg~=0);\ndim = size(seg);\nlen = ceil(sqrt(sum(dim.^2))/2);\n\nif ~any(seg(:))\n ft_error('the segmentation is empty')\nend\n\n% define the origin if it is not provided in the input arguments\nif nargin<3\n origin(1) = dim(1)/2;\n origin(2) = dim(2)/2;\n origin(3) = dim(3)/2;\nend\n\n% ensure that the seg consists of only one filled blob.\n% if not filled: throw a warning and fill\n% if more than one blob: throw a warning and use the biggest\n\n% look for holes\nseg = volumefillholes(seg);\n\n% ensure that SPM is available, needed for spm_bwlabel\nft_hastoolbox('spm8up', 3) || ft_hastoolbox('spm2', 1);\n\n% look for >1 blob\n[lab, num] = spm_bwlabel(double(seg), 26);\nif num>1,\n ft_warning('the segmented volume consists of more than one compartment, using only the biggest one for the segmentation');\n\n for k = 1:num\n n(k) = sum(lab(:)==k);\n end\n [m,ix] = max(n);\n seg(lab~=ix) = false;\nend\n\n% start with a unit sphere with evenly distributed vertices\n[pnt, tri] = mesh_sphere(npnt, 'ksphere');\n\nishollow = false;\n\nfor i=1:npnt\n % construct a sampled line from the center of the volume outward into the direction of the vertex\n lin = (0:0.5:len)' * pnt(i,:);\n lin(:,1) = lin(:,1) + origin(1);\n lin(:,2) = lin(:,2) + origin(2);\n lin(:,3) = lin(:,3) + origin(3);\n % round the sampled line towards the nearest voxel indices, which allows\n % a quick nearest-neighbour interpolation/lookup\n lin = round(lin);\n % exclude indices that do not lie within the volume\n sel = lin(:,1)<1 | lin(:,1)>dim(1) | ...\n lin(:,2)<1 | lin(:,2)>dim(2) | ...\n lin(:,3)<1 | lin(:,3)>dim(3);\n lin = lin(~sel,:);\n sel = sub2ind(dim, lin(:,1), lin(:,2), lin(:,3));\n\n % interpolate the segmented volume along the sampled line\n int = seg(sel);\n\n % the value along the line is expected to be 1 at first and then drop to 0\n % anything else suggests that the segmentation is hollow\n ishollow = any(diff(int)==1);\n\n % find the last sample along the line that is inside the segmentation\n sel = find(int, 1, 'last');\n % this is a problem if sel is empty. If so, use the edge of the volume\n if ~isempty(sel)\n % take the last point inside and average with the first point outside\n pnt(i,:) = lin(sel,:);\n else\n % take the edge\n pnt(i,:) = lin(end,:);\n end\nend\n\nif ishollow\n % this should not have hapened, especially not after filling the holes\n ft_warning('the segmentation is not star-shaped, please check the surface mesh');\nend\n\n% undo the shift of the origin from where the projection is done\n% pnt(:,1) = pnt(:,1) - origin(1);\n% pnt(:,2) = pnt(:,2) - origin(2);\n% pnt(:,3) = pnt(:,3) - origin(3);\n\n% fast unconditional re-implementation of the standard MATLAB function\nfunction [s] = sub2ind(dim, i, j, k)\ns = i + (j-1)*dim(1) + (k-1)*dim(1)*dim(2);\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/private/triangulate_seg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7799929104825006, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3991353238454252}} {"text": "function [Fconv,no_changed,infeasible,Forigquad] = convertquadratics(F)\n%CONVERTQUADRATICS Internal function to extract quadratic constraints\n\n% ******************************\n% LINEAR?\n% ******************************\n\ninfeasible = 0;\nFconv = F;\nno_changed = 0;\nForigquad = [];\n\nif islinear(F)\n return\nend\n\n[monomtable,variabletype] = yalmip('monomtable');\n\nif any(variabletype == 4)\n if issigmonial(F)\n return\n end\nend\n\nFconv = lmi;\nno_changed = 0;\ni_changed = [];\n% Make sure bounds a pre-processed, in case we look for rotated cone which\n% requires us to know lower bounds\nnv = yalmip('nvars');\nLU = yalmip('getbounds',1:nv);\nLUhere = getbounds(F,[],LU);\nfor i = 1:1:length(F)\n if max(variabletype(getvariables(F(i)))) <= 1\n % Definitely no quadratic to model as all variables are bilinear at\n % most\n Fconv = Fconv + F(i);\n elseif is(F(i),'element-wise') & ~is(F(i),'linear') & ~is(F(i),'sigmonial')\n % f-c'*x-x'*Q*x>0\n fi = sdpvar(F(i));fi = fi(:);\n %[Qs,cs,fs,x,info] = vecquaddecomp(fi);\n for j = 1:length(fi)\n fij = fi(j);\n if isa(fij,'double')\n if fij < 0\n infeasible = 1; \n warning('The problem is trivially infeasible. You have a term POSITIVE NUMBER < 0.');\n return\n end\n end\n % Q = Qs{j};c = cs{j};f = fs{j};\n if max(variabletype(getvariables(fij))) <= 1\n % There are at most bilinear terms, so it cannot be convex\n info = 1;\n else\n [Q,c,f,x,info] = quaddecomp(fij);\n end\n if info==0\n if nnz(Q)==0\n % Oh, linear,...\n Fconv = Fconv + (fi(j)>=0);\n else\n % Yes, quadratic, but convex?\n % Change sign definitions\n Q = -Q;\n c = -c;\n f = -f;\n % Semi-definite case when only part of x in Q\n % Occurs, e.g, in constraints like y'*Q*y < t\n used = find(any(Q));Qred=Q(:,used);Qred = Qred(used,:);xred = x(used);\n [R,p]=chol(Qred);\n done = 0;\n if p\n % Safety check to account for low rank problems\n if all(eig(full(Qred))>=-1e-12)\n [u,s,v]=svd(full(Qred));\n r=find(diag(s)>1e-12);\n R=(u(:,r)*sqrt(s(r,r)))';\n p=0;\n else\n % Try to detect rotated SOCP (x-d)'*A*(x-d)+k<= C*y*z\n yzCandidates = find(~diag(Qred));\n if length(yzCandidates) == 2 && nnz(c(yzCandidates))==0\n %LU = yalmip('getbounds',getvariables(xred(yzCandidates)));\n LU = LUhere(getvariables(xred(yzCandidates)),:);\n if all(LU(:,1)>=0)\n yzSubQ = Qred(yzCandidates,yzCandidates);\n if yzSubQ(1,2) < 0\n C = -2*yzSubQ(1,2);\n xCandidates = setdiff(1:length(used),yzCandidates);\n A = Qred(xCandidates,xCandidates);\n [B,p]=chol(A);\n if ~p\n y = xred(yzCandidates(1));\n z = xred(yzCandidates(2));\n d = -A\\(c(xCandidates)/2);\n k = f-d'*A*d;\n if abs(k)<= 1e-12\n Fconv=Fconv + lmi(rcone(B*(xred(xCandidates)-d),.5*C*y,z));\n no_changed = no_changed + 1;\n i_changed = [i_changed i];\n done = 1;\n elseif k >= -1e-12\n Fconv=Fconv + lmi(rcone([B*(xred(xCandidates)-d);sqrt(abs(k))],.5*C*y,z));\n no_changed = no_changed + 1;\n i_changed = [i_changed i];\n done = 1;\n else\n p = 1;\n end\n end\n end\n end\n end\n end\n end\n if p==0 && ~done\n % Write as second order cone\n d = -c'*x-f;\n if isa(d,'double')\n if d<0\n infeasible = 1;\n return\n else\n Fconv=Fconv + lmi(cone([R*xred],sqrt(d)));\n end\n else\n if length(c) == length(xred)\n ctilde = -(R')\\(c/2); \n Fconv=Fconv + lmi(cone([R*xred;.5*(1-d)],.5*(1+d))); \n else\n Fconv=Fconv + lmi(cone([R*xred;.5*(1-d)],.5*(1+d)));\n end\n end\n no_changed = no_changed + 1;\n i_changed = [i_changed i]; \n elseif ~done\n Fconv = Fconv + lmi(fi(j));\n end\n end\n else\n Fconv = Fconv + lmi(fi(j));\n end\n end\n else\n Fconv = Fconv + F(i);\n end\nend\nif ~isempty(i_changed)\n Forigquad = F(i_changed);\nelse\n Fconv = F;\nend\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/extras/convertquadratics.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7799928900257127, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.39913531337734715}} {"text": "function [vITRS,rotMat]=TIRS2ITRS(vTIRS,TT1,TT2,xpyp)\n%%TIRS2ITRS Rotate vectors from the Terrestrial Intermediate Reference\n% System (TIRS) to the International Terrestrial Reference\n% System (ITRS). The ITRS is essentially the WGS-84 coordinate\n% system: it defines locations with respect to the crust of a\n% non-rotating Earth, where the z axis passes through a fixed\n% point on the surface. On the other hand, the TIRS is nearly\n% the same except the z axis is the axis of rotation of the\n% Earth, which slowly varies over time. Note that the velocity\n% conversion does not include the (small) centrifugal effect of\n% polar motion.\n%\n%INPUTS: x The NXnumVec collection of vectors in TIRS coordinates to\n% convert (units do not matter). N can be 3, or 6. If the vectors\n% are 3D, then they are position. 6D\n% vectors are assumed to be position and velocity. Since the TIRS\n% and ITRS co-rotate, there is no Coriolis effect to add. Also,\n% the accelerations due to the wobble of the rotation axis over\n% time are not considered. These accelerations are very small.\n% Thus, the function just rotates both halves of the vector.\n% TT1, TT2 Two parts of a Julian date given in terrestrial time (TT).\n% The units of the date are days. The full date is the sum of\n% both terms. The date is broken into two parts to provide\n% more bits of precision. It does not matter how the date is\n% split.\n% xpyp xpyp=[xp;yp] are the polar motion coordinates in radians\n% including the effects of tides and librations. If this\n% parameter is omitted or if an empty matrix is passed, the\n% value from the function getEOP will be used.\n%\n%OUTPUTS: vITRS The NXnumVec vector of values of x rotated from the TIRS\n% into the ITRS.\n% rotMat The 3X3 rotation matrix used to rotate vectors from the\n% TIRS into the ITRS.\n%\n%The conversion functions from the International Astronomical Union's\n%(IAU) Standard's of Fundamental Astronomy library are put together to get\n%the necessary rotation matrix.\n%\n%The algorithm can be compiled for use in Matlab using the \n%CompileCLibraries function.\n%\n%The algorithm is run in Matlab using the command format\n%[vITRS,rotMat]=TIRS2ITRS(vTIRS,TT1,TT2)\n%or if more parameters are known, using the format\n%[vITRS,rotMat]=TIRS2ITRS(vTIRS,TT2,TT2,xpyp);\n%\n%Different celestial coordinate systems are compared in [1].\n%\n%REFERENCES:\n%[1] D. F. Crouse, \"An Overview of Major Terrestrial, Celestial, and\n% Temporal Coordinate Systems for Target Tracking,\" Formal Report,\n% Naval Research Laboratory, no. NRL/FR/5344--16-10,279, 10 Aug. 2016,\n% 173 pages.\n%\n%March 2015 David F. Crouse, Naval Research Laboratory, Washington D.C.\n%(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release.\n\nerror('This function is only implemented as a mexed C or C++ function. Please run CompileCLibraries.m to compile the function for use.')\n\nend\n\n%LICENSE:\n%\n%The source code is in the public domain and not licensed or under\n%copyright. The information and software may be used freely by the public.\n%As required by 17 U.S.C. 403, third parties producing copyrighted works\n%consisting predominantly of the material produced by U.S. government\n%agencies must provide notice with such work(s) identifying the U.S.\n%Government material incorporated and stating that such material is not\n%subject to copyright protection.\n%\n%Derived works shall not identify themselves in a manner that implies an\n%endorsement by or an affiliation with the Naval Research Laboratory.\n%\n%RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE\n%SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY THE NAVAL\n%RESEARCH LABORATORY FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE ACTIONS\n%OF RECIPIENT IN THE USE OF THE SOFTWARE.\n", "meta": {"author": "USNavalResearchLaboratory", "repo": "TrackerComponentLibrary", "sha": "9f6e329de5be06a371757c4b853200beb6def2d0", "save_path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary", "path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary/TrackerComponentLibrary-9f6e329de5be06a371757c4b853200beb6def2d0/Coordinate_Systems/Celestial_and_Terrestrial_Systems/TIRS2ITRS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3991189131205236}} {"text": "function drawplat3d(nodez,lc,lm)\nimport rvctools.*\nhold on\nnodenum = size(nodez,1);\nfor j=1:nodenum\n if size(nodez,2)==12\n xc = [nodez(j,1:2),nodez(j,12),0,0,nodez(j,3)];\n xr = [nodez(j,1:2),0,0,0,nodez(j,3)]; a = nodez(j,4:7); th = nodez(j,8:11);\n else\n xc = [nodez(j,1:2),nodez(j,4),0,0,0];\n xr = [nodez(j,1:2),0,0,0,0]; a = nodez(j,3)*ones(1,4); th = zeros(1,4);\n end\n cub = pkgMechanics.RigidCuboid(1,xc,lc);\n patch('Vertices',cub.verticesStates.position','Faces',cub.faces,'FaceColor','b','FaceAlpha',0.5);\n \n xm = xr2m(xr,a,th,lc,lm);\n % build mobile platform cuboid\n for i=1:4\n plat(i) = pkgMechanics.RigidCuboid(1,xm(i,:),lm);\n patch('Vertices',plat(i).verticesStates.position','Faces',plat(i).faces,'FaceColor','y','FaceAlpha',0.5);\n end\nend\nhold off\nend", "meta": {"author": "star2dust", "repo": "paper-simulation", "sha": "2d35e3beeccd2ce41f60c59e347b090f25960706", "save_path": "github-repos/MATLAB/star2dust-paper-simulation", "path": "github-repos/MATLAB/star2dust-paper-simulation/paper-simulation-2d35e3beeccd2ce41f60c59e347b090f25960706/Alonso2017Multi/drawplat3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867873410141, "lm_q2_score": 0.5, "lm_q1q2_score": 0.39909339367050706}} {"text": "function v = axis(q,varargin)\n% rotational axis of the quaternion\n%\n% Syntax\n% v = axis(q)\n%\n% Input\n% q - @quaternion\n%\n% Output\n% v - @vector3d\n\nv = vector3d(q.b,q.c,q.d);\nv(q.a<0) = -v(q.a<0);\nv(isnull(norm(v))) = xvector;\nv = v./norm(v);\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@quaternion/axis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.39894235816738255}} {"text": "function [x] = boundProject(x,LB,UB)\n% function [x] = boundProject(x,LB,UB)\n% Computes projection of x onto constraints LB <= x <= UB\n\nx(x < LB) = LB(x < LB);\nif nargin > 2\nx(x > UB) = UB(x > UB);\nend", "meta": {"author": "rbgirshick", "repo": "voc-dpm", "sha": "c0b88564bd668bcc6216bbffe96cb061613be768", "save_path": "github-repos/MATLAB/rbgirshick-voc-dpm", "path": "github-repos/MATLAB/rbgirshick-voc-dpm/voc-dpm-c0b88564bd668bcc6216bbffe96cb061613be768/external/minConf/minConf/boundProject.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6688802603710086, "lm_q1q2_score": 0.39894235816738255}} {"text": "function c = sum(a,dim)\n%SUM Implements sum(a,dim) for slopes\n%\n% u = sum(a,dim)\n%\n%parameter dim optional, functionality as Matlab function sum\n%\n\n% written 12/06/98 S.M. Rump\n% modified 09/28/01 S.M. Rump matrices and multi-dimensional arrays\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n% modified 09/28/08 S.M. Rump check for rounding to nearest improved\n%\n\n e = 1e-30;\n if 1+e==1-e % fast check for rounding to nearest\n rndold = 0;\n else\n rndold = getround;\n setround(0)\n end\n\n if nargin==1\n if a.size(1)==1\n dim = 2;\n else\n dim = 1;\n end\n end\n\n if dim==1\n c = ones(1,a.size(1))*a;\n else\n c = a*ones(a.size(2),1);\n end\n \n setround(rndold)\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/slope/@slope/sum.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710085, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.3989423581673825}} {"text": "function N = count_network_parameters(net)\n% -------------------------------------------------------------------------\n% Description:\n% Count the total number of network parameters\n%\n% Input:\n% - net : network\n%\n% Output:\n% - N : #parameters\n%\n% Citation: \n% Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks\n% Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang\n% arXiv, 2017\n%\n% Contact:\n% Wei-Sheng Lai\n% wlai24@ucmerced.edu\n% University of California, Merced\n% -------------------------------------------------------------------------\n\n N = 0;\n for i = 1:length(net.params)\n\n N = N + numel(net.params(i).value);\n\n end\n\n\nend", "meta": {"author": "phoenix104104", "repo": "LapSRN", "sha": "95154bba82a3aab9bdaec8e0eedd4187babc5ed2", "save_path": "github-repos/MATLAB/phoenix104104-LapSRN", "path": "github-repos/MATLAB/phoenix104104-LapSRN/LapSRN-95154bba82a3aab9bdaec8e0eedd4187babc5ed2/utils/count_network_parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6688802537704063, "lm_q1q2_score": 0.39894235423056446}} {"text": "%%%%%%%%%%Programmed by: Chi-Hang Kwan%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%Completion Date: December 13, 2012%%%%%%%%%%%%%%%%%%%\n\nfunction posc_new = AI(window,pos,vel,posc,tstep)\ntb = get(window,'UserData');\n\nposf = pos + vel*tstep; %the position of the puck at the next frame\nmaxspeed = 1; %maximum moving speed of the computer's mallet\n\nif posf(2) < 0\n pos_desire = [posf(1) tb.fieldh/4];\nelse\n if (posc(2)-posf(2)) > tb.r_mallet && abs(posf(1)-posc(1)) < tb.r_mallet %sweet spot to strike\n pos_desire = posf;\n if (posc(2)-posf(2))<(tb.r_mallet + tb.r_puck + 0.06) \n maxspeed = 2; %accelerate to hit puck when it is within 6cm of impact\n end\n else\n pos_desire(2) = posf(2) + tb.r_mallet+tb.r_puck + 0.03;\n if (posf(2)-posc(2))>=(tb.r_mallet-tb.r_puck)\n pos_desire(1) = posf(1) + sign(posc(1)-posf(1))*(tb.r_mallet+tb.r_puck+0.01);\n else\n pos_desire(1) = posf(1);\n end\n end\nend\n\n%%%%%%%%%%To ensure the mallet stays within its own half%%%%%%%%%%%%%\nif abs(pos_desire(1))>tb.fieldw/2-tb.r_mallet \n pos_desire(1)= sign(pos_desire(1))*(tb.fieldw/2-tb.r_mallet);\nend\nif pos_desire(2) > tb.fieldh/2-tb.r_mallet\n pos_desire(2)= tb.fieldh/2-tb.r_mallet;\nelseif pos_desire(2) < tb.r_mallet\n pos_desire(2) = tb.r_mallet;\nend\n\n%%%%%%%%%%To limit the speed of travel of the mallet%%%%%%%%%%%%%\ndelta = pos_desire - posc;\ndeltam = sqrt(delta(1)^2 + delta(2)^2);\nif deltam == 0\n posc_new = posc;\nelse\n posc_new = posc + min(deltam,tstep*maxspeed)/deltam*delta;\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/39474-air-hockey-arcade/AI.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743735019594, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3989415677005749}} {"text": "function filter = spm_cfg_eeg_filter\n% configuration file for EEG Filtering\n%_______________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% Stefan Kiebel\n% $Id: spm_cfg_eeg_filter.m 5377 2013-04-02 17:07:57Z vladimir $\n\nrev = '$Rev: 5377 $';\n\nD = cfg_files;\nD.tag = 'D';\nD.name = 'File Name';\nD.filter = 'mat';\nD.num = [1 1];\nD.help = {'Select the EEG mat file.'};\n\ntype = cfg_menu;\ntype.tag = 'type';\ntype.name = 'Type';\ntype.labels = {'Butterworth', 'FIR'};\ntype.values = {'butterworth', 'fir'};\ntype.val = {'butterworth'};\ntype.help = {'Select the filter typee.'};\n\nband = cfg_menu;\nband.tag = 'band';\nband.name = 'Band';\nband.labels = {'Lowpass', 'Highpass', 'Bandpass', 'Stopband'};\nband.values = {'low' 'high' 'bandpass' 'stop'};\nband.val = {'low'};\nband.help = {'Select the filter band.'};\n\nfreq = cfg_entry;\nfreq.tag = 'freq';\nfreq.name = 'Cutoff(s)';\nfreq.strtype = 'r';\nfreq.num = [1 inf];\nfreq.help = {'Enter the filter cutoff'};\n\ndir = cfg_menu;\ndir.tag = 'dir';\ndir.name = 'Direction';\ndir.labels = {'Zero phase', 'Forward', 'Backward'};\ndir.values = {'twopass', 'onepass', 'onepass-reverse'};\ndir.val = {'twopass'};\ndir.help = {'Select the filter direction.'};\n\norder = cfg_entry;\norder.tag = 'order';\norder.name = 'Order';\norder.val = {5};\norder.strtype = 'n';\norder.num = [1 1];\norder.help = {'Enter the filter order'};\n\nprefix = cfg_entry;\nprefix.tag = 'prefix';\nprefix.name = 'Filename Prefix';\nprefix.help = {'Specify the string to be prepended to the filenames of the filtered dataset. Default prefix is ''f''.'};\nprefix.strtype = 's';\nprefix.num = [1 Inf];\nprefix.val = {'f'};\n\nfilter = cfg_exbranch;\nfilter.tag = 'filter';\nfilter.name = 'Filter';\nfilter.val = {D type band freq dir order, prefix};\nfilter.help = {'Filters EEG/MEG data.'};\nfilter.prog = @eeg_filter;\nfilter.vout = @vout_eeg_filter;\nfilter.modality = {'EEG'};\n\nfunction out = eeg_filter(job)\n% construct the S struct\nS = job;\nS.D = S.D{1};\n\nout.D = spm_eeg_filter(S);\nout.Dfname = {fullfile(out.D.path, out.D.fname)};\n\nfunction dep = vout_eeg_filter(job)\n% Output is always in field \"D\", no matter how job is structured\ndep = cfg_dep;\ndep.sname = 'Filtered Data';\n% reference field \"D\" from output\ndep.src_output = substruct('.','D');\n% this can be entered into any evaluated input\ndep.tgt_spec = cfg_findspec({{'strtype','e'}});\n\ndep(2) = cfg_dep;\ndep(2).sname = 'Filtered Datafile';\n% reference field \"Dfname\" from output\ndep(2).src_output = substruct('.','Dfname');\n% this can be entered into any file selector\ndep(2).tgt_spec = cfg_findspec({{'filter','mat'}});\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/config/spm_cfg_eeg_filter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3989415615222409}} {"text": "%% Import from VPSC\n%\n%%\n% is a crystal plasticity code\n% originally written by Ricardo Lebensohn and Carlos Tome from Los Alamos\n% National Laboratory - USA.\n% \n% Original code can be requested to lebenso@lanl.gov\n%\n% https://public.lanl.gov/lebenso/\n%\n%% Import the orientations generated by VPSC\n%\n% Running a simulation in VPSC ussually results in an output file\n% |TEX_PH1.OUT| which contains multiple sets of orientations for different\n% strain levels. As these files does not contain any information on the\n% crystal symmetry we need to specify it first\n\ncs = crystalSymmetry('222', [4.762 10.225 5.994],'mineral', 'olivine');\n\n%%\n% In the next step the orientations are imported and converted into a list\n% of using the command .\n\n% put in here the path to the VPSC output files\npath2file = [mtexDataPath filesep 'VPSC'];\n\nodf = ODF.load([path2file filesep 'TEX_PH1.OUT'],'halfwidth',10*degree,'CS',cs)\n\n%%\n% The individuel ODFs can be accessed by |odf{id}|\n\n% lets plot the second ODF\nplotSection(odf{2},'sigma','figSize','normal')\n\n%%\n% The information about the strain are stored as additional properties\n% within each ODF variable\n\nodf{1}.opt\n\n%% Compare pole figures during deformation\n%\n% Next we examine the evaluation of the ODF during the deformation by\n% plotting strain depended pole figures. \n\n% define some crystal directions\nh = Miller({1,0,0},{0,1,0},{0,0,1},cs,'uvw');\n\n% generate some figure\nfig = newMtexFigure('layout',[4,3],'figSize','huge');\nsubSet = 1:4;\n\n% plot pole figures for different strain steps\nfor n = subSet\n nextAxis\n plotPDF(odf{n},h,'lower','contourf','doNotDraw');\n ylabel(fig.children(end-2),['\\epsilon = ',xnum2str(odf{n}.opt.strain)]);\nend\nsetColorRange('equal')\nmtexColorbar\n\n%% Visualize slip system activity\n% \n% Alongside with the orientation data VPSC also outputs a file\n% |ACT_PH1.OUT| which contains the activity of the different slip systems\n% during the deformation. Lets read this file as a table\n\nACT = readtable([path2file filesep 'ACT_PH1.OUT'],'FileType','text')\n\n%%\n% and plot the slip activity with respect to the strain for the different\n% modes\n\n% loop though the columns MODE1 ... MOD11\nclose all\nfor n = 3: size(ACT,2)\n \n % perform the plotting\n plot(ACT.STRAIN, table2array(ACT(:,n)),'linewidth',2,...\n 'DisplayName',['Slip mode ',num2str(n-2)])\n hold on;\nend\nhold off\n\n% some styling\nxlabel('Strain');\nylabel('Slip activity');\nlegend('show','location','NorthEastOutside');\n\nset(gca,'Ylim',[-0.005 1])\nset(gcf,'MenuBar','none','units','normalized','position',[0.25 0.25 0.5 0.5]);\n\n%for only one mode plot, e.g.,mode 3: cs = csapi(STRAIN,MODE{3});fnplt(cs,3,'color','b');hold off;", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/doc/Plasticity/VPSCImport.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.63341027751814, "lm_q2_score": 0.6297746213017459, "lm_q1q2_score": 0.3989057176526204}} {"text": "function [calculation_times]=PIVlab_commandline_parallel_speed(directory,cpu_core_number)\n\nnr_of_cores =cpu_core_number; % integer, 1 means single core, greater than 1 means parallel\nif nr_of_cores > 1\n\ttry\n\t\tlocal_cluster=parcluster('local'); % single node\n\t\tcorenum = local_cluster.NumWorkers ; % fix : get the number of cores available\n\tcatch\n\t\twarning('on');\n\t\twarning('parallel local cluster can not be created, assigning number of cores to 1');\n\t\tnr_of_cores = 1;\n\tend\nend\n\nif nr_of_cores > 1\n\tif pivparpool('size')~=nr_of_cores\n\t\tpivparpool('close');\n\t\tpivparpool('open',nr_of_cores);\n\tend\nend\n\n%% Create list of images inside user specified directory\n\n% default directory: PIVlab/Examples\naddpath(fileparts(mfilename('fullpath')));\n%disp(fileparts(mfilename('fullpath')))\n\nsuffix='*.jpg'; %*.bmp or *.tif or *.jpg or *.tiff or *.jpeg\n%disp(['Looking for ' suffix ' files in the selected directory.']);\ndirec = dir([directory,filesep,suffix]); filenames={};\n[filenames{1:length(direc),1}] = deal(direc.name);\nfilenames = sortrows(filenames); %sort all image files\namount = length(filenames);\n\n%% Standard PIV Settings\ns = cell(15,2); % To make it more readable, let's create a \"settings table\"\n%Parameter %Setting %Options\ns{1,1}= 'Int. area 1'; s{1,2}=128; % window size of first pass\ns{2,1}= 'Step size 1'; s{2,2}=64; % step of first pass\ns{3,1}= 'Subpix. finder'; s{3,2}=1; % 1 = 3point Gauss, 2 = 2D Gauss\ns{4,1}= 'Mask'; s{4,2}=[]; % If needed, generate via: imagesc(image); [temp,Mask{1,1},Mask{1,2}]=roipoly;\ns{5,1}= 'ROI'; s{5,2}=[]; % Region of interest: [x,y,width,height] in pixels, may be left empty\ns{6,1}= 'Nr. of passes'; s{6,2}=2; % 1-4 nr. of passes\ns{7,1}= 'Int. area 2'; s{7,2}=64; % second pass window size\ns{8,1}= 'Int. area 3'; s{8,2}=16; % third pass window size\ns{9,1}= 'Int. area 4'; s{9,2}=16; % fourth pass window size\ns{10,1}='Window deformation'; s{10,2}='*linear'; % '*spline' is more accurate, but slower\ns{11,1}='Repeated Correlation'; s{11,2}=0; % 0 or 1 : Repeat the correlation four times and multiply the correlation matrices.\ns{12,1}='Disable Autocorrelation'; s{12,2}=0; % 0 or 1 : Disable Autocorrelation in the first pass.\ns{13,1}='Correlation style'; s{13,2}=0; % 0 or 1 : Use circular correlation (0) or linear correlation (1).\ns{14,1}='Repeat last pass'; s{14,2}=0; % 0 or 1 : Repeat the last pass of a multipass analyis\ns{15,1}='Last pass quality slope'; s{15,2}=0.025; % Repetitions of last pass will stop when the average difference to the previous pass is less than this number.\n\n\n%% Standard image preprocessing settings\np = cell(10,1);\n%Parameter %Setting %Options\np{1,1}= 'ROI'; p{1,2}=s{5,2}; % same as in PIV settings\np{2,1}= 'CLAHE'; p{2,2}=1; % 1 = enable CLAHE (contrast enhancement), 0 = disable\np{3,1}= 'CLAHE size'; p{3,2}=50; % CLAHE window size\np{4,1}= 'Highpass'; p{4,2}=0; % 1 = enable highpass, 0 = disable\np{5,1}= 'Highpass size'; p{5,2}=15; % highpass size\np{6,1}= 'Clipping'; p{6,2}=0; % 1 = enable clipping, 0 = disable\np{7,1}= 'Wiener'; p{7,2}=0; % 1 = enable Wiener2 adaptive denoise filter, 0 = disable\np{8,1}= 'Wiener size'; p{8,2}=3; % Wiener2 window size\np{9,1}= 'Minimum intensity'; p{9,2}=0.0; % Minimum intensity of input image (0 = no change)\np{10,1}='Maximum intensity'; p{10,2}=1.0; % Maximum intensity on input image (1 = no change)\n\n%% other settings\npairwise = 1; % 0 for [A+B], [B+C], [C+D]... sequencing style, and 1 for [A+B], [C+D], [E+F]... sequencing style\n\n%% PIV analysis loop\nif pairwise == 1\n\tif mod(amount,2) == 1 %Uneven number of images?\n\t\tdisp('Image folder should contain an even number of images.')\n\t\t%remove last image from list\n\t\tamount=amount-1;\n\t\tfilenames(size(filenames,1))=[];\n\tend\n\t\n\t%disp(['Found ' num2str(amount) ' images (' num2str(amount/2) ' image pairs).'])\n\tx=cell(amount/2,1);\n\ty=x;\n\tu=x;\n\tv=x;\nelse\n\t%disp(['Found ' num2str(amount) ' images'])\n\tx=cell(amount-1,1);\n\ty=x;\n\tu=x;\n\tv=x;\nend\n\ntypevector=x; %typevector will be 1 for regular vectors, 0 for masked areas\ncorrelation_map=x; % correlation coefficient\n\n%% Pre-load the image names out side of the parallelizable loop\nslicedfilename1=cell(0);\nslicedfilename2=cell(0);\nj = 1;\nfor i=1:1+pairwise:amount-1\n\tslicedfilename1{j}=filenames{i}; % begin\n\tslicedfilename2{j}=filenames{i+1}; % end\n\tj = j+1;\nend\n\ndummy=imread(fullfile(directory,filenames{1}));\ndisp([' Current image size: ' num2str(size(dummy,1)) ' px'])\n\n\ntstart=tic;\n%% Main PIV analysis loop:\n% parallel\ndisp('Please wait....')\nif nr_of_cores > 1\n\t\n\t\n\t\n\tparfor i=1:size(slicedfilename1,2) % index must increment by 1\n\t\t\n\t\t[x{i}, y{i}, u{i}, v{i}, typevector{i},correlation_map{i}] = ...\n\t\t\tpiv_analysis(directory, slicedfilename1{i}, slicedfilename2{i},p,s,nr_of_cores,false);\n\tend\nelse % sequential loop\n\t\n\tfor i=1:size(slicedfilename1,2) % index must increment by 1\n\t\t\n\t\t[x{i}, y{i}, u{i}, v{i}, typevector{i},correlation_map{i}] = ...\n\t\t\tpiv_analysis(directory, slicedfilename1{i}, slicedfilename2{i},p,s,nr_of_cores,false);\n\t\t\n\t\t%disp([int2str((i+1)/amount*100) ' %']);\n\t\t\n\tend\nend\n\n\n%% PIV postprocessing loop\n% Standard image post processing settings\n\nr = cell(6,1);\n%Parameter %Setting %Options\nr{1,1}= 'Calibration factor, 1 for uncalibrated data'; r{1,2}=1; % Calibration factor for u\nr{2,1}= 'Calibration factor, 1 for uncalibrated data'; r{2,2}=1; % Calibration factor for v\nr{3,1}= 'Valid velocities [u_min; u_max; v_min; v_max]'; r{3,2}=[-50; 50; -50; 50]; % Maximum allowed velocities, for uncalibrated data: maximum displacement in pixels\nr{4,1}= 'Stdev check?'; r{4,2}=1; % 1 = enable global standard deviation test\nr{5,1}= 'Stdev threshold'; r{5,2}=7; % Threshold for the stdev test\nr{6,1}= 'Local median check?'; r{6,2}=1; % 1 = enable local median test\nr{7,1}= 'Local median threshold'; r{7,2}=3; % Threshold for the local median test\n\nu_filt=cell(size(u));\nv_filt=cell(size(v));\ntypevector_filt=typevector;\n\nif nr_of_cores >1 % parallel\n\t\n\t\n\tif pivparpool('size')~=nr_of_cores\n\t\tpivparpool('open',nr_of_cores);\n\tend\n\t\n\t\n\tparfor PIVresult=1:size(x,1)\n\t\t\n\t\t[u_filt{PIVresult,1}, v_filt{PIVresult,1},typevector_filt{PIVresult,1}]= ...\n\t\t\tpost_proc_wrapper(u{PIVresult,1},v{PIVresult,1},typevector{PIVresult,1},r,true);\n\t\t\n\tend\n\t\nelse % sequential loop\n\t\n\tfor PIVresult=1:size(x,1)\n\t\t\n\t\t[u_filt{PIVresult,1}, v_filt{PIVresult,1},typevector_filt{PIVresult,1}]= ...\n\t\t\tpost_proc_wrapper(u{PIVresult,1},v{PIVresult,1},typevector{PIVresult,1},r,true);\n\t\t\n\tend\n\t\nend\ncalculation_times=toc(tstart);\n%% clean up parallel pool, and cluster\n%{\nif nr_of_cores >1 % parallel\n\tpoolobj = gcp('nocreate'); % GET the current parallel pool\n\tif ~isempty(poolobj ); delete(poolobj );end\n\tclear local_cluster;\nend\n%}\n%%\n%save(fullfile(directory, [filenames{1} '_' filenames{end} '_' num2str(amount) '_frames_result_.mat']));\n\n%%\n%clearvars -except p s r x y u v typevector directory filenames u_filt v_filt typevector_filt correlation_map\ndisp('DONE.')\n\nend\nfunction [u_filt, v_filt,typevector_filt] = post_proc_wrapper(u,v,typevector,post_proc_setting,paint_nan)\n% wrapper function for PIVlab_postproc\n\n% INPUT\n% u, v: u and v components of vector fields\n% typevector: type vector\n% post_proc_setting: post processing setting\n% paint_nan: bool, whether to interpolate missing data\n\n% OUTPUT\n% u_filt, v_filt: post-processed u and v components of vector fields\n% typevector_filt: post-processed type vector\n\n\n[u_filt,v_filt] = PIVlab_postproc(u,v, ...\n\tpost_proc_setting{1,2},...\n\tpost_proc_setting{2,2},...\n\tpost_proc_setting{3,2},...\n\tpost_proc_setting{4,2},...\n\tpost_proc_setting{5,2},...\n\tpost_proc_setting{6,2},...\n\tpost_proc_setting{7,2});\n\ntypevector_filt = typevector; % initiate\ntypevector_filt(isnan(u_filt))=2;\ntypevector_filt(isnan(v_filt))=2;\ntypevector_filt(typevector==0)=0; %restores typevector for mask\n\nif paint_nan\n\tu_filt=inpaint_nans(u_filt,4);\n\tv_filt=inpaint_nans(v_filt,4);\nend\n\n\nend\n\n", "meta": {"author": "Shrediquette", "repo": "PIVlab", "sha": "2db174a35e8f77cc2ecbee99f1516b8a222492a0", "save_path": "github-repos/MATLAB/Shrediquette-PIVlab", "path": "github-repos/MATLAB/Shrediquette-PIVlab/PIVlab-2db174a35e8f77cc2ecbee99f1516b8a222492a0/test_parallel_performance/PIVlab_commandline_parallel_speed.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.6297746213017459, "lm_q1q2_score": 0.3989057089363508}} {"text": "% Author: Ricardo Baptista and Matthias Poloczek\n% Date: June 2018\n%\n% See LICENSE.md for copyright information\n%\n\nfunction models = sample_models(n_models, n_vars, values)\n% SAMPLE_MODELS: Sample candidate model vectors with categorical values\n%\n% Inputs: n_models - number of vectors to return\n% n_vars - number of variables for each vector\n% values - {n_vars x 1} cell - numeric variables for each dimension\n\n% check values and default to binary if not specified\nif nargin < 3\n\tvalues = repmat({[0,1]},n_vars,1);\nend\n\n% check if n_vars and values have the same dimension\nif length(values) ~= n_vars\n error('Number of variables does not match size of values cell')\nend\n\n% Generate matrix of zeros to store models\nmodels = zeros(n_models, n_vars);\n\n% Construct model vectors by sampling each dimension independently\n% and with replacement\nfor j=1:n_vars\n\tmodels(:,j) = randsample(values{j}, n_models, true);\nend\n\n% -- END OF FILE --", "meta": {"author": "baptistar", "repo": "BOCS", "sha": "fef0d4e34e376e8bb0dae9955d70c2155530b9eb", "save_path": "github-repos/MATLAB/baptistar-BOCS", "path": "github-repos/MATLAB/baptistar-BOCS/BOCS-fef0d4e34e376e8bb0dae9955d70c2155530b9eb/tools/sample_models.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.6297746074044134, "lm_q1q2_score": 0.39890570013363774}} {"text": "%{\nAuthors:\nJonatas Lopes de Paiva\nClaudio Fabiano Motta Toledo\nHelio Pedrini\n\n%}\n\nfunction pop = createPop(sizePop, img, denoisedImages, beta, lambda )\n\npopulation(sizePop).fitness = 0;\npopulation(sizePop).cromo = [];\npopulation(sizePop).id = '';\n\nmut1 = denoisedImages(1).img;\nmut2 = denoisedImages(2).img;\nmut3 = denoisedImages(3).img;\n\nfit1 = calcFitness(mut1, img, beta, lambda);\nfit2 = calcFitness(mut2, img, beta, lambda);\nfit3 = calcFitness(mut3, img, beta, lambda);\n\npopulation(1).fitness = fit1;\npopulation(1).cromo = mut1;\npopulation(1).id = char(java.util.UUID.randomUUID.toString);\n\npopulation(2).fitness = fit2;\npopulation(2).cromo = mut2;\npopulation(2).id = char(java.util.UUID.randomUUID.toString);\n\npopulation(3).fitness = fit3;\npopulation(3).cromo = mut3;\npopulation(3).id = char(java.util.UUID.randomUUID.toString);\n\nfor i = 4:sizePop\n tmp = denoisedImages(randi(3)).img;\n population(i).cromo = mutation(tmp);\n population(i).fitness = calcFitness(population(i).cromo, img, beta, lambda);\n population(i).id = char(java.util.UUID.randomUUID.toString);\nend\n\npop = arrangePop(population);\n\nend\n\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u53bb\u566a\u7b97\u6cd5/hga_image_denoising-master/code/createPop.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.39890570013363774}} {"text": "function out = ctranspose2x2(in)\n\n% compute ctranspose of multiple 2x2 matrices, input is 2x2xN\n\nout = conj(in);\nout(1,2,:,:) = conj(in(2,1,:,:));\nout(2,1,:,:) = conj(in(1,2,:,:));\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/connectivity/private/ctranspose2x2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.6297745935070806, "lm_q1q2_score": 0.3989057000471937}} {"text": "% PRTBRV - PRT Bayesian Random Variable Class\n% Abstract Methods:\n% nDimensions\n\n\n\n\n\n\n\nclassdef prtBrv < prtAction\n methods (Abstract)\n self = estimateParameters(self, priorSelf, x)\n y = predictivePdf(self, x)\n y = predictiveLogPdf(self, x)\n \n d = getNumDimensions(self)\n \n self = initialize(self, x)\n end\n \n methods\n % Optional methods that would be nice to have\n % You don't have to implement these but you are welcome to some\n % types of processing for example VB with \n % calculateNegativeFreeEnergy = true, might require some of these\n function kld = conjugateKld(self, prior) %#ok\n missingMethodError(self,'conjugateKld')\n end\n function x = posteriorMeanDraw(self, n, varargin) %#ok\n missingMethodError(self,'posteriorMeanDraw')\n end \n function s = posteriorMeanStruct(self) %#ok\n missingMethodError(self,'posteriorMeanStruct')\n end\n function plotCollection(selfVec,colors) %#ok\n missingMethodError(selfVec(1),'plotCollection') \n end\n function val = plotLimits(self) %#ok\n missingMethodError(self,'plotLimits') \n end\n %function plot(self)\n % plotCollection(self);\n %end\n end\n \n \n % All prtBrv's get the property nDimensions\n % For a particular subclass getNumDimensions must be implemented\n properties (Dependent)\n nDimensions\n end\n methods \n function val = get.nDimensions(self)\n val = zeros(size(self));\n for iRv = 1:numel(self)\n val(iRv) = self(iRv).getNumDimensions();\n end\n end\n end\n \n % Because we are a prtAction we also must implement something like this\n \n %%% properties (SetAccess=private)\n %%% name = 'Maximum a Posteriori' % Maximum a Posteriori\n %%% nameAbbreviation = 'MAP' % MAP\n %%% isNativeMary = true; % True\n %%% end\n \n % For prtAction, we also must implement trainAction() and runAction()\n methods (Access = protected, Hidden = true)\n function self = trainAction(self, ds)\n self = estimateParameters(self, ds); \n end\n \n function ds = runAction(self, ds)\n ds = ds.setObservations(self.predictiveLogPdf(ds.getObservations));\n end\n end\n \n methods (Access = 'protected', Hidden = true)\n function missingMethodError(self,methodName) %#ok\n error('The method %s is not defined for this prtBrv object',methodName);\n end\n \n function self = constructorInputParse(self,varargin)\n \n nIn = length(varargin);\n\n % Quick Exit for the zero input constructor\n if nIn == 0\n return\n elseif mod(nIn,2)\n error('prt:prtBrv:constructorInputParse','Inputs must be supplied by as string/value pairs');\n end\n \n self = prtUtilAssignStringValuePairs(self, varargin{:});\n\n end\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/]beta/brv/prtBrv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6370308082623217, "lm_q1q2_score": 0.39886039958082553}} {"text": "%GOBJ_POLYGON Create polygon geometry object.\n%\n% [ GOBJ ] = GOBJ_POLYGON( P, TAG ) Creates a polygon\n% geometry object. Accepts the following input parameters.\n%\n% Parameter Value/{Default} Description\n% -----------------------------------------------------------------------------------\n% p array {[0 0;1 0;0 1]} Polygon vertex points\n% tag string {P1} Geometry object tag/name\n\n% Copyright 2013-2022 Precise Simulation, Ltd.\n", "meta": {"author": "precise-simulation", "repo": "featool-multiphysics", "sha": "861c771adda317a9f091263d16dca060116bd516", "save_path": "github-repos/MATLAB/precise-simulation-featool-multiphysics", "path": "github-repos/MATLAB/precise-simulation-featool-multiphysics/featool-multiphysics-861c771adda317a9f091263d16dca060116bd516/geom/gobj_polygon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.6261241842048092, "lm_q1q2_score": 0.3988603865073714}} {"text": "%#eml\nfunction [min,med,max] = get_median(inbuf)\n\nnumpixels = length(inbuf);\n\ntbuf = inbuf;\n\nfor ii=eml.unroll(1:numpixels)\n if bitand(ii,uint32(1)) == 1 \n tbuf = compare_stage1(tbuf);\n else\n tbuf = compare_stage2(tbuf);\n end\nend\n\nmin = tbuf(1);\nmed = tbuf(ceil(numpixels/2));\nmax = tbuf(numpixels);\n\nend\n\nfunction outbuf = compare_stage1(inbuf)\nnumpixels = length(inbuf);\ntbuf = compare_stage(inbuf(1:numpixels-1));\noutbuf = [tbuf(:)' inbuf(numpixels)];\nend\n\nfunction outbuf = compare_stage2(inbuf)\nnumpixels = length(inbuf);\ntbuf = compare_stage(inbuf(2:numpixels));\noutbuf = [inbuf(1) tbuf(:)'];\nend\n\nfunction [outbuf] = compare_stage(inbuf)\n\nstep = 2;\nnumpixels = length(inbuf);\n\noutbuf = inbuf;\n\nfor ii=eml.unroll(1:step:numpixels)\n t = compare_pixels([inbuf(ii), inbuf(ii+1)]);\n outbuf(ii) = t(1);\n outbuf(ii+1) = t(2);\nend\n\nend\n\nfunction outbuf = compare_pixels(inbuf)\nif (inbuf(1) > inbuf(2))\n outbuf = [inbuf(1), inbuf(2)];\nelse\n outbuf = [inbuf(2), inbuf(1)];\nend\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/18728-adaptive-median-filter-using-embedded-matlab/get_median.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307806984444, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.3988603734339173}} {"text": "function [params] = sv_calcB(vResults)\n% function [vResults] = sv_calcB(vResults)\n% -------------------------------------\n% Calculation of b-value uncertainty from given mValueGrid_ determined with\n% sv_calcMc\n%\n%\n% Input parameters:\n% vResults\n%\n% Output parameters:\n%\n%\n% J. Woessner; woessner@seismo.ifg.ethz.ch\n% last update: 14.04.03\n\n\n% Initialize\n\n% Create Indices to catalog\n[vResults.caNodeIndices] = ex_CreateIndexCatalog(vResults.mCatalog, vResults.mPolygon, vResults.bMap, vResults.nGriddingMode,...\n vResults.nNumberEvents, vResults.fRadius, vResults.fSizeRectHorizontal, vResults.fSizeRectDepth);\n\n% Determine time period of catalog\nvResults.fTminCat = min(vResults.mCatalog(:,3));\nvResults.fTmaxCat = max(vResults.mCatalog(:,3));\n% Adjust to decimal years\nfTimePeriod =vResults.fTimePeriod/365;\n\n% Init result matrix\nmValueGrid_ = [];\n\n% Loop over all grid nodes\nfor nNode_ = 1:length(vResults.mPolygon(:,1))\n nNode_\n % Create node catalog\n mNodeCatalog_ = vResults.mCatalog(vResults.caNodeIndices{nNode_}, :);\n % Select time period for mNodeCatalog_\n vSel = (vResults.fTstart <= mNodeCatalog_(:,3) & mNodeCatalog_(:,3) < vResults.fTstart+fTimePeriod);\n mNodeCatalog_ = mNodeCatalog_(vSel,:);\n % Check for constant number of events calculations\n if (vResults.nGriddingMode == 0)\n [mNodeCatalog_] = ex_MaxRadius(vResults.mCatalog, vResults.mPolygon, nNode_, vResults.caNodeIndices, vResults.fMaxRadius, vResults.nNumberEvents, vResults.bMap);\n end\n [nX,nY] = size(mNodeCatalog_);\n if (nX < vResults.nMinimumNumber)\n mValueGrid_= [mValueGrid_; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN];\n else\n try\n % b-value for median Mc(EMR)\n vSel1=(mNodeCatalog_(:,6) >= vResults.mValueGrid(nNode_,6));\n mCat1=mNodeCatalog_(vSel1,:);\n [fMeanMag1, fBValue1, fStdDev1, fAValue1] = calc_bmemag(mCat1, vResults.fBinning);\n % b-value for 16 percentile Mc\n vSel2=(mNodeCatalog_(:,6) >= vResults.mValueGrid(nNode_,16));\n mCat2=mNodeCatalog_(vSel2,:);\n [fMeanMag2, fBValue2, fStdDev2, fAValue2] = calc_bmemag(mCat2, vResults.fBinning);\n % b-value for 84 percentile Mc\n vSel3=(mNodeCatalog_(:,6) >= vResults.mValueGrid(nNode_,17));\n mCat3=mNodeCatalog_(vSel3,:);\n [fMeanMag3, fBValue3, fStdDev3, fAValue3] = calc_bmemag(mCat3, vResults.fBinning);\n % b-value check for Mc(EMR)\n vSel4=(mNodeCatalog_(:,6) >= vResults.mValueGrid(nNode_,5));\n mCat4=mNodeCatalog_(vSel4,:);\n [fMeanMag4, fBValue4, fStdDev4, fAValue4] = calc_bmemag(mCat4, vResults.fBinning);\n mValueGrid_= [mValueGrid_; fBValue1 fStdDev1 fAValue1 fBValue2 fStdDev2 fAValue2...\n fBValue3 fStdDev3 fAValue3 fMeanMag4 fBValue4 fStdDev4 fAValue4];\n catch\n mValueGrid_= [mValueGrid_; NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN];\n end\n end; % End of if on length(mNodeCatalog_(:,1)\nend; % for nNode\nsave(['Bval_result_Time' num2str(vResults.fTstart) '_Nmin_' num2str(vResults.nMinimumNumber) '.mat'], 'mValueGrid_');\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/jochen/seisvar/sv_calcB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7853085808877581, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39878901449506887}} {"text": "function [xpad, nup, n1, n2] = padsignal(x, padtype)\n\n[nup, n1, n2] = p2up(length(x));\n\nxl = padarray(x(:), n1, padtype, 'pre');\nxr = padarray(x(:), n2, padtype, 'post');\n\nxpad = [xl(1:n1); x(:); xr(end-n2+1:end)];\n", "meta": {"author": "HeLiangHIT", "repo": "time_frequency", "sha": "09c2abe92355ff5cd867bdb169229682e9d7af7c", "save_path": "github-repos/MATLAB/HeLiangHIT-time_frequency", "path": "github-repos/MATLAB/HeLiangHIT-time_frequency/time_frequency-09c2abe92355ff5cd867bdb169229682e9d7af7c/tf_tool_box/synchrosqueezing/synchrosqueezing/padsignal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.640635861701035, "lm_q1q2_score": 0.39876977001835007}} {"text": "function x = testMaps()\n%tests the functionality of the functions in testMaps especially drawLine,\n% drawConc, drawFlux\n%\n% testMaps\n%\n%\n%\n\noriFolder = pwd;\n\nmFilePath = mfilename('fullpath');\ncd(mFilePath(1:end-length(mfilename)));\n\nmapCoordinateFilename='ecoli_core_map.txt';\n\nmap = readCbMap(mapCoordinateFilename);\nload('ecoli_core_model.mat');\nsol = optimizeCbModel(model);\nglobal CB_MAP_OUTPUT\nif ~strcmp(CB_MAP_OUTPUT,'svg')\n f = figure;\nend\ndrawCbMap(map);\n\n%tests drawConc with zero concentrations of metabolites\ndisp('Testing drawConc with zero concentrations');\nconc = zeros(size(model.metNames,1), 1);\ndrawConc(map, model, conc);\ndisp(' ');\ndisp(' ');\n\ndisp('Testing drawConc with non-zero concentrations');\nconc = rand(size(model.metNames,1),1);\ndrawConc(map, model, conc);\ndisp(' ');\ndisp(' ');\n\n%tests drawFlux with zero fluxes\ndisp('Testing drawFlux with zero flux');\nflux = zeros(size(model.rxns,1), 1);\ndrawFlux(map, model, flux);\ndisp(' ');\ndisp(' ');\n\n%tests drawFlux with non-zero fluxes w/ reaction with zero flux set to\n%width of 1\ndisp('Testing drawFlux with non-zero flux');\nflux = sol.x;\ndrawFlux(map, model, flux, [],'zeroFluxWidth',1);\ndisp(' ');\ndisp(' ');\n\n%tests drawFluxVariablity with enlarged arrowheads to denote flux\n%directionality\nload('testMapsData.mat','minFlux','maxFlux');\ndisplay('Testing drawFluxVariability')\ndrawFluxVariability(map,model,minFlux,maxFlux,[],'rxnDirMultiplier',2.5);\ndisplay(' ');\ndisplay(' ');\n\n\nx=1;\nif ~strcmp(CB_MAP_OUTPUT,'svg')\n close(f);\nend\ncd(oriFolder);\n\nend", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/additionalTests/testMaps/testMaps.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.39876976574757134}} {"text": "function data=syms2v(symbols,numberOfZeros)\n%% syms2v : Symbols (nRows,N) to Vector of size (1,L)\n% data=syms2v(symbols,numberOfZeros)\n%% INPUTS: symbols, and numberOfZeros; as follows\n% where L = number of the elements in the vector [data]\n%% Outputs: \n% data: is the original vector without the originally attached zeros\n[r c]=size(symbols);\nd=reshape(symbols,1,r*c);\ndata=d(1:end-numberOfZeros);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/36309-simulation-of-an-ofdm-system-with-the-psd/OFDM only/syms2v.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.6224593382055109, "lm_q1q2_score": 0.398769761692807}} {"text": "% select_region.m\n\n% Copyright 2003-2010 The MathWorks, Inc.\n\nf = squeeze(uint8(mean(f,3))); %RGB color to grayscale conversion\navg = mean(f,3); %composite leaves traces of moving objects\nbg = median(double(f),3); %ensemble median average minimizes motion\n\n%difference image highlights circular path of motion\narcPath = imabsdiff(avg,bg);\nfigure, imshow(arcPath,[])\ntitle('Click-drag-release to select region of interest')\n\n% %user select region\n% h=msgbox('Select region of interest.','ROI');\n% set(h,'WindowStyle','Modal')\n% waitfor(h)\n \ndone=false;\nwhile ~done\n [subIm,roi]=imcrop;\n %wait for user to select region of interest (click-drag rubberband box)\n\n %determine corners of selected region\n x1=roi(1); x2=roi(1)+roi(3); xx=[x1 x1 x2 x2 x1];\n y1=roi(2); y2=roi(2)+roi(4); yy=[y1 y2 y2 y1 y1];\n %draw rectangle to indicate selected region\n hLine=line(xx,yy);\n title('Click inside to keep, outside to select again')\n pt=ginput(1);\n %wait for user to keep or discard selected region\n\n % check: is point inside region?\n if pt(1)>=roi(1) & pt(1)<=roi(1)+roi(3) & pt(2)>=roi(2) & pt(2)<=roi(2)+roi(4)\n done=true; %exit loop\n else\n delete(hLine) %remove previous selection\n title('Click-drag-release to select region of interest')\n %loop around to select another region\n end\nend\n\n% %display cropped region\n% imshow(subIm,'notruesize')\n% title('Selected region of interest')\n\n% %convert RGB color frames to grayscale\n% f = squeeze(mean(f,3));\n\n%crop all frames; display cropped footage\nf2 = zeros([size(subIm,1) size(subIm,2) nFrames]); %allocate for cropped footage\nshg, set(gcf,'doublebuffer','on')\nfor i=1:nFrames\n f2(:,:,i)=imcrop(f(:,:,i),roi);\n imshow(uint8(f2(:,:,i)))\n title(sprintf('Frame %d, t = %.2f sec',i,t(i)))\n drawnow, pause(0.1)\nend\nset(gcf,'doublebuffer','off')\n\nf=f2; clear f2\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/3700-gravity-measurement-case-study/Gravity Measurement/select_region.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3987697572060137}} {"text": "%% FUNCTION init_opts\n% initialization options for multi-task learning library\n%\n% If one of the ncessary opts are empty then it will be set to default\n% values as specified in this file.\n%\n% Table of Options. * * indicates default value.\n% FIELD DESCRIPTION\n%% Optimization options\n%\n% .max_iter Maximum iteration step number\n% *1000*\n% .tol Tolerance\n% *10e-3*\n% .tFlag Termination condition\n% 0 => change of absolute function value:\n% abs( funcVal(i)- funcVal(i-1) ) <= .tol\n% * 1 => change of relative function value:\n% abs( funcVal(i)- funcVal(i-1) )\n% <= .tol * funcVal(i-1)\n% 2 => absolute function value:\n% funcVal(end)<= .tol\n% 3 => Run the code for .maxIter iterations\n%% Starting Point\n%\n% .W0 Starting point of W.\n% Initialized according to .init.\n%\n% .C0 Starting point for the intercept C (for Logistic Loss)\n% Initialized according to .init.\n%\n% .init .init specifies how to initialize W, C.\n% 0 => .W0, C0 are set by a guess value infered from data\n% 1 => .W0 and .C0 are defined\n% * 2 => .W0= zeros(.), .C0=0 *\n%\n%% Parallel Computing\n%\n% .pFlag Enable Map-Reduce (needs Parallel Toolbox support).\n% *false*\n%\n% .pSeg_num set the number of total parallel segmentations. if the\n% number is non-positive, then current matlab pool number\n% will be used. [supported in the incoming version]\n% * pool size *\n%\n%% LICENSE\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n%\n% Copyright (C) 2011 - 2012 Jiayu Zhou and Jieping Ye\n%\n% You are suggested to first read the Manual.\n% For any problem, please contact with Jiayu Zhou via jiayu.zhou@asu.edu\n%\n% Last modified on June 21, 2012.\n%\n\nfunction opts = init_opts (opts)\n\n%% Default values\nDEFAULT_MAX_ITERATION = 1000;\nDEFAULT_TOLERANCE = 1e-4;\nMINIMUM_TOLERANCE = eps * 100;\nDEFAULT_TERMINATION_COND = 1;\nDEFAULT_INIT = 2;\nDEFAULT_PARALLEL_SWITCH = false;\n\n%% Starting Point\nif isfield(opts,'init')\n if (opts.init~=0) && (opts.init~=1) && (opts.init~=2)\n opts.init=DEFAULT_INIT; % if .init is not 0, 1, or 2, then use the default 0\n end\n \n if (~isfield(opts,'W0')) && (opts.init==1)\n opts.init=DEFAULT_INIT; % if .W0 is not defined and .init=1, set .init=0\n end\nelse\n opts.init = DEFAULT_INIT; % if .init is not specified, use \"0\"\nend\n\n%% Tolerance\nif isfield(opts, 'tol')\n % detect if the tolerance is smaller than minimum\n % tolerance allowed.\n if (opts.tol 3\n opts.tFlag=3;\n else\n opts.tFlag=floor(opts.tFlag);\n end\nelse\n opts.tFlag = DEFAULT_TERMINATION_COND;\nend\n\n%% Parallel Options\nif isfield(opts, 'pFlag')\n if opts.pFlag == true && ~exist('matlabpool', 'file')\n opts.pFlag = false;\n warning('MALSAR:PARALLEL','Parallel Toolbox is not detected, MALSAR is forced to turn off pFlag.');\n elseif opts.pFlag ~= true && opts.pFlag ~= false\n % validate the pFlag.\n opts.pFlag = DEFAULT_PARALLEL_SWITCH;\n end\nelse\n % if not set the pFlag to default.\n opts.pFlag = DEFAULT_PARALLEL_SWITCH;\nend\n\nif opts.pFlag\n % if the pFlag is checked,\n % check segmentation number.\n if isfield(opts, 'pSeg_num')\n if opts.pSeg_num < 0\n opts.pSeg_num = matlabpool('size');\n else\n opts.pSeg_num = ceil(opts.pSeg_num);\n end\n else\n opts.pSeg_num = matlabpool('size');\n end\nend\n", "meta": {"author": "jiayuzhou", "repo": "MALSAR", "sha": "fb9751594983df020ddc4f7e4a40520ee7c37989", "save_path": "github-repos/MATLAB/jiayuzhou-MALSAR", "path": "github-repos/MATLAB/jiayuzhou-MALSAR/MALSAR-fb9751594983df020ddc4f7e4a40520ee7c37989/MALSAR/utils/init_opts.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.398744530757997}} {"text": "function [ panoout ] = combineViews( Imgs, width, height )\n%COMBINEVIEWS Combine separate views to panorama\n% Imgs: same format as separatePano\n\npanoout = zeros(height, width, size(Imgs(1).img,3));\npanowei = zeros(height, width, size(Imgs(1).img,3));\nimgNum = length(Imgs);\nfor i = 1:imgNum\n [sphereImg validMap] = ...\n im2Sphere( Imgs(i).img, Imgs(i).fov, width, height, Imgs(i).vx, Imgs(i).vy);\n sphereImg(~validMap) = 0; \n panoout = panoout + sphereImg;\n panowei = panowei + validMap;\nend\npanoout(panowei==0) = 0;\npanowei(panowei==0) = 1;\npanoout = panoout./double(panowei);\n\nend\n\n", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/BasicFuncPano/combineViews.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.39874453075799693}} {"text": "classdef TestPSNR\n %TestPSNR\n\n methods (Static)\n function test_1\n src1 = randi([0 255], [50 50], 'uint8');\n src2 = randi([0 255], [50 50], 'uint8');\n x = cv.PSNR(src1, src2);\n end\n\n function test_2\n src1 = randi([0 255], [50 50 3], 'uint8');\n src2 = randi([0 255], [50 50 3], 'uint8');\n x = cv.PSNR(src1, src2);\n end\n\n function test_error_argnum\n try\n cv.PSNR();\n throw('UnitTest:Fail');\n catch e\n assert(strcmp(e.identifier,'mexopencv:error'));\n end\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/test/unit_tests/TestPSNR.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3986338908203138}} {"text": "\nclear all; close all;\nI=imread('glass.png');\t\t\nJ=imcomplement(I);\t\t\t\nfigure;\nsubplot(121);\nimshow(uint8(I));\t\t\nsubplot(122);\nimshow(uint8(J));\t\n", "meta": {"author": "HuangCongQing", "repo": "Algorithms_MathModels", "sha": "e15b0e9053b11f08b5ce1e3492c4acb444409c8b", "save_path": "github-repos/MATLAB/HuangCongQing-Algorithms_MathModels", "path": "github-repos/MATLAB/HuangCongQing-Algorithms_MathModels/Algorithms_MathModels-e15b0e9053b11f08b5ce1e3492c4acb444409c8b/\u300aMATLAB\u56fe\u50cf\u5904\u7406\u300b\u6e90\u6587\u4ef6/\u672c\u4e66\u6e90\u6587\u4ef6/chap5/chap5_8.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3986338908203138}} {"text": "function varargout = dsxy2figxy(varargin)\n%DSXY2FIGXY Transform point or position from axis to figure coords\n% Transforms [axx axy] or [xypos] from axes hAx (data) coords into coords\n% wrt GCF for placing annotation objects that use figure coords into data\n% space. The annotation objects this can be used for are\n% arrow, doublearrow, textarrow\n% ellipses (coordinates must be transformed to [x, y, width, height])\n% Note that line, text, and rectangle anno objects already are placed\n% on a plot using axes coordinates and must be located within an axes.\n% Example to compute a position and apply to an annotation:\n% Example:\n% [axx axy] = ginput(2);\n% [figx figy] = getaxannopos(gca, axx, axy);\n% har = annotation('textarrow',figx,figy);\n% set(har,'String',['(' num2str(axx(2)) ',' num2str(axy(2)) ')'])\n%\n% See also annotation, plot, ginput.\n\n% Copyright 2006-2007, The MathWorks, Inc. Used by permission (see\n% http://www.mathworks.com/access/helpdesk/help/techdoc/creating_plots/\n% bquk5ia-4.html).\n\n%% Obtain arguments (only limited argument checking is performed).\n% Determine if axes handle is specified\nif length(varargin{1})== 1 && ishandle(varargin{1}) && ...\n strcmp(get(varargin{1},'type'),'axes') \n hAx = varargin{1};\n varargin = varargin(2:end);\nelse\n hAx = gca;\nend;\n% Parse either a position vector or two 2-D point tuples\nif length(varargin)==1 % Must be a 4-element POS vector\n pos = varargin{1};\nelse\n [x,y] = deal(varargin{:}); % Two tuples (start & end points)\nend\n%% Get limits\naxun = get(hAx,'Units');\nset(hAx,'Units','normalized'); % Need normaized units to do the xform\naxpos = get(hAx,'Position');\naxlim = axis(hAx); % Get the axis limits [xlim ylim (zlim)]\naxwidth = diff(axlim(1:2));\naxheight = diff(axlim(3:4));\n%% Transform data from figure space to data space\nif exist('x','var') % Transform a and return pair of points\n varargout{1} = (x-axlim(1))*axpos(3)/axwidth + axpos(1);\n varargout{2} = (y-axlim(3))*axpos(4)/axheight + axpos(2);\nelse % Transform and return a position rectangle\n pos(1) = (pos(1)-axlim(1))/axwidth*axpos(3) + axpos(1);\n pos(2) = (pos(2)-axlim(3))/axheight*axpos(4) + axpos(2);\n pos(3) = pos(3)*axpos(3)/axwidth;\n pos(4) = pos(4)*axpos(4)/axheight;\n varargout{1} = pos;\nend\n%% Restore axes units\nset(hAx,'Units',axun)\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/SuiteSparse/UFcollection/dsxy2figxy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3986338908203138}} {"text": "function model = modelTieParam(model, paramsList)\n\n% MODELTIEPARAM Tie parameters of a model together.\n% FORMAT\n% DESC groups of parameters of a model to be seen as one parameter\n% during optimisation of the model.\n% ARG model : the model for which parameters are being tied\n% together.\n% ARG paramsList : indices of parameteres to group together. The\n% indices are provided in a cell array. Each cell in the array\n% contains a vector of indices of parameters that should be\n% considered as one parameter. Each group of parameters in each\n% cell should obviously be mutually exclusive.\n% Alternatively each element of the cell array can be a string which\n% is interpreted as a regular expression of names of parameters\n% (as returned by modelExtractParam) to be tied.\n% RETURN model : the model with the parameters grouped together.\n%\n% SEEALSO : modelExtractParam, modeExpandParam, modelLogLikeGradients\n% \n% COPYRIGHT : Neil D. Lawrence, 2003, 2006, 2008\n%\n% MODIFICATIONS: Antti Honkela, 2009\n\n% MLTOOLS\n\nif ~isfield(model, 'paramGroups')\n if isfield(model, 'nParams')\n model.paramGroups = speye(model.nParams);\n elseif isfield(model, 'numParams')\n model.paramGroups = speye(model.numParams);\n else\n error('Model does not list number of parameters.');\n end\nend\ncolToDelete = [];\ntry,\n [params, names] = modelExtractParam(model);\ncatch\n try,\n [params, names] = kernExtractParam(model);\n catch\n names = {};\n end\nend\n\nfor i = 1:length(paramsList)\n if ischar(paramsList{i}),\n paramIndices=find(~cellfun('isempty', regexp(names, paramsList{i})));\n if isempty(paramIndices),\n warning(['No matches for parameter tie spec: ', paramsList{i}])\n end\n else\n paramIndices=sort(paramsList{i});\n end\n if any(paramIndices(1) == colToDelete)\n error('Parameter is already being tied')\n end\n\n for j = 2:length(paramIndices)\n model.paramGroups(paramIndices(j), paramIndices(1)) = 1;\n if any(paramIndices(j) == colToDelete)\n error('Parameter has already been tied')\n end\n colToDelete = [colToDelete paramIndices(j)];\n end\nend\n \nmodel.paramGroups(:, colToDelete) = [];\nif isfield(model, 'nParams')\n % Update to the new number of parameters.\n model.nParams = size(model.paramGroups, 2);\nelseif isfield(model, 'numParams')\n model.numParams = size(model.paramGroups, 2);\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/modelTieParam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191460821871, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3985939026055205}} {"text": "% DEMCMU35GPLVMVARGPLVM3 Run variational GPLVM with dynamics on CMU35 data.\n%\n% COPYRIGHT : Andreas C. Damianou, Michalis K. Titsias, 2011\n%\n% SEEALSO : demCmu35vargplvmReconstructTaylor.m\n% VARGPLVM\n\n% Fix seeds\nrandn('seed', 1e5);\nrand('seed', 1e5);\n\n% Define constants (in a manner that allows other scripts to parametrize\n% this one).\nif ~exist('experimentNo') , experimentNo = 404; end\nif ~exist('itNo') , itNo = [200 1000 1300]; end % Default: 2000\nif ~exist('indPoints') , indPoints = 100; end % Default:\nif ~exist('latentDim') , latentDim = 9; end\n% Set to 1 to use dynamics or to 0 to use the standard var-GPLVM\nif ~exist('dynUsed') , dynUsed = 1; end\n\nif ~exist('fixedBetaIters'), fixedBetaIters = 50; end % DEFAULT:\n% Set to 1 to tie the inducing points with the latent vars. X\nif ~exist('fixInd') , fixInd = 0; end\nif ~exist('baseKern') , baseKern = {'rbfard2', 'white'}; end\nif ~exist('dynamicKern') , dynamicKern = {'rbf', 'bias', 'white'}; end\nif ~exist('reconstrIters') , reconstrIters = 2000; end\nif ~exist('learnVariance'), learnVariance =0; end\n%if ~exist('vardistCovarsMult'), vardistCovarsMult=1.3; end\nif ~exist('initX'), initX ='ppca'; end\nif ~exist('doReconstr'), doReconstr=1; end\nif ~exist('optimiser', 'var'), optimiser = 'scg'; end\nif ~exist('testReoptimise', 'var'), testReoptimise = 0; end\nif ~exist('parallelVardist', 'var'), parallelVardist = false; end\n\n% Get the sequence numbers.\n[Y, lbls] = lvmLoadData('cmu35WalkJog');\nseq = cumsum(sum(lbls)) - [1:31];\n\ndataSetName = 'cmu35gplvm';\n\n\n% load data\n[Y, lbls, Ytest, lblstest] = lvmLoadData(dataSetName);\n\n\nfprintf(1,'\\n#----------------------------------------------------\\n');\nfprintf(1,'# Dataset: %s\\n',dataSetName);\nfprintf(1,'# ExperimentNo: %d\\n', experimentNo);\nfprintf(1,'# Inducing points: %d\\n',indPoints);\nfprintf(1,'# Latent dimensions: %d\\n',latentDim);\nfprintf(1,'# Iterations (with/without fixed Beta): %d / %s\\n',fixedBetaIters, num2str(itNo));\n%fprintf(1,'# VardistCovarsMult: %d\\n',vardistCovarsMult);\nfprintf(1,'# Reconstruction iterations: %d\\n', reconstrIters);\nfprintf(1,'# Dataset size used (train) : %d \\n', size(Y,1));\nfprintf(1,'# Tie Inducing points: %d\\n',fixInd);\nfprintf(1,'# InitX: %s\\n',initX);\nfprintf(1,'# Base kern: ');\ndisp(baseKern);\nfprintf(1,'# Dynamics used: %d\\n', dynUsed);\nif dynUsed\n fprintf(1,'# Dynamics kern: ');\n disp(dynamicKern);\nend\n\nfprintf(1,'#----------------------------------------------------\\n');\n\n\n\n\n\n% %%% Uncomment this code to get a subset of the sequences\n% seqFrom=2;\n% seqEnd=4;\n%\n% if seqFrom ~= 1\n% Yfrom = seq(seqFrom-1)+1;\n% else\n% Yfrom = 1;\n% end\n% Yend=seq(seqEnd);\n% Y=Y(Yfrom:Yend,:);\n% seq=seq(seqFrom:seqEnd);\n% seq=seq - ones(1,length(seq)).*(Yfrom-1);\n\n\n\n% Fix times:\nprevSeq = 1;\ntimeStampsTraining = [];\ndt=0.05;\nfor i=1:length(seq)\n t = ([0:(seq(i)-prevSeq)].*dt)';\n prevSeq = seq(i)+1;\n timeStampsTraining = [timeStampsTraining ;t];\nend;\ntimeStampsTest = ([0:size(Ytest,1)-1].*dt)';\n\n\n% Set up model\noptions = vargplvmOptions('dtcvar');\n%options.kern = {'rbfard2', 'bias', 'white'};\noptions.kern = baseKern;\noptions.numActive = indPoints; % DEfault: 100\n\noptions.optimiser = optimiser;\n\nd = size(Y, 2);\nfprintf(1,'# Creating the model...\\n');\nif fixInd\n options.fixInducing=1;\n options.fixIndices=1:indPoints;\nend\nmodel = vargplvmCreate(latentDim, d, Y, options);\nmodel = vargplvmParamInit(model, model.m, model.X);\nmodel.beta=1/(0.01*var(model.m(:)));\nmodel.vardist.covars = 0.5*ones(size(model.vardist.covars)) + 0.001*randn(size(model.vardist.covars));\n\nmodel.reconstrIters = reconstrIters;\n\n%-------- Add dynamics to the model -----\nif dynUsed\n optionsDyn.type = 'vargpTime';\n optionsDyn.t=timeStampsTraining;\n optionsDyn.inverseWidth=30;\n % optionsDyn.vardistCovars = vardistCovarsMult;\n optionsDyn.seq = seq;\n optionsDyn.learnVariance = learnVariance;\n optionsDyn.initX = initX;\n optionsDyn.regularizeMeans = 0;\n \n % Dynamic kernel:\n kern = kernCreate(t, dynamicKern); % Default: {'rbf','white','bias'}\n \n if strcmp(kern.comp{2}.type, 'white')\n kern.comp{2}.variance = 1e-2; % Usual values: 1e-1, 1e-3\n end\n \n if strcmp(kern.comp{2}.type, 'whitefixed')\n if ~exist('whiteVar')\n whiteVar = 1e-6;\n end\n kern.comp{2}.variance = whiteVar;\n fprintf(1,'# fixedwhite variance: %d\\n',whiteVar);\n end\n \n if strcmp(kern.comp{1}.type, 'rbfperiodic')\n if exist('periodicPeriod')\n kern.comp{1}.period = periodicPeriod;\n end\n fprintf(1,'# periodic period: %d\\n',kern.comp{1}.period);\n end\n \n % The following is related to the expected number of\n % zero-crossings.(larger inv.width numerator, rougher func)\n if ~strcmp(kern.comp{1}.type,'ou')\n kern.comp{1}.inverseWidth = optionsDyn.inverseWidth./(((max(t)-min(t))).^2);\n kern.comp{1}.variance = 1;\n end\n optionsDyn.kern = kern;\n \n if exist('vardistCovarsMult')\n optionsDyn.vardistCovars = vardistCovarsMult;\n end\n \n \n \n % Fill in with default values whatever is not already set\n optionsDyn = vargplvmOptionsDyn(optionsDyn);\n model = vargplvmAddDynamics(model, 'vargpTime', optionsDyn, optionsDyn.t, 0, 0,optionsDyn.seq);\n \n fprintf(1,'# Further calibration of the initial parameters...\\n');\n model = vargplvmInitDynamics(model,optionsDyn);\nend\n\nif parallelVardist\n model.vardist.parallel = true;\nend\n\n\nmodelInit = model;\n\n\n% do not learn beta for few iterations for intitilization\nif fixedBetaIters > 0\n model.learnBeta = 0; model.initVardist = 1; model.learnSigmaf = 0;\n display = 1;\n fprintf(1,'# Intitiliazing the model (fixed beta) %d iterations...\\n',fixedBetaIters);\n model = vargplvmOptimise(model, display, fixedBetaIters);\n model.fixedBetaIters = fixedBetaIters;\n disp('# Saving model after optimising beta...')\n try\n vargplvmWriteResult(model, model.type, dataSetName, experimentNo);\n catch e\n warning('Error while saving model: ')\n fprintf('%s\\n',e.message)\n end\nend\n\n% Optimise the model.\ndisplay = 1;\nmodel.learnBeta = 1; model.initVardist = 0; model.learnSigmaf = 1;\nmodel.iters=0;\n\nfor i=1:length(itNo)\n iters = itNo(i); % Default: 1000\n fprintf(1,'# Optimising the model for %d iterations (session %d)...\\n',iters,i);\n model = vargplvmOptimise(model, display, iters);\n fprintf('1/b=%.4d var(model.m)=%.4d\\n', 1/model.beta, var(model.m(:)));\n model.iters = model.iters + iters;\n model.date = date;\n % Save the results.\n fprintf(1,'# Saving model after doing %d iterations',iters)\n try\n vargplvmWriteResult(model, model.type, dataSetName, experimentNo);\n catch e\n warning('Error while saving model: ')\n fprintf('%s\\n',e.message)\n end\nend\n\n%bar(model.kern.comp{1}.inputScales)\n%prefix = 'scales';\n%saveAllOpenFigures(['Results/CMU/NEW/' num2str(experimentNo) '/'], prefix,1)\n\nif testReoptimise\n model.dynamics.reoptimise=1;\nend\n\n% Reconstruction can also be done separately calling demCmu35vargplvmReconstructTaylor\nif doReconstr\n %---- RECONSTRUCTION ---%\n save 'TEMPExperimentNo.mat' 'experimentNo'\n clear\n load 'TEMPExperimentNo'\n delete TEMPExperimentNo.mat\n fprintf('# Taylor Reconstruction for expNo:%d\\n', experimentNo);\n demCmu35vargplvmReconstructTaylor\n %prefix = [num2str(experimentNo) '/'];\n %saveAllOpenFigures('Results/CMU/NEW/', prefix,1)\nend\n\n\n%% ----------- VISUALISATION\n%{\nclear;ca\n%load('/home/andreas/SoftwareNotDrpBox/oldMatFiles/vargplvm/2/demCmu35gplvmVargplvm33.mat');\nload('/home/andreas/Dropbox/_PhD/Software/github/private/vargplvm/matlab/private/priv/matFiles/Nips11/demCmu35gplvmVargplvm33.mat');\nbaseDir = datasetsDirectory;\ndirSep = filesep;\n[Y1, lbls, Ytest, lblstest] = lvmLoadData('cmu35WalkJog', [], baseDir);\nskel = acclaimReadSkel([baseDir 'mocap' dirSep 'cmu' dirSep '35' dirSep '35.asf']);\n[tmpchan, skel] = acclaimLoadChannels([baseDir 'mocap' dirSep 'cmu' dirSep '35' dirSep '35_01.amc'], skel);\n\n\n[Y, lbls] = lvmLoadData('cmu35WalkJog');\nseq = cumsum(sum(lbls)) - [1:31];\ndataSetName = 'cmu35gplvm';\n% load data\n[Y, lbls, Ytest, lblstest] = lvmLoadData(dataSetName);\nchannels = demCmu35VargplvmLoadChannels(Y, skel);\n\nmodelTmp = model; \nmodelTmp.dynamics = [];\nlvmVisualise(modelTmp, [], 'skelVargplvmVisualise', 'skelVargplvmModify', channels, skel)\nfigure; vargplvmShowScales(model)\n%}\n%------------------------", "meta": {"author": "SheffieldML", "repo": "vargplvm", "sha": "480201fde5ac84ff36e4a9f06d3fafeafa8ef06d", "save_path": "github-repos/MATLAB/SheffieldML-vargplvm", "path": "github-repos/MATLAB/SheffieldML-vargplvm/vargplvm-480201fde5ac84ff36e4a9f06d3fafeafa8ef06d/vargplvm/matlab/demos/demCmu35gplvmVargplvm3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3985938956923833}} {"text": "if 1\n % This is the setup used in the paper\n a=40;\n M=60; \n L=a*M;\n W=4;\n nrep=50;\nelse\n a=50;\n M=200; \n L=a*M; \n W=4;\n nrep=50; \n \nend;\n\nsystem('rm crossover.log');\n%for gl=M:M:20*M\nfor gl=M:M:16*M\n s=sprintf('./time_dgt_fb %i %i %i %i %i %i >> crossover.log\\n',a,M,L,W,gl,nrep);\n \n disp(s);\n system(s);\nend;\n\ns=sprintf('./time_dgt_fac %i %i %i %i %i > crossover.ref\\n',a,M,L,W,nrep);\n\ndisp(s);\nsystem(s);\n\nsystem('rm crossover_real.log');\n%for gl=M:M:20*M\nfor gl=M:M:16*M\n s=sprintf('./time_dgtreal_fb %i %i %i %i %i %i >> crossover_real.log\\n',a,M,L,W,gl,nrep);\n \n disp(s);\n system(s);\nend;\n\ns=sprintf('./time_dgtreal_fac %i %i %i %i %i > crossover_real.ref\\n',a,M,L,W,nrep);\n\ndisp(s);\nsystem(s);\n\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/timing/compute_crossover.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.39859389569238324}} {"text": "function [selectedSlices, nrows, ncols] = montageDims(vw);\n%\n% [selectedSlices, nrows, ncols] = montageDims(vw);\n%\n% Return the dimensions of a montage view (for inplanes, flat\n% levels). selectedSlices is a vector of the slices currently\n% being displayed in the montage, nrows and ncols are the rows\n% and columns in the image. Takes into account an optional\n% 'columnMajor' setting, so montages can run across rows \n% or columns (though the interface to set this isn't written\n% yet).\n% \n% ras, 05/05\nviewType = viewGet(vw,'viewType');\nui = viewGet(vw,'ui');\nswitch viewType\n case 'Inplane',\n firstSlice = viewGet(vw, 'curSlice');\n nSlices = get(ui.montageSize.sliderHandle,'Value');\n selectedSlices = firstSlice:firstSlice+nSlices-1;\n case 'Flat',\n selectedSlices = getFlatLevelSlices(vw); \n nSlices = length(selectedSlices);\n otherwise,\n error('drawROIsMontage: no support for this vw type.');\nend\n\nselectedSlices = selectedSlices(selectedSlices <= viewGet(vw, 'numSlices'));\nnSlices = length(selectedSlices);\n\nif isfield(vw.ui,'settings') && isfield(vw.ui.settings,'columnMajor') ...\n && vw.ui.settings.columnMajor==1\n % montage is column-major\n\tncols = ceil(sqrt(nSlices));\n\tnrows = ceil(nSlices/ncols);\nelse\n % montage is row-major\n\tnrows = ceil(sqrt(length(selectedSlices)));\n\tncols = ceil(nSlices/nrows);\nend\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/View/Montage/montageDims.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39852653661407966}} {"text": "function [ min_cost ] = get_min_cost( compressResultsDir, qFile, lamda, epsilon_soft )\n%GET_MIN_COST Summary of this function goes here\n% Detailed explanation goes here\n \n q_file_t = fopen(qFile);\n observe_value = fscanf(q_file_t, '%d');\n fclose(q_file_t);\n observe_value(find(observe_value > 100)) = 100; % remove some unusual counts\n q_value = (1 - mapminmax(observe_value', 0, 1))'; % actually same as in CVPR_W 2013\n \n fileExt = '*.txt';\n files = dir(fullfile(compressResultsDir,fileExt)); \n \n % get the union cost \n saved_ID = [];\n for i = 0:length(files)-1\n \n fileCnt = num2str(i);\n fileName = [compressResultsDir, fileCnt, '.txt'];\n \n file_t = fopen(fileName);\n point_ID = fscanf(file_t, '%d');\n fclose(file_t);\n \n saved_ID = union(saved_ID, point_ID);\n end\n \n % sum the q_value * if_compress\n min_cost = 0;\n for i = 1:1:length(saved_ID)\n min_cost = min_cost + q_value(saved_ID(i));\n end\n \n% % sum the soft part \n% for i = 1:length(files)\n% min_cost = min_cost + lamda*epsilon_soft(i,:);\n% end\n \nend\n\n", "meta": {"author": "HuanYin94", "repo": "map_compression", "sha": "3c126a5cc832bf51f0c313c6ad8aa58a2930312c", "save_path": "github-repos/MATLAB/HuanYin94-map_compression", "path": "github-repos/MATLAB/HuanYin94-map_compression/map_compression-3c126a5cc832bf51f0c313c6ad8aa58a2930312c/gurobi/before/q_ILP/DP_cut_run/get_min_cost.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39852653661407966}} {"text": "function stats = rsa_regression(obj,design,study,varargin)\n% Representational similarity-based analysis, including inferences about a stimulus/task model \n% Constructs a rep. dissim. matrix (RDM) based on spatial covariance across images.\n% Takes a stimulus/experimental design (design), which is a set of binary regressors specifying groups of images. \n% Include a second grouping variable (study) of integers coding for blocks of images to resample within.\n% The function regresses the RSA matrix on the design and returns bootstrapped \n% statistics on each design regressor. \n% This method can be used to analyze generalizability across constructs and studies. \n% e.g., see reference to Kragel et al. 2018 below. In this case, this method tests whether\n% patterns of activity in an fmri data object are generalizable across\n% different groupings specified in the matrix 'design'. 'study' is an integer\n% valued vector grouping images according to study. This script does not\n% currently implement repeated measures designs (only include one image per\n% subject). See Kragel et al. (2018) Nature Neuroscience for details.\n%\n% Usage:\n% ::\n%\n% stats = rsa_regression(obj,design);\n%\n% ..\n% Author and copyright information:\n%\n% Copyright (C) 2018 Phil Kragel\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n% ..\n%\n% :Inputs:\n%\n% **obj:**\n% An image object with one or more images loaded\n%\n% **design:**\n% A binary matrix where each column corresponds to a grouping\n% variable and each row corresponds to an observation.\n%\n% :Optional inputs:\n%\n%\t**'average_Euclidean'**\n%\t\tUse Euclidean distance of the response averaged across all voxels (univariate distance)\n%\t**'euclidean'**\n%\t\tUse Euclidean distance computed using all voxels\n%\t**'cosine'**\n%\t\tCompute distance using cosine similarity computed using all voxelst\n%\t**'correlation'**\n%\t\tCompute distance using correlation distance (1 - Pearson R) computed using all voxels (default)\n% :Outputs:\n% **stats:**\n% Structure including: \n% gen_index - sample estimate of generalization indices\n% bs_gen_index - bootstrap distribution for each generalization index\n% ste - standard error of generalization index\n% Z - Z score for each parameter\n% p - p value for each parameter\n% sig - significance test at FDR q < .05\n%\n% :Examples:\n% Example 1:\n% ----------------------------------------------------------------------\n% Download images from Kragel et al. 2018 Nature Neuroscience\n% Kragel, P. A., Kano, M., Van Oudenhove, L., Ly, H. G., Dupont, P., Rubio, A., ? Wager, T. D. (2018). Generalizable representations of pain, cognitive control, and negative emotion in medial frontal cortex. Nature Neuroscience, 21(2), 283?289. doi:10.1038/s41593-017-0051-7 \n% 270 subject-level images systematically sampled from 18 studies across 3 domains\n% [data_obj, names] = load_image_set('kragel18_alldata');\n% \n% Amygdala=select_atlas_subset(load_atlas('Canlab2018'),{'Amy'});\n% masked_dat=apply_mask(data_obj,Amygdala);\n% \n% dsgn = condf2indic(ceil(data_obj.metadata_table.Studynumber/6));\n% study = data_obj.metadata_table.Studynumber;\n% stats = rsa_regression(masked_dat,dsgn,study);\n%\n% ..\n% Programmers' notes:\n% List dates and changes here, and author of changes\n% 01/08/2018, created function, Phil Kragel\n% ..\n\n\n%% convert design matrix into dissimilarity matrix\nmodelRDM=[];\nfor i=1:size(design,2) %for each specified grouping\n modelRDM(:,i)=pdist(design(:,i),'seuclidean'); %#ok<*AGROW> %compute squared euclidean distance\n modelRDM(:,i)=100000*modelRDM(:,i)/sum(modelRDM(:,i)); %normalize and scale\nend\n\n%supress distance warning - 0 value distances get removed...\nwarning('off','stats:pdist:ConstantPoints')\n\nif any(strcmp([varargin{:}],'average_Euclidean'))\n brainRDM=pdist(nanmean(obj.dat)'); %distance is based on region average\nelseif any(strcmp([varargin{:}],'euclidean'))\n brainRDM=pdist(obj.dat'); %euclidean\n\nelseif any(strcmp([varargin{:}],'cosine'))\n brainRDM=pdist(obj.dat','cosine'); %euclidean\n\nelse %default to correlation\n brainRDM=pdist(obj.dat','correlation');\nend\nbrainRDM(brainRDM<.00001)=NaN;\ngen_index= glmfit([ones(length(modelRDM),1) double(modelRDM)],brainRDM','normal','constant','off');\n\nnum_it=1000;\nbs_gen_index=zeros(num_it,size(gen_index,1));\nparfor it=1:num_it\nbs_gen_index(it,:) = random_resample_within_study(modelRDM,obj,study,varargin);\nend\n\n%compute stats from bootstrap distribution (normal approx) \nb_ste = squeeze(nanstd(bs_gen_index));\nb_mean = squeeze(nanmean(bs_gen_index));\nb_ste(b_ste == 0) = Inf;\nb_Z = b_mean ./ b_ste;\nb_P = 2 * (1 - normcdf(abs(b_Z)));\n\n% assign stats to output\nstats.gen_index=gen_index;\nstats.Z=b_Z;\nstats.p=b_P;\nstats.sig=b_P.\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @deffn Constant eulergamma ()\n%% Return Euler--Mascheroni constant.\n%%\n%% @example\n%% @group\n%% eulergamma\n%% @result{} (sym) \u03b3\n%%\n%% vpa (eulergamma ())\n%% @result{} (sym) 0.57721566490153286060651209008240\n%% @end group\n%% @end example\n%%\n%% @seealso{catalan}\n%% @end deffn\n\n%% Author: Carn\u00eb Draug\n%% Keywords: symbolic, constants\n\nfunction g = eulergamma ()\n\n if (nargin ~= 0)\n print_usage ();\n end\n\n g = pycall_sympy__ ('return sympy.S.EulerGamma,');\nend\n\n\n%!error catalan (sym(1))\n%!assert (double (eulergamma ()) > 0.577215664901)\n%!assert (double (eulergamma ()) < 0.577215664902)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/eulergamma.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3984685421939299}} {"text": "function [X,labels,class_names] = ml_load_data(filename,format,label_j)\n%ML_LOAD_DATA Loads a data set in which the rows are samples and the\n%columns are features/dimensions. The last column should contain the class\n%label. If not specified \n%\n%\n%\n% input -----------------------------------------------------------------\n%\n% o filename : string, path to file\n%\n% o formate : string, [.txt,.csv,...]\n%\n% o label_j : (1 x 1), column index which containts the class labels\n%\n% output ----------------------------------------------------------------\n%\n% o X : (N x D), dataset of N samples of dimension D\n%\n% o labels : (N x 1), N labels \n%\n\ndata = [];\nif ~exist('label_j','var'), label_j = []; end\n\nif strcmp(format,'csv') == true\n\n data = readtable(filename);\n\nelseif strcmp(format,'txt') == true\n \n data = load(filename);\nelse\n warning(['No such format: ' froamt ' implemented!']); \nend\n \nif isempty(label_j)\n X = data;\nelse\n \n \n \n X = table2array(data(:,1:end-1));\n labels = table2array(data(:,end));\n class_names = unique(labels);\n \n \n % if data is string convert to numbers\n if iscellstr(X) == true\n x_unique = unique(X);\n cellfind = @(string)(@(cell_contents)(strcmp(string,cell_contents)));\n X_tmp = zeros(size(X));\n % bUnknown = false;\n \n % if sum(cellfun(cellfind('?'),x_unique)) == true, bUnknown=true;end\n \n v = 0;\n for i=1:length(x_unique)\n \n \n idx = cellfun(cellfind(x_unique{i}),X); \n \n if strcmp(x_unique{i},'?') == true\n X_tmp(idx) = -1;\n else\n X_tmp(idx) = v;\n v = v + 1;\n end \n end\n \n X = X_tmp;\n end\n \n \n % if labels are strings convert them to numbers\n if iscellstr(class_names) == true\n labels_tmp = zeros(size(labels,1),1);\n cellfind = @(string)(@(cell_contents)(strcmp(string,cell_contents)));\n \n for i=1:size(class_names,1)\n idx = cellfun(cellfind(class_names{i}),labels); \n labels_tmp(idx) = i;\n end\n \n labels = labels_tmp;\n \n end\n \n \nend\n\nend\n\n\n\n\n", "meta": {"author": "epfl-lasa", "repo": "ML_toolbox", "sha": "61cc1245a2abe0c86a737d7b48bd645b28ffebee", "save_path": "github-repos/MATLAB/epfl-lasa-ML_toolbox", "path": "github-repos/MATLAB/epfl-lasa-ML_toolbox/ML_toolbox-61cc1245a2abe0c86a737d7b48bd645b28ffebee/functions/data_loading/ml_load_data.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.672331699179286, "lm_q1q2_score": 0.3984685421939299}} {"text": "function [uu, erriter, num, tt] = test_CMF3D\n%\n% Function test_CMF3D\n%\n% The matlab function to show how to use the functions CMF3D_Mex and CMF3D_GPU\n%\n% Before using the functions CMF3D_mex, you should compile it as follows:\n% >> mex CMF3D_mex.c\n%\n% Before using the functions CMF3D_GPU, you should compile the GPU program:\n% >> nvmex -f nvmexopts.bat CMF3D_GPU.cu -IC:\\cuda\\v4.0\\include -LC:\\cuda\\v4.0\\lib\\x64 -lcufft -lcudart\n%\n% After compilation, you can define all the parameters (penalty, C_s, C_t, para) as follows: \n% \n% - penalty: point to the edge-weight penalty parameters to\n% total-variation function.\n% \n% For the case without incorporating image-edge weights, \n% penalty is given by the constant everywhere. For the case \n% with image-edge weights, penalty is given by the pixelwise \n% weight function:\n% \n% for example, penalty(x) = b/(1 + a*| grad f(x)|) where b,a > 0 .\n% \n% - C_s: point to the capacities of source flows ps\n% \n% - C_t: point to the capacities of sink flows pt\n% \n% - para: a sequence of parameters for the algorithm\n% para[0,1,2]: rows, cols, heights of the given image\n% para[3]: the maximum iteration number\n% para[4]: the error bound for convergence\n% para[5]: cc for the step-size of augmented Lagrangian method\n% para[6]: the step-size for the graident-projection step to the\n% total-variation function. Its optimal range is [0.1, 0.17].\n% \n%\n% Example:\n% \n% >> [u, erriter, i, timet] = CMF3D_GPU(single(penalty), single(Cs), single(Ct), single(para));\n%\n% >> us = max(u, beta); % where beta in (0,1)\n%\n% >> figure, loglog(erriter,'DisplayName','erriterN');figure(gcf)\n%\n% >> isosurface(u,0.5), axis([1 rows 1 cols 1 heights]), daspect([1 1 1]);\n%\n%\n% Please email Jing Yuan (cn.yuanjing@gmail.com) for any questions, \n% suggestions and bug reports\n%\n% The Software is provided \"as is\", without warranty of any kind.\n%\n% Version 1.0\n% https://sites.google.com/site/wwwjingyuan/ \n%\n% Copyright 2011 Jing Yuan (cn.yuanjing@gmail.com) \n%\n\nnfi_data = load_nii('IM_0190_frame_01.nii');\nur = double(nfi_data.img)/255;\n%ur = ur(1:100,1:100,1:100);\n\n[rows,cols,heights] = size(ur);\n\nvarParas = [rows; cols; heights; 200; 5e-4; 0.35; 0.11];\n% para 0,1,2 - rows, cols, heights of the given image\n% para 3 - the maximum number of iterations\n% para 4 - the error bound for convergence\n% para 5 - cc for the step-size of augmented Lagrangian method\n% para 6 - the step-size for the graident-projection of p\n\npenalty = 0.2*ones(rows, cols, heights);\n\nulab(1) = 0.2;\nulab(2) = 0.7;\n\n% build up the priori L_2 data terms\nfCs = abs(ur - ulab(1));\nfCt = abs(ur - ulab(2));\n\n% ----------------------------------------------------------------------\n% Use the function CMF3D_mex to run the algorithm on CPU\n% ----------------------------------------------------------------------\n\n%[uu, erriter,num,tt] = CMF3D_mex(single(penalty), single(fCs), single(fCt), single(varParas));\n\n% ----------------------------------------------------------------------\n% Use the function CMF3D_GPU to run the algorithm on GPU\n% ----------------------------------------------------------------------\n\n[uu, erriter,num,tt] = CMF3D_GPU(single(penalty), single(fCs), single(fCt), single(varParas));", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/34126-fast-continuous-max-flow-algorithm-to-2d3d-image-segmentation/CMF v1.0/test_CMF3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723316860482762, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.39846853441161895}} {"text": "function sparse_grid_mixed_size_tests ( )\n\n%*****************************************************************************80\n%\n%% SPARSE_GRID_MIXED_SIZE_TESTS calls SPARSE_GRID_MIXED_SIZE_TEST with various arguments.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 March 2011\n%\n% Author:\n%\n% John Burkardt\n%\n% Local Parameters:\n%\n% Local, real TOL, a tolerance for point equality.\n% A value of sqrt ( eps ) is reasonable, and will allow the code to\n% consolidate points which are equal, or very nearly so. A value of\n% -1.0, on the other hand, will force the code to use every point, regardless\n% of duplication.\n%\n addpath ( '../sandia_rules' );\n\n tol = sqrt ( eps );\n\n fprintf ( 1, '\\n' );\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SPARSE_GRID_MIXED_SIZE_TESTS\\n' );\n fprintf ( 1, ' MATLAB version\\n' );\n fprintf ( 1, ' Call SPARSE_GRID_MIXED_SIZE_TEST with various arguments.\\n' );\n fprintf ( 1, ' All tests will use a point equality tolerance of %e\\n', tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 1, 1 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 1, 3 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 1, 4 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 1, 7 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 1, 8 ]';\n alpha = [ 0.0, 1.5 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 2, 9 ]';\n alpha = [ 0.0, 0.5 ]';\n beta = [ 0.0, 1.5 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 6, 4 ]';\n alpha = [ 2.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n\n dim_num = 3;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 1, 2, 5 ]';\n alpha = [ 0.0, 0.0, 0.0 ]';\n beta = [ 0.0, 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n%\n% Dimension 2, Rule 13\n%\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 13, 13 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n%\n% Dimension 2, Rule 16\n%\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 2;\n rule = [ 16, 16 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n%\n% Dimension 2, Rule 17\n%\n dim_num = 2;\n level_max_min = 0;\n level_max_max = 4;\n rule = [ 17, 17 ]';\n alpha = [ 0.0, 0.0 ]';\n beta = [ 0.0, 0.0 ]';\n sparse_grid_mixed_size_test ( dim_num, level_max_min, level_max_max, ...\n rule, alpha, beta, tol );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SPARSE_GRID_MIXED_SIZE_TESTS\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n rmpath ( '../sandia_rules' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/sparse_grid_mixed/sparse_grid_mixed_size_tests.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6477982247516796, "lm_q1q2_score": 0.39845282086962547}} {"text": "function [n]=nnz(a)\n% Returns TT-ranks of the given tensor in TT-format\n% [N]=NNZ(A) Returns number of non zero elements in the TT representation of A\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\nn=nnz(a.core);\nreturn\nend\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/@tt_tensor/nnz.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.398452816687293}} {"text": "function fem2d_project ( sample_prefix, fem_prefix )\n\n%*****************************************************************************80\n%\n%% MAIN is the main program for FEM2D_PROJECT.\n%\n% Discussion:\n%\n% FEM2D_PROJECT reads files defining a sampling of a (scalar or vector)\n% function of 2 arguments, and a list of nodes and triangular elements\n% to use for a finite element representation of the data.\n%\n% It computes a set of finite element coefficients to be associated with\n% the given finite element mesh, and writes that information to a file\n% so that an FEM representation is formed by the node, element and value\n% files.\n%\n% Usage:\n%\n% fem2d_project ( 'sample_prefix', 'fem_prefix' )\n%\n% where 'sample_prefix' is the common prefix for the SAMPLE files:\n%\n% * sample_prefix_nodes.txt, the node coordinates where samples were taken;\n% * sample_prefix_elements.txt, the nodes that make up each element;\n% * sample_prefix_values.txt, the sample values.\n%\n% and 'fem_prefix' is the common prefix for the FEM files:\n%\n% * fem_prefix_nodes.txt, the node coordinates;\n% * fem_prefix_elements.txt, the nodes that make up each element;\n% * fem_prefix_values.txt, the values defined at each node, \n% (computed by this program).\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 07 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string SAMPLE_PREFIX, the common prefix for sample files.\n%\n% Input, string FEM_PREFIX, the common prefix for FEM files.\n%\n timestamp ( );\n\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT\\n' );\n fprintf ( ' MATLAB version.\\n' );\n fprintf ( '\\n' );\n fprintf ( ' Read files defining a sampling of a function of 2 arguments.\\n' );\n fprintf ( ' Read files defining a finite element mesh.\\n' );\n fprintf ( ' Project the sample data onto the mesh, and\\n' );\n fprintf ( ' write a file of FEM coefficient values.\\n' );\n%\n% Get the number of command line arguments.\n%\n if ( nargin < 1 )\n\n fprintf ( '\\n' );\n sample_prefix = input ( 'Enter the sample file prefix: ' );\n\n else\n\n end\n\n if ( nargin < 2 )\n\n fprintf ( '\\n' );\n fem_prefix = input ( 'Enter the FEM file prefix: ' );\n\n else\n\n end\n%\n% Create the filenames.\n%\n sample_node_filename = strcat ( sample_prefix, '_nodes.txt' );\n sample_element_filename = strcat ( sample_prefix, '_elements.txt' );\n sample_value_filename = strcat ( sample_prefix, '_values.txt' );\n\n fem_node_filename = strcat ( fem_prefix, '_nodes.txt' );\n fem_element_filename = strcat ( fem_prefix, '_elements.txt' );\n fem_value_filename = strcat ( fem_prefix, '_values.txt' );\n%\n% Read the SAMPLE NODE, ELEMENT and VALUE data.\n%\n sample_node_xy = load ( sample_node_filename );\n sample_node_xy = sample_node_xy';\n [sample_node_dim, sample_node_num ] = size ( sample_node_xy );\n\n fprintf ( '\\n' );\n fprintf ( ' Sample node spatial dimension is %d\\n', sample_node_dim );\n fprintf ( ' Sample node number is %d\\n', sample_node_num );\n\n if ( sample_node_dim ~= 2 )\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT - Fatal error!\\n' );\n fprintf ( ' Spatial dimension of the sample nodes is not 2.\\n' );\n return\n end\n\n sample_element_node = load ( sample_element_filename );\n sample_element_node = sample_element_node';\n [ sample_element_order, sample_element_num ] = size ( sample_element_node );\n\n fprintf ( '\\n' );\n fprintf ( ' Sample element order is %d\\n', sample_element_order );\n fprintf ( ' Sample element number is %d\\n', sample_element_num );\n\n if ( sample_element_order ~= 3 )\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT - Fatal error!\\n' );\n fprintf ( ' The sample elements must be of order 3.\\n' );\n return\n end\n\n sample_value = load ( sample_value_filename );\n sample_value = sample_value';\n [ sample_value_dim, sample_value_num ] = size ( sample_value );\n\n fprintf ( '\\n' );\n fprintf ( ' Sample value dimension is %d\\n', sample_value_dim );\n fprintf ( ' Sample value number is %d\\n', sample_value_num );\n\n if ( sample_value_num ~= sample_node_num )\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT - Fatal error!\\n' );\n fprintf ( ' Number of sample nodes and values are not equal.\\n' );\n return\n end\n\n sample_value_min = min ( sample_value, [], 2 );\n sample_value_max = max ( sample_value, [], 2 );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Index SAMPLE Min SAMPLE Max\\n' );\n fprintf ( 1, '\\n' );\n for i = 1 : sample_value_dim\n fprintf ( 1, ' %8d %14f %14f\\n', i, sample_value_min(i), sample_value_max(i) );\n end\n%\n% Create the sample element neighbor array.\n%\n sample_element_neighbor = triangulation_order3_neighbor_triangles ( ...\n sample_element_num, sample_element_node );\n\n fprintf ( '\\n' );\n fprintf ( ' The element neighbor array has been computed.\\n' );\n%\n% Read the FEM NODE and ELEMENT data.\n%\n fem_node_xy = load ( fem_node_filename );\n fem_node_xy = fem_node_xy';\n [ fem_node_dim, fem_node_num ] = size ( fem_node_xy );\n\n fprintf ( '\\n' );\n fprintf ( ' The FEM node dimension is %d\\n', fem_node_dim );\n fprintf ( ' The FEM node number is %d\\n', fem_node_num );\n\n if ( fem_node_dim ~= 2 )\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT - Fatal error!\\n' );\n fprintf ( ' Spatial dimension of the nodes is not 2.\\n' );\n return\n end\n\n fem_element_node = load ( fem_element_filename );\n fem_element_node = fem_element_node';\n [ fem_element_order, fem_element_num ] = size ( fem_element_node );\n\n fprintf ( ' The FEM element order is %d\\n', fem_element_order );\n fprintf ( ' The FEM element number is %d\\n', fem_element_num );\n\n if ( fem_element_order ~= 3 )\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT - Fatal error!\\n' );\n fprintf ( ' The FEM elements must be of order 3.\\n' );\n return\n end\n%\n% Compute the FEM values.\n%\n fem_value_dim = sample_value_dim;\n fem_value_num = fem_node_num;\n\n fem_value = fem2d_transfer ( sample_element_order, ...\n sample_element_num, sample_value_dim, ...\n sample_node_xy, sample_element_node, sample_element_neighbor, sample_value, ...\n fem_node_num, fem_element_num, fem_value_dim, fem_node_xy, fem_element_node );\n%\n% Print Min, Max.\n%\n fem_value_min = min ( fem_value, [], 2 );\n fem_value_max = max ( fem_value, [], 2 );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Index FEM Min FEM Max\\n' );\n fprintf ( 1, '\\n' );\n for i = 1 : fem_value_dim\n fprintf ( 1, ' %8d %14f %14f\\n', i, fem_value_min(i), fem_value_max(i) );\n end\n%\n% Write the FEM values.\n%\n r8mat_write ( fem_value_filename, fem_value_dim, fem_value_num, fem_value );\n\n fprintf ( '\\n' );\n fprintf ( ' FEM value data written to \"%s\".\\n', fem_value_filename );\n%\n% Terminate.\n%\n fprintf ( '\\n' );\n fprintf ( 'FEM2D_PROJECT\\n' );\n fprintf ( ' Normal end of execution.\\n' );\n\n fprintf ( '\\n' );\n timestamp ( );\n\n return\nend\nfunction [ phi, dphidx, dphidy ] = basis_mn_t3 ( t, n, p )\n\n%*****************************************************************************80\n%\n%% BASIS_MN_T3: all bases functions at N points for a T3 element.\n%\n% Discussion:\n%\n% The routine is given the coordinates of the vertices of a triangle.\n% It works directly with these coordinates, and does not refer to a \n% reference element.\n%\n% The sides of the triangle DO NOT have to lie along a coordinate\n% axis.\n%\n% The routine evaluates the basis functions associated with each vertex,\n% and their derivatives with respect to X and Y.\n%\n% Physical Element T3:\n%\n% 3\n% / \\\n% / \\\n% / \\\n% / \\\n% 1---------2\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2006\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, real T(2,3), the vertices of the triangle. It is common to list \n% these points in counter clockwise order.\n%\n% Input, integer N, the number of evaluation points.\n%\n% Input, real P(2,N), the coordinates of the evaluation points.\n%\n% Output, real PHI(3,N), the basis functions at the evaluation points.\n%\n% Output, real DPHIDX(3,N), DPHIDY(3,N), the basis derivatives \n% at the evaluation points.\n%\n% Local parameters:\n%\n% Local, real AREA, is (twice) the area of the triangle.\n%\n area = t(1,1) * ( t(2,2) - t(2,3) ) ...\n + t(1,2) * ( t(2,3) - t(2,1) ) ...\n + t(1,3) * ( t(2,1) - t(2,2) );\n\n phi(1,1:n) = ( ( t(1,3) - t(1,2) ) * ( p(2,1:n) - t(2,2) ) ...\n - ( t(2,3) - t(2,2) ) * ( p(1,1:n) - t(1,2) ) );\n dphidx(1,1:n) = - ( t(2,3) - t(2,2) );\n dphidy(1,1:n) = ( t(1,3) - t(1,2) );\n\n phi(2,1:n) = ( ( t(1,1) - t(1,3) ) * ( p(2,1:n) - t(2,3) ) ...\n - ( t(2,1) - t(2,3) ) * ( p(1,1:n) - t(1,3) ) );\n dphidx(2,1:n) = - ( t(2,1) - t(2,3) );\n dphidy(2,1:n) = ( t(1,1) - t(1,3) );\n\n phi(3,1:n) = ( ( t(1,2) - t(1,1) ) * ( p(2,1:n) - t(2,1) ) ...\n - ( t(2,2) - t(2,1) ) * ( p(1,1:n) - t(1,1) ) );\n dphidx(3,1:n) = - ( t(2,2) - t(2,1) );\n dphidy(3,1:n) = ( t(1,2) - t(1,1) );\n%\n% Normalize.\n%\n phi(1:3,1:n) = phi(1:3,1:n) / area;\n dphidx(1:3,1:n) = dphidx(1:3,1:n) / area;\n dphidy(1:3,1:n) = dphidy(1:3,1:n) / area;\n\n return\nend\nfunction [ phi, dphidx, dphidy ] = basis_mn_t6 ( t, n, p )\n\n%*****************************************************************************80\n%\n%% BASIS_MN_T6: all bases for N points in a T6 element.\n%\n% Discussion:\n%\n% The routine is given the coordinates of the vertices and midside\n% nodes of a triangle. It works directly with these coordinates, and does \n% not refer to a reference element.\n%\n% This routine requires that the midside nodes be \"in line\"\n% with the vertices, that is, that the sides of the triangle be\n% straight. However, the midside nodes do not actually have to\n% be halfway along the side of the triangle. \n%\n% Physical element T6:\n%\n% This picture indicates the assumed ordering of the six nodes\n% of the triangle.\n%\n% 3\n% / \\\n% / \\\n% 6 5\n% / \\\n% / \\\n% 1-----4-----2\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 17 February 2006\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, real T(2,6), the nodal oordinates of the element.\n% It is common to list these points in counter clockwise order.\n%\n% Input, real P(2,N), the evaluation points.\n%\n% Output, real PHI(6,N), the basis functions at the evaluation points.\n%\n% Output, real DPHIDX(6,N), DPHIDY(6,N), the basis derivatives at the \n% evaluation points.\n%\n% Local Parameters:\n%\n% Local, real AREA, is (twice) the area of the triangle.\n%\n\n%\n% Basis function 1: PHI(X,Y) = G(3,2) * H(6,4) / normalization.\n%\n gx(1:n) = ( p(1,1:n) - t(1,2) ) * ( t(2,3) - t(2,2) ) ...\n - ( t(1,3) - t(1,2) ) * ( p(2,1:n) - t(2,2) );\n\n gn(1:n) = ( t(1,1) - t(1,2) ) * ( t(2,3) - t(2,2) ) ...\n - ( t(1,3) - t(1,2) ) * ( t(2,1) - t(2,2) );\n\n hx(1:n) = ( p(1,1:n) - t(1,4) ) * ( t(2,6) - t(2,4) ) ...\n - ( t(1,6) - t(1,4) ) * ( p(2,1:n) - t(2,4) );\n\n hn(1:n) = ( t(1,1) - t(1,4) ) * ( t(2,6) - t(2,4) ) ...\n - ( t(1,6) - t(1,4) ) * ( t(2,1) - t(2,4) );\n\n phi(1,1:n) = ( gx(1:n) .* hx(1:n) ) ./ ( gn(1:n) .* hn(1:n) );\n\n dphidx(1,1:n) = ( ( t(2,3) - t(2,2) ) * hx(1:n) ...\n + gx(1:n) * ( t(2,6) - t(2,4) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n dphidy(1,1:n) = -( ( t(1,3) - t(1,2) ) * hx(1:n) ...\n + gx * ( t(1,6) - t(1,4) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n%\n% Basis function 2: PHI(X,Y) = G(3,1) * H(4,5) / normalization.\n%\n gx(1:n) = ( p(1,1:n) - t(1,1) ) * ( t(2,3) - t(2,1) ) ...\n - ( t(1,3) - t(1,1) ) * ( p(2,1:n) - t(2,1) );\n\n gn(1:n) = ( t(1,2) - t(1,1) ) * ( t(2,3) - t(2,1) ) ...\n - ( t(1,3) - t(1,1) ) * ( t(2,2) - t(2,1) );\n\n hx(1:n) = ( p(1,1:n) - t(1,5) ) * ( t(2,4) - t(2,5) ) ...\n - ( t(1,4) - t(1,5) ) * ( p(2,1:n) - t(2,5) );\n\n hn(1:n) = ( t(1,2) - t(1,5) ) * ( t(2,4) - t(2,5) ) ...\n - ( t(1,4) - t(1,5) ) * ( t(2,2) - t(2,5) );\n\n phi(2,1:n) = ( gx(1:n) .* hx(1:n) ) ./ ( gn(1:n) .* hn(1:n) );\n\n dphidx(2,1:n) = ( ( t(2,3) - t(2,1) ) * hx(1:n) ...\n + gx(1:n) * ( t(2,4) - t(2,5) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n dphidy(2,1:n) = -( ( t(1,3) - t(1,1) ) * hx(1:n) ...\n + gx(1:n) * ( t(1,4) - t(1,5) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n%\n% Basis function 3: PHI(X,Y) = G(1,2) * H(5,6) / normalization.\n%\n gx(1:n) = ( p(1,1:n) - t(1,2) ) * ( t(2,1) - t(2,2) ) ...\n - ( t(1,1) - t(1,2) ) * ( p(2,1:n) - t(2,2) );\n\n gn(1:n) = ( t(1,3) - t(1,2) ) * ( t(2,1) - t(2,2) ) ...\n - ( t(1,1) - t(1,2) ) * ( t(2,3) - t(2,2) );\n\n hx(1:n) = ( p(1,1:n) - t(1,6) ) * ( t(2,5) - t(2,6) ) ...\n - ( t(1,5) - t(1,6) ) * ( p(2,1:n) - t(2,6) );\n\n hn(1:n) = ( t(1,3) - t(1,6) ) * ( t(2,5) - t(2,6) ) ...\n - ( t(1,5) - t(1,6) ) * ( t(2,3) - t(2,6) );\n\n phi(3,1:n) = ( gx(1:n) .* hx(1:n) ) ./ ( gn(1:n) .* hn(1:n) );\n\n dphidx(3,1:n) = ( ( t(2,1) - t(2,2) ) * hx(1:n) ...\n + gx(1:n) * ( t(2,5) - t(2,6) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n dphidy(3,1:n) = -( ( t(1,1) - t(1,2) ) * hx(1:n) ...\n + gx(1:n) * ( t(1,5) - t(1,6) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n%\n% Basis function 4: PHI(X,Y) = G(1,3) * H(2,3) / normalization.\n%\n gx(1:n) = ( p(1,1:n) - t(1,3) ) * ( t(2,1) - t(2,3) ) ...\n - ( t(1,1) - t(1,3) ) * ( p(2,1:n) - t(2,3) );\n\n gn(1:n) = ( t(1,4) - t(1,3) ) * ( t(2,1) - t(2,3) ) ...\n - ( t(1,1) - t(1,3) ) * ( t(2,4) - t(2,3) );\n\n hx(1:n) = ( p(1,1:n) - t(1,3) ) * ( t(2,2) - t(2,3) ) ...\n - ( t(1,2) - t(1,3) ) * ( p(2,1:n) - t(2,3) );\n\n hn(1:n) = ( t(1,4) - t(1,3) ) * ( t(2,2) - t(2,3) ) ...\n - ( t(1,2) - t(1,3) ) * ( t(2,4) - t(2,3) );\n\n phi(4,1:n) = ( gx(1:n) .* hx(1:n) ) ./ ( gn(1:n) .* hn(1:n) );\n\n dphidx(4,1:n) = ( ( t(2,1) - t(2,3) ) * hx(1:n) ...\n + gx(1:n) * ( t(2,2) - t(2,3) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n dphidy(4,1:n) = -( ( t(1,1) - t(1,3) ) * hx(1:n) ...\n + gx(1:n) * ( t(1,2) - t(1,3) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n%\n% Basis function 5: PHI(X,Y) = G(2,1) * H(3,1) / normalization.\n%\n gx(1:n) = ( p(1,1:n) - t(1,1) ) * ( t(2,2) - t(2,1) ) ...\n - ( t(1,2) - t(1,1) ) * ( p(2,1:n) - t(2,1) );\n\n gn(1:n) = ( t(1,5) - t(1,1) ) * ( t(2,2) - t(2,1) ) ...\n - ( t(1,2) - t(1,1) ) * ( t(2,5) - t(2,1) );\n\n hx(1:n) = ( p(1,1:n) - t(1,1) ) * ( t(2,3) - t(2,1) ) ...\n - ( t(1,3) - t(1,1) ) * ( p(2,1:n) - t(2,1) );\n\n hn(1:n) = ( t(1,5) - t(1,1) ) * ( t(2,3) - t(2,1) ) ...\n - ( t(1,3) - t(1,1) ) * ( t(2,5) - t(2,1) );\n\n phi(5,1:n) = ( gx(1:n) .* hx(1:n) ) ./ ( gn(1:n) .* hn(1:n) );\n\n dphidx(5,1:n) = ( ( t(2,2) - t(2,1) ) * hx(1:n) ...\n + gx(1:n) * ( t(2,3) - t(2,1) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n dphidy(5,1:n) = -( ( t(1,2) - t(1,1) ) * hx(1:n) ...\n + gx(1:n) * ( t(1,3) - t(1,1) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n%\n% Basis function 6: PHI(X,Y) = G(1,2) * H(3,2) / normalization.\n%\n gx(1:n) = ( p(1,1:n) - t(1,2) ) * ( t(2,1) - t(2,2) ) ...\n - ( t(1,1) - t(1,2) ) * ( p(2,1:n) - t(2,2) );\n\n gn(1:n) = ( t(1,6) - t(1,2) ) * ( t(2,1) - t(2,2) ) ...\n - ( t(1,1) - t(1,2) ) * ( t(2,6) - t(2,2) );\n\n hx(1:n) = ( p(1,1:n) - t(1,2) ) * ( t(2,3) - t(2,2) ) ...\n - ( t(1,3) - t(1,2) ) * ( p(2,1:n) - t(2,2) );\n\n hn(1:n) = ( t(1,6) - t(1,2) ) * ( t(2,3) - t(2,2) ) ...\n - ( t(1,3) - t(1,2) ) * ( t(2,6) - t(2,2) );\n\n phi(6,1:n) = ( gx(1:n) .* hx(1:n) ) ./ ( gn(1:n) .* hn(1:n) );\n\n dphidx(6,1:n) = ( ( t(2,1) - t(2,2) ) * hx(1:n) ...\n + gx(1:n) * ( t(2,3) - t(2,2) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n dphidy(6,1:n) = -( ( t(1,1) - t(1,2) ) * hx(1:n) ...\n + gx(1:n) * ( t(1,3) - t(1,2) ) ) ...\n ./ ( gn(1:n) .* hn(1:n) );\n\n return\nend\nfunction fem_value = fem2d_transfer ( sample_element_order, ...\n sample_element_num, sample_value_dim, sample_node_xy, ...\n sample_element_node, sample_element_neighbor, sample_value, fem_node_num, ...\n fem_element_num, fem_value_dim, fem_node_xy, fem_element_node )\n\n%*****************************************************************************80\n%\n%% FEM2D_TRANSFER \"transfers\" from one finite element mesh to another.\n%\n% Discussion:\n%\n% 1) the linear system A*X=B is defined with A being a full storage matrix.\n% This can easily be fixed using MATLAB's SPARSE facility.\n%\n% 2) the quadrature rule used is low order.\n%\n% 3) the triangular elements are assumed to be linear.\n%\n%\n% We are also given a set of \"sample\" finite element function defined\n% by SAMPLE_NODE_XY, SAMPLE_ELEMENT, and SAMPLE_VALUE.\n%\n% We are given a second finite element mesh, FEM_NODE_XY and\n% FEM_ELEMENT_NODE.\n%\n% Our aim is to \"project\" the sample data values into the finite element\n% space, that is, to come up with a finite element function FEM_VALUE which\n% well approximates the sample data.\n%\n% Now let W(x,y) represent a function interpolating the sample data, and\n% let Vk(x,y) represent the finite element basis function associated with\n% node K.\n%\n% Then we seek the coefficient vector U corresponding to a finite element\n% function U(x,y) of the form:\n%\n% U(x,y) = sum ( 1 <= K <= N ) Uk * Vk(x,y)\n%\n% To determine the coefficent vector entries U, we form a set of\n% projection equations. For node K at grid point (I,J), the associated\n% basis function Vk(x,y) is used to pose the equation:\n%\n% Integral U(x,y) Vk(x,y) dx dy = Integral W(x,y) Vk(x,y) dx dy\n%\n% The left hand side is the usual stiffness matrix times the desired\n% coefficient vector U. To complete the system, we simply need to\n% determine the right hand side, that is, the integral of the data function\n% W against the basis function Vk.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer SAMPLE_NODE_NUM, the number of nodes.\n%\n% Input, integer SAMPLE_ELEMENT_ORDER, the element order.\n%\n% Input, integer SAMPLE_ELEMENT_NUM, the number of elements.\n%\n% Input, integer SAMPLE_VALUE_DIM, the value dimension.\n%\n% Input, integer SAMPLE_VALUE_NUM, the number of values.\n%\n% Input, real SAMPLE_NODE_XY(2,SAMPLE_NODE_NUM), the nodes.\n%\n% Input, integer SAMPLE_ELEMENT_NODE(SAMPLE_ELEMENT_ORDER,SAMPLE_ELEMENT_NUM),\n% the nodes that make up each element.\n%\n% Input, integer SAMPLE_ELEMENT_NEIGHBOR(3,SAMPLE_ELEMENT_NUM),\n% the neighbor triangles.\n%\n% Input, real SAMPLE_VALUE(SAMPLE_VALUE_DIM,SAMPLE_NODE_NUM),\n% the values.\n%\n% Input, integer FEM_NODE_NUM, the number of nodes.\n%\n% Input, integer FEM_ELEMENT_ORDER, the element order.\n%\n% Input, integer FEM_ELEMENT_NUM, the number of elements.\n%\n% Input, integer FEM_VALUE_DIM, the value dimension.\n%\n% Input, integer FEM_VALUE_NUM, the number of values.\n%\n% Input, real FEM_NODE_XY(2,FEM_NODE_NUM), the nodes.\n%\n% Input, integer FEM_ELEMENT_NODE(FEM_ELEMENT_ORDER,FEM_ELEMENT_NUM),\n% the nodes that make up each element.\n%\n% Output, real FEM_VALUE(FEM_VALUE_DIM,FEM_VALUE_NUM),\n% the values.\n%\n project_node_num = 1;\n quad_num = 3;\n%\n% Assemble the coefficient matrix A and the right-hand side B.\n%\n b = zeros (fem_node_num,fem_value_dim);\n%\n% Define A as a sparse matrix.\n%\n a = sparse ( [], [], [], fem_node_num, fem_node_num );\n\n% a = zeros (fem_node_num,fem_node_num);\n\n for element = 1 : fem_element_num\n\n i1 = fem_element_node(1,element);\n i2 = fem_element_node(2,element);\n i3 = fem_element_node(3,element);\n\n area = 0.5 * ...\n ( fem_node_xy(1,i1) * ( fem_node_xy(2,i2) - fem_node_xy(2,i3) ) ...\n + fem_node_xy(1,i2) * ( fem_node_xy(2,i3) - fem_node_xy(2,i1) ) ...\n + fem_node_xy(1,i3) * ( fem_node_xy(2,i1) - fem_node_xy(2,i2) ) );\n%\n% Consider each quadrature point.\n% Here, we use the midside nodes as quadrature points.\n%\n for quad = 1 : quad_num\n\n q1 = quad;\n q2 = mod ( quad, quad_num ) + 1;\n\n nq1 = fem_element_node(q1,element);\n nq2 = fem_element_node(q2,element);\n\n xq = 0.5 * ( fem_node_xy(1,nq1) + fem_node_xy(1,nq2) );\n yq = 0.5 * ( fem_node_xy(2,nq1) + fem_node_xy(2,nq2) );\n wq = 1.0 / 3.0;\n%\n% Consider each test function in the element.\n%\n for ti1 = 1 : 3\n\n ti2 = mod ( ti1, 3 ) + 1;\n ti3 = mod ( ti1 + 1, 3 ) + 1;\n\n nti1 = fem_element_node(ti1,element);\n nti2 = fem_element_node(ti2,element);\n nti3 = fem_element_node(ti3,element);\n\n qi = 0.5 * ( ...\n ( fem_node_xy(1,nti3) - fem_node_xy(1,nti2) ) ...\n * ( yq - fem_node_xy(2,nti2) ) ...\n - ( fem_node_xy(2,nti3) - fem_node_xy(2,nti2) ) ...\n * ( xq - fem_node_xy(1,nti2) ) ) / area;\n%\n% The projection takes place here. The finite element code needs the value\n% of the sample function at the point (XQ,YQ). The call to PROJECTION\n% locates (XQ,YQ) in the triangulated mesh of sample data, and returns a\n% value produced by piecewise linear interpolation.\n%\n project_node_xy(1,1) = xq;\n project_node_xy(2,1) = yq;\n\n project_value = projection ( sample_node_xy, ...\n sample_element_order, sample_element_num, sample_element_node, ...\n sample_element_neighbor, sample_value_dim, sample_value, ...\n project_node_num, project_node_xy );\n\n b(nti1,1:fem_value_dim) = b(nti1,1:fem_value_dim) ...\n + area * wq * ( project_value(1:fem_value_dim,1)' * qi );\n%\n% Consider each basis function in the element.\n%\n for tj1 = 1 : 3\n\n tj2 = mod ( tj1, 3 ) + 1;\n tj3 = mod ( tj1 + 1, 3 ) + 1;\n\n ntj1 = fem_element_node(tj1,element);\n ntj2 = fem_element_node(tj2,element);\n ntj3 = fem_element_node(tj3,element);\n\n qj = 0.5 * ( ...\n ( fem_node_xy(1,ntj3) - fem_node_xy(1,ntj2) ) ...\n * ( yq - fem_node_xy(2,ntj2) ) ...\n - ( fem_node_xy(2,ntj3) - fem_node_xy(2,ntj2) ) ...\n * ( xq - fem_node_xy(1,ntj2) ) ) / area;\n\n a(nti1,ntj1) = a(nti1,ntj1) + area * wq * ( qi * qj );\n\n end\n\n end\n\n end\n\n end\n%\n% Solve the linear system A * X = B.\n%\n fem_value = ( a \\ b )';\n\n return\nend\nfunction isgn = i4col_compare ( m, n, a, i, j )\n\n%*****************************************************************************80\n%\n%% I4COL_COMPARE compares columns I and J of a integer array.\n%\n% Example:\n%\n% Input:\n%\n% M = 3, N = 4, I = 2, J = 4\n%\n% A = (\n% 1 2 3 4\n% 5 6 7 8\n% 9 10 11 12 )\n%\n% Output:\n%\n% ISGN = -1\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 June 2005\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer M, N, the number of rows and columns.\n%\n% Input, integer A(M,N), an array of N columns of vectors of length M.\n%\n% Input, integer I, J, the columns to be compared.\n% I and J must be between 1 and N.\n%\n% Output, integer ISGN, the results of the comparison:\n% -1, column I < column J,\n% 0, column I = column J,\n% +1, column J < column I.\n%\n\n%\n% Check.\n%\n if ( i < 1)\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4COL_COMPARE - Fatal error!\\n' );\n fprintf ( 1, ' Column index I = %d < 1.\\n', i );\n error ( 'I4COL_COMPARE - Fatal error!' );\n end\n\n if ( n < i )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4COL_COMPARE - Fatal error!\\n' );\n fprintf ( 1, ' N = %d < column index I = %d.\\n', n, i );\n error ( 'I4COL_COMPARE - Fatal error!' );\n end\n\n if ( j < 1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4COL_COMPARE - Fatal error!\\n' );\n fprintf ( 1, ' Column index J = %d < 1.\\n', j );\n error ( 'I4COL_COMPARE - Fatal error!' );\n end\n\n if ( n < j )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4COL_COMPARE - Fatal error!\\n' );\n fprintf ( 1, ' N = %d < column index J = %d.\\n', n, j );\n error ( 'I4COL_COMPARE - Fatal error!' );\n end\n\n isgn = 0;\n\n if ( i == j )\n return\n end\n\n k = 1;\n\n while ( k <= m )\n\n if ( a(k,i) < a(k,j) )\n isgn = -1;\n return\n elseif ( a(k,j) < a(k,i) )\n isgn = +1;\n return\n end\n\n k = k + 1;\n\n end\n\n return\nend\nfunction a = i4col_sort_a ( m, n, a )\n\n%*****************************************************************************80\n%\n%% I4COL_SORT_A ascending sorts an I4COL.\n%\n% Discussion:\n%\n% In lexicographic order, the statement \"X < Y\", applied to two real\n% vectors X and Y of length M, means that there is some index I, with\n% 1 <= I <= M, with the property that\n%\n% X(J) = Y(J) for J < I,\n% and\n% X(I) < Y(I).\n%\n% In other words, the first time they differ, X is smaller.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 20 February 2005\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer M, the number of rows of A, and the length of\n% a vector of data.\n%\n% Input, integer N, the number of columns of A.\n%\n% Input, integer A(M,N), the array of N columns of M-vectors.\n%\n% Output, integer A(M,N), the columns of A have been sorted in ascending\n% lexicographic order.\n%\n if ( m <= 0 )\n return\n end\n\n if ( n <= 1 )\n return\n end\n%\n% Initialize.\n%\n indx = 0;\n isgn = 0;\n%\n% Call the external heap sorter.\n%\n while ( 1 )\n\n [ indx, i, j ] = sort_heap_external ( n, indx, isgn );\n%\n% Interchange the I and J objects.\n%\n if ( 0 < indx )\n\n a = i4col_swap ( m, n, a, i, j );\n%\n% Compare the I and J objects.\n%\n elseif ( indx < 0 )\n\n isgn = i4col_compare ( m, n, a, i, j );\n\n elseif ( indx == 0 )\n\n break\n\n end\n\n end\n\n return\nend\nfunction a = i4col_swap ( m, n, a, i, j )\n\n%*****************************************************************************80\n%\n%% I4COL_SWAP swaps columns I and J of a integer array of column data.\n%\n% Example:\n%\n% Input:\n%\n% M = 3, N = 4, I = 2, J = 4\n%\n% A = (\n% 1 2 3 4\n% 5 6 7 8\n% 9 10 11 12 )\n%\n% Output:\n%\n% A = (\n% 1 4 3 2\n% 5 8 7 6\n% 9 12 11 10 )\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 February 2005\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer M, N, the number of rows and columns in the array.\n%\n% Input, integer A(M,N), an array of N columns of length M.\n%\n% Input, integer I, J, the columns to be swapped.\n%\n% Output, integer A(M,N), the array, with columns I and J swapped.\n%\n if ( i < 1 || n < i || j < 1 || n < j )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4COL_SWAP - Fatal error!\\n' );\n fprintf ( 1, ' I or J is out of bounds.\\n' );\n fprintf ( 1, ' I = %d\\n', i );\n fprintf ( 1, ' J = %d\\n', j );\n fprintf ( 1, ' N = %d\\n', n );\n error ( 'I4COL_SWAP - Fatal error!' );\n end\n\n if ( i == j )\n return\n end\n\n col(1:m) = a(1:m,i)';\n a(1:m,i) = a(1:m,j);\n a(1:m,j) = col(1:m)';\n\n return\nend\nfunction sample_value = projection ( fem_node_xy, ...\n fem_element_order, fem_element_num, fem_element_node, ...\n fem_element_neighbor, fem_value_dim, fem_value, sample_node_num, ...\n sample_node_xy )\n\n%*****************************************************************************80\n%\n%% PROJECTION evaluates an FEM function on a T3 or T6 triangulation.\n%\n% Discussion:\n%\n% Note that the sample values returned are true values of the underlying\n% finite element function. They are NOT produced by constructing some\n% other function that interpolates the data at the finite element nodes\n% (something which MATLAB's griddata function can easily do.) Instead,\n% each sampling node is located within one of the associated finite\n% element triangles, and the finite element function is developed and\n% evaluated there.\n%\n% MATLAB's scattered data interpolation is wonderful, but it cannot\n% be guaranteed to reproduce the finite element function corresponding\n% to nodal data. This routine can (or at least tries to%).\n%\n% So if you are using finite elements, then using THIS routine\n% (but not MATLAB's griddata function), what you see is what you have%\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 30 June 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer FEM_NODE_NUM, the number of nodes.\n%\n% Input, real FEM_NODE_XY(2,FEM_NODE_NUM), the coordinates\n% of the nodes.\n%\n% Input, integer FEM_ELEMENT_ORDER, the order of the elements,\n% either 3 or 6.\n%\n% Input, integer FEM_ELEMENT_NUM, the number of triangles.\n%\n% Input, integer FEM_ELEMENT_NODE(FEM_ELEMENT_ORDER,FEM_ELEMENT_NUM), the\n% nodes that make up each triangle.\n%\n% Input, integer FEM_ELEMENT_NEIGHBOR(3,FEM_ELEMENT_NUM), the\n% index of the neighboring triangle on each side, or -1 if no neighbor there.\n%\n% Input, integer FEM_VALUE_DIM, the \"dimension\" of the values.\n%\n% Input, real FEM_VALUE(FEM_VALUE_DIM,FEM_NODE_NUM), the\n% finite element coefficient values at each node.\n%\n% Input, integer SAMPLE_NODE_NUM, the number of sample nodes.\n%\n% Input, real SAMPLE_NODE_XY(2,SAMPLE_NODE_NUM), the sample nodes.\n%\n% Output, real SAMPLE_VALUE(FEM_VALUE_DIM,SAMPLE_NODE_NUM),\n% the sampled values.\n%\n sample_value = zeros(fem_value_dim,sample_node_num);\n%\n% For each sample point: find the triangle T that contains it,\n% and evaluate the finite element function there.\n%\n for j = 1 : sample_node_num\n\n p_xy(1:2,1) = sample_node_xy(1:2,j);\n%\n% Find the triangle T that contains the point.\n%\n t = triangulation_search_delaunay ( ...\n fem_node_xy, fem_element_num, fem_element_node, ...\n fem_element_neighbor, p_xy );\n\n if ( t == -1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'PROJECTION - Fatal error!\\n' );\n fprintf ( 1, ' Triangulation search failed!\\n' );\n error ( 'PROJECTION - Fatal error!' );\n end\n%\n% Evaluate the finite element basis functions at the point in T.\n%\n t_node(1:fem_element_order) = fem_element_node(1:fem_element_order,t);\n\n t_xy(1:2,1:fem_element_order) = fem_node_xy(1:2,t_node);\n\n if ( fem_element_order == 3 )\n b = basis_mn_t3 ( t_xy, 1, p_xy );\n elseif ( fem_element_order == 6 )\n b = basis_mn_t6 ( t_xy, 1, p_xy );\n end\n%\n% Multiply by the finite element values to get the sample values.\n%\n for i = 1 : fem_value_dim\n sample_value(i,j) = fem_value(i,t_node(1:fem_element_order)) ...\n * b(1:fem_element_order);\n end\n\n end\n\n return\nend\nfunction r8mat_write ( output_filename, m, n, table )\n\n%*****************************************************************************80\n%\n%% R8MAT_WRITE writes an R8MAT file.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 29 June 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string OUTPUT_FILENAME, the output filename.\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real TABLE(M,N), the points.\n%\n\n%\n% Open the file.\n%\n output_unit = fopen ( output_filename, 'wt' );\n\n if ( output_unit < 0 ) \n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R8MAT_WRITE - Error!\\n' );\n fprintf ( 1, ' Could not open the output file.\\n' );\n error ( 'R8MAT_WRITE - Error!' );\n end\n%\n% Write the data.\n%\n% For greater precision, try:\n%\n% fprintf ( output_unit, ' %24,16f', table(i,j) );\n%\n for j = 1 : n\n for i = 1 : m\n fprintf ( output_unit, ' %14f', table(i,j) );\n end\n fprintf ( output_unit, '\\n' );\n end\n%\n% Close the file.\n%\n fclose ( output_unit );\n\n return\nend\nfunction [ indx, i, j ] = sort_heap_external ( n, indx, isgn )\n\n%*****************************************************************************80\n%\n%% SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order.\n%\n% Discussion:\n%\n% The actual list of data is not passed to the routine. Hence this\n% routine may be used to sort integers, reals, numbers, names,\n% dates, shoe sizes, and so on. After each call, the routine asks\n% the user to compare or interchange two items, until a special\n% return value signals that the sorting is completed.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 February 2004\n%\n% Author:\n%\n% Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf.\n% MATLAB version by John Burkardt\n%\n% Reference:\n%\n% Albert Nijenhuis, Herbert Wilf.\n% Combinatorial Algorithms,\n% Academic Press, 1978, second edition,\n% ISBN 0-12-519260-6.\n%\n% Parameters:\n%\n% Input, integer N, the number of items to be sorted.\n%\n% Input, integer INDX, the main communication signal.\n% The user must set INDX to 0 before the first call.\n% Thereafter, the user should set the input value of INDX\n% to the output value from the previous call.\n%\n% Input, integer ISGN, results of comparison of elements I and J.\n% (Used only when the previous call returned INDX less than 0).\n% ISGN <= 0 means I is less than or equal to J;\n% 0 <= ISGN means I is greater than or equal to J.\n%\n% Output, integer INDX, the main communication signal.\n% If INDX is\n%\n% greater than 0, the user should:\n% * interchange items I and J;\n% * call again.\n%\n% less than 0, the user should:\n% * compare items I and J;\n% * set ISGN = -1 if I < J, ISGN = +1 if J < I;\n% * call again.\n%\n% equal to 0, the sorting is done.\n%\n% Output, integer I, J, the indices of two items.\n% On return with INDX positive, elements I and J should be interchanged.\n% On return with INDX negative, elements I and J should be compared, and\n% the result reported in ISGN on the next call.\n%\n persistent i_save;\n persistent j_save;\n persistent k;\n persistent k1;\n persistent n1;\n \n if ( isempty ( i_save ) )\n i_save = -1;\n end\n \n if ( isempty ( j_save ) )\n j_save = -1;\n end\n%\n% INDX = 0: This is the first call.\n%\n if ( indx == 0 )\n \n k = floor ( n / 2 );\n k1 = k;\n n1 = n;\n%\n% INDX < 0: The user is returning the results of a comparison.\n%\n elseif ( indx < 0 )\n\n if ( indx == -2 )\n\n if ( isgn < 0 )\n i_save = i_save + 1;\n end\n\n j_save = k1;\n k1 = i_save;\n indx = -1;\n i = i_save;\n j = j_save;\n return;\n end\n\n if ( 0 < isgn )\n indx = 2;\n i = i_save;\n j = j_save;\n return;\n end\n\n if ( k <= 1 )\n\n if ( n1 == 1 )\n i_save = 0;\n j_save = 0;\n indx = 0;\n else\n i_save = n1;\n n1 = n1 - 1;\n j_save = 1;\n indx = 1;\n end\n\n i = i_save;\n j = j_save;\n return;\n\n end\n\n k = k - 1;\n k1 = k;\n%\n% 0 < INDX, the user was asked to make an interchange.\n%\n elseif ( indx == 1 )\n\n k1 = k;\n\n end\n\n while ( 1 )\n\n i_save = 2 * k1;\n\n if ( i_save == n1 )\n j_save = k1;\n k1 = i_save;\n indx = -1;\n i = i_save;\n j = j_save;\n return;\n elseif ( i_save <= n1 )\n j_save = i_save + 1;\n indx = -2;\n i = i_save;\n j = j_save;\n return;\n end\n\n if ( k <= 1 )\n break;\n end\n\n k = k - 1;\n k1 = k;\n\n end\n\n if ( n1 == 1 )\n i_save = 0;\n j_save = 0;\n indx = 0;\n i = i_save;\n j = j_save;\n else\n i_save = n1;\n n1 = n1 - 1;\n j_save = 1;\n indx = 1;\n i = i_save;\n j = j_save;\n end\n\n return\nend\nfunction timestamp ( )\n\n%*****************************************************************************80\n%\n%% TIMESTAMP prints the current YMDHMS date as a timestamp.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n t = now;\n c = datevec ( t );\n s = datestr ( c, 0 );\n fprintf ( 1, '%s\\n', s );\n\n return\nend\nfunction triangle_neighbor = triangulation_order3_neighbor_triangles ( ...\n triangle_num, triangle_node )\n\n%*****************************************************************************80\n%\n%% TRIANGULATION_ORDER3_NEIGHBOR_TRIANGLES determines triangle neighbors.\n%\n% Discussion:\n%\n% A triangulation of a set of nodes can be completely described by\n% the coordinates of the nodes, and the list of nodes that make up\n% each triangle. However, in some cases, it is necessary to know\n% triangle adjacency information, that is, which triangle, if any,\n% is adjacent to a given triangle on a particular side.\n%\n% This routine creates a data structure recording this information.\n%\n% The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM\n% data items.\n%\n% This routine was modified to use columns instead of rows.\n%\n% Example:\n%\n% The input information from TRIANGLE_NODE:\n%\n% Triangle Nodes\n% -------- ---------------\n% 1 3 4 1\n% 2 3 1 2\n% 3 3 2 8\n% 4 2 1 5\n% 5 8 2 13\n% 6 8 13 9\n% 7 3 8 9\n% 8 13 2 5\n% 9 9 13 7\n% 10 7 13 5\n% 11 6 7 5\n% 12 9 7 6\n% 13 10 9 6\n% 14 6 5 12\n% 15 11 6 12\n% 16 10 6 11\n%\n% The output information in TRIANGLE_NEIGHBOR:\n%\n% Triangle Neighboring Triangles\n% -------- ---------------------\n%\n% 1 -1 -1 2\n% 2 1 4 3\n% 3 2 5 7\n% 4 2 -1 8\n% 5 3 8 6\n% 6 5 9 7\n% 7 3 6 -1\n% 8 5 4 10\n% 9 6 10 12\n% 10 9 8 11\n% 11 12 10 14\n% 12 9 11 13\n% 13 -1 12 16\n% 14 11 -1 15\n% 15 16 14 -1\n% 16 13 15 -1\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 11 February 2007\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer TRIANGLE_NUM, the number of triangles.\n%\n% Input, integer TRIANGLE_NODE(3,TRIANGLE_NUM), the nodes that make up each triangle.\n%\n% Output, integer TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), the three triangles that are direct\n% neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) is the index of the triangle\n% which touches side 1, defined by nodes 2 and 3, and so on. TRIANGLE_NEIGHBOR(1,I)\n% is negative if there is no neighbor on that side. In this case, that\n% side of the triangle lies on the boundary of the triangulation.\n%\n\n%\n% Step 1.\n% From the list of nodes for triangle T, of the form: (I,J,K)\n% construct the three neighbor relations:\n%\n% (I,J,1,T) or (J,I,1,T),\n% (J,K,2,T) or (K,J,2,T),\n% (K,I,3,T) or (I,K,3,T)\n%\n% where we choose (I,J,1,T) if I < J, or else (J,I,1,T)\n%\n col = zeros ( 4, 3 * triangle_num );\n \n for tri = 1 : triangle_num\n\n i = triangle_node(1,tri);\n j = triangle_node(2,tri);\n k = triangle_node(3,tri);\n\n if ( i < j )\n col(1:4,1+3*(tri-1)) = [ i, j, 1, tri ]';\n else\n col(1:4,1+3*(tri-1)) = [ j, i, 1, tri ]';\n end\n\n if ( j < k )\n col(1:4,2+3*(tri-1)) = [ j, k, 2, tri ]';\n else\n col(1:4,2+3*(tri-1)) = [ k, j, 2, tri ]';\n end\n\n if ( k < i )\n col(1:4,3+3*(tri-1)) = [ k, i, 3, tri ]';\n else\n col(1:4,3+3*(tri-1)) = [ i, k, 3, tri ]';\n end\n\n end\n%\n% Step 2. Perform an ascending dictionary sort on the neighbor relations.\n% We only intend to sort on rows 1 and 2; the routine we call here\n% sorts on rows 1 through 4 but that won't hurt us.\n%\n% What we need is to find cases where two triangles share an edge.\n% Say they share an edge defined by the nodes I and J. Then there are\n% two columns of COL that start out ( I, J, ?, ? ). By sorting COL,\n% we make sure that these two columns occur consecutively. That will\n% make it easy to notice that the triangles are neighbors.\n%\n col = i4col_sort_a ( 4, 3*triangle_num, col );\n%\n% Step 3. Neighboring triangles show up as consecutive columns with\n% identical first two entries. Whenever you spot this happening,\n% make the appropriate entries in TRIANGLE_NEIGHBOR.\n%\n triangle_neighbor(1:3,1:triangle_num) = -1;\n\n icol = 1;\n\n while ( 1 )\n\n if ( 3 * triangle_num <= icol )\n break\n end\n\n if ( col(1,icol) ~= col(1,icol+1) || col(2,icol) ~= col(2,icol+1) )\n icol = icol + 1;\n continue\n end\n\n side1 = col(3,icol);\n tri1 = col(4,icol);\n side2 = col(3,icol+1);\n tri2 = col(4,icol+1);\n\n triangle_neighbor(side1,tri1) = tri2;\n triangle_neighbor(side2,tri2) = tri1;\n\n icol = icol + 2;\n\n end\n\n return\nend\nfunction [ triangle_index, edge ] = ...\n triangulation_search_delaunay ( node_xy, ...\n triangle_num, triangle_node, triangle_neighbor, p )\n\n%*****************************************************************************80\n%\n%% TRIANGULATION_SEARCH_DELAUNAY searches a Delaunay triangulation for a point.\n%\n% Purpose:\n%\n% The algorithm \"walks\" from one triangle to its neighboring triangle,\n% and so on, until a triangle is found containing point P, or P is found \n% to be outside the convex hull. \n%\n% The algorithm computes the barycentric coordinates of the point with \n% respect to the current triangle. If all three quantities are positive,\n% the point is contained in the triangle. If the I-th coordinate is\n% negative, then P lies on the far side of edge I, which is opposite\n% from vertex I. This gives a hint as to where to search next.\n%\n% For a Delaunay triangulation, the search is guaranteed to terminate.\n% For other triangulations, a cycle may occur.\n%\n% Note the surprising fact that, even for a Delaunay triangulation of\n% a set of points, the nearest point to P need not be one of the\n% vertices of the triangle containing P. \n%\n% The code can be called for triangulations of any order, but only\n% the first three nodes in each triangle are considered. Thus, if\n% higher order triangles are used, and the extra nodes are intended\n% to give the triangle a polygonal shape, these will have no effect,\n% and the results obtained here might be misleading.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 13 January 2010\n%\n% Author:\n%\n% Original FORTRAN77 version by Barry Joe.\n% MATLAB version by John Burkardt.\n%\n% Reference:\n%\n% Barry Joe,\n% GEOMPACK - a software package for the generation of meshes\n% using geometric algorithms,\n% Advances in Engineering Software,\n% Volume 13, pages 325-331, 1991.\n%\n% Parameters:\n%\n% Input, integer NODE_NUM, the number of nodes.\n%\n% Input, real NODE_XY(2,NODE_NUM), the vertices.\n%\n% Input, integer TRIANGLE_ORDER, the order of the triangles.\n%\n% Input, integer TRIANGLE_NUM, the number of triangles in the triangulation.\n%\n% Input, integer TRIANGLE_NODE(TRIANGLE_ORDER,TRIANGLE_NUM), \n% the nodes that make up each triangle.\n%\n% Input, integer TRIANGLE_NEIGHBOR(3,TRIANGLE_NUM), the triangle \n% neighbor list.\n%\n% Input, real P(2), the coordinates of a point.\n%\n% Output, integer TRIANGLE_INDEX, the index of the triangle where the \n% search ended. If a cycle occurred, then TRIANGLE_INDEX = -1.\n%\n% Output, integer EDGE, indicates the position of the point P in\n% triangle TRIANGLE_INDEX:\n% 0, the interior or boundary of the triangle;\n% -1, outside the convex hull of the triangulation, past edge 1;\n% -2, outside the convex hull of the triangulation, past edge 2;\n% -3, outside the convex hull of the triangulation, past edge 3.\n%\n persistent triangle_index_save;\n\n if ( isempty ( triangle_index_save ) )\n triangle_index_save = -1;\n end\n\n count = 0;\n edge = 0;\n\n if ( triangle_index_save < 1 || triangle_num < triangle_index_save )\n triangle_index = floor ( ( triangle_num + 1 ) / 2 );\n else\n triangle_index = triangle_index_save;\n end\n\n while ( 1 )\n\n count = count + 1;\n\n if ( triangle_num < count )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TRIANGULATION_SEARCH_DELAUNAY - Fatal error!\\n' );\n fprintf ( 1, ' The algorithm seems to be cycling.\\n' );\n triangle_index = -1;\n edge = -1;\n return\n end\n%\n% Get the vertices of triangle TRIANGLE_INDEX.\n%\n a = triangle_node(1,triangle_index);\n b = triangle_node(2,triangle_index);\n c = triangle_node(3,triangle_index);\n%\n% Using vertex C as a base, compute the distances to vertices A and B,\n% and the point P.\n%\n dxa = node_xy(1,a) - node_xy(1,c);\n dya = node_xy(2,a) - node_xy(2,c);\n\n dxb = node_xy(1,b) - node_xy(1,c);\n dyb = node_xy(2,b) - node_xy(2,c);\n\n dxp = p(1) - node_xy(1,c);\n dyp = p(2) - node_xy(2,c);\n\n det = dxa * dyb - dya * dxb;\n%\n% Compute the barycentric coordinates of the point P with respect\n% to this triangle.\n%\n alpha = ( dxp * dyb - dyp * dxb ) / det;\n beta = ( dxa * dyp - dya * dxp ) / det;\n gamma = 1.0 - alpha - beta;\n%\n% If the barycentric coordinates are all positive, then the point\n% is inside the triangle and we're done.\n%\n if ( 0.0 <= alpha && 0.0 <= beta && 0.0 <= gamma )\n break\n end\n%\n% At least one barycentric coordinate is negative.\n%\n% If there is a negative barycentric coordinate for which there exists\n% an opposing triangle neighbor closer to the point, move to that triangle.\n%\n% (Two coordinates could be negative, in which case we could go for the\n% most negative one, or the most negative one normalized by the actual\n% distance it represents).\n%\n if ( alpha < 0.0 && 0 < triangle_neighbor(2,triangle_index) )\n triangle_index = triangle_neighbor(2,triangle_index);\n continue;\n elseif ( beta < 0.0 && 0 < triangle_neighbor(3,triangle_index) )\n triangle_index = triangle_neighbor(3,triangle_index);\n continue;\n elseif ( gamma < 0.0 && 0 < triangle_neighbor(1,triangle_index) )\n triangle_index = triangle_neighbor(1,triangle_index);\n continue;\n end\n%\n% All negative barycentric coordinates correspond to vertices opposite\n% sides on the convex hull.\n%\n% Note the edge and exit.\n%\n if ( alpha < 0.0 )\n edge = -2;\n break\n elseif ( beta < 0.0 )\n edge = -3;\n break\n elseif ( gamma < 0.0 )\n edge = -1;\n break\n end\n\n end\n\n triangle_index_save = triangle_index;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/fem2d_project/fem2d_project.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.398452816687293}} {"text": "function efv = pne_event_nose(cx, opt)\n%PNE_EVENT_NOSE Event function to detect the limit or nose point\n% EFV = PNE_EVENT_NOSE(CX, OPT)\n%\n% PNE_MASTER event function to detect the limit or nose point of the\n% continuation curve, based on the sign of the lambda component of the\n% tangent vector.\n%\n% Set OPT.stop_at to 'NOSE' to use this function to trigger termination\n% of the continuation at the limit or nose point.\n%\n% Inputs:\n% CX : struct containing info about current point (continuation soln)\n% OPT - PNES_MASTER options struct\n%\n% Outputs:\n% EFV : event function value\n%\n% See also PNES_MASTER, PNE_REGISTER_EVENTS, PNE_EVENT_TARGET_LAM.\n\n% MP-Opt-Model\n% Copyright (c) 2016-2021, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n% and Shrirang Abhyankar, Argonne National Laboratory\n%\n% This file is part of MP-Opt-Model.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://github.com/MATPOWER/mp-opt-model for more info.\n\n%% event function value is dlam, the last element of the\n%% normalized tangent vector at the current soln\nefv = cx.z(end);\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/mp-opt-model/lib/pne_event_nose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.39845280832262786}} {"text": "%% Selecting Grains\n%\n%%\n% In this section we discuss how to select grains by properties. We start\n% our discussion by reconstructing the grain structure from a sample EBSD\n% data set.\n\n% load sample EBSD data set\nmtexdata forsterite silent\n\n% restrict it to a subregion of interest.\nebsd = ebsd(inpolygon(ebsd,[5 2 10 5]*10^3));\n\n% remove all not indexed pixels\nebsd = ebsd('indexed');\n\n% reconstruct grains\n[grains, ebsd.grainId] = calcGrains(ebsd,'angle',5*degree);\n\n% smooth them\ngrains = smooth(grains,5);\n\n% plot the orientation data of the Forsterite phase\nplot(ebsd('fo'),ebsd('fo').orientations)\n\n% plot the grain boundary on top of it\nhold on\nplot(grains.boundary,'lineWidth',2)\nhold off\n\n%% Selecting grains by mouse\n% The most easiest way to select a grain is by using the mouse and the\n% command which allows\n% you to select an arbitrary amount of grains. The index of the selected\n% grains appear as the global variable |indSelected| in your workspace\n\nselectInteractive(grains,'lineColor','gold')\n\n% this simulates a mouse click\npause(0.1)\nsimulateClick(9000,3500)\npause(0.1)\n\nglobal indSelected;\ngrains(indSelected)\n\nhold on\nplot(grains(indSelected).boundary,'lineWidth',4,'lineColor','gold')\nhold off\n\n%% Indexing by orientation or position\n% One can also to select a grain by spatial coordinates without user\n% interaction. This is done using the syntax |grains(x,y)|, i.e.,\n\nx = 12000; y = 4000;\n\nhold on\nplot(grains(x,y).boundary,'linewidth',4,'linecolor','blue')\n\nplot(x,y,'marker','s','markerfacecolor','k',...\n 'markersize',10,'markeredgecolor','w')\nhold off\n\n%%\n% Alternatively one can also select all grains with a certain orientation.\n% Lets find all grains with a similar orientation as the one marked in\n% gold. As threshold we shall use 20 degree\n\n% select grains by orientation\ngrains_selected = grains.findByOrientation(grains(indSelected).meanOrientation,20*degree)\n\nhold on\nplot(grains_selected.boundary,'linewidth',4,'linecolor','gold')\nhold off\n\n%% Indexing by a Property\n% In order the generalize the above concept lets remember that the variable\n% |grains| is essentially a large vector of grains. Thus when applying a\n% function like to this variable we obtain a\n% vector of the same lenght with numbers representing the area of each\n% grain\n\ngrain_area = grains.area;\n\n%%\n% As a first rather simple application we could colorize the grains\n% according to their area, i.e., according to the numbers stored in\n% |grain_area|\n\nplot(grains,grain_area)\n\n%%\n% As a second application, we can ask for the largest grain within our data\n% set. The maximum value and its position within a vector are found by the\n% Matlab command |max|.\n\n[max_area,max_id] = max(grain_area)\n\n%%\n% The number |max_id| is the position of the grain with a maximum area within\n% the variable |grains|. We can access this specific grain by direct\n% indexing\n\ngrains(max_id)\n\n%%\n% and so we can plot it\n\nhold on\nplot(grains(max_id).boundary,'linecolor','red','linewidth',4)\nhold off\n\n%%\n% Note that this way of addressing individual grains can be generalized to\n% many grains. E.g. assume we are interested in the largest 5 grains. Then\n% we can sort the vector |grain_area| and take the indices of the 5 largest\n% grains.\n\n[sorted_area,sorted_id] = sort(grain_area,'descend');\n\nlarge_grain_id = sorted_id(2:5);\n\nhold on\nplot(grains(large_grain_id).boundary,'linecolor','Orange','linewidth',4)\nhold off\n\n\n%% Indexing by a Condition\n% By the same syntax as above we can also single out grains that satisfy a\n% certain condition. I.e., to access are grains that are at least one\n% quarter as large as the largest grain we can do\n\ncondition = grain_area > max_area/4;\n\nhold on\nplot(grains(condition).boundary,'linecolor','Yellow','linewidth',4)\nhold off\n\n%%\n% This is a very powerful way of accessing grains as the condition can be\n% build up using any grain property. As an example let us consider the\n% phase. The phase of the first five grains we get by\n\ngrains(1:5).phase\n\n%%\n% Now we can access or grains of the first phase Forsterite by the\n% condition\n\ncondition = grains.phase == 1;\nplot(grains(condition))\n\n%%\n% To make the above more directly you can use the mineral name for indexing\n\ngrains('forsterite')\n\n%%\n% Logical indexing allows also for more complex queries, e.g. selecting all\n% grains perimeter larger than 6000 and at least 600 measurements within\n\ncondition = grains.perimeter>6000 & grains.grainSize >= 600;\n\nselected_grains = grains(condition)\n\nplot(selected_grains)\n\n\n%% The grainId and how to select EBSD inside specific grains\n%\n% Besides, the list of grains the command \n% returns also two other output arguments. \n\nplot(grains)\nlargeGrains = grains(grains.grainSize > 50);\n\ntext(largeGrains,largeGrains.id)\n\n%%\n% The second output argument grainId is a list with the same size as the\n% EBSD measurements that stores for each measurement the corresponding\n% grainId. The above syntax stores this list directly inside the ebsd\n% variable. This enables MTEX to select EBSD data by grains. The following\n% command returns all the EBSD data that belong to grain number 33.\n\nebsd(grains(33))\n\n%%\n% and is equivalent to the command\n\nebsd(ebsd.grainId == 33) \n\n%%\n% The following picture plots the largest grains together with its\n% individual orientation measurements. \n\nplot(ebsd(grains(max_id)),ebsd(grains(max_id)).orientations)\nhold on\nplot(grains(max_id).boundary,'lineWidth',2)\nhold off\n\n\n%% Boundary grains\n% Sometimes it is desirable to remove all boundary grains as they might\n% distort grain statistics. To do so one should remember that each grain\n% boundary has a property |grainId| which stores the ids of the neigbouring\n% grains. In the case of an outer grain boundary, one of the neighbouring\n% grains has the id zero. We can filter out all these boundary segments by\n\n% ids of the outer boundary segment\nouterBoundary_id = any(grains.boundary.grainId==0,2);\n\n% plot the outer boundary segments\nplot(grains)\nhold on\nplot(grains.boundary(outerBoundary_id),'linecolor','red','linewidth',2)\nhold off\n\n%%\n% Now |grains.boundary(outerBoundary_id).grainId| is a list of grain ids\n% where the first column is zero, indicating the outer boundary, and the\n% second column contains the id of the boundary grain. Hence, it remains to\n% remove all grains with these ids.\n\n% next we compute the corresponding grain_id\ngrain_id = grains.boundary(outerBoundary_id).grainId;\n\n% remove all zeros\ngrain_id(grain_id==0) = [];\n\n% and plot the boundary grains\nplot(grains(grain_id))\n\n%%\n% finally, we could remove the boundary grains by\n%\n% grains(grain_id) = []\n%\n% However, boundary grains can be selected more easily be the command\n% ||. \n\nplot(grains(~grains.isBoundary))\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/doc/Grains/SelectingGrains.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.39845280832262786}} {"text": "function [NV,NF,OV,OE,OV1,OE1,epsilon] = remesh_at_handles(V,F,C,P,BE,CE)\n % REMESH_AT_HANDLES remesh a given mesh using its outline and constraining\n % interrior controls at given handles. Point handles are met exactly and\n % bones are sample at the given rate.\n %\n % [NV,NF] = remesh_at_handles(V,F,C,P,BE,CE)\n %\n % Inputs:\n % V list of vertex positions\n % F list of face indices\n % C list of control vertex positions\n % P list of indices into C for point controls, { 1:size(C,1) }\n % BE list of bones, pairs of indices into C, connecting control vertices, \n % { [] }\n % CE list of \"cage edges\", pairs of indices into ***P***, connecting\n % control ***points***. A \"cage edge\" just tells point boundary conditions \n % to vary linearly along straight lines between the end points, and to be\n % zero for all other handles. { [] }\n % Outputs\n % NV new list of vertex positions\n % NF new list of face indices\n % OV list of vertex positions sent to triangle\n % OE list of edges sent to triangle\n % OV1 list of vertex positions before performing close point collapses and\n % edge splits\n % OE1 list of edges before performing close point collapses and edge splits\n % epsilon used to collapse points and split edges\n %\n % Example:\n % [NV,NF,OV,OE,OV1,OE1] = remesh_at_handles(V,F,C,P,BE,CE);\n % % show a plot of what's sent to triangle\n % subplot(3,1,1);\n % plot([OV1(OE1(:,1),1) OV1(OE1(:,2),1)]',[OV1(OE1(:,1),2) OV1(OE1(:,2),2)]','-','LineWidth',1);\n % hold on;\n % plot(OV1(:,1),OV1(:,2),'.');\n % hold off;\n % axis equal;\n % title('Outline + handle samples');\n % subplot(3,1,2);\n % plot([OV(OE(:,1),1) OV(OE(:,2),1)]',[OV(OE(:,1),2) OV(OE(:,2),2)]','-','LineWidth',1);\n % hold on;\n % plot(OV(:,1),OV(:,2),'.');\n % hold off;\n % axis equal;\n % title('Input to triangle (collapsed points + split edges)');\n % % show a plot of the result\n % subplot(3,1,3);\n % tsurf(NF,NV);\n % hold on;\n % plot([OV(OE(:,1),1) OV(OE(:,2),1)]',[OV(OE(:,1),2) OV(OE(:,2),2)]','-','LineWidth',2);\n % hold off;\n % axis equal;\n % title('Output of triangle');\n\n %% THIS DOES NOT WORK FOR MESHES THAT AREN\"T TOPOLOGICAL DISKS!! HOLES WILL\n %% BE CLOSED\n\n dim = size(V,2);\n assert(dim == size(C,2));\n % only work with 2D\n assert(dim == 2);\n\n % Find all edges in mesh, note internal edges are repeated\n E = sort([F(:,1) F(:,2); F(:,2) F(:,3); F(:,3) F(:,1)]')';\n % determine uniqueness of edges\n [u,m,n] = unique(E,'rows');\n % determine counts for each unique edge\n counts = accumarray(n(:), 1);\n % extract edges that only occurred once\n O = u(counts==1,:);\n % extract unique vertex indices on outline\n [u,m,n] = unique(O(:));\n % original map O = IM(O)\n IM = 1:size(V,1);\n IM(O(:)) = n;\n OV = V(u,:);\n OE = IM(O);\n\n\n\n samples_per_edge = 10;\n % Bone samples\n [BES,BESE] = sample_edges(C,BE,samples_per_edge);\n % Cage edge samples\n [CES,CESE] = sample_edges(C(P,:),CE,samples_per_edge);\n % Append handle samples\n OV = [OV;C(P,:);BES;CES];\n OE = [ ...\n OE; ...\n (size(OV,1)-size(BES,1)-size(CES,1))+BESE; ...\n (size(OV,1)-size(CES,1))+CESE];\n\n % save old values\n OV1 = OV;\n OE1 = OE;\n\n % phony counts to enter while loop\n prev_v_count = size(OV,1)+1;\n prev_e_count = size(OE,1)+1;\n % this epsilon is a parameter that probably needs to be tweaked and should at\n % least be exposed.\n % Use fraction of average edge length\n epsilon = mean(sqrt(sum((OV(OE(:,1),:) - OV(OE(:,2),:)).^2,2)))/8;\n % continue to collapse points and split edges until nothing more to do\n while( prev_v_count ~= size(OV,1) || prev_e_count ~= size(OE,1))\n prev_v_count = size(OV,1);\n prev_e_count = size(OE,1);\n [OV,OE] = collapse_close_points(OV,OE,epsilon);\n [OV,OE] = snap_points_to_close_edges(OV,OE,epsilon);\n end\n\n % Again, max area term here is a heuristic\n %sum((OV(OE(:,1)) - OV(OE(:,2))).^2,2)\n % use a multiple of min edge length\n %max_area = 2*(sqrt(3)/4)*min(sum((OV(OE(:,1),:) - OV(OE(:,2),:)).^2,2));\n max_area = 8*(sqrt(3)/4)*min(sum((OV(OE(:,1),:) - OV(OE(:,2),:)).^2,2));\n [NV,NF] = triangle(OV,OE,[],'Quality',30,'MaxArea',max_area);\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/remesh_at_handles.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3984393669667184}} {"text": "function [ m, n, nst, ist, jst, ast ] = st_transpose ( m, n, nst, ist, jst, ...\n ast )\n\n%*****************************************************************************80\n%\n%% ST_TRANSPOSE transposes an ST matrix.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 23 July 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer M, the number of row.\n%\n% Input/output, integer N, the number of columns.\n%\n% Input/output, integer NST, the number of nonzeros.\n%\n% Input/output, integer IST(NST), JST(NST), the row and column indices.\n%\n% Input/output, real AST(NST), the nonzero values.\n%\n t = m;\n m = n;\n n = t;\n\n t = ist(1:nst);\n ist(1:nst) = jst(1:nst);\n jst(1:nst) = t(1:nst);\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/st_io/st_transpose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5544704649604274, "lm_q2_score": 0.718594386544335, "lm_q1q2_score": 0.39843936362519056}} {"text": "function TP = getTransProbs (hmm)\n% Returns the transition probabilies from any state to any other state,\n% without considering the persistence probabilities (i.e. the probability\n% to remain in the same state)\n%\n% Author: Diego Vidaurre, University of Oxford (2017)\n\nTP = hmm.P;\n[K,~,Q] = size(TP);\nfor j = 1:Q\n TPj = TP(:,:,j);\n TPj(eye(K)==1) = 0;\n for k = 1:K\n TPj(k,:) = TPj(k,:) / sum(TPj(k,:)); \n end\n TP(:,:,j) = TPj; \nend\n\nend", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/utils/analysis/getTransProbs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943805178139, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3984393602836625}} {"text": "function [fidout] = improvfid(ecg,fidin,fs,fidtype,fidhelp,N2)\n%\n% OVERVIEW, This function improves the fiducial point detection for the\n% Q,R,S,Toff points in the beat variable. The improved fiducial points are\n% stored in the beato variable.\n%\n% INPUTS MANDATORY DESCRIPTION\n%\n% ecg input ecg data in num of samples by 1\n% dimensions\n% fidin fiducial point input in samples number.\n% fs sampling frequency of the input ecg data.\n% fidtype type of fiducial point input. i.e. Q, R, S or T. \n% fidhelp R peak annotations used for improving S and Q point detections.\n% N2 window size of 2*N2 is used to find improved fiducial point detection for fiducial point specified as fidtype.\n%\n% OUTPUTS\n% fidout Adjusted fiducial point location after\n% improving fiducial point detection.\n%\n% \n% REPO:\n% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox\n% ORIGINAL SOURCE AND AUTHORS:\n% Written by Shamim Nemati\n% editted by Ismail Sadiq on 10/26/2019.\n%\tCOPYRIGHT (C) 2019\n% LICENSE:\n% This software is offered freely and without warranty under\n% the GNU (v3 or later) public license. See license file for\n% more information. The license may be found in\n% the Documents folder of the Physionet-Cardiovascular-Signal-Toolbox. \n\nfidout=zeros(1,size(fidin,2));\n\nif (nargin<5 || isempty(fidhelp))\n Rp=[]; Sp=[];\nelseif (strcmp(fidtype,'S'))\n Rp=fidhelp; Sp=[];\nelseif (strcmp(fidtype,'T'))\n Sp = fidhelp; Rp=[];\nelse\n Rp=[]; Sp=[];\nend\n\nif (nargin<4)\n direc=mean(ecg(fidin(:,1)))-mean(ecg);\nelse\n if (strcmp(fidtype,'R'))\n direc = 1;\n elseif (strcmp(fidtype,'T') & ~isempty(fidhelp))\n direc = median(ecg(fidin))-median(ecg(Sp));\n else\n direc=-1;\n end\nend\n\nif (nargin<6)\n N2 = round(0.04*fs);\nend\n\nfor i=1:size(fidout,2)\n if (~isempty(Rp) & fidin(i)>Rp(i))%S\n upper = min(fidin(i)+N2,Rp(i)+2*N2+10);\n %upper=fidin(i)+N2;\n v=ecg(Rp(i):upper)';% if there's a R right before use it\n else\n v=ecg(fidin(i)-N2:fidin(i)+N2)';\n end\n vi=v;\n if direc>0\n [val,ind]=max(vi);\n fidout(i)=(fidin(i)-N2-1)+ind;\n else\n [val,ind]=min(vi);\n if (~isempty(Rp) & fidin(i)>Rp(i))%S\n fidout(i)=Rp(i)-1+ind;\n else\n fidout(i)=(fidin(i)-N2-1)+ind;\n end\n end\nend\n\n", "meta": {"author": "cliffordlab", "repo": "PhysioNet-Cardiovascular-Signal-Toolbox", "sha": "eec46e75e0b95c379ecb68cb0ebee0c4c9f54605", "save_path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox", "path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox/PhysioNet-Cardiovascular-Signal-Toolbox-eec46e75e0b95c379ecb68cb0ebee0c4c9f54605/Tools/ECG_Analysis_Tools/MV/Tools/Annotation_generator/improvfid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943805178139, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3984393602836625}} {"text": "function twRatio = computeTWRatio(throttle, ut, rVect, vVect, tankMasses, dryMass, stgStates, lvState, tankStates, bodyInfo, storageSoCs, powerStorageStates)\n altitude = norm(rVect) - bodyInfo.radius;\n presskPa = getPressureAtAltitude(bodyInfo, altitude); \n\n [~, totalThrust]= LaunchVehicleStateLogEntry.getTankMassFlowRatesDueToEngines(tankStates, tankMasses, stgStates, throttle, lvState, presskPa, ut, rVect, vVect, bodyInfo, [], storageSoCs, powerStorageStates, []);\n\n totalMass = (dryMass + sum(tankMasses))*1000; %kg \n totalThrust = totalThrust * 1000; % N\n\n% twRatio = computeSLThrustToWeight(bodyInfo, totalThrust, totalMass);\n twRatio = computeTrueThrustToWeight(bodyInfo, totalThrust, totalMass, altitude);\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/misc/computeTWRatio.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7905303285397348, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39835311054155365}} {"text": "classdef TethaedraSubMeshConnecComputer < handle\n \n properties (Access = public)\n nSubCellNodes\n nSubCellsByElem\n end\n \n properties (Access = private)\n connecCase\n end\n \n properties (Access = private)\n nElemInCase\n cellNodes\n end\n \n methods (Access = public)\n \n function obj = TethaedraSubMeshConnecComputer(cParams)\n obj.init(cParams)\n end\n \n function compute(obj,nodes,icase)\n \n switch mode(size(nodes,2))\n case 7\n obj.nSubCellsByElem = 4;\n case 8\n obj.nSubCellsByElem = 6;\n end\n \n obj.nElemInCase = size(nodes,1);\n obj.cellNodes = nodes;\n nodesC = zeros(obj.nSubCellsByElem,obj.nSubCellNodes,obj.nElemInCase);\n isActive = true(obj.nElemInCase,1);\n switch mode(size(nodes,2))\n case 7\n [nodesT,nodesP] = obj.computeNodesTAndNodesP(icase);\n for inode = 1:obj.nSubCellNodes\n nodesC(1,inode,isActive) = nodesT(inode);\n nodesC(2,inode,isActive) = nodesP(1,inode);\n nodesC(3,inode,isActive) = nodesP(2,inode);\n nodesC(4,inode,isActive) = nodesP(3,inode);\n end\n case 8\n nodesCC = obj.computeNodesFourCutNodes(icase);\n for inode = 1:obj.nSubCellNodes\n nodesC(1,inode,isActive) = nodesCC(1,inode);\n nodesC(2,inode,isActive) = nodesCC(2,inode);\n nodesC(3,inode,isActive) = nodesCC(3,inode);\n nodesC(4,inode,isActive) = nodesCC(4,inode);\n nodesC(5,inode,isActive) = nodesCC(5,inode);\n nodesC(6,inode,isActive) = nodesCC(6,inode);\n end \n \n \n end\n obj.connecCase = nodesC;\n end\n \n function nodePartition = partition(obj,nodes)\n connec = permute(obj.connecCase,[3 1 2]);\n nodePartition = obj.initNodePartition();\n nNodesSubCell = size(nodes,2);\n for isubcell = 1:obj.nSubCellsByElem\n for inode = 1:obj.nSubCellNodes\n node = connec(:,isubcell,inode);\n ind = obj.computeAbsoluteMatrixIndex(node,nNodesSubCell);\n nodePartition(inode,isubcell,:) = nodes(ind);\n end\n end\n end\n \n end\n \n methods (Access = private)\n \n function init(obj,cParams)\n obj.nSubCellNodes = 4;\n end\n \n function nodes = computeNodesFourCutNodes(obj,icase)\n \n switch icase\n case 3\n nodes1 = obj.prismaTriangulation([1 5 6],[3 7 8]);\n nodes2 = obj.prismaTriangulation([2 5 7],[4 6 8]);\n nodes = [nodes1;nodes2];\n case 2\n nodes1 = obj.prismaTriangulation([2 7 8],[1 5 6]);\n nodes2 = obj.prismaTriangulation([5 3 7],[6 4 8]);\n nodes = [nodes1;nodes2];\n case 1\n nodes1 = obj.prismaTriangulation([4 7 8],[1 5 6]);\n nodes2 = obj.prismaTriangulation([5 2 7],[6 3 8]);\n nodes = [nodes1;nodes2];\n end\n \n \n end\n \n function [nodesT,nodesP] = computeNodesTAndNodesP(obj,icase)\n switch icase\n case 4\n nodesT = [5 6 7 4];\n nodesP = obj.prismaTriangulation([5 6 7],[1 2 3]);\n %nodesP = [1 5 6 7;1 2 7 6;1 2 3 7];\n case 3\n nodesP = [5 6 7 1 ;2 7 6 1;2 4 7 1 ];\n nodesP = obj.prismaTriangulation([5 7 6],[1 4 2]);\n nodesT = [5 7 6 3];\n \n \n %nodesP = [1 5 7 6;1 4 6 7;1 4 2 6];\n %nodesP = [5 6 7 2;1 5 7 2;4 1 7 2];\n case 2\n nodesT = [5 6 7 2];\n% nodesP = [1 5 6 7;1 4 7 6;6 1 4 3];\n nodesP = obj.prismaTriangulation([5 6 7],[1 3 4]);\n \n case 1\n nodesT = [6 7 1 5];\n% nodesP = [5 6 7 2;4 2 7 6;2 3 6 4];\n nodesP = obj.prismaTriangulation([5 7 6],[2 4 3]);\n \n end\n \n \n end\n \n function nodes = prismaTriangulation2(obj,nodesA,nodesB)\n nodes = [nodesA(1) nodesA(2) nodesA(3) nodesB(1);\n nodesA(1) nodesA(2) nodesA(3) nodesB(2);\n nodesA(1) nodesA(2) nodesA(3) nodesB(3)];\n end\n \n function nodes = prismaTriangulation(obj,nodesA,nodesB)\n nodes = [nodesB(1) nodesA(1) nodesA(2) nodesA(3);\n nodesB(1) nodesB(2) nodesA(3) nodesA(2);\n nodesB(1) nodesB(2) nodesB(3) nodesA(3)];\n end\n \n \n function c = initNodePartition(obj)\n c = zeros(obj.nSubCellNodes,obj.nSubCellsByElem,obj.nElemInCase);\n end\n \n \n function ind = computeAbsoluteMatrixIndex(obj,colums,nNodesSubCell)\n nElem = obj.nElemInCase;\n rows = (1:nElem)';\n ind = sub2ind([nElem,nNodesSubCell],rows,colums);\n end\n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/FEM/Mesh/Unfitted/TethaedraSubMeshConnecComputer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7905303186696747, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39835310556796943}} {"text": "function mObject3 = directSTRAIGHTmorphing(mObject1,mObject2,mRate,mixMethod);\n% Morphing based on direct mixing of STRAIGHT parameters\n% (Without time alignment)\n% mObject3 = directSTRAIGHTmorphing(mObject1,mObject2,mRate);\n\n% Designed and coded by Hideki Kawahara\n% 27/Feb./2005\n% Copyright(c) 2005, Hideki Kawahara\n\nif mObject1.samplingFrequency ~= mObject2.samplingFrequency\n mObject3 = [];\n return\nend;\nif mObject1.frameUpdateInterval ~= mObject2.frameUpdateInterval\n mObject3 = [];\n return\nend;\n\nnw1 = length(mObject1.F0);\nnw2 = length(mObject2.F0);\n[nr1,nc1] = size(mObject1.spectrogram);\n[nr2,nc2] = size(mObject2.spectrogram);\nnr3 = max(nr1,nr2);\nnc3 = max(max(nc1,nc2),max(nw1,nw2));\nnsg = zeros(nr3,nc3);\nnSgram = zeros(nr3,nc3);\nap = zeros(nr3,nc3);\nf0 = zeros(nc3);\nnVoice = zeros(nc3);\n\nswitch mixMethod\n case 'linear'\n nsg(1:nr1,1:nc1) = (1-mRate)*mObject1.spectrogram;\n nSgram(1:nr1,1:nc1) = nSgram(1:nr1,1:nc1)+(1-mRate);\n nsg(1:nr2,1:nc2) = mRate*mObject2.spectrogram+nsg(1:nr2,1:nc2);\n nSgram(1:nr2,1:nc2) = nSgram(1:nr2,1:nc2)+mRate;\n nsg = nsg./nSgram;\n case 'log'\n nsg(1:nr1,1:nc1) = (1-mRate)*log(mObject1.spectrogram);\n nSgram(1:nr1,1:nc1) = nSgram(1:nr1,1:nc1)+(1-mRate);\n nsg(1:nr2,1:nc2) = mRate*log(mObject2.spectrogram)+nsg(1:nr2,1:nc2);\n nSgram(1:nr2,1:nc2) = nSgram(1:nr2,1:nc2)+mRate;\n nsg = exp(nsg./nSgram);\nend;\nap(1:nr1,1:nc1) = (1-mRate)*mObject1.aperiodicityIndex;\nap(1:nr2,1:nc2) = mRate*mObject2.aperiodicityIndex+ap(1:nr2,1:nc2);\n\nf0(mObject1.F0>0) = (1-mRate)*log(mObject1.F0(mObject1.F0>0));\nnVoice(mObject1.F0>0) = nVoice(mObject1.F0>0)+(1-mRate);\nf0(mObject2.F0>0) = mRate*log(mObject2.F0(mObject2.F0>0))+f0(mObject2.F0>0);\nnVoice(mObject2.F0>0) = nVoice(mObject2.F0>0)+mRate;\nf0(nVoice>0) = exp(f0(nVoice>0)./nVoice(nVoice>0));\n\nmObject3 = createMobject;\nmObject3 = updateFieldOfMobject(mObject3,'spectrogram',nsg);\nmObject3 = updateFieldOfMobject(mObject3,'aperiodicityIndex',ap);\nmObject3 = updateFieldOfMobject(mObject3,'F0',f0);\n", "meta": {"author": "HidekiKawahara", "repo": "legacy_STRAIGHT", "sha": "964684981fe12cd232c5e882259dff126b3af0f2", "save_path": "github-repos/MATLAB/HidekiKawahara-legacy_STRAIGHT", "path": "github-repos/MATLAB/HidekiKawahara-legacy_STRAIGHT/legacy_STRAIGHT-964684981fe12cd232c5e882259dff126b3af0f2/morphing_src/directSTRAIGHTmorphing.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7905303087996143, "lm_q2_score": 0.5039061705290806, "lm_q1q2_score": 0.39835310059438517}} {"text": "function self = reduce(self, waveType, sourcelat, sourcelon, stationlat, stationlon, varargin)\n % s.reduce('waveType', 'surface', 'waveSpeed', 2000, 'f', 2.0, );\n % s.distance and waveSpeed assumed to be in metres (m)\n % (INPUT) s.data assumed to be in nm or Pa\n % (OUTPUT) s.data in cm^2 or Pa.m\n \n % REQUIRES EXTRA PARAMETERS FOR RSAM OBJECTS\n %reduced = struct('Q', Inf, 'sourcelat', NaN, 'sourcelon', NaN, 'distance', NaN, 'waveType', '', 'isReduced', false, 'f', NaN, 'waveSpeed', NaN, 'stationlat', NaN, 'stationlon', NaN); \n %use = true;\n% REDUCED: a structure that is set is data are \"reduced\", i.e. corrected\n% for geometric spreading (and possibly attenuation)\n% Has 4 fields:\n% REDUCED.Q = the value of Q used to reduce the data\n% (Inf by default, which indicates no attenuation)\n% REDUCED.SOURCELAT = the latitude used for reducing the data\n% REDUCED.SOURCELON = the longitude used for reducing the data\n% REDUCED.STATIONLAT = the station latitude\n% REDUCED.STATIONLON = the station longitude\n% REDUCED.DISTANCE = the distance between source and\n% station in km\n% REDUCED.WAVETYPE = the wave type (body or surface)\n% assumed\n% REDUCED.F = the frequency used for surface waves\n% REDUCED.WAVESPEED = the S wave speed\n% REDUCED.ISREDUCED = True if the data are reduced\n% UNITS: the units of the data, e.g. nm / sec.\n% USE: use this rsam object in plots? \n p = inputParser;\n p.addParameter('waveSpeed', 2000);\n p.addParamter('f', 2.0);\n p.parse(varargin{:});\n\n self.reduced.waveSpeed = p.Results.waveSpeed;\n\n if self.reduced.isReduced\n disp('Data are already reduced');\n return;\n end\n\n self.reduced.distance = deg2km(distance(sourcelat, sourcelon, stationlat, stationlon)) *1000; % m\n\n switch self.units\n case 'nm' % Displacement\n % Do computation in cm\n self.data = self.data / 1e7;\n r = self.reduced.distance * 100; % cm\n ws = waveSpeed * 100; % cm/2\n self.measure = sprintf('%sR%s',self.measure(1),self.measure(2:end));\n switch self.reduced.waveType\n case 'body'\n self.data = self.data * r; % cm^2\n self.units = 'cm^2';\n case 'surface'\n wavelength = ws / p.Results.f; % cm\n try\n self.data = self.data .* sqrt(r * wavelength); % cm^2\n catch\n debug.print_debug(5, 'mean wavelength instead')\n self.data = self.data * sqrt(r * mean(wavelength)); % cm^2 \n end\n self.units = 'cm^2';\n self.reduced.isReduced = true;\n otherwise\n error(sprintf('Wave type %s not recognised'), self.reduced.waveType); \n end\n case 'Pa' % Pressure\n % Do computation in metres\n self.data = self.data * self.reduced.distance; % Pa.m \n self.units = 'Pa m';\n self.reduced.isReduced = true;\n self.measure = sprintf('%sR%s',self.measure(1),self.measure(2:end));\n otherwise\n error(sprintf('Units %s for measure %s not recognised', self.units, self.measure));\n end\n self.reduced.sourcelat = sourcelat;\n self.reduced.sourcelon = sourcelon;\n self.reduced.stationlat = stationlat;\n self.reduced.stationlon = stationlon;\n\nend", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/@rsam/extensions/reduce.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7905303087996143, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3983531005943851}} {"text": "function fact_test ( )\n\n%*****************************************************************************80\n%\n%% FACT_TEST tests the use of the MEX file FACT.C\n%\n% Discussion:\n%\n% The file fact.c is a C function which computes the factorial.\n%\n% This M file \"compiles\" fact.c, and then shows how it can be called.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 18 July 2006\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'FACT_TEST\\n' );\n fprintf ( 1, ' MATLAB version\\n' );\n fprintf ( 1, ' Demonstrate a simple use of the MEX compiler,\\n' );\n fprintf ( 1, ' which allows MATLAB to call C functions.\\n' );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Get a directory listing. The file FACT.C should be there.\\n' );\n\n ls\n \n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Compile the file FACT.C.\\n' );\n\n mex fact.c\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Get a directory listing. A new file should show up,\\n' );\n fprintf ( 1, ' containing the compiled information.\\n' );\n\n ls\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Now use FACT as though it were a MATLAB M-file function.\\n' );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' N (N Factorial)\\n' );\n fprintf ( 1, '\\n' );\n\n for i = 1 : 10\n\n j = fact ( i );\n\n fprintf ( 1, ' %2d %10d\\n', i, j );\n\n end\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'FACT_TEST:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( )\n\n return\nend\nfunction timestamp ( )\n\n%*****************************************************************************80\n%\n%% TIMESTAMP prints the current YMDHMS date as a timestamp.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n t = now;\n c = datevec ( t );\n s = datestr ( c, 0 );\n fprintf ( 1, '%s\\n', s );\n\n return\nend\n\n \n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/matlab_calls_c/fact_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819874558604, "lm_q2_score": 0.6513548714339145, "lm_q1q2_score": 0.398226635836323}} {"text": "function t_pf_ac(quiet)\n%T_PF_AC Tests for AC power flow solvers.\n\n% MATPOWER\n% Copyright (c) 2004-2020, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\nif nargin < 1\n quiet = 0;\nend\n\n%% alg name check opts\ncfg = {\n {'NR', 'Newton (default, power-polar)',[] [] },\n {'NR-SP', 'Newton (power-polar)', [], [] },\n {'NR-SC', 'Newton (power-cartesian)', [], [] },\n {'NR-SH', 'Newton (power-hybrid)', [], [] },\n {'NR-IP', 'Newton (current-polar)', [], [] },\n {'NR-IC', 'Newton (current-cartesian)', [], [] },\n {'NR-IH', 'Newton (current-hybrid)', [], [] },\n {'FDXB', 'Fast Decoupled (XB)', [], [] },\n {'FDBX', 'Fast Decoupled (BX)', [], [] },\n {'GS', 'Gauss-Seidel', [], [] },\n {'ZG', 'Implicit Z-bus Gauss', [], [] },\n};\nif have_feature('mp_core')\n cfg{end+1} = {'FSOLVE', 'fsolve (power-polar)', 'fsolve', [] };\n cfg{end+1} = {'FSOLVE', 'fsolve (power-cartesian)', 'fsolve', {'pf.v_cartesian', 1} };\n cfg{end+1} = {'FSOLVE', 'fsolve (current-polar)', 'fsolve', {'pf.current_balance', 1, 'pf.tol', 1e-10} };\n cfg{end+1} = {'FSOLVE', 'fsolve (current-cartesian)', 'fsolve', {'pf.v_cartesian', 1, 'pf.current_balance', 1, 'pf.tol', 1e-10} };\n% cfg{end+1} = {'FSOLVE', 'fsolve (power-polar)', 'fsolve', struct('Algorithm', 'trust-region-dogleg') },\n% cfg{end+1} = {'FSOLVE', 'fsolve (power-polar)', 'fsolve', struct('Algorithm', 'trust-region-reflective') },\n% cfg{end+1} = {'FSOLVE', 'fsolve (power-polar)', 'fsolve', struct('Algorithm', 'levenberg-marquardt', 'TolX', 1e-11) },\nend\n% %% alg name check opts\n% cfg = {\n% {'NR', 'Newton (default, power-polar)',[] [] },\n% };\n\nntests = 48;\nt_begin(length(cfg)*ntests + 6, quiet);\n\ncasefile = 't_case9_pf';\nif quiet\n verbose = 0;\nelse\n verbose = 1;\nend\nif have_feature('octave')\n if have_feature('octave', 'vnum') >= 4\n file_in_path_warn_id = 'Octave:data-file-in-path';\n else\n file_in_path_warn_id = 'Octave:load-file-in-path';\n end\n s1 = warning('query', file_in_path_warn_id);\n warning('off', file_in_path_warn_id);\nend\nmpopt0 = mpoption('out.all', 0, 'pf.tol', 1e-9, 'verbose', 0);\nmpopt0 = mpoption(mpopt0, 'verbose', verbose);\n\n%% define named indices into bus, gen, branch matrices\n[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...\n VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;\n[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...\n TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...\n ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;\n[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...\n MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...\n QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;\n\n%% network with islands\nmpc0 = loadcase(casefile);\nmpc0.gen(1, PG) = 60;\nmpc0.gen(1, QG) = 10;\nmpc0.gen(1, [PMIN PMAX QMIN QMAX PG QG]) = mpc0.gen(1, [PMIN PMAX QMIN QMAX PG QG]) / 2;\nmpc0.gen = [mpc0.gen(1, :); mpc0.gen];\nmpc1 = mpc0;\nmpc = mpc0;\nnb = size(mpc.bus, 1);\nmpc1.bus(:, BUS_I) = mpc1.bus(:, BUS_I) + nb;\nmpc1.branch(:, F_BUS) = mpc1.branch(:, F_BUS) + nb;\nmpc1.branch(:, T_BUS) = mpc1.branch(:, T_BUS) + nb;\nmpc1.gen(:, GEN_BUS) = mpc1.gen(:, GEN_BUS) + nb;\nmpc.bus = [mpc.bus; mpc1.bus];\nmpc.branch = [mpc.branch; mpc1.branch];\nmpc.gen = [mpc.gen; mpc1.gen];\nmpc1 = mpc;\n\n%%----- AC power flow -----\n%% get solved AC power flow case from MAT-file\nload soln9_pf; %% defines bus_soln, gen_soln, branch_soln\nsoln_vg = load('soln9_pf_vg');\n\n%% run AC PF\nfor k = 1:length(cfg)\n if ~isempty(cfg{k}{3}) && ~have_fcn(cfg{k}{3})\n t_skip(ntests, sprintf('%s not available', cfg{k}{3}));\n else\n t = sprintf('AC PF - %s : ', cfg{k}{2});\n mpopt = mpoption(mpopt0, 'pf.alg', cfg{k}{1});\n if ~isempty(cfg{k}{4}) && iscell(cfg{k}{4})\n mpopt = mpoption(mpopt, cfg{k}{4}{:});\n end\n [baseMVA, bus, gen, branch, success, et] = runpf(casefile, mpopt);\n t_ok(success, [t 'success']);\n t_is(bus, bus_soln, 6, [t 'bus']);\n t_is(gen, gen_soln, 6, [t 'gen']);\n t_is(branch, branch_soln, 6, [t 'branch']);\n\n r = runpf(casefile, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.bus, bus_soln, 6, [t 'bus']);\n t_is(r.gen, gen_soln, 6, [t 'gen']);\n t_is(r.branch, branch_soln, 6, [t 'branch']);\n\n %% check when Vg ~= 1\n t = sprintf('%s - Vg ~= 1 : ', cfg{k}{1});\n mpopt = mpoption(mpopt, 'verbose', 0);\n mpc = loadcase(casefile);\n mpc.gen(:, VG) = [1.04; 1.025; 1.025];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.bus, soln_vg.bus_soln, 6, [t 'bus']);\n t_is(r.gen, soln_vg.gen_soln, 6, [t 'gen']);\n t_is(r.branch, soln_vg.branch_soln, 6, [t 'branch']);\n\n %% check Qg distribution, when Qmin = Qmax\n t = sprintf('%s - check Qg : ', cfg{k}{1});\n mpc = loadcase(casefile);\n mpc.gen(1, [QG QMIN QMAX]) = [10 20 20];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1, QG), 24.07, 2, [t 'single gen, Qmin = Qmax']);\n\n mpc.gen = [mpc.gen(1, :); mpc.gen];\n mpc.gen(1, [QMIN QMAX]) = [10 10];\n mpc.gen(2, [QMIN QMAX]) = [0 50];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [10; 14.07], 2, [t '2 gens, Qmin = Qmax for one']);\n\n mpc.gen(1, [QMIN QMAX]) = [10 10];\n mpc.gen(2, [QMIN QMAX]) = [-50 -50];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [42.03; -17.97], 2, [t '2 gens, Qmin = Qmax for both']);\n\n mpc.gen(1, [QMIN QMAX]) = [0 50];\n mpc.gen(2, [QMIN QMAX]) = [0 100];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [8.02; 16.05], 2, [t '2 gens, proportional']);\n\n mpc.gen(1, [QMIN QMAX]) = [-50 0];\n mpc.gen(2, [QMIN QMAX]) = [50 150];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [-50+8.02; 50+16.05], 2, [t '2 gens, proportional']);\n\n mpc.gen(1, [QMIN QMAX]) = [-50 Inf];\n mpc.gen(2, [QMIN QMAX]) = [50 150];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [-31.61; 55.68], 2, [t '2 gens, one infinite range']);\n\n mpc.gen(1, [QMIN QMAX]) = [-50 Inf];\n mpc.gen(2, [QMIN QMAX]) = [50 Inf];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [-33.12; 57.18], 2, [t '2 gens, both infinite range']);\n\n mpc.gen(1, [QMIN QMAX]) = [-50 Inf];\n mpc.gen(2, [QMIN QMAX]) = [-Inf 150];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [76.07; -52], 2, [t '2 gens, both infinite range']);\n\n mpc.gen(1, [QMIN QMAX]) = [-Inf Inf];\n mpc.gen(2, [QMIN QMAX]) = [-Inf Inf];\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(1:2, QG), [12.03; 12.03], 2, [t '2 gens, both infinite range']);\n\n t = sprintf('%s - reactive generation allocation : ', cfg{k}{1});\n mpc = loadcase(casefile);\n %% generator data\n %\tbus\tPg\tQg\tQmax\tQmin\tVg\tmBase\tstatus\tPmax\tPmin\tPc1\tPc2\tQc1min\tQc1max\tQc2min\tQc2max\tramp_agc\tramp_10\tramp_30\tramp_q\tapf\n mpc.gen = [\n\t\t1\t0\t0\t300\t-300\t1\t100\t1\t250\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t\t2\t54\t0\t0\t-5\t1\t100\t1\t300\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t\t2\t54\t0\t5\t-5\t1\t100\t1\t300\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t\t2\t55\t0\t25\t 10\t1\t100\t1\t300\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t\t30\t25\t1\t300\t-300\t1\t100\t1\t270\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t\t30\t30\t2\t300\t-300\t1\t100\t1\t270\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t\t30\t30\t-3\t300\t-300\t1\t100\t1\t270\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n ];\n mpc.bus(3, BUS_TYPE) = PQ;\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.gen(2:4, QG), [-5; -5; 10] + [1; 2; 3]*1.989129794, 7, [t 'PV bus']);\n t_is(r.gen(5:7, QG), [1; 2; -3], 8, [t 'PQ bus']);\n\n %% network with islands\n t = sprintf('%s - network w/islands : AC PF : ', cfg{k}{1});\n mpc = mpc1;\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.bus( 1:9, VA), bus_soln(:, VA), 7, [t 'voltage angles 1']);\n t_is(r.bus(10:18, VA), bus_soln(:, VA), 7, [t 'voltage angles 2']);\n Pg = [gen_soln(1, PG)-30; 30; gen_soln(2:3, PG)];\n t_is(r.gen(1:4, PG), Pg, 6, [t 'active power generation 1']);\n t_is(r.gen(5:8, PG), Pg, 6, [t 'active power generation 2']);\n\n t = sprintf('%s - all buses isolated : ', cfg{k}{1});\n mpc.bus(:, BUS_TYPE) = NONE;\n try\n r = runpf(mpc, mpopt);\n t_is(r.success, 0, 12, [t 'success = 0']);\n catch\n t_ok(0, [t 'unexpected fatal error']);\n end\n\n %% case 14 with Q limits\n t = sprintf('%s - pf.enforce_q_lims == 0 : ', cfg{k}{1});\n mpc = loadcase('case14');\n mpc.gen(1, QMIN) = -10;\n mpc.gen(:, QMAX) = [10; 30; 29; 15; 15];\n bt0 = mpc.bus(:, BUS_TYPE);\n bt = bt0;\n mpopt = mpoption(mpopt, 'pf.enforce_q_lims', 0);\n r = runpf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.bus(:, BUS_TYPE), bt, 12, [t 'bus type']);\n t_is(r.gen(:, QG), [-16.549300542; 43.557100134; 25.075348495; 12.730944405; 17.623451366], 6, [t 'Qg']);\n\n t = sprintf('%s - pf.enforce_q_lims == 1 : ', cfg{k}{1});\n mpopt = mpoption(mpopt, 'pf.enforce_q_lims', 1);\n r = runpf(mpc, mpopt);\n bt = bt0;\n bt([1 2 3 8]) = [PQ PQ REF PQ];\n t_is(r.success, 0, 12, [t 'success = 0']);\n t_is(r.bus(:, BUS_TYPE), bt, 12, [t 'bus type']);\n t_is(r.gen(:, QG), [-10; 30; 31.608422873; 16.420423190; 15], 4, [t 'Qg']);\n\n t = sprintf('%s - pf.enforce_q_lims == 2 : ', cfg{k}{1});\n mpopt = mpoption(mpopt, 'pf.enforce_q_lims', 2);\n r = runpf(mpc, mpopt);\n bt = bt0;\n bt([1 2 3 6 8]) = [REF PQ PQ PQ PQ];\n t_ok(r.success, [t 'success']);\n t_is(r.bus(:, BUS_TYPE), bt, 12, [t 'bus type']);\n t_is(r.gen(:, QG), [-6.30936644; 30; 29; 15; 15], 5, [t 'Qg']);\n end\nend\n\nt = sprintf('%s - pf.enforce_q_lims == 1 : ', 'NR-SP');\nmpopt = mpoption(mpopt, 'pf.alg', 'NR-SP', 'pf.tol', 1e-9);\nmpopt = mpoption(mpopt, 'pf.enforce_q_lims', 1);\nr = runpf('case14', mpopt);\nt_ok(r.success, [t 'success']);\nt_is(r.iterations, 5, 12, [t 'iterations']);\nt_is(r.bus(1, VA), 0, 12, [t 'ref bus Va = 0']);\n\nt = sprintf('%s - pf.enforce_q_lims == 1 : ', 'NR-IC');\nmpopt = mpoption(mpopt, 'pf.alg', 'NR-SP', 'pf.tol', 1e-9);\nmpopt = mpoption(mpopt, 'pf.enforce_q_lims', 1);\nr = runpf('case14', mpopt);\nt_ok(r.success, [t 'success']);\nt_is(r.iterations, 5, 12, [t 'iterations']);\nt_is(r.bus(1, VA), 0, 12, [t 'ref bus Va = 0']);\n\nt_end;\n\nif have_feature('octave')\n warning(s1.state, file_in_path_warn_id);\nend\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/t/t_pf_ac.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.611381973294151, "lm_q2_score": 0.6513548782017745, "lm_q1q2_score": 0.39822663074977227}} {"text": "% SP_TO_VTK: Export to VTK format for plotting.\n%\n% sp_to_vtk (u, space, geometry, npts, filename, fieldname, [options], [lambda_lame, mu_lame])\n% sp_to_vtk (u, space, geometry, pts, filename, fieldname, [options], [lambda_lame, mu_lame])\n%\n% INPUT:\n% \n% u: vector of dof weights\n% space: object representing the space of discrete functions (see sp_scalar)\n% geometry: geometry structure (see geo_load)\n% npts: number of points along each parametric direction where to evaluate\n% pts: cell array with the coordinates along each parametric direction of the points where to evaluate\n% filename: name of the output file. \n% fieldnames: how to name the saved variables in the vtk file\n% options: cell array with the fields to plot\n% accepted options are 'value' (default), 'gradient',\n% and for vectors also 'curl', 'divergence', 'stress'\n% lambda_lame: function handle to the first Lame coefficient (only needed to compute 'stress')\n% mu_lame: function handle for the second Lame coefficient (only needed to compute 'stress')\n%\n% OUTPUT:\n%\n% none \n% \n% Copyright (C) 2009, 2010 Carlo de Falco\n% Copyright (C) 2011, 2012, 2015 Rafael Vazquez\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\nfunction sp_to_vtk (u, space, geometry, npts, filename, fieldname, varargin)\n\n [eu, F] = sp_eval (u, space, geometry, npts, varargin{:});\n\n msh_to_vtk (F, eu, filename, fieldname);\n\nend\n", "meta": {"author": "rafavzqz", "repo": "geopdes", "sha": "3bfa57b1a38bd4da3148536c9f67cce81afce701", "save_path": "github-repos/MATLAB/rafavzqz-geopdes", "path": "github-repos/MATLAB/rafavzqz-geopdes/geopdes-3bfa57b1a38bd4da3148536c9f67cce81afce701/geopdes/inst/space/@sp_scalar/sp_to_vtk.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.39822662247427704}} {"text": "function sF = mrdivide(sF,s)\n% overload the / operator, i.e. one can now write @S2Fun / 2 in order\n% to scale an S2Fun.\n%\n% Syntax\n% sF = sF / 2\n% \n% Input\n% sF - @S2Fun\n% s - constant, vector\n%\n% Output\n% sF - @S2Fun\n%\n\nif ~isnumeric(s)\n error('Second argument has to be numeric. Use ./ instead.')\nend\n\nsF = times(sF,inv(s));\n\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/S2Fun/@S2Fun/mrdivide.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.611381973294151, "lm_q1q2_score": 0.3982266224742769}} {"text": "function [cm3] = ml2cm3(ml)\n% Convert volume from milliliters to cubic centimeters. \n% Chad Greene 2012\ncm3 = ml;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35258-unit-converters/unit_converters/ml2cm3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.651354857898194, "lm_q1q2_score": 0.3982266183365293}} {"text": "function x=SeamPut(x,SeamVector)\n% SEAMPUT takes as input a RGB or grayscale image and SeamVector array to\n% find the pixels contained in the seam, and to adds a seam of interpolated\n% pixels to the image. Each column of SeamVector must be a single seam.\n%\n% Author: Danny Luong\n% http://danluong.com\n%\n% Last updated: 12/20/07\n\n\n[rows cols dim]=size(x);\n[SVrows SVcols SVdim]=size(SeamVector);\n\nif rows~=SVrows\n error('SeamVector and image dimension mismatch');\nend\n\nfor k=1:SVcols\n for i=1:dim\n for j=1:rows\n if SeamVector(j,k)==1\n PutImg(j,:,i)=[x(j,1,i) x(j,1:cols,i)];\n elseif SeamVector(j,k)==cols\n PutImg(j,:,i)=[x(j,1:cols,i) x(j,cols,i)];\n else\n PutImg(j,:,i)=[x(j,1:SeamVector(j,k),i) 1/2*(x(j,SeamVector(j,k),i)+x(j,SeamVector(j,k)+1,i)) x(j,SeamVector(j,k)+1:cols,i)];\n end\n end\n end\n x=PutImg;\n clear PutImg\n [rows cols dim]=size(x);\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/18089-seam-carving-for-content-aware-image-resizing-gui-implementation-demo/MATLAB_Seam_Carving/SeamPut.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.39822661419878147}} {"text": "function mtrTrackVis2PDB(volFile, trkFile, pdbFile)\n\n% File format conversion from the .trk file format (TrackVis) to pdb files\n%\n% Parameters\n% ----------\n% volFile: A full-path to a nifti file, from which the qform will be read \n% trkFile: The trk file to be converted. \n% pdbFile: The output. \n% \n% Returns\n% -------\n% Nothing. \n\n\n% Load vol file to get AcPc xform\nvol = niftiRead(volFile);\nxformTo = vol.qto_xyz;\nxformFrom = abs(vol.qto_ijk);\nxformFrom(1:3,4)=0;\nxformToAcPc = xformTo*xformFrom;\n\n% Get mm dimensions of image\ndim_mm = vol.dim(:).*abs(diag(vol.qto_xyz(1:3,1:3)));\nclear vol;\n\n% Load trks file\nfg = read_trk_to_fg(trkFile);\n\n% Remove really short fibers (<10 points)\n%fg = dtiCleanFibers(fg, [], [], 11)\n\nfg = dtiXformFiberCoords(fg,xformToAcPc);\nfg = dtiClearQuenchStats(fg);\nfg = dtiCreateQuenchStats(fg,'Length','Length', 1);\nmtrExportFibers(fg,pdbFile,eye(4));\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/fiber/tractography/contrack/metrotrac/mtrTrackVis2PDB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7606506526772884, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3981400300429889}} {"text": "function [results, init_target_sz] = tracker(params)\n\n\n%% Initialisation\n% Get sequence information\n[seq, im] = get_sequence_info(params.seq);\nparams = rmfield(params, 'seq');\nif isempty(im)\n seq.rect_position = [];\n [~, results] = get_sequence_results(seq);\n return;\nend\n\n% Initialise position\npos = seq.init_pos(:)';\ntarget_sz = seq.init_sz(:)';\nparams.init_sz = target_sz;\n\n% Feature settings and default parameters\nfeatures = params.t_features;\nparams = init_default_params(params);\nparams.use_mexResize = true;\n\n% Global feature parameters\nif isfield(params, 't_global')\n global_fparams = params.t_global;\nelse\n global_fparams = [];\nend\nglobal_fparams.use_gpu = params.use_gpu;\nglobal_fparams.gpu_id = params.gpu_id;\nglobal_fparams.use_mexResize = true;\n\n% Data types\nif params.use_gpu\n params.data_type = zeros(1, 'single', 'gpuArray');\nelse\n params.data_type = zeros(1, 'single');\nend\nparams.data_type_complex = complex(params.data_type);\nglobal_fparams.data_type = params.data_type;\n\ninit_target_sz = target_sz;\n\n% Check if color image\nif size(im,3) == 3\n if all(all(im(:,:,1) == im(:,:,2)))\n is_color_image = false;\n else\n is_color_image = true;\n end\nelse\n is_color_image = false;\nend\n\nif size(im,3) > 1 && is_color_image == false\n im = im(:,:,1);\nend\n\n% Calculate search area and initial scale factor\nsearch_area = prod(init_target_sz * params.search_area_scale);\nif search_area > params.max_image_sample_size\n currentScaleFactor = sqrt(search_area / params.max_image_sample_size);\nelseif search_area < params.min_image_sample_size\n currentScaleFactor = sqrt(search_area / params.min_image_sample_size);\nelse\n currentScaleFactor = 1.0;\nend\n\n% target size at the initial scale\nbase_target_sz = target_sz / currentScaleFactor;\n\n% window size, taking padding into account\nswitch params.search_area_shape\n case 'proportional'\n img_sample_sz = floor(base_target_sz * params.search_area_scale); % proportional area, same aspect ratio as the target\n case 'square'\n img_sample_sz = repmat(sqrt(prod(base_target_sz * params.search_area_scale)), 1, 2); % square area, ignores the target aspect ratio\n case 'fix_padding'\n img_sample_sz = base_target_sz + sqrt(prod(base_target_sz * params.search_area_scale) + (base_target_sz(1) - base_target_sz(2))/4) - sum(base_target_sz)/2; % const padding\n case 'custom'\n img_sample_sz = [base_target_sz(1)*2 base_target_sz(2)*2];\nend\n\n[features, global_fparams, feature_info] = init_features(features, global_fparams, is_color_image, img_sample_sz, 'exact');\n\n% Set feature info\nimg_support_sz = feature_info.img_support_sz;\nfeature_sz = unique(feature_info.data_sz, 'rows', 'stable');\nfeature_cell_sz = unique(feature_info.min_cell_size, 'rows', 'stable');\nnum_feature_blocks = size(feature_sz, 1);\nfeature_extract_info = get_feature_extract_info(features);\n\n% Size of the extracted feature maps\nfeature_sz_cell = mat2cell(feature_sz, ones(1,num_feature_blocks), 2);\nfilter_sz = feature_sz;\nfilter_sz_cell = permute(mat2cell(filter_sz, ones(1,num_feature_blocks), 2), [2 3 1]);\n\n% The size of the label function DFT. Equal to the maximum filter size\n[output_sz, k1] = max(filter_sz, [], 1);\nk1 = k1(1);\n\n% Get the remaining block indices\nblock_inds = 1:num_feature_blocks;\nblock_inds(k1) = [];\n\n% Construct the Gaussian label function\nyf = cell(numel(num_feature_blocks), 1);\nfor i = 1:num_feature_blocks\n sz = filter_sz_cell{i};\n output_sigma = sqrt(prod(floor(base_target_sz/feature_cell_sz(i)))) * params.output_sigma_factor;\n rg = circshift(-floor((sz(1)-1)/2):ceil((sz(1)-1)/2), [0 -floor((sz(1)-1)/2)]);\n cg = circshift(-floor((sz(2)-1)/2):ceil((sz(2)-1)/2), [0 -floor((sz(2)-1)/2)]);\n [rs, cs] = ndgrid(rg,cg);\n y = exp(-0.5 * (((rs.^2 + cs.^2) / output_sigma^2)));\n yf{i} = fft2(y); \nend\n\n% Compute the cosine windows\ncos_window = cellfun(@(sz) hann(sz(1))*hann(sz(2))', feature_sz_cell, 'uniformoutput', false);\n\n% Define spatial regularization windows\nreg_window = cell(num_feature_blocks, 1);\nfor i = 1:num_feature_blocks\n reg_scale = floor(1.3*base_target_sz/params.feature_downsample_ratio(i));\n use_sz = filter_sz_cell{i}; \n reg_window{i} = ones(use_sz) * 1e5;\n range = zeros(numel(reg_scale), 2);\n \n % determine the target center and range in the regularization windows\n for j = 1:numel(reg_scale)\n range(j,:) = [0, reg_scale(j) - 1] - floor(reg_scale(j) / 2);\n end\n center = floor((use_sz + 1)/ 2) + mod(use_sz + 1,2);\n range_h = (center(1)+ range(1,1)) : (center(1) + range(1,2));\n range_w = (center(2)+ range(2,1)) : (center(2) + range(2,2));\n \n reg_window{i}(range_h, range_w) = 1e-3;\nend\nparams.reg_window = reg_window;\n\n% Pre-computes the grid that is used for socre optimization\nky = circshift(-floor((filter_sz_cell{1}(1) - 1)/2) : ceil((filter_sz_cell{1}(1) - 1)/2), [1, -floor((filter_sz_cell{1}(1) - 1)/2)]);\nkx = circshift(-floor((filter_sz_cell{1}(2) - 1)/2) : ceil((filter_sz_cell{1}(2) - 1)/2), [1, -floor((filter_sz_cell{1}(2) - 1)/2)])';\nnewton_iterations = params.newton_iterations;\n\n% Use the translation filter to estimate the scale\nnScales = params.number_of_scales;\nscale_step = params.scale_step;\nscale_exp = (-floor((nScales-1)/2):ceil((nScales-1)/2));\nscaleFactors = scale_step .^ scale_exp;\n\nif nScales > 0\n min_scale_factor = scale_step ^ ceil(log(max(5 ./ img_support_sz)) / log(scale_step));\n max_scale_factor = scale_step ^ floor(log(min([size(im,1) size(im,2)] ./ base_target_sz)) / log(scale_step));\nend\n\nseq.time = 0;\n\n% Define the learning variables\ntheta_pre_f = cell(num_feature_blocks, 1);\nctheta_f = cell(num_feature_blocks, 1);\nL = cell(num_feature_blocks, 1);\nscores_fs_feat = cell(1,1,num_feature_blocks);\nwhile true\n % Read image\n if seq.frame > 0\n [seq, im] = get_sequence_frame(seq);\n if isempty(im)\n break;\n end\n if size(im,3) > 1 && is_color_image == false\n im = im(:,:,1);\n end\n else\n seq.frame = 1;\n end\n\n tic();\n \n %% Target localization stage\n \n if seq.frame > 1\n old_pos = inf(size(pos));\n iter = 1;\n \n %translation search\n while iter <= params.refinement_iterations && any(old_pos ~= pos)\n % Extract features at multiple resolutions\n sample_pos = round(pos);\n det_sample_pos = sample_pos;\n sample_scale = currentScaleFactor*scaleFactors;\n xt = extract_features(im, sample_pos, sample_scale, features, global_fparams, feature_extract_info);\n \n % Do windowing of features\n xtw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, sqrt(cos_window)), xt, cos_window, 'uniformoutput', false);\n \n % Compute the fourier series\n xtf = cellfun(@fft2, xtw, 'uniformoutput', false);\n \n scores_fs_feat{k1} = gather(sum(bsxfun(@times, conj(ctheta_f{k1}), xtf{k1}), 3));\n scores_fs_sum = scores_fs_feat{k1};\n for k = block_inds\n scores_fs_feat{k} = gather(sum(bsxfun(@times, conj(ctheta_f{k}), xtf{k}), 3));\n scores_fs_feat{k} = resizeDFT2(scores_fs_feat{k}, output_sz);\n scores_fs_sum = scores_fs_sum + scores_fs_feat{k};\n end\n scores_fs = permute(gather(scores_fs_sum), [1 2 4 3]);\n \n responsef_padded = resizeDFT2(scores_fs, output_sz);\n response = ifft2(responsef_padded, 'symmetric');\n [disp_row, disp_col, sind] = resp_newton(response, responsef_padded, newton_iterations, ky, kx, output_sz);\n \n % Compute the translation vector in pixel-coordinates and round\n % to the closest integer pixel.\n translation_vec = [disp_row, disp_col] .* (img_support_sz./output_sz) * currentScaleFactor * scaleFactors(sind); \n scale_change_factor = scaleFactors(sind);\n \n % update position\n old_pos = pos;\n if sum(isnan(translation_vec))\n pos = sample_pos;\n else\n pos = sample_pos + translation_vec;\n end\n \n if params.clamp_position\n pos = max([1 1], min([size(im,1) size(im,2)], pos));\n end\n \n % Update the scale\n currentScaleFactor = currentScaleFactor * scale_change_factor;\n \n % Adjust to make sure we are not to large or to small\n if currentScaleFactor < min_scale_factor\n currentScaleFactor = min_scale_factor;\n elseif currentScaleFactor > max_scale_factor\n currentScaleFactor = max_scale_factor;\n end\n \n iter = iter + 1;\n end\n end\n \n %% Model learning and update stage\n \n % extract image region for training sample\n sample_pos = round(pos);\n xl = extract_features(im, sample_pos, currentScaleFactor, features, global_fparams, feature_extract_info);\n\n % do windowing of features\n xlw = cellfun(@(feat_map, cos_window) bsxfun(@times, feat_map, cos_window), xl, cos_window, 'uniformoutput', false);\n\n % compute the fourier series\n xlf = cellfun(@fft2, xlw, 'uniformoutput', false); \n\n [ctheta_f, theta_pre_f, L] = train_filter(ctheta_f, xlf, yf, theta_pre_f, params, output_sz, seq);\n \n % Update target size \n target_sz = base_target_sz * currentScaleFactor;\n \n % save position and time\n tracking_result.center_pos = double(pos);\n tracking_result.target_size = double(target_sz);\n seq = report_tracking_result(seq, tracking_result);\n \n seq.time = seq.time + toc();\n \n\n %% Visualization\n \n if params.visualization\n rect_position_vis = [pos([2,1]) - (target_sz([2,1]) - 1)/2, target_sz([2,1])];\n im_to_show = double(im)/255;\n if size(im_to_show,3) == 1\n im_to_show = repmat(im_to_show, [1 1 3]);\n end\n if seq.frame == 1 \n fig_handle = figure('Name', 'Tracking');\n imagesc(im_to_show);\n hold on;\n rectangle('Position',rect_position_vis, 'EdgeColor','g', 'LineWidth',2);\n text(10, 10, int2str(seq.frame), 'color', [0 1 1]);\n hold off;\n axis off;axis image;set(gca, 'Units', 'normalized', 'Position', [0 0 1 1])\n \n else\n % Do visualization of the sampled confidence scores overlayed\n% resp_sz = round(img_support_sz*currentScaleFactor*scaleFactors(sind));\n% xs = floor(det_sample_pos(2)) + (1:resp_sz(2)) - floor(resp_sz(2)/2);\n% ys = floor(det_sample_pos(1)) + (1:resp_sz(1)) - floor(resp_sz(1)/2);\n% spatial_feature_display = circshift(imresize(L{1},[numel(xs),numel(ys)]);\n figure(fig_handle);\n imagesc(im_to_show);\n% hold on;\n% resp_handle = imagesc(xs, ys, spatial_feature_display); colormap hsv;\n% alpha(resp_handle, 0.5);\n rectangle('Position',rect_position_vis, 'EdgeColor','g', 'LineWidth',2);\n text(10, 10, int2str(seq.frame), 'color', [0 1 1]);\n hold off;\n \n end\n \n drawnow\n\n end\n\nend\n\n[seq, results] = get_sequence_results(seq);\n\n", "meta": {"author": "XU-TIANYANG", "repo": "LADCF", "sha": "73258b5d3a0c8ea91e416b3afb2466fbead8bf90", "save_path": "github-repos/MATLAB/XU-TIANYANG-LADCF", "path": "github-repos/MATLAB/XU-TIANYANG-LADCF/LADCF-73258b5d3a0c8ea91e416b3afb2466fbead8bf90/tracker_imple/tracker.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7606506526772883, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.39814003004298887}} {"text": "function test_suite = test_intersectPlaneSphere\n%TESTINTERSECTPLANESPHERE One-line description here, please.\n%\n% output = testIntersectPlaneSphere(input)\n%\n% Example\n% testIntersectPlaneSphere\n%\n% See also\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2011-06-21, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2011 INRA - Cepia Software Platform.\n\ntest_suite = functiontests(localfunctions); \n\nfunction testOx(testCase) %#ok<*DEFNU>\n% Plane normal to direction [1 0 0]\n\ncenter = [10 20 30];\nradius = 50;\nsphere = [center radius];\n\nplane = createPlane(center, [6 0 0]);\n\ncircle = intersectPlaneSphere(plane, sphere);\n\nexp = [center radius 90 0 0];\ntestCase.assertEqual(exp, circle);\n\n\nfunction testOxShifted(testCase)\n% Plane normal to direction [1 0 0]\n\ncenter = [10 20 30];\nradius = 50;\nsphere = [center radius];\n\ncenter2 = center + [radius/2 0 0];\nplane = createPlane(center2, [6 0 0]);\n\ncircle = intersectPlaneSphere(plane, sphere);\n\nradius2 = radius * sqrt(3) / 2;\nexp = [center2 radius2 90 0 0];\ntestCase.assertEqual(exp, circle);\n\n\nfunction testOy(testCase)\n% Plane normal to direction [0 1 0]\n\ncenter = [10 20 30];\nradius = 50;\nsphere = [center radius];\n\nplane = createPlane(center, [0 6 0]);\n\ncircle = intersectPlaneSphere(plane, sphere);\n\nexp = [center radius 90 90 0];\ntestCase.assertEqual(exp, circle, 'AbsTol', .01);\n\n\nfunction testOyShifted(testCase)\n% Plane normal to direction [0 1 0]\n\ncenter = [10 20 30];\nradius = 50;\nsphere = [center radius];\n\ncenter2 = center + [0 radius/2 0];\nplane = createPlane(center2, [0 6 0]);\n\ncircle = intersectPlaneSphere(plane, sphere);\n\nradius2 = radius * sqrt(3) / 2;\nexp = [center2 radius2 90 90 0];\ntestCase.assertEqual(exp, circle, 'AbsTol', .01);\n\n\nfunction testOz(testCase)\n% Plane normal to direction [0 1 0]\n\ncenter = [10 20 30];\nradius = 50;\nsphere = [center radius];\n\nplane = createPlane(center, [0 0 6]);\n\ncircle = intersectPlaneSphere(plane, sphere);\n\nexp = [center radius 0 0 0];\ntestCase.assertEqual(exp, circle, 'AbsTol', .01);\n\n\nfunction testOzShifted(testCase)\n% Plane normal to direction [0 0 1]\n\ncenter = [10 20 30];\nradius = 50;\nsphere = [center radius];\n\ncenter2 = center + [0 0 radius/2];\nplane = createPlane(center2, [0 0 6]);\n\ncircle = intersectPlaneSphere(plane, sphere);\n\nradius2 = radius * sqrt(3) / 2;\nexp = [center2 radius2 0 0 0];\ntestCase.assertEqual(exp, circle, 'AbsTol', .01);\n\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/tests/geom3d/test_intersectPlaneSphere.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.7606506472514406, "lm_q1q2_score": 0.3981400272029898}} {"text": "function output = calloptiqsopt(interfacedata)\n\n% Standard input interface\noptions = interfacedata.options;\nF_struc = interfacedata.F_struc;\nc = interfacedata.c;\nK = interfacedata.K;\nlb = interfacedata.lb;\nub = interfacedata.ub;\n\nshowprogress('Calling QSOPT',options.showprogress);\n\nif isempty(F_struc) \n A = [];\n b = [];\nelse\n A =[-F_struc(K.f+1:end,2:end);-F_struc(1:K.f,2:end)];\n b =[F_struc(K.f+1:end,1);F_struc(1:K.f,1)]; \nend\n\nopts = options.qsopt;\nopts.nin = length(b)-K.f;\nopts.display = options.verbose;\n\nif options.savedebug \n save qsoptdebug c A b lb ub opts\nend\n\nsolvertime = tic;\n[x,fval,exitflag] = qsopt(full(c), A, full(b), full(lb), full(ub),opts);\nsolvertime = toc(solvertime);\n\n% No duals\nD_struc = [];\n\nswitch exitflag\n case 1\n problem = 0;\n case 0\n problem = 3;\n case -1\n problem = 1;\n case -2\n problem = 11; \n otherwise\n problem = -1;\nend\ninfostr = yalmiperror(problem,'QSOPT'); \n\n% Save all data sent to solver?\nif options.savesolverinput\n solverinput.A = A;\n solverinput.b = b;\n solverinput.f = c;\n solverinput.lb = lb;\n solverinput.ub = ub; \nelse\n solverinput = [];\nend\n\n% Save all data from the solver?\nif options.savesolveroutput\n solveroutput.x = x;\n solveroutput.fval = fval;\n solveroutput.exitflag = exitflag;\nelse\n solveroutput = [];\nend\n\n% Standard interface \noutput = createOutputStructure(x,D_struc,[],problem,infostr,solverinput,solveroutput,solvertime);", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/solvers/calloptiqsopt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7606506418255927, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.39814002436299056}} {"text": "function Rob = createRobots(Robot)\n\n% CREATEROBOTS Create robots structure array.\n% Rob = CREATEROBOTS(Robot) creates the Rob() structure array to be used\n% as SLAM data. The input Robot{} is a cell array of structures as\n% specified by the user in userData.m. There must be one Robot{} per each\n% robot considered in the simulation. See userData.m for details.\n\n% Copyright 2008-2009 Joan Sola @ LAAS-CNRS.\n\nfor rob = 1:numel(Robot)\n \n Ri = Robot{rob}; % input robot structure\n \n % identification\n Ro.rob = rob;\n Ro.id = Ri.id;\n Ro.name = Ri.name;\n Ro.type = Ri.type;\n Ro.motion = Ri.motion;\n \n Ro.sensors = [];\n \n % Robot frame in quaternion form\n ep = [Ri.position;deg2rad(Ri.orientationDegrees)];\n EP = diag([Ri.positionStd;deg2rad(Ri.orientationStd)].^2);\n [qp,QP] = propagateUncertainty(ep,EP,@epose2qpose); % frame and cov. in quaternion\n\n % control and rest of the state\n switch Ri.motion\n \n case {'constVel'}\n % control\n Ro.con.u = [Ri.dv;deg2rad(Ri.dwDegrees)];\n Ro.con.uStd = [Ri.dvStd;deg2rad(Ri.dwStd)];\n Ro.con.U = diag(Ro.con.uStd.^2);\n Ro.com.W = 1/Ro.con.U; % Information matrix\n \n % velocity states\n v = [Ri.velocity;deg2rad(Ri.angularVelDegrees)];\n V = diag([Ri.velStd;deg2rad(Ri.angVelStd)].^2);\n \n % state\n Ro.state.x = [qp;v]; % state\n Ro.state.P = blkdiag(QP,V);\n Ro.state.dx = zeros(12,1);\n \n case {'odometry'}\n % control\n Ro.con.u = [Ri.dx;deg2rad(Ri.daDegrees)];\n Ro.con.uStd = [Ri.dxStd;deg2rad(Ri.daStd)];\n Ro.con.U = diag(Ro.con.uStd.^2);\n Ro.com.W = Ro.con.U^-1; % Information matrix\n \n % state\n Ro.state.x = qp; % state\n Ro.state.P = EP;\n Ro.state.dx = zeros(6,1);\n \n otherwise\n error('Unknown motion model ''%s'' for robot %d.',Robot{rob}.motion,Robot{rob}.id);\n end\n \n Ro.state.r = []; % Points Map.x into state.dx\n Ro.state.size = numel(Ro.state.x); % state size\n Ro.state.dsize = numel(Ro.state.dx);\n\n Ro.frame.r = [];\n Ro.frame.x = qp;\n Ro.frame.P = QP;\n Ro.frame = updateFrame(Ro.frame);\n \n Rob(rob) = Ro; % output robot structure\n \nend\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/InterfaceLevel/createRobots.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936537604181, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.39810589200511176}} {"text": "clear;\naddpath('../../CVPR16_VDSR/');\naddpath('./matlabPyrTools-master/');\n%% test\n% load('DRRN_22C128_dataset_1_x3');\nload('VDSR_20C64_dataset_1_x3');\npath = ['../../SR Test dataset/Set5/'];\nd = dir([path '*.bmp']);\nup_scale = 3;\nsum = 0 ;\nfor i=1:length(d)\n im = imread([path d(i).name]);\n %% work on illuminance only\n if size(im,3)>1\n im = rgb2ycbcr(im);\n end\n im = im2double(im(:,:,1));\n im_gnd = modcrop(im, up_scale);\n [hei,wid] = size(im_gnd);\n im_b = imresize(imresize(im_gnd,1/up_scale,'bicubic'),up_scale,'bicubic');\n %% remove border\n im_b1 = shave(uint8(single(im_b) * 255), [up_scale, up_scale]);\n im_gnd1 = shave(uint8(single(im_gnd) * 255), [up_scale, up_scale]);\n im_h1 = im_h_set{i};\n sum = sum+ifcvec(double(im_gnd1),double(im_h1));\nend\nifc = sum/length(d)\n\n\n ", "meta": {"author": "tyshiwo", "repo": "DRRN_CVPR17", "sha": "cafe98bc73997c10947911de74279d63cb786b8a", "save_path": "github-repos/MATLAB/tyshiwo-DRRN_CVPR17", "path": "github-repos/MATLAB/tyshiwo-DRRN_CVPR17/DRRN_CVPR17-cafe98bc73997c10947911de74279d63cb786b8a/test/evaluation_func/demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3981058864595031}} {"text": "function [costPatchCand, uvBiasCand] = ...\n sc_patch_cost(trgPatch, srcPatch, modelPlane, uvPlaneIDData, ...\n trgPos, srcTform, srcPosMap, bdPos, optS)\n\nnumUvPix = size(srcPatch, 3);\ncostPatchCand = zeros(numUvPix, 4, 'single');\n\n% Patch cost - appearance\n[costApp, uvBiasCand] = sc_patch_cost_app(trgPatch, srcPatch, optS);\n\n% Patch cost - planar guidance\nsrcPos = srcTform(:,7:8);\ncostPlane = sc_patch_cost_plane(modelPlane.mLogLPlaneProb, uvPlaneIDData, trgPos, srcPos);\n\nif(optS.useCoherence) % Patch cost - coherence\n costCoherence = sc_patch_cost_coherence(trgPos, srcPosMap, srcTform, optS);\nend\n\n% Patch cost - directional guidance\ncostDirect = sc_patch_cost_direct(uvPlaneIDData, trgPos, srcPos, modelPlane, optS);\n\n% Patch cost - proximity cost\ncostProx = sc_patch_cost_prox(srcPos, trgPos, bdPos, optS);\n\n% costReg = double(uvPixUpdateSrc == 1);\n\n% Weighted sum of the appearance cost and guidance cost\ncostPatchCand(:,1) = costApp;\ncostPatchCand(:,2) = optS.lambdaPlane * costPlane;\n\nif(optS.useCoherence)\n costPatchCand(:,3) = optS.lambdaCoherence * costCoherence;\nend\n\ncostPatchCand(:,4) = optS.lambdaDirect * costDirect;\ncostPatchCand(:,5) = optS.lambdaProx * costProx;\n% costPatchCand(3,:) = optS.lambdaReg * costReg;\n\n% [To-Do] Adaptive weighting for patch cost\n% costPatchCand(2:5,:) = (iLvl/optS.numPyrLvl)*costPatchCand(2:5,:);\n\nend\n\nfunction [costApp, uvBias] = sc_patch_cost_app(trgPatch, srcPatch, optS)\n\n% SC_PATCH_COST_APP\n%\n% Compute the weighted sum of the absolute difference between\n% cost between source and target patches\n\n% Input:\n% - trgPatch: target patch\n% - srcPatch: source patch\n% - optS: parameter\n% Output:\n% - costApp: appearance cost\n% - uvBias bias for the closet neighbor\n\n% =========================================================================\n% Apply bias correction\n% =========================================================================\n\nuvBias = [];\nif(optS.useBiasCorrection)\n % Mean of source and target patch\n meanTrgPatch = mean(trgPatch, 1);\n meanSrcPatch = mean(srcPatch, 1);\n \n % Compute bias and clamp it to inteval [optS.minBias, optS.maxBias]\n uvBias = meanTrgPatch - meanSrcPatch;\n uvBias = sc_clamp(uvBias, optS.minBias, optS.maxBias);\n \n % Update the UV map for bias\n % uvBias = reshape(biasPatch, 3, numUvValidPix);\n \n % Apply the bias correction to source patch\n srcPatch = bsxfun(@plus, srcPatch, uvBias);\nend\n\n% =========================================================================\n% Compute weighted distance\n% =========================================================================\n% Compute distance\npatchDist = trgPatch - srcPatch;\n\n% Sum of absolute distance\nif(strcmp(optS.costType, 'L1'))\n patchDist = abs(patchDist);\nelseif(strcmp(optS.costType, 'L2'))\n patchDist = patchDist.^2;\nend\n\n% Apply weights\npatchDist = bsxfun(@times, patchDist, optS.wPatch);\ncostApp = squeeze(sum(sum(patchDist, 1),2));\nend\n\nfunction cost = sc_patch_cost_coherence(trgPos, srcPosMap, srcTform, opt)\n\n% SC_PATCH_COST_COHERENCE: spatial coherence cost\n%\n% Input\n% - trgPos: target patch positions [numPix] x [2]\n% - srcPosMap: source patch map [imgH] x [imgW] x [2]\n% - srcPos: source patch positions [numPix] x [2]\n% - srcTfmG: source patch geometric transformation [numPix] x [9]\n% - opt: parameters\n% Output:\n% - cost: spatio-temporal coherence cost\n\nnumPix = size(trgPos,1);\n[imgH, imgW, ~] = size(srcPosMap);\n\n% initialize coherence cost\ncost = zeros(numPix, 1, 'single');\n\n% =========================================================================\n% Compute spatial coherence cost\n% =========================================================================\nfor i = 1:4\n % source patch position prediction\n v = opt.propDir(i,:);\n srcPosP = sc_trans_tform(srcTform, v);\n srcPosP = srcPosP(:,7:8);\n \n % source patch positions of neighboring target patches\n trgPosN = bsxfun(@plus, trgPos, v);\n trgIndN = uint32(sub2ind([imgH, imgW], trgPosN(:,2), trgPosN(:,1)));\n srcPosN = sc_uvMat_from_uvMap(srcPosMap, trgIndN);\n \n validSrc = (srcPosN(:,1) ~= 0);\n \n % add cost if the differences are high\n diff = zeros(numPix, 1, 'single');\n diff(validSrc) = sum(abs(srcPosP(validSrc,:) - srcPosN(validSrc,:)), 2) > 1;\n cost = cost + diff;\nend\n\n% cost = opt.lambdaCoherence*cost;\n\nend\n\nfunction costPlane = sc_patch_cost_plane(mLogLPlaneProb, uvPlaneIDData, trgPixSub, srcPixSub)\n\n% SC_PATCH_COST_PLANE\n%\n% Compute planar costs (See Eqn 11 in the paper)\n\n[imgH, imgW, numPlane] = size(mLogLPlaneProb);\n\nsrcPixSub = round(srcPixSub);\nuvPlaneIDData = double(uvPlaneIDData);\n\ntrgPixIndCur = sub2ind([imgH, imgW, numPlane], trgPixSub(:,2), trgPixSub(:,1), uvPlaneIDData);\nsrcPixIndCur = sub2ind([imgH, imgW, numPlane], srcPixSub(:,2), srcPixSub(:,1), uvPlaneIDData);\n\ncostPlane = mLogLPlaneProb(trgPixIndCur) + mLogLPlaneProb(srcPixIndCur);\n\nend\n\nfunction costProx = sc_patch_cost_prox(srcPos, trgPos, uvDtBdPixPos, optS)\n\n% SC_PATCH_COST_PROX\n\n% Encourage to sample patches near to the target patch\n\nd = srcPos - trgPos;\nd = sqrt(sum(d.^2,2));\n\nd = d/optS.imgSize;\nuvDtBdPixPos = uvDtBdPixPos/optS.imgSize;\n\n% costProx = max(0, d - optS.proxThres);\n% Shrinkage thresholding\ncostProx = max(0, d - uvDtBdPixPos - optS.proxThres);\n% costProx = max(0, d - optS.proxThres);\n\nend\n\n\nfunction costDirect = sc_patch_cost_direct(uvPlaneIDData, trgPos, srcPos, modelPlane, optS)\n\n% SC_PATCH_COST_DIRECT\n%\n% Compute the directional cost (See Eqn 13 in the paper)\n%\n% Input\n% -\n% Output\n% -\n\nnumUvPix = size(trgPos, 1);\ncostDirect = optS.lambdaDirect*ones(numUvPix, 2, 'single');\n\nfor indPlane = 1: modelPlane.numPlane\n % Retrieve the uv pixels that have the current plane label\n uvPlaneIndCur = uvPlaneIDData == indPlane;\n numPlanePixCur = sum(uvPlaneIndCur);\n \n if(indPlane == modelPlane.numPlane)\n costDirect(uvPlaneIndCur, :) = optS.imgSize*optS.directThres;\n else\n % The rectifying transformation for the plane\n rectMat = modelPlane.rectMat{indPlane};\n h7 = rectMat(3,1);\n h8 = rectMat(3,2);\n \n if(numPlanePixCur~=0)\n trgPosCur = trgPos(uvPlaneIndCur, :) - 1;\n srcPosCur = srcPos(uvPlaneIndCur, :) - 1;\n \n for iTheta = 1:2\n rotMat = modelPlane.rotMat{indPlane, iTheta};\n \n rotRecMat = rotMat;\n rotRecMat(3,1) = h7; rotRecMat(3,2) = h8;\n rotRecMat = rotRecMat';\n \n trgPosCurRect = cat(2, trgPosCur, ones(numPlanePixCur,1))*rotRecMat;\n trgPosCurRect = bsxfun(@rdivide, trgPosCurRect, trgPosCurRect(:,3));\n \n % Source patch center position in the rectified domain\n srcPosCurRect = cat(2, srcPosCur, ones(numPlanePixCur,1))*rotRecMat;\n srcPosCurRect = bsxfun(@rdivide, srcPosCurRect, srcPosCurRect(:,3));\n \n costDirect(uvPlaneIndCur, iTheta) = abs(srcPosCurRect(:,2) - trgPosCurRect(:,2));\n end\n end\n end\nend\n\ncostDirect = min(costDirect, [], 2);\ncostDirect = min(costDirect/optS.imgSize, optS.directThres);\n\nend", "meta": {"author": "jbhuang0604", "repo": "StructCompletion", "sha": "25668dea193801140fafe0a722ccb1e955509ec4", "save_path": "github-repos/MATLAB/jbhuang0604-StructCompletion", "path": "github-repos/MATLAB/jbhuang0604-StructCompletion/StructCompletion-25668dea193801140fafe0a722ccb1e955509ec4/source/sc_patch_cost.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3981058864595031}} {"text": "filename='RVE_Square_Triangle_FineFine';\nptype = 'MICRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'horizontal';\ncost={'chomog_alphabeta'};\nweights=[1 0.1];\nconstraint = {'volumeConstraint'};\noptimizer = 'SLERP'; \nincrementFactor = 1;\ndesignVariable = 'LevelSet';\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.5;\nPerimeter_target=1;\noptimality_final =1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\n\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n\n%Micro\nepsilon_isotropy_initial=1e-1;\nepsilon_isotropy_final = 1e-3;\nmicro.alpha =[1 1 0]';\nmicro.beta =[1 1 0]';\n\n% For all tests\nplotting = false;\nprinting = false;\nmonitoring = false;\nmaxiter = 3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/test_microHorizontalFine.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149978955811, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3980791521373911}} {"text": "function [acc_stl] = STL(X_src,y_src,X_tar,y_tar,dim)\n% Stratified Transfer Learning for Cross-domain Activity Recognition.\n% Jindong Wang, Yiqiang Chen, Lisha hu, Xiaohui Peng, and Philip S. Yu.\n% 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom).\n\n%% Inputs: \n%%%% X_src : Source domain feature matrix, n_sample * n_dim\n%%%% y_src : Source domain label vector, n_sample * 1\n%%%% X_tar : Target domain feature matrix, n_sample * n_dim\n%%%% y_src : Target domain label vector, n_sample * 1\n%%%% dim : Dimension after STL, an integer\n%% Output:\n%%%% acc_stl: accuracy of the algorithm\n\n label_set = unique(y_src(:));\n num_tree = 30;\n %voting\n %%RF\n [predict_label_rf,accuracy_rf] = jdrf(X_src,y_src,X_tar,y_tar,30);\n %%SVM\n [predict_label_svm,accuracy_svm,~] = jdsvm(X_src,y_src,X_tar,y_tar,100);\n %%KNN\n [predict_label_knn,accuracy_knn] = jdknn(X_src,y_src,X_tar,y_tar,5);\n %%voting\n label_voting = [];\n for i = 1 : size(y_tar,1)\n if predict_label_rf(i) == predict_label_svm(i)\n label_voting(i) = predict_label_rf(i);\n elseif predict_label_rf(i) == predict_label_knn(i)\n label_voting(i) = predict_label_rf(i);\n elseif predict_label_svm(i) == predict_label_knn(i)\n label_voting(i) = predict_label_svm(i);\n else\n label_voting(i) = -1;\n end\n end\n label_voting = label_voting';\n %get residual\n r_index = label_voting(:,1) == -1;\n X_tar_residual = X_tar(r_index,:);\n y_tar_residual = y_tar(r_index,:);\n \n %get candidate\n c_index = label_voting(:,1) ~= -1;\n X_tar_candidate = X_tar(c_index,:);\n y_tar_candidate = y_tar(c_index,:);\n label_candidate = label_voting(c_index);\n conmat1 = confusionmat(label_candidate,y_tar_candidate);\n %in-class transfer\n %%%new candidates and source domain\n X_tar_candidate_new = [];\n y_tar_candidate_new = [];\n X_src_new = [];\n y_src_new = [];\n X_tar_candidate_old = [];\n y_tar_candidate_old = [];\n for i = 1 : size(label_set,1)\n class_index = label_set(i);\n %source data in that class i\n src_index_i = y_src(:) == class_index;\n X_src_i = X_src(src_index_i,:);\n y_src_i = y_src(src_index_i,:);\n %candidate data in that class i\n tar_index_i = label_candidate(:) == class_index;\n X_tar_candidate_i = X_tar_candidate(tar_index_i,:);\n y_tar_candidate_i = y_tar_candidate(tar_index_i,:);\n X_tar_candidate_old = [X_tar_candidate_old;X_tar_candidate_i];\n y_tar_candidate_old = [y_tar_candidate_old;y_tar_candidate_i];\n %TCA\n [X_src_new_i,X_tar_candidate_new_i] = MyTCA(X_src_i,X_tar_candidate_i,dim);\n %merge\n X_src_new = [X_src_new;X_src_new_i];\n y_src_new = [y_src_new;y_src_i];\n X_tar_candidate_new = [X_tar_candidate_new;X_tar_candidate_new_i];\n y_tar_candidate_new = [y_tar_candidate_new;y_tar_candidate_i];\n end\n %train model on new candidate\n [predicted_label_candidate,acc_candidate] = ...\n jdrf(X_src_new,y_src_new,X_tar_candidate_new,y_tar_candidate_new,num_tree);\n conmat2 = confusionmat(predicted_label_candidate,y_tar_candidate_new);\n %train model on old candidate and predict on residual\n [predicted_label_residual,acc_residual] = jdrf(X_tar_candidate_old,predicted_label_candidate,X_tar_residual,y_tar_residual,num_tree);\n %calculate accuracy\n acc_stl = mean([predicted_label_candidate;predicted_label_residual] == [y_tar_candidate_new;y_tar_residual]);\n \nend", "meta": {"author": "jindongwang", "repo": "activityrecognition", "sha": "33687803886d4a184e0b285e3ec7ab73a8f86355", "save_path": "github-repos/MATLAB/jindongwang-activityrecognition", "path": "github-repos/MATLAB/jindongwang-activityrecognition/activityrecognition-33687803886d4a184e0b285e3ec7ab73a8f86355/code/percom18_stl/STL.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149868676284, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3980791463221694}} {"text": "% op_getcoilcombos_specReg.m\n% Jamie Near, McGill University 2014.\n% \n% USAGE:\n% coilcombos=op_getcoilcombos_specReg(file_or_struct,tmin,tmax,point);\n% \n% DESCRIPTION:\n% This funciton finds the relative coil phases and amplitudes. Coil phases\n% are found by fitting in the time domain. (In the original\n% op_getcoilcombos, the phases were determined simply by observation of the\n% pointth point in the time domain). The \"Base\" receiver channel is\n% Determined as the one with the highest signal (all other coil channels\n% will be registered to that channel. \n% \n% INPUTS:\n% file_or_struct = this function will accept either a string filename or\n% the name of a structure. If the input is a string, \n% the program will read in the data corresponding to \n% that filename. If the input is a structure, it will\n% operate on that structure.\n% tmin = The earliest timepoint in the fid to be used for \n% spectral registration. (Optional. Default=0 sec);\n% tmax = The latest timepoint in the fid to be used for \n% spectral registration. (Optional. Default=0.2 sec);\n% point = The index of the datapoint in the fid that is used\n% for determination of Signal intensity. (Optional.\n% Default = 1);\n%\n% OUTPUTS:\n% coilcombos = Structure containing the calculated coil weights and phases. \n\n\nfunction coilcombos=op_getcoilcombos_specReg(file_or_struct,tmin,tmax,point);\n\n\nif isstr(file_or_struct)\n in=io_loadspec_twix(file_or_struct);\nelse\n in=file_or_struct;\nend\n\nif in.flags.addedrcvrs || ~in.dims.coils\n %If there is only one coil element, do nothing:\n disp('WARNING: Only one receiver channel found! Coil phase will be 0.0 and coil amplitude will be 1.0.');\n coilcombos.ph=0;\n coilcombos.sig=1;\nelse\n %If there are multiple coil elements (most cases), find the complex\n %weightings\n\n if nargin<4\n point=1;\n if nargin<3\n tmax=0.2;\n if nargin<2\n tmin=0;\n end\n end\n end\n\n B=in.sz(in.dims.coils);\n \n coilcombos.ph=zeros(B,1);\n coilcombos.sig(:,1)=abs(in.fids(point,:,1,1));\n bestSNRindex=find(coilcombos.sig(:,1)==max(coilcombos.sig(:,1)))\n phGuess=0;\n \n disp('aligning all coils to the first coil');\n base=phase(in.fids(in.t>=tmin & in.t=tmin & in.t 0,'gamma must be a positive value; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.gamma = val;\n end\n end\n function obj = set.coef0(obj,val)\n assert(isscalar(val),'coef0 must be a scalar; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.coef0 = val;\n end\n function obj = set.cost(obj,val)\n assert(isscalar(val) && val > 0,'cost must be a positive value; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.cost = val;\n end\n function obj = set.nu(obj,val)\n assert(isscalar(val) && val > 0,'nu must be a positive value; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.nu = val;\n end\n function obj = set.pEpsilon(obj,val)\n assert(isscalar(val) && val > 0,'pEpsilon must be a positive value; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.pEpsilon = val;\n end\n function obj = set.cachesize(obj,val)\n assert(isscalar(val) && val > 0,'cachesize must be a positive value; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.cachesize = val;\n end\n function obj = set.eEpsilon(obj,val)\n assert(isscalar(val) && val > 0,'eEpsilon must be a positive value; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.eEpsilon = val;\n end\n function obj = set.shrinking(obj,val)\n val = double(val);\n assert(isscalar(val) && ismember(val,[0 1]),'shrinking must be one of 0,1; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.shrinking = val;\n end\n function obj = set.probabilityEstimates(obj,val)\n val = double(val);\n assert(isscalar(val) && ismember(val,[0 1]),'probabilityEstimates must be one of 0,1; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.probabilityEstimates = val;\n end\n function obj = set.weight(obj,val)\n assert(numel(val)==2 && all(val > 0),'weight must be a positive 2-element vector; see the instructions at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ for more information');\n obj.weight = val;\n end\n \n function self = prtClassLibSvm(varargin)\n self = prtUtilAssignStringValuePairs(self,varargin{:});\n end \n end\n \n methods (Access=protected, Hidden = true)\n \n function self = trainAction(self,dataSet)\n \n % Its ok to have 1 class if its a 1 class classifier\n if dataSet.nClasses ~= 2 && self.svmType ~=2\n error('prt:prtClassLibSvm:UnaryData','prtClassLibSvm requires binary data for training');\n end\n if dataSet.nClasses ~= 1 && self.svmType ==2\n % You can avoid this warning using\n % prtOutlierRemovalFnTargets in your algorithm spec. \n warning('prt:prtClassLibSvm:UnaryData','prtClassLibSvm requires unary data for training when svmType = 2; using max(dataSet.uniqueClasses) as the default single class.');\n dataSet = dataSet.retainClasses(max(dataSet.uniqueClasses));\n end\n \n training_label_vector = dataSet.getTargetsAsBinaryMatrix;\n training_label_vector = double(training_label_vector(:,end)); %zeros and ones\n training_instance_matrix = dataSet.getObservations;\n self.libSvmOptions = self.libSvmOptionString(dataSet);\n self.libSvmOptionsTest = self.libSvmOptionStringTest(dataSet);\n \n if self.kernelType == 4\n %self.userSpecKernel = prtKernelRbfNdimensionScale;\n if ~isa(self.userSpecKernel,'prtKernel') && ~isa(self.userSpecKernel,'function_handle')\n error('prtClassLibSvm:KernelType4','For kernelType = 4 (user-specified kernel), svm.userSpecKernel must be a prtKernel or function handle');\n end\n if isa(self.userSpecKernel,'prtKernel')\n self.userSpecKernel = self.userSpecKernel.train(dataSet);\n kernelMat = self.userSpecKernel.run(dataSet);\n training_instance_matrix = kernelMat.data;\n else\n training_instance_matrix = self.userSpecKernel(dataSet.X,dataSet.X);\n end\n training_instance_matrix = cat(2,(1:size(training_instance_matrix,1))',training_instance_matrix);\n end \n self.trainedSvm = prtExternal.libsvm.svmtrain(training_label_vector, training_instance_matrix, self.libSvmOptions);\n \n %Need to figure out whether to flip SVM outputs:\n yOut = runAction(self,dataSet);\n auc = prtScoreAuc(yOut.retainLabeled);\n \n %libSVM has some weird rules about target names. the first target type it finds is called H1...\n % We can fix this either above, or here\n if auc < .5 \n self.gain = -1;\n end\n end\n \n function DataSetOut = runAction(self,dataSet)\n\n testing_label_vector = double(dataSet.getTargets);\n if isempty(testing_label_vector)\n testing_label_vector = zeros(dataSet.nObservations,1);\n end\n \n if self.kernelType == 4\n if ~isa(self.userSpecKernel,'prtKernel') && ~isa(self.userSpecKernel,'function_handle')\n error('prtClassLibSvm:KernelType4','For kernelType = 4 (user-specified kernel), svm.userSpecKernel must be a prtKernel or function handle');\n end\n if isa(self.userSpecKernel,'prtKernel')\n kernelMat = self.userSpecKernel.run(dataSet);\n testing_instance_matrix = kernelMat.data;\n else\n %Function handle:\n testing_instance_matrix = self.userSpecKernel(dataSet.X,self.dataSet.X);\n end\n testing_instance_matrix = cat(2,(1:size(testing_instance_matrix,1))',testing_instance_matrix);\n else\n testing_instance_matrix = dataSet.getObservations;\n end\n \n [dontNeed, dontNeed, decision_values] = prtExternal.libsvm.svmpredict(testing_label_vector, testing_instance_matrix, self.trainedSvm, self.libSvmOptionsTest); %#ok\n \n DataSetOut = dataSet;\n DataSetOut = DataSetOut.setObservations(decision_values*self.gain);\n end\n \n function dataSetOut = runActionFast(self,x,ds)\n \n switch self.kernelType\n case 2\n nFeats = size(x,2);\n f = full(self.trainedSvm.SVs);\n gram = prtKernelRbf.kernelFn(f,x,sqrt(nFeats));\n yOut = ((self.trainedSvm.sv_coef'*gram)-self.trainedSvm.rho)';\n otherwise\n error('prt:prtClassLibSvm','Unsupported kernel type for runActionFast');\n end\n dataSetOut = yOut(:)*self.gain;\n end\n \n end\n methods (Hidden = true)\n \n function str = textSummary(self)\n str = sprintf('%s: \\n',class(self));\n str2 = evalc('disp(self.trainedSvm)');\n str = sprintf('%s%s',str,str2);\n end\n function optionString = libSvmOptionString(obj,dataSet)\n if isnan(obj.gamma)\n obj.gamma = 1./dataSet.nFeatures;\n end\n if ischar(obj.gamma)\n optionString = sprintf('-s %d -t %d -d %d -g %s -r %f -c %f -n %f -p %f -m %f -e %f -h %d -b %d -w0 %f -w+1 %f',...\n obj.svmType,obj.kernelType,obj.degree,obj.gamma,obj.coef0,obj.cost,obj.nu,...\n obj.pEpsilon,obj.cachesize,obj.eEpsilon,obj.shrinking,obj.probabilityEstimates,obj.weight(1),obj.weight(2));\n else\n optionString = sprintf('-s %d -t %d -d %d -g %f -r %f -c %f -n %f -p %f -m %f -e %f -h %d -b %d -w0 %f -w+1 %f',...\n obj.svmType,obj.kernelType,obj.degree,obj.gamma,obj.coef0,obj.cost,obj.nu,...\n obj.pEpsilon,obj.cachesize,obj.eEpsilon,obj.shrinking,obj.probabilityEstimates,obj.weight(1),obj.weight(2));\n end\n end\n function optionString = libSvmOptionStringTest(obj,dataSet) %#ok\n optionString = sprintf('-b %d',obj.probabilityEstimates);\n end\n end\n \n methods (Hidden)\n function str = exportSimpleText(self) %#ok\n titleText = sprintf('%% prtClassLibSvm\\n');\n svmSvText = prtUtilMatrixToText(full(self.trainedSvm.SVs),'varName','supportVectors');\n svmSvCoeffText = prtUtilMatrixToText(full(self.trainedSvm.sv_coef),'varName','svCoefficients');\n svmSigmaText = prtUtilMatrixToText(sqrt(size(self.trainedSvm.SVs,2)),'varName','sigma');\n svmRhoText = prtUtilMatrixToText(self.trainedSvm.rho,'varName','rho');\n str = sprintf('%s%s%s%s%s',titleText,svmSvText,svmSvCoeffText,svmSigmaText,svmRhoText);\n end\n end\nend\n\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/class/prtClassLibSvm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.3980707988901423}} {"text": "% colony_count.m demo script\n% Runs colony_count on example image and displays segmentation results.\n\n% Load image.\nI = imread('plate_example.jpg');\n\n% Call function.\n% Count is number of colonies, markers is the colony markers and mask is\n% the colony segmentation. Count == # of components in markers.\n\n% Optional parameter, this is the default.\n% Should encompass internal radius of Petri dish.\nradii = 115:1:130;\n\n[count,markers,mask] = colony_count(I,radii);\n\ndisp([num2str(count) ' colonies detected.']);\n\n% Overlay image with markers and mask.\nJ = rgb2gray(I);\nR = J; G = J; B = J;\nR(mask) = 255; R(markers) = 0;\nG(mask) = 0; G(markers) = 255;\nB(mask) = 0; B(markers) = 0;\nRGB = cat(3,R,G,B);\nfigure();imshow(RGB);\n\n% Overlay image with just markers.\nR = J; G = J; B = J;\nR(markers) = 0;\nG(markers) = 255;\nB(markers) = 0;\nRGB = cat(3,R,G,B);\nfigure();imshow(RGB);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35943-automated-counting-of-bacterial-colonies/colony_count/colony_count_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.727975460709318, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3980119580783604}} {"text": "function [status, results] = mrtrix_tensor_generate (in_file, out_file, b_file, verbose)\n\n%\n% Calculate diffusion tensors. \n%\n% Parameters\n% ----------\n% in_file: The name of a diffusion file in .mif format\n% out_file: The name of the resulting dti file in .mif format\n% b_file: The name of a mrtrix format gradient vector file (default: 'encoding.b')\n%\n% Returns\n% -------\n% status: whether (0) or not (1) the operation succeeded \n% results: the results of the operation in the terminal\n%\n% Notes\n% -----\n% http://www.brain.org.au/software/mrtrix/tractography/preprocess.html\n\n\nif notDefined('verbose')\n verbose = true; \nend\nif notDefined('b_file')\n b_file = 'encoding.b';\nend \n\n% This command generates tensors: \ncmd_str = sprintf('dwi2tensor %s %s -grad %s',in_file, outfile, b_file); \n\n% Send it to mrtrix: \n[status,results] = mrtrix_cmd(cmd_str,verbose); ", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/mrtrix/mrtrix_tensor_generate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754489059775, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.39801195162502384}} {"text": "\n\n%h = guidata(6);\nh = guidata(gcf);\nfg = h.fiberGroups(h.curFiberGroup);\n% interp method can be 'nearest'|'trilin'|'spline'. If you are going to\n% just average a bunch of these values, it's probably best to use nearest. \ninterp = 'nearest'; \nmd = dtiGetValFromFibers(h.dt6, fg, inv(dtiGet(h,'dt6xform')),'md',interp);\nfa = dtiGetValFromFibers(h.dt6, fg, inv(dtiGet(h,'dt6xform')),'fa',interp);\nln = dtiGetValFromFibers(h.dt6, fg, inv(dtiGet(h,'dt6xform')),'linearity',interp);\n\n%alignSlice = [nan -55 nan]; % the alignment position (in mm from AC)\nalignSlice = [nan nan 28]; % the alignment position (in mm from AC)\nax = find(~isnan(alignSlice));\nsl = alignSlice(ax);\nif(length(ax)~=1) error('specify just one alignment axis!'); end\nif(ax==1) axName='LR'; elseif(ax==2) axName='AP'; else axName='SI'; end\nnPts = 20;\nnFibers = length(fg.fibers);\nfiberFa = zeros(nFibers, nPts*2+1)*nan;\nfiberMd = fiberFa; fiberLn = fiberFa;\nfiberCoords = zeros(nFibers, nPts*2+1,3)*nan;\nfor(ii=1:length(fg.fibers))\n d = abs(fg.fibers{ii}(ax,:)-alignSlice(ax));\n nearInd = find(d==min(d));\n if(nearInd-nPts<=1 | nearInd+nPts>=length(fg.fibers{ii}))\n continue;\n end\n fDir = fg.fibers{ii}(ax,[nearInd-1,nearInd+1]);\n inds = [nearInd-nPts:nearInd+nPts];\n % We skip the fiber end-points, since the FA there can be misleading\n if(fDir(2)1 & inds1 & inds0\n imout = [imout; zeros(1,size(imout,2))];\nend\nif sizedif(2)>0\n imout = [imout, zeros(size(imout,1),1)];\nend", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/image_proc/padimage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3979554069565919}} {"text": "function f=fun1(p)\nf=1.0/(p^2);\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/9987-gaver-stehfest-algorithm-for-inverse-laplace-transform/gavsteh/fun1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3979554069565919}} {"text": "function rgb = oklab2rgb(ok)\n % OKLAB2RGB Convert colors stored in OKLab color space to RGB color space\n %\n % rgb = oklab2rgb(ok)\n %\n % Inputs:\n % ok #h by #w by 3 image of colors or #ok by 3 list of colors\n % Outputs:\n % rgb converted ok colors (same size as ok)\n %\n % See also: rgb2lin, lin2rgb, oklab2lin , rgb2oklab, lin2oklab\n lin = oklab2lin(ok);\n rgb = lin2rgb(lin);\nend\n\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/imageprocessing/oklab2rgb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39795042849777773}} {"text": "function varargout = biharm(varargin)\n%BIHARM Biharmonic operator of a CHEBFUN2.\n% B = BIHARM(F) returns a CHEBFUN2 representing the biharmonic operator \n% applied to F.\n%\n% This is shorthand for BIHARMONIC(F).\n%\n% See also CHEBFUN2/BIHARMONIC.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Call SEPARABLEAPPROX/BIHARM:\n[varargout{1:nargout}] = biharm@separableApprox(varargin{:});\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun2/biharm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39795042849777773}} {"text": "function PD = pwrDiagramPD(T, PC)\n% function PD = pwrDiagramPD(T, PC)\n%\n% T: triangulation\n% PC: power centers of triangles in T\n%\n% The output cell PD contains pieces of the power diagram, indexed by\n% dimension. PD{mP} contains pieces of dimension zero (power centers that\n% correspond to fully-dimensional pieces of the triangulation T) and PD{1}\n% contains fully-dimensional regions of the power diagram (corresponding to\n% vertices of the triangulation).\n\nP = piecesPD(T);\nmP = size(P,1);\nPD = cell(mP,1);\n\nfor i=1:mP\n EA = edgeAttPD(T, P{i});\n for j=1:size(EA,1);\n EA{j} = PC(EA{j},:);\n end\n PD{i} = EA;\nend", "meta": {"author": "optimaltransport", "repo": "optimaltransport.github.io", "sha": "2fa6db6e6a48ab9bd6676088db00bd7c5c8b4203", "save_path": "github-repos/MATLAB/optimaltransport-optimaltransport.github.io", "path": "github-repos/MATLAB/optimaltransport-optimaltransport.github.io/optimaltransport.github.io-2fa6db6e6a48ab9bd6676088db00bd7c5c8b4203/_site/code/semi-discrete/power_diagrams/pwrDiagramPD.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39795042849777773}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Spherical Harmonic Modeling and Analysis Toolkit (SPHARM-MAT) is a 3D \n% shape modeling and analysis toolkit. \n% It is a software package developed at Shenlab in Center for Neuroimaging, \n% Indiana University (SpharmMat@gmail.com, http://www.iupui.edu/~shenlab/)\n% It is available to the scientific community as copyright freeware \n% under the terms of the GNU General Public Licence.\n% \n% Copyright 2009, 2010, ShenLab, Center for Neuroimaging, Indiana University\n% \n% This file is part of SPHARM-MAT.\n% \n% SPHARM-MAT is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% SPHARM-MAT is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with SPHARM-MAT. If not, see .\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Goal: Fix a binary image by removing bad connectivities\n% inObject: filename string of a binary object in .MAT format\n% info = varargin{1}: connectivity \n% info can be one of four values between 1 and 4 - '1=(6+,18), 2=(18,6+),\n% 3=(6,26), 4=(26,6)'\n% epsilon = varargin{2}: hole size, holes bigger than epsilon won't be\n% filled\n%\n% 04/15/2002 - created by Li Shen\n% Modified by Sungeun Kim (10-09-08)\n\nfunction [bim, origin, vxsize, new_name] = fix_bad_topology(inObject, confs)\n\nepsilon = confs.Epsilon;\nswitch deblank(char(confs.Connectivity))\n case '(6+,18)'\n conn = 1;\n case '(18,6+)'\n conn = 2; \n case '(6,26)'\n conn = 3; \n case '(26,6)'\n conn = 4; \nend\n\n% Read input object dataset\nif ischar(inObject)\n [path,name,ext] = fileparts(inObject);\n\n if ~strcmp(ext, '.mat')\n disp('Input object data should be Matlab data file (*.mat)');\n return;\n end\n\n load(inObject);\n roi = bim; \nelse\n disp('Input Object should be the filename of a binary object (_bim.mat).');\n return;\nend\n\ntic;\n\ninfostr{1} = 'outlier or hole';\ninfostr{2} = 'vertex conn.';\ninfostr{3} = 'edge conn.';\ninfostr{4} = 'ring or hole';\ninfostr{5} = 'single ring';\n\n% display information\ndisp('Make a simply connected volume by removing bad voxels');\ndisp(sprintf('(1) %s, (2) %s, (3) %s, (4) %s, (5) s', ...\n infostr{1}, infostr{2}, infostr{3}, infostr{4}, infostr{5}));\n\n% Make binary image, in case reslice generates 2's\nind = find(roi>0); roi(ind) = 1;\nvol = length(ind);\nind = find(roi<1); roi(ind) = 0;\n\n% routine fix\nroi = routine_fix(roi);\n[vertices, faces] = gen_surf_data(roi,origin,vxsize);\n\n% fill 3d holes\nfor k=1:3\n if (size(vertices,1)-size(faces,1)==2)\n disp('===> No 3D holes, skip');\n break;\n end\n disp('===> fixing 3D holes ...');\n roi = fill3dholes(roi,conn,epsilon,name);\n disp('===> routine fix again ...');\n roi = routine_fix(roi);\n [vertices, faces] = gen_surf_data(roi,origin,vxsize);\nend\n\nfvn = length(find(roi~=bim));\nbim = roi;\n\ndisp(sprintf('fix_vox_num (%d) / vol (%d) = %f%%, save ...', ...\n fvn, vol, fvn*100/vol));\n \n% Save surface object to a new file\npostfix = name(end-2:end);\nif strcmp(postfix, 'bim') | strcmp(postfix,'fix')\n new_name = [confs.OutDirectory '/' name(1:end-3) 'fix'];\nelse\n new_name = [confs.OutDirectory '/' name '_fix'];\nend \n\nif exist(new_name,'file')\n prompt = {'Enter new filename:'};\n dlg_title = 'New File Name';\n num_lines = 1;\n def = {new_name};\n answer = inputdlg(prompt,dlg_title,num_lines,def); \n new_name = answer{1};\nend\n\nsave(new_name, 'bim', 'origin', 'vxsize');\n\nseconds = toc;\nhours = seconds/3600;\ndisp(['seconds=', num2str(seconds), ' hours=', num2str(hours)]);\n\nreturn;\n\n\n%\n% routine fix\n%\n\nfunction roi = routine_fix(roi)\n\nDIM = size(roi);\n\nfixset = [];\n\nfor j = 1:10\n [roi, fs1] = outl_hole(roi, DIM,1);\n [roi, fs2] = vertex_conn(roi, DIM,2);\n [roi, fs3] = edge_conn(roi, DIM,3);\n if (isempty(fs1) & isempty(fs2) & isempty(fs3))\n break;\n else\n if (~isempty(fs1))\n fixset(end+1:end+size(fs1,1),:) = fs1;\n end\n if (~isempty(fs2))\n fixset(end+1:end+size(fs2,1),:) = fs2;\n end\n if (~isempty(fs3))\n fixset(end+1:end+size(fs3,1),:) = fs3;\n end\n end\nend\n\n[roi, fs4] = ring_hole(roi, DIM, 4);\nif (~isempty(fs4))\n fixset(end+1:end+size(fs4,1),:) = fs4; \n for j = 1:10\n [roi, fs1] = outl_hole(roi, DIM,1);\n [roi, fs2] = vertex_conn(roi, DIM,2);\n [roi, fs3] = edge_conn(roi, DIM,3);\n [roi, fs4] = ring_hole(roi, DIM,4);\n if (isempty(fs1) & isempty(fs2) & isempty(fs3) & isempty(fs4))\n break;\n else\n if (~isempty(fs1))\n fixset(end+1:end+size(fs1,1),:) = fs1;\n end\n if (~isempty(fs2))\n fixset(end+1:end+size(fs2,1),:) = fs2;\n end\n if (~isempty(fs3))\n fixset(end+1:end+size(fs3,1),:) = fs3;\n end\n if (~isempty(fs4))\n fixset(end+1:end+size(fs4,1),:) = fs4;\n end\n end\n end\nend\n\nfix_vox_num = size(fixset,1);\n\nreturn;\n\n\n%\n% remove disconnected small components and holes\n%\n\nfunction [roi, fixset] = outl_hole(roi, d, infoid)\n\nroi = reshape(roi,d);\n\nfixset = [];\n\n% check seperated small components (k=1)\n% and then check holes\nval = [0 1];\nfor k = 1:2\n\t[L, num] = bwlabeln(roi,6);\n\t\n\tif num>1\n\t\t% find the background\n\t\tfor i = 1:num\n cnt(i) = length(find(L == i));\n\t\tend\n\t\t[bkgd_size, bkgd_ind] = max(cnt);\n sigind = find(L~=0 & L~=bkgd_ind);\n roi(sigind) = 0;\n [xs,ys,zs] = ind2sub(d, sigind); \n fixset(end+1:end+length(xs),:) = [[xs,ys,zs], xs*0+val(k), xs*0+infoid];\n\tend\n\t\n\troi = 1-roi;\nend\n\nreturn;\n\n\n%\n% fix bad vertex connectivities\n%\n\nfunction [roi, fixset] = vertex_conn(roi, d, infoid)\n\nroi = reshape(roi,d);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% work on 0 vertex connectivies\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% make a work area so that all border voxels belong to the background\nw = ones(d+2);\nw(2:d(1)+1,2:d(2)+1,2:d(3)+1) = roi;\nwd = d+2;\nind = find(w == 0);\nw = zeros(d+2);\nw(2:d(1)+1,2:d(2)+1,2:d(3)+1) = roi;\n\n[xs,ys,zs] = ind2sub(wd,ind);\n\nh = sum([w(sub2ind(wd,xs-1,ys,zs)), ...\n w(sub2ind(wd,xs+1,ys,zs)), ...\n w(sub2ind(wd,xs,ys-1,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs-1)), ...\n w(sub2ind(wd,xs,ys,zs+1))]')';\n\nfixset = [];\n\n% fix ring 0 voxels (single ring)\nind1 = ind(find(h==4 & ...\n w(sub2ind(wd,xs-1,ys,zs))==0 & ...\n w(sub2ind(wd,xs+1,ys,zs))==0 ...\n ));\nind2 = ind(find(h==4 & ...\n w(sub2ind(wd,xs,ys-1,zs))==0 & ...\n w(sub2ind(wd,xs,ys+1,zs))==0 ...\n ));\nind3 = ind(find(h==4 & ...\n w(sub2ind(wd,xs,ys,zs-1))==0 & ...\n w(sub2ind(wd,xs,ys,zs+1))==0 ...\n ));\nind1 = [ind1;ind2;ind3];\nn4 = length(ind1);\nif (n4~=0)\t\n\tw(ind1) = 1;\n [a, b, c] = ind2sub(wd,ind1);\n\tfixset(end+1:end+n4,:) = [[a, b, c]-1, ind1*0+1, ind1*0+5];\nend\n\n% right up forward, right up backward, right down forward, right down backward\nruf = find(w(sub2ind(wd,xs-1,ys+1,zs+1)) == 0 & ...\n sum([w(sub2ind(wd,xs-1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs-1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs+1)), ...\n w(sub2ind(wd,xs-1,ys,zs+1)), ...\n w(sub2ind(wd,xs,ys+1,zs+1))]')' == 6);\n\nrub = find(w(sub2ind(wd,xs-1,ys+1,zs-1)) == 0 & ...\n sum([w(sub2ind(wd,xs-1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs-1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs-1)), ...\n w(sub2ind(wd,xs-1,ys,zs-1)), ...\n w(sub2ind(wd,xs,ys+1,zs-1))]')' == 6);\n\nrdf = find(w(sub2ind(wd,xs+1,ys+1,zs+1)) == 0 & ...\n sum([w(sub2ind(wd,xs+1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs+1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs+1)), ...\n w(sub2ind(wd,xs+1,ys,zs+1)), ...\n w(sub2ind(wd,xs,ys+1,zs+1))]')' == 6);\n\nrdb = find(w(sub2ind(wd,xs+1,ys+1,zs-1)) == 0 & ...\n sum([w(sub2ind(wd,xs+1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs+1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs-1)), ...\n w(sub2ind(wd,xs+1,ys,zs-1)), ...\n w(sub2ind(wd,xs,ys+1,zs-1))]')' == 6);\n\ncube = [];\n\nif (~isempty(ruf))\n cube(end+1:end+length(ruf),:) = ...\n [xs(ruf),ys(ruf),zs(ruf), ...\n xs(ruf)-1,ys(ruf)+1,zs(ruf)+1];\nend\n \nif (~isempty(rub))\n cube(end+1:end+length(rub),:) = ...\n [xs(rub),ys(rub),zs(rub), ...\n xs(rub)-1,ys(rub)+1,zs(rub)-1];\nend\n\nif (~isempty(rdf))\n cube(end+1:end+length(rdf),:) = ...\n [xs(rdf),ys(rdf),zs(rdf), ...\n xs(rdf)+1,ys(rdf)+1,zs(rdf)+1];\nend\n\nif (~isempty(rdb))\n cube(end+1:end+length(rdb),:) = ...\n [xs(rdb),ys(rdb),zs(rdb), ...\n xs(rdb)+1,ys(rdb)+1,zs(rdb)-1];\nend\n\n% adjust according to cube (3: fix bad 0 vertex connectivities)\nif (~isempty(cube))\n len = size(cube,1);\n for i = 1:len\n k = cube(i,:);\n if (w(k(1),k(2),k(3))==0 & w(k(4),k(5),k(6))==0)\n if (nb_sum(w,k(1),k(2),k(3)) >= nb_sum(w,k(4),k(5),k(6)))\n w(k(1),k(2),k(3)) = 1; \n fixset(end+1,:) = [[k(1), k(2), k(3)]-1, 1, infoid];\n else\n w(k(4),k(5),k(6)) = 1; \n fixset(end+1,:) = [[k(4), k(5), k(6)]-1, 1, infoid];\n end\n end\n end\nend\n\ncnts = [length(ruf), length(rub), length(rdf), length(rdb)];\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% work on 1 vertex connectivies\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nind = find(w);\n[xs,ys,zs] = ind2sub(wd,ind);\n\n% right up forward, right up backward, right down forward, right down backward\nruf = find(w(sub2ind(wd,xs-1,ys+1,zs+1)) == 1 & ...\n sum([w(sub2ind(wd,xs-1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs-1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs+1)), ...\n w(sub2ind(wd,xs-1,ys,zs+1)), ...\n w(sub2ind(wd,xs,ys+1,zs+1))]')' == 0);\n\nrub = find(w(sub2ind(wd,xs-1,ys+1,zs-1)) == 1 & ...\n sum([w(sub2ind(wd,xs-1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs-1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs-1)), ...\n w(sub2ind(wd,xs-1,ys,zs-1)), ...\n w(sub2ind(wd,xs,ys+1,zs-1))]')' == 0);\n \nrdf = find(w(sub2ind(wd,xs+1,ys+1,zs+1)) == 1 & ...\n sum([w(sub2ind(wd,xs+1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs+1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs+1)), ...\n w(sub2ind(wd,xs+1,ys,zs+1)), ...\n w(sub2ind(wd,xs,ys+1,zs+1))]')' == 0);\n\nrdb = find(w(sub2ind(wd,xs+1,ys+1,zs-1)) == 1 & ...\n sum([w(sub2ind(wd,xs+1,ys,zs)), ...\n w(sub2ind(wd,xs,ys+1,zs)), ...\n w(sub2ind(wd,xs+1,ys+1,zs)), ...\n w(sub2ind(wd,xs,ys,zs-1)), ...\n w(sub2ind(wd,xs+1,ys,zs-1)), ...\n w(sub2ind(wd,xs,ys+1,zs-1))]')' == 0);\n\ncube = [];\n\nif (~isempty(ruf))\n cube(end+1:end+length(ruf),:) = ...\n [xs(ruf),ys(ruf),zs(ruf), ...\n xs(ruf)-1,ys(ruf)+1,zs(ruf)+1];\nend\n \nif (~isempty(rub))\n cube(end+1:end+length(rub),:) = ...\n [xs(rub),ys(rub),zs(rub), ...\n xs(rub)-1,ys(rub)+1,zs(rub)-1];\nend\n\nif (~isempty(rdf))\n cube(end+1:end+length(rdf),:) = ...\n [xs(rdf),ys(rdf),zs(rdf), ...\n xs(rdf)+1,ys(rdf)+1,zs(rdf)+1];\nend\n\nif (~isempty(rdb))\n cube(end+1:end+length(rdb),:) = ...\n [xs(rdb),ys(rdb),zs(rdb), ...\n xs(rdb)+1,ys(rdb)+1,zs(rdb)-1];\nend\n\n% adjust according to cube (4: remove bad 1 voxel connectivities)\nif (~isempty(cube))\n len = size(cube,1);\n for i = 1:len\n k = cube(i,:);\n if (w(k(1),k(2),k(3))==1 & w(k(4),k(5),k(6))==1)\n if (nb_sum(w,k(1),k(2),k(3)) <= nb_sum(w,k(4),k(5),k(6)))\n w(k(1),k(2),k(3)) = 0; \n fixset(end+1,:) = [[k(1), k(2), k(3)]-1, 0, infoid];\n else\n w(k(4),k(5),k(6)) = 0; \n fixset(end+1,:) = [[k(4), k(5), k(6)]-1, 0, infoid];\n end\n end\n end\nend\n\ncnts = [length(ruf), length(rub), length(rdf), length(rdb)];\n\n% make roi consistent with w\nroi = w(2:d(1)+1,2:d(2)+1,2:d(3)+1);\n\nreturn;\n\n\n%\n% fix bad edge connectivities\n%\n\nfunction [roi, fixset] = edge_conn(roi, d, infoid)\n\nroi = reshape(roi,d);\n\n% make a work area so that all border voxels belong to the background\nw = zeros(d+2);\nw(2:d(1)+1,2:d(2)+1,2:d(3)+1) = roi;\nwd = d+2;\n\nind = find(w);\n[xs,ys,zs] = ind2sub(wd,ind);\n\nsqua = [];\n\n% right up and right down\nru = find(w(sub2ind(wd,xs-1,ys,zs)) == 0 & ...\n w(sub2ind(wd,xs,ys+1,zs)) == 0 & ...\n w(sub2ind(wd,xs-1,ys+1,zs)) == 1);\n \nif (~isempty(ru))\n squa(end+1:end+length(ru),:) = ... \n [xs(ru),ys(ru),zs(ru),...\n xs(ru)-1,ys(ru)+1,zs(ru),...\n xs(ru)-1,ys(ru),zs(ru),...\n xs(ru),ys(ru)+1,zs(ru)];\nend\n\nrd = find(w(sub2ind(wd,xs+1,ys,zs)) == 0 & ...\n w(sub2ind(wd,xs,ys+1,zs)) == 0 & ...\n w(sub2ind(wd,xs+1,ys+1,zs)) == 1);\n\nif (~isempty(rd))\n squa(end+1:end+length(rd),:) = ... \n [xs(rd),ys(rd),zs(rd),...\n xs(rd)+1,ys(rd)+1,zs(rd),...\n xs(rd)+1,ys(rd),zs(rd),...\n xs(rd),ys(rd)+1,zs(rd)];\nend\n\n% forward up and forward down\nfu = find(w(sub2ind(wd,xs-1,ys,zs)) == 0 & ...\n w(sub2ind(wd,xs,ys,zs+1)) == 0 & ...\n w(sub2ind(wd,xs-1,ys,zs+1)) == 1);\n\nif (~isempty(fu))\n squa(end+1:end+length(fu),:) = ... \n [xs(fu),ys(fu),zs(fu),...\n xs(fu)-1,ys(fu),zs(fu)+1,...\n xs(fu)-1,ys(fu),zs(fu),...\n xs(fu),ys(fu),zs(fu)+1];\nend\n \nfd = find(w(sub2ind(wd,xs+1,ys,zs)) == 0 & ...\n w(sub2ind(wd,xs,ys,zs+1)) == 0 & ...\n w(sub2ind(wd,xs+1,ys,zs+1)) == 1);\n \nif (~isempty(fd))\n squa(end+1:end+length(fd),:) = ... \n [xs(fd),ys(fd),zs(fd),...\n xs(fd)+1,ys(fd),zs(fd)+1,...\n xs(fd)+1,ys(fd),zs(fd),...\n xs(fd),ys(fd),zs(fd)+1];\nend\n \n% left forward and right forward\nlf = find(w(sub2ind(wd,xs,ys-1,zs)) == 0 & ...\n w(sub2ind(wd,xs,ys,zs+1)) == 0 & ...\n w(sub2ind(wd,xs,ys-1,zs+1)) == 1);\n\nif (~isempty(lf))\n squa(end+1:end+length(lf),:) = ... \n [xs(lf),ys(lf),zs(lf),...\n xs(lf),ys(lf)-1,zs(lf)+1,...\n xs(lf),ys(lf)-1,zs(lf),...\n xs(lf),ys(lf),zs(lf)+1];\nend\n \nrf = find(w(sub2ind(wd,xs,ys+1,zs)) == 0 & ...\n w(sub2ind(wd,xs,ys,zs+1)) == 0 & ...\n w(sub2ind(wd,xs,ys+1,zs+1)) == 1);\n\nif (~isempty(rf))\n squa(end+1:end+length(rf),:) = ... \n [xs(rf),ys(rf),zs(rf),...\n xs(rf),ys(rf)+1,zs(rf)+1,...\n xs(rf),ys(rf)+1,zs(rf),...\n xs(rf),ys(rf),zs(rf)+1];\nend\n\n% adjust according to squa (5: remove bad edge connectivities)\nfixset = [];\nif (~isempty(squa))\n len = size(squa,1);\n for i = 1:len\n k = squa(i,:);\n if (sum([w(k(1),k(2),k(3)) ...\n w(k(4),k(5),k(6)) ...\n w(k(7),k(8),k(9)) ...\n w(k(10),k(11),k(12)) ...\n ]==[1 1 0 0])==4)\n [start, val] = decide_squa(w,k);\n w(k(start),k(start+1),k(start+2)) = val;\n fixset(end+1,:) = [[k(start), k(start+1), k(start+2)]-1, val, infoid];\n end\n end\nend\n\ncnts = [length(ru),length(rd),length(fu),length(fd),length(lf),length(rf)];\n\n% make roi consistent with w\nroi = w(2:d(1)+1,2:d(2)+1,2:d(3)+1);\n\nreturn;\n\n\n%\n% check ring on one slice, and hole between two slices\n%\n\nfunction [roi, fixset] = ring_hole(roi, d, infoid)\n\nroi = reshape(roi,d);\n\n% make a work area so that all border voxels belong to the background\nw = zeros(d+2);\nw(2:d(1)+1,2:d(2)+1,2:d(3)+1) = roi;\nwd = d+2;\n\n% exchange background and object\nw = 1-w;\n\nfixset = [];\n\nfor k = 1:3\n % label each slice\n\tfor i = 1:wd(k)\n switch k\n case 1\n im = reshape(w(i,:,:),wd(2),wd(3)); \n case 2\n im = reshape(w(:,i,:),wd(1),wd(3)); \n case 3\n im = reshape(w(:,:,i),wd(1),wd(2)); \n end\n [lab, num(i)] = bwlabel(im,4);\n L{i} = lab; \n\tend\n % original roi background should be labeled as '1'\n ind = find(num>1);\n for i = 1:length(ind);\n lab = L{ind(i)};\n for j = 1:num(ind(i))\n cnt(j) = length(find(lab == j));\n end\n [mval, mind] = max(cnt);\n if (mind > 1)\n disp('Make background labeled as 1');\n ind1 = find(lab == 1);\n ind2 = find(lab == mind);\n lab(ind2) = 1; % background\n lab(ind1) = mind;\n L{ind(i)} = lab;\n end\n end\n % check multiple component slices\n for i = 1:length(ind);\n lab = L{ind(i)};\n for j = 2:num(ind(i))\n % connect to background in the previous slice\n con_prev = find(lab == j & L{ind(i)-1} == 1);\n % connect to background in the next slice\n con_next = find(lab == j & L{ind(i)+1} == 1);\n if (~isempty(con_prev) & ~isempty(con_next))\n [xs, ys] = find(lab == j); \n switch k\n case 1\n im = reshape(w(ind(i),:,:),wd(2),wd(3));\n sigind = sub2ind(wd,xs*0+ind(i),xs,ys);\n case 2\n im = reshape(w(:,ind(i),:),wd(1),wd(3)); \n sigind = sub2ind(wd,xs,xs*0+ind(i),ys);\n case 3\n im = reshape(w(:,:,ind(i)),wd(1),wd(2)); \n sigind = sub2ind(wd,xs,ys,xs*0+ind(i));\n end\n w(sigind) = 0; % note that really it is assigned 1 to roi\n [xs,ys,zs] = ind2sub(wd,sigind);\n fixset(end+1:end+length(xs),:) = [[xs,ys,zs]-1, xs*0+1, xs*0+infoid];\n end\n end \n end\n % check hole between slices\n for i = 2:(wd(k)-2)\n overlap = L{i}*0;\n overlap_bkgd = find(L{i} == 1 & L{i+1} == 1);\n overlap(overlap_bkgd) = 1;\n [lab, m] = bwlabel(overlap,4);\n if (m>1)\n % deal with only the minimum one;\n for j = 1:m\n cnt(j) = length(find(lab == j));\n end\n [mval, mind] = min(cnt);\n % connect to background in the previous slice\n con_prev = find(lab == mind & L{i-1} == 1);\n % connect to background in the current slice\n con_curr = find(lab == mind & L{i} == 1);\n % connect to background in the next slice\n con_next = find(lab == mind & L{i+1} == 1);\n % connect to background in the next next slice\n con_next_next = find(lab == mind & L{i+2} == 1);\n if ((~isempty(con_curr) | ~isempty(con_prev)) & ...\n (~isempty(con_next) | ~isempty(con_next_next)))\n [xs, ys] = find(lab == mind); \n switch k\n case 1\n sigind = [sub2ind(wd,xs*0+i,xs,ys);sub2ind(wd,xs*0+i+1,xs,ys)];\n case 2\n sigind = [sub2ind(wd,xs,xs*0+i,ys);sub2ind(wd,xs,xs*0+i+1,ys)];\n case 3\n sigind = [sub2ind(wd,xs,ys,xs*0+i);sub2ind(wd,xs,ys,xs*0+i+1)];\n end\n w(sigind) = 0; % note that really it is assigned 1 to roi\n [xs,ys,zs] = ind2sub(wd,sigind);\n fixset(end+1:end+length(xs),:) = [[xs,ys,zs]-1, xs*0+1, xs*0+infoid];\n end\n end \n end\n L = [];\n num = [];\nend\n\n% make roi consistent with w\nroi = 1 - w(2:d(1)+1,2:d(2)+1,2:d(3)+1);\n\nreturn;\n\n\n%\n% select a point to change its value \n% according to maximum number of different neighbours\n%\n\nfunction [start, val] = decide_squa(w,k)\n\nfor i = 1:3:10\n cnt((i-1)/3+1) = nb_sum(w, k(i), k(i+1), k(i+2));\nend\n\ncnt(1:2) = 6 - cnt(1:2);\n\n[v, in] = max(cnt);\n\nstart = (in-1)*3+1;\nif (in < 3)\n val = 0;\nelse\n val = 1;\nend\n\nreturn;\n\n\n%\n% calculate the sum of the direct neighbour\n%\nfunction b = nb_sum(w, x, y, z)\n\nb = sum([w(x-1,y,z), ...\n w(x+1,y,z), ...\n w(x,y-1,z), ...\n w(x,y+1,z), ...\n w(x,y,z-1), ...\n w(x,y,z+1)]);\n\nreturn;\n\n\n\n\n\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/SpharmToolbox/code/fix_bad_topology.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592641, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3979504208070132}} {"text": "function [net, info] = cnn_mnist(varargin)\n% CNN_MNIST Demonstrated MatConNet on MNIST\n\nrun(fullfile(fileparts(mfilename('fullpath')),...\n '..', 'matlab', 'vl_setupnn.m')) ;\n\nopts.expDir = fullfile('data','mnist-baseline') ;\nopts.gpus = [];\nopts.pushbullet = []; % usage : pbNotify('accessToken'); from https://www.pushbullet.com/account\n[opts, varargin] = vl_argparse(opts, varargin) ;\n\nopts.dataDir = fullfile('data','mnist') ;\nopts.imdbPath = fullfile(opts.expDir, 'imdb.mat');\nopts.useBnorm = false ;\nopts.train.batchSize = 100 ;\nopts.train.numEpochs = 20 ;\nopts.train.continue = true ;\nopts.train.gpus = opts.gpus;\nopts.train.learningRate = 0.001 ;\nopts.train.expDir = opts.expDir ;\nopts.train.pushbullet = opts.pushbullet ;\nopts = vl_argparse(opts, varargin) ;\n\n% --------------------------------------------------------------------\n% Prepare data\n% --------------------------------------------------------------------\n\nif exist(opts.imdbPath, 'file')\n imdb = load(opts.imdbPath) ;\nelse\n imdb = getMnistImdb(opts) ;\n mkdir(opts.expDir) ;\n save(opts.imdbPath, '-struct', 'imdb') ;\nend\n\nnet = cnn_mnist_init('useBnorm', opts.useBnorm) ;\n\n% --------------------------------------------------------------------\n% Train\n% --------------------------------------------------------------------\n% b = [10 10] + [10 10 10] ; error test\n[net, info] = cnn_train(net, imdb, @getBatch, ...\n opts.train, ...\n 'val', find(imdb.images.set == 3)) ;\n\nif ~isempty(opts.pushbullet)\n opts.pushbullet.notify('training complete') ;\nend\n% --------------------------------------------------------------------\nfunction [im, labels] = getBatch(imdb, batch)\n% --------------------------------------------------------------------\nim = imdb.images.data(:,:,:,batch) ;\nlabels = imdb.images.labels(1,batch) ;\n\n% --------------------------------------------------------------------\nfunction imdb = getMnistImdb(opts)\n% --------------------------------------------------------------------\n% Preapre the imdb structure, returns image data with mean image subtracted\nfiles = {'train-images-idx3-ubyte', ...\n 'train-labels-idx1-ubyte', ...\n 't10k-images-idx3-ubyte', ...\n 't10k-labels-idx1-ubyte'} ;\n\nif ~exist(opts.dataDir, 'dir')\n mkdir(opts.dataDir) ;\nend\n\nfor i=1:4\n if ~exist(fullfile(opts.dataDir, files{i}), 'file')\n url = sprintf('http://yann.lecun.com/exdb/mnist/%s.gz',files{i}) ;\n fprintf('downloading %s\\n', url) ;\n gunzip(url, opts.dataDir) ;\n end\nend\n\nf=fopen(fullfile(opts.dataDir, 'train-images-idx3-ubyte'),'r') ;\nx1=fread(f,inf,'uint8');\nfclose(f) ;\nx1=permute(reshape(x1(17:end),28,28,60e3),[2 1 3]) ;\n\nf=fopen(fullfile(opts.dataDir, 't10k-images-idx3-ubyte'),'r') ;\nx2=fread(f,inf,'uint8');\nfclose(f) ;\nx2=permute(reshape(x2(17:end),28,28,10e3),[2 1 3]) ;\n\nf=fopen(fullfile(opts.dataDir, 'train-labels-idx1-ubyte'),'r') ;\ny1=fread(f,inf,'uint8');\nfclose(f) ;\ny1=double(y1(9:end)')+1 ;\n\nf=fopen(fullfile(opts.dataDir, 't10k-labels-idx1-ubyte'),'r') ;\ny2=fread(f,inf,'uint8');\nfclose(f) ;\ny2=double(y2(9:end)')+1 ;\n\nset = [ones(1,numel(y1)) 3*ones(1,numel(y2))];\ndata = single(reshape(cat(3, x1, x2),28,28,1,[]));\ndataMean = mean(data(:,:,:,set == 1), 4);\ndata = bsxfun(@minus, data, dataMean) ;\n\nimdb.images.data = data ;\nimdb.images.data_mean = dataMean;\nimdb.images.labels = cat(2, y1, y2) ;\nimdb.images.set = set ;\nimdb.meta.sets = {'train', 'val', 'test'} ;\nimdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;\n", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/DRCN/snu_matconvnet/examples/cnn_mnist.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7490872131147275, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3979221490809678}} {"text": "validInputSize = [3,3,18,1];\nlayer = yolov3Layer('yolov3', rand(3,2),1,1,[416,416],'default');\ncheckLayer(layer,validInputSize,'ObservationDimension' ,4)\n\n%%\nlayer = mishLayer('mishACT');\nvalidInputSize = [24 24 20];\ncheckLayer(layer,validInputSize,'ObservationDimension',4)\n\n\n", "meta": {"author": "cuixing158", "repo": "yolov3-yolov4-matlab", "sha": "94a2b1218e62754e08e83c2e0e857b58db06d3f9", "save_path": "github-repos/MATLAB/cuixing158-yolov3-yolov4-matlab", "path": "github-repos/MATLAB/cuixing158-yolov3-yolov4-matlab/yolov3-yolov4-matlab-94a2b1218e62754e08e83c2e0e857b58db06d3f9/CustomLayers/mycheckLayer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.749087201911703, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39792214312981616}} {"text": "filename='ImprovedCantilever_hexahedra';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\noptimizer = 'SLERP'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.1;\nPerimeter_target = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-2;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/ImprovedCantilever&Bridge/ImpCantileverHexahedra_Case_1_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7956581097540519, "lm_q2_score": 0.5, "lm_q1q2_score": 0.39782905487702597}} {"text": "function varargout = spm_render_vol(varargin)\n% surface render a memory mapped 8 bit image - a compiled routine\n% FORMAT [REN, ZBUF, X, Y, Z] = spm_render_vol(V, A, [i j], [u n])\n% V - is the memory mapped volume\n% A - {4 x 4} affine transformation matrix\n% [i j] - dimensions of REN\n% [u n] - u is threhsold at which voxels are 'solid'\n% n is the number of nearest neighbours to use to determine the\n% surface orientation\n% REN - is the rendered image\n% ZBUF - distance from the view plane to the object's surface\n% X, Y, Z - are images containing the coordinates of the voxels on the\n% surface of the volume.\n%_______________________________________________________________________\n%\n% [i j] defines the two dimensions of the output image. The coordinates\n% in 3-D space of the voxels in this image are assumed to range from\n% 1,1,0 to i,j,0.\n%\n% For each pixel in the volume, the coordinates (x,y,z & 1) are\n% multiplied by the matrix A, to give the image coordinates that these\n% voxels map to.\n%\n% The threshold at which voxels are assumed to be solid pertains to the\n% 8-bit data i.e. {0 - 255}\n%\n% Illumination is assumed to be from the viewplane\n%\n%_______________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% John Ashburner\n% $Id: spm_render_vol.m 1143 2008-02-07 19:33:33Z spm $\n\n\n%-This is merely the help file for the compiled routine\nerror('spm_render_vol.c not compiled - see Makefile')\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_render_vol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998611746912, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.39775724579733207}} {"text": "function res = SPIRiT(kernel,method, imSize)\n%res = SPIRiT(kernel [,method, imSize])\n%\tImplementation of the SPIRiT kernel operator\n%\n% \n% Constructor inputs:\n% kernel: [kx,ky,nCoils, nCoils] the spirit 2D convolution kernel.\n% See corrMatrix.m, calibrate.m and the demos on how to\n% generate a kernel.\n% method: implementation type of the operator. There are three\n% 'conv' is a k-space convolution implementation (slowest)\n% that operates on k-space data and produces k-space data.\n% 'fft' is an fft based implementation of the k-space\n% convolution through image domain multiplication. \n% It operates on k-sapce data and produces k-space data. \n% 'image' The SPIRiT operator is applied to image space data.\n% This is useful when using image-based non-cartesian\n% reconstruction. In this case the SPIRiT operator\n% operates on image data and produces image data. \n%\n% imSize: Size of the resulting image (only needed for 'fft' and\n% 'image' modes\n%\n%\n% Example:\n%\n% [x,y] = meshgrid(linspace(0,1,128));\n% % Generate fake Sensitivity maps\n% sMaps = cat(3,x.^2,1-x.^2,y.^2,1-y.^2);\n% % generate 4 coil phantom\n% imgs = repmat(phantom(128),[1,1,4]).*sMaps;\n% DATA = fft2c(imgs);\n% % crop 20x20 window from the center of k-space for calibration\n% kCalib = crop(DATA,[20,20,4]);\n%\n% %calibrate a kernel\n% kSize = [5,5];\n% coils = 4;\n% kernel = zeros([kSize,coils,coils]);\n% [AtA,] = corrMatrix(kCalib,kSize);\n% for n=1:coils\n% kernel(:,:,:,n) = calibrate(AtA,kSize,coils,n,0.01);\n% end\n% GOP = SPIRiT(kernel, 'fft',[128,128]);\n%\n% % undersample by a factor of 2\n% DATA(1:2:end,2:2:end,:) = 0;\n% DATA(2:2:end,1:2:end,:) = 0;\n% \n% %reconstruct:\n% [res] = cgSPIRiT(DATA,GOP, 20, 1e-5, DATA);\n% figure, imshow(cat(2,sos(imgs), 2*sos(ifft2c(DATA)), sos(ifft2c(res))),[]);\n% title('full, zero-fill, result')\n% \n% See Also:\n% calibrate.m, corrMatrix.m\n%\n% (c) Michael Lustig 2007\n \n\n if nargin < 2\n\t method = 'conv';\n\t KERNEL = [];\n end\n \n if strcmp(method,'conv')==1\n\t KERNEL = [];\n end\n\n\n if strcmp(method,'fft')==1 & nargin < 3\n\t error('must provide image size');\n end\n\n % for methods 'fft' and 'image' precompute the image domain kernel by\n % zero-padding and inverse fft\n \n if strcmp(method,'fft')==1 | strcmp(method,'image')==1\n\t for n=1:size(kernel,4)\n KERNEL(:,:,:,n) = ifftnshift(zpad(kernel(end:-1:1,end:-1:1,:,n), imSize(1), imSize(2), size(kernel,3)),1:2);\n% KERNEL(:,:,:,n) = (ifft2c(zpad(kernel(end:-1:1,end:-1:1,:,n)*sqrt(imSize(1)*imSize(2)), imSize(1), imSize(2), size(kernel,3))));\n end\n end\n\n \n\n if strcmp(method,'fft')==0 & strcmp(method,'conv')==0 & strcmp(method,'image')==0\n\t eror('no such method');\n end\n\n \n res.kernel = kernel;\n res.adjoint = 0;\n res.KERNEL = KERNEL;\n res.method = method;\n res.imSize = imSize;\n res = class(res,'SPIRiT');\n\n", "meta": {"author": "thomaskuestner", "repo": "CS_MoCo_LAB", "sha": "a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b", "save_path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB", "path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB/CS_MoCo_LAB-a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b/reconstruction/matlab/CS_LAB_matlab/@SPIRiT/SPIRiT.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998611746912, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.39775724579733207}} {"text": "function [hc] = read_ctf_hc(filename);\n\n% READ_CTF_HC reads the MEG headcoil marker positions from an ascii file\n% and computes the coordinate transformation required to get from from\n% dewar to head-coordinates\n%\n% the definition of head coordinates is according to CTF standard:\n% - the origin is exactly between LPA and RPA\n% - the positive x-axis goes throught NAS\n% - the positive y-axis goes (approximately) through LPA\n% - the positive z-axis goes up, orthogonal to the x- and y-axes\n%\n% hc = read_ctf_hc(filename)\n%\n% returns a structure with the following fields\n% hc.dewar.nas\tmarker positions relative to dewar \n% hc.dewar.lpa\n% hc.dewar.rpa\n% hc.head.nas\t\tmarker positions relative to head (measured) \n% hc.head.lpa\n% hc.head.rpa\n% hc.standard.nas\tmarker positions relative to head (expected)\n% hc.standard.lpa\n% hc.standard.rpa\n% and\n% hc.affine\t\tparameter for affine transformation (1x12)\n% hc.homogenous\thomogenous transformation matrix (4x4, see warp3d)\n% hc.translation\ttranslation vector (1x3)\n% hc.rotation\t\trotation matrix (3x3)\n% \n% Gradiometer positions can be transformed into head coordinates using the \n% homogeneous transformation matrix, or using the affine parameters and\n% the warp3d function from the WARPING toolbox\n% \n% WARNING: all returned positions are in mm, and the transformation matrices\n% also should be applied on channel positions that are in mm.\n\n% Copyright (C) 2002, Robert Oostenveld\n% \nglobal fb\n\nhc.standard.nas = [0 0 0];\nhc.standard.lpa = [0 0 0];\nhc.standard.rpa = [0 0 0];\nhc.dewar.nas = [0 0 0];\nhc.dewar.lpa = [0 0 0];\nhc.dewar.rpa = [0 0 0];\nhc.head.nas = [0 0 0];\nhc.head.lpa = [0 0 0];\nhc.head.rpa = [0 0 0];\n\nfid = fopen(filename, 'r');\nif fid==-1\n error(sprintf('could not open file %s', filename));\nend\n\nfseek(fid, 0, 'bof');\nline = [];\n\nif fb\n fprintf('reading standard coil positions with respect to the dewar\\n');\nend\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% standard coil positions with respect to the dewar\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nwhile ~strcmp(line, 'standard nasion coil position relative to dewar (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.nas(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.nas(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.nas(3) = str2num(r(2:end));\n% NOTE THAT THERE IS AN TYPING ERROR IN SOME CTF FILES WHICH I HAVE TO REPRODUCE HERE (staNdard)\nwhile ~(strcmp(line, 'stadard left ear coil position relative to dewar (cm):') | ...\n strcmp(line, 'standard left ear coil position relative to dewar (cm):'))\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.lpa(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.lpa(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.lpa(3) = str2num(r(2:end));\nwhile ~strcmp(line, 'standard right ear coil position relative to dewar (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.rpa(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.rpa(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.standard.rpa(3) = str2num(r(2:end));\n\nif fb\n fprintf('reading measured coil positions with respect to the dewar\\n');\nend\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% measured coil positions with respect to the dewar\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nwhile ~strcmp(line, 'measured nasion coil position relative to dewar (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.nas(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.nas(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.nas(3) = str2num(r(2:end));\nwhile ~strcmp(line, 'measured left ear coil position relative to dewar (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.lpa(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.lpa(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.lpa(3) = str2num(r(2:end));\nwhile ~strcmp(line, 'measured right ear coil position relative to dewar (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.rpa(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.rpa(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.dewar.rpa(3) = str2num(r(2:end));\n\nif fb\n fprintf('reading measured coil positions with respect to the head\\n');\nend\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% measured coil positions with respect to the head\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nwhile ~strcmp(line, 'measured nasion coil position relative to head (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.nas(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.nas(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.nas(3) = str2num(r(2:end));\nwhile ~strcmp(line, 'measured left ear coil position relative to head (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.lpa(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.lpa(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.lpa(3) = str2num(r(2:end));\nwhile ~strcmp(line, 'measured right ear coil position relative to head (cm):')\n line = fgetl(fid);\n if ~ischar(line) & line==-1, error('premature end of file'), end\nend\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.rpa(1) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.rpa(2) = str2num(r(2:end));\nline = fgetl(fid); [t, r] = strtok(line, '='); hc.head.rpa(3) = str2num(r(2:end));\n\nfclose(fid);\n\nif fb\n fprintf('computing transformation matrix\\n');\nend\n\n% change the marker positions from cm to mm\nhc.standard.nas = 10*hc.standard.nas;\nhc.standard.lpa = 10*hc.standard.lpa;\nhc.standard.rpa = 10*hc.standard.rpa;\nhc.dewar.nas = 10*hc.dewar.nas;\nhc.dewar.lpa = 10*hc.dewar.lpa;\nhc.dewar.rpa = 10*hc.dewar.rpa;\nhc.head.nas = 10*hc.head.nas;\nhc.head.lpa = 10*hc.head.lpa;\nhc.head.rpa = 10*hc.head.rpa;\n\n% compute the direction of the head coordinate axes in dewar coordinates\nd_x = hc.dewar.nas - (hc.dewar.lpa + hc.dewar.rpa)/2;\nd_z = cross(d_x, hc.dewar.lpa - hc.dewar.rpa);\nd_y = cross(d_z, d_x);\nd_x = d_x / norm(d_x);\nd_y = d_y / norm(d_y);\nd_z = d_z / norm(d_z);\n\n% compute the translation and rotation which are neccessary to transform\n% any given location from the dewar to the head coordinate system\nhc.translation = -(hc.dewar.lpa + hc.dewar.rpa)/2;\nhc.rotation = inv([d_x' d_y' d_z']);\n\n% construct the homogenous coordinate transformation matrix\n% from the subsequent translation and rotation\nhc.homogenous = eye(4,4);\nhc.homogenous(1:3,4) = hc.rotation * hc.translation';\nhc.homogenous(1:3,1:3) = hc.rotation;\n\n% construct a vector with the 12 parameters for an affine warp\nhc.affine = hc.homogenous';\nhc.affine = hc.affine(1:12);\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/plugins/ctfimport1.03/read_ctf_hc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998611746911, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.397757245797332}} {"text": "function score = score_all_subid(M,sid,bid,lib)\n%\n% For a MotorProgram M, compute the log-score of switching\n% its \"sub-stroke id\" to every other possibility\n%\n% Input\n% sid: stroke index\n% bid: sub-stroke index\n%\n% Output\n% score: [nclust x 1] score for each possibility, using all CPDs\n% that directly depend on it\n%\n assert(numel(sid)==1);\n assert(numel(bid)==1);\n ncat = lib.N;\n \n seq_score = zeros(ncat,1);\n \n % Score the transition TO the current primitive \n if bid == 1 % first primitive\n seq_score = seq_score + lib.logStart(:);\n else % not the first\n prev_subid = M.S{sid}.ids(bid-1);\n seq_score = seq_score + vec(lib.logT(prev_subid,1:ncat));\n end\n \n % Score the transition AWAY from the current primitive\n if bid < M.S{sid}.nsub\n next_subid = M.S{sid}.ids(bid+1);\n seq_score = seq_score + vec(lib.logT(1:ncat,next_subid));\n end\n \n % Scale term\n invscale_type = M.S{sid}.invscales_type(bid);\n rep_invscale_type = repmat(invscale_type,[ncat 1]);\n \n % Shape term\n if ~isempty(M.S{sid}.shapes_type)\n shape_type = M.S{sid}.shapes_type(:,:,bid);\n rep_shape_type = repmat(shape_type,[1 1 ncat]);\n shape_score = CPD.score_shape_type(lib,rep_shape_type,1:ncat);\n else\n shape_token = M.S{sid}.shapes_token(:,:,bid);\n rep_shape_token = repmat(shape_token,[1 1 ncat]);\n shape_score = CPD.score_shape_marginalize(lib,rep_shape_token,1:ncat);\n end\n \n % compute scores \n scale_score = CPD.score_invscale_type(lib,rep_invscale_type,1:ncat);\n score = seq_score + scale_score + shape_score;\nend", "meta": {"author": "brendenlake", "repo": "BPL", "sha": "2c7f679bb0055f29cbade7ef099897c3342bcb79", "save_path": "github-repos/MATLAB/brendenlake-BPL", "path": "github-repos/MATLAB/brendenlake-BPL/BPL-2c7f679bb0055f29cbade7ef099897c3342bcb79/mcmc/score_all_subid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7772998508568416, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3977572405175171}} {"text": "% -------------------------------------------------------------------------------------------------------------------------\nclassdef XCorr < dagnn.Layer\n%XCORR\n% Crosscorrelates two activations of different size exploiting the API of vl_nnconv\n%\n% Luca Bertinetto, Jack Valmadre, Joao F. Henriques, 2016\n% -------------------------------------------------------------------------------------------------------------------------\n properties\n opts = {'cuDNN'}\n end\n\n methods\n function outputs = forward(obj, inputs, params)\n assert(numel(inputs) == 2, 'two inputs are needed');\n\n z = inputs{1}; % exemplar\n x = inputs{2}; % instance (search region)\n\n% assert(ndims(z) == ndims(x), 'z and x have different number of dimensions');\n% assert(size(z,1) <= size(x,1), 'exemplar z has to be smaller than instance x');\n% \n% [wx,hx,cx,bx] = size(x);\n% x = reshape(x, [wx,hx,cx*bx,1]);\n% o = vl_nnconv(x, z, []);\n% [wo,ho,co,bo] = size(o);\n% assert(co==bx);\n% outputs{1} = reshape(o, [wo,ho,bo,co]);\n% [w,h,c] = size(x);\n% x = reshape(x,[w,h,c,1]);\n outputs{1} = vl_nnconv(x, z, []);\n end\n\n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n assert(numel(inputs) == 2, 'two inputs are needed');\n assert(numel(derOutputs) == 1, 'only one gradient should be flowing in this layer (dldy)');\n z = inputs{1}; % exemplar\n x = inputs{2}; % instance\n assert(size(z,1) < size(x,1), 'exemplar z has to be smaller than instance x');\n [wx,hx,cx,bx] = size(x);\n x = reshape(x, [wx,hx,cx*bx,1]);\n dldy = derOutputs{1};\n [wdl,hdl,cdl,bdl] = size(dldy);\n assert(cdl==1);\n dldy = reshape(dldy, [wdl,hdl,cdl*bdl,1]);\n [dldx, dldz, ~] = vl_nnconv(x, z, [], dldy);\n [mx,nx,cb,one] = size(dldx);\n assert(mx == size(x, 1));\n assert(nx == size(x, 2));\n assert(cb == cx * bx);\n assert(one == 1);\n derInputs{1} = dldz;\n derInputs{2} = reshape(dldx, [mx,nx,cx,bx]);\n derParams = {};\n end\n\n function outputSizes = getOutputSizes(obj, inputSizes)\n z_sz = inputSizes{1};\n x_sz = inputSizes{2};\n y_sz = [x_sz(1:2) - z_sz(1:2) + 1, 1, z_sz(4)];\n outputSizes = {y_sz};\n end\n\n function rfs = getReceptiveFields(obj)\n rfs(1,1).size = [inf inf]; % could be anything\n rfs(1,1).stride = [1 1];\n rfs(1,1).offset = 1;\n rfs(2,1).size = [inf inf];\n rfs(2,1).stride = [1 1];\n rfs(2,1).offset = 1;\n end\n\n function obj = XCorr(varargin)\n obj.load(varargin);\n end\n\n end\n\nend\n", "meta": {"author": "XinLi-zn", "repo": "TADT", "sha": "659e031a9c40624d53b7b1d4d25f16cd70795c3b", "save_path": "github-repos/MATLAB/XinLi-zn-TADT", "path": "github-repos/MATLAB/XinLi-zn-TADT/TADT-659e031a9c40624d53b7b1d4d25f16cd70795c3b/tracking/XCorr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.743167997235783, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3976680275264534}} {"text": "function varargout= proc_laplacian(dat, varargin)\n%PROC_LAPLACIAN - Apply spatial Laplacian filter to signals\n%\n%Synopsis:\n% [DAT_LAP, LAP_W]= proc_laplacian(DAT, )\n%\n%Arguments:\n% DAT: data structure of continuous or epoched data\n% OPT: struct or proerty/value list of optional properties:\n% .filterType - {small, large, horizontal, vertical, diagonal, eight},\n% default 'small'\n% .clab - channels that are to be obtained, default '*'.\n% .ignoreClab: labels of channels to be ignored, default {'E*'}.\n% .requireCompleteNeighborhood\n% .requireCompleteOutput\n% .verbose\n%\n%Returns:\n% DAT_LAP: updated data structure\n% LAP_W: filter matrix that can be used, e.g. in proc_linearDerivation\n%\n%See also:\n% procutil_getClabForLaplacian, proc_linearDerivation\n\n% Benjamin Blankertz\n% 07-2012 Johannes Hoehne - Updated documentation and parameter naming\n\n\nprops= {'clab' '*' '!CHAR';\n 'IgnoreCLab' {'E*'} 'CHAR|CELL{CHAR}'\n 'CopyCLab' {'E*'} 'CHAR|CELL{CHAR}'\n 'requireCompleteNeighborhood' 1 '!BOOL' \n 'requireCompleteOutput' 0 '!BOOL' \n 'appendix' ' lap' 'CHAR' \n 'verbose' 0 'BOOL'\n 'GridFcn' @util_gridForLaplacian 'FUNC'\n 'FilterType' 'small' 'CHAR(small large horizontal vertical bip_to_anterior bip_to_posterior bip_to_left bip_to_right diagonal diagonal_small)'\n };\n\nif nargin==0,\n varargout{1} = props; \n return\nend\n\ndat = misc_history(dat);\nopt= opt_proplistToStruct(varargin{:});\n[opt, isdefault]= opt_setDefaults(opt, props);\nopt_checkProplist(opt, props);\n\nmisc_checkType(dat, 'STRUCT(clab)');\n\nif ~iscell(opt.IgnoreCLab),\n opt.IgnoreCLab= {opt.IgnoreCLab};\nend\n\nlaplace= [];\nlaplace.grid= opt.GridFcn();\nif isnumeric(opt.FilterType),\n laplace.filter= opt.FilterType;\nelse\n laplace.filter= procutil_lapGetLaplacianFilter(opt.FilterType);\nend\n\nif ~isstruct(dat),\n dat= struct('clab',{dat});\nend\n\nrc= util_chanind(dat, {'not', opt.IgnoreCLab{:}});\nnOrigChans= length(dat.clab);\npos= zeros(2, nOrigChans);\nfor ic= 1:nOrigChans,\n pos(:,ic)= procutil_lapGetCoordinates(dat.clab{ic}, laplace.grid);\nend\npos(:,setdiff(1:nOrigChans,rc,'legacy'))= inf;\n\nidx_tbf= util_chanind(dat, opt.clab);\nW= zeros(length(dat.clab), length(idx_tbf));\nclab = [];\nlc= 0;\nfor ci= 1:length(idx_tbf),\n cc= idx_tbf(ci);\n refChans= [];\n nRefs= size(laplace.filter,2);\n for ir= 1:nRefs,\n ri= find( pos(1,:)==pos(1,cc)+laplace.filter(1,ir) & ...\n pos(2,:)==pos(2,cc)+laplace.filter(2,ir) );\n refChans= [refChans ri];\n end\n if length(refChans)==nRefs | ~opt.requireCompleteNeighborhood,\n lc= lc+1;\n W(cc,lc)= 1;\n if ~isempty(refChans),\n W(refChans,lc)= -1/length(refChans);\n end\n clab= [clab, dat.clab(cc)];\n if opt.verbose,\n fprintf('%s: ref''ed to: %s\\n', ...\n dat.clab{cc}, str_vec2str(dat.clab(refChans)));\n end\n elseif opt.requireCompleteOutput,\n error('channel %s has incomplete neighborhood', dat.clab{cc});\n end\nend\nW= W(:,1:lc);\n\nif isfield(dat, 'x'),\n out= proc_linearDerivation(dat, W, 'clab', strcat(clab, opt.appendix));\n if ~isempty(opt.CopyCLab),\n idx= util_chanind(dat, opt.CopyCLab);\n if ~isempty(idx),\n out.x= cat(2, out.x, dat.x(:,idx,:));\n out.clab= cat(2, out.clab, dat.clab(idx));\n end\n end\n varargout= {out, W};\nelse\n varargout= {W};\nend\n", "meta": {"author": "bbci", "repo": "bbci_public", "sha": "2e6fe9481537dcfee702e74544191dcf737f02ce", "save_path": "github-repos/MATLAB/bbci-bbci_public", "path": "github-repos/MATLAB/bbci-bbci_public/bbci_public-2e6fe9481537dcfee702e74544191dcf737f02ce/processing/proc_laplacian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.743167997235783, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3976680275264534}} {"text": "function [newgt, newdet] = dropObjectsInIgr(gt, det, imgHeight, imgWidth)\n%% drop objects in ignored region\nnewgt = [];\nnewdet = [];\nnumFr = max(gt(:,1));\nfor fr = 1:numFr\n % parse objects\n idxGtFr = gt(:,1) == fr & gt(:, 8) ~= 0;\n curgt = gt(idxGtFr,:);\n idxDetFr = det(:,1) == fr;\n curdet = det(idxDetFr,:); \n % parse ignored regions\n idxIgr = gt(:,1) == fr & gt(:, 8) == 0;\n igrRegion = gt(idxIgr, 3:6);\n if(~isempty(igrRegion))\n igrMap = zeros(imgHeight, imgWidth);\n numIgr = size(igrRegion,1);\n for j = 1:numIgr\n igrMap(igrRegion(j,2):min(imgHeight,igrRegion(j,2)+igrRegion(j,4)),igrRegion(j,1):min(imgWidth,igrRegion(j,1)+igrRegion(j,3))) = 1;\n end\n intIgrMap = createIntImg(double(igrMap));\n idxLeft = [];\n for i = 1:size(curgt, 1)\n pos = max(1,round(curgt(i,3:6)));\n x = max(1, min(imgWidth, pos(1)));\n y = max(1, min(imgHeight, pos(2)));\n w = pos(3);\n h = pos(4);\n tl = intIgrMap(y, x);\n tr = intIgrMap(y, min(imgWidth,x+w));\n bl = intIgrMap(max(1,min(imgHeight,y+h)), x);\n br = intIgrMap(max(1,min(imgHeight,y+h)), min(imgWidth,x+w));\n igrVal = tl + br - tr - bl; \n if(igrVal/(h*w)<0.5)\n idxLeft = cat(1, idxLeft, i);\n end\n end\n \n curdet = curdet(idxLeft, :);\n idxLeft = [];\n for i = 1:size(curdet, 1)\n pos = max(1,round(curdet(i,3:6)));\n x = max(1, min(imgWidth, pos(1)));\n y = max(1, min(imgHeight, pos(2)));\n w = pos(3);\n h = pos(4);\n tl = intIgrMap(y, x);\n tr = intIgrMap(y, min(imgWidth,x+w));\n bl = intIgrMap(max(1,min(imgHeight,y+h)), x);\n br = intIgrMap(max(1,min(imgHeight,y+h)), min(imgWidth,x+w));\n igrVal = tl + br - tr - bl; \n if(igrVal/(h*w)<0.5)\n idxLeft = cat(1, idxLeft, i);\n end\n end\n curdet = curdet(idxLeft, :); \n end\n newgt = cat(1, newgt, curgt);\n newdet = cat(1, newdet, curdet);\n \nend", "meta": {"author": "VisDrone", "repo": "DroneCrowd", "sha": "3d25637f93f9476b4c949b6b9362287635b1a8c3", "save_path": "github-repos/MATLAB/VisDrone-DroneCrowd", "path": "github-repos/MATLAB/VisDrone-DroneCrowd/DroneCrowd-3d25637f93f9476b4c949b6b9362287635b1a8c3/STNNet/DroneCrowd-VID-toolkit/utils/dropObjectsInIgr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3976584615158062}} {"text": "function D = tsss_spm_momentspace(S)\n% Switch a dataset to SSS space using virtual montage\n% FORMAT D = spm_eeg_crop(S)\n%\n% S - input struct\n% fields of S:\n% D - MEEG object or filename of M/EEG mat-file with data after\n% TSSS tool\n% condthresh - threshold on condition number for regularisation\n%\n% Output:\n% D - MEEG object (also written on disk)\n%\n% Reference: Vrba J, Taulu S, Nenonen J, Ahonen A. Signal space separation\n% beamformer. Brain Topogr. 2010 Jun;23(2):128-33.\n%__________________________________________________________________________\n% Copyright (C) 2014 Wellcome Trust Centre for Neuroimaging\n\n% Vladimir Litvak\n% $Id: tsss_spm_momentspace.m 7703 2019-11-22 12:06:29Z guillaume $\n\nSVNrev = '$Rev: 7703 $';\n\n%-Startup\n%--------------------------------------------------------------------------\nspm('FnBanner', mfilename, SVNrev);\nspm('FigName','TSSS momenspace transformation'); spm('Pointer','Watch');\n\nif ~isfield(S, 'condthresh'), S.condthresh = 80; end\n\nD = spm_eeg_load(S.D);\n\nif ~isfield(D, 'SSS')\n error('Run the TSSS tool first');\nend\n\nD = montage(D, 'clear');\n\nSSS = D.SSS;\n\n[SN_new, sss_indices , nmodes] = basis_condition_adjustment(SSS(1).SN, size(SSS.SNin, 2), S.condthresh);\npSN = pinv(SN_new);\npSN = pSN(1:nmodes, :);\n\nlabelnew = {};\nfor i = 1:nmodes\n labelnew{i} = ['moment' num2str(i)];\nend\n\nmont = [];\nmont.labelorg = D.chanlabels(D.indchantype('MEGANY'))';\nmont.labelnew = labelnew;\nmont.tra = pSN;\n\nif ~isempty(S.addchannels)\n chantypeorg = D.chantype(D.indchannel(S.addchannels));\n chanunitorg = D.units(D.indchannel(S.addchannels));\n for c = 1:numel(S.addchannels)\n mont.labelorg(end+1) = S.addchannels(c);\n mont.labelnew(end+1) = S.addchannels(c);\n mont.tra(end+1, end+1) = 1;\n end\nend\n\nD = montage(D, 'add', mont);\nD = chantype(D, strmatch('moment', D.chanlabels), 'MEG');\nD = units(D, strmatch('moment', D.chanlabels), 'fT');\n\nif ~isempty(S.addchannels)\n D = chantype(D, D.indchannel(S.addchannels), chantypeorg);\n D = units(D, D.indchannel(S.addchannels), chanunitorg);\nend\n\nD = badchannels(D, D.indchantype('MEGANY'), 0);\n\nsave(D);\n\nspm('FigName','TSS momenspace transformation: done'); spm('Pointer','Arrow');", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/TSSS/tsss_spm_momentspace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3976584615158062}} {"text": "function fig_hdl = img2curve\n% img2curve\n%-------------------------------------------------------------------------------\n% File name : img2curve.m \n% Generated on: 11-Mar-2013 10:54:18 \n% Description :\n% \n% img2curve helps import data from a graph in a photo file, received from a\n% scan, catalog, pdf etc. by marking points on the curve.\n% Output will include the marked points and a polynomial fit.\n% Work flow:\n% 1. Load image file.\n% 2. Mark scale size for X and Y axis.\n% 3. Set a value for a point on the image (0,0 or other) to locate CS.\n% 4. Mark curve points.\n% 5. Export to mat file, excel or work space.\n% \n% Good Luck,\n% Amihay Blau\n\n%-------------------------------------------------------------------------------\n\n\n% Initialize handles structure\nhandles = struct();\n\n% Create all UI controls\nbuild_gui();\n\n% Assign function output\nfig_hdl = handles.img2curve_figure;\n\n%% ---------------------------------------------------------------------------\n\tfunction build_gui()\n% Creation of all uicontrols\n\n\t\t% --- FIGURE -------------------------------------\n\t\thandles.img2curve_figure = figure( ...\n\t\t\t'Tag', 'img2curve_figure', ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [4.9968253125 8.46023333333333 8.38091864583333 12.2673383333333], ...\n\t\t\t'Name', 'img2curve', ...\n\t\t\t'MenuBar', 'none', ...\n\t\t\t'NumberTitle', 'off', ...\n\t\t\t'Color', [0.804 0.878 0.969], ...\n\t\t\t'Resize', 'on');\n\n\t\t% --- PANELS -------------------------------------\n\t\thandles.import_uipanel = uipanel( ...\n\t\t\t'Parent', handles.img2curve_figure, ...\n\t\t\t'Tag', 'import_uipanel', ...\n\t\t\t'UserData', zeros(1,0), ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [0.264382291666667 7.34982770833334 8.0107834375 4.70600479166667], ...\n\t\t\t'FontSize', 12, ...\n\t\t\t'BackgroundColor', [0.839 0.91 0.851], ...\n\t\t\t'Title', 'Import Image');\n\n\t\thandles.curve_uipanel = uipanel( ...\n\t\t\t'Parent', handles.img2curve_figure, ...\n\t\t\t'Tag', 'curve_uipanel', ...\n\t\t\t'UserData', zeros(1,0), ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [0.264382291666667 3.7277903125 8.0107834375 3.48984625], ...\n\t\t\t'FontSize', 12, ...\n\t\t\t'BackgroundColor', [0.839 0.91 0.851], ...\n\t\t\t'Title', 'Define Curve');\n\n\t\thandles.save_uipanel = uipanel( ...\n\t\t\t'Parent', handles.img2curve_figure, ...\n\t\t\t'Tag', 'save_uipanel', ...\n\t\t\t'UserData', zeros(1,0), ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [0.264382291666667 0.211505833333333 8.0107834375 3.35765510416667], ...\n\t\t\t'FontSize', 12, ...\n\t\t\t'BackgroundColor', [0.839 0.91 0.851], ...\n\t\t\t'Title', 'Save Curve Data');\n\n\t\t% --- STATIC TEXTS -------------------------------------\n\t\thandles.import_xScale_text = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_xScale_text', ...\n\t\t\t'Style', 'text', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.381270903010033 0.33116883116883 0.535117056856187 0.246753246753247], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [0.839 0.91 0.851], ...\n\t\t\t'String', {'X Scale','Y Scale'}, ...\n\t\t\t'HorizontalAlignment', 'left');\n\n\t\thandles.curve_PolOrder_text = uicontrol( ...\n\t\t\t'Parent', handles.curve_uipanel, ...\n\t\t\t'Tag', 'curve_PolOrder_text', ...\n\t\t\t'Style', 'text', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.468227424749164 0.722222222222222 0.337792642140468 0.175925925925926], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [0.839 0.91 0.851], ...\n\t\t\t'String', 'Polynom Order');\n\n\t\thandles.curve_Pol_text = uicontrol( ...\n\t\t\t'Parent', handles.curve_uipanel, ...\n\t\t\t'Tag', 'curve_Pol_text', ...\n\t\t\t'Style', 'text', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.0602006688963211 0.0740740740740741 0.82943143812709 0.527777777777778], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [0.839 0.91 0.851], ...\n\t\t\t'String', 'Curve Equation');\n\n\t\t% --- PUSHBUTTONS -------------------------------------\n\t\thandles.import_loadImg_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_loadImg_pushbutton', ...\n\t\t\t'UserData', zeros(1,0), ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.0735785953177258 0.669194186256364 0.247491638795987 0.25974025974026], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'String', 'Load Image', ...\n\t\t\t'TooltipString', 'Load curve image', ...\n\t\t\t'CData', zeros(1,0), ...\n\t\t\t'Callback', @import_loadImg_pushbutton_Callback);\n\n\t\thandles.import_getScaleFile_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_getScaleFile_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.377926421404682 0.668831168831169 0.324414715719064 0.25974025974026], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'String', 'Get Scale File', ...\n\t\t\t'TooltipString', 'Get a previous scale file', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @import_getScaleFile_pushbutton_Callback);\n\n\t\thandles.import_scale_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_scale_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.0735785953177258 0.363999381061558 0.240802675585284 0.201298701298701], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'String', 'Set Scale', ...\n\t\t\t'TooltipString', 'Set image scale by marking points on axes and writing the difference between these points', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @import_scale_pushbutton_Callback);\n\n\t\thandles.import_MarkRef_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_MarkRef_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.0769230769230769 0.0977656148277906 0.471571906354515 0.201298701298701], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'String', 'Mark Reference Point', ...\n\t\t\t'TooltipString', 'set the C.S. by marking a point in the image. point value is set on the right', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @import_MarkRef_pushbutton_Callback);\n\n\t\thandles.curve_markPoints_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.curve_uipanel, ...\n\t\t\t'Tag', 'curve_markPoints_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.0635451505016723 0.675925925925926 0.404682274247492 0.305555555555555], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'String', 'Mark Curve Points', ...\n\t\t\t'TooltipString', 'Mark points on the curve', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @curve_markPoints_pushbutton_Callback);\n\n\t\thandles.save_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.save_uipanel, ...\n\t\t\t'Tag', 'save_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [5.49915166666667 2.08862010416666 2.1414965625 0.846023333333334], ...\n\t\t\t'String', 'Save to mat', ...\n\t\t\t'TooltipString', 'Save results', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @save_pushbutton_Callback);\n\n\t\thandles.save_excel_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.save_uipanel, ...\n\t\t\t'Tag', 'save_excel_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [5.49915166666667 1.16328208333333 2.1414965625 0.846023333333334], ...\n\t\t\t'String', 'Save to excel', ...\n\t\t\t'TooltipString', 'Save results', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @save_excel_pushbutton_Callback);\n\n\t\thandles.save_ws_pushbutton = uicontrol( ...\n\t\t\t'Parent', handles.save_uipanel, ...\n\t\t\t'Tag', 'save_ws_pushbutton', ...\n\t\t\t'Style', 'pushbutton', ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [5.49915166666667 0.237944062499997 2.1414965625 0.846023333333334], ...\n\t\t\t'String', 'Save to WS', ...\n\t\t\t'TooltipString', 'Save results', ...\n\t\t\t'Enable', 'off', ...\n\t\t\t'Callback', @save_ws_pushbutton_Callback);\n\n\t\t% --- EDIT TEXTS -------------------------------------\n\t\thandles.import_MarkRefX_edit = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_MarkRefX_edit', ...\n\t\t\t'Style', 'edit', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.648829431438127 0.123739640801817 0.0869565217391304 0.155844155844156], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [1 1 1], ...\n\t\t\t'String', '0', ...\n\t\t\t'TooltipString', 'Reference point X value', ...\n\t\t\t'Callback', @import_MarkRefX_edit_Callback, ...\n\t\t\t'CreateFcn', @import_MarkRefX_edit_CreateFcn);\n\n\t\thandles.import_MarkRefY_edit = uicontrol( ...\n\t\t\t'Parent', handles.import_uipanel, ...\n\t\t\t'Tag', 'import_MarkRefY_edit', ...\n\t\t\t'Style', 'edit', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.749163879598662 0.123739640801817 0.0869565217391304 0.155844155844156], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [1 1 1], ...\n\t\t\t'String', '0', ...\n\t\t\t'TooltipString', 'Reference point Y value', ...\n\t\t\t'Callback', @import_MarkRefY_edit_Callback, ...\n\t\t\t'CreateFcn', @import_MarkRefY_edit_CreateFcn);\n\n\t\thandles.curve_PolOrder_edit = uicontrol( ...\n\t\t\t'Parent', handles.curve_uipanel, ...\n\t\t\t'Tag', 'curve_PolOrder_edit', ...\n\t\t\t'Style', 'edit', ...\n\t\t\t'Units', 'normalized', ...\n\t\t\t'Position', [0.832775919732442 0.703703703703704 0.130434782608696 0.203703703703704], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [1 1 1], ...\n\t\t\t'String', '3', ...\n\t\t\t'TooltipString', 'Polynom order', ...\n\t\t\t'Callback', @curve_PolOrder_edit_Callback, ...\n\t\t\t'CreateFcn', @curve_PolOrder_edit_CreateFcn);\n\n\t\thandles.save_fName_edit = uicontrol( ...\n\t\t\t'Parent', handles.save_uipanel, ...\n\t\t\t'Tag', 'save_fName_edit', ...\n\t\t\t'Style', 'edit', ...\n\t\t\t'Units', 'centimeters', ...\n\t\t\t'Position', [0.502326354166667 1.00465270833333 4.78531947916666 1.08396739583333], ...\n\t\t\t'FontSize', 10, ...\n\t\t\t'BackgroundColor', [1 1 1], ...\n\t\t\t'String', 'Curve', ...\n\t\t\t'TooltipString', 'Save file name', ...\n\t\t\t'Callback', @save_fName_edit_Callback, ...\n\t\t\t'CreateFcn', @save_fName_edit_CreateFcn);\n\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction import_loadImg_pushbutton_Callback(hObject,evendata) %#ok\n \n [picName, dirNm] = uigetfile('*');\n if picName == 0\n return\n end\n \n if ~strcmp(dirNm, cd)\n picName = [dirNm picName];\n end\n img = imread(picName);\n \n handles.disp_fig = figure;\n \n imagesc([], [], flipdim(img,1));\n set(gca,'ydir','normal', 'XTick', [], 'YTick', []);\n \n % set(handles.disp_fig, 'Pointer', 'fullcrosshair')\n \n handles.disp_ax = gca;\n \n setappdata(handles.img2curve_figure, 'img', img);\n \n pushbutton_activate('import');\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction import_getScaleFile_pushbutton_Callback(hObject,evendata) %#ok\n \n [fName, dirNm] = uigetfile('scale.mat');\n if fName == 0\n return\n end\n \n S = load([dirNm fName]);\n try\n setappdata(handles.img2curve_figure, 'scale', S.scale);\n setappdata(handles.img2curve_figure, 'oo', S.oo);\n setappdata(handles.img2curve_figure, 'ooVal', S.ooVal);\n \n plotImBackground;\n \n pushbutton_activate;\n catch\n errordlg('Previous scale file loading failed!', 'Load error');\n end\n\n\tend\n\n%% ---------------------------------------------------------------------------\n function import_scale_pushbutton_Callback(hObject,evendata) %#ok\n \n pushbutton_deactivate;\n \n scale = getAppD('scale', [1 1]);\n \n scale(1) = getAxisScale(1, scale(1));\n scale(2) = getAxisScale(2, scale(2));\n setappdata(handles.img2curve_figure, 'scale', scale);\n \n set(handles.import_xScale_text, 'String', {...\n ['X Scale 1:' num2str(scale(1), 3)],...\n ['Y Scale 1:' num2str(scale(2), 3)]});\n \n checkSaveScale;\n \n pushbutton_activate;\n \n end\n\n%% ---------------------------------------------------------------------------\n function import_MarkRef_pushbutton_Callback(hObject,evendata) %#ok\n \n pushbutton_deactivate;\n \n scale = getAppD('scale', [1 1]);\n oo = getAppD('oo',[]);\n ooVal = getAppD('ooVal', [0 0]);\n \n axes(handles.disp_ax);\n t = title(handles.disp_ax, ['Mark (' num2str(ooVal) ') point'],...\n 'FontSize', 16, 'Color', 'r');\n \n if isempty(oo)\n oo = ginput(1);\n else\n oo = ( ginput(1) ) ./scale + oo - ooVal ./ scale;\n end\n \n delete(t);\n \n pushbutton_activate;\n \n setappdata(handles.img2curve_figure, 'oo', oo);\n setOoVal;\n \n checkSaveScale;\n \n end\n\n%% ---------------------------------------------------------------------------\n function curve_markPoints_pushbutton_Callback(hObject,evendata) %#ok\n \n scale = [];\n oo = [];\n ooVal = [];\n names = {'scale' 'oo' 'ooVal'};\n for i = 1:length(names)\n if isappdata(handles.img2curve_figure, names{i})\n eval([names{i} ' = getappdata(handles.img2curve_figure, ''' names{i} ''');']);\n else\n errordlg('Set scale and oo first!', 'Error');\n return\n end\n end\n \n pushbutton_deactivate;\n \n axes(handles.disp_ax);\n \n tit = title(handles.disp_ax, {'Mark as many curve points as you want' 'Press Enter when done'},...\n 'FontSize', 16, 'Color', 'r');\n po = ginput;\n if isempty(po)\n try\n load('curvePoints.mat');\n catch %#ok<*CTCH>\n return\n end\n else\n save('curvePoints.mat', 'po');\n end\n \n setappdata(handles.img2curve_figure, 'po', po);\n \n calcPol;\n \n pushbutton_activate;\n \n end\n\n%% ---------------------------------------------------------------------------\n function save_pushbutton_Callback(hObject,evendata) %#ok\n \n po = getappdata(handles.img2curve_figure, 'po');\n oo = getappdata(handles.img2curve_figure, 'oo');\n ooVal = getappdata(handles.img2curve_figure, 'ooVal');\n scale = getappdata(handles.img2curve_figure, 'scale');\n pol = getappdata(handles.img2curve_figure, 'pol');\n img = getappdata(handles.img2curve_figure, 'img');\n \n fName = [get(handles.save_fName_edit, 'String') '.mat'];\n \n save(fName, 'po', 'oo', 'ooVal', 'scale', 'pol', 'img');\n \n msgbox([fName ' saved successfully!'], 'Save Fit', 'help');\n \n end\n\n%% ---------------------------------------------------------------------------\n function save_excel_pushbutton_Callback(hObject,evendata) %#ok\n \n po = getAppD('po', []);\n pol = getAppD('pol', []);\n \n if isempty(po) || isempty(pol)\n errordlg('Mark curve point first!', 'Excel export error');\n else\n fName = [get(handles.save_fName_edit, 'String') '.xls'];\n headStr = {'Polynomial fit:' '';\n poly2str(pol, 'x') '';\n 'Polynomial coefficients:' '';\n '' '';\n '' '';\n 'X' 'Y'};\n try\n xlswrite(fName, headStr, 'Sheet1', 'A1');\n xlswrite(fName, reshape(pol', 1, []) , 'Sheet1', 'A4');\n xlswrite(fName, po, 'Sheet1', 'A7');\n \n msgbox([fName ' saved successfully!'], 'Save Fit', 'help');\n catch\n errordlg({'Could not save to excel' 'Is excel file open?'}, 'Excel export error')\n end\n end\n \n end\n\n%% ---------------------------------------------------------------------------\n function save_ws_pushbutton_Callback(hObject,evendata) %#ok\n \n names = {'po', 'oo', 'ooVal', 'scale', 'pol', 'img'};\n for i = 1:length(names)\n assignin( 'base', names{i}, getappdata(handles.img2curve_figure, names{i}) );\n end\n \n msgbox('Results exported to WS successfully!', 'WS export Fit', 'help');\n \n end\n\n%% ---------------------------------------------------------------------------\n\tfunction import_MarkRefX_edit_Callback(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction import_MarkRefX_edit_CreateFcn(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction import_MarkRefY_edit_Callback(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction import_MarkRefY_edit_CreateFcn(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction curve_PolOrder_edit_Callback(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction curve_PolOrder_edit_CreateFcn(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction save_fName_edit_Callback(hObject,evendata) %#ok\n\n\tend\n\n%% ---------------------------------------------------------------------------\n\tfunction save_fName_edit_CreateFcn(hObject,evendata) %#ok\n\n end\n\n%% Service Functions\n\n function scale = getAxisScale(ax, scale)\n \n directionStr = {'x \\rightarrow' 'y \\uparrow'};\n \n axes(handles.disp_ax);\n t = title(handles.disp_ax,{ ['Get ' directionStr{ax} ' scale'], 'Mark 2 points, from small to large'}, ...\n 'FontSize', 16, 'Color', 'r');\n Po = ginput(2);\n if isempty(Po)\n % load('scale.mat')\n % scale = scale(ax);\n return\n else\n PoSize = ( Po(2,ax)-Po(1,ax) ) / scale;\n end\n \n Answer = inputdlg('Difference between the 2 points:', 'Get Scale');\n Me = str2num(Answer{1}); %#ok<*ST2NM>\n scale = Me/PoSize;\n delete(t);\n end\n\n\n function setOoVal\n \n ooVal(1) = str2num(get(handles.import_MarkRefX_edit, 'String'));\n ooVal(2) = str2num(get(handles.import_MarkRefY_edit, 'String'));\n setappdata(handles.img2curve_figure, 'ooVal', ooVal);\n end\n\n\n function checkSaveScale\n \n if isappdata(handles.img2curve_figure, 'scale') && isappdata(handles.img2curve_figure, 'oo')\n scale = getappdata(handles.img2curve_figure, 'scale'); %#ok<*NASGU>\n oo = getappdata(handles.img2curve_figure, 'oo');\n ooVal = getappdata(handles.img2curve_figure, 'ooVal');\n \n save('scale.mat', 'scale', 'oo', 'ooVal');\n \n plotImBackground;\n end\n \n end\n\n function pol = calcPol\n \n po = getappdata(handles.img2curve_figure, 'po');\n oo = getappdata(handles.img2curve_figure, 'oo');\n ooVal = getappdata(handles.img2curve_figure, 'ooVal');\n scale = getappdata(handles.img2curve_figure, 'scale');\n \n polOrder = str2num(get(handles.curve_PolOrder_edit, 'String'));\n pol = Fitting(po(:,1), po(:,2), polOrder+1);\n \n setappdata(handles.img2curve_figure, 'pol', pol);\n \n set(handles.curve_Pol_text, 'String', poly2str(pol, 'x'));\n showRes;\n \n end\n\n\n function showRes\n \n po = getappdata(handles.img2curve_figure, 'po');\n oo = getappdata(handles.img2curve_figure, 'oo');\n ooVal = getappdata(handles.img2curve_figure, 'ooVal');\n scale = getappdata(handles.img2curve_figure, 'scale');\n pol = getappdata(handles.img2curve_figure, 'pol');\n \n if isappdata(handles.img2curve_figure, 'lin')\n try %#ok\n lin = getappdata(handles.img2curve_figure, 'lin');\n delete(lin);\n end\n end\n \n x = po(:,1);\n y = po(:,2);\n yP = polyval( pol, po(:,1) );\n \n axes(handles.disp_ax);\n \n hold on\n % imagesc(scale(1), scale(2), img);\n lin = plot(x,y, 'o', x,yP,'--', 'linewidth', 2);\n hold off\n tit = title( poly2str(pol, 'x'), 'FontSize', 12, 'Color', 'k' );\n \n setappdata(handles.img2curve_figure, 'lin', lin);\n \n end\n\n function plotImBackground\n \n po = getappdata(handles.img2curve_figure, 'po');\n oo = getappdata(handles.img2curve_figure, 'oo');\n ooVal = getappdata(handles.img2curve_figure, 'ooVal');\n scale = getappdata(handles.img2curve_figure, 'scale');\n pol = getappdata(handles.img2curve_figure, 'pol');\n img = getappdata(handles.img2curve_figure, 'img');\n \n if isempty(ooVal)\n ooVal = [0 0];\n end\n \n oo = oo - ooVal./scale;\n \n minX = -1 * scale(1) * oo(1);\n maxX = scale(1) * (length(img(1,:,1)) - oo(1));\n \n minY = -1 * scale(2) * oo(2);\n maxY = scale(2) * (length(img(:,1,1)) - oo(2));\n \n imagesc([minX maxX], [minY maxY], flipdim(img,1), 'Parent', handles.disp_ax);\n set(handles.disp_ax,'ydir','normal');\n \n end\n\n function pushbutton_activate(indicat)\n \n pb = findobj(handles.img2curve_figure, 'Style', 'pushbutton');\n \n if nargin<1 % activate all\n set(pb, 'Enable', 'on');\n else\n pbb = [];\n for i = 1:length(pb)\n if strfind(get(pb(i), 'Tag'), indicat)\n pbb(end+1) = pb(i); %#ok\n end\n end\n set(pbb, 'Enable', 'on');\n end\n \n end\n\n function pushbutton_deactivate\n \n pb = findobj(handles.img2curve_figure, 'Style', 'pushbutton');\n \n set(pb, 'Enable', 'off');\n \n end\n\n function val = getAppD(name, def)\n \n if isappdata(handles.img2curve_figure, name)\n val = getappdata(handles.img2curve_figure, name);\n else\n val =def;\n end\n \n end\n\nend\n\n\nfunction Pol = Fitting(x, y, m)\n\nif nargin<3\n m = 2;\nend\n\nx = MakeColomVec(x);\ny = MakeColomVec(y);\n\nfor q=1:m\n A=[];\n for p=1:q\n A=[A x.^(p-1)]; %#ok\n end\n d(1:q,q) =A\\y; %#ok\n % plot(x, y, x,A*d(1:q,q),'--')\n % hold on\nend\n\nPol = d(1:q,q);\nPol = Pol(end:-1:1);\n\n function v = MakeColomVec(v)\n \n v = reshape(v, length(v), 1);\n end\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/41560-img2curve/img2curve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5583270090337582, "lm_q2_score": 0.7122321720225278, "lm_q1q2_score": 0.3976584583429551}} {"text": "function clsts= getClusters(net, opts, clstFn, k, dbTrain, trainDescFn)\n \n if ~exist(clstFn, 'file')\n \n if ~exist(trainDescFn, 'file')\n \n simpleNnOpts= {'conserveMemory', true, 'mode', 'test'};\n \n if opts.useGPU\n net= relja_simplenn_move(net, 'gpu');\n end\n \n % ---------- extract training descriptors\n \n relja_display('Computing training descriptors');\n \n nTrain= 50000;\n nPerImage= 100;\n nIm= ceil(nTrain/nPerImage);\n \n rng(43);\n trainIDs= randsample(dbTrain.numImages, nIm);\n \n nTotal= 0;\n \n prog= tic;\n \n for iIm= 1:nIm\n relja_progress(iIm, nIm, 'extract train descs', prog);\n \n % --- extract descriptors\n \n % didn't want to complicate with batches here as it's only done once (per network and training set)\n \n im= vl_imreadjpeg({[dbTrain.dbPath, dbTrain.dbImageFns{iIm}]});\n im= im{1};\n \n % fix non-colour images\n if size(im,3)==1\n im= cat(3,im,im,im);\n end\n \n im(:,:,1)= im(:,:,1) - net.meta.normalization.averageImage(1,1,1);\n im(:,:,2)= im(:,:,2) - net.meta.normalization.averageImage(1,1,2);\n im(:,:,3)= im(:,:,3) - net.meta.normalization.averageImage(1,1,3);\n \n if opts.useGPU\n im= gpuArray(im);\n end\n \n res= vl_simplenn(net, im, [], [], simpleNnOpts{:});\n descs= gather(res(end).x);\n descs= reshape( descs, [], size(descs,3) )';\n \n % --- sample descriptors\n \n nThis= min( min(nPerImage, size(descs,2)), nTrain - nTotal );\n descs= descs(:, randsample( size(descs,2), nThis ) );\n \n if iIm==1\n trainDescs= zeros( size(descs,1), nTrain, 'single' );\n end\n \n trainDescs(:, nTotal+[1:nThis])= descs;\n nTotal= nTotal+nThis;\n end\n \n trainDescs= trainDescs(:, 1:nTotal);\n \n % move back to CPU addLayers() assumes it\n if opts.useGPU\n net= relja_simplenn_move(net, 'cpu');\n end\n \n save(trainDescFn, 'trainDescs');\n else\n relja_display('Loading training descriptors');\n load(trainDescFn, 'trainDescs');\n end\n \n % ---------- Cluster descriptors\n \n relja_display('Computing clusters');\n clsts= yael_kmeans(trainDescs, k, 'niter', 100, 'verbose', 0, 'seed', 43);\n clear trainDescs;\n \n save(clstFn, 'clsts');\n else\n relja_display('Loading clusters');\n load(clstFn, 'clsts');\n assert(size(clsts, 2)==k);\n end\n \nend\n", "meta": {"author": "Relja", "repo": "netvlad", "sha": "652dbe71aa45c691961ddd9f6cf902574e6bdc2f", "save_path": "github-repos/MATLAB/Relja-netvlad", "path": "github-repos/MATLAB/Relja-netvlad/netvlad-652dbe71aa45c691961ddd9f6cf902574e6bdc2f/getClusters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514777, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39764504106854826}} {"text": "function k = diagKernDiagCompute(kern, x)\n\n% DIAGKERNDIAGCOMPUTE Compute diagonal of DIAG kernel.\n% FORMAT\n% DESC computes the diagonal of the kernel matrix for the diagonal noise covariance function kernel given a design matrix of inputs.\n% ARG kern : the kernel structure for which the matrix is computed.\n% ARG x : input data matrix in the form of a design matrix.\n% RETURN k : a vector containing the diagonal of the kernel matrix\n% computed at the given points.\n%\n% SEEALSO : diagKernParamInit, kernDiagCompute, kernCreate, diagKernCompute\n%\n% COPYRIGHT : Neil D. Lawrence, 2011\n\n% KERN\n\n if size(x, 2)>1\n error('Diag kernel requires 1-dimensional input.')\n end\n trans = str2func([kern.trans, 'Transform']);\n k = kern.variance*trans(x, 'atox');\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/diagKernDiagCompute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39764503401806717}} {"text": "function extent = imPhysicalExtent(img, varargin)\n%IMPHYSICALEXTENT Compute the physical extent of an image\n%\n% BOX = imPhysicalExtent(IMG)\n% Returns the physical extent of the image IMG, such that the display\n% will be contained within the extent. IMG can be either 2D or 3D image.\n%\n% BOX = imPhysicalExtent(IMG, SPACING)\n% Computes the extent by taking into account the resolution of the image.\n% The resolution is given in X-Y-Z order (ie., SPACING(1) corresponds to\n% the resolution of the second dimension of IMG).\n%\n% BOX = imPhysicalExtent(IMG, SPACING, ORIGIN)\n% Also takes into account the stack origin, i.e. the coordinates of the\n% first voxel expressed in user coordinates.\n% The origin is given in X-Y-Z order.\n%\n% BOX = imPhysicalExtent(IMG, 'spacing', SPACING, 'origin', ORIGIN)\n% Uses a syntax based on parameter name-value pairs.\n%\n% BOX = imPhysicalExtent(DIM, SPACING, ORIGIN)\n% Computes the physical extent based on the size of the stack. This\n% syntax can be used to avoid passing an array as parameter. DIM is given\n% in X-Y-Z order.\n%\n%\n% Example\n% % Compute physical extent of MRI Human head\n% metadata = analyze75info('brainMRI.hdr');\n% I = analyze75read(metadata);\n% box = imPhysicalExtent(I, [1 1 2.5])\n% box =\n% 0.5000 128.5000 0.5000 128.5000 -0.2500 67.2500\n%\n% See also\n% imSize\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2011-03-03, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2011 INRA - Cepia Software Platform.\n\n\n% size of image in each physical direction\nsz = imSize(img);\n% if length(dim) > 2\n% % compute size of the stack\n% sz = stackSize(img);\n% else\n% % the size of the stack is given as input\n% sz = img;\n% end\n\n% default spacing and origin (matlab display convention)\nnd = length(sz);\nsp = ones(1, nd);\nor = ones(1, nd);\n\n% parse origin and spacing of the stack\nif ~isempty(varargin)\n var = varargin{1};\n \n if isnumeric(var)\n % extract voxel spacing\n sp = var;\n \n if length(varargin) > 1\n % also extract voxel origin\n or = varargin{2};\n end\n \n elseif ischar(var)\n while length(varargin) > 2\n paramName = varargin{1};\n if strcmp(paramName, 'spacing')\n sp = varargin{2};\n \n elseif strcmp(paramName, 'origin')\n or = varargin{2};\n \n else\n error(['Unknown parameter: ' paramName]);\n end\n end\n end\nend\n\n% put extent in array\nextent = (([zeros(nd, 1) sz'] - .5).* [sp' sp'] + [or' or'])';\n\n% change array shape to get a single row\nextent = extent(:)';\n", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/matImage/imMeasures/imPhysicalExtent.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39764503401806717}} {"text": "%% Efficacy of coadministration of Drug X with Statin on cholesterol reduction \n% Copyright 2010 - 2011 MathWorks, Inc.\n\n%% Abstract\n% Statins are the most common class of drugs used for treating\n% hyperlipdemia. However, studies have shown that even at their maximum\n% dosage of 80 mg, many patients do not reach LDL cholesterol goals\n% recommended by the National Cholesterol Education Program Adult Treatment\n% Panel. Combination therapy, in which a second cholesterol-reducing agent that\n% acts via a complementary pathway is coadmininstered with statin, is one\n% alternative of achieving higher efficacy at lower statin dosage. \n%\n% In this example, we test the primary hypothesis that coadminstering drug\n% X with statin is more effective at reducing cholesterol levels than\n% statin monotherapy. \n%\n% *NOTE The dataset used in this example is purely fictitious*.\n%\n% The analysis presented in this example is adapted from the following\n% publication. \n% \n% *Reference* Ballantyne CM, Houri J, Notarbartolo A, Melani L, Lipka LJ,\n% Suresh R, Sun S, LeBeaut AP, Sager PT, Veltri EP; _Ezetimibe Study Group.\n% Effect of ezetimibe coadministered with atorvastatin in 628 patients with\n% primary hypercholesterolemia: a prospective, randomized, double-blind\n% trial._ Circulation. 2003 May 20;107(19):2409-15. \n\n\n%% Data \n% 650 patients were randomly assigned to one of the following 10 treatment\n% groups (65 subjects per group)\n% \n% * Placebo \n% * Drug X (10 mg)\n% * Statin (10, 20, 40 or 80 mg)\n% * Drug X (10 mg) + Statin (10, 20, 40 or 80 mg)\n% \n% Lipid profile (LDL cholesterol, HDL CHolesterol and Triglycerides) was\n% measured at baseline (BL) and at 12 weeks (after the start of treatment).\n% In addition to the lipid profile, patients age, gender and Cardiac Heart\n% Disease (CHD) risk category was also logged at baseline. \n%\n% The data from the study is stored in a Microsoft Excel (R) file. Note\n% that the data could also be imported from other sources such as text\n% files, any JDBC/ODBC compliant database, SAS transport files, etc. \n%\n% The columns in the data are as follows:\n%\n% * ID - Patient ID\n% * Group - Treatment group\n% * Dose_A - Dosage of Statin (mg) \n% * Dose_X - Dosage of Drug X (mg)\n% * Age - Patient Age\n% * Gender - Patient Gender\n% * Risk - Patient CHD risk category (1 is high risk, and 3 is low risk)\n% * LDL_BL - HDL_BL & TC_BL - Lipid levels at baseline\n% * LDL_12wks , HDL_12wks & TC_12wks - Lipid levels after treatment\n\n%% \n% We will import the data into a dataset array that affords better data\n% managemment and organization. \n\n% Import data from an Excel file\n ds = dataset('xlsfile', 'Data.xls') ;\n \n%% Preliminary analysis\n% Our primary efficacy endpoint is the level of LDL cholesterol. Let us\n% compare the LDL C levels at baseline to LDL C levels after treatment\n\n% Use custom scatter plot\n LDLplot(ds.LDL_BL, ds.LDL_12wk, 50, 'g')\n \n%% \n% The mean LDL C level at baseline is around 4.2 and mean level after\n% treatment is 2.5. So, at least for the data pooled across all the\n% treatment groups, it seems that the treatment causes lowering of the LDL\n% cholesterol levels \n\n% Use a grouped scatter plot\n figure \n gscatter(ds.LDL_BL, ds.LDL_12wk, ds.Group) \n\n%%\n% The grouped plot shows that LDL C levels before the start of treatment\n% have similar means. However, the LDL C levels after treatment show\n% difference across treatment groups. The Placebo group show no\n% improvement. Statin monotherapy seems to outperform the Drug X\n% monotherapy. There is overlap between the Statin and Statin + X groups;\n% however, it the combination treatment does seem to perform better that\n% the statin monotherapy. Remember that the \"Statin\" and \"Statin + X\"\n% groups are further split based on Statin dose.\n%\n% In this example, we will use percentage change of LDL C from the baseline\n% level as the primary metric of efficacy. \n\n% Calculate the percentage improvement over baseline level\n\n ds.Change_LDL = ( ds.LDL_BL - ds.LDL_12wk ) ./ ds.LDL_BL * 100 ;\n \n%% \n% In the following graph, we can see that \n% \n% # In the \"Statin\" and \"Statin + X\" group, there appears to be a positive\n% linear correlation between percentage improvement and statin dose \n% # Even at the smallest dose of 10 mg, monotherapy with statin seems to be\n% better than the Drug X monotherapy group\n\n% Visualize effect of treatment and statin dose on perecentage LDL reduction\n figure\n gscatter(ds.ID, ds.Change_LDL, {ds.Group, ds.Dose_S})\n legend('Location', 'Best')\n \n%% Pooled comparison: Is the combination therapy better than statin monotherapy ?\n%\n% First, we will extract percent change in LDL C level for the Statin and\n% the Statin + X groups only. We will test the null hypothesis that the\n% percent change in LDL C level for the \"Statin + X\" groups is greater than\n% that in the \"Statin + X\" using pooled data. We use a 2 sample t-test to\n% test this hypothesis. \n\n% Convert Group into a categorical variable\nds.Group = nominal(ds.Group) ;\n\ngrp1 = ds.Change_LDL(ds.Group == 'Statin') ;\ngrp2 = ds.Change_LDL(ds.Group == 'Statin + X') ;\n\n[h, p] = ttest2(grp1, grp2, .01, 'left')\n\n%% \n% We performed a tailed hypothesis to see if Statin + X group (grp2) is\n% better than the Statin group (grp1). We test against the alternative that\n% that mean LDL change of grp1 (Statin only) is less than mean LDL change\n% of grp2 (Statin + X)\n% \n% The null hypothesis is rejected (p < 0.01), implying that grp1 mean is\n% less that grp2 mean, i.e. the Statin group is less effective at lowering\n% LDL C levels than the Statin + X group. \n% \n% The pooled analysis shows that coadministering drug X with statin is more\n% effective than statin monotherapy. \n\n%% Effect of Treatment, Statin Dose and Dose by Treatment interaction\n% Our analysis so far was done on pooled data. We analysed the effect of\n% treatment (statin alone (X = 0) vs. statin + 10 mg X) on the LDL C\n% levels. We ignored levels of statin dose within each treatment group\n% \n% Next, we will perform a 2-way ANOVA (analysis of variance) to\n% simultaneously understand the effect of both factors - statin dose (4\n% levels - 10 20, 40, 80 mg) and Treatment (2 level - statin only or\n% Statin + 10 mg X ) - on the percentage change of LDL C levels. \n% \n\n% First, we filter the data to include only the Statin and Statin + X groups \nds1 = ds(ds.Group == 'Statin' | ds.Group == 'Statin + X', :) ;\n\nanovan(ds1.Change_LDL , {ds1.Dose_S, ds1.Group } , ...\n 'varnames' , {'Statin Dose', 'Treatment'} ) ; \n \n \n%% Effect of Statin Dose on incremental increase in percentage LDL reduction\n% The ANOVA results indicate that statin dose is a significant factor, but\n% it doesn't compare means across individual dose-treatment level\n% combination. Let's look at the individual cell means. \n\nds2 = grpstats(ds1 , {'Dose_X', 'Dose_S'}, '', 'DataVars', 'Change_LDL') \n\n\n%%\n% Convert to wide format\nds2 = unstack(ds2, 'mean_Change_LDL' , 'Dose_X', ...\n 'NewDataVarNames' , {'Change_LDL_St', 'Change_LDL_St_X'} )\n\n \n \n \n%%\n% From the above table, we can clearly see that the average efficacy of the\n% combination therapy is better than statin monotherapy at all statin\n% dosages. \n% \n% In the plot of the individual means, notice that the percentage reduction\n% in LDL C levels achieved in the low dose combination therapy group (~50.5\n% %) is comparable to that achieved in the higher dose Statin monotherapy\n% group (~ 49.4 %). Thus combination therapy with Drug X could help\n% patients that cannot tolerate high statin doses. \n\nfigure\nbar([ds2.Change_LDL_St, ds2.Change_LDL_St_X])\nset(gca, 'XTickLabel', [10, 20 40, 80])\ncolormap summer\nxlabel('Statin Dose Groups(mg)')\nylabel('Percentage reduction of LDL C from Baseline (mmol/L)')\nlegend('Statin', 'Statin + X')\n\n%% Regression analysis: Effect of statin dose on percent LDL C reduction \n% In the above graph, there appears to be linear improvement in the\n% effectiveness metric for both treatment groups. In general it seems that\n% for every doubling of the statin dose, there is a 5-6 point improvement\n% in the percentage LDL C reduction. Let's fit a linear regression line to\n% the entire dataset, instead of to the mean level.\n% \nx = ds1.Dose_S ( ds1.Group == 'Statin' ) ;\ny = ds1.Change_LDL( ds1.Group == 'Statin' ) ; \n\nx1 = ds1.Dose_S (ds1.Group == 'Statin + X') ;\ny1 = ds1.Change_LDL(ds1.Group == 'Statin + X') ; \n\n%% \n\ncftool\n\n%% \n% The regression line for the Statin and the Statin + X group run almost\n% parallel. This probably indicates mechanism of actions of drug X and\n% statins are independent. \n\n% Fit \n[m1, m2] = createFit(x,y,x1, y1)\n\n%% Secondary Analysis: Consistency of effect across subgroups, age and gender\n% Finally, we will make a visual check to ensure that the efficacy of the\n% Statin + X treatment at various statin doses is consistent across gender\n% and age subgroups. We will perform this check for only the Statin + X\n% treatment group.\n\nidx = ds.Group == 'Statin + X' ; \nboxplot(ds.Change_LDL(idx), { ds.Dose_S(idx), ds.Gender(idx)} )\n\n%% \n% We will convert the continuous age variable into a catergorical variable,\n% with 2 categories: Age < 65 and Age >= 65 \n\n% Convert age into a ordinal array\nds.AgeGroup = ordinal(ds.Age ,{'< 65', '>= 65'} , [] ,[0 65 100] ) ;\n\n% Plot\nboxplot(ds.Change_LDL(idx), { ds.Dose_S(idx), ds.AgeGroup(idx)} )\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/30291-matlab-tools-for-scientists-introduction-to-statistical-analysis/Demo/analysis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318479832804, "lm_q2_score": 0.658417487156366, "lm_q1q2_score": 0.3976392897628519}} {"text": "% drawcloud ... draw point cloud\n%\n% [fig] = drawcloud(X,fig,{color})\n%\n% X ... 3xn matrix containing the points\n% if X is 4xn only the first 3 rows are used\n% fig . figure handle\n% color color of plotting; defaults to blue\n%\n% fig . return the figure handle\n%\n% $Id: drawcloud.m,v 2.0 2003/06/19 12:07:02 svoboda Exp $\n\nfunction [fig] = drawcloud(X,fig,color)\nif nargin < 3\n color = 'b';\t% default color\nend\n\nfigure(fig), hold on\nplot3(X(1,:),X(2,:),X(3,:),[color,'o'])\n\n\nview([1,1,1]);\naxis('equal');\ngrid on\nrotate3d on\nfig=fig;\nreturn\n", "meta": {"author": "strawlab", "repo": "MultiCamSelfCal", "sha": "0a26c88c63d8513eab76553033a9a6fb15ba6575", "save_path": "github-repos/MATLAB/strawlab-MultiCamSelfCal", "path": "github-repos/MATLAB/strawlab-MultiCamSelfCal/MultiCamSelfCal-0a26c88c63d8513eab76553033a9a6fb15ba6575/MultiCamSelfCal/OutputFunctions/drawcloud.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6584174938590246, "lm_q1q2_score": 0.3976392844235306}} {"text": "function msg = mhe_init()\n\ns = 'http://byu.apmonitor.com';\nb = 'mhe';\n\napm(s,b,'clear all');\n\n% load model and data\napm_load(s,b,'model.apm');\ncsv_load(s,b,'mhe.csv');\n\n% configure MV / CV\napm_info(s,b,'FV','Kp');\napm_info(s,b,'FV','tau');\napm_info(s,b,'FV','zeta');\napm_info(s,b,'FV','TC_ss');\napm_info(s,b,'MV','Q1');\napm_info(s,b,'CV','TC');\n\n% dynamic estimation\napm_option(s,b,'nlc.imode',5);\napm_option(s,b,'nlc.solver',3);\n\n% tune FV\napm_option(s,b,'Kp.dmax',0.05);\napm_option(s,b,'Kp.lower',0.3);\napm_option(s,b,'Kp.upper',0.6);\napm_option(s,b,'tau.dmax',2.0);\napm_option(s,b,'tau.lower',40.0);\napm_option(s,b,'tau.upper',60.0);\napm_option(s,b,'zeta.dmax',0.05);\napm_option(s,b,'zeta.lower',1.3);\napm_option(s,b,'zeta.upper',1.7);\napm_option(s,b,'TC_ss.dmax',1.0);\napm_option(s,b,'TC_ss.lower',22.0);\napm_option(s,b,'TC_ss.upper',25.0);\n% turn on FVs as degrees of freedom\napm_option(s,b,'Kp.status',1);\napm_option(s,b,'tau.status',1);\napm_option(s,b,'zeta.status',1);\napm_option(s,b,'TC_ss.status',1);\n\napm_option(s,b,'Kp.fstatus',0);\napm_option(s,b,'tau.fstatus',0);\napm_option(s,b,'zeta.fstatus',0);\napm_option(s,b,'TC_ss.fstatus',0);\n\n% read Q, don't let optimize use MV\napm_option(s,b,'Q1.status',0);\napm_option(s,b,'Q1.fstatus',1);\n% include CV in objective function\napm_option(s,b,'TC.status',1);\napm_option(s,b,'TC.fstatus',1);\n\n% web-viewer option, update every second\napm_option(s,b,'nlc.web_plot_freq',2);\n\nmsg = 'initialization complete';\n\nend", "meta": {"author": "APMonitor", "repo": "arduino", "sha": "f36e65a70dd7122d1829883899e40e56bf6c4279", "save_path": "github-repos/MATLAB/APMonitor-arduino", "path": "github-repos/MATLAB/APMonitor-arduino/arduino-f36e65a70dd7122d1829883899e40e56bf6c4279/5_Moving_Horizon_Estimation/2nd_order_linear/MATLAB/mhe_init.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3976392803755817}} {"text": "function f=loglikGaPExpWfix(x, varargin)\n% f=loglikGaP(x, varargin)\n% complete log likellihood of the GaP model \n% Vxt = varargin{1}; %data\n% sigpsf = varargin{2}; %std deviation of the PSF gaussian approx\n% alpha = varargin{3}; %parameters of the Gamma prior on the blinking\n% beta = varargin{4}; %parameters of the Gamma prior on the blinking\n% peval = varargin{5}; %parameters\n% x(1:end-2*peval.ncomp) is Hkt\n\n\nVxt = varargin{1}; %data\nsigpsf = varargin{2}; %std deviation of the PSF gaussian approx\nalpha = varargin{3}; %parameters of the Gamma prior on the blinking\nbeta = varargin{4}; %parameters of the Gamma prior on the blinking\npeval = varargin{5}; %parameters\n\n[Hkt_r, cx, cy, Wxk] = loglikGaPreadparamWfix(x,varargin);\nHkt=exp(Hkt_r); %nonnegativity constrains\n\n[Wxkbg,Hktbg]=addbg(Wxk, Hkt, peval.bg);\nP=Wxkbg*Hktbg; %current approximation\n\n%Poisson contribution\nt1=Vxt.*log(P) - P;\n%Gamma contribution\n% t2=(alpha-1)*log(Hkt)-1/beta*Hkt-alpha*log(beta)-log(gamma(alpha));\nt2=-1/beta*Hkt;\n\nf=sum(t1(:));%+sum(t2(:)));\nf=-f; %conjugate gradient is mimimizing!\nend", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/conjgradfunctions/loglikGaPExpWfix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8479677430095496, "lm_q2_score": 0.4687906266262437, "lm_q1q2_score": 0.3975193296042883}} {"text": "% Codes for CVPR-15 work `Face Alignment by Coarse-to-Fine Shape Searching'\n% Any question please contact Shizhan Zhu: zhshzhutah2@gmail.com\n% Released on July 25, 2015\n\nfunction currentPose = inferenceReg(images,model,Pr,level,regsInfo)\n\nm = length(images);\nn_pts = size(model{level}.tpt,2) / 2;\ntpt = model{max(1,level-1)}.tpt;\nmt = size(tpt,1);\n\n% 61. Sampling\nindex_inference = zeros(m,regsInfo.samplingTot(level));\ncurrentPose_inference = zeros(m,2*n_pts,regsInfo.samplingTot(level));\nfor i = 1:m\n if level > 1\n [~,tmp] = sort(Pr(i,:),'descend');\n index_inference(i,:) = tmp(1:regsInfo.samplingTot(level));\n else\n index_inference(i,:) = randSampleNoReplace(mt, regsInfo.samplingTot(level), Pr(i,:));\n end;\n for j = 1:regsInfo.samplingTot(level)\n currentPose_inference(i,:,j) = tpt(index_inference(i,j),:);\n end;\nend;\n\n% 62. Inference Iteration\nfeatInfo.scale = regsInfo.SIFTscale;\nfor iter = 1:regsInfo.iterTot(level)\n featOri_batch = extractSIFTs_toosimple_samples(images,currentPose_inference,iter,featInfo);\n for j = 1:regsInfo.samplingTot(level)\n currentPose_inference(:,:,j) = currentPose_inference(:,:,j) + ...\n (featOri_batch(:,:,j) - repmat(model{level}.reg{iter}.mu,m,1)) * model{level}.reg{iter}.A ...\n + repmat(model{level}.reg{iter}.b,m,1);\n end;\nend;\n\ncurrentPose = poseVoting(currentPose_inference,regsInfo.dominantIterTot(level));\n\nend\n\n", "meta": {"author": "zhusz", "repo": "CVPR15-CFSS", "sha": "11b8d0b28a4a3e954741a4dae2f114df7b644d4e", "save_path": "github-repos/MATLAB/zhusz-CVPR15-CFSS", "path": "github-repos/MATLAB/zhusz-CVPR15-CFSS/CVPR15-CFSS-11b8d0b28a4a3e954741a4dae2f114df7b644d4e/inferenceReg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7826624890918021, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39744529768711057}} {"text": "function [Pbest,Gbest] = GetBest(Archive,W,Z)\n% Update the pbest and gbest of each particle\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n %% Select the pbest\n AObj = Archive.objs - repmat(Z,length(Archive),1);\n NormW = sqrt(sum(W.^2,2))';\n d1 = AObj*W'./repmat(NormW,length(Archive),1);\n d2 = sqrt(repmat(sum(AObj.^2,2),1,size(W,1))-d1.^2);\n PBI = d1 + 5*d2;\n [~,p] = min(PBI,[],1);\n Pbest = Archive(p);\n \n %% Select the gbest\n Gbest = Archive(randi(size(Archive,1),1,size(W,1)));\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/MMOPSO/GetBest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7826624688140726, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3974452873898389}} {"text": "function [vertices, faces] = freesurfer_read_surf(fname)\n\n% freesurfer_read_surf - FreeSurfer I/O function to read a surface file\n% \n% [vertices, faces] = freesurfer_read_surf(fname)\n% \n% Reads the vertex coordinates (mm) and face lists from a surface file.\n% \n% Surface files are stored as either triangulations or quadrangulations.\n% That is, for a triangulation, each face is defined by 3 vertices. For a\n% quadrangulation, each face is defined by 4 vertices. The rows of 'faces'\n% contain indices into the rows of 'vertices', the latter holds the XYZ\n% coordinates of each vertex.\n%\n% The freesurfer faces index the vertices in counter-clockwise order (when\n% viewed from the outside of the surface). This is consistent with a\n% right-hand rule. If we have vertices\n%\n% C B\n%\n%\n% A\n%\n% Then we can calculate an edge vector from A to B (ie, AB = B - A) and\n% another edge vector from A to C (ie, AC = C - A). If you form a \"gun\"\n% with your thumb and forefinger of the right hand, then align your thumb\n% with the AB vector and your forefinger with the AC vector, your palm is\n% facing out of the screen and extending your middle finger in the\n% orthogonal direction to the plane of the screen will give the outward\n% surface normal of the triangle ABC. (If you lookup \"triangle\" on\n% Wolfram's mathworld, you can see that AB is referred to as c and AC is\n% referred to as b.)\n%\n% However, if this surface is read into matlab, it will give INWARD surface\n% normals in the matlab patch command. For some reason, matlab is not\n% following the right hand rule. To get OUTWARD normals with the matlab\n% patch command, use faces(:,[1 3 2]) (see below).\n%\n% The vertex coordinates are in mm. The FreeSurfer coordinate\n% system for surfaces is quite simple, but relating to their MRI\n% cor-??? files is too confusing to explain here; see the FreeSurfer\n% homepage or google the documentation by Graham Wideman. For the\n% surfaces, at least, the origin is somewhere in the center of the\n% head, and the vertex XYZ coordinates are oriented such that +X is\n% right, +Y is anterior and +Z is superior (this is the\n% FreeSurfer RAS coordinate system).\n%\n% Note that reading the faces of a quad file can take a long\n% time due to their compact storage format. In this case, the return of\n% vertices can be faster if the face output variable is not specified; in\n% this case, the faces are not read.\n% \n% Try this to visualize the surface:\n% Hp = patch('vertices',vertices,'faces',faces(:,[1 3 2]),...\n% 'facecolor',[.5 .5 .5],'edgecolor','none')\n% camlight('headlight','infinite')\n% vertnormals = get(Hp,'vertexnormals');\n%\n% See also freesurfer_write_surf, freesurfer_read_curv,\n% freesurfer_read_wfile\n%\n\n% $Revision: 1.2 $ $Date: 2011/02/07 21:47:40 $\n\n% Copyright (C) 2000 Darren L. Weber\n\n% History: 08/2000, Darren.Weber_at_radiology.ucsf.edu\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nver = '$Revision: 1.2 $ $Date: 2011/02/07 21:47:40 $';\nfprintf('FREESURFER_READ_SURF [v %s]\\n',ver(11:15));\n\nif(nargin < 1)\n help freesurfer_read_surf;\n return;\nend\n\n%QUAD_FILE_MAGIC_NUMBER = (-1 & 0x00ffffff) ;\n%NEW_QUAD_FILE_MAGIC_NUMBER = (-3 & 0x00ffffff) ;\n\nTRIANGLE_FILE_MAGIC_NUMBER = 16777214;\nQUAD_FILE_MAGIC_NUMBER = 16777215;\n\n\n% open it as a big-endian file\nfid = fopen(fname, 'rb', 'b');\nif (fid < 0),\n str = sprintf('could not open surface file %s.', fname);\n error(str);\nend\n\nfprintf('...reading surface file: %s\\n', fname);\ntic;\n\nmagic = freesurfer_fread3(fid);\n\nif (magic == QUAD_FILE_MAGIC_NUMBER),\n Nvertices = freesurfer_fread3(fid);\n Nfaces = freesurfer_fread3(fid);\n fprintf('...reading %d quad file vertices\\n',Nvertices);\n vertices = fread(fid, Nvertices*3, 'int16') ./ 100 ; \n if (nargout > 1),\n fprintf('...reading %d quad file faces (please wait)\\n',Nfaces);\n faces = zeros(Nfaces,4);\n for iface = 1:Nfaces,\n for n=1:4,\n faces(iface,n) = freesurfer_fread3(fid) ;\n end\n if(~rem(iface, 10000)), fprintf(' %7.0f',iface); end\n if(~rem(iface,100000)), fprintf('\\n'); end\n end\n end\nelseif (magic == TRIANGLE_FILE_MAGIC_NUMBER),\n fprintf('...reading triangle file\\n');\n tline = fgets(fid); % read creation date text line\n tline = fgets(fid); % read info text line\n \n Nvertices = fread(fid, 1, 'int32'); % number of vertices\n Nfaces = fread(fid, 1, 'int32'); % number of faces\n \n % vertices are read in column format and reshaped below\n vertices = fread(fid, Nvertices*3, 'float32');\n \n % faces are read in column format and reshaped\n faces = fread(fid, Nfaces*3, 'int32');\n faces = reshape(faces, 3, Nfaces)';\nelse\n str = sprintf('unknown magic number in surface file %s.', fname);\n error(str);\nend\n\nvertices = reshape(vertices, 3, Nvertices)';\nfclose(fid);\n\nfprintf('...adding 1 to face indices for matlab compatibility.\\n');\nfaces = faces + 1;\n\nt=toc; fprintf('...done (%6.2f sec)\\n\\n',t);\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/freesurfer/freesurfer_read_surf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3973971254124779}} {"text": "%GETDEFAULTNEWCAMERAMATRIX Returns the default new camera matrix\n%\n% newCameraMatrix = cv.getDefaultNewCameraMatrix(cameraMatrix)\n% [...] = cv.getDefaultNewCameraMatrix(..., 'OptionName',optionValue, ...)\n%\n% ## Input\n% * __cameraMatrix__ Input camera matrix, a 3x3 double matrix.\n%\n% ## Output\n% * __newCameraMatrix__ Output camera matrix, same size and type as input.\n%\n% ## Options\n% * __ImgSize__ Camera view image size in pixels `[w,h]`. Default [0,0]\n% * __CenterPrincipalPoint__ Location of the principal point in the new camera\n% matrix. The parameter indicates whether this location should be at the\n% image center or not. default false\n%\n% The function returns the camera matrix that is either an exact copy of the\n% input `cameraMatrix` (when `CenterPrinicipalPoint=false`), or the modified\n% one (when `CenterPrincipalPoint=true`).\n%\n% In the latter case, the new camera matrix will be:\n%\n% [ fx, 0, (ImgSize(1)-1)*0.5 ;\n% 0, fy, (ImgSize(2)-1)*0.5 ;\n% 0, 0, 1 ]\n%\n% where `fx` and `fy` are (0,0) and (1,1) elements of `cameraMatrix`,\n% respectively.\n%\n% By default, the undistortion functions in OpenCV (see cv.undistort,\n% cv.initUndistortRectifyMap) do not move the principal point. However, when\n% you work with stereo, it is important to move the principal points in both\n% views to the same y-coordinate (which is required by most of stereo\n% correspondence algorithms), and may be to the same x-coordinate too. So, you\n% can form the new camera matrix for each view where the principal points are\n% located at the center.\n%\n% See also: cv.undistort, cv.initUndistortRectifyMap,\n% cv.getOptimalNewCameraMatrix\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/getDefaultNewCameraMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5851011686727231, "lm_q2_score": 0.6791787121629466, "lm_q1q2_score": 0.39738825822417506}} {"text": "function [taumat, thetamat] ...\n = SimulateControl(thetalist, dthetalist, g, Ftipmat, Mlist, ...\n Glist, Slist, thetamatd, dthetamatd, ...\n ddthetamatd, gtilde, Mtildelist, Gtildelist, ...\n Kp, Ki, Kd, dt, intRes)\n% *** CHAPTER 11: ROBOT CONTROL *** \n% Takes thetalist: n-vector of initial joint variables,\n% dthetalist: n-vector of initial joint velocities,\n% g: Actual gravity vector g,\n% Ftipmat: An N x 6 matrix of spatial forces applied by the\n% end-effector (If there are no tip forces, the user should \n% input a zero and a zero matrix will be used),\n% Mlist: Actual list of link frames i relative to i? at the home \n% position,\n% Glist: Actual spatial inertia matrices Gi of the links,\n% Slist: Screw axes Si of the joints in a space frame, in the format\n% of a matrix with the screw axes as the columns,\n% thetamatd: An Nxn matrix of desired joint variables from the \n% reference trajectory,\n% dthetamatd: An Nxn matrix of desired joint velocities,\n% ddthetamatd: An Nxn matrix of desired joint accelerations,\n% gtilde: The gravity vector based on the model of the actual robot\n% (actual values given above),\n% Mtildelist: The link frame locations based on the model of the \n% actual robot (actual values given above),\n% Gtildelist: The link spatial inertias based on the model of the \n% actual robot (actual values given above),\n% Kp: The feedback proportional gain (identical for each joint),\n% Ki: The feedback integral gain (identical for each joint),\n% Kd: The feedback derivative gain (identical for each joint),\n% dt: The timestep between points on the reference trajectory.\n% intRes: Integration resolution is the number of times integration \n% (Euler) takes places between each time step. Must be an \n% integer value greater than or equal to 1.\n% Returns taumat: An Nxn matrix of the controller commanded joint \n% forces/torques, where each row of n forces/torques \n% corresponds to a single time instant,\n% thetamat: An Nxn matrix of actual joint angles.\n% The end of this function plots all the actual and desired joint angles.\n% Example Usage\n% \n% clc; clear;\n% thetalist = [0.1; 0.1; 0.1];\n% dthetalist = [0.1; 0.2; 0.3];\n% %Initialize robot description (Example with 3 links)\n% g = [0; 0; -9.8];\n% M01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.089159]; [0, 0, 0, 1]];\n% M12 = [[0, 0, 1, 0.28]; [0, 1, 0, 0.13585]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];\n% M23 = [[1, 0, 0, 0]; [0, 1, 0, -0.1197]; [0, 0, 1, 0.395]; [0, 0, 0, 1]];\n% M34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.14225]; [0, 0, 0, 1]];\n% G1 = diag([0.010267, 0.010267, 0.00666, 3.7, 3.7, 3.7]);\n% G2 = diag([0.22689, 0.22689, 0.0151074, 8.393, 8.393, 8.393]);\n% G3 = diag([0.0494433, 0.0494433, 0.004095, 2.275, 2.275, 2.275]);\n% Glist = cat(3, G1, G2, G3);\n% Mlist = cat(3, M01, M12, M23, M34); \n% Slist = [[1; 0; 1; 0; 1; 0], ...\n% [0; 1; 0; -0.089; 0; 0], ...\n% [0; 1; 0; -0.089; 0; 0.425]];\n% dt = 0.01;\n% %Create a trajectory to follow\n% thetaend =[pi / 2; pi; 1.5 * pi];\n% Tf = 1;\n% N = Tf / dt;\n% method = 5;\n% thetamatd = JointTrajectory(thetalist, thetaend, Tf, N, method);\n% dthetamatd = zeros(N, 3);\n% ddthetamatd = zeros(N, 3);\n% dt = Tf / (N - 1);\n% for i = 1: N - 1\n% dthetamatd(i + 1, :) = (thetamatd(i + 1, :) - thetamatd(i, :)) / dt;\n% ddthetamatd(i + 1, :) = (dthetamatd(i + 1, :) ...\n% - dthetamatd(i, :)) / dt;\n% end\n% %Possibly wrong robot description (Example with 3 links)\n% gtilde = [0.8; 0.2; -8.8];\n% Mhat01 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.1]; [0, 0, 0, 1]];\n% Mhat12 = [[0, 0, 1, 0.3]; [0, 1, 0, 0.2]; [-1, 0 ,0, 0]; [0, 0, 0, 1]];\n% Mhat23 = [[1, 0, 0, 0]; [0, 1, 0, -0.2]; [0, 0, 1, 0.4]; [0, 0, 0, 1]];\n% Mhat34 = [[1, 0, 0, 0]; [0, 1, 0, 0]; [0, 0, 1, 0.2]; [0, 0, 0, 1]];\n% Ghat1 = diag([0.1, 0.1, 0.1, 4, 4, 4]);\n% Ghat2 = diag([0.3, 0.3, 0.1, 9, 9, 9]);\n% Ghat3 = diag([0.1, 0.1, 0.1, 3, 3, 3]);\n% Gtildelist = cat(3, Ghat1, Ghat2, Ghat3);\n% Mtildelist = cat(4, Mhat01, Mhat12, Mhat23, Mhat34); \n% Ftipmat = ones(N, 6);\n% Kp = 20;\n% Ki = 10;\n% Kd = 18;\n% intRes = 8;\n% [taumat, thetamat] ...\n% = SimulateControl(thetalist, dthetalist, g, Ftipmat, Mlist, Glist, ...\n% Slist, thetamatd, dthetamatd, ddthetamatd, gtilde, ...\n% Mtildelist, Gtildelist, Kp, Ki, Kd, dt, intRes);\n% \n\nFtipmat = Ftipmat';\nthetamatd = thetamatd';\ndthetamatd = dthetamatd';\nddthetamatd = ddthetamatd';\nn = size(thetamatd, 2);\ntaumat = zeros(size(thetamatd));\nthetamat = zeros(size(thetamatd));\nthetacurrent = thetalist;\ndthetacurrent = dthetalist;\neint = zeros(size(thetamatd, 1), 1);\nfor i=1: n\n taulist ...\n = ComputedTorque(thetacurrent, dthetacurrent, eint, gtilde, ...\n Mtildelist, Gtildelist, Slist, thetamatd(:, i), ...\n dthetamatd(:, i), ddthetamatd(:, i), Kp, Ki, Kd);\n for j=1: intRes\n ddthetalist ...\n = ForwardDynamics(thetacurrent, dthetacurrent, taulist, g, ...\n Ftipmat(:, i), Mlist, Glist, Slist); \n [thetacurrent, dthetacurrent] ...\n = EulerStep(thetacurrent, dthetacurrent, ddthetalist, ...\n (dt / intRes));\n end\n taumat(:, i) = taulist;\n thetamat(:, i) = thetacurrent; \n eint = eint + (dt*(thetamatd(:, i) - thetacurrent));\nend\n%Output using matplotlib\nlinks = size(thetamat, 1);\nleg = cell(1, 2 * links);\ntime=0: dt: dt * n - dt;\ntimed=0: dt: dt * n - dt;\nfigure\nhold on\nfor i=1: links\n col = rand(1, 3);\n plot(time, (thetamat(i, :)'), '-', 'Color', col)\n plot(timed, (thetamatd(i, :)'), '.', 'Color', col)\n leg{2 * i - 1} = (strcat('ActualTheta', num2str(i)));\n leg{2 * i} = (strcat('DesiredTheta', num2str(i)));\nend\ntitle('Plot of Actual and Desired Joint Angles')\nxlabel('Time')\nylabel('Joint Angles')\nlegend(leg, 'Location', 'NorthWest')\ntaumat = taumat';\nthetamat = thetamat';\nend", "meta": {"author": "ShuoYangRobotics", "repo": "QuadrupedSim", "sha": "8427715395b63bddb77329e66f7484e529998445", "save_path": "github-repos/MATLAB/ShuoYangRobotics-QuadrupedSim", "path": "github-repos/MATLAB/ShuoYangRobotics-QuadrupedSim/QuadrupedSim-8427715395b63bddb77329e66f7484e529998445/mr/SimulateControl.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.39738824839680414}} {"text": "function plotRelativeAmps(view)\n%\n% plotAmps(view)\n% \n% Bar plot of the amplitudes for each scan, averaging across\n% all pixels (in all slices) in the current ROI.\n% \n% gmb 5/25/98\n\n% Compute means across scans, for all pixels in the\n% currently selected ROI.\n[meanAmps,meanPhs] = vectorMeans(view);\n\nselectGraphWin\n\n% Header\nROIname = view.ROIs(view.selectedROI).name;\nheaderStr = ['Mean of amplitudes, ROI ',ROIname];\nset(gcf,'Name',headerStr);\n\n% Plot the bar graph\nclf\nfontSize = 14;\nmybar(meanAmps);\nxlabel('Scan','FontSize',fontSize);\nylabel('Mean Amplitude','FontSize',fontSize);\nylim =get(gca,'YLim');\nset(gca,'YLim',ylim*1.1);\nset(gca,'FontSize',fontSize);\n\n% Save the data in gca('UserData')\ndata.y = meanAmps;\nset(gca,'UserData',data);\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Plots/plotRelAmps.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791786991753931, "lm_q2_score": 0.5851011542032313, "lm_q1q2_score": 0.3973882407977717}} {"text": "function h = times(f, g)\n%.* Times of two BALLFUNV objects. \n% F.*G if F is a BALLFUNV and G is double returns the BALLFUNV after\n% componentwise multiplication.\n%\n% F.*G if F is a BALLFUNV and G is a BALLFUNV returns the BALLFUNV\n% after multiplication of F by each component of G.\n% \n% See also MTIMES.\n\n% Copyright 2019 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif isempty( f ) || isempty(g)\n h = ballfunv();\n return\nend\n\nfIsBallfun = isa(f, 'ballfun');\ngIsBallfun = isa(g, 'ballfun');\n\nif fIsBallfun\n G = g.comp;\n h = [f.*G{1} ; f.*G{2} ; f.*G{3}];\nelseif gIsBallfun\n F = f.comp;\n h = [F{1}.*g ; F{2}.*g ; F{3}.*g];\nelse\n F = f.comp;\n G = g.comp;\n h = [F{1}.*G{1} ; F{2}.*G{2} ; F{3}.*G{3}];\nend\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@ballfunv/times.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3973882407977716}} {"text": "function f = times(f, g, varargin)\n%.* CLASSICFUN multiplication.\n% F.*G multiplies CLASSICFUN objects F and G or a CLASSICFUN by a scalar if\n% either F or G is a scalar.\n%\n% If F is an array-valued CLASSICFUN, then F.*C is supported if C is a row\n% vector of doubles with the same number of columns as F. Similarly if F if a\n% row vector of doubles and C is an array-valued CLASSICFUN\n%\n% If F and G are both CLASSICFUN objects, they are assumed to have the same\n% domain and, if they are array-valued, the same number of columns. The\n% method gives no warning if their domains don't agree, but the output of the\n% method will be meaningless.\n%\n% See also MTIMES, RDIVIDE.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif ( isempty(f) || isempty(g) ) % CLASSICFUN * [] = []\n \n % Return empty:\n f = []; \n \nelseif ( ~isa(f, 'classicfun') ) % double * CLASSICFUN\n \n % If f is not a CLASSICFUN, g must be. Call ONEFUN/TIMES():\n g.onefun = times(f, g.onefun, varargin{:});\n % Swap arguments for output variable:\n f = g;\n \nelseif ( isa(g, 'classicfun')) % CLASSICFUN * CLASSICFUN\n \n % Multiply the ONEFUN objects of f and g together.\n f.onefun = times(f.onefun, g.onefun, varargin{:});\n \nelseif ( isa(g, 'double') ) % CLASSICFUN * double\n \n % Multiply the ONEFUN of f with g.\n f.onefun = times(f.onefun, g, varargin{:});\n \nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@classicfun/times.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3973882407977716}} {"text": "function [x,y]=selectPolygon()\n% function [x,y]=selectPolygon()\n% OUTPUT: x,y - xy coordinates of vertices of selected polygon in figure\n% NOTE: The coord vectors are set up so that the last and first entries\n% are the same\n% PURPOSE:\n% Function to select a polygonal region in the current figure\n% and return the coordinates of the vertices (x,y)\n% USAGE:\n% - Left click to select point\n% - ESC to undo\n% - Right click to end and finish loop\n\n% Author: Ranjith Unnikrishnan\n%* Carnegie Mellon University, Vision and Mobile Robots Laboratory *\n%* THE MATERIAL EMBODIED IN THIS SOFTWARE IS PROVIDED TO YOU \"AS-IS\" *\n%* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, *\n%* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR *\n%* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL CARNEGIE MELLON *\n%* UNIVERSITY BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT, *\n%* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY *\n%* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION, *\n%* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF *\n%* THIRD PARTIES, WHETHER OR NOT CARNEGIE MELLON UNIVERSITY HAS BEEN *\n%* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON *\n%* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE *\n%* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE. *\n%\n\nx=[];\ny=[];\ndone=0;\nn_selected=0;\ncrosses_h=1234.567; % some arbit number\nfirst=1;\nxlabel('left mouse=select, ESC=undo last selection, right mouse=finish');\n\nwhile (done==0)\n [xc,yc,button]=ginput(1);\n \n switch (button)\n case 1 % left button\n % Select point\n fprintf(1,'Selected point (%.3f,%.3f)\\n',xc,yc);\n x=[x;xc];\n y=[y;yc];\n n_selected=n_selected+1;\n case 27 % ESC key\n % Undo last point\n if(n_selected > 0)\n fprintf(1,'Deleted last point\\n');\n x(end)=[];\n y(end)=[];\n n_selected=n_selected-1;\n end\n case 3 % Right mouse button\n fprintf(1,'Ending\\n');\n done=1;\n if(length(x)>0)\n % Terminate\n x=[x;x(1)];\n y=[y;y(1)];\n end\n otherwise\n end\n \n if(ishandle(crosses_h)) \n %fprintf(1,'crosses_h is a handle\\n');\n delete(crosses_h);\n end\n\n hold on;\n if(length(x)>0)\n crosses_h=plot([x;x(1)],[y;y(1)],'wo-',...\n 'markersize',6,'linewidth',2);\n end\n hold off;\nend \n \n\n", "meta": {"author": "zhixy", "repo": "Laser-Camera-Calibration-Toolbox", "sha": "f0bd1b984c51dea79840c344c1fec8cb3d088730", "save_path": "github-repos/MATLAB/zhixy-Laser-Camera-Calibration-Toolbox", "path": "github-repos/MATLAB/zhixy-Laser-Camera-Calibration-Toolbox/Laser-Camera-Calibration-Toolbox-f0bd1b984c51dea79840c344c1fec8cb3d088730/src/selectPolygon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5851011397337391, "lm_q2_score": 0.6791786926816161, "lm_q1q2_score": 0.3973882271708845}} {"text": "function logLoss = prtEvalLogLoss(classifier,dataSet,nFolds)\n% prtEvalLogLoss Calculate log-loss after applying classifier to dataSet\n% \n% logLoss = prtEvalLogLoss(prtClassifier, prtDataSet) returns the\n% log-Loss for prtDataSet when classified by prtClassifier. prtDataSet\n% must be a labeled, prtDataSetStandard object. prtClassifier must be a\n% prtClass object.\n%\n% logLoss = prtEvalLogLoss(prtClassifier, prtDataSet, nFolds) returns\n% the log-Loss of prtDataSet when classified by prtClassifier with K-fold\n% cross-validation. prtDataSet must be a labeled, prtDataSetStandard\n% object. prtClassifier must be a prtClass object. nFolds is the number\n% of folds in the K-fold cross-validation.\n%\n% logLoss = prtEvalLogLoss(prtClassifier, prtDataSet, xValInds) same as\n% above, but use crossValidation with specified indices instead of random\n% folds.\n%\n% Note: since a lower log-loss is better, if log-loss is used in\n% feature selection, for example, you should optimize over the *negative*\n% log-loss.\n% \n% See the help for prtScoreLogLoss for more information.\n%\n% Example:\n% dataSet = prtDataGenSpiral;\n% classifier = prtClassDlrt;\n% ll = prtEvalLogLoss(classifier, dataSet)\n%\n% See Also: prtScoreLogLoss, prtEvalPdAtPf, prtEvalPfAtPd, prtEvalAuc, \n% prtEvalMinCost, prtEvalPercentCorrect\n\n\n\n\n\n\nif nargin < 3 || isempty(nFolds)\n nFolds = 1;\nend\nresults = prtUtilEvalParseAndRun(classifier,dataSet,nFolds);\nlogLoss = prtScoreLogLoss(results);\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/eval/prtEvalLogLoss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.39735374981948346}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the BEAM-EXAMPLE geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction BeamCurve()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 256; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nNy = 256; % # of Eulerian Grid Pts. in y-Direction (MUST BE EVEN!!!)\nLx = 1.0; % Length of Eulerian Grid in x-Direction\nLy = 1.0; % Length of Eulerian Grid in y-Direction\n\n\n% Immersed Structure Geometric / Dynamic Parameters %\nN = 1.5*Nx; % Number of Lagrangian Pts. (2x resolution of Eulerian grid)\na = 0.5; % Length of beam (only in x-coordinate)\nstruct_name = 'BeamCurve'; % Name for .vertex, .spring, .beam, .target, etc files.\n\n\n% Call function to construct geometry\n[xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(N,Lx,a);\n\n\n% Plot Geometry to test\nplot(xLag,yLag,'r-'); hold on;\nplot(xLag,yLag,'*'); hold on;\nxlabel('x'); ylabel('y');\naxis square;\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n\n% Prints .beam file!\nk_Beam = 5e11; C = 0.0;\nprint_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name);\n\n% Prints .target file! \nk_Target = 1.75e8;\nprint_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints Vertex points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', 2 );\n\n fprintf(target_fid, '%d %1.16e\\n', 1, k_Target);\n fprintf(target_fid, '%d %1.16e\\n', N, k_Target);\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called rubberband.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, 1, k_Beam, C); \n end\n end\n fclose(beam_fid); \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called rubberband.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name)\n\n N = length(xLag);\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n else\n %Case s=N\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, 1, k_Spring, ds_Rest); \n end\n end\n fclose(spring_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(N,Lx,a)\n\n% The immsersed structure is a curved line %\nds = a/(N-1);\n\nxLag(1) = -a/2;%Lx/2-a/2;\nyLag(1) = 0.0;\nfor i=2:N\n \n xLag(i) = xLag(i-1) + ds;\n x = xLag(i);\n yLag(i) = -2*( (x)^2 - (a/2)^2 );\n\nend\n\nxLag = xLag + Lx/2;\nyLag = yLag + Lx/2;\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_Wobbly_Beam/Beam_256/BeamCurve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.39735374981948346}} {"text": "function []=plot_dramapB(vResults)\n% --------------------------------------------\n% Plot Mc map on topography\n%\n% Incoming variables:\n% vResults: Necessarily includes vResults.mPolygon, vResults.mValueGrid, vResults.fSpacingHorizontal\n%\n% Author: J. Woessner, woessner@seismo.ifg.ethz.ch\n% last update: 27.02.03\n\n% get tbase.bin values\n[tmap,tmapleg] = tbase(3);\n\n% Construct a map graticule mesh for surface object display\n[lat,lon] = meshgrat(tmap,tmapleg);\n\n% Get coordinates from calculated Mc values, set up matrices\nvX=min(vResults.mPolygon(:,1)):vResults.fSpacingHorizontal:max(vResults.mPolygon(:,1));\nvY=min(vResults.mPolygon(:,2)):vResults.fSpacingHorizontal:max(vResults.mPolygon(:,2));\n[X , Y] = meshgrid(vX,vY);\n\n% % Set values of Mc to NaN\n vSel = find(vResults.mValueGrid(:,9)> 2.2);\n vResults.mValueGrid(vSel,9) = NaN;\n\n% Reshape\nmBvalues=reshape(vResults.mValueGrid(:,9),length(vY),length(vX));\n\n\n% Interpolate Values\nmBGrid = interp2(X,Y,mBvalues,lon,lat);\n\n% Create figure\nexfig=figure_exists('b-value worldmap',0);\nif exfig==0\n ui=figure_w_normalized_uicontrolunits( 'Name','b-value worldmap',...\n 'NumberTitle','off');\n figure_w_normalized_uicontrolunits(ui)\nend\n\nclf\nhold on;\naxis off;\naxesm('MapProjection','robinson')\n\n% Magic coloring\nmi = min(min(mBGrid));\nl = isnan(mBGrid);\nmBGrid(l) = mi-10;\nll = tmap < 0 & mBGrid < 0;\nmBGrid(ll) = mBGrid(ll)*0 + 10;\nhMap=meshm(mBGrid,tmapleg,size(tmap),tmap);\n\ndaspectm('m',20);\ntightmap\nview([0 90])\ncamlight; lighting phong\nset(gca,'projection','perspective');\n\nj = jet(60000);\nj = j(30000:60000,:);\n%j = winter(80000);\n%j = flipud(j);\nj = [ [ 0.9 0.9 0.9 ] ; j; [ 0.5 0.5 0.5] ];\n\n%caxis([ min(min(mBvalues)) max(max(mBvalues)) ]);\n%Harvard 0-70km\n%caxis([0.6 2.2])\n% ISC 0-70km\ncaxis([ 0.5 2]);\ncolormap(j); brighten(0.1);\n\naxis off; set(gcf,'color','k')\n\nsetm(gca,'ffacecolor','k')\nsetm(gca,'fedgecolor','w','flinewidth',1);\n\nsetm(gca,'mlabellocation',60)\nsetm(gca,'meridianlabel','on')\nsetm(gca,'plabellocation',25)\nsetm(gca,'parallellabel','on')\nsetm(gca,'Fontcolor','w','FontSize',10,'Fontweight','bold','Fontname','times','Labelunits','degrees')\nsetm(gca,'Labelformat','none')\nsetm(gca,'Grid','on')\nsetm(gca,'GLineStyle','-')\n\nh5 = colorbar;\n% Harvard 0-70km\n% set(h5,'position',[0.82 0.35 0.01 0.3],'TickDir','out','Ycolor','w','Xcolor','w',...\n% 'Fontweight','bold','FontSize',10,'YTick',[0.6 1 1.4 1.8 2.2] );\n% ISC 0-70km\nset(h5,'position',[0.82 0.35 0.01 0.3],'TickDir','out','Ycolor','w','Xcolor','w',...\n 'Fontweight','bold','FontSize',10,'Ytick',[0.5 1 1.5 2]);\n\nset(gcf,'Inverthardcopy','off');\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/jochen/Scriptlab/plot_dramapB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581741774411, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.39731588687440994}} {"text": "function K = sdlfmvXsdlfmvKernCompute(sdlfmvKern1, sdlfmvKern2, t1, t2, covIC)\n\n% SDLFMVXSDLFMVKERNCOMPUTE Compute a cross kernel between two SDLFMV kernels.\n% FORMAT\n% DESC computes cross kernel terms between the velocity of two switching \n% dynamical LFM kernels for the multiple output kernel.\n% ARG sdlfmvKern1 : the kernel structure associated with the velocity of the \n% first SDLFM kernel.\n% ARG sdlfmvKern2 : the kernel structure associated with the velocity of the \n% second SDLFM kernel.\n% ARG t : inputs for which kernel is to be computed.\n% ARG covIC : covariance for the initial conditions\n% RETURN K : block of values from kernel matrix.\n%\n% FORMAT\n% DESC computes cross kernel terms between the velocity of two SDLFM kernels \n% for the multiple output kernel.\n% ARG sdlfmvKern1 : the kernel structure associated with the velocity of \n% the first SDLFM kernel.\n% ARG sdlfmvKern2 : the kernel structure associated with the velocity of \n% the second SDLFM kernel.\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% ARG covIC : covariance for the initial conditions\n% RETURN K : block of values from kernel matrix.\n%\n% SEEALSO : sdlfmvKernParamInit, sdlfmvKernCompute, sdlfmKernParamInit\n%\n% COPYRIGHT : Mauricio A. Alvarez, 2010\n\n% KERN\n\nif nargin < 4\n t2 = t1;\nend\n\nK = sdlfmXsdlfmKernCompute(sdlfmvKern1, sdlfmvKern2, t1, t2, covIC, 'VelVel');\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/sdlfmvXsdlfmvKernCompute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.39731588064982337}} {"text": "classdef AreaColumn < DesignVariable\n \n properties (Access = public)\n \n end\n \n properties (Access = private)\n \n end\n \n methods (Access = public)\n \n function obj = AreaColumn(cParams)\n obj.init(cParams);\n obj.type = 'AreaColumn';\n obj.createInitialValue();\n end\n\n function A = getColumnArea(obj)\n x = obj.value;\n N = obj.mesh.nelem;\n A = x(1:N,1);\n end\n\n function V = computeVolum(obj)\n N = obj.mesh.nelem;\n A = obj.getColumnArea();\n V = (1/N)*sum(A);\n end\n \n function gamma = getFirstEigenMode(obj)\n x = obj.value;\n N = obj.mesh.nelem;\n gamma = x(N+1); \n end\n\n function v = getVariablesToPlot(obj)\n v{1} = obj.value;\n end \n\n function norm = computeL2normIncrement(obj)\n norm = 0;\n end\n \n end\n \n methods (Access = protected)\n \n function init(obj,cParams)\n obj.mesh = cParams.mesh;\n end\n \n function createInitialValue(obj)\n N = obj.mesh.nelem;\n x0 = 1*rand(N+1,1);%ones(N+1,1); \n obj.update(x0); \n end\n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/DesignVariable/AreaColumn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3972784128187483}} {"text": "function test_example_megrealign\n\n% MEM 6gb\n% WALLTIME 00:10:00\n\n%\n%% Interpolating data from the CTF151 to the CTF275 sensor array using megrealign\n%\n% the two example files with the 151 and 275 channel CTF specifications are available from\n% ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/example/megrealign/\n\ngrad151 = ft_read_sens(dccnpath('/home/common/matlab/fieldtrip/data/ftp/example/megrealign/ctf151.mat'));\ngrad275 = ft_read_sens(dccnpath('/home/common/matlab/fieldtrip/data/ftp/example/megrealign/ctf275.mat'));\n\nvol = [];\nvol.r = 12;\nvol.o = [0 0 4];\n\n% in this example the dipole is carefully positioned on the same depth as\n% where the dipole layer for the interpolation will be located. The center\n% of the head is at [0 0 4], the radius is 12 cm, and the dipole layer that is\n% specified in ft_megrealign is 2.5 cm shifted inward from the head surface\ncfg = [];\ncfg.dip.pos = [0 0 13.5]; % 4 + 12 - 2.5\ncfg.dip.frequency = 1;\ncfg.headmodel = vol;\ncfg.grad = grad151;\ndata151 = ft_dipolesimulation(cfg);\ncfg.grad = grad275;\ndata275 = ft_dipolesimulation(cfg);\n\ncfg = [];\navg151 = ft_timelockanalysis(cfg, data151);\navg275 = ft_timelockanalysis(cfg, data275);\n\n% here I'll not only realign the 151 channel MEG data to the 275 channel and\n% vice versa, but also apply the ft_megrealign function from 151 to 151. In the\n% realignment the signal will be slightly distorted as a comparison of avg151_151\n% to avg151 would show.\ncfg = [];\ncfg.inwardshift = 3;\ncfg.headmodel = vol;\ncfg.template{1} = grad151; avg151_151 = ft_timelockanalysis([], ft_megrealign(cfg, avg151));\ncfg.template{1} = grad275; avg151_275 = ft_timelockanalysis([], ft_megrealign(cfg, avg151));\ncfg.template{1} = grad151; avg275_151 = ft_timelockanalysis([], ft_megrealign(cfg, avg275));\ncfg.template{1} = grad275; avg275_275 = ft_timelockanalysis([], ft_megrealign(cfg, avg275));\n\n% plot the realigned datasets\ncfg = [];\nfigure; ft_multiplotER(cfg, avg151_151);\ntitle('Interpolated from 151 to 151');\norient portrait; %print -dpng -r300 avg151_151.png\n\n%\nfigure; ft_multiplotER(cfg, avg151_275);\ntitle('Interpolated from 151 to 151');\norient portrait; %print -dpng -r300 avg151_275.png\n\n%\nfigure; ft_multiplotER(cfg, avg275_151);\ntitle('Interpolated from 151 to 151');\norient portrait; %print -dpng -r300 avg275_151.png\n\n%\nfigure; ft_multiplotER(cfg, avg275_275);\ntitle('Interpolated from 151 to 151');\norient portrait; %print -dpng -r300 avg275_275.png\n\n%\n% now plot them together\ncfg = [];\nfigure; ft_multiplotER(cfg, avg151, avg151_151, avg275_151);\norient portrait; %print -dpng -r300 compare151.png\n\n%\nfigure; ft_multiplotER(cfg, avg275, avg275_275, avg151_275);\norient portrait; %print -dpng -r300 compare275.png\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_example_megrealign20220113.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3972784128187483}} {"text": "function dynamics = dynamicsTest(type);\n\n% DYNAMICSTEST Run some tests on the specified dynamics model.\n\n% FGPLVM\n\ntype = [type 'Dynamics'];\nX = randn(10, 2);\nmodel = modelCreate(type, 2, 2, X);\n\n% Set the parameters randomly.\nparams = modelExtractParam(model);\nparams = randn(size(params))./sqrt(randn(size(params)).^2);\nmodel = modelExpandParam(model, params);\n\nepsilon = 1e-6;\nparams = modelExtractParam(model);\nif ~isempty(params)\n origParams = params;\n for i = 1:length(params);\n params = origParams;\n params(i) = origParams(i) + epsilon;\n model = modelExpandParam(model, params);\n Lplus(i) = modelLogLikelihood(model);\n params(i) = origParams(i) - epsilon;\n model = modelExpandParam(model, params);\n Lminus(i) = modelLogLikelihood(model);\n end\n params = origParams;\n model = modelExpandParam(model, params);\n \n gLDiff = .5*(Lplus - Lminus)/epsilon;\n g = modelGradientParam(model);\n nameBase = 'Parameter ';\n for i = 1:length(params)\n names{i} = [nameBase num2str(i)];\n end\n paramMaxDiff = max(max(abs(gLDiff-g)));\n if paramMaxDiff > 2*epsilon\n l = 0;\n for i = 1:length(names)\n if l < length(names{i})\n l = length(names{i});\n end\n end\n \n fprintf([char(repmat(32, 1, l)) '\\tanalytic diffs delta\\n']);\n for i = 1:length(names)\n spaceLen = l - length(names{i});\n space = char(repmat(32, 1, spaceLen));\n fprintf([space names{i} ':\\t%4.6f\\t%4.6f\\t%4.6f\\n'], ...\n g(i), gLDiff(i), gLDiff(i) - g(i));\n end\n end\nend\nLplus = zeros(size(X));\nLminus = zeros(size(X));\norigX = X;\nepsilon = 0.001;\nfor i = 1:size(X, 1)\n for j = 1:size(X, 2)\n X = origX;\n X(i, j) = origX(i, j) + epsilon;\n model = modelSetLatentValues(model, X);\n params = modelExtractParam(model);\n model = modelExpandParam(model, params);\n Lplus(i, j) = modelLogLikelihood(model);\n X(i, j) = origX(i, j) - epsilon;\n model = modelSetLatentValues(model, X);\n params = modelExtractParam(model);\n model = modelExpandParam(model, params);\n Lminus(i, j) = modelLogLikelihood(model);\n end\nend\nX = origX;\nmodel = modelSetLatentValues(model, X);\ngXDiff = .5*(Lplus - Lminus)/epsilon;\ng = modelLatentGradients(model);\nXMaxDiff = max(max(abs(g-gXDiff)));\nfprintf('X max diff: %2.6f.\\n', XMaxDiff)\nif XMaxDiff > 1e-6\n disp(g)\n disp(gXDiff)\n disp(g - gXDiff);\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/fgplvm/dynamicsTest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.39727840481320437}} {"text": "function [model] = tapas_linear_model(model, pars)\n%% Define the model.\n%\n% aponteeduardo@gmail.com\n% copyright (C) 2016\n%\n\nmodel = struct('graph', []);\nmodel.graph = cell(4, 1);\n\nfor i = 1:4\n model.graph{i} = struct('llh', [], 'htheta', []);\nend\n\nmodel.graph{1}.llh = @tapas_linear_llh;\nmodel.graph{2}.llh = @tapas_linear_hier_llh;\nmodel.graph{3}.llh = @tapas_linear_hier_llh;\nmodel.graph{4}.llh = [];\n\nmodel.graph{1}.htheta = struct('pe', 0.5, 'T', pars.T);\nmodel.graph{2}.htheta = struct('pe', 0.5, 'T', ones(size(pars.T)));\nmodel.graph{3}.htheta = struct('pe', 0.5, 'T', ones(size(pars.T)));\n\n% The last level is a dummy used to store the hyperpriors.\n\nmodel.graph{4}.htheta = struct('y', [], 'u', []);\n\n\nend\n\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/tools/ti/linear/tapas_linear_model.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.661922862511608, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.39727839680766025}} {"text": "classdef AvePooling3D < dagnn.Filter\n properties\n method = 'avg'\n poolSize = [1 1 1]\n end\n\n methods\n function outputs = forward(obj, inputs, params)\n \n sz = size(inputs{1}); if numel(sz) < 4, sz(4) = 1; end \n nFrames = obj.poolSize(3) ;\n\n inputs{1} = reshape(inputs{1}, sz(1), sz(2), sz(3), nFrames, sz(4) / nFrames ) ; \n inputs{1} = permute(inputs{1}, [1 2 4 3 5]);\n sz_in = size(inputs{1});\n outputs{1} = mean(inputs{1},1);\n outputs{1} = mean(outputs{1},2);\n outputs{1} = mean(outputs{1},3);\n outputs{1} = permute(outputs{1}, [1 2 4 5 3]);\n \n% [outputs{1}, ~] = mex_maxpool3d(inputs{1},...\n% 'pool',obj.poolSize, 'stride', obj.stride, 'pad', obj.pad);\n% \n% outputs{1} = permute(outputs{1}, [1 2 4 3 5]);\n% sz_out = size(outputs{1});\n% if numel(sz_out) < 4, sz_out(4) = 1; end % fixes the case of time being pooled \n% \t nFrames = sz_out(4); % reset nframes\n% obj.net.meta.curNumFrames(obj.layerIndex) = nFrames ;\n% if numel(sz_out) < 5, sz_out(5) = 1; end % fixes the case of single batch \n% \n% outputs{1} = reshape(outputs{1}, sz_out(1), sz_out(2), sz_out(3), nFrames*sz_out(5) ) ; \n end\n\n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n % currently doing forward and backward due to idx\n sz = size(inputs{1}); if numel(sz) < 4, sz(4) = 1; end \n nFrames = obj.poolSize(3) ;\n inputs{1} = reshape(inputs{1}, sz(1), sz(2), sz(3), nFrames, sz(4) / nFrames ) ; \n inputs{1} = permute(inputs{1}, [1 2 3 5 4]);\n sz_in = size(inputs{1});\n for i=1:nFrames\n derInputs{1}(:,:,:,:,i) = vl_nnpool(inputs{1}(:,:,:,:,i), [sz(1),sz(2)], derOutputs{1}(:,:,:,:), ...\n 'pad', [0,0,0,0], ...\n 'stride', [1,1], ...\n 'method', 'avg') ;\n end\n derInputs{1} = reshape(derInputs{1}, sz(1), sz(2), sz(3),sz(4)) ;\n% nFramesIn = sz(4) / obj.net.meta.curBatchSize ;\n\n% inputs{1} = reshape(inputs{1}, sz(1), sz(2), sz(3), nFramesIn, sz(4) / nFramesIn ) ;\n% inputs{1} = permute(inputs{1}, [1 2 4 3 5]);\n% sz_in = size(inputs{1});\n% [~, idx] = mex_maxpool3d(inputs{1},...\n% 'pool',obj.poolSize, 'stride', obj.stride, 'pad', obj.pad);\n% \n% sz = size(derOutputs{1}); if numel(sz) < 4, sz(4) = 1; end \n% nFrames = sz(4) / obj.net.meta.curBatchSize ;\n% \n% \n% derOutputs{1} = reshape(derOutputs{1}, sz(1), sz(2), sz(3), nFrames, sz(4) / nFrames ) ;\n% derOutputs{1} = permute(derOutputs{1}, [1 2 4 3 5]);\n% \n% \n% derInputs{1} = mex_maxpool3d(derOutputs{1}, idx, sz_in ,...\n% 'pool',obj.poolSize, 'stride', obj.stride, 'pad', obj.pad);\n% \n% derInputs{1} = permute(derInputs{1}, [1 2 4 3 5]);\n% sz_out = size(derInputs{1});\n% if numel(sz_out) < 4, sz_out(4) = 1; end % fixes the case of time being pooled \n% nFrames = sz_out(4); % reset nframes\n% obj.net.meta.curNumFrames(obj.layerIndex) = nFrames; % reset nframes\n% \n% if numel(sz_out) < 5 , sz_out(5) = 1; end % fixes the case of single batch \n% derInputs{1} = reshape(derInputs{1}, sz_out(1), sz_out(2), sz_out(3), nFrames*sz_out(5) ) ; \n% derInputs{1} = derOutputs{1};\n derParams = {};\n \n end\n\n function kernelSize = getKernelSize(obj)\n kernelSize = obj.poolSize ;\n end\n\n function outputSizes = getOutputSizes(obj, inputSizes)\n outputSizes = getOutputSizes@dagnn.Filter(obj, inputSizes) ;\n outputSizes{1}(3) = inputSizes{1}(3) ;\n end\n\n function obj = Pooling(varargin)\n obj.load(varargin) ;\n end\n end\nend\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u8bc6\u522b\u7b97\u6cd5/DAIN-master/matconvnet/matlab/+dagnn/AvePooling3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.819893335913536, "lm_q2_score": 0.4843800842769844, "lm_q1q2_score": 0.39714000314793646}} {"text": "function d = gcdfactor(A)\nd = A(1);\nfor n = 2:numel(A)\n if d == 1\n return\n else\n d = gcd(d,A(n));\n end\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/gcdfactor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6654105587468141, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3968729131110647}} {"text": "%CONCATM Fixed-cell mapping concatenating cell array of datasets or mappings\n%\n% W = V*CONCATM\n% B = A*CONCATM\n%\n% INPUT\n% V Cell array of mappings\n% A Cell array of datasets\n%\n% OUTPUT\n% W Concatenation of mappings: W = [V{:}]\n% A Concatenation of datasets: B = [A{:}]\n%\n% DESCRIPTION\n% This routine is an exception of the general treatment of cell arrays and\n% mappings in PRTools. As a rule the elements of a cell array are processed\n% one by one by a mapping. This routine takes the entire cell array and\n% concatenates its elements.\n%\n% SEE ALSO (PRTools Guide)\n% DATASETS, MAPPINGS\n\n% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com\n\nfunction out = concatm(argin)\n\nif nargin == 0\n out = prmapping(mfilename,'fixed_cell');\nelse\n if ~iscell(argin)\n error('Cell array expected')\n else\n out = [];\n for j=1:size(argin,1)\n out = [out;[argin{j,:}]];\n end\n end\nend", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/concatm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3968729131110646}} {"text": "function A = myspconvert(A, nrows, ncols, tol)\n\n% function A = myspconvert(A, nrows, ncols, tol)\n% Purpose: convert a triplet sparse matrix into a Matlab sparse\n% matrix and crop entries smaller than tol \n\nids = find(abs(A(:,3))>tol);\nA = A(ids, :);\n\n% convert to sparse matrix\nA = spconvert(A);\n\n% pad to required size\nif(size(A,1) e_conn( ) =\\n{\\n');\n if ( nel_dof==4 ) % Test for linear tetrahedra\n for i=1:n_elements\n fprintf(fid,' %6i %6i %6i %6i\\n',e_conn(i,:));\n end\n elseif ( nel_dof==10 ) % Test for quadratic tetrahedra\n for i=1:n_elements\n fprintf(fid,' %6i %6i %6i %6i %6i %6i %6i %6i %6i %6i\\n',...\n e_conn(i,[1 2 3 4 5 6 7 10 8 9]));\n end\n else\n error('threed_to_vu: element type not currently implemented\\n')\n return\n end\n fprintf(fid,'};\\n\\n');\n\n % Write out variables\n for n_var=1:n_variables\n if ( isempty(var(n_var).name) )\n var(n_var).name = strcat('Var',int2str(n_var));\n end\n\n temp = strcat('FIELD@',var(n_var).name,'( ) = {\\n');\n temp = strrep(temp,'D@','D ');\n fprintf(fid,temp);\n fprintf(fid,' %10.5e %10.5e %10.5e %10.5e %10.5e %10.5e \\n',...\n u(:,n_var) );\n fprintf(fid,'\\n};\\n');\n end\n fprintf(fid,'\\n\\n');\n\n % Write out zones and connectivity\n if ( nel_dof==4 )\n fprintf(fid,'MESH MyMesh( ) =\\n{\\n');\n fprintf(fid,' ZONE Zone1( LagrTetra04, x_coord, e_conn );\\n' );\n fprintf(fid,'};\\n\\n');\n elseif ( nel_dof==10 )\n fprintf(fid,'MESH MyMesh( ) =\\n{\\n');\n fprintf(fid,' ZONE Zone1( LagrTetra10, x_coord, e_conn );\\n' );\n fprintf(fid,'};\\n\\n');\n end\n\n fprintf(fid,'SOLUTION MySolution( ) =\\n{\\n');\n if ( nel_dof==4 )\n for n_var=1:n_variables\n temp = strcat(' VARIABLE@' , var(n_var).name,...\n '( LagrTetra04,@', var(n_var).name,...\n ', e_conn, Zone1 );\\n');\n temp = strrep(temp,'@',' ');\n fprintf(fid,temp);\n end\n else\n for n_var=1:n_variables\n temp = strcat(' VARIABLE@' , var(n_var).name,...\n '( LagrTetra10,@', var(n_var).name,...\n ', e_conn, Zone1 );\\n');\n temp = strrep(temp,'@',' ');\n fprintf(fid,temp);\n end\n end\n fprintf(fid,'};\\n');\n\n fclose(fid);\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/threed_to_vu/threed_to_vu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764747, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3968729051961944}} {"text": "function [type,beats,beatsuct] = beat_class(ecg,qrs,T_LENGTH)\n% this function is used to contruct a template ecg based on the location of\n% the R-peaks. A series of peaks that match with each other are stacked to\n% build a template. This template can then be used for ecg morphological\n% analysis or further processing. Note that the qrs location inputed must\n% be as precise as possible. This approach for building the template ECG\n% seems to be the best of the alternatives that were tested and leaves the\n% freedom of having more than one mode (i.e. multiple ECG template can be\n% built if there are different cycle morphology such as PVC) but it is not\n% particularly fast.\n% The procedure for building the template is:\n% 1. create average wrapped template\n% 2. identify different modes present\n%\n% inputs\n% ecg: the ecg channel(s)\n% qrs: qrs location [number of samples]\n% T_LENGTH template length\n% \n% --\n% ECG classification from single-lead segments using Deep Convolutional Neural \n% Networks and Feature-Based Approaches - December 2017\n% \n% Released under the GNU General Public License\n%\n% Copyright (C) 2017 Fernando Andreotti, Oliver Carr\n% University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017\n% fernando.andreotti@eng.ox.ac.uk\n%\n% \n% For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017\n% \n% Referencing this work\n%\n% Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). \n% Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect \n% Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France).\n%\n% Last updated : December 2017\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\n\n% == manage inputs\nif nargin<2; error('ecg_template_build: wrong number of input arguments \\n'); end;\n\nif size(ecg,1)>size(ecg,2), ecg = ecg';end\n\n% == constants\n% qrs(1) = []; qrs(end) = []; % remove extremity peaks\nextremities = (qrs <= 2*T_LENGTH | qrs >= length(ecg)-2*T_LENGTH); % test if there are peaks on the border that may lead to error\nqrs = round(qrs(~extremities)); % remove extremity peaks\n\n%% Phase wrap to get all within 2*pi\nNB_BINS = 250; % number of bins for wrapping\n[M,RES] = stackbeats(ecg,qrs,T_LENGTH,NB_BINS);\n \n\n% beatsuct = median(M')';\n% dem = round((length(beatsuct)-2*T_LENGTH-1)/2); \n% beats{1} = beatsuct(dem+1:end-dem);\n% type = ones(length(qrs),1);\n\n%% Clustering\nNclus1 = 5;\nNclus2 = 2;\nM = bsxfun(@times,M,hamming(size(M,1))); % do it twice, it's the\nM = bsxfun(@times,M,hamming(size(M,1))); % magic sauce\nM = bsxfun(@times,M,hamming(size(M,1))); % magic sauce\nM = M';\n% [~, clusters, ~] = fkmeans(M',Nclus);\nrng(1);\n[~,clusters,~] = kmeans(M,Nclus1); % may need to provide centroid..\n[~,clusters,~] = kmeans(clusters,Nclus2); % may need to provide centroid..\nclusters = clusters';\n\n% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n% TODO: allow more than two clusters!!!!!!!!!!!!!!!!!!!!\n% !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\ncorel = corrcoef(clusters(50:200,1),clusters(50:200,2));\n\n\n%% In case beats are correlated to each other\nif corel(1,2) > 0.7 \n type = ones(size(qrs));\n beats{1} = resample(mean([clusters(:,1), clusters(:,2)],2),RES,NB_BINS); \n dem = (length(beats{1})-2*T_LENGTH-1)/2; \n beatsuct = beats;\n beats = cellfun(@(x) x(dem+1:end-dem),beats,'UniformOutput',0);\n return;\nend\n\n%% In case one cluster has low amplitude\n\nidx = var(clusters)<0.1*var(ecg); % remove clusters with variance less than 10% of signal\nif any(idx)\n type = ones(size(qrs));\n beats{1} = resample(clusters(:,~idx),RES,NB_BINS);\n dem = round((length(beats{1})-2*T_LENGTH-1)/2); \n beatsuct = beats;\n beats = cellfun(@(x) x(dem+1:end-dem),beats,'UniformOutput',0);\n return; \nend\n\n\n%% Classifying beats\n\nbeats{1} = resample(clusters(:,1),RES,NB_BINS);\nbeats{2} = resample(clusters(:,2),RES,NB_BINS);\nbeatsuct = beats;\ndem = (length(beats{1})-2*T_LENGTH-1)/2;\nbeats = cellfun(@(x) x(dem+1:end-dem),beats,'UniformOutput',0);\n \nfor i = 1:length(qrs)\n cor = corrcoef(ecg(qrs(i)-T_LENGTH:qrs(i)+T_LENGTH),beats{1});\n corel(1,i) = cor(1,2);\n cor = corrcoef(ecg(qrs(i)-T_LENGTH:qrs(i)+T_LENGTH),beats{2});\n corel(2,i) = cor(1,2);\nend\n[~,type]=max(corel);\n\nif sum(type==2)>sum(type==1)\n type(type==2) = 3;\n type(type==1) = 2;\n type(type==3) = 2;\nend\n\nif all(type==2)\n type = ones(size(type));\nend\ntype = type';\n \nend\n\n\n", "meta": {"author": "fernandoandreotti", "repo": "cinc-challenge2017", "sha": "78cfc8e6194857cee0cd731f41ba5b2dd589aed2", "save_path": "github-repos/MATLAB/fernandoandreotti-cinc-challenge2017", "path": "github-repos/MATLAB/fernandoandreotti-cinc-challenge2017/cinc-challenge2017-78cfc8e6194857cee0cd731f41ba5b2dd589aed2/featurebased-approach/subfunctions/beat_class.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585903489892, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3968648665483158}} {"text": "function glm = glmCreate(tr,nh,whiten)\n%Create a GLM model for managing the GLM parameters\n%\n% glm = glmCreate(tr,nh,whiten)\n%\n%\n\n% It would be better to go and get the TR from the SESSION data.\nif notDefined('tr'), error('You must specify tr for the GLM'); end\nif notDefined('nh'), nh = 22; end\nif notDefined('whiten'), whiten = 0; end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% initialize GLM model %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nglm.betas = [];\nglm.residual = [];\nglm.stdevs = [];\nglm.sems = [];\nglm.nh = nh; % Number of time samples\nglm.tr = tr; %\nglm.C = []; % Covariance matrix\nglm.voxDepNoise = [];\nglm.voxIndepNoise = [];\nglm.designMatrix = [];\nglm.dof = []; % Degrees of freedom\nglm.whiten = whiten; % Do not whiten the covariance\n\n% glmSet() ...\nif nh>1, glm.type = 'selective averaging';\nelse glm.type = 'applied HRF';\nend\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/EventRelated/GLM/glmCreate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39686486654831576}} {"text": "function [out] = random(msg,BSID,DIUC,Frame);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% %\n%% Name: random.m %\n%% %\n%% Description: This function is realisez uniquely by the way %\n%% defined in the standard. It is one more stage in the encoding. %\n%% %\n%% %\n%% Parameters: %\n%% msg --> Sequence of bits to encode with the algorithm BSID, %\n%% DIUC, Frame--> Identifiers of the connection that is carried %\n%% out.(Base Station, Downlink and the number of frames) %\n%% %\n%% %\n%% Result: It gives back the chain of bits encoded accordin to %\n%% the need (following DIUC, BSID and Frame). The encoding and %\n%% decoding are an identical process. %\n%% %\n%% %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nseed = zeros (1,15);\nseed=[de2bi(BSID,4,'left-msb') 1 1 de2bi(DIUC,4,'left-msb') 1 de2bi(Frame,4,'left-msb')];\n\nout=zeros(1,length(msg));\n\nfor i=1:length(msg)\n next = xor(seed(14),seed(15));\n out(i) = xor( msg(i),next);\n seed = [next seed(1,1:14)];\nend\n\nreturn;\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/21494-a-802-16d-system-comments-on-english/random.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3968648601865095}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETERS Returns a data structure containing the parameters of the\n% FANUC MATE M710iC/50, FANUC Robotics Europe.\n%\n% Authors: Carlos Carrazoni Perez, Juan Jose Perez Hernandez & David\n% Martinez Pascual\n% Universidad Miguel Hernandez de Elche. \n% date: 7/1/2019\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n% Copyright (C) 2019, by Carlos Carrazoni Perez, Juan Jose Perez Hernandez\n% & David Martinez Pascual\n% This file is part of ARTE (A Robotics Toolbox for Education).\n% \n% ARTE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% ARTE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with ARTE. If not, see .\nfunction robot = parameters()\n\n\nrobot.name= 'Fanuc_M_710iC_50';\n\n%Path where everything is stored for this robot\nrobot.path = 'robots/fanuc/M_710iC_50';\n%Tabla de D-H\nrobot.DH.theta= '[q(1)+pi/2 q(2)+pi/2 q(3) q(4) q(5) q(6)]';\nrobot.DH.d='[0.565 0 0 1.016 0 0.175]';\nrobot.DH.a='[0.15 0.87 0.17 0 0 0]';\nrobot.DH.alpha= '[pi/2 0 pi/2 pi/2 -pi/2 0]';\nrobot.J=[];\n\nrobot.inversekinematic_fn = 'inversekinematic_fanuc_m710(robot, T)';\n\n%number of degrees of freedom\nrobot.DOF = 6;\n\n%rotational: 0, translational: 1\nrobot.kind=['R' 'R' 'R' 'R' 'R' 'R'];\n\n%minimum and maximum rotation angle in rad\nrobot.maxangle =[deg2rad(-180) deg2rad(180); %Axis 1, minimum, maximum\n deg2rad(-135) deg2rad(90); %Axis 2, minimum, maximum\n deg2rad(-160) deg2rad(280); %Axis 3\n deg2rad(-360) deg2rad(360); %Axis 4\n deg2rad(-125) deg2rad(125); %Axis 5\n deg2rad(-360) deg2rad(360)]; %Axis 6\n\n%maximum absolute speed of each joint rad/s or m/s\nrobot.velmax = [deg2rad(175); %Axis 1, rad/s\n deg2rad(175); %Axis 2, rad/s\n deg2rad(175); %Axis 3, rad/s\n deg2rad(250); %Axis 4, rad/s\n deg2rad(250); %Axis 5, rad/s\n deg2rad(355)];%Axis 6, rad/s\n% end effectors maximum velocity\nrobot.linear_velmax = 1.0; %m/s, not specified\nrobot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time\n\n%base reference system\nrobot.T0 = eye(4);\n\n%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION\n%position, velocity and acceleration\nrobot=init_sim_variables(robot);\nrobot.tool_activated=1;\n\n% GRAPHICS\nrobot.graphical.has_graphics=1;\nrobot.graphical.color = [0.9 0.9 0]%./255;\n%for transparency\nrobot.graphical.draw_transparent=0;\n%draw DH systems\nrobot.graphical.draw_axes=1;\n%DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for\n%bigger robots\nrobot.graphical.axes_scale=1;\n%adjust for a default view of the robot\nrobot.axis=[-1.5 1.5 -1.5 1.5 0 2];\n%read graphics files\nrobot = read_graphics(robot);\n\n%robot.tool=load_robot('equipment/end_tools','water_cutter');\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DYNAMIC PARAMETERS\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nrobot.has_dynamics=1;\n\n%consider friction in the computations\nrobot.dynamics.friction=0;\n\n%link masses (kg)\nrobot.dynamics.masses=[191.865 71.802 111.5 27.55 5.705 0.674];\n\n%COM of each link with respect to own reference system\nrobot.dynamics.r_com=[-0.109 -0.099 0.053; %(rx, ry, rz) link 1\n -0.466 -0.001 -0.287; %(rx, ry, rz) link 2\n -0.086 0.032 0.007; %(rx, ry, rz) link 3\n 0 0.342 0.011; %(rx, ry, rz) link 4\n 0 -0.015 0.076 ; %(rx, ry, rz) link 5\n 0 0 0.010];%(rx, ry, rz) link 6\n\n%Inertia matrices of each link with respect to its D-H reference system.\n% Ixx\tIyy\tIzz\tIxy\tIyz\tIxz, for each row\nrobot.dynamics.Inertia=[8.411 9.434\t9.499 -2.810\t0.691\t1.396;\n 6.297 28.162\t22.396 -0.049\t-0.012\t-9.398;\n 2.313 3.367\t2.986\t0.467\t0.232\t-0.285;\n 4.863\t0.072\t4.846\t-0.002\t0\t0;\n 0.065\t0.058\t0.022\t0\t0.004 0;\n 0.000768\t0.000767\t0.001368\t0\t0\t0];\n\n%Speed reductor at each joint\nrobot.motors.G=[10 20 120 200 300 1];\n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/robots/FANUC/M_710iC_50/parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3968648601865095}} {"text": "% Gtomo_nufft_test.m\n% Test the Gtomo_nufft object\n\n% create Gtomo_nufft class object\nif ~isvar('An'), printm 'setup'\n\tig = image_geom('nx', 64, 'ny', 60, 'fov', 480);\n\tig.mask = ig.circ > 0;\n\tif 1\n\t\tsg = sino_geom('par', 'nb', 70, 'na', 80, 'dr', 7, ...\n\t\t\t'orbit_start', -15, 'strip_width', 'd');\n\t\tfan_arg = {}; % parallel beam\n\telse\n\t\tsg = sino_geom('ge1', 'orbit_start', -15, 'down', 8, ...\n\t\t\t'strip_width', 'd');\n\t\tfan_arg = { % fan beam\n\t\t\t'offset_s', sg.offset_s, ...\n\t\t\t'dis_src_det', sg.dsd, ...\n\t\t\t'dis_iso_det', sg.dod, ...\n\t\t};\n\tend\n\n\t% test non-rect image basis function and beam shape (S. Matej)\n\tif 0\n\t\tbasis.type = 'KB';\n\t\tbasis.diam = 4;\n\t\tbasis.shape = 10.4;\n\t\tbasis.m = 2;\n\t\tbasis.dim = 2;\n\t\tbasis.kernel=[];\n\n\t\t% KB: FWHM~1.0 : J=6, alpha=40, m=2\n\t\tbeam.type = 'KB';\n\t\tbeam.diam = 6;\n\t\tbeam.shape = 40.;\n\t\tbeam.m = 2;\n\tend\n\n\tcpu etic\n\n%{\n\targ_geom = { % for old version\n\t\tfan_arg{:}, ...\n\t\t'orbit', sg.orbit, ...\n\t\t'orbit_start', sg.orbit_start, ...\n\t\t'dx', ig.dx, ...\n\t\t'ds', sg.d, ...\n\t\t'yscale', -ig.dy/ig.dx, ...\n\t\t'strip_width', sg.strip_width, ...\n\t};\n%}\n\n\targ = {\n\t\t'interp', {'table', 2^11, 'minmax:kb'}, ...\n...%\t\t'basis', basis, ...\n...%\t\t'beam', beam, ...\n\t\t'is.complex', 0, ...\n...%\t\t'kaiser', ...\t% use KB interpolator\n...%\t\t'uniform', ...\n...%\t\t'bilin', ...\n...%\t\t'is.test', 1, ...\n\t\t'class', 'fatrix2', ...\n\t};\n\n%\tAo = Gtomo_nufft(ig.mask, [sg.nb sg.na], arg_geom{:}, arg{:});\n\tAn = Gtomo_nufft_new(sg, ig, arg{:});\n%\tjf_equal(struct(Ao), struct(An)), return\n\n\tcpu etoc 'An pre time:'\nend\n\n%\n% make test image\n%\nif 0\n%\tx = ig.zeros;\n%\tx(12, 8) = 1;\n%\tx((nx/4+1):(3*nx/4),(ny/4+1):(3*ny/4)) = 1;\n\tx = ig.unitv(ig.nx/4,ig.ny/3);\t% point source\nelseif 1\n\tx = ellipse_im(ig, [0 0 [1 1]*ig.ny*ig.dx*0.9/2 0 1], 'oversample', 2);\n\tx(end/4:end/2,end/4:end/2) = 1.25;\nelse\n\tix = [-(nx-1)/2:(nx-1)/2]/nx;\n\tiy = [-(ny-1)/2:(ny-1)/2]/ny;\n\t[ix iy] = ndgrid(ix, iy);\n\tx = exp(-(ix.^2 + iy.^2) / 10^2);\nend\n\n% check real / imaginary\nif 1\n\ty = An * x(ig.mask);\n\ty = sg.shape(y);\n\tim plc 3 3\n\tim(1, x, 'x')\n\tim(2, real(y), 'real(An*x)'), cbar\n\tim(3, imag(y), 'imag(An*x)'), cbar\nprompt\nend\n\n% DSFT version for comparison\nif ~isvar('Ad'), printm 'Ad'\n%\tAo = Gtomo_nufft(ig.mask, [sg.nb sg.na], arg_geom{:}, arg{:}, ...\n%\t\t'is.dsft2', 1, 'is.dsft1', 1);\n\tAd = Gtomo_nufft_new(sg, ig, arg{:}, 'is.dsft2', 1, 'is.dsft1', 1);\n%\tjf_equal(struct(Ao), struct(Ad)), return\nend\n\n% create a \"strip integral\" system object\nif ~isvar('As'), printm 'As'\n%\tAo = aspire_pair(sg, ig, 'strip_width', An.arg.strip_width, ...\n%\t\t'support', 'all');\n%\t\t'support', ig.mask);\n%\tAo = Gtomo2_dscmex(Ao, 'nthread', 2); % multiprocessor!\n\tAs = Gtomo2_dscmex(sg, ig, 'nthread', 2); % multiprocessor!\n%\tjf_equal(struct(Ao), struct(As)), return\nend\n\n% compare back projectors\nif 0\n\ty = sg.ones;\n\ty = sg.unitv(sg.nb/2+7, 9);\n%\ty = yd / 100;\n\txn = An' * y;\n\txd = Ad' * y;\n\txs = As' * y;\n\tim(4, xn, 'An''*y'), cbar\n\tim(5, xd, 'Ad''*y'), cbar\n\tim(6, xs, 'As''*y'), cbar\n\tim(8, xn-xd, 'An''*y - Ad''*y'), cbar\n\tim(9, xn-xs, 'An''*y - As''*y'), cbar\n%\tprintf('back nrms = %g%%', nrms(x2(:), x1(:)) * 100)\nprompt\nend\n\n% compare projectors\nif 1\n\tyn = An * x;\n\tyd = Ad * x;\n\tys = As * x;\n\tim(4, yd, 'Ad*x'), cbar\n\tim(5, yn-yd, 'An*x-Ad*x'), cbar\n\tim(7, ys, 'As*x'), cbar\n\tim(8, yn-ys, 'An*x-As*x'), cbar\n%\tprintf('forward nrms = %g%%', nrms(y2(:), y1(:)) * 100)\nprompt\nend\n\nif 1, printm 'single ray'\n\ty = sg.unitv(sg.nb/2+9,1);\n\tim pl 2 3\n\tim(1, As'*y, 'back ray strip'), cbar h\n\tim(2, An'*y, 'back ray nufft'), cbar h\n\tim(3, Ad'*y, 'back ray dsft'), cbar h\n\tim(4, An'*y - Ad'*y, 'nufft - dsft'), cbar h\n\tim(5, An'*y - As'*y, 'nufft - strip'), cbar h\n\tim(6, Ad'*y - As'*y, 'dsft - strip'), cbar h\nreturn\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/tests/Gtomo_nufft_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3968648601865095}} {"text": "% File Name: resampling.m\n% Author: Heung-Il Suk\n% Cite: H.-I. Suk and S.-W. Lee, \"A Novel Bayesian Framework for Discriminative \n% Feature Extraction in Brain-Computer Interfaces,\" IEEE Trans. on PAMI,\n% 2012. (Accepted)\n\nfunction newBSSFO = resamplingBSSFO( oldBSSFO )\n\naccWeight = cumsum( oldBSSFO.weight );\n\nfor i=1:oldBSSFO.numBands\n oldBSSFO.selected( i ) = 0;\nend\n\nnewBSSFO = oldBSSFO;\nfor i=1:oldBSSFO.numBands\n idx = find( accWeight > rand );\n newBSSFO.sample(:, i) = oldBSSFO.sample( :, idx(1) );\n if oldBSSFO.selected( idx(1) ) == 0\n oldBSSFO.selected( idx(1) ) = 1;\n newBSSFO.selected( i ) = 1; % keep current state, do not add random noise\n end\nend\n\nnewBSSFO.weight = ones(newBSSFO.numBands, 1)./ newBSSFO.numBands;", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/GigaScience/function_MI/bssfo/original/resamplingBSSFO.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979745, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3967822138993633}} {"text": "function plotActivityTrace( inferred, filtered, raw, plotControl)\n\n% This code plots the activity trace for all the ROIs\n% Author: Weijian Yang\n\n% input parameters:\n% inferred, filtered, raw (from the output of \"signalExtraction.m\")\n% plotControl.frameRate: frame rate in fps\n% plotControl.normalization: normalize the amplitude of the temporal trace for plotting purpose\n% plotControl.sep: vertical (amplitude) offset between adjacent temporal traces \n% plotControl.displayLabel: whether to display ROI ID for the temporal traces \n% plotControl.plotInferred: whether the inferred signal is plotted\n% plotControl.plotFiltered: whether the filtered signal is plotted\n% plotControl.plotRaw: whether the raw signal is plotted\n% plotControl.rollingView: whether the display is set such that only 20 temporal traces are displayed at a time, followed by any key to move onto the next 20 traces, and etc.\n\nif isfield(plotControl,'frameRate') frameRate=plotControl.frameRate;\nelse frameRate=1; end\n\nif isfield(plotControl,'normalization') normalization=plotControl.normalization;\nelse normalization=1; end\n\nif isfield(plotControl,'sep') sep=plotControl.sep;\nelse sep=1.2; end\n\nif isfield(plotControl,'displayLabel') displayLabel=plotControl.displayLabel;\nelse displayLabel=1; end\n\nif isfield(plotControl,'plotInferred') plotInferred=plotControl.plotInferred;\nelse plotInferred=1; end\n\nif isfield(plotControl,'plotFiltered') plotFiltered=plotControl.plotFiltered;\nelse plotFiltered=1; end\n\nif isfield(plotControl,'plotRaw') plotRaw=plotControl.plotRaw;\nelse plotRaw=0; end\n\nif isfield(plotControl,'rollingView') rollingView=plotControl.rollingView;\nelse rollingView=0; end\n\nt=1/frameRate*(1:size(inferred,2));\nK=size(inferred,1);\n\nfigure;\nhold on;\n\nif normalization==1\n for idx=1:K\n if plotRaw plot(t,raw(idx,:)/max(raw(idx,:))-idx*sep,'color',[0.8 0.8 0.8],'linewidth',2); end\n if plotFiltered plot(t,filtered(idx,:)/max(filtered(idx,:))-idx*sep,'color',[1 0.7 0.7],'linewidth',1.5); end\n if plotInferred plot(t,inferred(idx,:)/max(inferred(idx,:))-idx*sep,'color',[0 0 1],'linewidth',1); end\n end\n ylabel('Normalized \\DeltaF/F');\nelse\n for idx=1:K\n if plotRaw plot(t,raw(idx,:)-idx*sep,'color',[0.8 0.8 0.8],'linewidth',2); end\n if plotFiltered plot(t,filtered(idx,:)-idx*sep,'color',[1 0.7 0.7],'linewidth',1.5); end\n if plotInferred plot(t,inferred(idx,:)-idx*sep,'color',[0 0 1],'linewidth',1); end\n end \n ylabel('\\DeltaF/F');\nend\nxlabel('Time (s)');\n\nif displayLabel\n for idx=1:K\n text(max(t)*1.02,-idx*sep, num2str(idx));\n end\nend\n\nh=gca;\nif ~rollingView \n axis(h,[0 max(t) -sep*(K+1) sep]);\nelse\n idx=1;\n displayNum=20;\n while idx+displayNum 100, Ibar = floor(linspace(1, D.ntrials, 100));\nelse Ibar = 1:D.ntrials; end\n\nfor i = 1:D.ntrials\n \n Dnew(:, :, i) = spm_squeeze(mean(D(:, freqind, :, i), 2), 2);\n \n if any(Ibar == i), spm_progress_bar('Set', i); end\nend\n\nspm_progress_bar('Clear');\n\n%-Save the new M/EEG dataset\n%--------------------------------------------------------------------------\nDnew = Dnew.history(mfilename, S);\nsave(Dnew);\n\nD = Dnew;\n\n%-Cleanup\n%--------------------------------------------------------------------------\nfprintf('%-40s: %30s\\n','Completed',spm('time')); %-#\nspm('FigName','Average over frequency: done'); spm('Pointer','Arrow');\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_eeg_avgfreq.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370111, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3967757573269965}} {"text": "classdef ExistProbCalculatorX < BaseX \n% ExistProbCalculatorX class\n%\n% Summary of ExistProbCalculatorX:\n% This class can be used to compute (recursively) the existence probability\n% of tracks.\n%\n% ExistProbCalculatorX Properties:\n% TrackList\n% AssocWeightsMatrix\n% ProbOfDetection\n% ProbOfDeath\n% ProbOfGating\n%\n% ExistProbCalculatorX Methods:\n% + ExistProbCalculatorX - Constructor method\n% + calculate - Calculate the existence probabilities\n%\n% (+) denotes public properties/methods\n%\n% March 2018 Lyudmil Vladimirov, University of Liverpool.\n \n properties\n TrackList\n AssocWeightsMatrix\n ProbOfDetection\n ProbOfDeath\n ProbOfGating\n end\n \n methods\n function this = ExistProbCalculatorX(varargin)\n % EXISTPROBCALCULATORX Constructor method\n %\n % Parameters\n % ----------\n % ProbOfDetection: scalar\n % A scalar value in the range [0,1] which specifies the probability\n % of detection for all targets\n % ProbOfDeath: scalar\n % A scalar value in the range [0,1] which specifies the probability\n % of death for all targets\n % ProbOfGating: scalar\n % A scalar value in the range [0,1] which specifies the probability\n % of gating for all targets\n % \n % Usage\n % -----\n % * ExistProbCalculatorX() returns a ExistProbCalculatorX object handle.\n % * ExistProbCalculatorX(ProbOfDetection,ProbOfDeath,ProbOfGating) returns \n % a ExistProbCalculatorX( object handle configured with the provided\n % probability of detection ProbOfDetection, probability of death ProbOfDeath \n % and probability of gating ProbOfGating. This is particularly\n % useful when all targets are characterised by the same parameters.\n % * ExistProbCalculatorX(config) can also be used, where config is a\n % structure with fields config.ProbOfDetection, config.ProbOfDeath and\n % config.ProbOfGating.\n % * PhdTrackInitiatorX(___,Name,Value) instantiates an object \n % handle, configured with additional options specified by one or\n % more Name,Value pair arguments.\n \n if(nargin==0)\n return;\n end\n \n % First check to see if a structure was received\n if(nargin==1)\n if(isstruct(varargin{1}))\n config = varargin{1};\n this.ProbOfDetection = config.ProbOfDetection;\n this.ProbOfDeath = config.ProbOfDeath;\n this.ProbOfGating = config.ProbOfGating;\n end\n return;\n elseif(nargin==3)\n this.ProbOfDetection = varargin{1};\n this.ProbOfDeath = varargin{2};\n this.ProbOfGating = varargin{3};\n return;\n end\n \n % Otherwise, fall back to input parser\n parser = inputParser;\n parser.KeepUnmatched = true;\n parser.parse(varargin{:});\n config = parser.Unmatched;\n this.ProbOfDetection = config.ProbOfDetection;\n this.ProbOfDeath = config.ProbOfDeath;\n this.ProbOfGating = config.ProbOfGating;\n end\n \n function argout = calculate(this,varargin)\n % CALCULATE Calculates the probability(ies) of existence\n % \n % Parameters\n % ----------\n % varargin{1}: (1 x NumTracks) cell array or TrackX object\n % Either, a cell array of TrackX objects or a single TrackX\n % object.\n % varargin{2}: (NumTracks x Nm+1) or (1 x Nm+1) matrix\n % In the case that varargin{1} is a cell array, varargin{2}\n % should be a (NumTracks x Nm+1) matrix, else it should be a \n % (1 x Nm+1) row vector, where in both cases, each column contains \n % the association weight between a measurement and a track. The\n % first column corresponds to the dummy measurement.\n %\n % Returns\n % -------\n % argout: (1 x NumTracks) cell array or TrackX object\n % Either, a cell array of TrackX objects or a single TrackX\n % object, with their/its ProbOfExist field updated\n %\n % Usage\n % -----\n % * TrackList = calculate(this,TrackList,AssocWeightsMatrix) \n % computes the new probability of existence for each TrackX\n % object in TrackList and returns the updated TrackList\n % * Track = calculate(this,Track,AssocWeightsMatrix) \n % computes the new probability of existence for the TrackX\n % object Track and returns the updated Track\n if(isempty(varargin{1}))\n argout = varargin{1};\n return\n end\n if(iscell(varargin{1}))\n % Compute Existence Probabilities\n this.TrackList = varargin{1};\n this.AssocWeightsMatrix = varargin{2};\n numTracks = numel(this.TrackList);\n for trackInd = 1:numTracks\n this.TrackList{trackInd}.ProbOfExist = (1 - this.ProbOfDeath)*this.TrackList{trackInd}.ProbOfExist;\n denom = sum(this.AssocWeightsMatrix(trackInd,:))*this.TrackList{trackInd}.ProbOfExist + this.AssocWeightsMatrix(trackInd,1)*(1-this.TrackList{trackInd}.ProbOfExist)/((1-this.ProbOfDetection*this.ProbOfGating));\n this.TrackList{trackInd}.ProbOfExist = (sum(this.AssocWeightsMatrix(trackInd,:))*this.TrackList{trackInd}.ProbOfExist)/denom;\n end\n argout = this.TrackList;\n elseif(isa(varargin{1},'TrackX'))\n Track = varargin{1};\n AssocWeights = varargin{2};\n Track.ProbOfExist = (1 - this.ProbOfDeath)*Track.ProbOfExist;\n denom = sum(AssocWeights)*Track.ProbOfExist + AssocWeights(1)*(1-Track.ProbOfExist)/((1-this.ProbOfDetection*this.ProbOfGating));\n Track.ProbOfExist = (sum(AssocWeights)*Track.ProbOfExist)/denom;\n argout = Track;\n end\n end \n end\nend", "meta": {"author": "sglvladi", "repo": "TrackingX", "sha": "f737445c070f0d7d470f52f8a2b5540d5bb682da", "save_path": "github-repos/MATLAB/sglvladi-TrackingX", "path": "github-repos/MATLAB/sglvladi-TrackingX/TrackingX-f737445c070f0d7d470f52f8a2b5540d5bb682da/Generic/ExistProbCalculatorX/ExistProbCalculatorX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850154599562, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.39677575036890717}} {"text": "function x = triu( x, k )\n\n% Disciplined convex/geometric programming information for TRIU:\n% TRIU imposes no convexity restrictions on its arguments.\n\n%\n% Check inputs\n%\n\nif nargin < 2, k = 0; end\ns = x.size_;\nif length( s ) > 2,\n error( 'The first argument must be 2-D.' );\nelseif ~isnumeric( k ) || length( k ) ~= 1,\n error( 'The second argument must be an integer scalar.' );\nend\n\n%\n% Zero out the elements outside of the desired triangle\n%\n\nb = x.basis_;\nb( :, ~triu(ones(s),k) ) = 0;\nx = cvx( s, b );\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/builtins/@cvx/triu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850154599563, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3967757503689071}} {"text": "function [imageCha, ssim_map, metrics] = algo_SB_proxA_2D_real( obj,input )\n% 2D variant of SB\n% based on Goldstein and Oshers paper on Split Bregman\n%\n% input:\n% obj CS reconstruction object (holding all parameters)\n% input struct containing recon parameters and image\n%\n% output:\n% imageCha reconstructed channel individual image\n% ssim_map structural similarity map\n% metrics evaluation metrics \n%\n% (c) Marc Fischer, Thomas Kuestner, May 2015\n% -------------------------------------------------------------------------\n\n%%\ntimer_proxA = tic;\n\n%% variables:\n% internal flags\nflag_wavetree = true;\nflag_fast = true;\nflag_extendImage = true;\n\n% internal variables:\nL = 1;\nt_old = 1;\nNLTV_struct.kernelratio = 3;\nNLTV_struct.windowratio = 6;\nNLTV_struct.nThreads = 1; % mind this option if used with -singleCompThread on BWCluster\nitrNLTV = obj.maxitr - 20;\n% chambolle tv:\nparsin.MAXITER=100; parsin.tv='iso'; % 'iso' or 'l1'\n\n% from obj:\n% maxitr = obj.maxitr;\nmaxitr = obj.iNINNER;\n% maxitrOUTER = obj.maxitrOUTER;\nmaxitrOUTER = obj.iNOUTER;\nmaxitrINNER = ceil( maxitr / maxitrOUTER );\n% n1 = obj.measPara.dim(1);\n% n2 = obj.measPara.dim(2);\nn1 = input.n1;\nn2 = input.n2;\n% nSlices = obj.measPara.dim(3);\nnCha = obj.measPara.dim(5);\nlambdaWave = obj.lambda;\nlambdaTV = obj.lambdaTV;\nlambdaGroup = obj.lambdaGroup;\nNLTV_struct.filterstrength = obj.lambdaNLTV_h; % 0.03 % converted from NLTV h = 0.01 %old: used: 3e-10\nlambdaNLTV = obj.lambdaNLTV;\nlambdaNLTV_h = obj.lambdaNLTV_h;\nmue = obj.mue;\nregularizerWeights = obj.regularizerWeights;\nflagTV = obj.flagTV;\nflagTV_iso = obj.flagTV_iso;\nflagWave = obj.flagWave;\nflagGroup = obj.flagGroup;\nflagNLTV = obj.flagNLTV;\nflagSBNLTV = obj.flagSBNLTV;\nwaveletStages = obj.trafo.waveletStages;\nwaveletFilterName_l1 = obj.trafo.waveletFilterName_l1;\nwaveletFilterName_l12 = obj.trafo.waveletFilterName_l12;\n\n% from input:\nb=input.b;\nmask = input.mask;\nG_prox = input.G_prox;\nGt_prox = input.Gt_prox;\ngroupnorm_index = input.groupnorm_index;\nwaveS_l1 = input.waveS_l1;\nwaveS_l12 = input.waveS_l12;\nwaveS_l12proxA = input.waveS_l12proxA;\nproxA_extend_y = waveS_l12proxA(waveletStages+2,1) - waveS_l12(waveletStages+2,1);\nproxA_extend_x = waveS_l12proxA(waveletStages+2,2) - waveS_l12(waveletStages+2,2);\nx_proxA = cell(1,nCha);\n\n% im_ref = input.im_ref;\n% im_ref_full = zeros(n1,n2);\n% for j = 1:nCha\n% im_ref_full = im_ref_full + abs(im_ref{1,j}).^2;\n% end;\n% im_ref_full = sqrt(im_ref_full);\nclear input\n\n% initialize cells/vectors\nfor j=1:nCha\n FTb{1,j} = real(iFFT2D(b{1,j}));\n % y{1,j} = real(FTb{1,j});\n % y{1,j+nCha} = imag(FTb{1,j});\nend;\n% starting point:\nx = FTb; % (x0 = FTb)\nrhs = FTb; % different start (x0 = F^-1 K^-1 F FTb); %used atm\nb_outer = b;\n% rhs: right hand side\n\nx_wave = cell(1,nCha);\nx_g_proxA = x_wave;\nx_g_helper = cell(2,nCha);\nx_wave_helper = rhs;\nv_wave = rhs;\nd_wave = rhs;\nx_tv = rhs;\nv_tv = rhs;\nd_tv = rhs;\nx_group = rhs;\nv_group = rhs;\nd_group = rhs;\nx_nltv = rhs;\nv_nltv = rhs;\nd_nltv = rhs;\nK_inv = rhs;\nfor j = 1:nCha\n x_wave{1,j} = 0;\n v_wave{1,j} = 0;\n d_wave{1,j} = 0;\n x_tv{1,j} = zeros(n1,n2);\n v_tv{1,j} = 0;\n d_tv{1,j} = 0;\n x_group{1,j} = 0;\n v_group{1,j} = 0;\n d_group{1,j} = 0;\n x_nltv{1,j} = 0;\n v_nltv{1,j} = 0;\n d_nltv{1,j} = 0;\nend;\n\n%% MAD dependent lambdas:\nflag_MAD = true;\nif flag_MAD\n x_wavedec = cell(1,nCha);\n threshold = zeros(1:nCha);\n for j=1:nCha % 2*nCha\n x_wavedec{1,j} = wavedec2(x{1,j},waveletStages,waveletFilterName_l1); % atm only based on l1-daubechie\n x_wave_fine_scale = size(x_wavedec{1,j},2) - (3*waveS_l1(waveletStages+1,1)*waveS_l1(waveletStages+1,2));\n threshold(j) = mad(x_wavedec{1,j}(x_wave_fine_scale:end),1);\n end;\n clear x_wavedec\nelse\n threshold(1:nCha) = 1;\nend;\n\nthreshold_wave(j) = lambdaWave * threshold(j) * 2/L;\nthreshold_TV(j) = lambdaTV * threshold(j) * 2/L;\nthreshold_group(j) = lambdaGroup * threshold(j) * 2/L;\nthreshold_NLTV(j) = lambdaNLTV; % * threshold(j) * 2/L;\nthreshold_NLTV_h(j) = lambdaNLTV_h; %*threshold(j); % adjust carefully or NLTV won't find a solution. lambdaNLTV_h should be < 0.01\n\n%% initialize metrics:\nitr = 0;\nmetrics.xtime(itr+1)= 0;\n% [metrics, ssim_map{1,1}] = get_metrics_itr( im_ref, im_ref_full, x, itr, maxitr, nCha, n1, n2, metrics, obj.K_1, obj.K_2, obj.W_size, obj.W_sigma );\nssim_map = [];\n\n%% recon\n% inverse for x - step:\nfor j = 1:nCha\n K_inv{1,j} = 1./(mue*mask + (flagWave*regularizerWeights(1) + flagTV*regularizerWeights(2) + flagGroup*regularizerWeights(3))*ones(n1,n2)); % flagNLTV changes K_inv -> in separate\nend;\n\ndispProgress('Proximal Average', 0, maxitrOUTER*maxitrINNER);\nitr = 0;\nfor itrOUTER = 1:maxitrOUTER % total iter counter\n for itrINNER = 1:maxitrINNER\n \n %% x - step\n if itr > 1 % for i = 1 already set (x{1,j} = FTb{1,j})\n for j = 1:nCha\n % rhs part:\n if flagWave\n x_wave{1,j} = waverec2((v_wave{1,j} - d_wave{1,j}),waveS_l1,waveletFilterName_l1); end;\n if flagTV\n x_tv{1,j} = v_tv{1,j} - d_tv{1,j}; end;\n if flagGroup\n x_g_proxA{1,j} = waverec2((v_group{1,j} - d_group{1,j}),waveS_l12proxA,waveletFilterName_l12);\n x_group{1,j} = x_g_proxA{1,j}(1:end-proxA_extend_y,1:end-proxA_extend_x);\n end;\n if flagNLTV\n if itr == itrNLTV\n K_inv{1,j} = 1./(mue*mask + (flagWave*regularizerWeights(1) + flagTV*regularizerWeights(2) + flagGroup*regularizerWeights(3) + flagNLTV*regularizerWeights(4))*ones(n1,n2));\n x_nltv{1,j} = x{1,j};\n elseif itr >= itrNLTV\n x_nltv{1,j} = v_nltv{1,j} - d_nltv{1,j};\n end;\n end;\n rhs{1,j} = mue*FTb{1,j} + ( flagWave*regularizerWeights(1).*(x_wave{1,j}) + flagTV*regularizerWeights(2).*(x_tv{1,j}) + flagGroup*regularizerWeights(3).*(x_group{1,j}) + flagNLTV*regularizerWeights(4).*(x_nltv{1,j}));\n x{1,j} = real(iFFT2D(K_inv{1,j}.*FFT2D(rhs{1,j})));\n end;\n end;\n \n %% auxiliary variables:\n %% l1-Wavelet\n if flagWave\n for j = 1:nCha\n x_wave_helper{1,j} = wavedec2(x{1,j},waveletStages,waveletFilterName_l1);\n v_wave{1,j} = softthresh_real((x_wave_helper{1,j} + d_wave{1,j}),threshold_wave(j));\n d_wave{1,j} = d_wave{1,j} + x_wave_helper{1,j} - v_wave{1,j};\n end;\n end;\n \n %% TV:\n if flagTV\n if ~flagTV_iso\n for j = 1:nCha\n v_tv{1,j} = MTV_2D((x{1,j} + d_tv{1,j}), threshold_TV(j), n1, n2);\n end;\n else\n for j = 1:nCha\n if (itr < 2)\n [v_tv{1,j}, P]=denoise_TV_One((x{1,j} + d_tv{1,j}), threshold_TV(j),-inf,inf,[],parsin);\n else\n [v_tv{1,j}, P]=denoise_TV_One((x{1,j} + d_tv{1,j}), threshold_TV(j),-inf,inf,P,parsin);\n end;\n end;\n end;\n d_tv{1,j} = d_tv{1,j} + x{1,j} - v_tv{1,j};\n end;\n \n %% NLTV\n if flagNLTV\n if itr >= itrNLTV\n if flagSBNLTV\n for j = 1:nCha\n v_nltv{1,j} = SB_NLTVfunc_slim_rescale( (x{1,j} + d_nltv{1,j}),n1,n2, threshold_NLTV(j), threshold_NLTV_h(j) );\n end;\n else\n for j = 1:nCha\n % if mod(itr,5) == 0 || itr == 1\n v_nltv{1,j} = NLMF((x{1,j} + d_nltv{1,j}),NLTV_struct);\n v_nltv{1,j} = (L.*(x{1,j} + d_nltv{1,j}) + 2*threshold_NLTV(j)*v_nltv{1,j})./(L+2*threshold_NLTV(j));\n % end;\n end;\n end;\n d_nltv{1,j} = d_nltv{1,j} + x{1,j} - v_nltv{1,j};\n else\n v_nltv{1,j} = 0;\n d_nltv{1,j} = 0;\n end;\n \n end;\n \n %% l12-Wavelet\n if flagGroup\n for j = 1:nCha\n if flag_extendImage\n x_proxA{1,j} = extend_image(x{1,j}, waveS_l12proxA, waveletStages, proxA_extend_y, proxA_extend_x);\n x_g_helper{1,j} = wavedec2(x_proxA{1,j},waveletStages,waveletFilterName_l12) + d_group{1,j};\n else\n x_g_helper{1,j} = wavedec2(x{1,j},waveletStages,waveletFilterName_l12) + d_group{1,j};\n end;\n \n if flag_wavetree\n x_g_helper{2,j} = (G_prox*x_g_helper{1,j}')';\n else\n x_g_helper{2,j} = zeros(1,size(x_g_helper{1,j},2));\n end;\n end;\n \n % softthresh_proxA_cha returns cell! hence (1,:) assignement\n v_group(1,:) = softthresh_proxA_cha(x_g_helper,threshold_group(j),nCha,waveS_l12proxA,groupnorm_index);\n \n for j = 1:nCha\n d_group{1,j} = d_group{1,j} + x_g_helper{1,j} - v_group{1,j};\n end;\n end;\n \n %% metrics of current itr:\n itr = itr + 1;\n% disp(itr);\n dispProgress('Proximal Average', itr/(maxitrOUTER*maxitrINNER));\n \n metrics.xtime(itr+1)= toc(timer_proxA);\n% [metrics, ssim_map{1,2}] = get_metrics_itr( im_ref, im_ref_full, x, itr, maxitr, nCha, n1, n2, metrics, obj.K_1, obj.K_2, obj.W_size, obj.W_sigma );\n \n if itr >= maxitr break; end;\n end;\n if itr >= maxitr break; end;\n for j=1:nCha\n b_outer{1,j} = b_outer{1,j} + b{1,j} - FFT2D_mask(x{1,j},mask);\n FTb{1,j} = real(iFFT2D(b_outer{1,j}));\n end;\nend;\ndispProgress('Proximal Average', 'Close');\n\nimageCha = x;\nfor j = 1:nCha\n imageCha{1,j} = turn_image( imageCha{1,j} );\nend;\n% for j = 1:nCha+1\n% ssim_map{1,1}{1,j} = turn_image( ssim_map{1,1}{1,j} );\n% ssim_map{1,2}{1,j} = turn_image( ssim_map{1,2}{1,j} );\n% end;\n\nend", "meta": {"author": "thomaskuestner", "repo": "CS_MoCo_LAB", "sha": "a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b", "save_path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB", "path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB/CS_MoCo_LAB-a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b/reconstruction/matlab/CS_LAB_matlab/@Proximal/algo_SB_proxA_2D_real.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3966814823144408}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nickabattista@gmail.com\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs, non-invariant beams*)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"Hill+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting lengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us to add a specific muscle model, please let Nick (nickabattista@gmail.com) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: updates the spring attributes!\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction springs_info = update_Springs(dt,current_time,xLag,yLag,springs_info)\n\n%springs_info: col 1: starting spring pt (by lag. discretization)\n% col 2: ending spring pt. (by lag. discretization)\n% col 3: spring stiffness\n% col 4: spring resting lengths\n\n%RL = springs_info(:,4); % resting-length vector\n\nfreq = 0.875;\n%theta=freq*current_time*2*pi;\n%phase = sin(theta);\n\n%size(springs_info)\n\n%springs_info(1:3,:)\n%pause();\n\n% CHANGE RESTING LENGTH BTWN SIDES OF JELLYFISH BELL\n%springs_info(319:end,4) = phase;\n\nsprings_info(319:end,4) = abs( sin(0.875*current_time*2*pi) );\n\n\n% if ( mod(current_time,0.875) < 0.875/2 ) \n% springs_info(319:end,4) = abs( sin(0.875*current_time*2*pi) );\n% else\n% springs_info(319:end,4) = 0;%abs( sin(0.875*current_time*2*pi) );\n% end\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_Jellyfish_Swimming/Failed_Attempts/Jellyfish_IBAMR_Convert/update_Springs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3966814823144408}} {"text": "%% Machine Learning Online Class\n% Exercise 8 | Anomaly Detection and Collaborative Filtering\n%\n% Instructions\n% ------------\n%\n% This file contains code that helps you get started on the\n% exercise. You will need to complete the following functions:\n%\n% estimateGaussian.m\n% selectThreshold.m\n% cofiCostFunc.m\n%\n% For this exercise, you will not need to change any code in this file,\n% or any other files other than those mentioned above.\n%\n\n%% =============== Part 1: Loading movie ratings dataset ================\n% You will start by loading the movie ratings dataset to understand the\n% structure of the data.\n% \nfprintf('Loading movie ratings dataset.\\n\\n');\n\n% Load data\nload ('ex8_movies.mat');\n\n% Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies on \n% 943 users\n%\n% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a\n% rating to movie i\n\n% From the matrix, we can compute statistics like average rating.\nfprintf('Average rating for movie 1 (Toy Story): %f / 5\\n\\n', ...\n mean(Y(1, R(1, :))));\n\n% We can \"visualize\" the ratings matrix by plotting it with imagesc\nimagesc(Y);\nylabel('Movies');\nxlabel('Users');\n\n%fprintf('\\nProgram paused. Press enter to continue.\\n');\n%pause;\n\n%% ============ Part 2: Collaborative Filtering Cost Function ===========\n% You will now implement the cost function for collaborative filtering.\n% To help you debug your cost function, we have included set of weights\n% that we trained on that. Specifically, you should complete the code in \n% cofiCostFunc.m to return J.\n\n% Load pre-trained weights (X, Theta, num_users, num_movies, num_features)\nload ('ex8_movieParams.mat');\n\n% Reduce the data set size so that this runs faster\nnum_users = 4; num_movies = 5; num_features = 3;\nX = X(1:num_movies, 1:num_features);\nTheta = Theta(1:num_users, 1:num_features);\nY = Y(1:num_movies, 1:num_users);\nR = R(1:num_movies, 1:num_users);\n\n% Evaluate cost function\nJ = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...\n num_features, 0);\n \nfprintf(['Cost at loaded parameters: %f '...\n '\\n(this value should be about 22.22)\\n'], J);\n\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n\n%% ============== Part 3: Collaborative Filtering Gradient ==============\n% Once your cost function matches up with ours, you should now implement \n% the collaborative filtering gradient function. Specifically, you should \n% complete the code in cofiCostFunc.m to return the grad argument.\n% \nfprintf('\\nChecking Gradients (without regularization) ... \\n');\n\n% Check gradients by running checkNNGradients\ncheckCostFunction;\n\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n\n%% ========= Part 4: Collaborative Filtering Cost Regularization ========\n% Now, you should implement regularization for the cost function for \n% collaborative filtering. You can implement it by adding the cost of\n% regularization to the original cost computation.\n% \n\n% Evaluate cost function\nJ = cofiCostFunc([X(:) ; Theta(:)], Y, R, num_users, num_movies, ...\n num_features, 1.5);\n \nfprintf(['Cost at loaded parameters (lambda = 1.5): %f '...\n '\\n(this value should be about 31.34)\\n'], J);\n\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n\n%% ======= Part 5: Collaborative Filtering Gradient Regularization ======\n% Once your cost matches up with ours, you should proceed to implement \n% regularization for the gradient. \n%\n\n% \nfprintf('\\nChecking Gradients (with regularization) ... \\n');\n\n% Check gradients by running checkNNGradients\ncheckCostFunction(1.5);\n\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n\n%% ============== Part 6: Entering ratings for a new user ===============\n% Before we will train the collaborative filtering model, we will first\n% add ratings that correspond to a new user that we just observed. This\n% part of the code will also allow you to put in your own ratings for the\n% movies in our dataset!\n%\nmovieList = loadMovieList();\n\n% Initialize my ratings\nmy_ratings = zeros(1682, 1);\n\n% Check the file movie_idx.txt for id of each movie in our dataset\n% For example, Toy Story (1995) has ID 1, so to rate it \"4\", you can set\nmy_ratings(1) = 4;\n\n% Or suppose did not enjoy Silence of the Lambs (1991), you can set\nmy_ratings(98) = 2;\n\n% We have selected a few movies we liked / did not like and the ratings we\n% gave are as follows:\nmy_ratings(7) = 3;\nmy_ratings(12)= 5;\nmy_ratings(54) = 4;\nmy_ratings(64)= 5;\nmy_ratings(66)= 3;\nmy_ratings(69) = 5;\nmy_ratings(183) = 4;\nmy_ratings(226) = 5;\nmy_ratings(355)= 5;\n\nfprintf('\\n\\nNew user ratings:\\n');\nfor i = 1:length(my_ratings)\n if my_ratings(i) > 0 \n fprintf('Rated %d for %s\\n', my_ratings(i), ...\n movieList{i});\n end\nend\n\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n\n%% ================== Part 7: Learning Movie Ratings ====================\n% Now, you will train the collaborative filtering model on a movie rating \n% dataset of 1682 movies and 943 users\n%\n\nfprintf('\\nTraining collaborative filtering...\\n');\n\n% Load data\nload('ex8_movies.mat');\n\n% Y is a 1682x943 matrix, containing ratings (1-5) of 1682 movies by \n% 943 users\n%\n% R is a 1682x943 matrix, where R(i,j) = 1 if and only if user j gave a\n% rating to movie i\n\n% Add our own ratings to the data matrix\nY = [my_ratings Y];\nR = [(my_ratings ~= 0) R];\n\n% Normalize Ratings\n[Ynorm, Ymean] = normalizeRatings(Y, R);\n\n% Useful Values\nnum_users = size(Y, 2);\nnum_movies = size(Y, 1);\nnum_features = 10;\n\n% Set Initial Parameters (Theta, X)\nX = randn(num_movies, num_features);\nTheta = randn(num_users, num_features);\n\ninitial_parameters = [X(:); Theta(:)];\n\n% Set options for fmincg\noptions = optimset('GradObj', 'on', 'MaxIter', 100);\n\n% Set Regularization\nlambda = 10;\ntheta = fmincg (@(t)(cofiCostFunc(t, Y, R, num_users, num_movies, ...\n num_features, lambda)), ...\n initial_parameters, options);\n\n% Unfold the returned theta back into U and W\nX = reshape(theta(1:num_movies*num_features), num_movies, num_features);\nTheta = reshape(theta(num_movies*num_features+1:end), ...\n num_users, num_features);\n\nfprintf('Recommender system learning completed.\\n');\n\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n%% ================== Part 8: Recommendation for you ====================\n% After training the model, you can now make recommendations by computing\n% the predictions matrix.\n%\n\np = X * Theta';\nmy_predictions = p(:,1) + Ymean;\n\nmovieList = loadMovieList();\n\n[r, ix] = sort(my_predictions, 'descend');\nfprintf('\\nTop recommendations for you:\\n');\nfor i=1:10\n j = ix(i);\n fprintf('Predicting rating %.1f for movie %s\\n', my_predictions(j), ...\n movieList{j});\nend\n\nfprintf('\\n\\nOriginal ratings provided:\\n');\nfor i = 1:length(my_ratings)\n if my_ratings(i) > 0 \n fprintf('Rated %d for %s\\n', my_ratings(i), ...\n movieList{i});\n end\nend\n", "meta": {"author": "worldveil", "repo": "coursera-ml", "sha": "94e205b01ec3a47c0d777943194d12fa130f4685", "save_path": "github-repos/MATLAB/worldveil-coursera-ml", "path": "github-repos/MATLAB/worldveil-coursera-ml/coursera-ml-94e205b01ec3a47c0d777943194d12fa130f4685/recommender/code/ex8_cofi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.7154239957834734, "lm_q1q2_score": 0.39668147558590927}} {"text": "function [labels adjlist pE] = trimapGenerateMultipleSegmentations2( image, imsegs, edgeClassifier, ecal, t, size_array )\n adjmat = imsegs.adjmat;\n segimage = imsegs.segimage;\n \n spFeat = getSuperpixelData_ver2(image, imsegs);\n [edgeFeat adjlist] = getEdgeData_ver2( imsegs, spFeat );\n% spFeat = mcmcGetSuperpixelData( image, imsegs );\n% [edgeFeat adjlist] = mcmcGetEdgeData( imsegs, spFeat );\n pE=test_boosted_dt_mc(edgeClassifier,edgeFeat);\n pE = 1 ./ (1+exp(ecal(1)*pE+ecal(2)));\n \n nSuperpixel = max(segimage(:));\n % labels = mexMergeAdjacentRegions2( adjlist, pE, nSuperpixel, t );\n labels = mexMergeAdjRegs_Felzenszwalb( adjlist, pE, nSuperpixel, t, size_array );\n \n% image_lab = rgb2lab( image );\n% bins = [8 16 16];\n% Q = computeQuantMatrix( image_lab, bins );\n% region_hist = computeRegionHist(Q, bins, segimage);\n% \n% num_region = max(segimage(:));\n% region_dist = zeros(num_region, num_region);\n% \n% ind = find(adjmat);\n% for ix = 1 : length(ind)\n% [x y] = ind2sub([num_region, num_region], ind(ix));\n% region_dist(x, y) = histDist(region_hist(x,:), region_hist(y,:));\n% end\n% \n% t = 0.2:0.05:0.8;\n% labels = mexMergeAdjacentRegions(region_dist, t);\n \n for jx = 1 : size(labels, 2)\n L = labels(:, jx);\n temp_label = unique(L);\n for ix = 1 : length(temp_label)\n idx = find( L == temp_label(ix) );\n labels(idx, jx) = ix;\n end\n end\n ", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u68c0\u6d4b\u7b97\u6cd5/drfi_matlab-master/multi-segmentation/trimapGenerateMultipleSegmentations2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3966814755859092}} {"text": "classdef dme_line3p < mp.dm_element\n%MP.DME_LINE3P MATPOWER data model class for 3-phase line data\n\n% MATPOWER\n% Copyright (c) 2021-2022, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n properties\n fbus %% bus index vector for \"from\" port (port 1) (all lines)\n tbus %% bus index vector for \"to\" port (port 2) (all lines)\n freq %% system frequency, in Hz\n lc %% index into lc_tab for lines that are on\n len %% length for lines that are on\n lc_tab %% line construction table\n ys %% cell array of 3x3 series admittance matrices for lc rows\n yc %% cell array of 3x3 shunt admittance matrices for lc rows\n end %% properties\n\n methods\n function name = name(obj)\n name = 'line3p';\n end\n\n function label = label(obj)\n label = '3-ph Line';\n end\n\n function label = labels(obj)\n label = '3-ph Lines';\n end\n\n function name = cxn_type(obj)\n name = 'bus3p';\n end\n\n function name = cxn_idx_prop(obj)\n name = {'fbus', 'tbus'};\n end\n\n function names = main_table_var_names(obj)\n names = horzcat( main_table_var_names@mp.dm_element(obj), ...\n {'bus_fr', 'bus_to', 'lc', 'len', ...\n 'pl1_fr', 'ql1_fr', 'pl2_fr', 'ql2_fr', 'pl3_fr', 'ql3_fr', ...\n 'pl1_to', 'ql1_to', 'pl2_to', 'ql2_to', 'pl3_to', 'ql3_to' ...\n });\n end\n\n% function vars = export_vars(obj)\n% vars = {'pl1_fr', 'ql1_fr', ...\n% 'pl2_fr', 'ql2_fr', ...\n% 'pl3_fr', 'ql3_fr', ...\n% 'pl1_to', 'ql1_to', ...\n% 'pl2_to', 'ql2_to', ...\n% 'pl3_to', 'ql3_to' };\n% end\n\n function obj = initialize(obj, dm)\n initialize@mp.dm_element(obj, dm); %% call parent\n\n %% get bus mapping info\n b2i = dm.elements.bus3p.ID2i; %% bus num to idx mapping\n\n %% set bus index vectors for port connectivity\n obj.fbus = b2i(obj.tab.bus_fr);\n obj.tbus = b2i(obj.tab.bus_to);\n end\n\n function obj = update_status(obj, dm)\n %% get bus status info\n bs = dm.elements.bus3p.tab.status; %% bus status\n\n %% update status of branches connected to isolated/offline buses\n obj.tab.status = obj.tab.status & bs(obj.fbus) & ...\n bs(obj.tbus);\n\n %% call parent to fill in on/off\n update_status@mp.dm_element(obj, dm);\n end\n\n function obj = build_params(obj, dm)\n nlc = size(obj.lc, 1);\n obj.ys = zeros(nlc, 6);\n obj.yc = zeros(nlc, 6);\n obj.lc = obj.tab.lc(obj.on);\n obj.len = obj.tab.len(obj.on);\n\n %% build Ys and Yc for relevant lines\n idx = unique(obj.lc);\n rr = obj.lc_tab.r(idx, :);\n xx = obj.lc_tab.x(idx, :);\n cc = obj.lc_tab.c(idx, :);\n% rr = obj.lc_tab{idx, 2:7};\n% xx = obj.lc_tab{idx, 8:13};\n% cc = obj.lc_tab{idx, 14:19};\n for k = 1:length(idx)\n R = obj.vec2symmat(rr(k, :));\n X = obj.vec2symmat(xx(k, :));\n C = obj.vec2symmat(cc(k, :));\n Ys = inv(R + 1j * X);\n Yc = 1j * 2*pi * obj.freq * 1e-9 * C;\n obj.ys(k, :) = obj.symmat2vec(Ys);\n obj.yc(k, :) = obj.symmat2vec(Yc);\n end\n end\n\n function M = vec2symmat(obj, v)\n % makes a symmetric matrix from a vector of 6 values\n M = [v(1) v(2) v(3);\n v(2) v(4) v(5);\n v(3) v(5) v(6) ];\n end\n\n function v = symmat2vec(obj, M)\n % extracts a vector of 6 values from a matrix assumed to be symmetric\n v = [M(1, :) M(2,2:3) M(3,3)];\n end\n\n function obj = pretty_print(obj, dm, section, out_e, mpopt, fd, pp_args)\n switch section\n case 'det'\n %% compute currents/powers for pp_args\n s_fr = [ obj.tab.pl1_fr + 1j * obj.tab.ql1_fr ...\n obj.tab.pl2_fr + 1j * obj.tab.ql2_fr ...\n obj.tab.pl3_fr + 1j * obj.tab.ql3_fr ];\n s_to = [ obj.tab.pl1_to + 1j * obj.tab.ql1_to ...\n obj.tab.pl2_to + 1j * obj.tab.ql2_to ...\n obj.tab.pl3_to + 1j * obj.tab.ql3_to ];\n t = dm.elements.bus3p.tab; %% bus3p table\n vm = [ t.vm1 t.vm2 t.vm3 ] .* (t.base_kv/sqrt(3) * [1 1 1]);\n va = [ t.va1 t.va2 t.va3 ];\n v_ = vm .* exp(1j * va * pi/180);\n i_fr = conj( s_fr ./ v_(obj.fbus, :));\n i_to = conj( s_to ./ v_(obj.tbus, :));\n c_fr = struct('cm', abs(i_fr), 'ca', angle(i_fr) * 180/pi);\n c_to = struct('cm', abs(i_to), 'ca', angle(i_to) * 180/pi);\n\n pp_args.line3p = {'c', 'f', abs(i_fr), angle(i_fr) * 180/pi};\n pretty_print@mp.dm_element(obj, dm, section, out_e, mpopt, fd, pp_args);\n\n pp_args.line3p = {'c', 't', abs(i_to), angle(i_to) * 180/pi};\n pretty_print@mp.dm_element(obj, dm, section, out_e, mpopt, fd, pp_args);\n\n pp_args.line3p = {'s', 'f', real(s_fr), imag(s_fr)};\n pretty_print@mp.dm_element(obj, dm, section, out_e, mpopt, fd, pp_args);\n\n pp_args.line3p = {'s', 't', real(s_to), imag(s_to)};\n pretty_print@mp.dm_element(obj, dm, section, out_e, mpopt, fd, pp_args);\n otherwise\n pretty_print@mp.dm_element(obj, dm, section, out_e, mpopt, fd, pp_args);\n end\n end\n\n function TorF = pp_have_section_sum(obj, mpopt, pp_args)\n TorF = true;\n end\n\n function obj = pp_data_sum(obj, dm, rows, out_e, mpopt, fd, pp_args)\n %% call parent\n pp_data_sum@mp.dm_element(obj, dm, rows, out_e, mpopt, fd, pp_args);\n\n %% print generation summary\n t = obj.tab;\n ploss = [ t.pl1_fr t.pl2_fr t.pl3_fr ] + ...\n [ t.pl1_to t.pl2_to t.pl3_to ];\n qloss = [ t.ql1_fr t.ql2_fr t.ql3_fr ] + ...\n [ t.ql1_to t.ql2_to t.ql3_to ];\n fprintf(fd, ' %-29s %12.1f kW %12.1f kVAr\\n', 'Total 3-ph line loss', ...\n sum(sum(ploss(obj.on, :))), sum(sum(qloss(obj.on, :))) );\n end\n\n function TorF = pp_have_section_det(obj, mpopt, pp_args)\n TorF = true;\n end\n\n function h = pp_get_headers_det(obj, dm, out_e, mpopt, pp_args)\n cs = pp_args.line3p{1};\n ft = pp_args.line3p{2};\n if cs == 'c' && ft == 'f'\n h1 = pp_get_headers_det@mp.dm_element(obj, dm, out_e, mpopt, pp_args);\n else\n h1 = {};\n end\n if cs == 'c'\n if ft == 'f'\n h2 = {'--> Current Injections at \"From\" Bus' };\n else %% ft == 't'\n h2 = {'', ...\n '<-- Current Injections at \"To\" Bus' };\n end\n else %% cs == 's'\n if ft == 'f'\n h2 = {'', ...\n '--> Power Injections at \"From\" Bus' };\n else %% ft == 't'\n h2 = {'', ...\n '<-- Power Injections at \"To\" Bus' };\n end\n end\n switch cs\n case 'c'\n h = [ h1 h2 ...\n { ' 3-ph 3-ph Bus 3-ph Bus Phase A Current Phase B Current Phase C Current', ...\n 'Line ID From ID To ID Status (A) (deg) (A) (deg) (A) (deg)', ...\n '-------- -------- -------- ------ ------ ------ ------ ------ ------ ------' } ];\n %% 1234567 123456789 123456789 -----1 123456.89 12345.7 12345.78 12345.7 12345.78 12345.7\n case 's'\n h = [ h1 h2 ...\n { ' 3-ph 3-ph Bus 3-ph Bus Phase A Power Phase B Power Phase C Power', ...\n 'Line ID From ID To ID Status (kW) (kVAr) (kW) (kVAr) (kW) (kVAr)', ...\n '-------- -------- -------- ------ ------ ------ ------ ------ ------ ------' } ];\n %% 1234567 123456789 123456789 -----1 1234567.9 12345.7 123456.8 12345.7 123456.8 12345.7\n end\n end\n\n function str = pp_data_row_det(obj, dm, k, out_e, mpopt, fd, pp_args)\n switch pp_args.line3p{1} %% cs\n case 'c'\n cm = pp_args.line3p{3}(k, :);\n ca = pp_args.line3p{4}(k, :);\n str = sprintf('%7d %9d %9d %6d %9.2f %7.1f %8.2f %7.1f %8.2f %7.1f', ...\n obj.tab.uid(k), obj.tab.bus_fr(k), obj.tab.bus_to(k), ...\n obj.tab.status(k), ...\n cm(:, 1), ca(:, 1), ...\n cm(:, 2), ca(:, 2), ...\n cm(:, 3), ca(:, 3) );\n case 's'\n p = pp_args.line3p{3}(k, :);\n q = pp_args.line3p{4}(k, :);\n str = sprintf('%7d %9d %9d %6d %9.1f %7.1f %8.1f %7.1f %8.1f %7.1f', ...\n obj.tab.uid(k), obj.tab.bus_fr(k), obj.tab.bus_to(k), ...\n obj.tab.status(k), ...\n p(:, 1), q(:, 1), ...\n p(:, 2), q(:, 2), ...\n p(:, 3), q(:, 3) );\n end\n end\n end %% methods\nend %% classdef\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/+mp/dme_line3p.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3966460941306852}} {"text": "clear;\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% indicate the super-resolution factor\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\ndown_factor = 3; % 2, 3 or 4\nimage_path = 'data/deepeaf/BSDS500/';\ndata_chs = 1; % 1 or 3\ntraining_mat_path = 'data/Shepard_CNN/Shepard_super_res/x3/train_1ch/';\nval_mat_path = 'data/Shepard_CNN/Shepard_super_res/x3/val_1ch/';\n\npatch_dim = 48;\nnum_patches = 20000;\nlisting = dir(strcat(image_path, '*.jpg'));\nmat_num = 51;\nfor m = 1 : mat_num\n fprintf('Extracting patch batch: %d / %d\\n', m, mat_num);\n % extract random patches\n images = zeros(patch_dim, patch_dim, data_chs, num_patches);\n labels = zeros(size(images));\n for i = 1 : num_patches\n if (mod(i,100) == 0)\n fprintf('Extracting patch: %d / %d\\n', i, num_patches);\n end\n \n r_idx = random('unid', size(listing, 1));\n I = im2double(imread(strcat(image_path, listing(r_idx).name)));\n orig_img_size = size(I);\n r = random('unid', orig_img_size(1) - patch_dim + 1);\n c = random('unid', orig_img_size(2) - patch_dim + 1);\n \n patch = I(r:r+patch_dim-1, c:c+patch_dim-1, :);\n \n if(data_chs == 1)\n patch = rgb2ycbcr(patch);\n patch = patch(:,:,1);\n end \n \n patch_down = imresize(patch, [patch_dim/down_factor, patch_dim/down_factor], 'bicubic');\n patch_up = imresize(patch_down, [patch_dim, patch_dim], 'nearest');\n images(:,:,:,i) = patch_up;\n labels(:,:,:,i) = patch;\n %imshow([patch_up patch]); pause;\n end\n % save it\n images = single(images);\n labels = single(labels);\n \n if(m >= mat_num)\n % save validation data\n filename = strcat(val_mat_path, 'val_1');\n images_t = images;\n labels_t = labels;\n save(filename, '-v7.3', 'images_t', 'labels_t');\n else\n % save training data\n filename = strcat(training_mat_path, 'patches_', num2str(m));\n save(filename, '-v7.3', 'images', 'labels');\n end\nend\n\n\n\n", "meta": {"author": "jimmy-ren", "repo": "vcnn_double-bladed", "sha": "a4de90e845875f6e30632f2e879d3afb81c0ebc1", "save_path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed", "path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed/vcnn_double-bladed-a4de90e845875f6e30632f2e879d3afb81c0ebc1/data/Shepard_CNN/Shepard_super_res/gen_training_data.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.3966460941306851}} {"text": "function [ t_start, y_start ] = p29_start ( neqn )\n\n%*****************************************************************************80\n%\n%% P29_START returns the starting point for problem p29.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 23 February 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer NEQN, the number of equations.\n%\n% Output, real T_START, Y_START(NEQN,1), the initial data.\n%\n y_start = zeros ( neqn, 1 );\n\n t_start = 0.0;\n y_start = 1.0;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_ode/p29_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5195213219520929, "lm_q2_score": 0.7634837527911056, "lm_q1q2_score": 0.39664608853898004}} {"text": "function value = i4vec_index ( n, a, aval )\n\n%*****************************************************************************80\n%\n%% I4VEC_INDEX returns the first location of a given value in an I4VEC\n%\n% Discussion:\n%\n% An I4VEC is a vector of integer values.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 05 November 2005\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of entries in the vector.\n%\n% Input, integer A(N), the vector to be searched.\n%\n% Input, integer AVAL, the value to be indexed.\n%\n% Output, integer VALUE, the first location in A which has the\n% value AVAL, or -1 if no such index exists.\n%\n for i = 1 : n\n if ( a(i) == aval )\n value = i;\n return\n end\n end\n\n value = -1;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_mat/i4vec_index.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.7577943822145998, "lm_q1q2_score": 0.396644999960752}} {"text": "function range = p18_range ( )\n\n%*****************************************************************************80\n%\n%% P18_RANGE returns an interval bounding the root for problem 18.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 04 October 2011\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Output, real RANGE(2), the minimum and maximum values of\n% an interval containing the root.\n%\n range(1) = 0.988;\n range(2) = 1.012;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_zero/p18_range.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.7577943658046608, "lm_q1q2_score": 0.3966449913714559}} {"text": "function r = YZRectangle(x,y1,y2,z1,z2)\n\n%YZRECTANGLE Rectangle in the YZ plane.\n\n% Copyright 2008-2009 Joan Sola @ LAAS-CNRS.\n\n\ns1 = ySegment(x,y1,y2,z1);\ns2 = zSegment(x,y2,z1,z2);\ns3 = ySegment(x,y2,y1,z2);\ns4 = zSegment(x,y1,z2,z1);\n\nr = [s1 s2 s3 s4];\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/Simulation/YZRectangle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746213017459, "lm_q2_score": 0.6297746074044134, "lm_q1q2_score": 0.39661606488357015}} {"text": "classdef lowrank\n% Generates matrices of low rank\n\nmethods(Static)\n\nfunction A = from_randn(m, n, r)\n % Returns a low rank matrix constructed by randn(m, r) * randn(r, m)\n X = randn(m, r);\n Y = randn(r, n);\n A = X * Y;\nend % function\n\nend % methods\n\nend % classdef\n", "meta": {"author": "indigits", "repo": "sparse-plex", "sha": "43cae2978f62938d001baaa03308a2a717ee6c9b", "save_path": "github-repos/MATLAB/indigits-sparse-plex", "path": "github-repos/MATLAB/indigits-sparse-plex/sparse-plex-43cae2978f62938d001baaa03308a2a717ee6c9b/library/+spx/+data/+synthetic/lowrank.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6297746004557471, "lm_q1q2_score": 0.3966160517552894}} {"text": "function dcline = psse_convert_hvdc(dc, bus)\n%PSSE_CONVERT_HVDC Convert HVDC data from PSS/E RAW to MATPOWER\n% DCLINE = PSSE_CONVERT_HVDC(DC, BUS)\n%\n% Convert all two terminal HVDC line data read from a PSS/E\n% RAW data file into MATPOWER format. Returns a dcline matrix for\n% inclusion in a MATPOWER case struct.\n%\n% Inputs:\n% DC : matrix of raw two terminal HVDC line data returned by\n% PSSE_READ in data.twodc.num\n% BUS : MATPOWER bus matrix\n%\n% Output:\n% DCLINE : a MATPOWER dcline matrix suitable for inclusion in\n% a MATPOWER case struct.\n%\n% See also PSSE_CONVERT.\n\n% MATPOWER\n% Copyright (c) 2014-2016, Power Systems Engineering Research Center (PSERC)\n% by Yujia Zhu, PSERC ASU\n% and Ray Zimmerman, PSERC Cornell\n% Based on mpdcin.m and mpqhvdccal.m, written by:\n% Yujia Zhu, Jan 2014, yzhu54@asu.edu.\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n%% define named indices into bus, gen, branch matrices\n[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...\n VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;\nc = idx_dcline;\n\nnb = size(bus, 1);\nndc = size(dc, 1);\ne2i = sparse(bus(:, BUS_I), ones(nb, 1), 1:nb, max(bus(:, BUS_I)), 1);\nif ~ndc\n dcline = [];\n return;\nend\n\n%% extract data\nMDC = dc(:,2); % Control mode\nSETVL = dc(:,4); % depend on control mode: current or power demand\nVSCHD = dc(:,5); % scheduled compounded dc voltage\nANMXR = dc(:,15); % nominal maximum rectifier firing angle\nANMNR = dc(:,16); % nominal minimum rectifier firing angle\nGAMMX = dc(:,32); % nominal maximum inverter firing angle\nGAMMN = dc(:,33); % nominal minimum inverter firing angle\nSETVL = abs(SETVL);\n% Convert the voltage on rectifier side and inverter side\n% The value is calculated as basekV/VSCHD\n% basekV is the bus base voltage, VSCHD is the scheduled compounded\n% voltage\ndcline = zeros(ndc, c.LOSS1); % initiate the hvdc data format\nindr = dc(:,13); % rectifier end bus number\nindi = dc(:,30); % inverter end bus number\ndcind = [indr indi]; \n% bus nominal voltage\nVr = bus(e2i(indr), VM);\nVi = bus(e2i(indi), VM);\n%% Calculate the real power input at the from end\nPMW = zeros(ndc, 1);\nfor i = 1:ndc\n if MDC(i) == 1\n PMW(i) = SETVL(i); % SETVL is the desired real power demand\n elseif MDC(i) == 2;\n PMW(i) = SETVL(i)*VSCHD(i)/1000; % SETVL is the current in amps (need devide 1000 to convert to MW)\n else PMW(i) = 0;\n end\nend\n%% calculate reactive power limits\n[Qrmin,Qrmax] = psse_convert_hvdc_Qlims(ANMXR,ANMNR,PMW); %% rectifier end\n[Qimin,Qimax] = psse_convert_hvdc_Qlims(GAMMX,GAMMN,PMW); %% inverter end\n%% calculate the loss coefficient (Only consider the l1)\n% l1 = P'.*RDC;\n\n%% conclude all info\nstatus = ones(ndc, 1);\nstatus(MDC==0) = 0; %% set status of blocked HVDC lines to zero\n% dcline(:,[1 2 3 4 5 8 9 10 11 12 13 14 15]) = [indr,indi,status,PMW, PMW, Vr, Vi,0.85*PMW, 1.15*PMW, Qrmin, Qrmax, Qimin, Qimax];\ndcline(:, [c.F_BUS c.T_BUS c.BR_STATUS c.PF c.PT c.VF c.VT ...\n c.PMIN c.PMAX c.QMINF c.QMAXF c.QMINT c.QMAXT]) = ...\n [indr indi status PMW PMW Vr Vi 0.85*PMW 1.15*PMW Qrmin Qrmax Qimin Qimax];\n\n\nfunction [Qmin, Qmax] = psse_convert_hvdc_Qlims(alphamax,alphamin,P)\n%PSSE_CONVERT_HVDC_QLIMS calculate HVDC line reactive power limits\n%\n% [Qmin, Qmax] = psse_convert_hvdc_Qlims(alphamax,alphamin,P)\n%\n% Inputs:\n% alphamax : maximum firing angle\n% alphamin : minimum steady-state rectifier firing angle\n% P : real power demand\n% Outputs:\n% Qmin : lower limit of reactive power\n% Qmax : upper limit of reactive power \n%\n% Note:\n% This function calculates the reactive power at the rectifier or inverter\n% end. It is assumed the maximum overlap angle is 60 degree (see\n% Kimbark's book). The maximum reactive power is calculated with the\n% power factor:\n% pf = acosd(0.5*(cosd(alphamax(i))+cosd(60))),\n% where, 60 is the maximum delta angle.\n\nlen = length(alphamax);\nphi = zeros(size(alphamax));\nQmin = phi;\nQmax = phi;\nfor i = 1:len\n %% minimum reactive power calculated under assumption of no overlap angle\n %% i.e. power factor equals to tan(alpha)\n Qmin(i) = P(i)*tand(alphamin(i));\n\n %% maximum reactive power calculated when overlap angle reaches max\n %% value (60 deg). I.e.\n %% cos(phi) = 1/2*(cos(alpha)+cos(delta))\n %% Q = P*tan(phi)\n phi(i) = acosd(0.5*(cosd(alphamax(i))+cosd(60)));\n Qmax(i) = P(i)*tand(phi(i));\n if Qmin(i)<0\n Qmin(i) = -Qmin(i);\n end\n if Qmax(i)<0\n Qmax(i) = -Qmax(i);\n end\nend\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/psse_convert_hvdc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583376458153, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.396593703981257}} {"text": "%script v0730\nwhile 1\n if or(x(k)==si,y(k)==1)|(v==2)\n break\n end\n xk1=x(k)+1; yk1=y(k)-1;\n if I(xk1,yk1)\n break\n end\n xk2=xk1-1;yk2=yk1;\n tr=(I(xk2,yk2)>0)|I(xk1,y(k));\n if tr\n per=per+1;\n pr=pr+sqrt(2);\n if xk1==si\n per=per+1;\n else\n per=per+I(xk1+1,yk1);\n end\n if yk1==1\n per=per+1;\n else\n per=per+I(xk1,yk1-1);\n end \n k=k+1;v=6;\n x=[x xk1]; y=[y yk1];\n else\n break\n end\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13924-path-tracing-measuarement-fragmentation/v0730.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3965936967940687}} {"text": "function wevent = segment_event_waveforms(w, cobj, pretrigger, posttrigger, arrivalTimeCorrection)\n%SEGMENT_EVENT_WAVEFORMS take a continuous vector of waveforms, and based\n% arrival times in the infrasoundEvent vector, generate a cell vector where\n% each element is a waveform vector extracted around the arrival times\n% given\n% Usage:\n% wevent = segment_event_waveforms(w, infrasoundEvent, pretrigger,\n% posttrigger,arrivalTimeCorrection)\n% pretrigger and posttrigger are in seconds (e.g. 1)\nif ~exist('arrivalTimeCorrection','var')\n arrivalTimeCorrection = 0.0;\nend\ndisp('Segmenting event waveforms...')\nnumEvents = numel(infrasoundEvent);\nfor eventNumber=1:numEvents\n fprintf('- segmenting infrasound event %d of %d\\n',eventNumber,numEvents );\n time1 = infrasoundEvent(eventNumber).FirstArrivalTime-pretrigger/86400-arrivalTimeCorrection/86400;\n% if arrivalTimeCorrection==0.0\n% time2 = infrasoundEvent(eventNumber).LastArrivalTime+posttrigger/86400-arrivalTimeCorrection/86400;\n% else\n time2 = infrasoundEvent(eventNumber).FirstArrivalTime+posttrigger/86400-arrivalTimeCorrection/86400;\n% end\n w2 = detrend(extract(w, 'time', time1, time2));\n wevent{eventNumber} = w2;\n clear w2\nend\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/applications/rockets/infrasoundgt/segment_event_waveforms.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3965936967940687}} {"text": "%%*****************************************************************************\n%% sqlp: solve an semidefinite-quadratic-linear program\n%% by infeasible path-following method.\n%%\n%% [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0);\n%%\n%% Input: blk: a cell array describing the block diagonal structure of SQL data.\n%% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)]\n%% b,C: data for the SQL instance.\n%% (X0,y0,Z0): an initial iterate (if it is not given, the default is used).\n%% OPTIONS: a structure that specifies parameters required in sqlp.m,\n%% (if it is not given, the default in sqlparameters.m is used).\n%%\n%% Output: obj = [ ].\n%% (X,y,Z): an approximately optimal solution or a primal or dual\n%% infeasibility certificate.\n%% info.termcode = termination-code\n%% info.iter = number of iterations\n%% info.obj = [primal-obj, dual-obj]\n%% info.cputime = total-time\n%% info.gap = gap\n%% info.pinfeas = primal_infeas\n%% info.dinfeas = dual_infeas\n%% runhist.pobj = history of primal objective value.\n%% runhist.dobj = history of dual objective value.\n%% runhist.gap = history of .\n%% runhist.pinfeas = history of primal infeasibility.\n%% runhist.dinfeas = history of dual infeasibility.\n%% runhist.cputime = history of cputime spent.\n%%----------------------------------------------------------------------------\n%% The OPTIONS structure specifies the required parameters:\n%% vers gam predcorr expon gaptol inftol steptol\n%% maxit printlevel scale_data ...\n%% (all have default values set in sqlparameters.m).\n%%*************************************************************************\n%% SDPT3: version 3.1\n%% Copyright (c) 1997 by\n%% K.C. Toh, M.J. Todd, R.H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*************************************************************************\n\nfunction [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0)\n\nif (nargin < 5); OPTIONS = []; end\n\nisemptyAtb = 0;\nif isempty(At) && isempty(b);\n %% Add redundant constraint: <-I,X> <= 0\n b = 0;\n At = ops(ops(blk,'identity'),'*',-1);\n numblk = size(blk,1);\n blk{numblk+1,1} = 'l'; blk{numblk+1,2} = 1;\n At{numblk+1,1} = 1; C{numblk+1,1} = 0;\n isemptyAtb = 1;\nend\n%%\n%%-----------------------------------------\n%% get parameters from the OPTIONS structure.\n%%-----------------------------------------\n%%\n\nmatlabversion = sscanf(version,'%f');\nif strcmp(computer,'PCWIN64') || strcmp(computer,'GLNXA64')\n par.computer = 64;\nelse\n par.computer = 32;\nend\npar.matlabversion = matlabversion(1);\npar.vers = 0;\npar.predcorr = 1;\npar.gam = 0;\npar.expon = 1;\npar.gaptol = 1e-8;\npar.inftol = 1e-8;\npar.steptol = 1e-6;\npar.maxit = 100;\npar.printlevel = 3;\npar.stoplevel = 1;\npar.scale_data = 0;\npar.spdensity = 0.4;\npar.rmdepconstr = 0;\npar.smallblkdim = 50;\npar.schurfun = cell(size(blk,1),1);\npar.schurfun_par = cell(size(blk,1),1);\n%%\nparbarrier = cell(size(blk,1),1);\nfor p = 1:size(blk,1)\n pblk = blk(p,:);\n if strcmp(pblk{1},'s') || strcmp(pblk{1},'q')\n parbarrier{p} = zeros(1,length(pblk{2}));\n elseif strcmp(pblk{1},'l') || strcmp(pblk{1},'u' )\n parbarrier{p} = zeros(1,sum(pblk{2}));\n end\nend\nparbarrier_0 = parbarrier;\n%%\nif nargin > 4,\n if isfield(OPTIONS,'vers'); par.vers = OPTIONS.vers; end\n if isfield(OPTIONS,'predcorr'); par.predcorr = OPTIONS.predcorr; end\n if isfield(OPTIONS,'gam'); par.gam = OPTIONS.gam; end\n if isfield(OPTIONS,'expon'); par.expon = OPTIONS.expon; end\n if isfield(OPTIONS,'gaptol'); par.gaptol = OPTIONS.gaptol; end\n if isfield(OPTIONS,'inftol'); par.inftol = OPTIONS.inftol; end\n if isfield(OPTIONS,'steptol'); par.steptol = OPTIONS.steptol; end\n if isfield(OPTIONS,'maxit'); par.maxit = OPTIONS.maxit; end\n if isfield(OPTIONS,'printlevel'); par.printlevel = OPTIONS.printlevel; end\n if isfield(OPTIONS,'stoplevel'); par.stoplevel = OPTIONS.stoplevel; end\n if isfield(OPTIONS,'scale_data'); par.scale_data = OPTIONS.scale_data; end\n if isfield(OPTIONS,'spdensity'); par.spdensity = OPTIONS.spdensity; end\n if isfield(OPTIONS,'rmdepconstr'); par.rmdepconstr = OPTIONS.rmdepconstr; end\n if isfield(OPTIONS,'smallblkdim'); par.smallblkdim = OPTIONS.smallblkdim; end\n if isfield(OPTIONS,'parbarrier');\n parbarrier = OPTIONS.parbarrier;\n if isempty(parbarrier); parbarrier = parbarrier_0; end\n if ~iscell(parbarrier);\n tmp = parbarrier; clear parbarrier; parbarrier{1} = tmp;\n end\n if (length(parbarrier) < size(blk,1))\n len = length(parbarrier);\n parbarrier(len+1:size(blk,1)) = parbarrier_0(len+1:size(blk,1));\n end\n end\n if isfield(OPTIONS,'schurfun');\n par.schurfun = OPTIONS.schurfun;\n if ~isempty(par.schurfun); par.scale_data = 0; end\n end\n if isfield(OPTIONS,'schurfun_par'); par.schurfun_par = OPTIONS.schurfun_par; end\n if isempty(par.schurfun); par.schurfun = cell(size(blk,1),1); end\n if isempty(par.schurfun_par); par.schurfun_par = cell(size(blk,1),1); end\nend\nif (size(blk,2) > 2); par.smallblkdim = 0; end\n%%\n%%-----------------------------------------\n%% convert matrices to cell arrays.\n%%-----------------------------------------\n%%\nif ~iscell(At); At = {At}; end;\nif ~iscell(C); C = {C}; end;\nif all(size(At) == [size(blk,1), length(b)]);\n convertyes = zeros(size(blk,1),1);\n for p = 1:size(blk,1)\n if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2}))\n convertyes(p) = 1;\n end\n end\n if any(convertyes)\n if (par.printlevel);\n fprintf('\\n sqlp: converting At into required format');\n end\n At = svec(blk,At,ones(size(blk,1),1));\n end\nend\n%%\n%%-----------------------------------------\n%% validate SQLP data.\n%%-----------------------------------------\n%%\n% tstart = cputime;\n[blk,At,C,b,blkdim,numblk,parbarrier] = validate(blk,At,C,b,par,parbarrier);\n[blk,At,C,b,iscmp] = convertcmpsdp(blk,At,C,b);\nif (iscmp) && (par.printlevel>=2);\n fprintf('\\n SQLP has complex data');\nend\nif (nargin <= 5) || (isempty(X0) || isempty(y0) || isempty(Z0));\n par.startpoint = 1;\n [X0,y0,Z0] = infeaspt(blk,At,C,b);\nelse\n par.startpoint = 2;\n if ~iscell(X0); X0 = {X0}; end;\n if ~iscell(Z0); Z0 = {Z0}; end;\n y0 = real(y0);\n if (length(y0) ~= length(b));\n error('sqlp: length of b and y0 not compatible');\n end\n [X0,Z0] = validate_startpoint(blk,X0,Z0,par.spdensity,iscmp);\nend\nif (par.printlevel>=2)\n fprintf('\\n num. of constraints = %2.0d',length(b));\n if blkdim(1);\n fprintf('\\n dim. of sdp var = %2.0d,',blkdim(1));\n fprintf(' num. of sdp blk = %2.0d',numblk(1));\n end\n if blkdim(2);\n fprintf('\\n dim. of socp var = %2.0d,',blkdim(2));\n fprintf(' num. of socp blk = %2.0d',numblk(2));\n end\n if blkdim(3); fprintf('\\n dim. of linear var = %2.0d',blkdim(3)); end\n if blkdim(4); fprintf('\\n dim. of free var = %2.0d',blkdim(4)); end\nend\n%%\n%%-----------------------------------------\n%% detect unrestricted blocks in linear blocks\n%%-----------------------------------------\n%%\nuser_supplied_schurfun = 0;\nfor p = 1:size(blk,1)\n if ~isempty(par.schurfun{p}); user_supplied_schurfun = 1; end\nend\nif (user_supplied_schurfun == 0)\n [blk2,At2,C2,ublkinfo,parbarrier2,X02,Z02] = ...\n detect_ublk(blk,At,C,parbarrier,X0,Z0,par.printlevel);\nelse\n blk2 = blk; At2 = At; C2 = C;\n parbarrier2 = parbarrier; X02 = X0; Z02 = Z0;\n ublkinfo = cell(size(blk2,1),1);\nend\nublksize = blkdim(4);\nfor p = 1:size(ublkinfo,1)\n ublksize = ublksize + length(ublkinfo{p});\nend\n%%\n%%-----------------------------------------\n%% detect diagonal blocks in semidefinite blocks\n%%-----------------------------------------\n%%\nif (user_supplied_schurfun==0)\n [blk3,At3,C3,diagblkinfo,diagblkchange,parbarrier3,X03,Z03] = ...\n detect_lblk(blk2,At2,C2,b,parbarrier2,X02,Z02,par.printlevel);\nelse\n blk3 = blk2; At3 = At2; C3 = C2;\n parbarrier3 = parbarrier2; X03 = X02; Z03 = Z02;\n diagblkchange = 0;\n diagblkinfo = cell(size(blk3,1),1);\nend\n%%\n%%-----------------------------------------\n%% main solver\n%%-----------------------------------------\n%%\n% exist_analytic_term = 0;\n% for p = 1:size(blk3,1);\n% idx = find(parbarrier3{p} > 0);\n% if ~isempty(idx); exist_analytic_term = 1; end\n% end\n%\nif (par.vers == 0);\n if blkdim(1); par.vers = 1; else par.vers = 2; end\nend\npar.blkdim = blkdim;\npar.ublksize = ublksize;\n[obj,X3,y,Z3,info,runhist] = ...\n sqlpmain(blk3,At3,C3,b,par,parbarrier3,X03,y0,Z03);\n%%\n%%-----------------------------------------\n%% recover semidefinite blocks from linear blocks\n%%-----------------------------------------\n%%\nif any(diagblkchange)\n X2 = cell(size(blk2,1),1); Z2 = cell(size(blk2,1),1);\n count = 0;\n for p = 1:size(blk2,1)\n pblk = blk2(p,:);\n n = sum(pblk{2});\n blkno = diagblkinfo{p,1};\n idxdiag = diagblkinfo{p,2};\n idxnondiag = diagblkinfo{p,3};\n if ~isempty(idxdiag)\n len = length(idxdiag);\n Xtmp = [idxdiag,idxdiag,X3{end}(count+1:count+len); n, n, 0];\n Ztmp = [idxdiag,idxdiag,Z3{end}(count+1:count+len); n, n, 0];\n if ~isempty(idxnondiag)\n [ii,jj,vv] = find(X3{blkno});\n Xtmp = [Xtmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok\n [ii,jj,vv] = find(Z3{blkno});\n Ztmp = [Ztmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok\n end\n X2{p} = spconvert(Xtmp);\n Z2{p} = spconvert(Ztmp);\n count = count + len;\n else\n X2(p) = X3(blkno); Z2(p) = Z3(blkno);\n end\n end\nelse\n X2 = X3; Z2 = Z3;\nend\n%%\n%%-----------------------------------------\n%% recover linear block from unrestricted block\n%%-----------------------------------------\n%%\nnumblk = size(blk,1);\nnumblknew = numblk;\nX = cell(numblk,1); Z = cell(numblk,1);\nfor p = 1:numblk\n n = blk{p,2};\n if isempty(ublkinfo{p,1})\n X{p} = X2{p}; Z{p} = Z2{p};\n else\n Xtmp = zeros(n,1); Ztmp = zeros(n,1);\n Xtmp(ublkinfo{p,1}) = max(0,X2{p});\n Xtmp(ublkinfo{p,2}) = max(0,-X2{p});\n Ztmp(ublkinfo{p,1}) = max(0,Z2{p});\n Ztmp(ublkinfo{p,2}) = max(0,-Z2{p});\n if ~isempty(ublkinfo{p,3})\n numblknew = numblknew + 1;\n Xtmp(ublkinfo{p,3}) = X2{numblknew};\n Ztmp(ublkinfo{p,3}) = Z2{numblknew};\n end\n X{p} = Xtmp; Z{p} = Ztmp;\n end\nend\n%%\n%%-----------------------------------------\n%% recover complex solution\n%%-----------------------------------------\n%%\nif (iscmp)\n for p = 1:numblk\n pblk = blk(p,:);\n n = sum(pblk{2})/2;\n if strcmp(pblk{1},'s');\n X{p} = X{p}(1:n,1:n) + sqrt(-1)*X{p}(n+1:2*n,1:n);\n Z{p} = Z{p}(1:n,1:n) + sqrt(-1)*Z{p}(n+1:2*n,1:n);\n X{p} = 0.5*(X{p}+X{p}');\n Z{p} = 0.5*(Z{p}+Z{p}');\n end\n end\nend\nif (isemptyAtb)\n X = X(1:end-1); Z = Z(1:end-1);\nend\n%%*****************************************************************************\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sdpt3/Solver/sqlp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3965936967940687}} {"text": "function newRxnScores = groupRxnScores(model, origRxnScores, origRxnIds, groupIds, origRxnsToZero)\n% groupRxnScores\n% This function sums up the reaction scores for all reactions that were merged \n% into one by the linear merge.\n% \n% model The model with linearly merged rxns.\n% origRxnScores The rxnScores from the model before the linear merge.\n% origRxnIds The rxn ids of the model before the linear merge.\n% groupIds The groupIds vector output from linearMerge.\n% There is one integer for each rxn in origRxnIds. 0 means\n% the reaction was merged. A non-zero integer means that the\n% reaction was merged with all other rxns having the same integer.\n% origRxnsToZero A logical vector saying which of the original rxns that should not\n% be part of the problem. The way this is solved is that all \n% such reactions have a rxnScore of 0. If any original rxnScore \n% value should be zero (which is very unlikely) it is changed to 0.01.\n% If the sum of the rxnScores for a merged rxn becomes zero \n% while some of them are nonzero, the new value will also be 0.01, \n% to distinguish the rxn from rxns with only rxns to zero.\n% There are two reasons why we don't want zeros in the reaction \n% scores unless these reactions should be ignored:\n% 1) we want to be able to separate those\n% 2) it is difficult to handle a zero value in the MILP - \n% the on/off of such a reaction can be random, so better \n% to fix it in one direction.\n\n\nnewRxnScores = zeros(length(model.rxns),1);\n[~,ia,ib] = intersect(model.rxns,origRxnIds);\ngrpIdsMerged = nan(length(model.rxns),1);\ngrpIdsMerged(ia) = groupIds(ib);\n%check if any of the original scores are 0, in that case change them to 0.01 (unlikely)\norigRxnScores(origRxnScores == 0) = 0.01;\n%Then set the rxn scores for rxns to zero to 0\norigRxnScores(origRxnsToZero) = 0;\n\n%fill in original scores\nnewRxnScores(ia) = origRxnScores(ib);\n\nfor i = 1:length(model.rxns)\n %for reactions that are not merged with anything, just keep score as it is\n if grpIdsMerged(i) ~= 0\n %find all original rxns in the group\n sel = groupIds == grpIdsMerged(i);\n newRxnScores(i) = sum(origRxnScores(sel));\n if (newRxnScores(i) == 0 && any(origRxnScores(sel) ~= 0))\n %special unfortunate case, where the reactions happen to sum to 0 while some of them are nonzero\n %set to 0.01 in this case (proabably pretty unusual)\n newRxnScores(i) = 0.01;\n end\n end\nend\n\nend\n", "meta": {"author": "SysBioChalmers", "repo": "RAVEN", "sha": "cf4d3e0be954fde96a1a09ae3353dd2ee46552ed", "save_path": "github-repos/MATLAB/SysBioChalmers-RAVEN", "path": "github-repos/MATLAB/SysBioChalmers-RAVEN/RAVEN-cf4d3e0be954fde96a1a09ae3353dd2ee46552ed/INIT/groupRxnScores.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583124210896, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.39659368960688024}} {"text": " function y = ir_phantom_resize(x, nx, ny)\n%function y = ir_phantom_resize(x, nx, ny)\n%| resize a [mx,my] phantom image to be [nx,ny]\n%| by combination of downsampling and cropping\n\nif nargin == 1 && streq(x, 'test'), ir_phantom_resize_test, return, end\nif nargin < 3, ir_usage, end\n\nmx = size(x,1);\nmy = size(x,2);\nif nx == mx && ny == my\n\ty = x;\n\treturn\nend\n\nif nx > mx || ny > my\n\terror 'requested size too large, implement interpolation!'\nend\n\n% if power of 2 size, then downsample\nif 2^floor(log2(nx)) == nx && nx == ny\n\ty = downsample2(x, mx/nx);\nreturn\nend\n\nnn = 2^max(ceil(log2([nx ny])));\ny = downsample2(x, mx/nn);\n\n% trim if non power of 2\nif nx < nn\n\ty = y([1:nx]+round((nn-nx)/2),:);\nend\nif ny < nn\n\ty = y(:,[1:ny]+round((nn-ny)/2));\nend\n\n\nfunction ir_phantom_resize_test\nx = zeros(64, 60);\nx(20:30,10:15) = 1;\ny = ir_phantom_resize(x, 32, 28);\nim plc 1 2\nim(1, x)\nim(2, y)\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/data/ir_phantom_resize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.39659348903123115}} {"text": "function sdn = utc2sdn(utc)\n% UTC2SDN - Convert UTC seconds to matlab date format\n%\n% Use as: sdn = utc2sdn(utc);\n%\n% sdn = Matlab datenumber (se DATENUM and DATESTR)\n% utc = Seconds since 01 Jan 1970 00:00:00\n\n% Brian Schlining\n% 12 Apr 2000\n\n%datenum('01 Jan 1970 00:00:00') = 719529\nsdn = utc/60/60/24 + 719529;", "meta": {"author": "nctoolbox", "repo": "nctoolbox", "sha": "af757acccfcac373e35fde89fc8ed7e64b67de82", "save_path": "github-repos/MATLAB/nctoolbox-nctoolbox", "path": "github-repos/MATLAB/nctoolbox-nctoolbox/nctoolbox-af757acccfcac373e35fde89fc8ed7e64b67de82/cdm/utilities/misc/utc2sdn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6334102567576901, "lm_q1q2_score": 0.3965934846983578}} {"text": "function y = apply_3d_func(f,x)\n\n% apply_3d_func - apply a function to 3D arrays\n%\n% y = apply_3d_func(f,x);\n%\n% f should take a 2D NxNxN image and ouput a 2D NxNxN image\n% x is an N^3 x Q input\n% x is an N^3 x Q input\n%\n% This function is used to adapt 3D functions (e.g. filtering) for the \n% barycenter code that assume 1D vectors.\n%\n% Copyright (c) 2014 Gabriel Peyre\n\nN = round( (size(x,1))^(1/3) );\nP = size(x,2);\n\nresh = @(x)reshape(x,[N N N]);\nflat = @(x)x(:);\n\ny = zeros(size(x));\nfor i=1:P\n y(:,i) = flat(f(resh(x(:,i))));\nend\n\nend", "meta": {"author": "gpeyre", "repo": "2015-SIGGRAPH-convolutional-ot", "sha": "484b83c5ee396f3d998f67ed35652249b5e29e81", "save_path": "github-repos/MATLAB/gpeyre-2015-SIGGRAPH-convolutional-ot", "path": "github-repos/MATLAB/gpeyre-2015-SIGGRAPH-convolutional-ot/2015-SIGGRAPH-convolutional-ot-484b83c5ee396f3d998f67ed35652249b5e29e81/code/toolbox/apply_3d_func.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778403, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.3965934801932504}} {"text": "function hmm = states_supdate(hmm,hmm_noisy,rho,update)\n% update==1, W; update==2, Omega; update==3, sigma; update==4, alpha\nK = length(hmm_noisy.state);\nSind = hmm.train.Sind==1;\nregressed = sum((hmm.train.Sind==1),1)>0;\n\nfor k = 1:K\n if any(update==1) && isfield(hmm_noisy.state(1),'W') && ~isempty(hmm_noisy.state(1).W.Mu_W)\n hmm.state(k).W.Mu_W = (1-rho) * hmm.state(k).W.Mu_W + ...\n rho * hmm_noisy.state(k).W.Mu_W;\n hmm.state(k).W.iS_W = (1-rho) * hmm.state(k).W.iS_W + ...\n rho * hmm_noisy.state(k).W.iS_W;\n if length(size(hmm.state(k).W.S_W))==2 && ... % full, uniquefull, uniqueAR or 1 dimension \n size(hmm.state(k).W.S_W,1)==size(hmm.state(k).W.S_W,2)\n hmm.state(k).W.S_W = inv(hmm.state(k).W.iS_W);\n else % diag or shareddiag\n for n = 1:size(hmm.state(k).W.S_W,1)\n hmm.state(k).W.S_W(n,Sind(:,n),Sind(:,n)) = ...\n inv(permute(hmm.state(k).W.iS_W(n,Sind(:,n),Sind(:,n)),[2 3 1]));\n end\n end\n elseif any(update==2) && isfield(hmm_noisy.state(1),'Omega')\n hmm.state(k).Omega.Gam_rate = (1-rho) * hmm.state(k).Omega.Gam_rate + ...\n rho * hmm_noisy.state(k).Omega.Gam_rate;\n hmm.state(k).Omega.Gam_shape = (1-rho) * hmm.state(k).Omega.Gam_shape + ...\n rho * hmm_noisy.state(k).Omega.Gam_shape;\n if strcmp(hmm_noisy.train.covtype,'full') || ...\n strcmp(hmm_noisy.train.covtype,'uniquefull') || ...\n strcmp(hmm_noisy.train.covtype,'sharedfull')\n hmm.state(k).Omega.Gam_irate(regressed,regressed) = ...\n inv(hmm.state(k).Omega.Gam_rate(regressed,regressed));\n end\n elseif any(update==3) && isfield(hmm_noisy.state(1),'sigma')\n hmm.state(k).sigma.Gam_rate = (1-rho) * hmm.state(k).sigma.Gam_rate + ...\n rho * hmm_noisy.state(k).sigma.Gam_rate;\n hmm.state(k).sigma.Gam_shape = (1-rho) * hmm.state(k).sigma.Gam_shape + ...\n rho * hmm_noisy.state(k).sigma.Gam_shape;\n elseif any(update==4) && isfield(hmm_noisy.state(1),'alpha')\n hmm.state(k).alpha.Gam_rate = (1-rho) * hmm.state(k).alpha.Gam_rate + ...\n rho * hmm_noisy.state(k).alpha.Gam_rate;\n hmm.state(k).alpha.Gam_shape = (1-rho) * hmm.state(k).alpha.Gam_shape + ...\n rho * hmm_noisy.state(k).alpha.Gam_shape;\n elseif any(update==5) && isfield(hmm_noisy.state(1),'beta')\n hmm.state(k).beta.Gam_rate = (1-rho) * hmm.state(k).beta.Gam_rate + ...\n rho * hmm_noisy.state(k).beta.Gam_rate;\n hmm.state(k).beta.Gam_shape = (1-rho) * hmm.state(k).beta.Gam_shape + ...\n rho * hmm_noisy.state(k).beta.Gam_shape; \n end\nend\n\nif any(update==2) && isfield(hmm_noisy,'Omega')\n hmm.Omega.Gam_rate = (1-rho) * hmm.Omega.Gam_rate + ...\n rho * hmm_noisy.Omega.Gam_rate;\n hmm.Omega.Gam_shape = (1-rho) * hmm.Omega.Gam_shape + ...\n rho * hmm_noisy.Omega.Gam_shape;\n if strcmp(hmm_noisy.train.covtype,'uniquefull') || ...\n strcmp(hmm_noisy.train.covtype,'sharedfull')\n hmm.Omega.Gam_irate(regressed,regressed) = ...\n inv(hmm.Omega.Gam_rate(regressed,regressed));\n end\nend\n\nend", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/stochastic/states_supdate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7690802476562641, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.39655309248075893}} {"text": "function [c, v, n] = ft_connectivity_psi(input, varargin)\n\n% FT_CONNECTIVITY_PSI computes the phase slope index from a data-matrix\n% containing the cross-spectral density. It implements the method described\n% in: Nolte et al., Robustly estimating the flow direction of information\n% in complex physical systems. Physical Review Letters, 2008; 100; 234101.\n%\n% Use as\n% [c, v, n] = ft_connectivity_psi(input, ...)\n%\n% The input data input should be organized as\n% Repetitions x Channel x Channel (x Frequency) (x Time)\n% or\n% Repetitions x Channelcombination (x Frequency) (x Time)\n%\n% The first dimension should be singleton if the input already contains an\n% average.\n%\n% Additional optional input arguments come as key-value pairs:\n% nbin\t\t\t=\tscalar, half-bandwidth parameter: the number of frequency bins\n%\t\t\t\t\t\t\t\tacross which to integrate\n% hasjack\t\t= 0 or 1, specifying whether the repetitions represent\n% leave-one-out samples (allowing for a variance estimate)\n% feedback\t= 'none', 'text', 'textbar' type of feedback showing progress of\n% computation\n% dimord\t\t= string, specifying how the input matrix should be interpreted\n% powindx =\n% normalize =\n%\n% The output p contains the phase slope index, v is a variance estimate\n% which only can be computed if the data contains leave-one-out samples,\n% and n is the number of repetitions in the input data. If the phase slope\n% index is positive, then the first chan (1st dim) becomes more lagged (or\n% less leading) with higher frequency, indicating that it is causally\n% driven by the second channel (2nd dim)\n%\n% See also FT_CONNECTIVITYANALYSIS\n\n% Copyright (C) 2009-2010 Donders Institute, Jan-Mathijs Schoffelen\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% FIXME: interpretation of the slope\n\nhasjack = ft_getopt(varargin, 'hasjack', 0);\nfeedback = ft_getopt(varargin, 'feedback', 'none');\ndimord = ft_getopt(varargin, 'dimord');\npowindx = ft_getopt(varargin, 'powindx');\nnormalize = ft_getopt(varargin, 'normalize', 'no');\nnbin = ft_getopt(varargin, 'nbin');\n\nif isempty(dimord)\n ft_error('input parameters should contain a dimord');\nend\n\nif (length(strfind(dimord, 'chan'))~=2 || contains(dimord, 'pos')>0) && ~isempty(powindx)\n %crossterms are not described with chan_chan_therest, but are linearly indexed\n \n siz = size(input);\n \n outsum = zeros(siz(2:end));\n outssq = zeros(siz(2:end));\n pvec = [2 setdiff(1:numel(siz),2)];\n \n ft_progress('init', feedback, 'computing metric...');\n %first compute coherency and then phaseslopeindex\n for j = 1:siz(1)\n ft_progress(j/siz(1), 'computing metric for replicate %d from %d\\n', j, siz(1));\n c = reshape(input(j,:,:,:,:), siz(2:end));\n p1 = abs(reshape(input(j,powindx(:,1),:,:,:), siz(2:end)));\n p2 = abs(reshape(input(j,powindx(:,2),:,:,:), siz(2:end)));\n \n p = ipermute(phaseslope(permute(c./sqrt(p1.*p2), pvec), nbin, normalize), pvec);\n \n outsum = outsum + p;\n outssq = outssq + p.^2;\n end\n ft_progress('close');\n \nelseif length(strfind(dimord, 'chan'))==2 || length(strfind(dimord, 'pos'))==2\n %crossterms are described by chan_chan_therest\n \n siz = size(input);\n \n outsum = zeros(siz(2:end));\n outssq = zeros(siz(2:end));\n pvec = [3 setdiff(1:numel(siz),3)];\n \n ft_progress('init', feedback, 'computing metric...');\n for j = 1:siz(1)\n ft_progress(j/siz(1), 'computing metric for replicate %d from %d\\n', j, siz(1));\n p1 = zeros([siz(2) 1 siz(4:end)]);\n p2 = zeros([1 siz(3) siz(4:end)]);\n for k = 1:siz(2)\n p1(k,1,:,:,:,:) = input(j,k,k,:,:,:,:);\n p2(1,k,:,:,:,:) = input(j,k,k,:,:,:,:);\n end\n c = reshape(input(j,:,:,:,:,:,:), siz(2:end));\n p1 = p1(:,ones(1,siz(3)),:,:,:,:);\n p2 = p2(ones(1,siz(2)),:,:,:,:,:);\n p = ipermute(phaseslope(permute(c./sqrt(p1.*p2), pvec), nbin, normalize), pvec);\n p(isnan(p)) = 0;\n outsum = outsum + p;\n outssq = outssq + p.^2;\n end\n ft_progress('close');\n \nend\n\nn = siz(1);\nc = outsum./n;\n\nif n>1\n n = shiftdim(sum(~isnan(input),1),1);\n if hasjack\n bias = (n-1).^2;\n else\n bias = 1;\n end\n v = bias.*(outssq - (outsum.^2)./n)./(n - 1);\nelse\n v = [];\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [y] = phaseslope(x, n, norm)\n\nm = size(x, 1); %total number of frequency bins\ny = zeros(size(x));\nx(1:end-1,:,:,:,:) = conj(x(1:end-1,:,:,:,:)).*x(2:end,:,:,:,:);\n\nif strcmp(norm, 'yes')\n coh = zeros(size(x));\n coh(1:end-1,:,:,:,:) = (abs(x(1:end-1,:,:,:,:)) .* abs(x(2:end,:,:,:,:))) + 1;\n %FIXME why the +1? get the coherence\n for k = 1:m\n begindx = max(1,k-n);\n endindx = min(m,k+n);\n y(k,:,:,:,:) = imag(nansum(x(begindx:endindx,:,:,:,:)./coh(begindx:endindx,:,:,:,:),1));\n end\nelse\n for k = 1:m\n begindx = max(1,k-n);\n endindx = min(m,k+n);\n y(k,:,:,:,:) = imag(nansum(x(begindx:endindx,:,:,:,:),1));\n end\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/connectivity/ft_connectivity_psi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7690802370707281, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3965530870226457}} {"text": "function [ RGBpersp, XYZpersp ] = ht_Points2Persp( RGB, XYZ, P, H, W )\n%RGB, XYZ: 3*(#Number of Points)\n%P = K * [R, t]\n%H, W: size of output perspective\n\n%outputs\nRGBpersp = nan(H, W, 3);\nXYZpersp = nan(H, W, 3);\n\n%XYZ->image coordinate\nUV = P * [XYZ; ones(1, size(XYZ, 2))];\nUV_norm = UV(3, :);\nUV = bsxfun(@rdivide, UV(1:2, :), UV_norm);\n\n% keyboard;\n\nfront_idx = UV_norm > 0;\nUV = UV(:, front_idx);\nRGB = RGB(:, front_idx);\nXYZ = XYZ(:, front_idx);\nUV_norm = UV_norm(front_idx);\n\nvisible_idx = UV(1, :) >= 0 & UV(2, :) >= 0 & UV(1, :) < W & UV(2, :) < H;\nUV = UV(:, visible_idx);\nRGB = RGB(:, visible_idx);\nXYZ = XYZ(:, visible_idx);\nUV_norm = UV_norm(visible_idx);\n\n% UV= 1 + uint16(UV);\n% UV = UV(:, UV_norm>0);\n% UV_norm = UV_norm(UV_norm>0);\n% RGB = RGB(:, UV_norm>0);\n% XYZ = XYZ(:, UV_norm>0);\n% \n% UV = UV(:, UV(1, :) <=W & UV(2, :) <= H);\n% UV_norm = UV_norm(UV(1, :) <=W & UV(2, :) <= H);\n% RGB = RGB(:, UV(1, :) <=W & UV(2, :) <= H);\n% XYZ = XYZ(:, UV(1, :) <=W & UV(2, :) <= H);\n\n% keyboard;\n\n%rendering\nUV = 1 + uint16(floor(UV));\ncheck_norm = ones(H, W) * max(UV_norm);\nfor pp = 1:1:size(UV, 2)\n if UV_norm(pp) <= check_norm(UV(2, pp), UV(1, pp))\n RGBpersp(UV(2, pp), UV(1, pp), 1) = RGB(1, pp);\n RGBpersp(UV(2, pp), UV(1, pp), 2) = RGB(2, pp);\n RGBpersp(UV(2, pp), UV(1, pp), 3) = RGB(3, pp);\n XYZpersp(UV(2, pp), UV(1, pp), 1) = XYZ(1, pp);\n XYZpersp(UV(2, pp), UV(1, pp), 2) = XYZ(2, pp);\n XYZpersp(UV(2, pp), UV(1, pp), 3) = XYZ(3, pp);\n check_norm(UV(2, pp), UV(1, pp)) = UV_norm(pp);\n end\nend\n\nRGBpersp = uint8(RGBpersp);\n\n\n\nend\n\n", "meta": {"author": "HajimeTaira", "repo": "InLoc_demo", "sha": "b4c42de09d288f35e65ec0156608c704d6176b4f", "save_path": "github-repos/MATLAB/HajimeTaira-InLoc_demo", "path": "github-repos/MATLAB/HajimeTaira-InLoc_demo/InLoc_demo-b4c42de09d288f35e65ec0156608c704d6176b4f/functions/wustl_function/ht_Points2Persp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7520125848754471, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3965486617942024}} {"text": "load camera_results;\n\nstring_global = 'global n_ima';\nfor kk = 1:n_ima,\n string_global = [string_global ' x_' num2str(kk) ' X_' num2str(kk) ' xproj_' num2str(kk) ' x_proj_' num2str(kk)];\nend;\neval(string_global); \n\n\n%----------------- global optimization: ---------------------\n\nload projector_data; % load the projector corners (previously saved)\nload projector_results;\n\nsolution_projector = solution;\n\n\nload camera_results;\n\nsolution_camera = solution;\n\nparam_cam = solution_camera([1:10 16:end]);\nparam_proj = solution_projector([1:10 16:end]);\n\nparam = [param_cam;param_proj];\n\n\n% Restart the minimization from here (if need be):\nload camera_results;\nload calib_cam_proj_optim2;\n\n\noptions = [1 1e-4 1e-4 1e-6 0 0 0 0 0 0 0 0 0 12000 0 1e-8 0.1 0];\n\n%if 0, % use the full distortion model:\n \n% fprintf(1,'Take the complete distortion model\\n');\n\n % test the global error function:\n% e_global = error_cam_proj(param);\n \n% param_init = param;\n \n% param = leastsq('error_cam_proj',param,options);\n \n \n%else\n \n % Use a limitd distortion model (no 6th order)\n fprintf(1,'Take the 6th order distortion coefficient out\\n');\n \n param = param([1:9 11:11+6*n_ima-1 11+6*n_ima:11+6*n_ima+9-1 11+6*n_ima+9+1:end]);\n \n % test the global error function:\n e_global2 = error_cam_proj2(param);\n \n param_init = param;\n \n param = leastsq('error_cam_proj2',param,options);\n \n param = [param(1:9);0;param(10:10+6*n_ima-1);param(10+6*n_ima:10+6*n_ima+9-1);0;param(10+6*n_ima+9:end)];\n \n%end;\n\n\n\n\n% Extract the parameters:\n\ncam_proj_extract_param;\n\n \n% Relative prosition of camera wrt world:\nomc = omc_1;\nRc = Rc_1;\nTc = Tc_1;\n\n% relative position of projector wrt world:\nRp = R*Rc;\nomp = rodrigues(Rp);\nTp = T + R*Tc;\n\neval(['save calib_cam_proj_optim3 R om T fc fp cc cp alpha_c alpha_p kc kp Rc Rp Tc Tp omc omp param param_init']);\n\nno_image = 0;\n% Image size: (may or may not be available)\nnx = 640;\nny = 480;\n\ncomp_error_calib;\n\n% Save the optimal camera parameters:\nsaving_calib;\ncopyfile('Calib_Results.mat','camera_results_optim3.mat');\ndelete('Calib_Results.mat');\n\n% Save the optimal camera parameters:\nfc = fp;\ncc = cp;\nalpha_c = alpha_p;\nkc = kp;\n\nn_ima = 1;\nX_1 = X_proj;\nx_1 = x_proj;\nomc_1 = om;\nTc_1 = T;\nRc_1 = R;\n\n% Image size: (may or may not be available)\nnx = 1024;\nny = 768;\n\n% No calibration image is available (only the corner coordinates)\nno_image = 1;\n\ncomp_error_calib;\n\nsaving_calib;\ncopyfile('Calib_Results.mat','projector_results_optim3.mat');\ndelete('Calib_Results.mat');\n\n", "meta": {"author": "JzHuai0108", "repo": "ekfmonoslam", "sha": "443f6be744732453cdb90679abcaf5c962a6295e", "save_path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam", "path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam/ekfmonoslam-443f6be744732453cdb90679abcaf5c962a6295e/EKF_monoSLAM_1pRANSAC/matlab_code/matlabcalibration2ourcalibration/TOOLBOX_calib/cam_proj_calib_optim.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7520125737597974, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39654865593273664}} {"text": "function plot_q4_mesh ( node_num, element_num, node_xy, element_node, ...\n node_show, element_show, output_filename )\n\n%*****************************************************************************80\n%\n%% TPLOT_Q4_MESH plots a Q4 mesh.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 16 March 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer NODE_NUM, the number of nodes.\n%\n% Input, real NODE_XY(2,NODE_NUM), the nodes.\n%\n% Input, integer ELEMENT_NUM, the number of elements.\n%\n% Input, integer ELEMENT_NODE(4,ELEMENT_NUM), the nodes \n% that form the elements.\n%\n% Input, logical NODE_SHOW:\n% 0, do not show the nodes.\n% 1, show the nodes.\n% 2, show the nodes, and label them.\n%\n% Input, logical ELEMENT_SHOW, \n% 0, do not show the elements.\n% 1, show the elements.\n% 2, show the elements, and label them.\n%\n% Input, string OUTPUT_FILENAME, the name of the output file.\n%\n element_order = 4;\n\n x_ps_max = 576;\n x_ps_max_clip = 594;\n x_ps_min = 36;\n x_ps_min_clip = 18;\n y_ps_max = 666;\n y_ps_max_clip = 684;\n y_ps_min = 126;\n y_ps_min_clip = 108;\n\n date_time = timestring ( );\n%\n% We need to do some figuring here, so that we can determine\n% the range of the data, and hence the height and width\n% of the piece of paper.\n%\n x_max = max ( node_xy(1,1:node_num) );\n x_min = min ( node_xy(1,1:node_num) );\n x_scale = x_max - x_min;\n \n x_max = x_max + 0.05 * x_scale;\n x_min = x_min - 0.05 * x_scale;\n x_scale = x_max - x_min;\n\n y_max = max ( node_xy(2,1:node_num) );\n y_min = min ( node_xy(2,1:node_num) );\n y_scale = y_max - y_min;\n\n y_max = y_max + 0.05 * y_scale;\n y_min = y_min - 0.05 * y_scale;\n y_scale = y_max - y_min;\n\n if ( x_scale < y_scale )\n\n delta = round ( ( x_ps_max - x_ps_min ) ...\n * ( y_scale - x_scale ) / ( 2.0 * y_scale ) );\n\n x_ps_max = x_ps_max - delta;\n x_ps_min = x_ps_min + delta;\n\n x_ps_max_clip = x_ps_max_clip - delta;\n x_ps_min_clip = x_ps_min_clip + delta;\n\n x_scale = y_scale;\n\n elseif ( y_scale < x_scale )\n\n delta = round ( ( y_ps_max - y_ps_min ) ...\n * ( x_scale - y_scale ) / ( 2.0 * x_scale ) );\n\n y_ps_max = y_ps_max - delta;\n y_ps_min = y_ps_min + delta;\n\n y_ps_max_clip = y_ps_max_clip - delta;\n y_ps_min_clip = y_ps_min_clip + delta;\n\n y_scale = x_scale;\n\n end\n%\n% Plot the mesh.\n%\n file_unit = fopen ( output_filename, 'wt' );\n\n if ( file_unit < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'PLOT_Q4_MESH - Fatal error!\\n' );\n fprintf ( 1, ' Could not open the output file.\\n' );\n error ( 'PLOT_Q4_MESH - Fatal error!' );\n end\n\n fprintf ( file_unit, '%%!PS-Adobe-3.0 EPSF-3.0\\n' );\n fprintf ( file_unit, '%%%%Creator: plot_q4_mesh.m\\n' );\n fprintf ( file_unit, '%%%%Title: %s\\n', output_filename );\n fprintf ( file_unit, '%%%%CreationDate: %s\\n', date_time );\n fprintf ( file_unit, '%%%%Pages: 1\\n' );\n fprintf ( file_unit, '%%%%BoundingBox: %d %d %d %d\\n', ...\n x_ps_min, y_ps_min, x_ps_max, y_ps_max );\n fprintf ( file_unit, '%%%%Document-Fonts: Times-Roman\\n' );\n fprintf ( file_unit, '%%%%LanguageLevel: 1\\n' );\n fprintf ( file_unit, '%%%%EndComments\\n' );\n fprintf ( file_unit, '%%%%BeginProlog\\n' );\n fprintf ( file_unit, '/inch {72 mul} def\\n' );\n fprintf ( file_unit, '%%%%EndProlog\\n' );\n fprintf ( file_unit, '%%%%Page: 1 1\\n' );\n fprintf ( file_unit, 'save\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the RGB color to very light gray.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '0.900 0.900 0.900 setrgbcolor\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Draw a gray border around the page.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, 'newpath\\n' );\n fprintf ( file_unit, ' %d %d moveto\\n', x_ps_min, y_ps_min );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_max, y_ps_min );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_max, y_ps_max );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_min, y_ps_max );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_min, y_ps_min );\n fprintf ( file_unit, 'stroke\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the RGB color to black.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '0.000 0.000 0.000 setrgbcolor\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the font and its size.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '/Times-Roman findfont\\n' );\n fprintf ( file_unit, '0.50 inch scalefont\\n' );\n fprintf ( file_unit, 'setfont\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Print a title.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%%210 702 moveto\\n' );\n fprintf ( file_unit, '%%(Triangulation) show\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Define a clipping polygon.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, 'newpath\\n' );\n fprintf ( file_unit, ' %d %d moveto\\n', x_ps_min_clip, y_ps_min_clip );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_max_clip, y_ps_min_clip );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_max_clip, y_ps_max_clip );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_min_clip, y_ps_max_clip );\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps_min_clip, y_ps_min_clip );\n fprintf ( file_unit, 'clip newpath\\n' );\n%\n% Draw the nodes.\n%\n if ( node_num <= 200 )\n circle_size = 5;\n elseif ( node_num <= 500 )\n circle_size = 4;\n elseif ( node_num <= 1000 )\n circle_size = 3;\n elseif ( node_num <= 5000 )\n circle_size = 2;\n else\n circle_size = 1;\n end\n\n if ( 1 <= node_show )\n\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Draw filled dots at the nodes.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the RGB color to blue.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '0.000 0.150 0.750 setrgbcolor\\n' );\n fprintf ( file_unit, '%%\\n' );\n\n for node = 1 : node_num\n\n x_ps = floor ( ...\n ( ( x_max - node_xy(1,node) ) * x_ps_min ...\n + ( node_xy(1,node) - x_min ) * x_ps_max ) ...\n / ( x_max - x_min ) );\n\n y_ps = floor ( ...\n ( ( y_max - node_xy(2,node) ) * y_ps_min ...\n + ( node_xy(2,node) - y_min ) * y_ps_max ) ...\n / ( y_max - y_min ) );\n\n fprintf ( file_unit, ...\n ' newpath %d %d %d 0 360 arc closepath fill\\n', ...\n x_ps, y_ps, circle_size );\n\n end\n\n end\n%\n% Label the nodes.\n%\n if ( 2 <= node_show )\n \n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Label the nodes.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the RGB color to darker blue.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '0.000 0.250 0.850 setrgbcolor\\n' );\n fprintf ( file_unit, '/Times-Roman findfont\\n' );\n fprintf ( file_unit, '0.20 inch scalefont\\n' );\n fprintf ( file_unit, 'setfont\\n' );\n fprintf ( file_unit, '%%\\n' );\n\n for node = 1 : node_num\n\n x_ps = floor ( ...\n ( ( x_max - node_xy(1,node) ) * x_ps_min ...\n + ( node_xy(1,node) - x_min ) * x_ps_max ) ...\n / ( x_max - x_min ) );\n\n y_ps = floor ( ...\n ( ( y_max - node_xy(2,node) ) * y_ps_min ...\n + ( node_xy(2,node) - y_min ) * y_ps_max ) ...\n / ( y_max - y_min ) );\n\n fprintf ( file_unit, ' %d %d moveto (%d) show\\n', ...\n x_ps, y_ps+5, node );\n\n end\n\n end\n%\n% Draw the elements.\n%\n if ( 1 <= element_show )\n\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the RGB color to red.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '0.900 0.200 0.100 setrgbcolor\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Draw the elements.\\n' );\n fprintf ( file_unit, '%%\\n' );\n\n for element = 1 : element_num\n\n fprintf ( file_unit, 'newpath\\n' );\n\n for i = 1 : element_order + 1\n\n e = i4_wrap ( i, 1, element_order )\n\n node = element_node(e,element);\n\n x_ps = floor ( ...\n ( ( x_max - node_xy(1,node) ) * x_ps_min ...\n + ( node_xy(1,node) - x_min ) * x_ps_max ) ...\n / ( x_max - x_min ) );\n\n y_ps = floor ( ...\n ( ( y_max - node_xy(2,node) ) * y_ps_min ...\n + ( node_xy(2,node) - y_min ) * y_ps_max ) ...\n / ( y_max - y_min ) );\n\n if ( i == 1 )\n fprintf ( file_unit, ' %d %d moveto\\n', x_ps, y_ps );\n else\n fprintf ( file_unit, ' %d %d lineto\\n', x_ps, y_ps );\n end\n\n end\n\n fprintf ( file_unit, 'stroke\\n' );\n\n end\n\n end\n%\n% Label the elements.\n%\n if ( 2 <= element_show )\n \n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Label the elements.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% Set the RGB color to darker red.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '0.950 0.250 0.150 setrgbcolor\\n' );\n fprintf ( file_unit, '/Times-Roman findfont\\n' );\n fprintf ( file_unit, '0.20 inch scalefont\\n' );\n fprintf ( file_unit, 'setfont\\n' );\n fprintf ( file_unit, '%%\\n' );\n\n for element = 1 : element_num\n\n ave_x = 0.0;\n ave_y = 0.0;\n\n for i = 1 : element_order\n \n node = element_node(i,element);\n ave_x = ave_x + node_xy(1,node);\n ave_y = ave_y + node_xy(2,node);\n end\n \n ave_x = ave_x / element_order;\n ave_y = ave_y / element_order;\n\n x_ps = floor ( ...\n ( ( x_max - ave_x ) * x_ps_min ...\n + ( ave_x - x_min ) * x_ps_max ) ...\n / ( x_max - x_min ) );\n\n y_ps = floor ( ...\n ( ( y_max - ave_y ) * y_ps_min ...\n + ( ave_y - y_min ) * y_ps_max ) ...\n / ( y_max - y_min ) );\n\n fprintf ( file_unit, ' %d %d moveto (%d) show\\n', ...\n x_ps, y_ps, element );\n\n end\n end\n\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, 'restore showpage\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%% End of page.\\n' );\n fprintf ( file_unit, '%%\\n' );\n fprintf ( file_unit, '%%%%Trailer\\n' );\n fprintf ( file_unit, '%%%%EOF\\n' );\n\n fclose ( file_unit );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/quad_mesh/plot_q4_mesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370308082623216, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3965257708659416}} {"text": "function r = sup(a)\n%SUP right bound of point matrix (only for completeness)\n%\n% r = sup(a)\n%\n\n% written 10/16/98 S.M. Rump\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n r = a;\n ", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/intval/sup.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593312018545, "lm_q2_score": 0.6370308082623217, "lm_q1q2_score": 0.3965257708659416}} {"text": "function [flowx,flowy] = specific_wind(x,y,nel)\n%constant_wind Reference problem 3.3 convective wind \n% [flowx,flowy] = specific_wind(x,y,nel);\n% input\n% x x coordinate vector\n% y y coordinate vector \n% nel number of elements\n% specifies constant wind at angle theta to vertical\n% IFISS function: DJS; 5 March 2005.\n% Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage \n theta= -pi/6;\n flowx = sin(theta)*ones(nel,1); \n flowy = cos(theta)*ones(nel,1);\n return\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/toms866/convection/specific_wind.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.622459324198198, "lm_q1q2_score": 0.3965257578257005}} {"text": "function [x, cost, info, options] = trustregions(problem, x, options)\n% Riemannian trust-regions solver for optimization on manifolds.\n%\n% function [x, cost, info, options] = trustregions(problem)\n% function [x, cost, info, options] = trustregions(problem, x0)\n% function [x, cost, info, options] = trustregions(problem, x0, options)\n% function [x, cost, info, options] = trustregions(problem, [], options)\n%\n% This is the Riemannian Trust-Region solver (with tCG inner solve), named\n% RTR. This solver will attempt to minimize the cost function described in\n% the problem structure. It requires the availability of the cost function\n% and of its gradient. It will issue calls for the Hessian. If no Hessian\n% nor approximate Hessian is provided, a standard approximation of the\n% Hessian based on the gradient will be computed. If a preconditioner for\n% the Hessian is provided, it will be used.\n%\n% For a description of the algorithm and theorems offering convergence\n% guarantees, see the references below. Documentation for this solver is\n% available online at:\n%\n% http://www.manopt.org/solver_documentation_trustregions.html\n%\n%\n% The initial iterate is x0 if it is provided. Otherwise, a random point on\n% the manifold is picked. To specify options whilst not specifying an\n% initial iterate, give x0 as [] (the empty matrix).\n%\n% The two outputs 'x' and 'cost' are the last reached point on the manifold\n% and its cost. Notice that x is not necessarily the best reached point,\n% because this solver is not forced to be a descent method. In particular,\n% very close to convergence, it is sometimes preferable to accept very\n% slight increases in the cost value (on the order of the machine epsilon)\n% in the process of reaching fine convergence. In practice, this is not a\n% limiting factor, as normally one does not need fine enough convergence\n% that this becomes an issue.\n% \n% The output 'info' is a struct-array which contains information about the\n% iterations:\n% iter (integer)\n% The (outer) iteration number, or number of steps considered\n% (whether accepted or rejected). The initial guess is 0.\n%\tcost (double)\n% The corresponding cost value.\n%\tgradnorm (double)\n% The (Riemannian) norm of the gradient.\n%\tnuminner (integer)\n% The number of inner iterations executed to compute this iterate.\n% Inner iterations are truncated-CG steps. Each one requires a\n% Hessian (or approximate Hessian) evaluation.\n%\ttime (double)\n% The total elapsed time in seconds to reach the corresponding cost.\n%\trho (double)\n% The performance ratio for the iterate.\n%\trhonum, rhoden (double)\n% Regularized numerator and denominator of the performance ratio:\n% rho = rhonum/rhoden. See options.rho_regularization.\n%\taccepted (boolean)\n% Whether the proposed iterate was accepted or not.\n%\tstepsize (double)\n% The (Riemannian) norm of the vector returned by the inner solver\n% tCG and which is retracted to obtain the proposed next iterate. If\n% accepted = true for the corresponding iterate, this is the size of\n% the step from the previous to the new iterate. If accepted is\n% false, the step was not executed and this is the size of the\n% rejected step.\n%\tDelta (double)\n% The trust-region radius at the outer iteration.\n%\tcauchy (boolean)\n% Whether the Cauchy point was used or not (if useRand is true).\n% And possibly additional information logged by options.statsfun.\n% For example, type [info.gradnorm] to obtain a vector of the successive\n% gradient norms reached at each (outer) iteration.\n%\n% The options structure is used to overwrite the default values. All\n% options have a default value and are hence optional. To force an option\n% value, pass an options structure with a field options.optionname, where\n% optionname is one of the following and the default value is indicated\n% between parentheses:\n%\n% tolgradnorm (1e-6)\n% The algorithm terminates if the norm of the gradient drops below\n% this. For well-scaled problems, a rule of thumb is that you can\n% expect to reduce the gradient norm by 8 orders of magnitude\n% (sqrt(eps)) compared to the gradient norm at a \"typical\" point (a\n% rough initial iterate for example). Further decrease is sometimes\n% possible, but inexact floating point arithmetic will eventually\n% limit the final accuracy. If tolgradnorm is set too low, the\n% algorithm may end up iterating forever (or at least until another\n% stopping criterion triggers).\n% maxiter (1000)\n% The algorithm terminates if maxiter (outer) iterations were executed.\n% maxtime (Inf)\n% The algorithm terminates if maxtime seconds elapsed.\n%\tminiter (3)\n% Minimum number of outer iterations (used only if useRand is true).\n%\tmininner (1)\n% Minimum number of inner iterations (for tCG).\n%\tmaxinner (problem.M.dim() : the manifold's dimension)\n% Maximum number of inner iterations (for tCG).\n%\tDelta_bar (problem.M.typicaldist() or sqrt(problem.M.dim()))\n% Maximum trust-region radius. If you specify this parameter but not\n% Delta0, then Delta0 will be set to 1/8 times this parameter.\n% Delta0 (Delta_bar/8)\n% Initial trust-region radius. If you observe a long plateau at the\n% beginning of the convergence plot (gradient norm VS iteration), it\n% may pay off to try to tune this parameter to shorten the plateau.\n% You should not set this parameter without setting Delta_bar.\n%\tuseRand (false)\n% Set to true if the trust-region solve is to be initiated with a\n% random tangent vector. If set to true, no preconditioner will be\n% used. This option is set to true in some scenarios to escape saddle\n% points, but is otherwise seldom activated.\n%\tkappa (0.1)\n% Inner kappa convergence tolerance.\n%\ttheta (1.0)\n% Inner theta convergence tolerance.\n%\trho_prime (0.1)\n% Accept/reject ratio : if rho is at least rho_prime, the outer\n% iteration is accepted. Otherwise, it is rejected. In case it is\n% rejected, the trust-region radius will have been decreased.\n% To ensure this, rho_prime must be strictly smaller than 1/4.\n% rho_regularization (1e3)\n% Close to convergence, evaluating the performance ratio rho is\n% numerically challenging. Meanwhile, close to convergence, the\n% quadratic model should be a good fit and the steps should be\n% accepted. Regularization lets rho go to 1 as the model decrease and\n% the actual decrease go to zero. Set this option to zero to disable\n% regularization (not recommended). See in-code for the specifics.\n% statsfun (none)\n% Function handle to a function that will be called after each\n% iteration to provide the opportunity to log additional statistics.\n% They will be returned in the info struct. See the generic Manopt\n% documentation about solvers for further information. statsfun is\n% called with the point x that was reached last, after the\n% accept/reject decision. See comment below.\n% stopfun (none)\n% Function handle to a function that will be called at each iteration\n% to provide the opportunity to specify additional stopping criteria.\n% See the generic Manopt documentation about solvers for further\n% information.\n% verbosity (2)\n% Integer number used to tune the amount of output the algorithm\n% generates during execution (mostly as text in the command window).\n% The higher, the more output. 0 means silent. 3 and above includes a\n% display of the options structure at the beginning of the execution.\n% debug (false)\n% Set to true to allow the algorithm to perform additional\n% computations for debugging purposes. If a debugging test fails, you\n% will be informed of it, usually via the command window. Be aware\n% that these additional computations appear in the algorithm timings\n% too.\n% storedepth (20)\n% Maximum number of different points x of the manifold for which a\n% store structure will be kept in memory in the storedb. If the\n% caching features of Manopt are not used, this is irrelevant. If\n% memory usage is an issue, you may try to lower this number.\n% Profiling may then help to investigate if a performance hit was\n% incured as a result.\n%\n% Notice that statsfun is called with the point x that was reached last,\n% after the accept/reject decision. Hence: if the step was accepted, we get\n% that new x, with a store which only saw the call for the cost and for the\n% gradient. If the step was rejected, we get the same x as previously, with\n% the store structure containing everything that was computed at that point\n% (possibly including previous rejects at that same point). Hence, statsfun\n% should not be used in conjunction with the store to count operations for\n% example. Instead, you could use a global variable and increment that\n% variable directly from the cost related functions. It is however possible\n% to use statsfun with the store to compute, for example, alternate merit\n% functions on the point x.\n%\n% See also: steepestdescent conjugategradient manopt/examples\n\n% This file is part of Manopt: www.manopt.org.\n% This code is an adaptation to Manopt of the original GenRTR code:\n% RTR - Riemannian Trust-Region\n% (c) 2004-2007, P.-A. Absil, C. G. Baker, K. A. Gallivan\n% Florida State University\n% School of Computational Science\n% (http://www.math.fsu.edu/~cbaker/GenRTR/?page=download)\n% See accompanying license file.\n% The adaptation was executed by Nicolas Boumal.\n%\n% Change log: \n%\n% NB April 3, 2013:\n% tCG now returns the Hessian along the returned direction eta, so\n% that we do not compute that Hessian redundantly: some savings at\n% each iteration. Similarly, if the useRand flag is on, we spare an\n% extra Hessian computation at each outer iteration too, owing to\n% some modifications in the Cauchy point section of the code specific\n% to useRand = true.\n%\n% NB Aug. 22, 2013:\n% This function is now Octave compatible. The transition called for\n% two changes which would otherwise not be advisable. (1) tic/toc is\n% now used as is, as opposed to the safer way:\n% t = tic(); elapsed = toc(t);\n% And (2), the (formerly inner) function savestats was moved outside\n% the main function to not be nested anymore. This is arguably less\n% elegant, but Octave does not (and likely will not) support nested\n% functions.\n%\n% NB Dec. 2, 2013:\n% The in-code documentation was largely revised and expanded.\n%\n% NB Dec. 2, 2013:\n% The former heuristic which triggered when rhonum was very small and\n% forced rho = 1 has been replaced by a smoother heuristic which\n% consists in regularizing rhonum and rhoden before computing their\n% ratio. It is tunable via options.rho_regularization. Furthermore,\n% the solver now detects if tCG did not obtain a model decrease\n% (which is theoretically impossible but may happen because of\n% numerical errors and/or because of a nonlinear/nonsymmetric Hessian\n% operator, which is the case for finite difference approximations).\n% When such an anomaly is detected, the step is rejected and the\n% trust region radius is decreased.\n%\n% NB Dec. 3, 2013:\n% The stepsize is now registered at each iteration, at a small\n% additional cost. The defaults for Delta_bar and Delta0 are better\n% defined. Setting Delta_bar in the options will automatically set\n% Delta0 accordingly. In Manopt 1.0.4, the defaults for these options\n% were not treated appropriately because of an incorrect use of the\n% isfield() built-in function.\n\n\n% Verify that the problem description is sufficient for the solver.\nif ~canGetCost(problem)\n warning('manopt:getCost', ...\n 'No cost provided. The algorithm will likely abort.'); \nend\nif ~canGetGradient(problem)\n warning('manopt:getGradient', ...\n 'No gradient provided. The algorithm will likely abort.'); \nend\nif ~canGetHessian(problem)\n warning('manopt:getHessian:approx', ...\n 'No Hessian provided. Using an approximation instead.');\nend\n\n% Define some strings for display\ntcg_stop_reason = {'negative curvature',...\n 'exceeded trust region',...\n 'reached target residual-kappa',...\n 'reached target residual-theta',...\n 'dimension exceeded',...\n 'model increased'};\n\n% Set local defaults here\nlocaldefaults.verbosity = 2;\nlocaldefaults.maxtime = inf;\nlocaldefaults.miniter = 3;\nlocaldefaults.maxiter = 1000;\nlocaldefaults.mininner = 1;\nlocaldefaults.maxinner = problem.M.dim();\nlocaldefaults.tolgradnorm = 1e-6;\nlocaldefaults.kappa = 0.1;\nlocaldefaults.theta = 1.0;\nlocaldefaults.rho_prime = 0.1;\nlocaldefaults.useRand = false;\nlocaldefaults.rho_regularization = 1e3;\n\n% Merge global and local defaults, then merge w/ user options, if any.\nlocaldefaults = mergeOptions(getGlobalDefaults(), localdefaults);\nif ~exist('options', 'var') || isempty(options)\n options = struct();\nend\noptions = mergeOptions(localdefaults, options);\n\n% Set default Delta_bar and Delta0 separately to deal with additional\n% logic: if Delta_bar is provided but not Delta0, let Delta0 automatically\n% be some fraction of the provided Delta_bar.\nif ~isfield(options, 'Delta_bar')\n if isfield(problem.M, 'typicaldist')\n options.Delta_bar = problem.M.typicaldist();\n else\n options.Delta_bar = sqrt(problem.M.dim());\n end \nend\nif ~isfield(options,'Delta0')\n options.Delta0 = options.Delta_bar / 8;\nend\n\n% Check some option values\nassert(options.rho_prime < 1/4, ...\n 'options.rho_prime must be strictly smaller than 1/4.');\nassert(options.Delta_bar > 0, ...\n 'options.Delta_bar must be positive.');\nassert(options.Delta0 > 0 && options.Delta0 < options.Delta_bar, ...\n 'options.Delta0 must be positive and smaller than Delta_bar.');\n\n% It is sometimes useful to check what the actual option values are.\nif options.verbosity >= 3\n disp(options);\nend\n\n% Create a store database\nstoredb = struct();\n\ntic();\n\n% If no initial point x is given by the user, generate one at random.\nif ~exist('x', 'var') || isempty(x)\n x = problem.M.rand();\nend\n\n%% Initializations\n\n% k counts the outer (TR) iterations. The semantic is that k counts the\n% number of iterations fully executed so far.\nk = 0;\n\n% initialize solution and companion measures: f(x), fgrad(x)\n[fx fgradx storedb] = getCostGrad(problem, x, storedb);\nnorm_grad = problem.M.norm(x, fgradx);\n\n% initialize trust-region radius\nDelta = options.Delta0;\n\n% Save stats in a struct array info, and preallocate\n% (see http://people.csail.mit.edu/jskelly/blog/?x=entry:entry091030-033941)\nif ~exist('used_cauchy', 'var')\n used_cauchy = [];\nend\nstats = savestats(problem, x, storedb, options, k, fx, norm_grad, Delta);\ninfo(1) = stats;\ninfo(min(10000, options.maxiter+1)).iter = [];\n\n% ** Display:\nif options.verbosity == 2\n fprintf(['%3s %3s %5s %5s ',...\n 'f: %e |grad|: %e\\n'],...\n ' ',' ',' ',' ', fx, norm_grad);\nelseif options.verbosity > 2\n fprintf('************************************************************************\\n');\n fprintf('%3s %3s k: %5s num_inner: %5s %s\\n',...\n '','','______','______','');\n fprintf(' f(x) : %e |grad| : %e\\n', fx, norm_grad);\n fprintf(' Delta : %f\\n', Delta);\nend\n\n\n% **********************\n% ** Start of TR loop **\n% **********************\nwhile true\n \n\t% Start clock for this outer iteration\n tic();\n\n % Run standard stopping criterion checks\n [stop reason] = stoppingcriterion(problem, x, options, info, k+1);\n \n % If the stopping criterion that triggered is the tolerance on the\n % gradient norm but we are using randomization, make sure we make at\n % least miniter iterations to give randomization a chance at escaping\n % saddle points.\n if stop == 2 && options.useRand && k < options.miniter\n stop = 0;\n end\n \n if stop\n if options.verbosity >= 1\n fprintf([reason '\\n']);\n end\n break;\n end\n\n if options.verbosity > 2 || options.debug > 0\n fprintf('************************************************************************\\n');\n end\n\n % *************************\n % ** Begin TR Subproblem **\n % *************************\n \n % Determine eta0\n if ~options.useRand\n % Pick the zero vector\n eta = problem.M.zerovec(x);\n else\n % Random vector in T_x M (this has to be very small)\n eta = problem.M.lincomb(x, 1e-6, problem.M.randvec(x));\n % Must be inside trust-region\n while problem.M.norm(x, eta) > Delta\n eta = problem.M.lincomb(x, sqrt(sqrt(eps)), eta);\n end\n end\n\n % solve TR subproblem\n [eta Heta numit stop_inner storedb] = ...\n tCG(problem, x, fgradx, eta, Delta, options, storedb);\n srstr = tcg_stop_reason{stop_inner};\n \n % This is only computed for logging purposes, because it may be useful\n % for some user-defined stopping criteria. If this is not cheap for\n % specific application (compared to evaluating the cost), we should\n % reconsider this.\n norm_eta = problem.M.norm(x, eta);\n \n if options.debug > 0\n testangle = problem.M.inner(x, eta, fgradx) / (norm_eta*norm_grad);\n end\n\n % If using randomized approach, compare result with the Cauchy point.\n % Convergence proofs assume that we achieve at least the reduction of\n % the Cauchy point. After this if-block, either all eta-related\n % quantities have been changed consistently, or none of them have\n % changed.\n if options.useRand\n used_cauchy = false;\n % Check the curvature,\n [Hg storedb] = getHessian(problem, x, fgradx, storedb);\n g_Hg = problem.M.inner(x, fgradx, Hg);\n if g_Hg <= 0\n tau_c = 1;\n else\n tau_c = min( norm_grad^3/(Delta*g_Hg) , 1);\n end\n % and generate the Cauchy point.\n eta_c = problem.M.lincomb(x, -tau_c * Delta / norm_grad, fgradx);\n Heta_c = problem.M.lincomb(x, -tau_c * Delta / norm_grad, Hg);\n\n % Now that we have computed the Cauchy point in addition to the\n % returned eta, we might as well keep the best of them.\n mdle = fx + problem.M.inner(x, fgradx, eta) ...\n + .5*problem.M.inner(x, Heta, eta);\n mdlec = fx + problem.M.inner(x, fgradx, eta_c) ...\n + .5*problem.M.inner(x, Heta_c, eta_c);\n if mdle > mdlec\n eta = eta_c;\n Heta = Heta_c; % added April 11, 2012\n used_cauchy = true;\n end\n end \n\n\t% Compute the retraction of the proposal\n\tx_prop = problem.M.retr(x, eta);\n\n\t% Compute the function value of the proposal\n\t[fx_prop storedb] = getCost(problem, x_prop, storedb);\n\n\t% Will we accept the proposed solution or not?\n % Check the performance of the quadratic model against the actual cost.\n rhonum = fx - fx_prop;\n rhoden = -problem.M.inner(x, fgradx, eta) ...\n -.5*problem.M.inner(x, eta, Heta);\n \n % Heuristic -- added Dec. 2, 2013 (NB) to replace the former heuristic.\n % This heuristic is documented in the book by Conn Gould and Toint on\n % trust-region methods, section 17.4.2.\n % rhonum measures the difference between two numbers. Close to\n % convergence, these two numbers are very close to each other, so\n % that computing their difference is numerically challenging: there may\n % be a significant loss in accuracy. Since the acceptance or rejection\n % of the step is conditioned on the ratio between rhonum and rhoden,\n % large errors in rhonum result in a large error in rho, hence in\n % erratic acceptance / rejection. Meanwhile, close to convergence,\n % steps are usually trustworthy and we should transition to a Newton-\n % like method, with rho=1 consistently. The heuristic thus shifts both\n % rhonum and rhoden by a small amount such that far from convergence,\n % the shift is irrelevant and close to convergence, the ratio rho goes\n % to 1, effectively promoting acceptance of the step.\n % The rationale is that close to convergence, both rhonum and rhoden\n % are quadratic in the distance between x and x_prop. Thus, when this\n % distance is on the order of sqrt(eps), the value of rhonum and rhoden\n % is on the order of eps, which is indistinguishable from the numerical\n % error, resulting in badly estimated rho's.\n % For abs(fx) < 1, this heuristic is invariant under offsets of f but\n % not under scaling of f. For abs(fx) > 1, the opposite holds. This\n % should not alarm us, as this heuristic only triggers at the very last\n % iterations if very fine convergence is demanded.\n rho_reg = max(1, abs(fx)) * eps * options.rho_regularization;\n rhonum = rhonum + rho_reg;\n rhoden = rhoden + rho_reg;\n \n if options.debug > 0\n fprintf('DBG: rhonum : %e\\n', rhonum);\n fprintf('DBG: rhoden : %e\\n', rhoden);\n end\n \n % This is always true if a linear, symmetric operator is used for the\n % Hessian (approximation) and if we had infinite numerical precision.\n % In practice, nonlinear approximations of the Hessian such as the\n % built-in finite difference approximation and finite numerical\n % accuracy can cause the model to increase. In such scenarios, we\n % decide to force a rejection of the step and a reduction of the\n % trust-region radius. We test the sign of the regularized rhoden since\n % the regularization is supposed to capture the accuracy to which\n % rhoden is computed: if rhoden were negative before regularization but\n % not after, that should not be (and is not) detected as a failure.\n model_decreased = (rhoden >= 0);\n \n if ~model_decreased \n srstr = [srstr ', model did not decrease']; %#ok\n end\n \n rho = rhonum / rhoden;\n \n if options.debug > 0\n m = @(x, eta) ...\n getCost(problem, x, storedb) + ...\n getDirectionalDerivative(problem, x, eta, storedb) + ...\n .5*problem.M.inner(x, getHessian(problem, x, eta, storedb), eta);\n zerovec = problem.M.zerovec(x);\n actrho = (fx - fx_prop) / (m(x, zerovec) - m(x, eta));\n fprintf('DBG: new f(x) : %e\\n', fx_prop);\n fprintf('DBG: actual rho : %e\\n', actrho);\n fprintf('DBG: used rho : %e\\n', rho);\n end\n\n % Choose the new TR radius based on the model performance\n trstr = ' ';\n % If the actual decrease is smaller than 1/4 of the predicted decrease,\n % then reduce the TR radius.\n if rho < 1/4 || ~model_decreased\n trstr = 'TR-';\n Delta = Delta/4;\n % If the actual decrease is at least 3/4 of the precicted decrease and\n % the tCG (inner solve) hit the TR boundary, increase the TR radius.\n elseif rho > 3/4 && (stop_inner == 1 || stop_inner == 2)\n trstr = 'TR+';\n Delta = min(2*Delta, options.Delta_bar);\n end\n % Otherwise, keep the TR radius constant.\n\n % Choose to accept or reject the proposed step based on the model\n % performance.\n if model_decreased && rho > options.rho_prime\n accept = true;\n accstr = 'acc';\n x = x_prop;\n fx = fx_prop;\n [fgradx storedb] = getGradient(problem, x, storedb);\n norm_grad = problem.M.norm(x, fgradx);\n else\n accept = false;\n accstr = 'REJ';\n end\n \n \n % Make sure we don't use too much memory for the store database\n storedb = purgeStoredb(storedb, options.storedepth);\n \n % k is the number of iterations we have accomplished.\n k = k + 1;\n\n % Log statistics for freshly executed iteration.\n % Everything after this in the loop is not accounted for in the timing.\n stats = savestats(problem, x, storedb, options, k, fx, norm_grad, ...\n Delta, info, rho, rhonum, rhoden, accept, numit, ...\n norm_eta, used_cauchy);\n info(k+1) = stats; %#ok\n\n \n % ** Display:\n if options.verbosity == 2,\n fprintf(['%3s %3s k: %5d num_inner: %5d ', ...\n 'f: %e |grad|: %e %s\\n'], ...\n accstr,trstr,k,numit,fx,norm_grad,srstr);\n elseif options.verbosity > 2,\n if options.useRand && used_cauchy,\n fprintf('USED CAUCHY POINT\\n');\n end\n\t\tfprintf('%3s %3s k: %5d num_inner: %5d %s\\n', ...\n\t\t\t\taccstr, trstr, k, numit, srstr);\n\t\tfprintf(' f(x) : %e |grad| : %e\\n',fx,norm_grad);\n\t\tif options.debug > 0\n\t\t\tfprintf(' Delta : %f |eta| : %e\\n',Delta,norm_eta);\n\t\tend\n\t\tfprintf(' rho : %e\\n',rho);\n end\n if options.debug > 0,\n fprintf('DBG: cos ang(eta,gradf): %d\\n',testangle);\n if rho == 0\n fprintf('DBG: rho = 0, this will likely hinder further convergence.\\n');\n end\n end\n\nend % of TR loop (counter: k)\n\n% Restrict info struct-array to useful part\ninfo = info(1:k+1);\n\n\nif (options.verbosity > 2) || (options.debug > 0),\n fprintf('************************************************************************\\n');\nend\nif (options.verbosity > 0) || (options.debug > 0)\n fprintf('Total time is %f [s] (excludes statsfun)\\n', info(end).time);\nend\n\n% Return the best cost reached\ncost = fx;\n\nend\n\n\n\n \n\n% Routine in charge of collecting the current iteration stats\nfunction stats = savestats(problem, x, storedb, options, k, fx, ...\n norm_grad, Delta, info, rho, rhonum, ...\n rhoden, accept, numit, norm_eta, used_cauchy)\n stats.iter = k;\n stats.cost = fx;\n stats.gradnorm = norm_grad;\n stats.Delta = Delta;\n if k == 0\n stats.time = toc();\n stats.rho = inf;\n stats.rhonum = NaN;\n stats.rhoden = NaN;\n stats.accepted = true;\n stats.numinner = NaN;\n stats.stepsize = NaN;\n if options.useRand\n stats.cauchy = false;\n end\n else\n stats.time = info(k).time + toc();\n stats.rho = rho;\n stats.rhonum = rhonum;\n stats.rhoden = rhoden;\n stats.accepted = accept;\n stats.numinner = numit;\n stats.stepsize = norm_eta;\n if options.useRand,\n stats.cauchy = used_cauchy;\n end\n end\n \n % See comment about statsfun above: the x and store passed to statsfun\n % are that of the most recently accepted point after the iteration\n % fully executed.\n stats = applyStatsfun(problem, x, storedb, options, stats);\n \nend\n", "meta": {"author": "andrewssobral", "repo": "lrslibrary", "sha": "06d457349cb5f1fc56a583cd61af9f1d5150e3a1", "save_path": "github-repos/MATLAB/andrewssobral-lrslibrary", "path": "github-repos/MATLAB/andrewssobral-lrslibrary/lrslibrary-06d457349cb5f1fc56a583cd61af9f1d5150e3a1/libs/manopt/manopt/solvers/trustregions/trustregions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945416, "lm_q2_score": 0.6370307944803831, "lm_q1q2_score": 0.39652575336415563}} {"text": "\nvI = cat(3, 85, 80, 217) / 255;\n\nvPhotoshopValues = [30; 98; 51; 73; 5; 53];\n\nvCoeffValues = (vPhotoshopValues - 50) ./ 50;\nvO = ApplyBlackWhiteFilter(vI, vCoeffValues);\nvO = max(min(vO, 1), 0);\n\nround(255 * vI(:))\nround(255 * vO(:))", "meta": {"author": "RoyiAvital", "repo": "StackExchangeCodes", "sha": "d2a934616995fa8a9f4df1ca29029402435b9e6f", "save_path": "github-repos/MATLAB/RoyiAvital-StackExchangeCodes", "path": "github-repos/MATLAB/RoyiAvital-StackExchangeCodes/StackExchangeCodes-d2a934616995fa8a9f4df1ca29029402435b9e6f/SignalProcessing/Q688/Analysis002.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8056321983146848, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.396522609765151}} {"text": "function [frames, descrs] = vl_phow(im, varargin)\n% VL_PHOW Extract PHOW features\n% [FRAMES, DESCRS] = VL_PHOW(IM) extracts PHOW features [1] from the\n% image IM. PHOW is simply dense SIFT applied at several resolutions. This function is a commodity interface to VL_DSIFT() and\n% VL_IMSMOOTH().\n%\n% DESCRS has the same format of VL_SIFT() and VL_DSIFT(). FRAMES(1:2,:)\n% are the x,y coordinates of the center of each descriptor, FRAMES(3,:)\n% is the contrast of the descriptor, as returned by VL_DSIFT() (for\n% colour variant, contranst is computed on the intensity channel).\n% FRAMES(4,:) is the size of the bin of the descriptor.\n%\n% By default,\n% VL_PHOW() computes the gray-scale variant of the descriptor. The\n% COLOR option can be used to compute the color variant instead.\n%\n% Verbose:: false\n% Set to true to turn on verbose output.\n%\n% Sizes:: [4 6 8 10]\n% Scales at which the dense SIFT features are extracted. Each\n% value is used as bin size for the VL_DSIFT() function.\n%\n% Fast:: true\n% Set to false to turn off the fast SIFT features computation by\n% VL_DSIFT().\n%\n% Step:: 2\n% Step (in pixels) of the grid at which the dense SIFT features\n% are extracted.\n%\n% Color:: 'gray'\n% Choose between 'gray' (PHOW-gray), 'rgb', 'hsv', and 'opponent'\n% (PHOW-color).\n%\n% ContrastThreshold:: 0.005\n% Contrast threshold below which SIFT features are mapped to\n% zero. The input image is scaled to have intensity range in [0,1]\n% (rather than [0,255]) and this value is compared to the\n% descriptor norm as returned by VL_DSIFT().\n%\n% WindowSize:: 1.5\n% Size of the Gaussian window in units of spatial bins.\n%\n% Magnif:: 6\n% The image is smoothed by a Gaussian kernel of standard deviation\n% SIZE / MAGNIF. Note that, in the standard SIFT descriptor, the\n% magnification value is 3; here the default one is 6 as it seems\n% to perform better in applications.\n%\n% FloatDescriptors:: false\n% If set to TRUE, the descriptors are returned in floating point\n% format.\n%\n% See also: VL_DSIFT(), VL_HELP().\n\n% Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson.\n% All rights reserved.\n%\n% This file is part of the VLFeat library and is made available under\n% the terms of the BSD license (see the COPYING file).\n\n% -------------------------------------------------------------------\n% Parse the arguments\n% -------------------------------------------------------------------\n\n opts.verbose = false ;\n opts.fast = true ;\n opts.sizes = [4 6 8 10] ;\n opts.step = 2 ;\n opts.color = 'gray' ;\n opts.floatdescriptors = false ;\n opts.magnif = 6 ;\n opts.windowsize = 1.5 ;\n opts.contrastthreshold = 0.005 ;\n opts = vl_argparse(opts,varargin) ;\n\n dsiftOpts = {'norm', 'windowsize', opts.windowsize} ;\n if opts.verbose, dsiftOpts{end+1} = 'verbose' ; end\n if opts.fast, dsiftOpts{end+1} = 'fast' ; end\n if opts.floatdescriptors, dsiftOpts{end+1} = 'floatdescriptors' ; end\n dsiftOpts(end+(1:2)) = {'step', opts.step} ;\n\n% -------------------------------------------------------------------\n% Extract the features\n% -------------------------------------------------------------------\n\n\n % standarize the image\n imageSize = [size(im,2) ; size(im,1)] ;\n if strcmp(lower(opts.color), 'gray')\n numChannels = 1 ;\n if size(im,3) > 1, im = rgb2gray(im) ; end\n else\n numChannels = 3 ;\n if size(im,3) == 1, im = cat(3, im, im, im) ; end\n switch lower(opts.color)\n case 'rgb'\n case 'opponent'\n % Note that the mean differs from the standard definition of opponent\n % space and is the regular intesity (for compatibility with\n % the contrast thresholding).\n %\n % Note also that the mean is added pack to the other two\n % components with a small multipliers for monochromatic\n % regions.\n mu = 0.3*im(:,:,1) + 0.59*im(:,:,2) + 0.11*im(:,:,3) ;\n alpha = 0.01 ;\n im = cat(3, mu, ...\n (im(:,:,1) - im(:,:,2))/sqrt(2) + alpha*mu, ...\n (im(:,:,1) + im(:,:,2) - 2*im(:,:,3))/sqrt(6) + alpha*mu) ;\n case 'hsv'\n im = rgb2hsv(im) ;\n otherwise\n opts.color = 'hsv' ;\n warning('Color space not recongized, defaulting to HSV color space.') ;\n end\n end\n\n if opts.verbose\n fprintf('%s: color space: %s\\n', mfilename, opts.color) ;\n fprintf('%s: image size: %d x %d\\n', mfilename, imageSize(1), imageSize(2)) ;\n fprintf('%s: sizes: [%s]\\n', mfilename, sprintf(' %d', opts.sizes)) ;\n end\n\n for si = 1:length(opts.sizes)\n\n % Recall from VL_DSIFT() that the first descriptor for scale SIZE has\n % center located at XC = XMIN + 3/2 SIZE (the Y coordinate is\n % similar). It is convenient to align the descriptors at different\n % scales so that they have the same geometric centers. For the\n % maximum size we pick XMIN = 1 and we get centers starting from\n % XC = 1 + 3/2 MAX(OPTS.SIZES). For any other scale we pick XMIN so\n % that XMIN + 3/2 SIZE = 1 + 3/2 MAX(OPTS.SIZES).\n %\n % In pracrice, the offset must be integer ('bounds'), so the\n % alignment works properly only if all OPTS.SZES are even or odd.\n\n off = floor(1 + 3/2 * (max(opts.sizes) - opts.sizes(si))) ;\n\n % smooth the image to the appropriate scale based on the size\n % of the SIFT bins\n sigma = opts.sizes(si) / opts.magnif ;\n ims = vl_imsmooth(im, sigma) ;\n\n % extract dense SIFT features from all channels\n for k = 1:numChannels\n [f{k}, d{k}] = vl_dsift(...\n ims(:,:,k), ...\n dsiftOpts{:}, ...\n 'size', opts.sizes(si), ...\n 'bounds', [off off +inf +inf]) ;\n end\n\n % remove low contrast descriptors\n % note that for color descriptors the V component is\n % thresholded\n switch lower(opts.color)\n case {'gray', 'opponent'}\n contrast = f{1}(3,:) ;\n case 'rgb'\n contrast = mean([f{1}(3,:) ; f{2}(3,:) ; f{3}(3,:)],1) ;\n otherwise % hsv\n contrast = f{3}(3,:) ;\n end\n for k = 1:numChannels\n d{k}(:, contrast < opts.contrastthreshold) = 0 ;\n end\n\n % save only x,y, and the scale\n frames{si} = [f{1}(1:3, :) ; opts.sizes(si) * ones(1,size(f{1},2))] ;\n descrs{si} = cat(1, d{:}) ;\n end\n descrs = cell2mat(descrs) ;\n frames = cell2mat(frames) ;\nend\n", "meta": {"author": "yihui-he", "repo": "panorama", "sha": "0c993d4ba6780dcb175b2c1fc7d25b513b7bb39b", "save_path": "github-repos/MATLAB/yihui-he-panorama", "path": "github-repos/MATLAB/yihui-he-panorama/panorama-0c993d4ba6780dcb175b2c1fc7d25b513b7bb39b/lib/vlfeat-0.9.20/toolbox/sift/vl_phow.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3964229975143914}} {"text": "%DEMOIMAGEGRAPHS One-line description here, please.\n%\n% output = demoImageGraphs(input)\n%\n% Example\n% demoImageGraphs\n%\n% See also\n%\n \n% ------\n% Author: David Legland\n% e-mail: david.legland@inrae.fr\n% INRAE - BIA Research Unit - BIBS Platform (Nantes)\n% Created: 2022-04-01, using Matlab 9.12.0.1884302 (R2022a)\n% Copyright 2022 INRAE.\n\n% create a simple 2D binary image\n\nlx = -10:10;\nly = -10:10;\n[x, y] = meshgrid(lx, ly);\nimg = hypot(x, y) < 8.5;\n\nfigure; \nimshow(img, 'InitialMagnification', 1000);\nprint(gcf, 'sample_image.png', '-dpng');\n\n% create adjacency graph\n\n[v, e] = imageGraph(img);\nfigure; imshow(ones(size(img)), 'InitialMagnification', 1000);\nhold on; drawGraph(v, e);\nprint(gcf, 'imageGraph_2d.png', '-dpng');\n\n% create boundary graph\n\n[v, e] = imageBoundaryGraph(img);\nfigure; imshow(ones(size(img)), 'InitialMagnification', 1000);\nhold on; drawGraphEdges(v, e, 'Color', 'b', 'LineWidth', 2);\nprint(gcf, 'imageBoundaryGraph_2d.png', '-dpng');\n\n% save into figure\nprint(gcf, 'image_graphs_2d.png', '-dpng');", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/docs/matGeom-manual/images/graphs/images/demoImageGraphs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5926665999540697, "lm_q1q2_score": 0.3964229896904785}} {"text": "function varargout = parseMeshData(varargin)\n%PARSEMESHDATA Conversion of data representation for meshes.\n%\n% MESH = parseMeshData(VERTICES, FACES)\n% MESH = parseMeshData(VERTICES, EDGES, FACES)\n% Returns the mesh info into a single structure with fields \"vertices\",\n% \"edges\" and \"faces\".\n%\n% [VERTICES, FACES] = parseMeshData(MESH)\n% Returns the mesh info into two output variables containing coordinates\n% of vertices (as a Nv_by_3 array) and the list of vertex indices for\n% each face (either as a Nf-by-3 or Nf-by-4 int array, or as a cell\n% array).\n%\n% [VERTICES, EDGES, FACES] = parseMeshData(MESH)\n% Also returns the vertex indices of each edge, as a Ne-by-2 array of\n% vertex indices.\n%\n% See also \n% meshes3d, formatMeshOutput\n%\n\n% ------\n% Author: David Legland\n% E-mail: david.legland@inra.fr\n% Created: 2010-12-06, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2010-2022 INRA - Cepia Software Platform\n\n% initialize edges to empty variable\nedges = [];\n\n% Process input arguments\nswitch nargin\n case 1\n % input is a data structure\n mesh = varargin{1};\n vertices = mesh.vertices;\n faces = mesh.faces;\n if isfield(mesh, 'edges')\n edges = mesh.edges;\n end\n \n case 2\n % input are vertices and faces\n vertices = varargin{1};\n faces = varargin{2};\n \n case 3\n % input are vertices, edges and faces\n vertices = varargin{1};\n edges = varargin{2};\n faces = varargin{3};\n \n otherwise\n error('Wrong number of arguments');\nend\n\n% returns either a struct or several variables\nvarargout = formatMeshOutput(nargout, vertices, edges, faces);\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/meshes3d/private/parseMeshData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6688802537704063, "lm_q1q2_score": 0.39642298577852203}} {"text": "function [ y, symm ] = cvx_s_sparse( m, n, symm, i, j )\n\n%CVX_S_SPARSE Matrices with a fixed sparsity pattern.\n\nif nargin < 5,\n error( 'Sparsity structure missing.' );\nelseif ~isnumeric( i ) || ~isnumeric( j ),\n error( 'Sparsity arguments must be vectors of nonnegative integers.' );\nelseif any( i <= 0 ) || any( j <= 0 ) || any( i ~= floor( i ) ) || any( j ~= floor( j ) ),\n error( 'Sparsity arguments must be vectors nonnegative integers.' );\nelseif numel( i ) ~= 1 && numel( j ) ~= 1 && numel( i ) ~= numel( j ),\n error( 'Sparsity arguments have incompatible size.' );\nelseif any( i > m ) || any( j > n ),\n error( 'One or more indices are out of range.' );\nelseif symm && m ~= n,\n error( 'Symmetric structure requires a square matrix.' );\nend\ni = i(:); \nj = j(:);\nnz = max( numel(i), numel(j) );\nif symm,\n t = max(i,j);\n j = min(i,j);\n i = t;\nend\n[ c, cndxs ] = sort( i + ( j - 1 ) * m );\ntt = [true;c(2:end)~=c(1:end-1)];\nc = c(tt);\nr = 1 : length(c);\nif symm,\n if numel(i) > 1,\n i = i(cndxs(tt));\n end\n if numel(j) > 1,\n j = j(cndxs(tt));\n end\n tt = i ~= j;\n r = [ r , r(tt) ];\n c = [ c ; j(tt) + ( i(tt) - 1 ) * m ];\nend\ny = min( sparse( r, c, 1, nz, m * n ), 1 );\nsymm = false;\n\n% Copyright 2005-2016 CVX Research, Inc. \n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/structures/cvx_s_sparse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.668880247169804, "lm_q2_score": 0.5926665999540697, "lm_q1q2_score": 0.39642298186656544}} {"text": "%% Image Warping\n% A demo program shows how perspective transformation applied on an image.\n% Based on a sample code from\n% .\n%\n% Sources:\n%\n% * \n%\n\nfunction varargout = warp_perspective_demo_gui(im)\n % load source image and set initial ROI corners (4 points clockwise)\n roi = [];\n if nargin < 1\n if true\n im = fullfile(mexopencv.root(), 'test', 'books_right.jpg');\n roi = [360 109; 532 138; 460 417; 317 338];\n else\n im = fullfile(mexopencv.root(), 'test', 'box_in_scene.png');\n roi = [243 188; 328 151; 388 294; 319 351];\n end\n img = cv.imread(im, 'Color',true);\n elseif ischar(im)\n img = cv.imread(im, 'Color',true);\n else\n img = im;\n end\n if isempty(roi)\n roi = bsxfun(@rdivide, [size(img,2) size(img,1)], ...\n [1.7 4.2; 1.15 3.32; 1.33 1.1; 1.93 1.36]);\n end\n\n % create the UI and hook event handlers\n h = buildGUI(img, roi);\n if nargout > 0, varargout{1} = h; end\n opts = {'Interruptible','off', 'BusyAction','cancel'};\n set(h.fig, 'CloseRequestFcn',@(~,~) delete(h.fig), ...\n 'WindowKeyPressFcn',@onType, opts{:});\n set(h.fig(1), 'WindowButtonDownFcn',@onMouseDown, opts{:});\n\n\n %% Callback Functions\n\n function redraw()\n %REDRAW Apply transformation using current ROI and display results\n\n % reapply transformation\n out1 = drawROI(img, roi);\n [out2, sz] = warpROI(img, roi);\n\n % show results and ajust second plot to fit image\n set(h.img(1), 'CData',out1);\n set(h.img(2), 'CData',out2, 'XData',[1 sz(1)], 'YData',[1 sz(2)]);\n set(h.ax(2), 'XLim',[0 sz(1)]+0.5, 'YLim',[0 sz(2)]+0.5);\n pos = get(h.fig(2), 'Position');\n set(h.fig(2), 'Position',[pos(1:2) sz]);\n drawnow;\n end\n\n function onType(~,e)\n %ONTYPE Event handler for key press on figure\n\n switch e.Key\n case 'h'\n helpdlg({\n 'Use your mouse to select a point and move it'\n 'to see transformation changes.'\n ''\n 'Hot keys:'\n 'h - this help dialog'\n 'q - quit the program'\n 'r - change order of points to rotate transformation'\n 'i - change order of points to invert transformation '\n });\n case {'q', 'escape'}\n close(h.fig);\n case 'r'\n roi = circshift(roi, -1);\n redraw();\n case 'i'\n roi = roi([2 1 4 3],:);\n redraw();\n end\n end\n\n function onMouseDown(~,~)\n %ONMOUSEDOWN Event handler for mouse down on figure\n\n % hit-test for closest ROI corner\n pt = getCurrentPoint(h.ax(1));\n d = sum(abs(bsxfun(@minus, roi, pt)), 2);\n [mn, pt_idx] = min(d);\n if mn < 20\n % attach event handlers, and change mouse pointer\n set(h.fig(1), 'Pointer','cross', ...\n 'WindowButtonMotionFcn',{@onMouseMove, pt_idx}, ...\n 'WindowButtonUpFcn',@onMouseUp);\n end\n end\n\n function onMouseMove(~,~,idx)\n %ONMOUSEMOVE Event handler for mouse move on figure\n\n % move specified ROI corner\n pt = getCurrentPoint(h.ax(1));\n roi(idx,:) = pt;\n redraw();\n end\n\n function onMouseUp(~,~)\n %ONMOUSEUP Event handler for mouse up on figure\n\n % detach event handlers, and restore mouse pointer\n set(h.fig(1), 'Pointer','arrow', ...\n 'WindowButtonMotionFcn','', ...\n 'WindowButtonUpFcn','');\n end\nend\n\n%% Helper Functions\n\nfunction out = drawROI(img, pts)\n %DRAWROI Show ROI corners with labels\n\n labels = {'TL', 'TR', 'BR', 'BL'};\n out = cv.polylines(img, pts, 'Closed',true, 'Color',[0 0 255], 'Thickness',2);\n out = cv.circle(out, pts, 5, 'Color',[0 255 0], 'Thickness',3);\n out = cv.putText(out, labels, pts, ...\n 'FontScale',0.8, 'Color',[255 0 0], 'Thickness',2);\nend\n\nfunction [out, dsz] = warpROI(img, srcPts)\n %WARPROI Compute warped image from ROI\n\n % map ROI corners to corresponding destination rectangle\n len = diff(srcPts([1:end 1],:), 1, 1); % [TR-TL; BR-TR; BL-BR; TL-BL]\n len = cellfun(@norm, num2cell(len, 2)); % lengths of sides\n w = max(len(1), len(3));\n h = max(len(2), len(4));\n dstPts = [0 0; w 0; w h; 0 h];\n\n % compute homography between points and apply persepective transformation\n dsz = round([w h]);\n H = cv.findHomography(srcPts, dstPts);\n out = cv.warpPerspective(img, H, 'DSize',dsz);\nend\n\nfunction p = getCurrentPoint(ax)\n %GETCURRENTPOINT Retrieve current mouse location\n\n p = get(ax, 'CurrentPoint');\n p = p(1,1:2) - 1;\nend\n\nfunction h = buildGUI(img, roi)\n %BUILDGUI Creates the UI\n\n % apply initial perspective transformation\n out1 = drawROI(img, roi);\n out2 = warpROI(img, roi);\n sz1 = size(out1);\n sz2 = size(out2);\n\n % properties\n fprops = {'Menubar','none', 'Resize','on'};\n aprops = {'Units','normalized', 'Position',[0 0 1 1]};\n h = struct();\n\n % show input image + ROI corners\n h.fig(1) = figure('Name','Image', ...\n 'Position',[100 200 sz1(2) sz1(1)], fprops{:});\n h.ax(1) = axes('Parent',h.fig(1), aprops{:});\n if mexopencv.isOctave()\n h.img(1) = imshow(out1);\n else\n h.img(1) = imshow(out1, 'Parent',h.ax(1));\n end\n\n % show warped image\n h.fig(2) = figure('Name','Warped', ...\n 'Position',[200+sz1(2) 200 sz2(2) sz2(1)], fprops{:});\n h.ax(2) = axes('Parent',h.fig(2), aprops{:});\n if mexopencv.isOctave()\n h.img(2) = imshow(out2);\n else\n h.img(2) = imshow(out2, 'Parent',h.ax(2));\n end\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/samples/warp_perspective_demo_gui.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.640635868562172, "lm_q1q2_score": 0.3964129406207689}} {"text": "function Data = normalize_data ( Data, options )\n\nn = length(Data);\n\n%% noramlizing the first image\nshape = normalize_first_shape( Data(1) , options );\nData(1).shape = shape;\n\n%% using the first to noramlizing others.\nfor i = 2 : n\n [shape] = normalize_rest_shape( Data(1), Data(i), options );\n Data(i).shape = shape;\nend\n\nend", "meta": {"author": "tntrung", "repo": "sdm_face_alignment", "sha": "f546cbb1e77b8bad971e8c5914d2ca73e0bb9b67", "save_path": "github-repos/MATLAB/tntrung-sdm_face_alignment", "path": "github-repos/MATLAB/tntrung-sdm_face_alignment/sdm_face_alignment-f546cbb1e77b8bad971e8c5914d2ca73e0bb9b67/common/align/normalize_data.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.39641293212969425}} {"text": "% given 3D point set of face, draw structure of face in 3D space, or\n% given 2D reprojection point set of face, draw it in corresponding image\nfunction drawFace(KeyPointSet, showKpsIdx)\n% KeyPointSet - 66x2 or 66x3\n\n dim = size(KeyPointSet, 2);\n \n % 9 sets of keypoints(outlines) to be draw using line function\n sets = {0:16; 17:21; 22:26; 27:30; 31:35;... % face, eyebrows(r,l), nose(t,b)\n [36:41 36]; [42:47 42]; [48:59 48]; [48, 60:62, 54, 63:65, 48]}; % eyes(r,l), mouth(o,i)\n % notice: 0 indexed here\n\n % draw connections\n for i = 1:size(sets,1)\n indices = sets{i} + 1; % convert to 1-indexed\n if dim == 3\n line(KeyPointSet(indices, 1), KeyPointSet(indices, 2), KeyPointSet(indices, 3)...\n , 'Color', [0 150 230]/255, 'LineWidth', 3);\n elseif dim == 2\n line(KeyPointSet(indices, 1), KeyPointSet(indices, 2), 'Color', [0 150 230]/255, 'LineWidth', 2);\n end\n end\n \n hold on\n \n % draw kps\n if dim == 3\n scatter3(KeyPointSet(:,1), KeyPointSet(:,2), KeyPointSet(:,3), 500, 'r.');\n if showKpsIdx\n text(KeyPointSet(:,1), KeyPointSet(:,2), KeyPointSet(:,3), num2str((0 : 65)'));\n end\n elseif dim == 2\n scatter(KeyPointSet(:,1), KeyPointSet(:,2), 200, 'r.');\n if showKpsIdx\n text(KeyPointSet(:,1), KeyPointSet(:,2), num2str((0 : 65)'));\n end\n end\nend\n\n\n", "meta": {"author": "zhixuany", "repo": "HUMBI", "sha": "7b03af54ea5bd7e5e21e43026b51888403f995db", "save_path": "github-repos/MATLAB/zhixuany-HUMBI", "path": "github-repos/MATLAB/zhixuany-HUMBI/HUMBI-7b03af54ea5bd7e5e21e43026b51888403f995db/face/drawFace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.39641293212969425}} {"text": "function datapt = lvd_AeroTasks(stateLogEntry, subTask, dummy)\n%lvd_AeroTasks Summary of this function goes here\n% Detailed explanation goes here\n arguments\n stateLogEntry(1,1) LaunchVehicleStateLogEntry\n subTask(1,:) char\n dummy\n end\n\n ut = stateLogEntry.time;\n rVect = stateLogEntry.position;\n vVect = stateLogEntry.velocity;\n bodyInfo = stateLogEntry.centralBody;\n mass = stateLogEntry.getTotalVehicleMass();\n aero = stateLogEntry.aero;\n attState = stateLogEntry.attitude;\n celBodyData = bodyInfo.celBodyData;\n \n maStateLogEntry = [ut, rVect(:)', vVect(:)', bodyInfo.id, mass, 0, 0, 0, -1];\n altitude = ma_GALongLatAltTasks(maStateLogEntry, 'alt', celBodyData);\n vVectEcefMag = ma_GALongLatAltTasks(maStateLogEntry, 'bodyFixedVNorm', celBodyData);\n [lat, long, ~, ~, ~, ~, ~, ~] = getLatLongAltFromInertialVect(ut, rVect, bodyInfo, vVect);\n [density, pressureKPA, ~] = getAtmoDensityAtAltitude(bodyInfo, altitude, lat, ut, long); \n [~,angOfAttack,angOfSideslip,totalAoA] = attState.getAeroAngles(ut, rVect, vVect, bodyInfo);\n\n switch subTask \n case 'dragCoeff'\n datapt = stateLogEntry.aero.getDragCoeff(ut, rVect, vVect, bodyInfo, mass, altitude, pressureKPA, density, vVectEcefMag, totalAoA, angOfAttack, angOfSideslip);\n case 'dragForce'\n dragForceModel = DragForceModel();\n dragForceVect = dragForceModel.getForce(ut, rVect, vVect, mass, bodyInfo, aero, [], [], [], [], [], [], [], [], [], [], attState);\n dragForceMag = norm(dragForceVect); %mT*km/s^2\n datapt = dragForceMag*1000; %kN\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/process_data/GraphicalAnalysis/tasks/lvd_AeroTasks.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7745833945721304, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3963671847306774}} {"text": "function out = calcGrainVotes(job,varargin)\n% compute votes from grain boundaries\n%\n% Syntax\n%\n% % compute votes from all p2c and c2c boundaries\n% job.calcGBVotes('threshold', 2*degree)\n%\n% % compute votes only from p2c boundaries -> growth algorithm\n% job.calcGBVotes('p2c', 'threshold', 3*degree, 'tol', 1.5*degree)\n%\n% Input\n% job - @parentGrainReconstructor\n%\n% Output\n% job.votes - table of votes\n%\n% Options\n% p2c - consider only parent / child grain boundaries\n% c2c - consider only child / child grain boundaries\n% threshold - threshold fitting angle between job.p2c and the boundary OR\n% tolerance - range over which the probability increases from 0 to 1 (default 1.5)\n% numFit - number of fits to be computed\n%\n\n% noOpt = ~check_option(varargin,{'p2c','c2c'});\n\nif nargin > 1 && isnumeric(varargin{1})\n id = varargin{1};\nelse\n id = job.grains.id;\nend\n\n% the original child orientation\nori = job.grainsPrior('id',id).meanOrientation;\n\n% all variants\noriV = variants(job.p2c, ori);\nnumV = size(oriV,2);\n\n% fit with neighboring grains\nA = job.grains('id',id).neighbors('matrix','maxId',max(job.grains.id));\nA = A(id,:);\n[grainInd,nId] = find(A);\ngrainInd = grainInd(:); nId = nId(:);\n\n% some neighbors coorespond to parent and some to child grains\nnInd = job.grains.id2ind(nId);\nisParent = job.grains.phaseId(nInd) == job.parentPhaseId;\noriP = job.grains(nInd(isParent)).meanOrientation;\n\nisChild = job.grains.phaseId(nInd) == job.childPhaseId;\noriChildV = variants(job.p2c,job.grains(nInd(isChild)).meanOrientation);\n\n% compute fits to all neighbors\nfit = nan(length(nId),numV);\nfor iV = 1:numV\n \n % parent - parent fit\n fit(isParent,iV) = angle(oriV(grainInd(isParent),iV), oriP);\n \n % parent - child fit\n %fit(isChild,iV) = min(angle(oriV(grainInd(isChild),iV), oriChildV),[],2);\n \nend\n\n% accumulate votes, i.e. compute a probability for each grain / parentId\n% combination\nvotes = accumVotes(repmat(grainInd,1,numV), repmat(1:numV,length(grainInd),1), fit,...\n max(grainInd), varargin{:});\n\n% output \nif nargin > 1 && isnumeric(varargin{1})\n out = votes;\nelse\n job.votes = votes; \n out = job;\nend\n\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@parentGrainReconstructor/calcGrainVotes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7745833841649232, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.39636717940513666}} {"text": "function gr_test07 ( node_num, node_coordinates, edge_num, edge_nodes );\n\n%*****************************************************************************80\n%\n%% GR_TEST07 tests GR_INCIDENCE_MATRIX.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 24 January 2011\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'GR_TEST07:\\n' );\n fprintf ( 1, ' GR_INCIDENCE_MATRIX computes the incidence matrix.\\n' );\n\n incidence_matrix = gr_incidence_matrix ( node_num, node_coordinates, ...\n edge_num, edge_nodes );\n\n i4mat_print ( edge_num, node_num, incidence_matrix, ...\n ' The incidence matrix:' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/graph_representation/gr_test07.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041652, "lm_q2_score": 0.7745833841649232, "lm_q1q2_score": 0.3963671794051366}} {"text": "function r8mat_print ( m, n, a, title )\n\n%*****************************************************************************80\n%\n%% R8MAT_PRINT prints an R8MAT.\n%\n% Discussion:\n%\n% An R8MAT is an array of R8's.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 06 September 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer M, the number of rows in A.\n%\n% Input, integer N, the number of columns in A.\n%\n% Input, real A(M,N), the matrix.\n%\n% Input, string TITLE, a title to be printed.\n%\n r8mat_print_some ( m, n, a, 1, 1, m, n, title );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/table_io/r8mat_print.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7745833737577158, "lm_q1q2_score": 0.3963671740795958}} {"text": "classdef BankAngleConstraint < AbstractConstraint\n %BankAngleConstraint Summary of this class goes here\n % Detailed explanation goes here\n \n properties\n normFact = 1;\n event LaunchVehicleEvent\n eventNode(1,1) ConstraintStateComparisonNodeEnum = ConstraintStateComparisonNodeEnum.FinalState;\n \n lb(1,1) double = 0;\n ub(1,1) double = 0;\n \n evalType(1,1) ConstraintEvalTypeEnum = ConstraintEvalTypeEnum.FixedBounds;\n stateCompType(1,1) ConstraintStateComparisonTypeEnum = ConstraintStateComparisonTypeEnum.Equals;\n stateCompEvent LaunchVehicleEvent\n stateCompNode(1,1) ConstraintStateComparisonNodeEnum = ConstraintStateComparisonNodeEnum.FinalState;\n end\n \n methods\n function obj = BankAngleConstraint(event, lb, ub)\n obj.event = event;\n obj.lb = lb;\n obj.ub = ub; \n \n obj.id = rand();\n end\n \n function [lb, ub] = getBounds(obj)\n lb = obj.lb;\n ub = obj.ub;\n end\n \n function [c, ceq, value, lwrBnd, uprBnd, type, eventNum, valueStateComp] = evalConstraint(obj, stateLog, celBodyData) \n type = obj.getConstraintType();\n \n switch obj.eventNode\n case ConstraintStateComparisonNodeEnum.FinalState\n stateLogEntry = stateLog.getLastStateLogForEvent(obj.event);\n \n case ConstraintStateComparisonNodeEnum.InitialState\n stateLogEntry = stateLog.getFirstStateLogForEvent(obj.event);\n \n otherwise\n error('Unknown event node.');\n end\n \n ut = stateLogEntry.time;\n rVect = stateLogEntry.position;\n vVect = stateLogEntry.velocity;\n bodyInfo = stateLogEntry.centralBody;\n \n [bankAng,~,~] = stateLogEntry.attitude.getAeroAngles(ut, rVect, vVect, bodyInfo);\n value = rad2deg(bankAng);\n \n if(obj.evalType == ConstraintEvalTypeEnum.StateComparison)\n switch obj.stateCompNode\n case ConstraintStateComparisonNodeEnum.FinalState\n stateLogEntryStateComp = stateLog.getLastStateLogForEvent(obj.stateCompEvent).deepCopy();\n\n case ConstraintStateComparisonNodeEnum.InitialState\n stateLogEntryStateComp = stateLog.getFirstStateLogForEvent(obj.stateCompEvent).deepCopy();\n\n otherwise\n error('Unknown event node.');\n end\n \n cartElem = stateLogEntryStateComp.getCartesianElementSetRepresentation();\n cartElem = cartElem.convertToFrame(stateLogEntry.centralBody.getBodyCenteredInertialFrame());\n stateLogEntryStateComp.setCartesianElementSet(cartElem);\n \n ut = stateLogEntryStateComp.time;\n rVect = stateLogEntryStateComp.position;\n vVect = stateLogEntryStateComp.velocity;\n bodyInfo = stateLogEntryStateComp.centralBody;\n\n [bankAng,~,~] = stateLogEntryStateComp.attitude.getAeroAngles(ut, rVect, vVect, bodyInfo);\n valueStateComp = rad2deg(bankAng);\n else\n valueStateComp = NaN;\n end\n \n [c, ceq] = obj.computeCAndCeqValues(value, valueStateComp); \n \n lwrBnd = obj.lb;\n uprBnd = obj.ub;\n \n eventNum = obj.event.getEventNum();\n end\n \n function sF = getScaleFactor(obj)\n sF = obj.normFact;\n end\n \n function setScaleFactor(obj, sF)\n obj.normFact = sF;\n end\n \n function tf = usesStage(obj, stage)\n tf = false;\n end\n \n function tf = usesEngine(obj, engine)\n tf = false;\n end\n \n function tf = usesTank(obj, tank)\n tf = false;\n end\n \n function tf = usesEngineToTankConn(obj, engineToTank)\n tf = false;\n end\n \n function tf = usesEvent(obj, event)\n tf = obj.event == event;\n if(obj.evalType == ConstraintEvalTypeEnum.StateComparison)\n tf = tf || obj.stateCompEvent == event;\n end\n end\n \n function tf = usesStopwatch(obj, stopwatch)\n tf = false;\n end\n \n function tf = usesExtremum(obj, extremum)\n tf = false;\n end\n \n function tf = canUseSparseOutput(obj)\n tf = true;\n end\n \n function event = getConstraintEvent(obj)\n event = obj.event;\n end\n \n function type = getConstraintType(obj)\n type = 'Bank Angle';\n end\n \n% function name = getName(obj)\n% name = sprintf('%s - Event %i', obj.getConstraintType(), obj.event.getEventNum());\n% end\n \n function [unit, lbLim, ubLim, usesLbUb, usesCelBody, usesRefSc] = getConstraintStaticDetails(obj)\n unit = 'deg';\n lbLim = -360;\n ubLim = 360;\n usesLbUb = true;\n usesCelBody = false;\n usesRefSc = false;\n end\n \n function addConstraintTf = openEditConstraintUI(obj, lvdData)\n% addConstraintTf = lvd_EditGenericMAConstraintGUI(obj, lvdData);\n \n output = AppDesignerGUIOutput({false});\n lvd_EditGenericMAConstraintGUI_App(obj, lvdData, output);\n addConstraintTf = output.output{1}; \n end\n end\n \n methods(Static)\n function constraint = getDefaultConstraint(~, ~) \n constraint = BankAngleConstraint(LaunchVehicleEvent.empty(1,0),0,0);\n end\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/classes/Optimization/constraints/@BankAngleConstraint/BankAngleConstraint.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461390043208003, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39635603293497074}} {"text": "function [V,openVariables] = branchVolume(p,openVariables)\n\nif nargin == 1\n d = p.ub(p.branch_variables)-p.lb(p.branch_variables);\n openVariables = find(d~=0);\n d = d(openVariables);\n if any(d<0)\n % This is infeasible!\n V = 0;\n else\n V = geomean(d);\n end\nelse\n if ~p.feasible\n V = 0;\n else\n d = p.ub(p.branch_variables)-p.lb(p.branch_variables);\n d = d(openVariables); \n if any(d<0)\n % This has been propagated to infeasibility\n V = 0;\n else\n V = geomean(d);\n end\n end \nend", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/modules/global/branchVolume.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3963560269375908}} {"text": "% -*- INTERNAL UNDOCUMENTED FUNCTION -*-\nfunction [geometry, msh, space, sp_mul, eigv, eigf, gnum, dofs_ornt, gnum_mul] = ...\n mp_solve_maxwell_eig_mixed1_3d (problem_data, method_data)\n\nwarning ('geopdes:obsolete','Function MP_SOLVE_MAXWELL_EIG_MIXED1_3D is obsolete. Using MP_SOLVE_MAXWELL_EIG_MIXED1 instead')\n\n[geometry, msh, space, sp_mul, eigv, eigf, gnum, dofs_ornt, gnum_mul] = mp_solve_maxwell_eig_mixed1 (problem_data, method_data);\n\n", "meta": {"author": "rafavzqz", "repo": "geopdes", "sha": "3bfa57b1a38bd4da3148536c9f67cce81afce701", "save_path": "github-repos/MATLAB/rafavzqz-geopdes", "path": "github-repos/MATLAB/rafavzqz-geopdes/geopdes-3bfa57b1a38bd4da3148536c9f67cce81afce701/geopdes/inst/obsolete/mp_solve_maxwell_eig_mixed1_3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3963560269375908}} {"text": "% run_simExampleBasisSet.m\n% Jamie Near, McGill University 2014.\n% \n% USAGE:\n% This script is run simply by editing the input parameters and then\n% clicking \"Run\".\n% \n% DESCRIPTION:\n% Script to generate simulated basis spectra for all metabolites of interest\n% in the human brain. The script will generate an LCModel format .RAW file \n% for each metabolite basis spectrum, which can then be passed into \n% LCModel's \"makebasis\" function to generate a complete LCModel basis set.\n% \n% INPUTS:\n% To run this script, edit the following parameters as desired and then click\n% run:\n% lb = linewidth (Hz)\n% np = Spectral points\n% sw = Spectral width (Hz)\n% Bo = Magnetic Field Strength (Tesla)\n% te1 = First PRESS echo time, or SPECIAL echo time (ms)\n% te2 = Second PRESS echo time (if applicable) (ms).\n% seq = Pulse sequence ('se'= SPECIAL, 'p'=press, 'st'=steam);\n% ref = Add reference peak at 0ppm (used in LCModel, y or n);\n%\n% OUTPUTS:\n% H2O = Simulated water spectrum\n% Ala = Simulated alanine spectrum\n% Asp = Simulated aspartate spectrum\n% PCh = Simulated phosphocholine spectrum\n% Cr = Simulated creatine spectrum\n% PCr = Simulated phosphochreatine spectrum\n% GABA = Simulated GABA spectrum\n% Gln = Simulated glutamine spectrum\n% Glu = Simulated glutamate spectrum\n% GSH = Simulated glutathione spectrum\n% Gly = Simulated glycine spectrum\n% Ins = Simulated myo-inositol spectrum\n% Lac = Simulated Lactate spectrum\n% NAA = Simulated NAA spectrum\n% Scyllo = Simulated scyllo-inositol spectrum\n% Tau = Simulated taurine spectrum\n% Asc = Simulated ascorbate spectrum\n% bHB = Simulated beta-hydroxybutyrate spectrum\n% bHG = Simulated 2-hydroxyglutyrate spectrum\n% Glc = Simulated glucose spectrum\n% NAAG = Simulated N-acetylaspartylglutamate spectrum\n% GPC = Simulated glycerophosphocholine spectrum\n% PE = Simulated phosphoethanolamine spectrum\n% Ser = Simulated serine spectrum\n% EtOH = Simulated ethanol spectrum\n%\n% \n% ************INPUT PARAMETERS**********************************\n lb=2; %linewidth (Hz)\n np=8192; %Spectral points\n sw=4000; %Spectral width (Hz)\n Bo=7; %Magnetic Field Strength (Tesla)\n te1=10; %First PRESS echo time, or SPECIAL echo time (ms)\n te2=125; %Second PRESS echo time (if applicable) (ms).\n seq='p' %Pulse sequence ('se'= SPECIAL, 'p'=press, 'st'=steam, 'l'=laser);\n ref='n' %Add reference peak at 0ppm (used in LCModel, y or n);\n% *************END OF INPUT PARAMETERS**************************\n\n [RF,H2O]=sim_lcmrawbasis(np,sw,Bo,lb,'H2O',te1,te2,ref,'y',seq);\n [RF,Ala]=sim_lcmrawbasis(np,sw,Bo,lb,'Ala',te1,te2,ref,'y',seq);\n [RF,Asp]=sim_lcmrawbasis(np,sw,Bo,lb,'Asp',te1,te2,ref,'y',seq);\n [RF,PCh]=sim_lcmrawbasis(np,sw,Bo,lb,'PCh',te1,te2,ref,'y',seq);\n [RF,Cr]=sim_lcmrawbasis(np,sw,Bo,lb,'Cr',te1,te2,ref,'y',seq);\n [RF,PCr]=sim_lcmrawbasis(np,sw,Bo,lb,'PCr',te1,te2,ref,'y',seq);\n [RF,GABA]=sim_lcmrawbasis(np,sw,Bo,lb,'GABA',te1,te2,ref,'y',seq);\n [RF,Gln]=sim_lcmrawbasis(np,sw,Bo,lb,'Gln',te1,te2,ref,'y',seq);\n [RF,Glu]=sim_lcmrawbasis(np,sw,Bo,lb,'Glu',te1,te2,ref,'y',seq);\n [RF,GSH]=sim_lcmrawbasis(np,sw,Bo,lb,'GSH',te1,te2,ref,'y',seq);\n [RF,Gly]=sim_lcmrawbasis(np,sw,Bo,lb,'Gly',te1,te2,ref,'y',seq);\n [RF,Ins]=sim_lcmrawbasis(np,sw,Bo,lb,'Ins',te1,te2,ref,'y',seq);\n [RF,Lac]=sim_lcmrawbasis(np,sw,Bo,lb,'Lac',te1,te2,ref,'y',seq);\n [RF,NAA]=sim_lcmrawbasis(np,sw,Bo,lb,'NAA',te1,te2,ref,'y',seq);\n [RF,Scyllo]=sim_lcmrawbasis(np,sw,Bo,lb,'Scyllo',te1,te2,ref,'y',seq);\n [RF,Tau]=sim_lcmrawbasis(np,sw,Bo,lb,'Tau',te1,te2,ref,'y',seq);\n [RF,Asc]=sim_lcmrawbasis(np,sw,Bo,lb,'Asc',te1,te2,ref,'y',seq);\n [RF,bHB]=sim_lcmrawbasis(np,sw,Bo,lb,'bHB',te1,te2,ref,'y',seq);\n [RF,bHG]=sim_lcmrawbasis(np,sw,Bo,lb,'bHG',te1,te2,ref,'y',seq);\n [RF,Glc]=sim_lcmrawbasis(np,sw,Bo,lb,'Glc',te1,te2,ref,'y',seq);\n [RF,NAAG]=sim_lcmrawbasis(np,sw,Bo,lb,'NAAG',te1,te2,ref,'y',seq);\n [RF,GPC]=sim_lcmrawbasis(np,sw,Bo,lb,'GPC',te1,te2,ref,'y',seq);\n [RF,PE]=sim_lcmrawbasis(np,sw,Bo,lb,'PE',te1,te2,ref,'y',seq);\n [RF,Ser]=sim_lcmrawbasis(np,sw,Bo,lb,'Ser',te1,te2,ref,'y',seq);\n [RF,EtOH]=sim_lcmrawbasis(np,sw,Bo,lb,'EtOH',te1,te2,ref,'y',seq);\n \n\n%LEGEND:\n% 'Ala' = Alanine\n% 'Asp' = Aspartate\n% 'PCh' = PhosphoCholine\n% 'Cr' = Creatine\n% 'PCr' = PhosphoCreatine\n% 'GABA' = Gamma-aminobutyric acid\n% 'Gln' = Glutamine\n% 'Glu' = Glutamate\n% 'GSH' = Glutathione\n% 'Gly' = Glycine\n% 'Ins' = Myo-inositol\n% 'Lac' = Lactate\n% 'NAA' = N-acetyl aspartate\n% 'Scyllo' = Scyllo-inositol\n% 'Tau' = Taurine\n% 'Asc' = Ascorbate (Vitamin C)\n% 'bHB' = beta-Hydroxybutyrate\n% 'bHG' = beta-Hydroxyglutarate\n% 'Glc' = Glucose\n% 'NAAG' = N-acetyl aspartyl glutamate\n% 'GPC' = Glycero-phosphocholine\n% 'PE' = Phosphoryl ethanolamine\n% 'Ser' = Serine\n% 'EtOH' = Ethanol\n", "meta": {"author": "CIC-methods", "repo": "FID-A", "sha": "c24da581e376f6eed66979dcc662ec26903a2eef", "save_path": "github-repos/MATLAB/CIC-methods-FID-A", "path": "github-repos/MATLAB/CIC-methods-FID-A/FID-A-c24da581e376f6eed66979dcc662ec26903a2eef/exampleRunScripts/run_simExampleBasisSet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.39635602693759076}} {"text": "function [ cluass,cluNRG ] = bz_GradDescCluster( simMat, varargin )\n%[cluass] = bz_GradDescCluster(simMat) clusters recording sites given a pairwise \n%similarity matrix using gradient descent to find minimize within-cluster \n%interaction energy. (i.e. maximize within-cluster coherence, see Berenyi \n%et al 2014 for details). \n% \n%INPUT\n% simMat undirected similarity matrix (coherence, correlation, or other)\n%\n% (optional parameters)\n% 'numsteps' number of steps (default: 5e5)\n% 'numinit' number of initial clusters, should be larger than the \n% number of clusters you expect (default: 20)\n% 'stopthresh' stability threshold to stop descending. probability of\n% selected site changing cluster identity, P(switch)\n% (default: 0.001)\n% 'stopwin' window of time for which the P(switch) must stay below\n% stopthresh (default: 10000 steps) \n% 'showplot' true or false, to show the update plot as it goes\n% 'brainmap' cell array with two cells: {1} = linear indices, {2} = size map; 2 dim vector x and y dimensions of map\n\n%OUTPUT\n% cluass cluster assignments for each \n% cluNRG negative energy (i.e. mean within-cluster coherence) for each cluster\n%\n%From Berenyi et al. (2014). Large-scale, high-density (up to 512 \n% channels) recording of local circuits in behaving animals. Journal of \n% Neurophysiology, 111(5), 1132?1149. http://doi.org/10.1152/jn.00785.2013\n%\n%Code implementation by DLevenstein 2016. Updates DL and RS May 2017.\n%\n% TO DO\n% - make brainmap general to any 2D ephys/imaging data \n% - develop method for stopping num iterations\n% - add consensus clustering option? \n\n%% Parse the input parameters\nparms = inputParser;\naddParameter(parms,'numsteps',500000,@isnumeric);\naddParameter(parms,'numinit',20,@isnumeric);\naddParameter(parms,'showplot',true,@islogical);\naddParameter(parms,'brainmap',{},@iscell); \naddParameter(parms,'stopthresh',0.001,@(x) x>0 && x<=1)\naddParameter(parms,'stopwin',10000,@isnumeric)\n\nparse(parms,varargin{:})\nnumsteps = parms.Results.numsteps;\nnuminit = parms.Results.numinit;\nSHOWPLOT = parms.Results.showplot;\nLinearInds = parms.Results.brainmap{1};\nSizeVid = parms.Results.brainmap{2};\nstopthresh = parms.Results.stopthresh;\nstopwin = parms.Results.stopwin;\n\n%% Initialize and Run\nnumsites = size(simMat,1);\nrng('shuffle') %Shuffle the random number generator seed... just in case\ncluass = randi(numinit,numsites,1); %Start from random initial assignments\n\nif SHOWPLOT; figure; switchtracker = zeros(numsteps,1); end \nfor ss = 1:numsteps\n %The time ticker...\n if mod(ss,1000)==1\n display(['Step: ',num2str(ss),' of ',num2str(numsteps)])\n [~,clusort] = sort(cluass);\n \n % Visuals\n if SHOWPLOT\n % plot changing clusters over time\n subplot(2,2,1) \n imagesc(simMat(clusort,clusort)) \n %plot switching behavior\n subplot(2,2,2)\n plot(log10(smooth(switchtracker(1:ss),1000,'moving'))) \n hold on\n plot(get(gca,'xlim'),log10(stopthresh).*[1 1],'r--')\n xlabel('Step #');ylabel('P(switch)')\n ylim([log10(stopthresh)-1 0])\n LogScale('y',10)\n hold off\n % plot map \n if ~isempty(LinearInds) \n map = ExpandVid(cluass, LinearInds, SizeVid);\n subplot(2,2,3)\n imagesc(map)\n end;\n %plot number of clusters\n subplot(2,2,4)\n plot(ss,length(unique(cluass)),'ko') %number clusters\n hold on\n xlabel('Step #');ylabel('# Clusters')\n drawnow\n end;\n end;\n \n % Fx meat\n [cluass,switchtracker(ss)] = DescOneStep(cluass,simMat);\n \n %Decide to exit the loop - if you've been consistent for a certain window\n if mean(switchtracker(max(ss-stopwin,1):ss)) <= stopthresh\n disp('Clustering has descended to the bottom of the (local) pit!')\n break\n end\nend\n\n%Calculate -Energy (mean similarity) for each final cluster\nfinalclus = unique(cluass);\nnumfinalclus = length(finalclus);\nfor ff = 1:numfinalclus\n %N = sum(cluass == finalclus(ff)); \n clusmat = simMat(cluass == finalclus(ff),cluass == finalclus(ff));\n cluspairs = triu(clusmat,1);\n E(ff) = mean(cluspairs(:));\nend\ncluNRG = [finalclus,E'];\n\n\n\n%% FUNCTION: OneStep\n function [newcluass,diditswitch] = DescOneStep(oldcluass,simMat)\n clus = unique(oldcluass);\n numclus = length(clus);\n\n %Pick a random site and calculate the energy for it's current cluster\n sitepick = randi(length(oldcluass),1);\n clu_A = oldcluass(sitepick); %Cluster the current site is in \n othersites = setdiff(1:length(oldcluass),sitepick);\n N_A = sum(oldcluass == clu_A)-1; %ALl OTHER elements of current cluster\n E_A = -(1./N_A).*sum(simMat(sitepick,oldcluass(othersites)==clu_A));\n \n %If only one site in cluster, energy is 0\n if N_A == 0\n E_A = 0;\n end\n \n %Calculate energy gap for switching site to other clusters\n energygap = zeros(size(clus));\n for cc = 1:numclus\n clu_B = clus(cc);\n if clu_B==clu_A\n continue\n end\n N_B = sum(oldcluass == clu_B); \n E_B = -(1./N_B).*(sum(simMat(sitepick,oldcluass==clu_B)));\n energygap(cc) = E_A - E_B;\n end\n\n %Switch site to cluster with largest energy gap\n newcluass = oldcluass;\n newcluass(sitepick) = clus(energygap==max(energygap));\n \n %Keep Track of switching - 1 if the channel stays in its cluster\n diditswitch = clus(energygap==max(energygap))~=clu_A;\n end\nend\n\n%% FUNCTION: ExpandVid\n\nfunction map = ExpandVid(cluass, LinearInds, SizeVid)\n\n % Intialize\n map = single(nan(SizeVid(1)*SizeVid(2),1));\n\n % Put tmpR values int initialized 2D matrix\n map(LinearInds) = cluass;\n\n % Reshape into video\n map = reshape(map,SizeVid(1),SizeVid(2));\n\nend\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/analysis/lfp/bz_GradDescCluster.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.746138993030751, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.3963560269375907}} {"text": "%IMATCH Template matching\n%\n% XM = IMATCH(IM1, IM2, U, V, H, S) is the position of the matching subimage of\n% IM1 (template) within the image IM2. The template in IM1 is centred at (U,V)\n% and its half-width is H. \n%\n% The template is searched for within IM2 inside a rectangular region, centred \n% at (U,V) and whose size is a function of S. If S is a scalar the search \n% region is [-S, S, -S, S] relative to (U,V). More generally S is a 4-vector \n% S=[umin, umax, vmin, vmax] relative to (U,V).\n%\n% The return value is XM=[DU,DV,CC] where (DU,DV) are the u- and v-offsets \n% relative to (U,V) and CC is the similarity score for the best match in the\n% search region.\n%\n% [XM,SCORE] = IMATCH(IM1, IM2, U, V, H, S) as above but also returns a matrix\n% of matching score values for each template position tested. The rows \n% correspond to horizontal positions of the template, and columns the vertical\n% position. The centre element corresponds to (U,V).\n%\n% Example::\n% Consider a sequence of images im(:,:,N) and we find corner points in the\n% k'th image\n% corners = icorner(im(:,:,k), 'nfeat', 20);\n% Now, for each corner we look for the 11x11 patch of surrounding pixels\n% in the next image, by searching within a 21x21 region\n% for corner=corners\n% xm = imatch(im(:,:,k), im(:,:,k+1), 5, 10);\n% if xm(3) > 0.8\n% fprintf('feature (%f,%f) moved by (%f,%f) pixels)\\n', ...\n% corner.u, corner.v, xm(1), xm(2) );\n% end\n% end\n%\n% Notes::\n% - Useful for tracking a template in an image sequence where IM1 and IM2\n% are consecutive images in a template and (U,V) is the coordinate of\n% a corner point in IM1.\n% - Is a MEX file.\n% - IM1 and IM2 must be the same size.\n% - ZNCC (zero-mean normalized cross correlation) matching is used as the \n% similarity measure. A perfect match score is 1.0 but anything above 0.8\n% is typically considered to be a good match.\n%\n% See also ISIMILARITY.\n\n\n% Copyright (C) 1993-2011, by Peter I. Corke\n%\n% This file is part of The Machine Vision Toolbox for Matlab (MVTB).\n% \n% MVTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% MVTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with MVTB. If not, see .\n\nif ~exist('imatch', 'file')\n error('you need to build the MEX version of imatch, see vision/mex/README');\nend\n", "meta": {"author": "petercorke", "repo": "machinevision-toolbox-matlab", "sha": "2d791168c19c5e56acef74d22eafd227b4b58e42", "save_path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab/machinevision-toolbox-matlab-2d791168c19c5e56acef74d22eafd227b4b58e42/imatch.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702880639791, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3963142417246546}} {"text": "function tc = tc_visualizeGlm_sparklines(tc);\n%\n% tc = tc_visualizeGlm_sparklines(tc);\n%\n% Visualize results of a general linear model on a time\n% course, using the sparkline method. (See Edward Tufte,\n% \"Beautiful Evidence\".)\n%\n% This is a test to see whether this would work.\n%\n% ras. 01/2007.\nif notDefined('tc')\n tc = get(gcf, 'UserData');\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% apply a GLM if needed\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nif ~isfield(tc, 'glm')\n tc = tc_applyGlm(tc);\nend\nX = tc.glm.designMatrix;\nY = tc.wholeTc(:);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% clean up existing objects in figure\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\notherAxes = findobj('Type', 'axes','Parent', tc.ui.fig);\ndelete(otherAxes);\notherUiControls = findobj('Type', 'uicontrol', 'Parent', tc.ui.fig);\ndelete(otherUiControls);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% params\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nnConds = sum(tc.trials.condNums>0);\nnRows = nConds + 1;\nrowSize = min(.15, 1/(nRows+1)); % normalized height of rows\nt = [1:length(tc.wholeTc)] .* tc.TR; % time poitns for wholeTc\n\nlo = min(tc.wholeTc); % min and max time series values\nhi = max(tc.wholeTc); \n\nif isnumeric(tc.params.glmHRF)\n opts = {sprintf('Mean trial for conditions \\n %s',num2str(tc.params.snrConds)), ...\n 'Boynton gamma function', 'SPM difference-of-gammas' ...\n 'Dale & Buckner ''97'};\n hrfName = opts{tc.params.glmHRF};\nelse\n hrfName = tc.params.glmHRF; hrfName(hrfName=='_') = ' ';\nend\ntitle({'HRF function used: ' hrfName}, 'FontWeight', 'bold')\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% plot the data\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfor row = 1:nRows\n subplot('Position', [.3 1-row*rowSize .65 rowSize]);\n \n if row==1 % plot time series data\n plot(t, tc.wholeTc, 'k'); \n else % plot predictor\n plot(t, tc.glm.designMatrix(:,row-1) .* tc.glm.betas(:,row-1), ...\n 'Color', tc.trials.condColors{row});\n end\n axis([t(1) t(end) lo hi]); \n axis off\n \n % label condition\n if row==1\n text(-5, [lo + .3*(hi-lo)], 'Data');\n else\n text(-5, [lo + .3*(hi-lo)], tc.trials.condNames{row});\n end\nend\n\n\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/EventRelated/TimeCourseUI/tc_visualizeGlm_sparklines.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3963142352254938}} {"text": "function [ vX ] = EstimateSignalSamples( vX, vH, vY, convShape, paramLambda, hSumLogProb )\n% ----------------------------------------------------------------------------------------------- %\n% [ mK ] = CreateConvMtx1D( vK, numElements, convShape )\n% Generates a Convolution Matrix for 1D Kernel (The Vector vK) with\n% support for different convolution shapes (Full / Same / Valid). The\n% matrix is build such that for a signal 'vS' with 'numElements = size(vS\n% ,1)' the following are equiavlent: 'mK * vS' and conv(vS, vK,\n% convShapeString);\n% Input:\n% - vK - Input 1D Convolution Kernel.\n% Structure: Vector.\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% - numElements - Number of Elements.\n% Number of elements of the vector to be\n% convolved with the matrix. Basically set the\n% number of columns of the Convolution Matrix.\n% Structure: Scalar.\n% Type: 'Single' / 'Double'.\n% Range: {1, 2, 3, ...}.\n% - convShape - Convolution Shape.\n% The shape of the convolution which the output\n% convolution matrix should represent. The\n% options should match MATLAB's conv2() function\n% - Full / Same / Valid.\n% Structure: Scalar.\n% Type: 'Single' / 'Double'.\n% Range: {1, 2, 3}.\n% Output:\n% - mK - Convolution Matrix.\n% The output convolution matrix. The product of\n% 'mK' and a vector 'vS' ('mK * vS') is the\n% convolution between 'vK' and 'vS' with the\n% corresponding convolution shape.\n% Structure: Matrix (Sparse).\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% References:\n% 1. MATLAB's 'convmtx()' - https://www.mathworks.com/help/signal/ref/convmtx.html.\n% Remarks:\n% 1. The output matrix is sparse data type in order to make the\n% multiplication by vectors to more efficient.\n% 2. In caes the same convolution is applied on many vectors, stacking\n% them into a matrix (Each signal as a vector) and applying\n% convolution on each column by matrix multiplication might be more\n% efficient than applying classic convolution per column.\n% TODO:\n% 1. \n% Release Notes:\n% - 1.0.000 20/01/2019 Royi Avital\n% * First release version.\n% ----------------------------------------------------------------------------------------------- %\n\nCONVOLUTION_SHAPE_FULL = 1;\nCONVOLUTION_SHAPE_SAME = 2;\nCONVOLUTION_SHAPE_VALID = 3;\n\nswitch(convShape)\n case(CONVOLUTION_SHAPE_FULL)\n convShapeString = 'full';\n case(CONVOLUTION_SHAPE_SAME)\n convShapeString = 'same';\n case(CONVOLUTION_SHAPE_VALID)\n convShapeString = 'valid';\nend\n\nvXX = vX;\n\nhObjFun = @(vX) 0.5 * sum((conv(vX, vH, convShapeString) - vY) .^ 2) - (paramLambda * hSumLogProb(vX));\n\nvX = fminunc(hObjFun, vX);\n\n\nend\n\n", "meta": {"author": "RoyiAvital", "repo": "StackExchangeCodes", "sha": "d2a934616995fa8a9f4df1ca29029402435b9e6f", "save_path": "github-repos/MATLAB/RoyiAvital-StackExchangeCodes", "path": "github-repos/MATLAB/RoyiAvital-StackExchangeCodes/StackExchangeCodes-d2a934616995fa8a9f4df1ca29029402435b9e6f/SignalProcessing/Q64035/EstimateSignalSamples.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702642896702, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3963142287263329}} {"text": "% sbplot() - create axes in arbitrary subplot grid positions and sizes\n%\n% Usage: >> axis_handle = sbplot(v,h,index) \n% >> axis_handle = sbplot(v,h,[index1 index2])\n% >> axis_handle = sbplot(v,h,[index1 index2],axprop,..)\n% >> axis_handle = sbplot(v,h,[index1 index2],'ax',handle,axprop,..)\n%\n% Inputs:\n% v,h - Integers giving the vertical and horizontal ranks of the tiling.\n% index - Either a single subplot index, in which case the command \n% is equivalent to subplot, or a two-element vector giving \n% the indices of two corners of the sbplot() area according \n% to subplot() convention (e.g., left-to-right, top-to-bottom).\n% axprop - Any axes property(s), e.g., >> sbplot(3,3,3,'color','w')\n% handle - Following keyword 'ax', sbplot tiles the given axes handle\n% instead of the whole figure\n%\n% Output:\n% axis_handle - matlab axis handle\n%\n% Note:\n% sbplot is essentially the same as the subplot command except that \n% sbplot axes may span multiple tiles. Also, sbplot() will not erase \n% underlying axes. \n% \n% Examples: >> sbplot(3,3,6);plot(rand(1,10),'g');\n% >> sbplot(3,3,[7 2]);plot(rand(1,10),'r');\n% >> sbplot(8,7,47);plot(rand(1,10),'b'); \n%\n% Authors: Colin Humphries, Arnaud Delorme & Scott Makeig, SCCN/INC/UCSD, La Jolla, June, 1998 \n\n% Copyright (C) June 1998, Colin Humphries & Scott Makeig, SCCN/INC/UCSD, \n% scott@sccn.ucsd.edu\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n\n% reformatted by Scott Makeig, 6/10/98\n% 12/22/00 test nargin<3 -sm\n% 01/21/01 added (recursive) axes option 'ax' -sm\n% 01-25-02 reformated help & licence -ad \n\nfunction [out] = sbplot(m,n,gridpos,varargin) % varargin is std. matlab arg list\n\nif nargin<3\n error(' requires >=3 arguments');\nend\n\nif nargin>3 & strcmp(varargin{1},'ax')\n pos = get(varargin{2},'Position'); % sbplot(3,1,[2 3]) -> 0.4111 0.1100 0.4939 0.815\n varargin = {varargin{3:end}};\nelse\n pos = get(gcf,'DefaultAxesPosition'); % [0.1300 0.1100 0.7750 0.815]\nend\n\nXpad = pos(1); % lower-left distance from left side of figure\nYpad = pos(2); % lower-left distance from bottom of figure\n\nXlen = pos(3); % axes width\nYlen = pos(4); % axes height\n\nif n == 2\n xspace = Xlen*0.27/(n-0.27); % xspace between axes as per subplot\nelse\n xspace = (0.9*Xlen)*0.27/(n-0.9*0.27); \nend\n\nif m == 2\n yspace = Ylen*0.27/(m-0.27); % yspace between axes as per subplot\nelse % WHY Xlen (.775) instead of Ylen (.815) ??\n yspace = (0.9*Ylen)*0.27/(m-0.9*0.27); \nend\n \nxlength = (Xlen-xspace*(n-1))/n; % axes width\nylength = (Ylen-yspace*(m-1))/m; % axes height\n\n% Convert tile indices to grid positions\nif length(gridpos) == 1\n xgridpos(1) = mod(gridpos,n); % grid position\n if xgridpos(1) == 0\n xgridpos(1) = n; \n end\n xgridpos(2) = 1; % grid length\n ygridpos(1) = m-ceil(gridpos/n)+1; % grid position\n ygridpos(2) = 1; % grid length\nelse\n xgridpos(1) = mod(gridpos(1),n);\n if xgridpos(1) == 0\n xgridpos(1) = n;\n end\n tmp = mod(gridpos(2),n);\n if tmp == 0\n tmp = n;\n end\n if tmp > xgridpos(1)\n xgridpos(2) = tmp-xgridpos(1)+1;\n else\n xgridpos(2) = xgridpos(1)-tmp+1;\n xgridpos(1) = tmp;\n end\n \n ygridpos(1) = m-ceil(gridpos(1)/n)+1;\n tmp = m-ceil(gridpos(2)/n)+1;\n if tmp > ygridpos(1)\n ygridpos(2) = tmp-ygridpos(1)+1;\n else \n ygridpos(2) = ygridpos(1)-tmp+1;\n ygridpos(1) = tmp;\n end\nend\n\n% Calculate axes coordinates\nposition(1) = Xpad+xspace*(xgridpos(1)-1)+xlength*(xgridpos(1)-1);\nposition(2) = Ypad+yspace*(ygridpos(1)-1)+ylength*(ygridpos(1)-1)-0.03;\nposition(3) = xspace*(xgridpos(2)-1)+xlength*xgridpos(2);\nposition(4) = yspace*(ygridpos(2)-1)+ylength*ygridpos(2);\n\n% Create new axes\nax = axes('Position',position,varargin{:});\n\n% Output axes handle\nif nargout > 0\n out = ax; \nend\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/functions/sigprocfunc/sbplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.39625504762123004}} {"text": "function varargout = xyz2lab(varargin)\n% VL_XYZ2LAB Convert XYZ color space to LAB\n% J = VL_XYZ2LAB(I) converts the image from XYZ format to LAB format.\n%\n% VL_XYZ2LAB(I,IL) uses one of the illuminants A, B, C, E, D50, D55,\n% D65, D75, D93. The default illuminatn is E.\n%\n% See also: VL_XYZ2LUV(), VL_HELP().\n[varargout{1:nargout}] = vl_xyz2lab(varargin{:});\n", "meta": {"author": "yihui-he", "repo": "panorama", "sha": "0c993d4ba6780dcb175b2c1fc7d25b513b7bb39b", "save_path": "github-repos/MATLAB/yihui-he-panorama", "path": "github-repos/MATLAB/yihui-he-panorama/panorama-0c993d4ba6780dcb175b2c1fc7d25b513b7bb39b/lib/vlfeat-0.9.20/toolbox/noprefix/xyz2lab.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160666, "lm_q2_score": 0.6442251064863697, "lm_q1q2_score": 0.39625503921831073}} {"text": "function image=sr_bw(t2,handle_wb,offset_wb,scale_wb,ds,max_shift,th_prob1,th_prob2,no_iter)\n\nif ~exist('ds','var')\n ds=4; % four time super resolution\nend\nif ~exist('max_shift','var')\n max_shift=8;\nend\nif ~exist('th_prob1','var')\n th_prob1=0.9;\nend\nif ~exist('th_prob2','var')\n th_prob2=0.85;\nend\nif ~exist('no_iter','var')\n no_iter=2;\nend\n\nfprintf('start SR\\n...');\nsearch_range=[-max_shift max_shift -max_shift max_shift]; \nimage=kron(t2{1},ones(ds));\n\nsigma=-1; % use the default sigma to estimate prob (see also subpixel_register.m)\nfprintf('start super-resolution 1st phase...\\n');\ntic\n[image,probs,shs,scores]=sr_one_step_wb(image,t2,'average',ds,search_range,sigma,th_prob1,handle_wb,offset_wb,scale_wb/2); %,...\ntoc\n\nfprintf('start super-resolution 2nd phase...\\n');\nfor iter=1:no_iter\n tic\n [image,probs,shs,scores]=sr_one_step_wb(image,t2,'sort_pocs',ds,search_range,sigma,th_prob2,handle_wb,offset_wb+(iter-1)*scale_wb/2/no_iter+scale_wb/2,scale_wb/2/no_iter);\n toc\n iter\n if length(find(probs>th_prob2))==length(probs)\n break;\n end\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/30488-superresolution-demo/sr_demo/sr_bw.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3961326310189647}} {"text": "function [dStates, contactForces] = dynamics_singleStanceTwo(States, Actuators, Parameters)\n% function [dStates, Actuators] = dynamics_singleStanceTwo(States, Actuators, Parameters)\n%\n% Computer Generated File -- DO NOT EDIT \n%\n% This function was created by the function Write_ContinuousDynamics()\n% 10-Dec-2013 19:40:47\n%\n% Dymanics Model: retractable double pendulum biped\n% Motion Phase: Single Stance Two\n%\n% Matthew Kelly \n% Cornell University \n% \n\nx = States(1,:); % (m) Foot One horizontal position\ny = States(2,:); % (m) Foot One vertical position\nth1 = States(3,:); % (rad) Leg One absolute angle\nth2 = States(4,:); % (rad) Leg Two absolute angle\nL1 = States(5,:); % (m) Leg One length\nL2 = States(6,:); % (m) Leg Two length\ndx = States(7,:); % (m/s) Foot One horizontal velocity\ndy = States(8,:); % (m/s) Foot One vertical velocity\ndth1 = States(9,:); % (rad/s) Leg One absolute angular rate\ndth2 = States(10,:); % (rad/s) Leg Two absolute angular rate\ndL1 = States(11,:); % (m/s) Leg One extension rate\ndL2 = States(12,:); % (m/s) Leg Two extensioin rate\n\nF1 = Actuators(1,:); % (N) Compresive axial force in Leg One\nF2 = Actuators(2,:); % (N) Compresive axial force in Leg Two\nT1 = 0; %Foot One not in contact with ground!\nT2 = Actuators(4,:); % (Nm) External torque applied to Leg Two\nThip = Actuators(5,:); % (Nm) Torque acting on Leg Two from Leg One\n\nm1 = Parameters.m1; % (kg) Foot One mass\nm2 = Parameters.m2; % (kg) Foot Two mass\nM = Parameters.M; % (kg) Hip mass\ng = Parameters.g; % (m/s^2) Gravity\n\n% Constraints for this phase: \nH1 = 0; %(N) Foot One, horizontal contact force\nV1 = 0; %(N) Foot One, vertical contact force\n\ndStates = zeros(size(States));\ndStates(1:6,:) = States((1+6):(6+6),:);\ndStates(7,:) = (T1.*sin(th1) - Thip.*sin(th1) + H1.*L1 - F1.*L1.*cos(th1))./(L1.*m1);\ndStates(8,:) = -(T1.*cos(th1) - L1.*V1 - Thip.*cos(th1) + L1.*g.*m1 + F1.*L1.*sin(th1))./(L1.*m1);\ndStates(9,:) = -(L2.*Thip.*m1 - L2.*T1.*m1 + L1.*T2.*m1.*cos(th1 - th2) + L1.*Thip.*m1.*cos(th1 - th2) - L2.*M.*T1.*cos(th1).^2 + L2.*M.*Thip.*cos(th1).^2 - L2.*M.*T1.*sin(th1).^2 + L2.*M.*Thip.*sin(th1).^2 + L1.*L2.*M.*V1.*cos(th1) - H1.*L1.*L2.*M.*sin(th1) - F2.*L1.*L2.*m1.*sin(th1 - th2) + 2.*L1.*L2.*M.*dL1.*dth1.*m1)./(L1.^2.*L2.*M.*m1);\ndStates(10,:) = (L2.*M.*T1.*sin(th1).*sin(th2) - L2.*T1.*m1.*cos(th1).*cos(th2) - L2.*M.*Thip.*sin(th1).*sin(th2) + L2.*Thip.*m1.*cos(th1).*cos(th2) - L2.*T1.*m1.*sin(th1).*sin(th2) + L2.*Thip.*m1.*sin(th1).*sin(th2) - L2.*M.*T1.*cos(th1).^3.*cos(th2) + L2.*M.*Thip.*cos(th1).^3.*cos(th2) - L1.*L2.*M.*V1.*cos(th2) + H1.*L1.*L2.*M.*sin(th2) - L2.*M.*T1.*sin(th1).^3.*sin(th2) + L2.*M.*Thip.*sin(th1).^3.*sin(th2) + L2.*M.*T1.*cos(th1).*cos(th2) - L2.*M.*Thip.*cos(th1).*cos(th2) + L1.*T2.*m1.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*Thip.*m1.*cos(th1 - th2).*cos(th1).*cos(th2) - L2.*M.*T1.*cos(th1).*cos(th2).*sin(th1).^2 + L2.*M.*Thip.*cos(th1).*cos(th2).*sin(th1).^2 + L1.*T2.*m1.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*T2.*m1.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*T2.*m1.*sin(th1 - th2).*cos(th2).*sin(th1) + L1.*Thip.*m1.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*Thip.*m1.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*Thip.*m1.*sin(th1 - th2).*cos(th2).*sin(th1) - F1.*L1.*L2.*M.*cos(th1).*sin(th2) + F1.*L1.*L2.*M.*cos(th2).*sin(th1) - L2.*M.*T1.*cos(th1).^2.*sin(th1).*sin(th2) + L2.*M.*Thip.*cos(th1).^2.*sin(th1).*sin(th2) + F1.*L1.*L2.*m1.*cos(th1).*sin(th2) - F1.*L1.*L2.*m1.*cos(th2).*sin(th1) - F1.*L1.*L2.*M.*cos(th2).*sin(th1).^3 + F1.*L1.*L2.*M.*cos(th1).^3.*sin(th2) + L1.*L2.*M.*V1.*cos(th1).^2.*cos(th2) - H1.*L1.*L2.*M.*cos(th1).^2.*sin(th2) + L1.*L2.*M.*V1.*cos(th2).*sin(th1).^2 - H1.*L1.*L2.*M.*sin(th1).^2.*sin(th2) + L1.*L2.*M.*g.*m1.*cos(th2) - F2.*L1.*L2.*m1.*cos(th1 - th2).*cos(th1).*sin(th2) + F2.*L1.*L2.*m1.*cos(th1 - th2).*cos(th2).*sin(th1) - F2.*L1.*L2.*m1.*sin(th1 - th2).*cos(th1).*cos(th2) - F1.*L1.*L2.*M.*cos(th1).^2.*cos(th2).*sin(th1) + F1.*L1.*L2.*M.*cos(th1).*sin(th1).^2.*sin(th2) - F2.*L1.*L2.*m1.*sin(th1 - th2).*sin(th1).*sin(th2) - 2.*L1.*L2.*M.*dL2.*dth2.*m1.*cos(th2).^2 - 2.*L1.*L2.*M.*dL2.*dth2.*m1.*sin(th2).^2)./(L1.*L2.^2.*M.*m1.*(cos(th2).^2 + sin(th2).^2));\ndStates(11,:) = -(T2.*m1.*sin(th1 - th2) + Thip.*m1.*sin(th1 - th2) - F1.*L2.*m1 + H1.*L2.*M.*cos(th1) + L2.*M.*V1.*sin(th1) + F2.*L2.*m1.*cos(th1 - th2) - F1.*L2.*M.*cos(th1).^2 - F1.*L2.*M.*sin(th1).^2 - L1.*L2.*M.*dth1.^2.*m1)./(L2.*M.*m1);\ndStates(12,:) = (L2.*M.*T1.*cos(th1).*sin(th2) - L2.*M.*T1.*cos(th2).*sin(th1) - L2.*M.*Thip.*cos(th1).*sin(th2) + L2.*M.*Thip.*cos(th2).*sin(th1) - L2.*T1.*m1.*cos(th1).*sin(th2) + L2.*T1.*m1.*cos(th2).*sin(th1) + L2.*Thip.*m1.*cos(th1).*sin(th2) - L2.*Thip.*m1.*cos(th2).*sin(th1) - H1.*L1.*L2.*M.*cos(th2) + L2.*M.*T1.*cos(th2).*sin(th1).^3 - L2.*M.*T1.*cos(th1).^3.*sin(th2) - L2.*M.*Thip.*cos(th2).*sin(th1).^3 + L2.*M.*Thip.*cos(th1).^3.*sin(th2) - L1.*L2.*M.*V1.*sin(th2) + L1.*L2.*M.*g.*m1.*sin(th2) + L1.*L2.^2.*M.*dth2.^2.*m1.*cos(th2).^2 + L1.*L2.^2.*M.*dth2.^2.*m1.*sin(th2).^2 + L1.*T2.*m1.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*T2.*m1.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*T2.*m1.*sin(th1 - th2).*cos(th1).*cos(th2) + L1.*Thip.*m1.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*Thip.*m1.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*Thip.*m1.*sin(th1 - th2).*cos(th1).*cos(th2) + F1.*L1.*L2.*M.*cos(th1).*cos(th2) + L2.*M.*T1.*cos(th1).^2.*cos(th2).*sin(th1) - L2.*M.*Thip.*cos(th1).^2.*cos(th2).*sin(th1) - L2.*M.*T1.*cos(th1).*sin(th1).^2.*sin(th2) + L2.*M.*Thip.*cos(th1).*sin(th1).^2.*sin(th2) + L1.*T2.*m1.*sin(th1 - th2).*sin(th1).*sin(th2) + L1.*Thip.*m1.*sin(th1 - th2).*sin(th1).*sin(th2) + F1.*L1.*L2.*M.*sin(th1).*sin(th2) - F1.*L1.*L2.*m1.*cos(th1).*cos(th2) - F1.*L1.*L2.*m1.*sin(th1).*sin(th2) - F1.*L1.*L2.*M.*cos(th1).^3.*cos(th2) + H1.*L1.*L2.*M.*cos(th1).^2.*cos(th2) + H1.*L1.*L2.*M.*cos(th2).*sin(th1).^2 - F1.*L1.*L2.*M.*sin(th1).^3.*sin(th2) + L1.*L2.*M.*V1.*cos(th1).^2.*sin(th2) + L1.*L2.*M.*V1.*sin(th1).^2.*sin(th2) + F2.*L1.*L2.*m1.*cos(th1 - th2).*cos(th1).*cos(th2) - F1.*L1.*L2.*M.*cos(th1).*cos(th2).*sin(th1).^2 + F2.*L1.*L2.*m1.*cos(th1 - th2).*sin(th1).*sin(th2) - F2.*L1.*L2.*m1.*sin(th1 - th2).*cos(th1).*sin(th2) + F2.*L1.*L2.*m1.*sin(th1 - th2).*cos(th2).*sin(th1) - F1.*L1.*L2.*M.*cos(th1).^2.*sin(th1).*sin(th2))./(L1.*L2.*M.*m1.*(cos(th2).^2 + sin(th2).^2));\n\n% contactForces(1,:) == H1 == (N) Foot One, horizontal contact force\n% contactForces(2,:) == V1 == (N) Foot One, vertical contact force\n% contactForces(3,:) == H2 == (N) Foot Two, horizontal contact force\n% contactForces(4,:) == V2 == (N) Foot Two, vertical contact force\ncontactForces = zeros(4,size(States,2));\ncontactForces(1,:) = zeros(1,size(States,2));\ncontactForces(2,:) = zeros(1,size(States,2));\ncontactForces(3,:) = (L2.*M.*T1.*m2.*sin(th1).^3 - L2.*M.*Thip.*m2.*sin(th1).^3 + L1.*M.*T2.*m1.*sin(th2) - L2.*M.*T1.*m2.*sin(th1) + L1.*M.*Thip.*m1.*sin(th2) + L2.*M.*Thip.*m2.*sin(th1) + L2.*T1.*m1.*m2.*sin(th1) - L2.*Thip.*m1.*m2.*sin(th1) - H1.*L1.*L2.*M.*m2 + L1.*T2.*m1.*m2.*cos(th1 - th2).^2.*sin(th2) + L1.*Thip.*m1.*m2.*cos(th1 - th2).^2.*sin(th2) - F1.*L1.*L2.*M.*m2.*cos(th1).^3 + H1.*L1.*L2.*M.*m2.*cos(th1).^2 + H1.*L1.*L2.*M.*m2.*cos(th2).^2 + L1.*T2.*m1.*m2.*sin(th1 - th2).^2.*sin(th2) + L1.*Thip.*m1.*m2.*sin(th1 - th2).^2.*sin(th2) + H1.*L1.*L2.*M.*m2.*sin(th1).^2 + H1.*L1.*L2.*M.*m2.*sin(th2).^2 - L1.*T2.*m1.*m2.*cos(th1 - th2).*sin(th1) + L1.*T2.*m1.*m2.*sin(th1 - th2).*cos(th1) - L2.*T1.*m1.*m2.*cos(th1 - th2).*sin(th2) - L2.*T1.*m1.*m2.*sin(th1 - th2).*cos(th2) - L1.*Thip.*m1.*m2.*cos(th1 - th2).*sin(th1) + L1.*Thip.*m1.*m2.*sin(th1 - th2).*cos(th1) + L2.*Thip.*m1.*m2.*cos(th1 - th2).*sin(th2) + L2.*Thip.*m1.*m2.*sin(th1 - th2).*cos(th2) + F1.*L1.*L2.*M.*m2.*cos(th1) - F2.*L1.*L2.*M.*m1.*cos(th2) + L2.*M.*T1.*m2.*cos(th1).^2.*sin(th1) + L2.*M.*T1.*m2.*cos(th2).^2.*sin(th1) - L2.*M.*Thip.*m2.*cos(th1).^2.*sin(th1) - L2.*M.*Thip.*m2.*cos(th2).^2.*sin(th1) + L2.*M.*T1.*m2.*sin(th1).*sin(th2).^2 - L2.*M.*Thip.*m2.*sin(th1).*sin(th2).^2 - F1.*L1.*L2.*m1.*m2.*cos(th1) - F1.*L1.*L2.*M.*m2.*cos(th1).*cos(th2).^2 - F1.*L1.*L2.*M.*m2.*cos(th1).*sin(th1).^2 - F1.*L1.*L2.*M.*m2.*cos(th1).*sin(th2).^2 - F1.*L1.*L2.*m1.*m2.*sin(th1 - th2).*sin(th2) + F2.*L1.*L2.*m1.*m2.*sin(th1 - th2).*sin(th1) - F2.*L1.*L2.*m1.*m2.*cos(th1 - th2).^2.*cos(th2) - F2.*L1.*L2.*m1.*m2.*sin(th1 - th2).^2.*cos(th2) - L2.*M.*T1.*m2.*cos(th1 - th2).*cos(th1).^2.*sin(th2) - L2.*M.*T1.*m2.*sin(th1 - th2).*cos(th1).^2.*cos(th2) + L2.*M.*Thip.*m2.*cos(th1 - th2).*cos(th1).^2.*sin(th2) + L2.*M.*Thip.*m2.*sin(th1 - th2).*cos(th1).^2.*cos(th2) - L2.*M.*T1.*m2.*cos(th1 - th2).*sin(th1).^2.*sin(th2) - L2.*M.*T1.*m2.*sin(th1 - th2).*cos(th2).*sin(th1).^2 + L2.*M.*Thip.*m2.*cos(th1 - th2).*sin(th1).^2.*sin(th2) + L2.*M.*Thip.*m2.*sin(th1 - th2).*cos(th2).*sin(th1).^2 + F1.*L1.*L2.*m1.*m2.*cos(th1 - th2).*cos(th2) + F2.*L1.*L2.*m1.*m2.*cos(th1 - th2).*cos(th1) + F1.*L1.*L2.*M.*m2.*cos(th1 - th2).*cos(th1).^2.*cos(th2) + F1.*L1.*L2.*M.*m2.*cos(th1 - th2).*cos(th2).*sin(th1).^2 - F1.*L1.*L2.*M.*m2.*sin(th1 - th2).*cos(th1).^2.*sin(th2) - F1.*L1.*L2.*M.*m2.*sin(th1 - th2).*sin(th1).^2.*sin(th2) - H1.*L1.*L2.*M.*m2.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*V1.*m2.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*L2.*M.*V1.*m2.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*V1.*m2.*sin(th1 - th2).*cos(th1).*cos(th2) - H1.*L1.*L2.*M.*m2.*cos(th1 - th2).*sin(th1).*sin(th2) + H1.*L1.*L2.*M.*m2.*sin(th1 - th2).*cos(th1).*sin(th2) - H1.*L1.*L2.*M.*m2.*sin(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*V1.*m2.*sin(th1 - th2).*sin(th1).*sin(th2))./(L1.*L2.*M.*m1.*(cos(th2).^2 + sin(th2).^2));\ncontactForces(4,:) = -(L1.*L2.*M.*V1.*m2 + L1.*M.*T2.*m1.*cos(th2) - L2.*M.*T1.*m2.*cos(th1) + L1.*M.*Thip.*m1.*cos(th2) + L2.*M.*Thip.*m2.*cos(th1) + L2.*T1.*m1.*m2.*cos(th1) - L2.*Thip.*m1.*m2.*cos(th1) + L2.*M.*T1.*m2.*cos(th1).^3 - L2.*M.*Thip.*m2.*cos(th1).^3 + L1.*T2.*m1.*m2.*cos(th1 - th2).^2.*cos(th2) + L1.*Thip.*m1.*m2.*cos(th1 - th2).^2.*cos(th2) + L1.*T2.*m1.*m2.*sin(th1 - th2).^2.*cos(th2) + L1.*Thip.*m1.*m2.*sin(th1 - th2).^2.*cos(th2) + F1.*L1.*L2.*M.*m2.*sin(th1).^3 - L1.*L2.*M.*V1.*m2.*cos(th1).^2 - L1.*L2.*M.*V1.*m2.*cos(th2).^2 - L1.*L2.*M.*V1.*m2.*sin(th1).^2 - L1.*L2.*M.*V1.*m2.*sin(th2).^2 - L1.*L2.*M.*g.*m1.*m2 - L1.*T2.*m1.*m2.*cos(th1 - th2).*cos(th1) - L2.*T1.*m1.*m2.*cos(th1 - th2).*cos(th2) - L1.*Thip.*m1.*m2.*cos(th1 - th2).*cos(th1) + L2.*Thip.*m1.*m2.*cos(th1 - th2).*cos(th2) + L2.*M.*T1.*m2.*cos(th1).*cos(th2).^2 - L2.*M.*Thip.*m2.*cos(th1).*cos(th2).^2 + L2.*M.*T1.*m2.*cos(th1).*sin(th1).^2 + L2.*M.*T1.*m2.*cos(th1).*sin(th2).^2 - L2.*M.*Thip.*m2.*cos(th1).*sin(th1).^2 - L2.*M.*Thip.*m2.*cos(th1).*sin(th2).^2 - L1.*T2.*m1.*m2.*sin(th1 - th2).*sin(th1) + L2.*T1.*m1.*m2.*sin(th1 - th2).*sin(th2) - L1.*Thip.*m1.*m2.*sin(th1 - th2).*sin(th1) - L2.*Thip.*m1.*m2.*sin(th1 - th2).*sin(th2) - F1.*L1.*L2.*M.*m2.*sin(th1) + F2.*L1.*L2.*M.*m1.*sin(th2) + F1.*L1.*L2.*m1.*m2.*sin(th1) + L2.*M.*T1.*m2.*sin(th1 - th2).*sin(th1).^2.*sin(th2) - L2.*M.*Thip.*m2.*sin(th1 - th2).*sin(th1).^2.*sin(th2) - F1.*L1.*L2.*m1.*m2.*cos(th1 - th2).*sin(th2) - F1.*L1.*L2.*m1.*m2.*sin(th1 - th2).*cos(th2) - F2.*L1.*L2.*m1.*m2.*cos(th1 - th2).*sin(th1) + F2.*L1.*L2.*m1.*m2.*sin(th1 - th2).*cos(th1) + F1.*L1.*L2.*M.*m2.*cos(th1).^2.*sin(th1) + F1.*L1.*L2.*M.*m2.*cos(th2).^2.*sin(th1) + F1.*L1.*L2.*M.*m2.*sin(th1).*sin(th2).^2 + F2.*L1.*L2.*m1.*m2.*cos(th1 - th2).^2.*sin(th2) + F2.*L1.*L2.*m1.*m2.*sin(th1 - th2).^2.*sin(th2) - L2.*M.*T1.*m2.*cos(th1 - th2).*cos(th1).^2.*cos(th2) + L2.*M.*Thip.*m2.*cos(th1 - th2).*cos(th1).^2.*cos(th2) - L2.*M.*T1.*m2.*cos(th1 - th2).*cos(th2).*sin(th1).^2 + L2.*M.*Thip.*m2.*cos(th1 - th2).*cos(th2).*sin(th1).^2 + L2.*M.*T1.*m2.*sin(th1 - th2).*cos(th1).^2.*sin(th2) - L2.*M.*Thip.*m2.*sin(th1 - th2).*cos(th1).^2.*sin(th2) - F1.*L1.*L2.*M.*m2.*cos(th1 - th2).*cos(th1).^2.*sin(th2) - F1.*L1.*L2.*M.*m2.*sin(th1 - th2).*cos(th1).^2.*cos(th2) - F1.*L1.*L2.*M.*m2.*cos(th1 - th2).*sin(th1).^2.*sin(th2) - F1.*L1.*L2.*M.*m2.*sin(th1 - th2).*cos(th2).*sin(th1).^2 + L1.*L2.*M.*V1.*m2.*cos(th1 - th2).*cos(th1).*cos(th2) + H1.*L1.*L2.*M.*m2.*cos(th1 - th2).*cos(th1).*sin(th2) - H1.*L1.*L2.*M.*m2.*cos(th1 - th2).*cos(th2).*sin(th1) + H1.*L1.*L2.*M.*m2.*sin(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*V1.*m2.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*L2.*M.*V1.*m2.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*L2.*M.*V1.*m2.*sin(th1 - th2).*cos(th2).*sin(th1) + H1.*L1.*L2.*M.*m2.*sin(th1 - th2).*sin(th1).*sin(th2))./(L1.*L2.*M.*m1.*(cos(th2).^2 + sin(th2).^2));\n\nend\n", "meta": {"author": "MatthewPeterKelly", "repo": "dscTutorials", "sha": "e1e97a9be03ec146f88bd6ddd9e06db7ee52e242", "save_path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials", "path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials/dscTutorials-e1e97a9be03ec146f88bd6ddd9e06db7ee52e242/FancyDoublePendulum/Polar/computerGeneratedCode/dynamics_singleStanceTwo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8311430562234877, "lm_q2_score": 0.47657965106367595, "lm_q1q2_score": 0.396105867718987}} {"text": "function [g]= spm_gx_adem_write(x,v,a,P)\n% returns the prediction for a two-joint arm (proprioception and vision)\n% FORMAT [g]= spm_gx_adem_write(x,v,a,P)\n%\n% x - hidden states:\n% x(1) - joint angle\n% x(2) - joint angle\n% x(3) - angular velocity\n% x(4) - angular velocity\n% v - causal states{\n% v(1) - exogenous force (x)\n% v(2) - exogenous force (y)\n% a - action\n% P - parameters\n%\n% g - sensations:\n% g(1) - joint angle (proprioception)\n% g(2) - joint angle (proprioception)\n% g(3) - arm location (visual)\n% g(4) - arm location (visual)\n% \n% As for spm_dem_reach but with no visual target\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n \n% Karl Friston\n% $Id: spm_gx_adem_write.m 3901 2010-05-27 16:14:36Z karl $\n\n% evaluate positions\n%--------------------------------------------------------------------------\nJ = spm_dem_reach_x2J(x);\n\n% stretch (angular) and visual (positional) information about motor plant\n%==========================================================================\ng = [x; J{1}; J{1} + J{2}];\n\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/DEM/spm_gx_adem_write.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7799929104825007, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39608965399668133}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Demonstration of Basic Utilities of JSONlab\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nrngstate = rand ('state');\nrandseed=hex2dec('623F9A9E');\nclear data2json json2data\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a simple scalar value \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=pi\nsavebj('',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% an empty array \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=[]\nsavebj('empty',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% an ampty string \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=''\nsavebj('emptystr',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a simple row vector \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=1:3\nsavebj('',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a simple column vector \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=(1:3)'\nsavebj('',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a string array \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=['AC';'EG']\nsavebj('',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a string with escape symbols \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=sprintf('AB\\tCD\\none\"two')\nsavebj('str',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a mix-typed cell \\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json={'a',true,[2;3]}\nsavebj('',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 3-D array in nested array form\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=reshape(1:(2*4*6),[2,4,6]);\nsavebj('',data2json,'NestArray',1)\njson2data=loadbj(ans)\n% if(any(json2data(:)~=data2json(:)) || any(size(json2data)~=size(data2json)))\n% warning('conversion does not preserve original data');\n% end\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 3-D array in annotated array form\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=reshape(1:(2*4*6),[2,4,6]);\nsavebj('',data2json,'NestArray',0)\njson2data=loadbj(ans)\nif(any(json2data(:)~=data2json(:)) || any(size(json2data)~=size(data2json)))\n warning('conversion does not preserve original data');\nend\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 4-D array in annotated array form\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=reshape(1:(2*4*3*2),[2,4,3,2]);\nsavebj('',data2json,'NestArray',0) % nestarray for 4-D or above is not working\njson2data=loadbj(ans)\nif(any(json2data(:)~=data2json(:)) || any(size(json2data)~=size(data2json)))\n warning('conversion does not preserve original data');\nend\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 3-D array in nested array form (JSONLab 1.9)\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=reshape(1:(2*4*6),[2,4,6]);\nsavebj('',data2json,'NestArray',1,'FormatVersion',1.8)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 3-D array in annotated array form (JSONLab 1.9 or earlier)\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=reshape(1:(2*4*6),[2,4,6]);\nsavebj('',data2json,'NestArray',0,'FormatVersion',1.8)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a complex number\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=1+2i\nsavebj('',data2json)\njson2data=loadbj(ans) \n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a complex matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=magic(6);\ndata2json=data2json(:,1:3)+data2json(:,4:6)*1i\nsavebj('',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% MATLAB special constants\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=[NaN Inf -Inf]\nsavebj('specials',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a real sparse matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=sprand(10,10,0.1)\nsavebj('sparse',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a complex sparse matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=data2json-data2json*1i\nsavebj('complex_sparse',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% an all-zero sparse matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=sparse(2,3);\nsavebj('all_zero_sparse',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% an empty sparse matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=sparse([]);\nsavebj('empty_sparse',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% an empty 0-by-0 real matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=[];\nsavebj('empty_0by0_real',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% an empty 0-by-3 real matrix\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=zeros(0,3);\nsavebj('empty_0by3_real',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a sparse real column vector\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=sparse([0,3,0,1,4]');\nsavebj('sparse_column_vector',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a sparse complex column vector\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=data2json-1i*data2json;\nsavebj('complex_sparse_column_vector',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a sparse real row vector\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=sparse([0,3,0,1,4]);\nsavebj('sparse_row_vector',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a sparse complex row vector\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=data2json-1i*data2json;\nsavebj('complex_sparse_row_vector',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a structure\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=struct('name','Think Different','year',1997,'magic',magic(3),...\n 'misfits',[Inf,NaN],'embedded',struct('left',true,'right',false))\nsavebj('astruct',data2json,struct('ParseLogical',1))\njson2data=loadbj(ans)\nclass(json2data.astruct.embedded.left)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a structure array\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=struct('name','Nexus Prime','rank',9);\ndata2json(2)=struct('name','Sentinel Prime','rank',9);\ndata2json(3)=struct('name','Optimus Prime','rank',9);\nsavebj('Supreme Commander',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a cell array\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=cell(3,1);\ndata2json{1}=struct('buzz',1.1,'rex',1.2,'bo',1.3,'hamm',2.0,'slink',2.1,'potato',2.2,...\n 'woody',3.0,'sarge',3.1,'etch',4.0,'lenny',5.0,'squeeze',6.0,'wheezy',7.0);\ndata2json{2}=struct('Ubuntu',['Kubuntu';'Xubuntu';'Lubuntu']);\ndata2json{3}=[10.04,10.10,11.04,11.10]\nsavebj('debian',data2json,struct('FloatFormat','%.2f'))\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% invalid field-name handling\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\njson2data=loadbj(savebj('',loadjson('{\"ValidName\":1, \"_InvalidName\":2, \":Field:\":3, \"\u9879\u76ee\":\"\u7edd\u5bc6\"}')))\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a function handle\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=@(x) x+1\nsavebj('handle',data2json)\njson2data=loadbj(ans)\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 2D cell array\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json={{1,{2,3}},{4,5},{6};{7},{8,9},{10}};\nsavebj('data2json',data2json)\njson2data=loadbj(ans) % only savebj works for cell arrays, loadbj has issues\n\nfprintf(1,'\\n%%=================================================\\n')\nfprintf(1,'%% a 2D struct array\\n')\nfprintf(1,'%%=================================================\\n\\n')\n\ndata2json=repmat(struct('idx',0,'data','structs'),[2,3])\nfor i=1:6\n data2json(i).idx=i;\nend\nsavebj('data2json',data2json)\njson2data=loadbj(ans)\n\n\nif(exist('datetime'))\n fprintf(1,'\\n%%=================================================\\n')\n fprintf(1,'%% datetime object \\n')\n fprintf(1,'%%=================================================\\n\\n')\n\n data2json=datetime({'8 April 2015','9 May 2015'}, 'InputFormat','d MMMM yyyy')\n savebj('',data2json)\n json2data=loadbj(ans)\nend\n\nif(exist('containers.Map'))\n fprintf(1,'\\n%%=================================================\\n')\n fprintf(1,'%% a container.Maps object \\n')\n fprintf(1,'%%=================================================\\n\\n')\n\n data2json=containers.Map({'Andy','William','Om'},{21,21,22})\n savebj('',data2json)\n json2data=loadbj(ans)\nend\n\nif(exist('istable'))\n fprintf(1,'\\n%%=================================================\\n')\n fprintf(1,'%% a table object \\n')\n fprintf(1,'%%=================================================\\n\\n')\n\n Names={'Andy','William','Om'}';\n Age=[21,21,22]';\n data2json=table(Names,Age)\n savebj('table',table(Names,Age))\n json2data=loadbj(ans)\nend\n\nif(exist('bandwidth'))\n fprintf(1,'\\n%%=================================================\\n')\n fprintf(1,'%% use _ArrayShape_ \\n')\n fprintf(1,'%%=================================================\\n\\n')\n\n lband=2;\n uband=3;\n data2json=spdiags(true(8,lband+uband+1),-uband:lband,5,8);\n data2json=full(double(data2json));\n data2json(data2json~=0)=find(data2json)\n\n savebj('',data2json,'usearrayshape',1)\n json2data=loadbj(ans,'fullarrayshape',1)\n \n savebj('',tril(data2json),'usearrayshape',1)\n json2data=loadbj(ans,'fullarrayshape',1)\n \n savebj('',triu(data2json+1i*data2json),'usearrayshape',1)\n json2data=loadbj(ans,'fullarrayshape',1)\n \n savebj('',tril(triu(int8(data2json))),'usearrayshape',1)\n json2data=loadbj(ans,'fullarrayshape',1)\n \n savebj('',data2json(:,1:5)+data2json(:,1:5)','usearrayshape',1)\n json2data=loadbj(ans,'fullarrayshape',1)\nend\n\ntry\n val=zlibencode('test');\n fprintf(1,'\\n%%=================================================\\n')\n fprintf(1,'%% a 2-D array in compressed array format\\n')\n fprintf(1,'%%=================================================\\n\\n')\n\n data2json=eye(10);\n data2json(20,1)=1;\n savebj('',data2json,'Compression','zlib','CompressArraySize',0) % nestarray for 4-D or above is not working\n json2data=loadbj(ans)\n if(any(json2data(:)~=data2json(:)) || any(size(json2data)~=size(data2json)))\n warning('conversion does not preserve original data');\n end\ncatch\nend\n\nrand ('state',rngstate);\n\n", "meta": {"author": "fangq", "repo": "jsonlab", "sha": "cb43ed1655021f8d08844ce3a3613916abc62e2d", "save_path": "github-repos/MATLAB/fangq-jsonlab", "path": "github-repos/MATLAB/fangq-jsonlab/jsonlab-cb43ed1655021f8d08844ce3a3613916abc62e2d/examples/demo_ubjson_basic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5350984434543458, "lm_q2_score": 0.7401743563075446, "lm_q1q2_score": 0.3960661459449894}} {"text": "function [volume_pix_size] = mrGetVolPixSize(voldr,subject)\n%function [volume_pix_size] = mrGetVolPixSize(voldr,subject)\n%\n% PURPOSE: Prompt the user for the volume pixel size\n% AUTHOR: Poirson \n% DATE: 03.16.98\n% HISTORY: Based on routine by Geoff Boynton \n% NOTES: The default values [256/240,256/240,1/1] mean that\n% 24 cm of brain image are interpolated on the 256 pixels\n% in the x and y dimensions (units are pixels/mm).\n% And that the volume plane thickness is 1 pixel per 1 mm.\n%\n% 09.17.99 RFD: cleaned up the code a bit.\n% 04.01.01 ARW : Shouldn't that default 1mm be a 124/150mm?\n% See if we can just read the values\nif nargin<2 % new way- full path is passed in\n\tparamsFile = [voldr,filesep,'UnfoldParams'];\nelse % old method- pass two variable that must be combined (why?)\n \tparamsFile = [voldr,filesep,subject,filesep,'UnfoldParams'];\nend\n\nif ~exist([paramsFile '.mat'], 'file')\n disp ([paramsFile ' not found.']);\n disp ('Please enter values.');\n disp('Enter size of volume anatomy pixels/mm in x,y and z directions');\n volume_pix_size=input('Default is [256/240,256/240,124/150]: ');\n\n if isempty(volume_pix_size)\n volume_pix_size=[256/240,256/240,124/150];\n end\n\n %Create the file 'UnfoldParams.mat' in the subject's volume anatomy directory\n estr=(['save ' paramsFile ' volume_pix_size']);\n eval(estr);\nelse \t% Load in the infolding parameters (volme_pix_sizes)\n estr=(['load ' paramsFile]);\n eval(estr);\n volume_pix_size = volume_pix_size;\nend\n\nreturn\n\n\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAlign/pixel/mrGetVolPixSize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39606613803678226}} {"text": "function dh=constDhDataOf14R820()\n%% This function returns the DH parameters \n% for the KUKA iiwa 7R800\n\n% The dimnstions are taken from Kuka manuals:\n% [1] Medien-Flansch\n% F\u00fcr Produktfamilie LBR iiwa\n% Montage- und Betriebsanleitung\n\n%% DH PARAMETERS FOR THE ROBOT\ndh.alfa={0,-pi/2,pi/2,pi/2,-pi/2,-pi/2,pi/2};\n% following are \"d\" parameters for iiwa 14 R 820 \ndh.d={0.36,0.0,0.42,0.0,0.4,0.0,0.126};\ndh.a={0,0,0,0,0,0,0};\nend", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/Matlab_client/constDhDataOf14R820.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743620390162, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3960661380367822}} {"text": "function msm_to_mm_test18 ( )\n\n%*****************************************************************************80\n%\n%% MSM_TO_MM_TEST18 tests MSM_TO_MM_COORDINATE_REAL_GENERAL.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 02 November 2008\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MSM_TO_MM_TEST18\\n' );\n fprintf ( 1, ' Convert an MSM to MM coordinate real general format.\\n' );\n\n output_filename = 'msm_to_mm_test18.mm';\n\n a = r8mat_indicator ( 5, 3 );\n%\n% Have MSM_TO_MM write the matrix to a file.\n%\n msm_to_mm ( output_filename, a, 'coordinate', 'real', 'general' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/msm_to_mm/msm_to_mm_test18.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5350984286266115, "lm_q2_score": 0.7401743620390162, "lm_q1q2_score": 0.3960661380367822}} {"text": "% This function generate the log Mel filterbanks features of the training\n% and evaluation data. Note that the filterbanks features generated here is\n% slightly different from that by other toolkits, such as Kaldi. \n% This recipe will always use the filterbank features generated in the same\n% way as in this function, so we will be able to do joint training of\n% feature extraction and acoustic modeling later. (e.g. you cannot use\n% Kaldi fbank features in joint training unless you have Matlab version of\n% the Kaldi feature extraction. \n\nfunction GenFbankFeatures(dataset)\naddpath('lib');\n\n% load the wavelist\n\nchime_root = ChoosePath4OS({'D:/Data/CHiME4', '/home/xiaoxiong/CHiME4'}); % you can set two paths, first for windows OS and second for Linux OS. \nfbank_root = [chime_root '/fbank/plain'];\n\nswitch dataset\n case 'tr05_orig'\n wavlist = findFiles([chime_root '/audio/isolated/tr05_org']);\n case 'tr05'\n \n case 'dt05'\n \n case 'et05'\n \n otherwise\n fprintf('Unknown dataset: %s!\\n', dataset);\nend\n\n[layer, para] = BuildFbankExtractionNet();\n\nfor i=1:length(wavlist)\n PrintProgress(i-1, length(wavlist), 100, 'Generate filterbank');\n words = ExtractWordsFromString_v2(wavlist{i}, '/');\n wav = audioread(wavlist{i});\n wav = StoreWavInt16(wav');\n Data(1).data{1} = wav;\n \n [fbank, layer2] = FeatureTree2(Data, para, layer);\n fbank = fbank{1}{1};\n \n fbank_file = [fbank_root '/' words{end-2} '/' words{end-1} '/' words{end}(1:end-4) '.fbank'];\n fbank_dir = fileparts(fbank_file);\n my_mkdir(fbank_dir);\n writeHTK(fbank_file, fbank', 'MFCC_0', 1);\n \nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/examples/beamforming/GenFbankFeatures.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39606613190297923}} {"text": "function grid_params = bp_parse_grid_params( per_pulse_metadata, num_samples_used, varargin )\n%BP_PARSE_GRID_PARAMS Compute grid for backprojection\n% BP_PARSE_GRID_PARAMS(PER_PULSE_METADATA, NUM_SAMPLES_USED, ...\n% 'PropertyName', PropertyValue, ...)\n%\n% Property name Description\n% center Center of image to form in ECF coordinates.\n% Default is scene reference point.\n% grid_type 'slant', 'ground', or 'DEM'. Default is ground.\n% image_size_meters Scene size for image formation ([range_size\n% azimuth_size]) in meters. Default is total size\n% supported by collect.\n% image_size_pixels Size of the image in pixels (only used for images\n% formed to a DEM)\n% sample_rate Samples per IPR. Default is 1.5.\n% grid The grid of image points (ECEF) onto which the\n% image should be formed. The format of the grid\n% parameters is identical to the (MxNx3) grid\n% returned from this routine if no grid is\n% supplied.\n%\n% Output is a structure with the following fields:\n% center Same as input property\n% grid_type Same as input property\n% grid Same as input property\n% sample_rate Same as input property\n% range_vect_hat Unit vector point from center of aperture to\n% image center\n% image_size_meters Extent of the image in meters\n% image_size_pixels Size of the image in pixels\n% row_coords Vector describing position of each row. For\n% planar grids, this is the distance from the\n% center of the image in meters. For DEMs, this is\n% the latitude position in degrees of each row.\n% col_coords Vector describing position of each column.\n% row_unit_vector For planar grids, the unit vector in direction of\n% increasing row\n% col_unit_vector For planar grids, the unit vector in direction of\n% increasing column\n%\n% Authors: Wade Schwartzkopf and Tom Krauss, NGA/IDT\n%\n% //////////////////////////////////////////\n% /// CLASSIFICATION: UNCLASSIFIED ///\n% //////////////////////////////////////////\n\n% Calculate default image extent and supported resolution (in slant plane)\npulse_bandwidth = per_pulse_metadata.SCSS * (num_samples_used-1);\n[max_resolution, max_extent] = pulse_info_to_resolution_extent(...\n per_pulse_metadata.TxPos - per_pulse_metadata.SRPPos, ... % Line-of-sight vector between ARP and ORP\n per_pulse_metadata.SC0 + (pulse_bandwidth/2), per_pulse_metadata.SCSS, ...\n pulse_bandwidth);\n\n% Parse input parameters\np1 = inputParser;\np1.KeepUnmatched=true;\np1.addParamValue('grid_type', 'ground', @(x) any(strcmp(x,{'slant','ground','DEM'})));\np1.addParamValue('grid', []); % Single grid that fits in memory. Perhaps in the future, this could also allow for a file input.\np1.addParamValue('center', mean(per_pulse_metadata.SRPPos), @(x) isempty(x) | (isvector(x)&&(length(x)==3))); % Centerpoint of formed image (ECEF, meters)\np1.addParamValue('image_size_meters', max_extent, @(x) (isvector(x)&&(length(x)==2))); % Scene extent [x y] (m)\np1.addParamValue('image_size_pixels', [], @(x) (isvector(x)&&(length(x)==2))); % Scene extent [x y] (pixels)\np1.addParamValue('sample_rate',1.5, @(x) (isvector(x)&&(length(x)<=2)));\np1.FunctionName = mfilename;\np1.parse(varargin{:});\ngrid_params = p1.Results;\n\n% Some geometry info\nrange_vect = grid_params.center - ... % Range vector points from center of aperture to image center\n ((per_pulse_metadata.TxPos(ceil(length(per_pulse_metadata.TxPos)/2),:) + ... % Use middle pulse\n per_pulse_metadata.RcvPos(ceil(length(per_pulse_metadata.RcvPos)/2),:))/2); % Bistatic definition, average of tx and rcv\n% range_vect = grid_params.center - ... % Range vector points from center of aperture to image center\n% per_pulse_metadata.TxPos(ceil(length(per_pulse_metadata.TxPos)/2),:); % Use middle pulse\ngrid_params.range_vect_hat = range_vect/norm(range_vect); % Unit vector\nvel_vector = per_pulse_metadata.TxPos(end,:)-per_pulse_metadata.TxPos(1,:); % Velocity vector\nspn=cross(grid_params.range_vect_hat,vel_vector); % Slant plane normal\nspn=spn/norm(spn); % Unit vector\n% Slant plane normal to point \"up\" (away from origin). This is affected by left/right looking.\nspn = spn * sign(grid_params.center*cross(grid_params.range_vect_hat,vel_vector).'); % Left/right fix\n\n% Determine final image size. IMAGE_SIZE_PIXELS input parameter is ignored\n% in all cases except for DEM. We only allow it for the DEM case, since we\n% don't currently have a robust automated way to determine it there.\nif ~isempty(grid_params.grid) % Arbitrary grid was passed in. Nothing to compute.\n grid_params.grid_type = 'ignore';\n grid_params.center = squeeze(mean(mean(grid_params.grid,1),2)); % Centroid of points in grid\n % grid_params.image_size_meters = ???\n grid_params.image_size_pixels = [size(grid_params.grid,1), size(grid_params.grid,2)];\n grid_params = rmfield(grid_params,'sample_rate'); % Not valid\n return; % Nothing left to do for explicitly passed grid\nelseif strcmpi(grid_params.grid_type,'DEM')\n if isempty(grid_params.image_size_pixels) % Default\n % Assures that at least sample rate is achieved in all directions.\n grid_params.image_size_pixels = ceil(grid_params.image_size_meters.*...\n max(grid_params.sample_rate)./min(max_resolution));\n end\nelse % Planar image (slant or ground)\n % Adjust distances from slant to ground if necessary\n if strcmpi(grid_params.grid_type,'ground')\n gpn = wgs_84_norm( grid_params.center ); % Ground plane normal, based on (inflated) wgs_84 ellipsoid\n graze = asin(gpn.'*(-grid_params.range_vect_hat.')); % radians\n twist = asin(cross(gpn.',spn)*(-grid_params.range_vect_hat.')/...\n norm(cross(-grid_params.range_vect_hat.',gpn.'))); % radians\n if any(strcmp(p1.UsingDefaults,'image_size_meters'))\n grid_params.image_size_meters(1) = grid_params.image_size_meters(1)/cos(graze);\n grid_params.image_size_meters(2) = grid_params.image_size_meters(2)/cos(twist);\n end \n max_resolution(1) = max_resolution(1)/cos(graze);\n max_resolution(2) = max_resolution(2)/cos(twist);\n end\n grid_params.image_size_pixels = ceil(grid_params.image_size_meters.*...\n grid_params.sample_rate./max_resolution);\nend\n\n% Compute grid onto which the image will be formed\nswitch grid_params.grid_type\n % For planar images (ground and slant) compute the unit vectors in the\n % direction of increasing row/column direction\n case 'ground'\n row_vector = grid_params.range_vect_hat-(grid_params.range_vect_hat*gpn)*gpn.'; % Project range vector to ground\n grid_params.row_unit_vector = row_vector/norm(row_vector); % Unit vector\n col_vector = -cross(grid_params.row_unit_vector,gpn); % Vector in direction of increasing column (ECEF)\n grid_params.col_unit_vector = col_vector/norm(col_vector); % Unit vector\n case 'slant'\n % Slant plane really has no meaning in backprojection. Any\n % arbitrary grid can be defined. We define it here merely for\n % comparison against PFA.\n grid_params.row_unit_vector = grid_params.range_vect_hat; % Unit vector in direction of increasing row (ECEF)\n grid_params.col_unit_vector = -cross(grid_params.row_unit_vector,spn); % Unit vector in direction of increasing column (ECEF)\n case 'DEM'\n % We'll also get the DEM data for the image. We assume that the\n % entire image fits within .2 degrees of lat and long and that the\n % entire DEM can fit into memory (reasonable for SRTM, but probably\n % not LIDAR).\n center_lla = ecf_to_geodetic(grid_params.center);\n [lats,lons,elevations] = get_DEM_heights_region([center_lla(1)-0.1,center_lla(2)-0.1], ...\n [center_lla(1)+0.1,center_lla(2)+0.1]);\n [lats, lons] = meshgrid(lats, lons);\n % Return DEM interpolation function, rather than the grid itself,\n % since for image formation we will need values not lying exactly\n % on the DEM points.\n grid_params.F_1 = TriScatteredInterp(lats(:), lons(:), elevations(:));\n \n % Convert scene extent from meters to arc-degrees\n e2 = 6.6943799901377997e-3; % eccentricity squared of Earth (WGS 84 value)\n a = 6378137.0; % semimajor radius of the Earth (WGS 84 value)\n b = a .* sqrt( 1.0 - e2); % semiminor radius of the Earth\n lat = pi/180*center_lla(1);\n M = (a*b)^2/((a*cos(lat))^2+(b*sin(lat))^2)^(3/2);\n N = a^2/sqrt((a*cos(lat))^2+(b*sin(lat))^2);\n arcradius_lat = pi/180*M; % length of arc-degree in latitude direction (m)\n arcradius_lon = pi/180*cos(lat)*N; % length of arc-degree in longitude direction (m)\n scene_extent_lat = grid_params.image_size_meters(1)/arcradius_lat;\n scene_extent_lon = grid_params.image_size_meters(2)/arcradius_lon;\nend\n% Compute row/column coordinates\nswitch grid_params.grid_type\n % For a plane, coordinates are distances (in meters) from the center\n % of image for each row/column\n case {'ground','slant'}\n grid_params.row_coords = grid_params.image_size_meters(1)*...\n linspace(-1,1,grid_params.image_size_pixels(1))/2;\n grid_params.col_coords = grid_params.image_size_meters(2)*...\n linspace(-1,1,grid_params.image_size_pixels(2))/2;\n % For a DEM, coordinates of each row/column are in lat/lon degrees;\n % that is, angularly, rather than along a plane.\n case 'DEM'\n grid_params.row_coords = center_lla(1) + (scene_extent_lat*...\n linspace(-1,1,grid_params.image_size_pixels(1))/2);\n grid_params.col_coords = center_lla(2) + (scene_extent_lon*...\n linspace(-1,1,grid_params.image_size_pixels(2))/2);\nend\n\nend\n\n% //////////////////////////////////////////\n% /// CLASSIFICATION: UNCLASSIFIED ///\n% //////////////////////////////////////////", "meta": {"author": "ngageoint", "repo": "MATLAB_SAR", "sha": "6291feff8e200d387e271f49ec09b1acd5514c4e", "save_path": "github-repos/MATLAB/ngageoint-MATLAB_SAR", "path": "github-repos/MATLAB/ngageoint-MATLAB_SAR/MATLAB_SAR-6291feff8e200d387e271f49ec09b1acd5514c4e/Processing/IFP/BP/bp_parse_grid_params.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39606613190297923}} {"text": "function [vertices, faces] = readMesh_off(fileName)\n%READMESH_OFF Read mesh data stord in OFF format\n%\n% [VERTICES FACES] = readMesh_off(FILNAME)\n%\n% Example\n% [v, f] = readMesh_off('mushroom.off');\n% figure; drawMesh(v, f, 'faceColor', [0 1 0], 'edgeColor', 'none')\n% view([5 80]); light; lighting gouraud\n%\n% See also\n% meshes3d, drawMesh\n\n% ------\n% Author: David Legland\n% e-mail: david.legland@inra.fr\n% Created: 2011-12-20, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2011 INRA - Cepia Software Platform.\n\n% open file\nf = fopen(fileName, 'r');\nif f == -1 \n error('matGeom:readMesh_off:FileNotFound', ...\n ['Could not find file: ' fileName]);\nend\n\n% check format\nline = fgets(f); % -1 if eof\nif ~strcmp(line(1:3), 'OFF')\n error('matGeom:readMesh_off:FileFormatError', ...\n 'Not a valid OFF file'); \nend\n\n% number of faces and vertices\nline = fgets(f);\nvals = sscanf(line, '%d %d');\nnv = vals(1);\nnf = vals(2);\n\n\n% read vertex data\n[vertices, count] = fscanf(f, '%f ', [3 nv]);\nif count ~= nv*3\n error('matGeom:readMesh_off:FileFormatError', ...\n ['Could not read all the ' num2str(nv) ' vertices']);\nend\nvertices = vertices';\n\n% read face data (face start by index)\n[faces, count] = fscanf(f, '%d %d %d %d\\n', [4 nf]);\nif count ~= nf * 4\n error('matGeom:readMesh_off:FileFormatError', ...\n ['Could not read all the ' num2str(nf) ' faces']);\nend\n\n% clean up: remove index, and use 1-indexing\nfaces = faces(2:4, :)' + 1;\n\n% close the file\nfclose(f);\n\n", "meta": {"author": "rpng", "repo": "lips", "sha": "a97157e586b509c9c2e3e01e64e4347f36d0b63e", "save_path": "github-repos/MATLAB/rpng-lips", "path": "github-repos/MATLAB/rpng-lips/lips-a97157e586b509c9c2e3e01e64e4347f36d0b63e/lips_matlab/matlab/functions/matGeom/meshes3d/readMesh_off.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819874558603, "lm_q2_score": 0.6477982247516796, "lm_q1q2_score": 0.3960521661190599}} {"text": "function tri2tgf(input_name,output_name)\n % TRI2TGF Script to convert a triangle mesh to a tgf graph (skeleton file)\n %\n % tri2tgf(input_name,output_name)\n %\n % Inputs:\n % input_name name of file contaning input vertices and faces of surface,\n % should end in .off or .obj\n % output_name name of output file to be written with 3D tet mesh, should\n % end in .mesh\n\n % read input mesh\n [V,F] = load_mesh(input_name);\n % Find all edges in mesh, note internal edges are repeated\n E = sort( ...\n [F(:,1) (:,2); ...\n F(:,2) (:,3); ...\n F(:,3) (:,1)]')';\n % remove duplicates\n E = unique(E,'rows');\n writeTGF(output_name,V,E);\n\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/tri2tgf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3960521527879958}} {"text": "function res = uminusFactorized( xi )\n%UMINUSFACTORIZED Unary minus for a tangent tensor.\n% RES = UMINUSFACTORIZED( XI ) performs unary minus operation\n% on the tangent tensor XI given in factorized form\n%\n% See also addFactorized\n%\n\n% GeomCG Tensor Completion. Copyright 2013 by\n% Michael Steinlechner\n% Questions and contact: michael.steinlechner@epfl.ch\n% BSD 2-clause license, see LICENSE.txt\n\n res.Y_tilde = -xi.Y_tilde;\n res.U1_tilde = -xi.U1_tilde;\n res.U2_tilde = -xi.U2_tilde;\n res.U3_tilde = -xi.U3_tilde;\nend\n", "meta": {"author": "andrewssobral", "repo": "mctc4bmi", "sha": "fbcbcd25654b818646387c3d6a64304fb60e12dd", "save_path": "github-repos/MATLAB/andrewssobral-mctc4bmi", "path": "github-repos/MATLAB/andrewssobral-mctc4bmi/mctc4bmi-fbcbcd25654b818646387c3d6a64304fb60e12dd/algs_tc/geomCG/uminusFactorized.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3960521444737275}} {"text": "function obj = SSP_OMP_method(obj)\n\nt1 = clock;\n[F_RF,F_BB] = OMP_Precoding();\n[W_RF,W_BB] = OMP_Combining(F_RF,F_BB);\nF = F_RF * F_BB;\nW = W_RF * W_BB;\n\nt2 = clock;\nruntime = etime(t2,t1);\nobj.runtime = obj.runtime + runtime;\nobj.V_B = F_BB;\nobj.W_B = W_BB;\nobj.V_RF = F_RF;\nobj.W_RF = W_RF;\nobj = get_metric(obj);", "meta": {"author": "Zzhaoxingyu", "repo": "hybrid-beamforming-for-three-scenes", "sha": "396ae70db7dd464a65458f274a65aa113ed73c8b", "save_path": "github-repos/MATLAB/Zzhaoxingyu-hybrid-beamforming-for-three-scenes", "path": "github-repos/MATLAB/Zzhaoxingyu-hybrid-beamforming-for-three-scenes/hybrid-beamforming-for-three-scenes-396ae70db7dd464a65458f274a65aa113ed73c8b/narrowband/Algorithms/SSP_OMP/SSP_OMP_method.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.798186768138228, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3959755304387104}} {"text": "% script to specify network arch and train drdae on single machine\n% make copies of this script for each architecture you want to try\n\n%% setup paths for code. assumed this script runs in its own directory\ncodeDir = '/afs/cs.stanford.edu/u/awni/scr/noise_proj/audio_ufl/matlab_wd/drdae';\nminFuncDir = '/afs/cs/u/amaas/scratch/matlab_trunk/parallel_proto/minFunc/';\nbaseDir = '/afs/cs.stanford.edu/u/awni/scr/noise_proj/aurora2/features/';\n%% AMAAS setup\n%codeDir = '/afs/cs.stanford.edu/u/amaas/scratch/audio/audio_repo/matlab_wd/drdae';\n%% add paths\naddpath(codeDir);\naddpath(minFuncDir);\n\n%% setup network architecture\neI = [];\n% dimension of each input frame\neI.featDim = 14;\neI.dropout = 0;\n% context window size of the input.\neI.winSize = 3;\n% weight tying in hidden layers\n% if you want tied weights, must have odd number of *hidden* layers\neI.tieWeights = 0;\n% 2 hidden layers and output layer\neI.layerSizes = [512 eI.featDim];\n% highest hidden layer is temporal\neI.temporalLayer = 0;\n% dim of network input at each timestep (final size after window & whiten)\neI.inputDim = eI.featDim * eI.winSize;\n% length of input sequence chunks.\neI.seqLen = [1 10 25 50 100];\n% activation function\neI.activationFn = 'tanh';\n% temporal initialization type\neI.temporalInit = 'rand';\n% weight norm penaly\neI.lambda = 0;\n% file containing whitening matrices for outputs\neI.targetWhiten = [codeDir '/aurora_whiten.mat'];\n%% setup weight caching\nsaveDir = '/scail/group/deeplearning/speech/awni/aurora_results/';\neI.saveDir = [saveDir 'model_1hl512_ws3_small_test/'];\nmkdir(eI.saveDir);\n%% initialize weights\n[stack_i, W_t_i] = initialize_weights(eI);\n[theta] = rnn_stack2params(stack_i, eI, W_t_i);\n\n[stack_new, W_t_new] = rnn_params2stack(theta,eI);\n[theta_new] = rnn_stack2params(stack_new, eI, W_t_new);\n%% Directory of features\neI.featInBase =baseDir; % '/afs/cs.stanford.edu/u/amaas/scratch/aurora2/features/';\n\n%% load data\neI.useCache = 0;\n\n%Get SNR List\nsnrList = {'clean1', 'N1_SNR5', 'N1_SNR10', 'N1_SNR15', 'N1_SNR20', ...\n'clean2', 'N2_SNR5', 'N2_SNR10', 'N2_SNR15', 'N2_SNR20', ...\n'clean3', 'N3_SNR5', 'N3_SNR10', 'N3_SNR15', 'N3_SNR20', };\neI.subdirs = snrList;\n[data_cell, targets_cell] = load_aurora( baseDir, 'Mfc08_multiTR', snrList, -1, eI );\n\n% dieplay mean as a whitening debug check\n%disp(mean(data_cell{1},2));\n%% setup minFunc\noptions.Diagnostics = 'on';\noptions.Display = 'iter';\noptions.MaxIter = 2000;\noptions.MaxFunEvals = 2500;\noptions.Corr = 50;\noptions.DerivativeCheck = 'off';\noptions.outputFcn = @save_callback;\n%% run optimizer\nminFunc(@drdae_obj, theta, options, eI, data_cell, targets_cell, false, false);\n", "meta": {"author": "amaas", "repo": "rnn-speech-denoising", "sha": "55edd5bc4719f9747e390b9d57240aa5828c55d3", "save_path": "github-repos/MATLAB/amaas-rnn-speech-denoising", "path": "github-repos/MATLAB/amaas-rnn-speech-denoising/rnn-speech-denoising-55edd5bc4719f9747e390b9d57240aa5828c55d3/train_aurora_local.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.798186768138228, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3959755304387104}} {"text": "function [sigma q_a out_counts score lv_score word_score] = tamEStepNoMex(x,beta,alpha,a_log_prior,sigma)\n%function [sigma q_a out_counts score lv_score word_score] = tamEStepNoMex(x,beta,alpha,a_log_prior,sigma)\n%\n%this contains a lot of optimizations that make it kind of complicated.\n%maybe i should release a simplified version?\n[W K A] = size(beta);\nif nargin < 5\n if isscalar(alpha), sigma = ones(1,K) * (numel(x) / K + alpha);\n else sigma = ones(1,K) * numel(x) / K + alpha; end\nend\nmydudes = x>0;\nq_a = normalize_vec(ones(1,A));\nmyphi = 1/K * ones(sum(mydudes),K);\nmyx = x(mydudes);\nmybeta = beta(mydudes,:,:);\n\n%new_counts = spalloc(K,W,sum(mydudes)*K);\nxrep = full(repmat(myx',1,K));\niter = newIterator(5,'thresh',1e-4,'debug',false);\n%iter_delta = newDeltaIterator(1000,'thresh',1e-3);\niter_ctr = 0;\nwhile ~iter.done\n sigma = (myx * myphi + alpha);\n dig_sig = digamma(sigma) - digamma(sum(sigma));\n warning off;\n myphi = logToSimplex2(tprod(mybeta,[1 2 -1],q_a,[3 -1],'n') + repmat(dig_sig,size(myx,2),1));\n [q_a log_q_a] = logToSimplex2(squeeze(tprod(mybeta,[-1 -2 1],myphi,[-1 -2],'n'))' + a_log_prior);\n warning on;\n %score it. this is slow, so we do it less often.\n if rem(iter_ctr,5) == 0\n word_score = 0;\n %new_counts(:,mydudes) = transpose(myphi.*xrep);\n my_new_counts = transpose(myphi.*xrep);\n %for a = 1:A\n %new_counts = new_counts * q_a(a);\n % word_score = word_score + q_a(a) * scoreWords(my_new_counts',mybeta(:,:,a));\n %end\n %same as above, but faster\n word_score = q_a * tprod(my_new_counts,[-1 -2],mybeta,[-2 -1 1],'n');\n %using mybeta(:,:,1) looks weird, but actually this part is being ignored, we're only using the latent variable score. so this is legit.\n [ig ig2 lv_score] = scoreDoc(my_new_counts',mybeta(:,:,1),myphi,myx,sigma,alpha,dig_sig);\n lv_score = lv_score + q_a * (a_log_prior - log_q_a)';\n score = word_score + lv_score;\n \n iter = updateIterator(iter,score);\n end\n iter_ctr = iter_ctr + 1;\nend\n%compute output counts for real\nif nargout >= 3\n out_counts = zeros(W,K,A);\n for k=1:K, for a=1:A, out_counts(mydudes,k,a) = myphi(:,k) .* myx' .* q_a(a); end; end\nend\nend", "meta": {"author": "jacobeisenstein", "repo": "SAGE", "sha": "5776655f6c09f2c24a96485a0985660e64664415", "save_path": "github-repos/MATLAB/jacobeisenstein-SAGE", "path": "github-repos/MATLAB/jacobeisenstein-SAGE/SAGE-5776655f6c09f2c24a96485a0985660e64664415/tamEStepNoMex.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8376199673867853, "lm_q2_score": 0.4726834766204328, "lm_q1q2_score": 0.39592911827107924}} {"text": "obSize gives the size.\na = reshape(obSlice,42,51);\nb = flipup(a);\n\n\nfunction [sagSlice,obSlice,sagX,sagY] = ...\n\tmrUpSagShowObl(volume,sagSize,numSlices,curSag,obPts,obSize,obX,obY,volselpts)\n%\n%NAME: [sagSlice,obSlice,sagX,sagY] = ...\n%\tmrUpSagShowObl(volume,sagSize,numSlices,curSag,obPts,obSize,obX,obY,volselpts)\n%AUTHOR: Poirson \n%DATE: 08.07.96\n%HISTORY Started with mrUpSagShowObl.m\n%BUGS:\n\n% relevant code to display the interpolated oblique plane\nglobal obwin\nif ~isempty(obPts)\n\tfigure(obwin);\n\t[obSlice,sagX,sagY] = ...\n\t\tmrDispOblVol(volume,sagSize,numSlices,obPts,obSize,curSag,volselpts);\nend\n\nreturn\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [obSlice, sagX, sagY] = mrDispOblVol(volume,sagSize,numSlices,obPts,obSize,curSag,volselpts)\n%\nglobal obwin volslimin2 volslimax2;\n\nif ~isempty(obPts)\n\tsagX = [curSag,curSag];\n\tsagY = [0,obSize(1)];\n\ttmp = volume;\n\tif ~isempty(volselpts)\n\t\ttmp(volselpts) = -1*ones(1,length(volselpts));\n\tend\n\tobSlice = mrExtractImgVol(tmp, sagSize, numSlices, obPts);\n\tfigure(obwin);\n\tmyShowImageVol(obSlice,obSize,max(obSlice)*get(volslimin2,'value'),max(obSlice)*get(volslimax2,'value'),sagX,sagY);\nend\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAlign/volume/mrFlipOblUpDown.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723316991792861, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.39592882991734935}} {"text": "%PNMDEMO Demonstration of portable bitmap utilities.\n\n% Author: Peter J. Acklam\n% Time-stamp: 1998-05-11 16:39:20\n% E-mail: jacklam@math.uio.no (Internet)\n% URL: http://www.math.uio.no/~jacklam\n\nmore off;\necho on;\nhome; clc;\n%\n% First, read the portable pixelmap with the Matlab logo.\n%\n% The image may be read as an RGB image.\n%\n\n[ r, g, b ] = ppmread( 'logo5' );\n\npause\n\n%\n% The image may also be read as an indexed image.\n%\n\n[ x, map ] = ppmread( 'logo5' );\n\npause\n\n%\n% Since PPMREAD does not simplify the color map automatically, the number\n% of colors in the map equals the number of pixels in the image.\n%\n\npixels_in_image = prod( size(x) )\ncolors_in_map = size( map, 1 )\n\npause\n\n%\n% Use IM2IND to convert intensity images, indexed images and RGB images\n% to indexed images with the smallest possible color map.\n%\n\n[ x, map ] = im2ind( x, map );\n\npause\n\n%\n% Now we see the number of unique colors in the image. The number of\n% colors in the map has been reduced significantly.\n%\n\ncolors_in_map = size( map, 1 )\n\npause\n\n%\n% Display the image.\n%\n\nfigure( gcf ); clf;\ncolormap( map ); image( x ); axis image;\n\npause\n\n%\n% Write the image as a portable graymap.\n% PGMWRITE automatically converts color images to grayscale images.\n% For speed, we use binary (raw) encoding.\n%\n\npgmwrite( x, map, 'logo5', 'binary' );\n\npause\n\n%\n% Read the image. We can use both PGMREAD and PPMREAD for this.\n% PGMREAD can read the image as an intensity image or an indexed image.\n% We choose the latter.\n%\n\n[ x, map ] = pgmread( 'logo5' );\n\npause\n\n%\n% Display the image.\n%\n\nfigure( gcf ); clf;\ncolormap( map ); image( x ); axis image;\n\npause\n\n%\n% As with PPMREAD, PGMREAD does not simplify the color map\n% automatically, so the number of colors in the map may be larger than\n% the number of colors used in the image.\n%\n\ncolors_in_map = size( map, 1 )\n\npause\n\n%\n% Again, we use IM2IND to get the indexed image with the smallest\n% possible color map.\n%\n\n[ x, map ] = im2ind( x, map );\n\npause\n\n%\n% Now we see the number of unique colors in the image.\n%\n\ncolors_in_map = size( map, 1 )\n\npause\n\n%\n% Now write the image as a portable bitmap.\n% PBMWRITE automatically converts color images and grayscale images to\n% black and white images. For speed, we use binary (raw) encoding.\n%\n\npbmwrite( x, map, 'logo5', 'binary' );\n\npause\n\n%\n% Read the image. We can use both PBMREAD, PGMREAD and PPMREAD to this.\n% PBMREAD can read the image as a black and white image or as an indexed\n% image. We choose the latter.\n%\n\n[ x, map ] = pbmread( 'logo5' );\n\npause\n\n%\n% Display the image.\n%\n\nfigure( gcf ); clf;\ncolormap( map ); image( x ); axis image;\n\npause\n\n%\n% That should be all for now, so clean up.\n%\n\ndelete logo5.pgm logo5.pbm\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/134-pnm/pnm/pnmdemo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6723316991792861, "lm_q1q2_score": 0.39592882991734935}} {"text": "function covering = getBestCovering(seg, regions, spseg, do_approx)\n% covering = getBestCovering(seg, regions, spseg)\n%\n% Computes covering of seg by regions, where seg is an image with indices\n% denoting a partitioning and regions is a cell array containing indices\n% into spseg specifying image regions.\n%\n% covering.pix = covering weighted by pixel area of seg regions\n% covering.unweighted = average covering (unweighted)\n\nif ~exist('do_approx', 'var')\n do_approx = 0;\nend\n\ncovering.maxov = zeros(max(seg(:)), 1);\ncovering.maxr = zeros(max(seg(:)), 1);\ncovering.area = 0;\ncovering.pix = 0;\ncovering.unweighted = 0;\n\n\nrmap = false(max(spseg(:)), 1);\nif do_approx % approximates seg with spseg\n s = regionprops(spseg, 'Area');\n area = cat(1, s.Area); area = area/sum(area); \n lab = transferRegionLabels(seg, spseg);\n for r1 = 1:max(lab)\n region1 = find(lab==r1); \n maxov = 0;\n maxr = 0; \n for r2 = 1:numel(regions)\n ov = regionOverlap(region1, regions{r2}, area);\n if ov > maxov\n maxov = ov;\n maxr = r2;\n end\n end\n if maxr~=0\n rmap(:) = false;\n rmap(regions{maxr}) = true;\n region1 = seg==r1;\n region2 = rmap(spseg);\n ov = sum(region1(:) & region2(:)) / sum(region1(:) | region2(:)); \n covering.maxov(r1) = ov;\n covering.pix = covering.pix + ov * mean(region1(:)); \n covering.unweighted = covering.unweighted + ov / max(seg(:)); \n covering.area (r1) = mean(region1(:));\n covering.maxr(r1) = maxr;\n end\n \n end\nelse\n stats = regionprops(spseg, 'Area');\n area = cat(1, stats.Area);\n seg(seg<0) = 0;\n stats = regionprops(seg, 'Area');\n segarea = cat(1, stats.Area);\n nsp = numel(area);\n nseg = max(seg(:));\n count = zeros(nsp, nseg);\n ind = find((spseg > 0) & (seg>0));\n for k = ind(:)'\n s1 = spseg(k);\n s2 = seg(k);\n count(s1, s2) = count(s1, s2)+1;\n end\n for r1 = 1:nseg \n maxr = 0;\n maxov = 0; \n for r2 = 1:numel(regions) \n\t region = regions{r2}; region = region(region maxov\n maxr = r2;\n maxov = ov;\n end\n end\n covering.maxr(r1) = maxr;\n covering.regions{r1} = regions{maxr};\n covering.maxov(r1) = maxov;\n covering.area(r1) = segarea(r1)/numel(seg);\n covering.pix = covering.pix + segarea(r1)*maxov/sum(segarea); \n covering.unweighted = covering.unweighted + maxov / nseg; \n end \n \n% rmap = false(max(spseg(:)), 1);\n% for r1 = 1:max(seg(:))\n% region1 = seg==r1; \n% maxov = 0; \n% for r2 = 1:numel(regions) \n% rmap(:) = false;\n% rmap(regions{r2}) = true;\n% region2 = rmap(spseg);\n% ov = sum(region1(:) & region2(:)) / sum(region1(:) | region2(:));\n% if ov > maxov\n% maxov = ov;\n% end\n% end\n% covering = covering + mean(region1(:))*maxov; \n% end \nend\n", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/iccv07Final/src/occlusion/getBestCovering.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3959288299173493}} {"text": "function [ total_bboxes ] = apply_correction( total_bboxes, corrections, add1 )\n%APPLY_CORRECTION Summary of this function goes here\n% Detailed explanation goes here\n\n % Perform correction based on regression values\n bbw = total_bboxes(:,3) - total_bboxes(:,1);\n bbh = total_bboxes(:,4) - total_bboxes(:,2);\n \n % TODO is this needed?\n if(add1)\n bbw = bbw + 1;\n bbh = bbh + 1;\n end\n \n new_min_x = total_bboxes(:,1) + corrections(:,1) .* bbw;\n new_min_y = total_bboxes(:,2) + corrections(:,2) .* bbh; \n new_max_x = total_bboxes(:,3) + corrections(:,3) .* bbw;\n new_max_y = total_bboxes(:,4) + corrections(:,4) .* bbh;\n score = total_bboxes(:,5);\n total_bboxes = [new_min_x, new_min_y, new_max_x, new_max_y, score];\n\nend\n\n", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/matlab_version/face_detection/mtcnn/apply_correction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3958645218925018}} {"text": "function drawAhmPnt(MapFig, Lmk, color, MapOpt)\n\n% DRAWAHMPNT Draw anchored Homogeneous point landmark in MapFig.\n\n% Copyright 2008-2009 Joan Sola @ LAAS-CNRS.\n\nglobal Map\n\nposOffset = [0;0;.2];\n\n% transform to Euclidean\n[x,P] = propagateUncertainty( ...\n Map.x(Lmk.state.r), ...\n Map.P(Lmk.state.r,Lmk.state.r), ...\n @ahm2euc);\n\n% draw\ndrawPnt (MapFig.Lmk(Lmk.lmk).mean, x, color.mean)\nif MapOpt.showEllip\n drawEllipse(MapFig.Lmk(Lmk.lmk).ellipse, x, P, color.ellip)\nend\nif MapOpt.showLmkId\n drawLabel (MapFig.Lmk(Lmk.lmk).label, x+posOffset, num2str(Lmk.id))\nend\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/Graphics/drawAhmPnt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879991, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.39586451502670217}} {"text": "function [vert,conn,tria,tnum] = smooth2(varargin)\n%SMOOTH2 \"hill-climbing\" mesh-smoothing for two-dimensional,\n%2-simplex triangulations.\n% [VERT,EDGE,TRIA,TNUM] = SMOOTH2(VERT,EDGE,TRIA,TNUM) re-\n% turns a \"smoothed\" triangulation {VERT,TRIA}, incorpora-\n% ting \"optimised\" vertex coordinates and mesh topology.\n%\n% VERT is a V-by-2 array of XY coordinates in the triangu-\n% lation, EDGE is an array of constrained edges, TRIA is a\n% T-by-3 array of triangles, and TNUM is a T-by-1 array of\n% part indices. Each row of TRIA and EDGE define an eleme-\n% nt. VERT(TRIA(II,1),:), VERT(TRIA(II,2),:) and VERT(TRIA\n% (II,3),:) are the coordinates of the II-TH triangle. The\n% edges in EDGE are defined in a similar manner. NUM is an\n% array of part indexing, such that TNUM(II) is the index \n% of the part in which the II-TH triangle resides.\n%\n% [VERT,EDGE,TRIA,TNUM] = SMOOTH2(... ,OPTS) passes an ad-\n% ditional options structure OPTS, containing user-defined \n% parameters, including:\n%\n% - OPTS.VTOL = {+1.0E-02} -- relative vertex movement tole-\n% rance, smoothing is converged when (VNEW-VERT) <= VTOL *\n% VLEN, where VLEN is a local effective length-scale.\n%\n% - OPTS.ITER = {+32} -- max. number of smoothing iterations\n%\n% - OPTS.DISP = {+ 4} -- smoothing verbosity. Set to INF for \n% quiet execution.\n%\n% See also REFINE2, TRICOST, TRIDEMO\n\n% This routine is loosely based on the DISTMESH algorithm,\n% employing a \"spring-based\" analogy to redistribute mesh\n% vertices. Such an approach is described in: P.O. Persson \n% and Gilbert Strang. \"A simple mesh generator in MATLAB.\" \n% SIAM review 46(2) 2004, pp: 329--345. Details of the al-\n% gorithm used here are somewhat different, with an alter-\n% ative spring-based update employed, in addition to hill-\n% climbing element quality guarantees, and vertex density\n% controls.\n\n%-----------------------------------------------------------\n% Darren Engwirda : 2017 --\n% Email : de2363@columbia.edu\n% Last updated : 21/07/2017\n%-----------------------------------------------------------\n \n vert = []; conn = []; tria = [] ; \n tnum = []; \n opts = []; hfun = []; harg = {} ;\n \n%---------------------------------------------- extract args \n if (nargin>=+1), vert = varargin{1}; end\n if (nargin>=+2), conn = varargin{2}; end\n if (nargin>=+3), tria = varargin{3}; end\n if (nargin>=+4), tnum = varargin{4}; end\n if (nargin>=+5), opts = varargin{5}; end\n \n [opts] = makeopt(opts) ;\n\n%---------------------------------------------- default CONN\n if (isempty(conn))\n \n [edge] = tricon2(tria);\n\n ebnd = edge(:,4) < +1; %-- use bnd edge\n conn = edge(ebnd,1:2);\n \n end\n \n%---------------------------------------------- default TNUM\n if (isempty(tnum))\n tnum = ones(size(tria, 1), 1) ; \n end\n\n%---------------------------------------------- basic checks \n if ( ~isnumeric(vert) || ...\n ~isnumeric(conn) || ...\n ~isnumeric(tria) || ...\n ~isnumeric(tnum) || ...\n ~isstruct (opts) )\n error('smooth2:incorrectInputClass' , ...\n 'Incorrect input class.') ;\n end\n \n%---------------------------------------------- basic checks\n if (ndims(vert) ~= +2 || ...\n ndims(conn) ~= +2 || ...\n ndims(tria) ~= +2 || ...\n ndims(tnum) ~= +2 )\n error('smooth2:incorrectDimensions' , ...\n 'Incorrect input dimensions.');\n end\n \n if (size(vert,2)~= +2 || ...\n size(conn,2)~= +2 || ...\n size(tria,2)~= +3 || ...\n size(tnum,2)~= +1 || ...\n size(tria,1)~= size(tnum,1) )\n error('smooth2:incorrectDimensions' , ...\n 'Incorrect input dimensions.');\n end\n\n nvrt = size(vert,1) ;\n\n%---------------------------------------------- basic checks\n if (min(min(conn(:,1:2))) < +1 || ...\n max(max(conn(:,1:2))) > nvrt )\n error('smooth2:invalidInputs', ...\n 'Invalid EDGE input array.') ;\n end\n \n if (min(min(tria(:,1:3))) < +1 || ...\n max(max(tria(:,1:3))) > nvrt )\n error('smooth2:invalidInputs', ...\n 'Invalid TRIA input array.') ;\n end\n\n%---------------------------------------------- output title\n if (~isinf(opts.disp))\n fprintf(1,'\\n') ;\n fprintf(1,' Smooth triangulation...\\n') ;\n fprintf(1,'\\n') ;\n fprintf(1,[...\n' -------------------------------------------------------\\n', ...\n' |ITER.| |MOVE(X)| |DTRI(X)| \\n', ...\n' -------------------------------------------------------\\n', ...\n ] ) ;\n end\n\n%---------------------------------------------- polygon bnds \n node = vert; PSLG = conn; part = {};\n\n pmax = max(tnum(:));\n for ppos = +1 : pmax\n \n tsel = tnum == ppos ;\n tcur = tria(tsel,:) ;\n \n [ecur,tcur] ...\n = tricon2 (tcur) ;\n \n ebnd = ecur(:,4)==0 ;\n \n same = setset2( ...\n PSLG,ecur(ebnd,1:2));\n \n part{ppos} = find(same) ;\n \n end\n\n%---------------------------------------------- inflate bbox\n vmin = min(vert,[],1);\n vmax = max(vert,[],1);\n \n vdel = vmax - 1.*vmin;\n vmin = vmin - .5*vdel;\n vmax = vmax + .5*vdel;\n\n vbox = [\n vmin(1), vmin(2)\n vmax(1), vmin(2)\n vmax(1), vmax(2)\n vmin(1), vmax(2)\n ] ;\n vert = [vert ; vbox] ;\n \n%---------------------------------------------- DO MESH ITER\n tnow = tic ;\n\n tcpu = struct('full',0.,'dtri',0., ...\n 'tcon',0.,'iter',0.,'undo',0., ...\n 'keep',0.) ;\n \n for iter = +1 : opts.iter\n \n %------------------------------------------ inflate adj.\n ttic = tic ;\n \n [edge,tria] = tricon2(tria,conn) ;\n \n tcpu.tcon = ...\n tcpu.tcon + toc(ttic) ;\n \n %------------------------------------------ compute scr.\n oscr = triscr2(vert,tria) ;\n \n %------------------------------------------ vert. iter's\n ttic = tic ;\n \n nvrt = size(vert,1);\n nedg = size(edge,1);\n \n IMAT = sparse( ...\n edge(:,1),(1:nedg)',+1,nvrt,nedg) ;\n JMAT = sparse( ...\n edge(:,2),(1:nedg)',+1,nvrt,nedg) ;\n \n EMAT = IMAT + JMAT ;\n \n vdeg = sum(EMAT,2) ; %-- vertex |deg|\n free = (vdeg == 0) ;\n \n vold = vert ;\n for isub = +1 : max(+2,min(+8,iter))\n \n %-- compute HFUN at vert/midpoints\n hvrt = evalhfn(vert, ...\n edge,EMAT,hfun,harg) ;\n \n hmid = hvrt(edge(:,1),:) ...\n + hvrt(edge(:,2),:) ;\n hmid = hmid * +.5 ;\n \n %-- calc. relative edge extensions \n evec = vert(edge(:,2),:) ...\n - vert(edge(:,1),:) ;\n elen = ...\n sqrt(sum(evec.^2,2)) ;\n \n scal = +1.0-elen./hmid ;\n scal = min (+1.0, scal);\n scal = max (-1.0, scal);\n \n %-- projected points from each end\n ipos = vert(edge(:,1),:) ...\n -.67*[scal,scal].*evec;\n jpos = vert(edge(:,2),:) ...\n +.67*[scal,scal].*evec;\n \n %scal = ... %-- nlin. weight\n % max(abs(scal).^.5,eps^.75); \n scal = ...\n max(abs(scal).^ 1,eps^.75);\n \n %-- sum contributions edge-to-vert \n vnew = ...\n IMAT*([scal,scal] .* ipos) ...\n + JMAT*([scal,scal] .* jpos) ;\n \n vsum = max(EMAT*scal,eps^.75);\n \n vnew = vnew ./ [vsum,vsum] ;\n\n %-- fixed points. edge projection?\n vnew(conn(:),1:2) = ...\n vert(conn(:),1:2) ;\n \n vnew(vdeg==0,1:2) = ...\n vert(vdeg==0,1:2) ;\n \n %-- reset for the next local iter. \n vert = vnew ;\n \n end\n \n tcpu.iter = ...\n tcpu.iter + toc(ttic) ;\n \n %------------------------------------------ hill-climber\n ttic = tic ;\n \n %-- unwind vert. upadte if score lower\n nscr = ones(size(tria,1),1);\n btri = true(size(tria,1),1);\n \n umax = + 8 ;\n \n for undo = +1 : umax\n \n nscr(btri) = triscr2( ...\n vert,tria(btri,:)) ;\n \n %-- TRUE if tria needs \"unwinding\" \n smin = +.70 ;\n smax = +.90 ;\n sdel = .025 ;\n \n stol = smin+iter*sdel;\n stol = min (smax,stol) ;\n \n btri = nscr <= stol ...\n & nscr < oscr ;\n \n if (~any(btri)), break; end\n \n %-- relax toward old vert. coord's\n ivrt = ...\n unique(tria(btri,1:3));\n \n bvrt = ...\n false(size(vert,1),1) ;\n bvrt(ivrt) = true;\n \n if (undo ~= umax)\n bnew = +.75 ^ undo ;\n bold = +1.0 - bnew ;\n else\n bnew = +0.0 ;\n bold = +1.0 - bnew ;\n end\n \n vert(bvrt,:) = ...\n bold * vold(bvrt,:) ... \n + bnew * vert(bvrt,:) ;\n \n btri = any( ...\n bvrt(tria(:,1:3)),2) ;\n \n end\n \n oscr = nscr ;\n \n tcpu.undo = ...\n tcpu.undo + toc(ttic) ;\n \n %------------------------------------- test convergence!\n ttic = tic ;\n \n vdel = ...\n sum((vert-vold).^2,2) ;\n \n evec = vert(edge(:,2),:) ...\n - vert(edge(:,1),:) ;\n elen = ...\n sqrt(sum(evec.^2,2)) ;\n \n hvrt = evalhfn(vert, ...\n edge,EMAT,hfun,harg) ;\n \n hmid = hvrt(edge(:,1),:) ...\n + hvrt(edge(:,2),:) ;\n hmid = hmid * 0.5 ;\n scal = elen./hmid ;\n\n emid = vert(edge(:,1),:) ...\n + vert(edge(:,2),:) ;\n emid = emid * 0.5 ; \n \n %------------------------------------- |deg|-based prune\n keep = false(size(vert,1),1);\n keep(vdeg>+4) = true ;\n \n keep(conn(:)) = true ;\n keep(free(:)) = true ;\n \n %------------------------------------- 'density' control\n lmax = +5. / +4. ;\n lmin = +1. / lmax ;\n \n less = scal<=lmin ;\n \tmore = scal>=lmax ;\n \n vbnd = false(size(vert,1),1);\n vbnd(conn(:,1)) = true ;\n vbnd(conn(:,2)) = true ;\n \n ebad = vbnd(edge(:,1)) ... %-- not at boundaries\n | vbnd(edge(:,2)) ;\n \n less(ebad(:)) = false;\n more(ebad(:)) = false;\n \n %------------------------------------- force as disjoint\n lidx = find (less) ;\n \n for lpos = 1 : length(lidx)\n epos = lidx(lpos,1);\n inod = edge(epos,1);\n jnod = edge(epos,2);\n %--------------------------------- if still disjoint\n if (keep(inod) && ...\n keep(jnod) )\n \n keep(inod) = false ;\n keep(jnod) = false ;\n\n else\n \n less(epos) = false ;\n \n end\n end\n \n ebad = ...\n keep(edge(less,1)) ...\n & keep(edge(less,2)) ;\n \n more(ebad(:)) = false ;\n \n %------------------------------------- reindex vert/tria\n redo = ...\n zeros(size(vert,1),1);\n itop = ...\n length(find(keep));\n iend = ...\n length(find(less));\n \n redo(keep) = (1:itop)';\n \n redo(edge(less,1)) = ... %-- to new midpoints\n (itop+1 : itop+iend)';\n redo(edge(less,2)) = ...\n (itop+1 : itop+iend)';\n \n vnew =[vert(keep,:) ; \n emid(less,:) ;\n ] ;\n tnew = redo(tria(:,1:3)) ;\n\n ttmp = sort(tnew,2) ; %-- filter collapsed\n okay = all( ...\n diff(ttmp,1,2)~=0,2) ;\n okay = ...\n okay & ttmp(:,1) > 0 ;\n tnew = tnew(okay,:) ;\n\n %------------------------------------- quality preserver\n nscr = ...\n triscr2 (vnew,tnew) ;\n\n stol = +0.80 ;\n \n tbad = nscr < stol ...\n & nscr < oscr(okay) ;\n \n vbad = ...\n false(size(vnew,1),1);\n vbad(tnew(tbad,:)) = true;\n \n %------------------------------------- filter edge merge\n lidx = find (less) ;\n \n ebad = ...\n vbad(redo(edge(lidx,1))) | ...\n vbad(redo(edge(lidx,2))) ;\n \n less(lidx(ebad)) = false ;\n \n keep(edge(...\n lidx(ebad),1:2)) = true ;\n \n %------------------------------------- reindex vert/conn\n redo = ...\n zeros(size(vert,1),1);\n itop = ...\n length(find(keep));\n iend = ...\n length(find(less));\n \n redo(keep) = (1:itop)';\n \n redo(edge(less,1)) = ...\n (itop+1 : itop+iend)';\n redo(edge(less,2)) = ...\n (itop+1 : itop+iend)';\n \n vert =[vert(keep,:);\n emid(less,:);\n emid(more,:);\n ] ;\n conn = redo(conn(:,1:2)) ;\n \n tcpu.keep = ...\n tcpu.keep + toc(ttic) ;\n \n %------------------------------------- build current CDT\n ttic = tic ;\n \n [vert,conn,tria,tnum] = ...\n deltri2 (vert, ...\n conn,node,PSLG,part) ;\n \n tcpu.dtri = ...\n tcpu.dtri + toc(ttic) ;\n \n %------------------------------------- dump-out progess!\n vdel = vdel./(hvrt.*hvrt) ;\n move = vdel > opts.vtol^2 ;\n nmov = ...\n length(find(move));\n \n ntri = size(tria,1) ;\n \n if (mod(iter,opts.disp)==+0)\n fprintf(+1, ...\n '%11i %18i %18i\\n', ...\n [iter,nmov,ntri]) ;\n end\n \n %------------------------------------- loop convergence!\n if (nmov == +0), break; end\n \n end\n\n tria = tria( :,1:3);\n \n%----------------------------------------- prune unused vert\n keep = false(size(vert,1),1);\n keep(tria(:)) = true ;\n keep(conn(:)) = true ;\n \n redo = zeros(size(vert,1),1);\n redo(keep) = ...\n (+1:length(find(keep)))';\n\n conn = redo(conn);\n tria = redo(tria);\n \n vert = vert(keep,:);\n \n tcpu.full = ...\n tcpu.full + toc(tnow) ;\n\n if (opts.dbug)\n%----------------------------------------- print debug timer \n fprintf(1,'\\n') ;\n fprintf(1,' Mesh smoothing timer...\\n');\n fprintf(1,'\\n') ;\n fprintf(1, ...\n ' FULL: %f \\n', tcpu.full);\n fprintf(1, ...\n ' DTRI: %f \\n', tcpu.dtri);\n fprintf(1, ...\n ' TCON: %f \\n', tcpu.tcon);\n fprintf(1, ...\n ' ITER: %f \\n', tcpu.iter);\n fprintf(1, ...\n ' UNDO: %f \\n', tcpu.undo); \n fprintf(1, ...\n ' KEEP: %f \\n', tcpu.keep);\n fprintf(1,'\\n') ;\n end\n \n if (~isinf(opts.disp)), fprintf(1,'\\n'); end\n\nend\n\nfunction [hvrt] = evalhfn(vert,edge,EMAT,hfun,harg)\n%EVALHFN eval. the spacing-fun. at mesh vertices.\n\n if (~isempty (hfun))\n if (isnumeric(hfun))\n hvrt = hfun * ...\n ones(size(vert,1),1) ;\n else\n hvrt = feval( ...\n hfun,vert,harg{:}) ;\n end\n else\n \n%-- no HFUN - HVRT is mean edge-len. at vertices! \n evec = vert(edge(:,2),:) - ...\n vert(edge(:,1),:) ;\n elen = sqrt(sum(evec.^2,2)) ;\n \n hvrt = (EMAT*elen) ...\n ./ max(sum(EMAT,2),eps) ;\n \n free = true(size(vert,1),1) ;\n free(edge(:,1)) = false;\n free(edge(:,2)) = false;\n \n hvrt(free) = +inf;\n \n end\n\nend\n\nfunction [opts] = makeopt(opts)\n%MAKEOPT setup the options structure for SMOOTH2.\n \n if (~isfield(opts,'iter'))\n opts.iter = +32;\n else\n if (~isnumeric(opts.iter))\n error('smooth2:incorrectInputClass', ...\n 'Incorrect input class.');\n end\n if (numel(opts.iter)~= +1)\n error('smooth2:incorrectDimensions', ...\n 'Incorrect input dimensions.') ; \n end\n if (opts.iter <= +0)\n error('smooth2:invalidOptionValues', ...\n 'Invalid OPT.ITER selection.') ;\n end\n end\n \n if (~isfield(opts,'disp'))\n opts.disp = + 4;\n else\n if (~isnumeric(opts.disp))\n error('smooth2:incorrectInputClass', ...\n 'Incorrect input class.');\n end\n if (numel(opts.disp)~= +1)\n error('smooth2:incorrectDimensions', ...\n 'Incorrect input dimensions.') ; \n end\n if (opts.disp <= +0)\n error('smooth2:invalidOptionValues', ...\n 'Invalid OPT.DISP selection.') ;\n end\n end\n \n if (~isfield(opts,'vtol'))\n opts.vtol = +1.0E-02;\n else\n if (~isnumeric(opts.vtol))\n error('smooth2:incorrectInputClass', ...\n 'Incorrect input class.');\n end\n if (numel(opts.vtol)~= +1)\n error('smooth2:incorrectDimensions', ...\n 'Incorrect input dimensions.') ; \n end\n if (opts.vtol <= 0.)\n error('smooth2:invalidOptionValues', ...\n 'Invalid OPT.VTOL selection.') ;\n end\n end\n \n if (~isfield(opts,'dbug'))\n opts.dbug = false;\n else\n if (~islogical(opts.dbug))\n error('refine2:incorrectInputClass', ...\n 'Incorrect input class.');\n end\n if (numel(opts.dbug)~= +1)\n error('refine2:incorrectDimensions', ...\n 'Incorrect input dimensions.') ; \n end\n end\n \nend\n\n\n\n", "meta": {"author": "CHLNDDEV", "repo": "OceanMesh2D", "sha": "56222604a5c1fe897d10c8b08cb3380ef8b43740", "save_path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D", "path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D/OceanMesh2D-56222604a5c1fe897d10c8b08cb3380ef8b43740/utilities/smooth2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.607663184043154, "lm_q2_score": 0.6513548714339145, "lm_q1q2_score": 0.3958043751175517}} {"text": "function varargout = htmlcal(startdate,stopdate,htmlfile,days)\n% HTMLCAL Create an HTML calendar for a range of months.\n% HTMLCAL(FIRSTMONTH,LASTMONTH) creates an HTML file with one or more\n% monthly calendars. Use 'mm/yyyy' or 'mm-yyyy' strings to specify the\n% months. You will be prompted for the name of the output file, whose\n% name will be returned as output if any output variable is given.\n%\n% HTMLCAL(FIRSTMONTH,LASTMONTH,HTMLFILE) also specifies the name of the\n% output file.\n%\n% HTMLCAL(FIRSTMONTH,LASTMONTH,HTMLFILE,DAYS) allows you to specify\n% which days of the week are included, as a length-7 logical vector\n% starting with Sunday. The default is [0 1 1 1 1 1 0], for M-F.\n%\n% HTMLCAL by itself prompts for the first and last month as well as the\n% file name, and offers to show the calendar in a web browser. \n%\n% See also DATENUM, DATEVEC.\n\n% Copyright 2005 by Toby Driscoll. \n% Created 20 January 2005. \n% 30 August 2007 -- documentation added, style tweaked\n\nif nargin < 2\n if nargin < 1\n dv = datevec(date);\n default = sprintf('%i/%i',dv(2),dv(1));\n startdate = input(['First month (',default,')? '],'s');\n if isempty(startdate), startdate = default; end\n default = startdate;\n stopdate = input(['Last month (',default,')? '],'s');\n if isempty(stopdate), stopdate = default; end\n else\n stopdate = startdate;\n end\nend\n \nif nargin < 3 || isempty(htmlfile)\n [fn,pn] = uiputfile( {'*.html','HTML Files'}, ...\n 'Select output file');\n if isequal(fn,0) || isequal(pn,0)\n error('No output file selected.')\n else\n htmlfile = fullfile(pn,fn);\n end\nend\n\nif nargin < 4 || isempty(days)\n days = logical([ 0 1 1 1 1 1 0 ]);\nelseif ischar(days)\n % This allows the \"command syntax\" to work consistently.\n days = eval(days); \nend\ndays = days(:).';\n\nmth = {'January','February','March','April','May','June',...\n 'July','August','September','October','November','December'};\ndow = {'Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday'};\n\n% Parse dates.\n[m0,startdate] = strtok(startdate,'/-');\n[y0,startdate] = strtok(startdate,'/-');\n[m1,stopdate] = strtok(stopdate,'/-');\n[y1,stopdate] = strtok(stopdate,'/-');\n\nm0 = str2double(m0); m1 = str2double(m1);\ny0 = str2double(y0); y1 = str2double(y1);\nif any(isnan([m0 y0 m1 y1]))\n error('Invalid month specification.')\nend\n\n% Open output file and write headers.\noutfile = CreateHTMLFile(htmlfile);\n\n% Walk through month by month.\nm1 = m1 + 12*(y1-y0);\t\t\t% account for year-end boundaries\nnumdays = sum(days);\nfor m = m0:m1\n Month = rem(m-1,12) + 1;\n Year = y0 + floor(m/13);\n MonthName = mth{Month};\n\n cal = calendar(Year,Month);\n\n select = false(size(cal));\n select(:,days) = 1; % include these days\n select(~cal) = 0;\t\t\t% but not those outside the\n % actual month\n \n % Begin table in output.\n fmt = '
%s %i
\\n';\n fprintf(outfile,fmt,MonthName,Year);\n fprintf(outfile,...\n '\\n');\n \n % Header row.\n fprintf(outfile,'\\n ');\n for d=find(days)\n fprintf(outfile,'',round(100/numdays),dow{d});\n end\n fprintf(outfile,'\\n\\n');\n \n % Body.\n for week = 1:size(cal,1)\n if any(select(week,:))\n fprintf(outfile,'\\n');\n for day = find(days)\n fprintf(outfile,' \\n');\n end\n fprintf(outfile,'\\n');\n end\n end\n \n % End the month\n fprintf(outfile,'
%s
');\n if select(week,day)\n fprintf(outfile,'
%2i
',cal(week,day));\n end\n fprintf(outfile,'
\\n\\n');\nend\n \nfclose(outfile);\n\n% Wrap up\nif nargin==0\n msg = 'Do you want to view the calendar in a browser window?';\n answer = questdlg(msg,'Success!','Yes','No','Yes');\n if strcmp(answer,'Yes')\n web(htmlfile,'-browser');\n end\nend\n\nif nargout > 0\n varargout{1} = htmlfile;\nend\n\n% --------------------------------------------------------------------\nfunction outfile = CreateHTMLFile(htmlfile)\n\n% Create an HTML output file with a stylesheet header. Returns file id\n% used by fprintf.\n\n[outfile,msg] = fopen(htmlfile,'w');\nif ~isempty(msg)\n error(msg)\nend\n\nheadstr = { \n ''\n ''\n ''\n };\n \nfprintf(outfile,'%s\\n',headstr{:});\nfprintf(outfile,'\\n');\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/16192-html-calendar-generator/htmlcal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548782017745, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.39580436997420737}} {"text": "function a = triu(a,k)\n%TRIU Implements triu(a,k) for hessians\n%\n% c = triu(a,k)\n%\n% functionality as Matlab function triu for matrices\n%\n\n% written 04/04/04 S.M. Rump\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n if nargin==1\n k = 0;\n end\n\n a.x = triu(a.x,k);\n index = ( triu( ones(size(a.x)) , k ) == 0 );\n a.dx(:,index) = 0;\n a.hx(:,index) = 0;\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/hessian/@hessian/triu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3958043617490487}} {"text": " % Incarcarea tabelului\nx=1:10;\ny=1:2:19;\ntab=[x',y']\n % Cautarea in tabel\na=table1(tab,2.5)\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/8416-widely-used-programming-environments-in-electrical-engineering-matlab/8/Ex_8_7.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3958043617490486}} {"text": "function [block, mfg, mbg] = amrf_seg(im, blocklen, overlap)\n% AMRF_SEG Adaptive Markov Random Field segmentation.\n%\n% Note: This function is in development, and can produce \"blocky\"\n% segmentations.\n%\n% This function splits an image into blocks, estimates typical background\n% and foreground intensities, and uses them to seed a Markov Random Field\n% segmentation algorithm from the Insight Toolbox (itk::MRFImageFilter).\n%\n% BW = amrf_seg(IM, BLOCKLEN)\n%\n% IM is a 3D array with grayscale intesity values, forming a 3D image\n% (e.g. Magnetic Resonance). The background is assumed to be light\n% (higher intensity values), and the foreground dark (lower intensity\n% values).\n%\n% IM is split into blocks to estimate the typical foreground and\n% background intensity values.\n%\n% BLOCKLEN is a 3-vector with the number of rows, columns and slices in\n% each block. If an integer number of blocks does not fit in the image,\n% the last blocks in each dimension are cropped.\n%\n% BW is a binary segmentation of IM. Foreground voxels = 1, and\n% background voxels = 0.\n%\n% [..., MFG, MBG] = amrf_seg(..., OVERLAP)\n%\n% To improve the smoothness of the segmentation result, we don't want\n% sudden changes in the MUFG, MUGB between neighbouring blocks.\n%\n% OVERLAP is a 3-vector with the number of rows, columns and slices added\n% on each side of each block so that it overlaps with its neighbours. By\n% default, OVERLAP = [0 0 0] (no overlap is used). Note that large\n% overlaps will increase the memory used by this function substantially.\n%\n% MFG, MBG are 3D arrays with the typical (modes) foreground and\n% background intensities for each of the estimation blocks.\n\n% Author: Ramon Casero \n% Copyright \u00a9 2014 University of Oxford\n% Version: 0.1.0\n%\n% University of Oxford means the Chancellor, Masters and Scholars of\n% the University of Oxford, having an administrative office at\n% Wellington Square, Oxford OX1 2JD, UK. \n%\n% This file is part of Gerardus.\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details. The offer of this\n% program under the terms of the License is subject to the License\n% being interpreted in accordance with English Law and subject to any\n% action against the University of Oxford being under the jurisdiction\n% of the English Courts.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see\n% .\n\n% check arguments\nnarginchk(2, 3);\nnargoutchk(0, 3);\n\n% defaults\nif (nargin < 3 || isempty(overlap))\n overlap = [0 0 0];\nend\n\n% image dimensions\nNR = size(im, 1);\nNC = size(im, 2);\nNS = size(im, 3);\n\n%% Split image into overlapping blocks and estimate foreground and\n%% background\n\n% \"botton left\" index of every block in the image, without overlap. If the\n% last block starts at the right edge of the image, it has size zero. Thus,\n% if we have any block starting there, we remove it with setdiff()\nbr0 = setdiff(1:blocklen(1):NR, NR);\nbc0 = setdiff(1:blocklen(2):NC, NC);\nbs0 = setdiff(1:blocklen(3):NS, NS);\n\n% \"top right\" index of every block in the image, without overlap (taking\n% care that the last boxes don't go outside the image)\ntr0 = min(NR, br0 + blocklen(1) - 1);\ntc0 = min(NC, bc0 + blocklen(2) - 1);\nts0 = min(NS, bs0 + blocklen(3) - 1);\n\n% the last blocks have to cover to the end of the image\ntr0(end) = NR;\ntc0(end) = NC;\nts0(end) = NS;\n\n% extend the blocks with the overlap margins\nbr = max(1, br0 - overlap(1));\nbc = max(1, bc0 - overlap(2));\nbs = max(1, bs0 - overlap(3));\ntr = min(NR, tr0 + overlap(1));\ntc = min(NC, tc0 + overlap(2));\nts = min(NS, ts0 + overlap(3));\n\n% split the image into blocks. This is necessary if we want to process the\n% blocks in parallel. We create a vector array of blocks instead of a 3D\n% array of blocks because parfor cannot be nested\nblock = cell(1, length(br) * length(bc) * length(bs));\nfor ri = 1:length(br)\n for ci = 1:length(bc)\n for si = 1:length(bs)\n \n block{sub2ind([length(br) length(bc) length(bs)], ri, ci, si)} ...\n = im(br(ri):tr(ri), bc(ci):tc(ci), bs(si):ts(si));\n \n end\n end\nend\n\n% parallel processing of the blocks\nmfg = zeros(length(br), length(bc), length(bs));\nmbg = zeros(length(br), length(bc), length(bs));\nparfor I = 1:numel(block)\n\n [mfg(I), mbg(I)] = im_modes(block{I});\n \nend\n\n% clear memory\nclear block\n\n% reshape outputs as 3D arrays\nmfg = reshape(mfg, length(br), length(bc), length(bs));\nmbg = reshape(mbg, length(br), length(bc), length(bs));\n\n%% Interpolate typical values of foreground and background intensity that \n%% couldn't be estimated in the previous phase\n\n% values that need to be interpolated\nfgidx = isnan(mfg);\nbgidx = isnan(mbg);\n\nif (nnz(fgidx) || nnz(bgidx))\n\n % centers of each block without overlap\n [gr0, gc0, gs0] ...\n = ndgrid((br0 + tr0)*0.5, (bc0 + tc0)*0.5, (bs0 + ts0)*0.5);\n \n % scale the center coordinates to be within the [0, 1] cube, to avoid\n % ill-conditioned L matrices in the thin-plate spline. Note that\n % because of the scale-invariance of the TPS, this doesn't change the\n % result\n K = max([(br0(end) + tr0(end))*0.5, ...\n (bc0(end) + tc0(end))*0.5, ...\n (bs0(end) + ts0(end))*0.5]);\n gr0 = gr0 / K;\n gc0 = gc0 / K;\n gs0 = gs0 / K;\n \n % interpolate foreground missing values\n mfg(fgidx) = pts_tps_map([gr0(~fgidx), gc0(~fgidx), gs0(~fgidx)], ...\n mfg(~fgidx), [gr0(fgidx), gc0(fgidx), gs0(fgidx)]);\n \n % interpolate background missing values\n mbg(bgidx) = pts_tps_map([gr0(~bgidx), gc0(~bgidx), gs0(~bgidx)], ...\n mbg(~bgidx), [gr0(bgidx), gc0(bgidx), gs0(bgidx)]);\n \nend\n\n%% Split the image into non-overlapping blocks, and segment them using a\n%% Markov Random Field method\n\n% split the image into blocks, this time without overlap\nblock = cell(1, length(br) * length(bc) * length(bs));\nfor ri = 1:length(br0)\n for ci = 1:length(bc0)\n for si = 1:length(bs0)\n \n block{sub2ind([length(br0) length(bc0) length(bs0)], ri, ci, si)} ...\n = im(br0(ri):tr0(ri), bc0(ci):tc0(ci), bs0(si):ts0(si));\n \n end\n end\nend\n\n% Markov Random Field segmentation of the blocks\nparfor I = 1:numel(block)\n\n block{I} = itk_imfilter('mrf', block{I}, [mfg(I) mbg(I)]);\n \nend\n\n% reshape the vector of blocks as 3D array\nblock = reshape(block, length(br), length(bc), length(bs));\n\n% format output as segmentation, and invert so that tissue=1, background=0\nblock = ~cell2mat(block);\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/FiltersToolbox/amrf_seg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3958043535238898}} {"text": "% test_all_ct.m\n\nlist = {\n'ct_beta_study'\n'ct_sys'\n%'de_ftab_build'\n'de_ftab_curv test'\n'de_ftab_fit test'\n%'de_ftab_fit_sprad'\n'de_ftab_fm test'\n%'de_ftab_invert'\n%'de_ftab_inv1 test' % 2018-10-01 fails R2018b due to lsqlin solver issue (todo)\n%'de_ftab_iwater'\n'de_ftab_s_iter test' % slow\n%'de_ftab_xform'\n'de_ftab test'\n%'de_pl_denom'\n%'de_pl_obj'\n%'de_pl_osps'\n'de_poly_eval test'\n%'element_density'\n%'wls_simplex'\n%'xct_poly1_dercurv'\n'xray_atten_interp test'\n'xray_filters test'\n'xray_material_file_name test'\n'xray_read_atten test'\n'xray_read_dens test'\n'xray_read_spectra test'\n}\n\nrun_mfile_local(list)\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/ct/test_all_ct.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303336, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.39580435352388976}} {"text": "function groupEdgeList=findEdgesInGroup(mesh,nodes)\n% Create a list of edges in a given group of nodes\n% See also findFacesInGroup\n\nnVerts=length(mesh.uniqueVertices);\n\n% This is wasteful - don't make two new sparse matrices! Just fiddle the one you've got....\n% Want to eliminate entries that are not in (nodes,nodes);\ndiagMat=sparse(nodes,nodes,ones(length(nodes),1),nVerts,nVerts);\n\n% make a connection matrix of just edges in this group\nmesh.connectionMatrix=mesh.connectionMatrix*diagMat;\nmesh.connectionMatrix=((mesh.connectionMatrix')*diagMat)';\n\n\n[groupEdgeList1,groupEdgeList2]=find(triu(mesh.connectionMatrix));\ngroupEdgeList=[groupEdgeList1,groupEdgeList2];\n\ngroupEdgeList=sort(groupEdgeList,2); % Sort them so that the lowest numbered nodes appear first\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAnatomy/mrFlatMesh/meshOperations/findEdgesInGroup.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39579097023195925}} {"text": "function mastercorr_plot_stats(W)\n\n%MASTERCORR_PLOT_STATS plot statistics from master correlation algorithm\n% W = MASTERCORR_PLOT_STATS(W) plots summary statistics following an\n% application of MASTERCORR_SCAN. This summary is useful for assessing the\n% quality and the nature of the detected events. The input waveform W may\n% be any dimension. However it must contain the fields produced by\n% MASTERCORR_SCAN including: MASTERCORR_TRIG, MASTERCORR_CORR,\n% MASTERCORR_ADJACENT_CORR \n%\n% *** NOTE ABOUT MULTIPLE WAVEFORMS ***\n% This function is designed to accept NxM waveform matrices as input. In\n% this case the plot will contain relevent data from all element waveforms\n% of W. This is useful, for example, when W is a 24x1\n% matrix of hourly waveforms. However, unexpected (or clever!) results may\n% be produced when W is complicated by elements with different channels or\n% master waveform snippets. For some uses it may prove wise to pass only\n% selected elements of W to this function. For example:\n% C = MASTERCORR_EXTRACT(W(1:5)) \n% \n% See also mastercorr_scan, mastercorr_extract\n\n% Author: Michael West, Geophysical Institute, Univ. of Alaska Fairbanks\n% $Date$\n% $Revision$\n\n\n% CHECK INPUTS\nif nargin ~= 1\n error('Incorrect number of inputs');\nend\nif ~isa(W,'waveform') \n error('First argument must be waveform objects');\nend\n\n\n% READ MASTERCORR FIELDS\ntrig = [];\ncorr = [];\ncorrAdj = [];\nif numel(W)>1\n for n=1:numel(W)\n trig = [trig ; get(W(n),'MASTERCORR_TRIG')];\n corr = [corr ; get(W(n),'MASTERCORR_CORR')];\n corrAdj = [corrAdj ; get(W(n),'MASTERCORR_ADJACENT_CORR')];\n \n end\nelse\n trig = get(W,'MASTERCORR_TRIG');\n corr = get(W,'MASTERCORR_CORR');\n corrAdj = get(W,'MASTERCORR_ADJACENT_CORR');\nend\n\n\nif numel(trig)==0\n disp('No MASTERCORR_TRIG field in this data');\n return;\nend\n\n\n\n% SORT BY TIME\n[tmp,index] = sort(trig);\ntrig = trig(index);\ncorr = corr(index);\ncorrAdj = corrAdj(index);\n\n\n\n\n% MAKE PLOT\nfigure('Color','w','Position',[50 50 850 1100]);\nbox on; hold on;\nset(gcf,'DefaultLineLineWidth',1);\nset(gcf,'DefaultAxesFontSize',12);\nset(gcf,'DefaultLineMarkerSize',5);\n\n\n% TIME HISTORY\nsubplot(3,1,1);\nplot([trig' ; trig'],[corr' ; corrAdj'],'-','Color',[0.7 0.7 0.7])\nhold on;\nplot(trig,corr,'ok','MarkerFaceColor','y')\nxlim([min(trig) max(trig)]);\nylim([0.5 1.0]);\ndatetick('x','KeepLimits');\nset(gca,'YGrid','on')\nset(gca,'YTick',[0:.1:1]);\nylabel('Correlation coefficient')\nlegend('adjacent peak','location','SouthWest');\n\nsubplot(3,1,2);\nplot(trig(2:end),86400*(trig(2:end)-trig(1:end-1)),'ko','MarkerFaceColor','y')\nset(gca,'YScale','log');\nxlim([min(trig) max(trig)]);\ndatetick('x','KeepLimits');\nset(gca,'YGrid','on')\n%set(gca,'YTick',10.^[1:10]);\nylabel('Time (s)')\nlegend('Event spacing','location','SouthWest');\n\nsubplot(3,1,3)\nhist(corr,[0.5:0.01:1]);\nxlim([0.5 1]);\nh = findobj(gca,'Type','patch');\nset(h,'FaceColor','y','EdgeColor','k')\nlegend('Correlation','location','SouthWest');\n\n\n% PLOT INTEREVENT TIME AGAINST CORRELATION VALUE\n%figure\n%tDiff = 86400*(trig(2:end)-trig(1:end-1));\n%plot([tDiff' ; tDiff'],[corr(2:end)' ; corr(1:end-1)'],'k-')\n%hold on;\n%plot(tDiff,max([corr(2:end)' ; corr(1:end-1)']),'ko');\n%set(gca,'XScale','log');\n\n\n\n\n%PRINT OUT FIGURE\nset(gcf, 'paperorientation', 'portrait');\nset(gcf, 'paperposition', [.25 .25 8 10.5] );\n\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/contributed/master_correlation/mastercorr_plot_stats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39579097023195925}} {"text": "%% Generate best fit function\nstart_vy = [-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8];\ntarget_vy = [0];\nstart_vx = 0.0;%[-0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4];\ntarget_vx = [0];\nT = 0.4;\nsubfolder_name = 'library4';\nif ~exist(fullfile('local', subfolder_name, 'transition_fitting'), 'dir')\n mkdir(fullfile('local', subfolder_name, 'transition_fitting'));\nend\n\nN_vx = length(start_vx);\nN_vy = length(start_vy);\nN = 16;\nt_all = cell(N_vx, N_vy);\nq_all = cell(N_vx, N_vy);\ndq_all = cell(N_vx, N_vy);\npx_all = cell(N_vx, N_vy);\npy_all = cell(N_vx, N_vy);\nvx_all = cell(N_vx, N_vy);\nvy_all = cell(N_vx, N_vy);\ncounter = 1;\nfor i = 1:N_vx\n vx = start_vx(i);\n for j = 1:N_vy\n vy = start_vy(j);\n data_name = fullfile('local', subfolder_name, 'transition', ...\n sprintf('gait_X%0.1f_Y%.1f_TO_X%0.1f_Y%.1f.mat', vx, vy, target_vx, target_vy));\n param = load(data_name);\n \n t_all{i,j} = [param.gait(1).tspan]./T;%, param.gait(3).tspan];\n q_all{i,j} = [param.gait(1).states.x];%, param. gait(3).states.x];\n dq_all{i,j} = [param.gait(1).states.dx];%, param. gait(3).states.dx];\n px_all{i,j} = [param.gait(1).states.x(1,:)];%ones(size(t_all{i,j}))*vx;\n py_all{i,j} = [param.gait(1).states.x(2,:)];%ones(size(t_all{i,j}))*vy;\n vx_all{i,j} = [param.gait(1).states.dx(1,:)];%ones(size(t_all{i,j}))*vx;\n vy_all{i,j} = [param.gait(1).states.dx(2,:)];%ones(size(t_all{i,j}))*vy;\n \n \n end\nend\n\ninpt = [horzcat(t_all{:})\n% horzcat(px_all{:})\n% horzcat(py_all{:})\n% horzcat(vx_all{:})\n horzcat(vy_all{:})];\nq_outpt = horzcat(q_all{:});\ndq_outpt = horzcat(dq_all{:});\n%%\nfor i = 1:N\n q_outpt_specific = q_outpt(i, :);\n dq_outpt_specific = dq_outpt(i, :);\n opt.neuralFitting(q_outpt_specific, inpt, 5, fullfile('local', subfolder_name, 'transition_fitting', sprintf('sagittal_library_q%i', i)));\n opt.neuralFitting(dq_outpt_specific, inpt, 5, fullfile('local', subfolder_name, 'transition_fitting', sprintf('sagittal_library_dq%i', i)));\nend\naddpath(fullfile('local', subfolder_name, 'transition_fitting'));\n%% Plot features\n% joint angle\njoint_names = { 'BasePosX'\n 'BasePosY'\n 'BasePosZ'\n 'BaseRotX'\n 'BaseRotY'\n 'BaseRotZ'\n 'qHRight'\n 'qARight'\n 'qBRight'\n 'fourBarARight'\n 'fourBarBRight'\n 'qHLeft'\n 'qALeft'\n 'qBLeft'\n 'fourBarALeft'\n 'fourBarBLeft'};\nfor n = 1:N\n f = figure(1000+n);\n f.Name = joint_names{n};\n set(f, 'WindowStyle', 'docked');\n \n ax = axes(f);\n hold(ax);\n \n scatter3(ax, inpt(1,:),inpt(2,:),q_outpt(n,:), 'r');\n \n [S, V] = meshgrid(0:0.01:1, -2:0.04:2);\n L = zeros(size(S));\n for i = 1:size(S, 1)\n for j = 1:size(S, 2)\n L(i, j) = feval(sprintf('sagittal_library_q%i', n), ([S(i, j); V(i, j)]));\n %L(i, j) = l(n);\n end\n end\n \n surface(ax, S, V, L);\nend\n%% joint velocity\nfor n = 1:N\n f = figure(2000+n);\n f.Name = joint_names{n};\n set(f, 'WindowStyle', 'docked');\n \n ax = axes(f);\n hold(ax);\n \n scatter3(ax, inpt(1,:),inpt(2,:),dq_outpt(n,:), 'r');\n \n [S, V] = meshgrid(0:0.01:1, -2:0.01:2);\n L = zeros(size(S));\n for i = 1:size(S, 1)\n for j = 1:size(S, 2)\n L(i, j) = feval(sprintf('sagittal_library_dq%i', n), ([S(i, j); V(i, j)]));\n end\n end\n \n surface(ax, S, V, L);\nend", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/example/marlo/transition_fitting.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3957909631370764}} {"text": "function [g, kern] = pathKernDiagGradient(kern, x, covDiag)\n\n% PATHKERNDIAGGRADIENT Compute the gradient of the PATH kernel's diagonal wrt parameters.\n% FORMAT\n% DESC computes the gradient of functions of the diagonal of the\n% path kernel matrix with respect to the parameters of the kernel. The\n% parameters' gradients are returned in the order given by the\n% pathKernExtractParam command.\n% ARG kern : the kernel structure for which the gradients are\n% computed.\n% ARG x : the input data for which the gradient is being computed.\n% ARG factors : partial derivatives of the function of interest with\n% respect to the diagonal elements of the kernel.\n% RETURN g : gradients of the relevant function with respect to each\n% of the parameters. Ordering should match the ordering given in\n% pathKernExtractParam.\n% RETURN kern : the updated kernel structure\n%\n% SEEALSO : pathKernParamInit, pathDiagGradient, pathKernExtractParam, pathKernGradient\n%\n% COPYRIGHT : Andrea Baisero, Carl Henrik Ek, 2013\n\n% SHEFFIELDML\n\n\nmaxl=max(cellfun(@(x)size(x,1),x));\nkern=pathKernUpdateWMat(kern,maxl);\n\nnum=length(x);\n\ngwd=zeros(1,num);\ngwhv=zeros(1,num);\nggk=zeros(num,kern.gkern.nParams);\nfor i=1:num\n li=size(x{i},1);\n w=kern.wmat(1:li,1:li);\n w=.5*(w+w(end:-1:1,end:-1:1));\n dwd=kern.dwdmat(1:li,1:li);\n dwd=.5*(dwd+dwd(end:-1:1,end:-1:1));\n dwhv=kern.dwhvmat(1:li,1:li);\n dwhv=.5*(dwhv+dwhv(end:-1:1,end:-1:1));\n\n gk=kernCompute(kern.gkern,x{i});\n gwd(i)=sum(sum(dwd.*gk));\n gwhv(i)=sum(sum(dwhv.*gk));\n ggk(i,:)=kernGradient(kern.gkern,x{i},w);\nend\n\ng(1,1)=sum(covDiag.*gwd);\ng(1,2)=sum(covDiag.*gwhv);\nfor i=1:kern.gkern.nParams\n g(1,i+2)=sum(covDiag.*ggk(:,i));\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/pathKernDiagGradient.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3957909631370764}} {"text": "function scr = merge(param1,param2)\n% scr = merge(scr_obj_array)\n% scr = merge(scr1,scr2)\n% Merges Scores objects. The function can be called in two ways: with\n% two Scores objects or with an object array of Scores.\n% Inputs:\n% Either:\n% scr1: A Scores object.\n% scr2: Another Scores object.\n% Or:\n% scr_obj_array: An array of Scores objects.\n% Outputs:\n% scr: A Scores object that contains the information from the\n% input Scores objects.\n\nassert(nargin<3)\nif nargin==2\n scr1 = param1;\n scr2 = param2;\n assert(isa(scr1,'Scores'))\n assert(isa(scr2,'Scores'))\n assert(scr1.validate())\n assert(scr2.validate())\n\n scr_obj_arr = Scores.empty(2,0);\n scr_obj_arr(1) = scr1;\n scr_obj_arr(2) = scr2;\n scr = Scores.merge(scr_obj_arr);\n \nelse\n % the output scr must have all models and segment in the input\n % scrs (only once) and the union of all the scoremasks.\n % It is an error if two of the input Scores objects have a\n % score for the same trial.\n assert(nargin==1)\n obj_array = param1;\n assert(isa(obj_array,'Scores'))\n numscrs = length(obj_array);\n scr = Scores();\n for ii=1:numscrs\n\tscr_new = Scores();\n\tscr1 = scr;\n\tscr2 = obj_array(ii);\n\t\n\t% create new scr with empty matrices\n\tscr_new.modelset = union(scr1.modelset, scr2.modelset);\n\tscr_new.segset = union(scr1.segset, scr2.segset);\n\n\t% expand scr1 matrices\n\tscoremat_1 = zeros(length(scr_new.modelset), length(scr_new.segset));\n\tscoremask_1 = false(length(scr_new.modelset), length(scr_new.segset));\n\t[dummy,model_index_a,model_index_b] = intersect(scr_new.modelset,scr1.modelset);\n\t[dummy,seg_index_a,seg_index_b] = intersect(scr_new.segset,scr1.segset);\n\tscoremat_1(model_index_a,seg_index_a) = scr1.scoremat(model_index_b,seg_index_b);\n\tscoremask_1(model_index_a,seg_index_a) = scr1.scoremask(model_index_b,seg_index_b);\n\n\t% expand scr2 matrices\n\tscoremat_2 = zeros(length(scr_new.modelset), length(scr_new.segset));\n\tscoremask_2 = false(length(scr_new.modelset), length(scr_new.segset));\n\t[dummy,model_index_a,model_index_b] = intersect(scr_new.modelset,scr2.modelset);\n\t[dummy,seg_index_a,seg_index_b] = intersect(scr_new.segset,scr2.segset);\n\tscoremat_2(model_index_a,seg_index_a) = scr2.scoremat(model_index_b,seg_index_b);\n\tscoremask_2(model_index_a,seg_index_a) = scr2.scoremask(model_index_b,seg_index_b);\n\n\t% check for clashes\n\tassert(~any(scoremask_1(:)&scoremask_2(:)))\n\t\n\t% merge masks\n\tscoremat = scoremat_1 + scoremat_2;\n\tscoremask = scoremask_1 | scoremask_2;\t\n\t\n\t% build new scr\n\tscr_new.scoremat = scoremat;\n\tscr_new.scoremask = scoremask;\n\tscr = scr_new;\t\n end\nend\n\nassert(scr.validate())\n", "meta": {"author": "nesl", "repo": "asvspoof2019", "sha": "8b780369f7273345c22d979192119198bbf3db13", "save_path": "github-repos/MATLAB/nesl-asvspoof2019", "path": "github-repos/MATLAB/nesl-asvspoof2019/asvspoof2019-8b780369f7273345c22d979192119198bbf3db13/baseline/tDCF_v1/bosaris_toolkit.1.06/bosaris_toolkit/classes/@Scores/merge.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544085240401, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3957909560421935}} {"text": "% This script stores in a file the standard configuration of RP for using\n% just one segmentation in LAB colorspace. The parameters were trained with\n% the VOC 2007 dataset. Further details can be found in the paper:\n%\n%\"S. Manen, M. Guillaumin, and L. Van Gool. Prime Object Proposals with\n%Randomized Prim's Algorithm. In ICCV, 2013.\"\nfunction generateRPConfig(rppath)\n\t%% Parameter specification:\n\tparams.approxFinalNBoxes = 10000; %Approximate number of proposals\n\tparams.rSeedForRun = -1; %Random seed to be used (-1 to generate it with a hashing function)\n\tparams.q = 10; %Parameter to eliminate near duplicates (raise it to eliminate more duplicates)\n\n\t% LAB segmentation\n\tparams.segmentations{1}.colorspace = 'LAB'; %Colorspace: 'RGB', 'LAB', 'opponent', 'rg', 'HSV'\n\n\t% --> Segmentation parameters:\n\tparams.segmentations{1}.superpixels.sigma = 0.8;\n\tparams.segmentations{1}.superpixels.c = 100;\n\tparams.segmentations{1}.superpixels.min_size = 100;\n\t% --> Parameters trained from VOC07:\n\n\t% --> Feature weights:\n\tparams.segmentations{1}.simWeights.wBias = 3.0017;\n\tparams.segmentations{1}.simWeights.wCommonBorder = -1.0029;\n\tparams.segmentations{1}.simWeights.wLABColorHist = -2.6864;\n\tparams.segmentations{1}.simWeights.wSizePer = -2.3655;\n\n\t% --> Size term alpha, as explained in the paper sec. 4.2. \n\t% It is quantized to contain exactly 2^16 elements for speed\n\t% purposes.\n\tparams.segmentations{1}.alpha = dlmread(fullfile(rppath, 'config', 'alpha/alpha_voc07.dat'));\n\tparams.segmentations{1}.verbose = false; %Set to true to display more information during execution\n\n\t%% Save parameters:\n\tsave(fullfile(rppath, 'config', 'rp.mat'),'params');\nend", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/randomizedPrims/rp-master/config/GenerateRPConfig.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7853085909370422, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3957218447426731}} {"text": "function metric = metric_euclidean(varargin)\n%METRIC_EUCLIDEAN An euclidean metric function\n%\n% Description\n% METRIC = METRIC_EUCLIDEAN('PARAM1',VALUE1,'PARAM2,VALUE2,...) \n% creates a an euclidean metric function structure in which the\n% named parameters have the specified values. Either\n% 'components' or 'deltadist' has to be specified. Any\n% unspecified parameters are set to default values.\n% \n% METRIC = METRIC_EUCLIDEAN(METRIC,'PARAM1',VALUE1,'PARAM2,VALUE2,...)\n% modify a metric function structure with the named parameters\n% altered with the specified values.\n%\n% Parameters for Euclidean metric function [default]\n% components - cell array of vectors specifying which \n% inputs are grouped together with a same\n% scaling parameter. For example, the\n% component specification {[1 2] [3]}\n% means that distance between 3\n% dimensional vectors computed as \n% r = (r_1^2 + r_2^2 )/l_1 + r_3^2/l_2,\n% where r_i are distance along component\n% i, and l_1 and l_2 are lengthscales for\n% corresponding component sets. If\n% 'components' is not specified, but\n% 'deltadist' is specified, then default\n% is {1 ... length(deltadist)}\n% deltadist - indicator vector telling which component sets\n% are handled using the delta distance \n% (0 if x=x', and 1 otherwise). Default is\n% false for all component sets.\n% lengthScale - lengthscales for each input component set\n% Default is 1 for each set\n% lengthScale_prior - prior for lengthScales [prior_unif]\n%\n% See also\n% GP_SET, GPCF_SEXP\n%\n% Copyright (c) 2008 Jouni Hartikainen \n% Copyright (c) 2008 Jarno Vanhatalo \n% Copyright (c) 2010 Aki Vehtari\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'METRIC_EUCLIDEAN';\n ip.addOptional('metric', [], @isstruct);\n ip.addParamValue('components',[], @(x) isempty(x) || iscell(x));\n ip.addParamValue('deltadist',[], @(x) isvector(x) || isempty(x));\n ip.addParamValue('lengthScale',[], @(x) isvector(x) && all(x>0));\n ip.addParamValue('lengthScale_prior',prior_unif, ...\n @(x) isstruct(x) || isempty(x));\n ip.parse(varargin{:});\n metric=ip.Results.metric;\n\n if isempty(metric)\n % Initialize a Gaussian process\n init=true;\n else\n % Modify a Gaussian process\n if ~isfield(metric,'type') && isequal(metric.type,'metric_euclidean')\n error('First argument does not seem to be a metric structure')\n end\n init=false;\n end\n\n if init\n % Type\n metric.type = 'metric_euclidean';\n end\n \n % Components\n if init || ~ismember('components',ip.UsingDefaults)\n metric.components = ip.Results.components;\n end\n % Deltadist\n if init || ~ismember('deltadist',ip.UsingDefaults)\n metric.deltadist = ip.Results.deltadist;\n end\n % Components+Deltadist check and defaults\n if isempty(metric.components) && isempty(metric.deltadist)\n error('Either ''components'' or ''deltadist'' has to be specified')\n elseif isempty(metric.components)\n metric.components=num2cell(1:length(metric.components));\n elseif isempty(metric.deltadist)\n metric.deltadist = false(1,length(metric.components));\n end\n % Lengthscale\n if init || ~ismember('lengthScale',ip.UsingDefaults)\n metric.lengthScale = ip.Results.lengthScale;\n if isempty(metric.lengthScale)\n metric.lengthScale = repmat(1,1,length(metric.components));\n end\n end\n % Prior for lengthscale\n if init || ~ismember('lengthScale_prior',ip.UsingDefaults)\n metric.p=[];\n metric.p.lengthScale = ip.Results.lengthScale_prior;\n end\n \n if init\n % Set the function handles to the subfunctions\n metric.fh.pak = @metric_euclidean_pak;\n metric.fh.unpak = @metric_euclidean_unpak;\n metric.fh.lp = @metric_euclidean_lp;\n metric.fh.lpg = @metric_euclidean_lpg;\n metric.fh.dist = @metric_euclidean_dist;\n metric.fh.distg = @metric_euclidean_distg;\n metric.fh.ginput = @metric_euclidean_ginput;\n metric.fh.recappend = @metric_euclidean_recappend;\n end\n\nend\n\nfunction [w s] = metric_euclidean_pak(metric)\n%METRIC_EUCLIDEAN_PAK Combine GP covariance function\n% parameters into one vector.\n%\n% Description\n% W = METRIC_EUCLIDEAN_PAK(GPCF) takes a covariance function\n% structure GPCF and combines the covariance function\n% parameters and their hyperparameters into a single row\n% vector W and takes a logarithm of the covariance function\n% parameters.\n%\n% w = [ log(metric.lengthScale(:))\n% (hyperparameters of metric.lengthScale)]'\n% \n% See also\n% METRIC_EUCLIDEAN_UNPAK\n \n w = []; s = {};\n if ~isempty(metric.p.lengthScale)\n w = log(metric.lengthScale);\n if numel(metric.lengthScale)>1\n s = [s; sprintf('log(metric.lengthScale x %d)',numel(metric.lengthScale))];\n else\n s = [s; 'log(metric.lengthScale)'];\n end\n % Hyperparameters of lengthScale\n [wh sh] = metric.p.lengthScale.fh.pak(metric.p.lengthScale);\n w = [w wh];\n s = [s; sh];\n end\n \nend\n\nfunction [metric, w] = metric_euclidean_unpak(metric, w)\n%METRIC_EUCLIDEAN_UNPAK Separate metric parameter vector into components\n%\n% Description\n% METRIC, W] = METRIC_EUCLIDEAN_UNPAK(METRIC, W) takes a\n% metric structure GPCF and a parameter vector W, and returns\n% a covariance function structure identical to the input,\n% except that the covariance parameters have been set to the\n% values in W. Deletes the values set to GPCF from W and\n% returns the modified W.\n%\n% The covariance function parameters are transformed via exp\n% before setting them into the structure.\n%\n% See also\n% METRIC_EUCLIDEAN_PAK\n%\n \n if ~isempty(metric.p.lengthScale)\n i2=length(metric.lengthScale);\n i1=1;\n metric.lengthScale = exp(w(i1:i2));\n w = w(i2+1:end);\n \n % Hyperparameters of lengthScale\n [p, w] = metric.p.lengthScale.fh.unpak(metric.p.lengthScale, w);\n metric.p.lengthScale = p;\n end\nend\n\nfunction lp = metric_euclidean_lp(metric)\n%METRIC_EUCLIDEAN_LP Evaluate the log prior of metric parameters\n%\n% Description\n% LP = METRIC_EUCLIDEAN_LP(METRIC) takes a metric structure\n% METRIC and returns log(p(th)), where th collects the\n% parameters.\n%\n% See also\n% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN_G, GP_E\n%\n \n% Evaluate the prior contribution to the error. The parameters that\n% are sampled are from space W = log(w) where w is all the \"real\" samples.\n% On the other hand errors are evaluated in the W-space so we need take\n% into account also the Jakobian of transformation W -> w = exp(W).\n% See Gelman et al. (2013), Bayesian Data Analysis, third edition, p. 21.\n if ~isempty(metric.p.lengthScale)\n lp = metric.p.lengthScale.fh.lp(metric.lengthScale, metric.p.lengthScale) + sum(log(metric.lengthScale));\n else\n lp=0;\n end\n \nend\n\nfunction lpg = metric_euclidean_lpg(metric) \n%METRIC_EUCLIDEAN_LPG d log(prior)/dth of the metric parameters th\n%\n% Description\n% LPG = METRIC_EUCLIDEAN_LPG(METRIC) takes a likelihood\n% structure METRIC and returns d log(p(th))/dth, where th\n% collects the parameters.\n%\n% See also\n% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN, GP_E\n%\n\n% Evaluate the prior contribution of gradient with respect to lengthScale\n if ~isempty(metric.p.lengthScale)\n i1=1; \n lll = length(metric.lengthScale);\n lpgs = metric.p.lengthScale.fh.lpg(metric.lengthScale, metric.p.lengthScale);\n lpg(i1:i1-1+lll) = lpgs(1:lll).*metric.lengthScale + 1;\n lpg = [lpg lpgs(lll+1:end)];\n end\nend\n\nfunction gdist = metric_euclidean_distg(metric, x, x2, mask) \n%METRIC_EUCLIDEAN_DISTG Evaluate the gradient of the metric function\n%\n% Description\n% DISTG = METRIC_EUCLIDEAN_DISTG(METRIC, X) takes a metric\n% structure METRIC together with a matrix X of input\n% vectors and return the gradient matrices GDIST and\n% GPRIOR_DIST for each parameter.\n%\n% DISTG = METRIC_EUCLIDEAN_DISTG(METRIC, X, X2) forms the\n% gradient matrices between two input vectors X and X2.\n% \n% DISTG = METRIC_EUCLIDEAN_DISTG(METRIC, X, X2, MASK) forms\n% the gradients for masked covariances matrices used in sparse\n% approximations.\n%\n% See also\n% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN, GP_E\n%\n\n gdist=[];\n components = metric.components;\n \n n = size(x,1);\n m = length(components);\n i1=0;i2=1;\n\n % NOTE! Here we have already taken into account that the parameters\n % are transformed through log() and thus dK/dlog(p) = p * dK/dp\n \n if ~isempty(metric.p.lengthScale)\n if nargin <= 3\n if nargin == 2\n x2 = x;\n end\n ii1=0; \n\n dist = 0;\n distc = cell(1,m);\n % Compute the distances for each component set\n for i=1:m\n if length(metric.lengthScale)==1\n s=1./metric.lengthScale.^2;\n else\n s=1./metric.lengthScale(i).^2;\n end\n distc{i} = 0;\n for j = 1:length(components{i})\n if metric.deltadist(i)\n distc{i} = distc{i} + double(bsxfun(@ne,x(:,components{i}(j)),x2(:,components{i}(j))'));\n else\n distc{i} = distc{i} + bsxfun(@minus,x(:,components{i}(j)),x2(:,components{i}(j))').^2;\n end\n end\n distc{i} = distc{i}.*s;\n % Accumulate to the total distance\n dist = dist + distc{i};\n end\n dist = sqrt(dist);\n % Loop through component sets\n if length(metric.lengthScale)==1\n D = -distc{1};\n D(dist~=0) = D(dist~=0)./dist(dist~=0);\n ii1 = ii1+1;\n gdist{ii1} = D;\n else\n for i=1:m\n D = -distc{i};\n ind = dist~=0;\n D(ind) = D(ind)./dist(ind);\n ii1 = ii1+1;\n gdist{ii1} = D;\n end\n end\n% $$$ elseif nargin == 3\n% $$$ if size(x,2) ~= size(x2,2)\n% $$$ error('metric_euclidean -> _ghyper: The number of columns in x and x2 has to be the same. ')\n% $$$ end\n elseif nargin == 4\n gdist = cell(1,length(metric.lengthScale));\n end\n\n % Evaluate the prior contribution of gradient with respect to lengthScale\n if ~isempty(metric.p.lengthScale)\n i1=1; \n lll = length(metric.lengthScale);\n gg = -metric.p.lengthScale.fh.lpg(metric.lengthScale, metric.p.lengthScale);\n gprior(i1:i1-1+lll) = gg(1:lll).*metric.lengthScale - 1;\n gprior = [gprior gg(lll+1:end)];\n end\n end\nend\n\nfunction dist = metric_euclidean_dist(metric, x1, x2) \n%METRIC_EUCLIDEAN_DIST Compute the euclidean distence between\n% one or two matrices.\n%\n% Description\n% DIST = METRIC_EUCLIDEAN_DIST(METRIC, X) takes a metric\n% structure METRIC together with a matrix X of input\n% vectors and calculates the euclidean distance matrix DIST.\n%\n% DIST = METRIC_EUCLIDEAN_DIST(METRIC, X1, X2) takes a\n% metric structure METRIC together with a matrices X1 and\n% X2 of input vectors and calculates the euclidean distance\n% matrix DIST.\n%\n% See also\n% METRIC_EUCLIDEAN_PAK, METRIC_EUCLIDEAN_UNPAK, METRIC_EUCLIDEAN, GP_E\n%\n if (nargin == 2 || isempty(x2))\n % use fast c-code for self-distance\n x2=x1;\n % force deltadist to be logical for simplified c-code\n metric.deltadist=logical(metric.deltadist);\n dist = dist_euclidean(metric,x1);\n if ~any(isnan(dist))\n % if c-code was available, result is not NaN\n return\n end \n end\n \n [n1,m1]=size(x1);\n [n2,m2]=size(x2);\n \n if m1~=m2\n error('the number of columns of X1 and X2 has to be same')\n end\n \n components = metric.components;\n m = length(components);\n dist = 0; \n \n s=1./metric.lengthScale.^2;\n if m>numel(s)\n s=repmat(s,1,m);\n end\n for i=1:m\n for j = 1:length(components{i})\n if metric.deltadist(i)\n dist = dist + s(i).*double(bsxfun(@ne,x1(:,components{i}(j)),x2(:,components{i}(j))'));\n else\n dist = dist + s(i).*bsxfun(@minus,x1(:,components{i}(j)),x2(:,components{i}(j))').^2;\n end\n end\n end\n dist=sqrt(dist); % euclidean distance\n \nend\n\nfunction [ginput, gprior_input] = metric_euclidean_ginput(metric, x1, x2)\n%METRIC_EUCLIDEAN_GINPUT Compute the gradient of the\n% euclidean distance function with\n% respect to input. [n, m]=size(x);\n ii1 = 0;\n components = metric.components;\n \n if nargin == 2 || isempty(x2)\n x2=x1;\n end\n \n [n1,m1]=size(x1);\n [n2,m2]=size(x2);\n \n if m1~=m2\n error('the number of columns of X1 and X2 has to be same')\n end\n \n s = 1./metric.lengthScale.^2;\n dist = 0;\n for i=1:length(components)\n for j = 1:length(components{i})\n if metric.deltadist(i)\n dist = dist + s(i).*double(bsxfun(@ne,x1(:,components{i}(j)),x2(:,components{i}(j))'));\n else\n dist = dist + s(i).*bsxfun(@minus,x1(:,components{i}(j)),x2(:,components{i}(j))').^2;\n end\n end\n end\n dist = sqrt(dist);\n \n for i=1:m1\n for j = 1:n1\n DK = zeros(n1,n2); \n for k = 1:length(components)\n if ismember(i,components{k})\n if metric.deltadist(i)\n DK(j,:) = DK(j,:)+s(k).*double(bsxfun(@ne,x1(j,i),x2(:,i)'));\n else\n DK(j,:) = DK(j,:)+s(k).*bsxfun(@minus,x1(j,i),x2(:,i)');\n end\n end\n end\n if nargin == 2\n DK = DK + DK';\n end\n DK(dist~=0) = DK(dist~=0)./dist(dist~=0);\n \n ii1 = ii1 + 1;\n ginput{ii1} = DK;\n gprior_input(ii1) = 0; \n end\n end\n %size(ginput)\n %ginput\n \nend\n\n\nfunction recmetric = metric_euclidean_recappend(recmetric, ri, metric)\n%RECAPPEND Record append\n%\n% Description\n% RECMETRIC = METRIC_EUCLIDEAN_RECAPPEND(RECMETRIC, RI,\n% METRIC) takes old metric function record RECMETRIC, record\n% index RI and metric function structure. Appends the\n% parameters of METRIC to the RECMETRIC in the ri'th place.\n%\n% See also\n% GP_MC and GP_MC -> RECAPPEND\n\n% Initialize record\n if nargin == 2\n recmetric.type = 'metric_euclidean';\n metric.components = recmetric.components;\n \n % Initialize parameters\n recmetric.lengthScale = [];\n\n % Set the function handles\n recmetric.fh.pak = @metric_euclidean_pak;\n recmetric.fh.unpak = @metric_euclidean_unpak;\n recmetric.fh.lp = @metric_euclidean_lp;\n recmetric.fh.lpg = @metric_euclidean_lpg;\n recmetric.fh.dist = @metric_euclidean_dist;\n recmetric.fh.distg = @metric_euclidean_distg;\n recmetric.fh.ginput = @metric_euclidean_ginput; \n recmetric.fh.recappend = @metric_euclidean_recappend;\n return\n end\n mp = metric.p;\n\n % record parameters\n if ~isempty(metric.lengthScale)\n recmetric.lengthScale(ri,:)=metric.lengthScale;\n recmetric.p.lengthScale = metric.p.lengthScale.fh.recappend(recmetric.p.lengthScale, ri, metric.p.lengthScale);\n elseif ri==1\n recmetric.lengthScale=[];\n end\n\nend\n", "meta": {"author": "gpstuff-dev", "repo": "gpstuff", "sha": "114937ec0a201306489a66cbba38283e722fb998", "save_path": "github-repos/MATLAB/gpstuff-dev-gpstuff", "path": "github-repos/MATLAB/gpstuff-dev-gpstuff/gpstuff-114937ec0a201306489a66cbba38283e722fb998/gp/metric_euclidean.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.3956781069783796}} {"text": "function subpak_test04 ( )\n\n%*****************************************************************************80\n%\n%% TEST04 tests AXIS_LIMITS.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n xmin = 67.3;\n xmax = 114.7;\n ndivs = 6;\n\n [ pxmin, pxmax, pxdiv, nticks ] = axis_limits ( xmin, xmax, ndivs );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST04\\n' );\n fprintf ( 1, ' AXIS_LIMITS adjusts plot limits to \"nicer\" values.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Input XMIN = %f\\n', xmin );\n fprintf ( 1, ' Input XMAX = %f\\n', xmax );\n fprintf ( 1, ' Input NDIVS = %d\\n', ndivs );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Output PXMIN = %f\\n', pxmin );\n fprintf ( 1, ' Output PXMAX = %f\\n', pxmax );\n fprintf ( 1, ' Output PXDIV = %f\\n', pxdiv );\n fprintf ( 1, ' Output NTICKS = %d\\n', nticks );\n\n xmin = -26.0;\n xmax = +26.0;\n ndivs = 10;\n\n [ pxmin, pxmax, pxdiv, nticks ] = axis_limits ( xmin, xmax, ndivs );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Input XMIN = %f\\n', xmin );\n fprintf ( 1, ' Input XMAX = %f\\n', xmax );\n fprintf ( 1, ' Input NDIVS = %d\\n', ndivs );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Output PXMIN = %f\\n', pxmin );\n fprintf ( 1, ' Output PXMAX = %f\\n', pxmax );\n fprintf ( 1, ' Output PXDIV = %f\\n', pxdiv );\n fprintf ( 1, ' Output NTICKS = %d\\n', nticks );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/subpak/subpak_test04.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5389832206876841, "lm_q2_score": 0.734119521083126, "lm_q1q2_score": 0.39567810384308344}} {"text": "function [indexSelect, infoChange] = ivmSelectPoint(model, add);\n\n% IVMSELECTPOINT Choose a point for inclusion or removal.\n% FORMAT\n% DESC identifies the next point for inclusion or removal.\n% ARG model : IVM structure for which the next point is being\n% selected.\n% ARG add : flag which indicates whether or not we are adding a\n% point. If we are not adding we are assumed to be removing a point\n% (default is true).\n%\n% SEEALSO : ivmOptimiseIvm, ivmSelectPoints, ivmCreate\n%\n% COPYRIGHT : Neil D. Lawrence, 2004, 2005, 2007\n\n% IVM\n\nif nargin < 2\n % If add is 1, then we are including a point.\n add = true;\nend\n\nswitch model.selectionCriterion\n case 'random'\n if add\n indexSelect = ceil(rand(1)*length(model.J));\n infoChange = -.5*sum(log2(1-model.varSigma(indexSelect, :).* ...\n model.nu(indexSelect, :)), 2);\n else\n indexSelect = ceil(rand(1)*length(model.I));\n infoChange = -.5*sum(log2(1-model.varSigma(indexSelect, :).* ...\n model.beta(indexSelect, :)+1e-300), 2);\n end\n case 'entropy' \n delta = ivmComputeInfoChange(model, add);\n [infoChange, indexSelect] = max(delta);\n numSelect = sum(delta==infoChange);\n if numSelect>1\n index1 = find(delta==infoChange);\n index1Select = ceil(rand(1)*numSelect);\n indexSelect = index1(index1Select);\n end\n case 'rentropy' \n % entropy with first point random\n if length(model.I)\n % if point is already selected select another.\n delta = ivmComputeInfoChange(model, add);\n [infoChange, indexSelect] = max(delta);\n else\n % otherwise select one randomly\n if add\n indexSelect = ceil(rand(1)*length(model.J));\n infoChange = -.5*sum(log2(1-model.varSigma(indexSelect, :)* ...\n model.nu(indexSelect, :)), 2);\n else\n indexSelect = ceil(rand(1)*length(model.I));\n infoChange = -.5*sum(log2(1-model.varSigma(indexSelect, :)* ...\n model.beta(indexSelect, :)+1e-300), 2);\n end\n end\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/ivm/ivmSelectPoint.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3956633720183291}} {"text": "function [net, info] = cnn_mnist_tt(varargin)\n% CNN_MNIST_TT Demonstrated TensorNet on MNIST.\n\n% Fix the random seed.\nrng(0);\n\nopts.expDir = fullfile('data','mnist-baseline') ;\n[opts, varargin] = vl_argparse(opts, varargin) ;\n\nopts.dataDir = fullfile('data','mnist') ;\nopts.imdbPath = fullfile(opts.expDir, 'imdb.mat');\nopts.train.batchSize = 100 ;\nopts.train.numEpochs = 100 ;\nopts.train.continue = true ;\nopts.train.gpus = [] ;\nopts.train.learningRate = logspace(-2, -5, 45) ;\nopts.train.expDir = opts.expDir ;\nopts = vl_argparse(opts, varargin) ;\n\n% --------------------------------------------------------------------\n% Prepare data\n% --------------------------------------------------------------------\n\nif exist(opts.imdbPath, 'file')\n imdb = load(opts.imdbPath) ;\nelse\n imdb = getMnistImdb(opts) ;\n mkdir(opts.expDir) ;\n save(opts.imdbPath, '-struct', 'imdb') ;\nend\n\nnet = cnn_mnist_init() ;\n\n% --------------------------------------------------------------------\n% Train\n% --------------------------------------------------------------------\n\n[net, info] = cnn_train(net, imdb, @getBatch, ...\n opts.train, ...\n 'val', find(imdb.images.set == 3)) ;\n\n% --------------------------------------------------------------------\nfunction [im, labels] = getBatch(imdb, batch)\n% --------------------------------------------------------------------\nim = imdb.images.data(:,:,:,batch) ;\nlabels = imdb.images.labels(1,batch) ;\n\n% --------------------------------------------------------------------\nfunction imdb = getMnistImdb(opts)\n% --------------------------------------------------------------------\n% Prepare the imdb structure, returns image data with images of size 32 x 32\n% and the mean image subtracted.\nfiles = {'train-images-idx3-ubyte', ...\n 'train-labels-idx1-ubyte', ...\n 't10k-images-idx3-ubyte', ...\n 't10k-labels-idx1-ubyte'} ;\n\nif ~exist(opts.dataDir, 'dir')\n mkdir(opts.dataDir) ;\nend\n\nfor i=1:4\n if ~exist(fullfile(opts.dataDir, files{i}), 'file')\n url = sprintf('http://yann.lecun.com/exdb/mnist/%s.gz',files{i}) ;\n fprintf('downloading %s\\n', url) ;\n gunzip(url, opts.dataDir) ;\n end\nend\n\nf=fopen(fullfile(opts.dataDir, 'train-images-idx3-ubyte'),'r') ;\nx1=fread(f,inf,'uint8');\nfclose(f) ;\nx1=permute(reshape(x1(17:end),28,28,60e3),[2 1 3]) ;\n\nf=fopen(fullfile(opts.dataDir, 't10k-images-idx3-ubyte'),'r') ;\nx2=fread(f,inf,'uint8');\nfclose(f) ;\nx2=permute(reshape(x2(17:end),28,28,10e3),[2 1 3]) ;\n\nf=fopen(fullfile(opts.dataDir, 'train-labels-idx1-ubyte'),'r') ;\ny1=fread(f,inf,'uint8');\nfclose(f) ;\ny1=double(y1(9:end)')+1 ;\n\nf=fopen(fullfile(opts.dataDir, 't10k-labels-idx1-ubyte'),'r') ;\ny2=fread(f,inf,'uint8');\nfclose(f) ;\ny2=double(y2(9:end)')+1 ;\n\nset = [ones(1,numel(y1)) 3*ones(1,numel(y2))] ;\ndataSmall = single(reshape(cat(3, x1, x2),28,28,1,[])) ;\n% Fill the image with zeros on the border to resize it to 32 x 32.\ndata = zeros(32, 32, 1, size(dataSmall, 4)) ;\ndata(3:30, 3:30, :, :) = dataSmall ;\ndataMean = mean(data(:,:,:,set == 1), 4) ;\ndata = bsxfun(@minus, data, dataMean) ;\n\nimdb.images.data = data ;\nimdb.images.data_mean = dataMean ;\nimdb.images.labels = cat(2, y1, y2) ;\nimdb.images.set = set ;\nimdb.meta.sets = {'train', 'val', 'test'} ;\nimdb.meta.classes = arrayfun(@(x)sprintf('%d',x),0:9,'uniformoutput',false) ;\n", "meta": {"author": "Bihaqo", "repo": "TensorNet", "sha": "64c8cba08aba0ff6f0c79e3442afa0774b45c0f2", "save_path": "github-repos/MATLAB/Bihaqo-TensorNet", "path": "github-repos/MATLAB/Bihaqo-TensorNet/TensorNet-64c8cba08aba0ff6f0c79e3442afa0774b45c0f2/experiments/mnist/cnn_mnist_tt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708562, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.39566336538183544}} {"text": "function modelPlane = sr_extract_plane(imgPath, imgName, opt)\n\n% SR_EXTRACT_PLANE:\n%\n% Extract plane model from an image\n%\n% The code is adapted and modified from the paper\n%\n% Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, Johannes Kopf\n% Image Completion using Planar Structure Guidance\n% ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014).\n%\n% Output: modelPlane\n% The model plane has the following data structure\n%\n% modelPlane\n% modelPlane.vpData: Vanishing point data\n% modelPlane.numPlane Number of planes\n% modelPlane.plane{indPlane}.vLine The vanishing line of the plane\n% modelPlane.plane{indPlane}.imgPlaneProb; The planar location density\n% modelPlane.plane{indPlane}.sourceVP Which two VPs form the plane\n% modelPlane.plane{indPlane}.rotPar(vpInd) Rotation parameters for aligning\n% two sets of lines with the x-axis x-axis\n% modelPlane.plane{indPlane}.postProb Posteior probability of the plane\n\n% =========================================================================\n% Vanishing point detection\n% =========================================================================\n\nvpFilePath = 'cache\\vpdetection';\n%vpFilePath = [fileparts(fileparts(mfilename('fullpath'))), '\\cache\\vpdetection'];\nvpFileName = [imgName(1:end-4), '-vanishingpoints.txt'];\n\nrecomputeFlag = 1;\nif(~exist(fullfile(vpFilePath, 'text', vpFileName), 'file') || recomputeFlag)\n vpExeFile = 'source\\EdgeDetectTest.exe';\n vpDetectCMD = [vpExeFile, ' -indir ', imgPath, ' -infile ', imgName, ' -outdir ', vpFilePath];\n system(vpDetectCMD);\nend\n% Read vanishing point data\nvpData = sr_read_vpdata(fullfile(vpFilePath, 'text', vpFileName));\n\nimg = imread(fullfile(imgPath, imgName));\n\n% =========================================================================\n% Plane localization\n% =========================================================================\n\nmodelPlane = sr_detect_plane_from_vp(vpData, img, opt);\n% figure(1), imshow(modelPlane.postProb(:,:,1:3));\n\nvisVPFlag = 0;\nif(visVPFlag)\n [vpVis, planeVis] = vis_vp(img, vpData, modelPlane.postProb(:,:,1:3));\nend\nend\n\nfunction [vpVis, planeVis] = vis_vp(img, vpData, postProb)\n\nimg = im2double(img);\n\n[imgH, imgW, nCh] = size(img);\nvpVis = zeros(imgH, imgW, nCh);\nplaneVis = zeros(imgH, imgW, nCh);\nwhiteImg = ones(imgH, imgW, nCh);\n% blackImg = zeros()\nalphaW = 0.5;\n\nimgW = img*(1 - alphaW) + whiteImg*(alphaW);\n\n% Plot VP\nh1 = figure(1);\nimshow(imgW); hold on;\nlineWidth = 4;\nfor vpInd = 1: vpData.numVP\n vpCurr = vpData.vp{vpInd};\n for lineInd = 1: vpCurr.numLines\n lineCur = vpCurr.lines(lineInd,:);\n lineCur = lineCur + 1;\n if(vpInd == 1)\n plot(lineCur([1,3]), lineCur([2,4]), 'r', 'LineWidth', lineWidth);\n elseif(vpInd == 2)\n plot(lineCur([1,3]), lineCur([2,4]), 'g', 'LineWidth', lineWidth);\n elseif(vpInd == 3)\n plot(lineCur([1,3]), lineCur([2,4]), 'b', 'LineWidth', lineWidth);\n end\n end\nend\nhold off;\nprint(h1, '-dpng', fullfile('paper\\planar_struct_SR_CVPR2015\\figures\\plane', 'vpdetection.png'));\n\n% Plot posterior\nalphaP = 0.9;\nimgP = (1 - alphaP)*img + alphaP*postProb;\nfigure(2); imshow(imgP);\nimwrite(imgP, fullfile('paper\\planar_struct_SR_CVPR2015\\figures\\plane', 'planedetection.png'));\n\nend\nfunction vpData = sr_read_vpdata(fileName)\n\n% SC_READ_VPDATA: read the data from vanishing point detection algorithm\n% Input:\n% - fileName: the txt file containing the pre-computed vanishing point\n% detection code\n% Output:\n% - vpData\n% The data structure of vpData\n% - vpData.numVP: number of detected vanishing points\n% - vpData.vp{i}.pos: the vanishing point position in the homogenous coordiante\n% - vpData.vp{i}.score: the score of the vanishing point\n% - vpData.vp{i}.numLines: number of lines supporting the vanishing point\n% - vpData.vp{i}.lines{j}.p1: (x1, y1): starting position\n% - vpData.vp{i}.lines{j}.p2: (x2, y2): ending position\n% - vpData.vp{i}.lines{j}.length: length of the line segment\n\nvpData = [];\n\n% Read data\nfid = fopen(fileName);\n\n%% Parse VP positions\ntemp = fscanf(fid, '%s ', [1 5]);\nnumVP = 0;\nreadVPFlag = 1;\nVP = [];\nwhile(readVPFlag)\n numVP = numVP + 1;\n vpCurr = fscanf(fid, '%g %g %g %g %g', [5 1]);\n if(~isempty(vpCurr))\n VP(:,numVP) = vpCurr;\n else\n temp = fscanf(fid, '%s ', [1 6]);\n readVPFlag = 0;\n end\nend\nVP = VP';\n\nvpData.numVP = size(VP, 1);\n\n% Save VP position data\nfor i = 1: vpData.numVP\n vpData.vp{i}.pos = VP(i, 1:3);\n vpData.vp{i}.score = VP(i, 4);\n vpData.vp{i}.numLines = VP(i, 5);\nend\n\n%% Parse each set of line segments for the corresponding VP\nfor i = 1: vpData.numVP\n numLine = fscanf(fid, '%d ', [1 1]);\n lines = fscanf(fid, '%g %g %g %g %g', [5 numLine]);\n vpData.vp{i}.lines = lines';\nend\n\nfclose(fid);\nend\n\nfunction modelPlane = sr_detect_plane_from_vp(vpData, img, opt)\n\n% SC_DETECT_PLANE_FROM_VP: simple plane detection algorithm\n% Input:\n% - vpData: vanishing point data\n% - img: input image\n% - mask: hole mask\n% Output:\n% - modelPlane\n\n%%\n\nmodelPlane = [];\n\n% === Setting up ===\n[imgH, imgW, ch] = size(img);\nHfilterX = fspecial('gaussian', [1, opt.filterSize], opt.filterSigma);\nHfilterY = HfilterX';\n% fspecial('gaussian', opt.filterSize, opt.filterSigma);\n\nimg = im2double(img);\n\n% === Supporting lines spatial support estimation ===\nshapeInserter = vision.ShapeInserter('Shape', 'Lines','BorderColor', 'White');\n\nfor i = 1: vpData.numVP\n % The support lines\n imgLines = zeros(imgH, imgW);\n imgLines = step(shapeInserter, imgLines, int16(round(vpData.vp{i}.lines(:,1:4))));\n % Spatial density estimation via blurring\n imgLinesPosMap = imgLines;\n for k = 1:opt.numFilterIter\n imgLinesPosMap = imfilter(imgLinesPosMap, HfilterX, 'conv', 'replicate');\n end\n for k = 1:opt.numFilterIter\n imgLinesPosMap = imfilter(imgLinesPosMap, HfilterY, 'conv', 'replicate');\n end\n \n % Save results\n modelPlane.vp{i}.imgLines = imgLines;\n modelPlane.vp{i}.imgLinesPosMap = imgLinesPosMap;\nend\n\n\n% === Estimate plane support and plane parameters ===\nnumPlane = (vpData.numVP)*(vpData.numVP-1)/2;\n% Initialize plane data\nmodelPlane.plane = cell(numPlane, 1);\n\nindPlane = 1;\n% A pair of vanishing points forms a plane hypothesis\nfor i = 1: vpData.numVP - 1\n for j = i+1: vpData.numVP\n % Compute the vanishing line\n modelPlane.plane{indPlane}.vLine = vLineFromTwoVP(vpData.vp{i}.pos, vpData.vp{j}.pos);\n % Element-wise product of two support line density\n modelPlane.plane{indPlane}.imgPlaneProb = modelPlane.vp{i}.imgLinesPosMap.*modelPlane.vp{j}.imgLinesPosMap; % Product of two probability maps\n \n % modelPlane.plane{indPlane}.imgPlaneProb(mask) = 1e-10;\n modelPlane.plane{indPlane}.sourceVP = [i, j];\n \n indPlane = indPlane + 1;\n end\nend\n\n\n% === Compute rectified rotation parameters ===\n\nfor i = 1: numPlane\n for vpInd = 1: 2\n \n linesCurr = vpData.vp{modelPlane.plane{i}.sourceVP(vpInd)}.lines;\n invalidLineInd = linesCurr(:,5) == 0;\n linesCurr = linesCurr(~invalidLineInd,:);\n numLines = size(linesCurr, 1);\n \n vLineCurr = modelPlane.plane{i}.vLine;\n \n % Rectified homography\n H = eye(3);\n H(3,:) = vLineCurr;\n \n end\nend\n\n\n% === Add a fronto-parallel plane ===\n\nmodelPlane.plane{indPlane}.vLine = [0 0 1];\nmodelPlane.plane{indPlane}.imgPlaneProb = opt.fpPlaneProb*ones(imgH, imgW);\nmodelPlane.plane{indPlane}.score = sum(modelPlane.plane{indPlane}.imgPlaneProb(:));\n\nnumPlane = numPlane + 1;\n\nmodelPlane.numPlane = numPlane;\n\n% === Compute posterior probability ===\n\nplaneProb = zeros(imgH, imgW, numPlane);\nfor i = 1 : numPlane\n planeProb(:,:,i) = modelPlane.plane{i}.imgPlaneProb;\nend\nplaneProbSum = sum(planeProb, 3);\nplaneProb = bsxfun(@rdivide, planeProb, planeProbSum);\nplaneProb = planeProb + 0.1; % blur the posterior map\nplaneProb = bsxfun(@rdivide, planeProb, sum(planeProb, 3));\n\nmodelPlane.postProb = planeProb;\n\nend\n\nfunction vLine = vLineFromTwoVP(vp1, vp2)\n\nA = cat(1, vp1, vp2);\n\n[U S V] = svd(A, 0);\nvLine = V(:,end);\nvLine = vLine/vLine(3); % [h7, h8, 1]\n\nend", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/SelfExSR/source/sr_extract_plane.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947425132315, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3955117827435053}} {"text": "function test_failed = test_libltfat_normalize(varargin)\ntest_failed = 0;\n\nfprintf(' =============== %s ================ \\n',upper(mfilename));\n\ndefinput.flags.complexity={'double','single'};\n[flags]=ltfatarghelper({},definput,varargin);\ndataPtr = [flags.complexity, 'Ptr'];\n\n[~,~,enuminfo]=libltfatprotofile;\nCenumnorms = enuminfo.ltfat_norm_t;\n\nLarr = [1,9,11,110];\nnormpairs = {{'null',Cenumnorms.LTFAT_NORM_NULL},...\n {'1', Cenumnorms.LTFAT_NORM_1},...\n {'2', Cenumnorms.LTFAT_NORM_2}};\n\nfor do_complex = 0:1\n complexstring = '';\n if do_complex, complexstring = 'complex'; end\n \n funname = makelibraryname('normalize',flags.complexity,do_complex);\n \n for L = Larr\n for npId = 1:numel(normpairs)\n normpair = normpairs{npId};\n \n if do_complex\n z = cast(randn(L,1)+1i*randn(L,1),flags.complexity);\n zi = complex2interleaved(z);\n zout = randn(size(zi),flags.complexity);\n \n ziPtr = libpointer(dataPtr,zi);\n zoutPtr = libpointer(dataPtr,zout);\n else\n z = cast(randn(L,1),flags.complexity);\n zi = z;\n zout = randn(size(zi),flags.complexity);\n \n ziPtr = libpointer(dataPtr,zi);\n zoutPtr = libpointer(dataPtr,zout);\n end\n \n trueres = normalize(z,normpair{1});\n \n \n status = calllib('libltfat',funname, ziPtr,L,normpair{2},zoutPtr);\n \n if do_complex\n res = norm(trueres - interleaved2complex(zoutPtr.Value));\n else\n res = norm(trueres - zoutPtr.Value);\n end\n \n [test_failed,fail]=ltfatdiditfail(res-status,test_failed);\n fprintf(['NORMALIZE OP L:%3i, norm: %s %s %s %s %s\\n'],L,normpair{1},flags.complexity,complexstring,ltfatstatusstring(status),fail);\n \n status = calllib('libltfat',funname, ziPtr,L,normpair{2},ziPtr);\n \n if do_complex\n res = norm(trueres - interleaved2complex(ziPtr.Value));\n else\n res = norm(trueres - ziPtr.Value);\n end\n \n [test_failed,fail]=ltfatdiditfail(res-status,test_failed);\n fprintf(['NORMALIZE IP L:%3i, norm: %s %s %s %s %s\\n'],L,normpair{1},flags.complexity,complexstring,ltfatstatusstring(status),fail);\n end\n end\nend\n\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/libltfat/modules/libltfat/testing/mUnit/test_libltfat_normalize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947425132315, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3955117827435052}} {"text": "function [ y2, m2, d2, f2 ] = ymdf_next_islamic ( y1, m1, d1, f1 )\n\n%*****************************************************************************80\n%\n%% YMDF_NEXT_ISLAMIC returns the Islamic YMDF date of the next day.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 17 March 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer Y1, M1, D1, real F1,\n% the YMDF date.\n%\n% Output, integer Y2, M2, D2, real F2,\n% tomorrow's YMDF date.\n%\n y2 = y1;\n m2 = m1;\n d2 = d1 + 1;\n f2 = f1;\n\n [ y2, m2, d2 ] = day_carry_islamic ( y2, m2, d2 );\n\n return\nend", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/ymdf_next_islamic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6548947155710233, "lm_q1q2_score": 0.39551176647224795}} {"text": "%CDATS Support routine for checking datasets\n%\n% [B,C,LABLIST,P] = CDATS(A,REDUCE)\n%\n% INPUT\n% A Dataset or double\n% REDUCE 0/1, Reduce A to labeled samples (1) or not (0, default), optional.\n%\n% OUTPUT\n% B Dataset\n% C Number of classes\n% LABLIST Label list of A\n% P Priors\n%\n% DESCRIPTION\n% This routine supports dataset checking and conversion for mappings\n% and density estimators. If A is double it is converted to a one-class\n% dataset with all labels set to 1. The same holds if A is an entirely\n% unlabeled dataset. The label list of A is returned in LABLIST, but\n% for multi-class datasets LABLIST is set to 1. C is the number of classes\n% in A. The priors are returned in P (length C), the dataset itself in B.\n% If REDUCE is 1, all unlabeled objects are removed.\n%\n% If A has soft labels, B = A.\n% If A does not have labels but targets: C = 1, LABLIST = [], P = 1.\n%\n% SEE ALSO (PRTools Guide)\n% DATASETS, MAPPINGS\n\nfunction [a,c,lablist,p] = cdats(a,red)\n\t\n\tif (nargin < 2), red = 0; end\n\n\tif (isdataset(a) & islabtype(a,'targets'))\n\t\tc = 1; lablist = []; p = 1;\n\telseif (isdataset(a) & islabtype(a,'soft'))\n\t\tc = getsize(a,3); \n\t\tlablist = getlablist(a);\n\t\tif nargout > 3, p = getprior(a); end\n\telse\n\t\tif ~isvaldfile(a)\n\t\t\ta = prdataset(a);\n % we decided to allow doubles instead of datasets where possible.\n % However, if the user calls cdats we assume he needs a dataset\n % definitely.\n\t\tend\n\t\tc = getsize(a,3); \n\t\tif nargout > 3 % avoid unnecessary warnings\n\t\t\tp = getprior(a);\n\t\tend\n\t\tif (c == 0)\n\t\t\ta = setlabels(a,1);\n\t\t\tp = 1;\n\t\t\tc = 1;\n\t\t\tlablist = 1;\n\t\t\tprwarning(4,'Dataset unlabeled: all objects will be used')\n\t\telseif (c == 1)\n\t\t\tp = 1;\n\t\t\tif (red == 1)\n\t\t\t\ta = seldat(a); % remove unlabeled objects\n\t\t\tend\n\t\t\tlablist = getlablist(a);\n\t\telse\n\t\t\tprwarning(4,'Multiclass dataset will be combined using priors')\n\t\t\tif (red == 1)\n\t\t\t\ta = seldat(a); % remove unlabeled objects\n\t\t\tend\n\t\t\tlablist = 1;\n\t\tend\n\t\tisvaldfile(a,1,1); % at least one object per class\n\tend;\nreturn", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/cdats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.3954397558086254}} {"text": "% If all is well, all of these scripts should run without errors.\n\n\n% bnets\ncg1\ncg2\ndiscrete1\nfa1\ngaussian1\ngaussian2\nif exist('@gibbs_sampling_inf_engine/private/compute_posterior','file')\n % only exists if installC has been run\n gibbs_test1\nend\nlearn1\nlw1\nmfa1\nmixexp1\nmixexp2\nmixexp3\nmog1\nmpe1\nmpe2\nqmr1\nqmr2\nsample1\nsoftev1\nsoftmax1\nsprinkler1\n\n\n% belief propagation\nbelprop_polytree_discrete\nbelprop_polytree_gauss % alag\nbelprop_polytree_cg\nbelprop_loop1_discrete\nbelprop_loop1_gauss\nbelprop_loopy_discrete\nbelprop_loopy_gauss\nbelprop_loopy_cg % like cg1\n\n\n% factor graphs\n%fg1 failed since marginals were not exact\n\nfg2\nfg3\nfg_mrf1\nfg_mrf2\n\n\n% Structure learning\nbic1\ncooper_yoo\nk2demo1\nmcmc1\nmodel_select1\npc1\n%pc2 failed due to numerical problems in KPMstats/cond_indep_fisher_z\n\n\n\n\n% limids\nasia_dt1\nid1\noil1\npigs1\n\n\n% dbns\narhmm1\nbat1\nbkff1\nchmm1\ndhmm1\nfilter_test1\nghmm1\nkalman1\nkjaerulff1\nloopy_dbn1\nmhmm1\nmildew1\nreveal1\nviterbi1\nwater1\n\n\n% HHMMs\nabcd_hhmm\nsample_square_hhmm_discrete\n%learn_square_hhmm_cts\nsample_motif_hhmm\n\n%sparse jtree engine & ndx 2TBN engine\nif exist('@jtree_sparse_inf_engine/init_pot','file')\n % only exists if installC has been run\n discrete2\n discrete3 \n filter_test1\n water2\nend\n\n%find . -path '*.m' -exec wc -l {} \\; | ~/count.pl\n\n% we cannot use tic;toc to time test_BNT, since functions within this script\n% reset the tic;toc timer. Hence we use the following:\n%clock0=clock; cpu0 = cputime; test_BNT; cpu=cputime-cpu0; elapsed=etime(clock, clock0)\n", "meta": {"author": "beckel", "repo": "nilm-eval", "sha": "83a2cd5fb911299cc267bd9998636934af781915", "save_path": "github-repos/MATLAB/beckel-nilm-eval", "path": "github-repos/MATLAB/beckel-nilm-eval/nilm-eval-83a2cd5fb911299cc267bd9998636934af781915/Matlab/lib/bnt/BNT/test_BNT.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.3954397484855447}} {"text": "function [h, varargout] = nethess_weighted(w, net, x, t, eso_w, varargin)\n%NETHESS Evaluate network Hessian\n%\n%\tDescription\n%\n%\tH = NETHESS(W, NET, X, T) takes a weight vector W and a network data\n%\tstructure NET, together with the matrix X of input vectors and the\n%\tmatrix T of target vectors, and returns the value of the Hessian\n%\tevaluated at W.\n%\n%\t[E, VARARGOUT] = NETHESS(W, NET, X, T, VARARGIN) also returns any\n%\tadditional return values from the network Hessian function, and\n%\tpasses additional arguments to that function.\n%\n%\tSee also\n%\tNETERR, NETGRAD, NETOPT\n%\n\n%\tCopyright (c) Ian T Nabney (1996-9)\n\nhess_str = [net.type, 'hess_weighted'];\n\nnet = netunpak(net, w);\n\n[s{1:nargout}] = feval(hess_str, net, x, t, eso_w, varargin{:});\nh = s{1};\nfor i = 2:nargout\n varargout{i-1} = s{i};\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/netlabKPM/nethess_weighted.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3954397484855446}} {"text": "function au_qmr_ilu_m_i(A,mc,max_it_qmr,tol_qmr,tol_ilu,info_qmr)\n%\n% Generates the data used in 'au_qmr_ilu_m'. Data are stored in global \n% variables.\n% \n% Moreover, it defines the parameters mc, max_it_qmr, tol_qmr, \n% tol_ilu, and info_qmr, which are needed later in 'au_qmr_ilu_l_i' and \n% 'au_qmr_ilu_s_i'.\n%\n% Calling sequence:\n%\n% au_qmr_ilu_m_i(A,mc,max_it_qmr,tol_qmr,tol_ilu,info_qmr)\n%\n% Input:\n%\n% A real matrix;\n% mc (= 'M' or 'C') Optimize for memory ('M') or computation ('C')\n% when shifted systems are solved by 'au_qmr_ilu_l/s' later. \n% Optional (default value: 'M');\n% max_it_qmr maximal number of QMR steps allowed in 'au_qmr_ilu_l/s'.\n% Corresponds to parameter 'MAXIT' in MATLAB function 'qmr'.\n% Optional (default value: min([n-1,100]));\n% tol_qmr stopping tolerance (w.r.t. normalized residual) for QMR \n% iteration in 'au_qmr_ilu_l/s'. Corresponds to parameter 'TOL' \n% in MATLAB function 'qmr'. Optional (default value: 1e-14);\n% tol_ilu dropping tolerance for ILU preconditioner. Corresponds to\n% parameter 'DROPTOL' in MATLAB function 'luinc'. Optional \n% (default value: 1e-2);\n% info_qmr (= 0, 1, ...) If 1, warnings are printed when parameter FLAG\n% of MATLAB function 'qmr' is not equal to zero in QMR \n% iteration in 'au_qmr_ilu_l/s'. If 0, no warnings are\n% printed. Optional (default value: 1). \n%\n% Remark:\n%\n% If mc = 'M', the incomplete LU factors for A+p(i)*I are computed\n% any time 'au_qmr_ilu_s' is called, but they are not stored as global\n% variables to save memory. That means they are in general computed\n% several times, which results in additional computational cost. If\n% 'mc = C', the incomplete LU factors are computed once by calling\n% 'au_qmr_ilu_s_i' and stored as global variables, which results is\n% an increased memory demand. \n%\n% \n% LYAPACK 1.0 (Thilo Penzl, August 1999)\n\nna = nargin;\n\nif na<1 | na>6\n error('Wrong number of input arguments.');\nend\n\nif nargin < 2, mc = []; end\nif nargin < 3, max_it_qmr = []; end\nif nargin < 4, tol_qmr = []; end\nif nargin < 5, tol_ilu = []; end\nif nargin < 6, info_qmr = []; end\n\nif ~length(mc), mc = 'M'; end\nif ~length(max_it_qmr), max_it_qmr = min([size(A,1)-1,100]); end\nif ~length(tol_qmr), tol_qmr = 1e-14; end\nif ~length(tol_ilu), tol_ilu = 1e-2; end\nif ~length(info_qmr), info_qmr = 1; end\n\nglobal LP_A LP_MC LP_MAX_IT_QMR LP_TOL_QMR LP_TOL_ILU LP_INFO_QMR\n\nLP_A = A;\nLP_MC = mc;\nLP_MAX_IT_QMR = max_it_qmr;\nLP_TOL_QMR = tol_qmr;\nLP_TOL_ILU = tol_ilu;\nLP_INFO_QMR = info_qmr;\n\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/21-lyapack/lyapack/usfs/au_qmr_ilu_m_i.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.3954397411624637}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the RUBBERBAND-EXAMPLE geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction Dear_KC()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 32; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nNy = 32; % # of Eulerian Grid Pts. in y-Direction (MUST BE EVEN!!!)\nLx = 1.0; % Length of Eulerian Grid in x-Direction\nLy = 1.0; % Length of Eulerian Grid in y-Direction\nds = Lx/(2*Nx); % Spatial step!\n\n\n% Immersed Structure Geometric / Dynamic Parameters %\nN = 2*Nx; % Number of Lagrangian Pts. (2x resolution of Eulerian grid)\nds_Rest = 0; % Resting length of springs\nstruct_name = 'dear_KC'; % Name for .vertex, .spring, etc files.\n\n% Line on top and bottom of geometry\nds2 = 0.125*ds;\nxLine = Lx/20:ds2:0.95*Lx;\nyLineB = 0.025*Lx*ones(1,length(xLine));\nyLineT= 0.975*Lx*ones(1,length(xLine));\n\nxSq = [xLine xLine yLineB yLineT];\nySq = [yLineB yLineT xLine xLine];\n\n% Call function to construct geometry\n[x1,y1] = give_Me_Immsersed_Boundary_Geometry_1(Lx,Nx,ds);\nx1 = [x1 xSq];\ny1 = [y1 ySq];\n\n% Call function to construct geometry\n[x2,y2] = give_Me_Immsersed_Boundary_Geometry_2(Lx,Nx,ds,x1);\nx2 = [x2 xSq];\ny2 = [y2 ySq];\n\n% Call function to construct geometry\n[x3,y3] = give_Me_Immsersed_Boundary_Geometry_3(Lx,Nx,ds);\nx3 = [x3 xSq];\ny3 = [y3 ySq];\n\n\n% Plot Geometry to test BEFORE taking out pts.\nfigure(1)\nplot(x1,y1,'r*'); hold on;\naxis([0 Lx 0 Ly]);\n\nfigure(2)\nplot(x2,y2,'b*'); hold on;\naxis([0 Lx 0 Ly]);\n\nfigure(3)\nplot(x3,y3,'k*'); hold on;\naxis([0 Lx 0 Ly]);\n\n\n% Print files to .txt files\nplease_Print_Vertices_To_File(x1,y1,x2,y2,x3,y3)\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(x1,y1,struct_name);\n\n\n% Prints .spring file!\n%k_Spring = 1e7;\n%print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name);\n\n\n% Prints .beam file!\n%k_Beam = 0.5; C = 0.0;\n%print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name);\n\n\n% Prints .target file!\nk_Target = 1e6;\nprint_Lagrangian_Target_Pts(x1,k_Target,struct_name);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called struct.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints TARGET points to a file called struct.target\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n if s > 284\n k_Target = 2.5e9;\n end\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called struct.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, 1, k_Beam, C); \n end\n end\n fclose(beam_fid); \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called struct.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name)\n\n N = length(xLag);\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n else\n %Case s=N\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, 1, k_Spring, ds_Rest); \n end\n end\n fclose(spring_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for PHASE 1\n% msg: \"Hi KC!!\"\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry_1(Lx,Nx,ds)\n\n% The immsersed structure message #1: Hi Nghieng!! %\nlen = Lx/6.5;\n\nxC = 0;%-Lx/4;\nyC = 0;%-Lx/2;\n[xH,yH] = give_Me_The_Letter_Please_2(ds,len,'H',xC,yC); % (0,0)\n[xi1,yi1] = give_Me_The_Letter_Please_2(ds,len,'i',xC,yC-0.05);\n%\n[xN,yN] = give_Me_The_Letter_Please_2(ds,len,'N',xC,yC);\n[xg1,yg1] = give_Me_The_Letter_Please_2(ds,len,'g',xC,yC);\n[xh,yh] = give_Me_The_Letter_Please_2(ds,len,'h',xC,yC);\n[xi2,yi2] = give_Me_The_Letter_Please_2(ds,len,'i',xC,yC-0.05);\n[xe,ye] = give_Me_The_Letter_Please_2(ds,len,'e',xC,yC);\n[xn,yn] = give_Me_The_Letter_Please_2(ds,len,'n',xC,yC);\n[xg2,yg2] = give_Me_The_Letter_Please_2(ds,len,'g',xC,yC);\n\n% No room in domain for !'s\n%[xEx1,yEx1] = give_Me_The_Letter_Please_2(ds,1.2*len,'!',xC-0.55,yC);\n%[xEx2,yEx2] = give_Me_The_Letter_Please_2(ds,1.2*len,'!',xC-0.59,yC);\n\n% HI\nxH = xH + 0.45; yH = yH + 0.7;\nxi1 = xi1 + 0.55; yi1 = yi1 + 0.65;\n\n% Nghieng\nxN = xN + 0.15; yN = yN + 0.375;\nxg1 = xg1 + 0.325; yg1 = yg1 + 0.375;\nxh = xh + 0.435; yh = yh + 0.375;\nxi2 = xi2 + 0.515; yi2 = yi2 + 0.325;\nxe = xe + 0.59; ye = ye + 0.375;\nxn = xn + 0.7; yn = yn + 0.375;\nxg2 = xg2 + 0.8; yg2 = yg2 + 0.375;\n\n%\n% COMBINE GEOMETRY\n%\nxLag = [xH xi1 xN xg1 xh xi2 xe xn xg2];\nyLag = [yH yi1 yN yg1 yh yi2 ye yn yg2];\n\n%\n% Test Plot\n%\n% figure(1)\n% plot(xH,yH,'.'); hold on;\n% plot(xi1,yi1,'.'); hold on;\n% plot(xN,yN,'.'); hold on;\n% plot(xg1,yg1,'.'); hold on;\n% plot(xh,yh,'.'); hold on;\n% plot(xi2,yi2,'.'); hold on;\n% plot(xe,ye,'.'); hold on;\n% plot(xn,yn,'.'); hold on;\n% plot(xg2,yg2,'.'); hold on;\n\n%\n% Construct Horizontal Lines for Added Pts. in Domain\n%\nxRow = (0:ds:Lx/3) + 1/3;\nyRow = ones(size(xRow));\n\n\nxRow2 = (0:ds:Lx/6+ds) + 0.41666;\nyRow2 = ones(size(xRow2));\n\nxRow_T1 = xRow; yRow_T1 = 0.925*yRow;\nxRow_T2 = xRow2; yRow_T2 = 0.85*yRow2;\n\nxRow_B1 = [xRow xRow(end)+ds]; yRow_B1 = 0.075*[yRow 1];\nxRow_B2 = xRow2; yRow_B2 = 0.15*yRow2;\n\n%\n% Combine Letters + Horizontal Lines\n%\nxLag = [xLag xRow_T1 xRow_T2 xRow_B1 xRow_B2];\nyLag = [yLag yRow_T1 yRow_T2 yRow_B1 yRow_B2];\n\n%\n% Test Plot 2\n%\n% figure(11)\n% plot(xLag,yLag,'.'); hold on;\n% axis([0 1 0 1]);\n\n%\n% CHECK TO MAKE SURE EQUAL NUMBER OF MOVING LAGS AS OTHER PHASES\n% HERE: 284\n%\n%size(xLag)\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for PHASE 2\n% msg: \"Would you like to ...\"\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry_2(Lx,Nx,ds,x1)\n\n% The immsersed structure message #2: Woud you like to... %\nlen = Lx/8;\n\nxC = -Lx/6;\nyC = -2*Lx/3;\n[xW,yW] = give_Me_The_Letter_Please(ds,len,'W',xC,yC);\n[xo,yo] = give_Me_The_Letter_Please(ds,len,'o',xC-0.1,yC);\n[xu,yu] = give_Me_The_Letter_Please(ds,len,'u',xC-0.18,yC);\n[xl,yl] = give_Me_The_Letter_Please(ds,len,'l',xC-0.27,yC);\n[xd,yd] = give_Me_The_Letter_Please(ds,1.2*len,'d',xC-0.29,yC);\n\n[xy,yy] = give_Me_The_Letter_Please(ds,1.2*len,'y',xC-0.47,yC);\n[xo2,yo2] = give_Me_The_Letter_Please(ds,len,'o',xC-0.55,yC);\n[xu2,yu2] = give_Me_The_Letter_Please(ds,len,'u',xC-0.63,yC);\n\nxC = -Lx/4;\nyC = -1*Lx/4 - Lx/6;\n[xl2,yl2] = give_Me_The_Letter_Please(ds,len,'l',xC,yC);\n[xi,yi] = give_Me_The_Letter_Please(ds,len,'i',xC-0.01,yC);\n[xk,yk] = give_Me_The_Letter_Please(ds,len,'k',xC-0.07,yC);\n[xe,ye] = give_Me_The_Letter_Please(ds,len,'e',xC-0.13,yC);\n\n[xt,yt] = give_Me_The_Letter_Please(ds,len,'t',xC-0.27,yC);\n[xo3,yo3] = give_Me_The_Letter_Please(ds,len,'o',xC-0.32,yC);\n\nyC = -1*Lx/5 - Lx/6;\n[xo4,yo4] = give_Me_The_Letter_Please(ds/3,len/6,'o',xC-0.44,yC);\n[xo5,yo5] = give_Me_The_Letter_Please(ds/3,len/6,'o',xC-0.48,yC);\n[xo6,yo6] = give_Me_The_Letter_Please(ds/3,len/6,'o',xC-0.52,yC);\n\nxLag = [xW xo xu xl xd xy xo2 xu2 xl2 xi xk xe xt xo3 xo4 xo5 xo6];\nyLag = [yW yo yu yl yd yy yo2 yu2 yl2 yi yk ye yt yo3 yo4 yo5 yo6];\n\n%x1Len = length(x1)\n%xLagLen=length(xLag)\n%PtsLeft = abs( length(xLag) - length(x1) )\n%ds1 = (Lx/2.5)/( PtsLeft/2 - 1 );\n\nxBL = 0:ds:Lx/2.5; xBL = xBL + 3/10*Lx;\nyTL = 0.84*ones(1,length(xBL));\nyBL = 0.18*ones(1,length(xBL));\n\n\nxLag = [xLag xBL xBL];\nyLag = [yLag yTL yBL];\n\n% plot(xW,yW,'r*'); hold on;\n% plot(xo,yo,'r*'); hold on;\n% plot(xu,yu,'r*'); hold on;\n% plot(xl,yl,'r*'); hold on;\n% plot(xd,yd,'r*'); hold on;\n% \n% plot(xy,yy,'r*'); hold on;\n% plot(xo2,yo2,'r*'); hold on;\n% plot(xu2,yu2,'r*'); hold on;\n% \n% plot(xl2,yl2,'r*'); hold on;\n% plot(xi,yi,'r*'); hold on;\n% plot(xk,yk,'r*'); hold on;\n% plot(xe,ye,'r*'); hold on;\n% \n% plot(xt,yt,'r*'); hold on;\n% plot(xo3,yo3,'r*'); hold on;\n% \n% plot(xo4,yo4,'r*'); hold on;\n% plot(xo5,yo5,'r*'); hold on;\n% plot(xo6,yo6,'r*'); hold on;\n% axis([0 Lx 0 Lx]);\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for PHASE 2\n% msg: \"Would you like to ...\"\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry_3(Lx,Nx,ds)\n\n% The immsersed structure message #3: ...go on a date with me? %\nlen = Lx/9;\n\nxC = -Lx/8;\nyC = -3*Lx/4;\nshift = 0.2;\n\n[xo4,yo4] = give_Me_The_Letter_Please(ds/3,len/6,'o',xC,yC+0.09);\n[xo5,yo5] = give_Me_The_Letter_Please(ds/3,len/6,'o',xC-0.04,yC+0.09);\n[xo6,yo6] = give_Me_The_Letter_Please(ds/3,len/6,'o',xC-0.08,yC+0.09);\n\n[xg,yg] = give_Me_The_Letter_Please(ds,len,'g',xC-shift,yC);\n[xo,yo] = give_Me_The_Letter_Please(ds,len,'o',xC-0.1-shift,yC);\n\n[xo2,yo2] = give_Me_The_Letter_Please(ds,1.2*len,'o',xC-0.25-shift,yC);\n[xn,yn] = give_Me_The_Letter_Please(ds,1.2*len,'n',xC-0.34-shift,yC);\n\n[xa,ya] = give_Me_The_Letter_Please(ds,len,'a',xC-0.48-shift,yC);\n\n\nxC = -Lx/5;\nyC = -Lx/2;\n[xd,yd] = give_Me_The_Letter_Please(ds,len,'d',xC,yC);\n[xa2,ya2] = give_Me_The_Letter_Please(ds,len,'a',xC-0.08,yC);\n[xt,yt] = give_Me_The_Letter_Please(ds,len,'t',xC-0.16,yC);\n[xe,ye] = give_Me_The_Letter_Please(ds,len,'e',xC-0.22,yC);\n\n[xw,yw] = give_Me_The_Letter_Please(ds,1.1*len,'w',xC-0.37,yC);\n[xi,yi] = give_Me_The_Letter_Please(ds,len,'i',xC-0.45,yC);\n[xt2,yt2] = give_Me_The_Letter_Please(ds,len,'t',xC-0.505,yC);\n[xh,yh] = give_Me_The_Letter_Please(ds,len,'h',xC-0.58,yC);\n\nxC = -Lx/2.5;\nyC = -Lx/4;\n[xm,ym] = give_Me_The_Letter_Please(ds,1.1*len,'m',xC,yC);\n[xe2,ye2] = give_Me_The_Letter_Please(ds,len,'e',xC-0.12,yC);\n[xQU,yQU] = give_Me_The_Letter_Please(ds,1.2*len,'?',xC-0.22,yC);\n\nxLag = [xo4 xo5 xo6 xg xo xo2 xn xa xd xa2 xt xe xw xi xt2 xh xm xe2 xQU];\nyLag = [yo4 yo5 yo6 yg yo yo2 yn ya yd ya2 yt ye yw yi yt2 yh ym ye2 yQU];\n\n\n% plot(xo4,yo4,'r*'); hold on;\n% plot(xo5,yo5,'r*'); hold on;\n% plot(xo6,yo6,'r*'); hold on;\n% \n% plot(xg,yg,'r*'); hold on;\n% plot(xo,yo,'r*'); hold on;\n% \n% plot(xo2,yo2,'r*'); hold on;\n% plot(xn,yn,'r*'); hold on;\n% \n% plot(xa,ya,'r*'); hold on;\n% \n% plot(xd,yd,'r*'); hold on;\n% plot(xa2,ya2,'r*'); hold on;\n% plot(xt,yt,'r*'); hold on;\n% plot(xe,ye,'r*'); hold on;\n% \n% plot(xw,yw,'r*'); hold on;\n% plot(xi,yi,'r*'); hold on;\n% plot(xt2,yt2,'r*'); hold on;\n% plot(xh,yh,'r*'); hold on;\n% \n% plot(xm,ym,'r*'); hold on;\n% plot(xe2,ye2,'r*'); hold on;\n% plot(xQU,yQU,'r*'); hold on;\n% \n% axis([0 Lx 0 Lx]);\n\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%s%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for the Heart\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry_Heart(Lx,Nx,frac,Nb)\n\n% The immsersed structure is a heart %\nds = 2*pi/(Nb-1);\ntVec = 0:ds:2*pi;\n\nfor i=1:length(tVec)\n t = tVec(i);\n xLag(i)\t=\t16*sin(t)^3;\n yLag(i)\t=\t13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t);\nend\n\nxLag = frac*xLag + 0.5;\nyLag = frac*yLag + 0.5;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for PHASE 2 \n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry_4(Lx,Nx,frac,Nb)\n\n% The immsersed structure is a heart %\nds = 2*pi/(Nb-1);\ntVec = 0:ds:2*pi;\nfor i=1:length(tVec)\n t = tVec(i);\n r(i) = 1 - sin(t);\n xLag(i)\t=\tr(i)*cos(t);\n yLag(i)\t=\tr(i)*sin(t);\nend\n\nxLag = frac*xLag;\nyLag = frac*yLag;\n\nminY = min(yLag);\nyLag = yLag - 3*minY/8;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: take out Lagrangian Pts.\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [x1,y1,x2,y2] = please_Take_Out_Points(x1,y1,x2,y2)\n\nn1 = 50;\nn2 = 70;\n\nx1 = [x1(1:n1) x1(n2:end)];\ny1 = [y1(1:n1) y1(n2:end)];\n\nx2 = [x2(1:n1) x2(n2:end)];\ny2 = [y2(1:n1) y2(n2:end)];\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints all Vertices to File\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction please_Print_Vertices_To_File(X1,Y1,X2,Y2,X3,Y3)\n\nfileID = fopen('All_Positions.txt','w');\nfor j=1:length(X1)\n fprintf(fileID,'%1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e %1.16e\\n', X1(j),Y1(j),X2(j),Y2(j),X3(j),Y3(j),X3(j),Y3(j) );\nend\nfclose(fileID);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: give me the letter!!!!!\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [x,y] = give_Me_The_Letter_Please(ds,len,letter,xC,yC)\n\nif strcmp(letter,'a')\n r = len/4.1;\n dt = ds/r;\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n xA(i) = r*cos(theta(i)) - xC;\n yA(i) = r*sin(theta(i)) - yC - len/4;\n end\n \n yLine = [-r:ds:r r]; yLine = yLine - yC - len/4;\n xLine = r*ones(1,length(yLine)) - (xC-ds/6);\n \n x = [xA xLine];\n y = [yA yLine];\n\nelseif strcmp(letter,'C')\n \n r = len/2;\n dt = ds/r;\n theta = pi/2:dt:pi-0.25*dt;\n theta = [theta pi -theta];\n for i=1:length(theta)\n x(i) = 3*r/4*cos(theta(i)) - xC;\n y(i) = r*sin(theta(i)) - yC;\n end\n \n xTB = 0:3*ds/4:len/6;\n xTB = xTB - xC + 0.01;\n yT = r*ones(1,length(xTB))-yC;\n yB = -r*ones(1,length(xTB))-yC;\n \n x = [xTB x xTB];\n y = [yT y yB];\n \n \n\n length(x)\n \nelseif strcmp(letter,'d')\n \n r = len/4.1;\n dt = ds/r;\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n xA(i) = r*cos(theta(i)) - xC;\n yA(i) = r*sin(theta(i)) - yC - len/4;\n end\n \n yLine = [-len/2:ds:len/2.25 r]; yLine = yLine - yC;\n xLine = r*ones(1,length(yLine)) - (xC-ds/6);\n \n x = [xA xLine];\n y = [yA yLine];\n \n elseif strcmp(letter,'e')\n \n r = len/4.1;\n yV = [-r:ds:r r]; \n xH = yV - xC;\n yH = zeros(1,length(xH)) - yC;\n yH2 = yH - len/4;\n yH3 = yH - len/2;\n \n yV = yV - yC - len/4;\n xV = r*ones(1,length(yV));\n \n yV3 = 0:-ds:-len/4;\n yV3 = yV3 - yC;\n xV3 = r*ones(1,length(yV3));\n \n x = [-xV-(xC-ds/6) xH xV3-(xC-ds/6) xH xH];\n y = [yV yH yV3 yH2 yH3];\n \n \nelseif strcmp(letter,'g')\n \n r = len/4.1;\n dt = ds/r;\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n xA(i) = r*cos(theta(i)) - xC;\n yA(i) = r*sin(theta(i)) - yC - len/4;\n end\n \n yLine = [-len/2:ds:len/2.25 r]; yLine = yLine - yC - len/3;\n xLine = r*ones(1,length(yLine)) - (xC-ds/6);\n \n yV = [-r:ds:r r]; \n xH = yV - xC;\n yH = zeros(1,length(xH)) - yC - 0.85*len;\n \n x = [xA xLine xH];\n y = [yA yLine yH];\n \nelseif strcmp(letter,'h')\n\n yLine = -len/2:ds:0-ds/4;\n yLine = [yLine 0 -yLine];\n yLine1 = yLine - yC;\n xLine1 = 1/2*len/2*ones(1,length(yLine1));\n \n yLine2 = -len/2:ds:0-ds/4;\n yLine2 = [yLine2 0];\n yLine2 = yLine2 - yC;\n xLine2 = 1/2*len/2*ones(1,length(yLine2));\n \n xH = (-1/2*len/2+ds/2:ds:1/2*len/2-ds/4);\n xH = xH - xC;\n yH = zeros(1,length(xH)) - yC;\n \n x = [-xLine1-xC xH xLine2-xC];\n y = [yLine1 yH yLine2]; \n \nelseif strcmp(letter,'H')\n yLine = -len/2:ds:0-ds/4;\n yLine = [yLine 0 -yLine];\n yLine = yLine - yC;\n xLine = 1/2*len/2*ones(1,length(yLine));\n xH = (-1/2*len/2+ds/2:ds:1/2*len/2-ds/4);\n xH = xH - xC;\n yH = zeros(1,length(xH)) - yC;\n \n x = [-xLine-xC xH xLine-xC];\n y = [yLine yH yLine];\n \nelseif strcmp(letter,'i')\n \n yLine = -len/2:ds:0-ds/4;\n yLine = yLine - yC;\n xLine = zeros(1,length(yLine)) - xC; \n \n r = len/21;\n dt = ds/(2*r);\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n xDot(i) = r*cos(theta(i)) - xC;\n yDot(i) = r*sin(theta(i)) - yC + len/7;\n end\n \n x = [xLine xDot];\n y = [yLine yDot];\n \n\nelseif strcmp(letter,'k')\n \n yLine = -len/2:ds:len/2;\n yLine = yLine - yC;\n xLine = zeros(1,length(yLine)) -xC-len/3.9;\n\n XD = 0:ds:len/sqrt(2);\n YD = zeros(1,length(XD));\n \n %rotate!\n for i=1:length(XD)\n xDt(i) = XD(i)*cos(pi/4)-YD(i)*sin(pi/4);\n yDt(i) = XD(i)*sin(pi/4)+YD(i)*cos(pi/4);\n \n xDb(i) = XD(i)*cos(pi/4)-YD(i)*sin(-pi/4);\n yDb(i) = XD(i)*sin(-pi/4)+YD(i)*cos(pi/4);\n end\n xDt = xDt - xC - len/4;\n yDt = yDt - yC;\n \n xDb = xDb - xC - len/4;\n yDb = yDb - yC;\n \n x = [xLine(1:ceil(0.75*end)) xDt(1:ceil(2*end/3)) xDb(1:ceil(2*end/3))];\n y = [yLine(1:ceil(0.75*end)) yDt(1:ceil(2*end/3))-len/8 yDb(1:ceil(2*end/3))-len/5.5];\n \nelseif strcmp(letter,'K')\n \n yLine = -len/2:ds:len/2;\n yLine = yLine - yC;\n xLine = zeros(1,length(yLine)) -xC-len/3.9;\n\n XD = 0:ds:len/sqrt(2);\n YD = zeros(1,length(XD));\n \n %rotate!\n for i=1:length(XD)\n xDt(i) = XD(i)*cos(pi/4)-YD(i)*sin(pi/4);\n yDt(i) = XD(i)*sin(pi/4)+YD(i)*cos(pi/4);\n \n xDb(i) = XD(i)*cos(pi/4)-YD(i)*sin(-pi/4);\n yDb(i) = XD(i)*sin(-pi/4)+YD(i)*cos(pi/4);\n end\n xDt = xDt - xC - len/4.5;\n yDt = yDt - yC;\n \n xDb = xDb - xC - len/5.5;\n yDb = yDb - yC;\n \n x = [xLine xDt xDb];\n y = [yLine yDt yDb];\n\n \nelseif strcmp(letter,'l')\n \n yLine = -len/2:ds:len/2.25;\n yLine = yLine - yC;\n xLine = 1/2*len/2*ones(1,length(yLine));\n\n x = -xLine-xC;\n y = yLine;\n\nelseif strcmp(letter,'m')\n \n r = len/2;\n xH = -r:ds:r; xH = xH - xC;\n yH = zeros(1,length(xH)) - yC;\n yV = 0:-ds:-len/2; yV = yV - yC;\n xV = -r*ones(1,length(yV)) - xC;\n xV2 = zeros(1,length(yV)) - xC;\n xV3 = r*ones(1,length(yV)) - xC;\n \n yVS = 0:ds:len/12;\n yVS = yVS - yC;\n xVS = -r*ones(1,length(yVS)) - xC;\n \n x = [xVS xH xV xV2 xV3];\n y = [yVS yH yV yV yV];\n \nelseif strcmp(letter,'n')\n \n r = len/4.1;\n yV = [-r:ds:r r]; \n xH = yV - xC;\n yH = zeros(1,length(xH)) - yC;\n \n yV = yV - yC - len/4;\n xV = r*ones(1,length(yV));\n \n yV2 = 0:ds:len/12;\n yV2 = yV2 - yC;\n xV2 = r*ones(1,length(yV2));\n \n x = [-xV-(xC-ds/6) -xV2-(xC-ds/6) xH xV-(xC-ds/6)];\n y = [yV yV2 yH yV];\n \n \nelseif strcmp(letter,'o')\n \n r = len/4.1;\n dt = ds/r;\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n x(i) = r*cos(theta(i)) - xC;\n y(i) = r*sin(theta(i)) - yC - len/4;\n end\n \n elseif strcmp(letter,'r')\n \n r = len/4.1;\n yV = [-r:ds:r r]; \n xH = yV - xC;\n yH = zeros(1,length(xH)) - yC;\n \n yV = yV - yC - len/4;\n xV = r*ones(1,length(yV));\n \n yV2 = 0:ds:len/12;\n yV2 = yV2 - yC;\n xV2 = r*ones(1,length(yV2));\n \n yV3 = 0:-ds:-len/10;\n yV3 = yV3 - yC;\n xV3 = r*ones(1,length(yV3));\n \n x = [-xV-(xC-ds/6) -xV2-(xC-ds/6) xH xV3-(xC-ds/6)];\n y = [yV yV2 yH yV3];\n \n \nelseif strcmp(letter,'t')\n \n yLine = -len/2:ds:len/2.25;\n yLine = yLine - yC;\n xLine = zeros(1,length(yLine));\n\n xH = -len/4:ds:len/4;\n xH = xH-xC;\n yH = zeros(1,length(xH)) - yC + len/9;\n \n x = [xLine-xC xH];\n y = [yLine yH];\n \n \nelseif strcmp(letter,'u')\n \n r = len/4.1;\n yV = [-r:ds:r r]; \n xH = yV - xC;\n yH = zeros(1,length(xH)) - yC - len/2;\n \n yV = yV - yC - len/4;\n xV = r*ones(1,length(yV));\n \n x = [-xV-(xC-ds/6) xH xV-(xC-ds/6)];\n y = [yV yH yV];\n\nelseif strcmp(letter,'v')\n \n XD = 0:ds:sqrt(5)*len/4;\n YD = zeros(1,length(XD));\n \n %rotate!\n ang = atan(2);\n for i=1:length(XD)\n xDr(i) = XD(i)*cos(ang)-YD(i)*sin(ang);\n yDr(i) = XD(i)*sin(ang)+YD(i)*cos(ang);\n \n xDL(i) = XD(i)*cos(pi-ang)-YD(i)*sin(pi-ang);\n yDL(i) = XD(i)*sin(pi-ang)+YD(i)*cos(pi-ang);\n end\n xDr = xDr - xC;\n yDr = yDr - yC - len/2;\n \n xDL = xDL - xC;\n yDL = yDL - yC - len/2;\n \n x = [xDL xDr(2:end)];\n y = [yDL yDr(2:end)];\n \nelseif strcmp(letter,'w')\n \n XD = 0:ds:sqrt(5)*len/4;\n YD = zeros(1,length(XD));\n \n %rotate!\n ang = atan(2);\n for i=1:length(XD)\n xDr(i) = XD(i)*cos(ang)-YD(i)*sin(ang);\n yDr(i) = XD(i)*sin(ang)+YD(i)*cos(ang);\n \n xDL(i) = XD(i)*cos(pi-ang)-YD(i)*sin(pi-ang);\n yDL(i) = XD(i)*sin(pi-ang)+YD(i)*cos(pi-ang);\n end\n xDr = xDr - xC - len/4;\n yDr = yDr - yC - len/2;\n \n xDL = xDL - xC - len/4;\n yDL = yDL - yC - len/2;\n \n x = [xDL xDr(2:end) xDL+len/2 xDr(2:end)+len/2];\n y = [yDL yDr(2:end) yDL yDr(2:end)]; \n \nelseif strcmp(letter,'W')\n \n XD = 0:ds:sqrt(5)*len/2;\n YD = zeros(1,length(XD));\n \n %rotate!\n ang = atan(2);\n for i=1:length(XD)\n xDr(i) = XD(i)*cos(ang)-YD(i)*sin(ang);\n yDr(i) = XD(i)*sin(ang)+YD(i)*cos(ang);\n \n xDL(i) = XD(i)*cos(pi-ang)-YD(i)*sin(pi-ang);\n yDL(i) = XD(i)*sin(pi-ang)+YD(i)*cos(pi-ang);\n end\n xDr = xDr - xC - len/4;\n yDr = yDr - yC - len/2;\n \n xDL = xDL - xC - len/4;\n yDL = yDL - yC - len/2;\n \n x = [xDL xDr(2:floor(end/2)) xDL(1:floor(end/2))+len/2 xDr(2:end)+len/2];\n y = [yDL yDr(2:floor(end/2)) yDL(1:floor(end/2)) yDr(2:end)]; \n \nelseif strcmp(letter,'y')\n \n XD = 0:ds:sqrt(5)*len/4;\n YD = zeros(1,length(XD));\n \n %rotate!\n ang = atan(2);\n for i=1:length(XD)\n xDr(i) = XD(i)*cos(ang)-YD(i)*sin(ang);\n yDr(i) = XD(i)*sin(ang)+YD(i)*cos(ang);\n \n xDL(i) = XD(i)*cos(pi-ang)-YD(i)*sin(pi-ang);\n yDL(i) = XD(i)*sin(pi-ang)+YD(i)*cos(pi-ang);\n \n xB(i) = XD(i)*cos(pi+ang)-YD(i)*sin(pi+ang);\n yB(i) = XD(i)*sin(pi+ang)+YD(i)*cos(pi+ang);\n end\n xDr = xDr - xC;\n yDr = yDr - yC - len/2;\n \n xDL = xDL - xC;\n yDL = yDL - yC - len/2;\n \n xB = xB - xC;\n yB = yB - yC - len/2;\n \n x = [xDL xDr(2:end) xB(2:end)];\n y = [yDL yDr(2:end) yB(2:end)];\n \n \nelseif strcmp(letter,'!')\n \n yLine = -len/4:ds:len/2;\n yLine = yLine - yC;\n xLine = zeros(1,length(yLine)) - xC; \n \n r = len/21;\n dt = ds/(2*r);\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n xDot(i) = r*cos(theta(i)) - xC;\n yDot(i) = r*sin(theta(i)) - yC - len/2.1;\n end\n \n x = [xLine xDot];\n y = [yLine yDot]; \n \nelseif strcmp(letter,'?')\n \n %xT = 0:ds:len/8-ds; xT = xT - xC - len/4;\n %yT = zeros(1,length(xT)) - yC + len/2;\n\n r = len/4;\n dt = ds/r;\n theta = 1.25*pi/2:-dt:-pi/2;\n for i=1:length(theta)\n xL(i) = 1.5*r*cos(theta(i)) - xC - len/8;\n yL(i) = r*sin(theta(i)) - yC + len/4;\n end\n \n yV = -ds:-ds:-len/3.25;\n xV = zeros(1,length(yV)) - xC - len/8;\n \n r = len/21;\n dt = ds/(2*r);\n theta = 0:dt:2*pi;\n for i=1:length(theta)\n xDot(i) = r*cos(theta(i)) - xC -len/8;\n yDot(i) = r*sin(theta(i)) - yC - len/2.1;\n end\n \n x = [xL xV xDot];\n y = [yL yV yDot]; \n \nend\n\n\n\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_KC/For_Danh/Dear_KC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.39543974116246366}} {"text": "function sys = dual(X)\n%DUAL Extract dual variable\n% \n% Z = DUAL(F) Returns the dual variable for the constraint F\n% \n% See also SOLVESDP, DUALIZE\n \nsys = dual(lmi(X));\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/@constraint/dual.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3953906480259307}} {"text": "function varargout = interp_ungridded(pos_from, pos_to, varargin)\n\n% INTERP_UNGRIDDED computes an interpolation matrix for two clouds of 3-D points\n%\n% To get the interpolated data, use as\n% [valto] = interp_ungridded(pos_from, pos_to, 'data', valfrom, ...)\n% or to get the interpolation matrix itself, use as\n% [interpmat, distmat] = interp_ungridded(pos_from, pos_to, ...)\n% where\n% pos_from Nx3 matrix with the vertex positions\n% pos_to Mx3 matrix with the vertex positions onto which the data should be interpolated\n%\n% Optional arguments are specified in key-value pairs and can be\n% data = NxK matrix with functional data\n% distmat = NxM matrix with precomputed distances\n% projmethod = 'nearest', 'sphere_avg', 'sphere_weighteddistance', 'smudge'\n% triout = triangulation for the second set of vertices\n% sphereradius = scalar\n% power = scalar, power parameter as in the Inverse Distance Weighting function proposed by Shepard (default = 1).\n\n% Copyright (C) 2007-2018, Jan-Mathijs Schoffelen & Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\nif nargin<3\n ft_error('Not enough input arguments.');\nend\n\n% get the optional arguments\nprojmethod = ft_getopt(varargin, 'projmethod'); % required\nsphereradius = ft_getopt(varargin, 'sphereradius'); % required for some projection methods\npowerparam = ft_getopt(varargin, 'power', 1);\ndistmat = ft_getopt(varargin, 'distmat'); % will be computed if needed and not present\ntriout = ft_getopt(varargin, 'triout');\ndat = ft_getopt(varargin, 'data'); % functional data defined at pos_from\ninside = ft_getopt(varargin, 'inside');\n\nhasdat = ~isempty(dat);\nhasinside = ~isempty(inside);\nnpos_from = size(pos_from, 1);\nnpos_to = size(pos_to, 1);\ndimres = sqrt(sum((pos_to(2,:)-pos_to(1,:)).^2,2));\n\nif hasinside\n % convert to boolean vector\n tmp = false(npos_from,1);\n tmp(inside) = true;\n inside = tmp;\n clear tmp;\nelse\n inside = true(npos_from,1);\nend\n\nif isempty(distmat)\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % compute a distance matrix\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n switch projmethod\n case 'nearest'\n if ~isempty(sphereradius)\n ft_warning('sphereradius is not used for projmethod ''nearest''');\n end\n \n % determine the nearest voxel for each surface point\n ind = find_nearest(pos_to, pos_from, 5);\n sel = ind>0;\n indx = 1:npos_to;\n distmat = sparse(indx(sel), ind(sel), ones(size(ind(sel))), npos_to, npos_from);\n \n case {'sphere_avg', 'sphere_weighteddistance'}\n if isempty(sphereradius)\n ft_error('sphereradius should be specified');\n end\n \n % compute the distance between voxels and each surface point\n dpos_fromsq = sum(pos_from.^2,2); % squared distance to origin\n dpos_tosq = sum(pos_to.^2,2); % squared distance to origin\n maxnpnt = double(npos_to*ceil(4/3*pi*(sphereradius/max(dimres))^3)); % initial estimate of nonzero entries\n maxnpnt = min(maxnpnt, npos_to*npos_from);\n val = nan(maxnpnt, 1);\n indx1 = nan(maxnpnt, 1);\n indx2 = nan(maxnpnt, 1);\n cnt = 1;\n for j = 1:npos_to\n \n % d = dpos_tosq(j) + dpos_fromsq - 2 * pos_from * pos_to(j,:)';\n % sel = find(d0\n indx1(cnt:(cnt+nsel-1)) = j(ones(nsel,1));\n indx2(cnt:(cnt+nsel-1)) = sel(:);\n val(cnt:(cnt+nsel-1)) = d(sel) + eps('double');\n cnt = cnt + nsel;\n end\n end\n indx1(isnan(indx1)) = [];\n indx2(isnan(indx2)) = [];\n val(isnan(val)) = [];\n distmat = sparse(indx1, indx2, val, npos_to, npos_from);\n \n case 'smudge'\n if isempty(triout)\n ft_error('the ''smudge'' method needs a triangle definition');\n end\n \n [datin, loc] = ismember(pos_to, pos_from, 'rows'); % note that small numerical errors can cause them to be different\n [datout, S1] = smudge(datin, triout, 6); % FIXME 6 is number of iterations, improve here\n \n sel = find(datin);\n S2 = sparse(sel(:), loc(datin), ones(npos_from,1), npos_to, npos_from);\n distmat = S1 * S2;\n \n otherwise\n ft_error('unsupported projection method');\n end % case projmethod\nend % if isempty distmat\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% do something with the distance matrix\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nswitch projmethod\n case 'nearest'\n projmat = distmat;\n \n case 'sphere_avg'\n projmat = distmat;\n [ind1, ind2] = find(projmat);\n nnz = full(sum(spones(projmat),2));\n for k = 1:length(ind1)\n projmat(ind1(k),ind2(k)) = 1./nnz(ind1(k));\n end\n \n case 'sphere_weighteddistance'\n projmat = distmat;\n [ind1, ind2, d] = find(projmat);\n projmat = sparse(ind1, ind2, d.^-powerparam, npos_to, npos_from);\n [ind1, ind2, d] = find(projmat);\n normnz = full(sum(projmat, 2));\n projmat = sparse(ind1, ind2, d./normnz(ind1), npos_to, npos_from);\n \n case 'smudge'\n projmat = distmat;\n \n otherwise\n ft_error('unsupported projection method');\nend % case projmethod\n\nif hasdat\n % return the interpolated values\n varargout{1} = projmat * dat;\nelse\n % return the interpolation and the distance matrix\n varargout{1} = projmat;\n varargout{2} = distmat;\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/private/interp_ungridded.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754489059774, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39519114226207724}} {"text": "function [G]=gsp_logo()\n%GSP_LOGO Initialize a graph with the GSP logo\n% Usage: G = gsp_logo();\n%\n% Output parameters:\n% G : Graph structure.\n%\n% 'gsp_logo()' initializes a graph structure containing the GSP logo\n%\n% Example:::\n%\n% G = gsp_logo();\n% gsp_plot_graph(G);\n%\n\n% Author : Johan Paratte\n% Test: \n\nload logogsp\n\nG.W = W;\nG.coords = coords;\nG.info.idx_g = idx_g;\nG.info.idx_s = idx_s;\nG.info.idx_p = idx_p;\n%G.plotting.vertex_color = [200 136/255.0 204/255.0];\n%G.plotting.edge_color = [0 136/255.0 204/255.0];\nG.plotting.vertex_size = 20;\nG.limits = [0 640 -400 0];\nG = gsp_graph_default_parameters(G);\n\nend\n\n\n", "meta": {"author": "epfl-lts2", "repo": "gspbox", "sha": "a7d9aac5e239f1bcb37a9bb09998cc161be2732f", "save_path": "github-repos/MATLAB/epfl-lts2-gspbox", "path": "github-repos/MATLAB/epfl-lts2-gspbox/gspbox-a7d9aac5e239f1bcb37a9bb09998cc161be2732f/graphs/gsp_logo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6584175072643413, "lm_q1q2_score": 0.3951745233931791}} {"text": "function feats =concatenate_feat(frame_feat, nprev, nnext)\n% Copyright (c) 2014-present University of Illinois at Urbana-Champaign\n% All rights reserved.\n% \t\t\n% Developed by: Po-Sen Huang, Paris Smaragdis\n% Department of Electrical and Computer Engineering\n% Department of Computer Science\n%\n% concatenate nprev + self + nnext frames together\n\n [nframes, ndim] = size(frame_feat);\n nDim= (nprev+nnext+1)*ndim;\n\n % duplicate the beginning and the end of frame\n begin_frame = repmat(frame_feat (1, :), nprev, 1);\n end_frame = repmat(frame_feat ( end, : ), nnext, 1) ;\n\n frame_feat2 = [begin_frame; frame_feat; end_frame];\n\n % original frame list\n ndx= nprev+1: nprev+nframes;\n\n % frame list + nprev + nnext frames\n ndx_merge= repmat( ndx, nprev+nnext+1, 1) + ...\n repmat( (0:nprev+nnext)'-nprev, 1, nframes) ;\n\n ndx_merge=ndx_merge(:);\n\n % merge them together\n feats=reshape( frame_feat2(ndx_merge,:)', nDim, nframes)';\nend\n", "meta": {"author": "posenhuang", "repo": "deeplearningsourceseparation", "sha": "6a6e54d9234756e9624507f66d9e8fcd0b868dc7", "save_path": "github-repos/MATLAB/posenhuang-deeplearningsourceseparation", "path": "github-repos/MATLAB/posenhuang-deeplearningsourceseparation/deeplearningsourceseparation-6a6e54d9234756e9624507f66d9e8fcd0b868dc7/codes/concatenate_feat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3951745193703216}} {"text": "function [nodes2, edges2] = grRemoveNodes(nodes, edges, rmNodes)\n%GRREMOVENODES Remove several nodes in a graph\n%\n% usage:\n% [NODES2 EDGES2] = grRemoveNodes(NODES, EDGES, NODES2REMOVE)\n% remove the nodes with indices NODE2REMOVE from array NODES, and also\n% remove edges containing the nodes NODE2REMOVE.\n%\n% Example\n% nodes = [...\n% 10 10; 20 10; 30 10; ...\n% 10 20; 20 20; 30 20];\n% edges = [...\n% 1 2; 1 4; 1 5; ...\n% 2 3; 2 5; 2 6; ...\n% 3 6; 4 5; 5 6];\n% toRemove = [3 4];\n% [nodes2 edges2] = grRemoveNodes(nodes, edges, toRemove);\n% drawGraph(nodes2, edges2);\n% axis equal; axis([0 40 0 30]);\n%\n% See also\n% grRemoveEdges\n%\n\n% -----\n% author: David Legland \n% INRA - TPV URPOI - BIA IMASTE\n% created the 13/08/2003.\n%\n\n% HISTORY\n% 10/02/2004 doc\n% 07/03/2014 rewrite using clearer algorithm\n\n\n%% edges processing\n\n% remove all edges connected to one of the nodes to remove\nedges2 = edges(~any(ismember(edges, rmNodes), 2), :);\n\n% change edges information, due to the node index shift\nfor i = 1:length(rmNodes)\n inds = edges2 > (rmNodes(i) - i + 1);\n edges2(inds) = edges2(inds) - 1;\nend\n\n\n%% nodes processing\n\n% number of nodes\nN = size(nodes, 1);\nNR = length(rmNodes);\nN2 = N-NR;\n\n% allocate memory\nnodes2 = zeros(N2, 2);\n\n% process the first node\nnodes2(1:rmNodes(1)-1,:) = nodes(1:rmNodes(1)-1,:);\n\nfor i = 2:NR\n inds = rmNodes(i-1)+1:rmNodes(i)-1;\n if isempty(inds)\n continue;\n end\n nodes2(inds - i + 1, :) = nodes(inds, :);\nend\n\n% process the last node\nnodes2(rmNodes(NR)-NR+1:N2, :) = nodes(rmNodes(NR)+1:N, :);\n", "meta": {"author": "rpng", "repo": "lips", "sha": "a97157e586b509c9c2e3e01e64e4347f36d0b63e", "save_path": "github-repos/MATLAB/rpng-lips", "path": "github-repos/MATLAB/rpng-lips/lips-a97157e586b509c9c2e3e01e64e4347f36d0b63e/lips_matlab/matlab/functions/matGeom/graphs/grRemoveNodes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.658417500561683, "lm_q1q2_score": 0.3951745193703216}} {"text": "classdef HuberLoss < dagnn.Loss\n\n properties\n sigma = 1.\n end\n\n methods\n function outputs = forward(obj, inputs, params)\n outputs{1} = vl_nnhuberloss(inputs{1}, inputs{2}, ...\n 'instanceWeights', inputs{3}, ...\n obj.opts{:}) ;\n n = obj.numAveraged ;\n m = n + size(inputs{1}, 4) ;\n obj.average = (n * obj.average + gather(outputs{1})) / m ;\n obj.numAveraged = m ;\n end\n\n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n derInputs{1} = vl_nnhuberloss(inputs{1}, inputs{2}, derOutputs{1}, ...\n 'instanceWeights', inputs{3}, ...\n obj.opts{:}) ;\n derInputs{2} = [] ;\n derInputs{3} = [] ;\n derParams = {} ;\n end\n\n function obj = HuberLoss(varargin)\n obj.load(varargin) ;\n obj.sigma = obj.sigma ;\n end\n end\nend\n", "meta": {"author": "ShuaiBai623", "repo": "MFT", "sha": "8762f8cdf494ce0b1a1c3d431660c5c8fd91744a", "save_path": "github-repos/MATLAB/ShuaiBai623-MFT", "path": "github-repos/MATLAB/ShuaiBai623-MFT/MFT-8762f8cdf494ce0b1a1c3d431660c5c8fd91744a/external_libs/matconvnet/contrib/mcnExtraLayers/matlab/+dagnn/HuberLoss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7606506526772883, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.39517423262262713}} {"text": "function asa183_test03 ( )\n\n%*****************************************************************************80\n%\n%% ASA183_TEST03 tests R8_RANDOM.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ASA183_TEST03\\n' );\n fprintf ( 1, ' Show how the seeds used by R8_RANDOM,\\n' );\n fprintf ( 1, ' which change on each step, can be reset to\\n' );\n fprintf ( 1, ' restore any part of the sequence.\\n' );\n\n s1_save = 12345;\n s2_save = 34567;\n s3_save = 56789;\n\n s1 = s1_save;\n s2 = s2_save;\n s3 = s3_save;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Begin sequence with following seeds:\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' S1 = %d\\n', s1 );\n fprintf ( 1, ' S2 = %d\\n', s2 );\n fprintf ( 1, ' S3 = %d\\n', s3 );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' I R S1 S2 S3\\n' );\n fprintf ( 1, '\\n' );\n\n for i = 1 : 10\n\n [ r, s1, s2, s3 ] = r8_random ( s1, s2, s3 );\n fprintf ( 1, ' %8d %14f %8d %8d %8d\\n', i, r, s1, s2, s3 );\n\n if ( i == 5 )\n s1_save = s1;\n s2_save = s2;\n s3_save = s3;\n end\n\n end\n\n s1 = s1_save;\n s2 = s2_save;\n s3 = s3_save;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Restart the sequence, using the seeds\\n' );\n fprintf ( 1, ' produced after step 5:\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' I R S1 S2 S3\\n' );\n fprintf ( 1, '\\n' );\n\n for i = 1 : 10\n\n [ r, s1, s2, s3 ] = r8_random ( s1, s2, s3 );\n fprintf ( 1, ' %8d %14f %8d %8d %8d\\n', i, r, s1, s2, s3 );\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/asa183/asa183_test03.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.519521321952093, "lm_q2_score": 0.7606506418255927, "lm_q1q2_score": 0.3951742269849399}} {"text": "% this script tests 1st Order Statistics features between CERR and pyradiomics on a Wavelet filetered image.\n%\n% RKP, 03/22/2018\n\n\n%% Load image\nfirstOrderParamFileName = fullfile(fileparts(fileparts(getCERRPath)),...\n 'Unit_Testing','tests_for_cerr','test_first_order_radiomics_extraction_settings.json');\ncerrFileName = fullfile(fileparts(fileparts(getCERRPath)),...\n 'Unit_Testing','data_for_cerr_tests','CERR_plans','head_neck_ex1_20may03.mat.bz2');\n\nplanC = loadPlanC(cerrFileName,tempdir);\nindexS = planC{end};\n\nparamS = getRadiomicsParamTemplate(firstOrderParamFileName);\nstrNum = getMatchingIndex(paramS.structuresC{1},{planC{indexS.structures}.structureName});\nscanNum = getStructureAssociatedScan(strNum,planC);\n\n%wavType = 'coif1';\n%scanType = 'Original';\nscanType = 'Wavelet';\n%dirString = 'HLH';\ndirString = paramS.imageType.Wavelets.Direction.val;\n\n%% Calculate features using CERR\n\nfirstOrderS = calcGlobalRadiomicsFeatures...\n (scanNum, strNum, paramS, planC);\nfirstOrderS = firstOrderS.(['Wavelets_coif_1_',dirString]).firstOrderS;\ncerrFirstOrderV = [firstOrderS.energy, firstOrderS.totalEnergy, firstOrderS.interQuartileRange, ...\n firstOrderS.kurtosis+3, firstOrderS.max, firstOrderS.mean, firstOrderS.meanAbsDev, ...\n firstOrderS.median, firstOrderS.medianAbsDev, firstOrderS.min, ...\n firstOrderS.P10, firstOrderS.P90, firstOrderS.interQuartileRange, ...\n firstOrderS.robustMeanAbsDev, firstOrderS.rms, firstOrderS.skewness, ...\n firstOrderS.std, firstOrderS.var, firstOrderS.entropy];\n\n% %% Calculate features using pyradiomics\n% \n% testM = single(planC{indexS.scan}(scanNum).scanArray) - ...\n% single(planC{indexS.scan}(scanNum).scanInfo(1).CTOffset);\n% mask3M = zeros(size(testM),'logical');\n% [rasterSegments, planC, isError] = getRasterSegments(strNum,planC);\n% [maskBoundBox3M, uniqueSlices] = rasterToMask(rasterSegments, scanNum, planC);\n% mask3M(:,:,uniqueSlices) = maskBoundBox3M;\n% dx = planC{indexS.scan}(scanNum).scanInfo(1).grid1Units;\n% dy = planC{indexS.scan}(scanNum).scanInfo(1).grid1Units;\n% dz = mode(diff([planC{indexS.scan}(scanNum).scanInfo(:).zValue]));\n% pixelSize = [dx dy dz]*10;\n% teststruct = PyradWrapper(testM, mask3M, pixelSize, scanType, dirString);\n% \n% pyradFirstorderNamC = {'Energy', 'TotalEnergy','InterquartileRange','Kurtosis',...\n% 'Maximum', 'Mean','MeanAbsoluteDeviation','Median','medianAbsDev',...\n% 'Minimum','10Percentile','90Percentile','InterquartileRange',...\n% 'RobustMeanAbsoluteDeviation','RootMeanSquared','Skewness',...\n% 'StandardDeviation','Variance','Entropy'};\n% \n% pyradFirstorderNamC = strcat(['wavelet', '_', dirString, '_firstorder_'],pyradFirstorderNamC);\n% %pyradFirstorderNamC = strcat(['original', '_firstorder_'],pyradFirstorderNamC);\n% \n% pyRadFirstOrderV = [];\n% for i = 1:length(pyradFirstorderNamC)\n% if isfield(teststruct,pyradFirstorderNamC{i})\n% pyRadFirstOrderV(i) = teststruct.(pyradFirstorderNamC{i});\n% else\n% pyRadFirstOrderV(i) = NaN;\n% end\n% end\n% \n% %% Compare\n% diffFirstOrderV = (cerrFirstOrderV - pyRadFirstOrderV) ./ cerrFirstOrderV * 100\n\n%% Compare with previously calculated values of pyradiomics first order features\nsaved_pyRadFirstOrderV = [87498183.4756395,1049978201.70767,30.4772882461548,16.3069672735214,836.854187011719,-0.191955631352121,48.4171827693622,0.0908048748970032,NaN,-718.366882324219,-73.1680297851562,64.9023208618165,30.4772882461548,16.4187532424825,96.2495122333083,0.546840923205712,NaN,9263.93175818536,3.17432864851443];\ndiffFirstOrderV = (cerrFirstOrderV - saved_pyRadFirstOrderV) ./ cerrFirstOrderV * 100", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/Unit_Testing/tests_for_cerr/test1stOrderStatsWithPyrad_Wavelet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149978955813, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.39513787161576946}} {"text": "function sleep_stage = ECG_sleep_staging_prediction(ECGdata,fs,class)\n% sleep stage prediction from ECG signal by model trained from SHHSv1 DB\n%\n% input:\n% ECGdata: ECG data\n% fs: sampling frequency of ECG\n% class: sleep staging type: class = 1, four types classification\n% class = 4, two types classification\n%\n% output:\n% sleep_stage: = 1: Wake, \n% 2: REM sleep, \n% 3: NREM light sleep, \n% 4: NREM deep sleep, when class = 1\n% sleep_stage: = 1: NREM sleep, \n% 2: Wake+REM, when class = 4\n\n\nclassesn=[4 3 3 2 2];\nnumClasses=classesn(class);\n\n% best parameters\nfilterSize=6;\nbalanced=1;\nselectn = 3;\n\n% 70 (10, sdnn), 73(14,avgsqi), 78(20, lfhf), 80(ac),81(dc),85(28, sampEn)\nselects={[1:86],[1:69 71 72 74:77 79 82:84 86],[51:86],[51:69 71 72 74:77 79 82:84 86]};\nused=selects{selectn};\n\nload(['SHHS_ECG_model_' num2str(filterSize) '_' num2str(class) '_' num2str(balanced) '_' num2str(selectn) '_for_prediction'],'C','ka','parameters','hyperparameters','features_mean','features_std'); \n\n% calculate features\n\nfeatures=ECG_sleep_staging_features_extraction(ECGdata,fs);\n\nif ~isempty(features)\n doTraining=false;\n\n dlXTest=features;\n \n for l=1:length(features_mean)\n dlXTest(l,:)=bsxfun(@minus, dlXTest(l,:),features_mean(l));\n dlXTest(l,:)=bsxfun(@rdivide, dlXTest(l,:),features_std(l));\n end\n \n \n dlXTest=dlarray(dlXTest(used,:));\n% dlYTest = dlarray(s.Ydata_all);\n \n dimension = size(dlXTest,1);\n \n dlXTest=reshape(dlXTest,dimension,1,[]);\n dlYPred = model(dlXTest,parameters,hyperparameters,doTraining);\n dlYPred = softmax(dlYPred,'DataFormat','CBT');\n\n% YPred = onehotdecode(dlYPred,classes,1);\n% YTest = onehotdecode(dlYTest,classes,1);\n% \n% if isempty(predictions2)\n% predictions2=YPred(:);\n% else\n% predictions2 = [predictions2(:); YPred(:)];\n% end\n% yy=YPred == YTest;\n% predCorr2 = [predCorr2(:); yy(:)]; \n \n \n [~,YPred]=max(dlYPred);\n YPred=extractdata(YPred);\n sleep_stage=YPred(:);\n \n% YTest=extractdata(dlYTest);\n% YTest=YTest(:);\n% YTest=YTest+1;\n% \n% numFilters\n% C = confusionmat(YPred,YTest,'order',[numClasses:-1:1])\n% ka = kappa(C)\nelse\n sleep_stage = [];\nend\n", "meta": {"author": "cliffordlab", "repo": "PhysioNet-Cardiovascular-Signal-Toolbox", "sha": "eec46e75e0b95c379ecb68cb0ebee0c4c9f54605", "save_path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox", "path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox/PhysioNet-Cardiovascular-Signal-Toolbox-eec46e75e0b95c379ecb68cb0ebee0c4c9f54605/Tools/Sleep/ECG_sleep_staging_prediction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149978955811, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3951378716157694}} {"text": "% this is an experimentaal high-performance EPI sequence\n% which uses split gradients to overlap blips with the readout\n% gradients combined with ramp-samping\n\nseq=mr.Sequence(); % Create a new sequence object\nfov=250e-3; Nx=64; Ny=64; % Define FOV and resolution\nthickness=3e-3; % slice thinckness\nNslices=3;\nTE=40e-3;\n\npe_enable=1; % a flag to quickly disable phase encoding (1/0) as needed for the delay calibration\nro_os=1; % oversampling factor (in contrast to the product sequence we don't really need it)\nreadoutTime=4.2e-4; % this controls the readout bandwidth\npartFourierFactor=0.75; % partial Fourier factor: 1: full sampling 0: start with ky=0\n\ntRFex=2e-3;\ntRFref=2e-3;\nspoilFactor=1.5; % spoiling gradient around the pi-pulse\n\n% Set system limits\nlims = mr.opts('MaxGrad',32,'GradUnit','mT/m',...\n 'MaxSlew',130,'SlewUnit','T/m/s',...\n 'rfRingdownTime', 30e-6, 'rfDeadtime', 100e-6); \n\n% Create fat-sat pulse \nB0=2.89; % 1.5 2.89 3.0\nsat_ppm=-3.45;\nsat_freq=sat_ppm*1e-6*B0*lims.gamma;\nrf_fs = mr.makeGaussPulse(110*pi/180,'system',lims,'Duration',8e-3,...\n 'bandwidth',abs(sat_freq),'freqOffset',sat_freq);\nrf_fs.phaseOffset=-2*pi*rf_fs.freqOffset*mr.calcRfCenter(rf_fs); % compensate for the frequency-offset induced phase \ngz_fs = mr.makeTrapezoid('z',lims,'delay',mr.calcDuration(rf_fs),'Area',1/1e-4); % spoil up to 0.1mm\n\n% Create 90 degree slice selection pulse and gradient\n[rf, gz, gzReph] = mr.makeSincPulse(pi/2,'system',lims,'Duration',tRFex,...\n 'SliceThickness',thickness,'apodization',0.5,'timeBwProduct',4);\n\n% Create 90 degree slice refocusing pulse and gradients\n[rf180, gz180] = mr.makeSincPulse(pi,'system',lims,'Duration',tRFref,...\n 'SliceThickness',thickness,'apodization',0.5,'timeBwProduct',4,'PhaseOffset',pi/2,'use','refocusing');\n% [~, gzr_t, gzr_a]=mr.makeExtendedTrapezoidArea('z',gz180.amplitude,0,-gzReph.area+0.5*gz180.amplitude*gz180.fallTime,lims);\n% gz180n=mr.makeExtendedTrapezoid('z','system',lims,'times',[0 gz180.riseTime gz180.riseTime+gz180.flatTime+gzr_t]+gz180.delay, 'amplitudes', [0 gz180.amplitude gzr_a]);\n[~, gzr1_t, gzr1_a]=mr.makeExtendedTrapezoidArea('z',0,gz180.amplitude,spoilFactor*gz.area,lims);\n[~, gzr2_t, gzr2_a]=mr.makeExtendedTrapezoidArea('z',gz180.amplitude,0,-gzReph.area+spoilFactor*gz.area,lims);\nif gz180.delay>(gzr1_t(4)-gz180.riseTime)\n gz180.delay=gz180.delay-(gzr1_t(4)-gz180.riseTime);\nelse\n rf180.delay=rf180.delay+(gzr1_t(4)-gz180.riseTime)-gz180.delay;\n gz180.delay=0;\nend\ngz180n=mr.makeExtendedTrapezoid('z','system',lims,'times',[gzr1_t gzr1_t(4)+gz180.flatTime+gzr2_t]+gz180.delay, 'amplitudes', [gzr1_a gzr2_a]);\n\n\n% define the output trigger to play out with every slice excitatuion\ntrig=mr.makeDigitalOutputPulse('osc0','duration', 100e-6); % possible channels: 'osc0','osc1','ext1'\n\n% Define other gradients and ADC events\ndeltak=1/fov;\nkWidth = Nx*deltak;\n\n% Phase blip in shortest possible time\nblip_dur = ceil(2*sqrt(deltak/lims.maxSlew)/10e-6/2)*10e-6*2; % we round-up the duration to 2x the gradient raster time\n% the split code below fails if this really makes a trpezoid instead of a triangle...\ngy = mr.makeTrapezoid('y',lims,'Area',-deltak,'Duration',blip_dur); % we use negative blips to save one k-space line on our way towards the k-space center\n%gy = mr.makeTrapezoid('y',lims,'amplitude',deltak/blip_dur*2,'riseTime',blip_dur/2, 'flatTime', 0);\n\n% readout gradient is a truncated trapezoid with dead times at the beginnig\n% and at the end each equal to a half of blip_dur\n% the area between the blips should be defined by kWidth\n% we do a two-step calculation: we first increase the area assuming maximum\n% slewrate and then scale down the amlitude to fix the area \nextra_area=blip_dur/2*blip_dur/2*lims.maxSlew; % check unit!;\ngx = mr.makeTrapezoid('x',lims,'Area',kWidth+extra_area,'duration',readoutTime+blip_dur);\nactual_area=gx.area-gx.amplitude/gx.riseTime*blip_dur/2*blip_dur/2/2-gx.amplitude/gx.fallTime*blip_dur/2*blip_dur/2/2;\ngx.amplitude=gx.amplitude/actual_area*kWidth;\ngx.area = gx.amplitude*(gx.flatTime + gx.riseTime/2 + gx.fallTime/2);\ngx.flatArea = gx.amplitude*gx.flatTime;\n\n% calculate ADC\n% we use ramp sampling, so we have to calculate the dwell time and the\n% number of samples, which are will be qite different from Nx and\n% readoutTime/Nx, respectively. \nadcDwellNyquist=deltak/gx.amplitude/ro_os;\n% round-down dwell time to 100 ns\nadcDwell=floor(adcDwellNyquist*1e7)*1e-7;\nadcSamples=floor(readoutTime/adcDwell/4)*4; % on Siemens the number of ADC samples need to be divisible by 4\n% MZ: no idea, whether ceil,round or floor is better for the adcSamples...\nadc = mr.makeAdc(adcSamples,'Dwell',adcDwell,'Delay',blip_dur/2);\n% realign the ADC with respect to the gradient\ntime_to_center=adc.dwell*((adcSamples-1)/2+0.5); % I've been told that Siemens samples in the center of the dwell period\nadc.delay=round((gx.riseTime+gx.flatTime/2-time_to_center)*1e6)*1e-6; % we adjust the delay to align the trajectory with the gradient. We have to aligh the delay to 1us \n% this rounding actually makes the sampling points on odd and even readouts\n% to appear misalligned. However, on the real hardware this misalignment is\n% much stronger anyways due to the grdient delays\n\n% FOV positioning requires alignment to grad. raster... -> TODO\n\n% split the blip into two halves and produnce a combined synthetic gradient\ngy_parts = mr.splitGradientAt(gy, blip_dur/2, lims);\n[gy_blipup, gy_blipdown, ~]=mr.align('right',gy_parts(1),'left',gy_parts(2),gx);\ngy_blipdownup=mr.addGradients({gy_blipdown, gy_blipup}, lims);\n\n% pe_enable support\ngy_blipup.waveform=gy_blipup.waveform*pe_enable;\ngy_blipdown.waveform=gy_blipdown.waveform*pe_enable;\ngy_blipdownup.waveform=gy_blipdownup.waveform*pe_enable;\n\n% phase encoding and partial Fourier\n\nNy_pre=round(partFourierFactor*Ny/2-1); % PE steps prior to ky=0, excluding the central line\nNy_post=round(Ny/2+1); % PE lines after the k-space center including the central line\nNy_meas=Ny_pre+Ny_post;\n\n% Pre-phasing gradients\ngxPre = mr.makeTrapezoid('x',lims,'Area',-gx.area/2);\ngyPre = mr.makeTrapezoid('y',lims,'Area',Ny_pre*deltak);\n[gxPre,gyPre]=mr.align('right',gxPre,'left',gyPre);\n% relax the PE prepahser to reduce stimulation\ngyPre = mr.makeTrapezoid('y',lims,'Area',gyPre.area,'Duration',mr.calcDuration(gxPre,gyPre));\ngyPre.amplitude=gyPre.amplitude*pe_enable;\n\n% Calculate delay times\ndurationToCenter = (Ny_pre+0.5)*mr.calcDuration(gx);\nrfCenterInclDelay=rf.delay + mr.calcRfCenter(rf);\nrf180centerInclDelay=rf180.delay + mr.calcRfCenter(rf180);\ndelayTE1=ceil((TE/2 - mr.calcDuration(rf,gz) + rfCenterInclDelay - rf180centerInclDelay)/lims.gradRasterTime)*lims.gradRasterTime;\ndelayTE2=ceil((TE/2 - mr.calcDuration(rf180,gz180n) + rf180centerInclDelay - durationToCenter)/lims.gradRasterTime)*lims.gradRasterTime;\nassert(delayTE1>=0);\n%assert(delayTE2>=0);\n% now we merge slice refocusing, TE delay and pre-phasers into a single\n% block\ndelayTE2=delayTE2+mr.calcDuration(rf180,gz180n);\ngxPre.delay=0;\ngxPre.delay=delayTE2-mr.calcDuration(gxPre);\nassert(gxPre.delay>=mr.calcDuration(rf180)); % gxPre may not overlap with the RF\ngyPre.delay=mr.calcDuration(rf180);\nassert(mr.calcDuration(gyPre)<=mr.calcDuration(gxPre)); % gyPre may not shift the timing\n\n% Define sequence blocks\n\n%seq.addBlock(mr.makeDelay(1)); % older scanners like Trio may need this\n % dummy delay to keep up with timing\n\nfor s=1:Nslices\n seq.addBlock(rf_fs,gz_fs);\n rf.freqOffset=gz.amplitude*thickness*(s-1-(Nslices-1)/2);\n rf.phaseOffset=-2*pi*rf.freqOffset*mr.calcRfCenter(rf); % compensate for the slice-offset induced phase\n rf180.freqOffset=gz180.amplitude*thickness*(s-1-(Nslices-1)/2);\n rf180.phaseOffset=pi/2-2*pi*rf180.freqOffset*mr.calcRfCenter(rf180); % compensate for the slice-offset induced phase\n seq.addBlock(rf,gz,trig);\n seq.addBlock(mr.makeDelay(delayTE1));\n seq.addBlock(rf180,gz180n,mr.makeDelay(delayTE2),gxPre,gyPre);\n for i=1:Ny_meas\n if i==1\n seq.addBlock(gx,gy_blipup,adc); % Read the first line of k-space with a single half-blip at the end\n elseif i==Ny_meas\n seq.addBlock(gx,gy_blipdown,adc); % Read the last line of k-space with a single half-blip at the beginning\n else\n seq.addBlock(gx,gy_blipdownup,adc); % Read an intermediate line of k-space with a half-blip at the beginning and a half-blip at the end\n end\n gx.amplitude = -gx.amplitude; % Reverse polarity of read gradient\n end\nend\n\n%% check whether the timing of the sequence is correct\n[ok, error_report]=seq.checkTiming;\n\nif (ok)\n fprintf('Timing check passed successfully\\n');\nelse\n fprintf('Timing check failed! Error listing follows:\\n');\n fprintf([error_report{:}]);\n fprintf('\\n');\nend\n\n%% do some visualizations\n\nseq.plot(); % Plot sequence waveforms\n\n% trajectory calculation\n[ktraj_adc1, t_adc1, ktraj1, t_ktraj1, t_excitation1, t_refocusing1] = seq.calculateKspacePP();\n\n% plot k-spaces\nfigure; plot(t_ktraj1, ktraj1'); % plot the entire k-space trajectory\nhold on; plot(t_adc1,ktraj_adc1(1,:),'.'); % and sampling points on the kx-axis\nfigure; plot(ktraj1(1,:),ktraj1(2,:),'b'); % a 2D plot\naxis('equal'); % enforce aspect ratio for the correct trajectory display\nhold;plot(ktraj_adc1(1,:),ktraj_adc1(2,:),'r.'); % plot the sampling points\n\n%% prepare the sequence output for the scanner\nseq.setDefinition('FOV', [fov fov thickness]);\nseq.setDefinition('Name', 'epi');\n\nseq.write('epise_rs.seq'); \n\n% seq.install('siemens');\n\n% seq.sound(); % simulate the seq's tone\n\n%% very optional slow step, but useful for testing during development e.g. for the real TE, TR or for staying within slewrate limits \n\nrep = seq.testReport; \nfprintf([rep{:}]); % as for January 2019 TR calculation fails for fat-sat\n\n", "meta": {"author": "pulseq", "repo": "pulseq", "sha": "b4c8fee2a1ffa491d53bd6f507cba2029bf32835", "save_path": "github-repos/MATLAB/pulseq-pulseq", "path": "github-repos/MATLAB/pulseq-pulseq/pulseq-b4c8fee2a1ffa491d53bd6f507cba2029bf32835/matlab/demoSeq/writeEpiSpinEchoRS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149868676284, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3951378658435145}} {"text": "%CCG - Compute multiple cross- and auto-correlograms\n%\n% USAGE\n%\n% [ccg,t] = CCG(times,groups,)\n%\n% times times of all events\n% NOTE: spiketimes in SECONDS.\n% groups group IDs for each event in time list (should be\n% integers 1:nGroups)\n%\n% alternate buzcode usage: \n% times {Ncells} array of [Nspikes] spiketimes for each cell.\n% groups []\n%\n% spikes = bz_GetSpikes\n% [ccg,t] = CCG(spikes.times,[]) \n%\n% optional list of property-value pairs (see table below)\n%\n% =========================================================================\n% Properties Values\n% -------------------------------------------------------------------------\n% 'binSize' bin size in s (default = 0.01)\n% 'duration' duration in s of each xcorrelogram (default = 2)\n% 'norm' normalization of the CCG, 'counts' or 'rate' (DL added 8/1/17)\n% 'counts' gives raw event/spike count,\n% 'rate' returns CCG in units of spks/second (default: counts)\n% =========================================================================\n%\n%\n% OUTPUT\n% ccg [t x ngroups x ngroups] matrix where ccg(t,i,j) is the\n% number (or rate) of events of group j at time lag t with \n% respect to reference events from group i\n% t time lag vector (units: seonds)\n%\n% SEE\n%\n% See also ShortTimeCCG.\n\n% Copyright (C) 2012 by Micha\u00ebl Zugaro\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\nfunction [ccg,t] = CCG(times,groups,varargin)\n\n% Default values\nduration = 2;\nbinSize = 0.01;\nFs = 1/20000;\nnormtype = 'counts';\n\n% Option for spike times to be in {Ncells} array of spiketimes DL2017\nif iscell(times) && isempty(groups)\n numcells = length(times);\n for cc = 1:numcells\n groups{cc}=cc.*ones(size(times{cc}));\n end\n times = cat(1,times{:}); groups = cat(1,groups{:});\nend\n\n%Sort\n[times,sortidx] = sort(times);\ngroups = groups(sortidx);\n\n% Check parameters\nif nargin < 2,\n error('Incorrect number of parameters (type ''help CCG'' for details).');\nend\n%if ~isdvector(times),\n%\terror('Parameter ''times'' is not a real-valued vector (type ''help CCG'' for details).');\n%end\nif ~isdscalar(groups) && ~isdvector(groups),\n\terror('Parameter ''groups'' is not a real-valued scalar or vector (type ''help CCG'' for details).');\nend\nif ~isdscalar(groups) && length(times) ~= length(groups),\n\terror('Parameters ''times'' and ''groups'' have different lengths (type ''help CCG'' for details).');\nend\ngroups = groups(:);\ntimes = times(:);\n\n% Parse parameter list\nfor i = 1:2:length(varargin),\n\tif ~ischar(varargin{i}),\n\t\terror(['Parameter ' num2str(i+2) ' is not a property (type ''help CCG'' for details).']);\n\tend\n\tswitch(lower(varargin{i})),\n\t\tcase 'binsize',\n\t\t\tbinSize = varargin{i+1};\n\t\t\t%if ~isdscalar(binSize,'>0'),\n\t\t%\t\terror('Incorrect value for property ''binSize'' (type ''help CCG'' for details).');\n\t%\t\tend\n\t\tcase 'duration',\n\t\t\tduration = varargin{i+1};\n\t\t\tif ~isdscalar(duration,'>0'),\n\t\t\t\terror('Incorrect value for property ''duration'' (type ''help CCG'' for details).');\n end\n \n case 'Fs',\n\t\t\tFs = varargin{i+1};\n\t\t\tif ~isdscalar(Fs,'>0'),\n\t\t\t\terror('Incorrect value for property ''Fs'' (type ''help CCG'' for details).');\n end\n case 'norm'\n normtype = varargin{i+1};\n \n end\nend\n\n\n\n% Number of groups, number of bins, etc.\nif length(groups) == 1,\n\tgroups = ones(length(times),1);\n\tnGroups = 1;\nelse\n\tnGroups = max(unique(groups));\nend\n\n\nhalfBins = round(duration/binSize/2);\nnBins = 2*halfBins+1;\nt = (-halfBins:halfBins)'*binSize;\ntimes = round(times/Fs);\nbinSize_Fs = round(binSize/Fs);\nif length(times) <= 1,\n\t% ---- MODIFIED BY EWS, 1/2/2014 ----\n % *** Use unsigned integer format to save memory ***\n ccg = uint16(zeros(nBins,nGroups,nGroups));\n % -----------------------------------\n return\nend\n\n% Compute CCGs\nnEvents = length(times);\n% \n\ncounts = double(CCGHeart(times,uint32(groups),binSize_Fs,uint32(halfBins)));\n% -----------------------------------\n% \n% Reshape the results\nn = max(groups);\ncounts = reshape(counts,[nBins n n]);\n\n\nif n < nGroups,\n\tcounts(nBins,nGroups,nGroups) = 0;\nend\n\n%Rate normalization: counts/numREFspikes/dt to put in units of spikes/s. DL\nswitch normtype\n case 'rate'\n for gg = 1:nGroups\n numREFspikes = sum(groups==gg);%number of reference events for group\n counts(:,gg,:) = counts(:,gg,:)./numREFspikes./binSize;\n end\nend\n \n \nccg = flipud(counts);", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/analysis/spikes/correlation/CCG.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7549149868676283, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.39513786584351446}} {"text": "function y = norms( x, p, dim )\n\n%NORMS Internal cvx version.\n\n%\n% Size check\n%\n\nnarginchk(1,3);\ntry\n if nargin < 3, dim = []; end\n [ x, sx, sy, zx, zy, nx, nv, perm ] = cvx_reduce_size( x, dim ); %#ok\ncatch exc\n error( exc.message );\nend\n \n%\n% Check second argument\n%\n\nif nargin < 2 || isempty( p ),\n p = 2;\nelseif ~isnumeric( p ) || numel( p ) ~= 1 || ~isreal( p ),\n error( 'Second argument must be a real number.' );\nelseif p < 1 || isnan( p ),\n error( 'Second argument must be between 1 and +Inf, inclusive.' );\nend\n\n%\n% Quick exit for empty matrices\n%\n\nif isempty( x ),\n y = zeros( zy );\n return\nend\n\n%\n% Type check\n%\n\npersistent remap1 remap2\nif isempty( remap2 ),\n remap1 = cvx_remap( 'constant', 'log-convex' );\n remap2 = cvx_remap( 'affine', 'log-convex' );\nend\nxc = reshape( cvx_classify( x ), sx );\nif ~all( remap2( xc( : ) ) ),\n error( 'Disciplined convex programming error:\\n Invalid computation: norms( {%s}, ... )', cvx_class( x, true, true ) );\nend\n\n%\n% Compute norms\n%\n\nif nx == 1,\n\tp = 0;\nend\nswitch p,\n\tcase 0,\n\t\ty = abs( x );\n case 1,\n y = sum( abs(x) );\n case Inf, \n y = max( abs(x) );\n otherwise,\n tt = all( remap1( xc ) );\n if all( tt( : ) ),\n y = sum( abs(x) .^ p ) .^ (1/p);\n elseif any( tt( : ) ),\n y = cvx( [ 1, nv ], [] );\n xt = cvx_subsref( x, ':', tt );\n y = cvx_subsasgn( y, tt, norms( xt, p ) );\n tt = ~tt;\n xt = cvx_subsref( x, ':', tt );\n y = cvx_subsasgn( y, tt, norms( xt, p ) );\n elseif p == 2,\n \ty = [];\n cvx_begin\n epigraph variable y( 1, nv )\n { cvx_accept_convex(x), y } == lorentz( [ nx, nv ], 1, ~isreal( x ) ); %#ok\n cvx_end\n\t\telse\n\t\t\tz = []; y = [];\n cvx_begin\n variable z( nx, nv )\n epigraph variable y( 1, nv )\n if isreal(x), cmode = 'abs'; else cmode = 'cabs'; end\n { cat( 3, z, y( ones(nx,1), : ) ), cvx_accept_convex(x) } ...\n == geo_mean_cone( sw, 3, [1/p,1-1/p], cmode ); %#ok\n sum( z ) == y; %#ok\n cvx_end\n end\nend\n\n%\n% Reverse the reshaping and permutation steps\n%\n\ny = reshape( y, sy );\nif ~isempty( perm ),\n y = ipermute( y, perm );\nend\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/functions/@cvx/norms.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936430859598, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.39511626366706526}} {"text": "function MDP_DEM_Mixed_Models_Movement\n% This demo illustrates a series of computational pathologies as elicited\n% during a synthetic neurological examination. This focuses upon an\n% examination of the biceps reflex, and a simple coordination task. Each of\n% these are simulated for an arm that may move in three dimensions through\n% internal and external rotation of the shoulder, flexion and extension of\n% the shoulder, and flexion and extension of the elbow. These dynamics play\n% out through an active Bayesian filtering scheme, where a series of\n% attracting points draw the hand to different locations in 3D space. The\n% selection of these attracting points involves a hierarhical Markov\n% Decision Process, which identifies these sequences based upon the prior\n% belief that (1) the sequence will minimise expected free energy and (2)\n% the sequence is consistent with the trajectory predicted by the highest\n% (contextual) level of the model.\n%__________________________________________________________________________\n\n\nrng default\n\n% REFLEXES\n%==========================================================================\n% Demonstration 1 - Tendon reflexes (healthy, pyramidal lesion,\n% cerebellar lesion)\n\n% Specify generative model and process\n%--------------------------------------------------------------------------\n\na = 2; % length of upper arm\nb = 1.5; % length of forearm\nc = [-1;-1;-1]; % location of shoulder\n\nDEM = DEM_MDP_Movement_Disorders_GM; % Continuous state generative model\nx = [0;-1;1;0;0;0]; % Initial joint positions\n\n\nDEM.G(1).g = @(x,v,a,P) Gg1Reflex(x,v,a,P); % Generative process allows for tendon tap\nDEM.M(1).x = x;\nDEM.G(1).x = x;\nDEM.U = [MDP_DEM_MD_transform(x(1:3),a,b,c);0;0;0]*ones(1,64);\nDEM.C = zeros(size(DEM.U));\nDEM.C(3,10:12) = -0.25; % Transient stimulation of type II sensory afferents\n\n% Solve model and plot healthy reflexes\n%--------------------------------------------------------------------------\ndem = spm_ADEM(DEM);\n\n% Animate\nspm_figure('GetWin','Figure 1'); clf\nopengl('software')\nfor i = 1:size(dem.pU.x{1},2)\n MDP_DEM_MD_plot_arm(full(dem.pU.x{1}(1:3,i)),dem.M(1).pE.b1,dem.M(1).pE.b2,[-1;-1;-1]), hold on\n light\n view(10,0)\n zlim([-4 1])\n xlim([-1.2 2.1])\n drawnow\n hold off\n title('Normal')\nend\n\nclear dem\n\n% Upper motor lesion\n%--------------------------------------------------------------------------\nDEM.M(1).V = exp(5); % Overestimate precision\n\ndem = spm_ADEM(DEM);\n\n% Animate\nspm_figure('GetWin','Figure 1'); clf\nfor i = 1:size(dem.pU.x{1},2)\n MDP_DEM_MD_plot_arm(full(dem.pU.x{1}(1:3,i)),dem.M(1).pE.b1,dem.M(1).pE.b2,[-1;-1;-1]), hold on\n light\n view(10,0)\n zlim([-4 1])\n xlim([-1.2 2.1])\n drawnow\n hold off\n title('Pyramidal')\nend\n\nclear dem\n\n% Cerebellar\n%--------------------------------------------------------------------------\nDEM.M(1).V = exp(4); % Restore sensory precision\nDEM.M(1).E.s = 3/4; % Overestimate smoothness\n\ndem = spm_ADEM(DEM);\n\nspm_figure('GetWin','Figure 1'); clf\nfor i = 1:size(dem.pU.x{1},2)\n MDP_DEM_MD_plot_arm(full(dem.pU.x{1}(1:3,i)),dem.M(1).pE.b1,dem.M(1).pE.b2,[-1;-1;-1]), hold on\n light\n view(10,0)\n zlim([-4 1])\n xlim([-1.2 2.1])\n drawnow\n hold off\n title('Cerebellar')\nend\n\nclear all\n\n% COORDINATION\n%==========================================================================\n% Demonstration 2 - Mixed models (healthy)\n\n\n% Specify discrete generatve model and mapping between continuous and\n% discrete\n%--------------------------------------------------------------------------\n\n% Locations\n%--------------------------------------------------------------------------\n\n% 3D coordinates for three targets\nL1 = [ 1; -1; -3];\nL2 = [ -1; 1; -3];\nL3 = [ 0; 0; -1];\n\n% Intermediate (fictive) attracting points)\nfor i = 1:4\n L{i} = L1 + (i-1)*(L2 - L1)/4;\nend\nfor i = 5:8\n L{i} = L2 + (i-5)*(L3 - L2)/4;\nend\nfor i = 9:12\n L{i} = L3 + (i-9)*(L1 - L3)/4;\nend\n\n\n% MDP outcomes to DEM causes\n%--------------------------------------------------------------------------\nN = 14;\nnl = length(L);\nnh = 3;\n\nfor i = 1:nh\n for j = 1:nl\n for k = 1:2\n c = [L{j}; sparse(i,1,1,nh,1)];\n u = [L{j}; sparse(i,1,1,nh,1)];\n demi.U{i,j,k} = u*ones(1,N);\n demi.C{i,j,k} = c*ones(1,N);\n end\n end\nend\n\no = [1 1 1];\nO{1} = spm_softmax(ones(nh,1));\nO{2} = spm_softmax(ones(nl,1));\nO{3} = spm_softmax(ones(2,1));\n\n% generative model (Continuous)\n%==========================================================================\nDEM = DEM_MDP_Movement_Disorders_GM;\nDEM = spm_MDP_DEM(DEM,demi,O,o);\n\n% generative model (Discrete)\n%==========================================================================\nmdp = MDP_DEM_Movement_Disorders_GM_1;\nmdp.demi = demi;\nmdp.DEM = DEM;\n\nmdp = MDP_DEM_Movement_Disorders_GM_2(mdp);\n\n% invert or solve\n%--------------------------------------------------------------------------\nrng default\nMDP = spm_MDP_check(mdp);\nMDP = spm_MDP_VB_X(MDP);\n\n% illustrate belief updating - discrete\n%--------------------------------------------------------------------------\nspm_figure('GetWin','Figure 2'); clf\nspm_MDP_VB_LFP(MDP,[],2);\n\n% illustrate belief updating - continuous (last movement)\n%--------------------------------------------------------------------------\nspm_figure('GetWin','Figure 3'); clf;\nspm_DEM_qU(MDP.mdp(end).dem(end).qU)\n\n% illustrate movement\n%--------------------------------------------------------------------------\nspm_figure('GetWin','Figure 4'); clf\n\n[Q, R, X, Y, Z] = MDP_DEM_Movement_Disorders_Animate(MDP,L);\n\n\nspm_figure('GetWin','Figure 4'); clf\nplot3(Q(1,:),Q(2,:),Q(3,:),'LineWidth',2,'Color','k'), hold on\nfor m = 1:length(MDP.mdp)\n for j = 1:length(MDP.mdp(m).dem)\n h = (m - 1)*length(MDP.mdp(m).dem) + j;\n H = length(MDP.mdp)*length(MDP.mdp(m).dem);\n surf(0.1*X + MDP.mdp(m).dem(j).qU.v{2}(1,i),0.1*Y + MDP.mdp(m).dem(j).qU.v{2}(2,i),0.1*Z + MDP.mdp(m).dem(j).qU.v{2}(3,2),'Facecolor','r','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'FaceAlpha',h/(1.5*H))\n end\nend\n\nlight\naxis equal\nspm_figure('GetWin','Figure 5'); clf\nsubplot(5,1,1)\nplot(0.05*(0:size(R,2)-1),R' - repmat(R(:,1)',size(R,2),1))\ntitle('Normal')\n\n% Demonstration 3 - Mixed models (Pyramidal versus extrapyramidal)\n%--------------------------------------------------------------------------\n% Pyramidal\n\nmdp.MDP.DEM.M(1).V = exp(5); % Overestimate precision\n\n% invert or solve\n%--------------------------------------------------------------------------\nrng default\nMDP = spm_MDP_check(mdp);\nMDP = spm_MDP_VB_X(MDP);\n\nspm_figure('GetWin','Figure 6'); clf\n\n[Q, R, X, Y, Z] = MDP_DEM_Movement_Disorders_Animate(MDP,L);\n\n\nspm_figure('GetWin','Figure 6'); clf\nplot3(Q(1,:),Q(2,:),Q(3,:),'LineWidth',2,'Color','k'), hold on\nfor m = 1:length(MDP.mdp)\n for j = 1:length(MDP.mdp(m).dem)\n h = (m - 1)*length(MDP.mdp(m).dem) + j;\n H = length(MDP.mdp)*length(MDP.mdp(m).dem);\n surf(0.1*X + MDP.mdp(m).dem(j).qU.v{2}(1,i),0.1*Y + MDP.mdp(m).dem(j).qU.v{2}(2,i),0.1*Z + MDP.mdp(m).dem(j).qU.v{2}(3,2),'Facecolor','r','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'FaceAlpha',h/(1.5*H))\n end\nend\nlight\naxis equal\n\nspm_figure('GetWin','Figure 5');\nsubplot(5,1,2)\nplot(0.05*(0:size(R,2)-1),R' - repmat(R(:,1)',size(R,2),1))\ntitle('Pyramidal')\n\n% Extrapyramidal\n%--------------------------------------------------------------------------\nmdp.MDP.DEM.M(1).V = exp(4);\nmdp.MDP.beta = 50;\n\n% invert or solve\n%--------------------------------------------------------------------------\nrng default\nMDP = spm_MDP_check(mdp);\nMDP = spm_MDP_VB_X(MDP);\n\n% illustrate movement\n%--------------------------------------------------------------------------\nspm_figure('GetWin','Figure 8'); clf\n\n[Q, R, X, Y, Z] = MDP_DEM_Movement_Disorders_Animate(MDP,L);\n\n\nspm_figure('GetWin','Figure 8'); clf\nplot3(Q(1,:),Q(2,:),Q(3,:),'LineWidth',2,'Color','k'), hold on\nfor m = 1:length(MDP.mdp)\n for j = 1:length(MDP.mdp(m).dem)\n h = (m - 1)*length(MDP.mdp(m).dem) + j;\n H = length(MDP.mdp)*length(MDP.mdp(m).dem);\n surf(0.1*X + MDP.mdp(m).dem(j).qU.v{2}(1,i),0.1*Y + MDP.mdp(m).dem(j).qU.v{2}(2,i),0.1*Z + MDP.mdp(m).dem(j).qU.v{2}(3,2),'Facecolor','r','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'FaceAlpha',h/(1.5*H))\n end\nend\nlight\naxis equal\n\nspm_figure('GetWin','Figure 5');\nsubplot(5,1,3)\nplot(0.05*(0:size(R,2)-1),R' - repmat(R(:,1)',size(R,2),1))\ntitle('Extrapyramidal')\n\n% Cerebellar\n%--------------------------------------------------------------------------\nmdp.MDP.beta = 16;\nmdp.MDP.DEM.M(1).E.s = 3/4;\n\n% invert or solve\n%--------------------------------------------------------------------------\nrng default\nMDP = spm_MDP_check(mdp);\nMDP = spm_MDP_VB_X(MDP);\n\n% illustrate movement\n%--------------------------------------------------------------------------\nspm_figure('GetWin','Figure 9'); clf\n\n[Q, R, X, Y, Z] = MDP_DEM_Movement_Disorders_Animate(MDP,L);\n\nspm_figure('GetWin','Figure 9'); clf\nplot3(Q(1,:),Q(2,:),Q(3,:),'LineWidth',2,'Color','k'), hold on\nfor m = 1:length(MDP.mdp)\n for j = 1:length(MDP.mdp(m).dem)\n h = (m - 1)*length(MDP.mdp(m).dem) + j;\n H = length(MDP.mdp)*length(MDP.mdp(m).dem);\n surf(0.1*X + MDP.mdp(m).dem(j).qU.v{2}(1,i),0.1*Y + MDP.mdp(m).dem(j).qU.v{2}(2,i),0.1*Z + MDP.mdp(m).dem(j).qU.v{2}(3,2),'Facecolor','r','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'FaceAlpha',h/(1.5*H))\n end\nend\nlight\naxis equal\n\nspm_figure('GetWin','Figure 5');\nsubplot(5,1,4)\nplot(0.05*(0:size(R,2)-1),R' - repmat(R(:,1)',size(R,2),1))\ntitle('Cerebellar')\n\n% Executive\n%--------------------------------------------------------------------------\nmdp.MDP.DEM.M(1).E.s = 1/2;\nmdp.A{3} = ones(size(mdp.A{3})); % Disconnect higher level\n\n% invert or solve\n%--------------------------------------------------------------------------\nrng default\nMDP = spm_MDP_check(mdp);\nMDP = spm_MDP_VB_X(MDP);\n\n% illustrate movement\n%--------------------------------------------------------------------------\nspm_figure('GetWin','Figure 10'); clf\n\n[Q, R, X, Y, Z] = MDP_DEM_Movement_Disorders_Animate(MDP,L);\n\nspm_figure('GetWin','Figure 10'); clf\nplot3(Q(1,:),Q(2,:),Q(3,:),'LineWidth',2,'Color','k'), hold on\nfor m = 1:length(MDP.mdp)\n for j = 1:length(MDP.mdp(m).dem)\n h = (m - 1)*length(MDP.mdp(m).dem) + j;\n H = length(MDP.mdp)*length(MDP.mdp(m).dem);\n surf(0.1*X + MDP.mdp(m).dem(j).qU.v{2}(1,i),0.1*Y + MDP.mdp(m).dem(j).qU.v{2}(2,i),0.1*Z + MDP.mdp(m).dem(j).qU.v{2}(3,2),'Facecolor','r','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'FaceAlpha',h/(1.5*H))\n end\nend\nlight\naxis equal\n\nspm_figure('GetWin','Figure 5');\nsubplot(5,1,5)\nplot(0.05*(0:size(R,2)-1),R' - repmat(R(:,1)',size(R,2),1))\ntitle('Executive')\n\nfunction MDP = MDP_DEM_Movement_Disorders_GM_1\n\n% First level\n%--------------------------------------------------------------------------\n\n% Initial states\n%--------------------------------------------------------------------------\nD{1} = ones(3,1); % Location of visual cue\nD{2} = zeros(12,1); % Location of arm\nD{2}(1) = 1;\n\n% Likelihood\n%--------------------------------------------------------------------------\nfor f1 = 1:numel(D{1})\n for f2 = 1:numel(D{2})\n A{1}(f1,f1,f2) = 1; % Vision (target)\n A{2}(f2,f1,f2) = 1; % Vision + Proprioception (arm)\n A{3}(2,f1,f2) = (f1 == ((f2-1)/4)+1); % At target\n A{3}(1,f1,f2) = ~(f1 == ((f2-1)/4)+1); % Not at target\n end\nend\n\n% Transitions\n%--------------------------------------------------------------------------\nB{1} = eye(3);\n\nfor k = 1:length(D{2})\n for j = 1:length(D{2})\n if k == j\n B{2}(k,j,1) = 1; % Stay still\n elseif (k - j) == 1\n B{2}(k,j,2) = 1; % Move to next point\n elseif (j - k) == 1\n B{2}(k,j,3) = 1; % Move to previous point\n end\n end\nend\n\nB{2}(1,end,2) = 1;\nB{2}(end,1,3) = 1;\n\n% Preferences\n%--------------------------------------------------------------------------\nC{1} = zeros(3,1);\nC{2} = zeros(12,1);\nC{3} = [-3 3]';\n\n% Policies\n%--------------------------------------------------------------------------\nV(:,:,1) = ones(8,3); % (time, policy, factor)\nV(:,:,2) = [1 2 3;\n 1 2 3;\n 1 2 3;\n 1 2 3;\n 1 1 1;\n 1 1 1;\n 1 1 1;\n 1 1 1];\n\nE = [1 0.5 0.5]';\n\n% First level MDP\n%--------------------------------------------------------------------------\nMDP.A = A;\nMDP.B = B;\nMDP.C = C;\nMDP.D = D;\nMDP.E = E;\nMDP.V = V;\nMDP.T = 9;\nMDP.chi = -exp(64);\nMDP.beta = 16;\n% MDP.beta = 50;\nMDP = spm_MDP_check(MDP);\n\nfunction MDP = MDP_DEM_Movement_Disorders_GM_2(mdp)\n\n\n% First level\n%--------------------------------------------------------------------------\nMDP.MDP = mdp;\n\n% Second level\n%--------------------------------------------------------------------------\n\n% Initial states\n%--------------------------------------------------------------------------\nD{1} = ones(3,1); % Target location\nD{2} = zeros(9,1); % Initial locations x policies at lower level ({L1,P1},{L1,P2},{L1,P3},{L2,P1},...)\nD{2}([1 2 3]) = 1;\n\n% Likelihood\n%--------------------------------------------------------------------------\nfor f1 = 1:length(D{1})\n for f2 = 1:length(D{2})\n A{1}(f1,f1,f2) = 1; % Target location 1st level\n \n if f2 < 4\n A{2}(11,f1,f2) = 0.03; % Start location 1st level\n A{2}(12,f1,f2) = 0.12;\n A{2}(1,f1,f2) = 0.7;\n A{2}(2,f1,f2) = 0.12;\n A{2}(3,f1,f2) = 0.03;\n \n elseif f2 <7\n A{2}(3,f1,f2) = 0.03;\n A{2}(4,f1,f2) = 0.12;\n A{2}(5,f1,f2) = 0.7;\n A{2}(6,f1,f2) = 0.12;\n A{2}(7,f1,f2) = 0.03;\n else\n A{2}(7,f1,f2) = 0.03;\n A{2}(8,f1,f2) = 0.12;\n A{2}(9,f1,f2) = 0.7;\n A{2}(10,f1,f2) = 0.12;\n A{2}(11,f1,f2) = 0.03;\n end\n \n A{3}(1,f1,f2) = (rem(f2+2,3) == 0) + 0.5; % Policy 1st level (slight bias towards 'stay still' policy)\n A{3}(2,f1,f2) = (rem(f2+1,3) == 0);\n A{3}(3,f1,f2) = (rem(f2,3) == 0);\n end\nend\n\n\n% Transitions\n%--------------------------------------------------------------------------\nB{1}(:,:,1) = ones(length(D{1}));\nB{1}(:,:,2) = ones(length(D{1})); % Action that causes no change to prevent entering HMM mode\nI = eye(3);\nB{2} = [I, [I(3,:);I(1:2,:)],([I(3,:);I(1:2,:)])']/3;\nB{2} = kron(B{2},ones(3,1));\n\n% Preferences\n%--------------------------------------------------------------------------\nC{1} = zeros(3,1);\nC{2} = zeros(12,1);\nC{3} = zeros(3,1);\n\n% Second level MDP\n%--------------------------------------------------------------------------\nMDP.A = A;\nMDP.B = B;\nMDP.C = C;\nMDP.D = D;\nMDP.T = 4;\n\nMDP.link = [1 0 0;\n 0 1 0];\nMDP.linkE = [0 0 1];\n\nMDP = spm_MDP_check(MDP);\n\nfunction DEM = DEM_MDP_Movement_Disorders_GM\n% hidden states\n%--------------------------------------------------------------------------\nx = [0;-1;0.5;0;0;0]; % shoulder rotation, flexion, elbow flexion (position and velocity)\n\n% and actions\n%--------------------------------------------------------------------------\na = [0;0;0];\n\n% parameters\n%--------------------------------------------------------------------------\nP.kv = 2; % damping\nP.a = a;\nP.b1 = 2;\nP.b2 = 1.5;\n\nM(1).pE = P;\n\n% recognition model\n%==========================================================================\nM(1).E.s = 1/2; % smoothness: default 1/2 [3/4 for lesion]\nM(1).E.n = 4; % order of\nM(1).E.d = 2; % generalised motion\n\n% level 1\n%--------------------------------------------------------------------------\nM(1).f = @(x,v,P) Mf1(x,v,P); % plant dynamics\nM(1).g = @(x,v,P) Mg1(x,v,P); % prediction\n\nM(1).x = x; % hidden states\nM(1).V = exp(4); % error precision (g)[4] [3/8 ?]\nM(1).W = exp(2); % error precision (f) [2]\n\n% level 2:\n%--------------------------------------------------------------------------\nM(2).v = [0;0;0;0;0;0]; % priors (attracting point)\nM(2).V = exp(15);\n\n\n% generative model\n%==========================================================================\n\nG(1).E.s = 1/2; % smoothness: default 1/2\nG(1).E.n = 4; % order of\nG(1).E.d = 2; % generalised motion\n\n% first level\n%--------------------------------------------------------------------------\nG(1).f = @(x,v,a,P) Gf1(x,v,a,P);\nG(1).g = @(x,v,a,P) Gg1(x,v,a,P);\nG(1).x = x; % hidden states\nG(1).V = exp(16);\n% G(1).V = exp([4*ones(1,6) 16*ones(1,6)]); % error precision [16]\nG(1).W = exp(16); % error precision\nG(1).pE = P;\n\n% second level\n%--------------------------------------------------------------------------\nG(2).v = [0;0;0;0;0;0]; % exogenous forces\nG(2).a = spm_vec(a); % action forces\nG(2).V = exp(16);\n\n\nDEM.G = G;\nDEM.M = M;\n\n% Equations for DEM model and process\n%==========================================================================\nfunction f = Mf1(x,v,P)\na = P.b1; % length of upper arm\nb = P.b2; % length of forearm\nc = [-1;-1;-1]; % location of shoulder\n\nf = [x(4:6);MDP_DEM_MD_dthetadt(v(1:3),x,a,b,c) - P.kv*x(4:6)];\n\nfunction g = Mg1(x,v,P)\na = P.b1; % length of upper arm\nb = P.b2; % length of forearm\nc = [-1;-1;-1]; % location of shoulder\n\ng = [x;MDP_DEM_MD_transform(x(1:3),a,b,c);v(4:6)]; % proprioceptive, visual (hand), visual (target)\n\nfunction f = Gf1(x,~,a,P)\nf = [x(4:6);a - P.kv*x(4:6)];\n\nfunction g = Gg1(x,v,~,P)\na = P.b1; % length of upper arm\nb = P.b2; % length of forearm\nc = [-1;-1;-1]; % location of shoulder\n\ng = [x;MDP_DEM_MD_transform(x(1:3),a,b,c);v(4:6)]; % proprioceptive, visual (hand), visual (target)\n\nfunction g = Gg1Reflex(x,v,~,P)\na = P.b1; % length of upper arm\nb = P.b2; % length of forearm\nc = [-1;-1;-1]; % location of shoulder\n\ng = [x + [zeros(3,1);v(1:3)];MDP_DEM_MD_transform(x(1:3),a,b,c);v(4:6)]; % proprioceptive, visual (hand), visual (target)\n\n% Additional routines (plotting/coordinate transforms)\n%==========================================================================\nfunction y = MDP_DEM_MD_transform(x,a,b,c)\n% converts angles to hand position in euclidean space\n% x = angle of shoulder rotation, flexion, elbow flexion\n\ny1 = c + [a*cos(x(2))*cos(x(1));\n a*cos(x(2))*sin(x(1));\n a*sin(x(2))];\n\ny = y1 + [b*cos(x(3)+x(2))*cos(x(1));\n b*cos(x(3)+x(2))*sin(x(1));\n b*sin(x(3)+x(2))];\n\nfunction MDP_DEM_MD_plot_arm(x,a,b,c)\n\ny1 = c + [a*cos(x(2))*cos(x(1));\n a*cos(x(2))*sin(x(1));\n a*sin(x(2))];\n\ny = y1 + [b*cos(x(3)+x(2))*cos(x(1));\n b*cos(x(3)+x(2))*sin(x(1));\n b*sin(x(3)+x(2))];\n\n[S1, S2, S3] = sphere;\n\nsurf(S1*0.2+c(1),S2*0.2+c(2),S3*0.2+c(3),'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7), hold on\nsurf(S1*0.1+y1(1),S2*0.1+y1(2),S3*0.1+y1(3),'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7)\nsurf(S1*0.07+y(1),S2*0.07+y(2),S3*0.07+y(3),'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7)\n\nplot3([c(1) y1(1)],[c(2) y1(2)],[c(3) y1(3)],'LineWidth',6,'Color',[0.1 0.1 0.8])\nplot3([y1(1) y(1)],[y1(2) y(2)],[y1(3) y(3)],'LineWidth',5,'Color',[0.1 0.1 0.8])\nplot3([y1(1) y(1)],[y1(2) y(2)],[y1(3)-0.1 y(3)-0.1],'LineWidth',4,'Color',[0.1 0.1 0.8])\n\nMDP_DEM_Movements_Hand([pi,pi/2 + atan((y(3)-y1(3))/(sqrt((y(1) - y1(1))^2+(y(2) - y1(2))^2))),x(1)],0.25,y)\naxis equal\n\nfunction y = MDP_DEM_MD_dthetadt(v,x,a,b,c)\n\ny1 = c + [a*cos(x(2))*cos(x(1));\n a*cos(x(2))*sin(x(1));\n a*sin(x(2))];\n\ny2 = y1 + [b*cos(x(3)+x(2))*cos(x(1));\n b*cos(x(3)+x(2))*sin(x(1));\n b*sin(x(3)+x(2))];\n\n\ny(1) = [v - y2]'*[-((a*cos(x(2)) + b*cos(x(3)+x(2))*sin(x(1))));\n ((a*cos(x(2)) + b*cos(x(3)+x(2))*cos(x(1))));\n 0];\n\ny(2) = [v - y2]'*[-((a*sin(x(2)) + b*sin(x(3) + x(2)))*cos(x(1)));\n -((a*sin(x(2)) + b*sin(x(3) + x(2))*sin(x(1))));\n (a*cos(x(2)) +(b*cos(x(2) + x(3))))];\n\ny(3) = [v - y2]'*[-(a*sin(x(3) + x(2))*cos(x(1)));\n -(a*sin(x(3)+ x(2))*sin(x(1)));\n (b*cos(x(2) + x(3)))];\n\n\ny = 0.05*y'; % 0.05\n\nfunction MDP_DEM_Movements_Hand(a,s,l)\n% angle - a\n% scale - s\n% location - l\n\n% Carpals (as a single sphere)\n%--------------------------------------------------------------------------\n[X,Y,Z] = sphere;\nRx = makehgtform('xrotate',a(1));\nRy = makehgtform('yrotate',a(2));\nRz = makehgtform('zrotate',a(3));\nT = makehgtform('translate',l);\nS = makehgtform('scale',s);\nq = hgtransform;\n\nLW = 5;\n\n% 2nd finger\n%--------------------------------------------------------------------------\n\n% MCP\n%--------------------------------------------------------------------------\nplot3([0 0],[0 0],[0 1.1],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X, 0.1*Y ,0.1*Z + 1.1,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% PIP\n%--------------------------------------------------------------------------\nplot3([0 0],[0 0.4],[1.1 1.4],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X, 0.1*Y + 0.4 ,0.1*Z + 1.4,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% MIP\n%--------------------------------------------------------------------------\nplot3([0 0],[0.4 0.7],[1.4 1.5],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X, 0.1*Y + 0.7 ,0.1*Z + 1.5,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% DIP\n%--------------------------------------------------------------------------\nplot3([0 0],[0.7 1],[1.5 1.6],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X, 0.1*Y + 1 ,0.1*Z + 1.6,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n\n\n% 3rd finger\n%--------------------------------------------------------------------------\n\n% MCP\n%--------------------------------------------------------------------------\nplot3([-0.1 -0.2],[0 0],[0 1.05],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.2, 0.1*Y ,0.1*Z + 1.05,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% PIP\n%--------------------------------------------------------------------------\nplot3([-0.2 -0.2],[0 0.3],[1.05 1.4],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.2, 0.1*Y + 0.3 ,0.1*Z + 1.4,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% MIP\n%--------------------------------------------------------------------------\nplot3([-0.2 -0.2],[0.3 0.6],[1.4 1.5],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.2, 0.1*Y + 0.6 ,0.1*Z + 1.5,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% DIP\n%--------------------------------------------------------------------------\nplot3([-0.2 -0.2],[0.6 0.9],[1.5 1.6],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.2, 0.1*Y + 0.9 ,0.1*Z + 1.6,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n\n\n% 4th finger\n%--------------------------------------------------------------------------\n\n% MCP\n%--------------------------------------------------------------------------\nplot3([-0.2 -0.4],[0 0],[0 1],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.4, 0.1*Y ,0.1*Z + 1,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% PIP\n%--------------------------------------------------------------------------\nplot3([-0.4 -0.4],[0 0.2],[1 1.4],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.4, 0.1*Y + 0.2 ,0.1*Z + 1.4,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% MIP\n%--------------------------------------------------------------------------\nplot3([-0.4 -0.4],[0.2 0.5],[1.4 1.5],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.4, 0.1*Y + 0.5 ,0.1*Z + 1.5,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% DIP\n%--------------------------------------------------------------------------\nplot3([-0.4 -0.4],[0.5 0.8],[1.5 1.6],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X - 0.4, 0.1*Y + 0.8 ,0.1*Z + 1.6,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n\n% 1st finger\n%--------------------------------------------------------------------------\n\n% MCP\n%--------------------------------------------------------------------------\nplot3([0.1 0.2],[0 0],[0 1],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.2, 0.1*Y ,0.1*Z + 1,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% PIP\n%--------------------------------------------------------------------------\nplot3([0.2 0.2],[0 0.3],[1 1.4],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.2, 0.1*Y + 0.3 ,0.1*Z + 1.4,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% MIP\n%--------------------------------------------------------------------------\nplot3([0.2 0.2],[0.3 0.6],[1.4 1.5],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.2, 0.1*Y + 0.6 ,0.1*Z + 1.5,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% DIP\n%--------------------------------------------------------------------------\nplot3([0.2 0.2],[0.6 0.9],[1.5 1.6],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.2, 0.1*Y + 0.9 ,0.1*Z + 1.6,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n\n% Thumb\n%--------------------------------------------------------------------------\n\n% MCP\n%--------------------------------------------------------------------------\nplot3([0.2 0.5],[0 0.05],[0 0.4],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.5, 0.1*Y +0.05,0.1*Z + 0.4,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% PIP\n%--------------------------------------------------------------------------\nplot3([0.5 0.5],[0.05 0.45],[0.4 0.6],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.5, 0.1*Y +0.45,0.1*Z + 0.6,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n% DIP\n%--------------------------------------------------------------------------\nplot3([0.5 0.45],[0.45 0.6],[0.6 0.62],'b','LineWidth',LW,'Parent',q)\nsurf(0.1*X + 0.45, 0.1*Y +0.6,0.1*Z + 0.62,'Facecolor','b','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7,'Parent',q)\n\nset(q,'Matrix',T*Rz*Rx*Ry*S);\n\nfunction [Q, R, X, Y, Z] = MDP_DEM_Movement_Disorders_Animate(MDP,L)\nopengl('software')\nQ = [];\nR = [];\n\nfor m = 1:length(MDP.mdp)\n for j = 1:length(MDP.mdp(m).dem)\n for i = 2:size(MDP.mdp(m).dem(j).pU.x{1},2)\n MDP_DEM_MD_plot_arm(full(MDP.mdp(m).dem(j).pU.x{1}(1:3,i)),MDP.mdp(m).dem(j).M(1).pE.b1,MDP.mdp(m).dem(j).M(1).pE.b2,[-1;-1;-1]), hold on\n [X,Y,Z] = sphere;\n surf(0.1*X + MDP.mdp(m).dem(j).qU.v{2}(1,i),0.1*Y + MDP.mdp(m).dem(j).qU.v{2}(2,i),0.1*Z + MDP.mdp(m).dem(j).qU.v{2}(3,i),'Facecolor','r','EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7)\n for k = 1:3\n surf(0.2*X + L{(k-1)*4+1}(1),0.2*Y + L{(k-1)*4+1}(2),0.2*Z + L{(k-1)*4+1}(3),'Facecolor',[1 1 1]-MDP.mdp(m).dem(j).Y(9+k,i),'EdgeColor','none','FaceLighting','gouraud','AmbientStrength',0.7)\n end\n axis equal\n light\n drawnow\n hold off\n \n Q(:,end+1) = MDP_DEM_MD_transform(full(MDP.mdp(m).dem(j).pU.x{1}(1:3,i)),MDP.mdp(m).dem(j).M(1).pE.b1,MDP.mdp(m).dem(j).M(1).pE.b2,[-1;-1;-1]);\n end\n R = [R full(MDP.mdp(m).dem(j).pU.x{1}(1:3,:))];\n end\nend", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/DEM/MDP_DEM_Mixed_Models_Movement.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.39511626366706515}} {"text": "function [R,L] = match_query(D,SR)\n% [R,L] = match_query(D,SR)\n% Match landmarks from an audio query against the database.\n% Rows of R are potential maxes, in format\n% songID modalDTcount modalDT\n% i.e. there were occurrences of hashes \n% that occurred in the query and reference with a difference of \n% frames.\n% L returns the actual landmarks that this implies.\n% 2008-12-29 Dan Ellis dpwe@ee.columbia.edu\n\n%Rt = get_hash_hits(landmark2hash(find_landmarks(D,SR)));\nLq = find_landmarks(D,SR);\n%Lq = fuzzify_landmarks(Lq);\n% Augment with landmarks calculated half-a-window advanced too\nlandmarks_hopt = 0.032;\n%Lq = [Lq;find_landmarks(D(round(landmarks_hopt/4*SR):end),SR)];\nLq = [Lq;find_landmarks(D(round(landmarks_hopt/2*SR):end),SR)];\n%Lq = [Lq;find_landmarks(D(round(3*landmarks_hopt/4*SR):end),SR)];\n% add in quarter-hop offsets too for even better recall\n\nHq = landmark2hash(Lq);\nRt = get_hash_hits(Hq);\nnr = size(Rt,1);\n\nif nr > 0\n\n % Find all the unique tracks referenced\n [utrks,xx] = unique(sort(Rt(:,1)));\n utrkcounts = diff(xx,nr);\n\n nutrks = length(utrks);\n\n R = zeros(nutrks,3);\n\n for i = 1:nutrks\n tkR = Rt(Rt(:,1)==utrks(i),:);\n % Find the most popular time offset\n [dts,xx] = unique(sort(tkR(:,2)),'first');\n dtcounts = 1+diff([xx',size(tkR,1)]);\n [vv,xx] = max(dtcounts);\n R(i,:) = [utrks(i),vv,dts(xx)];\n end\n\n % Sort by descending match count\n [vv,xx] = sort(R(:,2),'descend');\n R = R(xx,:);\n\n % Extract the actual landmarks\n H = Rt((Rt(:,1)==R(1,1)) & (Rt(:,2)==R(1,3)),:);\n % Restore the original times\n for i = 1:size(H,1)\n hix = find(Hq(:,3)==H(i,3));\n hix = hix(1); % if more than one...\n H(i,2) = H(i,2)+Hq(hix,2);\n L(i,:) = hash2landmark(H(i,:));\n end\n\n\n % Return no more than 10 hits, and only down to half the #hits in\n % most popular\n if size(R,1) > 10\n R = R(1:10,:);\n end\n maxhits = R(1,2);\n nuffhits = R(:,2)>(maxhits/2);\n %R = R(nuffhits,:);\n\nelse\n R = [];\n disp('*** NO HITS FOUND ***');\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23332-robust-landmark-based-audio-fingerprinting/fingerprint/match_query.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872243177518, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3950060708352868}} {"text": "function shadedplot(c,scale,ord)\n \n % Private method. See ../plot for details.\n \n % Author: Michael West, Geophysical Institute, Univ. of Alaska Fairbanks\n % $Date$\n % $Revision$\n \n \n % PREP PLOT\n figure('Color','w','Position',[50 50 850 1100]);\n box on; hold on;\n \n \n % GET TIME MAX AND MINS\n tmin = 999999;\n tmax = -999999;\n wstartrels = c.relativeStartTime(ord);\n wlengths = [c.traces(ord).nsamples];\n wFs = [c.traces(ord).samplerate];\n \n for i = 1:numel(ord)\n %wstartrel = 86400*(get(c.W(i),'START_MATLAB')-c.trig(i));\t% relative start time (trigger is at zero)\n %tr = wstartrel + [ 0:get(c.W(i),'DATA_LENGTH')-1]'/get(c.W(i),'Fs');\n tr = wstartrels(i) + ( 0:wlengths(i)-1)'/wFs(i);\n \n % save min and max relative trace times\n if tr(1) < tmin\n tmin = tr(1);\n end;\n if tr(end) > tmax\n tmax = tr(end);\n end;\n end;\n \n \n % MAKE ALIGNED DATA MATRIX\n %p = 1/get(c.W(1),'Fs'); % assumes all sampling periods are thesame\n p = 1/wFs(1); % assumes all sampling periods are the same\n \n tmin = round(tmin*wFs(i))*p; % round to nearest sample\n tmax = round(tmax*wFs(i))*p;\n N = 1:length(ord);\n T = tmin : p : tmax ;\n D = zeros(length(N),length(T));\n count = 0;\n absmax = max(abs(c.traces(ord)));\n absmax(absmax==0) = scale; %next line will be negated for zero-scale\n \n for n=1:numel(ord)\n c.traces(ord(n)) = c.traces(ord(n)) .* (scale ./ absmax(n));\n end;\n d = double(c.traces); %nan fill??\n % d = double(c.W(ord) .* (scale ./ absmax));\n for i = 1:numel(ord)\n count = count + 1;\n %d = get(c.W(ord(i)),'DATA'); %%%d = c.w(:,i);\n %if (max(abs(d)) ~= 0)\n % d = scale * d/max(abs(d));\t\t% apply a uniform amplitude scale;\n %end\n % DONE ABOVE: wstartrel = 86400*(get(c.W(i),'START_MATLAB')-c.trig(i));\t% relative start time (trigger is at zero)\n [~,startindex] = min(abs(T-wstartrels(i)));\n D( count , startindex : (startindex+wlengths(i)-1) ) = d(:,i);\n end;\n imagesc(T,N,D);\n \n \n % ADJUST PLOT\n axis([tmin tmax 0.5 length(ord)+0.5]);\n set(gca,'YDir','reverse');\n n = length(ord);\n set(gca,'YTick',(1:round(n/50):n));\n yt = get(gca,'YTick');\n set(gca,'YTickLabel',datestr(c.trig(ord(yt))),'FontSize',6);\n xlabel('Relative Time,(s)','FontSize',8);\n \n \n % SET COLOR MAP\n cmap = [ 0 0 1;\n 1 1 1\n 1 0 0];\n cmap = interp1([-1 0 1],cmap, -1:.1:1, 'linear');\n colormap(cmap);\n \n maybeReplaceYticksWithStationNames(c,gca)\n \n %PRINT OUT FIGURE\n set(gcf, 'paperorientation', 'portrait');\n set(gcf, 'paperposition', [.25 .25 8 10.5] );\n % print(gcf, '-depsc2', 'FIG_alignwfm.ps')\n %!ps2pdf FIG_alignwfm.ps\n %!convert FIG_alignwfm.ps FIG_alignwfm.gif\n %!rm FIG_alignwfm.ps\nend\n\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/dev/@NewCorrelation/shadedplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.749087201911703, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.395006059020207}} {"text": "function ang= getRelativeRigidOrientation(obj, frame, R, p)\n % Returns the symbolic representation of the Euler angles of a\n % rigid link.\n %\n % Parameters:\n % frame: the list of coordinate frame of the point \n % @type cell\n % R: ang is computed as the relative Euler angles from frame to R\n % @type matrix\n % p: the offset of the point from the origin of the frame \n % @type matrix\n %\n % \n % Return values: \n % ang: the 3-dimensional Euler angles (roll,pitch,yaw) vector of the\n % CoM of the system @type SymExpression\n %\n %\n % @note Syntax for ont point\n % \n % >> getEulerAngles(obj,pf,offset)\n %\n % @note Syntax for multiple points (offset should be np*3 matrix)\n % \n % >> getEulerAngles(obj,pfarray, offset)\n \n \n % the number of points (one less than the nargin)\n if nargin < 4\n p = [];\n end\n if nargin < 3\n R = eye(3);\n end\n c_str = getTwists(frame, p);\n c_str{1}.R = R;\n \n ang = eval_math_fun('ComputeRelativeRigidOrientation', c_str);\n \n \n \nend", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/robotics/@RobotLinks/getRelativeRigidOrientation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3949458894335354}} {"text": "function [b, mpe] = back1_mpe(engine, bfuture, f, ev1, t)\n\nif t ~= 1\n error('mixed up time stamps')\nend\nbnet = bnet_from_engine(engine);\nss = bnet.nnodes_per_slice;\nmaximize = 1;\n\nint = engine.interface;\nD = engine.in_clq; % from J2\nC = engine.int_clq1; % from J1\nphiD = marginalize_pot(bfuture.clpot{D}, int, maximize);\nphiC = marginalize_pot(f.clpot{C}, int, maximize);\nratio = divide_by_pot(phiD, phiC);\nf.clpot{C} = multiply_by_pot(f.clpot{C}, ratio);\n\n[mpe, b.clpot] = find_max_config(engine.jtree_engine1, f.clpot, f.seppot, ev1);\nfor c=1:length(b.clpot)\n [b.clpot{c}, ll(c)] = normalize_pot(b.clpot{c});\nend\nb.t = t;\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/online/@jtree_2TBN_inf_engine/back1_mpe.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3949458894335354}} {"text": "function [net,opts]=train_net(net,opts)\n\n if ~isfield(opts,'datatype')\n opts.datatype='single';\n end\n \n opts.training=1;\n\n if ~isfield(opts.parameters,'learning_method')\n opts.parameters.learning_method='sgd'; \n end\n \n if ~isfield(opts,'display_msg')\n opts.display_msg=1; \n end\n opts.TrainMiniBatchError=[];\n opts.TrainMiniBatchError_Top5=[];\n opts.TrainMiniBatchLoss=[];\n \n \n tic\n \n opts.order=randperm(opts.n_train); \n\n if opts.parameters.selective_sgd==1 \n [ net,opts ] = selective_sgd( net,opts );\n end\n \n batch_dim=length(size(opts.train));\n idx_nd=repmat({':'},[1,batch_dim]);\n \n for mini_b=1:opts.n_train_batch\n \n idx=opts.order(1+(mini_b-1)*opts.parameters.batch_size:mini_b*opts.parameters.batch_size); \n idx_nd{end}=idx;\n opts.idx_nd=idx_nd;\n opts.idx=idx;\n res(1).x=opts.train(idx_nd{:});\n \n %classification\n if strcmp(net.layers{end}.type,'softmaxloss')\n res(1).class=opts.train_labels(idx);\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%forward%%%%%%%%%%%%%%%%%%%\n [ net,res,opts ] = net_ff( net,res,opts ); \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%backward%%%%%%%%%%%%%%%%\n opts.dzdy=1.0;\n \n [ net,res,opts ] = net_bp( net,res,opts );\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n \n %%summarize the current batch\n loss=double(gather(mean(res(end).x(:))));\n \n if strcmp(net.layers{end}.type,'softmaxloss')\n err=error_multiclass(res(1).class,res);\n opts.TrainMiniBatchError=[opts.TrainMiniBatchError;err(1)/opts.parameters.batch_size];\n opts.TrainMiniBatchError_Top5=[opts.TrainMiniBatchError_Top5;err(2)/opts.parameters.batch_size];\n if opts.display_msg==1\n disp(['Minibatch loss: ', num2str(loss),...\n ', top 1 err: ', num2str(opts.TrainMiniBatchError(end)),...\n ',top 5 err:,',num2str(opts.TrainMiniBatchError_Top5(end))])\n end\n end\n \n opts.TrainMiniBatchLoss=[opts.TrainMiniBatchLoss;loss]; \n if (~isfield(opts.parameters,'iterations'))\n opts.parameters.iterations=0; \n end\n opts.parameters.iterations=opts.parameters.iterations+1;\n \n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%stochastic gradients descent%%%%%%%%%%%%%%%%%%%%%%%%\n [ net,res,opts ] = opts.parameters.learning_method( net,res,opts );\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n end\n \n %%summarize the current epoch\n if ~isfield(opts,'results')||~isfield(opts.results,'TrainEpochLoss')\n opts.results.TrainEpochLoss=[];\n opts.results.TrainEpochError=[];\n opts.results.TrainEpochError_Top5=[];\n end\n \n opts.results.TrainEpochLoss=[opts.results.TrainEpochLoss;mean(opts.TrainMiniBatchLoss(:))];\n\n if strcmp(net.layers{end}.type,'softmaxloss') \n opts.results.TrainEpochError=[opts.results.TrainEpochError;mean(opts.TrainMiniBatchError(:))];\n opts.results.TrainEpochError_Top5=[opts.results.TrainEpochError_Top5;mean(opts.TrainMiniBatchError_Top5(:))];\n disp(['Epoch ',num2str(opts.parameters.current_ep),...\n ', training loss: ', num2str(opts.results.TrainEpochLoss(end)),...\n ', top 1 err: ', num2str(opts.results.TrainEpochError(end)),...\n ',top 5 err:,',num2str(opts.results.TrainEpochError_Top5(end))]) \n\n end\n\n \n if opts.RecordStats==1\n if ~isfield(opts,'results')||~isfield(opts.results,'TrainMiniBatchLoss')\n opts.results.TrainMiniBatchLoss=[];\n opts.results.TrainMiniBatchError=[];\n opts.results.TrainMiniBatchError_Top5=[];\n end\n opts.results.TrainMiniBatchLoss=[opts.results.TrainLoss;opts.TrainMiniBatchLoss];\n opts.results.TrainMiniBatchError=[opts.results.TrainError;opts.TrainMiniBatchError]; \n opts.results.TrainMiniBatchError_Top5=[opts.results.TrainError_Top5;opts.TrainMiniBatchError_Top5]; \n \n end\n \n toc;\n\nend\n\n\n\n\n", "meta": {"author": "yechengxi", "repo": "LightNet", "sha": "5dc29cefccf1ea6d9377aa90732581337408ce73", "save_path": "github-repos/MATLAB/yechengxi-LightNet", "path": "github-repos/MATLAB/yechengxi-LightNet/LightNet-5dc29cefccf1ea6d9377aa90732581337408ce73/CoreModules/net/train_net.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3949458894335354}} {"text": "%% FUNCTION Logistic_iMSF\n% Incompletet Multi-Source Learning with Logistic Loss (interface). This\n% code generates structural information for MultiSource_LogisticR and \n% performs the optimization. \n%\n%% OBJECTIVE\n% see manual.\n%\n%% INPUT\n% A_Set: {n * d} * t - input. The cell array of data. Each cell should be \n% n by p_i, with missing samples denoted by a whole row of NaNs.\n% Y_set: {n * 1} * t - output. Y_i \\in {-1, 1}.\n% z: group sparsity regularization parameter (a relative value, [0,1])\n%\n%% OUTPUT\n% Sol: {struct} solution struct array.\n% For task i: model: struct{i}.x, bais: struct{i}.c\n% funVal: objective function values at each iteration.\n%\n%% LICENSE\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n%\n% Copyright (C) 2011 - 2012 Lei Yuan, Jiayu Zhou, and Jieping Ye\n%\n% You are suggested to first read the Manual.\n% For any problem, please contact with Jiayu Zhou via jiayu.zhou@asu.edu\n%\n% Last modified on June 12, 2012.\n%\n%% RELATED PAPERS\n% [1] Lei Yuan, Yalin Wang, Paul M. Thompson, Vaibhav A. Narayan and Jieping\n% Ye, Multi-Source Learning for Joint Analysis of Incomplete\n% Multi-Modality Neuroimaging Data, KDD 2012\n% [2] Lei Yuan, Yalin Wang, Paul M. Thompson, Vaibhav A. Narayan and Jieping\n% Ye, for the Alzheimer's Disease Neuroimaging Initiative, Multi-source\n% Feature Learning for Joint Analysis of Incomplete Multiple Heterogeneous\n% Neuroimaging Data, NeuroImage 2012 Jul 2; 61(3):622-632.\n%\n%% RELATED FUNCTIONS\n% init_opts, Construct_iMSF, MultiSource_LogisticR\n\nfunction [Sol, funVal] = Logistic_iMSF(X_Set, Y, lambda, opts) \n\nif nargin< 4\n opts = [];\nend\n\n[A_Set, Y_Set, W, G, ind] = Construct_iMSF(X_Set, Y);\n[Sol, funVal] = MultiSource_LogisticR(A_Set, Y_Set, lambda, G, W, ind, opts);", "meta": {"author": "jiayuzhou", "repo": "MALSAR", "sha": "fb9751594983df020ddc4f7e4a40520ee7c37989", "save_path": "github-repos/MATLAB/jiayuzhou-MALSAR", "path": "github-repos/MATLAB/jiayuzhou-MALSAR/MALSAR-fb9751594983df020ddc4f7e4a40520ee7c37989/MALSAR/functions/iMSF/Logistic_iMSF.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.39494588943353537}} {"text": "function test06 ( sample_num )\n\n%*****************************************************************************80\n%\n%% TEST06 times R4_UNI.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 06 May 2008\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST06\\n' );\n fprintf ( 1, ' Measure the time it takes R4_UNI to generate\\n' );\n fprintf ( 1, ' %d uniform deviates.\\n', sample_num );\n\n seed = uint32 ( 123456789 );\n\n time1 = cputime;\n\n for sample = 1 : sample_num\n [ value, seed ] = r4_uni ( seed );\n end\n\n time2 = cputime;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' %f seconds.\\n', time2 - time1 );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/ziggurat/ziggurat_test06.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5621764862150634, "lm_q2_score": 0.7025300698514778, "lm_q1q2_score": 0.39494588612952686}} {"text": "function [cache, place] = score_add_to_cache(cache,j,ps,score,scoring_fn)\n% [cache place] = score_add_to_cache(cache,j,ps,score,scoring_fn)\n% \n% j is the son node,\n% ps is the list of parents of j, for example [12 5 7],\n% score is the score to add for this familly.\n% scoring_fn is 'bic' or 'bayesian'.\n%\n% place = where the entry was add.\n%\n% example for 2 nodes with cache of size 5 :\n%\n% cache =\n% 5 b 0 0 0 --> number of writing in cache +1 and b==1 iff the cache is full\n% 0 0 1 -239.12 1 --> 1st familly in the cache (node 1 without parents) calculate with bic\n% 0 0 2 -318.98 1\n% 1 0 2 -189.23 2 --> 3rd familly in the cache (node 2 with 1 as parent) calculate with bayesian\n% 0 1 1 -251.09 1\n% .ps2bool. j score 1or2 --> new entry\n% | | | | |\n% | | | | |___> 1 for 'bic' or 2 for 'bayesian'\n% | | | |__________> score of the familly\n% | | |_________________> son node of the familly\n% | |__________________________> ==1 iff node 2 is parent of son node\n% |______________________________> ==1 iff node 1 is parent of son node\n%\n% If the cache is FULL then the new place is RanDoMly choose.\n%\n% francois.olivier.c.h@gmail.com\n\nN=size(cache,2)-3;\nplace=0;\n\nif ~isempty(find(ps==j))\n disp('This is a cyclic entry, nothing was done.');\nelseif j>N | j<0\n disp('This entry is not valid, nothing was done.');\nelse\n\n switch scoring_fn\n case 'bic',\n fn=1;\n case 'bayesian',\n fn=2;\n otherwise,\n fn=3;\n %error(['unrecognized scoring fn ' scoring_fn]);\n end\n L=size(cache,1);\n\n if cache(1,2)==0\n place=cache(1,1);\n else\n place=ceil(rand(1)*(L-1))+1;\n end\n\n cache(place,:)=0\n cache(place,ps)=1;\n cache(place,N+1)=j;\n cache(place,N+2)=score;\n cache(place,N+3)=fn;\n cache(1,1)=place+1;\n if place==L | cache(1,2)~=0\n cache(1,2)=1\n end\n\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/SLP/scoring/score_add_to_cache.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.39494588243091155}} {"text": "%FIG_DESCI_CASSI Demonstrate decompress snapshot compressive imaging \n%(DeSCI) results of simulated coded aperture snapshot spectral imaging \n%(CASSI) `toy` dataset.\n% Note: Run this demonstration script after completing the reconstruction\n% process TEST_DESCI_CASSI and obtaining the saved .mat file.\n% See also TEST_DESCI_CASSI, GAPDENOISE_CACTI, GAPDENOISE.\nclear; clc;\n% close all\naddpath('../'); % repository root\naddpath(genpath('../packages/')); % packages\n% [1] run the corresponding test file for recovery or load the saved\n% results\n% test_desci_cassi % run the corresponding test file for recovery\nload('../results/savedmat/desci_cassi_toy.mat'); % load the saved results\n\nmethods = {'gaptv','desci'}; % all methods for comparison\nmethnames = {'GAP-TV','DeSCI'}; % corresponding names of the methods\nnim = nframe*nmask; % number of images\n\n%% [2.1] demonstrate the reconstructed spectum\ncolors = {'Brown', 'Orange', 'Blue', 'Red'}; % colors of the four birds\ncrops = [150 280 24 24; % brown [x y width height] as insertShape\n 340 210 24 24; % orange\n 349 396 24 24; % blue\n 349 439 24 24]; % red\nlocos = {'northwest','northwest','northwest','northwest'};\n \nmarkers = {'bx--','r*-'}; % markers\n\nlinewidth = 2;\nmarkersize = 4;\ntextfontsize = 14;\nlegendfontsize = 12;\n\n% Change default axes fonts.\nset(0,'DefaultAxesFontName','Arial');\nset(0,'DefaultAxesFontSize',textfontsize);\nset(0,'DefaultAxesFontWeight','normal');\n% Change default text fonts.\nset(0,'DefaultAxesFontName','Arial');\nset(0,'DefaultTextFontSize',textfontsize);\nset(0,'DefaultTextFontWeight','normal');\n\nf = figure('position',[25 50 700 900]); % PSNR plot\nh = tight_subplot(3,2,[0.07 0.08],[.07 .035],[.1 .02]);\n% subplot(3,2,1); % show crops on original RGB image\naxes(h(1));\nimshow(insertShape(orig_rgb,'Rectangle',crops,'Color','cyan','Linewidth',5));\ntitle('Original');\n% subplot(3,2,2); % coded measurement\naxes(h(2));\nimshow(meas,[]);\ntitle('Coded frame');\nfor ic = 1:length(colors)\n color = colors{ic};\n crop = crops(ic,:);\n sp_truth = squeeze(sum(sum(orig(crop(2):crop(2)+crop(4)-1,crop(1):crop(1)+crop(3)-1,:)/MAXB,2),1));\n % figure;\n % subplot(3,2,ic+2);\n axes(h(ic+2));\n plot(wavelength,sp_truth/max(sp_truth),'k-','linewidth',linewidth,'markersize',markersize,'DisplayName','Ground truth'); hold on;\n \n for imeth = 1:length(methods)\n meth = methods{imeth};\n eval(sprintf('sp_%s = squeeze(sum(sum(v%s(crop(2):crop(2)+crop(4)-1,crop(1):crop(1)+crop(3)-1,:),2),1));',meth,meth));\n eval(sprintf('corrall(ic,imeth)=corr(sp_%s,sp_truth);',meth)); % corr is scale invariant \n eval(sprintf('plot(wavelength,rescale(sp_%s,min(sp_truth)/max(sp_truth),1),markers{imeth},''linewidth'',linewidth,''markersize'',markersize,''DisplayName'',[methnames{imeth} '', corr: %s'']);',meth,num2str(corrall(ic,imeth),'%.4f')));\n end\n title(color);\n if ic==3 || ic==4\n xlabel('Wavelength (nm)');\n end\n if ic==1 || ic==3\n ylabel('Intensity (a.u.)');\n end\n ylim([0 1]);\n hlg = legend('show');\n set(hlg,'FontSize',legendfontsize);\n legend('location',locos{ic}); \n legend('boxoff');\nend\n\n%% [2.2] show exemplar frames (wavelength)\nbands = [1 10 20 31];\n\nnb = length(bands);\nnmeth = length(methods);\nf = figure('Position',[50 50 700 950]);\nh = tight_subplot(nb,nmeth+1,[.002 .002],[.03 .03],[.02 .02]);\nset(f, 'Color', 'white');\nfor ib = 1:nb\n band = bands(ib);\n lambda = wavelength(band);\n wlmap = (gray*kron(ones(3,1),spectrumRGB(lambda))); % colormap with the corresponding RGB wavelength\n wlmap = wlmap/max(wlmap(:));\n \n axes(h(1+(ib-1)*(nmeth+1)));\n imshow(uint8(orig(:,:,band)),'colormap',wlmap);\n if ib==1\n title('Ground truth');\n end\n for imeth = 1:nmeth\n meth = methods{imeth};\n axes(h(imeth+1+(ib-1)*(nmeth+1)));\n eval(sprintf('imshow(v%s(:,:,band),''colormap'',wlmap);',meth));\n if ib==1\n title(sprintf('%s',methnames{imeth}));\n end\n end\nend\n\n", "meta": {"author": "liuyang12", "repo": "DeSCI", "sha": "fc9fddddbe7a6d503301e79ead7eb599c2d5db39", "save_path": "github-repos/MATLAB/liuyang12-DeSCI", "path": "github-repos/MATLAB/liuyang12-DeSCI/DeSCI-fc9fddddbe7a6d503301e79ead7eb599c2d5db39/figures/fig_desci_cassi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.394911717128393}} {"text": "% extract_data.m\n% --------------\n% This program extracts the raw signal data from the CD included in the \n% Cumming/Wong book. The data on CD are in CEOS format. \n% It is assumed that the run parameters are stored in CD_run_params.mat \n% in the current directory.\n% Run \"specify_run_parameters.m\" first to create this file.\n% -------------------------------------------------------------------------\n% Created : Nov 01, 2004 by Kaan Ersahin\n% Modified: Nov 22, 2004 by Kaan Ersahin\n% Modified: Dec 3, 2004 by Ian Cumming\n% - changed function to m-file\n% - fixed the parameter file name\n% - added more radar parameters\n% -------------------------------------------------------------------------\n\nclear, home, format compact\n\n% Load the input parameters from a matlab data file \nload CD_run_params\n\ndisp ' '\ndisp '------------------------------------------------'\ndisp ' UBC RRSG - CEOS Reader for RADARSAT-1 RAW DATA'\ndisp '------------------------------------------------'\ndisp ' '\n\n% -------------------------------------------------------------------------\n% Quantize the range line limits and block size, if necessary\n% -------------------------------------------------------------------------\n\n% Move the first range line to the beginning of an 8-line block \nfirst_rg_line = 8 * ( ceil(first_rg_line / 8) - 1 ) + 1;\n\n% Make 'Nrg_lines_blk' a multiple of 8, to get complete the 8-line blocks\nNrg_lines_blk = 8 * ceil(Nrg_lines_blk / 8); \n\n% Find the number of complete blocks required to cover the area of interest\nNblocks = ceil(Nrg_lines / Nrg_lines_blk);\n\n% Make 'Nrg_lines' a multiple of 'Nblocks', to get complete blocks\nNrg_lines = Nrg_lines_blk * Nblocks; \n\n% =========================================================================\n% These values are specific to the data set, DO NOT CHANGE for this CD\n% =========================================================================\n\nlength_replica = 2880; % Total length (I&Q) of replica record\ntot_Nrg_cells = 9288; % Total number of range cells per line\ntot_Nrg_lines = 19432; % Total number of range lines (records)\nfirst_replica = 7; % First record that contains the replica \nPRF = 1256.98; % Pulse Reputation Frequency (Hz)\nFr = 32.317e+6; % Radar sampling rate (Hz)\nf0 = 5.300e+9; % Radar center frequency (Hz)\nc = 2.9979e+8; % Speed of light (m/s)\nR0 = 0.0065956*c/2; % Slant range of first radar sample (m)\nNrepl = 1349; % No. of valid samples in the replica\nKr = 0.72135e+12; % FM rate of radar pulse (Hz/s)\nTr = 41.75e-6; % Chirp duration (s)\n\n% -------------------------------------------------------------------------\n% Save parameters in a MAT file that can be used by subsequent programs\n\nif SaveV6, save -v6 CD_run_params\nelse, save CD_run_params, end\n% -------------------------------------------------------------------------\n\nfprintf('Total number of range lines : %5d \\n', tot_Nrg_lines )\nfprintf('Total number of range cells : %5d \\n', tot_Nrg_cells )\nfprintf('First range cell to be extracted : %5d \\n', first_rg_cell )\nfprintf('First range line to be extracted : %5d \\n', first_rg_line )\nfprintf('Number of range cells : %5d \\n', Nrg_cells )\nfprintf('Number of range lines : %5d \\n', Nrg_lines )\nfprintf('Number of range lines per block : %5d \\n', Nrg_lines_blk )\nfprintf('Number of blocks : %5d \\n', Nblocks )\ndisp ' '\ndisp '------------------------------------------------'\n\n% -------------------------------------------------------------------------\n% Check the dimensions of the selected area to be processed.\n% -------------------------------------------------------------------------\n\nif (first_rg_line <= 0) | ((first_rg_line + Nrg_lines - 1) > tot_Nrg_lines)\n disp ' ', disp '*****************************************************'\n disp ' ERROR: Check the limits of the range lines !', beep, return\nend\nif (first_rg_cell <= 0) | ((first_rg_cell + Nrg_cells - 1) > tot_Nrg_cells)\n disp ' ', disp '*****************************************************'\n disp ' ERROR: Check the limits of the range cells !', beep, return\nend\n \n% -------------------------------------------------------------------------\n% EXTRACT DATA from the area of interest and write data files \n% -------------------------------------------------------------------------\n\nfor blk = 1 : Nblocks\n % find the first range line of block 'blk' \n start_line_blk = Nrg_lines_blk * (blk-1) + first_rg_line;\n fprintf('\\nExtracting block number%3.0f, RC1 =%5.0f, RL1 =%6.0f\\n',...\n blk, first_rg_cell, start_line_blk )\n \n % create the output file name for block 'blk'\n output_file_pre = strcat(output_path,output_prefix,'_',num2str(blk));\n\n % Call 'read_ceos_raw' function to extract the data for block 'blk'\n read_CEOS_raw( output_file_pre, start_line_blk, blk );\n\nend % of the 'blk' for loop\n\nbeep, pause(0.3), beep\n", "meta": {"author": "denkywu", "repo": "SAR-Synthetic-Aperture-Radar", "sha": "8a68c5673edace4c8a9cde3c1d3c5fd02d326500", "save_path": "github-repos/MATLAB/denkywu-SAR-Synthetic-Aperture-Radar", "path": "github-repos/MATLAB/denkywu-SAR-Synthetic-Aperture-Radar/SAR-Synthetic-Aperture-Radar-8a68c5673edace4c8a9cde3c1d3c5fd02d326500/1-SAR\u6210\u50cf\u7b97\u6cd5/0_Radarsat_1\u6570\u636e\u7684\u6210\u50cf\u53ca\u5904\u7406/0-\u9884\u5907\uff1a\u7528\u6765\u5f97\u5230\u7528\u4e8e\u6210\u50cf\u7684\u539f\u59cb\u6570\u636e/extract_data.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3949117103547496}} {"text": "function [ x_extend ] = img_extend( x, extension_y, extension_x, extension_z )\n% mirrored extension to prevent any edge distortions\n\n% M. Fischer, April 2016\n\n%%\nx_extend = zeros(size(x,1)+extension_y,size(x,2)+extension_x,size(x,3)+extension_z);\nx_extend(1:end-extension_y,1:end-extension_x,1:end-extension_z) = x;\nfor j = 1:(extension_z-1)\n x_extend(:,:,end-extension_z+j) = x_extend(:,:,end-extension_z);\nend;\nx_extend(end-extension_y+1:end,1:end-extension_x,:) = flipud(x(end-extension_y+1:end,:,:));\nx_extend(1:end-extension_y,end-extension_x+1:end,:) = fliplr(x(:,end-extension_x+1:end,:));\nx_extend(end-extension_y+1:end,end-extension_x+1:end,:) = rot90(x(end-extension_y+1:end,end-extension_x+1:end,:),2);\n\nend\n\n", "meta": {"author": "thomaskuestner", "repo": "CS_MoCo_LAB", "sha": "a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b", "save_path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB", "path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB/CS_MoCo_LAB-a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b/reconstruction/matlab/CS_LAB_matlab/utils/utils_Proximal/img_extend.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.7122321781307374, "lm_q1q2_score": 0.3949117069679278}} {"text": "%% Demo: fMRI searchlights with split-half correlations, classifier, and representational similarity analysis\n%\n% The data used here is available from http://cosmomvpa.org/datadb.zip\n%\n% This example uses the following dataset:\n% - 'ak6' is based on the following work (please cite if you use it):\n% Connolly et al (2012), Representation of biological classes in the\n% human brain. Journal of Neuroscience,\n% doi 10.1523/JNEUROSCI.5547-11.2012\n%\n% Six categories (monkey, lemur, mallard, warbler, ladybug, lunamoth)\n% during ten runs in an fMRI study. Using the General Linear Model\n% response were estimated for each category in each run, resulting\n% in 6*10=60 t-values.\n%\n% # For CoSMoMVPA's copyright information and license terms, #\n% # see the COPYING file distributed with CoSMoMVPA. #\n\n\n\n%% Set data paths\n% The function cosmo_config() returns a struct containing paths to tutorial\n% data. (Alternatively the paths can be set manually without using\n% cosmo_config.)\nconfig=cosmo_config();\n\nak6_study_path=fullfile(config.tutorial_data_path,'ak6');\n\n% show readme information\nreadme_fn=fullfile(ak6_study_path,'README');\ncosmo_type(readme_fn);\n\n% reset citation list\ncosmo_check_external('-tic');\n\n% set result directory\noutput_path=config.output_data_path;\n\n\n%% Example: split-half correlation measure (Haxby 2001-style)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% This example uses the 'ak6' dataset\n\n% define data filenames & load data from even and odd runs\n\ndata_path=fullfile(ak6_study_path,'s01'); % data from subject s01\nmask_fn=fullfile(data_path, 'brain_mask.nii'); % whole brain mask\n\ndata_odd_fn=fullfile(data_path,'glm_T_stats_odd.nii');\nds_odd=cosmo_fmri_dataset(data_odd_fn,'mask',mask_fn,...\n 'targets',1:6,'chunks',1);\n\n\ndata_even_fn=fullfile(data_path,'glm_T_stats_even.nii');\nds_even=cosmo_fmri_dataset(data_even_fn,'mask',mask_fn,...\n 'targets',1:6,'chunks',2);\n\n% Combine even and odd runs\nds_odd_even=cosmo_stack({ds_odd, ds_even});\n\n% print dataset\nfprintf('Dataset input:\\n');\ncosmo_disp(ds_odd_even);\n\n% Use cosmo_correlation_measure.\n% This measure returns, by default, a split-half correlation measure\n% based on the difference of mean correlations for matching and\n% non-matching conditions (a la Haxby 2001).\nmeasure=@cosmo_correlation_measure;\n\n% define spherical neighborhood with radius of 3 voxels\nradius=3; % voxels\nnbrhood=cosmo_spherical_neighborhood(ds_odd_even,'radius',radius);\n\n% Run the searchlight with a 3 voxel radius\ncorr_results=cosmo_searchlight(ds_odd_even,nbrhood,measure);\n\n% print output\nfprintf('Dataset output:\\n');\ncosmo_disp(corr_results);\n\n\n% Plot the output\ncosmo_plot_slices(corr_results);\n\n% Define output location\noutput_fn=fullfile(output_path,'corr_searchlight.nii');\n\n% Store results to disc\ncosmo_map2fmri(corr_results, output_fn);\n\n% Show citation information\ncosmo_check_external('-cite');\n", "meta": {"author": "CoSMoMVPA", "repo": "CoSMoMVPA", "sha": "5de75a1b4bef89b082d39d69e2b99d7f894ad717", "save_path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA", "path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA/CoSMoMVPA-5de75a1b4bef89b082d39d69e2b99d7f894ad717/examples/demo_fmri_correlation_searchlight.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321720225278, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.394911703581106}} {"text": "%STYLIZATION Stylization filter\n%\n% dst = cv.stylization(src)\n% dst = cv.stylization(src, 'OptionName',optionValue, ...)\n%\n% ## Input\n% * __src__ Input 8-bit 3-channel image.\n%\n% ## Output\n% * __dst__ Output image with the same size and type as `src`.\n%\n% ## Options\n% * __SigmaS__ Range between 0 to 200. default 60\n% * __SigmaR__ Range between 0 to 1. default 0.45\n% * __FlipChannels__ whether to flip the order of color channels in input\n% `src` and output `dst`, between MATLAB's RGB order and OpenCV's BGR\n% (input: RGB->BGR, output: BGR->RGB). default false\n%\n% Stylization aims to produce digital imagery with a wide variety of effects\n% not focused on photorealism. Edge-aware filters are ideal for stylization,\n% as they can abstract regions of low contrast while preserving, or enhancing,\n% high-contrast features.\n%\n% See also: cv.pencilSketch\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/stylization.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813030906443133, "lm_q2_score": 0.6791787056691698, "lm_q1q2_score": 0.3948086807052928}} {"text": "function [cum_ret, cumprod_ret, daily_ret, daily_portfolio, exp_ret] ....\n = bk(fid, data, varargins, opts)\n% This program starts the BK algorithm\n%\n% function [cum_ret, cumprod_ret, daily_ret, daily_portfolio, exp_ret] ....\n% = bk_start(fid, data, varargins, opts)\n%\n% cum_ret: a number representing the final cumulative wealth.\n% cumprod_ret: cumulative return until each trading period\n% daily_ret: individual returns for each trading period\n% daily_portfolio: individual portfolio for each trading period\n%\n% data: market sequence vectors\n% fid: handle for write log file\n% varargins: variable parameters\n% opts: option parameter for behvaioral control\n%\n% Example: [cum_ret, cumprod_ret, daily_ret, daily_portfolio, exp_ret] ...\n% = bk_start(fid, data, {0}, opts);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This file is part of OLPS: http://OLPS.stevenhoi.org/\n% Original authors: Bin LI, Steven C.H. Hoi \n% Contributors:\n% Change log: \n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Extract the parameters\nK = varargins{1};\nL = varargins{2};\nc = varargins{3};\ntc = varargins{4}; % transaction cost fee rate\n\n% Call BK's run algorithm\n[cum_ret, cumprod_ret, daily_ret, daily_portfolio, exp_ret] ...\n = bk_run(fid, data, K, L, c, tc, opts);\n\nend", "meta": {"author": "OLPS", "repo": "OLPS", "sha": "9120783cd59a7966b0f78e2b5668030a4378b8af", "save_path": "github-repos/MATLAB/OLPS-OLPS", "path": "github-repos/MATLAB/OLPS-OLPS/OLPS-9120783cd59a7966b0f78e2b5668030a4378b8af/Strategy/bk.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3948086769304403}} {"text": "function drawscene(X,C,R,fig,ctypehint,scenetitle,camsId)\n\n% drawscene ... plots calibration points, cameras and their viewing axes\n%\n% drawscene(X,C,R,fig,ctypehint,scenetitle)\n%\n% X ............ 4xPOINTS matrix containg POINTS object points\n% C ............ 3xCAMS matrix containing the camera centers (in world coord.)\n% R ............ 3*CAMSx3 matrix containing camera rotation matrices\n% (needed for drawing the viewing axes)\n% fig .......... figure handle (defaults to 1)\n% ctypehint .... calibration object type of X (defaults to 'cloud')\n% scenetitle ... title of the plot (defaults to '')\n% camsIs ....... 1xCAMS vector with cameas Id (default is 1:CAMS\n\n% $Author: svoboda $\n% $Revision: 2.0 $\n% $Id: drawscene.m,v 2.0 2003/06/19 12:07:03 svoboda Exp $\n% $State: Exp $\n\nPOINTS = size(X,2);\nCAMS = size(C,2);\n\nif nargin < 7\n camsId = [1:CAMS];\nend\n\nif (nargin < 3)\n error('not enough input arguments');\nend\nif (nargin < 5)\n scenetitle = '';\nend\nif (nargin < 4)\n ctypehint = 'cloud';\nend\n\nfigure(fig); clf\ntitle(scenetitle)\ngrid on\naxis equal\n\n% plot camera positions (blue)\ndrawcloud(C,fig,'b');\n\n% plot calibration object (red)\ndrawobject(X,ctypehint,fig,'r');\n\n% Mean of all points\ncentroid = mean(X(1:3,:)');\n\n% plot viewing axes\nfor i=1:CAMS\n axis_dir = -R(3*i,:); % 3rd row of i-th rotation matrix\n axis_len = 0.6*norm(C(1:3,i)-centroid');\n endpoint = C(1:3,i)+axis_len*axis_dir';\n line([C(1,i),endpoint(1)],[C(2,i),endpoint(2)],[C(3,i),endpoint(3)]);\n text(C(1,i),C(2,i),C(3,i),sprintf('%4d',camsId(i)),'Color','k');\nend\n\n\n", "meta": {"author": "strawlab", "repo": "MultiCamSelfCal", "sha": "0a26c88c63d8513eab76553033a9a6fb15ba6575", "save_path": "github-repos/MATLAB/strawlab-MultiCamSelfCal", "path": "github-repos/MATLAB/strawlab-MultiCamSelfCal/MultiCamSelfCal-0a26c88c63d8513eab76553033a9a6fb15ba6575/MultiCamSelfCal/OutputFunctions/drawscene.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.39480867693044025}} {"text": "function pstruct = tapas_ehgf_jget_namep(pvec)\n% --------------------------------------------------------------------------------------------------\n% Copyright (C) 2017-2020 Christoph Mathys, TNU, UZH & ETHZ\n%\n% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public\n% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version). For further details, see the file\n% COPYING or .\n\n\npstruct = struct;\n\nl = length(pvec)/8;\n\nif l ~= floor(l)\n error('tapas:hgf:UndetNumLevels', 'Cannot determine number of levels');\nend\n\npstruct.mux_0 = pvec(1:l);\npstruct.sax_0 = pvec(l+1:2*l);\npstruct.mua_0 = pvec(2*l+1:3*l);\npstruct.saa_0 = pvec(3*l+1:4*l);\npstruct.kau = pvec(4*l+1);\npstruct.kax = pvec(4*l+2:5*l);\npstruct.kaa = pvec(5*l+1:6*l-1);\npstruct.omu = pvec(6*l);\npstruct.omx = pvec(6*l+1:7*l);\npstruct.oma = pvec(7*l+1:8*l);\n\nend\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/HGF/tapas_ehgf_jget_namep.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.39480867693044025}} {"text": "function plot_frcst_(frcsts,y,time,options)\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Filippo Ferroni, 6/1/2015\n% Revised, 2/15/2017\n% Revised, 3/21/2018\n% Revised, 8/08/2019\n\n% input : frcsts\n% 1st dimension: horizon\n% 2nd dimension: variable\n% 3rdth dimension: draws\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif length(time) ~= length(y)\n error('Mismatch between time and in sample data (y)');\nend\nif size(time,2)>size(time,1)\n time=time';\nend\n\nhor = size(frcsts,1);\nnvar = size(frcsts,2);\nndraws = size(frcsts,3);\nnplots = [ceil(sqrt(nvar)) ceil(sqrt(nvar))];\nsavefig_yes = 0;\nconf_sig = 0.68;\nadd_frcst_yes = 0;\nadd_multiple_bands_yes = 0;\nfnam_dir = '.';\nfnam_suffix = 'frcsts';\ntrasf_yes = 0;\n\n% retreive the frequency\nintegerTest = ~mod(time,1);\nindx = find(integerTest==1);\nfrq = indx(2)-indx(1);\n\nif frq == 12 % monthly\n timefor = time(end) + 1/12 : 1/12 : time(end) + hor/12;\n time = [time; timefor'];\nelseif frq == 4 % quarterly\n timefor = time(end) + 1/4 : 1/4 : time(end) + hor/4;\n time = [time; timefor'];\nelseif frq == 1 % annual\n timefor = time(end) + 1 : 1 : time(end) + hor;\n time = [time; timefor'];\nelseif frq == 48 % weekly\n timefor = time(end) + 1/48 : 1/48 : time(end) + hor/48;\n time = [time; timefor'];\nelse\n error('Frequency not defined.')\nend\n% \n% if strmatch(freq,'m') == 1 %#ok<*MATCH2>\n% timefor = time(end) + 1/12 : 1/12 : time(end) + hor/12;\n% time = [time; timefor'];\n% elseif strmatch(freq,'q') == 1\n% timefor = time(end) + 1/4 : 1/4 : time(end) + hor/4;\n% time = [time; timefor'];\n% elseif strmatch(freq,'a') == 1\n% timefor = time(end) + 1 : 1 : time(end) + hor;\n% time = [time; timefor'];\n% else\n% error('You need to provide a frequency: ''m'', ''q'' or ''a''.')\n% end\ntime_start = 1;\ntime_end = length(time);\n\nif nargin < 4\n disp('You did not provided names for variables.')\n disp('I call them Var 1, Var 2, ... ')\n for v = 1 : nvar\n eval(['varnames{' num2str(v) '} = ''Var ' num2str(v) ''';'])\n end\nelse \n if isfield(options,'time_start') ==1 \n time_start = find(options.time_start==time);\n if isempty(time_start) ==1 \n error('''time_start'' is not included in ''T''.')\n end\n end\n if isfield(options,'order_transform') ==1 \n trasf_yes = 1;\n order_trasform = options.order_transform;\n if length(order_trasform) ~= nvar\n error('Mismatch between the ''order_transform'' size and # of variables.')\n end\n end\n if isfield(options,'varnames') ==1\n varnames = options.varnames;\n if length(varnames) ~= nvar\n error('Mismatch between the # varnames and # of variables to plot')\n end\n else\n disp('You did not provided names for the endogenous variables.')\n disp('I call them Var 1, Var 2, ...')\n for v = 1 : nvar\n eval(['varnames{' num2str(v) '} = ''Var ' num2str(v) ''';'])\n end\n end\n if isfield(options,'nplots') ==1 \n nplots = options.nplots;\n end\n if isfield(options,'saveas_strng') ==1 \n savefig_yes = 1;\n % setting the names of the figure to save\n fnam_suffix = [ fnam_suffix options.saveas_strng ];\n end\n if isfield(options,'saveas_dir') == 1\n savefig_yes = 1;\n % setting the folder where to save the figure\n fnam_dir = options.saveas_dir;\n if exist(fnam_dir,'dir') == 0\n mkdir(fnam_dir)\n end\n end\n if isfield(options,'add_frcst') ==1\n add_frcst = options.add_frcst;\n if size(add_frcst) ~= [length(time), nvar]\n error('The ''add_frcst'' dimensions must be in-sample + output-of-sample length and the # of variables to plot')\n end\n add_frcst_yes = 1;\n end \n if isfield(options,'conf_sig') ==1\n conf_sig = options.conf_sig;\n end\n if isfield(options,'conf_sig_2') ==1\n if options.conf_sig_2 < conf_sig\n error('Additional confidence bands should be larger than ''options.conf_sig''.')\n end\n add_multiple_bands_yes = 1;\n sort_idx_2 = round((0.5 + [-options.conf_sig_2, options.conf_sig_2, 0]/2) * ndraws);\n end\nend\n\nnfigs = ceil(length(varnames)/( nplots(1)*nplots(2)) );\nnplots = repmat(nplots,nfigs,1);\nfor j=1:size(nplots,1),\n nbofplots(j)=nplots(j,1)*nplots(j,2);\nend\n\nntotplots = sum(nbofplots);\nif ntotplots 1 \n frcsts_ = nan(length(time),nvar,ndraws);\n for kk = 1 : ndraws\n frcsts_(:,:,kk) = [y; frcsts(:,:,kk)];\n end\n frcsts = frcsts_;\n \n sort_idx = round((0.5 + [-conf_sig, conf_sig, 0]/2) * ndraws);\n \n if trasf_yes ==1 \n frcsts_ = nan(size(frcsts));\n for var = 1 : nvar \n if order_trasform(var) == 1 % period over period\n frcsts_(2:end,var,:) = (frcsts(2:end,var,:) - frcsts(1:end-1,var,:)) ;\n \n elseif order_trasform(var) == 100 % percentage period over period \n frcsts_(2:end,var,:) = 100*(frcsts(2:end,var,:) - frcsts(1:end-1,var,:));\n \n elseif order_trasform(var) == 12 % percentage 12 periord over 12 period (year over year % change f or monthly data)\n frcsts_(13:end,var,:) = 100*(frcsts(13:end,var,:) - frcsts(1:end-12,var,:));\n \n elseif order_trasform(var) == 4 % percentage 4 periord over 4 period (year over year % change for quarterly data)\n frcsts_(5:end,var,:) = 100*(frcsts(5:end,var,:) - frcsts(1:end-4,var,:));\n \n elseif order_trasform(var) == 400\n frcsts_(2:end,var,:) = 400*(frcsts(2:end,var,:) - frcsts(1:end-1,var,:));\n \n elseif order_trasform(var) == 1200\n frcsts_(2:end,var,:) = 1200*(frcsts(2:end,var,:) - frcsts(1:end-1,var,:));\n \n else\n frcsts_(:,var,:) = frcsts(:,var,:);\n end\n end\n frcsts = frcsts_;\n end \n \n frcsts_sort = sort(frcsts,3);\n if sort_idx(1) == 0\n sort_idx(1) = 1;\n warning('Bands not reliable. You have too few draws.')\n end\n irf_Median = squeeze(frcsts_sort(:, :, sort_idx(3) ));\n irf_low = squeeze(frcsts_sort(:, :, sort_idx(1) ));\n irf_up = squeeze(frcsts_sort(:, :, sort_idx(2) ));\n if add_multiple_bands_yes == 1\n irf_low_low = squeeze(frcsts_sort(:, :, sort_idx_2(1) ));\n irf_up_up = squeeze(frcsts_sort(:, :, sort_idx_2(2) ));\n end\n \nelse\n irf_Median = [y; frcsts];\n\n if trasf_yes ==1 \n irf_Median_ = nan(size(irf_Median));\n for var = 1 : nvar \n if order_trasform(var) == 1\n irf_Median_(2:end,var) = diff(irf_Median(:,var)) ;\n \n elseif order_trasform(var) == 12 % percentage 12 periord over 12 period (year over year % change f or monthly data)\n irf_Median_(13:end,var) = 100*(irf_Median(13:end,var) - irf_Median(1:end-12,var));\n \n elseif order_trasform(var) == 4 % percentage 4 periord over 4 period (year over year % change for quarterly data)\n irf_Median_(5:end,var) = 100*(irf_Median(5:end,var) - irf_Median(1:end-4,var));\n \n elseif order_trasform(var) == 100 \n irf_Median_(2:end,var) = 100*diff(irf_Median(:,var));\n \n elseif order_trasform(var) == 400\n irf_Median_(2:end,var) = 400*diff(irf_Median(:,var));\n \n elseif order_trasform(var) == 1200\n irf_Median_(2:end,var) = 1200*diff(irf_Median(:,var));\n \n else\n irf_Median_(:,var) = irf_Median(:,var);\n end\n end\n irf_Median = irf_Median_;\n end\n irf_low = irf_Median;\n irf_up = irf_Median;\n \n \nend\n\nif trasf_yes ==1 && add_frcst_yes ==1\n add_frcst_ = nan(size(add_frcst));\n for var = 1 : nvar\n if order_trasform(var) == 1\n add_frcst_(2:end,var) = diff(add_frcst(:,var)) ;\n \n elseif order_trasform(var) == 12 % percentage 12 periord over 12 period (year over year % change for monthly data)\n add_frcst_(13:end,var) = 100*(add_frcst(13:end,var) - add_frcst(1:end-12,var));\n \n% elseif order_trasform(var) == 4 % percentage 4 periord over 4 period (year over year % change for quarterly data)\n% add_frcst_(4:end,var) = 100*(add_frcst(4:end,var) - add_frcst(1:end-3,var));\n\n elseif order_trasform(var) == 4 % percentage 4 periord over 4 period (m over m % change for monthly data or YoY for Q data)\n add_frcst_(5:end,var) = 100*(add_frcst(5:end,var) - add_frcst(1:end-4,var));\n \n elseif order_trasform(var) == 100\n add_frcst_(2:end,var) = 100*diff(add_frcst(:,var));\n \n elseif order_trasform(var) == 400\n add_frcst_(2:end,var) = 400*diff(add_frcst(:,var));\n \n elseif order_trasform(var) == 1200\n add_frcst_(2:end,var) = 1200*diff(add_frcst(:,var));\n \n else\n add_frcst_(:,var) = add_frcst(:,var);\n end\n end\n add_frcst = add_frcst_;\nend\n\n\njplot = 0;\njfig = 0;\n\nindex_time = time_start:time_end;\n\nfor var= 1: nvar\n \n if jplot==0,\n figure('name',['Forecasts'] );\n jfig=jfig+1;\n end\n \n jplot=jplot+1;\n subplot(nplots(1),nplots(2),jplot) \n \n \n if add_multiple_bands_yes == 1\n \n h = area([time(index_time)],[irf_low_low(index_time,var),...\n irf_low(index_time,var) - irf_low_low(index_time,var),...\n irf_up(index_time,var) - irf_low(index_time,var),...\n irf_up_up(index_time,var) - irf_up(index_time,var)]);%,'FaceColor',[.85 .85 .85]);\n set(h(4),'FaceColor',[.95 .95 .95])\n set(h(3),'FaceColor',[.85 .85 .85])\n set(h(2),'FaceColor',[.95 .95 .95])\n set(h(1),'FaceColor',[1 1 1])\n set(h,'linestyle','none')\n hold on\n min_=min(irf_low_low(index_time,var));\n max_=max(irf_up_up(index_time,var));\n else\n h = area([time(index_time)],[irf_low(index_time,var),...\n irf_up(index_time,var) - irf_low(index_time,var)]);%,'FaceColor',[.85 .85 .85]);\n set(h(2),'FaceColor',[.85 .85 .85])\n set(h(1),'FaceColor',[1 1 1])\n set(h,'linestyle','none')\n min_=min(irf_low(index_time,var));\n max_=max(irf_up(index_time,var));\n end\n hold on;\n plot(time(index_time),irf_Median(index_time,var),'k');\n hold on;\n plot(time(index_time),zeros(length(index_time),1),'k');\n hold on;\n axis tight\n ylim([min_,max_]);\n if add_frcst_yes == 1\n plot(time(index_time),add_frcst(index_time,var),'b','LineWidth',2);\n ylim([min([min_,min(add_frcst(index_time,var))]) , max([max_,max(add_frcst(index_time,var))]) ] );\n end\n title(varnames{var})\n set(gcf,'position' ,[50 50 800 650])\n if jplot==nbofplots(jfig) || var==length(varnames)\n %legend(legenda);\n if savefig_yes == 1 \n STR_RECAP = [ fnam_dir '/' fnam_suffix '_' int2str(jfig)];\n saveas(gcf,STR_RECAP,'fig');\n if strcmp(version('-release'),'2022b') == 0\n saveas(gcf,STR_RECAP,'eps');\n % savefigure_pdf(STR_RECAP);\n savefigure_pdf([STR_RECAP '.pdf']);\n end\n end\n jplot=0;\n end\nend\n", "meta": {"author": "naffe15", "repo": "BVAR_", "sha": "4c935f440a2e98475ead4f873ebdfd03378a0eee", "save_path": "github-repos/MATLAB/naffe15-BVAR_", "path": "github-repos/MATLAB/naffe15-BVAR_/BVAR_-4c935f440a2e98475ead4f873ebdfd03378a0eee/bvartools/plot_frcst_.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.39480867693044025}} {"text": "function y = horzcat(varargin)\n % Horizontal concatenation for sym arrays.\n % C = HORZCAT(A, B, ...) horizontally concatenates the sym arrays A,\n % B, ... . For matrices, all inputs must have the same number of rows. For\n % N-D arrays, all inputs must have the same sizes except in the second\n % dimension.\n %\n % C = HORZCAT(A,B) is called for the syntax [A B].\n %\n % See also VERTCAT.\n \n X = cellfun(@(x)SymExpression(x),varargin,'UniformOutput',false);\n % X = SymExpression(varargin);\n str = cellfun(@(x)x.s,X,'UniformOutput',false);\n % evaluate the operation in Mathematica and return the\n % expression string\n sstr = ['Join[Sequence@@ToMatrixForm/@' cell2tensor(str,'ConvertString',false) ',2]'];\n \n % create a new object with the evaluated string\n y = SymExpression(sstr);\n\nend", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/symbolic/@SymExpression/horzcat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.39479274342774107}} {"text": "function S = sparse2 (i,j,s,m,n,nzmax)\t\t\t\t\t %#ok\n%SPARSE2 replacement for SPARSE\n%\n% Example:\n% S = sparse2 (i,j,s,m,n,nzmax)\n% \n% Identical to the MATLAB sparse function (just faster).\n% An additional feature is added that is not part of the MATLAB sparse\n% function, the Z matrix. With an extra output,\n%\n% [S Z] = sparse2 (i,j,s,m,n,nzmax)\n%\n% the matrix Z is a binary real matrix whose nonzero pattern contains the\n% explicit zero entries that were dropped from S. Z only contains entries\n% for the sparse2(i,j,s,...) usage. [S Z]=sparse2(X) where X is full always\n% returns Z with nnz(Z) = 0, as does [S Z]=sparse2(m,n). More precisely,\n% Z is the following matrix (where ... means the optional m, n, and nzmax\n% parameters).\n%\n% S = sparse (i,j,s, ...)\n% Z = spones (sparse (i,j,1, ...)) - spones (S)\n%\n% See also sparse.\n\n% Copyright 2006-2007, Timothy A. Davis, http://www.suitesparse.com\n\nerror ('sparse2 mexFunction not found') ;\n", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/third/sparse2/sparse2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.39479274342774107}} {"text": "function nav=decode_sp3b(nav,headinfo,fid)\nglobal glc gls\npeph=gls.peph; \nNMAX=10000; nav.peph=repmat(gls.peph,NMAX,1);\n\nif headinfo.type=='P'\n ns=headinfo.ns;\nelse\n ns=2*headinfo.ns;\nend\n\n%traversal by epoch\nwhile ~feof(fid) \n \n line=fgetl(fid);\n if strcmp(line,'EOF'),continue;end\n \n if line(1)~='*'\n fprintf('sp3 invalid epoch\\n');\n continue;\n end\n \n time=str2time(line(4:31));\n if strcmp(headinfo.tsys,'UTC'),time=utc2gpst(time);end\n peph.time=time;\n \n %initialize peph struct\n for i=1:glc.MAXSAT\n for j=1:4\n peph.pos(i,j)=0;\n peph.std(i,j)=0;\n peph.vel(i,j)=0;\n peph.vst(i,j)=0;\n end\n for j=1:3\n peph.cov(i,j)=0;\n peph.vco(i,j)=0;\n end\n end\n \n for i=1:ns\n line=fgetl(fid);\n if size(line,2)<4||(line(1)~='P'&&line(1)~='V'),continue;end\n \n if line(2)==' '\n sys=glc.SYS_GPS;\n else\n sys=code2sys(line(2));\n end\n prn=str2double(line(3:4));\n if sys==glc.SYS_QZS,prn=prn+192;end\n sat=satno(sys,prn); \n if ~sat,continue;end\n \n for j=1:4\n if j<=3\n m=2;k1=1000;base=headinfo.bfact(1);k2=10^-3;k3=0.1;k4=10^-7;\n else\n m=3;k1=10^-6;base=headinfo.bfact(2);k2=10^-12;k3=10^-10;k4=10^-16;\n end\n \n val=str2double(line(4+14*(j-1)+1:4+14*(j-1)+14));\n if size(line,2)>61\n std=str2double(line(61+3*(j-1)+1:61+3*(j-1)+m));\n else\n std=0;\n end\n \n if line(1)=='P'\n if val~=0&&abs(val-999999.999999)>=10^-6\n peph.pos(sat,j)=val*k1; v=1;\n end\n if base>0&&std>0\n peph.std(sat,j)=base^std*k2;\n end\n elseif v\n if val~=0&&abs(val-999999.999999)>=10^-6\n peph.vel(sat,j)=val*k3;\n end\n if base>0&&std>0\n peph.vst(sat,j)=base^std*k4;\n end\n end \n end \n end\n \n if v\n if nav.np>size(nav.peph,1)\n nav.peph(nav.np+1:nav.np+NMAX,1)=repmat(gls.peph,NMAX,1);\n end\n nav.peph(nav.np+1)=peph;\n nav.np=nav.np+1;\n end\n \nend\nfclose(fid);\n\nif nav.np htol (nonlinear constraints are locally inconsistent)\n% 4 - Initial point x has h(x) > ubd\n% 5 - Iteration limit reached\n% 6 - Termination with rho <= htol\n% 7 - Not enough workspace memory in ws or lws\n% 8 - Insufficient space for filter\n% 9 and above - LCP solver problem\n% 105 - User Exit\n%\n% Copyright (C) 2013 Jonathan Currie (I2C2)", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/OptiToolbox/Solvers/filtersd/filtersd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3947778121664584}} {"text": "addpath(genpath('../mutils/My/'));\naddpath(genpath('../ptv'));\nbasepth = '../../../data_prj/dir_dataset/DIR_files/';\n\n\nTIME_e = zeros(2,2,2, 10); \nTRE_e = zeros(2,2,2, 10);\n\nfor use_refinement = 0 : 1\nfor resize = 0 : 1\nfor fast_lcc = 0 : 1\nif use_refinement && ~resize\n continue;\nend\n\nfor idx = 1:10\n pts_struct = DIR_get_all_points_for_the_case(idx, basepth);\n [volmov, spc] = read_DIR_volume_4dCT(idx, 5, basepth);\n volmov = double(volmov);\n pts_mov = pts_struct.extreme.e;\n [volfix, spc] = read_DIR_volume_4dCT(idx, 0, basepth);\n volfix = double(volfix);\n pts_fix = pts_struct.extreme.b;\n\n volmov = img_thr(volmov, 80, 900, 1);\n volfix = img_thr(volfix, 80, 900, 1);\n \n % crop images \n init_size = size(volmov);\n min_max1 = [ min(pts_mov, [], 1)', max(pts_mov, [], 1)'];\n min_max2 = [ min(pts_fix, [], 1)', max(pts_fix, [], 1)'];\n min_max = [ min(min_max1(:, 1), min_max2(:, 1)), max(min_max1(:, 2), min_max2(:, 2))];\n d = [10, 10, 5];\n crop_v = [ max(1, min_max(1,1) - d(1)), min(size(volmov, 1), min_max(1,2) + d(1)); ... \n max(1, min_max(2,1) - d(2)), min(size(volmov, 2), min_max(2,2) + d(2)); ... \n max(1, min_max(3,1) - d(3)), min(size(volmov, 3), min_max(3,2) + d(3));];\n volmov = crop_data(volmov, crop_v);\n volfix = crop_data(volfix, crop_v);\n\n spc_orig = spc;\n if resize\n bszv = size(volmov);\n spc_tmp = [1, 1, 1];\n volfix = volresize(volfix, round(bszv .* spc .* spc_tmp), 1);\n volmov = volresize(volmov, round(bszv .* spc .* spc_tmp), 1);\n spc = [1,1,1] ./ spc_tmp;\n end\n \n % configure registration\n opts = [];\n opts.loc_cc_approximate = fast_lcc;\n if use_refinement\n if resize\n opts.grid_spacing = [4, 4, 4]*2; \n else\n opts.grid_spacing = [4, 4, 3]*2; % grid spacing in pixels\n end\n opts.cp_refinements = 1;\n else\n if resize\n opts.grid_spacing = [4, 4, 4]; \n else\n opts.grid_spacing = [4, 4, 3]; % grid spacing in pixels\n end\n opts.cp_refinements = 0;\n end\n opts.display = 'off';\n opts.k_down = 0.7;\n opts.interp_type = 0;\n opts.metric = 'loc_cc_fftn_gpu';\n opts.metric_param = [1,1,1] * 2.1;\n opts.scale_metric_param = true;\n opts.isoTV = 0.11;\n opts.csqrt = 5e-3;\n opts.spline_order = 1;\n opts.border_mask = 5;\n opts.max_iters = 80;\n opts.check_gradients = 100*0;\n opts.pix_resolution = spc;\n\n timer = tic;\n [voldef, Tptv, Kptv] = ptv_register(volmov, volfix, opts);\n TIME_e(use_refinement+1, resize+1, fast_lcc+1, idx) = toc(timer);\n\n if resize\n Tptv_rsz = cat(4, volresize(Tptv(:,:,:,1), bszv), volresize(Tptv(:,:,:,2), bszv), volresize(Tptv(:,:,:,3), bszv)); \n voldef = volresize(voldef, bszv);\n else\n Tptv_rsz = Tptv;\n end\n [~, Tptv_rsz] = uncrop_data(voldef, Tptv_rsz, crop_v, init_size);\n % move points and measure TRE\n [pt_errs_phys, pts_moved_pix, TRE_phys, TREstd_phys] = DIR_movepoints(pts_mov, pts_fix, Tptv_rsz, spc_orig, []);\n TREs(idx) = mean(TRE_phys);\n\n TRE_e(use_refinement+1, resize+1, fast_lcc+1, idx) = mean(TRE_phys);\n save('results/DIR_TRE.mat', 'TRE_e', 'TIME_e');\nend\nend\nend\nend", "meta": {"author": "visva89", "repo": "pTVreg", "sha": "c359620e3c8435392db02354274d6c74d682d437", "save_path": "github-repos/MATLAB/visva89-pTVreg", "path": "github-repos/MATLAB/visva89-pTVreg/pTVreg-c359620e3c8435392db02354274d6c74d682d437/examples_ptv/DIR_test_all.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.743167997235783, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39477780612304975}} {"text": "function [V,cc]=intstab(G,Gc,H)\nG1=zpk(minreal(feedback(Gc*G,H)));\nG2=zpk(Gc*G*H);\nV=0; cc=[];\nvv=G1.p{1}; ii=find(real(vv)>=0); \nif length(ii)>0, V=1; cc=vv(ii);\nelse\n z=G2.z{1}; p=G2.p{1};\n for i=1:length(z), \n ii=find(abs(z(i)-p)<1000*eps);\n if length(ii)>0\n if real(z(i))>=0, \n V=2; cc=[cc,z(i)]; break; \nend, end, end, end\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/2302-feedback-control-systems/xue/intstab.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998714925404, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39472209684661297}} {"text": "function test_prf_full()\n%Validate calculation of prf model, including gFit, sFit, hrfFit, final fit\n%\n% test_prf()\n% \n% Tests: ip2volTSeries, rmMain, rmGridFit, rmSearchFit, rmHrfSearchFit\n%\n% INPUTS\n% No inputs\n%\n% RETURNS\n% No returns\n%\n% Example: test_prf_full()\n%\n% See also MRVTEST\n%\n% Copyright Stanford team, mrVista, 2015\n\n%% Initialize the key variables and data path\n% Data directory (where the mrSession file is located)\ndataDir = mrtInstallSampleData('functional','prfInplane');\n\n% This is the validation file\nstoredPRF = mrtGetValididationData('prfFull');\n\n% These are the items we stored in the validation file\n% \n% val.roiname = rmGet(m.model{1}, 'roiname');\n% val.eccmn = nanmean(ecc);\n% val.sigmn = nanmean(sig);\n% val.xmax = max(x);\n% val.vemax = max(ve);\n% val.coordsSz = length(coords);\n% save(vFile, '-struct', 'val')\n\n%% Retain original directory, change to data directory\ncurDir = pwd;\ncd(dataDir);\n\n% There can be several data types - we will compute PRF model from Averages\ndataType = 'Averages';\n\n%% Transfer time series from inplane to gray\nip = initHiddenInplane(); % Foregoes interface - loads data silently\n\n% Set dataTYPE:\nip = viewSet(ip, 'Current DataType', dataType);\n\n% Same for Gray view - initialize hidden view and set dataTYPE\nvw = initHiddenGray();\nvw = viewSet(vw, 'Current DataType', dataType);\n\n% Transfer time series from inplane to gray\nvw = ip2volTSeries(ip,vw,1,'linear'); clear ip;\n\n%% calculate the pRF model\nvw = loadROI(vw, 'RV1.mat', 3, [], 0, 1);\nvw = rmMain(vw,'RV1.mat' ,5,'min pRF size', 0.5, 'max pRF size', 3,...\n 'number of sigmas', 6, 'outerlimit', 0, ...\n 'coarse sample', false, 'decimate', 0);\nmGauss = load(viewGet(vw, 'rm file'));\n\ncoords = rmGet(mGauss.model{1}, 'roiindices');\neccGauss = rmCoordsGet('gray', mGauss.model{1}, 'ecc', coords);\nsigGauss = rmCoordsGet('gray', mGauss.model{1}, 'sigma', coords);\nxGauss = rmCoordsGet('gray', mGauss.model{1}, 'x', coords);\nveGauss = rmCoordsGet('gray', mGauss.model{1}, 've', coords);\n%% Return to original directory\ncd(curDir)\n\n%% Validate the results\ntol = 1e-4;\n\nassertEqual(storedPRF.roiname,rmGet(mGauss.model{1}, 'roiname'));\n\nassertEqual(storedPRF.coordsSz, length(coords));\n\nassertElementsAlmostEqual(storedPRF.eccmn, nanmean(eccGauss), 'relative', tol);\n\nassertElementsAlmostEqual(storedPRF.sigmn, nanmean(sigGauss), 'relative', tol);\n\nassertElementsAlmostEqual(storedPRF.xmax, max(xGauss), 'relative', tol);\n\nassertElementsAlmostEqual(storedPRF.vemax, max(veGauss), 'relative', tol);\n\nmrvCleanWorkspace;\n\n%% Test CSS pRF model separately\n% [ERK 11/17/21]: While one can request multiple models within one command\n% using the variable input 'pRFModel',{'onegaussian','css'}, here we test\n% the css model separately as it avoids getting exponents fixed to 1. This\n% is because the rmDefineParameters.m function only defines parameters\n% based on the first model ('one gaussian', not the second 'css').\nvw = rmMain(vw,'RV1.mat' ,5,'min pRF size', 0.5, 'max pRF size', 3,...\n 'number of sigmas', 6, 'outerlimit', 0, ...\n 'coarse sample', false, 'decimate', 0, 'pRFModel',{'css'});\nmCSS = load(viewGet(vw, 'rm file'));\n\ncoords = rmGet(mCSS.model{1}, 'roiindices');\n\n% Check if css exponent ranges between 0-1.\nexpCSS = rmCoordsGet('gray', mCSS.model{1}, 'exponent', coords);\nassert(min(expCSS)>=0);\nassert(max(expCSS)<=1);\n\n%% TO DO: Store PRF results and compare against current output %%\neccCSS = rmCoordsGet('gray', mCSS.model{1}, 'ecc', coords);\nsigCSS = rmCoordsGet('gray', mCSS.model{1}, 'sigma', coords);\nxCSS = rmCoordsGet('gray', mCSS.model{1}, 'x', coords);\nveCSS = rmCoordsGet('gray', mCSS.model{1}, 've', coords);\n\n\n%% End Script\n\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrTest/bold/extended/test_prf_full.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998714925403, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3947220968466129}} {"text": "%%*****************************************************************\n%% linsysolvefun: Solve H*x = b\n%%\n%% x = linsysolvefun(L,b)\n%% where L contains the triangular factors of H. \n%%*****************************************************************\n%% SDPT3: version 4.0\n%% Copyright (c) 1997 by\n%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************\n \n function x = linsysolvefun(L,b)\n \n x = zeros(size(b)); \n for k=1:size(b,2)\n if strcmp(L.matfct_options,'chol')\n x(L.perm,k) = mextriang(L.R, mextriang(L.R,b(L.perm,k),2) ,1); \n %% x(L.perm,k) = L.R \\ (b(L.perm,k)' / L.R)';\n elseif strcmp(L.matfct_options,'spchol')\n x(L.perm,k) = mextriangsp(L.Rt,mextriangsp(L.R,b(L.perm,k),2),1);\n elseif strcmp(L.matfct_options,'ldl')\n\tx(L.p,k) = ((L.D\\ (L.L \\ b(L.p,k)))' / L.L)';\n elseif strcmp(L.matfct_options,'spldl')\n btmp = b(:,k).*L.s;\n xtmp(L.p,1) = L.Lt\\ (L.D\\ (L.L \\ btmp(L.p)));\n\tx(:,k) = xtmp.*L.s; \n elseif strcmp(L.matfct_options,'lu')\n x(:,k) = L.U \\ (L.L \\ b(L.p,k));\n elseif strcmp(L.matfct_options,'splu') \n\tbtmp = b(:,k)./L.s; \n x(L.q,k) = L.U \\ (L.L \\ (btmp(L.p)));\n end\n end\n%%*************************************************************************\n", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/SDPT3-4.0/SDPT3-4.0/Solver/linsysolvefun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998508568417, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39472208636756034}} {"text": "classdef LossTopBoxSmoothProb < dagnn.Loss\n % given top scoring box, it finds other boxes with at least overlap of\n % minOverlap and calculates the euclidean dist between top and other\n % boxes\n \n properties (Transient)\n gtIdx = []\n boxIdx = []\n probs = []\n minOverlap = 0.5\n nBoxes = 10\n end\n \n methods\n function outputs = forward(obj, inputs, params)\n if numel(inputs) ~= 4\n error('Number of inputs is not 2');\n end\n obj.gtIdx = [];\n obj.boxIdx = [];\n obj.probs = [];\n boxes = double(gather(inputs{2})');\n scores = gather(squeeze(inputs{3}));\n labels = gather(squeeze(inputs{4}));\n \n if numel(boxes)<5\n return;\n end\n \n outputs{1} = zeros(1,'like',inputs{1});\n for c=1:numel(labels)\n if labels(c)<=0\n continue;\n end\n \n [so, si] = sort(scores(c,:),'descend');\n obj.gtIdx{c} = si(1);\n gtBox = boxes(:,obj.gtIdx{c});\n gtArea = (gtBox(3)-gtBox(1)+1) .* (gtBox(4)-gtBox(2)+1);\n \n bbs = boxes(:,si(2:min(obj.nBoxes,end)))';\n \n y1 = bbs(:,1);\n x1 = bbs(:,2);\n y2 = bbs(:,3);\n x2 = bbs(:,4);\n \n area = (x2-x1+1) .* (y2-y1+1);\n \n yy1 = max(gtBox(1), y1);\n xx1 = max(gtBox(2), x1);\n yy2 = min(gtBox(3), y2);\n xx2 = min(gtBox(4), x2);\n \n w = max(0.0, xx2-xx1+1);\n h = max(0.0, yy2-yy1+1);\n \n inter = w.*h;\n o = find((inter ./ (gtArea + area - inter))>obj.minOverlap);\n \n if isempty(o)\n continue;\n end\n \n obj.boxIdx{c} = si(o+1);\n obj.probs{c} = so(o+1);\n d = bsxfun(@minus,inputs{1}(:,:,:,obj.boxIdx{c}),inputs{1}(:,:,:,obj.gtIdx{c}));\n d = bsxfun(@times,d,obj.probs{c});\n outputs{1} = outputs{1} + 0.5 * sum(d(:).^2);\n end\n \n n = obj.numAveraged ;\n m = n + 1 ;\n obj.average = (n * obj.average + gather(outputs{1})) / m ;\n obj.numAveraged = m ;\n end\n \n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n derInputs = cell(1,4) ;\n derInputs{1} = zeros(size(inputs{1}),'like',inputs{1});\n for c=1:numel(obj.boxIdx)\n if isempty(obj.boxIdx{c}), continue; end\n derInputs{1}(:,:,:,obj.boxIdx{c}) = ...\n bsxfun(@minus,inputs{1}(:,:,:,obj.boxIdx{c}),inputs{1}(:,:,:,obj.gtIdx{c}));\n derInputs{1}(:,:,:,obj.boxIdx{c}) = bsxfun(@times,...\n reshape(obj.probs{c},[1 1 1 numel(obj.probs{c})]),derInputs{1}(:,:,:,obj.boxIdx{c}));\n derInputs{1}(:,:,:,obj.gtIdx{c}) = -sum(derInputs{1}(:,:,:,obj.boxIdx{c}),4);\n\n end\n derInputs{1} = derInputs{1} * derOutputs{1};\n% fprintf('LossTopBox l2 %f ',sqrt(sum(derInputs{1}(:).^2)));\n derParams = {} ;\n end\n \n function obj = LossTopBoxSmoothProb(varargin)\n obj.load(varargin) ;\n obj.loss = 'LossTopBoxSmoothProb';\n end\n \n function reset(obj)\n obj.gtIdx = [];\n obj.boxIdx = [];\n obj.probs = [];\n obj.average = 0 ;\n obj.numAveraged = 0 ;\n end\n \n \n end\n \nend\n", "meta": {"author": "hbilen", "repo": "WSDDN", "sha": "bfdaa3f9ffed45e52a11a1342fd7476e08dfac39", "save_path": "github-repos/MATLAB/hbilen-WSDDN", "path": "github-repos/MATLAB/hbilen-WSDDN/WSDDN-bfdaa3f9ffed45e52a11a1342fd7476e08dfac39/matlab/+dagnn/LossTopBoxSmoothProb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998508568417, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39472208636756034}} {"text": "function [fusedBox] = fusePETCT(ROIbox_PET,ROIbox_CT,maskBox_PET,CTinv,CTweight,wavelet)\n% -------------------------------------------------------------------------\n% function [fusedBox] = fusePETCT(ROIbox_PET,ROIbox_CT,maskBox_PET,CTinv,CTweight,wavelet)\n% -------------------------------------------------------------------------\n% DESCRIPTION: \n% This function fuses the region of interest (ROI) of two registered PET and \n% CT volumes using a technique based on the wavelet transform. See Ref. [2] \n% for more details.\n% -------------------------------------------------------------------------\n% REFERENCE:\n% [1] Vallieres, M. et al. (2015). FDG-PET/CT radiomics models for the \n% early prediction of different tumour outcomes in head and neck cancer.\n% The Journal of Nuclear Medicine, aa(bb), xxx-yyy. \n% doi:\n% -------------------------------------------------------------------------\n% INPUTS:\n% - ROIbox_PET: 3D array of the smallest box containing the ROI of the PET \n% volume.\n% - ROIbox_CT: 3D array of the smallest box containing the ROI of the CT\n% volume.\n% - maskBox_PET: 3D array of the mask of the smallest box specifying the\n% ROI of the PET volume. Voxels within the ROI are assigned\n% value of 1, voxels outside a value of 0.\n% - CTinv: String specifying if the intensities of the CT volume are\n% inverted prior to fusion with PET. Either 'Inv' for inversion,\n% or 'NoInv' for no inversion.\n% - CTweight: Numerical value specifying the weight of the CT scan in the\n% fusion with PET.\n% - wavelet: String specifying the name of the MATLAB wavelet basis used\n% wavelet basis used in the fusion process.\n% -------------------------------------------------------------------------\n% OUTPUTS:\n% - fusedBox: 3D array of the smallest box containing the ROI of the fused\n% PET/CT volume.\n% -------------------------------------------------------------------------\n% AUTHOR(S): Martin Vallieres \n% -------------------------------------------------------------------------\n% HISTORY:\n% - Creation: July 2015\n% -------------------------------------------------------------------------\n% STATEMENT:\n% This file is part of , \n% a package providing MATLAB programming tools for radiomics analysis.\n% --> Copyright (C) 2015 Martin Vallieres\n% \n% This package is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This package is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this package. If not, see .\n% -------------------------------------------------------------------------\n\n\n% PET PRE_PROCESSING\nROIbox_PET = sqrt(ROIbox_PET);\n\n\n% RESAMPLING CT VOLUME TO PET IN-PLANE RESOLUTION\nszPET = size(ROIbox_PET);\ntemp=zeros(szPET);\nfor k = 1:szPET(3)\n temp(:,:,k) = imresize(ROIbox_CT(:,:,k),[szPET(1),szPET(2)],'Method','cubic','Antialiasing',true);\nend\nROIbox_CT = temp;\n\n\n% NORMALIZATION (and inversion) OF VOLUMES\nROIOnly_CT = ROIbox_CT;\nROIOnly_PET = ROIbox_PET;\nROIOnly_CT(maskBox_PET==0) = NaN;\nROIOnly_PET(maskBox_PET==0) = NaN;\nminCT = min(ROIOnly_CT(:));\nROIbox_CT = ROIbox_CT - minCT;\nROIOnly_CT = ROIOnly_CT - minCT;\nROIbox_CT = ROIbox_CT./max(ROIOnly_CT(:)).*255;\nif strcmp(CTinv,'Inv')\n ROIbox_CT = 255 - ROIbox_CT;\nend\nminPET = min(ROIOnly_PET(:));\nROIbox_PET = ROIbox_PET - minPET;\nROIOnly_PET = ROIOnly_PET - minPET;\nROIbox_PET = ROIbox_PET./max(ROIOnly_PET(:)).*255;\n\n\n% WAVELET DECOMPOSITION AND FUSION OF COEFFICIENTS\nwdecCT = wavedec3(ROIbox_CT,1,wavelet);\nwdecPET = wavedec3(ROIbox_PET,1,wavelet);\nwdecFUSED = wdecPET;\nszDEC = size(wdecFUSED.dec{1}); % All sub-bands are of the same size\n\n% Fusion of the LLL sub-bands (dec{1})\nb = 1;\nwdecFUSED.dec{b} = (1-CTweight).*wdecPET.dec{b} + CTweight.*wdecCT.dec{b};\n\n% Fusion of the HLL sub-bands (dec{2})\nb = 2;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor k = 1:szDEC(3)\n [~,Gy] = imgradientxy(wdecPET.dec{b}(:,:,k)); tempPET(:,:,k) = sqrt(Gy.^2);\n [~,Gy] = imgradientxy(wdecCT.dec{b}(:,:,k)); tempCT(:,:,k) = sqrt(Gy.^2);\nend\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n% Fusion of the LHL sub-bands (dec{3})\nb = 3;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor k = 1:szDEC(3)\n [Gx,~] = imgradientxy(wdecPET.dec{b}(:,:,k)); tempPET(:,:,k) = sqrt(Gx.^2);\n [Gx,~] = imgradientxy(wdecCT.dec{b}(:,:,k)); tempCT(:,:,k) = sqrt(Gx.^2);\nend\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n% Fusion of the HHL sub-bands (dec{4})\nb = 4;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor k = 1:szDEC(3)\n [Gx,Gy] = imgradientxy(wdecPET.dec{b}(:,:,k)); tempPET(:,:,k) = sqrt(Gx.^2 + Gy.^2);\n [Gx,Gy] = imgradientxy(wdecCT.dec{b}(:,:,k)); tempCT(:,:,k) = sqrt(Gx.^2 + Gy.^2);\nend\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n% Fusion of the LLH sub-bands (dec{5})\nb = 5;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor i = 1:szDEC(1)\n [~,Gy_PET] = imgradientxy(squeeze(wdecPET.dec{b}(i,:,:))'); \n [~,Gy_CT] = imgradientxy(squeeze(wdecCT.dec{b}(i,:,:))');\n for k = 1:szDEC(3)\n tempPET(i,:,k) = sqrt((Gy_PET(k,:)).^2);\n tempCT(i,:,k) = sqrt((Gy_CT(k,:)).^2);\n end\nend\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n% Fusion of the HLH sub-bands (dec{6})\nb = 6;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor k = 1:szDEC(3)\n [~,Gy] = imgradientxy(wdecPET.dec{b}(:,:,k)); tempPET(:,:,k) = Gy.^2;\n [~,Gy] = imgradientxy(wdecCT.dec{b}(:,:,k)); tempCT(:,:,k) = Gy.^2;\nend\nfor i = 1:szDEC(1)\n [~,Gy_PET] = imgradientxy(squeeze(wdecPET.dec{b}(i,:,:))'); \n [~,Gy_CT] = imgradientxy(squeeze(wdecCT.dec{b}(i,:,:))');\n for k = 1:szDEC(3)\n tempPET(i,:,k) = tempPET(i,:,k) + (Gy_PET(k,:)).^2;\n tempCT(i,:,k) = tempCT(i,:,k) + (Gy_CT(k,:)).^2;\n end\nend\ntempPET = sqrt(tempPET); tempCT = sqrt(tempCT);\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n% Fusion of the LHH sub-bands (dec{7})\nb = 7;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor k = 1:szDEC(3)\n [Gx,~] = imgradientxy(wdecPET.dec{b}(:,:,k)); tempPET(:,:,k) = Gx.^2;\n [Gx,~] = imgradientxy(wdecCT.dec{b}(:,:,k)); tempCT(:,:,k) = Gx.^2;\nend\nfor i = 1:szDEC(1)\n [~,Gy_PET] = imgradientxy(squeeze(wdecPET.dec{b}(i,:,:))'); \n [~,Gy_CT] = imgradientxy(squeeze(wdecCT.dec{b}(i,:,:))');\n for k = 1:szDEC(3)\n tempPET(i,:,k) = tempPET(i,:,k) + (Gy_PET(k,:)).^2;\n tempCT(i,:,k) = tempCT(i,:,k) + (Gy_CT(k,:)).^2;\n end\nend\ntempPET = sqrt(tempPET); tempCT = sqrt(tempCT);\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n% Fusion of the HHH sub-bands (dec{8})\nb = 8;\ntempPET = zeros(szDEC);\ntempCT = zeros(szDEC);\nfor k = 1:szDEC(3)\n [Gx,Gy] = imgradientxy(wdecPET.dec{b}(:,:,k)); tempPET(:,:,k) = Gx.^2 + Gy.^2;\n [Gx,Gy] = imgradientxy(wdecCT.dec{b}(:,:,k)); tempCT(:,:,k) = Gx.^2 + Gy.^2;\nend\nfor i = 1:szDEC(1)\n [~,Gy_PET] = imgradientxy(squeeze(wdecPET.dec{b}(i,:,:))'); \n [~,Gy_CT] = imgradientxy(squeeze(wdecCT.dec{b}(i,:,:))');\n for k = 1:szDEC(3)\n tempPET(i,:,k) = tempPET(i,:,k) + (Gy_PET(k,:)).^2;\n tempCT(i,:,k) = tempCT(i,:,k) + (Gy_CT(k,:)).^2;\n end\nend\ntempPET = sqrt(tempPET); tempCT = sqrt(tempCT);\nwdecFUSED.dec{b}(tempCT > tempPET) = wdecCT.dec{b}(tempCT > tempPET);\n\n\n% WAVELET RECONSTRUCTION\nfusedBox = waverec3(wdecFUSED);\nfusedOnly = fusedBox;\nfusedOnly(maskBox_PET==0) = NaN;\nminFus = min(fusedOnly(:));\nfusedBox = fusedBox - minFus;\nfusedOnly = fusedOnly - minFus;\nfusedBox = fusedBox./max(fusedOnly(:)).*255;\n\nend", "meta": {"author": "mvallieres", "repo": "radiomics", "sha": "d3a61737730e1b2b46d04c9e22a3fcc390912f1a", "save_path": "github-repos/MATLAB/mvallieres-radiomics", "path": "github-repos/MATLAB/mvallieres-radiomics/radiomics-d3a61737730e1b2b46d04c9e22a3fcc390912f1a/STUDIES/HN_study/Functions/FUSION_PET-CT/fusePETCT.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.39470387780105043}} {"text": "% This is material illustrating the methods from the book\n% Financial Modelling - Theory, Implementation and Practice with Matlab\n% source\n% Wiley Finance Series\n% ISBN 978-0-470-74489-5\n%\n% Date: 02.05.2012\n%\n% Authors: Joerg Kienitz\n% Daniel Wetterau\n%\n% Please send comments, suggestions, bugs, code etc. to\n% kienitzwetterau_FinModelling@gmx.de\n%\n% (C) Joerg Kienitz, Daniel Wetterau\n% \n% Since this piece of code is distributed via the mathworks file-exchange\n% it is covered by the BSD license \n%\n% This code is being provided solely for information and general \n% illustrative purposes. The authors will not be responsible for the \n% consequences of reliance upon using the code or for numbers produced \n% from using the code.\n\nfunction y = FSABR2x(ulimit, f)\n% F(X>ulimit) based on FSABR2\n y = 1- FSABR2(ulimit,f);\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/38322-the-sabr-model-densities-and-mc/Densities_Prices_MC/FSABR2x.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.39470387057008927}} {"text": "%%*****************************************************************\n%% HSDNTdirfun: compute (dX,dZ), given dy, for the NT direction.\n%%*****************************************************************\n%% SDPT3: version 4.0\n%% Copyright (c) 1997 by\n%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************\n\n function [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx); \n \n global solve_ok\n\n dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = [];\n if (any(isnan(xx)) | any(isinf(xx)))\n solve_ok = 0;\n fprintf('\\n HSDNTdirfun: solution contains NaN or inf.');\n return;\n end\n%%\n m = par.m; \n dy2 = xx(1:m+2); \n%%\n for p=1:size(blk,1)\n pblk = blk(p,:); \n if strcmp(pblk{1},'l')\n dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2));\n tmp = par.dd{p}.*dZ{p};\n dX{p} = EinvRc{p} - tmp;\n elseif strcmp(pblk{1},'q')\n dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2));\n tmp = par.dd{p}.*dZ{p} + qops(pblk,qops(pblk,dZ{p},par.ee{p},1),par.ee{p},3); \n dX{p} = EinvRc{p} - tmp; \n elseif strcmp(pblk{1},'s') \n dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy2)); \n tmp = Prod3(pblk,par.W{p},dZ{p},par.W{p},1); \n dX{p} = EinvRc{p}-tmp;\n end\n end \n dy = dy2(1:m); \n par.dtau = dy2(m+1); \n par.dtheta = dy2(m+2);\n par.dkap = (par.mu./par.tau - par.kap) - par.kap*(par.dtau/par.tau); \n%%*******************************************************************\n", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/SDPT3-4.0/SDPT3-4.0/HSDSolver/HSDNTdirfun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.39470387057008927}} {"text": "function [Jul1,Jul2]=TCB2TDB(Jul1,Jul2)\n%%TCB2TDB Convert from barycentric coordinate time (TCB) to barycentric\n% dynamical time (TDB), both represented as two-part Julian dates.\n%\n%INPUTS: Jul1, Jul2 Two parts of a Julian date given in TCB. The units of\n% the date are days. The full date is the sum of both\n% terms. The date is broken into two parts to provide\n% more bits of precision. It does not matter how the\n% date is split.\n%\n%OUTPUTS: Jul1, Jul2 The time as a Julian date in TDB.\n%\n%This is a mex wrapper for the function iauTcbtdb in the International\n%Astronomical Union's (IAU) Standard's of Fundamental Astronomy library.\n%\n%The algorithm can be compiled for use in Matlab using the \n%CompileCLibraries function.\n%\n%The algorithm is run in Matlab using the command format\n%[Jul1,Jul2]=TCB2TDB(Jul1,Jul2);\n%\n%Many temporal coordinate systems standards are compared in [1].\n%\n%REFERENCES:\n%[1] D. F. Crouse, \"An Overview of Major Terrestrial, Celestial, and\n% Temporal Coordinate Systems for Target Tracking,\" Formal Report,\n% Naval Research Laboratory, no. NRL/FR/5344--16-10,279, 10 Aug. 2016,\n% 173 pages.\n%\n%March 2014 David F. Crouse, Naval Research Laboratory, Washington D.C.\n%(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release.\n\nerror('This function is only implemented as a mexed C or C++ function. Please run CompileCLibraries.m to compile the function for use.')\n\nend\n\n%LICENSE:\n%\n%The source code is in the public domain and not licensed or under\n%copyright. The information and software may be used freely by the public.\n%As required by 17 U.S.C. 403, third parties producing copyrighted works\n%consisting predominantly of the material produced by U.S. government\n%agencies must provide notice with such work(s) identifying the U.S.\n%Government material incorporated and stating that such material is not\n%subject to copyright protection.\n%\n%Derived works shall not identify themselves in a manner that implies an\n%endorsement by or an affiliation with the Naval Research Laboratory.\n%\n%RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE\n%SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY THE NAVAL\n%RESEARCH LABORATORY FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE ACTIONS\n%OF RECIPIENT IN THE USE OF THE SOFTWARE.\n", "meta": {"author": "USNavalResearchLaboratory", "repo": "TrackerComponentLibrary", "sha": "9f6e329de5be06a371757c4b853200beb6def2d0", "save_path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary", "path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary/TrackerComponentLibrary-9f6e329de5be06a371757c4b853200beb6def2d0/Coordinate_Systems/Time/TCB2TDB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455589, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.39470386333912794}} {"text": "function [fMc, mcCalculator] = calc_Mc(mCatalog, calcMethod, binInterval, mcCorrectionFactor)\n % CALC_MC Calculates the magnitude of completeness for a given catalog\n %\n % fMc = CALC_MC(mCatalog, nMethod, binInterval, mcCorrectionFactor)\n % [fMc, mc_calculator] = CALC_MC(...) returns a function handle to the calculation\n % method, so it can be reused in heavy loops. MC_CALCULATOR has the form:\n % fMc = MY_CALCULATOR(catalog, bins, correction);\n %\n % --------------------------------------------------------------------\n %\n %\n % Input parameters:\n % mCatalog Earthquake catalog for determing the magnitude of completeness\n % calcMethod Method to determine the magnitude of completeness\n % see: McMethods for a list of valid values\n % binInterval Binning of catalog's magnitudes (default 0.1)\n % mcCorrectionFactor Correction term to be added to fMc (default 0)\n %\n % Output parameters:\n % fMc Magnitude of completeness\n % mc_calculator\n %\n %\n % Copyright (C) 2004 by Danijel Schorlemmer, Jochen Woessner\n \n % This program is free software; you can redistribute it and/or modify\n % it under the terms of the GNU General Public License as published by\n % the Free Software Foundation; either version 2 of the License, or\n % (at your option) any later version.\n %\n % This program is distributed in the hope that it will be useful,\n % but WITHOUT ANY WARRANTY; without even the implied warranty of\n % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n % GNU General Public License for more details.\n %\n % You should have received a copy of the GNU General Public License\n % along with this program; if not, write to the\n % Free Software Foundation, Inc.,\n % 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.\n \n % Magnitude binning\n if ~exist('binInterval', 'var') || isempty(binInterval)\n binInterval = 0.1;\n end\n if ~isa(calcMethod,'McMethods')\n error('Expected an actual method (McMethods) but received something else.\\n See McMethods');\n end\n % Correction\n if ~exist('mcCorrectionFactor', 'var') || isempty(mcCorrectionFactor)\n mcCorrectionFactor = 0;\n end\n useNumeric = isnumeric(mCatalog) || (ischarlike(mCatalog) && mCatalog == \"AsMagnitudes\");\n if useNumeric\n switch calcMethod\n case McMethods.MaxCurvature\n methodFun = @calc_McMaxCurvature;\n \n case McMethods.FixedMc\n methodFun = @min;\n \n case McMethods.Mc90\n methodFun = @(C)method_mc90(C,binInterval);\n \n case McMethods.Mc95\n methodFun = @(C)method_mc95(C,binInterval);\n \n case McMethods.McBestCombo\n methodFun = @(C)method_bestcombo(C,binInterval);\n \n case McMethods.McEMR\n error('this only works with full catalogs')\n %methodFun = @(C)calc_McEMR(C,binInterval); %requires catalog Magnitude AND Date\n \n case McMethods.McDueB_ShiBolt\n methodFun = @(C)calc_Mcdueb(C, binInterval);\n \n case McMethods.McDueB_Bootstrap\n nSample = 500;\n nWindowSize = 5;\n nMinEvents = 50;\n methodFun = @(C) calc_McduebBst(C, binInterval, nWindowSize, nMinEvents,nSample);\n \n case McMethods.McDueB_Cao\n methodFun = @(C, ~)calc_McduebCao(C);\n \n otherwise\n error('unknown Mc method');\n end\n else % catalog object\n switch calcMethod\n case McMethods.MaxCurvature\n methodFun = @(C)calc_McMaxCurvature(C.Magnitude);\n \n case McMethods.FixedMc\n methodFun = @(C) min(C.Magnitude);\n \n case McMethods.Mc90\n methodFun = @(C)method_mc90(C.Magnitude,binInterval);\n \n case McMethods.Mc95\n methodFun = @(C)method_mc95(C.Magnitude,binInterval);\n \n case McMethods.McBestCombo\n methodFun = @(C)method_bestcombo(C.Magnitude,binInterval);\n \n case McMethods.McEMR\n methodFun = @(C)calc_McEMR(C,binInterval); %requires catalog Magnitude AND Date\n \n case McMethods.McDueB_ShiBolt\n methodFun = @(C)calc_Mcdueb(C.Magnitude, binInterval);\n \n case McMethods.McDueB_Bootstrap\n nSample = 500;\n nWindowSize = 5;\n nMinEvents = 50;\n methodFun = @(C) calc_McduebBst(C.Magnitude, binInterval, nWindowSize, nMinEvents,nSample);\n \n case McMethods.McDueB_Cao\n methodFun = @(C, ~)calc_McduebCao(C.Magnitude);\n \n otherwise\n error('unknown Mc method');\n end\n end\n \n % lock the method into this calculation\n mcCalculator = @(C) do_calculation(methodFun, C, mcCorrectionFactor);\n\n if ~isempty(mCatalog)\n % do the calculation\n fMc = mcCalculator(mCatalog);\n else\n fMc = [];\n end\n \nend\n\nfunction fMc = do_calculation(methodFun, mCatalog, mcCorrectionFactor)\n if isempty(mCatalog) || ischarlike(mCatalog)\n fMc = nan;\n return\n end\n \n fMc = methodFun(mCatalog);\n \n % Check fMc\n if isempty(fMc)\n fMc = nan;\n end\n \n % Apply correction\n fMc = fMc + mcCorrectionFactor;\nend\n\n% functions to return that all have same signature\nfunction fMc = method_mc90(mags, binInterval)\n [~, ~, fMc] = calc_McBest(mags, binInterval);\nend\n\nfunction fMc = method_mc95(mags, binInterval)\n [~, fMc] = calc_McBest(mags, binInterval);\nend\n\nfunction fMc = method_bestcombo(mags, binInterval)\n [~, Mc95, Mc90] = calc_McBest(mags, binInterval);\n if ~isnan(Mc95)\n fMc = Mc95;\n elseif ~isnan(Mc90)\n fMc = Mc90;\n else\n fMc = calc_McMaxCurvature(mags);\n end\nend\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/danijel/calc/calc_Mc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.3946045468185987}} {"text": "function [mu, sigma, c] = ...\n gmm_estimate_of_speaker(features, num_of_gaussians, num_of_iter)\n [mu, sigma, c] = GMMImpl.gmm_estimate(features, num_of_gaussians, num_of_iter);\n \n% obj = gmdistribution.fit(speaker_features', num_of_gaussians, ...\n% 'CovType', 'diagonal', 'Regularize', 1);\n% mu = obj.mu';\n% sigma = squeeze(obj.Sigma);\n% c = obj.PComponents;\nend", "meta": {"author": "yueyuzhao", "repo": "gyrophone", "sha": "aa816eec3d7a17d9e30ab7afa0d4b79ef0a7a82e", "save_path": "github-repos/MATLAB/yueyuzhao-gyrophone", "path": "github-repos/MATLAB/yueyuzhao-gyrophone/gyrophone-aa816eec3d7a17d9e30ab7afa0d4b79ef0a7a82e/+GMM/gmm_estimate_of_speaker.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3946045468185986}} {"text": "function [vp,samples,output] = vpsample_vbmc(Ns,Ninit,vp,gp,optimState,options,wide_flag)\n\nif nargin < 7 || isempty(wide_flag); wide_flag = false; end\n\n% Assign default values to OPTIMSTATE\nif ~isfield(optimState,'delta'); optimState.delta = 0; end\nif ~isfield(optimState,'EntropySwitch'); optimState.EntropySwitch = false; end\nif ~isfield(optimState,'Warmup'); optimState.Warmup = ~vp.optimize_weights; end\nif ~isfield(optimState,'temperature'); optimState.temperature = 1; end\n\n%% Set up sampling variables and options\n\n% Perform quick sieve to determine good starting point\n[vp,~,elcbo_beta,compute_var,NSentK] = ...\n vpsieve_vbmc(Ninit,1,vp,gp,optimState,options);\n\nK = vp.K;\nD = vp.D;\n\n% Compute soft bounds for variational parameters optimization\n[vp,thetabnd] = vpbounds(vp,gp,options,K);\n\n% Move lower bound on scale - we want *wider* distributions\nif wide_flag\n lnscale = bsxfun(@plus,log(vp.sigma(:))',log(vp.lambda(:)));\n if vp.optimize_mu; idx = D*K; else; idx = 0; end\n thetabnd.lb(idx+1:idx+K*D) = lnscale;\nend\n\n%% Sample variational posterior starting from current\n\ntheta0 = get_vptheta(vp)';\nNtheta = numel(theta0);\n\n% MCMC parameters\nWidths = 0.5;\nsampleopts.Thin = 1;\nsampleopts.Burnin = 0;\nsampleopts.Display = 'off';\nsampleopts.Diagnostics = false;\nLB = -Inf(1,Ntheta);\nUB = Inf(1,Ntheta);\n\nidx_fixed = false(size(theta0));\nif ~optimState.Warmup && 0\n if vp.optimize_mu; idx_fixed(1:D*K) = true; end\n% idx_fixed = true(size(theta0));\n% idx_fixed(idx+1:idx+K) = false;\nend\n\nLB(idx_fixed) = theta0(idx_fixed);\nUB(idx_fixed) = theta0(idx_fixed);\n\n% Perform sampling\ntry\n switch lower(options.VariationalSampler)\n case 'slicesample'\n vpmcmc_fun = @(theta_) -negelcbo_vbmc(theta_,elcbo_beta,vp,gp,NSentK,0,compute_var,0,thetabnd);\n [samples,fvals,exitflag,output] = ...\n slicesample_vbmc(vpmcmc_fun,theta0,Ns,Widths,LB,UB,sampleopts);\n case 'malasample'\n if isfield(optimState,'mcmc_stepsize')\n sampleopts.Stepsize = optimState.mcmc_stepsize; \n output.stepsize = sampleopts.Stepsize;\n end\n vpmcmc_fun = @(theta_) vpmcmcgrad_fun(theta_,elcbo_beta,vp,gp,NSentK,compute_var,thetabnd);\n [samples,fvals,exitflag,output] = ...\n malasample_vbmc(vpmcmc_fun,theta0,Ns,Widths,LB,UB,sampleopts);\n % output.accept_rate\n end\ncatch\n samples = repmat(theta0,[Ns,1]);\nend\nvp = rescale_params(vp,samples(end,:));\n\nend\n\nfunction [logp,dlogp] = vpmcmcgrad_fun(theta,elcbo_beta,vp,gp,NSentK,compute_var,thetabnd)\n [nlogp,ndlogp] = negelcbo_vbmc(theta,elcbo_beta,vp,gp,NSentK,1,compute_var,0,thetabnd);\n logp = -nlogp;\n dlogp = -ndlogp;\nend\n\n\n", "meta": {"author": "acerbilab", "repo": "vbmc", "sha": "54ba2cdd6c11d2595b9613557da14573abbb7b92", "save_path": "github-repos/MATLAB/acerbilab-vbmc", "path": "github-repos/MATLAB/acerbilab-vbmc/vbmc-54ba2cdd6c11d2595b9613557da14573abbb7b92/misc/vpsample_vbmc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3946045468185986}} {"text": "function val = v_dtiInit\n% Validate dti raw preprocessing of GE data\n%\n% val = v_dtiInit()\n%\n% This script takes a very long time to run and should not be used as part\n% of the usual unit testing. LM Perry is thinking about shortening this.\n% And we should be writing other test_dtiXXXX scripts for unit testing.\n%\n% This function checks that the average FA and B0 values resulting from\n% dtiRawPreprocess are consistent with the expected value on different\n% platforms (LINUX, WINDOWS, etc.).\n%\n% Requires vistadata and vistasoft on your path. The directory\n% fullfile(mrvDataRootPath,'validate','dwi') contains all the necessary\n% data files.\n% \n% This function does the following:\n%\n% (1) run dtiInit on the files in the raw folder. This will align to the T1\n% and create a B0, BVECS and FA values (it creates more stuff but we\n% only focus on these for the moment).\n%\n% (2) Show a montage of Alignment i.e., the T1 and DTI overalyed. Check for\n% LR flips and correct alignment. \n% \n% (3) Compute FA, Mean diffusivity, radial diffusivity nd Axial diffusivity \n% across the brain and check the value obtained on different\n% platforms. THis will be done using: [fa,md,rd,ad] = dtiComputeFA(eigVal)\n%\n% (5) Load the stored FA, MD, RD, AD for the whole brain in:\n% 'dwi/storedValues.mat'\n% \n% (6) Recompute them from the data\n% \n% (7) Compute the difference between the stored and the recomputed ones.\n% \n% (8) Remove the data that was created by this code if there is not a\n% significant difference in the computed values. \n%\n% Example:\n% This function was meant to be called by mrvValidate, which will \n% compute the difference between the stored values and the re-computed\n% values.\n%\n% mrvValidate([],[], 'test_dtiInit');\n%\n% See also: mrvValidateAll.m\n% \n% Adapted from v_dtiRawPreprocessGE \n% \n% (C) Stanford VISTA, 2011\n% \n% \n%%\n% This function takes a while to run. We want validation functions to be\n% fast. Here we warn the user that this test will take a while and confirm\n% that they want to continue. \n\nprompt = 'You are about to process DWI data - this will take ~1hr to run. Do you want to continue?';\nresp = questdlg(prompt,'Confirm','Yes','Cancel','Cancel');\nif(strcmp(resp,'Cancel'))\n disp('canceled.');\n assertEqual(0,1,'NOTICE: test_dtiInit.m was canceled by the user.');\n return;\nend\n\n\n%% Get the data pathdata path\ndataDir = fullfile(mrvDataRootPath,'validate','dwi');\nrawDwi = fullfile(mrvDataRootPath,'validate','dwi','raw','dti.nii.gz');\nt1 = fullfile(mrvDataRootPath,'validate','dwi','t1.nii.gz');\n\n\n%% Retain original directory, change to data directory\ncurDir = pwd;\ncd(dataDir);\n\n\n%% Run Preprocess\n% setting clobber to 'always' = 1, so that output files will be silently\n% replaced.\nparams = dtiInitParams('phaseEncodeDir',2,'clobber',1); \ndt6File = dtiInit(rawDwi,t1,params);\n\n\n%% Show alignment to t1\n% This is automatically computed by dtiRawPreprocess.m\nt1pdd = fullfile(mrvDirup(dt6File),'t1pdd.png');\nimshow(imread(t1pdd),'InitialMagnification','fit'); \n\n\n%% Compute mean FA, RD, MD, AD values and check them with the stored one.\n\n% Load the stored values\nref = load(fullfile(dataDir,'test_dtiInit.mat'));\n\n% Load the dt6 file.\ndt = dtiLoadDt6(dt6File);\n\n% Extract the eigen values.\neigVal = dt.dt6;\n\n% Compute the fractional, mean, radial and axial diffusivity\n[fa,md,rd,ad] = dtiComputeFA(eigVal);\n\n% Compute the mean across the whole brain\nval.fa = nanmean(fa(:));\nval.md = nanmean(md(:));\nval.rd = nanmean(rd(:));\nval.ad = nanmean(ad(:));\n\n\n%% Test the results\n\n% Check the mean FA\nassertEqual(ref.val.fa, val.fa);\n% Check the mean MD\nassertEqual(ref.val.md, val.md);\n% Check the mean RD\nassertEqual(ref.val.rd, val.rd);\n% Check the mean AD\nassertEqual(ref.val.ad, val.ad);\n\n\n%% Go back to the original directory, done!\n% \ncd(curDir)\n\nreturn\n\n\n\n\n\n\n\n%% This is to save a new mat file with the values.\n% save('test_dtiInit.mat','val');\n\n\n%% old code\n% mrvValidate will use the output of this function to compare the\n% recomputed values to the stored values.\n% fr example doing something like this:\n%\n% check the computed with the stored values\n% val.faErr = diff([mean_fa,meanVals.fa]);\n% val.mdErr = diff([mean_md,meanVals.md]);\n% val.rdErr = diff([mean_rd,meanVals.rd]);\n% val.adErr = diff([mean_ad,meanVals.ad]);\n%\n% show results on matlab output\n% errFields = fields(val);\n% meanFields = fields(meanVals);\n% for i = 1:length(fields(val))\n% fprintf('[%s] Error in ''%s'': %2.8f\\n',mfilename, meanFields{i}, val.(errFields{i}));\n% end\n\n\n\n\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrTest/diffusion/extended/test_dtiInit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3946045468185986}} {"text": "function M = mrvMinmax(Y)\n%\n% M = mrvMinmax(Y);\n%\n% Return a 2-vector with the minimum and maximum values in a matrix.\n%\n% Example: Return the vector [1 100]:\n% M = mrvMinmax(magic(10));\n%\n% ras, 06/16/2008.\n% JW: 11/30/2016 Renamed from minmax to mrvMinmax to avoid conflict with\n% the Matlab function minmax in the nnet toolbox\n%\n\nif isequal(class(Y), 'single')\n\tY = double(Y);\nelseif isequal(class(Y), 'cell')\n Y = double( [Y{:}] );\nend\n\nY = Y(~isinf(Y) & ~isnan(Y));\n\nM = [min(Y(:)) max(Y(:))];\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/utilities/mrvMinmax.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.7217432062975979, "lm_q1q2_score": 0.3946045468185986}} {"text": "function dt = testing(algo,dt)\n% \n% Generates labels using knn.\n% \n [numOfSam,vecDim,outDim]=get_dim(dt);\n\n\n % kernel or distance - that is the question ?!\n if isa( algo.child, 'distance')\n distflag = 1;\n else\n distflag = 0;\n trainXP=get_norm(algo.child,algo.dat).^2;\n testXP=get_norm(algo.child,dt).^2;\n end\n\n \n% flag=0;\n% if isa(algo.child,'distance')\n% if strcmp(algo.child.dist,'custom') \n% flag=1;\n% end\n% if strcmp(algo.child.dist,'custom_fast') \n% flag=1;\n% end\n% end\n% if flag==0 %% ok to compute norm \n% trainXP=get_norm(algo.child,algo.dat).^2;\n% testXP=get_norm(algo.child,dt).^2;\n% end\n \n \n y=get_y(algo.dat);\n yTemp=get_y(dt);\n yEst=yTemp*0-1;\n\n% Possible to calc in batch or as for loop, whereas the batch way requires\n% the whole kernel matrix to fit in memory.\nif algo.batch==1,\n \n if distflag==0\n dist = trainXP*ones(1,length(testXP)) - 2*calc(algo.child,dt,algo.dat) + ones(length(trainXP),1)*testXP';\n else\n dist = calc(algo.child,dt,algo.dat);\n end\n \n [val,valInd]=sort(dist); \n \n if(~isempty(y))\n for i=1:numOfSam,\n yTmp(i,:) = mean(y(valInd(1:algo.k,i),:),1); \n end;\n else\n yTmp=[]; \n end \n if algo.algorithm.use_signed_output==1,\n if size(y,2)>1 %% <---multi-class pattern recognition\n [maxComp maxCompInd]=max(yTmp,[],2); \n for i = 1:numOfSam,\n yEst(i,maxCompInd(i))=1;\n end;\n else %%<--- binary pattern recognition\n yEst=sign(yTmp);\n end\n else\n yEst=yTmp; \n end\n \n if algo.output_preimage \n yEst=[]; ind=algo.dat.index;\n for i=1:algo.k\n yEst=[yEst ind(valInd(i,:))'];\n end\n end \n \nelse\n%<<-----online calculations, instead of batch (does not need as much memory\n% as batch)----->\n \n for i=1:numOfSam \n dist= (trainXP - 2*get_kernel(algo.child,dt,algo.dat,i) ) + testXP(i);\n \n [val,valInd]=sort(dist); \n \n if algo.algorithm.use_signed_output==1,\n if size(y,2)>1 %% <---multi-class pattern recognition \n tmp=sum(y(valInd(1:algo.k),:),1); \n [maxComp maxCompInd]=max(tmp); \n yEst(i,maxCompInd)=1;\n else %% binary pattern recognition\n yEst(i)=sign(mean(y(valInd(1:algo.k),:)));\n end\n else\n yEst(i,:)=mean(y(valInd(1:algo.k),:),1); \n end \n end\n \n if algo.output_preimage \n ind=algo.dat.index;\n for j=1:algo.k\n yEst(i,j)=[yEst ind(valInd(j,:))'];\n end\n end;\n \n%<<-----------end online------------------>>\nend;\n \n if algo.algorithm.use_signed_output==1 %% <--- break deadlocks\n yEst(yEst==0)=-1;\n end\n\n dt=set_x(dt,yEst);\n dt=set_name(dt,[get_name(dt) ' -> ' get_name(algo)]); \n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/External/spider/pat/@knn/testing.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8080672135527631, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.3945658026607875}} {"text": "function [dpsi,deps]=nut_iau1980(t,f)\n\nAS2R=pi/180/3600;\nnut=[ 0, 0, 0, 0, 1, -6798.4, -171996, -174.2, 92025, 8.9;\n 0, 0, 2, -2, 2, 182.6, -13187, -1.6, 5736, -3.1;\n 0, 0, 2, 0, 2, 13.7, -2274, -0.2, 977, -0.5;\n 0, 0, 0, 0, 2, -3399.2, 2062, 0.2, -895, 0.5;\n 0, -1, 0, 0, 0, -365.3, -1426, 3.4, 54, -0.1;\n 1, 0, 0, 0, 0, 27.6, 712, 0.1, -7, 0.0;\n 0, 1, 2, -2, 2, 121.7, -517, 1.2, 224, -0.6;\n 0, 0, 2, 0, 1, 13.6, -386, -0.4, 200, 0.0;\n 1, 0, 2, 0, 2, 9.1, -301, 0.0, 129, -0.1;\n 0, -1, 2, -2, 2, 365.2, 217, -0.5, -95, 0.3;\n -1, 0, 0, 2, 0, 31.8, 158, 0.0, -1, 0.0;\n 0, 0, 2, -2, 1, 177.8, 129, 0.1, -70, 0.0;\n -1, 0, 2, 0, 2, 27.1, 123, 0.0, -53, 0.0;\n 1, 0, 0, 0, 1, 27.7, 63, 0.1, -33, 0.0;\n 0, 0, 0, 2, 0, 14.8, 63, 0.0, -2, 0.0;\n -1, 0, 2, 2, 2, 9.6, -59, 0.0, 26, 0.0;\n -1, 0, 0, 0, 1, -27.4, -58, -0.1, 32, 0.0;\n 1, 0, 2, 0, 1, 9.1, -51, 0.0, 27, 0.0;\n -2, 0, 0, 2, 0, -205.9, -48, 0.0, 1, 0.0;\n -2, 0, 2, 0, 1, 1305.5, 46, 0.0, -24, 0.0;\n 0, 0, 2, 2, 2, 7.1, -38, 0.0, 16, 0.0;\n 2, 0, 2, 0, 2, 6.9, -31, 0.0, 13, 0.0;\n 2, 0, 0, 0, 0, 13.8, 29, 0.0, -1, 0.0;\n 1, 0, 2, -2, 2, 23.9, 29, 0.0, -12, 0.0;\n 0, 0, 2, 0, 0, 13.6, 26, 0.0, -1, 0.0;\n 0, 0, 2, -2, 0, 173.3, -22, 0.0, 0, 0.0;\n -1, 0, 2, 0, 1, 27.0, 21, 0.0, -10, 0.0;\n 0, 2, 0, 0, 0, 182.6, 17, -0.1, 0, 0.0;\n 0, 2, 2, -2, 2, 91.3, -16, 0.1, 7, 0.0;\n -1, 0, 0, 2, 1, 32.0, 16, 0.0, -8, 0.0;\n 0, 1, 0, 0, 1, 386.0, -15, 0.0, 9, 0.0;\n 1, 0, 0, -2, 1, -31.7, -13, 0.0, 7, 0.0;\n 0, -1, 0, 0, 1, -346.6, -12, 0.0, 6, 0.0;\n 2, 0, -2, 0, 0, -1095.2, 11, 0.0, 0, 0.0;\n -1, 0, 2, 2, 1, 9.5, -10, 0.0, 5, 0.0;\n 1, 0, 2, 2, 2, 5.6, -8, 0.0, 3, 0.0;\n 0, -1, 2, 0, 2, 14.2, -7, 0.0, 3, 0.0;\n 0, 0, 2, 2, 1, 7.1, -7, 0.0, 3, 0.0;\n 1, 1, 0, -2, 0, -34.8, -7, 0.0, 0, 0.0;\n 0, 1, 2, 0, 2, 13.2, 7, 0.0, -3, 0.0;\n -2, 0, 0, 2, 1, -199.8, -6, 0.0, 3, 0.0;\n 0, 0, 0, 2, 1, 14.8, -6, 0.0, 3, 0.0;\n 2, 0, 2, -2, 2, 12.8, 6, 0.0, -3, 0.0;\n 1, 0, 0, 2, 0, 9.6, 6, 0.0, 0, 0.0;\n 1, 0, 2, -2, 1, 23.9, 6, 0.0, -3, 0.0;\n 0, 0, 0, -2, 1, -14.7, -5, 0.0, 3, 0.0;\n 0, -1, 2, -2, 1, 346.6, -5, 0.0, 3, 0.0;\n 2, 0, 2, 0, 1, 6.9, -5, 0.0, 3, 0.0;\n 1, -1, 0, 0, 0, 29.8, 5, 0.0, 0, 0.0;\n 1, 0, 0, -1, 0, 411.8, -4, 0.0, 0, 0.0;\n 0, 0, 0, 1, 0, 29.5, -4, 0.0, 0, 0.0;\n 0, 1, 0, -2, 0, -15.4, -4, 0.0, 0, 0.0;\n 1, 0, -2, 0, 0, -26.9, 4, 0.0, 0, 0.0;\n 2, 0, 0, -2, 1, 212.3, 4, 0.0, -2, 0.0;\n 0, 1, 2, -2, 1, 119.6, 4, 0.0, -2, 0.0;\n 1, 1, 0, 0, 0, 25.6, -3, 0.0, 0, 0.0;\n 1, -1, 0, -1, 0, -3232.9, -3, 0.0, 0, 0.0;\n -1, -1, 2, 2, 2, 9.8, -3, 0.0, 1, 0.0;\n 0, -1, 2, 2, 2, 7.2, -3, 0.0, 1, 0.0;\n 1, -1, 2, 0, 2, 9.4, -3, 0.0, 1, 0.0;\n 3, 0, 2, 0, 2, 5.5, -3, 0.0, 1, 0.0;\n -2, 0, 2, 0, 2, 1615.7, -3, 0.0, 1, 0.0;\n 1, 0, 2, 0, 0, 9.1, 3, 0.0, 0, 0.0;\n -1, 0, 2, 4, 2, 5.8, -2, 0.0, 1, 0.0;\n 1, 0, 0, 0, 2, 27.8, -2, 0.0, 1, 0.0;\n -1, 0, 2, -2, 1, -32.6, -2, 0.0, 1, 0.0;\n 0, -2, 2, -2, 1, 6786.3, -2, 0.0, 1, 0.0;\n -2, 0, 0, 0, 1, -13.7, -2, 0.0, 1, 0.0;\n 2, 0, 0, 0, 1, 13.8, 2, 0.0, -1, 0.0;\n 3, 0, 0, 0, 0, 9.2, 2, 0.0, 0, 0.0;\n 1, 1, 2, 0, 2, 8.9, 2, 0.0, -1, 0.0;\n 0, 0, 2, 1, 2, 9.3, 2, 0.0, -1, 0.0;\n 1, 0, 0, 2, 1, 9.6, -1, 0.0, 0, 0.0;\n 1, 0, 2, 2, 1, 5.6, -1, 0.0, 1, 0.0;\n 1, 1, 0, -2, 1, -34.7, -1, 0.0, 0, 0.0;\n 0, 1, 0, 2, 0, 14.2, -1, 0.0, 0, 0.0;\n 0, 1, 2, -2, 0, 117.5, -1, 0.0, 0, 0.0;\n 0, 1, -2, 2, 0, -329.8, -1, 0.0, 0, 0.0;\n 1, 0, -2, 2, 0, 23.8, -1, 0.0, 0, 0.0;\n 1, 0, -2, -2, 0, -9.5, -1, 0.0, 0, 0.0;\n 1, 0, 2, -2, 0, 32.8, -1, 0.0, 0, 0.0;\n 1, 0, 0, -4, 0, -10.1, -1, 0.0, 0, 0.0;\n 2, 0, 0, -4, 0, -15.9, -1, 0.0, 0, 0.0;\n 0, 0, 2, 4, 2, 4.8, -1, 0.0, 0, 0.0;\n 0, 0, 2, -1, 2, 25.4, -1, 0.0, 0, 0.0;\n -2, 0, 2, 4, 2, 7.3, -1, 0.0, 1, 0.0;\n 2, 0, 2, 2, 2, 4.7, -1, 0.0, 0, 0.0;\n 0, -1, 2, 0, 1, 14.2, -1, 0.0, 0, 0.0;\n 0, 0, -2, 0, 1, -13.6, -1, 0.0, 0, 0.0;\n 0, 0, 4, -2, 2, 12.7, 1, 0.0, 0, 0.0;\n 0, 1, 0, 0, 2, 409.2, 1, 0.0, 0, 0.0;\n 1, 1, 2, -2, 2, 22.5, 1, 0.0, -1, 0.0;\n 3, 0, 2, -2, 2, 8.7, 1, 0.0, 0, 0.0;\n -2, 0, 2, 2, 2, 14.6, 1, 0.0, -1, 0.0;\n -1, 0, 0, 0, 2, -27.3, 1, 0.0, -1, 0.0;\n 0, 0, -2, 2, 1, -169.0, 1, 0.0, 0, 0.0;\n 0, 1, 2, 0, 1, 13.1, 1, 0.0, 0, 0.0;\n -1, 0, 4, 0, 2, 9.1, 1, 0.0, 0, 0.0;\n 2, 1, 0, -2, 0, 131.7, 1, 0.0, 0, 0.0;\n 2, 0, 0, 2, 0, 7.1, 1, 0.0, 0, 0.0;\n 2, 0, 2, -2, 1, 12.8, 1, 0.0, -1, 0.0;\n 2, 0, -2, 0, 1, -943.2, 1, 0.0, 0, 0.0;\n 1, -1, 0, -2, 0, -29.3, 1, 0.0, 0, 0.0;\n -1, 0, 0, 1, 1, -388.3, 1, 0.0, 0, 0.0;\n -1, -1, 0, 2, 1, 35.0, 1, 0.0, 0, 0.0;\n 0, 1, 0, 1, 0, 27.3, 1, 0.0, 0, 0.0];\n\ndpsi=0;\ndeps=0;\nfor i=1:106\n ang=0;\n for j=1:5\n ang=ang+nut(i,j)*f(j);\n end\n dpsi=dpsi+(nut(i,7)+nut(i,8)*t)*sin(ang);\n deps=deps+(nut(i,9)+nut(i,10)*t)*cos(ang);\nend\ndpsi=dpsi*1e-4*AS2R;\ndeps=deps*1e-4*AS2R;\n\nreturn\n\n", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/common/nut_iau1980.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8558511469672594, "lm_q2_score": 0.46101677931231594, "lm_q1q2_score": 0.3945617393455975}} {"text": "function [all_data, units,apt_info] = compute_apt(trx,n,fn)\n\nflies = trx.exp2flies{n};\nnflies = numel(flies);\nall_data = cell(1,nflies);\nall_units = cell(1,nflies);\nparts = strsplit(fn,'_');\nview_str = regexp(parts{1},'view(\\d*)','tokens');\nview = str2double(view_str{1}{1});\nfn_type = parts{2};\ncomp_type = parts{3};\n\napt_info = trx(flies(1)).trkInfo;\nif isfield(apt_info,'crop_loc') && ~isempty(apt_info.crop_loc) && numel(apt_info.crop_loc)==4\n crop_loc = apt_info.crop_loc;\n x_center = mean(crop_loc(1:2));\n y_center = mean(crop_loc(3:4));\n global_center = [y_center x_center];\nelse\n global_center = double(cell2mat(apt_info.params.imsz))/2;\nend\n\nif startsWith(fn_type,'social')\n [all_data,units] = compute_apt_social(trx,n,fn,apt_info);\n return;\nend\n\nfor fndx = 1:nflies\n if view > 1 \n x = trx(flies(fndx)).(sprintf('x_view%d',view));\n y = trx(flies(fndx)).(sprintf('y_view%d',view));\n theta = trx(flies(fndx)).(sprintf('theta_view%d',view)); \n else\n x = trx(flies(fndx)).x;\n y = trx(flies(fndx)).y;\n theta = trx(flies(fndx)).theta;\n end\n dt = trx(flies(fndx)).dt;\n nframes = trx(flies(fndx)).nframes;\n pxpermm = trx.pxpermm;\n n_parts = apt_info.params.n_classes;\n mod_apt_data = trx(flies(fndx)).kpts;\n mod_apt_data = reshape(mod_apt_data,n_parts,[],nframes);\n \n switch fn_type\n case 'global'\n part_num = str2double(parts{end});\n [data,cur_units] = compute_global(mod_apt_data,dt,theta,comp_type,part_num,pxpermm,global_center);\n case 'body'\n part_num = str2double(parts{end});\n [data,cur_units] = compute_body(mod_apt_data,x,y,dt,theta,comp_type,part_num,pxpermm);\n case 'pair'\n part2 = str2double(parts{end});\n part1 = str2double(parts{end-1});\n x1 = permute(mod_apt_data(part1,1,:),[1,3,2]);\n y1 = permute(mod_apt_data(part1,2,:),[1,3,2]);\n x2 = permute(mod_apt_data(part2,1,:),[1,3,2]);\n y2 = permute(mod_apt_data(part2,2,:),[1,3,2]);\n [x1,y1] = convert_to_body(x1,y1,x,y,theta);\n [x2,y2] = convert_to_body(x2,y2,x,y,theta);\n [data,cur_units] = pair_fn(x1,y1,x2,y2,dt,comp_type,pxpermm);\n case 'triad'\n part3 = str2double(parts{end});\n part2 = str2double(parts{end-1});\n part1 = str2double(parts{end-2});\n x1 = permute(mod_apt_data(part1,1,:),[1,3,2]);\n y1 = permute(mod_apt_data(part1,2,:),[1,3,2]);\n x2 = permute(mod_apt_data(part2,1,:),[1,3,2]);\n y2 = permute(mod_apt_data(part2,2,:),[1,3,2]);\n x3 = permute(mod_apt_data(part3,1,:),[1,3,2]);\n y3 = permute(mod_apt_data(part3,2,:),[1,3,2]);\n [data,cur_units] = triad_fn(x1,x2,x3,y1,y2,y3,dt,comp_type,pxpermm);\n\n otherwise\n error('Undefined computation type type %s',comp_type);\n end\n all_data{fndx} = data;\n all_units{fndx} = cur_units;\nend\nunits = all_units{1};\n\n\nfunction [data,units] = compute_global(apt_data, dt, theta, comp_type, part,pxpermm,global_center)\nx = permute(apt_data(part,1,:),[1,3,2]);\ny = permute(apt_data(part,2,:),[1,3,2]);\nrelative_fns = {'x','y','dx','dy','sin','cos','dtheta'};\nif any(strcmp(relative_fns,comp_type))\n i_x = global_center(2);\n i_y = global_center(1);\n [data,units] = relative(x,y,i_x,i_y,dt,fn,pxpermm);\nelse\n switch comp_type\n case 'velmag'\n [data,units] = velmag(x, y, dt,pxpermm);\n case 'dphi'\n [data,units] = dphi(x, y, dt, theta); \n case 'dvelmag'\n [data,units] = dvelmag(x, y, dt,pxpermm); \n otherwise\n error('Undefined computation type type %s',comp_type);\n end\nend\n\nfunction [b_x,b_y] = convert_to_body(x,y,trx_x,trx_y,theta)\n% convert global coordinates into body coordinates\nb_x = nan(size(x)); b_y = nan(size(y));\nfor t = 1:numel(x)\n T = [1,0,0\n 0,1,0\n -trx_x(t),-trx_y(t),1];\n R = [cos(theta(t)+pi/2),-sin(theta(t)+pi/2),0\n sin(theta(t)+pi/2),cos(theta(t)+pi/2),0\n 0,0,1];\n A = T*R;\n M = [x(t) y(t) 1]*A;\n b_x(t) = M(1); b_y(t) = M(2);\nend\n\n\nfunction [data,units] = compute_body(apt_data, trx_x, trx_y, dt, theta, comp_type, part,pxpermm)\nrelative_fns = {'x','y','dx','dy','sin','cos','dtheta'};\nx = permute(apt_data(part,1,:),[1,3,2]);\ny = permute(apt_data(part,2,:),[1,3,2]);\n[x,y] = convert_to_body(x,y,trx_x,trx_y,theta);\n\nswitch comp_type\n case 'velmag'\n [data,units] = velmag(x, y, dt, pxpermm);\n case 'dphi'\n [data,units] = dphi(x, y, dt, theta); \n case 'dvelmag'\n [data,units] = dvelmag(x, y, dt, pxpermm); \n case relative_fns\n [data,units] = relative(x,y,zeros(size(x)),zeros(size(y)),dt, comp_type, pxpermm);\n case 'distcenter'\n [data,units] = dist_center(x,y,zeros(size(x)),zeros(size(y)), pxpermm);\n case 'ddistcenter'\n [data,units] = ddist_center(x,y,zeros(size(x)),zeros(size(y)),dt, pxpermm); \n otherwise\n error('Undefined computation type type %s',comp_type);\nend\n\nfunction [data, units] = velmag(x,y,dt,pxpermm)\nif numel(x) == 1\n data = 0;\nelse\n dx = diff(x,1,2);\n dy = diff(y,1,2);\n data = sqrt(dx.^2 + dy.^2)./dt;\nend\ndata = data/pxpermm;\nunits = parseunits('mm/s');\n\n\nfunction [data, units] = dvelmag(x,y,dt,pxpermm)\nif numel(x) == 1\n data = [];\nelseif numel(x) == 2\n data = 0;\nelse\n dx = diff(x,1,2);\n dy = diff(y,1,2);\n tmp = sqrt(diff(dx./dt,1,2).^2 + diff(dy./dt,1,2).^2)./dt(2:end);\n data = [0,tmp];\nend\ndata = data/pxpermm;\nunits = parseunits('mm/s/s');\n\n\nfunction [data, units] = dphi(x,y,dt,theta)\nif numel(x) > 1\n dy1 = [y(2)-y(1),(y(3:end)-y(1:end-2))/2,y(end)-y(end-1)];\n dx1 = [x(2)-x(1),(x(3:end)-x(1:end-2))/2,x(end)-x(end-1)];\n badidx = dy1 == 0 & dx1 == 0;\n phi = atan2(dy1,dx1);\n phi(badidx) = theta(badidx);\n data = modrange(diff(phi),-pi,pi)./dt;\nelse\n data = [];\nend\nunits = parseunits('rad/s');\n\n\nfunction [data, units] = dist_center(x,y,x_body,y_body,pxpermm)\ndata = sqrt((x-x_body).^2 + (y-y_body).^2);\ndata = data/pxpermm;\nunits = parseunits('mm');\n\n\nfunction [data, units] = ddist_center(x,y, x_body, y_body,dt,pxpermm)\nif numel(x)>1\n dist = sqrt((x-x_body).^2 + (y-y_body).^2);\n data = diff(dist)./dt;\nelse\n data = 0;\nend\ndata = data/pxpermm;\nunits = parseunits('mm/s');\n\n\nfunction [data, units] = relative(x1, y1, x2, y2, dt, fn,pxpermm)\n\nswitch fn\n case 'x'\n data = x1-x2;\n data = data/pxpermm;\n units = parseunits('mm');\n case 'y'\n data = y1-y2;\n data = data/pxpermm;\n units = parseunits('mm');\n case 'dx'\n data = diff(x1-x2)./dt;\n data = data/pxpermm;\n units = parseunits('mm/s');\n case 'dy'\n data = diff(y1-y2)./dt;\n data = data/pxpermm;\n units = parseunits('mm');\n case 'sin'\n len = sqrt((x1-x2).^2 + (y1-y2).^2); \n data = (x1-x2)./len;\n data(len==0) = 0;\n units = parseunits('');\n case 'cos'\n len = sqrt((x1-x2).^2 + (y1-y2).^2);\n data = (y1-y2)./len;\n data(len==0) = 0;\n units = parseunits('');\n case 'dtheta'\n if numel(x1) > 2\n theta = atan2(y1-y2, x1-x2);\n data = modrange(diff(theta,1,2),-pi,pi)./dt;\n else\n data = [];\n end\n units = parseunits('rad/s');\nend\n\n\n\nfunction [data,units] = pair_fn(x1,y1,x2,y2,dt, fn,pxpermm)\n\nrelative_fns = {'x','y','dx','dy','sin','cos','dtheta'};\nif any(strcmp(relative_fns,fn))\n [data,units] = relative(x1,y1,x2,y2,dt,fn,pxpermm);\nelseif strcmp(fn,'velmag')\n [data,units] = velmag(x1-x2,y1-y2,dt,pxpermm);\nelseif strcmp(fn,'dvelmag')\n [data,units] = dvelmag(x1-x2,y1-y2,dt,pxpermm);\nelseif strcmp(fn,'dist')\n [data,units] = dist_center(x1,y1,x2,y2,pxpermm);\nelseif strcmp(fn,'ddist')\n [data,units] = ddist_center(x1,y1,x2,y2,dt,pxpermm);\nelseif strcmp(fn,'dphi')\n theta = atan2(y1-y2,x1-x2);\n [data,units] = dphi(x1-x2, y1-y2, dt, theta);\nelseif strcmp(fn,'u1')\n theta = atan2(y1-y2,x1-x2);\n dx = diff(x1,1,2)./dt;\n dy = diff(y1,1,2)./dt;\n phi = [atan2(dy,dx)];\n angle_vel = pi - theta(1:end-1) + phi; \n % This is the angle between velocity vector and the vector from x2 to x1.\n data = sqrt(dx.^2 + dy.^2).*cos(angle_vel);\n data = data/pxpermm;\n units = parseunits('mm/s');\nelseif strcmp(fn,'v1')\n theta = atan2(y1-y2,x1-x2);\n dx = diff(x1,1,2)./dt;\n dy = diff(y1,1,2)./dt;\n phi = [atan2(dy,dx)];\n angle_vel = pi - theta(1:end-1) + phi; \n % This is the angle between velocity vector and the vector from x2 to x1.\n data = sqrt(dx.^2 + dy.^2).*sin(angle_vel);\n data = data/pxpermm;\n units = parseunits('mm/s');\nelseif strcmp(fn,'u2')\n theta = atan2(y2-y1,x2-x1);\n dx = diff(x2,1,2)./dt;\n dy = diff(y2,1,2)./dt;\n phi = [atan2(dy,dx)];\n angle_vel = pi - theta(1:end-1) + phi; \n % This is the angle between velocity vector and the vector from x2 to x1.\n data = sqrt(dx.^2 + dy.^2).*cos(angle_vel);\n data = data/pxpermm;\n units = parseunits('mm/s');\nelseif strcmp(fn,'v2')\n theta = atan2(y2-y1,x2-x1);\n dx = diff(x2,1,2)./dt;\n dy = diff(y2,1,2)./dt;\n phi = atan2(dy,dx);\n angle_vel = pi - theta(1:end-1) + phi; \n % This is the angle between velocity vector and the vector from x2 to x1.\n data = sqrt(dx.^2 + dy.^2).*sin(angle_vel);\n data = data/pxpermm;\n units = parseunits('mm/s');\nelseif strcmp(fn,'areaswept')\n area = zeros(1,numel(x1));\n for ndx = 1:numel(x1)-1\n curx = [x1(ndx),x1(ndx+1),x2(ndx+1),x2(ndx)];\n cury = [y1(ndx), y1(ndx+1), y2(ndx+1), y2(ndx)];\n area(ndx) = polyarea(curx,cury);\n end\n data = area/pxpermm/pxpermm;\n units = parseunits('mm*mm');\nelse\n error('Unknown function for APT pair %s',fn);\nend\n\nfunction [data,units] = triad_fn(x1,x2,x3, y1,y2, y3, dt,fn,pxpermm)\ntheta1 = atan2(y1-y2,x1-x2);\ntheta2 = atan2(y3-y2,x3-x2);\ntheta = modrange(theta1-theta2,-pi,pi);\nswitch fn\n case 'cos'\n data = cos(theta);\n units = parseunits('');\n case 'sin'\n data = sin(theta);\n units = parseunits('');\n case 'dangle'\n data = diff(theta)./dt;\n units = parseunits('rad/s');\n case 'area'\n area = zeros(1,numel(x1));\n for ndx = 1:numel(x1)\n area(ndx) = polyarea([x1(ndx),x2(ndx),x3(ndx)],[y1(ndx),y2(ndx),y3(ndx)]);\n end\n data = area;\n data = data/pxpermm/pxpermm;\n units = parseunits('mm*mm');\n case 'darea'\n area = zeros(1,numel(x1));\n for ndx = 1:numel(x1)\n area(ndx) = polyarea([x1(ndx),x2(ndx),x3(ndx)],[y1(ndx),y2(ndx),y3(ndx)]);\n end\n data = diff(area);\n data = data/pxpermm/pxpermm;\n units = parseunits('mm*mm/s');\n case 'dlen'\n len1 = sqrt((x1-x2).^2 + (y1-y2).^2);\n len2 = sqrt((x3-x2).^2 + (y3-y2).^2);\n data = len1-len2;\n data = data/pxpermm;\n units = parseunits('mm');\nend\n\n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/perframe/compute_perframe_features/compute_apt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3944521744718887}} {"text": "classdef prtClusterMeanShiftEuclidean < prtCluster\n % nMaxClusters Kmeans clustering object\n %\n % CLUSTER = prtClusterMeanShift returns a MeanShift clustering object.\n %\n % CLUSTER = prtClusterMeanShift(PROPERTY1, VALUE1, ...) constructs a\n % prtClusterMeanShift object CLUSTER with properties as specified by\n % PROPERTY/VALUE pairs.\n %\n % A prtClusterMeanShift object inherits all properties from\n % the abstract class prtCluster. In addition is has the following\n % properties:\n %\n % nClusters - Maximum Number of cluster to learn \n %\n % A prtClusterMeanShift object inherits the TRAIN, RUN,\n % CROSSVALIDATE and KFOLDS methods from prtAction. It also inherits\n % the PLOT method from prtCluster.\n %\n % Invoking the RUN method on a prtClusterMeanShift object classifies\n % the input data by assigning each observation a label according to\n % the cluster center it is closest to. The cluster centers are found\n % during training.\n %\n % Example:\n %\n % ds = prtDataGenMary % Load a prtDataSet\n % clusterAlgo = prtClusterMeanShift; % Create a prtClusterMeanShift object\n % clusterAlgo.nClusters = 10; % Set the max number of desired clusters\n %\n % % Set the internal decision rule to be MAP. Not required for\n % % clustering, but necessary to plot the results.\n % clusterAlgo.internalDecider = prtDecisionMap;\n % clusterAlgo = clusterAlgo.train(ds); % Train the cluster algorithm\n % plot(clusterAlgo); % Plot the results\n % \n % See also prtCluster, prtClusterGmm\n\n\n\n\n\n\n\n properties (SetAccess=private)\n name = 'Mean Shift Clustering'\n nameAbbreviation = 'MeanShift'\n end\n \n properties\n nClusters = 5;\n\n nMaxIterations = 100;\n meanShiftThreshold = 1e-5;\n\n meanSeparationThreshold = 1; % Must be exceeded to \n\n membershipDistance = 1;\n distanceFunction = @(ds,mu)prtDistanceEuclidean(ds,mu);\n\n end\n properties (SetAccess = protected)\n clusterCenters = []; % The cluster centers\n end\n \n methods\n \n function self = set.nClusters(self,value)\n if ~prtUtilIsPositiveScalarInteger(value)\n error('prt:prtClusterMeanShift:nClusters','value (%s) must be a positive scalar integer',mat2str(value));\n end\n self.nClusters = value;\n end\n \n function self = set.distanceFunction(self,value)\n if ~isa(value,'function_handle')\n error('prt:prtClusterMeanShift:distanceFunction','distanceFunction must be a function handle');\n elseif nargin(value) ~= 2\n error('prt:prtClusterMeanShift:distanceFunction','distanceFunction must be a function handle that takes two input arguments'); \n end\n self.distanceMetricFn = value;\n end\n function self = prtClusterMeanShiftEuclidean(varargin)\n % Allow for string, value pairs\n self = prtUtilAssignStringValuePairs(self,varargin{:});\n end\n end\n \n methods (Access=protected, Hidden = true)\n \n function self = trainAction(self,ds)\n \n X = ds.X;\n beenMappedToAMean = false(ds.nObservations,1);\n \n means = nan(self.nClusters,ds.nFeatures);\n for iCluster = 1:self.nClusters\n \n if all(beenMappedToAMean) % Visited every point\n break\n end\n \n cPossibleSeedPoints = find(~beenMappedToAMean);\n cSeedPoint = cPossibleSeedPoints(prtRvUtilRandomSample(length(cPossibleSeedPoints)));\n \n % Pick random point as this mean;\n cMean = X(cSeedPoint,:);\n \n for iter = 1:self.nMaxIterations\n cD = self.distanceFunction(X, cMean);\n isMemberThisCluster = cD < self.membershipDistance;\n \n beenMappedToAMean(isMemberThisCluster) = true;\n \n newMean = mean(X(isMemberThisCluster,:),1);\n \n if norm(cMean-newMean) < self.meanShiftThreshold\n break\n else\n cMean = newMean;\n end\n end\n \n % Throw out cluster if too close to existing\n cGoodMeans = means(~any(isnan(means),2),:);\n if ~isempty(cGoodMeans)\n \n distanceFromThisMeanToOthers = self.distanceFunction(cMean, cGoodMeans);\n \n if min(distanceFromThisMeanToOthers) < self.meanSeparationThreshold\n cMean = nan(1,size(X,2)); % Set to nan so that we will throw away below.\n end\n end\n \n means(iCluster,:) = cMean;\n end\n \n % Clean up - Remove clusters we didn't use or threw away.\n self.clusterCenters = means(~any(isnan(means),2),:);\n \n \n end\n \n function ds = runAction(self,ds)\n \n fn = self.distanceFunction;\n distance = fn(ds.getObservations,self.clusterCenters);\n \n if size(distance,1) ~= ds.nObservations || size(distance,2) ~= size(self.clusterCenters,1)\n error('prt:prtClusterKmeans:badDistanceMetric','Expected a matrix of size %s from the distance metric, but distance metric function output a matrix of size %s',mat2str([DataSet.nObservations, size(Obj.clusterCenters,1)]),mat2str(size(distance)));\n end\n \n %The smallest distance is the expected class:\n [dontNeed,clusters] = min(distance,[],2); %#ok\n \n binaryMatrix = zeros(size(clusters,1),self.nClusters);\n for i = 1:self.nClusters\n binaryMatrix(i == clusters,i) = 1;\n end\n ds = ds.setObservations(binaryMatrix);\n \n end\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/cluster/prtClusterMeanShiftEuclidean.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581510799253, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39445216829216634}} {"text": "function gf=gfobs_L1L2(obsr,obsb,lam)\n\npi=sdobs(obsr,obsb,1)*lam(1);\npj=sdobs(obsr,obsb,2)*lam(2);\n\nif pi==0||pj==0\n gf=0;\nelse\n gf=pi-pj;\nend\n\nreturn", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/gnss/relpos/gfobs_L1L2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7826624789529375, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39438845258597177}} {"text": "function [Q,R,S,U,P] = spm_MDP(MDP)\n% solves the active inference problem for Markov decision processes\n% FROMAT [Q,R,S,U,P] = spm_MDP(MDP)\n%\n% MDP.T - process depth (the horizon)\n% MDP.S(N,1) - initial state\n% MDP.B{M}(N,N) - transition probabilities among hidden states (priors)\n% MDP.C(N,1) - terminal cost probabilities (prior N over hidden states)\n% MDP.D(M,1) - control probabilities (prior over M control states)\n%\n% optional:\n%\n% MDP.W - log-precision of beliefs about transitions (default: 1)\n% MDP.G{M}(N,N) - transition probabilities used to generate outcomes\n% (default: the prior transition probabilities)\n% MDP.A(N,N) - Likelihood of outcomes given hidden states\n% (default: an identity mapping from states to outcomes)\n% MDP.B{T,M}(N,N) - transition probabilities for each time point\n% MDP.G{T,M}(N,N) - transition probabilities for each time point\n% (default: MDP.B{T,M} = MDP.B{M})\n%\n% MDP.plot - swtich to suppress graphics\n%\n% produces:\n%\n% Q(N,K,T) - an array of conditional (posterior) expectations over N hidden\n% states and time 1,...,T at time 1,...,K\n% R(M,K,T) - an array of conditional expectations over M control\n% states and time 1,...,T at time 1,...,K\n% S(N,T) - a sparse matrix of ones, encoding the state at time 1,...,T\n% U(M,T) - a sparse matrix of ones, encoding the action at time 1,...,T\n% P(M,T) - probabaility of emitting action 1,...,M at time 1,...,T\n%\n% This routine provides solutions of active inference (minimisation of\n% variational free energy)using a generative model based upon a Markov\n% decision process. This model and inference scheme is formulated\n% in discrete space and time. This means that the generative model (and\n% process) are finite state machines or hidden Markov models whose\n% dynamics are given by transition probabilities among states. For\n% simplicity, we assume an isomorphism between hidden states and outcomes,\n% where the likelihood corresponds to a particular outcome conditioned upon\n% hidden states. Similarly, for simplicity, this routine assumes that action\n% and hidden controls are isomorphic. If the dynamics of transition\n% probabilities of the true process are not provided, this routine will use\n% the equivalent probabilities from the generative model.\n%\n% The transition probabilities are a cell array of probability transition\n% matrices corresponding to each (discrete) the level of the control state.\n%\n% Mote that the conditional expectations are functions of time but also\n% contain expectations about fictive states over time at each time point.\n% To create time dependent transition probabilities, one can specify a\n% function in place of the transition probabilities under different levels\n% of control.\n%\n% partially observed Markov decision processes can be modelled by\n% specifying a likelihood (as part of a generative model) and absorbing any\n% probabilistic mapping between (isomorphic) hidden states and outcomes\n% into the transition probabilities G.\n%\n% See also spm_MDP_game\n%__________________________________________________________________________\n% Copyright (C) 2005 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_MDP.m 6061 2014-06-21 09:02:42Z karl $\n\n% set up and preliminaries\n%==========================================================================\n\n% plotting and precision defaults\n%--------------------------------------------------------------------------\ntry PLOT = MDP.plot; catch, PLOT = 1; end\ntry lambda = MDP.lambda; catch, lambda = 1; end\ntry W = MDP.W; catch, W = 1; end\n\n% get figure\n%--------------------------------------------------------------------------\nif PLOT, spm_figure('GetWin','MDP'); clf, end\n\n% generative model and initial states\n%--------------------------------------------------------------------------\nP0 = exp(-32); % smallest probability\nT = MDP.T; % process depth (the horizon)\nNs = size(MDP.B{1},1); % number of hidden states\nNb = size(MDP.B,1); % number of time-dependent probabilities\nNu = size(MDP.B,2); % number of hidden controls\n\n\n% likelihood model (for a partially observed MDP implicit in G)\n%--------------------------------------------------------------------------\ntry\n A = MDP.A + P0;\ncatch\n A = speye(Ns,Ns) + P0;\nend\nA = A*diag(1./sum(A));\n\n% transition probabilities (priors)\n%--------------------------------------------------------------------------\nfor i = 1:T\n for j = 1:Nu\n if i == 1 || Nb == T\n B{i,j} = MDP.B{i,j} + P0;\n H{i,j} = B{i,j}';\n B{i,j} = B{i,j}*diag(1./sum(B{i,j}));\n H{i,j} = H{i,j}*diag(1./sum(H{i,j}));\n lnB{i,j} = log(B{i,j})*W;\n lnH{i,j} = log(H{i,j})*W;\n else\n B{i,j} = B{1,j};\n lnB{i,j} = lnB{1,j};\n lnH{i,j} = lnH{1,j};\n end\n end\nend\n\n% terminal cost probabilities (priors)\n%--------------------------------------------------------------------------\ntry\n C = spm_vec(MDP.C) + P0;\ncatch\n C = ones(Ns,1);\nend\n\n% control probabilities (priors)\n%--------------------------------------------------------------------------\ntry\n D = spm_vec(MDP.D) + P0;\ncatch\n D = ones(Nu,1);\nend\n\n% state probabilities (priors)\n%--------------------------------------------------------------------------\ntry\n E = spm_vec(MDP.E) + P0;\ncatch\n E = ones(Ns,1);\nend\n\nC = C/sum(C);\nD = D/sum(D);\nE = E/sum(E);\nlnA = log(A);\nlnD = log(D)*W;\nlnE = log(E)*W;\n\n% generative process (assume the true process is the same as the model)\n%--------------------------------------------------------------------------\ntry\n G = MDP.G;\ncatch\n G = MDP.B;\nend\nNg = size(G,1);\nfor i = 1:T\n for j = 1:Nu\n if i == 1 || Ng == T\n G{i,j} = G{i,j}*diag(1./sum(G{i,j}));\n else\n G{i,j} = G{1,j};\n end\n end\nend\n\n\n% effector action (e) and sufficient statistics of proposal density\n%--------------------------------------------------------------------------\na = zeros(Ns,T); % state probability\nb = ones(Nu,T); % control probability\na(:,T) = C; % final state\nb = b*diag(1./sum(b));\n\n% posterior expectations (states Q, control R)\n%--------------------------------------------------------------------------\nQ(:,1,:) = a;\nR(:,1,:) = b;\n\n% initial state and posterior (states Q, control R) and action (E)\n%--------------------------------------------------------------------------\ns = find(spm_vec(MDP.S));\nS = sparse(s,1,1,Ns,T);\nU = sparse(Nu,T);\n\n% solve\n%==========================================================================\nfor k = 1:(T - 1)\n \n % forward and backward passes at this time point\n %----------------------------------------------------------------------\n for i = 1:8\n for t = (T - 1):-1:k\n \n % get data likelihood if available at this time\n %--------------------------------------------------------------\n if t > k\n at = lnE;\n else\n at = lnA'*S(:,t) + lnE;\n end\n \n % and accumulate empirical priors\n %--------------------------------------------------------------\n for j = 1:Nu\n if t > 1\n at = at + b(j,t - 1) *lnH{t,j}'*a(:,t - 1);\n end\n at = at + b(j,t ) *lnB{t,j}'*a(:,t + 1);\n bt(j,1) = lnD(j) + a(:,t )'*lnB{t,j}'*a(:,t + 1);\n end\n \n % update sufficient statistics of hidden states and control\n %--------------------------------------------------------------\n a(:,t) = spm_softmax(at);\n b(:,t) = spm_softmax(bt);\n \n % graphics to inspect update scheme\n %==============================================================\n if PLOT > 2\n \n % posterior beliefs about hidden states\n %----------------------------------------------------------\n spm_plot_states(a,b)\n \n % pause if requested\n %----------------------------------------------------------\n if PLOT > 3, pause, end\n \n end\n \n \n end\n \n % graphics to inspect update scheme\n %==================================================================\n if PLOT > 1\n \n % posterior beliefs about hidden states\n %--------------------------------------------------------------\n spm_plot_states(a,b)\n \n end\n end\n \n \n % sampling of next state (outcome)\n %======================================================================\n for i = 1:Nu\n F(i,1) = B{k,i}(:,s)'*lnA*a(:,k + 1);\n end\n \n % next action (the action and minimises expected free energy)\n %----------------------------------------------------------------------\n Pu = spm_softmax(F,lambda);\n i = find(rand < cumsum(Pu),1);\n \n % next state (assuming G mediates uncertainty modelled the likelihood)\n %----------------------------------------------------------------------\n Ps = spm_softmax(G{k,i}(:,s),lambda);\n s = find(rand < cumsum(Ps),1);\n \n \n % save action, state and posterior expectations (states Q, control R)\n %----------------------------------------------------------------------\n P(:,k) = Pu;\n Q(:,k,:) = a;\n R(:,k,:) = b;\n S(s,k + 1) = 1;\n U(i,k) = 1;\n \n \n % plot\n %======================================================================\n if PLOT > 0\n \n % posterior beliefs about hidden states\n %------------------------------------------------------------------\n spm_plot_states(a,b)\n \n % states sampled (outcome)\n %------------------------------------------------------------------\n subplot(2,2,3)\n if size(S,1) > 512\n spy(S,16)\n else\n imagesc(1 - S)\n end\n axis square\n title('Sampled state','FontSize',16)\n xlabel('time','FontSize',12)\n ylabel('action','FontSize',12)\n \n % action sampled (selected)\n %------------------------------------------------------------------\n subplot(2,2,4)\n if size(U,1) > 512\n spy(U,16)\n else\n imagesc(1 - U)\n end\n axis square\n title('Selected action','FontSize',16)\n xlabel('time','FontSize',12)\n ylabel('action','FontSize',12)\n drawnow\n \n end\n \nend\n\n\nfunction spm_plot_states(a,b)\n\n% posterior beliefs about hidden states\n%--------------------------------------------------------------------------\nsubplot(2,2,1)\nif size(a,1) > 512\n spy(a > 1/32,16)\nelse\n imagesc(1 - a)\nend\naxis square\ntitle('Expected hidden states','FontSize',16)\nxlabel('time','FontSize',12)\nylabel('hidden state','FontSize',12)\n\n% posterior beliefs about control states\n%--------------------------------------------------------------------------\nsubplot(2,2,2)\nif size(b,1) > 512\n spy(b > 1/8,16)\nelse\n imagesc(1 - b)\nend\naxis square\ntitle('Expected control states','FontSize',16)\nxlabel('time','FontSize',12)\nylabel('control state','FontSize',12)\ndrawnow\n\n\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/DEM/spm_MDP.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7826624688140726, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39438844747693524}} {"text": "function rfs = getVarReceptiveFields(obj, var)\n%GETVARRECEPTIVEFIELDS Get the receptive field of a variable\n% RFS = GETVARRECEPTIVEFIELDS(OBJ, VAR) gets the receptivie fields RFS of\n% all the variables of the DagNN OBJ into variable VAR. VAR is a variable\n% name or index.\n%\n% RFS has one entry for each variable in the DagNN following the same\n% format as has DAGNN.GETRECEPTIVEFIELDS(). For example, RFS(i) is the\n% receptive field of the i-th variable in the DagNN into variable VAR. If\n% the i-th variable is not a descendent of VAR in the DAG, then there is\n% no receptive field, indicated by `rfs(i).size == []`. If the receptive\n% field cannot be computed (e.g. because it depends on the values of\n% variables and not just on the network topology, or if it cannot be\n% expressed as a sliding window), then `rfs(i).size = [NaN NaN]`.\n\n% Copyright (C) 2015 Karel Lenc and Andrea Vedaldi. All rights reserved.\n%\n% This file is part of the VLFeat library and is made available under the\n% terms of the BSD license (see the COPYING file).\n\nif ~isnumeric(var)\n var_n = obj.getVarIndex(var) ;\n if isnan(var_n)\n error('Variable %s not found.', var);\n end\n var = var_n;\nend\nnv = numel(obj.vars) ;\nnw = numel(var) ;\nrfs = struct('size', cell(nw, nv), 'stride', cell(nw, nv), 'offset', cell(nw,nv)) ;\n\nfor w = 1:numel(var)\n rfs(w,var(w)).size = [1 1] ;\n rfs(w,var(w)).stride = [1 1] ;\n rfs(w,var(w)).offset = [1 1] ;\nend\n\nfor l = obj.executionOrder\n % visit all blocks and get their receptive fields\n in = obj.layers(l).inputIndexes ;\n out = obj.layers(l).outputIndexes ;\n blockRfs = obj.layers(l).block.getReceptiveFields() ;\n\n for w = 1:numel(var)\n % find the receptive fields in each of the inputs of the block\n for i = 1:numel(in)\n for j = 1:numel(out)\n rf = composeReceptiveFields(rfs(w, in(i)), blockRfs(i,j)) ;\n rfs(w, out(j)) = resolveReceptiveFields([rfs(w, out(j)), rf]) ;\n end\n end\n end\nend\nend\n\n% -------------------------------------------------------------------------\nfunction rf = composeReceptiveFields(rf1, rf2)\n% -------------------------------------------------------------------------\nif isempty(rf1.size) || isempty(rf2.size)\n rf.size = [] ;\n rf.stride = [] ;\n rf.offset = [] ;\n return ;\nend\n\nrf.size = rf1.stride .* (rf2.size - 1) + rf1.size ;\nrf.stride = rf1.stride .* rf2.stride ;\nrf.offset = rf1.stride .* (rf2.offset - 1) + rf1.offset ;\nend\n\n% -------------------------------------------------------------------------\nfunction rf = resolveReceptiveFields(rfs)\n% -------------------------------------------------------------------------\n\nrf.size = [] ;\nrf.stride = [] ;\nrf.offset = [] ;\n\nfor i = 1:numel(rfs)\n if isempty(rfs(i).size), continue ; end\n if isnan(rfs(i).size)\n rf.size = [NaN NaN] ;\n rf.stride = [NaN NaN] ;\n rf.offset = [NaN NaN] ;\n break ;\n end\n if isempty(rf.size)\n rf = rfs(i) ;\n else\n if ~isequal(rf.stride,rfs(i).stride)\n % incompatible geometry; this cannot be represented by a sliding\n % window RF field and may denotes an error in the network structure\n rf.size = [NaN NaN] ;\n rf.stride = [NaN NaN] ;\n rf.offset = [NaN NaN] ;\n break;\n else\n % the two RFs have the same stride, so they can be recombined\n % the new RF is just large enough to contain both of them\n a = rf.offset - (rf.size-1)/2 ;\n b = rf.offset + (rf.size-1)/2 ;\n c = rfs(i).offset - (rfs(i).size-1)/2 ;\n d = rfs(i).offset + (rfs(i).size-1)/2 ;\n e = min(a,c) ;\n f = max(b,d) ;\n rf.offset = (e+f)/2 ;\n rf.size = f-e+1 ;\n end\n end\nend\nend\n\n\n", "meta": {"author": "phoenix104104", "repo": "LapSRN", "sha": "95154bba82a3aab9bdaec8e0eedd4187babc5ed2", "save_path": "github-repos/MATLAB/phoenix104104-LapSRN", "path": "github-repos/MATLAB/phoenix104104-LapSRN/LapSRN-95154bba82a3aab9bdaec8e0eedd4187babc5ed2/matconvnet/matlab/+dagnn/@DagNN/getVarReceptiveFields.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105587468141, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.39436661342601215}} {"text": "function y = evaluate_log(this, x)\n%EVALUATE_LOG Evaluate robust function.\n% opposite to evaluate, created to be consistent with the class expert\n\n% EVALUATE(THIS, X) evaluates the robust function THIS at point(s) X. \n% \n% This is a member function of the class 'robust_function'. \n%\n% Author: Stefan Roth, Department of Computer Science, TU Darmstadt\n% Contact: sroth@cs.tu-darmstadt.de\n% $Date: $\n% $Revision: $\n\n% Copyright 2004-2007, Brown University, Providence, RI. USA\n% Copyright 2007-2010 TU Darmstadt, Darmstadt, Germany.\n% \n% All Rights Reserved\n% \n% All commercial use of this software, whether direct or indirect, is\n% strictly prohibited including, without limitation, incorporation into in\n% a commercial product, use in a commercial service, or production of other\n% artifacts for commercial purposes. \n%\n% Permission to use, copy, modify, and distribute this software and its\n% documentation for research purposes is hereby granted without fee,\n% provided that the above copyright notice appears in all copies and that\n% both that copyright notice and this permission notice appear in\n% supporting documentation, and that the name of the author and Brown\n% University not be used in advertising or publicity pertaining to\n% distribution of the software without specific, written prior permission. \n%\n% For commercial uses contact the Technology Venture Office of Brown University\n% \n% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO\n% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND\n% FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR\n% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL\n% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR\n% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS\n% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF\n% THIS SOFTWARE. \n\n \n y = -feval(this.type, x', this.param, 0);", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/spaceTime/optflow_deqing/utils/@robust_function/evaluate_log.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.39436661342601204}} {"text": "function makeplot(out,varargin)\n\n%MAKEPLOT makes plots for the main functions. These figures can also be obtained \n% by setting 'plots = 1' in those functions.\n%\n% Required input:\n% out = a structure containing the output of one of the following classes: \n% MCDCOV, LS, LTS, MLR, MCDREG, CPCA,CPCR, CSIMPLS, RAPCA, ROBPCA, \n% RPCR, RSIMPLS, CDA, RDA\n%\n% Optional input: \n% nameplot : 0 : menu of plots (default = 0) \n% 'all' : all possible plots\n% 'scree' : scree plot\n% 'pcadiag' : Score outlier map\n% 'regdiag' : Regression outlier map\n% '3ddiag' : 3D Regression outlier map\n% 'robdist' : A plot of the robust distances\n% 'qqmcd' : A qq-plot of the robust distances versus the quantiles of the chi-squared distribution\n% 'dd' : A DD-plot: Robust distances versus Mahalanobis distances\n% 'ellipse' : A tolerance ellipse\n% 'resfit' : Standardized LTS Residuals versus fitted values\n% 'resindex' : Standardized LTS Residuals versus index\n% 'qqlts' : Normal QQ-plot of the LTS residuals \n% 'scatter' : Scatterplot with LTS line \n% 'da' : Tolerance ellipses of a discrimant analysis\n% 'simca' : Scatterplot with boundaries defined by the number of PC's from a simca method\n% labod : number of points to be identified in score plots \n% with largest orthogonal distance.\n% labsd : number of points to be identified in score and regression plots \n% with largest score distance.\n% labresd : number of points to be identified in regression plots \n% with largest residual distance.\n% labmcd : number of points to be identified in MCD plots\n% with the largest robust distance.\n% lablts : number of points to be identified in LTS plots \n% with the largest absolute standardized residual.\n% classic : In case of a robust analysis, classic can be set to 0 to avoid classical plots (default). \n% If set to one, the inputargument 'out' must contain a field called 'classic' which is a structure. \n%\n% I/O: makeplot(out,'nameplot',0,'labsd',3,'labod',3,'labresd',3,'classic',0)\n% The user should only give the input arguments that have to change their default value.\n% The name of the input arguments needs to be followed by their value. The order of \n% the input arguments is of no importance.\n%\n% Example: outrpcr=rpcr(x,y,'plots',0,'classic',1); \n% makeplot(outrpcr,'labsd',5, 'classic',1)\n% makeplot(outrpcr,'nameplot','scree')\n%\n% outmcd=mcdcov(x);\n% makeplot(outmcd,'labmcd',6)\n% makeplot(outmcd,'labmcd',4,'nameplot','dd')\n%\n% outls=libra_ols(x,y);\n% makeplot(outls)\n%\n% This function is part of the Matlab Library for Robust Analysis (LIBRA),\n% available at: \n% www.wis.kuleuven.ac.be/stat/robust.html\n%\n% Written by Sabine Verboven 09/04/2003\n% Last Updated : 29/01/2008\n%\n% Uses functions: screeplot, scorediagplot, regresdiagplot,\n% regresdiagplot3d, plotnumbers, plotnumbers3d,\n% distplot, chiqqplot, ddplot, ellipsplot, residualplot, \n% normqqplot, lsscatter, menureg, menuscoreg,\n% menupls, menucov, menuls,menuda, menusimca\n%\n\n%INTITIALISATION%\nif isstruct(out)\n innames=fieldnames(out);\n if strmatch('class',innames,'exact')\n attrib=out.class;\n else\n error('The method had no class identifier.') \n end\n if strmatch('classic',innames,'exact')\n classic=out.classic;\n elseif ismember(attrib,{'CPCA','CPCR','CSIMPLS','MLR','CDA','LS','CSIMCA'})\n classic= 1; \n else \n classic=0;\n end\nelse\n error('The first inputargument is not a structure.')\nend\ncounter=1;\ndefault=struct('nameplot',0,'labsd',3,'labod',3,'labresd',3,'labmcd',3,'lablts',3,'classic',1);\nlist=fieldnames(default);\noptions=default;\nIN=length(list);\ni=1;\n%\nif nargin>1\n %\n %placing inputfields in array of strings\n %\n for j=1:nargin-1\n if rem(j,2)~=0\n chklist{i}=varargin{j};\n i=i+1;\n end\n end \n %\n %Checking which default parameters have to be changed\n % and keep them in the structure 'options'.\n %\n while counter<=IN \n index=strmatch(list(counter,:),chklist,'exact');\n if ~isempty(index) %in case of similarity\n for j=1:nargin-2 %searching the index of the accompanying field\n if rem(j,2)~=0 %fieldnames are placed on odd index\n if strcmp(chklist{index},varargin{j})\n I=j;\n end\n end\n end\n options=setfield(options,chklist{index},varargin{I+1});\n index=[];\n end\n counter=counter+1;\n end\n choice=options.nameplot;\n if choice~=0\n ask=0; \n else \n ask=1; %menu of plots \n end\n labsd=options.labsd;\n labod=options.labod;\n labresd=options.labresd;\n labmcd=options.labmcd;\n lablts=options.lablts;\n classicplots=options.classic;\n if ~isstruct(classic) & options.classic==1\n mess=sprintf(['The classical output is not available. Only robust plots will be shown.\\n',...\n 'Please rerun the preceeding analysis with the option ''classic'' set to 1',...\n '\\n if the classical plots are required.']);\n disp(mess) \n classicplots=0;\n end\nelse\n ask=1; %menu of plots\n choice=0;\n labsd=3;\n labod=3;\n labresd=3;\n labmcd=3;\n lablts=3; \n if ~isstruct(classic) & options.classic==1\n % mess=sprintf(['The classical output is not available. Only robust plots will be shown.\\n',...\n % 'Please rerun the preceeding analysis with the option ''classic'' set to 1',...\n % '\\n if the classical plots are required.']);\n %disp(mess) \n classicplots=0;\n else\n classicplots=1;\n end\nend \n\n%to initialize the correct menu of plots\nexitno=0;\nswitch attrib\ncase 'CPCA'\n exitno=4;\n if ismember({char(choice)},{'regdiag','3ddiag','robdist','qqmcd','dd','ellipse','resfit','resindex','qqlts','diag','scatter',...\n 'da','simca'})\n error('That kind of plot is not available for this method.')\n end\ncase 'CPCR'\n exitno=6;\n if ismember({char(choice)},{'robdist','qqmcd','dd','ellipse','resfit','resindex','qqlts','diag','scatter','da','simca'})\n error('That kind of plot is not available for this method.')\n end \ncase 'LS'\n exitno=7; \n if ismember({char(choice)},{'scree','pcadiag','3ddiag','robdist','qqmcd','dd','ellipse','simca','da'})\n error('That kind of plot is not available for this method.')\n end\ncase 'MCDREG'\n exitno=3;\n if ismember({char(choice)},{'scree','pcadiag','3ddiag','robdist','qqmcd','dd','ellipse',...\n 'resfit','resindex','qqlts','diag','scatter','da','simca'})\n error('That kind of plot is not available for this method.')\n end\ncase 'MLR'\n exitno=3;\n if ismember({char(choice)},{'scree','pcadiag','3ddiag','robdist','qqmcd','dd','ellipse',...\n 'resfit','resindex','qqlts','diag','scatter','da','simca'})\n error('That kind of plot is not available for this method.')\n end\ncase 'LTS' \n exitno=7;\n if ismember({char(choice)},{'scree','pcadiag','3ddiag',...\n 'robdist','qqmcd','dd','ellipse','da','simca'})\n error('That kind of plot is not available for this method.')\n end\n if ~isfield(out,'rd')\n error('Please rerun the LTS-regression again with the option plots equal to 1.')\n end\ncase {'RAPCA','ROBPCA'}\n exitno=4;\n if ismember({char(choice)},{'regdiag','3ddiag','robdist','qqmcd','dd','ellipse','resfit',...\n 'resindex','qqlts','diag','scatter','da','simca'})\n error('That kind of plot is not available for this method.')\n end\ncase 'RPCR' \n exitno=6;\n if ismember({char(choice)},{'robdist','qqmcd','dd','ellipse','resfit','resindex','qqlts','diag','scatter',...\n 'da','simca'})\n error('That kind of plot is not available for this method.')\n end \ncase {'RSIMPLS','CSIMPLS'}\n exitno=5;\n if ismember({char(choice)},{'scree','robdist','qqmcd','dd','ellipse','resfit','resindex','qqlts','diag','scatter',...\n 'da','simca'})\n error('That kind of plot is not available for this method.')\n end\ncase 'MCDCOV'\n if ismember({char(choice)},{'scree','pcadiag','regdiag','3ddiag','resfit','resindex','qqlts','diag','scatter',...\n 'da','simca'})\n error('That kind of plot is not available for this method.')\n end\n exitno=6;\ncase {'RDA','CDA'}\n exitno=3;\n if ismember({char(choice)},{'scree','pcadiag','3ddiag','robdist','qqmcd','dd','ellipse',...\n 'resfit','resindex','qqlts','diag','scatter','regdiag','simca'})\n error('That kind of plot is not available for this method.')\n end \n if size(out.center,2)>2\n disp('Warning: Tolerance ellipses are only drawn for two-dimensional data sets.')\n return\n end\ncase {'CSIMCA','RSIMCA'}\n exitno=3;\n if ismember({char(choice)},{'scree','pcadiag','3ddiag','robdist','qqmcd','dd','ellipse',...\n 'resfit','resindex','qqlts','diag','scatter','regdiag','da'})\n error('That kind of plot is not available for this method.')\n end \n if size(out.pca{1}.P,1) > 3 \n disp('Warning: The dimension of the dataset is larger than 3.')\n return\n end\nend\nif exitno==0\n error(['Your attribute identifier must be one of the following names:',...\n 'CPCA, RAPCA, ROBPCA, CPCR, RPCR, LS, LTS, MCDREG, RSIMPLS, CSIMPLS, MCDCOV, CDA,RDA,CSIMCA,RSIMCA'])\nend\n\n%plotting what is asked for \nif ask==0\n whichplot(out,choice,attrib,exitno,labsd,labod,labresd,labmcd,lablts,classic,classicplots)\nelse\n %make menu of plots\n while (choice~=exitno)\n switch attrib \n case {'CPCA','ROBPCA','RAPCA'}\n choice=menuscore(out,attrib,exitno,labsd,labod,classic,classicplots);\n case {'MCDREG','MLR'}\n choice=menureg(out,attrib,exitno,labsd,labresd,classic,classicplots);\n case {'COV','MCDCOV'}\n choice=menucov(out,attrib,exitno,labmcd,classic,classicplots);\n case {'RSIMPLS','CSIMPLS'}\n choice=menupls(out,attrib,exitno,labsd,labod,labresd,classic,classicplots);\n case {'CPCR','RPCR'}\n choice=menuscoreg(out,attrib,exitno,labsd,labod,labresd,classic,classicplots);\n case {'LTS','LS'}\n choice=menuls(out,attrib,exitno,labsd,labresd,lablts,classic,classicplots); \n case{'CDA','RDA'}\n choice=menuda(out,attrib,exitno,classic,classicplots);\n case{'CSIMCA','RSIMCA'}\n choice=menusimca(out,attrib,exitno,classic,classicplots);\n end \n end\nend\n\n%%%%%%%%%%%%% MAIN FUNCTION %%%%%%%%%%%%%%%\nfunction whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,labmcd,lablts,classic,classicplots)\n\n%Initializing variables\n\nswitch attrib\n \ncase {'ROBPCA','RAPCA'}\n Xdist=out.sd;\n cutoffX=out.cutoff.sd;\n cutoffO=out.cutoff.od;\n OD=out.od;\n k=out.k;\n L=out.L;\n %classical output\n if isstruct(classic)\n Lcl=classic.L;\n Xdistcl=classic.sd;\n ODcl=classic.od;\n cutoffXcl=classic.cutoff.sd;\n cutoffOcl=classic.cutoff.od;\n attribcl='CPCA';\n end\ncase 'MCDREG'\n fitted=out.fitted; \n Rdist=out.resd;\n cutoffR=out.cutoff.resd;\n if size(fitted,2)~=1 \n multi=1;\n else\n multi=0;\n end\n res=out.res;\n Xdist=out.rd;\n Rsquared=out.rsquared;\n cutoffX=out.cutoff.rd;\n Se=out.cov;\n k=size(out.slope,1);\n %classical output\n if isstruct(classic)\n attribcl=classic.class;\n fittedcl=classic.fitted;\n Rdistcl=classic.resd;\n standrescl=classic.stdres;\n cutoffRcl=classic.cutoff.resd;\n rescl=classic.res;\n Xdistcl=classic.md;\n cutoffXcl=classic.cutoff.md;\n Rsquaredcl=classic.rsquared;\n Secl=classic.cov;\n end\ncase 'MLR'\n fittedcl=out.fitted;\n Rdistcl=out.resd;\n cutoffRcl=out.cutoff.resd;\n if size(fittedcl,2)~=1\n multi=1;\n else\n multi=0;\n end \n rescl=out.res;\n Xdistcl=out.md;\n cutoffXcl=out.cutoff.md;\n Rsquaredcl=out.rsquared;\n Secl=out.cov;\n k=size(out.slope,1);\n attribcl=out.class;\ncase 'RPCR'\n fitted=out.fitted; \n Rdist=out.resd;\n cutoffR=out.cutoff.resd;\n if size(fitted,2)~=1\n multi=1;\n else\n multi=0;\n end\n res=out.res;\n Xdist=out.sd;\n Rsquared=out.rsquared;\n cutoffX=out.cutoff.sd;\n cutoffO=out.cutoff.od;\n OD=out.od;\n Se=out.cov;\n k=out.k;\n L=out.robpca.L;\n %classical output\n if isstruct(classic)\n attribcl='CPCR';\n Lcl=classic.cpca.L;\n Xdistcl=classic.sd;\n ODcl=classic.od;\n cutoffOcl=classic.cutoff.od;\n cutoffXcl=classic.cutoff.sd;\n Rdistcl=classic.resd; \n cutoffRcl=classic.cutoff.resd;\n end\ncase 'LTS'\n resid=out.res;\n fitted=out.fitted;\n scale=out.scale;\n standres=resid/scale;\n n=length(resid);\n if isfield(out,'X')\n x=out.X;\n y=out.y;\n else\n x=0;\n y=0;\n end\n Xdist=out.rd;\n cutoffX=out.cutoff.rd;\n cutoffY=out.cutoff.rd;\n k=size(out.slope,1);\n %classical output\n if isstruct(classic)\n attribcl='LS';\n residcl=classic.res;\n fittedcl=classic.fitted;\n scalecl=classic.scale;\n standrescl=residcl/scalecl;\n Xdistcl=classic.md;\n cutoffXcl=classic.cutoff.md;\n ncl=length(residcl);\n if isfield(classic,'X')\n xcl=classic.X;\n ycl=classic.y;\n else\n xcl=0;\n ycl=0;\n end\n end\ncase 'LS'\n attribcl=attrib;\n residcl=out.res;\n fittedcl=out.fitted;\n scalecl=out.scale;\n Xdistcl=out.md;\n cutoffXcl=out.cutoff.md;\n standrescl=out.resd;\n ncl=length(residcl);\n if isfield(out,'X')\n xcl=out.X;\n ycl=out.y; \n else\n xcl=0;\n ycl=0; \n end\n k=size(out.slope,1);\ncase 'CPCA'\n Lcl=out.L;\n Xdistcl=out.sd;\n ODcl=out.od;\n cutoffOcl=out.cutoff.od;\n cutoffXcl=out.cutoff.sd;\n k=out.k;\n attribcl=attrib;\ncase 'CPCR'\n fitted=out.fitted;\n Lcl=out.cpca.L;\n k=out.k;\n Xdistcl=out.sd;\n ODcl=out.od;\n cutoffOcl=out.cutoff.od;\n cutoffXcl=out.cutoff.sd;\n Rdistcl=out.resd;\n cutoffRcl=out.cutoff.resd;\n if size(fitted,2)~=1\n multi=1; %multivariate analysis\n else\n multi=0; %univariate analysis\n stdrescl=out.resd;\n cutoffRcl=out.cutoff.resd;\n end \n attribcl=attrib;\ncase 'RSIMPLS'\n fitted=out.fitted; \n Rdist=out.resd;\n cutoffR=out.cutoff.resd;\n if size(fitted,2)~=1\n multi=1;\n else\n multi=0;\n end\n res=out.res;\n Xdist=out.sd;\n cutoffX=out.cutoff.sd;\n cutoffO=out.cutoff.od;\n OD=out.od;\n Se=out.cov;\n k=out.k;\n %classical output\n if isstruct(classic)\n attribcl='CSIMPLS';\n Xdistcl=classic.sd;\n ODcl=classic.od;\n cutoffOcl=classic.cutoff.od;\n cutoffXcl=classic.cutoff.sd;\n Rdistcl=classic.resd;\n cutoffRcl=classic.cutoff.resd;\n end\ncase 'CSIMPLS'\n fittedcl=out.fitted;\n if size(fittedcl,2)~=1\n multi=1;\n else\n multi=0;\n end\n Xdistcl=out.sd;\n ODcl=out.od;\n k=out.k;\n cutoffXcl=out.cutoff.sd;\n cutoffOcl=out.cutoff.od;\n attribcl=attrib;\n Rdistcl=out.resd;\n cutoffRcl=out.cutoff.resd;\ncase 'MCDCOV'\n if ~isempty(out.plane)\n disp('Warning (makeplot): The MCD covariance matrix is singular. No plots can be drawn.')\n return\n end\n covar=out.cov;\n md=out.md;\n rd=out.rd;\n if isfield(out,'X')\n data=out.X;\n else\n data=0;\n end\n center=out.center;\n cutoffR=out.cutoff.rd; \n cutoffM=out.cutoff.md; \n if isstruct(classic)\n if isfield(out,'X')\n datacl=out.X;\n else\n datacl=0;\n end\n centercl=out.classic.center;\n covcl=out.classic.cov; \n mdcl=out.classic.md;\n attribcl=out.classic.class;\n end\ncase 'COV'\n %only available inside the mcdcov function. \ncase 'CDA'\n if isfield(out,'x')\n xcl=out.x;\n groupcl=out.group;\n else\n xcl=0;\n groupcl=0;\n end\n methodcl=out.method;\n centercl=out.center;\n covcl=out.cov;\n classcl=out.class;\ncase 'RDA'\n if isfield(out,'x')\n x=out.x; group=out.group;\n else\n x=0;group=0;\n end\n method=out.method;\n center=out.center;\n covar=out.cov;\n class=out.class;\n if isstruct(classic)\n if isfield(out.classic,'x')\n xcl=out.classic.x;\n groupcl=out.classic.group;\n else\n xcl=0;\n groupcl=0;\n end\n methodcl=out.classic.method;\n centercl=out.classic.center;\n covcl=out.classic.cov;\n classcl=out.classic.class;\n end\ncase 'RSIMCA'\n if isstruct(classic)\n resultcl=out.classic;\n else\n resultcl=0;\n end\nend\n\n%determination of the number of plots (robust or/and classic) \nif strcmp(attrib,'LS') | strcmp(attrib,'CPCR') | strcmp(attrib,'CPCA') | strcmp(attrib,'MLR') | strcmp(attrib,'CDA') | strcmp(attrib,'CSIMPLS')|strcmp(attrib,'CSIMCA')\n oneplot=1; %only classical plots possible\nelseif (strcmp(attrib,'RAPCA') |strcmp(attrib,'MCDREG') | strcmp(attrib,'RPCR')|strcmp(attrib,'ROBPCA')| strcmp(attrib,'RSIMPLS')| strcmp(attrib,'MCDCOV')|strcmp(attrib,'LTS')|strcmp(attrib,'RDA')|strcmp(attrib,'RSIMCA')) & classicplots==0\n oneplot=2; %only robust plots possible\nelse \n oneplot=0; %both robust and classical plot in the middle of the screen \n bdwidth=5;\n topbdwidth=30;\n set(0,'Units','pixels');\n scnsize=get(0,'ScreenSize');\n pos1=[bdwidth, 1/3*scnsize(4)+bdwidth, scnsize(3)/2-2*bdwidth, scnsize(4)/2-(topbdwidth+bdwidth)];\n pos2=[pos1(1)+scnsize(3)/2, pos1(2), pos1(3), pos1(4)];\nend\n\nswitch plotn\ncase 'all' %all possible plots\n close \n switch attrib\n case {'MCDREG','MLR'}\n if oneplot==0\n figure('Position',pos1)\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n figure('Position',pos2)\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd) \n elseif oneplot==1\n figure\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd) %multi stond op 2\n elseif oneplot==2\n figure\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd)\n end\n case {'CPCA', 'ROBPCA'}\n if oneplot==0\n figure('Position',pos1)\n screeplot(L,attrib)\n figure('Position',pos2)\n screeplot(Lcl,attribcl)\n pos1(2)=pos1(2)-40;\n pos2(2)=pos2(2)-40;\n figure('Position',pos1)\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod) \n figure('Position',pos2)\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod)\n elseif oneplot==1\n figure\n screeplot(Lcl,attrib)\n figure\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod) \n else\n figure\n screeplot(L,attrib) \n figure\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod)\n end\n case {'RSIMPLS','CSIMPLS'}\n if oneplot==0\n figure('Position',pos1)\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod) \n figure('Position',pos2)\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod)\n pos1(2)=pos1(2)-40;\n pos2(2)=pos2(2)-40;\n figure('Position',pos1)\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attribcl,labsd,labresd) \n figure('Position',pos2)\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd) \n%3D plot is still highly memory consuming 08/04/04\n% if exist('OD')\n% Nihil=(OD <= 1.e-06);\n% OD(Nihil)=0;\n% help=OD;\n% elseif exist('ODcl')\n% Nihil=(ODcl <= 1.e-06);\n% ODcl(Nihil)=0;\n% helpcl=ODcl;\n% end\n \n% pos1(2)=pos1(2)-80;\n% pos2(2)=pos2(2)-80;\n% if ~all(help) %in case k=rank(T)=r then OD = zero \n% figure('Position',pos1)\n% regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n% figure('Position',pos2)\n% regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd)\n% else\n% figure('Position',pos1)\n% regresdiagplot3d(Xdist,OD,Rdist,cutoffX,cutoffO,cutoffR,k,attrib,multi,labsd,labod,labresd,0)\n% title(['Robust 3D outlier map based on ',num2str(k),' LV'])\n% figure('Position',pos2)\n% regresdiagplot3d(Xdistcl,ODcl,Rdistcl,cutoffXcl,cutoffOcl,cutoffRcl,k,attribcl,multi,labsd,labod,labresd,0)\n% title(['Classical 3D outlier map based on ',num2str(k),' LV'])\n% end \n elseif oneplot==1\n figure\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod) \n figure\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd) \n%3D plot is still highly memory consuming 08/04/04 \n% if exist('ODcl')\n% Nihil=(ODcl <= 1.e-06);\n% ODcl(Nihil)=0;\n% helpcl=ODcl;\n% end \n% figure\n% if ~all(helpcl) %in case k=rank(T)=r then OD = zero \n% regresdiagplot(Rdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,'CPCR',labsd,labresd)\n% else\n% regresdiagplot3d(Xdistcl,ODcl,Rdistcl,cutoffXcl,cutoffOcl,cutoffRcl,k,attribcl,multi,labsd,labod,labresd,0)\n% title(['Classical 3D outlier map based on ',num2str(k),' LV'])\n% end \n else\n figure\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod) \n figure\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n%3D plot is still highly memory consuming 08/04/04\n% if exist('OD')\n% Nihil=(OD <= 1.e-06);\n% OD(Nihil)=0;\n% help=OD;\n% end\n% figure\n% if ~all(help) %in case k=rank(T)=r then OD = zero % nog verfijnen is niet volledig nul is zeer klein (<10^-6)\n% regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n% else\n% regresdiagplot3d(Xdist,OD,Rdist,cutoffX,cutoffO,cutoffR,k,attrib,multi,labsd,labod,labresd,0)\n% title(['Robust 3D outlier map based on ',num2str(k),' LV'])\n% end \n end\n case {'CPCR','RPCR'}\n if oneplot==0\n figure('Position',pos1)\n screeplot(L,attrib)\n figure('Position',pos2)\n screeplot(Lcl,attrib)\n pos1(2)=pos1(2)-40;\n pos2(2)=pos2(2)-40;\n figure('Position',pos1)\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod) \n figure('Position',pos2)\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod)\n pos1(2)=pos1(2)-80;\n pos2(2)=pos2(2)-80;\n figure('Position',pos1)\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attribcl,labsd,labresd) \n figure('Position',pos2)\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd) \n%3D plot is still highly memory consuming 08/04/04\n% if exist('OD')\n% Nihil=(OD <= 1.e-06);\n% OD(Nihil)=0;\n% help=OD;\n% elseif exist('ODcl')\n% Nihil=(ODcl <= 1.e-06);\n% ODcl(Nihil)=0;\n% helpcl=ODcl;\n% end \n% if ~all(help) %in case k=rank(T)=r then OD = zero \n% figure('Position',pos1)\n% regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n% figure('Position',pos2)\n% regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd)\n% else\n% figure('Position',pos1)\n% regresdiagplot3d(Xdist,OD,Rdist,cutoffX,cutoffO,cutoffR,k,attrib,multi,labsd,labod,labresd,0)\n% title(['Robust 3D outlier map based on ',num2str(k),' LV'])\n% figure('Position',pos2)\n% regresdiagplot3d(Xdistcl,ODcl,Rdistcl,cutoffXcl,cutoffOcl,cutoffRcl,k,attribcl,multi,labsd,labod,labresd,0)\n% title(['Classical 3D outlier map based on ',num2str(k),' LV'])\n% end \n elseif oneplot==1\n figure\n screeplot(Lcl,attrib) \n figure\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attrib,labsd,labod) \n figure\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd) \n%3D plot is still highly memory consuming 08/04/04\n% if exist('ODcl')\n% Nihil=(ODcl <= 1.e-06);\n% ODcl(Nihil)=0;\n% helpcl=ODcl;\n% end \n% figure\n% if ~all(helpcl) %in case k=rank(T)=r then OD = zero \n% regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,'CPCR',labsd,labresd)\n% else\n% regresdiagplot3d(Xdistcl,ODcl,Rdistcl,cutoffXcl,cutoffOcl,cutoffRcl,k,attribcl,multi,labsd,labod,labresd,0)\n% title(['Classical 3D outlier map based on ',num2str(k),' LV'])\n% end \n else\n figure\n screeplot(L,attrib)\n figure\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod) \n figure\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n%3D plot is still highly memory consuming 08/04/04\n% figure\n% if exist('OD')\n% Nihil=(OD <= 1.e-06);\n% OD(Nihil)=0;\n% help=OD;\n% end \n% if ~all(help) %in case k=rank(T)=r then OD = zero \n% regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n% else\n% regresdiagplot3d(Xdist,OD,Rdist,cutoffX,cutoffO,cutoffR,k,attrib,multi,labsd,labod,labresd,0)\n% title(['Robust 3D outlier map based on ',num2str(k),' LV'])\n% end \n end\n case 'MCDCOV'\n if oneplot==0\n figure('Position',pos1)\n distplot(rd,cutoffR,attrib,labmcd)\n figure('Position',pos2)\n distplot(md,cutoffM,attribcl,labmcd)\n figure('Position',pos1)\n chiqqplot(rd,size(data,2),attrib)\n figure('Position',pos2)\n chiqqplot(md,size(data,2),attribcl)\n figure\n ddplot(md,rd,cutoffM,attrib,labmcd)\n figure \n if size(data,2)~=2|data==0\n axes\n box on\n text(0.05,0.5,'Tolerance ellipse is only available for bivariate data','color','r')\n else \n ellipsplot(center,covar,data,rd,labmcd)\n set(findobj('color','r'),'color','m');\n hold on\n ellipsplot(centercl,covcl,data,md,labmcd)\n set(findobj('color','r'),'color','b','linestyle',':');\n hold off\n legend_handles=[findobj('color','m'); findobj('color','b','linestyle',':')];\n legend(legend_handles,'robust','classical','Location','best')\n end\n elseif oneplot==2\n figure\n distplot(rd,cutoffM,attrib,labmcd)\n figure\n chiqqplot(rd,size(data,2),attrib)\n figure\n ddplot(md,rd,cutoffM,attrib,labmcd)\n figure\n if size(data,2)~=2|data==0\n axes\n box on\n text(0.05,0.5,'Tolerance ellipse is only available for bivariate data','color','r')\n else \n ellipsplot(center,covar,data,rd,labmcd,'MCDCOV')\n end\n end\n case {'LTS','LS'}\n if oneplot==0\n figure('Position',pos1)\n residualplot(fitted,standres,attrib,'Fitted values','Standardized LTS residual',lablts)\n figure('Position',pos2)\n residualplot(fittedcl,standrescl,attribcl,'Fitted value','Standardized LS residual',lablts) \n pos1(2)=pos1(2)-40;\n pos2(2)=pos2(2)-40; \n figure('Position',pos1) \n residualplot(1:n,standres,attrib,'Index','Standardized LTS residual',lablts)\n figure('Position',pos2)\n residualplot(1:ncl,standrescl,attribcl,'Index','Standardized LS residual',lablts) \n pos1(2)=pos1(2)-80;\n pos2(2)=pos2(2)-80; \n figure('Position',pos1)\n normqqplot(resid,attrib) \n figure('Position',pos2)\n normqqplot(residcl,attribcl) \n pos1(2)=pos1(2)-100;\n pos2(2)=pos2(2)-100; \n figure('Position',pos1)\n if strcmp(attrib,'LTS')\n regresdiagplot(Xdist,standres,cutoffX,cutoffY,k,0,attrib,labsd,labresd);\n else\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,1,attrib,labsd,labresd);\n end\n figure('Position',pos2)\n if strcmp(attribcl,'LS')\n regresdiagplot(Xdistcl,standrescl,cutoffXcl,0,k,0,attribcl,labsd,labresd);\n else\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,1,attribcl,labsd,labresd);\n end\n pos1(2)=pos1(2)-120;\n pos2(2)=pos2(2)-120; \n figure('Position',pos1)\n if size(x,2)~=1|x==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else \n lsscatter(x,y,fitted,attrib)\n end\n figure('Position',pos2)\n if size(xcl,2)~=1|xcl==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else\n lsscatter(xcl,ycl,fittedcl,attribcl)\n end \n elseif oneplot ==1\n figure\n residualplot(fittedcl,standrescl,attribcl,'Fitted value','Standardized LS residual',lablts) ;\n figure\n residualplot(1:ncl,standrescl,attribcl,'Index','Standardized LS residual',lablts) ;\n figure\n normqqplot(residcl,attrib);\n figure\n if strcmp(attrib,'LS')\n regresdiagplot(Xdistcl,standrescl,cutoffXcl,0,k,0,attrib,labsd,labresd);\n else\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,1,attrib,labsd,labresd);\n end\n figure\n if size(xcl,2)~=1|xcl==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else\n lsscatter(xcl,ycl,fittedcl,attribcl)\n end\n elseif oneplot==2\n figure\n residualplot(fitted,standres,attrib, 'Fitted value','Standardized LTS residual',lablts)\n figure\n residualplot(1:n,standres,attrib,'Index','Standardized LTS residual',lablts)\n figure\n normqqplot(resid,attrib)\n figure\n if strcmp(attrib,'LTS')\n regresdiagplot(Xdist,standres,cutoffX,0,k,0,attrib,labsd,labresd);\n else\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,1,attrib,labsd,labresd);\n end\n figure\n if size(x,2)~=1|x==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else\n lsscatter(x,y,fitted,attrib)\n end\n end\n case{'RDA','CDA'}\n if oneplot==0\n figure('Position',pos1)\n daplot(x,group,center,covar,class,method)\n figure('Position',pos2)\n daplot(xcl,groupcl,centercl,covcl,classcl,methodcl)\n elseif oneplot==1\n figure\n daplot(xcl,groupcl,centercl,covcl,classcl,methodcl)\n elseif oneplot==2\n figure\n daplot(x,group,center,covar,class,method)\n end\n case{'RSIMCA','CSIMCA'}\n if oneplot==0\n figure('Position',pos1)\n simcaplot(result)\n figure('Position',pos2)\n simcaplot(resultcl)\n elseif oneplot==1\n figure\n simcaplot(resultcl)\n elseif oneplot==2\n figure\n simcaplot(result)\n end \n end\n choice=exitno;\ncase 'scree' %screeplot\n close \n if oneplot==0\n figure('Position',pos1)\n screeplot(L,attrib)\n figure('Position',pos2)\n screeplot(Lcl,attribcl)\n elseif oneplot==1\n screeplot(Lcl,attribcl)\n else\n screeplot(L,attrib)\n end\ncase 'pcadiag' %diagnostic Scoreplot (Xdist-Odist)\n %close \n if oneplot==0\n figure('Position',pos1)\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod)\n figure('Position',pos2)\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod)\n elseif oneplot==1\n figure\n scorediagplot(Xdistcl,ODcl,k,cutoffXcl,cutoffOcl,attribcl,labsd,labod)\n else\n figure\n scorediagplot(Xdist,OD,k,cutoffX,cutoffO,attrib,labsd,labod)\n end\ncase '3ddiag' %3D-plot: highly memory consuming!!!!\n close \n if oneplot==0\n if exist('OD')\n Nihil=(OD <= 1.e-06);\n OD(Nihil)=0;\n help=OD;\n elseif exist('ODcl')\n Nihil=(ODcl <= 1.e-06);\n ODcl(Nihil)=0;\n helpcl=ODcl;\n end\n if ~all(help)%in case k=rank(T)=r then OD = zero \n figure('Position',pos1)\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n figure('Position',pos2)\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd)\n else\n figure('Position',pos1)\n regresdiagplot3d(Xdist,OD,Rdist,cutoffX,cutoffO,cutoffR,k,attrib,multi,labsd,labod,labresd,0)\n title(['Robust 3D outlier map based on ',num2str(k),' LV'])\n figure('Position',pos2)\n regresdiagplot3d(Xdistcl,ODcl,Rdistcl,cutoffXcl,cutoffOcl,cutoffRcl,k,attribcl,multi,labsd,labod,labresd,0)\n title(['Classical 3D outlier map based on ',num2str(k),' LV'])\n end \n elseif oneplot==1\n if exist('ODcl')\n Nihil=(ODcl <= 1.e-06);\n ODcl(Nihil)=0;\n helpcl=ODcl;\n end\n if ~all(helpcl) %in case k=rank(T)=r then OD = zero \n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd)\n else\n regresdiagplot3d(Xdistcl,ODcl,Rdistcl,cutoffXcl,cutoffOcl,cutoffRcl,k,attribcl,multi,labsd,labod,labresd,0)\n title(['Classical 3D outlier map based on ',num2str(k),' LV'])\n end \n else\n if exist('OD')\n Nihil=(OD <= 1.e-06);\n OD(Nihil)=0;\n help=OD;\n end\n if ~all(help) %in case k=rank(T)=r then OD = zero \n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd) \n else\n regresdiagplot3d(Xdist,OD,Rdist,cutoffX,cutoffO,cutoffR,k,attrib,multi,labsd,labod,labresd,0)\n title(['Robust 3D outlier map based on ',num2str(k),' LV'])\n end \n end\ncase {'Idist','robdist'} \n close\n if oneplot==0\n figure('Position',pos1)\n distplot(rd,cutoffM,'MCDCOV',labmcd)\n figure('Position',pos2)\n distplot(md,cutoffM,'COV',labmcd)\n %elseif oneplot==1 not available since 'COV' is only called inside\n %the MCDCOV function\n elseif oneplot==2\n distplot(rd,cutoffM,'MCDCOV',labmcd)\n end\ncase 'qqmcd'\n close\n if oneplot==0\n figure('Position',pos1)\n chiqqplot(rd,size(data,2),'MCDCOV')\n figure('Position',pos2)\n chiqqplot(md,size(data,2),'COV')\n elseif oneplot==2\n chiqqplot(rd,size(data,2),'MCDCOV')\n end\ncase 'dd'\n close\n ddplot(md,rd,cutoffM,attrib,labmcd)\ncase 'ellipse'\n close\n if oneplot==0\n if size(data,2)~=2|data==0\n axes\n box on\n text(0.05,0.5,'Tolerance ellipse plot is only available for bivariate data','color','r')\n else\n ellipsplot(center,covar,data,rd,labmcd)\n set(findobj('color','r'),'color','m');\n hold on\n ellipsplot(centercl,covcl,data,md,labmcd)\n set(findobj('color','r'),'color','b','linestyle',':');\n hold off\n legend_handles=[findobj('color','m'); findobj('color','b','linestyle',':')];\n legend(legend_handles,'robust','classical','Location','best')\n end\n elseif oneplot==2\n if size(data,2)~=2|data==0\n axes\n box on\n text(0.05,0.5,'Tolerance ellipse plot is only available for bivariate data','color','r')\n else\n ellipsplot(center,covar,data,rd,labmcd)\n end\n end\ncase 'resfit'\n close\n if oneplot==0\n figure('Position',pos1)\n residualplot(fitted,standres,attrib,'Fitted value','Standardized LTS residual',lablts)\n figure('Position',pos2)\n residualplot(fittedcl,standrescl,attribcl,'Fitted value','Standardized LS residual',lablts) \n elseif oneplot==1\n residualplot(fittedcl,standrescl,attribcl,'Fitted value','Standardized LS residual',lablts) \n elseif oneplot==2\n residualplot(fitted,standres,attrib,'Fitted value','Standardized LTS residual',lablts)\n end\ncase 'resindex'\n close\n if oneplot==0\n figure('Position',pos1)\n residualplot(1:n,standres,attrib,'Index','Standardized LTS residual',lablts)\n figure('Position',pos2)\n residualplot(1:ncl,standrescl,attribcl,'Index','Standardized LS residual',lablts) \n elseif oneplot==1\n residualplot(1:ncl,standrescl,attribcl,'Index','Standardized LS residual',lablts) \n elseif oneplot==2\n residualplot(1:n,standres,attrib,'Index','Standardized LTS residual',lablts) \n end\ncase 'qqlts'\n close\n if oneplot==0\n figure('Position',pos1)\n normqqplot(resid,'LTS')\n figure('Position',pos2)\n normqqplot(residcl,'LS')\n elseif oneplot==1\n normqqplot(residcl,'LS')\n elseif oneplot==2\n normqqplot(resid,'LTS')\n end\ncase 'regdiag'\n %close\n if oneplot==0\n figure('Position',pos1)\n if strcmp(attrib,'LTS')\n regresdiagplot(Xdist,standres,cutoffX,0,k,0,attrib,labsd,labresd);\n else\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd);\n end\n figure('Position',pos2)\n if strcmp(attribcl,'LS')\n regresdiagplot(Xdistcl,standrescl,cutoffXcl,0,k,0,attribcl,labsd,labresd);\n else\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attribcl,labsd,labresd);\n end\n elseif oneplot==1\n if strcmp(attrib,'LS')\n regresdiagplot(Xdistcl,standrescl,cutoffXcl,0,k,0,attrib,labsd,labresd);\n else\n regresdiagplot(Xdistcl,Rdistcl,cutoffXcl,cutoffRcl,k,multi,attrib,labsd,labresd);\n end\n elseif oneplot==2\n if strcmp(attrib,'LTS')\n regresdiagplot(Xdist,standres,cutoffX,0,k,0,attrib,labsd,labresd);\n else\n regresdiagplot(Xdist,Rdist,cutoffX,cutoffR,k,multi,attrib,labsd,labresd);\n end\n end\ncase 'scatter'\n close\n if oneplot==0\n figure('Position',pos1)\n if size(x,2)~=1|x==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else \n lsscatter(x,y,fitted,attrib)\n end\n figure('Position',pos2)\n if size(xcl,2)~=1|xcl==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else\n lsscatter(xcl,ycl,fittedcl,attribcl)\n end\n elseif oneplot==1\n if size(xcl,2)~=1|xcl==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else\n lsscatter(xcl,ycl,fittedcl,attribcl)\n end\n elseif oneplot==2\n if size(x,2)~=1|x==0\n axes\n box on\n text(0.05,0.5,'Scatter plot is only available for bivariate data','color','r')\n else\n lsscatter(x,y,fitted,attrib)\n end\n end\ncase 'da'\n close \n if oneplot==0\n figure('Position',pos1)\n daplot(x,group,center,covar,class,method)\n figure('Position',pos2)\n daplot(xcl,groupcl,centercl,covcl,classcl,methodcl)\n elseif oneplot==1\n daplot(xcl,groupcl,centercl,covcl,classcl,methodcl)\n elseif oneplot==2\n daplot(x,group,center,covar,class,method)\n end \ncase 'simca'\n close \n if oneplot==0\n figure('Position',pos1)\n simcaplot(out)\n figure('Position',pos2)\n simcaplot(resultcl)\n elseif oneplot==1\n simcaplot(out)\n elseif oneplot==2\n simcaplot(out)\n end \nend\n\n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice= menucov(out,attrib,exitno,labmcd,classic,classicplots)\nchoice=menu('Covariance plots: ','All','Index plot of the distances','Quantile-Quantile plot of the distances','Distance-distance plot',...\n 'Tolerance ellipse (for bivariate data)','Exit'); \nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,3,3,3,labmcd,3,classic,classicplots)\n case 2\n plotn='Idist';\n whichplot(out,'Idist',attrib,exitno,3,3,3,labmcd,3,classic,classicplots)\n case 3\n plotn='qqmcd';\n whichplot(out,plotn,attrib,exitno,3,3,3,labmcd,3,classic,classicplots)\n case 4\n plotn='dd';\n whichplot(out,plotn,attrib,exitno,3,3,3,labmcd,3,classic,classicplots)\n case 5\n plotn='ellipse';\n whichplot(out,plotn,attrib,exitno,3,3,3,labmcd,3,classic,classicplots)\n case 6\n choice=exitno;\n end\n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice = menureg(out,attrib,exitno,labsd,labresd,classic,classicplots)\nchoice=menu('Regression Plots: ','All ','Regression outlier map', 'Exit ');\nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,labsd,3,labresd,3,3,classic,classicplots)\n case 2\n plotn='regdiag';\n whichplot(out,plotn,attrib,exitno,labsd,3,labresd,3,3,classic,classicplots)\n case 3\n choice=exitno;\n end\n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice = menuscore(out,attrib,exitno,labsd,labod,classic,classicplots)\nchoice=menu('Score Plots: ','All ','Scree plot','Score outlier map', 'Exit ');\nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,labsd,labod,3,3,3,classic,classicplots)\n case 2\n plotn='scree';\n whichplot(out,plotn,attrib,exitno,labsd,labod,3,3,3,classic,classicplots)\n case 3\n plotn='pcadiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,3,3,3,classic,classicplots)\n case 4\n choice=exitno;\n end\n \n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice = menupls(out,attrib,exitno,labsd,labod,labresd,classic,classicplots)\nchoice=menu('PLS Plots: ','All ','Score outlier map',...\n 'Regression outlier map', '3D outlier map (Highly memory consuming)','Exit ');\nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots)\n case 2\n plotn='pcadiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots) \n case 3\n plotn='regdiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots) \n case 4\n plotn='3ddiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots) \n case 5\n choice=exitno;\n end \n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice=menuscoreg(out,attrib,exitno,labsd,labod,labresd,classic,classicplots)\nchoice=menu('Score and Regression Plots: ','All ','Scree plot','Score outlier map',...\n 'Regression outlier map', '3D outlier map (Highly memory consuming)', 'Exit ');\n\nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots)\n case 2\n plotn='scree';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots)\n case 3\n plotn='pcadiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots) \n case 4\n plotn='regdiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots)\n case 5\n plotn='3ddiag';\n whichplot(out,plotn,attrib,exitno,labsd,labod,labresd,3,3,classic,classicplots)\n case 6\n choice=exitno;\n end\n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice= menuls(out,attrib,exitno,labsd,labresd,lablts,classic,classicplots)\nchoice=menu('Residual plots: ', 'All', 'Standardized residuals versus fitted values',...\n 'Index plot of standardized residuals','Normal QQplot of residuals',...\n 'Diagnostic plot of residuals versus robust distances',...\n 'Scatter plot with regression line','Exit'); \nswitch choice\ncase 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,labsd,3,labresd,3,lablts,classic,classicplots)\ncase 2\n plotn='resfit';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,lablts,classic,classicplots)\ncase 3\n plotn='resindex';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,lablts,classic,classicplots)\ncase 4\n plotn='qqlts';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,lablts,classic,classicplots)\ncase 5\n plotn='regdiag';\n whichplot(out,plotn,attrib,exitno,labsd,3,labresd,3,lablts,classic,classicplots) \ncase 6\n plotn='scatter';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,lablts,classic,classicplots)\ncase 7\n choice=exitno;\nend \n%---------------------------------------------------------------------------------------------------------------------------\nfunction choice = menuda(out,attrib,exitno,classic,classicplots)\nchoice=menu('Discriminant analysis: ','All ','Tolerance ellipses (for bivariate data)', 'Exit ');\nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,3,classic,classicplots)\n case 2\n plotn='da';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,3,classic,classicplots)\n case 3\n choice=exitno;\nend\n%------------------------------------------------------------------------------------------------------------------------------\nfunction choice = menusimca(out,attrib,exitno,classic,classicplots)\nchoice=menu('SIMCA analysis: ','All ','Scatter plot', 'Exit ');\nswitch choice\n case 1\n plotn='all';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,3,classic,classicplots)\n case 2\n plotn='simca';\n whichplot(out,plotn,attrib,exitno,3,3,3,3,3,classic,classicplots)\n case 3\n choice=exitno;\nend\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/LIBRA/makeplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6297746074044134, "lm_q1q2_score": 0.39431711668761854}} {"text": "function [V,F] = triangle_strip(P,E)\n % TRIANGLE_STRIP build a strip of triangles given a curve\n %\n % [V,F] = triangle_strip(P,E)\n % \n % Inputs:\n % P #points by 2 list of 2d points\n % E #edges by 2 list of edge indices into P\n % Outputs:\n % V #points*2 by 3 list of 3d points\n % F #edges*2 by 3 list of triangle indices\n %\n n = size(P,1);\n V = [P -ones(n,1);P ones(n,1)];\n F = [E n+E(:,1);n+fliplr(E) E(:,2)];\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/triangle_strip.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6261241842048092, "lm_q1q2_score": 0.3943171122939923}} {"text": "classdef SuperEllipseExponentTxiRhoPlotter < handle\n \n properties (Access = public)\n \n end\n \n properties (Access = private)\n \n end\n \n properties (Access = private)\n fileName\n title\n rhoV\n xiV\n value \n end\n \n methods (Access = public)\n \n function obj = SuperEllipseExponentTxiRhoPlotter(cParams)\n obj.init(cParams); \n end\n \n function plot(obj)\n obj.plotContour(); \n obj.plotTriSurf();\n end\n \n end\n \n methods (Access = private)\n \n function init(obj,cParams)\n obj.fileName = [cParams.fileName,'XiRho'];\n obj.title = cParams.title; \n obj.rhoV = cParams.rhoV;\n obj.xiV = cParams.xiV;\n obj.value = cParams.value; \n end\n \n function plotTriSurf(obj)\n s.fileName = obj.fileName;\n s.title = obj.title; \n s.axisAdder = XiRhoAxisAdder(); \n s.view = [-223 67];\n p = SuperEllipseExponentTriSurfPlotter(s);\n x = obj.xiV; \n y = obj.rhoV;\n z = obj.value; \n p.plot(x,y,z); \n end\n \n function plotContour(obj)\n s.fileName = obj.fileName;\n s.title = obj.title; \n s.axisAdder = XiRhoAxisAdder(); \n p = SuperEllipseExponentContourPlotter(s);\n x = obj.xiV; \n y = obj.rhoV;\n z = obj.value; \n p.plot(x,y,z); \n end\n \n function addAxis(obj)\n zlabel('q'); \n end\n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Sources/VadamecumCalculator/SuperEllipseExponentPlotter/SuperEllipseExponentTxiRhoPlotter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6297746143530797, "lm_q1q2_score": 0.39431711225109406}} {"text": "function [Nv, VX, VY, VZ, K, EToV] = MeshReaderGambit3D(FileName)\n\n% function [Nv, VX, VY, VZ, K, EToV] = MeshReaderGambit3D(FileName)\n% Purpose : Read in basic grid information to build grid\n% NOTE : gambit *.neu format is assumed\n\nFid = fopen(FileName, 'rt');\n\n% read intro \nfor i=1:6 \n line = fgetl(Fid);\nend\n\n% fine number of nodes and number of elements\ndims = fscanf(Fid, '%d');\n\nNv = dims(1); K = dims(2);\n\nfor i=1:2 \n line = fgetl(Fid);\nend\n\n% read node coordinates\nxyz = fscanf(Fid, '%lf', [4, Nv]);\nxyz = xyz(2:4, :);\nVX = xyz(1,:); VY = xyz(2,:); VZ = xyz(3,:);\n\nfor i=1:3 \n line = fgetl(Fid);\nend\n\n% read element to node connectivity\nEToV = zeros(K, 4);\nfor k = 1:K\n line = fgetl(Fid);\n tmpcon = sscanf(line, '%lf');\n EToV(k,1:4) = tmpcon(4:7);\nend\nreturn\n", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/JSHesthaven&TWarburton/ServiceRoutines/MeshReaderGambit3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044135, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.39431710790036617}} {"text": "function M = rmCompareModelsGUI_sortVoxels(criterion, modelNum, M);\n% Sort voxels in rmCompareModelsGUI.\n% \n% M = rmCompareModelsGUI_sortVoxels([criterion], [modelNum=dialog], [M=get from cur figure]);\n%\n% INPUTS:\n%\tcriterion: can be one of 'ecc', 'pol', 'sigma', 'varexp', or 'beta'.\n%\tWill sort the voxels in ascending order for the specified parameter and\n%\tmodel #. \n%\t[default: get criterion from dialog]\n%\n%\tmodelNum: index of model in the comparison GUI from which to take the\n%\tvoxel data to use for sorting. \n%\t[default: get model number from dialog]\n%\n%\tM: comparison GUI struct, created by rmCompareModelsGUI_getData.\n%\t[default: get from cur figure, assumes you've already opened a\n%\tcomparison GUI.]\n%\n%\n%\n% ras, 09/2008.\nif notDefined('M'), M = get(gcf, 'UserData'); end\nif notDefined('modelNum'),\n\tmodelNum = listdlg('PromptString', 'Sort by Which Model?', ...\n\t\t\t\t\t\t'ListString', M.dtList, 'InitialValue', 1);\nend\n\nif notDefined('criterion'),\n\tcList = {'Variance Explained' 'Eccentricity' 'Polar Angle' ...\n\t\t\t 'x0' 'y0' 'pRF Size (sigma)' 'Scale Factor (beta)'};\n\tfieldList = {'varexp' 'ecc' 'pol' 'x0' 'y0' 'sigma' 'beta'};\n\tcNum = listdlg('PromptString', 'Sort by Which Criterion?', ...\n\t\t\t\t\t\t'ListString', cList, 'InitialValue', 1);\n\tcriterion = fieldList{cNum};\t\t\t\t\nend\n\n% lookup for alternate names for criteria\nswitch lower(criterion)\n\tcase 'eccentricity', criterion = 'ecc';\n\tcase 'polar angle', criterion = 'pol';\n\tcase 'prf size (sigma)', criterion = 'sigma';\n\tcase 'scale factor (beta)', criterion = 'beta';\nend\n\n% get the values for the criterion\nvals = M.(criterion){modelNum};\n\n% special case: for beta, we want the first beta value (for the pRF, not\n% the trend terms) in the model\nif isequal(criterion, 'beta')\n\tvals = vals(:,1);\nend\n\n% sort the values, getting I -- the new voxel order\n[sortedVals I] = sort(vals);\n\n% reorder the ROI coordinates and data fields to match this:\nM.roi.coords = M.roi.coords(:,I);\nfor f = {'x0' 'y0' 'sigma' 'pol' 'ecc' 'varexp'}\n\tfor m = 1:M.nModels\n\t\tM.(f{1}){m} = M.(f{1}){m}(I);\n\tend\nend\n\nfor m = 1:M.nModels\n\tM.beta{m} = M.beta{m}(I,:);\nend\n\n\n% reoder time series\nfor m = 1:M.nModels\n\tM.tSeries{m} = M.tSeries{m}(:,I); \nend\n\n% udpate the GUI\nset(gcf, 'UserData', M); \n% rmCompareModelsGUI_update; \n \nreturn", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Analysis/retinotopyModel/CompareModels/rmCompareModelsGUI_sortVoxels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.39427212910529874}} {"text": "function matching_channels = match_nirs_labels(labels)\n% MATCHING_CHANNELS finds the labels of the signals associated to the\n% same combination of receiver and transmitter and provides as output a\n% binary matrix where 1 represents that channels in the corresponding\n% row-column combination match.\n% \n% OUTPUT\n% matching_channels: nChan x nChan binary matrix; where 1 represents that \n% channels in the corresponding row-column combination match, and 0 represents\n% the cases where they do not match.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnum_channels=numel(labels);\nmatching_channels = ones(num_channels, num_channels);\n\nfor n = 1 : num_channels\n label_check1 = labels{n};\n label_check1_split = split(label_check1, ' [');\n label_check1_split = label_check1_split{1};\n for m = 1 : num_channels\n if(n == m)\n continue\n end\n label_check2 = labels{m};\n label_check2_split = split(label_check2, ' [');\n label_check2_split = label_check2_split{1};\n matching_channels(n,m) = strcmp(label_check1_split, label_check2_split);\n end\nend\n\n\n\n \n \n \n \n \n ", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/artinis/private/match_nirs_labels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945417, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.394272120232923}} {"text": " function b = ir_mid3_pic1(x, file, varargin)\n%|function b = ir_mid3_pic1(x, file, varargin)\n%|\n%| write 'mid3' type picture to .png file\n%|\n%| in\n%|\tx\t[nx ny nz]\t3D image\n%|\tfile\tchar\t\tfile name\n%|\n%| option\n%|\t'clim'\t\t\tdisplay limit, default [800 1200]\n%|\n%| out\n%|\tb\t[nx+nz ny+nz]\t2D 'mid3' image, uint8\n%|\n%| 2012-10-01, Jeff Fessler\n\nif nargin < 1, ir_usage, end\nif streq(x, 'test'), ir_mid3_pic1_test, return, end\n\narg.clim = [800 1200];\narg = vararg_pair(arg, varargin);\n\ny = jf_mip3(x, 'type', 'mid');\n\nclim = arg.clim;\nb = 255 * (y - clim(1)) / (clim(2) - clim(1));\nb = min(b,255);\nb = max(b,0);\nb = uint8(b);\n\nif exist(file, 'file')\n\twarn('file \"%s\" exists already.', file)\n\tyn = input('over-write? y|n ', 's');\n\tif ~streq(yn, 'y', 1)\n\t\terror('file name')\n\tend\nend\nimwrite(b', file); % trick: transpose\n\n\n% ir_mid3_pic1_test\nfunction ir_mid3_pic1_test\n\nig = image_geom('nx', 64, 'nz', 30, 'dx', 1, 'dz', 2);\nx = ellipsoid_im(ig, [], 'hu_scale', 1000);\n\nfile = 'test.png';\nb = ir_mid3_pic1(x, file, 'clim', [950 1050]);\n\n%h = im(y, arg.clim);\n%z = get(h, 'cdata');\n%minmax(b)\n\ntmp = imread(file)'; % trick\njf_equal(tmp, b)\n\n% !xv test.png &\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/graph/ir_mid3_pic1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.63341024983754, "lm_q2_score": 0.6224593241981982, "lm_q1q2_score": 0.394272116054087}} {"text": "%==============================================================================\n% This code is part of the Matlab-based toolbox\n% FAIR - Flexible Algorithms for Image Registration. \n% For details see \n% - https://github.com/C4IR and\n% - http://www.siam.org/books/fa06/\n%==============================================================================\n% \n% Tutorial for FAIR: shows how to visulaize 3D data with FAIR.\n%\n% - load data (here 3D MRI)\n% - setup viewer (viewImage2D)\n% - view data\n%==============================================================================\n\nclear, %close all, \nhelp(mfilename), \n\n% setup data \nfprintf('%s\\n','generate data (here: MRI)');\nload mri;\nomega = [0,20,0,20,0,10]; % specify physical domain\nT = double(squeeze(D)); \nm = size(T); % get size of data\n\n%%\nfprintf('%s\\n','use image montage for visualization of data')\nFAIRfigure(1); clf; \nimgmontage(T,omega,m,'colormap',gray(100),'numbering','on');\ntitle('visualization of 3D data - imgmontage','fontsize',30)\n\n%%\nfprintf('%s\\n','use a volumetric view')\nFAIRfigure(2); clf; \nvolView(T,omega,m,'facecolor',[240,140,100]/256,'facealpha',0.75); hold on;\ncolormap(gray(100))\n%%\nfprintf('%s\\n','use a volumetric view + slices')\nFAIRfigure(3); clf; \nvolView(T,omega,m,'facecolor',[240,140,100]/256,'facealpha',0.75); hold on;\ncolormap(gray(100))\nvh = viewSlices(T,omega,m);\n\n%%\nFAIRfigure(4); clf; colordef(gcf,'black'); colormap(gray(100));\nfor j=1:m(3);\n vh = viewSlices(T,omega,m,'s1',64,'s2',64,'s3',[j]);\n FAIRpause(1/10);\nend;\necho off\n%==============================================================================\n", "meta": {"author": "C4IR", "repo": "FAIR.m", "sha": "975edebd37b833ae76696792870de5c05efcb9cb", "save_path": "github-repos/MATLAB/C4IR-FAIR.m", "path": "github-repos/MATLAB/C4IR-FAIR.m/FAIR.m-975edebd37b833ae76696792870de5c05efcb9cb/kernel/examples/E2_viewImage3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.39418317547866527}} {"text": "function clusters = xyz2clusters(xyz,P)\n% Converts a 3-column x, y, z list of mm coordinates to a clusters\n% structure given P, the filename of an analyze .img file to provide\n% dimensions and voxel sizes.\n%\n% :Usage:\n% ::\n%\n% function cl = xyz2clusters(xyz,P)\n%\n% Uses this info from the image:\n% - VOL.M - spm-style mat matrix\n% - VOL.VOX - voxel sizes\n%\n% - SPM.Z - now 1s; could stores values in the original image in clusters.Z\n%\n% The following is created internally:\n% - SPM.XYZmm - mm coords, you input these\n% - SPM.XYZ - voxel coords\n%\n\nV = spm_vol(P);\n\n%wh = strmatch('Thalamus',L3); whos wh\n\n\nVOL.M = V.mat;\nVOL.VOX = diag(V.mat(1:3,1:3));\n\nfprintf(1,'Converting mm to voxels -> ');\nXYZ = mm2voxel(xyz,VOL,2); % unique reordered\nfprintf(1,'%3.0f voxels -> ',size(XYZ,1));\nfprintf(1,'Converting voxels to mm -> ');\n%XYZ = unique(XYZ,'rows');\nXYZ = XYZ';\n\nSPM.XYZmm = voxel2mm(XYZ,VOL.M);\nSPM.XYZ = XYZ;\nSPM.Z = ones(1,size(XYZ,2));\n\nfprintf(1,'Making clusters.\\n');\n\n%cl = tor_extract_rois([],SPM,VOL);\n \n% stuff from tor_extract_rois -- omit where it gets each region separately\n \n % ----------------------------------------------------------------------------------\n % define each cluster as cell in array.\n % ----------------------------------------------------------------------------------\n clusters = [];\ncl_index = spm_clusters(SPM.XYZ);\n%cl_index = SPM.Z; %:size(SPM.XYZ,2);\ncl.title = 'xyz';\n\n for i = 1:max(cl_index)\n % if verbose, fprintf(1,['\\nExtracting cluster ' num2str(i) ' of ' num2str(max(cl_index))]),end\n a = find(cl_index == i);\n \n %if isfield(SPM,'u'), cl.title = SPM.title;,else, cl.title = 'Untitled';,end\n %if isfield(SPM,'u'), cl.threshold = SPM.u;,else, cl.threshold = NaN;,end\n cl(i).voxSize = VOL.VOX;\n cl(i).M = VOL.M;\n cl(i).name = [cl.title '_' num2str(i) '_' mat2str(size(a,2)) '_voxels'];\n cl(i).numVox = size(a,2);\n cl(i).Z = SPM.Z(a);\n cl(i).XYZmm = SPM.XYZmm(:,a);\n cl(i).XYZ = SPM.XYZ(:,a);\n \n cl(i).center = mean(cl(i).XYZ');\n if size(cl(i).XYZmm,2) > 1, cl(i).mm_center = center_of_mass(cl(i).XYZmm,cl(i).Z); % mean(cl.XYZmm');\n else cl(i).mm_center = cl(i).XYZmm';\n end\n clusters = [clusters, cl];\n \n end\n \nreturn\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Cluster_contig_region_tools/xyz2clusters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3941831680206885}} {"text": "% Using A Binary Sensor Mask Example\n%\n% This example demonstrates how to use a binary sensor mask for the\n% detection of the pressure field generated by an initial pressure\n% distribution within a two-dimensional homogeneous propagation medium. It\n% builds on the Homogeneous Propagation Medium Example. \n%\n% author: Bradley Treeby\n% date: 29th June 2009\n% last update: 22nd September 2012\n% \n% This function is part of the k-Wave Toolbox (http://www.k-wave.org)\n% Copyright (C) 2009-2014 Bradley Treeby and Ben Cox\n\n% This file is part of k-Wave. k-Wave is free software: you can\n% redistribute it and/or modify it under the terms of the GNU Lesser\n% General Public License as published by the Free Software Foundation,\n% either version 3 of the License, or (at your option) any later version.\n% \n% k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY\n% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n% FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for\n% more details. \n% \n% You should have received a copy of the GNU Lesser General Public License\n% along with k-Wave. If not, see . \n\nclear all;\n\n% =========================================================================\n% SIMULATION\n% =========================================================================\n\n% create the computational grid\nNx = 128; % number of grid points in the x (row) direction\nNy = 128; % number of grid points in the y (column) direction\ndx = 0.1e-3; % grid point spacing in the x direction [m]\ndy = 0.1e-3; % grid point spacing in the y direction [m]\nkgrid = makeGrid(Nx, dx, Ny, dy);\n\n% define the properties of the propagation medium\nmedium.sound_speed = 1500; \t% [m/s]\nmedium.alpha_coeff = 0.75; % [dB/(MHz^y cm)]\nmedium.alpha_power = 1.5;\n\n% create initial pressure distribution using makeDisc\ndisc_magnitude = 5; % [Pa]\ndisc_x_pos = 50; % [grid points]\ndisc_y_pos = 50; % [grid points]\ndisc_radius = 8; % [grid points]\ndisc_1 = disc_magnitude*makeDisc(Nx, Ny, disc_x_pos, disc_y_pos, disc_radius);\n\ndisc_magnitude = 3; % [Pa]\ndisc_x_pos = 80; % [grid points]\ndisc_y_pos = 60; % [grid points]\ndisc_radius = 5; % [grid points]\ndisc_2 = disc_magnitude*makeDisc(Nx, Ny, disc_x_pos, disc_y_pos, disc_radius);\n\nsource.p0 = disc_1 + disc_2;\n\n% define a binary sensor mask\nsensor_x_pos = Nx/2; % [grid points]\nsensor_y_pos = Ny/2; % [grid points]\nsensor_radius = Nx/2 - 22; % [grid points]\nsensor_arc_angle = 3*pi/2; % [radians]\nsensor.mask = makeCircle(Nx, Ny, sensor_x_pos, sensor_y_pos, sensor_radius, sensor_arc_angle);\n\n% run the simulation\nsensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);\n\n% reorder the simulation data\nsensor_data_reordered = reorderSensorData(kgrid, sensor, sensor_data);\n\n% =========================================================================\n% VISUALISATION\n% =========================================================================\n\n% plot the initial pressure and sensor distribution\nfigure;\nimagesc(kgrid.y_vec*1e3, kgrid.x_vec*1e3, source.p0 + disc_magnitude*sensor.mask, [-1 1]);\ncolormap(getColorMap);\nylabel('x-position [mm]');\nxlabel('y-position [mm]');\naxis image;\n\n% plot the simulated sensor data\nfigure;\nimagesc(sensor_data, [-1, 1]);\ncolormap(getColorMap);\nylabel('Sensor Position');\nxlabel('Time Step');\ncolorbar;\n\n% plot the re-ordered sensor data\nfigure;\nimagesc(sensor_data_reordered, [-1, 1]);\ncolormap(getColorMap);\nylabel('Sensor Position');\nxlabel('Time Step');\ncolorbar;", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/K-wave/k-Wave/examples/example_ivp_binary_sensor_mask.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979745, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.3941831605627113}} {"text": "classdef bndfun < classicfun\n%BNDFUN Represent global functions on a bounded interval [a, b].\n%\n% Class for representing global functions on a bounded interval [a, b].\n% Functions are approximated via a ONEFUN object, which lives on the interval\n% [-1, 1], stored in the BNDFUN. Forward and inverse maps stored in the\n% BNDFUN object map the interval [-1, 1] to [a, b], and vice versa.\n%\n% Constructor inputs:\n% BNDFUN(OP) constructs a BNDFUN object from the function handle OP on the\n% domain determined by the default in CHEBFUNPREF by mapping the domain to\n% [-1, 1] and constructing a ONEFUN object to represent the function\n% prescribed by OP. OP should be vectorised (i.e., accept a vector input)\n% and output a vector of the same length as its input.\n%\n% BNDFUN(OP, DATA) constructs a BNDFUN object using the data supplied in the\n% DATA structure. DATA fields used by BNDFUN are:\n% DATA.DOMAIN (Default: Determined by CHEBFUNPREF)\n% A row vector with two elements in increasing order defining the\n% construction domain. Both elements must be finite.\n% In addition, BNDFUN may modify the following DATA fields before passing\n% them on to the ONEFUN constructor:\n% DATA.HSCALE (Default: Determined by DATA.DOMAIN)\n% Horizontal construction scale.\n% If any fields in DATA are empty or not supplied, or if DATA itself is empty\n% or not supplied, appropriate default values are set. Any fields in DATA\n% which are not recognized will be passed as-is to the ONEFUN constructor.\n%\n% BNDFUN(OP, DATA, PREF) overrides the default behavior with that given by\n% the preferences in the structure or CHEBFUNPREF object PREF. See\n% CHEBFUNPREF for details.\n%\n% See also CLASSICFUN, CHEBFUNPREF, ONEFUN.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers. \n% See http://www.chebfun.org/ for Chebfun information.\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% BNDFUN Class Description:\n%\n% The BNDFUN class is a class for representations of globally smooth functions\n% on a finite interval [a, b]. It achieves this by taking a ONEFUN on [-1, 1]\n% and applying a linear mapping to re-scale its domain.\n%\n% Note that all binary BNDFUN operators (methods which can take two BNDFUN\n% arguments) assume that the domains of the BNDFUN objects agree. The methods\n% will not issue warnings if this condition is violated, but the results will\n% not be meaningful.\n%\n% Class diagram: [<>] <>-- [<>]\n% ^\n% | \n% [bndfun]\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% CLASS CONSTRUCTOR:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n methods ( Access = public, Static = false )\n \n function obj = bndfun(op, data, pref)\n % Parse inputs.\n if ( (nargin < 1) || isempty(op) )\n obj.domain = [];\n obj.mapping = [];\n obj.onefun = [];\n return\n end\n\n if ( (nargin < 2) || isempty(data) )\n data = struct();\n end\n\n if ( (nargin < 3) || isempty(pref) )\n pref = chebfunpref();\n else\n pref = chebfunpref(pref);\n end\n\n data = parseDataInputs(data, pref);\n\n % Check the domain input.\n if ( ~all(size(data.domain) == [1, 2]) || (diff(data.domain) <= 0) )\n error('CHEBFUN:BNDFUN:bndfun:badDomain', ...\n ['Domain argument should be a row vector with two ', ...\n 'entries in increasing order.']);\n elseif ( any(isinf(data.domain)) )\n error('CHEBFUN:BNDFUN:bndfun:unboundedDomain', ...\n 'Should not encounter unbounded domain in bndfun class.');\n end\n\n % TODO: Why do we rescale the hscale like this?\n data.hscale = data.hscale / diff(data.domain);\n\n % Remap the OP to be a function on [-1, 1].\n linmap = bndfun.createMap(data.domain);\n if ( isa(op, 'function_handle') && ~all(data.domain == [-1, 1]) ...\n && ~isnumeric(op) )\n op = @(x) op(linmap.For(x));\n end\n\n % Call the ONEFUN constructor:\n obj.onefun = onefun.constructor(op, data, pref);\n\n % Add the domain and mapping:\n obj.domain = data.domain;\n obj.mapping = linmap;\n end\n end \n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% STATIC METHODS:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n methods ( Access = public, Static = true ) \n\n % Linear map from [-1, 1] to the domain of the BNDFUN.\n m = createMap(domain);\n \n % Make a BNDFUN (constructor shortcut):\n f = make(varargin);\n \n end\n \nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% METHODS IMPLEMENTED IN THIS FILE:\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction data = parseDataInputs(data, pref)\n%PARSEDATAINPUTS Parse inputs from the DATA structure and assign defaults.\n\nif ( ~isfield(data, 'domain') || isempty(data.domain) )\n data.domain = pref.domain;\nend\n\nif ( ~isfield(data, 'hscale') || isempty(data.hscale) )\n % TODO: Or should this be 1? What does chebfun pass down?\n data.hscale = norm(data.domain, inf);\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@bndfun/bndfun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.39418219131676085}} {"text": "% GeomCG Tensor Completion. Copyright 2013 by\n% Michael Steinlechner\n% Questions and contact: michael.steinlechner@epfl.ch\n% BSD 2-clause license, see LICENSE.txt\n\ndisp(' ___ ___ | geomCG: Tensor completion by Riemannian Optimization')\ndisp(' _ _ _ / __|/ __| | ')\ndisp(' / \\/_\\/ \\|\\/| (__ |(_/\\ | Daniel Kressner')\ndisp(' \\_|\\__\\_/| |\\___|\\___/ | Michael Steinlechner')\ndisp(' \\_| | Bart Vandereycken')\ndisp(' ')\ndisp('geomCG is licensed under a BSD 2-clause license, see LICENSE.txt')\ndisp('For an explanation of the algorithm, we refer to')\ndisp(' ')\ndisp(' D. Kressner, M. Steinlechner, B. Vandereycken:')\ndisp(' Low-Rank Tensor Completion by Riemannian Optimization.')\ndisp(' MATHICSE Technical Report 20.2013, June 2013. Submitted to BIT Numerical Mathematics.')\n\ndisp(' ')\n \ndisp('Compiling mex files...')\nmex calcFunction_mex.c\nmex calcGradient_mex.c\nmex calcInitial_mex.c\nmex calcProjection_mex.c\nmex getValsAtIndex_mex.c\n\naddpath( cd )\naddpath( [cd, filesep, 'examples'] )\ndisp('Make sure that the Tensor Toolbox is also properly installed and loaded into the current path')\ndisp('You can download the Tensor Toolbox from Sandia Labs. GeomCG was tested with version 2.5 only!')\n\ndisp('Finished. Try out the example code simpleGeomCG.m')\n\n\n\n\n\n\n\n\n\n", "meta": {"author": "andrewssobral", "repo": "mctc4bmi", "sha": "fbcbcd25654b818646387c3d6a64304fb60e12dd", "save_path": "github-repos/MATLAB/andrewssobral-mctc4bmi", "path": "github-repos/MATLAB/andrewssobral-mctc4bmi/mctc4bmi-fbcbcd25654b818646387c3d6a64304fb60e12dd/algs_tc/geomCG/install.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6370307944803831, "lm_q1q2_score": 0.39418219131676085}} {"text": "% Figure 9.47 Feedback Control of Dynamic Systems, 5e\n% Franklin, Powell, Emami\n%\n%% fig9.47.m\n%% Simulink Simulation for Position Control\nclf;\n[t,x,y]=sim('fig9_46');\nplot(t',x');\ngrid;\nxlabel('Time (sec)');\nylabel('Amplitude');\ntitle('Fig. 9.47: Position Control');\ntext(5,0.95,'Output');\ntext(3.5,0.3,'x_2');\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/9907-feedback-control-of-dynamic-systems-fifth-ed/fig9_47.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.61878043374385, "lm_q2_score": 0.6370307875894139, "lm_q1q2_score": 0.39418218705276387}} {"text": "function han = m_scatter(lon, lat, varargin)\n% function m_scatter(lon, lat, S, C)\n\nm_proj('miller','lat',82);\n%m_grid('linestyle','none','box','on','tickdir','out');\n[x,y] = m_ll2xy(lon, lat);\n%drawnow\nh = scatter(x, y, varargin{:});\nline(x(1:10), y(1:10))\n%plot(x,y,'.')\n%get(gca, \nz = findobj(gca, 'type', 'scattergroup')\nm_grid('linestyle','none','box','on','tickdir','out')\n%h = scatter(x, y, varargin{:});\n\nif nargout == 1\n han = h;\nend\n", "meta": {"author": "jluttine", "repo": "matlab", "sha": "63406c7782b0869948f06e1dbc594460c165d24e", "save_path": "github-repos/MATLAB/jluttine-matlab", "path": "github-repos/MATLAB/jluttine-matlab/matlab-63406c7782b0869948f06e1dbc594460c165d24e/plotting/m_scatter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3940588332391471}} {"text": "function [both, pos, neg] = visualizePathwayInEpistasis(Nall, radius, pathwayNames)\n% This function creates a circular network such that all the nodes are\n% arranged in a circle. The nodes represent a pathway, the color of the\n% node represents whether the interactions within a pathway are none, positive,\n% negative, or mixed. The size of the node represents the number of interactions.\n% The edges represent which pathways are sharing which\n% type of interaction. The color of the edge represents if the interactions\n% are positive negative or mixed. The with of the edge represent the total number\n% of interactions between any two given pathways.\n%\n% USAGE:\n%\n% [both,pos,neg]=visualizePathwayInEpistasis(Nall,radius,pathwayNames)\n%\n% INPUT:\n% Nall: a structure representing the epistatic interaction networks:\n% Nall.pos: a square matrix representing number of positive interactions shared by any two pathways.\n% Nall.neg: a square matrix representing number of negative interactions shared by any two pathways.\n% radius: radius of the generic circles for clock diagram.\n% pathwayNames: subSystem names corresponding to matrices in Nall\n% structure\n%\n% OUTPUT:\n% both: contains both positive and negative interactions\n% pos: contains only positive interactions\n% neg: contains only negative interactions\n%\n% NOTE:\n% See figures in following publication:\n% Joshi CJ and Prasad A, 2014, \"Epistatic interactions among metabolic genes\n% depend upon environmental conditions\", Mol. BioSyst., 10, 2578-2589.\n%\n% .. Authors:\n% - Chintan Joshi 10/26/2018\n% - Chintan Joshi; made modifications to label the nodes using pathway names, 10/26/2018\n\nif nargin < 2\n radius = 40;\nend\n\npos = Nall.pos;\nneg = Nall.neg;\nboth = Nall.pos + Nall.neg;\nindn = []; indp = []; mix_ = [];\nps = find(diag(pos) ~= 0); ns = find(diag(neg) ~= 0); nps = find(diag(both) ~= 0);\nif ~isempty(nps) && ~isempty(ps)\n indp = intersect(ps, nps);\nend\nif ~isempty(nps) && ~isempty(ns)\n indn = intersect(ns, nps);\nend\nif isempty(indn)\n p_ = indp; n_ = []; mix_ = [];\nelseif isempty(indp)\n p_ = []; n_ = indn; mix_ = [];\nelse\n p_ = setdiff(indp, indn); n_ = setdiff(indn, indp); mix_ = intersect(indp, indn);\nend\n% keeps only those that have both but not either type of interactions alone\nc = 0;\nfor i = 1:length(both)\n for j = 1:length(both)\n if both(i, j) ~= 0 && pos(i, j) ~= 0 && neg(i, j) ~= 0\n c = c + 1;\n indm1(c, 1) = i;\n indm2(c, 1) = j;\n end\n end\nend\n% conversion to circular cordinates\ntheta = linspace(0, 2 * pi, length(pos) + 1);\ntheta = theta(1:end - 1);\n[x, y] = pol2cart(theta, 1);\ntx = x; ty = y;\nx = x * 0.9; y = y * 0.9;\n[indp1, indp2] = ind2sub(size(pos), find(pos(:)));\n[indn1, indn2] = ind2sub(size(neg), find(neg(:)));\ngc = [0.23 0.44 0.34];\nrc = [0.58 0.39 0.39];\nyc = [255 204 102] / 255;\nsubplot(3, 3, 5);\n% plot the structure of the clock diagram\nplot(x, y, '.', 'MarkerEdgeColor', [150 150 150]./255, 'markersize', 1); hold on\n% label the the texts for each point in clock diagram\nfor i = 1:length(x)\n textAngle = (i - 1) * 360 / length(x); % calculate the angle for text\n text(tx(i), ty(i), pathwayNames(i), 'Rotation', textAngle);\nend\nif ~isempty(indp1)\n arrayfun(@(p, q)line([x(p), x(q)], [y(p), y(q)], 'Color', gc, 'LineWidth', pos(p, q)), indp1, indp2); % plot inter-pathway positive interactions\nend\nif ~isempty(indn1)\n arrayfun(@(p, q)line([x(p), x(q)], [y(p), y(q)], 'Color', rc, 'LineWidth', neg(p, q)), indn1, indn2); % plot inter-pathway negative interactions\nend\nif exist('indm1')\n arrayfun(@(p, q)line([x(p), x(q)], [y(p), y(q)], 'Color', yc, 'LineWidth', both(p, q)), indm1, indm2); % plot inter pathway both types of interactions\nend\n% plot intra-pathway interactions\nplot(x, y, '.', 'MarkerEdgeColor', [150 150 150]./255, 'markersize', radius);\nplot(x(p_), y(p_), '.', 'MarkerEdgeColor', gc, 'markersize', radius + length(p_) * 3);\nplot(x(n_), y(n_), '.', 'MarkerEdgeColor', rc, 'markersize', radius + length(n_) * 3);\nplot(x(mix_), y(mix_), '.', 'MarkerEdgeColor', yc, 'markersize', radius + length(mix_) * 3);\nset(gca, 'DataAspectRatio', [1 1 1]);\n\naxis equal off;\nhold off;\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/visualization/visualizeEpistasis/visualizePathwayInEpistasis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3940588332391471}} {"text": "classdef mme_reserve_zone < mp.mm_element\n\n% MATPOWER\n% Copyright (c) 2022, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n% properties\n% end\n\n methods\n function name = name(obj)\n name = 'reserve_zone';\n end\n\n function obj = add_constraints(obj, mm, nm, dm, mpopt)\n dme = obj.data_model_element(dm);\n rgen_dme = dm.elements.reserve_gen;\n igr = rgen_dme.gen; %% index of online gen for each online reserve gen\n\n Areq = dme.zones(:, igr);\n lreq = dme.req;\n\n mm.add_lin_constraint('Rreq', Areq, lreq, [], {'R'});\n end\n\n function obj = data_model_update(obj, mm, nm, dm, mpopt)\n dme = obj.data_model_element(dm);\n\n %% get reserve zone prices\n ll = mm.get_idx('lin');\n prc = mm.soln.lambda.mu_l(ll.i1.Rreq:ll.iN.Rreq) / dm.base_mva;\n\n %% update in the data model\n dme.tab.prc(dme.on) = prc;\n end\n end %% methods\nend %% classdef\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/+mp/mme_reserve_zone.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3940588332391471}} {"text": "function [maps,data,stats] = RippleStats(filtered,ripples,varargin)\n\n%RippleStats - Compute descriptive stats for ripples (100~200Hz oscillations).\n%\n% USAGE\n%\n% [maps,data,stats] = RippleStats(filtered,ripples,)\n%\n% filtered ripple-band filtered samples (one channel)\n% ripples ripple timing information (obtained using FindRipples)\n% optional list of property-value pairs (see table below)\n%\n% =========================================================================\n% Properties Values\n% -------------------------------------------------------------------------\n% 'frequency' sampling rate (in Hz) (default = 1250Hz)\n% 'durations' durations before and after ripple peak (in s)\n% (default = [-0.5 0.5])\n% =========================================================================\n%\n% OUTPUT\n%\n% maps.ripples instantaneous amplitude (one ripple per row)\n% maps.frequency instantaneous frequency\n% maps.phase instantaneous phase\n% maps.amplitude enveloppe amplitude\n% data.peakFrequency frequency at peak\n% data.peakAmplitude amplitude at peak\n% data.duration durations\n% stats.durationAmplitude correlation between duration and amplitude (rho, p)\n% stats.durationFrequency correlation between duration and frequency (rho, p)\n% stats.amplitudeFrequency correlation between amplitude and frequency (rho, p)\n% stats.acg.data autocorrelogram data\n% stats.acg.t autocorrelogram time bins\n%\n% SEE\n%\n% See also FindRipples, SaveRippleEvents, PlotRippleStats.\n\n% Copyright (C) 2004-2011 by Micha\u00ebl Zugaro\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\n% Default values\nsamplingRate = 1250;\ndurations = [-50 50]/1000;\nnCorrBins = 50;\n% corrBinSize = 400;\ncorrDuration = 20;\ncorrBinSize = 0.01;\n\n% Check number of parameters\nif nargin < 2,\n error('Incorrect number of parameters (type ''help RippleStats'' for details).');\nend\n\n% Check parameter sizes\nif size(filtered,2) ~= 2,\n\terror('Parameter ''filtered'' is not a Nx2 matrix (type ''help RippleStats'' for details).');\nend\n% if size(ripples,2) ~= 4,\n% \terror('Parameter ''ripples'' is not a Nx4 matrix (type ''help RippleStats'' for details).');\n% end\nif size(ripples,2) < 3,\n\terror('Parameter ''ripples'' is not a Nx4 or Nx4 matrix (type ''help RippleStats'' for details).');\nend\n\n\n\n% Parse parameter list\nfor i = 1:2:length(varargin),\n\tif ~ischar(varargin{i}),\n\t\terror(['Parameter ' num2str(i+2) ' is not a property (type ''help RippleStats'' for details).']);\n\tend\n\tswitch(lower(varargin{i})),\n\t\tcase 'frequency',\n\t\t\tsamplingRate = varargin{i+1};\n\t\t\tif ~isdscalar(samplingRate,'>0'),\n\t\t\t\terror('Incorrect value for property ''frequency'' (type ''help RippleStats'' for details).');\n\t\t\tend\n\t\tcase 'durations',\n\t\t\tdurations = varargin{i+1};\n\t\t\tif ~isdvector(durations,'#2','<'),\n\t\t\t\terror('Incorrect value for property ''durations'' (type ''help RippleStats'' for details).');\n\t\t\tend\n\t\totherwise,\n\t\t\terror(['Unknown property ''' num2str(varargin{i}) ''' (type ''help RippleStats'' for details).']);\n\tend\nend\n\nnBins = floor(samplingRate*diff(durations)/2)*2+1; % must be odd\nnHalfCenterBins = 3;\ncenterBin = ceil(nBins/2);\ncenterBins = centerBin-nHalfCenterBins:centerBin+nHalfCenterBins;\n\n% Compute instantaneous phase and amplitude\nh = hilbert(filtered(:,2));\nphase(:,1) = filtered(:,1);\nphase(:,2) = angle(h);\namplitude(:,1) = filtered(:,1);\namplitude(:,2) = abs(h);\nunwrapped(:,1) = filtered(:,1);\nunwrapped(:,2) = unwrap(phase(:,2));\n% Compute instantaneous frequency\nfrequency = Diff(unwrapped,'smooth',0);\nfrequency(:,2) = frequency(:,2)/(2*pi);\n\n% Compute ripple map\n[r,i] = Sync(filtered,ripples(:,2),'durations',durations);\nmaps.ripples = SyncMap(r,i,'durations',durations,'nbins',nBins,'smooth',0);\n\n% Compute frequency Map\n[f,i] = Sync(frequency,ripples(:,2),'durations',durations);\nmaps.frequency = SyncMap(f,i,'durations',durations,'nbins',nBins,'smooth',0);\n\n% Compute phase map\n[p,i] = Sync(phase,ripples(:,2),'durations',durations);\nmaps.phase = SyncMap(p,i,'durations',durations,'nbins',nBins,'smooth',0);\n\n% Compute amplitude map\n[a,i] = Sync(amplitude,ripples(:,2),'durations',durations);\nmaps.amplitude = SyncMap(a,i,'durations',durations,'nbins',nBins,'smooth',0);\n\n% Ripple frequency and amplitude at peak\ndata.peakFrequency = maps.frequency(:,centerBin);\ndata.peakAmplitude = maps.amplitude(:,centerBin);\n\n% Ripple durations\ndata.duration = ripples(:,3)-ripples(:,1);\n\n% Autocorrelogram and correlations\n% if nargin > 2,\n% \t[stats.acg.data,stats.acg.t] = CCG(ripples(:,2),1,'binSize',corrBinSize,'halfBins',nCorrBins/2);\n\t[stats.acg.data,stats.acg.t] = CCG(ripples(:,2),1,'binSize',corrBinSize);\n\t[stats.amplitudeFrequency.rho,stats.amplitudeFrequency.p] = corrcoef(data.peakAmplitude,data.peakFrequency);\n\t[stats.durationFrequency.rho,stats.durationFrequency.p] = corrcoef(data.duration,data.peakFrequency);\n\t[stats.durationAmplitude.rho,stats.durationAmplitude.p] = corrcoef(data.duration,data.peakAmplitude);\n% end\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/FMAToolbox/Analyses/RippleStats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3940588332391471}} {"text": "function p = prior_gaussian(varargin)\n%PRIOR_GAUSSIAN Gaussian prior structure \n% \n% Description\n% P = PRIOR_GAUSSIAN('PARAM1', VALUE1, 'PARAM2', VALUE2, ...) \n% creates Gaussian prior structure in which the named\n% parameters have the specified values. Any unspecified\n% parameters are set to default values.\n% \n% P = PRIOR_GAUSSIAN(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)\n% modify a prior structure with the named parameters altered\n% with the specified values.\n%\n% Parameters for Gaussian prior [default]\n% mu - location [0]\n% s2 - scale squared (variance) [1]\n% mu_prior - prior for mu [prior_fixed]\n% s2_prior - prior for s2 [prior_fixed]\n%\n% See also\n% PRIOR_*\n\n% Copyright (c) 2000-2001,2010 Aki Vehtari\n% Copyright (c) 2010 Jaakko Riihim\ufffdki\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'PRIOR_GAUSSIAN';\n ip.addOptional('p', [], @isstruct);\n ip.addParamValue('mu',0, @(x) isscalar(x) && x>0);\n ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));\n ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);\n ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));\n ip.parse(varargin{:});\n p=ip.Results.p;\n \n if isempty(p)\n init=true;\n p.type = 'Gaussian';\n else\n if ~isfield(p,'type') && ~isequal(p.type,'Gaussian')\n error('First argument does not seem to be a valid prior structure')\n end\n init=false;\n end\n\n % Initialize parameters\n if init || ~ismember('mu',ip.UsingDefaults)\n p.mu = ip.Results.mu;\n end\n if init || ~ismember('s2',ip.UsingDefaults)\n p.s2 = ip.Results.s2;\n end\n % Initialize prior structure\n if init\n p.p=[];\n end\n if init || ~ismember('mu_prior',ip.UsingDefaults)\n p.p.mu=ip.Results.mu_prior;\n end\n if init || ~ismember('s2_prior',ip.UsingDefaults)\n p.p.s2=ip.Results.s2_prior;\n end\n\n if init\n % set functions\n p.fh.pak = @prior_gaussian_pak;\n p.fh.unpak = @prior_gaussian_unpak;\n p.fh.lp = @prior_gaussian_lp;\n p.fh.lpg = @prior_gaussian_lpg;\n p.fh.recappend = @prior_gaussian_recappend;\n end\nend\n\nfunction [w, s] = prior_gaussian_pak(p)\n \n w=[];\n s={};\n if ~isempty(p.p.mu)\n w = p.mu;\n s=[s; 'Gaussian.mu'];\n end\n if ~isempty(p.p.s2)\n w = [w log(p.s2)];\n s=[s; 'log(Gaussian.s2)'];\n end\nend\n\nfunction [p, w] = prior_gaussian_unpak(p, w)\n\n if ~isempty(p.p.mu)\n i1=1;\n p.mu = w(i1);\n w = w(i1+1:end);\n end\n if ~isempty(p.p.s2)\n i1=1;\n p.s2 = exp(w(i1));\n w = w(i1+1:end);\n end\nend\n\nfunction lp = prior_gaussian_lp(x, p)\n \n lp = 0.5*sum(-log(2*pi) -log(p.s2)- 1./p.s2 .* sum((x-p.mu).^2,1));\n \n if ~isempty(p.p.mu)\n lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);\n end\n if ~isempty(p.p.s2)\n lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);\n end\nend\n\nfunction lpg = prior_gaussian_lpg(x, p)\n \n lpg = (1./p.s2).*(p.mu-x);\n \n if ~isempty(p.p.mu)\n lpgmu = sum((1./p.s2).*(x-p.mu)) + p.p.mu.fh.lpg(p.mu, p.p.mu);\n lpg = [lpg lpgmu];\n end\n if ~isempty(p.p.s2)\n lpgs2 = (sum(-0.5*(1./p.s2-1./p.s2.^2.*(x-p.mu).^2 )) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;\n lpg = [lpg lpgs2];\n end\nend\n\nfunction rec = prior_gaussian_recappend(rec, ri, p)\n% The parameters are not sampled in any case.\n rec = rec;\n if ~isempty(p.p.mu)\n rec.mu(ri,:) = p.mu;\n end\n if ~isempty(p.p.s2)\n rec.s2(ri,:) = p.s2;\n end\nend \n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/dist/prior_gaussian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.39404733412017495}} {"text": "clear;\ndata = importdata('road1_fiber_ms50_r10.csv');\ndata = data.data;\n\nfigure('DefaultAxesFontSize',16);\nax = gca;\n\nhold on;plot(1:144,data(1:144,4),'k-.','linewidth',0.5);\nhold on;plot(144+1:2*144,data(144+1:2*144,4),'color',[0,0.4470,0.7410],'linewidth',2);\nhold on;plot(2*144+1:3*144,data(2*144+1:3*144,4),'k-.','linewidth',0.5);\nhold on;plot(3*144+1:5*144,data(3*144+1:5*144,4),'color',[0,0.4470,0.7410],'linewidth',2);\nhold on;plot(5*144+1:6*144,data(5*144+1:6*144,4),'k-.','linewidth',0.5);\nhold on;plot(6*144+1:7*144,data(6*144+1:7*144,4),'color',[0,0.4470,0.7410],'linewidth',2);\n\nax.XTick = [144,2*144,3*144,4*144,5*144,6*144,7*144];\nax.XTickLabel = [' ';' ';' ';' ';' ';' ';' '];\nax.YTick = [0,60];\nax.YTickLabel = [' ';' '];\nx = [144,2*144,2*144,144];\ny = [10,10,50,50];\n\nv1 = [144,0; 2*144,0; 2*144,60; 144,60];\nv2 = v1; v2(:,1)=v1(:,1)+2*144;\nv3 = v2; v3(:,1)=v2(:,1)+144;\nv4 = v3; v4(:,1)=v3(:,1)+2*144;\nf = [1,2,3,4];\npatch('faces',f,'vertices',v1,'edgecolor',[0.5 0.5 0.5],'facecolor','green','facealpha',0.1);\npatch('faces',f,'vertices',v2,'edgecolor',[0.5 0.5 0.5],'facecolor','green','facealpha',0.1);\npatch('faces',f,'vertices',v3,'edgecolor',[0.5 0.5 0.5],'facecolor','green','facealpha',0.1);\npatch('faces',f,'vertices',v4,'edgecolor',[0.5 0.5 0.5],'facecolor','green','facealpha',0.1);\nxlim([10,50]);\nxlim([0,7*144]);\n\ngrid on;\nbox off;\n\nset(gcf, 'PaperSize', [6 2]);\nset(gcf, 'PaperPositionMode', 'manual');\nset(gcf, 'PaperPosition', [0 0 6 2]);\nsaveas(gcf,'curve1','pdf');", "meta": {"author": "xinychen", "repo": "academic-drawing", "sha": "927d729e3f9115d7c7285d97c63cbb6c32cea449", "save_path": "github-repos/MATLAB/xinychen-academic-drawing", "path": "github-repos/MATLAB/xinychen-academic-drawing/academic-drawing-927d729e3f9115d7c7285d97c63cbb6c32cea449/time-series/speed_curve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.39404733412017495}} {"text": "function y = cvx_s_sparse( m, n, i, j )\n%CVX_S_SPARSE Matrices with a fixed sparsity pattern.\n\nif nargin < 3,\n error( 'Sparsity structure missing.' );\nelseif ~isnumeric( i ) || ~isnumeric( j ),\n error( 'Sparsity arguments must be vectors of nonnegative integers.' );\nend\ni = i(:);\nj = j(:);\nif any( i <= 0 ) || any( j <= 0 ) || any( i ~= floor( i ) ) || any( j ~= floor( j ) ),\n error( 'Sparsity arguments must be vectors nonnegative integers.' );\nelseif length( i ) ~= 1 && length( j ) ~= 1 && length( i ) ~= length( j ),\n error( 'Sparsity arguments have incompatible size.' );\nelseif any( i > m ) || any( j > n ),\n error( 'One or more indices are out of range.' );\nend\nnz = max( length( i ), length( j ) );\ny = min( sparse( 1 : nz, i + ( j - 1 ) * m, 1, nz, m * n ), 1 );\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd. \n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n\n\n\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/structures/cvx_s_sparse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878414043814, "lm_q2_score": 0.640635868562172, "lm_q1q2_score": 0.39404733352012744}} {"text": "function [dA,twt]=diffrd3(fname)\n% diffs an rd3 file... (requires the .rad file to be present)\n% syntax: [dA,twt]=loadrd3('prof4')\n%\n% Aslak Grinsted 2002\n%\n\n% load details from .RAD file\n\nfname=strrep(lower(fname),'.rd3','');\n\ntracecount=inf;\nstarttrace=1;\nstack=0;\n\ninfos=rd3info(fname,'scans','samples','timewindow');\nsz=infos{2};\ntimewindow=infos{3};\n\ntwt=((1:sz)'-1)*timewindow*1e-9/sz;\n\n%loads the rd3 file\nfid=fopen([fname '.rd3'],'r');\nif (starttrace>1)\n fseek(fid,(starttrace-1)*sz*2,0);\nend\n\n\n\nblocksize=1+fix(1000000/sz); %number of traces to read at a time...\n\nlastTrace=[];\ntraceIdx=1;\ndA=zeros(1,1);\ntracesread=0;\nwhile ((~feof(fid))&(tracesread 0);\n end\n\n im = imread(imdb.image_at(i));\n\n if exist('cls','var')\n sel_gt = find(d.class == class_id);\n else\n sel_gt = find(d.class > 0);\n end\n gt_boxes = d.boxes(sel_gt, :);\n gt_classes = d.class(sel_gt);\n\n if exist('cls','var')\n max_ov = d.overlap(:, class_id);\n else\n max_ov = max(d.overlap, [], 2);\n end\n sel_ex = find(max_ov >= min_overlap);\n ex_boxes = d.boxes(sel_ex, :);\n ex_feat = d.feat(sel_ex, :);\n\n %for j = 1:size(ex_boxes, 1)\n perm = randperm(size(ex_boxes,1), min(10, size(ex_boxes,1)));\n for j = perm\n ex_box = ex_boxes(j, :);\n ov = boxoverlap(gt_boxes, ex_box);\n [max_ov, assignment] = max(ov);\n gt_box = gt_boxes(assignment, :);\n cls = gt_classes(assignment);\n\n src_w = ex_box(3) - ex_box(1) + eps;\n src_h = ex_box(4) - ex_box(2) + eps;\n src_ctr_x = ex_box(1) + 0.5*src_w;\n src_ctr_y = ex_box(2) + 0.5*src_h;\n \n gt_w = gt_box(3) - gt_box(1) + eps;\n gt_h = gt_box(4) - gt_box(2) + eps;\n gt_ctr_x = gt_box(1) + 0.5*gt_w;\n gt_ctr_y = gt_box(2) + 0.5*gt_h;\n\n% dst_ctr_x = (gt_ctr_x - src_ctr_x) * 1/src_w;\n% dst_ctr_y = (gt_ctr_y - src_ctr_y) * 1/src_h;\n% dst_scl_w = log(gt_w / src_w);\n% dst_scl_h = log(gt_h / src_h);\n%\n% target = [dst_ctr_x dst_ctr_y dst_scl_w dst_scl_h];\n\n pred_box = rcnn_predict_bbox_regressor(bbox_regressor, ex_feat(j,:), ex_box);\n\n pred_box(1) = max(pred_box(1), 1);\n pred_box(2) = max(pred_box(2), 1);\n pred_box(3) = min(pred_box(3), size(im,2));\n pred_box(4) = min(pred_box(4), size(im,1));\n\n ovs = boxoverlap(cat(1, pred_box, ex_box), gt_box);\n\n showboxesc(im, gt_box, 'g', '-');\n showboxesc([], ex_box, 'b', '-');\n showboxesc([], pred_box, 'r', '-');\n hold on;\n plot(gt_ctr_x, gt_ctr_y, 'gd');\n plot(src_ctr_x, src_ctr_y, 'rd');\n hold off;\n title(sprintf('green = GT box; blue = original box; red = predicted box; orig %.3f pred %.3f', ovs(2), ovs(1)));\n\n pause;\n end\nend\n", "meta": {"author": "rbgirshick", "repo": "rcnn", "sha": "43b0334e96e9e910bc45c94902a093b5a6f35d0a", "save_path": "github-repos/MATLAB/rbgirshick-rcnn", "path": "github-repos/MATLAB/rbgirshick-rcnn/rcnn-43b0334e96e9e910bc45c94902a093b5a6f35d0a/bbox_regression/vis_debug_bbox_pred.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585669110202, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3940283009050245}} {"text": "function [hrv, R_t, R_amp, R_index, S_t, S_amp] = rpeakdetect(data,samp_freq,thresh,testmode)\n\n% [hrv, R_t, R_amp, R_index, S_t, S_amp] = rpeakdetect(data, samp_freq, thresh, testmode); \n% R_t == RR points in time, R_amp == amplitude\n% of R peak in bpf data & S_amp == amplitude of \n% following minmum. sampling frequency (samp_freq = 256Hz \n% by default) only needed if no time vector is \n% specified (assumed to be 1st column or row). \n% The 'triggering' threshold 'thresh' for the peaks in the 'integrated' \n% waveform is 0.2 by default. testmode = 0 (default) indicates\n% no graphics diagnostics. Otherwise, you get to scan through each segment.\n%\n% A batch QRS detector based upon that of Pan, Hamilton and Tompkins:\n% J. Pan \\& W. Tompkins - A real-time QRS detection algorithm \n% IEEE Transactions on Biomedical Engineering, vol. BME-32 NO. 3. 1985.\n% P. Hamilton \\& W. Tompkins. Quantitative Investigation of QRS \n% Detection Rules Using the MIT/BIH Arrythmia Database. \n% IEEE Transactions on Biomedical Engineering, vol. BME-33, NO. 12.1986.\n% \n% Similar results reported by the authors above were achieved, without\n% having to tune the thresholds on the MIT DB. An online version in C\n% has also been written.\n%\n% Written by G. Clifford gari@ieee.org and made available under the \n% GNU general public license. If you have not received a copy of this \n% license, please download a copy from http://www.gnu.org/\n%\n% Please distribute (and modify) freely, commenting\n% where you have added modifications. \n% The author would appreciate correspondence regarding\n% corrections, modifications, improvements etc.\n%\n% gari@ieee.org\n\n%%%%%%%%%%% make threshold default 0.2 -> this was 0.15 on MIT data \nif nargin < 4\n testmode = 0;\nend\n%%%%%%%%%%% make threshold default 0.2 -> this was 0.15 on MIT data \nif nargin < 3\n thresh = 0.2;\nend\n%%%%%%%%%%% make sample frequency default 256 Hz \nif nargin < 2\n samp_freq = 256;\n if(testmode==1)\n fprintf('Assuming sampling frequency of %iHz\\n',samp_freq);\n end\nend\n\n%%%%%%%%%%% check format of data %%%%%%%%%%\n[a b] = size(data);\nif(a>b)\n len =a;\nend\nif(b>a)\n len =b;\nend\n\n%%%%%%%%%% if there's no time axis - make one \nif (a | b == 1);\n% make time axis \n tt = 1/samp_freq:1/samp_freq:ceil(len/samp_freq);\n t = tt(1:len);\n x = data;\nend\n%%%%%%%%%% check if data is in columns or rows\nif (a == 2) \n x=data(:,1);\n t=data(:,2); \nend\nif (b == 2)\n t=data(:,1);\n x=data(:,2); \nend\n\n%%%%%%%%% bandpass filter data - assume 256hz data %%%%%\n % remove mean\n x = x-mean(x);\n \n % FIR filtering stage\n bpf=x; %Initialise\nif( (samp_freq==128) & (exist('filterECG128Hz')~=0) )\n bpf = filterECG128Hz(x); \nend\nif( (samp_freq==256) & (exist('filterECG256Hz')~=0) )\n bpf = filterECG256Hz(x); \nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n\n%%%%%%%%% differentiate data %%%%%%%%%%%%%%%%%%%%%%%%%%%\n dff = diff(bpf); % now it's one datum shorter than before\n\n%%%%%%%%% square data %%%%%%%%%%%%%%%%%%%%%%%%%%%\n sqr = dff.*dff; %\n len = len-1; % how long is the new vector now? \n\n%%%%%%%%% integrate data over window 'd' %%%%%%%%%%%%%%%%%%%%%%%%%\n d=[1 1 1 1 1 1 1]; % window size - intialise\n if (samp_freq>=256) % adapt for higher sampling rates\n d = [ones(1,round(7*samp_freq/256))]; \n end\n % integrate\n mdfint = medfilt1(filter(d,1,sqr),10);\n % remove filter delay for scanning back through ECG\n delay = ceil(length(d)/2);\n mdfint = mdfint(delay:length(mdfint));\n%%%%%%%%% segment search area %%%%%%%%%%%%%%%%%%%%%%%\n %%%% first find the highest bumps in the data %%%%%% \n max_h = max (mdfint(round(len/4):round(3*len/4)));\n\n %%%% then build an array of segments to look in %%%%%\n %thresh = 0.2;\n poss_reg = mdfint>(thresh*max_h);\n\n%%%%%%%%% and find peaks %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%% find indices into boudaries of each segment %%%\n left = find(diff([0 poss_reg'])==1); % remember to zero pad at start\n right = find(diff([poss_reg' 0])==-1); % remember to zero pad at end\n \n %%%% loop through all possibilities \n for(i=1:length(left))\n [maxval(i) maxloc(i)] = max( bpf(left(i):right(i)) );\n [minval(i) minloc(i)] = min( bpf(left(i):right(i)) );\n maxloc(i) = maxloc(i)-1+left(i); % add offset of present location\n minloc(i) = minloc(i)-1+left(i); % add offset of present location\n end\n\n R_index = maxloc;\n R_t = t(maxloc);\n R_amp = maxval;\n S_amp = minval; %%%% Assuming the S-wave is the lowest\n %%%% amp in the given window\n S_t = t(minloc);\n\n%%%%%%%%%% check for lead inversion %%%%%%%%%%%%%%%%%%%\n % i.e. do minima precede maxima?\n if (minloc(length(minloc))0);\n ip.addParamValue('sigma2_prior',prior_logunif(), @(x) isstruct(x) || isempty(x));\n ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);\n ip.addParamValue('nu_prior',prior_fixed, @(x) isstruct(x) || isempty(x));\n ip.parse(varargin{:});\n lik=ip.Results.lik;\n \n if isempty(lik)\n init=true;\n lik.type = 'Student-t';\n else\n if ~isfield(lik,'type') || ~isequal(lik.type,'Student-t')\n error('First argument does not seem to be a valid likelihood function structure')\n end\n init=false;\n end\n\n % Initialize parameters\n if init || ~ismember('sigma2',ip.UsingDefaults)\n lik.sigma2 = ip.Results.sigma2;\n end\n if init || ~ismember('nu',ip.UsingDefaults)\n lik.nu = ip.Results.nu;\n end\n % Initialize prior structure\n if init\n lik.p=[];\n end\n if init || ~ismember('sigma2_prior',ip.UsingDefaults)\n lik.p.sigma2=ip.Results.sigma2_prior;\n end\n if init || ~ismember('nu_prior',ip.UsingDefaults)\n lik.p.nu=ip.Results.nu_prior;\n end\n \n if init \n % Set the function handles to the subfunctions\n lik.fh.pak = @lik_t_pak;\n lik.fh.unpak = @lik_t_unpak;\n lik.fh.lp = @lik_t_lp;\n lik.fh.lpg = @lik_t_lpg;\n lik.fh.ll = @lik_t_ll;\n lik.fh.llg = @lik_t_llg; \n lik.fh.llg2 = @lik_t_llg2;\n lik.fh.llg3 = @lik_t_llg3;\n lik.fh.tiltedMoments = @lik_t_tiltedMoments;\n lik.fh.tiltedMoments2 = @lik_t_tiltedMoments2;\n lik.fh.siteDeriv = @lik_t_siteDeriv;\n lik.fh.siteDeriv2 = @lik_t_siteDeriv2; \n lik.fh.optimizef = @lik_t_optimizef;\n lik.fh.upfact = @lik_t_upfact;\n lik.fh.invlink = @lik_t_invlink;\n lik.fh.predy = @lik_t_predy;\n lik.fh.predprcty = @lik_t_predprcty;\n lik.fh.recappend = @lik_t_recappend;\n end\n\nend\n\nfunction [w, s] = lik_t_pak(lik)\n%LIK_T_PAK Combine likelihood parameters into one vector.\n%\n% Description \n% W = LIK_T_PAK(LIK) takes a likelihood structure LIK and\n% combines the parameters into a single row vector W. This \n% is a mandatory subfunction used for example in energy and \n% gradient computations.\n% \n% w = [ log(lik.sigma2)\n% (hyperparameters of lik.sigma2)\n% log(log(lik.nu))\n% (hyperparameters of lik.nu)]'\n%\n% See also\n% LIK_T_UNPAK, GP_PAK\n \n w = []; s = {};\n if ~isempty(lik.p.sigma2)\n w = [w log(lik.sigma2)];\n s = [s; 'log(lik.sigma2)'];\n [wh sh] = lik.p.sigma2.fh.pak(lik.p.sigma2);\n w = [w wh];\n s = [s; sh];\n end\n if ~isempty(lik.p.nu)\n w = [w log(log(lik.nu))];\n s = [s; 'loglog(lik.nu)'];\n [wh sh] = lik.p.nu.fh.pak(lik.p.nu);\n w = [w wh];\n s = [s; sh];\n end \nend\n\nfunction [lik, w] = lik_t_unpak(lik, w)\n%LIK_T_UNPAK Extract likelihood parameters from the vector.\n%\n% Description\n% W = LIK_T_UNPAK(W, LIK) takes a likelihood structure LIK and\n% extracts the parameters from the vector W to the LIK\n% structure. This is a mandatory subfunction used for example \n% in energy and gradient computations.\n% \n% Assignment is inverse of \n% w = [ log(lik.sigma2)\n% (hyperparameters of lik.sigma2)\n% log(log(lik.nu))\n% (hyperparameters of lik.nu)]'\n%\n% See also\n% LIK_T_PAK, GP_UNPAK\n\n if ~isempty(lik.p.sigma2)\n lik.sigma2 = exp(w(1));\n w = w(2:end);\n [p, w] = lik.p.sigma2.fh.unpak(lik.p.sigma2, w);\n lik.p.sigma2 = p;\n end\n if ~isempty(lik.p.nu) \n lik.nu = exp(exp(w(1)));\n w = w(2:end);\n [p, w] = lik.p.nu.fh.unpak(lik.p.nu, w);\n lik.p.nu = p;\n end\nend\n\nfunction lp = lik_t_lp(lik)\n%LIK_T_LP log(prior) of the likelihood parameters\n%\n% Description\n% LP = LIK_T_LP(LIK) takes a likelihood structure LIK and\n% returns log(p(th)), where th collects the parameters.\n% This subfunction is needed when there are likelihood parameters.\n%\n% See also\n% LIK_T_LLG, LIK_T_LLG3, LIK_T_LLG2, GPLA_E\n \n v = lik.nu;\n sigma2 = lik.sigma2;\n lp = 0;\n \n if ~isempty(lik.p.sigma2) \n lp = lp + lik.p.sigma2.fh.lp(sigma2, lik.p.sigma2) +log(sigma2);\n end\n if ~isempty(lik.p.nu)\n lp = lp + lik.p.nu.fh.lp(lik.nu, lik.p.nu) +log(v) +log(log(v));\n end\nend\n\nfunction lpg = lik_t_lpg(lik)\n%LIK_T_LPG d log(prior)/dth of the likelihood parameters th\n%\n% Description\n% LPG = LIK_T_LPG(LIK) takes a likelihood structure LIK\n% and returns d log(p(th))/dth, where th collects the\n% parameters. This subfunction is needed when there are \n% likelihood parameters.\n%\n% See also\n% LIK_T_LLG, LIK_T_LLG3, LIK_T_LLG2, GPLA_G\n \n% Evaluate the gradients of log(prior)\n\n v = lik.nu;\n sigma2 = lik.sigma2;\n lpg = [];\n i1 = 0;\n \n if ~isempty(lik.p.sigma2) \n i1 = i1+1;\n lpg(i1) = lik.p.sigma2.fh.lpg(lik.sigma2, lik.p.sigma2).*sigma2 + 1;\n end\n if ~isempty(lik.p.nu) \n i1 = i1+1;\n lpg(i1) = lik.p.nu.fh.lpg(lik.nu, lik.p.nu).*v.*log(v) +log(v) + 1;\n end \nend\n\nfunction ll = lik_t_ll(lik, y, f, z)\n%LIK_T_LL Log likelihood\n%\n% Description\n% LL = LIK_T_LL(LIK, Y, F) takes a likelihood structure LIK,\n% observations Y, and latent values F. Returns the log\n% likelihood, log p(y|f,z). This subfunction is needed when \n% using Laplace approximation or MCMC for inference with \n% non-Gaussian likelihoods. This subfunction is also used in\n% information criteria (DIC, WAIC) computations.\n%\n% See also\n% LIK_T_LLG, LIK_T_LLG3, LIK_T_LLG2, GPLA_E\n\n r = y-f;\n v = lik.nu;\n sigma2 = lik.sigma2;\n\n term = gammaln((v + 1) / 2) - gammaln(v/2) -log(v.*pi.*sigma2)/2;\n ll = term + log(1 + (r.^2)./v./sigma2) .* (-(v+1)/2);\n ll = sum(ll);\nend\n\n\nfunction llg = lik_t_llg(lik, y, f, param, z)\n%LIK_T_LLG Gradient of the log likelihood\n%\n% Description\n% LOKLIKG = LIK_T_LLG(LIK, Y, F, PARAM) takes a likelihood\n% structure LIK, observations Y, and latent values F. Returns\n% the gradient of log likelihood with respect to PARAM. At the\n% moment PARAM can be 'param' or 'latent'. This subfunction is \n% needed when using Laplace approximation or MCMC for inference \n% with non-Gaussian likelihoods.\n%\n% See also\n% LIK_T_LL, LIK_T_LLG2, LIK_T_LLG3, GPLA_E\n \n r = y-f;\n v = lik.nu;\n sigma2 = lik.sigma2;\n \n switch param\n case 'param'\n n = length(y);\n\n i1=0;\n if ~isempty(lik.p.sigma2)\n i1=i1+1;\n % Derivative with respect to sigma2\n llg(i1) = -n./sigma2/2 + (v+1)./2.*sum(r.^2./(v.*sigma2.^2+r.^2*sigma2));\n % correction for the log transformation\n llg(i1) = llg(i1).*sigma2;\n end\n if ~isempty(lik.p.nu)\n i1=i1+1;\n % Derivative with respect to nu\n llg(i1) = 0.5.* sum(psi((v+1)./2) - psi(v./2) - 1./v - log(1+r.^2./(v.*sigma2)) + (v+1).*r.^2./(v.^2.*sigma2 + v.*r.^2));\n \n % correction for the log transformation\n llg(i1) = llg(i1).*v.*log(v);\n end\n case 'latent'\n llg = (v+1).*r ./ (v.*sigma2 + r.^2); \n end\n \nend\n\n\nfunction llg2 = lik_t_llg2(lik, y, f, param, z)\n%LIK_T_LLG2 Second gradients of log likelihood\n%\n% Description \n% LLG2 = LIK_T_LLG2(LIK, Y, F, PARAM) takes a likelihood\n% structure LIK, observations Y, and latent values F. Returns\n% the Hessian of log likelihood with respect to PARAM. At the\n% moment PARAM can be only 'latent'. LLG2 is a vector with\n% diagonal elements of the Hessian matrix (off diagonals are\n% zero). This subfunction is needed when using Laplace \n% approximation or EP for inference with non-Gaussian likelihoods.\n%\n% See also\n% LIK_T_LL, LIK_T_LLG, LIK_T_LLG3, GPLA_E\n\n r = y-f;\n v = lik.nu;\n sigma2 = lik.sigma2;\n\n switch param\n case 'param'\n \n case 'latent'\n % The Hessian d^2 /(dfdf)\n llg2 = (v+1).*(r.^2 - v.*sigma2) ./ (v.*sigma2 + r.^2).^2;\n case 'latent+param'\n % gradient d^2 / (dfds2)\n llg2 = -v.*(v+1).*r ./ (v.*sigma2 + r.^2).^2;\n \n % Correction for the log transformation\n llg2 = llg2.*sigma2;\n if ~isempty(lik.p.nu)\n % gradient d^2 / (dfdnu)\n llg2(:,2) = r./(v.*sigma2 + r.^2) - sigma2.*(v+1).*r./(v.*sigma2 + r.^2).^2;\n\n % Correction for the log transformation\n llg2(:,2) = llg2(:,2).*v.*log(v);\n end\n end\nend \n\nfunction llg3 = lik_t_llg3(lik, y, f, param, z)\n%LIK_T_LLG3 Third gradients of log likelihood (energy)\n%\n% Description\n% LLG3 = LIK_T_LLG3(LIK, Y, F, PARAM) takes a likelihood\n% structure LIK, observations Y and latent values F and\n% returns the third gradients of log likelihood with respect\n% to PARAM. At the moment PARAM can be only 'latent'. G3 is a\n% vector with third gradients. This subfunction is needed when \n% using Laplace approximation for inference with non-Gaussian \n% likelihoods.\n%\n% See also\n% LIK_T_LL, LIK_T_LLG, LIK_T_LLG2, GPLA_E, GPLA_G\n\n r = y-f;\n v = lik.nu;\n sigma2 = lik.sigma2;\n \n switch param\n case 'param'\n \n case 'latent'\n % Return the diagonal of W differentiated with respect to latent values / dfdfdf\n llg3 = (v+1).*(2.*r.^3 - 6.*v.*sigma2.*r) ./ (v.*sigma2 + r.^2).^3;\n case 'latent2+param'\n % Return the diagonal of W differentiated with respect to\n % likelihood parameters / dfdfds2\n llg3 = (v+1).*v.*( v.*sigma2 - 3.*r.^2) ./ (v.*sigma2 + r.^2).^3;\n llg3 = llg3.*sigma2;\n if ~isempty(lik.p.nu)\n % dfdfdnu\n llg3(:,2) = (r.^2-2.*v.*sigma2-sigma2)./(v.*sigma2 + r.^2).^2 - 2.*sigma2.*(r.^2-v.*sigma2).*(v+1)./(v.*sigma2 + r.^2).^3;\n llg3(:,2) = llg3(:,2).*v.*log(v);\n end\n end\nend\n\n\nfunction [logM_0, m_1, sigm2hati1] = lik_t_tiltedMoments(lik, y, i1, sigm2_i, myy_i, z)\n%LIK_T_TILTEDMOMENTS Returns the marginal moments for EP algorithm\n%\n% Description\n% [M_0, M_1, M2] = LIK_T_TILTEDMOMENTS(LIK, Y, I, S2, MYY, Z)\n% takes a likelihood structure LIK, incedence counts Y,\n% expected counts Z, index I and cavity variance S2 and mean\n% MYY. Returns the zeroth moment M_0, mean M_1 and variance\n% M_2 of the posterior marginal (see Rasmussen and Williams\n% (2006): Gaussian processes for Machine Learning, page 55).\n% This subfunction is needed when using EP for inference with \n% non-Gaussian likelihoods.\n%\n% See also\n% GPEP_E\n\n \n zm = @zeroth_moment;\n \n tol = 1e-8;\n yy = y(i1);\n nu = lik.nu;\n sigma2 = lik.sigma2;\n \n % Set the limits for integration and integrate with quad\n % -----------------------------------------------------\n mean_app = myy_i;\n sigm_app = sqrt(sigm2_i);\n\n\n lambdaconf(1) = mean_app - 8.*sigm_app; lambdaconf(2) = mean_app + 8.*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2) > zm(lambdaconf(1));\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2) > zm(lambdaconf(2));\n testiter = 1;\n if test1 == 0 \n lambdaconf(1) = lambdaconf(1) - 3*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n if test1 == 0\n go=true;\n while testiter<10 & go\n lambdaconf(1) = lambdaconf(1) - 2*sigm_app;\n lambdaconf(2) = lambdaconf(2) - 2*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n if test1==1&test2==1\n go=false;\n end\n testiter=testiter+1;\n end\n end\n mean_app = (lambdaconf(2)+lambdaconf(1))/2;\n elseif test2 == 0\n lambdaconf(2) = lambdaconf(2) + 3*sigm_app;\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n if test2 == 0\n go=true;\n while testiter<10 & go\n lambdaconf(1) = lambdaconf(1) + 2*sigm_app;\n lambdaconf(2) = lambdaconf(2) + 2*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n if test1==1&test2==1\n go=false;\n end\n testiter=testiter+1;\n end\n end\n mean_app = (lambdaconf(2)+lambdaconf(1))/2;\n end\n RTOL = 1.e-6;\n ATOL = 1.e-10;\n \n % Integrate with quadrature\n [m_0, m_1, m_2] = quad_moments(zm,lambdaconf(1), lambdaconf(2), RTOL, ATOL); \n \n sigm2hati1 = m_2 - m_1.^2;\n logM_0 = log(m_0);\n function integrand = zeroth_moment(f)\n r = yy-f;\n term = gammaln((nu + 1) / 2) - gammaln(nu/2) -log(nu.*pi.*sigma2)/2;\n integrand = exp(term + log(1 + r.^2./nu./sigma2) .* (-(nu+1)/2));\n integrand = integrand.*exp(- 0.5 * (f-myy_i).^2./sigm2_i - log(sigm2_i)/2 - log(2*pi)/2); %\n end\nend\n\nfunction [g_i] = lik_t_siteDeriv(lik, y, i1, sigm2_i, myy_i, z)\n%LIK_T_SITEDERIV Evaluate the expectation of the gradient\n% of the log likelihood term with respect\n% to the likelihood parameters for EP \n%\n% Description\n% [M_0, M_1, M2] = LIK_T_TILTEDMOMENTS(LIK, Y, I, S2, MYY)\n% takes a likelihood structure LIK, observations Y, index I\n% and cavity variance S2 and mean MYY. Returns E_f [d log\n% p(y_i|f_i) /d a], where a is the likelihood parameter and\n% the expectation is over the marginal posterior. This term is\n% needed when evaluating the gradients of the marginal\n% likelihood estimate Z_EP with respect to the likelihood\n% parameters (see Seeger (2008): Expectation propagation for\n% exponential families). This subfunction is needed when using \n% EP for inference with non-Gaussian likelihoods and there are\n% likelihood parameters.\n%\n% See also\n% GPEP_G\n\n zm = @zeroth_moment;\n znu = @deriv_nu;\n zsigma2 = @deriv_sigma2;\n \n tol = 1e-8;\n yy = y(i1);\n nu = lik.nu;\n sigma2 = lik.sigma2;\n\n % Set the limits for integration and integrate with quad\n mean_app = myy_i;\n sigm_app = sqrt(sigm2_i);\n\n lambdaconf(1) = mean_app - 6.*sigm_app; lambdaconf(2) = mean_app + 6.*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n testiter = 1;\n if test1 == 0 \n lambdaconf(1) = lambdaconf(1) - 3*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n if test1 == 0\n go=true;\n while testiter<10 & go\n lambdaconf(1) = lambdaconf(1) - 2*sigm_app;\n lambdaconf(2) = lambdaconf(2) - 2*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n if test1==1&test2==1\n go=false;\n end\n testiter=testiter+1;\n end\n end\n mean_app = (lambdaconf(2)+lambdaconf(1))/2;\n elseif test2 == 0\n lambdaconf(2) = lambdaconf(2) + 3*sigm_app;\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n if test2 == 0\n go=true;\n while testiter<10 & go\n lambdaconf(1) = lambdaconf(1) + 2*sigm_app;\n lambdaconf(2) = lambdaconf(2) + 2*sigm_app;\n test1 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(1));\n test2 = zm((lambdaconf(2)+lambdaconf(1))/2)>zm(lambdaconf(2));\n if test1==1&test2==1\n go=false;\n end\n testiter=testiter+1;\n end\n end\n mean_app = (lambdaconf(2)+lambdaconf(1))/2;\n end\n\n % Integrate with quad\n [m_0, fhncnt] = quadgk(zm, lambdaconf(1), lambdaconf(2));\n \n % t=linspace(lambdaconf(1),lambdaconf(2),100);\n % plot(t,zm(t))\n % keyboard\n \n [g_i(1), fhncnt] = quadgk( @(f) zsigma2(f).*zm(f) , lambdaconf(1), lambdaconf(2));\n g_i(1) = g_i(1)/m_0*sigma2;\n \n if ~isempty(lik.p.nu)\n [g_i(2), fhncnt] = quadgk(@(f) znu(f).*zm(f) , lambdaconf(1), lambdaconf(2));\n g_i(2) = g_i(2)/m_0.*nu.*log(nu);\n end\n \n function integrand = zeroth_moment(f)\n r = yy-f;\n term = gammaln((nu + 1) / 2) - gammaln(nu/2) -log(nu.*pi.*sigma2)/2;\n integrand = exp(term + log(1 + r.^2./nu./sigma2) .* (-(nu+1)/2));\n integrand = integrand.*exp(- 0.5 * (f-myy_i).^2./sigm2_i - log(sigm2_i)/2 - log(2*pi)/2);\n end \n\n function g = deriv_nu(f)\n r = yy-f;\n temp = 1 + r.^2./nu./sigma2;\n g = psi((nu+1)/2)./2 - psi(nu/2)./2 - 1./(2.*nu) - log(temp)./2 + (nu+1)./(2.*temp).*(r./nu).^2./sigma2;\n end\n\n function g = deriv_sigma2(f)\n r = yy-f;\n g = -1/sigma2/2 + (nu+1)./2.*r.^2./(nu.*sigma2.^2 + r.^2.*sigma2);\n end\n\nend\n\nfunction [lnZhat, muhat, sigm2hat] = lik_t_tiltedMoments2(likelih, y, yi, sigm2_i, myy_i, z, eta)\n%LIKELIH_T_TILTEDMOMENTS Returns the marginal moments for EP algorithm\n%\n% Description\n% [M_0, M_1, M2] = LIKELIH_T_TILTEDMOMENTS(LIKELIH, Y, I, S2, MYY, Z)\n% takes a likelihood data structure LIKELIH, incedence counts Y,\n% expected counts Z, index I and cavity variance S2 and mean\n% MYY. Returns the zeroth moment M_0, mean M_1 and variance M_2\n% of the posterior marginal (see Rasmussen and Williams (2006):\n% Gaussian processes for Machine Learning, page 55). This subfunction \n% is needed when using robust-EP for inference with non-Gaussian \n% likelihoods.\n%\n% See also\n% GPEP_E\n\n if nargin<7\n eta=1;\n end\n \n yy = y(yi);\n nu = likelih.nu;\n sigma2 = likelih.sigma2;\n sigma = sqrt(sigma2);\n \n nuprime = eta*nu+eta-1;\n a=nuprime/2; %a=nu/2;\n \n u=linspace(log(1e-8),5,200);\n du=u(2)-u(1);\n lnpu=(a-1)*u -a*exp(u)+u;\n \n % sigma2 t-likelihood parameter, scale squared\n % sigm2_i cavity variance\n % myy_i cavity mean\n \n sigma2prime = sigma2*nu/nuprime;\n Vu = sigm2_i + (sigma2prime)./exp(u);\n lnZu = 0.5*(-log(2*pi*Vu)) -0.5 * (yy-myy_i)^2 ./Vu;\n lnZt = eta*gammaln((nu+1)/2) - eta/2*log(nu*pi*sigma2) - eta*gammaln(nu/2) - gammaln((nuprime+1)/2) + 0.5*log(nuprime*pi*sigma2prime) + gammaln(nuprime/2);\n \n ptu=exp(lnpu+lnZu+lnZt);\n \n Z_0=sum(ptu)*du;\n lnZhat=log(Z_0) + a*log(a)-gammaln(a);\n \n Vtu=1./(1/sigm2_i +(1/sigma2prime)*exp(u));\n mtu=Vtu.*(myy_i/sigm2_i + (yy/sigma2prime)*exp(u));\n \n muhat=sum(mtu.*ptu)*du/Z_0;\n sigm2hat=sum((Vtu+mtu.^2).*ptu)*du/Z_0-muhat^2;\n \n % limiting distribution (nu -> infinity)\n% Vg=1/(1/sigm2_i +eta/sigma2);\n% mg=Vg*(myy_i/sigm2_i +yy*eta/sigma2);\n% sigm_i=sqrt(sigm2_i);\n% sg=sqrt(Vg);\n% \n% % set integration limits and scaling\n% nu_lim=1e10;\n% if nu=myy_i\n% % grid break points \n% bp=[min(myy_i-6*sigm_i,yy-dd*sigma) myy_i-6*sigm_i, ...\n% min(myy_i+6*sigm_i,yy-dd*sigma), yy-dd*sigma, yy+dd*sigma,...\n% max(myy_i+6*sigm_i,yy+dd*sigma)];\n% \n% % grid values\n% a=1e-6;\n% fvec =[ bp(1):df(2):bp(2)-a, bp(2):df(1):bp(3)-a, bp(3):max(df):bp(4)-a, ...\n% bp(4):df(2):bp(5)-a, bp(5):df(1):bp(6)];\n% else\n% % grid break points \n% bp=[min(myy_i-6*sigm_i,yy-dd*sigma), yy-dd*sigma, yy+dd*sigma,...\n% max(myy_i-6*sigm_i,yy+dd*sigma), myy_i+6*sigm_i, ...\n% max(myy_i+6*sigm_i,yy+dd*sigma)];\n% \n% % grid values\n% a=1e-6;\n% fvec =[ bp(1):df(1):bp(2)-a, bp(2):df(2):bp(3)-a, bp(3):max(df):bp(4)-a, ...\n% bp(4):df(1):bp(5)-a, bp(5):df(2):bp(6)];\n% end\n% \n% np=numel(fvec);\n% logpt = lpt(fvec,0);\n% lpt_max = max([logpt lpt([myy_i mg],0)]);\n% lambdaconf=[fvec(1), fvec(end)];\n% for i1=2:np-1\n% if logpt(i1) < lpt_max+log(1e-7) %(exp(logpt(i1))/exp(lpt_max) < 1e-7)\n% lambdaconf(1) = fvec(i1);\n% else\n% break;\n% end\n% end\n% for i1=1:np-2\n% if logpt(end-i1) < lpt_max+log(1e-7) %(exp(logpt(end-i1))/exp(lpt_max) < 1e-7)\n% lambdaconf(2) = fvec(end-i1);\n% else\n% break;\n% end\n% end\n% else\n% % set the integration limits in easier cases\n% np=20;\n% if mg>myy_i\n% lambdaconf=[myy_i-6*sigm_i,max(mg+6*sg,myy_i+6*sigm_i)];\n% fvec=linspace(myy_i,mg,np);\n% else\n% lambdaconf=[min(mg-6*sg,myy_i-6*sigm_i),myy_i+6*sigm_i];\n% fvec=linspace(mg,myy_i,np);\n% end\n% lpt_max=max(lpt(fvec,0));\n% end\n% C=log(1)-lpt_max; % scale the log-density for the quadrature tolerance\n% else\n% lambdaconf=[mg-6*sg,mg+6*sg];\n% C=log(1)-lpt(mg,0);\n% end\n% \n% if nu>nu_lim\n% % the limiting Gaussian case\n% Vz=sigm2_i+sigma2/eta;\n% lnZhat = 0.5*(-log(eta) +(1-eta)*log(2*pi*sigma2) -log(2*pi*Vz)) -(0.5/Vz)*(yy-myy_i)^2;\n% muhat = mg;\n% sigm2hat = Vg;\n% else\n% % Integrate with quadrature\n% RTOL = 1.e-6;\n% ATOL = 1.e-7;\n% tic\n% [m_0, m_1, m_2] = quad_moments(@(f) exp(lpt(f,C)),lambdaconf(1), lambdaconf(2), RTOL, ATOL);toc\n% muhat = m_1;\n% sigm2hat = m_2 - m_1.^2;\n% lnZhat = log(m_0) -C;\n% end\n \n function lpdf = lpt(f,C)\n % logarithm of the tilted distribution\n r = yy-f;\n lpdf = gammaln((nu + 1) / 2) - gammaln(nu/2) -log(nu.*pi.*sigma2)/2;\n lpdf = lpdf + log(1 + r.^2./nu./sigma2) .* (-(nu+1)/2);\n lpdf = lpdf*eta - (0.5/sigm2_i) * (f-myy_i).^2 + (C-log(2*pi*sigm2_i)/2);\n end\nend\n\nfunction [g_i] = lik_t_siteDeriv2(likelih, y, yi, sigm2_i, myy_i, z, eta, lnZhat)\n%LIKELIH_T_SITEDERIV Evaluate the expectation of the gradient\n% of the log likelihood term with respect\n% to the likelihood parameters for EP\n%\n% Description\n% [M_0, M_1, M2] = LIKELIH_T_TILTEDMOMENTS(LIKELIH, Y, I, S2, MYY)\n% takes a likelihood data structure LIKELIH, observations Y, index I\n% and cavity variance S2 and mean MYY. Returns E_f [d log\n% p(y_i|f_i) /d a], where a is the likelihood parameter and the\n% expectation is over the marginal posterior. This term is\n% needed when evaluating the gradients of the marginal\n% likelihood estimate Z_EP with respect to the likelihood\n% parameters (see Seeger (2008): Expectation propagation for\n% exponential families). This subfunction is needed when using \n% robust-EP for inference with non-Gaussian likelihoods and there \n% are likelihood parameters.\n%\n% See also\n% GPEP_G\n \n if nargin<7\n eta=1;\n end\n \n yy = y(yi);\n nu = likelih.nu;\n sigma2 = likelih.sigma2;\n sigma = sqrt(sigma2);\n \n % limiting distribution (nu -> infinity)\n Vg=1/(1/sigm2_i +eta/sigma2);\n mg=Vg*(myy_i/sigm2_i +yy*eta/sigma2);\n sigm_i=sqrt(sigm2_i);\n sg=sqrt(Vg);\n \n % set integration limits and scaling\n nu_lim=1e10;\n if nu=myy_i\n % grid break points \n bp=[min(myy_i-6*sigm_i,yy-dd*sigma) myy_i-6*sigm_i, ...\n min(myy_i+6*sigm_i,yy-dd*sigma), yy-dd*sigma, yy+dd*sigma,...\n max(myy_i+6*sigm_i,yy+dd*sigma)];\n \n % grid values\n a=1e-6;\n fvec =[ bp(1):df(2):bp(2)-a, bp(2):df(1):bp(3)-a, bp(3):max(df):bp(4)-a, ...\n bp(4):df(2):bp(5)-a, bp(5):df(1):bp(6)];\n else\n % grid break points \n bp=[min(myy_i-6*sigm_i,yy-dd*sigma), yy-dd*sigma, yy+dd*sigma,...\n max(myy_i-6*sigm_i,yy+dd*sigma), myy_i+6*sigm_i, ...\n max(myy_i+6*sigm_i,yy+dd*sigma)];\n \n % grid values\n a=1e-6;\n fvec =[ bp(1):df(1):bp(2)-a, bp(2):df(2):bp(3)-a, bp(3):max(df):bp(4)-a, ...\n bp(4):df(1):bp(5)-a, bp(5):df(2):bp(6)];\n end\n \n np=numel(fvec);\n logpt = lpt(fvec,0);\n lpt_max = max([logpt lpt([myy_i mg],0)]);\n lambdaconf=[fvec(1), fvec(end)];\n for i1=2:np-1\n if logpt(i1) < lpt_max+log(1e-7) %(exp(logpt(i1))/exp(lpt_max) < 1e-7)\n lambdaconf(1) = fvec(i1);\n else\n break;\n end\n end\n for i1=1:np-2\n if logpt(end-i1) < lpt_max+log(1e-7) %(exp(logpt(end-i1))/exp(lpt_max) < 1e-7)\n lambdaconf(2) = fvec(end-i1);\n else\n break;\n end\n end\n else\n % set the integration limits in easier cases\n np=20;\n if mg>myy_i\n lambdaconf=[myy_i-6*sigm_i,max(mg+6*sg,myy_i+6*sigm_i)];\n fvec=linspace(myy_i,mg,np);\n else\n lambdaconf=[min(mg-6*sg,myy_i-6*sigm_i),myy_i+6*sigm_i];\n fvec=linspace(mg,myy_i,np);\n end\n lpt_max=max(lpt(fvec,0));\n end\n C=log(1)-lpt_max; % scale the log-density for the quadrature tolerance\n else\n lambdaconf=[mg-6*sg,mg+6*sg];\n C=log(1)-lpt(mg,0);\n end\n \n if nu>nu_lim\n % the limiting normal observation model\n Vz=sigm2_i+sigma2/eta;\n g_i(1) = 0.5*( (1-eta)/sigma2 -1/Vz/eta + (yy-myy_i)^2 /Vz^2 /eta ) *sigma2/eta;\n \n if (isfield(likelih,'p') && ~isempty(likelih.p.nu))\n g_i(2) = 0;\n end\n else\n \n % Integrate with quadrature\n RTOL = 1.e-6;\n ATOL = 1e-7;\n \n % Integrate with quad\n %zm=@(f) exp(lpt(f,C));\n %[m_0, fhncnt] = quadgk(zm, lambdaconf(1), lambdaconf(2),'AbsTol',ATOL,'RelTol',RTOL)\n \n % Use the normalization determined in the lik_t_tiltedMoments2\n m_0=exp(lnZhat+C);\n \n zm=@(f) deriv_sigma2(f).*exp(lpt(f,C))*sigma2;\n [g_i(1), fhncnt] = quadgk( zm, lambdaconf(1), lambdaconf(2),'AbsTol',ATOL,'RelTol',RTOL);\n g_i(1) = g_i(1)/m_0;\n \n if (isfield(likelih,'p') && ~isempty(likelih.p.nu))\n zm=@(f) deriv_nu(f).*exp(lpt(f,C));\n [g_i(2), fhncnt] = quadgk( zm, lambdaconf(1), lambdaconf(2),'AbsTol',ATOL,'RelTol',RTOL);\n g_i(2) = g_i(2)/m_0.*nu.*log(nu);\n end\n \n end\n \n function lpdf = lpt(f,C)\n % logarithm of the tilted distribution\n r = yy-f;\n lpdf = gammaln((nu + 1) / 2) - gammaln(nu/2) -log(nu.*pi.*sigma2)/2;\n lpdf = lpdf + log(1 + r.^2./nu./sigma2) .* (-(nu+1)/2);\n lpdf = lpdf*eta - (0.5/sigm2_i) * (f-myy_i).^2 + (C-log(2*pi*sigm2_i)/2);\n end\n\n function g = deriv_nu(f)\n % derivative of the log-likelihood wrt nu\n r = yy-f;\n temp = r.^2 ./(nu*sigma2);\n g = psi((nu+1)/2) - psi(nu/2) - 1/nu;\n g = g + (1+1/nu).*temp./(1+temp);\n \n % for small values use a more accurate method for log(1+x)\n ii = temp<1e3;\n g(ii) = g(ii) - log1p(temp(ii));\n g(~ii) = g(~ii) - log(1+temp(~ii));\n g = g*0.5;\n \n end\n\n function g = deriv_sigma2(f)\n % derivative of the log-likelihood wrt sigma2\n r = yy-f;\n temp = r.^2 /sigma2;\n g = -1/sigma2/2 + ((1+1/nu)/2) * temp ./ (1 + temp/nu) /sigma2;\n end\n\nend\n\n\nfunction [f, a] = lik_t_optimizef(gp, y, K, Lav, K_fu)\n%LIK_T_OPTIMIZEF function to optimize the latent variables\n% with EM algorithm\n%\n% Description:\n% [F, A] = LIK_T_OPTIMIZEF(GP, Y, K, Lav, K_fu) Takes Gaussian\n% process structure GP, observations Y and the covariance\n% matrix K. Solves the posterior mode of F using EM algorithm\n% and evaluates A = (K + W)\\Y as a sideproduct. Lav and K_fu\n% are needed for sparse approximations. For details, see\n% Vanhatalo, Jyl\ufffdnki and Vehtari (2009): Gaussian process\n% regression with Student-t likelihood. This subfunction is \n% needed when using lik_specific optimization method for mode \n% finding in Laplace algorithm.\n%\n \n iter = 1;\n sigma2 = gp.lik.sigma2;\n% if sigma2==0\n% f=NaN;a=NaN;\n% return\n% end\n nu = gp.lik.nu;\n n = length(y);\n \n switch gp.type\n case 'FULL' \n iV = ones(n,1)./sigma2;\n siV = sqrt(iV);\n B = eye(n) + siV*siV'.*K;\n [L,notpositivedefinite] = chol(B);\n if notpositivedefinite\n f=NaN;a=NaN;\n return\n end\n B=B';\n b = iV.*y;\n a = b - siV.*(L'\\(L\\(siV.*(K*b))));\n f = K*a;\n while iter < 200\n fold = f; \n iV = (nu+1) ./ (nu.*sigma2 + (y-f).^2);\n siV = sqrt(iV);\n B = eye(n) + siV*siV'.*K;\n L = chol(B)';\n b = iV.*y;\n ws=warning('off','MATLAB:nearlySingularMatrix');\n a = b - siV.*(L'\\(L\\(siV.*(K*b))));\n warning(ws);\n f = K*a;\n \n if max(abs(f-fold)) < 1e-8\n break\n end\n iter = iter + 1;\n end\n case 'FIC'\n K_uu = K;\n \n Luu = chol(K_uu)';\n B=Luu\\(K_fu'); % u x f\n\n K = diag(Lav) + B'*B;\n \n iV = ones(n,1)./sigma2;\n siV = sqrt(iV);\n B = eye(n) + siV*siV'.*K;\n L = chol(B)';\n b = iV.*y;\n a = b - siV.*(L'\\(L\\(siV.*(K*b))));\n f = K*a;\n while iter < 200\n fold = f; \n iV = (nu+1) ./ (nu.*sigma2 + (y-f).^2);\n siV = sqrt(iV);\n B = eye(n) + siV*siV'.*K;\n L = chol(B)';\n b = iV.*y;\n a = b - siV.*(L'\\(L\\(siV.*(K*b))));\n f = K*a;\n \n if max(abs(f-fold)) < 1e-8\n break\n end\n iter = iter + 1;\n end\n end\n \nend\n\nfunction upfact = lik_t_upfact(gp, y, mu, ll, z)\n nu = gp.lik.nu;\n sigma = sqrt(gp.lik.sigma2);\n sll = sqrt(ll);\n\n fh_e = @(f) t_pdf(f, nu, y, sigma).*norm_pdf(f, mu, sll);\n EE = quadgk(fh_e, -40, 40);\n \n \n fm = @(f) f.*t_pdf(f, nu, y, sigma).*norm_pdf(f, mu, sll)./EE;\n mm = quadgk(fm, -40, 40);\n \n fV = @(f) (f - mm).^2.*t_pdf(f, nu, y, sigma).*norm_pdf(f, mu, sll)./EE;\n Varp = quadgk(fV, -40, 40);\n \n upfact = -(Varp - ll)./ll^2;\nend\n\nfunction [lpy, Ey, Vary] = lik_t_predy(lik, Ef, Varf, y, z)\n%LIK_T_PREDY Returns the predictive mean, variance and density of y\n%\n% Description \n% LPY = LIK_T_PREDY(LIK, EF, VARF YT)\n% Returns logarithm of the predictive density PY of YT, that is \n% p(yt | zt) = \\int p(yt | f, zt) p(f|y) df.\n% This requires also the observations YT. This subfunction is \n% needed when computing posterior preditive distributions for \n% future observations.\n%\n% [LPY, EY, VARY] = LIK_T_PREDY(LIK, EF, VARF) takes a likelihood\n% structure LIK, posterior mean EF and posterior Variance\n% VARF of the latent variable and returns the posterior\n% predictive mean EY and variance VARY of the observations\n% related to the latent variables. This subfunction is needed when \n% computing posterior preditive distributions for future observations.\n% \n\n%\n% See also\n% GPLA_PRED, GPEP_PRED, GPMC_PRED\n\n nu = lik.nu;\n sigma2 = lik.sigma2;\n sigma = sqrt(sigma2);\n \n Ey = zeros(size(Ef));\n EVary = zeros(size(Ef));\n VarEy = zeros(size(Ef)); \n lpy = zeros(size(Ef));\n if nargout > 1\n% for i1=1:length(Ef)\n% %%% With quadrature\n% ci = sqrt(Varf(i1));\n% \n% F = @(x) x.*norm_pdf(x,Ef(i1),sqrt(Varf(i1)));\n% Ey(i1) = quadgk(F,Ef(i1)-6*ci,Ef(i1)+6*ci);\n% \n% F2 = @(x) (nu./(nu-2).*sigma2).*norm_pdf(x,Ef(i1),sqrt(Varf(i1)));\n% EVary(i1) = quadgk(F2,Ef(i1)-6*ci,Ef(i1)+6*ci);\n% \n% F3 = @(x) x.^2.*norm_pdf(x,Ef(i1),sqrt(Varf(i1)));\n% VarEy(i1) = quadgk(F3,Ef(i1)-6*ci,Ef(i1)+6*ci) - Ey(i1).^2;\n% end\n% Vary = EVary + VarEy;\n \n Ey = Ef;\n if nu>2\n Vary=nu./(nu-2).*sigma2 +Varf;\n else\n warning('Variance of Student''s t-distribution is not defined for nu<=2')\n Vary=NaN+Varf;\n end\n end\n \n\n lpy = zeros(length(y),1);\n for i2 = 1:length(y)\n mean_app = Ef(i2);\n sigm_app = sqrt(Varf(i2));\n \n pd = @(f) t_pdf(y(i2), nu, f, sigma).*norm_pdf(f,Ef(i2),sqrt(Varf(i2)));\n lpy(i2) = log(quadgk(pd, mean_app - 12*sigm_app, mean_app + 12*sigm_app));\n end\n\n \nend\n\nfunction prctys = lik_t_predprcty(lik, Ef, Varf, zt, prcty)\n%LIK_T_PREDPRCTY Returns the percentiles of predictive density of y\n%\n% Description \n% PRCTY = LIK_T_PREDPRCTY(LIK, EF, VARF YT, ZT)\n% Returns percentiles of the predictive density PY of YT. This\n% subfunction is needed when using function gp_predprcty.\n%\n% See also \n% GP_PREDPCTY\n\n opt=optimset('TolX',1e-5,'Display','off');\n nt=size(Ef,1);\n prctys = zeros(nt,numel(prcty));\n prcty=prcty/100;\n nu = lik.nu;\n nu_p=max(2.5,nu);\n sigma2 = lik.sigma2;\n Vary=nu_p./(nu_p-2).*sigma2 +Varf;\n for i1=1:nt\n ci = sqrt(Varf(i1));\n for i2=1:numel(prcty)\n minf=sqrt(Vary(i1))*tinv(prcty(i2),nu)+(Ef(i1)-2.5*sqrt(Vary(i1)));\n maxf=sqrt(Vary(i1))*tinv(prcty(i2),nu)+(Ef(i1)+2.5*sqrt(Vary(i1)));\n a=(fminbnd(@(a) (quadgk(@(f) tcdf((a-f)/sqrt(Vary(i1)),nu).*norm_pdf(f,Ef(i1),ci),Ef(i1)-6*ci,Ef(i1)+6*ci,'AbsTol',1e-4)-prcty(i2)).^2,minf,maxf,opt));\n% a=(fminbnd(@(a) (quadgk(@(f) quadgk(@(y) t_pdf(y,nu,Ef(i1),sqrt(Vary(i1))),Ef(i1)-12*sqrt(Vary(i1)),a).*norm_pdf(f,Ef(i1),ci),Ef(i1)-6*ci,Ef(i1)+6*ci,'AbsTol',1e-4)-prcty(i2)).^2,minf,maxf,opt));\n prctys(i1,i2)=a;\n close all;\n end\n end\nend\n\nfunction mu = lik_t_invlink(lik, f, z)\n%LIK_T_INVLINK Returns values of inverse link function\n% \n% Description \n% P = LIK_T_INVLINK(LIK, F) takes a likelihood structure LIK and\n% latent values F and returns the values MU of inverse link function.\n% This subfunction is needed when using gp_predprctmu. \n%\n% See also\n% LIK_T_LL, LIK_T_PREDY\n \n mu = f;\nend\n\nfunction reclik = lik_t_recappend(reclik, ri, lik)\n%RECAPPEND Record append\n% Description\n% RECCF = GPCF_SEXP_RECAPPEND(RECCF, RI, GPCF) takes old\n% covariance function record RECCF, record index RI, RECAPPEND\n% returns a structure RECCF. This subfunction is needed when \n% using MCMC sampling (gp_mc).\n\n if nargin == 2\n % Initialize the record\n reclik.type = 'Student-t';\n\n % Initialize parameters\n reclik.nu = [];\n reclik.sigma2 = [];\n\n % Set the function handles\n reclik.fh.pak = @lik_t_pak;\n reclik.fh.unpak = @lik_t_unpak;\n reclik.fh.lp = @lik_t_lp;\n reclik.fh.lpg = @lik_t_lpg;\n reclik.fh.ll = @lik_t_ll;\n reclik.fh.llg = @lik_t_llg; \n reclik.fh.llg2 = @lik_t_llg2;\n reclik.fh.llg3 = @lik_t_llg3;\n reclik.fh.tiltedMoments = @lik_t_tiltedMoments;\n reclik.fh.tiltedMoments2 = @lik_t_tiltedMoments2;\n reclik.fh.siteDeriv = @lik_t_siteDeriv;\n reclik.fh.siteDeriv2 = @lik_t_siteDeriv2;\n reclik.fh.optimizef = @lik_t_optimizef;\n reclik.fh.upfact = @lik_t_upfact;\n reclik.fh.invlink = @lik_t_invlink;\n reclik.fh.predy = @lik_t_predy;\n reclik.fh.predprcty = @lik_t_predprcty;\n reclik.fh.recappend = @lik_t_recappend;\n reclik.p.nu=[];\n if ~isempty(ri.p.nu)\n reclik.p.nu = ri.p.nu;\n end\n reclik.p.sigma2=[];\n if ~isempty(ri.p.sigma2)\n reclik.p.sigma2 = ri.p.sigma2;\n end\n else\n % Append to the record\n likp = lik.p;\n \n % record sigma2\n reclik.sigma2(ri,:) = lik.sigma2;\n if isfield(likp,'sigma2') && ~isempty(likp.sigma2)\n reclik.p.sigma2 = likp.sigma2.fh.recappend(reclik.p.sigma2, ri, likp.sigma2);\n end\n % record nu\n reclik.nu(ri,:) = lik.nu;\n if isfield(likp,'nu') && ~isempty(likp.nu)\n reclik.p.nu = likp.nu.fh.recappend(reclik.p.nu, ri, likp.nu);\n end\n end\n\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/gp/lik_t.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583376458153, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39392531883179815}} {"text": "function y = log_sum_exp( x, dim )\n\n%LOG_SUM_EXP CVX internal version.\n\nerror( nargchk( 1, 2, nargin ) );\ncvx_expert_check( 'log_sum_exp', x );\n\nsx = size( x );\nif nargin < 2 || isempty( dim ),\n dim = cvx_default_dimension( sx );\nelseif ~cvx_check_dimension( dim, true ),\n error( 'Second argument must be a valid dimension.' );\nend\n\n%\n% Quick exits\n%\n\nsx( end + 1 : dim ) = 1;\nnx = sx( dim );\nsy = sx;\nsy( dim ) = 1;\nif nx == 0,\n sx( dim ) = 1; %#ok\n y = -Inf * ones( sy );\n return\nelseif nx == 1,\n y = x;\n return;\nelseif any( sx == 0 ),\n y = zeros( sy );\n return\nend\n\n%\n% Determine the expression types\n%\n\npersistent remap\nif isempty( remap ),\n remap_2 = cvx_remap( 'real' );\n remap_1 = cvx_remap( 'convex' ) & ~remap_2;\n remap = remap_1 + 2 * remap_2;\nend\nv = reshape( remap( cvx_classify( x ) ), sx );\nv = min( v, [], dim );\n\n%\n% Process each type of expression one piece at a time\n%\n\nvu = sort( v(:) );\nvu = vu([true;diff(vu)~=0]);\nnv = length( vu );\nif nv > 1,\n y = cvx( sy, [] );\n if prod(sx(1:dim+1))>1 && prod(sx(dim+1:end))>1,\n perm = [ dim, 1:dim-1, dim+1:length(sx) ];\n x = permute( x, perm );\n v = permute( v, perm );\n y = permute( y, perm );\n dim = 1;\n end\nend\nfor k = 1 : nv,\n\n %\n % Select the category of expression to compute\n %\n\n vk = vu( k );\n if nv == 1,\n xt = x;\n sz = sy; %#ok\n else\n t = v == vk;\n xt = cvx_subsref( x, cvx_expand_dim( t, dim, nx ) );\n sx = size( xt );\n sz = sx;\n sz( dim ) = 1; %#ok\n end\n\n %\n % Perform the computations\n %\n\n switch vk,\n case 0,\n % Invalid\n error( 'Disciplined convex programming error:\\n Illegal operation: log_sum_exp( {%s} ).', cvx_class( xt ) );\n case 1,\n % Affine, convex\n cvx_begin\n variable w( sx )\n epigraph variable z( sz )\n { cvx_accept_convex( x ) - cvx_expand_dim( z, dim, nx ), 1, w } == exponential( sx );\n sum( w, dim ) == 1;\n cvx_end\n case 2,\n % Constant\n cvx_optval = cvx( log_sum_exp( cvx_constant( xt ) ) );\n otherwise,\n error( 'Shouldn''t be here.' );\n end\n\n %\n % Store the results\n %\n\n if nv == 1,\n y = cvx_optval;\n else\n y = cvx_subsasgn( y, t, cvx_optval );\n end\n\nend\n\n% Reshape again, just in case\ny = reshape( y, sy );\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd. \n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/functions/@cvx/log_sum_exp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5660185351961016, "lm_q1q2_score": 0.3939253116929672}} {"text": "function y = vl_nnsoftmaxloss(x,c,dzdy)\n%VL_NNSOFTMAXLOSS CNN combined softmax and logistic loss.\n% **Deprecated: use `vl_nnloss` instead**\n%\n% Y = VL_NNSOFTMAX(X, C) applies the softmax operator followed by\n% the logistic loss the data X. X has dimension H x W x D x N,\n% packing N arrays of W x H D-dimensional vectors.\n%\n% C contains the class labels, which should be integers in the range\n% 1 to D. C can be an array with either N elements or with dimensions\n% H x W x 1 x N dimensions. In the fist case, a given class label is\n% applied at all spatial locations; in the second case, different\n% class labels can be specified for different locations.\n%\n% DZDX = VL_NNSOFTMAXLOSS(X, C, DZDY) computes the derivative of the\n% block projected onto DZDY. DZDX and DZDY have the same dimensions\n% as X and Y respectively.\n\n% Copyright (C) 2014-15 Andrea Vedaldi.\n% All rights reserved.\n%\n% This file is part of the VLFeat library and is made available under\n% the terms of the BSD license (see the COPYING file).\n\n% work around a bug in MATLAB, where native cast() would slow\n% progressively\nif isa(x, 'gpuArray')\n switch classUnderlying(x) ;\n case 'single', cast = @(z) single(z) ;\n case 'double', cast = @(z) double(z) ;\n end\nelse\n switch class(x)\n case 'single', cast = @(z) single(z) ;\n case 'double', cast = @(z) double(z) ;\n end\nend\n\n%X = X + 1e-6 ;\nsz = [size(x,1) size(x,2) size(x,3) size(x,4)] ;\n\nif numel(c) == sz(4)\n % one label per image\n c = reshape(c, [1 1 1 sz(4)]) ;\nend\nif size(c,1) == 1 & size(c,2) == 1\n c = repmat(c, [sz(1) sz(2)]) ;\nend\n\n% one label per spatial location\nsz_ = [size(c,1) size(c,2) size(c,3) size(c,4)] ;\nassert(isequal(sz_, [sz(1) sz(2) sz_(3) sz(4)])) ;\nassert(sz_(3)==1 | sz_(3)==2) ;\n\n% class c = 0 skips a spatial location\nmass = cast(c(:,:,1,:) > 0) ;\nif sz_(3) == 2\n % the second channel of c (if present) is used as weights\n mass = mass .* c(:,:,2,:) ;\n c(:,:,2,:) = [] ;\nend\n\n% convert to indexes\nc = c - 1 ;\nc_ = 0:numel(c)-1 ;\nc_ = 1 + ...\n mod(c_, sz(1)*sz(2)) + ...\n (sz(1)*sz(2)) * max(c(:), 0)' + ...\n (sz(1)*sz(2)*sz(3)) * floor(c_/(sz(1)*sz(2))) ;\n\n% compute softmaxloss\nxmax = max(x,[],3) ;\nex = exp(bsxfun(@minus, x, xmax)) ;\n\n%n = sz(1)*sz(2) ;\nif nargin <= 2\n t = xmax + log(sum(ex,3)) - reshape(x(c_), [sz(1:2) 1 sz(4)]) ;\n y = sum(sum(sum(mass .* t,1),2),4) ;\nelse\n y = bsxfun(@rdivide, ex, sum(ex,3)) ;\n y(c_) = y(c_) - 1;\n y = bsxfun(@times, y, bsxfun(@times, mass, dzdy)) ;\nend\n", "meta": {"author": "guosheng", "repo": "refinenet", "sha": "0d62007bd60ba983d48acaee6ee29988c7171a91", "save_path": "github-repos/MATLAB/guosheng-refinenet", "path": "github-repos/MATLAB/guosheng-refinenet/refinenet-0d62007bd60ba983d48acaee6ee29988c7171a91/libs/matconvnet/matlab/vl_nnsoftmaxloss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3939253116929671}} {"text": "function [t,conse,allt,glm] = designsim(noisetype,dmodel,HRF,ISI,TR,noise_var,c,beta,S,varargin)\n% function [t,modelse,allt,glm] = designsim(noisetype,dmodel,HRF,ISI,TR,noise_var,c,betas,S,xcfunction [if using 'myxc'],num2avgover)\n% [t,modelse,allt,glm] = designsim('myxc',M.modelatTR,HRF,ISI,TR,noise_var,c,beta,fullS,xc)\n%\n% noisetype:\n% '1overf' : use Luis Hernandez' 1/f model with your specified noise variance\n% 'myxc' : use your own autocorrelation function and noise variance\n%\n% model = matrix of regressors (cols) sampled at frequency of ISI\n% noise_var = variance of 1/f noise from your scanner\n% c = a contrast across the regressors\n% beta = a list of betas to test\n% each beta should be a row vector, and you can have multiple rows\n%\n% S: smoothing matrix, or 0 for no smoothing.\n% _______________________________________________________________________\n% Output is a distribution of t-scores in a vector and the maximum correlation between predictors\n% t-scores are in a column vector, one for each set of betas.\n%\n% Special mode: if 4 output arguments specified, 'plot mode'. Produces graph and extended output.\n% outputs:\n%\tt \t\tmean of t-scores for specified number of noise vectors tested, numnoise in script\n%\tallt\tvector of all t values generated for each noise vector\n%\n% specifying a 4th output puts designsim.m into 'verbose' mode.\n%\n% Last modified 5/24/01 Tor Wager\t\tadd noise first, then smooth and filter, etc.\n\n\n\n% if no stimuli for one condition, gives error - create extra col of zeros if this happens.\nwhile size(beta,2) > size(dmodel,2)\n \twarning(' Designsim.m : dmodel has too few columns or beta is too long! No stim. in one cond.?') \n\twhos dmodel\n \tdmodel = [dmodel zeros(size(dmodel,1),1)]; \nend\n\nif isempty(c)\n\tif nargout > 3,disp('\t...designsim.m: No contrasts found. Using first predictor for one sample T-test.'),end\n\tc = zeros(1,size(dmodel,2));\n\tc(1) = 1;\nend\n\nc = c';\n\n\ndone = 0;\n%if nargout > 3,numnoise = 1;,else numnoise = 1;,end\n% if average over noise models is given, return the average - otherwise return each individual t and se score.\nif nargin > 10, numnoise = varargin{2};,else numnoise = 1;,end\n\n% make the noise vectors\n% =====================================================================================\nswitch noisetype\ncase '1overf'\n noise = make1overf(size(dmodel,1), 1/ISI) * sqrt(noise_var);\ncase 'myxc'\n \n for i = 1:numnoise\n noise(:,i) = noisevector(size(dmodel,1),varargin{1},noise_var)';\n end\notherwise error('unsupported noise type.')\nend\n\n\n \t\t% Create the response data by weighting all the regressors by a beta parameter\n \t\t% adding all the regressors together\n \t\t% and adding noise to the result \n beta = beta';\n if nargout > 3,\n \t%figure;,\n \t%disp('testing with only one noise model, returning 1st beta vector only in glm.')\n \t%beta = beta(:,1); noise = noise(:,1);\n\tc = c(:,1);\t% test first contrast here - this should be changed back for normal use. this is for rundesignsimMAP\n else c = c(:,1); % tests only first contrast if you specify many iterations.\n end\n\n\n% make the data vectors and fit\n% =====================================================================================\nfor i = 1:size(beta,2)\n \n\tif nargout > 3\n \tsubplot(4,size(beta,2),3*i-2);hold on\n \tplot(dmodel * beta(:,i),'r');title(['ideal model, betas = ' num2str(beta(:,i)')]);drawnow\n \tclear glm\n\tend\n \n\t% make data\n\t% --------------------------------------------------\t\n\tfor j = 1:size(noise,2)\n\n\t\ttry\n\t\t\tmyfit = dmodel * beta(:,i);\n\t\tcatch\n\t\t\tdisp(['\tdesignsim.m: dmodel and beta are not the same size - wrong beta size?'])\n\t\t\twhos dmodel\n\t\t\tbeta\n\t\t\terror('exiting.')\n\t\tend\n\t\tmyfit = (myfit - mean(myfit));\t\t% mean center so betas are not 'correlated' with intercept.\n\t\tdata(:,j) = myfit + noise(:,j);\t\n\t\t\n\t\t% testing stuff -\n\t\t%disp(['designsim.m: beta = '])\n\t\t%beta(:,i)\n\t\t%figure;subplot(3,1,1);plot(noise(:,j))\n\t\t%subplot(3,1,2);plot(dmodel * beta(:,i))\n\t\t%subplot(3,1,3);plot(data(:,j));\t\n\tend\n\t\n\t% smoothing\n\t% --------------------------------------------------\n\tif S, \n\t\tdmodel = S * dmodel;\n\t\tdata = S * data;\n\t\tglm.smoothed = 'yes';\n\tend\n\n\t% fit model to data and save t and se\n\t% --------------------------------------------------\t\n\tfor j = 1:size(noise,2)\n \t[myt,myconse] = my_glm(dmodel,data(:,j),c);\t\t% fit model\n \tallt(i,j) = myt(1);\n\t\tallse(i,j) = myconse(1);\n \n\t\t% make glm structure if necessary\n\t\t% ---------------------------------------------\n \tif nargout > 3\n \t\tglm.y = data;\n \t\tglm.X = [dmodel ones(size(dmodel,1),1)];\n \t\tglm.betas = (glm.X \\ glm.y)';\n \t\tglm.fit = glm.X * glm.betas';\n \t\tglm.e = glm.y - glm.fit;\n \t\tglm.xtxi = inv(glm.X' * glm.X); \n \t\tglm.df = (size(glm.y,1) - size(glm.X,2));\n \t\tglm.evar = glm.e' * glm.e / glm.df;\n \t\tglm.se = sqrt(diag(glm.xtxi .* glm.evar))';\n \t\tglm.t = (glm.betas ./ glm.se);\n \t\tglm.p = tdist(glm.t,glm.df);\n \t\tglm.c = [c;zeros(1,size(c,2))];\n \t\tglm.con_se = diag(sqrt(glm.evar .* (glm.c' * glm.xtxi * glm.c)))';\n \t\tglm.con_t = glm.betas * glm.c ./ glm.con_se;\n \t\tglm.con_p = tdist(glm.con_t,glm.df);\n\n\t \t\tif j == 1\t\t\t\t\t\t\t% plot the first noise model.\n \t\t\tsubplot(4,size(beta,2),3*i-1);hold on\n \t\t\tplot(data(:,j));hold on;plot(glm.fit,'r--'); title(['Data with noise added and fit']);drawnow\n \t\t\tsubplot(4,size(beta,2),3*i);hold on\n \t\t\tplot(data(:,j) - glm.fit); title('Residuals');drawnow\n \t \t\tend\n \tend\n \n\tend\n\t% loop thru noise models.\n end\t% loop thru betas.\n\nt = mean(allt,2);\nconse = mean(allse,2);\n\n\t\t\t\n\nreturn\n\n\n\n% rmat = abs(corrcoef(dmodel));%rmat(rmat == 1) = 0;\t\t% zero diagonals%r = max(max(rmat));\n\n\n\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/other_functions/designsim.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583124210896, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3939253045541359}} {"text": "classdef StressNormShapeFuncCreator < handle\n \n properties (Access = private)\n outFile\n stressShape\n stressShapeDB\n end\n \n methods (Access = public)\n \n function obj = StressNormShapeFuncCreator(d)\n obj.init(d)\n obj.createStressShapeDataBase();\n obj.createStressShape();\n end\n \n function s = getStressNormShape(obj)\n s = obj.stressShape;\n end\n \n end\n \n methods (Access = private)\n \n function init(obj,d)\n obj.outFile = d.outFile;\n end\n \n function createStressShape(obj)\n dB = obj.stressShapeDB();\n sF = ShFunc_StressNorm(dB);\n% sF.filter.preProcess();\n obj.stressShape = sF;\n end\n \n function createStressShapeDataBase(obj)\n dB.filename = obj.outFile; \n dB.TOL = obj.createMaterialProperties();\n dB.material = 'ISOTROPIC';\n dB.method = 'SIMPALL';\n dB.pdim = '2D';\n dB.stressHomog = [1,0,0]';\n dB.filter = 'P1';\n dB.optimizer = 'SLERP';\n dB.pdim = '2D';\n dB.scale = 'MICRO';\n obj.stressShapeDB = dB;\n end\n end\n \n methods (Access = private, Static)\n \n function matProp = createMaterialProperties()\n matProp.rho_plus = 1;\n matProp.rho_minus = 0;\n matProp.E_plus = 1;\n matProp.E_minus = 1.0000e-03;\n matProp.nu_plus = 0.3333;\n matProp.nu_minus = 0.3333;\n end\n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Applications/StressPdependency/StressNormShapeFuncCreator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583124210895, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3939253045541358}} {"text": "function [res]=tt_smv(sttm, vec)\n%TT-matrix with sparse factors by TT-vector multiplication\n% [res]=TT_SMV(STTM,VEC) Multiplies the TT-matrix stored in the TT1.0\n% format but with \"sparse\" cores by a vector VEC\n%\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\n\nd=size(vec,1);\nres=cell(d,1);\n\nn=sttm{d+2}(1);\n% m=size(vec{1},1);\nrm1=sttm{d+1}(1);\nrv1=size(vec{1},2);\n%mat{1} is (n x m x rm1 , vec{1} is mxrv1)\n% n x rm1 x rv1\nres{1}=sttm{1}*vec{1};\nres{1}=reshape(permute(reshape(res{1},[n,rm1,rv1]),[1,3,2]),[n,rv1*rm1]);\n\nif (d>1)\n n=sttm{d+2}(d);\n % m=size(mat{d},2);\n rm1=sttm{d+1}(d-1);\n rv1=size(vec{d},2);\n %mat{1} is (n x rm1 x rv1 , vec{1} is mxrv1)\n res{d}=sttm{d}*vec{d};\n res{d}=reshape(permute(reshape(res{d},[n,rm1,rv1]),[1,3,2]),[n,rv1*rm1]);\nend;\n\nfor i=2:d-1\n n=sttm{d+2}(i);\n m=size(vec{i},1);\n rm1=sttm{d+1}(i-1);\n rm2=sttm{d+1}(i);\n rv1=size(vec{i},2);\n rv2=size(vec{i},3);\n %mat{i} is n x m x rm1 x rm2, vec{i} is m x rv1 x rv2\n %n x (rv1*rv2)*rm1*rm2\n %n x rm2 x rm1 x m, n x rm2 x rm1 x (rv1*rv2)\n %n x rm2 x rmx1 x rv1 x rv2\n %want: n x rv1*rm1 x rv2*rm2\n res{i}=sttm{i}*reshape(vec{i},[m,rv1*rv2]);\n res{i}=reshape(res{i},[n,rm2,rm1,rv1,rv2]);\n res{i}=permute(res{i},[1,4,3,5,2]);\n res{i}=reshape(res{i},[n,rv1*rm1,rv2*rm2]);\n %res{i}=permute(reshape(permute(mat{i},[1,3,4,2])*reshape(vec{i},[m,rv1*rv2]),[n,rv1,rv2,rm1,rm2]),[1,2,4,3,5]);\nend \n\nend", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/exp/tt_smv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5506073655352403, "lm_q1q2_score": 0.3939177282406857}} {"text": "function magic3 ( n )\n\n%*****************************************************************************80\n%\n%% MAGIC3 is a \"main program\" for a MATLAB compiler example.\n%\n% Discussion:\n%\n% This example is similar to magicsquare_print, but now it \n% includes calls to the timestamp() function, which is a separate\n% .M file.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 22 April 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer/string N, the order of the magic square.\n%\n if ( ischar ( n ) )\n n = str2num ( n );\n end\n\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MAGIC3\\n' );\n fprintf ( 1, ' MATLAB version.\\n' );\n%\n% Compute the magic square.\n%\n m = magic ( n );\n%\n% Print the magic square.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Magic square of order %d:\\n', n );\n fprintf ( 1, '\\n' );\n for i = 1 : n\n for j = 1 : n\n fprintf ( 1, ' %2d', m(i,j) );\n end\n fprintf ( 1, '\\n' );\n end\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MAGIC3\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/matlab_compiler/magic3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.7154239957834733, "lm_q1q2_score": 0.39391772155903315}} {"text": "function h = conv(f, g)\n%CONV Convolution of DELTAFUN objects.\n% H = CONV(F, G) produces the convolution of DELTAFUN objects F and G:\n% - \n% /\n% H(x) = | F(t) G(x-t) dt, x in [a + c, b + d]\n% /\n% The output H is a cell array of DELTAFUNs or CLASSICFUNS. If the result of\n% the convolution of F and G is zero, an empty cell is returned. The cell\n% array returned is used by higher level convolutions.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Return empty for an empty input:\nif ( isempty(f) || isempty(g) )\n h = deltafun();\n return\nend\n\nif ( ~isa(f, 'deltafun') )\n deltaMagF = [];\n deltaLocF = [];\n funF = f;\nelse\n f = simplifyDeltas(f);\n if ( isa(f, 'deltafun') )\n deltaMagF = f.deltaMag;\n deltaLocF = f.deltaLoc; \n funF = f.funPart;\n else\n deltaMagF = [];\n deltaLocF = [];\n funF = f;\n end\nend\n\nif ( ~isa(g, 'deltafun') )\n deltaMagG = [];\n deltaLocG = [];\n funG = g;\nelse\n g = simplifyDeltas(g);\n if ( isa(g, 'deltafun') )\n deltaMagG = g.deltaMag;\n deltaLocG = g.deltaLoc; \n funG = g.funPart;\n else\n deltaMagG = [];\n deltaLocG = [];\n funG = g;\n end\nend\n\n% Extract the domains of f and g:\ndomF = funF.domain;\ndomG = funG.domain;\na = domF(1);\nb = domF(end);\nc = domG(1);\nd = domG(end);\n\n% Get the threshold for deltafunctions:\npref = chebfunpref();\ndeltaTol = pref.deltaPrefs.deltaTol;\n\n% Compute the convolution of funParts and append it to the output cell:\nh = conv(funF, funG);\n\n% Remove zero funs for simplicity:\nzeroIndices = cellfun( @(hk) iszero(hk), h);\nh(zeroIndices) = [];\n\n%% Get all the deltafunction contributions\n% (f + df) * (g + dg) = f*g + dg * (f + df) + df * (g + dg) - df * dg\n% = f*g + dg * (f + df/2) + df * (g + dg/2)\n\n% Contributions due to deltafunctions in F:\n% df * (g + dg/2):\nh = convDeltas(deltaMagF, deltaLocF, g, c, d, deltaTol, h);\n\n% Contributions due to delta functions in G:\n% dg * (f + df/2);\nh = convDeltas(deltaMagG, deltaLocG, f, a, b, deltaTol, h);\n\n% Check for emptiness:\nif ( isempty(h) )\n h = {fun.constructor(0, struct('domain', [a, b]))};\n return\nend\n\n%% Make sure that h is a cell array with non-overlapping funs.\n\n% First extract the breakpints from funs forming h:\ndoms = cellfun(@(hk) hk.domain, h, 'uniformoutput', 0);\nbreakPoints = sort(unique(horzcat(doms{:})));\n\n% Coalesce breakpoints that are extremely close together.\nif ( any(isinf(breakPoints)) )\n tol = 2*eps; % hscale of functions on unbounded domains is 1.\nelse\n tol = 2*eps*norm(breakPoints, Inf);\nend\n\n% TODO: Take the average of points which are close together instead of just\n% picking one more or less arbitrarily?\ncloseBreaks = abs(diff(breakPoints)) < tol;\nbreakPoints(closeBreaks) = [];\n\n% Restrict each FUN to lie within the new breakpoints.\nnFuns = length(h);\nH = {};\ndeltaTol = pref.deltaPrefs.proximityTol;\nfor k = 1:nFuns\n hk = h{k};\n dom = hk.domain;\n\n % The domain endpoints of each computed FUN must lie _exactly_ within the\n % set of breakpoints or RESTRICT will fail.\n idx1 = find(abs(breakPoints - dom(1)) < tol);\n idx2 = find(abs(breakPoints - dom(2)) < tol);\n hk = changeMap(hk, breakPoints([idx1, idx2]));\n\n % If we just changed the map of a DELTAFUN, the locations of deltas at the\n % domain endpoints also need to be updated.\n if ( isa(hk, 'deltafun') )\n deltaLoc = hk.deltaLoc;\n domk = hk.domain;\n if( ~isempty(deltaLoc) )\n if ( abs(deltaLoc(1) - domk(1) ) < deltaTol )\n deltaLoc(1) = domk(1);\n end\n if ( abs(deltaLoc(end) - domk(2)) < deltaTol )\n deltaLoc(end) = domk(2);\n end\n hk.deltaLoc = deltaLoc;\n end\n end\n\n % Do the restriction.\n hk = restrict(hk, breakPoints(idx1:idx2));\n if ( ~isa(hk, 'cell') )\n hk = {hk};\n end\n H = [H, hk]; %#ok\nend\n\n% If H has the same number of funs, nothing further needs to be done:\nif ( length(H) == length(breakPoints) - 1 )\n return\nend\n\n% H has more funs as a result of restrict. Re-initialize h with 0 BNDFUNS:\nnFuns = length(breakPoints) - 1;\nh = {};\nfor k = 1:nFuns\n data.domain = breakPoints(k:k+1);\n h = [h, {bndfun(0, data)}]; %#ok\nend\n\n% Loop through H and add each fun to the relevant domain piece in h:\nfor k = 1:length(H)\n hk = H{k};\n dom = hk.domain;\n if ( abs(dom(2) - dom(1)) > tol )\n idx = find(breakPoints == dom(1));\n h{idx} = h{idx} + hk; %#ok\n end\nend\n\nend\n\nfunction h = convDeltas(deltaMagF, deltaLocF, g, c, d, deltaTol, h)\n% H = CONVDELTAS() convolves the function G with deltafunctions described by\n% deltaMagF and deltaLocF. G originally lives on [c, d] and the output is\n% returned in H. This function is called twice so deltafunctions in g are \n% scaled by half to get the correct delta-delta contributions.\n\n%%\n% Contributions due to deltafunctions in F:\n% df * (g + dg/2):\n[m, n] = size(deltaMagF);\n% Loop through the delta function matrix:\nfor i = 1:m\n for j = 1:n\n if ( abs(deltaMagF(i, j)) > deltaTol )\n % Take appropriate derivative, scale and shift the function:\n hij = deltaMagF(i, j) * changeMap(diff(g,i-1), deltaLocF(j) + [c d]);\n % The half below is to make sure that delta-delta interaction\n % is not counted twice:\n if ( isa(hij, 'deltafun') )\n hij.deltaMag = hij.deltaMag/2; \n end\n \n % If the result is non-zero, append it:\n if ( ~iszero(hij) )\n h = [h, {hij}]; %#ok\n end\n end\n end\nend\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@deltafun/conv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3938963228916901}} {"text": "% Demo of using different line codings\n\nbits = [1 0 1 0 0 0 1 1 0];\nbitrate = 1; % bits per second\n\nfigure;\n[t,s] = unrz(bits,bitrate);\nplot(t,s,'LineWidth',3);\naxis([0 t(end) -0.1 1.1])\ngrid on;\ntitle(['Unipolar NRZ: [' num2str(bits) ']']);\n\nfigure;\n[t,s] = urz(bits,bitrate);\nplot(t,s,'LineWidth',3);\naxis([0 t(end) -0.1 1.1])\ngrid on;\ntitle(['Unipolar RZ: [' num2str(bits) ']']);\n\nfigure;\n[t,s] = prz(bits,bitrate);\nplot(t,s,'LineWidth',3);\naxis([0 t(end) -1.1 1.1])\ngrid on;\ntitle(['Polar RZ: [' num2str(bits) ']']);\n\nfigure;\n[t,s] = manchester(bits,bitrate);\nplot(t,s,'LineWidth',3);\naxis([0 t(end) -1.1 1.1])\ngrid on;\ntitle(['Manchester: [' num2str(bits) ']']);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/41320-line-coding-manchester-unipolar-and-polar-rz-unipolar-nrz/line_coding_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3938963228916901}} {"text": "% Wrapper for pca_apply that allows for application to large X.\n%\n% Wrapper for pca_apply that splits and processes X in parts, this may be\n% useful if processing cannot be done fully in parallel because of memory\n% constraints. See pca_apply for usage.\n%\n% USAGE\n% same as pca_apply\n%\n% INPUTS\n% same as pca_apply\n%\n% OUTPUTS\n% same as pca_apply\n%\n% EXAMPLE\n%\n% See also PCA, PCA_APPLY, PCA_VISUALIZE\n\n% Piotr's Image&Video Toolbox Version 1.5\n% Written and maintained by Piotr Dollar pdollar-at-cs.ucsd.edu\n% Please email me if you find bugs, or have suggestions or questions!\n\nfunction [ Yk, Xhat, avsq ] = pca_apply_large( X, U, mu, vars, k )\n\nsiz = size(X); nd = ndims(X); [N,r] = size(U);\nif(N==prod(siz) && ~(nd==2 && siz(2)==1)); siz=[siz, 1]; nd=nd+1; end\ninds = {':'}; inds = inds(:,ones(1,nd-1));\nd= prod(siz(1:end-1));\n\n% some error checking\nif(d~=N); error('incorrect size for X or U'); end\nif(isa(X,'uint8')); X = double(X); end\nif( k>r )\n warning(['Only ' int2str(r) '\n k=r;\nend\n\n% Will run out of memory if X has too many elements. Hence, run\n% pca_apply on parts of X and recombine.\nmaxwidth = ceil( (10^7) / d );\nif(maxwidth > siz(end))\n if (nargout==1)\n Yk = pca_apply( X, U, mu, vars, k );\n elseif (nargout==2)\n [Yk, Xhat] = pca_apply( X, U, mu, vars, k );\n else\n [ Yk, Xhat, avsq ] = pca_apply( X, U, mu, vars, k );\n end\nelse\n Yk = zeros( k, siz(end) ); Xhat = zeros( siz );\n avsq = 0; avsqOrig = 0; last = 0;\n while(last < siz(end))\n first=last+1; last=min(first+maxwidth-1,siz(end));\n Xi = X(inds{:}, first:last);\n if( nargout==1 )\n Yki = pca_apply( Xi, U, mu, vars, k );\n else\n if( nargout==2 )\n [Yki,Xhati] = pca_apply( Xi, U, mu, vars, k );\n else\n [Yki,Xhati,avsqi,avsqOrigi] = pca_apply( Xi, U, mu, vars, k );\n avsq = avsq + avsqi; avsqOrig = avsqOrig + avsqOrigi;\n end;\n Xhat(inds{:}, first:last ) = Xhati;\n end\n Yk( :, first:last ) = Yki;\n end;\n if( nargout==3); avsq = avsq / avsqOrig; end\nend\n", "meta": {"author": "pdollar", "repo": "toolbox", "sha": "e87332637bbe8e8b92dd487c87567d9628404523", "save_path": "github-repos/MATLAB/pdollar-toolbox", "path": "github-repos/MATLAB/pdollar-toolbox/toolbox-e87332637bbe8e8b92dd487c87567d9628404523/external/deprecated/pca_apply_large.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3938963151176444}} {"text": "% SVARGPLVMPREPAREDATA Load and prepare different kinds of data for the shared variational GPLVM.\n% DESC Load and prepare different kinds of data for the shared variational GPLVM.\n%\n% COPYRIGHT: Andreas C. Damianou, Carl Henrik Ek, 2011\n% SEEALSO : demSharedVargplvm1\n%\n% VARGPLVM\n\n%-- Toy (random) data (samples from GPs)\nif isempty(dataSetNames) || (isstr(dataSetNames) && strcmp(dataSetNames,'toy'))\n fprintf('# Creating toy data of type %s...\\n', toyDataCreate);\n toyData = 1;\n %toyDataCreate = 'vargplvm'; % options: 'vargplvm', 'human','sampling', 'fols'\n dataType = toyDataCreate;\n switch toyDataCreate\n case 'humanPose'\n load humanPose;\n %ind2 = floor(1:2:size(Y,1));\n %%%__silhouettes are whole images\n if exist('imageSilhouette') && imageSilhouette\n load sil_images\n end\n % Remove the 'drunk' sequence\n Y1 = Y(1:100,:);\n Y2 = Y(337:end,:);\n Y = [Y1; Y2];\n clear('Y1','Y2');\n Z1 = Z(1:100,:);\n Z2 = Z(337:end,:);\n Z = [Z1; Z2];\n clear('Z1','Z2');\n % Subsample\n ind2 = floor(1:2:size(Y,1));\n Ytoy{1} = Y(ind2,:);\n Ytoy{2} = Z(ind2,:);\n dataSetNames={'silhouette', 'pose'};\n % X_init = Xp;\n %mappingKern = {'linard2', 'white'};\n %mappingKern = {'rbfard2', 'white'};\n latentDim = 5; % Anything > 2 and < 10\n %xyzankurAnim(Z_test, 3);\n case 'fols'\n % addpath('../../ncca/matlab/');\n % addpath('../../sgplvm/matlab/');\n % addpath('../../fgplvm(svn)/matlab/');\n % dem_sgplvm_fols; % This creates the dataset\n % clear model\n % clear options\n %alpha = linspace(0,2*pi,100);\n alpha = linspace(0,4*pi,100);\n Z1 = cos(alpha)';\n Z2 = sin(alpha)';\n Z3= (cos(alpha)').^2;\n % Z3 = 2*cos(2*alpha)' + 2*sin(2*alpha)' ; %\n \n \n % Scale and center data\n bias_Z1 = mean(Z1);\n Z1 = Z1 - repmat(bias_Z1,size(Z1,1),1);\n scale_Z1 = max(max(abs(Z1)));\n Z1 = Z1 ./scale_Z1;\n \n bias_Z2 = mean(Z2);\n Z2 = Z2 - repmat(bias_Z2,size(Z2,1),1);\n scale_Z2 = max(max(abs(Z2)));\n Z2 = Z2 ./ scale_Z2;\n \n Z3 = Z3 - repmat(mean(Z3),size(Z3,1),1);%\n Z3 = Z3 ./ (max(max(abs(Z3))));%\n \n noiseLevel = 0.3; % Default: 0.1\n % Map 1-D to 10-D and add some noise\n Z2p = Z2*rand(1,10);\n Z2p = Z2p + noiseLevel.*randn(size(Z2p));\n Z1p = Z1*rand(1,10);\n Z1p = Z1p + noiseLevel.*randn(size(Z1p));\n \n Z3p = Z3*rand(1,10);%\n Z3p = Z3p + noiseLevel.*randn(size(Z3p));%\n \n % pca(Z2p) % This shows that it is actually a 1-D dataset\n \n % Y = [Z1p Z2p];\n % We like the numer of latent dims to be 2+numSharedDims, ideally 3. With\n % vargplvm we set Q=6 and expect the other 3 or 4 to be switched off.\n % [U,V] = pca(Y,6);\n % Xp = Y*V;\n % pca(Xp)\n \n %---\n numSharedDims = 5;\n Z1p(:,1:numSharedDims) = Z3p(:,1:numSharedDims);\n Z2p(:,1:numSharedDims) = Z3p(:,1:numSharedDims);\n bar(pca([Z1p Z2p]))\n % return\n %---\n Ytoy{1} = Z1p;\n Ytoy{2} = Z2p;\n %Ytoy{3}= Z3p;%\n dataSetNames={'fols_cos', 'fols_sin'};\n % X_init = Xp;\n mappingKern = {'linard2', 'white'};\n % mappingKern = {'rbfard2', 'white'};\n latentDim = 6; % Anything > 2 and < 10\n % indPoints = 80;\n case 'vargplvm'\n % In the 'vargplvm' case, we generate X from a big Y (which\n % contains signal from rbf in the first half, and from a matern32\n % in the second half of the dims). Then, we set manually the\n % lengthscales for model_i to favor the i partition of X, and\n % generate a new Y_i from the posterior, hopefully associated with\n % the partition X_i. In the end (after optim), we would expect the lengthscales\n % found to be like the ones we manually set here.\n \n % Constants\n n = dataToKeep;\n D = 20;\n numSubModels = 2;\n latentDimPerModel = 3;\n numSharedDims = 0; % 2;\n %\n latentDim = latentDimPerModel * numSubModels + numSharedDims;\n x = linspace(-1, 1, n)';\n indPoints = round(2/3 * n);\n \n % Create toy Y as a combination of an rbf and a matern signal\n krn = 'rbf';\n invWidth = 10;\n kern = kernCreate(x,krn);\n kern.inverseWidth = invWidth;\n Kshared = kernCompute(kern, x);\n Y = zeros(n, D);\n for d=1:round(D/2)\n Y(:,d) = real(gsamp(zeros(1, size(x, 1)), Kshared, 1))';\n end\n \n krn = 'matern32';\n invWidth = 10;\n kern = kernCreate(x,krn);\n kern.inverseWidth = invWidth;\n Kshared = kernCompute(kern, x);\n for d=round(D/2+1):D\n Y(:,d) = real(gsamp(zeros(1, size(x, 1)), Kshared, 1))';\n end\n \n % Learn a model and X that fit Y\n options = vargplvmOptions('dtcvar');\n options.kern = 'rbfardjit';\n options.numActive = indPoints;\n options.optimiser = 'scg';\n d = size(Y, 2);\n model = vargplvmCreate(latentDim, d, Y, options);\n model = vargplvmParamInit(model, model.m, model.X);\n model.vardist.covars = 0.5*ones(size(model.vardist.covars)) + 0.001*randn(size(model.vardist.covars));\n % Optional____\n model.initVardist = 1;\n model = vargplvmOptimise(model, 1, 100);\n model.initVardist = 0;\n model = vargplvmOptimise(model, 1, 300);\n %_____\n % Create new Y_i by manipulating the ard parameters\n % latentIndices = randperm(size( model.vardist.means,2));\n latentIndices = 1:size(model.vardist.means,2);\n allIndices = 1:size(latentIndices,2);\n startVal = 1;\n endVal = numSharedDims;\n sharedIndices = latentIndices(startVal:endVal);\n dataSetNames = {};\n for i=1:numSubModels\n modelTemp = model;\n startVal = endVal+1;\n endVal = startVal + latentDimPerModel - 1;\n curIndices = [latentIndices(startVal:endVal) sharedIndices];\n switchOffIndices = setdiff(allIndices, curIndices);\n modelTemp.kern.inputScales(switchOffIndices) = 0;\n modelTemp.kern.comp{1}.inputScales(switchOffIndices) = 0;\n modelTemp.kern.comp{1}.inputScales(sharedIndices) = (1/2)* modelTemp.kern.comp{1}.inputScales(sharedIndices); % Optional\n modelTemp.kern.inputScales(sharedIndices) = (1/2)* modelTemp.kern.inputScales(sharedIndices); % Optional\n figure, bar(modelTemp.kern.inputScales)\n Ytoy{i} = vargplvmPosteriorMeanVar(modelTemp, modelTemp.vardist.means);\n dataSetNames = {dataSetNames{:}, ['datasetNo' num2str(i)]};\n end\n numberOfDatasets = length(dataSetNames);\n clear('model','modelTemp','options','x','D','n','Y','kern','Kshared','d');\n %{\n case 'sampling' % DOESN'T WORK\n %-- 2nd way: Generate (sample) X from N(0,I), then arbitrarily split X into\n % X_1, X_2,..., X_n, X_s and fit a GP to then find the posteriors\n % p(Y_1 | X_1, Xs), ..., p(Y_n | X_n, X_s), ... , p(Y_s | X_s). Then, use\n % these Y's as datasets and see if you can get the X's back!!\n n = dataToKeep; % N\n indPoints = round((2/3)*n);\n subModelsNum = 2;\n numSharedDims = 2;\n Q = subModelsNum * (latentDimPerModel+numSharedDims);\n Xsamp = zeros(n,Q);\n for i=1:n\n Xsamp(i,:) = randn(1,Q);\n end\n latentIndices = randperm(size(Xsamp,2));\n startVal = 1;\n endVal = numSharedDims;\n sharedIndices = latentIndices(startVal:endVal);\n for i=1:subModelsNum\n startVal = endVal+1;\n endVal = startVal + latentDimPerModel;\n X_i = [Xsamp(startVal:endVal) Xsamp(sharedIndices)];\n % Fit a gp\n % ...\n % Ytoy{i} =\n end\n %}\n case 'human'\n load('../../sgplvm/matlab/nccaDemoData.mat')\n Ytoy{1} = Y_train;\n Ytoy{2} = Z_train;\n numberOfDatasets=2;\n case 'rbfOu'\n %-- For private signals\n dataSetNames = {'rand1','rand2','rand3','rand4'};\n kernels = {'rbf', 'rbf', 'ou','ou'};\n n = dataToKeep; % N\n indPoints = round((2/3)*n);\n dims = {40,40,40,40};\n invWidths = {10,10,15,15};\n numberOfDatasets = length(dataSetNames);\n x = linspace(-1, 1, n)';\n \n %-- For shared signal\n krn = 'rbf';\n invWidth = 100;\n kern = kernCreate(x,krn);\n kern.inverseWidth = invWidth;\n Kshared = kernCompute(kern, x);\n maxD = max(cell2mat(dims));\n Yshared = zeros(n, maxD);\n for d=1:maxD\n Yshared(:,d) = real(gsamp(zeros(1, size(x, 1)), Kshared, 1))';\n end\n \n %-- Build the datasets by adding the shared with the private signals\n for i=1:numberOfDatasets\n Ytoy{i} = zeros(n, dims{i});\n krn = kernels{i};\n for d=1:dims{i}\n kern = kernCreate(x, krn);\n kern.inverseWidth = invWidths{i};\n K = kernCompute(kern,x);\n Ytoy{i}(:,d) = real(gsamp(zeros(1, size(x, 1)), K, 1))';\n end\n % Add the shared signal\n Ytoy{i} = Ytoy{i} + Yshared(:,1:dims{i});\n end\n \n %-- We can add one extra dataset: the shared one\n Ytoy{i+1} = Yshared;\n numberOfDatasets = numberOfDatasets + 1;\n dataSetNames = {dataSetNames{:}, 'shared'};\n \n clear('n','K','x','kernels','krn','kern','d');\n otherwise\n %...\n end\n if ~exist('numberOfDatasets')\n numberOfDatasets = length(Ytoy);\n end\n % for i=1:numberOfDatasets\n % figure\n % plot(Ytoy{i})\n % end\n Yall = Ytoy;\n clear('Ytoy');\nelse\n toyData = 0;\n if isstruct(dataSetNames)\n for i=1:length(dataSetNames)\n Y{i} = svargplvmLoadData(dataSetNames{i});\n end\n numberOfDatasets = length(dataSetNames);\n else\n [Yall, lbls] = svargplvmLoadData(dataSetNames);\n if ~isempty(lbls)\n height = lbls(1); width = lbls(2);\n end\n numberOfDatasets = length(Yall);\n end\nend\n%--\n\nif isempty(dataType)\n if length(dataSetNames) ==1\n dataType = dataSetNames{1};\n end\nend\n", "meta": {"author": "SheffieldML", "repo": "vargplvm", "sha": "480201fde5ac84ff36e4a9f06d3fafeafa8ef06d", "save_path": "github-repos/MATLAB/SheffieldML-vargplvm", "path": "github-repos/MATLAB/SheffieldML-vargplvm/vargplvm-480201fde5ac84ff36e4a9f06d3fafeafa8ef06d/vargplvm/matlab/svargplvmPrepareData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3938963151176444}} {"text": "function [m,n] = size(a,dim)\n%SIZE Implements size(a) for slope\n%\n% [m,n] = size(a,dim)\n%\n% functionality as Matlab function size, second argument dim optional\n%\n\n% written 12/06/98 S.M. Rump\n% modified 09/28/01 S.M. Rump matrices and multi-dimensional arrays\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n if nargout==2\n [m,n] = size(zeros(a.size));\n elseif nargin==1\n m = a.size;\n else\n m = size(zeros(a.size),dim);\n end\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/slope/@slope/size.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5888891307678319, "lm_q2_score": 0.6688802603710086, "lm_q1q2_score": 0.3938963151176443}} {"text": "% Plots of temperature, pressure and density with altitude increments.\nsldata;\nchart;\nA=chart;\n\nA(:,2)=A(:,2)*T1;\nA(:,3)=A(:,3)*p1;\nA(:,4)=A(:,4)*rho1;\n\n\n% Absolute variables are separated in different vectors.\n\nh=A(:,1);\nT=A(:,2);\np=A(:,3);\nrho=A(:,4);\n\nplott;\nfigure;\nplotp;\nfigure;\nplotrho;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/19470-isa-chart/plots.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.668880247169804, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3938963073435985}} {"text": "function drawAcrobot(t,z,p)\n\nclf; hold on;\n\nlength = p.l1+p.l2;\naxis equal; axis(length*[-1,1,-1,1]); axis off;\n\n[p1,p2] = acrobotKinematics(z,p);\npos = [[0;0],p1,p2];\n\nplot(0,0,'ks','MarkerSize',25,'LineWidth',4)\nplot(pos(1,:),pos(2,:),'Color',[0.1, 0.8, 0.1],'LineWidth',4)\nplot(pos(1,:),pos(2,:),'k.','MarkerSize',50)\n\ntitle(sprintf('Acrobot Animation, t = %6.4f', t));\n\ndrawnow; pause(0.001); \n\nend", "meta": {"author": "MatthewPeterKelly", "repo": "OptimTraj", "sha": "c97b57fda511dacc6a6187f683428f0f3a1965f2", "save_path": "github-repos/MATLAB/MatthewPeterKelly-OptimTraj", "path": "github-repos/MATLAB/MatthewPeterKelly-OptimTraj/OptimTraj-c97b57fda511dacc6a6187f683428f0f3a1965f2/demo/acrobot/drawAcrobot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3938676252015634}} {"text": "function S = modexpon(S,p)\n% Reduces the exponents of a sympoly modulo p\n% Usage: S = modexpon(S,p)\n%\n% S is any sympoly\n% p a scalar numeric value\n%\n\nif numel(S) > 1\n for i = 1:numel(S)\n S(i) = modexpon(S(i),p);\n end\nelse\n % a scalar sympoly\n S.Exponent = mod(S.Exponent,p);\n \n S = clean_sympoly(S);\nend\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/9577-symbolic-polynomial-manipulation/SymbolicPolynomials/@sympoly/modexpon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3938676168492713}} {"text": "function [xY,word,NI] = spm_voice_get_xY(PATH)\n% Create word arrays from sound file exemplars\n% FORMAT [xY,word,NI] = spm_voice_get_xY(PATH)\n%\n% PATH - directory containing sound files of exemplar words\n%\n% xY(nw,ns) - structure array for ns samples of nw words\n% word(nw) - cell array of word names\n% NI(nw,ns) - numeric array of number of minima\n%\n% This routine uses a library of sound files, each containing 32 words\n% spoken with varying prosody. The name of the sound file labels the word\n% in question. These exemplars are then transformed (using a series of\n% discrete cosine and Hilbert transforms) into a set of parameters, which\n% summarise the lexical content and prosody. The inverse transform\n% generates timeseries that can be played to articulate a word. The\n% transform operates on a word structure xY to create lexical and prosody\n% parameters (Q and P respectively).\n%__________________________________________________________________________\n% Copyright (C) 2019 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_voice_get_xY.m 7766 2020-01-05 21:37:39Z karl $\n\n\n% get corpus\n%==========================================================================\nrng('default')\n\n% get the list of words and sampling frequency (FS)\n%--------------------------------------------------------------------------\nspm_figure('GetWin','voice'); clf\ncd(PATH)\nwfile = dir('*.wav');\ntry\n audioread(wfile(1).name,[1,1]);\n read = @audioread;\ncatch\n read = @wavread;\nend\n[Y,FS] = read(wfile(1).name,[1,1]);\n\n% assemble cell array of word structures for subsequent characterisation\n%==========================================================================\nnw = numel(wfile); % number of words\nns = 32; % number of samples\nnj = 16; % number of jitters\nsj = FS/64; % s.d. of jitter\nfor w = 1:nw\n \n % get lexicon name and create structure\n %----------------------------------------------------------------------\n wname = wfile(w).name; % name of word\n [d,str] = fileparts(wname);\n word{w} = str; disp(str)\n \n % get the midpoint of words from the (maxima) of successive exemplars\n %----------------------------------------------------------------------\n G = spm_voice_check(read(wname),FS,1/4);\n I = find((diff(G(1:end - 1)) > 0) & (diff(G(2:end)) < 0));\n [i,j] = sort(G(I),'descend');\n I = sort(I(j(1:ns)));\n \n % and plot\n %----------------------------------------------------------------------\n subplot(2,1,1), plot(G), hold on, plot(I,G(I),'ro'), hold off\n title(sprintf('Power peaks - %s',word{w}),'FontSize',16)\n xlabel('frequency (hertz)'), ylabel('power'), box off\n drawnow\n \n for s = 1:ns\n \n % retrieve (one second) epoch around midpoint and transform\n %------------------------------------------------------------------\n i = round([-1/2 1/2]*FS + I(s));\n if i(1) < 1\n i = i - i(1) + 1;\n end\n Y = read(wname,i);\n i = spm_voice_onsets(Y,FS);\n i = i{end};\n ni = numel(Y);\n for j = 1:nj\n \n % jitter interval\n %--------------------------------------------------------------\n k = (s - 1)*nj + j;\n ik = fix((i(1) + sj*randn):(i(end) + sj*randn));\n ik = ik(ik < ni & ik > 1);\n xY(w,k) = spm_voice_ff(Y(ik),FS);\n \n % record interval\n %--------------------------------------------------------------\n xY(w,k).i(1) = ik(1)/FS - 1/2;\n xY(w,k).i(2) = ik(end)/FS - 1/2;\n end\n \n % apply inverse transform and play, if requested\n %------------------------------------------------------------------\n spm_voice_iff(xY(w,k));\n \n % record number of spectral minima intervals\n %------------------------------------------------------------------\n [Y,IS] = spm_voice_get_next(Y);\n j = fix((0:FS + FS/4) + IS);\n j = j(j < ni & j > 1);\n NI(w,s) = numel(spm_voice_onsets(Y(j),FS));\n \n end\n \nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/DEM/spm_voice_get_xY.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943822145997, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3936903392159985}} {"text": "% The contact lib by Mathworks, may change to another lib written by\n% Professor Hartmut Geyer\naddpath(genpath(fullfile(pwd,'contat_lib')));\n%parameters for ground plane geometry and contract\nground.stiff = 5e4;\nground.damp = 1000;\nground.height = 0.4;\n\n%robot body size\nbody.x_length = 0.6;\nbody.y_length = 0.3;\nbody.z_length = 0.15;\nbody.shoulder_size = 0.07; \nbody.upper_length = 0.16;\nbody.lower_length = 0.25;\nbody.foot_radius = 0.035;\nbody.shoulder_distance = 0.2;\nbody.max_stretch = body.upper_length + body.lower_length;\nbody.knee_damping = 0.1;\n\n% parameters for leg control \nctrl.pos_kp = 30;\nctrl.pos_ki = 0;\nctrl.pos_kd = 0;\nctrl.vel_kp = 4.4;\nctrl.vel_ki = 0;\nctrl.vel_kd = 0.0;\n\n% parameters for high level plan\nplanner.touch_down_height = body.foot_radius; % from foot center to ground\n\nplanner.stand_s = 0;\nplanner.stand_u = 30*pi/180;\nplanner.stand_k = -60*pi/180;\nstance_pos = forward_kinematics(planner.stand_s, planner.stand_u, planner.stand_k, body);\nplanner.stand_height = stance_pos(3);\n\nplanner.flight_height = 1.1*planner.stand_height;% when leg is flying in the air\n\n% gait control parameters \nplanner.time_circle = 3;\nplanner.swing_ang = 12/180*pi;\nplanner.init_shake_ang = 3/180*pi;\n\n%some gait control goals\nplanner.tgt_body_ang = 0;\nplanner.tgt_body_vx = 0.3; % tested 0.15-0.45\nplanner.Ts = 0.1; % for x_direction leg place\nplanner.Kv = 0.3; % for x_dreiction leg place\n\n\nplanner.y_Ts = 0.21; % for y_direction leg place\nplanner.y_Kv = -0.34; % for y_direction leg place\n\n% state transition thredsholds\nplanner.state0_vel_thres = 0.05;\n% the sample time of the ctrl block is set to be 0.0025 (400Hz);\nplanner.state0_trans_thres = 300; %(0.75 seconds)\nplanner.state0_swing_ang = 10*pi/180;\nplanner.state0_swing_T = 1200;\nplanner.state12_trans_speed = 0.2;\nplanner.leg_swing_time = 70; %(use 0.25s to generate a motion)\n\n%robot weight \nbody_weight = 600*body.x_length*body.y_length*body.z_length;\nleg_density = 660;\nshould_weight = leg_density*0.07^3;\nupperleg_weight = leg_density*0.04*0.04*body.upper_length;\nlowerleg_weight = leg_density*0.04*0.04*body.lower_length;\nfoot_weight = 1000*4/3*pi*body.foot_radius^3;\n\ntotal_weight = body_weight + 4*(should_weight+upperleg_weight+lowerleg_weight+foot_weight);\n\nbody_inertia = diag([0.151875;0.516375;0.6075]);\n", "meta": {"author": "ShuoYangRobotics", "repo": "QuadrupedSim", "sha": "8427715395b63bddb77329e66f7484e529998445", "save_path": "github-repos/MATLAB/ShuoYangRobotics-QuadrupedSim", "path": "github-repos/MATLAB/ShuoYangRobotics-QuadrupedSim/QuadrupedSim-8427715395b63bddb77329e66f7484e529998445/init_quad_new_leg_raibert_strategy_v2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943712746406, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3936903335324564}} {"text": "function [st3, rez] = standalone_detector(rez, spkTh)\n% Detects spikes across the entire recording using generic templates.\n% Each generic template has rank one (in space-time).\n% In time, we use the 1D template prototypes found in wTEMP. \n% In space, we use Gaussian weights of several sizes, centered \n% on (x,y) positions that are part of a super-resolution grid covering the\n% entire probe (pre-specified in the calling function). \n% In total, there ~100x more generic templates than channels. \n\nNrankPC = size(rez.wPCA, 2);\nops = rez.ops;\n\n% minimum/base sigma for the Gaussian. \nsig = 10;\n\n% grid of centers for the generic tempates\n[ycup, xcup] = meshgrid(ops.yup, ops.xup);\n\n% determine prototypical timecourses by clustering of simple threshold crossings. \nwTEMP = gpuArray(rez.wTEMP);\nwPCA = gpuArray(rez.wPCA);\n\n% Get nearest channels for every template center. \n% Template products will only be computed on these channels. \nNchanNear = 10;\n[iC, dist] = getClosestChannels2(ycup, xcup, rez.yc, rez.xc, NchanNear);\n\n% Templates with centers that are far from an active site are discarded\ndNearActiveSite = median(diff(unique(rez.yc)));\nigood = dist(1,:) size(st3,1)\n st3(nsp + 1e6, 1) = 0; % if we need to preallocate more space\n end\n \n st3(nsp + [1:nsp0], :) = st';\n nsp = nsp + nsp0;\n \n if rem(k,100)==1 || k==ops.Nbatch\n fprintf('%2.2f sec, %d batches, %d spikes \\n', toc, k, nsp)\n end\nend\n\nst3 = st3(1:nsp, :);\n%%\n\nrez.iC = gather(iC);\nrez.dist = gather(dist);\n\n", "meta": {"author": "MouseLand", "repo": "Kilosort", "sha": "d55179f4bed45d4f17e5481283bc3f260212c1c7", "save_path": "github-repos/MATLAB/MouseLand-Kilosort", "path": "github-repos/MATLAB/MouseLand-Kilosort/Kilosort-d55179f4bed45d4f17e5481283bc3f260212c1c7/preProcess/standalone_detector.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943712746406, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3936903335324564}} {"text": "function ori = exp(m,ori_ref,varargin)\n% misorientation vector to misorientation\n%\n% Description\n% \n% Syntax\n%\n% mori = exp(m) % misorientation\n%\n% ori = exp(m,ori_ref) % orientation update\n%\n% Input\n% m - @Miller misorientation vector in crystal coordinates\n% ori_ref - @orientation\n%\n% Output\n% ori - @orientation\n%\n% See also\n% Miller/exp orientation/log\n\nrot = exp@vector3d(m);\n\nori = orientation(rot,m.CS,m.CS);\n\nif nargin >= 2\n if check_option(varargin,'left')\n ori = ori * ori_ref;\n else\n ori = ori_ref .* ori;\n end\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@Miller/exp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.393667433819755}} {"text": "function [ sepScene, wallPanoNormal] = compSurfaceLabel( rotImg )%compSurfaceLabel( data, folderName )\n%COMPSURFACELABEL Compute geometric context surface label for panorama\n% sepScene: surface label for each seprate view, 6 channels\n% wallPanoNormal: surface label for panorama, 7 channels\n\n% [rotImg, data, R] = loadBuffer( data, folderName ); \n%% emprical good separate of panorama\ncutSize = 640;\n% fov = pi*2/3;\nfov = [pi/2*ones(1,8) pi/2*ones(1,8)];\nxh = [-pi:(pi/4):(3/4*pi) -pi:(pi/4):(3/4*pi)];\nyh = [zeros(1, 8) -1/6*pi*ones(1,8)];\n\n% fov = [pi/2*ones(1,36) pi/2*ones(1,36)];\n% xh = [-pi:(pi/18):(17/18*pi) -pi:(pi/18):(17/18*pi)];\n% yh = [zeros(1,36) -1/6*pi*ones(1,36)];\n\n% fov = [pi/2*ones(1,8)];\n% xh = [-pi:(pi/4):(3/4*pi)];\n% yh = [zeros(1,8)];\n\n% fov = [pi/2*ones(1,36)];\n% xh = [-pi:(pi/18):(17/18*pi)];\n% yh = [zeros(1,36)];\n[sepScene] = separatePano( rotImg, fov, xh, yh, cutSize);\n\n%% \n% imdir = './roomModel/SpatialLayout_shrink/Images_resized/';\n% workspcdir = './roomModel/SpatialLayout_shrink/tempworkspace/';\n% imsegdir = './roomModel/SpatialLayout_shrink/Imsegs/';\n% moveFolder = './roomModel/SpatialLayout_shrink/';\nsepScene(1).cimages = [];\nsepScene(1).maxCimage = [];\nnumScene = length(sepScene);\nfor sid = 1:numScene\n img = sepScene(sid).img;\n img = imresize(img, [640 640]);\n try\n [ cimages ] = getSurfaceLabelInitial( img );\n catch\n cimages{1} = 1/7*ones(cutSize,cutSize,7);\n end\n% [cimages, Polyg] = getSurfaceLabelLayout( sepScene(sid), data )\n sepScene(sid).cimages = cimages; \n [~, indd] = max(cimages{1}, [], 3);\n sepScene(sid).maxCimage = indd;\nend\n\n%% combine\n% 1 middle wall=yellow; 2 left wall=red; 3 right wall=cyan; 4 floor=green; 5 ceiling=blue; 6 objects=pink\nwidth = 2048; height = 1024;\nwallPano = zeros(height, width, 7);\nwallPanoWeight = zeros(height, width);\nfor vid = 1:length(sepScene)\n vx = sepScene(vid).vx;\n \n [curPano, curPanoValid] = ...\n im2Sphere( sepScene(vid).cimages{1}, sepScene(vid).fov, width, height, ...\n sepScene(vid).vx, sepScene(vid).vy);\n curPano(~curPanoValid) = 0;\n wallPanoWeight(curPanoValid(:,:,1)) = wallPanoWeight(curPanoValid(:,:,1)) + 1;\n \n normMiddle = vx+pi;\n normMLR = normValue([normMiddle normMiddle-pi/2 normMiddle+pi/2], -pi, pi);\n normGlobal = [-pi -pi/2 0 pi/2];\n for i = 1:3\n angle = abs(normValue(normGlobal - normMLR(i), -pi, pi));\n angle(angle>pi/2) = pi/2; % cos^2 weight\n% [~,I] = sort(angle, 'ascend'); % nearest neighbor\n% angle(I(1)) = 0;\n% angle(I(2:4)) = pi/2;\n for j = find(angle0.5), 1:3);\n% histLabelR = hist(sepScene(vid).maxCimage(MASK>1.5 & MASK<2.5), 1:3);\n% histLabelL = histLabelL./sum(histLabelL) + 0.0001;\n% histLabelR = histLabelR./sum(histLabelR) + 0.0001;\n% entropyL = -sum(histLabelL.*log2(histLabelL));\n% entropyR = -sum(histLabelR.*log2(histLabelR));\n% MLR2ABCD = [0 0 0]; %[M L R], 1234 for ABCD, 0 for Null\n% histLabel = hist(sepScene(vid).maxCimage(MASK<2.5 & MASK>0.5), 1:3);\n% [~, IW] = sort(histLabel, 'descend');\n% if entropyLi-0.5 & curPano0.5 & prePano<3.5;\n% h = hist(prePano(mask),1:3);\n% [B,I] = max(h);\n% J = All_MLR2ABCD(preID,I);\n% preConsist(i) = J;\n% preNumber(i) = B;\n% \n% mask = curPano>i-0.5 & curPanoi-0.5 & curPano0.5 & latPano<3.5;\n% h = hist(latPano(mask),1:3);\n% [B,I] = max(h);\n% J = All_MLR2ABCD(latID,I);\n% latConsist(i) = J;\n% latNumber(i) = B;\n% \n% mask = curPano>i-0.5 & curPanolatNumber(i)\n% All_MLR2ABCD(vid, i) = preConsist(i);\n% else\n% All_MLR2ABCD(vid, i) = latConsist(i);\n% end\n% end\n% end\n% wallPano = zeros(512, 1024, 4);\n% for vid = [2 4 6 8]\n% [curPano, curPanoValid] = ...\n% im2Sphere( sepScene(vid).cimages{1}, sepScene(vid).fov, width, height, ...\n% sepScene(vid).vx, sepScene(vid).vy);\n% curPano(~curPanoValid) = 0;\n% voteMat = zeros(512, 1024, 4);\n% for i = find(All_MLR2ABCD(vid,:)~=0)\n% voteMat(:,:,All_MLR2ABCD(vid,i)) = curPano(:,:,i);\n% end\n% wallPano = wallPano + voteMat;\n% end\n\n\nend\n\nfunction [nv] = normValue( v, minBound, maxBound)\nnv = rem((v-minBound)+2*(maxBound-minBound), maxBound-minBound) + minBound;\nend\n\nfunction [range] = normRange( low, upp, minBound, maxBound)\nnormLow = rem((low-minBound)+2*(maxBound-minBound), maxBound-minBound) + minBound;\nnormUpp = rem((upp-minBound)+2*(maxBound-minBound), maxBound-minBound) + minBound;\nif normLow<=normUpp\n range = [normLow normUpp];\nelse\n range = [normLow maxBound; minBound normUpp];\nend\nend\n\nfunction [inside] = insideRange(values, range)\ninside = false(size(values));\nfor i = 1:size(range,1)\n inside = inside | (values>=range(i,1) & values<=range(i,2));\nend\nend\n", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/RoomHypothesisSampling/RoomModel/compSurfaceLabel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.393667433819755}} {"text": "%\tOVERVIEW:\n% This demonstration analyzes a segment of data collected in the \n% intensive care unit (ICU) which contains ECG, ABP, and PPG signals \n%\n% OUTPUT:\n% HRV Metrics exported to .cvs files\n%\n% DEPENDENCIES & LIBRARIES:\n% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox\n% REFERENCE: \n% Vest et al. \"An Open Source Benchmarked HRV Toolbox for Cardiovascular \n% Waveform and Interval Analysis\" Physiological Measurement (In Press), 2018. \n%\tREPO: \n% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox\n% ORIGINAL SOURCE AND AUTHORS: \n% Giulia Da Poian \n%\tCOPYRIGHT (C) 2018 \n% LICENSE: \n% This software is offered freely and without warranty under \n% the GNU (v3 or later) public license. See license file for\n% more information\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nclear; clc; close all;\n\nrun(['..' filesep 'startup.m'])\n\n% Remove old files generated by this demo\nOldFolder = [pwd,filesep, 'OutputData', filesep, 'ResultsICU'];\nif exist(OldFolder, 'dir')\n rmdir(OldFolder, 's');\n fprintf('Old Demo Folder deleted \\n');\nend\n\nHRVparams = InitializeHRVparams('demoICU'); % include the project name\nHRVparams.poincare.on = 0; % Pinocare analysis off for this demo\nHRVparams.DFA.on = 0; % DFA analysis off for this demo\nHRVparams.MSE.on = 0; % MSE analysis off for this demo\nHRVparams.HRT.on = 0; % HRT analysis off for this demo\n\n\n[subjectIDs,filesTBA] = GenerateListOfFilesTBA(HRVparams.ext,HRVparams.readdata,0);\n\nidx = find(strcmp(subjectIDs,'TestICUdata'));\n\ni_patient = idx;\n\n% 1. Load Raw Patient Data (ECG Waveform)\nload(filesTBA{i_patient});\n\n% 2. Analyze data using HRV PhysioNet Cardiovascular Signal Toolbox\n[~, resFilename] = Main_HRV_Analysis(signal(:,1),[],'ECGWaveform',...\n HRVparams,subjectIDs(i_patient),[],[],signal(:,5),'PPG',signal(:,3),'ABP');\n\n% 3. Load annotations ans SQI for plot\nAnnFile = strcat(HRVparams.writedata, filesep, 'Annotation', filesep, ...\n subjectIDs{i_patient});\njqrs_ann = read_ann(AnnFile,'jqrs');\n[~,~,sqijw] = read_ann(AnnFile,'sqijw'); % SQI is x100 to be stored\n\nppg_ann = read_ann(AnnFile,'ppg');\nqppg(signal(:,5),HRVparams.Fs);\n[~,ppgsqi,ppgNumSqi] = read_ann(AnnFile,'sqippg');\n\nabpann = read_ann(AnnFile,'abpm');\nfeatures = abpfeature(signal(:,3), abpann, HRVparams.Fs);\n[BeatQ, goodbeats] = jSQI(features, abpann, signal(:,3));\n\n% 5. Plotting\nHRVparams.gen_figs = 1;\nif HRVparams.gen_figs\n % ECG\n Plot_SignalDetection_SQI(time, signal(:,1), jqrs_ann, sqijw'./100,'ECG')\n \n % ABP\n Plot_SignalDetection_SQI(time, signal(:,3), abpann, double(~BeatQ(:,1))','ABP')\n \n % RESP\n figure(88)\n plot(time,signal(:,6));\n title('Respiration')\n \n % PLETH\t\n Plot_SignalDetection_SQI(time, signal(:,5), ppg_ann, ppgNumSqi'./100,'PPG')\n\nend\n\n% 6. Pulse Transit Time\nptt = pulsetransit(jqrs_ann, abpann);\n\n% 7. Plot BP vs PTT\nsyst = features(1:length(ptt),2);\nif HRVparams.gen_figs\n figure(22)\n plot(syst,ptt(:,3)./HRVparams.Fs,'o');\n xlabel('BP (mmHg)'); ylabel('PTT (s)');\n title('Pulse Transit Time - BP vs PTT (ABP - QRS)')\n\t\nend\n\n\n% 8. Compare generated output file with the reference one\n \ncurrentFile = strcat(HRVparams.writedata, filesep, resFilename.HRV, '.csv');\nreferenceFile = strcat('ReferenceOutput', filesep, 'ICU_HRV_allwindows.csv');\ntestHRV = CompareOutput(currentFile,referenceFile);\n\nif testHRV\n fprintf('** DemoRawDataICU: TEST SUCCEEDED ** \\n ')\n fprintf('A file named %s.csv \\n has been saved in %s \\n', ...\n resFilename.HRV, HRVparams.writedata);\nelse\n fprintf('** DemoRawDataICU: TEST FAILED ** \\n')\nend", "meta": {"author": "cliffordlab", "repo": "PhysioNet-Cardiovascular-Signal-Toolbox", "sha": "eec46e75e0b95c379ecb68cb0ebee0c4c9f54605", "save_path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox", "path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox/PhysioNet-Cardiovascular-Signal-Toolbox-eec46e75e0b95c379ecb68cb0ebee0c4c9f54605/Demos/DemoRawDataICU.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.393667433819755}} {"text": "function [varargout] = runopf_w_res(varargin)\n%RUNOPF_W_RES Runs an optimal power flow with fixed zonal reserves.\n% RESULTS = RUNOPF_W_RES(CASEDATA, MPOPT, FNAME, SOLVEDCASE)\n% [RESULTS, SUCCESS] = RUNOPF_W_RES(CASEDATA, MPOPT, FNAME, SOLVEDCASE)\n%\n% Runs an optimal power flow with the addition of reserve requirements\n% specified as a set of fixed zonal reserves. See RUNOPF for a\n% description of the input and output arguments, which are the same,\n% with the exception that the case file or struct CASEDATA must define\n% a 'reserves' field, which is a struct with the following fields:\n% zones nrz x ng, zone(i, j) = 1, if gen j belongs to zone i\n% 0, otherwise\n% req nrz x 1, zonal reserve requirement in MW\n% cost (ng or ngr) x 1, cost of reserves in $/MW\n% qty (ng or ngr) x 1, max quantity of reserves in MW (optional)\n% where nrz is the number of reserve zones and ngr is the number of\n% generators belonging to at least one reserve zone and ng is the total\n% number of generators.\n%\n% In addition to the normal OPF output, the RESULTS struct contains a\n% new 'reserves' field with the following fields, in addition to those\n% provided in the input:\n% R - ng x 1, reserves provided by each gen in MW\n% Rmin - ng x 1, lower limit on reserves provided by each gen, (MW)\n% Rmax - ng x 1, upper limit on reserves provided by each gen, (MW)\n% mu.l - ng x 1, shadow price on reserve lower limit, ($/MW)\n% mu.u - ng x 1, shadow price on reserve upper limit, ($/MW)\n% mu.Pmax - ng x 1, shadow price on Pg + R <= Pmax constraint, ($/MW)\n% prc - ng x 1, reserve price for each gen equal to maximum of the\n% shadow prices on the zonal requirement constraint\n% for each zone the generator belongs to\n%\n% See T_CASE30_USERFCNS for an example case file with fixed reserves,\n% and TOGGLE_RESERVES for the implementation.\n%\n% Calling syntax options:\n% results = runopf_w_res(casedata);\n% results = runopf_w_res(casedata, mpopt);\n% results = runopf_w_res(casedata, mpopt, fname);\n% results = runopf_w_res(casedata, mpopt, fname, solvedcase);\n% [results, success] = runopf_w_res(...);\n%\n% Example:\n% results = runopf_w_res('t_case30_userfcns');\n%\n% See also RUNOPF, TOGGLE_RESERVES, T_CASE30_USERFCNS.\n\n% MATPOWER\n% Copyright (c) 2008-2016, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\nmpc = loadcase(varargin{1});\nmpc = toggle_reserves(mpc, 'on');\n[varargout{1:nargout}] = runopf(mpc, varargin{2:nargin});\n\nif nargout > 0 && isstruct(varargout{1})\n varargout{1} = toggle_reserves(varargout{1}, 'off');\nend\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/runopf_w_res.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982315512489, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3936431267965735}} {"text": "function xyzankurAnimCompare(X, X2, fps)\n\n% XYZANKURANIMCOMPARE Animate a prediction and ground truth for stick man from Agarwal & Triggs dataset.\n% FORMAT\n% DESC animates a matrix of x,y,z point clound positions representing the\n% motion of the figure used to generate the silhouttes for Agarwal &\n% Triggs silhouette data. \n% ARG y : the data to animate.\n% ARG y2 : other data to animate. \n% ARG fps : the number of frames per second to animate (defaults to 24).\n%\n% SEEALSO : xyzankurVisualise, xyzankurModify\n% \n% COPYRIGHT : Carl Henrik Ek and Neil D. Lawrence, 2008\n\n% MOCAP\n\n \n if(nargin<3)\n fps = 24;\n if(nargin<2)\n fid = 1;\n if(nargin<1)\n error('Too few arguments');\n end\n end\n end\n clf\n for(i = 1:1:size(X,1))\n if(i==1)\n subplot(1, 2, 1)\n handle = xyzankurVisualise(X(i,:), 1);\n subplot(1, 2, 2)\n handle2 = xyzankurVisualise(X2(i,:), 1);\n else\n xyzankurModify(handle, X(i,:));\n xyzankurModify(handle2, X2(i,:));\n end\n pause(1/fps);\n end\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mocap/xyzankurAnimCompare.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3936431185328778}} {"text": "function [pred, accuracy] = cosmo_crossvalidate(ds, classifier, partitions, opt)\n% performs cross-validation using a classifier\n%\n% [pred, accuracy] = cosmo_crossvalidate(dataset, classifier, partitions, opt)\n%\n% Inputs\n% ds struct with fields .samples (PxQ for P samples and\n% Q features) and .sa.targets (Px1 labels of samples)\n% classifier function handle to classifier, e.g.\n% @classify_naive_baysian\n% partitions For example the output from nfold_partition\n% opt optional struct with options for classifier\n% .normalization optional, one of 'zscore','demean','scale_unit'\n% to normalize the data prior to classification using\n% zscoring, demeaning or scaling to [-1,1] along the\n% first dimension of ds. Normalization\n% parameters are estimated using the training data\n% and applied to the testing data.\n% .pca_explained_count optional, transform the data with PCA prior to\n% classification, and retain this number of\n% components\n% .pca_explained_ratio optional, transform the data with PCA prior to\n% classification, and retain the components that\n% explain this percentage of the variance\n% (value between 0-1)\n% .check_partitions optional (default: true). If set to false then\n% partitions are not checked for being set properly.\n% .average_train_X average the samples in the train set using\n% cosmo_average_samples. For X, use any parameter\n% supported by cosmo_average_samples, i.e. either\n% 'count' or 'ratio', and optionally, 'resamplings'\n% or 'repeats'.\n%\n% Output\n% pred Qx1 array with predicted class labels.\n% elements with no predictions have the value NaN.\n% accuracy scalar classification accuracy\n% test_chunks Qx1 array with chunks of input dataset, if each\n% prediction was based using a single classification\n% step. Predictions with no or more than one\n% classification step are set to NaN\n%\n% Examples:\n% % generate dataset with 3 targets and 4 chunks, first target is 3\n% ds=cosmo_synthetic_dataset('ntargets',3,'nchunks',4,'target1',3);\n% % use take-1-chunk for testing crossvalidation\n% partitions=cosmo_nfold_partitioner(ds);\n% classifier=@cosmo_classify_naive_bayes;\n% % run crossvalidation\n% [pred,accuracy]=cosmo_crossvalidate(ds, classifier, ...\n% partitions);\n% % show targets, chunks, and predictions labels for each of the\n% % four folds\n% cosmo_disp({ds.sa.targets,ds.sa.chunks,pred},'threshold',inf)\n% %|| { [ 3 [ 1 [ 3 NaN NaN NaN\n% %|| 4 1 4 NaN NaN NaN\n% %|| 5 1 5 NaN NaN NaN\n% %|| 3 2 NaN 3 NaN NaN\n% %|| 4 2 NaN 5 NaN NaN\n% %|| 5 2 NaN 5 NaN NaN\n% %|| 3 3 NaN NaN 3 NaN\n% %|| 4 3 NaN NaN 4 NaN\n% %|| 5 3 NaN NaN 5 NaN\n% %|| 3 4 NaN NaN NaN 3\n% %|| 4 4 NaN NaN NaN 4\n% %|| 5 ] 4 ] NaN NaN NaN 5 ] }\n% cosmo_disp(accuracy)\n% %|| 0.917\n% %\n% % use take-2-chunks out for testing crossvalidation, LDA classifier\n% partitions=cosmo_nchoosek_partitioner(ds,2);\n% classifier=@cosmo_classify_lda;\n% % run crossvalidation\n% [pred,accuracy]=cosmo_crossvalidate(ds, classifier, ...\n% partitions);\n% % show targets, chunks, and predictions labels for each of the\n% % four folds\n% cosmo_disp({ds.sa.targets,ds.sa.chunks,pred},'threshold',inf)\n% %|| { [ 3 [ 1 [ 5 5 3 NaN NaN NaN\n% %|| 4 1 4 4 4 NaN NaN NaN\n% %|| 5 1 5 5 4 NaN NaN NaN\n% %|| 3 2 3 NaN NaN 3 3 NaN\n% %|| 4 2 4 NaN NaN 4 4 NaN\n% %|| 5 2 5 NaN NaN 4 5 NaN\n% %|| 3 3 NaN 5 NaN 3 NaN 3\n% %|| 4 3 NaN 4 NaN 4 NaN 4\n% %|| 5 3 NaN 5 NaN 5 NaN 5\n% %|| 3 4 NaN NaN 3 NaN 3 3\n% %|| 4 4 NaN NaN 4 NaN 4 5\n% %|| 5 ] 4 ] NaN NaN 5 NaN 3 3 ] }\n% cosmo_disp(accuracy)\n% %|| 0.778\n% %\n% % as the example above, but (1) use z-scoring on each training set\n% % and apply the estimated mean and std to the test set, and (2)\n% % use odd-even partitioner\n% opt=struct();\n% opt.normalization='zscore';\n% partitions=cosmo_oddeven_partitioner(ds);\n% % run crossvalidation\n% [pred,accuracy]=cosmo_crossvalidate(ds, classifier, ...\n% partitions, opt);\n% % show targets, predicted labels, and accuracy\n% cosmo_disp({ds.sa.targets,ds.sa.chunks,pred},'threshold',inf)\n% %|| { [ 3 [ 1 [ NaN 5\n% %|| 4 1 NaN 4\n% %|| 5 1 NaN 5\n% %|| 3 2 3 NaN\n% %|| 4 2 4 NaN\n% %|| 5 2 5 NaN\n% %|| 3 3 NaN 5\n% %|| 4 3 NaN 4\n% %|| 5 3 NaN 5\n% %|| 3 4 3 NaN\n% %|| 4 4 4 NaN\n% %|| 5 ] 4 ] 3 NaN ] }\n% cosmo_disp(accuracy)\n% %|| 0.75\n%\n% Notes:\n% - to apply this to a dataset struct as a measure (for searchlights),\n% consider using cosmo_crossvalidation_measure\n% - to average samples in the training set prior to training, use the\n% options provided by cosmo_average_samples prefixed by\n% 'average_train_'. For example, to take averages of 5 samples, and use\n% each sample in the input approximately 4 times, use:\n% opt.average_train_count=5;\n% opt.average_train_resamplings=4;\n%\n% See also: cosmo_crossvalidation_measure, cosmo_average_samples\n%\n% # For CoSMoMVPA's copyright information and license terms, #\n% # see the COPYING file distributed with CoSMoMVPA. #\n\n if nargin<4,opt=struct(); end\n if ~isfield(opt, 'normalization'),\n opt.normalization=[];\n end\n if ~isfield(opt, 'check_partitions'),\n opt.check_partitions=true;\n end\n\n if ~isempty(opt.normalization);\n normalization=opt.normalization;\n opt.autoscale=false; % disable for {matlab,lib}svm classifiers\n else\n normalization=[];\n end\n\n if all(isfield(opt, {'pca_explained_count','pca_explained_ratio'}))\n error(['pca_explained_count and pca_explained_ratio are ' ...\n 'mutually exclusive'])\n elseif isfield(opt, 'pca_explained_count');\n arg_pca='pca_explained_count';\n arg_pca_value=opt.pca_explained_count;\n elseif isfield(opt, 'pca_explained_ratio');\n arg_pca='pca_explained_ratio';\n arg_pca_value=opt.pca_explained_ratio;\n else\n arg_pca=[];\n end\n\n if opt.check_partitions\n cosmo_check_partitions(partitions, ds);\n end\n\n % see if samples in training set are to be averaged\n [do_average_train, average_train_opt]=get_average_train_opt(opt);\n\n train_indices = partitions.train_indices;\n test_indices = partitions.test_indices;\n\n npartitions=numel(train_indices);\n\n nsamples=size(ds.samples,1);\n\n % space for output (one column per partition)\n % the k-th column contains predictions for the k-th fold\n % (with values of NaNs if there was no prediction)\n pred=NaN(nsamples,npartitions);\n\n targets=ds.sa.targets;\n\n % process each fold\n for fold=1:npartitions\n train_idxs=train_indices{fold};\n test_idxs=test_indices{fold};\n % for each partition get the training and test data, store in\n % train_data and test_data\n train_data = ds.samples(train_idxs,:);\n train_targets = targets(train_idxs);\n\n if do_average_train\n % make a minimal dataset, then use cosmo_average_samples to\n % compute averages\n n_train=numel(train_idxs);\n ds_train=struct();\n ds_train.samples=train_data;\n ds_train.sa.chunks=ones(n_train,1);\n ds_train.sa.targets=train_targets;\n\n ds_train_avg=cosmo_average_samples(ds_train,average_train_opt);\n train_data=ds_train_avg.samples;\n train_targets=ds_train_avg.sa.targets;\n end\n\n test_data = ds.samples(test_idxs,:);\n\n % apply pca\n if ~isempty(arg_pca)\n [train_data,pca_params]=cosmo_map_pca(train_data,...\n arg_pca,arg_pca_value);\n test_data=cosmo_map_pca(test_data,'pca_params',pca_params);\n end\n\n % apply normalization\n if ~isempty(normalization)\n [train_data,params]=cosmo_normalize(train_data,normalization);\n test_data=cosmo_normalize(test_data,params);\n end\n\n % then get predictions for the training samples using\n % the classifier, and store these in the k-th column of all_pred.\n p = classifier(train_data, train_targets, test_data, opt);\n\n pred(test_idxs,fold) = p;\n end\n\n % compute accuracies\n has_prediction_mask=~isnan(pred);\n correct_mask=bsxfun(@eq,targets,pred) & has_prediction_mask;\n\n accuracy=sum(correct_mask)/sum(has_prediction_mask);\n\nfunction [do_average_train, average_train_opt]=get_average_train_opt(opt)\n persistent cached_opt;\n persistent cached_do_average_train;\n persistent cached_average_train_opt;\n\n if ~isequal(cached_opt,opt)\n cached_average_train_opt=struct();\n cached_do_average_train=false;\n prefix='average_train_';\n keys=fieldnames(opt);\n for k=1:numel(keys)\n key=keys{k};\n sp=cosmo_strsplit(key,prefix);\n if isempty(sp{1})\n % starts with average_train, so take the rest of the key\n % and flag cached_do_average_train\n cached_average_train_opt.(sp{2})=opt.(key);\n cached_do_average_train=true;\n end\n end\n\n cached_opt=opt;\n end\n\n\n do_average_train=cached_do_average_train;\n average_train_opt=cached_average_train_opt;\n\n\n\n", "meta": {"author": "CoSMoMVPA", "repo": "CoSMoMVPA", "sha": "5de75a1b4bef89b082d39d69e2b99d7f894ad717", "save_path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA", "path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA/CoSMoMVPA-5de75a1b4bef89b082d39d69e2b99d7f894ad717/mvpa/cosmo_crossvalidate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.39364311853287776}} {"text": "function f = populate(f, op, data, pref)\n%POPULATE Populate a TRIGTECH class with values.\n% F = F.POPULATE(OP) returns a TRIGTECH representation populated with values\n% F.VALUES of the function OP evaluated on an equally spaced grid. The field\n% F.ISHAPPY indicates whether the representation is deemed 'happy'.\n% Essentially this means that such an interpolant is a sufficiently accurate\n% approximation to OP. If F.ISHAPPY is FALSE, then POPULATE was not able to\n% obtain a happy result.\n%\n% OP should be vectorized (i.e., accept a vector input), and output a vector\n% of the same length. Furthermore, OP may be an array-valued function, in\n% which case it should accept a vector of length N and return a matrix of size\n% NxM.\n%\n% F.POPULATE(OP, VSCALE, HSCALE) enforces that the happiness check is relative\n% to the initial vertical scale VSCALE and horizontal scale HSCALE. These\n% values default to 0 and 1 respectively. During refinement, VSCALE updates\n% itself to be the largest magnitude values to which (each of the columns in)\n% OP evaluated to.\n%\n% F.POPULATE(OP, VSCALE, HSCALE, PREF) enforces any additional preferences\n% specified in the preference structure PREF (see TRIGTECH.TECHPREF).\n%\n% F.POPULATE(VALUES, ...) (or F.POPULATE({VALUES, COEFFS}, ...)) populates F\n% non-adaptively with the VALUES (and COEFFS) passed. These values are still\n% tested for happiness in the same way as described above, but the length of\n% the representation is not altered.\n%\n% See also TRIGTECH, TECHPREF, HAPPINESSCHECK.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers. \n% See http://www.chebfun.org/ for Chebfun information.\n\n%%%%%%%%%%%%%%%%%%%%%%%%%% Non-adaptive construction. %%%%%%%%%%%%%%%%%%%%%%%%%%\n% Values (and possibly coefficients) have been given.\nif ( isnumeric(op) || iscell(op) )\n if ( isnumeric(op) )\n % OP is just the values.\n f.values = op;\n f.coeffs = f.vals2coeffs(op);\n else \n % OP is a cell {values, coeffs}\n f.coeffs = op{2};\n f.values = f.coeffs2vals(f.coeffs);\n end\n\n % We're always happy if given discrete data:\n f.ishappy = true;\n\n % Threshold to determine if f is real or not.\n vscl = max(data.vscale, vscale(f));\n f.isReal = max(abs(imag(f.values))) <= 3*(eps*vscl);\n f.values(:,f.isReal) = real(f.values(:,f.isReal));\n\n return\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%% Adaptive construction. %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Initialise empty values to pass to refine:\nf.values = [];\n% Check a random value of op in (-1,1) to see if the result is complex and\n% if the value is a NaN or Inf.\npseudoRand = 0.376989633393435;\nrndVal = feval(op, (2*pseudoRand - 1));\n\nif ( any(isnan(rndVal)) || any(isinf(rndVal)) )\n error('CHEBFUN:TRIGTECH:populate:isNan','Cannot handle functions that evaluate to Inf or NaN.');\nend\n\nf.isReal = false(size(rndVal));\nfor k = 1:numel(rndVal)\n f.isReal(k) = isreal(rndVal(k));\nend\n\n% Loop until ISHAPPY or GIVEUP:\nwhile ( 1 )\n\n % Call the appropriate refinement routine: (in PREF.REFINEMENTFUNCTION)\n [f.values, giveUp] = f.refine(op, f.values, pref);\n\n % We're giving up! :(\n if ( giveUp ) \n break\n end \n \n % Update vertical scale: (Only include sampled finite values)\n valuesTemp = f.values;\n valuesTemp(~isfinite(f.values)) = 0;\n data.vscale = max(data.vscale, max(abs(valuesTemp)));\n \n % Compute the trigonometric coefficients:\n coeffs = f.vals2coeffs(f.values);\n \n % Check for happiness:\n f.coeffs = coeffs;\n [ishappy, cutoff] = happinessCheck(f, op, f.values, data, pref);\n \n \n % We're happy! :)\n if ( ishappy ) \n f = prolong(f,cutoff); % chop coefficients to length cutoff\n break\n end\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%% Assign to TRIGTECH object. %%%%%%%%%%%%%%%%%%%%%%%%%%\nf.ishappy = ishappy;\n\n% Force the values to be real if the imaginary part is zero\nf.values(:,f.isReal) = real(f.values(:,f.isReal));\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Ouput. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif ( ishappy )\n % We're done, and can return.\n return\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@trigtech/populate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.39364311853287776}} {"text": "%IM_BOX Fixed mapping determining a rectangular enclosing a blob (0/1 image)\n%\n% B = IM_BOX(A)\n% B = A*IM_BOX\n%\n% If A is a 0/1 image then B is the same image with all empty (0) border\n% columns and rows removed.\n%\n% B = IM_BOX(A,N)\n%\n% If A is a 0/1 image then B is the same image, but having in each direction\n% N empty (0) columns and rows around the object (1).\n%\n% B = IM_BOX(A,[NX1 NX2 NY1 NY2])\n%\n% If A is a 0/1 image then B is the same image, but having NX1, NX2 empty \n% columns (0) left, respectively right of the object (1) and NY1, NY2 empty\n% rows (0) above, respectively below the object(1).\n%\n% B = IM_BOX(A,N,ALF)\n%\n% Adds as many empty (0) columns or rows such that the aspect ratio of\n% images (height/width) equals ALF. For ALF == 1, square images are returned.\n% For ALF == 0, images are taken as they are and N rows and columns are\n% added.\n%\n% EXAMPLE\n% prdatafiles; % make sure prdatafiles is in the path\n% x = kimia_images; % load kimia images\n% x = x*im_box(0); % remove all empty rows and columns\n% x = x*im_box(0,1); % add rows/columns to make images square\n% x = x*im_resize([32 32]); % resample them \n% x = x*im_box(1,0); % add rows/columns and keep image square\n% % now all images are 34x34 and no object touches the border.\n% show(gendat(x,4)) % show a few\n%\n% SEE ALSO (PRTools Guide)\n% DATASETS, DATAFILES\n\n% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com\n% Faculty EWI, Delft University of Technology\n% P.O. Box 5031, 2600 GA Delft, The Netherlands\n\nfunction [b,J] = im_box(varargin)\n\n\targin = shiftargin(varargin,'vector');\n argin = setdefaults(argin,[],[],[]);\n if mapping_task(argin,'definition')\n b = define_mapping(argin,'fixed');\n b = setname(b,'Image bounding box');\n else\n [a,n,alf] = deal(argin{:});\n if isdataset(a)\n error('Command cannot be used for datasets as it may change image size')\n elseif isdatafile(a)\n isobjim(a);\n b = filtim(a,mfilename,{n,alf});\n %b = setfeatsize(b,getfeatsize(a));\n elseif isa(a,'double') || isa(a,'dip_image') % here we have a single image\n if isa(a,'dip_image'), a = double(a); end\n if isempty(n)\n jx = find(sum(a,1) ~= 0);\n jy = find(sum(a,2) ~= 0);\n J = [min(jy),max(jy),min(jx),max(jx)];\n b = a(min(jy):max(jy),min(jx):max(jx));\n else\n if (~isempty(alf) && alf == 0)\n c = a;\n else\n c = feval(mfilename,a); \n end\n [my,mx] = size(c);\n if length(n) == 1\n \tn = [n n n n];\n elseif length(n) ~= 4\n \terror('Second parameter should be scalar or vector of length 4')\n end\n b = zeros(my+n(3)+n(4),mx+n(1)+n(2));\n b(n(3)+1:n(3)+my,n(1)+1:n(1)+mx) = c;\n end\n if ~isempty(alf) && alf ~= 0\n [m,k] = size(b);\n r = round(m*alf) - k;\n if r == 0\n ;\n elseif r >= 1 % add r columns\n c = zeros(m,k+r);\n c(:,ceil(r/2):ceil(r/2)+k-1) = b;\n b = c;\n else % add rows\n r = round(k/alf) - m;\n c = zeros(m+r,k);\n c(ceil(r/2):ceil(r/2)+m-1,:) = b;\n b = c;\n end\n end\n\t\tend\t \n\tend\n\nreturn", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/im_box.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521102, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3936431185328777}} {"text": "function out = cryptosubdecode(in,key)\n\nnumbers = double(lower(in))-96;\ndecodednumbers = zeros(1,length(numbers));\nfor i = 1:length(numbers)\n if numbers(i) >= 1 & numbers(i) <= 26\n decodednumbers(i) = find(key==numbers(i));\n else\n decodednumbers(i) = numbers(i);\n end\nend\n\nout = char(decodednumbers+96);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/1931-basic-string-cryptography/cryptosubdecode.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125848754471, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3936186895800135}} {"text": "function [gt,dt] = evalRes( gt0, dt0, thr, mul )\n% Evaluates detections against ground truth data.\n%\n% Uses modified Pascal criteria that allows for \"ignore\" regions. The\n% Pascal criteria states that a ground truth bounding box (gtBb) and a\n% detected bounding box (dtBb) match if their overlap area (oa):\n% oa(gtBb,dtBb) = area(intersect(gtBb,dtBb)) / area(union(gtBb,dtBb))\n% is over a sufficient threshold (typically .5). In the modified criteria,\n% the dtBb can match any subregion of a gtBb set to \"ignore\". Choosing\n% gtBb' in gtBb that most closely matches dtBb can be done by using\n% gtBb'=intersect(dtBb,gtBb). Computing oa(gtBb',dtBb) is equivalent to\n% oa'(gtBb,dtBb) = area(intersect(gtBb,dtBb)) / area(dtBb)\n% For gtBb set to ignore the above formula for oa is used.\n%\n% Highest scoring detections are matched first. Matches to standard,\n% (non-ignore) gtBb are preferred. Each dtBb and gtBb may be matched at\n% most once, except for ignore-gtBb which can be matched multiple times.\n% Unmatched dtBb are false-positives, unmatched gtBb are false-negatives.\n% Each match between a dtBb and gtBb is a true-positive, except matches\n% between dtBb and ignore-gtBb which do not affect the evaluation criteria.\n%\n% In addition to taking gt/dt results on a single image, evalRes() can take\n% cell arrays of gt/dt bbs, in which case evaluation proceeds on each\n% element. Use bbGt>loadAll() to load gt/dt for multiple images.\n%\n% Each gt/dt output row has a flag match that is either -1/0/1:\n% for gt: -1=ignore, 0=fn [unmatched], 1=tp [matched]\n% for dt: -1=ignore, 0=fp [unmatched], 1=tp [matched]\n%\n% USAGE\n% [gt, dt] = bbGt( 'evalRes', gt0, dt0, [thr], [mul] )\n%\n% INPUTS\n% gt0 - [mx5] ground truth array with rows [x y w h ignore]\n% dt0 - [nx5] detection results array with rows [x y w h score]\n% thr - [.5] the threshold on oa for comparing two bbs\n% mul - [0] if true allow multiple matches to each gt\n%\n% OUTPUTS\n% gt - [mx5] ground truth results [x y w h match]\n% dt - [nx6] detection results [x y w h score match]\n%\n% EXAMPLE\n%\n% See also bbGt, bbGt>compOas, bbGt>loadAll\n\n% get parameters\nif(nargin<3 || isempty(thr)), thr=.7; end\nif(nargin<4 || isempty(mul)), mul=0; end\n\n% if gt0 and dt0 are cell arrays run on each element in turn\nif( iscell(gt0) && iscell(dt0) ), n=length(gt0);\n assert(length(dt0)==n); gt=cell(1,n); dt=gt;\n for i=1:n, [gt{i},dt{i}] = evalRes(gt0{i},dt0{i},thr,mul); end; return;\nend\n\n% check inputs\nif(isempty(gt0)), gt0=zeros(0,5); end\nif(isempty(dt0)), dt0=zeros(0,5); end\nassert( size(dt0,2)==5 ); nd=size(dt0,1);\nassert( size(gt0,2)==5 ); ng=size(gt0,1);\n\n% sort dt highest score first, sort gt ignore last\n[~,ord]=sort(dt0(:,5),'descend'); dt0=dt0(ord,:);\n[~,ord]=sort(gt0(:,5),'ascend'); gt0=gt0(ord,:);\ngt=gt0; dt=dt0; dt=[dt zeros(nd,1)];\ngt(:,5)=-gt(:,5);\n% Attempt to match each (sorted) dt to each (sorted) gt\noa = compOas( dt(:,1:4), gt(:,1:4), gt(:,5)==-1 );\nfor d = 1:nd\n bstOa = thr;\n bstg = 0; \n bstm = 0; % info about best match so far\n for g = 1:ng\n % if this gt already matched, continue to next gt\n m = gt(g,5); \n if(m==1 && ~mul)\n continue; \n end\n % if dt already matched, and on ignore gt, nothing more to do\n if(bstm~=0 && m==-1)\n break; \n end\n % compute overlap area, continue to next gt unless better match made\n if(oa(d,g)samps(1)-buff/2 & spikeTimes 2\n info.minidx = idx;\n info.nlpsuccess = nlpsuccess;\n info.pobjs = pobjs;\n info.diffpobj = pobjs(1) - pobjround;\nend\n\nend\n \n ", "meta": {"author": "MIT-SPARK", "repo": "CertifiablyRobustPerception", "sha": "dd149d0c54093cfb72a8f912f4ae807635db6f3b", "save_path": "github-repos/MATLAB/MIT-SPARK-CertifiablyRobustPerception", "path": "github-repos/MATLAB/MIT-SPARK-CertifiablyRobustPerception/CertifiablyRobustPerception-dd149d0c54093cfb72a8f912f4ae807635db6f3b/AbsolutePoseEstimation/solvers/local_search_ape_v1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3935143983081619}} {"text": "function z = aatx(a,x)\n%AATX Implicitly compute A * A' * x for sptenmat.\n%\n% Z = AATX(A,X) takes a sptenmat object A and computes A * A' *\n% X. This is done without converting A to a standard MATLAB sparse\n% matrix.\n%\n% This function is likely most useful as an argument to a routine\n% such as EIGS.\n%\n% See also SPTENMAT, SPTENSOR/EIGS.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2015, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2015) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\nsubs = a.subs;\ns1 = subs(:,1);\ns2 = subs(:,2);\nm = size(a,1);\nn = size(a,2);\nvals = a.vals;\n\nv1 = x(s1);\nv1 = vals .* v1;\ny = accumarray(s2, v1, [n 1]);\n\nv2 = y(s2);\nv2 = vals .* v2;\nz = accumarray(s1, v2, [m 1]);\n\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u5206\u7c7b\u7b97\u6cd5/DEEP-TENSOR-FACTORIZATION-FOR-HYPERSPECTRAL-IMAGE-CLASSIFICATION-master/code/tensor_toolbox_2.6/@sptenmat/aatx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.3935143909420169}} {"text": "% Usage: [xopt, fmin, retcode] = nlopt_minimize_constrained\n% (algorithm, f, f_data,\n% fc, fc_data, lb, ub,\n% xinit, stop)\n%\n% Minimizes a nonlinear multivariable function f(x, f_data{:}), subject\n% to nonlinear constraints described by fc and fc_data (see below), where\n% x is a row vector, returning the optimal x found (xopt) along with\n% the minimum function value (fmin = f(xopt)) and a return code (retcode).\n% A variety of local and global optimization algorithms can be used,\n% as specified by the algorithm parameter described below. lb and ub\n% are row vectors giving the upper and lower bounds on x, xinit is\n% a row vector giving the initial guess for x, and stop is a struct\n% containing termination conditions (see below).\n%\n% This function is a front-end for the external routine\n% nlopt_minimize_constrained in the free NLopt nonlinear-optimization\n% library, which is a wrapper around a number of free/open-source\n% optimization subroutines. More details can be found on the NLopt\n% web page (ab-initio.mit.edu/nlopt) and also under\n% 'man nlopt_minimize_constrained' on Unix.\n%\n% f should be a handle (@) to a function of the form:\n%\n% [val, gradient] = f(x, ...)\n%\n% where x is a row vector, val is the function value f(x), and gradient\n% is a row vector giving the gradient of the function with respect to x.\n% The gradient is only used for gradient-based optimization algorithms;\n% some of the algorithms (below) are derivative-free and only require\n% f to return val (its value). f can take additional arguments (...)\n% which are passed via the argument f_data: f_data is a cell array\n% of the additional arguments to pass to f. (Recall that cell arrays\n% are specified by curly brackets { ... }. For example, pass f_data={}\n% for functions that require no additional arguments.)\n%\n% A few of the algorithms (below) support nonlinear constraints,\n% in particular NLOPT_LD_MMA and NLOPT_LN_COBYLA. These (if any)\n% are specified by fc and fc_data. fc is a cell array of\n% function handles, and fc_data is a cell array of cell arrays of the\n% corresponding arguments. Both must have the same length m, the\n% number of nonlinear constraints. That is, fc{i} is a handle\n% to a function of the form:\n%\n% [val, gradient] = fc(x, ...)\n%\n% (where the gradient is only used for gradient-based algorithms),\n% and the ... arguments are given by fc_data{i}{:}.\n%\n% If you have no nonlinear constraints, i.e. fc = fc_data = {}, then\n% it is equivalent to calling the the nlopt_minimize() function, \n% which omits the fc and fc_data arguments.\n%\n% stop describes the termination criteria, and is a struct with a\n% number of optional fields:\n% stop.ftol_rel = fractional tolerance on function value\n% stop.ftol_abs = absolute tolerance on function value\n% stop.xtol_rel = fractional tolerance on x\n% stop.xtol_abs = row vector of absolute tolerances on x components\n% stop.fmin_max = stop when f < fmin_max is found\n% stop.maxeval = maximum number of function evaluations\n% stop.maxtime = maximum run time in seconds\n% stop.verbose = > 0 indicates verbose output\n% Minimization stops when any one of these conditions is met; any\n% condition that is omitted from stop will be ignored. WARNING:\n% not all algorithms interpret the stopping criteria in exactly the\n% same way, and in any case ftol/xtol specify only a crude estimate\n% for the accuracy of the minimum function value/x.\n%\n% The algorithm should be one of the following constants (name and\n% interpretation are the same as for the C function). Names with\n% _G*_ are global optimization, and names with _L*_ are local\n% optimization. Names with _*N_ are derivative-free, while names\n% with _*D_ are gradient-based algorithms. Algorithms:\n%\n% NLOPT_GD_MLSL_LDS, NLOPT_GD_MLSL, NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND, \n% NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT_L, NLOPT_GN_DIRECT_L_NOSCAL, \n% NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_L_RAND_NOSCAL, NLOPT_GN_DIRECT, \n% NLOPT_GN_DIRECT_NOSCAL, NLOPT_GN_ISRES, NLOPT_GN_MLSL_LDS, NLOPT_GN_MLSL, \n% NLOPT_GN_ORIG_DIRECT_L, NLOPT_GN_ORIG_DIRECT, NLOPT_LD_AUGLAG_EQ, \n% NLOPT_LD_AUGLAG, NLOPT_LD_LBFGS, NLOPT_LD_LBFGS_NOCEDAL, NLOPT_LD_MMA, \n% NLOPT_LD_TNEWTON, NLOPT_LD_TNEWTON_PRECOND, \n% NLOPT_LD_TNEWTON_PRECOND_RESTART, NLOPT_LD_TNEWTON_RESTART, \n% NLOPT_LD_VAR1, NLOPT_LD_VAR2, NLOPT_LN_AUGLAG_EQ, NLOPT_LN_AUGLAG, \n% NLOPT_LN_BOBYQA, NLOPT_LN_COBYLA, NLOPT_LN_NELDERMEAD, \n% NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NEWUOA, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX\n%\n% For more information on individual algorithms, see their individual\n% help pages (e.g. \"help NLOPT_LN_SBPLX\").\nfunction [xopt, fmin, retcode] = nlopt_minimize_constrained(algorithm, f, f_data, fc, fc_data, lb, ub, xinit, stop)\n\nopt = stop;\nif (isfield(stop, 'minf_max'))\n opt.stopval = stop.minf_max;\nend\nopt.algorithm = algorithm;\nopt.min_objective = @(x) f(x, f_data{:});\nopt.lower_bounds = lb;\nopt.upper_bounds = ub;\n% opt.local_optimizer = alg;\n% for i = 1:length(fc)\n% opt.fc{i} = @(x) fc{i}(x, fc_data{i}{:});\n% end\nopt.fc = fc;\n[xopt, fmin, retcode] = nlopt(opt, xinit);\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/OptiToolbox/Solvers/nlopt/distribution/nlopt_minimize_constrained.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.3935143835758716}} {"text": "function r = atan(p)\n%UMINUS: this function calculates the atan of a x, y, and z values of\n% the structures that I use in the FVtool.\n%\n% SYNOPSIS:\n%\n%\n% PARAMETERS:\n%\n%\n% RETURNS:\n%\n%\n% EXAMPLE:\n%\n% SEE ALSO:\n%\n\n% Copyright (c) 2012-2016 Ali Akbar Eftekhari\n% See the license file\n\nr = p;\nr.xvalue = atan(p.xvalue);\nr.yvalue = atan(p.yvalue);\nr.zvalue = atan(p.zvalue);\n", "meta": {"author": "simulkade", "repo": "FVTool", "sha": "49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6", "save_path": "github-repos/MATLAB/simulkade-FVTool", "path": "github-repos/MATLAB/simulkade-FVTool/FVTool-49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6/Classes/@FaceVariable/atan.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702880639792, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39350546445261136}} {"text": "% 3D molecular dynamics (GPU vectorized)\n% by Brian Haidet for AlphaPhoenix\n% published 12/15/2018\n% CC non-commercial, attribution\n\n% Don't copy this straight into a homework or something rediculous - I'm\n% posting this so people can hopefully learn from it! It's not the cleanest\n% code, but I added a few more comments in the areas that need\n% explaining. and deleted all the extra bits of commented-out code that had\n% built up. Feel free to ask more questions on youtube here!\n% https://youtu.be/6DlRsPo-dxY\n\nfunction [] = plotter(iteration)\n load(['c:\\MatlabOutput\\CsClSimFrames\\data\\data' num2str(iteration,'%05d') '.mat'])\n %load(['H:\\MatlabOutput\\CsClSimFrames\\data32krun\\' num2str(iteration,'%05d') '.mat'])\n \n%PLOTTER Summary of this function goes here\n% Detailed explanation goes here\nspheresize=20;\n[X,Y,Z]=sphere(spheresize-1);\ncdb=zeros(spheresize,spheresize,3);\ncdb(:,:,3)=ones(spheresize,spheresize)+((Z-1)/2);\ncdr=zeros(spheresize,spheresize,3);\ncdr(:,:,1)=ones(spheresize,spheresize)+((Z-1)/2);\nX=.7*X;\nY=.7*Y;\nZ=.7*Z;\n \n\ngasFraction=.05;\ngasFraction2=.0025;\ncoldThreshold=.06;\nannealNum=1024; %above 2048, annealing instead of instachilling\nannealMedianSpeed=.022; %cool until this is the median speed of the simulation\nspeedLimit=.4;\n\nset(gcf,'color','w');\nsubplot(3,3,[2,3,5,6,8,9]);\nhold on;\nxlim([-1-1,l+1+1]);\nylim([-1-1,l+1+1]);\nzlim([-1-1,l+1+1]);\naxis vis3d;\naxis off;\nzoom;\nsetAxes3DPanAndZoomStyle(zoom(gcf),gca,'camera');\nview(45+iteration*.5,15);\nnumParticles=size(r,2);\n\n% ---------------------------- calculate which particles to draw -------------------\n% thresholdDist=1.25; %between 2nd and 3rd nearest neighbors\n% thresholdCount=14; %number of nearest and 2nd nearest neighbors\n% rG=gpuArray(r);\n% totForces=gpuArray(zeros(1,numParticles));\n% chunkSize=ceil(8192^2/numParticles);\n% for i=1:ceil(numParticles/chunkSize) %for each chunk\n% cInds=(i-1)*chunkSize+1 : min((i)*chunkSize,numParticles);\n% \n% numPcurr=length(cInds);\n% IP=rG(:,cInds)'*rG(:,:);\n% forces=gpuArray([]);\n% distances=(sqrt(abs(bsxfun(@plus,sum(rG(:,cInds)'.^2,2),sum(rG(:,:).^2,1))-2*IP))2\n vp = Y(t,:,c)~=0;\n Ysample = Y(t,vp,c)'==1;\n else\n vp = true(1,N);\n Ysample = Y(t,vp,c)';\n end\n if strcmp(regtype,'L1')\n [betas(:,c),fitInfo] = lassoglm(squeeze(X(t,vp,:)),Ysample, ...\n 'binomial','Alpha', 1, 'Lambda', lambda(ilambda),'Standardize', false);\n intercepts(c) = fitInfo.Intercept;\n elseif strcmp(regtype,'L2')\n if p>1\n [betas(:,c),fitInfo] = lassoglm(squeeze(X(t,vp,:)),Ysample, ...\n 'binomial','Alpha', 0.00001, 'Lambda', lambda(ilambda),'Standardize', false);\n else\n [betas(:,c),fitInfo] = lassoglm(squeeze(X(t,vp,:))',Ysample, ...\n 'binomial','Alpha', 0.00001, 'Lambda', lambda(ilambda),'Standardize', false);\n end\n intercepts(c) = fitInfo.Intercept;\n end\n end\n model.betas(t,:,:,ilambda) = betas;\n model.intercepts(t,:,ilambda) = intercepts;\n end\n model.lambda = lambda; \n end\nelseif strcmp(classifier,'SVM')\n model.SVM=cell(ttrial,Q_star);\n for t=1:ttrial\n if options.verbose;\n fprintf(['Inferring SVM (linear) classifiers for t = ',int2str(t),'th sample\\n']);\n end\n for iStim=1:Q_star\n model.SVM{t,iStim} = fitclinear(squeeze(X(t,:,:)),squeeze(Y(t,:,iStim)));%,ones(sum(tselect(:,t))));\n end\n end\nelseif strcmp(classifier,'SVM_rbf')\n model.SVM=cell(ttrial,Q_star);\n for t=1:ttrial\n if options.verbose;\n fprintf(['Inferring SVM (w radial basis function) classifiers for t = ',int2str(t),'th sample\\n']);\n end\n for iStim=1:Q_star\n model.SVM{t,iStim} = fitcsvm(squeeze(X(t,:,:)),squeeze(Y(t,:,iStim)));%,ones(sum(tselect(:,t))));\n end\n end\nelseif strcmp(classifier,'LDA')\n if isfield(options,'CVmethod')\n options_LDA = rmfield(options,'CVmethod');\n elseif isfield(options,'accuracyType')\n options_LDA = rmfield(options,'accuracyType');\n end\n options_LDA.useUnsupervisedGamma = 1; %this ensures gamma is fixed for standard decoding\n options_LDA.verbose = 1;\n options_LDA.useParallel = 0;\n options_LDA.standardise = 0;\n options_LDA.K = ttrial;\n options_LDA.Gamma = repmat(eye(ttrial),length(T),1);\n if isfield(options,'covtype');\n options_LDA.covtype = options.covtype;\n else\n options_LDA.covtype = 'full';\n end\n X_LDA = reshape(X,[ttrial*N p]);\n Y_LDA = reshape(Y,[ttrial*N Q_star]);\n if options.verbose\n fprintf(['Inferring LDA classifiers for all timepoints \\n']);\n end\n [model,Gamma] = encodertrain(X_LDA,Y_LDA,T,options_LDA);\n model.Gamma = Gamma(1:ttrial,:);\n %model=rmfield(model,{'prior','Dir_alpha','Dir2d_alpha','P','Pi','features','K'});\n model.classifier='LDA';\nelseif strcmp(classifier,'KNN')\n model.X_train = X;\n model.Y_train = Y;\nelseif strcmp(classifier,'decisiontree')\n for t=1:ttrial\n Y_temp=zeros(N,1);\n for n=1:N;Y_temp(n) = find(squeeze(Y(t,n,:)));end\n model.decisiontree{t} = fitctree(squeeze(X(t,:,:)),Y_temp);\n end\nend\n\n\nend", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/task/standard_classifier_train.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3935054579995117}} {"text": " function xs = tpl_inc(x, Gb, yi, bi, ri, R, niter, pixmax, curv, ...\n\t\tsubout, enhance, gi, denom, relax0, chat)\n%function xs = tpl_inc(x, Gb, yi, bi, ri, R, niter, pixmax, curv, ...\n%\t\tsubout, enhance, gi, denom, relax0, chat)\n%\n% TRIOT: incremental SPS algorithm for transmission Poisson problem\n% (ordered subsets separable paraboloidal surrogates)\n% in\n%\tx\t[np,1]\t\tinitial estimate\n%\tGb\t\t\tGblock object (see tpl_os_sps_test.m)\n%\tyi,bi,ri [nb,na]\tsee tr_fbp.m (for model too)\n%\tR\t\tpenalty structure (see Robject.m)\n%\t\t\t\t(or empty for ML case)\n%\tniter\t\t# iterations\n%\tpixmax\t\tupper constraint for pixel values or [lower, upper]\n%\t\t\tcan be scalar (e.g. 'inf') or an array the size of x\n%\tcurv\t\t'oc' for erdogan's optimal curvatures\n%\t\t\t'mc' for maximum curvature\n%\t\t\t'pc' for erdogan's fast precomputed curvatures,\n%\t\t\t\twhich usually provides faster convergence,\n%\t\t\t\tbut can be nonmonotone.\n%\tsubout\t[1]\tnonzero value: return all subiterates\n%\t\t\totherwise, return only iterates\n%\tenhance [1]\tnonzero value: Hsiao's enhancement\n%\t\t\totherwise, no enhancement\n%\tgi\t[nd,1]\tsum(G')'\n%\tdenom\t[np,1]\t\t(if precomputed denominator)\n%\trelax0\t[1] or [2]\trelax0 or (relax0, relax_rate)\n% out\n%\txs [np,niter]\tupdated image vectors each iteration\n%\n% Copyright Mar 2000, Jeff Fessler, The University of Michigan\n% 2002-2-20 update for Gblock object\n% Modified for incremental version by Sangtae Ahn, from ~sangtaea/trans.\n\nepsilon = 1e-10;\n\nif nargin < 3, ir_usage, end\n\nGb = block_ob(Gb, 'ensure'); % make it a block object (if not already)\nnblock = block_ob(Gb, 'n');\nstarts = subset_start(nblock);\n\nif ~isvar('bi') || isempty(bi)\n\tbi = ones(size(yi));\nend\nif ~isvar('ri') || isempty(ri)\n\tri = zeros(size(yi));\nend\n\nif ~isvar('R'), R = []; end\nif ~isvar('niter')\t|| isempty(niter),\tniter = 2;\tend\nif ~isvar('pixmax')\t|| isempty(pixmax),\tpixmax = inf;\tend\nif length(pixmax) == 2\n\tpixmin = pixmax(1);\n\tpixmax = pixmax(2);\nelse\n\tpixmin = 0;\nend\nif ~isvar('curv')\t|| isempty(curv),\tcurv = 'oc';\tend\nif ~isvar('subout')\t|| isempty(subout),\tsubout = 0;\tend\nif ~isvar('enhance')\t|| isempty(enhance),\tenhance = 0;\tend\nif ~isvar('chat')\t|| isempty(chat),\tchat = false;\tend\nif ~isvar('relax0')\t|| isempty(relax0),\trelax0 = 1;\tend\n\nif streq(curv, 'mc')\n\tsubscale = @(iset) iset;\nelse\n\tsubscale = @(iset) 1;\nend\n\nif length(relax0) == 1\n\trelax_rate = 0;\nelseif length(relax0) == 2\n\trelax_rate = relax0(2);\n\trelax0 = relax0(1);\nelse\n\terror relax\nend\n\nif length(niter) == 2\n\tosspsiter = niter(1);\n\tniter = niter(2);\nelse\n\tosspsiter = 1;\nend\n\ntrl_check(yi, bi, ri);\n\nif ~isvar('gi') || isempty(gi)\n\tgi = reshape(sum(Gb'), size(yi));\t% g_i = sum_j g_ij\nend\n\nstarts = subset_start(nblock);\n[nb na] = size(yi);\n\n% precompute denominator if needed\nif (~isvar('denom') || isempty(denom)) && (streq(curv, 'pc') || streq(curv, 'mc'))\n\tni = my_trl_curvature(yi, bi, ri, [], curv); % precomputed curvatures\n\t%\n\t% separate denominators for each subset\n\t%\n\tif streq(curv, 'mc')\n\t\tdenom = zeros(numel(x), nblock);\n\t\tfor iset=1:nblock\n\t\t\tiblock = starts(iset);\n\t\t\tia = iblock:nblock:na;\n\t\t\tdenom(:,iset) = Gb{iblock}' * col(gi(:,ia) .* ni(:,ia));\n\t\tend\n\telse\n\t%\n\t% one denominator shared by all subsets\n\t%\n\t\tdenom = Gb' * col(gi .* ni) / nblock;\n\tend\nend\n\n% \"precomputed curvature\"\nif ~streq(curv, 'pc')\n\tni = my_trl_curvature(yi, bi, ri, [], 'pc');\n\tdenom_pc = Gb' * col(gi .* ni) / nblock;\nelse\n\tdenom_pc = denom;\nend\n\n\nif subout\n\txs = zeros(length(x), (niter-1)*nblock+1);\nelse\n\txs = zeros(length(x), niter);\nend\n\nx = max(x,pixmin);\nx = min(x,pixmax);\nxs(:,1) = x;\nif subout, idx = 2; end\nnum_store = zeros(length(x), nblock);\nden_store = zeros(length(x), nblock);\n\n%\n% initialization by os-sps-pc\n%\nfor iter = 1:osspsiter\n\tfor iset=1:nblock\n\t\tiblock = starts(iset);\n\t\tia = iblock:nblock:na;\n\n\t\tli = Gb{iblock} * x;\t% l=G*x \"line integrals\"\n\t\tli = reshape(li, nb, length(ia));\n\t\tbel = bi(:,ia) .* exp(-li);\n\t\tyb = bel + ri(:,ia);\t% predicted meas. means\n\t\tdothi = (1 - yi(:,ia) ./ yb) .* bel;\n\n\t\tif streq(curv, 'oc')\n\t\t\tni = my_trl_curvature(yi(:,ia), bi(:,ia), ri(:,ia), ...\n\t\t\t\tli, 'oc');\n\t\t\tdenom = Gb{iblock}' * col(gi(:,ia) .* ni);\n\t\tend\n\n\t\tif isempty(R)\n\t\t\tgrad = Gb{iblock}' * dothi(:);\n\t\t\tden_osps = max(denom_pc, epsilon);\n\t\t\tden_store(:, iset) = max(denom(:,subscale(iset)), ...\n\t\t\t\t\t\tepsilon);\n\t\telse\n\t\t\tgrad = Gb{iblock}' * dothi(:) - R.cgrad(R, x)/nblock;\n\t\t\tden_osps = max(denom_pc + R.denom(R, x)/nblock, ...\n\t\t\t\t\tepsilon);\n\t\t\tden_store(:, iset) = max(denom(:,subscale(iset)) + ...\n\t\t\t\t\tR.denom(R, x)/nblock, epsilon);\n\t\tend\n\n\t\tif iter == osspsiter\n\t\t\tnum_store(:, iset) = x.*den_store(:, iset) + grad;\n\t\tend\n\t\tx = x + grad ./ den_osps;\n\t\tx = max(x,pixmin);\n\t\tx = min(x,pixmax);\n\t\tif subout\n\t\t\txs(:,idx) = x;\n\t\t\tidx = idx + 1;\n\t\tend\n\tend\n\tif ~subout, xs(:,iter+1) = x;\tend\nend\nnum = sum(num_store, 2);\nden = sum(den_store, 2);\n\nif 1,\t\t% optional\n\tx = num ./ den;\n\tx = max(x,pixmin); x = min(x,pixmax);\n\tif subout\n\t\txs(:,idx-1) = x;\n\telse\n\t\txs(:,iter+1) = x;\n\tend\nend\n\n\nalphidx = 1;\nfor iter = (osspsiter+2):niter\n\tticker(mfilename, iter, niter)\n\n\trelax = relax0 / (1 + relax_rate * (iter-2));\n\n\t%\n\t% loop over subsets\n\t%\n\tfor iset=1:nblock\n\t\tiblock = starts(iset);\n\t\tia = iblock:nblock:na;\n\n\t\tli = Gb{iblock} * x;\t% l=G*x \"line integrals\"\n\t\tli = reshape(li, nb, length(ia));\n\t\tbel = bi(:,ia) .* exp(-li);\n\t\tyb = bel + ri(:,ia);\t% predicted meas. means\n\t\tdothi = (1 - yi(:,ia) ./ yb) .* bel;\n\n\t\t% optimal curvatures (for ensured monotone increase)\n\t\tif streq(curv, 'oc')\n\t\t\tni = my_trl_curvature(yi(:,ia), bi(:,ia), ri(:,ia), ...\n\t\t\t\tli, 'oc');\n\t\t\tdenom = Gb{iblock}' * col(gi(:,ia) .* ni);\n\t\tend\n\n\t\tnum = num - num_store(:, iset);\n\t\tden = den - den_store(:, iset);\n\n\t\tif isempty(R)\n\t\t\tgrad = Gb{iblock}' * dothi(:);\n\t\t\tden_store(:, iset) = max(denom(:,subscale(iset)), ...\n\t\t\t\t\t\tepsilon);\n\t\telse\n\t\t\tgrad = Gb{iblock}' * dothi(:) - R.cgrad(R, x)/nblock;\n\t\t\tden_store(:, iset) = max(denom(:,subscale(iset)) + ...\n\t\t\t\t\t\tR.denom(R, x)/nblock, epsilon);\n\t\tend\n\n\t\tnum_store(:, iset) = x.*den_store(:, iset) + grad;\n\n\t\tnum = num + num_store(:, iset);\n\t\tden = den + den_store(:, iset);\n\n\t\txold = x;\n\n\t\tx = num ./ den;\n\t\tx = max(x,pixmin); x = min(x,pixmax);\n\n\t\tif enhance\n\t\t\txos = xold + grad ./ (den_store(:,iset) - ...\n\t\t\t\tdenom(:,subscale(iset)) + denom_pc);\n\t\t\txos = max(xos,pixmin);\n\t\t\txos = min(xos,pixmax);\n\n\t\t\tc2 = - sum((xos - x).^2 .* den) / 2;\n\t\t\tc1 = num'*(xos - x) - sum(x.*(xos-x).*den);\n\t\t\tc0 = num'*(x - xold) - sum(x.^2.*den - xold.^2.*den)/2;\n\n\t\t\tif 1\n\t\t\t\tif c0+c1+c2 > 0\n\t\t\t\t\talpha = 1;\n\t\t\t\telse\n\t\t\t\t\talpha = eql_root(-c2, -c1/2, 0.95*c0);\n\t\t\t\t\talpha = min(1, alpha);\n\t\t\t\t\talpha = max(0, alpha);\n\t\t\t\tend\n\t\t\telse\n\t\t\t\talpha = 1/0.9;\n\t\t\t\tdel_obj = -999;\n\t\t\t\twhile (del_obj <=0) & (alpha > 0.0096)\n\t\t\t\t\talpha = alpha * 0.9;\n\t\t\t\t\tdel_obj = c2*alpha^2 + c1*alpha + c0;\n\t\t\t\tend\n\n\t\t\t\tif alpha <= 0.0096, alpha = 0; end\n\t\t\tend\n\n\t\t\tx = (1-alpha)*x + alpha*xos;\n\t\t\talph(alphidx) = alpha;\n\t\t\talphidx = alphidx + 1;\n\n\t\tend\n\n\t\tif subout\n\t\t\txs(:,idx) = x;\n\t\t\tidx = idx + 1;\n\t\tend\n\tend\n\n\tif chat, printf('Range %g %g', min(x), max(x)), end\n\tif ~subout, xs(:,iter) = x; end\nend\n\n%figure, plot(alph, 'o-')\n\nfunction obj = trl_obj(alpha, xinc, xos, linc, los, yi, bi, ri, R)\n\nx = alpha*xos + (1 - alpha)*xinc;\nli = alpha*los + (1 - alpha)*linc;\nyp = bi .* exp(-li) + ri;\nlike = sum(yi .* log(yp) - yp);\npenal = sum(R.penal(R, x));\nobj = like - penal;\nobj = -obj;\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/transmission/tpl_inc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3935054579995117}} {"text": "function [OptExchRxns] = findOptExchRxns(model,Ex_Rxns,parFVA)\n% USAGE:\n%\n% [OptExchRxns] = findOptExchRxns(model, Ex_Rxns, parFVA)\n%\n% INPUTS:\n% model: Metabolic model\n% Ex_Rxns: Vector of exchange reactions for FVA\n% fastFVA: use FastFVA (default=0)\n%\n% OUTPUTS:\n% OptExchRxns:\n%\n% .. Authors:\n% - Ines Thiele 2014\n% - Maike K. Aurich 27/05/15, remove hidden values \n\ntol = -1e-6; % Default tolerance\n\nif ~exist('parFVA','var') || parFVA == 0\n \n matlabpool = 0;\n parFVA = 0; % default no parallelization of FVA\nend\n \n\n[a1(:,1),a1(:,2)]=fluxVariability(model,1,[],Ex_Rxns);\n% find all uptakes that have ub=0;\nif size(a1,1)==length(Ex_Rxns)\n OptSecr = Ex_Rxns;\n R = OptSecr(find(a1(:,2)abs(tol)))];\n OptSecr(ismember(OptSecr, R))=[];% remove obligate uptake\n clear R\n OptUptake = Ex_Rxns;\n R = OptUptake(find(a1(:,2)<(tol)));\n R = [R; OptUptake(find(a1(:,1)>(tol)))];\n OptUptake(ismember(OptUptake, R))=[];% remove obligate uptake\n OptExchRxns = [OptUptake;OptSecr];\nelse\n OptExchRxns=[];\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/dataIntegration/metabotools/findOptExchRxns.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702642896702, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3935054515464119}} {"text": "% [template t2 valid] = PPG_SQI(wave,anntime,annot,template_ahead,windowlen,Fs)\n% \n% PPG_SQI.m - PPG SQI based on beat template correlation.\n% (as an advice, the algorithm get 30 beats at each call and run in loop)\n% by Qiao Li 30 Mar 2011\n% \n% PPG sampling frequency is Fs\n%\n% input: \n% wave: PPG data; \n% anntime: PPG annotation time (samples), read from ple annot file,\n% But the ann-time is the OFFSET based on wave(1)\n% annot: Annotation of beats, read from from ple annot file\n% directly\n% template: Last PPG beat template \n% windowlen: length of window to calculate template(default: 30s)\n% Fs : sampling frequency (defatult: 125 to work with pervious code)\n% output:\n% annot: ppg sqi annotation\n% annot.typeMnemonic: E - excellent beat; \n% A - acceptable beat; \n% Q - unacceptable beat\n% annot.subtype: SQI based on Direct compare\n% annot.chan: SQI based on Linear resampling\n% annot.num: SQI based on Dynamic time warping\n% annot.auxInfo: SQI based on Clipping detection\n% template: Current PPG beat template\n% valid: 1 or greater for valid template, \n% 0 for invalid template\n%\t\n% LICENSE: \n% This software is offered freely and without warranty under \n% the GNU (v3 or later) public license. See license file for\n% more information\n%\n% 12-01-2107 Modified by Giulia Da Poian: replace fixed samplig frequency\n% (125) with a variable Fs\n\nfunction [annot template valid] = PPG_SQI(wave,anntime,annot,template,windowlen,Fs)\n\n if nargin < 6\n Fs =125;\n end\n if nargin < 5\n windowlen=30*Fs;\n end\n if nargin < 4\n template=[];\n end\n if nargin < 3\n sprintf('Error: must provide wave, anntime and annot');\n annot=[];\n template=[];\n valid=0;\n return;\n end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% 19/09/2011 ADD baseline wander filter\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n wave = PPGmedianfilter(wave, Fs,Fs);\n % get PPG template\n [t t2 v]=template_pleth(wave(1:min(windowlen,length(wave))), anntime(find(anntime1\n t=t2;\n end\n \n \n \n % Calculate the PLA of template for dynamic time warping\n d1=t;\n d1=(d1-min(d1))/(max(d1)-min(d1)).*100;\n [y1 pla1]=PLA(d1,1,1);\n\n% Main Loop\n for j=1:length(annot)-1\n\n% SQI1: Direct compare\n\n% Calculate correlation coefficients based on the template\n% length\n beatbegin=anntime(j);\n beatend=anntime(j+1);\n% 07/11/2011 ADD max beat length <= 3s detection \n\t\tif beatend-beatbegin>3*Fs\n\t\t\tbeatend=beatbegin+3*Fs;\n\t\tend\n\t\ttemplatelength=length(t);\n\t\tcomplength=min(templatelength,beatend-beatbegin-1);\n if beatbegin+complength-1 > length(wave) || beatend > length(wave) || beatbegin < 1\n continue;\n end\n currentb=j;\n cc=corrcoef(t(1:complength),wave(beatbegin:beatbegin+complength-1));\n c1(j)=cc(1,2);\n if (c1(j)<0)\n c1(j)=0;\n end\n annot(currentb).subtype=int8(c1(j)*100);\n\n\n% SQI2: Linear resampling\n\n% Calculate correlation coefficients based on the linear\n% resampling (interp1)\n \n y=interp1(1:beatend-beatbegin, wave(beatbegin:beatend-1),1:(beatend-beatbegin-1)/(templatelength-1):(beatend-beatbegin),'spline');\n y(isnan(y))=0;\n cc=corrcoef(t,y);\n c2(j)=cc(1,2);\n if (c2(j)<0)\n c2(j)=0;\n end\n annot(currentb).chan=int8(c2(j)*100);\n\n% SQI3: Dynamic Time Warping \n \n% Calculate correlation coefficients based on the dynamic time\n% warping\n \n d2=wave(beatbegin:beatend-1);\n \n % if beat too long, set SQI=0;\n if (length(d2)>length(d1)*10)\n c3(j)=0;\n else\n d2=(d2-min(d2))/(max(d2)-min(d2)).*100;\n [y2 pla2]=PLA(d2,1,1);\n \n [w ta tb] = simmx_dtw(y1,pla1,y2,pla2);\n [p,q,Dm] = dp_dwt2(w,ta,tb);\n [ym1 ym2 yout1]=draw_dtw(y1,pla1,p,y2,pla2,q);\n cc=corrcoef(y1,ym2);\n c3(j)=cc(1,2);\n if (c3(j)<0)\n c3(j)=0;\n end\n end\n annot(currentb).num=int8(c3(j)*100);\n \n% SQI4: Clipping detection \n\n d2=wave(beatbegin:beatend-1);\n y=diff(d2);\n clipthreshold=0.5;\n c4(j)=int8(length(find(abs(y)>clipthreshold))/length(y)*100);\n \n% SQI: Combined\n\n sqibuf=[annot(currentb).subtype annot(currentb).chan annot(currentb).num c4(j)];\n if min(sqibuf)>=90\n annot(currentb).typeMnemonic='E'; % Excellent\n else\n if length(find(sqibuf>=90))>=3 || (median(sqibuf(1:3))>=80 && sqibuf(1)>=50 && sqibuf(4)>=70) || min(sqibuf)>=70\n annot(currentb).typeMnemonic='A'; % Acceptable\n else\n annot(currentb).typeMnemonic='Q'; % Unacceptable\n end\n end\n annot(currentb).auxInfo=num2str(int8(c4(j)));\n \n end\n\n end\n template=t;\n valid=v;\n", "meta": {"author": "cliffordlab", "repo": "PhysioNet-Cardiovascular-Signal-Toolbox", "sha": "eec46e75e0b95c379ecb68cb0ebee0c4c9f54605", "save_path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox", "path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox/PhysioNet-Cardiovascular-Signal-Toolbox-eec46e75e0b95c379ecb68cb0ebee0c4c9f54605/Tools/PPG_Tools/PPG_SQI.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702642896702, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3935054515464119}} {"text": "function [gx,dgdx,dgdp] = g_HRF3(Xt,P,ut,in)\n% T2* contrast observation function for HRF Balloon model (log space)\n% function [gx,dgdx,dgdp] = g_HRF3(Xt,P,ut,in)\n% This function evaluates the hemodynamic static observation equation\n% function. HEMODYNAMIC STATES ARE IN LOG SPACE.\n\nn = size(Xt,1);\n\n% Get parameters and states indices\n\ntry; TE = in.TE; catch, TE = 0.04; end\n\nif isfield(in,'fullDCM') && in.fullDCM\n % estimated region-specific resting oxygen extraction fractions\n % NB: if P(in.ind1) = 0, E0 = 0.34.\n% [E0,dsdp] = sigm(P(in.ind1)-0.6633,struct('beta',1,'G0',1,'INV',0));\n% E0 = E0(:);\n E0 = 1./(1+exp(-(P(in.ind1)-0.6633)));\n dsdp = E0.*(1-E0);\n % estimated region-specific ratios of intra- to extravascular\n % components of the gradient echo signal (prior mean = 1, log-normally\n % distributed scaling factor)\n epsilon = exp(P(in.ind2));\n % hemodynamic states indices:\n n1 = in.n1;\n n2 = in.n2;\n n3 = in.n3;\n n4 = in.n4;\n try\n n5 = in.n5;\n nreg = n./5;\n catch\n n5 = [];\n nreg = n./4;\n end\n if isfield(in,'homogeneous') && in.homogeneous\n E0 = E0.*ones(nreg,1);\n dsdp = dsdp.*ones(nreg,1);\n epsilon = epsilon.*ones(nreg,1);\n in.ind1 = [in.ind1:2:2*nreg];\n in.ind2 = [in.ind2:2:2*nreg];\n end\nelse\n [E0,dsdp] = VBA_sigmoid(P(1)-0.6633);\n E0 = E0(:);\n try\n epsilon = exp(P(2));\n p2 = 1;\n catch\n epsilon = 1;\n p2 = 0;\n end\n % hemodynamic states indices:\n n1 = 1;\n n2 = 2;\n n3 = 3;\n n4 = 4;\n nreg = n./4;\nend\n\n%--------------------------------------------------------------------------\n% coefficients in BOLD signal model,...\nV0 = 4; % resting venous volume\nr0 = 25; % intravascular relaxation rate\nnu0 = 40.3; % frequency offset\nk1 = 4.3.*nu0.*E0.*TE;\nk2 = epsilon.*r0.*E0.*TE;\nk3 = 1 - epsilon;\n\n% states ...\nx3 = exp(Xt(n3,:)); % blood volume v(t)\nx4 = exp(Xt(n4,:)); % dHb content q(t)\n\n% ... and derivatives\ndgdx = zeros(n,nreg);\ndgdp = zeros(size(P,1),nreg);\n\n% Evaluate observation function\nx4x3 = exp(log(x4)-log(x3));\ngx = V0.*(k1.*(1-x4) + k2.*(1-x4x3) + k3.*(1-x3));\n\n% Evaluate gradient wrt states and parameters\nfor i=1:nreg\n if isfield(in,'fullDCM') && in.fullDCM\n if isempty(n5)\n dgdx(n1(i):n4(i),i) = [...\n 0; ...\n 0; ...\n -k3(i).*x3(i)+k2(i).*x4x3(i); ...\n -k1(i).*x4(i)-k2(i).*x4x3(i)].*V0;\n else\n dgdx(n1(i):n5(i),i) = [...\n 0; ...\n 0; ...\n -k3(i).*x3(i)+k2(i).*x4x3(i); ...\n -k1(i).*x4(i)-k2(i).*x4x3(i); 0].*V0;\n end\n dgdp(in.ind1(i),i) = V0.*4.3.*nu0.*TE.*(1-x4(i)).*dsdp(i) + ...\n V0.*epsilon(i).*r0.*TE.*(1-x4x3(i)).*dsdp(i);\n dgdp(in.ind2(i),i) = V0.*k2(i).*(1-x4x3(i)) - ...\n V0.*epsilon(i).*(1-x3(i));\n else\n dgdx(n1(i):n4(i),i) = [0; 0; ...\n -k3(i).*x3(i)+k2(i).*x4x3(i); ...\n -k1(i).*x4(i)-k2(i).*x4x3(i)].*V0;\n dgdp = V0.*4.3.*nu0.*TE.*(1-x4(i)).*dsdp(i) + ...\n V0.*epsilon(i).*r0.*TE.*(1-x4x3(i)).*dsdp(i);\n if p2\n dgdp(2) = V0.*k2(i).*(1-x4x3(i)) - ...\n V0.*epsilon(i).*(1-x3(i));\n dgdp = dgdp(:);\n end\n end\nend\n\nif isfield(in,'homogeneous') && in.homogeneous\n dgdp0 = dgdp;\n dgdp = zeros(2,nreg);\n dgdp(1,:) = sum(dgdp0(in.ind1,:),1);\n dgdp(2,:) = sum(dgdp0(in.ind2,:),1);\nend\n\nif isfield(in,'confounds') && ~isempty(in.confounds.X0)\n tsample = ut(in.confounds.indt);\n X0 = kron(eye(nreg),in.confounds.X0(tsample,:));\n gx = gx + X0*P(in.confounds.indp);\n dgdp(in.confounds.indp,:) = X0';\nend\n\n\n", "meta": {"author": "MBB-team", "repo": "VBA-toolbox", "sha": "01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414", "save_path": "github-repos/MATLAB/MBB-team-VBA-toolbox", "path": "github-repos/MATLAB/MBB-team-VBA-toolbox/VBA-toolbox-01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414/demos/_models/g_HRF3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.793105951184112, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.3934549684991022}} {"text": "% UNDER CONSTRUCTION...\n%\n%\n% Author: Javier Lopez-Calderon\n\nfunction d = emg2pulse(ch1, fs)\n\nd=[];\n\nif nargin<1\n help emg2pulse\n return\nend\nif nargin>3\n error('ERPLAB says: emg2pulse() works until 3 inputs')\nend\nif size(ch1,1)>1 && size(ch1,2)>1\n error('ERPLAB says: emg2pulse() works with vector inputs')\nend\n\nd = abs(ch1);\n[b,a] = butter(2,30/fs);\n\nfor t=1:size(d,3)\n d(d(1,:,t)<6) = 0;\n d(1,:,t) = filtfilt(b,a, d(1,:,t));\n d(1,:,t) = 100*d(1,:,t);\n m = mean(d(1,:,t));\n sdd = std(d(1,:,t));\n th = m+2*sdd;\n d(d(1,:,t)=th) = 100;\nend", "meta": {"author": "ucdavis", "repo": "erplab", "sha": "e4f66f7a512c4dee2f7596982318e44bb1b72644", "save_path": "github-repos/MATLAB/ucdavis-erplab", "path": "github-repos/MATLAB/ucdavis-erplab/erplab-dd2f60aa41b01c866fcec342efafc48323523cc2/functions/emg2pulse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7461390043208003, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39345142571633623}} {"text": "% run this script AFTER using talairach space utility (tsu.m) to get clusters\n% this copies the orignial tsu stuff in ihb_TalSpaceView3D.m, but in the workspace\n\n%------------------------------------------------------------------------------\n% Get cluster information\n%------------------------------------------------------------------------------\nclusters = getappdata(hFigMain, 'clusters');\nindClusterToView = getappdata(hFigMain, 'indClusterToView');\ncl = clusters(indClusterToView);\niv = cl.hThreshold;\n\n\n%------------------------------------------------------------------------------\n% Figure does not exist - create new one\n%------------------------------------------------------------------------------\n\thFig3D = figure(...\n\t\t'Visible', 'off',...\n\t\t'NumberTitle', 'off',...\n\t\t'MenuBar', 'none',...\n\t\t'Name', '3D view of cluster',...\n 'Renderer', ihbdfl_renderer,...\n\t\t'Tag', 'ihb_TalSpace3D_fig'...\n\t\t);\n\n\t%------------------------------------------------------------------------------\n % Create and/or adjust light position\n\t%------------------------------------------------------------------------------\n hLight = findobj('Type', 'light', 'Tag', 'ihb_lightTalSpace3D');\n cameraPos = get(hAxis3D, 'CameraPosition');\n if isempty(hLight)\n\t hLight = light('Tag', 'ihb_lightTalSpace3D', 'Position', cameraPos);\n else\n set(hLight, 'Position', cameraPos); \n end\n\t%------------------------------------------------------------------------------\n % set callback to light follow the camera\n\t%------------------------------------------------------------------------------\n\tset(hFig3D, 'WindowButtonUpFcn', 'ihb_View3DButtonUpFcn');\n\tview([-150,32]); % set initial camera position\n\tlighting phong; % set lighting algorithm\n\trotate3d on; % enable 3D rotation\n\n %------------------------------------------------------------------------------\n % Smooth volume data\n\t%------------------------------------------------------------------------------\n if ihbdfl_bApplySmoothing == 1\n switch ihbdfl_smooth_filter\n case 'box'\n V = smooth3(cl.vTal, 'box', ihbdfl_smooth_size);\n case 'gaussian'\n V = smooth3(cl.vTal, 'gaussian', ihbdfl_smooth_size, ihbdfl_smooth_sd');\n end\n else\n\t V = cl.vTal;\n end\n \n %------------------------------------------------------------------------------\n % Prepare volume data and create isosurface patch object\n\t%------------------------------------------------------------------------------\n % V is the volume of the cluster.\n \n FV = isosurface(cl.xTal, cl.yTal, cl.zTal, V, cl.hThreshold);\n\thPatch = patch(FV);\n\tisonormals(cl.xTal, cl.yTal, cl.zTal, cl.vTal, hPatch);\n\tset(hPatch, 'Tag', 'ihb_surfaceCluster', 'FaceColor', ihbdfl_color_surface, 'EdgeColor', 'none', 'FaceAlpha', ihbdfl_transparency);\n set(hFig3D, 'Visible', 'on');\n ", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Visualization_functions/tor_3d_head.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39345141976290676}} {"text": "function [fit, pairs] = calcGBFit(job,varargin)\n% fit between child to child misorientations and job.p2c\n%\n% Syntax\n%\n% [fit, pairs] = job.calcGBFit\n%\n% % visualize the result\n% [gB, pairId] = job.grains.boundary.selectByGrainId(pairs);\n% plot(gB, fit(pairId) ./ degree, 'linewidth',2);\n% setColorRange([2,8])\n% mtexColorMap white2black\n%\n% % consider only P2C neighbors\n% [fit, p2cPairs] = job.calcGBFit('p2c')\n%\n% % consider only C2C neighbors\n% [fit, c2cPairs] = job.calcGBFit('c2c')\n%s\n% Input\n% job - @parentGrainReconstructor\n%\n% Output\n% fit - fit between the grain boundary misorientations and job.p2c\n% pairs - list of grainId of the neighboring grains\n%\n\nnoOpt = ~check_option(varargin,{'p2c','c2c'});\n\n% parent to child neighbors\nif noOpt || check_option(varargin,'p2c')\n \n % extract all parent to child neighbors\n [pairs, oriParent, oriChild] = getP2CPairs(job, varargin{:});\n \n % compute the misorientation\n mori = inv(oriChild).*oriParent;\n \n % compute the fit\n fit = angle(mori, job.p2c);\n \nelse\n \n fit = []; \n pairs = [];\n \nend\n \nif noOpt || check_option(varargin,'c2c')\n\n % extract all child to child neighbors\n [c2cPairs, oriChild] = getC2CPairs(job, varargin{:});\n pairs = [pairs;c2cPairs];\n \n % compute the corresponding misorientations\n mori = inv(oriChild(:,1)).*oriChild(:,2);\n \n % misorientation to c2c variants\n fit = [fit;min(angle_outer(mori, job.c2c),[],2)];\n \nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@parentGrainReconstructor/calcGBFit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.746138993030751, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3934514197629067}} {"text": "filename='Gripping_quad_fine';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'nonadjoint_compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\nconstraint_case = 'INEQUALITY';\noptimizer = 'MMA'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.5;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Gripping/GrippingQuadFine_Case_3_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389817407017, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3934514138094771}} {"text": "function [A, b, Aeq, beq, lb, ub] = snd_l_constraints(k, net_load_data, varargin)\n\n u0_ref = cell2mat(varargin(2));\n f = 1.2;\n g = 0.8;\n p = 1.4;\n A = []; %A*u<=b\n b = [];\n Aeq = [1 1 1]; %A*u = b\n beq = net_load_data(k);\n \n if k ~= 12\n if u0_ref(1,k) * u0_ref(1,k+1) <= 0\n if u0_ref(1,k)>0\n ub = [u0_ref(1,k)*f];\n lb = [u0_ref(1,k+1)*f];\n else\n ub = [u0_ref(1,k+1)*f];\n lb = [u0_ref(1,k)*f];\n end\n elseif u0_ref(1,k)>0 && u0_ref(1,k+1)>0\n if u0_ref(1,k)>u0_ref(1,k+1)\n ub = [u0_ref(1,k)*f];\n lb = [u0_ref(1,k+1)*g];\n else\n ub = [u0_ref(1,k+1)*f];\n lb = [u0_ref(1,k)*g];\n end\n elseif u0_ref(1,k)<0 && u0_ref(1,k+1)<0\n if u0_ref(1,k)>u0_ref(1,k+1)\n ub = [u0_ref(1,k)*g];\n lb = [u0_ref(1,k+1)*f];\n else\n ub = [u0_ref(1,k+1)*g];\n lb = [u0_ref(1,k)*f];\n end\n end\n else\n if u0_ref(1,k) >=0\n ub = [u0_ref(1,k)*f];\n lb = [u0_ref(1,k)*g];\n else\n ub = [u0_ref(1,k)*g];\n lb = [u0_ref(1,k)*f];\n end\n \n end\n\n if u0_ref(2,k)>0 %\n ub = [ub, u0_ref(2,k)*p, 10]; \n lb = [lb, 0, -10]; \n else\n ub = [ub, 0, 10]; \n lb = [lb, u0_ref(2,k)*p, -10];\n end\n\n\nend", "meta": {"author": "juchengquan", "repo": "Two_Layer_EMS", "sha": "48864a80e10fe32e566181ebd5e2394ab2c6e1a7", "save_path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS", "path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS/Two_Layer_EMS-48864a80e10fe32e566181ebd5e2394ab2c6e1a7/constraints/snd_l_constraints.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389817407017, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3934514138094771}} {"text": "function test_bug1443\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_rejectcomponent ft_componentanalysis\n\nload(dccnpath('/home/common/matlab/fieldtrip/data/test/latest/raw/meg/preproc_ctf151.mat'));\n\ncfg = [];\ncfg.method = 'fastica';\ncfg.numcomponent = 14; % to make it go fast\ncfg.randomseed = 13; % so we get the same output each time\ncomp = ft_componentanalysis(cfg,data);\n\nassert(ft_senstype(comp,'ctf151'))\n\ncfg = [];\ncfg.component = 2; % chosen randomly\nrej1 = ft_rejectcomponent(cfg, comp, data);\nrej2 = ft_rejectcomponent(cfg, comp);\n\nnorm(rej2.grad.tra-rej1.grad.tra)/norm(rej2.grad.tra);\nfigure; imagesc(rej2.grad.tra - rej1.grad.tra); caxis([-1 1])\n\nload standard_sourcemodel3d10mm\nload standard_singleshell\n\ncfg = [];\ncfg.sourcemodel = sourcemodel;\ncfg.headmodel = vol;\n\ncfg.grad = rej1.grad;\ngrid1 = ft_prepare_leadfield(cfg, rej1);\n\ncfg.grad = rej2.grad;\ngrid2 = ft_prepare_leadfield(cfg, rej2);\n\nassert(~isequaln(grid1.leadfield,grid2.leadfield))\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug1443.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7461389817407016, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39345141380947707}} {"text": "function [alpha,b,eta,zeta,kappa] = solve_hkl_square_dual_fast(eta,data,Y,lambda,varargin);\n\n\n\n% solve the milasso for a given regularization parameter\nn = size(data.X,1);\np =length(data.affinity);\npX = size(data.X,2);\naffs = data.affinity;\nweights = data.weights;\n\n% optional parameters\nmingap = 1e-3;\ndisplay = 0;\ngapeta = 1e-3;\n\n% READ OPTIONAL PARAMETERS\nargs = varargin;\nnargs = length(args);\nfor i=1:2:nargs\n switch args{i},\n case 'mingap', mingap = args{i+1};\n case 'gapeta', gapeta = args{i+1};\n case 'display', display = args{i+1};\n end\nend\n\n\nif isempty(eta)\n eta = 1/p ./ weights.^2;\nend\nx = eta .* weights.^2;\nx = max(x,0);\nx = x / sum(x);\n\nif display==1\ndisplay = Inf;\nend\nbeta_ARMIJO = .25 ;\nsigma_ARMIJO = .1 ;\nkmax_ARMIJO = 20;\nkmax = 200;\ntol_dx = 1e-8;\nk = 1;\nalpha=1;\n\n% % optimization parameters for the dual problem\n% optparam.tol = 1e-16;\n% optparam.kmax = 200;\n% optparam.tol_df = 1e-20;\n% optparam.display= 0;\nfx0 = Inf;\n\n% solve the regular kernel learning problem\nmY = mean(Y);\n\n\n\n\n\n%nu = 1e-6; % added ridge on kernels\nwhile k<=kmax;\n x = max(x,0);\n x = x / sum(x);\n\n\n % compute value of function\n eta = ( x*(1-gapeta) + gapeta/p )./ weights.^2 ;\n zeta = zeros(p,1);\n for i=1:p\n zeta(affs{i}) = zeta(affs{i}) + 1./eta(i);\n end\n zeta = 1./zeta;\n\n \n \n % solve the regular kernel learning problem\n K = center_gram_matrix(double(devectorize_single( single(data.kernels * zeta ))));\n alphaK = (K + n * lambda * eye(n) ) \\ ( Y - mean(Y) );\n fx = lambda/2 * ( Y - mean(Y))'* alphaK;\n \n \n gradient_zeta = zeros(p,1);\n for i=1:p\n gradient_zeta(i) = - lambda/2 * vectorize_quad_single(data.kernels(:,i),alphaK );\n end\n \n gradient_eta = zeros(p,1);\n for i=1:p;\n gradient_eta(i) = sum( gradient_zeta(affs{i}) .* zeta(affs{i}).^2 ) / eta(i)^2;\n end\n gradient = (1-gapeta) * gradient_eta ./ weights.^2;\n\n % check optimality condition\n optcond = max(x .* ( gradient - min(gradient)));\n if max(x .* ( gradient - min(gradient))) < mingap, break; end\n\n fx0=fx;\n\n % projected gradient\n xbar = x - gradient;\n d = - gradient;\n x0=x;\n ialpha = 1;\n while ialpha= - sigma_ARMIJO * gradient' * ( xalpha - x );\n\n % start to go up\n while ( fx - fxalpha >= - sigma_ARMIJO * gradient' * ( xalpha - x ) ) & ialpha1,\n if mod(k,display)==1\n fprintf('k=%d - f=%f - armijo=%d - dx=%e - gap=%f\\n',k,fx,ialpha,norm(x-x0),optcond);\n\n end\n end\n end\n if norm(x-x0) 1+1e-1, keyboard; end\n\n k=k+1;\nend\n\n\n% if k==kmax+1\n% keyboard;\n% end\n\n\neta = ( x*(1-gapeta) + gapeta/p )./ weights.^2 ;\nzeta = zeros(p,1);\nfor i=1:p\n zeta(affs{i}) = zeta(affs{i}) + 1./eta(i);\nend\nzeta = 1./zeta;\n\n\n K = center_gram_matrix(double(devectorize_single( single(data.kernels * zeta ))));\n alpha = (K + n * lambda * eye(n) ) \\ ( Y - mean(Y) );\n\n pred = K * alpha;\n b=mean(Y-pred );\n \nkappa = zeros(p,p);\nfor i=1:p\n kappa(i,affs{i}) = zeta(affs{i})./eta(i);\nend\n\n if isinf(display)\n fprintf('k=%d - f=%f - gap=%f\\n',k,fx,optcond);\n end\n\n\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/hkl-3.0/solve_hkl_square_dual_fast_kernels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389817407016, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39345141380947707}} {"text": "function M = diag(f)\n%DIAG Multiplication operator.\n% M = DIAG(F) returns a multiplication operator M so that M*u is equivalent to\n% F.*u.\n%\n% This method is mainly provided for backwards compatibility.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nM = operatorBlock.mult(f);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/diag.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5851011542032313, "lm_q1q2_score": 0.3933820531972199}} {"text": "function clean_tetgen_mesh(input_file,output_file)\n % CLEAN_TETGEN_MESH TetGen writes ALL triangles to the .mesh file, that is\n % all faces of the tetrahedra in the 3D mesh.\n % clean_tetgen_mesh(input_file,output_file) reads the vertices and tetrahedra\n % in input_file (ignoring triangles) and determines the surfaces triangles\n % then write the vertices, surfaces triangles and tetrahedra to output_file\n %\n % clean_tetgen_mesh(input_file,output_file)\n %\n % Input:\n % input_file path to .mesh file containing vertices and tetrahedra\n % output_file path to .mesh file to be written\n % \n [V,T,F] = readMESH(input_file);\n F = boundary_faces(T);\n % reverse orientation of triangles, tetgen seems to have backwards\n % orientation\n F = [F(:,3) F(:,2) F(:,1)];\n % rearrange vertices so that vertices on surface come before internal\n % vertices\n [V,T,F] = faces_first(V,T,F);\n writeMESH(output_file,V,T,F);\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/clean_tetgen_mesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.39337393782409363}} {"text": "function Z = ne(X,Y)\n%NE Not equal (~=) for tensors.\n%\n% See also TENSOR.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2015, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2015) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\nZ = tenfun(@ne,X,Y);\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u5206\u7c7b\u7b97\u6cd5/DEEP-TENSOR-FACTORIZATION-FOR-HYPERSPECTRAL-IMAGE-CLASSIFICATION-master/code/tensor_toolbox_2.6/@tensor/ne.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3933739378240936}} {"text": "% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\n%function tfrrppat\n%TFRRPPAT Unit test for the function TFRRPPAG.\n\n%\tO. Lemoine - April 1996. \n\n\nN=128;\n\n% Reality of the TFR\nsig=noisecg(N);\n[tfr,rtfr]=tfrrppag(sig);\nif sum(any(abs(imag(rtfr))>sqrt(eps)))~=0,\n error('tfrrppag test 1 failed');\nend\n\n\n% Energy conservation\nsig=fmlin(N);\n[tfr,rtfr]=tfrrppag(sig);\nEs=norm(sig)^2;\nEtfr=sum(mean(rtfr));\nif abs(Es-Etfr)>sqrt(eps),\n error('tfrrppag test 2 failed');\nend\n\n\n% time localization\nt0=30; sig=((1:N)'==t0);\n[tfr,rtfr]=tfrrppag(sig);\n[ik,jk]=find(abs(rtfr)>sqrt(eps));\nif any(jk~=t0)|any(ik'-(1:N)),\n error('tfrrppag test 3 failed');\nend;\n\n\n% frequency localization\nf0=30;\nsig=fmconst(N+6,f0/N);\n[tfr rtfr]=tfrrppag(sig,N/2+2,N,tftb_window(N+1,'rect'));\nif any(find(rtfr>2*max(rtfr)/N)~=f0+1)|(abs(mean(rtfr)-1.0)>sqrt(eps)),\n error('tfrrppag test 4 failed');\nend;\n\n\nN=131;\n\n% Reality of the TFR\nsig=noisecg(N);\n[tfr,rtfr]=tfrrppag(sig);\nif sum(any(abs(imag(rtfr))>sqrt(eps)))~=0,\n error('tfrrppag test 5 failed');\nend\n\n\n% Energy conservation\nsig=fmlin(N);\n[tfr,rtfr]=tfrrppag(sig);\nEs=norm(sig)^2;\nEtfr=sum(mean(rtfr));\nif abs(Es-Etfr)>sqrt(eps),\n error('tfrrppag test 6 failed');\nend\n\n\n% time localization\nt0=30; sig=((1:N)'==t0);\n[tfr,rtfr]=tfrrppag(sig);\n[ik,jk]=find(abs(rtfr)>sqrt(eps));\nif any(jk~=t0)|any(ik'-(1:N)),\n error('tfrrppag test 7 failed');\nend;\n\n\n% frequency localization\nf0=30;\nsig=fmconst(N+6,f0/N);\n[tfr rtfr]=tfrrppag(sig,round(N/2)+2,N,tftb_window(N,'rect'));\nif any(find(rtfr>2*max(rtfr)/N)~=f0+1)|(abs(mean(rtfr)-1.0)>sqrt(eps)),\n error('tfrrppag test 8 failed');\nend;\n\n", "meta": {"author": "HeLiangHIT", "repo": "time_frequency", "sha": "09c2abe92355ff5cd867bdb169229682e9d7af7c", "save_path": "github-repos/MATLAB/HeLiangHIT-time_frequency", "path": "github-repos/MATLAB/HeLiangHIT-time_frequency/time_frequency-09c2abe92355ff5cd867bdb169229682e9d7af7c/tf_tool_box/tftb-0.2/tests/tfrrppat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.651354857898194, "lm_q1q2_score": 0.39337393373676727}} {"text": "\n\nquestdlg('Please selelct a polygon on the cross-section', ...\n '3D grid selection', ...\n 'OK','Cancel');\n\nfigure_w_normalized_uicontrolunits(xsec_fig)\n\nax = findobj('Tag','main_map_ax');\n[x,y, mouse_points_overlay] = select_polygon(ax);\nzmap_message_center.set_info('Message',' Thank you .... ')\n\nplos2 = plot(x,y,'b-','era','xor'); % plot outline\nsum3 = 0.;\npause(0.3)\n\n%create a rectangular grid\nxvect=[min(x):dx:max(x)];\nzvect=[min(y):dy:max(y)];\nyvect=[z2:dz:z1];\ngx = xvect;\ngy= yvect;\ngz= zvect;\ntmpgri=zeros((length(xvect)*length(zvect)),2);\ntmpgri2=zeros((length(xvect)*length(zvect)),2);\n\nn=0;\nfor i=1:length(xvect)\n for j=1:length(zvect)\n n=n+1;\n tmpgri(n,:)=[xvect(i) zvect(j)];\n tmpgri2(n,:) = [i j ];\n end\nend\n\n%extract all gridpoints in chosen polygon\nXI=tmpgri(:,1);\nYI=tmpgri(:,2);\n\n ll = polygon_filter(x,y, XI, YI, 'inside');\n%grid points in polygon\nnewgri=tmpgri(ll,:);\n\nn2 = repmat(tmpgri,length(yvect),1);\nk = repmat(yvect,length(tmpgri),1);\nk = reshape(k,length(k)*length(yvect),1);\nk2 = repmat(ll,length(yvect),1);\nt3 = [n2 k k2];\n\nn3 = repmat(tmpgri2,length(yvect),1);\nk = repmat((1:1:length(yvect)),length(tmpgri),1);\nk = reshape(k,length(k)*length(yvect),1);\nt4 = [t3 n3 k];\n\nl = t4(:,4) == 1;\nt5 = t4(l,:);\n\n\n% plot the grid points\nfigure_w_normalized_uicontrolunits(xsec_fig)\npl = plot(newgri(:,1),newgri(:,2),'+k','era','normal');\nset(pl,'MarkerSize',8,'LineWidth',1)\ndrawnow\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/sel3dtmp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3933739296494411}} {"text": "function varargout = xyz\n%XYZ Three chebfun3 obejcts of the identity on [-1, 1, -1, 1, -1, 1].\n% CHEB.XYZ is shorthand for the expressions \n% X = CHEBFUN3(@(X,Y,Z) X),\n% Y = CHEBFUN3(@(X,Y,Z) Y), and\n% Z = CHEBFUN3(@(X,Y,Z) Z).\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nx = chebfun3(@(x,y,z) x);\ny = chebfun3(@(x,y,z) y);\nz = chebfun3(@(x,y,z) z);\n\nif nargout>1\n % For the syntax [x,y,z] = cheb.xyz\n varargout{1} = x;\n varargout{2} = y;\n varargout{3} = z;\nelse\n % For the syntax cheb.xyz we still want to put these variables into the\n % workspace:\n assignin('base', 'x', x);\n assignin('base', 'y', y);\n assignin('base', 'z', z);\nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/+cheb/xyz.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548511303336, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.393373929649441}} {"text": "function model = robOneDynamicsCreate(q, d, latentVals)\n\n% ROBONEDYNAMICSCREATE Create the dynamics model. \n\n% FGPLVM\n\nif(q~=2)\n error('Robot One Dynamics designed for 2-D latent spaces.');\nend\nif(d~=q)\n error('Input dimension must equal output dimension');\nend\nmodel.a = 20;\nmodel.sigma2 = (pi/16).^2;\nmodel.mixTheta = 0.8;\nmodel.mixR = 0.5;\n\nmodel = robOneDynamicsSetLatentValues(model, latentVals);\n\n% set b (the scale of the gamma distributions) so that a/b is the average jump.\naveR = mean(model.r);\nmodel.b = model.a/aveR;\nmodel.type = 'robOneDynamics';\n\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/fgplvm/robOneDynamicsCreate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7745833841649232, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39334263235248484}} {"text": "function [X, nh, hrf] = designMatrix(stim,params,tSeries,reshapeFlag);\n%\n% Create a design matrix appropriate for the hrf option\n% specified in the selected event-related params \n% (see eventParamsDefault for more info on the params struct).\n%\n% Usage:\n% [X, nh, hrf] = designMatrix(stim, [params], [tSeries or nFrames], ...\n% [reshapeFlag]);\n%\n%\n% If the params.glmHRF option is 0, the design matrix X will\n% be appropriate for a deconvolution GLM in which time \n% courses relative to trial onset for each condition are \n% estimated as part of the GLM. If this flag is positive (1-3),\n% a design matrix X will be returned in which there is a single\n% predictor function for each condition, using an assumed form\n% of the hemodynamic response function (HRF).\n%\n% Entering the optional tSeries argument is needed if the\n% params.glmHRF option is 1 -- estimate HRF from mean \n% response to all stim. If entered, the design matrix\n% will also be clipped to the # of frames in the tSeries.\n% You can enter the # of frames directly as the third \n% argument instead of the whole tSeries if you are using\n% a different HRF option, but want to clip to the # of frames.\n%\n% The optional reshape flag, if set to 1 [default 0], will \n% cause the otherwise-2D matrix to be set as a 3D matrix\n% with the third dimension being different scans. This is \n% appropriate for much of the new GLM code.\n%\n% Also returns nh, the # of time points to use in the \n% hemodynamic response window for estimating a GLM.\n% (see glm, applyGlm); and hrf, the response function\n% used (empty if deconvolving).\n%\n%\n% ras, 04/05\n% ras, 08/05 -- imported into mrVista 2.0.\nif notDefined('params'), params = eventParamsDefault; end\nif notDefined('reshapeFlag'), reshapeFlag = 0; end\nif notDefined('tSeries'), tSeries = []; end\n\ntr = params.framePeriod;\n\n% figure out whether an entire tSeries\n% was passed, or just a # of frames:\nif length(tSeries)==1\n % nFrames is specified, rather than tSeries\n nFrames = tSeries;\n tSeries = [];\nelseif ~isempty(tSeries)\n nFrames = size(tSeries,1);\n if nFrames==1\n % need it as a column vector\n tSeries = tSeries';\n nFrames = size(tSeries,1);\n end\nend\n\nif isempty(tSeries)\n\t% default is max frames specified in stim struct\n nFrames = stim.onsetFrames(end);\nend\n\n% decide whether we're deconvolving (getting \n% estimated time courses for each condition)\n% or fitting an HIRF (getting only a single beta value\n% for each condition) based on the selected event-related\n% hrf parameter. Get a corresponding stimulus matrix:\nif params.glmHRF==0\n framesPerScan = max(stim.framesPerRun);\n \n % make a delta-function matrix for onsets of \n % different conditions:\n s = delta_function_from_parfile(stim.parfiles,tr,framesPerScan);\n \n % create Toeplitz matrix for estimating deconvolved responses\n % (see papers on 'selective-averaging', e.g. by Randy Buckner\n % or Douglas Greve for the Freesurfer code)\n fw = unique(round(params.timeWindow/tr)); % time window\n hrf = [];\n nConds = size(s,2); \n [X nh] = eventDeconvolutionMatrix(s,fw);\n \n % reshape to 2D (will undo later if needed)\n X = reshape(permute(X,[1 3 2]),[size(X,1)*size(X,3) size(X,2)]);\nelse\n % apply HRF -- first, construct the impulse response function:\n switch params.glmHRF\n case 1, \n % estimate hrf as mean time course to all stim\n if isempty(tSeries)\n errmsg = 'Need tSeries to estimate mean trial response (glmHRF option 1)';\n error(errmsg);\n end\n \n disp('Estimating mean trial response for GLM')\n tSeries = squeeze(mean(tSeries,2)); % mean across voxels\n anal = eventTimeCourses(tSeries(:),stim,params);\n postStim = find(anal.timeWindow>=0);\n hrf = anal.meanTcs(postStim,anal.condNums>0);\n hrf = hrf(:,params.snrConds);\n if size(hrf,2) > 1\n hrf = nanmeanDims(hrf,2);\n end\n hrf = hrf ./ sum(hrf); % normalize to integral 1\n case 2, % boynton gamma function\n hrf = 'boynton';\n case 3, % spm difference-of-gammas\n hrf = 'spm';\n case 4, % dale & buckner HRF\n hrf = 'dale';\n end\n \n % apply HRF -- return a 2D matrix covering whole time course\n [X, hrf] = eventConvolveHRF(stim,params,hrf,nFrames); \n \n % we're only returning one predictor per condition: the\n % nh variable should note this:\n nh = 1;\nend\n\nif reshapeFlag==1\n % return a 3D matrix w/ runs as the 3rd dimension\n \n % figure out max # frames per run to \n % use for reshaping\n for run = unique(stim.run)\n ind = find(stim.run==run);\n onsets{run} = stim.onsetFrames(ind);\n framesPerRun(run) = onsets{run}(end)-onsets{run}(1)+1;\n end\n maxFrames = max(framesPerRun);\n nRuns = length(framesPerRun);\n nPredictors = size(X,2);\n \n % init 3D X matrix\n oldX = X;\n X = zeros(maxFrames,nPredictors,nRuns);\n \n % reshape (allow for different-length runs)\n for run = 1:nRuns\n rng = onsets{run}(1):onsets{run}(end);\n X(1:framesPerRun(run),:,run) = oldX(rng,:);\n end\nend\n\n\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/RSVista/mrMethods/event_related/designMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7745833737577157, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3933426270675814}} {"text": "%%% e8.2_Sim\nclear\npath('./icon/',path);\n%Run the model initialization file icon/init.m\nInit;\n\n%Constant value\nRAD2DEG = 57.2957795;\nDEG2RAD = 0.0174533;\n%throttle when UAV hover\nTHR_HOVER = 0.609;\n\n%% control parameter\n%Attitude PID parameters\nKp_PITCH_ANGLE =6.5;\nKp_PITCH_AngleRate = 0.1;\nKi_PITCH_AngleRate = 0.02;\nKd_PITCH_AngleRate = 0.001;\nKp_ROLL_ANGLE =6.5;\nKp_ROLL_AngleRate = 0.1;\nKi_ROLL_AngleRate = 0.02;\nKd_ROLL_AngleRate = 0.001;\n\nKp_YAW_ANGLE = 3;\nKp_YAW_AngleRate = 0.5;\nKi_YAW_AngleRate = 0.01;\nKd_YAW_AngleRate = 0.00;\n\n%Position PID parameters\nKpxp = 1.0;\nKpyp = 1.0;\nKpzp = 4.0;\nKvxp = 3.0; Kvxi = 0.1; Kvxd = 0.01;\nKvyp = 3.0; Kvyi = 0.1; Kvyd = 0.01;\nKvzp = 0.45; Kvzi = 0.01; Kvzd = 0.005;\n\nSaturation_I_RP_Max = 0.3;\nSaturation_I_RP_Min = -0.3;\nSaturation_I_Y_Max = 0.2;\nSaturation_I_Y_Min = -0.2;\nSaturation_I_ah = 3.43;\nSaturation_I_az = 5;\n\n%max control angle,default 35deg\nMAX_CONTROL_ANGLE_ROLL = 35;\nMAX_CONTROL_ANGLE_PITCH = 35;\n%Maximum navigation angle, used in position control to avoid large attitude angles\nMAX_CONTROL_ANGLE_NAV_ROLL = 15; \nMAX_CONTROL_ANGLE_NAV_PITCH = 15;\n%max control angle rate,rad/s\nMAX_CONTROL_ANGLE_RATE_PITCH = 220;\nMAX_CONTROL_ANGLE_RATE_ROLL = 220;\nMAX_CONTROL_ANGLE_RATE_Y = 200;\n%Maximum control speed, m/s\nMAX_CONTROL_VELOCITY_XY = 5;\nMAX_CONTROL_VELOCITY_Z = 3;\n%Throttle amplitude\nMAX_MAN_THR = 0.9;\nMIN_MAN_THR = 0.05;\n%% run simulink model\ne8_2_sim", "meta": {"author": "RflySim", "repo": "RflyExpCode", "sha": "7dbec4d8796d6e23ee86c523e4ba5712203b1519", "save_path": "github-repos/MATLAB/RflySim-RflyExpCode", "path": "github-repos/MATLAB/RflySim-RflyExpCode/RflyExpCode-7dbec4d8796d6e23ee86c523e4ba5712203b1519/code/e8/e8.2/Sim/Init_control.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8459424528443251, "lm_q2_score": 0.46490157137338844, "lm_q1q2_score": 0.3932799756187853}} {"text": "function Offspring = GLMO_SMPSOOperator(Problem, Particle, Pbest, Gbest, numberOfGroups, typeOfGroups)\n% ----------------------------------------------------------------------- \n% Copyright (C) 2020 Heiner Zille\n%\n% This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 \n% International License. (CC BY-NC-SA 4.0). To view a copy of this license, \n% visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or see the \n% pdf-file \"License-CC-BY-NC-SA-4.0.pdf\" that came with this code. \n%\n% You are free to: \n% * Share ? copy and redistribute the material in any medium or format\n% * Adapt ? remix, transform, and build upon the material \n% Under the following terms:\n% * Attribution ? You must give appropriate credit, provide a link to the \n% license, and indicate if changes were made. You may do so in any reasonable \n% manner, but not in any way that suggests the licensor endorses you or your use.\n% * NonCommercial ? You may not use the material for commercial purposes.\n% * ShareAlike ? If you remix, transform, or build upon the material, you must \n% distribute your contributions under the same license as the original.\n% * No additional restrictions ? You may not apply legal terms or technological \n% measures that legally restrict others from doing anything the license permits.\n% \n% Author of this Code: \n% Heiner Zille or \n%\n% This code is based on the following publications:\n%\n% 1) Heiner Zille \n% \"Large-scale Multi-objective Optimisation: New Approaches and a Classification of the State-of-the-Art\" \n% PhD Thesis, Otto von Guericke University Magdeburg, 2019 \n% http://dx.doi.org/10.25673/32063 \n% \n% 2) Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim and Yusuke Nojima\n% \"Mutation Operators Based on Variable Grouping for Multi-objective Large-scale Optimization\"\n% IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, Athens, Greece, December 2016\n% https://ieeexplore.ieee.org/document/7850214 \n%\n% This file is intended to work with the PlatEMO framework version 2.5. \n% Date of publication of this code: 06.04.2020 \n% Last Update of this code: 06.04.2020\n% A newer version of this algorithm may be available. Please contact the author \n% or see http://www.ci.ovgu.de/Research/Codes.html. \n%\n% The files may have been modified in Feb 2021 by the authors of the Platemo framework to work with the Platemo 3.0 release. \n% -----------------------------------------------------------------------\n% This file is derived from its original version containied in the PlatEMO \n% framework. The original copyright disclaimer can be found below. \n% ----------------------------------------------------------------------- \n\n% Particle swarm optimization in SMPSO\n\n %% Parameter setting\n ParticleDec = Particle.decs;\n PbestDec = Pbest.decs;\n GbestDec = Gbest.decs;\n [N,D] = size(ParticleDec);\n ParticleVel = Particle.adds(zeros(N,D));\n\n %% Particle swarm optimization\n W = repmat(unifrnd(0.1,0.5,N,1),1,D);\n r1 = repmat(rand(N,1),1,D);\n r2 = repmat(rand(N,1),1,D);\n C1 = repmat(unifrnd(1.5,2.5,N,1),1,D);\n C2 = repmat(unifrnd(1.5,2.5,N,1),1,D);\n OffVel = W.*ParticleVel + C1.*r1.*(PbestDec-ParticleDec) + C2.*r2.*(GbestDec-ParticleDec);\n phi = max(4,C1+C2);\n OffVel = OffVel.*2./abs(2-phi-sqrt(phi.^2-4*phi));\n delta = repmat((Problem.upper-Problem.lower)/2,N,1);\n OffVel = max(min(OffVel,delta),-delta);\n OffDec = ParticleDec + OffVel;\n \n %% Deterministic back\n Lower = repmat(Problem.lower,N,1);\n Upper = repmat(Problem.upper,N,1);\n repair = OffDec < Lower | OffDec > Upper;\n OffVel(repair) = 0.001*OffVel(repair);\n OffDec = max(min(OffDec,Upper),Lower);\n \n %% Polynomial mutation\n disM = 20;\n Site1 = repmat(rand(N,1)<0.15,1,D);\n\n [outIndexList,~] = GLMO_createGroups(numberOfGroups,OffDec,D,typeOfGroups); % 3 = random groups\n chosengroups = randi(numberOfGroups,size(outIndexList,1),1);\n Site2 = outIndexList == chosengroups;\n mu = rand(N,1);\n mu = repmat(mu,1,D); \n \n temp = Site1 & Site2 & mu<=0.5;\n OffDec(temp) = OffDec(temp)+(Upper(temp)-Lower(temp)).*((2.*mu(temp)+(1-2.*mu(temp)).*...\n (1-(OffDec(temp)-Lower(temp))./(Upper(temp)-Lower(temp))).^(disM+1)).^(1/(disM+1))-1);\n temp = Site1 & Site2 & mu>0.5; \n OffDec(temp) = OffDec(temp)+(Upper(temp)-Lower(temp)).*(1-(2.*(1-mu(temp))+2.*(mu(temp)-0.5).*...\n (1-(Upper(temp)-OffDec(temp))./(Upper(temp)-Lower(temp))).^(disM+1)).^(1/(disM+1)));\n Offspring = Problem.Evaluation(OffDec,OffVel);\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/GLMO/GLMO_SMPSOOperator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39318755904606567}} {"text": "function [g1, g2] = lfmXrbfKernGradient(lfmKern, rbfKern, t1, t2, covGrad, meanVector)\n\n% LFMXRBFKERNGRADIENT Compute gradient between the LFM and RBF kernels.\n% FORMAT\n% DESC computes the gradient of an objective function with respect\n% to cross kernel terms between LFM and RBF kernels for\n% the multiple output kernel.\n% ARG lfmKern : the kernel structure associated with the LFM\n% kernel.\n% ARG rbfKern : the kernel structure associated with the RBF\n% kernel.\n% ARG t : inputs for which kernel is to be computed.\n% RETURN g1 : gradient of objective function with respect to kernel\n% parameters of LFM kernel.\n% RETURN g2 : gradient of objective function with respect to kernel\n% parameters of RBF kernel.\n%\n% FORMAT\n% DESC computes the gradient of an objective function with respect\n% to cross kernel terms between LFM and RBF kernels for\n% the multiple output kernel.\n% ARG lfmKern : the kernel structure associated with the LFM\n% kernel.\n% ARG rbfKern : the kernel structure associated with the RBF\n% kernel.\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% RETURN g1 : gradient of objective function with respect to kernel\n% parameters of LFM kernel.\n% RETURN g2 : gradient of objective function with respect to kernel\n% parameters of RBF kernel.\n%\n% FORMAT\n% DESC computes the gradient of an objective function with respect\n% to cross kernel terms between LFM and RBF kernels for\n% the multiple output kernel.\n% ARG lfmKern : the kernel structure associated with the LFM\n% kernel.\n% ARG rbfKern : the kernel structure associated with the RBF\n% kernel.\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% ARG meanVec : precomputed factor that is used for the switching dynamical\n% latent force model.\n% RETURN g1 : gradient of objective function with respect to kernel\n% parameters of LFM kernel.\n% RETURN g2 : gradient of objective function with respect to kernel\n% parameters of RBF kernel.\n%\n% SEEALSO : multiKernParamInit, multiKernCompute, lfmKernParamInit, rbfKernParamInit\n%\n% COPYRIGHT : David Luengo, 2007, 2008\n%\n% MODIFICATIONS : Neil D. Lawrence, 2007\n%\n% MODIFICATIONS : Mauricio A. Alvarez, 2008, 2010\n\n% KERN\n\nsubComponent = false; % This is just a flag that indicates if this kernel is part of a bigger kernel (SDLFM)\n\nif nargin == 4\n covGrad = t2;\n t2 = t1;\nelseif nargin == 6\n subComponent = true;\n if numel(meanVector)>1\n if size(meanVector,1) == 1,\n if size(meanVector, 2)~=size(covGrad, 2)\n error('The dimensions of meanVector don''t correspond to the dimensions of covGrad')\n end\n else\n if size((meanVector'), 2)~=size(covGrad,2)\n error('The dimensions of meanVector don''t correspond to the dimensions of covGrad')\n end\n end\n else\n if numel(t1)==1 && numel(t2)>1\n % matGrad will be row vector and so should be covGrad\n dimcovGrad = length(covGrad);\n covGrad = reshape(covGrad, [1 dimcovGrad]);\n elseif numel(t1)>1 && numel(t2)==1\n % matGrad will be column vector and sp should be covGrad\n dimcovGrad = length(covGrad);\n covGrad = reshape(covGrad, [dimcovGrad 1]);\n end\n end\nend\n\nif size(t1, 2) > 1 || size(t2, 2) > 1\n error('Input can only have one column');\nend\nif lfmKern.inverseWidth ~= rbfKern.inverseWidth\n error('Kernels cannot be cross combined if they have different inverse widths.')\nend\n\nif lfmKern.isNormalised ~= rbfKern.isNormalised\n error('Kernels cannot be cross combined if they have different normalization settings.')\nend\n\nm = lfmKern.mass;\nD = lfmKern.spring;\nC = lfmKern.damper;\nS = lfmKern.sensitivity;\n\nalpha = C/(2*m);\nomega = sqrt(D/m-alpha^2);\n\nsigma2 = 2/lfmKern.inverseWidth;\nsigma = sqrt(sigma2);\n\nif isreal(omega)\n gamma = alpha + j*omega;\n ComputeUpsilon1 = lfmComputeUpsilonMatrix(gamma,sigma2,t1, t2);\n if lfmKern.isNormalised\n K0 = S/(2*sqrt(2)*m*omega);\n else\n K0 = sigma*sqrt(pi)*S/(2*m*omega);\n end\nelse\n gamma1 = alpha + j*omega;\n gamma2 = alpha - j*omega;\n ComputeUpsilon1 = lfmComputeUpsilonMatrix(gamma2,sigma2,t1, t2);\n ComputeUpsilon2 = lfmComputeUpsilonMatrix(gamma1,sigma2,t1, t2);\n if lfmKern.isNormalised\n K0 = (S/(j*4*sqrt(2)*m*omega));\n else\n K0 = sigma*sqrt(pi)*S/(j*4*m*omega);\n end\nend\n\ng1 = zeros(1,5);\n\n% Gradient with respect to m, C and D\n\nfor ind = 1:3 % Parameter (m, D or C)\n switch ind\n case 1 % Gradient wrt m\n gradThetaM = 1;\n gradThetaAlpha = -C/(2*(m^2));\n gradThetaOmega = (C^2-2*m*D)/(2*(m^2)*sqrt(4*m*D-C^2));\n case 2 % Gradient wrt D\n gradThetaM = 0;\n gradThetaAlpha = 0;\n gradThetaOmega = 1/sqrt(4*m*D-C^2);\n case 3 % Gradient wrt C\n gradThetaM = 0;\n gradThetaAlpha = 1/(2*m);\n gradThetaOmega = -C/(2*m*sqrt(4*m*D-C^2));\n end\n \n % Gradient evaluation\n \n if isreal(omega)\n gamma = alpha + j*omega;\n gradThetaGamma = gradThetaAlpha + j*gradThetaOmega;\n matGrad = -K0*imag(lfmGradientUpsilonMatrix(gamma,sigma2,t1, t2)*gradThetaGamma ...\n - (gradThetaM/m + gradThetaOmega/omega) ...\n * ComputeUpsilon1);\n else\n gamma1 = alpha + j*omega;\n gamma2 = alpha - j*omega;\n gradThetaGamma1 = gradThetaAlpha + j*gradThetaOmega;\n gradThetaGamma2 = gradThetaAlpha - j*gradThetaOmega;\n matGrad = K0*(lfmGradientUpsilonMatrix(gamma2,sigma2, t1, t2)*gradThetaGamma2 ...\n - lfmGradientUpsilonMatrix(gamma1,sigma2, t1, t2)*gradThetaGamma1 ...\n - (gradThetaM/lfmKern.mass + gradThetaOmega/omega) ...\n * (ComputeUpsilon1 - ComputeUpsilon2));\n \n end\n if subComponent\n if size(meanVector,1) ==1,\n matGrad = matGrad*meanVector;\n else\n matGrad = (meanVector*matGrad).';\n end\n end\n g1(ind) = sum(sum(matGrad.*covGrad));\nend\n\n% Gradient with respect to sigma\n\nif isreal(omega)\n gamma = alpha + j*omega;\n if lfmKern.isNormalised\n matGrad = -K0*imag(lfmGradientSigmaUpsilonMatrix(gamma,sigma2,t1, t2));\n else\n matGrad = -(sqrt(pi)*S/(2*m*omega)) ...\n * imag(ComputeUpsilon1 ...\n + sigma*lfmGradientSigmaUpsilonMatrix(gamma,sigma2,t1, t2));\n end\nelse\n gamma1 = alpha + j*omega;\n gamma2 = alpha - j*omega;\n if lfmKern.isNormalised\n matGrad = K0*(lfmGradientSigmaUpsilonMatrix(gamma2,sigma2,t1,t2) ...\n - lfmGradientSigmaUpsilonMatrix(gamma1,sigma2,t1,t2));\n else\n matGrad = (sqrt(pi)*S/(j*4*m*omega)) ...\n *(ComputeUpsilon1 - ComputeUpsilon2 ...\n + sigma*(lfmGradientSigmaUpsilonMatrix(gamma2,sigma2,t1,t2) ...\n - lfmGradientSigmaUpsilonMatrix(gamma1,sigma2,t1,t2)));\n end\nend;\n\nif subComponent\n if size(meanVector,1) ==1,\n matGrad = matGrad*meanVector;\n else\n matGrad = (meanVector*matGrad).';\n end\nend\n\ng1(4) = sum(sum(matGrad.*covGrad))*(-(sigma^3)/4); % temporarly introduced by MA\ng2(1) = g1(4);\n\n% Gradient with respect to S\n\nif isreal(omega)\n if lfmKern.isNormalised\n matGrad = -(1/(2*sqrt(2)*m*omega))* imag(ComputeUpsilon1);\n else\n matGrad = -(sqrt(pi)*sigma/(2*m*omega))* imag(ComputeUpsilon1);\n end\nelse\n if lfmKern.isNormalised\n matGrad = (1/(j*4*sqrt(2)*m*omega))*(ComputeUpsilon1 - ComputeUpsilon2);\n else\n matGrad = (sqrt(pi)*sigma/(j*4*m*omega))*(ComputeUpsilon1 - ComputeUpsilon2);\n end\nend;\n\nif subComponent\n if size(meanVector,1) ==1,\n matGrad = matGrad*meanVector;\n else\n matGrad = (meanVector*matGrad).';\n end\nend\n\ng1(5) = sum(sum(matGrad.*covGrad));\ng1 = real(g1);\n% Gradient with respect to the \"variance\" of the RBF\ng2(1) = 0; % Otherwise is counted twice, temporarly changed by MA\ng2(2) = 0;\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/lfmXrbfKernGradient.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39318755295684266}} {"text": "function fem2d_pack_test11 ( )\n\n%*****************************************************************************80\n%\n%% TEST11 tests GRID_TEST.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST11\\n' );\n fprintf ( 1, ' Test the grid routines.\\n' );\n\n grid_test ( 'Q4' );\n\n grid_test ( 'Q8' );\n\n grid_test ( 'Q9' );\n\n grid_test ( 'Q12' );\n\n grid_test ( 'Q16' );\n\n grid_test ( 'QL' );\n\n grid_test ( 'T3' );\n\n grid_test ( 'T4' );\n\n grid_test ( 'T6' );\n\n grid_test ( 'T10' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/fem2d_pack/fem2d_pack_test11.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5312093733737563, "lm_q2_score": 0.7401743505760728, "lm_q1q2_score": 0.39318755295684266}} {"text": "% COMP_UGRID_UV \n% Compare depth-averaged current from 2 unstructured grid\n% models with UGRID conventions (http://bit.ly/cf_ugrid), allowing \n% comparison with no model specific code. This code makes a movie\n% if there is more than one time step specified\n\ncomp_titl='Comparison of 2D No-Wave runs for Hurricane Ike';\n\ntitl{1}='ADCIRC';\nuris{1}='http://testbedapps.sura.org/thredds/dodsC/in/und/adcirc/ike/ultralite/lr/vardrag/nowave/3d'\n%uris{1}='http://testbedapps.sura.org/threddsdev/dodsC/inundation/ADCIRC/rita/2Dvrwoww'\nuname{1}='u-vel';\nvname{1}='v-vel';\ntname{1}='time';\n\ntitl{2}='FVCOM';\nuris{2}='http://testbedapps.sura.org/thredds/dodsC/inundation/FVCOM/ike/3Dvrwww';\n%uris{2}='http://testbedapps.sura.org/threddsdev/dodsC/inundation/FVCOM/rita/2Dvrwoww';\nuname{2}='ua';\nvname{2}='va';\ntname{2}='time';\n\n% for just one plot, define one time:\njdi=datenum([2008 9 13 03 0 0]); %Ike\n%jdi=datenum([2005 9 24 06 0 0]); %Rita\n\n% for a movie define more than one time\n%jdi=datenum([2008 9 12 21 0 0]):3/24:datenum([2008 9 13 15 0 0]);\nif length(jdi)>1\n movie_name='ike';\nend\n\n% scale factor for arrows\nvfac=0.03;\n% bounding box for figures\nax=[-95.2 -94.4 28.8 29.9]\n% color range for figures\ncax=[0 3];\n\nif length(jdi)>1\n vidobj=VideoWriter(movie_name,'Uncompressed AVI');\n vidobj.FrameRate = 1;\n open(vidobj);\nend\n\n% There is nothing model specific below this point\n\n% loop through each model to read the grid information\nfor i=1:length(uris)\n tic\n %initialize dataset object\n nc{i}=ncgeodataset(uris{i});\n %get geovariable object\n uvar{i}=nc{i}.geovariable(uname{i});\n vvar{i}=nc{i}.geovariable(vname{i});\n jd{i}=nc{i}.time(tname{i});\n % get mesh variable name (inference array)\n gvar_name{i}=uvar{i}.attribute('mesh');\n if isempty(gvar_name{i}),\n gtype{i}='structured';\n else\n gtype{i}='unstructured';\n end\n switch gtype{i}\n case 'structured'\n g=uvar{i}.grid(itime,:,:);\n lon{i}=g.lon;\n lat{i}=g.lat;\n case 'unstructured'\n gridvar=nc{i}.variable(gvar_name{i});\n a=textscan(gridvar.attribute('node_coordinates'),'%s %s');\n lon{i}=nc{i}{a{1}}(:);\n lat{i}=nc{i}{a{2}}(:);\n location{i}=uvar{i}.attribute('location');\n % find connectivity array variable from mesh variable\n trivar_name=gridvar.attribute('face_node_connectivity');\n % get connnectivity array data\n tri{i}=nc{i}{trivar_name}(:);\n [m,n]=size(tri{i});\n % check/fix orientation of connectivity array\n if m==3,\n tri{i}=tri{i}.';\n elseif n~=3\n disp('Error:Currently handling triangles only');return\n end\n end\nend\n% loop through time, reading data at each step from all models \nfig=figure(1);\nclf;set(gcf,'renderer','zbuffer');set(gcf,'color','white');\nfor k=1:length(jdi);\n for i=1:length(uris)\n itime=date_index(jd{i},jdi(k));\n subplot(1,2,i);cla\n switch gtype{i}\n case 'structured'\n u=double(squeeze(uvar{i}.data(itime,:,:)));\n v=double(squeeze(vvar{i}.data(itime,:,:)));\n U=complex(u,v);\n pcolorjw(lon{i},lat{i},abs(U));shading interp;colorbar;...\n axis(ax);caxis(cax);\n arrows(lon{i},lat{i},U,0.03,'black');\n case 'unstructured'\n % read data at specified time step for all nodes\n u=double(squeeze(uvar{i}.data(itime,:)));\n v=double(squeeze(vvar{i}.data(itime,:)));\n U=complex(u,v);\n U(U==0)=nan;\n igood=isfinite(U);\n % handle case of 'face' location (e.g. FVCOM)\n if strmatch('face',location{i}),\n % calculate u,v lon,lat positions (faster than reading lonc,latc)\n lon_vel=1/3*(lon{i}(tri{i}(:,1))+lon{i}(tri{i}(:,2))+lon{i}(tri{i}(:,3)));\n lat_vel=1/3*(lat{i}(tri{i}(:,1))+lat{i}(tri{i}(:,2))+lat{i}(tri{i}(:,3)));\n lonp=lon{i}(tri{i});\n latp=lat{i}(tri{i});\n patch(lonp.',latp.',abs(U));view(2);shading flat % shading 'interp' doesn't work with patch\n arrows(lon_vel(igood),lat_vel(igood),U(igood),vfac,'black');\n else\n trisurf(tri{i},lon{i},lat{i},0*lon{i}-5,abs(U));view(2);shading interp;\n arrows(lon{i}(igood),lat{i}(igood),U(igood),vfac,'black');\n end\n colorbar;axis(ax);caxis(cax);...\n fac=cos(mean(lat{1}(:))*pi/180);...\n title(sprintf('%s %s (%s): %sZ',titl{i},uname{i},...\n uvar{i}.attribute('units'),datestr(jd{i}(itime),'yyyy-mm-dd HH:MM')));...\n set (gca, 'DataAspectRatio', [1 fac 1] );...\n set (gca, 'tickdir','out');\n toc\n \n end\n end\n if(length(jdi)>1)\n F=getframe(fig);\n writeVideo(vidobj,F);\n end\nend\nif(length(jdi)>1)\n close(vidobj)\nend", "meta": {"author": "nctoolbox", "repo": "nctoolbox", "sha": "af757acccfcac373e35fde89fc8ed7e64b67de82", "save_path": "github-repos/MATLAB/nctoolbox-nctoolbox", "path": "github-repos/MATLAB/nctoolbox-nctoolbox/nctoolbox-af757acccfcac373e35fde89fc8ed7e64b67de82/demos/contrib/comp_ugrid_uv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850933, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3931301687756601}} {"text": "function [varargout]=minesweeper(varargin)\n%initialization\nclc\nclear all\nclose all\n% playing a background music\n% % [bk,fs]=wavread('bk2.wav',1000);\n% % wavplay(bk,fs,'async');\n%declaration and initializing variables\nh=struct;\nh.row=10;\nh.column=10;\nh.iposx=100;h.iposy=100;\nh.boxdim=[35 35];\nh.gap=[0.5 0.5];\nh.mine=imread(strcat('mine','.png'));\n% initializing gui\nh.main=figure('name','Suleman''s minesweeper','NumberTitle','off','Position',[h.iposx,h.iposy,(h.row+4)*h.boxdim(1),(h.column+4)*h.boxdim(2)]);\nh.newgame=uicontrol(h.main,'style','pushbutton','position',[0,h.boxdim(2)*(h.column+4)-35,100,35],'string','New Game','callback','minesweeper','tooltipstring','Newgame');\nh.close=uicontrol(h.main,'style','pushbutton','position',[h.boxdim(1)*(h.row+4)-100,0,100,35],'string','Close','callback','close gcbf');\nh.popup=uicontrol(h.main,'style','popup','position',[h.boxdim(1)*(h.row+4)-150,h.boxdim(2)*(h.column+4)-20,100,20],...\n 'tooltipstring','Go for Expert','string','Difficulty|Beginner|Intermediate|Expert','interruptible','off');\nfor x=1:h.row+2\n for y=1:h.column+2\n h.box(y,x)=uicontrol(h.main,'style','pushbutton','FontWeight','bold','foregroundcolor','b','fontsize',12,...\n 'position',[h.boxdim(1)*(x),h.boxdim(2)*(h.column+3-y),h.boxdim(1)-h.gap(1),h.boxdim(2)-h.gap(2)]);\n if x==1 || y==1 || x==h.row+2 || y==h.column+2\n set(h.box(y,x),'visible','off');\n end\n end\nend\n% initializing background work like bomb placement\nh.difficulty=0.65;\nbomb=int8(h.difficulty*rand(h.row+2,h.column+2));\nbomb(:,1)=zeros(h.row+2,1);bomb(:,h.column+2)=zeros(h.row+2,1);bomb(1,:)=zeros(1,h.column+2);bomb(h.row+2,:)=zeros(1,h.column+2);\nh.game=bomb*9;\nfor x=2:h.row+1\n for y=2:h.column+1\n n=0;\n if bomb(x,y)==0\n if bomb(x-1,y-1)==1\n n=n+1;\n end\n if bomb(x-1,y)==1\n n=n+1;\n end\n if bomb(x-1,y+1)==1\n n=n+1;\n end\n if bomb(x,y-1)==1\n n=n+1;\n end\n if bomb(x,y+1)==1\n n=n+1;\n end\n if bomb(x+1,y-1)==1\n n=n+1;\n end\n if bomb(x+1,y)==1\n n=n+1;\n end\n if bomb(x+1,y+1)==1\n n=n+1;\n end\n h.game(x,y)=n; \n end \n end\nend\nh.game=flipud(h.game');\n% disp(h.game);\n% defining callbacks\nset(h.popup,'callback',{@difficultylevel,h});\nfor ii=1:h.row+2\n for jj=1:h.column+2\n set(h.box(ii,jj),'callback',{'button',h},'buttondownfcn',{'mark',h});\n end\nend\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/31071-minesweeper/Minesweeper by Suleman/minesweeper.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.39313016877566004}} {"text": "% teststat - EEGLAB statistical testing function \n%\n% Statistics are critical for inference testing in Science. It is thus\n% primordial to make sure than all the statistics implemented are \n% robust and at least bug free. Statistical function using complex\n% formulas are inherently prone to bugs. EEGLAB functions are all the \n% more prone to bugs given that they only use complex Matlab code to\n% avoid loops and speed up computation.\n%\n% This test function does not garantee that EEGLAB statistical functions\n% are bug free. It does assure though that bugs are unlikely and minor\n% if they are present.\n%\n% This function test 3 things. \n%\n% * First, it checks that for vector inputs the EEGLAB functions return \n% the same output as other reference functions from the Matlab statistical \n% toolbox or from other packages tested against the SPSS software for \n% repeated measure ANOVA (rm_anova2 function).\n%\n% * Second, it checks that array inputs with different number of dimensions\n% (from 1 to 3) the EEGLAB function return the same output.\n%\n% * Third, it checks that the permutation and bootstrap methods shuffle\n% the data properly by running multiple tests.\n\nfunction teststat;\n\n% testing paired t-test\n% ---------------------\na = { rand(1,10) rand(1,10)+0.5 };\n[t df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[h p tmp stats] = ttest(a{1}, a{2});\nfprintf('Statistics paired statcond t-value %2.2f df=%d p=%0.4f\\n', t, df, pvals); \nfprintf('Statistics paired ttest func. t-value %2.2f df=%d p=%0.4f\\n', stats.tstat, stats.df, p); \nassertsame([t stats.tstat], [df stats.df], [pvals p]); \ndisp('--------------------');\n\n% testing unpaired t-test\n% -----------------------\n[t df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[h p tmp stats] = ttest2(a{1}, a{2});\nfprintf('Statistics paired statcond t-value %2.2f df=%d p=%0.4f\\n', t, df, pvals); \nfprintf('Statistics paired ttest2 func. t-value %2.2f df=%d p=%0.4f\\n', stats.tstat, stats.df, p); \nassertsame([t stats.tstat], [df stats.df], [pvals p]); \ndisp('--------------------');\n\n% testing paired 1-way ANOVA\n% --------------------------\na = { rand(1,10) rand(1,10) rand(1,10)+0.2; rand(1,10) rand(1,10)+0.2 rand(1,10) };\n[F df pvals surog] = statcond(a(1,:), 'mode', 'param', 'verbose', 'off', 'paired', 'on');\nz = zeros(10,1); o = ones(10,1); t = ones(10,1)*2;\nstats = rm_anova2( [ a{1,1}';a{1,2}';a{1,3}'], repmat([1:10]', [3 1]), [o;o;o], [z;o;t], {'a','b'});\nfprintf('Statistics 1-way paired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\\n', F, df(1), df(2), pvals); \nfprintf('Statistics 1-way paired rm_avova2 func. F-value %2.2f df1=%d df2=%d p=%0.4f\\n', stats{3,5}, stats{3,3}, stats{6,3}, stats{3,6}); \nassertsame([F stats{3,5}], [df(1) stats{3,3}], [df(2) stats{6,3}], [pvals stats{3,6}]); \ndisp('--------------------');\n\n% testing paired 2-way ANOVA\n% --------------------------\n[F df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\nz = zeros(10,1); o = ones(10,1); t = ones(10,1)*2;\nstats = rm_anova2( [ a{1,1}';a{1,2}';a{1,3}';a{2,1}';a{2,2}';a{2,3}' ], ...\n repmat([1:10]', [6 1]), [o;o;o;z;z;z], [z;o;t;z;o;t], {'a','b'});\nfprintf('Statistics 2-way paired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\\n', F{3}, df{3}(1), df{3}(2), pvals{3}); \nfprintf('Statistics 2-way paired rm_avova2 func. F-value %2.2f df1=%d df2=%d p=%0.4f\\n', stats{4,5}, stats{4,3}, stats{7,3}, stats{4,6}); \nassertsame([F{3} stats{4,5}], [df{3}(1) stats{4,3}], [df{3}(2) stats{7,3}], [pvals{3} stats{4,6}]); \ndisp('--------------------');\n\n% testing 1-way unpaired ANOVA\n% ----------------------------\n[F df pvals surog] = statcond(a(1,:), 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[p stats] = anova1( [ a{1,1}' a{1,2}' a{1,3}' ],{}, 'off');\nfprintf('Statistics 1-way unpaired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\\n', F, df(1), df(2), pvals); \nfprintf('Statistics 1-way unpaired anova1 func. F-value %2.2f df1=%d df2=%d p=%0.4f\\n', stats{2,5}, stats{2,3}, stats{3,3}, stats{2,6}); \nassertsame([F stats{2,5}], [df(1) stats{2,3}], [df(2) stats{3,3}], [pvals stats{2,6}]); \ndisp('--------------------');\n\n% testing 2-way unpaired ANOVA\n% ----------------------------\n[F df pvals surog] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[p stats] = anova2( [ a{1,1}' a{1,2}' a{1,3}'; a{2,1}' a{2,2}' a{2,3}' ], 10, 'off');\nfprintf('Statistics 2-way paired statcond F-value %2.2f df1=%d df2=%d p=%0.4f\\n', F{3}, df{3}(1), df{3}(2), pvals{3}); \nfprintf('Statistics 1-way unpaired anova2 func. F-value %2.2f df1=%d df2=%d p=%0.4f\\n', stats{4,5}, stats{4,3}, stats{5,3}, stats{4,6}); \nassertsame([F{3} stats{4,5}], [df{3}(1) stats{4,3}], [df{3}(2) stats{5,3}], [pvals{3} stats{4,6}]); \ndisp('--------------------');\n\n% testing different dimensions in statcond\n% ----------------------------------------\na = { rand(1,10) rand(1,10)+0.5 rand(1,10)};\nb = { rand(10,10) rand(10,10)+0.5 rand(10,10)}; b{1}(4,:) = a{1}; b{2}(4,:) = a{2}; b{3}(4,:) = a{3};\nc = { rand(5,10,10) rand(5,10,10)+0.5 rand(5,10,10)}; c{1}(2,4,:) = a{1}; c{2}(2,4,:) = a{2}; c{3}(2,4,:) = a{3};\nd = { rand(2,5,10,10) rand(2,5,10,10)+0.5 rand(2,5,10,10)}; d{1}(1,2,4,:) = a{1}; d{2}(1,2,4,:) = a{2}; d{3}(1,2,4,:) = a{3};\n[t1 df1 pvals1] = statcond(a(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t2 df2 pvals2] = statcond(b(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t3 df3 pvals3] = statcond(c(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t4 df4 pvals4] = statcond(d(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'on');\nfprintf('Statistics paired statcond t-test dim1 t-value %2.2f df=%d p=%0.4f\\n', t1, df1, pvals1);\nfprintf('Statistics paired statcond t-test dim2 t-value %2.2f df=%d p=%0.4f\\n', t2(4), df2, pvals2(4));\nfprintf('Statistics paired statcond t-test dim3 t-value %2.2f df=%d p=%0.4f\\n', t3(2,4), df3, pvals3(2,4));\nfprintf('Statistics paired statcond t-test dim4 t-value %2.2f df=%d p=%0.4f\\n', t4(1,2,4), df4, pvals4(1,2,4));\nassertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); \ndisp('--------------------');\n[t1 df1 pvals1] = statcond(a(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t2 df2 pvals2] = statcond(b(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t3 df3 pvals3] = statcond(c(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t4 df4 pvals4] = statcond(d(1:2), 'mode', 'param', 'verbose', 'off', 'paired', 'off');\nfprintf('Statistics unpaired statcond t-test dim1 t-value %2.2f df=%d p=%0.4f\\n', t1, df1, pvals1);\nfprintf('Statistics unpaired statcond t-test dim2 t-value %2.2f df=%d p=%0.4f\\n', t2(4), df2, pvals2(4));\nfprintf('Statistics unpaired statcond t-test dim3 t-value %2.2f df=%d p=%0.4f\\n', t3(2,4), df3, pvals3(2,4));\nfprintf('Statistics unpaired statcond t-test dim4 t-value %2.2f df=%d p=%0.4f\\n', t4(1,2,4), df4, pvals4(1,2,4));\nassertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); \ndisp('--------------------');\n[t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\nfprintf('Statistics paired statcond anova 1-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t1, df1(1), df1(2), pvals1);\nfprintf('Statistics paired statcond anova 1-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t2(4), df2(1), df2(2), pvals2(4));\nfprintf('Statistics paired statcond anova 1-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t3(2,4), df3(1), df3(2), pvals3(2,4));\nfprintf('Statistics paired statcond anova 1-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t4(1,2,4), df4(1), df4(2), pvals4(1,2,4));\nassertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); \ndisp('--------------------');\n[t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\nfprintf('Statistics unpaired statcond anova 1-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t1, df1(1), df1(2), pvals1);\nfprintf('Statistics unpaired statcond anova 1-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t2(4), df2(1), df2(2), pvals2(4));\nfprintf('Statistics unpaired statcond anova 1-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t3(2,4), df3(1), df3(2), pvals3(2,4));\nfprintf('Statistics unpaired statcond anova 1-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t4(1,2,4), df4(1), df4(2), pvals4(1,2,4));\nassertsame([t1 t2(4) t3(2,4) t4(1,2,4)], [df1 df2 df3 df4], [pvals1 pvals2(4) pvals3(2,4) pvals4(1,2,4)]); \ndisp('--------------------');\na(2,:) = a; a{1} = a{1}/2;\nb(2,:) = b; b{1} = b{1}/2;\nc(2,:) = c; c{1} = c{1}/2;\nd(2,:) = d; d{1} = d{1}/2;\n[t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\n[t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'on');\nfprintf('Statistics paired statcond anova 2-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t1{3}, df1{3}(1), df1{3}(2), pvals1{3});\nfprintf('Statistics paired statcond anova 2-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t2{3}(4), df2{3}(1), df2{3}(2), pvals2{3}(4));\nfprintf('Statistics paired statcond anova 2-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t3{3}(2,4), df3{3}(1), df3{3}(2), pvals3{3}(2,4));\nfprintf('Statistics paired statcond anova 2-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t4{3}(1,2,4), df4{3}(1), df4{3}(2), pvals4{3}(1,2,4));\nassertsame([t1{3} t2{3}(4) t3{3}(2,4) t4{3}(1,2,4)], [df1{3}(1) df2{3}(1) df3{3}(1) df4{3}(1)], [df1{3}(2) df2{3}(2) df3{3}(2) df4{3}(2)], [pvals1{3} pvals2{3}(4) pvals3{3}(2,4) pvals4{3}(1,2,4)]); \ndisp('--------------------');\n[t1 df1 pvals1] = statcond(a, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t2 df2 pvals2] = statcond(b, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t3 df3 pvals3] = statcond(c, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\n[t4 df4 pvals4] = statcond(d, 'mode', 'param', 'verbose', 'off', 'paired', 'off');\nfprintf('Statistics unpaired statcond anova 2-way dim1 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t1{3}, df1{3}(1), df1{3}(2), pvals1{3});\nfprintf('Statistics unpaired statcond anova 2-way dim2 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t2{3}(4), df2{3}(1), df2{3}(2), pvals2{3}(4));\nfprintf('Statistics unpaired statcond anova 2-way dim3 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t3{3}(2,4), df3{3}(1), df3{3}(2), pvals3{3}(2,4));\nfprintf('Statistics unpaired statcond anova 2-way dim4 t-value %2.2f df1=%d df2=%d p=%0.4f\\n', t4{3}(1,2,4), df4{3}(1), df4{3}(2), pvals4{3}(1,2,4));\nassertsame([t1{3} t2{3}(4) t3{3}(2,4) t4{3}(1,2,4)], [df1{3}(1) df2{3}(1) df3{3}(1) df4{3}(1)], [df1{3}(2) df2{3}(2) df3{3}(2) df4{3}(2)], [pvals1{3} pvals2{3}(4) pvals3{3}(2,4) pvals4{3}(1,2,4)]); \ndisp('--------------------');\n\n% testing shuffling and permutation for bootstrap\n% -----------------------------------------------\nclear a;\nm1 = [1:10];\nm2 = [1:10]+100;\nm3 = [1:10]+1000;\na{1} = { m1 m2 };\na{2} = { m1 m2 m3 };\na{3} = { [ zeros(9,10); m1] [ zeros(9,10); m2] };\na{4} = { [ zeros(9,10); m1] [ zeros(9,10); m2] [ zeros(9,10); m3] };\ntmpa = zeros(9,8,10); tmpa(end,end,:) = m1;\ntmpb = zeros(9,8,10); tmpb(end,end,:) = m2;\ntmpc = zeros(9,8,10); tmpc(end,end,:) = m3;\na{5} = { tmpa tmpb };\na{6} = { tmpa tmpb tmpc };\n\nfor method = 1:2\n if method == 2, opt = {'arraycomp', 'off'}; else opt = {}; end;\n for dim = 1:length(a)\n [sa1] = statcond(a{dim}, 'mode', 'bootstrap', 'verbose', 'off', 'paired', 'on', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10);\n [sa2] = statcond(a{dim}, 'mode', 'perm' , 'verbose', 'off', 'paired', 'on', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10);\n [sa3] = statcond(a{dim}, 'mode', 'bootstrap', 'verbose', 'off', 'paired', 'off', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10);\n [sa4] = statcond(a{dim}, 'mode', 'perm' , 'verbose', 'off', 'paired', 'off', 'returnresamplingarray', 'on', opt{:}, 'naccu', 10);\n \n % select data\n nd = ndims(sa1{1});\n if nd == 2 && size(sa1{1},2) > 1\n for t=1:length(sa1), \n sa1{t} = sa1{t}(end,:); \n sa2{t} = sa2{t}(end,:); \n sa3{t} = sa3{t}(end,:); \n sa4{t} = sa4{t}(end,:); \n end;\n elseif nd == 3\n for t=1:length(sa1), \n sa1{t} = squeeze(sa1{t}(end,end,:));\n sa2{t} = squeeze(sa2{t}(end,end,:));\n sa3{t} = squeeze(sa3{t}(end,end,:));\n sa4{t} = squeeze(sa4{t}(end,end,:));\n end;\n elseif nd == 4\n for t=1:length(sa1), \n sa1{t} = squeeze(sa1{t}(end,end,end,:)); \n sa2{t} = squeeze(sa2{t}(end,end,end,:));\n sa3{t} = squeeze(sa3{t}(end,end,end,:));\n sa4{t} = squeeze(sa4{t}(end,end,end,:));\n end;\n end;\n \n % for paired bootstrap, we make sure that the resampling has only shuffled between conditions\n % for instance [101 2 1003 104 ...] is an acceptable sequence \n if all(rem(sa1{1}(:)',10) == [1:9 0]) && all(rem(sa1{2}(:)',10) == [1:9 0])\n fprintf('Bootstrap paired dim%d resampling method %d Pass\\n', dim, method);\n else error('Bootstrap paired resampling Error');\n end;\n % for paired permutation, in addition, we make sure that the sum accross condition is constant\n % which is not true for bootstrap\n msa = meansa(sa2); msa = msa(:)-msa(1);\n if all(rem(sa1{1}(:)',10) == [1:9 0]) && all(rem(sa1{2}(:)',10) == [1:9 0]) && ...\n all(round(msa) == [0:9]') && length(unique(sa2{1})) == 10 && length(unique(sa2{2})) == 10\n fprintf('Permutation paired dim%d resampling method %d Pass\\n', dim, method);\n else error('Permutation paired resampling Error');\n end;\n % for unpaired bootstrap, only make sure there are enough unique\n % values\n if length(unique(sa3{1})) > 3 && length(unique(sa3{2})) > 3\n fprintf('Bootstrap unpaired dim%d reampling method %d Pass\\n', dim, method);\n else error('Bootstrap unpaired reampling Error');\n end;\n % for unpaired permutation, the number of unique values must be 10\n % and the sum must be constant (not true for bootstrap)\n if length(unique(sa4{1})) == 10 && length(unique(sa4{2})) == 10 && ( floor(mean(meansa(sa4))) == 55 || floor(mean(meansa(sa4))) == 372 )\n fprintf('Permutation unpaired dim%d reampling method %d Pass\\n', dim, method);\n else error('Permutation unpaired reampling Error');\n end;\n \n disp('------------------------');\n end;\nend;\n\n% function to check \nfunction assertsame(varargin)\n\nfor ind = 1:length(varargin)\n if length(varargin{1}) > 2\n for tmpi = 1:length(varargin{1})-1\n assertsame(varargin{1}(tmpi:tmpi+1));\n end;\n return;\n else\n if (varargin{ind}(1)-varargin{ind}(2)) > abs(mean(varargin{ind}))*0.01\n error('Test failed');\n end;\n end;\nend;\ndisp('Test pass');\n\nfunction [meanmat] = meansa(mat)\n\nmeanmat = zeros(size(mat{1}));\nfor index = 1:length(mat)\n meanmat = meanmat+mat{index}/length(mat);\nend;\n\nfunction stats = rm_anova2(Y,S,F1,F2,FACTNAMES)\n%\n% function stats = rm_anova2(Y,S,F1,F2,FACTNAMES)\n%\n% Two-factor, within-subject repeated measures ANOVA.\n% For designs with two within-subject factors.\n%\n% Parameters:\n% Y dependent variable (numeric) in a column vector\n% S grouping variable for SUBJECT\n% F1 grouping variable for factor #1\n% F2 grouping variable for factor #2\n% F1name name (character array) of factor #1\n% F2name name (character array) of factor #2\n%\n% Y should be a 1-d column vector with all of your data (numeric).\n% The grouping variables should also be 1-d numeric, each with same\n% length as Y. Each entry in each of the grouping vectors indicates the\n% level # (or subject #) of the corresponding entry in Y.\n%\n% Returns:\n% stats is a cell array with the usual ANOVA table:\n% Source / ss / df / ms / F / p\n%\n% Notes:\n% Program does not do any input validation, so it is up to you to make\n% sure that you have passed in the parameters in the correct form:\n%\n% Y, S, F1, and F2 must be numeric vectors all of the same length.\n%\n% There must be at least one value in Y for each possible combination\n% of S, F1, and F2 (i.e. there must be at least one measurement per\n% subject per condition).\n%\n% If there is more than one measurement per subject X condition, then\n% the program will take the mean of those measurements.\n%\n% Aaron Schurger (2005.02.04)\n% Derived from Keppel & Wickens (2004) \"Design and Analysis\" ch. 18\n%\n\n%\n% Revision history...\n%\n% 11 December 2009 (Aaron Schurger)\n% \n% Fixed error under \"bracket terms\"\n% was: expY = sum(Y.^2);\n% now: expY = sum(sum(sum(MEANS.^2)));\n%\n\nstats = cell(4,5);\n\nF1_lvls = unique(F1);\nF2_lvls = unique(F2);\nSubjs = unique(S);\n\na = length(F1_lvls); % # of levels in factor 1\nb = length(F2_lvls); % # of levels in factor 2\nn = length(Subjs); % # of subjects\n\nINDS = cell(a,b,n); % this will hold arrays of indices\nCELLS = cell(a,b,n); % this will hold the data for each subject X condition\nMEANS = zeros(a,b,n); % this will hold the means for each subj X condition\n\n% Calculate means for each subject X condition.\n% Keep data in CELLS, because in future we may want to allow options for\n% how to compute the means (e.g. leaving out outliers > 3stdev, etc...).\nfor i=1:a % F1\n for j=1:b % F2\n for k=1:n % Subjs\n INDS{i,j,k} = find(F1==F1_lvls(i) & F2==F2_lvls(j) & S==Subjs(k));\n CELLS{i,j,k} = Y(INDS{i,j,k});\n MEANS(i,j,k) = mean(CELLS{i,j,k});\n end\n end\nend\n\n% make tables (see table 18.1, p. 402)\nAB = reshape(sum(MEANS,3),a,b); % across subjects\nAS = reshape(sum(MEANS,2),a,n); % across factor 2\nBS = reshape(sum(MEANS,1),b,n); % across factor 1\n\nA = sum(AB,2); % sum across columns, so result is ax1 column vector\nB = sum(AB,1); % sum across rows, so result is 1xb row vector\nS = sum(AS,1); % sum across columns, so result is 1xs row vector\nT = sum(sum(A)); % could sum either A or B or S, choice is arbitrary\n\n% degrees of freedom\ndfA = a-1;\ndfB = b-1;\ndfAB = (a-1)*(b-1);\ndfS = n-1;\ndfAS = (a-1)*(n-1);\ndfBS = (b-1)*(n-1);\ndfABS = (a-1)*(b-1)*(n-1);\n\n% bracket terms (expected value)\nexpA = sum(A.^2)./(b*n);\nexpB = sum(B.^2)./(a*n);\nexpAB = sum(sum(AB.^2))./n;\nexpS = sum(S.^2)./(a*b);\nexpAS = sum(sum(AS.^2))./b;\nexpBS = sum(sum(BS.^2))./a;\nexpY = sum(sum(sum(MEANS.^2))); %sum(Y.^2);\nexpT = T^2 / (a*b*n);\n\n% sums of squares\nssA = expA - expT;\nssB = expB - expT;\nssAB = expAB - expA - expB + expT;\nssS = expS - expT;\nssAS = expAS - expA - expS + expT;\nssBS = expBS - expB - expS + expT;\nssABS = expY - expAB - expAS - expBS + expA + expB + expS - expT;\nssTot = expY - expT;\n\n% mean squares\nmsA = ssA / dfA;\nmsB = ssB / dfB;\nmsAB = ssAB / dfAB;\nmsS = ssS / dfS;\nmsAS = ssAS / dfAS;\nmsBS = ssBS / dfBS;\nmsABS = ssABS / dfABS;\n\n% f statistic\nfA = msA / msAS;\nfB = msB / msBS;\nfAB = msAB / msABS;\n\n% p values\npA = 1-fcdf(fA,dfA,dfAS);\npB = 1-fcdf(fB,dfB,dfBS);\npAB = 1-fcdf(fAB,dfAB,dfABS);\n\n% return values\nstats = {'Source','SS','df','MS','F','p';...\n FACTNAMES{1}, ssA, dfA, msA, fA, pA;...\n FACTNAMES{2}, ssB, dfB, msB, fB, pB;...\n [FACTNAMES{1} ' x ' FACTNAMES{2}], ssAB, dfAB, msAB, fAB, pAB;...\n [FACTNAMES{1} ' x Subj'], ssAS, dfAS, msAS, [], [];...\n [FACTNAMES{1} ' x Subj'], ssBS, dfBS, msBS, [], [];...\n [FACTNAMES{1} ' x ' FACTNAMES{2} ' x Subj'], ssABS, dfABS, msABS, [], []};\n \n return\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/functions/statistics/teststat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879991, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3931301619572845}} {"text": "function appdata = sliceomaticsetdata(d,xmesh,ymesh,zmesh)\n% SLICEOMATICSETDATA(rawdata) - Create the data used for\n% sliceomatic in the appdata D.\n\n% Check variables\nerror(nargchk(1,4,nargin))\n\n% Simplify the isonormals\n disp('Smoothing for IsoNormals...');\n d.smooth=smooth3(d.data); % ,'box',5);\n d.reducenumbers=[floor(size(d.data,2)/20)...\n floor(size(d.data,1)/20)...\n floor(size(d.data,3)/20) ];\n d.reducenumbers(d.reducenumbers==0)=1;\n\n\n if nargin == 4\n % Reorder vectors: make them horizontal (prepare to flipdim)\n if size(xmesh,1)>size(xmesh,2) \n xmesh=xmesh';\n end\n if size(ymesh,1)>size(ymesh,2) \n ymesh=ymesh';\n end\n if size(zmesh,1)>size(zmesh,2) \n zmesh=zmesh';\n end\n % Set axis orientation\n xdir='normal';\n ydir='normal';\n zdir='normal';\n if issorted(xmesh)~=1\n xmesh=flipdim(xmesh,2);\n xdir='reverse';\n d.xlim = [xmesh(1) xmesh(end)];\n xmesh=flipdim(xmesh,2);\n else\n d.xlim = [xmesh(1) xmesh(end)];\n end\n if issorted(ymesh)~=1\n ymesh=flipdim(ymesh,2);\n ydir='reverse';\n d.ylim = [ymesh(1) ymesh(end)];\n ymesh=flipdim(ymesh,2);\n else\n d.ylim = [ymesh(1) ymesh(end)];\n end\n % This should not be the case for medical images\n if issorted(zmesh)~=1\n zmesh=flipdim(zmesh,2);\n zdir='reverse';\n d.zlim = [zmesh(1) zmesh(end)];\n zmesh=flipdim(zmesh,2);\n else\n d.zlim = [zmesh(1) zmesh(end)];\n end\n \n % Vol vis suite takes numbers in X/Y form.\n ly = 1:d.reducenumbers(1):size(d.data,2);\n lx = 1:d.reducenumbers(2):size(d.data,1);\n lz = 1:d.reducenumbers(3):size(d.data,3);\n \n for i = 1:length(ly)\n ly(i) = xmesh(ly(i));\n end\n for i = 1:length(lx)\n lx(i) = ymesh(lx(i));\n end\n for i = 1:length(lz)\n lz(i) = zmesh(lz(i));\n end\n \n d.reducelims={ ly lx lz };\n disp('Generating reduction volume...');\n d.reduce= reducevolume(d.data,d.reducenumbers);\n d.reducesmooth=smooth3(d.reduce,'box',5);\n % Set axis\n %d.xlim = [xmesh(1) xmesh(end)];\n %d.ylim = [ymesh(1) ymesh(end)];\n %d.zlim = [zmesh(1) zmesh(end)];\n d.xmesh = xmesh;\n d.ymesh = ymesh;\n d.zmesh = zmesh;\n d.xdir = xdir;\n d.ydir = ydir;\n d.zdir = zdir;\n \n else\n % Vol vis suite takes numbers in X/Y form.\n ly = 1:d.reducenumbers(1):size(d.data,2);\n lx = 1:d.reducenumbers(2):size(d.data,1);\n lz = 1:d.reducenumbers(3):size(d.data,3);\n \n d.reducelims={ ly lx lz };\n disp('Generating reduction volume...');\n d.reduce= reducevolume(d.data,d.reducenumbers);\n d.reducesmooth=smooth3(d.reduce,'box',5);\n\n d.xlim = [1 size(d.data,2)];\n d.ylim = [1 size(d.data,1)];\n d.zlim = [1 size(d.data,3)];\n d.xmesh = nan;\n d.ymesh = nan;\n d.zmesh = nan;\n d.xdir = 'normal';\n d.ydir = 'normal';\n d.zdir = 'normal';\n end\n \n appdata = d;", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Importing/dicomrt-toolbox-v2/contributed/sliceomatic/private/sliceomaticsetdata.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3931044107064614}} {"text": "function dx = tora_dx(u, x)\n\ntora_lpv\n\np = [x(3) x(4)];\n\nAB = querylpv(lpv, p);\n\n% dx = A x + B u\ndx = AB * [x(:); u];\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/25514-tp-tool/tptool/example/tora/tora_dx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544335934765, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3931044107064613}} {"text": "function [dv, dvArr, flyBy1DVVect, flyBy2DVVect, flyBy1Rp, flyBy2Rp, ...\n xferOrbitP1, xferOrbitP2, xferOrbitP3, flyBy1OrbitIn, flyBy1OrbitOut, ...\n flyBy2OrbitIn, flyBy2OrbitOut] = ...\n findOptimalTwoFlyByTraj(x, departBodyInfo, flyby1BodyInfo, flyby2BodyInfo, arrivalBodyInfo, gmuXfr)\n%findOptimalTwoFlyByTraj Summary of this function goes here\n% Detailed explanation goes here\n if(length(x)~=4)\n error('Length of x in findOptimalTwoFlyByTraj must be 4');\n end\n \n departDate = x(1);\n phase1TOF = x(2);\n phase2TOF = x(3);\n phase3TOF = x(4);\n \n xDates = [departDate, \n departDate + phase1TOF,\n departDate + phase1TOF + phase2TOF,\n departDate + phase1TOF + phase2TOF + phase3TOF];\n \n preFunc1 = @(arrivalUT, departUT) findOptimalDepartureArrivalObjFunc(arrivalUT, departUT, departBodyInfo, flyby1BodyInfo, gmuXfr, 'departDVRadioBtn');\n objFuncDepart = @(x) preFunc1(x(2), x(1));\n \n objFuncFlyby1DV = @(x) flybyDVObjFunc([xDates(1) xDates(2) xDates(3)], departBodyInfo, flyby1BodyInfo, flyby2BodyInfo, gmuXfr);\n objFuncFlyby2DV = @(x) flybyDVObjFunc([xDates(2) xDates(3) xDates(4)], flyby1BodyInfo, flyby2BodyInfo, arrivalBodyInfo, gmuXfr);\n \n preFunc2 = @(arrivalUT, departUT) findOptimalDepartureArrivalObjFunc(arrivalUT, departUT, flyby2BodyInfo, arrivalBodyInfo, gmuXfr, 'arrivalDVRadioBtn');\n objFuncArrival = @(x) preFunc2(x(4), x(3));\n \n dv1 = objFuncDepart(xDates);\n [dv2, flyBy1DVVect, flyBy1Rp, xferOrbitP1, xferOrbitP2, flyBy1OrbitIn, flyBy1OrbitOut] = objFuncFlyby1DV(xDates);\n [dv3, flyBy2DVVect, flyBy2Rp, xferOrbitP2, xferOrbitP3, flyBy2OrbitIn, flyBy2OrbitOut] = objFuncFlyby2DV(xDates);\n dv4 = objFuncArrival(xDates);\n dvArr = [dv1, dv2, dv3, dv4];\n \n dv = dv1 + dv2 + dv3 + dv4;\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/astrodynamics/flyby/findOptimalTwoFlyByTraj.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587586, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3931044036597374}} {"text": "function table_io_test03 ( )\n\n%*****************************************************************************80\n%\n%% TABLE_IO_TEST03 tests I4MAT_WRITE.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 10 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n n = 20;\n m = 5;\n output_filename = 'i4mat_05_00020.txt';\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST03\\n' );\n fprintf ( 1, ' I4MAT_WRITE writes an I4MAT file.\\n' );\n\n table = i4mat_indicator ( m, n );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Spatial dimension M = %d\\n', m );\n fprintf ( 1, ' Number of points N = %d\\n', n );\n\n i4mat_print_some ( m, n, table, 1, 1, 5, 5, ...\n ' 5x5 portion of the data written to file:' );\n\n i4mat_write ( output_filename, m, n, table );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Wrote the file \"%s\".\\n', output_filename );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/table_io/table_io_test03.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.6992544085240401, "lm_q1q2_score": 0.3931043966130132}} {"text": "function p = approxeq_pot(A, B, tol)\n\nif nargin < 3, tol = 1e-3; end\n\np = approxeq(A.p, B.p, tol) & approxeq(A.u, B.u, tol);\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/potentials/@upot/approxeq_pot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6548947290421275, "lm_q1q2_score": 0.39306019291195105}} {"text": "%Program for one sided image reflection along a Line\nfunction R = reflection(I,L)\n%Author : Jeny Rajan\n%I - Image to be Reflected\n%L - Line position \n%R - Reflected image \n%eg : R = reflection(I,128);\n% L should be between 1 and number of columns\n[x y z]=size(I);\nR=zeros(x,y,z);\nR(:,L+1:y,:)=I(:,1:y-L,:);\nR(:,1:L,:)=I(:,L:-1:1,:);\nR=uint8(R);\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13914-image-reflection/reflection.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947155710233, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3930601848267511}} {"text": "function [ y, j, f, ierror ] = yjf_check_common ( y, j, f )\n\n%*****************************************************************************80\n%\n%% YJF_CHECK_COMMON normalizes a Common YJF date.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 25 February 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, J, real F, the YJF date.\n%\n% Output, integer IERROR, nonzero if there was an error.\n%\n [ y, j, ierror ] = yj_check_common ( y, j );\n\n if ( ierror ~= 0 )\n return\n end\n%\n% Force the fraction to lie between 0 and 1.\n%\n while ( f < 0.0 )\n f = f + 1.0;\n j = j - 1;\n end\n\n while ( 1.0 <= f )\n f = f - 1.0;\n j = j + 1;\n end\n\n return\nend", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/yjf_check_common.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883449573376, "lm_q2_score": 0.6548947290421276, "lm_q1q2_score": 0.39306018354507866}} {"text": "% SYNTAX:\n% [data_d, svs, nSV] = hmrR_MotionCorrectPCA(data_d, mlActMan, mlActAuto, tIncMan, tIncAuto, nSV)\n%\n% UI NAME:\n% Motion_Correct_PCA\n%\n% This function uses PCA to filter only the segments of data identified as\n% a motion artifact. The motion artifacts are indicated in the tInc vector\n% by the value of 0.\n%\n%\n% INPUTS\n% data_d: SNIRF object containing data matrix, timepoints x sd pairs\n% mlActMan: Cell array of vectors, one for each time base in data, specifying \n% active/inactive channels with 1 meaning active, 0 meaning inactive\n% mlActAuto: Cell array of vectors, one for each time base in data, specifying \n% active/inactive channels with 1 meaning active, 0 meaning inactive\n% tIncMan: Cell array for eqach data block with vectors of length time points\n% where 1's indicating data included and 0's indicating motion artifact\n% tIncAuto: Cell array for eqach data block with vectors of length time points\n% where 1's indicating data included and 0's indicating motion artifact\n% nSV: Cell array for each data block with the number of principal components to remove\n% from each data block. If this number is less than 1, then the filter removes the first n\n% components of the data that removes a fraction of the variance up to nSV. Percent variance \n% you want to remove, or give an integer for number ofcomponents to remove\n%\n%\n% OUTPUTS\n% data_dN: SNIRF object containing the motion corrected data matrix.\n% svs: Cell array for each data block with the singular values of the PCA\n% nSV: Cell array for each data block with the number of singular values removed from the data.\n%\n%\n% USAGE OPTIONS:\n% Motion_Correct_PCA: [dod, svs, nSV] = hmrR_MotionCorrectPCA(dod, mlActMan, mlActAuto, tIncMan, tIncAuto, nSV)\n%\n% PARAMETERS:\n% nSV: 0.0\n%\n% PREREQUISITES:\n% Intensity_to_Delta_OD: dod = hmrR_Intensity2OD( intensity )\n%\nfunction [data_dN, svs, nSV] = hmrR_MotionCorrectPCA(data_d, mlActMan, mlActAuto, tIncMan, tIncAuto, nSV)\n\n% Init output \ndata_dN = DataClass.empty();\nsvs = cell(length(data_d),1);\nif ~iscell(nSV)\n nSV = repmat({nSV}, length(data_d),1);\nend\n\n% Check input args\nif isempty(tIncMan)\n tIncMan = cell(length(data_d),1);\nend\nif isempty(tIncAuto)\n tIncAuto = cell(length(data_d),1);\nend\nif isempty(mlActMan)\n mlActMan = cell(length(data_d),1);\nend\nif isempty(mlActAuto)\n mlActAuto = cell(length(data_d),1);\nend\n\nfor iBlk=1:length(data_d)\n data_dN(iBlk) = DataClass(data_d(iBlk));\n\n d = data_d(iBlk).GetDataTimeSeries();\n MeasList = data_d(iBlk).GetMeasList();\n mlActMan{iBlk} = mlAct_Initialize(mlActMan{iBlk}, MeasList);\n mlActAuto{iBlk} = mlAct_Initialize(mlActAuto{iBlk}, MeasList); \n mlAct = mlActMan{iBlk}(:,3) & mlActAuto{iBlk}(:,3);\n\n if isempty(tIncMan{iBlk})\n tIncMan{iBlk} = ones(size(d,1),1);\n end\n if isempty(tIncAuto{iBlk})\n tIncAuto{iBlk} = ones(size(d,1),1);\n end\n tInc = tIncMan{iBlk} & tIncAuto{iBlk};\n \n lstNoInc = find(tInc==0);\n lstAct = find(mlAct==1);\n \n if isempty(lstNoInc)\n nSV{iBlk} = 0;\n continue;\n end\n \n %\n % Do PCA\n %\n y = d(lstNoInc,lstAct);\n yo = y;\n \n c = y.' * y;\n [V,St,foo] = svd(c);\n svs{iBlk} = diag(St) / sum(diag(St));\n \n svsc = svs{iBlk};\n for idx = 2:size(svs{iBlk},1)\n svsc(idx) = svsc(idx-1) + svs{iBlk}(idx);\n end\n if nSV{iBlk}<1 & nSV{iBlk}>0 % find number of SV to get variance up to nSV{iBlk}\n ev = diag(svsclstMf(1)\n lstMs = [1;lstMs];\n end\n if lstMs(end)>lstMf(end)\n lstMf(end+1,1) = length(tInc);\n end\n lstMb = lstMf-lstMs;\n for ii=2:length(lstMb)\n lstMb(ii) = lstMb(ii-1) + lstMb(ii);\n end\n \n dN = d;\n \n for ii=1:length(lstAct)\n jj = lstAct(ii);\n \n lst = (lstMs(1)):(lstMf(1)-1);\n if lstMs(1)>1\n dN(lst,jj) = yc(1:lstMb(1),ii) - yc(1,ii) + dN(lst(1),jj);\n else\n dN(lst,jj) = yc(1:lstMb(1),ii) - yc(lstMb(1),ii) + dN(lst(end),jj);\n end\n \n for kk=1:(length(lstMf)-1)\n lst = (lstMf(kk)-1):lstMs(kk+1);\n dN(lst,jj) = d(lst,jj) - d(lst(1),jj) + dN(lst(1),jj);\n \n lst = (lstMs(kk+1)):(lstMf(kk+1)-1);\n dN(lst,jj) = yc((lstMb(kk)+1):lstMb(kk+1),ii) - yc(lstMb(kk)+1,ii) + dN(lst(1),jj);\n end\n \n if lstMf(end) 1\n figure\nend\nfor plotCount = 1 : numPlots\n if numPlots > 1\n \tsubplot(numPlotsY, numPlotsX, plotCount);\n end\n\thold all\n\t% Find eventIndex nearest to timePoint\n\teventIndex = find(timeStamp >= timePoints(plotCount), 1, 'first');\n\tfirstIndex = max(1, eventIndex - numPixelsToSelectEachWay);\n\tlastIndex = min(numEvents, eventIndex + numPixelsToSelectEachWay);\n\tselectedLogical = [false(firstIndex - 1, 1); ...\n\t\t\t\t\ttrue(lastIndex - firstIndex + 1, 1); ...\n\t\t\t\t\tfalse(numEvents - lastIndex, 1)];\n\ttypeSelected = type(selectedLogical);\n typeUniqueValues = unique(typeSelected);\n \n for uniqueValue = typeUniqueValues'\n selectedByTypeLogical = selectedLogical & type == uniqueValue;\n \tplot(x(selectedByTypeLogical), y(selectedByTypeLogical), '.'); \n end\n \n\taxis equal tight\n\tif ~exist('flipVertical', 'var') || flipVertical\n\t\tset(gca, 'YDir', 'reverse')\n\tend\n if exist('flipHorizontal', 'var') && flipHorizontal\n\t\tset(gca, 'XDir', 'reverse')\n end\n\ttitle([num2str(double(timeStamp(eventIndex)) / 1e6) ' s'])\nend\n\n", "meta": {"author": "panpanfei", "repo": "Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera", "sha": "aabdd6ae323726132b0e0592ce151461e3ad7c5a", "save_path": "github-repos/MATLAB/panpanfei-Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera", "path": "github-repos/MATLAB/panpanfei-Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera/Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera-aabdd6ae323726132b0e0592ce151461e3ad7c5a/event_cvpr_github/read_data/code/AedatTools-master/Matlab/PlotPoint2DLikePolarity.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.392882970220696}} {"text": "function mask = mask_create_from_image_set(imgs, outname, atleastN, varargin)\n% Take a set of images and create a mask of voxels in which at least N\n% subjects have valid (not exactly zero, non NaN) data.\n%\n% :Usage:\n% ::\n%\n% mask = mask_create_from_image_set(imgs, outname, atleastN, ['sum'])\n%\n% This makes a useful results mask for a set of images, i.e., in a\n% group analysis.\n%\n% :Optional: 'sum' input writes the sum image instead of the mask image,\n% so that the values in the image reflect the number of input images\n% with valid values.\n%\n% compatible with SPM5 and above only!\n%\n% :Examples:\n% ::\n%\n% mask_create_from_image_set(EXPT.SNPM.P{1}, 'mask_all_valid.img');\n%\n% imgs = filenames('vascular_mask_*img');\n% mask_create_from_image_set(imgs, 'vascular_group_sum.img', 6, 'sum');\n%\n% ..\n% Tor Wager, April 2, 2008\n% Edit Sept 13, 2008: Sum image output option\n% ..\n\n write_sum = 0;\n \n for i = 1:length(varargin)\n if ischar(varargin{i})\n switch varargin{i}\n % reserved keywords\n case {'sum', 'sumimage'}, write_sum = 1; \n \n otherwise, warning(['Unknown input string option:' varargin{i}]);\n end\n end\n end\n \n imgs = strvcat(imgs); % enforce string\n \n if nargin < 3 || isempty(atleastN), atleastN = size(imgs, 1); end\n \n spm_defaults\n \n disp('Mapping images.');\n V = spm_vol(imgs);\n \n disp('Checking dimensions and spaces.');\n anybad = iimg_check_volinfo(V(1), V);\n if anybad, error('Exiting.'); end\n \n disp('Reading images.');\n dat = spm_read_vols(V);\n \n % number of subjects for which each vox is valid \n sumimg = sum(abs(dat) > eps & ~isnan(dat), 4);\n \n % threshold\n mask = double(sumimg >= atleastN);\n \n \n % write output\n if ~isempty(outname)\n \n \n outV = struct( 'fname', outname, 'mat', V(1).mat, 'dim', V(1).dim, 'dt', V(1).dt, 'pinfo', [1 0 0]', 'n', [1 V(1).n(2)] );\n outV.descrip = sprintf('At least %3.0f out of %3.0f images valid', atleastN, size(imgs, 1));\n \n fprintf('Writing: %s\\n', outV.fname);\n \n if write_sum\n spm_write_vol(outV, sumimg);\n else\n spm_write_vol(outV, mask);\n end\n end\n \nend\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Image_computation_tools/mask_create_from_image_set.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.392882970220696}} {"text": "filename='Gripping_triangle_coarse';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'nonadjoint_compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\nconstraint_case = 'INEQUALITY';\noptimizer = 'SLERP'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Gripping/GrippingTriangleCoarse_Case_1_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7341195385342971, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.39282621149379565}} {"text": "function writeAllLabeledImages(imdir, imsegs, pg, outdir)\n% writeAllLabeledImages(imdir, imsegs, pg, outdir)\n%\n% Write label images to specified outdir\n%\n\nDO_GT = 0;\nif isempty(pg)\n disp('Writing ground truth')\n DO_GT = 1;\nend\n\nfor f = 1:numel(imsegs)\n \n if DO_GT\n nclasses = numel(imsegs(f).label_names);\n pg{f} = zeros(imsegs(f).nseg, nclasses);\n lab = imsegs(f).labels;\n ind = find(lab>0);\n pg{f}(ind + imsegs(f).nseg*(lab(ind)-1)) = 1;\n end\n \n im = im2double(imread([imdir '/' imsegs(f).imname]));\n disp([num2str(f) ': ' imsegs(f).imname])\n [vc, hc] = splitpg(pg{f}); \n \n lim = APPgetLabeledImage2(im, imsegs(f), vc, hc);\n \n %system(['cp ' imdir '/' imsegs(f).imname ' ' outdir '/' imsegs(f).imname]);\n imwrite(lim, [outdir '/' strtok(imsegs(f).imname, '.') '.l.jpg'], 'Quality', 90);\nend\n \n \n ", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/Toolbox/SpatialLayout_shrink/spatiallayoutcode/GeometricContext/geomContext_src_07_02_08/src/writeAllLabeledImages.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195385342971, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39282621149379554}} {"text": "function [V,D]=gabmuleigs(K,c,p3,varargin)\n%GABMULEIGS Eigenpairs of Gabor multiplier\n% Usage: h=gabmuleigs(K,c,g,a);\n% h=gabmuleigs(K,c,a);\n% h=gabmuleigs(K,c,ga,gs,a);\n%\n% Input parameters:\n% K : Number of eigenvectors to compute.\n% c : symbol of Gabor multiplier\n% g : analysis/synthesis window\n% ga : analysis window\n% gs : synthesis window\n% a : Length of time shift.\n% Output parameters:\n% V : Matrix containing eigenvectors.\n% D : Eigenvalues.\n%\n% `gabmuleigs` has been deprecated. Please use construct a frame multiplier\n% and use |framemuleigs| instead.\n%\n% A call to `gabmuleigs(K,c,ga,gs,a)` can be replaced by ::\n%\n% [Fa,Fs]=framepair('dgt',ga,gs,a,M);\n% [V,D]=framemuleigs(Fa,Fs,s,K);\n%\n% Original help:\n% --------------\n%\n% `gabmuleigs(K,c,g,a)` computes the *K* largest eigenvalues and eigen-\n% vectors of the Gabor multiplier with symbol *c* and time shift *a*. The\n% number of channels is deduced from the size of the symbol *c*. The\n% window *g* will be used for both analysis and synthesis.\n%\n% `gabmuleigs(K,c,ga,gs,a)` does the same using the window the window *ga*\n% for analysis and *gs* for synthesis.\n%\n% `gabmuleigs(K,c,a)` does the same using the a tight Gaussian window of\n% for analysis and synthesis.\n%\n% If *K* is empty, then all eigenvalues/pairs will be returned.\n%\n% `gabmuleigs` takes the following parameters at the end of the line of input\n% arguments:\n%\n% 'tol',t Stop if relative residual error is less than the\n% specified tolerance. Default is 1e-9 \n%\n% 'maxit',n Do at most n iterations.\n%\n% 'iter' Call `eigs` to use an iterative algorithm.\n%\n% 'full' Call `eig` to sole the full problem.\n%\n% 'auto' Use the full method for small problems and the\n% iterative method for larger problems. This is the\n% default. \n%\n% 'crossover',c\n% Set the problem size for which the 'auto' method\n% switches. Default is 200.\n%\n% 'print' Display the progress.\n%\n% 'quiet' Don't print anything, this is the default.\n%\n% See also: gabmul, dgt, idgt, gabdual, gabtight\n\nwarning(['LTFAT: GABMULEIGS has been deprecated, please use FRAMEMULEIGS ' ...\n 'instead. See the help on FRAMEMULEIGS for more details.']);\n\n% Change this to 1 or 2 to see the iterative method in action.\nprintopts=0;\n\nif nargin<3\n error('%s: Too few input parameters.',upper(mfilename));\nend;\n\nif nargout==2\n doV=1;\nelse\n doV=0;\nend;\n\nM=size(c,1);\nN=size(c,2);\n\nistight=1;\nif numel(p3)==1\n % Usage: h=gabmuleigs(c,K,a); \n a=p3;\n L=N*a;\n ga=gabtight(a,M,L);\n gs=ga;\n arglist=varargin;\nelse \n if numel(varargin{1})==1\n % Usage: h=gabmuleigs(c,K,g,a); \n ga=p3;\n gs=p3;\n a=varargin{1};\n L=N*a;\n arglist=varargin(2:end);\n else \n if numel(varargin{2})==1\n % Usage: h=gabmuleigs(c,K,ga,gs,a); \n ga=p3;\n gs=varargin{1};\n a =varargin{2};\n L=N*a;\n istight=0;\n arglist=varargin(3:end);\n end; \n end;\nend;\n\ndefinput.keyvals.maxit=100;\ndefinput.keyvals.tol=1e-9;\ndefinput.keyvals.crossover=200;\ndefinput.flags.print={'quiet','print'};\ndefinput.flags.method={'auto','iter','full'};\n\n\n[flags,kv]=ltfatarghelper({},definput,arglist);\n\n\n% Do the computation. For small problems a direct calculation is just as\n% fast.\n\nif (flags.do_iter) || (flags.do_auto && L>kv.crossover)\n \n if flags.do_print\n opts.disp=1;\n else\n opts.disp=0;\n end;\n opts.isreal = false;\n opts.maxit = kv.maxit;\n opts.tol = kv.tol;\n \n % Setup afun\n afun(1,c,ga,gs,a,M,L);\n \n if doV\n [V,D] = eigs(@afun,L,K,'LM',opts);\n else\n D = eigs(@afun,L,K,'LM',opts);\n end;\n\nelse\n % Compute the transform matrix.\n bigM=tfmat('gabmul',c,ga,gs,a);\n\n if doV\n [V,D]=eig(bigM);\n else\n D=eig(bigM);\n end;\n\n\nend;\n\n% The output from eig and eigs is a diagonal matrix, so we must extract the\n% diagonal.\nD=diag(D);\n\n% Sort them in descending order\n[~,idx]=sort(abs(D),1,'descend');\nD=D(idx(1:K));\n\nif doV\n V=V(:,idx(1:K));\nend;\n\n% Clean the eigenvalues, if we know that they are real-valued\n%if isreal(ga) && isreal(gs) && isreal(c)\n% D=real(D);\n%end;\n\n% The function has been written in this way, because Octave (at the time\n% of writing) does not accept additional parameters at the end of the\n% line of input arguments for eigs\nfunction y=afun(x,c_in,ga_in,gs_in,a_in,M_in,L_in)\n persistent c;\n persistent ga;\n persistent gs;\n persistent a;\n persistent M;\n persistent L; \n \n if nargin>1\n c = c_in; \n ga = ga_in;\n gs = gs_in;\n a = a_in; \n M = M_in; \n L = L_in;\n else\n y=comp_idgt(c.*comp_dgt(x,ga,a,M,[0 1],0,0,0),gs,a,[0 1],0,0);\n end;\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/deprecated/gabmuleigs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195385342971, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39282621149379554}} {"text": "function test_model = test_nrsfm(test,model_3d,test_em_iters)\n% Use a trained shape model to predict keypoints on new instances\n% given the bounding box and visible keypoints\n% NOTE: The keypoints are already scaled to make all bboxes the same size\n params = get_params();\n P = test.points;\n MD = isnan(P(1:end/2,:));\n P(isnan(P)) = 0;\n tol = params.nrsfm.tol;\n max_em_iter = test_em_iters;\n try\n seg.poly_x = test.poly_x;\n seg.poly_y = test.poly_y;\n catch\n seg = test.mask;\n end\n % Do EM for inference with missing data\n [P3, RO, Tr, basis_coeffs,c] = em_sfm_known_shape(P, MD, model_3d.S_bar,...\n model_3d.defBasis, model_3d.sigma_sq, seg, test.imsize, test.bbox, tol, max_em_iter);\n\n %Set up test_model\n\n test_model.class = model_3d.class;\n test_model.S_bar = model_3d.S_bar;\n test_model.defBasis = model_3d.defBasis;\n test_model.part_names = model_3d.part_names;\n test_model.sigma_sq = model_3d.sigma_sq;\n test_model.points3 = P3;\n test_model.rots = RO;\n test_model.trs = Tr;\n test_model.def_weights = basis_coeffs;\n test_model.voc_image_id = test.voc_image_id;\n if(isfield(test,'voc_rec_id'))\n test_model.voc_rec_id = test.voc_rec_id;\n end\n if(isfield(test,'flip'))\n test_model.flip = test.flip;\n end\n test_model.bbox = test.bbox;\n test_model.points2 = test.points;\n test_model.params = params;\n test_model.c = c;\n test_model.seg = seg;\nend\n", "meta": {"author": "akar43", "repo": "CategoryShapes", "sha": "55c9dab2293bcaceaaa3bf5fea782fdbf930fadb", "save_path": "github-repos/MATLAB/akar43-CategoryShapes", "path": "github-repos/MATLAB/akar43-CategoryShapes/CategoryShapes-55c9dab2293bcaceaaa3bf5fea782fdbf930fadb/nrsfm/test_nrsfm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3928262052683995}} {"text": "function [l, L_rf, L_sf, L_k, L_seg, L_n] = ...\n retroProjHmgLinFromPinHoleOnRob(Rf, Sf, k, seg, n)\n\n% RETROPROJHMGLINFROMPINHOLEONROB retroprj Hmg Line from pinhole on robot.\n\n% Copyright 2009 Teresa Vidal.\n\n\nif nargout == 1\n \n ls = invPinHoleHmgLin(k, seg, n) ;\n lr = fromFrameHmgLin(Sf, ls);\n l = fromFrameHmgLin(Rf, lr);\n \nelse % Jacobians requested\n \n [ls, LS_seg, LS_n, LS_k] = invPinHoleHmgLin(seg, n, k) ;\n [lr, LR_sf, LR_ls] = fromFrameHmgLin(Sf, ls);\n [l, L_rf, L_lr] = fromFrameHmgLin(Rf, lr);\n\n L_sf = L_lr*LR_sf;\n L_ls = L_lr*LR_ls;\n L_k = L_ls*LS_k;\n L_seg = L_ls*LS_seg;\n L_n = L_ls*LS_n;\n \nend\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/Observations/retroProjHmgLinFromPinHoleOnRob.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.39282404352870115}} {"text": "classdef GDE3 < ALGORITHM\n% \n% Generalized differential evolution 3\n\n%------------------------------- Reference --------------------------------\n% S. Kukkonen and J. Lampinen, GDE3: The third evolution step of\n% generalized differential evolution, Proceedings of the IEEE Congress on\n% Evolutionary Computation, 2005, 443-450.\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n methods\n function main(Algorithm,Problem)\n %% Generate random population\n Population = Problem.Initialization();\n\n %% Optimization\n while Algorithm.NotTerminated(Population)\n Offspring = OperatorDE(Problem,Population,Population(randi(Problem.N,1,Problem.N)),Population(randi(Problem.N,1,Problem.N)));\n Population = EnvironmentalSelection(Population,Offspring,Problem.N);\n end\n end\n end\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/GDE3/GDE3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.39280264063410186}} {"text": "function [KB] = TB2KB(TB)\n% Convert computery things from terabytes to kilobytes.\n% Chad A. Greene 2012\nKB = TB*1073741824 ;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35258-unit-converters/unit_converters/TB2KB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3928026406341018}} {"text": "function rx = rxSaveBestrotvol(rx,savePath);\n%\n% rxSaveBestrotvol([rx],[savePath]);\n%\n% Save a mrAlign3 bestrotvol.mat file.\n%\n% ras 03/05\nif ieNotDefined('rx')\n cfig = findobj('Tag','rxControlFig');\n rx = get(cfig,'UserData');\nend\n\nif ieNotDefined('savePath')\n savePath = fullfile(pwd,'bestrotvol.mat');\nend\n\nnewXform = rx.xform;\n\nA = newXform(1:3,1:3);\nb = newXform(1:3,4)';\n\n% account for scale factors\nscaleFac(1,:) = 1./rx.rxVoxelSize;\nscaleFac(2,:) = 1./rx.volVoxelSize;\nrot = diag(1./scaleFac(2,:))*A*diag(scaleFac(1,:));\ntrans = b ./ scaleFac(2,:);\n\nsave(savePath,'rot','trans','scaleFac');\nfprintf('Saved %s.\\n',savePath);\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAnatomy/mrRx/rxSaveBestrotvol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3928026406341018}} {"text": "classdef Max < Algorithm\n \n methods (Access = public)\n \n function obj = Max()\n obj.name = 'Max';\n obj.inputPort = DataType.kSignal;\n obj.outputPort = DataType.kFeature;\n end\n \n function dataOut = compute(~,signal)\n dataOut = max(signal);\n end\n \n function metrics = computeMetrics(~,input)\n n = size(input,1);\n flops = 1 * n;\n memory = 1;\n outputSize = Constants.kFeatureBytes;\n metrics = Metric(flops,memory,outputSize);\n end\n end\nend\n", "meta": {"author": "avenix", "repo": "WDK", "sha": "c525222b02bd390b4758d30f1cd8b19af043108e", "save_path": "github-repos/MATLAB/avenix-WDK", "path": "github-repos/MATLAB/avenix-WDK/WDK-c525222b02bd390b4758d30f1cd8b19af043108e/ARC/algorithm/6-featureExtraction/time domain/Max.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3928026333598574}} {"text": "function []=fdisp(Y,n,T,endo,stringdates2,decimaldates2,Fstartlocation,Fendlocation,forecast_estimates,pref)\n\n\n\n% function []=fdisp(Y,n,T,endo,stringdates2,decimaldates2,Fstartlocation,Fendlocation,forecast_estimates,datapath)\n% plots the results for unconditional forecasts\n% inputs: - matrix 'Y': matrix of regressands for the VAR model (defined in 1.1.8)\n% - integer 'n': number of endogenous variables in the BVAR model (defined p 7 of technical guide)\n% - integer 'T': number of sample time periods (defined p 7 of technical guide)\n% - cell 'endo': list of endogenous variables of the model\n% - cell 'stringdates2': date strings for the sample+forecasts period\n% - vector 'decimaldates2': dates converted into decimal values, for the sample+forecasts period\n% - integer 'Fstartlocation': position of the forecast start date in stringdates2\n% - integer 'Fendlocation': position of the forecast end date in stringdates2\n% - cell 'forecast_estimates': lower bound, point estimates, and upper bound for the unconditional forecasts\n% - string 'datapath': user-supplied path to excel data spreadsheet\n% outputs: none\n\n\n% first, create a cell that will store the data to be plot\nplotdata=cell(n,1);\n\n% each cell entry is a matrix of actual and forecast values\n% this matrix comprises 4 rows: the first row is actual data, while the three other rows are the estimates (point estimates and confidence bands) for the forecasts\n% also, this matrix has a number of rows equal to the dimension of decimaldates2, which comprises the total period sample+forecasts\n\n% loop over variables\n\n \nfor ii=1:n\n plotdata{ii,1}=nan(4,size(decimaldates2,1));\n % record actual sample values\n plotdata{ii,1}(1,1:T)=Y(:,ii)';\n % copy the last point of the actual sample for the forecast part of the matrix (required to have a clean plot)\n plotdata{ii,1}(:,Fstartlocation-1)=repmat(Y(Fstartlocation-1,ii),4,1);\n % record forecast, lower bound\n plotdata{ii,1}(2,Fstartlocation:Fendlocation)=forecast_estimates{ii,1}(1,:);\n % record forecast, point estimate\n plotdata{ii,1}(3,Fstartlocation:Fendlocation)=forecast_estimates{ii,1}(2,:);\n % record forecast, upper bound\n plotdata{ii,1}(4,Fstartlocation:Fendlocation)=forecast_estimates{ii,1}(3,:);\nend\n\n\nif pref.plot \n\n% create forecast figure\n% then plot actual vs. fitted\nforecast=figure('Tag','BEARresults');\nset(forecast,'Color',[0.9 0.9 0.9]);\nset(forecast,'name','unconditional forecasts');\nncolumns=ceil(n^0.5);\nnrows=ceil(n/ncolumns);\nfor ii=1:n\nsubplot(nrows,ncolumns,ii);\nhold on\nXpatch=[decimaldates2(Fstartlocation-1:Fendlocation,1)' fliplr((decimaldates2(Fstartlocation-1:Fendlocation,1))')];\nYpatch=[plotdata{ii,1}(2,Fstartlocation-1:Fendlocation) fliplr(plotdata{ii,1}(4,Fstartlocation-1:Fendlocation))];\nFpatch=patch(Xpatch,Ypatch,[0.7 0.78 1]);\nset(Fpatch,'facealpha',0.6);\nset(Fpatch,'edgecolor','none');\nplot(decimaldates2,plotdata{ii,1}(3,:),'Color',[0.4 0.4 1],'LineWidth',2);\nplot(decimaldates2,plotdata{ii,1}(1,:),'Color',[0 0 0],'LineWidth',2);\nhold off\nset(gca,'XLim',[decimaldates2(1,1) decimaldates2(end,1)],'FontName','Times New Roman');\nset(gca,'XGrid','on');\nset(gca,'YGrid','on');\ntitle(endo{ii,1},'FontName','Times New Roman','FontSize',10,'FontWeight','normal','Interpreter','none');\nend\n\nend % pref.plot\n% finally, save on excel\nbear.data.excelrecord5fcn(stringdates2, endo, plotdata, n, pref)\n\n\n", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tbx/bear/+bear/fdisp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3928026333598574}} {"text": "function [f,g] = detGrad(fun,x0,xdata)\n%DETGRAD Determine whether supplied function contains gradient information\n\n% Copyright (C) 2011 Jonathan Currie (IPL)\n\n%Sort out gradient (unfortunately rather inefficient)\nno = nargout(fun);\n\nif(no == 1)\n f = fun;\n g = [];\nelseif(no == 2)\n f = @(x) fval(fun,x);\n g = @(x) gval(fun,x);\nelseif(no < 0)\n %Either anonymous function or varargout (i.e. deal?)\n try\n if(nargin(fun) > 1)\n fun(x0,xdata);\n else\n fun(x0); \n end\n f = fun;\n g = [];\n catch me\n try\n [~,~] = fun(x0);\n f = @(x) fval(fun,x);\n g = @(x) gval(fun,x);\n catch \n error(['Unknown function / gradient format: ' me.message])\n end\n end\n \nelse\n error('Unknown function / gradient format');\nend\n\n%Dummy functions\nfunction f = fval(fun,x)\n[f,~] = fun(x);\n\nfunction g = gval(fun,x)\n[~,g] = fun(x);\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/math/opti/Utilities/opti/detGrad.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.3928026260856128}} {"text": "\nfunction exampleFilter\n% function exampleFilter\n%\n% Example of how the Kalman filter performs for real data\n\nload raw\n\n\n%Apply filter\nk=Kalman_Stack_Filter(raw);\nk75=Kalman_Stack_Filter(raw,0.75);\n\n\n%Set up image window\nminMax=[min(raw(:)),max(raw(:))];\nclf, colormap gray\n\nsubplot(1,3,1)\nimagesc(raw(:,:,1))\ntitle('original')\nset(gca,'clim',minMax), axis off equal\n\nsubplot(1,3,2)\nimagesc(k(:,:,1))\ntitle('filtered, gain=0.5')\nset(gca,'clim',minMax), axis off equal\n\nsubplot(1,3,3)\nimagesc(k75(:,:,1))\ntitle('filtered, gain=0.75')\nset(gca,'clim',minMax), axis off equal\n\n\n%Loop movie \ndisp('crtl-c to stop movie')\nwhile 1\n for i=1:size(k,3)\n \n subplot(1,3,1)\n set(get(gca,'children'),'CData',raw(:,:,i))\n \n subplot(1,3,2)\n set(get(gca,'children'),'CData',k(:,:,i))\n \n subplot(1,3,3)\n set(get(gca,'children'),'CData',k75(:,:,i))\n \n \n pause(0.05)\n drawnow\n end\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26334-kalman-filter-for-noisy-movies/exampleFilter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3928026260856127}} {"text": "function [segclassifier] = mcmcTrainSegmentationClassifier2(features, labels, weights, maxdata, classparams)\n\nif exist('classparams') && ~isempty(classparams)\n nnodes = classparams(1);\n ntrees = classparams(2);\n stopval = classparams(3);\nelse\n ntrees = 20;\n nnodes = 8;\n stopval = 0;\nend\n\nif ~exist('maxdata') || isempty(maxdata)\n maxdata = 25000;\nend\n\n[data, lab, w] = formatData(features, labels, weights, maxdata);\n\nsegclassifier = train_boosted_dt_2c(data, [], lab, ntrees, nnodes, stopval, w);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [data, lab, w] = formatData(features, labels, weights, maxdata)\n% concatenate data\n%disp(num2str(maxdata))\nnimages = numel(features);\n\n[tmp, nvars] = size(features{1});\n\n% count segments\ntseg = 0;\nnseg = 0;\nfor f = 1:nimages\n nseg = nseg + sum((labels{f}~=0) & (weights{f}>0));\n tseg = tseg + numel(labels{f});\nend\n%disp(num2str([nseg tseg]))\n\ndata = zeros(nseg, nvars);\nlab = zeros(nseg, 1);\nw = zeros(nseg, 1);\n\n% concatenate data\nvc = 0;\nfor f = 1:nimages\n ind = find((labels{f}~=0) & (weights{f}>0));\n data(vc+1:vc+numel(ind), :) = features{f}(ind, :); \n lab(vc+1:vc+numel(ind)) = (labels{f}(ind)>0)*2-1;\n w(vc+1:vc+numel(ind)) = weights{f}(ind); % weight according to area in image\n vc = vc + numel(ind);\nend\n\nif nseg > maxdata\n rind = randperm(nseg);\n rind = rind(1:maxdata);\n data = data(rind, :);\n lab = lab(rind);\n w = w(rind);\nend\n\nw = w / sum(w);", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/GeometricContext/mcmc/mcmcTrainSegmentationClassifier2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3928026260856127}} {"text": "function varargout=m2v(varargin)\n%\n% vol=m2v(node,face,Nxyz)\n% or\n% vol=m2v(node,face,xi,yi,zi)\n%\n% shortcut for mesh2vol, rasterizing a teterahedral mesh to a volume using graphics\n%\n% author: Qianqian Fang (q.fang at neu.edu)\n%\n% input/output: please see details in the help for mesh2vol\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\n[varargout{1:nargout}]=mesh2vol(varargin{:});\n", "meta": {"author": "fangq", "repo": "iso2mesh", "sha": "556f4c321467a3ee042d4c559b4edc11e01dc574", "save_path": "github-repos/MATLAB/fangq-iso2mesh", "path": "github-repos/MATLAB/fangq-iso2mesh/iso2mesh-556f4c321467a3ee042d4c559b4edc11e01dc574/m2v.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5698526368038304, "lm_q2_score": 0.6893056040203135, "lm_q1q2_score": 0.3928026160146326}} {"text": "function info = vl_simplenn_display(net, res)\n% VL_SIMPLENN_DISPLAY Simple CNN statistics\n% VL_SIMPLENN_DISPLAY(NET) prints statistics about the network NET.\n\n% Copyright (C) 2014 Andrea Vedaldi.\n% All rights reserved.\n%\n% This file is part of the VLFeat library and is made available under\n% the terms of the BSD license (see the COPYING file).\n\nfields={'layer', 'type', 'support', 'stride', 'pad', 'dim', 'fdim', 'field', 'mem'};\nif nargin > 1\n fields = {fields{:}, 'xwhd', 'xmem', 'dxmem'} ;\nend\n\ndo_print = (nargout == 0) ;\n\nfor w=fields\n switch char(w)\n case 'type', s = 'type' ;\n case 'stride', s = 'stride' ;\n case 'padding', s = 'pad' ;\n case 'field', s = 'rec. field' ;\n case 'dim', s = 'out dim' ;\n case 'fdim', s = 'filt dim' ;\n case 'mem', s = 'c/g net KB' ;\n case 'xwhd', s = 'x w/h/d' ;\n case 'xmem', s = 'c/g x MB' ;\n case 'dxmem', s = 'c/g dx MB' ;\n otherwise, s = char(w) ;\n end\n if do_print, fprintf('%10s',s) ; end\n for l=1:numel(net.layers)\n ly=net.layers{l} ;\n switch char(w)\n case 'layer', s=sprintf('%d', l) ;\n case 'type'\n switch ly.type\n case 'normalize', s='nrm';\n case 'pool', if strcmpi(ly.method,'avg'), s='apool'; else s='mpool'; end\n case 'conv', s='cnv' ;\n case 'softmax', s='sftm' ;\n case 'loss', s='lloss' ;\n case 'softmaxloss', 'sftml' ;\n otherwise s=ly.type ;\n end\n case 'support'\n switch ly.type\n case 'conv', support(1:2,l) = max([size(ly.filters,1) ; size(ly.filters,2)],1) ;\n case 'pool', support(1:2,l) = ly.pool(:) ;\n otherwise, support(1:2,l) = [1;1] ;\n end\n s=sprintf('%dx%d', support(1,l), support(2,l)) ;\n case 'fdim'\n switch ly.type\n case 'conv'\n filterDimension(l) = size(ly.filters,3) ;\n s=sprintf('%d', filterDimension(l)) ;\n otherwise\n filterDimension(l) = 0 ;\n s='n/a' ;\n end\n case 'stride'\n switch ly.type\n case {'conv', 'pool'}\n if numel(ly.stride) == 1\n stride(1:2,l) = ly.stride ;\n else\n stride(1:2,l) = ly.stride(:) ;\n end\n otherwise, stride(1:2,l)=1 ;\n end\n if all(stride(:,l)==stride(1,l))\n s=sprintf('%d', stride(1,l)) ;\n else\n s=sprintf('%dx%d', stride(1,l), stride(2,l)) ;\n end\n case 'pad'\n switch ly.type\n case {'conv', 'pool'}\n if numel(ly.pad) == 1\n pad(1:4,l) = ly.pad ;\n else\n pad(1:4,l) = ly.pad(:) ;\n end\n otherwise, pad(1:4,l)=0 ;\n end\n if all(pad(:,l)==pad(1,l))\n s=sprintf('%d', pad(1,l)) ;\n else\n s=sprintf('%d,%dx%d,%d', pad(1,l), pad(2,l), pad(3,l), pad(4,l)) ;\n end\n case 'field'\n for i=1:2\n field(i,l) = sum(cumprod([1 stride(i,1:l-1)]).*(support(i,1:l)-1))+1 ;\n end\n if all(field(:,l)==field(1,l))\n s=sprintf('%d', field(1,l)) ;\n else\n s=sprintf('%dx%d', field(1,l), field(2,l)) ;\n end\n case 'mem'\n [a,b] = xmem(ly) ;\n mem(1:2,l) = [a;b] ;\n s=sprintf('%.0f/%.0f', a/1024, b/1024) ;\n case 'dim'\n switch ly.type\n case 'conv', dimension(1,l) = size(ly.filters,4) ;\n otherwise\n if l > 1\n dimension(1,l) = dimension(1,l-1) ;\n end\n end\n s=sprintf('%d', dimension(1,l)) ;\n case 'xwhd'\n for d=1:4, sz(d) = size(res(l+1).x,1) ; end \n s=sprintf('%dx%dx%d%d', sz(1), sz(2), sz(3), sz(4)) ;\n case 'xmem'\n [a,b]=xmem(res(l+1).x) ;\n rmem(1:2,l) = [a;b] ;\n s=sprintf('%.0f/%.0f', a/1024^2, b/1024^2) ; \n case 'dxmem'\n [a,b]=xmem(res(l+1).dzdx) ;\n rmem(1:2,l) = [a;b] ;\n s=sprintf('%.0f/%.0f', a/1024^2, b/1024^2) ;\n end\n if do_print, fprintf('|%7s', s) ; end\n end\n if do_print, fprintf('|\\n') ; end\nend\nif do_print\n [a,b] = xmem(net) ;\n fprintf('total network CPU/GPU memory: %.1f/%1.f MB\\n', a/1024^2, b/1024^2) ;\n if nargin > 1\n [a,b] = xmem(res) ;\n fprintf('total result CPU/GPU memory: %.1f/%1.f MB\\n', a/1024^2, b/1024^2) ;\n end\nend\n\nif nargout > 0\n info.support = support ;\n info.receptiveField = field ;\n info.stride = stride ;\n info.pad = pad ;\nend\n\n% -------------------------------------------------------------------------\nfunction [cpuMem,gpuMem] = xmem(s, cpuMem, gpuMem)\n% -------------------------------------------------------------------------\nif nargin <= 1\n cpuMem = 0 ;\n gpuMem = 0 ;\nend\nif isstruct(s) \n for f=fieldnames(s)'\n f = char(f) ;\n for i=1:numel(s)\n [cpuMem,gpuMem] = xmem(s(i).(f), cpuMem, gpuMem) ;\n end\n end\nelseif iscell(s)\n for i=1:numel(s)\n [cpuMem,gpuMem] = xmem(s{i}, cpuMem, gpuMem) ;\n end\nelseif isnumeric(s)\n if isa(s, 'single')\n mult = 4 ;\n else\n mult = 8 ;\n end\n if isa(s,'gpuArray')\n gpuMem = gpuMem + mult * numel(s) ;\n else\n cpuMem = cpuMem + mult * numel(s) ;\n end\nend\n\n\n", "meta": {"author": "ybsong00", "repo": "Vital_release", "sha": "50de529396e2f452626aef41084972149cf4a7c7", "save_path": "github-repos/MATLAB/ybsong00-Vital_release", "path": "github-repos/MATLAB/ybsong00-Vital_release/Vital_release-50de529396e2f452626aef41084972149cf4a7c7/matconvnet/matlab/vl_simplenn_display.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6584175139669997, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3927020294110705}} {"text": "function generateOpenfieldPB(fieldSizeX, fieldSizeY, beamletSize);\n\nxP = -(fieldSizeX-beamletSize)/2 : beamletSize : (fieldSizeX-beamletSize)/2;\nyP = -(fieldSizeY-beamletSize)/2 : beamletSize : (fieldSizeY-beamletSize)/2;\n[xPosV, yPosV] = meshgrid(xP, yP);\nxPosV = xPosV(:);\nyPosV = yPosV(:);\nw_field = ones(size(xPosV));\nbeamlet_delta_x = beamletSize*ones(size(xPosV));\nbeamlet_delta_y = beamlet_delta_x;\n\nfilename = ['PB_', num2str(fieldSizeX), 'x', num2str(fieldSizeY), '_PBsize', num2str(beamletSize), 'cm.mat']\ndisp ('save PB info to above filename.')\nsave (filename, 'xPosV', 'yPosV', 'beamlet_delta_x', 'beamlet_delta_y', 'w_field');\n\n% Display generated PB information.\nfigure;hAxis2 = axes;hold on;\n%axis(hAxis2, 'manual');\n % w_colors = floor((w_field ./ max(w_field))*255)+1;\n %set(gcf, 'doublebuffer', 'on');\n for i=1:length(xPosV)\n patch([xPosV(i) - beamlet_delta_x(i)/2 xPosV(i) - beamlet_delta_x(i)/2 xPosV(i) + beamlet_delta_x(i)/2 xPosV(i) + beamlet_delta_x(i)/2 xPosV(i) - beamlet_delta_x(i)/2], [yPosV(i) - beamlet_delta_y(i)/2 yPosV(i) + beamlet_delta_y(i)/2 yPosV(i) + beamlet_delta_y(i)/2 yPosV(i) - beamlet_delta_y(i)/2 yPosV(i) - beamlet_delta_y(i)/2], w_field(i));\n end\n % axis([hAxis1 hAxis2], 'ij');\n % kids = get(hAxis2, 'children');\n % set(kids, 'edgecolor', 'none');\n % cMap = colormap('jet');\n % set(hAxis2, 'color', cMap(1,:));\n \nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/IMRTP/recompDose/MC/generateOpenfieldPB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.39270202141569543}} {"text": "function p = presolve_upforce(p)\n\np.upForce = {};\nif p.K.l == 0\n return\nend\n% Extract linear inequalities\nff = p.F_struc(startofLPCone(p.K):startofLPCone(p.K)+p.K.l-1,:);\n% Search for y <= x1 + x2 +...\ncandidates = find(ff(:,1)==0);\nfor i = 1:length(candidates)\n row = p.F_struc(candidates(i),2:end);\n xx = find(row==1);\n yy = find(row==-1); \n if length(yy)==1 && length(xx)+1==nnz(row)\n % Yes, this matches y>=x1+x2+x3+...\n if all(ismember(find(row),p.binary_variables))\n p.upForce{end+1}.forcing = yy;\n p.upForce{end}.forced = xx; \n end\n end\nend\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/global/presolve_upforce.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3927020214156954}} {"text": "function [b0,dt6] = dtiInterpDt6(mmPerVoxOut, dt6PathName, outPathName)\n%\n% [b0,dt6] = dtiInterpDt6(mmPerVoxOut, b0PathName, outPathName)\n%\n% Takes dt6 file and upsamples b0 and dt6 data to desired resolution\n% Uses C versions of pajevic and interp3 algorithms.\n% The input file should be already preped using dtiMakeDt6 to \n% some resolution\n%\n% HISTORY:\n% 2004.02.27 GSM (gmulye@white.stanford.edu) wrote it (based on\n% dtiMakeDt6)\n\nif ~exist('mmPerVoxOut','var') | isempty(mmPerVoxOut)\n mmPerVoxOut = [1 1 1];\nend\n\nif ~exist('dt6PathName','var') | isempty(dt6PathName)\n [f, p] = uigetfile({'*.mat','dt6 files (*.mat)';'*.*','All files'}, 'Select one of the dt6 files...');\n if(isnumeric(f)) error('Need a dt6 file to continue...'); end\n dt6PathName = fullfile(p, f);\n disp(dt6PathName);\nend\n\n% Upsampling tensors\ndisp('Interpolating tensors...');\noldDt6File = load(dt6PathName);\ndt6 = oldDt6File.dt6;\nxform = oldDt6File.xformToAcPc;\nmmPerVoxIn = oldDt6File.mmPerVox;\nsz = size(dt6);\nboundingBox = [0 0 0; sz(1:3).*mmPerVoxIn-1]; %with this config, A(i) = A(2i-2)\n%===================================\n%Ripped from dtiResliceTensorAffine\n%===================================\n%We leave out all the transforms in dtiTensorAffine\n%Tensors do not have to be rotated or brought to image space\nx = (boundingBox(1,1):mmPerVoxOut(1):boundingBox(2,1));\ny = (boundingBox(1,2):mmPerVoxOut(2):boundingBox(2,2));\nz = (boundingBox(1,3):mmPerVoxOut(3):boundingBox(2,3));\n\n[X,Y,Z] = meshgrid(x, y, z);\nclear x y z;\ncoords = [X(:) Y(:) Z(:)]; %coords is Nx3\nnewSize = size(X);\nclear X Y Z;\n% HACK TO FIND CORRECT PAJEVIC LIBRARY\nold = pwd;\ncd(fileparts(which('dtiTensorInterp_Pajevic')));\ndt6 = dtiTensorInterp_Pajevic(dt6, coords, mmPerVoxIn, 1, mmPerVoxIn./2);\ncd(old);\ndt6 = reshape(dt6, [newSize, 6]);\n\n\n% Upsampling B0 grid\ndisp('Interpolating B0...');\n% mmPerVox = b0.cannonical_mmPerVox;\n% notes = b0.notes;\n% xformToAnat = b0.anatXform;\n% xformToTal = b0.talXform;\n% xformToAcPc = b0.acpcXform;\n% b0 = int16(round(b0.cannonical_img));\n% anat.img = int16(t1.cannonical_img);\n% anat.mmPerVox = t1.cannonical_mmPerVox;\n% anat.xformToTal = t1.talXform;\n% anat.xformToAcPc = t1.acpcXform;\n% save(fullfile(outPathName,'dt6'), 'dt6', 'mmPerVox', 'notes', 'xformToAnat', 'xformToTal', 'xformToAcPc', 'b0', 'anat');\n\n%============================\n%Ripped from dtiResliceVolume\n%============================\n% myCinterp3 likes [rows,columns,slices], so we need a permute here\n% myCinterp3 also wants pure image space, so we remove the mmPerVox.\ncoords(:,1) = coords(:,1)./mmPerVoxIn(1);\ncoords(:,2) = coords(:,2)./mmPerVoxIn(2);\ncoords(:,3) = coords(:,3)./mmPerVoxIn(3);\nb0 = oldDt6File.b0;\nb0 = double(permute(b0,[2,1,3]));\ninterpedb0 = myCinterp3(b0, [size(b0,1) size(b0,2)], size(b0,3), coords, 0.0); \nb0 = squeeze(reshape(interpedb0,newSize));\nclear interpedb0;\n\nif(~exist('outPathName','var') | isempty(outPathName))\n [fullpath fName] = fileparts(dt6PathName);\n outPathName = fullfile(fullpath, [fName sprintf('%dx%dx%dmm',mmPerVoxIn) '_upto_' sprintf('%dx%dx%dmm',mmPerVoxOut)]);\nend\n\n%Find new transform to anatomy image\noldXformToAnat = oldDt6File.xformToAnat;\nanat = oldDt6File.anat;\nscale = mmPerVoxOut./anat.mmPerVox;\nscale = diag([scale 1]);\nxformToAnat = scale*oldXformToAnat;\n\nmmPerVox = mmPerVoxOut;\nnotes = oldDt6File.notes;\nb0 = int16(round(b0));\nb0 = permute(b0,[2,1,3]); %Undo earlier permute\ndt6 = permute(dt6,[2 1 3 4]); %Undo permute from earlier\n\n\ndisp(['Saving to ' outPathName '...']);\nsave(outPathName, 'b0', 'xformToAnat','anat','notes','mmPerVox','dt6');\nsave([outPathName '_anon'], 'b0', 'xformToAnat','anat','notes','mmPerVox','dt6');\n\nreturn", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/tensor/dtiInterpDt6.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3927020214156954}} {"text": "function [x,f,funEvals] = minConF_BC(funObj,x,LB,UB,options)\n% function [x,f] = minConF_BC(funObj,x,LB,UB,options)\n%\n% Function for using Two-Metric Projection to solve problems of the form:\n% min funObj(x)\n% s.t. LB_i <= x_i <= UB_i\n%\n% @funObj(x): function to minimize (returns gradient as second argument)\n%\n% options:\n% verbose: level of verbosity (0: no output, 1: final, 2: iter (default), 3:\n% debug)\n% optTol: tolerance used to check for progress (default: 1e-7)\n% maxIter: maximum number of calls to funObj (default: 250)\n% numDiff: compute derivatives numerically (0: use user-supplied\n% derivatives (default), 1: use finite differences, 2: use complex\n% differentials)\n% method: 'sd', 'lbfgs', 'newton'\n\nnVars = length(x);\n\n% Set Parameters\nif nargin < 5\n options = [];\nend\n[verbose,numDiff,optTol,maxIter,suffDec,interp,method,corrections,damped] = ...\n myProcessOptions(...\n options,'verbose',3,'numDiff',0,'optTol',1e-6,'maxIter',500,'suffDec',1e-4,...\n 'interp',1,'method','lbfgs','corrections',100,'damped',0);\n\n% Output Log\nif verbose >= 3\n fprintf('%10s %10s %15s %15s %15s\\n','Iteration','FunEvals','Step Length','Function Val','Opt Cond');\nend\n\n% Make objective function (if using numerical derivatives)\nfunEvalMultiplier = 1;\nif numDiff\n if numDiff == 2\n useComplex = 1;\n else\n useComplex = 0;\n end\n funObj = @(x)autoGrad(x,useComplex,funObj);\n funEvalMultiplier = nVars+1-useComplex;\nend\n\n% Evaluate Initial Point\nx = projectBounds(x,LB,UB);\nif strcmp(method,'newton')\n [f,g,H] = funObj(x);\n secondOrder = 1;\nelse\n [f,g] = funObj(x);\n secondOrder = 0;\nend\nfunEvals = 1;\n\n% Compute Working Set\nworking = ones(nVars,1);\nworking((x < LB+optTol*2) & g >= 0) = 0;\nworking((x > UB-optTol*2) & g <= 0) = 0;\nworking = find(working);\n\n% Check Optimality\nif isempty(working)\n if verbose >= 1\n fprintf('All variables are at their bound and no further progress is possible at initial point\\n');\n end\n return;\nelseif norm(g(working)) <= optTol\n if verbose >=1\n fprintf('All working variables satisfy optimality condition at initial point\\n');\n end\n return;\nend\n\nif verbose >= 3\n switch method\n case 'sd'\n fprintf('Steepest Descent\\n');\n case 'lbfgs'\n fprintf('L-BFGS\\n');\n case 'bfgs'\n fprintf('BFGS\\n');\n case 'newton'\n fprintf('Newton\\n');\n end\nend\n\ni = 1;\nwhile funEvals <= maxIter\n\n % Compute Step Direction\n d = zeros(nVars,1);\n switch(method)\n case 'sd'\n d(working) = -g(working);\n case 'lbfgs'\n if i == 1\n d(working) = -g(working);\n old_dirs = zeros(nVars,0);\n old_stps = zeros(nVars,0);\n Hdiag = 1;\n else\n if damped\n [old_dirs,old_stps,Hdiag] = dampedUpdate(g-g_old,x-x_old,corrections,verbose==3,old_dirs,old_stps,Hdiag);\n else\n [old_dirs,old_stps,Hdiag] = lbfgsUpdate(g-g_old,x-x_old,corrections,verbose==3,old_dirs,old_stps,Hdiag);\n end\n curvSat = sum(old_dirs(working,:).*old_stps(working,:)) > 1e-10;\n d(working) = lbfgs(-g(working),old_dirs(working,curvSat),old_stps(working,curvSat),Hdiag);\n end\n g_old = g;\n x_old = x;\n case 'bfgs'\n if i == 1\n d(working) = -g(working);\n B = eye(nVars);\n else\n y = g-g_old;\n s = x-x_old;\n\n ys = y'*s;\n\n if i == 2\n if ys > 1e-10\n B = ((y'*y)/(y'*s))*eye(nVars);\n end\n end\n if ys > 1e-10\n B = B + (y*y')/(y'*s) - (B*s*s'*B)/(s'*B*s);\n else\n if verbose == 2\n fprintf('Skipping Update\\n');\n end\n end\n d(working) = -B(working,working)\\g(working);\n end\n g_old = g;\n x_old = x;\n\n case 'newton'\n [R,posDef] = chol(H(working,working));\n \n if posDef == 0\n d(working) = -R\\(R'\\g(working));\n else\n if verbose == 3\n fprintf('Adjusting Hessian\\n');\n end\n H(working,working) = H(working,working) + eye(length(working)) * max(0,1e-12 - min(real(eig(H(working,working)))));\n d(working) = -H(working,working)\\g(working);\n end\n otherwise\n fprintf('Unrecognized Method: %s\\n',method);\n break;\n end\n\n % Check that Progress can be made along the direction\n f_old = f;\n gtd = g'*d;\n if gtd > -optTol\n if verbose >= 2\n fprintf('Directional Derivative below optTol\\n');\n end\n break;\n end\n\n % Select Initial Guess to step length\n if i == 1 && ~secondOrder\n t = min(1,1/sum(abs(g(working))));\n else\n t = 1;\n end\n\n % Evaluate the Objective and Projected Gradient at the Initial Step\n x_new = projectBounds(x+t*d,LB,UB);\n if secondOrder\n [f_new,g_new,H] = funObj(x_new);\n else\n [f_new,g_new] = funObj(x_new);\n end\n funEvals = funEvals+1;\n\n % Backtracking Line Search\n lineSearchIters = 1;\n while f_new > f + suffDec*g'*(x_new-x) || ~isLegal(f_new)\n temp = t;\n if interp == 0 || ~isLegal(f_new) || ~isLegal(g_new)\n if verbose == 3\n fprintf('Halving Step Size\\n');\n end\n t = .5*t;\n else\n if verbose == 3\n fprintf('Cubic Backtracking\\n');\n end\n t = polyinterp([0 f gtd; t f_new g_new'*d]);\n end\n\n % Adjust if change is too small\n if t < temp*1e-3\n if verbose == 3\n fprintf('Interpolated value too small, Adjusting\\n');\n end\n t = temp*1e-3;\n elseif t > temp*0.6\n if verbose == 3\n fprintf('Interpolated value too large, Adjusting\\n');\n end\n t = temp*0.6;\n end\n\n % Check whether step has become too small\n if sum(abs(t*d)) < optTol\n if verbose == 3\n fprintf('Line Search failed\\n');\n end\n t = 0;\n f_new = f;\n g_new = g;\n break;\n end\n\n % Evaluate New Point\n x_new = projectBounds(x+t*d,LB,UB);\n [f_new,g_new] = funObj(x_new);\n funEvals = funEvals+1;\n lineSearchIters = lineSearchIters+1;\n\n end\n\n % Take Step\n x = x_new;\n f = f_new;\n g = g_new;\n\n % Compute Working Set\n working = ones(nVars,1);\n working((x < LB+optTol*2) & g >= 0) = 0;\n working((x > UB-optTol*2) & g <= 0) = 0;\n working = find(working);\n\n % Output Log\n if verbose >= 2\n fprintf('%10d %10d %15.5e %15.5e %15.5e\\n',i,funEvals*funEvalMultiplier,t,f,sum(abs(g(working))));\n end\n\n % Check Optimality\n if isempty(working)\n if verbose >= 1\n fprintf('All variables are at their bound and no further progress is possible\\n');\n end\n break;\n elseif norm(g(working)) <= optTol\n if verbose >=1\n fprintf('All working variables satisfy optimality condition\\n');\n end\n break;\n end\n\n % Check for lack of progress\n if sum(abs(t*d)) < optTol\n if verbose >= 1\n fprintf('Step size below optTol\\n');\n end\n break;\n end\n\n if abs(f-f_old) < optTol\n if verbose >= 1\n fprintf('Function value changing by less than optTol\\n');\n end\n break;\n end\n\n if funEvals*funEvalMultiplier > maxIter\n if verbose >= 1\n fprintf('Function Evaluations exceeds maxIter\\n');\n end\n break;\n end\n\n % If necessary, compute Hessian\n if secondOrder && lineSearchIters > 1\n [f_new,g_new,H] = funObj(x);\n end\n\n i = i + 1;\nend\nend\n\nfunction [x] = projectBounds(x,LB,UB)\nx(x < LB) = LB(x < LB);\nx(x > UB) = UB(x > UB);\nend", "meta": {"author": "ziyuw", "repo": "rembo", "sha": "7926c00a802ad33e7c7f61e3571a32bacaba3d00", "save_path": "github-repos/MATLAB/ziyuw-rembo", "path": "github-repos/MATLAB/ziyuw-rembo/rembo-7926c00a802ad33e7c7f61e3571a32bacaba3d00/src/utils/minConf/minConf/minConf_TMP.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6584175005616829, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3927020214156953}} {"text": "% THis function will search...\n% INputs:\n% lines: cell array of entries to be searched on\n% pattern: query\n% start: \n\nfunction found = searchInCellBinary(lines, pattern, start, stop)\n\nfound = 0;\n\nif stop-start <= 10\n for i=start:stop\n if strcmp(lines{i}, pattern)\n found = i;\n return;\n end\n end\n\nelse\n \n middle = floor( (start+stop)/2 );\n notEqual = 0;\n middleWord = lines{middle};\n min_length = min( length(pattern), length(middleWord) );\n for i=1:min_length\n if int16(pattern(i)) > int16(middleWord(i))\n notEqual = 1;\n found = searchInCellBinary(lines, pattern, middle, stop);\n break;\n elseif int16(pattern(i)) < int16(middleWord(i))\n notEqual = 1;\n found = searchInCellBinary(lines, pattern, start, middle);\n break;\n end\n end\n \n if notEqual == 0\n if length(pattern) == length(middleWord)\n found = middle;\n elseif length(pattern) > length(middleWord)\n found = searchInCellBinary(lines, pattern, middle+1, stop);\n elseif length(pattern) < length(middleWord)\n found = searchInCellBinary(lines, pattern, start, middle-1);\n end\n end\nend", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/utils/text/searchInCellBinary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6584175005616829, "lm_q1q2_score": 0.3927020214156953}} {"text": "%%% e8.4_FLY\nclear\n%The maximum control speed and maximum navigation angle can be modified as appropriate\npath( './icon/',path);\nload vehicle_local_position.mat;\n\n%Constant value\nRAD2DEG = 57.2957795;\nDEG2RAD = 0.0174533;\n%throttle when UAV is hovering\nTHR_HOVER = 0.609;\n\n%% control parameter\n%Attitude PID parameters\nKp_PITCH_ANGLE =6.5;\nKp_PITCH_AngleRate = 0.1;\nKi_PITCH_AngleRate = 0.02;\nKd_PITCH_AngleRate = 0.001;\nKp_ROLL_ANGLE =6.5;\nKp_ROLL_AngleRate = 0.1;\nKi_ROLL_AngleRate = 0.02;\nKd_ROLL_AngleRate = 0.001;\n\nKp_YAW_ANGLE = 3;\nKp_YAW_AngleRate = 0.5;\nKi_YAW_AngleRate = 0.01;\nKd_YAW_AngleRate = 0.00;\n\n%Position PID parameters\nKpxp = 1.0;\nKpyp = 1.0;\nKpzp = 4.0;\nKvxp = 3.0; Kvxi = 0.1; Kvxd = 0.01;\nKvyp = 3.0; Kvyi = 0.1; Kvyd = 0.01;\nKvzp = 0.45; Kvzi = 0.01; Kvzd = 0.005;\n\nSaturation_I_RP_Max = 0.3;\nSaturation_I_RP_Min = -0.3;\nSaturation_I_Y_Max = 0.2;\nSaturation_I_Y_Min = -0.2;\nSaturation_I_ah = 3.43;\nSaturation_I_az = 5;\n\n%max control angle,default 35deg\nMAX_CONTROL_ANGLE_ROLL = 35;\nMAX_CONTROL_ANGLE_PITCH = 35;\n%Maximum navigation angle, used in position control to avoid large attitude angles\nMAX_CONTROL_ANGLE_NAV_ROLL = 15; \nMAX_CONTROL_ANGLE_NAV_PITCH = 15;\n%max control angle rate,rad/s\nMAX_CONTROL_ANGLE_RATE_PITCH = 220;\nMAX_CONTROL_ANGLE_RATE_ROLL = 220;\nMAX_CONTROL_ANGLE_RATE_Y = 200;\n%Maximum control speed, m/s\nMAX_CONTROL_VELOCITY_XY = 0.5;\nMAX_CONTROL_VELOCITY_Z = 1;\n%Throttle amplitude\nMAX_MAN_THR = 0.9;\nMIN_MAN_THR = 0.05;\n%% run simulink model\ne8_4_FLY\n", "meta": {"author": "RflySim", "repo": "RflyExpCode", "sha": "7dbec4d8796d6e23ee86c523e4ba5712203b1519", "save_path": "github-repos/MATLAB/RflySim-RflyExpCode", "path": "github-repos/MATLAB/RflySim-RflyExpCode/RflyExpCode-7dbec4d8796d6e23ee86c523e4ba5712203b1519/code/e8/e8.4/Init_control.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.837619947119304, "lm_q2_score": 0.46879062662624377, "lm_q1q2_score": 0.39266837988469966}} {"text": "% goplotpso.m\n% default plotting script used in PSO functions\n%\n% this script is not a function,\n% it is a plugin for the main PSO routine (pso_Trelea_vectorized)\n% so it shares all the same variables, be careful with variable names\n% when making your own plugin\n\n% Brian Birge\n% Rev 2.0\n% 3/1/06\n\n% setup figure, change this for your own machine\n\n clf\n set(gcf,'Position',[651 31 626 474]); % this is the computer dependent part\n %set(gcf,'Position',[743 33 853 492]);\n set(gcf,'Doublebuffer','on');\n \n% particle plot, upper right\n subplot('position',[.7,.6,.27,.32]);\n set(gcf,'color','k')\n\n plot3(pos(:,1),pos(:,D),out,'b.','Markersize',7)\n \n hold on\n plot3(pbest(:,1),pbest(:,D),pbestval,'g.','Markersize',7);\n plot3(gbest(1),gbest(D),gbestval,'r.','Markersize',25);\n \n % crosshairs\n offx = max(abs(min(min(pbest(:,1)),min(pos(:,1)))),...\n abs(max(max(pbest(:,1)),max(pos(:,1)))));\n \n offy = max(abs(min(min(pbest(:,D)),min(pos(:,D)))),...\n abs(min(max(pbest(:,D)),max(pos(:,D)))));\n plot3([gbest(1)-offx;gbest(1)+offx],...\n [gbest(D);gbest(D)],...\n [gbestval;gbestval],...\n 'r-.');\n plot3([gbest(1);gbest(1)],...\n [gbest(D)-offy;gbest(D)+offy],...\n [gbestval;gbestval],...\n 'r-.');\n \n hold off\n \n xlabel('Dimension 1','color','y')\n ylabel(['Dimension ',num2str(D)],'color','y')\n zlabel('Cost','color','y')\n \n title('Particle Dynamics','color','w','fontweight','bold')\n \n set(gca,'Xcolor','y')\n set(gca,'Ycolor','y')\n set(gca,'Zcolor','y')\n set(gca,'color','k')\n \n % camera control\n view(2)\n try\n axis([gbest(1)-offx,gbest(1)+offx,gbest(D)-offy,gbest(D)+offy]);\n catch\n axis([VR(1,1),VR(1,2),VR(D,1),VR(D,2)]);\n end\n \n% error plot, left side\n subplot('position',[0.1,0.1,.475,.825]);\n semilogy(tr(find(~isnan(tr))),'color','m','linewidth',2)\n %plot(tr(find(~isnan(tr))),'color','m','linewidth',2)\n xlabel('epoch','color','y')\n ylabel('gbest val.','color','y')\n \n if D==1\n titstr1=sprintf(['%11.6g = %s( [ %9.6g ] )'],...\n gbestval,strrep(functname,'_','\\_'),gbest(1));\n elseif D==2\n titstr1=sprintf(['%11.6g = %s( [ %9.6g, %9.6g ] )'],...\n gbestval,strrep(functname,'_','\\_'),gbest(1),gbest(2));\n elseif D==3\n titstr1=sprintf(['%11.6g = %s( [ %9.6g, %9.6g, %9.6g ] )'],...\n gbestval,strrep(functname,'_','\\_'),gbest(1),gbest(2),gbest(3));\n else\n titstr1=sprintf(['%11.6g = %s( [ %g inputs ] )'],...\n gbestval,strrep(functname,'_','\\_'),D);\n end\n title(titstr1,'color','m','fontweight','bold');\n \n grid on\n% axis tight\n\n set(gca,'Xcolor','y')\n set(gca,'Ycolor','y')\n set(gca,'Zcolor','y')\n set(gca,'color','k')\n\n set(gca,'YMinorGrid','off')\n \n% text box in lower right\n% doing it this way so I can format each line any way I want\nsubplot('position',[.62,.1,.29,.4]);\n clear titstr\n if trelea==0\n PSOtype = 'Common PSO';\n xtraname = 'Inertia Weight : ';\n xtraval = num2str(iwt(length(iwt)));\n \n elseif trelea==2 | trelea==1\n \n PSOtype = (['Trelea Type ',num2str(trelea)]);\n xtraname = ' ';\n xtraval = ' ';\n \n elseif trelea==3\n PSOtype = (['Clerc Type 1\"']);\n xtraname = '\\chi value : ';\n xtraval = num2str(chi);\n\n end\n if isnan(errgoal)\n errgoalstr='Unconstrained';\n else\n errgoalstr=num2str(errgoal);\n end\n if minmax==1\n minmaxstr = ['Maximize to : '];\n elseif minmax==0\n minmaxstr = ['Minimize to : '];\n else\n minmaxstr = ['Target to : '];\n end\n \n if rstflg==1\n rststat1 = 'Environment Change';\n rststat2 = ' ';\n else\n rststat1 = ' ';\n rststat2 = ' ';\n end\n \n titstr={'PSO Model: ' ,PSOtype;...\n 'Dimensions : ' ,num2str(D);...\n '# of particles : ',num2str(ps);...\n minmaxstr ,errgoalstr;...\n 'Function : ' ,strrep(functname,'_','\\_');...\n xtraname ,xtraval;...\n rststat1 ,rststat2};\n \n text(.1,1,[titstr{1,1},titstr{1,2}],'color','g','fontweight','bold');\n hold on\n text(.1,.9,[titstr{2,1},titstr{2,2}],'color','m');\n text(.1,.8,[titstr{3,1},titstr{3,2}],'color','m');\n text(.1,.7,[titstr{4,1}],'color','w');\n text(.55,.7,[titstr{4,2}],'color','m');\n text(.1,.6,[titstr{5,1},titstr{5,2}],'color','m');\n text(.1,.5,[titstr{6,1},titstr{6,2}],'color','w','fontweight','bold');\n text(.1,.4,[titstr{7,1},titstr{7,2}],'color','r','fontweight','bold');\n \n % if we are training a neural net, show a few more parameters\n if strcmp('pso_neteval',functname)\n % net is passed from trainpso to pso_Trelea_vectorized in case you are\n % wondering where that structure comes from\n hiddlyrstr = []; \n for lyrcnt=1:length(net.layers)\n TF{lyrcnt} = net.layers{lyrcnt}.transferFcn;\n Sn(lyrcnt) = net.layers{lyrcnt}.dimensions;\n hiddlyrstr = [hiddlyrstr,', ',TF{lyrcnt}];\n end\n hiddlyrstr = hiddlyrstr(3:end);\n \n text(0.1,.35,['#neur/lyr = [ ',num2str(net.inputs{1}.size),' ',...\n num2str(Sn),' ]'],'color','c','fontweight','normal',...\n 'fontsize',10); \n text(0.1,.275,['Lyr Fcn: ',hiddlyrstr],...\n 'color','c','fontweight','normal','fontsize',9);\n \n end\n \n \n legstr = {'Green = Personal Bests';...\n 'Blue = Current Positions';...\n 'Red = Global Best'};\n text(.1,0.025,legstr{1},'color','g');\n text(.1,-.05,legstr{2},'color','b');\n text(.1,-.125,legstr{3},'color','r');\n \n hold off\n\n set(gca,'color','k');\n set(gca,'visible','off');\n \n drawnow", "meta": {"author": "HuangCongQing", "repo": "Algorithms_MathModels", "sha": "e15b0e9053b11f08b5ce1e3492c4acb444409c8b", "save_path": "github-repos/MATLAB/HuangCongQing-Algorithms_MathModels", "path": "github-repos/MATLAB/HuangCongQing-Algorithms_MathModels/Algorithms_MathModels-e15b0e9053b11f08b5ce1e3492c4acb444409c8b/MATLAB\u667a\u80fd\u7b97\u6cd530\u4e2a\u6848\u4f8b\u5206\u6790/chapter17 \u57fa\u4e8ePSO\u5de5\u5177\u7bb1\u7684\u51fd\u6570\u5bfb\u4f18\u7b97\u6cd5/testfunctions/goplotpso.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926666143433998, "lm_q2_score": 0.6619228825191871, "lm_q1q2_score": 0.3922995937390706}} {"text": "function [bel, niter] = parallel_protocol(engine, evidence, pot_type, local_kernel, msg)\n\nbnet = bnet_from_engine(engine);\nns = bnet.node_sizes;\nonodes = find(~isemptycell(evidence));\n\nndoms = length(engine.gdl.doms);\nprod_of_msg = cell(1, ndoms);\nbel = cell(1, ndoms);\nold_bel = cell(1, ndoms);\n\nconverged = 0;\niter = 1;\nwhile ~converged & (iter <= engine.max_iter)\n \n % each node multiplies all its incoming msgs and computes its local belief\n old_bel = bel;\n for i=1:ndoms\n prod_of_msg{i} = mk_initial_pot(pot_type, engine.gdl.doms{i}, ns, bnet.cnodes, onodes);\n nbrs = engine.gdl.nbrs{i};\n for j=nbrs(:)'\n prod_of_msg{i} = multiply_by_pot(prod_of_msg{i}, msg{j,i});\n end\n bel{i} = normalize_pot(multiply_by_pot(local_kernel{i}, prod_of_msg{i}));\n end\n\n if ~isempty(engine.fid)\n for i=1:ndoms\n tmp = pot_to_marginal(bel{i});\n %fprintf(engine.fid, '%9.7f ', tmp.T(1));\n fprintf(engine.fid, '%9.7f ', tmp.U(1));\n end\n %fprintf(engine.fid, ' U ');\n %for i=1:ndoms\n % tmp = pot_to_marginal(bel{i});\n % fprintf(engine.fid, '%9.7f ', tmp.U(1));\n %end\n fprintf(engine.fid, '\\n');\n end\n\n % converged?\n if iter==1\n converged = 0;\n else\n converged = 1;\n for i=1:ndoms\n if ~approxeq_pot(bel{i}, old_bel{i}, engine.tol)\n\tconverged = 0;\n\tbreak;\n end\n end\n end\n\n if ~converged\n old_msg = msg;\n % each node sends a msg to each of its neighbors\n for i=1:ndoms\n nbrs = engine.gdl.nbrs{i};\n for j=nbrs(:)'\n\t% multiply all incoming msgs except from j\n\ttemp = prod_of_msg{i};\n\ttemp = divide_by_pot(temp, old_msg{j,i});\n\t% send msg from i to j\n\ttemp = multiply_by_pot(temp, local_kernel{i});\n\ttemp2 = marginalize_pot(temp, engine.gdl.sepset{i,j}, engine.maximize);\n\tmsg{i,j} = normalize_pot(temp2);\n end\n end\n end\n\n iter = iter + 1;\nend\n\n\nniter = iter-1;\n\nif 0\nfor i=1:ndoms\n prod_of_msg{i} = mk_initial_pot(pot_type, engine.gdl.doms{i}, ns, bnet.cnodes, onodes);\n nbrs = engine.gdl.nbrs{i};\n for j=nbrs(:)'\n prod_of_msg{i} = multiply_by_pot(prod_of_msg{i}, msg{j,i});\n end\n bel{i} = normalize_pot(multiply_by_pot(local_kernel{i}, prod_of_msg{i}));\nend\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/static/@belprop_inf_engine/private/parallel_protocol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228625116081, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.39229957235662}} {"text": "classdef StressAndMaxNormWithExponentPlotter < StressNormPlotter\n \n methods (Access = public)\n \n function obj = StressAndMaxNormWithExponentPlotter(d)\n obj.init(d);\n end\n \n function plot(obj)\n obj.fig = figure(1);\n obj.plotSmoothInfo();\n obj.plotNonSmoothInfo();\n obj.addLegend();\n obj.print();\n end\n \n end\n \n methods (Access = private)\n \n function plotSmoothInfo(obj)\n dB = obj.smoothDB;\n obj.plotStressNorm(dB);\n obj.plotStressMax(dB);\n end\n \n function plotNonSmoothInfo(obj)\n dB = obj.nonSmoothDB;\n obj.plotStressNorm(dB);\n obj.plotStressMax(dB);\n end\n \n function plotStressNorm(obj,dB)\n obj.x = dB.pNorm;\n obj.y = dB.invStressNorm;\n obj.lineInfo = [dB.color,'-+'];\n obj.appendPlot()\n end\n \n function plotStressMax(obj,dB)\n obj.x = dB.pNorm;\n obj.y = dB.invStressMax*ones(1,length(obj.x));\n obj.lineInfo = [dB.color,'--'];\n obj.appendPlot()\n end\n \n function addLegend(obj)\n legStr = {'Smooth','NonSmooth','SmoothMaxNorm','NonSmoothMaxNorm'};\n lines = obj.plotLines;\n nlinesType = length(legStr);\n ilines = 1:obj.nExp:obj.nExp*nlinesType;\n legLines = [lines{ilines(1)} lines{ilines(2)} lines{ilines(3)} lines{ilines(4)}];\n legend(legLines,legStr);\n end\n \n function print(obj)\n sFig = obj.fig;\n ca = get(sFig,'CurrentAxes');\n xl = get(ca,'xlabel');\n set(xl,'string','Pnorm'); \n figureName = 'StressNormWithPnorm';\n outPutFigName = fullfile(obj.outPutPath,figureName);\n pL = obj.plotLines;\n fp = plotPrinter(sFig,pL);\n fp.print(outPutFigName)\n end\n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Applications/StressPdependency/StressAndMaxNormWithExponentPlotter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.661922862511608, "lm_q1q2_score": 0.39229957235661994}} {"text": "clear;\ndata = load('data_completeness.mat');\ndata = data.data;\n\norange = [ 0.91,0.41,0.17];\nblue = [0,0.4470,0.7410];\nfigure('DefaultAxesFontSize',14);\nax = gca;\nxlabel('Month');\n\nyyaxis left;\nh1 = plot(data(:,1),'-','color',blue,'linewidth',2,'DisplayName','rmse');\nylabel('Data amount (\\times 10^6)');\nylim([0,1.6e+6]);\nax.YTick = 0:0.4e+6:1.6e+6;\nax.YTickLabel = ['0 ';'0.4';'0.8';'1.2';'1.6'];\nyyaxis right;\nh2 = plot(data(:,2),'-','color',orange,'linewidth',2,'DisplayName','lb');\nylabel('Completeness');\nax.YTick = 0:0.25:1;\nax.YTickLabel = 0:0.25:1;\n\nbox on;\ngrid on;\nax.XTick = 1:4:48;\nax.XTickLabel = ['Apr.';'Aug.';'Dec.';'Apr.';'Aug.';'Dec.';'Apr.';'Aug.';'Dec.';'Apr.';'Aug.';'Dec.';];\nax.GridLineStyle = '-.';\nset(gcf, 'PaperSize', [8 3]);\nset(gcf, 'PaperPositionMode', 'manual');\nset(gcf, 'PaperPosition', [0 0 8 3]);\nsaveas(gcf,'nyc_data_completeness','pdf');", "meta": {"author": "xinychen", "repo": "academic-drawing", "sha": "927d729e3f9115d7c7285d97c63cbb6c32cea449", "save_path": "github-repos/MATLAB/xinychen-academic-drawing", "path": "github-repos/MATLAB/xinychen-academic-drawing/academic-drawing-927d729e3f9115d7c7285d97c63cbb6c32cea449/time-series/nyc_data_completeness.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514777, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.39224150233039623}} {"text": "function y = permute( x, order )\n\n% Disciplined convex/geometric programming information for PERMUTE:\n% PERMUTE(A,ORDER) imposes no convexity restrictions on A. ORDER\n% must be constant.\n\n%\n% Determine the permutation\n%\n\ns = x.size_;\nndxs = 1 : prod( s );\nndx2 = permute( reshape( ndxs, s ), order );\n\n%\n% Permute the data\n%\n\nb = x.basis_;\ntry\n b = x.basis_( :, ndx2 );\ncatch %#ok\n ndxs( ndx2( : ).' ) = ndxs;\n [ r, c, v ] = find( b );\n b = sparse( r, ndxs( c ), v, size( b, 1 ), size( b, 2 ) );\n clear r c v\nend\ny = cvx( size( ndx2 ), b );\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/builtins/@cvx/permute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.39224149537572306}} {"text": "function [r, itr, status, box_num, seg_result] = fooling_seg_net(x, seg_mask_target, seg_mask_ori, net, config)\n% process to generate adversarial examples in segmentation network\n% -------------------------------------------------------------\n\ntry\n eval(config);\ncatch\n keyboard;\nend\n\n% initilization of fooling process\nr = x * 0;\nitr = 0;\n\n% intilization of fooling target\n[pred_target, dr, seg_result] = forward_and_back_propogation_seg(x+r, seg_mask_target, net); \nbox_num(itr+1) = pred_target;\n\npred_target_ori = sum(sum(seg_mask_ori>0));\n\nwhile (pred_target > 0.01*pred_target_ori) && itr= 0.01*pred_target_ori\n status = 0;\nelse\n status = 1;\nend\n\nend", "meta": {"author": "cihangxie", "repo": "DAG", "sha": "55505e2d8ca2d5307b3a25f79765e1e3d5948c88", "save_path": "github-repos/MATLAB/cihangxie-DAG", "path": "github-repos/MATLAB/cihangxie-DAG/DAG-55505e2d8ca2d5307b3a25f79765e1e3d5948c88/code/fooling_seg_net.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3922414884210497}} {"text": "function rts_retrieveDataAndStore(tcpipClient, numData, dataType)\n%rts_retrieveDataAndStore Summary of this function goes here\n% Detailed explanation goes here\n readasync(tcpipClient);\n\n bytesDbl = 8;\n dataPts = []; \n frameName = [];\n frameNum = [];\n transmitDateTime = [];\n \n try\n if(tcpipClient.BytesAvailable >= 88) %88 bytes is the size of the frame header\n while(tcpipClient.BytesAvailable > 88)\n [frameName, frameNum, transmitDateTime] = rts_readMinorFrameHeader(tcpipClient);\n if(strcmpi(dataType,'d'))\n if(numData == -1)\n dataPts = fread(tcpipClient,floor(tcpipClient.BytesAvailable/bytesDbl),'double');\n else\n numDataToRet = min(numData, floor(tcpipClient.BytesAvailable/bytesDbl));\n if(numDataToRet > 0)\n dataPts = fread(tcpipClient,numDataToRet,'double');\n else\n dataPts = [];\n end\n end\n elseif(strcmpi(dataType,'s'))\n dataPts = deblank(fscanf(tcpipClient,'%c',numData));\n end\n end\n \n retDateTime = datevec(now);\n data = {dataPts, frameName, frameNum, transmitDateTime', retDateTime};\n set(tcpipClient,'UserData',data);\n end\n catch ME\n disp(ME.message);\n end\n\nend\n\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_connect/rts_functions/rts_retrieveDataAndStore.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3922225584069702}} {"text": "function targets = sledgeset2adjlist(n, edges, sch)\n%SLEDGESET2ADJLIST Converts edge set to adjacency list\n%\n% $ Syntax $\n% - targets = sledgeset2adjlist(n, edges, sch)\n%\n% $ Arguments $\n% - n: The number of (source) nodes\n% - edges: The set of edges (nedges x 2 or nedges x 3)\n% - sch: The id of scheme of conversion to take\n% - 0: no value -> no value\n% - 1: no value -> has value\n% - 2: has value -> no value\n% - 3: has value -> has value\n% - targets: The cell array of targets in adj list\n%\n% $ Remarks $\n% - an internal function for graph representation conversion.\n% no checking of input arguments would be performed.\n%\n% $ History $\n% - Created by Dahua Lin, on Sep 9, 2006\n%\n\n%% prepare storage\n\ntargets = cell(n, 1);\n\n%% sort edges\n\nI = edges(:, 1);\nJ = edges(:, 2);\n\n[I, si] = sort(I);\nJ = J(si);\n\nif sch == 3\n V = edges(si, 3);\nelseif sch == 1\n nedges = length(I);\n V = ones(nedges, 1);\nend\n\n%% group targets\n\nnums = slcount(I);\nni = length(nums);\n[spos, epos] = slnums2bounds(nums);\n\nif sch == 1 || sch == 3\n for i = 1 : ni\n s = spos(i); e = epos(i);\n if s <= e\n targets{I(s)} = [J(s:e), V(s:e)];\n end\n end\nelse\n for i = 1 : ni\n s = spos(i); e = epos(i);\n if s <= e\n targets{I(s)} = J(s:e);\n end\n end\nend\n\n\n\n", "meta": {"author": "lmthang", "repo": "nmt.hybrid", "sha": "50d5c025f18ed280ff0fd2e2adce327f4170a2c3", "save_path": "github-repos/MATLAB/lmthang-nmt.hybrid", "path": "github-repos/MATLAB/lmthang-nmt.hybrid/nmt.hybrid-50d5c025f18ed280ff0fd2e2adce327f4170a2c3/code/wordsim/code/sltoolbox_r101/sltoolbox_r101/sltoolbox/graph/sledgeset2adjlist.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3922225509067182}} {"text": "%% test2.m - exp03\n% This script shows histograms for errors computed in test1.m\n% \n% 02-08-10 Michal Uricar\n% 07-03-11 Michal Uricar\n\n% clc;\nclose all; clearvars;\n\n%% Timestamp\n\nfprintf(1,'Started on %s\\n\\n', datestr(now));\n\n%% Add path\n\naddpath('./Functions/');\n\n%% Load errors\n\nload('./results/errors.mat');\n\n%% Options\n\n% show images\n% opt.verbose = true;\nopt.verbose = false;\n% save images\nopt.save = true;\n% opt.save = false;\n\n%% Show histograms\n\nif (~exist('./img/', 'dir'))\n mkdir('./img/');\nend;\n\n% get screen size\nscrsz = get(0,'ScreenSize');\n\n% histogram of mean errors\nx = 0:options.bw(1); y = round(L);\nhist_mean = hist(y, x);\n% cumulative histogram of mean errors\nn_elements = histc(y, x); c_elements = cumsum(n_elements);\nif (opt.verbose)\n figure; hist(y, x);\n set(gcf, 'OuterPosition', [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]);\n set(gca, 'XTick', x); set(gca, 'xlim', [-0.5 options.bw(1)+0.5]);\n xlabel('Distance in pixels'); ylabel('Count of occurrences');\n set(gca, 'YTick', 0:50:2*c_elements(end));\n title('Histogram of mean errors');\n if (opt.save)\n saveas(gcf, './img/histogram_mean.png');\n saveas(gcf, './img/histogram_mean.fig');\n end;\n \n figure; bar(x, c_elements / max(c_elements));\n xlabel('RMS [px]'); ylabel('Count of occurrences [%]');\n set(gcf, 'OuterPosition', [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]);\n set(gca, 'XTick', x); set(gca, 'xlim', [-0.5 options.bw(1)+0.5]);\n set(gca, 'YTick', 0:0.05:1);\n title('Cumulative historgam of mean errors');\n if (opt.save)\n saveas(gcf, './img/cumhist_mean.png');\n saveas(gcf, './img/cumhist_mean.fig');\n end;\nend;\n\n\n% histogram of max errors\nx = 0:options.bw(1); y = round(err_maxdist);\nhist_max = hist(y, x);\n% cumulative histogram of max errors\nn_elements = histc(y, x); c_elements = cumsum(n_elements);\nif (opt.verbose)\n figure; hist(y, x);\n set(gcf, 'OuterPosition', [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]);\n set(gca, 'XTick', x); set(gca, 'xlim', [-0.5 options.bw(1)+0.5]);\n xlabel('Distance in pixels'); ylabel('Count of occurrences');\n set(gca, 'YTick', 0:50:2*c_elements(end));\n title('Histogram of max errors');\n if (opt.save)\n saveas(gcf, './img/histogram_max.png');\n saveas(gcf, './img/histogram_max.fig');\n end;\n \n figure; bar(x, c_elements / max(c_elements));\n xlabel('RMS [px]'); ylabel('Count of occurrences [%]');\n set(gcf, 'OuterPosition', [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]);\n set(gca, 'XTick', x); set(gca, 'xlim', [-0.5 options.bw(1)+0.5]);\n set(gca, 'YTick', 0:0.05:1);\n title('Cumulative historgam of max errors');\n if (opt.save)\n saveas(gcf, './img/cumhist_max.png');\n saveas(gcf, './img/cumhist_max.fig');\n end;\nend;\n% save histograms\nsave('./results/histograms.mat', 'hist_mean', 'hist_max');\n\n%% Show mean and max error for each point from ground truth\n\nmean_nose = mean(err_nose);\nmean_canthus_rl = mean(err_canthus_rl);\nmean_canthus_lr = mean(err_canthus_lr);\nmean_mouth_corner_r = mean(err_mouth_corner_r);\nmean_mouth_corner_l = mean(err_mouth_corner_l);\nmean_canthus_rr = mean(err_canthus_rr);\nmean_canthus_ll = mean(err_canthus_ll);\n\nmax_nose = max(err_nose);\nmax_canthus_rl = max(err_canthus_rl);\nmax_canthus_lr = max(err_canthus_lr);\nmax_mouth_corner_r = max(err_mouth_corner_r);\nmax_mouth_corner_l = max(err_mouth_corner_l);\nmax_canthus_rr = max(err_canthus_rr);\nmax_canthus_ll = max(err_canthus_ll);\n\nfprintf('\\n\\n__________________________________________________________\\n');\nfprintf('\\nResults:\\n');\nfprintf('Mean error on nose: \\t\\t\\t\\t%.4f\\t\\n', mean_nose);\nfprintf('Mean error on mean_canthus_rl: \\t\\t%.4f\\t\\n', mean_canthus_rl);\nfprintf('Mean error on mean_canthus_lr: \\t\\t%.4f\\t\\n', mean_canthus_lr);\nfprintf('Mean error on mean_mouth_corner_r: \\t%.4f\\t\\n', mean_mouth_corner_r);\nfprintf('Mean error on mean_mouth_corner_l: \\t%.4f\\t\\n', mean_mouth_corner_l);\nfprintf('Mean error on mean_canthus_rr: \\t\\t%.4f\\t\\n', mean_canthus_rr);\nfprintf('Mean error on mean_canthus_ll: \\t\\t%.4f\\t\\n', mean_canthus_ll);\nfprintf('__________________________________________________________\\n');\n\nfprintf('\\nR_mean_tst: \\t\\t\\t\\t\\t%.5f\\n', Rtst);\nfprintf('R_max_tst: \\t\\t\\t\\t\\t\\t%.5f\\n', sum(err_maxdist)/length(err_maxdist));\n\nfprintf('__________________________________________________________\\n');\n\n%%\n\nxSC = 0:ceil(max(L));\nySC = round(L);\nhist_meanSC = hist(ySC, xSC);\n% cumulative histogram of mean errors\nn_elementsSC = histc(ySC, xSC); \nc_elementsSC = cumsum(n_elementsSC);\n% max\nxSCmax = 0:ceil(max(L));\nySCmax = round(err_maxdist);\nhist_maxSC = hist(ySCmax, xSCmax);\n% cumulative histogram of max errors\nn_elementsSCmax = histc(ySCmax, xSCmax); \nc_elementsSCmax = cumsum(n_elementsSCmax);\n\nfig = figure; \ny1 = c_elementsSC / max(c_elementsSC) * 100;\nplot(xSC(1:end), y1(1:end), 'b', 'LineWidth', 3); hold on; grid on;\nset(gcf, 'OuterPosition', [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]);\nset(gca, 'XTick', xSC); set(gca, 'YTick', 0:5:100, 'FontSize', 15); set(gca, 'ylim', [0 105]);\nl1 = legend('corners dataset, normalized trn loss', 'Location', 'SouthEast');\nxlabel(['relative error [%]'], 'FontSize', 20); \nylabel('Count of occurrences [%]', 'FontSize', 20);\ntitle('Cumulative historgam of mean errors', 'FontSize', 20);\n\n% r = 781; c = 731;\nr = 801; c = 801;\n% Sets position and size of figure on the screen\nset(fig, 'Units', 'pixels', 'position', [0 0 c r] ); \n% Sets axes to fill the figure space\n% set(gca, 'Units', 'pixels', 'position', [0 0 c+1 r+1 ]);\n% Sets print properties; Looks like 1 pixel = (3/4)th of a point\nset(fig, 'paperunits', 'points', 'papersize', [fix((c-1)*(3/4))+1 fix((r-1)*(3/4))+1]);\nset(fig, 'paperunits', 'normalized', 'paperposition', [0 0 1 1]);\nprint( fig, sprintf('-r%d', ceil(72*(4/3))), '-dpng', './img/cumhist-mean.png');\n\nfig = figure; \ny2 = c_elementsSCmax / max(c_elementsSCmax) * 100; \nplot(xSCmax(1:end), y2(1:end), 'b', 'LineWidth', 3); hold on; grid on;\nset(gcf, 'OuterPosition', [scrsz(1) scrsz(2) scrsz(3) scrsz(4)]);\nset(gca, 'XTick', xSCmax); set(gca, 'YTick', 0:5:100, 'FontSize', 15);\nset(gca, 'ylim', [0 105]);\nl1 = legend('corners dataset, normalized trn loss', 'Location', 'SouthEast');\nxlabel(['relative error [%]'], 'FontSize', 20); \nylabel('Count of occurrences [%]', 'FontSize', 20);\ntitle('Cumulative historgam of max errors', 'FontSize', 20);\n\nr = 801; c = 801;\n% Sets position and size of figure on the screen\nset(fig, 'Units', 'pixels', 'position', [0 0 c r] ); \n% Sets axes to fill the figure space\n% set(gca, 'Units', 'pixels', 'position', [0 0 c+1 r+1 ]);\n% Sets print properties; Looks like 1 pixel = (3/4)th of a point\nset(fig, 'paperunits', 'points', 'papersize', [fix((c-1)*(3/4))+1 fix((r-1)*(3/4))+1]);\nset(fig, 'paperunits', 'normalized', 'paperposition', [0 0 1 1]);\nprint( fig, sprintf('-r%d', ceil(72*(4/3))), '-dpng', './img/cumhist-max.png');\n\n%% Timestamp\n\nfprintf(1,'Finished on %s\\n\\n', datestr(now));", "meta": {"author": "uricamic", "repo": "flandmark", "sha": "ecf122f93f73504fe7d8faccca525c6b1e98fdcd", "save_path": "github-repos/MATLAB/uricamic-flandmark", "path": "github-repos/MATLAB/uricamic-flandmark/flandmark-ecf122f93f73504fe7d8faccca525c6b1e98fdcd/learning/code/test2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3922225509067182}} {"text": "function colorspace_demo(Cmd)\n% Demo for colorspace.m - 3D visualizations of various color spaces\n\n% Pascal Getreuer 2006\n\nif nargin == 0\n % Create a figure with a drop-down menu\n figure('Color',[1,1,1]);\n h = uicontrol('Style','popup','Position',[15,10,90,21],...\n 'BackgroundColor',[1,1,1],'Value',2,...\n 'string',{'sRGB','Y''PbPr','HSV','HSL','L*a*b*','L*u*v*','L*ch'});\n set(h,'Callback',sprintf('%s(get(%.20g,''Value''))',mfilename,h)); \n Cmd = 2;\nend\n\n% Plot a figure\nswitch Cmd\ncase 1\n [x,y,z,Tri] = makeshape('Cube');\n CData = [x,y,z];\n myplot((x-0.5)*0.8,(y-0.5)*0.8,(z)*0.8,Tri,CData);\n coloraxis('R''',5,0.5*0.8);\n coloraxis('G''',6,0.5*0.8); \n coloraxis('B''',3); \ncase 2\n [x,y,z,Tri] = makeshape('Cylinder');\n CData = colorspace('rgb<-ypbpr',[z,x/2,y/2]);\n myplot(x,y,0.8*z,Tri,CData);\n coloraxis('Y''',3);\n coloraxis('P_b',5,0.8); \n coloraxis('P_r',6,0.8); \ncase 3\n [x,y,z,Tri] = makeshape('Hexacone');\n CData = colorspace('rgb<-hsv',[(pi+atan2(-y,-x))*180/pi,sqrt(x.^2+y.^2),z]);\n myplot(x,y,z,Tri,CData);\n coloraxis('H',1);\n coloraxis('S',2);\n coloraxis('V',3);\ncase 4\n [x,y,z,Tri] = makeshape('Double Hexacone');\n CData = colorspace('rgb<-hsl',[(pi+atan2(-y,-x))*180/pi,sqrt(x.^2+y.^2),z]); \n myplot(x,y,2*z,Tri,CData);\n coloraxis('H',1);\n coloraxis('S',2); \n coloraxis('L',4);\ncase 5\n [x,y,z,Tri] = makeshape('Blobs');\n CData = colorspace('rgb<-lab',[z*100,x*100,y*100]);\n myplot(x,y,2*z,Tri,CData);\n coloraxis('L*',4);\n coloraxis('a*',5,2); \n coloraxis('b*',6,2); \ncase 6\n [x,y,z,Tri] = makeshape('Blobs');\n CData = colorspace('rgb<-luv',[z*100,x*125,y*125]);\n myplot(x,y,2*z,Tri,CData);\n coloraxis('L*',4);\n coloraxis('u*',5,2); \n coloraxis('v*',6,2);\ncase 7\n [x,y,z,Tri] = makeshape('Blobs');\n CData = colorspace('rgb<-lab',[z*100,x*100,y*100]);\n myplot(x,y,2*z,Tri,CData);\n coloraxis('L*',4);\n coloraxis('c',2); \n coloraxis('h',1);\nend\n\naxis equal;\naxis off;\npbaspect([1,1,1]);\nview(70,27);\nrotate3d on;\n\nreturn;\n\n\nfunction myplot(x,y,z,Tri,CData)\n% Plot a triangular mesh with color data\ncla;\nCData = min(max(CData,0),1);\npatch('Faces',Tri,'Vertices',[x,y,z],'FaceVertexCData',CData,...\n 'FaceColor','interp','EdgeColor','none');\nhold on;\nreturn;\n\n\nfunction coloraxis(Name,Type,h)\n% Draw color axes as 3D objects\nFontSize = 14;\n\nswitch Type\ncase 1\n set(text(-0.25,-1.3,1.1,Name),'FontWeight','bold',...\n 'FontSize',FontSize,'Color',[0,0,0]);\n t = linspace(0,pi*3/2,60);\n x = cos(t)*1.1;\n y = sin(t)*1.1;\n set(plot3(x,y,zeros(size(x)),'k-'),'LineWidth',2.5,'Color',[1,1,1]*0.8);\n x = [x,-0.1,0,-0.1];\n y = [y,-1.05,-1.1,-1.15];\n set(plot3(x,y,ones(size(x)),'k-'),'LineWidth',2.5); \ncase 2\n set(text(0,-0.6,0.15,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);\n set(plot3([-0.05,0,0.05,0,0],[-0.9,-1,-0.9,-1,0],[0,0,0,0,0],'k-'),'LineWidth',2.5);\ncase 3\n set(text(0,0.15,1.3,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);\n set(plot3([0,0,0,0,0],[-0.05,0,0.05,0,0],[1.6,1.7,1.6,1.7,0],'k-'),'LineWidth',2.5);\ncase 4\n set(text(0,0.15,2.4,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);\n set(plot3([0,0,0,0,0],[-0.05,0,0.05,0,0],[2.4,2.5,2.4,2.5,0],'k-'),'LineWidth',2.5);\ncase 5\n set(text(0.6,0,h+0.15,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);\n set(plot3([0.9,1,0.9,1,-1,-0.9,-1,-0.9],[-0.05,0,0.05,0,0,-0.05,0,0.05],...\n zeros(1,8)+h,'k-'),'LineWidth',2.5);\ncase 6\n set(text(0,0.6,h+0.15,Name),'FontWeight','bold','FontSize',FontSize,'Color',[0,0,0]);\n set(plot3([-0.05,0,0.05,0,0,-0.05,0,0.05],[0.9,1,0.9,1,-1,-0.9,-1,-0.9],...\n zeros(1,8)+h,'k-'),'LineWidth',2.5);\nend\nreturn;\n\n\nfunction [x,y,z,Tri] = makeshape(Shape)\n% Make a 3D shape: Shape = 'Cube', 'Cylinder', 'Cone', 'Double Cone', 'Blobs'\n\n% Cube\nN = 12; % Vertices per edge\n% Cylinder, Cone, Double Cone\nNth = 25; % Vertices over angles, (Nth - 1) should be a multiple of 12 \nNr = 4; % Vertices over radius\nNz = 8; % Vertices over z-dimension\n\nswitch lower(Shape)\ncase 'cube'\n [u,v] = meshgrid(linspace(0,1,N),linspace(0,1,N));\n u = u(:);\n v = v(:);\n x = [u;u;u;u;zeros(N^2,1);ones(N^2,1)];\n y = [v;v;zeros(N^2,1);ones(N^2,1);v;v];\n z = [zeros(N^2,1);ones(N^2,1);v;v;u;u];\n Tri = trigrid(N,N);\n Tri = [Tri;N^2+Tri;2*N^2+Tri;3*N^2+Tri;4*N^2+Tri;5*N^2+Tri];\ncase 'cylinder'\n Nth = ceil(Nth*0.75);\n [u,v] = meshgrid(linspace(0,pi*3/2,Nth),linspace(0,1,Nz));\n Tri = trigrid(Nth,Nz);\n x = cos(u(:));\n y = sin(u(:));\n z = v(:);\n [u,v] = meshgrid(linspace(0,pi*3/2,Nth),linspace(0,1,Nr));\n Tri = [Tri;Nth*Nz+trigrid(Nth,Nr);Nth*Nz+Nth*Nr+trigrid(Nth,Nr)];\n x = [x;v(:).*cos(u(:));v(:).*cos(u(:))];\n y = [y;v(:).*sin(u(:));v(:).*sin(u(:))];\n z = [z;zeros(Nth*Nr,1);ones(Nth*Nr,1)];\n [u,v] = meshgrid(linspace(0,1,Nr),linspace(0,1,Nz));\n Tri = [Tri;Nth*Nz+2*Nth*Nr+trigrid(Nr,Nz);Nth*Nz+2*Nth*Nr+Nr*Nz+trigrid(Nr,Nz)];\n x = [x;u(:);zeros(Nr*Nz,1)];\n y = [y;zeros(Nr*Nz,1);-u(:)];\n z = [z;v(:);v(:)];\ncase 'cone'\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));\n Tri = trigrid(Nth,Nz);\n x = v(:).*cos(u(:));\n y = v(:).*sin(u(:));\n z = v(:);\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nr));\n Tri = [Tri;Nth*Nz+trigrid(Nth,Nr);];\n x = [x;v(:).*cos(u(:));];\n y = [y;v(:).*sin(u(:));];\n z = [z;ones(Nth*Nr,1)];\ncase 'double cone'\n Nz = floor(Nz/2)*2+1;\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));\n Tri = trigrid(Nth,Nz);\n r = 1 - abs(2*v(:) - 1);\n x = r.*cos(u(:));\n y = r.*sin(u(:));\n z = v(:);\ncase 'hexacone'\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));\n Tri = trigrid(Nth,Nz);\n r = 0.92./max(max(abs(cos(u)),abs(cos(u - pi/3))),abs(cos(u + pi/3)));\n x = v(:).*cos(u(:)).*r(:);\n y = v(:).*sin(u(:)).*r(:);\n z = v(:);\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nr));\n Tri = [Tri;Nth*Nz+trigrid(Nth,Nr);];\n v = 0.92*v./max(max(abs(cos(u)),abs(cos(u - pi/3))),abs(cos(u + pi/3)));\n x = [x;v(:).*cos(u(:));];\n y = [y;v(:).*sin(u(:));];\n z = [z;ones(Nth*Nr,1)];\ncase 'double hexacone'\n Nz = floor(Nz/2)*2+1;\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));\n Tri = trigrid(Nth,Nz);\n r = 1 - abs(2*v - 1);\n r = 0.92*r./max(max(abs(cos(u)),abs(cos(u - pi/3))),abs(cos(u + pi/3)));\n x = r(:).*cos(u(:));\n y = r(:).*sin(u(:));\n z = v(:); \ncase 'blobs'\n Nz = 47;\n [u,v] = meshgrid(linspace(0,2*pi,Nth),linspace(0,1,Nz));\n Tri = trigrid(Nth,Nz);\n r = sin(v(:)*pi*3).^2.*(1 - 0.6*abs(2*v(:) - 1));\n x = r.*cos(u(:));\n y = r.*sin(u(:));\n z = v(:); \nend\nreturn;\n\nfunction Tri = trigrid(Nu,Nv)\n% Construct the connectivity data for a grid of triangular patches\ni = (1:(Nu-1)*Nv-1).';\ni(Nv:Nv:end) = [];\nTri = [i,i+1,i+Nv;i+1,i+Nv+1,i+Nv];\nreturn;\n\n", "meta": {"author": "taoshiqian", "repo": "image_SDR_to_HDR", "sha": "37a2d6976edad995d5273f3316b13a1ce6d8e28b", "save_path": "github-repos/MATLAB/taoshiqian-image_SDR_to_HDR", "path": "github-repos/MATLAB/taoshiqian-image_SDR_to_HDR/image_SDR_to_HDR-37a2d6976edad995d5273f3316b13a1ce6d8e28b/colorspace/colorspace_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3922225509067182}} {"text": "function [ y, j ] = j_borrow_gregorian ( y, j )\n\n%*****************************************************************************80\n%\n%% J_BORROW_GREGORIAN borrows year-days from years in a Gregorian date.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 June 2012\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, J, a YJ date.\n%\n while ( j <= 0 )\n\n y = y - 1;\n\n days = year_length_gregorian ( y );\n\n j = j + days;\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/j_borrow_gregorian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.6791786861878392, "lm_q1q2_score": 0.39222254340646595}} {"text": "clear all;\n% -------------------------------------------------------------------------\n% Description:\n% Script to demo MS-LapSRN for one image\n%\n% Citation: \n% Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks\n% Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang\n% arXiv, 2017\n%\n% Contact:\n% Wei-Sheng Lai\n% wlai24@ucmerced.edu\n% University of California, Merced\n% -------------------------------------------------------------------------\n\nimg_filename = 'emma.jpg';\n\n%% parameters\n%model_name = 'MSLapSRN_D5R2';\n%model_name = 'MSLapSRN_D5R5';\nmodel_name = 'MSLapSRN_D5R8';\n\nmodel_scale = 4; % model SR scale\ntest_scale = 4; % testing SR scale\ngpu = 1; % GPU ID\n\n%% setup paths\naddpath(genpath('utils'));\naddpath(fullfile(pwd, 'matconvnet/matlab'));\nvl_setupnn;\n\n%% Load pretrained multi-scale model\nmodel_filename = fullfile('pretrained_models', sprintf('%s.mat', model_name));\nfprintf('Load %s\\n', model_filename);\n\nnet = load(model_filename);\nnet_trained = dagnn.DagNN.loadobj(net.net);\n\nopts_filename = fullfile('pretrained_models', sprintf('%s_opts.mat', model_name));\nfprintf('Load %s\\n', opts_filename);\n\nopts = load(opts_filename);\nopts = opts.opts;\n\nopts.scales = [model_scale];\n\n%% create single-scale model\nnet = init_MSLapSRN_model(opts, 'test');\n\n%% copy pretrained weights\nfprintf('Copy weights to single scale model...\\n');\nnet = copy_model_weights(net, net_trained);\n\nif( gpu ~= 0 )\n gpuDevice(gpu)\n net.move('gpu');\nend\n\n%% Load GT image\nfprintf('Load %s\\n', img_filename);\nimg_GT = im2double(imread(img_filename));\nimg_GT = mod_crop(img_GT, test_scale);\n\n%% Generate LR image\nimg_LR = imresize(img_GT, 1/test_scale);\n\n%% apply LapSRN\nfprintf('Apply MS-LapSRN for %dx SR\\n', test_scale);\nimg_HR = SR_MSLapSRN(img_LR, net, model_scale, test_scale, gpu);\n\n%% show results\nimg_LR = imresize(img_LR, test_scale);\nfigure, imshow(cat(2, img_LR, img_HR, img_GT));\ntitle(sprintf('Bicubic %dx | MS-LapSRN %dx | Ground Truth', test_scale, test_scale));\n\n", "meta": {"author": "phoenix104104", "repo": "LapSRN", "sha": "95154bba82a3aab9bdaec8e0eedd4187babc5ed2", "save_path": "github-repos/MATLAB/phoenix104104-LapSRN", "path": "github-repos/MATLAB/phoenix104104-LapSRN/LapSRN-95154bba82a3aab9bdaec8e0eedd4187babc5ed2/demo_MSLapSRN.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7606506418255927, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.3922066198327699}} {"text": "function T = findFutileCycle(model, cut,closedModel)\n% This function attempts to find reactions involved in the atp-driving\n% futile cycle\n%\n% INPUT\n% model model structure\n% cut cutoff value for reactions to be displayed\n% closedModel if 1 the model will be closed otw the applied medium\n% constraints count (DEFAULT:1);\n% OUTPUT \n% T Table of reactions potentially involved\n%\n% Ines Thiele 03/2022\n\nif ~exist('cut','var')\n cut = 250;\nend\n\nif ~exist('closedModel','var')\n closedModel = 1;\nend\n\nmodelClosed = model;\nif closedModel\n modelexchanges1 = strmatch('Ex_',modelClosed.rxns);\n modelexchanges4 = strmatch('EX_',modelClosed.rxns);\n modelexchanges2 = strmatch('DM_',modelClosed.rxns);\n modelexchanges3 = strmatch('sink_',modelClosed.rxns);\n selExc = (find( full((sum(abs(modelClosed.S)==1,1) ==1) & (sum(modelClosed.S~=0) == 1))))';\n \n modelexchanges = unique([modelexchanges1;modelexchanges2;modelexchanges3;modelexchanges4;selExc]);\n modelClosed.lb(ismember(modelClosed.rxns,modelClosed.rxns(modelexchanges)))=0;\nend\nmodelClosed = changeObjective(modelClosed,'DM_atp_c_');\n\nfba = optimizeCbModel(modelClosed,'max','zero')\nfba.v(find(abs(fba.v)<=1e-6))=0;\ntab = [modelClosed.lb modelClosed.ub fba.v];\na = printRxnFormula(model);\n\nR = modelClosed.rxns(find(abs(fba.v)>cut));\nL = modelClosed.lb(find(abs(fba.v)>cut));\nU = modelClosed.ub(find(abs(fba.v)>cut));\nF = fba.v(find(abs(fba.v)>cut));\nA = a(find(abs(fba.v)>cut));\nif ~isempty(A)\nT = table(R, num2str(L),num2str(U), num2str(F),A);\nelse\n T = {};\nend", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/reconstruction/demeter/src/debugging/findFutileCycle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149868676283, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.39219443193891707}} {"text": "function ret = spm_ov_goto_max(varargin)\n% Goto maximum intensity tool - plugin for spm_orthviews\n%\n% This tool provides capabilities similar to the \"Goto ... maximum\"\n% functionality in spm_mip_ui.m. When the tool is called for the first\n% time, it has to read the whole image data file. This might result in a\n% slow response depending on the image dimensions.\n%\n% This routine is a plugin to spm_orthviews. For general help about\n% spm_orthviews and plugins type\n% help spm_orthviews\n% at the MATLAB prompt.\n%__________________________________________________________________________\n% Copyright (C) 2012 Wellcome Trust Centre for Neuroimaging\n\n% Volkmar Glauche\n% $Id: spm_ov_goto_max.m 4996 2012-10-11 18:28:37Z guillaume $\n\nglobal st;\nif isempty(st)\n error('goto_max: This routine can only be called as a plugin for spm_orthviews!');\nend\n\nif nargin < 2\n error('goto_max: Wrong number of arguments. Usage: spm_orthviews(''goto_max'', cmd, volhandle, varargin)');\nend\n\ncmd = lower(varargin{1});\nvolhandle = varargin{2};\n\nswitch cmd\n\n % Context menu and callbacks\n case 'context_menu'\n item0 = uimenu(varargin{3}, 'Label', 'Goto maximum');\n item1 = uimenu(item0, 'Label', 'Goto global maximum',...\n 'Callback', ['spm_orthviews(''goto_max'', ''global'',' num2str(volhandle) ');']);\n item2 = uimenu(item0, 'Label', 'Goto nearest local maximum',...\n 'Callback', ['spm_orthviews(''goto_max'', ''local'',' num2str(volhandle) ');']);\n ret = item0;\n\n case 'global'\n if ~isfield(st.vols{volhandle}, 'goto_max')\n [dat, xyz] = spm_read_vols(st.vols{volhandle});\n [unused, mxind] = max(dat(:));\n st.vols{volhandle}.goto_max.globalmm = xyz(:, mxind);\n end\n posmm = st.vols{volhandle}.premul*[st.vols{volhandle}.goto_max.globalmm;1];\n spm_orthviews('reposition', posmm(1:3));\n \n case 'local'\n % Read volume, goto local maxima higher or equal current voxel\n % intensity\n dat = spm_read_vols(st.vols{volhandle});\n [x, y, z] = ndgrid(1:st.vols{volhandle}.dim(1), 1:st.vols{volhandle}.dim(2), 1:st.vols{volhandle}.dim(3));\n xyz = [x(:) y(:) z(:)]';\n posvx = round((st.vols{volhandle}.premul*st.vols{volhandle}.mat)\\[spm_orthviews('pos');1]);\n try\n if isfinite(dat(posvx(1), posvx(2), posvx(3)))\n sel = isfinite(dat(:)) & dat(:) >= dat(posvx(1), posvx(2), posvx(3)) - eps;\n else\n sel = isfinite(dat(:));\n end\n catch\n sel = isfinite(dat(:));\n end\n [unused, unused, XYZ] = spm_max(dat(sel), xyz(:,sel));\n XYZdist = bsxfun(@minus,XYZ,posvx(1:3));\n [unused, nmaxind] = min(sum(XYZdist.^2));\n posmm = st.vols{volhandle}.premul*st.vols{volhandle}.mat*[XYZ(:, nmaxind); 1];\n spm_orthviews('reposition', posmm(1:3));\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_orthviews/spm_ov_goto_max.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7905303285397349, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3921772179981812}} {"text": "%\n\n% @\n% Copyright (C) 2017 Jonas Ruesch\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n% @\n\n% The tornado installation directory.\n% Must contain the aircraft geometry file and the status used below.\ntornado_root_directory = 'F:\\svn\\dev\\matlab\\tornado\\T135_export';\n\n% The state:\n% Velocity 12.5 m/s , ~45km/h (average velocity as measured in real flight)\n% Velocity doesn't matter much for coefficient computation. \n% Coefficients are largely velocity independent (tested)).\nstate.AS= 12.5; %Airspeed m/s\nstate.alpha= 0.0; %Angle of attack, radians\nstate.betha= 0; %Angle of sideslip, radians\nstate.P= 0; %Rollrate, rad/s\nstate.Q= 0; %pitchrate, rad/s\nstate.R= 0; %yawrate, rad/s\nstate.adot= 0; %Alpha time derivative rad/s\nstate.bdot= 0; %Betha time derivative rad/s\nstate.ALT= 0; %Altitude, m\nstate.rho= 1.225; %Desity, kg/m^3\nstate.pgcorr= 0; %Apply prandtl glauert compressibility correction\n\n% The ExperimentalCarrier geometry.\naircraft_geometry_name = 'ExperimentalCarrier';\n\n% Center of gravity\ncenterOfGravity = 0.092; % Tornado x-axis extends aft (!).\n\n% The sweep ranges and sampling resolution for Simulink modelling\nalphaStart = -10;\nalphaEnd = 20;\nnumAlphas = 31;\nbetaStart = -10;\nbetaEnd = 10;\nnumBetas = 21;\n\n% % Quick Test\n% alphaStart = -10;\n% alphaEnd = 20;\n% numAlphas = 2;\n% betaStart = -10;\n% betaEnd = 10;\n% numBetas = 2;\n\n% Coefficient computation\n[alpha, beta, CX, CY, CZ, Cl, Cm, Cn, CX_d, CY_d, CZ_d, Cl_d, Cm_d, Cn_d, ...\n CX_P, CY_P, CZ_P, Cl_P, Cm_P, Cn_P, CX_Q, CY_Q, CZ_Q, Cl_Q, Cm_Q, Cn_Q, CX_R, CY_R, CZ_R, Cl_R, Cm_R, Cn_R]=computeAerodynamicCoefficients(...\n aircraft_geometry_name, state, tornado_root_directory, alphaStart, ...\n alphaEnd, numAlphas, betaStart, betaEnd, numBetas, centerOfGravity);\n\nplotCoefficients(alpha, beta, CX, CY, CZ, Cl, Cm, Cn, CX_d, CY_d, CZ_d, Cl_d, Cm_d, Cn_d, ...\n CX_P, CY_P, CZ_P, Cl_P, Cm_P, Cn_P, CX_Q, CY_Q, CZ_Q, Cl_Q, Cm_Q, Cn_Q, CX_R, CY_R, CZ_R, Cl_R, Cm_R, Cn_R);\n\nplotAircraftGeometry(aircraft_geometry_name, state, tornado_root_directory);\n\nsave;\n", "meta": {"author": "jrgenerative", "repo": "fixed-wing-sim", "sha": "53fd5b616a2bd296f37f1f105617c606c2f63066", "save_path": "github-repos/MATLAB/jrgenerative-fixed-wing-sim", "path": "github-repos/MATLAB/jrgenerative-fixed-wing-sim/fixed-wing-sim-53fd5b616a2bd296f37f1f105617c606c2f63066/ExperimentalCarrierSimulink/code/mainComputeCoefficients.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8031738057795403, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.39217643289871124}} {"text": "function sudoku_test ( )\n\n%*****************************************************************************80\n%\n%% SUDOKU_TEST tests the SUDOKU library.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 22 October 2007\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SUDOKU_TEST:\\n' );\n fprintf ( 1, ' MATLAB version\\n' );\n fprintf ( 1, ' Test the SUDOKU library.\\n' );\n\n sudoku_test01 ( );\n sudoku_test02 ( );\n sudoku_test03 ( );\n sudoku_test04 ( );\n sudoku_test05 ( );\n sudoku_test06 ( );\n sudoku_test07 ( );\n sudoku_test08 ( );\n sudoku_test09 ( );\n sudoku_test10 ( );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SUDOKU_TEST:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/sudoku/sudoku_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.7122321903471563, "lm_q1q2_score": 0.3921602899764416}} {"text": "function asa066_test ( )\n\n%*****************************************************************************80\n%\n%% ASA066_TEST tests ASA066.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ASA066_TEST:\\n' );\n fprintf ( 1, ' MATLAB version\\n' );\n fprintf ( 1, ' Test the ASA066 library.\\n' );\n\n asa066_test01 ( );\n asa066_test02 ( );\n asa066_test03 ( );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ASA066_TEST:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/asa066/asa066_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.7122321720225278, "lm_q1q2_score": 0.39216027988676616}} {"text": "function [y,w,s,g] = spm_csd_mtf(P,M,U)\n% Spectral response of a NMM (transfer function x noise spectrum)\n% FORMAT [y,w,s,g] = spm_csd_mtf(P,M,U)\n% FORMAT [y,w,s,g] = spm_csd_mtf(P,M)\n%\n% P - parameters\n% M - neural mass model structure\n% U - trial-specific effects (induces expansion around steady state)\n%\n% y - {y(N,nc,nc}} - cross-spectral density for nc channels {trials}\n% - for N frequencies in M.Hz [default 1:64Hz]\n% w - frequencies\n% s - modulation transfer functions (complex)\n% g - normalised modulation transfer function (true Granger causality)\n%\n% When called with U this function will return a cross-spectral response\n% for each of the condition-specific parameters specified in U.X; otherwise\n% it returns the complex CSD for the parameters in P (using the expansion\n% point supplied in M.x)\n%\n% When the observer function M.g is specified the CSD response is\n% supplemented with channel noise in sensor space; otherwise the CSD\n% pertains to hidden states.\n%\n% NB: requires M.u to specify the number of endogenous inputs\n% This routine and will solve for the (hidden) steady state and use it as\n% the expansion point for subsequent linear systems analysis (if trial\n% specific effects are specified).\n%\n% See also:\n% spm_ccf2csd.m, spm_ccf2mar, spm_csd2ccf.m, spm_csd2mar.m, spm_mar2csd.m,\n% spm_csd2coh.m, spm_dcm_mtf.m, spm_Q.m, spm_mar.m and spm_mar_spectral.m\n%\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_csd_mtf.m 7529 2019-02-06 19:21:38Z karl $\n\n\n\n% between-trial (experimental) inputs\n%==========================================================================\ntry\n X = U.X;\n if ~size(X,1)\n X = sparse(1,0);\n end\ncatch\n \n % default inputs - one trial (no trial-specific effects)\n %----------------------------------------------------------------------\n X = sparse(1,0);\n \nend\n\n\n% compute log-spectral density\n%==========================================================================\n\n% frequencies of interest\n%--------------------------------------------------------------------------\nif isfield(M,'Hz')\n w = M.Hz;\nelse\n w = 1:64;\n M.Hz = w;\nend\n\n% number of channels and exogenous (neuronal) inputs or sources\n%--------------------------------------------------------------------------\nnc = M.l;\nnw = length(M.Hz);\n\n% spectrum of innovations (Gu) and noise (Gs and Gn)\n%--------------------------------------------------------------------------\nif isfield(M,'g')\n [Gu,Gs,Gn] = spm_csd_mtf_gu(P,M.Hz);\nelse\n Gu = spm_csd_mtf_gu(P,M.Hz);\n nc = size(Gu,2);\nend\n\n\n% cycle over trials (experimental conditions)\n%==========================================================================\nfor c = 1:size(X,1)\n \n\n % condition-specific parameters\n %----------------------------------------------------------------------\n Q = spm_gen_Q(P,X(c,:));\n \n % solve for steady-state - if exogenous inputs are specified\n %----------------------------------------------------------------------\n if nargin > 2\n M.x = spm_dcm_neural_x(Q,M);\n end\n \n % transfer functions (FFT of kernel)\n %----------------------------------------------------------------------\n S = spm_dcm_mtf(Q,M);\n \n\n % predicted cross-spectral density\n %----------------------------------------------------------------------\n G = zeros(nw,nc,nc);\n for i = 1:nw\n Si = shiftdim(S(i,:,:),1);\n G(i,:,:) = Si*diag(Gu(i,:))*Si';\n end\n \n % save trial-specific frequencies of interest\n %----------------------------------------------------------------------\n g{c} = G;\n s{c} = S;\n \n \nend\n\n% and add channel noise\n%==========================================================================\nif isfield(M,'g')\n \n for c = 1:length(g)\n G = g{c};\n for i = 1:nc\n \n % channel specific noise\n %--------------------------------------------------------------\n try\n G(:,i,i) = G(:,i,i) + Gs(:,i);\n catch\n G(:,i,i) = G(:,i,i) + Gs(:,1);\n end\n \n % and cross-spectral density from common channel noise\n %--------------------------------------------------------------\n for j = 1:nc\n G(:,i,j) = G(:,i,j) + Gn;\n end\n end\n y{c} = G;\n \n end\nelse\n y = g;\nend\n\n% model data features summarised with a MAR process\n%==========================================================================\nif isfield(M,'p')\n p = M.p - 1;\n if isfield(M,'dt')\n dt = M.dt;\n else\n dt = 1/(2*w(end));\n end\n for c = 1:length(y)\n mar = spm_csd2mar(y{c},w,p,dt);\n y{c} = spm_mar2csd(mar,w,1/dt);\n end\nend\n\n% model the effect of filtering during preprocessing\n%==========================================================================\nif isfield(P,'f')\n for c = 1:length(y)\n f = (1:nw)'; \n f = exp(P.f(1) + P.f(2)*f/nw);\n for i = 1:nc\n for j = 1:nc\n y{c}(:,i,j) = y{c}(:,i,j).*f;\n end\n end\n end\nend\n\n\n% Granger causality (normalised transfer functions) if requested\n%==========================================================================\nif nargout > 3\n for c = 1:length(s)\n g{c} = spm_dtf2gew(s{c},Gu);\n end\nend\n\n\n\n\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/dcm_meeg/spm_csd_mtf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.766293653760418, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3921251867086304}} {"text": "function [Ep,Cp,Eh,F,L,dFdp,dFdpp] = spm_nlsi_GN(M,U,Y)\n% Bayesian inversion of nonlinear models - Gauss-Newton/Variational Laplace\n% FORMAT [Ep,Cp,Eh,F] = spm_nlsi_GN(M,U,Y)\n%\n% [Dynamic] MIMO models\n%__________________________________________________________________________\n%\n% M.IS - function name f(P,M,U) - generative model\n% This function specifies the nonlinear model:\n% y = Y.y = IS(P,M,U) + X0*P0 + e\n% where e ~ N(0,C). For dynamic systems this would be an integration\n% scheme (e.g. spm_int). spm_int expects the following:\n%\n% M.f - f(x,u,P,M)\n% M.g - g(x,u,P,M)\n% M.h - h(x,u,P,M)\n% x - state variables\n% u - inputs or causes\n% P - free parameters\n% M - fixed functional forms and parameters in M\n%\n% M.FS - function name f(y,M) - feature selection\n% This [optional] function performs feature selection assuming the\n% generalized model y = FS(y,M) = FS(IS(P,M,U),M) + X0*P0 + e\n%\n% M.P - starting estimates for model parameters [optional]\n%\n% M.pE - prior expectation - E{P} of model parameters\n% M.pC - prior covariance - Cov{P} of model parameters\n%\n% M.hE - prior expectation - E{h} of log-precision parameters\n% M.hC - prior covariance - Cov{h} of log-precision parameters\n%\n% U.u - inputs (or just U)\n% U.dt - sampling interval\n%\n% Y.y - outputs (samples x observations x ...)\n% Y.dt - sampling interval for outputs\n% Y.X0 - confounds or null space (over size(y,1) samples or all vec(y))\n% Y.Q - q error precision components (over size(y,1) samples or all vec(y))\n%\n%\n% Parameter estimates\n%--------------------------------------------------------------------------\n% Ep - (p x 1) conditional expectation E{P|y}\n% Cp - (p x p) conditional covariance Cov{P|y}\n% Eh - (q x 1) conditional log-precisions E{h|y}\n%\n% log evidence\n%--------------------------------------------------------------------------\n% F - [-ve] free energy F = log evidence = p(y|f,g,pE,pC) = p(y|m)\n%\n%__________________________________________________________________________\n% Returns the moments of the posterior p.d.f. of the parameters of a\n% nonlinear model specified by IS(P,M,U) under Gaussian assumptions.\n% Usually, IS is an integrator of a dynamic MIMO input-state-output model\n%\n% dx/dt = f(x,u,P)\n% y = g(x,u,P) + X0*P0 + e\n%\n% A static nonlinear observation model with fixed input or causes u\n% obtains when x = []. i.e.\n%\n% y = g([],u,P) + X0*P0e + e\n%\n% but static nonlinear models are specified more simply using\n%\n% y = IS(P,M,U) + X0*P0 + e\n%\n% Priors on the free parameters P are specified in terms of expectation pE\n% and covariance pC. The E-Step uses a Fisher-Scoring scheme and a Laplace\n% approximation to estimate the conditional expectation and covariance of P\n% If the free-energy starts to increase, an abbreviated descent is\n% invoked. The M-Step estimates the precision components of e, in terms\n% of log-precisions. Although these two steps can be thought of in\n% terms of E and N steps they are in fact variational steps of a full\n% variational Laplace scheme that accommodates conditional uncertainty\n% over both parameters and log precisions (c.f. hyperparameters with hyper\n% priors)\n%\n% An optional feature selection can be specified with parameters M.FS.\n%\n% For generic aspects of the scheme see:\n%\n% Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W.\n% Variational free energy and the Laplace approximation.\n% NeuroImage. 2007 Jan 1;34(1):220-34.\n%\n% This scheme handels complex data along the lines originally described in:\n%\n% Sehpard RJ, Lordan BP, and Grant EH.\n% Least squares analysis of complex data with applications to permittivity\n% measurements.\n% J. Phys. D. Appl. Phys 1970 3:1759-1764.\n%\n%__________________________________________________________________________\n% Copyright (C) 2001-2015 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_nlsi_GN.m 7279 2018-03-10 21:22:44Z karl $\n\n% options\n%--------------------------------------------------------------------------\ntry, M.nograph; catch, M.nograph = 0; end\ntry, M.noprint; catch, M.noprint = 0; end\ntry, M.Nmax; catch, M.Nmax = 128; end\n\n% figure (unless disabled)\n%--------------------------------------------------------------------------\nif ~M.nograph\n Fsi = spm_figure('GetWin','SI');\nend\n\n% check integrator\n%--------------------------------------------------------------------------\ntry\n M.IS;\ncatch\n M.IS = 'spm_int';\nend\n\n% composition of feature selection and prediction (usually an integrator)\n%--------------------------------------------------------------------------\ntry\n y = Y.y;\ncatch\n y = Y;\nend\n\ntry\n \n % try FS(y,M)\n %----------------------------------------------------------------------\n try\n y = feval(M.FS,y,M);\n IS = inline([M.FS '(' M.IS '(P,M,U),M)'],'P','M','U');\n \n % try FS(y)\n %------------------------------------------------------------------\n catch\n y = feval(M.FS,y);\n IS = inline([M.FS '(' M.IS '(P,M,U))'],'P','M','U');\n end\n \ncatch\n \n % otherwise FS(y) = y\n %----------------------------------------------------------------------\n try\n IS = inline([M.IS '(P,M,U)'],'P','M','U');\n catch\n IS = M.IS;\n end\nend\n\n% converted to function handle\n%--------------------------------------------------------------------------\nIS = spm_funcheck(IS);\n\n% paramter update eqation\n%--------------------------------------------------------------------------\nif isfield(M,'f'), M.f = spm_funcheck(M.f); end\nif isfield(M,'g'), M.g = spm_funcheck(M.g); end\nif isfield(M,'h'), M.h = spm_funcheck(M.h); end\n\n\n% size of data (samples x response component x response component ...)\n%--------------------------------------------------------------------------\nif iscell(y)\n ns = size(y{1},1);\nelse\n ns = size(y,1);\nend\nny = length(spm_vec(y)); % total number of response variables\nnr = ny/ns; % number response components\nM.ns = ns; % number of samples M.ns\n\n% initial states\n%--------------------------------------------------------------------------\ntry\n M.x;\ncatch\n if ~isfield(M,'n'), M.n = 0; end\n M.x = sparse(M.n,1);\nend\n\n% input\n%--------------------------------------------------------------------------\ntry\n U;\ncatch\n U = [];\nend\n\n% initial parameters\n%--------------------------------------------------------------------------\ntry\n spm_vec(M.P) - spm_vec(M.pE);\n fprintf('\\nParameter initialisation successful\\n')\ncatch\n M.P = M.pE;\nend\n\n% time-step\n%--------------------------------------------------------------------------\ntry\n dt = Y.dt;\ncatch\n dt = 1;\nend\n\n% precision components Q\n%--------------------------------------------------------------------------\ntry\n Q = Y.Q;\n if isnumeric(Q), Q = {Q}; end\ncatch\n Q = spm_Ce(ns*ones(1,nr));\nend\nnh = length(Q); % number of precision components\nnq = ny/length(Q{1}); % for compact Kronecker form of M-step\n\n\n% prior moments (assume uninformative priors if not specifed)\n%--------------------------------------------------------------------------\npE = M.pE;\ntry\n pC = M.pC;\ncatch\n np = spm_length(M.pE);\n pC = speye(np,np)*exp(16);\nend\n\n% confounds (if specified)\n%--------------------------------------------------------------------------\ntry\n nb = size(Y.X0,1); % number of bins\n nx = ny/nb; % number of blocks\n dfdu = kron(speye(nx,nx),Y.X0);\ncatch\n dfdu = sparse(ny,0);\nend\nif isempty(dfdu), dfdu = sparse(ny,0); end\n\n\n% hyperpriors - expectation (and initialize hyperparameters)\n%--------------------------------------------------------------------------\ntry\n hE = M.hE;\n if length(hE) ~= nh\n hE = hE + sparse(nh,1);\n end\ncatch\n hE = sparse(nh,1) - log(var(spm_vec(y))) + 4;\nend\nh = hE;\n\n% hyperpriors - covariance\n%--------------------------------------------------------------------------\ntry\n ihC = spm_inv(M.hC);\n if length(ihC) ~= nh\n ihC = ihC*speye(nh,nh);\n end\ncatch\n ihC = speye(nh,nh)*exp(4);\nend\n\n\n% unpack covariance\n%--------------------------------------------------------------------------\nif isstruct(pC);\n pC = spm_diag(spm_vec(pC));\nend\n\n% dimension reduction of parameter space\n%--------------------------------------------------------------------------\nV = spm_svd(pC,0);\nnu = size(dfdu,2); % number of parameters (confounds)\nnp = size(V,2); % number of parameters (effective)\nip = (1:np)';\niu = (1:nu)' + np;\n\n% second-order moments (in reduced space)\n%--------------------------------------------------------------------------\npC = V'*pC*V;\nuC = speye(nu,nu)/1e-8;\nipC = inv(spm_cat(spm_diag({pC,uC})));\n\n% initialize conditional density\n%--------------------------------------------------------------------------\nEu = spm_pinv(dfdu)*spm_vec(y);\np = [V'*(spm_vec(M.P) - spm_vec(M.pE)); Eu];\nEp = spm_unvec(spm_vec(pE) + V*p(ip),pE);\n\n\n% EM\n%==========================================================================\ncriterion = [0 0 0 0];\n\nC.F = -Inf; % free energy\nv = -4; % log ascent rate\ndFdh = zeros(nh,1);\ndFdhh = zeros(nh,nh);\nfor k = 1:M.Nmax\n \n % time\n %----------------------------------------------------------------------\n tStart = tic;\n \n % E-Step: prediction f, and gradients; dfdp\n %======================================================================\n try\n \n % gradients\n %------------------------------------------------------------------\n [dfdp,f] = spm_diff(IS,Ep,M,U,1,{V});\n dfdp = reshape(spm_vec(dfdp),ny,np);\n \n % check for stability\n %------------------------------------------------------------------\n normdfdp = norm(dfdp,'inf');\n revert = isnan(normdfdp) || normdfdp > exp(32);\n \n catch\n revert = true;\n end\n \n if revert && k > 1\n for i = 1:4\n \n % reset expansion point and increase regularization\n %--------------------------------------------------------------\n v = min(v - 2,-4);\n \n % E-Step: update\n %--------------------------------------------------------------\n p = C.p + spm_dx(dFdpp,dFdp,{v});\n Ep = spm_unvec(spm_vec(pE) + V*p(ip),pE);\n \n % try again\n %--------------------------------------------------------------\n try\n [dfdp,f] = spm_diff(IS,Ep,M,U,1,{V});\n dfdp = reshape(spm_vec(dfdp),ny,np);\n \n % check for stability\n %----------------------------------------------------------\n normdfdp = norm(dfdp,'inf');\n revert = isnan(normdfdp) || normdfdp > exp(32);\n \n catch\n revert = true;\n end\n \n % break\n %--------------------------------------------------------------\n if ~revert, break, end\n \n end\n end\n \n % convergence failure\n %----------------------------------------------------------------------\n if revert\n error('SPM:spm_nlsi_GN','Convergence failure.');\n end\n \n \n % prediction error and full gradients\n %----------------------------------------------------------------------\n e = spm_vec(y) - spm_vec(f) - dfdu*p(iu);\n J = -[dfdp dfdu];\n \n \n % M-step: Fisher scoring scheme to find h = max{F(p,h)}\n %======================================================================\n for m = 1:8\n \n % precision and conditional covariance\n %------------------------------------------------------------------\n iS = sparse(0);\n for i = 1:nh\n iS = iS + Q{i}*(exp(-32) + exp(h(i)));\n end\n S = spm_inv(iS);\n iS = kron(speye(nq),iS);\n Pp = real(J'*iS*J);\n Cp = spm_inv(Pp + ipC);\n \n % precision operators for M-Step\n %------------------------------------------------------------------\n for i = 1:nh\n P{i} = Q{i}*exp(h(i));\n PS{i} = P{i}*S;\n P{i} = kron(speye(nq),P{i});\n JPJ{i} = real(J'*P{i}*J);\n end\n \n % derivatives: dLdh = dL/dh,...\n %------------------------------------------------------------------\n for i = 1:nh\n dFdh(i,1) = trace(PS{i})*nq/2 ...\n - real(e'*P{i}*e)/2 ...\n - spm_trace(Cp,JPJ{i})/2;\n for j = i:nh\n dFdhh(i,j) = - spm_trace(PS{i},PS{j})*nq/2;\n dFdhh(j,i) = dFdhh(i,j);\n end\n end\n \n % add hyperpriors\n %------------------------------------------------------------------\n d = h - hE;\n dFdh = dFdh - ihC*d;\n dFdhh = dFdhh - ihC;\n Ch = spm_inv(real(-dFdhh));\n \n % update ReML estimate\n %------------------------------------------------------------------\n dh = spm_dx(dFdhh,dFdh,{4});\n dh = min(max(dh,-1),1);\n h = h + dh;\n \n % convergence\n %------------------------------------------------------------------\n dF = dFdh'*dh;\n if dF < 1e-2, break, end\n \n end\n \n \n % E-Step with Levenberg-Marquardt regularization\n %======================================================================\n \n % objective function: F(p) = log evidence - divergence\n %----------------------------------------------------------------------\n L(1) = spm_logdet(iS)*nq/2 - real(e'*iS*e)/2 - ny*log(8*atan(1))/2; ...\n L(2) = spm_logdet(ipC*Cp)/2 - p'*ipC*p/2;\n L(3) = spm_logdet(ihC*Ch)/2 - d'*ihC*d/2;\n F = sum(L);\n \n % record increases and reference log-evidence for reporting\n %----------------------------------------------------------------------\n try\n F0;\n if ~M.noprint\n fprintf(' actual: %.3e (%.2f sec)\\n',full(F - C.F),toc(tStart))\n end\n catch\n F0 = F;\n end\n \n % if F has increased, update gradients and curvatures for E-Step\n %----------------------------------------------------------------------\n if F > C.F || k < 3\n \n % accept current estimates\n %------------------------------------------------------------------\n C.p = p;\n C.h = h;\n C.F = F;\n C.L = L;\n C.Cp = Cp;\n \n % E-Step: Conditional update of gradients and curvature\n %------------------------------------------------------------------\n dFdp = -real(J'*iS*e) - ipC*p;\n dFdpp = -real(J'*iS*J) - ipC;\n \n % decrease regularization\n %------------------------------------------------------------------\n v = min(v + 1/2,4);\n str = 'EM:(+)';\n \n else\n \n % reset expansion point\n %------------------------------------------------------------------\n p = C.p;\n h = C.h;\n Cp = C.Cp;\n \n % and increase regularization\n %------------------------------------------------------------------\n v = min(v - 2,-4);\n str = 'EM:(-)';\n \n end\n \n % E-Step: update\n %======================================================================\n dp = spm_dx(dFdpp,dFdp,{v});\n p = p + dp;\n Ep = spm_unvec(spm_vec(pE) + V*p(ip),pE);\n \n \n \n % Graphics\n %======================================================================\n if exist('Fsi', 'var')\n spm_figure('Select', Fsi)\n \n \n % reshape prediction if necessary\n %------------------------------------------------------------------\n e = spm_vec(e);\n f = spm_vec(f);\n try\n e = reshape(e,ns,nr);\n f = reshape(f,ns,nr);\n end\n \n % subplot prediction\n %------------------------------------------------------------------\n x = (1:size(e,1))*dt;\n xLab = 'time (seconds)';\n try\n if length(M.Hz) == ns\n x = M.Hz;\n xLab = 'Frequency (Hz)';\n end\n end\n \n \n % plot real or complex predictions\n %------------------------------------------------------------------\n tstr = sprintf('%s: %i','prediction and response: E-Step',k);\n if isreal(spm_vec(y))\n \n subplot(2,1,1)\n plot(x,real(f)), hold on\n plot(x,real(f + e),':'), hold off\n xlabel(xLab)\n title(tstr,'FontSize',16)\n grid on\n \n else\n subplot(2,2,1)\n plot(x,real(f)), hold on\n plot(x,real(f + e),':'), hold off\n xlabel(xLab)\n ylabel('real')\n title(tstr,'FontSize',16)\n grid on\n \n subplot(2,2,2)\n plot(x,imag(f)), hold on\n plot(x,imag(f + e),':'), hold off\n xlabel(xLab)\n ylabel('imaginary')\n title(tstr,'FontSize',16)\n grid on\n end\n \n % subplot parameters\n %--------------------------------------------------------------\n subplot(2,1,2)\n bar(full(V*p(ip)))\n xlabel('parameter')\n tstr = 'conditional [minus prior] expectation';\n title(tstr,'FontSize',16)\n grid on\n drawnow\n \n end\n \n % convergence\n %----------------------------------------------------------------------\n dF = dFdp'*dp;\n if ~M.noprint\n fprintf('%-6s: %i %6s %-6.3e %6s %.3e ',str,k,'F:',full(C.F - F0),'dF predicted:',full(dF))\n end\n criterion = [(dF < 1e-1) criterion(1:end - 1)];\n if all(criterion)\n if ~M.noprint\n fprintf(' convergence\\n')\n end\n break\n end\n \nend\n\nif exist('Fsi', 'var')\n spm_figure('Focus', Fsi)\nend\n\n% outputs\n%--------------------------------------------------------------------------\nEp = spm_unvec(spm_vec(pE) + V*C.p(ip),pE);\nCp = V*C.Cp(ip,ip)*V';\nEh = C.h;\nF = C.F;\nL = C.L;\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_nlsi_GN.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.766293653760418, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3921251867086304}} {"text": "function [g1, g2, g3] = sdlfmXsdrbfKernGradientBlockIGJ(lfmKern, rbfKern, ...\n t1, t2, i, j, generalConst, generalConstGrad, covGrad, typeMeanGrad)\n\n% SDLFMXSDRBFKERNGRADIENTBLOCKIGJ \n% FORMAT\n% DESC computes the gradients of the parameters for output system and\n% latent force system when i is greater than j.\n% ARG lfmKern : structure containing parameters for the output system\n% ARG rbfKern : structure containing parameters for the latent force system \n% ARG t1 : times at which the output system is evaluated\n% ARG t2 : times at which the LF system is evaluated\n% ARG i : interval in which the output is evaluated\n% ARG j : interval in which the latent force is being evaluated\n% ARG i : interval to be evaluated for system 1\n% ARG j : interval to be evaluated for system 2\n% ARG generalConstant : constants evaluated with sdlfmKernComputeConstant.m\n% ARG generalConstGrad : derivatives of the constants computed with\n% sdlfmKernGradientConstant.m\n% ARG covGrad : partial derivatives of the objective function wrt portion\n% of the corresponding kernel matrix\n% ARG typeMeanGrad : specify the mean functions used to compute this part \n% of the kernel\n%\n% COPYRIGHT : Mauricio A. Alvarez, 2010.\n\n% KERN\n\nif nargin < 10\n typeMeanGrad = {'lfm', 'lfmv'};\nend\n\nfhandleMeanParam = str2func(['sd' typeMeanGrad{1} 'MeanCompute']);\nfhandleMeanGradParam = str2func(['sd' typeMeanGrad{1} 'MeanGradient']);\nfhandleMeanGradSwitching = str2func(['sd' typeMeanGrad{2} 'MeanCompute']);\n\nc1 = fhandleMeanParam(lfmKern, t1, 'Pos');\ne1 = fhandleMeanParam(lfmKern, t1, 'Vel');\n\nif isempty(generalConst{i,j})\n coeffPosRbf = c1;\n coeffVelRbf = e1;\nelse\n coeffPosRbf = generalConst{i,j}(1,1)*c1 + generalConst{i,j}(2,1)*e1;\n coeffVelRbf = generalConst{i,j}(1,2)*c1 + generalConst{i,j}(2,2)*e1;\nend\n\nPosRbf = lfmXrbfKernCompute(lfmKern, rbfKern, rbfKern.limit, t2);\n[g1Kern, g2Kern] = lfmXrbfKernGradient(lfmKern, rbfKern, ...\n rbfKern.limit, t2, covGrad.', coeffPosRbf);\nVelRbf = lfmvXrbfKernCompute(lfmKern, rbfKern, rbfKern.limit, t2);\n[g1KLocal, g2KLocal] = lfmvXrbfKernGradient(lfmKern, rbfKern, ...\n rbfKern.limit, t2, covGrad.', coeffVelRbf);\ng1Kern = g1Kern + g1KLocal;\ng2Kern = g2Kern + g2KLocal;\n\n[gcAlpha, gcOmega] = fhandleMeanGradParam(lfmKern, t1, 'Pos');\n[geAlpha, geOmega] = fhandleMeanGradParam(lfmKern, t1, 'Vel');\n[gradAlpha, gradOmega] = getLocalGradAlphaOmega(lfmKern);\n\ng1Pos = fhandleMeanGradSwitching(lfmKern, t1, 'Pos');\nh1Vel = fhandleMeanGradSwitching(lfmKern, t1, 'Vel');\n\n% This means that are only two switching points involved, t1\n% and t0 appear in k, like k_{ff}(t1-t0,t'-t0) and\n% k_{mf}(t1-t0,t'-t0). The other points appear in c1(t - t1)\n% and e1(t - t1)\ngsp1Kern = 0;\ngsp2Kern = 0;\n\ntemp = lfmvXrbfKernCompute(lfmKern, rbfKern, rbfKern.limit, t2);\ncovPartial = sum(sum((coeffPosRbf*temp).*covGrad));\ngsp2Kern = gsp2Kern - covPartial;\ngsp1Kern = gsp1Kern + covPartial;\ntemp = lfmXrbfvKernCompute(lfmKern, rbfKern, rbfKern.limit, t2);\ncovPartial = sum(sum((coeffPosRbf*temp).*covGrad));\ngsp2Kern = gsp2Kern - covPartial;\ntemp = lfmaXrbfKernCompute(lfmKern, rbfKern, rbfKern.limit, t2);\ncovPartial = sum(sum((coeffVelRbf*temp).*covGrad));\ngsp2Kern = gsp2Kern - covPartial; \ngsp1Kern = gsp1Kern + covPartial;\ntemp = lfmvXrbfvKernCompute(lfmKern, rbfKern, rbfKern.limit, t2);\ngsp2Kern = gsp2Kern - sum(sum((coeffVelRbf*temp).*covGrad));\n\n% Organize gradients accordingly\nif isempty(generalConst{i,j})\n matGradAlpha = gcAlpha*PosRbf + geAlpha*VelRbf;\n matGradOmega = gcOmega*PosRbf + geOmega*VelRbf;\n gCoeff = gradAlpha*sum(sum(matGradAlpha.*covGrad)) + ...\n gradOmega*(sum(sum(matGradOmega.*covGrad)));\n matGradSp1 = g1Pos*PosRbf + h1Vel*VelRbf;\n gsp1 = - sum(sum(matGradSp1.*covGrad));\n g3(i) = sum(gsp1Kern) + gsp1; % switching point 1\n g3(j) = sum(gsp2Kern); % switching point 2\nelse\n constGradAlpha = generalConstGrad{1}{i,j};\n constGradOmega = generalConstGrad{2}{i,j};\n constVal = generalConst{i,j};\n % Derivative wrt parameters\n matGradAlpha = (constVal(1,1)*gcAlpha + constGradAlpha(1,1)*c1 ...\n + constVal(2,1)*geAlpha + constGradAlpha(2,1)*e1)*PosRbf ...\n + (constVal(1,2)*gcAlpha + constGradAlpha(1,2)*c1 ...\n + constVal(2,2)*geAlpha + constGradAlpha(2,2)*e1)*VelRbf;\n matGradOmega = (constVal(1,1)*gcOmega + constGradOmega(1,1)*c1 ...\n + constVal(2,1)*geOmega + constGradOmega(2,1)*e1)*PosRbf ...\n + (constVal(1,2)*gcOmega + constGradOmega(1,2)*c1 ...\n + constVal(2,2)*geOmega + constGradOmega(2,2)*e1)*VelRbf;\n gCoeff = gradAlpha*sum(sum(matGradAlpha.*covGrad)) + ...\n gradOmega*(sum(sum(matGradOmega.*covGrad)));\n % Derivative wrt switching points\n % Firts, notice that gsp1Kern doesn't correspond to the switching point\n % of the interval i (or say 1). It's just the derivative of the inner\n % switching point that leads to the actual switching point for the\n % interval 1. So we rename it first.\n gspInt = sum(gsp1Kern);\n % Compute the derivative of the swicthing point i, not appearing in the\n % constant\n matGradSp1 = (constVal(1,1)*g1Pos + constVal(2,1)*h1Vel)*PosRbf + ...\n (constVal(1,2)*g1Pos + constVal(2,2)*h1Vel)*VelRbf;\n gsp1 = - sum(sum(matGradSp1.*covGrad));\n % Compute the derivatives for all the switching points appearing in the\n % constant. The order is descending, i.e., t_3_, t_2, t_1\n constGradSPoint = generalConstGrad{3}{i,j};\n numberSP = size(constGradSPoint,2);\n gspInBetween = zeros(1, numberSP);\n for k=1:numberSP\n temp = (constGradSPoint(1,k)*c1 + constGradSPoint(3,k)*e1)*PosRbf + ...\n (constGradSPoint(2,k)*c1 + constGradSPoint(4,k)*e1)*VelRbf;\n gspInBetween(k) = sum(sum(temp.*covGrad));\n end\n % Assign derivatives wrt all other switching points, with a correction\n % for the derivative of the innermost switching point in the constant\n gspInBetween(end) = gspInBetween(end) + gspInt;\n g3(i) = gsp1 + gspInBetween(1);\n g3(j) = sum(gsp2Kern);\n g3(j+1:i-1) = fliplr(gspInBetween(2:end));\nend\ng1 = zeros(1,5);\ng2 = zeros(1,2);\n% Assign derivatives wrt first system\ng1(1:3) = g1Kern(1:3) + gCoeff; % mass, spring, damper\ng1(4) = g1Kern(4); % inverse width\ng1(5) = g1Kern(5); % sensitivity\n% Assign derivatives wrt second system\ng2(1) = g2Kern(1); % variance\ng2(2) = g2Kern(2); % inverse widths\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/sdlfmXsdrbfKernGradientBlockIGJ.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.39212518124633283}} {"text": "function CP = runICPRejection(p, g, CP)\n\nmsg('S', {g.procICP{:} 'REJECTION'}, 'LogLevel', 'basic');\n \nfor i = 1:size(p.PairList,1)\n\n CP{i} = CP{i}.rejection('Attribute', ...\n 'AttributeName', 'dAlpha', ...\n 'AttributeMinMax', [p.MaxDeltaAngle*10/9 400]); % conversion from degree to gradian!\n\n % Rejection based on dp\n med = median(CP{i}.dp);\n sig_mad = 1.4826*mad(CP{i}.dp,1);\n\n CP{i} = CP{i}.rejection('Attribute', ...\n 'AttributeName', 'dp', ...\n 'AttributeMinMax', [-Inf med-p.MaxSigmaMad*sig_mad]);\n\n CP{i} = CP{i}.rejection('Attribute', ...\n 'AttributeName', 'dp', ...\n 'AttributeMinMax', [med+p.MaxSigmaMad*sig_mad Inf]);\n\n % Rejection based on ds\n CP{i} = CP{i}.rejection('Attribute', ...\n 'AttributeName', 'ds', ...\n 'AttributeMinMax', [p.MaxDistance Inf]);\n\n % Rejection based on roughness\n CP{i} = CP{i}.rejection('Attribute', ...\n 'AttributeName', 'roughness', ...\n 'AttributeMinMax', [p.MaxRoughness Inf]);\n\nend\n\nmsg('E', {g.procICP{:} 'REJECTION'}, 'LogLevel', 'basic');\n\nend", "meta": {"author": "pglira", "repo": "Point_cloud_tools_for_Matlab", "sha": "4768f45e7d3527c52e911eb0450c31ca19b58f72", "save_path": "github-repos/MATLAB/pglira-Point_cloud_tools_for_Matlab", "path": "github-repos/MATLAB/pglira-Point_cloud_tools_for_Matlab/Point_cloud_tools_for_Matlab-4768f45e7d3527c52e911eb0450c31ca19b58f72/classes/@globalICP/private/runICPRejection.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7662936324115012, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.39212517578403516}} {"text": "function title = p11_title ( option )\n\n%*****************************************************************************80\n%\n%% P11_TITLE sets the title for problem 11.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 September 2008\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer OPTION, the option index.\n%\n% Output, string TITLE, the title of the problem.\n%\n title = 'Torsion of a square rod, finite element solution.';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_con/p11_title.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041652, "lm_q2_score": 0.7662936324115011, "lm_q1q2_score": 0.392125175784035}} {"text": "%{\n * Copyright (C) 2013-2020, The Regents of The University of Michigan.\n * All rights reserved.\n * This software was developed in the Biped Lab (https://www.biped.solutions/) \n * under the direction of Jessy Grizzle, grizzle@umich.edu. This software may \n * be available under alternative licensing terms; contact the address above.\n * Redistribution and use in source and binary forms, with or without\n * modification, are permitted provided that the following conditions are met:\n * 1. Redistributions of source code must retain the above copyright notice, this\n * list of conditions and the following disclaimer.\n * 2. Redistributions in binary form must reproduce the above copyright notice,\n * this list of conditions and the following disclaimer in the documentation\n * and/or other materials provided with the distribution.\n * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\n * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR\n * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\n * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND\n * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n * The views and conclusions contained in the software and documentation are those\n * of the authors and should not be interpreted as representing official policies,\n * either expressed or implied, of the Regents of The University of Michigan.\n * \n * AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)\n * WEBSITE: https://www.brucerobot.com/\n%}\n\nfunction cost = costIoU(theta_x, theta_y, theta_z, T, X, Y, intrinsic)\n H = eye(4);\n H(1:3,1:3) = rotx(theta_x) * roty(theta_y) * rotz(theta_z);\n H(1:3,4) = T';\n P = intrinsic * [eye(3) zeros(3,1)] * H;\n L_X_transformed = P * X; % transformed points in LiDAR frame\n C_X_transformed = L_X_transformed ./ L_X_transformed(3,:);\n cost = 0;\n for i=1:size(C_X_transformed,2)/4\n k = 4*(i-1) + 1;\n vertices_X = [C_X_transformed(1,k) C_X_transformed(1,k+1) C_X_transformed(1,k+3) C_X_transformed(1,k+2); \n C_X_transformed(2,k) C_X_transformed(2,k+1) C_X_transformed(2,k+3) C_X_transformed(2,k+2)];\n vertices_Y = [Y(1,k) Y(1,k+1) Y(1,k+3) Y(1,k+2); \n Y(2,k) Y(2,k+1) Y(2,k+3) Y(2,k+2)];\n% vertices_X = C_X_transformed(1:2,k:k+3);\n% vertices_Y = Y(1:2,k:k+3);\n \n% conv_X = convhull(vertices_X(1,:)', vertices_X(2,:)');\n% conv_Y = convhull(vertices_Y(1,:)', vertices_Y(2,:)');\n% [vertices_X(1,:), vertices_X(2,:)] = poly2cw(vertices_X(1,conv_X(1:4)), vertices_X(2,conv_X(1:4)));\n% [vertices_Y(1,:), vertices_Y(2,:)] = poly2cw(vertices_Y(1,conv_Y(1:4)), vertices_Y(2,conv_Y(1:4)));\n% pgon_X = polyshape(vertices_X(1,conv_X), vertices_X(2,conv_X));\n% pgon_Y = polyshape(vertices_Y(1,conv_Y), vertices_Y(2,conv_Y));\n \n [vertices_X(1,:), vertices_X(2,:)] = poly2cw(vertices_X(1, :), vertices_X(2, :));\n [vertices_Y(1,:), vertices_Y(2,:)] = poly2cw(vertices_Y(1, :), vertices_Y(2, :));\n \n pgon_X = polyshape(vertices_X(1, :), vertices_X(2, :));\n pgon_Y = polyshape(vertices_Y(1, :), vertices_Y(2, :));\n if all(issimplified([pgon_X, pgon_Y]))\n [I_polyout,~,~] = intersect(pgon_X, pgon_Y);\n\n [U_polyout,~,~] = union(pgon_X ,pgon_Y);\n I_area = max(area(I_polyout), 1e-5);\n U_area = area(U_polyout);\n cost = cost + I_area/U_area;\n else\n cost = -1e3;\n end\n end\n cost = -cost;\nend", "meta": {"author": "UMich-BipedLab", "repo": "extrinsic_lidar_camera_calibration", "sha": "d423c81e95c6de595e1dff79871385348b1c68f4", "save_path": "github-repos/MATLAB/UMich-BipedLab-extrinsic_lidar_camera_calibration", "path": "github-repos/MATLAB/UMich-BipedLab-extrinsic_lidar_camera_calibration/extrinsic_lidar_camera_calibration-d423c81e95c6de595e1dff79871385348b1c68f4/costIoU.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872131147276, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3920874904722493}} {"text": "report_this_filefun(mfilename('fullpath'));\n\n%l = isnan(tmap);\n%tmap(l) = 1;\n\n\n\nl = tmap < 100;\ntmap(l) = 100;\n\n\n[lat,lon] = meshgrat(tmap,tmapleg);\n%[smap,smapleg] = country2mtx('switzerland',100);\n%[lat0, lon0] = meshgrat(smap,smapleg);\n\n\n% tmap = km2deg(tmap/1);\n[X , Y] = meshgrid(gx,gy);\n\n%sw = interp2(lon0,lat0,smap,lon,lat);\n\nre4 = re3;\n\nren = interp2(X,Y,re4,lon,lat);\n\nmi = min(min(ren));\nl = isnan(ren);\nren(l) = mi-20;\n\n\n\n\nfigure_w_normalized_uicontrolunits('pos',[150 500 1000 700])\n\nhold on; axis off\naxesm('MapProjection','eqaconic','MapParallels',[],...\n 'MapLatLimit',[33.75 35.03],'MapLonLimit',[-116.8 -115.9])\n\nmeshm(ren,tmapleg,size(tmap),tmap);\n\ndaspectm('m',4);\ntightmap\n%view([10 30])\nhl = camlight ; lighting phong\nset(gca,'projection','perspective');\n\naa = a;\n\nj = jet;\n%j = j(64:-1:1,:);\nj = [ [ 0.85 0.9 0.9] ; j];\ncaxis([ min(min(re4)) max(max(re4)) ]);\n\ncolormap(j);\ncaxis([0.60 1.5]);\naxis off; set(gcf,'color','w')\nax = axis;\naxis([ax(1:4) 0 5000])\n\nsetm(gca,'ffacecolor','w')\nsetm(gca,'fedgecolor','k','flinewidth',3);\n\nsetm(gca,'mlabellocation',0.5)\nsetm(gca,'meridianlabel','on')\nsetm(gca,'plabellocation',0.5)\nsetm(gca,'parallellabel','on','Labelrotation','on')\nsetm(gca,'Fontcolor','k','Fontweight','bold','FontSize',14,'Labelunits','dm')\n\nh5 = colorbar;\nset(h5,'position',[0.65 .13 0.015 0.3],'TickDir','out','Ycolor','k','Xcolor','k',...\n 'Fontweight','bold','FontSize',14,'Ticklength',[0.025 0.02]);\nset(gcf,'Inverthardcopy','off');\n\n\n\n\na = aa;\n\n\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/dramap_lahecb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872131147276, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3920874904722493}} {"text": "function x = mtimes( a, x )\n %MINUS Multiplication of TT/MPS block tensor by scalar or vector\n % X = MTIMES(A, X) multiplies the TT/MPS tensor X by A.\n % If A is a scalar, all blocks are multiplied by the x.order-th root of A.\n % if A is a vector of size X.p, all X.p slices of the supercore X.U{x.mu} are multiplied\n % by the corresponding entry in A.\n %\n % See also PLUS, MINUS.\n\n % TTeMPS Toolbox. \n % Michael Steinlechner, 2013-2016\n % Questions and contact: michael.steinlechner@epfl.ch\n % BSD 2-clause license, see LICENSE.txt\n\n %x.U{1} = a*x.U{1};\n\n if length(a) == 1\n c = a^(1/x.order);\n for i = 1:x.order\n x.U{i} = c*x.U{i};\n end\n elseif length(a) == x.p\n for i = 1:x.p\n x.U{x.mu}(:,:,:,i) = a(i) * x.U{x.mu}(:,:,:,i);\n end\n else\n error('Dimension mismatch! Can only multiply block tensor X by scalar (whole tensor) or by a vector of length X.p')\n end\nend\n", "meta": {"author": "NicolasBoumal", "repo": "manopt", "sha": "b8b54a6af8b965f7ae572972ba0d15787427744b", "save_path": "github-repos/MATLAB/NicolasBoumal-manopt", "path": "github-repos/MATLAB/NicolasBoumal-manopt/manopt-b8b54a6af8b965f7ae572972ba0d15787427744b/manopt/manifolds/ttfixedrank/TTeMPS_1.1/@TTeMPS_block/mtimes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872131147275, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3920874904722492}} {"text": "classdef nme_branch_acc < mp.nme_branch_ac & mp.form_acc\n\n% MATPOWER\n% Copyright (c) 2018-2022, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n% and Baljinnyam Sereeter, Delft University of Technology\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n\n methods\n function [h, dh] = ang_diff_fcn(obj, xx, Aang, lang, uang)\n if nargout > 1\n [va, dva] = obj.va_fcn(xx, [], 0);\n Adva = Aang * dva;\n dh = [ -Adva; Adva ];\n else\n va = obj.va_fcn(xx, [], 0);\n end\n Ax = Aang * va;\n h = [ lang - Ax;\n Ax - uang ];\n end\n\n function d2H = ang_diff_hess(obj, xx, lambda, Aang)\n %% unpack data\n [vr, vi] = deal(xx{:});\n nn = length(vr);\n\n %% evaluate Hessian of voltage magnitude^2 function\n n = length(lambda) / 2;\n if n\n lam = lambda(n+1:2*n) - lambda(1:n); %% lam_ub - lam_lb\n else\n lam = zeros(0,1);\n end\n\n d2H = obj.va_hess(xx, Aang' * lam, []);\n end\n end %% methods\nend %% classdef\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/+mp/nme_branch_acc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872131147275, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3920874904722492}} {"text": "function [ output_data ] = normalize_complex_file( input_filename, varargin )\n%NORMALIZE_COMPLEX_FILE Normalize complex SAR data to make it have consistent\n%characteristics in frequency domain\n%\n% Normalized complex data will have\n% 1) Centered and deskewed frequency support\n% 2) Uniform weighting\n% 3) FFT sign of -1\n%\n% This function only applies these transforms in one dimension since we\n% normally only process one dimension at a time, and since in general,\n% frequency support deskew can only be applied in one dimension.\n%\n% output_data = normalize_complex_file(input_filename, 'PropertyName', PropertyValue, ...)\n%\n% Property name Description\n% \n% output_filename Output data is stored to a complex single-\n% precision float SIO file. Default is to not\n% save to file.\n% block_size Determines how many lines are processed in memory\n% at once. Set to Inf to process whole image at\n% once. Default is 500 lines.\n% dim Dimension over which to perform normalization.\n% Default = 1 (slow-time).\n% azlimits Min and max samples in azimuth over which to\n% compute. Default = full image.\n% rnglimits Min and max lines in range over which to compute.\n% Default = full image.\n% framenumber Dataset to process if INPUT_FILENAME is a\n% multi-image file. Default is 1.\n%\n% If an output argument is given to the function call, the normalized\n% complex data will be returned in an in-memory MATLAB array to\n% OUTPUT_DATA. WARNING: Make sure your computer has enough memory to hold\n% resulting array, if you use this option.\n%\n% Author: Wade Schwartzkopf, NGA/R\n%\n% //////////////////////////////////////////\n% /// CLASSIFICATION: UNCLASSIFIED ///\n% //////////////////////////////////////////\n\n%% Parse input parameters\np = inputParser; % Extract parameter-value pairs\np.KeepUnmatched=true;\np.addParamValue('output_filename','');\np.addParamValue('block_size',500);\np.addParamValue('dim',1);\np.addParamValue('azlimits',[]);\np.addParamValue('rnglimits',[]);\np.addParamValue('framenumber',1);\np.FunctionName = 'normalize_complex_file';\np.parse(varargin{:});\n\nsave_to_sio=~any(strcmp(p.UsingDefaults,'output_filename'))||~isempty(p.Results.output_filename);\nsave_to_variable=(nargout>0);\nif ~save_to_sio&&~save_to_variable % Nothing to do\n warning('NORMALIZE_COMPLEX_FILE:NO_OUTPUT','Neither output filename nor output variable was specified. No ouput will be calculated.');\n return;\nend\n\n%% Open data file\nreader_obj=open_reader(input_filename);\nif iscell(reader_obj) % If file contains more than one image\n for i=1:length(reader_obj)\n if i~=p.Results.framenumber\n reader_obj{i}.close();\n end\n end\n reader_obj=reader_obj{p.Results.framenumber};\nend\nmeta=reader_obj.get_meta();\n% Calculate AOI\nif any(strcmp(p.UsingDefaults,'azlimits'))\n azlimits=[1 meta.ImageData.NumCols];\nelse\n azlimits=p.Results.azlimits;\n if strcmp(azlimits,'full')\n azlimits=[1 meta.ImageData.NumCols];\n end\nend\nif any(strcmp(p.UsingDefaults,'rnglimits'))\n rnglimits=[1 meta.ImageData.NumRows];\nelse\n rnglimits=p.Results.rnglimits;\n if strcmp(rnglimits,'full')\n rnglimits=[1 meta.ImageData.NumRows];\n end\nend\n\n%% Calculate input parameters for normalize_complex_mem\nif p.Results.dim==1\n sicd_grid_struct = meta.Grid.Col;\nelse\n sicd_grid_struct = meta.Grid.Row;\nend\n% Vectors describing range and azimuth distances from SCP (in meters) for rows and columns\n[ DeltaKCOAPoly, az_coords_m, rg_coords_m ] = deskewparams( meta, p.Results.dim );\ncoords_m_args = {az_coords_m, rg_coords_m};\ncoords_ind = {azlimits(1):azlimits(end), rnglimits(1):rnglimits(end)};\nother_dim = 3-p.Results.dim;\ncoords_m = coords_m_args{other_dim};\ncoords_m_args{p.Results.dim}=coords_m_args{p.Results.dim}(coords_ind{p.Results.dim});\n% Zeropad\nif isfield(sicd_grid_struct,'ImpRespBW')&&isfield(sicd_grid_struct,'SS')\n zeropad = max(1,1/(sicd_grid_struct.ImpRespBW*sicd_grid_struct.SS));\nelse\n zeropad = 1;\nend\n% Weighting function\ntry\n weight_fun = sicdweight2fun(sicd_grid_struct);\ncatch % Unable to determine weighting function from metadata.\n % Estimate weighting from complex data instead\n weight_fun = estimate_weighting_file(reader_obj, p.Results.dim);\nend\n% FFT sign\nif isfield(sicd_grid_struct,'Sgn')\n fft_sign = sicd_grid_struct.Sgn;\nelse\n fft_sign = -1;\nend\n\n%% Setup loop for processing through image in blocks of azimuth lines\nif save_to_variable\n output_data = zeros(diff(azlimits)+1,diff(rnglimits)+1);\n output_data_args = {1:size(output_data,1),1:size(output_data,2)};\nend\nif save_to_sio\n writer_object=open_sio_writer(p.Results.output_filename);\n if p.Results.dim==1\n writer_object.writeline=writer_object.write_row;\n else\n writer_object.writeline=writer_object.write_column;\n end\nend\nif p.Results.dim==1\n linelimits = rnglimits;\n read_lines_fun=@(lims) reader_obj.read_chip(azlimits,lims);\nelse\n linelimits = azlimits;\n read_lines_fun=@(lims) reader_obj.read_chip(lims,rnglimits);\nend\nwb_hand=waitbar(0,'Normalizing data...');\nfirst_line_in_block = linelimits(1);\nwhile(first_line_in_block= 3\n Image = cat(3,varargin{:});\nelse\n error('Invalid number of input arguments.');\nend\n\nFlipDims = (size(Image,3) == 1);\n\nif FlipDims, Image = permute(Image,[1,3,2]); end\nif ~isa(Image,'double'), Image = double(Image)/255; end\nif size(Image,3) ~= 3, error('Invalid input size.'); end\n\nSrcT = gettransform(SrcSpace);\nDestT = gettransform(DestSpace);\n\nif ~ischar(SrcT) && ~ischar(DestT)\n % Both source and destination transforms are affine, so they\n % can be composed into one affine operation\n T = [DestT(:,1:3)*SrcT(:,1:3),DestT(:,1:3)*SrcT(:,4)+DestT(:,4)]; \n Temp = zeros(size(Image));\n Temp(:,:,1) = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);\n Temp(:,:,2) = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);\n Temp(:,:,3) = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);\n Image = Temp;\nelseif ~ischar(DestT)\n Image = rgb(Image,SrcSpace);\n Temp = zeros(size(Image));\n Temp(:,:,1) = DestT(1)*Image(:,:,1) + DestT(4)*Image(:,:,2) + DestT(7)*Image(:,:,3) + DestT(10);\n Temp(:,:,2) = DestT(2)*Image(:,:,1) + DestT(5)*Image(:,:,2) + DestT(8)*Image(:,:,3) + DestT(11);\n Temp(:,:,3) = DestT(3)*Image(:,:,1) + DestT(6)*Image(:,:,2) + DestT(9)*Image(:,:,3) + DestT(12);\n Image = Temp;\nelse\n Image = feval(DestT,Image,SrcSpace);\nend\n\n%%% Output format %%%\nif nargout > 1\n varargout = {Image(:,:,1),Image(:,:,2),Image(:,:,3)};\nelse\n if FlipDims, Image = permute(Image,[1,3,2]); end\n varargout = {Image};\nend\n\nreturn;\n\n\nfunction [SrcSpace,DestSpace] = parse(Str)\n% Parse conversion argument\n\nif ischar(Str)\n Str = lower(strrep(strrep(Str,'-',''),'=',''));\n k = find(Str == '>');\n \n if length(k) == 1 % Interpret the form 'src->dest'\n SrcSpace = Str(1:k-1);\n DestSpace = Str(k+1:end);\n else\n k = find(Str == '<');\n \n if length(k) == 1 % Interpret the form 'dest<-src'\n DestSpace = Str(1:k-1);\n SrcSpace = Str(k+1:end);\n else\n error(['Invalid conversion, ''',Str,'''.']);\n end \n end\n \n SrcSpace = alias(SrcSpace);\n DestSpace = alias(DestSpace);\nelse\n SrcSpace = 1; % No source pre-transform\n DestSpace = Conversion;\n if any(size(Conversion) ~= 3), error('Transformation matrix must be 3x3.'); end\nend\nreturn;\n\n\nfunction Space = alias(Space)\nSpace = strrep(strrep(Space,'cie',''),' ','');\n\nif isempty(Space)\n Space = 'rgb';\nend\n\nswitch Space\ncase {'ycbcr','ycc'}\n Space = 'ycbcr';\ncase {'hsv','hsb'}\n Space = 'hsv';\ncase {'hsl','hsi','hls'}\n Space = 'hsl';\ncase {'rgb','yuv','yiq','ydbdr','ycbcr','jpegycbcr','xyz','lab','luv','lch'}\n return;\nend\nreturn;\n\n\nfunction T = gettransform(Space)\n% Get a colorspace transform: either a matrix describing an affine transform,\n% or a string referring to a conversion subroutine\nswitch Space\ncase 'ypbpr'\n T = [0.299,0.587,0.114,0;-0.1687367,-0.331264,0.5,0;0.5,-0.418688,-0.081312,0];\ncase 'yuv'\n % sRGB to NTSC/PAL YUV\n % Wikipedia: http://en.wikipedia.org/wiki/YUV\n T = [0.299,0.587,0.114,0;-0.147,-0.289,0.436,0;0.615,-0.515,-0.100,0];\ncase 'ydbdr'\n % sRGB to SECAM YDbDr\n % Wikipedia: http://en.wikipedia.org/wiki/YDbDr\n T = [0.299,0.587,0.114,0;-0.450,-0.883,1.333,0;-1.333,1.116,0.217,0];\ncase 'yiq'\n % sRGB in [0,1] to NTSC YIQ in [0,1];[-0.595716,0.595716];[-0.522591,0.522591];\n % Wikipedia: http://en.wikipedia.org/wiki/YIQ\n T = [0.299,0.587,0.114,0;0.595716,-0.274453,-0.321263,0;0.211456,-0.522591,0.311135,0];\ncase 'ycbcr'\n % sRGB (range [0,1]) to ITU-R BRT.601 (CCIR 601) Y'CbCr\n % Wikipedia: http://en.wikipedia.org/wiki/YCbCr\n % Poynton, Equation 3, scaling of R'G'B to Y'PbPr conversion\n T = [65.481,128.553,24.966,16;-37.797,-74.203,112.0,128;112.0,-93.786,-18.214,128];\ncase 'jpegycbcr'\n % Wikipedia: http://en.wikipedia.org/wiki/YCbCr\n T = [0.299,0.587,0.114,0;-0.168736,-0.331264,0.5,0.5;0.5,-0.418688,-0.081312,0.5]*255;\ncase {'rgb','xyz','hsv','hsl','lab','luv','lch','cat02lms'}\n T = Space;\notherwise\n error(['Unknown color space, ''',Space,'''.']);\nend\nreturn;\n\n\nfunction Image = rgb(Image,SrcSpace)\n% Convert to sRGB from 'SrcSpace'\nswitch SrcSpace\ncase 'rgb'\n return;\ncase 'hsv'\n % Convert HSV to sRGB\n Image = huetorgb((1 - Image(:,:,2)).*Image(:,:,3),Image(:,:,3),Image(:,:,1));\ncase 'hsl'\n % Convert HSL to sRGB\n L = Image(:,:,3);\n Delta = Image(:,:,2).*min(L,1-L);\n Image = huetorgb(L-Delta,L+Delta,Image(:,:,1));\ncase {'xyz','lab','luv','lch','cat02lms'}\n % Convert to CIE XYZ\n Image = xyz(Image,SrcSpace);\n % Convert XYZ to RGB\n T = [3.2406, -1.5372, -0.4986; -0.9689, 1.8758, 0.0415; 0.0557, -0.2040, 1.057];\n R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3); % R\n G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3); % G\n B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3); % B\n % Desaturate and rescale to constrain resulting RGB values to [0,1] \n AddWhite = -min(min(min(R,G),B),0);\n R = R + AddWhite;\n G = G + AddWhite;\n B = B + AddWhite;\n % Apply gamma correction to convert linear RGB to sRGB\n Image(:,:,1) = gammacorrection(R); % R'\n Image(:,:,2) = gammacorrection(G); % G'\n Image(:,:,3) = gammacorrection(B); % B'\notherwise % Conversion is through an affine transform\n T = gettransform(SrcSpace);\n temp = inv(T(:,1:3));\n T = [temp,-temp*T(:,4)];\n R = T(1)*Image(:,:,1) + T(4)*Image(:,:,2) + T(7)*Image(:,:,3) + T(10);\n G = T(2)*Image(:,:,1) + T(5)*Image(:,:,2) + T(8)*Image(:,:,3) + T(11);\n B = T(3)*Image(:,:,1) + T(6)*Image(:,:,2) + T(9)*Image(:,:,3) + T(12);\n Image(:,:,1) = R;\n Image(:,:,2) = G;\n Image(:,:,3) = B;\nend\n\n% Clip to [0,1]\nImage = min(max(Image,0),1);\nreturn;\n\n\nfunction Image = xyz(Image,SrcSpace)\n% Convert to CIE XYZ from 'SrcSpace'\nWhitePoint = [0.950456,1,1.088754]; \n\nswitch SrcSpace\ncase 'xyz'\n return;\ncase 'luv'\n % Convert CIE L*uv to XYZ\n WhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));\n WhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));\n L = Image(:,:,1);\n Y = (L + 16)/116;\n Y = invf(Y)*WhitePoint(2);\n U = Image(:,:,2)./(13*L + 1e-6*(L==0)) + WhitePointU;\n V = Image(:,:,3)./(13*L + 1e-6*(L==0)) + WhitePointV;\n Image(:,:,1) = -(9*Y.*U)./((U-4).*V - U.*V); % X\n Image(:,:,2) = Y; % Y\n Image(:,:,3) = (9*Y - (15*V.*Y) - (V.*Image(:,:,1)))./(3*V); % Z\ncase {'lab','lch'}\n Image = lab(Image,SrcSpace);\n % Convert CIE L*ab to XYZ\n fY = (Image(:,:,1) + 16)/116;\n fX = fY + Image(:,:,2)/500;\n fZ = fY - Image(:,:,3)/200;\n Image(:,:,1) = WhitePoint(1)*invf(fX); % X\n Image(:,:,2) = WhitePoint(2)*invf(fY); % Y\n Image(:,:,3) = WhitePoint(3)*invf(fZ); % Z\ncase 'cat02lms'\n % Convert CAT02 LMS to XYZ\n T = inv([0.7328, 0.4296, -0.1624;-0.7036, 1.6975, 0.0061; 0.0030, 0.0136, 0.9834]);\n L = Image(:,:,1);\n M = Image(:,:,2);\n S = Image(:,:,3);\n Image(:,:,1) = T(1)*L + T(4)*M + T(7)*S; % X \n Image(:,:,2) = T(2)*L + T(5)*M + T(8)*S; % Y\n Image(:,:,3) = T(3)*L + T(6)*M + T(9)*S; % Z\notherwise % Convert from some gamma-corrected space\n % Convert to sRGB\n Image = rgb(Image,SrcSpace);\n % Undo gamma correction\n R = invgammacorrection(Image(:,:,1));\n G = invgammacorrection(Image(:,:,2));\n B = invgammacorrection(Image(:,:,3));\n % Convert RGB to XYZ\n T = inv([3.2406, -1.5372, -0.4986; -0.9689, 1.8758, 0.0415; 0.0557, -0.2040, 1.057]);\n Image(:,:,1) = T(1)*R + T(4)*G + T(7)*B; % X \n Image(:,:,2) = T(2)*R + T(5)*G + T(8)*B; % Y\n Image(:,:,3) = T(3)*R + T(6)*G + T(9)*B; % Z\nend\nreturn;\n\n\nfunction Image = hsv(Image,SrcSpace)\n% Convert to HSV\nImage = rgb(Image,SrcSpace);\nV = max(Image,[],3);\nS = (V - min(Image,[],3))./(V + (V == 0));\nImage(:,:,1) = rgbtohue(Image);\nImage(:,:,2) = S;\nImage(:,:,3) = V;\nreturn;\n\n\nfunction Image = hsl(Image,SrcSpace)\n% Convert to HSL \nswitch SrcSpace\ncase 'hsv'\n % Convert HSV to HSL \n MaxVal = Image(:,:,3);\n MinVal = (1 - Image(:,:,2)).*MaxVal;\n L = 0.5*(MaxVal + MinVal);\n temp = min(L,1-L);\n Image(:,:,2) = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));\n Image(:,:,3) = L;\notherwise\n Image = rgb(Image,SrcSpace); % Convert to sRGB\n % Convert sRGB to HSL\n MinVal = min(Image,[],3);\n MaxVal = max(Image,[],3);\n L = 0.5*(MaxVal + MinVal);\n temp = min(L,1-L);\n S = 0.5*(MaxVal - MinVal)./(temp + (temp == 0));\n Image(:,:,1) = rgbtohue(Image);\n Image(:,:,2) = S;\n Image(:,:,3) = L;\nend\nreturn;\n\n\nfunction Image = lab(Image,SrcSpace)\n% Convert to CIE L*a*b* (CIELAB)\nWhitePoint = [0.950456,1,1.088754];\n\nswitch SrcSpace\ncase 'lab'\n return;\ncase 'lch'\n % Convert CIE L*CH to CIE L*ab\n C = Image(:,:,2);\n Image(:,:,2) = cos(Image(:,:,3)*pi/180).*C; % a*\n Image(:,:,3) = sin(Image(:,:,3)*pi/180).*C; % b*\notherwise\n Image = xyz(Image,SrcSpace); % Convert to XYZ\n % Convert XYZ to CIE L*a*b*\n X = Image(:,:,1)/WhitePoint(1);\n Y = Image(:,:,2)/WhitePoint(2);\n Z = Image(:,:,3)/WhitePoint(3);\n fX = f(X);\n fY = f(Y);\n fZ = f(Z);\n Image(:,:,1) = 116*fY - 16; % L*\n Image(:,:,2) = 500*(fX - fY); % a*\n Image(:,:,3) = 200*(fY - fZ); % b*\nend\nreturn;\n\n\nfunction Image = luv(Image,SrcSpace)\n% Convert to CIE L*u*v* (CIELUV)\nWhitePoint = [0.950456,1,1.088754];\nWhitePointU = (4*WhitePoint(1))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));\nWhitePointV = (9*WhitePoint(2))./(WhitePoint(1) + 15*WhitePoint(2) + 3*WhitePoint(3));\n\nImage = xyz(Image,SrcSpace); % Convert to XYZ\nDenom = Image(:,:,1) + 15*Image(:,:,2) + 3*Image(:,:,3);\nU = (4*Image(:,:,1))./(Denom + (Denom == 0));\nV = (9*Image(:,:,2))./(Denom + (Denom == 0));\nY = Image(:,:,2)/WhitePoint(2);\nL = 116*f(Y) - 16;\nImage(:,:,1) = L; % L*\nImage(:,:,2) = 13*L.*(U - WhitePointU); % u*\nImage(:,:,3) = 13*L.*(V - WhitePointV); % v*\nreturn; \n\n\nfunction Image = lch(Image,SrcSpace)\n% Convert to CIE L*ch\nImage = lab(Image,SrcSpace); % Convert to CIE L*ab\nH = atan2(Image(:,:,3),Image(:,:,2));\nH = H*180/pi + 360*(H < 0);\nImage(:,:,2) = sqrt(Image(:,:,2).^2 + Image(:,:,3).^2); % C\nImage(:,:,3) = H; % H\nreturn;\n\n\nfunction Image = cat02lms(Image,SrcSpace)\n% Convert to CAT02 LMS\nImage = xyz(Image,SrcSpace);\nT = [0.7328, 0.4296, -0.1624;-0.7036, 1.6975, 0.0061; 0.0030, 0.0136, 0.9834];\nX = Image(:,:,1);\nY = Image(:,:,2);\nZ = Image(:,:,3);\nImage(:,:,1) = T(1)*X + T(4)*Y + T(7)*Z; % L\nImage(:,:,2) = T(2)*X + T(5)*Y + T(8)*Z; % M\nImage(:,:,3) = T(3)*X + T(6)*Y + T(9)*Z; % S\nreturn;\n\n\nfunction Image = huetorgb(m0,m2,H)\n% Convert HSV or HSL hue to RGB\nN = size(H);\nH = min(max(H(:),0),360)/60;\nm0 = m0(:);\nm2 = m2(:);\nF = H - round(H/2)*2;\nM = [m0, m0 + (m2-m0).*abs(F), m2];\nNum = length(m0);\nj = [2 1 0;1 2 0;0 2 1;0 1 2;1 0 2;2 0 1;2 1 0]*Num;\nk = floor(H) + 1;\nImage = reshape([M(j(k,1)+(1:Num).'),M(j(k,2)+(1:Num).'),M(j(k,3)+(1:Num).')],[N,3]);\nreturn;\n\n\nfunction H = rgbtohue(Image)\n% Convert RGB to HSV or HSL hue\n[M,i] = sort(Image,3);\ni = i(:,:,3);\nDelta = M(:,:,3) - M(:,:,1);\nDelta = Delta + (Delta == 0);\nR = Image(:,:,1);\nG = Image(:,:,2);\nB = Image(:,:,3);\nH = zeros(size(R));\nk = (i == 1);\nH(k) = (G(k) - B(k))./Delta(k);\nk = (i == 2);\nH(k) = 2 + (B(k) - R(k))./Delta(k);\nk = (i == 3);\nH(k) = 4 + (R(k) - G(k))./Delta(k);\nH = 60*H + 360*(H < 0);\nH(Delta == 0) = nan;\nreturn;\n\n\nfunction Rp = gammacorrection(R)\nRp = zeros(size(R));\ni = (R <= 0.0031306684425005883);\nRp(i) = 12.92*R(i);\nRp(~i) = real(1.055*R(~i).^0.416666666666666667 - 0.055);\nreturn;\n\n\nfunction R = invgammacorrection(Rp)\nR = zeros(size(Rp));\ni = (Rp <= 0.0404482362771076);\nR(i) = Rp(i)/12.92;\nR(~i) = real(((Rp(~i) + 0.055)/1.055).^2.4);\nreturn;\n\n\nfunction fY = f(Y)\nfY = real(Y.^(1/3));\ni = (Y < 0.008856);\nfY(i) = Y(i)*(841/108) + (4/29);\nreturn;\n\n\nfunction Y = invf(fY)\nY = fY.^3;\ni = (Y < 0.008856);\nY(i) = (fY(i) - 4/29)*(108/841);\nreturn;\n", "meta": {"author": "petercorke", "repo": "machinevision-toolbox-matlab", "sha": "2d791168c19c5e56acef74d22eafd227b4b58e42", "save_path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab/machinevision-toolbox-matlab-2d791168c19c5e56acef74d22eafd227b4b58e42/colorspace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419958239133, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39204820789155564}} {"text": "function acc = st_to_cc_values ( nst, ist, jst, ast, ncc, n, icc, ccc )\n\n%*****************************************************************************80\n%\n%% ST_TO_CC_VALUES creates CC values from ST data.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 14 July 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer NST, the number of ST elements.\n%\n% Input, integer IST(NST), JST(NST), the ST rows and columns.\n%\n% Input, real AST(NST), the ST values.\n%\n% Input, integer NCC, the number of CC elements.\n%\n% Input, integer N, the number of columns.\n%\n% Input, integer ICC(NCC), the CC rows.\n%\n% Input, integer CCC(N+1), the CC compressed columns.\n%\n% Output, real ACC(NCC), the CC values.\n%\n acc = zeros ( ncc, 1 );\n\n for kst = 1 : nst\n\n i = ist(kst);\n j = jst(kst);\n\n clo = ccc(j);\n chi = ccc(j+1);\n\n fail = 1;\n\n for kcc = clo : chi - 1\n if ( icc(kcc) == i )\n acc(kcc) = acc(kcc) + ast(kst);\n fail = 0;\n break\n end \n end\n\n if ( fail )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ST_TO_CC_VALUES - Fatal error!\\n' );\n fprintf ( 1, ' ST entry cannot be located in CC array.\\n' );\n fprintf ( 1, ' ST index KST = %d\\n', kst );\n fprintf ( 1, ' ST row IST(KST) = %d\\n', ist(kst) );\n fprintf ( 1, ' ST col JST(KST) = %d\\n', jst(kst) );\n fprintf ( 1, ' ST val AST(KST) = %g\\n', ast(kst) );\n error ( 'ST_TO_CC_VALUES - Fatal error!' );\n end\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/st_to_cc/st_to_cc_values.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6926419894793248, "lm_q1q2_score": 0.39204820430040094}} {"text": "%%*******************************************************************\n%% HSDNTdirfun: compute (dX,dZ), given dy, for the NT direction.\n%% \n%% SDPT3: version 3.1\n%% Copyright (c) 1997 by\n%% K.C. Toh, M.J. Todd, R.H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*******************************************************************\n\n function [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx); \n \n global solve_ok\n\n dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = [];\n if (any(isnan(xx)) | any(isinf(xx)))\n solve_ok = 0;\n fprintf('\\n HSDNTdirfun: solution contains NaN or inf.');\n return;\n end\n%%\n m = par.m; \n dy2 = xx(1:m+2); \n%%\n for p=1:size(blk,1)\n pblk = blk(p,:); \n if strcmp(pblk{1},'l')\n dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2));\n tmp = par.dd{p}.*dZ{p};\n dX{p} = EinvRc{p} - tmp;\n elseif strcmp(pblk{1},'q')\n dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2));\n tmp = par.dd{p}.*dZ{p} + qops(pblk,qops(pblk,dZ{p},par.ee{p},1),par.ee{p},3); \n dX{p} = EinvRc{p} - tmp; \n elseif strcmp(pblk{1},'s') \n dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy2)); \n tmp = Prod3(pblk,par.W{p},dZ{p},par.W{p},1); \n dX{p} = EinvRc{p}-tmp;\n end\n end \n dy = dy2(1:m); \n par.dtau = dy2(m+1); \n par.dtheta = dy2(m+2);\n par.dkap = (par.mu./par.tau - par.kap) - par.kap*(par.dtau/par.tau); \n%%*******************************************************************\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/sdpt3/HSDSolver/HSDNTdirfun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3920482007092462}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Spherical Harmonic Modeling and Analysis Toolkit (SPHARM-MAT) is a 3D \n% shape modeling and analysis toolkit. \n% It is a software package developed at Shenlab in Center for Neuroimaging, \n% Indiana University (SpharmMat@gmail.com, http://www.iupui.edu/~shenlab/)\n% It is available to the scientific community as copyright freeware \n% under the terms of the GNU General Public Licence.\n% \n% Copyright 2009, 2010, ShenLab, Center for Neuroimaging, Indiana University\n% \n% This file is part of SPHARM-MAT.\n% \n% SPHARM-MAT is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% SPHARM-MAT is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with SPHARM-MAT. If not, see .\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction SpharmMatUtilDisplayObjs(confs, objs, cpath)\n\nnumSbj = size(objs,2);\n\ntplt = [];\nif exist(confs.Template,'file')\n if strcmp(confs.Template(end-3:end),'.mat')==1\n tplt = load(confs.Template);\n if ~isfield(tplt,'fvec')\n disp('Template file does not contain fvec');\n tplt = [];\n end\n else\n disp('Template should be a .mat file');\n end\nend\n\nfor i = 1:numSbj\n file = objs{i};\n [pa,na,ex]=fileparts(file);\n nastr = strrep(na,'_','-');\n \n clear adc; clear cdata; rmsd = [];\n \n suffix = '';\n\n load(file);\n if exist('bim','var')\n roi = bim;\n DIM = size(roi);\n\n % Make binary image\n ind = find(roi>0); roi(ind) = 1;\n ind = find(roi<1); roi(ind) = 0; \n\n % Generate voxel surface for the binary image\n [vertices, faces] = gen_surf_data(roi,origin,vxsize);\n end\n \n h = figure('Name', ['Object: ' na],'NumberTitle', 'off');\n cameratoolbar(h, 'Show');\n \n % calculate SPHARM reconstruction\n if exist('fvec','var')\n % get regular mesh in the parameter space: sph_verts, faces\n switch strtrim(char(confs.Mesh))\n % to-do-item: add an option for reconstruction using original mesh\n case 'quad32'\n load(fullfile(cpath,'ParamMeshes/R32_quad.mat'));\n case 'quad64'\n load(fullfile(cpath,'ParamMeshes/R64_quad.mat'));\n case 'quad128'\n load(fullfile(cpath,'ParamMeshes/R128_quad.mat'));\n case 'quad256'\n load(fullfile(cpath,'ParamMeshes/R256_quad.mat'));\n case 'quad512'\n load(fullfile(cpath,'ParamMeshes/R512_quad.mat'));\n case 'icosa1'\n load(fullfile(cpath,'ParamMeshes/L1_icosa.mat'));\n case 'icosa2'\n load(fullfile(cpath,'ParamMeshes/L2_icosa.mat'));\n case 'icosa3'\n load(fullfile(cpath,'ParamMeshes/L3_icosa.mat'));\n case 'icosa4'\n load(fullfile(cpath,'ParamMeshes/L4_icosa.mat'));\n case 'icosa5'\n load(fullfile(cpath,'ParamMeshes/L5_icosa.mat'));\n case 'icosa6'\n load(fullfile(cpath,'ParamMeshes/L6_icosa.mat'));\n end\n \n\n \n % calculate SPHARM reconstruction using the regular mesh: vertices\n if ~strcmp(deblank(char(confs.Mesh)), 'orig') \n % get the user-specified degree\n if isempty(confs.Degree)\n degree = Inf;\n else\n degree = confs.Degree;\n end \n degree = min(degree,sqrt(size(fvec,1))-1);\n suffix = sprintf('%s_d%d',strtrim(char(confs.Mesh)),degree);\n % do the calculation\n Z = calculate_SPHARM_basis(sph_verts, degree);\n lb = 1;\n ub = (degree+1)^2;\n vertices = real(Z(:,lb:ub)*fvec(lb:ub,:));\n % calculate RMSD if there is a template\n if ~isempty(tplt)\n tfvec = tplt.fvec;\n tcnt = size(tfvec,1);\n if tcnt>=ub\n tfvec = tfvec(1:ub,:);\n else\n tfvec = zeros(1:tcnt,3);\n tfvec(1:tcnt,:) = tplt.fvec;\n end\n rmsd = SPHARM_rmsd(fvec,tfvec);\n end\n end\n end\n \n % option for display in object space, parameter space, or both\n switch strtrim(char(confs.Space))\n case 'object'\n if ~exist('vertices','var') | ~exist('faces','var')\n disp(sprintf('Cannot display %s in the object space',nastr));\n break;\n end\n subp = 0;\n titleStr = sprintf('Object: %s',nastr);\n case 'param'\n if ~exist('sph_verts','var') | ~exist('faces','var')\n disp(sprintf('Cannot display %s in the parameter space',nastr));\n break;\n end\n subp = 1;\n titleStr = sprintf('Parameterization: %s',nastr);\n case 'both'\n if ~exist('faces','var') | (~exist('vertices','var') & ~exist('sph_verts','var'))\n disp(sprintf('Cannot display %s in object and parameter spaces',nastr));\n break;\n end\n subp = 2;\n titleStrLeft = sprintf('%s',nastr);\n titleStrRight = sprintf('Parameterization'); \n end\n \n % option to visualize parameterization in color\n % ADC is shown together with this option\n over1 = 0;\n switch strtrim(char(confs.Overlay))\n case 'none'\n overl = 0;\n case 'adc_paramap'\n if exist('vertices','var') & exist('sph_verts','var') & exist('faces','var')\n overl = 1;\n % calculate the color coding\n [THETA,PHI,R] = cart2sph(sph_verts(:,1),sph_verts(:,2),sph_verts(:,3));\n ix = find(THETA<0); THETA(ix) = THETA(ix)+pi*2;\n cdata = THETA.*sign(PHI);\n % calculate the area distortion cost: adc\n asr = calc_asr(vertices, sph_verts, faces); adc = asr.prmstc;\n else\n disp(sprintf('Color coded parameterization cannot be calculated for %s due to missing variables',nastr));\n end\n end\n\n % option for solid shading, mesh view, or both\n switch strtrim(char(confs.Shade))\n case 'solid'\n if overl == 1\n if subp == 0\n patch_color(vertices, faces, cdata); title(titleStr);\n elseif subp == 1\n patch_color(sph_verts, faces, cdata); title(titleStr);\n elseif subp == 2\n subplot(1,2,1);\n patch_color(vertices, faces, cdata); title(titleStrLeft);\n subplot(1,2,2);\n patch_color(sph_verts, faces, cdata); title(sprintf('%s: ADC=%f',titleStrRight,adc));\n end\n else\n if subp == 0\n patch_light(vertices, faces); title(titleStr);\n elseif subp == 1\n patch_light(sph_verts, faces); title(titleStr);\n elseif subp == 2\n subplot(1,2,1);\n patch_light(vertices, faces); title(titleStrLeft);\n subplot(1,2,2);\n patch_light(sph_verts, faces); title(titleStrRight);\n end\n end\n case 'mesh'\n if overl == 1\n disp('Color coded parameterization is not shown in mesh view');\n if subp == 0\n patch_mesh(vertices, faces); title(titleStr);\n elseif subp == 1\n patch_mesh(sph_verts, faces); title(titleStr);\n elseif subp == 2\n subplot(1,2,1);\n patch_mesh(vertices, faces); title(titleStrLeft);\n subplot(1,2,2);\n patch_mesh(sph_verts, faces); title(sprintf('%s: ADC=%f',titleStrRight,adc));\n end\n else\n if subp == 0\n patch_mesh(vertices, faces); title(titleStr);\n elseif subp == 1\n patch_mesh(sph_verts, faces); title(titleStr);\n elseif subp == 2\n subplot(1,2,1);\n patch_mesh(vertices, faces); title(titleStrLeft);\n subplot(1,2,2);\n patch_mesh(sph_verts, faces); title(titleStrRight);\n end\n end\n case 'both'\n if overl == 1\n if subp == 0\n patch_colormesh(vertices, faces, cdata); title(titleStr);\n elseif subp == 1\n patch_colormesh(sph_verts, faces, cdata); title(titleStr);\n elseif subp == 2\n subplot(1,2,1);\n patch_colormesh(vertices, faces, cdata); title(titleStrLeft);\n subplot(1,2,2);\n patch_colormesh(sph_verts, faces, cdata); title(sprintf('%s: ADC=%f',titleStrRight,adc));\n end\n else\n if subp == 0\n patch_lightmesh(vertices, faces); title(titleStr);\n elseif subp == 1\n patch_lightmesh(sph_verts, faces); title(titleStr);\n elseif subp == 2\n subplot(1,2,1);\n patch_lightmesh(vertices, faces); title(titleStrLeft);\n subplot(1,2,2);\n patch_lightmesh(sph_verts, faces); title(titleStrRight);\n end\n end\n end\n \n if ~isempty(suffix)\n suffix = sprintf('%s_%s',confs.Space(1:3),suffix); \n else\n suffix = confs.Space(1:3);\n end\n if ~isempty(rmsd)\n zstr = sprintf('%s, rmsd=%0.3f',suffix,rmsd);\n zlabel(strrep(zstr,'_','-'));\n else\n zlabel(strrep(suffix,'_','-'));\n end\n \n % display and/or export\n switch strtrim(char(confs.Export))\n case 'screen'\n % display the figure \n case 'png'\n % save as png \n pa_png = fullfile(pa,'PNG');\n if ~exist(pa_png,'dir')\n mkdir(pa_png);\n end\n saveas(h,fullfile(pa_png,[na '_' suffix]),'png'); close(h);\n case 'both'\n % do both\n pa_png = fullfile(pa,'PNG');\n if ~exist(pa_png,'dir')\n mkdir(pa_png);\n end\n saveas(h,fullfile(pa_png,[na '_' suffix]),'png'); \n end\n \nend\n\nreturn;\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/SpharmToolbox/code/SpharmMatUtilDisplayObjs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455589, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.39204819352693665}} {"text": "function[varargout]=mat2col(varargin)\n%MAT2COL Compress NAN-padded matrix data into long columns.\n%\n% C=MAT2COL(M), where the columns of matrix M are data vectors of\n% nonuniform length with NANs filling out the gaps in each column,\n% appends together all the columns into a vector C in which isolated\n% NANs mark the transitions between columns.\n%\n% [C1,C2,...,CN]=MAT2COL(M1,M2,...,MN) also works for multiple input \n% matrices of the same size. In this case the locations of NANs in \n% M1 are used as the key for appending all the MN into columns. \n% \n% MAT2COL, COL2MAT, and COLBREAKS together form a system for moving\n% data with segments of nonuniform length rapidly back and forth\n% between a column format and a padded-matrix format.\n%\n% MAT2COL(M1,M2,...,MN); with no output arguments overwrites the\n% original input variables.\n%\n% See also COL2MAT, COLBREAKS, COL2CELL, CELL2COL.\n% _________________________________________________________________\n% This is part of JLAB --- type 'help jlab' for more information\n% (C) 2000--2016 J.M. Lilly --- type 'help jlab_license' for details \n \n%no loops!\n\nif strcmpi(varargin{1},'--t')\n return\nend\n\nif isempty(varargin{1})\n for i=1:nargout\n varargout{i}=[];\n end\n return\nend\n\ni=0;\nwhile inargin\n varargout{end+1}=index;\n\t%eval(['c' int2str(nargout) '=index;']);\nend\n\nif nargout==0\n %for i=1:nargin\n % eval(['varargout{',int2str(i),'}=c',int2str(i),';'])\n %end \n eval(to_overwrite(nargin));\nend\n\n\n", "meta": {"author": "jonathanlilly", "repo": "jLab", "sha": "9f32f63e647209bc1cb81c8713deb954857f1919", "save_path": "github-repos/MATLAB/jonathanlilly-jLab", "path": "github-repos/MATLAB/jonathanlilly-jLab/jLab-9f32f63e647209bc1cb81c8713deb954857f1919/jVarfun/mat2col.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6926419704455589, "lm_q1q2_score": 0.39204819352693665}} {"text": "function rs = medianfilt(s, len)\n\n%tstoolbox/@signal/medianfilt\n% Syntax:\n% * rs = medianfilt(s, len)\n%\n% Moving median filter of width len samples for a scalar time series\n% (len should be odd).\n%\n% Copyright 1997-2001 DPI Goettingen, License http://www.physik3.gwdg.de/tstool/gpl.txt\n\n\nnarginchk(2,2);\n\nc = medianfilt(s.core, len);\nrs = signal(c, s);\t\t\t\t% special constructor calling syntax for working routines\n\n\na = getaxis(s,1);\na = setfirst(a, ((len+1)/2) * delta(a));\n\nrs = setaxis(rs, 1, a);\nrs = addhistory(rs, ['Moving average with window of ' num2str(len) ' samples'] );\nrs = addcommandlines(rs, 's = medianfilt(s', len);\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/Toolboxes/OpenTSTOOL/tstoolbox/@signal/medianfilt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.39203148530981985}} {"text": "function [ DCM ] = tapas_dcm_euler_make_indices(DCM)\n% [ DCM ] = tapas_dcm_euler_make_indices(DCM)\n% \n% Get the indices for the Euler integration\n% \n% Input:\n% \tDCM - model structure\n%\n% Output:\n% DCM - model structure with indices\n%\n\n% ----------------------------------------------------------------------\n% \n% Authors: Stefan Fraessle (stefanf@biomed.ee.ethz.ch), Ekaterina I. Lomakina\n% \n% Copyright (C) 2016-2018 Translational Neuromodeling Unit\n% Institute for Biomedical Engineering\n% University of Zurich & ETH Zurich\n%\n% This file is part of the TAPAS rDCM Toolbox, which is released under the \n% terms of the GNU General Public License (GPL), version 3.0 or later. You\n% can redistribute and/or modify the code under the terms of the GPL. For\n% further see COPYING or .\n% \n% Please note that this toolbox is in an early stage of development. Changes \n% are likely to occur in future releases.\n% \n% ----------------------------------------------------------------------\n\n\n% length of input\nL = size(DCM.U.u,1);\n\n% number of regions\nnr = size(DCM.a, 1);\n\n% check whether there is a delay specified\nif ~isfield('DCM','delay')\n DCM.delay = ones(nr,1);\nend\n\n% create index array\nIndices = repmat(1 : L, 1, 1);\n\n% get the indices that coincide wiht the data timepoints\nidx = zeros(1, L);\nidx(DCM.delay:floor(DCM.Y.dt/DCM.U.dt):end) = 1;\n\n% asign those timings\nIndices = Indices(idx>0);\nDCM.M.idx = Indices;\n\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/rDCM/misc/tapas_dcm_euler_make_indices.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.39203148530981985}} {"text": "function fun = sym2fun(sobj,svar,var,skipSubs)\n% SYM2FUN Convert Symbolic Expression into Matlab Function Handle \n\nif(nargin < 3 || isempty(var)), var = 'x'; end\nif(nargin < 4 || isempty(skipSubs)), skipSubs = false; end\n\n%Build cell array to store indexed vars\nivar = convIndex(svar);\n\n%Subs out individual symbolic variables into our indexed list\nif(~skipSubs)\n wstate = warning('off','symbolic:sym:sym:DeprecateExpressions');\n eq = subs(sobj,svar,ivar);\n warning(wstate);\nelse\n eq = sobj;\nend\n\n%Build a MATLAB function\nstr = char(eq);\n%Remove 'matrix' if is found\nind = strfind(str,'matrix');\nif(ind)\n str = str(ind+7:end-1);\nend\n%Ensure we have right size\n[r,c] = size(eq);\nif(c==1 && r > 1)\n str = regexprep(str,',',';'); %force column\nelseif(c>1 && r>1)\n str = regexprep(str,'],','];'); %keep matrix\nend \n%Build function handle\nfun = str2func(['@(' var ') ' str]);\n\n\n%Convert index from m1 to m(1)\nfunction [ivar,var] = convIndex(svar) \nivar = cell(size(svar));\n%Find indexing number\nfor i = 1:length(svar)\n str = char(svar(i));\n for j = 1:length(str)\n if(~isletter(str(j)))\n break;\n end\n end\n if(i == 1) %assume first variable contains decision variable\n var = str(1:j-1);\n end\n% ivar{i} = sprintf('%s(%s)',str(1:j-1),str(j:end)); %this uses user index...\n ivar{i} = sprintf('%s(%d)',str(1:j-1),i); %this uses index based on array\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/math/opti/Utilities/SymBuilder/@SymBuilder/sym2fun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6261241702517975, "lm_q1q2_score": 0.39203148094166085}} {"text": "function [ y, x ] = cvx_check_dimlist( x, emptyok )\n\n% CVX_CHECK_DIMLIST Verifies the input is a valid dimension list.\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd.\n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n\nif nargin < 2 || emptyok,\n xmin = 0;\nelse\n xmin = 1;\nend\nif isa( x, 'cell' ),\n nel = numel( x );\n xnew = zeros( 1, nel );\n y = false;\n for k = 1 : nel,\n if ~isnumeric( x{k} ) || length( x{k} ) ~= 1, return; end\n xnew( k ) = x{k};\n end\n x = xnew;\nend\nif isnumeric( x ) && ndims( x ) <= 2 && ~all( size( x ) > 1 ) && isreal( x ) && ~any( isnan( x ) | isinf( x ) ) && all( x >= xmin ) && all( floor( x ) == x ),\n y = true;\nelse\n y = false;\nend\nif y && nargout > 1,\n x = [ x( : )', 1, 1 ];\n x = x( 1 : max( [ 2, find( x > 1 ) ] ) );\nend\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd.\n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/lib/cvx_check_dimlist.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593452091672, "lm_q2_score": 0.6297746004557471, "lm_q1q2_score": 0.3920090854290492}} {"text": "function [iV,jV,kV]=find3d(mask3M)\n%\"find3d\"\n% This is the 3D equivalent of the builtin command, find.\n% It returns the i,j,k indices of non-zero entries.\n%\n%JOD, 16 Nov 98\n%JOD, 26 Feb 03, bugfix.\n%JRA, 26 Feb 04, new algorithm, also implements the new fastind2sub.\n%\n%Usage:\n% [iV,jV,kV]=find3d(mask3M);\n%\n% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.\n% \n% This file is part of The Computational Environment for Radiotherapy Research (CERR).\n% \n% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.\n% \n% CERR has been financially supported by the US National Institutes of Health under multiple grants.\n% \n% CERR is distributed under the terms of the Lesser GNU Public License. \n% \n% This version of CERR is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n% See the GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with CERR. If not, see .\n\nindV = find(mask3M(:));\n[iV,jV,kV] = fastind2sub(size(mask3M), indV);\niV = iV';\njV = jV';\nkV = kV';", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Utilities/find3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3920090809328617}} {"text": "function y = stdignorenan(x,varargin)\n\ny = std(x(~isnan(x)),varargin{:});", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/misc/stdignorenan.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7718434978390747, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39195128556944264}} {"text": "function plotData(X, y)\n%PLOTDATA Plots the data points X and y into a new figure \n% PLOTDATA(x,y) plots the data points with + for the positive examples\n% and o for the negative examples. X is assumed to be a Mx2 matrix.\n%\n% Note: This was slightly modified such that it expects y = 1 or y = 0\n\n% Find Indices of Positive and Negative Examples\npos = find(y == 1); neg = find(y == 0);\n\n% Plot Examples\nplot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 1, 'MarkerSize', 7)\nhold on;\nplot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7)\nhold off;\n\nend\n", "meta": {"author": "Ayatans", "repo": "Machine-Learning-homework", "sha": "4550cfc0426c9da8072dff165130fff40d138c10", "save_path": "github-repos/MATLAB/Ayatans-Machine-Learning-homework", "path": "github-repos/MATLAB/Ayatans-Machine-Learning-homework/Machine-Learning-homework-4550cfc0426c9da8072dff165130fff40d138c10/machine-learning-ex6/ex6/plotData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5078118642792044, "lm_q2_score": 0.7718434978390747, "lm_q1q2_score": 0.39195128556944264}} {"text": "function [U,data,SS,R] = arap(V,F,b,bc,varargin)\n % ARAP Solve for the as-rigid-as-possible deformation according to various\n % manifestations including:\n % (1) \"As-rigid-as-possible Surface Modeling\" by [Sorkine and Alexa 2007]\n % (2) \"A local-global approach to mesh parameterization\" by [Liu et al.\n % 2010] or \"A simple geometric model for elastic deformation\" by [Chao et\n % al. 2010]\n % (3) Adapted version of \"As-rigid-as-possible Surface Modeling\" by\n % [Sorkine and Alexa 2007] presented in section 4.2 of or \"A simple\n % geometric model for elastic deformation\" by [Chao et al. 2010]\n %\n % U = arap(V,F,b,bc) given a rest mesh (V,F) and list of constraint vertex\n % indices (b) and their new postions (bc) solve for pose mesh positions (U),\n % using default choice for 'Energy'\n %\n % U = arap(V,F,b,bc,'ParameterName','ParameterValue',...)\n %\n % Inputs:\n % V #V by dim list of rest domain positions\n % F #F by {3|4} list of {triangle|tetrahedra} indices into V\n % b #b list of indices of constraint (boundary) vertices\n % bc #b by dim list of constraint positions for b\n % Optional:\n % 'Energy'\n % followed by a string specifying which arap energy definition to use.\n % One of the following:\n % 'spokes' \"As-rigid-as-possible Surface Modeling\" by [Sorkine and\n % Alexa 2007], rotations defined at vertices affecting incident\n % edges\n % 'elements' \"A local-global approach to mesh parameterization\" by\n % [Liu et al. 2010] or \"A simple geometric model for elastic\n % deformation\" by [Chao et al. 2010], rotations defined at\n % elements (triangles or tets) \n % 'spokes-and-rims' Adapted version of \"As-rigid-as-possible Surface\n % Modeling\" by [Sorkine and Alexa 2007] presented in section 4.2 of\n % or \"A simple geometric model for elastic deformation\" by [Chao et\n % al. 2010], rotations defined at vertices affecting incident\n % edges and opposite edges\n % 'V0' #V by dim list of initial guess positions\n % dim by dim by #C list of linear transformations initial guesses,\n % optional (default is to use identity transformations)\n % 'Data' see output\n % 'Groups'\n % followed by #V list of group indices (1 to k) for each vertex, such \n % that vertex i is assigned to group G(i)\n % 'Tol'\n % stopping critera parameter. If variables (linear transformation matrix\n % entries) change by less than 'tol' the optimization terminates,\n % default is 0.75 (weak tolerance)\n % 'MaxIter'\n % max number of local-global iterations, default is 100\n % 'Dynamic' \n % #V by dim list of external forces\n % 'TimeStep'\n % scalar time step value\n % 'Vm1' \n % #V by dim positions at time t-1\n % 'Tikhonov' followed by constant Tikhonov regularization parameter\n % alpha:\n % http://en.wikipedia.org/wiki/Tikhonov_regularization#Relation_to_probabilistic_formulation\n % 'Youngs' followed by young's modulus (only for dynamics)\n % 'Flat' followed by whether to add the constraint that Z=0 {false}\n % 'RemoveRigid' followed by whether to add a constraint that places an\n % arbitrary point at the origin and another along the x-axis {false}\n % 'Aeq'/'Beq' followed by #Aeq by dim*#V linear equality constraints\n % matrix and righthand sides respectively {[]}/{[]}\n % Outputs:\n % U #V by dim list of new positions\n % data struct of reusable data\n % .CSM dim*n by dim*n sparse matrix containing special laplacians along the\n % diagonal so that when multiplied by repmat(U,dim,1) gives covariance\n % matrix elements, can be used to speed up next time this function is\n % called, see function definitions\n %\n % Known issues: 'Flat',true + 'Energy','elements' should only need a 2D\n % rotation fit, but this does 3D to stay general (e.g. if one were to use\n % 'spokes' then the edge-set cannot be pre-mapped to a common plane)\n %\n % See also: takeo_arap\n %\n\n % parse input\n G = [];\n\n % number of vertices\n n = size(V,1);\n assert(isempty(b) || max(b) <= n,'b should be in bounds [1,size(V,1)]');\n assert(isempty(b) || min(b) >= 1,'b should be in bounds [1,size(V,1)]');\n\n indices = 1:n;\n max_iterations = 100;\n tol = 0.001;\n interior = indices(~ismember(indices,b));\n U = [];\n Vm1 = [];\n youngs = 1.2e9;\n % default is Sorkine and Alexa style local rigidity energy\n energy = [];\n % default is no external forces\n fext = [];\n % defaults is unit time step\n h = 1;\n % Tikhonov regularization alpha\n alpha_tik = 0;\n % flatten/parameterization\n flat = false;\n % remove rigid transformation invariance\n remove_rigid = false;\n G = [];\n debug = false;\n data = [];\n Aeq = [];\n Beq = [];\n ref_data = [];\n weight = [];\n\n % Map of parameter names to variable names\n params_to_variables = containers.Map( ...\n {'Energy','V0','Data','Tikhonov','Groups','Tol', ...\n 'MaxIter','Dynamic','TimeStep','Vm1','RemoveRigid','Debug', ...\n 'Aeq','Beq','Flat','Ref','Weight','Youngs'}, ...\n {'energy','U','data','alpha_tik','G','tol','max_iterations','fext', ...\n 'h','Vm1','remove_rigid','debug','Aeq','Beq','flat','ref_data','weight','youngs'});\n v = 1;\n while v <= numel(varargin)\n param_name = varargin{v};\n if isKey(params_to_variables,param_name)\n assert(v+1<=numel(varargin));\n v = v+1;\n % Trick: use feval on anonymous function to use assignin to this workspace \n feval(@()assignin('caller',params_to_variables(param_name),varargin{v}));\n else\n error('Unsupported parameter: %s',varargin{v});\n end\n v=v+1;\n end\n\n if isempty(energy)\n switch size(F,2)\n case 4\n energy = 'elements';\n case 3\n energy = 'spokes-and-rims';\n end\n end\n if isempty(fext)\n dynamic = false;\n fext = zeros(size(V));\n else\n dynamic = true;\n end\n\n\n if isempty(data)\n if strcmp(energy,'elements') && numel(G) ~= size(F,1) && numel(G) == n\n % groups are defined per vertex, convert to per face using mode\n data.G = mode(G(F),2);\n else\n data.G = G;\n end\n end\n\n if isempty(data.G)\n k = n;\n else\n k = max(data.G);\n end\n\n ref_map = [];\n if isempty(ref_data)\n if flat\n [ref_V,ref_F,ref_map] = plane_project(V,F);\n assert(strcmp(energy,'elements'),'flat only makes sense with elements');\n else\n ref_V = V;\n ref_F = F;\n end\n else\n ref_V = ref_data{1};\n ref_F = ref_data{2};\n ref_map = ref_data{3};\n end\n dim = size(ref_V,2);\n\n if isempty(bc)\n bc = sparse(0,dim);\n end\n\n assert(dim == size(bc,2));\n assert(size(Aeq,1) == size(Beq,1));\n assert((size(Aeq,2) == 0) || (size(Aeq,2) == dim*size(V,1)));\n\n if isempty(U)\n if(dim == 2) \n U = laplacian_mesh_editing(V,F,b,bc);\n else\n U = V;\n end\n U = U(:,1:dim);\n end\n assert(n == size(U,1));\n assert(dim == size(U,2));\n\n if dynamic\n V0 = U(:,1:dim);\n if isempty(Vm1)\n Vm1 = V0;\n end\n %% This parameter seem good for a 0.1m tall hotdog with h=0.0333\n % Larger --> more rigid\n dyn_alpha = h^2*youngs;\n % Smaller --> more damped\n mom = 1e10;\n M = massmatrix(ref_V,ref_F);\n if ~isempty(ref_map)\n M = ref_map*M*ref_map';\n end\n DQ = 0.5*mom*M;\n Dl = mom*M*(-2*V0 + Vm1) - h^2*fext;\n else\n dyn_alpha = 1;\n DQ = sparse(size(V,1),size(V,1));\n Dl = sparse(size(V,1),dim);\n end\n\n if ~isfield(data,'L') || isempty(data.L)\n if isempty(weight)\n data.L = cotmatrix(ref_V,ref_F);\n else\n wA = doublearea(ref_V,ref_F);\n wG = grad(ref_V,ref_F);\n data.L = -0.5*wG'*( repmat(wA.*weight,dim,1) .* wG);\n end\n\n if ~isempty(ref_map)\n data.L = ref_map*data.L*ref_map';\n end\n end\n\n rr.b = cell(dim,1);\n rr.bc = cell(dim,1);\n if ~isfield(data,'rr')\n data.rr = [];\n if ~isfield(data.rr,'preF')\n data.rr.preF = cell(dim,1);\n end\n end\n if ~isfield(data,'preF')\n data.preF = [];\n end\n if remove_rigid\n if ~isempty(b)\n warning('RemoveRigid`s constraints are not typically wanted if |b|>0');\n end\n % the only danger is picking two points which end up mapped very close to\n % each other\n [~,f] = farthest_points(V,dim);\n for c = 1:dim\n rr.b{c} = f([1:dim-(c-1)])';\n rr.bc{c} = zeros(numel(rr.b{c}),1);\n end\n % Immediately remove rigid transformation from initial guess\n U = bsxfun(@minus,U,U(f(1),:));\n % We know that f(1) is at origin\n switch dim\n case 3\n % rotate about y-axis so that f(2) has (x=0)\n theta = atan2(U(f(2),1),U(f(2),3));\n R = axisangle2matrix([0 1 0],theta);\n U = U*R;\n % rotate about x-axis so that f(2) has (y=0)\n theta = atan2(U(f(2),3),U(f(2),2))+pi/2;\n R = axisangle2matrix([1 0 0],theta);\n U = U*R;\n % rotate about z-axis so that f(3) has (x=0)\n theta = atan2(U(f(3),2),U(f(3),1))+pi/2;\n R = axisangle2matrix([0 0 1],theta);\n U = U*R;\n case 2\n % rotate so that f(2) is on y-axis (x=0)\n theta = atan2(U(f(2),2),U(f(2),1))+pi/2;\n R = [cos(theta) -sin(theta);sin(theta) cos(theta)];\n U = U*R;\n otherwise\n error('Unsupported dimension');\n end\n end\n\n all = [interior(:);b(:)]';\n\n % cholesky factorization\n %cholL = chol(-L(interior,interior),'lower');\n % Why lu and not cholesky?\n %[luL,luU,luP,luQ,luR] = lu(-L(interior,interior));\n\n %R = repmat(eye(dim,dim),[1 1 n]);\n\n if ~isfield(data,'ae') || isempty(data.ae)\n data.ae = avgedge(V,F);\n end\n\n % build covariance scatter matrix used to build covariance matrices we'll\n % later fit rotations to\n if ~isfield(data,'CSM') || isempty(data.CSM)\n %assert(size(ref_V,2) == dim);\n data.CSM = ...\n covariance_scatter_matrix(ref_V,ref_F,'Energy',energy);\n if ~isempty(ref_map)\n data.CSM = data.CSM * repdiag(ref_map',dim);\n end\n \n % if there are groups then condense scatter matrix to only build\n % covariance matrices for each group\n if ~isempty(G)\n G_sum = group_sum_matrix(data.G,k);\n %CSM = [G_sum sparse(k,n); sparse(k,n) G_sum] * CSM;\n data.CSM = repdiag(G_sum,dim) * data.CSM;\n end\n end\n\n % precompute rhs premultiplier\n if ~isfield(data,'K') || isempty(data.K)\n [~,data.K] = arap_rhs(ref_V,ref_F,[],'Energy',energy,'Weight',weight);\n if ~isempty(ref_map)\n data.K = repdiag(ref_map,dim) * data.K;\n end\n end\n\n % initialize rotations with identies (not necessary)\n R = repmat(eye(dim,dim),[1 1 size(data.CSM,1)/dim]);\n\n iteration = 1;\n U_prev = V;\n data.energy = inf;\n while true\n\n if iteration > max_iterations\n if debug\n fprintf('arap: Iter (%d) > max_iterations (%d)\\n',iteration,max_iterations);\n end\n break;\n end\n\n if iteration > 1\n change = max(abs(U(:)-U_prev(:)));\n if debug\n fprintf('arap: iter: %d, change: %g, energy: %g\\n', ...\n iteration,change/data.ae,data.energy);\n end\n if change/data.ae energy_prev\n if debug\n fprintf('arap: energy (%g) increasing (over %g) (iter %d)\\n', ...\n data.energy,energy_prev,iteration);\n end\n break;\n end\n\n %U(interior,:) = -L(interior,interior) \\ (B(interior,:) + L(interior,b)*bc);\n %U(interior,:) = -L(interior,all)*L(all,interior) \\ (L(interior,all)*B(all,:) + L(interior,all)*L(all,b)*bc);\n %U(interior,:) = luQ*(luU\\(luL\\(luP*(luR\\(B(interior,:)+L(interior,b)*bc)))));\n %U(interior,:)=cholL\\((B(interior,:)+L(interior,b)*bc)'/cholL)';\n iteration = iteration + 1;\n end\n U = U(:,1:dim);\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/arap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7718434873426302, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3919512802392236}} {"text": "function opt=fmin_fvalfind_ppform(pp,x,y)\n\nyf=ppval(pp,x);\nopt=abs(yf-y)^2;\n\nend\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/fmin_fvalfind_ppform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804478040617, "lm_q2_score": 0.63341027751814, "lm_q1q2_score": 0.3919418951663697}} {"text": "%%*******************************************************************\n%% Read in a problem in SDPA sparse format.\n%%\n%% [blk,At,C,b] = read_sdpa(fname)\n%%\n%% Input: fname = name of the file containing SDP data in\n%% SDPA foramt. \n%% Important: the data is assumed to contain only \n%% semidefinite and linear blocks. \n%%*****************************************************************\n%% SDPT3: version 4.0\n%% Copyright (c) 1997 by\n%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************\n\n function [blk,At,C,b] = read_sdpa(fname,deblksize)\n\n if (nargin<2); deblksize = 100; end\n%%\n%% Open the file for input\n%%\n compressed = 0; \n if exist(fname)\n fid = fopen(fname,'r');\n elseif exist([fname,'.Z']); \n compressed = 1; \n unix(['uncompress ',fname,'.Z']);\n fid = fopen(fname,'r');\n elseif exist([fname,'.gz']); \n compressed = 2;\n unix(['gunzip ',fname,'.gz']);\n fid = fopen(fname,'r');\n else\n fprintf('*** Problem not found, please specify the correct path or problem name. \\n');\n blk = []; At = []; C = []; b = [];\n return;\n end\n%%\n%% Clean up special characters and comments from the file \n%%\n [datavec,count] = fscanf(fid,'%c');\n linefeeds = findstr(datavec,char(10));\n comment_chars = '*\"=';\n cumidx = [];\n for i=1:length(comment_chars)\n idx = findstr(datavec,comment_chars(i));\n cumidx = [cumidx,idx];\n end\n for j=length(cumidx):-1:1\n if (cumidx(j)==1) | (strcmp(datavec(cumidx(j)-1),char(10)))\n datavec(cumidx(j):linefeeds(min(find(cumidx(j) size(blksize,2); blksize = blksize'; end\n%%\n%% Get input b.\n%%\n idxstrt = 2+numblk; \n b = datavec(idxstrt+[1:m]); \n idxstrt = idxstrt+m; \n b = -b;\n%%\n%% Construct blk\n%%\n spblkidxtmp = find( (blksize>1) & (blksize < deblksize) ); \n spblkidxtmp = sort(spblkidxtmp);\n deblkidx = find( (blksize<=1) | (blksize >= deblksize) ); \n denumblk = length(deblkidx); \n linblkidx = zeros(1,denumblk); \n for p = 1:denumblk\n n = blksize(deblkidx(p)); \n if (n > 1); \n blk{p,1} = 's'; blk{p,2} = n;\n n2 = n*(n+1)/2; \n At{p,1} = sparse(n2,m);\n C{p,1} = sparse(n,n); \n else\n linblkidx(p) = p; \n blk{p,1} = 'l'; blk{p,2} = abs(n); \n At{p,1} = sparse(abs(n),m); \n C{p,1} = sparse(abs(n),1); \n end \n end\n if ~isempty(spblkidxtmp) \n maxnumblk = 200; \n spnumblk = ceil(length(spblkidxtmp)/maxnumblk);\n for q = 1:spnumblk\n if (q < spnumblk) \n spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: q*maxnumblk]); \n else\n spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: length(spblkidxtmp)]); \n end\n tmp = blksize(spblkidxall{q}); \n blk{denumblk+q,1} = 's'; \n blk{denumblk+q,2} = tmp; \n n2 = sum(tmp.*(tmp+1))/2; \n At{denumblk+q,1} = sparse(n2,m);\n C{denumblk+q,1} = sparse(sum(tmp),sum(tmp)); \n end\n else\n spnumblk = 0; \n end\n linblkidx(denumblk+[1:spnumblk]) = zeros(1,spnumblk); \n%%\n%% Construct single blocks of A,C\n%%\n len = length(datavec); \n Y = reshape(datavec(idxstrt+1:len),5,(len-idxstrt)/5)'; \n clear datavec; \n Y = sortrows(Y,[1 2]); \n matidx = [0; find(diff(Y(:,1)) ~= 0); size(Y,1)];\n%%\n for k = 1:length(matidx)-1\n idx = [matidx(k)+1 : matidx(k+1)]; \n Ytmp = Y(idx,1:5); \n matno = Ytmp(1,1); \n Ytmp2 = Ytmp(:,2); \n for p = 1:denumblk \n n = blksize(deblkidx(p)); \n idx = find(Ytmp2 == deblkidx(p)); \n ii = Ytmp(idx,3); jj = Ytmp(idx,4); vv =Ytmp(idx,5); \n len = length(idx); \n if (n > 1)\n idxtmp = find(ii > jj); \n if ~isempty(idxtmp); \n tmp = jj(idxtmp); \n jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; \n end\n tmp = -sparse(ii,jj,vv,n,n); \n tmp = tmp + triu(tmp,1)'; \n else\n tmp = -sparse(ii,ones(len,1),vv,abs(n),1); \n end\n if (matno == 0) \n C{p,1} = tmp; \n else\n if (n > 1)\n At{p,1}(:,matno) = svec(blk(p,:),tmp,1); \n else\n At{p,1}(:,matno) = tmp; \n end\n end\n end\n end \n%%\n%% Construct big sparse block of A,C \n%%\nif (spnumblk > 0)\n Y1 = Y(:,1); \n diffY1 = find(diff([-1; Y1; inf])); \n for kk = 1:length(diffY1)-1\n idx = [diffY1(kk) : diffY1(kk+1)-1];\n matno = Y1(diffY1(kk)); \n Ytmp = Y(idx,1:5);\n Ytmp2 = Ytmp(:,2); \n maxYtmp2 = Ytmp2(length(Ytmp2)); \n minYtmp2 = Ytmp2(1);\n diffYtmp2 = Ytmp2(find(diff([-1; Ytmp2]))); \n for q = 1:spnumblk\n spblkidx = spblkidxall{q};\n maxspblkidx = spblkidx(length(spblkidx));\n minspblkidx = spblkidx(1); \n count = 0; \n if (minYtmp2 <= maxspblkidx) & (maxYtmp2 >= minspblkidx)\n tmpblksize = blksize(spblkidx);\n n = sum(tmpblksize); \n cumspblksize = [0 cumsum(tmpblksize)]; \n n2 = sum(tmpblksize.*(tmpblksize+1))/2; \n idx = zeros(n2,1); offset = zeros(n2,1); \n for t = [1:length(diffYtmp2)] \n \t p = find(spblkidx == diffYtmp2(t)); \n if ~isempty(p)\n\t idxtmp = find(Ytmp2 == spblkidx(p));\n len = length(idxtmp); \n \t idx(count+[1:len]) = idxtmp; \n offset(count+[1:len]) = cumspblksize(p); \n count = count + len; \n end\n end \n idx = idx(1:count); offset = offset(1:count); \n ii = Ytmp(idx,3)+offset; jj = Ytmp(idx,4)+offset; vv = Ytmp(idx,5);\n idxtmp = find(ii > jj); \n if ~isempty(idxtmp); \n tmp = jj(idxtmp); \n jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; \n end\n\t idxeq = find(ii==jj); \n tmp = spconvert([ii jj -vv; jj ii -vv; n n 0]) ...\n + spconvert([ii(idxeq) jj(idxeq) vv(idxeq); n n 0]);\n if (matno == 0) \n C{denumblk+q,1} = tmp;\n else\n At{denumblk+q,1}(:,matno) = svec(blk(denumblk+q,:),tmp,1); \n end\n end\n end\n end\nend\n%%\n%% put all linear blocks together as a single linear block\n%% \n idx = find(linblkidx); \n if (length(idx) > 1)\n sdpidx = find(linblkidx==0); \n blktmp = 0; Atmp = []; Ctmp = [];\n for k = 1:length(idx)\n tmp = linblkidx(idx(k)); \n blktmp = blktmp+blk{tmp,2}; \n Atmp = [Atmp; At{tmp}];\n Ctmp = [Ctmp; C{tmp}]; \n end\n At = At(sdpidx); C = C(sdpidx); blk = blk(sdpidx,:); \n len = length(sdpidx); \n blk(2:len+1,:) = blk; \n blk{1,1} = 'l'; blk{1,2} = blktmp; \n At(2:len+1,1) = At; C(2:len+1,1) = C; \n At{1,1} = Atmp; C{1,1} = Ctmp; \n end\n%%******************************************************************\n\n", "meta": {"author": "shamilmamedov", "repo": "dynamic_calibration", "sha": "11af40e7deb758ec080a175fed8fcdd6c99aca29", "save_path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration", "path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration/dynamic_calibration-11af40e7deb758ec080a175fed8fcdd6c99aca29/utils/SDPT3-4.0/Solver/read_sdpa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.39194187769638034}} {"text": "function [F,V,faceBoundaryMarker]=quadBox(boxDim,boxEl)\n\n\n%%\nF=[]; V=[]; faceBoundaryMarker=[];\n\n[Xtb,Ytb]=meshgrid(0:boxEl(1),0:boxEl(2));\n\n\n[Ylr,Zlr]=meshgrid(0:boxEl(2),0:boxEl(3));\n[f,v]=surf2patch(0*ones(size(Ylr)),Ylr,Zlr); %Left\nf=fliplr(f);\nF=[F;f+size(V,1)]; V=[V;v;]; faceBoundaryMarker=[faceBoundaryMarker; 1*ones(size(f,1),1)];\n\n[f,v]=surf2patch(boxEl(1)*ones(size(Ylr)),Ylr,Zlr); %Right\nF=[F;f+size(V,1)]; V=[V;v;]; faceBoundaryMarker=[faceBoundaryMarker; 2*ones(size(f,1),1)];\n\n[Yfb,Zfb]=meshgrid(0:boxEl(1),0:boxEl(3));\n[f,v]=surf2patch(Yfb,0*ones(size(Yfb)),Zfb); %Front\nF=[F;f+size(V,1)]; V=[V;v;]; faceBoundaryMarker=[faceBoundaryMarker; 3*ones(size(f,1),1)];\n\n[f,v]=surf2patch(Yfb,boxEl(2)*ones(size(Yfb)),Zfb); %Back\nf=fliplr(f);\nF=[F;f+size(V,1)]; V=[V;v;]; faceBoundaryMarker=[faceBoundaryMarker; 4*ones(size(f,1),1)];\n\n[f,v]=surf2patch(Xtb,Ytb,0*ones(size(Xtb))); %Bottom\nf=fliplr(f);\nF=[F;f+size(V,1)]; V=[V;v;]; faceBoundaryMarker=[faceBoundaryMarker; 5*ones(size(f,1),1)];\n\n[f,v]=surf2patch(Xtb,Ytb,boxEl(3)*ones(size(Xtb))); %Top\nF=[F;f+size(V,1)]; V=[V;v;]; faceBoundaryMarker=[faceBoundaryMarker; 6*ones(size(f,1),1)];\n\n\n%%\n% Remove double nodes by merging\n[F,V]=mergeVertices(F,V);\n\n%%\n% Scale coordinates\nmaxV=max(V,[],1);\nV=V./maxV(ones(size(V,1),1),:);\nV=V.*boxDim(ones(size(V,1),1),:);\nV=V-boxDim(ones(size(V,1),1),:)/2;\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/quadBox.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.6187804196836383, "lm_q1q2_score": 0.3919418687904979}} {"text": "function Mh = hmxSingle(Mh)\n%+========================================================================+\n%| |\n%| OPENHMX - LIBRARY FOR H-MATRIX COMPRESSION AND ALGEBRA |\n%| openHmx is part of the GYPSILAB toolbox for Matlab |\n%| |\n%| COPYRIGHT : Matthieu Aussal (c) 2017-2018. |\n%| PROPERTY : Centre de Mathematiques Appliquees, Ecole polytechnique, |\n%| route de Saclay, 91128 Palaiseau, France. All rights reserved. |\n%| LICENCE : This program is free software, distributed in the hope that|\n%| it will be useful, but WITHOUT ANY WARRANTY. Natively, you can use, |\n%| redistribute and/or modify it under the terms of the GNU General Public|\n%| License, as published by the Free Software Foundation (version 3 or |\n%| later, http://www.gnu.org/licenses). For private use, dual licencing |\n%| is available, please contact us to activate a \"pay for remove\" option. |\n%| CONTACT : matthieu.aussal@polytechnique.edu |\n%| WEBSITE : www.cmap.polytechnique.fr/~aussal/gypsilab \u00a0\u00a0\u00a0\u00a0 |\n%| |\n%| Please acknowledge the gypsilab toolbox in programs or publications in |\n%| which you use it. |\n%|________________________________________________________________________|\n%| '&` | |\n%| # | FILE : hmxSingle.m |\n%| # | VERSION : 0.40 |\n%| _#_ | AUTHOR(S) : Matthieu Aussal |\n%| ( # ) | CREATION : 14.03.2017 |\n%| / 0 \\ | LAST MODIF : 14.03.2018 |\n%| ( === ) | SYNOPSIS : Convert H-Matrix to single precision |\n%| `---' | |\n%+========================================================================+\n\n% Position\nMh.pos = {single(Mh.pos{1}),single(Mh.pos{2})};\n\n%%% H-Matrix (recursion)\nif (Mh.typ == 0)\n for i = 1:4\n Mh.chd{i} = hmxSingle(Mh.chd{i});\n Mh.row{i} = single(Mh.row{i});\n Mh.col{i} = single(Mh.col{i});\n end\n Mh = hmxFusion(Mh);\n \n%%% Compressed leaf\nelseif (Mh.typ == 1)\n Mh.dat{1} = single(Mh.dat{1});\n Mh.dat{2} = single(Mh.dat{2});\n \n%%% Full leaf\nelseif (Mh.typ == 2)\n Mh.dat = single(Mh.dat);\n \n%%% Unknown type\nelse\n error('hmxSingle.m : unavailable case')\nend\nend\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/gypsilabModified/openHmx/hmxSingle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.743168019989179, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39188477658757054}} {"text": "function [ output_args ] = plotRoom2( obblist, labellist, scheme )\n\n% scheme == 0: show objects with different color\n% scheme == 1: show areas with different color\nlinewidth = 2;\n\ncorlist = {[1,0,0,0.3],[0,1,0,0.3],[0,1,1,0.3],[0,0,1,0.3],[1,0,1,0.3]};\n\nfloor_ind = strmatch('floor',labellist,'exact');\nceiling_ind = strmatch('ceiling',labellist,'exact');\nwall_ind = strmatch('wall',labellist,'exact');\ncom_ind = union(floor_ind,ceiling_ind);\ncom_ind = union(com_ind,wall_ind);\n% idx = 1:length(p_data.labellist);\n% idx = setdiff(idx,com_ind);\n% labellist = labellist;\n% obblist = obblist;\n\nfront = [0,0,1];\nup = [0,1,0];\naxes = [1,0,0];\n\nfor i = 1:length(labellist)\n p = obblist(:,i);\n \n center = p(1:3);\n dir_1 = p(4:6);\n dir_2 = p(7:9);\n lengths = p(10:12);\n\n dir_1 = dir_1/norm(dir_1);\n dir_2 = dir_2/norm(dir_2);\n dir_3 = cross(dir_1,dir_2);\n dir_3 = dir_3/norm(dir_3); \n% dir = lengths(1)*dir_1+lengths(2)*dir_2+lengths(3)*dir_3;\n\n d1 = 0.5*lengths(1)*dir_1;\n d2 = 0.5*lengths(2)*dir_2;\n d3 = 0.5*lengths(3)*dir_3;\n% d1 = d1*front(:);\n% d2 = d2*up(:);\n% d3 = d3*axes(:);\n cornerpoints(1,:) = center-d1-d2-d3;\n cornerpoints(2,:) = center+d1-d2-d3;\n cornerpoints(3,:) = center-d1-d2+d3;\n cornerpoints(4,:) = center+d1-d2+d3;\n %cornerpoints(:,1) = 1 - cornerpoints(:,1);\n \n idx = find(com_ind==i);\n if(length(idx)==0)\n if(scheme==1&&isfield(p_data,'area_id'))\n aid = p_data.area_id(i);\n if(aid==0)\n cor = [0,0,0,0.3];\n else\n cor = corlist{mod(aid-1,length(corlist))+1};\n end\n else\n cor = corlist{mod(i-1,length(corlist))+1};\n end\n plot([cornerpoints(1,1),cornerpoints(2,1)],[cornerpoints(1,3),cornerpoints(2,3)],'Color',cor(1:3),'linewidth',linewidth);\n hold on\n plot([cornerpoints(2,1),cornerpoints(4,1)],[cornerpoints(2,3),cornerpoints(4,3)],'Color',cor(1:3),'linewidth',linewidth);\n plot([cornerpoints(4,1),cornerpoints(3,1)],[cornerpoints(4,3),cornerpoints(3,3)],'Color',cor(1:3),'linewidth',linewidth);\n plot([cornerpoints(3,1),cornerpoints(1,1)],[cornerpoints(3,3),cornerpoints(1,3)],'Color',cor(1:3),'linewidth',linewidth);\n id = strfind(labellist{i},'_');\n label = labellist{i};\n if(length(id)>0)\n label(id) = ' ';\n end\n min_x = min(cornerpoints(:,1));\n max_z = max(cornerpoints(:,3));\n t = text(min_x+0.01,max_z-0.02,[label,num2str(i)]);\n t.BackgroundColor = cor;\n t.FontSize = 8;\n else\n plot([cornerpoints(1,1),cornerpoints(2,1)],[cornerpoints(1,3),cornerpoints(2,3)],'k','linewidth',linewidth);\n hold on\n plot([cornerpoints(2,1),cornerpoints(4,1)],[cornerpoints(2,3),cornerpoints(4,3)],'k','linewidth',linewidth);\n plot([cornerpoints(4,1),cornerpoints(3,1)],[cornerpoints(4,3),cornerpoints(3,3)],'k','linewidth',linewidth);\n plot([cornerpoints(3,1),cornerpoints(1,1)],[cornerpoints(3,3),cornerpoints(1,3)],'k','linewidth',linewidth);\n end\nend\n\naxis equal\n\nend\n\n", "meta": {"author": "ManyiLi12345", "repo": "GRAINS", "sha": "7806359dada1283a110886d4b634fdedf6963e63", "save_path": "github-repos/MATLAB/ManyiLi12345-GRAINS", "path": "github-repos/MATLAB/ManyiLi12345-GRAINS/GRAINS-7806359dada1283a110886d4b634fdedf6963e63/vistools/plotRoom2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680086124812, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.3918847705884499}} {"text": "function [V,F] = poly2mesh(filename,minimum_angle,maximum_area)\n % POLY2MESH Triangulate interoir of polygon read from .poly file using\n % Triangle\n %\n %\n % [V,F] = poly2mesh(filename,minimum_angle,maximum_area)\n % \n % Inputs:\n % filename path to .poly file\n % minimum_angle minimum angle parameter for Triangle\n % maximum_area maximum area parameter for Triangle\n %\n % Outputs:\n % V #vertices by 2, list of vertex positions\n % F #faces by 3, list of face indices\n %\n % Copyright 2011, Alec Jacobson (jacobson@inf.ethz.ch)\n %\n % See also: png2objandtga, png2poly, writePOLY, poly2VEH, triangle\n %\n warning('THIS FILE IS DEPRECATED. CALL TRIANGLE.M DIRECTLY INSTEAD');\n basename = regexprep(filename,'\\.poly$','');\n\n minimum_angle_args = '';\n if(exist('minimum_angle'))\n minimum_angle_args = ['q' num2str(minimum_angle)];\n end\n maximum_area_args = '';\n if(exist('maximum_area'))\n maximum_area_args = ['a' num2str(maximum_area)];\n end\n\n % use triangle to triangulate interior\n command_line_args = ['-p' minimum_angle_args maximum_area_args];\n [V,F] = execute_triangle(command_line_args,basename);\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/poly2mesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.39188477058844984}} {"text": "function z = ldivide( x, y )\n\n%Disciplined convex programming information for LDIVIDE:\n% For DCP purposes, the LDIVIDE division operator X.\\Y is equivalent to\n% (1./X).*Y. The left-hand term must be constant and non-zero; and if the\n% right-hand term is nonlinear, t constant must also be real.\n%\n%Disciplined geometric programming information for LDIVIDE:\n% Terms in a left divide must have opposite log-curvature, so the\n% following products are permitted:\n% {log-convex} .\\ {log-concave} {log-concave} .\\ {log-convex}\n% {log-affine} .\\ {log-affine}\n% Note that log-affine expressions are both log-convex and log-concave.\n%\n%For vectors, matrices, and arrays, these rules are verified indepdently\n%for each element.\n\nz = times( x, y, '.\\' );\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd.\n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/builtins/@cvx/ldivide.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3918847705884497}} {"text": "function [values, components, full_data_objects, l2norms] = extract_gray_white_csf(obj,varargin)\n% Extracts mean values (values) and top 5 component scores (components)\n% from each of gray, white, and CSF masks.\n%\n% - Images must be in standard MNI space for this to apply.\n% - Uses canonical masks in CANlab tools:'gray_matter_mask.img' 'canonical_white_matter.img' 'canonical_ventricles.img' \n%\n% This currently uses the images\n% 'gray_matter_mask.img' 'canonical_white_matter.img' 'canonical_ventricles.img'\n% These images are based on the SPM8 a priori tissue probability\n% maps, but they have been cleaned up and made symmetrical and/or eroded\n% so that the white and CSF compartments are unlikely to contain very\n% much gray matter. The gray compartment is currently more\n% inclusive. The potential value of this is that signal in the CSF/white\n% compartments may be removed from images prior to/during analysis\n%\n% :Usage:\n% ::\n%\n% [values, components] = extract_gray_white_csf(obj,options)\n%\n% :Inputs:\n%\n% **obj:**\n% an image_vector (e.g., fmri_data) object\n%\n% :Options:\n%\n% **'eval':**\n% A function handle to use for computing summary statistics of each\n% tissue class. Must accept exactly 1 argument and handle 'nan' \n% gracefully. e.g. '@(x1)(nanvar(x1))'\n%\n% :Outputs:\n% \n% **values:**\n% mean gray matter, white, CSF. If 'eval' option is passed,\n% specified function will be used in place of mean.\n%\n% **components:**\n% first 5 components from each tissue class, observation x 5\n%\n% **full_data_objects:**\n% Masked data objects for {gray white CSF}\n%\n% **l2norms:**\n% Length-adjusted L2 norms (divided by sqrt(nvox))\n%\n% **masks:**\n% optional input for using different masks; it should provide gray,\n% white and ventricle images in order. \n% ..\n% Tor Wager, July 21, 2015\n% ..\n\n% Programmers' notes:\n% Jan 2017: Issue with vector lengths if obj has removed images, fixed (Tor)\n%\n% Feb 2017: change to mask. Gray matter is now sparse, old gray_matter_mask.img thresholded at .5.\n%\n% Sept 2017: added option for custom function evaluation in place of mean.\n\nfxn = @(x1)(nanmean(x1,1));\nmasks = {'gray_matter_mask_sparse.img' 'canonical_white_matter.img' 'canonical_ventricles.img'};\n\nfor i = 1:length(varargin)\n if ischar(varargin{i})\n switch varargin{i}\n case 'eval'\n fxn = varargin{i+1};\n case 'masks'\n masks = varargin{i+1};\n end\n end\nend\n\nnumcomps = 5;\n\nobj = remove_empty(obj); % return only non-empty values\nnimgs = size(obj.dat, 2); % - sum(obj.removed_images);\n\nvalues = NaN * zeros(nimgs, length(masks));\ncomponents = cell(1, length(masks));\nfull_data_objects = [];\n\nfor i = 1:length(masks)\n \n maskname = which(masks{i});\n \n if isempty(maskname)\n fprintf('Image %s cannot be found on path.\\n', masks{i});\n error('Exiting');\n else\n fprintf('Extracting from %s.\\n', masks{i});\n end\n \n masked_obj = apply_mask(obj, maskname);\n\n % get all values, if requested\n if nargout > 2\n \n full_data_objects{i} = remove_empty(masked_obj);\n\n end\n \n % get means\n masked_obj.dat(masked_obj.dat == 0) = NaN;\n \n myvalues = fxn(masked_obj.dat);\n myvalues = myvalues(:);\n \n % may need to insert omitted - no, return in reduced space\n% if length(masked_obj.removed_images) > 1\n% myvalues = naninsert(masked_obj.removed_images, myvalues);\n% end\n \n values(:, i) = myvalues;\n \n\n % get components\n if nargout > 1\n \n % NaNs will mess this up - remove voxel-wise\n [wasnan, dataforpca] = nanremove(masked_obj.dat);\n if any(wasnan), fprintf('Removing %3.0f voxels with one or more NaNs\\n', sum(wasnan)); end\n \n [~, components{i}] = pca(dataforpca', 'Economy', true, 'NumComponents', numcomps);\n \n % may need to insert omitted\n% if length(masked_obj.removed_images) > 1\n% components{i} = naninsert(masked_obj.removed_images, components{i});\n% end\n \n end\n \n if nargout > 3\n\n l2norms(:, i) = getnorms(masked_obj);\n\n end\n \nend % end masks\n\n\nend % function\n\n\n\nfunction n = getnorms(masked_obj)\n\n% Vector L2 norm / sqrt(length) of vector\n\n% divide by this value to normalize image\n\nnormfun = @(x) sum(x .^ 2) .^ .5;\n\n%masked_obj = remove_empty(masked_obj);\n\nx = masked_obj.dat;\n\n%nv = size(x, 1); \n\nfor i = 1:size(x, 2)\n\n % remove nans, 0s\n xx = x(:, i);\n xx(xx == 0) = [];\n xx(isnan(xx)) = [];\n\n % divide by sqrt(length) so number of elements will not change scaling\n\n n(i) = normfun(xx) ./ sqrt(length(xx)); \n\n\nend\n\n\nend % function\n\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/@image_vector/extract_gray_white_csf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7431679972357831, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3918847645893289}} {"text": "function [c,ceq] = nl_terminalconstraints(t, x, mpcModel , varargin)\n\n c(1) = x(2)-mpcModel.battery.range(2);\n c(2) = mpcModel.battery.range(1)-x(2);\n \n ceq = [];\nend\n", "meta": {"author": "juchengquan", "repo": "Two_Layer_EMS", "sha": "48864a80e10fe32e566181ebd5e2394ab2c6e1a7", "save_path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS", "path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS/Two_Layer_EMS-48864a80e10fe32e566181ebd5e2394ab2c6e1a7/constraints/nl_terminalconstraints.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370308082623217, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.391829913751738}} {"text": "function[nodes, categories, heights] = parentsToTrees(parents)\n% [nodes, categories, heights] = parentsToTrees(parents)\n%\n% Converts an [s x 2] dimensional cell of strings into a tree where the\n% first column indicates nodes and the second column indicates their parent\n% nodes.\n%\n% The output can be plotted using Matlab's treeplot function:\n% treeplot(nodes');\n% [xs, ys] = treelayout(nodes);\n%\n% Copyright by Holger Caesar, 2017\n\n% Extract categories and make sure they are unique\ncategories = parents(:, 1);\nassert(numel(categories) == numel(unique(categories)));\n\n% Create pointers to parent nodes\ncategoryCount = size(categories, 1);\nnodes = nan(categoryCount, 1);\nheights = nan(categoryCount, 1);\nnodes(1) = 0;\nheights(1) = 0;\nfor i = 2 : categoryCount\n childNode = find(strcmp(parents(:, 1), categories{i}));\n if isempty(childNode)\n error('Error: No parent node found for %s!', categories{i});\n end\n parentNode = find(strcmp(categories, parents(childNode, 2)));\n assert(numel(parentNode) == 1, 'Error: Node %s has %d parent labels! Should be 1.', parents{childNode, 2}, numel(parentNode));\n nodes(i) = parentNode;\n heights(i) = heights(parentNode) + 1;\nend", "meta": {"author": "nightrome", "repo": "cocostuff10k", "sha": "5fe3850d547ae4b21d73307dd156dfc5c5c61c5c", "save_path": "github-repos/MATLAB/nightrome-cocostuff10k", "path": "github-repos/MATLAB/nightrome-cocostuff10k/cocostuff10k-5fe3850d547ae4b21d73307dd156dfc5c5c61c5c/dataset/code/utils/parentsToTrees.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160664, "lm_q2_score": 0.6370308082623217, "lm_q1q2_score": 0.3918299137517379}} {"text": "function [max,maxrest] = getMaxInARow(stimList,varargin)\n\tif nargin>1,dojitter = varargin{1},else dojitter = 0;,end\n\n\tmax = 1; counter = 1;maxrest = 1;counterrest = 1;\n if dojitter, restnum = max(stimList);,else restnum = Inf;,end\n\tfor i = 2:size(stimList,1)\n\t\tif stimList(i,1) == stimList(i-1,1)& ~stimList(i,1) == 0,\n\t\t\tcounter = counter + 1;\n\t\t\tif counter > max, max = counter;,end\n\t\telse counter = 1;\n end\n \n if dojitter\n if stimList(i,1) == restnum & stimList(i-1,1) == restnum\n counterrest = counterrest+1;\n if counterrest > maxrest,maxrest = counterrest;,end\n else counterrest = 1;\n\t\t end\n end\n\n\tend\n\nreturn\n\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/core_functions/getMaxInARow.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878414043816, "lm_q2_score": 0.6370308082623217, "lm_q1q2_score": 0.39182990476215995}} {"text": "function [modelPruned] = extractConditionSpecificModel(model,threshold)\n% The function prunes a subnetwork based on a user-defined threshold. The subnetwork does not contain blocked reactions. Please note that Recon has blocked reactions which will always be removed. Thus, not all reactions are removed as a consequence of the data integration.\n% Depends on fastFVA, fluxVariability analysis\n%\n% USAGE:\n%\n% [modelPruned] = extractConditionSpecificModel(model, threshold)\n%\n% INPUTS:\n% model: Global metabolic model (Recon) - constrained\n% threshold: Fluxes below the threshold will be considered zero and respective reactions as blocked, e.g., 10e-6. \n%\n% OUTPUTS:\n% modelPruned: submodel without blocked reactions\n%\n% .. Author: - Maike K. Aurich 13/02/15\n\n[minFlux,maxFlux] = fluxVariability(model,0);\n%[minFluxMODEL,maxFluxMODEL] = fastFVA(model,0);\n\nFlux = [minFlux maxFlux];\n \nfor i = 1 : length(Flux);\n x = length (find (abs(Flux(i,:))<=threshold))==2;\n Blockedrxns(i,1) = x;\nend\n\nBlocked = model.rxns(Blockedrxns);\n\nmodelPruned = removeRxns(model,Blocked(:,1));\n\nend\n\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/dataIntegration/metabotools/extractConditionSpecificModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39180789307645414}} {"text": "function DrawTextureHead(vertex, tri, color, keyPoints)\nn = size(vertex, 2);\n\n% draw\ntrisurf(tri', vertex(1, :), vertex(2, :), vertex(3, :), 1 : n, 'edgecolor', 'none');\n\nif nargin == 4\n hold on\n plot3(keyPoints(1, :), keyPoints(2, :), keyPoints(3, :), 'g.', 'MarkerSize', 20)\nend\n\n% color\ncolormap(color');\n\nshading interp\naxis equal\n%axis([1 250 1 250])\naxis vis3d\ntitle('fitted head');\nxlabel('x');\nylabel('y');\nzlabel('z');\nview([0,90]);", "meta": {"author": "XgTu", "repo": "2DASL", "sha": "95052f203e6d945bb6563f916cc539bba0815972", "save_path": "github-repos/MATLAB/XgTu-2DASL", "path": "github-repos/MATLAB/XgTu-2DASL/2DASL-95052f203e6d945bb6563f916cc539bba0815972/test_codes/test.data/AFLW-2000-3D/Code/DrawTextureHead.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39180789307645414}} {"text": "%DAGNN.UNIFORMSCALINGGRIDGENERATOR Generate an iso-tropic scaling + translation\n% grid for bilinear resampling.\n% This layer maps 1 x 1 x 3 x N transformation parameters corresponding to\n% the scale and translation y and x respectively, to 2 x Ho x Wo x N\n% sampling grids compatible with dagnn.BlilinearSampler.\n\n% (c) 2016 Ankush Gupta\nclassdef UniformScalingGridGenerator < dagnn.Layer\n\n properties\n Ho = 0;\n Wo = 0;\n end\n\n properties (Transient)\n % the grid --> this is cached\n % has the size: [2 x HoWo]\n xxyy ;\n end\n\n methods\n\n function outputs = forward(obj, inputs, ~)\n % input is a 1x1x3xN TENSOR corresponding to:\n % [ s 0 ty ]\n % [ 0 s tx ]\n %\n % OUTPUT is a 2xHoxWoxN grid\n\n % reshape the tfm params into matrices:\n T = inputs{1};\n % check shape:\n sz_T = size(T);\n assert(all(sz_T(1:3) == [1 1 3]), 'transforms have incorrect shape');\n nbatch = size(T,4);\n S = reshape(T(1,1,1,:), 1,1,nbatch); % x,y scaling\n t = reshape(T(1,1,2:3,:), 2,1,nbatch); % translation\n % generate the grid coordinates:\n % use gpu?:\n useGPU = isa(T, 'gpuArray');\n if isempty(obj.xxyy)\n obj.initGrid(useGPU);\n end\n % transform the grid:\n g = bsxfun(@times, obj.xxyy, S); % scale\n g = bsxfun(@plus, g, t); % translate\n g = reshape(g, 2,obj.Ho,obj.Wo,nbatch);\n outputs = {g};\n end\n\n function [derInputs, derParams] = backward(obj, inputs, ~, derOutputs)\n %fprintf('restricted-affineGridGenerator backward\\n');\n dY = derOutputs{1};\n useGPU = isa(dY, 'gpuArray');\n nbatch = size(dY,4);\n\n % create the gradient buffer:\n dA = zeros([1,1,3,nbatch], 'single');\n if useGPU, dA = gpuArray(dA); end\n\n dY = reshape(dY, 2,obj.Ho*obj.Wo,nbatch);\n % gradient wrt the linear part:\n dA(1,1,1,:) = reshape(obj.xxyy,1,[]) * reshape(dY, [],nbatch);\n % gradient wrt translation (or bias):\n dA(1,1,2:3,:) = reshape(sum(dY,2),1,1,2,[]);\n\n derInputs = {dA};\n derParams = {};\n end\n\n function outputSizes = getOutputSizes(obj, inputSizes)\n nBatch = inputSizes{1}(4);\n outputSizes = {[2, obj.Ho, obj.Wo, nBatch]};\n end\n\n function obj = UniformScalingGridGenerator(varargin)\n obj.load(varargin);\n % get the output sizes:\n obj.Ho = obj.Ho;\n obj.Wo = obj.Wo;\n obj.xxyy = [];\n end\n\n function obj = reset(obj)\n reset@dagnn.Layer(obj) ;\n obj.xxyy = [] ;\n end\n\n function initGrid(obj, useGPU)\n % initialize the grid:\n % this is a constant\n xi = linspace(-1, 1, obj.Ho);\n yi = linspace(-1, 1, obj.Wo);\n [yy,xx] = meshgrid(yi,xi);\n xxyy = [xx(:), yy(:)]' ; % 2xM\n if useGPU\n xxyy = gpuArray(xxyy);\n end\n obj.xxyy = xxyy ;\n end\n\n end\nend\n", "meta": {"author": "jiangqy", "repo": "DCMH-CVPR2017", "sha": "67d0e84c0425fdac3fad30d67d5a2beb5e345cea", "save_path": "github-repos/MATLAB/jiangqy-DCMH-CVPR2017", "path": "github-repos/MATLAB/jiangqy-DCMH-CVPR2017/DCMH-CVPR2017-67d0e84c0425fdac3fad30d67d5a2beb5e345cea/DCMH_matlab/DCMH_matlab/matconvnet/matlab/+dagnn/UniformScalingGridGenerator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39180788657816473}} {"text": "classdef ShapeCircle < ShapeGeneral\n %ShapeCircle represents a circular geographical selection of events\n %\n % see also ShapeGeneral, ShapePolygon\n \n properties (SetObservable = true, AbortSet=true)\n Radius (1,1) double = 5 % active radius in units defined by the RefEllipsoid\n end\n \n \n methods\n function obj=ShapeCircle(varargin)\n % SHAPECIRCLE create a circular shape\n %\n % ShapeCircle() :\n % ShapeCircle('dlg') create via a dialg box\n %\n % CIRCLE: select using circle with a defined radius. define with 2 clicks or mouseover and press \"R\"\n \n % UNASSIGNED: clear shape\n \n obj@ShapeGeneral();\n if ~isempty(varargin)\n dosomething\n end\n \n report_this_filefun();\n \n %axes(findobj(gcf,'Tag','mainmap_ax')); % should be the map, with lon/lat\n obj.Type='circle';\n try\n ra=ShapeGeneral.ShapeStash.Radius;\n catch\n ra=obj.Radius;\n end\n obj.AllowVertexEditing = false;\n addlistener(obj, 'Radius', 'PostSet', @obj.notifyShapeChange);\n if numel(varargin)==0\n do_nothing;\n elseif strcmpi(varargin{1},'dlg')\n stashedshape = ShapeGeneral.ShapeStash;\n sdlg.prompt = ['Choose Radius [',obj.RefEllipsoid.LengthUnit,']:'];\n sdlg.value = ra;\n sdlg(2).prompt = 'Center X :'; sdlg(2).value=stashedshape.X0;\n sdlg(3).prompt = 'Center Y :'; sdlg(3).value=stashedshape.Y0;\n [~,cancelled,obj.Radius,obj.Points(1),obj.Points(2)]=smart_inputdlg('Define Circle',sdlg);\n if cancelled\n beep\n disp('Circle creation cancelled by user')\n return\n end\n else\n oo=ShapeCircle.selectUsingMouse(gca, obj.RefEllipsoid);\n if ~isempty(oo)\n obj=oo;\n else\n return\n end\n end\n end\n \n function val=Outline(obj, col)\n if iscartesian(obj.RefEllipsoid)\n pts = exp(1i*pi*linspace(0,2*pi,3600)') .* obj.Radius;\n x = real(pts)+ obj.X0;\n y = imag(pts) + obj.Y0;\n val = [x,y];\n else\n [lat,lon]=reckon(obj.Y0,obj.X0,obj.Radius,(0:.1:360)',obj.RefEllipsoid);\n val=[lon, lat];\n end\n if exist('col','var')\n val=val(:,col);\n end\n end\n \n function moveTo(obj, x, y)\n if isnan(obj.Points)\n obj.Points=[0 0];\n end\n moveTo@ShapeGeneral(obj,x,y)\n end\n \n function s=toStruct(obj)\n s=toStruct@ShapeGeneral(obj);\n s.RadiusKm = obj.Radius;\n end\n \n function s = toStr(obj)\n cardinalDirs='SNWE';\n isN=obj.Y0>=0; NS=cardinalDirs(isN+1);\n \n isE=obj.X0>=0; EW=cardinalDirs(isE+3);\n s = sprintf('Circle with R:%s %s, centered at ( %s %s, %s %s)',...\n num2str(obj.Radius),...\n obj.RefEllipsoid.LengthUnit,...\n num2str(abs(obj.Y0)), NS,...\n num2str(abs(obj.X0)), EW);\n end\n \n function summary(obj)\n helpdlg(obj.toStr,'Circle');\n end\n\n function add_shape_specific_context(obj,c)\n uimenu(c,'label','Choose Radius','MenuSelectedFcn',@chooseRadius)\n uimenu(c,'label','Snap To N Events','MenuSelectedFcn',@snapToEvents)\n \n function snapToEvents(~,~)\n ZG=ZmapGlobal.Data;\n nc=inputdlg('Number of events to enclose','Edit Circle',1,{num2str(ZG.ni)});\n nc=round(str2double(nc{1}));\n if ~isempty(nc) && ~isnan(nc)\n ZG.ni=nc;\n zmw=get(ancestor(c,'figure'),'UserData');\n if isa(zmw,'ZmapWindow')\n ca=zmw.rawcatalog;\n else\n ca=ZG.primeCatalog;\n end\n \n [~,obj.Radius]=ca.selectClosestEvents(obj.Y0, obj.X0, [],nc,'DistanceOnly');\n obj.Radius=obj.Radius;%+0.005;\n end\n end\n \n function chooseRadius(~,~)\n radiusInputText = ['Choose Radius [',obj.RefEllipsoid.LengthUnit,']'];\n nc=inputdlg(radiusInputText,'Edit Circle',1,{num2str(obj.Radius)});\n nc=str2double(nc{1});\n if ~isempty(nc) && ~isnan(nc)\n obj.Radius=nc;\n end\n \n end\n \n end\n \n function [mask]=isinterior(obj,otherX, otherY, include_boundary)\n % isinterior true if value is within this circle's radius of center. Radius inclusive.\n %\n % overridden because using polygon approximation is too inaccurate for circles\n %\n % [mask]=obj.isinterior(otherX, otherY)\n\n if ~exist('include_boundary','var')\n include_boundary = true;\n end\n if isempty(obj.Points)||isnan(obj.Points(1))\n mask = ones(size(otherX));\n else\n otherX(ismissing(otherY))= missing;\n otherY(ismissing(otherX))= missing;\n % return a vector of size otherX that is true where item is inside polygon\n \n \n if iscartesian(obj.RefEllipsoid)\n dists = sqrt((otherY-obj.Y0).^2 + (otherX-obj.X0).^2);\n else\n dists = distance(obj.Y0, obj.X0, otherY, otherX, obj.RefEllipsoid);\n end\n \n if ~include_boundary\n mask = dists < obj.Radius;\n else\n mask = dists <= obj.Radius;\n end\n end\n end\n \n function finishedMoving(obj, movedObject, deltas)\n centerX = mean(bounds2(movedObject.XData));\n centerY = mean(bounds2(movedObject.YData));\n \n obj.Radius=obj.Radius.* abs(deltas(3)); % NO NEGATIVE RADII\n obj.Points=[centerX,centerY];\n end\n \n function save(obj, filelocation, delimiter)\n persistent savepath\n if ~exist('filelocation','var') || isempty(filelocation)\n if isempty(savepath)\n savepath = ZmapGlobal.Data.Directories.data;\n end\n [filename,pathname,filteridx]=uiputfile(...\n {'*.mat','MAT-files (*.mat)';...\n '*.csv;*.txt;*.dat','ASCII files (*.csv, *.txt, *.dat)'},...\n 'Save Circle',...\n fullfile(savepath,'zmap_shape.mat'));\n if filteridx==0\n msg.dbdisp('user cancelled shape save');\n return\n end\n filelocation=fullfile(pathname,filename);\n end\n [savepath,~,ext] = fileparts(filelocation); \n if ext==\".mat\"\n zmap_shape = obj; %#ok\n save(filelocation,'zmap_shape');\n else\n if ~exist('delimiter','var'), delimiter = ',';end\n radiusName = ['Radius[',shortenLengthUnit(obj.RefEllipsoid.LengthUnit),']'];\n tb=table(obj.X0, obj.Y0,obj.Radius,'VariableNames',{'Latitude','Longitude',radiusName});\n writetable(tb,filelocation,'Delimiter',delimiter);\n end\n \n end\n end\n \n methods(Static)\n \n function obj=selectUsingMouse(ax, ref_ellipsoid)\n \n [ss,ok] = selectSegmentUsingMouse(ax,'r', @circ_update);\n delete(findobj(gca,'Tag','tmp_circle_outline'));\n if ~ok\n obj=[];\n return\n end\n obj=ShapeCircle();\n obj.Points=ss.xy1;\n obj.Radius=ss.dist;\n \n function circ_update(stxy, ~, d)\n h=findobj(gca,'Tag','tmp_circle_outline');\n if isempty(h)\n h=line(nan,nan,'Color','r','DisplayName','Rough Outline','LineWidth',2,'Tag','tmp_circle_outline');\n end\n if iscartesian(ref_ellipsoid)\n pts = exp(1i*pi*linspace(0,2*pi,120)') .* d;\n h.XData = real(pts)+ stxy(1); \n h.YData = imag(pts) + stxy(2);\n else\n [lat,lon]=reckon(stxy(2),stxy(1),d,(0:3:360)',ref_ellipsoid);\n h.XData=lon;\n h.YData=lat;\n end\n end\n end\n end\n \n \nend\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/cgr_utils/selections/ShapeCircle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7772998714925403, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3916862015965524}} {"text": "% Read data from files generated by HList\n% Author: Xiao Xiong\n% Date Created: 25 Jan 2005\n% Date Lasted modefied: 25 Jan 2005\n\nfunction x = readHList(file_name, vector_size);\n\n % read in the log Mel vectors first\n FILE = fopen( file_name );\n j=0;\n fsearch(':', FILE); % skip the first ':'\n while fsearch(':', FILE) == 0 % read N_spectral number immediately after ':'\n j = j+1;\n temp = textscan(FILE, '%n', vector_size);\n x(:,j) = temp{1}; % store the vecors as column vector of logmel\n end\n num_of_vector_in_current_file = j;\n \n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/utils/io/readHList.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.640635868562172, "lm_q1q2_score": 0.39167322148455314}} {"text": "%% DEMO_febio_0069_must_points_export\n% Below is a demonstration for:\n% \n% * Building geometry for a cube with hexahedral elements\n% * Defining the boundary conditions \n% * Coding the febio structure\n% * Running the model\n% * Importing and visualizing the displacement and stress results\n\n%% Keywords\n%\n% * febio_spec version 2.5\n% * febio, FEBio\n% * uniaxial loading\n% * compression, tension, compressive, tensile\n% * displacement control, displacement boundary condition\n% * hexahedral elements, hex8\n% * cube, box, rectangular\n% * static, solid\n% * hyperelastic, Ogden\n% * displacement logfile\n% * stress logfile\n\n%%\n\nclear; close all; clc;\n\n%% Plot settings\nfontSize=20;\nfaceAlpha1=0.8;\nmarkerSize=40;\nmarkerSize2=20;\nlineWidth=3;\n\n%% Control parameters\n\n% Path names\ndefaultFolder = fileparts(fileparts(mfilename('fullpath')));\nsavePath=fullfile(defaultFolder,'data','temp');\n\n% Defining file names\nfebioFebFileNamePart='tempModel';\nfebioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name\nfebioLogFileName=fullfile(savePath,[febioFebFileNamePart,'.txt']); %FEBio log file name\nfebioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement\nfebioLogFileName_stress=[febioFebFileNamePart,'_stress_out.txt']; %Log file name for exporting stress\n\n%Specifying dimensions and number of elements\ncubeSize=10; \nsampleWidth=cubeSize; %Width \nsampleThickness=cubeSize; %Thickness \nsampleHeight=cubeSize; %Height\npointSpacings=2*ones(1,3); %Desired point spacing between nodes\nnumElementsWidth=round(sampleWidth/pointSpacings(1)); %Number of elemens in dir 1\nnumElementsThickness=round(sampleThickness/pointSpacings(2)); %Number of elemens in dir 2\nnumElementsHeight=round(sampleHeight/pointSpacings(3)); %Number of elemens in dir 3\n\n%Define applied displacement \nappliedStrain=0.4; %Linear strain (Only used to compute applied stretch)\nloadingOption='tension'; % or 'tension'\nswitch loadingOption\n case 'compression'\n stretchLoad=1-appliedStrain; %The applied stretch for uniaxial loading\n case 'tension'\n stretchLoad=1+appliedStrain; %The applied stretch for uniaxial loading\nend\ndisplacementMagnitude=(stretchLoad*sampleHeight)-sampleHeight; %The displacement magnitude\n\n%Material parameter set\nc1=0.7; %Shear-modulus-like parameter\nm1=2; %Material parameter setting degree of non-linearity\nk_factor=500; %Bulk modulus factor \nk=c1*k_factor; %Bulk modulus\nformulationType='uncoupled'; %coupled\n\n% FEA control settings\nnumTimeStepsAnalysis=20; %Number of time steps desired\nmax_refs=25; %Max reforms\nmax_ups=0; %Set to zero to use full-Newton iterations\nopt_iter=6; %Optimum number of iterations\nmax_retries=5; %Maximum number of retires\ndtmin=(1/numTimeStepsAnalysis)/100; %Minimum time step size\ndtmax=(1/numTimeStepsAnalysis); %Maximum time step size\n\n%Define must points\nnumStepsOutput=11;\nt_load_curve=linspace(0,1,numStepsOutput);\ndtmax_load_curve=dtmax.*ones(size(t_load_curve));\n\n%% Creating model geometry and mesh\n% A box is created with tri-linear hexahedral (hex8) elements using the\n% |hexMeshBox| function. The function offers the boundary faces with\n% seperate labels for the top, bottom, left, right, front, and back sides.\n% As such these can be used to define boundary conditions on the exterior. \n\n% Create a box with hexahedral elements\ncubeDimensions=[sampleWidth sampleThickness sampleHeight]; %Dimensions\ncubeElementNumbers=[numElementsWidth numElementsThickness numElementsHeight]; %Number of elements\noutputStructType=2; %A structure compatible with mesh view\n[meshStruct]=hexMeshBox(cubeDimensions,cubeElementNumbers,outputStructType);\n\n%Access elements, nodes, and faces from the structure\nE=meshStruct.elements; %The elements \nV=meshStruct.nodes; %The nodes (vertices)\nFb=meshStruct.facesBoundary; %The boundary faces\nCb=meshStruct.boundaryMarker; %The \"colors\" or labels for the boundary faces\nelementMaterialIndices=ones(size(E,1),1); %Element material indices\n\n%% \n% Plotting model boundary surfaces and a cut view\n\nhFig=cFigure; \n\nsubplot(1,2,1); hold on; \ntitle('Model boundary surfaces and labels','FontSize',fontSize);\ngpatch(Fb,V,Cb,'k',faceAlpha1); \ncolormap(gjet(6)); icolorbar;\naxisGeom(gca,fontSize);\n\nhs=subplot(1,2,2); hold on; \ntitle('Cut view of solid mesh','FontSize',fontSize);\noptionStruct.hFig=[hFig hs];\nmeshView(meshStruct,optionStruct);\naxisGeom(gca,fontSize);\n\ndrawnow;\n\n%% Defining the boundary conditions\n% The visualization of the model boundary shows colors for each side of the\n% cube. These labels can be used to define boundary conditions. \n\n%Define supported node sets\nlogicFace=Cb==1; %Logic for current face set\nFr=Fb(logicFace,:); %The current face set\nbcSupportList_X=unique(Fr(:)); %Node set part of selected face\n\nlogicFace=Cb==3; %Logic for current face set\nFr=Fb(logicFace,:); %The current face set\nbcSupportList_Y=unique(Fr(:)); %Node set part of selected face\n\nlogicFace=Cb==5; %Logic for current face set\nFr=Fb(logicFace,:); %The current face set\nbcSupportList_Z=unique(Fr(:)); %Node set part of selected face\n\n%Prescribed displacement nodes\nlogicPrescribe=Cb==6; %Logic for current face set\nFr=Fb(logicPrescribe,:); %The current face set\nbcPrescribeList=unique(Fr(:)); %Node set part of selected face\n\n%% \n% Visualizing boundary conditions. Markers plotted on the semi-transparent\n% model denote the nodes in the various boundary condition lists. \n\nhf=cFigure;\ntitle('Boundary conditions','FontSize',fontSize);\nxlabel('X','FontSize',fontSize); ylabel('Y','FontSize',fontSize); zlabel('Z','FontSize',fontSize);\nhold on;\n\ngpatch(Fb,V,'kw','k',0.5);\n\nhl(1)=plotV(V(bcSupportList_X,:),'r.','MarkerSize',markerSize);\nhl(2)=plotV(V(bcSupportList_Y,:),'g.','MarkerSize',markerSize);\nhl(3)=plotV(V(bcSupportList_Z,:),'b.','MarkerSize',markerSize);\nhl(4)=plotV(V(bcPrescribeList,:),'k.','MarkerSize',markerSize);\n\nlegend(hl,{'BC x support','BC y support','BC z support','BC z prescribe'});\n\naxisGeom(gca,fontSize);\ncamlight headlight; \ndrawnow; \n\n%% Defining the FEBio input structure\n% See also |febioStructTemplate| and |febioStruct2xml| and the FEBio user\n% manual.\n\n%Get a template with default settings \n[febio_spec]=febioStructTemplate;\n\n%febio_spec version \nfebio_spec.ATTR.version='2.5'; \n\n%Module section\nfebio_spec.Module.ATTR.type='solid'; \n\n%Control section\nfebio_spec.Control.time_stepper=rmfield(febio_spec.Control.time_stepper,'dtmax');\n\nfebio_spec.Control.analysis.ATTR.type='static';\nfebio_spec.Control.title='Cube analysis';\nfebio_spec.Control.time_steps=numTimeStepsAnalysis;\nfebio_spec.Control.step_size=1/numTimeStepsAnalysis;\nfebio_spec.Control.time_stepper.dtmin=dtmin;\nfebio_spec.Control.time_stepper.dtmax.VAL=dtmax; \nfebio_spec.Control.time_stepper.dtmax.ATTR.lc=2;\nfebio_spec.Control.time_stepper.max_retries=max_retries;\nfebio_spec.Control.time_stepper.opt_iter=opt_iter;\nfebio_spec.Control.max_refs=max_refs;\nfebio_spec.Control.max_ups=max_ups;\n\nfebio_spec.Control.plot_level='PLOT_MUST_POINTS';\nfebio_spec.Control.output_level='OUTPUT_MUST_POINTS'; \n\n%Material section\nswitch formulationType\n case 'coupled'\n febio_spec.Material.material{1}.ATTR.type='Ogden unconstrained';\n febio_spec.Material.material{1}.ATTR.id=1;\n febio_spec.Material.material{1}.c1=c1;\n febio_spec.Material.material{1}.m1=m1;\n febio_spec.Material.material{1}.c2=c1;\n febio_spec.Material.material{1}.m2=-m1;\n febio_spec.Material.material{1}.cp=k;\n case 'uncoupled'\n febio_spec.Material.material{1}.ATTR.type='Ogden';\n febio_spec.Material.material{1}.ATTR.id=1;\n febio_spec.Material.material{1}.c1=c1;\n febio_spec.Material.material{1}.m1=m1;\n febio_spec.Material.material{1}.c2=c1;\n febio_spec.Material.material{1}.m2=-m1;\n febio_spec.Material.material{1}.k=k;\nend\n\n%Geometry section\n% -> Nodes\nfebio_spec.Geometry.Nodes{1}.ATTR.name='nodeSet_all'; %The node set name\nfebio_spec.Geometry.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's\nfebio_spec.Geometry.Nodes{1}.node.VAL=V; %The nodel coordinates\n\n% -> Elements\nfebio_spec.Geometry.Elements{1}.ATTR.type='hex8'; %Element type of this set\nfebio_spec.Geometry.Elements{1}.ATTR.mat=1; %material index for this set \nfebio_spec.Geometry.Elements{1}.ATTR.name='Cube'; %Name of the element set\nfebio_spec.Geometry.Elements{1}.elem.ATTR.id=(1:1:size(E,1))'; %Element id's\nfebio_spec.Geometry.Elements{1}.elem.VAL=E;\n\n% -> NodeSets\nfebio_spec.Geometry.NodeSet{1}.ATTR.name='bcSupportList_X';\nfebio_spec.Geometry.NodeSet{1}.node.ATTR.id=bcSupportList_X(:);\n\nfebio_spec.Geometry.NodeSet{2}.ATTR.name='bcSupportList_Y';\nfebio_spec.Geometry.NodeSet{2}.node.ATTR.id=bcSupportList_Y(:);\n\nfebio_spec.Geometry.NodeSet{3}.ATTR.name='bcSupportList_Z';\nfebio_spec.Geometry.NodeSet{3}.node.ATTR.id=bcSupportList_Z(:);\n\nfebio_spec.Geometry.NodeSet{4}.ATTR.name='bcPrescribeList';\nfebio_spec.Geometry.NodeSet{4}.node.ATTR.id=bcPrescribeList(:);\n\n%Boundary condition section \n% -> Fix boundary conditions\nfebio_spec.Boundary.fix{1}.ATTR.bc='x';\nfebio_spec.Boundary.fix{1}.ATTR.node_set=febio_spec.Geometry.NodeSet{1}.ATTR.name;\nfebio_spec.Boundary.fix{2}.ATTR.bc='y';\nfebio_spec.Boundary.fix{2}.ATTR.node_set=febio_spec.Geometry.NodeSet{2}.ATTR.name;\nfebio_spec.Boundary.fix{3}.ATTR.bc='z';\nfebio_spec.Boundary.fix{3}.ATTR.node_set=febio_spec.Geometry.NodeSet{3}.ATTR.name;\n\n% -> Prescribe boundary conditions\nfebio_spec.Boundary.prescribe{1}.ATTR.bc='z';\nfebio_spec.Boundary.prescribe{1}.ATTR.node_set=febio_spec.Geometry.NodeSet{4}.ATTR.name;\nfebio_spec.Boundary.prescribe{1}.scale.ATTR.lc=1;\nfebio_spec.Boundary.prescribe{1}.scale.VAL=1;\nfebio_spec.Boundary.prescribe{1}.relative=1;\nfebio_spec.Boundary.prescribe{1}.value=displacementMagnitude;\n\n%LoadData section\nfebio_spec.LoadData.loadcurve{1}.ATTR.id=1;\nfebio_spec.LoadData.loadcurve{1}.ATTR.type='linear';\nfebio_spec.LoadData.loadcurve{1}.point.VAL=[0 0; 1 1];\n\nfebio_spec.LoadData.loadcurve{2}.ATTR.id=2;\nfebio_spec.LoadData.loadcurve{2}.ATTR.type='linear';\nfebio_spec.LoadData.loadcurve{2}.point.VAL=[t_load_curve(:) dtmax_load_curve(:)];\n\n%Output section \n% -> log file\nfebio_spec.Output.logfile.ATTR.file=febioLogFileName;\nfebio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;\nfebio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';\nfebio_spec.Output.logfile.node_data{1}.ATTR.delim=',';\nfebio_spec.Output.logfile.node_data{1}.VAL=1:size(V,1);\n\nfebio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_stress;\nfebio_spec.Output.logfile.element_data{1}.ATTR.data='sz';\nfebio_spec.Output.logfile.element_data{1}.ATTR.delim=',';\nfebio_spec.Output.logfile.element_data{1}.VAL=1:size(E,1);\n\n%% Quick viewing of the FEBio input file structure\n% The |febView| function can be used to view the xml structure in a MATLAB\n% figure window. \n\n%%\n% |febView(febio_spec); %Viewing the febio file|\n\n%% Exporting the FEBio input file\n% Exporting the febio_spec structure to an FEBio input file is done using\n% the |febioStruct2xml| function. \n\nfebioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode\n\n%% Running the FEBio analysis\n% To run the analysis defined by the created FEBio input file the\n% |runMonitorFEBio| function is used. The input for this function is a\n% structure defining job settings e.g. the FEBio input file name. The\n% optional output runFlag informs the user if the analysis was run\n% succesfully. \n\nfebioAnalysis.run_filename=febioFebFileName; %The input file name\nfebioAnalysis.run_logname=febioLogFileName; %The name for the log file\nfebioAnalysis.disp_on=1; %Display information on the command window\nfebioAnalysis.disp_log_on=1; %Display convergence information in the command window\nfebioAnalysis.runMode='external';%'internal';\nfebioAnalysis.t_check=0.25; %Time for checking log file (dont set too small)\nfebioAnalysis.maxtpi=1e99; %Max analysis time\nfebioAnalysis.maxLogCheckTime=10; %Max log file checking time\n\n[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!\n\n%% Import FEBio results \n\nif runFlag==1 %i.e. a succesful run\n \n %% \n % Importing nodal displacements from a log file\n dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp),1,1);\n \n %Access data\n N_disp_mat=dataStruct.data; %Displacement\n timeVec=dataStruct.time; %Time\n \n %Create deformed coordinate set\n V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);\n \n %% \n % Plotting the simulated results using |anim8| to visualize and animate\n % deformations \n \n DN_magnitude=sqrt(sum(N_disp_mat(:,:,end).^2,2)); %Current displacement magnitude\n \n % Create basic view and store graphics handle to initiate animation\n hf=cFigure; %Open figure \n gtitle([febioFebFileNamePart,': Press play to animate']);\n title('Displacement magnitude [mm]','Interpreter','Latex')\n hp=gpatch(Fb,V_DEF(:,:,end),DN_magnitude,'k',1); %Add graphics object to animate\n hp.Marker='.';\n hp.MarkerSize=markerSize2;\n hp.FaceColor='interp';\n gpatch(Fb,V,0.5*ones(1,3),'k',0.25); %A static graphics object\n \n axisGeom(gca,fontSize); \n colormap(gjet(250)); colorbar;\n caxis([0 max(DN_magnitude)]); caxis manual; \n axis(axisLim(V_DEF)); %Set axis limits statically \n camlight headlight; \n \n % Set up animation features\n animStruct.Time=timeVec; %The time vector \n for qt=1:1:size(N_disp_mat,3) %Loop over time increments \n DN_magnitude=sqrt(sum(N_disp_mat(:,:,qt).^2,2)); %Current displacement magnitude\n \n %Set entries in animation structure\n animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate\n animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate\n animStruct.Set{qt}={V_DEF(:,:,qt),DN_magnitude}; %Property values for to set in order to animate\n end \n anim8(hf,animStruct); %Initiate animation feature \n drawnow;\n \n %%\n % Importing element stress from a log file\n dataStruct=importFEBio_logfile(fullfile(savePath,febioLogFileName_stress),1,1);\n \n %Access data\n E_stress_mat=dataStruct.data;\n \n %% \n % Plotting the simulated results using |anim8| to visualize and animate\n % deformations \n \n [CV]=faceToVertexMeasure(E,V,E_stress_mat(:,:,end));\n \n % Create basic view and store graphics handle to initiate animation\n hf=cFigure; %Open figure \n gtitle([febioFebFileNamePart,': Press play to animate']);\n title('$\\sigma_{zz}$ [MPa]','Interpreter','Latex')\n hp=gpatch(Fb,V_DEF(:,:,end),CV,'k',1); %Add graphics object to animate\n hp.Marker='.';\n hp.MarkerSize=markerSize2;\n hp.FaceColor='interp';\n gpatch(Fb,V,0.5*ones(1,3),'k',0.25); %A static graphics object\n \n axisGeom(gca,fontSize); \n colormap(gjet(250)); colorbar;\n caxis([min(E_stress_mat(:)) max(E_stress_mat(:))]); \n axis(axisLim(V_DEF)); %Set axis limits statically \n camlight headlight; \n \n % Set up animation features\n animStruct.Time=timeVec; %The time vector \n for qt=1:1:size(N_disp_mat,3) %Loop over time increments \n \n [CV]=faceToVertexMeasure(E,V,E_stress_mat(:,:,qt));\n \n %Set entries in animation structure\n animStruct.Handles{qt}=[hp hp]; %Handles of objects to animate\n animStruct.Props{qt}={'Vertices','CData'}; %Properties of objects to animate\n animStruct.Set{qt}={V_DEF(:,:,qt),CV}; %Property values for to set in order to animate\n end \n anim8(hf,animStruct); %Initiate animation feature \n drawnow;\n \n %% \n % Calculate metrics to visualize stretch-stress curve\n \n DZ_set=N_disp_mat(bcPrescribeList,end,:); %Z displacements of the prescribed set\n DZ_set=mean(DZ_set,1); %Calculate mean Z displacements across nodes\n stretch_sim=(DZ_set(:)+sampleHeight)./sampleHeight; %Derive stretch\n stress_cauchy_sim=mean(squeeze(E_stress_mat(:,end,:)),1)';\n \n %% \n % Visualize stress-stretch curve\n \n cFigure; hold on; \n title('Uniaxial stress-stretch curve','FontSize',fontSize);\n xlabel('$\\lambda$ [.]','FontSize',fontSize,'Interpreter','Latex'); \n ylabel('$\\sigma_{zz}$ [MPa]','FontSize',fontSize,'Interpreter','Latex'); \n \n plot(stretch_sim(:),stress_cauchy_sim(:),'r-','lineWidth',lineWidth);\n \n view(2); axis tight; grid on; axis square; box on; \n set(gca,'FontSize',fontSize);\n drawnow;\n \nend\n\n%% \n%\n% <>\n% \n% _*GIBBON*_ \n% \n% \n% _Kevin Mattheus Moerman_, \n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/docs/DEMO_febio_0069_must_points_export.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3916732130950022}} {"text": "function v = ToVector(im)\nsz = size(im);\nif size(im,3)==3\n v = reshape(im, [prod(sz(1:2)) 3]);\nelse\n v = reshape(im, [prod(sz(1:2)) 1]);\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/38555-kernel-graph-cut-image-segmentation/Kernel_GraphCuts/ToVector.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.3916732130950022}} {"text": "% \n% LibQPEP: A Library for Globally Optimal Solving Quadratic Pose Estimation Problems (QPEPs),\n% It also gives highly accurate uncertainty description of the solutions.\n%\n%\n% Article: \n% Wu, J., Zheng, Y., Gao, Z., Jiang, Y., Hu, X., Zhu, Y., Jiao, J., Liu, M. (2020)\n% Quadratic Pose Estimation Problems: Unified Solutions, \n% Solvability/Observability Analysis and Uncertainty Description \n% in A Globally Optimal Framework.\n%\n%\n% Authors: Jin Wu and Ming Liu\n% Affiliation: Hong Kong University of Science and Technology (HKUST)\n% Emails: jin_wu_uestc@hotmail.com; eelium@ust.hk\n% Websites: https://zarathustr.github.io\n% https://ram-lab.com\n\n\nfunction showSyms(obj)\nfor i = 1 : length(obj)\n assignin('caller', char(obj(i)), obj(i));\nend\nend", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/utils/showSyms.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.611381973294151, "lm_q1q2_score": 0.39167321309500214}} {"text": "function pass = test_removeDeltas(pref)\n\n% Get preferences:\nif ( nargin < 1 )\n pref = chebfunpref();\nend\n\n% Test that the deltas are removed.\nx = chebfun(@(x) x, [0 1], pref);\nf = dirac(x - 0.2) + diff(dirac(x-1), 2);\nthenorm = norm(removeDeltas(f), Inf); % Is infinite if deltas are present.\npass(1) = ( thenorm < Inf );\n\n% Test that pointValues are changed.\nf = dirac(x);\nval = feval(removeDeltas(f), 0);\npass(2) = ( val == 0 );\n\n% Test that removeDeltas is the identity for classicfuns.\nf = sin(x);\ng = removeDeltas(f);\npass(3) = isequal(f, g);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/chebfun/test_removeDeltas.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.39167320470545114}} {"text": "function [At,b,c,K]=fromsdpa(fname)\n% readsdpa Reads SDP problem from sparse SDPA-formatted input file.\n% [At,b,c,K] = readsdpa(fname) produces conic optimization problem\n% data, as can be used by sedumi. \"fname\" contains a full pathname\n% to the SDPA 4.10-formatted file. (SDPA is a stand-alone solver for\n% semidefinite programming, by Fujisawa, Kojima and Nakata. It is\n% used as a standard format in the collection SDPLIB by Borchers.)\n%\n% To read and solve the problem \"arch0\", you may type\n%\n% [At,b,c,K] = readsdpa('arch0.dat-s');\n% [x,y,info] = sedumi(At,b,c,K);\n%\n% The above 2 lines assume that arch0.dat-s is somewhere in your MATLAB\n% search path, that it is not compressed, and that you know the extension\n% 'dat-s'. To alleviate these conditions, you may like to use the script\n% GETPROBLEM.\n%\n% SEE ALSO SeDuMi, getproblem, frompack, prelp.\n\n%\n% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko\n% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA\n% 02110-1301, USA%\n\nfid = fopen(fname, 'r');\nif fid == -1\n error('File not found.')\nend\n%The number of equality constraints is the first number in the file\nm='';\nwhile(isempty(m))\n m = fscanf(fid,'%d',1);\n if fgetl(fid) == -1;\n fclose(fid);\n error('Invalid SDPA file. Number of equality constraints not found.')\n end\nend\n%The number of semidefinite blocks\nnblocks = fscanf(fid, '%d', 1);\nif isempty(nblocks)\n fclose(fid);\n error('Invalid SDPA file. Number of semidefinite blocks not found.')\nend\nfgetl(fid);\n%The dimension of the blocks\n%Negative means diagonal block, we convert that to nonnegative variables\n%.,(){} are omitted\ndims = sscanf(regexprep(fgetl(fid), '[\\.\\,(){}]', ' '), '%d', nblocks)';\n%Dimensions cannot be 0, and their number must be nblocks\nif any(dims == 0) || length(dims) ~= nblocks\n fclose(fid);\n error('Invalid SDPA file. Invalid semidefinite block dimensions.')\nend\nnblocks = length(dims);\nN = -sum(dims(dims<0)) + sum(dims(dims>0).^2);\n%Create a vector with the offsets of the blocks.\n%Starting with the first component, how many positions later do SDP blocks\n%start\n%This is one less than K.blkstart (inside sedumi)\n%Diagonal and one dimensional blocks are coming first\nloffset = 0;\nsdpoffset = sum(abs(dims(dims <= 1) ));\noffset = zeros(1, nblocks);\nfor i = 1:nblocks\n if dims(i) <= 1\n offset(i) = loffset;\n loffset = loffset+abs(dims(i));\n else\n offset(i) = sdpoffset;\n sdpoffset = sdpoffset+dims(i)^2;\n end\nend\n%This is needed so that we can compute where the subsequent columns start\n%in a block\nstride = dims;\nstride(stride<0) = 0;\n\n%Vector b\n%,(){} are omitted\nb = sscanf(regexprep(fgetl(fid),'[\\,(){}]',' '),'%f',m);\nif length(b) ~= m\n fclose(fid);\n error('Invalid SDPA file. The right-hand side vector is not of the right dimension.')\nend\n%If b is very sparse then we store it as sparse\nif nnz(b)/m < 0.1\n b=sparse(b);\nend\n\n%Coefficients\n%It is much faster to get all the numbers at once than to read the file\n%line by line\ntry\n E = fscanf(fid,'%d %d %d %d %f',[5. inf]);\ncatch\n fclose(fid);\n error('Invalid SDPA file. Error reading the coefficients.')\nend\nfclose(fid);\n%We are done with the file\n\n%Extract the objective\ncE = E(:,E(1,:)==0);\n\n%Repeating indices in the sparse matrix structure create the sum of\n%elements, we need to clear one for the diagonals\ndata2 = cE(5,:);\ndata2(cE(3,:)==cE(4,:)) = 0;\n%we need the minus sign because the SDPA format assumes maximization while\n%SeDuMi uses minimization by default\n%This magic reshuffles the coefficients to the right place\nc = -sparse([offset(cE(2,:))+(cE(3,:)-1).*stride(cE(2,:))+cE(4,:),offset(cE(2,:))+(cE(4,:)-1).*stride(cE(2,:))+cE(3,:)],...\n 1,...\n [cE(5,:),data2],...\n N,1);\nclear cE data2\n\n\n%Get rid of the objective coefficients from E\nAtE = E(:,E(1,:)~=0);\nclear E\n%Take all the coefficients\ndata2 = AtE(5,:);\n%The coefficients for the diagonal elements in the blocks\ndata2(AtE(3,:)==AtE(4,:)) = 0;\nAt = sparse([offset(AtE(2,:))+(AtE(3,:)-1).*stride(AtE(2,:))+AtE(4,:),offset(AtE(2,:))+(AtE(4,:)-1).*stride(AtE(2,:))+AtE(3,:)],...\n [AtE(1,:),AtE(1,:)],...\n [AtE(5,:),data2],...\n N,m);\nclear AtE data2\n\nK.l = -sum(dims(dims<0)) + sum(dims==1);\nK.s = dims(dims>1);\n\n%Finally, let us correct the sparsity\n%c and At are always stored as sparse\n[i,j,v] = find(c);\nc = sparse(i,1,v,N,1);\n[i,j,v] = find(At);\nAt = sparse(i,j,v,N,m);\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sedumi/conversion/fromsdpa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.39167320470545114}} {"text": "function SyntaxAnalysis_Callback(hObject, eventdata, handles)\n\n[filename, filepath] = uigetfile({'*.mat;*.xlsx'},'Select Detection Files OR Exported Detections','MultiSelect', 'on',char(handles.data.settings.detectionfolder));\nif isnumeric(filename); return; end\nfilename = cellstr(filename);\n\n\nsettings = inputdlg({'Maximum bout seperation (s)','Exclude Classes with frequency below (0-1)'},'Syntax',[1 50],{'2','.01'});\nboutlength = str2num(settings{1});\nminfreq = str2num(settings{2});\n\n[~,~,ext] = fileparts(filename{1});\n\nh = waitbar(0,'Loading Files');\n%% Load Files\nAllCalls = table([],[],[],[],[],'VariableNames',{'BeginTime_s_','Label','File','Bout','Accepted'});\n\nif strcmp(ext,'.mat')\n for i = 1:length(filename)\n Calls = loadCallfile([filepath filename{i}],handles);\n\n Calls = Calls(Calls.Accept == 1, :);\n begintime = Calls.Box(:,1); % Get Box Position\n CallClass = Calls.Type;\n dist = pdist2(begintime,begintime);\n dist(dist > boutlength) = 0;\n G = graph(dist);\n bout = conncomp(G)';\n\n try\n g = table(begintime, CallClass, repmat(i,height(Calls),1), bout, Calls.Accept,'VariableNames',{'BeginTime_s_','Label','File','Bout','Accepted'});\n AllCalls = [AllCalls; g];\n waitbar(i/length(filename),h)\n catch\n warning('No Accepted Calls in File');\n end\n\n end\nelseif strcmp(ext,'.xlsx')\n for i = 1:length(filename)\n t = readtable([filepath filename{i}]);\n t = t(t.Accepted == 1,{'Accepted' 'BeginTime_s_','Label'});\n dist = pdist2(t.BeginTime_s_,t.BeginTime_s_);\n dist(dist > boutlength) = 0;\n G = graph(dist);\n bout = conncomp(G)';\n try\n g = table(bout,repmat(i,height(t),1),'VariableNames',{'Bout','File'});\n AllCalls = [AllCalls; g t];\n waitbar(i/length(filename),h)\n catch\n warning('No Accepted Calls in File');\n end\n\n end\nend\nAllCalls.Label = categorical(AllCalls.Label);\nAllCalls = sortrows(AllCalls,{'File' 'BeginTime_s_'});\n\n%% Exclude rare classes and rejected calls\ncatcounts = countcats(AllCalls.Label);\nCommonClasses = (catcounts ./ sum(catcounts)) > minfreq;\ncats = categories(AllCalls.Label);\ngoodCalls = any(AllCalls.Label == cats(CommonClasses)',2);\nAllCalls = AllCalls(AllCalls.Accepted == 1 & goodCalls ,:);\nAllCalls.Label = removecats(AllCalls.Label);\ncats = categories(AllCalls.Label);\n\n%% Create Transition Table\ncounts = [];\nfor i = 1:length(cats)\n for j = 1:length(cats)\n % counts(j,i) = mean((AllCalls{1:end-1,'Label'} == cats{i}) & (AllCalls{2:end,'Label'} == cats{j}));\n x = sum(...\n ((AllCalls{1:end-1,'Label'} == cats{i}) & (AllCalls{2:end,'Label'} == cats{j})) & ...\n (AllCalls{1:end-1,'Bout'} == AllCalls{2:end,'Bout'}) &...\n (AllCalls{1:end-1,'File'} == AllCalls{2:end,'File'}));\n n = sum(AllCalls{2:end,'Label'} == cats{j});\n counts(j,i) = x / n;\n end\nend\ndelete(h)\n\n\n%% Create Figures\nfigure('position',[0 0 700 600],'color','w')\nh = heatmap(cats,cats,counts,'ColorMethod','mean');\nh.XLabel = 'Transition Probability';\nh.YLabel = 'Syllable';\nset(gcf,'Colormap',inferno);\nset(gca,'GridVisible','off','FontSize',14);\nh.CellLabelFormat = '%.3f';\ncolorbar off\n\nfigure('position',[300 0 700 600],'color','w')\ncounts(counts<.05)=0;\nG = digraph(counts,cats);\nidxg=find(G.Edges.Weight<.075);\nG=rmedge(G,idxg);\ng = plot(G,'EdgeCData',G.Edges.Weight);\naxis off\ng.ArrowSize = 15;\ng.LineWidth = 15*G.Edges.Weight;\ng.EdgeAlpha = .8;\nif isfield(g, 'NodeFontSize')\n g.NodeFontSize = 12;\nend\ng.NodeColor = [.2 .2 .2];\nlayout(g,'circle');\nset(gcf,'Colormap',inferno);\ncb=colorbar;\ncb.Label.String='Transition Probability';\ncb.Label.Rotation=90;\n\n\n%% Save Matrix\n[file,path] = uiputfile('*.xlsx','Save Transion Matrix');\n\nif ~isnumeric(file)\n output = [];\n counts = cell(length(cats));\n for i = 1:length(cats)\n for j = 1:length(cats)\n % counts(j,i) = mean((AllCalls{1:end-1,'Label'} == cats{i}) & (AllCalls{2:end,'Label'} == cats{j}));\n x = sum(...\n ((AllCalls{1:end-1,'Label'} == cats{i}) & (AllCalls{2:end,'Label'} == cats{j})) & ...\n (AllCalls{1:end-1,'Bout'} == AllCalls{2:end,'Bout'}) &...\n (AllCalls{1:end-1,'File'} == AllCalls{2:end,'File'}));\n n = sum(AllCalls{2:end,'Label'} == cats{j});\n counts(j,i) = {x / n};\n end\n end\n output = [output; [{'Conditional Probability'} cell(1,length(cats))]];\n output = [output; [[{'Category'} cats'] ; [cats, counts]]];\n\n counts = cell(length(cats));\n for i = 1:length(cats)\n for j = 1:length(cats)\n % counts(j,i) = mean((AllCalls{1:end-1,'Label'} == cats{i}) & (AllCalls{2:end,'Label'} == cats{j}));\n x = sum(...\n ((AllCalls{1:end-1,'Label'} == cats{i}) & (AllCalls{2:end,'Label'} == cats{j})) & ...\n (AllCalls{1:end-1,'Bout'} == AllCalls{2:end,'Bout'}) &...\n (AllCalls{1:end-1,'File'} == AllCalls{2:end,'File'}));\n counts(j,i) = {x };\n end\n end\n output = [output; cell(3,length(cats)+1)];\n output = [output; [{'Transition Count'} cell(1,length(cats))]];\n output = [output;[[{'Category'} cats'] ; [cats, counts]]];\n\n\n counts = cell(length(cats),1);\n for i = 1:length(cats)\n counts(i) = {sum(AllCalls{1:end,'Label'} == cats{i})};\n end\n\n output = [output; cell(3,length(cats)+1)];\n output = [output; [{'Total Count'} cell(1,length(cats))]];\n output = [output; cats, counts, cell(length(cats),length(cats)-1)];\n\n\n writetable(cell2table(output),[path file],'WriteVariableNames',0);\nend\n\n\nend\n", "meta": {"author": "DrCoffey", "repo": "DeepSqueak", "sha": "c62f2c7bb86a9d77ae177248abe7d234857edf53", "save_path": "github-repos/MATLAB/DrCoffey-DeepSqueak", "path": "github-repos/MATLAB/DrCoffey-DeepSqueak/DeepSqueak-c62f2c7bb86a9d77ae177248abe7d234857edf53/Functions/Call Classification/SyntaxAnalysis_Callback.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39158532564733245}} {"text": "\nformulae = {'C7H13A2N3O2';'C4H5A2N2O3';'CHA2NO';'C9H17A2N3O2';'C47H68O5';'C41H83NO8P';'C48H93NO8';'C13H24NO10P';...\n 'C31H54NO4';'C28H44N2NaO23';'C5H10O3';'C6H11NO4';'C4H9N3O5P';'C55H95AN3O30';'C9H20ANO7P';'C39H44N4O12';'H';'Na';'C19H28O2'};\n \n \nisotopeAbundance = 0; %use polyisotopic inexact mass i.e. uses all isotopes of each element weighted by natural abundance \ngeneralFormula = 1; %NaN for unknown elements\n[getMolecularMassMasses, knownMasses, unknownElements, Ematrix, elements] = getMolecularMass(formulae,isotopeAbundance,generalFormula);\n\n%Jeff Kantor's code:\nmolweightMasses = molweight(formulae);\n\n%here is the smallest difference obtained by tweaking the options\ndifferenceMW = [0.00221999999999412;0.00127999999997996;0.000340000000001339;0.00281999999995719;0.0140999999999849;0.0121990000000096;0.0144400000000360;0.00379899999990130;0.00933999999989510;0.00847799999996823;0.00149999999999295;0.00183999999998719;0.00117900000000759;0.0166200000001027;0.00259899999997515;0.0118599999999560;0;-1.99999999850320e-06;0.00569999999993343];\n\n%compare = [molweightMasses, getMolecularMassMasses]\n\n%TODO not sure what is the correct code to use\nres = molweightMasses - getMolecularMassMasses - differenceMW;\nassert(norm(res(isfinite(res)),inf)<1e-11)", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/additionalTests/testMolecularMass/testMolecularMass.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.39158532564733245}} {"text": "function varargout = deadhub(varargin)\n\nswitch class(varargin{1})\n\n case 'double'\n error('Overloaded SDPVAR/SIN CALLED WITH DOUBLE. Report error')\n\n case 'sdpvar'\n varargout{1} = InstantiateElementWise(mfilename,varargin{:});\n\n case 'char'\n\n operator = struct('convexity','convex','monotonicity','none','definiteness','positive','model','callback');\n operator.bounds = @bounds;\n operator.convexhull = @convexhull; \n\n varargout{1} = [];\n varargout{2} = operator;\n varargout{3} = varargin{3};\n\n otherwise\n error('SDPVAR/SIN called with CHAR argument?');\nend\n\nfunction [L,U] = bounds(xL,xU,lambda)\n\nfL = deadhub(xL,lambda);\nfU = deadhub(xU,lambda);\nU = max(fL,fU);\nL = min(fL,fU);\nif xL<0 & xU>0\n L = 0;\nend\n\nfunction [Ax, Ay, b, K] = convexhull(xL,xU,lambda)\n\nK.l = 0;\nK.f = 0;\nfL = deadhub(xL,lambda);\nfU = deadhub(xU,lambda);\nif xL>=-lambda & xU<=lambda\n Ax = 0;Ay = 1;b = 0;K.f = 1;\nelseif xU < -3*lambda\n Ax = 1;Ay = 1;b = 2*lambda^2;K.f = 1;\nelseif xL > 3*lambda\n Ax = -1;Ay = 1;b = 2*lambda^2;K.f = 1;\nelse\n dfL = derivative(xL,lambda);\n dfU = derivative(xU,lambda);\n [Ax,Ay,b,K] = convexhullConvex(xL,xU,fL,fU,dfL,dfU);\nend\n\nfunction df=derivative(x,lambda)\nax = abs(x);\nif ax3*lambda\n df = lambda;\nelseif ax<=3*lambda\n df = 0.25*(2*ax-6*lambda)+lambda;\nend\nif x<0\n df=-df;\nend", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/@sdpvar/deadhub.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3915778203352578}} {"text": "function [y,deriv] = scaleColumns(w,scales)\n% This is an MV2DF. See MV2DF_API_DEFINITION.readme.\n%\n% w --> bsxfun(@times,reshape(w,[],n),scales(:)')\n%\n% where n = length(scales);\n%\n% Note: this is a symmetric linear transform.\n\nif nargin==0\n test_this();\n return;\nend\n\nif isempty(w) \n map = @(w)map_this(w,scales);\n y = linTrans(w,map,map);\n return;\nend\n\n\nif isa(w,'function_handle')\n f = scaleColumns([],scales);\n y = compose_mv(f,w,[]);\n return;\nend\n \n\n\nf = scaleColumns([],scales);\nif nargout==1\n y = f(w);\nelse\n [y,deriv] = f(w);\nend\n\n\n\n\nfunction w = map_this(w,scales)\nn = length(scales);\nw = reshape(w,[],n);\nw = bsxfun(@times,w,scales(:)');\n\n\n\nfunction test_this()\nK = 5;\nN = 10;\nM = randn(K,N);\nscales = randn(1,N);\n\nf = scaleColumns([],scales);\ntest_MV2DF(f,M(:));\n", "meta": {"author": "nesl", "repo": "asvspoof2019", "sha": "8b780369f7273345c22d979192119198bbf3db13", "save_path": "github-repos/MATLAB/nesl-asvspoof2019", "path": "github-repos/MATLAB/nesl-asvspoof2019/asvspoof2019-8b780369f7273345c22d979192119198bbf3db13/baseline/tDCF_v1/bosaris_toolkit.1.06/bosaris_toolkit/utility_funcs/Optimization_Toolkit/MV2DF/function_library/linear/scaleColumns.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3915778129265744}} {"text": "function varargout = quiver3(F, varargin)\n%QUIVER3 3-D quiver plot of a CHEBFUN3V object.\n% QUIVER3(F) plots velocity vectors as arrows with components F(1), F(2)\n% and F(3) which are CHEBFUN3 objects. QUIVER3 automatically scales the \n% arrows to fit. The arrows are plotted on a uniform grid.\n%\n% QUIVER3(F, S) automatically scales the arrows to fit and then stretches \n% them by S. Use S=0 to plot the arrows with the automatic scaling.\n%\n% QUIVER3(..., LINESPEC) uses the plot linestyle specified for the \n% velocity vectors. Any marker in LINESPEC is drawn at the base instead \n% of an arrow on the tip. Use a marker of '.' to specify no marker at \n% all.\n%\n% See also quiver3.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nnumpts = 7; \n\n% Empty check:\nif ( isempty(F) )\n h = quiver3([], [], [], []);\n return\nend\n\nif ( isa(F, 'chebfun3v') && ...\n (isempty(varargin) || ~isa(varargin{1}, 'chebfun3v')) ) \n \n nF = F.nComponents;\n if ( nF == 2 )\n error('CHEBFUN:CHEBFUN3V:quiver3:badInputs1',...\n 'Needs three CHEBFUN3 objects.');\n else\n % Plot arrows are equally spaced locations\n dom = F.components{1}.domain;\n x = linspace(dom(1), dom(2), numpts);\n y = linspace(dom(3), dom(4), numpts);\n z = linspace(dom(5), dom(6), numpts);\n [xx, yy, zz] = ndgrid(x, y, z);\n vals1 = feval(F.components{1}, xx, yy, zz);\n vals2 = feval(F.components{2}, xx, yy, zz);\n vals3 = feval(F.components{3}, xx, yy, zz);\n h = quiver3(xx, yy, zz, vals1, vals2, vals3, varargin{:});\n axis([x(1), x(end), y(1), y(end), z(1), z(end)]) \n end\n\nelse\n error('CHEBFUN:CHEBFUN3V:quiver3:badInputs3',...\n 'Unrecognised input arguments.');\nend\n\nif ( nargout > 0 )\n varargout = {h};\nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3v/quiver3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6076631840431539, "lm_q2_score": 0.6442251064863697, "lm_q1q2_score": 0.39147187944804723}} {"text": "function gT = rbfinfwhiteKernDiagGradX(kern, t)\n\n% RBFINFWHITEKERNDIAGGRADX Gradient of RBF-WHITE kernel's (with integration\n% limits between minus infinity and infinity) diagonal w.r.t. t.\n% FORMAT\n% DESC computes the gradient of the diagonal of the RBF-WHITE kernel matrix\n% with respect to the elements of the input column vector given in t.\n% ARG kern : the kernel structure for which gradients are being computed.\n% ARG t : the input data in the form of a design matrix.\n% RETURN gT : the gradients of the diagonal with respect to each element\n% of t. The returned matrix has the same dimensions as t.\n%\n% SEEALSO : rbfinfwhiteKernParamInit, kernDiagGradX, rbfinfwhiteKernGradX\n%\n% COPYRIGHT : David Luengo, 2009\n\n% KERN\n\n\nif size(t, 2) > 1\n error('Input can only have one column');\nend\n\ngT = zeros(size(t));\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/rbfinfwhiteKernDiagGradX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.39147187859492777}} {"text": "function y = round(varargin)\n% Implements Matlab's `round` with 2 or 3 inputs\n% For symbolic data: only 1 input is supported by the original round function, so only that case is\n% covered here\nif nargin==1\n if ~isa(varargin{1},'sym')\n y = builtin('round',varargin{1});\n else\n y = builtin('@sym/round',varargin{1});\n end\nelseif nargin==2 || (nargin==3 && strcmp(varargin{3}, 'decimal'))\n e = 10^varargin{2};\n y = builtin('round',varargin{1}*e)/e;\nelseif nargin==3 && strcmp(varargin{3}, 'significant')\n e = 10^(varargin{2} - (floor(log10(abs(varargin{1})))+1));\n y = builtin('round',varargin{1}*e)/e;\nelse\n error('Incorrect inputs')\nend\nend", "meta": {"author": "lmendo", "repo": "MATL", "sha": "8c55bdf3cf64c854ec4ea19fcf2d3d312e1881bb", "save_path": "github-repos/MATLAB/lmendo-MATL", "path": "github-repos/MATLAB/lmendo-MATL/MATL-8c55bdf3cf64c854ec4ea19fcf2d3d312e1881bb/compatibility/round_comp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631698328916, "lm_q2_score": 0.6442251201477015, "lm_q1q2_score": 0.3914718785949277}} {"text": "function kappa = evalkappa(lambda,varargin)\n% eigenvalues of orientation tensor to bingham distribution parameters\n%\n% Options\n% approximated - approximated solution of kappas\n% precision - precision of solvus\n% iteration - number of newton interations\n%\n% See also\n% orientation/mean EBSD/mean BinghamODF\n\n% only approximated solution of kappas' which hold true only for large\n% values of lambda see: F. Bachmann, R. Hielscher, P. Jupp, W. Pantleon, H.\n% Schaeben, E.Wegert: Inferential statistics of electron backscatter\n% diffraction data from within individual crystalline grains, Journal of\n% applied Crystallogrpahy, 2010, 34, eq. 38.\n\nlambda = sort(lambda);\nkappa = -1./(2.*lambda);\nkappa(4) = 0;\nkappa = kappa - kappa(1);\n\n% kappa = sort(1./((2.*lambda-1).*lambda));\n% kappa = (kappa-min(kappa))/2;\n\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/tools/math_tools/evalkappa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8418256393148982, "lm_q2_score": 0.46490157137338844, "lm_q1q2_score": 0.39136606253990347}} {"text": "function t_most_w_ds(quiet, solver, verbose)\n%T_MOST_W_DS Test for MOST with dynamical system constraints.\n\n% MOST\n% Copyright (c) 2015-2020, Power Systems Engineering Research Center (PSERC)\n% by Carlos E. Murillo-Sanchez, PSERC Cornell & Universidad Nacional de Colombia\n% and Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MOST.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://github.com/MATPOWER/most for more info.\n\nif nargin < 3\n verbose = 0;\n if nargin < 2\n solver = '';\n if nargin < 1\n quiet = 0;\n end\n end\nend\n\ninclude_MIPS = 0; %% set to 1, to attempt even if MIPS is the best solver\n %% available (takes a LONG time and currently fails)\nn_tests = 3;\n\nt_begin(n_tests, quiet);\n\ncasefile = 'c118swf';\nsolnfile = 't_most_w_ds_z';\n\n%% define named indices into data matrices\n[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...\n VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;\n[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...\n MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...\n QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;\n[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...\n TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...\n ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;\n[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;\n[CT_LABEL, CT_PROB, CT_TABLE, CT_TBUS, CT_TGEN, CT_TBRCH, CT_TAREABUS, ...\n CT_TAREAGEN, CT_TAREABRCH, CT_ROW, CT_COL, CT_CHGTYPE, CT_REP, ...\n CT_REL, CT_ADD, CT_NEWVAL, CT_TLOAD, CT_TAREALOAD, CT_LOAD_ALL_PQ, ...\n CT_LOAD_FIX_PQ, CT_LOAD_DIS_PQ, CT_LOAD_ALL_P, CT_LOAD_FIX_P, ...\n CT_LOAD_DIS_P, CT_TGENCOST, CT_TAREAGENCOST, CT_MODCOST_F, ...\n CT_MODCOST_X] = idx_ct;\n\nif have_feature('cplex') || have_feature('gurobi') || ...\n have_feature('mosek') || have_feature('quadprog_ls') || include_MIPS\n mdi = md_init;\n\n %% choose solver\n if isempty(solver) || strcmp(upper(solver), 'DEFAULT')\n if have_feature('mosek')\n solver = 'MOSEK';\n elseif have_feature('cplex')\n solver = 'CPLEX';\n elseif have_feature('gurobi')\n solver = 'GUROBI';\n elseif have_feature('quadprog_ls')\n solver = 'OT';\n else\n solver = 'MIPS';\n end\n end\n mpopt = mpoption('most.solver', solver, 'verbose', verbose);\n\n %% set options\n if have_feature('cplex')\n mpopt = mpoption(mpopt, 'cplex.opts.threads', 2); % set this manually here\n end\n if have_feature('gurobi')\n mpopt = mpoption(mpopt, 'gurobi.method', 2); %% barrier\n mpopt = mpoption(mpopt, 'gurobi.threads', 4);\n mpopt = mpoption(mpopt, 'gurobi.opts.BarConvTol', 1e-6); %% 1e-8\n mpopt = mpoption(mpopt, 'gurobi.opts.FeasibilityTol', 1e-4); %% 1e-6\n mpopt = mpoption(mpopt, 'gurobi.opts.OptimalityTol', 1e-5); %% 1e-6\n end\n if have_feature('quadprog_ls')\n mpopt = mpoption(mpopt, 'quadprog.TolFun', 1e-13);\n end\n if have_feature('mosek')\n mpopt = mpoption(mpopt, 'mosek.num_threads', 2);\n else\n mpopt = mpoption(mpopt, 'mips.max_it', 500);\n if have_feature('pardiso')\n mpopt = mpoption(mpopt, 'mips.linsolver', 'PARDISO');\n end\n end\n %% use e.g. t_most_w_ds(0, 'MOSEK') instead of uncommenting these lines\n % mpopt = mpoption(mpopt, 'most.solver', 'MOSEK');\n % mpopt = mpoption(mpopt, 'most.solver', 'CPLEX');\n % mpopt = mpoption(mpopt, 'most.solver', 'GUROBI');\n % mpopt = mpoption(mpopt, 'most.solver', 'OT');\n % mpopt = mpoption(mpopt, 'most.solver', 'BPMPD');\n % mpopt = mpoption(mpopt, 'most.solver', 'MIPS');\n\n mdi.mpc = loadcase(casefile);\n mdi.InitialPg = mdi.mpc.gen(:,PG);\n nt = 24;\n ng = size(mdi.mpc.gen, 1);\n mdi.idx.nt = nt;\n PositiveActiveReservePrice = ones(ng,1);\n PositiveActiveReserveQuantity = 0.25*mdi.mpc.gen(:,PMAX);\n NegativeActiveReservePrice = ones(ng,1);\n NegativeActiveReserveQuantity = PositiveActiveReserveQuantity;\n PositiveActiveDeltaPrice = ones(ng,1);\n NegativeActiveDeltaPrice = ones(ng,1);\n PositiveLoadFollowReservePrice = ones(ng,1);\n PositiveLoadFollowReserveQuantity = 0.5*mdi.mpc.gen(:,PMAX);\n NegativeLoadFollowReservePrice = ones(ng,1);\n NegativeLoadFollowReserveQuantity = PositiveLoadFollowReserveQuantity;\n %mdi.mpc.gen(:,RAMP_10) = 0.20 * mdi.mpc.gen(PMAX);\n %mdi.mpc.gen(:,RAMP_AGC) = 0.20 * mdi.mpc.gen(PMAX);\n %mdi.mpc.gen(:,RAMP_30) = 0.50 * mdi.mpc.gen(PMAX);\n mdi.mpc.gen(:,RAMP_10) = 1.0 * mdi.mpc.gen(:,PMAX);\n mdi.mpc.gen(:,RAMP_AGC) = 1.0 * mdi.mpc.gen(:,PMAX);\n mdi.mpc.gen(:,RAMP_30) = 1.0 * mdi.mpc.gen(:,PMAX);\n\n mdi.RampWearCostCoeff = 0.05 * ones(ng,1); % (i, t) note different scheme!\n for t = 2:nt\n mdi.RampWearCostCoeff(:, t) = mdi.RampWearCostCoeff(:, 1);\n end\n mdi.Storage(1).UnitIdx = mdi.mpc.iess;\n ns = length(mdi.Storage.UnitIdx);\n Minstor = zeros(ns,1);\n Maxstor = 200 * ones(ns,1);\n %mdi.Storage.MinStorageLevel = zeros(ns,1);\n %mdi.Storage.MaxStorageLevel = 200 * ones(ns,1);\n mdi.Storage.InitialStorage = 50 * ones(ns,1);\n mdi.Storage.InitialStorageLowerBound = 50*ones(ns,1);\n mdi.Storage.InitialStorageUpperBound = 50*ones(ns,1);\n mdi.Storage.OutEff = 0.95 * ones(ns,1);\n mdi.Storage.InEff = 0.9 * ones(ns ,1);\n mdi.Storage.InitialStorageCost = 35 * ones(ns, 1);\n mdi.Storage.TerminalStoragePrice = 35 * ones(ns, 1); % applied to psc_tij0, psd_tij0 (non-terminal states)\n mdi.Storage.TerminalChargingPrice0 = 35 * ones(ns, 1); % applied to psc_tijk (contingency terminal states)\n mdi.Storage.TerminalDischargingPrice0 = 35 * ones(ns, 1); % applied to psd_tijk (contingency terminal states)\n mdi.Storage.TerminalChargingPriceK = 10 * ones(ns, 1); % applied to psc_tij0 (end-of-horizon terminal states)\n mdi.Storage.TerminalDischargingPriceK = 40 * ones(ns, 1); % applied to psd_tij0 (end-of-horizon terminal states)\n mpopt = mpoption(mpopt, 'most.storage.terminal_target', 0);\n mdi.Storage.ExpectedTerminalStorageAim = mdi.Storage.InitialStorage; % expected terminal storage if mpopt.most.storage.terminal_target is true\n mdi.Storage.LossFactor = zeros(ns,1); % fraction of storage lost in each period\n mdi.Storage.IncludeValueOfTerminalStorage = 1;\n mpopt = mpoption(mpopt, 'most.storage.cyclic', 1);\n\n for t = 1:nt\n mdi.offer(t).gencost = mdi.mpc.gencost;\n mdi.offer(t).PositiveActiveReservePrice = PositiveActiveReservePrice;\n mdi.offer(t).PositiveActiveReserveQuantity = PositiveActiveReserveQuantity;\n mdi.offer(t).NegativeActiveReservePrice = NegativeActiveReservePrice;\n mdi.offer(t).NegativeActiveReserveQuantity = NegativeActiveReserveQuantity;\n mdi.offer(t).PositiveActiveDeltaPrice = PositiveActiveDeltaPrice;\n mdi.offer(t).NegativeActiveDeltaPrice = NegativeActiveDeltaPrice;\n mdi.offer(t).PositiveLoadFollowReservePrice = PositiveLoadFollowReservePrice;\n mdi.offer(t).PositiveLoadFollowReserveQuantity = PositiveLoadFollowReserveQuantity;\n mdi.offer(t).NegativeLoadFollowReservePrice = NegativeLoadFollowReservePrice;\n mdi.offer(t).NegativeLoadFollowReserveQuantity = NegativeLoadFollowReserveQuantity;\n mdi.Storage.MinStorageLevel(:,t) = Minstor;\n mdi.Storage.MaxStorageLevel(:,t) = Maxstor;\n end\n mdi.Storage.MinStorageLevel(:,nt+1) = Minstor; % Needed if mpopt.most.storage.cyclic\n mdi.Storage.MaxStorageLevel(:,nt+1) = Maxstor;\n\n %mdi.Storage.MinStorageLevel(:,4) = [10 ; 10]; % is this enough to create infeasibility?\n %mdi.Storage.MaxStorageLevel(:,4) = [10; 50 ];\n\n mdi.UC.CommitSched = ones(ng,nt);\n\n mdi.Delta_T = 1;\n % 0:0 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00\n loadprof = [ 0.6 0.6 0.6 0.7 0.75 0.8 0.9 1.1 1.2 1.3 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.3 1.1 1.1 1.0 0.9 0.8 0.7 ];\n\n\n % label probability type row column chg type newvalue\n partialcontabrow =[ 1 0 CT_TBUS 0 PD CT_REL ];\n %mdi.tstep(1).OpCondSched(1).tab= [\n % 1 0 CT_TBUS 0 PD CT_REL 0.8 ];\n %mdi.tstep(2).OpCondSched(1).tab= [\n % 1 0 CT_TBUS 0 PD CT_REL 1.0 ];\n %mdi.tstep(3).OpCondSched(1).tab= [\n % 1 0 CT_TBUS 0 PD CT_REL 1.2 ];\n %mdi.tstep(4).OpCondSched(1).tab= [\n % 1 0 CT_TBUS 0 PD CT_REL 0.9 ];\n\n for t = 1:nt\n mdi.tstep(t).OpCondSched(1).tab = [ partialcontabrow loadprof(t) ];\n end\n\n\n for t = 1:nt\n mdi.tstep(t).OpCondSched(2).tab = mdi.tstep(t).OpCondSched(1).tab;\n mdi.tstep(t).OpCondSched(2).tab(1,7) = 1.1*mdi.tstep(t).OpCondSched(2).tab(1,7);\n mdi.tstep(t).OpCondSched(3).tab = mdi.tstep(t).OpCondSched(1).tab;\n mdi.tstep(t).OpCondSched(3).tab(1,7) = 0.9*mdi.tstep(t).OpCondSched(1).tab(1,7);\n end\n\n\n contab = [% 1 0.01 CT_TBUS 0 PD CT_REL 1.05 ;\n 1 0.01 CT_TGEN 2 GEN_STATUS CT_REP 0 ;\n 2 0.01 CT_TGEN 5 GEN_STATUS CT_REP 0 ;\n ];\n\n for t = 1:nt\n for j = 1:3 % mdi.idx.nj(t)\n mdi.cont(t,j).contab = contab;\n end\n end\n\n\n\n mdi.tstep(1).TransMat = [ 1/3;\n 1/3\n 1/3];\n for t = 2:nt\n mdi.tstep(t).TransMat = 1/3 * ones(3,3);\n end\n\n\n ntds = 24;\n mdi.idx.ntds = ntds;\n m1 = 8;\n m2 = 12;\n B = sparse(m1*m2, ng);\n ilist = [ 2 3 4 5 3 4 5 6 3 4 5 7 3 4 5 7 3 4 5 6 4 5 6 7 2 3 4 ];\n jlist = [ 2 2 2 2 3 3 3 3 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 11 11 11 ];\n for i = 1:length(mdi.mpc.icoal)\n B((jlist(i)-1)*m1+ilist(i), mdi.mpc.icoal(i)) = 0.1;\n end\n A = mkdif(m1, m2, 0.5, 0.97, [1.0 0]);\n C = [];\n D = [];\n zmin = zeros(m1*m2, 1);\n zmax = 100*ones(m1*m2, 1);\n ymin = 0;\n ymax = 100;\n for t = 1:ntds\n mdi.dstep(t).A = A;\n mdi.dstep(t).B = B;\n mdi.dstep(t).C = C;\n mdi.dstep(t).D = D;\n mdi.dstep(t).zmin = zmin;\n mdi.dstep(t).zmax = zmax;\n mdi.dstep(t).ymin = ymin;\n mdi.dstep(t).ymax = ymax;\n end\n mdi.z1 = zeros(m1*m2, 1);\n\n mdo = most(mdi, mpopt);\n\n s = load(solnfile);\n\n t = 'success';\n t_is(mdo.results.success, 1, 12, t);\n\n t = 'objective function value (f)';\n t_is(mdo.QP.f, 1593399.5, -0.5, t);\n% 1593399.487 % CPLEX ~25 sec\n% 1594112.218 % GUROBI ~183 sec (fails)\n% 1593400.863 % MOSEK ~10 sec\n% 1593399.481 % OT ~88 sec\n\n t = 'dynamical system state (Z)';\n t_is(mdo.results.Z, s.Z, 4, t);\n\n % Z = mdo.results.Z;\n % save t_most_w_ds_z Z\nelse\n t_skip(3, 'requires MOSEK, CPLEX, Gurobi or quadprog');\nend\n\n% YorN = input('Play movie? (y/n) : ', 's');\n% if strcmp(upper(YorN(1)), 'Y')\n% domovie;\n% end\n\nt_end\n\nfunction A = mkdif(m1, m2, alpha, r, w)\n% A = mkdif(m1, m2, r, w)\n%\n% computes an A matrix for the difussion equations in an m1 x m2 grid,\n% using a difussion speed factor alpha <= 1, a dissipation factor r < 1 and\n% a \"wind\" vector w = [wx wy] that roughly tells where the pollutants go.\n\n% Carlos Murillo. As naive as can be.\n\nif norm(w) > 1\n w = w / norm(w);\nend\n\nn = m1 * m2;\nA = sparse(n, n);\nnorth = alpha / 4;\neast = north;\nsouth = north;\nwest = north;\nself = (1-alpha);\nif w(1) > 0\n west = west + w(1)*self;\n self = (1-w(1)) * self;\nelseif w(2) < 0\n east = east + (-w(1))*self;\n self = (1+w(1)) * self;\nend\nif w(2) > 0\n south = south + w(2)*self;\n self = (1-w(2)) * self;\nelseif w(2) < 0\n north = north + (-w(2))*self;\n self = (1+w(2)) * self;\nend\ntot = self + north + south + east + west;\nself = (r/tot) * self;\nnorth = (r/tot) * north;\nsouth = (r/tot) * south;\neast = (r/tot) * east;\nwest = (r/tot) * west;\n\nfor i = 1:m1\n for j = 1:m2\n A((j-1)*m1+i, (j-1)*m1+i) = self;\n % North\n if i > 1\n A((j-1)*m1+i, (j-1)*m1+i-1) = north;\n end\n % South\n if i < m1\n A((j-1)*m1+i, (j-1)*m1+i+1) = south;\n end\n % West\n if j > 1\n A((j-1)*m1+i, (j-2)*m1+i) = west;\n end\n % East\n if j < m2\n A((j-1)*m1+i, j*m1+i) = east;\n end\n end\nend\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/most/lib/t/t_most_w_ds.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.39136262009087475}} {"text": "function obj = loadDynamics(obj, file_path, mmat_names, mmat_ddx_names, vf_names, varargin)\n % load the symbolic expression of system dynamical equations from MX\n % binary files for fast loading\n %\n % Parameters:\n % file_path: the path to the files @type char\n % vf_names: the names of the drift vectors Fvec @type cellstr\n % skip_load_vf: indicates whether to skip the loading of drift vectors\n % which could takes a long time @type logical\n \n \n opts = struct(varargin{:});\n if isfield(opts, 'DelayCoriolisSet')\n delay_set = opts.DelayCoriolisSet;\n else\n delay_set = false;\n end\n \n x = obj.States.x;\n % load the mass matrix using the default name \n \n if ~isempty(mmat_names)\n \n for i=1:numel(mmat_names)\n mmat_name = mmat_names{i};\n mmat_ddx_name = mmat_ddx_names{i};\n M = SymFunction(mmat_name,[],{x});\n M = load(M,file_path);\n [nr,nc] = size(M);\n assert(nr==obj.numState && nc==obj.numState,...\n 'The size of the mass matrix should be (%d x %d).',obj.numState,obj.numState);\n \n obj.Mmat{i} = M;\n \n if strcmp(obj.Type,'SecondOrder') \n ddx = obj.States.ddx;\n MmatDx = SymFunction(mmat_ddx_name,[],{x,ddx});\n else\n dx = obj.States.dx;\n MmatDx = SymFunction(mmat_ddx_name,[],{x,dx});\n end\n MmatDx = load(MmatDx,file_path);\n obj.MmatDx{i} = MmatDx;\n end\n else\n mmat_ddx_name = ['MmatDx_' obj.Name];\n obj.Mmat = [];\n if strcmp(obj.Type,'SecondOrder') \n ddx = obj.States.ddx;\n obj.MmatDx = SymFunction(mmat_ddx_name,-ddx,{x,ddx});\n else\n dx = obj.States.dx;\n obj.MmatDx = SymFunction(mmat_ddx_name,-dx,{x,dx});\n end\n end\n obj.MmatName_ = cellfun(@(f)f.Name, obj.Mmat,'UniformOutput',false);\n \n \n \n % load the drift vector\n if nargin > 4\n if ~iscell(vf_names), vf_names = {vf_names}; end\n vf = cell(size(vf_names));\n for i=1:numel(vf_names)\n \n if strcmp(obj.Type,'SecondOrder') % second order system\n sfun_vf = SymFunction(vf_names{i},[],{obj.States.x,obj.States.dx});\n else % first order system\n sfun_vf = SymFunction(vf_names{i},[],{obj.States.x});\n end\n if ~isempty(vf_names{i}) && ~delay_set\n sfun_vf = load(sfun_vf, file_path);\n end\n vf{i} = sfun_vf;\n \n end\n obj.Fvec = vf;\n obj.FvecName_ = cellfun(@(f)f.Name, vf,'UniformOutput',false);\n end\n \nend", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/system/@ContinuousDynamics/loadDynamics.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722127, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3913626200908747}} {"text": "function imageInGray_InSpatialDomain = IFFT_image(imageInGray_fft_amplitudeOnly, imageInGray_fft_phaseOnly)\n%IFFT_IMAGE \n\n% interleaved the 2 FFT2 results\nimage_amplitudeWith_phaseInFreqDomain = imageInGray_fft_amplitudeOnly.*imageInGray_fft_phaseOnly;\n% take only the real parts\nimageInGray_InSpatialDomain = real(ifft2(image_amplitudeWith_phaseInFreqDomain));\n\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/29671-importance-of-image-phase-information-demo/IFFT_image.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.705785040214066, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.391336959409607}} {"text": "function test_bug1248\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_preprocessing preproc\n\nfor samp=[25 98 999]\n for fs=[235 943]\n data = [];\n data.hdr.Fs = fs;\n data.hdr.label = {'fakechan1','fakechan2','fakechan3'};\n data.fsample = fs;\n data.label = {'fakechan1','fakechan2','fakechan3'};\n data.trial = {rand(3,samp),rand(3,samp+1),rand(3,samp+2)};\n data.time = {1/fs:1/fs:samp/fs,1/fs:1/fs:(samp+1)/fs,1/fs:1/fs:(samp+2)/fs};\n \n cfg = [];\n cfg.hpfreq = 2;\n cfg.hpfiltord = [];\n cfg.hpfilter = 'yes';\n cfg.hpfilttype = 'fir';\n data = ft_preprocessing(cfg,data);\n \n cfg = [];\n cfg.hpfreq = 2;\n cfg.hpfiltord = [];\n cfg.hpfilter = 'yes';\n cfg.hpfilttype = 'firls';\n data = ft_preprocessing(cfg,data);\n \n % no problem originally here\n cfg = [];\n cfg.lpfreq = 20;\n cfg.lpfiltord = [];\n cfg.lpfilter = 'yes';\n cfg.lpfilttype = 'fir';\n data = ft_preprocessing(cfg,data);\n \n cfg = [];\n cfg.bpfreq = [2 20];\n cfg.bpfiltord = [];\n cfg.bpfilter = 'yes';\n cfg.bpfilttype = 'fir';\n data = ft_preprocessing(cfg,data);\n \n cfg = [];\n cfg.bsfreq = [2 20];\n cfg.bsfiltord = [];\n cfg.bsfilter = 'yes';\n cfg.bsfilttype = 'fir';\n data = ft_preprocessing(cfg,data);\n \n cfg = [];\n cfg.bsfreq = [2 20];\n cfg.bsfiltord = [];\n cfg.bsfilter = 'yes';\n cfg.bsfilttype = 'firls';\n data = ft_preprocessing(cfg,data);\n \n end\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug1248.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850402140659, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.39133695940960694}} {"text": "function pick = nms(boxes, overlap)\n% Non-maximum suppression.\n% pick = nms(boxes, overlap) \n% \n% Greedily select high-scoring detections and skip detections that are \n% significantly covered by a previously selected detection.\n%\n% Return value\n% pick Indices of locally maximal detections\n%\n% Arguments\n% boxes Detection bounding boxes (see pascal_test.m)\n% overlap Overlap threshold for suppression\n% For a selected box Bi, all boxes Bj that are covered by \n% more than overlap are suppressed. Note that 'covered' is\n% is |Bi \\cap Bj| / |Bj|, not the PASCAL intersection over \n% union measure.\n\n% AUTORIGHTS\n% -------------------------------------------------------\n% Copyright (C) 2011-2012 Ross Girshick\n% Copyright (C) 2008, 2009, 2010 Pedro Felzenszwalb, Ross Girshick\n% Copyright (C) 2007 Pedro Felzenszwalb, Deva Ramanan\n% \n% This file is part of the voc-releaseX code\n% (http://people.cs.uchicago.edu/~rbg/latent/)\n% and is available under the terms of an MIT-like license\n% provided in COPYING. Please retain this notice and\n% COPYING if you use this file (or a portion of it) in\n% your project.\n% -------------------------------------------------------\n\nif isempty(boxes)\n pick = [];\nelse\n x1 = boxes(:,1);\n y1 = boxes(:,2);\n x2 = boxes(:,3);\n y2 = boxes(:,4);\n s = boxes(:,end);\n area = (x2-x1+1) .* (y2-y1+1);\n\n [vals, I] = sort(s);\n pick = [];\n while ~isempty(I)\n last = length(I);\n i = I(last);\n pick = [pick; i];\n suppress = [last];\n for pos = 1:last-1\n j = I(pos);\n xx1 = max(x1(i), x1(j));\n yy1 = max(y1(i), y1(j));\n xx2 = min(x2(i), x2(j));\n yy2 = min(y2(i), y2(j));\n w = xx2-xx1+1;\n h = yy2-yy1+1;\n if w > 0 && h > 0\n % compute overlap \n o = w * h / area(j);\n if o > overlap\n suppress = [suppress; pos];\n end\n end\n end\n I(suppress) = [];\n end \nend\n", "meta": {"author": "rbgirshick", "repo": "voc-dpm", "sha": "c0b88564bd668bcc6216bbffe96cb061613be768", "save_path": "github-repos/MATLAB/rbgirshick-voc-dpm", "path": "github-repos/MATLAB/rbgirshick-voc-dpm/voc-dpm-c0b88564bd668bcc6216bbffe96cb061613be768/test/nms.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.39133695254689577}} {"text": "%% Import Script for EBSD Data\n%\n% This script was automatically created by the import wizard. You should\n% run the whoole script or parts of it in order to import your data. There\n% is no problem in making any changes to this script.\n\n%% Specify Crystal and Specimen Symmetries\n\n% crystal symmetry\nCS = {crystal symmetry};\n\n% plotting convention\nsetMTEXpref('xAxisDirection',{xAxisDirection});\nsetMTEXpref('zAxisDirection',{zAxisDirection});\n\n%% Specify File Names\n\n% path to files\npname = {path to files};\n\n% which files to be imported\nfname = {file names};\n\n%% Z-Values\n\nZ = {Z-values};\n\n%% Import the Data\n\n% create an EBSD variable containing the data\nebsd = EBSD.load(fname,CS,'interface',{interface},{Z},{options});\n\n%% Correct Data\n\nrot = rotation.byEuler({phi1},{Phi},{phi2});\nebsd = rotate(ebsd,rot,{rotationOption});\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/templates/import/loadEBSDtemplate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370111, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.39133695254689566}} {"text": "function [f, g] = fgplvmSequenceObjectiveGradient(xvec, model, Y)\n\n% FGPLVMSEQUENCEOBJECTIVEGRADIENT Wrapper function for objective\n% and gradient of a single sequence in latent space and the corresponding output sequence.\n% FORMAT\n% DESC provides a wrapper function for the negative log probability\n% of a given data sequence under the posterior distribution of the\n% Gaussian process induced by the training data..\n% ARG vecx : time ordered locations in input space for the sequence\n% placed as a vector using the matlab X(:)' notation.\n% ARG model : the model structure for which the negative log\n% probability of the given data under the posterior is to be computed.\n% ARG Y : time ordered locations in data spaces for the sequence.\n% RETURN f : the negative of the log probability of the given data\n% sequence under the posterior distribution induced by the training data.\n% RETURN g : the gradient of the negative of the returned log probability\n% with respect to the latent sequence.\n% \n% SEEALSO : fgplvmCreate, fgplvmSequenceLogLikelihood, fgplvmOptimiseSequence\n%\n% COPYRIGHT : Neil D. Lawrence, 2006\n\n% FGPLVM\n\n% Check how the optimiser has given the parameters\nif size(xvec, 1) > size(xvec, 2)\n % As a column vector ... transpose everything.\n transpose = true;\n X = reshape(xvec', size(Y, 1), model.q);\nelse\n transpose = false;\n X = reshape(xvec, size(Y, 1), model.q);\nend\nf = - fgplvmSequenceLogLikelihood(model, X, Y);\n\nif nargout > 1\n g = - fgplvmSequenceLogLikeGradient(model, X, Y);\n g = g(:)'; \nend\nif transpose\n g = g';\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/fgplvm/fgplvmSequenceObjectiveGradient.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850154599562, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.39133694568418426}} {"text": "filename='Cantilever_quad_fine';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'compliance';'perimeter'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\noptimizer = 'IPOPT'; \nincrementFactor = 1;\ndesignVariable = 'Density';\nfilterType = 'P1';\n\nnsteps = 5;\nVfrac_final = 0.4;\nPerimeter_target = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-2;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Cantilever/CantileverQuadFine_Case_4_2_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.782662489091802, "lm_q2_score": 0.5, "lm_q1q2_score": 0.391331244545901}} {"text": "% +IOSR\n% \n% Contents file for +IOSR and its subfolders.\n% \n% +IOSR\n% iosr.install - Set search paths, and download and install dependencies\n% \n% +IOSR/+ACOUSTICS\n% iosr.acoustics.irStats - Calculate RT, DRR, Cte, and EDT for impulse response file\n% iosr.acoustics.rtEst - Estimate reverberation time based on room size and absorption\n% \n% +IOSR/+AUDITORY\n% iosr.auditory.azimuth2itd - Convert azimuth in degrees to ITD\n% iosr.auditory.binSearch - Conduct a binary search\n% iosr.auditory.calcIld - Calculate normalised interaural level difference\n% iosr.auditory.chXcorr - Calculate cross-correlograms with a wide range of options\n% iosr.auditory.chXcorr2 - Calculate cross-correlograms with a range of options\n% chXcorr2_c.c\n% chXcorr_c.c\n% iosr.auditory.createWindow - Create a Hann or exp. window with specified onsets/offsets\n% iosr.auditory.dupWeight - Calculate duplex weighting coefficients for ITD and ILD\n% iosr.auditory.erbRate2hz - Convert ERB rate to Hz\n% iosr.auditory.freqMulti - Calculate frequency coefficient for ITD-azimuth warping\n% iosr.auditory.gammatoneFast - Produce an array of responses from gammatone filters via FFT\n% iosr.auditory.hz2erbRate - Convert Hz to ERB rate\n% iosr.auditory.iso226 - ISO 226:2003 Normal equal-loudness-level contours\n% iosr.auditory.itd2azimuth - Convert ITD to azimuth\n% iosr.auditory.lindemannInh - Signal pre-processing for Lindemann's cross-correlation\n% iosr.auditory.loudWeight - Calculate loudness weighting coefficients\n% iosr.auditory.makeErbCFs - Make a series of center frequencies equally spaced in ERB-rate\n% iosr.auditory.meddisHairCell - Calculate Ray Meddis' hair cell model for a number of channels\n% iosr.auditory.perceptualCentroid - Perceptual spectral centroid\n% iosr.auditory.perceptualCentroid2 - Alternative perceptual spectral centroid\n% iosr.auditory.xcorrLindemann - Cross-correlation based on Lindemann's precedence model\n% xcorrLindemann_c.c\n% \n% +IOSR/+BSS\n% iosr.bss.applyIdealMasks - Calculate and apply ideal masks via STFT\n% iosr.bss.applyMask - Apply a time-frequency mask to an STFT\n% iosr.bss.calcImr - Calculates the Ideal Mask Ratio (IMR)\n% iosr.bss.calcSnr - Calculate the separation SNR\n% iosr.bss.cfs2fcs - Calculate gammatone crossover frequencies\n% iosr.bss.example - Determine STFT parameters\n% iosr.bss.generateMixtures - Generate arrays of mixtures from targets and interferers\n% iosr.bss.getFullMask - Convert frame rate mask to a sample-by-sample mask\n% iosr.bss.idealMasks - Calculate ideal time-frequency masks from STFTs\n% iosr.bss.mixture - Class of sound source separation mixture\n% iosr.bss.resynthesise - Resynthesise a target from a time-frequency mask\n% iosr.bss.source - Class of sound source separation source\n% \n% +IOSR/+DSP\n% iosr.dsp.audio - Abstract superclass providing audio-related properties and methods\n% iosr.dsp.autocorr - Perform autocorrelation via FFT\n% iosr.dsp.convFft - Convolve two vectors using FFT multiplication\n% iosr.dsp.istft - Calculate the Inverse Short-Time Fourier Transform\n% iosr.dsp.lapwin - Laplace window\n% iosr.dsp.localpeaks - Find local peaks and troughs in a vector\n% iosr.dsp.ltas - Calculate the long-term average spectrum of a signal\n% iosr.dsp.matchEQ - Match the LTAS of a signal to an arbitrary spectral magnitude\n% iosr.dsp.rcoswin - Raised cosine window\n% iosr.dsp.rms - Calculate the rms of a vector or matrix\n% iosr.dsp.sincFilter - Apply a near-ideal low-pass or band-pass brickwall filter\n% iosr.dsp.smoothSpectrum - Apply 1/N-octave smoothing to a frequency spectrum\n% iosr.dsp.stft - Calculate the short-time Fourier transform of a signal\n% iosr.dsp.vsmooth - Smooth a vector using mathematical functions\n% \n% +IOSR/+FIGURES\n% iosr.figures.chMap - Create a monochrome-compatible colour map\n% iosr.figures.cmrMap - Create a monochrome-compatible colour map\n% iosr.figures.multiwaveplot - Stacked line plots from a matrix or vectors\n% iosr.figures.subfigrid - Create axis positions for subfigures\n% \n% +IOSR/+GENERAL\n% iosr.general.cell2csv - Output a cell array to a CSV file\n% iosr.general.checkMexCompiled - Check if mex file is compiled for system\n% iosr.general.getContents - Get the contents of a specified directory\n% iosr.general.updateContents - Create a Contents.m file including subdirectories\n% iosr.general.urn - Generate random number sequence without duplicates\n% \n% +IOSR/+STATISTICS\n% iosr.statistics.boxPlot - Draw a box plot\n% iosr.statistics.functionalBoxPlot - Draw a functional boxplot\n% iosr.statistics.functionalPlot - Abstract superclass for functional plots\n% iosr.statistics.functionalSpreadPlot - Draw a functional plot showing data spread\n% iosr.statistics.getRmse - Calculate the root-mean-square error between input data\n% iosr.statistics.laprnd - Pseudorandom numbers drawn from the Laplace distribution\n% iosr.statistics.qqPlot - Quantile-quantile plot with patch option\n% iosr.statistics.quantile - Quantiles of a sample via various methods\n% iosr.statistics.statsPlot - An abstract superclass for classes that plot statistics\n% iosr.statistics.tab2box - Prepare tabular data for boxPlot function\n% iosr.statistics.trirnd - Pseudorandom numbers drawn from the triangular distribution\n% \n% +IOSR/+SVN\n% iosr.svn.buildSvnProfile - Read data from files tagged with SVN keywords\n% iosr.svn.headRev - Retrieve the head revision for specified files\n% iosr.svn.readSvnKeyword - Read data from a file tagged with an SVN keyword\n% \n% This file was generated by updateContents.m on 31 May 2017 at 17:06:32.\n", "meta": {"author": "IoSR-Surrey", "repo": "MatlabToolbox", "sha": "4bff1bb2da7c95de0ce2713e7c710a0afa70c705", "save_path": "github-repos/MATLAB/IoSR-Surrey-MatlabToolbox", "path": "github-repos/MATLAB/IoSR-Surrey-MatlabToolbox/MatlabToolbox-4bff1bb2da7c95de0ce2713e7c710a0afa70c705/+iosr/Contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583376458153, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3912514230200212}} {"text": "function depthRefined = SiftFuv2warp(sequenceName,frameIDtarget, interval, renderK, renderW, renderH)\n\nif ~exist('sequenceName','var')\n sequenceName = 'Shuran/bedroom_funiturestore/2014-05-26_14-41-22_260595134347';\nend\n\nif ~exist('frameIDtarget','var')\n frameIDtarget = 34; %200;\nend\n\nif ~exist('interval','var')\n interval = 150;\nend\n\ndata = loadSUN3Dv2(sequenceName);\n\nframeIDs = max(frameIDtarget-interval,1):min(data.imageTotalFrames,frameIDtarget+interval);\n\nframes = getRGBDframe(data,frameIDs);\n\nRts = repmat([eye(3) zeros(3,1)],[1,1,length(frameIDs)]);\n\nitarget = find(frameIDs==frameIDtarget);\n\n%{\ndepthOriginal = get_depth(imread(data.depth{frameIDs(itarget)}));\ndepth = denoise(depthOriginal,data.camera.D);\nPCtarget(1,:)=reshape(data.camera.D.X .* depth,1,[]);\nPCtarget(2,:)=reshape(data.camera.D.Y .* depth,1,[]);\nPCtarget(3,:)=reshape(depth .* (~isnan(data.camera.D.X) & ~isnan(data.camera.D.Y)),1,[]);\nPCtarget = PCtarget(:, PCtarget(3,:)>0); \n%}\n\nmatched = false(1,length(frameIDs));\nfor i = 1:length(frameIDs)\n if i~=itarget\n fprintf('matching frame %d and frame %d\\n',frameIDs(itarget),frameIDs(i));\n Rts(:,:,i) = align2RGBD(frames(:,:,:,itarget), frames(:,:,:,i));\n matched(i) = true;\n %{\n depth = get_depth(imread(data.depth{frameIDs(i)}));\n depth = denoise(depth,data.camera.D);\n clear PCi\n PCi(1,:)=reshape(data.camera.D.X .* depth,1,[]);\n PCi(2,:)=reshape(data.camera.D.Y .* depth,1,[]);\n PCi(3,:)=reshape(depth .* (~isnan(data.camera.D.X) & ~isnan(data.camera.D.Y)),1,[]);\n PCi = PCi(:, PCi(3,:)>0); \n\n try\n Rts(:,:,i) = align2RGBD(frames(:,:,:,itarget), frames(:,:,:,i), PCtarget, PCi);\n matched(i) = true;\n catch\n end\n %}\n end\nend\n\n\n% old Kinect\n%renderK = [519.1638 0 320; 0 519.1638 240; 0 0 1];\nif ~exist('renderK','var')\n renderK = data.camera.RGB.K2render; %[519 0 320; 0 519 240; 0 0 1];\nend\nif ~exist('renderW','var')\n renderW = data.camera.RGB.width; %640;\nend\nif ~exist('renderH','var')\n renderH = data.camera.RGB.height; %480;\nend\n\n% new Kinect\n%{\nrenderK = data.camera.D.KK;\nrenderW = data.camera.D.width;\nrenderH = data.camera.D.height;\n%}\n\n\nfor i=1:length(frameIDs) \n if matched(i) || i==itarget\n frameID=frameIDs(i);\n \n XYZcamera = frames(:,:,[5 6 4],i);\n XYZcamera(:,:,4) = XYZcamera(:,:,3)>0;\n %{\n depth = get_depth(imread(data.depth{frameID}));\n XYZcamera(:,:,1)=data.camera.D.X .* depth;\n XYZcamera(:,:,2)=data.camera.D.Y .* depth;\n XYZcamera(:,:,3)=depth .* (~isnan(data.camera.D.X) & ~isnan(data.camera.D.Y));\n XYZcamera(:,:,4)=depth>0 & ~isnan(data.camera.D.X) & ~isnan(data.camera.D.Y);\n %}\n\n [~,undistortDepth(:,:,i)] = WarpDepthMatlab(XYZcamera, renderK, Rts(:,:,i), renderW, renderH);\n end\nend\n\nundistortDepth(undistortDepth(:)==0) = NaN;\n\n%depthRefined = nanmean(undistortDepth,3);\ndepthMedian = nanmedian(undistortDepth,3);\n\n% to preserve details: check the value and the range of all values. if it is 25%-75%, keep the original values\nminV = prctile(undistortDepth,75,3);\nmaxV = prctile(undistortDepth,25,3);\ndepthRaw = undistortDepth(:,:,itarget);\n\nselV = (depthRaw < minV) | (depthRaw > maxV) | isnan(depthRaw);\nind = find(selV);\ndepthRefined = depthRaw;\ndepthRefined(ind) = depthMedian(ind);\n\ndepthRefined(isnan(depthRefined(:)))=0;\n\n%{\n[x,y] = meshgrid(1:renderW, 1:renderH);\nclear X\nX(1,:) = reshape((x-renderK(1,3)).*depthRefined/renderK(1,1),1,[]);\nX(2,:) = reshape((y-renderK(2,3)).*depthRefined/renderK(2,2),1,[]);\nX(3,:) = reshape(depthRefined,1,[]);\nX = X(:,~isnan(depthRefined(:)));\n\n\n% turn\n\nfigure;\nsubplot(2,2,1);\nimagesc(depthOriginal,[0 20]); axis equal; axis tight; axis off; title('raw TOF depth');\n\nsubplot(2,2,2);\nimagesc(depthRefined,[0 20]); axis equal; axis tight; axis off; title('undistorted denoised depth');\n\npoints2ply('pt_denoise101.ply', X);\n%}\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/depthImproveStructureIO/SiftFuv2warp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334527, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3912514159296474}} {"text": "% DEMO2 - Subsetting ncdataset data\necho('on')\n% STARTING DEMO2 ----------------------------------------------------------\n% An example of subsetting data using ncdataset\n\n%% ---- Open the dataset\nds = ncdataset('http://geoport.whoi.edu/thredds/dodsC/examples/OS_M1_20081008_TS.nc');\n\n% You can view the variables available to you\nds.variables\n\n%% Plot all the data\nfigure;\nplot(ds.time('TIME'), ds.data('TEMP', [1 1 1 1], [max(ds.size('TEMP')) 1 1 1], [1 1 1 1]))\nhold('on')\n\n%% ---- Lets fetch a subset of time in Matlab's native format\nstartIdx = 100;\nendIdx = max(ds.size('TIME'));\nstride = 10;\nt = ds.data('TIME', startIdx, endIdx, stride);\nt = ds.time('TIME', t); % Convert time data to matlab format. See help ncdataset.time\n\n%% ---- Now lets get a subset of the temperature data.\n% NOTE: The shape of the variables size is important for subsetting\nds.size('TEMP')\n% Use variable, start, end, stride to subset\ntemp = ds.data('TEMP', [startIdx 1 1 1], [endIdx 1 1 1], [stride 1 1 1]);\n\n%% ---- Add Subsetted Data to Plot \nplot(t, temp, 'r.');...\ndatetick('x', 2);grid;...\nlegend('All Data', 'Decimated Data');...\ntitle({'Surface Temperature at M1 Mooring in Monterey Bay',ds.attribute('references'),ds.location},'interpreter','none');...\nylabel('Temperature [^oC]');\nhold('off');\nshg\n\necho('off') % ENDING DEMO2 ------------------------------------------------\n", "meta": {"author": "nctoolbox", "repo": "nctoolbox", "sha": "af757acccfcac373e35fde89fc8ed7e64b67de82", "save_path": "github-repos/MATLAB/nctoolbox-nctoolbox", "path": "github-repos/MATLAB/nctoolbox-nctoolbox/nctoolbox-af757acccfcac373e35fde89fc8ed7e64b67de82/demos/demo2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318337259584, "lm_q2_score": 0.6477982179521103, "lm_q1q2_score": 0.39122596565222606}} {"text": "% Function of Msg(tri)\nfunction a = msg1(t,Ta)\n\nt1 = -0.02:1.e-4:0;\nt2 = 0:1.e-4:0.02;\n\n\nm1 = 1 - abs((t1+Ta)/Ta);\nm1 = [zeros([1 200]),m1,zeros([1 400])];\nm2 = 1 - abs((t2-Ta)/Ta);\nm2 = [zeros([1 400]),m2,zeros([1 200])];\n\na = m1 - m2;\n\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/34550-fm-matlab-code/msg1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.391225965652226}} {"text": "% pop_resample() - resample dataset (pop up window).\n%\n% Usage:\n% >> [OUTEEG] = pop_resample( INEEG ); % pop up interactive window\n% >> [OUTEEG] = pop_resample( INEEG, freq);\n%\n% Graphical interface:\n% The edit box entitled \"New sampling rate\" contains the frequency in\n% Hz for resampling the data. Entering a value in this box is the same \n% as providing it in the 'freq' input from the command line.\n%\n% Inputs:\n% INEEG - input dataset\n% freq - frequency to resample (Hz) \n%\n% Outputs:\n% OUTEEG - output dataset\n%\n% Author: Arnaud Delorme, CNL/Salk Institute, 2001\n%\n% Note: uses the resample() function from the signal processing toolbox\n% if present. Otherwise use griddata interpolation method (it should be\n% reprogrammed using spline interpolation for speed up).\n%\n% See also: resample(), eeglab()\n\n% Copyright (C) 2001 Arnaud Delorme, Salk Institute, arno@salk.edu\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n\n% 01-25-02 reformated help & license -ad \n% 03-08-02 remove ica activity resampling (now set to []) -ad\n% 03-08-02 debug call to function help -ad\n% 04-05-02 recompute event latencies -ad\n\nfunction [EEG, command] = pop_resample( EEG, freq); \n\ncommand = '';\nif nargin < 1\n help pop_resample;\n return;\nend; \nif isempty(EEG(1).data)\n disp('Pop_resample error: cannot resample empty dataset'); return;\nend; \n\nif nargin < 2 \n\n\t% popup window parameters\n\t% -----------------------\n\tpromptstr = {['New sampling rate']};\n\tinistr = { num2str(EEG(1).srate) };\n\tresult = inputdlg2( promptstr, 'Resample current dataset -- pop_resample()', 1, inistr, 'pop_resample');\n\tif length(result) == 0 return; end;\n\tfreq = eval( result{1} );\n\nend;\n\n% process multiple datasets\n% -------------------------\nif length(EEG) > 1\n [ EEG command ] = eeg_eval( 'pop_resample', EEG, 'warning', 'on', 'params', { freq } );\n return;\nend;\n\n% finding the best ratio\n[p,q] = rat(freq/EEG.srate, 0.0001); % not used right now \n\n% set variable\n% ------------\nEEG.data = reshape(EEG.data, EEG.nbchan, EEG.pnts, EEG.trials);\noldpnts = EEG.pnts;\n\n% resample for multiple channels\n% -------------------------\nif isfield(EEG, 'event') & isfield(EEG.event, 'type') & isstr(EEG.event(1).type)\n tmpevent = EEG.event;\n bounds = strmatch('boundary', { tmpevent.type });\n if ~isempty(bounds),\n disp('Data break detected and taken into account for resampling');\n bounds = [ tmpevent(bounds).latency ];\n if bounds(1) < 0, bounds(1) = []; end; % remove initial boundary if any\n end;\n bounds = [1 round(bounds-0.5)+1 size(EEG.data,2)+1];\n bounds(find(bounds(2:end)-bounds(1:end-1)==0))=[]; % remove doublet boundary if any\nelse \n bounds = [1 size(EEG.data,2)+1]; % [1:size(EEG.data,2):size(EEG.data,2)*size(EEG.data,3)+1];\nend;\nif exist('resample') == 2\n usesigproc = 1;\nelse usesigproc = 0;\n disp('Signal Processing Toolbox absent: using custom interpolation instead of resample() function.');\n disp('This method uses cubic spline interpolation after anti-aliasing (see >> help spline)'); \nend;\n\nfprintf('resampling data %3.4f Hz\\n', EEG.srate*p/q);\nfor index1 = 1:size(EEG.data,1)\n fprintf('%d ', index1);\t\n sigtmp = reshape(EEG.data(index1,:, :), oldpnts, EEG.trials);\n \n if index1 == 1\n tmpres = [];\n indices = [1];\n for ind = 1:length(bounds)-1\n tmpres = [ tmpres; myresample( double( sigtmp(bounds(ind):bounds(ind+1)-1,:)), p, q, usesigproc ) ];\n indices = [ indices size(tmpres,1)+1 ];\n end;\n if size(tmpres,1) == 1, EEG.pnts = size(tmpres,2);\n else EEG.pnts = size(tmpres,1);\n end;\n tmpeeglab = zeros(EEG.nbchan, EEG.pnts, EEG.trials);\n else\n for ind = 1:length(bounds)-1\n tmpres(indices(ind):indices(ind+1)-1,:) = myresample( double( sigtmp(bounds(ind):bounds(ind+1)-1,:) ), p, q, usesigproc );\n end;\n end; \n tmpeeglab(index1,:, :) = tmpres;\nend;\nfprintf('\\n');\t\nEEG.srate = EEG.srate*p/q;\nEEG.data = tmpeeglab;\n\n% recompute all event latencies\n% -----------------------------\nif isfield(EEG.event, 'latency')\n fprintf('resampling event latencies...\\n');\n for index1 = 1:length(EEG.event)\n EEG.event(index1).latency = EEG.event(index1).latency * EEG.pnts /oldpnts;\n end;\n if isfield(EEG, 'urevent') & isfield(EEG.urevent, 'latency')\n try,\n for index1 = 1:length(EEG.event)\n EEG.urevent(index1).latency = EEG.urevent(index1).latency * EEG.pnts /oldpnts;\n end;\n catch, \n disp('pop_resample warning: ''urevent'' problem, reinitializing urevents');\n EEG = rmfield(EEG, 'urevent');\n end;\n end;\n EEG = eeg_checkset(EEG, 'eventconsistency');\nend;\n\n% resample for multiple channels ica\nEEG.icaact = [];\n\n% store dataset\nfprintf('resampling finished\\n');\n\nEEG.setname = [EEG.setname ' resampled'];\nEEG.pnts = size(EEG.data,2);\nEEG.xmax = EEG.xmin + (EEG.pnts-1)/EEG.srate; % cko: recompute xmax, since we may have removed a few of the trailing samples\n\ncommand = sprintf('EEG = pop_resample( %s, %d);', inputname(1), freq);\nreturn;\n\n% resample if resample is not present\n% -----------------------------------\nfunction tmpeeglab = myresample(data, pnts, new_pnts, usesigproc);\n \n if usesigproc\n tmpeeglab = resample(data, pnts, new_pnts);\n return;\n end;\n \n % anti-alias filter\n % -----------------\n data = eegfiltfft(data', 256, 0, 128*pnts/new_pnts);\n \n % spline interpolation\n % --------------------\n X = [1:length(data)];\n nbnewpoints = length(data)*pnts/new_pnts;\n nbnewpoints2 = ceil(nbnewpoints);\n lastpointval = length(data)/nbnewpoints*nbnewpoints2; \n XX = linspace( 1, lastpointval, nbnewpoints2);\n \n cs = spline( X, data);\n tmpeeglab = ppval(cs, XX)';\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/functions/popfunc/pop_resample.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.391225965652226}} {"text": "%% Copyright (C) 2014, 2015, 2019 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\nfunction z = numeric_array_to_sym(A)\n%private helper for sym ctor\n% convert an array to syms, currently on 1D, 2D.\n\n [n, m] = size(A);\n\n if (n == 0 || m == 0)\n cmd = { sprintf('return sp.Matrix(%d, %d, []),', n, m) };\n z = pycall_sympy__ (cmd);\n return\n end\n\n Ac = cell(n,1);\n for i=1:n\n % we want all sym creation to go through the ctor.\n Ac{i} = cell(m,1);\n for j=1:m\n Ac{i}{j} = sym(A(i,j));\n end\n end\n\n %Ac = {{x 2}; {3 4}; {8 9}};\n\n d = size(A);\n if (length(d) > 2)\n error('conversion not supported for arrays of dim > 2');\n end\n\n cmd = { 'L = _ins[0]'\n 'M = sp.Matrix(L)'\n 'return M,' };\n z = pycall_sympy__ (cmd, Ac);\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/private/numeric_array_to_sym.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3912259574392732}} {"text": "classdef AcademicProblem < handle\n\n properties (Access = public)\n result\n end\n \n properties (Access = private)\n cost\n constraint\n optimizer\n filename\n end\n\n methods (Access = public)\n\n function obj = AcademicProblem(cParams)\n obj.init(cParams);\n obj.compute();\n end\n\n function compute(obj)\n obj.createOptimizer();\n end\n\n end\n\n methods (Access = private)\n\n function init(obj, cParams)\n obj.filename = cParams.filename;\n end\n\n function createOptimizer(obj)\n run(obj.filename);\n d = DesignVariableAcademic();\n d.init(x0);\n j.dV = d;\n c.dV = d;\n s.designVar = d;\n s.cost = AcademicCost(j);\n s.constraint = AcademicConstraint(c);\n s.constraint.nSF = nConstr;\n s.nConstraints = nConstr;\n s.dualVariable = DualVariable(s);\n s.outputFunction.type = \"Academic\";\n s.outputFunction.iterDisplay = \"off\";\n s.outputFunction.monitoring = MonitoringManager(s);\n s.optimizerNames.primal = 'PROJECTED GRADIENT';\n opt = Optimizer.create(s);\n opt.solveProblem();\n obj.result = d.value;\n close all;\n end\n\n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Academic/AcademicProblem.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39118829665891974}} {"text": "function status = checkGamma(Gamma,T,train,subj)\n% Check that the state time courses are well-defined (no NaNs)\n% and that the HMM inference wasn't trapped in a trivial local minima\n\nif nargin<4, subj = 0; end\n\nif any(isnan(sum(Gamma,2)))\n t = find(isnan(sum(Gamma,2)),1);\n if train.order>0\n d = train.order;\n Td = T-d;\n elseif length(train.embeddedlags)>1\n d = length(train.embeddedlags)-1;\n Td = T;\n else\n d = 0;\n Td = T;\n end\n cT = cumsum(Td); \n i = find(cT>t,1);\n t = t + i*d; \n if length(train.embeddedlags)>1, t = t - max(train.embeddedlags); end\n if subj > 0\n str = [' in subject ' num2str(subj) ', '];\n else\n str = ', '; \n end\n disp(['The state time courses have NaN in t=' num2str(t) str 'where t indexes time in the data.'])\n disp('This is probably due to an artifact or an event too extreme to model around that time point.')\n disp('Please check your data arount that time point, and remove or smooth this event')\n\terror('Issue of precision')\nend\n\nK = size(Gamma,2);\nif train.episodic % no checking \n status = 0; \nelse\n status = (all(max(Gamma)<0.6) && all(min(Gamma)>(1/K/2)));\nend\n\nend\n", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/utils/internal/checkGamma.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39118829665891974}} {"text": "classdef TestImageCoordinateUtilities < CoreTest\n % TestImageCoordinateUtilities. Tests for the MimImageCoordinateUtilities class.\n %\n %\n % Licence\n % -------\n % Part of the TD Pulmonary Toolkit. https://github.com/tomdoel/pulmonarytoolkit\n % Author: Tom Doel, 2012. www.tomdoel.com\n % Distributed under the GNU GPL v3 licence. Please see website for details.\n % \n\n methods\n function obj = TestImageCoordinateUtilities\n mock_reporting = CoreMockReporting;\n \n obj.TestGetDimensionPermutationVectorFromDicomOrientation(mock_reporting);\n obj.TestGetDimensionIndicesAsArray(mock_reporting);\n obj.TestGetDimensionIndicesFromOrientations(mock_reporting);\n end\n \n function TestGetDimensionPermutationVectorFromDicomOrientation(obj, mock_reporting)\n \n % Test GetDimensionPermutationVectorFromDicomOrientation\n obj.Assert(isequal(MimImageCoordinateUtilities.GetDimensionPermutationVectorFromDicomOrientation([1 0 0 0 1 0]', mock_reporting), [1, 2, 3]), 'Expected result');\n obj.Assert(isequal(MimImageCoordinateUtilities.GetDimensionPermutationVectorFromDicomOrientation([1 0 0 0 0 1]', mock_reporting), [3, 2, 1]), 'Expected result');\n obj.Assert(isequal(MimImageCoordinateUtilities.GetDimensionPermutationVectorFromDicomOrientation([0 1 0 0 0 1]', mock_reporting), [2, 3, 1]), 'Expected result');\n obj.Assert(isequal(MimImageCoordinateUtilities.GetDimensionPermutationVectorFromDicomOrientation([0.9964, -0.0851, 0, 0, 0, -1.0000]', mock_reporting), [3, 2, 1]), 'Expected result');\n\n end\n \n function TestGetDimensionIndicesAsArray(obj, mock_reporting)\n \n % Test with rows\n obj.Assert(isequal([1,2,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([1,0,0], [0,1,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,1,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,1,0], [1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,1,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,1], [1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([1,3,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([1,0,0], [0,0,1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,3,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,1,0], [0,0,1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,2,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,1], [0,1,0], mock_reporting)), 'Expected result');\n\n % Test with columns\n obj.Assert(isequal([1,2,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([1,0,0]', [0,1,0]', mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,1,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,1,0]', [1,0,0]', mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,1,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,1]', [1,0,0]', mock_reporting)), 'Expected result');\n obj.Assert(isequal([1,3,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([1,0,0]', [0,0,1]', mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,3,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,1,0]', [0,0,1]', mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,2,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,1]', [0,1,0]', mock_reporting)), 'Expected result');\n\n % Test with negatives\n obj.Assert(isequal([1,2,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([-1,0,0], [0,-1,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,1,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,-1,0], [-1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,1,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,-1], [-1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([1,3,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([-1,0,0], [0,0,-1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,3,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,-1,0], [0,0,-1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,2,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,-1], [0,-1,0], mock_reporting)), 'Expected result');\n \n obj.Assert(isequal([1,2,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([-1,0,0], [0,1,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,1,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,-1,0], [1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,1,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,-1], [1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([1,3,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([-1,0,0], [0,0,1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,3,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,-1,0], [0,0,1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,2,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,-1], [0,1,0], mock_reporting)), 'Expected result');\n \n obj.Assert(isequal([1,2,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([1,0,0], [0,-1,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,1,3],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,1,0], [-1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,1,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,1], [-1,0,0], mock_reporting)), 'Expected result');\n obj.Assert(isequal([1,3,2],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([1,0,0], [0,0,-1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([2,3,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,1,0], [0,0,-1], mock_reporting)), 'Expected result');\n obj.Assert(isequal([3,2,1],TestImageCoordinateUtilities.GetDimensionIndicesAsArray([0,0,1], [0,-1,0], mock_reporting)), 'Expected result');\n end\n \n function TestGetDimensionIndicesFromOrientations(obj, mock_reporting)\n obj.Assert(isequal([1,2,3,0,0,1],TestImageCoordinateUtilities.GetCombinedDimensionPermutationVectorFromDicomOrientation([1,0,0,0,1,0], mock_reporting)), 'Expected result');\n end\n end\n \n methods (Static, Access = private)\n function dims_array = GetDimensionIndicesAsArray(v1, v2, reporting)\n [d1, d2, d3] = MimImageCoordinateUtilities.GetDimensionIndicesFromOrientations(v1, v2, reporting);\n dims_array = [d1, d2, d3];\n end\n \n function combined_array = GetCombinedDimensionPermutationVectorFromDicomOrientation(orientation, reporting)\n [permutation_vector, flip] = MimImageCoordinateUtilities.GetDimensionPermutationVectorFromDicomOrientation(orientation, reporting);\n combined_array = [permutation_vector, flip];\n end\n end\nend\n\n", "meta": {"author": "tomdoel", "repo": "pulmonarytoolkit", "sha": "09688a006d548fb85795df0338d1ed4f4a010fb9", "save_path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit", "path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit/pulmonarytoolkit-09688a006d548fb85795df0338d1ed4f4a010fb9/Test/TestImageCoordinateUtilities.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.39118829665891974}} {"text": "function [fMshift, fProbability, fAICc, mProblikelihood, bH, bH2] = calc_loglikelihood_dM2(mCat1, mCat2)\n% function [fMshift, fProbability, fAICc, mProblikelihood, bH] = calc_loglikelihood_dM2(mCat1, mCat2);\n% ----------------------------------------------------------------------------------------------------\n% Calculate log-likelihood estimation of magnitude shift dM between to periods; use power-law\n% approximation to first time period for comparison\n%\n% Incoming variable\n% mCat1 : EQ catalog period 1\n% mCat2 : EQ catalog period 2 (Observed catalog)\n%\n% Outgoing variable\n% fProbability : log-likelihood probabilty\n% fMshift : Magnitude shift with the lowest max. lieklihood score\n% fAICc : Corrected Akaike Information Criterion\n% mProblikelihood : Solution matrix shift and likelihood score\n% bH : Result of KSTEST2 hypothesis test at 0.05 significance level\n% bH2 : Result of KSTEST2 hypothesis test at 0.05 significance level on EMR-model\n%\n% Author: J. Woessner, woessner@seismo.ifg,.ethz.ch\n% last update: 02.02.04\n\n% Initialize\nmProblikelihood = [];\nvfProbability = [];\nvMshift = [];\nvMc = [];\nfBinning = 0.1;\n\n% Determine exact time period\nfPeriod1 = max(mCat1(:,3)) - min(mCat1(:,3));\nfPeriod2 = max(mCat2(:,3)) - min(mCat2(:,3));\n\nmCat1Mod = mCat1;\n\nfor fMshift = -0.4:0.1:0.4\n % Apply shift\n mCat1Mod(:,6) = mCat1(:,6)+fMshift;\n % Initialize values\n fMinMag = floor(min([min(mCat1Mod(:,6)) min(mCat2(:,6))]));\n fMaxMag = ceil(max([max(mCat1Mod(:,6)) max(mCat2(:,6))]));\n %% Calculate model for best fitting Mc\n try\n [mResult, fMls, fMc, fMu, fSigma, mDataPred, vPredBest, fBvalue] = calc_McCdfnormal(mCat1Mod, fBinning);\n vPredFMD = mDataPred(:,1)'./fPeriod1;\n vMags = mDataPred(:,2)';\n [vModFMD,vBin1] = hist(mCat1Mod(:,6),fMinMag:0.1:fMaxMag);\n [vObsFMD,vBin2] = hist(mCat2(:,6),min(vMags):0.1:max(vMags));\n% figure_w_normalized_uicontrolunits(40)\n% plot(vBin2, vObsFMD./fPeriod2,'bo')\n% hold on\n% plot(vBin1, vModFMD./fPeriod1,'go')\n% plot(vMags,vPredFMD,'r*')\n% hold off\n% drawnow\n % Time normalization and round due to Poisson distribution calculation in calc_log10poisspdf\n vObsFMD = ceil(vObsFMD./fPeriod2);\n % Calculate the likelihoods for both models\n vProb_ = calc_log10poisspdf2(vObsFMD',vPredFMD');\n % Sum the probabilities\n fProbability = (-1) * sum(vProb_);\n vfProbability = [vfProbability; fProbability];\n vMshift = [vMshift; fMshift];\n vMc = [vMc; fMc];\n catch\n vfProbability = [vfProbability; NaN];\n vMshift = [vMshift; NaN];\n vMc = [vMc; NaN];\n end; % of try-catch\nend\n\ntry\n %%% Find the minimum loglikelihood score: if the minimum score is obtained several times, calculate MEAN\n %%% of the magnitude shift\n vdMloglikeli = [vfProbability vMshift];\n vSel = (vdMloglikeli == nan(vdMloglikeli(:,1)));\n vdMloglikeli = vdMloglikeli(vSel,:);\n if length(vdMloglikeli(:,1)) > 1\n fProbability = min(vdMloglikeli(:,1));\n fMshift = roundn(mean(vdMloglikeli(:,2)),-1);\n else\n fProbability = vdMloglikeli(:,1);\n fMshift = vdMloglikeli(:,2);\n end\n % KS-Test\n [bH,fPval,fKsstat] = kstest2(roundn(mCat2(:,6),-1),roundn(mCat1(:,6)+fMshift,-1),0.05,0);\n % Solution matrix\n mProblikelihood = [vMc vMshift vfProbability];\n nDegFree = 1; % Magnitude shift is the degree of freedom\n n_samples = length(mCat1(:,6))+length(mCat2(:,6));\n %% Corrected Akaike Information Criterion (AICc)\n fAICc = -2*(-fProbability)+2*nDegFree+2*nDegFree*(nDegFree+1)/(n_samples-nDegFree-1);\n\n % KSTest on Model\n vMag1 = [];\n mCat1Mod(:,6) = mCat1(:,6)+fMshift;\n [mResult, fMls, fMc, fMu, fSigma, mDataPred, vPredBest, fBvalue] = calc_McCdfnormal(mCat1Mod, fBinning);\n mPredFMD = mDataPred;\n %mPredFMD(:,1) = ceil(mDataPred(:,1)./fPeriod1);\n vSel = (mPredFMD(:,2) ~= 0); % Remove bins with zero frequency of zero events\n mData2 = mPredFMD(vSel,:);\n for nCnt=1:length(mData2(:,1))\n fM = repmat(mData2(nCnt,2),mData2(nCnt,1),1);\n vMag1 = [vMag1; fM];\n end\n [bH2,fPval2,fKsstat2] = kstest2(roundn(mCat2(:,6),-1),roundn(vMag1,-1),0.05,0);\n\ncatch\n mProblikelihood = [NaN NaN NaN];\n fAICc = NaN;\n fMshift = NaN;\n fProbability = NaN;\n bH = NaN;\n bH2 = NaN;\nend; % of try-catch\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/calc_loglikelihood_dM2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585669110202, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3911882903881094}} {"text": "function mpc = case9target\n%CASE9TARGET Target injection power flow data for 9 bus, 3 generator case.\n% Please see CASEFORMAT for details on the case file format.\n%\n% Modified version of case9.m used as target for example CPF.\n\n% MATPOWER\n\n%% MATPOWER Case Format : Version 2\nmpc.version = '2';\n\n%%----- Power Flow Data -----%%\n%% system MVA base\nmpc.baseMVA = 100;\n\n%% bus data\n%\tbus_i\ttype\tPd\tQd\tGs\tBs\tarea\tVm\tVa\tbaseKV\tzone\tVmax\tVmin\nmpc.bus = [\n\t1\t3\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t2\t2\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t3\t2\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t4\t1\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t5\t1\t305.4\t123.15\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t6\t1\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t7\t1\t214.11\t71.09\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t8\t1\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t9\t1\t235.61\t81.44\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n];\n\n%% generator data\n%\tbus\tPg\tQg\tQmax\tQmin\tVg\tmBase\tstatus\tPmax\tPmin\tPc1\tPc2\tQc1min\tQc1max\tQc2min\tQc2max\tramp_agc\tramp_10\tramp_30\tramp_q\tapf\nmpc.gen = [\n\t1\t72.3\t27.03\t300\t-300\t1.04\t100\t1\t250\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t2\t248\t0\t300\t-300\t1.025\t100\t1\t300\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t3\t124.59\t0\t300\t-300\t1.025\t100\t1\t270\t10\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n];\n\n%% branch data\n%\tfbus\ttbus\tr\tx\tb\trateA\trateB\trateC\tratio\tangle\tstatus\tangmin\tangmax\nmpc.branch = [\n\t1\t4\t0\t0.0576\t0\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t4\t5\t0.017\t0.092\t0.158\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t5\t6\t0.039\t0.17\t0.358\t150\t150\t150\t0\t0\t1\t-360\t360;\n\t3\t6\t0\t0.0586\t0\t300\t300\t300\t0\t0\t1\t-360\t360;\n\t6\t7\t0.0119\t0.1008\t0.209\t150\t150\t150\t0\t0\t1\t-360\t360;\n\t7\t8\t0.0085\t0.072\t0.149\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t8\t2\t0\t0.0625\t0\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t8\t9\t0.032\t0.161\t0.306\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t9\t4\t0.01\t0.085\t0.176\t250\t250\t250\t0\t0\t1\t-360\t360;\n];\n\n%%----- OPF Data -----%%\n%% generator cost data\n%\t1\tstartup\tshutdown\tn\tx1\ty1\t...\txn\tyn\n%\t2\tstartup\tshutdown\tn\tc(n-1)\t...\tc0\nmpc.gencost = [\n\t2\t1500\t0\t3\t0.11\t5\t150;\n\t2\t2000\t0\t3\t0.085\t1.2\t600;\n\t2\t3000\t0\t3\t0.1225\t1\t335;\n];\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/data/case9target.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185318, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3911495999748038}} {"text": "% \n% Usage: AAt =mexCalcAAt(A);\n%\n% Name: mexCalcAAt\n%\n% Description: Compute efficiently AAt = A*A', when A is sparse \n% and has a lot more columns than rows. In some cases, it is\n% up to 20 times faster than the equivalent Matlab expression\n% AAt=A*A';\n%\n% Inputs: A: double sparse m x n matrix \n%\n% Output: AAt: double m x m matrix \n%\n% Author: Julien Mairal, 2009\n\n\n", "meta": {"author": "tiepvupsu", "repo": "DICTOL", "sha": "1a0361aa35c32d70525d06910d0e9b87997ff246", "save_path": "github-repos/MATLAB/tiepvupsu-DICTOL", "path": "github-repos/MATLAB/tiepvupsu-DICTOL/DICTOL-1a0361aa35c32d70525d06910d0e9b87997ff246/build_spams/mexCalcAAt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.39114959334010435}} {"text": "function [g1, g2] = lfmaXlfmKernGradient(lfmKern1, lfmKern2, t1, t2, covGrad, meanVector)\n\n% LFMAXLFMKERNGRADIENT Compute a cross gradient between a LFMA and a LFM.\n% FORMAT\n% DESC computes cross gradient of parameters of a cross kernel\n% between two lfm kernels, one lfm kernel corresponds to the accel. and\n% the other corresponds to the position. It is supposed to be used together\n% with the multiple output kernel.\n% ARG lfmKern1 : the kernel structure associated with the first LFM\n% kernel (acceleration).\n% ARG lfmKern2 : the kernel structure associated with the second LFM\n% kernel (position).\n% ARG t1 : inputs for which kernel is to be computed.\n% ARG covGrad : gradient of the objective function with respect to\n% the elements of the cross kernel matrix.\n% RETURN g1 : gradient of the parameters of the first kernel, for\n% ordering see lfmKernExtractParam.\n% RETURN g2 : gradient of the parameters of the second kernel, for\n% ordering see lfmKernExtractParam.\n%\n% FORMAT\n% DESC computes cross gradient of parameters of a cross kernel\n% between two lfm kernels, one lfm kernel corresponds to the accel. and\n% the other corresponds to the position. It is supposed to be used together\n% with the multiple output kernel.\n% ARG lfmKern1 : the kernel structure associated with the first LFM\n% kernel (acceleration).\n% ARG lfmKern2 : the kernel structure associated with the second LFM\n% kernel (position).\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% ARG covGrad : gradient of the objective function with respect to\n% the elements of the cross kernel matrix.\n% RETURN g1 : gradient of the parameters of the first kernel, for\n% ordering see lfmKernExtractParam.\n% RETURN g2 : gradient of the parameters of the second kernel, for\n% ordering see lfmKernExtractParam.\n%\n% FORMAT\n% DESC computes cross gradient of parameters of a cross kernel\n% between two lfm kernels, one lfm kernel corresponds to the accel. and\n% the other corresponds to the position. It is supposed to be used together\n% with the multiple output kernel.\n% ARG lfmKern1 : the kernel structure associated with the first LFM\n% kernel (acceleration).\n% ARG lfmKern2 : the kernel structure associated with the second LFM\n% kernel (position).\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% ARG covGrad : gradient of the objective function with respect to\n% the elements of the cross kernel matrix.\n% ARG meanVec : precomputed factor that is used for the switching dynamical\n% latent force model.\n% RETURN g1 : gradient of the parameters of the first kernel, for\n% ordering see lfmKernExtractParam.\n% RETURN g2 : gradient of the parameters of the second kernel, for\n% ordering see lfmKernExtractParam.\n%\n% SEEALSO : multiKernParamInit, multiKernCompute, lfmvKernParamInit\n%\n% COPYRIGHT : Mauricio Alvarez, 2010\n\n% KERN\n\nsubComponent = false; % This is just a flag that indicates if this kernel is part of a bigger kernel (SDLFM)\n\nif nargin == 4\n covGrad = t2;\n t2 = t1;\nelseif nargin == 6\n subComponent = true;\n if numel(meanVector)>1\n if size(meanVector,1) == 1,\n if size(meanVector, 2)~=size(covGrad, 2)\n error('The dimensions of meanVector don''t correspond to the dimensions of covGrad')\n end\n else\n if size((meanVector'), 2)~=size(covGrad,2)\n error('The dimensions of meanVector don''t correspond to the dimensions of covGrad')\n end\n end\n else\n if numel(t1)==1 && numel(t2)>1\n % matGrad will be row vector and so should be covGrad\n dimcovGrad = length(covGrad);\n covGrad = reshape(covGrad, [1 dimcovGrad]);\n elseif numel(t1)>1 && numel(t2)==1\n % matGrad will be column vector and sp should be covGrad\n dimcovGrad = length(covGrad);\n covGrad = reshape(covGrad, [dimcovGrad 1]);\n end\n end\nend\n\nif size(t1, 2) > 1 || size(t2, 2) > 1\n error('Input can only have one column');\nend\nif lfmKern1.inverseWidth ~= lfmKern2.inverseWidth\n error('Kernels cannot be cross combined if they have different inverse widths.')\nend\n\n% Parameters of the simulation (in the order providen by kernExtractParam)\n\nm = [lfmKern1.mass lfmKern2.mass]; % Par. 1\nD = [lfmKern1.spring lfmKern2.spring]; % Par. 2\nC = [lfmKern1.damper lfmKern2.damper]; % Par. 3\nsigma2 = 2/lfmKern1.inverseWidth; % Par. 4\nsigma = sqrt(sigma2);\nS = [lfmKern1.sensitivity lfmKern2.sensitivity]; % Par. 5\n\nalpha = C./(2*m);\nomega = sqrt(D./m-alpha.^2);\n\n% Initialization of vectors and matrices\n\ng1 = zeros(1,5);\ng2 = zeros(1,5);\n\n% Precomputations\ncomputeH = cell(4,1);\ncomputeUpsilonMatrix = cell(2,1);\ncomputeUpsilonVector = cell(2,1);\ngradientUpsilonMatrix = cell(4,1);\ngradientUpsilonVector = cell(4,1);\ngamma1_p = alpha(1) + j*omega(1);\ngamma1_m = alpha(1) - j*omega(1);\ngamma2_p = alpha(2) + j*omega(2);\ngamma2_m = alpha(2) - j*omega(2);\npreExp1 = zeros(length(t1),2);\npreExp2 = zeros(length(t2),2);\npreExpg1 = zeros(length(t1),2);\npreExpgg1 = zeros(length(t1),2);\npreExpt1 = zeros(length(t1),2);\npreExpt2 = zeros(length(t2),2);\npreGamma(1) = gamma1_p + gamma2_p;\npreGamma(2) = gamma1_p + gamma2_m;\npreGamma(3) = gamma1_m + gamma2_p;\npreGamma(4) = gamma1_m + gamma2_m;\npreGamma2 = preGamma.^2;\npreConst = 1./preGamma;\npreConst2 = 1./(preGamma2);\npreFactors(1) = preConst(2) - preConst(1);\npreFactors(2) = preConst(3) - preConst(4);\npreFactors(3) = preConst(3) - preConst(1);\npreFactors(4) = preConst(2) - preConst(4);\npreFactors2(1) = -preConst2(2) + preConst2(1);\npreFactors2(2) = -preConst2(3) + preConst2(4);\npreFactors2(3) = -preConst2(3) + preConst2(1);\npreFactors2(4) = -preConst2(2) + preConst2(4);\npreExp1(:,1) = exp(-gamma1_p*t1);\npreExp1(:,2) = exp(-gamma1_m*t1);\npreExp2(:,1) = exp(-gamma2_p*t2);\npreExp2(:,2) = exp(-gamma2_m*t2);\npreExpg1(:,1) = (2*gamma1_p)*preExp1(:,1);\npreExpg1(:,2) = (2*gamma1_m)*preExp1(:,2);\npreExpgg1(:,1) = (gamma1_p^2)*preExp1(:,1);\npreExpgg1(:,2) = (gamma1_m^2)*preExp1(:,2);\npreExpt1(:,1) = t1.*preExpgg1(:,1);\npreExpt1(:,2) = t1.*preExpgg1(:,2);\npreExpt2(:,1) = t2.*exp(-gamma2_p*t2);\npreExpt2(:,2) = t2.*exp(-gamma2_m*t2);\n[computeH{1}, computeUpsilonMatrix{1}, computeUpsilonMatrixLocal{1}] = lfmComputeH3AP(gamma1_p, gamma1_m, sigma2, t1,t2,preFactors([1 2]), 0);\n[computeH{2}, computeUpsilonMatrix{2}, computeUpsilonMatrixLocal{2}] = lfmComputeH3AP(gamma2_p, gamma2_m, sigma2, t2,t1,preFactors([3 4]), 1);\n[computeH{3}, computeUpsilonVector{1}, computeUpsilonVectorLocal{1}] = lfmComputeH4AP(gamma1_p, gamma1_m, sigma2, t1, preGamma([1 2 4 3]), preExp2, 0 );\n[computeH{4}, computeUpsilonVector{2}, computeUpsilonVectorLocal{2}] = lfmComputeH4AP(gamma2_p, gamma2_m, sigma2, t2, preGamma([1 3 4 2]), preExpgg1, 1 );\npreKernel = ( computeH{1} + computeH{2}.' + computeH{3} + computeH{4}.');\n\n\n% Precompute derivatives\ngradientUpsilonMatrix{1} = lfmapGradientUpsilonMatrix(gamma1_p,sigma2,t1, t2, 0, computeUpsilonMatrixLocal{1}{1});\ngradientUpsilonMatrix{2} = lfmapGradientUpsilonMatrix(gamma1_m,sigma2,t1, t2, 0, computeUpsilonMatrixLocal{1}{2});\ngradientUpsilonMatrix{3} = lfmapGradientUpsilonMatrix(gamma2_p,sigma2,t2, t1, 1, computeUpsilonMatrixLocal{2}{1});\ngradientUpsilonMatrix{4} = lfmapGradientUpsilonMatrix(gamma2_m,sigma2,t2, t1, 1, computeUpsilonMatrixLocal{2}{2});\ngradientUpsilonVector{1} = lfmapGradientUpsilonVector(gamma1_p,sigma2,t1, computeUpsilonVectorLocal{1}{1});\ngradientUpsilonVector{2} = lfmapGradientUpsilonVector(gamma1_m,sigma2,t1, computeUpsilonVectorLocal{1}{2});\ngradientUpsilonVector{3} = lfmGradientUpsilonVector(gamma2_p,sigma2,t2);\ngradientUpsilonVector{4} = lfmGradientUpsilonVector(gamma2_m,sigma2,t2);\n\nif lfmKern1.isNormalised\n K0 = lfmKern1.sensitivity*lfmKern2.sensitivity/(8*sqrt(2)*lfmKern1.mass*lfmKern2.mass*prod(omega));\n K02 = 1/(8*sqrt(2)*prod(m)*prod(omega));\nelse\n K0 = sigma*sqrt(pi)*lfmKern1.sensitivity*lfmKern2.sensitivity/(8*lfmKern1.mass*lfmKern2.mass*prod(omega)); \n K02 = sigma*sqrt(pi)/(8*prod(m)*prod(omega));\nend\n\n% Gradient with respect to m, D and C\nfor ind_theta = 1:3 % Parameter (m, D or C)\n for ind_par = 0:1 % System (1 or 2)\n % Choosing the right gradients for m, omega, gamma1 and gamma2\n switch ind_theta\n case 1 % Gradient wrt m\n gradThetaM = [1-ind_par ind_par];\n gradThetaAlpha = -C./(2*(m.^2));\n gradThetaOmega = (C.^2-2*m.*D)./(2*(m.^2).*sqrt(4*m.*D-C.^2));\n case 2 % Gradient wrt D\n gradThetaM = zeros(1,2);\n gradThetaAlpha = zeros(1,2);\n gradThetaOmega = 1./sqrt(4*m.*D-C.^2);\n case 3 % Gradient wrt C\n gradThetaM = zeros(1,2);\n gradThetaAlpha = 1./(2*m);\n gradThetaOmega = -C./(2*m.*sqrt(4*m.*D-C.^2));\n end\n gradThetaGamma1 = gradThetaAlpha + j*gradThetaOmega;\n gradThetaGamma2 = gradThetaAlpha - j*gradThetaOmega;\n % Gradient evaluation\n gradThetaGamma11 = [gradThetaGamma1(1) gradThetaGamma2(1)];\n gradThetaGamma2 = [gradThetaGamma1(2) gradThetaGamma2(2)];\n gradThetaGamma1 = gradThetaGamma11;\n\n if ~ind_par % ind_par = k or d\n matGrad = K0 ...\n * ( lfmGradientH31( preFactors([1 2]), preFactors2([1 2]), gradThetaGamma1, ...\n gradientUpsilonMatrix{1}, gradientUpsilonMatrix{2}, computeUpsilonMatrix{1}{1}, ...\n computeUpsilonMatrix{1}{2}, 1) + ...\n lfmGradientH32( preGamma2, gradThetaGamma1, computeUpsilonMatrix{2}{1}, ...\n computeUpsilonMatrix{2}{2}, 1).' + ...\n lfmGradientH41( preGamma, preGamma2, gradThetaGamma1, preExp2, ...\n gradientUpsilonVector{1}, gradientUpsilonVector{2}, computeUpsilonVector{1}{1},...\n computeUpsilonVector{1}{2}, 1) + ...\n lfmGradientH42AP(preGamma, preGamma2, gradThetaGamma1, preExpg1, preExpgg1, preExpt1, ...\n computeUpsilonVector{2}{1}, computeUpsilonVector{2}{2}).'...\n - (gradThetaM(1+ind_par)/m(1+ind_par) ...\n + gradThetaOmega(1+ind_par)/omega(1+ind_par)) ...\n *preKernel);\n else % ind_par = r or d'\n matGrad = K0 ...\n * ( lfmGradientH31( preFactors([3 4]), preFactors2([3 4]), gradThetaGamma2, ...\n gradientUpsilonMatrix{3}, gradientUpsilonMatrix{4}, computeUpsilonMatrix{2}{1}, ...\n computeUpsilonMatrix{2}{2}, 1).' + ...\n lfmGradientH32( preGamma2([1 3 2 4]), gradThetaGamma2, computeUpsilonMatrix{1}{1}, ...\n computeUpsilonMatrix{1}{2}, 1) + ...\n lfmGradientH41( preGamma([1 3 2 4]), preGamma2([1 3 2 4]), gradThetaGamma2, preExpgg1, ...\n gradientUpsilonVector{3}, gradientUpsilonVector{4}, computeUpsilonVector{2}{1},...\n computeUpsilonVector{2}{2}, 1).' + ...\n lfmGradientH42(preGamma([1 3 2 4]), preGamma2([1 3 2 4]), gradThetaGamma2, preExp2, preExpt2, ...\n computeUpsilonVector{1}{1}, computeUpsilonVector{1}{2}, 1)...\n - (gradThetaM(1+ind_par)/m(1+ind_par) ...\n + gradThetaOmega(1+ind_par)/omega(1+ind_par)) ...\n *preKernel); \n end\n \n if subComponent\n if size(meanVector,1) ==1,\n matGrad = matGrad*meanVector;\n else\n matGrad = (meanVector*matGrad).';\n end\n end\n\n % Check the parameter to assign the derivative\n if ind_par == 0\n g1(ind_theta) = sum(sum(matGrad.*covGrad));\n else\n g2(ind_theta) = sum(sum(matGrad.*covGrad));\n end \n end\nend\n\n% Gradients with respect to sigma\nif lfmKern1.isNormalised\n matGrad = K0*(lfmGradientSigmaH3AP(gamma1_p, gamma1_m, sigma2, t1, t2, preFactors([1 2]), 0)...\n + lfmGradientSigmaH3AP(gamma2_p, gamma2_m, sigma2, t2, t1, preFactors([3 4]), 1).'...\n + lfmGradientSigmaH4AP(gamma1_p, gamma1_m, sigma2, t1, preGamma([1 2 4 3]), preExp2, 0 )...\n + lfmGradientSigmaH4AP(gamma2_p, gamma2_m, sigma2, t2, preGamma([1 3 4 2]), preExpgg1, 1 ).');\nelse\n matGrad = (prod(S)*sqrt(pi)/(8*prod(m)*prod(omega))) ...\n * (preKernel ...\n + sigma*(lfmGradientSigmaH3AP(gamma1_p, gamma1_m, sigma2, t1, t2, preFactors([1 2]), 0)...\n + lfmGradientSigmaH3AP(gamma2_p, gamma2_m, sigma2, t2, t1, preFactors([3 4]), 1).'...\n + lfmGradientSigmaH4AP(gamma1_p, gamma1_m, sigma2, t1, preGamma([1 2 4 3]), preExp2, 0 )...\n + lfmGradientSigmaH4AP(gamma2_p, gamma2_m, sigma2, t2, preGamma([1 3 4 2]), preExpgg1, 1 ).' )); \nend\n\nif subComponent\n if size(meanVector,1) ==1,\n matGrad = matGrad*meanVector;\n else\n matGrad = (meanVector*matGrad).';\n end\nend\ng1(4) = sum(sum(matGrad.*covGrad))*(-(sigma^3)/4);\ng2(4) = g1(4);\n\n% Gradients with respect to S\n\nmatGrad = K02*preKernel;\n\nif subComponent\n if size(meanVector,1) ==1,\n matGrad = matGrad*meanVector;\n else\n matGrad = (meanVector*matGrad).';\n end\nend\n\ng1(5) = sum(sum(S(2)*matGrad.*covGrad));\ng2(5) = sum(sum(S(1)*matGrad.*covGrad));\n\n\ng2(4) = 0; % Otherwise is counted twice, temporarly changed by Mauricio Alvarez\n\ng1 = real(g1);\ng2 = real(g2);\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/lfmaXlfmKernGradient.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239836484144, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3911495867054047}} {"text": "classdef ProductComputerOutputCreator < handle\n \n properties (Access = private)\n fourthOrder\n secondOrder\n secondOrderOut\n end\n \n methods (Access = public)\n \n function obj = ProductComputerOutputCreator(C,e)\n obj.init(C,e)\n obj.createSecondOrderOut()\n end\n \n function s = getSecondOrderOut(obj)\n s = obj.secondOrderOut;\n end\n end\n \n \n methods (Access = private)\n \n function init(obj,C,e)\n obj.fourthOrder = C;\n obj.secondOrder = e; \n end\n \n function createSecondOrderOut(obj)\n \n if obj.isTensor()\n if obj.is3D()\n if obj.isStress()\n s = Stress3DTensor;\n elseif obj.isStrain()\n s = Strain3DTensor;\n end\n elseif obj.isPlaneStress()\n if obj.isStress()\n s = StressPlaneStressTensor;\n elseif obj.isStrain()\n s = StrainPlaneStressTensor;\n end\n end\n elseif obj.isVoigt()\n if obj.is3D()\n if obj.isStress()\n s = Stress3DVoigtTensor();\n elseif obj.isStrain()\n s = Strain3DTensor;\n end\n elseif obj.isPlaneStress()\n if obj.isStress()\n s = StressPlaneStressVoigtTensor;\n elseif obj.isStrain()\n s = StrainPlaneStressVoigtTensor;\n end\n end\n end\n obj.secondOrderOut = s;\n\n end\n \n function itIs = isVoigt(obj)\n isFourthVoigt = strcmp(obj.fourthOrder.getRepresentation(),'voigt');\n isSecondVoigt = strcmp(obj.secondOrder.getRepresentation(),'voigt');\n itIs = isFourthVoigt && isSecondVoigt;\n end\n \n function itIs = isTensor(obj)\n isFourthVoigt = strcmp(obj.fourthOrder.getRepresentation(),'tensor');\n isSecondVoigt = strcmp(obj.secondOrder.getRepresentation(),'tensor');\n itIs = isFourthVoigt && isSecondVoigt;\n end\n \n function itIs = isStress(obj)\n isConstiutive = strcmp(obj.fourthOrder.getOrder(),'fourth');\n isStrian = strcmp(obj.secondOrder.getFieldName(),'strain');\n itIs = isConstiutive && isStrian; \n end \n \n function itIs = isStrain(obj)\n isConstiutive = strcmp(obj.fourthOrder.getOrder(),'fourth');\n isStress = strcmp(obj.secondOrder.getFieldName(),'stress');\n itIs = isConstiutive && isStress;\n end\n \n function itIs = is3D(obj)\n isFourth3D = strcmp(obj.fourthOrder.getElasticityCase(),'3D');\n isSecond3D = strcmp(obj.secondOrder.getElasticityCase(),'3D');\n itIs = isFourth3D && isSecond3D;\n end\n \n function itIs = isPlaneStress(obj)\n isFourthPS = strcmp(obj.fourthOrder.getElasticityCase(),'planeStress');\n isSecondPS = strcmp(obj.secondOrder.getElasticityCase(),'planeStress');\n itIs = isFourthPS && isSecondPS;\n end\n\n \n end\n \nend\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Sources/ProductComputer/ProductComputerOutputCreator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548782017745, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3909356156440537}} {"text": "function c = demean(c)\n \n % DEMEAN removes the mean of each trace.\n %\n % C = DEMEAN(C) removes the DC offset from each trace. In most cases it is\n % unnecessary to call this function directly. By default, all traces are\n % demeaned and detrended when they are loaded into a correlation object.\n % This is one of the assumptions of the correlation toolbox.\n \n % Author: Michael West, Geophysical Institute, Univ. of Alaska Fairbanks\n % $Date$\n % $Revision$\n \n c.traces = demean(c.traces);\nend\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/dev/@NewCorrelation/demean.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6513548646660542, "lm_q1q2_score": 0.39093560752007195}} {"text": "function [X, R] = imstack2vectors(S, MASK)\n[M, N, n] = size(S);\nif nargin == 1\n MASK = true(M, N);\nelse\n MASK = MASK ~= 0;\nend\n\n[I, J] = find(MASK);\nR = [I, J];\n\nQ = M*N;\nX = reshape(S, Q, n);\n\nMASK = reshape(MASK, Q, 1);\n\nX = X(MASK, :);\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/33592-image-segmentation-based-on-markov-random-fields/image segmentation/function/imstack2vectors.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.6001883592602049, "lm_q1q2_score": 0.39093559939609}} {"text": "function rf=lpcis2rf(is)\n%LPCRF2IS Convert inverse sines to reflection coefficients RF=(IS)\n\n\n% Copyright (C) Mike Brookes 1997\n% Version: $Id: lpcis2rf.m,v 1.4 2007/05/04 07:01:38 dmb Exp $\n%\n% VOICEBOX is a MATLAB toolbox for speech processing.\n% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You can obtain a copy of the GNU General Public License from\n% http://www.gnu.org/copyleft/gpl.html or by writing to\n% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nrf=sin(is*pi/2);\n", "meta": {"author": "decouples", "repo": "Matlab_deep_learning", "sha": "1b823b82686080e32b03e1f1a4648896bd6e3c44", "save_path": "github-repos/MATLAB/decouples-Matlab_deep_learning", "path": "github-repos/MATLAB/decouples-Matlab_deep_learning/Matlab_deep_learning-1b823b82686080e32b03e1f1a4648896bd6e3c44/\u7b2c 19 \u7ae0 \u57fa\u4e8e\u8bed\u97f3\u8bc6\u522b\u7684\u4fe1\u53f7\u706f\u56fe\u50cf\u6a21\u62df\u63a7\u5236\u6280\u672f/voicebox/lpcis2rf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303336, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.39093559939609}} {"text": "% SYNTAX:\n% data_dod = hmrR_MotionCorrectSpline(data_dod, mlAct, tIncCh, p, turnon)\n%\n% UI NAME:\n% Spline_Motion_Correction\n%\n% DESCRIPTION:\n% Perform a cubic spline correction of the motion artifacts identified in\n% tIncCh. The algorithm follows the procedure describe by\n% Scholkmann et al., Physiol. Meas. 31, 649-662 (2010). Set p = -1 to skip\n% this function.\n%\n% INPUTS:\n% data_dod: SNIRF data structure containing delta_OD \n% mlAct:\n% tIncCh: Matrix of included time points (1=included; 0=not included (movement)\n% The matrix is #time points x #channels and usually comes from\n% hmrR_MotionArtifactByChannel()\n% p: Parameter p used in the spline interpolation. The value\n% recommended in the literature is 0.99. Use -1 if you want to skip this\n% motion correction.\n% turnon: Optional argument to enable/disable this function in a processing stream chain\n%\n% OUTPUTS:\n% dod: SNIRF data structure containing delta_OD after spline interpolation correction, \n% same size as dod (Channels that are not in the active ml remain unchanged)\n%\n% USAGE OPTIONS:\n% Spline_Motion_Correction: dod = hmrR_MotionCorrectSpline(dod, mlActAuto, tIncAutoCh, p, turnon)\n%\n% PARAMETERS:\n% p: 0.99\n% turnon: 1\n%\n% PREREQUISITES:\n% Motion_Artifact_By_Channel: [tIncAuto, tIncAutoCh] = hmrR_MotionArtifactByChannel(dod, probe, mlActMan, tIncMan, tMotion, tMask, STDEVthresh, AMPthresh)\n% \n% LOG:\n% created 01-26-2012, J. Selb\n% modified 03/27/2019 by J. Dubb\n%\n% TO DO:\n%\nfunction data_dod = hmrR_MotionCorrectSpline(data_dod, mlAct, tIncCh, p, turnon)\n\nif ~exist('turnon','var')\n turnon = 1;\nend\nif turnon==0\n return;\nend\n\n% Check input args\nif isempty(mlAct)\n mlAct = cell(length(data_dod),1);\nend\nif isempty(tIncCh)\n tIncCh = cell(length(data_dod),1);\nend\nif p>1 || p<0 % if p outside its authorized range, exit with warning\n fprintf('Parameter has to be between 0 and 1. Returning with no correction\\n');\n return;\nend\n\nfor iBlk=1:length(data_dod)\n \n dod = data_dod(iBlk).GetDataTimeSeries();\n t = data_dod(iBlk).GetTime();\n MeasList = data_dod(iBlk).GetMeasList();\n \n mlAct{iBlk} = mlAct_Initialize(mlAct{iBlk}, MeasList);\n lstAct = mlAct_Matrix2IndexList(mlAct{iBlk}, MeasList);\n \n tIncCh{iBlk} = tIncCh_Initialize(tIncCh{iBlk}, dod, MeasList);\n tIncChBlk = tIncCh{iBlk}(1:length(t),:);\n \n fs = 1/mean(t(2:end)-t(1:end-1));\n \n % window widths limits for computing the mean in the segment shifts\n dtShort = 0.3; % seconds\n dtLong = 3; % seconds\n \n dodSpline = dod;\n t = t(:); % needs to be a column vector\n \n for ii = 1:length(lstAct)\n \n idx_ch = lstAct(ii);\n \n lstMA = find(tIncChBlk(:,idx_ch)==0); % sublist of motion artifact segments\n \n if ~isempty(lstMA)\n \n % Find indexes of starts and ends of MA segments\n lstMs = find(diff(tIncChBlk(:,idx_ch))==-1); % starting indexes of mvt segments\n lstMf = find(diff(tIncChBlk(:,idx_ch))==1); % ending indexes of mvt segments\n \n % Case where there's a single MA segment, that either starts at the\n % beginning or ends at the end of the total time duration\n if isempty(lstMf)\n lstMf = size(tIncChBlk,1);\n end\n if isempty(lstMs)\n lstMs = 1;\n end\n % If any MA segment either starts at the beginning or\n % ends at the end of the total time duration\n if lstMs(1)>lstMf(1)\n lstMs = [1;lstMs];\n end\n if lstMs(end)>lstMf(end)\n lstMf(end+1,1) = size(tIncChBlk,1);\n end\n \n lstMl = lstMf-lstMs; % lengths of MA segments\n nbMA = length(lstMl); % number of MA segments\n \n % Do the spline interpolation on each MA segment\n % only include channels in the active meas list\n \n for jj = 1:nbMA\n lst = lstMs(jj):(lstMf(jj)-1);\n % spline interp\n SplInterp = csaps(t(lst)', dod(lst,idx_ch)', p, t(lst)')';\n % corrected signal = original signal - spline interpolation\n dodSpline(lst,idx_ch) = dod(lst,idx_ch) - SplInterp;\n end\n \n \n % Reconstruction of the whole time series (shift each segment)\n \n % First MA segment: shift to the previous noMA segment if it exists,\n % to the next noMA segment otherwise\n lst = (lstMs(1)):(lstMf(1)-1);\n SegCurrLength = lstMl(1);\n if SegCurrLength < dtShort*fs\n windCurr = SegCurrLength;\n elseif SegCurrLength < dtLong*fs\n windCurr = floor(dtShort*fs);\n else\n windCurr = floor(SegCurrLength/10);\n end\n \n if lstMs(1)>1\n SegPrevLength = length(1:(lstMs(1)-1));\n if SegPrevLength < dtShort*fs\n windPrev = SegPrevLength;\n elseif SegPrevLength < dtLong*fs\n windPrev = floor(dtShort*fs);\n else\n windPrev = floor(SegPrevLength/10);\n end\n meanPrev = mean(dodSpline(lst(1)-windPrev:(lst(1)-1), idx_ch));\n meanCurr = mean(dodSpline(lst(1):(lst(1)+windCurr-1), idx_ch));\n dodSpline(lst,idx_ch) = dodSpline(lst,idx_ch) - meanCurr + meanPrev;\n \n else\n if length(lstMs)>1\n SegNextLength = length(lstMf(1):(lstMs(2)));\n else\n SegNextLength = length(lstMf(1):size(tIncChBlk,1));\n end\n if SegNextLength < dtShort*fs\n windNext = SegNextLength;\n elseif SegNextLength < dtLong*fs\n windNext = floor(dtShort*fs);\n else\n windNext = floor(SegNextLength/10);\n end\n meanCurr = mean(dodSpline((lst(end)-windCurr):(lst(end)-1), idx_ch));\n meanNext = mean(dodSpline((lst(end)+1):(lst(end)+windNext), idx_ch));\n dodSpline(lst,idx_ch) = dodSpline(lst,idx_ch) - meanCurr + meanNext;\n end\n \n \n % Intermediate segments\n for kk=1:(nbMA-1)\n % no motion\n lst = lstMf(kk):(lstMs(kk+1)-1);\n SegPrevLength = lstMl(kk);\n SegCurrLength = length(lst);\n if SegPrevLength < dtShort*fs\n windPrev = SegPrevLength;\n elseif SegPrevLength < dtLong*fs\n windPrev = floor(dtShort*fs);\n else\n windPrev = floor(SegPrevLength/10);\n end\n if SegCurrLength < dtShort*fs\n windCurr = SegCurrLength;\n elseif SegCurrLength < dtLong*fs\n windCurr = floor(dtShort*fs);\n else\n windCurr = floor(SegCurrLength/10);\n end\n meanPrev = mean(dodSpline((lst(1)-windPrev):(lst(1)-1), idx_ch));\n meanCurr = mean(dod(lst(1):(lst(1)+windCurr-1), idx_ch));\n \n dodSpline(lst,idx_ch) = dod(lst,idx_ch) - meanCurr + meanPrev;\n \n % motion\n lst = (lstMs(kk+1)):(lstMf(kk+1)-1);\n SegPrevLength = SegCurrLength;\n SegCurrLength = lstMl(kk+1);\n if SegPrevLength < dtShort*fs\n windPrev = SegPrevLength;\n elseif SegPrevLength < dtLong*fs\n windPrev = floor(dtShort*fs);\n else\n windPrev = floor(SegPrevLength/10);\n end\n if SegCurrLength < dtShort*fs\n windCurr = SegCurrLength;\n elseif SegCurrLength < dtLong*fs\n windCurr = floor(dtShort*fs);\n else\n windCurr = floor(SegCurrLength/10);\n end\n meanPrev = mean(dodSpline((lst(1)-windPrev):(lst(1)-1), idx_ch));\n meanCurr = mean(dodSpline(lst(1):(lst(1)+windCurr-1), idx_ch));\n \n dodSpline(lst,idx_ch) = dodSpline(lst,idx_ch) - meanCurr + meanPrev;\n end\n \n % Last not MA segment\n if lstMf(end)1\n% for i = 1:size(sameL,1)-1\n% for j = 2:size(sameL,2)\n% AA = sameL([i j],:);\n% BB = sameR([i j],:);\n% if AA == BB'\n% candidate = unique([AA(:);BB(:)]);\n% end\n% end\n% end\n% end\n\nfor i = 1:length(L)\n \n if issymmetric(M{i}) && isequal(find(L{i}),find(R{i}'))\n Rttmp = R{i}';\n tmp = L{i}(L{i}~=0)./(Rttmp(Rttmp~=0));\n else\n tmp = [];\n end\n \n if ~used(i)\n if issymmetric(M{i}) && (isequal(L{i},R{i}')) \n singles{end+1}.L = L{i};\n singles{end}.M = M{i};\n singles{end}.R = R{i};\n singles{end}.negated = 0;\n used(i)=1;\n elseif issymmetric(M{i}) && (isequal(L{i},-R{i}')) \n singles{end+1}.L = L{i};\n singles{end}.M = M{i};\n singles{end}.R = R{i};\n singles{end}.negated = 1;\n used(i)=1; \n elseif issymmetric(M{i}) && isequal(find(L{i}),find(R{i}')) & length(unique(tmp)) == 1 \n % Rttmp = R{i}';\n % tmp = L{i}(L{i}~=0)./(Rttmp(Rttmp~=0));\n \n % if length(unique(tmp)) == 1 \n singles{end+1}.L = L{i}/sqrt(abs(tmp(1)));\n singles{end}.M = M{i};\n singles{end}.R = R{i}*sqrt(abs(tmp(1)));\n if tmp(1) > 0\n singles{end}.negated = 0;\n else\n singles{end}.negated = 1;\n \n end\n used(i)=1; \n % end\n \n else \n for j = i+1:length(L)\n if isa(L{i}*M{i}*R{i}-R{j}'*M{j}'*L{j}','double')\n pairs{end+1}.L = L{i};\n pairs{end}.M = M{i};\n pairs{end}.R = R{i};\n used(j)=1;\n used(i)=1;\n break\n end\n end\n end\n end\nend\n\n\nfor k = find(~used)\n if isequal(size(M{k}),[1 1])\n general = general + L{k}*M{k}*R{k};\n else\n error('Couldn''t classify all factors');\n end\nend\n\n\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/extras/classifyfactors.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943822145998, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3907338754928666}} {"text": "function status = svm_learn(options, examples, model)\n% SVM_LEARN - Interface to SVM light, learning module\n% \n% STATUS = SVM_LEARN(OPTIONS, EXAMPLES, MODEL)\n% Call the training program 'svm_learn' of the SVM light\n% package.\n% OPTIONS must be a structure generated by SVMLOPT.\n% EXAMPLES is the name of the file containing the training examples\n% (use SVMLWRITE to convert a Matlab matrix to the appropriate format).\n% MODEL is the name of the file holding the trained Support Vector\n% Machine.\n% If 'svm_learn' is not on the path, OPTIONS must contain a field\n% 'ExecPath' with the path of the executable.\n% STATUS is the error code returned by SVM light (0 if everything went\n% fine)\n%\n% See also SVMLOPT, SVMLWRITE, SVM_CLASSIFY, SVMLREAD\n%\n\n% \n% Copyright (c) by Anton Schwaighofer (2001)\n% $Revision: 1.6 $ $Date: 2002/08/09 20:24:03 $\n% mailto:anton.schwaighofer@gmx.net\n% \n% This program is released unter the GNU General Public License.\n% \n\nerror(nargchk(3, 3, nargin));\n\n% check parameter consistency for kernels\nif ~isempty(options.Kernel),\n if (options.Kernel~=0) & isempty(options.KernelParam),\n error(sprintf('The chosen Kernel = %i requires parameters, but none are given in KernelParam', ...\n options.Kernel));\n end\n parlen = length(options.KernelParam);\n isString = isa(options.KernelParam, 'char');\n switch options.Kernel\n case {1, 2}\n if isString | (parlen~=1),\n error(sprintf('The chosen Kernel = %i requires a scalar parameter', ...\n options.Kernel));\n end\n case 3\n if isString | (parlen~=2),\n error(sprintf('The chosen Kernel = %i requires 2 scalar parameters', ...\n options.Kernel));\n end\n case 4,\n if ~isString,\n error(sprintf('The chosen Kernel = %i requires a string parameter', ...\n options.Kernel));\n end\n end\nend\n\nif ~isempty(options.NewVariables),\n if isempty(options.MaximumQP),\n maxval = 10;\n else\n maxval = options.MaximumQP;\n end\n if options.NewVariables>maxval,\n error('Option ''NewVariables'' must be smaller than 10 resp. value of MaximumQP');\n end\nend\n\nNames = fieldnames(options);\n[m,n] = size(Names);\n\ns = '';\nfor i = 1:m,\n field = Names{i,:};\n value = getfield(options, field);\n switch field,\n case 'Verbosity'\n s = stroption(s, '-v %i', value);\n case 'Regression'\n if ~isempty(value),\n if value==0,\n s = [s ' -z c'];\n else\n s = [s ' -z r'];\n end\n end\n case 'C'\n s = stroption(s, '-c %.10g', value);\n case 'TubeWidth'\n s = stroption(s, '-w %.10g', value);\n case 'CostFactor'\n s = stroption(s, '-j %.10g', value);\n case 'Biased'\n s = stroption(s, '-b %i', value);\n case 'RemoveIncons'\n s = stroption(s, '-i %i', value);\n case 'ComputeLOO'\n s = stroption(s, '-x %i', value);\n case 'XialphaRho'\n s = stroption(s, '-o %.10g', value);\n case 'XialphaDepth'\n s = stroption(s, '-k %.10g', value);\n case 'TransPosFrac'\n s = stroption(s, '-p %.10g', value);\n case 'Kernel'\n s = stroption(s, '-t %i', value);\n case 'KernelParam'\n if ~isempty(value),\n switch options.Kernel\n case 0\n case 1\n s = stroption(s, '-d %.10g', value(1));\n case 2\n s = stroption(s, '-g %.10g', value(1));\n case 3\n s = stroption(s, '-s %.10g -r %.10g', value(1), value(2));\n case 4\n s = stroption(s, '-u \"%s\"', value);\n end\n end\n case 'MaximumQP'\n s = stroption(s, '-q %i', value);\n case 'NewVariables'\n s = stroption(s, '-n %i', value);\n case 'CacheSize'\n s = stroption(s, '-m %i', value);\n case 'EpsTermin'\n s = stroption(s, '-e %.10g', value);\n case 'ShrinkIter'\n s = stroption(s, '-h %i', value);\n case 'ShrinkCheck'\n s = stroption(s, '-f %i', value);\n case 'TransLabelFile'\n s = stroption(s, '-l %s', value);\n case 'AlphaFile'\n s = stroption(s, '-a %s', value);\n end\nend\n\nevalstr = [fullfile(options.ExecPath, 'svm_learn') s ' ' ...\n examples ' ' model];\n% fprintf('\\nCalling SVMlight:\\n%s\\n\\n', evalstr);\nif isunix,\n status = unix(evalstr);\nelse\n status = dos(evalstr);\nend\n\n\nfunction s = stroption(s, formatstr, value, varargin)\n% STROPTION - Add a new option to string\n% \n\nif ~isempty(value),\n s = [s ' ' sprintf(formatstr, value, varargin{:})];\nend\n", "meta": {"author": "viggin", "repo": "domain-adaptation-toolbox", "sha": "2a991816a0ac39043b526c2b0cbe01bc844d8890", "save_path": "github-repos/MATLAB/viggin-domain-adaptation-toolbox", "path": "github-repos/MATLAB/viggin-domain-adaptation-toolbox/domain-adaptation-toolbox-2a991816a0ac39043b526c2b0cbe01bc844d8890/svml-master/svm_learn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702642896702, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3906929096275792}} {"text": "filename='Bridge_Quadrilateral_Bilinear_Structured';\nptype = 'MACRO';\nmethod = 'SIMP_P3'; % !! Instead of proportional to material density !!\nmaterialType = 'ISOTROPIC';\ninitial_case = 'holes';\ncost = {'compliance'};\nweights = [1];\nconstraint = {'volumeConstraint'};\noptimizer = 'HAMILTON-JACOBI'; incrementFactor = 1;\nfilterType = 'P1';\nconstraint_case = 'INEQUALITY';\n\nHJiter0 = 1;\ne2 = 30;\nN_holes = [5 6];\nR_holes = 0.7;\nphase_holes = [0 pi/2];\n\nnsteps = 1;\nVfrac_final = 0.5;\nPerimeter_target=3.5;\noptimality_final =1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\n\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 0.3;\nTOL.nu_minus = 0.3;\n\nplotting = 1;\nprinting = 0;\nmonitoring = 1;\nmonitoring_interval = 1;\n\nmaxiter = 50;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Bridge/BridgeQuadrilateral_Case_5_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.3906873192327602}} {"text": "function test_libltfat_fifo\ngl = 20;\nfifoLen = 120; % Must be at least as big as gl + max expected bufLen\nM = gl;\na = 7;\ng = firwin('hann',gl);\ngd = gabdual(g,a,M);\ngg = fftshift(g.*gd)*M;\n\nfifoPtr = calllib('libltfat','rtdgtreal_fifo_init_d',fifoLen,gl,a,1);\nfifoPtr.Value.buf.setdatatype('doublePtr',fifoLen+1)\nififoPtr = calllib('libltfat','rtidgtreal_fifo_init_d',fifoLen,gl,a,1);\nififoPtr.Value.buf.setdatatype('doublePtr',fifoLen+gl+1)\n\nbufIn = (1:1000)';\n%bufIn = ones(1,1000);\nbufOut = zeros(size(bufIn));\nbufLen = 100;\nbufOutPtr = libpointer('doublePtr',zeros(gl,1));\n\nfor ii=1:length(bufIn)/bufLen\nslice = (ii-1)*bufLen + 1 : ii*bufLen;\nbuf = bufIn(slice);\nbufInPtr = libpointer('doublePtr',buf);\nbufInPtrTmp = libpointer('doublePtr',zeros(size(buf)));\n\nwritten = calllib('libltfat','rtdgtreal_fifo_write_d',fifoPtr,bufLen,bufInPtr);\n\nwhile calllib('libltfat','rtdgtreal_fifo_read_d',fifoPtr,bufOutPtr) > 0\n bufOutPtr.Value = bufOutPtr.Value.*gg;\n written = calllib('libltfat','rtidgtreal_fifo_write_d',ififoPtr,bufOutPtr)\nend\n\nread = calllib('libltfat','rtidgtreal_fifo_read_d',ififoPtr,bufLen,bufInPtrTmp)\n\nbufOut(slice) = bufInPtrTmp.Value;\n\nend\n\ninshift = circshift(bufIn,(gl-1));\ninshift(1:(gl-1)) = 0;\nstem([bufOut, inshift]);shg;\n\n\n\n\ncalllib('libltfat','rtdgtreal_fifo_done_d',fifoPtr);\ncalllib('libltfat','rtidgtreal_fifo_done_d',ififoPtr);\n\n\n\n ", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/libltfat/modules/libltfat/testing/mUnit/test_fifo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7520125737597972, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.39068656644428573}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This file is part of OLPS: http://OLPS.stevenhoi.org/\n% Original authors: Doyen Sahoo\n% Contributors: Bin LI, Steven C.H. Hoi\n% Change log: \n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [] = resultManager(results, job)\n%% The results analysis of the Algorithm Analyser can be seen here\n\n % r.returns_daily = returns;\n % r.returns = cumprod(returns_daily+1);\n % r.portfolio = portfolio;\n % r.stats = stats;\n % r.benchmarks = benchmakrs;\n % r.benchmarks_daily = benchmarks_daily;\n % r.chosenStrategy = chosenStrategy;\n % r.dataFrequency = dataFrequency;\n \n [results.r, results.c] = size(results.portfolio);\n \n menuId = 6; % Result Manager for Algorithm Analyser\n displayMenu(menuId); \n prompt = 'Please enter your choice (1-6):';\n choice = input(prompt);\n\n switch(choice),\n case 1,\n % Print table of results\n displayTable(results);\n resultManager(results, job);\n \n case 2,\n % Plot the graphs of returns (both cumulative return and\n % log(cumulative return) of all algorithms\n cumReturns = [results.benchmarks results.returns];\n dailyReturns = [(results.benchmarks_daily-1) results.returns];\n \n figure;\n plot(cumReturns);\n xlim([0 results.r+1]);\n legend('Uniform BAH', 'Uniform CRP', 'Best Stock', 'Best CRP', results.chosenStrategy, 'Location', 'Best');\n grid on;\n title('Cumulative Returns of the Algorithms');\n xlabel('Time');\n ylabel('Portfolio Value');\n \n figure;\n semilogy(cumReturns);\n xlim([0 results.r+1]);\n legend('Uniform BAH', 'Uniform CRP', 'Best Stock', 'Best CRP', results.chosenStrategy, 'Location', 'Best');\n grid on;\n title('LOG Cumulative Returns of the Algorithms');\n xlabel('Time');\n ylabel('Portfolio Value');\n \n resultManager(results, job);\n \n case 3,\n % Produce all the risk plots. Tell user to chaneg the window\n % size in the config if needed\n load ../GUI/config/config.mat\n disp('Generating all the Risk Plots');\n msg = 'windowSize = ';\n msg = strcat(msg, num2str(windowRisk));\n disp(msg);\n disp('(You can modify the window size by changing windowRisk variable in the config)');\n \n % Produce all risk plots based on windowRisk\n window = windowRisk;\n if isnan(window) || window < 2 \n errorMessage('Window size must be a number greater than or equal to 2');\n else\n window = round(window);\n \n % 1. Annualized Sharpe Ratio\n addpath('../GUI/lib');\n \n [r, c] = size(results.returns_daily);\n sharpeRatios = zeros(r,1);\n for i = 50:1:r\n start = max(i-window+1, 1);\n finish = i;\n sharpeRatios(i) = sharpe(results.returns_daily(start:finish), results.returns(finish)/results.returns(start), results.dataFrequency);\n end\n figure;\n plot(sharpeRatios);\n xlim([0 r+1]);\n legend('Sharpe Ratio', 'Location', 'Best');\n title('Sharpe Ratio of the Algorithm');\n xlabel('Time');\n ylabel('Sharpe Ratio');\n \n % 2. Calmar Ratio\n calmarRatios = zeros(r,1);\n for i = 50:1:r\n start = max(i-window+1, 1);\n finish = i;\n mdd = maxDD(results.returns(start:finish));\n calmarRatios(i) = calmar(results.returns(start:finish), mdd, results.dataFrequency);\n end\n figure;\n plot(calmarRatios);\n xlim([0 r+1]);\n legend('Calmar Ratio', 'Location', 'Best');\n title('Calmar Ratio of the Algorithm');\n xlabel('Time');\n ylabel('Calmar Ratio');\n \n % 3. Sortino Ratio\n sortinos = zeros(r,1);\n for i = 50:1:r\n start = max(i-window+1, 1);\n finish = i;\n sortinos(i) = sortino(results.returns_daily(start:finish),0);\n end\n \n figure;\n plot(sortinos);\n xlim([0 r+1]);\n legend('Sortino Ratio', 'Location', 'Best');\n title('Sortino Ratio of the Algorithm');\n xlabel('Time');\n ylabel('Sortino Ratio');\n \n % 4. Value at Risk\n vars = zeros(r,1);\n for i = 50:1:r\n start = max(i-window+1, 1);\n finish = i;\n vars(i) = var5(results.returns_daily(start:finish));\n end\n \n figure;\n plot(vars);\n xlim([0 r+1]);\n legend('Value at Risk', 'Location', 'Best');\n title('Value at Risk of the Algorithm');\n xlabel('Time');\n ylabel('Value at Risk');\n \n % 5. Maximum Draw Down\n mdds = zeros(r,1);\n for i = 50:1:r\n start = max(i-window+1, 1);\n finish = i;\n mdds(i) = maxDD(results.returns(start:finish));\n end\n \n figure;\n plot(mdds);\n xlim([0 r+1]);\n legend('Maximum Draw Down', 'Location', 'Best');\n title('Maximum Draw Down of the Algorithm');\n xlabel('Time');\n ylabel('Maximum Draw Down (%)');\n \n rmpath('../GUI/lib');\n end \n resultManager(results, job);\n \n case 4, \n % Portfolio allocation plots\n portfolio = results.portfolio;\n expected = mean(portfolio);\n deviation = std(portfolio);\n\n errorbar(expected, deviation, 'xr');\n xlim([0 results.c+1]);\n \n title('Average Portfolio Allocation');\n xlabel('Assets');\n ylabel('Fraction of Portfolio');\n \n resultManager(results, job);\n \n case 5,\n % Save the results.\n prompt ='Enter Name of File to save results: ';\n filename = input(prompt);\n [ resultsTable ] = getTable(results);\n cd ../Log/Results/\n save(filename, 'results', 'job', 'resultsTable');\n disp('Results saved in /Log/Result ');\n cd ../../PGUI/\n resultManager(results, job);\n \n case 6,\n disp('Exiting Result Manager --> to Algorithm Analyser');\n [ job ] = jobInit();\n algorithmAnalyserMenu( job );\n \n otherwise,\n disp('ERROR: Please enter a valid input');\n resultManager(results, job);\n end\n\nend\n\nfunction [ algorithmJob ] = jobInit()\n% Construct an instance of an algorithm analyser job\n\n % Read configuration\n load ../GUI/config/config.mat; \n algorithmJob.algorithmId = 1;\n algorithmJob.datasetId = 1;\n AL = char(algorithmList);\n algorithmJob.algorithm = AL(algorithmJob.algorithmId,:);\n DL = char(dataList);\n algorithmJob.dataset = DL(algorithmJob.datasetId,:);\n algorithmJob.parameters = cell2mat(defaultParameters(algorithmJob.algorithmId,:));\nend\n\n\n\nfunction [ resultsTable ] = getTable(results)\n\n cumReturns = [results.benchmarks results.returns];\n dailyReturns = [results.benchmarks_daily-1 results.returns_daily]; \n\n % Compute the statsand display the important numbers in table using the\n % library functions\n addpath('../GUI/lib');\n \n % Get final Values\n [r c] = size(cumReturns);\n results.finalValues = cumReturns(r,:);\n \n % Get the mean returnfor every day - This is a simple average\n results.meanReturns = mean(dailyReturns);\n \n % Get annualised returns\n denominator = 252/results.dataFrequency;\n Y = r/denominator;\n results.annualisedReturns = results.finalValues.^(1/Y)-1;\n \n % Get standard deviation- a measureof risk\n results.standardDeviation = std(dailyReturns);\n \n % Get annualised standard deviation\n results.annualisedStandardDeviation = results.standardDeviation * sqrt(denominator);\n \n % Get sharpe ratios\n results.sharpeRatios = sharpe(dailyReturns, results.finalValues,results.dataFrequency);\n \n % Get Sortino ratios\n results.sortinoRatios = sortino(dailyReturns, 0);\n \n % Get Value risks at level 5%\n results.valueAtRisks = var5(dailyReturns);\n \n % Get Maximum draw down\n results.mdds = maxDD_general(cumReturns);\n \n % Get Calmar ratios\n results.calmars = calmar(cumReturns, results.mdds, results.dataFrequency);\n \n \n % Fill up the tables\n \n \n tableData = [results.finalValues; results.meanReturns; results.annualisedReturns; results.standardDeviation; results.annualisedStandardDeviation; results.sharpeRatios; results.calmars; results.sortinoRatios; results.valueAtRisks; results.mdds];\n\n Market = tableData(:,1);\n Uniform = tableData(:,2);\n BestStock = tableData(:,3);\n BCRP = tableData(:,4);\n Algorithm = tableData(:,5);\n report = {'Final Value','Mean Return','Annualised Return','Standard Deviation','Annualised Standard Deviation','Sharpe Ratio','Calmar Ratio','Sortino Ratio','Value at Risk','Maximum Draw Down'};\n % tableData = table(Market,Uniform,BestStock,BCRP, Algorithm,\n % 'RowNames', report); % - works only in Matlab 2014a onwards\n\n finalDisplay = report';\n finalDisplay(2:end+1) = finalDisplay;\n finalDisplay{1} = '';\n\n finalDisplay{1,2} = 'Market';\n finalDisplay{1,3} = 'Uniform';\n finalDisplay{1,4} = 'BestStock';\n finalDisplay{1,5} = 'BCRP';\n finalDisplay{1,6} = 'Algorithm';\n\n\n for i = 1:1:10\n for j = 1:1:5\n finalDisplay{i+1,j+1} = tableData(i,j);\n end\n end\n \n resultsTable = finalDisplay;\nend", "meta": {"author": "OLPS", "repo": "OLPS", "sha": "9120783cd59a7966b0f78e2b5668030a4378b8af", "save_path": "github-repos/MATLAB/OLPS-OLPS", "path": "github-repos/MATLAB/OLPS-OLPS/OLPS-9120783cd59a7966b0f78e2b5668030a4378b8af/PGUI/resultManager.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.39060092371471555}} {"text": "function r = roots(f, varargin)\n%ROOTS Roots of a CLASSICFUN in the interval [a,b].\n% ROOTS(F) returns the real roots of the CLASSICFUN F in the interval [a,b].\n%\n% ROOTS(F, OPTIONS) modifies the default ROOTS properties, by passing the\n% OPTIONS to the rootfinding method of the ONEFUN of F.\n%\n% If F is an array-valued CLASSICFUN then there is no reason to expect each column to\n% have the same number of roots. In order to return a useful output, the roots\n% of each column are computed and then padded with NaNs so that a matrix may\n% be returned. The columns of R = ROOTS(F) correspond to the columns of F.\n%\n% See also ONEFUN. [TODO]: Why may we also want to see ONEFUN?\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers. \n% See http://www.chebfun.org/ for Chebfun information.\n\n% Deal with empty case:\nif ( isempty(f) )\n r = [];\n return\nend\n\n% Find the roots of the ONEFUN of F:\nonefunRoots = roots(f.onefun, varargin{:});\n\n% Map the roots found on [-1,1] to the interval [a,b]:\nr = f.mapping.For(onefunRoots);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@classicfun/roots.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3906009237147155}} {"text": "function T = mytoeplitz(c, r)\n% function T = mytoeplitz(c, r)\n% Emulate the function TOEPLITZ for fun...\n\nif nargin<2\n r=c;\nend\n\nc=c(:);\nr=r(:);\nv = [flipud(c); r(2:end)];\n\nsz= [length(c) length(r)];\n[I J] = itril(sz,Inf);\nK = J-I+length(c);\nIlin = sub2ind(sz, I, J);\nT = zeros(sz);\nT(Ilin) = v(K);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23391-triangular-and-diagonal-indexing/HalfVectorization/mytoeplitz.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6548947223065755, "lm_q1q2_score": 0.390600919697409}} {"text": "report_this_filefun(mfilename('fullpath'));\n\n% compute the source zones for landers\n\ndy = 0.15;\ntmin1 = 3;\nnewt0 = newt2;\ntpre = 120;\n\nl=storedcat.Date <= min(maepi.Date) + days(60);\na=storedcat.subset(l);\nupdate(mainmap()); newt2 = a;\ntimeplot\n\nd = [];\nprol = 0.90;\n\nl = a.Magnitude > 7;\nmaepi = a.subset(l);\n\nmati = maepi(1,3);\nM = 7.4 - 4;\nda = []; anz = [];\nB2 = [];\nt0 = (max(a.Date) - mati)*365;\ntlen = t0;\ncd /home2/stefan/ZMAP/aspar\nfid2 = fopen('sourczones.txt','w');\n\ndx = 0.33;\n\n\nfor x = 29:dx:31\n l = a.Longitude >= x & a.Longitude < x+dx;\n b1 = prctile2(a(l,2),20);\n b2 = prctile2(a(l,2),80);\n\n newt2 = a.subset(l);\n mcperc_ca3;\n if isnan(Mc95) == 0\n magco = Mc95;\n elseif isnan(Mc90) == 0\n magco = Mc90;\n else\n [bv magco stan av me mer me2, pr] = bvalca3(b,1,1);\n end\n magco\n l = newt2.Magnitude >= magco;\n newt2 = newt2(l,:);\n\n figure_w_normalized_uicontrolunits(map)\n try\n delete(pl)\n catch ME\n disp(ME.message);\n end\n\n hold on\n pl = plot(newt2.Longitude,newt2.Latitude,'xk');drawnow\n timeplot\n\n calcp\n %da = [da ; x+dx/2 P];\n B2 = [B2 ; b1 x b2 x];\n\n anz = [];\n for m2 = 4.75:0.5:7.25\n M2 = maepi(1,6) - m2;\n t0 = tlen;\n pla = 0; pla2 = 0;\n dt = 0.5;\n for t = t0:dt:t0+tpre\n pla = pla + (10^(A + bv*(M2)) * (t + c)^(-p)) *dt;\n pla2 = pla2 + (10^(A + bv*(M2-0.5)) * (t + c)^(-p)) *dt;\n end\n\n anz = [anz ; m2+0.25 (pla-pla2)/tpre];\n end\n % anz(5,2) = anz(5,2)/10;\n\n % write info to file\n s = ['0 1. -1 zn03']; s = s';\n fprintf(fid2,'%s\\n',s);\n s = ['2 1 1']; s = s';\n fprintf(fid2,'%s\\n',s);\n s = [num2str(x) ' ' num2str(b1,5) ' ' num2str(x) ' ' num2str(b2,5)]; s = s';\n fprintf(fid2,'%s\\n',s);\n s = [num2str(x+dx) ' ' num2str(b1,5) ' ' num2str(x+dx) ' ' num2str(b2,5)]; s = s';\n fprintf(fid2,'%s\\n',s);\n fprintf(fid2,'%7.6f ',anz(:,2));\n fprintf(fid2,'\\n');\n fprintf(fid2,'\\n');\n fprintf(fid2,'%3.2f ',anz(:,1));\n fprintf(fid2,'\\n');\nend\n\n\n%end\n\n\nfclose(fid2)\n\ndo = [' ! cat head_turk.txt | sed -e\"s/sub1/' num2str(prol) ' 1 ' num2str(tpre) '/\" > head2.txt ' ]; eval(do)\ndo = [' ! cat head2.txt sourczones.txt tail.txt > /home2/stefan/srisk/myrisk.inp']; eval(do)\n\ncd /home2/stefan/srisk/\n\ndo = [ '! /nfs/alaska/home2/stefan/srisk/seis4b.exe myrisk.inp myrisk.out f2 f3' ]; eval(do)\ndo = [' !cat myrisk.out | grep -e \"LAT \" -e \"' num2str(tpre) ' YE\" > tmp2 ']; eval(do)\ndo = ['condata2']; err = [' ']; eval(do,err);\nsave inpudata.xyz da -ascii\n\neq = [a.Longitude a.Latitude a.Magnitude];\nsave eqs2.dat eq -ascii\n\ncd /home2/stefan/srisk/\n\ndo = [' ! /home2/stefan/srisk/myriskturk 0.05 0.02 ' num2str(tpre) ]; eval(do)\n\nload lat\nload lon\nload hpga\n\n[X,Y] = meshgrid(min(lon)-0.1:0.08:max(lon)+0.1,min(lat)-0.1:0.08:max(lat)+0.1);\n\nZ = griddata(lon,lat,hpga,X,Y,'linear');\nfigure\n\npcolor(X,Y,Z); colorbar; shading flat\nhold on\nshading interp\noverlay\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/deleteme/turkeyhaz2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8128673269042767, "lm_q2_score": 0.48047867804790706, "lm_q1q2_score": 0.3905654186593028}} {"text": "% start : starting time of audio signal in seconds(e.g. 0 second)\n% finish : e.g. ending time of audio signal in seconds (e.g. 30 second)\n% filename: the input file (wavfile)\n%\n%\n% segments: the signal segmentation with 20 msec accuracy based on RMS, \n% if segments(i) = 1 then there is a change, otherwize segments(i) = 0\n% The command find(segments == 1)/50 yields the signal segmentation times in sec \n%\n% classif: final classification of signal. classif(i) is the class\n% of the i^{th} (20 msec) interval of the given signal (see also Fig 2 (b))\n%\n% Fig 1 shows the propability of each class per segment\n%\n% Fig 2 (a) shows the segmentation of the audio signal\n% Fig 2 (b) shows the classification of the audio signal \n% Fig 2 (c) shows the RMS of the audio signal\n% \n% example to run: [classif, segments]=trmszc(0,60,'test3.wav')\n\nfunction [classif, segments]=trmszc(start,finish,filename)\n\nsegments = [];\nclassif = [];\n\n[Y1,FS,NBITS,OPTS]=wavread(filename,[1 5]);\nduration = finish-start;\nkanalia = size(Y1,2);\narxh = start*FS;\nm = 100;\ntimeread = 1;\n\nVt = 0*[1:50];\nVta = [];\nVtz = 0*[1:50];\nVtz1 = 0*[1:50];\n\nVtaz = [];\nVtaz1 = [];\n\nshma = [];\ntemp = [];\ny = 0;\npy = [1:1:50];\n\nscp = 0;\nsc = 0;\nVtp = [1:1:50];\ni=1;\n[PYs,FS,NBITS,OPTS]=wavread(filename,[arxh+1+(i-1)*timeread*FS arxh+i*timeread*FS]);\nsf11 = 0;\naVt = [];\n\n%READING - Computation of RMS-ZC-RMS*ZC per 20 msec\n\nfor i=1:floor(duration/timeread),\n [Ys,FS,NBITS,OPTS]=wavread(filename,[arxh+1+(i-1)*timeread*FS arxh+i*timeread*FS]);\n if kanalia==2,\n Ys = Ys(:,1)+Ys(:,2);\n end\n for j=1:timeread*50,\n y = Ys(round((j-1)*0.02*FS+1):floor(j*0.02*FS));\n rms = sqrt(sum(y.*y));\n Vtp = Vt;\n Vt = [Vt(2:50) rms];\n l = length(y);\n y1 = y(1:l-1);\n y2 = y(2:l);\n mm1 = y1.*y2;\n zc = 0.5*sum((abs(sign(mm1))-sign(mm1)));\n Vtz1 = [Vtz1(2:50) zc];\n zc = zc*rms;\n Vtz = [Vtz(2:50) zc];\n end\n \n m = mean(Vt);\n v = var(Vt);\n Vta = [Vta Vt];\n Vtaz = [Vtaz Vtz];\n Vtaz1 = [Vtaz1 Vtz1];\n\n \n if (v ~= 0 & m ~= 0)\n b(i) = v/m;\n a(i) = (m/b(i))-1;\n else\n b(i) = 1000000;\n a(i) = -1;\n end\nend\n\n\n%Computation of KVRMS\n\nl = length(Vta);\nftm(1) = mean(Vta(1:50));\nftv(1) = var(Vta(1:50));\nfor i=2:l-50,\n ftm(i) = ftm(i-1)+(Vta(i+49)-Vta(i-1))/50;\n ftv(i) = ftv(i-1) + ftm(i-1)*ftm(i-1) + ((Vta(i+49)*Vta(i+49)-Vta(i-1)*Vta(i-1))/50) - ftm(i)*ftm(i); \n \n if ftm(i)~= 0,\n kvrms(i) = ftv(i)/(ftm(i)*ftm(i));\n else\n kvrms(i) = 0;\n end\nend\n\nl = floor(duration/timeread);\nm = mean(kvrms);\nv = var(kvrms);\nb1111 = v/m;\na111 = (m/b1111)-1;\n\n\n%computation of similarity (omiot) between windows based on RMS distribution \nfor i=2:l,\n k = (a(i)+a(i-1)+2)/2;\n omiot1(i-1) = ((2/(b(i-1)+b(i)))^k)*(b(i-1)^((a(i)+1)/2))*(b(i)^((a(i-1)+1)/2))*gamma(k)/(sqrt(gamma(a(i-1)+1)*gamma(a(i)+1))); \n if omiot1(i-1) ~= omiot1(i-1),\n omiot1(i-1) = 0;\n end \nend\n\nfor i=3:l,\n k = (a(i)+a(i-2)+2)/2;\n omiot2(i-2) = ((2/(b(i-2)+b(i)))^k)*(b(i-2)^((a(i)+1)/2))*(b(i)^((a(i-2)+1)/2))*gamma(k)/(sqrt(gamma(a(i-2)+1)*gamma(a(i)+1))); \n if omiot2(i-2) ~= omiot2(i-2),\n omiot2(i-2) = 0;\n end\nend\n\nP = [];\n\n\n%Segmentation \n%Computation of propability P of change (at window i)\n\n\nfor i=2:l-1,\n P(i-1) =(1-omiot2(i-1))*(1-omiot1(i-1)+1-omiot1(i))*(1-omiot2(i-1));\nend\n\nfor i=2:l-1,\n P(i-1) =(1-omiot2(i-1));\nend\n\n\nP = [0 P 0];\n \nM = mean(P);\nV1 = mean(abs(P(1:l-3)-P(2:l-2)));\nV2 = mean(abs(P(1:l-4)-P(3:l-2)));\n\n\nV = (V1+V2)*0.25;\n\nV = 0.25*median(abs((P(1:l-4)-P(3:l-2))));\n\n\nPd(1) = P(1);\nPd(2) = P(2);\n\nfor i=3:l-2,\n m = mean(P([i-2:i-1 i+1:i+2]));\n m1 = max(P([i-2:i-1 i+1:i+2]));\n \n if (m < 0.1*M)\n m1 = 0.1*M;\n end\n d = (P(i)-m)/m1;\n \n if d < 0,\n d = 0;\n end\n Pd(i) = P(i)*d/V;\nend\nPd(l) = P(l);\nPd(l-1) = P(l-1);\n\n%window size = 1 sec \n\n%Selection of candicate windows where there is a change \n\nj = 0;\nfor i=3:l-3,\n if (Pd(i) > 5 & P(i) > P(i+1) & P(i) > P(i-1)),\n j = j+1;\n pos(j) = i;\n end\nend\n\n\nif j == 0,\n return;\nend\n\n\n%Computation of change with 20 msec accurancy \n\nk2 = 1;\nc = 25;\nfor k1=1:length(pos),\n i = 50*(pos(k1)-2); % msec\n for j=-c:50+c,\n if (ftv(i+j) ~= 0 & ftm(i+j) ~= 0),\n b1 = ftv(i+j)/ftm(i+j);\n a1 = ftm(i+j)/b1-1;\n else\n b1 = 10000;\n a1 = -1;\n end\n \n if (ftv(i+j+50) ~= 0 & ftm(i+j+50) ~= 0)\n b2 = ftv(i+j+50)/ftm(i+j+50);\n a2 = ftm(i+j+50)/b2-1;\n else\n b2 = 10000;\n a2 = -1;\n end\n k = (a2+a1+2)/2;\n Om(j+c+1) = ((2/(b1+b2))^k)*(b1^((a2+1)/2))*(b2^((a1+1)/2))*gamma(k)/(sqrt(gamma(a1+1)*gamma(a2+1))); \n if Om(j+c+1)~= Om(j+c+1),\n Om(j+c+1) = 0;\n end\n end\n [x posms(k1)] = min(Om);\n h = 1-Om;\n if mean(h(max(posms(k1)-25,1):min(2*c+51,posms(k1)+25))) > 0.1,\n msec(k2) = posms(k1)-1-c;\n mpos(k2) = pos(k1);\n k2 = k2+1;\n end\nend\n\n\n\nposms = [];\nposms = msec;\npos = [];\npos = mpos;\n\n\nfpos = start+pos-1+0.02*posms;\n\n\n\n\npfpos = floor(50*pos+posms-50);\n\nbvoise = 0.14339738781836;\nbmusic = 0.04399754659151;\namusic = 1.66349817725076;\navoise = 2.32677887950291;\n\n\npfpos = [1 pfpos length(kvrms)];\nl = length(pfpos)-1;\nV = [];\nPzero = [];\nFsp1 = [];\n\n%Classification for each segment \n\n\nfor i=1:l,\n \n d = 0;\n \n x1 = mean(kvrms([pfpos(i):pfpos(i+1)]));\n x = x1;\n y = Vtaz([pfpos(i)+d:pfpos(i+1)-d]);\n y = y/(2*max(Vta(pfpos(i)+d:pfpos(i+1)-d)) - min(Vta(pfpos(i)+d:pfpos(i+1)-d))-median(Vta(pfpos(i)+d:pfpos(i+1)-d)));\n \n thor(i) = 50*mean(exp(-y));\n \n Pmusic(i) = (x^amusic)*exp(-x/bmusic)/(gamma(amusic+1)*bmusic^(amusic+1));\n Pvoise(i) = 0.5*(x^avoise)*exp(-x/bvoise)/(gamma(avoise+1)*bvoise^(avoise+1));\n sm = 0.7*median(ftm(pfpos(i):pfpos(i+1)))+0.3*mean(ftm(pfpos(i):pfpos(i+1)));\n Pspace(i) = 6*exp((-sm*sm)/(2*0.6*0.6));\n \n zpos(i) = sum(exp(-10*Vtaz1([pfpos(i)+d:pfpos(i+1)-d])))/length(Vtaz1([pfpos(i)+d:pfpos(i+1)-d]));\n \n if zpos(i) > 0.08 | x > 3\n Pvoise(i) = 10;\n else\n Pmusic(i) = (x^amusic)*exp(-x/bmusic)/(gamma(amusic+1)*bmusic^(amusic+1));\n Pvoise(i) = 0.5*(x^avoise)*exp(-x/bvoise)/(gamma(avoise+1)*bvoise^(avoise+1));\n end\n \n V(i,:) = [Pmusic(i) Pvoise(i)];\n [Pmax(i) type(i)] = max(V(i,:));\n \n \n thor2(i) = 50*mean(exp(-4*y));\n Pmusicg(i) = 0;\n \n if thor2(i) > 3.5,\n Pvoiseg(i) = 10;\n else\n Pmusicg(i) = (x^amusic)*exp(-x/bmusic)/(gamma(amusic+1)*bmusic^(amusic+1));\n Pvoiseg(i) = 0.5*(x^avoise)*exp(-x/bvoise)/(gamma(avoise+1)*bvoise^(avoise+1));\n end\n \n Vg(i,:) = [Pmusicg(i) Pvoiseg(i)];\n [Pmaxg(i) typeg(i)] = max(Vg(i,:));\n \n Vk = (sign(Vtaz1([pfpos(i):pfpos(i+1)])));\n tempV = [];\n tempV = Vta([pfpos(i):pfpos(i+1)]);\n rr = max(tempV)+0.001;\n tempV1 = tempV/rr;\n Vk0 = Vk;\n \n for j = 1:length(Vk)\n if (tempV1(j) < 0.1 & tempV(j) < 1.5) | tempV(j) < 1\n Vk(j) = 0;\n end\n end\n Vk1 = Vk;\n \n for j = 1:length(Vk)\n if (tempV1(j) < 0.4 | tempV(j) < 2 | tempV(j) < mean(tempV(j))) \n Vk1(j) = 0;\n end\n end\n Zca = [];\n Zca = Vk1.*(Vtaz1([pfpos(i):pfpos(i+1)]));\n \n \n Pol = (ones(1,length(Vk)) - sign(Vk)).*Vk0; \n\n \n VZC = Pol.*Vtaz1([pfpos(i):pfpos(i+1)]);\n \n dVk = abs(Vk(2:length(Vk))-Vk(1:length(Vk)-1));\n \n \n \n Freq(i,1) = 50*sum(dVk)/(2*length(Vk)); %FSP%\n Freq(i,2) = length(Vk)/50;%duration in sec of the segment\n Freq(i,3) = sum(Freq(:,2)); \n Freq(i,4) = zpos(i);\n Freq(i,5) = thor2(i);\n Freq(i,6) = max(Zca);\n\n \n \n Pmusicg(i) = 0;\n Pvoiseg(i) = 0;\n if Freq(i,1) < 0.59 & Freq(i,2) > 2.5,\n Pmusicg(i) = 10;\n else\n Pmusicg(i) = (x^amusic)*exp(-x/bmusic)/(gamma(amusic+1)*bmusic^(amusic+1));\n Pvoiseg(i) = 0.5*(x^avoise)*exp(-x/bvoise)/(gamma(avoise+1)*bvoise^(avoise+1));\n if x > 3,\n Pvoiseg(i) = Pvoiseg(i)+0.1; \n \n end\n \n if x > 300 ,\n Pmusicg(i) = 9;\n end\n\n if thor2 > 3.5\n Pvoiseg(i) = 11;\n end\n if max(Zca) > 280,\n Pmusicg(i) = 11;\n max(Zca)\n \n end\n if Freq(i,1) > 4.62 & Freq(i,2) > 2.5 & (thor2(i) > 0.1 | zpos(i) > 0.05),\n Pvoiseg(i) = 12;\n end\n\t\t\n if zpos(i) > 0.15 \n Pvoiseg(i) = 13;\n end\n end\n Vg(i,:) = [Pmusicg(i) Pvoiseg(i)];\n [Pmaxg(i) typeg(i)] = max(Vg(i,:));\n\n\tFsp1 = [Fsp1 Vk]; \n \n \n if (Pspace(i) > 4 & thor2(i) < 1) | (Pspace(i) > 4.5),\n type(i) = 3; %silence\n typeg(i) = 3;\n end\n \n \n if (pfpos(i+1) - pfpos(i))/50 < 0.5 & i >= 1, % short segments\n type(i) = type(i-1);\n end\nend\n\n\n\n g = [];\n g1 = [];\n tt = [];\n pt = [];\n pm = [];\n ps = [];\n pv = [];\n pmf = [];\n \n \nfor i=1:l,\n tt = [tt type(i)*ones(1,pfpos(i+1)-pfpos(i))];\n pt = [pt Pmax(i)*ones(1,pfpos(i+1)-pfpos(i))];\n pm = [pm Pmusic(i)*ones(1,pfpos(i+1)-pfpos(i))];\n pv = [pv Pvoise(i)*ones(1,pfpos(i+1)-pfpos(i))];\n ps = [ps Pspace(i)*ones(1,pfpos(i+1)-pfpos(i))];\nend\n\nPosV = 100*sum(exp(-10*abs(tt-2*ones(1,length(tt)))))/length(tt);\nPosM = 100*sum(exp(-10*abs(tt-ones(1,length(tt)))))/length(tt);\n\n\n\nl1 = l;\nl = length(tt);\n\n\nl = l1;\n g = [];\n g1 = [];\n tt = [];\n pt = [];\n pm = [];\n ps = [];\n pv = [];\n pmf = [];\n\nfor i=1:l,\n tt = [tt typeg(i)*ones(1,pfpos(i+1)-pfpos(i))];\n pt = [pt Pmaxg(i)*ones(1,pfpos(i+1)-pfpos(i))];\n pm = [pm Pmusicg(i)*ones(1,pfpos(i+1)-pfpos(i))];\n pv = [pv Pvoiseg(i)*ones(1,pfpos(i+1)-pfpos(i))];\n ps = [ps Pspace(i)*ones(1,pfpos(i+1)-pfpos(i))];\nend\nl = length(tt);\n\n\n\nPosVg = 100*sum(exp(-10*abs(tt-2*ones(1,length(tt)))))/length(tt);\nPosMg = 100*sum(exp(-10*abs(tt-ones(1,length(tt)))))/length(tt);\n\n\nfigure(1);\nsubplot(5,1,1);\nplot([1:l]*(finish-start-1)/l+start,tt);\ntitle('classification type (1 : Music, 2: Voise, 3: Silence)');\nsubplot(5,1,2);\nplot([1:l]*(finish-start-1)/l+start,pt);\ntitle('~probability posibility of selected type');\nsubplot(5,1,3);\nplot([1:l]*(finish-start-1)/l+start,pm);\ntitle('~probability MUsic');\nsubplot(5,1,4);\nplot([1:l]*(finish-start-1)/l+start,pv);\ntitle('~probability Voise');\nsubplot(5,1,5);\nplot([1:l]*(finish-start-1)/l+start,ps);\ntitle('~probability silence');\n\n\n\nfor k = 1:length(Vta),\n if Vta(k) < 2 | Vta(k) < 0.1*max(Vta),\n Vtaz1(k) = 0;\n end\nend\nm = 100;\ntemp = [];\nh1 = [];\ntemp = Vtaz1;\nh1 = hist(temp,m);\nh1(1) = 0;\nh1 = h1/sum(h1);\na1 = [min(temp):(max(temp)-min(temp))/m:max(temp)-(max(temp)-min(temp))/m];\n\n\nsegbar = [];\nj = 1;\ni = 1;\nwhile i <= l,\n if j <= length(fpos) & round(50*fpos(j)) == i,\n segbar(i) = 1;\n j = j+1;\n else\n segbar(i) = 0;\n end\n i = i+1;\nend\n \nsegments = segbar;\n\nfigure(2);\nsubplot(3,1,1);\nstem([1:l]*(finish-start-1)/l+start,segbar);\naxis([0 duration 0 1]);\ntitle('Segmentation');\nxlabel('sec');\nsubplot(3,1,2);\nplot([1:l]*(finish-start-1)/l+start,tt);\naxis([0.5 duration 0 3.5]);\ntitle('classification type (1 : Music, 2: Voise, 3: Silence)');\nxlabel('sec');\nsubplot(3,1,3);\nplot(start+([1:length(Vta)]*duration/length(Vta)),Vta);\naxis([0 duration 0 (floor(max(Vta))+1)]);\ntitle('RMS');\nxlabel('sec');\n\n\nclassif = tt;\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/42092-a-speechmusic-discriminator-based-on-rms-and-zero-crossings/trmszc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7690802370707283, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.39054806896717903}} {"text": "function [mCat]=sr_makeSRC4(mCat,fTw,T)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% This function removes events and creates a quiescence according to the\n% chosen input variables. The lat/lon position of the quiescence is\n% determined randomly.\n%\n% Input Variables\n% mCat Earthquake catalog in zmap-format\n% fTw Duration of PSQ\n% T Starting time of PSQ\n% fR Degree of rate change (0.75 = 75% reduction)\n%\n% Output Variables\n% mCat Catalog with PSQ%\n%\n% van Stiphout Thomas ; vanstiphout@sed.ethz.ch\n% Created: 14.08.2007\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ndisp('zmap/src/thomas/seismicrates/sr_makeSRC4.m')\n\n% rate decrease for grid node\nfR=0.75;\nfLonPSQ=-116.4;\nfLatPSQ=34.3;\nnN=300;\nfLon0=fLonPSQ;\nfLat0=fLatPSQ;\n\n% get N nearest events for certain grid point\n% [caNodeIndices, vResolution_] = ex_CreateIndexCatalog(mCat, [fLon0 fLat0], 1, 0, nN, 99, 0.1, 0.1);\n% % transform cell array to matrix\n% vSel=cell2mat(caNodeIndices);\n\n% get events within certain radius of a grid point\n[caNodeIndices, vResolution] = ex_CreateIndexCatalog(mCat, [fLon0 fLat0], 1, 1, ...\n 100, 10, 0.1, 0.1);\n% transform cell array to matrix\ncaNodeIndices_=cell2mat(caNodeIndices);\nvSel=caNodeIndices_;\n% transform cell array to matrix\nvResolution_=cell2mat(vResolution);\n\n% control plots\n% figure;plot(mCat(:,1),mCat(:,2),'.k');\n% hold on;plot(mCat(vSel,1),mCat(vSel,2),'dr');\n\n\n% select from N events the one in the quiescence time period\nvSel3=find((mCat(vSel,3)>T-fTw) & (mCat(vSel,3) 4\n j1 = ceil(options.Ncomp/2); j2 = 2;\n else\n j1 = options.Ncomp; j2 = 1;\n end\n for j = 1:options.Ncomp\n subplot(j1,j2,j)\n plot(sp_profiles(:,j),'LineWidth',2.5)\n end\nend\n\n% group level\nsp_fit_group = struct();\nsp_fit_group.state = struct();\n\n% NNMF / PCA\npsd = zeros(ndim*K,options.Ncomp);\ncoh = zeros(ndim2*K,options.Ncomp);\nif strcmpi(options.Method,'NNMF')\n psd(keep_psd,:) = (Xpsd(:,keep_psd)' * sp_profiles); % ndim by components\n coh(keep_coh,:) = (Xcoh(:,keep_coh)' * sp_profiles);\n% opt = statset('maxiter',0);\n% [~,b] = nnmf(Xpsd,options.Ncomp,'algorithm','als',...\n% 'w0',sp_profiles,'Options',opt);\n% psd = b'; % regions by components\n% [~,b] = nnmf(Xcoh,options.Ncomp,'algorithm','als',...\n% 'w0',sp_profiles,'Options',opt);\n% coh = b'; % pairs of regions by components\nelse\n Xpsd(:,keep_psd) = Xpsd(:,keep_psd) - repmat(mean(Xpsd(:,keep_psd)),Nf,1);\n Xcoh(:,keep_coh) = Xcoh(:,keep_coh) - repmat(mean(Xcoh(:,keep_coh)),Nf,1);\n psd(keep_psd,:) = (Xpsd(:,keep_psd)' * sp_profiles); % ndim by components\n coh(keep_coh,:) = (Xcoh(:,keep_coh)' * sp_profiles);\nend\nif any(isnan(psd(:))) || any(isnan(coh(:))) \n warning('There are NaNs in the estimations for those states that were not used') \nend\nfor k = 1:K\n sp_fit_group.state(k).psd = zeros(options.Ncomp,ndim,ndim);\n sp_fit_group.state(k).coh = ones(options.Ncomp,ndim,ndim);\n ind = (1:ndim) + (k-1)*ndim;\n for i = 1:options.Ncomp\n sp_fit_group.state(k).psd(i,:,:) = diag(psd(ind,i));\n end\n ind = (1:ndim2) + (k-1)*ndim2;\n for i = 1:options.Ncomp\n graphmat = zeros(ndim);\n graphmat(ind_offdiag) = coh(ind,i);\n graphmat=(graphmat+graphmat') + eye(ndim);\n sp_fit_group.state(k).coh(i,:,:) = graphmat;\n end\nend\n\n% Subject level\nif N > 1 && nargout == 3\n for n = 1:N\n sp_fit{n} = struct();\n sp_fit{n}.state = struct();\n % prepare matrix\n Xpsd = zeros(Nf,ndim*K);\n keep_psd = true(1,ndim*K);\n for k = 1:K\n ind = (1:ndim) + (k-1)*ndim;\n Xpsd(:,ind)= squeeze(abs(psd_comps(n,k,:,:)));\n if any(isnan(var(Xpsd(:,ind)))) || any(isinf(var(Xpsd(:,ind))))\n keep_psd(ind) = false;\n warning(['Session ' num2str(n) ' did not use state ' num2str(k) '; PSD set to NaN'])\n end\n end\n Xcoh = zeros(Nf,K*ndim2);\n keep_coh = true(1,K*ndim2);\n for k = 1:K\n ind = (1:ndim2) + (k-1)*ndim2;\n ck = squeeze(abs(coh_comps(n,k,:,:,:)));\n Xcoh(:,ind) = ck(:,ind_offdiag);\n if any(isnan(var(Xcoh(:,ind)))) || any(isinf(var(Xcoh(:,ind))))\n keep_coh(ind) = false; \n warning(['Session ' num2str(n) ' did not use state ' num2str(k) '; Coh set to NaN'])\n end\n end\n % NNMF / PCA\n psd = zeros(ndim*K,options.Ncomp);\n coh = zeros(ndim2*K,options.Ncomp);\n if strcmpi(options.Method,'NNMF')\n opt = statset('maxiter',1);\n [~,b] = nnmf(Xpsd(:,keep_psd),options.Ncomp,'algorithm','als',...\n 'w0',sp_profiles,'Options',opt);\n psd(keep_psd,:) = b'; % regions by components\n [~,b] = nnmf(Xcoh(:,keep_coh),options.Ncomp,'algorithm','als',...\n 'w0',sp_profiles,'Options',opt);\n coh(keep_coh,:) = b';\n else\n Xpsd(:,keep_psd) = Xpsd(:,keep_psd) - repmat(mean(Xpsd(:,keep_psd)),Nf,1);\n Xcoh(:,keep_coh) = Xcoh(:,keep_coh) - repmat(mean(Xcoh(:,keep_coh)),Nf,1);\n psd(keep_psd,:) = (Xpsd(:,keep_psd)' * sp_profiles);\n coh(keep_coh,:) = (Xcoh(:,keep_coh)' * sp_profiles);\n end\n % Reshape stuff\n for k = 1:K\n sp_fit{n}.state(k).psd = zeros(options.Ncomp,ndim,ndim);\n sp_fit{n}.state(k).coh = ones(options.Ncomp,ndim,ndim);\n ind = (1:ndim) + (k-1)*ndim;\n for i = 1:options.Ncomp\n sp_fit{n}.state(k).psd(i,:,:) = diag(psd(ind,i));\n end\n ind = (1:ndim2) + (k-1)*ndim2;\n for i = 1:options.Ncomp\n graphmat = zeros(ndim);\n graphmat(ind_offdiag) = coh(ind,i);\n graphmat=(graphmat+graphmat') + eye(ndim);\n sp_fit{n}.state(k).coh(i,:,:) = graphmat;\n end\n end\n end\nelse\n sp_fit = sp_fit_group;\nend\n\nend\n\n\n", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/spectral/spectdecompose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3904126261839305}} {"text": "% Laser sensor's parameters\nfunction lidar = SetLidarParameters()\n\nlidar.angle_min = -2.351831;\nlidar.angle_max = 2.351831;\nlidar.angle_increment = 0.004363;\nlidar.npoints = 1079;\nlidar.range_min = 0.023;\nlidar.range_max = 60;\nlidar.scan_time = 0.025;\nlidar.time_increment = 1.736112e-05;\nlidar.angles = (lidar.angle_min : lidar.angle_increment : lidar.angle_max)';", "meta": {"author": "meyiao", "repo": "LaserSLAM", "sha": "0543b8f4fc103e75297491214217cc883456f009", "save_path": "github-repos/MATLAB/meyiao-LaserSLAM", "path": "github-repos/MATLAB/meyiao-LaserSLAM/LaserSLAM-0543b8f4fc103e75297491214217cc883456f009/SetLidarParameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3904126261839304}} {"text": "function [prob] = predictRF(X,RF)\n\nnInst = size(X,1);\ntrees = RF.Trees; numTrees = numel(trees);\npredictions = zeros(nInst,1);\nfor t = 1:numTrees\n temp = trees{t}.predict(X); temp = str2double(temp);\n predictions = predictions + temp;\nend\nprob = predictions/numTrees;\nend", "meta": {"author": "mvallieres", "repo": "radiomics", "sha": "d3a61737730e1b2b46d04c9e22a3fcc390912f1a", "save_path": "github-repos/MATLAB/mvallieres-radiomics", "path": "github-repos/MATLAB/mvallieres-radiomics/radiomics-d3a61737730e1b2b46d04c9e22a3fcc390912f1a/STUDIES/HN_study/Functions/MULTIVARIABLE_MODELING/predictRF.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544210587586, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.39041261918545905}} {"text": "%% gpatch\n% Below is a demonstration of the features of the |gpatch| function\n\n%%\nclear; close all; clc;\n\n%% Syntax\n% |[hp]=gpatch(F,V,C,CE,A,L)|;\n\n%% Description\n% This function is a short-hand version of the |patch| command. The inputs\n% for |gpatch| are the faces (F), the vertices (V), the color description\n% (C), the edge color description CE, the transparancy (A), and the edge\n% width (L). \n% The color data descriptions C (or equivalently CE for edges) can be: \n% 1) A string such as 'g' for green\n% 2) A triplet of RGD values e.g. [1 0 0] is blue\n% 3) A nx1 or a mx1 array of colormapped colors (where n=size(F,1) or m=size(V,1)) \n% 4) (simiarl to 3) A nx3 or a mx3 RGB color value array for the faces or vertices respectively. \n\n%% Examples\n\n%%\n% Create example mesh data\n\n[F,V,~]=geoSphere(2,1); %Faces and vertices\nCV=V(:,1); %Color information for vertices\nCF=vertexToFaceMeasure(F,CV); %Color information for faces\nCF_rgb=abs(vertexToFaceMeasure(F,V)); %Color information for faces\n\n%% Example: Introduction to using |gpatch| for mesh visualization\n% The below visualization show the syntax require using |patch| and\n% |gpatch|. Essentially |gpatch| is just a short-hand version of |patch|\n% allowing for quick and easy visualization using patch graphics. \n\n%%\n% Using patch graphics in MATLAB see documentation on |patch| for more information\n\ncFigure; \nsubplot(2,3,1); \ntitle('Single face and edge color');\npatch('Faces',F,'Vertices',V,'FaceColor','r','EdgeColor','g','FaceAlpha',0.5);\naxisGeom; \n\nsubplot(2,3,2);\ntitle('Colormapped face colors');\npatch('Faces',F,'Vertices',V,'FaceColor','flat','CData',CF,'EdgeColor','k','FaceAlpha',1);\ncolormap gjet; colorbar;\naxisGeom; \n\nsubplot(2,3,3);\ntitle('RGB driven face colors');\npatch('Faces',F,'Vertices',V,'FaceColor','flat','FaceVertexCData',CF_rgb,'EdgeColor','k','FaceAlpha',1,'LineWidth',3);\naxisGeom; \n\nsubplot(2,3,4);\ntitle('Colormapped edge colors');\npatch('Faces',F,'Vertices',V,'FaceColor',grayColor(0.5),'EdgeColor','flat','CData',CV,'LineWidth',3);\ncolormap gjet; colorbar;\naxisGeom; \n\nsubplot(2,3,5);\ntitle('alpha mapping');\npatch('Faces',F,'Vertices',V,'FaceColor','g','FaceVertexAlphaData',CV,'EdgeColor','none','FaceAlpha','flat');\naxisGeom; \n\ndrawnow; \n\n% Using |gpatch| shorthand alternative to |patch|\n\ncFigure; \nsubplot(2,3,1); \ntitle('Single face and edge color');\ngpatch(F,V,'r','g',0.5);\naxisGeom; \n\nsubplot(2,3,2);\ntitle('Colormapped face colors');\ngpatch(F,V,CF);\ncolormap gjet; colorbar;\naxisGeom; \n\nsubplot(2,3,3);\ntitle('RGB driven face colors');\ngpatch(F,V,CF_rgb,'k',1,3);\naxisGeom; \n\nsubplot(2,3,4);\ntitle('Colormapped edge colors');\ngpatch(F,V,'kw',CV,1,3); %kw -> grayColor(0.5)\ncolormap gjet; colorbar;\naxisGeom; \n\nsubplot(2,3,5);\ntitle('alpha mapping');\ngpatch(F,V,'g','none',CV);\naxisGeom; \n\ndrawnow; \n\n%% Using |gpatch| with cell arrays containing patch data\n\n%%\n% Use of |gpatch| when both the faces and vertices are stored in a cell\n% array\n\n% Create example cell arrays\n[F1,V1]=graphicsModels(1); V1=V1-mean(V1,1); V1=V1./max(V1(:)); V1=V1-1;\n[F2,V2]=graphicsModels(2); V2=V2-mean(V2,1); V2=V2./max(V2(:));\n[F3,V3]=graphicsModels(3); V3=V3-mean(V3,1); V3=V3./max(V3(:)); V3=V3+1;\nF={F1,F2,F3}; %Cell array containing faces\nV={V1,V2,V3}; %Cell array containing vertices\nC={ones(size(F1,1),1),2*ones(size(F2,1),1),3*ones(size(F3,1),1)}; %Cell array containing color labels\n\ncFigure; \ntitle('Cell array of patch data');\nhp=gpatch(F,V,C,'none',1);\naxisGeom; camlight headlight;\ncolormap spectral; icolorbar;\ndrawnow;\n\n%%\n% Use of |gpatch| when only the faces are stored in a cell array\n\n% Create example cell array\n\n[F1,V1]=graphicsModels(1); V1=V1-mean(V1,1); V1=V1./max(V1(:)); V1=V1-1;\n[F2,V2]=graphicsModels(2); V2=V2-mean(V2,1); V2=V2./max(V2(:));\n[F3,V3]=graphicsModels(3); V3=V3-mean(V3,1); V3=V3./max(V3(:)); V3=V3+1;\nF={F1,F2+size(V1,1),F3+size(V1,1)+size(V2,1)}; %Cell array containing faces\nV=[V1;V2;V3]; %Normal array containing all vertices\nC={ones(size(F1,1),1),2*ones(size(F2,1),1),3*ones(size(F3,1),1)}; %Cell array containing color labels\n\ncFigure; \ntitle('Cell array of patch data');\nhp=gpatch(F,V,C,'none',1);\naxisGeom; camlight headlight;\ncolormap spectral; icolorbar;\ndrawnow;\n\n%% \n%\n% <>\n% \n% _*GIBBON*_ \n% \n% \n% _Kevin Mattheus Moerman_, \n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/docs/HELP_gpatch.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.7090191460821871, "lm_q1q2_score": 0.3903911641383588}} {"text": "function value = s_s_subanagram ( s1, s2 )\n\n%*****************************************************************************80\n%\n%% S_S_SUBANAGRAM determines if S2 is a \"subanagram\" of S1.\n%\n% Discussion:\n%\n% S2 is an anagram of S1 if S2 can be formed by permuting the letters\n% of S1\n%\n% S2 is an subanagram of S1 if S2 can be formed by selecting SOME of\n% the letters of S1 and permuting them.\n%\n% Blanks (trailing or otherwise), punctuation, and capitalization\n% are all significant, so be sure to input exactly the information\n% you want to check.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 15 June 2007\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string S1, the master string.\n%\n% Input, string S2, the second string.\n%\n% Output, logical VALUE is TRUE if S2 is a subanagram of S1.\n%\n value = 0;\n%\n% Sort both.\n%\n s1 = s_sort_a ( s1 );\n s2 = s_sort_a ( s2 );\n\n s1_length = length ( s1 );\n s2_length = length ( s2 );\n\n i1 = 0;\n\n for i2 = 1 : s2_length\n\n while ( 1 )\n\n i1 = i1 + 1;\n%\n% Ran out of S1 before finishing. No match is possible.\n%\n if ( s1_length < i1 )\n return;\n end\n%\n% The current character in S1 is already greater than the character in S2.\n% No match is possible.\n%\n if ( s2(i2) < s1(i1) )\n return\n end\n%\n% Found an exact match for current character. Keep going.\n%\n if ( s1(i1) == s2(i2) )\n break\n end\n%\n% Didn't find a match, but one might be possible if we increase I1.\n%\n end\n\n end\n%\n% We matched every character of S2 with something in S1.\n%\n value = 1;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/chrpak/s_s_subanagram.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.7090191399336402, "lm_q1q2_score": 0.39039116075292357}} {"text": "function test_ft_math\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_math\n\n%% create some test data\nraw1 = [];\nraw1.time = {[1:10], [1:10], [1:10]};\nraw1.trial = {ones(2,10), ones(2,10), ones(2,10)};\nraw1.label = {'chan01';'chan02'};\nraw1.trialinfo = rand(3,4);\n\ntimelock1.label = {'chan1'; 'chan2'};\ntimelock1.time = 1:5;\ntimelock1.dimord = 'chan_time';\ntimelock1.avg = ones(2,5);\ntimelock1.cfg = struct([]);\n\ntimelock2 = timelock1;\ntimelock2.avg = ones(2,5)*2;\n\ntimelock3 = timelock1;\ntimelock3.var = ones(2,5);\n\nsource1 = [];\nsource1.pos = randn(10,3);\nsource1.pow = randn(10,1);\nsource1.powdimord = 'pos';\nsource1.mom = cell(10,1);\nfor i=1:10\n source1.mom{i} = ones(3, 20)*1;\nend\nsource1.momdimord = '{pos}_ori_time';\nsource1.time = 1:20;\n\nsource2 = source1;\nfor i=1:10\n source2.mom{i} = ones(3, 20)*2;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with one raw input\n\ncfg=[];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'trial';\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, raw1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\n\ncfg.scalar = pi;\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, raw1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, raw1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, raw1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, raw1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with one timelock input\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'avg';\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, timelock1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.scalar = pi;\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, timelock1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, timelock1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, timelock1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, timelock1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with one timelock input, multiple parameters\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = {'avg', 'var'};\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, timelock3);\nassert(isfield(tmp, 'avg') && isfield(tmp, 'var'), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\nassert(isequal(tmp.var, log10(timelock3.var)));\nassert(isequal(tmp.avg, log10(timelock3.avg)));\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with one source input\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'mom'; % note that this is {pos}_ori_time\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, source1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.scalar = pi;\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, source1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, source1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, source1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, source1);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with two timelock inputs\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'avg';\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with two source inputs\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'mom';\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, source1, source2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, source1, source2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, source1, source2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, source1, source2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with more than two timelock inputs\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'avg';\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, timelock1, timelock2, timelock1, timelock2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, timelock1, timelock2, timelock1, timelock2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, 'dimord'), 'the output dimord is missing');\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with more than two source inputs\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'mom';\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, source1, source2, source1, source2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, source1, source2, source1, source2);\nassert(isfield(tmp, cfg.parameter), 'the output parameter is missing');\nassert(isfield(tmp, [cfg.parameter 'dimord']), 'the output dimord is missing');\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% check the numerical output of the operation\n\ncfg = [];\ncfg.parameter = 'trial';\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, raw1);\nassert(tmp.trial{1}(1)==0);\n\ncfg.operation = 'multiply';\ncfg.scalar = -1;\ntmp = ft_math(cfg, raw1);\nassert(tmp.trial{1}(1)==-1);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% idem for a timelock input\n\ncfg = [];\ncfg.parameter = 'avg';\ncfg.operation = 'add';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(tmp.avg(1)==3);\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(tmp.avg(1)==-1);\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(tmp.avg(1)==1/2);\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(tmp.avg(1)==2);\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, timelock1);\nassert(tmp.avg(1)==0);\n\ncfg.operation = 'log(x1)';\ntmp = ft_math(cfg, timelock1);\nassert(tmp.avg(1)==0);\n\ncfg.operation = '(x1-x2)/(x1+x2)';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(tmp.avg(1)==-1/3);\n\ncfg.scalar = 2;\ncfg.operation = '(x1+x2)^s';\ntmp = ft_math(cfg, timelock1, timelock2);\nassert(tmp.avg(1)==9);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% idem for a source structure with a cell-array\n\ncfg = [];\ncfg.parameter = 'mom';\ncfg.operation = 'add';\ntmp = ft_math(cfg, source1, source2);\nassert(tmp.mom{1}(1)==3);\n\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, source1, source2);\nassert(tmp.mom{1}(1)==-1);\n\ncfg.operation = 'divide';\ntmp = ft_math(cfg, source1, source2);\nassert(tmp.mom{1}(1)==1/2);\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, source1, source2);\nassert(tmp.mom{1}(1)==2);\n\ncfg.operation = 'log10';\ntmp = ft_math(cfg, source1);\nassert(tmp.mom{1}(1)==0);\n\ncfg.operation = 'log(x1)';\ntmp = ft_math(cfg, source1);\nassert(tmp.mom{1}(1)==0);\n\ncfg.operation = '(x1-x2)/(x1+x2)';\ntmp = ft_math(cfg, source1, source2);\nassert(tmp.mom{1}(1)==-1/3);\n\ncfg.scalar = 2;\ncfg.operation = '(x1+x2)^s';\ntmp = ft_math(cfg, source1, source2);\nassert(tmp.mom{1}(1)==9);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% do operation with a matrix\n\ncfg = [];\ncfg.showcallinfo = 'no';\ncfg.parameter = 'avg';\n\ncfg.matrix = zeros(size(timelock1.avg));\n\ncfg.operation = 'add';\ntmp = ft_math(cfg, timelock1);\nassert(isequal(timelock1.avg, tmp.avg));\ncfg.operation = 'subtract';\ntmp = ft_math(cfg, timelock1);\nassert(isequal(timelock1.avg, tmp.avg));\n\ncfg.matrix = ones(size(timelock1.avg));\n\ncfg.operation = 'multiply';\ntmp = ft_math(cfg, timelock1);\nassert(isequal(timelock1.avg, tmp.avg));\ncfg.operation = 'divide';\ntmp = ft_math(cfg, timelock1);\nassert(isequal(timelock1.avg, tmp.avg));\n\ntry\n failed = false;\n cfg = [];\n cfg.showcallinfo = 'no';\n cfg.parameter = 'avg';\n cfg.operation = 'log10';\n cfg.matrix = randn(3);\n tmp = ft_math(cfg, timelock1);\ncatch\n failed = true;\nend\nassert(failed, 'this should have failed');\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_math.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850933, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.39039115736748836}} {"text": "function [L1t,L2t,L3t]=triplet_find(DT1,DT2,DT3,Vn1,Vn2,Vn3,T_dist,opt)\n\nswitch opt\n case 1 %Full Delaunay input based\n [~,Dc12] = nearestNeighbor(DT2,Vn1);\n [~,Dc13] = nearestNeighbor(DT3,Vn1);\n L1t=Dc12<=T_dist & Dc13<=T_dist;\n \n [~,Dc21] = nearestNeighbor(DT1,Vn2);\n [~,Dc23] = nearestNeighbor(DT3,Vn2);\n L2t=Dc21<=T_dist & Dc23<=T_dist;\n \n [~,Dc31] = nearestNeighbor(DT1,Vn3);\n [~,Dc32] = nearestNeighbor(DT2,Vn3);\n L3t=Dc31<=T_dist & Dc32<=T_dist;\n \n case 2 %Accelerating renew with cropped Delaunay if possible otherwise full\n \n [~,Dc12] = nearestNeighbor(DT2,Vn1); \n L12t=Dc12<=T_dist;\n if any(L12t)\n [~,Dc13] = nearestNeighbor(DT3,Vn1);\n L1t=L12t & Dc13<=T_dist;\n else\n L1t=false(size(Vn1,1),1);\n end\n \n if any(L1t) \n if nnz(L1t)>=4\n DT=delaunayTriangulation(Vn1(L1t,:)); %Tesselation of selected coordinates\n if ~isempty(DT.ConnectivityList)\n DT1=DT;\n end\n end\n \n [~,Dc21] = nearestNeighbor(DT1,Vn2);\n L21t=Dc21<=T_dist;\n if any(L21t)\n [~,Dc23] = nearestNeighbor(DT3,Vn2); \n L2t=L21t & Dc23<=T_dist;\n else\n L2t=false(size(Vn2,1),1);\n end\n else\n L2t=false(size(Vn2,1),1);\n end\n \n if any(L2t)\n if nnz(L2t)>=4\n DT=delaunayTriangulation(Vn2(L2t,:)); %Tesselation of selected coordinates\n if ~isempty(DT.ConnectivityList)\n DT2=DT;\n end\n end\n \n [~,Dc31] = nearestNeighbor(DT1,Vn3);\n L31t=Dc31<=T_dist;\n if any(L31t)\n [~,Dc32] = nearestNeighbor(DT2,Vn3);\n L3t=L31t & Dc32<=T_dist;\n else\n L3t=false(size(Vn3,1),1);\n end\n else\n L3t=false(size(Vn3,1),1);\n end\n \n case 3 %Accelerating renew with cropped Delaunay/non-Delaunay\n [~,Dc12] = nearestNeighbor(DT2,Vn1);\n [~,Dc13] = nearestNeighbor(DT3,Vn1);\n L1t=Dc12<=T_dist & Dc13<=T_dist;\n if any(L1t)\n if nnz(L1t)>=4\n DT=delaunayTriangulation(Vn1(L1t,:)); %Tesselation of selected coordinates\n if ~isempty(DT.ConnectivityList)\n DT1=DT;\n end\n [~,Dc21] = nearestNeighbor(DT1,Vn2);\n [~,Dc31] = nearestNeighbor(DT1,Vn3);\n else\n [INDc,Dc12] = dsearchn(Vn2,Vn1(L1t,:));\n Dc21=NaN(size(Vn2,1),1); Dc21(INDc)=Dc12;\n \n [INDc,Dc13] = dsearchn(Vn3,Vn1(L1t,:));\n Dc31=NaN(size(Vn3,1),1); Dc31(INDc)=Dc13;\n end\n [~,Dc23] = nearestNeighbor(DT3,Vn2);\n L2t=Dc21<=T_dist & Dc23<=T_dist;\n else\n L2t=false(size(Vn2,1),1);\n end\n if any(L2t)\n if nnz(L2t)>=4 && nnz(L1t)>=4\n DT=delaunayTriangulation(Vn2(L2t,:)); %Tesselation of selected coordinates\n if ~isempty(DT.ConnectivityList)\n DT2=DT;\n end\n [~,Dc32] = nearestNeighbor(DT2,Vn3);\n else\n [INDc,Dc23] = dsearchn(Vn3,Vn2(L2t,:));\n Dc32=NaN(size(Vn3,1),1); Dc32(INDc)=Dc23;\n end\n L3t=Dc31<=T_dist & Dc32<=T_dist;\n else\n L3t=false(size(Vn3,1),1);\n end\nend\nend\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/triplet_find.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3903911573674883}} {"text": "function outputImage = remove_clusters(this, varargin)\n% Removes all voxel clusters within a given range of voxel counts, and/or\n% a given range of percent of the area that is (approximately) filled;\n% either slice-wise or volume-wise (8 or 26 neighbours) using Matlab's\n% bwareaopen\n%\n% Y = MrImage()\n% clusterRemovedImage = Y.remove_clusters('nPixelRange', nPixelRange, ...\n% 'pAreaRange', pAreaRange, 'applicationDimension', applicationDimension)\n%\n% This is a method of class MrImage.\n%\n% IN\n% nPixelsPerClusterRange\n% percentAreaFilledRange\n% percent area of the cluster filled estimated using the\n% Solidity property\n% applicationDimension\n% dimensionality to perform operation\n% '2d' = slicewise application, separate 2d images (cluster\n% neighbours only considered within slice)\n% '3d' = neighbourhood considered as volume\n%\n% OUT\n% outputImage\n% MrImage where data matrix does not contain removed clusters\n%\n% EXAMPLE\n% Y = MrImage();\n% % remove all pixel clusters with 15 or less pixels (3D neighbourhood)\n% Y.remove_clusters('nPixelRange', [0 15], 'applicationDimension', '3D');\n% Y.remove_clusters('areaRange', [0 40], 'applicationDimension', '2D');\n%\n% See also MrImage imdilate MrImage.imerode perform_unary_operation bwareaopen\n\n% Author: Lars Kasper\n% Created: 2019-11-03\n% Copyright (C) 2019 Institute for Biomedical Engineering\n% University of Zurich and ETH Zurich\n%\n% This file is part of the TAPAS UniQC Toolbox, which is released\n% under the terms of the GNU General Public Licence (GPL), version 3.\n% You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version).\n% For further details, see the file COPYING or\n% .\n\ndefaults.nPixelRange = [0 0];\ndefaults.pAreaRange = [0 0];\ndefaults.applicationDimension = '3D';\n\nargs = tapas_uniqc_propval(varargin, defaults);\ntapas_uniqc_strip_fields(args);\n\nareaRange = pAreaRange/100;\nis3D = strcmpi(applicationDimension, '3D');\n\nBW = this.copyobj.binarize(0, 'exclude');\n\nif is3D\n conn = 26; % use 26 neighbours in 3D (all faces and corners connected)\nelse\n conn = 8; % use 8 neighbours (in 2D)\nend\n\n%% step 1 - remove cluster based on voxel count\n\n% only crop, if required (i.e., connectivity components greater than 1)\nif nPixelRange(1) > 1\n % since we want to reinclude this mask later on (range!), we do not add\n % the +1 usually needed for bwareaopen, i.e., we only remove smaller\n % clusters here\n BW1 = BW.perform_unary_operation(@(x) bwareaopen(x, nPixelRange(1), conn), ...\n applicationDimension);\nelse\n BW1 = BW.copyobj;\nend\n\nif nPixelRange(2) > 0\n % since we indeed use this as a subtractive mask, we have to add +1 to\n % remove the clusters at the upper end of the cluster range as well\n BW2 = BW.perform_unary_operation(@(x) bwareaopen(x, nPixelRange(2) + 1, conn), ...\n applicationDimension);\nelse\n BW2 = BW.copyobj;\nend\n\n% by the following subtraction, excluded voxels in both BW1 and BW2 will be\n% reincluded, hence, an exclusive or is reached, only removing clusters in\n% the range between BW1 and BW2\nBW = abs(BW - BW1 - BW2);\n\n%% step 2 - remove cluster based on percent area filled\n% extract region properties\nif is3D\n stats = bwconncomp(BW.data, conn);\n props = regionprops3(stats, 'Solidity');\n % threshold solidity\n solidity = [props.Solidity];\n removeClusters = (solidity > areaRange(1) & solidity < areaRange(2));\n removeVoxels = vertcat(stats.PixelIdxList{removeClusters});\n % remove voxel\n BW.data(removeVoxels) = 0;\nelse\n % regionprops does not automatically take into account the defined\n % connectivity, so we have to do the split by hand\n nSamplesZ = BW.dimInfo.nSamples('z');\n for z = 1:nSamplesZ\n tempData = BW.select('z', z).data;\n stats = bwconncomp(tempData, conn);\n props = regionprops(stats, 'Solidity');\n % threshold solidity\n solidity = [props.Solidity];\n removeClusters = (solidity > areaRange(1) & solidity < areaRange(2));\n removeVoxels = vertcat(stats.PixelIdxList{removeClusters});\n % remove voxel\n tempData(removeVoxels) = 0;\n BW.data(:,:,z) = tempData;\n end\nend\n\noutputImage = this.*BW;\n\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrDataNd/remove_clusters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3903911573674883}} {"text": "function x = cifft2(xf)\n\nif isa(xf, 'gpuArray')\n x = real(ifft2(ifftshift(ifftshift(xf, 1), 2)));\nelse\n x = ifft2(ifftshift(ifftshift(xf, 1), 2), 'symmetric');\nend", "meta": {"author": "martin-danelljan", "repo": "ECO", "sha": "27e8ae565cd63ec14bafcaad8b5b993bec8f3e69", "save_path": "github-repos/MATLAB/martin-danelljan-ECO", "path": "github-repos/MATLAB/martin-danelljan-ECO/ECO-27e8ae565cd63ec14bafcaad8b5b993bec8f3e69/implementation/fourier_tools/cifft2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.39035733954237634}} {"text": "close all\nclear\n\n% system setup and initial condition\ntimestep = 0.1;\nsystem_param.A = [[1 ,timestep, 0]; [0, 1, timestep]; [0, 0, 1]];\nsystem_param.B = [0; 0; timestep];\nsystem_param.ul = -1;\nsystem_param.uu = 1;\nsystem_param.timestep = timestep;\nx0 = [-2;0;1];\nt0 = 0.0;\ntotal_time = 1.0;\n\n% problem setup\nsimulator = CBFDT(system_param, x0, t0);\n\nparam_mpcdcbf = ParamMPCDCBF(6, 0.1, 10 * eye(3), 10.0 * eye(3), 1.0);\nsimulator.setOpt('mpcdcbf', param_mpcdcbf);\nsimulator.sim(total_time);\n\nparam_mpcgcbf = ParamMPCGCBF(6, 0.1, 10 * eye(3), 10.0 * eye(3), 1.0);\nsimulator.setOpt('mpcgcbf', param_mpcgcbf);\nsimulator.sim(total_time);\n\nparam_nmpcdcbf = ParamNMPCDCBF(6, 6, 0.1, 10 * eye(3), 10.0 * eye(3), 1.0, 10.0);\nsimulator.setOpt('nmpcdcbf', param_nmpcdcbf);\nsimulator.sim(total_time);\n\nparam_dclfdcbf = ParamDCLFDCBF(0.1, 0.1, 10 * eye(3), 1.0, 10.0);\nsimulator.setOpt('dclfdcbf', param_dclfdcbf);\nsimulator.sim(total_time);\n\nparam_nmpcdclfdcbf = ParamNMPCDCLFDCBF(6, 6, 6, 0.1, 0.1, 10.0 * eye(3), 10.0 * eye(3), 1.0, 10.0, 10.0);\nsimulator.setOpt('nmpcdclfdcbf', param_nmpcdclfdcbf);\nsimulator.sim(total_time);", "meta": {"author": "HybridRobotics", "repo": "NMPC-DCLF-DCBF", "sha": "3f40c67578f49114301b02e744e5a86fa671a981", "save_path": "github-repos/MATLAB/HybridRobotics-NMPC-DCLF-DCBF", "path": "github-repos/MATLAB/HybridRobotics-NMPC-DCLF-DCBF/NMPC-DCLF-DCBF-3f40c67578f49114301b02e744e5a86fa671a981/matlab/cdc2021/test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.39035733954237634}} {"text": "% readneurodat() - read neuroscan location file (.dat)\n%\n% Usage:\n% >> [ CHANLOCS labels theta theta ] = readneurodat( filename );\n%\n% Inputs:\n% filename - file name or matlab cell array { names x_coord y_coord }\n%\n% Outputs:\n% CHANLOCS - [structure] EEGLAB channel location data structure. See\n% help readlocs()\n% labels - [cell arrya] channel labels\n% theta - [float array]array containing 3-D theta angle electrode\n% position (in degree)\n% phi - [float array]array containing 3-D phi angle electrode\n% position (in degree)\n%\n% Author: Arnaud Delorme, CNL / Salk Institute, 28 Nov 2003\n%\n% See also: readlocs(), readneurolocs()\n\n% Copyright (C) Arnaud Delorme, CNL / Salk Institute, 15 March 2003, arno@salk.edu\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\nfunction [chanlocs, labels, theta, phi] = readneurodat(filename)\n \n if nargin < 1\n help readneurodat;\n return;\n end\n \n % enter file name here\n % --------------------\n %tmp = loadtxt('/home/ftp/pub/locfiles/neuroscan/cap128.dat');\n %tmp = loadtxt('/home/arno/temp/quik128.DAT');\n tmp = loadtxt(filename);\n\n % resort electrodes\n % -----------------\n [tmp2, tmpind] = sort(celltomat(tmp(:,1))');\n tmp = tmp(tmpind,:);\n\n % convert to polar coordinates\n % ----------------------------\n %figure; plot(celltomat(tmp(:,2)), celltomat(tmp(:,3)), '.');\n [phi,theta] = cart2pol(celltomat(tmp(:,end-1)), celltomat(tmp(:,end)));\n theta = theta/513.1617*44;\n phi = phi/pi*180;\n\n % convert to other types of coordinates\n % -------------------------------------\n labels = tmp(:,end-2)';\n numLabel = labels{1};\n if isnumeric(numLabel)\n if numLabel ~= round(numLabel) % floating point label\n error('Wrong file format')\n end\n end\n chanlocs = struct('labels', labels, 'sph_theta_besa', mattocell(theta)', 'sph_phi_besa', mattocell(phi)');\n chanlocs = convertlocs( chanlocs, 'sphbesa2all');\n for index = 1:length(chanlocs)\n chanlocs(index).labels = num2str(chanlocs(index).labels);\n end\n theta = theta/pi*180;\n fprintf('Note: .dat file contain polar 2-D coordinates. EEGLAB will use these coordinates\\n');\n fprintf(' to recreated 3-D coordinates.\\n');\n fprintf('\\n');\n fprintf('Warning: if the channels are clustered in the middle or oddly spaced removed\\n');\n fprintf(' the peripheral channels and then used the optimize head function\\n');\n fprintf(' in the Channel Locations GUI. It seems that sometimes the peripherals\\n');\n fprintf(' are throwing off the spacing.\\n');\n \n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/sigprocfunc/readneurodat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7745833841649233, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39031734687000214}} {"text": "function SR = superresolve_wnuisr(slidingWindows, magFactor)\n\nnumberOfFrames = size(slidingWindows.frames,3);\n\n\n% Set PSF kernels for the different binning factors.\npsf{1} = fspecial('gaussian', 5, 0.8); % PSF for binning factor 2\npsf{2} = fspecial('gaussian', 7, 1.2); % PSF for binning factor 3\npsf{3} = fspecial('gaussian', 9, 1.6); % PSF for binning factor 4\n\n% Specific preprocessing steps for the non-uniform interpolation based multi-frame methods.\nweighting_struct = struct('mec_weight_flag',4,'dis_weight_flag',1,'qps_weight_flag',0,'mec_confMapN',[],...\n 'mec_thr_scaler',2,'mec_weight_exp',2,'mec_weighting',[],'dis_rho',0.7,'dis_scaler',magFactor*10,'dis_weighting',[],...\n 'qps_map',[],'qps_rho',0.7,'qps_weighting',[],'alpha',1,'beta',1,'gamma',1,'whi_mode',2);\nwarped_meshXN = zeros(size(slidingWindows.referenceFrame,1),size(slidingWindows.referenceFrame,2),numberOfFrames-1);\nwarped_meshYN = zeros(size(slidingWindows.referenceFrame,1),size(slidingWindows.referenceFrame,2),numberOfFrames-1);\n\nlr_seq_sorted = slidingWindows.frames;\nlr_seq_tmp = lr_seq_sorted(:,:,(numberOfFrames+1)/2);\nlr_seq_sorted(:,:,(numberOfFrames+1)/2) = lr_seq_sorted(:,:,1);\nlr_seq_sorted(:,:,1) = lr_seq_tmp;\n\nlr_seq_sorted = permute(lr_seq_sorted,[1 2 4 3]);\n\npermutation_vec = 1:numberOfFrames-1;\npermutation_vec((numberOfFrames+1)/2:end) = permutation_vec((numberOfFrames+1)/2:end) + 1;\npermutation_vec(1:(numberOfFrames-1)/2) = circshift(permutation_vec(1:(numberOfFrames-1)/2),[0 -1]);\n\nfor itera = 1:numberOfFrames-1\n [warped_meshXN(:,:,itera),warped_meshYN(:,:,itera)] = lmsSR_warpImgGridLocalTrans(size(slidingWindows.referenceFrame,1),size(slidingWindows.referenceFrame,2),slidingWindows.flowToReference{permutation_vec(itera)}.mvs_xc);\n \n % Storing the MEC-SSD-Confidence into the Weighting Struct\n weighting_struct.mec_confMapN(:,:,itera) = slidingWindows.mec_confMap{permutation_vec(itera)};\nend\n\n% Actual SR call\n[SR,~,~,~] = lmsSR_generateSRusingNUIv4weighted(lr_seq_sorted,warped_meshXN,warped_meshYN,[magFactor, magFactor],psf{magFactor-1},2,weighting_struct);\n\n", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/superresolve_wnuisr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7745833737577158, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.39031734162574605}} {"text": "switch dataName\n case 'circle'\n [data4, data] = curves_with_angles(300);\n \n [data_noise, noise, temp_max_index] = addnoise(data, 0.4); \n feats = data_noise;\n \n case 'square'\n [data]=square(200);\n [data_noise, noise, temp_max_index] = addnoise(data, 0.05);\n feats=data_noise;\n case 'hole'\n [data] = generate.Generate_Ground_Truth(dataName,1000);\n [data_noise, noise, temp_max_index] = generate.addnoise(data, 0.1);\n feats = data_noise;\n case 'fishbowl'\n [data] = generate.Generate_Ground_Truth(dataName,600);\n [data_noise, noise, temp_max_index] = generate.addnoise(data, 0.1);%0.1\n feats = data_noise;\n [feats]=double(outlier_generation(feats));\n case 'sphere_helix'\n [data]=generate.Generate_Ground_Truth(dataName);\n [data_noise, noise, temp_max_index] = generate.addnoise(data, 0.4);\n feats = data_noise; \n \n case 'box_plane'\n box_plane;\n feats=data;\n case 'Hemisphere_plane'\n [data,data_clean]=Hemisphere_plane;\n feats=data;\n \n\n \n case 'planes'\n [feats,data]=pctest5 ();\n \ncase 'cyclo'\n load('test_cyclo.mat');\n data=X_iso;\n data=data(:,1:6000);\n var_noise=0.2;\n [data_noise,noise,temp_max_index] = generate.addnoise(data, var_noise);\n feats=data_noise;\n \nend\n\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u53bb\u566a\u7b97\u6cd5/Robust-Manifold-Denoising--master/loadDataset.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.39030616524050366}} {"text": "function F = vertcat( varargin ) \n%VERTCAT Vertical concatenation of BALLFUN objects.\n%\n% K = VERTCAT(F, G, H) is the vertical concatenation of BALLFUN objects F, \n% G, and H. The function K is a BALLFUNV object. \n% \n% [F ; G ; H] is equivalent to VERTCAT(F, G, H).\n%\n% VERTCAT(F, G) returns an error. BALLFUNV objects have three components.\n%\n% VERTCAT(F) returns the BALLFUN F. \n% \n% See also BALLFUNV.\n\n% Copyright 2018 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif ( nargin == 1 ) \n % VERTCAT of one argument just returns the same thing back to the user:\n F = varargin{1}; \nelseif ( nargin == 3 )\n if all( cellfun(@(F) isa(F,'ballfun'), varargin) )\n F = ballfunv( varargin{:} );\n else\n error('BALLFUN:vertcat:tooManyComponents', ...\n 'Only BALLFUN objects are valid to concatenate.');\n end\nelse\n error('BALLFUN:vertcat:tooManyInputs', ...\n 'Can only vertically concatenate three BALLFUN objects.');\nend\n \nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@ballfun/vertcat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.3902509325871034}} {"text": "function [parameters, fitnessScore, exitFlag, newModel]=fitParameters(model,xRxns,xValues,rxnsToFit,valuesToFit,parameterPositions,fitToRatio,initialGuess,plotFitting)\n% fitParameters\n% Fits parameters such as maintenance ATP by quadratic programming\n%\n% model a model structure\n% xRxns cell array with the IDs of the reactions that will be\n% fixed for each data point\n% xValues matrix with the corresponding values for each\n% xRxns (columns are reactions)\n% rxnsToFit cell array with the IDs of reactions that will be fitted to\n% valuesToFit matrix with the corresponding values for each\n% rxnsToFit (columns are reactions)\n% parameterPositions stucture that determines where the parameters are in the\n% stoichiometric matrix. Contains the fields:\n% \tposition cell array of vectors where each element contains\n% the positions in the S-matrix for that parameter\n% \tisNegative cell array of vectors where the elements are true\n% if that position should be the negative of the\n% fitted value (to differentiate between\n% production/consumption)\n%\tfitToRatio if the ratio of simulated to measured values should\n% be fitted instead of the absolute value. Used to prevent\n% large fluxes from having too large impact (opt,\n% default true)\n% initialGuess initial guess of the parameters (opt)\n% plotFitting true if the resulting fitting should be plotted\n% (opt, default false)\n%\n% parameters fitted parameters in the same order as in\n% parameterPositions\n% fitnessScore the correponding residual sum of squares\n% newModel updated model structure with the fitted parameters\n%\n% Usage: [parameters, fitnessScore, exitFlag, newModel]=fitParameters(model,...\n% xRxns,xValues,rxnsToFit,valuesToFit,parameterPositions,fitToRatio,...\n% initialGuess,plotFitting)\n\nif nargin<7\n fitToRatio=true;\nend\nif nargin<8\n initialGuess=ones(numel(parameterPositions.position),1);\nend\nif isempty(initialGuess)\n initialGuess=ones(numel(parameterPositions.position),1);\nend\nif nargin<9\n plotFitting=false;\nend\n\nxRxns=convertCharArray(xRxns);\nrxnsToFit=convertCharArray(rxnsToFit);\n\n%Find the indexes of reactions that will be fitted\n[I, rxnsToFitIndexes]=ismember(rxnsToFit,model.rxns);\n\nif ~all(I)\n EM='Could not find all reactions in rxnsToFit';\n dispEM(EM);\nend\n\n%Find the indexes of reactions that will be used for constraints.\n[I, xRxnsIndexes]=ismember(xRxns,model.rxns);\n\nif ~all(I)\n EM='Could not find all reactions in xRxns';\n dispEM(EM);\nend\n\n[parameters, fitnessScore, exitFlag]=fminsearch(@(parameters) getRSS(parameters,model,xRxnsIndexes,xValues,rxnsToFitIndexes,valuesToFit,parameterPositions,fitToRatio),initialGuess);\n\nparameters=abs(parameters);\n\nif plotFitting==true\n %Set the resulting parameters\n [~, resultingFluxes, newModel]=getRSS(parameters,model,xRxnsIndexes,xValues,rxnsToFitIndexes,valuesToFit,parameterPositions,true);\n plot(xValues,valuesToFit,'o',xValues,resultingFluxes,'-*');\nend\nend\n\nfunction [rss, resultingFluxes, newModel]=getRSS(parameters,model,xRxnsIndexes,xValues,rxnsToFitIndexes,valuesToFit,parameterPositions,fitToRatio)\nparameters=abs(parameters);\n\n%Set the parameters at the positions specified in parameterPositions\nfor i=1:numel(parameterPositions.position)\n %Set positive\n model.S(parameterPositions.position{i}(parameterPositions.isNegative{i}==false))=parameters(i);\n \n %Set negative\n model.S(parameterPositions.position{i}(parameterPositions.isNegative{i}==true))=parameters(i)*-1;\nend\n\n%Also return an updated model\nnewModel=model;\n\n%Loop through each data point, set xRxns to xValues and calculate the sum\n%of squares for the rxnsToFit\nrss=0;\nresultingFluxes=[];\nfor i=1:size(xValues,1)\n %Fix for more xRxns!\n model.lb(xRxnsIndexes)=xValues(i,:);\n model.ub(xRxnsIndexes)=xValues(i);\n \n sol=solveLP(model);\n \n %Calculate the rss\n if fitToRatio==false\n rs=sol.x(rxnsToFitIndexes)'-valuesToFit(i,:);\n else\n rs=sol.x(rxnsToFitIndexes)'./valuesToFit(i,:)-ones(1,size(valuesToFit,2));\n end\n rss=rss+rs*rs';\n resultingFluxes=[resultingFluxes sol.x(rxnsToFitIndexes)];\nend\nend\n", "meta": {"author": "SysBioChalmers", "repo": "RAVEN", "sha": "cf4d3e0be954fde96a1a09ae3353dd2ee46552ed", "save_path": "github-repos/MATLAB/SysBioChalmers-RAVEN", "path": "github-repos/MATLAB/SysBioChalmers-RAVEN/RAVEN-cf4d3e0be954fde96a1a09ae3353dd2ee46552ed/core/fitParameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.39025092504513925}} {"text": "function opt_vect = foptions()\n% FOPTIONS Sets default parameters for optimisation routines\n% For compatibility with MATLAB's foptions()\n%\n% Copyright (c) Dharmesh Maniyar, Ian T. Nabney (2004)\n \nopt_vect = zeros(1, 18);\nopt_vect(2:3) = 1e-4;\nopt_vect(4) = 1e-6;\nopt_vect(16) = 1e-8;\nopt_vect(17) = 0.1;", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/foptions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6757646010190476, "lm_q1q2_score": 0.39025092504513925}} {"text": "%% Machine Learning Online Class\n% Exercise 7 | Principle Component Analysis and K-Means Clustering\n%\n% Instructions\n% ------------\n%\n% This file contains code that helps you get started on the\n% exercise. You will need to complete the following functions:\n%\n% pca.m\n% projectData.m\n% recoverData.m\n% computeCentroids.m\n% findClosestCentroids.m\n% kMeansInitCentroids.m\n%\n% For this exercise, you will not need to change any code in this file,\n% or any other files other than those mentioned above.\n%\n\n%% Initialization\nclear ; close all; clc\n\n%% ================= Part 1: Find Closest Centroids ====================\n% To help you implement K-Means, we have divided the learning algorithm \n% into two functions -- findClosestCentroids and computeCentroids. In this\n% part, you shoudl complete the code in the findClosestCentroids function. \n%\nfprintf('Finding closest centroids.\\n\\n');\n\n% Load an example dataset that we will be using\nload('ex7data2.mat');\n\n% Select an initial set of centroids\nK = 3; % 3 Centroids\ninitial_centroids = [3 3; 6 2; 8 5];\n\n% Find the closest centroids for the examples using the\n% initial_centroids\nidx = findClosestCentroids(X, initial_centroids);\n\nfprintf('Closest centroids for the first 3 examples: \\n')\nfprintf(' %d', idx(1:3));\nfprintf('\\n(the closest centroids should be 1, 3, 2 respectively)\\n');\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n%% ===================== Part 2: Compute Means =========================\n% After implementing the closest centroids function, you should now\n% complete the computeCentroids function.\n%\nfprintf('\\nComputing centroids means.\\n\\n');\n\n% Compute means based on the closest centroids found in the previous part.\ncentroids = computeCentroids(X, idx, K);\n\nfprintf('Centroids computed after initial finding of closest centroids: \\n')\nfprintf(' %f %f \\n' , centroids');\nfprintf('\\n(the centroids should be\\n');\nfprintf(' [ 2.428301 3.157924 ]\\n');\nfprintf(' [ 5.813503 2.633656 ]\\n');\nfprintf(' [ 7.119387 3.616684 ]\\n\\n');\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n\n%% =================== Part 3: K-Means Clustering ======================\n% After you have completed the two functions computeCentroids and\n% findClosestCentroids, you have all the necessary pieces to run the\n% kMeans algorithm. In this part, you will run the K-Means algorithm on\n% the example dataset we have provided. \n%\nfprintf('\\nRunning K-Means clustering on example dataset.\\n\\n');\n\n% Load an example dataset\nload('ex7data2.mat');\n\n% Settings for running K-Means\nK = 3;\nmax_iters = 10;\n\n% For consistency, here we set centroids to specific values\n% but in practice you want to generate them automatically, such as by\n% settings them to be random examples (as can be seen in\n% kMeansInitCentroids).\ninitial_centroids = [3 3; 6 2; 8 5];\n\n% Run K-Means algorithm. The 'true' at the end tells our function to plot\n% the progress of K-Means\n[centroids, idx] = runkMeans(X, initial_centroids, max_iters, true);\nfprintf('\\nK-Means Done.\\n\\n');\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n%% ============= Part 4: K-Means Clustering on Pixels ===============\n% In this exercise, you will use K-Means to compress an image. To do this,\n% you will first run K-Means on the colors of the pixels in the image and\n% then you will map each pixel on to it's closest centroid.\n% \n% You should now complete the code in kMeansInitCentroids.m\n%\n\nfprintf('\\nRunning K-Means clustering on pixels from an image.\\n\\n');\n\n% Load an image of a bird\nA = double(imread('bird_small.png'));\n\n% If imread does not work for you, you can try instead\n% load ('bird_small.mat');\n\nA = A / 255; % Divide by 255 so that all values are in the range 0 - 1\n\n% Size of the image\nimg_size = size(A);\n\n% Reshape the image into an Nx3 matrix where N = number of pixels.\n% Each row will contain the Red, Green and Blue pixel values\n% This gives us our dataset matrix X that we will use K-Means on.\nX = reshape(A, img_size(1) * img_size(2), 3);\n\n% Run your K-Means algorithm on this data\n% You should try different values of K and max_iters here\nK = 16; \nmax_iters = 10;\n\n% When using K-Means, it is important the initialize the centroids\n% randomly. \n% You should complete the code in kMeansInitCentroids.m before proceeding\ninitial_centroids = kMeansInitCentroids(X, K);\n\n% Run K-Means\n[centroids, idx] = runkMeans(X, initial_centroids, max_iters);\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n\n%% ================= Part 5: Image Compression ======================\n% In this part of the exercise, you will use the clusters of K-Means to\n% compress an image. To do this, we first find the closest clusters for\n% each example. After that, we \n\nfprintf('\\nApplying K-Means to compress an image.\\n\\n');\n\n% Find closest cluster members\nidx = findClosestCentroids(X, centroids);\n\n% Essentially, now we have represented the image X as in terms of the\n% indices in idx. \n\n% We can now recover the image from the indices (idx) by mapping each pixel\n% (specified by it's index in idx) to the centroid value\nX_recovered = centroids(idx,:);\n\n% Reshape the recovered image into proper dimensions\nX_recovered = reshape(X_recovered, img_size(1), img_size(2), 3);\n\n% Display the original image \nsubplot(1, 2, 1);\nimagesc(A); \ntitle('Original');\n\n% Display compressed image side by side\nsubplot(1, 2, 2);\nimagesc(X_recovered)\ntitle(sprintf('Compressed, with %d colors.', K));\n\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n", "meta": {"author": "Borye", "repo": "machine-learning-coursera-1", "sha": "033fdc2e6da393eeb1179a09aafe92362021effb", "save_path": "github-repos/MATLAB/Borye-machine-learning-coursera-1", "path": "github-repos/MATLAB/Borye-machine-learning-coursera-1/machine-learning-coursera-1-033fdc2e6da393eeb1179a09aafe92362021effb/Week 8 Assignments/K-Means Clustering and PCA/mlclass-ex7/ex7.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5774953506426082, "lm_q2_score": 0.6757646140788307, "lm_q1q2_score": 0.3902509227593211}} {"text": "%==============================================================================\n% This code is part of the Matlab-based toolbox\n% FAIR - Flexible Algorithms for Image Registration. \n% For details see \n% - https://github.com/C4IR and\n% - http://www.siam.org/books/fa06/\n%==============================================================================\n% \n% KERNEL/DISTANCES\n%\n% Contents of FAIR's Distance Toolbox\n%\n% This folder provides several distance measures, wrappers and utilities.\n%\n% general purpose tools:\n% contents - this file\n% distance - the specific distance measure used in FAIR\n% initialize: distance('reset','distance','SSD');\n% usage: D = distance(Tc,Rc,omega,m);\n% testDistances - test the files in this folder\n% see also E9_Hands_MLIR_SSD_mbElas\n%\n% measures and wrappers:\n% MI - wrapper for MIcc\n% MImex - Mutual Information based on rhoSplineC (C-implementation)\n% MIspline - Mutual Information based on rhoSpline (MATLAB-implementation)\n% rhoSpline - MATLAB implementation of joint entropy estimator (spline kernel) \n% rhoSplineC - C based implementation of joint entropy estimator (spline kernel) \n% NCC - Normalized Cross Correlation\n% NCCmex - Wrapper for NCCmexC\n% NCCmexC - C version of NCC\n% NGF - wrapper for NGFdot\n% NGFdot - Normalized Gradient Fields, dot product based (THE implementation)\n% NGFcross - Normalized Gradient Fields, cross product based (to be used with care)\n% NGFmex - Wrapper for NGFdotMexC\n% NGFdotMexC - C version of NGFdot\n% SSD - Sum of Squared Differences \n% SSDmex - Wrapper for SSDmexC\n% SSDmexC - C version of SSD\n% parseDistance - parse distances for derivative checks\n% see also E9_Hands_MLIR_SSD_mbElas\n% \n%==============================================================================\n\nfunction debit = contents\nif nargout == 0, \n help(mfilename); \n return; \nend;\n\n\n\ndebit = {\n 'contents.m'\n 'distance.m'\n 'testDistances.m'\n\n 'SSD.m'\n 'SSDmex.m'\n 'SSDmexC.cpp'\n \n 'NCC.m'\n 'NCCmex.m'\n 'NCCmexC.cpp'\n \n 'NGF.m'\n 'NGFcross.m'\n 'NGFdot.m'\n 'NGFmex.m' \n 'NGFdotMexC.cpp' \n \n 'rhoSpline.m'\n 'rhoSplineC.cpp'\n \n 'MI.m'\n 'MImex.m'\n 'MIspline.m'\n \n 'parseDistance.m'\n };\n %==============================================================================\n ", "meta": {"author": "C4IR", "repo": "FAIR.m", "sha": "975edebd37b833ae76696792870de5c05efcb9cb", "save_path": "github-repos/MATLAB/C4IR-FAIR.m", "path": "github-repos/MATLAB/C4IR-FAIR.m/FAIR.m-975edebd37b833ae76696792870de5c05efcb9cb/kernel/distances/contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592641, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.39025091750317487}} {"text": "% M1QN3 Solve a UNO using M1QN3\n%\n% THIS IS A LOW LEVEL FUNCTION - USE opti_m1qn3() INSTEAD!\n%\n% [x,fval,exitflag,iter,feval] = m1qn3(fun,grad,x0,opts)\n%\n% Input arguments:\n% fun - nonlinear function handle\n% grad - nonlinear gradient function handle (required)\n% x0 - initial solution guess\n% opts - solver options (see below)\n%\n% Return arguments:\n% x - solution vector\n% fval - objective value at the solution\n% exitflag - exit status (see below)\n% iter - number of iterations taken by the solver\n% feval - number of function evaluations taken by the solver\n%\n% Option Fields (all optional):\n% display - solver display level [0,1,2]\n% tolafun - gradient convergence tolerance\n% maxiter - maximum solver iterations {1000}\n% maxfeval - Maximum number of function evaluations {1500}\n% maxtime - Maximum solver execution time {1000s}\n% nupdate - Number of L-BFGS updates for Hessian (5-10) {5}\n% iterfun - Iteration callback function handle\n%\n% Return Status:\n% 0 - user exited\n% 1 - successful termination\n% 2 - input argument error\n% 3 - line-search is blocked\n% 4 - maximum iterations reached\n% 5 - maximum function evaluations reached\n% 6 - stop on dxmin during the line-search\n% 7 - numerical error\n% 8 - maximum time reached\n%\n% \n% Copyright (C) 2012 Jonathan Currie (IPL)", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/math/opti/Solvers/m1qn3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3902220614081495}} {"text": "\n% eeg_anova_script - example task ERP analysis\n\n% Analysis script for ERP components in\n% fixed and variable task waveforms for PTSD-PET project\n\n% Define sample rate & epoch parameters\nfprintf('Defining ERP parameters\\n');\nsample_rate = 2.5;\nepoch_start = -200;\nepoch_end = 1500;\npoints = 680;\ntimes = linspace(epoch_start,(epoch_end - sample_rate),points);\n\n% Define component timing & rows\ncomp = [145 195 250 385 550 750 950 1150 1350];\ncomp_rows = (comp - epoch_start) / sample_rate;\n\n% Load data (680 rows x 124 cols)\npath = 'd:\\data_emse\\ptsdpet\\link14hz\\';\nfor i=1:10,\n file = sprintf('%sc%02do_link14hz.txt',path,i);\n var = sprintf('c%02do_link14hz',i);\n if ~exist(var,'var')\n fprintf('loading %s\\n',file);\n load(file);\n end\n file = sprintf('%sc%02dt_link14hz.txt',path,i);\n var = sprintf('c%02dt_link14hz',i);\n if ~exist(var,'var')\n fprintf('loading %s\\n',file);\n load(file);\n end\n file = sprintf('%sp%02do_link14hz.txt',path,i);\n var = sprintf('p%02do_link14hz',i);\n if ~exist(var,'var')\n fprintf('loading %s\\n',file);\n load(file);\n end\n file = sprintf('%sp%02dt_link14hz.txt',path,i);\n var = sprintf('p%02dt_link14hz',i);\n if ~exist(var,'var')\n fprintf('loading %s\\n',file);\n load(file);\n end\nend\n\n% Select data rows for each component\n\ncont = zeros(1,2,124);\nptsd = zeros(1,2,124);\n\nfor i = 1:max(size(comp))\n c = comp(i);\n t = comp_rows(i);\n for j=1:10,\n sub = sprintf('c%02do_link14hz',j);\n fprintf('Component %d, selecting subject %s\\n',c,sub);\n data = eval(sub);\n cont(j,1,:) = data(t,:);\n\n sub = sprintf('c%02dt_link14hz',j);\n fprintf('Component %d, selecting subject %s\\n',c,sub);\n data = eval(sub);\n cont(j,2,:) = data(t,:);\n \n sub = sprintf('p%02do_link14hz',j);\n fprintf('Component %d, selecting subject %s\\n',c,sub);\n data = eval(sub);\n ptsd(j,1,:) = data(t,:);\n \n sub = sprintf('p%02dt_link14hz',j);\n fprintf('Component %d, selecting subject %s\\n',c,sub);\n data = eval(sub);\n ptsd(j,2,:) = data(t,:);\n end\n \n % Combine component data into single matrix\n data = [cont;ptsd]; % 20x2x124\n \n % Output ANOVA analysis.\n file = sprintf('%scomp%d_anova.txt',path,c);\n ANOVA = fopen(file,'w');\n file = sprintf('%scomp%d_p_task.txt',path,c);\n TASK = fopen(file,'w');\n file = sprintf('%scomp%d_p_group.txt',path,c);\n GROUP = fopen(file,'w');\n file = sprintf('%scomp%d_p_taskxgroup.txt',path,c);\n TASKxGROUP = fopen(file,'w');\n \n formatstr = '';\n \n fprintf('Doing ANOVA on electrode:\\n');\n \n x = 0;\n for k=1:124,\n \n % Extract data for analysis\n anova_data = data(:,:,k);\n \n if (x==24),\n x=0;\n fprintf('%3d\\n',k);\n else,\n x = x + 1;\n fprintf('%3d ',k);\n end\n fprintf(ANOVA,'\\n\\nELECTRODE %3d\\n',k);\n \n % Calculate & output summary stats\n avg.cont = mean(anova_data( 1:10,:));\n avg.ptsd = mean(anova_data(10:20,:));\n sd.cont = std(anova_data( 1:10,:));\n sd.ptsd = std(anova_data(10:20,:));\n se.cont = sd.cont / sqrt(10);\n se.ptsd = sd.ptsd / sqrt(10);\n fprintf(ANOVA,'%-12s\\t%-12s\\t%12s\\t%12s\\t%12s\\n','Group','Task','Mean','StDev','SE');\n fprintf(ANOVA,'%-12s\\t%-12s\\t%12s\\t%12s\\t%12s\\n','-----','----','----','-----','--');\n fprintf(ANOVA,'%-12s\\t%-12s\\t%12.6f\\t%12.6f\\t%12.6f\\n','Cont','Fixed', avg.cont(1),sd.cont(1),se.cont(1));\n fprintf(ANOVA,'%-12s\\t%-12s\\t%12.6f\\t%12.6f\\t%12.6f\\n','Cont','Variable',avg.cont(2),sd.cont(2),se.cont(2));\n fprintf(ANOVA,'%-12s\\t%-12s\\t%12.6f\\t%12.6f\\t%12.6f\\n','PTSD','Fixed', avg.ptsd(1),sd.ptsd(1),se.ptsd(1));\n fprintf(ANOVA,'%-12s\\t%-12s\\t%12.6f\\t%12.6f\\t%12.6f\\n\\n','PTSD','Variable',avg.ptsd(2),sd.ptsd(2),se.ptsd(2));\n \n % Run 2way ANOVA\n [p, tab] = anova2(anova_data,10,'off');\n \n % Collate the p values\n task(k) = p(1);\n group(k) = p(2);\n taskxgroup(k) = p(3);\n \n % Output ANOVA table\n tab(2,1) = {'Task'};\n tab(3,1) = {'Group'};\n tab(4,1) = {'Task x Group'};\n for m=1:6,\n for n=1:6,\n if n==1, fprintf(ANOVA,'%-12s\\t',tab{m,n});\n else\n if m==1, fprintf(ANOVA,'%12s\\t',tab{m,n});\n else fprintf(ANOVA,'%12.6f\\t',tab{m,n});\n end\n end\n end\n fprintf(ANOVA,'\\n');\n end\n \n % This string is used to output all the p values below\n formatstr = strcat(formatstr,'%12.6f\\t');\n \n end\n fclose(ANOVA);\n \n % Output the p values\n fprintf(TASK,formatstr,task); fclose(TASK);\n fprintf(GROUP,formatstr,group); fclose(GROUP);\n fprintf(TASKxGROUP,formatstr,taskxgroup); fclose(TASKxGROUP);\n \nend\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/external/bioelectromagnetism_ligth/eeg_anova_script.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3901597555153434}} {"text": "function [ y, m ] = month_carry_alexandrian ( y, m )\n\n%*****************************************************************************80\n%\n%% MONTH_CARRY_ALEXANDRIAN carries a year of months on the Alexandrian calendar.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 18 July 2012\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, M, the YM date.\n%\n months = year_length_months_alexandrian ( y );\n\n while ( 1 )\n\n if ( m <= months )\n break\n end\n\n m = m - months;\n y = y + 1;\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/month_carry_alexandrian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6893056104028799, "lm_q1q2_score": 0.39015975190269264}} {"text": "function bbox_reg = spp_train_bbox_regressor(imdb, roidb, spp_model, varargin)\n% bbox_reg = spp_train_bbox_regressor(imdb, roidb, spp_model, varargin)\n% Trains a bounding box regressor on the image database imdb\n% for use with the SPP model spp_model. The regressor is trained\n% using ridge regression.\n%\n% Keys that can be passed in:\n%\n% min_overlap Proposal boxes with this much overlap or more are used\n% layer The CNN layer features to regress from (either 5, 6 or 7)\n% lambda The regularization hyperparameter in ridge regression\n% robust Throw away examples with loss in the top [robust]-quantile\n% binarize Binarize features or leave as real values >= 0\n%\n% Adapted from spp code written by Ross Girshick\n% AUTORIGHTS\n% ---------------------------------------------------------\n% Copyright (c) 2014, Shaoqing Ren\n% \n% This file is part of the SPP code and is available \n% under the terms of the Simplified BSD License provided in \n% LICENSE. Please retain this notice and LICENSE if you use \n% this file (or any portion of it) in your project.\n% ---------------------------------------------------------\n% Copyright (c) 2014, Ross Girshick\n% \n% This file is part of the R-CNN code and is available \n% under the terms of the Simplified BSD License provided in \n% LICENSE. Please retain this notice and LICENSE if you use \n% this file (or any portion of it) in your project.\n% ---------------------------------------------------------\n\nip = inputParser;\nip.addRequired('imdb', @iscell);\nip.addRequired('spp_model', @isstruct);\nip.addParamValue('min_overlap', 0.5, @isscalar);\nip.addParamValue('layer', 5, @isscalar);\nip.addParamValue('lambda', 4000, @isscalar);\nip.addParamValue('robust', 0, @isscalar);\nip.addParamValue('binarize', false, @islogical);\n\nip.parse(imdb, spp_model, varargin{:});\nopts = ip.Results;\nopts = rmfield(opts, 'spp_model');\nopts = rmfield(opts, 'imdb');\nopts.cache_name = spp_model.cache_name;\n\nfprintf('\\n\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n');\nfprintf('Training options:\\n');\ndisp(opts);\nfprintf('~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\n\\n');\n\nimdbs_name = cell2mat(cellfun(@(x) x.name, imdb, 'UniformOutput', false));\nconf = spp_config('sub_dir', fullfile(opts.cache_name, imdbs_name));\nclss = spp_model.classes;\nnum_clss = length(clss);\n\n% ------------------------------------------------------------------------\n% Get the average norm of the features\nopts.feat_norm_mean = spp_feature_stats(imdb, roidb, opts.layer, spp_model);\nfprintf('average norm = %.3f\\n', opts.feat_norm_mean);\n% ------------------------------------------------------------------------\n\n% ------------------------------------------------------------------------\n% Get all positive examples\nimdbs_name = cell2mat(cellfun(@(x) x.name, imdb, 'UniformOutput', false));\nsave_file = sprintf('./cachedir/%s/%s/bbox_regressor_XY_layer_%d_overlap_%.5g.mat', ...\n spp_model.cache_name, imdbs_name, opts.layer, opts.min_overlap);\ntry\n load(save_file);\n fprintf('Loaded saved positives from ground truth boxes\\n');\ncatch\n [X, Y, O, C] = get_examples(spp_model, imdb, roidb, opts);\n save(save_file, 'X', 'Y', 'O', 'C', '-v7.3');\nend\nfor i = 1:num_clss\n fprintf('%14s has %6d samples\\n', spp_model.classes{i}, length(find(C == i)));\nend\nX = spp_poolX_to_fcX(X, opts.layer, spp_model, false);\nX = spp_scale_features(X, opts.feat_norm_mean);\n% ------------------------------------------------------------------------\n\n% use ridge regression solved by cholesky factorization\nmethod = 'ridge_reg_chol';\n\nmodels = cell(num_clss, 1);\nfor i = 1:num_clss\n fprintf('Training regressors for class %s (%d/%d)\\n', ...\n spp_model.classes{i}, i, num_clss);\n I = find(O > opts.min_overlap & C == i);\n Xi = X(:, I); \n if opts.binarize\n Xi = single(Xi > 0);\n end\n Yi = Y(I,:); \n Oi = O(I); \n Ci = C(I);\n\n % add bias feature\n Xi = cat(1, Xi, ones(1, size(Xi,2), class(Xi)));\n\n % Center and decorrelate targets\n mu = mean(Yi);\n Yi = bsxfun(@minus, Yi, mu);\n S = Yi'*Yi / size(Yi,1);\n [V, D] = eig(S);\n D = diag(D);\n T = V*diag(1./sqrt(D+0.001))*V';\n T_inv = V*diag(sqrt(D+0.001))*V';\n Yi = Yi * T;\n\n models{i}.mu = mu;\n models{i}.T = T;\n models{i}.T_inv = T_inv;\n\n models{i}.Beta = [ ...\n solve_robust(Xi, Yi(:,1), opts.lambda, method, opts.robust) ...\n solve_robust(Xi, Yi(:,2), opts.lambda, method, opts.robust) ...\n solve_robust(Xi, Yi(:,3), opts.lambda, method, opts.robust) ...\n solve_robust(Xi, Yi(:,4), opts.lambda, method, opts.robust)];\nend\nbbox_reg.models = models;\nbbox_reg.training_opts = opts;\nsave([conf.cache_dir 'bbox_regressor_final'], 'bbox_reg');\n\n\n% ------------------------------------------------------------------------\nfunction [X, Y, O, C] = get_examples(spp_model, imdb, roidb, opts)\n% ------------------------------------------------------------------------\nnum_classes = length(spp_model.classes);\n\ncls_counts = zeros(num_classes, 1);\nfor idb = 1:length(imdb)\n for i = 1:length(imdb{idb}.image_ids)\n tic_toc_print('%s: counting %d/%d\\n', ...\n procid(), i, length(imdb{idb}.image_ids));\n\n d = roidb{idb}.rois(i);\n [max_ov cls] = max(d.overlap, [], 2);\n sel_ex = find(max_ov >= 0.5);\n cls = cls(sel_ex);\n for j = 1:length(sel_ex)\n cls_counts(cls(j)) = cls_counts(cls(j)) + 1;\n end\n end\nend\ntotal = sum(cls_counts);\nfeat_dim = size(spp_model.cnn.layers(1).weights{1},2);\n% features\nX = zeros(feat_dim, total, 'single');\n% target values\nY = zeros(total, 4, 'single');\n% overlap amounts\nO = zeros(total, 1, 'single');\n% classes\nC = zeros(total, 1, 'single');\ncur = 1;\n\nfor idb = 1:length(imdb)\n for i = 1:length(imdb{idb}.image_ids)\n tic_toc_print('%s: pos features %d/%d\\n', ...\n procid(), i, length(imdb{idb}.image_ids));\n d = roidb{idb}.rois(i);\n d.feat = spp_load_cached_poolX_features(spp_model.spp_pooler, spp_model.feat_cache{idb}, ...\n imdb{idb}.name, imdb{idb}.image_ids{i}, d.boxes);\n\n sel_gt = find(d.class > 0);\n gt_boxes = d.boxes(sel_gt, :);\n gt_classes = d.class(sel_gt);\n\n max_ov = max(d.overlap, [], 2);\n sel_ex = find(max_ov >= opts.min_overlap);\n ex_boxes = d.boxes(sel_ex, :);\n\n X(:, cur+(0:length(sel_ex)-1)) = d.feat(:, sel_ex);\n\n for j = 1:size(ex_boxes, 1)\n ex_box = ex_boxes(j, :);\n ov = boxoverlap(gt_boxes, ex_box);\n [max_ov, assignment] = max(ov);\n gt_box = gt_boxes(assignment, :);\n cls = gt_classes(assignment);\n\n src_w = ex_box(3) - ex_box(1) + eps;\n src_h = ex_box(4) - ex_box(2) + eps;\n src_ctr_x = ex_box(1) + 0.5*src_w;\n src_ctr_y = ex_box(2) + 0.5*src_h;\n\n gt_w = gt_box(3) - gt_box(1) + eps;\n gt_h = gt_box(4) - gt_box(2) + eps;\n gt_ctr_x = gt_box(1) + 0.5*gt_w;\n gt_ctr_y = gt_box(2) + 0.5*gt_h;\n\n dst_ctr_x = (gt_ctr_x - src_ctr_x) * 1/src_w;\n dst_ctr_y = (gt_ctr_y - src_ctr_y) * 1/src_h;\n dst_scl_w = log(gt_w / src_w);\n dst_scl_h = log(gt_h / src_h);\n\n target = [dst_ctr_x dst_ctr_y dst_scl_w dst_scl_h];\n\n if 0\n % debugging visualizations and checks\n im = imread(imdb.image_at(i));\n showboxesc(im, gt_box, 'g', '-');\n showboxesc([], ex_box, 'r', '-');\n hold on;\n plot(gt_ctr_x, gt_ctr_y, 'gd');\n plot(src_ctr_x, src_ctr_y, 'rd');\n hold off;\n fprintf('target = [%.3f %.3f %.3f %.3f]\\n', target(1), target(2), target(3), target(4));\n fprintf('cls = %s\\n', spp_model.classes{cls});\n\n % check that we can correctly reconstruct the gt_box from the\n % gold-standard target\n pred_ctr_x = (target(1) * src_w) + src_ctr_x;\n pred_ctr_y = (target(2) * src_h) + src_ctr_y;\n pred_w = exp(target(3)) * src_w;\n pred_h = exp(target(4)) * src_h;\n pred_box = [pred_ctr_x - 0.5*pred_w, pred_ctr_y - 0.5*pred_h, ...\n pred_ctr_x + 0.5*pred_w, pred_ctr_y + 0.5*pred_h];\n disp(pred_box);\n disp(gt_box);\n assert(sum(abs(pred_box - gt_box)) < 0.0001);\n\n pause;\n end\n\n assert(cur <= total);\n Y(cur, :) = target;\n O(cur) = max_ov;\n C(cur) = cls;\n cur = cur + 1;\n end\n end\nend\n\n% ------------------------------------------------------------------------\nfunction [x, losses] = solve_robust(A, y, lambda, method, qtile)\n% ------------------------------------------------------------------------\n[x, losses] = solve(A, y, lambda, method);\nfprintf('loss = %.3f\\n', mean(losses));\nif qtile > 0\n thresh = quantile(losses, 1-qtile);\n I = find(losses < thresh);\n [x, losses] = solve(A(I,:), y(I), lambda, method);\n fprintf('loss (robust) = %.3f\\n', mean(losses));\nend\n\n\n% ------------------------------------------------------------------------\nfunction [x, losses] = solve(A, y, lambda, method)\n% ------------------------------------------------------------------------\n\n%tic;\nswitch method\ncase 'ridge_reg_chol'\n % solve for x in min_x ||Ax - y||^2 + lambda*||x||^2\n %\n % solve (A'A + lambdaI)x = A'y for x using cholesky factorization\n % R'R = (A'A + lambdaI)\n % R'z = A'y : solve for z => R'Rx = R'z => Rx = z\n % Rx = z : solve for x\n R = chol(A*A' + lambda*eye(size(A,1)));\n z = R' \\ (A*y);\n x = R \\ z;\ncase 'ridge_reg_inv'\n % solve for x in min_x ||Ax - y||^2 + lambda*||x||^2\n x = inv(A*A' + lambda*eye(size(A,1)))*A*y;\ncase 'ls_mldivide'\n % solve for x in min_x ||Ax - y||^2\n if lambda > 0\n warning('ignoring lambda; no regularization used');\n end\n x = A'\\y;\nend\n%toc;\nlosses = 0.5 * (A'*x - y).^2;\n", "meta": {"author": "ShaoqingRen", "repo": "SPP_net", "sha": "ca9675907f8af6c02773571bc91147b3a2ddfcc1", "save_path": "github-repos/MATLAB/ShaoqingRen-SPP_net", "path": "github-repos/MATLAB/ShaoqingRen-SPP_net/SPP_net-ca9675907f8af6c02773571bc91147b3a2ddfcc1/bbox_regression/spp_train_bbox_regressor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3901597482900418}} {"text": "function sdd = settings_detection_default()\n% Default settings for detection.\nsdd.thr_method = 'median'; % median, wavelet, plexon\nsdd.side = 'negative'; % two, positive, negative, mean\nsdd.spike_filter_type = 'butter';\nsdd.spike_filter_order = 4;\nsdd.spike_Rp = 300; % Hz\nsdd.spike_Rs = 3000; % Hz\nsdd.pre_thresh = 40; % samples\nsdd.post_thresh = 59; % samples\nsdd.dead_time = 20; % samples\nsdd.sampling_rate = 40000; % sampling rate\n\nwrite_arguments_to_json(sdd,'config_detection');\n", "meta": {"author": "ramintoosi", "repo": "ROSS", "sha": "60277f4fcf952ad4c82b6ec1497e42d41c89a000", "save_path": "github-repos/MATLAB/ramintoosi-ROSS", "path": "github-repos/MATLAB/ramintoosi-ROSS/ROSS-60277f4fcf952ad4c82b6ec1497e42d41c89a000/funcs/settings_detection_default.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185944046238982, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.39009851776352106}} {"text": "function h=convolve(f,g,varargin)\n%CONVOLVE Convolution\n% Usage: h=convolve(f,g);\n%\n% `convolve` has been deprecated. Please use |lconv| instead.\n%\n% A call to `convolve(f,g)` can be replaced by ::\n%\n% lconv(f,g);\n%\n% See also: lconv\n\nwarning(['LTFAT: CONVOLVE has been deprecated, please use LCONV ' ...\n 'instead. See the help on LCONV for more details.']); \n \nif nargin<2\n error('%s: Too few input parameters.',upper(mfilename));\nend;\n\ndefinput.keyvals.L=[];\ndefinput.keyvals.dim=[];\n\n[flags,kv,L,dim]=ltfatarghelper({'L','dim'},definput,varargin);\n\n[f,L1,Lf,Wf,dimout,permutedsize_f,order_f]=assert_sigreshape_pre(f,L,dim,'CONVOLVE');\n[g,L2,Lg,Wg,dimout,permutedsize_g,order_g]=assert_sigreshape_pre(g,L,dim,'CONVOLVE');\n\nLh=Lf+Lg-1;\n\nif (Wf>1) && (Wg>1)\n error('%s: Only one of the inputs can be multi-dimensional.',upper(mfilename));\nend;\n\nW=max(Wf,Wg);\nif Wf mac) = mac;\n \n [lat, lon] = meshgrat(tmap, tmapleg);\n [X , Y] = meshgrid(gx, gy);\n \n ren = interp2(X, Y, value_map, lon, lat);\n \n ren(isnan(ren)) = min(ren(:)) - 20;\n \n if STYLE == \"dramap2_z\"\n ren(tmap <= 1 & ren < mic) = nan;\n end\n \n %start figure\n fig = figure_w_normalized_uicontrolunits('pos', [50 100 800 600]);\n ax = gca;\n set(ax, 'NextPlot', 'add'); \n axis off\n axesm('MapProjection', selected_proj, 'MapParallels', [],...\n 'MapLatLimit', [s4_south s3_north], 'MapLonLimit', [s2_west s1_east])\n \n meshm(ren, tmapleg, size(tmap), tmap);\n \n daspectm('m', dda);\n tightmap\n view([0 90])\n camlight; \n lighting phong\n set(ax, 'projection', 'perspective');\n \n if STYLE == \"stress2\"\n % plot the bars\n plq = quiverm(newgri(:,2), newgri(:,1), -cos(ste(:,SA*2)*pi/180), sin(ste(:,SA*2)*pi/180),0.9);\n set(plq,'LineWidth', 0.4, 'Color', 'k', 'Markersize',0.1);\n set(gca,'NextPlot', 'add');\n \n delete(plq(2));\n end\n \n if STYLE == \"dramap2_z\" || STYLE == \"stress2\"\n if ~isempty(coastline)\n pl = plotm(coastline(:,2), coastline(:,1), 'k');\n set(pl, 'LineWidth', 0.5)\n end\n \n if ~isempty(ZG.maepi)\n pl = plotm(ZG.maepi.Y, ZG.maepi.X, 'hw');\n set(pl,'LineWidth', 1, 'MarkerSize', 14,...\n 'MarkerFaceColor', 'w', 'MarkerEdgeColor', 'k')\n end\n if STYLE == \"stress2\"\n zdatam(handlem('allline'), max(tmap(:))) % keep line on surface\n end\n \n j = jet(64); % different from dramap2_z\n j = [ [ 0.8 0.8 0.8 ] ; j ];\n else\n j = colormap;\n j = [ [ 0.9 0.9 0.9 ] ; j];\n end\n \n caxis([ mic * 0.99, mac * 1.01 ]);\n colormap(j); \n brighten(0.1);\n axis off;\n \n setm(ax,'mlabellocation', dlo)\n setm(ax,'meridianlabel', 'on')\n setm(ax,'plabellocation', dla)\n setm(ax,'parallellabel', 'on')\n \n if ~exist('bg_color', 'var') || bg_color == 'w' % white background\n fg = 'k';\n bg = 'w';\n else % black background\n fg = 'w';\n bg = 'k';\n end\n \n set(fig, 'color', bg)\n setm(ax, 'ffacecolor', bg)\n setm(ax, 'fedgecolor', fg, 'flinewidth', 3);\n \n % change the labels if needed\n setm(ax,'Fontcolor', fg, 'Fontweight', 'bold', 'FontSize', 12, 'Labelunits', 'dm')\n \n h5 = colorbar;\n set(h5,'position',[0.8 0.35 0.01 0.3], 'TickDir', 'out', 'Ycolor', fg, 'Xcolor', fg,...\n 'Fontweight', 'bold', 'FontSize', 12);\n set(fig, 'Inverthardcopy', 'off');\n \n if USE_SCALE_RULER \n scaleruler\n if STYLE == \"dramap2_z\"\n XLoc = -0.0133;\n YLoc = 0.639;\n MajorTick = 0:10:50;\n majorTickLength = 4;\n elseif STYLE == \"stress2\"\n XLoc = 12;\n YLoc = 40;\n MajorTick = 0:50:200;\n majorTickLength = 12;\n end\n \n setm(handlem('scaleruler1'), 'XLoc', XLoc, 'YLoc', YLoc, 'units', 'km')\n setm(handlem('scaleruler2'),'MajorTick', MajorTick,...\n 'MinorTick', 0:10:25, 'TickDir', 'down',...\n 'MajorTickLength', majorTickLength,...\n 'MinorTickLength', 4)\n \n setm(handlem('scaleruler1'), 'RulerStyle', 'ruler')\n if STYLE == \"dramap2_z\"\n setm(handlem('scaleruler2'), 'RulerStyle', 'patches')\n end\n refresh\n end\nend\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/+zmaptopo/dramap_z.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195385342971, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.38997118004623504}} {"text": "function prediction = AlexNet(varargin)\n%AlexNet Returns an AlexNet model for ImageNet\n% M = models.AlexNet() returns the model proposed in:\n%\n% Krizhevsky et al., \"ImageNet classification with deep convolutional\n% neural networks\", NIPS 2012.\n%\n% models.AlexNet(..., 'option', value, ...) accepts the following\n% options:\n%\n% `pretrained`:: false\n% If true, returns a model pre-trained on ImageNet (using the\n% MatConvNet example code).\n%\n% `input`:: default input\n% Specifies an input (images) layer for the network. If unspecified, a\n% new one is created.\n%\n% `numClasses`:: 1000\n% Number of output classes.\n%\n% `batchNorm`:: true\n% Whether to use batch normalization.\n%\n% `normalization`:: [5 1 0.0001/5 0.75]\n% Parameters for vl_nnnormalize layer (only used without batch-norm).\n%\n% Any other options will be passed to models.ConvBlock(), and can be used\n% to change the activation function, weight initialization, etc.\n%\n% Suggested SGD training options are also returned in the struct M.meta.\n\n% Copyright (C) 2018 Joao F. Henriques, Andrea Vedaldi.\n% All rights reserved.\n%\n% This file is part of the VLFeat library and is made available under\n% the terms of the BSD license (see the COPYING file).\n\n % parse options. unknown arguments will be passed to ConvBlock (e.g.\n % activation).\n opts.pretrained = false ; % whether to fetch a pre-trained model\n opts.input = Input('name', 'images', 'gpu', true) ; % default input layer\n opts.numClasses = 1000 ; % number of predicted classes\n opts.batchNorm = true ; % whether to use batch normalization\n opts.normalization = [5 1 0.0001/5 0.75] ; % for LRN layer (vl_nnnormalize)\n [opts, convBlockArgs] = vl_argparse(opts, varargin, 'nonrecursive') ;\n \n \n % default training options for this network (returned as output.meta)\n meta.batchSize = 256 ;\n meta.imageSize = [227, 227, 3] ;\n meta.augmentation.crop = 227 / 256;\n meta.augmentation.location = true ;\n meta.augmentation.flip = true ;\n meta.augmentation.brightness = 0.1 ;\n meta.augmentation.aspect = [2/3, 3/2] ;\n meta.weightDecay = 0.0005 ;\n \n % the default learning rate schedule\n if ~opts.pretrained\n if ~opts.batchNorm\n meta.learningRate = logspace(-2, -4, 60) ;\n else\n meta.learningRate = logspace(-1, -4, 20) ;\n end\n meta.numEpochs = numel(meta.learningRate) ;\n else % fine-tuning has lower LR\n meta.learningRate = 1e-5 ;\n meta.numEpochs = 20 ;\n end\n \n \n % return a pre-trained model\n if opts.pretrained\n if opts.batchNorm\n warning('The pre-trained model does not include batch-norm (set batchNorm to false).') ;\n end\n if opts.numClasses ~= 1000\n warning('Model options are ignored when loading a pre-trained model.') ;\n end\n prediction = models.pretrained('imagenet-matconvnet-alex') ;\n \n % return prediction layer (not softmax)\n assert(isequal(prediction{1}.func, @vl_nnsoftmax)) ;\n prediction = prediction{1}.inputs{1} ;\n \n % replace input layer with the given one\n input = prediction.find('Input', 1) ;\n prediction.replace(input, opts.input) ;\n \n prediction.meta = meta ;\n return\n end\n \n \n % get conv block generator with the given options. default activation is\n % ReLU, with pre-activation batch normalization (can be overriden).\n conv = models.ConvBlock('batchNorm', opts.batchNorm, ...\n 'preActivationBatchNorm', true, 'weightScale', 0.01, convBlockArgs{:}) ;\n \n % build network\n images = opts.input ;\n \n % first conv block\n x = conv(images, 'size', [11, 11, 3, 96], 'stride', 4) ;\n if ~opts.batchNorm\n x = vl_nnnormalize(x, opts.normalization) ;\n end\n x = vl_nnpool(x, 3, 'stride', 2) ;\n\n % second conv block\n x = conv(x, 'size', [5, 5, 48, 256], 'pad', 2) ;\n if ~opts.batchNorm\n x = vl_nnnormalize(x, opts.normalization) ;\n end\n x = vl_nnpool(x, 3, 'stride', 2) ;\n\n % conv blocks 3-5\n x = conv(x, 'size', [3, 3, 256, 384], 'pad', 1) ;\n x = conv(x, 'size', [3, 3, 192, 384], 'pad', 1) ;\n x = conv(x, 'size', [3, 3, 192, 256], 'pad', 1) ;\n x = vl_nnpool(x, 3, 'stride', 2) ;\n\n % first fully-connected block\n x = conv(x, 'size', [6, 6, 256, 4096]) ;\n if ~opts.batchNorm\n x = vl_nndropout(x) ;\n end\n\n % second fully-connected block\n x = conv(x, 'size', [1, 1, 4096, 4096]) ;\n if ~opts.batchNorm\n x = vl_nndropout(x) ;\n end\n\n % prediction layer\n prediction = conv(x, 'size', [1, 1, 4096, opts.numClasses], ...\n 'batchNorm', false, 'activation', 'none') ;\n\n prediction.meta = meta ;\n \nend\n", "meta": {"author": "ShuaiBai623", "repo": "MFT", "sha": "8762f8cdf494ce0b1a1c3d431660c5c8fd91744a", "save_path": "github-repos/MATLAB/ShuaiBai623-MFT", "path": "github-repos/MATLAB/ShuaiBai623-MFT/MFT-8762f8cdf494ce0b1a1c3d431660c5c8fd91744a/external_libs/autonn/matlab/+models/AlexNet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3899711738660847}} {"text": "function [a]=minus(b,c)\n%A=B-C\n% [A]=MINUS(B,C) Subtraction of two tensors\n% \n%Adds two TT-tensors B and C\n%\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\na=b+(-1.0)*c;\nreturn\nend", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/@tt_tensor/minus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228891883799, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38979919484947706}} {"text": "function [varargout]=febioOutputView(pathName,febio_spec)\n\n% function [hf]=febioOutputView(pathName,febio_spec)\n% ------------------------------------------------------------------------\n%\n%\n%\n% ------------------------------------------------------------------------\n\n%%\n% optionStruct=[];\n\n%%\nfontSize=15;\n\n%%\nhf=cFigure; %Open figure\n\n%%\n\nV=febio_spec.Geometry.Nodes{1}.node.VAL;\nE_cell=febio_spec.Geometry.Elements;\n\n%%\n\nnodeDataCellAll=febio_spec.Output.logfile.node_data;\n\nnodalDisplacementAll=zeros(size(V));\nfor q=1:1:numel(nodeDataCellAll)\n dataTypeString=nodeDataCellAll{q}.ATTR.data;\n if strcmp(dataTypeString,'ux;uy;uz')\n [~,nodalDisplacementAll,~]=importFEBio_logfile(fullfile(pathName,nodeDataCellAll{q}.ATTR.file)); %Import data\n \n nodalDisplacementAll=nodalDisplacementAll(:,2:end,:);\n sizImport=size(nodalDisplacementAll);\n sizImport(3)=sizImport(3)+1;\n dataArray_n=zeros(sizImport);\n dataArray_n(:,:,2:end)=nodalDisplacementAll;\n nodalDisplacementAll=dataArray_n;\n U_end=nodalDisplacementAll(:,:,end);\n U_mag=sqrt(sum(U_end(:,3).^2,2));\n V_def=V+U_end; \n end\nend\nnodalDisplacementMagnitudeAll=sqrt(sum(nodalDisplacementAll.^2,2));\n\nhf.UserData.febioOutputView.colorData=[];\nhf.UserData.febioOutputView.pathName=pathName;\nhf.UserData.febioOutputView.febio_spec=febio_spec;\n\n%%\n% Create basic view and store graphics handle to initiate animation\n\nhf.UserData.febioOutputView.ht=gtitle(' - '); %Figure axis title\n\nhandleSet=gobjects(1,numel(E_cell));\nfor q=1:1:numel(E_cell)\n \n elementsNow=febio_spec.Geometry.Elements{q}.elem.VAL;\n elementTypeNow=febio_spec.Geometry.Elements{1}.ATTR.type;\n \n if any(strcmp(elementTypeNow,{'tri3','tri6','tri7','quad4','quad8'})) %Surface elements\n facesNow=elementsNow;\n else %Solid elements\n facesNow=element2patch(elementsNow);\n end\n \n handleSet(q)=gpatch(facesNow,V,U_mag,'k',1); %Add graphics object to animate\n handleSet(q).FaceColor='interp';\nend\n\naxisGeom(gca,fontSize);\ncolormap(gjet(250)); colorbar;\ncLim=[min(nodalDisplacementMagnitudeAll(:)) max(nodalDisplacementMagnitudeAll(:))];\nif abs(cLim(2)-cLim(1))0\n varargout{1}=hf;\nend\n\nend\n\n\n%%\n\nfunction figResize(~,~,inputCell)\n\nhf=inputCell{1};\nhPop=inputCell{2};\nunitsNow=hf.Units;\nhf.Units='Points';\n\nfigPosition=hf.Position;\ntextBoxWidth=round(figPosition(3)/6);\ntextBoxHeight=hPop.Extent(4).*ceil(hPop.Extent(3)./figPosition(3));\ntextPosition=[0 figPosition(4)-textBoxHeight textBoxWidth textBoxHeight];\nhPop.Position = textPosition;\n\nhf.Units=unitsNow;\n\nend\n\n%%\n\nfunction setColorData(source,~,inputCell)\nhf=inputCell{1};\nindexValue = source.Value;\nstringSet = source.String;\n\ndataTypeStringNow = stringSet{indexValue};\nhf.UserData.febioOutputView.ht.String=dataTypeStringNow;\n\nhf.UserData.febioOutputView.colorData=hf.UserData.febioOutputView.data.(dataTypeStringNow);\n\nupdateFaceColor(hf);\n\ncaxis(hf.UserData.febioOutputView.cLim);\ndrawnow;\n\nend\n\n%%\n\nfunction updateFaceColor(hf)\n\nfor qt=1:1:numel(hf.UserData.anim8.animStruct.Time)\n cLim=[]; \n for qh=numel(hf.UserData.febioOutputView.handleSet)+1:1:2*numel(hf.UserData.febioOutputView.handleSet) \n c=hf.UserData.febioOutputView.colorData(:,:,qt);\n d2=repmat({c},1,numel(hf.UserData.febioOutputView.handleSet));\n hf.UserData.anim8.animStruct.Set{qt}{qh}=d2{:}; %Property values for to set in order to animate\n \n if isempty(cLim)\n cLim=[min(c(:)) max(c(:))];\n else\n cLim(1)=min(min(c(:)),cLim(1));\n cLim(2)=max(max(c(:)),cLim(2));\n end\n end\nend\n\nif abs(cLim(2)-cLim(1))1\n set(jSlider,'Value',v-1);\n set(jSlider,'Value',v);\nelse\n set(jSlider,'Value',v+1);\n set(jSlider,'Value',v);\nend\n\nend\n\n\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/febioOutputView.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38979918699464666}} {"text": "function y = diag( v, k )\n\n%Disciplined convex/geometric programming information for DIAG:\n% DIAG imposes no convexity restrictions on its arguments.\n\nswitch nargin,\n case 0,\n error( 'Not enough arguments.' );\n case 1,\n k = 0;\n case 2,\n if ~isnumeric( k ) || k ~= floor( k ),\n error( 'Second argument must be an integer.' );\n end\nend\n\ns = size( v );\nif length( s ) ~= 2,\n error( 'First input must be 2D.' );\nend\n\nif k < 0,\n absk = -k;\n roff = absk;\n coff = 0;\nelse\n absk = +k;\n roff = 0;\n coff = absk;\nend\n\nif any( s == 1 ),\n nn = prod( s );\n nel = nn + roff + coff;\n y = sparse( roff + 1 : roff + nn, coff + 1 : coff + nn, v, nel, nel );\nelseif roff >= s(1) || coff >= s(2),\n y = sparse( 0, 1 );\nelse\n nel = min( s(1) - roff, s(2) - coff );\n nv = roff + ( coff - 1 ) * s(1) + ( 1 : nel ) * ( s(1) + 1 );\n y = reshape( cvx_subsref( v, nv ), nel, 1 );\nend\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/builtins/@cvx/diag.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499941, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3897991869946466}} {"text": "function javaview(surface_handle, filename, destination, source, open_html )\n% Syntax: \n% javaview(surface_handle, filename, destination, source, open_html) \n% \n% Description:\n% This function generates output files for Javaview (www.javaview.de).\n% It allows to display and interact with 3d-Graph not only in the\n% javaview engine, but also in html-Documents. See javaview\n% documentation for more information about how to interact.\n% \n% There are 4 output files:\n% a) first file (.stl)is generated by the surf2stl function (Many\n% thanks to Bill McDonald, this function is availabe at the MCFE\n% and was pick of the week on June 5th, 2009) \n% b) the second and third file (jvx) and (jvd) are input files for\n% javaview and are generated by mupad. The jvx-file describes the\n% 3d-graph, the jvd file descrribes scene options\n% c) the last file is an html file, were the 3d-Graph is displayed\n% \n% Because the applet in html file need the javaruntime for javaview the\n% jars directory from the \"source\" (input parameter) directory is copied\n% to the destination folder.\n% open_html is true or false. When it is true your standard webbrowser is\n% opened and you will see the surface in the html file. \n% \n% Parameter:\n% 1. surface_handle - handle to surface graph\n% 2. filename - filename for *.stl, .jvx, *.jvd, *.html\n% 3. destination - folder where all files are saved\n% 4. source - source folder of jars (see jvaview installation path)\n% 5. open_html - shows the result html in your standard webbrowser\n% \n% Sorry for the work around with the handmade copy and paste when to \n% generate the javaview files. But evalin(symengine, ...) does not produce\n% the required files.\n%\n% Online Example: \n% http://wwwpub.zih.tu-dresden.de/~s9034647/peaksurface.html\n%\n% Example:\n% [X,Y,Z] = peaks(30);\n% h = surf(X,Y,Z); \n% javaview(h, 'peaksurface', 'C:\\Users\\sk\\Desktop\\3d-PDF\\jvtest', 'C:\\Program Files (x86)\\JavaView\\jars', 1)\n% \n%\n% Bugs and suggestions:\n% Please send to Sven Koerner: koerner(underline)sven(add)gmx.de\n%\n% You need to download and install first:\n% www.javaview.de \n% http://blogs.mathworks.com/pick/2009/06/5/writing-to-stl-files/\n% Symbolic Math Toolbox with MuPad\n% \n%\n% License to use and modify this code is granted freely to all interested, as long as the original author is\n% referenced and attributed as such. The original author maintains the right to be solely associated with this work.\n%\n% Programmed by Sven Koerner: koerner(underline)sven(add)gmx.de\n% Date: 2010/04/20 \n\n\n%% Test - Configuration parameter\n% open_html = 0;\n% filename = 'jvfile';\n% source = 'C:\\Program Files (x86)\\JavaView\\jars'; % source folder of jars (installed with javaview)\n% destination = 'C:\\Users\\sk\\Desktop\\3d-PDF\\jvtest'; % destination folder\n\n\n%% Get a couple of surface and axis properties\nX = get(surface_handle, 'XData');\nY = get(surface_handle, 'YData');\nZ = get(surface_handle, 'ZData');\n\nah = get(get(surface_handle,'Parent'));\nx_lb = get(ah.XLabel, 'String');\ny_lb = get(ah.YLabel, 'String');\nz_lb = get(ah.ZLabel, 'String');\nheader = get(ah.Title, 'String');\n\n\n%% Generate stl-File\nstl_file = [destination '\\' filename '.stl'];\nsurf2stl(stl_file,X,Y,Z);\n\n\n%% String generation\np1 = strrep(stl_file,'\\','\\\\');\np2 = [filename,'.jvx'];\np3 = [filename,'.jvd'];\n\nmupad_str1 = ['plot(plot::SurfaceSTL(\"' p1 ' \"), Scaling = Unconstrained, FillColorType=Rainbow, XLinesVisible = FALSE, YLinesVisible = FALSE,MeshVisible = FALSE, Header=\"' header ...\n '\", XAxisTitle=\" ' x_lb '\", YAxisTitle=\" ' y_lb '\", ZAxisTitle=\"' z_lb '\", GridVisible=FALSE, Lighting = None, OutputFile=\"' p2 '\")'];\nmupad_str2 = ['plot(plot::SurfaceSTL(\"' p1 ' \"), Scaling = Unconstrained, FillColorType=Rainbow, XLinesVisible = FALSE, YLinesVisible = FALSE,MeshVisible = FALSE, Header=\"' header ...\n '\", XAxisTitle=\" ' x_lb '\", YAxisTitle=\" ' y_lb '\", ZAxisTitle=\"' z_lb '\", GridVisible=FALSE, Lighting = None, OutputFile=\"' p3 '\")']; \n\n\n%% MUPAD\nclipboard('copy',[mupad_str1 ': ' mupad_str2]);\nmpnb = mupad;\n\n%% now a strange workaround\n% evalin(symengine,mupad_str1); % --> actually this doesn't work\n% evalin(symengine,mupad_str2); % --> actually this doesn't work\nclc;\nreply = input('please press \"strg-v\" in open mupad notebook after the [-bracket (the text need to be red in mupad nb)! Then press first enter in mupad and then any key in matlab prompt here! ', 's');\ntry\n movefile([cd '\\' filename '.jvd'], destination);\n movefile([cd '\\' filename '.jvx'], destination);\ncatch\n disp('Have you really pasted the clipboard to mupad and press enter? - Try again')\nend;\nclose(mpnb);\n\n\n%% Generate html-File\nfid = fopen([destination '\\' filename '.html' ], 'w'); \nhtml_str = {'';\n '';\n ' ';\n '';\n '';\n ['' filename '.jvx'];\n ' ';\n '';\n ['

Applet shows ' filename '.jvx (select a point with \"h\")

'];\n '';\n [''];\n [''];\n '';\n '';\n ' ';\n ''};\n for i=1:1:size(html_str,1)\n fprintf(fid, char(html_str(i,1)));\n end;\n\nfclose(fid);\n\n%% Copy source for applet\ncopyfile(source, [destination '\\jars'] );\n\n\n%% open the html result in standard html-viewer (e.g. ie)\nif open_html \n winopen([destination '\\' filename '.html' ]);\nend;\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27333-create-3d-interactive-html-file-from-matlab-surface/javaview.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6224593241981982, "lm_q1q2_score": 0.3897368409068648}} {"text": " function ob = fatrix2_vertcat(blocks, varargin)\n%function ob = fatrix2_vertcat(blocks, [options])\n%| vertcat: B = [A1; A2; ...]\n%|\n%| in\n%|\tblocks\t{cell}\tcell array of the (fatrix2) blocks\n%|\t\t\tall blocks must have same idim and imask\n%|\n%| option\n%|\t'dim_cat'\tdimension along which to concatenate odims\n%|\t\t\tall other odims must match\n%|\t\t\tdefault is ndim+1 if *all* dimensions match\n%|\t\t\tand imask is not full 1D.\n%|\t\t\totherwise default is 1\n%| out\n%|\tob = [A1; A2; ...]\n%|\n%| If all input blocks have the same odim and have a handle_forw_block\n%| then output could also have a handle_forw_block (todo)\n\narg.dim_cat = []; % default is to infer from odims\narg = vararg_pair(arg, varargin);\narg.out_1d = false;\n\nMM = numel(blocks);\n\nfatrix2_vertcat_check_all_fatrix2(blocks)\nfatrix2_vertcat_check_idim(blocks)\n\n[odims_same, odims] = fatrix2_same_odims(blocks);\nif ~odims_same % columnize\n\twarn 'mismatched odims so reverting to single column output'\n\targ.out_1d = true;\n\tfor mm=1:MM\n\t\todims{mm} = prod(odims{mm});\n\tend\nend\n\narg.blocks = blocks;\n\nif isempty(arg.dim_cat)\n\tb1 = blocks{1};\n\tif numel(b1.idim) == 1 && size(b1,2) == b1.idim % full 1d input\n\t\targ.dim_cat = 1;\n\telseif odims_same\n\t\targ.dim_cat = 'next';\n\telse\n\t\targ.dim_cat = 1;\n\tend\nend\n\nif streq(arg.dim_cat, 'next')\n\tif ~odims_same\n\t\tfail 'dim_cat ''next'' works only if all odims same'\n\tend\n\todim = [odims{1} MM];\n\targ.dim_cat = numel(odim);\nelse\n\tid_check = 1:numel(odims{1});\n\tid_check(arg.dim_cat) = []; % odim must match except dim_cat\n\tfor mm=1:MM\n\t\tif ~isequal(odims{mm}(id_check), odims{1}(id_check))\n\t\t\tfail('all blocks must have same odim (except dim_cat)')\n\t\tend\n\tend\n\n\ttmp = cell2mat(odims); % [MM ndim]\n\ttmp = sum(tmp(:,arg.dim_cat));\n\todim = odims{1}; odim(arg.dim_cat) = tmp;\nend\n\n\nif fatrix2_vertcat_omask_all_empty(blocks)\n\tomask = []; % all empty omasks\nelse\n\ttmp = cell(MM,1);\n\tfor mm=1:MM\n\t\ttmp{mm} = fatrix2_omask_array(blocks{mm});\n\t\tif arg.out_1d\n\t\t\ttmp{mm} = tmp{mm}(:);\n\t\tend\n\tend\n\tomask = cat(arg.dim_cat, tmp{:});\nend\n\narg.mat2cell_arg = fatrix2_vertcat_mat2cell_arg(odims, arg.dim_cat, odim);\n\n% build object\nob = fatrix2('arg', arg, 'caller', 'fatrix2_vertcat', ...\n\t'idim', blocks{1}.idim, 'imask', blocks{1}.imask, ...\n\t'odim', odim, 'omask', omask, ...\n\t'sparse', @fatrix2_vertcat_sparse, ...\n\t'abs', @fatrix2_vertcat_abs, 'power', @fatrix2_vertcat_power, ...\n\t'forw', @fatrix2_vertcat_forw, 'back', @fatrix2_vertcat_back);\n\n\n% fatrix2_vertcat_check_all_fatrix2()\nfunction fatrix2_vertcat_check_all_fatrix2(blocks)\nif ~iscell(blocks)\n\tfail('blocks must be cell array, not \"%s\"', class(blocks))\nend\nfor mm=1:numel(blocks);\n\tif ~isa(blocks{mm}, 'fatrix2')\n\t\tfail('vertcat requires all fatrix2; use Gmatrix if needed')\n\tend\nend\n\n\n% fatrix2_vertcat_check_idim()\n% check compatibility of input dimensions\nfunction fatrix2_vertcat_check_idim(blocks)\nb1 = blocks{1};\nfor mm=2:numel(blocks);\n\tbm = blocks{mm};\n\tif size(bm,2) ~= size(b1,2)\n\t\tfail('all blocks must have same #cols')\n\tend\n\tif ~isequal(bm.idim, b1.idim)\n\t\tfail('all blocks must have same idim')\n\tend\n\tif ~isequal(bm.imask, b1.imask)\n\t\tfail('all blocks must have same imask')\n\tend\nend\n\n\n% fatrix2_vertcat_forw(): y = A * x\nfunction y = fatrix2_vertcat_forw(arg, x)\n\nMM = numel(arg.blocks);\nyy = cell(MM,1);\nfor mm=1:MM\n\tbi = arg.blocks{mm};\n\tyy{mm} = fatrix2_do_forw(bi, x);\n%\tyy{mm} = bi.handle_forw(bi.arg, x);\n%\tif bi.scale ~= 1\n%\t\tyy{mm} = bi.scale * yy{mm};\n%\tend\n\tif arg.out_1d\n\t\tyy{mm} = yy{mm}(:);\n\tend\nend\n\ny = cat(arg.dim_cat, yy{:});\n\n\n% fatrix2_vertcat_back(): x = A' * y\nfunction x = fatrix2_vertcat_back(arg, y)\n\nyy = mat2cell(y, arg.mat2cell_arg{:});\n\nMM = length(arg.blocks);\nfor mm=1:MM\n\tbi = arg.blocks{mm};\n\tif arg.out_1d\n\t\tyy{mm} = reshape(yy{mm}, [bi.odim 1]);\n\tend\n\ttmp = fatrix2_do_back(bi, yy{mm});\n%\ttmp = bi.handle_back(bi.arg, yy{mm});\n%\tif bi.scale ~= 1\n%\t\ttmp = conj(bi.scale) * tmp;\n%\tend\n\tif mm == 1\n\t\tx = tmp;\n\telse\n\t\tx = x + tmp;\n\tend\nend\n\n\n% fatrix2_vertcat_abs(): abs(ob)\nfunction ob = fatrix2_vertcat_abs(ob)\n\nMM = numel(ob.arg.blocks);\nfor mm=1:MM\n\tob.arg.blocks{mm} = abs(ob.arg.blocks{mm});\nend\n\n\n% fatrix2_vertcat_power(): ob.^sup\nfunction ob = fatrix2_vertcat_power(ob, sup)\n\nMM = numel(ob.arg.blocks);\nfor mm=1:MM\n\tob.arg.blocks{mm} = (ob.arg.blocks{mm}) .^ sup;\nend\n\n\n% fatrix2_vertcat_mat2cell_arg()\nfunction mat2cell_arg = fatrix2_vertcat_mat2cell_arg(odims, dim_cat, odim)\n\nMM = numel(odims); % odims is cell(MM,1)\n\nif dim_cat == numel(odims{1}) + 1\n\tfor id = 1:numel(odims{1})\n\t\tmat2cell_arg{id} = odim(id);\n\tend\n\tmat2cell_arg{dim_cat} = ones(MM,1);\n\ttmp1 = 1:prod(odim);\n\ttmp1 = reshape(tmp1, odim);\n\ttmp2 = mat2cell(tmp1, mat2cell_arg{:});\nelse\n\tfor mm=1:MM\n\t\todim_m = odims{mm};\n\t\tif mm==1\n\t\t\tfor id = 1:numel(odim_m)\n\t\t\t\tif id ~= dim_cat\n\t\t\t\t\tmat2cell_arg{id} = odim_m(id);\n\t\t\t\tend\n\t\t\tend\n\t\tend\n\t\tmat2cell_arg{dim_cat}(mm) = odim_m(dim_cat);\n\tend\nend\n\n\n% fatrix2_vertcat_omask_all_empty()\n% see if all blocks have empty omask (often this will be the case)\nfunction allempty = fatrix2_vertcat_omask_all_empty(blocks)\nallempty = true;\nfor mm=1:numel(blocks)\n\tallempty = allempty & isempty(blocks{mm}.omask);\nend\n\n\n% fatrix2_vertcat_sparse(): S = sparse(A)\nfunction S = fatrix2_vertcat_sparse(ob)\narg = ob.arg;\nS = sparse([]);\nMM = numel(arg.blocks);\nS = cell(MM,1);\nfor mm=1:MM\n\tS{mm} = sparse(arg.blocks{mm});\nend\nS = cat(1, S{:});\n\n\n%{\n% fatrix2_vertcat_gram()\n% todo: this would be useful if W is empty or (block) diagonal\n% because it would save memory, but it is extra complexity\nfunction [T, reuse] = fatrix2_vertcat_gram(ob, W, reuse, varargin)\n\nblocks = ob.arg.blocks;\nT = cell(size(blocks));\nfor mm=1:length(blocks)\n\tA = blocks{mm};\n\tif isnumeric(A)\n\t\tif isempty(W)\n\t\t\tT{mm} = A' * A;\n\t\telse\n\t\t\twarn 'todo: this may not work, need piece of W!'\n\t\t\tT{mm} = A' * W * A;\n\t\tend\n\telse\n\t\tif isempty(W)\n\t\t\tT{mm} = build_gram(A, [], reuse, varargin{:});\n\t\telse\n\t\t\tif isvar('W.arg.blocks{mm}')\n\t\t\t\tT{mm} = build_gram(A, W.arg.blocks{mm}, ...\n\t\t\t\t\treuse, varargin{:});\n\t\t\telse\n\t\t\t\tfail('fatrix2_vertcat_gram needs block diag W')\n\t\t\tend\n\t\tend\n\tend\nend\nT = fatrix_block_sum(T{:});\n%}\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/@fatrix2/private/fatrix2_vertcat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3897368366068412}} {"text": "%% Copyright (C) 2016-2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym sinhint (@var{x})\n%% Symbolic sinhint function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = sinhint (x)\n%% @result{} y = (sym) Shi(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = sinhint(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('Shi', x);\nend\n\n\n%!error sinhint (sym(1), 2)\n%!xtest\n%! assert (isequaln (sinhint (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 1;\n%! x = sym('1');\n\n%!test\n%! f1 = sinhint(x);\n%! f2 = 1.057250875375728514572;\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = sinhint(A);\n%! f2 = 1.057250875375728514572;\n%! f2 = [f2 f2; f2 f2];\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = sinhint (d);\n%! f = sinhint (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/sinhint.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3897368366068412}} {"text": "% SIZE - size of memory mapped underlying array\n%\n% Author: Arnaud Delorme, SCCN, INC, UCSD, Nov. 2008\n\n% Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\nfunction [s varargout] = size(obj,dim)\n \n if obj.transposed\n if length(obj.dimensions) ~= 2 && length(obj.dimensions) ~= 3\n error('Transposed array must be 2 or 3 dims');\n end\n if length(obj.dimensions) == 2 tmpdimensions = [obj.dimensions(2) obj.dimensions(1)];\n else tmpdimensions = [obj.dimensions(3) obj.dimensions(1:end-1)];\n end\n else\n tmpdimensions = obj.dimensions;\n end\n \n s = tmpdimensions;\n \n if nargin > 1\n if dim >length(s)\n s = 1;\n else\n s = s(dim);\n end\n else\n if nargout > 1\n s = [s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];\n alls = s;\n s = s(1);\n for index = 1:max(nargout,1)-1\n varargout{index} = alls(index+1);\n end\n end\n end\n \n \n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/@mmo/size.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945417, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.38973682783652397}} {"text": "function N = readNEIGH(filename)\n % READNEIGH Read tetrahedral neighbor information from a .neigh file (as\n % produced by tetgen)\n % \n % N = readNEIGH(filename)\n %\n % Inputs:\n % filename path to .neigh file\n % Outputs:\n % N #simplices by #size-of-simplex neighborhood information (-1) indicates\n % boundary. T(i,j) *should* indicate the neighbor to the jth face of the\n % ith tet. *However* tetgen does not seem consistent. Consider\n % post-processing with fixNEIGH.m\n %\n % See also: tt, tetgen, readNODE, readELE, fixNEIGH\n %\n\n\n fp = fopen(filename);\n line = fscanf(fp,' %[^\\n]s');\n [header,count] = sscanf(line,'%d %d',2);\n if count~=2\n fclose(fp);\n error('Bad header');\n end\n\n % number of elements\n n = header(1);\n % size of an element\n size_e = header(2);\n\n parser = '%d';\n % append to parser enough to read all entries in element + 1 for index\n parser = [parser repmat(' %d',1,size_e+1)];\n N = fscanf(fp,parser,[size_e+1 n])';\n fclose(fp);\n\n % get rid of row indices and make one indexed\n N = N(:,2:end) + 1;\n N(~N) = -1;\nend\n\n\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/readNEIGH.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3896922047305658}} {"text": "function mrtrix_itkclass_wmmask(classfile, fname)\n\n% Convert the white matter segmentation file in itkGray (mrVista) into\n% binary white matter mask in mrTrix.\n% \n% In itkGray (mrVista), white matter is described as 3 and 4 in the matrix\n% in nifti file. This code converts itkGray segmentation into binary white\n% matter mask (white matter:1, others:0) in order to use it in fiber tractography. \n% \n% INPUT: \n% classfile: A full path to nifti file storing segmentation information in itkGray format\n% fname: The name of the output file (does not require filename extension)\n% \n% EXAMPLE:\n% classfile = 't1_class.nii.gz';\n% fname = 't1_class_binary';\n% mrtrix_itkclass_wmmask(classfile, fname)\n% (C) Hiromasa Takemura, CiNet/Stanford VISTA Team, 2015\n\nif notDefined('fname')\n fname = 't1_class_binary';\nend\n\n% Set savefile name\nniftiname = [fname '.nii.gz'];\nmifname = [fname '.mif'];\n\n% Load file\nclassseg = niftiRead(classfile);\n\n% Make new nifti structure and set file name\nnii = classseg;\nnii.fname = niftiname;\n\n%% Make binary white matter mask. \n% In ITKGray format, white matter is described as 3 and 4. Here, we put\n% 1 for all white matter voxels and 0 for all other voxels.\n\n% Set zero for all voxels\nnii.data = zeros(size(classseg.data));\n\n% Set one for white matter voxels\nnii.data(classseg.data == 3) = 1;\nnii.data(classseg.data == 4) = 1;\n\n% Save binary nifti file\nniftiWrite(nii);\n\n%% Convert nifti to .mif format\nmrtrix_mrconvert(niftiname, mifname);\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/mrtrix/mrtrix_itkclass_wmmask.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6297746074044134, "lm_q1q2_score": 0.3896922047305658}} {"text": "function medit_to_fem ( prefix )\n\n%*****************************************************************************80\n%\n%% MAIN is the main program for TRIANGLE_TO_FEM.\n%\n% Discussion:\n%\n% MEDIT_TO_FEM converts mesh data from MEDIT to FEM format.\n%\n% Usage:\n%\n% medit_to_fem prefix\n%\n% where 'prefix' is the common filename prefix:\n%\n% * 'prefix'.mesh is the MEDIT mesh file.\n% * 'prefix'_nodes.txt will contain the node coordinates.\n% * 'prefix'_elements.txt will contain the element node connectivity.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 10 November 2014\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MEDIT_TO_FEM\\n' );\n fprintf ( 1, ' MATLAB version:\\n' );\n fprintf ( 1, ' Read a mesh description created by MEDIT\\n' );\n fprintf ( 1, ' * \"prefix\".mesh.\\n' );\n fprintf ( 1, ' Write two simple FEM files listing nodes and elements.\\n' );\n fprintf ( 1, ' * \"prefix\"_nodes.txt, node coordinates.\\n' );\n fprintf ( 1, ' * \"prefix\"_elements.txt, element connectivity.\\n' );\n%\n% Get the filename prefix.\n%\n if ( nargin < 1 )\n\n prefix = input ( 'Enter the filename prefix: ' );\n\n end\n%\n% Create the filenames.\n%\n medit_filename = strcat ( prefix, '.mesh' );\n fem_node_filename = strcat ( prefix, '_nodes.txt' );\n fem_element_filename = strcat ( prefix, '_elements.txt' );\n%\n% Read MEDIT sizes.\n%\n [ dim, vertices, edges, triangles, quadrilaterals, tetrahedrons, ...\n hexahedrons ] = mesh_size_read ( medit_filename );\n%\n% Report sizes.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Number of dimensions = %d\\n', dim );\n fprintf ( 1, ' Number of vertices = %d\\n', vertices );\n fprintf ( 1, ' Number of edges = %d\\n', edges );\n fprintf ( 1, ' Number of triangles = %d\\n', triangles );\n fprintf ( 1, ' Number of quadrilaterals = %d\\n', quadrilaterals );\n fprintf ( 1, ' Number of tetrahedrons = %d\\n', tetrahedrons );\n fprintf ( 1, ' Number of hexahedrons = %d\\n', hexahedrons );\n%\n% Read MEDIT data.\n%\n [ vertex_coordinate, vertex_label, edge_vertex, edge_label, ...\n triangle_vertex, triangle_label, quadrilateral_vertex, ...\n quadrilateral_label, tetrahedron_vertex, tetrahedron_label, ...\n hexahedron_vertex, hexahedron_label ] = mesh_data_read ( medit_filename, ...\n dim, vertices, edges, triangles, quadrilaterals, tetrahedrons, ...\n hexahedrons );\n%\n% Choose the FEM data.\n%\n% We need to assume that there is only one element type.\n% If there are elements of multiple dimension, take the highest.\n%\n m = dim;\n node_num = vertices;\n r8mat_write ( fem_node_filename, dim, vertices, vertex_coordinate );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Created node coordinate file \"%s\"\\n', fem_node_filename );\n\n if ( 0 < hexahedrons && dim == 3 )\n\n element_order = 8;\n element_num = hexahedrons;\n i4mat_write ( fem_element_filename, element_order, element_num, ...\n hexahedron_vertex );\n\n elseif ( 0 < tetrahedrons && dim == 3 )\n\n element_order = 4;\n element_num = tetrahedrons;\n i4mat_write ( fem_element_filename, element_order, element_num, ...\n tetrahedron_vertex );\n\n elseif ( 0 < quadrilaterals && dim == 2 )\n\n element_order = 4;\n element_num = quadrilaterals;\n i4mat_write ( fem_element_filename, element_order, element_num, ...\n quadrilateral_vertex );\n\n elseif ( 0 < triangles && dim == 2 )\n\n element_order = 3;\n element_num = triangles;\n i4mat_write ( fem_element_filename, element_order, element_num, ...\n triangle_vertex );\n\n else\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MEDIT_TO_FEM - Fatal error!\\n' );\n fprintf ( 1, ' Unexpected combination of spatial dimension\\n' );\n fprintf ( 1, ' and number of nonzero objects.\\n' );\n error ( 'MEDIT_TO_FEM - Fatal error!' );\n\n end\n\n fprintf ( 1, ' Created element connectivity file \"%s\"\\n', ...\n fem_element_filename );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MEDIT_TO_FEM:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\nfunction c = ch_cap ( c )\n\n%*****************************************************************************80\n%\n%% CH_CAP capitalizes a single character.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, character C, the character to capitalize.\n%\n% Output, character C, the capitalized character.\n%\n if ( 'a' <= c && c <= 'z' )\n c = c + 'A' - 'a';\n end\n\n return\nend\nfunction truefalse = ch_eqi ( c1, c2 )\n\n%*****************************************************************************80\n%\n%% CH_EQI is a case insensitive comparison of two characters for equality.\n%\n% Example:\n%\n% CH_EQI ( 'A', 'a' ) is TRUE.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 28 July 2000\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, character C1, C2, the characters to compare.\n%\n% Output, logical TRUEFALSE, is TRUE (1) if the characters are equal.\n%\n FALSE = 0;\n TRUE = 1;\n\n if ( ch_cap ( c1 ) == ch_cap ( c2 ) )\n truefalse = TRUE;\n else\n truefalse = FALSE;\n end\n\n return\nend\nfunction i4mat_write ( output_filename, m, n, table )\n\n%*****************************************************************************80\n%\n%% I4MAT_WRITE writes an I4MAT file.\n%\n% Discussion:\n%\n% An I4MAT is an array of I4's.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 26 June 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string OUTPUT_FILENAME, the output filename.\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, integer TABLE(M,N), the points.\n%\n\n%\n% Open the file.\n%\n output_unit = fopen ( output_filename, 'wt' );\n\n if ( output_unit < 0 ) \n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4MAT_WRITE - Error!\\n' );\n fprintf ( 1, ' Could not open the output file.\\n' );\n error ( 'I4MAT_WRITE - Error!' );\n end\n%\n% Write the data.\n%\n for j = 1 : n\n for i = 1 : m\n fprintf ( output_unit, ' %d', round ( table(i,j) ) );\n end\n fprintf ( output_unit, '\\n' );\n end\n%\n% Close the file.\n%\n fclose ( output_unit );\n\n return\nend\nfunction [ vertex_coordinate, vertex_label, edge_vertex, edge_label, ...\n triangle_vertex, triangle_label, quadrilateral_vertex, ...\n quadrilateral_label, tetrahedron_vertex, tetrahedron_label, ...\n hexahedron_vertex, hexahedron_label ] = mesh_data_read ( filename, dim, ...\n vertices, edges, triangles, quadrilaterals, tetrahedrons, hexahedrons )\n\n%*****************************************************************************80\n%\n%% MESH_READ reads a MESH file defining a mesh and returns the data.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 November 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Pascal Frey,\n% MEDIT: An interactive mesh visualization software,\n% Technical Report RT-0253,\n% Institut National de Recherche en Informatique et en Automatique,\n% 03 December 2001.\n%\n% Parameters:\n%\n% Input, string FILENAME, the name of the MESH file.\n%\n% Input, integer DIM, the spatial dimension, which should be 2 or 3.\n%\n% Input, integer VERTICES, the number of vertices.\n%\n% Input, integer EDGES, the number of edges (may be 0).\n%\n% Input, integer TRIANGLES, the number of triangles (may be 0).\n%\n% Input, integer QUADRILATERALS, the number of quadrilaterals (may be 0).\n%\n% Input, integer TETRAHEDRONS, the number of tetrahedrons (may be 0).\n%\n% Input, integer HEXAHEDRONS, the number of hexahedrons (may be 0).\n%\n% Output, real VERTEX_COORDINATE(DIM,VERTICES), the coordinates\n% of each vertex.\n%\n% Output, integer VERTEX_LABEL(VERTICES), a label for each vertex.\n%\n% Output, integer EDGE_VERTEX(2,EDGES), the vertices that form each edge.\n%\n% Output, integer EDGE_LABEL(EDGES), a label for each edge.\n%\n% Output, integer TRIANGLE_VERTEX(3,TRIANGLES), the vertices that form\n% each triangle.\n%\n% Output, integer TRIANGLE_LABEL(TRIANGLES), a label for each triangle.\n%\n% Output, integer QUADRILATERAL_VERTEX(4,QUADRILATERALS), the vertices that\n% form each quadrilateral.\n%\n% Output, integer QUADRILATERAL_LABEL(QUADRILATERALS), a label for\n% each quadrilateral.\n%\n% Output, integer TETRAHEDRON_VERTEX(4,TETRAHEDRONS), the vertices that\n% form each tetrahedron.\n%\n% Output, integer TETRAHEDRON_LABEL(TETRAHEDRONS), a label for\n% each tetrahedron.\n%\n% Output, integer HEXAHEDRON_VERTEX(8,HEXAHEDRONS), the vertices that form\n% each hexahedron.\n%\n% Output, integer HEXAHEDRON_LABEL(HEXAHEDRONS), a label for each hexahedron.\n%\n\n%\n% Initialize everything to nothing.\n%\n vertex_coordinate = [];\n vertex_label = [];\n edge_vertex = [];\n edge_label = [];\n triangle_vertex = [];\n triangle_label = [];\n quadrilateral_vertex = [];\n quadrilateral_label = [];\n tetrahedron_vertex = [];\n tetrahedron_label = [];\n hexahedron_vertex = [];\n hexahedron_label = [];\n%\n% Open the file.\n%\n unit = fopen ( filename, 'rt' );\n\n if ( unit < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MESH_DATA_READ - Error!\\n' );\n fprintf ( 1, ' Could not open the input file \"%s\".\\n', filename );\n error ( 'MESH_DATA_READ - Error!' );\n return\n end\n%\n% Read lines til you get alphanumerics and determine a \"mode\"\n%\n line_num = 0;\n keyword = 'NONE';\n\n while ( 1 )\n\n text = fgetl ( unit );\n\n if ( text == -1 )\n break\n end\n\n line_num = line_num + 1;\n\n if ( s_len_trim ( text ) == 0 )\n keyword = 'NONE';\n continue\n end\n\n if ( text(1) == '#' )\n continue\n end\n%\n% Remove initial blanks.\n%\n\n%\n% Expecting a keyword.\n%\n if ( s_eqi ( text, 'CORNERS' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'DIMENSION' ) )\n\n keyword = 'DIMENSION';\n\n elseif ( s_eqi ( text, 'EDGES' ) )\n\n keyword = 'EDGES';\n\n elseif ( s_eqi ( text, 'END' ) )\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' END statement encountered.\\n' );\n break\n\n elseif ( s_eqi ( text, 'HEXAHEDRA' ) || s_eqi ( text, 'HEXAHEDRONS' ) )\n\n keyword = 'HEXAHEDRONS';\n\n elseif ( s_begin ( text, 'MESHVERSIONFORMATTED' ) )\n\n elseif ( s_eqi ( text, 'NORMALATQUADRILATERALVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'NORMALATTRIANGLEVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'NORMALATVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'NORMALS' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'QUADRILATERALS' ) )\n\n keyword = 'QUADRILATERALS';\n\n elseif ( s_eqi ( text, 'REQUIREDEDGES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'REQUIREDVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'RIDGES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'TANGENTATEDGES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'TANGENTS' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'TETRAHEDRA' ) || s_eqi ( text, 'TETRAHEDRONS' ) )\n\n keyword = 'TETRAHEDRONS';\n\n elseif ( s_eqi ( text, 'TRIANGLES' ) )\n\n keyword = 'TRIANGLES';\n\n elseif ( s_eqi ( text, 'VERTICES' ) )\n\n keyword = 'VERTICES';\n%\n% Presumably, numeric data to be processed by keyword.\n%\n elseif ( s_eqi ( keyword, 'DIMENSION' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% dim = value;\n end\n\n keyword = 'NONE';\n\n elseif ( s_eqi ( keyword, 'EDGES' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% edges = value;\n end\n\n keyword = 'EDGE_VERTEX';\n edge = 0;\n edge_vertex = zeros ( 2, edges );\n edge_label = zeros ( 1, edges );\n\n elseif ( s_eqi ( keyword, 'EDGE_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d' );\n\n edge = edge + 1;\n edge_vertex(1:2,edge) = value(1:2);\n edge_label(edge) = value(3);\n\n elseif ( s_eqi ( keyword, 'HEXAHEDRONS' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% hexahedrons = value;\n end\n\n keyword = 'HEXAHEDRON_VERTEX';\n hexahedron = 0;\n hexahedron_vertex = zeros ( 8, hexahedrons );\n hexahedron_label = zeros ( 1, hexahedrons );\n\n elseif ( s_eqi ( keyword, 'HEXAHEDRON_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d %d %d %d %d %d' );\n\n hexahedron = hexahedron + 1;\n hexahedron_vertex(1:8,hexahedron) = value(1:8);\n hexahedron_label(hexahedron) = value(9);\n\n elseif ( s_eqi ( keyword, 'QUADRILATERALS' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% quadrilaterals = value;\n end\n\n keyword = 'QUADRILATERAL_VERTEX';\n quadrilateral = 0;\n quadrilateral_vertex = zeros ( 4, quadrilateral );\n quadrilateral_label = zeros ( 1, quadrilateral );\n\n elseif ( s_eqi ( keyword, 'QUADRILATERAL_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d %d' );\n\n quadrilateral = quadrilateral + 1;\n quadrilateral_vertex(1:4,quadrilateral) = value(1:4);\n quadrilateral_label(quadrilateral) = value(5);\n\n elseif ( s_eqi ( keyword, 'TETRAHEDRONS' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% tetrahedrons = value;\n end\n\n keyword = 'TETRAHEDRON_VERTEX';\n tetrahedron = 0;\n tetrahedron_vertex = zeros ( 4, tetrahedron );\n tetrahedron_label = zeros ( 1, tetrahedron );\n\n elseif ( s_eqi ( keyword, 'TETRAHEDRON_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d %d' );\n\n tetrahedron = tetrahedron + 1;\n tetrahedron_vertex(1:4,tetrahedron) = value(1:4);\n tetrahedron_label(tetrahedron) = value(5);\n\n elseif ( s_eqi ( keyword, 'TRIANGLES' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% triangles = value;\n end\n\n keyword = 'TRIANGLE_VERTEX';\n triangle = 0;\n triangle_vertex = zeros ( 3, triangle );\n triangle_label = zeros ( 1, triangle );\n\n elseif ( s_eqi ( keyword, 'TRIANGLE_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d' );\n\n triangle = triangle + 1;\n triangle_vertex(1:3,triangle) = value(1:3);\n triangle_label(triangle) = value(4);\n\n elseif ( s_eqi ( keyword, 'VERTICES' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n% vertices = value;\n end\n\n keyword = 'VERTEX_COORDINATE';\n vertex = 0;\n vertex_coordinate = zeros ( dim, vertices );\n vertex_label = zeros ( 1, vertices );\n\n elseif ( s_eqi ( keyword, 'VERTEX_COORDINATE' ) )\n\n if ( dim == 2 )\n [ value, count ] = sscanf ( text, '%f %f %d' );\n elseif ( dim == 3 )\n [ value, count ] = sscanf ( text, '%f %f %f %d' );\n end\n\n vertex = vertex + 1;\n vertex_coordinate(1:dim,vertex) = value(1:dim);\n vertex_label(vertex) = value(dim+1);\n\n elseif ( s_eqi ( keyword, 'SKIP' ) )\n\n else\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MESH_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Could not find keyword while reading line %d:\\n', line_num );\n fprintf ( 1, '\"%s\"\\n', text );\n error ( 'MESH_DATA_READ - Fatal error!\\n' );\n\n end\n end\n%\n% Close the file.\n%\n fclose ( unit );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Read %d lines from \"%s\".\\n', line_num, filename );\n\n return\nend\nfunction [ dim, vertices, edges, triangles, quadrilaterals, tetrahedrons, ...\n hexahedrons ] = mesh_size_read ( filename )\n\n%*****************************************************************************80\n%\n%% MESH_SIZE_READ reads a MESH file defining a mesh and returns sizes only.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 December 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Pascal Frey,\n% MEDIT: An interactive mesh visualization software,\n% Technical Report RT-0253,\n% Institut National de Recherche en Informatique et en Automatique,\n% 03 December 2001.\n%\n% Parameters:\n%\n% Input, string FILENAME, the name of the MESH file.\n%\n% Output, integer DIM, the spatial dimension, which should be 2 or 3.\n%\n% Output, integer VERTICES, the number of vertices.\n%\n% Output, integer EDGES, the number of edges (may be 0).\n%\n% Output, integer TRIANGLES, the number of triangles (may be 0).\n%\n% Output, integer QUADRILATERALS, the number of quadrilaterals (may be 0).\n%\n% Output, integer TETRAHEDRONS, the number of tetrahedrons (may be 0).\n%\n% Output, integer HEXAHEDRONS, the number of hexahedrons (may be 0).\n%\n\n%\n% Initialize everything to nothing.\n%\n dim = 0;\n vertices = 0;\n edges = 0;\n triangles = 0;\n quadrilaterals = 0;\n tetrahedrons = 0;\n hexahedrons = 0;\n%\n% Open the file.\n%\n unit = fopen ( filename, 'rt' );\n\n if ( unit < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MESH_SIZE_READ - Error!\\n' );\n fprintf ( 1, ' Could not open the input file \"%s\".\\n', filename );\n error ( 'MESH_SIZE_READ - Error!' );\n return\n end\n%\n% Read lines til you get alphanumerics and determine a \"mode\"\n%\n line_num = 0;\n keyword = 'NONE';\n\n while ( 1 )\n\n text = fgetl ( unit );\n\n if ( text == -1 )\n break\n end\n\n line_num = line_num + 1;\n\n if ( s_len_trim ( text ) == 0 )\n keyword = 'NONE';\n continue\n end\n\n if ( text(1) == '#' )\n continue\n end\n%\n% Remove initial blanks.\n%\n\n%\n% Expecting a keyword.\n%\n if ( s_eqi ( text, 'CORNERS' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'DIMENSION' ) )\n\n keyword = 'DIMENSION';\n\n elseif ( s_eqi ( text, 'EDGES' ) )\n\n keyword = 'EDGES';\n\n elseif ( s_eqi ( text, 'END' ) )\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' END statement encountered.\\n' );\n break\n\n elseif ( s_eqi ( text, 'HEXAHEDRA' ) || s_eqi ( text, 'HEXAHEDRONS' ) )\n\n keyword = 'HEXAHEDRONS';\n\n elseif ( s_begin ( text, 'MESHVERSIONFORMATTED' ) )\n\n elseif ( s_eqi ( text, 'NORMALATQUADRILATERALVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'NORMALATTRIANGLEVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'NORMALATVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'NORMALS' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'QUADRILATERALS' ) )\n\n keyword = 'QUADRILATERALS';\n\n elseif ( s_eqi ( text, 'REQUIREDEDGES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'REQUIREDVERTICES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'RIDGES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'TANGENTATEDGES' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'TANGENTS' ) )\n\n keyword = 'SKIP';\n\n elseif ( s_eqi ( text, 'TETRAHEDRA' ) || s_eqi ( text, 'TETRAHEDRONS' ) )\n\n keyword = 'TETRAHEDRONS';\n\n elseif ( s_eqi ( text, 'TRIANGLES' ) )\n\n keyword = 'TRIANGLES';\n\n elseif ( s_eqi ( text, 'VERTICES' ) )\n\n keyword = 'VERTICES';\n%\n% Presumably, numeric data to be processed by keyword.\n%\n elseif ( s_eqi ( keyword, 'DIMENSION' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n dim = value;\n end\n\n keyword = 'NONE';\n\n elseif ( s_eqi ( keyword, 'EDGES' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n edges = value;\n end\n\n keyword = 'EDGE_VERTEX';\n\n elseif ( s_eqi ( keyword, 'EDGE_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d' );\n\n elseif ( s_eqi ( keyword, 'HEXAHEDRONS' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n hexahedrons = value;\n end\n\n keyword = 'HEXAHEDRON_VERTEX';\n\n elseif ( s_eqi ( keyword, 'HEXAHEDRON_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d %d %d %d %d %d' );\n\n elseif ( s_eqi ( keyword, 'QUADRILATERALS' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n quadrilaterals = value;\n end\n\n keyword = 'QUADRILATERAL_VERTEX';\n\n elseif ( s_eqi ( keyword, 'QUADRILATERAL_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d %d' );\n\n elseif ( s_eqi ( keyword, 'TETRAHEDRONS' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n tetrahedrons = value;\n end\n\n keyword = 'TETRAHEDRON_VERTEX';\n\n elseif ( s_eqi ( keyword, 'TETRAHEDRON_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d %d' );\n\n elseif ( s_eqi ( keyword, 'TRIANGLES' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n triangles = value;\n end\n\n keyword = 'TRIANGLE_VERTEX';\n\n elseif ( s_eqi ( keyword, 'TRIANGLE_VERTEX' ) )\n\n [ value, count ] = sscanf ( text, '%d %d %d %d' );\n\n elseif ( s_eqi ( keyword, 'VERTICES' ) )\n\n [ value, count ] = sscanf ( text, '%d' );\n\n if ( count == 1 )\n vertices = value;\n end\n\n keyword = 'VERTEX_COORDINATE';\n\n elseif ( s_eqi ( keyword, 'VERTEX_COORDINATE' ) )\n\n if ( dim == 2 )\n [ value, count ] = sscanf ( text, '%f %f %d' );\n elseif ( dim == 3 )\n [ value, count ] = sscanf ( text, '%f %f %f %d' );\n end\n\n elseif ( s_eqi ( keyword, 'SKIP' ) )\n\n else\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MESH_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Could not find keyword while reading line %d:\\n', line_num );\n fprintf ( 1, '\"%s\"\\n', text );\n error ( 'MESH_SIZE_READ - Fatal error!\\n' );\n\n end\n end\n%\n% Close the file.\n%\n fclose ( unit );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Read %d lines from \"%s\".\\n', line_num, filename );\n\n return\nend\nfunction r8mat_write ( output_filename, m, n, table )\n\n%*****************************************************************************80\n%\n%% R8MAT_WRITE writes an R8MAT file.\n%\n% Discussion:\n%\n% An R8MAT is an array of R8's.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string OUTPUT_FILENAME, the output filename.\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real TABLE(M,N), the points.\n%\n\n%\n% Open the file.\n%\n output_unit = fopen ( output_filename, 'wt' );\n\n if ( output_unit < 0 ) \n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R8MAT_WRITE - Error!\\n' );\n fprintf ( 1, ' Could not open the output file.\\n' );\n error ( 'R8MAT_WRITE - Error!' );\n end\n%\n% Write the data.\n%\n% Alternative print statements include:\n%\n% fprintf ( output_unit, ' %24.16e', table(i,j) );\n% fprintf ( output_unit, ' %14.6e', table(i,j) );\n%\n for j = 1 : n\n for i = 1 : m\n fprintf ( output_unit, ' %g', table(i,j) );\n end\n fprintf ( output_unit, '\\n' );\n end\n%\n% Close the file.\n%\n fclose ( output_unit );\n\n return\nend\nfunction value = s_begin ( s1, s2 )\n\n%*****************************************************************************80\n%\n%% S_BEGIN is TRUE if one string matches the beginning of the other.\n%\n% Discussion:\n%\n% The strings are compared, ignoring blanks and capitalization.\n%\n% Example:\n%\n% S1 S2 S_BEGIN\n%\n% 'Bob' 'BOB' TRUE\n% ' B o b ' ' bo b' TRUE\n% 'Bob' 'Bobby' TRUE\n% 'Bobo' 'Bobb' FALSE\n% ' ' 'Bob' FALSE (Do not allow a blank to match\n% anything but another blank string.)\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 30 January 2006\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, character S1(*), S2(*), the strings to be compared.\n%\n% Output, logical S_BEGIN, is TRUE if the strings match up to\n% the end of the shorter string, ignoring case.\n%\n len1 = s_len_trim ( s1 );\n len2 = s_len_trim ( s2 );\n%\n% If either string is blank, then both must be blank to match.\n% Otherwise, a blank string matches anything, which is not\n% what most people want.\n%\n if ( len1 == 0 || len2 == 0 )\n\n if ( len1 == 0 && len2 == 0 )\n value = 1;\n else\n value = 0;\n end\n\n return\n\n end\n\n i1 = 0;\n i2 = 0;\n%\n% Find the next nonblank in S1.\n%\n while ( 1 )\n\n while ( 1 )\n\n i1 = i1 + 1;\n\n if ( len1 < i1 )\n value = 1;\n return\n end\n\n if ( s1(i1) ~= ' ' )\n break\n end\n\n end\n%\n% Find the next nonblank in S2.\n%\n while ( 1 )\n\n i2 = i2 + 1;\n\n if ( len2 < i2 )\n value = 1;\n return\n end\n\n if ( s2(i2) ~= ' ' )\n break\n end\n\n end\n%\n% If the characters match, get the next pair.\n%\n if ( ~ch_eqi ( s1(i1), s2(i2) ) )\n break\n end\n\n end\n\n value = 0;\n\n return\nend\nfunction value = s_eqi ( s1, s2 )\n\n%*****************************************************************************80\n%\n%% S_EQI is a case insensitive comparison of two strings for equality.\n%\n% Example:\n%\n% S_EQI ( 'Anjana', 'ANJANA' ) is TRUE.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 30 April 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string S1, S2, the strings to compare.\n%\n% Output, logical VALUE, is TRUE if the strings are equal.\n%\n len1 = length ( s1 );\n len2 = length ( s2 );\n lenc = min ( len1, len2 );\n\n for i = 1 : lenc\n\n c1 = ch_cap ( s1(i) );\n c2 = ch_cap ( s2(i) );\n\n if ( c1 ~= c2 )\n value = 0;\n return\n end\n\n end\n\n for i = lenc + 1 : len1\n if ( s1(i) ~= ' ' )\n value = 0;\n return\n end\n end\n\n for i = lenc + 1 : len2\n if ( s2(i) ~= ' ' )\n value = 0;\n return\n end\n end\n\n value = 1;\n\n return\nend\nfunction len = s_len_trim ( s )\n\n%*****************************************************************************80\n%\n% S_LEN_TRIM returns the length of a character string to the last nonblank.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 June 2003\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string S, the string to be measured.\n%\n% Output, integer LENGTH, the length of the string up to the last nonblank.\n%\n len = length ( s );\n\n while ( 0 < len )\n if ( s(len) ~= ' ' )\n return\n end\n len = len - 1;\n end\n\n return\nend\nfunction timestamp ( )\n\n%*****************************************************************************80\n%\n%% TIMESTAMP prints the current YMDHMS date as a timestamp.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n t = now;\n c = datevec ( t );\n s = datestr ( c, 0 );\n fprintf ( 1, '%s\\n', s );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/medit_to_fem/medit_to_fem.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6297746004557471, "lm_q1q2_score": 0.38969220043086705}} {"text": "function [centers, labels, info] = slkmeansex(X, n, estfunctor, clsfunctor, varargin)\n%SLKMEANSEX Performs Generalized K-means\n%\n% $ Syntax $\n% - [centers, labels] = slkmeansex(X, n, estfunctor, clsfunctor, ...)\n% - [centers, labels, info] = slkmeansex(X, n, estfunctor, clsfunctor, ...)\n%\n% $ Arguments $\n% - X: the samples to be clustered\n% - n: the number of samples\n% - estfunctor: the functor to estimate means(centers), as follows:\n% centers = estfunc(centers, X, K, weights, labels, ...)\n% when input centers is empty, it performs initial\n% estimation, otherwise, it performs updating. \n% In addition, it should ignore the samples with \n% labels being zeros or negative numbers.\n% - clsfunctor: the functor to classify samples\n% labels = clsfunc(centers, X, n, ...) \n% it should produce 1 x n row vector.\n% - centers: the clustered centers\n% - labels: the labels indicating which sample belong to which center\n% a 1 x n row vector.\n% - info: the information on iteration process\n%\n% $ Description $\n% - [centers, labels] = slkmeansex(X, n, estfunctor, clsfunctor, ...) \n% is a generalized version of K-means. It actually implements an\n% iterative process to estimate centers from clustered samples and\n% re-clustered the samples according to centers.\n% You can specify the following properties:\n% - 'K': the number of initial number of clusters\n% (default = 3)\n% - 'init_centers': the initial centers.\n% - 'maxiter': the maximum number of iterations\n% (default = 100);\n% - 'annthres': the threshold of annealing\n% when the sum of sample weights for a center\n% is below annthres * the total weight, the\n% center will be discarded. (default = 0)\n% - 'annfunc': the function to discard a set of centers\n% centers = annfunc(centers, inds_discard);\n% - 'weights': the weights of the samples (default = [])\n% - 'verbose': whether to show progress information\n% (default = true)\n%\n% $ Remarks $\n% - The X and centers can be in any form that conform to the specified\n% functors.\n%\n% - If init_centers is specified, K should be exactly the number of\n% initial centers.\n%\n% - If annthres is 0, then no centers will be discarded even some centers\n% have no support samples in the process. The estfunctor should keep\n% those centers unchanged.\n%\n% $ History $\n% - Created by Dahua Lin, on Aug 28, 2006\n% - Modified by Dahua Lin, on Aug 30, 2006\n% - utilize slevalfunctor and slsharedisp\n% - Modified by Dahua Lin, on Aug 31, 2006\n% - based on slreevallearn\n%\n\n%% parse and verify input arguments\n\nif nargin < 4\n raise_lackinput('slkmeansex', 4);\nend\n\nopts.K = 3;\nopts.init_centers = [];\nopts.maxiter = 100;\nopts.annthres = 0;\nopts.annfunc = [];\nopts.weights = [];\nopts.verbose = true;\nopts = slparseprops(opts, varargin{:});\n\nif opts.K > n\n error('sltoolbox:rterror', ...\n 'The initial K is larger than the number of samples');\nend\n\nif opts.annthres > 0\n if isempty(opts.annfunc)\n error('sltoolbox:invalidarg', ...\n 'You should specify annfunc when annthres > 0');\n end\nend\n\nw = opts.weights;\nif ~isempty(w)\n if ~isequal(w, [1 n])\n error('sltoolbox:sizmismatch', ...\n 'The weights should be a 1 x n row vector');\n end\nend\n\n\n%% Initialization\n\nslsharedisp_attach('slkmeansex', 'show', opts.verbose);\n\nslsharedisp('Intialize K-Means');\n\nif isempty(opts.init_centers)\n initcinds = randsample(n, opts.K);\n labels = zeros(1, n);\n labels(initcinds) = 1:opts.K;\n \n K = opts.K;\n centers = slevalfunctor(estfunctor, [], X, K, w, labels);\nelse\n K = opts.K;\n centers = opts.init_centers;\nend\n\nslsharedisp_incindent;\nslsharedisp('initial K = %d', K);\nslsharedisp_decindent;\n\nlabels = slevalfunctor(clsfunctor, centers, X, n);\n\n\n%% Updating\n\nslsharedisp('Update K-Means');\nslsharedisp_incindent;\n\nkm_estfunctor = {@kmeansex_est, estfunctor, opts};\nkm_evalfunctor = {@kmeansex_eval, clsfunctor};\nkm_cmpfunctor = {@kmeansex_cmp};\n\nmodels = {centers, K};\ndata = {X, n, w};\n[models, labels, info] = slreevallearn(models, labels, data, ...\n km_estfunctor, km_evalfunctor, km_cmpfunctor, ...\n 'iter', {'maxiter', opts.maxiter, 'titlebreak', false}, 'isrecorded', false);\n\ncenters = models{1};\n\nslsharedisp_decindent;\nslsharedisp_detach;\n\n%% Core functions\n\n% models = {centers, K}\n% data = {X, n, w}\n\nfunction models = kmeansex_est(models, data, labels, estfunctor, opts)\n\nX = data{1};\nw = data{3};\ncenters = models{1};\nK = models{2};\n\nif ~isempty(centers) && opts.annthres > 0 \n if isempty(w)\n w = ones(1, length(labels));\n end\n cw = sllabeledsum(w, labels, 1:K);\n wthres = opts.annthres * sum(cw) / K;\n if any(cw < wthres)\n inds_ann = find(cw < wthres);\n centers = feval(opts.annfunc, centers, inds_ann);\n K = K - length(inds_ann);\n \n models = {centers, K};\n return;\n end\nend\n\ncenters = slevalfunctor(estfunctor, centers, X, K, w, labels);\nmodels = {centers, K};\n\n\nfunction labels = kmeansex_eval(models, data, labels, clsfunctor)\n\nX = data{1};\nn = data{2};\ncenters = models{1};\n\nslignorevars(labels);\n \nlabels = slevalfunctor(clsfunctor, centers, X, n);\n\n\nfunction isconverged = kmeansex_cmp(models_prev, models, labels_prev, labels)\n \nK_prev = models_prev{2};\nK = models{2};\nn = length(labels);\n\nslsharedisp_attach('kmeansex_cmp');\n\nisconverged = false;\nif K == K_prev\n nchanged = sum(labels ~= labels_prev);\n slsharedisp('K = %d: %d / %d changed', K, nchanged, n);\n\n if nchanged == 0\n isconverged = true;\n end\nelse\n slsharedisp('K = %d ==> %d', K_prev, K);\nend\n\nslsharedisp_detach();\n\n\n\n\n\n\n \n \n \n \n \n \n \n \n\n\n\n\n\n\n", "meta": {"author": "lmthang", "repo": "nmt.hybrid", "sha": "50d5c025f18ed280ff0fd2e2adce327f4170a2c3", "save_path": "github-repos/MATLAB/lmthang-nmt.hybrid", "path": "github-repos/MATLAB/lmthang-nmt.hybrid/nmt.hybrid-50d5c025f18ed280ff0fd2e2adce327f4170a2c3/code/wordsim/code/sltoolbox_r101/sltoolbox_r101/sltoolbox/cluster/slkmeansex.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.38963015451860666}} {"text": "function [ V VS ] = dicomreadvolume(zipfile)\n%DICOMREADVOLUME Read a zip-file with DICOM slices as volume.\n% [V VS] = DICOMREADVOLUME(FNAME) loads the 3-D volume data V from\n% the volume dicom slices in the zip-file FNAME. \n% The voxel size is returned by VS.\n%\n% See also DICOMWRITEVOLUME, DICOMWRITE, DICOMREAD\n%\n% Author: medical-image-processing.com\n\n\n% extract the zip file to the temporary directory\nfnames = unzip(zipfile, tempdir);\n\n% number of files\nN = numel(fnames);\n\nif (N<1)\n error('Empty zip file');\nend\n\n% read first slice for determining slice properties\nS = squeeze(dicomread(fnames{1}));\nI1 = dicominfo(fnames{1});\n\n% voxel size information\nVS = [I1.PixelSpacing(:) ; I1.SliceThickness];\n\n% slice size and datatype\nsz = size(S);\ntp = class(S);\n\n% pre-allocate data\nVT = zeros([sz N], tp);\nV = VT;\nPOS = zeros(N,2);\n\n% load each slice and its properties\nfor i=1:N\n VT(:,:,i) = squeeze(dicomread(fnames{i}));\n info = dicominfo(fnames{i});\n if isfield(info, 'ImagePositionPatient')\n POS(i,:) = [info.ImagePositionPatient(3) i];\n else\n POS(i,:) = [i i];\n end\n delete(fnames{i});\nend\n\n% resort the slices according to the image position\nPOS = sortrows(POS,1);\nfor i=1:N\n V(:,:,i) = VT(:,:,POS(i,2)); \nend\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23237-read-and-write-single-file-dicom-volumes/dicomreadvolume.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.38963015451860655}} {"text": "classdef ProjectorToP1discont < handle\n % OBJECTIU: encara no fa falta resoldre el sistema matricial. Simplement\n % fer switch depenent de la funcio d'entrada (P0 o P1) i trobar \"a lo\n % cutre\" la P1discont. Ja mes endavant fem el cas general. Ja hi ha\n % fragments de codi escampats que resolen P0toP1discont i P1toP1discont.\n\n properties (Access = public)\n\n end\n\n properties (Access = private)\n mesh\n% connec\n% quadOrder\n end\n\n properties (Access = private)\n quadrature\n% field\n% meshD\n end\n\n methods (Access = public)\n\n function obj = ProjectorToP1discont(cParams)\n obj.init(cParams);\n% obj.createDiscontinuousMesh();\n obj.createQuadrature();\n% obj.createField();\n end\n\n% function xFun = project(obj, x)\n% LHS = obj.computeLHS();\n% RHS = obj.computeRHS(x);\n% end\n\n function xFun = project(obj,cParams) % THIS WILL BE DELETED ONCE RHS IS OK\n origin = cParams.origin;\n x = cParams.x;\n connec = obj.mesh.connec;\n switch origin\n case {'P0'}\n dim = 1;\n ndim = size(x.fValues, 1);\n nnodeElem = size(connec,2);\n fEl = squeeze(x.fValues(dim,:,:));\n fRepeated = zeros(ndim, size(fEl,1), nnodeElem);\n for idim = 1:ndim\n fEl = squeeze(x.fValues(idim,:,:));\n for iNode = 1:nnodeElem\n fRepeated(idim, :,iNode) = fEl;\n end\n end\n fD = permute(fRepeated, [1 3 2]);\n fD = fD(1,:,:);\n s.fValues = fD;\n s.mesh = obj.mesh;\n xFun = P1DiscontinuousFunction(s);\n case {'P1'}\n f = x.fValues;\n nNode = size(connec,2);\n nDime = size(f,2);\n nodes = reshape(connec',1,[]);\n fe = f(nodes,:)';\n fNodeElem = reshape(fe,nDime,nNode,[]);\n \n s.fValues = fNodeElem;\n s.mesh = obj.mesh;\n xFun = P1DiscontinuousFunction(s);\n end\n end\n\n end\n\n methods (Access = private)\n\n function init(obj, cParams)\n obj.mesh = cParams.mesh;\n end\n\n% function createDiscontinuousMesh(obj)\n% obj.meshD = obj.mesh.createDiscontinuousMesh();\n% end\n\n function q = createQuadrature(obj)\n quadOrder = 'LINEAR';\n q = Quadrature.set(obj.mesh.type);\n q.computeQuadrature(quadOrder);\n obj.quadrature = q;\n end\n\n% function createField(obj)\n% s.mesh = obj.meshD;\n% s.ndimf = 1;\n% s.interpolationOrder = 'LINEAR';\n% s.quadratureOrder = 'QUADRATIC';\n% obj.field = Field(s);\n% end\n% \n% function LHS = computeLHS(obj)\n% s.type = 'MassMatrix';\n% s.mesh = obj.meshD;\n% s.field = obj.field;\n% lhs = LHSintegrator.create(s);\n% LHS = lhs.compute();\n% end\n% \n% function RHS = computeRHS(obj, fun)\n% fDisc = fun.computeDiscontinuousField();\n% fVals = fDisc.fValues;\n% dV = obj.mesh.computeDvolume(obj.quadrature);\n% xV = obj.quadrature.posgp;\n% nGaus = obj.quadrature.ngaus;\n% nF = size(fVals,1);\n% nElem = size(obj.mesh.connec,1);\n% rhs = zeros(nElem,nF);\n% \n% % Separate in two loops\n% for igaus = 1:nGaus\n% xGaus = xV(:,igaus);\n% fGaus = fDisc.evaluate(xGaus);\n% dVg(:,1) = dV(igaus,:);\n% for iF = 1:nF\n% fGausF = squeeze(fGaus(iF,:,:));\n% Ni = 1;\n% int = Ni*fGausF.*dVg;\n% rhs(:,iF) = rhs(:,iF) + int;\n% end\n% end\n% end\n\n end\nend\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Operators/Projectors/ProjectorToP1discont.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.38963015451860655}} {"text": "function F = retrieveR(level, o, H, L)\n%------------------------------------------------------------------------------\n%\n% This function extracts a two-dimensional gridfunction F from H.\n% F is supposed to be uniquely determined by the integer level and\n% character o describing its type. F is defined on a rectangular\n% domain.\n% This function is a two-dimensional lifting scheme utility.\n%\n% F = 2D gridfunction of coefficients extracted from H.\n%\n% level = integer designated as the level of F.\n%\n% o = character, should be either 'a' or 'd',\n% describing the type of F:\n% 'a' relates to approximation (coefficients) and\n% 'd' relates to detail (coefficients)\n%\n% L = 2D integer array of bookkeeping, see function storeR.\n%\n% H = 1D array that functions as storage (heap). The coefficients of F\n% are extracted from H as a result of calling retrieveR.\n%\n% See also: storeR, retrieveQ\n%\n% Design and implementation by:\n% Dr. Paul M. de Zeeuw http://homepages.cwi.nl/~pauldz/\n% Last Revision: May 5, 2002.\n% (c) 1999-2002 Stichting CWI, Amsterdam.\n%------------------------------------------------------------------------------\nif isempty(L)\n if ~isempty(H)\n disp([' retrieveR - ERROR at type ' o ' with level ' num2str(level)]);\n error(' retrieveR - books empty but heap is not ')\n else \n F = [];\n end\nelse\n if isempty(H)\n disp([' retrieveR - ERROR at type ' o ' with level ' num2str(level)]);\n error(' retrieveR - books not empty but heap is ')\n else\n [nL, mL] = size(L);\n if mL ~= 6\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - books do not fit ')\n else \n jL = -1;\n j = 1;\n foundit = 0;\n while j <= nL && ~foundit\n if L(j, 1) == level\n switch o\n case 'a' , if L(j, 3) == 0 && L(j, 2) == 0\n jL = j;\n foundit = 1;\n end\n case 'd' , if L(j, 3) == 1 && L(j, 2) == 0 \n jL = j;\n foundit = 1;\n end\n otherwise\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - unknown type of coefficients ')\n end \n end\n j = j + 1;\n end\n if jL == -1\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - no such coefficients in heap')\n else\n nF = L(jL, 4);\n if nF < 1\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - unvalid 1st dimension of target')\n end\n mF = L(jL, 5);\n if mF < 1\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - unvalid 2nd dimension of target')\n end \n heaptr = L(jL, 6);\n if heaptr < 2\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - bookkeeping error ')\n else\n [nH, mH] = size(H);\n if mH ~=1\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - heap should be column vector')\n else\n beginptr = heaptr-nF*mF;\n if heaptr-1 > nH\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - heap not that large')\n elseif beginptr < 1\n disp([' retrieveR - ERROR at type ' o ' level ' num2str(level)]);\n error(' retrieveR - heap not that large, dimensions?')\n else\n F = reshape(H(beginptr:(heaptr-1)), nF, mF); \n end \n end\n end \n end \n end\n end\nend\n%------------------------------------------------------------------------------\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13507-lisq-a-toolbox-for-the-lifting-scheme-on-2d-quincunx-grids/LISQ/retrieveR.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.38963015451860655}} {"text": "function [ opts ] = PrepareData_Char_RNN( opts )\n\nmax_char=67;\n\nx = textread('train_x.txt');\nx(:,end)=[];\nopts.train = zeros(max_char, size(x,1),size(x,2));\nIndex=x(:)'+1+max_char*[(0:numel(x)-1)];\nopts.train(Index)=1;\n\nx = textread('train_y.txt');\nopts.train_labels=x+1;\n\nopts.n_train=size(opts.train_labels,1);\n\nx = textread('test_x.txt');\nx(:,end)=[];\nopts.test = zeros(max_char, size(x ,1),size(x ,2));\nIndex=x (:)'+1+max_char*[(0:numel(x )-1)];\nopts.test(Index)=1;\n\nx = textread('test_y.txt');\nopts.test_labels=x+1;\n\n\nopts.n_test=size(opts.test_labels,1);\n", "meta": {"author": "yechengxi", "repo": "LightNet", "sha": "5dc29cefccf1ea6d9377aa90732581337408ce73", "save_path": "github-repos/MATLAB/yechengxi-LightNet", "path": "github-repos/MATLAB/yechengxi-LightNet/LightNet-5dc29cefccf1ea6d9377aa90732581337408ce73/RNN/lm_data/PrepareData_Char_RNN.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878696277512, "lm_q2_score": 0.6334102775181399, "lm_q1q2_score": 0.38960297819895534}} {"text": "function magcumu() % autogenerated function wrapper\n % This subroutine selects earthquakes in a magnitude, time\n % and depth range for plotting cumulative curves\n % Operates on the last subset of the catalogue (ZG.newcat).\n % Changes ZG.newt2\n %\n %minma2 = input('Please input Minimum Magnitude (inclusive):')\n %maxma2 = input('Please input Maximum Magnitude:')\n %minde = input('Please input minimum depth (inclusive):')\n %maxde = input('Please input Maximum depth:')\n % turned into function by Celso G Reyes 2017\n \n ZG=ZmapGlobal.Data; % used by get_zmap_globals\n \n report_this_filefun(mfilename('fullpath'));\n ZG=ZmapGlobal.Data;\n % make selection from catalogue ZG.newcat\n % ZG.newt2 is changed\n \n ZG.newt2 = ZG.newcat;\n \n l = ZG.newt2.Magnitude >= minma2 &...\n ZG.newt2.Magnitude <= maxma2 & ...\n ZG.newt2.Date >= mint & ...\n ZG.newt2.Date <= maxt;\n ZG.newt2 = ZG.newt2.subset(l);\n \n l = ZG.newt2.Depth >= minde &...\n ZG.newt2.Depth <= maxde ;\n ZG.newt2 = ZG.newt2.subset(l);\n \n %l = ZG.newt2.Date >= minti & ZG.newt2.Date <= maxti ;\n %ZG.newt2 = ZG.newt2.subset(l);\n \n stri = ['# ' stri1 '# ' num2str(minma2) ' <= M <= ' num2str(maxma2) ...\n '# ' num2str(minde) ' <= h(km) < ' num2str(maxde) ];\n \n ZG.t0b = min(ZG.newt2.Date);\n timeplot(ZG.newt2)\nend\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/magcumu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3896029692604692}} {"text": "function test_ft_plot_box\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_plot_box\n\nfigure\nft_plot_box([-1 1 2 3], 'facecolor', 'b');\naxis([-4 4 -4 4])\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_plot_box.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160664, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.38960296074746886}} {"text": "classdef vfa_t1 < AbstractModel\n% vfa_t1: Compute a T1 map using Variable Flip Angle\n%\n% Assumptions:\n%\n% Inputs:\n% VFAData Spoiled Gradient echo data, 4D volume with different flip angles in time dimension\n% (B1map) Normalized transmit excitation field map (B1+). B1+ is defined \n% as a normalized multiplicative factor such that:\n% FA_actual = B1+ * FA_nominal. (OPTIONAL).\n% (Mask) Binary mask to accelerate the fitting. (OPTIONAL)\n%\n% Outputs:\n% T1 Longitudinal relaxation time [s]\n% M0 Equilibrium magnetization\n%\n% Protocol:\n% VFAData Array [nbFA x 2]:\n% [FA1 TR1; FA2 TR2;...] flip angle [degrees] TR [s]\n%\n% Options:\n% None\n%\n% Example of command line usage:\n% Model = vfa_t1; % Create class from model\n% Model.Prot.VFAData.Mat=[3 0.015; 20 0.015]; %Protocol: 2 different FAs\n% data = struct; % Create data structure\n% data.VFAData = load_nii_data('VFAData.nii.gz');\n% data.B1map = load_nii_data('B1map.nii.gz');\n% FitResults = FitData(data,Model); %fit data\n% FitResultsSave_mat(FitResults);\n%\n% For more examples: qMRusage(vfa_t1)\n%\n%\n% Author: Ian Gagnon, 2017\n%\n% References:\n% Please cite the following if you use this module:\n% Fram, E.K., Herfkens, R.J., Johnson, G.A., Glover, G.H., Karis, J.P.,\n% Shimakawa, A., Perkins, T.G., Pelc, N.J., 1987. Rapid calculation of\n% T1 using variable flip angle gradient refocused imaging. Magn. Reson.\n% Imaging 5, 201?208\n% In addition to citing the package:\n% Karakuzu A., Boudreau M., Duval T.,Boshkovski T., Leppert I.R., Cabana J.F., \n% Gagnon I., Beliveau P., Pike G.B., Cohen-Adad J., Stikov N. (2020), qMRLab: \n% Quantitative MRI analysis, under one umbrella doi: 10.21105/joss.02343\n\nproperties (Hidden=true)\n onlineData_url = 'https://osf.io/7wcvh/download?version=3'; \nend\n\n properties\n MRIinputs = {'VFAData','B1map','Mask'};\n xnames = {'M0','T1'};\n voxelwise = 0;\n \n % Protocol\n Prot = struct('VFAData',struct('Format',{{'FlipAngle' 'TR'}},...\n 'Mat', [3 0.015; 20 0.015])); % You can define a default protocol here.\n\n % fitting options\n st = [2000 0.7]; % starting point\n lb = [0 0.00001]; % lower bound\n ub = [6000 5]; % upper bound\n fx = [0 0]; % fix parameters\n\n % Model options\n buttons = {};\n options= struct(); % structure filled by the buttons. Leave empty in the code\n\n % Simulation Options\n Sim_Single_Voxel_Curve_buttons = {'SNR',50};\n Sim_Optimize_Protocol_buttons = {'# of volumes',5,'Population size',100,'# of migrations',100};\n end\n\nmethods (Hidden=true)\n% Hidden methods goes here.\nend\n\n methods\n\n function obj = vfa_t1()\n obj.options = button2opts(obj.buttons);\n end\n\n function Smodel = equation(obj,x)\n % Generates a VFA signal based on input parameters\n x = mat2struct(x,obj.xnames); % if x is a structure, convert to vector\n\n % Equation: S=M0sin(a)*(1-E)/(1-E)cos(a); E=exp(-TR/T1)\n flipAngles = (obj.Prot.VFAData.Mat(:,1))';\n TR = obj.Prot.VFAData.Mat(1,2);\n E = exp(-TR/x.T1);\n Smodel = x.M0*sin(flipAngles/180*pi)*(1-E)./(1-E*cos(flipAngles/180*pi));\n end\n\n function FitResult = fit(obj,data)\n % T1 and M0\n flipAngles = (obj.Prot.VFAData.Mat(:,1))';\n TR = obj.Prot.VFAData.Mat(:,2);\n if obj.voxelwise == 0\n if (length(unique(TR))~=1), error('VFA data must have same TR'); end\n if ~isfield(data, 'B1map'), data.B1map = []; end\n if ~isfield(data, 'Mask'), data.Mask = []; end\n [FitResult.T1, FitResult.M0] = Compute_M0_T1_OnSPGR(double(data.VFAData), flipAngles, TR(1), data.B1map, data.Mask);\n elseif obj.voxelwise == 1\n if ~isfield(data,'B1map'), data.B1map=1; end\n [m0, t1] = mtv_compute_m0_t1(double(data.VFAData), flipAngles, TR(1), data.B1map);\n FitResult.T1 = t1;\n FitResult.M0 = m0;\n end\n end\n\n function plotModel(obj,x,data)\n if nargin<2 || isempty(x), x = obj.st; end\n x = mat2struct(x,obj.xnames);\n disp(x)\n flipAngles = obj.Prot.VFAData.Mat(:,1)';\n TR = obj.Prot.VFAData.Mat(1,2)';\n subplot(2,1,1)\n if exist('data','var')\n if isfield(data,'B1map')\n if ~isempty(data.B1map)\n B1map=data.B1map;\n end\n else\n B1map=1;\n end\n % Plot data and fitted signal\n plot(flipAngles,data.VFAData,'.','MarkerSize',16)\n else\n B1map=1;\n end\n E = exp(-TR/x.T1);\n Smodel = x.M0*sin(flipAngles/180*pi*B1map)*(1-E)./(1-E*cos(flipAngles/180*pi*B1map));\n hold on\n plot(flipAngles,Smodel,'x','MarkerSize',16)\n hold off\n title('Data points','FontSize',14);\n xlabel('Flip Angle [deg]','FontSize',12);\n ylabel('Signal','FontSize',12);\n legend('data', 'fitted','Location','best')\n set(gca,'FontSize',12)\n\n\n % Plot linear fit\n subplot(2,1,2)\n if exist('data','var')\n ydata = data.VFAData./sin(flipAngles/180*pi*B1map)';\n xdata = data.VFAData./tan(flipAngles/180*pi*B1map)';\n plot(xdata,ydata,'xb','MarkerSize',16)\n hold on\n end\n slope = exp(-TR/x.T1);\n intercept = x.M0*(1-slope);\n X=Smodel./tan(flipAngles/180*pi*B1map);\n mval = min(X);\n Mval = max(X);\n plot([mval Mval],intercept+slope*[mval Mval],'-r');\n hold off\n title(sprintf('Linear Fit: T1=%0.4f s; M0=%0.0f;',x.T1,x.M0),'FontSize',14);\n xlabel('[au]','FontSize',12);\n ylabel('[au]','FontSize',12);\n legend('linearized data', 'linear fit','Location','best')\n %txt=strcat('T1=',num2str(x.T1),'s M0=',num2str(x.M0));\n set(gca,'FontSize',12)\n\n% h = plot( fitresult, xData, yData,'+');\n% set(h,'MarkerSize',30)\n% legend( h, 'y vs. x', 'untitled fit 1', 'Location', 'NorthEast' );\n% p11 = predint(fitresult,x,0.95,'observation','off');\n% hold on\n% plot(x,p11,'m--'); drawnow;\n% hold off\n% % Label axes\n% xlabel( 'x' );\n% ylabel( 'y' );\n% grid on\n% saveas(gcf,['temp.jpg']);\n end\n function [FitResults, data] = Sim_Single_Voxel_Curve(obj, x, Opt,display)\n % Simulates Single Voxel\n %\n % :param x: [struct] fit parameters\n % :param Opt.SNR: [struct] signal to noise ratio to use\n % :param display: 1=display, 0=nodisplay\n % :returns: [struct] FitResults, data (noisy dataset)\n\n if ~exist('display','var'), display = 1; end\n Smodel = equation(obj, x);\n sigma = max(abs(Smodel))/Opt.SNR;\n data.VFAData = ricernd(Smodel,sigma)';\n data.B1map = 1;\n\n FitResults = fit(obj,data);\n if display\n plotModel(obj, FitResults, data);\n end\n end\n\n function SimVaryResults = Sim_Sensitivity_Analysis(obj, OptTable, Opt)\n % SimVaryGUI\n SimVaryResults = SimVary(obj, Opt.Nofrun, OptTable, Opt);\n end\n\n function SimRndResults = Sim_Multi_Voxel_Distribution(obj, RndParam, Opt)\n % SimVaryGUI\n SimRndResults = SimRnd(obj, RndParam, Opt);\n end\n\n\n end\n \n % CLI-only implemented static methods. Can be called directly from\n % class - no object needed.\n methods(Static)\n function Mz = analytical_solution(params)\n %ANALYTICAL_SOLUTION Analytical equations for the longitudinal magnetization of\n %steady-state gradient echo experiments.\n %\n % Reference: Stikov, N. , Boudreau, M. , Levesque, I. R.,\n % Tardif, C. L., Barral, J. K. and Pike, G. B. (2015), On the\n % accuracy of T1 mapping: Searching for common ground. Magn.\n % Reson. Med., 73: 514-522. doi:10.1002/mrm.25135\n %\n % params: Struct.\n % Properties: T1, TR, EXC_FA, constant (optional)\n %\n \n Mz = vfa_equation(params);\n \n end\n \n function signMaxAngle = ernst_angle(params)\n %ERNST_ANGLE Analytical equations for the longitudinal magnetization of\n %steady-state gradient echo experiments.\n %\n % Reference: Ernst, R. R. (1966). \"Application of Fourier \n % transform spectroscopy to magnetic resonance\". Review of \n % Scientific Instruments. 37: 93. doi:10.1063/1.171996\n %\n % params: Struct.\n % Properties: T1, TR\n %\n \n try\n T1 = params.T1;\n TR = params.TR;\n catch\n error('vfa_t1.ernst_equation: Incorrect parameters. Run `help vfa_t1.ernst_angle` for more info.')\n end\n\n signMaxAngle = acosd(exp(-TR./T1));\n \n end\n \n function [Mz, Msig] = bloch_sim(params)\n %BLOCH_SIM Bloch simulations of the GRE-IR pulse sequence.\n % Simulates 100 spins params. Nex repetitions of the IR pulse\n % sequences.\n %\n % params: Struct with the following fields:\n % EXC_FA: Excitation pulse flip angle in degrees.\n % TI: Inversion time (ms).\n % TR: Repetition time (ms).\n % TE: Echo time (ms).\n % T1: Longitudinal relaxation time (ms).\n % T2: Transverse relaxation time (ms).\n % Nex: Number of excitations\n %\n % (optional)\n % df: Off-resonance frequency of spins relative to excitation pulse (in Hz)\n % crushFlag: Numeric flag for perfect spoiling (1) or partial spoiling (2).\n % partialDephasingFlag: do partialDephasing (see below)\n % partialDephasing: Partial dephasing fraction (between [0, 1]). 1 = no dephasing, 0 = complete dephasing (sele\n % inc: Phase spoiling increment in degrees.\n %\n % Outputs:\n % Mz: Longitudinal magnetization at just prior to excitation pulse.\n % Msig: Complex signal produced by the transverse magnetization at time TE after excitation.\n %\n \n %% Setup parameters\n %\n \n alpha = deg2rad(params.EXC_FA);\n TR = params.TR;\n T1 = params.T1;\n \n TE = params.TE;\n T2 = params.T2;\n \n Nex = params.Nex;\n \n %% Optional parameers\n \n if isfield(params, 'df')\n df = params.df;\n else\n df = 0;\n end\n \n if isfield(params, 'crushFlag')\n crushFlag = params.crushFlag;\n else\n crushFlag = 1;\n end\n \n if isfield(params, 'partialDephasingFlag')\n partialDephasingFlag = params.partialDephasingFlag;\n else\n partialDephasingFlag = 0;\n end\n \n if isfield(params, 'partialDephasing')\n partialDephasing = params.partialDephasing;\n else\n partialDephasing = 1;\n end\n \n if isfield(params, 'inc')\n inc = deg2rad(params.inc);\n else\n inc = 0;\n end\n \n %% Simulate for every flip angless\n %\n \n for ii = 1:length(alpha)\n \n [Msig(ii), Mz(ii)] = vfa_blochsim( ...\n alpha(ii), ...\n T1, ...\n T2, ...\n TE, ...\n TR, ...\n crushFlag, ...\n partialDephasingFlag, ...\n partialDephasing, ...\n df, ...\n Nex, ...\n inc ...\n );\n \n end\n end\n \n function EXC_FA = find_two_optimal_flip_angles(params, sigFigs)\n %FIND_TWO_OPTIMAL_FLIP_ANGLES Calculate the two optimal flip\n %angles (having signals 71% of the signal at the Ernst angle).\n %\n % Simulates 100 spins params. Nex repetitions of the IR pulse\n % sequences.\n %\n % References:\n %\n % Deoni, S. C., Rutt, B. K. and Peters, T. M. (2003), Rapid \n % combined T1 and T2 mapping using gradient recalled \n % acquisition in the steady state. Magn. Reson. Med., 49: \n % 515-526. \n %\n % Schabel, M.C. & Morrell, G.R., 2009. Uncertainty in T(1) \n % mapping using the variable flip angle method with two flip \n % angles. Physics in medicine and biology, 54(1), pp.N1?8.\n \n \n if ~exist('sigFigs','var')\n sigFigs = 0;\n end\n \n % Set up search space of flip angle and signal values\n flipAngleSearchSpace = 0:1*10^(-sigFigs):90;\n \n params.EXC_FA = flipAngleSearchSpace;\n signals = vfa_t1.analytical_solution(params);\n \n % Get the Angle, find index in search space\n maxAngle = vfa_t1.ernst_angle(params);\n [~,maxRangeIndex] = min(abs(flipAngleSearchSpace-maxAngle));\n \n % Calculate signal at optimal flip angle values\n optAngleSignal= 0.71*signals(maxRangeIndex);\n \n % Calculate indices of optimal flip angles (smaller and larger\n % than the Ernst angle)\n [~,optRangeIndex_small] = min(abs(signals(1:maxRangeIndex)-optAngleSignal));\n [~,optRangeIndex_large_rel] = min(abs(signals(maxRangeIndex+1:end)-optAngleSignal));\n optRangeIndex_large = maxRangeIndex+optRangeIndex_large_rel;\n \n % Output optimal flip angle values\n EXC_FA = [flipAngleSearchSpace(optRangeIndex_small), flipAngleSearchSpace(optRangeIndex_large)];\n \n end\n end\nend\n", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/src/Models/T1_relaxometry/vfa_t1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7853085808877581, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3895867412089813}} {"text": "function [SRCC,PLCC] = test_TID2013(net,testDatabase, testMethod, Trainingproportion,seed)\n \n if ~exist(fullfile('result', testDatabase, testMethod), 'dir')\n mkdir(fullfile('result', testDatabase, testMethod));\n end\n \n fprintf('Results on TID2013...');\n Path = fullfile('databases', testDatabase);\n type_scores = cell(24,1);\n type_mos = cell(24,1);\n \n \n fp = fopen(fullfile(Path,'mos_with_names.txt'),'r');\n for i = 1:3000\n temp = fgetl(fp);\n mos(i) = str2num(temp(1:7));\n classes(i) = str2num(temp(10:11));\n disImagePath{i} = fullfile(Path,'distorted_images',temp(9:end));\n type(i) = str2num(temp(13:14));\n if i <= 2880\n refImagePath{i} = fullfile(Path,'reference_images',['I' temp(10:11) '.BMP']);\n else\n refImagePath{i} = fullfile(Path,'reference_images',['i' temp(10:11) '.bmp']);\n end\n end\n fclose(fp);\n\n if strcmp(testMethod,'CNN')\n [~, testingSet] = generateTrainingSet(classes,seed,Trainingproportion);\n for i = 1:numel(testingSet)\n scores(i) = processOneImage_CNN(net,disImagePath{testingSet(i)});\n end\n SRCC = corr(scores', mos(testingSet)', 'type', 'Spearman');\n PLCC = RegressionTID2013(scores', mos(testingSet)');\n fprintf('SRCC = %.4f; PLCC = %.4f \\n', abs(SRCC), abs(PLCC))\n else\n if ~exist(fullfile('result', testDatabase, testMethod, 'scores.mat'), 'file')\n for i = 1:numel(disImagePath)\n fprintf('processing image %d / %d \\n',i,numel(disImagePath));\n scores(i) = CallingTheSourceCodeForScorePrediction(disImagePath{i},testMethod);\n end\n save(fullfile('result', testDatabase, testMethod, 'scores.mat'),'scores');\n else\n load(fullfile('result', testDatabase, testMethod, 'scores.mat'),'scores');\n end\n for seed = 1:10\n [~, testingSet] = generateTrainingSet(classes,seed,Trainingproportion);\n SRCC(seed) = corr(scores(testingSet)', mos(testingSet)', 'type', 'Spearman');\n PLCC(seed) = RegressionTID2013(scores(testingSet)', mos(testingSet)');\n end\n fprintf('SRCC = %.4f, std = %.4f; PLCC = %.4f, std = %.4f \\n', abs(median(SRCC)), std(SRCC), abs(median((PLCC))), std((PLCC)));\n end\n\n\nend\n", "meta": {"author": "HuiZeng", "repo": "BIQA_Toolbox", "sha": "39d606574f0cbfde82ecbc3c208b353d9fa9a450", "save_path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox", "path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox/BIQA_Toolbox-39d606574f0cbfde82ecbc3c208b353d9fa9a450/tools/src/test_TID2013.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.727975460709318, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.38953852510428966}} {"text": "function p = addFromProbedBinary(p)\n\n% For a nonlinear operator, the envelope model is tighter on a smaller\n% domain. Search for (binary d implies x >= L) and then compute bounds on \n% f(x) on that domain, and add implies(d, L <= f(x) <= U)\nif ~isempty(p.binary_variables) && ~isempty(p.F_struc)\n newCuts = zeros(0,size(p.F_struc,2));\n b = p.F_struc(:,1);\n A = p.F_struc(:,2:end);\n D = A(:,p.binary_variables);\n A(:,p.binary_variables) = 0;\n probedBoundsL = [];\n probedBoundsU = [];\n for i = p.K.f + 1:p.K.f + p.K.l\n [~,ix,valx] = find(A(i,:));\n if length(ix) == 1\n [~,id,vald] = find(D(i,:));\n if length(id) == 1\n if valx > 0\n % b + valx*x + vald*d >= 0\n % valx*x >= (-b-vald*x)\n % d implies x >= (-b-vald)/valx\n activated_lower = (-b(i)-vald)/valx;\n probedBoundsL(end+1,1) = id;\n probedBoundsL(end,2) = ix;\n probedBoundsL(end,3) = activated_lower;\n elseif valx < 0\n % b - (-valx)*x + vald*d >= 0\n % b + vald*d >= -valx*x\n % d implies (b+vald/(-valx)\n activated_upper = (b(i)+vald)/(-valx);\n probedBoundsU(end+1,1) = id;\n probedBoundsU(end,2) = ix;\n probedBoundsU(end,3) = activated_upper;\n end\n end\n end\n end\n if ~isempty(probedBoundsL) || ~isempty(probedBoundsU)\n for i = 1:length(p.binary_variables)\n iL = find(probedBoundsL(:,1) == i);\n iU = find(probedBoundsU(:,1) == i);\n if ~isempty(iL) || ~isempty(iU)\n ptemp = p;\n if ~isempty(iL)\n for k = iL\n ptemp.lb(probedBoundsL(k,2)) = probedBoundsL(k,3);\n end\n end\n if ~isempty(iU)\n for k = iU\n ptemp.ub(probedBoundsU(k,2)) = probedBoundsU(k,3);\n end\n end\n ptemp.lb(p.binary_variables(i)) = 1;\n pprobed = update_monomial_bounds(ptemp);\n pprobed = propagate_bounds_from_evaluations(pprobed); \n sL = find(pprobed.lb > ptemp.lb+1e-6);\n sU = find(pprobed.ub < ptemp.ub-1e-6);\n for j = 1:length(sL)\n % {d implies x(s) >= q}\n % x(s) >= q*d + L*(1-d)\n % -L + x(s) + d*(L-q) >= 0\n if ~ismember( sL(j),p.binary_variables) % {d implies x(s) <= q}\n q = pprobed.lb(sL(j));\n L = p.lb(sL(j));\n if ~isinf(q) && ~isinf(L)\n newCuts(end+1,1) = -L;\n newCuts(end,1+sL(j)) = 1;\n newCuts(end,1+p.binary_variables(i)) = L-q;\n end\n end\n end\n for j = 1:length(sU)\n if ~ismember( sU(j),p.binary_variables) % {d implies x(s) <= q}\n % x(s) <= q*d + U*(1-d)\n % U - x(s) + d*(q-U) >= 0\n q = pprobed.ub(sU(j));\n U = p.ub(sU(j));\n if ~isinf(q) && ~isinf(U)\n newCuts(end+1,1) = U;\n newCuts(end,1+sU(j)) = -1;\n newCuts(end,1+p.binary_variables(i)) = q-U;\n end\n end\n end\n end\n end\n end\n if nnz(newCuts)>0\n p.F_struc = [p.F_struc(1:p.K.f+p.K.l,:);\n newCuts;\n p.F_struc(p.K.f+p.K.l+1:end,:)];\n p.K.l = p.K.l + size(newCuts,1);\n end\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/global/addFromProbedBinary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754607093178, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.38953852510428955}} {"text": "function [output, firstIndexPoint] = read_bti_hs( filename, outfile)\n\n%read_hs_file Reads in BTI-Headshape files\n% filename: file with the headshape informations\n% outfile: if present, a ctf \".shape\" file is written\n% output: if present, a 3xN matrix containing the headshape-points\n%\n% (C) 2007 by Thomas Hartmann\n\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\nif nargin == 1\n outfile = [];\nend %if\n\nfid = fopen_or_error(filename, 'r', 'b');\nversion = fread(fid, 1, '*uint32');\ntimestamp = fread(fid, 1, '*int32');\nchecksum = fread(fid, 1, '*int32');\nnPoints = fread(fid, 1, '*int32');\n\nfirstIndexPoint = fread(fid, [3, 5], 'double')';\n\npoints = fread(fid, [3, double(nPoints)], 'double');\n\nfclose(fid);\n\nif(nargout > 0)\n output = points';\nend %if\n\nif(nargin == 2)\n fid = fopen_or_error(outfile, 'wt');\n fprintf(fid, '%d\\n', nPoints);\n for i = 1:size(points, 2)\n fprintf(fid, '%.3f\\t%.3f\\t%.3f\\n', points(1, i), points(2, i), points(3, i));\n end %for\n fclose(fid);\n\nend %if\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/fileio/private/read_bti_hs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754371026368, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.38953851247239163}} {"text": "function Y = clfKnnFwd( clf, X )\n% Apply a k-nearest neighbor classifier to X.\n%\n% USAGE\n% Y = clfKnnFwd( clf, X )\n%\n% INPUTS\n% clf - trained model\n% X - nxp data array\n%\n% OUTPUTS\n% Y - nx1 vector of labels predicted according to the clf\n%\n% EXAMPLE\n%\n% See also CLFKNN, CLFKNNTRAIN\n%\n% Piotr's Image&Video Toolbox Version 2.0\n% Copyright 2008 Piotr Dollar. [pdollar-at-caltech.edu]\n% Please email me if you find bugs, or have suggestions or questions!\n% Licensed under the Lesser GPL [see external/lgpl.txt]\n\nif( ~strcmp(clf.type,'knn')); error( ['incorrect type: ' clf.type] ); end\nif( size(X,2)~= clf.p ); error( 'Incorrect data dimension' ); end\n\nmetric = clf.metric;\nXtrain = clf.Xtrain;\nYtrain = clf.Ytrain;\nk = clf.k;\n\n% get nearest neighbors for each X point\nD = pdist2( X, Xtrain, metric );\nY = clfKnnDist( D, Ytrain, k );\n", "meta": {"author": "pdollar", "repo": "toolbox", "sha": "e87332637bbe8e8b92dd487c87567d9628404523", "save_path": "github-repos/MATLAB/pdollar-toolbox", "path": "github-repos/MATLAB/pdollar-toolbox/toolbox-e87332637bbe8e8b92dd487c87567d9628404523/external/deprecated/clfKnnFwd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300698514777, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3895321744792303}} {"text": "%==============================================================================\n%\n% function [yc,His] = lBFGS(fctn,yc,varargin)\n%\n% limited BFGS optimizer\n%\n% Input:\n% ------\n% fctn function handle\n% yc starting guess \n% varargin optional parameter, see below\n%\n% Output:\n% -------\n% yc numerical optimizer (current iterate)\n% His iteration history\n%==============================================================================\n\nfunction [yc,His] = lBFGS(fctn,yc,varargin)\n\nif nargin ==0, % help and minimal example\n help(mfilename); \n E9_MRIhead_MLIRlBFGS_NGF_mbElas; \n yc = 'endOfMinimalExample'; \n His = [];\n return;\nend;\n\n% parameter initialization -----------------------------------------------\nmaxIter = 10; % maximum number of iterations\ntolJ = 1e-3; % for stopping, objective function\ntolY = 1e-2; % - \" - , current value\ntolG = 1e-2; % - \" - , norm of gradient\nsolver = regularizer;\nmaxLBFGS = 5; % maximum number of BFGS vectors\nLSmaxIter = 10; % maximum number of line search iterations\nLSreduction = 1e-4; % minimal reduction in line search\nvecNorm = @norm; % norm to be used for dJ and dy \nyStop = []; % used for stopping in multi-level framework\nJstop = []; % \nPlots = @(iter,para) []; % for plots;\n\nfor k=1:2:length(varargin), % overwrites default parameter\n eval([varargin{k},'=varargin{',int2str(k+1),'};']);\nend;\nobjFctn = fctn([]);\n\nif isempty(yStop), yStop = yc; end; % yStop used for stopping only\n% -- end parameter set-up ----------------------------------------------\n\n% some output\nFAIRmessage([mfilename '(JM 2009/01/31)']);\nfprintf('[ maxIter=%d / maxLBFGS=%d / tolJ=%s / tolY=%s / tolG=%s / length(yc)=%d ]\\n',...\n maxIter,maxLBFGS,num2str(tolJ),num2str(tolY),num2str(tolG),length(yc));\n\n% -- initialize --------------------------------------------------------- \nSTOP = zeros(5,1);\n\nzBFGS = []; % memory for BFGS gradient directions\nsBFGS = []; % memory for BFGS directions\nnBFGS = 0; % counter for number of limited BFGS directions\n\nif isempty(Jstop),\n % evaluate objective function for stopping values and plots\n [Jstop,para] = fctn(yStop); Jstop = abs(Jstop) + (Jstop == 0);\n Plots('stop',para);\nend;\n\n% evaluate objective function for starting values and plots\n[Jc,para,dJ,H0] = fctn(yc); \nPlots('start',para);\niter = 0; yOld = 0*yc; Jold = Jc; y0 = yc;\n\nhisStr = {'iter','J','Jold-J','|\\nabla J|','|dy|','LS'};\nhis = zeros(maxIter+2,6);\nhis(1,1:3) = [-1,Jstop,Jstop-Jc];\nhis(2,:) = [0,Jc,Jstop-Jc,vecNorm(dJ),vecNorm(yc-yStop),0];\n\n% some output\nfprintf('%4s %-12s %-12s %-12s %-12s %4s\\n%s\\n',...\n hisStr{:},char(ones(1,64)*'-'));\ndispHis = @(var) ...\n fprintf('%4d %-12.4e %-12.3e %-12.3e %-12.3e %4d\\n',var);\ndispHis(his(1,:));\n% -- end initialization ------------------------------------------------\n\n\n% ==============================================================================\n% MAIN LOOP\n% ==============================================================================\nwhile 1,\n % check stopping rules\n STOP(1) = abs(Jold-Jc) <= tolJ*(1+abs(Jstop));\n STOP(2) = (iter>0) && (norm(yc-yOld) <= tolY*(1+norm(y0)));\n STOP(3) = norm(dJ) <= tolG*(1+abs(Jstop));\n STOP(4) = norm(dJ) <= 1e3*eps;\n STOP(5) = (iter >= maxIter);\n if all(STOP(1:3)) || any(STOP(4:5)), break; end;\n\n iter = iter + 1;\n \n \n % update at most maxLBFGS BFGS directions\n if iter > 1,\n zz = (dJ - dJold)';\n ss = yc - yOld;\n if zz'*ss > 0, \n start = 2-(nBFGSfac,\n dy = (fac/maxdy)*dy;\n %H0 = fac*H0;%speye(length(dy),length(dy));\n end;\n else\n H0 = norm(dJ) * speye(length(dy),length(dy));\n end;\n end;\n % perform Armijo line-search\n [t,yt,LSiter] = Armijo(fctn,yc,dy,Jc,dJ,...\n 'LSmaxIter',LSmaxIter,'LSreduction',LSreduction);\n if (t == 0), \n break; \n end; % break if line-search fails\n\n % update variables\n yOld = yc; Jold = Jc; dJold = dJ; yc = yt;\n [Jc,para,dJ] = fctn(yc); % evaluate objective function\n \n % some output\n his(iter+2,:) = [iter,Jc,Jold-Jc,vecNorm(dJ),vecNorm(yc-yOld),LSiter];\n dispHis(his(iter+1,:));\n para.normdY = vecNorm(yc - yOld);\n Plots(iter,para);\n \nend;%while; % end of iteration loop\n% ==============================================================================\n\n% clean up\nHis.str = hisStr;\nHis.his = his(1:iter+2,:);\nfprintf('STOPPING:\\n');\nfprintf('%d[ %-10s=%16.8e <= %-25s=%16.8e]\\n',STOP(1),...\n '(Jold-Jc)',(Jold-Jc),'tolJ*(1+|Jstop|)',tolJ*(1+abs(Jstop)));\nfprintf('%d[ %-10s=%16.8e <= %-25s=%16.8e]\\n',STOP(2),...\n '|yc-yOld|',norm(yc-yOld),'tolY*(1+norm(yc)) ',tolY*(1+norm(yc)));\nfprintf('%d[ %-10s=%16.8e <= %-25s=%16.8e]\\n',STOP(3),...\n '|dJ|',norm(dJ),'tolG*(1+abs(Jstop)',tolG*(1+abs(Jstop)));\nfprintf('%d[ %-10s=%16.8e <= %-25s=%16.8e]\\n',STOP(4),...\n 'norm(dJ)',norm(dJ),'eps',1e3*eps);\nfprintf('%d[ %-10s= %-14d >= %-25s= %-14d]\\n',STOP(5),...\n 'iter',iter,'maxIter',maxIter);\n\nFAIRmessage([mfilename,' : done !']);\n\n%------------------------------------------------------------------------------\n\nfunction[d] = bfgsrec(solver,n,S,Z,H,d)\n\nmaxIterCG = 10; tolCG = 1e-2;\nif isempty(solver) \n if isstruct(H),\n if isfield(H,'solver'), \n solver = H.solver;\n elseif isfield(H,'d2S') && isfield(H.d2S,'solver'), \n solver = H.d2S.solver;\n else\n error('solver has not been defined')\n end;\n\n end\nend\n\nif n == 0, \n switch solver,\n case {'MG-elastic'}\n d = MGsolver(d,H);\n case {'pcg'}\n L = tril(H); % Symmetric Gauss Seidel Preconditioning,\n D = diag(H); % L is lower, D is diagonal, U = L'\n SGS = @(x) L\\(D.*(L'\\x));\n d = pcg(H,d,tolCG,maxIterCG,SGS);\n case 'PCG-curvature',\n M = @(x) H.d2D.M;\n Afctn = @(x) M(x) + H.d2S.d2S(x,H.omega,H.m);\n % preconditioner\n Ddiag = H.d2D.M;\n D = Ddiag + H.d2S.diag(H.omega,H.m);\n PC = @(x) D.\\x; % Jacobi preconditioner\n [d,flag,relres,iter] = pcg(Afctn,d,tolCG,maxIterCG,PC);\n\n otherwise,\n if isnumeric(H),\n % if H is a matrix, solve the linear system using MATLAB's backslash\n d = H\\d;\n else\n error('nyi - solver %s', solver)\n end;\n end; \nelse\n alpha = (S(:,n)'*d)/(Z(:,n)'*S(:,n));\n d = d - alpha*Z(:,n);\n d = bfgsrec(solver,n-1,S,Z,H,d);\n d = d + (alpha - (Z(:,n)'*d)/(Z(:,n)'*S(:,n)))*S(:,n);\nend;\n%==============================================================================\n", "meta": {"author": "C4IR", "repo": "FAIR.m", "sha": "975edebd37b833ae76696792870de5c05efcb9cb", "save_path": "github-repos/MATLAB/C4IR-FAIR.m", "path": "github-repos/MATLAB/C4IR-FAIR.m/FAIR.m-975edebd37b833ae76696792870de5c05efcb9cb/kernel/numerics/lBFGS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3895321675725951}} {"text": " function [hyp, nlZ, i] = trainLMGP(hyp0, inf, mean, cov, lik, input, target, inputDer, targetDer, deriveVar)\n% trainLMGP - Function for the optimization (training) of LMGP model \n% hyperparameters based on the training data via maximum marginal \n% likelihood.\n%\n%% Syntax\n% function [hyp, nlZ, i] = trainlmgp(hyp, inf, mean, cov, lik, input, target, inputDer, targetDer, deriveVar, hyp0)\n%\n%% Description\n% \n% Function for the optimization (training) of LMGP model hyperparameters based on the training data via maximum \n% marginal likelihood. It can be used only with the Gaussian covariance function and\n% with the white noise model (sum of covSEard and covNoise). \n% Uses routines gpSD00 and minimize.\n% Based on the work of C.E.Rasmussen and R. Murray-Smith. \n% \n% Input: \n% * hyp ... the struct of hyperparameters\n% * inf \t ... the inference method \t --> not used, for interface compatibility only\n% * cov \t ... the prior covariance function --> not used, for interface compatibility only\n% * mean \t ... the prior mean function --> not used, for interface compatibility only\n% * lik \t ... the likelihood function --> not used, for interface compatibility only\n% * input ... the input part of the training data, NxD matrix\n% * target ... the output part of the training data (ie. target), Nx1 vector \n% * derivinput ... the input part of the derivative training data, NEQxD matrix \n% * derivtarget ... target derivatives, NEQxD matrix \n% * derivevariance ... variances of the local model prameters, NEQxD matrix \n% * hyp0 ... intial hyperparameters (optional) \n%\n% Output: \n% * loghteta ... optimised hyperparameters \n% * flogtheta ... the minus log likelihood for the different runs (init. to 0)\n% * i ... the number of iterations needed for the last optimization\n%\n% See Also\n% minimize.m, gpSD00.m, trainGP.m\n%\n% Examples\n% demo_example_LMGP_training.m\n\n\nfun_name = 'trainLMGP'; \n\n\n[n D] = size(target);\n[nd D] = size(targetDer);\n\n if ~isstruct(hyp0)\n hyp0.cov = -rand(D+1,1); \n hyp0.lik = -rand(1,1); \n end\nnlZ = 0;\n\n[hyp, nlZtmp, i] = minimize(hyp0, 'gpSD00', -200, inf, mean, cov, lik, input,target, NaN*ones(n,1),...\n inputDer,targetDer, deriveVar);\n\nif isempty(nlZtmp)\n nlZ = nlZ;\nelse\n nlZ = [nlZ nlZtmp(end)];\nend\n\nwhile abs(nlZ(end) - nlZ(end-1)) > 0.001\n\t[hyp, nlZtmp, i] = minimize(hyp, 'gpSD00', -200, inf, mean, cov, lik, input,target,NaN*ones(n,1),...\n\t\tinputDer,targetDer, deriveVar);\n\tif isempty(nlZtmp) % no improvement: at minimum\n\t break\n\tend\n\tnlZ = [nlZ nlZtmp(end)];\nend\nif exp(hyp.lik) < 1e-6\n hyp.lik =log(1e-6);\nend\n\n\n\n\n", "meta": {"author": "Dynamic-Systems-and-GP", "repo": "GPdyn", "sha": "343c20a28a0f95f488db4a086c43fafab5423bda", "save_path": "github-repos/MATLAB/Dynamic-Systems-and-GP-GPdyn", "path": "github-repos/MATLAB/Dynamic-Systems-and-GP-GPdyn/GPdyn-343c20a28a0f95f488db4a086c43fafab5423bda/gpdyn-lmgp-evaluation/trainLMGP.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3895321606659598}} {"text": "function plotline(varargin)\n%PLOTLINE Plot points specified by [x,y] pairs.\n% Function PLOTLINE accepts an arbitrary number of\n% [x,y] points and plots a line connecting them. \n% In addition, it can accept a line specification\n% string, and pass that string on to function plot.\n \n% Define variables:\n% ii -- Index variable\n% jj -- Index variable\n% linespec -- String defining plot characteristics\n% msg -- Error message\n% varargin -- Cell array containing input arguments\n% x -- x values to plot\n% y -- y values to plot\n%\n% Record of revisions:\n% Date Programmer Description of change\n% ==== ========== =====================\n% 03/05/07 S. J. Chapman Original code\n\n% Check for a legal number of input arguments.\n% We need at least 2 points to plot a line...\nmsg = nargchk(2,Inf,nargin);\nerror(msg);\n\n% Initialize values\njj = 0;\nlinespec = '';\n\n% Get the x and y values, making sure to save the line\n% specification string, if one exists.\nfor ii = 1:nargin\n \n % Is this argument an [x,y] pair or the line\n % specification?\n if ischar(varargin{ii})\n \n % Save line specification\n linespec = varargin{ii};\n \n else\n \n % This is an [x,y] pair. Recover the values.\n jj = jj + 1;\n x(jj) = varargin{ii}(1);\n y(jj) = varargin{ii}(2);\n \n end\nend\n\n% Plot function.\nif isempty(linespec)\n plot(x,y);\nelse\n plot(x,y,linespec);\nend\n", "meta": {"author": "101Hub", "repo": "Matlab101", "sha": "07273f68f1147a110443aeb121fa10962234f298", "save_path": "github-repos/MATLAB/101Hub-Matlab101", "path": "github-repos/MATLAB/101Hub-Matlab101/Matlab101-07273f68f1147a110443aeb121fa10962234f298/assets/\u300aMatlab\u7f16\u7a0b\u300b\u6e90\u7801/chap7/plotline.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.554470450236115, "lm_q2_score": 0.702530051167069, "lm_q1q2_score": 0.38953215377500566}} {"text": "\nerrData = data2plot;\n\nclear ph\nccolors = [1 0 0; 0 1 0; 0.7,0.7,1];\nsymbols = {'o', 'd', 's'};\nxx = 1:0.1:11;\nyy = zeros(3,length(xx));\nfor iM = 1:3\n if iM == 2\n xm = zeros(1,N_ETA);\n for k = 1:N_ETA \n TF = isnan(errData(1:Nr,k,iM));\n xm(k) = median(errData(TF==0,k,iM),1);\n end\n else\n xm = median(errData(1:Nr,:,iM),1);\n end\n yy(iM,:) = spline(1:11,xm,xx); \nend\nfigure; hold on\nif shaded_region == 1\n fillh1 = fill([0.1 11.9 11.9 0.1], [10 10 ylimregion.*ones(1,2)],0.9*ones(1,3));\n fillh1.EdgeColor = 0.9*ones(1,3); fillh1.FaceAlpha = 0.5; \nend\nph(1)=plot(xx,yy(1,:),'-r','LineWidth',1); hold on,\nph(2)=plot(xx(1:end),yy(2,1:end),'-g','LineWidth',1);\nph(3)=plot(xx(1:end),yy(3,1:end),'-','Color',[0.7,0.7,1],'LineWidth',1);\nfor iM = 1:3\n boxplot(errData(:,:,iM),'PlotStyle','compact','Colors',ccolors(iM,:), 'Symbol', symbols{iM}, ... \n 'Widths',0.1); hold on\n delete(findobj(gca,'Type','text'))\nend\nset(gca,'xtick',[1:2:11],'xticklabel',num2str(eta_vec(1:2:end)'),'Position',[0.2 0.22 0.75 0.73])\nxlim([0 12]), ylim(yaxlim)\n\nif exist('LOG_SCALE')\n if LOG_SCALE == 1\n set(gca,'YScale','log')\n ylim([10^-3 yaxlim(2)])\n set(gca,'ytick',[10.^[-3:1:1]])\n end\nend\nxt = xlabel('Eta'); xt.Position = [115 -20 -0.1];\nylabel(ytext)\nset(gca,'LineWidth',1, 'FontSize',14)\nset(gcf,'Position',[100 100 300 200])\nset(gcf,'PaperPositionMode','auto'), \nprint('-depsc2', '-painters', '-loose', '-cmyk', [figpath,'EX_LOTKA_PREDPERF_',InputSignalType,'_N',sprintf('%04g',Ntrain_vec(iN)),'_noise_',NARXtraining,'_',PostName,'_noleg.eps']);\n\nl1 = legend(ph,'DMDc','SINDYc','NARX');\nif exist('LegLoc')==1\n set(l1,'Location',LegLoc)\nelse\n set(l1,'Location','NorthWest')%'NorthWest')SouthEast\n l1.Position = [l1.Position(1)-0.01 l1.Position(2)+0.02 l1.Position(3)-0.01 l1.Position(4)];\nend\nprint('-depsc2', '-painters', '-loose', '-cmyk', [figpath,'EX_LOTKA_PREDPERF_',InputSignalType,'_N',sprintf('%04g',Ntrain_vec(iN)),'_noise_',NARXtraining,'_',PostName,'.eps']);\n", "meta": {"author": "eurika-kaiser", "repo": "SINDY-MPC", "sha": "e1dfd9908b2b56af303ee9fb30a133aced4fd757", "save_path": "github-repos/MATLAB/eurika-kaiser-SINDY-MPC", "path": "github-repos/MATLAB/eurika-kaiser-SINDY-MPC/SINDY-MPC-e1dfd9908b2b56af303ee9fb30a133aced4fd757/EX_LOTKA_VOLTERRA/VIZ_ERROR_STATS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3894691441785575}} {"text": "function [ know, x ] = p09_sol ( n )\n\n%*****************************************************************************80\n%\n%% P09_SOL returns the solution for problem 9.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 16 October 2011\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the order of the problem. This value\n% is only needed for those problems with variable N.\n%\n% Output, integer KNOW.\n% If KNOW is 0, then the solution is not known.\n% If KNOW is positive, then the solution is known, and is returned in X.\n%\n% Output, real X(N), the solution, if known.\n%\n know = 0;\n\n x = zeros ( n, 1 );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_opt/p09_sol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.7122321964553657, "lm_q1q2_score": 0.3894045148739491}} {"text": "% Matlab script to input initial parameters for genas and genascum\n%\n% R. Zuniga, 4/94\n\nreport_this_filefun(mfilename('fullpath'));\n\nminmg = minma;\nmaxmg = maxma;\nmagstep = 0.5\n%\nif isempty(newcat), newcat = a; end % verify whether to start with\n% original catalogue\n% make the interface for input\n%\nfigure_w_normalized_uicontrolunits(mess)\nclf\nset(gcf,'Name','Genas Control Panel');\n% set(gcf,'visible','off');\nset(gca,'visible','off');\nset(gcf,'pos',[ 0.02 0.6 0.35 0.35])\n%par1 = ((teb-t0b)*365)/100;\n%\nfreq_field2=uicontrol('Style','edit',...\n 'Position',[.80 .60 .15 .10],...\n 'Units','normalized','String',num2str(minmg),...\n 'Callback','minmg=str2double(get(freq_field2,''String'')); set(freq_field2,''String'',num2str(minmg));');\n\nfreq_field3=uicontrol('Style','edit',...\n 'Position',[.80 .45 .15 .10],...\n 'Units','normalized','String',num2str(maxmg),...\n 'Callback','maxmg=str2double(get(freq_field3,''String'')); set(freq_field3,''String'',num2str(maxmg));');\n\nfreq_field=uicontrol('Style','edit',...\n 'Position',[.80 .30 .15 .10],...\n 'Units','normalized','String',num2str(magstep),...\n 'Callback','magstep=str2double(get(freq_field,''String'')); set(freq_field,''String'',num2str(magstep));');\n\n\nuicontrol('Style','Pushbutton',...\n 'Position',[.80 .05 .15 .15 ],...\n 'Units','normalized','Callback','web([''file:'' hodi ''/zmapwww/chap8.htm#997197''])','String','Info');\n\nclose_button=uicontrol('Style','Pushbutton',...\n 'Position',[.60 .05 .15 .15 ],...\n 'Units','normalized','Callback','welcome','String','Cancel');\n\ngenas_button1=uicontrol('Style','Pushbutton',...\n 'Position',[.20 .05 .15 .15 ],...\n 'Units','normalized',...\n 'Callback','welcome,gogenas',...\n 'String','Genas');\n\n% genas_button2=uicontrol('Style','Pushbutton',...\n% 'Position',[.40 .05 .15 .15 ],...\n% 'Units','normalized',...\n% 'Callback','welcome,inmakegr',...\n% 'String','GenGrid');\n\ntxt5 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.65 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.m ,...\n 'Fontweight','bold',...\n 'String','Minimum magnitude:');\n\ntxt4 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.48 0 ],...\n 'Rotation',0 ,...\n 'Fontweight','bold',...\n 'FontSize',ZmapGlobal.Data.fontsz.m ,...\n 'String','Maximum magnitude:');\n\ntxt1 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.31 0 ],...\n 'Rotation',0 ,...\n 'Fontweight','bold',...\n 'FontSize',ZmapGlobal.Data.fontsz.m ,...\n 'String','Magnitude increment (step):');\n\n\nset(gcf,'visible','on');\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/ingenas.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.712232184238947, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.38940450819476685}} {"text": "% batch_computeEntropy.m\n\ndirPath = '/Volumes/deasylab1/Data/NSCLC Study';\n\ndirPath = '/Users/aptea/Documents/MSKCC/Projects/Entropy_test';\n\n%structureName = 'totallung';\nstructureName = 'ptv';\n\n%Find all CERR files\nfileC = {};\nif strcmpi(dirPath,'\\') || strcmpi(dirPath,'/')\n filesTmp = getCERRfiles(dirPath(1:end-1));\nelse\n filesTmp = getCERRfiles(dirPath);\nend\nfileC = [fileC filesTmp];\n\nfilesNotConvertedC = {};\netrpy = {};\n\n%Loop over CERR plans\nfor iFile = 1:length(fileC)\n \n drawnow\n \n global planC stateS\n \n try\n planC = loadPlanC(fileC{iFile},tempdir);\n planC = updatePlanFields(planC);\n indexS = planC{end};\n catch\n continue\n end\n \n \n % Combine Iliacs\n structure_index = find(strcmpi(structureName,{planC{indexS.structures}.structureName}));\n \n if length(structure_index) > 1\n structure_index = structure_index(1);\n end\n \n if isempty(structure_index)\n \n filesNotConvertedC = [filesNotConvertedC, fileC{iFile}];\n continue;\n \n end\n \n doseNum = 1;\n \n % Check Units\n if any(strcmpi(planC{indexS.dose}(doseNum).doseUnits,{'cgy','cgrays','cgray'}))\n planC{indexS.dose}(doseNum).doseArray = planC{indexS.dose}(doseNum).doseArray / 100;\n end\n \n % Get scan associated with this structure\n scanNum = getStructureAssociatedScan(structure_index, planC);\n \n % Get structure mask\n [rV, cV, sV] = getUniformStr(structure_index, planC);\n \n % Get uniformized coords\n [xV, yV, zV] = getUniformScanXYZVals(planC{indexS.scan});\n\n % Get dose at structure locations\n dosesV = getDoseAt(doseNum, xV(cV), yV(rV), zV(sV), planC); \n \n % Get DVH\n %[planC, doseBinsV, volsHistV] = getDVHMatrix(planC, structure_index, doseNum);\n \n % Calculate Entropy\n [jnk,fName] = fileparts(fileC{iFile});\n etrpy{iFile,1} = fName;\n % etrpy{iFile,2} = entropy(dosesV./max(dosesV));\n % Manual Entrop calculation\n dose_hist = hist(dosesV,256);\n dose_hist(dose_hist == 0) = [];\n dose_hist = dose_hist./numel(dosesV);\n etrpy{iFile,2} = -sum(dose_hist.*log2(dose_hist));\n\n clear global planC stateS\n \nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Utilities/batch_computeEntropy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3894045081947668}} {"text": "function classifier = laprlsc(options,data)\n% {laprlsc} trains a Laplacian RLSC.\n% \n% classifier = laprlsc(options,data)\n%\n% Note: This function is only a wrapper to 'lapsvmp', where the use of\n% a Hinge function for labeled data is disabled. See 'lapsvmp'\n% for the description of all required parameters.\n%\n% Author: Stefano Melacci (2009)\n% mela@dii.unisi.it\n\noptions.Hinge=0;\nclassifier=lapsvmp(options,data);\nclassifier.name='laprlsc';", "meta": {"author": "viggin", "repo": "domain-adaptation-toolbox", "sha": "2a991816a0ac39043b526c2b0cbe01bc844d8890", "save_path": "github-repos/MATLAB/viggin-domain-adaptation-toolbox", "path": "github-repos/MATLAB/viggin-domain-adaptation-toolbox/domain-adaptation-toolbox-2a991816a0ac39043b526c2b0cbe01bc844d8890/lapsvmp_v02/classifiers/laprlsc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321720225278, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3894045015155844}} {"text": "\nfunction F_enhance= RSWHEg_gray( F )\n% Bi Bi histogram equalization with recursively seperated weighted histgram\n% equalization with mean and mean\n% clear all;\n% close all;\n% clc;\n%close figure;\n% x0=imread('pout.tif');\n%x0=imread('eswar.jpg');\n% x0=imread('54.tif');\n% x0=imread('source24_1.tif');\n% figure;\n% imshow(x0);\n% x0=imread('untitled.bmp');\n %x0=imread('plane.bmp');\n%x0=uint8(x0);\n% \n% %x0=imread('12.bmp');\n% %u=double(i);\n% h = [0.0086,0.0856,0.0086;\n% 0.0856,0.8561,0.0856;\n% 0.0086,0.0856,0.0086];\n% h = h/sum1(h(:)); % Normalize the filter\n% uSmooth = conv2padded(double(x0),double(h));\n%figure(1);\n%imshow(uint8(uSmooth));\n %luma=uint8(uSmooth(:,:,1));\n% XM=0;\n% y0=rgb2ycbcr(x0);\nluma=F;%(y0(:,:,1));\n%luma=wiener2(luma);\n%luma=luma-60;\n[m,n]=size(luma);\n%luma=luma;\n% cb=y0(:,:,2);\n% cr=y0(:,:,3);\nk=mean(mean(luma));\nXM=k;\nXG=round(255/2);\n[pixelCounts bins] = imhist(luma, 256);\n[m12,xmax]=max(imhist(luma,256));\n[m21,xmin]=min(imhist(luma,256));\nPmax=(max(imhist(luma,256))/(m*n));\nPmin=(min(imhist(luma,256))/(m*n));\nbeta=Pmax*((abs(XM-XG))/(xmax-xmin));\nr=round(k);\nl=length(luma(luma<=r));\n listindex=find(luma<=r);\n k1=reshape(luma(listindex),l,1);%obtained below fist mean values put it into an arry\n k2=mean(k1);%find mean of mean in first half\n k3=round(k2);%round to nearest integer to find pdf and cdf till first quarter\n sum1=0;\n l1=length(luma(luma<=k3));%find all values in luma falls below fist mean\n listindex1=find(luma<=k3);%all values in luma falls below fist mean given in their locations\n k4=reshape(luma(listindex1),l1,1);%arrange all fist mean values in a vector\n xpdf=hist(k4,[0:k3]);%pdf from 0:r\n xpdf=xpdf/(m*n);\n %alpa0=max(cumsum(xpdf/(m*n)));%from line 39 to 48 new rswhe code add this to other quarters\n alpa=(cumsum(xpdf));\n alpa0=alpa(end);\n %xpdf=xpdf/l1;%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form 0 to r.\n sum1=0;\n for l2=0:k3\n \n pw(l2+1)=(Pmax*((xpdf(l2+1)-Pmin)/(Pmax-Pmin))).^alpa0+beta;\n sum1=sum1+pw(l2+1);\n end\n for l2=0:k3\n pwn(l2+1)=pw(l2+1)/(sum1);\n end\n %plot(pwn);\n %(imhist(luma));\n %xlabel('gray levels up to mean');\n %ylabel('pdf up to mean');\n %title('histogram for half an image up to mean');\n %sk=xpdf*triu(ones(k3+1));\n sk=pwn*triu(ones(k3+1));\n% figure(2);\n% plot(sk);\n% xlabel('gray levels upto 1st mean');\n% ylabel('cdf upto mean');\n% title('cdf for half of an image up to ist mean');\n % alpha=0.7;\n for l2=0:k3\n if(xpdf(l2+1)>0)\n list1=find(k4==l2);%find value in an vector i.e converted from matrix\n %list(list1)=alpha*sk(l2+1)*(k3+1)+(1-alpha)*(k3+1);\n list(list1)=(sk(l2+1)*(k3+1));%map dont disturb to get bhe as\n %list(list1)=alpha*sk(l2+1)*(k3+1)+(1-alpha)*(k3+1);\n %it is 13/3/2011\n ert(l2+1)=(sk(l2+1)*(k3+1));\n end\n end\n p=zeros(m,n); \n p(listindex1)= list; %listindex1 mxn locations list transformed values.\n% figure(3);\n% imshow(p);\n% xlabel('gray levels up to first mean');\n% ylabel('luma component equilized image up to first mean');\n% title('processed luma image up to first mean');\n k=mean(mean(luma));\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2nd quarter\nr=round(k);\nl=length(luma(luma<=r));\n listindex=find(luma<=r);\n k1=reshape(luma(listindex),l,1);%obtained below fist mean values put it into an arry\n k2=mean(k1);%find mean of mean in first half\n k3=round(k2);%round to nearest integer to find pdf and cdf till first quarter\n% sum1=0;\n b=k3;\n% l2=length(luma(luma>k3));%find all values in luma falls below fist mean\n listindex2=find((luma>k3)&(luma<=r));%all values in luma falls below fist mean given in their locations\n l2=length(listindex2);\n k5=reshape(luma(listindex2),l2,1);%arrange all fist mean values in a vector\n x2pdf=hist(k5,[k3+1:r]);%pdf from 0:r\n x2pdf=x2pdf/(m*n);%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form 0 to r.\n %alpa1=max(cumsum(x2pdf/(m*n)));%from line 39 to 48 new rswhe code add this to other quarters\n alpa=(cumsum(x2pdf));%/(m*n)))\n alpa1=alpa(end);\n %x2pdf=x2pdf/l2;%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form 0 to r.\n sum1=0;\n for l2k=0:r-(k3+1)\n pw1(l2k+1)=(Pmax*((x2pdf(l2k+1)-Pmin)/(Pmax-Pmin))).^alpa1+beta;\n sum1=sum1+pw1(l2k+1);\n end\n for l2k=0:r-(k3+1)\n pw1n(l2k+1)=pw1(l2k+1)/(sum1);\n end\n% figure(4);\n% plot(x2pdf);\n% xlabel('gray levels 2nd mean');\n% ylabel('pdf of 2nd mean');\n% title('histogram for 2nd mean');\n sk2=pw1n*triu(ones(r-k3));\n% figure(5);\n% plot(sk2);\n% xlabel('gray levels of 2nd mean');\n% ylabel('cdf upto mean');\n% title('cdf for half of an image of 2nd mean');\n k2u=1;\n for l3=k3+1:r\n if(pw1n(k2u)>0)\n list2=find(k5==l3);%find value in an vector i.e converted from matrix\n %list1(list2)=alpha*(sk2(k2u)*(r-k3)+(k3+1))+(1-alpha)*(k3+1);\n list1(list2)=((k3+1)+(sk2(k2u))*(r-k3-1));%map dont disturb to\n %list1(list2)=alpha*(sk2(k2u)*(r-k3)+(k3+1))+(1-alpha)*(k3+1);\n %get BHE 13/3/2011\n ert(l3)=((k3+1)+(sk2(k2u))*(r-k3-1));\n end\n k2u=k2u+1;\n \n end\n \n p(listindex2)= list1;\n% figure(6);\n% imshow(p);\n% xlabel('gray levels up to first 2nd mean');\n% ylabel('luma component equilized image 2nd mean');\n% title('processed luma image up to 2nd mean');\n %lupper30=length(luma(luma>r);\n% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n lupper30=length(luma(luma>r));\n%for i=0:r\n %if(luma(luma<=r))\n listindexupper3=find(luma>r);\n % end\n%end\n k1upper=reshape(luma(listindexupper3),lupper30,1);\n mean3=mean(k1upper);\n r3=round(mean3);\n %length30=length((luma<=r3)&(luma>r));\n listindexupper30=find((luma>r)&(luma<=r3));\n length30=length(listindexupper30);\n k30upper=reshape(luma(listindexupper30),length30,1);\n \n %length30=length((luma<=r3)&(luma>r));\n% sum1=0;\nalpa=0;\n xpdfupper30=hist(k30upper,[r+1:r3]);%pdf from r+1:r3\n xpdfupper30=xpdfupper30/(m*n);%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form r+1 to 255.\n%alpa2=max(cumsum(xpdfupper30/(m*n)));%from line 39 to 48 new rswhe code add this to other quarters\nalpa=(cumsum(xpdfupper30));%/(m*n)))\nalpa2=alpa(end);\n %x3pdf=xpdfupper30/length30;%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form 0 to r.\nsum1=0;\n for l2k=0:r3-(r+1)\n %pw2(l2k+1)=(Pmax*((x3pdf(l2k+1)-Pmin)/(Pmax-Pmin))).^alpa2+beta;\n pw2(l2k+1)=(Pmax*((xpdfupper30(l2k+1)-Pmin)/(Pmax-Pmin))).^alpa2+beta;\n sum1=sum1+pw2(l2k+1);\n end\n for l2k=0:r3-(r+1)\n pw2n(l2k+1)=pw2(l2k+1)/(sum1);\n end \n% figure(7);\n% plot(pw2n);\n% xlabel('gray levels 3rd mean');\n% ylabel('pdf of 3rd mean');\n% title('histogram for upper half an image 3rd mean');\n skupper30=pw2n*triu(ones(r3-r));\n% figure(8);\n% plot(skupper30);\n% xlabel('gray levels after mean');\n% ylabel('cdf after mean');\n% title('cdf for upper half of an image after mean');\n k3u=1;\n for k3upper=(r+1):r3\n if(pw2n(k3u)>0)\n list1upper30=find(k30upper==k3upper);%find value in an vector i.e converted from matrix\n listnew(list1upper30)=((r+1)+skupper30(k3u)*(r3-r-1));%map dont\n %listnew(list1upper30)=alpha*(skupper30(k3u)*(r3-r)+(r+1))+(1-alpha)*(r+1);\n %disturg to get original heq 14/3/2011\n %listnew(list1upper30)=alpha*(skupper30(k3u)*(r3-r)+(r+1))+(1-alpha)*(r+1);\n ert(k3upper)=((r+1)+skupper30(k3u)*(r3-r-1));\n end\n k3u=k3u+1;\n\n end\n \n% p2=zeros(m,n);\n \n p(listindexupper30)= listnew;\n% figure(9);\n% imshow(p);\n% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n listindexupper40=find(luma>r3);\n lupper40=length(listindexupper40);\n % end\n%end\n k1upper40=reshape(luma(listindexupper40),lupper40,1);\n %sum1=0;\n %for i=0:r\n alpa=0;\n xpdfupper40=hist(k1upper40,[r3+1:255]);%pdf from r+1:255\n xpdfupper40=xpdfupper40/(m*n);%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form r+1 to 255.\nalpa=(cumsum(xpdfupper40));%/(m*n)));%from line 39 to 48 new rswhe code add this to other quarters\nalpa3=alpa(end);\n % x4pdf=xpdfupper40/lupper40;%normalized pdf to get nk/n,l=sum1 of xpdf,total no of pixels form 0 to r.\nsum1=0;\n for l2k=0:(255-(r3+1))\n pw3(l2k+1)=(Pmax*((xpdfupper40(l2k+1)-Pmin)/(Pmax-Pmin))).^alpa3+beta;\n sum1=sum1+pw3(l2k+1);\n end\n for l2k=0:(255-(r3+1))\n pw3n(l2k+1)=pw3(l2k+1)/(sum1);\n end \n% figure(10);\n% plot(xpdfupper40);\n% xlabel('gray levels after 4mean');\n% ylabel('pdf after 4mean');\n% title('histogram for upper half an image after 4mean');\n skupper40=pw3n*triu(ones(255-r3));\n% figure(11);\n% plot(skupper40);\n% xlabel('gray levels after 4mean');\n% ylabel('cdf after 4mean');\n% title('cdf for upper half of an image after 4mean');\n k4u=1;\n for k4upper=(r3+1):255\n if(pw3n(k4u)>0)\n list1upper40=find(k1upper40==k4upper);%find value in an vector i.e converted from matrix\n %for k2u=1:58\n %listnew4(list1upper40)=alpha*(198+skupper40(k4u))*(255-r3)+(1-alpha)*(r3+1);\n listnew4(list1upper40)=(r3+1)+skupper40(k4u)*(255-r3-1);%map\n %listnew4(list1upper40)=alpha*((r3+1+skupper40(k4u))*(255-r3))+(1-alpha)*(r3+1);\n % listnew4(list1upper40)=alpha*(198+skupper40(k4u)*(255-r3))+(1-alpha)*(r3+1);\n %dont disturb to get original bbhe 14/3/2011\n %end\n ert(k4upper)=(r3+1)+skupper40(k4u)*(255-r3-1);\n end\n k4u=k4u+1;\n end\n \n% for i=0:l-1\n %p3=zeros(m,n);\n% if (p(listindex))\n% p(:)=list;\n% end\n% end\n \n p(listindexupper40)= listnew4;\n% figure(12);\n% imshow(p);\n% xlabel('gray levels after 4mean');\n% ylabel('luma component equilized image after 4mean');\n% title('processed luma image after 4mean');\n ommmmm=p;\n F_enhance=ommmmm;\n end\n %ommmmm=p1+p;\n% figure(13);\n% imshow(ommmmm);\n% colormap('gray');\n% xlabel('gray level');\n% ylabel('combined lower and upper half luma component equilized image');\n% title('combined luma image');\n% % figure(8);\n% image(om);\n% % for j1=0:255\n% % count=0;\n% % for i1=0:m*n-1\n% % if om(i1+1)==j1\n% % count=count+1;\n% % end\n% % end\n% % prob(j1+1)=count/m*n;\n% % end\n% % figure(16);\n% % plot(prob);\n% % \n% % for j2=0:255\n% % count1=0;\n% % for i2=0:m*n-1\n% % if luma(i2+1)==j2\n% % count1=count1+1;\n% % end\n% % end\n% % prob2(j2+1)=count1/m*n;\n% % end\n% % figure(17);\n% % plot(prob2); \n% % xlabel('gray levels after mean');\n% % ylabel('luma component equilized image after mean');\n% % title('processed luma image after mean');\n% % ommmmm=p1+p;\n% % figure(7);\n% % colormap('gray');\n% % xlabel('gray level');\n% % ylabel('combined lower and upper half luma component equilized image');\n% % title('combined luma image');\n% % image(ommmmm);\n%k=imshow(ommmmm);\n% cat1=cat(3,ommmmm,cb,cr);\n% % figure(14);\n% % imshow(cat1);\n% % % xlabel('gray level(ycbcr)');\n% % ylabel('combined lower and upper half luma,cromablue,croma red component equilized image');\n% % title('luma croma b and r color processed image');\n% catconversion=ycbcr2rgb(uint8(cat1));\n% figure(15);\n% imshow(uint8(ommmmm));\n% xlabel('gray level(rgb)');\n% ylabel('combined lower and upper half RGB component equilized image');\n% title('converted from ycbcr2rgb color(RGB) processed image');\n% YM=0;\n% YM=mean(mean(ommmmm));\n% AMBE=abs(XM-YM);\n% disp('Absolute mean brightness error=');\n% disp(AMBE);\n %MSE = meanSquareError(luma, ommmmm);\n % figure(16);\n%disp('mean Square Error = ');\n%disp(MSE);\n%PSNR1 = PSNR(luma, ommmmm);\n%figure(17);\n% disp('Peak Signal to Noise Ratio = ');\n% disp(PSNR1);\n% E=entropy(uint8(ommmmm));\n% disp('Entropy=');\n% disp(E);\n% figure(16);\n% (imhist(uint8(ommmmm)));\n", "meta": {"author": "xingchenzhang", "repo": "VIFB", "sha": "7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa", "save_path": "github-repos/MATLAB/xingchenzhang-VIFB", "path": "github-repos/MATLAB/xingchenzhang-VIFB/VIFB-7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa/methods/MGFF/RSWHEg_gray.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321720225278, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3894045015155844}} {"text": "function cluster_orthviews_overlap_3colors(mask1, mask2, mask3, varargin)\n% Plot three clusters on the orthviews, and their intersections for\n% activations and deactivations in intermediate colors\n%\n% :Usage:\n% ::\n%\n% cluster_orthviews_overlap_3colors(mask1, mask2, mask3, ['colors', colors cell], ['surface'] )\n%\n% Positive effects only!\n%\n% :Inputs:\n%\n% mask1 mask2 mask3 are either image names (preferred!) or clusters\n% structures. for clusters structures, need to add .dim field\n% and you need the 2010 object-oriented code in the canlab repository.\n%\n% ..\n% tor wager, june 2010\n% A good function, but not polished yet. needs debugging for various\n% minor issues.\n% ..\n\ncolors = {[0 0 1] [1 0 0] [1 1 0]};\ndosurface = 0;\n\nfor i = 1:length(varargin)\n if ischar(varargin{i})\n switch varargin{i}\n % reserved keywords\n case 'betas'\n case 'design'\n \n % functional commands\n case 'colors', colors = varargin{i+1};\n case 'surface', dosurface = 1;\n \n otherwise, warning(['Unknown input string option:' varargin{i}]);\n end\n end\nend\n\nif isstruct(mask1) && isstruct(mask2) && isstruct(mask3)\n loadfromfile = 0;\nelseif ischar(mask1) && ischar(mask2) && ischar(mask3)\n loadfromfile = 1;\nelse\n error('Inputs must be all cl structs or mask filenames');\nend\n\nif loadfromfile\n \n [maskInfo1, dat1] = iimg_read_img(mask1, 2);\n [maskInfo2, dat2] = iimg_read_img(mask2, 2);\n [maskInfo3, dat3] = iimg_read_img(mask3, 2);\n \n % positive only\n dat1 = dat1 > 0;\n dat2 = dat2 > 0;\n dat3 = dat3 > 0;\n \n int_dat = iimg_intersection(mask1, mask2, 'posneg'); % intersections\n pos12 = int_dat(:, 1);\n \n int_dat = iimg_intersection(mask1, mask3, 'posneg'); % intersections\n pos13 = int_dat(:, 1);\n \n int_dat = iimg_intersection(mask2, mask3, 'posneg'); % intersections\n pos23 = int_dat(:, 1);\n \n pos123 = pos12 & pos13;\n \n intersect_all = any([pos12 pos13 pos23 pos123], 2);\n \n %remove higher-order intersections from mask dat\n dat1(intersect_all) = 0;\n dat2(intersect_all) = 0;\n dat3(intersect_all) = 0;\n \n pos12(pos123) = 0;\n pos23(pos123) = 0;\n pos13(pos123) = 0;\n \n % make clusters\n clear cl\n \n cl{1} = iimg_indx2clusters(dat1, maskInfo1);\n cl{2} = iimg_indx2clusters(dat2, maskInfo2);\n cl{3} = iimg_indx2clusters(dat3, maskInfo3);\n \n cl{4} = iimg_indx2clusters(pos12, maskInfo1);\n cl{5} = iimg_indx2clusters(pos13, maskInfo2);\n cl{6} = iimg_indx2clusters(pos23, maskInfo3);\n \n cl{7} = iimg_indx2clusters(pos123, maskInfo1);\n \nelse\n % Work from clusters directly\n \n % convert to masks\n \n if ~isfield(mask1, 'dim') || isempty(mask1(1).dim) || ...\n ~isfield(mask2, 'dim') || isempty(mask2(1).dim) || ...\n ~isfield(mask3, 'dim') || isempty(mask3(1).dim)\n \n error('Enter .dim (image dimension in voxels) field in all cl structs. e.g., [91 109 91]');\n end\n \n r = cluster2region(mask1);\n m1 = region2imagevec(r);\n \n r = cluster2region(mask2);\n m2 = region2imagevec(r);\n \n r = cluster2region(mask3);\n m3 = region2imagevec(r);\n \n m1 = replace_empty(m1);\n m2 = replace_empty(m2);\n m3 = replace_empty(m3);\n \n dat1 = m1.dat > 0;\n dat2 = m2.dat > 0;\n dat3 = m3.dat > 0;\n \n pos123 = all([dat1 dat2 dat3], 2);\n pos12 = all([dat1 dat2], 2);\n pos23 = all([dat2 dat3], 2);\n pos13 = all([dat1 dat3], 2);\n \n intersect_all = any([pos12 pos13 pos23 pos123], 2);\n \n %remove higher-order intersections from mask dat\n dat1(intersect_all) = 0;\n dat2(intersect_all) = 0;\n dat3(intersect_all) = 0;\n \n pos12(pos123) = 0;\n pos23(pos123) = 0;\n pos13(pos123) = 0;\n \n % make clusters\n clear cl\n \n cl{1} = iimg_indx2clusters(dat1, m1.volInfo);\n cl{2} = iimg_indx2clusters(dat2, m2.volInfo);\n cl{3} = iimg_indx2clusters(dat3, m3.volInfo);\n \n cl{4} = iimg_indx2clusters(pos12, m1.volInfo);\n cl{5} = iimg_indx2clusters(pos13, m1.volInfo);\n cl{6} = iimg_indx2clusters(pos23, m1.volInfo);\n \n cl{7} = iimg_indx2clusters(pos123, m1.volInfo);\n \n \n \nend\n\n\n% set colors for overlap\n% colors{end+1} = {mean([colors{1}; colors{2}])};\n% colors{end+1} = {mean([colors{1}; colors{3}])};\n% colors{end+1} = {mean([colors{2}; colors{3}])};\n% \n% colors{end+1} = {mean([colors{1}; colors{2}; colors{3}])};\n\ncolors(end+1) = {2*mean([colors{1}; colors{2}])}; colors{end}(colors{end} > 1) = 1;\ncolors(end+1) = {2*mean([colors{1}; colors{3}])}; colors{end}(colors{end} > 1) = 1;\ncolors(end+1) = {2*mean([colors{2}; colors{3}])}; colors{end}(colors{end} > 1) = 1;\n\ncolors(end+1) = {3*mean([colors{1}; colors{2}; colors{3}])};\n\n\ncluster_orthviews();\nfor i = 1:7\n if ~isempty(cl{i}), cluster_orthviews(cl{i}, colors(i), 'add', 'solid'); end\nend\n\ncluster_orthviews_montage(10, 'axial', [], 'onerow', 'range', [-35 55]);\nh = findobj(gcf,'Type', 'Text'); set(h, 'FontSize', 18) %delete(h);\n\ncluster_orthviews_montage(10, 'sagittal', [], 'onerow', 'range', [-40 40]);\nh = findobj(gcf,'Type', 'Text'); set(h, 'FontSize', 18) %delete(h);\n\n\nif dosurface\n \n create_figure;\n s = addbrain('hires left'); set(s, 'FaceColor', [.5 .5 .5], 'FaceAlpha', 1);\n for i = 1:7\n cluster_surf(cl{i}, colors(i), 2, s);\n end\n for i = 4:7\n cluster_surf(cl{i}, colors{i}(1), 2, s);\n end\n \n scn_export_papersetup; saveas(gcf, 'cluster_overlap_3colors_Lmedial.png');\n view(270, 0); lightFollowView\n scn_export_papersetup; saveas(gcf, 'cluster_overlap_3colors_Lateral.png');\n \n create_figure('s2');\n s = addbrain('hires right'); set(s, 'FaceColor', [.5 .5 .5], 'FaceAlpha', 1);\n for i = 1:3\n cluster_surf(cl{i}, colors(i), 2, s);\n end\n for i = 4:7\n cluster_surf(cl{i}, colors{i}(1), 2, s);\n end\n lightFollowView\n scn_export_papersetup; saveas(gcf, 'cluster_overlap_3colors_Rmedial.png');\n view(90, 0); lightFollowView\n scn_export_papersetup; saveas(gcf, 'cluster_overlap_3colors_Rateral.png');\n \n create_figure('s3');\n s = addbrain('limbic');\n s = [s addbrain('brainstem')];\n axis auto\n set(s, 'FaceColor', [.5 .5 .5]);\n set(s(end-1), 'FaceAlpha', .15);\n view(135, 10)\n for i = 1:3\n cluster_surf(cl{i}, colors(i), 2, s);\n end\n for i = 4:7\n cluster_surf(cl{i}, colors{i}(1), 2, s);\n end\n scn_export_papersetup; saveas(gcf, 'cluster_overlap_3colors_Lmedial.png');\n \n \n \nend\n\nend\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Visualization_functions/cluster_orthviews_overlap_3colors.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.38938705357884307}} {"text": "function A_sym = symetrizeMatrix(A)\n[i,j,k]=find(A);\nW=sparse([i; j], [j; i], ones(size(k,1)*2,1));\nA_help=sparse([i; j], [j; i], [k; k]);\n[i,j,k]=find(A_help);\n[i,j,kk]=find(W);\nA_sym=sparse(i,j,(kk.^(-1)).*k); %Now Kantennr_sym is a symetric form of Kantennr", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23991-computation-of-the-friedrichs-constant-for-a-unit-square-domain/Friedrichs_constant_unit_square/symetrizeMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.38938704644528593}} {"text": "classdef CompressingVademecumData < handle\n \n properties (Access = private)\n qV\n rhoV\n xiV\n phiV\n cellDataSameSign\n cellDataDifferentSign\n phiIndeces\n end\n \n properties (Access = private)\n compressedFileName\n nMx\n nMy\n nPhiQuarter\n nPhiT\n end\n \n methods (Access = public)\n \n function obj = CompressingVademecumData()\n obj.init();\n obj.initVariables();\n obj.loadVademecumDataBase(); \n obj.compute();\n obj.saveData();\n end\n \n end\n \n methods (Access = private)\n \n function init(obj)\n obj.compressedFileName = 'OptimalSuperEllipses';\n obj.nMx = 20;\n obj.nMy = 20;\n obj.nPhiQuarter = 10;\n obj.nPhiT = obj.computeNphiT();\n end\n \n function nPT = computeNphiT(obj)\n n0 = obj.nPhiQuarter;\n n1 = 2*(n0 -1)+1;\n nPT = 2*(n1 -1)+1;\n end\n \n function initVariables(obj)\n nmx = obj.nMx;\n nmy = obj.nMy;\n np = obj.nPhiT;\n obj.qV = zeros(nmx,nmy,np);\n obj.rhoV = zeros(nmx,nmy,np);\n obj.xiV = zeros(nmx,nmy,np);\n obj.phiV = zeros(nmx,nmy,np);\n end\n \n function loadVademecumDataBase(obj)\n s.nMx = obj.nMx;\n s.nMy = obj.nMy;\n s.nPhi = obj.nPhiQuarter;\n v = VademecumDataLoader(s);\n obj.cellDataSameSign = v.cellDataSameSign;\n obj.cellDataDifferentSign = v.cellDataDifferentSign;\n end\n \n function compute(obj) \n for iMx = 1:obj.nMx\n for iMy = 1:obj.nMy\n for iPhi = 1:nPhi\n obj.computePhiIndices(iPhi)\n obj.computeXiValues(iMx,iMy,iPhi);\n obj.computeRhoValues(iMx,iMy,iPhi);\n obj.computePhiValues(iMx,iMy,iPhi);\n obj.computeQValues(iMx,iMy,iPhi);\n obj.plotFigures(iMx,iMy,iPhi);\n end\n end\n end \n end\n \n function computePhiIndices(obj,iPhi) \n iphi1 = iPhi;\n iphi2 = 2*nPhi - iPhi;\n iphi3 = 2*(nPhi -1) + iPhi;\n iphi4 = 2*(2*nPhi -1) - iPhi; \n obj.phiIndeces = [iphi1,iphi2,iphi3,iphi4];\n end\n \n function computeXiValues(obj,iMx,iMy,iPhi)\n [cS,cD] = obj.obtainCellData(obj,iMx,iMy,iPhi);\n xiQ = [cS.xi cS.xi cD.xi cD.xi];\n ind = obj.phiIndeces;\n obj.xiV(iMx,iMy,ind) = xiQ;\n end\n \n function computeRhoValues(obj,iMx,iMy,iPhi)\n [cS,cD] = obj.obtainCellData(obj,iMx,iMy,iPhi);\n rhoQ = [cS.rho cS.rho cD.rho cD.rho];\n ind = obj.phiIndeces;\n obj.rhoV(iMx,iMy,ind) = rhoQ;\n end\n \n function computePhiValues(obj,iMx,iMy,iPhi)\n [cS,cD] = obj.obtainCellData(obj,iMx,iMy,iPhi); \n qQ = [cS.phi pi/2-cS.phi cD.phi 3*pi/2-cD.phi];\n ind = obj.phiIndeces;\n obj.qV(iMx,iMy,ind) = qQ;\n end \n \n function computeQValues(obj,iMx,iMy,iPhi)\n [cS1,cD1] = obj.obtainCellData(obj,iMx,iMy,iPhi);\n [cS2,cD2] = obj.obtainCellData(obj,iMy,iMx,iPhi);\n qQ = [cS1.q cS2.q cD1.q cD2.q];\n ind = obj.phiIndeces;\n obj.qV(iMx,iMy,ind) = qQ;\n end\n \n function [cS,cD] = obtainCellData(obj,iMx,iMy,iPhi)\n cS = obj.cellDataSameSign{iMx}{iMx,iMy,iPhi};\n cD = obj.cellDataDifferentSign{iMx}{iMx,iMy,iPhi}; \n end\n \n function plotFigures(obj,iMx,iMy,iPhi)\n [cS1,cD1] = obj.obtainCellData(obj,iMx,iMy,iPhi);\n [cS2,cD2] = obj.obtainCellData(obj,iMy,iMx,iPhi);\n obj.plotFigure(cS1,1);\n obj.plotFigure(cD1,2);\n obj.plotFigure(cS2,3);\n obj.plotFigure(cD2,4);\n end\n \n function saveData(obj)\n q = obj.qV;\n rho = obj.rhoV;\n xi = obj.xiV;\n phi = obj.phiV;\n save(obj.compressedFileName,'q','rho','xi','phi')\n end\n \n end\n \n methods (Access = private, Static)\n \n function [xiP,rhoP,phiP,qP] = loadData(cP)\n xiP = cP.xi;\n rhoP = cP.rho;\n phiP = cP.phi;\n qP = cP.q; \n end\n \n function plotFigure(cellData,nFigure)\n figure(nFigure);\n clf\n cellData.mesh.plot;\n drawnow\n end \n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Sources/VadamecumCalculator/CompressingVademecumData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.38938704644528593}} {"text": "% repeat a matrix \n%\nfunction [grad] = B_transpose(future_layers, curr_layer)\nfuture_grad = GetFutureGrad(future_layers, curr_layer);\n\ngrad = future_grad';\n\nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/B_transpose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419704455588, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3893870393117286}} {"text": "%kvspatial 'Compute Spatial Features Using NxM Window (K1)'\n% This MatLab function was automatically generated by a converter (KhorosToMatLab) from the Khoros vspatial.pane file\n%\n% Parameters: \n% InputFile: i 'Input Image ', required: 'input image filename'\n% Integer: w 'Window width ', default: 3: 'window width argument'\n% Integer: h 'Window height', default: 3: 'window height argument'\n% OutputFile: o 'Output Image', required: 'output image filename'\n%\n% Example: o = kvspatial(i, {'i','';'w',3;'h',3;'o',''})\n%\n% Khoros helpfile follows below:\n%\n% PROGRAM\n% vspatial - Compute Spatial Features Using NxM Window (K1)\n%\n% DESCRIPTION\n% .I vspatial\n% performs a spatial feature extraction on an image using a selected \n% statistical operation. The statistical operation is computed, using\n% overlapping windows, over the entire image. The center pixel is updated\n% in each window based on the calculated statistics of that window. \n% \n% The input image, which must be of data storage type BYTE, corresponds\n% to the -i argument. The output image, which corresponds to the -o\n% argument, is stored as data type FLOAT. The output image may be a \n% multiband image depending on how many spatial operators were selected.\n% The resulting image will have a border of pixels of value 0, since the\n% window operation does not calculate values for border pixels.\n% \n% The width and height of the window is specified by the -w and -h window\n% width and height arguments. The width and height arguments cannot be an\n% even number. The window dimensions must be odd (ie. 3x3, 5x5, 7x7, etc.),\n% since the center pixel is replaced with the computed value of the window\n% data. The default window size is 3x3.\n% \n% Each pixel in the image is updated with a computed value except the border\n% pixels. A 3x3 window will result in a border of one pixel, a 5x5 window\n% will result in a border of two pixels, etc.\n% \n% There are six statistical operations that may be selected. Any combination\n% of the statistical operations may be selected by toggling the desired \n% argument on (ie. argument followed by a 1). The default for each argument\n% is unselected (ie. argument followed by a 0), except -m (mean), which is \n% selected. The six possible statistical operations and their arguments are:\n% .DS\n% -m -- calculates the mean of the image.\n% -v -- calculates the variance of the image.\n% -c -- calculates the contrast of the image.\n% -s -- calculates the angular second moment of the image.\n% -e -- calculates the entropy of the image.\n% -d -- calculates the dispersion of the image.\n% .DE\n% The resulting feature vector may contain from one to six bands of data,\n% depending upon the number of arguments selected.\n% \n% All input images must be of data storage type BYTE. \n% \n% All output images are of data storage type FLOAT.\n%\n% \n%\n% EXAMPLES\n% vspatial -i input_image.xv -w 5 -h 5 -m 0 -v 1 -e 1 -o output_image\n% \n% the input image must of type BYTE; the selected width and height of the \n% window is 5 x 5, which will result in a border width of two pixels in the\n% output image. The mean spatial operator is unselected (default is selected),\n% and the variance and entropy operations are selected, which will result in\n% an output image (feature vector) of 2 bands, based on the operations selected.\n%\n% \"SEE ALSO\"\n%\n% RESTRICTIONS \n% \n% All input images must be of data storage type BYTE.\n% \n% All output images are of data storage type FLOAT.\n%\n% REFERENCES \n%\n% COPYRIGHT\n% Copyright (C) 1993 - 1997, Khoral Research, Inc. (\"KRI\") All rights reserved.\n% \n\n\nfunction varargout = kvspatial(varargin)\nif nargin ==0\n Inputs={};arglist={'',''};\nelseif nargin ==1\n Inputs=varargin{1};arglist={'',''};\nelseif nargin ==2\n Inputs=varargin{1}; arglist=varargin{2};\nelse error('Usage: [out1,..] = kvspatial(Inputs,arglist).');\nend\nif size(arglist,2)~=2\n error('arglist must be of form {''ParameterTag1'',value1;''ParameterTag2'',value2}')\n end\nnarglist={'i', '__input';'w', 3;'h', 3;'o', '__output'};\nmaxval={0,64,64,0};\nminval={0,1,1,0};\nistoggle=[0,1,1,0];\nwas_set=istoggle * 0;\nparamtype={'InputFile','Integer','Integer','OutputFile'};\n% identify the input arrays and assign them to the arguments as stated by the user\nif ~iscell(Inputs)\nInputs = {Inputs};\nend\nNumReqOutputs=1; nextinput=1; nextoutput=1;\n for ii=1:size(arglist,1)\n wasmatched=0;\n for jj=1:size(narglist,1)\n if strcmp(arglist{ii,1},narglist{jj,1}) % a given argument was matched to the possible arguments\n wasmatched = 1;\n was_set(jj) = 1;\n if strcmp(narglist{jj,2}, '__input')\n if (nextinput > length(Inputs)) \n error(['Input ' narglist{jj,1} ' has no corresponding input!']); \n end\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n elseif strcmp(narglist{jj,2}, '__output')\n if (nextoutput > nargout) \n error(['Output nr. ' narglist{jj,1} ' is not present in the assignment list of outputs !']); \n end\n if (isempty(arglist{ii,2}))\n narglist{jj,2} = 'OK_out';\n else\n narglist{jj,2} = arglist{ii,2};\n end\n\n nextoutput = nextoutput + 1;\n if (minval{jj} == 0) \n NumReqOutputs = NumReqOutputs - 1;\n end\n elseif isstr(arglist{ii,2})\n narglist{jj,2} = arglist{ii,2};\n else\n if strcmp(paramtype{jj}, 'Integer') & (round(arglist{ii,2}) ~= arglist{ii,2})\n error(['Argument ' arglist{ii,1} ' is of integer type but non-integer number ' arglist{ii,2} ' was supplied']);\n end\n if (minval{jj} ~= 0 | maxval{jj} ~= 0)\n if (minval{jj} == 1 & maxval{jj} == 1 & arglist{ii,2} < 0)\n error(['Argument ' arglist{ii,1} ' must be bigger or equal to zero!']);\n elseif (minval{jj} == -1 & maxval{jj} == -1 & arglist{ii,2} > 0)\n error(['Argument ' arglist{ii,1} ' must be smaller or equal to zero!']);\n elseif (minval{jj} == 2 & maxval{jj} == 2 & arglist{ii,2} <= 0)\n error(['Argument ' arglist{ii,1} ' must be bigger than zero!']);\n elseif (minval{jj} == -2 & maxval{jj} == -2 & arglist{ii,2} >= 0)\n error(['Argument ' arglist{ii,1} ' must be smaller than zero!']);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} < minval{jj})\n error(['Argument ' arglist{ii,1} ' must be bigger than ' num2str(minval{jj})]);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} > maxval{jj})\n error(['Argument ' arglist{ii,1} ' must be smaller than ' num2str(maxval{jj})]);\n end\n end\n end\n if ~strcmp(narglist{jj,2},'OK_out') & ~strcmp(narglist{jj,2},'OK_in') \n narglist{jj,2} = arglist{ii,2};\n end\n end\n end\n if (wasmatched == 0 & ~strcmp(arglist{ii,1},''))\n error(['Argument ' arglist{ii,1} ' is not a valid argument for this function']);\n end\nend\n% match the remaining inputs/outputs to the unused arguments and test for missing required inputs\n for jj=1:size(narglist,1)\n if strcmp(paramtype{jj}, 'Toggle')\n if (narglist{jj,2} ==0)\n narglist{jj,1} = ''; \n end;\n narglist{jj,2} = ''; \n end;\n if ~strcmp(narglist{jj,2},'__input') && ~strcmp(narglist{jj,2},'__output') && istoggle(jj) && ~ was_set(jj)\n narglist{jj,1} = ''; \n narglist{jj,2} = ''; \n end;\n if strcmp(narglist{jj,2}, '__input')\n if (minval{jj} == 0) % meaning this input is required\n if (nextinput > size(Inputs)) \n error(['Required input ' narglist{jj,1} ' has no corresponding input in the list!']); \n else\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n end\n else % this is an optional input\n if (nextinput <= length(Inputs)) \n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end;\n else \n if strcmp(narglist{jj,2}, '__output')\n if (minval{jj} == 0) % this is a required output\n if (nextoutput > nargout & nargout > 1) \n error(['Required output ' narglist{jj,1} ' is not stated in the assignment list!']); \n else\n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n NumReqOutputs = NumReqOutputs-1;\n end\n else % this is an optional output\n if (nargout - nextoutput >= NumReqOutputs) \n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end\n end\n end\nend\nif nargout\n varargout = cell(1,nargout);\nelse\n varargout = cell(1,1);\nend\nglobal KhorosRoot\nif exist('KhorosRoot') && ~isempty(KhorosRoot)\nw=['\"' KhorosRoot];\nelse\nif ispc\n w='\"C:\\Program Files\\dip\\khorosBin\\';\nelse\n[s,w] = system('which cantata');\nw=['\"' w(1:end-8)];\nend\nend\n[varargout{:}]=callKhoros([w 'vspatial\" '],Inputs,narglist);\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/matlab_tools/Converted/kvspatial.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6654105720171531, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3893324937062686}} {"text": "function [ results ] = run_DAT_AFFINE( seq, res_path, bSaveImage )\n\nproject_dir = fileparts(fileparts(fileparts(mfilename('fullpath'))));\naddpath(fullfile(project_dir, 'trackers', 'DAT', 'src'));\n\nvisualization = 0;\nuse_normal_size = 1;\nnormal_height = 360;\nnormal_width = 640;\nI = imread(seq.s_frames{1});\nif use_normal_size\n scale_height = size(I, 1) / normal_height;\n scale_width = size(I, 2) / normal_width;\nelse\n scale_height = 1;\n scale_width = 1;\nend\n% Load annotations\ngroundtruth = seq.init_rect;\ngroundtruth = groundtruth ./ [scale_width, scale_height, scale_width, scale_height];\n\n% Load default settings\ncfg = affine_parameters_dat();\n\n% Tracking\nframes = 1:length(seq.s_frames);\ntimes = zeros(size(frames));\nrects = zeros(length(frames), 4);\nspf = tic;\nfor frame = frames\n I = imread(seq.s_frames{frame});\n % I = imresize(I, [360, 640]);\n if use_normal_size\n I = imresize(I, [normal_height, normal_width]);\n end\n \n ttrack = tic;\n if frame == 1\n [state, location] = tracker_dat_initialize(I, groundtruth, cfg); \n else\n [state, location] = tracker_dat_update(state, I, cfg);\n end\n times(frame) = toc(ttrack);\n % Visualization\n % rects(frame, :) = location*2;\n rects(frame, :) = location .* [scale_width, scale_height, scale_width, scale_height];\n if visualization\n figure(1), clf\n imshow(I)\n rectangle('Position', location, 'EdgeColor', 'b', 'LineWidth', 2);\n drawnow\n end\nend\nspf = toc(spf);\n\nresults.res = rects;\nresults.type='rect';\nresults.fps = length(frames)/spf;\n\nend\n\n", "meta": {"author": "flyers", "repo": "drone-tracking", "sha": "c42e1833acfb858ac8f4ec69fa04ab02ac4c19ad", "save_path": "github-repos/MATLAB/flyers-drone-tracking", "path": "github-repos/MATLAB/flyers-drone-tracking/drone-tracking-c42e1833acfb858ac8f4ec69fa04ab02ac4c19ad/experiments/trackers/run_DAT_AFFINE.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410572017153, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3893324937062685}} {"text": "function h=m_rectangle(long,lat,width,height,varargin)\n%M_RECTANGLE Create rectangle, rounded-rectangle, or ellipse\n% M_RECTANGLE adds a default rectangle to the current map axes.\n% \n% M_RECTANGLE(long,lat,width,height) creates a rectangle in 2-D coordinates.\n% The long and lat elements determine the location and the width and height\n% elements determine the size. The function plots into the current axes\n% without clearing existing content from the axes.\n% M_RECTANGLE(long,lat,width,height,flag) creates different rectangle. If\n% flag=0(default),it is a normal rectangle. If flag=1, it is a curve box\n% determined to the projection.\n% \n% M_RECTANGLE(...,'Curvature',cur) adds curvature to the sides\n% of the rectangle. For different curvatures along the horizontal and\n% vertical sides, specify cur as a two-element vector of the form\n% [horizontal vertical]. For the same length of curvature along all\n% sides, specify cur as a scalar value. Specify values between 0 (no\n% curvature) and 1 (maximum curvature). Use [1 1] to create an ellipse or\n% circle.\n%\n% M_RECTANGLE(...,Name,Value) specifies rectangle properties using one or\n% more Name,Value pair arguments. It is the same as function rectangle.\n% \n% M_RECTANGLE(container,...) creates the rectangle in the axes, group, or\n% transform specified by container, instead of in the current axes.\n% \n% R = M_RECTANGLE(...) returns the rectangle object created.\n%\n% Execute GET(R), where R is a rectangle object, to see a list of\n% rectangle object properties and their current values.\n% Execute SET(R) to see a list of rectangle object properties and legal\n% property values.\n%\n\n\n% Shi Weiheng (tfoterye@gmail.com) 25/Mar/18\n%\n% Based on m_quiver written by Prof Rich Pawlowicz.\n% Comments mainly come from function rectangle.\n% This software is provided \"as is\" without warranty of any kind. But\n% it's mine, so you can't sell it.\n%\n\nglobal MAP_PROJECTION MAP_VAR_LIST\n\n% Have to have initialized a map first\n\nif isempty(MAP_PROJECTION)\n disp('No Map Projection initialized - call M_PROJ first!');\n return;\nend\n\nif (varargin{1}==0 || varargin{1}==1)\n flag=varargin{1};\n varargin1={varargin{2:end}};\nelse\n flag=0;\n varargin1=varargin;\nend\n\n\n[X,Y]=m_ll2xy(long,lat,'clip','off');\n[X1,Y1]=m_ll2xy(long+width,lat+height,'clip','off');\n[X2,Y2]=m_ll2xy(long,lat+height,'clip','off');\n[X3,Y3]=m_ll2xy(long+width,lat,'clip','off');\n\n[small_x1,small_y1]=m_ll2xy(long:width/100:long+width,lat*ones(1,101),'clip','off');\n[small_x2,small_y2]=m_ll2xy(long:width/100:long+width,(lat+height)*ones(1,101),'clip','off');\n\nif flag==0\nh=rectangle('Position',[X,Y,X1-X,Y1-Y],varargin1{:});\nend\nif flag==1\n h=line( [X,small_x1,X1,small_x2(end:-1:1),X],[Y,small_y1,Y1,small_y2(end:-1:1),Y],varargin1{:});\nend\nset(h,'tag','m_rectangle');\nif nargout==0\n clear h\nend\n", "meta": {"author": "goGPS-Project", "repo": "goGPS_MATLAB", "sha": "30644df61d2459e3347ac5f3e31b71d9f69f4b01", "save_path": "github-repos/MATLAB/goGPS-Project-goGPS_MATLAB", "path": "github-repos/MATLAB/goGPS-Project-goGPS_MATLAB/goGPS_MATLAB-30644df61d2459e3347ac5f3e31b71d9f69f4b01/source/utility/thirdParty/m_map/m_rectangle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105587468141, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3893324859417779}} {"text": " function X = nufft(x, st)\n%function X = nufft(x, st)\n%|\n%| Compute d-dimensional NUFFT of signal/image x\n%|\n%| in\n%|\tx\t[N1 N2 ... Nd (L)]\tL input image(s) of size\n%|\t\t\t\t\t\tN1 x N2 x ... x Nd\n%|\tst\tstructure\t\tprecomputed by nufft_init()\n%| out\n%|\tX\t[M (L)]\t\t\toutput spectra\n%|\n%| Copyright 2003-5-30, Jeff Fessler, University of Michigan\n\n% if no arguments, then run some self tests\nif (nargin < 1) || (nargin == 1 && streq(x, 'test'))\n\thelp([mfilename '.m'])\n\n\tprintm('Starting nufft() self test; after a wait, shows small errors')\n\tif 0\n\t\tJd = [5 4 4];\n\t\tNd = [23 15 19];\n\t\talpha_user = {1, 1, 1}; % default alpha, beta\n\t\tbeta_user = {0.5, 0.5, 0.5};\n\telse\n\t\tJd = [5 6];\n\t\tNd = [60 75];\n\t\talpha_user = {1, 1};\n\t\tbeta_user = {0.5, 0.5};\n\tend\n\tKd = 2 * Nd;\n\tgam = 2*pi ./ Kd;\n\tn_shift = zeros(size(Nd));\n\n\tif 1\n\t\toldarg = {Nd(1), Nd(2), Jd(1), Jd(2), Kd(1), Kd(2)};\n\t\tprintm('err alf1 %g best %g', ...\n\t\t\tmax(col(nufft2_err_mm('all', oldarg{:}, 1))), ...\n\t\t\tmax(col(nufft2_err_mm('all', oldarg{:}, 'best'))) )\n\tend\n\trng(0)\n\tx = randn(Nd);\n%\tx = [[1:Nd(1)]'*ones(1,3), ones(Nd(1), Nd(2)-3)]; % test signal\n%\tx = zeros(N1, N2); x(1,1) = 1;\n\tif 0 % test with uniform frequency locations\n\t\to1 = 2 * pi * [0:(N1-1)]' / N1;\n\t\to2 = 2 * pi * [0:(N2-1)]' / N2;\n\t\t[o1, o2] = ndgrid(o1, o2);\n\t\tXf = fft2(x);\n\telse\n\t\tif length(Nd) == 3 % nonuniform frequencies\n\t\t\t[o1, o2, o3] = ndgrid(linspace(0,gam(1),11), ...\n\t\t\t\tlinspace(0,gam(2),13), linspace(0,gam(3),5));\n\t\t\tom = [\t[o1(:); [0 7.2 2.6 3.3]'], ...\n\t\t\t\t[o2(:); [0 4.2 -1. 5.5]'], ...\n\t\t\t\t[o3(:); [0 1.1 -2. 3.4]'] ];\n\t\telse\n\t\t\t[o1, o2] = ndgrid(linspace(-3*gam(1),3*gam(1),41), ...\n\t\t\t\tlinspace(-2*gam(2),gam(2),31));\n\t\t\tom = [\t[o1(:); [0 7.2 2.6 3.3]'], ...\n\t\t\t\t[o2(:); [0 4.2 -1. 5.5]'] ];\n\t\tend\n\t\tY.d = dtft(x, om, 'n_shift', n_shift);\n\tend\n\n\ts.tab = nufft_init(om, Nd, Jd, Kd, n_shift, 'table', 2^12, 'minmax:kb');\n\tY.tab = nufft(x, s.tab);\n\tprintm('table0\t\tmax%%diff = %g', max_percent_diff(Y.d, Y.tab))\n\n\ts.mmkb = nufft_init(om, Nd, Jd, Kd, n_shift, 'minmax:kb');\n\tY.mmkb = nufft(x, s.mmkb);\n\tprintm('minmax:kb\tmax%%diff = %g', max_percent_diff(Y.d, Y.mmkb))\n\n\tif 0 % test multiple input case\n\t\txx = x; xx(:,:,:,2) = x; xx(:,:,:,3) = x;\n\t\tY.tmp = nufft(xx, s.mmkb);\n\t\tY.tmp = Y.tmp(:,1);\n\t\tprintm('multi\tmax%%diff = %g', max_percent_diff(Y.mmkb, Y.tmp))\n\treturn\n\tend\n\n\t% kaiser with minmax best alpha,m\n\ts.kb = nufft_init(om, Nd, Jd, Kd, n_shift, 'kaiser');\n\tY.kb = nufft(x, s.kb);\n\tprintm('kaiser\t\tmax%%diff = %g', max_percent_diff(Y.d, Y.kb))\n\n\t% kaiser with user-specified supoptimal alpha,m for comparison\n\ts.ku = nufft_init(om, Nd, Jd, Kd, n_shift, 'kaiser', ...\n\t\ts.kb.kb_alf + 0.1*ones(size(s.kb.kb_alf)), s.kb.kb_m);\n\tY.ku = nufft(x, s.ku);\n\tprintm('kaiser-user\tmax%%diff = %g', max_percent_diff(Y.d, Y.ku))\n\n\ts.mmtu = nufft_init(om, Nd, Jd, Kd, n_shift, 'minmax:tuned');\n\tY.mmtu = nufft(x, s.mmtu);\n\tprintm('minmax:tuned\tmax%%diff = %g', max_percent_diff(Y.d, Y.mmtu))\n\n\ts.mm = nufft_init(om, Nd, Jd, Kd, n_shift, 'minmax:user', ...\n\t\talpha_user, beta_user);\n\tY.mm = nufft(x, s.mm);\n\tprintm('minmax:user\tmax%%diff = %g', max_percent_diff(Y.d, Y.mm))\n\n\tif 0 % test 'uniform' scaling\n\t\ts.un = nufft_init(om, Nd, Jd, Kd, n_shift, 'uniform')\n\t\tY.un = nufft(x, s.un);\n\t\tprintm('user-unif max%%diff = %g', max_percent_diff(Y.mm, Y.un))\n\treturn\n\tend\n\n%\ts1 = nufft_init(om, Nd, Jd, Kd, n_shift, 'loop', 'kaiser');\n%\tprintm('kb loop max %% difference = %g', max_percent_diff(sn.p,s1.p))\n\n if 0 % test against old 2D version\n\ts2 = nufft2_init_kb(om, oldarg{:}, n_shift, 'kaiser');\n%\tY2 = nufft2(x, s2);\n%\tprintm('KB 2d vs nd max%%diff = %g', max_percent_diff(Y2, Y.kb))\n\tprintm('KB 2d vs nd max%%diff = %g', max_percent_diff(s2.p,s.kb.p))\n\n\ts2 = nufft2_init(om, oldarg{:}, n_shift, 0, 'best');\n\tprintm('tuned 2d vs nd max%%diff = %g', max_percent_diff(s2.p,s.mmtu.p))\n\n\ts2 = nufft2_init(om, oldarg{:}, n_shift, 0); % minmax\n\tprintm('user 2d vs nd max%%diff = %g', max_percent_diff(s2.p,s.mm.p))\n\n end\nreturn\nend\n\nNd = st.Nd;\nKd = st.Kd;\n\ndims = size(x);\ndd = length(Nd);\nif ndims(x) < dd, fail 'input signal has too few dimensions', end\nif any(dims(1:dd) ~= Nd), fail 'input signal has wrong size', end\n\n\n% the usual case is where L=1, i.e., there is just one input signal.\nif ndims(x) == dd\n\tx = x .* st.sn; % apply scaling factors\n\tXk = col(fftn_fast(x, Kd)); % [*Kd] oversampled FFT, padded at end\n\n% otherwise, collapse all excess dimensions into just one\nelse\n\txx = reshape(x, [prod(Nd) prod(dims((dd+1):end))]); % [*Nd *L]\n\tL = size(xx, 2);\n\tXk = zeros(prod(Kd), L, class(xx)); % [*Kd *L]\n\tfor ll=1:L\n\t\txl = reshape(xx(:,ll), [Nd 1]); % l'th signal\n\t\txl = xl .* st.sn; % scaling factors\n\t\tXk(:,ll) = col(fftn_fast(xl, [Kd 1]));\n\tend\nend\n\n\n% interpolate using precomputed sparse matrix\n% or with tabulated interpolator\nif ~isfield(st, 'interp_table')\n\tX = st.p * Xk; % [M *L]\nelse\n\tX = feval(st.interp_table, st, Xk);\nend\n\nif ndims(x) > dd\n\tX = reshape(X, [st.M dims((dd+1):end)]); % [M (L)]\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/nufft/nufft.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105587468141, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3893324859417779}} {"text": "function Path = TestPathInGraph(DAG,Start,End)\n% Input:DAG is the graph, p the start point, q the end point.\n% Output:if there is a path from p to q, return Path = 1,otherwise Path = 0; \n\n% test the cycle by DFS algorithm\nPath = 0;\nVisited = zeros( 1,size( DAG,1 ) );\n[ List,Visited ] = SearchPath( DAG,Start,[],Visited );\n\n while isempty( List ) == 0\n %Node = List(1)\n Descendant = List(1);\n if Descendant == End \n Path = 1;\n break;\n end\n List( 1 )=[];\n if Visited( Descendant ) ==0\n [List,Visited] = SearchPath(DAG,Descendant,List,Visited); \n end\n end\nend\n\nfunction [ List,Visited ] = SearchPath( DAG,Start,L,V )\n V( Start ) = 1;\n Visited=V;\n Descendant = find( DAG(Start,:) ~= 0 );\n List = [L Descendant];\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/24327-maximumminimum-weight-spanning-tree-directed/DirectedSpanningTree/Subfunction/TestPathInGraph.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5851011542032313, "lm_q2_score": 0.6654105521116443, "lm_q1q2_score": 0.38933248205953247}} {"text": "%compute dtailinflmag\nfunction [data,units]=compute_dtailinflmag(trx,n)\n\n% \nlarvae=trx.exp2flies{n};\nnumlarvae=numel(larvae);\ndtailinflmag=cell(1,numlarvae);\nfor i=1:numlarvae\n larva=larvae(i);\n dtailinflmag{1,i}=(trx(larva).tailinflmag(2:end)-trx(larva).tailinflmag(1:end-1))./trx(larva).dt;\nend\n\nunits=parseunits('mm/s');\ndata=dtailinflmag;\n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/perframe/larva_compute_perframe_features/compute_dtailinflmag.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6654105454764747, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.389332478177287}} {"text": "function [update] = polynomial_expansion_registration(...\n moving, fixed, multiModal, transformationModel, varargin)\n% POLYNOMIAL_EXPANSION_REGISTRATION Estimates a displacement field using polynomial expansion\n%\n% INPUT ARGUMENTS\n% moving - Moving image\n% fixed - Fixed image\n% multiModal - Set whether to perform multi-modal or\n% uni-modal image registration\n% false/true\n% transformationModel - Transformation model for estimating the\n% displacement field\n% 'translation', 'affine', 'non-rigid'\n%\n% OPTIONAL INPUT ARGUMENTS\n% 'signalModel' - Local signal model to use when computing the\n% polynomial expansion transformation\n% 'linear' (deafult), 'quadratic'\n%\n% 'numberOfChannels' - Number of channels to use in when computing\n% the entropy (based on channel coding). This\n% is only relevant if multiModal is set to\n% true.\n% Default value is 8\n%\n% OUTPUT ARGUMENTS\n% update\n% displacementUpdate - Estimated update field\n% certaintyUpdate - Certainty related to the estimated update field\n% transformationMatrix - Estimate transformation matrix (only if \n\n% Copyright (c) 2012 Daniel Forsberg\n% danne.forsberg@outlook.com\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\n%% Set up default parameters\nsignalModel = 'linear';\nnumberOfChannels = 8;\n\n% Overwrites default parameter\nfor k=1:2:length(varargin)\n eval([varargin{k},'=varargin{',int2str(k+1),'};']);\nend;\n\n%%\ndims = ndims(moving);\n\nif multiModal && strcmp(signalModel,'quadratic')\n\terror(['Multi-modal image registration using polynomial expansion',...\n\t\t' is only available for the linear signal model'])\nend\n\nswitch dims\n case 2\n\t\t[update] = ...\n\t\t\tpolynomial_expansion_registration2d(...\n\t\t\tmoving, fixed,...\n\t\t\t'signalModel',signalModel,...\n\t\t\t'transformationModel',transformationModel,...\n\t\t\t'multiModal',multiModal,...\n\t\t\t'numberOfChannels',numberOfChannels);\n case 3\n\t\t[update] = ...\n\t\t\tpolynomial_expansion_registration3d(...\n\t\t\tmoving, fixed,...\n\t\t\t'signalModel',signalModel,...\n\t\t\t'transformationModel',transformationModel,...\n\t\t\t'multiModal',multiModal,...\n\t\t\t'numberOfChannels',numberOfChannels);\nend", "meta": {"author": "fordanic", "repo": "image-registration", "sha": "36c23d5da1f035b07c66a04fe5bac20de1bd1c74", "save_path": "github-repos/MATLAB/fordanic-image-registration", "path": "github-repos/MATLAB/fordanic-image-registration/image-registration-36c23d5da1f035b07c66a04fe5bac20de1bd1c74/registration/polynomial-expansion/polynomial_expansion_registration.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764747, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.389332478177287}} {"text": "function layer = vl_nnconvt(varargin)\n%VL_NNCONVT Additional options for vl_nnconvt (CNN deconvolution)\n% Y = Layer.vl_nnconvt(X, F, B) computes the convolution-transpose of the\n% image X with the filter bank F and biases B. See help vl_nnconvt for\n% more details.\n%\n% This method overloads MatConvNet's vl_nnconvt function for Layer\n% objects, so that instead of executing vl_nnconvt, a new Layer object is\n% returned. X, F and B can be other Layers, including Params, or\n% constants.\n%\n% The overloaded method accepts the same options as Layer.vl_nnconv.\n\n layer = vl_nnconv(varargin{:}, 'transpose', true) ;\n\nend\n\n", "meta": {"author": "ShuaiBai623", "repo": "MFT", "sha": "8762f8cdf494ce0b1a1c3d431660c5c8fd91744a", "save_path": "github-repos/MATLAB/ShuaiBai623-MFT", "path": "github-repos/MATLAB/ShuaiBai623-MFT/MFT-8762f8cdf494ce0b1a1c3d431660c5c8fd91744a/external_libs/autonn/matlab/@Layer/vl_nnconvt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3892908142606166}} {"text": "function lagplot(c)\n %lagplot\n \n \n % Author: Michael West, Geophysical Institute, Univ. of Alaska Fairbanks\n % $Date$\n % $Revision$\n \n \n % PREP PLOT\n figure('Color','w','Position',[50 50 600 500]);\n set(gcf,'DefaultAxesFontSize',14);\n imagesc(c.lags);\n title('Lag time for maximum correlation (s)');\n \n \n \n % ADD DATES TO AXES\n n = length(c.trig);\n ticvals = 1:round(n/25):n;\n set(gca,'XTick',ticvals);\n set(gca,'YTick',ticvals);\n yt = get(gca,'YTick');\n set(gca,'YTickLabel',datestr(c.trig(yt),'yyyy-mm-dd HH:MM'),'FontSize',6);\n \n \n % DRESS UP THE FIGURE\n cmap = load('colormap_lag.txt');\n colormap(cmap);\n colorbar;\n xlabel('Event number');\n ylabel('Event date');\n \n \n %PRINT OUT FIGURE\n set(gcf, 'paperorientation', 'portrait');\n set(gcf, 'paperposition', [1.25 2.5 6 6] );\n %print(gcf, '-depsc2', 'FIG_tartan.ps')\nend\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/dev/@NewCorrelation/lagplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3892908142606166}} {"text": "classdef FitNetModel < matlab.mixin.SetGet\n %FitNetModel Summary of this class goes here\n % Detailed explanation goes here\n \n properties\n %Time\n t0(1,1) double = 0;\n tOffset(1,1) double = 0;\n \n %Constant\n const(1,1) double = 0; \n varConst(1,1) logical = false;\n constUb(1,1) double = 0;\n constLb(1,1) double = 0;\n \n %Neural Network\n net(1,1) \n varNetWB logical;\n netWbUb double = 0;\n netWbLb double = 0;\n hiddenSizes double = 5;\n gpuAvail(1,1) double = gpuDeviceCount(\"available\");\n end\n \n methods\n function obj = FitNetModel(hiddenSizes) \n obj.hiddenSizes = hiddenSizes;\n obj.net = FitNetModel.createNetwork(hiddenSizes);\n \n netWb = abs(getwb(obj.net));\n obj.netWbUb = 100 * netWb;\n obj.netWbLb = 100 * (-netWb);\n obj.varNetWB = false(size(netWb));\n \n obj.gpuAvail = gpuDeviceCount(\"available\");\n end\n \n function value = getValueAtTime(obj,ut)\n if(obj.gpuAvail > 0)\n gpuStr = 'yes';\n else\n gpuStr = 'no';\n end\n \n dt = (ut - obj.t0) + obj.tOffset;\n value = sim(obj.net,dt, 'UseGPU',gpuStr);\n end\n \n function wbParams = getWbParams(obj)\n wbParams = getwb(obj.net);\n end\n \n function value = getWbParamAtInd(obj, ind)\n wbParams = obj.getWbParams();\n value = wbParams(ind);\n end\n \n function setWbParamAtInd(obj, newVal, ind)\n wbParams = obj.getWbParams();\n wbParams(ind) = newVal;\n obj.net = setwb(obj.net, wbParams);\n end\n \n function listBoxStr = getListboxStr(obj)\n listBoxStr = {};\n \n for(i=1:length(obj.varNetWB))\n listBoxStr{i} = sprintf('Parameter %u', i); %#ok\n end\n end\n \n function newModel = deepCopy(obj)\n newModel = FitNetModel(obj.hiddenSizes);\n newModel.net = setwb(newModel.net, getwb(obj.net));\n \n newModel.t0 = obj.t0;\n newModel.tOffset = obj.tOffset;\n \n %Constant\n newModel.const = obj.const;\n newModel.varConst = obj.varConst;\n newModel.constUb = obj.constUb;\n newModel.constLb = obj.constLb;\n\n %Neural Network\n newModel.varNetWB = obj.varNetWB;\n newModel.netWbUb = obj.netWbUb;\n newModel.netWbLb = obj.netWbLb;\n end\n \n function t0 = getT0(obj)\n t0 = obj.t0;\n end\n\n function setT0(obj, newT0)\n obj.t0 = newT0;\n end\n \n function timeOffset = getTimeOffset(obj)\n timeOffset = obj.tOffset;\n end\n \n function setTimeOffset(obj, timeOffset)\n obj.tOffset = timeOffset;\n end\n \n function setConstValueForContinuity(obj, contValue)\n value = obj.getValueAtTime(obj.t0);\n \n obj.const = contValue - value;\n end\n \n function numVars = getNumVars(obj)\n numVars = 1 + numel(obj.varNetWB);\n end\n \n function x = getXsForVariable(obj)\n x = getwb(obj.net);\n x = x(obj.varNetWB);\n \n if(obj.varConst)\n x = [obj.const, x(:)'];\n end\n \n x = x(:)';\n end\n \n function updateObjWithVarValue(obj, x)\n if(obj.varConst)\n obj.const = x(1);\n end\n \n x = x(2:end);\n if(any(obj.varNetWB))\n wb = getwb(obj.net);\n wb(obj.varNetWB) = x(obj.varNetWB);\n obj.net = setwb(obj.net, wb);\n end\n end\n \n function [lb, ub] = getBndsForVariable(obj)\n lb = [obj.constLb obj.netWbLb(:)'];\n ub = [obj.constUb obj.netWbUb(:)'];\n end\n \n function setBndsForVariable(obj, lb, ub) \n obj.constLb = lb(1);\n obj.constUb = ub(1);\n \n obj.netWbLb = lb(2:end);\n obj.netWbUb = ub(2:end);\n end\n \n function useTf = getUseTfForVariable(obj)\n useTf = [obj.varConst, obj.varNetWB(:)'];\n end\n \n function setUseTfForVariable(obj, useTf) \n obj.varConst = useTf(1);\n obj.varNetWB = useTf(2:end);\n end\n \n function nameStrs = getStrNamesOfVars(obj)\n x = getwb(obj.net);\n nameStrs = {'Constant Offset'};\n \n for(i=1:length(x)) %#ok<*NO4LP> \n nameStrs{end+1} = sprintf('Parameter %u', i); %#ok\n end\n end\n\n function varsStoredInRad = getVarsStoredInRad(obj)\n varsStoredInRad = true;\n\n x = getwb(obj.net);\n for(i=1:length(x)) %#ok<*NO4LP> \n varsStoredInRad = horzcat(varsStoredInRad, false); %#ok \n end\n end\n \n function randomizeWB(obj)\n rands = obj.netWbLb + (obj.netWbUb - obj.netWbLb).*rand(size(obj.netWbLb));\n obj.net = setwb(obj.net, rands);\n end\n end\n \n methods(Static, Access=private)\n function net = createNetwork(hiddenSizes)\n% [x,t] = simplefit_dataset;\n \n net = fitnet(hiddenSizes);\n net = init(net);\n% net = configure(net,x,t);\n end\n end\n \n methods(Static)\n function obj = loadobj(obj)\n obj.gpuAvail = gpuDeviceCount(\"available\");\n end\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/classes/ForceModels/steering/math_models/@FitNetModel/FitNetModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3892908059220961}} {"text": "%ELLIPSES_DEMO One-line description here, please.\n%\n% output = ellipses_demo(input)\n%\n% Example\n% ellipses_demo\n%\n% See also\n%\n \n% ------\n% Author: David Legland\n% e-mail: david.legland@inra.fr\n% Created: 2019-08-09, using Matlab 9.6.0.1072779 (R2019a)\n% Copyright 2019 INRA - Cepia Software Platform.\n\nload fisherIris;\nfigure; hold on; set(gca, 'fontsize', 14);\ncolors = {'b', 'g', 'm'};\nhi = zeros(1,3);\nfor i = 1:3\n pts = meas((1:50)+(i-1)*50, 3:4);\n hi(i) = drawPoint(pts, 'marker', 'o', 'color', colors{i}, 'markerfacecolor', colors{i});\n drawEllipse(equivalentEllipse(pts), 'color', colors{i}, 'linewidth', 2);\nend\nlegend(hi, species([1 51 101]), 'Location', 'NorthWest');\n\nprint(gcf, 'equivalentEllipse_demo.png');", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/docs/matGeom-manual/images/geom2d/ellipses_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631556226292, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.38929080515701303}} {"text": "function results = run_DeepSTRCF(seq, res_path, bSaveImage)\n\n% Feature specific parameters\nhog_params.cell_size = 4;\nhog_params.compressed_dim = 10;\nhog_params.nDim = 31;\n\ngrayscale_params.colorspace='gray';\ngrayscale_params.cell_size = 4;\n\ncn_params.tablename = 'CNnorm';\ncn_params.useForGray = false;\ncn_params.cell_size = 4;\ncn_params.nDim = 10;\n\ncnn_params.nn_name = 'imagenet-vgg-m-2048.mat'; % Name of the network\ncnn_params.output_layer = [10]; % Which layers to use\ncnn_params.downsample_factor = [1]; % How much to downsample each output layer\ncnn_params.input_size_mode = 'adaptive'; % How to choose the sample size\ncnn_params.input_size_scale = 1; % Extra scale factor of the input samples to the network (1 is no scaling)\n\n% Which features to include\nparams.t_features = {\n struct('getFeature',@get_cnn_layers, 'fparams',cnn_params),...\n struct('getFeature',@get_colorspace, 'fparams',grayscale_params),... \n struct('getFeature',@get_fhog,'fparams',hog_params),...\n struct('getFeature',@get_table_feature, 'fparams',cn_params),...\n};\n \n% Global feature parameters\nparams.t_global.cell_size = 4; % Feature cell size\n\n% Image sample parameters\nparams.search_area_shape = 'square'; % The shape of the samples\nparams.search_area_scale = 4.5; % The scaling of the target size to get the search area\nparams.min_image_sample_size = 200^2; % Minimum area of image samples\nparams.max_image_sample_size = 250^2; % Maximum area of image samples\n\n% Spatial regularization window_parameters\nparams.feature_downsample_ratio = [4, 14]; % Feature downsample ratio (We found that decreasing the downsampling ratios of CNN layer may benefit the performance)\nparams.reg_window_max = 1e5; % The maximum value of the regularization window\nparams.reg_window_min = 1e-3; % The minimum value of the regularization window\n\n% Detection parameters\nparams.refinement_iterations = 1; % Number of iterations used to refine the resulting position in a frame\nparams.newton_iterations = 5; % The number of Newton iterations used for optimizing the detection score\nparams.clamp_position = false; % Clamp the target position to be inside the image\n\n% Learning parameters\nparams.output_sigma_factor = 1/16;\t\t% Label function sigma\nparams.temporal_regularization_factor = [15 15]; % The temporal regularization parameters\n\n% ADMM parameters\nparams.max_iterations = [2 2];\nparams.init_penalty_factor = [1 1];\nparams.max_penalty_factor = [0.1, 0.1];\nparams.penalty_scale_step = [10, 10];\n\n% Scale parameters for the translation model\nparams.number_of_scales = 5; % Number of scales to run the detector\nparams.scale_step = 1.01; % The scale factor\n\n% Visualization\nparams.visualization = 1; % Visualiza tracking and detection scores\n\n% GPU\nparams.use_gpu = true; % Enable GPU or not\nparams.gpu_id = []; % Set the GPU id, or leave empty to use default\n\n% Initialize\nparams.seq = seq;\n\n% Run tracker\nresults = tracker(params);\n", "meta": {"author": "lifeng9472", "repo": "STRCF", "sha": "68c062d4aa7083b8721e37ce19d92497c8dc4de3", "save_path": "github-repos/MATLAB/lifeng9472-STRCF", "path": "github-repos/MATLAB/lifeng9472-STRCF/STRCF-68c062d4aa7083b8721e37ce19d92497c8dc4de3/run_DeepSTRCF.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149978955811, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.38924920759296006}} {"text": "function Xk = nufft_table_adj(st, X)\n%function Xk = nufft_table_adj(st, X)\n% adjoint of table-based nufft interpolation.\n% in\n%\tst\t\tstructure from nufft_init\n%\tX [M,?]\t\tDTFT values\n% out\n%\tXk [*Kd,?]\tDFT coefficients\n% Copyright 2004-3-30, Jeff Fessler and Yingying Zhang, University of Michigan\n\ndd = length(st.Kd);\n\n% t = omega / gamma\ntm = zeros(size(st.om));\nfor id=1:dd\n\tgam = 2*pi / st.Kd(id);\n\ttm(:,id) = st.om(:,id) / gam;\nend\n\nif size(X,1) ~= st.M\n\terror 'X size problem'\nend\n\n% adjoint of phase shift\nif isvar('st.phase_shift') & ~isempty(st.phase_shift)\n\tX = X .* conj(st.phase_shift);\nend\n\nif isreal(X)\n\tX = complexify(X);\nend\n\nif dd == 1\n\tXk = interp1_table_adj_mex(X, st.h{1}, ...\n\t\tint32(st.Jd), int32(st.Ld), tm, int32(st.Kd(1)));\n\nelseif dd==2\n\tXk = interp2_table_adj_mex(X, st.h{1}, st.h{2}, ...\n\t\tint32(st.Jd), int32(st.Ld), tm, int32(st.Kd));\n\nelseif dd==3\n\tXk = interp3_table_adj_mex(X, st.h{1}, st.h{2}, st.h{3}, ...\n\t\tint32(st.Jd), int32(st.Ld), tm, int32(st.Kd));\n\nelse\n\terror '> 3d not done'\nend\n", "meta": {"author": "thomaskuestner", "repo": "CS_MoCo_LAB", "sha": "a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b", "save_path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB", "path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB/CS_MoCo_LAB-a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b/reconstruction/matlab/CS_LAB_matlab/@NUFFT/private/nufft_table_adj.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149868676284, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.38924920190672796}} {"text": "clear;\n%% load file\n\npath_to_package = ''; % path to the folder that contains the package\naddpath(genpath(path_to_package));\n \nfilename = ''; % path to stack tiff file\n%foldername = ''; % path to folder that contains a sequence of tiff files\n\nif exist([filename(1:end-3),'mat'],'file')\n data = matfile([filename(1:end-3),'mat'],'Writable',true);\nelse\n sframe=1;\t\t\t\t\t\t% user input: first frame to read (optional, default 1)\n num2read=[];\t\t\t\t\t% user input: how many frames to read (optional, default until the end)\n chunksize=1000; % user input: read and map input in chunks (optional, default read all at once)\n data = memmap_file(filename,sframe,num2read,chunksize);\n %data = memmap_file_sequence(foldername);\nend\n\n%% Set parameters\nsizY = size(data,'Y'); % size of data matrix\npatch_size = [32,32]; % size of each patch along each dimension (optional, default: [32,32])\noverlap = [4,4]; % amount of overlap in each dimension (optional, default: [4,4])\n\npatches = construct_patches(sizY(1:end-1),patch_size,overlap);\nK = 8; % number of components to be found\ntau = 8; % std of gaussian kernel (size of neuron) \np = 0; % order of autoregressive system (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay)\nmerge_thr = 0.8; % merging threshold\nsizY = data.sizY;\n\noptions = CNMFSetParms(...\n 'd1',sizY(1),'d2',sizY(2),...\n 'search_method','ellipse','dist',3,... % search locations when updating spatial components\n 'deconv_method','constrained_foopsi',... % activity deconvolution method\n 'temporal_iter',2,... % number of block-coordinate descent steps \n 'ssub',2,...\n 'tsub',4,...\n 'fudge_factor',0.98,... % bias correction for AR coefficients\n 'merge_thr',merge_thr,... % merging threshold\n 'gSig',tau...\n );\n\n%% Run on patches\n\n[A,b,C,f,S,P,RESULTS,YrA] = run_CNMF_patches(data,K,patches,tau,p,options);\n\n%% order and plot\n\n[A_or,C_or,S_or,P] = order_ROIs(A,C,S,P); % order components\n\ncontour_threshold = 0.95; % amount of energy used for each component to construct contour plot\nfigure;\n[Coor,json_file] = plot_contours(A_or,reshape(P.sn,sizY(1),sizY(2)),contour_threshold,1); % contour plot of spatial footprints\n%savejson('jmesh',json_file,'filename'); % optional save json file with component coordinates (requires matlab json library)", "meta": {"author": "zhoupc", "repo": "CNMF_E", "sha": "ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f", "save_path": "github-repos/MATLAB/zhoupc-CNMF_E", "path": "github-repos/MATLAB/zhoupc-CNMF_E/CNMF_E-ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f/ca_source_extraction/demo_memmap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149758396752, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.38924919622049575}} {"text": "function [src,sfi] = zSpecularFreeImage(src)\nLambda = 0.6;\ncamDark = 20;\nr = src.rgb(:,:,1); g = src.rgb(:,:,2); b = src.rgb(:,:,3);\nsrc.i(intersect(intersect(find(r= 0) &...\n\t (vDecDate(:,1)-vDecDate(nEvent,1) <= fTime) & vCluster(nEvent) == 0); \n\t \n\t end;% End of isnan(mCatalog)\n\t \n\t %maybe here and especially later is a change needed, because it might be expensive to find the \"positon\" \n\t %in th array later (DE)\n\t mTmp = mCatalog(vSel,:);\n\t \n\t if length(mTmp(:,1)) == 1 % Only one event thus no cluster; IF to determine cluster or not\n\t fMaxClusterMag = fMag;\n\t \n\t else\n\t fMaxClusterMag = max(mTmp(:,6));\n\t [nIndiceMaxMag] = find(mTmp(:,6) == fMaxClusterMag);\n\t fTimeMaxClusterMag = mTmp(max(nIndiceMaxMag),3);\n\t \n\t %can't stand while loops, try to eliminate it (DE) %probably just sort the whole catalog with magnitude\n\t %The while looks ugly but the time it uses is small\n\t % Search for event with bigger magnitude in cluster and add to cluster\n\t while fMaxClusterMag-fMag > 0\n\t [fSpace, fTime] = calc_windows_gardKnop(fMaxClusterMag, nMethod);\n\t fSpaceDeg = km2deg(fSpace);\n\t \n\t %% Adding aftershocks from bigger aftershock\n\t mPos = [mTmp(min(nIndiceMaxMag),1) mTmp(min(nIndiceMaxMag),2)];\n\t mPos = repmat(mPos,length(mCatalog(:,1)), 1);\n\t mDist = abs(distance(mCatalog(:,1), mCatalog(:,2), mPos(:,1), mPos(:,2)));\n\t vSel2 = ((mDist <= fSpaceDeg) & (vDecDate(:,1)-mTmp(min(nIndiceMaxMag),3) >= 0) &...\n\t (vDecDate(:,1)-mTmp(min(nIndiceMaxMag),3) <= fTime) & vCluster == 0);\n\t mTmp = mCatalog(vSel2,:);\n\t %vSel = (vSel > 0 | vSel2 > 0); % Actual addition %>0 not needed both are logical vectors (DE)\n\t vSel = vSel|vSel2;\n\t if isempty(mTmp) % no events in aftershock zone \n\t break;\n\t end;\n\t \n\t fMag = fMaxClusterMag;\n\t fMaxClusterMag = max(mTmp(:,6));\n\t [nIndiceMaxMag] = find(mTmp(:,6) == fMaxClusterMag);\n\t fTimeMaxClusterMag = mTmp(max(nIndiceMaxMag),3);\n\t \n\t if fMaxClusterMag - fMag == 0 % no bigger event in aftershock zone\n\t break;\n\t end;\n\t \n\t end; % End of while\n\t \n\t nCount = nCount + 1; % Set cluster number\n\t \n\t end; % End of if length(mTmp)\n\t\n\t [vIndice]=find(vSel); % Vector of indices with Clusters\n\t vTmpCluster(vIndice,:) = nCount;\n\t %length(vTmpCluster(vIndice,:));\n\t nI=1; % Variable counting the length of the cluster\n\t % Select the right numbers for the cluster using the indice vector vIndice\n\t % First: Insert cluster number after check for length\n\t % Second: Check if it's a mainshock\n\t % Third: Keep the former cluster indice;\n\t while nI <= length(vIndice)\n\t if (~isempty(vTmpCluster(vIndice(nI))) & length(vTmpCluster(vIndice,:)) > 1 & vCluster(vIndice(nI)) == 0)\n\t vCluster(vIndice(nI)) = vTmpCluster(vIndice(nI));\n\t %vEventnr(vIndice,:) = nEvent;\n\t elseif (~isempty(vTmpCluster(vIndice(nI))) & length(vTmpCluster(vIndice,:)) == 1 & vCluster(vIndice(nI)) == 0)\n\t vCluster(vIndice(nI)) = 0;\n\t else\n\t vCluster(vIndice(nI)) = vCluster(vIndice(nI));\n\t end;\n\t nI=nI+1;\n\t end; %End of while nI\n\t % nCount = nCount + 1; % Set cluster number %% Watch\n\t % end; % End of if to determine cluster or not %% Watch\n\t %%% Check if the Cluster is not just one event which can happen in case of keeping the former \n\t %%% cluster number in preceeding while-Loop\n\t vSelSingle = (vCluster == nCount);\n\t [vIndiceSingle] = find(vSelSingle);\n\t %vTmpSingle(vIndiceSingle,:);\n\t if length(vIndiceSingle) == 1\n\t %nCount\n\t %vIndiceSingle\n\t vCluster(vIndiceSingle)=0; % Set the event as mainsock\n\t nCount = nCount-1; % Correct the cluster number down by one\n\t end;\n\t\n\t end; % End of if checking if vCluster == 0 \n\t if rem(nEvent,100) == 0\n\t waitbar(nEvent/length(mCatalog(:,6)))\n\t end; % End updating waitbar\n\tend; % End of FOR over mCatalog \n\tclose(hWaitbar1);\n\t%nCount\n\t%% vCL Cluster vector with mainshocks in it; vCluster is now modified to get rid of mainshocks\n\tvCl = vCluster; \n\t\n\t%% Matrix with cluster indice, magnitude and time \n\tmTmpCat = [vCluster mCatalog(:,6) mCatalog(:,3)];\n\t%% Delete largest event from cluster series and add to mainshock catalog\n\thWaitbar2 = waitbar(0,'Identifying mainshocks in clusters...');\n\tset(hWaitbar2,'Numbertitle','off','Name','Mainshock identification ');\n\tfor nCevent = 1:nCount\n\t %nCevent\n\t vSel4 = (mTmpCat(:,1) == nCevent); % Select cluster \n\t mTmpCat2 = mCatalog(vSel4,:); \n\t fTmpMaxMag = max(mTmpCat2(:,6)); % Select max magnitude of cluster\n\t vSelMag = (mTmpCat2(:,6) == fTmpMaxMag);\n\t [nMag] = find(vSelMag);\n\t if length(nMag) == 1\n\t vSel5 = (mTmpCat(:,1) == nCevent & mTmpCat(:,2) == fTmpMaxMag); % Select the event\n\t [vIndiceMag] = find(vSel5); % Find indice \n\t vCluster(vIndiceMag) = 0; % Set cluster value to zero, so it is a mainshock\n\t vMainCluster(vIndiceMag) = nCevent; % Set mainshock vector to cluster number\n\t elseif length(nMag) == 0\n\t disp('Nothing in ')\n\t nCevent\n\t else\n\t vSel = (mTmpCat(:,1) == nCevent & mTmpCat(:,2) == fTmpMaxMag);\n\t mTmpCat3 = mCatalog(vSel,:);\n\t [vIndiceMag] = min(find(vSel)); % Find minimum indice of event with max magnitude in cluster\n\t vCluster(vIndiceMag) = 0; % Set cluster value to zero, so it is a mainshock\n\t vMainCluster(vIndiceMag) = nCevent; % Set mainshock vector to cluster number\n\t end;\n\t if rem(nCevent,20) == 0\n\t waitbar(nCevent/nCount)\n\t end; % End updating waitbar\n\tend; % End of For nCevent\n\tclose(hWaitbar2);\n\t%% Create a catalog of aftershocks (mCatAfter) and of declustered catalog (mCatDecluster)\n\tvSel = (vCluster(:,1) > 0);\n\t%mCatDecluster=mCatalog(~vSel,:);\n\t%mCatAfter = mCatalog(vSel,:);\n\t\n\t\n\t\n\t%create the wanted output for mapseis\n\t%clusterID,EventType,AlgoInfo\n\tEventType = categorical(ones(length(mCatalog,1)),...\n\t\t[0 1 2 3],...\n\t\t{'unclassified','single event','mainshock','aftershock'}); \n\tclusterID=vCl;\n\t\n\t%the type first\n\tEventType(vCl~=0)='mainshock';\n\tEventType(vCluster~=0)='aftershock';\n\tclusterID(clusterID==0)=NaN;\n\t\n\t%The original does not set a mainshock if all earhquakes in a cluster have the same Magnitude, this part will \n\t%if SetMain is set to true choose the first eq as mainshock, which is as the catalog should be sorted by time\n\t%the first in the list\n\t%Also does the original code determine the length of the clusters, this here will do it\n\tuniqueClust=unique(clusterID(~isnan(clusterID)));\n\tClusterLength=zeros(numel(uniqueClust),1);\n\tif SetMain\n\t\tfor i=1:numel(ClusterLength);\n\t\t\tClusterLength(i)=sum(clusterID==uniqueClust(i));\n\t\t\t\n\t\t\tif all(EventType(clusterID==uniqueClust(i))=='aftershock')\n\t\t\t\tTheInder=find(clusterID==uniqueClust(i));\n\t\t\t\tEventType(TheInder(1))='mainshock';\n\t\t\tend\n\t\tend\n\t\t\n\telse\n\t\tfor i=1:numel(ClusterLength);\n\t\t\tClusterLength(i)=sum(clusterID==uniqueClust(i));\n\t\tend\n\n\t\n\tend\n\t\t\n\tCalcParameter.Method=nMethod;\n\tCalcParameter.SetMain=SetMain;\t\n\t\n\tAlgoInfo.Type='Gardner-Knopoff-mapseis-v1';\n\tAlgoInfo.UsedConfig=CalcParameter;\n\tAlgoInfo.CalculationDate=date;\n\tAlgoInfo.ClusterLengths=ClusterLength;\n\tAlgoInfo.largest_Eq=[];\n\t\t\nend\t\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/+declustering/calc_decluster_gardKnop.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7606506526772883, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3892375693540293}} {"text": "function check = uniform_check ( a, b )\n\n%*****************************************************************************80\n%\n%% UNIFORM_CHECK checks the parameters of the Uniform CDF.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 22 September 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, real A, B, the parameters of the PDF.\n% A < B.\n%\n% Output, logical CHECK, is true if the parameters are legal.\n%\n if ( b <= a )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'UNIFORM_CHECK - Fatal error!\\n' );\n fprintf ( 1, ' B <= A.\\n' );\n check = 0;\n return\n end\n\n check = 1;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/prob/uniform_check.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7606506472514406, "lm_q1q2_score": 0.38923756657753295}} {"text": "function display_element ( prefix, element )\n\n%*****************************************************************************80\n%\n%% DISPLAY_ELEMENT lists the coordinates of nodes making up an element.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 June 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string PREFIX, the common filename prefix for the node and\n% element files.\n%\n% Input, integer ELEMENT, the index of the element.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'DISPLAY_ELEMENT\\n' );\n fprintf ( 1, ' List coordinates of the nodes making up an element.\\n' );\n fprintf ( 1, ' Element and node file prefix is \"%s\".\\n', prefix );\n\n element_filename = sprintf ( '%s_elements.txt', prefix );\n node_filename = sprintf ( '%s_nodes.txt', prefix );\n\n element_node = load ( element_filename );\n node_xyz = load ( node_filename );\n\n [ element_num, element_order ] = size ( element_node );\n [ node_num, dim_num ] = size ( node_xyz );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' LEO ordering:\\n' );\n fprintf ( 1, ' Node coordinates for element %d\\n', element );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' I N X Y Z\\n' );\n fprintf ( 1, '\\n' );\n for j = 1 : element_order\n n = element_node(element,j);\n fprintf ( 1, ' %2d %4d %14.6g %14.6g %14.6g\\n', j, n, node_xyz(n,1:3) );\n end\n\n leo_to_gmsh = [...\n 1, 2, 3, 4, 5, ...\n 7, 10, 11, 8, 6, ...\n 12, 18, 19, 13, 20, ...\n 14, 9, 15, 16, 17 ];\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Gmsh ordering:\\n' );\n fprintf ( 1, ' Node coordinates for element %d\\n', element );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' I N X Y Z\\n' );\n fprintf ( 1, '\\n' );\n for j = 1 : element_order\n k = leo_to_gmsh(j);\n n = element_node(element,k);\n fprintf ( 1, ' %2d %4d %14.6g %14.6g %14.6g\\n', j, n, node_xyz(n,1:3) );\n end\n return\nend\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/navier_stokes_mesh3d/display_element.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7606506472514406, "lm_q1q2_score": 0.38923756657753295}} {"text": "function [p,p_lp] = addSymmetryCuts(p,p_lp)\n\nfor j = 1:length(p.sdpsymmetry) \n if length(p.sdpsymmetry{j}.variables{1}) <= 4\n % We can enumerate easily infeasibles\n excludes = [];\n n = sqrt(size(p.sdpsymmetry{j}.dataBlock,1));\n vars = p.sdpsymmetry{j}.variables{1};\n % Now enumerate, for historical reasons\n % also accept {-1,0}-models so translate and scale\n L = p.lb(vars);\n U = p.ub(vars);\n m = length(vars);\n combs = dec2decbin(0:2^m-1,m)'; \n combs = repmat(L,1,size(combs,2)) + repmat(U-L,1,size(combs,2)).*combs;\n combs = unique(combs','rows')';\n feasible = ones(1,size(combs,2));\n for i = 1:size(combs,2)\n if min(eig(reshape(p.sdpsymmetry{j}.dataBlock*[1;combs(:,i)],n,n))) < -abs(p_lp.options.bnb.feastol)\n excludes = [excludes combs(:,i)];\n feasible(i) = 0;\n end\n end\n % We can model the inconsistencies in various ways \n % 1. Binary variables sum less\n % 2. Binary variables sum larger\n % 3. Generic, just exclude \n if ~isempty(excludes)\n done = 0;\n sum_feas = sum(combs(:,find(feasible)),1);\n sum_infeas = sum(excludes,1); \n newF = [];\n if all(sum_infeas==sum_infeas(1)) && all(sum_feas < sum_infeas(1) | sum_feas > sum_infeas(1))\n % There is a forbidden sum among these\n for s = 1:length(p.sdpsymmetry{j}.variables)\n p.forbiddencardinality.variables{end+1} = p.sdpsymmetry{j}.variables{s};\n p.forbiddencardinality.value{end+1} = sum_infeas(1); \n end\n end\n for k = min(sum(combs,1)):max(sum(combs,1))\n if all(sum_feas<=k) && all(sum_infeas>k)\n for s = 1:length(p.sdpsymmetry{j}.variables)\n a = spalloc(1,length(p_lp.c),1);\n a(p.sdpsymmetry{j}.variables{s}) = -1;\n newF = [newF;k a]; \n end \n done = 1;\n break\n elseif all(sum_feas>=k) && all(sum_feas 0)\nip.addParamValue('m', [], @(x) isnumeric(x) && isreal(x) && all(isfinite(x(:))))\nip.addParamValue('S', [], @(x) isnumeric(x) && isreal(x) && all(isfinite(x(:))))\nip.addParamValue('n_minibatch', 0.1, @(x) isreal(x) && isscalar(x) && x > 0)\nip.addParamValue('maxiter', 2000, @(x) isreal(x) && isscalar(x) && x >= 0)\nip.addParamValue('momentum', 0.9, @(x) isreal(x) && isscalar(x) && x > 0)\nip.addParamValue('mu1', 0.01, @(x) isreal(x) && isscalar(x) && x > 0)\nip.addParamValue('mu2', 1e-5, @(x) isreal(x) && isscalar(x) && x > 0)\nip.addParamValue('tol', 1e-6, @(x) isreal(x) && isscalar(x))\nip.addParamValue('step_size', [], @(x) isa(x,'function_handle'))\nip.addParamValue('lik_sigma2',0.1, @(x) isscalar(x) && x>=0);\nip.addParamValue('lik_sigma2_prior',prior_loggaussian('mu',-2, 's2', 0.5), ...\n @(x) isstruct(x) || isempty(x));\nip.addParamValue('display', 10, @(x) ismember(x,{'final','iter','off'}) ...\n || (isreal(x) && isscalar(x) && x > 1) )\n\nip.parse(gp, x,y,varargin{:});\nx=ip.Results.x;\ny=ip.Results.y;\nz=ip.Results.z;\nxt=ip.Results.xt;\nyt=ip.Results.yt;\nzt=ip.Results.zt;\nX_u=ip.Results.X_u;\nnu=ip.Results.nu;\nm=ip.Results.m;\nS=ip.Results.S;\nn_minibatch=ip.Results.n_minibatch;\nmomentum=ip.Results.momentum;\nmu1=ip.Results.mu1;\nmu2=ip.Results.mu2;\nstep_size=ip.Results.step_size;\nmaxiter=ip.Results.maxiter;\ntol=ip.Results.tol;\nlik_sigma2 = ip.Results.lik_sigma2;\nlik_sigma2_prior = ip.Results.lik_sigma2_prior;\ndisplay = ip.Results.display;\n\n% Initialise the diagnosis output structure\ndiagnosis = struct();\n\n% Check if latent method SVI has been set\nif ~isfield(gp, 'latent_method') || ~isequal(gp.latent_method, 'SVI')\n gp=gp_set(gp, 'latent_method', 'SVI');\nend\n\n% Check if latent method is not gaussian or probit\nif ~strcmp(gp.lik.type, 'Gaussian') && ~strcmp(gp.lik.type, 'Probit')\n error('Supported likelihoods for SVIGP are gaussian and probit.')\nend\n\n% Process parameters\nif xor(isempty(xt), isempty(yt))\n warning('Need both xt and yt for monitoring mean log predictive density.');\nend\nn=size(x,1);\n\nif n_minibatch < 1\n n_minibatch = max(floor(n_minibatch*n),1);\nend\nif n_minibatch > n\n n_minibatch = max(floor(0.1*n),1);\n warning('Too many minibatches, using floor(0.1*n) = %d instead.', ...\n n_minibatch)\nend\n\nif isempty(step_size)\n step_size=@(iter) 1/(1+iter./n_minibatch);\nend\n\n% Handle the inducing inputs\nif ~ismember('X_u',ip.UsingDefaults)\n gp.X_u = X_u;\nend\nif isempty(gp.X_u)\n % Assign X_u by clustering\n if isempty(nu)\n nu = min(max(floor(0.1.*n),1),1500);\n elseif nu < 1\n nu = max(floor(nu.*n),1);\n end\n fprintf('Assign inducing inputs by clustering\\n')\n Sw=warning('off','stats:kmeans:EmptyCluster');\n [~,X_u] = kmeans(x, nu,'Start','uniform',...\n 'EmptyAction','singleton');\n warning(Sw);\n gp.X_u = X_u;\nend\ngp.nind = size(gp.X_u,1);\n\n% Handle the rest of the parameters\nif ~ismember('m',ip.UsingDefaults)\n if length(m) == gp.nind\n gp.m = m;\n else\n error('The size of m does not match with X_u')\n end\nelseif ~isfield(gp, 'm') || length(gp.m) ~= gp.nind\n gp.m = zeros(gp.nind,1);\nend\n\nif ~ismember('S',ip.UsingDefaults)\n if ismatrix(S) && all(size(S) == gp.nind)\n gp.S = S;\n else\n error('The size of S does not match with X_u')\n end\nelseif ~isfield(gp, 'S') || any(size(gp.S) ~= gp.nind)\n gp.S = 0.1*eye(gp.nind);\n % gp.S = gp_trcov(gp,gp.X_u);\nend\ngp.t1=gp.S\\gp.m;\ngp.t2=-0.5.*inv(gp.S);\n\n% Handle the likelihood variance\nif ~isfield(gp.lik, 'sigma2')\n gp.lik.sigma2 = lik_sigma2;\n gp.lik.p.sigma2 = lik_sigma2_prior;\n gp.lik.fh.lp = @lik_lp;\n gp.lik.fh.lpg = @lik_lpg;\nend\n\n% Return prematurely if only initialising\nif maxiter == 0\n return\nend\n\n% Parameters\nw = gp_pak(gp);\nw0 =w;\nnh1 = numel(gp.t1) + numel(gp.t2);\nnh2 = length(w)-nh1;\n\n% Initial step-size vector\nmu0 = mu1.*ones(size(w));\nmu0(end-nh2+1:end)=mu2;\n\n% Size of minibatches\nnb=n_minibatch;\n% Number of minibatches\nnbb=ceil(n/nb);\n\n% Monitored values\nif nargout > 1\n e_all = zeros(maxiter,nbb);\n w_all = zeros(maxiter,nbb,nh2);\n if ~isempty(xt) && ~isempty(yt)\n mlpd_all = zeros(maxiter,1);\n rmse_all = zeros(maxiter,1);\n end\nend\ng_old=zeros(size(w));\nmomentum=momentum.*ones(size(w));\netot_old=Inf;\n\n% Preprocess conditions for iteration\ndisp_iter = strcmp(display, 'iter');\ndisp_i = 0;\ndisp_count = display;\n\n% Iterate until convergence or maxiter\nconverged = 0;\ntry_fix_mu2 = 0;\nfor iter = 1:maxiter\n \n % Divide the data into minibatches\n inds = cell(nbb,1);\n ind = randperm(n);\n for i=1:nbb-1\n inds{i} = ind((i-1)*nb+1:i*nb);\n end\n inds{nbb} = ind((nbb-1)*nb+1:end);\n \n % Compute the step-size\n mu = mu0.*step_size(iter);\n \n % Iterate all the minibatches\n etot = 0;\n broken = 0;\n for i=1:nbb\n if isempty(z)\n zi = [];\n else\n zi = z(inds{i},:);\n end\n gp.data_prop=length(inds{i})./n;\n [e,~,~,param] = gpsvi_e(w,gp,x(inds{i},:),y(inds{i},:), 'z', zi);\n etot = etot+e;\n g = gpsvi_g(w,gp,x(inds{i},:),y(inds{i},:), 'z', zi, ...\n 'gpsvi_e_param', param);\n g = mu.*g + momentum.*g_old;\n g_old = g;\n w = w+g;\n if nargout > 1\n e_all(iter,i) = e;\n w_all(iter,i,:) = w(end-nh2+1:end);\n end\n if ~isnan(etot) ...\n && all(~isinf(exp(w(end-nh2+1:end)))) ...\n && all(exp(w(end-nh2+1:end))~=0) ...\n && ~any(isnan(g)) ...\n && ~isnan(gpsvi_e(w+g,gp,x(inds{i},:),y(inds{i},:), 'z', zi))\n gp = gp_unpak(gp,w);\n elseif ~try_fix_mu2\n fprintf('Bad parameter values, decreasing mu2.\\n');\n try_fix_mu2 = 1;\n mu2 = 0.1*mu2;\n mu0(end-nh2+1:end)=mu2;\n w = w0;\n g_old = zeros(1,nh1+nh2);\n broken = 1;\n break\n else\n fprintf('Bad parameter values, decreasing step-size and momentum.\\n');\n mu0 = 0.1.*mu0;\n momentum = 0.5*momentum;\n w = w0;\n g_old = zeros(1,nh1+nh2);\n broken = 1;\n break\n end\n gpsvi_e('clearcache',gp);\n end\n if broken\n continue\n end\n etot=etot/nbb;\n \n % Analyse and print\n if isscalar(display)\n if disp_count == display\n disp_i = 1;\n disp_count = 1;\n else\n disp_i = 0;\n disp_count = disp_count +1;\n end\n end\n if ~isempty(xt) && ~isempty(yt) ...\n && ( disp_iter || nargout > 1 || disp_i)\n [Eft,~,lpyt] = gpsvi_pred(gp,x,y,xt,'yt',yt, 'z', zi, 'zt', zt);\n lpyt = mean(lpyt);\n if nargout > 1\n mlpd_all(iter) = lpyt;\n rmse = sqrt(mean((yt-Eft).^2));\n rmse_all(iter) = rmse;\n end\n if disp_iter || disp_i\n fprintf('iter=%d/%d, e=%.3f, mlpd=%.4g, rmse=%.4g, de=%.5g\\n', ...\n iter, maxiter, etot, lpyt, rmse, abs(etot-etot_old));\n end\n elseif disp_iter || disp_i\n fprintf('iter=%d/%d, e=%.3f, de=%.5g\\n', ...\n iter, maxiter, etot, abs(etot-etot_old));\n end\n \n % Check for convergence\n if abs(etot-etot_old) 1 || disp_i)\n fprintf(['Final values:\\n' ...\n 'e=%.3f, mlpd=%.4g, rmse=%.4g\\n'], etot, lpyt, rmse);\n elseif ~isempty(xt) && ~isempty(yt)\n [Eft,~,lpyt] = gpsvi_pred(gp,x,y,xt,'yt',yt, 'z', z, 'zt', zt);\n fprintf(['Final values:\\n' ...\n 'e=%.3f, mlpd=%.4g, rmse=%.4g\\n'], ...\n etot, mean(lpyt)), sqrt(mean((yt-Eft).^2));\n else\n fprintf('Final energy: %.3f\\n', etot);\n end\nend\n\n% Save the monitored values\nif nargout > 1\n diagnosis.e = e_all(1:iter,:);\n diagnosis.w = w_all(1:iter,:,:);\n if ~isempty(xt) && ~isempty(yt)\n diagnosis.mlpd = mlpd_all(1:iter);\n diagnosis.rmse = rmse_all(1:iter);\n end\nend\n\nend\n\n\nfunction lp = lik_lp(lik, varargin)\n%LIK_LP log(prior) of the likelihood parameters\n%\n% Description\n% LP = LIK_LP(LIK) takes a likelihood structure LIK and\n% returns log(p(th)), where th collects the parameters. This\n% subfunction is needed if there are likelihood parameters.\n% Added for non-gaussian likelihoods in SVIGP.\n%\n% See also\n% LIK_*, SVIGP\n\n\n% If prior for sigma2sion parameter, add its contribution\nlp=0;\nif ~isempty(lik.p.sigma2)\n lp = lik.p.sigma2.fh.lp(lik.sigma2, lik.p.sigma2) +log(lik.sigma2);\nend\nend\n\n\nfunction lpg = lik_lpg(lik)\n%LIK_LPG d log(prior)/dth of the likelihood parameters\n%\n% Description\n% E = LIK_NEGBIN_LPG(LIK) takes a likelihood structure LIK and\n% returns d log(p(th))/dth, where th collects the parameters.\n% This subfunction is needed if there are likelihood parameters.\n% Added for non-gaussian likelihoods in SVIGP.\n%\n% See also\n% LIK_*, SVIGP\n\nlpg=[];\nif ~isempty(lik.p.sigma2)\n % Evaluate the gprior with respect to sigma2\n ggs = lik.p.sigma2.fh.lpg(lik.sigma2, lik.p.sigma2);\n lpg = ggs(1).*lik.sigma2 + 1;\n if length(ggs) > 1\n lpg = [lpg ggs(2:end)];\n end\nend\nend\n\n", "meta": {"author": "gpstuff-dev", "repo": "gpstuff", "sha": "114937ec0a201306489a66cbba38283e722fb998", "save_path": "github-repos/MATLAB/gpstuff-dev-gpstuff", "path": "github-repos/MATLAB/gpstuff-dev-gpstuff/gpstuff-114937ec0a201306489a66cbba38283e722fb998/gp/svigp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872243177518, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.3891667850349823}} {"text": "function [imageSeg]= getPlanSeg_complete(XYZworldframeTest,SpaceTest,imgSize,imageNum)\n% input XYZworldframeTest is alinged in Z\nonPlaneThreshold =0.055;\nsizethr =750;\nnormalAgreeThreshold =0.8;\n\nremoveNaN = find(~sum(isnan(XYZworldframeTest),2));\nXYZworldframeTest = XYZworldframeTest(removeNaN,:);\n[zhist,zc]=hist(XYZworldframeTest(:,3),round(20*(SpaceTest.Rz(2)-SpaceTest.Rz(1))));\n[~,zpks] =findpeaks([0,zhist,0],'minpeakdistance',3);\nzpks = zpks-1;\n% figure,\n% bar(bincenter,count);\n% hold on;\n% plot(bincenter(pks),count(pks),'rx');\n% remove\nrange =[max(min(XYZworldframeTest(:,3)),zc(max(1,zpks-1))'),...\n min(zc(min(size(zc,2),zpks+1)),max(XYZworldframeTest(:,3)))';\n zc(end-2),max(XYZworldframeTest(:,3));\n min(XYZworldframeTest(:,3)),zc(3)];\nremovepts = inrange(XYZworldframeTest(:,3),range);\nXYZworldframeTestRemove=XYZworldframeTest;\nXYZworldframeTestRemove(removepts>0,:) =[];\n\n\n% hough lines\n[H,T,R] = votelines(XYZworldframeTestRemove(:,1),XYZworldframeTestRemove(:,2));\n% blur it \nallangleVote = max(H);\nallangleVote = [allangleVote,allangleVote];\nshift= 0;\nclear rightAngle\nfor i =1:length(shift)\n rightAngle(i,:) = allangleVote(91+shift(i):180+shift(i))+allangleVote(1:90);\nend\n[~,AnglepickedLin]= max(rightAngle(:));\n[s,Anglepicked]=ind2sub(size(rightAngle),AnglepickedLin);\n[~,Rpicked1] = max(H(:,Anglepicked));\n[~,Rpicked2] = max(H(:,Anglepicked+90+shift(s)));\nP = [R(Rpicked1),T(Anglepicked);R(Rpicked2),T(Anglepicked)+90+shift(s)];\n\n\nrotation = min(P(:,2));\nRot = getRotationMatrix('z',-1*rotation/180*pi);\nXYZworldframeTestNew = [[Rot(1:2,1:2)*XYZworldframeTest(:,[1,2])']', XYZworldframeTest(:,3)];\nnormals = points2normals(XYZworldframeTestNew);\n\n\n% find corner \n[xhist,xc]=hist(XYZworldframeTestNew(:,1),round((SpaceTest.Rx(2)-SpaceTest.Rx(1))/0.05));\n[~,xpks] =findpeaks([0,xhist,0],'MINPEAKHEIGHT',50);\nxpks = xpks-1;\n[yhist,yc]=hist(XYZworldframeTestNew(:,2),round((SpaceTest.Rx(2)-SpaceTest.Rx(1))/0.05));\n[~,ypks] =findpeaks([0,yhist,0],'MINPEAKHEIGHT',50);\nypks = ypks-1;\n[zhist,zc]=hist(XYZworldframeTestNew(:,3),round((SpaceTest.Rx(2)-SpaceTest.Rx(1))/0.05));\n[~,zpks] =findpeaks([0,zhist,0],'MINPEAKHEIGHT',50);\nzpks = zpks-1;\n\n\n%% project points onto this plan and caculate conected component \ngid =1;\nSegment ={};\nSegmentSize = [];\nimageSegFill = zeros(imgSize);\nfor p =1:size(xpks,2)\n inLine =find(abs(XYZworldframeTestNew(:,1)-xc(xpks(p)))normalAgreeThreshold);\n conthisSegMask = zeros(imgSize);\n conthisSegMask(removeNaN(inLine)) =1;\n label = bwlabel(conthisSegMask,8);\n unique_label = unique(label);\n unique_label(unique_label==0)=[];\n for i =1:length(unique_label),\n if sum(label(:)==unique_label(i))>sizethr,\n Segment(gid) = {label==unique_label(i)};\n SegmentSize(gid) = sum(label(:)==unique_label(i));\n imageSegFill(label==unique_label(i))=gid;\n gid = gid+1;\n end\n end\nend\n\n\nfor p =1:size(ypks,2)\n inLine =find(abs(XYZworldframeTestNew(:,2)-yc(ypks(p)))normalAgreeThreshold);\n conthisSegMask = zeros(imgSize);\n conthisSegMask(removeNaN(inLine)) =1;\n label = bwlabel(conthisSegMask,8);\n unique_label = unique(label);\n unique_label(unique_label==0)=[];\n for i =1:length(unique_label),\n if sum(label(:)==unique_label(i))>sizethr,\n\n Segment(gid) = {label==unique_label(i)};\n SegmentSize(gid) = sum(label(:)==unique_label(i));\n imageSegFill(label==unique_label(i))=gid;\n gid = gid+1;\n end\n end\nend\n\nfloorSize = 0;\nfloorMask = zeros(imgSize);\nLowest = nanmin(XYZworldframeTestNew(:,3));\nfor p =1:size(zpks,2) \n inLine =find(abs(XYZworldframeTestNew(:,3)-zc(zpks(p)))normalAgreeThreshold);\n conthisSegMask = zeros(imgSize);\n conthisSegMask(removeNaN(inLine)) =1;\n label = bwlabel(conthisSegMask,8);\n unique_label = unique(label);\n unique_label(unique_label==0)=[];\n for i =1:length(unique_label),\n if sum(label(:)==unique_label(i))>sizethr,\n Segment(gid) = {label==unique_label(i)};\n SegmentSize(gid) = sum(label(:)==unique_label(i));\n if p<2&&SegmentSize(gid)>floorSize&&zc(zpks(p))-Lowest<0.25,\n floorSize = SegmentSize(gid);\n floorMask = label==unique_label(i);\n end\n imageSegFill(label==unique_label(i))=gid;\n gid = gid+1;\n end\n end\nend\n%%\n\n[SegmentSize,segid] = sort(SegmentSize,'descend');\nSegment = Segment(segid);\ncnt =1;\nimageSeg = zeros(imgSize);\nfor i =1:length(Segment)\n idx = Segment{i}&imageSeg==0;\n se = strel('disk',3);\n idx2 = imclose(idx,se);\n idx(imageSegFill==0&(idx2&~idx))=1;\n if sum(idx(:))>sizethr\n imageSeg(idx)=cnt;\n cnt =cnt+1;\n end\nend\n\nwhile true,\n % remaining points \n remaining_points =imageSeg==0;\n cntPre = cnt;\n label = bwlabel(remaining_points,8);\n unique_label = unique(label);\n unique_label(unique_label==0)=[];\n directions = icosahedron2sphere(0); \n directions = directions(directions(:,2) <= 0,:);\n for i =1:length(unique_label)\n remaining_points_conn = label==unique_label(i);\n remaining_points_conn_ptsidx = find(remaining_points_conn(removeNaN));\n XYZworldframeTestRemaining_conn = XYZworldframeTest(remaining_points_conn_ptsidx,:);\n normals_conn = normals(:,remaining_points_conn_ptsidx);\n if size(XYZworldframeTestRemaining_conn,1)>sizethr\n [~, idx] = max(abs(directions * normals_conn),[],1);\n majorDirIdx = mode(idx);\n normalAgreeId = find(idx ==majorDirIdx);\n [B,~,inliers] = ransacfitplane(XYZworldframeTestRemaining_conn(normalAgreeId,:)', onPlaneThreshold); \n if sum(inliers)>sizethr\n thisSeg = zeros(imgSize);\n thisSeg(removeNaN(remaining_points_conn_ptsidx(normalAgreeId(inliers)))) =1;\n thisSeg_label = bwlabel(thisSeg,8);\n thisSeg_unique_label = unique(label);\n thisSeg_unique_label(thisSeg_unique_label==0)=[];\n for j = 1:length(thisSeg_unique_label),\n if sum(thisSeg_label(:)==thisSeg_unique_label(j))>sizethr,\n idxSeg = thisSeg_label==thisSeg_unique_label(j);\n idxSeg = imclose(idxSeg,se);\n imageSeg(idxSeg) =cnt;\n cnt=cnt+1;\n end\n end\n \n end\n end\n end\n if cntPre==cnt,\n break;\n end\nend\nmap= [0,randperm(max(imageSeg(:)+1))];\nmap(map==1) =[];\nimageSeg = map(imageSeg+1);\nif sum(floorMask(:))>0,\n floorMask = imclose(floorMask,se);\n imageSeg(floorMask) = 1;\nend\nfigure(1),imagesc(imageSeg);\nfigure(2),imagesc(floorMask);\n%Boudary = [D1 D2 D3 D4];\nif imageNum> 0, \n im = getImagesc(imageSeg);\n mkdir(segpath);\n imwrite(im,sprintf('%s/%04d.jpg',segpath,imageNum));\n \n im = getImagesc(floorMask);\n imwrite(im,sprintf('%s/%04d_floor.jpg',segpath,imageNum));\n \n save(sprintf('%s/%04d.mat',segpath,imageNum),'imageSeg','floorMask')\n \nend\nend\n\nfunction [hough_transform,T,R] = votelines(X,Y)\n thetaResolution = 1;\n rhoResolution = 0.1;\n T = [1:180];\n theta = T/180*pi;\n rho = X(:)*cos(theta)+ Y(:)*sin(theta);\n % quantize the rho \n rhoNorm = max(1,round((rho-min(rho(:)))/rhoResolution));\n R =[1:max(rhoNorm(:))]*rhoResolution+min(rho(:));\n hough_transform = zeros(max(rhoNorm(:)),size(T,2));\n TT = repmat(T,[size(rhoNorm,1),1]);\n hough_transform = accumarray([rhoNorm(:),TT(:)],1,size(hough_transform));\nend\n", "meta": {"author": "thusiyuan", "repo": "cooperative_scene_parsing", "sha": "0689c8057757a9efec387c272ddae9074861b07a", "save_path": "github-repos/MATLAB/thusiyuan-cooperative_scene_parsing", "path": "github-repos/MATLAB/thusiyuan-cooperative_scene_parsing/cooperative_scene_parsing-0689c8057757a9efec387c272ddae9074861b07a/evaluation/roomlayout/mhUtils/getPlanSeg_complete.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7905303087996143, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.389089638918867}} {"text": "function X=MergeMargCop(W,F,U)\n\n[J,K]=size(W);\nX=0*U;\nfor k=1:K\n dd = interp1(F(:,k),W(:,k),U(:,k),'linear','extrap');\n X(:,k) = dd;\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26853-factors-on-demand/FactorsOnDemand/StatisticalVsCrossSectional/MergeMargCop.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3890680581431272}} {"text": "function val = get_params(CPD, name)\n% GET_PARAMS Get the parameters (fields) for a softmax_CPD object\n% val = get_params(CPD, name)\n%\n% The following fields can be accessed\n%\n% weights - W(X,Y,Q)\n% offset - b(Y,Q)\n%\n% e.g., W = get_params(CPD, 'weights')\n\n[W, b] = extract_params(CPD);\nswitch name\n case 'weights', val = W;\n case 'offset', val = b;\n otherwise,\n error(['invalid argument name ' name]);\nend \n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/CPDs/@softmax_CPD/get_field.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.389068049892614}} {"text": "function score = Min_value(Population,~)\n% \n% The minimum objective value\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n\tscore = Population.best.objs;\n if isempty(score)\n score = nan;\n end\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Metrics/Min_value.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.38906804989261395}} {"text": "function timeplot(axs_hand,mode)\n%\n% Utility Function: TIMEPLOT\n%\n% The purpose of this function is to handle the plotting of all the time\n% response options\n\n% Author: Craig Borghesani\n% Date: 8/8/94\n% Revised: 11/15/94\n% Copyright (c) 1999, Prentice-Hall\n\n% if no time response axis present, get out\nif ~length(axs_hand), return; end\n\n% obtain handle information\nf = gcf;\nui_data = get(f,'userdata');\nui_han = ui_data{1};\nopen_loop = ui_han(78);\nclos_loop = ui_han(79);\nunit_imp = ui_han(80);\nunit_step = ui_han(81);\nunit_ramp = ui_han(82);\nrise_time = ui_han(83);\ndlay_time = ui_han(84);\npeak_time = ui_han(85);\nover_shot = ui_han(86);\nsetl_2per = ui_han(87);\nsetl_5per = ui_han(88);\ncur_sys = get(ui_han(30),'userdata');\nstat_bar = get(ui_han(43),'userdata');\nrange1 = 78:82;\nrange2 = 83:88;\n\n% distribute handles\naxs_data = get(axs_hand,'userdata');\n\nif ~length(mode) | any(mode == [13,14,15]),\n\n% determine various states of time response environment\n\n if ~length(mode), mode = 0; end\n ct = 2;\n for k = range1,\n if strcmp(get(ui_han(k),'checked'),'on'),\n mode(ct) = k-(range1(1)-1);\n else\n mode(ct) = 0;\n end\n ct = ct + 1;\n end\n\nend\n\nif length(mode) > 1,\n set(axs_data(2:length(axs_data)),'vis','off');\nend\n\nopen_imp = axs_data(2);\nclos_imp = axs_data(5);\nopen_step = axs_data(3);\nclos_step = axs_data(6);\nopen_ramp = axs_data(4);\nclos_ramp = axs_data(7);\ntim_txt = axs_data(8:length(axs_data));\n\nplant_mat = get(ui_han(3+cur_sys),'userdata');\nfor_mat = get(ui_han(6+cur_sys),'userdata');\nbac_mat = get(ui_han(9+cur_sys),'userdata');\n\nterm_mat = termjoin(plant_mat,for_mat,bac_mat);\n[num,den] = termextr(term_mat);\n\nif length(num)==1 & length(den) == 1,\n set(stat_bar,'string','No Time Response computed');\n return;\nend\n\nln = length(num); ld = length(den);\nif ln > ld,\n set(stat_bar,'string','You have more Zeros than Poles. Time response not plotted.');\n return\nend\n\nif polyval(den,0) ~= 0,\n final = polyval(num,0)/polyval(den,0);\nelse\n final = inf;\nend\n\n[nump,denp] = termextr(plant_mat);\n[numg,deng] = termextr(for_mat);\n[numh,denh] = termextr(bac_mat);\nnumt = conv(conv(nump,numg),numh);\ndent = conv(conv(denp,deng),denh);\nlnt = length(numt); ldt = length(dent);\nnumt = [zeros(1,ldt-lnt),numt];\ndent = [zeros(1,lnt-ldt),dent];\nnumcl = conv(conv(nump,numg),denh);\ndencl = dent + numt;\n\nfinalcl = polyval(numcl,0)/polyval(dencl,0);\n\ntvec = get(ui_han(40),'userdata');\nimp_input = [1/(tvec(2)-tvec(1));zeros(length(tvec)-1,1)];\nstp_input = ones(length(tvec),1);\nrmp_input = tvec';\n\nif term_mat(1,2)~=0, % pure delay time\n loc_t = find(tvec <= term_mat(1,2));\n len = length(loc_t);\n if len > 1,\n imp_input = [zeros(len,1);imp_input(1:(length(imp_input)-len))];\n stp_input = [zeros(len,1);stp_input(1:(length(stp_input)-len))];\n rmp_input = [zeros(len,1);rmp_input(1:(length(rmp_input)-len))];\n end\nend\n\nif any(mode==1), % Open-Loop\n\n if strcmp(get(open_loop,'checked'),'off') | length(mode)>1,\n set(open_loop,'checked','on');\n\n if strcmp(get(unit_imp,'checked'),'on'),\n\n set(stat_bar,'string','Computing open-loop impulse response');\n imp_ol = lsim(num,den,imp_input,tvec);\n set(open_imp,'xdata',tvec,'ydata',imp_ol,'vis','on');\n if length(mode) > 1, mode(4) = 0; end\n\n end\n\n if strcmp(get(unit_step,'checked'),'on'),\n\n set(stat_bar,'string','Computing open-loop step response');\n step_ol = lsim(num,den,stp_input,tvec);\n set(open_step,'xdata',tvec,'ydata',step_ol,'vis','on');\n if length(mode) > 1, mode(5) = 0; end\n\n end\n\n if strcmp(get(unit_ramp,'checked'),'on'),\n\n set(stat_bar,'string','Computing open-loop ramp response');\n ramp_ol = lsim(num,den,rmp_input,tvec);\n set(open_ramp,'xdata',tvec,'ydata',ramp_ol,'vis','on');\n if length(mode) > 1, mode(6) = 0; end\n\n end\n\n else\n\n set(stat_bar,'string','Removing Open-Loop');\n set(open_loop,'checked','off');\n set([open_imp,open_step,open_ramp,tim_txt([1:2:9])],'vis','off');\n\n end\n\nend\n\nif any(mode==2), % Closed-Loop\n\n if strcmp(get(clos_loop,'checked'),'off') | length(mode)>1,\n set(clos_loop,'checked','on');\n\n if strcmp(get(unit_imp,'checked'),'on'),\n\n set(stat_bar,'string','Computing closed-loop impulse response');\n imp_cl = lsim(numcl,dencl,imp_input,tvec);\n set(clos_imp,'xdata',tvec,'ydata',imp_cl,'vis','on');\n if length(mode) > 1, mode(4) = 0; end\n\n end\n\n if strcmp(get(unit_step,'checked'),'on'),\n\n set(stat_bar,'string','Computing closed-loop step response');\n step_cl = lsim(numcl,dencl,stp_input,tvec);\n set(clos_step,'xdata',tvec,'ydata',step_cl,'vis','on');\n if length(mode) > 1, mode(5) = 0; end\n\n end\n\n if strcmp(get(unit_ramp,'checked'),'on'),\n\n set(stat_bar,'string','Computing closed-loop ramp response');\n ramp_cl = lsim(numcl,dencl,rmp_input,tvec);\n set(clos_ramp,'xdata',tvec,'ydata',ramp_cl,'vis','on');\n if length(mode) > 1, mode(6) = 0; end\n\n end\n\n else\n\n set(stat_bar,'string','Removing Closed-Loop');\n set(clos_loop,'checked','off');\n set([clos_imp,clos_step,clos_ramp,tim_txt([2:2:10])],'vis','off');\n\n end\n\nend\n\nif any(mode==3), % unit impulse\n\n if strcmp(get(unit_imp,'checked'),'off') | length(mode)>1,\n set(unit_imp,'checked','on');\n\n if strcmp(get(open_loop,'checked'),'on'),\n\n set(stat_bar,'string','Computing open-loop impulse response');\n imp_ol = lsim(num,den,imp_input,tvec);\n set(open_imp,'xdata',tvec,'ydata',imp_ol,'vis','on');\n\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n\n set(stat_bar,'string','Computing closed-loop impulse response');\n imp_cl = lsim(numcl,dencl,imp_input,tvec);\n set(clos_imp,'xdata',tvec,'ydata',imp_cl,'vis','on');\n\n end\n\n else\n\n set(stat_bar,'string','Removing impulse response');\n set(unit_imp,'checked','off');\n set([open_imp,clos_imp],'vis','off');\n\n end\n\nend\n\nif any(mode==4), % unit step\n\n if strcmp(get(unit_step,'checked'),'off') | length(mode)>1,\n set(unit_step,'checked','on');\n\n if strcmp(get(open_loop,'checked'),'on'),\n\n set(stat_bar,'string','Computing open-loop step response');\n step_ol = lsim(num,den,stp_input,tvec);\n set(open_step,'xdata',tvec,'ydata',step_ol,'vis','on');\n\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n\n set(stat_bar,'string','Computing closed-loop step response');\n step_cl = lsim(numcl,dencl,stp_input,tvec);\n set(clos_step,'xdata',tvec,'ydata',step_cl,'vis','on');\n\n end\n\n set(ui_han(range2),'enable','on');\n\n else\n\n set(stat_bar,'string','Removing step response');\n set(unit_step,'checked','off');\n set([open_step,clos_step,tim_txt],'vis','off');\n set(ui_han(range2),'enable','off');\n\n end\n\nend\n\nif any(mode==5), % unit ramp\n\n if strcmp(get(unit_ramp,'checked'),'off') | length(mode)>1,\n set(unit_ramp,'checked','on');\n\n if strcmp(get(open_loop,'checked'),'on'),\n\n set(stat_bar,'string','Computing open-loop ramp response');\n ramp_ol = lsim(num,den,rmp_input,tvec);\n set(open_ramp,'xdata',tvec,'ydata',ramp_ol,'vis','on');\n\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n\n set(stat_bar,'string','Computing closed-loop ramp response');\n ramp_cl = lsim(numcl,dencl,rmp_input,tvec);\n set(clos_ramp,'xdata',tvec,'ydata',ramp_cl,'vis','on');\n\n end\n\n else\n\n set(stat_bar,'string','Removing ramp response');\n set(unit_ramp,'checked','off');\n set([open_ramp,clos_ramp],'vis','off');\n\n end\n\nend\n\nif any(mode < 6),\n\n pageview(1,axs_hand);\n ct = 1;\n mode = 0;\n for k = range2,\n if strcmp(get(ui_han(k),'checked'),'on'),\n mode(ct) = k-(range1(1)-1);\n else\n mode(ct) = 0;\n end\n ct = ct + 1;\n end\n\nend\n\nif any(mode==6) & strcmp(get(rise_time,'enable'),'on'), % rise time\n\n if strcmp(get(rise_time,'checked'),'off') | length(mode)>1,\n\n if strcmp(get(open_loop,'checked'),'on'),\n set(stat_bar,'string','Computing open-loop rise time');\n set(rise_time,'checked','on');\n amp = get(open_step,'ydata');\n diff_amp = diff(amp);\n loc_neg = find(diff_amp < 0);\n if ~length(loc_neg), % overdamped system\n less10 = find(amp>=0.1*final);\n less90 = find(amp>=0.9*final);\n riset = tvec(less90(1)) - tvec(less10(1));\n risea = amp(less90(1));\n set(tim_txt(1),'pos',[riset,risea,0],...\n 'string',['Rise time (10-90%) = ',num2str(riset)],'vis','on');\n else % underdamped system\n less0 = 1;\n less100 = find(amp>=final);\n riset = tvec(less100(1)) - tvec(less0);\n risea = amp(less100(1));\n set(tim_txt(1),'pos',[riset,risea,0],...\n 'string',['Rise time (0-100%) = ',num2str(riset)],'vis','on');\n end\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n set(stat_bar,'string','Computing closed-loop rise time');\n set(rise_time,'checked','on');\n amp = get(clos_step,'ydata');\n diff_amp = diff(amp);\n loc_neg = find(diff_amp < 0);\n if ~length(loc_neg), % overdamped system\n less10 = find(amp>=0.1*finalcl);\n less90 = find(amp>=0.9*finalcl);\n riset = tvec(less90(1)) - tvec(less10(1));\n risea = amp(less90(1));\n set(tim_txt(2),'pos',[riset,risea,0],...\n 'string',['Rise time (10-90%) = ',num2str(riset)],'vis','on');\n else % underdamped system\n less0 = 1;\n less100 = find(amp>=finalcl);\n riset = tvec(less100(1)) - tvec(less0);\n risea = amp(less100(1));\n set(tim_txt(1),'pos',[riset,risea,0],...\n 'string',['Rise time (0-100%) = ',num2str(riset)],'vis','on');\n end\n end\n\n else\n\n set(stat_bar,'string','Removing rise time');\n set(rise_time,'checked','off');\n set(tim_txt(1:2),'vis','off');\n end\n\nend\n\nif any(mode==7) & strcmp(get(dlay_time,'enable'),'on'), % delay time\n\n if strcmp(get(dlay_time,'checked'),'off') | length(mode)>1,\n\n if strcmp(get(open_loop,'checked'),'on'),\n set(stat_bar,'string','Computing open-loop delay time');\n set(dlay_time,'checked','on');\n amp = get(open_step,'ydata');\n less50 = find(amp>=0.5*final);\n dlayt = tvec(less50(1));\n dlaya = amp(less50(1));\n set(tim_txt(3),'pos',[dlayt,dlaya,0],...\n 'string',['Delay time = ',num2str(dlayt)],'vis','on');\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n set(stat_bar,'string','Computing closed-loop delay time');\n set(dlay_time,'checked','on');\n amp = get(clos_step,'ydata');\n less50 = find(amp>=0.5*finalcl);\n dlayt = tvec(less50(1));\n dlaya = amp(less50(1));\n set(tim_txt(4),'pos',[dlayt,dlaya,0],...\n 'string',['Delay time = ',num2str(dlayt)],'vis','on');\n end\n\n else\n\n set(stat_bar,'string','Removing delay time');\n set(dlay_time,'checked','off');\n set(tim_txt(3:4),'vis','off');\n end\n\nend\n\nif any(mode==8) & strcmp(get(peak_time,'enable'),'on'), % peak time\n\n if strcmp(get(peak_time,'checked'),'off') | length(mode)>1,\n\n if strcmp(get(open_loop,'checked'),'on'),\n amp = get(open_step,'ydata');\n diff_amp = diff(amp);\n loc_neg = find(diff_amp < 0);\n if length(loc_neg),\n set(stat_bar,'string','Computing open-loop peak time');\n set(peak_time,'checked','on');\n peakt = tvec(loc_neg(1)-1);\n peaka = amp(loc_neg(1)-1);\n set(tim_txt(5),'pos',[peakt,peaka,0],...\n 'string',['Peak time = ',num2str(peakt)],'vis','on');\n else\n set(stat_bar,'string','Unable to determine open-loop peak time');\n end\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n amp = get(clos_step,'ydata');\n diff_amp = diff(amp);\n loc_neg = find(diff_amp < 0);\n if length(loc_neg),\n set(stat_bar,'string','Computing closed-loop peak time');\n set(peak_time,'checked','on');\n peakt = tvec(loc_neg(1)-1);\n peaka = amp(loc_neg(1)-1);\n set(tim_txt(6),'pos',[peakt,peaka,0],...\n 'string',['Peak time = ',num2str(peakt)],'vis','on');\n else\n set(stat_bar,'string','Unable to determine closed-loop peak time');\n end\n end\n\n else\n\n set(stat_bar,'string','Removing peak time');\n set(peak_time,'checked','off');\n set(tim_txt(5:6),'vis','off');\n end\n\nend\n\nif any(mode==9) & strcmp(get(over_shot,'enable'),'on'), % percent overshoot\n\n if strcmp(get(over_shot,'checked'),'off') | length(mode)>1,\n\n if strcmp(get(open_loop,'checked'),'on'),\n set(stat_bar,'string','Computing open-loop % overshoot');\n set(over_shot,'checked','on');\n amp = get(open_step,'ydata');\n [max_amp,k] = max(amp);\n perover = 100*(max_amp-final)/final;\n set(tim_txt(7),'pos',[tvec(k),max_amp,0],...\n 'string',[sprintf('%0.2f',perover),'% overshoot'],'vis','on');\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n set(stat_bar,'string','Computing closed-loop % Overshoot');\n set(over_shot,'checked','on');\n amp = get(clos_step,'ydata');\n [max_amp,k] = max(amp);\n perover = 100*(max_amp-finalcl)/finalcl;\n set(tim_txt(8),'pos',[tvec(k),max_amp,0],...\n 'string',[sprintf('%0.2f',perover),'% overshoot'],'vis','on');\n end\n\n else\n\n set(stat_bar,'string','Removing % overshoot');\n set(over_shot,'checked','off');\n set(tim_txt(7:8),'vis','off');\n end\n\nend\n\nif any(mode==10) & strcmp(get(setl_2per,'enable'),'on'), % 2% settling time\n\n if strcmp(get(setl_2per,'checked'),'off') | length(mode)>1,\n\n if strcmp(get(open_loop,'checked'),'on'),\n set(stat_bar,'string','Computing open-loop 2% settling time');\n set(setl_2per,'checked','on');\n amp = get(open_step,'ydata');\n per2 = length(amp);\n while (amp(per2)>0.98*final & amp(per2)<1.02*final), per2=per2-1; end\n per2t = tvec(per2);\n per2a = amp(per2);\n set(tim_txt(9),'pos',[per2t,per2a,0],...\n 'string',['2%=',sprintf('%0.2f',per2t)],'vis','on');\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n set(stat_bar,'string','Computing closed-loop 2% settling time');\n set(setl_2per,'checked','on');\n amp = get(clos_step,'ydata');\n per2 = length(amp);\n while (amp(per2)>0.98*finalcl & amp(per2)<1.02*finalcl), per2=per2-1; end\n per2t = tvec(per2);\n per2a = amp(per2);\n set(tim_txt(10),'pos',[per2t,per2a,0],...\n 'string',['2%=',sprintf('%0.2f',per2t)],'vis','on');\n end\n\n else\n\n set(stat_bar,'string','Removing 2% settling time');\n set(setl_2per,'checked','off');\n set(tim_txt(9:10),'vis','off');\n end\n\nend\n\nif any(mode==11) & strcmp(get(setl_5per,'enable'),'on'), % 5% settling time\n\n if strcmp(get(setl_5per,'checked'),'off') | length(mode)>1,\n\n if strcmp(get(open_loop,'checked'),'on'),\n set(stat_bar,'string','Computing open-loop 5% settling time');\n set(setl_5per,'checked','on');\n amp = get(open_step,'ydata');\n per5 = length(amp);\n while (amp(per5)>0.95*final & amp(per5)<1.05*final), per5=per5-1; end\n per5t = tvec(per5);\n per5a = amp(per5);\n set(tim_txt(11),'pos',[per5t,per5a,0],...\n 'string',['5%=',sprintf('%0.2f',per5t)],'vis','on');\n end\n\n if strcmp(get(clos_loop,'checked'),'on'),\n set(stat_bar,'string','Computing closed-loop 5% settling time');\n set(setl_5per,'checked','on');\n amp = get(clos_step,'ydata');\n per5 = length(amp);\n while (amp(per5)>0.95*finalcl & amp(per5)<1.05*finalcl), per5=per5-1; end\n per5t = tvec(per5);\n per5a = amp(per5);\n set(tim_txt(12),'pos',[per5t,per5a,0],...\n 'string',['5%=',sprintf('%0.2f',per5t)],'vis','on');\n end\n\n else\n\n set(stat_bar,'string','Removing 5% settling time');\n set(setl_5per,'checked','off');\n set(tim_txt(11:12),'vis','off');\n end\n\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/38866-controls-tutor/contutor5/timeplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.38906804989261395}} {"text": "function [] = advance_random()\n% Creates the next batch of 55 random numbers.\n\nglobal oldrand ;\n\nfor j1 = 0:23\n new_random = oldrand(j1 + 1) - oldrand(j1 + 31 + 1);\n if (new_random < 0.0)\n new_random = new_random + 1.0 ;\n end\n oldrand(j1 + 1) = new_random ;\nend\n\nfor j1 = 24:54\n new_random = oldrand(j1 + 1) - oldrand((j1 - 24) + 1);\n if (new_random < 0.0)\n new_random = new_random + 1.0 ;\n end\n oldrand(j1 + 1) = new_random ;\nend\nend\n\n", "meta": {"author": "chudur-budur", "repo": "nsga2-matlab", "sha": "58c2ca3729c1c871dcd3bda310693f19cf181a9e", "save_path": "github-repos/MATLAB/chudur-budur-nsga2-matlab", "path": "github-repos/MATLAB/chudur-budur-nsga2-matlab/nsga2-matlab-58c2ca3729c1c871dcd3bda310693f19cf181a9e/rand/advance_random.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.38906804164210057}} {"text": "function center = initComponents_2p(obj, Y, K, debug_on, save_avi)\n%% a greedy method for detecting ROIs and initializing CNMF. in each iteration,\n% it searches the one with large (peak-median)/noise level and large local\n% correlation\n%% Input:\n% Y: d X T matrx, imaging data\n% K: scalar, maximum number of neurons to be detected.\n% debug_on: options for showing procedure of detecting neurons\n%% Output:\n% Ain: d X K' matrix, estimated spatial component\n% Cin: K'X T matrix, estimated temporal component\n% bin: d X nb matrix/vector, spatial components of the background\n% Cin: nb X T matrix/vector, temporal components of the background\n% center: K' X 2, coordinate of each neuron's center\n% res: d X T, residual after initializing Ain, Cin, bin, fin\n\n%% Author: Pengcheng Zhou, Carnegie Mellon University.\n% the method is an modification of greedyROI method used in Neuron paper of Eftychios\n% Pnevmatikakis et.al. https://github.com/epnev/ca_source_extraction/blob/master/utilities/greedyROI2d.m\n%% In each iteration of initializing neurons, it searchs the one with maximum\n% value of (max-median)/noise * Cn, which selects pixels with high SNR and\n% local correlation.\n\n%% parameters\nif exist('K', 'var')\n K = 200; \nend\nY = obj.reshape(Y, 1); \nY_std = get_noise_fft(Y);\noptions = obj.options;\n\nif ~exist('debug_on', 'var'); debug_on = false; end\nif ~exist('save_avi', 'var'); save_avi=false; end\nd1 = options.d1;\nd2 = options.d2;\ngSig = options.gSig;\ngSiz = options.gSiz;\nif and(isempty(gSiz), isempty(gSig)); gSig = 3; gSiz = 10; end\nif isempty(gSiz); gSiz=3*gSig; end\nif isempty(gSig); gSig=gSiz/3; end\nif isfield(options, 'min_corr')\n min_corr = options.min_corr; % minimum local correaltion value to start one neuron\nelse\n min_corr = 0.3;\nend\nif isfield(options, 'deconv_flag')\n deconv_flag = options.deconv_flag;\n deconv_options_0= options.deconv_options;\nelse\n deconv_flag = false; \nend \nif isfield(options, 'min_pnr')\n min_pnr = options.min_pnr;\nelse\n min_pnr = 2;\nend\nnb = options.nb; % number of the background\npSiz = 1; % after selecting one pixel, take the mean of square box\n%near the pixel as temporal activity. the box size is (2*pSiz+1)\npsf = ones(gSig)/(gSig^2);\n\nmaxIter = 5; % iterations for refining results\nsz = 4; %distance of neighbouring pixels for computing local correlation\n\nif ~ismatrix(Y); Y = reshape(Y, d1*d2, []); end;\n[~, T] = size(Y); % number of frames\nAin = zeros(d1*d2, K); % spatial components\nCin = zeros(K, T); % temporal components\nCin_raw = zeros(K, T); % temporal components\nSin = zeros(K, T); % temporal components\ncenter = zeros(K, 2); % center of the initialized components\nkernel_pars = cell(K,1); % parameters for the convolution kernels of all neurons\n\n%% compute correlation image and (max-median)/std ratio\nind_frame = round(linspace(1, T, min(T, 1000))); % select few frames for speed issues\n%tmp_noise = randn(d1*d2, length(ind_frame)); \nC1 = correlation_image(full(Y(:, ind_frame)), sz, d1, d2);\nCb = zeros(size(C1)); %correlation_image(full(Y(:, ind_frame(1:3:end)))+tmp_noise(:, 1:3:end), [gSiz, gSiz+1], d1, d2); %backgroung correlatin \nCn = C1-Cb; %here Cb is the background correlation. for 2photon imaging results. It might be useful when the background signal is large \nY_median = median(Y(:, ind_frame), 2);\nY = bsxfun(@minus, Y, Y_median);\n% Y_std = sqrt(mean(Y.*Y, 2));\n\n%% find local maximum\nk = 0; %number of found components\nmin_pixel = floor(gSig^2/2); % minimum number of peaks to be a neuron\npeak_ratio = full(max(Y, [], 2))./Y_std; %(max-median)/std\npeak_ratio(isinf(peak_ratio)) = 0; % avoid constant values\npeak_ratio(peak_ratio\n figure('position', [100, 100, 1200, 800], 'color', [1,1,1]*0.9); %#ok<*UNRCH>\n set(gcf, 'defaultAxesFontSize', 20); \n ax_cn = axes('position', [0.04, 0.5, 0.3, 0.4]); \n ax_cn_varying = axes('position', [0.36, 0.5, 0.3, 0.4]); \n ax_cn_box = axes('position', [0.68, 0.54, 0.24, 0.32]); \n ax_raw = axes('position', [0.05, 0.25, 0.92, 0.2]); \n ax_trace = axes('position', [0.05, 0.01, 0.92, 0.2]); \n axes(ax_cn); \n imagesc(Cn); hold on; \n axis equal off tight; \n title('correlation image'); \n axes(ax_cn_varying);\n imagesc(Cn, [0,1]);\n axis equal off tight; hold on;\n if save_avi\n avi_file = VideoWriter('greedyROI_example.avi');\n avi_file.open();\n end\nend\n\nmax_thresh = min_pnr * (min_corr);\nwhile kmin_corr/2);\n l = bwlabel(active_pixel, 8); % remove disconnected components\n active_pixel(l~=mode(l(ind_peak))) = false;\n tmp_v = sum(active_pixel(:)); %number of pixels with above-threshold correlation\n if debug_on\n axes(ax_cn_varying); cla;\n imagesc(reshape(Cn(:), d1, d2), [0, Cn(ind_p)]); \n title(sprintf('neuron %d', k+1));\n axis equal off tight; hold on;\n plot(c,r, 'om');\n axes(ax_cn_box);\n imagesc(temp, [min_corr, 1]);\n axis equal off tight;\n title('local corr.');\n axes(ax_raw); cla; hold on; \n plot(y0/max(y0)); title('activity in the center');\n axis off tight; \n if ~save_avi; pause; end\n end\n if tmp_v=0\n%\n%Input:\n% data: d x T matrix, small patch containing one neuron\n% ci: initial value for trace\n% nIter number of coordinate descent steps\n%\n%Output:\n% ai M x N matrix, result of the fine-tuned neuron shape\n% ci 1 x T matrix, result of the neuron\n%% copied from greedyROI.m\n\nif ~exist('nIter', 'var'), nIter = 1; end\ndata(data<0)= 0;\n%do block coordinate descent\nfor iter = 1:nIter,\n %update basis\n ai = max(0, (data*ci')/(ci*ci'));\n norm_ai = norm(ai, 2);\n if norm_ai==0; break; end\n ai = ai/norm_ai;\n ci = (ai'*data);\n % ci(ci<0) = 0;\nend\n% [b, sn] = estimate_baseline_noise(ci); \n% ci = ci - b; \n% ai = ai*sn; \n% ci = ci/sn; \nend", "meta": {"author": "zhoupc", "repo": "CNMF_E", "sha": "ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f", "save_path": "github-repos/MATLAB/zhoupc-CNMF_E", "path": "github-repos/MATLAB/zhoupc-CNMF_E/CNMF_E-ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f/ca_source_extraction/@Sources2D/initComponents_2p.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8031737869342623, "lm_q2_score": 0.4843800842769844, "lm_q1q2_score": 0.3890413866042827}} {"text": "function [newROIcoords,tmpNewROIcoords] = xformROIcoords(ROIcoords,Xform,inputVoxSize,outputVoxSize,sampRate)\n%\n% newROIcoords = xformROIcoords(ROIcoords,Xform,inputVoxSize,outputVoxSize,[sampRate])\n%\n% Transforms ROI coords using Xform, supersampling in each\n% dimension to accumulate partial volumes, then keeping only\n% those voxels with partial volumes above thresh.\n% \n% ROIcoords: 3xN matrix of coordinates (y,x,z).\n% Xform: 4x4 homogeneous transform\n% inputVoxSize: 3-vector, size of voxels (mm) in ROIcoords\n% outputVoxSize: 3-vector, size of voxels (mm) in newROIcoords\n% sampRate: 3-vector, supersampling rate for each dimension\n% default is odd number >= 4x ratio of inputVoxSize/outputVoxSize\n%\n% newROIcoords: 3xN matrix of (y,x,z) \n%\n% djh, 8/98. Modified from ROIcoords/transformROI.m in mrLoadRet-1\n% 7/19/02 djh, modified to maintain equal volumes\n% 11/02/05 ARW now returns the 'raw' transformed coordinates - useful for\n% various applications including interfacing with SPM\nif ~isa(ROIcoords, 'double'), ROIcoords = double(ROIcoords); end\n\nif ~exist('sampRate','var')\n\tsampRate = ceil(inputVoxSize ./ outputVoxSize) .* [4,4,4];\n\tsampRate = 2*floor(sampRate/2) + 1;\nend\n\n% Convert ROI coords to homogenous coordinates, by adding a fourth\n% row of 1's, and transform.\n%\ntmpNewROIcoords = ones(4,size(ROIcoords,2));\ntmpNewROIcoords(1:3,:) = ROIcoords;\ntmpNewROIcoords = Xform * tmpNewROIcoords;\n\n% Find bounding (min and max) volume.\n%\nminPos = [min(tmpNewROIcoords(1,:));min(tmpNewROIcoords(2,:));min(tmpNewROIcoords(3,:));1];\nmaxPos = [max(tmpNewROIcoords(1,:));max(tmpNewROIcoords(2,:));max(tmpNewROIcoords(3,:));1];\nminPos = floor(minPos)-[2,2,2,0]';\nmaxPos = ceil(maxPos)+[2,2,2,0]';\ndims = maxPos(1:3)-minPos(1:3)+ones(3,1);\n\n% Initialize accumulator for partial volume calculation, a vector\n% of length appropriate to index the bounding volume.\n%\naccum = zeros(1,prod(dims));\n\n% Calculate offsets that will be added within the loop to do the\n% partial voluming.\n%\nxoffsets=[-.5+1/(2*sampRate(1)):1/sampRate(1):.5-1/(2*sampRate(1))];\nyoffsets=[-.5+1/(2*sampRate(2)):1/sampRate(2):.5-1/(2*sampRate(2))];\nzoffsets=[-.5+1/(2*sampRate(3)):1/sampRate(3):.5-1/(2*sampRate(3))];\n% xoffsets=[0:1/sampRate(1):1-1/sampRate(1)];\n% yoffsets=[0:1/sampRate(2):1-1/sampRate(2)];\n% zoffsets=[0:1/sampRate(3):1-1/sampRate(3)];\n\n% Divide alpha by prod(sampRate) to get partial volume for the\n% supersampled voxels.\n%\nalpha = repmat(1/prod(sampRate),[1 size(ROIcoords,2)]);\n\n% Set up a mrvWaitbar if needed.\nverbose = prefsVerboseCheck;\nif verbose > 1\n\twaitHandle = mrvWaitbar(0,'Transforming ROI coordinates. Please wait...');\nend\n\n\n% Loop through supersamples, transform them, and accumulate\n% partial volume.\n%\nROIcoords = double(ROIcoords);\nfor ioff=1:length(xoffsets)\n\txoff=xoffsets(ioff);\n\t\n\tif verbose>1, mrvWaitbar(ioff/length(xoffsets)); end\n\t\n\tfor yoff=yoffsets\n\t\tfor zoff=zoffsets\n\t\t\t% Add offset\n\t\t\ttmpNewROIcoords(1:3,:) = ROIcoords + ...\n\t\t\t\trepmat([xoff;yoff;zoff],[1,size(ROIcoords,2)]);\n \n\t\t\t% Transform\n\t\t\ttmpNewROIcoords = Xform * tmpNewROIcoords;\n \n\t\t\t% Round and subtract minPos\n\t\t\tcoords = round(tmpNewROIcoords(1:3,:)) - ...\n\t\t\t\trepmat(minPos(1:3),[1,size(tmpNewROIcoords,2)]);\n \n\t\t\t% Convert to indices and remove duplicates\n\t\t\tindices = coords2Indices(coords,dims);\n \n\t\t\t% Accumulate partial volume. Need to do it in a loop\n\t\t\t% instead of:\n\t\t\t% accum(indices) = accum(indices) + alpha;\n\t\t\t% because an index can appear twice in indices and we want\n\t\t\t% to accumulate them both.\n\t\t\tfor jj=1:length(indices)\n\t\t\t\taccum(indices(jj)) = accum(indices(jj)) + alpha(jj);\n\t\t\tend\n\t\tend\n\tend\nend\n\nif verbose>1, close(waitHandle); end\n\n% Build newROIcoords\n%\n[sortedAccum,indices] = sort(accum);\nnonZeroSize = length(find(accum > 0));\nnewROIsize = round(prod(inputVoxSize)*size(ROIcoords,2) / prod(outputVoxSize));\nnewROIsize = max(1,newROIsize); % we don't want an ROI size of 0. This will cause an error.\nnewROIsize = min(nonZeroSize,newROIsize);\nindices = indices(length(indices)-newROIsize+1:length(indices));\nif ~isempty(indices)\n newROIcoords = indices2Coords(indices,dims);\n newROIcoords = newROIcoords + repmat(minPos(1:3),[1,length(indices)]);\nelse\n newROIcoords = [];\nend\n\nreturn;\n\n%%%%%%%%%%%%%%\n% Debug/test %\n%%%%%%%%%%%%%%\n\nROIcoords = [0; 0; 0];\nROIcoords = [1 2 3 4;\n\t 1 1 1 1;\n\t 1 1 1 1];\nXform = [1 0 0 0;\n\t 0 1 0 0;\n\t 0 0 1 0.5;\n\t 0 0 0 1];\ninputVoxSize = [1,1,1];\noutputVoxSize = [1,1,1/2];\nxformROIcoords(ROIcoords,Xform,inputVoxSize,outputVoxSize)\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/XformView/xformROIcoords.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432182679957, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3890074842915785}} {"text": "function varargout = erfc(varargin)\n%ERFC (overloaded)\n\nswitch class(varargin{1})\n\n case 'double'\n error('Overloaded SDPVAR/ERFC CALLED WITH DOUBLE. Report error')\n\n case 'sdpvar'\n varargout{1} = InstantiateElementWise(mfilename,varargin{:});\n\n case 'char'\n\n operator = struct('convexity','none','monotonicity','decreasing','definiteness','positive','model','callback');\n operator.bounds = @bounds;\n operator.range = [-1 1];\n operator.derivative =@(x)-exp(-x.^2)*2/sqrt(pi);\n varargout{1} = [];\n varargout{2} = operator;\n varargout{3} = varargin{3};\n\n otherwise\n error('SDPVAR/ERF called with CHAR argument?');\nend\n\nfunction [L,U] = bounds(xL,xU)\nL = erfc(xL);\nU = erfc(xU);", "meta": {"author": "shamilmamedov", "repo": "dynamic_calibration", "sha": "11af40e7deb758ec080a175fed8fcdd6c99aca29", "save_path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration", "path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration/dynamic_calibration-11af40e7deb758ec080a175fed8fcdd6c99aca29/utils/YALMIP-master/@sdpvar/erfc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38900748429157844}} {"text": "function pf = loadPoleFigure_dubna(fname,varargin)\n% load dubna cnv file \n%\n% Syntax\n% pf = loadPoleFigure_dubna(fname)\n%\n% Input\n% fname - file name\n%\n% Options\n% STANDARD_GRID - use reguar 5 degree grid\n% DUBNA_GRID - use original rotated Dubna grid\n%\n% Output\n% pf - @PoleFigure\n%\n% See also\n% loadPoleFigure dubna_demo ImportPoleFigureData\n\n% ensure right extension\n[pathstr, name, ext] = fileparts(fname); %#ok\nif ~any(strcmpi(ext,{'.cnv','.cns'}))\n interfaceError(fname);\nend\n\n% load data\ntry\n d = load(fname);\ncatch\n interfaceError(fname);\nend\n\n% ensure sufficients data\nif ~isa(d,'double') || mod(numel(d),72)~=0 ||...\n numel(d)<3*72 || numel(d)>40*72\n interfaceError(fname);\nend\n \nd = reshape(d.',72,[]);\nh = string2Miller(fname);\n\nswitch lower(ext)\n case '.cnv'\n r = DubnaGrid(size(d,2));\n case '.cns'\n r = regularS2Grid('points',size(d),'maxtheta',5*degree*(size(d,2)-1),'antipodal');\nend\n\npf = PoleFigure(h,r,d,varargin{:});\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/interfaces/loadPoleFigure_dubna.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217431943271998, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.38900747138789116}} {"text": "function [a,n,r,epe,eph,epw,usol_c,vsol_c] = mg_ns_q1cd(xy,ev,flowsol,domain,lncoarse,lnfine,outbnd)\n%mg_ns_q1cd convection-diffusion matrix generator for GMG (Navier-Stokes)\n% [a,n,r,epe,eph,epw,usol_c,vsol_c] = mg_ns_q1cd(xy,ev,flowsol,domain,lncoarse,lnfine,outbnd) \n% input\n% xy vertex coordinate vector \n% ev element mapping matrix\n% flowsol current velocity field\n% domain domain parameter, 1 for square, 3 for step\n% lncoarse coarse grid index, log2(nc) for nc x nc square grid\n% lnfine finest grid index, log2(nf) for nf x nf square grid\n% outbnd location of outflow boundary\n% output \n% a discrete diffusion operator\n% n discrete convection operator\n% r mass matrix\n% epe viscosity normalised element peclet numbers \n% eph flow specific element lengths \n% epw centroid evaluated wind \n% usol_c first convection coefficient on coarse grid nodes\n% vsol_c second convection coefficient on coarse grid nodes \n%\n% IFISS function: HCE; 18 March 2005.\n% Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage\n\n% Modification of DJS routine mg_q1cd to allow convection coefficients to \n% be passed via flowsol. Analogous to femq1_cd.\n\n% Square domain\nif domain==1, \n% Size of fine grid, obtained from underlying flow solution flowsol\n nfine = length(flowsol)/2;\n nf = sqrt(nfine);\n x=xy(:,1); y=xy(:,2);\n nvtx=length(x); nel=length(ev(:,1));\n\n% Get flow values at coarse grid points\n lshift = lnfine - lncoarse;\n usol=flowsol(1:nfine); \n usol_grid = reshape(usol,nf,nf);\n usol_grid_c = usol_grid(1:2^lshift:nf,1:2^lshift:nf);\n usol_c = reshape(usol_grid_c,nvtx,1);\n vsol=flowsol(nfine+1:2*nfine); \n vsol_grid = reshape(vsol,nf,nf);\n vsol_grid_c = vsol_grid(1:2^lshift:nf,1:2^lshift:nf);\n vsol_c = reshape(vsol_grid_c,nvtx,1);\n\n% Step domain\nelseif domain==3,\n% Various counts of fine/coarse points in small part (1) and large part (2) of step\n% Logic borrowed from AR routine step_mg_prolong\n nelf = 2^lnfine;\n nfine = (((outbnd+1)/2)*nelf+1)*(nelf+1) - (nelf/2)^2;\n nelc = 2^lncoarse;\n ncoarse = (((outbnd+1)/2)*nelc+1)*(nelc+1) - (nelc/2)^2;\n nfh1 = (nelf/2); nfv1 = (nelf/2+1); nf1 = nfh1*nfv1;\n nfh2 = (outbnd*nelf/2+1); nfv2 = nelf+1; nf2 = nfh2*nfv2;\n nch1 = (nelc/2); ncv1 = (nelc/2+1); nc1 = nch1*ncv1;\n nch2 = (outbnd*nelc/2+1); ncv2 = nelc+1; nc2 = nch2*ncv2;\n\n% Get flow values at coarse grid points\n lshift = lnfine-lncoarse;\n usol=flowsol(1:nfine);\n usol1_grid = reshape(usol(1:nf1),nfh1,nfv1);\n usol1_grid_c = usol1_grid(1:2^lshift:nfh1,1:2^lshift:nfv1);\n usol1_c = reshape(usol1_grid_c,nc1,1);\n usol2_grid = reshape(usol(nf1+1:nfine),nfh2,nfv2);\n usol2_grid_c = usol2_grid(1:2^lshift:nfh2,1:2^lshift:nfv2);\n usol2_c = reshape(usol2_grid_c,nc2,1);\n usol_c = [usol1_c;usol2_c];\n vsol=flowsol(nfine+1:2*nfine);\n vsol1_grid = reshape(vsol(1:nf1),nfh1,nfv1);\n vsol1_grid_c = vsol1_grid(1:2^lshift:nfh1,1:2^lshift:nfv1);\n vsol1_c = reshape(vsol1_grid_c,nc1,1);\n vsol2_grid = reshape(vsol(nf1+1:nfine),nfh2,nfv2);\n vsol2_grid_c = vsol2_grid(1:2^lshift:nfh2,1:2^lshift:nfv2);\n vsol2_c = reshape(vsol2_grid_c,nc2,1);\n vsol_c = [vsol1_c;vsol2_c];\nend\n\n%\nx=xy(:,1); y=xy(:,2);\nnvtx=length(x);\nnel=length(ev(:,1));\nlx=max(x)-min(x); ly=max(y)-min(y);\nhx=max(diff(x)); hy=max(diff(y));\n%\n% Initialise global matrices\na = sparse(nvtx,nvtx);\nn = sparse(nvtx,nvtx);\nr = sparse(nvtx,nvtx);\n%\n% Set up 2x2 Gauss points\ngpt=1.0e0/sqrt(3.0e0);\ns(1) = -gpt; t(1) = -gpt; wt(1) = 1;\ns(2) = gpt; t(2) = -gpt; wt(2) = 1;\ns(3) = gpt; t(3) = gpt; wt(3) = 1;\ns(4) = -gpt; t(4) = gpt; wt(4) = 1;\n\n%\n% Inner loop over elements \nfor ivtx = 1:4\n xl_v(:,ivtx) = x(ev(:,ivtx));\n yl_v(:,ivtx) = y(ev(:,ivtx)); \n xsl(:,ivtx) = usol_c(ev(:,ivtx));\n ysl(:,ivtx) = vsol_c(ev(:,ivtx));\nend\nae = zeros(nel,4,4);\nne = zeros(nel,4,4);\nre = zeros(nel,4,4);\n% Loop over 2x2 Gauss points\nfor igpt = 1:4\n sigpt=s(igpt);\n tigpt=t(igpt);\n wght=wt(igpt);\n% Evaluate derivatives etc\n [jac,invjac,phi,dphidx,dphidy] = deriv(sigpt,tigpt,xl_v,yl_v);\n u_x = zeros(nel,1); u_y=zeros(nel,1);\n for k=1:4\n u_x(:) = u_x(:) + xsl(:,k) .* phi(:,k);\n u_y(:) = u_y(:) + ysl(:,k) .* phi(:,k);\t \n end \n for j = 1:4\n for i = 1:4\n ae(:,i,j) = ae(:,i,j) + dphidx(:,i).*dphidx(:,j) .* invjac(:);\n ae(:,i,j) = ae(:,i,j) + dphidy(:,i).*dphidy(:,j) .* invjac(:);\n re(:,i,j) = re(:,i,j) + phi(:,i).*phi(:,j) .* jac(:);\n%%% ne(:,i,j) = ne(:,i,j) + flowx(:) .* phi(:,i) .* dphidx(:,j);\n%%% ne(:,i,j) = ne(:,i,j) + flowy(:) .* phi(:,i) .* dphidy(:,j);\n ne(:,i,j) = ne(:,i,j) + wght*u_x(:).*phi(:,i).*dphidx(:,j);\n ne(:,i,j) = ne(:,i,j) + wght*u_y(:).*phi(:,i).*dphidy(:,j);\n end\n\tend\n% End of Gauss point loop\nend\n%\n% Perform assembly of global matrix and source vector \nfor krow=1:4\n nrow=ev(:,krow);\t \n for kcol=1:4\n ncol=ev(:,kcol);\t \n a = a + sparse(nrow,ncol,ae(:,krow,kcol),nvtx,nvtx);\n r = r + sparse(nrow,ncol,re(:,krow,kcol),nvtx,nvtx);\n n = n + sparse(nrow,ncol,ne(:,krow,kcol),nvtx,nvtx);\n end\nend\n%\n% Computation of element Peclet number (at the centroid) \n% Rectangle specific calculation here\nhx=abs(xl_v(:,2)-xl_v(:,1)); hy=abs(yl_v(:,3)-yl_v(:,2));\n[jac,invjac,phi,dphidx,dphidy] = deriv(0,0,xl_v,yl_v);\nu_x = zeros(nel,1); u_y=zeros(nel,1);\nfor k=1:4\n u_x(:) = u_x(:) + xsl(:,k) .* phi(:,k);\n u_y(:) = u_y(:) + ysl(:,k) .* phi(:,k);\t \nend \nflowx = u_x(:); flowy = u_y(:);\nflow_l2 = sqrt(flowx(:) .* flowx(:) + flowy(:) .* flowy(:));\nif all(flowx==0), flow_h=hy;\nelseif all(flowy==0), flow_h=hx;\nelse\n angle = atan(abs(flowy./flowx));\n flow_h = min([hx./cos(angle),hy./sin(angle)],[],2);\nend\neph = flow_h;\nepe = flow_h.*flow_l2/2;\nepw = flow_l2;\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/toms866/solvers/mg_ns_q1cd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.743168019989179, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.38898926434105313}} {"text": "function rasterSegs = structFillin(rasterSegs1, scanNum, planC)\n%\"structFillin\"\n% Take the rasterSegments from one structure and fill in all slices with\n% no defined structure. Return the rasterSegments of the new filled in\n% structure. Uses nearest neighbor interpolation to duplicate the\n% contours.\n%\n% By JRA 1/7/05\n%\n% rasterSegs1 : rasterSegments of a structure\n% planC : CERR planC\n%\n% rasterSegs : rasterSegments of filled in structure\n%\n%Usage:\n% rasterSegs = structFillin(rasterSegs1, scanNum, planC)\n%\n% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.\n% \n% This file is part of The Computational Environment for Radiotherapy Research (CERR).\n% \n% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.\n% \n% CERR has been financially supported by the US National Institutes of Health under multiple grants.\n% \n% CERR is distributed under the terms of the Lesser GNU Public License. \n% \n% This version of CERR is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n% See the GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with CERR. If not, see .\n\n\nindexS = planC{end};\nrasterSegs = [];\n[xV, yV, zV] = getScanXYZVals(planC{indexS.scan}(scanNum));\n\n%sort input rasterSegments by CTSliceValue\nrasterSegs1 = sortrows(rasterSegs1, 6);\n\n%get list of CTSlices to iterate over.\nslices1 = unique(rasterSegs1(:,6));\nminSlice = min(slices1);\nmaxSlice = max(slices1);\n\n%Iterate over all slices. If no rasterSegs exist on a slice, find the\n%nearest slice, take its rasterSegs, modify them to fit the new\n%slice/zvalue, and add them to the rasterSegs list.\nfor sliceNum = minSlice:maxSlice\n rasterIndices = find(rasterSegs1(:,6) == sliceNum); \n if isempty(rasterIndices)\n sliceZValue = zV(sliceNum); \n nearestDefinedSliceNum = interp1(zV(slices1), slices1, sliceZValue, 'nearest');\n tmpIndV = find(rasterSegs1(:,6) == nearestDefinedSliceNum);\n tmpSegsV = rasterSegs1(tmpIndV,:);\n tmpSegsV(:,1) = zV(sliceNum);\n tmpSegsV(:,6) = sliceNum;\n rasterSegs = [rasterSegs;tmpSegsV]; \n else\n rasterSegs = [rasterSegs;rasterSegs1(rasterIndices,:)]; \n end \nend", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Contouring/structFillin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3889892583862579}} {"text": "function ebsd = reduce(ebsd)\n% reduce ebsd data by taking only second pixel\n% \n% Syntax\n% ebsd = reduce(ebsd) % take every second pixel horiz. and vert.\n%\n% Input\n% ebsd - @EBSDhex\n%\n% Output\n% ebsd - @EBSDhex\n%\n\ns = size(ebsd);\n\nrows = 1:2:s(1);\ncols = 1:2:2*floor((s(2))/2);\n\n[c,r] = meshgrid(cols,rows);\n\nif ebsd.isRowAlignment\n c = c + iseven(round((r+1)/2));\nelse\n r = r + iseven(round((c+1)/2));\nend\n\nind = r <= s(1) & c <= s(2) ;\nind = sub2ind(s,r(ind),c(ind));\n\nebsd.unitCell = 2*ebsd.unitCell;\nebsd.dHex = 2*ebsd.dHex;\n\nebsd = ebsd.subSet(ind);\nebsd = ebsd.gridify;\n\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@EBSDhex/reduce.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3889664596998018}} {"text": "function tsat_values_test ( )\n\n%*****************************************************************************80\n%\n%% TSAT_VALUES_TEST demonstrates the use of TSAT_VALUES.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 01 February 2009\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TSAT_VALUES_TEST:\\n' );\n fprintf ( 1, ' TSAT_VALUES stores values of\\n' );\n fprintf ( 1, ' the saturation temperature\\n' );\n fprintf ( 1, ' as a function of pressure.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' P Tsat(P)\\n' );\n fprintf ( 1, '\\n' );\n\n n_data = 0;\n\n while ( 1 )\n\n [ n_data, p, tc ] = tsat_values ( n_data );\n\n if ( n_data == 0 )\n break\n end\n\n fprintf ( 1, ' %12f %24.16f\\n', p, tc );\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_values/tsat_values_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5698526514141571, "lm_q2_score": 0.6825737473266735, "lm_q1q2_score": 0.3889664596998018}} {"text": "function update_plotTMPCPrediction(ax, handles, tPred, plot_tube, center_points, M_s, be_l, be_u, K_t, ...\n isConstrained, ub, lb, direction, isInput, TargetAvailable, target, LinearizationAvailable, lin)\n% function plotStatePrediction\n% Authors: Martin Euler \n% Alexander Wischnewski \n% Description: \n% helper function used to plot state predictions\n% Inputs/parameters:\n% tPlot: vector containing the time window for plotting [tStart, tEnd]\n% tPred: vector with the time instants corresponding to the prediction\n% plot_tube: flag for tube plots\n% center_points: data for center points\n% M_s: tube shape matrices\n% be_l: lower bound of terminal set constraints\n% be_u: upper bound of terminal set constraints\n% K_t: tube controller\n% isConstrained: flag whether the signal is constrained or not\n% ub: upper limit for the signal \n% lb: lower limit for the signal\n% isInput: set to true in case this is an input (different calculation of tubes) \n% TargetAvailable: target trajectory available and should be plotted\n% target: actual target trajectory\n% LinearizationAvailable: linearization trajectory available and should be plotted\n% lin: actual linearization trajectory\n\n% plot predicted signal\nset(handles.pred, 'XData', tPred, 'YData', center_points);\n% plot tube and terminal sets\nif plot_tube\n % get tube bounds\n [y_low, y_up] = calcBoundsPlot(center_points, M_s, isInput, K_t, length(tPred), direction);\n % plot tube lower bounds\n set(handles.tube_ub, 'XData', tPred,'YData', y_low(1,:));\n % plot tube upper bounds\n set(handles.tube_lb, 'XData', tPred,'YData', y_up(1,:));\n % plot terminal set lower bounds and use a virtual time interval of one second (half a second\n % forth and back) to visualize it properly\n set(handles.terminal_lb, 'XData', [tPred(end)-0.5, tPred(end)+0.5],'YData', be_l*ones(2, 1));\n % plot terminal set upper bounds\n set(handles.terminal_ub, 'XData', [tPred(end)-0.5, tPred(end)+0.5],'YData', be_u*ones(2, 1));\nend\nif isConstrained\n set(handles.const_lb, 'XData', tPred, 'YData', ub);\n set(handles.const_ub, 'XData', tPred, 'YData', lb);\nend\nif TargetAvailable\n set(handles.target, 'XData', tPred, 'YData', target);\nend\nif LinearizationAvailable\n set(handles.lin, 'XData', tPred, 'YData', lin); \nend\n\n% adjust x limits appropriately such that it covers a certain range\nxlim(ax, [tPred(1)-3, tPred(1)+5]); \n\nend\n\n\n\n", "meta": {"author": "TUMFTM", "repo": "mod_vehicle_dynamics_control", "sha": "48b12705b72740b0c1574b0da2eab66fe0c75127", "save_path": "github-repos/MATLAB/TUMFTM-mod_vehicle_dynamics_control", "path": "github-repos/MATLAB/TUMFTM-mod_vehicle_dynamics_control/mod_vehicle_dynamics_control-48b12705b72740b0c1574b0da2eab66fe0c75127/control/scripts/update_plotTMPCPrediction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979746, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.38896644498124927}} {"text": "function [x, f, eflag, output, lambda] = qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)\n%QPS_GLPK Linear Program Solver based on GLPK - GNU Linear Programming Kit.\n% [X, F, EXITFLAG, OUTPUT, LAMBDA] = ...\n% QPS_GLPK(H, C, A, L, U, XMIN, XMAX, X0, OPT)\n% [X, F, EXITFLAG, OUTPUT, LAMBDA] = QPS_GLPK(PROBLEM)\n% A wrapper function providing a standardized interface for using\n% GLPK to solve the following LP (linear programming) problem:\n%\n% min C'*X\n% X\n%\n% subject to\n%\n% L <= A*X <= U (linear constraints)\n% XMIN <= X <= XMAX (variable bounds)\n%\n% Inputs (all optional except H, C, A and L):\n% H : IGNORED dummy matrix of quadratic cost coefficients\n% for QP problems, which GLPK does not handle\n% C : vector of linear cost coefficients\n% A, L, U : define the optional linear constraints. Default\n% values for the elements of L and U are -Inf and Inf,\n% respectively.\n% XMIN, XMAX : optional lower and upper bounds on the\n% X variables, defaults are -Inf and Inf, respectively.\n% X0 : optional starting value of optimization vector X (NOT USED)\n% OPT : optional options structure with the following fields,\n% all of which are also optional (default values shown in\n% parentheses)\n% verbose (0) - controls level of progress output displayed\n% 0 = no progress output\n% 1 = some progress output\n% 2 = verbose progress output\n% glpk_opt - options struct for GLPK, value in verbose\n% overrides these options\n% PROBLEM : The inputs can alternatively be supplied in a single\n% PROBLEM struct with fields corresponding to the input arguments\n% described above: H, c, A, l, u, xmin, xmax, x0, opt\n%\n% Outputs:\n% X : solution vector\n% F : final objective function value\n% EXITFLAG : exit flag, 1 - optimal, <= 0 - infeasible, unbounded or other\n% OUTPUT : output struct with the following fields:\n% errnum - GLPK errnum output arg\n% status - GKPK status output arg\n% runtime - solver run time in seconds\n% LAMBDA : struct containing the Langrange and Kuhn-Tucker\n% multipliers on the constraints, with fields:\n% mu_l - lower (left-hand) limit on linear constraints\n% mu_u - upper (right-hand) limit on linear constraints\n% lower - lower bound on optimization variables\n% upper - upper bound on optimization variables\n%\n% Note the calling syntax is almost identical to that of GLPK. The main\n% difference is that the linear constraints are specified with A, L, U\n% instead of A, B, Aeq, Beq.\n%\n% Calling syntax options:\n% [x, f, exitflag, output, lambda] = ...\n% qps_glpk([], c, A, l, u, xmin, xmax, x0, opt)\n%\n% x = qps_glpk([], c, A, l, u)\n% x = qps_glpk([], c, A, l, u, xmin, xmax)\n% x = qps_glpk([], c, A, l, u, xmin, xmax, x0)\n% x = qps_glpk([], c, A, l, u, xmin, xmax, x0, opt)\n% x = qps_glpk(problem), where problem is a struct with fields:\n% H, c, A, l, u, xmin, xmax, x0, opt\n% all fields except 'c', 'A' and 'l' or 'u' are optional\n% x = qps_glpk(...)\n% [x, f] = qps_glpk(...)\n% [x, f, exitflag] = qps_glpk(...)\n% [x, f, exitflag, output] = qps_glpk(...)\n% [x, f, exitflag, output, lambda] = qps_glpk(...)\n%\n% Example: (based on example from 'doc linprog')\n% c = [-5; -4; -6];\n% A = [ 1 -1 1;\n% -3 -2 -4;\n% 3 2 0];\n% l = [-Inf; -42; -Inf];\n% u = [20; Inf; 30];\n% xmin = [0; 0; 0];\n% opt = struct('verbose', 2);\n% [x, f, s, out, lambda] = qps_glpk([], c, A, l, u, xmin, [], [], opt);\n%\n% See also QPS_MASTER, GLPK.\n\n% MP-Opt-Model\n% Copyright (c) 2010-2020, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MP-Opt-Model.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://github.com/MATPOWER/mp-opt-model for more info.\n\n%% check for Optimization Toolbox\n% if ~have_feature('quadprog')\n% error('qps_glpk: requires the MEX interface to GLPK');\n% end\n\n%%----- input argument handling -----\n%% gather inputs\nif nargin == 1 && isstruct(H) %% problem struct\n p = H;\n if isfield(p, 'opt'), opt = p.opt; else, opt = []; end\n if isfield(p, 'x0'), x0 = p.x0; else, x0 = []; end\n if isfield(p, 'xmax'), xmax = p.xmax; else, xmax = []; end\n if isfield(p, 'xmin'), xmin = p.xmin; else, xmin = []; end\n if isfield(p, 'u'), u = p.u; else, u = []; end\n if isfield(p, 'l'), l = p.l; else, l = []; end\n if isfield(p, 'A'), A = p.A; else, A = []; end\n if isfield(p, 'c'), c = p.c; else, c = []; end\n if isfield(p, 'H'), H = p.H; else, H = []; end\nelse %% individual args\n if nargin < 9\n opt = [];\n if nargin < 8\n x0 = [];\n if nargin < 7\n xmax = [];\n if nargin < 6\n xmin = [];\n end\n end\n end\n end\nend\n\n%% define nx, set default values for missing optional inputs\nif isempty(H) || ~any(any(H))\n if isempty(A) && isempty(xmin) && isempty(xmax)\n error('qps_glpk: LP problem must include constraints or variable bounds');\n else\n if ~isempty(A)\n nx = size(A, 2);\n elseif ~isempty(xmin)\n nx = length(xmin);\n else % if ~isempty(xmax)\n nx = length(xmax);\n end\n end\nelse\n error('qps_glpk: GLPK handles only LP problems, not QP problems');\n nx = size(H, 1);\nend\nif isempty(c)\n c = zeros(nx, 1);\nend\nif isempty(A) || (~isempty(A) && (isempty(l) || all(l == -Inf)) && ...\n (isempty(u) || all(u == Inf)))\n A = sparse(0,nx); %% no limits => no linear constraints\nend\nnA = size(A, 1); %% number of original linear constraints\nif isempty(u) %% By default, linear inequalities are ...\n u = Inf(nA, 1); %% ... unbounded above and ...\nend\nif isempty(l)\n l = -Inf(nA, 1); %% ... unbounded below.\nend\nif isempty(xmin) %% By default, optimization variables are ...\n xmin = -Inf(nx, 1); %% ... unbounded below and ...\nend\nif isempty(xmax)\n xmax = Inf(nx, 1); %% ... unbounded above.\nend\nif isempty(x0)\n x0 = zeros(nx, 1);\nend\n\n%% default options\nif ~isempty(opt) && isfield(opt, 'verbose') && ~isempty(opt.verbose)\n verbose = opt.verbose;\nelse\n verbose = 0;\nend\n\n%% split up linear constraints\nieq = find( abs(u-l) <= eps ); %% equality\nigt = find( u >= 1e10 & l > -1e10 ); %% greater than, unbounded above\nilt = find( l <= -1e10 & u < 1e10 ); %% less than, unbounded below\nibx = find( (abs(u-l) > eps) & (u < 1e10) & (l > -1e10) );\nAA = [ A(ieq, :); A(ilt, :); -A(igt, :); A(ibx, :); -A(ibx, :) ];\nbb = [ u(ieq); u(ilt); -l(igt); u(ibx); -l(ibx)];\n\n%% grab some dimensions\nnlt = length(ilt); %% number of upper bounded linear inequalities\nngt = length(igt); %% number of lower bounded linear inequalities\nnbx = length(ibx); %% number of doubly bounded linear inequalities\nneq = length(ieq); %% number of equalities\nnie = nlt+ngt+2*nbx; %% number of inequalities\n\nctype = [repmat('S', neq, 1); repmat('U', nlt+ngt+2*nbx, 1)];\nvtype = repmat('C', nx, 1);\n\n%% set options struct for GLPK\nif ~isempty(opt) && isfield(opt, 'glpk_opt') && ~isempty(opt.glpk_opt)\n glpk_opt = glpk_options(opt.glpk_opt);\nelse\n glpk_opt = glpk_options;\nend\nglpk_opt.msglev = verbose;\n\n%% call the solver\nt0 = tic;\n[x, f, errnum, extra] = ...\n glpk(c, AA, bb, xmin, xmax, ctype, vtype, 1, glpk_opt);\noutput.runtime = toc(t0);\n\n%% set exit flag\nif isfield(extra, 'status') %% status found in extra.status\n output.errnum = errnum;\n output.status = extra.status;\n eflag = -errnum;\n if eflag == 0 && extra.status == 5\n eflag = 1;\n end\nelse %% status found in errnum\n output.errnum = [];\n output.status = errnum;\n if have_feature('octave')\n if errnum == 180 || errnum == 151 || errnum == 171\n eflag = 1;\n else\n eflag = 0;\n end\n else\n if errnum == 5\n eflag = 1;\n else\n eflag = 0;\n end\n end\nend\n\n%% repackage lambdas\nif isempty(extra) || ~isfield(extra, 'lambda') || isempty(extra.lambda)\n lambda = struct( ...\n 'mu_l', zeros(nA, 1), ...\n 'mu_u', zeros(nA, 1), ...\n 'lower', zeros(nx, 1), ...\n 'upper', zeros(nx, 1) ...\n );\nelse\n lam.eqlin = extra.lambda(1:neq);\n lam.ineqlin = extra.lambda(neq+(1:nie));\n lam.lower = extra.redcosts;\n lam.upper = -extra.redcosts;\n lam.lower(lam.lower < 0) = 0;\n lam.upper(lam.upper < 0) = 0;\n kl = find(lam.eqlin > 0); %% lower bound binding\n ku = find(lam.eqlin < 0); %% upper bound binding\n\n mu_l = zeros(nA, 1);\n mu_l(ieq(kl)) = lam.eqlin(kl);\n mu_l(igt) = -lam.ineqlin(nlt+(1:ngt));\n mu_l(ibx) = -lam.ineqlin(nlt+ngt+nbx+(1:nbx));\n\n mu_u = zeros(nA, 1);\n mu_u(ieq(ku)) = -lam.eqlin(ku);\n mu_u(ilt) = -lam.ineqlin(1:nlt);\n mu_u(ibx) = -lam.ineqlin(nlt+ngt+(1:nbx));\n\n lambda = struct( ...\n 'mu_l', mu_l, ...\n 'mu_u', mu_u, ...\n 'lower', lam.lower(1:nx), ...\n 'upper', lam.upper(1:nx) ...\n );\nend\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/mp-opt-model/lib/qps_glpk.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3888221702985411}} {"text": "% compareBoundariesScript\n\nsavedir = '~/data/occlusion/labelme/figs/bnd_im';\n\nfolder = db(f).annotation.folder; \nimfn = db(f).annotation.filename;\nbn = strtok(imfn, '.');\n\n\n\nim = imread(fullfile(imdir, folder, imfn));\nfigure(1), hold off, imagesc(im); axis image\n\nload(fullfile(basedir, 'pb2', folder, [bn '_pb2_ucm']), 'ucm');\nim = im2double(imresize(im, size(ucm), 'bilinear'));\nimwrite(im, fullfile(savedir, imfn), 'Quality', 95);\ngrayim = rgb2gray(im2double(im));\nh = 0*ones(size(grayim)); \nucm = im2double(ucm);\npb = ucm / max(ucm(:));\ntmpim = ordfilt2(max(pb, 0), 9, ones(3));\ndispim = tmpim;%dispim = hsv2rgb(h, tmpim, 0.5*grayim+0.5*tmpim);\nfigure(2), hold off, imagesc(dispim), axis image, colormap gray\nimwrite(dispim, fullfile(savedir, [bn '_pb2_ucm.jpg']), 'Quality', 95);\n\nload(fullfile(basedir, 'pb', folder, [bn '_pb']), 'pb');\ngrayim = rgb2gray(im2double(im));\nh = 0*ones(size(grayim)); \npb = pb / max(pb(:));\ntmpim = ordfilt2(max(pb, 0), 9, ones(3));\ndispim = tmpim;%dispim = hsv2rgb(h, tmpim, 0.5*grayim+0.5*tmpim);\nfigure(5), hold off, imagesc(dispim), axis image\nimwrite(dispim, fullfile(savedir, [bn '_pb.jpg']), 'Quality', 95);\n\nload(fullfile(basedir, 'pb2', folder, [bn '_pb2']), 'pb');\ngrayim = rgb2gray(im2double(im));\nh = 0*ones(size(grayim)); \npb = pb / max(pb(:));\ntmpim = ordfilt2(max(pb, 0), 9, ones(3));\ndispim = tmpim;%dispim = hsv2rgb(h, tmpim, 0.5*grayim+0.5*tmpim);\nfigure(5), hold off, imagesc(dispim), axis image\nimwrite(dispim, fullfile(savedir, [bn '_pb2.jpg']), 'Quality', 95);\n\nload(fullfile(occdir, folder, [bn '_occlusion']), 'bndinfo_all');\nocc.po_all = getOcclusionMaps(bndinfo_all); \noccim = mean(occ.po_all, 3);\n%occim = im2double(imread(fullfile(basedir, 'results', folder, [strtok(imfn, '.') '_occ.jpg'])));\noccim = occim/max(occim(:));\n%h=0.65*ones(size(grayim));\ntmpim = ordfilt2(occim, 9, ones(3));\ndispim = tmpim;%dispim = hsv2rgb(h, tmpim, 0.5*grayim+0.5*tmpim);\nfigure(3), hold off, imagesc(dispim); axis image\nimwrite(dispim, fullfile(savedir, [bn '_occave.jpg']), 'Quality', 95);\n\noccim = occ.po_all(:, :, 1);\noccim = occim/max(occim(:));\ntmpim = ordfilt2(occim, 9, ones(3));\ndispim = tmpim;%dispim = hsv2rgb(h, tmpim, 0.5*grayim+0.5*tmpim);\nfigure(6), hold off, imagesc(dispim); axis image\nimwrite(dispim, fullfile(savedir, [bn '_occ1.jpg']), 'Quality', 95);\n\nload(fullfile(basedir, 'labels2', folder, [bn '_labels']));\nbmap = seg2bmap(lim, size(pb, 2), size(pb, 1));\nbmap(:, [1:10 end-9:end]) = 0;\nbmap([1:10 end-9:end], :) = 0;\ntmpim = ordfilt2(double(bwmorph(bmap,'thin',inf)), 25, ones(5));\ntmpim = cat(3, tmpim>0, zeros([size(tmpim) 2]));\ndispim = im2double(im);\ndispim(repmat(tmpim(:, :, 1)>0, [1 1 3])) = tmpim(repmat(tmpim(:, :, 1)>0, [1 1 3]));\n%dispim = min(max(hsv2rgb(h, tmpim, 0.5*grayim+0.5*tmpim), 0), 1);\nfigure(4), hold off, imagesc(dispim); axis image,\nimwrite(dispim, fullfile(savedir, [bn '_gt.jpg']), 'Quality', 95);\n\nfid = fopen(fullfile(savedir, [bn '_ap.txt']), 'w');\nfprintf(fid, 'index = %f pb = %f pb2+ucm = %f occ1 = %f occave = %f \\n', sind(f), pr_pb(f).ap, pr_ucm(f).ap, pr_occ1(f).ap, pr_occave(f).ap);\nfclose(fid);\n\ndisp([imfn ': ' num2str([pr_pb2(f).ap pr_occave(f).ap])])\n\n% grayim = imresize(rgb2gray(im2double(im)), size(pb), 'bilinear');\n% resultim = repmat(grayim, [1 1 3]);\n% tmpim = ordfilt2(max(pb,0), 9, ones(3));\n% resultim((tmpim>0.05)) = tmpim(tmpim>0.05);\n% tmpim = ordfilt2(occim, 9, ones(3));\n% resultim(find(tmpim>0.05)+numel(tmpim)) = tmpim(tmpim>0.05);\n% figure(4), hold off, imagesc(resultim), axis image", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/iccv07Final/src/occlusion/compareBoundariesScript.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3888221702985411}} {"text": "function [Cn, PNR] = correlation_pnr_parallel(obj, frame_range)\n%% compute correlation image and pnr imaging in parallel\n%% input:\n% frame_range: 1 X 2 vector indicating the starting and ending frames\n\n%% Output:\n% Cn: correlation image\n% PNR: peak to noise ratio\n%% Author: Pengcheng Zhou, Columbia University, 2017\n%% email: zhoupc1988@gmail.com\n\n%% process parameters\n\n% map data\nmat_data = obj.P.mat_data;\n\n% dimension of data\ndims = mat_data.dims;\nd1 = dims(1);\nd2 = dims(2);\nT = dims(3);\nobj.options.d1 = d1;\nobj.options.d2 = d2;\n\n% parameters for patching information\npatch_pos = mat_data.patch_pos;\nblock_pos = mat_data.block_pos;\n\n% number of patches\n[nr_patch, nc_patch] = size(patch_pos);\n\n% downsampling\nssub = obj.options.ssub;\ntsub = obj.options.tsub;\n\n% frames to be loaded for initialization\nif ~exist('frame_range', 'var')\n frame_range = obj.frame_range;\nend\nif isempty(frame_range)\n frame_range = [1, T];\nelse\n frame_range(frame_range<1) = 1;\n frame_range(frame_range>T) = T;\nend\nT = diff(frame_range) + 1;\nobj.frame_range = frame_range;\n\n% parameters for detrending\nif isfield(obj.options, 'nk') % number of knots for creating spline basis\n nk = obj.options.nk;\nelse\n nk = 1;\nend\ndetrend_method = obj.options.detrend_method;\n\n% parameter for avoiding using boundaries pixels as seed pixels\noptions = obj.options;\n\n%% compute correlation image and pnr image in parallel\nCn = zeros(d1, d2);\nPNR = zeros(d1, d2);\n\nresults = cell(nr_patch, nc_patch);\n\nfor m=1:(nr_patch*nr_patch)\n fprintf('|');\nend\nfprintf('\\n');\nparfor mpatch=1:(nr_patch*nc_patch)\n % get the indices corresponding to the selected patch\n tmp_patch = patch_pos{mpatch};\n tmp_block = block_pos{mpatch};\n \n % boundaries pixels to be avoided for detecting seed pixels\n tmp_options = options;\n \n % patch dimension\n tmp_d1 = diff(tmp_block(1:2))+1;\n tmp_d2 = diff(tmp_block(3:4))+1;\n tmp_options.gSig = tmp_options.gSig/ssub; \n tmp_options.gSiz = ceil(tmp_options.gSiz/ssub); \n \n % load the patch data\n Ypatch = get_patch_data(mat_data, tmp_patch, frame_range, true);\n if (ssub~=1)||(tsub~=1)\n Ypatch = dsData(Ypatch, tmp_options);\n end\n [tmp_options.d1, tmp_options.d2, T] = size(Ypatch);\n Ypatch = double(reshape(Ypatch, [], T));\n if nk>1\n Ypatch_dt = detrend_data(Ypatch, nk, detrend_method); % detrend data\n [tmp_Cn, tmp_PNR] = correlation_image_endoscope(Ypatch_dt, tmp_options);\n else\n [tmp_Cn, tmp_PNR] = correlation_image_endoscope(Ypatch, tmp_options);\n end\n if (ssub~=1)\n tmp_Cn = imresize(tmp_Cn, [tmp_d1, tmp_d2]);\n tmp_PNR = imresize(tmp_PNR, [tmp_d1, tmp_d2]);\n end\n % put everthing into one struct variable\n results{mpatch} = struct('Cn', tmp_Cn, 'PNR', tmp_PNR);\n fprintf('.');\nend\nfprintf('\\n');\n\n%% collect results\nfor mpatch=1:(nr_patch*nc_patch)\n % get the indices corresponding to the selected patch\n [mr, mc] = ind2sub([nr_patch, nc_patch], mpatch);\n tmp_patch = patch_pos{mr, mc};\n tmp_block = block_pos{mr, mc};\n r0 = tmp_block(1);\n r1 = tmp_block(2);\n c0 = tmp_block(3);\n c1 = tmp_block(4);\n ind_patch = true(r1-r0+1, c1-c0+1);\n ind_patch((tmp_patch(1):tmp_patch(2))-r0+1, (tmp_patch(3):tmp_patch(4))-c0+1) = false;\n \n % unpack results\n tmp_results = results{mpatch};\n % eval(sprintf('tmp_results=results_patch_%d;', mpatch));\n tmp_Cn = tmp_results.Cn;\n tmp_PNR = tmp_results.PNR;\n \n Cn(r0:r1, c0:c1) = max(Cn(r0:r1, c0:c1), tmp_Cn.*(1-ind_patch));\n PNR(r0:r1, c0:c1) = max(PNR(r0:r1, c0:c1), tmp_PNR.*(1-ind_patch));\nend", "meta": {"author": "zhoupc", "repo": "CNMF_E", "sha": "ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f", "save_path": "github-repos/MATLAB/zhoupc-CNMF_E", "path": "github-repos/MATLAB/zhoupc-CNMF_E/CNMF_E-ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f/ca_source_extraction/@Sources2D/correlation_pnr_parallel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3888009495643618}} {"text": "function failed_spm8\n\n% WALLTIME 00:10:00\n% MEM 3gb\n% DEPENDENCY ft_volumenormalise ft_volumesegment ft_volumedownsample mni2tal tal2mni\n\nmrifile = dccnpath('/home/common/matlab/fieldtrip/data/ftp/test/ctf/SubjectBraille.mri');\nmri = ft_read_mri(mrifile);\n\n[ftver, ftpath] = ft_version;\n\n% start with a clean path\nrmpath(fullfile(ftpath, 'external', 'spm2'));\nrmpath(fullfile(ftpath, 'external', 'spm8'));\nrmpath(fullfile(ftpath, 'external', 'spm12'));\n\n%% ft_volumenormalise\n\ncfg = [];\ncfg.nonlinear = 'no';\n\nclear fun;\ncfg.spmversion = 'spm2';\nn2 = ft_volumenormalise(cfg, mri);\nrmpath(spm('dir'));\n\nclear fun;\ncfg.spmversion = 'spm8';\nn8 = ft_volumenormalise(cfg, mri);\nrmpath(spm('dir'));\n\n\n%% ft_volumesegment\n\nclear fun;\ncfg = [];\ncfg.spmversion = 'spm2';\ns2 = ft_volumesegment(cfg, mri);\nrmpath(spm('dir'));\n\nclear fun;\ncfg.spmversion = 'spm8';\ns8 = ft_volumesegment(cfg, mri);\nrmpath(spm('dir'));\n\n\n%% ft_volumerealign\n\nclear fun;\ncfg = [];\ncfg.method = 'spm';\ncfg.spmversion = 'spm2';\nr2 = ft_volumerealign(cfg, mri, mri);\nrmpath(spm('dir'));\n\nclear fun;\ncfg.spmversion = 'spm8';\nr8 = ft_volumerealign(cfg, mri, mri);\nrmpath(spm('dir'));\n\n\n%% ft_volumedownsample\ntmp = randn(256,256,256);\nmri.pow = tmp;\nmri.pow(1) = 0;\n\ncfg = [];\ncfg.downsample = 2;\n\nclear fun;\ncfg.spmversion = 'spm2';\ncfg.smooth = 'no';\nd2 = ft_volumedownsample(cfg, mri);\ncfg.smooth = 5;\nd2s = ft_volumedownsample(cfg, mri);\nrmpath(spm('dir'));\n\nclear fun;\ncfg.spmversion = 'spm8';\ncfg.smooth = 'no';\nd8 = ft_volumedownsample(cfg, mri);\ncfg.smooth = 5;\nd8s = ft_volumedownsample(cfg, mri);\nrmpath(spm('dir'));\n\n\n%% mni2tal and tal2mni\n\n[ftver, ftpath] = ft_version;\ncd(fullfile(ftpath, 'private'));\n\ninpoints = randn(100,3);\noutpoints = mni2tal(inpoints);\nrmpath(spm('dir'));\n\ninpoint2s = tal2mni(outpoints);\nrmpath(spm('dir'));\n\n%% prepare_dipole_grid\n\n%% prepare_mesh_segmentation\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/failed_spm8.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521102, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3888009495643617}} {"text": "function [voxels,keep] = carve( voxels, camera )\n%CARVE: remove voxels that are not in the silhouette\n%\n% VOXELS = CARVE(VOXELS,CAMERA) carves away voxels that are not inside\n% the silhouette contained in CAMERA. The resulting voxel array is\n% returned.\n%\n% [VOXELS,KEEP] = CARVE(VOXELS,CAMERA) also returns the indices of the\n% voxels that were retained.\n%\n% Example:\n% >> camera = loadcameradata(1);\n% >> camera.Silhouette = getsilhouette( camera.Image );\n% >> voxels = carve( makevoxels(50), camera );\n% >> showscene( camera, voxels );\n%\n% See also: LOADCAMERADATA\n% MAKEVOXELS\n% CARVEALL\n\n% Copyright 2005-2009 The MathWorks, Inc.\n% $Revision: 1.0 $ $Date: 2006/06/30 00:00:00 $\n\n\n% Project into image\n[x,y] = spacecarving.project( camera, voxels.XData, voxels.YData, voxels.ZData );\n\n% Clear any that are out of the image\n[h,w,d] = size(camera.Image); %#ok\nkeep = find( (x>=1) & (x<=w) & (y>=1) & (y<=h) );\nx = x(keep);\ny = y(keep);\n\n% Now clear any that are not inside the silhouette\nind = sub2ind( [h,w], round(y), round(x) );\nkeep = keep(camera.Silhouette(ind) >= 1);\n\nvoxels.XData = voxels.XData(keep);\nvoxels.YData = voxels.YData(keep);\nvoxels.ZData = voxels.ZData(keep);\nvoxels.Value = voxels.Value(keep);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26160-carving-a-dinosaur/SpaceCarving/+spacecarving/carve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286833, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.3887156794982269}} {"text": "function [feat, unique_box_id] = spp_features_convX_to_poolX(spp_pooler, feat, boxes, random_scale, dedup)\n% [feat, unique_box_id] = spp_features_convX_to_poolX(feat, boxes, random_scale, dedup)\n% \n% boxes in rows with (l, t, r, b)\n% random_scale find best scale for each box or not\n% dedup remove duplicate boxes on response map \n%\n% AUTORIGHTS\n% ---------------------------------------------------------\n% Copyright (c) 2014, Shaoqing Ren\n% \n% This file is part of the SPP code and is available \n% under the terms of the Simplified BSD License provided in \n% LICENSE. Please retain this notice and LICENSE if you use \n% this file (or any portion of it) in your project.\n% --------------------------------------------------------- \n\nif nargin < 4\n random_scale = false;\nend\n\nif nargin < 5\n dedup = false;\nend\n\nassert(isfield(feat, 'rsp') && ~isempty(feat.rsp));\n\nmin_img_sz = min(feat.im_height, feat.im_width);\n\nif isempty(boxes)\n feat = [];\n return;\nend\n\nfeat.scale = feat.scale(:)'; \nif ~random_scale\n expected_scale = spp_pooler.expected_scale(min_img_sz, boxes, spp_pooler);\n\n [~, best_scale_ids] = min(abs(bsxfun(@minus, feat.scale, expected_scale(:))), [], 2);\nelse\n best_scale_ids = randi(length(feat.scale), size(boxes, 1), 1);\nend\n\nboxes_scales = feat.scale(best_scale_ids(:));\nscaled_boxes = bsxfun(@times, (boxes - 1), (boxes_scales(:) - 1)) / (min_img_sz - 1) + 1;\n\nif dedup\n rep_boxes = spp_pooler.response_boxes(scaled_boxes, spp_pooler);\n rsp_keys = [rep_boxes, best_scale_ids];\n [~, ia] = unique(rsp_keys, 'rows');\n unique_box_id = sort(ia);\nelse\n unique_box_id = 1:size(boxes, 2);\nend\n\nfeat = spm_pool(feat.rsp, spp_pooler.spm_divs, scaled_boxes', best_scale_ids, ...\n spp_pooler.offset0, spp_pooler.offset, spp_pooler.step_standard); \n\nend\n", "meta": {"author": "ShaoqingRen", "repo": "SPP_net", "sha": "ca9675907f8af6c02773571bc91147b3a2ddfcc1", "save_path": "github-repos/MATLAB/ShaoqingRen-SPP_net", "path": "github-repos/MATLAB/ShaoqingRen-SPP_net/SPP_net-ca9675907f8af6c02773571bc91147b3a2ddfcc1/spp_features_convX_to_poolX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3887156794982269}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction self = despike(self, spiketype, maxRatio)\n % rsam.despike Despike a rsam object by comparing ratios of\n % concurrent samples. Checks for spikes lasting 1 or 2 samples.\n % rsamdespiked = rsamobject.despike(spiketype, maxRatio)\n\n % Example 1: Remove spikes which are at least 10 times\n % adjacent samples. Store these in s.spikes.\n % s = s.despike('spikes', 10)\n %\n % Example 2: Remove spikes which are at least 3 times\n % adjacent samples. Store these in s.events.\n % s = s.despike('events', 3) \n %\n % Inputs: \n % maxRatio - Maximum ratio that defines \"normal\" data\n % compared to surrounding samples\n % Outputs:\n % s = rsam object with spikes removed\n\n % NOTE: THIS METHOD REQUIRES EXTRA PROPERTIES FOR rsam CLASS\n %spikes = []; % a vector of rsam objects that describe large spikes\n % in the data. Populated after running 'despike' method. These are\n % removed simultaneously from the data vector.\n %transientEvents = []; % a vector of rsam objects that describe\n % transient events in the data that might correspond to vt, rf, lp\n % etc. Populated after running 'despike' method with the\n % 'transientEvents' argument. These are not removed from the data\n % vector, but are instead returned in the continuousData vector.\n\n \n % find spikes lasting 1 sample only\n y= self.data;\n spikeNumber = 0;\n for i=2:length(self.data)-1\n if self.data(i)>maxRatio*self.data(i-1)\n if self.data(i)>maxRatio*self.data(i+1)\n %sample i is an outlier\n y(i) = mean([self.data(i-1) self.data(i+1)]);\n spikeNumber = spikeNumber + 1;\n %spikes(spikeNumber) = spike(self.dnum(i), self.data(i) - y(i), y(i), '');\n spikes(spikeNumber) = rsam('dnum', self.dnum(i), 'data', self.data(i) - y(i), 'sta', self.sta, 'chan', self.chan, 'seismogram_type', self.seismogram_type, 'units', self.units, 'measure', self.measure);\n disp(sprintf('%s: sample %d, time %s, before %f, this %f, after %f. Replacing with %f',upper(spiketype),i, datestr(self.dnum(i)), self.data(i-1), self.data(i), self.data(i+1), y(i)));\n end\n end\n end\n\n % find spikes lasting 2 samples\n for i=2:length(self.data)-2\n if self.data(i)>maxRatio*self.data(i-1) & self.data(i+1)>maxRatio*self.data(i-1)\n if self.data(i)>maxRatio*self.data(i+2) & self.data(i+1)>maxRatio*self.data(i+2) \n %samples i & i+1 are outliers\n y(i:i+1) = mean([self.data(i-1) self.data(i+2)]);\n spikeNumber = spikeNumber + 1;\n % spikes(spikeNumber) = spike( ...\n % self.dnum(i:i+1), ...\n % self.data(i:i+1) - y(i:i+1), ...\n % y(i:i+1), '' );\n spikes(spikeNumber) = rsam('dnum', self.dnum(i:i+1), 'data', self.data(i:i+1) - y(i:i+1), 'sta', self.sta, 'chan', self.chan, 'seismogram_type', self.seismogram_type, 'units', self.units, 'measure', self.measure);\n disp(sprintf('%s: sample %d, time %s, before %f, these %f %f, after %f. Replacing with %f',upper(spiketype), i, datestr(self.dnum(i)), self.data(i-1), self.data(i), self.data(i+1), self.data(i+2), y(i)));\n end\n end\n end\n\n % find spikes lasting 3 samples - could be a short as 62\n % seconds\n if exist('spikes', 'var')\n if ~strcmp(spiketype, 'spikes') % only makes sense for events - an actual telemetry spike will be 1 or 2 samples long only (a few seconds)\n for i=2:length(self.data)-3\n if self.data(i)>maxRatio*self.data(i-1) & self.data(i+1)>maxRatio*self.data(i-1) & self.data(i+2)>maxRatio*self.data(i-1) \n if self.data(i)>maxRatio*self.data(i+3) & self.data(i+1)>maxRatio*self.data(i+3) & self.data(i+2)>maxRatio*self.data(i+3)\n %samples i & i+1 are outliers\n y(i:i+2) = mean([self.data(i-1) self.data(i+3)]);\n spikeNumber = spikeNumber + 1;\n % spikes(spikeNumber) = spike( ...\n % self.dnum(i:i+1), ...\n % self.data(i:i+1) - y(i:i+1), ...\n % y(i:i+1), '' );\n spikes(spikeNumber) = rsam('dnum', self.dnum(i:i+2), 'data', self.data(i:i+2) - y(i:i+2), 'sta', self.sta, 'chan', self.chan, 'seismogram_type', self.seismogram_type, 'units', self.units, 'measure', self.measure);\n disp(sprintf('%s: sample %d, time %s, before %f, these %f %f %f, after %f. Replacing with %f',upper(spiketype), i, datestr(self.dnum(i)), self.data(i-1), self.data(i), self.data(i+1), self.data(i+2), self.data(i+3), y(i)));\n end\n end\n end \n end\n end\n\n self.data = y; \n if exist('spikes', 'var')\n if strcmp(spiketype, 'spikes')\n self.spikes = spikes;\n else\n self.transientEvents = spikes;\n end\n end\nend", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/@rsam/extensions/despike.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286833, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.38871567949822683}} {"text": "function [t, x, u] = snd_mpc(snd, output_data, varargin) \n warning off all;\n%%\n snd.net_load = snd.load *2 - snd.PV/3 - snd.wind; %Power Balance\n\n % Solve the optimal control problem\n t_Start = tic;\n [snd.u0, V_current, exitflag, output] = snd_solveOptimalControlProblem( snd );\n t_Elapsed = toc( t_Start );\n %V_current\n \n if ( snd.iprint >= 1 )\n printSolution(snd.printClosedloopData, snd.mpciter, snd.xmeasure, snd.u0, snd.iprint, exitflag, t_Elapsed, output_data);\n end\n\n %Save current information:\n x_estimated = snd_computeOpenloopSolution( snd , snd.u0 );\n\n\n t = output;\n x = x_estimated;\n u = snd.u0; \n\n \nend", "meta": {"author": "juchengquan", "repo": "Two_Layer_EMS", "sha": "48864a80e10fe32e566181ebd5e2394ab2c6e1a7", "save_path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS", "path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS/Two_Layer_EMS-48864a80e10fe32e566181ebd5e2394ab2c6e1a7/solve/snd_mpc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7772998611746911, "lm_q2_score": 0.5, "lm_q1q2_score": 0.38864993058734554}} {"text": "function varargout = plot(sF,varargin)\n%\n% Syntax\n%\n% plot(sF)\n%\n% Input\n% sF - @S2FunHarmonicSym\n%\n% See also\n% S2Fun/plot\n\n% create a new figure if needed\n%[mtexFig,isNew] = newMtexFigure('datacursormode',@tooltip,varargin{:});\n\n% get plotting region\nif sF.antipodal, varargin = [varargin,'antipodal']; end\nsR = sF.s.fundamentalSector(varargin{:});\n\n% set axes alignment\nif isa(sF.s,'crystalSymmetry')\n varargin = [sF.s.plotOptions,varargin];\nend\n\n% perform plotting\n[varargout{1:nargout}] = sF.plot@S2Fun(sR,sF.s,varargin{:});\n\n\nfunction txt = tooltip(varargin)\n\n[h_local,~,value] = getDataCursorPos(mtexFig);\n\nh_local = Miller(h_local,sF.s,'uvw');\nh_local = round(h_local,'tolerance',3*degree);\ntxt = [xnum2str(value) ' at ' char(h_local)];\n\nend\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/S2Fun/@S2FunHarmonicSym/plot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.38861043481155305}} {"text": "function [Ef, Varf, xtnn, xt1, xt2] = gp_cpred(gp,x,y,xt,ind,varargin)\n%GP_CPRED Conditional predictions using specific covariates\n%\n% Description\n% GP_CPRED(GP,X,Y,XT,IND,OPTIONS) does predictions using only\n% covariates specified in vector IND. Other covariates are fixed to\n% either mean, median or values chosen by user. Returns predictions for\n% latent values, variance and corresponding inputs. If IND=0, only time\n% is used as a covariate for Cox-PH model.\n%\n% OPTIONS is optional parameter-value pair\n% method - which value to fix the not used covariates, 'median'\n% (default), 'mean' or 'mode'\n% var - vector specifying optional values for not used covariates,\n% elements corresponding to mean/median values should \n% be set to NaN. \n% plot - option for plotting, 'off' (default) or 'on'\n% normdata - a structure with fields xmean, xstd, ymean, and ystd\n% to allow plotting in the original data scale (see\n% functions normdata and denormdata)\n% target - option for choosing what is computed 'mu' (default),\n% 'f' or 'cdf'\n% tr - Euclidean distance treshold for not using grid points when\n% doing predictions with 2 covariates, default 0.25\n% predcf - an index vector telling which covariance functions are \n% used for prediction. Default is all (1:gpcfn). \n% See additional information below.\n% z - optional observed quantity in triplet (x_i,y_i,z_i)\n% Some likelihoods may use this. For example, in case of \n% Poisson likelihood we have z_i=E_i, that is, expected value \n% for ith case. \n% zt - optional observed quantity in triplet (xt_i,yt_i,zt_i)\n% Some likelihoods may use this. For example, in case of \n% Poisson likelihood we have z_i=E_i, that is, the expected \n% value for the ith case. \n\n\nip=inputParser;\nip.FunctionName = 'GP_CPRED';\nip.addRequired('gp',@(x) isstruct(x) || iscell(x));\nip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\nip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\nip.addRequired('xt', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\nip.addParamValue('yt', [], @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('zt', [], @(x) isreal(x) && all(isfinite(x(:))))\nip.addRequired('ind', @(x) ~isempty(x) && isvector(x))\nip.addParamValue('var', [], @(x) isreal(x))\nip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('predcf', [], @(x) isempty(x) || ...\n isvector(x) && isreal(x) && all(isfinite(x)&x>0))\nip.addParamValue('tstind', [], @(x) isempty(x) || iscell(x) ||...\n (isvector(x) && isreal(x) && all(isfinite(x)&x>0)))\nip.addParamValue('method', 'median', @(x) ismember(x, {'median', 'mean' 'mode'}))\nip.addParamValue('plot', 'off', @(x) ismember(x, {'on', 'off'}))\nip.addParamValue('tr', 0.25, @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('target', 'mu', @(x) ismember(x,{'f','mu','cdf'}))\nip.addParamValue('prct', [5 50 95], @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('normdata', struct(), @(x) isempty(x) || isstruct(x))\nip.addParamValue('xlabels', [], @(x) isempty(x) || iscell(x));\nip.parse(gp, x, y, xt, ind, varargin{:});\nzt=ip.Results.zt;\noptions=struct();\noptions.predcf=ip.Results.predcf;\noptions.prct=ip.Results.prct;\noptions.tstind=ip.Results.tstind;\nmethod = ip.Results.method;\nvars = ip.Results.var;\nplot_results = ip.Results.plot;\ntr = ip.Results.tr;\ntarget = ip.Results.target;\nif strcmp(target,'f')\n options = rmfield(options,'prct');\nend\nyt=ip.Results.yt;\nif ~isempty(yt)\n options.yt=yt;\nend\nz=ip.Results.z;\nif ~isempty(z)\n options.z=z;\nend\nif ~isempty(zt)\n options.zt=zt;\nend\nif isempty(zt)\n options.zt=z;\nend\n% normdata\nnd=ip.Results.normdata;\nipnd=inputParser;\nipnd.FunctionName = 'normdata';\nipnd.addParamValue('xmean',zeros(1,size(x,2)),@(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))));\nipnd.addParamValue('xstd',ones(1,size(x,2)),@(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))));\nipnd.addParamValue('xlog',zeros(1,size(x,2)),@(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))));\nipnd.addParamValue('ymean',0,@(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))));\nipnd.addParamValue('ystd',1,@(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))));\nipnd.addParamValue('ylog',0,@(x) isempty(x) || (isreal(x) && all(isfinite(x(:)))));\nipnd.parse(nd);\nnd=ipnd.Results;\n\n[tmp, nin] = size(x);\n\nif iscell(gp)\n liktype=gp{1}.lik.type;\nelse\n liktype=gp.lik.type;\nend\n\nif isequal(liktype, 'Coxph') && isequal(target,'mu')\n target='f';\n warning('GP_CPRED: Target ''mu'' not applicable for a Cox-PH model. Switching to target ''f''')\nend\n\nif ~isempty(vars) && (~isvector(vars) || length(vars) ~= nin)\n error('Vector defining fixed variable values must be same length as number of covariates')\nend\n\nxto=xt; [n,tmp]=size(xto);\n\nif length(ind)==1\n \n if ind~=0\n [xtnn, iu] = unique(xt(:,ind));\n else\n xtnn = xt(1,:);\n iu = 1;\n end\n if ~isempty(z)\n options.zt = options.zt(iu);\n end\n if ~isempty(yt)\n options.yt = options.yt(iu);\n end\n xt = repmat(feval(method,xt), size(xtnn,1), 1);\n if ~isempty(vars)\n xt(:,~isnan(vars)) = repmat(vars(~isnan(vars)), length(xtnn), 1);\n end\n \n if ind>0\n xt(:,ind) = xtnn;\n end\n if ~strcmp(liktype, 'Coxph')\n switch target\n case 'f'\n [Ef, Varf] = gp_pred(gp, x, y, xt, options);\n case 'mu'\n prctmu = denormdata(gp_predprctmu(gp, x, y, xt, options),nd.ymean,nd.ystd);\n Ef = prctmu; Varf = [];\n case 'cdf'\n cdf = gp_predcdf(gp, x, y, xt, options);\n Ef = cdf; Varf = [];\n end\n else\n [Ef1,Ef2,Covf] = pred_coxph(gp,x,y,xt,'z',options.z,'zt',options.zt);\n nt=size(Ef1,1);\n if ind>0\n % conditional posterior given Ef1=E[Ef1]\n Ef = Ef2; \n Varf = diag(Covf(nt+1:end,nt+1:end)-Covf(nt+1:end,1:nt)*(Covf(1:nt,1:nt)\\Covf(1:nt,nt+1:end)));\n else\n % conditional posterior given Ef2=E[Ef2]\n Ef = Ef1; \n Varf = diag(Covf(1:nt, 1:nt)-Covf(1:nt,nt+1:end)*(Covf(nt+1:end,nt+1:end)\\Covf(nt+1:end,1:nt)));\n xtnn = gp.lik.xtime;\n end\n end\n if isequal(plot_results, 'on')\n if ind>0\n if ind>=1&numel(nd.xmean)>=ind\n xtnn=denormdata(xtnn,nd.xmean(ind),nd.xstd(ind));\n end\n deltadist=gp_finddeltadist(gp);\n if ~ismember(ind,deltadist)\n switch target\n case 'f'\n plot(xtnn, Ef, 'ob', xtnn, Ef, '-k', xtnn, Ef-1.64*sqrt(Varf), '--b', xtnn, Ef+1.64*sqrt(Varf), '--b')\n case 'mu'\n plot(xtnn, prctmu(:,2), 'ob', xtnn, prctmu(:,2), '-k', xtnn, prctmu(:,1), '--b', xtnn, prctmu(:,3), '--b')\n case 'cdf'\n plot(xtnn, Ef, 'o-b')\n end\n else\n switch target\n case 'f'\n plot(xtnn, Ef, 'ob', [xtnn xtnn]',[Ef-1.64*sqrt(Varf) Ef+1.64*sqrt(Varf)]', '-b')\n xlim([1.5*xtnn(1)-0.5*xtnn(2) 1.5*xtnn(end)-.5*xtnn(end-1)])\n set(gca,'xtick',xtnn)\n case 'mu'\n plot(xtnn, prctmu(:,2), 'ob', [xtnn xtnn]',[prctmu(:,1) prctmu(:,3)]', '-b')\n xlim([1.5*xtnn(1)-0.5*xtnn(2) 1.5*xtnn(end)-.5*xtnn(end-1)])\n set(gca,'xtick',xtnn)\n case 'cdf'\n plot(xtnn, Ef, 'ob')\n end\n end\n else\n % use stairs for piecewise constant baseline hazard\n xtnn = gp.lik.stime;\n [xx,yy]=stairs(xtnn, [Ef;Ef(end)]);\n [xx,yyl]=stairs(xtnn, [Ef-1.64*sqrt(Varf);Ef(end)-1.64*sqrt(Varf(end))]);\n [xx,yyu]=stairs(xtnn, [Ef+1.64*sqrt(Varf);Ef(end)+1.64*sqrt(Varf(end))]);\n plot(xx, yy, '-k', xx, yyl, '--b', xx, yyu, '--b')\n end\n end\n \nelseif length(ind)==2\n \n uu1=unique(xt(:,ind(1)));\n uu2=unique(xt(:,ind(2)));\n nu1=numel(uu1);\n nu2=numel(uu2);\n if nu1==2 || nu2==2\n % First or second covariate binary\n \n if nu1>2 && nu2==2\n % switch indeces, so that binary covariate is first\n tmp=ind(1);ind(1)=ind(2);ind(2)=tmp;\n tmp=uu1;uu1=uu2;uu2=tmp;\n end\n \n xt1=xt(xt(:,ind(1))==uu1(1),:);\n xt2=xt(xt(:,ind(1))==uu1(2),:);\n [xtnn1, iu1] = unique(xt1(:,ind(2)));\n [xtnn2, iu2] = unique(xt2(:,ind(2)));\n \n options1=options;\n options2=options;\n if ~isempty(z)\n options1.zt = options.zt(iu1);\n options2.zt = options.zt(iu2);\n end\n\n xt1 = repmat(feval(method,xt1), length(xtnn1), 1);\n xt2 = repmat(feval(method,xt2), length(xtnn2), 1);\n if ~isempty(vars)\n xt1(:,~isnan(vars)) = repmat(vars(~isnan(vars)), length(xtnn1), 1);\n xt2(:,~isnan(vars)) = repmat(vars(~isnan(vars)), length(xtnn2), 1);\n end\n xt1(:,ind(1)) = uu1(1); xt1(:,ind(2)) = xtnn1;\n xt2(:,ind(1)) = uu1(2); xt2(:,ind(2)) = xtnn2;\n \n if ~strcmp(liktype, 'Coxph')\n switch target\n case 'f'\n [Ef1, Varf1] = gp_pred(gp, x, y, xt1);\n [Ef2, Varf2] = gp_pred(gp, x, y, xt2);\n case 'mu'\n prctmu1 = denormdata(gp_predprctmu(gp, x, y, xt1, options1),nd.ymean,nd.ystd);\n prctmu2 = denormdata(gp_predprctmu(gp, x, y, xt2, options2),nd.ymean,nd.ystd);\n end\n else\n [Ef11,Ef12,Covf] = pred_coxph(gp,x,y,xt1, 'z', z);\n Ef1 = Ef12; Varf1 = diag(Covf(size(Ef11,1)+1:end,size(Ef11,1)+1:end));\n [Ef21,Ef22,Covf] = pred_coxph(gp,x,y,xt2, 'z', z);\n Ef2 = Ef22; Varf2 = diag(Covf(size(Ef21,1)+1:end,size(Ef21,1)+1:end));\n end\n \n if isequal(plot_results, 'on')\n xtnn1=denormdata(xtnn1,nd.xmean(ind(2)),nd.xstd(ind(2)));\n xtnn2=denormdata(xtnn2,nd.xmean(ind(2)),nd.xstd(ind(2)));\n if nu1>2 && nu2==2\n lstyle10='or';lstyle11='-r';lstyle12='--r';\n lstyle20='ob';lstyle21='-b';lstyle22='--b';\n else\n lstyle10='ob';lstyle11='-b';lstyle12='--b';\n lstyle20='or';lstyle21='-r';lstyle22='--r';\n end\n deltadist=gp_finddeltadist(gp);\n if ~ismember(ind(2),deltadist)\n switch target\n case 'f'\n plot(xtnn1, Ef1, lstyle10, xtnn1, Ef1, lstyle11, xtnn1, Ef1-1.64*sqrt(Varf1), lstyle12, xtnn1, Ef1+1.64*sqrt(Varf1), lstyle12); hold on;\n plot(xtnn2, Ef2, lstyle20, xtnn2, Ef2, lstyle21, xtnn2, Ef2-1.64*sqrt(Varf2), lstyle22, xtnn2, Ef2+1.64*sqrt(Varf2), lstyle22); hold off;\n case 'mu'\n plot(xtnn1, prctmu1(:,2), lstyle10, xtnn1, prctmu1(:,2), lstyle11, xtnn1, prctmu1(:,1), lstyle12, xtnn1, prctmu1(:,3), lstyle12); hold on;\n plot(xtnn2, prctmu2(:,2), lstyle20, xtnn2, prctmu2(:,2), lstyle21, xtnn2, prctmu2(:,1), lstyle22, xtnn2, prctmu2(:,3), lstyle22); hold off;\n end\n else\n delta=(diff(xtnn1(1:2))/10);\n switch target\n case 'f'\n plot(xtnn1-delta, Ef1, lstyle10, [xtnn1 xtnn1]'-delta, [Ef1-1.64*sqrt(Varf1) Ef1+1.64*sqrt(Varf1)]', lstyle11); hold on;\n plot(xtnn2+delta, Ef2, lstyle20, [xtnn2 xtnn2]'+delta, [Ef2-1.64*sqrt(Varf2) Ef2+1.64*sqrt(Varf2)]', lstyle21); hold off;\n xlim([1.5*xtnn1(1)-0.5*xtnn1(2) 1.5*xtnn1(end)-.5*xtnn1(end-1)])\n case 'mu'\n plot(xtnn1-delta, prctmu1(:,2), lstyle10, [xtnn1 xtnn1]'-delta, [prctmu1(:,1) prctmu1(:,3)]', lstyle11); hold on;\n plot(xtnn2+delta, prctmu2(:,2), lstyle20, [xtnn2 xtnn2]'+delta, [prctmu2(:,1) prctmu2(:,3)]', lstyle21); hold off;\n xlim([1.5*xtnn1(1)-0.5*xtnn1(2) 1.5*xtnn1(end)-.5*xtnn1(end-1)])\n end\n end\n end\n switch target\n case 'f'\n Ef = {Ef1 Ef2}; Varf = {Varf1 Varf2}; xtnn={xtnn1 xtnn2};\n case 'mu'\n Ef = {prctmu1 prctmu2}; Varf = {[] []}; xtnn={xtnn1 xtnn2};\n end\n \n else\n % both the first and the second covariate are non-binary\n deltadist=gp_finddeltadist(gp);\n if ~ismember(ind(1),deltadist)\n xtnn1 = linspace(min(xt(:,ind(1))), max(xt(:,ind(1))), 20);\n else\n xtnn1 = unique(xt(:,ind(1)));\n end\n if ~ismember(ind(2),deltadist)\n xtnn2 = linspace(min(xt(:,ind(2))), max(xt(:,ind(2))), 20);\n else\n xtnn2 = unique(xt(:,ind(2)));\n end\n [XT1, XT2] = meshgrid(xtnn1, xtnn2); XT1=XT1(:); XT2=XT2(:);\n xtnn1=denormdata(xtnn1,nd.xmean(ind(1)),nd.xstd(ind(1)));\n xtnn2=denormdata(xtnn2,nd.xmean(ind(2)),nd.xstd(ind(2)));\n if ~isempty(z)\n options.zt = repmat(options.zt(1), size(XT1));\n end\n xt = repmat(feval(method,xt), length(XT1), 1);\n if ~isempty(vars)\n xt(:,~isnan(vars)) = repmat(vars(~isnan(vars)), length(XT1), 1);\n end\n xt(:,ind) = [XT1 XT2];\n if ~strcmp(liktype, 'Coxph')\n switch target\n case 'f'\n [Ef, Varf] = gp_pred(gp, x, y, xt);\n case 'mu'\n prctmu = gp_predprctmu(gp, x, y, xt, options, 'prct', 50);\n Ef = prctmu; Varf = [];\n case 'cdf'\n cdf = gp_predcdf(gp, x, y, xt, options);\n Ef = cdf; Varf = [];\n end\n else\n [Ef1,Ef2,Covf] = pred_coxph(gp,x,y,xt, options);\n Ef = Ef2; Varf = diag(Covf(size(Ef1,1)+1:end,size(Ef1,1)+1:end));\n end\n \n indd = zeros(size(Ef));\n \n for i2=1:n\n for i3=1:numel(XT1)\n if sqrt(sum((xto(i2,ind)-xt(i3,ind)).^2)) < tr\n indd(i3) = 1;\n end\n end\n end\n \n XT1(indd==0) = NaN; XT2(indd==0) = NaN; Ef(indd==0) = NaN; Varf(indd==0) = NaN;\n \n if isequal(plot_results, 'on')\n xtnn1=denormdata(xtnn1,nd.xmean(ind(1)),nd.xstd(ind(1)));\n xtnn2=denormdata(xtnn2,nd.xmean(ind(2)),nd.xstd(ind(2)));\n surf(reshape(XT1,numel(xtnn2),numel(xtnn1)), reshape(XT2,numel(xtnn2),numel(xtnn1)), reshape(Ef,numel(xtnn2),numel(xtnn1)))\n view(2)\n axis tight\n shading flat\n colormap(mapcolor(Ef,repmat(nanmedian(Ef(:)),[1 2])))\n colorbar('EastOutside')\n end\n \n %xtnn = [XT1(indd==1), XT2(indd==1)]; Ef = Ef(indd==1); Varf = Varf(indd==1);\n xtnn = [XT1, XT2];\n end\n \nelse\n error('Only 1 or 2 covariates can be defined for predicting')\nend\n\n\nend\n\n", "meta": {"author": "gpstuff-dev", "repo": "gpstuff", "sha": "114937ec0a201306489a66cbba38283e722fb998", "save_path": "github-repos/MATLAB/gpstuff-dev-gpstuff", "path": "github-repos/MATLAB/gpstuff-dev-gpstuff/gpstuff-114937ec0a201306489a66cbba38283e722fb998/gp/gp_cpred.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.38861043481155305}} {"text": "function varsigma = fgplvmPosteriorVar(model, X);\n\n% FGPLVMPOSTERIORVAR Variances of the posterior at points given by X.\n% FORMAT\n% DESC returns the posterior mean and variance for a given set of\n% points.\n% ARG model : the model for which the posterior will be computed.\n% ARG x : the input positions for which the posterior will be\n% computed.\n% RETURN sigma : the variances of the posterior distributions.\n%\n% SEEALSO : gpPosteriorVar, fgplvmCreate\n%\n% COPYRIGHT : Neil D. Lawrence, 2009\n\n% FGPLVM\n\nvarsigma = gpPosteriorVar(model, X);\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/fgplvm/fgplvmPosteriorVar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583376458152, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3885723268404316}} {"text": "function [F0,Fz,Fx,Fxz] = getFzxfromSET(F,z,x)\n\nF = sdpvar(F);\nF0 = -getbasematrix(F,0);\nzvars = getvariables(z);\nxvars = getvariables(x);\n\nfor i = 1:length(xvars)\n Fx{i} = -getbasematrix(F,xvars(i));\nend\n\nfor i = 1:length(zvars)\n Fz{i} = -getbasematrix(F,zvars(i));\nend\n\nfor i = 1:length(xvars) \n for j = 1:length(zvars)\n Fxz{i,j} = -getbasematrix(F,getvariables(x(i)*z(j)));\n end\nend\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/robust/getFzxfromSET.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3885723197986092}} {"text": "%% Main function to generate tests\nfunction tests = testSuite\n\ntests = functiontests(localfunctions);\n\nend\n\n%% Test Functions \nfunction wgs2gcjTest(testCase)\n% test wgs to gcj\n\nTESTS = [\n 31.1774276, 121.5272106, 31.17530398364597, 121.531541859215; %shanghai\n 22.543847, 113.912316, 22.540796131694766, 113.9171764808363; %shenzhen\n 39.911954, 116.377817, 39.91334545536069, 116.38404722455657; %beijing\n 39.739200,-104.990300,39.739200,-104.990300; %Denver edge case\n -27.469800,153.025100, -27.469800,153.025100; % Brisbane edge case\n -22.906800,-43.172900, -22.906800,-43.172900; % Rio de Janerio edge case\n ];\n\n[actLat actLong] = wgs2gcj(TESTS(:,1),TESTS(:,2));\nexpLat = TESTS(:,3);\nexpLong = TESTS(:,4);\n\nverifyEqual(testCase,actLat,expLat, 'AbsTol' , .000001);\nverifyEqual(testCase,actLong,expLong, 'AbsTol' , .000001);\n\nend\n\nfunction gcj2wgsTest(testCase)\n% test wgs to gcj\n\nTESTS = [\n 31.1774276, 121.5272106, 31.17530398364597, 121.531541859215; %shanghai\n 22.543847, 113.912316, 22.540796131694766, 113.9171764808363; %shenzhen\n 39.911954, 116.377817, 39.91334545536069, 116.38404722455657; %beijing\n 39.739200,-104.990300,39.739200,-104.990300; %Denver edge case\n -27.469800,153.025100, -27.469800,153.025100; % Brisbane edge case\n -22.906800,-43.172900, -22.906800,-43.172900; % Rio de Janerio edge case\n ];\n\n[actLat actLong] = gcj2wgs(TESTS(:,3),TESTS(:,4));\nexpLat = TESTS(:,1);\nexpLong = TESTS(:,2);\n\nmeasurementDistance = distance(expLat, expLong, actLat,actLong);\nactualDistance = zeros(length(measurementDistance),1);\nverifyEqual(testCase,actualDistance,measurementDistance, 'AbsTol' , 5);\n\nend\n\nfunction gcj2wgsExactTest(testCase)\n% test wgs to gcj\n\nTESTS = [\n 31.1774276, 121.5272106, 31.17530398364597, 121.531541859215; %shanghai\n 22.543847, 113.912316, 22.540796131694766, 113.9171764808363; %shenzhen\n 39.911954, 116.377817, 39.91334545536069, 116.38404722455657; %beijing\n 39.739200,-104.990300,39.739200,-104.990300; %Denver edge case\n -27.469800,153.025100, -27.469800,153.025100; % Brisbane edge case\n -22.906800,-43.172900, -22.906800,-43.172900; % Rio de Janerio edge case\n ];\n\n[actLat actLong] = gcj2wgs_exact(TESTS(:,3),TESTS(:,4));\nexpLat = TESTS(:,1);\nexpLong = TESTS(:,2);\n\nmeasurementDistance = distance(expLat, expLong, actLat,actLong);\nactualDistance = zeros(length(measurementDistance),1);\nverifyEqual(testCase,actualDistance,measurementDistance, 'AbsTol' , .5);\n\nend\n\nfunction mars2wgsTest(testCase)\n% test wgs to gcj should be very exact and very fast....\n\nTESTS = [\n 31.1774276, 121.5272106, 31.17530398364597, 121.531541859215; %shanghai\n 22.543847, 113.912316, 22.540796131694766, 113.9171764808363; %shenzhen\n 39.911954, 116.377817, 39.91334545536069, 116.38404722455657; %beijing\n 39.739200,-104.990300,39.739200,-104.990300; %Denver edge case\n -27.469800,153.025100, -27.469800,153.025100; % Brisbane edge case\n -22.906800,-43.172900, -22.906800,-43.172900; % Rio de Janerio edge case\n ];\n\n[actLat actLong] = mars2wgs(TESTS(:,3),TESTS(:,4));\nexpLat = TESTS(:,1);\nexpLong = TESTS(:,2);\n\nmeasurementDistance = distance(expLat, expLong, actLat,actLong);\nactualDistance = zeros(length(measurementDistance),1);\nverifyEqual(testCase,actualDistance,measurementDistance, 'AbsTol' , .01);\n\nend\n\nfunction wgs2bdTest(testCase)\n% test wgs to gcj should be very exact and very fast....\n\n TESTS_BD = [\n 29.199786, 120.019809, 29.196131605295484, 120.00877901149691;\n 29.210504, 120.036455, 29.206795749156136, 120.0253853970846\n ];\n\n[actLat actLong] = wgs2bd(TESTS_BD(:,3),TESTS_BD(:,4));\nexpLat = TESTS_BD(:,1);\nexpLong = TESTS_BD(:,2);\n\nverifyEqual(testCase,actLat,expLat, 'AbsTol' , .00005);\nverifyEqual(testCase,actLong,expLong, 'AbsTol' , .00005);\n\nend\n\nfunction bd2wgsTest(testCase)\n% test wgs to gcj should be very exact and very fast....\n\n TESTS_BD = [\n 29.199786, 120.019809, 29.196131605295484, 120.00877901149691;\n 29.210504, 120.036455, 29.206795749156136, 120.0253853970846\n ];\n\n[actLat actLong] = bd2wgs(TESTS_BD(:,1),TESTS_BD(:,2));\nexpLat = TESTS_BD(:,3);\nexpLong = TESTS_BD(:,4);\n\nverifyEqual(testCase,actLat,expLat, 'AbsTol' , .00005);\nverifyEqual(testCase,actLong,expLong, 'AbsTol' , .00005);\n\nend\n\nfunction gcj2bdTest(testCase)\n% test wgs to gcj should be very exact and very fast....\n% bd lat, bd long, gcj lat, gcj long \n TESTS_BD = [39.90851,116.43351,39.90245,116.42703];\n\n[actLat actLong] = gcj2bd(TESTS_BD(:,3),TESTS_BD(:,4));\nexpLat = TESTS_BD(:,1);\nexpLong = TESTS_BD(:,2);\n\nverifyEqual(testCase,actLat,expLat, 'AbsTol' , .00005);\nverifyEqual(testCase,actLong,expLong, 'AbsTol' , .00005);\n\nend\n\nfunction bd2gcjTest(testCase)\n% test wgs to gcj should be very exact and very fast....\n% bd lat, bd long, gcj lat, gcj long \n TESTS_BD = [39.90851,116.43351,39.90245,116.42703];\n\n[actLat actLong] = bd2gcj(TESTS_BD(:,1),TESTS_BD(:,2));\nexpLat = TESTS_BD(:,3);\nexpLong = TESTS_BD(:,4);\n\nverifyEqual(testCase,actLat,expLat, 'AbsTol' , .00005);\nverifyEqual(testCase,actLong,expLong, 'AbsTol' , .00005);\n\nend\n\nfunction deg2utmTest(testCase)\n% test wgs to utm should be very exact and very fast....\n% LAT, LONG, X, Y\n\nTestUTMDEG = [36.903784,-104.545898,540455.18,4084295.17];\n\n[actUTMx, actUTMy] = deg2utm(TestUTMDEG(:,1),TestUTMDEG(:,2));\nexpUTMx = TestUTMDEG(:,3);\nexpUTMy = TestUTMDEG(:,4);\n\nverifyEqual(testCase,actUTMx,expUTMx, 'AbsTol' , .1);\nverifyEqual(testCase,actUTMy,expUTMy, 'AbsTol' , .1);\n\nend\n\nfunction utm2degTest(testCase)\n% test wgs to gcj should be very exact and very fast....\n% LAT, LONG, X, Y\n\nTestUTMDEG = [36.903784,-104.545898,540455.18,4084295.17];\n\n[actLat, actLong] = utm2deg(TestUTMDEG(:,3),TestUTMDEG(:,4),'13N');\nexpLat = TestUTMDEG(:,1);\nexpLong = TestUTMDEG(:,2);\n\nverifyEqual(testCase,actLat,expLat, 'AbsTol' , .00001);\nverifyEqual(testCase,actLong,expLong, 'AbsTol' , .00001);\n\nend\n\nfunction speedTest(testCase)\n% test wgs to gcj\nn = 50000;\nTESTS = [\n 31.1774276, 121.5272106, 31.17530398364597, 121.531541859215; %shanghai\n 22.543847, 113.912316, 22.540796131694766, 113.9171764808363; %shenzhen\n 39.911954, 116.377817, 39.91334545536069, 116.38404722455657; %beijing\n 39.739200,-104.990300,39.739200,-104.990300; %Denver edge case\n -27.469800,153.025100, -27.469800,153.025100; % Brisbane edge case\n -22.906800,-43.172900, -22.906800,-43.172900; % Rio de Janerio edge case\n ];\n\n\ntic;\nfor i=1:n\n [actLat actLong] = wgs2gcj(TESTS(:,1),TESTS(:,2));\nend\ntimes.wgs2gcj = toc;\n\n\ntic;\nfor i=1:n\n [actLat actLong] = mars2wgs(TESTS(:,1),TESTS(:,2));\nend\ntimes.mars2gcj = toc;\n\n\ntic;\nfor i=1:n\n [actLat actLong] = gcj2wgs(TESTS(:,1),TESTS(:,2));\nend\ntimes.gcj2wgs = toc;\n\n\ntic;\nfor i=1:n\n [actLat actLong] = gcj2wgs_exact(TESTS(:,1),TESTS(:,2));\nend\ntimes.gcj2wgs_exact = toc;\n\ntimes\n\nend\n\n function setupOnce(testCase) % do not change function name\n\n testsBD = [\n 29.199786, 120.019809, 29.196131605295484, 120.00877901149691;\n 29.210504, 120.036455, 29.206795749156136, 120.0253853970846\n ];\n \n end\n \n function teardownOnce(testCase) % do not change function name\n% change back to original path, for example\nend\n \nfunction setup(testCase) % do not change function name\n% open a figure, for example\nend\n\nfunction teardown(testCase) % do not change function name\n% close figure, for example\nend", "meta": {"author": "googollee", "repo": "eviltransform", "sha": "b911c066225716822e4a5b2cab475edcc6cf11a2", "save_path": "github-repos/MATLAB/googollee-eviltransform", "path": "github-repos/MATLAB/googollee-eviltransform/eviltransform-b911c066225716822e4a5b2cab475edcc6cf11a2/matlab/test/testSuite.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3885723197986091}} {"text": "function h = image_histogram(P,varargin)\n% :Usage:\n% ::\n%\n% h = image_histogram(P,[method(string)],[range])\n%\n% eliminates 0, NaN voxels from either image\n% red then blue\n%\n% :Inputs:\n%\n% **P:**\n% is one or two images in string array\n%\n% **Methods:**\n% 'def'\n%\n% **range:**\n% optional 3rd input, range of values to include in histogram\n%\n% :Example:\n% ::\n%\n% h = image_histogram('p_Omnibus.img','def',[0 1-eps]);\n%\n% ..\n% tor wager\n% ..\n\nV = spm_vol(P); %v = spm_read_vols(V);\n\nv = iimg_read_vols(V);\n\n\nif length(varargin) > 0, meth = varargin{1}; else, meth = 'def'; end\nif length(varargin) > 1, range = varargin{2}; else, range = [-Inf Inf]; end\n\nfor f = 1:size(P,1), [dum,ff{f}] = fileparts(P(f,:)); end\n\n\n%p2 = which('/Users/tor/Documents/tor_scripts/3DheadUtility/canonical_brains/scalped_avg152T1_graymatter.img')\n%[p2,p2new] = reslice_imgs(P(1,:),p2,1);\n%maskV = spm_read_vols(spm_vol(p2new)); maskV = maskV(:);\n\nswitch meth\n case 'def'\n \n disp('Plotting histograms')\n \n v1 = squeeze(v(:,:,:,1));\n if size(v,4) > 1\n v2 = squeeze(v(:,:,:,2));\n end\n \n v1 = v1(:); \n if size(v,4) > 1, v2 = v2(:); ,end\n \n if size(v,4) > 1\n wh = isnan(v1) | isnan(v2) | v1 == 0 | v2 == 0 ...\n | v1 < range(1) | v1 > range(2) | v2 < range(1) | v2 > range(2); %| ~maskV;\n else\n wh = isnan(v1) | v1 == 0 | v1 < range(1) | v1 > range(2); \n end\n \n v1(wh) = []; \n if size(v,4) > 1\n v2(wh) = [];\n else\n v2 = [];\n end\n \n [h,xx] = hist([v1;v2],max(10,length(v1)./300));\n h1 = hist(v1,xx); \n \n if size(v,4) > 1, h2 = hist(v2,xx); end\n \n otherwise\n error('unknown action string')\nend\n\n\n\nfigure('Color','w'); \n\nif size(v,4) > 1, plot(xx,h1,'r',xx,h2,'b'); \nelse\n plot(xx,h1,'r');\nend\n \nset(gca,'FontSize',16)\n\nlegend(ff)\n\n\nreturn\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Visualization_functions/image_histogram.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3885723197986091}} {"text": "function [f,J,Q] = spm_fx_cmm(x,u,P,M)\n% state equations for canonical neural-mass and mean-field models\n% FORMAT [f,J,Q] = spm_fx_cmm(x,u,P,M)\n%\n% x - states and covariances\n%\n% x(i,j,k) - k-th state of j-th population of i-th source\n% i.e., running over sources, pop. and states\n%\n% population: 1 - excitatory spiny stellate cells (input cells)\n% 2 - superficial pyramidal cells (forward output cells)\n% 3 - inhibitory interneurons (intrisic interneuons)\n% 4 - deep pyramidal cells (backward output cells)\n%\n% state: 1 V - voltage\n% 2 gE - conductance (excitatory)\n% 3 gI - conductance (inhibitory)\n%\n%--------------------------------------------------------------------------\n% refs:\n%\n% Marreiros et al (2008) Population dynamics under the Laplace assumption\n%\n% See also:\n%\n% Friston KJ.\n% The labile brain. I. Neuronal transients and nonlinear coupling. Philos\n% Trans R Soc Lond B Biol Sci. 2000 Feb 29;355(1394):215-36. \n% \n% McCormick DA, Connors BW, Lighthall JW, Prince DA.\n% Comparative electrophysiology of pyramidal and sparsely spiny stellate\n% neurons of the neocortex. J Neurophysiol. 1985 Oct;54(4):782-806.\n% \n% Brunel N, Wang XJ.\n% What determines the frequency of fast network oscillations with irregular\n% neural discharges? I. Synaptic dynamics and excitation-inhibition\n% balance. J Neurophysiol. 2003 Jul;90(1):415-30.\n% \n% Brunel N, Wang XJ.\n% Effects of neuromodulation in a cortical network model of object working\n% memory dominated by recurrent inhibition. J Comput Neurosci. 2001\n% Jul-Aug;11(1):63-85.\n%\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n \n% Karl Friston\n% $Id: spm_fx_cmm.m 5369 2013-03-28 20:09:27Z karl $\n \n% get dimensions and configure state variables\n%--------------------------------------------------------------------------\nns = size(M.x,1); % number of sources\nnp = size(M.x,2); % number of populations per source\nnk = size(M.x,3); % number of states per population\nx = reshape(x,ns,np,nk); % hidden states \n\n\n% extrinsic connection strengths\n%==========================================================================\n \n% exponential transform to ensure positivity constraints\n%--------------------------------------------------------------------------\nA{1} = exp(P.A{1}); % forward\nA{2} = exp(P.A{2}); % backward\nC = exp(P.C); % subcortical\n \n\n% detect and reduce the strength of reciprocal (lateral) connections\n%--------------------------------------------------------------------------\nfor i = 1:length(A)\n L = (A{i} > exp(-8)) & (A{i}' > exp(-8));\n A{i} = A{i}./(1 + 8*L);\nend\n\n \n% intrinsic connection strengths\n%==========================================================================\n\n% condition specific effects\n%--------------------------------------------------------------------------\nG = full(P.H);\nif any(P.G)\n G(2,2,:) = squeeze(G(2,2,:)) + P.G;\nend\nG(2,2,:) = 0;\nG = exp(G);\n\n\n\n% connectivity switches\n%==========================================================================\n% 1 - excitatory spiny stellate cells (granular input cells)\n% 2 - superficial pyramidal cells (forward output cells)\n% 3 - inhibitory interneurons (intrisic interneuons)\n% 4 - deep pyramidal cells (backward output cells)\n\n% extrinsic connections (F B) - from superficial and deep pyramidal cells\n%--------------------------------------------------------------------------\nSA = [1 0 ;\n 0 1 ;\n 0 2 ;\n 0 0]/8;\n \n% intrinsic connections (np x np) - excitatory\n%--------------------------------------------------------------------------\nGE = [ 0 0 0 0\n 4 0 0 0\n 4 0 0 2\n 0 4 0 0];\n \n% intrinsic connections (np x np) - inhibitory\n%--------------------------------------------------------------------------\nGI = [ 8 2 2 0\n 0 8 2 0\n 0 0 32 0\n 0 0 8 128];\n\n% rate constants (ns x np) (excitatory 4ms, inhibitory 16ms)\n%--------------------------------------------------------------------------\nKE = 1000/4; % excitatory rate constants\nKI = exp(-P.T)*[1/64 1/32 1/16 1/16]*1000; % inhibitory rate constants\n \n% Voltages\n%--------------------------------------------------------------------------\nVL = -70; % reversal potential leak (K)\nVE = 60; % reversal potential excite (Na)\nVI = -90; % reversal potential inhib (Cl)\nVR = -40; % threshold potential\n \nCV = exp(P.CV).*[16 16 32 16]/1000; % membrane capacitance\nGL = 1; % leak conductance\n \n% mean-field effects:\n%==========================================================================\n\n% neural-mass approximation to covariance of states\n%----------------------------------------------------------------------\nVx = exp(P.S)*32;\n\n% mean population firing and afferent extrinsic input\n%--------------------------------------------------------------------------\nm = spm_Ncdf_jdw(x(:,:,1),VR,Vx); % mean firing rate \na(:,1) = A{1}*m(:,2); % forward afference\na(:,2) = A{2}*m(:,4); % backward afference\n\n% Averge background activity and exogenous input\n%==========================================================================\nBE = exp(P.E)/2;\n\n% input\n%--------------------------------------------------------------------------\nif isfield(M,'u')\n \n % endogenous input\n %----------------------------------------------------------------------\n U = u(:)*8/1000;\n \nelse\n \n % exogenous input\n %----------------------------------------------------------------------\n U = C*u(:)/1000;\n \nend\n\n% flow over every (ns x np) subpopulation\n%==========================================================================\nf = x;\nfor i = 1:ns\n \n % intrinsic coupling\n %------------------------------------------------------------------\n E = (G(:,:,i).*GE)*m(i,:)';\n I = (G(:,:,i).*GI)*m(i,:)';\n \n % extrinsic coupling (excitatory only) and background activity\n %------------------------------------------------------------------\n E = E + BE + SA*a(i,:)';\n\n % and exogenous input(U)\n %------------------------------------------------------------------\n E(1) = E(1) + U(i);\n \n % Voltage\n %==================================================================\n f(i,:,1) = (GL*(VL - x(i,:,1)) + ...\n x(i,:,2).*(VE - x(i,:,1)) + ...\n x(i,:,3).*(VI - x(i,:,1)) )./CV;\n \n % Conductance\n %==================================================================\n f(i,:,2) = (E' - x(i,:,2)).*KE;\n f(i,:,3) = (I' - x(i,:,3)).*KI(i,:);\n \nend\n \n% vectorise equations of motion\n%==========================================================================\nf = spm_vec(f);\n \nif nargout < 2, return, end\n\n% Jacobian\n%==========================================================================\nJ = spm_cat(spm_diff(M.f,x,u,P,M,1));\n\nif nargout < 3, return, end\n\n% Delays\n%==========================================================================\n% Delay differential equations can be integrated efficiently (but \n% approximately) by absorbing the delay operator into the Jacobian\n%\n% dx(t)/dt = f(x(t - d))\n% = Q(d)f(x(t))\n%\n% J(d) = Q(d)df/dx\n%--------------------------------------------------------------------------\n% [specified] fixed parameters\n%--------------------------------------------------------------------------\nD = [2 16];\n\nd = -D.*exp(P.D)/1000;\nSp = kron(ones(nk,nk),kron( eye(np,np),eye(ns,ns))); % states: same pop.\nSs = kron(ones(nk,nk),kron(ones(np,np),eye(ns,ns))); % states: same source\n\nDp = ~Ss; % states: different sources\nDs = ~Sp & Ss; % states: same source different pop.\nD = d(2)*Dp + d(1)*Ds;\n\n\n% Implement: dx(t)/dt = f(x(t - d)) = inv(1 - D.*dfdx)*f(x(t))\n% = Q*f = Q*J*x(t)\n%--------------------------------------------------------------------------\nQ = spm_inv(speye(length(J)) - D.*J);\n\n\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/dcm_meeg/spm_fx_cmm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7956581097540519, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.3885066433253744}} {"text": "function varargout = squeeze(varargin)\n%SQUEEZE Squeeze a DISKFUN to one variable, if possible.\n% G = squeeze(F) returns a DISKFUN if F depends on THETA and R in\n% polar coordinates. If F depends only on the theta-variable, a row\n% CHEBFUN is returned. If it depends on just the r-variable, a\n% column CHEBFUN is returned.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n[varargout{1:nargout}] = squeeze@separableApprox(varargin{:});\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@diskfun/squeeze.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.596433160611502, "lm_q2_score": 0.6513548646660542, "lm_q1q2_score": 0.38848964061245184}} {"text": "function[str_all, Irec] = icassp12(example, Img, Nloops, SHOW_IMGS);\n\n\nif nargin < 4\n SHOW_IMGS = false;\n if nargin < 3\n Nloops = 1;\n if nargin < 2\n Img = lena;\n if nargin < 1;\n\texample = 'gauss_sp_denoise';\n end\n end\n end\nend\n\n\n% SHOW_IMGS = true;\n\n% example = 'icassp12'\n% example = 'gauss_sp_denoise';\n% example = 'gauss_random_denoise';\n\n\n% Img = 'Clena';\n% Img = 'peppers';\n% Img = 'lena';\n% Img = 'barb';\n% Img = 'cman';\n% Img = 'Cboats';\n\n% Img = 'all';\n\n\n% Nloops = 1; % This value will be change to 10 if example == icassp12\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%\n% Setup %\n%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Check for SSIM\n SSIM_CODE = check4ssim();\n\n % Setup simulation\n [Nloops, Img] = setupSim(example, Nloops, Img);\n\n\n % open string (for reports)\n str_all = [];\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Input images %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif( strcmp(lower(Img), 'all') )\n\n all = 1;\n if( strcmp(example, 'icassp12') )\n Img = {'lena', 'goldhl', 'cman512', 'barb', 'Clena', 'Cbarb', 'Cboats', 'Cgoldhl' };\n else\n Img = {'lena', 'peppers', 'goldhl.', 'cman512', 'Clena', 'Cpeppers', 'Cmandrill'};\n end\n\n NImgs = length(Img);\n\n\nelse\n\n all = 0;\n NImgs = 1;\n\n\nend % _END_ IF(strcmp(lower(Img))\n\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% loop over Img\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\nfor t = 1:NImgs,\n\n if( all == 1 )\n tImg = Img{t};\n else\n tImg = lower(Img);\n end\n\n [Ig Color] = selectImage(tImg);\n\n if Color == 1\n SSIM_CODE = 0;\n end\n\n disp(' ');\n disp(sprintf('%s Color %d', tImg, Color));\n disp(' ');\n\n\n [Nrows Ncols Ndims] = size(Ig);\n\n\n % Regularization parameter of the L2 / L1\n [lambdaS_l2 Lambda_O Lambda_update] = setRegParameter(example, Ndims);\n\n\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % loops for average results %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for loops=1:Nloops\n\n\n %%%%%%%%%%%%%%%%%\n % add noise %\n %%%%%%%%%%%%%%%%%\n\n % Noise level\n sigmaGauss = [5/255, 10/255, 15/255 ];\n NGauss = length(sigmaGauss);\n \n spnoise = [0.3 0.5 0.7];\n Nspnoise = length(spnoise);\n\n randomnoise = [0.1 0.2 0.3];\n NRnoise = length(randomnoise);\n\n % noisy images\n clear InCell;\n [InCell noiseName vNoise nNoise] = addNoise(Ig, example, sigmaGauss, NGauss, spnoise, Nspnoise, randomnoise, NRnoise);\n nNoisyIm = length(InCell);\n\n\n\n % loop over noisy images\n for k=1:length(InCell)\n\n In = InCell{k};\n\n%^^^^^% ^^^^^^^^^^^^^^^^^^^^^\n% % Clock is ticking\n% % ---------------------\n tstart = tic;\n\n\n % First estimate the pixels that are corrupted\n switch lower(example)\n \n case{'gauss_sp_denoise'}\n S0 = adaptMedian_colfilt(In);\t\t% estimate S&P corrupted pixels\n\n case{'gauss_random_denoise'}\t% estimate random value (impulse noise) corrupted pixels\n S0 = estimateRValImpulse(In);\n\n end\t% _END_ SWITCH\n\n\n % Set lambda (regularization) matrix\n lambda_l1l2 = zeros(Nrows, Ncols, 2*Ndims);\n\n for d=1:Ndims,\n lambda_l1l2(:,:,d) = Lambda_O*(S0(:,:,d) ~= 0);\n lambda_l1l2(:,:,Ndims+d) = lambdaS_l2(k)*(S0(:,:,d)==0);\n end\n\n\n % =================================================\n % ---------- Setup for IRN_L1L2 ------------------\n\n pars_irn_adapt = irntvInputPars('l1tv_l2tv');\n\n pars_irn_adapt.adapt_epsR = 1;\n pars_irn_adapt.epsR_cutoff = 0.01;\n pars_irn_adapt.adapt_epsF = 1;\n pars_irn_adapt.epsF_cutoff = 0.05;\n\n pars_irn_adapt.pcgtol_ini = 1e-4;\n\n switch lower(example) \n case{'gauss_sp_denoise'}\n pars_irn_adapt.loops = 1;\n IRNloops = 7;\n case{'gauss_random_denoise'}\n pars_irn_adapt.loops = 2;\n IRNloops = 4;\n end\n\n pars_irn_adapt.U0 = In; % necessary the for adapt case\n\n % =================================================\n\n\n % 1st call\n Ig_L1L2 = irntv(In, {}, lambda_l1l2, pars_irn_adapt);\n\n\n % loop\n \n for m = 2:IRNloops\n \n for d=1:Ndims\n lambda_l1l2(:,:,d) = Lambda_update*lambda_l1l2(:,:,d);\n end\n\n pars_irn_adapt.U0 = Ig_L1L2;\t% reset initial sol. to previous sol.\n\n Ig_L1L2 = irntv(In, {}, lambda_l1l2, pars_irn_adapt);\n\n end % _END_ FOR(m)\n\n % denoised image\n Irec{k} = Ig_L1L2;\n\n\n\n%^^^^^% ^^^^^^^^^^^^^^^^^^^^^\n% % Time performance\n l1l2_time(k, loops) = toc(tstart);\n% % ---------------------\n\n\n\n if(SHOW_IMGS)\n figure; imagesc( Normalize(Irec{k}) ); axis image; axis off; colormap gray; \n end\n\n\n % Reconstruction quality assessment\n [psnr_l1l2(k, loops), snr_l1l2(k, loops), ssim_l1l2(k, loops)] = qualityAssessment(Ig, Irec{k}, SSIM_CODE);\n \n\n\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Generate reports\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n if(k==1)\n\n if(Color == 0) str = sprintf('Img: grayscale %s (denoising)\\n', lower(tImg));\n else str = sprintf('Img: color %s (denoising)\\n', lower(tImg));\n end\n\n str_all = [ str_all str ];\n\n str = sprintf(' sigma/%s \\t SNR \\t SSIM \\t PSNR Time\\n', noiseName);\n str_all = [ str_all str ];\n\n end\n\n str = sprintf(' %1.0f/255 -- %1.1f \\t %1.2f \\t %1.2f \\t %1.2f %1.2f\\n', ...\n 255*sigmaGauss( rem(k,NGauss) + NGauss*(rem(k,NGauss)==0) ), vNoise( floor((k-1)/nNoise)+1 ), ...\n snr_l1l2(k, loops), ssim_l1l2(k, loops), psnr_l1l2(k, loops), l1l2_time(k, loops) );\n\n% if(k<=nNoisyIm)\n% str = sprintf(' %1.0f/255 -- %1.1f \\t %1.2f \\t %1.2f \\t %1.2f %1.2f\\n', ...\n% 255*sigmaGauss( rem(k,NGauss) + NGauss*(rem(k,NGauss)==0) ), vNoise( floor((k-1)/nNoise)+1 ), ...\n% snr_l1l2(k, loops), ssim_l1l2(k, loops), psnr_l1l2(k, loops), l1l2_time(k, loops) );\n% else\n% str = sprintf(' %1.0f/255 -- %1.1f \\t %1.2f \\t %1.2f \\t %1.2f %1.2f\\n', ...\n% 255*sigmaGauss( rem(k,NGauss) + NGauss*(rem(k,NGauss)==0) ), vNoise( floor((k-1-nNoisyIm)/nNoise)+1 ), ...\n% snr_l1l2(k, loops), ssim_l1l2(k, loops), psnr_l1l2(k, loops), l1l2_time(k, loops) );\n% end\n str_all = [ str_all str ];\n\n\n if(k==length(InCell)) \n str = sprintf(' \\n\\n');\n end\n\n\n end % _END_ FOR(length(InCell))\n\n\n end % FOR(loops)\n\n disp(str_all)\n\nend % FOR(t) -- test Image\n\n\nend\n\n\n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction[SSIM_CODE] = check4ssim()\n\n SSIM_CODE = exist('ssim_index');\n if( SSIM_CODE == 0 )\n disp('NOTE:');\n disp(' The function ssim_index (code for [SSIM]) is not in your path...');\n disp(' You may download it from:');\n disp(' http://www.ece.uwaterloo.ca/~z70wang/research/ssim/');\n disp(' ');\n disp(' Disabling SSIM reports');\n disp(' ');\n disp(' [SSIM] Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, ');\n disp(' \"Image quality assessment: From error visibility to');\n disp(' structural similarity \" ');\n disp(' IEEE Transactions on Image Processing, 2004, 13:4(600-612).');\n\n end\n\n\nend\n\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\nfunction[Nloops, Img] = setupSim(example, Nloops, Img)\n\n tmpN = Nloops;\n tmpI = Img;\n\n if( strcmp(example, 'icassp12') )\n\n disp(' Running the \"icassp11\" example...');\n disp(' This script reproduces the Exprimental Results of ');\n disp(' \"Mixed Gaussian-impulse Noise Image Restoration via');\n disp(' Total Variation\"');\n disp(' ')\n disp(' This script takes sometime (ten-trial average)');\n disp(' ')\n tmpN = 10;\n\n if( ~strcmp(tmpI, 'all') ) \n\n disp('NOTE:');\n disp(' If you run the \"icassp12\" example, you should set Img = \"all\" ...');\n disp(' setting Img = \"all\" ');\n tmpI = 'all';\n end\n\n end\n\n Nloops = tmpN;\n Img = tmpI;\n\nend\n\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\n\nfunction[Ig Color] = selectImage(tImg)\n\n switch lower(tImg)\n\n case{'lena'}\n Ig = double( imread('gray_imgs/lena_gray_512.png') ) / 255;\n Color = 0;\n\n case{'peppers'}\n Ig = double( imread('gray_imgs/peppers_gray.png') ) / 255;\n Color = 0;\n\n case{'cman'}\n Ig = double( imread('gray_imgs/cameraman_256x256.tiff') ) / 255;\n Color = 0;\n\n case{'cman512'}\n Ig = double( imread('gray_imgs/cameraman_512x512.tiff') ) / 255;\n Color = 0;\n\n case{'goldhl'}\n Ig = double( imread('gray_imgs/goldhill_gray.png') ) / 255;\n Color = 0;\n\n case{'barb'}\n Ig = double( imread('gray_imgs/barbara_gray512.png') ) / 255;\n Color = 0;\n\n case{'clena'}\n Ig = double( imread('color_imgs/lena_color_512.png') ) / 255;\n SSIM_CODE = 0;\n Color = 1;\n\n case{'cbarb'}\n Ig = double( imread('color_imgs/barbara_color.png') ) / 255;\n SSIM_CODE = 0;\n Color = 1;\n\n case{'cboats'}\n Ig = double( imread('color_imgs/boats_color.png') ) / 255;\n SSIM_CODE = 0;\n Color = 1;\n\n case{'cgoldhl'}\n Ig = double( imread('color_imgs/goldhill_color.png') ) / 255;\n SSIM_CODE = 0;\n Color = 1;\n\n case{'none'}\n disp(' ');\n disp('Select a test image (see code for an example)...');\n disp(' ');\n disp('Exiting ICASSP12 test code...');\n return;\n\n otherwise\n error('Not a valid image\\n');\n\n end % _END_ SWITCH(Img)\n\n\nend\n\n\n\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\nfunction[lambdaS_l2, Lambda_O, Lambda_update] = setRegParameter(example, Ndims)\n\n switch lower(example)\n \n case{'gauss_sp_denoise'}\n if(Ndims == 1)\n lambdaS_l2 = [ 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025 ];\n else\n lambdaS_l2 = 1.5*[ 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025 ];\n end\n\n Lambda_O = 5;\n Lambda_update = 1.15;\n\n case{'gauss_random_denoise'}\n if(Ndims == 1)\n lambdaS_l2 = [ 1.25*0.0075, 0.0185, 0.025, ...\n 1.25*0.0075, 0.0185, 0.025, ...\n 1.25*0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025 ];\n% 0.0075, 0.0185, 0.025 ]/8;\n else\n lambdaS_l2 = 1.5*[ 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025, ...\n 0.0075, 0.0185, 0.025 ]/8;\n end\n\n\n Lambda_O = 5;\n Lambda_update = 1.15;\n\n end\n\nend\n\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\nfunction[InCell, noiseName, vNoise, nNoise] = addNoise(Ig, example, sigmaGauss, NGauss, spnoise, Nspnoise, randomnoise, NRnoise)\n\n % Add Gaussian noise\n Ig_05L2 = imnoise(Ig,'gaussian', 0, (sigmaGauss(1)^2) );\n Ig_10L2 = imnoise(Ig,'gaussian', 0, (sigmaGauss(2)^2) );\n Ig_15L2 = imnoise(Ig,'gaussian', 0, (sigmaGauss(3)^2) );\n \n % Add impulse noise (S&P or random value)\n switch lower(example)\n \n case{'gauss_sp_denoise'}\n\t\n\tnoiseName = 'S&P';\n\tvNoise = spnoise;\n\tnNoise = Nspnoise;\n\n\tfor k=1:Nspnoise,\n \n\t InCell{NGauss*(k-1)+1} = imnoise(Ig_05L2, 'salt & pepper', spnoise(k));\n\t InCell{NGauss*(k-1)+2} = imnoise(Ig_10L2, 'salt & pepper', spnoise(k));\n\t InCell{NGauss*(k-1)+3} = imnoise(Ig_15L2, 'salt & pepper', spnoise(k)); \n\tend\n\n\n case{'gauss_random_denoise'}\n\n\tnoiseName = 'RandVal';\n\tvNoise = randomnoise;\n\tnNoise = NRnoise;\n\n\t[Nrows Ncols Ndims] = size(Ig);\n\tdummy = 0.5*ones(Nrows, Ncols, Ndims);\n\n\tfor k=1:NRnoise,\n\n\t mask = (imnoise(dummy, 'salt & pepper', randomnoise(k)) ~= 0.5);\n\t InCell{NGauss*(k-1)+1} = Ig_05L2.*(1-mask) + mask.*rand(Nrows, Ncols, Ndims);\n\n\t mask = (imnoise(dummy, 'salt & pepper', randomnoise(k)) ~= 0.5);\n\t InCell{NGauss*(k-1)+2} = Ig_10L2.*(1-mask) + mask.*rand(Nrows, Ncols, Ndims);\n\n\t mask = (imnoise(dummy, 'salt & pepper', randomnoise(k)) ~= 0.5);\n\t InCell{NGauss*(k-1)+3} = Ig_15L2.*(1-mask) + mask.*rand(Nrows, Ncols, Ndims);\n\tend\n\n\n end % _END_ SWITCH\n\nend\n\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\nfunction[S0] = estimateRValImpulse(In)\n\n thres_diffmed= 0.2;\n window_side= 2;\n\n road_size= 7;\n thres_ranked= 0.05;\n\n [Nrows Ncols Ndims] = size(In);\n\n if(Ndims == 1)\n\n mask_diff_median = diff_median_blk( In, window_side, thres_diffmed);\n mask_ranked_mean = ranked_mean( In, window_side, road_size, thres_ranked);\n S0 = mask_ranked_mean & mask_diff_median;\n\n else\n \n for d=1:Ndims,\n mask_diff_median = diff_median_blk( In(:,:,d), window_side, thres_diffmed);\n mask_ranked_mean = ranked_mean( In(:,:,d), window_side, road_size, thres_ranked);\n S0(:,:,d) = mask_ranked_mean & mask_diff_median;\n end\n\n end\n\nend\n\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\nfunction[psnr_l1l2, snr_l1l2, ssim_l1l2] = qualityAssessment(Ig, Ig_L1L2, SSIM_CODE)\n \n\n psnr_l1l2 = psnr(Ig, Ig_L1L2);\n snr_l1l2 = snr(Ig, Ig_L1L2); \n if(SSIM_CODE)\n ssim_l1l2 = ssim_index(255*Normalize(Ig), 255*Normalize(Ig_L1L2));\n else\n ssim_l1l2 = NaN;\n end\n\nend\n\n%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%\n\nfunction[y] = Normalize(x)\n\n y = (x - min(x(:)))/(max(x(:)) - min(x(:)));\n\nend\n\n\n\n\n", "meta": {"author": "xingchenzhang", "repo": "VIFB", "sha": "7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa", "save_path": "github-repos/MATLAB/xingchenzhang-VIFB", "path": "github-repos/MATLAB/xingchenzhang-VIFB/VIFB-7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa/methods/GTF/source/icassp12.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6513548782017745, "lm_q1q2_score": 0.3884896393406963}} {"text": "function [mu, varsigma] = modelPosteriorMeanVar(model, X);\n\n% MODELPOSTERIORMEANVAR Mean and variances of the posterior at points given by X.\n% FORMAT\n% DESC returns the posterior mean and variance for a given set of\n% points.\n% ARG model : the model for which the posterior will be computed.\n% ARG x : the input positions for which the posterior will be\n% computed.\n% RETURN mu : the mean of the posterior distribution.\n% RETURN sigma : the variances of the posterior distributions.\n%\n% SEEALSO : modelCreate\n%\n% COPYRIGHT : Neil D. Lawrence, 2009\n\n% MLTOOLS\n\n fhandle = str2func([model.type 'PosteriorMeanVar']);\n if str2num(version('-release'))>13\n [mu, varsigma] = fhandle(model, X);\n else \n [mu, varsigma] = feval(fhandle, model, X);\n end\n \n \n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/modelPosteriorMeanVar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.388489631267544}} {"text": "function odf = rotate(odf,rot,varargin)\n% rotate ODF\n%\n% Input\n% odf - @SO3Fun\n% q - @rotation\n%\n% Output\n% rotated odf - @SO3Fun\n\nss = odf.SS.Laue;\nif length(ss)>2 && ~any(rot == ss(:))\n warning('Rotating an ODF with specimen symmetry will remove the specimen symmetry')\n odf.SS = specimenSymmetry;\nend\n\nfor i = 1:length(odf.components)\n odf.components{i} = odf.components{i}.rotate(rot,varargin{:}); \nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/SO3Fun/@SO3FunComposition/rotate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5428632831725053, "lm_q1q2_score": 0.3883774192114089}} {"text": "classdef NSLS < ALGORITHM\n% \n% Multiobjective optimization framework based on nondominated sorting and\n% local search\n\n%------------------------------- Reference --------------------------------\n% B. Chen, W. Zeng, Y. Lin, and D. Zhang, A new local search-based\n% multiobjective optimization algorithm, IEEE Transactions on Evolutionary\n% Computation, 2015, 19(1): 50-73.\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n methods\n function main(Algorithm,Problem)\n %% Generate random population\n Population = Problem.Initialization();\n\n %% Optimization\n while Algorithm.NotTerminated(Population)\n Offspring = Operator(Problem,Population);\n Population = EnvironmentalSelection([Population,Offspring],Problem.N);\n end\n end\n end\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/NSLS/NSLS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38837741921140884}} {"text": "classdef GridOptions < handle\n properties\n dx double {isfinite} % east-west distance between grid points\n dy double % north-south distance between grid points\n dz double % vertical distance between grid points\n % Defines whether horizontal distances are constant, or whether they scale as the grid\n % deviates from the equator. \n followMeridians matlab.lang.OnOffSwitchState \t= 'off'\n gridEntireArea matlab.lang.OnOffSwitchState = 'off'\n FixedAnchorPoint double = []\n % grid cannot be used past these limits [xmin xmax ymin ymax]\n AbsoluteGridLimits (1,4) double\n GridType GridTypes = GridTypes.XY;\n RefEllipsoid referenceEllipsoid\n end\n \n properties(Dependent, Hidden)\n horizUnits\n dzUnits\n end\n \n methods\n function obj = GridOptions(grid_type, dx_dy_dz, RefEllipsoid, varargin)\n % old usage: obj = GridOptions(dx, dy, dz_km, horiz_units, follow_meridians, gridEntireArea)\n % GRIDOPTIONS defines parameters that are used to create ZmapGrids\n %\n % obj = GRIDOPTIONS( GRID_TYPE, [dx,dy,dz], ELLPSOID ) where GRID_TYPE is a GridType,\n % and defines the spatial orientation of the grid. [dx,dy,dz] are a doublet or triplet \n % describing the grid spacing, and ELLIPSOID defines how everything will be interpreted.\n % the ellipsoid's LengthUnit determines the units of this grid. (See the option for\n % FollowMeridians, below). An specifying the Ellipsoid value of nonEllipsoid() will \n % declare that this is a cartesian grid instead of a geodetic one.\n %\n % obj = GRIDOPTIONS( ..., 'FollowMeridians',true) Horizontal Units are degrees and grid\n % therefore narrows toward the poles.\n % \n % obj = GRIDOPTIONS(...,'GridEntireArea',true) grids entire area.\n %\n % For a horizontal grid, the first parameter should be [dx, dy] or [dx,dy,nan]\n % For a cross-sectional grid, the first parameter should be [dS nan dz], where dS is\n % a linear distance.\n % For a 3-d grid, the first parameters should be [dx,dy,dz]\n %\n % see also ZmapGrid, referenceEllipsoid, GridType, nonEllipsoid\n p = inputParser;\n p.addRequired('GridType');\n p.addRequired('dx_dy_dz');\n p.addRequired('RefEllipsoid');\n p.addParameter('FollowMeridians', false);\n p.addParameter('GridEntireArea', false);\n p.parse(grid_type, dx_dy_dz, RefEllipsoid,varargin{:})\n \n obj.GridType = p.Results.GridType;\n obj.RefEllipsoid = p.Results.RefEllipsoid;\n obj.followMeridians = p.Results.FollowMeridians;\n obj.gridEntireArea = p.Results.GridEntireArea;\n \n if iscartesian(obj.RefEllipsoid)\n assert(p.Results.FollowMeridians == false, 'Cannot follow Meridians for a cartesian grid');\n end\n \n switch obj.GridType\n case 'XY'\n obj.dx = dx_dy_dz(1);\n obj.dy = dx_dy_dz(2);\n obj.dz = 1;\n \n case 'XZ'\n obj.dx = dx_dy_dz(1);\n obj.dy = nan;\n obj.dz = dx_dy_dz(end);\n \n case 'XYZ'\n obj.dx = dx_dy_dz(1);\n obj.dy = dx_dy_dz(2);\n obj.dz = dx_dy_dz(3);\n end\n end\n \n function u = get.horizUnits(obj) % for backwards compatibility\n if obj.followMeridians\n u = 'degree';\n else\n u = obj.RefEllipsoid.LengthUnit;\n end\n end\n \n function u = get.dzUnits(obj) % for backwards compatibility\n u = obj.RefEllipsoid.LengthUnit;\n end\n \n end % methods section\n \n methods(Static)\n function [mygrid, mygridopts] = fromDialog(existing_gridopt, ellipsoid, shape)\n % FROMDIALOG shows an interactive dialog box allowing user to choose grid\n mygrid = [];\n mygridopts = [];\n if ~exist('ellipsoid', 'var')\n ellipsoid = getappdata(groot, 'ZmapDefaultReferenceEllipsoid');\n end\n \n if ~exist('shape', 'var')\n shape = ShapeGeneral();\n end\n if exist('existing_gridopt', 'var') && ~isempty(existing_gridopt)\n gc = grid_chooser(ellipsoid, existing_gridopt, shape); \n else\n gc = grid_chooser(ellipsoid, [], shape);\n end\n gc.ResultDump = @set_values;\n waitfor(gc)\n function set_values(g, gop)\n mygrid = g;\n mygridopts = gop;\n end\n end\n end %static methods\nend\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/cgr_utils/GridOptions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38837741921140884}} {"text": "function img = mrExtractImgVol(volume,iSize,numSlices,samp, ...\n dataRange,badVal)\n%\n% img = mrExtractImgVol(volume,iSize,numSlices,samp,dataRange,badVal)\n%\n%AUTHOR: Engel\n%DATE: November, 1994\n%PURPOSE:\n% Extracts and interpolates the values from a volume of data.\n% The locations to be returned are listed in the parameter samp.\n%\n% The input volume is formatted so that each row is an image \n%\n% The sampling grid is a matrix whose columns are x,y,and z.\n% For the image to be displayable using myShowImage, the sampling\n% matrix should run down columns fastest, rows slowest.\n%\n% volume: a volume of data represented as a vector\n% iSize: the row and col size of individual images in the volume\n% numSlices: the number of image slices in the volume\n% samp: the sample locations we wish to extract from the volume.\n%\n% OPTIONAL ARGUMENTS:\n% dataRange: the starting and ending Z-coordinates for the \n%\t volume of data. It is optional. If no dataRange is given\n%\t the Z range is assumed to be 1:numSlices. This allows subsets\n% of the full volume to be passed in.\n%\n% badVal: specifies the value that should be returned\n%\t for values outside the data set.\n%\n% global interpflag: the value of this global specifies whether or not\n% \t to interpolate the volume data.\n%\n% RETURNED:\n% img: an image is returned, selected from the volume data\n%\t according to the samp values.\n%\n\n% BW 10/19/95\n\nglobal interpflag\n\n% Check arguments\n%\nif (nargin < 6) \t% No badVal\n badVal = 1;\nend\nif (nargin >= 5) \t% There is a dataRange argument\n samp(:,3) = samp(:,3) - dataRange(1) + 1;\nend\nif (nargin < 4)\n error('mrExtractImgVol: Requires 4 arguments')\nend\n\n% If the global interpolation flag is set, then interpolate the data.\n% to make sure there are values at the sample values.\n%\nif (interpflag)\n\n% myCinterp3 uses trilinear interpolation to create a value\n% at each samp location. It refuses to extrapolate, so if\n% a sample point is outside the volume size, badVal is returned\n% \n img = myCinterp3(volume,iSize,numSlices,samp,badVal)';\n\nelse\n\n% Check the samp range to make sure we are not out of bounds.\n% Points that are out of bounds will be assigned badVal\n%\n bad = (samp(:,1) > iSize(2)) | (samp(:,2) > iSize(1)) ...\n | (samp(:,3) > (numSlices+.5)) | (samp(:,1) < .5) ...\n | (samp(:,2) < 1) | (samp(:,3) < 1);\n\n% Convert the 3d coordinates to the volume coord.\n%\n volcoords = mrVcoord(round(samp),iSize);\n% volcoords = mr3d21d(samp,iSize,[1,numSlices]);\n\n%Take care of out of bounds points\n%\n bad = bad | (volcoords < 1 )| (volcoords > length(volume));\n\n%Extract data. Notice that badVal is used here, too.\n%\n img = zeros(size(volcoords));\n img(~bad) = volume(volcoords(~bad));\n img(bad) = badVal*ones(1,sum(bad));\n\n% Replaced this line. Does this make trouble for someone? -- BW\n%\n% img(isnan(img)) = badVal*ones(1,sum(isnan(img)));\nend\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAlign/volume/mrExtractImgVol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38837741921140884}} {"text": "function newDepth = SiftFu(sequenceName, frameIDs)\n\n%{\nPlease cite the following paper if you use this code\n\nCitation:\nJ. Xiao, A. Owens and A. Torralba\nSUN3D Database: Semantic RGB-D Bundle Adjustment with Human in the Loop\nProceedings of 14th IEEE International Conference on Computer Vision (ICCV2013)\n%}\n\n\naddpath(genpath('SIFTransac'))\nvl_setup;\n\nglobal toVisualize;\ntoVisualize = true;\n\n%% IO\nif ~exist('sequenceName','var')\n % load demo sequence\n % look for all sequence name list at http://sun3d.csail.mit.edu/player/list.html\n %sequenceName = 'hotel_mr/scan1';\n %sequenceName = 'hotel_umd/maryland_hotel3';\n %sequenceName = 'brown_bm_1/brown_bm_1';\n sequenceName = 'mit_32_d428/bs4j179mmv';\nend\n\n% the root path of SUN3D\n% change it to local if you downloaded the data\n%SUN3Dpath = '/data/vision/torralba/sun3d/record/scene_final';\nSUN3Dpath = 'http://sun3d.csail.mit.edu/data/';\n\n% read intrinsic\nglobal K;\nK = reshape(readValuesFromTxt(fullfile(SUN3Dpath,sequenceName,'intrinsics.txt')),3,3)';\n\n% file list\nimageFiles = dirSmart(fullfile(SUN3Dpath,sequenceName,'image/'),'jpg');\ndepthFiles = dirSmart(fullfile(SUN3Dpath,sequenceName,'depth/'),'png');\n\n% read time stamp\nimageFrameID = zeros(1,length(imageFiles));\nimageTimestamp = zeros(1,length(imageFiles));\nfor i=1:length(imageFiles)\n id_time = sscanf(imageFiles(i).name, '%d-%d.jpg');\n imageFrameID(i) = id_time(1);\n imageTimestamp(i) = id_time(2);\nend\ndepthFrameID = zeros(1,length(depthFiles));\ndepthTimestamp = zeros(1,length(depthFiles));\nfor i=1:length(depthFiles)\n id_time = sscanf(depthFiles(i).name, '%d-%d.png');\n depthFrameID(i) = id_time(1);\n depthTimestamp(i) = id_time(2);\nend\n\n% synchronize: find a depth for each image\nframeCount = length(imageFiles);\nIDimage2depth = zeros(1,frameCount);\nfor i=1:frameCount\n [~, IDimage2depth(i)]=min(abs(double(depthTimestamp)-double(imageTimestamp(i))));\nend\n\n%plot(double(imageTimestamp)-double(depthTimestamp(IDimage2depth)))\n\nif ~exist('frameIDs','var')\n frameIDs = 1:frameCount;\nelse\n frameIDs = frameIDs(frameIDs>=1 & frameIDs<=frameCount);\nend\n\nimageFiles = imageFiles(frameIDs);\ndepthFiles = depthFiles(IDimage2depth(frameIDs));\n\n\n%% kinect fusion\n\n% for optimization\n\nglobal VMap;\nglobal NMap;\nglobal CMap;\n\nglobal XYZcam;\nglobal Ncam;\nglobal IMGcam;\n\n\n%% tsdf\n\n\nglobal voxel;\nglobal tsdf_value;\nglobal tsdf_weight;\nglobal tsdf_color; tsdf_color = [];\n\n\nvoxel.unit = 0.01; % Kevin: 4mm = 0.004 meter. Kinect cannot go better than 3mm\nvoxel.mu_grid = 10; % used to be 4\nvoxel.size_grid = [512; 512; 1024]; % [512; 512; 512];\n\nvoxel.range(1,1) = - voxel.size_grid(1) * voxel.unit / 2;\nvoxel.range(1,2) = voxel.range(1,1) + (voxel.size_grid(1)-1) * voxel.unit;\n\nvoxel.range(2,1) = - voxel.size_grid(2) * voxel.unit / 2;\nvoxel.range(2,2) = voxel.range(2,1) + (voxel.size_grid(2)-1) * voxel.unit;\n\nvoxel.range(3,1) = -0.5; % - voxel.size_grid(3) * voxel.unit / 2;\nvoxel.range(3,2) = voxel.range(3,1) + (voxel.size_grid(3)-1) * voxel.unit;\n\nvoxel.mu = voxel.mu_grid * voxel.unit;\n\nfprintf('memory = %f GB\\n', prod(voxel.size_grid) * 4 / (1024*1024*1024));\nfprintf('space = %.2f m x %.2f m x %.2f m ', voxel.size_grid(1) * voxel.unit, voxel.size_grid(2) * voxel.unit, voxel.size_grid(3) * voxel.unit);\nfprintf('= [%.2f,%.2f] x [%.2f,%.2f] x [%.2f,%.2f]\\n',voxel.range(1,1),voxel.range(1,2),voxel.range(2,1),voxel.range(2,2),voxel.range(3,1),voxel.range(3,2));\n\n\n%tsdf_value = -ones([voxel.size_grid(1),voxel.size_grid(2), voxel.size_grid(3)],'single');\ntsdf_value = ones([voxel.size_grid(1),voxel.size_grid(2), voxel.size_grid(3)],'single');\ntsdf_weight = zeros([voxel.size_grid(1),voxel.size_grid(2), voxel.size_grid(3)],'single');\n\n% comment out this line to avoid using color\n% tsdf_color = zeros([voxel.size_grid(1),voxel.size_grid(2), voxel.size_grid(3)], 'uint32');\n\n\n\n\nf = K(1,1);\n\nglobal ViewFrustumC;\nViewFrustumC = [...\n 0 -320 -320 320 320;\n 0 -240 240 240 -240;\n 0 f f f f];\nViewFrustumC = ViewFrustumC/f * 8; % 8 meter is the furthest depth of kinect\n\n% precompute\nglobal raycastingDirectionC;\n[pX,pY]=meshgrid(1:640,1:480);\n\nraycastingDirectionC = [pX(:)'-K(1,3); pY(:)'-K(2,3); f*ones(1,640*480)]; % clipping at 8 meter is the furthest depth of kinect\nraycastingDirectionC = raycastingDirectionC ./ repmat(sqrt(sum(raycastingDirectionC.^2,1)),3,1);\n\n%%\nuseSIFT = false;\nif useSIFT\n MatchPairs = cell(1,length(imageFiles)-1);\nend\n\ncameraRtC2W = repmat([eye(3) zeros(3,1)], [1,1,length(imageFiles)]);\n\ndispclim = [0 5];\n\nfor frameID = 1:length(imageFiles)\n \n fprintf('================================ Frame %d ================================\\n',frameID);\n \n \n IMGcam = imageRead(fullfile(fullfile(SUN3Dpath,sequenceName,'image',imageFiles(frameID).name)));\n\n %subplot(3,4,4)\n %imagesc(IMGcam); axis equal; axis tight; \n %drawnow;\n %title('input color');\n\n if frameID==1\n IMGcam1 = IMGcam;\n end\n\n \n % read the frame\n \n depth = depthRead(fullfile(fullfile(SUN3Dpath,sequenceName,'depth',depthFiles(frameID).name)));\n XYZcam = depth2XYZcamera(K, depth);\n \n if frameID==1\n XYZcam1 = XYZcam;\n end\n \n \n Ncam = vertex2normal(XYZcam);\n \n \n if toVisualize\n if frameID==1 \n subplot(3,4,9)\n else\n subplot(3,4,1)\n end\n imagesc(XYZcam(:,:,3),dispclim); axis equal; axis tight\n title(sprintf('Frame %d: Input Depth',frameID));\n axis off\n\n if frameID==1\n subplot(3,4,10)\n else\n subplot(3,4,2)\n end\n imagesc((Ncam+1)/2); axis equal; axis tight\n title(sprintf('Frame %d: Input Normal',frameID));\n axis off\n\n if frameID==1\n subplot(3,4,11)\n else\n subplot(3,4,3)\n end\n raycastingDirectionW = transformRTdir(raycastingDirectionC,[eye(3) zeros(3,1)]);\n DotMap = reshape(max(0,sum(-reshape(Ncam,[480*640 3])' .* raycastingDirectionW,1)),[480 640]);\n imagesc(DotMap);\n colormap('gray'); axis equal; axis tight\n title(sprintf('Frame %d: Input Phong',frameID));\n axis off\n end\n \n\n if frameID==1\n camRtC2W = [eye(3) [0;0;0]];\n else\n MatchPairs{frameID-1} = align2view(1,IMGcam1,XYZcam1,frameID,IMGcam,XYZcam);\n camRtC2W = MatchPairs{frameID-1}.Rt;\n \n if size(MatchPairs{frameID-1}.matches,2)<5\n disp('SIFT matching failed, ignoring this frame');\n continue;\n end\n end\n \n cameraRtC2W(:,:,frameID) = camRtC2W;\n\n \n %% update TSDF\n disp('update TSDF...');\n %tic\n updateTSDF(camRtC2W);\n %toc\n\n \n \n \n \n %{\n %% visualizing the voxel\n subplot(3,4,10)\n for i=1:voxel.size_grid(3)\n if min(min(min(tsdf_value(:,:,i)))) ~= max(max(max(tsdf_value(:,:,i))))\n imagesc(tsdf_weight(:,:,i)'); axis equal; axis tight; xlabel('x'); ylabel('y');\n title(['frame ' num2str(i) ' = depth ' num2str((i-1)*voxel.unit+voxel.range(3,1)) ' meter']);\n pause(0.05);\n end\n end\n\n subplot(3,4,10)\n for i=1:voxel.size_grid(3)\n if min(min(min(tsdf_value(:,:,i)))) ~= max(max(max(tsdf_value(:,:,i))))\n imagesc(tsdf_value(:,:,i)'); axis equal; axis tight; xlabel('x'); ylabel('y');\n title(['frame ' num2str(i) ' = depth ' num2str((i-1)*voxel.unit+voxel.range(3,1)) ' meter']);\n pause(0.05);\n end\n end\n %}\n \n \n\n \n %% ray casting for the result\n disp('ray casting');\n tic\n % ray casting result is in the world coordinate\n [VMap,NMap,tMap,CMap] = raycastingTSDFvectorized([eye(3) [0;0;0]], [0.4 8]);\n %[VMap,NMap,tMap] = raycastingTSDFdump(camRtC2WrayCasting, [0.4 8]);\n toc\n\n newDepth = reshape(VMap(3,:),480,640);\n \n \n if toVisualize\n subplot(3,4,5)\n imagesc(newDepth,dispclim); axis equal; axis tight; axis off\n title(sprintf('Fused Depth',frameID));\n end\n \n VMap = reshape(double(VMap'),480,640,3);\n VMap(:,:,4) = ~isnan(VMap(:,:,1));\n NMap = vertex2normal(VMap);\n % normalize normal map\n %NMap = NMap ./ repmat(sqrt(sum(NMap.^2,1)),3,1); \n if toVisualize\n subplot(3,4,6)\n imagesc((NMap+1)/2); axis equal; axis tight; axis off\n title(sprintf('Fused Noraml',frameID));\n end\n \n if toVisualize\n subplot(3,4,7)\n raycastingDirectionW = transformRTdir(raycastingDirectionC,[eye(3) zeros(3,1)]);\n DotMap = reshape(max(0,sum(-reshape(NMap,[480*640 3])' .* raycastingDirectionW,1)),[480 640]);\n imagesc(DotMap);\n colormap('gray'); axis equal; axis tight; axis off\n title(sprintf('Fused Phong',frameID));\n end\n\n if toVisualize\n subplot(3,4,12)\n imagesc(abs(newDepth - XYZcam1(:,:,3)),dispclim); axis equal; axis tight; axis off\n title(sprintf('Difference of Depth',frameID));\n \n drawnow;\n end\n \n %{\n \n subplot(3,4,6)\n imagesc(min(1,max(0,(reshape(NMap',[480 640 3])+1)/2))); axis equal; axis tight\n title(sprintf('Frame %d: rayCasting Normal Map',frameID));\n drawnow;\n \n %figure\n %visNMap = reshape(NMap',[480 640 3]);\n %out = visualizeNormals(-visNMap);\n %imagesc(out)\n %title('rayCasting Normal Map');\n \n \n subplot(3,4,7)\n raycastingDirectionW = transformRTdir(raycastingDirectionC,camRtC2W);\n DotMap = reshape(max(0,sum(-NMap .* raycastingDirectionW,1)),[480 640]);\n imagesc(DotMap);\n colormap('gray'); axis equal; axis tight\n title(sprintf('Frame %d: phong shading',frameID));\n drawnow;\n \n if ~isempty(tsdf_color)\n subplot(3,4,8)\n imagesc(reshape(CMap',[480,640,3])/255); axis equal; axis tight; \n drawnow;\n title(sprintf('Frame %d: ray casting color',frameID));\n end\n \n %}\n \n \n %subplot(3,4,9)\n %imagesc(reshape(tMap,480,640)); axis equal; axis tight\n %title(sprintf('Frame %d: rayCasting tMap',frameID));\n %drawnow;\n \n \n\nend\n\n\nend\n\n%% IO functions\n\nfunction values = readValuesFromTxt(filename)\ntry\n values = textscan(urlread(filename),'%f');\ncatch\n fid = fopen(filename,'r');\n values = textscan(fid,'%f');\n fclose(fid);\nend\nvalues = values{1};\nend\n\nfunction XYZcamera = depth2XYZcamera(K, depth)\n[x,y] = meshgrid(1:640, 1:480);\nXYZcamera(:,:,1) = (x-K(1,3)).*depth/K(1,1);\nXYZcamera(:,:,2) = (y-K(2,3)).*depth/K(2,2);\nXYZcamera(:,:,3) = depth;\nXYZcamera(:,:,4) = depth~=0;\nend\n\n\nfunction depth = depthRead(filename)\ndepth = imread(filename);\ndepth = bitor(bitshift(depth,-3), bitshift(depth,16-3));\ndepth = single(depth)/1000;\nend\n%{\n % test to make sure it is correct\n for i=0:65535\n depth = uint16(i);\n code =bitor(bitshift(depth,3),bitshift(depth,3-16));\n recoverDepth = bitor(bitshift(code,-3), bitshift(code,16-3));\n if (depth~=recoverDepth)\n fprintf('error + %d\\n',i);\n end\n end\n%}\n\nfunction image = imageRead(filename)\nimage = imread(filename);\nend\n\n\nfunction files = dirSmart(page, tag)\n[files, status] = urldir(page, tag);\nif status == 0\n files = dir(fullfile(page, ['*.' tag]));\nend\nend\n\nfunction [files, status] = urldir(page, tag)\nif nargin == 1\n tag = '/';\nelse\n tag = lower(tag);\n if strcmp(tag, 'dir')\n tag = '/';\n end\n if strcmp(tag, 'img')\n tag = 'jpg';\n end\nend\nnl = length(tag);\nnfiles = 0;\nfiles = [];\n\n% Read page\npage = strrep(page, '\\', '/');\n[webpage, status] = urlread(page);\n\nif status\n % Parse page\n j1 = findstr(lower(webpage), '');\n Nelements = length(j1);\n if Nelements>0\n for f = 1:Nelements\n % get HREF element\n chain = webpage(j1(f):j2(f));\n jc = findstr(lower(chain), '\">');\n chain = deblank(chain(10:jc(1)-1));\n \n % check if it is the right type\n if length(chain)>length(tag)-1\n if strcmp(chain(end-nl+1:end), tag)\n nfiles = nfiles+1;\n chain = strrep(chain, '%20', ' '); % replace space character\n files(nfiles).name = chain;\n files(nfiles).bytes = 1;\n end\n end\n end\n end\nend\nend\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/SiftFu/SiftFu/SiftFu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38837741921140884}} {"text": "%IKINE_SYM Symbolic inverse kinematics\n%\n% Q = R.IKINE_SYM(K, OPTIONS) is a cell array (Cx1) of inverse kinematic\n% solutions of the SerialLink object ROBOT. The cells of Q represent the\n% different possible configurations. Each cell of Q is a vector (Nx1), and\n% element J is the symbolic expressions for the J'th joint angle. The\n% solution is in terms of the desired end-point pose of the robot which is\n% represented by the symbolic matrix (3x4) with elements\n% nx ox ax tx\n% ny oy ay ty\n% nz oz az tz\n% where the first three columns specify orientation and the last column\n% specifies translation.\n%\n% K <= N can have only specific values:\n% - 2 solve for translation tx and ty\n% - 3 solve for translation tx, ty and tz\n% - 6 solve for translation and orientation\n%\n% Options::\n%\n% 'file',F Write the solution to an m-file named F\n%\n% Example::\n%\n% mdl_planar2\n% sol = p2.ikine_sym(2);\n% length(sol)\n% ans = \n% 2 % there are 2 solutions\n% s1 = sol{1} % is one solution\n% q1 = s1(1); % the expression for q1\n% q2 = s1(2); % the expression for q2\n%\n% Notes::\n% - Requires the Symbolic Toolbox for MATLAB.\n% - This code is experimental and has a lot of diagnostic prints.\n% - Based on the classical approach using Pieper's method.\n\n% Copyright (C) 1993-2015, by Peter I. Corke\n%\n% This file is part of The Robotics Toolbox for MATLAB (RTB).\n% \n% RTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% RTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with RTB. If not, see .\n%\n% http://www.petercorke.com\n\nfunction out = ikine_sym(srobot, N, varargin)\n \n %\n % Given a robot model the following steps are performed:\n % 1. Convert model to symbolic form\n % 2. Find relevant trig equations and solve them for joint angles\n % 3. Write an M-file to implement the solution\n % xikine(T)\n % xikine(T, S) where S is a 3 vector with elements 1 or 2 to select\n % the first or second solution for the corresponding joint.\n %\n % TODO:\n % - handle the wrist joints, only first 3 joints so far\n % - handle base and tool transforms\n \n opt.file = [];\n opt = tb_optparse(opt, varargin);\n \n % make a symbolic representation of the passed robot\n srobot = sym(srobot);\n q = srobot.gencoords();\n\n % test N DOF has an allowable value\n switch N\n case 2\n case 3\n case 6\n otherwise\n error('RTB:ikine_sym:badarg', 'Can only solve for 2,3,6 DOF');\n end\n \n % define symbolic elements of the homogeneous transform\n syms nx ox ax tx\n syms ny oy ay ty\n syms nz oz az tz\n syms d3\n \n % inits\n Q = {};\n trigsubOld = [];\n trigsubNew = [];\n\n % loop over each joint variable\n for j=1:N\n fprintf('----- solving for joint %d\\n', j);\n \n % create some equations to sift through\n [left,right] = pieper(srobot, j, 'left');\n \n % decide which equations to look at\n if j <= 3\n % for first three joints only focus on translational part\n left = left(1:3, 4); left = left(:);\n right = right(1:3, 4); right = right(:);\n else\n % for last three joints only focus on rotational part\n left = left(1:3, 1:3); left = left(:);\n right = right(1:3, 1:3); right = right(:);\n end\n \n % substitute sin/cos for preceding joint as S/C, essentially removes\n % the joint variables from the equations and treats them as constants.\n if ~isempty(trigsubOld)\n left = subs(left, trigsubOld, trigsubNew);\n right = subs(right, trigsubOld, trigsubNew);\n end\n \n % then simplify the LHS\n % do it after the substitution to prevent sum of angle terms being introduced\n left = simplify(left);\n \n % search for a solveable equation:\n % function of current joint variable on the LHS\n % constant element on the RHS\n k = NaN;\n for i=1:length(left)\n if hasonly(left(i), j) && isconstant(right(i))\n k = i;\n break;\n end\n end\n \n eq = [];\n \n if ~isnan(k)\n % create the equation to solve: LHS-RHS == 0\n eq = left(k) - right(k);\n else\n % ok, we weren't lucky, try another strategy\n \n % find all equations:\n % function of current joint variable on the LHS\n \n k = [];\n for i=1:length(left)\n % has qj on the left and constant on the right\n if hasonly(left(i), j)\n k = [k i];\n end\n end\n \n % hopefully we found two of them\n if length(k) < 2\n continue;\n end\n \n % we did, lets see if the sum square RHS is constant\n rhs = simplify(right(k(1))^2 + right(k(2))^2); % was simple\n if isconstant( rhs )\n % it is, let's sum and square the LHS\n fprintf('lets square and add %d %d\\n', k);\n \n eq = simplify( expand( left(k(1))^2 + left(k(2))^2 ) ) - rhs; % was simple\n end\n end\n \n % expand the list of joint variable subsitutions\n fprintf('subs sin/cos q%d for S/C\\n', j);\n trigsubOld = [trigsubOld mvar('sin(q%d)', j) mvar('cos(q%d)', j)];\n trigsubNew = [trigsubNew mvar('S%d', j) mvar('C%d', j)];\n \n if isempty(eq)\n fprintf('cant solve this equation');\n k\n left(k)==right(k)\n error('cant solve');\n end\n % now solve the equation\n if srobot.links(j).isrevolute()\n % for revolute joint it will be a trig equation, do we know how to solve it?\n Q{j} = solve_joint(eq, j );\n if isempty(Q)\n warning('cant solve this kind of equation');\n end\n else\n fprintf('prismatic case\\n')\n q = sym( sprintf('q%d', j) );\n Q{j} = solve( eq == 0, q);\n end\n end\n \n % final simplification\n % get rid of C^2+S^2 and C^4, S^4 terms\n fprintf('**final simplification pass\\n')\n \n % create a list of simplifications\n % substitute S^2 = 1-C^2, S^4=(1-C^2)^2\n tsubOld = [];\n tsubNew = [];\n for j=1:N\n tsubOld = [tsubOld mvar('S%d', j)^2 mvar('S%d', j)^4];\n tsubNew = [tsubNew 1-mvar('C%d', j)^2 (1-mvar('C%d', j)^2)^2];\n end\n \n for j=1:N\n for k=1:5\n % seem to need to iterate this, not quite sure why\n Q{j} = simplify( expand( subs(Q{j}, tsubOld, tsubNew) ) );\n end\n end\n\n % Q is a cell array of equations for joint variables\n if nargout > 0\n out = Q;\n end\n \n if ~isempty(opt.file)\n fprintf('**generate MATLAB code\\n')\n gencode(Q);\n end\nend\n\n%PIEPER Return a set of equations using Pieper's method\n%\n% [L,R] = pieper(robot, n, which)\n%\n% If robot has link matrix A1 A2 A3 A4 then returns 12 equations from equating the coefficients of\n%\n% A1' T = A2 A3 A4 n=1, which='left'\n% A2' A1' T = A3 A4 n=2, which='left'\n% A3' A2' A1' T = A4 n=3, which='left'\n%\n% T A4' = A1 A2 A3 n=1, which='right'\n% T A4' A3' = A1 A2 n=2, which='right'\n% T A4' A3' A2' = A1 n=3, which='right'\n%\n% Judicious choice of the equations can lead to joint solutions\n\nfunction [L,R] = pieper(robot, n, which)\n \n if nargin < 3\n which = 'left';\n end\n \n syms nx ox ax tx real\n syms ny oy ay ty real\n syms nz oz az tz real\n \n T = [nx ox ax tx\n ny oy ay ty\n nx oz az tz\n 0 0 0 1 ];\n \n T = inv(robot.base) * T * inv(robot.tool);\n \n q = robot.gencoords();\n \n \n % Create the symbolic A matrices\n for j=1:robot.n\n A{j} = robot.links(j).A(q(j));\n end\n \n switch which\n case 'left'\n left = T;\n for j=1:n\n left = inv(A{j}) * left ;\n end\n \n right = eye(4,4);\n for j=n+1:robot.n\n right = right * A{j};\n end\n \n case 'right'\n left = T;\n for j=1:n\n left = left * inv(A{robot.n-j+1});\n end\n \n right = eye(4,4);\n for j=1:(robot.n-n)\n right = right * A{j};\n end\n end\n \n % left = simple(left);\n % right = simple(right);\n \n if nargout == 0\n left == right\n elseif nargout == 1\n L = left;\n elseif nargout == 2\n L = left;\n R = right;\n end\nend\n\n%SOLVE_JOINT Solve a trigonometric equation\n%\n% S = SOLVE_JOINT(EQ, J) solves the equation EQ=0 for the joint variable qJ.\n% The result is a cell array of solutions.\n%\n% The equations must be of the form:\n% A cos(qJ) + B sin(qJ) = 0\n% A cos(qJ) + B sin(qJ) = C\n%\n% where A, B, C are arbitrarily complex expressions. qJ can be the only\n% joint variable in the expression.\n\nfunction s = solve_joint(eq, j)\n \n sinj = mvar('sin(q%d)', j);\n cosj = mvar('cos(q%d)', j);\n \n A = getcoef(eq, cosj);\n B = getcoef(eq, sinj);\n \n if isempty(A) || isempty(B)\n warning('don''t know how to solve this kind of equation');\n end\n \n C = -simplify(eq - A*cosj - B*sinj); % was simple\n \n if C == 0\n % A cos(q) + B sin(q) = 0\n s(2) = atan2(A, -B);\n s(1) = atan2(-A, B);\n else\n % A cos(q) + B sin(q) = C\n r = sqrt(A^2 + B^2 - C^2);\n phi = atan2(A, B);\n \n s(2) = atan2(C, r) - phi;\n s(1) = atan2(C, -r) - phi;\n end\n if nargout == 0\n try\n eval(s)\n catch\n s\n end\n end\nend\n\n%MVAR Create a symbolic variable\n%\n% V = MVAR(FMT, ARGS) is a symbolic variable created using SPRINTF\n%\n% eg. mvar('q%d', j)\n%\n% The symbolic is explicitly declared to be real.\n\nfunction v = mvar(fmt, varargin)\n\n if isempty(strfind(fmt, '('))\n % not a function\n v = sym( sprintf(fmt, varargin{:}), 'real' );\n else\n v = sym( sprintf(fmt, varargin{:}) );\n \n end\nend\n\n%HASONLY Determine if an expression contains only certain joint variables\n%\n% S = HASONLY(E L) is true if the joint variables (q1, q2 etc.) in the expression E\n% are listed in the vector L.\n%\n% Eg. hasonly('sin(q1)*cos(q2)*cos(q4)', [1 2 3]) -> true\n% Eg. hasonly('sin(q1)*cos(q2)*cos(q4)', [1]) -> false\n\nfunction s = hasonly(eq, j)\n \n q = findq(eq);\n if isempty(q)\n s = false;\n else\n s = all(ismember(j, findq(eq)));\n end\nend\n\n%ISCONSTANT Determine if an expression is free of joint variables\n%\n% S = ISCONSTANT(E) is true if the expression E contains no joint variables such\n% q1, q2 etc.\n\nfunction s = isconstant(eq)\n s = isempty(findq(eq));\nend\n\n%FINDQ Find the joint variables in expression\n%\n% Q = FINDQ(E) returns a list of integers indicating the joint variables found\n% in the expression E. For instance an instance of 'q1' would cause a 1 to be\n% returned and so on.\n%\n% Eg. findq('sin(q1)*cos(q2)+S3') -> [1 2]\n\nfunction q = findq(s)\n \n q = [];\n \n for var=symvar(s)\n if isempty(var)\n break\n end\n varname = char(var);\n if varname(1) == 'q'\n q = [q str2num(varname(2:end))];\n end\n end\nend\n\nfunction coef = getcoef(eq, trig)\n z = children( collect(eq, trig) );\n z = children( z(1) );\n coef = z(1);\nend\n\n% Output a joint expression to a file\n\nfunction s = gencode(Q, filename)\n \n function s = G(s, fmt, varargin)\n s = strvcat(s, sprintf(fmt, varargin{:}));\n end\n\n s = 'function q = xikine(T, sol)';\n s = G(s, ' if nargin < 2; sol = ones(1, %d); end', length(Q));\n s = G(s, ' px = T(1,4); py = T(2,4); pz = T(3,4);');\n \n for j=1:3\n Qj = Q{j}; % cast it to subclass\n if length(Qj) == 1\n s = G(s, ' q(%d) = %s', j, matgen2(Qj));\n elseif length(Qj) == 2\n s = G(s, ' if sol(%d) == 1', j);\n s = G(s, ' q(%d) = %s', j, matgen2(Qj(1)));\n s = G(s, ' else');\n s = G(s, ' q(%d) = %s', j, matgen2(Qj(2)));\n s = G(s, ' end');\n \n \n end\n \n \n s = G(s, ' S%d = sin(q(%d));', j, j);\n s = G(s, ' C%d = cos(q(%d));', j, j);\n s = G(s, ' ');\n \n \n end\n s = G(s, 'end');\n \n fp = fopen(filename, 'w');\n for i=1:numrows(s)\n fprintf(fp, '%s\\n', deblank(s(i,:)));\n end\n fclose(fp);\n \nend\n\n% Generate MATLAB code from an expression\n%\n% Requires a bit of a hack, a subclass of sym (sym2) to do this\n\nfunction s = matgen2(e)\n \n s = matgen(sym2(e));\n \n k = strfind(s, '=');\n s = deblank( s(k+2:end) );\nend\n", "meta": {"author": "Allopart", "repo": "rbpf-gmapping", "sha": "affe0adc25fa446fc7af4902d699d92864bdba1b", "save_path": "github-repos/MATLAB/Allopart-rbpf-gmapping", "path": "github-repos/MATLAB/Allopart-rbpf-gmapping/rbpf-gmapping-affe0adc25fa446fc7af4902d699d92864bdba1b/rvctools/robot/@SerialLink/ikine_sym.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38837741921140884}} {"text": "function [KB] = EB2KB(EB)\n% Convert computery things from exabytes to kilobytes.\n% Chad A. Greene 2012\nKB = EB*1125899906843000;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35258-unit-converters/unit_converters/EB2KB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239836484144, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38837741262373093}} {"text": "function Y = coth(X)\n % Symbolic hyperbolic cotangent.\n\n % Convert inputs to SymExpression\n % X = SymExpression(X);\n \n % construct the operation string\n sstr = ['Coth[' X.s ']'];\n \n % create a new object with the evaluated string\n Y = SymExpression(sstr);\nend\n", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/symbolic/@SymExpression/coth.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585669110202, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.38834516322831936}} {"text": "filename='ImprovedBridge_hexahedra';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'holes';\ncost = {'compliance','perimeter'};\nweights = [1 0.1];\nconstraint = {'volume'};\noptimizer = 'HAMILTON-JACOBI'; incrementFactor = 1;\nfilterType = 'P1';\nconstraint_case = 'INEQUALITY';\nline_search_initiator = 'STANDARD';\nshowBC = true;\n\nHJiter0 = 1;\ne2 = 1;\nN_holes = [12 5 5];\nR_holes = 0.2;\nphase_holes = [0 0 0];\nnsteps = 10;\nVfrac_final = 0.1;\nPerimeter_target = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 0.7;\noptimality_initial = 5e-2;\nconstr_initial = 5e-2;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Bridge/ImprovedBridgeSYM_Case_5_2_2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7826624890918021, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3882740313967939}} {"text": "function mtrPDB2TrackVis(volFile, trkExFile, pdbFile, trkFile)\n% TrackVis file is in mm coordinates, but without center shift\n% PDB file is loaded in AcPc coordinates.\n\n% Load vol file to get AcPc xform\nvol = niftiRead(volFile);\nxformFrom = vol.qto_ijk;\nxformTo = abs(vol.qto_xyz);\nxformTo(1:3,4)=0;\nxformFromAcPc = xformTo*xformFrom;\n\n% Get mm dimensions of image\ndim_mm = vol.dim(:).*abs(diag(vol.qto_xyz(1:3,1:3)));\n\n% Load trks example header file\ntrks.header = read_trk_hdr(trkExFile);\n\n% Load PDB file\nfg = mtrImportFibers(pdbFile);\n\n% Get the fiber coords into mm (without AcPc shift)\nfg = dtiXformFiberCoords(fg,xformFromAcPc);\n\n% Get into trk coordinates\ntrks.fiber = {};\nfor ll=1:length(fg.fibers)\n trks.fiber{ll}.num_points = size(fg.fibers{ll},2);\n trks.fiber{ll}.points = fg.fibers{ll}';\nend\n\ntrks.header.n_count = length(fg.fibers);\nwrite_trk(trks,trkFile);\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/fiber/tractography/contrack/metrotrac/mtrPDB2TrackVis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7826624890918021, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.38827403139679384}} {"text": "% Representation-Free Model Predictive Control for Dynamic Quadruped Panther\n% Author: Yanran Ding\n% Last modified: 2020/12/21\n% \n% Code accompanying the paper:\n% Yanran Ding, Abhishek Pandala, Chuanzheng Li, Young-Ha Shin, Hae-Won Park\n% \"Representation-Free Model Predictive Control for Dynamic Motions in Quadrupeds\"\n% Transactions on Robotics\n% \n% preprint available at: https://arxiv.org/abs/2012.10002\n% video available at: https://www.youtube.com/watch?v=iMacEwQisoQ&t=101s\n\n%% initialization\nclear all;close all;clc\naddpath fcns fcns_MPC\n\n%% --- parameters ---\n% ---- gait ----\n% 0-trot; 1-bound; 2-pacing 3-gallop; 4-trot run; 5-crawl\ngait = 1;\np = get_params(gait);\np.playSpeed = 1;\np.flag_movie = 1; % 1 - make movie\nuse_qpSWIFT = 1; % 0 - quadprog, 1 - qpSWIFT (external)\n\ndt_sim = p.simTimeStep;\nSimTimeDuration = 0.5; % [sec]\nMAX_ITER = floor(SimTimeDuration/p.simTimeStep);\n\n% desired trajectory\np.acc_d = 1;\np.vel_d = [0.5;0];\np.yaw_d = 0;\n\n%% Model Predictive Control\n% --- initial condition ---\n% Xt = [pc dpc vR wb pf]': [30,1]\nif gait == 1\n [p,Xt,Ut] = fcn_bound_ref_traj(p);\nelse\n [Xt,Ut] = fcn_gen_XdUd(0,[],[1;1;1;1],p);\nend\n\n% --- logging ---\ntstart = 0;\ntend = dt_sim;\n\n[tout,Xout,Uout,Xdout,Udout,Uext,FSMout] = deal([]);\n\n% --- simulation ----\nh_waitbar = waitbar(0,'Calculating...');\ntic\nfor ii = 1:MAX_ITER\n % --- time vector ---\n t_ = dt_sim * (ii-1) + p.Tmpc * (0:p.predHorizon-1);\n \n % --- FSM ---\n if gait == 1\n [FSM,Xd,Ud,Xt] = fcn_FSM_bound(t_,Xt,p);\n else\n [FSM,Xd,Ud,Xt] = fcn_FSM(t_,Xt,p);\n end\n\n % --- MPC ----\n % form QP\n [H,g,Aineq,bineq,Aeq,beq] = fcn_get_QP_form_eta(Xt,Ut,Xd,Ud,p);\n\n if ~use_qpSWIFT\n % solve QP using quadprog\n [zval] = quadprog(H,g,Aineq,bineq,Aeq,beq,[],[]);\n else\n % interface with the QP solver qpSWIFT\n [zval,basic_info] = qpSWIFT(sparse(H),g,sparse(Aeq),beq,sparse(Aineq),bineq);\n end\n \n Ut = Ut + zval(1:12);\n \n % --- external disturbance ---\n [u_ext,p_ext] = fcn_get_disturbance(tstart,p);\n p.p_ext = p_ext; % position of external force\n u_ext = 0*u_ext;\n \n % --- simulate ---\n [t,X] = ode45(@(t,X)dynamics_SRB(t,X,Ut,Xd,0*u_ext,p),[tstart,tend],Xt);\n \n \n % --- update ---\n Xt = X(end,:)';\n tstart = tend;\n tend = tstart + dt_sim;\n \n % --- log --- \n lent = length(t(2:end));\n tout = [tout;t(2:end)];\n Xout = [Xout;X(2:end,:)];\n Uout = [Uout;repmat(Ut',[lent,1])];\n Xdout = [Xdout;repmat(Xd(:,1)',[lent,1])];\n Udout = [Udout;repmat(Ud(:,1)',[lent,1])];\n Uext = [Uext;repmat(u_ext',[lent,1])];\n FSMout = [FSMout;repmat(FSM',[lent,1])];\n \n waitbar(ii/MAX_ITER,h_waitbar,'Calculating...');\nend\nclose(h_waitbar)\nfprintf('Calculation Complete!\\n')\ntoc\n\n%% Animation\n[t,EA,EAd] = fig_animate(tout,Xout,Uout,Xdout,Udout,Uext,p);\n\n\n\n\n\n", "meta": {"author": "YanranDing", "repo": "RF-MPC", "sha": "758525cded89be434b04eab838bed034f67c27fd", "save_path": "github-repos/MATLAB/YanranDing-RF-MPC", "path": "github-repos/MATLAB/YanranDing-RF-MPC/RF-MPC-758525cded89be434b04eab838bed034f67c27fd/MAIN.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7826624789529376, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3882740263669658}} {"text": "function [ output_args ] = CudaConvolution( input_args )\n% CUDACONVOLUTION Download description\n% Please download the \n%\n% 64 Bit CUDA 4.2 MEX files here.\n%\n% and download the\n%\n% 32 Bit CUDA 4.2 MEX files here.\n%\n% and download the \n%\n% NVIDIA driver version 190.38 for your OS from here.\n%\nrealKernel = double(1:5);\nimagKernel = double(1:5);\nrealKernel(:)= 0.127;\nimagKernel(:)= 0;\n\n% Construct the filter kernel\nFilter_Kernel = complex(realKernel,imagKernel);\n\nimagSignal = double(1:2^15);\n\ntime = 0:(1/2^15):(1-1/2^15);\nidealSignal = sin(2*pi*5*time);\n\nrealSignal = idealSignal + randn(size(time))/2;\nimagSignal(:) = 0;\n\n% Construct the signal\nSignal_1D_Complex = complex(realSignal,imagSignal);\n\n% Convolution of kernel and signal on the CUDA device\nfilteredSignal = cuFilter(Signal_1D_Complex,Filter_Kernel);\n\nplot(realSignal,'b');hold;\nplot(real(filteredSignal),'m');\nplot(idealSignal,'g');", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23334-cuda-convolution-filter/CudaConv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7826624688140726, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3882740213371374}} {"text": "% mattocell() - convert matrix to cell array\n%\n% Usage: >> C = mattocell( M );\n%\n% Author: Arnaud Delorme, CNL / Salk Institute, Jan 25 2002\n%\n% Note: this function overload the nnet toolbox function mattocell, \n% but does not have all its capacities. You can delete the current \n% function if you have the toolbox.\n\n% Copyright (C) Jan 25 2002 Arnaud Delorme, CNL / Salk Institute \n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n\nfunction C = mattocell( M, varargin );\n\nif nargin < 1\n\thelp mattocell;\n\treturn;\nend;\nif isempty(M)\n\tC = [];\n\treturn;\nend;\nC = cell(size(M));\nfor i=1:size(M,1)\n for j=1:size(M,2)\n C{i,j} = M(i,j);\n end;\nend; \n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/functions/sigprocfunc/mattocell.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6723317057447908, "lm_q1q2_score": 0.38826844393508775}} {"text": "function DI = detectChange(obj, t1, t2)\n% Use logarithm for ease of the following thresholding\nDI = abs(log(double(t1)+eps) - log((double(t2) + eps)));\nend\n\n", "meta": {"author": "Bobholamovic", "repo": "ChangeDetectionToolbox", "sha": "167877b866665511d9d5e7e184f964bcda5f4016", "save_path": "github-repos/MATLAB/Bobholamovic-ChangeDetectionToolbox", "path": "github-repos/MATLAB/Bobholamovic-ChangeDetectionToolbox/ChangeDetectionToolbox-167877b866665511d9d5e7e184f964bcda5f4016/+Algorithms/@ImageRatio/detectChange.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723316991792861, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.38826844014353923}} {"text": "function f = dot( F, G )\n%DOT Vector dot product.\n% DOT(F, G) returns the dot product of the DISKFUNV objects F and G. \n% DOT(F, G) is the same as F'*G.\n% \n% See also CROSS. \n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information. \n\n% Empty check: \nif ( isempty( F ) || isempty( G ) ) \n f = diskfun();\n return\nend\n\n% Extract components: \nFc = F.components; \nGc = G.components; \n\n% Calculate dot-product:\nf = times(Fc{1}, Gc{1})+times(Fc{2}, Gc{2}); \n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@diskfunv/dot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3882684401435392}} {"text": "classdef TestPhase\n %TestPhase\n\n methods (Static)\n function test_radians\n x = randn(5,6);\n y = randn(5,6);\n ang = cv.phase(x, y);\n validateattributes(ang, {class(x)}, {'size',size(x)});\n\n x = single(x);\n y = single(y);\n ang = cv.phase(x, y);\n validateattributes(ang, {class(x)}, {'size',size(x)});\n end\n\n function test_degrees\n x = randn(5,6);\n y = randn(5,6);\n ang = cv.phase(x, y, 'Degrees',true);\n validateattributes(ang, {class(x)}, {'size',size(x)});\n end\n\n function test_error_argnum\n try\n cv.phase();\n throw('UnitTest:Fail');\n catch e\n assert(strcmp(e.identifier,'mexopencv:error'));\n end\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/test/unit_tests/TestPhase.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3882684401435392}} {"text": "function F = atand(F, varargin)\n%ATAND Inverse tangent of a CHEBFUN, result in degrees.\n% ATAND(F) computes the inverse tangent (in degrees) of the CHEBFUN F.\n%\n% ATAND(F, PREF) does the same but uses the CHEBFUNPREF object PREF when\n% computing the composition.\n%\n% See also TAND, ATAN2D, ATAN.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers. See\n% http://www.chebfun.org/ for Chebfun information.\n\n% Call the compose method:\nF = compose(F, @atand, varargin{:});\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/atand.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723316860482762, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.38826843256044175}} {"text": "function ebsd = fill(ebsd,varargin)\n% fill EBSD data by nearest neighbour\n%\n% Syntax\n% ebsd_filled = fill(ebsd)\n% ebsd_filled = fill(ebsd,grains)\n%\n% Input\n% ebsd - @EBSD\n% grains - @grain2d\n%\n% Options\n% extrapolate - extrapolate up the the outer boundaries\n%\n\nif ~(isa(ebsd,'EBSDsquare') || isa(ebsd,'EBSDhex')), ebsd = ebsd.gridify; end\n\n% the values to be filled\nnanId = isnan(ebsd.phaseId);\n\nif check_option(varargin,'extrapolate')\n opt = 'nearest';\nelse\n opt = 'none';\nend\n\nF = scatteredInterpolant([ebsd.prop.x(~nanId),ebsd.prop.y(~nanId)],...\n find(~nanId),'nearest',opt); \n\nnewId = F(ebsd.prop.x(nanId),ebsd.prop.y(nanId));\n\nnanId(nanId) = ~isnan(newId);\nnewId(isnan(newId)) = [];\n\n% interpolate phaseId\nebsd.phaseId(nanId) = ebsd.phaseId(newId);\nebsd.rotations(nanId) = ebsd.rotations(newId);\n \n% interpolate grainId\ntry\n ebsd.prop.grainId(nanId) = ebsd.prop.grainId(newId);\nend\n \ngrains = getClass(varargin,'grain2d',[]);\nif isempty(grains), return; end\n\ngrains = grains(ismember(grains.id,unique(ebsd.grainId)));\n\nnanId = find(nanId);\n\n% check for whether the pixels are within certain grains\nisInside = checkInside(grains,ebsd.subSet(nanId));\n\n% set phase to not indexed if not inside any grain\nebsd.phaseId(nanId(~any(isInside,2))) = 1;\nebsd.grainId(nanId(~any(isInside,2))) = 0;\n\n% the values to be filled\n[ebsdId,hostId] = find(isInside);\n\nwrongGrainId = ebsd.grainId(nanId(ebsdId)) ~= grains.id(hostId);\n\nebsd.phaseId(nanId(ebsdId)) = grains.phaseId(hostId);\nebsd.grainId(nanId(ebsdId)) = grains.id(hostId);\nebsd.rotations(nanId(ebsdId(wrongGrainId))) = grains.meanRotation(hostId(wrongGrainId));\n \nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@EBSD/fill.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.38826011301009206}} {"text": "%GETSTRUCTURINGELEMENT Returns a structuring element of the specified size and shape for morphological operations\n%\n% elem = cv.getStructuringElement('OptionName', optionValue, ...)\n%\n% ## Output\n% * __elem__ Output structuring element of specified shape and size.\n%\n% ## Options\n% * __Shape__ Element shape, default 'Rect'. Could be one of:\n% * __Rect__ a rectangular structuring element: `E(i,j)=1`\n% * __Cross__ a cross-shaped structuring element: `E(i,j)=1` if\n% `i=Anchor(2)` or `j=Anchor(1)`, `E(i,j)=0` otherwise.\n% * __Ellipse__ an elliptic structuring element, that is, a filled ellipse\n% inscribed into the rectangle `[0, 0, KSize(1), KSize(2)]`.\n% * __KSize__ Size of the structuring element `[w,h]`. default [3,3].\n% * __Anchor__ Anchor position within the element. The default value (-1,-1)\n% means that the anchor is at the center. Note that only the shape of a\n% cross-shaped element depends on the anchor position. In other cases the\n% anchor just regulates how much the result of the morphological operation\n% is shifted.\n%\n% The function constructs and returns the structuring element that can be\n% further passed to cv.erode, cv.dilate or cv.morphologyEx. But you can also\n% construct an arbitrary binary mask yourself and use it as the structuring\n% element.\n%\n% See also: cv.sepFilter2D, cv.getDerivKernels, cv.getGaussianKernel\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/getStructuringElement.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6859494678483918, "lm_q1q2_score": 0.38826011301009206}} {"text": "function [PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma, profile, print_to_screen, colorspace)\n%\n% CBM3D is algorithm for attenuation of additive white Gaussian noise from \n% color RGB images. This algorithm reproduces the results from the article:\n%\n% [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, \"Color image\n% denoising via sparse 3D collaborative filtering with grouping constraint in \n% luminance-chrominance space,\" submitted to IEEE Int. Conf. Image Process., \n% January 2007, in review, preprint at http://www.cs.tut.fi/~foi/GCF-BM3D.\n%\n% FUNCTION INTERFACE:\n%\n% [PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma, profile, print_to_screen, colorspace)\n%\n% ! The function can work without any of the input arguments, \n% in which case, the internal default ones are used !\n% \n% BASIC USAGE EXAMPLES:\n%\n% Case 1) Using the default parameters (i.e., image name, sigma, etc.)\n% \n% [PSNR, yRGB_est] = CBM3D;\n% \n% Case 2) Using an external noisy image:\n%\n% % Read an RGB image and scale its intensities in range [0,1]\n% yRGB = im2double(imread('image_House256rgb.png')); \n% % Generate the same seed used in the experimental results of [1]\n% randn('seed', 0);\n% % Standard deviation of the noise --- corresponding to intensity \n% % range [0,255], despite that the input was scaled in [0,1]\n% sigma = 25;\n% % Add the AWGN with zero mean and standard deviation 'sigma'\n% zRGB = yRGB + (sigma/255)*randn(size(yRGB));\n% % Denoise 'zRGB'. The denoised image is 'yRGB_est', and 'NA = 1' \n% % because the true image was not provided\n% [NA, yRGB_est] = CBM3D(1, zRGB, sigma); \n% % Compute the putput PSNR\n% PSNR = 10*log10(1/mean((yRGB(:)-yRGB_est(:)).^2))\n% % show the noisy image 'zRGB' and the denoised 'yRGB_est'\n% figure; imshow(min(max(zRGB,0),1)); \n% figure; imshow(min(max(yRGB_est,0),1));\n% \n% Case 3) If the original image yRGB is provided as the first input \n% argument, then some additional information is printed (PSNRs, \n% figures, etc.). That is, \"[NA, yRGB_est] = BM3D(1, zRGB, sigma);\" in the\n% above code should be replaced with:\n% \n% [PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma);\n% \n% \n% INPUT ARGUMENTS (OPTIONAL):\n% 1) yRGB (M x N x 3): Noise-free RGB image (needed for computing PSNR),\n% replace with the scalar 1 if not available.\n% 2) zRGB (M x N x 3): Noisy RGBimage (intensities in range [0,1] or [0,255])\n% 3) sigma (double) : Std. dev. of the noise (corresponding to intensities\n% in range [0,255] even if the range of zRGB is [0,1])\n% 4) profile (char) : 'np' --> Normal Profile \n% 'lc' --> Fast Profile\n% 5) print_to_screen : 0 --> do not print output information (and do \n% not plot figures)\n% 1 --> print information and plot figures\n% 6) colorspace (char): 'opp' --> use opponent colorspace\n% 'yCbCr' --> use yCbCr colorspace\n%\n% OUTPUTS:\n% 1) PSNR (double) : Output PSNR (dB), only if the original \n% image is available, otherwise PSNR = 0 \n% 2) yRGB_est (M x N x 3): Final RGB estimate (in the range [0,1])\n%\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% Copyright (c) 2007-2011 Tampere University of Technology.\n% All rights reserved.\n% This work should only be used for nonprofit purposes.\n%\n% AUTHORS:\n% Kostadin Dabov, email: dabov _at_ cs.tut.fi\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% In case, there is no input image (zRGB or yRGB), then use the filename \n%%%% below to read an original image (might contain path also). Later, \n%%%% artificial AWGN noise is added and this noisy image is processed \n%%%% by the CBM3D.\n%%%%\nimage_name = [\n% 'kodim12.png'\n 'image_Lena512rgb.png'\n% 'image_House256rgb.png'\n% 'image_Peppers512rgb.png'\n% 'image_Baboon512rgb.png'\n% 'image_F16_512rgb.png'\n ];\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Quality/complexity trade-off \n%%%%\n%%%% 'np' --> Normal Profile (balanced quality)\n%%%% 'lc' --> Low Complexity Profile (fast, lower quality)\n%%%%\n%%%% 'high' --> High Profile (high quality, not documented in [1])\n%%%%\n%%%% 'vn' --> This profile is automatically enabled for high noise \n%%%% when sigma > 40\n%%%%\n%%%% 'vn_old' --> This is the old 'vn' profile that was used in [1].\n%%%% It gives inferior results than 'vn' in most cases. \n%%%%\nif (exist('profile') ~= 1)\n profile = 'np'; %% default profile\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Specify the std. dev. of the corrupting noise\n%%%%\nif (exist('sigma') ~= 1),\n sigma = 50; %% default standard deviation of the AWGN\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Colorspace in which we perform denoising. BM is applied to the first\n%%%% component and the matching information is re-used for the other two.\n%%%%\nif (exist('colorspace') ~= 1),\n colorspace = 'opp'; %%% (valid colorspaces are: 'yCbCr' and 'opp')\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Following are the parameters for the Normal Profile.\n%%%%\n\n%%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'):\ntransform_2D_HT_name = 'bior1.5'; %% transform used for the HT filt. of size N1 x N1\ntransform_2D_Wiener_name = 'dct'; %% transform used for the Wiener filt. of size N1_wiener x N1_wiener\ntransform_3rd_dim_name = 'haar'; %% transform used in the 3-rd dim, the same for HT and Wiener filt.\n\n%%%% Hard-thresholding (HT) parameters:\nN1 = 8; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering\nNstep = 3; %% sliding step to process every next reference block\nN2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array)\nNs = 39; %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd\ntau_match = 3000;%% threshold for the block-distance (d-distance)\nlambda_thr2D = 0; %% threshold parameter for the coarse initial denoising used in the d-distance measure\nlambda_thr3D = 2.7; %% threshold parameter for the hard-thresholding in 3D transform domain\nbeta = 2.0; %% parameter of the 2D Kaiser window used in the reconstruction\n\n%%%% Wiener filtering parameters:\nN1_wiener = 8;\nNstep_wiener = 3;\nN2_wiener = 32;\nNs_wiener = 39;\ntau_match_wiener = 400;\nbeta_wiener = 2.0;\n\n%%%% Block-matching parameters:\nstepFS = 1; %% step that forces to switch to full-search BM, \"1\" implies always full-search\nsmallLN = 'not used in np'; %% if stepFS > 1, then this specifies the size of the small local search neighb.\nstepFSW = 1;\nsmallLNW = 'not used in np';\nthrToIncStep = 8; %% used in the HT filtering to increase the sliding step in uniform regions\n\nif strcmp(profile, 'lc') == 1,\n\n Nstep = 6;\n Ns = 25;\n Nstep_wiener = 5;\n N2_wiener = 16;\n Ns_wiener = 25;\n\n thrToIncStep = 3;\n smallLN = 3;\n stepFS = 6*Nstep;\n smallLNW = 2;\n stepFSW = 5*Nstep_wiener;\n\nend\n\n% Profile 'vn' was proposed in \n% Y. Hou, C. Zhao, D. Yang, and Y. Cheng, 'Comment on \"Image Denoising by Sparse 3D Transform-Domain\n% Collaborative Filtering\"', accepted for publication, IEEE Trans. on Image Processing, July, 2010.\n% as a better alternative to that initially proposed in [1] (which is currently in profile 'vn_old')\nif (strcmp(profile, 'vn') == 1) | (sigma > 40),\n\n N2 = 32;\n Nstep = 4;\n \n N1_wiener = 11;\n Nstep_wiener = 6;\n\n lambda_thr3D = 2.8;\n thrToIncStep = 3;\n tau_match_wiener = 3500;\n tau_match = 25000;\n \n Ns_wiener = 39;\n \nend\n\n% The 'vn_old' profile corresponds to the original parameters for strong noise proposed in [1].\nif (strcmp(profile, 'vn_old') == 1) & (sigma > 40),\n\n transform_2D_HT_name = 'dct'; \n \n N1 = 12;\n Nstep = 4;\n \n N1_wiener = 11;\n Nstep_wiener = 6;\n\n lambda_thr3D = 2.8;\n lambda_thr2D = 2.0;\n thrToIncStep = 3;\n tau_match_wiener = 3500;\n tau_match = 5000;\n \n Ns_wiener = 39;\n \nend\n\n\ndecLevel = 0; %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number)\nthr_mask = ones(N1); %% N1xN1 mask of threshold scaling coeff. --- by default there is no scaling, however the use of different thresholds for different wavelet decompoistion subbands can be done with this matrix\n\nif strcmp(profile, 'high') == 1,\n \n decLevel = 1; \n Nstep = 2;\n Nstep_wiener = 2;\n lambda_thr3D = 2.5;\n vMask = ones(N1,1); vMask((end/4+1):end/2)= 1.01; vMask((end/2+1):end) = 1.07; %% this allows to have different threhsolds for the finest and next-to-the-finest subbands\n thr_mask = vMask * vMask'; \n beta = 2.5;\n beta_wiener = 1.5;\n \nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Note: touch below this point only if you know what you are doing!\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n%%% Check whether to dump information to the screen or reamin silent\ndump_output_information = 1;\nif (exist('print_to_screen') == 1) & (print_to_screen == 0),\n dump_output_information = 0;\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Create transform matrices, etc.\n%%%%\n[Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, decLevel); %% get (normalized) forward and inverse transform matrices\n[TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name); %% get (normalized) forward and inverse transform matrices\n\nif (strcmp(transform_3rd_dim_name, 'haar') == 1) | (strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1),\n %%% If Haar is used in the 3-rd dimension, then a fast internal transform is used, thus no need to generate transform\n %%% matrices.\n hadper_trans_single_den = {};\n inverse_hadper_trans_single_den = {};\nelse\n %%% Create transform matrices. The transforms are later applied by\n %%% matrix-vector multiplication for the 1D case.\n for hpow = 0:ceil(log2(max(N2,N2_wiener))),\n h = 2^hpow;\n [Tfor3rd, Tinv3rd] = getTransfMatrix(h, transform_3rd_dim_name, 0);\n hadper_trans_single_den{h} = single(Tfor3rd);\n inverse_hadper_trans_single_den{h} = single(Tinv3rd');\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% 2D Kaiser windows used in the aggregation of block-wise estimates\n%%%%\nif beta_wiener==2 & beta==2 & N1_wiener==8 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default\n Wwin2D = [ 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924;\n 0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;\n 0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;\n 0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;\n 0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;\n 0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;\n 0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;\n 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924];\n Wwin2D_wiener = Wwin2D;\nelse\n Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part\n Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the aggregation of the Wiener filt. part\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% If needed, read images, generate noise, or scale the images to the \n%%%% [0,1] interval\n%%%%\nif (exist('yRGB') ~= 1) | (exist('zRGB') ~= 1)\n yRGB = im2double(imread(image_name)); %% read a noise-free image\n randn('seed', 0); %% generate seed\n zRGB = yRGB + (sigma/255)*randn(size(yRGB)); %% create a noisy image\nelse % external images\n image_name = 'External image';\n \n % convert zRGB to double precision\n zRGB = double(zRGB);\n\n % convert yRGB to double precision\n yRGB = double(yRGB);\n \n % if zRGB's range is [0, 255], then convert to [0, 1]\n if (max(zRGB(:)) > 10), % a naive check for intensity range\n zRGB = zRGB / 255;\n end\n \n % if yRGB's range is [0, 255], then convert to [0, 1]\n if (max(yRGB(:)) > 10), % a naive check for intensity range\n yRGB = yRGB / 255;\n end \nend\n\n\nif (size(zRGB,3) ~= 3) | (size(zRGB,4) ~= 1),\n error('CBM3D accepts only input RGB images (i.e. matrices of size M x N x 3).');\nend\n\n% Check if the true image yRGB is a valid one; if not, then we cannot compute PSNR, etc.\nyRGB_is_invalid_image = (length(size(zRGB)) ~= length(size(yRGB))) | (size(zRGB,1) ~= size(yRGB,1)) | (size(zRGB,2) ~= size(yRGB,2)) | (size(zRGB,3) ~= size(yRGB,3));\nif (yRGB_is_invalid_image),\n dump_output_information = 0;\nend\n\n\n[Xv, Xh, numSlices] = size(zRGB); %%% obtain image sizes\n\nif numSlices ~= 3\n fprintf('Error, an RGB color image is required!\\n');\n return;\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Change colorspace, compute the l2-norms of the new color channels\n%%%%\n[zColSpace l2normLumChrom] = function_rgb2LumChrom(zRGB, colorspace);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Print image information to the screen\n%%%%\nif dump_output_information == 1,\n fprintf(sprintf('Image: %s (%dx%dx%d), sigma: %.1f\\n', image_name, Xv, Xh, numSlices, sigma));\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Step 1. Basic estimate by collaborative hard-thresholding and using\n%%%% the grouping constraint on the chrominances.\n%%%%\ntic;\ny_hat = bm3d_thr_color(zColSpace, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,...\n lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, sigma/255, thrToIncStep, single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(thr_mask), 'unused arg', 'unused arg', l2normLumChrom, Wwin2D, smallLN, stepFS );\nestimate_elapsed_time = toc;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Step 2. Final estimate by collaborative Wiener filtering and using\n%%%% the grouping constraint on the chrominances.\n%%%%\ntic;\nyRGB_est = bm3d_wiener_color(zColSpace, y_hat, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ...\n 'unused_arg', tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, sigma/255, 'unused arg', single(TforW), single(TinvW)', inverse_hadper_trans_single_den, 'unused arg', 'unused arg', l2normLumChrom, Wwin2D_wiener, smallLNW, stepFSW );\nwiener_elapsed_time = toc;\n\nyRGB_est = double(yRGB_est);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Convert back to RGB colorspace\n%%%%\nyRGB_est = function_LumChrom2rgb(yRGB_est, colorspace);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% Calculate final estimate's PSNR and ISNR, print them, and show the\n%%%% denoised image\n%%%%\nPSNR = 0; %% Remains 0 if the true image yRGB is not available\nif (~yRGB_is_invalid_image), % then we assume yRGB is a valid image\n PSNR = 10*log10(1/mean((yRGB(:)-yRGB_est(:)).^2));\nend\n\nif dump_output_information == 1,\n fprintf(sprintf('FINAL ESTIMATE (total time: %.1f sec), PSNR: %.2f dB\\n', ...\n wiener_elapsed_time + estimate_elapsed_time, PSNR));\n\n figure, imshow(min(max(zRGB,0),1)); title(sprintf('Noisy %s, PSNR: %.3f dB (sigma: %d)', ...\n image_name(1:end-4), 10*log10(1/mean((yRGB(:)-zRGB(:)).^2)), sigma));\n\n figure, imshow(min(max(yRGB_est,0),1)); title(sprintf('Denoised %s, PSNR: %.3f dB', ...\n image_name(1:end-4), PSNR));\nend\n\nreturn;\n\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Some auxiliary functions\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n\n\nfunction [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)\n%\n% Create forward and inverse transform matrices, which allow for perfect\n% reconstruction. The forward transform matrix is normalized so that the \n% l2-norm of each basis element is 1.\n%\n% [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)\n%\n% INPUTS:\n%\n% N --> Size of the transform (for wavelets, must be 2^K)\n%\n% transform_type --> 'dct', 'dst', 'hadamard', or anything that is \n% listed by 'help wfilters' (bi-orthogonal wavelets)\n% 'DCrand' -- an orthonormal transform with a DC and all\n% the other basis elements of random nature\n%\n% dec_levels --> If a wavelet transform is generated, this is the\n% desired decomposition level. Must be in the\n% range [0, log2(N)-1], where \"0\" implies\n% full decomposition.\n%\n% OUTPUTS:\n%\n% Tforward --> (N x N) Forward transform matrix\n%\n% Tinverse --> (N x N) Inverse transform matrix\n%\n\nif exist('dec_levels') ~= 1,\n dec_levels = 0;\nend\n\nif N == 1,\n Tforward = 1;\nelseif strcmp(transform_type, 'hadamard') == 1,\n Tforward = hadamard(N);\nelseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it\n Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274;\n 0.219417649252501 0.449283757993216 0.449283757993216 0.219417649252501 -0.219417649252501 -0.449283757993216 -0.449283757993216 -0.219417649252501;\n 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846 -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284;\n -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846;\n 0.707106781186547 -0.707106781186547 0 0 0 0 0 0;\n 0 0 0.707106781186547 -0.707106781186547 0 0 0 0;\n 0 0 0 0 0.707106781186547 -0.707106781186547 0 0;\n 0 0 0 0 0 0 0.707106781186547 -0.707106781186547]; \nelseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it\n Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274;\n 0.490392640201615 0.415734806151273 0.277785116509801 0.097545161008064 -0.097545161008064 -0.277785116509801 -0.415734806151273 -0.490392640201615;\n 0.461939766255643 0.191341716182545 -0.191341716182545 -0.461939766255643 -0.461939766255643 -0.191341716182545 0.191341716182545 0.461939766255643;\n 0.415734806151273 -0.097545161008064 -0.490392640201615 -0.277785116509801 0.277785116509801 0.490392640201615 0.097545161008064 -0.415734806151273;\n 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274;\n 0.277785116509801 -0.490392640201615 0.097545161008064 0.415734806151273 -0.415734806151273 -0.097545161008064 0.490392640201615 -0.277785116509801;\n 0.191341716182545 -0.461939766255643 0.461939766255643 -0.191341716182545 -0.191341716182545 0.461939766255643 -0.461939766255643 0.191341716182545;\n 0.097545161008064 -0.277785116509801 0.415734806151273 -0.490392640201615 0.490392640201615 -0.415734806151273 0.277785116509801 -0.097545161008064];\nelseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it\n Tforward = [ 0.161229841765317 0.303012985114696 0.408248290463863 0.464242826880013 0.464242826880013 0.408248290463863 0.303012985114696 0.161229841765317;\n 0.303012985114696 0.464242826880013 0.408248290463863 0.161229841765317 -0.161229841765317 -0.408248290463863 -0.464242826880013 -0.303012985114696;\n 0.408248290463863 0.408248290463863 0 -0.408248290463863 -0.408248290463863 0 0.408248290463863 0.408248290463863;\n 0.464242826880013 0.161229841765317 -0.408248290463863 -0.303012985114696 0.303012985114696 0.408248290463863 -0.161229841765317 -0.464242826880013;\n 0.464242826880013 -0.161229841765317 -0.408248290463863 0.303012985114696 0.303012985114696 -0.408248290463863 -0.161229841765317 0.464242826880013;\n 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863;\n 0.303012985114696 -0.464242826880013 0.408248290463863 -0.161229841765317 -0.161229841765317 0.408248290463863 -0.464242826880013 0.303012985114696;\n 0.161229841765317 -0.303012985114696 0.408248290463863 -0.464242826880013 0.464242826880013 -0.408248290463863 0.303012985114696 -0.161229841765317];\nelseif strcmp(transform_type, 'dct') == 1,\n Tforward = dct(eye(N));\nelseif strcmp(transform_type, 'dst') == 1,\n Tforward = dst(eye(N));\nelseif strcmp(transform_type, 'DCrand') == 1,\n x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x); \n if (Q(1) < 0), \n Q = -Q; \n end;\n Tforward = Q';\nelse %% a wavelet decomposition supported by 'wavedec'\n %%% Set periodic boundary conditions, to preserve bi-orthogonality\n dwtmode('per','nodisp'); \n \n Tforward = zeros(N,N);\n for i = 1:N\n Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type); %% construct transform matrix\n end\nend\n\n%%% Normalize the basis elements\nTforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))'; \n\n%%% Compute the inverse transform matrix\nTinverse = inv(Tforward);\n\nreturn;\n\nfunction [y, A, l2normLumChrom]=function_rgb2LumChrom(xRGB, colormode)\n% Forward color-space transformation ( inverse transformation is function_LumChrom2rgb.m )\n%\n% Alessandro Foi - Tampere University of Technology - 2005 - 2006 Public release v1.03 (March 2006)\n% -----------------------------------------------------------------------------------------------------------------------------------------------\n%\n% SYNTAX:\n%\n% [y A l2normLumChrom] = function_rgb2LumChrom(xRGB, colormode);\n%\n% INPUTS:\n% xRGB is RGB image with range [0 1]^3\n%\n% colormode = 'opp', 'yCbCr', 'pca', or a custom 3x3 matrix\n%\n% 'opp' Opponent color space ('opp' is equirange version)\n% 'yCbCr' The standard yCbCr (e.g. for JPEG images)\n% 'pca' Principal components (note that this transformation is renormalized to be equirange) \n%\n% OUTPUTS:\n% y is color-transformed image (with range typically included in or equal to [0 1]^3, depending on the transformation matrix)\n%\n% l2normLumChrom (optional) l2-norm of the transformation (useful for noise std calculation)\n% A transformation matrix (used necessarily if colormode='pca')\n%\n% NOTES: - If only two outputs are used, then the second output is l2normLumChrom, unless colormode='pca';\n% - 'opp' is used by default if no colormode is specified.\n%\n%\n% USAGE EXAMPLE FOR PCA TRANSFORMATION:\n% %%%% -- forward color transformation --\n% if colormode=='pca'\n% [zLumChrom colormode] = function_rgb2LumChrom(zRGB,colormode); % 'colormode' is assigned a 3x3 transform matrix\n% else\n% zLumChrom = function_rgb2LumChrom(zRGB,colormode);\n% end\n%\n% %%%% [ ... ] Some processing [ ... ]\n%\n% %%%% -- inverse color transformation --\n% zRGB=function_LumChrom2rgb(zLumChrom,colormode);\n%\n\nif nargin==1\n colormode='opp';\nend\nchange_output=0;\nif size(colormode)==[3 3]\n A=colormode;\n l2normLumChrom=sqrt(sum(A.^2,2));\nelse\n if strcmp(colormode,'opp')\n A=[1/3 1/3 1/3; 0.5 0 -0.5; 0.25 -0.5 0.25];\n end\n if strcmp(colormode,'yCbCr')\n A=[0.299 0.587 0.114; -0.16873660714285 -0.33126339285715 0.5; 0.5 -0.4186875 -0.0813125];\n end\n if strcmp(colormode,'pca')\n A=princomp(reshape(xRGB,[size(xRGB,1)*size(xRGB,2) 3]))';\n A=A./repmat(sum(A.*(A>0),2)-sum(A.*(A<0),2),[1 3]); %% ranges are normalized to unitary length;\n else\n if nargout==2\n change_output=1;\n end\n end\nend\n\n%%%% Make sure that each channel's intensity range is [0,1]\nmaxV = sum(A.*(A>0),2);\nminV = sum(A.*(A<0),2);\nyNormal = (reshape(xRGB,[size(xRGB,1)*size(xRGB,2) 3]) * A' - repmat(minV, [1 size(xRGB,1)*size(xRGB,2)])') * diag(1./(maxV-minV)); % put in range [0,1]\ny = reshape(yNormal, [size(xRGB,1) size(xRGB,2) 3]);\n\n%%%% The l2-norm of each of the 3 transform basis elements \nl2normLumChrom = diag(1./(maxV-minV))*sqrt(sum(A.^2,2));\n\nif change_output\n A=l2normLumChrom;\nend\n\nreturn;\n\n\n\n\nfunction yRGB=function_LumChrom2rgb(x,colormode)\n% Inverse color-space transformation ( forward transformation is function_rgb2LumChrom.m )\n%\n% Alessandro Foi - Tampere University of Technology - 2005 - 2006 Public release v1.03 (March 2006)\n% -----------------------------------------------------------------------------------------------------------------------------------------------\n%\n% SYNTAX:\n%\n% yRGB = function_LumChrom2rgb(x,colormode);\n%\n% INPUTS:\n% x is color-transformed image (with range typically included in or equal to [0 1]^3, depending on the transformation matrix)\n%\n% colormode = 'opp', 'yCbCr', or a custom 3x3 matrix (e.g. provided by the forward transform when 'pca' is selected)\n%\n% 'opp' opponent color space ('opp' is equirange version)\n% 'yCbCr' standard yCbCr (e.g. for JPEG images)\n%\n% OUTPUTS:\n% x is RGB image (with range [0 1]^3)\n%\n%\n% NOTE: 'opp' is used by default if no colormode is specified\n%\n\nif nargin==1\n colormode='opp';\nend\nif size(colormode)==[3 3]\n A=colormode;\n B=inv(A);\nelse\n if strcmp(colormode,'opp')\n A =[1/3 1/3 1/3; 0.5 0 -0.5; 0.25 -0.5 0.25];\n B =[1 1 2/3;1 0 -4/3;1 -1 2/3];\n end\n if strcmp(colormode,'yCbCr')\n A=[0.299 0.587 0.114; -0.16873660714285 -0.33126339285715 0.5; 0.5 -0.4186875 -0.0813125];\n B=inv(A);\n end\nend\n\n%%%% Make sure that each channel's intensity range is [0,1]\nmaxV = sum(A.*(A>0),2);\nminV = sum(A.*(A<0),2);\nxNormal = reshape(x,[size(x,1)*size(x,2) 3]) * diag(maxV-minV) + repmat(minV, [1 size(x,1)*size(x,2)])'; % put in range [0,1]\nyRGB = reshape(xNormal * B', [ size(x,1) size(x,2) 3]);\n\nreturn;\n\n", "meta": {"author": "xialeiliu", "repo": "RankIQA", "sha": "22ca65cd0156b5b428cecd55ed939366fb64d2e5", "save_path": "github-repos/MATLAB/xialeiliu-RankIQA", "path": "github-repos/MATLAB/xialeiliu-RankIQA/RankIQA-22ca65cd0156b5b428cecd55ed939366fb64d2e5/data/rank_tid2013/BM3D/CBM3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3882601057423013}} {"text": "% SELECT.M (universal SELECTion)\n%\n% This function performs universal selection. The function handles\n% multiple populations and calls the low level selection function\n% for the actual selection process.\n\n%\n% Syntax: SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)\n%\n% Input parameters:\n% SEL_F - Name of the selection function\n% Chrom - Matrix containing the individuals (parents) of the current\n% population. Each row corresponds to one individual.\n% FitnV - Column vector containing the fitness values of the\n% individuals in the population.\n% GGAP - (optional) Rate of individuals to be selected\n% if omitted 1.0 is assumed\n% SUBPOP - (optional) Number of subpopulations\n% if omitted 1 subpopulation is assumed\n%\n% Output parameters:\n% SelCh - Matrix containing the selected individuals.\n\n% Author: Hartmut Pohlheim\n% History: 10.03.94 file created\n\nfunction SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP);\n\n% Check parameter consistency\n if nargin < 3, error('Not enough input parameter'); end\n\n % Identify the population size (Nind)\n [NindCh,Nvar] = size(Chrom);\n [NindF,VarF] = size(FitnV);\n if NindCh ~= NindF, error('Chrom and FitnV disagree'); end\n if VarF ~= 1, error('FitnV must be a column vector'); end\n \n if nargin < 5, SUBPOP = 1; end\n if nargin > 4,\n if isempty(SUBPOP), SUBPOP = 1;\n elseif isnan(SUBPOP), SUBPOP = 1;\n elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end\n end\n\n if (NindCh/SUBPOP) ~= fix(NindCh/SUBPOP), error('Chrom and SUBPOP disagree'); end\n Nind = NindCh/SUBPOP; % Compute number of individuals per subpopulation\n\n if nargin < 4, GGAP = 1; end\n if nargin > 3,\n if isempty(GGAP), GGAP = 1;\n elseif isnan(GGAP), GGAP = 1;\n elseif length(GGAP) ~= 1, error('GGAP must be a scalar');\n elseif (GGAP < 0), error('GGAP must be a scalar bigger than 0'); end\n end\n\n% Compute number of new individuals (to select)\n NSel=max(floor(Nind*GGAP+.5),2);\n\n% Select individuals from population\n SelCh = [];\n for irun = 1:SUBPOP,\n FitnVSub = FitnV((irun-1)*Nind+1:irun*Nind);\n ChrIx=feval(SEL_F, FitnVSub, NSel)+(irun-1)*Nind;\n SelCh=[SelCh; Chrom(ChrIx,:)];\n end\n \n\n% End of function\n\u001a", "meta": {"author": "vonsylvia", "repo": "MATLAB_Algorithm_with_cases", "sha": "646e51a377568889f48b8fdebbc44f0a2514048a", "save_path": "github-repos/MATLAB/vonsylvia-MATLAB_Algorithm_with_cases", "path": "github-repos/MATLAB/vonsylvia-MATLAB_Algorithm_with_cases/MATLAB_Algorithm_with_cases-646e51a377568889f48b8fdebbc44f0a2514048a/\u652f\u6301\u5411\u91cf\u673a\u5206\u7c7b\u2014\u2014\u57fa\u4e8e\u4e73\u817a\u7ec4\u7ec7\u7535\u963b\u6297\u7279\u6027\u7684\u4e73\u817a\u764c\u8bca\u65ad/libsvm-mat-2[1].89-3[FarutoUltimate3.0Mcode]/implement[by faruto]/myprivate/gatbx[Sheffield]/select.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3882601057423012}} {"text": "function b = rhs(disc, f)\n%RHS Discretize the right-hand side of a linear system for ULTRAS.\n% B = RHS(DISC, F) returns a discrete version, B, of the function (or\n% chebmatrix) F, as defined by the discretization DISC.\n%\n% See also MATRIX, REDUCE.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Developers note: This method works as follows. \n% The original function(s) are discretized, then reduced in dimension the same\n% way as the operator. The constraints are prepended to the top of the vector.\n\n% Create an ULTRAS object from the CHEBMATRIX F:\nfDisc = ultraS(f, disc.dimension, disc.domain);\nfDisc.outputSpace = disc.outputSpace;\n\n% Instantiate (discretize) the ULTRAS discretisation.\nb = cell2mat(instantiate(fDisc));\n\n% Developer note:\n% The continuity conditions go above the constraints. See getConstraints().\n\n% Prepend the values of the constraints and continuity conditions.\nL = disc.source;\nif ( ~isempty(L.constraint) )\n b = [ L.constraint.values ; b ];\nend\nif ( ~isempty(L.continuity) )\n b = [ L.continuity.values ; b ];\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@ultraS/rhs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.38826009847451026}} {"text": "function [dStates, contactForces] = dynamics_singleStanceOne(States, Actuators, Parameters)\n% function [dStates, Actuators] = dynamics_singleStanceOne(States, Actuators, Parameters)\n%\n% Computer Generated File -- DO NOT EDIT \n%\n% This function was created by the function Write_ContinuousDynamics()\n% 10-Dec-2013 19:40:47\n%\n% Dymanics Model: retractable double pendulum biped\n% Motion Phase: Single Stance One\n%\n% Matthew Kelly \n% Cornell University \n% \n\nx = States(1,:); % (m) Foot One horizontal position\ny = States(2,:); % (m) Foot One vertical position\nth1 = States(3,:); % (rad) Leg One absolute angle\nth2 = States(4,:); % (rad) Leg Two absolute angle\nL1 = States(5,:); % (m) Leg One length\nL2 = States(6,:); % (m) Leg Two length\ndx = States(7,:); % (m/s) Foot One horizontal velocity\ndy = States(8,:); % (m/s) Foot One vertical velocity\ndth1 = States(9,:); % (rad/s) Leg One absolute angular rate\ndth2 = States(10,:); % (rad/s) Leg Two absolute angular rate\ndL1 = States(11,:); % (m/s) Leg One extension rate\ndL2 = States(12,:); % (m/s) Leg Two extensioin rate\n\nF1 = Actuators(1,:); % (N) Compresive axial force in Leg One\nF2 = Actuators(2,:); % (N) Compresive axial force in Leg Two\nT1 = Actuators(3,:); % (Nm) External torque applied to Leg One\nT2 = 0; %Foot Two not in contact with ground!\nThip = Actuators(5,:); % (Nm) Torque acting on Leg Two from Leg One\n\nm1 = Parameters.m1; % (kg) Foot One mass\nm2 = Parameters.m2; % (kg) Foot Two mass\nM = Parameters.M; % (kg) Hip mass\ng = Parameters.g; % (m/s^2) Gravity\n\n% Constraints for this phase: \nddx = 0; %(m) Foot One horizontal position\nddy = 0; %(m) Foot One vertical position\nH2 = 0; %(N) Foot Two, horizontal contact force\nV2 = 0; %(N) Foot Two, vertical contact force\n\ndStates = zeros(size(States));\ndStates(1:6,:) = States((1+6):(6+6),:);\ndStates(7,:) = zeros(1,size(States,2));\ndStates(8,:) = zeros(1,size(States,2));\ndStates(9,:) = -(L2.*Thip - L2.*T1 + L1.*T2.*cos(th1 - th2) + L1.*Thip.*cos(th1 - th2) - F2.*L1.*L2.*sin(th1 - th2) + 2.*L1.*L2.*M.*dL1.*dth1 + L1.*L2.*M.*ddy.*cos(th1) + L1.*L2.*M.*g.*cos(th1) - L1.*L2.*M.*ddx.*sin(th1))./(L1.^2.*L2.*M);\ndStates(10,:) = (L1.*M.*T2 + L1.*M.*Thip - L2.*T1.*m2.*cos(th1 - th2) + L2.*Thip.*m2.*cos(th1 - th2) + L1.*T2.*m2.*cos(th1 - th2).^2 + L1.*Thip.*m2.*cos(th1 - th2).^2 + L1.*T2.*m2.*sin(th1 - th2).^2 + L1.*Thip.*m2.*sin(th1 - th2).^2 + L1.*L2.*M.*V2.*cos(th2) - H2.*L1.*L2.*M.*sin(th2) - F1.*L1.*L2.*m2.*sin(th1 - th2) - 2.*L1.*L2.*M.*dL2.*dth2.*m2 - L1.*L2.*M.*ddy.*m2.*cos(th2) - L1.*L2.*M.*g.*m2.*cos(th2) + L1.*L2.*M.*ddx.*m2.*sin(th2) - L1.*L2.*M.*ddx.*m2.*cos(th1 - th2).*sin(th1) + L1.*L2.*M.*ddx.*m2.*sin(th1 - th2).*cos(th1) + L1.*L2.*M.*ddy.*m2.*sin(th1 - th2).*sin(th1) + L1.*L2.*M.*g.*m2.*sin(th1 - th2).*sin(th1) + L1.*L2.*M.*ddy.*m2.*cos(th1 - th2).*cos(th1) + L1.*L2.*M.*g.*m2.*cos(th1 - th2).*cos(th1))./(L1.*L2.^2.*M.*m2);\ndStates(11,:) = -(T2.*sin(th1 - th2) + Thip.*sin(th1 - th2) - F1.*L2 + F2.*L2.*cos(th1 - th2) - L1.*L2.*M.*dth1.^2 + L2.*M.*ddx.*cos(th1) + L2.*M.*ddy.*sin(th1) + L2.*M.*g.*sin(th1))./(L2.*M);\ndStates(12,:) = (T1.*m2.*sin(th1 - th2) - Thip.*m2.*sin(th1 - th2) + F2.*L1.*M + H2.*L1.*M.*cos(th2) + L1.*M.*V2.*sin(th2) - F1.*L1.*m2.*cos(th1 - th2) + F2.*L1.*m2.*cos(th1 - th2).^2 + F2.*L1.*m2.*sin(th1 - th2).^2 + L1.*L2.*M.*dth2.^2.*m2 - L1.*M.*ddx.*m2.*cos(th2) - L1.*M.*ddy.*m2.*sin(th2) - L1.*M.*g.*m2.*sin(th2) + L1.*M.*ddx.*m2.*cos(th1 - th2).*cos(th1) + L1.*M.*ddy.*m2.*cos(th1 - th2).*sin(th1) - L1.*M.*ddy.*m2.*sin(th1 - th2).*cos(th1) + L1.*M.*g.*m2.*cos(th1 - th2).*sin(th1) - L1.*M.*g.*m2.*sin(th1 - th2).*cos(th1) + L1.*M.*ddx.*m2.*sin(th1 - th2).*sin(th1))./(L1.*M.*m2);\n\n% contactForces(1,:) == H1 == (N) Foot One, horizontal contact force\n% contactForces(2,:) == V1 == (N) Foot One, vertical contact force\n% contactForces(3,:) == H2 == (N) Foot Two, horizontal contact force\n% contactForces(4,:) == V2 == (N) Foot Two, vertical contact force\ncontactForces = zeros(4,size(States,2));\ncontactForces(1,:) = (Thip.*sin(th1) - T1.*sin(th1) + L1.*ddx.*m1 + F1.*L1.*cos(th1))./L1;\ncontactForces(2,:) = (T1.*cos(th1) - Thip.*cos(th1) + L1.*ddy.*m1 + L1.*g.*m1 + F1.*L1.*sin(th1))./L1;\ncontactForces(3,:) = zeros(1,size(States,2));\ncontactForces(4,:) = zeros(1,size(States,2));\n\nend\n", "meta": {"author": "MatthewPeterKelly", "repo": "dscTutorials", "sha": "e1e97a9be03ec146f88bd6ddd9e06db7ee52e242", "save_path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials", "path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials/dscTutorials-e1e97a9be03ec146f88bd6ddd9e06db7ee52e242/FancyDoublePendulum/Polar/computerGeneratedCode/dynamics_singleStanceOne.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8080672135527632, "lm_q2_score": 0.4804786780479071, "lm_q1q2_score": 0.3882590665416875}} {"text": "function test_suite=test_moxunit_fieldtrip_util_parse_walltime\n% # For MOxUnit_fieldtrip's copyright information and license terms, #\n% # see the COPYING file distributed with MOxUnit_fieldtrip. #\n\n try % assignment of 'localfunctions' is necessary in Matlab >= 2016\n test_functions=localfunctions();\n catch % no problem; early Matlab versions can use initTestSuite fine\n end\n initTestSuite;\n\nfunction varargout=randint(mx)\n n=nargout;\n varargout=arrayfun(@(unused)ceil(rand()*mx),1:n,'UniformOutput',false);\n\nfunction assert_output(input, expected_output)\n output=moxunit_fieldtrip_util_parse_walltime(input);\n assertEqual(output,expected_output);\n\nfunction test_fieldtrip_util_parse_walltime\n % seconds\n many_ss=randint(1000);\n assert_output(sprintf('%d',many_ss),...\n many_ss);\n\n % hours, minutes, seconds\n [hh,mm,ss]=randint(60);\n assert_output(sprintf('%02d:%02d:%02d',hh,mm,ss),...\n (hh*60+mm)*60+ss);\n\n % not a number\n [hh,mm,ss]=randint(60);\n assert_output('foo',[]);\n\n % should deal with comments after\n assert_output(' 3 % comment',3);\n\n\n\nfunction test_fieldtrip_util_parse_walltime_exceptions\n aet=@(varargin)assertExceptionThrown(@()...\n moxunit_fieldtrip_util_parse_walltime(varargin{:}),'');\n % inputs that are not string throw an exception\n aet(struct)\n aet([1 2])\n aet(1);\n\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/contrib/MOxUnit_fieldtrip/tests/test_moxunit_fieldtrip_util_parse_walltime.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947425132315, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.38813424037311295}} {"text": "function plotIPDF(ori,varargin)\n% plot orientations into inverse pole figures\n%\n% Syntax\n% plotIPDF(ori,[r1,r2,r3])\n% plotIPDF(ori,[r1,r2,r3],'points',100)\n% plotIPDF(ori,[r1,r2,r3],'points','all')\n% plotIPDF(ori,[r1,r2,r3],'contourf')\n% plotIPDF(ori,[r1,r2,r3],'antipodal')\n% plotIPDF(ori,data,[r1,r2,r3])\n%\n% Input\n% ebsd - @EBSD\n% r - @vector3d specimen directions\n%\n% Options\n% RESOLUTION - resolution of the plots\n% property - user defined colorcoding\n% MarkerSize -\n% MarkerFaceColor -\n% MarkerEdgeColor -\n%\n% Flags\n% antipodal - include \n% complete - ignore fundamental region\n% upper - restrict to upper hemisphere\n% lower - restrict to lower hemisphere\n% filled - fill the marker with current color\n%\n% See also\n% S2Grid/plot savefigure Plotting Annotations_demo ColorCoding_demo PlotTypes_demo\n% SphericalProjection_demo\n\n[mtexFig,isNew] = newMtexFigure('datacursormode',@tooltip,varargin{:});\n\n% maybe we should call this function with the option add2all\nif ~isNew && ~check_option(varargin,'parent') && ...\n ((((ishold(mtexFig.gca) && nargin > 1 && isa(varargin{1},'vector3d') && length(varargin{1})>1))) || check_option(varargin,'add2all'))\n plot(ori,varargin{:},'add2all');\n return\nend\n\n% extract data\nif check_option(varargin,'property')\n data = get_option(varargin,'property');\n data = reshape(data,[1,length(ori) numel(data)/length(ori)]);\nelseif nargin > 1 && ~isa(varargin{1},'vector3d')\n [data,varargin] = extract_data(length(ori),varargin);\n data = reshape(data,[1,length(ori) numel(data)/length(ori)]);\nelse\n data = [];\nend\n\n% find inverse pole figure direction\nr = [];\ntry r = getappdata(mtexFig.currentAxes,'inversePoleFigureDirection'); end\nif isempty(r), r = varargin{1}; end\nargin_check(r,'vector3d');\n\n% subsample if needed\nif (length(ori)*numSym(ori.CS)*numSym(ori.SS) > 100000 || check_option(varargin,'points')) ...\n && ~check_option(varargin,{'all','contourf','smooth','contour','pcolor'})\n\n points = fix(get_option(varargin,'points',100000/numSym(ori.CS)/numSym(ori.SS)));\n disp([' I''m plotting ', int2str(points) ,' random orientations out of ', int2str(length(ori)),' given orientations']);\n\n samples = discretesample(length(ori),points);\n ori = ori.subSet(samples);\n if ~isempty(data), data = data(:,samples,:); end\n\nend\n\nfor ir = 1:length(r)\n\n if ir>1, mtexFig.nextAxis; end\n\n % the crystal directions\n rSym = symmetrise(r(ir),ori.SS);\n h = ori(:) \\ rSym;\n\n % plot\n [~,cax] = h.plot(repmat(data,1,length(rSym)),'symmetrised',...\n 'fundamentalRegion','doNotDraw',varargin{:});\n if isNew, mtexTitle(cax(1),char(r(ir),'LaTeX')); end\n\n % plot annotations\n setappdata(cax,'inversePoleFigureDirection',r(ir));\n set(cax,'tag','ipdf');\n setappdata(cax,'CS',ori.CS);\n setappdata(cax,'SS',ori.SS);\n\n % TODO: unifyMarkerSize\n\nend\n\nif isNew || check_option(varargin,'figSize')\n mtexFig.drawNow('figSize',getMTEXpref('figSize'),varargin{:});\nend\n\n% --------------- Tooltip function ------------------\nfunction txt = tooltip(varargin)\n\n [r_local,id,value] = getDataCursorPos(mtexFig,length(ori));\n\n %id = (id-1)/\n\n h_local = round(Miller(r_local,ori.CS));\n\n txt{1} = ['id = ' xnum2str(id)];\n txt{2} = ['(h,k,l) = ' char(h_local,'tolerance',3*degree,'commasep')];\n txt{3} = ['Euler = ' char(ori.subSet(id))];\n if ~isempty(value)\n txt{4} = ['value = ' xnum2str(value)];\n end\n\nend\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@orientation/plotIPDF.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947425132314, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3881342403731129}} {"text": "function H = cconvmtx2(h)\n\n[block_size, num_blocks] = size(h);\nnum_elem = block_size*num_blocks;\n\nH1 = spalloc(num_elem, block_size, block_size*nnz(h));\nH = spalloc(num_elem, num_elem, num_elem*nnz(h));\n\n% create the first n columns\nfor col = 1:block_size\n H1(:,col) = reshape(circshift(h, [col-1 0]), num_elem, 1);\nend\n\n% construct all blocks in H\nfor block = 1:num_blocks\n H(:,block_size*(block-1)+1:block_size*block) = circshift(H1, [(block-1)*block_size 0]);\nend\nend\n", "meta": {"author": "flyers", "repo": "drone-tracking", "sha": "c42e1833acfb858ac8f4ec69fa04ab02ac4c19ad", "save_path": "github-repos/MATLAB/flyers-drone-tracking", "path": "github-repos/MATLAB/flyers-drone-tracking/drone-tracking-c42e1833acfb858ac8f4ec69fa04ab02ac4c19ad/trackers/SRDCF/cconvmtx2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421276, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3881342323892396}} {"text": "function [ax, data] = scatterPlot(X, YLbls, markerSize, ax);\n\n% SCATTERPLOT 2-D scatter plot of labelled points.\n% FORMAT\n% DESC plots a 2-D scatter plot of labelled points.\n% ARG X : x points to plot.\n% ARG lbls : the labels to plot.\n% ARG markerSize : the size of the markers to use.\n% ARG ax : the axes to plot on (default create new axes).\n% RETURN ax : the axis handle of the plot.\n% RETURN data : the handles of the data points.\n%\n% SEEALSO : plot, getSymbols\n% \n% COPYRIGHT : Neil D. Lawrence, 2005, 2010\n\n% NDLUTIL\n\n if nargin < 4\n ax = [];\n end\n if isempty(YLbls)\n symbol = [];\n else\n symbol = getSymbols(size(YLbls,2));\n end\n \n % Create the plot for the data\n clf\n if isempty(ax)\n ax = axes('position', [0.05 0.05 0.9 0.9]);\n else \n ax = axes(ax);\n end\n hold on\n \n data = twoDPlot(X, YLbls, symbol);\n for i = 1:2\n minX = min(X(:, i));\n maxX = max(X(:, i));\n xSpan = maxX - minX;\n xLim{i}(1) = minX - 0.1*xSpan;\n xLim{i}(2) = maxX + 0.1*xSpan;\n end\n if nargin>2\n for i = 1:length(data)\n set(data(i), 'markersize', markerSize);\n end\n end\n set(ax, 'xLim', xLim{1});\n set(ax, 'yLim', xLim{2});\n \n set(ax, 'fontname', 'arial');\n set(ax, 'fontsize', 20);\nend\n\nfunction returnVal = twoDPlot(X, label, symbol)\n\n% GPLVMTWODPLOT Helper function for plotting the labels in 2-D.\n\n returnVal = [];\n \n if ~isempty(label)\n for i = 1:size(X, 1)\n labelNo = find(label(i, :));\n try \n returnVal = [returnVal; plot(X(i, 1), X(i, 2), symbol{labelNo})];\n catch\n if strcmp(lasterr, 'Index exceeds matrix dimensions.')\n error(['Only ' num2str(length(symbol)) ' labels supported (it''s easy to add more!)'])\n end\n end\n end\n else\n returnVal = plot(X(:, 1), X(:, 2), 'rx');\n end\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/ndlutil/scatterPlot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6548947155710234, "lm_q1q2_score": 0.38813422440536605}} {"text": "function PlotPolarityAroundATimeByDensity(aedat, time, numTimePoints, numDensities, minProportionOfPixels, maxProportionOfPixels, contrast, transposeVar, flipVertical, flipHorizontal)\n\n%{\nTakes 'aedat' - a data structure containing an imported .aedat file, \nas created by ImportAedat, and creates a series of green/red plots of\npolarity data. \nPlots in Y have different densities (i.e. proportions of pixels). These\ndensities are distributed exponentially between the min and max parameters\nPlots in X have different centre times. The numTimePoints param must be\nodd, and the centre plot in X is the one centred at the parameter 'time'.\n\nFor numPlots > 1, the proportionOfPixels used to include events around that\ntime point is varied logarithmically from minProp.. to maxProp.\nDefaults are 0.1 and 1. \nflipVertical is assumed true, so that y=0 is considered the top of the image.\n%}\n\n%% Parameters\n\nif ~exist('time', 'var')\n\ttime = (aedat.info.firstTimeStamp + aedat.info.lastTimeStamp) / 2;\nelse\n time = time * 1e6;\nend\n\nif ~exist('numDensities', 'var')\n\tnumDensities = 3;\nend\n\nif ~exist('numTimePoints', 'var')\n\tnumTimePoints = 3;\nend\nif mod(numTimePoints,2) == 0\n\tnumTimePoints = numTimePoints + 1;\nend\n\nif ~exist('distributeBy', 'var')\n\tdistributeBy = 'time';\nend\n\nif ~exist('minProportionOfPixels', 'var') ...\n || (exist('minProportionOIfPixels', 'var') ...\n && minProportionOfPixels == 0)\n minProportionOfPixels = 0.001;\nend\nif ~exist('maxProportionOfPixels', 'var') ...\n || (exist('maxProportionOIfPixels', 'var') ...\n && maxProportionOfPixels == 0)\n maxProportionOfPixels = 0.1;\nend\n\n% The 'contrast' for display of events, as used in jAER.\nif ~exist('contrast', 'var')\n contrast = 3;\nend\n\n%% Unpack\n\n% break out the timeStamps for readability\ntimeStamp = aedat.data.polarity.timeStamp;\nx = aedat.data.polarity.x;\ny = aedat.data.polarity.y;\npolarity = aedat.data.polarity.polarity;\nnumEvents = aedat.data.polarity.numEvents;\n\n%% Produce plots\n\n% Find eventIndex nearest to timePoint\neventIndex = find(timeStamp >= time, 1, 'first');\nif isempty(eventIndex)\n eventIndex = numEvents;\nend\n\nnumPlots = numDensities * numTimePoints;\n\nif numDensities > 1\n % distribute the \n logMin = log(minProportionOfPixels);\n logMax = log(maxProportionOfPixels);\n logStep = (logMax - logMin) / (numPlots - 1);\n proportionsOfPixels = exp(logMin : logStep : logMax);\n numPixelsInArray = aedat.info.deviceAddressSpace(1) * aedat.info.deviceAddressSpace(2);\n numPixelsToSelectEachWay = ceil(numPixelsInArray * proportionsOfPixels / 2);\n \n figure\nelse\n numPixelsToSelectEachWay = minProportionOfPixels; % Arbitrrary choice to use the minimum \nend\nfor densityIndex = 1 : numDensities\n % First do the central timePoint\n firstIndex = max(1, eventIndex - numPixelsToSelectEachWay(plotIndex));\n lastIndex = min(numEvents, eventIndex + numPixelsToSelectEachWay(plotIndex));\n selectedLogical = [false(firstIndex - 1, 1); ...\n\t\t\t\t\ttrue(lastIndex - firstIndex + 1, 1); ...\n\t\t\t\t\tfalse(numEvents - lastIndex, 1)];\n eventsForFrame = struct;\n eventsForFrame.x = x(selectedLogical);\n eventsForFrame.y = y(selectedLogical);\n eventsForFrame.polarity = polarity(selectedLogical);\n frame = FrameFromEvents(eventsForFrame, contrast, aedat.info.deviceAddressSpace);\n\tif exist('transpose', 'var') && transposeVar\n frame = frame';\n end\n image(frame - 1);\n colormap(redgreencmap(contrast * 2 + 1))\n\taxis equal tight\n\tif ~exist('flipVertical', 'var') || flipVertical\n\t\tset(gca, 'YDir', 'reverse')\n end\n if exist('flipHorizontal', 'var') && flipHorizontal\n\t\tset(gca, 'XDir', 'reverse')\n end\n\ttitle(['Proportion of pixels: ' num2str(proportionsOfPixels(plotIndex))])\n \n % Then work outwards from the central time point\n lastIndexUp = lastIndex;\n firstIndexDown = firstIndex;\n for timePointsIndex = (numTimePoints - 1) / 2; \n subplot(numPlotsY, numPlotsX, plotIndex);\n hold all\n\n firstIndex = max(1, eventIndex - numPixelsToSelectEachWay(plotIndex));\n lastIndex = min(numEvents, eventIndex + numPixelsToSelectEachWay(plotIndex));\n selectedLogical = [false(firstIndex - 1, 1); ...\n true(lastIndex - firstIndex + 1, 1); ...\n false(numEvents - lastIndex, 1)];\n eventsForFrame = struct;\n eventsForFrame.x = x(selectedLogical);\n eventsForFrame.y = y(selectedLogical);\n eventsForFrame.polarity = polarity(selectedLogical);\n frame = FrameFromEvents(eventsForFrame, contrast, aedat.info.deviceAddressSpace);\n if exist('transpose', 'var') && transposeVar\n frame = frame';\n end\n image(frame - 1);\n colormap(redgreencmap(contrast * 2 + 1))\n axis equal tight\n if ~exist('flipVertical', 'var') || flipVertical\n set(gca, 'YDir', 'reverse')\n end\n if exist('flipHorizontal', 'var') && flipHorizontal\n set(gca, 'XDir', 'reverse')\n end\n title(['Proportion of pixels: ' num2str(proportionsOfPixels(plotIndex))])\n end\nend\n\n\n", "meta": {"author": "panpanfei", "repo": "Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera", "sha": "aabdd6ae323726132b0e0592ce151461e3ad7c5a", "save_path": "github-repos/MATLAB/panpanfei-Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera", "path": "github-repos/MATLAB/panpanfei-Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera/Bringing-a-Blurry-Frame-Alive-at-High-Frame-Rate-with-an-Event-Camera-aabdd6ae323726132b0e0592ce151461e3ad7c5a/event_cvpr_github/read_data/code/AedatTools-master/Matlab/PlotPolarityAroundATimeByDensity.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702880639791, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3878769521011545}} {"text": "function [fig_name_tca]=ps_mean_v(ifg_list,n_boot,subtract_switches,use_small_baselines,aps_flag)\n%PS_MEAN_V Calculate mean velocities and their standard deviations\n% PS_MEAN_V(IFG_LIST,N_BOOT,SUBTRACT_SWITCHES) where IFG_LIST gives indices \n% of interferograms to be included in the calculation,N_BOOT specifies number \n% of bootstrap iterations and RAMP_FLAG is 1 to subtract orbital ramps\n%\n% Andy Hooper, Jan 2008\n%\n% ======================================================================\n% 06/2009 AH: Subtract orbital ramp if present\n% 06/2009 AH: Process smaller chunks to reduce memory needs\n% 02/2010 AH: Revert to v3.1 version\n% 02/2010 AH: Replace unwrap_ifg_index with drop_ifg_index\n% 03/2010 AH: 3rd input changed to 'subtract_switches'\n% 03/2010 AH: Use small baselines option added\n% 03/2010 AH: var/cov added to inversion\n% 05/2010 AH: Include master if there are not ifgs before and after\n% 06/2010 AH: small change to ps_mean_v.m\n% 03/2014 AH: -a etc added\n% 04/2014 DB: fix fig_name_tca output in case no aps correction\n% 05/2014 DB: Fix v-doa to v-dao \n% 05/2014 DB: For APS related corrections include deramping on the fly\n% 05/2014 DB: big fix in case of a nan \n% 07/2014 EH: Fix for nanmean in case of single element compared to vector\n% 03/2015 DB: Do all deramping on the fly, make consistent for TRAIN release\n% 05/2017 DB: use stamps save to save larger variables than 2GB.\n% 06/2017 DB: Include the option to choose between chol decompostion for\n% bootstrapping (not to invert covariance often), or conventional\n% bootstrapping requiring to invert covariance matrix for each iteration.\n% ======================================================================\n\n\nfprintf('Calculating standard deviation of mean velocity...\\n')\n\n\nchol_flag = 'n';\n\nif nargin<1\n ifg_list=[];\nend\nif nargin<2\n n_boot=100;\nend\n\nif nargin<3 | isempty(subtract_switches)\n subtract_switches='';\nend\n\nif nargin<4\n use_small_baselines=0;\nend\n\nif nargin<5\n aps_flag=1;\nend\n\nload psver\npsname=['./ps',num2str(psver)];\nphuwname=['./phuw',num2str(psver)];\nphuwsbresname=['./phuw_sb_res',num2str(psver)];\nifgstdname=['./ifgstd',num2str(psver)];\nsclaname=['./scla',num2str(psver)];\napsname=['./tca',num2str(psver)];\ntidename=['./tide',num2str(psver)];\n\nmvname=['mv',num2str(psver)];\n\nps=load(psname);\n\ndrop_ifg_index=getparm('drop_ifg_index');\nfig_name_tca = '';\nif strcmpi(getparm('small_baseline_flag'),'y')\n if use_small_baselines==0\n phuw=load(phuwname,'unwrap_ifg_index_sm');\n if isfield(phuw,'unwrap_ifg_index_sm');\n unwrap_ifg_index=phuw.unwrap_ifg_index_sm;\n else\n unwrap_ifg_index=[1:ps.n_image];\n end\n phuwres=load(phuwsbresname,'sm_cov');\n if isfield(phuwres,'sm_cov');\n ifg_cov=phuwres.sm_cov;\n else\n ifg_cov=eye(ps.n_image);\n end\n else\n unwrap_ifg_index=setdiff([1:ps.n_ifg],drop_ifg_index);\n phuwname=['./phuw_sb',num2str(psver)];\n sclaname=['./scla_sb',num2str(psver)];\n apsname=['./tca_sb',num2str(psver)];\n tidename=['./tide_sb',num2str(psver)];\n\n phuwres=load(phuwsbresname,'sb_cov');\n if isfield(phuwres,'sb_cov');\n ifg_cov=phuwres.sb_cov;\n else\n ifg_cov=eye(ps.n_ifg);\n end\n end\nelse\n use_small_baselines=0;\n unwrap_ifg_index=setdiff([1:ps.n_ifg],drop_ifg_index);\n if ~exist([ifgstdname,'.mat'],'file')\n ifg_cov=eye(ps.n_ifg);\n else ifgstd=load(ifgstdname);\n if isfield(ifgstd,'ifg_std');\n ifgvar=(ifgstd.ifg_std*pi/181).^2;\n ifg_cov=diag(ifgvar);\n else\n ifg_cov=eye(ps.n_ifg);\n end\n end\nend\n\n\n\nuw=load(phuwname);\nph_uw=uw.ph_uw;\nclear uw\n\n\nswitch(subtract_switches)\ncase('')\ncase('d')\n scla=load(sclaname);\n ph_uw=ph_uw - scla.ph_scla;\n clear scla\ncase('o')\n [ph_uw] = ps_deramp(ps,ph_uw);\ncase('a')\n aps=load(apsname);\n [aps_corr,fig_name_tca] = ps_plot_tca(aps,aps_flag);\n ph_uw=ph_uw - aps_corr;\n clear aps aps_corr\ncase('ao')\n aps=load(apsname);\n [aps_corr,fig_name_tca] = ps_plot_tca(aps,aps_flag);\n ph_uw=ph_uw - aps_corr;\n [ph_uw] = ps_deramp(ps,ph_uw);\n clear aps aps_corr\ncase('do')\n scla=load(sclaname);\n ph_uw=ph_uw - scla.ph_scla;\n [ph_uw] = ps_deramp(ps,ph_uw);\ncase('da')\n scla=load(sclaname);\n ph_uw=ph_uw - scla.ph_scla;\n clear scla\n aps=load(apsname);\n [aps_corr,fig_name_tca] = ps_plot_tca(aps,aps_flag);\n ph_uw=ph_uw - aps_corr;\n clear aps aps_corr\ncase('dat')\n tide=load(tidename);\n scla=load(sclaname);\n ph_uw=ph_uw - scla.ph_scla;\n clear scla\n aps=load(apsname);\n [aps_corr,fig_name_tca] = ps_plot_tca(aps,aps_flag);\n ph_uw=ph_uw - aps_corr-tide.ph_tide;\n clear aps aps_corr\ncase('dao')\n scla=load(sclaname);\n ph_uw=ph_uw - scla.ph_scla ;\n [ph_uw] = ps_deramp(ps,ph_uw);\n aps=load(apsname);\n [aps_corr,fig_name_tca] = ps_plot_tca(aps,aps_flag);\n ph_uw=ph_uw - aps_corr;\n clear aps aps_corr\notherwise\n error('unknown subtract flags')\nend\n\nif use_small_baselines==0 \n %AH2CHECK %%%%%%% & unwrap_ifg_index(1)~=ps.master_ix & unwrap_ifg_index(end)~=ps.master_ix\n unwrap_ifg_index=setdiff(unwrap_ifg_index,ps.master_ix);\nend\n\nph_all=zeros(ps.n_ps,1);\nref_ps=ps_setref;\nif ~isempty(ifg_list)\n unwrap_ifg_index=intersect(unwrap_ifg_index,ifg_list);\n ifg_list=[];\nend\nph_uw=ph_uw(:,unwrap_ifg_index);\nifg_cov=ifg_cov(unwrap_ifg_index,unwrap_ifg_index);\nif rank(ifg_cov)0\n if sum(ix_non_nan)== length(ix_non_nan)\n [mean_v_dist,boot_ix] = bootstrp(n_boot, @(x) single(lscov(G(x,:),ph_bit(x,:))), [1:N]);\n temp = std(mean_v_dist(:,2:2:end))';\n else\n [mean_v_dist_temp,boot_ix] = bootstrp(n_boot, @(x) single(lscov(G(x,:),ph_bit(x,ix_non_nan))), [1:N]);\n temp = NaN([size(ph_bit,2) 1]); \n temp(ix_non_nan) = std(mean_v_dist_temp(:,2:2:end))';\n clear mean_v_dist_temp\n end\n mean_v_std(i:i_end) =temp; \n end\n i=i+n;\n fprintf('%d PS processed\\n',i-1)\n end\n \n \nelse\n % conventional bootstrapping where the coveriance matrix is inverted on\n % each set PS segments.\n while i0\n if sum(ix_non_nan)== length(ix_non_nan)\n [mean_v_dist,boot_ix] = bootstrp(n_boot, @(x) single(lscov(G(x,:),ph_bit(x,:),ifg_cov)), [1:N]);\n temp = std(mean_v_dist(:,2:2:end))';\n else\n fprintf('test\\n')\n [mean_v_dist_temp,boot_ix] = bootstrp(n_boot, @(x) single(lscov(G(x,:),ph_bit(x,ix_non_nan),ifg_cov(ix_non_nan,ix_non_nan))), [1:N]);\n temp = NaN([size(ph_bit,2) 1]); \n temp(ix_non_nan) = std(mean_v_dist_temp(:,2:2:end))';\n clear mean_v_dist_temp\n end\n mean_v_std(i:i_end) =temp; \n end\n i=i+n;\n fprintf('%d PS processed\\n',i-1)\n end\nend\n\nstamps_save(mvname,n_boot,subtract_switches,mean_v,mean_v_std)\n\n", "meta": {"author": "dbekaert", "repo": "StaMPS", "sha": "c159eb81b16c446e0e8fdef7dd435eb22e0240ed", "save_path": "github-repos/MATLAB/dbekaert-StaMPS", "path": "github-repos/MATLAB/dbekaert-StaMPS/StaMPS-c159eb81b16c446e0e8fdef7dd435eb22e0240ed/matlab/ps_mean_v.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3878769457403568}} {"text": "classdef math_model_opf_acps < mp.math_model_opf_acp\n%MP.MATH_MODEL_OPF_ACPS MATPOWER mathematical model for AC optimal power flow (OPF) problem.\n% ?\n%\n% MP.MATH_MODEL_OPF_ACPS ... power flow ...\n%\n% Properties\n% ? - ?\n%\n% Methods\n% ?\n\n% MATPOWER\n% Copyright (c) 2021-2022, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n% properties\n% end\n\n methods\n function tag = form_tag(obj)\n tag = 'acps';\n end\n\n function name = form_name(obj)\n name = 'AC-polar-power';\n end\n\n function add_node_balance_constraints(obj, nm, dm, mpopt)\n %% power balance constraints\n nn = nm.node.N; %% number of nodes\n fcn_mis = @(x)obj.nodal_power_balance_fcn(x, nm);\n hess_mis = @(x, lam)obj.nodal_power_balance_hess(x, lam, nm);\n obj.add_nln_constraint({'Pmis', 'Qmis'}, [nn;nn], 1, fcn_mis, hess_mis);\n end\n\n function [lam_p, lam_q] = node_power_balance_prices(obj, nm)\n %% shadow prices on node power balance\n nne = obj.get_idx('nle');\n lambda = obj.soln.lambda;\n lam_p = lambda.eqnonlin(nne.i1.Pmis:nne.iN.Pmis);\n lam_q = lambda.eqnonlin(nne.i1.Qmis:nne.iN.Qmis);\n end\n end %% methods\nend %% classdef\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/+mp/math_model_opf_acps.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3878769457403568}} {"text": "function y=multimidfilter(x,m)\na=x;\nfor k=1 : m\n b=medfilt1(a, 5); \n a=b;\nend\ny=b;", "meta": {"author": "bastamon", "repo": "sound_signal_process-matlab-", "sha": "d621374ce1b3b2e3413e9ccc5ba9e6e925ea5f19", "save_path": "github-repos/MATLAB/bastamon-sound_signal_process-matlab-", "path": "github-repos/MATLAB/bastamon-sound_signal_process-matlab-/sound_signal_process-matlab--d621374ce1b3b2e3413e9ccc5ba9e6e925ea5f19/\u7b2c04\u7ae0 \u8bed\u97f3\u4fe1\u53f7\u7279\u5f81\u63d0\u53d6/4.1 \u8bed\u97f3\u7aef\u70b9\u68c0\u6d4b\u5b9e\u9a8c/multimidfilter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8006919830720203, "lm_q2_score": 0.4843800842769843, "lm_q1q2_score": 0.3878392502403309}} {"text": "function rez = learnAndSolve8b_old(rez)\n% This is the main optimization. Takes the longest time and uses the GPU heavily. \n\nops = rez.ops;\nops.fig = getOr(ops, 'fig', 1); % whether to show plots every N batches\n\nNrankPC = 6; % this one is the rank of the PCs, used to detect spikes with threshold crossings\nNrank = 3; % this one is the rank of the templates\nrng('default'); rng(1);\n\n% we need PC waveforms, as well as template waveforms\n[wTEMP, wPCA] = extractTemplatesfromSnippets(rez, NrankPC);\n\n% move these to the GPU\nwPCA = gpuArray(wPCA(:, 1:Nrank));\nwTEMP = gpuArray(wTEMP);\nwPCAd = double(wPCA); % convert to double for extra precision\nops.wPCA = gather(wPCA);\nops.wTEMP = gather(wTEMP);\nnt0 = ops.nt0;\nnt0min = rez.ops.nt0min;\nrez.ops = ops;\nnBatches = rez.temp.Nbatch;\nNT \t= ops.NT;\nNfilt \t= ops.Nfilt;\nNchan \t= ops.Nchan;\n\n% two variables for the same thing? number of nearest channels to each primary channel\nNchanNear = min(ops.Nchan, 32);\nNnearest = min(ops.Nchan, 32);\n\n% decay of gaussian spatial mask centered on a channel\nsigmaMask = ops.sigmaMask;\n\n% spike threshold for finding missed spikes in residuals\nops.spkTh = -6; % why am I overwriting this here?\n\nbatchstart = 0:NT:NT*nBatches;\n\n% find the closest NchanNear channels, and the masks for those channels\n[iC, mask, C2C] = getClosestChannels(rez, sigmaMask, NchanNear);\n\n% sorting order for the batches\nisortbatches = rez.iorig(:);\nnhalf = ceil(nBatches/2); % halfway point\n\n% this batch order schedule goes through half of the data forward and backward during the model fitting\n% and then goes through the data symmetrically-out from the center during the final pass\nischedule = [nhalf:nBatches nBatches:-1:nhalf];\ni1 = [(nhalf-1):-1:1];\ni2 = [nhalf:nBatches];\n\nirounds = cat(2, ischedule, i1, i2);\n\nniter = numel(irounds);\nif irounds(niter - nBatches)~=nhalf\n error('mismatch between number of batches'); % this check is in here in case I do somehting weird when I try different schedules\nend\n\n% these two flags are used to keep track of what stage of model fitting we're at\nflag_final = 0;\nflag_resort = 1;\n\n% this is the absolute temporal offset in seconds corresponding to the start of the\n% spike sorted time segment\nt0 = ceil(rez.ops.trange(1) * ops.fs);\n\nnInnerIter = 60; % this is for SVD for the power iteration\n\n% schedule of learning rates for the model fitting part\n% starts small and goes high, it corresponds approximately to the number of spikes\n% from the past that were averaged to give rise to the current template\npmi = exp(-1./linspace(ops.momentum(1), ops.momentum(2), niter-nBatches));\n\nNsum = min(Nchan,7); % how many channels to extend out the waveform in mexgetspikes\n% lots of parameters passed into the CUDA scripts\nParams = double([NT Nfilt ops.Th(1) nInnerIter nt0 Nnearest ...\n Nrank ops.lam pmi(1) Nchan NchanNear ops.nt0min 1 Nsum NrankPC ops.Th(1)]);\n\n% W0 has to be ordered like this\nW0 = permute(double(wPCA), [1 3 2]);\n\n% initialize the list of channels each template lives on\niList = int32(gpuArray(zeros(Nnearest, Nfilt)));\n\n% initialize average number of spikes per batch for each template\nnsp = gpuArray.zeros(0,1, 'double');\n\n% this flag starts 0, is set to 1 later\nParams(13) = 0;\n\n% kernels for subsample alignment\n[Ka, Kb] = getKernels(ops, 10, 1);\n\np1 = .95; % decay of nsp estimate in each batch\n\nfprintf('Time %3.0fs. Optimizing templates ...\\n', toc)\n\nfid = fopen(ops.fproc, 'r');\n\nntot = 0;\nndrop = zeros(1,2); % this keeps track of dropped templates for debugging purposes\n\nm0 = ops.minFR * ops.NT/ops.fs; % this is the minimum firing rate that all templates must maintain, or be dropped\n\nfor ibatch = 1:niter\n korder = irounds(ibatch); % korder is the index of the batch at this point in the schedule\n k = isortbatches(korder); % k is the index of the batch in absolute terms\n\n if ibatch>niter-nBatches && korder==nhalf\n % this is required to revert back to the template states in the middle of the batches\n [W, dWU] = revertW(rez);\n fprintf('reverted back to middle timepoint \\n')\n end\n\n if ibatch<=niter-nBatches\n % obtained pm for this batch\n Params(9) = pmi(ibatch);\n pm = pmi(ibatch) * gpuArray.ones(Nfilt, 1, 'double');\n end\n\n % loading a single batch (same as everywhere)\n offset = 2 * ops.Nchan*batchstart(k);\n fseek(fid, offset, 'bof');\n dat = fread(fid, [NT ops.Nchan], '*int16');\n dataRAW = single(gpuArray(dat))/ ops.scaleproc;\n\n\n if ibatch==1\n % only on the first batch, we first get a new set of spikes from the residuals,\n % which in this case is the unmodified data because we start with no templates\n [dWU, cmap] = mexGetSpikes2(Params, dataRAW, wTEMP, iC-1); % CUDA function to get spatiotemporal clips from spike detections\n dWU = double(dWU);\n dWU = reshape(wPCAd * (wPCAd' * dWU(:,:)), size(dWU)); % project these into the wPCA waveforms\n\n W = W0(:,ones(1,size(dWU,3)),:); % initialize the low-rank decomposition with standard waves\n Nfilt = size(W,2); % update the number of filters/templates\n nsp(1:Nfilt) = m0; % initialize the number of spikes for new templates with the minimum allowed value, so it doesn't get thrown back out right away\n Params(2) = Nfilt; % update in the CUDA parameters\n end\n\n if flag_resort\n % this is a flag to resort the order of the templates according to best peak channel\n % this is important in order to have cohesive memory requests from the GPU RAM\n [~, iW] = max(abs(dWU(nt0min, :, :)), [], 2); % max channel (either positive or negative peak)\n iW = int32(squeeze(iW));\n\n [iW, isort] = sort(iW); % sort by max abs channel\n W = W(:,isort, :); % user ordering to resort all the other template variables\n dWU = dWU(:,:,isort);\n nsp = nsp(isort);\n end\n\n % decompose dWU by svd of time and space (via covariance matrix of 61 by 61 samples)\n % this uses a \"warm start\" by remembering the W from the previous iteration\n [W, U, mu] = mexSVDsmall2(Params, dWU, W, iC-1, iW-1, Ka, Kb);\n\n % UtU is the gram matrix of the spatial components of the low-rank SVDs\n % it tells us which pairs of templates are likely to \"interfere\" with each other\n % such as when we subtract off a template\n [UtU, maskU] = getMeUtU(iW, iC, mask, Nnearest, Nchan); % this needs to change (but I don't know why!)\n\n\n % main CUDA function in the whole codebase. does the iterative template matching\n % based on the current templates, gets features for these templates if requested (featW, featPC),\n % gets scores for the template fits to each spike (vexp), outputs the average of\n % waveforms assigned to each cluster (dWU0),\n % and probably a few more things I forget about\n [st0, id0, x0, featW, dWU0, drez, nsp0, featPC, vexp] = ...\n mexMPnu8(Params, dataRAW, single(U), single(W), single(mu), iC-1, iW-1, UtU, iList-1, ...\n wPCA);\n\n % Sometimes nsp can get transposed (think this has to do with it being\n % a single element in one iteration, to which elements are added\n % nsp, nsp0, and pm must all be row vectors (Nfilt x 1), so force nsp\n % to be a row vector.\n [nsprow, nspcol] = size(nsp);\n if nsprow0\n % new templates need to be integrated into the same format as all templates\n dWU0 = double(dWU0);\n dWU0 = reshape(wPCAd * (wPCAd' * dWU0(:,:)), size(dWU0)); % apply PCA for smoothing purposes\n dWU = cat(3, dWU, dWU0);\n\n W(:,Nfilt + [1:size(dWU0,3)],:) = W0(:,ones(1,size(dWU0,3)),:); % initialize temporal components of waveforms\n\n nsp(Nfilt + [1:size(dWU0,3)]) = ops.minFR * NT/ops.fs; % initialize the number of spikes with the minimum allowed\n mu(Nfilt + [1:size(dWU0,3)]) = 10; % initialize the amplitude of this spike with a lowish number\n\n Nfilt = min(ops.Nfilt, size(W,2)); % if the number of filters exceed the maximum allowed, clip it\n Params(2) = Nfilt;\n\n W = W(:, 1:Nfilt, :); % remove any new filters over the maximum allowed\n dWU = dWU(:, :, 1:Nfilt); % remove any new filters over the maximum allowed\n nsp = nsp(1:Nfilt); % remove any new filters over the maximum allowed\n mu = mu(1:Nfilt); % remove any new filters over the maximum allowed\n end\n\n end\n\n if ibatch>niter-nBatches\n % during the final extraction pass, this keesp track of all spikes and features\n\n % we memorize the spatio-temporal decomposition of the waveforms at this batch\n % this is currently only used in the GUI to provide an accurate reconstruction\n % of the raw data at this time\n rez.WA(:,:,:,k) = gather(W);\n rez.UA(:,:,:,k) = gather(U);\n rez.muA(:,k) = gather(mu);\n\n % we carefully assign the correct absolute times to spikes found in this batch\n ioffset = ops.ntbuff;\n if k==1\n ioffset = 0; % the first batch is special (no pre-buffer)\n end\n toff = nt0min + t0 -ioffset + (NT-ops.ntbuff)*(k-1);\n st = toff + double(st0);\n\n irange = ntot + [1:numel(x0)]; % spikes and features go into these indices\n\n if ntot+numel(x0)>size(st3,1)\n % if we exceed the original allocated memory, double the allocated sizes\n fW(:, 2*size(st3,1)) = 0;\n fWpc(:,:,2*size(st3,1)) = 0;\n st3(2*size(st3,1), 1) = 0;\n end\n\n st3(irange,1) = double(st); % spike times\n st3(irange,2) = double(id0+1); % spike clusters (1-indexing)\n st3(irange,3) = double(x0); % template amplitudes\n st3(irange,4) = double(vexp); % residual variance of this spike\n st3(irange,5) = korder; % batch from which this spike was found\n\n fW(:, irange) = gather(featW); % template features for this batch\n fWpc(:, :, irange) = gather(featPC); % PC features\n\n ntot = ntot + numel(x0); % keeps track of total number of spikes so far\n end\n\n if ibatch==niter-nBatches\n % allocate variables when switching to extraction phase\n st3 = zeros(1e7, 5); % this holds spike times, clusters and other info per spike\n\n % these next three store the low-d template decompositions\n rez.WA = zeros(nt0, Nfilt, Nrank,nBatches, 'single');\n rez.UA = zeros(Nchan, Nfilt, Nrank,nBatches, 'single');\n rez.muA = zeros(Nfilt, nBatches, 'single');\n\n % these ones store features per spike\n fW = zeros(Nnearest, 1e7, 'single'); % Nnearest is the number of nearest templates to store features for\n fWpc = zeros(NchanNear, Nrank, 1e7, 'single'); % NchanNear is the number of nearest channels to take PC features from\n end\n\n if (rem(ibatch, 100)==1)\n % this is some of the relevant diagnostic information to be printed during training\n fprintf('%2.2f sec, %d / %d batches, %d units, nspks: %2.4f, mu: %2.4f, nst0: %d, merges: %2.4f, %2.4f \\n', ...\n toc, ibatch, niter, Nfilt, sum(nsp), median(mu), numel(st0), ndrop)\n\n % these diagnostic figures should be mostly self-explanatory\n if ibatch==1\n figHand = figure;\n else\n figure(figHand);\n end\n\n if ops.fig\n make_fig(W, U, mu, nsp) \n end\n end\nend\nfclose(fid);\ntoc\n\n% discards the unused portion of the arrays\nst3 = st3(1:ntot, :);\nfW = fW(:, 1:ntot);\nfWpc = fWpc(:,:, 1:ntot);\n\n% just display the total number of spikes\nntot\n\n\nrez.st3 = st3;\nrez.st2 = st3; % keep also an st2 copy, because st3 will be over-written by one of the post-processing steps\n\n% the similarity score between templates is simply the correlation,\n% taken as the max over several consecutive time delays\nrez.simScore = gather(max(WtW, [], 3));\n\n% the template features are stored in cProj, like in Kilosort1\nrez.cProj = fW';\n% the neihboring templates idnices are stored in iNeigh\nrez.iNeigh = gather(iList);\n\nrez.ops = ops; % update these (only rez comes out of this script)\nrez.nsp = nsp;\n\n% permute the PC projections in the right order\nrez.cProjPC = permute(fWpc, [3 2 1]); %zeros(size(st3,1), 3, nNeighPC, 'single');\n% iNeighPC keeps the indices of the channels corresponding to the PC features\nrez.iNeighPC = gather(iC(:, iW));\n\n% this whole next block is just done to compress the compressed templates\n% we separately svd the time components of each template, and the spatial components\n% this also requires a careful decompression function, available somewhere in the GUI code\nnKeep = min(Nchan*3,20); % how many PCs to keep\nrez.W_a = zeros(nt0 * Nrank, nKeep, Nfilt, 'single');\nrez.W_b = zeros(nBatches, nKeep, Nfilt, 'single');\nrez.U_a = zeros(Nchan* Nrank, nKeep, Nfilt, 'single');\nrez.U_b = zeros(nBatches, nKeep, Nfilt, 'single');\nfor j = 1:Nfilt\n % do this for every template separately\n WA = reshape(rez.WA(:, j, :, :), [], nBatches);\n WA = gpuArray(WA); % svd on the GPU was faster for this, but the Python randomized CPU version might be faster still\n [A, B, C] = svdecon(WA);\n % W_a times W_b results in a reconstruction of the time components\n rez.W_a(:,:,j) = gather(A(:, 1:nKeep) * B(1:nKeep, 1:nKeep));\n rez.W_b(:,:,j) = gather(C(:, 1:nKeep));\n\n UA = reshape(rez.UA(:, j, :, :), [], nBatches);\n UA = gpuArray(UA);\n [A, B, C] = svdecon(UA);\n % U_a times U_b results in a reconstruction of the time components\n rez.U_a(:,:,j) = gather(A(:, 1:nKeep) * B(1:nKeep, 1:nKeep));\n rez.U_b(:,:,j) = gather(C(:, 1:nKeep));\nend\n\nfprintf('Finished compressing time-varying templates \\n')\n%%\n", "meta": {"author": "MouseLand", "repo": "Kilosort", "sha": "d55179f4bed45d4f17e5481283bc3f260212c1c7", "save_path": "github-repos/MATLAB/MouseLand-Kilosort", "path": "github-repos/MATLAB/MouseLand-Kilosort/Kilosort-d55179f4bed45d4f17e5481283bc3f260212c1c7/mainLoop/learnAndSolve8b_old.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7879311856832191, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.3878103813576996}} {"text": "function ObjVal = FoxHoles(x,mydata)\n\n[A,B] = size(x);\nTop=double(0);\nTop1=double(0);\nC=[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32;\n -32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32];\n\nfor i=1:A\n for k=1:25\n for j=1:B\n Top1=Top1+power((double(x(i,j))-double(C(j,k))),6);\n end;\n Top=double(Top+(1/(Top1+k)));\n Top1=0;\n end;\nObjVal(i)= double(1/(0.002+Top));\nTop=0;\nend\nObjVal=ObjVal';\n\n\nfunction y=power(x,a)\ny=double(x^a);\n return", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/43413-backtracking-search-optimization-algorithm/FoxHoles.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943822145997, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3877759683307455}} {"text": "%-----------------------------------------------------------------------\n% Job saved on 01-Apr-2016 11:17:08 by cfg_util (rev $Rev: 6134 $)\n% spm SPM - SPM12 (6225)\n% cfg_basicio BasicIO - Unknown\n%-----------------------------------------------------------------------\nmatlabbatch{2}.spm.stats.fmri_est.spmmat = cfg_dep('fMRI model specification: SPM.mat File', substruct('.','val', '{}',{1}, '.','val', '{}',{1}, '.','val', '{}',{1}), substruct('.','spmmat'));\nmatlabbatch{2}.spm.stats.fmri_est.write_residuals = 0;\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.space.volume.block_type = 'Slices';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.signal = 'Uninformative';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.ARP = 3;\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.noise.UGL = 1;\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.LogEv = 'Yes';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.anova.first = 'No';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.anova.second = 'Yes';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.gcon(1).name = 'main positive';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.gcon(1).convec = 1;\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.gcon(2).name = 'main negative';\nmatlabbatch{2}.spm.stats.fmri_est.method.Bayesian.gcon(2).convec = -1;\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrSeries/matlabbatch/mb_specify_and_estimate_1st_level_Bayesian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943603346811, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3877759571344278}} {"text": "clc;\nclose all;\nclearvars;\n\nrng default;\n\nA = mat_selector();\n\nk = 30;\nspx_bdpro(A, k);", "meta": {"author": "indigits", "repo": "sparse-plex", "sha": "43cae2978f62938d001baaa03308a2a717ee6c9b", "save_path": "github-repos/MATLAB/indigits-sparse-plex", "path": "github-repos/MATLAB/indigits-sparse-plex/sparse-plex-43cae2978f62938d001baaa03308a2a717ee6c9b/examples/linear_algebra/svd/lanczos/ex_spx_bdpro_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125737597972, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.3877526599046748}} {"text": "classdef SubMesher < handle\n \n properties (Access = public)\n subMesh\n localMesh\n end\n \n properties (Access = private)\n mesh\n lastNode\n end\n \n methods (Access = public)\n \n function obj = SubMesher(cParams)\n obj.init(cParams);\n obj.computeLocalMesh();\n obj.computeSubMesh();\n end\n \n end\n \n methods (Access = private)\n \n function init(obj,cParams)\n obj.mesh = cParams.mesh;\n obj.lastNode = cParams.lastNode;\n end\n \n function computeLocalMesh(obj)\n s.connec = [1 2 5;\n 2 3 5;\n 3 4 5;\n 1 5 4];\n s.coord = obj.computeCoordLocal();\n obj.localMesh = Mesh(s);\n end\n \n function xIsoCoord = computeCoordLocal(obj)\n xIsoQuad = obj.computeXisoQuad();\n xIsoCent = [0 0];\n xIsoCoord = [xIsoQuad;xIsoCent];\n end\n \n function computeSubMesh(obj)\n s.connec = obj.computeSubMeshConnec();\n s.coord = obj.computeSubMeshCoord();\n obj.subMesh = Mesh(s);\n end\n \n function x = computeXisoQuad(obj)\n int = Interpolation.create(obj.mesh,'LINEAR');\n x = int.pos_nodes;\n end\n \n function newConnec = computeSubMeshConnec(obj)\n connecE = obj.computeExtendedConnectivities();\n nnodeN = size(obj.localMesh.connec,2);\n nsubCells = size(obj.localMesh.connec,1);\n nelemB = obj.mesh.nelem;\n nelemN = nsubCells*nelemB;\n newConnec = zeros(nelemN,nnodeN);\n for isubcell = 1:nsubCells\n element = obj.computeGlobalElements(isubcell,nsubCells,nelemN);\n for inode = 1:nnodeN\n node = obj.localMesh.connec(isubcell,inode);\n newConnec(element,inode) = connecE(:,node);\n end\n end\n end\n \n function connecE = computeExtendedConnectivities(obj)\n oldConnec = obj.mesh.connec;\n nnode = obj.mesh.nnodeElem;\n nnodeE = nnode + 1;\n newNodes = obj.computeNewNodes();\n connecE(:,1:nnodeE) = [oldConnec newNodes];\n end\n \n function nNodes = computeNewNodes(obj)\n nelemOld = obj.mesh.nelem;\n nNodes(:,1) = (obj.lastNode+1):(obj.lastNode + nelemOld);\n end\n \n function newCoord = computeSubMeshCoord(obj)\n xC = obj.mesh.computeBaricenter();\n newCoord = [obj.mesh.coord; xC' ];\n end\n \n end\n \n methods (Access = private, Static)\n \n function gElement = computeGlobalElements(isub,nsubCells,nelem)\n gElement = isub:nsubCells:nelem ;\n end\n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/FEM/Mesh/SubMesher/SubMesher.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6584175139669997, "lm_q2_score": 0.5888891307678321, "lm_q1q2_score": 0.3877349174823434}} {"text": "% POP_TIMEF - Returns estimates and plots of event-related (log) spectral\n% perturbation (ERSP) and inter-trial coherence (ITC) changes \n% timelocked to a set of input events in one data channel. \n%\n% Usage:\n% >> pop_timef(EEG, typeplot); % pop_up window\n% >> pop_timef(EEG, typeplot, lastcom); % pop_up window\n% >> pop_timef(EEG, typeplot, channel); % do not pop-up\n% >> pop_timef(EEG, typeproc, num, tlimits,cycles,\n% 'key1',value1,'key2',value2, ... ); \n% \n% Inputs: \n% INEEG - input EEG dataset\n% typeproc - type of processing. 1 process the raw\n% data and 0 the ICA components\n% num - component or channel number\n% tlimits - [mintime maxtime] (ms) sub-epoch time limits\n% cycles - >0 -> Number of cycles in each analysis wavelet \n% 0 -> Use FFTs (with constant window length)\n%\n% Optional inputs:\n% See the TIMEF function.\n% \n% Outputs: same as TIMEF, no outputs are returned when a\n% window pops-up to ask for additional arguments\n%\n% Author: Arnaud Delorme, CNL / Salk Institute, 2001\n%\n% See also: TIMEF, EEGLAB \n\n% Copyright (C) 2002 arno@salk.edu, Arnaud Delorme, CNL / Salk Institute\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\n% 01-25-02 reformated help & license -ad \n% 03-08-02 add eeglab option & optimize variable sizes -ad\n% 03-10-02 change timef call -ad\n% 03-18-02 added title -ad & sm\n% 04-04-02 added outputs -ad & sm\n\nfunction varargout = pop_timef(EEG, typeproc, num, tlimits, cycles, varargin );\n\nvarargout{1} = '';\n% display help if not enough arguments\n% ------------------------------------\nif nargin < 2\n\thelp pop_timef;\n\treturn;\nend;\t\nlastcom = [];\nif nargin < 3\n\tpopup = 1;\nelse\n\tpopup = ischar(num) | isempty(num);\n\tif ischar(num)\n\t\tlastcom = num;\n\tend\nend\n\n% pop up window\n% -------------\nif popup\n\t[txt vars] = gethelpvar('timef.m');\n\t\n\tgeometry = { [1 0.5 0.5] [1 0.5 0.5] [1 0.5 0.5] [0.92 0.1 0.78] [1 0.5 0.5] [1 0.8 0.2] [1] [1 1]};\n uilist = { ...\n { 'Style', 'text', 'string', fastif(typeproc, 'Channel number', 'Component number'), 'fontweight', 'bold' } ...\n\t\t\t { 'Style', 'edit', 'string', getkeyval(lastcom,3,[],'1') } {} ...\n\t\t\t { 'Style', 'text', 'string', 'Epoch time range [min max] (msec)', 'fontweight', 'bold', ...\n\t\t\t\t 'tooltipstring', 'Sub epoch time limits' } ...\n\t\t\t { 'Style', 'edit', 'string', getkeyval(lastcom,4,[],[ int2str(EEG.xmin*1000) ' ' int2str(EEG.xmax*1000) ]) } {} ...\n\t\t\t { 'Style', 'text', 'string', 'Wavelet cycles (0->FFT, see >> help timef)', 'fontweight', 'bold', ...\n\t\t\t\t 'tooltipstring', context('cycles',vars,txt) } ...\n\t\t\t { 'Style', 'edit', 'string', getkeyval(lastcom,5,[],'3 0.5') } {} ...\n\t\t\t { 'Style', 'text', 'string', '[set]->Linear coher / [unset]->Phase coher', 'fontweight', 'bold', ...\n\t\t\t\t 'tooltipstring', ['Compute linear inter-trial coherence (coher)' 10 ...\n\t\t\t\t\t'OR Amplitude-normalized inter-trial phase coherence (phasecoher)'] } ...\n\t\t\t { 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'phasecoher','present',1) } { } ...\n\t\t\t { 'Style', 'text', 'string', 'Bootstrap significance level (Ex: 0.01 -> 1%)', 'fontweight', 'bold', ...\n\t\t\t\t 'tooltipstring', context('alpha',vars,txt) } ...\n\t\t\t { 'Style', 'edit', 'string', getkeyval(lastcom,'alpha') } {} ...\n\t\t\t { 'Style', 'text', 'string', 'Optional timef() arguments (see Help)', 'fontweight', 'bold', ...\n\t\t\t\t 'tooltipstring', 'See timef() help via the Help button on the right...' } ...\n\t\t\t { 'Style', 'edit', 'string', '''padratio'', 4, ''plotphase'',''off''' } ...\n\t\t\t { 'Style', 'pushbutton', 'string', 'Help', 'callback', 'pophelp(''timef'');' } ...\n\t\t\t {} ...\n\t\t\t { 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'plotersp','present',0), 'string', ...\n\t\t\t\t 'Plot Event Related Spectral Power', 'tooltipstring', ...\n\t\t\t\t 'Plot log spectral perturbation image in the upper panel' } ...\n\t\t\t { 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'plotitc','present',0), 'string', ...\n\t\t\t\t 'Plot Inter Trial Coherence', 'tooltipstring', ...\n\t\t\t\t 'Plot the inter-trial coherence image in the lower panel' } ...\n\t\t\t };\n % { 'Style', 'edit', 'string', '''padratio'', 4, ''plotphase'', ''off''' } ...\n\t\t\t %{ 'Style', 'text', 'string', '[set] -> Plot ITC phase sign', 'fontweight', 'bold', ...\n\t\t\t%\t 'tooltipstring', ['Plot the sign (+/-) of inter-trial coherence phase' 10 ...\n\t\t\t%\t\t'as red (+) or blue (-)'] } ...\n\t\t\t% { 'Style', 'checkbox', 'value', ~getkeyval(lastcom,'plotphase','present',1) } { } ...\n\n\tresult = inputgui( geometry, uilist, 'pophelp(''pop_timef'');', ...\n\t\t\t\t\t fastif(typeproc, 'Plot channel time frequency -- pop_timef()', ...\n\t\t\t\t\t\t\t 'Plot component time frequency -- pop_timef()'));\n\tif length( result ) == 0 return; end\n\n\tnum\t = eval( [ '[' result{1} ']' ] ); \n\ttlimits\t = eval( [ '[' result{2} ']' ] ); \n\tcycles\t = eval( [ '[' result{3} ']' ] );\n if result{4}\n \toptions = [ ',''type'', ''coher''' ];\n else\n\t\toptions = [',''type'', ''phasecoher''' ];\n end;\t\n\t\n % add topoplot\n % ------------\n if isfield(EEG.chanlocs, 'theta')\n if ~isfield(EEG, 'chaninfo'), EEG.chaninfo = []; end\n if typeproc == 1\n options = [options ', ''topovec'', ' int2str(num) ...\n ', ''elocs'', EEG.chanlocs, ''chaninfo'', EEG.chaninfo' ];\n else\n options = [options ', ''topovec'', EEG.icawinv(:,' int2str(num) ...\n '), ''elocs'', EEG.chanlocs, ''chaninfo'', EEG.chaninfo' ];\n end\n end\n \n % add title\n % ---------\n\tif isempty( findstr( '''title''', result{6}))\n if ~isempty(EEG.chanlocs) && typeproc\n chanlabel = EEG.chanlocs(num).labels;\n else\n chanlabel = int2str(num);\n end\n\t switch lower(result{4})\n\t case 'coher', options = [options ', ''title'',' fastif(typeproc, '''Channel ', '''Component ') chanlabel ...\n\t ' power and inter-trial coherence' fastif(~ isempty(EEG.setname), [' (' EEG.setname ')''' ], '''') ];\n\t otherwise, options = [options ', ''title'',' fastif(typeproc, '''Channel ', '''Component ') chanlabel ...\n\t ' power and inter-trial phase coherence' fastif(~ isempty(EEG.setname), [' (' EEG.setname ')''' ], '''') ];\n\t end\n\tend\n\tif ~isempty( result{5} )\n\t\toptions = [ options ', ''alpha'',' result{5} ];\n\tend\n\tif ~isempty( result{6} )\n\t\t options = [ options ',' result{6} ];\n\tend\n\tif ~result{7}\n\t\toptions = [ options ', ''plotersp'', ''off''' ];\n\tend\n\tif ~result{8}\n\t\toptions = [ options ', ''plotitc'', ''off''' ];\n\tend\n\tfigure; try, icadefs; set(gcf, 'color', BACKCOLOR); catch, end\nelse\n options = [ ',' vararg2str(varargin) ];\nend\n\n% compute epoch limits\n% --------------------\nif isempty(tlimits)\n\ttlimits = [EEG.xmin, EEG.xmax]*1000;\nend;\t\npointrange1 = round(max((tlimits(1)/1000-EEG.xmin)*EEG.srate, 1));\npointrange2 = round(min((tlimits(2)/1000-EEG.xmin)*EEG.srate, EEG.pnts));\npointrange = [pointrange1:pointrange2];\n\n% call function sample either on raw data or ICA data\n% ---------------------------------------------------\nif typeproc == 1\n\ttmpsig = EEG.data(num,pointrange,:);\nelse\n\tif ~isempty( EEG.icasphere )\n tmpsig = eeg_getdatact(EEG, 'component', num, 'samples', pointrange); \n\telse\n\t\terror('You must run ICA first');\n\tend;\t\nend;\t \n\n% outputs\n% -------\noutstr = '';\nif ~popup\n for io = 1:nargout, outstr = [outstr 'varargout{' int2str(io) '},' ]; end\n if ~isempty(outstr), outstr = [ '[' outstr(1:end-1) '] =' ]; end\nend\n\n% plot the datas and generate output command\n% --------------------------------------------\nif length( options ) < 2\n options = '';\nend\nif nargin < 4\n varargout{1} = sprintf('figure; pop_timef( EEG, %d, %d, %s, %s %s);', typeproc, num, ...\n vararg2str({tlimits}), vararg2str({cycles}), options);\nend\ncom = sprintf('%s timef( tmpsig(:, :), length(pointrange), [tlimits(1) tlimits(2)], EEG.srate, cycles %s);', outstr, options);\neval(com)\t\n\nreturn;\n\n% get contextual help\n% -------------------\nfunction txt = context(var, allvars, alltext);\n\tloc = strmatch( var, allvars);\n\tif ~isempty(loc)\n\t\ttxt= alltext{loc(1)};\n\telse\n\t\tdisp([ 'warning: variable ''' var ''' not found']);\n\t\ttxt = '';\n\tend\n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/popfunc/pop_timef.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38773490958809803}} {"text": "function out = isPeriodicTech(f)\n%ISPERIODICTECH Test if a CHEBFUN object is built upon a TECH of \n%periodic functions.\n% out = ISPERIODICTECH(F) returns logical true if F has at least one FUN\n% which is made of a TECH of periodic functions and false otherwise.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% out = all(cellfun(@(f) isPeriodicTech(f), f.funs));\n\n% Since all funs have the same technology, it is sufficient and faster to test\n% only the first.\nout = isPeriodicTech(f.funs{1});\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/isPeriodicTech.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3877349016938526}} {"text": "function A = imresize3d_trans(V,scale,tsize,ntype,npad)\n A1 = imresize3d(V(:,:,:,1), scale, tsize, ntype, npad);\n A2 = imresize3d(V(:,:,:,2), scale, tsize, ntype, npad);\n A3 = imresize3d(V(:,:,:,3), scale, tsize, ntype, npad);\n A = cat(4, A1, A2, A3);\nend", "meta": {"author": "visva89", "repo": "pTVreg", "sha": "c359620e3c8435392db02354274d6c74d682d437", "save_path": "github-repos/MATLAB/visva89-pTVreg", "path": "github-repos/MATLAB/visva89-pTVreg/pTVreg-c359620e3c8435392db02354274d6c74d682d437/mutils/My/image_utils/imresize3d_trans.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3877349016938526}} {"text": "function failed_tutorial_spike\n\n% MEM 8gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_read_spike ft_spike_select ft_spike_waveform ft_spike_maketrials ft_spike_isi ft_spike_plot_isireturn ft_spike_psth ft_spikedensity ft_spike_plot_raster ft_spike_rate ft_spike_select ft_spike_xcorr ft_spike_jpsth ft_spike_plot_jpsth\n\nfilenex = dccnpath('/home/common/matlab/fieldtrip/data/ftp/tutorial/spikefield/p029_sort_final_01.nex');\nspike = ft_read_spike(filenex);\n \ncfg = [];\ncfg.spikechannel = {'sig002a_wf', 'sig003a_wf'}; % select only the two single units\nspike = ft_spike_select(cfg, spike);\n\ncfg = [];\ncfg.fsample = 40000;\ncfg.interpolate = 1; % keep the density of samples as is\n[wave, spikeCleaned] = ft_spike_waveform(cfg,spike);\n\nfor k = [1 2]\n figure, \n sl = squeeze(wave.dof(k,:,:))>1000; % only keep samples with enough spikes\n plot(wave.time(sl), squeeze(wave.avg(k,:,sl)),'k') % factor 10^6 to get microseconds\n hold on\n \n % plot the standard deviation\n plot(wave.time(sl), squeeze(wave.avg(k,:,sl))+sqrt(squeeze(wave.var(k,:,sl))),'k--') \n plot(wave.time(sl), squeeze(wave.avg(k,:,sl))-sqrt(squeeze(wave.var(k,:,sl))),'k--')\n \n axis tight\n set(gca,'Box', 'off') \n xlabel('time')\n ylabel('normalized voltage')\nend\n\nevent = ft_read_event(filenex);\n\ncfg = []; \ncfg.dataset = filenex;\ncfg.trialfun = 'trialfun_stimon';\ncfg = ft_definetrial(cfg);\n\ncfg.timestampspersecond = spike.hdr.FileHeader.Frequency; % 40000\nspikeTrials = ft_spike_maketrials(cfg,spike);\n\nspikeTrials.trialtime(1:5,:)\nspikeTrials.cfg.trl(1:5,:) \n\ncfg = [];\nhdr = ft_read_header(filenex);\ncfg.trl = [0 hdr.nSamples*hdr.TimeStampPerSample 0];\ncfg.timestampspersecond = spike.hdr.FileHeader.Frequency; % 40000\nspike_notrials = ft_spike_maketrials(cfg,spike); \n\ndat = ft_checkdata(spikeTrials,'datatype', 'raw', 'fsample', 1000);\n\ndat.trial{1}(:,4000:4004)\n\nspike_converted = ft_checkdata(dat,'datatype', 'spike');\n\ncfg = [];\ncfg.bins = [0:0.0005:0.1]; % use bins of 0.5 milliseconds\ncfg.param = 'coeffvar'; % compute the coefficient of variation (sd/mn of isis)\nisih = ft_spike_isi(cfg,spikeTrials);\n\nfor k = [1 2] % only do for the single units\n cfg = [];\n cfg.spikechannel = isih.label{k};\n cfg.interpolate = 5; % interpolate at 5 times the original density\n cfg.window = 'gausswin'; % use a gaussian window to smooth\n cfg.winlen = 0.004; % the window by which we smooth has size 4 by 4 ms\n cfg.colormap = jet(300); % colormap\n cfg.scatter = 'no'; % do not plot the individual isis per spike as scatters\n figure, ft_spike_plot_isireturn(cfg,isih)\nend\n\n% read in the .t file\nfilet = dccnpath('/home/common/matlab/fieldtrip/data/ftp/tutorial/spike/tt6_7.t');\n\ncfg = [];\ncfg.dataset = filet;\nspike2 = ft_read_spike(cfg.dataset);\n \n% convert timestamps to seconds\ncfg = [];\ncfg.trl = [0 max(spike2.timestamp{1})+1 0];\ncfg.timestampspersecond = 10^6;\nspike2Trial = ft_spike_maketrials(cfg,spike2);\n \n% run the isi histogram\ncfg = [];\ncfg.bins = [0:0.001:0.2];\nisih = ft_spike_isi(cfg,spike2Trial);\n \n% plot the isi histogram with the Poincare return map\ncfg = [];\ncfg.interpolate = 5;\ncfg.window = 'gausswin';\ncfg.winlen = 0.005;\ncfg.scatter = 'no';\ncfg.colormap = jet(300);\nfigure, ft_spike_plot_isireturn(cfg,isih)\n\ncfg = []; \ncfg.binsize = 0.1; % if cfgPsth.binsize = 'scott' or 'sqrt', we estimate the optimal bin size from the data itself\ncfg.outputunit = 'rate'; % give as an output the firing rate\ncfg.latency = [-1 3]; % between -1 and 3 sec.\ncfg.vartriallen = 'yes'; % variable trial lengths are accepted\ncfg.keeptrials = 'yes'; % keep the psth per trial in the output\npsth = ft_spike_psth(cfg,spikeTrials);\n\ncfg = [];\ncfg.binsize = [0.05];\ncfg.latency = [-1 3];\npsth = ft_spike_psth(cfg,spikeTrials);\n \ncfg = [];\ncfg.topplotfunc = 'line'; % plot as a line\ncfg.spikechannel = spikeTrials.label([1 2]);\ncfg.latency = [-1 3];\ncfg.errorbars = 'std'; % plot with the standard deviation\ncfg.interactive = 'no'; % toggle off interactive mode\nfigure, ft_spike_plot_raster(cfg,spikeTrials, psth) \n\ncfg = [];\ncfg.latency = [-1 3]; \ncfg.timwin = [-0.025 0.025];\ncfg.fsample = 1000; % sample at 1000 hz\nsdf = ft_spikedensity(cfg,spikeTrials);\n\ncfg = [];\ncfg.topplotfunc = 'line'; % plot as a line plot\ncfg.spikechannel = spikeTrials.label([1 2]); % can also select one unit here\ncfg.latency = [-1 3];\ncfg.errorbars = 'std'; % plot with standard deviation\ncfg.interactive = 'no'; % toggle off interactive mode\nfigure, ft_spike_plot_raster(cfg,spikeTrials, sdf) \n\ncfg = [];\ncfg.latency = [-1 3]; \ncfg.timwin = [-0.1 0.1];\ncfg.fsample = 1000; % sample at 1000 hz\n[sdf, sdfdata] = ft_spikedensity(cfg,spikeTrials);\n\nsdfdata.trial{1}(:,3000:3005)\n\ncfg = [];\ncfg.latency = [0.3 max(spikeTrials.trialtime(:))]; % sustained response period\ncfg.keeptrials = 'yes';\nrate = ft_spike_rate(cfg,spikeTrials);\n\n[R,P] = corrcoef(rate.trial);\n\n% read in the data, select the channels and define the trials\nspike = ft_read_spike(filenex); \n \ncfg = [];\ncfg.spikechannel = {'sig001U_wf', 'sig002U_wf', 'sig003U_wf', 'sig004U_wf'}; % select only the MUA\nspike = ft_spike_select(cfg, spike);\n \ncfg = []; \ncfg.dataset = filenex;\ncfg.trialfun = 'trialfun_stimon';\ncfg = ft_definetrial(cfg);\ncfg.timestampspersecond = spike.hdr.FileHeader.Frequency; % 40000\nspikeTrials = ft_spike_maketrials(cfg,spike); \n\ncfg = [];\ncfg.maxlag = 0.2; % maximum 200 ms\ncfg.binsize = 0.001; % bins of 1 ms\ncfg.outputunit = 'proportion'; % make unit area\ncfg.latency = [-2.5 0];\ncfg.vartriallen = 'no'; % do not allow variable trial lengths\ncfg.method = 'xcorr'; % compute the normal cross-correlogram\nXc = ft_spike_xcorr(cfg,spikeTrials); \n \n% compute the shuffled correlogram\ncfg.method = 'shiftpredictor'; % compute the shift predictor\nXshuff = ft_spike_xcorr(cfg,spikeTrials);\n\niCmb = 3;\njCmb = 4;\nfigure\nxcSmoothed = conv(squeeze(Xc.xcorr(iCmb,jCmb,:)),ones(1,5)./5,'same'); % do some smoothing\nhd = plot(Xc.time(3:end-2),xcSmoothed(3:end-2),'k'); % leave out borders (because of smoothing)\nhold on\nxcSmoothed = conv(squeeze(Xshuff.shiftpredictor(iCmb,jCmb,:)),ones(1,5)./5,'same'); \nplot(Xc.time(3:end-2),xcSmoothed(3:end-2),'r')\nhold on\nxlabel('delay')\nylabel('proportion of coincidences') \ntitle([Xc.label{iCmb} Xc.label{jCmb}])\naxis tight\n\n% compute the spike densities\ncfg = [];\ncfg.latency = [-1 3]; \ncfg.timwin = [-0.025 0.025];\ncfg.fsample = 200;\n[sdf] = ft_spikedensity(cfg,spikeTrials);\n \n% compute the joint psth\ncfg = [];\ncfg.normalization = 'no';\ncfg.channelcmb = spikeTrials.label(3:4);\ncfg.method = 'jpsth';\njpsth = ft_spike_jpsth(cfg,sdf);\n \ncfg.method = 'shiftpredictor';\njpsthShuff = ft_spike_jpsth(cfg,sdf);\n \n% subtract the predictor\njpsthSubtr = jpsth;\njpsthSubtr.jpsth = jpsth.jpsth-jpsthShuff.shiftpredictor;\n\ncfg = [];\nfigure\nft_spike_plot_jpsth(cfg,jpsth)\nfigure\nft_spike_plot_jpsth(cfg,jpsthShuff)\nfigure\nft_spike_plot_jpsth(cfg,jpsthSubtr)\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_tutorial_spike.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3877349016938526}} {"text": "%MDL_IRB140 Create model of ABB IRB 140 manipulator\n%\n% MDL_IRB140 is a script that creates the workspace variable irb140 which\n% describes the kinematic characteristics of an ABB IRB 140 manipulator\n% using standard DH conventions.\n%\n% Also define the workspace vectors:\n% qz zero joint angle configuration\n% qr vertical 'READY' configuration\n% qd lower arm horizontal as per data sheet\n%\n% Reference::\n% - \"IRB 140 data sheet\", ABB Robotics.\n% - \"Utilizing the Functional Work Space Evaluation Tool for Assessing a \n% System Design and Reconfiguration Alternatives\"\n% A. Djuric and R. J. Urbanic\n%\n% Notes::\n% - SI units of metres are used.\n% - Unlike most other mdl_xxx scripts this one is actually a function that\n% behaves like a script and writes to the global workspace.\n%\n% See also mdl_fanuc10l, mdl_m16, mdl_motormanHP6, mdl_S4ABB2p8, mdl_puma560, SerialLink.\n\n% MODEL: ABB, IRB140, 6DOF, standard_DH\n\n\n\n% Copyright (C) 1993-2017, by Peter I. Corke\n%\n% This file is part of The Robotics Toolbox for MATLAB (RTB).\n% \n% RTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% RTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with RTB. If not, see .\n%\n% http://www.petercorke.com\n\nfunction r = mdl_irb140()\n \n deg = pi/180;\n \n % robot length values (metres)\n d1 = 0.352;\n a1 = 0.070;\n a2 = 0.360;\n d4 = 0.380;\n d6 = 0.065;\n \n % DH parameter table\n % theta d a alpha\n dh = [0 d1 a1 -pi/2\n 0 0 a2 0\n 0 0 0 pi/2\n 0 d4 0 -pi/2\n 0 0 0 pi/2\n 0 d6 0 pi/2];\n \n \n % and build a serial link manipulator\n \n robot = SerialLink(dh, 'name', 'IRB 140', ...\n 'manufacturer', 'ABB', 'ikine', 'nooffset'); \n \n % place the variables into the global workspace\n if nargin == 1\n r = robot;\n elseif nargin == 0\n assignin('caller', 'irb140', robot);\n assignin('caller', 'qz', [0 0 0 0 0 0]); % zero angles\n assignin('caller', 'qd', [0 -90 180 0 0 -90]*deg); % data sheet pose, horizontal\n assignin('caller', 'qr', [0 -90 90 0 90 -90]*deg); % ready pose, arm up\n end\nend\n\n", "meta": {"author": "petercorke", "repo": "robotics-toolbox-matlab", "sha": "bd7a9d75176c660f43fc799b24d838f70b02250c", "save_path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab/robotics-toolbox-matlab-bd7a9d75176c660f43fc799b24d838f70b02250c/models/mdl_irb140.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3877159239700842}} {"text": "function newTargets = getImgOverPlanes(ops1)\nnFOV = size(ops1,2);\nLy = ops1{1}.Ly;\nLx = ops1{1}.Lx;\nplanesToInterpolate = ops1{1}.planesToInterpolate;\nds = zeros(length(planesToInterpolate), 2, nFOV);\n% planesToInterpolate should be indices of non-flyback planes\n% (only those should be aligned)\nfor i = 2:length(planesToInterpolate) % align consecutive planes\n pl = planesToInterpolate(i);\n for j = 1:nFOV\n ds(i,:,j) = registration_offsets(ops1{pl,j}.mimg, ops1{pl-1,j}, 0);\n end\nend\nds = cumsum(ds,1);\nds = bsxfun(@minus, ds, mean(ds,1));\nimages = zeros(Ly, Lx, length(planesToInterpolate), nFOV);\nfor i = 1:length(planesToInterpolate)\n for j = 1:nFOV\n images(:,:,i,j) = ops1{planesToInterpolate(i),j}.mimg;\n end\nend\nds = reshape(permute(ds, [1 3 2]), [], 2);\nimages = reshape(images, Ly, Lx, []);\nnewTargets = register_movie(images, ops1{1}, ds);\nnewTargets = reshape(newTargets, Ly, Lx, length(planesToInterpolate), nFOV);", "meta": {"author": "cortex-lab", "repo": "Suite2P", "sha": "c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5", "save_path": "github-repos/MATLAB/cortex-lab-Suite2P", "path": "github-repos/MATLAB/cortex-lab-Suite2P/Suite2P-c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5/preRegistration/getImgOverPlanes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3877159239700842}} {"text": "classdef rbm\n% Restricted Boltzmann Machine Model object:\n%----------------------------------------------------------------------------\n% Initialize and train an RBM energy-based model. Supports binary, Gaussian,\n% and multinomial inputs (still in development).\n%\n% Supports binary and noisy rectified linear units (NReLU) in the hidden layer.\n%\n% Supports joint modeling of binary and multinomial variables for classification.\n%\n% Model regularizers include L2 and L1 (via subgradients) weight decay, hidden\n% unit sparsity (binary units only), and hidden unit dropout.\n%----------------------------------------------------------------------------\n% Dustin E. Stansbury\n% stan_s_bury@berkeley.edu\n\n\nproperties\n\tclass = 'rbm'; \t\t% GENERAL CLASS OF MODEL\n\tinputType = 'binary';% TYPE OF RBM ('BB','GB')\n\tclassifier = false; % TRAIN MULTINOMIAL UNITS FOR CLASSIFICATION IN PARALLEL\n\tnClasses;\t\t\t% # OF OUTPUT CLASSES (.classifier = true)\n\tnObs;\t\t\t\t% # OF TRAINING OBSERVATIONS\n\tnVis;\t\t\t\t% # OF VISIBLE UNITS (DIMENSIONS)\n\tnHid = 100;\t\t\t% # OF HIDDEN UNITS\n\trlu = 0;\t\t\t% USE RECTIFIED LINEAR UNITS\n\tW;\t\t\t\t\t% CONNECTION WEIGHTS\n\tdW;\t\t\t\t\t% GRADIENT FOR CONN. WEIGHTS\n\tb;\t\t\t\t\t% VISIBLE UNIT BIASES\n\tdb;\t\t\t\t\t% GRADIENT FOR VIS. BIAS\n\tc;\t\t\t\t\t% HIDDEN UNIT BIASES\n\tdc;\t\t\t\t\t% GRADIENT FOR HID. BIAS\n\tclassW=0\t\t\t% CLASSFIER OUTPUT WEIGHTS\n\tdClassW; \t\t\t% CLASS. WEIGHT GRADIENTS\n\td=0;\t\t\t\t% CLASSIFIER BIAS\n\tdd;\t\t\t\t\t% GRADIENT FOR classifier BIASES\n\tlog;\t\t\t\t% ERROR AND LEARNING RATE LOGS\n\taVis;\t\t\t\t% VISIBLE LAYER ACTIVATIONS\n\taHid;\t\t\t\t% HIDDEN LAYER ACTIVATION\n\tpHid;\t\t\t\t% HIDDEN LAYER PROBS\n\tpHid0;\t\t\t\t% INITIAL HIDDEN LAYER PROBS\n\taHid0;\t\t\t\t% INITIAL HIDDEN LAYER ACTIVATION\n\teHid;\t\t\t\t% EXPECTATION OF HIDDEN STATE (POST TRAINING)\n\tpClass;\t\t\t\t% PROBABILITIES OF CLASSIFIER UNITS (.classifier = 1)\n\taClass;\t\t\t\t% ACTIVATION OF CLASSIFIER UNITS (.classifier = 1)\n\tdocLen;\t\t\t\t% DOCUMENT LENGTH (MULTINOMIAL INPUTS)\t\n\tlRate = 0.1;\t\t% DEFAULT LEARNING RATE\n\tbatchIdx = [];\t\t% BATCH INDICES INTO TRAINING DATA\n\tsampleVis = 0;\t\t% SAMPLE THE VISIBLE UNITS\n\tsampleHid = 1;\t\t% SAMPLE HIDDEN UNITS \n\tmomentum = 0;\t\t% DEFAULT MOMENTUM TERM \n\tnEpoch = 100;\t\t% # OF FULL PASSES THROUGH TRIANING DATA\n\twPenalty = 0;\t\t% CURRENT WEIGHT PENALTY\n\tsparsity = 0;\t\t% SPARSENESS FACTOR\n\tdropout = 0;\t\t% HIDDEN UNIT DROPOUT\n\tdoMask = 1;\t\t\t% DROPOUT MASK\n\ttopoMask = [];\t\t% MASK FOR TOPOGRAPHY\n\tsparseGain=5;\t\t% LEARNING RATE GAIN FOR SPARSITY\n\tbatchSz = 100;\t\t% # OF TRAINING POINTS PER BATCH\n\tnGibbs = 1;\t\t\t% CONTRASTIVE DIVERGENCE (1)\n\tbeginAnneal = Inf;\t% # OF EPOCHS TO START SIMULATED ANNEALING\n\tbeginWeightDecay=1% # OF EPOCHS TO START WEIGHT PENALTY\n\tverbose = 1;\t\t% DISPLAY PROGRESS\n\tsaveEvery = 0;\t\t% # OF EPOCHS TO SAVE INTERMEDIATE MODELS\n\tdisplayEvery=500;\t% # WEIGHT UPDATES TO VISUALIZE LEARNING\n\tvisFun = [];\t\t% USER-DEFINED FUNCTION ('@myFun')\n\tauxVars = []; \t\t% AUXILLARY VARIABLES, JUST IN CASE\n\tuseGPU = 0; \t\t% USE CUDA, IF AVAILABLE\n\tgpuDevice;\t\t\t% GPU DEVICE STRUCTURE\n\tinteractive = 0;\t% STORE A GLOBAL COPY FOR INTERACTIVE TRAINING\n\tsaveFold\nend % END PROPERTIES\n\nmethods\n\n\tfunction self = rbm(arch)\n\t% r = rbm(arch)\n\t%--------------------------------------------------------------------------\n\t% RBM constructor\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - a set of arguments defining the RBM architecture.\n\t%\n\t% OUTPUT:\n\t% : - an RBM model object.\n\t%--------------------------------------------------------------------------\n\t\tif notDefined('arch')\n\t\telse\n\t\t\tself = self.init(arch);\n\t\tend\n\tend\n\n\tfunction print(self)\n\t% print()\n\t%--------------------------------------------------------------------------\n\t% Display the properties and methods for the RBM object class.\n\t%--------------------------------------------------------------------------\n\t\tproperties(self)\n\t\tmethods(self)\n\tend\n\t\n\tfunction self = train(self,X,targets)\n\t% self = train(X,[targets])\n\t%--------------------------------------------------------------------------\n\t% Train an RBM using Contrastive Divergence\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - to-be modeled data |X| = [#Obs x #Vis]\n\t% : - category targets. can be either [#Obs x #Class] as 1 of\n\t% K representation or [#Obs x 1], where each entry is a\n\t% numerical category label. (optional)\n\t% OUTPUT:\n\t% : - trained RBM object.\n\t%--------------------------------------------------------------------------\n\t\tlRate0 = self.lRate;\n\t\tif self.sparsity > 0, meanAct = 0; end\n\t\tif notDefined('targets')\n\t\t\ttargets = 0;\n\t\tend\n\n\t\tself.nObs = size(X,1);\n\n\t\t% INITIALIZE CLASSIFIER UNITS\n\t\tif self.classifier || any(targets) \n\t\t\tself.classifier = true;\n\t\t\t[self,targets] = self.initClassifer(targets);\n\t\tend\n\t\t\n\t\tself.log.err = zeros(1,self.nEpoch);\n\t\tself.log.lRate = self.log.err;\n\t\n\t\twPenalty = self.wPenalty;\n\t\tdCount = 1;\n\t\tmCount = 1;\n\t\t\n\t\tself.batchIdx = self.createBatches(X);\n\n\t\t% SEND DATA TO GPU\n\t\t% USER WILL NEED TO IMPLEMENT gpuDistribute.m\n\t\tif self.useGPU\n\t\t\tself = gpuDistribute(self);\n\t\t\tX = gpuArray(X);\n\t\t\ttargets = gpuArray(targets);\n\t\tend\n\t\t\n\t\tiE = 1;\n\t\twhile 1\n\t\t\tsumErr = 0;\n\n\t\t\t% SIMULATED ANNEALING\n\t\t\tif iE > self.beginAnneal\n\t\t\t\tself.lRate = max(lRate0*((iE-self.beginAnneal)^(-.25)),1e-8);\n\t\t\tend\n\t\t\t\n\t\t\t% WEIGHT DECAY\n\t\t\tif iE < self.beginWeightDecay\n\t\t\t\tself.wPenalty = 0;\n\t\t\telse\n\t\t\t\tself.wPenalty = wPenalty;\n\t\t\tend\n\n\t\t\t% LOOP OVER BATCHES\n\t\t\tfor jB = 1:numel(self.batchIdx)\n\t\t\t\tbatchX = X(self.batchIdx{jB},:);\n\t\t\t\tif self.classifier\n\t\t\t\t\tbatchTargets = targets(self.batchIdx{jB},:);\n\t\t\t\telse\n\t\t\t\t\tbatchTargets = 0;\n\t\t\t\tend\n\t\t\t\t\n\t\t\t\tif strcmp(self.inputType,'multinomial')\n\t\t\t\t\tself.docLen = sum(batchX,2);\n\t\t\t\tend\n\t\t\t\t\n\t\t\t\tif self.dropout > 0 % SAMPLE DROPOUT MASK ONECE PER MINIBATCH\n\t\t\t\t\tself.doMask = rand(size(batchX,1),self.nHid)>self.dropout;\n\t\t\t\telse\n\t\t\t\t\tself.doMask = 1;\n\t\t\t\tend\n\n\t\t\t\t% SAMPLE FROM MODEL, CALCULATE GRADIENTS, UPDATE PARAMS\n\t\t\t\tself = self.runGibbs(batchX,batchTargets);\n\t\t\t\tself = self.updateParams(batchX,batchTargets);\n\t\t\t\tsumErr = self.accumErr(batchX,sumErr);\n\t\t\t\t\n\t\t\t\tif ~isempty(self.visFun) & ~mod(dCount,self.displayEvery)&iE>1;\n\t\t\t\t\tself.auxVars.batchX = batchX;\n\t\t\t\t\tself.auxVars.batchTargets = targets;\n\t\t\t\t\tself.auxVars.error = self.log.err(1:iE-1);\n\t\t\t\t\tself.auxVars.lRate = self.log.lRate(1:iE-1);\n\t\t\t\t\tself.visLearning;\n\t\t\t\tend\n\t\t\t\tdCount = dCount+1;\n\t\t\t\t% MOVING AVERAGE OF HIDDEN ACTIVATIONS FOR SPARSITY\n\t\t\t\tif self.sparsity & ~self.rlu\n\t\t\t\t\tmeanAct = mean(self.aHid)*0.1 + 0.9*meanAct;\n\t\t\t\tend\n\t\t\tend\n\n\t\t\t% SPARSITY (BINARY HIDDENS ONLY)\n\t\t\tif self.sparsity & ~self.rlu\n\t\t\t\tdcSparse = -self.lRate*self.sparseGain*(meanAct-self.sparsity);\n\t\t\t\tself.c = self.c + dcSparse;\n\t\t\tend\n\n \t\t\t% ENDUCE SPARSITY\n \t\t\t% if self.sparsity & ~self.rlu\n \t\t\t% \tdcSparse = -self.lRate*self.sparseGain*(mean(self.pHid)-self.sparsity);\n \t\t\t% \tself.c = self.c + dcSparse;\n \t\t\t% end\n\n\t\t\t% LOG ERRORS, ETC.\n\t\t\tself.log.err(iE) = sumErr/self.nObs;\n\t\t\tself.log.lRate(iE) = self.lRate;\n\t\t\t\n\t\t\tif self.verbose\n\t\t\t\tself.printProgress(sumErr,iE,jB);\n\t\t\tend\n\n\t\t\t% SAVE?\n\t\t\tif iE > 1\n\t\t\t\tif ~mod(iE, self.saveEvery) & ~isempty(self.saveFold)\n\t\t\t\t\tr = self;\n\t\t\t\t\tif ~exist(r.saveFold,'dir')\n\t\t\t\t\t\tmkdir(r.saveFold);\n\t\t\t\t\tend\n\t\t\t\t\tsave(fullfile(r.saveFold,sprintf('Epoch_%d.mat',iE)),'r'); clear r;\n\t\t\t\tend\n\t\t\tend\n\n\t\t\t% CLEAN UP IF USING INTERACTIVE TRAINING\n\t\t\tif iE >= self.nEpoch\n\t\t\t\tif self.interactive\n\t\t\t\t\tclear global r\n\t\t\t\tend\n\t\t\t\tbreak\n\t\t\telse % STORE GLOBAL COPY FOR INTERACTIVE TRAINING\n\t\t\t\tif self.interactive\n\t\t\t\t\tglobal r\n\t\t\t\t\tr = self;\n\t\t\t\tend\n\t\t\tend\n\t\t\tiE = iE + 1;\n\t\tend\n\t\t\n\t\t% PULL DATA FROM GPU, IF NEEDED\n\t\t% USER WILL NEED TO IMPLEMENT gpuGather.m\n\t\tif self.useGPU\n\t\t\tself = gpuGather(self);\n\t\t\treset(self.gpuDevice);\n\t\t\tself.gpuDevice = [];\n\t\tend\n\t\tfprintf('\\n');\n\tend\n\n\tfunction self = runGibbs(self,X,targets)\n\t% r = runGibbs(X,targets)\n\t%--------------------------------------------------------------------------\n\t% Draw MCMC samples from the current model via Gibbs sampling.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - minibatch data.\n\t% : - possible categorical targets. if no categorization,\n\t% should be empty ([]).\n\t%\n\t% OUTPUT:\n\t% : - RBM object with updated states\n\t%--------------------------------------------------------------------------\n\t\tnObs = size(X,1);\n\t\tiC = 1;\n\t\t% GO UP\n\t\tself = self.hidGivVis(X,targets,1);\n\t\t% LOG INITIAL STATES FOR GRADIENT CALCULATION\n\t\tself.pHid0 = self.pHid;\n\t\tself.aHid0 = self.aHid;\n\t\t\n\t\twhile 1\n\t\t\t% GO DOWN\n\t\t\tself = self.visGivHid(self.aHid,self.sampleVis);\n\t\t\tX = self.aVis;\n\n\t\t\t% GO BACK UP\n\t\t\tif iC >= self.nGibbs\n\t\t\t\tself = self.hidGivVis(self.aVis,targets,0);\n\t\t\t\tbreak\n\t\t\telse\n\t\t\t\tself = self.hidGivVis(self.aVis,targets,1);\n\t\t\tend\n\t\t\tiC = iC + 1;\n\t\tend\n\tend\n\n\tfunction self = hidGivVis(self,X,targets,sampleHid)\n\t% r = hidGivVis(X,targets,[sampleHid])\n\t%--------------------------------------------------------------------------\n\t% Update hidden unit probabilities and states conditioned on the current\n\t% states of the visible units.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - batch data.\n\t% : - possible target variables.\n\t% : - flag indicating to sample the states of the hidden units.\n\t%\n\t% OUTPUT:\n\t% : - RBM object with updated hidden unit probabilities/states.\n\t%--------------------------------------------------------------------------\n\t\thidBias = self.c;\n\t\tif strcmp(self.inputType,'multinomial')\n\t\t\t% WEIGHT BIASES BY DOCUMENT LENGTH\n\t\t\thidBias = bsxfun(@times,self.docLen,hidBias);\n\t\tend\n\t\t\n\t\tif self.classifier\n\t\t\t% JOINTLY MODEL MULTINOMIAL OVER INPUT CLASSES\n\t\t\tpHid = self.sigmoid(bsxfun(@plus,X*self.W + targets*self.classW ,hidBias));\n\t\telse\n\t\t\tpHid = self.sigmoid(bsxfun(@plus,X*self.W, hidBias));\n\t\tend\n\t\t\n\t\tif self.rlu % RECTIFIED LINEAR UNITS \n\t\t\tself.aHid = max(0,pHid + randn(size(pHid)).*sqrt(self.sigmoid(pHid)));\n\t\telse\n\t\t\tif sampleHid\n\t\t\t\tself.aHid = single(pHid>rand(size(X,1),self.nHid));\n\t\t\telse\n\t\t\t\tself.aHid = pHid;\n\t\t\tend\n\t\tend\n\t\tself.pHid = pHid;\n\n\t\t% ENDUCE TOPOGRAPHY?\n\t\tif ~isempty(self.topoMask)\n\t\t\tfor iH = 1:size(self.aHid,1)\n\t\t\t\tself.aHid(iH,:) = sum(bsxfun(@times,self.topoMask,self.aHid(iH,:)),2);\n\t\t\tend\n\t\tend\n\t\t% DEAL WITH DROPOUT\n\t\tself.aHid = self.aHid.*self.doMask;\n\tend\n\t\n\tfunction self = visGivHid(self,aHid,sampleVis)\n\t% r = hidGivVis(aHid,[sampleVis])\n\t%--------------------------------------------------------------------------\n\t% Update visible unit states conditioned on the current states of the hidden \n\t% units.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - current hidden unit states (activations)\n\t% : - flag indicating to sample the states of the visible units.\n\t%\n\t% OUTPUT:\n\t% : - RBM object with updated visible unit probabilities/states.\n\t%--------------------------------------------------------------------------\n\t\tnObs = size(aHid,1);\n\t\tswitch self.inputType\n\t\t\tcase 'binary'\n\t\t\t\tpVis = self.sigmoid(bsxfun(@plus,aHid*self.W',self.b));\n\t\t\t\tif sampleVis\n\t\t\t\t\tself.aVis = pVis>rand(nObs,self.nVis);\n\t\t\t\telse\n\t\t\t\t\tself.aVis = pVis;\n\t\t\t\tend\n\n\t\t\tcase 'gaussian'\n\t\t\t\tmu = bsxfun(@plus,aHid*self.W',self.b);\n\t\t\t\t\n\t\t\t\tif sampleVis\n\t\t\t\t\tself.aVis = self.drawNormal(mu);\t\t\t\t\t\n\t\t\t\telse\n\t\t\t\t\tself.aVis = mu;\n\t\t\t\tend\n\t\t\t\t\n\t\t\tcase 'multinomial'\n\t\t\t\tpVis = self.softMax(bsxfun(@plus,aHid*self.W',self.b));\n\t\t\t\tself.aVis = zeros(size(pVis));\n\t\t\t\tfor iO = 1:nObs\n\t\t\t\t\t% DRAW D SEPARATE MULTINOMIALS FOR EACH INPUT\n\t\t\t\t\tself.aVis(iO,:) = mnrnd(self.docLen(iO),pVis(iO,:));\n\t\t\t\tend\n\t\tend\n\n\t\tif self.classifier\n\t\t\tself.pClass = self.softMax(bsxfun(@plus,self.aHid*self.classW',self.d));\n\t\t\tself.aClass = self.sampleClasses(self.pClass);\n\t\tend\n\tend\n\t\n\tfunction self = updateParams(self,X,targets);\n\t% self = updateParams(X,targets)\n\t%--------------------------------------------------------------------------\n\t% Update current model parameters based on the states of hidden and visible\n\t% units. Weight decay is applied here.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - minibatch data.\n\t% : - possible categorical targets. if no categorization,\n\t% should be empty ([]).\n\t%\n\t% OUTPUT:\n\t% : - RBM object with updated states\n\t%--------------------------------------------------------------------------\n\t\tnObs = size(X,1);\n\t\t\n\t\tdW = (X'*self.pHid0 - self.aVis'*self.pHid)/nObs;\n\t\tself.dW = self.momentum*self.dW + ... % MOMENTUM\n\t\t\t (1-self.momentum)*dW; % NEW GRADIENT\n\n\t\tself.W = self.W + self.lRate*self.dW;\n\n\t\t% WEIGHT DECAY\n\t\tif self.wPenalty > 0 % L2 \n\t\t\tself.W = self.W - self.lRate*self.wPenalty*self.W;\n\t\telseif self.wPenalty < 0 % L1 SUBGRADIENT AT 0\n\t\t\tself.W = self.W + self.lRate*self.wPenalty*sign(self.W);\n\t\tend\n\n\t\tdb = mean(X) - mean(self.aVis);\n\t\tdc = mean(self.pHid0) - mean(self.pHid);\n\n\t\tself.db = self.momentum*self.db + self.lRate*db;\n\t\tself.b = self.b + self.db;\n\n\t\tself.dc = self.momentum*self.dc + self.lRate*dc;\n\t\tself.c = self.c + self.dc;\n\n\t\tif self.classifier\n\t\t\t% CLASSIFIER WEIGHTS\n\t\t\tdClassW=(targets'*self.pHid0 - self.aClass'*self.pHid)/nObs;\n\t\t\tself.dClassW=self.momentum*self.dClassW+self.lRate*(dClassW-self.wPenalty*self.classW);\n\t\t\tself.classW = self.classW + self.dClassW;\n\t\t\t\n\t\t\t% CLASSIFIER BIASES\n\t\t\tdd = (sum(targets) - sum(self.aClass))/nObs;\n\t\t\tself.dd = self.momentum*self.dd + self.lRate*dd;\n\t\t\tself.d = self.d + self.dd;\n\t\tend\n\tend\n\n\tfunction err = accumErr(self,X,err0);\n\t% err = updateParams(X,err0)\n\t%--------------------------------------------------------------------------\n\t% Add reconstruction error (squared difference) for the current batch to\n\t% the total error.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - minibatch data.\n\t% : - current resevoir of error\n\t%\n\t% OUTPUT:\n\t% : - updated error resevoir\n\t%--------------------------------------------------------------------------\n\t\terr = sum(sum((X-self.aVis).^2));\n\t\terr = err + err0;\n\tend\n\n\tfunction self = init(self,arch)\n\t% r = init(arch)\n\t%--------------------------------------------------------------------------\n\t% Initialize an rbm object based on provided architecture, .\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - a structure of architecture options. Possible fields are:\n\t% .size --> [#Visible x #Hidden] units\n\t% .inputType --> string indicating input type (i.e. 'binary',\n\t% 'gaussian','multinomial')\n\t% .classifyer --> flag indicating whether to train a class-\n\t% ifier model in parallel.\n\t% .opts --> additional cell array of options, defined\n\t% in argument-value pairs.\n\t%\n\t% OUTPUT:\n\t% : - an initialized RBM object.\n\t%--------------------------------------------------------------------------\n\t\tarch = self.ensureArchitecture(arch);\n\t\t\n\t\tself.nVis = arch.size(1);\n\t\tself.nHid = arch.size(2);\n\t\tself.inputType = arch.inputType;\n\t\tself.classifier = arch.classifier;\n\n\t\t% PARSE ANY ADDITIONAL OPTIONS\n\t\tif isfield(arch,'opts');\n\t\t\topts = arch.opts;\n\t\t\tfn = fieldnames(self);\n\t\t\tfor iA = 1:2:numel(opts)\n\t\t\t\tif ~isstr(opts{iA})\n\t\t\t\t\terror(' must be a cell array string-value pairs.');\n\t\t\t\telseif sum(strcmp(fn,opts{iA}))\n\t\t\t\t\tself.(opts{iA})=opts{iA+1};\n\t\t\t\tend\n\t\t\tend\n\t\tend\n\t\t\n\t\t% INIT. WEIGHTS (A' LA BENGIO)\n\t\trange = sqrt(6/(2*self.nVis));\n\t\tself.W = single(2*range*(rand(self.nVis,self.nHid)-.5));\n\t\t\n\t\tself.dW = zeros(size(self.W),'single');\n\t\tself.b = zeros(1,self.nVis,'single');\n\t\tself.db = zeros(size(self.b),'single');\n\t\tself.c = zeros(1,self.nHid,'single');\n\t\tself.dc = zeros(size(self.c),'single');\n\tend\n\n\tfunction arch = ensureArchitecture(self,arch)\n\t% arch = ensureArchitecture(self,arch)\n\t%--------------------------------------------------------------------------\n\t% Preprocess the provided architecture structure .\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - is either a [2 x 1] vector giving the [#vis x # hid], in which\n\t% case we use the default model parameters, or it is a strucure\n\t% with the fields:\n\t% .size --> Network size; [#Vis x # Hid]\n\t% .inputType (optional) --> ['binary'] or 'gaussian'\n\t% .classifier (optional) --> true or [false]\n\t% .opt (optional) --> a cell array of {'parameter',paramValue}\n\t% of global options\n\t%--------------------------------------------------------------------------\n\t\t% IF arch IS GIVEN AS A VECTOR \n\t\tif ~isstruct(arch),arch.size = arch; end\n\n\t\tif ~isfield(arch,'size');\n\t\t\terror('need to supply the # of Visible and Hidden units')\n\t\tend\n\t\t\n\t\tif ~isfield(arch,'inputType');\n\t\t\tarch.inputType = self.inputType;\n\t\tend\n\t\t\n\t\tif ~isfield(arch,'classifier');\n\t\t\tarch.classifier = self.classifier;\n\t\tend\n\t\t\n\t\tif isfield(arch,'opts');\n\t\t\topts = arch.opts;\n\t\t\tif ~iscell(opts) || mod(numel(opts),2)\n\t\t\t\terror('arch.opts must be a cell array of string-value pairs.')\n\t\t\tend\n\t\tend\n\tend\n\n\tfunction [self,targets] = initClassifer(self,targets);\n\t% [self,targets] = initClassifer(targets);\n\t%--------------------------------------------------------------------------\n\t% Initialize classifier units based on form of . Can also be used\n\t% to preprocess targets to be 1-of-K.\n\t%--------------------------------------------------------------------------\n\n\t\t% IF SUPPLIED TARGETS ARE A LIST OF LABELS\n\t\tif isvector(targets)\n\t\t\ttargets = self.oneOfK(targets);\n\t\tend\n\t\tself.nClasses = size(targets,2);\n\t\tself.classW = single(0.1*randn(self.nClasses,self.nHid));\n\t\tself.dClassW = zeros(size(self.classW),'single');\n\t\tself.d = zeros(1,self.nClasses,'single');\n\t\tself.dd = self.d;\n\tend\n\n\tfunction batchIdx = createBatches(self,X)\n\t% batchIdx = createBatches(X)\n\t%--------------------------------------------------------------------------\n\t% Create minibatches based on dimensions of inputs . Returns a cell\n\t% array with each entry giving the indices in to the rows of for a\n\t% single batch.\n\t%--------------------------------------------------------------------------\n\t\tnObs = size(X,1);\n\t\tnBatches = ceil(nObs/self.batchSz);\n\t\ttmp = repmat(1:nBatches, 1, self.batchSz);\n\t\ttmp = tmp(1:nObs);\n\t\trandIdx=randperm(nObs);\n\t\ttmp = tmp(randIdx);\n\t\tfor iB=1:nBatches\n\t\t batchIdx{iB} = find(tmp==iB);\n\t\tend\n\tend\n\n\tfunction visLearning(self);\n\t% visLearning(self);\n\t%--------------------------------------------------------------------------\n\t% Deal with any visualiztions. Note, must set self.visFun to appropriate\n\t% visualization function handle.\n\t%--------------------------------------------------------------------------\n\t\tif ~isempty(self.visFun)\n\t\t\ttry\n\t\t\t\tself.visFun(self);\n\t\t\tcatch\n\t\t\t\tfprintf('\\nVisualization failed...')\n\t\t\tend\n\t\tend\n\tend\n\n\tfunction printProgress(self,sumErr,iE,jB)\n\t% printProgress(sumErr,iE,jB)\n\t%--------------------------------------------------------------------------\n\t% Utility function to display std out.\n\t%--------------------------------------------------------------------------\n\t\t\tif iE > 1\n\t\t\tif self.log.err(iE) > self.log.err(iE-1) & iE > 1\n\t\t\t\tindStr = '(UP) ';\n\t\t\telse\n\t\t\t\tindStr = '(DOWN) ';\n\t\t\tend\n\t\telse\n\t\t\tindStr = '';\n\t\tend\n\t\tfprintf('Epoch %d/%d --> Recon. error: %f %s\\r', ...\n\t\tiE,self.nEpoch,sumErr,indStr);\n\tend\n\n\tfunction E = hidExpect(self,X);\n\t% E = hidExpect(X);\n\t%--------------------------------------------------------------------------\n\t% Calculate hidden unit expectations for network input \n\t%--------------------------------------------------------------------------\n\t\tswitch self.inputType\n\t\tcase 'multinomial'\n\t\t\tdocLen = sum(X,2);\n\t\t\tE = self.sigmoid(bsxfun(@plus,X*self.W,bsxfun(@times,docLen,self.c)));\n\t\totherwise\n\t\t\tif self.rlu\n \t\t\t\t% E = max(0,bsxfun(@plus,X*self.W,self.c));\n\t\t\t\tE = max(0,X*self.W);\n\t\t\t\tE = bsxfun(@minus,E,mean(E));\n\t\t\t\tE = bsxfun(@rdivide,E,std(E));\n\t\t\telse\n\t\t\t\tE = self.sigmoid(bsxfun(@plus,X*self.W,self.c));\n\t\t\tend\n\t\tend\n\tend\n\t\n\tfunction samps = sample(self,X0,nSamples,nSteps)\n\t% samps = sample(X0,[nSamples],[nSteps])\n\t%--------------------------------------------------------------------------\n\t% Draw sample(s) from model using a Markov chain.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - initial state from which to begin the Markov chain\n\t% : - the number of individual samples to generate. default is\n\t% to draw a single sample.\n\t% : - the number of transitions/steps to take in the Markov\n\t% chain. default is to take 50 steps.\n\t%--------------------------------------------------------------------------\n\t\n\t\tself.sampleVis = 0;\n\t\tself.sampleHid = 0;\n\t\tif notDefined('nSamples');nSamples = 1;end\n\t\tif notDefined('nSteps'),nSteps = 50; end\n\t\t\n\t\t[nObs,nVis] = size(X0);\n\t\tsamps = zeros(nObs,nVis,nSamples);\n\n\t\tif self.useGPU\n\t\t\tsamps = gpuArray(single(samps));\n\t\t\tself = gpuDistribute(self);\n\t\tend\n\t\t\n\t\tfor iS = 1:nSamples\n\t\t\tvis = X0;\n\t\t\tfor iI = 1:nSteps\n\t\t\t\thid = self.sigmoid(bsxfun(@plus,binornd(1,vis)* ...\n\t\t\t\t\t\t\t\t\tself.W,self.c));\n\t\t\t\tswitch self.inputType\n\t\t\t\tcase 'binary'\n\t\t\t\t\tvis = self.sigmoid(bsxfun(@plus,binornd(1,hid)* ...\n\t\t\t\t\tself.W',self.b));\n\t\t\t\tcase 'gaussian'\n\t\t\t\t\tvis = bsxfun(@plus,hid*self.W',self.b);\n\t\t\t\t\t\n\t\t\t\tcase 'multinomial'\n\t\t\t\t\tvis = bsxfun(@plus,hid*self.W',self.b)\n\t\t\t\t\tpVis = softMax(vis);\n\t\t\t\t\t% ENSURE PDF\n\t\t\t\t\tpVis = bsxfun(@rdivide,eVis,sum(eVis,2));\n\t\t\t\t\tvis = zeros(size(pVis));\n\t\t\t\t\tdocLen = sum((find(pVis)),2);\n\t\t\t\t\tfor iO = 1:nObs\n\t\t\t\t\t\t% DRAW D SEPARATE MULTINOMIALS FOR EACH INPUT\n\t\t\t\t\t\tvis(iO,:) = mnrnd(docLen(iO),pVis(iO,:));\n\t\t\t\t\tend\n\t\t\t\tend\n\t\t\tend\n\t\t\tsamps(:,:,iS) = vis;\n\t\tend\n\t\t\n\t\tif self.useGPU\n\t\t\tsamps = gather(samps);\n\t\tend\n\tend\n\n\tfunction F = freeEnergy(self,X)\n\t% F = freeEnergy(X)\n\t%--------------------------------------------------------------------------\n\t% Calculate model free energy for an input . Currently only available for\n\t% binary and gaussian inputs and binary hidden units.\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - network input.\n\t%\n\t% OUTPUT:\n\t% : - free energy, summing over all binary hidden units.\n\t%--------------------------------------------------------------------------\n\t \n\t\tnSamps = size(X,1);\n\t\tupBound = 50; loBound = -50; % FOR POSSIBLE OVERFLOW\n\t\tswitch self.inputType\n\t\t\tcase 'binary'\n\t\t\t\tH = ones(nSamps,1)*self.c + X*self.W;\n\t\t\t\tH = max(min(H,upBound),loBound);\n\t\t\t\t% SAMPLE ENERGIES\n\t\t\t\tsampE = -X*self.b' - sum(-log(1./exp(H)),2);\n\t\t\t\tF = mean(sampE);\n\t\t\tcase 'gaussian'\n\t\t\t\tH = ones(nSamps,1)*self.c + X*self.W;\n\t\t\t\tH = max(min(H,upBound),loBound);\n\t\t\t\t% SAMPLE ENERGIES\n\t\t\t\tsampE = bsxfun(@minus,X,self.b);\n\t\t\t\tsampE = sum(sampE.^2,2)/2;\n\t\t\t\tsampE = sampE - sum(-log(1./(1+exp(H))),2);\n\t\t\t\tF = mean(sampE);\n\t\t\tcase 'multinomial'\n\t\t\t\terror('need to implement multinomial free energy')\n\t\tend\n\tend\n\n\tfunction targets = oneOfK(self,labels)\n\t% targets = oneOfK(labels)\n\t%--------------------------------------------------------------------------\n\t% Create a 1-of-k representation of a set of labels, where is a\n\t% vector of integer class labels.\n\t%--------------------------------------------------------------------------\n\t\tclasses = unique(labels);\n\t\ttargets = zeros(numel(labels),max(classes));\n\t\tfor iL = 1:numel(classes)\n\t\t\ttargets(labels==classes(iL),iL)=1;\n\t\tend\n\tend\n\n\n\tfunction p = sigmoid(self,X)\n\t% p = sigmoid(X)\n\t%--------------------------------------------------------------------------\n\t% Sigmoid activation function\n\t%--------------------------------------------------------------------------\n\t\tif self.useGPU\n\t\t\tp = arrayfun(@(x)(1./(1 + exp(-x))),X);\n\t\telse\n\t\t\tp = 1./(1 + exp(-X));\n\t\tend\n\tend\n\n\tfunction p = drawNormal(self,mu);\n\t% p = drawNormal(mu);\n\t%--------------------------------------------------------------------------\n\t% Draw samples from a multivariate normal with mean and identity\n\t% covariance.\n\t%--------------------------------------------------------------------------\n\t\t% ASSUMES UNIT VARIANCE OF ALL VISIBLES\n\t\t% (I.E. YOU SHOULD STANDARDIZE INPUTS)\n\t\tp = mvnrnd(mu,ones(1,self.nVis));\n\tend\n\n\tfunction c = softMax(self,X)\n\t% c = softMax(X)\n\t%--------------------------------------------------------------------------\n\t% Siftmax activation function for input X. Returns a vector of category\n\t% probabilities.\n\t%--------------------------------------------------------------------------\n\t\tc = bsxfun(@rdivide,exp(X),sum(exp(X),2));\n\tend\n\n\tfunction classes = sampleClasses(self,pClass)\n\t%--------------------------------------------------------------------------\n\t% classes = sampleClasses(pClass)\n\t%--------------------------------------------------------------------------\n\t% Sample class labels given a set of class probabilities, \n\t%--------------------------------------------------------------------------\n\t\t[nObs,nClass]=size(pClass);\n\t\tclasses = zeros(size(pClass));\n\t\t% ENSURE NORMALIZED\n\t\tpClass = bsxfun(@rdivide,pClass,sum(pClass,2));\n\t\tfor iC = 1:nObs\n\t\t\tprobs = pClass(iC,:);\n\t\t\tsamp = cumsum(probs)>rand;\n\t\t\tidx = min(find(max(samp)==samp));\n\t\t\tclassSamp = zeros(size(probs));\n\t\t\tclassSamp(idx) = 1;\n\t\t\tclasses(iC,:) = classSamp;\n\t\tend\n\tend\n\t\n\tfunction [pred,error,misClass] = classify(self,X,targets)\n\t% [pred,error,misClass] = classify(X,[targets])\n\t%--------------------------------------------------------------------------\n\t% Classify inputs and calculate misclassification and error when comp-\n\t% ared to .\n\t%--------------------------------------------------------------------------\n\t% INPUT:\n\t% : - a set of inputs to the network.\n\t% : - (optional). a set of target classes. Can be a 1-of-K vector\n\t% or can a vector with equal length to the number of inputs\n\t% where each entry is an interger class label.\n\t% OUTPUT:\n\t% : - predicted class label.\n\t% : - the classification error, based on provided \n\t% : - the indices of the inputs that were misclassified.\n\t%--------------------------------------------------------------------------\n\t\n\t\tif notDefined('targets'),\n\t\t\ttargets = [];\n\t\telse\n\t\t\tif isvector(targets);\n\t\t\t\ttargets = self.oneOfK(targets);\n\t\t\tend\n\t\tend\n\n\t\tnObs = size(X,1);\n\n\t\t% ACTIVATE HIDDEN UNITS USING INPUT ONLY\n\t\tpHid = self.sigmoid(bsxfun(@plus,X*self.W,self.c));\n\n\t\t% CALCULATE CLASS PROBABILITY\n\t\tpClass = self.softMax(bsxfun(@plus,pHid*self.classW',self.d));\n\t\t% WINNER-TAKE-ALL CLASSIFICATION\n\t\t[~, pred] = max(pClass,[],2);\n\t\tif ~notDefined('targets') && nargout > 1\n\t\t\t[~,targets] = max(targets,[],2);\n\n\t\t\t% CALCULATE MISSCLASSIFICATION RATE\n\t\t\tmisClass = find(pred~=targets);\n\t\t\terror = numel(misClass)/nObs;\n\t\tend\n\tend\nend % END METHODS\nend % END CLASSDEF\n", "meta": {"author": "dustinstansbury", "repo": "medal", "sha": "f33110422ed937f97aaaf3aeb24338c6f13536d7", "save_path": "github-repos/MATLAB/dustinstansbury-medal", "path": "github-repos/MATLAB/dustinstansbury-medal/medal-f33110422ed937f97aaaf3aeb24338c6f13536d7/models/rbm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3877159239700842}} {"text": "function [ DCM ] = tapas_ceode_synData_erp()\n% [ DCM ] = tapas_ceode_synData_erp()\n%\n% Sets parameters and function handles to create a synthetic DCM\n% structure. The resulting structure can then be used to generate\n% artificial data with tapas_ceode_gen_erp.m\n%\n% INPUT\n%\n% OUTPUT\n% DCM struct DCM structure with all necessary fields to\n% generate synthetic data.\n%\n% -------------------------------------------------------------------------\n%\n% Author: Dario Sch\u00f6bi\n% Created: 2020-08-10\n% Copyright (C) 2020 TNU, Institute for Biomedical Engineering, University of Zurich and ETH Zurich.\n%\n% This file is part of the TAPAS ceode Toolbox, which is released under the terms of the GNU General Public\n% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version). For further details, see the file\n% COPYING or .\n% -------------------------------------------------------------------------\n\n\n% ---------------------- MODEL SPECIFICATION ------------------------------\nM = struct();\n\n% Handles to specify integration scheme, dynamical equation, forward model\n% and input\nM.IS = 'tapas_ceode_gen_erp';\nM.f = 'spm_fx_cmc';\nM.int = 'spm_int_L';\nM.G = 'spm_lx_erp';\nM.FS = 'spm_fy_erp';\nM.fu = 'spm_erp_u';\n\n% Design/Parameter values of the driving input (see spm_erp_u.m)\nM.dur = 16;\nM.ons = 64;\nM.ns = 500;\nM.x = zeros(2, 9); \n\n\n% ---------------------- DESIGN SPECIFICATION -----------------------------\nxU = struct();\n\n% No condition specific effec\nxU.X = [0]';\nxU.name = {'std'};\n\n% Sampling rate of the artificial signal\nxU.dt = 1e-03;\n\n\n% ---------------------- PARAMETER VALUES ---------------------------------\n% Neuronal parameters (also see spm_fx_erp.m / tapas_ceode_fx_erp.m)\nEp = struct();\n\nEp.T = [0, 0; 0 0]; \nEp.G = [0, 0; 0 0];\nEp.S = [0, 0];\nEp.A{1} = [-4, -4; 1, -4];\nEp.A{2} = [-4, 0; -4, -4]; \nEp.A{3} = -4 * ones(2, 2);\nEp.B{1} = zeros(2, 2);\nEp.C = [0; -4]; \nEp.H = [0 0 0 0]; \nEp.D = -10 * ones(2, 2);\nEp.R = [0 0]; \n\n% Leadfield parameters (also see spm_lx_erp.m)\nEg.L = [1, 2];\nEg.J = [1, zeros(1, 5), 1, 0, 1];\n\n\n% ---------------------- CREATE OUTPUT ------------------------------------\n% Combine all structures into single DCM structure\nDCM.Ep = Ep;\nDCM.Eg = Eg;\nDCM.M = M;\nDCM.xU = xU;\n\n\n\nend\n\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/ceode/code/tutorial/tapas_ceode_synData_erp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544085240401, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.38771591701995306}} {"text": "function [dist,score,points] = getNormGTJointDistRP_inference(keypointsAll,gt_annolist,jidx)\n\ndist = cell(length(gt_annolist),1);\nscore = cell(length(gt_annolist),1);\npoints = cell(length(gt_annolist),1);\n\nfor imgidx = 1:length(gt_annolist)\n assert(strcmp(keypointsAll(imgidx).imgname,gt_annolist(imgidx).image.name) > 0);\n dist{imgidx} = inf(0,length(gt_annolist(imgidx).annorect));\nend\n\nfor imgidx = 1:length(gt_annolist)\n \n figure(200); clf; imagesc(imread(gt_annolist(imgidx).image.name));\n hold on; axis equal;\n det = keypointsAll(imgidx).det{jidx+1,1};\n \n for detidx = 1:2\n [val,idx] = max(det(:,end));\n sc = det(idx,3);\n pp = det(idx,1:2);\n % plot(pp(1,1),pp(1,2),'r*','Markersize',15);\n for ridx = 1:length(gt_annolist(imgidx).annorect)\n rect = gt_annolist(imgidx).annorect(ridx);\n assert(length(rect) == 1);\n refDist = util_get_head_size(rect);\n if (isfield(rect, 'annopoints') && isfield(rect.annopoints, 'point'))\n p = util_get_annopoint_by_id(rect.annopoints.point, jidx);\n if (~isempty(p))\n if (p.x>=x1 && p.x<= x2 && p.y >= y1 && p.y <= y2)\n d(1,ridx) = norm([p.x p.y] - pp)/refDist;\n end\n % plot(p.x,p.y,'y+','Markersize',15);\n end\n end\n end\n score{imgidx} = [score{imgidx};sc];\n points{imgidx} = [points{imgidx};pp];\n dist{imgidx} = [dist{imgidx};d];\n end\nend", "meta": {"author": "eldar", "repo": "deepcut", "sha": "096e2d174ddf2fbdc61458d9e7e6c6e897eac16c", "save_path": "github-repos/MATLAB/eldar-deepcut", "path": "github-repos/MATLAB/eldar-deepcut/deepcut-096e2d174ddf2fbdc61458d9e7e6c6e897eac16c/lib/eval/getNormGTJointDistRP_inference.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837743174788, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3877061187830823}} {"text": "function Y = TT_weingarten(V, Z, ind)\n% Weingarten map computation for the fixed TT-rank manifold.\n%\n% NOTE: this manifold requires the use of a modified version of TTeMPS_1.1,\n% which is packaced with Manopt and can be found in \n% manopt/manopt/manifolds/ttfixedrank/TTeMPS_1.1\n% \n% Y = TT_weingarten(V, Z, ind)\n% \n% This function implements the efficient way of computing the Weingarten\n% map for the Riemannian submanifold of fixed TT-rank tensors embedded in\n% its natural embedding Euclidean space, as described in the paper:\n%\n% Psenka and Boumal,\n% Second-order optimization for tensors with fixed tensor-train rank,\n% Optimization workshop at NeurIPS 2020.\n% \n% Y is the output tangent vector, V is a tangent vector (which contains\n% needed information of base point X), Z is a tensor (embedding space).\n% \n% TT_weingarten supports the following formats for Z:\n% 1) Full\n% 2) TT-format (any rank)\n% 3) sparse, with non-zero indices indexed by ind (see fixedTTrankfactory).\n%\n% See also: fixedTTrankfactory\n\n% This file is part of Manopt: www.manopt.org.\n% Original author: Michael Psenka, Nov. 24, 2020.\n% Contributors: Nicolas Boumal\n% Change log:\n\n % Preliminary tangent vector set-up for Y\n d = V.order;\n r = V.rank;\n n = V.size;\n \n\n Y = V; % all properties except for dU cores inherited from V\n normV = norm(V);\n V = (1 / normV) * V;\n Y.dU = cell(1, d);\n\n\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Begin calculating variational components\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Pre-calculate all R-components as needed for tangent space conversion\n R = cell(1, d-1);\n % Intermediary used to calculate R-terms for re-orthogonalization\n Xr = V.U;\n\n for k = d:-1:2\n\n sz = size(Xr{k});\n\n if length(sz) == 2\n sz = [sz, 1]; %#ok\n end\n\n [Q, R{k - 1}] = qr_unique(unfold(Xr{k}, 'right')');\n Xr{k} = reshape(Q', [size(Q, 2), sz(2), sz(3)]);\n\n Xr{k - 1} = tensorprod_ttemps(Xr{k - 1}, R{k - 1}, 3);\n end\n\n % Calculate V.dU under the original parametrization of tangent space\n\n dUR = cell(1, d);\n\n for k = 1:(d - 1)\n dUR{k} = unfold(V.dU{k}, 'left') / R{k}';\n dUR{k} = reshape(dUR{k}, [r(k), n(k), r(k + 1)]);\n end\n\n dUR{d} = V.dU{d};\n\n % Calculate ~X^tV_{\\ge k} efficiently\n XtVg = cell(1, d);\n\n XtVg{d} = conj(unfold(V.V{d}, 'right')) * unfold(V.dU{d}, 'right').';\n XtVgTmp = conj(unfold(V.V{d}, 'right')) * unfold(V.U{d}, 'right').';\n\n for k = (d - 1):-1:2\n tmp = tensorprod_ttemps(V.V{k}, XtVg{k + 1}', 3);\n XtVg{k} = conj(unfold(tmp, 'right')) * unfold(V.U{k}, 'right').';\n\n tmp2 = tensorprod_ttemps(V.V{k}, XtVgTmp', 3);\n XtVg{k} = XtVg{k} + conj(unfold(tmp2, 'right')) * unfold(dUR{k}, 'right').';\n XtVgTmp = conj(unfold(tmp2, 'right')) * unfold(V.U{k}, 'right').';\n end\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%% CASES FOR TYPE OF EUCLIDEAN GRADIENT Z %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n if isa(Z, 'TTeMPS') || isa(Z, 'TTeMPS_tangent_orth')% Z either TT-tensor or tangent vec\n\n if isa(Z, 'TTeMPS_tangent_orth')\n Z = tangent_to_TTeMPS(Z); % efficient to treat both as TTeMPS case\n end\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%% DIAGONAL TERMS %%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n ZVr = cell(1, d); % stores values of V_<^T(Z)\n Zr = cell(1, d); % stores values of X_<^T(Z)\n ZVl = cell(1, d); % stores values of (Z)^T(V_>)\n Zl = cell(1, d); % stores values of (Z)^T(X_>)\n\n\n ZVr{d} = conj(unfold(Z.U{d}, 'right')) * unfold(V.dU{d}, 'right').';\n XtVgTmp = conj(unfold(Z.U{d}, 'right')) * unfold(V.U{d}, 'right').';\n\n for k = (d - 1):-1:2\n tmp = tensorprod_ttemps(Z.U{k}, ZVr{k + 1}', 3);\n ZVr{k} = conj(unfold(tmp, 'right')) * unfold(V.U{k}, 'right').';\n\n tmp2 = tensorprod_ttemps(Z.U{k}, XtVgTmp', 3);\n ZVr{k} = ZVr{k} + conj(unfold(tmp2, 'right')) * unfold(dUR{k}, 'right').';\n XtVgTmp = conj(unfold(tmp2, 'right')) * unfold(V.U{k}, 'right').';\n end\n\n for k=1:d\n ZVr{k} = ZVr{k}';\n end\n \n\n Zr{d} = conj(unfold(V.V{d}, 'right')) * unfold(Z.U{d}, 'right').';\n\n for k = (d - 1):-1:2\n tmp = tensorprod_ttemps(V.V{k}, Zr{k + 1}', 3);\n Zr{k} = conj(unfold(tmp, 'right')) * unfold(Z.U{k}, 'right').';\n end\n\n % Computation of ZVl and Zl\n\n ZVl{1} = unfold(dUR{1}, 'left')' * unfold(Z.U{1}, 'left');\n Zl{1} = unfold(V.U{1}, 'left')' * unfold(Z.U{1}, 'left');\n\n for k = 2:(d - 1)\n % (V_k-1)(U_k)\n tmp = tensorprod_ttemps(V.U{k}, ZVl{k - 1}', 1);\n ZVl{k} = unfold(tmp, 'left')' * unfold(Z.U{k}, 'left');\n % + (X_k-1)(dU_k)\n tmp = tensorprod_ttemps(dUR{k}, Zl{k - 1}', 1);\n ZVl{k} = ZVl{k} + unfold(tmp, 'left')' * unfold(Z.U{k}, 'left');\n % update Zr to keep up w/ recursive definition\n tmp = tensorprod_ttemps(V.U{k}, Zl{k - 1}', 1);\n Zl{k} = unfold(tmp, 'left')' * unfold(Z.U{k}, 'left');\n end\n\n ZZ = cell(1, d); % final cores for normal (I \\otimes X)Z(X^T)\n Zv = cell(1, d); % final cores for (I \\otimes X)Z(V^T)\n vZ = cell(1, d); % final cores for (I \\otimes V)Z(X^T)\n\n\n % contract to first core\n ZZ{1} = tensorprod_ttemps(Z.U{1}, Zr{2}, 3);\n % contract to inner cores\n for k = 2:(d - 1)\n res = tensorprod_ttemps(Z.U{k}, Zl{k - 1}, 1);\n ZZ{k} = tensorprod_ttemps(res, Zr{k + 1}, 3);\n end\n\n % contract to last core\n ZZ{d} = tensorprod_ttemps(Z.U{d}, Zl{d - 1}, 1);\n\n Zv{1} = tensorprod_ttemps(Z.U{1}, ZVr{2}, 3);\n\n for k = 2:(d - 1)\n res = tensorprod_ttemps(Z.U{k}, Zl{k - 1}, 1);\n Zv{k} = tensorprod_ttemps(res, ZVr{k + 1}, 3);\n end\n\n Zv{d} = tensorprod_ttemps(Z.U{d}, Zl{d - 1}, 1);\n\n\n vZ{1} = tensorprod_ttemps(Z.U{1}, Zr{2}, 3);\n\n for k = 2:(d - 1)\n res = tensorprod_ttemps(Z.U{k}, ZVl{k - 1}, 1);\n vZ{k} = tensorprod_ttemps(res, Zr{k + 1}, 3);\n end\n\n vZ{d} = tensorprod_ttemps(Z.U{d}, ZVl{d - 1}, 1);\n\n % Left unfold everything to apply additional operations\n for k = 1:d\n ZZ{k} = unfold(ZZ{k}, 'left');\n Zv{k} = unfold(Zv{k}, 'left');\n vZ{k} = unfold(vZ{k}, 'left');\n end\n % %%%%%%%%%%%%%%%%%%%%%%%%% TESTING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n % 1st and last cases special, so they're computed outside the loop\n UL = unfold(V.U{1}, 'left');\n dUL = unfold(dUR{1}, 'left');\n\n % right variational term without (I - UU^T) projection\n rightV = (Zv{1} - ZZ{1} * XtVg{2}) / R{1};\n\n Y.dU{1} = -dUL * UL' * ZZ{1} + rightV - UL * (UL' * rightV);\n\n for k = 2:(d - 1)\n UL = unfold(V.U{k}, 'left');\n dUL = unfold(dUR{k}, 'left');\n\n % right variational term without (I - UU^T) projection\n rightV = (Zv{k} - ZZ{k} * XtVg{k + 1}) / R{k};\n\n Y.dU{k} = vZ{k} - UL * (UL' * vZ{k}) - dUL * UL' * ZZ{k} ...\n + rightV - UL * (UL' * rightV);\n end\n\n Y.dU{d} = vZ{d};\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%% CROSS TERMS %%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for k = 1:(d - 1)\n U = unfold(V.U{k}, 'left');\n ZZ{k} = ZZ{k} - U * (U' * ZZ{k});\n ZZ{k} = reshape(ZZ{k}, [r(k), n(k), r(k + 1)]);\n end\n\n ZZ{d} = reshape(ZZ{d}, [r(d), n(d), 1]);\n\n % Double loop to represent P_k DP_m, 1 <= k < d\n for k = 1:(d - 1)\n\n UL = unfold(V.U{k}, 'left');\n dUL = unfold(dUR{k}, 'left');\n\n for m = 1:(k - 1)\n VtZ = crossTermVariational(k, m, ZZ, dUR{m}, V);\n projUVtZ = VtZ - UL * (UL' * VtZ);\n\n Y.dU{k} = Y.dU{k} - projUVtZ;\n end\n\n for m = (k + 1):d\n ZtX = crossTermMatrixRight(k + 1, m, ZZ, V);\n Y.dU{k} = Y.dU{k} + dUL * ZtX;\n end\n\n end\n\n % Final terms for k = d\n for m = 1:(d - 1)\n VtZ = crossTermVariational(d, m, ZZ, dUR{m}, V);\n Y.dU{d} = Y.dU{d} - VtZ;\n end\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%FINAL RESHAPE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for k = 1:d\n Y.dU{k} = reshape(Y.dU{k}, [r(k), n(k), r(k + 1)]);\n end\n\n elseif ~exist('ind', 'var')% Z is a full array\n\n %{\n Note that you can split up the full expression for the Weingarten map in\n the following way:\n\n 1) Diagonal terms(P_i DP_i terms, or non - cross terms)\n a) This can be split into(left variational) + (right variational),\n which correspond to two terms in product rule expansion\n 2) Cross terms(P_i DP_j, we show mathematically equivalent expression\n in companion paper.)\n a) This likewise can be split into(i < j) + (i > j)\n %}\n\n % Cell that represents the LEFT VARIATIONAL SIDE\n Zv = cell(1, d);\n % Cell that represents the RIGHT VARIATIONAL SIDE\n vZ = cell(1, d);\n\n % Initialization step\n Zv{d} = Z(:);\n vZ{d} = Z(:);\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%% DIAGONAL TERMS %%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n %%%%%%%%%%%%%%% LEFT VARIATIONAL %%%%%%%%%%%%%%%%%%\n\n % First, calculate where the right side is the variational matrix\n % Note that the calculation here is split between VR^-1 and XX^tVR^-1\n % in (I - XX^t)VR^{-1} through xx and xx2 terms respectively\n\n % (d-1) term done separately to initialize the temp variable handoff\n zz = reshape(Z, [prod(n(1:(d - 1))), n(d)]);\n xx = transpose(unfold(V.dU{d}, 'right'));\n xxTmp = transpose(unfold(V.U{d}, 'right')); % temp var to help calc xx terms\n xx2 = transpose(unfold(V.V{d}, 'right'));\n\n % Z-matrix-k-variational, represents the xx calculation for Zv{k}\n Zmkv = zz * xx;\n vZ{d - 1} = zz * xx2;\n Zv{d - 1} = (Zmkv - vZ{d - 1} * XtVg{d}) / R{d - 1};\n\n % auxillery term for computing anything with variational matrix\n ZZtmp = zz * xxTmp;\n\n % Main calcualtion for right size of Zv\n for k = (d - 2):-1:1\n zz = reshape(Zmkv, [prod(n(1:k)), n(k + 1) * r(k + 2)]);\n xx = transpose(unfold(V.U{k + 1}, 'right'));\n Zmkv = zz * xx;\n\n zzTmp = reshape(ZZtmp, [prod(n(1:k)), n(k + 1) * r(k + 2)]);\n xxTmp = transpose(unfold(dUR{k + 1}, 'right'));\n Zmkv = Zmkv + zzTmp * xxTmp;\n ZZtmp = zzTmp * xx;\n\n % NOTE: vZ is only used here to store these values for later use\n % It stores the standard right side calc for the orthogonal projector\n zz2 = reshape(vZ{k + 1}, [prod(n(1:k)), n(k + 1) * r(k + 2)]);\n xx2 = transpose(unfold(V.V{k + 1}, 'right'));\n vZ{k} = zz2 * xx2;\n\n Zv{k} = (Zmkv - vZ{k} * XtVg{k + 1}) / R{k};\n end\n\n % Standard left side calculations for Zv\n for k = 2:d\n\n for i = 1:(k - 1)\n Z_i = reshape(Zv{k}, [r(i) * n(i), prod(n(i + 1:k)) * r(k + 1)]);\n X_i = unfold(V.U{i}, 'left');\n Zm = X_i' * Z_i;\n Zv{k} = Zm;\n end\n\n Zv{k} = reshape(Zv{k}, [r(k) * n(k), r(k + 1)]);\n end\n\n % Final U core projector mult for Zv\n for k = 1:(d - 1)\n U = unfold(V.U{k}, 'left');\n Zv{k} = Zv{k} - U * (U' * Zv{k});\n end\n\n %%%%%%%%%%%%%%% RIGHT VARIATIONAL %%%%%%%%%%%%%%%%%%\n\n % represents standard projection, also needed as intermediary for this section\n ZZ = vZ;\n % Start left side calculation for vZ\n for k = 2:d\n\n % Do first in loop separately to initialize intermediary variable\n Z_i = reshape(vZ{k}, [n(1), prod(n(2:k)) * r(k + 1)]);\n dU_i = unfold(dUR{1}, 'left');\n Zm = dU_i' * Z_i;\n vZ{k} = Zm;\n\n X_i = unfold(V.U{1}, 'left');\n ZZ{k} = X_i' * Z_i;\n\n for m = 2:(k - 1)\n Z_i = reshape(vZ{k}, [r(m) * n(m), prod(n(m + 1:k)) * r(k + 1)]);\n X_i = unfold(V.U{m}, 'left');\n Zm = X_i' * Z_i;\n\n Z_tmp = reshape(ZZ{k}, [r(m) * prod(n(m)), prod(n(m + 1:k)) * r(k + 1)]);\n dU_i = unfold(dUR{m}, 'left');\n\n vZ{k} = Zm + dU_i' * Z_tmp;\n\n ZZ{k} = X_i' * Z_tmp;\n end\n\n vZ{k} = reshape(vZ{k}, [r(k) * n(k), r(k + 1)]);\n ZZ{k} = reshape(ZZ{k}, [r(k) * n(k), r(k + 1)]);\n end\n\n % Final U core projector mult for vZ\n\n % 1st core separate since vZ{1} = 0 up until now. Purely for efficiency\n U = unfold(V.U{1}, 'left');\n dU = unfold(V.dU{1}, 'left');\n vZ{1} = -dU * U' * ZZ{1};\n\n for k = 2:(d - 1)\n U = unfold(V.U{k}, 'left');\n dU = unfold(V.dU{k}, 'left');\n vZ{k} = vZ{k} - U * (U' * vZ{k});\n\n vZ{k} = vZ{k} - dU * U' * ZZ{k};\n\n end\n\n for k = 1:d - 1\n Y.dU{k} = Zv{k} + vZ{k};\n end\n\n Y.dU{d} = vZ{d};\n\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%% CROSS TERMS %%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for k = 1:(d - 1)\n % now only need ZZ as dU cores of normal projection of V\n U = unfold(V.U{k}, 'left');\n ZZ{k} = ZZ{k} - U * (U' * ZZ{k});\n ZZ{k} = reshape(ZZ{k}, [r(k), n(k), r(k + 1)]);\n end\n\n ZZ{d} = reshape(ZZ{d}, [r(d), n(d), 1]);\n\n % Double loop to represent P_k DP_m, 1 <= k < d\n for k = 1:(d - 1)\n\n UL = unfold(V.U{k}, 'left');\n dUL = unfold(V.dU{k}, 'left');\n\n for m = 1:(k - 1)\n VtZ = crossTermVariational(k, m, ZZ, dUR{m}, V);\n\n projUVtZ = VtZ - UL * (UL' * VtZ);\n\n Y.dU{k} = Y.dU{k} - projUVtZ; \n end\n\n for m = (k + 1):d\n ZtX = crossTermMatrixRight(k + 1, m, ZZ, V);\n Y.dU{k} = Y.dU{k} + dUL * ZtX;\n end\n\n end\n\n % Final terms for k = d\n for m = 1:(d - 1)\n VtZ = crossTermVariational(d, m, ZZ, dUR{m}, V);\n\n Y.dU{d} = Y.dU{d} - VtZ;\n end\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FINAL RESHAPE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for k = 1:d\n Y.dU{k} = reshape(Y.dU{k}, [r(k), n(k), r(k + 1)]);\n end\n\n else\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SPARSE CASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % permuted U, V, and dU cells for the efficient computation in C\n CU = cell(1, d);\n CV = cell(1, d);\n CdUR = cell(1, d);\n\n for k = 1:d\n CU{k} = permute(V.U{k}, [1 3 2]);\n CV{k} = permute(V.V{k}, [1 3 2]);\n CdUR{k} = permute(dUR{k}, [1 3 2]);\n end\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%% DIAGONAL TERMS %%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n [ZZ, vZ, Zv] = weingarten_omega(n, r, CU, CV, CdUR, ind.', Z);\n\n for k = 1:d\n\n ZZ{k} = reshape(ZZ{k}, [r(k), r(k + 1), n(k)]);\n ZZ{k} = unfold(permute(ZZ{k}, [1 3 2]), 'left');\n\n vZ{k} = reshape(vZ{k}, [r(k), r(k + 1), n(k)]);\n vZ{k} = unfold(permute(vZ{k}, [1 3 2]), 'left');\n\n Zv{k} = reshape(Zv{k}, [r(k), r(k + 1), n(k)]);\n Zv{k} = unfold(permute(Zv{k}, [1 3 2]), 'left');\n end\n\n\n \n\n % 1st and last cases special, so they're computed outside the loop\n UL = unfold(V.U{1}, 'left');\n dUL = unfold(dUR{1}, 'left');\n\n % right variational term without (I - UU^T) projection\n rightV = (Zv{1} - ZZ{1} * XtVg{2}) / R{1};\n Y.dU{1} = -dUL * UL' * ZZ{1} + rightV - UL * (UL' * rightV);\n\n for k = 2:(d - 1)\n UL = unfold(V.U{k}, 'left');\n dUL = unfold(dUR{k}, 'left');\n\n % right variational term without (I - UU^T) projection\n rightV = (Zv{k} - ZZ{k} * XtVg{k + 1}) / R{k};\n Y.dU{k} = vZ{k} - UL * (UL' * vZ{k}) - dUL * UL' * ZZ{k} + rightV - UL * (UL' * rightV);\n % norm(vZ{k} - UL * (UL' * vZ{k}) + (Zv{k} - UL * (UL' * Zv{k})) / R{k}) / norm(V)\n % norm(V)\n end\n\n\n Y.dU{d} = vZ{d};\n\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%% CROSS TERMS %%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for k = 1:(d - 1)\n U = unfold(V.U{k}, 'left');\n ZZ{k} = ZZ{k} - U * (U' * ZZ{k});\n ZZ{k} = reshape(ZZ{k}, [r(k), n(k), r(k + 1)]);\n end\n\n ZZ{d} = reshape(ZZ{d}, [r(d), n(d), 1]);\n\n % Double loop to represent P_k DP_m, 1 <= k < d\n for k = 1:(d - 1)\n\n UL = unfold(V.U{k}, 'left');\n dUL = unfold(dUR{k}, 'left');\n\n for m = 1:(k - 1)\n % XtZ = crossTermMatrixLeft(k, m, ZZ, V);\n VtZ = crossTermVariational(k, m, ZZ, dUR{m}, V);\n projUVtZ = VtZ - UL * (UL' * VtZ);\n\n Y.dU{k} = Y.dU{k} - projUVtZ; %+ dUL * XtZ;\n\n % Y.dU{k} = Y.dU{k} - (projUk * kron(eye(n(k)), Vllk') - dUkL * Xlek') * Zkm;\n end\n\n for m = (k + 1):d\n ZtX = crossTermMatrixRight(k + 1, m, ZZ, V);\n Y.dU{k} = Y.dU{k} + dUL * ZtX;\n\n % Y.dU{k} = Y.dU{k} + dUkL * Zkm' * Xg{k+1};\n end\n\n end\n\n % Final terms for k = d\n for m = 1:(d - 1)\n VtZ = crossTermVariational(d, m, ZZ, dUR{m}, V);\n\n Y.dU{d} = Y.dU{d} - VtZ;\n\n % Y.dU{d} = Y.dU{d} - kron(eye(n(d)), Vlld') * Zkm;\n end\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%FINAL RESHAPE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n for k = 1:d\n Y.dU{k} = reshape(Y.dU{k}, [r(k), n(k), r(k + 1)]);\n end\n\n Y = (normV) * Y;\n end\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Helper methods\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Efficient ZtX term for P_k DP_m, m > k\n% Zp here is the projection of Z (just dU cores)\n% V is only passed for access to U and V cores\nfunction ZtX = crossTermMatrixRight(k, m, Zp, V)\n ZtX = conj(unfold(Zp{m}, 'right')) * unfold(V.V{m}, 'right').';\n\n for p = (m - 1):-1:k\n tmp = tensorprod_ttemps(V.U{p}, (ZtX)', 3);\n ZtX = conj(unfold(tmp, 'right')) * unfold(V.V{p}, 'right').';\n end\n\nend\n\n% Efficient XtZ term for P_k DP_m, m < k\n% Zp here is the projection of Z\n% V is only passed for access to U and V cores\nfunction XtZ = crossTermMatrixLeft(k, m, Zp, V) %#ok\n\n XtZ = unfold(V.U{m}, 'left')' * unfold(Zp{m}, 'left');\n\n for p = (m + 1):k\n XtZ = tensorprod_ttemps(V.U{p}, (XtZ)', 1);\n XtZ = unfold(XtZ, 'left')' * unfold(V.V{p}, 'left');\n end\n\nend\n\n% Efficient VtZ (more accurately kron(eye(n(k)), V') * Z) term for P_k DP_m, m < k\n% Zp here is the projection of Z, dURm is normally parametrized dU{m}\n% V is only passed for access to U and V cores\nfunction VtZ = crossTermVariational(k, m, Zp, dURm, V)\n\n VtZ = unfold(dURm, 'left')' * unfold(Zp{m}, 'left');\n\n for p = (m + 1):(k - 1)\n VtZ = tensorprod_ttemps(V.U{p}, (VtZ)', 1);\n VtZ = unfold(VtZ, 'left')' * unfold(V.V{p}, 'left');\n end\n\n VtZ = tensorprod_ttemps(V.V{k}, VtZ, 1);\n VtZ = unfold(VtZ, 'left');\n\nend\n", "meta": {"author": "NicolasBoumal", "repo": "manopt", "sha": "b8b54a6af8b965f7ae572972ba0d15787427744b", "save_path": "github-repos/MATLAB/NicolasBoumal-manopt", "path": "github-repos/MATLAB/NicolasBoumal-manopt/manopt-b8b54a6af8b965f7ae572972ba0d15787427744b/manopt/manifolds/ttfixedrank/TT_weingarten.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7634837635542925, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.38770611331740856}} {"text": "function [err_N, sG] = ptv_local_nuclear_metric(volfix, voldef, pix_resolution, mask, singular_coefs, P_SZ, norm_type)\n%% todo:\n% * volfix\n% * zero mean, choose std???\n% * making zero mean changes gradient!\n\n% norm_type = 3;\n abs_type = 0;\n deps = 1e-3;\n \n volsz = [size(voldef, 1), size(voldef, 2), size(voldef, 3)];\n Nd = 3;\n if volsz(3) == 1\n Nd = 2;\n end\n \n P_SZ = round(P_SZ);\n Nimgs = size(voldef, 5);\n if Nd == 2\n P_SZ = [P_SZ, 1];\n end\n \n err_N = 0;\n sG = zeros([volsz, Nimgs], 'like', voldef);\n if Nd == 2\n for i1 = 1 : P_SZ(1) : volsz(1)\n for i2 = 1 : P_SZ(2) : volsz(2)\n i11 = min(i1 + P_SZ(1) - 1, volsz(1));\n i22 = min(i2 + P_SZ(2) - 1, volsz(2));\n if i11-i1 < 2 || i22 - i2 < 2\n continue;\n end\n patch = voldef(i1:i11, i2:i22, 1, :, :);\n if norm_type == 1\n patch = patch - sum(sum(sum(patch,1),2),3) / (size(patch,1)*size(patch,2)*size(patch,3));\n elseif norm_type == 2\n patch = patch - mean(patch(:));\n elseif norm_type == 3\n patch = patch - sum(sum( patch, 4), 5) / (size(patch,4)*size(patch,5));\n elseif norm_type == 4\n patch = patch - sum(sum(sum(patch,1),2),3) / (size(patch,1)*size(patch,2)*size(patch,3));\n patch = patch - sum(sum( patch, 4), 5) / (size(patch,4)*size(patch,5));\n end\n \n patch0 = reshape(patch, [size(patch, 1), size(patch, 2), size(patch, 3), Nimgs]);\n if abs_type == 1\n patch = abs(patch);\n elseif abs_type == 2\n patch = sqrt(patch.^2 + deps);\n end\n \n if ~isempty(mask)\n mask_cur = logical(mask(i1:i11, i2:i22));\n else\n mask_cur = [];\n end\n if isempty(mask_cur) || any(mask_cur(:))\n [terr, tgrad] = ptv_nuclear_metric([], patch, pix_resolution, mask_cur, singular_coefs);\n err_N = err_N + terr;\n \n if abs_type == 1\n tgrad = tgrad.*sign(patch0);\n elseif abs_type == 2\n tgrad = tgrad .* patch0 ./ sqrt(patch0.^2 + deps);\n end\n \n if norm_type == 1\n tgrad = tgrad - sum(sum(sum(tgrad, 1), 2), 3) / (size(patch,1)*size(patch,2)*size(patch,3));\n elseif norm_type == 2\n tgrad = tgrad - mean(tgrad(:));\n elseif norm_type == 3\n tgrad = tgrad - sum(sum( tgrad, 4), 5) / (size(patch,4)*size(patch,5));\n elseif norm_type == 4\n tgrad = tgrad - sum(sum( tgrad, 4), 5) / (size(patch,4)*size(patch,5));\n tgrad = tgrad - sum(sum(sum(tgrad, 1), 2), 3) / (size(patch,1)*size(patch,2)*size(patch,3));\n end\n \n sG(i1:i11, i2:i22, 1, :) = tgrad;\n end\n end\n end\n else %3d\n for i1 = 1 : P_SZ(1) : volsz(1)\n for i2 = 1 : P_SZ(2) : volsz(2)\n for i3 = 1 : P_SZ(3) : volsz(3)\n i11 = min(i1 + P_SZ(1) - 1, volsz(1));\n i22 = min(i2 + P_SZ(2) - 1, volsz(2));\n i33 = min(i3 + P_SZ(3) - 1, volsz(3));\n if i11-i1 < 2 || i22 - i2 < 2 || i33 - i3 < 2\n continue;\n end\n patch = voldef(i1:i11, i2:i22, i3:i33, :, :);\n if norm_type == 1\n patch = patch - sum(sum(sum(patch,1),2),3) / (size(patch,1)*size(patch,2)*size(patch,3));\n elseif norm_type == 2\n patch = patch - mean(patch(:));\n elseif norm_type == 3\n patch = patch - sum(sum( patch, 4), 5) / (size(patch,4)*size(patch,5));\n elseif norm_type == 4\n patch = patch - sum(sum(sum(patch,1),2),3) / (size(patch,1)*size(patch,2)*size(patch,3));\n patch = patch - sum(sum( patch, 4), 5) / (size(patch,4)*size(patch,5));\n end\n \n patch0 = reshape(patch, [size(patch, 1), size(patch, 2), size(patch, 3), Nimgs]);\n if abs_type == 1\n patch = abs(patch);\n elseif abs_type == 2\n patch = sqrt(patch.^2 + deps);\n end\n \n if ~isempty(mask)\n mask_cur = logical(mask(i1:i11, i2:i22, i3:i33));\n else\n mask_cur = [];\n end\n if isempty(mask_cur) || any(mask_cur(:))\n [terr, tgrad] = ptv_nuclear_metric([], patch, pix_resolution, mask_cur, singular_coefs);\n err_N = err_N + terr;\n if abs_type == 1\n tgrad = tgrad.*sign(patch0);\n elseif abs_type == 2\n tgrad = tgrad .* patch0 ./ sqrt(patch0.^2 + deps);\n end\n if norm_type == 1\n tgrad = tgrad - sum(sum(sum(tgrad, 1), 2), 3) / (size(patch,1)*size(patch,2)*size(patch,3));\n elseif norm_type == 2\n tgrad = tgrad - mean(tgrad(:));\n elseif norm_type == 3\n tgrad = tgrad - sum(sum( tgrad, 4), 5) / (size(patch,4)*size(patch,5));\n elseif norm_type == 4\n tgrad = tgrad - sum(sum( tgrad, 4), 5) / (size(patch,4)*size(patch,5));\n tgrad = tgrad - sum(sum(sum(tgrad, 1), 2), 3) / (size(patch,1)*size(patch,2)*size(patch,3));\n end\n sG(i1:i11, i2:i22, i3:i33, :) = tgrad;\n end\n end\n end\n end\n end\n err_N = err_N * prod(pix_resolution);\n sG = sG(1:volsz(1), 1:volsz(2), 1:volsz(3), :, :) * prod(pix_resolution);\nend\n\n% function [err_N, sG] = ptv_local_nuclear_metric(volfix, voldef, pix_resolution, mask, singular_coefs, P_SZ)\n% %% todo:\n% % * volfix\n% % * zero mean, choose std???\n% % * making zero mean changes gradient!\n% \n% % P_SZ = [15,15,15];\n% volsz = [size(voldef, 1), size(voldef, 2), size(voldef, 3)];\n% Nd = 3;\n% if volsz(3) == 1\n% Nd = 2;\n% end\n% \n% P_SZ = round(P_SZ);\n% Nimgs = size(voldef, 5);\n% if Nd == 2\n% P_SZ = [P_SZ, 1];\n% end\n% \n% volsz_p = ceil(volsz./P_SZ) .* P_SZ;\n% \n% if Nd == 2\n% volsz_p(3) = 1;\n% end\n% \n% voldef_p = zeros([volsz_p, 1, Nimgs]);\n% voldef_p(1:volsz(1), 1:volsz(2), 1:volsz(3), :, :) = voldef;\n% \n% if ~isempty(mask)\n% if Nd == 3\n% mask_p = zeros([volsz_p]);\n% mask_p(1:volsz(1), 1:volsz(2), 1:volsz(3)) = mask;\n% else\n% mask_p = zeros([volsz_p]);\n% mask_p(1:volsz(1), 1:volsz(2), 1) = mask;\n% end\n% end\n% \n% err_N = 0;\n% sG = zeros([volsz, Nimgs], 'like', voldef);\n% if Nd == 2\n% for i1 = 1 : P_SZ(1) : volsz(1)\n% for i2 = 1 : P_SZ(2) : volsz(2)\n% patch = voldef_p(i1:i1+P_SZ(1)-1, i2:i2+P_SZ(2)-1, 1, :, :);\n% patch = patch - sum(sum(sum(patch,1),2),3) / numel(patch);\n% % patch = patch ./ std(std(std(patch,[],1),[],2),[],3);\n% if ~isempty(mask)\n% mask_cur = logical(mask_p(i1:i1+P_SZ(1)-1, i2:i2+P_SZ(2)-1));\n% else\n% mask_cur = [];\n% end\n% if isempty(mask_cur) || any(mask_cur(:))\n% [terr, tgrad] = ptv_nuclear_metric([], patch, pix_resolution, mask_cur, singular_coefs);\n% err_N = err_N + terr;\n% tgrad = tgrad - sum(sum(sum(tgrad, 1), 2), 3) / numel(patch);\n% sG(i1:i1+P_SZ(1)-1, i2:i2+P_SZ(2)-1, 1, :) = tgrad;\n% end\n% end\n% end\n% else %3d\n% for i1 = 1 : P_SZ(1) : volsz(1)\n% for i2 = 1 : P_SZ(2) : volsz(2)\n% for i3 = 1 : P_SZ(3) : volsz(3)\n% patch = voldef_p(i1:i1+P_SZ(1)-1, i2:i2+P_SZ(2)-1, i3:i3+P_SZ(3)-1, :, :);\n% patch = patch - sum(sum(sum(patch,1),2),3) / numel(patch);\n% if ~isempty(mask)\n% mask_cur = logical(mask_p(i1:i1+P_SZ(1)-1, i2:i2+P_SZ(2)-1, i3:i3+P_SZ(3)-1));\n% else\n% mask_cur = [];\n% end\n% if isempty(mask_cur) || any(mask_cur(:))\n% [terr, tgrad] = ptv_nuclear_metric([], patch, pix_resolution, mask_cur, singular_coefs);\n% err_N = err_N + terr;\n% sG(i1:i1+P_SZ(1)-1, i2:i2+P_SZ(2)-1, i3:i3+P_SZ(3)-1, :) = tgrad;\n% end\n% end\n% end\n% end\n% end\n% err_N = err_N * prod(pix_resolution);\n% sG = sG(1:volsz(1), 1:volsz(2), 1:volsz(3), :, :) * prod(pix_resolution);\n% end", "meta": {"author": "visva89", "repo": "pTVreg", "sha": "c359620e3c8435392db02354274d6c74d682d437", "save_path": "github-repos/MATLAB/visva89-pTVreg", "path": "github-repos/MATLAB/visva89-pTVreg/pTVreg-c359620e3c8435392db02354274d6c74d682d437/ptv/ptv_local_nuclear_metric.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3877061133174085}} {"text": "function tests = test_ft_preproc_baselinecorrect\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_preproc_baselinecorrect\n\nif nargout\n % assume that this is called by RUNTESTS\n tests = functiontests(localfunctions);\nelse\n % assume that this is called from the command line\n fn = localfunctions;\n for i=1:numel(fn)\n feval(fn{i});\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction testOptions(testCase)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnchan = 8;\nnsample = 1000;\ndat = randn(nchan, nsample) + 1;\n\nresult = [];\nresult{end+1} = ft_preproc_baselinecorrect(dat, 1, 1000);\nresult{end+1} = ft_preproc_baselinecorrect(dat, 1, 900);\nresult{end+1} = ft_preproc_baselinecorrect(dat, 101, 1000);\nresult{end+1} = ft_preproc_baselinecorrect(dat, 101, 900);\n\n% all iterations were done with (slightly) different options, hence the results should not be equal\nfor i=1:numel(result)\n for j=(i+1):numel(result)\n assert(~isequal(result{i}, result{j}), 'the results %d and %d should not be equal', i, j);\n end\nend", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_preproc_baselinecorrect.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3876715676175034}} {"text": "%%*******************************************************************\n%% Read in a problem in SDPA sparse format.\n%%\n%% [blk,At,C,b] = read_sdpa(fname)\n%%\n%% Input: fname = name of the file containing SDP data in\n%% SDPA foramt. \n%% Important: the data is assumed to contain only \n%% semidefinite and linear blocks. \n%%*****************************************************************\n%% SDPT3: version 4.0\n%% Copyright (c) 1997 by\n%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************\n\n function [blk,At,C,b] = read_sdpa(fname); \n\n%%\n%% Open the file for input\n%%\n compressed = 0; \n if exist(fname)\n fid = fopen(fname,'r');\n elseif exist([fname,'.Z']); \n compressed = 1; \n unix(['uncompress ',fname,'.Z']);\n fid = fopen(fname,'r');\n elseif exist([fname,'.gz']); \n compressed = 2;\n unix(['gunzip ',fname,'.gz']);\n fid = fopen(fname,'r');\n else\n fprintf('*** Problem not found, please specify the correct path or problem name. \\n');\n blk = []; At = []; C = []; b = [];\n return;\n end\n%%\n%% Clean up special characters and comments from the file \n%%\n [datavec,count] = fscanf(fid,'%c');\n linefeeds = findstr(datavec,char(10));\n comment_chars = '*\"=';\n cumidx = [];\n for i=1:length(comment_chars)\n idx = findstr(datavec,comment_chars(i));\n cumidx = [cumidx,idx];\n end\n for j=length(cumidx):-1:1\n if (cumidx(j)==1) | (strcmp(datavec(cumidx(j)-1),char(10)))\n datavec(cumidx(j):linefeeds(min(find(cumidx(j) size(blksize,2); blksize = blksize'; end\n%%\n%% Get input b.\n%%\n idxstrt = 2+numblk; \n b = datavec(idxstrt+[1:m]); \n idxstrt = idxstrt+m; \n b = -b;\n%%\n%% Construct blk\n%%\n deblksize = 100; \n spblkidxtmp = find( (blksize>1) & (blksize < deblksize) ); \n spblkidxtmp = sort(spblkidxtmp);\n deblkidx = find( (blksize<=1) | (blksize >= deblksize) ); \n denumblk = length(deblkidx); \n linblkidx = zeros(1,denumblk); \n for p = 1:denumblk\n n = blksize(deblkidx(p)); \n if (n > 1); \n blk{p,1} = 's'; blk{p,2} = n;\n n2 = n*(n+1)/2; \n At{p,1} = sparse(n2,m);\n C{p,1} = sparse(n,n); \n else\n linblkidx(p) = p; \n blk{p,1} = 'l'; blk{p,2} = abs(n); \n At{p,1} = sparse(abs(n),m); \n C{p,1} = sparse(abs(n),1); \n end \n end\n if ~isempty(spblkidxtmp) \n maxnumblk = 200; \n spnumblk = ceil(length(spblkidxtmp)/maxnumblk);\n for q = 1:spnumblk\n if (q < spnumblk) \n spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: q*maxnumblk]); \n else\n spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: length(spblkidxtmp)]); \n end\n tmp = blksize(spblkidxall{q}); \n blk{denumblk+q,1} = 's'; \n blk{denumblk+q,2} = tmp; \n n2 = sum(tmp.*(tmp+1))/2; \n At{denumblk+q,1} = sparse(n2,m);\n C{denumblk+q,1} = sparse(sum(tmp),sum(tmp)); \n end\n else\n spnumblk = 0; \n end\n linblkidx(denumblk+[1:spnumblk]) = zeros(1,spnumblk); \n%%\n%% Construct single blocks of A,C\n%%\n len = length(datavec); \n Y = reshape(datavec(idxstrt+1:len),5,(len-idxstrt)/5)'; \n clear datavec; \n Y = sortrows(Y,[1 2]); \n matidx = [0; find(diff(Y(:,1)) ~= 0); size(Y,1)];\n%%\n for k = 1:length(matidx)-1\n idx = [matidx(k)+1 : matidx(k+1)]; \n Ytmp = Y(idx,1:5); \n matno = Ytmp(1,1); \n Ytmp2 = Ytmp(:,2); \n for p = 1:denumblk \n n = blksize(deblkidx(p)); \n idx = find(Ytmp2 == deblkidx(p)); \n ii = Ytmp(idx,3); jj = Ytmp(idx,4); vv =Ytmp(idx,5); \n len = length(idx); \n if (n > 1)\n idxtmp = find(ii > jj); \n if ~isempty(idxtmp); \n tmp = jj(idxtmp); \n jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; \n end\n tmp = -sparse(ii,jj,vv,n,n); \n tmp = tmp + triu(tmp,1)'; \n else\n tmp = -sparse(ii,ones(len,1),vv,abs(n),1); \n end\n if (matno == 0) \n C{p,1} = tmp; \n else\n if (n > 1)\n At{p,1}(:,matno) = svec(blk(p,:),tmp,1); \n else\n At{p,1}(:,matno) = tmp; \n end\n end\n end\n end \n%%\n%% Construct big sparse block of A,C \n%%\nif (spnumblk > 0)\n Y1 = Y(:,1); \n diffY1 = find(diff([-1; Y1; inf])); \n for kk = 1:length(diffY1)-1\n idx = [diffY1(kk) : diffY1(kk+1)-1];\n matno = Y1(diffY1(kk)); \n Ytmp = Y(idx,1:5);\n Ytmp2 = Ytmp(:,2); \n maxYtmp2 = Ytmp2(length(Ytmp2)); \n minYtmp2 = Ytmp2(1);\n diffYtmp2 = Ytmp2(find(diff([-1; Ytmp2]))); \n for q = 1:spnumblk\n spblkidx = spblkidxall{q};\n maxspblkidx = spblkidx(length(spblkidx));\n minspblkidx = spblkidx(1); \n count = 0; \n if (minYtmp2 <= maxspblkidx) & (maxYtmp2 >= minspblkidx)\n tmpblksize = blksize(spblkidx);\n n = sum(tmpblksize); \n cumspblksize = [0 cumsum(tmpblksize)]; \n n2 = sum(tmpblksize.*(tmpblksize+1))/2; \n idx = zeros(n2,1); offset = zeros(n2,1); \n for t = [1:length(diffYtmp2)] \n \t p = find(spblkidx == diffYtmp2(t)); \n if ~isempty(p)\n\t idxtmp = find(Ytmp2 == spblkidx(p));\n len = length(idxtmp); \n \t idx(count+[1:len]) = idxtmp; \n offset(count+[1:len]) = cumspblksize(p); \n count = count + len; \n end\n end \n idx = idx(1:count); offset = offset(1:count); \n ii = Ytmp(idx,3)+offset; jj = Ytmp(idx,4)+offset; vv = Ytmp(idx,5);\n idxtmp = find(ii > jj); \n if ~isempty(idxtmp); \n tmp = jj(idxtmp); \n jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; \n end\n\t idxeq = find(ii==jj); \n tmp = spconvert([ii jj -vv; jj ii -vv; n n 0]) ...\n + spconvert([ii(idxeq) jj(idxeq) vv(idxeq); n n 0]);\n if (matno == 0) \n C{denumblk+q,1} = tmp;\n else\n At{denumblk+q,1}(:,matno) = svec(blk(denumblk+q,:),tmp,1); \n end\n end\n end\n end\nend\n%%\n%% put all linear blocks together as a single linear block\n%% \n idx = find(linblkidx); \n if (length(idx) > 1)\n sdpidx = find(linblkidx==0); \n blktmp = 0; Atmp = []; Ctmp = [];\n for k = 1:length(idx)\n tmp = linblkidx(idx(k)); \n blktmp = blktmp+blk{tmp,2}; \n Atmp = [Atmp; At{tmp}];\n Ctmp = [Ctmp; C{tmp}]; \n end\n At = At(sdpidx); C = C(sdpidx); blk = blk(sdpidx,:); \n len = length(sdpidx); \n blk(2:len+1,:) = blk; \n blk{1,1} = 'l'; blk{1,2} = blktmp; \n At(2:len+1,1) = At; C(2:len+1,1) = C; \n At{1,1} = Atmp; C{1,1} = Ctmp; \n end\n%%******************************************************************\n\n", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/SDPT3-4.0/SDPT3-4.0/Solver/read_sdpa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3876715676175034}} {"text": "function [Dsubj, nf, r, thdemean, M] = surf_registration_stats(dirname, arg2, arg3)\n\n\n%\n% surf_registration_stats.m\n%\n% Original Author: Laurence Wastiaux\n% CVS Revision Info:\n% $Author: nicks $\n% $Date: 2011/03/02 00:04:13 $\n% $Revision: 1.3 $\n%\n% Copyright \u00a9 2011 The General Hospital Corporation (Boston, MA) \"MGH\"\n%\n% Terms and conditions for use, reproduction, distribution and contribution\n% are found in the 'FreeSurfer Software License Agreement' contained\n% in the file 'LICENSE' found in the FreeSurfer distribution, and here:\n%\n% https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense\n%\n% Reporting: freesurfer@nmr.mgh.harvard.edu\n%\n\n\n\nLoadTHMat=1;\nD=[];\nth=90;\nif (nargin==3)\n D=arg2;\n th=arg3;\n LoadTHMat=0;\nend\nif (nargin==2)\n D=arg2;\n th=0.90;\n LoadTHMat=0;\nend\nfiles=dir(dirname);\nnf=files;\nlength(files)\nnv = 163842;\n%D=zeros(length(files), nv);\n\n%% 1- Load the thickness matrix (N_vertices x N_subjects) %%\nif(LoadTHMat==1);\n for i_sub=5:300\n subject_name=files(i_sub).name;\n disp(subject_name)\n SubjectDir=strcat(dirname, '/', subject_name);\n SurfDir=strcat(SubjectDir, '/surf');\n \n \n % a- Ressample the thickness curv file to sphere %\n trglh_file=sprintf('~/lh.thickness.average7.mgh');\n trgrh_file=sprintf('~/rh.thickness.average7.mgh');\n \n if(exist(trglh_file))\n cmdrm=sprintf('rm %s', trglh_file);\n u=unix(cmdrm);\n end \n if(exist(trglh_file))\n cmdrm=sprintf('rm %s', trglh_file);\n u=unix(cmdrm);\n end\n \n lhthickness_file=strcat(SurfDir, '/lh.thickness');\n rhthickness_file=strcat(SurfDir, '/rh.thickness');\n if (isempty(SurfDir) | ~exist(lhthickness_file) | ~exist(rhthickness_file) )\n fprintf('thickness files do not exist\\n');\n i_sub=i_sub+1;\n else\n %cmd_lh=sprintf('mri_surf2surf --srcsubject %s --srcsurfval thickness --src_type curv --trgsubject average7 --trgsurfval %s --trg_type mgh --hemi lh --nsmooth-in 100 --noreshape',subject_name, trglh_file);\n %cmd_rh=sprintf('mri_surf2surf --srcsubject %s --srcsurfval thickness --src_type curv --trgsubject average7 --trgsurfval %s --trg_type mgh --hemi rh --nsmooth-in 100 --noreshape',subject_name, trgrh_file);\n cmd_lh=sprintf('~/work/dev/mris_average_curvature/mris_average_curvature -a 100 -o average7 thickness lh sphere.reg %s %s', subject_name, trglh_file);\n u1=unix(cmd_lh);\n %u2=unix(cmd_rh);\n \n % b- Load the ressampled surface %\n if (exist(trglh_file)==0)\n fprintf('could not create the ressampled surface\\n');\n i_sub=i_sub+1;\n else\n %[vol]=load_mgh(trglh_file);\n vol=read_curv(trglh_file);\n sz=size(vol)\n if(sz(1)~= nv)\n msgerr=sprintf('Wrong ressampled surface');\n error(msgerr)\n end\n D= [D ; vol'];\n nf(size(D,1)).name=subject_name;\n end\n end\n end\nend\nDsubj=D;\n%save('/space/okapi/3/data/laurence/surf_registration/thickness_avg100.mat', 'Dsubj');\n%save('/space/okapi/3/data/laurence/surf_registration/Subj_Names.mat', 'nf');\nsd=size(D);\n\nnsubjs=sd(1);\nnns=1:nsubjs;\n\n%% 2- compute stats %%\n\n% demean\nthdemean = Dsubj - repmat(mean(Dsubj,2),[1 nv]);\n\n% Covariance \nM = thdemean*thdemean';\n\n% % Jackknife\nfor jksubj = 1:nsubjs\n fprintf('%d *\\n',jksubj);\n indjk = find(nns ~= jksubj);\n\n % SVD \n [u s v] = fast_svd(thdemean(indjk,:),M(indjk,indjk)); \n fcvs(:,jksubj) = cumsum((diag(s.^2))/(sum(diag(s.^2))));\n \n % keep enough to explain 85% of the data. The fcvs does not\n % change that much regardless of which data set is jked\n nkeep(jksubj) = max(find(fcvs(:,jksubj) Call; C = 0 -> Put\n\n if(C == 1)\n optval = mean(max(S,2) - K, 0); \n else\n optval = mean(K - min(S,2) - K, 0);\n end\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/37618-monte-carlo-simulation-and-derivatives-pricing/StandardMonteCarlo/LookBackFixedStrike.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.38767155263327213}} {"text": "function ival = s_to_i4 ( s )\n\n%*****************************************************************************80\n%\n%% S_TO_I4 reads an integer value from a string.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 18 November 2003\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string S, a string to be examined.\n%\n% Output, integer IVAL, the integer value read from the string.\n%\n sgn = 1;\n state = 0;\n ival = 0;\n\n i = 0;\n\n while ( i < s_len_trim ( s ) )\n\n i = i + 1;\n c = s(i);\n\n if ( state == 0 )\n\n if ( c == ' ' )\n\n elseif ( c == '-' )\n state = 1;\n sgn = -1;\n elseif ( c == '+' )\n state = 1;\n sgn = +1;\n elseif ( '0' <= c & c <= '9' )\n state = 2;\n ival = c - '0';\n else\n fprintf ( '\\n' );\n fprintf ( 'S_TO_I4 - Fatal error!\\n' );\n fprintf ( ' Illegal character %c while in state %d.\\n', c, state );\n return;\n end\n%\n% Have read the sign, now expecting the first digit.\n%\n elseif ( state == 1 )\n\n if ( c == ' ' )\n\n elseif ( '0' <= c & c <= '9' )\n state = 2;\n ival = c - '0';\n else\n fprintf ( '\\n' );\n fprintf ( 'S_TO_I4 - Fatal error!\\n' );\n fprintf ( ' Illegal character %c while in state %d.\\n', c, state );\n return\n end\n%\n% Have read at least one digit, expecting more.\n%\n elseif ( state == 2 )\n\n if ( '0' <= c & c <= '9' )\n ival = 10 * ival + c - '0';\n else\n ival = sgn * ival;\n return;\n end\n\n end\n\n end\n%\n% If we read all the characters in the string, see if we're OK.\n%\n if ( state ~= 2 )\n fprintf ( '\\n' );\n fprintf ( 'S_TO_I4 - Fatal error!\\n' );\n fprintf ( ' Did not read enough information to define an integer!\\n' );\n return;\n end\n\n ival = sgn * ival;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/obj_io/s_to_i4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5736783928749127, "lm_q2_score": 0.6757646010190476, "lm_q1q2_score": 0.38767155027436384}} {"text": "%% Description errorb(x,y,varargin)\n% errorb(Y,E) plots Y and draws an error bar at each element of Y. The\n% error bar is a distance of E(i) above and below the curve so that each\n% bar is symmetric and 2*E(i) long.\n% If Y and E are a matrices, errob groups the bars produced by the elements\n% in each row and plots the error bars in their appropriate place above the\n% bars.\n% \n% errorb(X,Y,E) plots Y versus X with\n% symmetric error bars 2*E(i) long. X, Y, E must\n% be the same size. When they are vectors, each error bar is a distance of E(i) above\n% and below the point defined by (X(i),Y(i)).\n% \n% errorb(X,Y,'Parameter','Value',...) see below\n% \n%% Optional Parameters\n% horizontal: will plot the error bars horizontally rather than vertically\n% top: plot only the top half of the error bars (or right half for horizontal)\n% barwidth: the width of the little hats on the bars (default scales with the data!)\n% barwidth is a scale factor not an absolute value.\n% linewidth: the width of the lines the bars are made of (default is 2)\n% points: will plot the points as well, in the same colors.\n% color: specify a particular color for all the bars to be (default is black, this can be anything like 'blue' or [.5 .5 .5])\n% multicolor: will plot all the bars a different color (thanks to my linespecer function)\n% fill: this will plot error bounds in shaded color.\n% colormap: in the case that multicolor is specified, one\n% may also specify a particular colormap to\n% choose the colors from.\n%% Examples \n% y=rand(1,5)+1; e=rand(1,5)/4;\n% hold off; bar(y,'facecolor',[.8 .8 .8]); hold on;\n% errorb(y,e);\n% \n% defining x and y\n% x=linspace(0,2*pi,8); y=sin(x); e=rand(1,8)/4;\n% hold off; plot(x,y,'k','linewidth',2); hold on;\n% errorb(x,y,e) \n% \n% group plot:\n% values=abs(randn(2,3))+2; errors=abs(randn(2,3)/1.5+.5)/2;\n% errorb(values,errors);\n% errorb(values,errors,'top');\n% \n% % motivation for the function\n% It is possible to plot nice error bars on top of a bar plot with Matlab's\n% built in errorbar function by setting tons of different parameters to be\n% various things.\n% This function plots what I would consider to be nice error bars as the\n% default, with no modifications necessary.\n% It also plots, only the error bars, and in black. There are some very\n% useful abilities that this function has over the matlab one, see below:\n% \n%% Acknowledgments\n% Thank you to the AP-Lab at Boston University for funding me while I\n% developed these functions. Thank you to the AP-Lab, Avi and Eli for help\n% with designing and testing them.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Jonathan Lansey, last update Oct 2011, %\n% questions to Lansey at gmail.com %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction errorb(x,y,varargin)\n%% first things first\n%save the initial hold state of the figure.\nhold_state = ishold;\nif ~hold_state\n cla;\nend\n\nh=[];\n\n%% If you are plotting errobars on Matlabs grouped bar plot\nif size(x,1)>1 && size(x,2)>1 % if you need to do a group plot\n% Plot bars\n num2Plot=size(x,2);\n e=y; y=x;\n\thandles.bars = bar(x, 'edgecolor','k', 'linewidth', 2);\n\thold on\n\tfor i = 1:num2Plot\n\t\tx =get(get(handles.bars(i),'children'), 'xdata');\n\t\tx = mean(x([1 3],:)); \n% Now the recursive call!\n\t\terrorb(x,y(:,i), e(:,i),'barwidth',1/(num2Plot),varargin{:}); %errorb(x,y(:,i), e(:,i),'barwidth',1/(4*num2Plot),varargin{:});\n end\n if ~hold_state\n hold off;\n end\n return; % no need to see the rest of the function\nelse\n x=x(:)';\n y=y(:)';\n num2Plot=length(x);\nend\n%% Check if X and Y were passed or just X\n\nif ~isempty(varargin)\n if ischar(varargin{1})\n justOneInputFlag=1;\n e=y; y=x; x=1:num2Plot;\n else\n justOneInputFlag=0;\n e=varargin{1}(:)';\n end\nelse % not text arguments, not even separate 'x' argument\n e=y; y=x; x=1:length(e);\n justOneInputFlag=0;\nend\n\nhold on; % axis is already cleared if hold was off\n%% Check that your vectors are the proper length\nif num2Plot~=length(e) || num2Plot~=length(y)\n error('your data must be vectors of all the same length')\nend\n\n%% Check that the errors are all positive\nsignCheck=min(0,min(e(:)));\nif signCheck<0\n error('your error values must be greater than zero')\nend\n\n%% In case you don't specify color:\ncolor2Plot = [ 0 0 0];\n% set all the colors for each plot to be the same one ... hope you like black\nfor kk=1:num2Plot\n lineStyleOrder{kk}=color2Plot;\nend\n\n%% Initialize some things before accepting user parameters\nhorizontalFlag=0;\ntopFlag=0;\npointsFlag=0;\nbarFactor=1;\nlinewidth=2;\ncolormapper='jet';\nmulticolorFlag=0;\nfillFlag=0;\n\n%% User entered parameters\n% if there is just one input, then start at 1,\n% but if X and Y were passed then we need to start at 2\nk = 1 + 1 - justOneInputFlag; %\n% \nwhile k <= length(varargin) && ischar(varargin{k})\n switch (lower(varargin{k}))\n case 'horizontal'\n horizontalFlag=1;\n if justOneInputFlag % need to switch x and y now\n x=y; y=1:num2Plot; % e is the same\n end\n case 'color' %\n color2Plot = varargin{k + 1};\n% set all the colors for each plot to be the same one\n for kk=1:num2Plot\n lineStyleOrder{kk}=color2Plot;\n end\n k = k + 1;\n case 'linewidth'\n linewidth = varargin{k + 1};\n k = k + 1;\n case {'barwidth','width','thickness'} \n barFactor = varargin{k + 1};\n% barWidthFlag=1;\n k = k + 1;\n case 'points'\n pointsFlag=1;\n case 'multicolor'\n multicolorFlag=1;\n case 'colormap' % used only if multicolor\n colormapper = varargin{k+1};\n k = k + 1;\n case 'top'\n topFlag=1;\n case 'fill'\n fillFlag=1;\n otherwise\n warning('Dude, you put in the wrong argument');\n end\n k = k + 1;\nend\n\n\nif ~fillFlag % plot errobars normally.\n\nif multicolorFlag\n lineStyleOrder=linspecer(num2Plot,colormapper);\nend\n\n%% Set the bar's width if not set earlier\nif num2Plot==1\n% defaultBarFactor=how much of the screen the default bar will take up if\n% there is only one number to work with.\n defaultBarFactor=20;\n p=axis;\n if horizontalFlag\n barWidth=barFactor*(p(4)-p(3))/defaultBarFactor;\n else\n barWidth=barFactor*(p(2)-p(1))/defaultBarFactor;\n end\nelse % is more than one datum\n if horizontalFlag\n barWidth=barFactor*(y(2)-y(1))/4;\n else\n barWidth=barFactor*(x(2)-x(1))/4;\n end\nend\n\n%% Plot the bars\nfor k=1:num2Plot\n if horizontalFlag\n ex=e(k);\n esy=barWidth/2;\n% the main line\n if ~topFlag || x(k)>=0 %also plot the bottom half.\n h(end+1) = plot([x(k)+ex x(k)],[y(k) y(k)],'color',lineStyleOrder{k},'linewidth',linewidth);\n % the hat \n h(end+1) = plot([x(k)+ex x(k)+ex],[y(k)+esy y(k)-esy],'color',lineStyleOrder{k},'linewidth',linewidth);\n end\n if ~topFlag || x(k)<0 %also plot the bottom half.\n h(end+1) = plot([x(k) x(k)-ex],[y(k) y(k)],'color',lineStyleOrder{k},'linewidth',linewidth);\n h(end+1) = plot([x(k)-ex x(k)-ex],[y(k)+esy y(k)-esy],'color',lineStyleOrder{k},'linewidth',linewidth);\n %rest?\n end\n else %plot then vertically\n ey=e(k);\n esx=barWidth/2;\n% the main line\n if ~topFlag || y(k)>=0 %also plot the bottom half.\n h(end+1) = plot([x(k) x(k)],[y(k)+ey y(k)],'color',lineStyleOrder{k},'linewidth',linewidth);\n % the hat\n h(end+1) = plot([x(k)+esx x(k)-esx],[y(k)+ey y(k)+ey],'color',lineStyleOrder{k},'linewidth',linewidth);\n end\n if ~topFlag || y(k)<0 %also plot the bottom half.\n h(end+1) = plot([x(k) x(k)],[y(k) y(k)-ey],'color',lineStyleOrder{k},'linewidth',linewidth);\n h(end+1) = plot([x(k)+esx x(k)-esx],[y(k)-ey y(k)-ey],'color',lineStyleOrder{k},'linewidth',linewidth);\n end\n end\nend\n%\n%% plot the points, very simple\n\nif pointsFlag\n for k=1:num2Plot\n h(end+1) = plot(x(k),y(k),'o','markersize',8,'color',lineStyleOrder{k},'MarkerFaceColor',lineStyleOrder{k});\n end\nend\n\nelse % plot error bars by filling them in.\n \n% Plot the mean:\n plot(x,y,'linewidth',2,'color',color2Plot);\n% Make the polygon:\n\n xPoly = [x fliplr(x) x(1)];\n yPoly = [y+e fliplr(y-e) y(1)+e(1)];\n \n h(end+1) = plot(xPoly,yPoly,'color',color2Plot)\n hReg = fill(xPoly,yPoly,color2Plot); % draw region\n set(get(get(hReg,'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); % Exclude line from legend\n \nend % fillFlag check over\n\nfor hLoop = 1:length(h)\n set(get(get(h(hLoop),'Annotation'),'LegendInformation'),'IconDisplayStyle','off'); \nend\n\n\ndrawnow;\n% return the hold state of the figure\nif ~hold_state\n hold off;\nend\n\nend\n\n%%\n\nfunction lineStyleOrder=linspecer(N,varargin)\n\n% default colormap\ncolormap hot; A=colormap;\n\n%% interperet varagin\nif ~isempty(varargin)>0\n colormap (varargin{1}); A=colormap;\nend \n \n%% \n\nif N<=0\n lineStyleOrder={};\n return;\nend\n\nvalues=round(linspace(1,50,N));\nfor n=1:N\n lineStyleOrder(n) = {A(values(n),:)};\nend\n\n\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27387-create-healthy-looking-error-bars/errorb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5736783928749126, "lm_q2_score": 0.6757645944891558, "lm_q1q2_score": 0.38767154652830593}} {"text": "function significant = spectsignificance(tests,alpha)\n%\n% From a estiamtion of p-values through the specttest function,\n% It returns 0 or 1 for each power of coherence value, if the p-value is\n% below the level of significance 'alpha'. \n%\n% INPUTS: \n%\n% tests The output of specttest, i.e. a cell \n% where each element corresponds to one subject\n% alpha Significance level\n%\n% OUTPUT:\n% \n% significant Struct with 4 fields: lower, higher, lower_corr, higher_corr. \n% ('_corr' reflects to multiple comparisons correction)\n% Each field has a field 'states', just like each\n% element of tests, with fields state(k).psd and \n% state(k).coh containing 1 if the value is\n% significant and 0 otherwise\n%\n% Author: Diego Vidaurre, OHBA, University of Oxford (2017)\n\nif nargin < 2, alpha = 0.01; end\n\nsignificant = struct();\nsignificant.higher = struct();\nsignificant.higher.state = struct();\nsignificant.higher_corr = struct();\nsignificant.higher_corr.state = struct();\nsignificant.lower = struct();\nsignificant.lower.state = struct();\nsignificant.lower_corr = struct();\nsignificant.lower_corr.state = struct();\n\nK = length(tests.higher.state); \nfor k = 1:K\n significant.higher.state(k).psd = tests.higher.state(k).psd < alpha;\n significant.higher_corr.state(k).psd = tests.higher_corr.state(k).psd < alpha;\n significant.lower.state(k).psd = tests.lower.state(k).psd < alpha;\n significant.lower_corr.state(k).psd = tests.lower_corr.state(k).psd < alpha;\n significant.higher.state(k).coh = tests.higher.state(k).coh < alpha;\n significant.higher_corr.state(k).coh = tests.higher_corr.state(k).coh < alpha;\n significant.lower.state(k).coh = tests.lower.state(k).coh < alpha;\n significant.lower_corr.state(k).coh = tests.lower_corr.state(k).coh < alpha;\nend\n\nend", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/utils/testing/spectsignificance.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.709019146082187, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.38764781765068385}} {"text": "function [a_vec, a_vec_flt] = KiserTMOv(hdrv, filenameOutput, tmo_alpha, tmo_dn_clamping, tmo_white, tmo_gamma, tmo_quality, tmo_video_profile)\n%\n%\n% KiserTMOv(hdrv, filenameOutput, tmo_alpha, tmo_dn_clamping, tmo_white, tmo_gamma, tmo_quality, tmo_video_profile)\n%\n%\n% Input:\n% -hdrv: a HDR video structure; use hdrvread to create a hdrv\n% structure\n% -filenameOutput: output filename (if it has an image extension,\n% single files will be generated)\n% -tmo_alpha: \\alpha_A, \\alpha_B, \\alpha_C coefficients\n% costants in the paper (Equation 3a, 3b, and 3c)\n% -tmo_dn_clamping: a boolean value (0 or 1) for setting black\n% and white levels clamping\n% -tmo_white: white point;\n% -tmo_gamma: gamma for encoding the frame\n% -tmo_quality: the output quality in [1,100]. 100 is the best quality\n% 1 is the lowest quality.%\n% -tmo_video_profile: the compression profile (encoder) for compressing the stream.\n% Please have a look to the profile of VideoWriter from the MATLAB\n% help. Depending on the version of MATLAB some profiles may be not\n% be present.\n%\n% Copyright (C) 2013-17 Francesco Banterle\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n%\n% The paper describing this technique is:\n% \"Real-time Automated Tone Mapping System for HDR Video\"\n% \t by Chris Kiser, Erik Reinhard, Mike Tocci and Nora Tocci\n% in IEEE International Conference on Image Processing, 2012 \n%\n%\n\nif(~exist('tmo_alpha', 'var'))\n tmo_alpha = 0.98;\nend\n\nif(~exist('tmo_dn_clamping', 'var'))\n tmo_dn_clamping = 0;\nend\n\nif(~exist('tmo_white', 'var'))\n tmo_white = 1e6;\nend\n\nif(tmo_white <= 0.0)\n tmo_white = 1e6;\nend\n\nif(~exist('tmo_gamma', 'var'))\n tmo_gamma = -2.2;\nend\n\nif(tmo_gamma < 0)\n bsRGB = 1;\nelse\n bsRGB = 0;\nend\n\nif(~exist('tmo_quality', 'var'))\n tmo_quality = 95;\nend\n\nif(~exist('tmo_video_profile', 'var'))\n tmo_video_profile = 'MPEG-4';\nend\n\nname = RemoveExt(filenameOutput);\next = fileExtension(filenameOutput);\n\nbVideo = 0;\nwriterObj = 0;\n\nif(strcmp(ext, 'avi') == 1 | strcmp(ext, 'mp4') == 1)\n bVideo = 1;\n writerObj = VideoWriter(filenameOutput, tmo_video_profile);\n writerObj.FrameRate = hdrv.FrameRate;\n writerObj.Quality = tmo_quality;\n open(writerObj);\nend\n\nhdrv = hdrvopen(hdrv);\n\ndisp('Tone Mapping...');\n\nbeta_clamping = 0.999;\nbeta_clamping_c = (1.0 - beta_clamping);\n\na_vec = [];\na_vec_flt = [];\n\nmaxLprev = 0;\n\nmkdir(name);\n\nfor i=1:hdrv.totalFrames\n disp(['Processing frame ', num2str(i)]);\n [frame, hdrv] = hdrvGetFrame(hdrv, i);\n \n %only physical values\n frame = RemoveSpecials(frame);\n frame(frame < 0) = 0;\n \n if(tmo_dn_clamping)\n %clamp black and white levels\n L = RemoveSpecials(lum(frame));\n %compute CDF's histogram \n [histo, bound, ~] = HistogramHDR(L, 256, 'log10', [], 1); \n histo_cdf = cumsum(histo);\n histo_cdf = histo_cdf/max(histo_cdf(:));\n [~, ind] = min(abs(histo_cdf - beta_clamping));\n maxL = 10^(ind * (bound(2) - bound(1)) / 256 + bound(1));\n\n [~, ind] = min(abs(histo_cdf-beta_clamping_c));\n minL = 10^(ind * (bound(2) - bound(1)) / 256 + bound(1));\n\n frame(frame > maxL) = maxL;\n frame(frame < minL) = minL;\n frame = frame - minL;\n end\n \n %compute statistics for the current frame\n L = lum(frame);\n Lav = logMean(L);\n maxL = max(L(:));\n A = maxL - Lav;\n B = Lav - min(L(:));\n \n if(i == 1)\n maxLprev = maxL;\n Aprev = A;\n Bprev = B;\n aprev = 0.18 * 2^(2 * (B - A) / (A + B));\n end\n \n %leaky integration\n tmo_alpha_c = 1.0 - tmo_alpha;\n An = tmo_alpha_c * Aprev + tmo_alpha * A;\n Aprev = An;\n \n Bn = tmo_alpha_c * Bprev + tmo_alpha * B;\n Bprev = Bn;\n \n a = SceneKey(An, Bn);\n an = tmo_alpha_c * aprev + tmo_alpha * a;\n aprev = an;\n \n %tone mapping\n [frameOut, ~, ~] = ReinhardTMO(frame, an, tmo_white, 'global');\n\n %example\n a_vec = [a_vec, maxL]; \n maxLn = 0.5 * maxLprev + 0.5 *maxL;\n maxLprev = maxLn; \n a_vec_flt = [a_vec_flt, maxLn ]; \n \n %gamma/sRGB encoding\n if(bsRGB)\n frameOut = ClampImg(ConvertRGBtosRGB(frameOut, 0), 0, 1);\n else\n frameOut = ClampImg(GammaTMO(frameOut, tmo_gamma, 0, 0), 0, 1);\n end\n \n if(bVideo)\n writeVideo(writerObj, frameOut);\n else\n imwrite(frameOut, [name, '/frame_', sprintf('%.10d',i), '.', ext]);\n end\n \n %update statistics for the next frame\n Aprev = A;\n Bprev = B;\n aprev = a; \nend\ndisp('OK');\n\nif(bVideo)\n close(writerObj);\nend\n\nhdrvclose(hdrv);\n\nend\n\nfunction a = SceneKey(An, Bn)\n a = 0.18 * 2^(2 * (Bn - An) / (An + Bn));\nend\n", "meta": {"author": "banterle", "repo": "HDR_Toolbox", "sha": "a2b45dc48b7169192fb633097a83879e71a0c0f2", "save_path": "github-repos/MATLAB/banterle-HDR_Toolbox", "path": "github-repos/MATLAB/banterle-HDR_Toolbox/HDR_Toolbox-a2b45dc48b7169192fb633097a83879e71a0c0f2/source_code/Tmo_video/KiserTMOv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.38764781092739353}} {"text": "function [DEM] = spm_ADEM_update(DEM,COV)\n% Updates ADEM structure using conditional expectations\n% FORMAT [DEM] = spm_ADEM_update(DEM,COV)\n%\n% DEM - DEM structure\n% COV - Covariance of parameter (P) fluctuations (E): P(i + 1) = P(i) + E\n% - where cov(E) = COV*pC\n%\n% This routine updates posterior expectations about states and parameters\n% by replacing prior expectations with posterior expectations (and\n% similarly updating hidden states and causes to the final iteration). If\n% called with an extra argument, the posterior variances of the\n% parameters are also updated.\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_ADEM_update.m 6506 2015-07-24 10:26:51Z karl $\n\n\n% preliminaries\n%--------------------------------------------------------------------------\nif nargin < 2, COV = 0; end\n\n% update states and parameters (model)\n%--------------------------------------------------------------------------\nn = length(DEM.M);\nC = DEM.qP.C;\nfor i = 1:(n - 1)\n \n % states\n %----------------------------------------------------------------------\n qE = DEM.qU.x{i};\n if ~isempty(qE)\n DEM.M(i).x = spm_unvec(qE(:,end),DEM.M(i).x);\n end\n \n % parameters\n %----------------------------------------------------------------------\n qE = spm_vec(DEM.qP.P{i});\n DEM.M(i).pE = spm_unvec(qE,DEM.M(i).pE);\n \n if nargin > 1\n \n % parameter covariance\n %------------------------------------------------------------------\n pC = DEM.M(i).pC;\n np = length(pC);\n qC = C(1:np,1:np);\n C = C(np + 1:end,np + 1:end);\n DEM.M(i).pC = qC + COV*pC;\n \n end\n \nend\n\nfor i = 1:n\n if ~isempty(DEM.M(i).v)\n DEM.M(i).v = spm_unvec(DEM.qU.v{i}(:,end),DEM.M(i).v);\n end\nend\n\n% update states and action (process)\n%--------------------------------------------------------------------------\nn = length(DEM.G);\nfor i = 1:(n - 1)\n DEM.G(i).x = spm_unvec(DEM.pU.x{i}(:,end),DEM.G(i).x);\nend\nfor i = 1:n\n if ~isempty(DEM.G(i).v)\n DEM.G(i).v = spm_unvec(DEM.pU.v{i}(:,end),DEM.G(i).v);\n end\nend\nif isfield(DEM.G,'a')\n DEM.G(n).a = spm_unvec(DEM.qU.a{n}(:,end),DEM.G(n).a);\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_ADEM_update.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389817407016, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3876351101539179}} {"text": "function [ nuniq, b1, b2 ] = i4vec2_sorted_unique ( n, a1, a2 )\n\n%*****************************************************************************80\n%\n%% I4VEC2_SORTED_UNIQUE keeps unique elements of a sorted I4VEC2.\n%\n% Discussion:\n%\n% Item I is stored as the pair A1(I), A2(I).\n%\n% The items must have been sorted, or at least it must be the\n% case that equal items are stored in adjacent vector locations.\n%\n% If the items were not sorted, then this routine will only\n% replace a string of equal values by a single representative.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 04 February 2005\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of items.\n%\n% Input, integer A1(N), A2(N), the array of N items.\n%\n% Output, integer NUNIQ, the number of unique items.\n%\n% Output, integer B1(N), B2(N), an array of NUNIQ unique items.\n%\n nuniq = 0;\n\n if ( n <= 0 )\n return\n end\n\n itest = 1;\n nuniq = 1;\n b1(nuniq) = a1(itest);\n b2(nuniq) = a2(itest);\n \n for itest = 2 : n\n\n if ( a1(itest) ~= b1(nuniq) | a2(itest) ~= b2(nuniq) )\n\n nuniq = nuniq + 1;\n\n b1(nuniq) = a1(itest);\n b2(nuniq) = a2(itest);\n\n end\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/geometry/i4vec2_sorted_unique.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5039061705290805, "lm_q2_score": 0.7690802423634963, "lm_q1q2_score": 0.3875442797589665}} {"text": "function se = cross3d\n%CROSS3D Return a 3D structuring element with cross shape\n%\n%\n%\n% ---------\n%\n% author : David Legland \n% INRA - TPV URPOI - BIA IMASTE\n% created the 30/09/2004.\n%\n\n% HISTORY\n\nse = zeros([3 3 3]);\nse(1,2,2) = 1;\nse(3,2,2) = 1;\nse(2,:,:) = [0 1 0;1 1 1;0 1 0];\n\n", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/matImage/imFilters/cross3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857982, "lm_q2_score": 0.6893056295505783, "lm_q1q2_score": 0.3875114268616263}} {"text": "%ISVALDFILE Test whether the argument is a valid datafile or dataset\n%\n% \tN = ISVALDFILE(A);\n% \tN = ISVALDFILE(A,M);\n% \tN = ISVALDFILE(A,M,C);\n%\n% INPUT\n% A Input argument, to be tested on datafile or dataset\n% M Minimum number of objects per class in A\n% C Minimum number of classes in A\n%\n% OUTPUT\n% N 1/0 if A is / isn't a valid datafile or dataset\n%\n% DESCRIPTION\n% The function ISVALDFILE tests if A is a datafile or dataset that has\n% at least C classes. It is an extension of ISVALDSET and can be used it \n% when datasets as well as datafiles are allowed.\n% For datafiles(sets) with soft or targets labels it is tested whether A \n% has at least M objects.\n%\n% SEE ALSO (PRTools Guide)\n% ISDATASET, ISMAPPING, ISDATAIM, ISFEATIM, ISCOMDSET, ISVALDSET\n\nfunction n = isvaldfile(a,m,c)\n\t\t\n\tif nargin < 3 | isempty(c), c = 0; end\n\tif nargin < 2 | isempty(m), m = 0; end\n\t\n\tif nargout == 0\n\t\tif ~isdatafile(a)\n\t\t\tisdataset(a);\n\t\tend\n\telse\n\t\tn = 1;\n\t\tif ~isdatafile(a) & ~isdataset(a)\n\t\t\tn = 0;\n\t\t\treturn\n\t\tend\n\tend\n\t\n\tif c == 1 & getsize(a,3) == 0\n\t\t; % accept unlabeled dataset as having one class\n\telseif c > 0 & getsize(a,3) == 0\n\t\t\n\t\tif nargout == 0\n \t\terror([newline 'Labeled prdatafile(set) expected'])\n\t\telse\n\t\t\tn = 0;\n\t\tend\n\t\t\n\telseif getsize(a,3) < c\n\t\t\n\t\tif nargout == 0\n\t\t\terror([newline 'Datafile(set) should have at least ' num2str(c) ' classes'])\n\t\telse\n\t\t\tn = 0;\n\t\tend\n\t\t\n\tend\n\n\tif islabtype(a,'crisp') & any(classsizes(a) < m)\n\t\t\n\t\tif nargout == 0\n\t\t\tif m == 1\n\t\t\t\t\n\t\t\t\terror([newline 'Classes should have at least one object.' newline ...\n\t\t\t\t\t\t'Remove empty classes by A = remclass(A).'])\n\t\t\telse\n\t\t\t\tcn = num2str(m);\n\t\t\t\terror([newline 'Classes should have at least ' cn ' objects.' ...\n\t\t\t\t\t\tnewline 'Remove small classes by A = remclass(A,' cn ')'])\n\t\t\tend\n\t\telse\n\t\t\tn = 0;\n\t\tend\n\t\t\n\tend\n\n\tif islabtype(a,'soft','targets') & size(a,1) < m\n\t\terror([newline 'Datafile(set) should have at least ' num2str(m) ' objects'])\n\tend\n\t\nreturn\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/isvaldfile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.38751142686162626}} {"text": "% get image block - 4\nfunction [img1, img2, img3, img4] = getImgBlock(img)\n\n[h, w] = size(img);\nh_cen = floor(h/2);\nw_cen = floor(w/2);\n\nimg1 = img(1:h_cen+2, 1:w_cen+2);\nimg2 = img(1:h_cen+2, w_cen-1:w);\nimg3 = img(h_cen-1:h, 1:w_cen+2);\nimg4 = img(h_cen-1:h, w_cen-1:w);\n\n% figure;imshow(img1);\n% figure;imshow(img2);\n% figure;imshow(img3);\n% figure;imshow(img4);\n% \n% F1 = cat(2,img1, img2);\n% figure;imshow(F1);\n% F2 = cat(2,img3, img4);\n% figure;imshow(F2);\n% F = cat(1,F1, F2);\n% figure;imshow(F);\n\nend\n", "meta": {"author": "thfylsty", "repo": "Classic-and-state-of-the-art-image-fusion-methods", "sha": "5d9457df396f1ea6921e1b9b3703995205940862", "save_path": "github-repos/MATLAB/thfylsty-Classic-and-state-of-the-art-image-fusion-methods", "path": "github-repos/MATLAB/thfylsty-Classic-and-state-of-the-art-image-fusion-methods/Classic-and-state-of-the-art-image-fusion-methods-5d9457df396f1ea6921e1b9b3703995205940862/mdlatlrr/getImgBlock.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593312018545, "lm_q2_score": 0.6224593382055109, "lm_q1q2_score": 0.38745562335975126}} {"text": "function [fx,tx,pv,fv]=fxpefac(s,fs,tinc,m,pp)\n%FXPEFAC PEFAC pitch tracker [FX,TT,PV,FV]=(S,FS,TINC,M,PP)\n%\n% Input: s(ns) Speech signal\n% fs Sample frequency (Hz)\n% tinc Time increment between frames (s) [0.01]\n% or [start increment end]\n% m mode\n% 'g' plot graph showing waveform and pitch\n% 'G' plot spectrogram with superimposed pitch\n% 'x' use external files for algorithm parameter\n% initialization: fxpefac_g and fxpefac_w\n% pp structure containing algorithm parameters\n%\n% Outputs: fx(nframe) Estimated pitch (Hz)\n% tx(nframe) Time at the centre of each frame (seconds).\n% pv(nframe) Probability of the frame of being voiced\n% fv structure containing feature vectors\n% fv.vuvfea(nframe,2) = voiced/unvoiced GMM features\n\n% References\n% [1] S.Gonzalez and M. Brookes,\n% A pitch estimation filter robust to high levels of noise (PEFAC), Proc EUSIPCO,Aug 2011.\n\n% Bugs/Suggestions\n% (1) do long files in chunks\n% (2) option of n-best DP\n\n%\t Copyright (C) Sira Gonzalez and Mike Brookes 2011\n% Version: $Id: fxpefac.m,v 1.2 2011/07/27 07:22:07 dmb Exp $\n%\n% VOICEBOX is a MATLAB toolbox for speech processing.\n% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You can obtain a copy of the GNU General Public License from\n% http://www.gnu.org/copyleft/gpl.html or by writing to\n% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\npersistent w_u m_u v_u w_v m_v v_v dpwtdef\n% initialize persistent variables\nif ~numel(w_u)\n\n % voiced/unvoiced decision based on 2-element feature vector\n % (a) mean power of the frame's log-freq spectrum (normalized so its short-term average is LTASS)\n % (b) sum of the power in the first three peaks\n %===== VUV\n if nargin>3 && any(m=='x')\n fxpefac_g; % read in GMM parameters\n fxpefac_w; % read in Weights parameters\n else\n w_u=[0.2123723 0.207788 0.2701817 0.1293616 0.04741722 0.1328791 ]';\n\n m_u=[0.2220388 0.4067706 ;\n 0.04567656 0.4016914 ;\n 0.8415278 0.3192158 ;\n 0.2194808 0.1910079 ;\n 1.6347 0.5819833 ;\n 1.181519 0.6996485 ];\n\n v_u=reshape([0.01413822 0.003357913 0.003357913 0.01786169 ;\n 0.0009377269 0.0006220489 0.0006220489 0.03422057 ;\n 0.1233703 0.004299293 0.004299293 0.007660504 ;\n 0.01779449 0.002078821 0.002078821 0.001605052 ;\n 1.110173 0.00718649 0.00718649 0.005734435 ;\n 0.5477135 -0.00182316 -0.00182316 0.05659796 ]',[2 2 6]);\n\n w_v=[0.07758689 0.2109879 0.1856225 0.06853158 0.2701563 0.1871148 ]';\n\n m_v=[1.208656 0.3365564 ;\n 1.216643 0.5971916 ;\n 4.08585 1.240948 ;\n 8.322102 1.349939 ;\n 1.734108 1.168643 ;\n 0.5107205 0.940308 ];\n\n v_v=reshape([0.06181574 0.002950501 0.002950501 0.004528442 ;\n 0.2946077 0.01433284 0.01433284 0.02684239 ;\n 2.508473 -0.03310555 -0.03310555 0.1098579 ;\n 14.17252 -0.09009174 -0.09009174 0.07989255 ;\n 0.5834894 -0.07854027 -0.07854027 0.1108958 ;\n 0.05978017 0.005528601 0.005528601 0.1309329 ]',[2 2 6]);\n end\n %===== PDP\n % dfm = -0.4238; % df mean\n % dfv = 3.8968; % df variance (although treated as std dev here)\n % delta = 0.15;\n % dflpso=[dfm 0.5/(log(10)*dfv^2) -log(2*delta/(dfv*sqrt(2*pi)))/log(10)]; % scale factor & offset for df pdf\n % dpwtdef=[1.0000, 0.8250, 1.3064, 1.9863]; % default DP weights\n dpwtdef=[1.0000, 0.8250, 0.01868, 0.006773, 98.9, -0.4238]; % default DP weights\n %===== END\n\nend\n\n\n% Algorithm parameter defaults\n\np.fstep=5; % frequency resolution of initial spectrogram (Hz)\np.fmax=4000; % maximum frequency of initial spectrogram (Hz)\np.fres = 20; % bandwidth of initial spectrogram (Hz)\np.fbanklo = 40; % low frequency limit of log filterbank (Hz)\np.mpsmooth = 201; % width of smoothing filter for mean power\n% p.maxtranf = 1000; % maximum value of tranf cost term\np.shortut = 7; % max utterance length to average power of entire utterance\np.pefact = 1.5; % shape factor in PEFAC filter\np.numopt = 3; % number of possible frequencies per frame\np.flim = [60 400]; % range of feasible fundamental frequencies (Hz)\np.w = dpwtdef; % DP weights\n% p.rampk = 1.1; % constant for relative-amplitude cost term\n% p.rampcz = 100; % relative amplitude cost for missing peak\np.tmf = 2; % median frequency smoothing interval (s)\np.tinc = 0.01; % default frame increment (s)\n\n% update parameters from pp argument\n\nif nargin>=5 && isstruct(pp)\n fnq=fieldnames(pp);\n for i=1:length(fnq)\n if isfield(p,fnq{i})\n p.(fnq{i})=pp.(fnq{i});\n end\n end\nend\n\n% Sort out input arguments\nif nargin>=3 && numel(tinc)>0\n p.tinc = tinc; % 0.01 s between consecutive time frames\nend\nif nargin<4\n m='';\nend\n\n% Spectrogram of the mixture\nfmin = 0; fstep = p.fstep; fmax = p.fmax;\nfres = p.fres; % Frequency resolution (Hz)\n[tx,f,MIX]=spgrambw(s,fs,fres,[fmin fstep fmax],[],p.tinc);\nnframes=length(tx);\ntxinc=tx(2)-tx(1); % actual frame increment\n% ==== we could combine spgrambw and filtbankm into a single call to spgrambw or use fft directly ====\n% Log-frequency scale\n[trans,cf]=filtbankm(length(f),2*length(f)-1,2*f(end),p.fbanklo,f(end),'usl');\nO = MIX*trans'; % Original spectrum in Log-frequency scale\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Amplitude Compression\n\n% Calculate alpha based on LTASS ratios\nltass = stdspectrum(6,'p',cf);\nauxf = [cf(1),(cf(1:end-1)+cf(2:end))./2,cf(end)];\nltass = ltass.*diff(auxf); % weight by bin width\n\n% estimated ltass\nO = O.*repmat(diff(auxf),nframes,1); % weight spectrum by bin width\n\nif tx(end)2*cf(1));\nsca = cf/cf(ini(1)); % normalize bin frequencies to start at approximately 0.5\nsca = sca(sca<10.5 & sca>0.5); % restrict to 0.5 - 10.5 times fundamental\nfilh = -log10(p.pefact-cos(2*pi*sca));\nfilh = filh-mean(filh); % force filter to be zero mean\nposit = find(sca>=1); % ==== this should just equal ini(1) ====\nif ~mod(length(posit),2)\n filh = [filh 0]; % force to be an odd length after central tap\nend\nnegat = find(sca<1);\nnumz = length(posit)-1-length(negat);\nfilh = filh./max(filh);\nfilh = [zeros(1,numz) filh];\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Filter the log-frequency scaled spectrogram\nB = imfilter(O,filh); % ==== no good reason to use imfilter here ====\n\n% Feasible frequency range\nnumopt = p.numopt; % Number of possible fundamental frequencies per frame\nflim = p.flim;\npfreq = find(cf>flim(1) & cf0.6)); % calculate median frequency of first 2 seconds\nif isnan(mf)\n mf=median(fpos(pv(1:min(inmf,end))>0.5));\n if isnan(mf)\n mf=median(fpos(pv(1:min(inmf,end))>0.4));\n if isnan(mf)\n mf=median(fpos(pv(1:min(inmf,end))>0.3)); % ==== clumsy way of ensuring that we take the best frames ====\n if isnan(mf)\n mf=0;\n end\n end\n end\nend\nmedfx(1)=mf;\n\nfor i=2:nframes % main dynamic programming loop\n if i>inmf\n fpos = ff(i-inmf:i,1); % fpos is the highest peak in each frame\n mf=median(fpos(pv(1:inmf)>0.6)); % find median frequency over past 2 seconds\n if isnan(mf)\n mf=median(fpos(pv(1:inmf)>0.5));\n if isnan(mf)\n mf=median(fpos(pv(1:inmf)>0.4));\n if isnan(mf)\n mf=median(fpos(pv(1:inmf)>0.3));% ==== clumsy way of ensuring that we take the best frames ====\n if isnan(mf)\n mf=0;\n end\n end\n end\n end\n end\n medfx(i)=mf;\n % Frequency difference between candidates and cost\n df = dffact*(repmat(ff(i,:).',1,numopt) - repmat(ff(i-1,:),numopt,1))./(repmat(ff(i,:).',1,numopt) + repmat(ff(i-1,:),numopt,1));\n costdf=w(3)*min((df-w(6)).^2,w(4));\n\n % Cost related to the median pitch\n if mf==0 % this test was inverted in the original version\n costf = zeros(1,numopt);\n else\n costf = abs(ff(i,:) - mf)./mf;\n end\n [cost(i,:),prev(i,:)]=min(costdf + repmat(cost(i-1,:),numopt,1),[],2); % ==== should we allow the possibility of skipping frames ? ====\n cost(i,:)=cost(i,:)+w(2)*costf + w(1)*camp(i,:); % add on costs that are independent of previous path\n\nend\n\n% Traceback\n\nfx=zeros(nframes,1);\nbest = zeros(nframes,1);\n\nnose=find(cost(end,:)==min(cost(end,:))); % ==== bad method (dangerous) ===\nbest(end)=nose(1);\n% ff = [ff zeros(nframes,1)]; % not clear why this was here\nfx(end)=ff(end,best(end));\nfor i=nframes:-1:2\n best(i-1)=prev(i,best(i));\n fx(i-1)=ff(i-1,best(i-1));\nend\n\nif nargout>=4\n fv.vuvfea=vuvfea; % voiced-unvoiced features\n fv.best=best; % selected path\n fv.ff=ff; % pitch candidates\n fv.amp=amp; % pitch candidate amplitudes\n fv.medfx=medfx; % median pitch\n fv.w=w; % DP weights\n fv.dffact=dffact; % df scale factor\nend\n\nif ~nargout || any(m=='g') || any(m=='G')\n nax=0; % number of axes sets to link\n msk=pv>0.5; % find voiced frames as a mask\n fxg=fx;\n fxg(~msk)=NaN; % allow only good frames\n fxb=fx;\n fxb(msk)=NaN; % allow only bad frames\n if any(m=='G') || ~nargout && ~any(m=='g')\n clf;\n spgrambw(s,fs,'ilcwpf'); % draw spectrogram with log axes\n hold on\n plot(tx,log10(fxg),'-b',tx,log10(fxb),'-r'); % fx track\n yy=get(gca,'ylim');\n plot(tx,yy(1)+yy*[-1;1]*(0.02+0.05*pv),'-k'); % P(V) track\n hold off\n nax=nax+1;\n axh(nax)=gca;\n if any(m=='g')\n figure; % need a new figure if plotting two graphs\n end\n end\n if any(m=='g')\n ns=length(s);\n [tsr,ix]=sort([(1:ns)/fs 0.5*(tx(1:end-1)+tx(2:end))']); % intermingle speech and frame boundaries\n jx(ix)=1:length(ix); % create inverse index\n sp2fr=jx(1:ns)-(0:ns-1); % speech sample to frame number\n spmsk=msk(sp2fr); % speech sample voiced mask\n sg=s;\n sg(~spmsk)=NaN; % good speech samples only\n sb=s;\n sb(spmsk)=NaN; % bad speech samples only\n clf;\n subplot(5,1,1);\n plot(tx,pv,'-b',(1:ns)/fs,0.5*mod(cumsum(fx(sp2fr)/fs),1)-0.6,'-b');\n nax=nax+1;\n axh(nax)=gca;\n ylabel('\\phi(t), P(V)');\n set(gca,'ylim',[-0.65 1.05]);\n subplot(5,1,2:3);\n plot((1:ns)/fs,sg,'-b',(1:ns)/fs,sb,'-r');\n nax=nax+1;\n axh(nax)=gca;\n subplot(5,1,4:5);\n plot(tx,fxg,'-b',tx,fxb,'-r');\n ylabel('Pitch (Hz)');\n % semilogy(tx,fxg,'-b',tx,fxb,'-r');\n % ylabel(['Pitch (' yticksi 'Hz)']);\n set(gca,'ylim',[min(fxg)-30 max(fxg)+30]);\n nax=nax+1;\n axh(nax)=gca;\n end\n if nax>1\n linkaxes(axh,'x');\n end\nend\n\nfunction y=smooth(x,n)\nnx=length(x);\nc=cumsum(x);\ny=[c(1:2:n)./(1:2:n) (c(n+1:end)-c(1:end-n))/n (c(end)-c(end-n+2:2:end-1))./(n-2:-2:1)];\n", "meta": {"author": "decouples", "repo": "Matlab_deep_learning", "sha": "1b823b82686080e32b03e1f1a4648896bd6e3c44", "save_path": "github-repos/MATLAB/decouples-Matlab_deep_learning", "path": "github-repos/MATLAB/decouples-Matlab_deep_learning/Matlab_deep_learning-1b823b82686080e32b03e1f1a4648896bd6e3c44/\u7b2c 19 \u7ae0 \u57fa\u4e8e\u8bed\u97f3\u8bc6\u522b\u7684\u4fe1\u53f7\u706f\u56fe\u50cf\u6a21\u62df\u63a7\u5236\u6280\u672f/voicebox/fxpefac.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743735019595, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3874223288521207}} {"text": "%--- help for abstvar/irf ---\n%\n% Compute impulse response function from the given parameter values\n% \n% ::\n% \n% myirfs = irf(self, shock_names, irf_periods, params, Rfunc);\n% \n% Args:\n% \n% self (var object): var object\n% \n% shock_names (cellstr): shocks to compute IRFs (has to be consistent with the names given in :func:`identification `)\n% \n% irf_periods (int): number of periods to compute IRFs (default: 40)\n% \n% params (vector): parameter values of the model. If empty MLE/posterior-mode values are used.\n% \n% Rfunc (function handle): identification function. This is an output of :func:`identification `. (default: choleski identification)\n% \n% girf_setup (struct|{empty}): structure containing information relevant\n% for the computation of generalized impulse response functions. If\n% empty, simple regime-specific impulse responses are computed, else\n% girfs are computed. In that case the relevant information to\n% provide in girf_setup is:\n% - nsims : (default=300) number of simulations for the integration.\n% Note that even setting girf_setup=struct() will trigger the\n% computation of girfs. But in that case only the default options\n% will apply.\n% \n% Returns:\n% \n% : struct containing IRFs\n% \n% Note:\n% \n% Only successful IRFs are returned. If the structure does not return some IRFs make sure that IRFs properly identified.\n% \n%\n% Other functions named irf\n%\n% dsge/irf generic/irf\n%", "meta": {"author": "jmaih", "repo": "RISE_toolbox", "sha": "1b2edfa27830c6d522f9d7d2335d33c3e4d84285", "save_path": "github-repos/MATLAB/jmaih-RISE_toolbox", "path": "github-repos/MATLAB/jmaih-RISE_toolbox/RISE_toolbox-1b2edfa27830c6d522f9d7d2335d33c3e4d84285/classes/models/+vartools/irf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.387422322852183}} {"text": "%==================================================================\n% General Data File\n% Title: TETRAHEDRA\n% Units: SI\n% Dimensions: 2D\n% Type of problem: Plane_Stress\n% Type of Phisics: ELASTIC\n% Micro/Macro: MACRO\n%\n%==================================================================\n\n%% Data\n\nData_prb = {\n'TRIANGLE';\n'SI';\n'2D';\n'Plane_Stress';\n'THERMAL';\n'MACRO';\n};\n\n%% Coordinates\n% Node X Y Z\n\ncoord = [\n 1 00000 00000 \n 2 1.00000e-02 1.00000e-02 \n 3 00000 2.00000e-02 \n 4 2.00000e-02 00000 \n 5 2.00000e-02 2.00000e-02 \n 6 1.00000e-02 3.00000e-02 \n 7 3.00000e-02 1.00000e-02 \n 8 00000 4.00000e-02 \n 9 4.00000e-02 00000 \n 10 3.00000e-02 3.00000e-02 \n 11 4.00000e-02 2.00000e-02 \n 12 2.00000e-02 4.00000e-02 \n 13 4.00000e-02 4.00000e-02 \n];\n\n%% Conectivities\n% Element Node(1) Node(2) Node(3) Node(4) Material\n\nconnec = [\n 1 5 2 4 \n 2 3 2 5 \n 3 1 2 3 \n 4 4 2 1 \n 5 12 6 5 \n 6 8 6 12 \n 7 3 6 8 \n 8 5 6 3 \n 9 11 7 9 \n 10 5 7 11 \n 11 4 7 5 \n 12 9 7 4 \n 13 13 10 11 \n 14 12 10 13 \n 15 5 10 12 \n 16 11 10 5 \n];\n\n%% Variable Prescribed\n% Node Dimension Value\n\ndirichlet_data = [\n 1 1 0\n 3 1 0\n 8 1 0\n];\n\n%% Force Prescribed\n% Node Dimension Value\n\npointload_complete = [\n11 1 -1\n];\n\n%% Volumetric Force\n% Element Dim Force_Dim\n\nVol_force = [\n];\n\n%% Group Elements\n% Element Group_num\n\nGroup = [\n];\n\n%% Initial Holes\n% Elements that are considered holes initially\n% Element\n\nInitial_holes = [\n];\n\n%% Boundary Elements\n% Elements that can not be removed\n% Element\n\nBoundary_elements = [\n];\n\n%% Micro gauss post\n%\n% Element\n\nMicro_gauss_post = [\n];\n\n\n%% Micro Slave-Master\n% Nodes that are Slaves\n% Nodes Value (1-Slave,0-Master)\n\nMicro_slave = [\n];\n\n%% Nodes solid\n% Nodes that must remain \n% Nodes\n\nnodesolid = unique(pointload_complete(:,1));\n\n%% External border Elements\n% Detect the elements that define the edge of the domain\n% Element Node(1) Node(2)\n\nExternal_border_elements = [\n];\n\n%% External border Nodes\n% Detect the nodes that define the edge of the domain\n% Node\n\nExternal_border_nodes = [\n];\n\n%% Materials\n% Materials that have been used\n% Material_Num Mat_density Young_Modulus Poisson\n\nMaterials = [\n];\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/test_thermal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390162, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3874223228521829}} {"text": "function value = r8_mop ( i )\n\n%*****************************************************************************80\n%\n%% R8_MOP returns the I-th power of -1 as an R8 value.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 07 November 2007\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer I, the power of -1.\n%\n% Output, real R8_MOP, the I-th power of -1.\n%\n if ( mod ( i, 2 ) == 0 )\n value = + 1.0;\n else\n value = - 1.0;\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/sandia_sparse/r8_mop.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.7401743563075446, "lm_q1q2_score": 0.38742231985221404}} {"text": "function M = callback_blurring( M, dir, options )\n\n% callback_blurring - callback for the deconvolution with wavelets\n%\n% M = callback_blurring( M, dir, options );\n%\n% Copyright (c) 2007 Gabriel Peyre\n\nif isfield(options, 'eta')\n eta = options.eta;\nelse\n eta = 5;\nend\nif isfield(options, 'eta')\n Jmin = options.Jmin;\nelse\n Jmin = 4;\nend\n\nn = sqrt(size(M,1));\nM = reshape(M,n,n);\n\nif dir==1\n % wavelet synthesis and then blurring\n M = perform_wavelet_transform(M, Jmin, -1, options );\n M = perform_blurring( M, eta );\nelse\n % transpose\n M = perform_blurring( M, eta );\n M = perform_wavelet_transform(M, Jmin, 1, options );\nend\n\nM = M(:);", "meta": {"author": "gpeyre", "repo": "matlab-toolboxes", "sha": "0cd622c988cda6f63f64d35cd7bd096fa578e5c6", "save_path": "github-repos/MATLAB/gpeyre-matlab-toolboxes", "path": "github-repos/MATLAB/gpeyre-matlab-toolboxes/matlab-toolboxes-0cd622c988cda6f63f64d35cd7bd096fa578e5c6/toolbox_sparsity/callback_blurring.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3874223168522451}} {"text": "function result = ssc_mc_omp(X, D, K)\n solver = spx.cluster.ssc.SSC_TOMP(X, D, K);\n result = solver.solve();\nend\n", "meta": {"author": "indigits", "repo": "sparse-plex", "sha": "43cae2978f62938d001baaa03308a2a717ee6c9b", "save_path": "github-repos/MATLAB/indigits-sparse-plex", "path": "github-repos/MATLAB/indigits-sparse-plex/sparse-plex-43cae2978f62938d001baaa03308a2a717ee6c9b/experiments/ssc_hopkins155/ssc_mc_omp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5234203489363239, "lm_q1q2_score": 0.387422316852245}} {"text": "impts=zeros(yw*exf,xw*exf);\nn_rendered=0;\nweight=str2double(get(handles.weight,'String'));\nsize_fac=str2double(get(handles.size_fac_edit,'String'));\n\nif get(handles.adv_cb,'Value') %if using advanced thresholding don't need r0 tolerances\n if get(handles.lp_N_cb,'Value') %if specifying tolerances for loc. prec.\n for i=nstart:nend\n if xc(i)>=1 && yc(i)>=1 && xc(i)= lp_tol_min && lp(i)*1000 <= lp_tol_max && a0_err_all(i)/a0_all(i) <= fr_un && xf_err_all(i) <= max_unc && yf_err_all(i) <= max_unc\n wide=ceil(size_fac*lppix(i)*1.5+1);\n if xc(i)-wide>=1 && xc(i)+wide=1 && yc(i)+wide=1 && yc(i)>=1 && xc(i)= N_tol_min && N(i) <= N_tol_max && a0_err_all(i)/a0_all(i) <= fr_un && xf_err_all(i) <= max_unc && yf_err_all(i) <= max_unc\n wide=ceil(size_fac*lppix(i)*1.5+1);\n if xc(i)-wide>=1 && xc(i)+wide=1 && yc(i)+wide=1 && yc(i)>=1 && xc(i)= lp_tol_min && lp(i)*1000 <= lp_tol_max && r0_all(i) >= r0_tol_min && r0_all(i) <= r0_tol_max && r0_err_all(i)/r0_all(i) <= fr_un && a0_err_all(i)/a0_all(i) <= fr_un && xf_err_all(i) <= max_unc && yf_err_all(i) <= max_unc\n wide=ceil(size_fac*lppix(i)*1.5+1);\n if xc(i)-wide>=1 && xc(i)+wide=1 && yc(i)+wide=1 && yc(i)>=1 && xc(i)= N_tol_min && N(i) <= N_tol_max && r0_all(i) >= r0_tol_min && r0_all(i) <= r0_tol_max && r0_err_all(i)/r0_all(i) <= fr_un && a0_err_all(i)/a0_all(i) <= fr_un && xf_err_all(i) <= max_unc && yf_err_all(i) <= max_unc\n wide=ceil(size_fac*lppix(i)*1.5+1);\n if xc(i)-wide>=1 && xc(i)+wide=1 && yc(i)+widethresh)+impts.*(impts<=thresh);\nclear thresh;", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/TGgui070708/render_func_w_tol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8333245953120233, "lm_q2_score": 0.4649015713733885, "lm_q1q2_score": 0.3874139138246527}} {"text": "function stateLogRow = getStateLogRowAtTime(stateLog, time)\n if(time <= min(stateLog(:,1)))\n stateLogRow = stateLog(1,:);\n elseif(time >= max(stateLog(:,1)))\n stateLogRow = stateLog(end,:);\n else\n frameTimeLwr = max(stateLog(stateLog(:,1)<=time,1));\n stateLogRowLwr = stateLog(stateLog(:,1)==frameTimeLwr,:);\n stateLogRowLwr = stateLogRowLwr(1,:);\n \n frameTimeUpr = min(stateLog(stateLog(:,1)>time,1));\n stateLogRowUpr = stateLog(stateLog(:,1)==frameTimeUpr,:);\n stateLogRowUpr = stateLogRowUpr(1,:);\n \n interpX = [stateLogRowLwr(1), stateLogRowUpr(1)];\n interpYx = [stateLogRowLwr(2), stateLogRowUpr(2)];\n interpYy = [stateLogRowLwr(3), stateLogRowUpr(3)];\n interpYz = [stateLogRowLwr(4), stateLogRowUpr(4)];\n interpYVx = [stateLogRowLwr(5), stateLogRowUpr(5)];\n interpYVy = [stateLogRowLwr(6), stateLogRowUpr(6)];\n interpYVz = [stateLogRowLwr(7), stateLogRowUpr(7)];\n \n posX = interp1(interpX,interpYx,time);\n posY = interp1(interpX,interpYy,time);\n posZ = interp1(interpX,interpYz,time);\n velX = interp1(interpX,interpYVx,time);\n velY = interp1(interpX,interpYVy,time);\n velZ = interp1(interpX,interpYVz,time);\n \n stateLogRow = stateLogRowLwr;\n stateLogRow(2:7) = [posX, posY, posZ, velX, velY, velZ];\n end \nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_ma/plotting/missionAnimator/getStateLogRowAtTime.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878696277513, "lm_q2_score": 0.6297746213017459, "lm_q1q2_score": 0.3873667301621147}} {"text": "classdef chebtech2 < chebtech\n%CHEBTECH2 Approximate smooth functions on [-1,1] with Chebyshev interpolants.\n%\n% Class for approximating smooth functions on the interval [-1,1] using\n% function values at 2nd-kind Chebyshev points and coefficients of the\n% corresponding 1st-kind Chebyshev series expansion.\n%\n% Constructor inputs:\n% CHEBTECH2(OP) constructs a CHEBTECH2 object from the function handle OP. OP\n% should be vectorised (i.e., accept a vector input) and ouput a vector of\n% the same length. CHEBTECH2 objects allow for array-valued construction\n% (i.e., of an array-valued function), in which case OP should accept a column\n% vector of length N and return a matrix of size NxM.\n%\n% CHEBTECH2(OP, DATA) constructs a CHEBTECH2 using the additional data\n% supplied in the DATA structure. Fields currently recognized are:\n% DATA.VSCALE (Default: 0)\n% DATA.HSCALE (Default: 1)\n% The constructor builds a CHEBTECH2 with 'happiness' (see\n% HAPPINESSCHECK.m) relative to the maximum of the given vertical scale\n% DATA.VSCALE and the (column-wise) infinity norm of the sampled\n% function values of OP, and the fixed horizontal scale DATA.HSCALE. If\n% not given (or given as empty), the VSCALE defaults to 0 initially,\n% and HSCALE defaults to 1.\n% If any fields in DATA are empty or not supplied, or if DATA itself is empty\n% or not supplied, appropriate default values are set.\n%\n% CHEBTECH2(OP, DATA, PREF) overrides the default behavior with that given by\n% the preference structure PREF. See CHEBTECH.TECHPREF for details.\n%\n% CHEBTECH2(VALUES, ...) returns a CHEBTECH2 object which interpolates the\n% values in the columns of VALUES at 2nd-kind Chebyshev points and\n% CHEBTECH2({VALUES, COEFFS}, ... ) uses the Chebyshev coefficients passed in\n% COEFFS rather than computing them from VALUES. If VALUES, is empty then the\n% CHEBTECH2 is constructed directly from the COEFFS. If COEFFS are passed,\n% the resulting CHEBTECH2 is always deemed 'happy'.\n%\n% Examples: % Basic construction: f = chebtech2(@(x) sin(x))\n%\n% % Construction with preferences:\n% p.sampleTest = 0; % See CHEBTECH.TECHPREF for details\n% f = chebtech2(@(x) sin(x), [], [], p)\n%\n% % Array-valued construction:\n% f = chebtech2(@(x) [sin(x), cos(x), exp(x)])\n%\n% See also CHEBTECH, CHEBTECH.TECHPREF, CHEBPTS, HAPPINESSCHECK, REFINE.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% CHEBTECH2 Class Description:\n%\n% The CHEBTECH2 class represents smooth functions on the interval [-1,1] using\n% function values at 2nd-kind Chebyshev points and coefficients of the\n% corresponding 1st-kind Chebyshev series expansion.\n%\n% The constructor is supplied with a handle that evaluates a given function on\n% an increasingly fine Chebyshev 2nd-kind grid (see REFINE.m) until the\n% representation is deemed 'happy' (see HAPPINESSCHECK.m). The resulting object\n% can be used to evaluate and operate on the input function.\n%\n% More information can be found in the CHEBTECH class definition.\n%\n% Class diagram: [<>] <-- [CHEBTECH2]\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% CLASS CONSTRUCTOR:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n methods ( Access = public, Static = false )\n \n function obj = chebtech2(op, data, pref)\n % Parse inputs.\n if ( (nargin == 0) || isempty(op) )\n % Return an empty CHEBTECH2 on null input:\n return\n end\n\n if ( (nargin < 2) || isempty(data) )\n data = struct();\n end\n\n if ( (nargin < 3) || isempty(pref) )\n pref = chebtech.techPref();\n else\n pref = chebtech.techPref(pref);\n end\n\n data = chebtech.parseDataInputs(data, pref);\n\n % Force nonadaptive construction if PREF.FIXEDLENGTH is numeric and\n % we're not using contour integrals.\n if ( ~(isnumeric(op) || iscell(op)) && ...\n ~isnan(pref.fixedLength) && ~pref.useTurbo )\n % Evaluate op on the Chebyshev grid of given size:\n op = feval(op, chebtech2.chebpts(pref.fixedLength));\n end\n\n % Actual construction takes place here:\n [obj, values] = populate(obj, op, data, pref);\n\n if ( isnumeric(op) || iscell(op) )\n % Set length of obj to PREF.FIXEDLENGTH (if it is non-trivial).\n if ( ~isnan(pref.fixedLength ) )\n obj = prolong(obj, pref.fixedLength);\n end\n\n % No need to error check when constructing from discrete data.\n return\n elseif ( obj.ishappy )\n % Use contour integrals if requested.\n if ( pref.useTurbo )\n obj = constructorTurbo(obj, op, pref);\n end\n\n % No need to error check if we are happy:\n return\n end\n\n % Check for NaNs (if not happy):\n if ( pref.extrapolate )\n % Check for NaNs in interior only (because extrapolate was on):\n if ( any(any(isnan(obj.coeffs(2:end-1,:)))) )\n error('CHEBFUN:CHEBTECH2:chebtech2:nanEval', ...\n 'Function returned NaN when evaluated.')\n end\n % We make sure not to return NaNs at +1 and -1.\n valuesTemp = extrapolate(obj, values);\n valuesTemp([1 end], :) = valuesTemp([1,end],:);\n obj.coeffs = obj.vals2coeffs(valuesTemp);\n elseif ( any(isnan(obj.coeffs(:))) )\n % Here we throw an error if NaNs were encountered anywhere.\n error('CHEBFUN:CHEBTECH2:chebtech2:nanEval2', ...\n 'Function returned NaN when evaluated.')\n end\n end\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% STATIC METHODS:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n methods ( Access = public, Static = true )\n \n % Aliasing:\n coeffs = alias(coeffs, m)\n \n % Angles of Chebyshev points. (i.e., acos(chebpts(n))\n t = angles(n)\n \n % Evaluate a Chebyshev interpolant using the barycentric formula:\n out = bary(x, values)\n \n % Compute Chebyshev barycentric weights:\n w = barywts(n)\n \n % Compute Chebyshev points (x) and optionally quadrature (w)\n % and barycentric (v) weights:\n [x, w, v, t] = chebpts(n);\n \n % Tensor product grid of Chebyshev points in 1D, 2D or 3D:\n out = tensorGrid(N, dom)\n \n % Convert coefficients to values:\n values = coeffs2vals(coeffs);\n \n % Make a CHEBTECH2 (constructor shortcut):\n f = make(varargin);\n \n % Compute Chebyshev quadrature weights:\n w = quadwts(n)\n \n % Refinement function for CHEBTECH2 construction (evaluates OP on grid):\n [values, points, giveUp] = refine(op, values, pref)\n \n % Return the value-based discretization class which uses CHEBTECH2: \n function disc = returnValsDisc()\n disc = @chebcolloc2;\n end\n \n % Convert values to coefficients:\n coeffs = vals2coeffs(values)\n \n end\n \nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebtech2/chebtech2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746213017459, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.38736672127493377}} {"text": "function [img] = hyperConvert3d(img, h, w, numBands)\n% HYPERCONVERT2D Converts an 2D matrix to a 3D data cube\n% Converts a 2D matrix (p x N) to a 3D data cube (m x n x p)\n% where N = m * n\n% \n% Usage\n% [M] = hyperConvert3d(M)\n% Inputs\n% M - 2D data matrix (p x N)\n% Outputs\n% M - 3D data cube (m x n x p)\n\n\nif (ndims(img) ~= 2)\n error('Input image must be p x N.');\nend\n\n[numBands, N] = size(img);\n\nif (1 == N)\n img = reshape(img, h, w);\nelse\n img = reshape(img.', h, w, numBands); \nend\n\nreturn;", "meta": {"author": "BehnoodRasti", "repo": "HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox", "sha": "effc9ee5970306a2e822b1831c32ab5580c1bbfe", "save_path": "github-repos/MATLAB/BehnoodRasti-HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox", "path": "github-repos/MATLAB/BehnoodRasti-HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox/HyFTech-Hyperspectral-Shallow-Deep-Feature-Extraction-Toolbox-effc9ee5970306a2e822b1831c32ab5580c1bbfe/ShallowFE/SFE/funcitons/hyperConvert3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878696277513, "lm_q2_score": 0.6297745935070806, "lm_q1q2_score": 0.38736671306595327}} {"text": "function d = testing(a,d)\n \n n= get_dim(d); \n r = zeros(n,1);\n for i=1:a.kmax \t\n \tr = r + a.alpha(i).*get_x(test(a.child{i},d));\n end\n\n \n r=sign(r);\n% if(c > 1)\n% \tL=-ones(c)+2*eye(c);\n% \tfor i=1:n\n% \t\t[mi ind]=min(sum(abs(repmat(r(i,:),c,1)-L),2));\n% \t\tr(i,:)=L(ind,:);\n% \tend\t\n% end\n \n d=set_x(d,r); \n d=set_name(d,[get_name(d) ' -> ' get_name(a)]); \n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/External/spider/pat/@adaboost/testing.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38731032657233744}} {"text": "function [] = baselineSIRFS(class,jobID)\n%GETDEPTHIMAGE Summary of this function goes here\n% Detailed explanation goes here\n\nglobals\nstatesDir = jobDirs(class,jobID,'state');\nsirfsstatedir = fullfile(cachedir,class,sprintf('baselineSIRFS%s',jobID));\nmkdirOptional(sirfsstatedir);\nfnames = getFileNamesFromDirectory(dmapDir,'types',{'.mat'});\n\nfprintf('\\n%%%%%%%%%%%% SIRFS %%%%%%%%%%%%\\n');\n%% Loading precomputed shape\nfor i=1:length(fnames)\n%for i=1:length(fnames) \n sirfsdmapFile = fullfile(sirfsstatedir,fnames{i});\n if(exist(sirfsdmapFile,'file'))\n continue;\n end\n stateFile = fullfile(statesDir,fnames{i});\n state = load(stateFile);state=state.state;\n sirfsstate = getsirfsstate(state); \n savefunc(sirfsdmapFile,sirfsstate);\n %vis_PSIRFS(sirfsstate); pause \nend\nend\n\nfunction savefunc(file,state)\n save(file,'state');\nend\n\nfunction sirfsstate = getsirfsstate(state)\n sigma = 3; % Controls the \"bandwidth\" of the input depth (the standard deviation of a Gaussian at which point the signal becomes reliable)\n mult = 5; % Controls the importance of the input depth (the multiplier on the loss)\n niters = 200;\n input_image = im2double(state.im);\n input_image(input_image<1/255) = 1/255;\n sirfsstate = SIRFS(input_image, (state.mask), [], ...\n ['params.DO_DISPLAY = 0; params.N_ITERS_OPTIMIZE = ' num2str(niters) ';']);\n sirfsstate.mask = state.mask;\n sirfsstate.im = input_image;\n sirfsstate.dmap = sirfsstate.height;\nend", "meta": {"author": "akar43", "repo": "CategoryShapes", "sha": "55c9dab2293bcaceaaa3bf5fea782fdbf930fadb", "save_path": "github-repos/MATLAB/akar43-CategoryShapes", "path": "github-repos/MATLAB/akar43-CategoryShapes/CategoryShapes-55c9dab2293bcaceaaa3bf5fea782fdbf930fadb/sirfsPrior/baselineSIRFS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.3873103265723374}} {"text": "function f=burger(u,deriv)\nif nargin<2,\n\tderiv=0;\nend;\nif deriv==0,\n\tf=0.5*u.^2;\nelse\n\tf=u;\nend;", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/OperatorSplitting/AppendixA/burger.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943925708562, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3873103200759501}} {"text": "function run_test_single_model\n% Copyright (c) 2014-present University of Illinois at Urbana-Champaign\n% All rights reserved.\n% \t\t\n% Developed by: Po-Sen Huang, Paris Smaragdis\n% Department of Electrical and Computer Engineering\n% Department of Computer Science\n%\n% Given a model, evaluate the performance.\n baseDir = '../../../';\n addpath([baseDir, filesep, 'codes']);\n addpath([baseDir, filesep, 'codes', filesep, 'denoising']);\n\n addpath([baseDir, filesep, 'tools', filesep,'bss_eval']);\n addpath([baseDir, filesep, 'tools', filesep,'bss_eval_3']);\n addpath([baseDir, filesep, 'tools', filesep,'labrosa']);\n\n ModelPath=[baseDir, filesep, 'codes',filesep,'denoising', filesep, 'demo'];\n \n global SDR;\n global SDR_bss3;\n\n SDR.deviter=0; SDR.devmax=0; SDR.testmax=0;\n SDR.devsar=0; SDR.devsir=0; SDR.testsar=0; SDR.testsir=0;\n SDR_bss3.deviter=0; SDR_bss3.devmax=0; SDR_bss3.testmax=0;\n SDR_bss3.devsar=0; SDR_bss3.devsir=0; SDR_bss3.testsar=0; SDR_bss3.testsir=0;\n\n j=870;\n \n % Load model\n load([ModelPath, filesep, 'denoising_model_', num2str(j),'.mat']);\n eI.saveDir = [baseDir, filesep, 'codes', filesep, 'denoising', ...\n filesep, 'demo', filesep, 'results', filesep];\n %%\n index = 2;\n [speech, fs] = audioread(['wav', filesep, 'original_speech', num2str(index), '.wav']);\n [noise, fs] = audioread(['wav', filesep, 'original_noise',num2str(index),'.wav']);\n\n x = speech + noise; \n eI.fs = fs;\n %%\n output = test_denoising_general_kl_bss3(x', theta, eI, 'testall', 0);\n %%\n \tsz = 1024.*[1 1/4];\n wn = sqrt( hann( sz(1), 'periodic')); % hann window\n wav_singal = stft2( output.source_signal, sz(1), sz(2), 0, wn);\n wav_noise = stft2( output.source_noise, sz(1), sz(2), 0, wn);\n wav_singal = wav_singal./max(abs(wav_singal));\n wav_noise = wav_noise./max(abs(wav_noise)); \n\n audiowrite([eI.saveDir, filesep,'separated_speech',num2str(index),'.wav'], wav_singal, fs);\n audiowrite([eI.saveDir, filesep,'separated_noise',num2str(index),'.wav'], wav_noise, fs);\n \n % Get separation stats\n [sdr,sir,sar,stoi] = sep_perf(wav_singal, [speech'; noise'], fs); \nend\n", "meta": {"author": "posenhuang", "repo": "deeplearningsourceseparation", "sha": "6a6e54d9234756e9624507f66d9e8fcd0b868dc7", "save_path": "github-repos/MATLAB/posenhuang-deeplearningsourceseparation", "path": "github-repos/MATLAB/posenhuang-deeplearningsourceseparation/deeplearningsourceseparation-6a6e54d9234756e9624507f66d9e8fcd0b868dc7/codes/denoising/demo/run_test_single_model.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708562, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3873103200759501}} {"text": "function f = floor(f)\n%FLOOR Pointwise floor function of a CHEBTECH.\n% G = FLOOR(F) returns the CHEBTECH G such that G(X) = FLOOR(F(x)) for each x\n% in [-1, 1].\n%\n% If F is complex, then the G = FLOOR(REAL(F)) + 1i*FLOOR(IMAG(F)).\n%\n% Note that FLOOR() assumes the output G(X) is a constant. If it is not, then\n% garbage is returned with no warning.\n%\n% See also CEIL, ROUND, FIX.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Evaluate at the two end points, and an arbitrary interior point:\narbitraryPoint = 0.1273881594;\nfx = feval(f, [-1 ; arbitraryPoint ; 1]);\n% Take the mean:\nmeanfx = mean(fx, 1);\n% Compute the floor:\nf.coeffs = floor(meanfx);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebtech/floor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38731032007595007}} {"text": "function [s,xform] = relaxAlignAll(s, refImg, outMm, bb, interp)\n%\n% [s,xform] = relaxAlignAll(s, refImg, [outMm=refImg.pixdim], [bb=true], [interp=7])\n% \n% Aligns all the series in s to the NIFTI file (or struct) refImg.\n% If refImg is empty, all series are aligned to the first series.\n%\n% If bb==true, then the bounding box will be taken from the reference\n% image. If bb==false, it will be taken from the first image in the series.\n% If bb is a valid bounding box, then that will be used.\n%\n%\n% HISTORY:\n% 2008.01.01 RFD: wrote it.\n% 2008.10.06 RFD: fixed bug where s(1) was getting zeroed-out when refImg\n% was empty.\n% 2009.12.07 RFD: no longer set NANs to 0. NANs are useful for knowing what\n% regions are outside the FOV. Also, changed it to use the actual transform\n% from the dicom header.\n\nif(~exist('refImg','var'))\n refImg = [];\nend\nif(ischar(s))\n s = dicomLoadAllSeries(s);\nend\nif(~exist('outMm','var'))\n outMm = [];\nend\nif(~exist('bb','var')||isempty(bb))\n bb = true;\nend\nif(~exist('interp','var')||isempty(interp))\n interp = 1;\nend\nif(numel(interp)<6)\n interp = [interp(1) interp(1) interp(1) 0 0 0];\nend\n\n% Don't try to process localizers...\nlocInds = ~cellfun('isempty',regexp({s.seriesDescription},'LOCALIZER'));\nif(any(locInds))\n fprintf('Discarding series [%d] since they appear to be localizers.\\n', find(locInds));\n s = s(~locInds);\nend\n\nnSeries = numel(s);\n\ndisp('Applying cannonical xform to all series...');\nfor(ii=1:nSeries)\n canXform = mrAnatComputeCannonicalXformFromDicomXform(s(ii).imToScanXform,size(s(ii).imData));\n [s(ii).imData,s(ii).mmPerVox] = applyCannonicalXform(s(ii).imData, canXform, s(ii).mmPerVox, false);\n % Now that the data have been flipped to our cannonical (axial)\n % orientation, we need to flip the imToScanXform to also reflect this\n % new orientation:\n s(ii).imToScanXform = inv(canXform*inv(s(ii).imToScanXform));\nend\n\ndisp(['Aligning images to the first series \"' s(1).seriesDescription '\"...']);\ns(1).xformToFirst = inv(s(1).imToScanXform);\nVfirst.uint8 = uint8(round(mrAnatHistogramClip(double(s(1).imData),0.3,0.99).*255));\nVfirst.mat = s(1).imToScanXform;\n\nfor(ii=2:nSeries)\n Vin.uint8 = uint8(round(mrAnatHistogramClip(double(s(ii).imData),0.3,0.99).*255));\n Vin.mat = s(ii).imToScanXform;\n evalc('transRot = spm_coreg(Vfirst, Vin);');\n fprintf('Series %d (%s) alignment: trans = [%0.4f %0.4f %0.4f], rot = [%0.4f %0.4f %0.4f].\\n',ii,s(ii).seriesDescription,transRot);\n % Vin.mat\\spm_matrix(transRot(end,:))*Vfirst.mat\n s(ii).xformToFirst = inv(Vin.mat)*spm_matrix(transRot(end,:));\nend\n\nif(~isempty(refImg))\n if(ischar(refImg))\n refImg = niftiRead(refImg);\n end\n disp(['Aligning first image to the template image in ' refImg.fname '...']);\n img = double(refImg.data);\n Vref.uint8 = uint8(round(mrAnatHistogramClip(img,0.4,0.98).*255));\n Vref.mat = refImg.qto_xyz;\n if(isempty(outMm)) \n outMm = refImg.pixdim([1:3]); \n end\n \n if(numel(bb)~=6)\n if(bb)\n bb = mrAnatXformCoords(Vref.mat, [1 1 1; size(img)]);\n else\n bb = mrAnatXformCoords(Vref.mat, [1 1 1; size(s(1).imData)]);\n end\n end\n \n % Align to ref\n evalc('transRot = spm_coreg(Vref, Vfirst);');\n fprintf('Ref alignment: trans = [%0.4f %0.4f %0.4f], rot = [%0.4f %0.4f %0.4f].\\n',transRot);\n % Vin.mat\\spm_matrix(transRot(end,:))*Vfirst.mat\n disp('Resampling all series...');\n % Now resample\n for(ii=1:nSeries)\n fprintf(' resampling series %d...\\n',ii);\n xf = s(ii).xformToFirst*spm_matrix(transRot(end,:));\n [s(ii).imData,s(ii).imToScanXform] = mrAnatResliceSpm(double(s(ii).imData), xf, bb, outMm, interp, 0);\n \ts(ii).mmPerVox = outMm;\n end\nelse\n % No ref image- just resample everything to be aligned to the first\n % series and at outMm voxel size.\n if(numel(bb)~=6)\n bb = mrAnatXformCoords(Vfirst.mat, [1 1 1; size(s(1).imData)]);\n end\n if(isempty(outMm))\n outMm = s(1).mmPerVox;\n end\n disp('Resampling all series...');\n for(ii=1:nSeries)\n [s(ii).imData,s(ii).imToScanXform] = mrAnatResliceSpm(double(s(ii).imData), s(ii).xformToFirst, bb, outMm, interp, 0);\n \ts(ii).mmPerVox = outMm;\n end\nend\nxform = s(1).imToScanXform;\n\nreturn;\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrQuant/relaxometry/relaxAlignAll.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38731032007595007}} {"text": "function BCType = CorrectBCTable_v2(EToV,VX,VY,BCType,fd,BCcode)\n\n% function BCType = CorrectBCTable(EToV,BCType,fd,BCcode);\n% Purpose: Setup BCType for boundary conditions in 2D\n%\n% EToV : Element-To-Vertice table\n% VX, VY : (x,y)-coordinates of mesh vertices\n% BCType : Table with types of faces for BC's\n% fd : handle to distance function\n% BCcode : Integer for specific boundary type\n%\n% By Allan P. Engsig-Karup\n\nGlobals2D;\n\nVNUM = [1 2;2 3;3 1]; % face orientations\n\npxc = 0.5*(VX(EToV)+VX(EToV(:,[2 3 1])));\npyc = 0.5*(VY(EToV)+VY(EToV(:,[2 3 1])));\ndc = abs(fd([pxc(:) pyc(:)])); % distances to boundaries from face centers\ntol = 1e-4; % tolerance\nidx = find(dc %d-%d): event vals min %3.2f; max %3.2f\\n', ...\n 100*(lowindex-1)/len, 100*highindex/len, len, lowindex, highindex, min(sortvar), max(sortvar));\nend\n\n% assign subject number for each trial\n% ------------------------------------\nif ~isempty(g.triallimit)\n alltrials = zeros(1,len);\n for index = 1:length(g.triallimit)-1\n alltrials([g.triallimit(index):g.triallimit(index+1)-1]) = index; \n end\n alltrials = alltrials(sortorder);\n alltrials = alltrials(lowindex:highindex);\nend\n\n%figure; hist(sortvar)\n\n% constraining time values depending on data alignment\n% ----------------------------------------------------\nsrate = 1000*(length(timevect)-1)/(timevect(end)-timevect(1));\nif ~isempty(g.align)\n\n if iscell(g.align)\n fprintf('Realigned sortvar plotted at %g ms.\\n',g.align{1});\n shifts = round((g.align{1}-g.align{2})*srate/1000); % shifts can be positive or negative\n g.align = g.align{1};\n else\n if isinf(g.align)\n g.align = median(sortvar);\n end\n fprintf('Realigned sortvar plotted at %g ms.\\n',g.align);\n \n % compute shifts\n % --------------\n shifts = round((g.align-sortvar)*srate/1000); % shifts can be positive or negative\n end\n \n %figure; hist(shifts)\n minshift = min(shifts); % negative\n maxshift = max(shifts); % positive\n if minshift > 0, error('minshift has to be negative'); end\n if maxshift < 0, error('maxshift has to be positive'); end\n \n % realign data for all trials\n % ---------------------------\n aligndata=zeros(size(data))+NaN; % begin with matrix of zeros()\n for t=1:size(data,2), %%%%%%%%% foreach trial %%%%%%%%%\n shft = shifts(t);\n if shft>0, % shift right\n aligndata(shft+1:frames,t)=data(1:frames-shft,t);\n elseif shft < 0 % shift left\n aligndata(1:frames+shft,t)=data(1-shft:frames,t);\n else % shft == 0\n aligndata(:,t) = data(:,t);\n end \n end % end trial \n data = aligndata(maxshift+1:frames+minshift,:);\n if any(any(isnan(data))), error('NaNs remaining after data alignment'); end\n timevect = timevect(maxshift+1:frames+minshift);\n \n % take the time vector subset\n % ---------------------------\n if isempty(timevect), error('Shift too big, empty time vector'); \n else fprintf('Time vector truncated for data alignment between %1.0f and %1.0f\\n', ...\n min(timevect), max(timevect)); \n end; \nend\n\n% regress out the ERP from the data (4 times to have residual ERP close to 0)\n% ---------------------------------------------------------------------------\nif ~isempty(g.erpout) \n %data = erpregout(data);\n %data = erpregout(data);\n %data = erpregout(data);\n disp('Regressing out ERP');\n erpbeg = mean(data,2);\n if ~isempty(g.triallimit)\n for index = 1:length(g.triallimit)-1\n trials = find(alltrials == index); \n %[data(:,trials) erp factors]= erpregout(data(:,trials), [timevect(1) timevect(end)], [300 400]);\n erpstart = mean(data(:,trials),2);\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n erpend = mean(data(:,trials),2);\n fprintf([ '***********************************************\\n' ...\n 'Ratio in ERP after regression (compare to before) is %3.2f\\n' ...\n '***********************************************\\n' ], mean(erpend./erpstart));\n end\n end\n erpend = mean(data,2);\n fprintf([ '***********************************************\\n' ...\n 'Ratio in grand ERP after regression (compare to before) is %3.2f\\n' ...\n '***********************************************\\n' ], mean(erpend./erpbeg));\n \n if 0\n %trials = find(alltrials == 1); \n data2 = data;\n dasf\n\n [data(:,trials) erp factors]= erpregout(data(:,trials), [timevect(1) timevect(end)], [300 400]);\n\n figure; subplot(1,2,1); erpimage(data, sortvar, timevect, '', 300, 500, 'erp');\n \n figure; \n subplot(1,2,1); erpimage(data2, sortvar, timevect, '', 300, 500, 'erp');\n subplot(1,2,2); erpimage(data , sortvar, timevect, '', 300, 500, 'erp');\n \n figure; \n subplot(1,2,1); erpimage(data2(:,trials), sortvar(trials), timevect, '', 0, 0, 'erp');\n subplot(1,2,2); erpimage(data (:,trials), sortvar(trials), timevect, '', 0, 0, 'erp');\n\n \n figure; \n for index = 1:length(g.triallimit)-1\n subplot(3,5,index);\n trials = find(alltrials == index); \n erpimage(data(:,trials), sortvar(trials), timevect, '', 50, 100, 'erp');\n end\n \n disp('Regressing out ERP');\n if ~isempty(g.triallimit)\n for index = 1:length(g.triallimit)-1\n trials = find(alltrials == index); \n [data(:,trials) erp factors]= erpregout(data(:,trials), [timevect(1) timevect(end)], [300 400]);\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n data(:,trials) = erpregout(data(:,trials));\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n %data(:,trials) = erpregout(data(:,trials), [timevect(1) timevect(end)], g.erpout);\n end\n else\n %data = erpregout(data, [timevect(1) timevect(end)], g.erpout);\n end\n end\nend\n\n% generate time points\n% --------------------\ng.times = gettimes(timevect, g.times);\ndata = reshape(data, 1, size(data,2)*size(data,1));\n\n% time frequency decomposition\n% ----------------------------\nif strcmpi(g.method, 'timefreq') && isempty(g.plotvals)\n data = reshape(data, length(data)/length(sortvar), length(sortvar));\n [tf, g.freqs, g.times] = timefreq(data, srate, 'freqs', g.freqs, 'timesout', g.times, ...\n 'tlimits', [min(timevect) max(timevect)], 'wavelet', 3);\n outvar = sortvar;\nend\n\n% compute correlation\n% -------------------\nif strcmpi(g.mode, 'phase') && isempty(g.plotvals) \n for freq = 1:length(g.freqs)\n fprintf('Computing correlation with phase %3.2f Hz ----------------------\\n', g.freqs(freq));\n for time = 1:length(g.times)\n if strcmpi(g.method, 'erpimage')\n [outdata,outvar,outtrials,limits,axhndls,erp, ...\n amps,cohers,cohsig,ampsig,outamps,phsangls,phsamp,sortidx] =erpimage(data,sortvar,timevect, ...\n '', 0,0,g.erpimopt{:}, 'phasesort', [g.times(time) 0 g.freqs(freq)], 'noshow', 'yes');\n else\n phsangls = angle( squeeze(tf(freq, time, :))' );\n end\n \n % computing ITCs\n [ ITC(freq, time) alpha(freq, time) ] = ...\n bootcircle(outvar/mean(outvar), exp(j*phsangls), 'naccu', 250);\n\n % accumulate 200 values, fitted with a normal distribution\n % --------------------------------------------------------\n %cmplx = outvar .* exp(j*phsangls)/mean(outvar);\n %ITC(freq, time) = mean(cmplx);\n %alpha(freq,time) = bootstat(outvar/mean(outvar), exp(j*phsangls), 'res = mean(arg1 .* arg2)', ...\n % 'naccu', 100, 'vals', abs(ITC(freq, time)), 'distfit', 'norm');\n end\n end\n sigout = ITC;\nelseif isempty(g.plotvals)\n for freq = 1:length(g.freqs)\n fprintf('Computing correlation with amplitude %3.2f Hz ----------------------\\n', g.freqs(freq));\n for time = 1:length(g.times)\n if strcmpi(g.method, 'erpimage')\n [outdata,outvar,outtrials,limits,axhndls,erp, ...\n amps,cohers,cohsig,ampsig,outamps,phsangls,phsamp,sortidx] =erpimage(data,sortvar,timevect, ...\n '', 0,0,g.erpimopt{:}, 'ampsort', [g.times(time) 0 g.freqs(freq)], 'noshow', 'yes');\n else\n phsamp = abs(squeeze(tf(freq, time, :)))';\n end\n \n % computing ITCs\n [ypred alpha(freq, time) Rsq slope(freq, time)] = myregress(outvar, 20*log10(phsamp));\n end\n end; \n sigout = slope;\nelse \n g.times = g.plotvals{1};\n g.freqs = g.plotvals{2};\n alpha = g.plotvals{3};\n sigout = g.plotvals{4};\nend\n\n% plot correlation\n% ----------------\nif ~strcmp('plot', 'no')\n if ~isreal(sigout), \n if strcmpi(g.plot, 'sigoutp')\n sigoutplot = angle(sigout);\n else\n sigoutplot = abs(sigout);\n end\n else sigoutplot = sigout; \n end\n sigouttmp = sigoutplot;\n if strcmpi(g.smooth, 'on')\n tmpfilt = gauss2d(3,3,.3,.3);\n tmpfilt = tmpfilt/sum(sum(tmpfilt));\n alpha = conv2(alpha, tmpfilt, 'same');\n end\n \n % mask signal out\n if g.pmask > 0.5\n indices = find( alpha(:) < g.pmask);\n sigouttmp = sigoutplot;\n sigouttmp(indices) = 0;\n elseif g.pmask < 0 % both sides, i.e. 0.01\n sigouttmp = sigoutplot;\n indices = intersect_bc(find( alpha(:) > -g.pmask), find( alpha(:) < 1+g.pmask));\n sigouttmp(indices) = 0;\n else\n sigouttmp = sigoutplot;\n indices = find( alpha(:) > g.pmask);\n sigouttmp(indices) = 0;\n end\n \n if strcmpi(g.nofig, 'off'), figure; end\n switch g.plot\n case 'alpha', limits = plotfig(g.times, g.freqs, -log10(alpha), g);\n case 'sigout', limits = plotfigsim(g.times, g.freqs, sigoutplot, g);\n case { 'sigoutm' 'sigoutp' }, limits = plotfigsim(g.times, g.freqs, sigouttmp, g);\n case 'sigoutm2', limits = subplot(1,2,1); plotfigsim(g.times, g.freqs, sigoutplot, g);\n limits = subplot(1,2,2); plotfigsim(g.times, g.freqs, sigouttmp, g);\n end\nend\n\ntime = g.times;\nfreq = g.freqs;\n\nreturn;\n\n% formula for the normal distribution\n% -----------------------------------\nfunction y = norm(mu, sigma, x);\n\ny = 1/sqrt(2) * exp( -(x-mu).^2/(sigma*sigma*2) ) / (sqrt(pi)*sigma);\n\n% get time points\n% ---------------\nfunction val = gettimes(timevect, timevar);\n if length(timevar) == 2\n\n if timevar(1) > 0\n % generate linearly space vector\n % ------------------------------\n npoints = timevar(1);\n trim = timevar(2);\n if length(timevect)-2*round(trim/100*length(timevect)) < npoints\n npoints = length(timevect)-round(trim/100*length(timevect));\n end\n fprintf('Generating %d times points trimmed by %1.1f percent\\n', npoints, trim);\n timer = max(timevect) - min(timevect);\n maxt = max(timevect)-timer*trim/100;\n mint = min(timevect)+timer*trim/100;\n val = linspace(mint,maxt, npoints);\n else \n % subsample data\n % --------------\n nsub = -timevar(1);\n trim = timevar(2);\n len = length(timevect);\n trimtimevect = timevect(round(trim/100*len)+1:len-round(trim/100*len));\n fprintf('Subsampling by %d and trimming data by %1.1f percent (%d points)\\n', nsub, trim, round(trim/100*len));\n val = trimtimevect(1:nsub:end);\n end\n else\n val = timevar;\n end; \n \n % find closet points in data\n oldval = val;\n for index = 1:length(val)\n [dum ind] = min(abs(timevect-val(index)));\n val(index) = timevect(ind);\n end\n if length(val) < length(unique(val))\n disp('Warning: duplicate times, reduce the number of output times');\n end\n if all(oldval == val)\n disp('Debug msg: Time value unchanged by finding closest in data');\n end; \n \n% get log scale (for frequency)\n% ------------- \nfunction val = logscale(a,b,n);\n %val = [5 7 9]; return;\n val = linspace(log(a), log(b), n);\n val = exp(val);\n \n% plot figure\n% -----------\nfunction limits = plotfig(times, freqs, vals, g)\n icadefs;\n imagesc(times, [1:size(vals,1)], vals);\n \n colormap(DEFAULT_COLORMAP);\n ticks = linspace(1, size(vals,1), length(freqs));\n ticks = ticks(1:4:end);\n set(gca, 'ytick', ticks);\n set(gca, 'yticklabel', num2str(freqs(1:4:end)', 3))\n\n xlabel('Time (ms)'); ylabel('Freq (Hz)');\n if ~isempty(g.limits), caxis(g.limits); end\n limits = caxis;\n if ~isempty(g.vert)\n for vert = g.vert(:)'\n hold on; plot([vert vert], [0.001 500], 'k', 'linewidth', 2);\n end\n end\n if strcmpi(g.cbar,'on')\n cbar;\n end\n\n% plot figure with symmetrical phase\n% ---------------------------------\nfunction limits = plotfigsim(times, freqs, vals, g)\n icadefs;\n imagesc(times, [1:size(vals,1)], vals);\n\n colormap(DEFAULT_COLORMAP);\n ticks = linspace(1, size(vals,1), length(freqs));\n ticks = ticks(1:4:end);\n set(gca, 'ytick', ticks);\n set(gca, 'yticklabel', num2str(freqs(1:4:end)', 3))\n\n if ~isempty(g.limits) \n caxis(g.limits);\n limits = g.limits;\n else \n clim = max(abs(caxis));\n limits = [-clim clim];\n caxis(limits);\n end\n xlabel('Time (ms)'); ylabel('Freq (Hz)');\n if ~isempty(g.vert)\n for vert = g.vert(:)'\n hold on; plot([vert vert], [0.01 500], 'k', 'linewidth', 2);\n end\n end\n if strcmpi(g.cbar,'on')\n cbar;\n end\n return;\n\n\n% -----------------------------------------\n% plot time-freq point (when clicking on it\n% -----------------------------------------\nfunction plotpoint(data, sortvar, timevect, freq, timepnts);\n\nfigure; \nsubplot(2,2,1);\nerpimage(act_all(:,:),sortvar_all,timepnts, ...\n '', 300,10,'erp', 'erpstd', 'caxis',[-1.0 1.0], 'srate',256,'align',352, 'yerplabel', '', erpimopt{:}, ...\n 'phasesort', [500 0 5]); % aligned to median rt\n\n% plot in polar coordinates phase versus RT\n% -----------------------------------------\nphaseang2 = [phsangls phsangls-2*pi]; phaseang2 = movav(phaseang2,[], 100); \noutvar2 = [outvar outvar]; outvar2 = movav(outvar2,[], 100);\nphaseang2 = phaseang2(length(phsangls)/2-50:length(phsangls)+length(phsangls)/2-50);\noutvar2 = outvar2 (length(phsangls)/2-50:length(phsangls)+length(phsangls)/2-50);\nsubplot(2,2,3);\npolar(phsangls, outvar, '.');\nhold on; polar(phaseang2, outvar2, 'r');\n\n% computing ITC\n% -------------\ncmplx = outvar .* exp(j*phsangls);\nITCval = mean(cmplx);\nangle(ITCval)/pi*180;\nabs(ITCval)/mean(outvar);\ntext(-1300,-1400,sprintf('ITC value: amplitude %3.4f, angle %3.1f\\n', abs(ITCval)/mean(outvar), angle(ITCval)/pi*180));\n\n% accumulate 200 values\n% ---------------------\nalpha = 0.05;\nif exist('accarray') ~= 1, accarray = NaN; end\n[sigval accarray] = bootstat(outvar/mean(outvar), phsangls, 'res = mean(arg1 .* exp(arg2*complex(0,1)))', ...\n 'accarray', accarray, 'bootside', 'upper', 'alpha', alpha);\ntext(-1300,-1600,sprintf('Threshold for significance at %d percent(naccu=200): %3.4f\\n', alpha*100, sigval));\ntitle(sprintf('Clust %d corr. theta phase at 500 ms and RT', clust));\n\n% amplitude sorting\n% -----------------\nfigure;\n[outdata,outvar,outtrials,limits,axhndls,erp, ...\n amps,cohers,cohsig,ampsig,outamps,phsangls,phsamp,sortidx]=erpimage(act_all(:,:),sortvar_all,timepnts, ...\n '', 0,0,'erp', 'erpstd', 'caxis', 0.5, 'cbar', ...\n 'srate',256,'align',352, 'yerplabel', '', erpimopt{:}, 'ampsort', [500 0 5]); % aligned to median rt\nclose;\nsubplot(2,2,2);\nerpimage(act_all(:,:),sortvar_all,timevect, ...\n '', 300,10,'erp', 'erpstd', 'caxis', 0.5, 'cbar', ...\n 'srate',256,'align',352, 'yerplabel', '', erpimopt{:}, 'ampsort', [500 0 5]); % aligned to median rt\n\n% compute correlation\n% -------------------\n[ypred alpha Rsq] = myregress(outvar, phsamp);\nsubplot(2,2,4);\nplot(outvar, phsamp, '.');\nhold on;\nplot(outvar, ypred, 'r');\nxlabel('Reaction time');\nylabel('Amplitude');\ntitle(sprintf('Theta amp. at 500 ms vs RT (p=%1.8f, R^2=%3.4f)', alpha, Rsq));\nset(gcf, 'position', [336 485 730 540], 'paperpositionmode', 'auto');\n\nsetfont(gcf, 'fontsize', 10);\neval(['print -djpeg clust' int2str(clust) 'corrthetart.jpg']);\n \n \n% set up for command line call\n% copy text from plotcorrthetaart\n%timevect = times;\nsortvar = sortvar_all;\ndata = act_all;\ntime = 1\nfreq = 1\ng.times = 0;\ng.freqs = 5;\ng.erpimopt = {};\n\n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/miscfunc/corrimage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7745833737577158, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3872916868788579}} {"text": "\nfunction generalscript(path, lambdas, sigmas, tasks)\n\naddpath(path);\n\nkernelFID=fopen('all.kernel');\nA=fread(kernelFID, 'float');\nK=reshape(A,[sqrt(length(A)),sqrt(length(A))]);\n\nperclassattributes = dlmread('all-perclass.attributes');\nS = dlmread('all-perimage.attributes');\nload experimentIndices\n\nA=unique(perclassattributes, 'rows');\nif length(dir('attrClasses*'))>0\n load attrClasses\n A=attrClasses;\nend\n% keyboard\nattributesInput=A(trainClassesIndices,:);\nattributesOutput=A(testClassesIndices,:);\nnAttrs=size(A,2);\n% allClass = dlmread('all.classid')+1;\n\n% keyboard\n\nnTrainingClasses=length(trainClassesIndices);\nnTrainingInstances=length(trainInstancesIndices);\n\nhist=[];\nS=S(trainInstancesIndices,:);\nStest=attributesOutput;\n% Stest(Stest==0)=-1;\n% for i=1:size(Stest,1)\n% Stest(i,:)=Stest(i,:)-mean(Stest(i,:));\n% Stest(i,:)=Stest(i,:)/norm(Stest(i,:));\n% end\n\nfor t=1:length(tasks)\n nNewTasks=tasks(t);\n\n disp('Getting labels...');\n\n% Y=zeros(nTrainingInstances,nTrainingClasses+nNewTasks);%-1;%-ones(nTrainingInstances,nTrainingClasses);%/(nTrainingClasses-1);\n% for i=1:nTrainingInstances\n% Y(i,trainInstancesLabels(i))=1;\n% end\n\n disp('Precalculating statistics...');\n KTrain=K(trainInstancesIndices, trainInstancesIndices);\n KK=KTrain'*KTrain;\n \n% S=[attributesInput; rand(nNewTasks, nAttrs)];\n% S=[attributesInput; sign(rand(nNewTasks, nAttrs)-0.5)];\n% S(S==0)=-1;\n% for i=1:size(S,1)\n% S(i,:)=S(i,:)-mean(S(i,:));\n% S(i,:)=S(i,:)/norm(S(i,:));\n% end\n \n KYS=KTrain*S;\n SS=S'*S;\n\n % keyboard\n for s=1:length(sigmas)\n sigma=sigmas(s);\n KYS_invSS=KYS/(SS+sigma*eye(size(S,2)));\n\n\n disp('Learning...');\n % step=10^-8;\n % for t=1:500\n % % keyboard\n % W = W - step * (XX*W*SS -XYS + lambda*W);\n % end\n for lambdaIndex=1:length(lambdas)\n lambda=lambdas(lambdaIndex);\n\n Alpha=(KK+lambda*KTrain)\\KYS_invSS;\n\n disp('Predicting...');\n KTest=K(testInstancesIndices,trainInstancesIndices);\n\n pred=Stest*Alpha'*KTest';\n [scores, classPred]=max(pred',[],2);\n\n disp('Evaluating...');\n gt=testInstancesLabels;\n r=mean(gt==classPred')\n% confusionmat(gt, classPred')\n hist=[hist; [lambda, sigma, nNewTasks, r]];\n % break;\n save('hist4', 'hist');\n end\n end\nend\nend\n", "meta": {"author": "bernard24", "repo": "Embarrassingly-simple-ZSL", "sha": "700e92b1f7aebaf5a262c061803a789b082cca97", "save_path": "github-repos/MATLAB/bernard24-Embarrassingly-simple-ZSL", "path": "github-repos/MATLAB/bernard24-Embarrassingly-simple-ZSL/Embarrassingly-simple-ZSL-700e92b1f7aebaf5a262c061803a789b082cca97/stkernelSUNAttributes/allSignsGeneralscript.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3872604666735106}} {"text": "function val = get_params(CPD, name)\n% GET_PARAMS Get the parameters (fields) for a gaussian_CPD object\n% val = get_params(CPD, name)\n%\n% The following fields can be accessed\n%\n% mean - mu(:,i) is the mean given Q=i\n% cov - Sigma(:,:,i) is the covariance given Q=i \n% weights - W(:,:,i) is the regression matrix given Q=i \n%\n% e.g., mean = get_params(CPD, 'mean')\n\nswitch name\n case 'mean', val = CPD.mean;\n case 'cov', val = CPD.cov;\n case 'weights', val = CPD.weights;\n otherwise,\n error(['invalid argument name ' name]);\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/CPDs/@gaussian_CPD/get_field.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.63341027751814, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.38725562537383634}} {"text": "function x = intercept_model(nvols_per_run, varargin)\n% Build design matrix X for intercepts\n% given vector of session lengths [s1 s2 s3] in images\n%\n% :Usage:\n% ::\n%\n% x = intercept_model(nvols_per_run, [indx of dummy scans in each session])\n%\n% :Examples:\n% ::\n%\n% nvols_per_run = [166 166 144 137];\n% x = intercept_model(nvols_per_run);\n%\n% x = intercept_model(repmat(166, 1, 5));\n%\n% Xi = intercept_model(EXPT.FIR.nruns, 1:2);\n%\n% ..\n% tor modified april 07: separate column for each run\n% ..\n\n if ~isvector(nvols_per_run), error('nvols_per_run must be a vector of the number of volumes for each run'); end\n nvols_per_run = nvols_per_run(:)'; %ensure row vector\n \n npoints = sum(nvols_per_run); % number of time points total\n nruns = length(nvols_per_run); % number of runs\n\n x = zeros(npoints, nruns);\n\n st = cumsum([1 nvols_per_run]);\n en = st(2:end) - 1; % ending values\n st = st(1:end-1); % starting values\n\n for i = 1:nruns\n x(st(i):en(i), i) = 1;\n end\n\n if length(varargin) > 0 && ~isempty(varargin{1})\n % Model dummy regressors\n x = [x model_dummy(npoints, st', varargin{1})];\n end\nend\n\n\n\nfunction x = model_dummy(npoints, st, wh)\n % dummy regressors for first scan or two (at least, that's the intended\n % use)\n % separate column for each run!\n\n k = length(wh) .* length(st);\n x = zeros(npoints, k);\n\n dosamecol = 0;\n\n if dosamecol\n for i = 1:k\n ind = st(r) + wh(i) - 1; % which to filter\n ind(ind < 1) = []; % if negative numbers (end of runs), this makes it ok\n x(ind, i) = 1;\n end\n\n else\n\n colindx = 1;\n \n for r = 1:length(st) % for each run\n for i = 1:length(wh)\n \n ind = st(r) + wh(i) - 1; % which to filter\n ind(ind < 1) = []; % if negative numbers (end of runs), this makes it ok\n \n x(ind, colindx) = 1;\n colindx = colindx + 1;\n end\n end\n\n end\n\nend\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Model_building_tools/intercept_model.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.38725561691212645}} {"text": "function pass = test_domainChck()\n% Test chebfun3/domainCheck\n\n% Default domain: \nff = @(x,y,z) cos(x+y+z);\ngg = @(x,y,z) sin(x.*y.*z);\nf = chebfun3(ff);\ng = chebfun3(gg);\npass(1) = domainCheck(f, g);\n\n% A different domain: \ndom = [-1 2 -2 1 -3 0];\nff = @(x,y,z) cos(x+y+z);\ngg = @(x,y,z) sin(x.*y.*z);\nf = chebfun3(ff, dom);\ng = chebfun3(gg, dom);\npass(2) = domainCheck(f, g);\n\nend ", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/chebfun3/test_domainChck.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.38725561691212645}} {"text": "function test_interp_2d_test03 ( )\n\n%*****************************************************************************80\n%\n%% TEST_INTERP_2D_TEST03 plots each grid.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 28 July 2012\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST_INTERP_2D_TEST03\\n' );\n fprintf ( 1, ' Plot each grid.\\n' );\n\n g_num = g00_num ( );\n filename = 'grid_00.png';\n\n for gi = 1 : g_num\n\n gt = g00_title ( gi );\n gn = g00_size ( gi );\n\n [ gx, gy ] = g00_xy ( gi, gn );\n\n plot ( gx, gy, 'b.', 'Markersize', 25 );\n title ( gt );\n grid on\n xlabel ( '<--- X --->' );\n ylabel ( '<--- Y --->' );\n axis ( 'equal' );\n\n filename = filename_inc ( filename );\n print ( '-dpng', filename );\n fprintf ( 1, ' Created file \"%s\".\\n', filename );\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_interp_2d/test_interp_2d_test03.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.7341195385342971, "lm_q1q2_score": 0.3871133628049177}} {"text": "function Z = sparsemultipart(Z1,Z2,info)\n\n% Find the elements in Z1 that are in the convex hull of Z2, where Z2 is bipartite\n\n% This file is part of SOSTOOLS - Sum of Squares Toolbox ver 3.00.\n%\n% Copyright (C)2002, 2004, 2013 A. Papachristodoulou (1), J. Anderson (1),\n% G. Valmorbida (1), S. Prajna (2), \n% P. Seiler (3), P. A. Parrilo (4)\n% (1) Department of Engineering Science, University of Oxford, Oxford, U.K.\n% (2) Control and Dynamical Systems - California Institute of Technology,\n% Pasadena, CA 91125, USA.\n% (3) Aerospace and Engineering Mechanics Department, University of\n% Minnesota, Minneapolis, MN 55455-0153, USA.\n% (4) Laboratory for Information and Decision Systems, M.I.T.,\n% Massachusetts, MA 02139-4307\n%\n% Send bug reports and feedback to: sostools@cds.caltech.edu\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\n% AP Feb 01 0\n\n[Y,I] = find(sum(Z2,1)==0);\nsizeinf = length(info);\n \nif sizeinf == 1\n error('Error in sparsemultipart option - at least two sets are required');\nend \n\nfor i = 1:sizeinf\n Z3{i} = inconvhull(Z1(:,info{i}),Z2(:,info{i}));\nend\n\nfor i = 1:sizeinf-1%GVcomment for the variables introducing homogeneous monomials \n Z3{i+1} = [repmat(Z3{i},size(Z3{i+1},1),1),kron(Z3{i+1},ones(size(Z3{i},1),1))];\nend\nZ3 = Z3{sizeinf};\nZ = zeros(size(Z3,1),size(Z2,2));\nlgth = 0;\nfor i = 1:sizeinf\n Z(:,info{i})= Z3(:,(1+lgth):(lgth+length(info{i})));\n lgth = length(info{i})+lgth;\nend\nZ(:,I) = zeros(size(Z,1),size(I,2));", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/SOSTOOLS.300/SOSTOOLS.300/internal/sparsemultipart.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3871133566700572}} {"text": "function x = modhs52(p)\n n=4;\n\n x(1)=4.0*p(1)-p(2);\n x(2)=p(2)+p(3)-2.0;\n x(3)=p(4)-1.0;\n x(4)=p(5)-1.0;\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/OptiToolbox/Solvers/levmar/distribution/modhs52.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3871133566700572}} {"text": "function drawbtf (A, p, q, r)\n%DRAWBTF plot the BTF form of a matrix\n%\n% A(p,q) is in BTF form, r the block boundaries\n%\n% Example:\n% [p,q,r] = dmperm (A)\n% drawbtf (A, p, q, r)\n%\n% See also btf, maxtrans, strongcomp, dmperm.\n\n% Copyright 2004-2007, Tim Davis, University of Florida\n\nnblocks = length (r) - 1 ;\n\nhold off\nspy (A (p,abs(q)))\nhold on\n\nfor k = 1:nblocks\n k1 = r (k) ;\n k2 = r (k+1) ;\n nk = k2 - k1 ;\n if (nk > 1)\n plot ([k1 k2 k2 k1 k1]-.5, [k1 k1 k2 k2 k1]-.5, 'r') ;\n end\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/SuiteSparse/BTF/MATLAB/drawbtf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3871001518551149}} {"text": "% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\n%function sigmergt\n%SIGMERGT Unit test for the function SIGMERGE.\n\n%\tO. Lemoine - March 1996.\n\nN=256;\n\ns1=noisecg(N);\ns2=amgauss(N);\nR=10;\nsig=sigmerge(s1,s2,R);\nE1=norm(s1)^2;\nE2=norm(s2)^2;\nh=sqrt(E1/(E2*10^(R/10)));\nerr=sig-s1-h*s2;\nif any(abs(err)>sqrt(eps)),\n error('sigmerge test 1 failed');\nend\n\ns1=noisecu(N);\ns2=fmlin(N);\nR=-2.4;\nsig=sigmerge(s1,s2,R);\nE1=norm(s1)^2;\nE2=norm(s2)^2;\nh=sqrt(E1/(E2*10^(R/10)));\nerr=sig-s1-h*s2;\nif any(abs(err)>sqrt(eps)),\n error('sigmerge test 2 failed');\nend\n\n\nN=245;\n\ns1=noisecg(N);\ns2=amgauss(N);\nR=10;\nsig=sigmerge(s1,s2,R);\nE1=norm(s1)^2;\nE2=norm(s2)^2;\nh=sqrt(E1/(E2*10^(R/10)));\nerr=sig-s1-h*s2;\nif any(abs(err)>sqrt(eps)),\n error('sigmerge test 3 failed');\nend\n\ns1=noisecu(N);\ns2=fmlin(N);\nR=-2.4;\nsig=sigmerge(s1,s2,R);\nE1=norm(s1)^2;\nE2=norm(s2)^2;\nh=sqrt(E1/(E2*10^(R/10)));\nerr=sig-s1-h*s2;\nif any(abs(err)>sqrt(eps)),\n error('sigmerge test 4 failed');\nend\n", "meta": {"author": "HeLiangHIT", "repo": "time_frequency", "sha": "09c2abe92355ff5cd867bdb169229682e9d7af7c", "save_path": "github-repos/MATLAB/HeLiangHIT-time_frequency", "path": "github-repos/MATLAB/HeLiangHIT-time_frequency/time_frequency-09c2abe92355ff5cd867bdb169229682e9d7af7c/tf_tool_box/tftb-0.2/tests/sigmergt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6076631556226291, "lm_q2_score": 0.6370308082623217, "lm_q1q2_score": 0.3871001511775164}} {"text": "function [Eft, Varft, lpyt, Eyt, Varyt] = gpia_loopred(gp_array, x, y, varargin)\n%GPIA_LOOPRED Leave-one-out predictions with Gaussian Process IA approximation\n%\n% Description\n% [EFT, VARFT, LPYT, EYT, VARYT] = GPIA_LOOPRED(RECGP, X, Y)\n% takes a cell array of GP structures together with matrix X of\n% input vectors, matrix X of training inputs and vector Y of\n% training targets, and evaluates the leave-one-out predictive\n% distribution at inputs X and returns means EFT and variances\n% VARFT of latent variables, the logarithm of the predictive\n% densities PYT, and the predictive means EYT and variances\n% VARYT of observations at input locations X.\n%\n% OPTIONS is optional parameter-value pair\n% z - optional observed quantity in triplet (x_i,y_i,z_i)\n% Some likelihoods may use this. For example, in case of \n% Poisson likelihood we have z_i=E_i, that is, expected value \n% for ith case. \n% is - defines if importance sampling weighting is used 'on'\n% (default). If set to 'off', integration points and\n% weights for the full posterior are used.\n% \n% Given Gaussian likelihood or non-Gaussian likelihood and\n% latent method Laplace or EP, LOO-posterior given\n% hyperparameters is computed analytically or with analytic\n% approximation and LOO-posterior of the hyperparameters is\n% approximated using importance sampling reweighted integration\n% points from gp_ia. Optionally integration weights for full data\n% posterior of hyperparameters can be used (by setting option\n% 'is' to 'off').\n%\n% References:\n% Aki Vehtari and Jouko Lampinen (2002). Bayesian model\n% assessment and comparison using cross-validation predictive\n% densities. Neural Computation, 14(10):2439-2468.\n%\n% See also\n% GP_LOOPRED, GP_IA, GP_PRED\n%\n% Copyright (c) 2009 Ville Pietil\ufffdinen\n% Copyright (c) 2009-2010 Jarno Vanhatalo\n% Copyright (c) 2010,2012 Aki Vehtari\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'GPIA_LOOPRED';\n ip.addRequired('gp_array',@iscell);\n ip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\n ip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\n ip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))\n ip.addParamValue('is', 'on', @(x) ismember(x,{'on' 'off'}))\n ip.parse(gp_array, x, y, varargin{:});\n z=ip.Results.z;\n is=ip.Results.is;\n\n nGP = numel(gp_array);\n n=size(x,1);\n \n P_TH = zeros(1,nGP);\n Efts = zeros(n,nGP);\n Varfts = zeros(n,nGP);\n lpyts = zeros(n,nGP);\n if nargout > 3\n Eyts = zeros(n,nGP);\n Varyts = zeros(n,nGP);\n end\n \n for i1=1:nGP\n Gp=gp_array{i1};\n P_TH(1,i1) = Gp.ia_weight;\n % compute leave-one-out predictions for each hyperparameter sample\n % if latent method is MCMC, then these samples are for latent values, too\n if nargout <= 3\n [Efts(:,i1), Varfts(:,i1), lpyts(:,i1)] = gp_loopred(Gp, x, y, 'z', z);\n else\n [Efts(:,i1), Varfts(:,i1), lpyts(:,i1), Eyts_temp, Varyts_temp] = gp_loopred(Gp, x, y, 'z', z);\n if ~isempty(Eyts_temp)\n Eyts(:,i1) = Eyts_temp;\n end\n if ~isempty(Varyts_temp)\n Varyts(:,i1) = Varyts_temp;\n end\n end\n end\n\n if isequal(is,'off')\n P_TH=repmat(P_TH,n,1);\n else\n % log importance sampling weights\n lw=-lpyts;\n % normalize weights\n for i2=1:n\n % this works even when lw have large magnitudes\n lw(i2,:)=lw(i2,:)-sumlogs(lw(i2,:));\n end\n % importance sampling weights\n w=exp(lw);\n % reweight ia weights\n P_TH=bsxfun(@times,P_TH,w);\n P_TH=bsxfun(@rdivide,P_TH,sum(P_TH,2));\n % check the effective sample size\n m_eff=1./sum(P_TH.^2,2);\n if min(m_eff)=200\n % (new) default sample size for is_normal and is_t is 200\n % CCD with nParam>=12 has at least 281 points\n [lw,pk] = psislw(log(P_TH'),10);\n P_TH=exp(lw');\n % check whether the variance and mean of the raw importance ratios is finite\n % PSIS weights have always finite variance and mean, but if raw importance\n % ratios have infinite variance the convergence to true value is\n % slower and if raw importance ratios have non-existing mean the the\n % estimate can't converge to true value\n vkn1=sum(pk>=0.5&pk<0.7);\n vkn2=sum(pk>=0.7&pk<1);\n vkn3=sum(pk>=1);\n n=numel(pk);\n if vkn1>0\n warning('%d (%.0f%%) PSIS Pareto k estimates between 0.5 and .7',vkn1,vkn1/n*100)\n end\n if vkn2>0\n warning('%d (%.0f%%) PSIS Pareto k estimates between 0.7 and 1',vkn2,vkn2/n*100)\n end\n if vkn3>0\n warning('%d (%.0f%%) PSIS Pareto k estimates greater than 1',vkn3,vkn3/n*100)\n end\n end\n end\n\n % compute combined predictions\n Eft = sum(Efts.*P_TH, 2);\n Varft = sum(Varfts.*P_TH,2) + sum(bsxfun(@minus,Efts,Eft).^2.*P_TH,2);\n if nargout > 2\n lpyt = log(sum(exp(lpyts+log(P_TH)),2));\n if nargout > 3\n Eyt = sum(Eyts.*P_TH,2);\n Varyt = sum(Varyts.*P_TH,2) + sum(bsxfun(@minus,Eyts,Eyt).^2.*P_TH, 2);\n end\n end\n", "meta": {"author": "gpstuff-dev", "repo": "gpstuff", "sha": "114937ec0a201306489a66cbba38283e722fb998", "save_path": "github-repos/MATLAB/gpstuff-dev-gpstuff", "path": "github-repos/MATLAB/gpstuff-dev-gpstuff/gpstuff-114937ec0a201306489a66cbba38283e722fb998/gp/gpia_loopred.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.38703178250911585}} {"text": "function [dimLabels, resolutions, nSamples, units, firstSamplingPoint] = ...\n read_nifti(~, fileName)\n% Reads nifti files and extracts properties for dimInfo\n%\n% Y = MrDimInfo()\n% [dimLabels, resolutions, nSamples, units] = Y.read_nifti(fileName)\n% used in Y.load(fileName)\n%\n% This is a method of class MrDimInfo.\n%\n% IN\n%\n% OUT\n%\n% EXAMPLE\n% read_nifti\n%\n% See also MrDimInfo\n\n% Author: Saskia Bollmann & Lars Kasper\n% Created: 2017-11-02\n% Copyright (C) 2017 Institute for Biomedical Engineering\n% University of Zurich and ETH Zurich\n%\n% This file is part of the TAPAS UniQC Toolbox, which is released\n% under the terms of the GNU General Public License (GPL), version 3.\n% You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version).\n% For further details, see the file COPYING or\n% .\n%\n\n\n\n%% read header info\nV = spm_vol(fileName);\n\n%% nSamples\n% for nifti files, nSamples should always has 3 entries, even if just a\n% single line or slice is in the data (the nifti header will have\n% information on the remaining singleton dimensions)\nnSamples = [1, 1, 1];\n\n% fill with info from file\ntempSamples = V(1).private.dat.dim;\nnSamples(1:numel(tempSamples)) = tempSamples;\ntempDimInfo = MrDimInfo('nSamples', nSamples);\nnDims = numel(nSamples);\n\n%% dimLabels\ndimLabels = tempDimInfo.dimLabels;\n\n%% units\nunits = tempDimInfo.units;\n\n%% resolutions\nN = floor(abs(log10(eps('double'))));\nP = round(tapas_uniqc_spm_imatrix(V(1).mat),N);\nresolution_mm = P(7:9);\n% some nifti formats supply timing information (for files with more than 3\n% dimension)\nif isfield(V(1), 'private') && nDims > 3\n if isstruct(V(1).private.timing)\n TR_s = V(1).private.timing.tspace;\n tStart = 0;\n else\n TR_s = 1;\n units{4} = 'samples';\n tStart = 1;\n end\nend\n% need nifti to reference first sampling point as offcenter\nresolutions = ones(1, nDims);\nresolutions(1, 1:3) = resolution_mm;\nif nDims > 3\n resolutions(1,4) = TR_s;\nend\n\n%% firstSamplingPoint\n% voxel position by voxel center\n% first sampling points for x,y,z are -FOV/2+res/2 such that [0 0 0] is in\n% the centre of the matrix\n% time starts at 0 seconds or 1 (1st) sample\nFOV = nSamples(1:3) .* resolutions(1:3);\nfirstSamplingPoint = zeros(1, nDims);\nfirstSamplingPoint(1:3) = -FOV/2 + resolutions(1:3)/2;\nif nDims > 3\n firstSamplingPoint(4) = tStart;\nend\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrDimInfo/read_nifti.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.38703178250911585}} {"text": "function [A, B] = kafbox_covProd(covfunc, logtheta, x, z);\n\n% covProd - compose a covariance function as the product of other covariance\n% functions. This function doesn't actually compute very much on its own, it\n% merely does some bookkeeping, and calls other covariance functions to do the\n% actual work.\n%\n% For more help on design of covariance functions, try \"help covFunctions\".\n%\n% (C) Copyright 2006 by Carl Edward Rasmussen, 2006-04-06.\n\nfor i = 1:length(covfunc) % iterate over covariance functions\n f = covfunc(i);\n if iscell(f{:}), f = f{:}; end % dereference cell array if necessary\n j(i) = cellstr(feval(f{:}));\nend\n\nif nargin == 1, % report number of parameters\n A = char(j(1)); for i=2:length(covfunc), A = [A, '+', char(j(i))]; end\n return\nend\n\n[n, D] = size(x);\n\nv = []; % v vector indicates to which covariance parameters belong\nfor i = 1:length(covfunc), v = [v repmat(i, 1, eval(char(j(i))))]; end\n\nswitch nargin\ncase 3 % compute covariance matrix\n A = ones(n, n); % allocate space for covariance matrix\n for i = 1:length(covfunc) % iteration over factor functions\n f = covfunc(i);\n if iscell(f{:}), f = f{:}; end % dereference cell array if necessary\n A = A .* feval(f{:}, logtheta(v==i), x); % multiply covariances\n end\n\ncase 4 % compute derivative matrix or test set covariances\n if nargout == 2 % compute test set cavariances\n A = ones(size(z,1),1); B = ones(size(x,1),size(z,1)); % allocate space\n for i = 1:length(covfunc)\n f = covfunc(i);\n if iscell(f{:}), f = f{:}; end % dereference cell array if necessary\n [AA BB] = feval(f{:}, logtheta(v==i), x, z); % compute test covariances\n A = A .* AA; B = B .* BB; % and accumulate\n end\n else % compute derivative matrices\n A = ones(n, n);\n ii = v(z); % which covariance function\n j = sum(v(1:z)==ii); % which parameter in that covariance\n for i = 1:length(covfunc)\n f = covfunc(i);\n if iscell(f{:}), f = f{:}; end % dereference cell array if necessary\n if i == ii\n A = A .* feval(f{:}, logtheta(v==i), x, j); % multiply derivative\n else\n A = A .* feval(f{:}, logtheta(v==i), x); % multiply covariance\n end\n end\n end\n\nend\n", "meta": {"author": "steven2358", "repo": "kafbox", "sha": "694cf94df02a9728a90d7bacda1a8520b425f86f", "save_path": "github-repos/MATLAB/steven2358-kafbox", "path": "github-repos/MATLAB/steven2358-kafbox/kafbox-694cf94df02a9728a90d7bacda1a8520b425f86f/lib/util/gpml/kafbox_covProd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.38703178250911585}} {"text": "% Author: Guanghan Ning, Dec 2016\nclear all;\naddpath('../utils_eval_mpii/');\naddpath('../eval_MPII/');\n\n% Load annotations: validation\nload('../eval_MPII/mpii_Tompson_validation', 'annolist');\nload('../eval_MPII/mpii_Tompson_validation', 'RELEASE_img_index');\nload('../eval_MPII/mpii_Tompson_validation', 'RELEASE_person_index');\nannolist_validate = annolist;\nnum_validate_imgs = size(annolist_validate, 2);\n\n% Load annotations: train + validation\nload('../eval_MPII/mpii_human_pose_v1_u12_1','RELEASE');\nannolist_all = RELEASE.annolist;\n\n% Load scales extracted from image height\nscale_in_cpp = load('../scale_in_cpp_MPII_validate_bigger_1.4.mat');\nscale_in_cpp = scale_in_cpp.output_scale;\n\n\n%%\nimg_folder_path = '/home/ngh/dev/POSE/POSE-dev/dataset/MPI/images/';%'../../../dataset/MPI/images/';\n\nfor scale_id = 1\n for iter_id = 1176058\n mat_folder_path = strcat('../dataset_mpii/results_all_validate_cropped_bigger_1.4/', num2str(iter_id), '_', num2str(scale_id-1), '/quantitative/');\n \n for img_id = 1:num_validate_imgs\n\n img_index = RELEASE_img_index(img_id);\n img_name = annolist_all(img_index).image.name;\n img_path = strcat(img_folder_path, '/', img_name);\n img_org_full = imread(img_path);\n\n % Display predicted results on the original image\n figure;\n imshow(img_org_full);\n hold on;\n\n % Get rect id. Note the difference between rect_ct and rect_id\n rect_id = RELEASE_person_index(img_id);\n\n % Find scale and mid-points in order to convert prediction\n x_mid = annolist_validate(img_id).annorect.objpos.x;\n y_mid = annolist_validate(img_id).annorect.objpos.y;\n mid_point = [x_mid, y_mid]; %scale = annolist_test(img_id).annorect.scale;\n\n % Load our algorithm predictions for this rect\n [folder_path, base_name, extension] = fileparts(img_name);\n [x_preds_raw, y_preds_raw] = load_pred_result(mat_folder_path, base_name, rect_id);\n\n for joint_id = 1:14\n % Convert predictions for un-cropped image scale for evaluation\n %id = convert_joint_order(joint_id);\n id = convert_joint_order_to_gt_order(joint_id);\n\n pred_point_raw = [x_preds_raw(joint_id), y_preds_raw(joint_id)];\n [x_pred, y_pred]= convert_trans_and_scale_validation(pred_point_raw, scale_in_cpp(img_id), mid_point);\n\n plot(x_pred, y_pred,'o');\n end\n hold off;\n pause;\n end\n end\nend\n", "meta": {"author": "Guanghan", "repo": "GNet-pose", "sha": "c70e0fc65b290e68a16ca3040a70300f9c2bee44", "save_path": "github-repos/MATLAB/Guanghan-GNet-pose", "path": "github-repos/MATLAB/Guanghan-GNet-pose/GNet-pose-c70e0fc65b290e68a16ca3040a70300f9c2bee44/testing/utils_eval_mpii/demo_conversion_cropped.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7799929002541068, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3869496648471888}} {"text": "function [y]=rake_fft(x, tol)\n% Discrete Fourier Transform in the QTT-Tucker format\n% function [y]=rake_fft(x, tol)\n% Computes the multidimensional DFT of the vector x in the QTT-Tucker format with\n% the approximation tolerance tol.\n% Returns the quantized dimensions in the correct order.\n%\n% !!WARNING!! employs a (probably) costly rank reverse procedure.\n\nD = size(x.tuck);\ntuck = x.tuck;\ncrx = core2cell(x.core);\nfor i=1:D\n [tuck{i}, rv]=qr(tuck{i}, 'lr');\n r1 = size(crx{i}, 1); r2 = size(crx{i}, 3); rt = size(crx{i},2);\n crx{i} = permute(crx{i}, [2, 1, 3]);\n crx{i} = reshape(crx{i}, rt, r1*r2);\n crx{i} = rv*crx{i};\n rt = size(rv,1);\n crx{i} = reshape(crx{i}, rt, r1, r2);\n crx{i} = permute(crx{i}, [2, 1, 3]); \nend;\n% [crx,rv]=qr(crx, 'rl');\n% crx = rv.'*crx;\nfor i=D:-1:2\n r1 = size(crx{i}, 1); rt = size(crx{i}, 2); r2 = size(crx{i}, 3);\n crx{i} = reshape(crx{i}, r1, rt*r2);\n [crx{i}, rv]=qr(crx{i}.', 0);\n r0 = size(crx{i-1}, 1); rt0 = size(crx{i-1}, 2);\n crx{i-1} = reshape(crx{i-1}, r0*rt0, r1);\n crx{i-1}=crx{i-1}*rv.';\n r1 = size(rv,1);\n crx{i-1} = reshape(crx{i-1}, r0, rt0, r1);\n crx{i} = reshape(crx{i}.', r1, rt, r2);\nend;\nfor i=1:D\n r1 = size(crx{i}, 1); r2 = size(crx{i}, 3); rt = size(crx{i},2);\n crx{i} = permute(crx{i}, [1, 3, 2]);\n crx{i} = reshape(crx{i}, r1*r2, rt);\n [crx{i}, rv]=qr(crx{i}, 0);\n tuck{i} = tuck{i}*rv.';\n tuck{i} = qtt_fft1(tuck{i}, tol);\n % rank is reversed\n r = tuck{i}.r;\n rq1 = r(1);\n for k=1:rq1\n ek = [zeros(1,k-1), 1, zeros(1,rq1-k)];\n yk = ek*tuck{i}; % first rank is 1\n if (k==1)\n ynew = yk;\n else\n ynew = [ynew, yk];\n ynew = round(ynew, tol);\n end;\n end;\n [tuck{i}, rv]=qr(ynew, 'lr');\n% % reversing 2\n% % nonorth block is the last, but we need to SVD from the first\n% tuck{i} = core2cell(tuck{i});\n% for j=numel(tuck{i}):-1:2\n% tuck{i}{j} = reshape(tuck{i}{j}, r(j), 2*r(j+1));\n% [tuck{i}{j}, rv]=qr(tuck{i}{j}.', 0);\n% tuck{i}{j-1} = reshape(tuck{i}{j-1}, r(j-1)*2, r(j));\n% tuck{i}{j-1} = tuck{i}{j-1}*rv.';\n% r(j) = size(rv, 1);\n% tuck{i}{j} = reshape(tuck{i}{j}.', r(j), 2, r(j+1));\n% tuck{i}{j-1} = reshape(tuck{i}{j-1}, r(j-1), 2, r(j));\n% end;\n% tuck{i}{1} = permute(tuck{i}{1}, [2, 1, 3]);\n% tuck{i}{1} = reshape(tuck{i}{1}, 2, rq1*r(2));\n% [u,s,v]=svd(tuck{i}{1}, 'econ');\n% s = diag(s);\n% rnew = my_chop2(s, norm(s)*tol/sqrt(numel(tuck{i})-1));\n% u=u(:,1:rnew);\n% v=v(:,1:rnew)*diag(s(1:rnew));\n% tuck{i}{1} = reshape(u, 1, 2, rnew);\n% r(1) = 1;\n% rv = reshape(v', rnew*rq1, r(2));\n% for j=2:numel(tuck{i})\n% tuck{i}{j} = reshape(tuck{i}{j}, r(j), 2*r(j+1));\n% tuck{i}{j} = rv*tuck{i}{j};\n% r(j) = rnew;\n% tuck{i}{j} = reshape(tuck{i}{j}, r(j), rq1, 2, r(j+1));\n% tuck{i}{j} = permute(tuck{i}{j}, [1, 3, 2, 4]);\n% tuck{i}{j} = reshape(tuck{i}{j}, r(j)*2, rq1*r(j+1));\n% [u,s,v]=svd(tuck{i}{j}, 'econ');\n% s = diag(s);\n% rnew = my_chop2(s, norm(s)*tol/sqrt(numel(tuck{i})-1));\n% u=u(:,1:rnew);\n% v=v(:,1:rnew)*diag(s(1:rnew));\n% tuck{i}{j} = reshape(u, r(j), 2, rnew);\n% rv = reshape(v', rnew*rq1, r(j+1)); \n% end;\n% rv = reshape(rv, rnew, rq1);\n% tuck{i} = cell2core(tt_tensor, tuck{i});\n \n crx{i} = crx{i}*rv.';\n rt = size(rv,1);\n crx{i} = reshape(crx{i}, r1, r2, rt);\n crx{i} = permute(crx{i}, [1, 3, 2]); \n if (i 0\n truer = varargin{1};\nelse\n truer = ones(1,size(INFO.delta,2));\nend\n\n\nfigure; subplot 221; hold on; set(gcf,'Color','w');\nif ~isempty(INFO.autocorrelation) \n figure('Color','w'); set(gca,'FontSize',18)\n plot((1:length(INFO.autocorrelation))./(length(INFO.autocorrelation) / length(hrf)),INFO.autocorrelation,'k-','LineWidth',2)\nend\ntitle('Noise autocorrelation function')\n\n% old plot of RMSD\n% -----------------\n%plot(snr,rmsd,'ko-','MarkerFaceColor','k','MarkerSize',3,'LineWidth',2)\n%plot(snr,msdstd(:,1),'k--')\n%plot(snr,msdstd(:,2),'k--')\n%legend({'Mean population value' '95% CI for one regression'})\n%ylabel('Root Mean Squared Deviation')\n%xlabel('Signal to Noise Ratio')\n\n%title(['Est. - True response: ' INFO.condition_tested],'FontSize',14)\n \nsubplot 222; hold on;\nx = (1:length(hrf)) * TR;\nplot(x, hrf.*truer(INFO.ttype),'k','LineWidth',2)\nmyleg = {'HRF'};\nlegend(myleg)\ntitle(['Est. vs. True response: ' INFO.condition_tested],'FontSize',14)\nxlabel('Time from trial onset')\n\nmycolors = {'r' 'b' 'g' 'c' 'm'};\nfor i = 1:min(5,length(snr))\n plot(x(1:size(meanest,2)),meanest(i,:),mycolors{i})\n myleg{end+1} = ['Estimated, snr = ' num2str(snr(i))];\nend\n\nif ~isempty(min95est) & ~isempty(max95est)\n plot(x(1:size(min95est,2)),min95est(1,:),'r--');\n plot(x(1:size(min95est,2)),max95est(1,:),'r--');\n myleg{end+1} = ['95% CI for ind. regressions, snr = ' num2str(snr(1))];\nend\nlegend(myleg)\n\n\nsubplot 223; hold on; \nimagesc(msdb,[0 msdblim]), colormap copper\nxlabel('Time from trial onset')\nylabel('Signal to Noise Ratio')\n%set(gca,'YDir','Reverse')\nset(gca,'YTick',1:length(snr))\nset(gca,'YTickLabel',snr)\nset(gca,'XTick',(1:2:INFO.estlength))\nset(gca,'XTickLabel',get(gca,'XTick') .* TR)\ntitle('Mean abs. dev. by time from event onset','FontSize',14)\ncolorbar('horiz')\n \nsubplot 224; hold on; \nimagesc(biasmean,bmlim), colormap jet\nxlabel('Time from trial onset')\nylabel('Signal to Noise Ratio')\nset(gca,'YTick',1:length(snr))\nset(gca,'YTickLabel',snr)\nset(gca,'XTick',(1:2:INFO.estlength))\nset(gca,'XTickLabel',get(gca,'XTick') .* TR)\ntitle('Bias in estimation by time from event onset','FontSize',14)\ncolorbar('horiz')\n\nreturn\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Model_building_tools/plot_ideal_deconv5.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514778, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3868182309702106}} {"text": "%This Matlab script can be used to reproduce Figure 6.7 in the monograph:\n%\n%Emil Bjornson, Jakob Hoydis and Luca Sanguinetti (2017), \n%\"Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency\", \n%Foundations and Trends in Signal Processing: Vol. 11, No. 3-4, \n%pp. 154-655. DOI: 10.1561/2000000093.\n%\n%For further information, visit: https://www.massivemimobook.com\n%\n%This is version 1.0 (Last edited: 2017-11-04)\n%\n%License: This code is licensed under the GPLv2 license. If you in any way\n%use this code for research that results in publications, please cite our\n%monograph as described above.\n\n\n%Empty workspace and close figures\nclose all;\nclear;\n\n\n%Number of BSs\nL = 16;\n\n%Number of UEs per BS\nK = 10;\n\n%Number of BS antennas\nM = 100;\n\n%Define the range of pilot reuse factors\nfRange = [1 2];\n\n%Select the number of setups with random UE locations\nnbrOfSetups = 20;\n\n%Select the number of channel realizations per setup\nnbrOfRealizations = 200;\n\n%Select the range of hardware qualities. The values at the same position in\n%the different vectors are considered simultaneously.\nkappatUE = [0.99 0.99 0.99 0.99 0.99 0.95 0.97 0.98 0.99 0.995 1];\nkapparUE = [0.95 0.97 0.98 0.995 1 0.99 0.99 0.99 0.99 0.99 0.99];\nkappatBS = kapparUE;\nkapparBS = kappatUE;\n\n\n%% Propagation parameters\n\n%Communication bandwidth\nB = 20e6;\n\n%Total uplink transmit power per UE (mW)\np = 100;\n\n%Total downlink transmit power per UE (mW)\nrho = 100;\n\n%Noise figure at the BS (in dB)\nnoiseFigure = 7;\n\n%Compute noise power\nnoiseVariancedBm = -174 + 10*log10(B) + noiseFigure;\n\n%Select length of coherence block\ntau_c = 200;\n\n%Use the approximation of the Gaussian local scattering model\naccuracy = 2;\n\n%Angular standard deviation in the local scattering model (in degrees)\nASDdeg = 10;\n\n\n%Prepare to save simulation results\nsumSE_MR = zeros(length(kappatUE),length(fRange),nbrOfSetups);\nsumSE_RZF = zeros(length(kappatUE),length(fRange),nbrOfSetups);\nsumSE_MMMSE = zeros(length(kappatUE),length(fRange),nbrOfSetups);\n\n\n%% Go through all setups\nfor n = 1:nbrOfSetups\n \n %Output simulation progress\n disp([num2str(n) ' setups out of ' num2str(nbrOfSetups)]);\n \n %Compute channel statistics for one setup\n [R,channelGaindB] = functionExampleSetup(L,K,M,accuracy,ASDdeg);\n \n %Compute the normalized average channel gain, where the normalization\n %is based on the noise power\n channelGainOverNoise = channelGaindB - noiseVariancedBm;\n \n \n %Go through all pilot reuse factors\n for s = 1:length(fRange)\n \n %Extract pilot reuse factor\n f = fRange(s);\n \n %Output simulation progress\n disp([num2str(f) ' reuse factor out of ' num2str(length(fRange))]);\n \n \n %Go through all hardware qualities\n for r = 1:length(kappatUE)\n \n %Generate channel realizations with estimates and estimation\n %error correlation matrices, using LMMSE estimation\n [Hhat,C,tau_p,~,H] = functionChannelEstimates_impairments(R,channelGainOverNoise,nbrOfRealizations,M,K,L,p,f,kappatUE(r),kapparBS(r));\n \n %Compute SE using Monte-Carlo realizations\n [SE_MR,SE_RZF,SE_MMMSE] = functionComputeSE_DL_impairments(H,Hhat,C,tau_c,tau_p,nbrOfRealizations,M,K,L,p,rho,kappatBS(r),kapparUE(r));\n \n %Save results\n sumSE_MR(r,s,n) = mean(sum(SE_MR,1));\n sumSE_RZF(r,s,n) = mean(sum(SE_RZF,1));\n sumSE_MMMSE(r,s,n) = mean(sum(SE_MMMSE,1));\n \n %Delete large matrices\n clear Hhat C H;\n \n end\n \n end\n \n %Delete large matrices\n clear R;\n \nend\n\n\n\n\n%Plot the simulation results\nfigure;\nhold on; box on;\n\nplot(kapparUE([1 2 3 9 4 5]),max(mean(sumSE_MMMSE([1 2 3 9 4 5],:,:),3),[],2),'rd-','LineWidth',1);\nplot(kapparUE([1 2 3 9 4 5]),max(mean(sumSE_RZF([1 2 3 9 4 5],:,:),3),[],2),'r-.','LineWidth',1);\nplot(kapparUE([1 2 3 9 4 5]),max(mean(sumSE_MR([1 2 3 9 4 5],:,:),3),[],2),'bs-','LineWidth',1);\n\nxlabel('DL hardware quality');\nylabel('Average sum SE [bit/s/Hz/cell]');\nlegend('M-MMSE','RZF','MR','Location','SouthEast');\nxlim([0.95 1]);\nylim([0 40]);\n\n\n\n%Plot the simulation results\nfigure;\nhold on; box on;\n\nplot(kappatUE(6:11),max(mean(sumSE_MMMSE(6:11,:,:),3),[],2),'rd-','LineWidth',1);\nplot(kappatUE(6:11),max(mean(sumSE_RZF(6:11,:,:),3),[],2),'r-.','LineWidth',1);\nplot(kappatUE(6:11),max(mean(sumSE_MR(6:11,:,:),3),[],2),'bs-','LineWidth',1);\n\nxlabel('UL hardware quality');\nylabel('Average sum SE [bit/s/Hz/cell]');\nlegend('M-MMSE','RZF','MR','Location','SouthEast');\nxlim([0.95 1]);\nylim([0 40]);\n", "meta": {"author": "emilbjornson", "repo": "massivemimobook", "sha": "4e429497dea72d52172972f3f686b34d1d047013", "save_path": "github-repos/MATLAB/emilbjornson-massivemimobook", "path": "github-repos/MATLAB/emilbjornson-massivemimobook/massivemimobook-4e429497dea72d52172972f3f686b34d1d047013/Code/section6_figure7.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514777, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3868182309702105}} {"text": "% -----------------------------------------------------------\n% |Nagi Hatoum, Candlestick chart \"ploter\" function, 5/29/03 |\n% |Edited and expanded by Jelle C.J. Veraa, 3/28/2009 |\n% -----------------------------------------------------------\n% \n% Important: date plotting subroutine needs 'tlabel' by Carlos Adrian \n% Vargas Aguilera \n% Available at the MATLAB Central File Exchange site, File ID: #19314 \n% http://www.mathworks.com/matlabcentral/fileexchange/19314\n% \n% function cndlV2(O,H,L,C)\n% cndlV2(O,H,L,C,date)\n% cndlV2(O,H,L,C,date,colorUp,colorDown,colorLine)\n% cndlV2(OHLC)\n% cndlV2(OHLC,date)\n% cndlV2(OHLC,date,colorUp,colorDown,colorLine)\n%\n% To use colors without a date, put '0' as date\n% i.e. cndlV2(OHLC,0,'b','r','k');\n%\n% required inputs: column vectors of O(pen), H(igh), L(ow)\n% and C(lose) prices of commodity. \n% Alternative: OHLC matrix of size [rowsx4] \n%\n% optional inputs [default]: \n% - date: serial date number (make with 'datenum') [no dates, index#]\n% - colorUp: Color for up candle ['w']\n% - colorDown: Color for down candle ['k']\n% - colorLine: Color for lines ['k']\n%\n% Note: identical inputs as required for barChartPlot except for colors\n\nfunction cndlV2(varargin)\n% See if we have [OHLC] or seperate vectors and retrieve our \n% required variables (Feel free to make this code more pretty ;-)\nisMat = size(varargin{1},2);\nindexShift = 0;\nuseDate = 0;\n\nif isMat == 4,\n O = varargin{1}(:,1);\n H = varargin{1}(:,2);\n L = varargin{1}(:,3);\n C = varargin{1}(:,4);\nelse\n O = varargin{1};\n H = varargin{2};\n L = varargin{3};\n C = varargin{4};\n indexShift = 3;\nend\nif nargin+isMat < 7,\n colorDown = 'k'; \n colorUp = 'w'; \n colorLine = 'k';\nelse\n colorUp = varargin{3+indexShift};\n colorDown = varargin{4+indexShift};\n colorLine = varargin{5+indexShift};\nend\nif nargin+isMat < 6,\n date = (1:length(O))';\nelse\n if varargin{2+indexShift} ~= 0\n date = varargin{2+indexShift};\n useDate = 1;\n else\n date = (1:length(O))';\n end\nend\n\n% w = Width of body, change multiplier to draw body thicker or thinner\n% the 'min' ensures no errors on weekends ('time gap Fri. Mon.' > wanted\n% spacing)\nw=.3*min([(date(2)-date(1)) (date(3)-date(2))]);\n%%%%%%%%%%%Find up and down days%%%%%%%%%%%%%%%%%%%\nd=C-O;\nl=length(d);\nhold on\n%%%%%%%%draw line from Low to High%%%%%%%%%%%%%%%%%\nfor i=1:l\n line([date(i) date(i)],[L(i) H(i)],'Color',colorLine)\nend\n%%%%%%%%%%draw white (or user defined) body (down day)%%%%%%%%%%%%%%%%%\nn=find(d<0);\nfor i=1:length(n)\n x=[date(n(i))-w date(n(i))-w date(n(i))+w date(n(i))+w date(n(i))-w];\n y=[O(n(i)) C(n(i)) C(n(i)) O(n(i)) O(n(i))];\n fill(x,y,colorDown)\nend\n%%%%%%%%%%draw black (or user defined) body(up day)%%%%%%%%%%%%%%%%%%%\nn=find(d>=0);\nfor i=1:length(n)\n x=[date(n(i))-w date(n(i))-w date(n(i))+w date(n(i))+w date(n(i))-w];\n y=[O(n(i)) C(n(i)) C(n(i)) O(n(i)) O(n(i))];\n fill(x,y,colorUp)\nend\n\nif (nargin+isMat > 5) && useDate, \n tlabel('x');\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nhold off", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23463-bar-and-candle-style-graph-for-stocks/cndlV2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105720171531, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3868052220609715}} {"text": "function gX = rbfardjitKernDiagGradX(kern, X)\n\n% RBFARDJITKERNDIAGGRADX Gradient of RBFARDJIT kernel's diagonal with respect to X.\n% FORMAT\n% DESC computes the gradient of the diagonal of the automatic relevance determination radial basis function kernel matrix with\n% respect to the elements of the design matrix given in X.\n% ARG kern : the kernel structure for which gradients are being computed.\n% ARG X : the input data in the form of a design matrix.\n% RETURN gX : the gradients of the diagonal with respect to each element\n% of X. The returned matrix has the same dimensions as X.\n%\n% SEEALSO : rbfard2KernParamInit, kernDiagGradX, rbfard2kernGradX\n%\n% COPYRIGHT : Neil D. Lawrence, 2004, 2005, 2006\n%\n% COPYRIGHT : Michalis K. Titsias, 2009\n\n% KERN\n\n\ngX = zeros(size(X));\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/rbfardjitKernDiagGradX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3868052143468824}} {"text": "% Data Quality specification snippet to populate default values\n% and verify times are in range\n% axs June 2019, ERPLAB\n% ams Dec 2022, ERPLAB update: incl'd smaller window for short epoch(<100ms)\nfunction DQ_spec_out = make_DQ_spec(timelimits_ms)\n\n\n% Check and populate missing args\nif exist('timelimits_ms','var') == 0 || isempty(timelimits_ms)\n \n try\n evalin('base','timelimits = [EEG.xmin EEG.xmax];');\n timelimits_ms = timelimits * 1000;\n \n catch\n %warning('Couldn''t find time limits for DQ range, trying defaults')\n timelimits_ms = [-200 500];\n end\nend\n\n\n\n\n% Prepare time range and time-windows\nwin_size = 100; %ms\n% If crossing zero, ensure windows are centered on zero\nif (min(timelimits_ms) < 0) && (max(timelimits_ms) > 0)\n % if crossing zero, grow 0:-win_size:min and 0:win_size:max\n \n tw_neg = sort([0:-win_size:timelimits_ms(1)]);\n tw_pos = [0:win_size:timelimits_ms(2)];\n \n % concatenate\n tw_starts = unique([tw_neg tw_pos]);\n tw_ends = tw_starts + win_size;\n \nelse\n % else, grow min:win_size:term\n \n tw_starts = min(timelimits_ms):win_size:max(timelimits_ms);\n tw_ends = tw_starts + win_size;\nend\n\n% remove time-windows out of range\nif tw_ends(end) > max(timelimits_ms)\n tw_starts(end) = [];\n tw_ends(end) = [];\nend\n\n% for tw less than 100ms \nif isempty(tw_starts) & isempty(tw_ends) \n win_size = 2; %considers typical auditory brainstem responses (ABRs) (eg, 25ms epochs)\n %thanks Dr. Kelsey Mankel! \n if (min(timelimits_ms) < 0) && (max(timelimits_ms) > 0)\n % if crossing zero, grow 0:-win_size:min and 0:win_size:max\n \n tw_neg = sort([0:-win_size:timelimits_ms(1)]);\n tw_pos = [0:win_size:timelimits_ms(2)];\n \n % concatenate\n tw_starts = unique([tw_neg tw_pos]);\n tw_ends = tw_starts + win_size;\n \n else\n % else, grow min:win_size:term\n \n tw_starts = min(timelimits_ms):win_size:max(timelimits_ms);\n tw_ends = tw_starts + win_size;\n end\n \n % remove time-windows out of range\n if tw_ends(end) > max(timelimits_ms)\n tw_starts(end) = [];\n tw_ends(end) = [];\n end\n\n \nend\n\n\n\n% make labels\nroot_str = 'aSME at ';\nfor i = 1:numel(tw_starts)\n tw_labels{i} = [root_str num2str(tw_starts(i)) ' to ' num2str(tw_ends(i)) ];\nend\n\nroot_str = 'aSD Across Trials at ';\nfor i = 1:numel(tw_starts)\n tw_labels_sd{i} = [root_str num2str(tw_starts(i)) ' to ' num2str(tw_ends(i)) ];\nend\n\ntw = [tw_starts; tw_ends]';\n\n% Build spec with these times\nDQ_defaults(1).type = 'Baseline Measure - SD';\n\nDQ_defaults(2).type = 'Point-wise SEM';\n\nDQ_defaults(3).type = 'aSME';\nDQ_defaults(3).times = tw;\nDQ_defaults(3).time_window_labels = tw_labels;\nDQ_defaults(3).comments = [];\n\n%add SD across trials (01/05/22)\nDQ_defaults(4).type = 'SD Across Trials';\nDQ_defaults(4).times = tw;\nDQ_defaults(4).time_window_labels = tw_labels_sd;\nDQ_defaults(4).comments=[]; \n\n\nDQ_spec_out = DQ_defaults;", "meta": {"author": "ucdavis", "repo": "erplab", "sha": "e4f66f7a512c4dee2f7596982318e44bb1b72644", "save_path": "github-repos/MATLAB/ucdavis-erplab", "path": "github-repos/MATLAB/ucdavis-erplab/erplab-dd2f60aa41b01c866fcec342efafc48323523cc2/functions/make_DQ_spec.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3868052143468824}} {"text": "function out=mtimes(x,y)\n\nprecisionx=0; precisiony=0;\nxmp=isa(x,'mp');\nif xmp\n precisionx=x(1).precision;\n ymp=isa(y,'mp');\nelse\n ymp=true;\nend\nif ymp\n precisiony=y(1).precision;\nend\nprecision=max(precisionx,precisiony);\nex=numel(x);\ney=numel(y);\n\nif ex==1 | ey==1\n if ~xmp, x=mp(x); end\n if ~ymp, y=mp(y); end\n if ex==1\n out_rval=cell(size(y));\n out_ival=out_rval;\n\n \n [xrval,xival]=getVals(x,1);\n %xrval=x(1).rval; xival=x(1).ival; if isempty(xival), xival='0'; end\n \n xReal=hasimag(xival);\n for ii=1:ey\n [yrval,yival]=getVals(y,ii);\n %yrval=y(ii).rval; yival=y(ii).ival; if isempty(yival), yival='0'; end\n if xReal | hasimag(yival)\n [out_rval{ii},out_ival{ii}]=mpfr_mulc(precision,xrval,xival,yrval,yival);\n else\n %if isempty(xrval), 'xxxxxxxxxxxx',kb, end\n out_rval{ii}=mpfr_mul(precision,xrval,yrval);\n end\n end\n else\n out_rval=cell(size(x));\n out_ival=out_rval;\n [yrval,yival]=getVals(y,1);\n yReal=hasimag(yival);\n for ii=1:ex\n [xrval,xival]=getVals(x,ii);\n if hasimag(xival) | yReal\n [out_rval{ii},out_ival{ii}]=mpfr_mulc(precision,xrval,xival,yrval,yival);\n else\n out_rval{ii}=mpfr_mul(precision,xrval,yrval);\n end\n end\n end\n out=class(struct('rval',out_rval,...\n 'ival',out_ival,...\n 'precision',precision),'mp');\nelse %%% out=x*y;\n sx=size(x);\n sy=size(y);\n if sx(2)~=sy(1)\n disp(['size of matrix 1 => ',num2str(sx(1)),'x',num2str(sx(2))]);\n disp(['size of matrix 2 => ',num2str(sy(1)),'x',num2str(sy(2))]);\n error('array size mismatch for mtimes')\n else\n out=mp(zeros(sx(1),sy(2)),precision);\n for ii=1:sx(1)\n for jj=1:sy(2)\n out(ii,jj)=sum(x(ii,1:end).*y(1:end,jj).');\n end\n end\n end\nend", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/external/analysis/mptoolbox/@mp/mtimes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38672072367882043}} {"text": "function [B] = KB2B(KB)\n% Convert computery things from kilobytes to bytes.\n% Chad A. Greene 2012\nB = KB*1024;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35258-unit-converters/unit_converters/KB2B.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3867207165941103}} {"text": "%\n% FILE NAME: getRxnsFromMNX.m\n% \n% PURPOSE: Generate the data structure for MetaNetX reactions\n%\n\n\n% Move to the target MNX folder\n\n% Load the MNX reactions\nT=readtable('reac_prop.xlsx','ReadVariableNames',1);\nMNXRxns=table2struct(T,'ToScalar',true);\n% Refine the equations by removing compartment suffix\nMNXRxns.equations=regexprep(MNXRxns.Equation,'\\@MNXD\\d+','');\nMNXRxns.equations=regexprep(MNXRxns.equations,'=','<=>');\nMNXRxns.Description=regexprep(MNXRxns.Description,'1 `','');\nMNXRxns.Description=regexprep(MNXRxns.Description,'`','');\n\n% Construct the S matrix and list of metabolites\n[S, mets, badRxns, reversible]=constructS(MNXRxns.equations); %time-consuming\nMNXRxns.S=S;\nMNXRxns.mets=mets;\nMNXRxns.badRxns=badRxns;\n% Count metabolite number for reactions\nnum=numel(MNXRxns.EC);\nMNXRxns.metNum=zeros(num,1);\nfor i=1:num\n\tMNXRxns.metNum(i,1)=numel(find(MNXRxns.S(:,i)));\nend\n\n% Construct the full S matrix and list of metabolites\nMNXRxns.fullequations=regexprep(MNXRxns.Equation,'=','<=>');\n[fullS, fullMets, badRxns, reversible]=constructS(MNXRxns.fullequations); %time-consuming\nMNXRxns.fullS=fullS;\nMNXRxns.fullMets=fullMets;\nMNXRxns.fullSbadRxns=badRxns;\n% Count metabolite number for reactions\nMNXRxns.fullMetNum=zeros(num,1);\nfor i=1:num\n\tMNXRxns.fullMetNum(i,1)=numel(find(MNXRxns.fullS(:,i)));\nend\n\nsave('MNXRxns.mat','MNXRxns');\n", "meta": {"author": "SysBioChalmers", "repo": "Human-GEM", "sha": "0b1bd42adaa2e1d7ac52ee83b989fad8a695759d", "save_path": "github-repos/MATLAB/SysBioChalmers-Human-GEM", "path": "github-repos/MATLAB/SysBioChalmers-Human-GEM/Human-GEM-0b1bd42adaa2e1d7ac52ee83b989fad8a695759d/.deprecated/data/MetaNetX/getRxnsFromMNX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455589, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38672070950940013}} {"text": "function dt = datatypes\n% Datatype\n% _______________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n%\n% $Id: datatypes.m 1143 2008-02-07 19:33:33Z spm $\n\n\npersistent dtype\nif isempty(dtype),\n t = true;\n f = false;\n table = {...\n 0 ,'UNKNOWN' ,'uint8' ,@uint8 ,1,1 ,t,t,f\n 1 ,'BINARY' ,'uint1' ,@logical,1,1/8,t,t,f\n 256 ,'INT8' ,'int8' ,@int8 ,1,1 ,t,f,t\n 2 ,'UINT8' ,'uint8' ,@uint8 ,1,1 ,t,t,t\n 4 ,'INT16' ,'int16' ,@int16 ,1,2 ,t,f,t\n 512 ,'UINT16' ,'uint16' ,@uint16 ,1,2 ,t,t,t\n 8 ,'INT32' ,'int32' ,@int32 ,1,4 ,t,f,t\n 768 ,'UINT32' ,'uint32' ,@uint32 ,1,4 ,t,t,t\n 1024,'INT64' ,'int64' ,@int64 ,1,8 ,t,f,f\n 1280,'UINT64' ,'uint64' ,@uint64 ,1,8 ,t,t,f\n 16 ,'FLOAT32' ,'float32' ,@single ,1,4 ,f,f,t\n 64 ,'FLOAT64' ,'double' ,@double ,1,8 ,f,f,t\n 1536,'FLOAT128' ,'float128',@crash ,1,16 ,f,f,f\n 32 ,'COMPLEX64' ,'float32' ,@single ,2,4 ,f,f,f\n 1792,'COMPLEX128','double' ,@double ,2,8 ,f,f,f\n 2048,'COMPLEX256','float128',@crash ,2,16 ,f,f,f\n 128 ,'RGB24' ,'uint8' ,@uint8 ,3,1 ,t,t,f};\n dtype = struct(...\n 'code' ,table(:,1),...\n 'label' ,table(:,2),...\n 'prec' ,table(:,3),...\n 'conv' ,table(:,4),...\n 'nelem' ,table(:,5),...\n 'size' ,table(:,6),...\n 'isint' ,table(:,7),...\n 'unsigned' ,table(:,8),...\n 'min',-Inf,'max',Inf',...\n 'supported',table(:,9));\n for i=1:length(dtype),\n if dtype(i).isint\n if dtype(i).unsigned\n dtype(i).min = 0;\n dtype(i).max = 2^(8*dtype(i).size)-1;\n else\n dtype(i).min = -2^(8*dtype(i).size-1);\n dtype(i).max = 2^(8*dtype(i).size-1)-1;\n end;\n end;\n end;\nend;\n\ndt = dtype;\n", "meta": {"author": "leoliuf", "repo": "MRiLab", "sha": "5cdcf1f7b67759700685d3a26ffeb70e55325567", "save_path": "github-repos/MATLAB/leoliuf-MRiLab", "path": "github-repos/MATLAB/leoliuf-MRiLab/MRiLab-5cdcf1f7b67759700685d3a26ffeb70e55325567/External/MatrixUser2.2/External/spm8/@file_array/private/datatypes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455589, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38672070950940013}} {"text": "function tests = test_ft_preproc_rereference\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_preproc_rereference\n\nif nargout\n % assume that this is called by RUNTESTS\n tests = functiontests(localfunctions);\nelse\n % assume that this is called from the command line\n fn = localfunctions;\n for i=1:numel(fn)\n feval(fn{i});\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction testOptions(testCase)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnchan = 8;\nnsample = 1000;\ndat = randn(nchan, nsample) + 1;\n\nhandlenan = false;\nleadfield = randn(8, 1000);\n\nresult = {};\nresult{end+1} = ft_preproc_rereference(dat, 1, 'avg', handlenan);\nresult{end+1} = ft_preproc_rereference(dat, 1:4, 'avg', handlenan);\nresult{end+1} = ft_preproc_rereference(dat, 1:8, 'avg', handlenan);\nresult{end+1} = ft_preproc_rereference(dat, 1:4, 'median', handlenan);\nresult{end+1} = ft_preproc_rereference(dat, 1:8, 'median', handlenan);\nresult{end+1} = ft_preproc_rereference(dat, 1, 'rest', handlenan, leadfield);\nresult{end+1} = ft_preproc_rereference(dat, 1:4, 'rest', handlenan, leadfield);\nresult{end+1} = ft_preproc_rereference(dat, 1:8, 'rest', handlenan, leadfield);\n\n% all iterations were done with (slightly) different options, hence the results should not be equal\nfor i=1:numel(result)\n for j=(i+1):numel(result)\n assert(~isequal(result{i}, result{j}), 'the results %d and %d should not be equal', i, j);\n end\nend", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_preproc_rereference.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455588, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3867207095094}} {"text": "function ebsd = flipud(ebsd)\n% flip spatial ebsd-data from upside down\n%\n% Input\n% ebsd - @EBSD\n%\n% Output\n% flipped ebsd - @EBSD\n\nm(1) = max(ebsd.prop.x);\nm(2) = max(ebsd.prop.y);\nebsd = affinetrans(ebsd,[],[0 -m(2)]);\n\nebsd = rotate(ebsd,rotation.byAxisAngle(xvector,pi));\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@EBSD/flipud.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.38665641785565746}} {"text": "%% Background Subtraction demo\n% An example using drawContours to clean up a background segmentation result.\n%\n% This program demonstrates a simple method of connected components clean up\n% of background subtraction.\n% When the program starts, it begins learning the background.\n% You can toggle background learning on and off using the checkbox.\n%\n% Sources:\n%\n% * \n%\n\n%% Set up video source: video file or camera\nfname = fullfile(mexopencv.root(),'test','768x576.avi');\nif exist(fname, 'file') ~= 2\n % download video from Github\n disp('Downloading video...')\n url = 'https://cdn.rawgit.com/opencv/opencv/3.1.0/samples/data/768x576.avi';\n urlwrite(url, fname);\nend\ncap = cv.VideoCapture(fname);\n%cap = cv.VideoCapture(0); pause(2);\nassert(cap.isOpened(), 'Cannot open video source');\n\nframe = cap.read();\nassert(~isempty(frame), 'Cannot read data from the video source');\n\n%% Create a background subtractor\nbs = cv.BackgroundSubtractorMOG2('VarThreshold',10);\n\n%%\nZR = zeros(size(frame,1), size(frame,2), 'uint8');\nniters = 3;\n\n%% Prepare window\nhFig = figure('Position',[100 100 840 630], ...\n 'KeyPressFcn',@(o,e)setappdata(o,'flag',true));\nsetappdata(hFig, 'flag',false);\nsubplot(221), hImg(1) = imshow(frame); title('video')\nsubplot(222), hImg(2) = imshow(frame); title('BG model')\nsubplot(223), hImg(3) = imshow(ZR); title('FG segmented')\nsubplot(224), hImg(4) = imshow(ZR); title('FG largest component')\nhCB = uicontrol('Style','checkbox', 'Position',[20 20 200 20], ...\n 'String','Update Background Model', 'Value',true);\n\n%% Main loop\nwhile ishghandle(hFig)\n % get next frame\n frame = cap.read();\n if isempty(frame), break; end\n\n % determine whether to update BG model or not, then compute FG mask\n update_bg_model = get(hCB,'Value');\n if update_bg_model\n learnRate = -1; % automatically chosen learning rate\n else\n learnRate = 0; % dont update BG model\n end\n fgmask = bs.apply(frame, 'LearningRate',learnRate);\n\n % process mask and extract largest connected component\n bw = cv.dilate(fgmask, 'Iterations',niters);\n bw = cv.erode(bw, 'Iterations',niters*2);\n bw = cv.dilate(bw, 'Iterations',niters);\n [contours, hierarchy] = cv.findContours(bw, ...\n 'Mode','CComp', 'Method','Simple');\n if ~isempty(contours)\n maxArea = 0;\n largestComp = 0;\n idx = 0;\n while idx >= 0\n % compute contour area\n a = abs(cv.contourArea(contours{idx+1}));\n if a > maxArea\n maxArea = a;\n largestComp = idx;\n end\n % iterate through all the top-level contours\n idx = hierarchy{idx+1}(1);\n end\n out_frame = cv.drawContours(ZR, contours, ...\n 'ContourIdx',largestComp, 'Hierarchy',hierarchy, ...\n 'Color',255, 'Thickness','Filled');\n else\n out_frame = ZR;\n end\n\n % update images\n set(hImg(1), 'CData',frame) % video frame\n if update_bg_model\n % get the current BG model\n set(hImg(2), 'CData',bs.getBackgroundImage())\n end\n set(hImg(3), 'CData',fgmask) % FG mask\n set(hImg(4), 'CData',out_frame) % largest contour in FG mask\n\n % Terminate if any user input\n flag = getappdata(hFig, 'flag');\n if isempty(flag)||flag, break; end\n pause(0.1);\nend\n\n%%\n% release camera\ncap.release()\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/samples/segment_objects_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.38665641785565746}} {"text": "function b = rhs(disc, f)\n%RHS Discretize the right-hand side of a linear system for VALSDISCRETIZATION.\n% B = RHS(DISC, F) returns a discrete version, B, of the function (or\n% chebmatrix) F, as defined by the discretization DISC.\n%\n% See also MATRIX, REDUCE.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Developers note: This method works as follows. \n% The original function(s) are discretized, then reduced in dimension the same\n% way as the operator. The constraints are prepended to the top of the vector.\n\nxOut = equationPoints(disc);\nfor k = 1:numel(f.blocks)\n if ( ~isnumeric(f.blocks{k}) )\n f.blocks{k} = feval(f.blocks{k}, xOut);\n end\nend\nb = cell2mat(f.blocks); \n\n% Developer note:\n% The continuity conditions go above the constraints. See getConstraints().\n\n% Prepend the values of the constraints and continuity conditions.\nL = disc.source;\n\nif ( ~isempty(L.constraint) )\n b = [ L.constraint.values ; b ];\nend\nif ( ~isempty(L.continuity) )\n b = [ L.continuity.values ; b ];\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@valsDiscretization/rhs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863695, "lm_q2_score": 0.6001883592602049, "lm_q1q2_score": 0.3866564096562849}} {"text": "function kern = whitefixedKernParamInit(kern)\n\n% WHITEFIXEDKERNPARAMINIT WHITEFIXED kernel parameter initialisation.\n% The white noise kernel arises from assuming independent Gaussian\n% noise for each point in the function. The variance of the noise is\n% given by the kern.variance parameter. The fixed white noise kernel\n% is a simple variant of the white kernel that doesn't allow the noise\n% parameter to be optimised. It is useful when the level of noise is\n% known a priori.\n% \n% This kernel is not intended to be used independently, it is provided\n% so that it may be combined with other kernels in a compound\n% kernel.\n%\n% SEEALSO : cmpndKernParamInit\n%\n% FORMAT\n% DESC initialises the fixed parameter white noise\n% kernel structure with some default parameters.\n% ARG kern : the kernel structure which requires initialisation.\n% RETURN kern : the kernel structure with the default parameters placed in.\n%\n% SEEALSO : kernCreate, kernParamInit\n%\n% COPYRIGHT : Nathaniel J. King, 2006\n\n% KERN\n\nkern.variance = exp(-2);\nkern.nParams = 0;\n\nkern.isStationary = true;\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/whitefixedKernParamInit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321964553658, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38664470854892463}} {"text": "classdef GridMap < handle\n properties\n boundary; % size of Metric Map(leftdownPoint + rightupPoint)\n blocks; % coordinate of obstacles on the Metric Map\n res; % resolution\n margin;\n maxIndex; % max index of ijk of GridMap\n occ_map; % flag obstacles on the GridMap\n end\n methods \n function obj = GridMap()\n end\n \n function load_map(obj, filename, xy_res, z_res, margin)\n fid = fopen(filename);\n tline = fgets(fid);\n obj.blocks = [];\n while ischar(tline)\n % skip empty line and comments\n if numel(tline) > 1 & tline(1)~='#'\n % convert char array to string\n if strncmpi(tline, 'boundary', 8)\n boundarys = strread(tline(9:end));\n end\n if strncmpi(tline, 'block', 5)\n block = strread(tline(6:end));\n assert(size(block,2) == 9);\n obj.blocks = [obj.blocks; block];\n end\n end\n tline = fgets(fid);\n end\n obj.boundary.ld = boundarys(1:3);\n obj.boundary.ru = boundarys(4:6);\n obj.res = [xy_res xy_res z_res];\n obj.margin = margin;\n obj.maxIndex = ceil(abs( (obj.boundary.ru - obj.boundary.ld)./obj.res )); \n end\n \n % obstacles = block + margin\n function flag_obstacles(obj)\n obj.occ_map = false(obj.maxIndex); \n for i = 1 : size(obj.blocks,1)\n block = obj.blocks(i, :);\n leftdownPoint = [min(block(1), block(4)) min(block(2), block(5)) min(block(3), block(6))];\n rightUpPoint = [max(block(1), block(4)) max(block(2), block(5)) max(block(3), block(6))];\n obj.blocks(i, 1:3) = leftdownPoint;\n obj.blocks(i, 4:6) = rightUpPoint;\n xyzs = obj.points_to_idx(leftdownPoint - obj.margin);\n xyze = obj.points_to_idx(rightUpPoint + obj.margin);\n obj.occ_map(xyzs(1):xyze(1), xyzs(2):xyze(2), xyzs(3):xyze(3)) = 1;\n end\n end\n \n function ijk = points_to_idx(obj, xyz)\n assert(size(xyz,1) > 0);\n ijk = floor((xyz - obj.boundary.ld)./obj.res + 1);\n ijk = min(max(ijk, 1), obj.maxIndex);\n end\n \n function xyz = idx_to_points(obj, ijk)\n assert(size(ijk,1) > 0);\n xyz = obj.boundary.ld + (ijk - 1 + 0.5).* obj.res;\n end\n \n function ret = idOverflowCheck(obj, i, j, k)\n ret = (i < 1 || i > obj.maxIndex(1) || j < 1 || j > obj.maxIndex(2) || k < 1 || k > obj.maxIndex(3));\n end\n \n % check points collide\n function C = collide(obj, points)\n ijk = obj.points_to_idx(points);\n C = false(size(ijk, 1), 1);\n for i = 1 : size(ijk, 1)\n id = ijk(i,:);\n C(i) = obj.occ_map(id(1), id(2), id(3)) ~= 0;\n end\n end\n \n %% generate intermedia points\n function pts = generateiIntermediaPoints(obj, start_pos, end_pos)\n %% generate Tiny direction vector\n dd = end_pos - start_pos;\n dir = obj.res(1)*(dd/norm(dd, 2))/(100);\n \n %% generate intermedia points\n lenxy = sqrt(sum((start_pos(1:2) - end_pos(1:2)).^2));\n lenz = sqrt(sum((start_pos(3) - end_pos(3)).^2));\n n_pts = int32(max(lenxy/obj.res(1), lenz/obj.res(3))) + 3;\n pts = [linspace(start_pos(1), end_pos(1), n_pts);\n linspace(start_pos(2), end_pos(2), n_pts);\n linspace(start_pos(3), end_pos(3), n_pts)]';\n \n %% mid-point + Tiny direction vector \n for j = 2 : size(pts,1) - 1\n m1 = mod(pts(j,1), obj.res(1));\n m2 = mod(pts(j,2), obj.res(1));\n m3 = mod(pts(j,3), obj.res(1));\n if(m1*m2*m3 == 0)\n pts(j,:) = pts(j,:) + dir;\n end\n end\n end\n end\nend\n\n", "meta": {"author": "LenaShengzhen", "repo": "AerialRobotics", "sha": "b3fe62f2df62cb91e8b5a53791868f9848c74005", "save_path": "github-repos/MATLAB/LenaShengzhen-AerialRobotics", "path": "github-repos/MATLAB/LenaShengzhen-AerialRobotics/AerialRobotics-b3fe62f2df62cb91e8b5a53791868f9848c74005/Motion_Planning/1Map_Generation/GridMap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321720225278, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38664469528523393}} {"text": "function x = spm_coreg(varargin)\n% Between modality coregistration using information theory\n% FORMAT x = spm_coreg(VG,VF,flags)\n% VG - handle for reference image (see spm_vol).\n% VF - handle for source (moved) image.\n% flags - a structure containing the following elements:\n% sep - optimisation sampling steps (mm)\n% default: [4 2]\n% params - starting estimates (6 elements)\n% default: [0 0 0 0 0 0]\n% cost_fun - cost function string:\n% 'mi' - Mutual Information\n% 'nmi' - Normalised Mutual Information\n% 'ecc' - Entropy Correlation Coefficient\n% 'ncc' - Normalised Cross Correlation\n% default: 'nmi'\n% tol - tolerences for accuracy of each param\n% default: [0.02 0.02 0.02 0.001 0.001 0.001]\n% fwhm - smoothing to apply to 256x256 joint histogram\n% default: [7 7]\n% graphics - display coregistration outputs\n% default: ~spm('CmdLine')\n%\n% x - the parameters describing the rigid body rotation, such that a\n% mapping from voxels in G to voxels in F is attained by:\n% VF.mat\\spm_matrix(x(:)')*VG.mat\n%\n% At the end, the voxel-to-voxel affine transformation matrix is\n% displayed, along with the histograms for the images in the original\n% orientations, and the final orientations. The registered images are\n% displayed at the bottom.\n%__________________________________________________________________________\n%\n% The registration method used here is based on the work described in:\n% A Collignon, F Maes, D Delaere, D Vandermeulen, P Suetens & G Marchal\n% (1995) \"Automated Multi-modality Image Registration Based On\n% Information Theory\". In the proceedings of Information Processing in\n% Medical Imaging (1995). Y. Bizais et al. (eds.). Kluwer Academic\n% Publishers.\n%\n% The original interpolation method described in this paper has been\n% changed in order to give a smoother cost function. The images are\n% also smoothed slightly, as is the histogram. This is all in order to\n% make the cost function as smooth as possible, to give faster convergence\n% and less chance of local minima.\n%__________________________________________________________________________\n% Copyright (C) 1994-2011 Wellcome Trust Centre for Neuroimaging\n\n% John Ashburner\n% $Id: spm_coreg.m 6435 2015-05-14 09:59:54Z guillaume $\n\n%--------------------------------------------------------------------------\n% References\n%==========================================================================\n%\n% Mutual Information\n% -------------------------------------------------------------------------\n% Collignon, Maes, Delaere, Vandermeulen, Suetens & Marchal (1995).\n% \"Automated multi-modality image registration based on information theory\".\n% In Bizais, Barillot & Di Paola, editors, Proc. Information Processing\n% in Medical Imaging, pages 263--274, Dordrecht, The Netherlands, 1995.\n% Kluwer Academic Publishers.\n%\n% Wells III, Viola, Atsumi, Nakajima & Kikinis (1996).\n% \"Multi-modal volume registration by maximisation of mutual information\".\n% Medical Image Analysis, 1(1):35-51, 1996. \n%\n% Entropy Correlation Coefficient\n% -------------------------------------------------------------------------\n% Maes, Collignon, Vandermeulen, Marchal & Suetens (1997).\n% \"Multimodality image registration by maximisation of mutual\n% information\". IEEE Transactions on Medical Imaging 16(2):187-198\n%\n% Normalised Mutual Information\n% -------------------------------------------------------------------------\n% Studholme, Hill & Hawkes (1998).\n% \"A normalized entropy measure of 3-D medical image alignment\".\n% in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143. \n%\n% Optimisation\n% -------------------------------------------------------------------------\n% Press, Teukolsky, Vetterling & Flannery (1992).\n% \"Numerical Recipes in C (Second Edition)\".\n% Published by Cambridge.\n%--------------------------------------------------------------------------\n\nSVNid = '$Rev: 6435 $';\n\nif nargin >= 4\n x = optfun(varargin{:});\n return;\nend\n\n%-Say hello\n%--------------------------------------------------------------------------\nSPMid = spm('FnBanner',mfilename,SVNid);\n\ndef_flags = spm_get_defaults('coreg.estimate');\ndef_flags.params = [0 0 0 0 0 0];\ndef_flags.graphics = ~spm('CmdLine');\nif nargin < 3\n flags = def_flags;\nelse\n flags = varargin{3};\n fnms = fieldnames(def_flags);\n for i=1:length(fnms)\n if ~isfield(flags,fnms{i})\n flags.(fnms{i}) = def_flags.(fnms{i});\n end\n end\nend\n\nif nargin < 1\n VG = spm_vol(spm_select(1,'image','Select reference image'));\nelse\n VG = varargin{1};\n if ischar(VG), VG = spm_vol(VG); end\nend\nif nargin < 2\n VF = spm_vol(spm_select(Inf,'image','Select moved image(s)'));\nelse\n VF = varargin{2};\n if ischar(VF) || iscellstr(VF), VF = spm_vol(char(VF)); end;\nend\n\nif ~isfield(VG, 'uint8')\n VG.uint8 = loaduint8(VG);\n vxg = sqrt(sum(VG.mat(1:3,1:3).^2));\n fwhmg = sqrt(max([1 1 1]*flags.sep(end)^2 - vxg.^2, [0 0 0]))./vxg;\n VG = smooth_uint8(VG,fwhmg); % Note side effects\nend\n\nsc = flags.tol(:)'; % Required accuracy\nsc = sc(1:length(flags.params));\nxi = diag(sc*20);\nx = zeros(numel(VF),numel(flags.params));\n\nfor k=1:numel(VF)\n VFk = VF(k);\n if ~isfield(VFk, 'uint8')\n VFk.uint8 = loaduint8(VFk);\n vxf = sqrt(sum(VFk.mat(1:3,1:3).^2));\n fwhmf = sqrt(max([1 1 1]*flags.sep(end)^2 - vxf.^2, [0 0 0]))./vxf;\n VFk = smooth_uint8(VFk,fwhmf); % Note side effects\n end\n\n xk = flags.params(:);\n for samp=flags.sep(:)'\n xk = spm_powell(xk(:), xi,sc,mfilename,VG,VFk,samp,flags.cost_fun,flags.fwhm);\n x(k,:) = xk(:)';\n end\n if flags.graphics\n display_results(VG(1),VFk(1),xk(:)',flags);\n end\nend\n\nfprintf('%-40s: %30s\\n','Completed',spm('time')) %-#\n\n%==========================================================================\n% function o = optfun(x,VG,VF,s,cf,fwhm)\n%==========================================================================\nfunction o = optfun(x,VG,VF,s,cf,fwhm)\n% The function that is minimised.\nif nargin<6, fwhm = [7 7]; end\nif nargin<5, cf = 'mi'; end\nif nargin<4, s = [1 1 1]; end\n\n% Voxel sizes\nvxg = sqrt(sum(VG.mat(1:3,1:3).^2));sg = s./vxg;\n\n% Create the joint histogram\nH = spm_hist2(VG.uint8,VF.uint8, VF.mat\\spm_matrix(x(:)')*VG.mat ,sg);\n\n% Smooth the histogram\nlim = ceil(2*fwhm);\nkrn1 = spm_smoothkern(fwhm(1),-lim(1):lim(1)) ; krn1 = krn1/sum(krn1); H = conv2(H,krn1);\nkrn2 = spm_smoothkern(fwhm(2),-lim(2):lim(2))'; krn2 = krn2/sum(krn2); H = conv2(H,krn2);\n\n% Compute cost function from histogram\nH = H+eps;\nsh = sum(H(:));\nH = H/sh;\ns1 = sum(H,1);\ns2 = sum(H,2);\n\nswitch lower(cf)\n case 'mi'\n % Mutual Information:\n H = H.*log2(H./(s2*s1));\n mi = sum(H(:));\n o = -mi;\n case 'ecc'\n % Entropy Correlation Coefficient of:\n % Maes, Collignon, Vandermeulen, Marchal & Suetens (1997).\n % \"Multimodality image registration by maximisation of mutual\n % information\". IEEE Transactions on Medical Imaging 16(2):187-198\n H = H.*log2(H./(s2*s1));\n mi = sum(H(:));\n ecc = -2*mi/(sum(s1.*log2(s1))+sum(s2.*log2(s2)));\n o = -ecc;\n case 'nmi'\n % Normalised Mutual Information of:\n % Studholme, Hill & Hawkes (1998).\n % \"A normalized entropy measure of 3-D medical image alignment\".\n % in Proc. Medical Imaging 1998, vol. 3338, San Diego, CA, pp. 132-143.\n nmi = (sum(s1.*log2(s1))+sum(s2.*log2(s2)))/sum(sum(H.*log2(H)));\n o = -nmi;\n case 'ncc'\n % Normalised Cross Correlation\n i = 1:size(H,1);\n j = 1:size(H,2);\n m1 = sum(s2.*i');\n m2 = sum(s1.*j);\n sig1 = sqrt(sum(s2.*(i'-m1).^2));\n sig2 = sqrt(sum(s1.*(j -m2).^2));\n [i,j] = ndgrid(i-m1,j-m2);\n ncc = sum(sum(H.*i.*j))/(sig1*sig2);\n o = -ncc;\n otherwise\n error('Invalid cost function specified');\nend\n\n\n%==========================================================================\n% function udat = loaduint8(V)\n%==========================================================================\nfunction udat = loaduint8(V)\n% Load data from file indicated by V into an array of unsigned bytes.\nif size(V.pinfo,2)==1 && V.pinfo(1) == 2\n mx = 255*V.pinfo(1) + V.pinfo(2);\n mn = V.pinfo(2);\nelse\n spm_progress_bar('Init',V.dim(3),...\n ['Computing max/min of ' spm_file(V.fname,'filename')],...\n 'Planes complete');\n mx = -Inf; mn = Inf;\n for p=1:V.dim(3)\n img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1);\n img = img(isfinite(img));\n mx = max([max(img(:))+paccuracy(V,p) mx]);\n mn = min([min(img(:)) mn]);\n spm_progress_bar('Set',p);\n end\nend\n\n% Another pass to find a maximum that allows a few hot-spots in the data.\nspm_progress_bar('Init',V.dim(3),...\n ['2nd pass max/min of ' spm_file(V.fname,'filename')],...\n 'Planes complete');\nnh = 2048;\nh = zeros(nh,1);\nfor p=1:V.dim(3)\n img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1);\n img = img(isfinite(img));\n img = round((img+((mx-mn)/(nh-1)-mn))*((nh-1)/(mx-mn)));\n h = h + accumarray(img,1,[nh 1]);\n spm_progress_bar('Set',p);\nend\ntmp = [find(cumsum(h)/sum(h)>0.9999); nh];\nmx = (mn*nh-mx+tmp(1)*(mx-mn))/(nh-1);\n\n% Load data from file indicated by V into an array of unsigned bytes.\nspm_progress_bar('Init',V.dim(3),...\n ['Loading ' spm_file(V.fname,'filename')],...\n 'Planes loaded');\nudat = zeros(V.dim,'uint8');\nst = rand('state'); % st = rng;\nrand('state',100); % rng(100,'v5uniform'); % rng('defaults');\nfor p=1:V.dim(3)\n img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1);\n acc = paccuracy(V,p);\n if acc==0\n udat(:,:,p) = uint8(max(min(round((img-mn)*(255/(mx-mn))),255),0));\n else\n % Add random numbers before rounding to reduce aliasing artifact\n r = rand(size(img))*acc;\n udat(:,:,p) = uint8(max(min(round((img+r-mn)*(255/(mx-mn))),255),0));\n end\n spm_progress_bar('Set',p);\nend\nspm_progress_bar('Clear');\nrand('state',st); % rng(st);\n\n\n%==========================================================================\n% function acc = paccuracy(V,p)\n%==========================================================================\nfunction acc = paccuracy(V,p)\nif ~spm_type(V.dt(1),'intt')\n acc = 0;\nelse\n if size(V.pinfo,2)==1\n acc = abs(V.pinfo(1,1));\n else\n acc = abs(V.pinfo(1,p));\n end\nend\n\n\n%==========================================================================\n% function V = smooth_uint8(V,fwhm)\n%==========================================================================\nfunction V = smooth_uint8(V,fwhm)\n% Convolve the volume in memory (fwhm in voxels).\nlim = ceil(2*fwhm);\nx = -lim(1):lim(1); x = spm_smoothkern(fwhm(1),x); x = x/sum(x);\ny = -lim(2):lim(2); y = spm_smoothkern(fwhm(2),y); y = y/sum(y);\nz = -lim(3):lim(3); z = spm_smoothkern(fwhm(3),z); z = z/sum(z);\ni = (length(x) - 1)/2;\nj = (length(y) - 1)/2;\nk = (length(z) - 1)/2;\nspm_conv_vol(V.uint8,V.uint8,x,y,z,-[i j k]);\n\n\n%==========================================================================\n% function display_results(VG,VF,x,flags)\n%==========================================================================\nfunction display_results(VG,VF,x,flags)\nfig = spm_figure('FindWin','Graphics');\nif isempty(fig), return; end;\nset(0,'CurrentFigure',fig);\nspm_figure('Clear','Graphics');\n\n%txt = 'Information Theoretic Coregistration';\nswitch lower(flags.cost_fun)\n case 'mi', txt = 'Mutual Information Coregistration';\n case 'ecc', txt = 'Entropy Correlation Coefficient Registration';\n case 'nmi', txt = 'Normalised Mutual Information Coregistration';\n case 'ncc', txt = 'Normalised Cross Correlation';\n otherwise, error('Invalid cost function specified');\nend\n\n% Display text\n%--------------------------------------------------------------------------\nax = axes('Position',[0.1 0.8 0.8 0.15],'Visible','off','Parent',fig);\ntext(0.5,0.7, txt,'FontSize',16,...\n 'FontWeight','Bold','HorizontalAlignment','center','Parent',ax);\n\nQ = inv(VF.mat\\spm_matrix(x(:)')*VG.mat);\ntext(0,0.5, sprintf('X1 = %0.3f*X %+0.3f*Y %+0.3f*Z %+0.3f',Q(1,:)),'Parent',ax);\ntext(0,0.3, sprintf('Y1 = %0.3f*X %+0.3f*Y %+0.3f*Z %+0.3f',Q(2,:)),'Parent',ax);\ntext(0,0.1, sprintf('Z1 = %0.3f*X %+0.3f*Y %+0.3f*Z %+0.3f',Q(3,:)),'Parent',ax);\n\n% Display joint histograms\n%--------------------------------------------------------------------------\nax = axes('Position',[0.1 0.5 0.35 0.3],'Visible','off','Parent',fig);\nH = spm_hist2(VG.uint8,VF.uint8,VF.mat\\VG.mat,[1 1 1]);\ntmp = log(H+1);\nimage(tmp*(64/max(tmp(:))),'Parent',ax');\nset(ax,'DataAspectRatio',[1 1 1],...\n 'PlotBoxAspectRatioMode','auto','XDir','normal','YDir','normal',...\n 'XTick',[],'YTick',[]);\ntitle('Original Joint Histogram','Parent',ax);\nxlabel(spm_file(VG.fname,'short22'),'Parent',ax,'Interpreter','none');\nylabel(spm_file(VF.fname,'short22'),'Parent',ax,'Interpreter','none');\n\nH = spm_hist2(VG.uint8,VF.uint8,VF.mat\\spm_matrix(x(:)')*VG.mat,[1 1 1]);\nax = axes('Position',[0.6 0.5 0.35 0.3],'Visible','off','Parent',fig);\ntmp = log(H+1);\nimage(tmp*(64/max(tmp(:))),'Parent',ax');\nset(ax,'DataAspectRatio',[1 1 1],...\n 'PlotBoxAspectRatioMode','auto','XDir','normal','YDir','normal',...\n 'XTick',[],'YTick',[]);\ntitle('Final Joint Histogram','Parent',ax);\nxlabel(spm_file(VG.fname,'short22'),'Parent',ax,'Interpreter','none');\nylabel(spm_file(VF.fname,'short22'),'Parent',ax,'Interpreter','none');\n\n% Display ortho-views\n%--------------------------------------------------------------------------\nspm_orthviews('Reset');\n spm_orthviews('Image',VG,[0.01 0.01 .48 .49]);\nh2 = spm_orthviews('Image',VF,[.51 0.01 .48 .49]);\nglobal st\nst.vols{h2}.premul = inv(spm_matrix(x(:)'));\nspm_orthviews('Space');\n\nspm_print;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/spm12/spm_coreg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7981867729389246, "lm_q2_score": 0.4843800842769843, "lm_q1q2_score": 0.38662577634493045}} {"text": "function P=compute_constraint_distance_3param_6eq_6unk(m1,m2,m3)\n\n% Copyright (C) <2007> \n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the version 3 of the GNU General Public License\n% as published by the Free Software Foundation.\n% \n% This program is distributed in the hope that it will be useful, but\n% WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n% General Public License for more details. \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n%\n% Francesc Moreno-Noguer, CVLab-EPFL, September 2007.\n% fmorenoguer@gmail.com, http://cvlab.epfl.ch/~fmoreno/ \n\n%redefine variables name, for compatibility with maple\nm1_1=m1(1); \nm1_2=m1(2); \nm1_3=m1(3); \nm1_4=m1(4); \nm1_5=m1(5); \nm1_6=m1(6);\nm1_7=m1(7); \nm1_8=m1(8); \nm1_9=m1(9); \nm1_10=m1(10); \nm1_11=m1(11); \nm1_12=m1(12);\n\nm2_1=m2(1); \nm2_2=m2(2); \nm2_3=m2(3); \nm2_4=m2(4); \nm2_5=m2(5); \nm2_6=m2(6);\nm2_7=m2(7); \nm2_8=m2(8); \nm2_9=m2(9); \nm2_10=m2(10); \nm2_11=m2(11); \nm2_12=m2(12);\n\nm3_1=m3(1); \nm3_2=m3(2); \nm3_3=m3(3); \nm3_4=m3(4); \nm3_5=m3(5); \nm3_6=m3(6);\nm3_7=m3(7); \nm3_8=m3(8); \nm3_9=m3(9); \nm3_10=m3(10); \nm3_11=m3(11); \nm3_12=m3(12);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nt1 = (m1_2 ^ 2);\nt4 = (m1_6 ^ 2);\nt5 = (m1_3 ^ 2);\nt6 = (m1_5 ^ 2);\nt11 = (m1_4 ^ 2);\nt12 = (m1_1 ^ 2);\nt20 = m1_4 * m2_4;\nt21 = m1_3 * m2_3;\nt22 = m1_5 * m2_5;\nt23 = m1_2 * m2_2;\nt24 = m1_6 * m2_6;\nt25 = m1_1 * m2_1;\nt26 = (-m2_4 * m1_1 - m2_5 * m1_2 - m2_6 * m1_3 - m1_6 * m2_3 - m1_4 * m2_1 - m1_5 * m2_2 + t20 + t21 + t22 + t23 + t24 + t25);\nt27 = m1_6 * m3_6;\nt29 = m1_5 * m3_5;\nt30 = m1_4 * m3_4;\nt33 = m1_3 * m3_3;\nt35 = m1_1 * m3_1;\nt38 = m1_2 * m3_2;\nt39 = (t27 - m1_6 * m3_3 + t29 + t30 - m1_4 * m3_1 - m3_6 * m1_3 + t33 - m3_5 * m1_2 + t35 - m3_4 * m1_1 - m1_5 * m3_2 + t38);\nt40 = (m2_4 ^ 2);\nt41 = (m2_2 ^ 2);\nt42 = (m2_5 ^ 2);\nt43 = (m2_1 ^ 2);\nt44 = (m2_6 ^ 2);\nt45 = (m2_3 ^ 2);\nt53 = m2_4 * m3_4;\nt56 = m2_5 * m3_5;\nt57 = m2_2 * m3_2;\nt60 = m2_1 * m3_1;\nt62 = m2_6 * m3_6;\nt63 = m2_3 * m3_3;\nt65 = (t53 - m2_4 * m3_1 - m3_4 * m2_1 + t56 + t57 - m2_5 * m3_2 - m2_6 * m3_3 + t60 - m3_6 * m2_3 + t62 + t63 - m3_5 * m2_2);\nt66 = (m3_5 ^ 2);\nt69 = (m3_4 ^ 2);\nt70 = (m3_3 ^ 2);\nt71 = (m3_2 ^ 2);\nt72 = (m3_6 ^ 2);\nt75 = (m3_1 ^ 2);\nt81 = (m1_9 ^ 2);\nt82 = (m1_8 ^ 2);\nt83 = (m1_7 ^ 2);\nt90 = m1_8 * m2_8;\nt91 = m1_7 * m2_7;\nt93 = m1_9 * m2_9;\nt98 = (-m1_9 * m2_3 + t21 + t90 + t23 + t91 + t25 - m2_7 * m1_1 + t93 - m2_9 * m1_3 - m1_8 * m2_2 - m1_7 * m2_1 - m2_8 * m1_2);\nt101 = m1_9 * m3_9;\nt102 = m1_7 * m3_7;\nt106 = m1_8 * m3_8;\nt108 = (-m3_8 * m1_2 + t38 + t33 - m3_9 * m1_3 + t101 + t102 - m1_7 * m3_1 - m1_9 * m3_3 + t35 - m3_7 * m1_1 + t106 - m1_8 * m3_2);\nt113 = (m2_8 ^ 2);\nt116 = (m2_9 ^ 2);\nt117 = (m2_7 ^ 2);\nt119 = m2_8 * m3_8;\nt122 = m2_9 * m3_9;\nt125 = m2_7 * m3_7;\nt128 = (t119 - m2_7 * m3_1 - m3_8 * m2_2 + t57 + t63 + t60 + t122 - m2_8 * m3_2 - m3_7 * m2_1 + t125 - m3_9 * m2_3 - m2_9 * m3_3);\nt129 = (m3_7 ^ 2);\nt130 = (m3_8 ^ 2);\nt133 = (m3_9 ^ 2);\nt141 = (m1_10 ^ 2);\nt142 = (m1_11 ^ 2);\nt143 = (m1_12 ^ 2);\nt151 = m1_10 * m2_10;\nt152 = m1_12 * m2_12;\nt154 = m1_11 * m2_11;\nt158 = (-m2_10 * m1_1 - m2_12 * m1_3 + t151 + t23 + t25 + t152 + t21 - m1_10 * m2_1 + t154 - m1_11 * m2_2 - m2_11 * m1_2 - m1_12 * m2_3);\nt160 = m1_12 * m3_12;\nt164 = m1_10 * m3_10;\nt165 = m1_11 * m3_11;\nt168 = (-m3_10 * m1_1 + t160 - m3_11 * m1_2 + t38 + t33 - m1_12 * m3_3 - m3_12 * m1_3 + t164 + t35 + t165 - m1_11 * m3_2 - m1_10 * m3_1);\nt169 = (m2_12 ^ 2);\nt170 = (m2_10 ^ 2);\nt171 = (m2_11 ^ 2);\nt179 = m2_10 * m3_10;\nt181 = m2_12 * m3_12;\nt185 = m2_11 * m3_11;\nt188 = (t57 + t60 + t179 - m2_10 * m3_1 + t181 - m2_12 * m3_3 - m3_12 * m2_3 - m3_10 * m2_1 + t63 + t185 - m2_11 * m3_2 - m3_11 * m2_2);\nt191 = (m3_12 ^ 2);\nt192 = (m3_10 ^ 2);\nt193 = (m3_11 ^ 2);\nt212 = (t22 + t91 + t93 - m1_7 * m2_4 + t20 - m2_7 * m1_4 + t90 - m2_8 * m1_5 - m1_8 * m2_5 - m1_9 * m2_6 + t24 - m2_9 * m1_6);\nt219 = (t101 + t30 - m3_9 * m1_6 - m3_8 * m1_5 - m1_8 * m3_5 - m3_7 * m1_4 + t27 - m1_9 * m3_6 - m1_7 * m3_4 + t102 + t106 + t29);\nt233 = (t53 - m2_8 * m3_5 - m2_9 * m3_6 - m2_7 * m3_4 + t125 + t122 - m3_8 * m2_5 + t62 + t119 + t56 - m3_7 * m2_4 - m3_9 * m2_6);\nt254 = (-m2_11 * m1_5 + t154 + t151 - m1_12 * m2_6 + t20 - m1_10 * m2_4 - m2_12 * m1_6 - m2_10 * m1_4 - m1_11 * m2_5 + t152 + t24 + t22);\nt261 = (t30 - m3_12 * m1_6 - m1_10 * m3_4 - m1_11 * m3_5 + t160 + t27 + t164 + t165 - m3_11 * m1_5 - m3_10 * m1_4 - m1_12 * m3_6 + t29);\nt275 = (-m3_10 * m2_4 + t56 - m2_10 * m3_4 + t62 - m3_12 * m2_6 - m2_11 * m3_5 + t53 - m3_11 * m2_5 - m2_12 * m3_6 + t179 + t181 + t185);\nt296 = (-m2_12 * m1_9 + t152 + t91 + t90 - m1_11 * m2_8 + t151 - m2_11 * m1_8 + t93 - m1_10 * m2_7 - m1_12 * m2_9 - m2_10 * m1_7 + t154);\nt303 = (t164 + t102 - m3_10 * m1_7 + t160 - m3_12 * m1_9 - m1_10 * m3_7 - m3_11 * m1_8 + t101 - m1_12 * m3_9 + t106 + t165 - m1_11 * m3_8);\nt317 = (t125 + t119 - m3_12 * m2_9 - m3_10 * m2_7 - m2_11 * m3_8 - m3_11 * m2_8 + t122 + t179 - m2_12 * m3_9 + t181 - m2_10 * m3_7 + t185);\nP(1,1) = t1 - 2 * m1_4 * m1_1 + t4 + t5 + t6 - 2 * m1_5 * m1_2 - 2 * m1_6 * m1_3 + t11 + t12;\nP(1,2) = 2 * t26;\nP(1,3) = 2 * t39;\nP(1,4) = t40 + t41 + t42 + t43 + t44 + t45 - 2 * m2_5 * m2_2 - 2 * m2_6 * m2_3 - 2 * m2_4 * m2_1;\nP(1,5) = 2 * t65;\nP(1,6) = t66 - 2 * m3_4 * m3_1 + t69 + t70 + t71 + t72 - 2 * m3_6 * m3_3 + t75 - 2 * m3_5 * m3_2;\nP(2,1) = -2 * m1_8 * m1_2 + t12 + t81 + t5 + t82 + t83 + t1 - 2 * m1_9 * m1_3 - 2 * m1_7 * m1_1;\nP(2,2) = 2 * t98;\nP(2,3) = 2 * t108;\nP(2,4) = -2 * m2_8 * m2_2 - 2 * m2_9 * m2_3 + t113 - 2 * m2_7 * m2_1 + t116 + t117 + t41 + t43 + t45;\nP(2,5) = 2 * t128;\nP(2,6) = t75 + t70 + t129 + t71 + t130 - 2 * m3_9 * m3_3 + t133 - 2 * m3_8 * m3_2 - 2 * m3_7 * m3_1;\nP(3,1) = -2 * m1_11 * m1_2 + t141 + t142 + t12 + t1 + t5 + t143 - 2 * m1_10 * m1_1 - 2 * m1_12 * m1_3;\nP(3,2) = 2 * t158;\nP(3,3) = 2 * t168;\nP(3,4) = t169 + t41 + t43 + t45 + t170 + t171 - 2 * m2_12 * m2_3 - 2 * m2_10 * m2_1 - 2 * m2_11 * m2_2;\nP(3,5) = 2 * t188;\nP(3,6) = t71 - 2 * m3_12 * m3_3 + t75 + t191 + t70 + t192 + t193 - 2 * m3_10 * m3_1 - 2 * m3_11 * m3_2;\nP(4,1) = -2 * m1_9 * m1_6 + t11 + t4 + t81 + t82 + t6 + t83 - 2 * m1_7 * m1_4 - 2 * m1_8 * m1_5;\nP(4,2) = 2 * t212;\nP(4,3) = 2 * t219;\nP(4,4) = t117 + t113 - 2 * m2_8 * m2_5 - 2 * m2_7 * m2_4 - 2 * m2_9 * m2_6 + t116 + t40 + t42 + t44;\nP(4,5) = 2 * t233;\nP(4,6) = t129 - 2 * m3_9 * m3_6 + t69 + t66 + t72 + t133 - 2 * m3_8 * m3_5 - 2 * m3_7 * m3_4 + t130;\nP(5,1) = t4 + t143 + t11 - 2 * m1_12 * m1_6 - 2 * m1_11 * m1_5 - 2 * m1_10 * m1_4 + t6 + t141 + t142;\nP(5,2) = 2 * t254;\nP(5,3) = 2 * t261;\nP(5,4) = t170 + t171 + t169 - 2 * m2_10 * m2_4 - 2 * m2_11 * m2_5 - 2 * m2_12 * m2_6 + t40 + t42 + t44;\nP(5,5) = 2 * t275;\nP(5,6) = t69 + t66 + t72 - 2 * m3_12 * m3_6 - 2 * m3_10 * m3_4 + t193 - 2 * m3_11 * m3_5 + t192 + t191;\nP(6,1) = t142 - 2 * m1_10 * m1_7 + t141 + t83 + t143 + t82 - 2 * m1_12 * m1_9 + t81 - 2 * m1_11 * m1_8;\nP(6,2) = 2 * t296;\nP(6,3) = 2 * t303;\nP(6,4) = t171 + t170 - 2 * m2_12 * m2_9 - 2 * m2_10 * m2_7 - 2 * m2_11 * m2_8 + t113 + t169 + t116 + t117;\nP(6,5) = 2 * t317;\nP(6,6) = -2 * m3_11 * m3_8 + t193 + t133 + t129 + t192 + t130 - 2 * m3_12 * m3_9 + t191 - 2 * m3_10 * m3_7;\n", "meta": {"author": "cvlab-epfl", "repo": "EPnP", "sha": "f9d27b186d9c754b72e076b3843f47ad136e9799", "save_path": "github-repos/MATLAB/cvlab-epfl-EPnP", "path": "github-repos/MATLAB/cvlab-epfl-EPnP/EPnP-f9d27b186d9c754b72e076b3843f47ad136e9799/matlab/EPnP/compute_constraint_distance_3param_6eq_6unk.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.785308580887758, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.3865195663926892}} {"text": "function weight = olmar1_kernel(data, weight_o, epsilon, W)\n% This program output the final portfolio the OLMAR-1 algorithm\n% OLMAR-1 has only one experts, thus, we go expert directly.\n% If we want buy and hold, combine the experts here.\n%\n% function [weight] = olmar1_expert(data, weight_o, epsilon, W);\n%\n% weight: final portfolio, used for next rebalance\n%\n% data: market sequence vectors\n% weight_o: last portfolio\n% epsilon: mean reversion threshold\n% W: window size for calculating moving average\n%\n% Example: [weight] = olmar1_expert(data, weight_o, epsilon, W);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This file is part of OLPS: http://OLPS.stevenhoi.org/\n% Original authors: Bin LI, Steven C.H. Hoi \n% Contributors:\n% Change log: \n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nweight = olmar1_expert(data, weight_o, epsilon, W);\n\nend", "meta": {"author": "OLPS", "repo": "OLPS", "sha": "9120783cd59a7966b0f78e2b5668030a4378b8af", "save_path": "github-repos/MATLAB/OLPS-OLPS", "path": "github-repos/MATLAB/OLPS-OLPS/OLPS-9120783cd59a7966b0f78e2b5668030a4378b8af/Strategy/olmar1_kernel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3863683292777947}} {"text": "%% Copyright (C) 2016 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym gammaln (@var{x})\n%% @defmethodx @@sym lgamma (@var{x})\n%% Symbolic logarithm of the gamma function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = gammaln(x)\n%% @result{} y = (sym) loggamma(x)\n%% y = lgamma(x)\n%% @result{} y = (sym) loggamma(x)\n%% @end group\n%% @end example\n%%\n%% @seealso{gammaln, @@sym/gamma, @@sym/psi}\n%% @end defmethod\n\nfunction y = lgamma(x)\n y = gammaln(x);\nend\n\n\n%!test\n%! % tested by gammaln\n%! assert (isequal (lgamma (sym ('x')), gammaln (sym ('x'))))\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/lgamma.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982043529716, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.38636832116681763}} {"text": "function [ y, next ] = p08_equil ( neqn, next )\n\n%*****************************************************************************80\n%\n%% P08_EQUIL returns equilibrium solutions of problem p08.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 February 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer NEQN, the number of equations.\n%\n% Input, integer NEXT, the index of the previous\n% equilibrium, which should be 0 on first call.\n%\n% Output, real Y(NEQN), the \"next\" equilibrium solution, if any.\n%\n% Output, integer NEXT, the index of the current equilibrium, \n% or 0 if there are no more.\n%\n\n if ( next == 0 )\n next = 1;\n y(1:neqn,1) = [ 0.0; 0.0; 0.0 ];\n else\n next = 0;\n y = [];\n end\n\n return\nend\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_ode/p08_equil.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6477982043529715, "lm_q1q2_score": 0.3863683211668176}} {"text": "function [segclassifier] = mcmcTrainSegmentClassifier2(features, labels, weights, maxdata, classparams)\n\nif exist('classparams') && ~isempty(classparams)\n nnodes = classparams(1);\n ntrees = classparams(2);\n stopval = classparams(3);\nelse\n ntrees = 20;\n nnodes = 8;\n stopval = 0;\nend\n\nif ~exist('maxdata') || isempty(maxdata)\n maxdata = 25000;\nend\n\n[data, lab, w] = formatData(features, labels, weights, maxdata);\n\nsegclassifier = train_boosted_dt_2c(data, [], lab, ntrees, nnodes, stopval, w);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [data, lab, w] = formatData(features, labels, weights, maxdata)\n% concatenate data\n%disp(num2str(maxdata))\nnimages = numel(features);\n\n[tmp, nvars] = size(features{1});\n\n% count segments\ntseg = 0;\nnseg = 0;\nfor f = 1:nimages\n nseg = nseg + sum((labels{f}~=0) & (weights{f}>0));\n tseg = tseg + numel(labels{f});\nend\n%disp(num2str([nseg tseg]))\n\ndata = zeros(nseg, nvars);\nlab = zeros(nseg, 1);\nw = zeros(nseg, 1);\n\n% concatenate data\nvc = 0;\nfor f = 1:nimages\n ind = find((labels{f}~=0) & (weights{f}>0));\n data(vc+1:vc+numel(ind), :) = features{f}(ind, :); \n lab(vc+1:vc+numel(ind)) = (labels{f}(ind)>0)*2-1;\n w(vc+1:vc+numel(ind)) = weights{f}(ind); % weight according to area in image\n vc = vc + numel(ind);\nend\n\nif nseg > maxdata\n rind = randperm(nseg);\n rind = rind(1:maxdata);\n data = data(rind, :);\n lab = lab(rind);\n w = w(rind);\nend\n\nw = w / sum(w);", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/Toolbox/SpatialLayout_shrink/spatiallayoutcode/GeometricContext/geomContext_src_07_02_08/src/mcmc/mcmcTrainSegmentationClassifier2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.682573734412324, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3863493853153965}} {"text": "function [ matlabdatenum ] = rawjavacalendar2datenum( cal )\n% Converts a java.util.Calendar date local time into a Matlab datenum.\n% Keeps the original local time, does not try to convert to UTC.\n javaSerialDate = cal.getTimeInMillis() + cal.get(cal.ZONE_OFFSET) + cal.get(cal.DST_OFFSET);\n matlabdatenum = datenum([1970 1 1 0 0 javaSerialDate / 1000]);\nend\n\n%http://www.mathworks.co.uk/support/solutions/en/data/1-9B9H2S/index.html?product=ML&solution=1-9B9H2S", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27953-convert-between-world-time-zones-with-daylight-saving-times/rawjavacalendar2datenum.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.682573734412324, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3863493853153965}} {"text": "function check = semicircular_check ( a, b )\n\n%*****************************************************************************80\n%\n%% SEMICIRCULAR_CHECK checks the parameters of the Semicircular CDF.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 20 September 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, real A, B, the parameter of the PDF.\n% 0.0 < B.\n%\n if ( b <= 0.0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SEMICIRCULAR_CHECK - Fatal error!\\n' );\n fprintf ( 1, ' B <= 0.0\\n' );\n check = 0;\n return\n end\n\n check = 1;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/prob/semicircular_check.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7549149978955811, "lm_q1q2_score": 0.3863025395633789}} {"text": "function doseStat = dispDoseStats(doseBinsV, volHistV, name, nameVol, planC, indexS, opt)\n%Command line display of basic dose statistics\n%doseBinsV is a vector of the midpoint doseBin values.\n%volHistV is either a histogram of volumes or surface areas.\n%LM: 14 Oct 02, JOD.\n%\n% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.\n% \n% This file is part of The Computational Environment for Radiotherapy Research (CERR).\n% \n% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.\n% \n% CERR has been financially supported by the US National Institutes of Health under multiple grants.\n% \n% CERR is distributed under the terms of the Lesser GNU Public License. \n% \n% This version of CERR is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n% See the GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with CERR. If not, see .\n\nswitch lower(opt)\n\n case 'standarddose'\n disp('-----------------------')\n disp('')\n disp(['Structure is: ' name])\n\n totalVol = sum(volHistV);\n disp(['Total volume is: ' num2str(totalVol) ' cubic cm.'])\n\n disp(['Dose map name is: ' nameVol])\n\n meanD = sum(doseBinsV(:).*volHistV(:))/sum(volHistV);\n disp(['Mean dose is: ' num2str(meanD)])\n\n ind = max(find([volHistV~=0]));\n maxD = doseBinsV(ind);\n disp(['Max dose is: ' num2str(maxD)])\n\n ind = min(find([volHistV~=0]));\n minD = doseBinsV(ind);\n \n disp(['Min dose is: ' num2str(minD)])\n disp('')\n disp('-----------------------')\n \n doseStat.volume = totalVol;\n\n case 'dshdose'\n\n disp('-----------------------')\n disp('')\n disp(['Structure is: ' name])\n\n areaV = volHistV; %actually areas, not volumes.\n dosesV = doseBinsV;\n\n totalArea = sum(areaV);\n disp(['Total surface area is: ' num2str(totalArea) ' square cm.'])\n \n disp(['Dose map name is: ' nameVol])\n\n meanD = sum(dosesV(:).*areaV(:))/sum(areaV);\n disp(['Mean surface dose is: ' num2str(meanD)])\n\n maxD = max(dosesV);\n disp(['Max dose is: ' num2str(maxD)])\n\n minD = min(dosesV);\n \n disp(['Min dose is: ' num2str(minD)])\n disp('')\n disp('-----------------------')\n \n doseStat.volume = totalArea;\n\nend\n\ndoseStat.min = minD;\ndoseStat.mean = meanD;\ndoseStat.max = maxD;\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanAnalysis/DoseVolumeHistograms/dispDoseStats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7549149868676284, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.38630253392019237}} {"text": "function s=dIOU(pred,gt)\nIbox=In(pred,gt);\nI=(Ibox.b-Ibox.t)*(Ibox.r-Ibox.l);\nU=(pred.b-pred.t)*(pred.r-pred.l)+(gt.b-gt.t)*(gt.r-gt.l)-I;\ndI=dIbox(pred,gt);\ndU=dUbox(pred,gt);\ns.dt=0;\ns.db=0;\ns.dl=0;\ns.dr=0;\nif Ibox.t0\n s.dt=(U*dI.dt-I*dU.dt)/U^2;\n s.db=(U*dI.db-I*dU.db)/U^2;\n s.dl=(U*dI.dl-I*dU.dl)/U^2;\n s.dr=(U*dI.dr-I*dU.dr)/U^2;\nelse\n s.dt=0;\n s.db=0;\n s.dl=0;\n s.dr=0;\nend\nif pred.t.\n%\n% $Id$\n\n% these are used by the ft_preamble/ft_postamble function and scripts\nft_revision = '$Id$';\nft_nargin = nargin;\nft_nargout = nargout;\n\n% do the general setup of the function\nft_defaults\nft_preamble init\nft_preamble provenance isih\n\n\n% get the default options\ncfg.spikechannel = ft_getopt(cfg,'spikechannel', 'all');\ncfg.ylim = ft_getopt(cfg,'ylim', 'auto');\ncfg.plotfit = ft_getopt(cfg,'plotfit', 'no');\n\n% ensure that the options are valid\ncfg = ft_checkopt(cfg,'spikechannel',{'cell', 'char', 'double'});\ncfg = ft_checkopt(cfg,'ylim', {'char','ascendingdoublebivector'});\ncfg = ft_checkopt(cfg,'plotfit', 'char', {'yes', 'no'});\n\n% get the spikechannels\ncfg.channel = ft_channelselection(cfg.spikechannel, isih.label);\nspikesel = match_str(isih.label, cfg.channel);\nnUnits = length(spikesel); % number of spike channels\nif nUnits~=1, error('One spikechannel should be selected by means of cfg.spikechannel'); end\n\n% plot the average isih\nisiHdl = bar(isih.time,isih.avg(spikesel,:),'k');\nset(isiHdl,'BarWidth', 1)\n\nif strcmp(cfg.plotfit,'yes')\n \n if ~isfield(isih,'gamfit'), error('isih.gamfit should be present when cfg.plotfit = yes'); end\n \n % generate the probabilities according to the gamma model\n pGamma = gampdf(isih.time, isih.gamfit(spikesel,1), isih.gamfit(spikesel,2));\n sel = isfinite(pGamma);\n pGamma = pGamma(sel)./sum(pGamma(sel));\n \n % scale the fit in the same way (total area is equal)\n sumIsih = sum(isih.avg(spikesel,:),2);\n pGamma = pGamma*sumIsih;\n \n % plot the fit\n hold on\n fitHdl = plot(isih.time(sel), pGamma,'r');\nelse\n pGamma = 0;\nend\n\ntry\n if strcmp(isih.cfg.outputunit, 'proportion')\n ylabel('probability')\n elseif strcmp(isih.cfg.outputunit, 'spikecount')\n ylabel('spikecount')\n end\ncatch\n ylabel('intensity');\nend\n \nxlabel('bin edges (sec)')\n\n% set the x axis\nset(gca,'XLim', [min(isih.time) max(isih.time)])\n\n% set the y axis\nif strcmp(cfg.ylim, 'auto')\n y = [isih.avg(spikesel,:) pGamma];\n cfg.ylim = [0 max(y(:))*1.1+eps];\nend\nset(gca,'YLim', cfg.ylim)\nset(gca,'TickDir','out')\n\n% store the handles\nif strcmp(cfg.plotfit,'yes'), H.fit = fitHdl; end\nH.isih = isiHdl;\n\n% as usual, make sure that panning and zooming does not distort the y limits\nset(zoom,'ActionPostCallback',{@mypostcallback,cfg.ylim,[min(isih.time) max(isih.time)]});\nset(pan,'ActionPostCallback',{@mypostcallback,cfg.ylim,[min(isih.time) max(isih.time)]});\n\n% do the general cleanup and bookkeeping at the end of the function\n\nft_postamble previous isih\nft_postamble provenance\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% SUBFUNCTION\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [] = mypostcallback(fig,evd,limY,limX)\n\n% get the x limits and reset them\nax = evd.Axes;\nxlim = get(ax(1), 'XLim');\nylim = get(ax(1), 'YLim');\nif limX(1)>xlim(1), xlim(1) = limX(1); end\nif limX(2)ylim(1), ylim(1) = limY(1); end\nif limY(2) max_score) = fitC13Data(v0(:,scores > max_score),expdata,model);\n\nif ~isfield(model, 'N')\n model.N = null(model.S); \nend\n\nx0 = model.N\\v0; % back substitute\n\n% safety check:\nif (max(abs(model.S*v0))> 1e-6)\n display('v0 not quite in null space');\n pause;\nend\nif(max(abs(model.N*x0 - v0)) > 1e-6)\n display('null basis is weird');\n pause;\nend\n\n\nnalpha = size(model.N, 2);\nx_L = -1000*ones(nalpha,1);\nx_U = 1000*ones(nalpha,1);\nName = 't2';\n[A, b_L, b_U] = defineLinearConstraints(model);\n\n\nscores = zeros(numpoints,1);\n% compute scores for all points.\nfor i = 1:numpoints\n scores(i) = errorComputation2(x0(:,i),tProb);\nend\nvalid_index = scores < max_score + feasibilityTolerance;\nfprintf('found %d valid points\\n', sum(valid_index));\n\n\nc = 'errorComputation2'; \nc_L = 0; c_U = max_score; \n\ndc = 'errorComputation2_grad'; \nd2c = []; ConsPattern = [];\n%pSepFunc = [];\nx_min = []; x_max = []; f_opt = []; x_opt = [];\nH = []; HessPattern = []; pSepFunc = []; fLowBnd = [];\nSolver = 'snopt';\n\noutputminv = 222*ones(numratios, numpoints);\noutputminexitflag = -222*ones(numratios, numpoints);\noutputminfinalscore = -222*ones(numratios, numpoints);\noutputmaxv = -222*ones(numratios, numpoints);\noutputmaxexitflag = -222*ones(numratios, numpoints);\noutputmaxfinalscore = -222*ones(numratios, numpoints);\noutputminstruct = cell(numratios, numpoints);\noutputmaxstruct = cell(numratios, numpoints);\n \n%iterate through directions\nfor i = 1:numratios\n%for i = 10:200\n for j = -1:2:1 % max and min \n ration = zeros(size(objective_coefficient(1,model)));\n ratiod = zeros(size(objective_coefficient(1,model)));\n for m = 1:size(ratio,1);\n if(ratio(m,i) > 0)\n ration = ration + objective_coefficient(m,model)*j;\n elseif(ratio(m,i) < 0)\n ratiod = ratiod + objective_coefficient(m,model);\n end\n end\n\n\n % initialize temp variables to make parfor work.\n v = j*222*ones(1,numpoints);\n exitflag = -222*ones(1,numpoints);\n finalscore = 222*ones(1,numpoints);\n ostruct = cell(1,numpoints);\n\n for k = 1:numpoints\n if exist('ttt.txt', 'file')\n fprintf('quitting due to file found\\n');\n continue;\n end\n xinitial = x0(:,k);\n% Prob = lpconAssign(d, x_L, x_U, Name, xinitial,...\n% A, b_L, b_U,...\n% c, dc, d2c, ConsPattern, c_L, c_U,...\n% fLowBnd, x_min, x_max, f_opt,\n% x_opt);\n\n\n Prob = conAssign('ratioScore', 'ratioScore_grad', H, HessPattern, x_L, x_U, Name, xinitial, ...\n pSepFunc, fLowBnd, ...\n A, b_L, b_U, c, dc, d2c, ConsPattern, c_L, c_U, ...\n x_min, x_max, f_opt, x_opt);\n %Prob.NumDiff = 2; % central diff\n %Prob.optParam.CentralDiff = 1e-5;\n %pause;\n Prob.user.expdata = expdata;\n Prob.user.model = model;\n Prob.user.ration = ration;\n Prob.user.ratiod = ratiod;\n\n Prob.user.max_error = max_score;\n Prob.user.diff_interval = diffInterval;\n Prob.user.useparfor = true;\n\n Prob.optParam.IterPrint = 0;\n %Prob.optParam.cTol = .1*feasibilityTolerance;\n\n Prob.PriLevOpt = 1;\n Prob.SOL.PrintFile = strcat('temp/snoptp', num2str(i), 'x', num2str(j), 'x', num2str(k),'.txt');\n Prob.SOL.SummFile = strcat('temp/snopts', num2str(i), 'x', num2str(j), 'x', num2str(k),'.txt');\n Prob.SOL.optPar(35) = majorIterationLimit; %This is major iteration count.\n Prob.SOL.optPar(30) = minorIterationLimit; %total iteration limit;\n %Prob.SOL.optPar(11) = feasibilityTolerance; % feasibility tolerance\n\n Result = tomRun(Solver, Prob, 5);\n tscore = errorComputation2(Result.x_k, tProb);\n tbest = Result.f_k;\n\n fprintf('reaction %d (%d), x %d; x=%f (%f); score=%f (%f)\\n', i,length(model.lb),j, tbest,fLowBnd, tscore, max_score)\n\n v(k) = j*tbest;\n exitflag(k) = Result.Inform;\n finalscore(k) = tscore;\n ostruct{k} = Result;\n end\n if (j > 0) %minimizing\n outputminv(i,:) = v; % multiply by j to correct sign.\n outputminexitflag(i,:) = exitflag;\n outputminfinalscore(i,:) = finalscore;\n outputminstruct(i,:) = ostruct;\n else\n outputmaxv(i,:) = v; % multiply by j to correct sign.\n outputmaxexitflag(i,:) = exitflag;\n outputmaxfinalscore(i,:) = finalscore;\n outputmaxstruct(i,:) = ostruct;\n end\n end\nend\n\noutput.minv = outputminv;\noutput.maxv = outputmaxv;\noutput.minexitflag = outputminexitflag;\noutput.maxexitflag = outputmaxexitflag;\noutput.minfinalscore = outputminfinalscore;\noutput.maxfinalscore = outputmaxfinalscore;\noutput.minstruct = outputminstruct;\noutput.maxstruct = outputmaxstruct;\n\nvs = zeros(numratios, 2);\nfor i = 1:numratios\n validindex = output.minfinalscore(i,:) < max_score + feasibilityTolerance;\n if any(validindex)\n vs(i,1) = min(output.minv(i,validindex));\n else\n vs(i,1) = 222;\n end\n validindex = output.maxfinalscore(i,:) < max_score + feasibilityTolerance;\n if any(validindex)\n vs(i,2) = max(output.maxv(i,validindex));\n else\n vs(i,2) = -222;\n end \nend\n\nreturn;\n\n\n\n% function that returns the proper objective coefficient for each reaction\n% takes into account the reversibility of reactinos etc.\nfunction [d] = objective_coefficient(i, model)\nd = zeros(length(model.lb),1);\nd(i) = 1;\nif (model.match(i))\n d(model.match(i)) = -1;\nend\nd = (d'*model.N)'; % transform to null space;\nreturn\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/deprecated/_fluxomics_obsolete/computeRatioConfidenceInterval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3860916262668606}} {"text": "%--------------------------------------------------------------------------------------------------------\n% The system is created based on the principles described in the following paper\n% Jimmy SJ. Ren, Li Xu, Qiong Yan, Wenxiu Sun, \"Shepard Convolutional Neural Networks\", \n% Advances in Neural Information Processing Systems (NIPS 2015)\n% email: jimmy.sj.ren@gmail.com\n%--------------------------------------------------------------------------------------------------------\naddpath applications/Shepard_CNN/Shepard_super_res/\naddpath applications/Shepard_CNN/utility/\naddpath applications/image_denoise/utility/\naddpath utils/\naddpath cuda/\naddpath mem/\naddpath layers/\naddpath layers_adapters/\naddpath pipeline/\n\nclearvars -global config;\nclearvars -global mem;\nclear gen_mask_patch_cat_idx_for_super_res;\nclear;\nglobal config;\n\n% set5\n% -- baby bird butterfly head woman\nI = im2double(imread('applications/Shepard_CNN/Shepard_super_res/images/Set5/butterfly_GT.bmp'));\n% set 14\n% -- baboon barbara bridge coastguard comic face flowers foreman lenna man monarch pepper ppt3 zebra\n%I = im2double(imread('applications/Shepard_CNN/Shepard_super_res/images/Set14/pepper.bmp'));\nif(size(I,3) == 3)\n I = rgb2ycbcr(I);\nend\n\nI = modcrop(I, 3);\nI = padarray(I, [3 3], 'replicate');\n\n% downsample the image\nD3chs = imresize(I, [size(I,1)/3 size(I,2)/3], 'bicubic');\nD = D3chs(:,:,1);\n\n% super-resolution x3\nU = imresize(D, [size(I,1) size(I,2)], 'nearest');\nprepare_sr_net(size(U, 1), size(U, 2), 'applications/Shepard_CNN/Shepard_super_res/results/shepard_layer_x3/sr_x3.mat');\nmask = config.NEW_MEM([1 0 0; ...\n 0 0 0; ...\n 0 0 0]);\nmask = repmat(mask, size(U, 1)/3, size(U, 2)/3, 1);\n\nfinal_output = apply_net_with_mask(config.NEW_MEM(U) .* mask, mask);\nfinal_output = gather(final_output);\nD3chs = imresize(D3chs, [size(final_output,1),size(final_output,2)]);\nfinal_output = shave(final_output, [3 3]);\nD3chs = shave(D3chs, [3 3]);\n\nfinal_output = cat(3, final_output, D3chs(:,:,2:3));\nfinal_output = ycbcr2rgb(double(final_output));\nI_bicubic = ycbcr2rgb(D3chs);\n\nfigure('name', 'bicubic'), imshow(I_bicubic);\nfigure('name', 'Sheperd CNN'), imshow(final_output);\ndrawnow();\n\n\n\n\n\n", "meta": {"author": "jimmy-ren", "repo": "vcnn_double-bladed", "sha": "a4de90e845875f6e30632f2e879d3afb81c0ebc1", "save_path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed", "path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed/vcnn_double-bladed-a4de90e845875f6e30632f2e879d3afb81c0ebc1/applications/Shepard_CNN/Shepard_super_res/color_super_res/color_shepard_sr_x3_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.743167997235783, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.38609162035642336}} {"text": "function x = emailFeatures(word_indices)\n%EMAILFEATURES takes in a word_indices vector and produces a feature vector\n%from the word indices\n% x = EMAILFEATURES(word_indices) takes in a word_indices vector and\n% produces a feature vector from the word indices.\n\n% Total number of words in the dictionary\nn = 1899;\n\n% You need to return the following variables correctly.\nx = zeros(n, 1);\n\n% ====================== YOUR CODE HERE ======================\n% Instructions: Fill in this function to return a feature vector for the\n% given email (word_indices). To help make it easier to\n% process the emails, we have have already pre-processed each\n% email and converted each word in the email into an index in\n% a fixed dictionary (of 1899 words). The variable\n% word_indices contains the list of indices of the words\n% which occur in one email.\n%\n% Concretely, if an email has the text:\n%\n% The quick brown fox jumped over the lazy dog.\n%\n% Then, the word_indices vector for this text might look\n% like:\n%\n% 60 100 33 44 10 53 60 58 5\n%\n% where, we have mapped each word onto a number, for example:\n%\n% the -- 60\n% quick -- 100\n% ...\n%\n% (note: the above numbers are just an example and are not the\n% actual mappings).\n%\n% Your task is take one such word_indices vector and construct\n% a binary feature vector that indicates whether a particular\n% word occurs in the email. That is, x(i) = 1 when word i\n% is present in the email. Concretely, if the word 'the' (say,\n% index 60) appears in the email, then x(60) = 1. The feature\n% vector should look like:\n%\n% x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];\n%\n%\n\n\n\nfor loc = word_indices,\n x(loc) = 1;\nendfor\n\n\n\n\n% =========================================================================\n \n\nend\n", "meta": {"author": "fewtime", "repo": "ML", "sha": "fd9679e9d6648d01e36047e97434f38c8d2d6168", "save_path": "github-repos/MATLAB/fewtime-ML", "path": "github-repos/MATLAB/fewtime-ML/ML-fd9679e9d6648d01e36047e97434f38c8d2d6168/coursera-machine-learning/machine-learning-ex6/ex6/emailFeatures.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5926666143434, "lm_q2_score": 0.6513548511303338, "lm_q1q2_score": 0.3860362743555642}} {"text": "\nfunction aistats2012_run_comparison\n\n%\n% Theta\n%\n\n% Cholesky\n\nnips2011_comparison(3, 1, true, false);\nnips2011_comparison(3.5, 1, true, false);\nnips2011_comparison(4, 1, true, false);\nnips2011_comparison(4.5, 1, true, false);\nnips2011_comparison(5, 1, true, false);\n\n% Kronecker\n\n% $$$ nips2011_comparison(3, 1, true, true);\n% $$$ nips2011_comparison(3.5, 1, true, true);\n% $$$ nips2011_comparison(4, 1, true, true);\n% $$$ nips2011_comparison(4.5, 1, true, true);\n% $$$ nips2011_comparison(5, 1, true, true);\n% $$$ nips2011_comparison(6, 1, true, true);\nnips2011_comparison(7, 1, true, true);\n\n%\n% F\n%\n\n% Kronecker\n\n% $$$ nips2011_comparison(3, 1, false, true);\n% $$$ nips2011_comparison(3.5, 1, false, true);\n% $$$ nips2011_comparison(4, 1, false, true);\n% $$$ nips2011_comparison(4.5, 1, false, true);\n% $$$ nips2011_comparison(5, 1, false, true);\n% $$$ nips2011_comparison(5.5, 1, false, true);\n% $$$ nips2011_comparison(6, 1, false, true);\n% $$$ nips2011_comparison(7, 1, false, true);\n% $$$ nips2011_comparison(8, 1, false, true);\n\n% Cholesky\n\nnips2011_comparison(3, 1, false, false);\nnips2011_comparison(3.5, 1, false, false);\nnips2011_comparison(4, 1, false, false);\nnips2011_comparison(4.5, 1, false, false);\nnips2011_comparison(5, 1, false, false);\nnips2011_comparison(5.5, 1, false, false);\n\n", "meta": {"author": "jluttine", "repo": "matlab", "sha": "63406c7782b0869948f06e1dbc594460c165d24e", "save_path": "github-repos/MATLAB/jluttine-matlab", "path": "github-repos/MATLAB/jluttine-matlab/matlab-63406c7782b0869948f06e1dbc594460c165d24e/publications/nips2011/nips2011_run_comparison.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3860362730051737}} {"text": "%**************************************************************\n%* mex interface to Andy Liaw et al.'s C code (used in R package randomForest)\n%* Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )\n%* License: GPLv2\n%* Version: 0.02\n%\n% Calls Regression Random Forest\n% A wrapper matlab file that calls the mex file\n% This does prediction given the data and the model file\n%**************************************************************\n\nfunction Y_hat = regRF_predict(X,model)\n %function Y_hat = regRF_predict(X,model)\n %requires 2 arguments\n %X: data matrix\n %model: generated via regRF_train function\n\tif nargin~=2\n\t\terror('need atleast 2 parameters,X matrix and model');\n\tend\n\t\n\tY_hat = mexRF_predict(X',model.lDau,model.rDau,model.nodestatus,model.nrnodes,model.upper,model.avnode,model.mbest,model.ndtree,model.ntree);\n \n if ~isempty(find(model.coef)) %for bias corr\n Y_hat = model.coef(1) + model.coef(2)*Y_hat;\n end\n\tclear mexRF_predict", "meta": {"author": "chaoma99", "repo": "sr-metric", "sha": "51218dbd5a1a5827cec9259b2fe0024b0b8702d4", "save_path": "github-repos/MATLAB/chaoma99-sr-metric", "path": "github-repos/MATLAB/chaoma99-sr-metric/sr-metric-51218dbd5a1a5827cec9259b2fe0024b0b8702d4/external/randomforest-matlab/RF_Reg_C/regRF_predict.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7718434873426303, "lm_q2_score": 0.5, "lm_q1q2_score": 0.38592174367131515}} {"text": "function strat = beatTheBookie_timeseries(dat_dir, files, bet, marg, nValidOdds, hours, discard_games_randomly, prop2discard)\n\n% loop through hours\n% apply formula\n% keep all bookies and time when the criteria is met\n% place bet only for 1 or the three options for all the bookies\n% available. Discard the other options\n\nmoney = 0;\naccuracy = [];\nm = 2; % counter for the money\nacc = 1; % counter for accuracy\nst2 = 1;\nst = 1;\nz = 0;\n\nfor fi = 1 : length(files)\n \n if mod(fi,1000) == 0\n fprintf('Game #%d \\n', fi);\n end\n \n fid = fopen([dat_dir files(fi).name], 'r');\n C = textscan(fid, repmat('%f ' , [1,72*3]), 'delimiter', ',');\n fclose(fid);\n \n data = cell2mat(C);\n \n % sanity check: games with no bets\n if sum(isnan(data(:))) == (32 * 216)\n fprintf('Game number %d, %s, has only nans \\n', fi, files(fi).name);\n z = z + 1;\n continue;\n end\n \n % get result of the game\n name = strrep(files(fi).name, '.txt', '');\n C = strsplit(name, '_');\n score_home = str2double(C{end-1});\n score_away = str2double(C{end});\n \n if score_home > score_away\n result = 1;\n elseif score_home == score_away\n result = 2;\n else\n result = 3;\n end\n \n possible_earn = 0;\n\n for h = 1 : length(hours{1})\n \n avg_home = nanmean(data(:,hours{1}(h)));[max_home, bk_home_id] = nanmax(data(:, hours{1}(h)));\n avg_draw = nanmean(data(:,hours{2}(h)));[max_draw, bk_draw_id] = nanmax(data(:, hours{2}(h)));\n avg_away = nanmean(data(:,hours{3}(h)));[max_away, bk_away_id] = nanmax(data(:, hours{3}(h)));\n \n averages = [avg_home avg_draw avg_away];\n maximums = [max_home max_draw max_away];\n bookies = [bk_home_id bk_draw_id bk_away_id];\n \n % check that there is at least one valid bet. If the bets are still not\n % online for this time, continue to the next game\n if isnan(avg_home) || isnan(avg_draw) || isnan(avg_away)\n continue\n end\n \n if isnan(max_home) && isnan(max_draw) && isnan(max_away)\n continue\n end\n \n % Apply formula and decide whether to bet\n earn_margin(1) = ((1 ./ avg_home - marg) * max_home - 1) * (sum(~isnan(data(:,hours{1}(h)))) > nValidOdds);\n earn_margin(2) = ((1 ./ avg_draw - marg) * max_draw - 1) * (sum(~isnan(data(:,hours{2}(h)))) > nValidOdds) ;\n earn_margin(3) = ((1 ./ avg_away - marg) * max_away - 1) * (sum(~isnan(data(:,hours{3}(h)))) > nValidOdds);\n \n if sum(earn_margin > 0) >= 1\n \n [~, id] = max(earn_margin);\n possible_earn = bet * (maximums(id) - 1);\n break; \n end\n \n end\n \n % If match did not reach the criteria for betting, move to the next\n % match\n %if sum(bets_id(:)) == 0\n if possible_earn == 0\n continue\n end\n \n % Artibtrarily skip some games to simulate a real situation of betting\n % where we miss some of the games\n if discard_games_randomly\n num = rand(1);\n if num < prop2discard\n continue\n end\n end\n \n % Decide where to place the bet: home, draw or away\n if possible_earn > 0 \n aux_possible_earn = possible_earn;\n bet_result = id;\n \n % There is an error in one of the odds: it was set to 126. I fix this here\n % I set a maximum earning of 15 for the bets\n if aux_possible_earn > 750\n continue\n end\n \n % calculate loss / earning\n if isequal(bet_result, result)\n money(m) = money(m-1) + aux_possible_earn;\n m = m + 1;\n accuracy(acc) = 1;\n ids(acc) = id;\n max_odds(acc) = maximums(id);\n mean_odds(acc) = averages(id);\n acc = acc + 1; \n else\n money(m) = money(m-1) - bet;\n m = m + 1;\n accuracy(acc) = 0;\n ids(acc) = id;\n max_odds(acc) = maximums(id);\n mean_odds(acc) = averages(id);\n acc = acc + 1;\n end\n \n end\n \n clear data bets_id possible_earn\nend\n\nstrat.money = money;\nstrat.name = 'BeatTheBookies';\nstrat.accuracy = accuracy;\nstrat.ids = ids;\nstrat.max_odds = max_odds;\nstrat.mean_odds = mean_odds;\n\nend\n\n", "meta": {"author": "Lisandro79", "repo": "BeatTheBookie", "sha": "7add209d0d097af0f8b714e388cf05849db7f969", "save_path": "github-repos/MATLAB/Lisandro79-BeatTheBookie", "path": "github-repos/MATLAB/Lisandro79-BeatTheBookie/BeatTheBookie-7add209d0d097af0f8b714e388cf05849db7f969/src/strategies/beatTheBookie_timeseries.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8031737963569016, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.38590788391628295}} {"text": "function varargout = quickvis(varargin)\n% VL_QUICKVIS Create an edge image from a Quickshift segmentation.\n% IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) creates an edge\n% stability image from a Quickshift segmentation. RATIO controls the tradeoff\n% between color consistency and spatial consistency (See VL_QUICKSEG) and\n% KERNELSIZE controls the bandwidth of the density estimator (See VL_QUICKSEG,\n% VL_QUICKSHIFT). MAXDIST is the maximum distance between neighbors which\n% increase the density.\n%\n% VL_QUICKVIS takes at most MAXCUTS thresholds less than MAXDIST, forming at\n% most MAXCUTS segmentations. The edges between regions in each of these\n% segmentations are labeled in IEDGE, where the label corresponds to the\n% largest DIST which preserves the edge.\n%\n% [IEDGE,DISTS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS) also\n% returns the DIST thresholds that were chosen.\n%\n% IEDGE = VL_QUICKVIS(I, RATIO, KERNELSIZE, DISTS) will use the DISTS\n% specified\n%\n% [IEDGE,DISTS,MAP,GAPS] = VL_QUICKVIS(I, RATIO, KERNELSIZE, MAXDIST, MAXCUTS)\n% also returns the MAP and GAPS from VL_QUICKSHIFT.\n%\n% See Also: VL_QUICKSHIFT(), VL_QUICKSEG(), VL_HELP().\n[varargout{1:nargout}] = vl_quickvis(varargin{:});\n", "meta": {"author": "yihui-he", "repo": "panorama", "sha": "0c993d4ba6780dcb175b2c1fc7d25b513b7bb39b", "save_path": "github-repos/MATLAB/yihui-he-panorama", "path": "github-repos/MATLAB/yihui-he-panorama/panorama-0c993d4ba6780dcb175b2c1fc7d25b513b7bb39b/lib/vlfeat-0.9.20/toolbox/noprefix/quickvis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583376458152, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3858883430675612}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETERS Returns a data structure containing the parameters of the\n% ADEPT eCobra 600.\n%\n% The authors of this script are:\n% Arturo Gil Aparicio\n% Adrian Peidro Vidal\n%\n%\t\t\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Copyright (C) 2012, by Arturo Gil Aparicio\n%\n% This file is part of ARTE (A Robotics Toolbox for Education).\n% \n% ARTE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% ARTE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with ARTE. If not, see .\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction robot = parameters()\n\nrobot.name= 'ADEPT_eCobra_600';\n\n%Path where everything is stored for this robot\nrobot.path = 'robots/adept/eCobra_600';\n\nrobot.DH.theta= '[q(1) q(2) 0 q(4)]';\nrobot.DH.d='[0.342 0 q(3)+0.165 0]';\nrobot.DH.a='[0.325 0.275 0 0]';\nrobot.DH.alpha= '[0 pi 0 0]';\n\nrobot.J=[];\n\nrobot.inversekinematic_fn = 'inversekinematic_ecobra_600(robot, T)';\nrobot.directkinematic_fn = 'directkinematic(robot, q)';\n\n\n%number of degrees of freedom\nrobot.DOF = 4;\n\n%rotational: 0, translational: 1\nrobot.kind=['R' 'R' 'P' 'R'];\n\n%minimum and maximum rotation angle in rad\nrobot.maxangle =[deg2rad(-170) deg2rad(170); %Axis 1, minimum, maximum\n deg2rad(-190) deg2rad(45); %Axis 2, minimum, maximum\n deg2rad(-29) deg2rad(256); %Axis 3\n deg2rad(-190) deg2rad(190); %Axis 4: Unlimited (400? default)\n ]; %Axis 6: Really Unlimited to (800? default)\n\n%maximum absolute speed of each joint rad/s or m/s\nrobot.velmax = [deg2rad(250); %Axis 1, rad/s\n deg2rad(250); %Axis 2, rad/s\n deg2rad(250); %Axis 3, rad/s\n deg2rad(375); %Axis 4, rad/s\n ];%Axis 6, rad/s\n \nrobot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time\n \n% end effectors maximum velocity\nrobot.linear_velmax = 7.6; %m/s\n\n\n\n%base reference system\nrobot.T0 = eye(4); \n\n\n\n%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION\n%position, velocity and acceleration\nrobot=init_sim_variables(robot);\nrobot.path = pwd;\n\n\n% GRAPHICS\nrobot.graphical.has_graphics=1;\nrobot.graphical.color = [255 102 51]./255;\n%for transparency\nrobot.graphical.draw_transparent=0;%0.5;\n%draw DH systems\nrobot.graphical.draw_axes=0;\n%DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for\n%bigger robots\nrobot.graphical.axes_scale=1;\n%adjust for a default view of the robot\nrobot.axis=[-0.8 0.8 -0.8 0.8 0 1];\n%read graphics files\nrobot = read_graphics(robot);\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DYNAMIC PARAMETERS\n% WARNING! These parameters do not correspond to the actual VIPER 850\n% robot. They have been introduced to demonstrate the necessity of \n% simulating the robot and should be used only for educational purposes\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nrobot.has_dynamics=1;\n\n%consider friction in the computations\nrobot.dynamics.friction=0;\n\n%link masses (kg)\nrobot.dynamics.masses=[10.0840645443765 7.99763638499999 7.82396742420414 6.79135586560867 2.69519416947469 0.582726761463460 0.0250548498725116];\n\n%COM of each link with respect to own reference system\nrobot.dynamics.r_com=[ 37.34e-3\t -7.59e-3\t 291.45e-3; %(rx, ry, rz) link 1\n 8.82e-3\t 158.89e-3\t -116.12e-3; %(rx, ry, rz) link 2\n 45.72e-3 -60.41e-3 6.77e-3; %(rx, ry, rz) link 3\n 0.65e-3 5.18e-3 304.45e-3; %(rx, ry, rz) link 4\n 0 -16.20e-3 -0.43e-3; %(rx, ry, rz) link 5\n 0 0.10e-3 102.45e-3]; %(rx, ry, rz) link 6\n\n%Inertia matrices of each link with respect to its D-H reference system.\n% Ixx\tIyy\tIzz\tIxy\tIyz\tIxz, for each row\nrobot.dynamics.Inertia=[725041607.30e-9 742053235.46e-9 58888719.46e-9 -4612005.75e-9 -20201400.03e-9 100257432.34e-9;\n 473299566.08e-9 122717629.66e-9\t 374750563.05e-9\t 12544273.08e-9\t -140558617.88e-9\t -8394816.58e-9;\n 73135068.37e-9\t 43626156.19e-9\t 96299686.97e-9\t -34759300.78e-9\t -1593782.48e-9\t 1209250.25e-9;\n 262441613.90e-9 261164434.73e-9 5256188.91e-9\t 15725.91e-9\t 4591746.99e-9\t 471721.51e-9;\n 869212.45e-9 370702.33e-9 939398.99e-9\t 4.39e-9\t -4.96e-9\t 3.05e-9;\n 280731.23e-9\t 284457.82e-9\t 6143.16e-9\t 0\t 217.96e-9\t 0];\n\n\n\n%robot.motors=load_motors([5 5 5 4 4 4]);\n%Speed reductor at each joint\n%robot.motors.G=[300 300 300 300 300 300];\n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/robots/OMRON/ECOBRA600/parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5544704649604274, "lm_q1q2_score": 0.3858883360743787}} {"text": "function dat= proc_commonMedianReference(dat, refChans, rerefChans)\n%PROC_COMMONMEDIANREFERENCE - rereference signals to common median reference\n%\n%Synopsis:\n% dat= proc_commonMedianReference(dat, )\n%\n%\n%Arguments:\n% dat - data structure of continuous or epoched data\n% refChans - channels used as average reference, see util_chanind for format, \n% default util_scalpChannels(dat)\n% rerefChans - those channels are rereferenced, default refChans\n%\n%Returns:\n% dat - updated data structure\n%\n% SEE util_scalpChannels, util_chanind\n\n% Author: Benjamin Blankertz\ndat = misc_history(dat);\n\n\nif ~exist('refChans','var') || isempty(refChans),\n refChans= util_scalpChannels(dat);\nend\nif ~exist('rerefChans','var') || isempty(rerefChans), rerefChans= refChans; end\n\nmisc_checkType(dat, 'STRUCT(x clab)'); \nmisc_checkType(refChans, 'CELL{CHAR}|CHAR'); \nmisc_checkType(rerefChans, 'CELL{CHAR}|CHAR'); \n\nrc= util_chanind(dat, refChans);\nrrc= util_chanind(dat, rerefChans);\ncar= median(dat.x(:,rc,:), 2);\n%% this might consume too much memory:\n%car= repmat(car, [1 length(rrc) 1]);\n%dat.x(:,rrc,:)= dat.x(:,rrc,:) - car;\n\nfor cc= rrc,\n dat.x(:,cc,:)= dat.x(:,cc,:) - car;\n dat.clab{cc}= [dat.clab{cc} ' car'];\nend\n", "meta": {"author": "bbci", "repo": "bbci_public", "sha": "2e6fe9481537dcfee702e74544191dcf737f02ce", "save_path": "github-repos/MATLAB/bbci-bbci_public", "path": "github-repos/MATLAB/bbci-bbci_public/bbci_public-2e6fe9481537dcfee702e74544191dcf737f02ce/processing/proc_commonMedianReference.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3858883360743786}} {"text": "clear all; close all; clc\n\n%% folder setup\nsaveFigFlag = 1;\n\noutputDir = GetOutputDataDir;\nsaveDir1 = fullfile(outputDir,'multimotor_0228');\n% saveDir2 = fullfile(outputDir,'motor_map_seed');\nif ~exist(saveDir1, 'dir'), mkdir(saveDir1), end;\n% if ~exist(saveDir2, 'dir'), mkdir(saveDir2), end;\n\n%% init\n\nhfig = figure;\nInitializeAppData(hfig);\nResetDisplayParams(hfig);\n% i_fish = 8;\n% setappdata(hfig,'isMotorseed',0);\n\n%% run fish\nrange_fish = GetFishRange;%[1:3,5:18];\n% M_thres_reg = zeros(3,18);\n% M_numTopCorr = zeros(1,18);\n% M_motorseedRegs = cell(1,18);\n% M_compareMotorCellNumber = zeros(2,18);\n \n%%\nstimflag = 'P';\nClusterIDs = [6,2];\n\n% stimflag = []; % for default set\n% ClusterIDs = [6,1];\nM_stimrange = GetStimRange(stimflag);\n\nrange_fish_valid = [];\nfor i_fish = range_fish\n if ~isempty(M_stimrange{i_fish})\n range_fish_valid = [range_fish_valid,i_fish];\n end\nend\n\ntscriptstart = tic;\nfor i_fish = range_fish_valid\n %% load data for chosen stim range\n stimrange = M_stimrange{i_fish}; \n [cIX,gIX_load,M,stim,behavior,M_0] = LoadSingleFishDefault(i_fish,hfig,ClusterIDs,stimrange);\n \n %% Method 1: stim+motor regression\n fishset = getappdata(hfig,'fishset');\n [~,~,reg_sens] = GetStimRegressor(stim,fishset,i_fish);\n [~,~,reg_motor] = GetMotorRegressor(behavior,i_fish);\n\n % cell based\n gIX = (1:length(cIX))';\n tic\n [stimcorr,motorcorr] = MotorSourceCorrelation(M,reg_sens,reg_motor);\n toc\n [fig1,fig2] = MultiMotorVisuals(hfig,stimcorr,motorcorr,cIX,gIX);\n\n saveDir = fullfile(saveDir1,'motor rank - cell based - 2D');\n figName = ['Fish' num2str(i_fish)];\n SaveFigureHelper(saveFigFlag, saveDir, figName,fig1);\n \n saveDir = fullfile(saveDir1,'motor rank - cell based - anat');\n figName = ['Fish' num2str(i_fish)];\n SaveFigureHelper(saveFigFlag, saveDir, figName,fig2);\n \n %% cluster based\n % plot 1\n% setappdata(hfig,'isMotorseed',0);\n% % setappdata(hfig,'stimrange',1:2);\n% \n% UpdateTimeIndex(hfig);\n% behavior = getappdata(hfig,'behavior');\n% [~,~,reg_motor] = GetMotorRegressor(behavior,i_fish);\n\n gIX = gIX_load;\n C = FindClustermeans(gIX,M);\n tic\n [stimcorr,motorcorr] = MotorSourceCorrelation(C,reg_sens,reg_motor);\n toc\n [fig1,fig2] = MultiMotorVisuals(hfig,stimcorr,motorcorr,cIX,gIX);\n \n% % plot 2\n% setappdata(hfig,'isMotorseed',1);\n% % setappdata(hfig,'stimrange',1:2);\n% \n% UpdateTimeIndex(hfig);\n% behavior = getappdata(hfig,'behavior');\n% [~,~,reg_motor] = GetMotorRegressor(behavior,i_fish);\n% \n% gIX = gIX_load;\n% C = FindClustermeans(gIX,M);\n% tic\n% [stimcorr,motorcorr] = MotorSourceCorrelation(C,reg_sens,reg_motor);\n% toc\n% [fig3,fig4] = MultiMotorVisuals(hfig,stimcorr,motorcorr,cIX,gIX);\n %%\n saveDir = fullfile(saveDir1,'motor rank - cluster based - 2D');\n figName = ['Fish' num2str(i_fish)];\n SaveFigureHelper(saveFigFlag, saveDir, figName,fig1);\n \n saveDir = fullfile(saveDir1,'motor rank - cluster based - anat');\n figName = ['Fish' num2str(i_fish)];\n SaveFigureHelper(saveFigFlag, saveDir, figName,fig2);\n %%\n \n \n% % saveas(gcf, fn, 'png'); \n% % \n% % %%\n% % [rawmotorcorr,IX] = max(corr(reg_motor',M'),[],1);\n% % thres_reg = 0.5;\n% % ix = find(rawmotorcorr>thres_reg);\n %% Method 2: stimAvr+motor regression\n % cluster based;\n gIX = gIX_load;\n C = FindClustermeans(gIX,M);\n reg_sens = GetStimAvrClusmean(hfig,C);\n [~,~,reg_motor] = GetMotorRegressor(behavior,i_fish);\n\n nUnit = size(C,1);\n stimcorr = zeros(nUnit,1);\n motorcorr = zeros(nUnit,1);\n tic\n for i = 1:size(C,1)\n [stimcorr(i),motorcorr(i)] = MotorSourceCorrelation(C(i,:),reg_sens(i,:),reg_motor); \n end\n toc\n \n [fig1,fig2] = MultiMotorVisuals(hfig,stimcorr,motorcorr,cIX,gIX);\n \n saveDir = fullfile(saveDir1,'stimAvr rank - cluster based - 2D');\n figName = ['Fish' num2str(i_fish)];\n SaveFigureHelper(saveFigFlag, saveDir, figName,fig1);\n \n saveDir = fullfile(saveDir1,'stimAvr rank - cluster based - anat');\n figName = ['Fish' num2str(i_fish)];\n SaveFigureHelper(saveFigFlag, saveDir, figName,fig2);\n \nend\ntoc(tscriptstart)", "meta": {"author": "xiuyechen", "repo": "FishExplorer", "sha": "c61392cf0835480d64fc03c15f1992935fdc7106", "save_path": "github-repos/MATLAB/xiuyechen-FishExplorer", "path": "github-repos/MATLAB/xiuyechen-FishExplorer/FishExplorer-c61392cf0835480d64fc03c15f1992935fdc7106/figure scripts/SensoryMotor/arc code/multimotor_ori_bubbleplot_etc/fig3C_multimotor_script_022817.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3858883360743786}} {"text": "% Genralized Sentiment Analysis\n%\n\nclc;\nclose all;\nclear all;\n\ntic;\n% \n fid = fopen('data\\english.stop');\n \n stopwords = textscan(fid, '%s');\n stopwords = stopwords{1,1};\n fclose(fid);\n\n\n% params\n% n:minimum appearances of a stem\nn=30;\n\n% reading the data file\n% xls is easier to read than csv\n[num,txt,raw] = xlsread('C:\\MatlabNLP\\examples\\gsa\\data\\final104.xls');\n\n% reading the description of each shoe\ndescriptions = raw(2:size(raw,1),2);\nstyle_ratings = num(1:size(num,1),1);\ncomfort_ratings = num(1:size(num,1),4);\noveral_ratings = num(1:size(num,1),5);\n\n% only take m data points\n\n\nm=50;\nm = length(descriptions);\ndescriptions = descriptions(1:m);\nstyle_ratings = style_ratings(1:m);\ncomfort_ratings = comfort_ratings(1:m);\noveral_ratings = overal_ratings(1:m);\ng = containers.Map();\ntoc;\n\nfor i = 1:size(descriptions,1)\n comment = descriptions{i};\n comment = SanitizeComment(comment);\n comment = lower(comment);\n r=regexp(comment,' ','split');\n for j =1:size(r,2)\n word = porterStemmer(cell2mat(r(j)));\n tfflag = ~isStopWord(word, stopwords);\n if isKey(g, word) && tfflag\n g(word) = g(word)+1;\n elseif tfflag\n g(word) = 1;\n end\n \n end\n \n \n \n \nend\ntoc;\nselectedheaders =containers.Map();\ngkeys = keys(g);\n\nfor i=1:size(gkeys,2)\n if g(gkeys{i})>=n\n \n selectedheaders(gkeys{i})=1;\n \n end\n \nend\nheaders = keys(selectedheaders);\n\noutputMatrix = zeros(m,length(headers));\nfor i = 1:size(descriptions,1)\n comment = descriptions{i};\n comment = SanitizeComment(comment);\n comment = lower(comment);\n \n r=regexp(comment,' ','split');\n comment = [];\n for j =1:size(r,2)\n word = porterStemmer(cell2mat(r(j)));\n \n comment = [comment,' ',word];\n end\n outputMatrix(i,:) = term_count(comment, headers);\n \n if mod(i,300)==0\n a = sprintf('%d', i);\n disp(a)\n end\n \n \n \nend\n\n\ntoc;\ncsvwrite('forWeka_featuresonly.csv', outputMatrix);\n\noutputmatrix_all = [style_ratings,comfort_ratings,overal_ratings, outputMatrix];\noutputmatrix_all = [ones(1,size(outputmatrix_all,2));outputmatrix_all];\ncsvwrite('forWeka_everything.csv', outputmatrix_all);\n\n", "meta": {"author": "faridani", "repo": "MatlabNLP", "sha": "e18e8bc44ecbc8bb6aa57312c1ee22930f805a6f", "save_path": "github-repos/MATLAB/faridani-MatlabNLP", "path": "github-repos/MATLAB/faridani-MatlabNLP/MatlabNLP-e18e8bc44ecbc8bb6aa57312c1ee22930f805a6f/nlp lib/funcs/benchmarks/best_featurizer_so_far.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3858883360743786}} {"text": "function [ state ] =movePTPArcXY_AC(t,theta,c,vel)\n%% This function is used for moving the endeffector on an arc in the XY plane, for the KUKA iiwa 7 R 800.\n\n%% Syntax:\n% [ state ] =movePTPArcXY_AC(t,theta,c,vel)\n\n%% About:\n% This function is used to move the end-effector on an arc in the XY plane,\n\n%% Arreguments:\n% t: is the TCP/IP connection\n% theta: is the arc angle, in radians\n% c: the XY coordinates of the center of the circle, it is 1x2 vector.\n% vel : is a double, defines the motion velocity mm/sec.\n\n% Copyright, Mohammad SAFEEA, 9th of May 2017\n\n k=[0;0;1];\n pos=getEEFPos( t );\n c=colVec(c);\n c1=[c;pos{3}];\n state=movePTPArc_AC(t,theta,c1,k,vel);\n\nend\n\nfunction [ y ] = colVec( v)\n% Convert a vector to a column vector:\n if(size(v,2)==1)\n y=v;\n else\n y=v';\n end\nend", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/Matlab_client/movePTPArcXY_AC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583124210896, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3858883290811959}} {"text": "function c8vec_uniform_01_test ( )\n\n%*****************************************************************************80\n%\n%% C8VEC_UNIFORM_01_TEST tests C8VEC_UNIFORM_01.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 29 June 2006\n%\n% Author:\n%\n% John Burkardt\n%\n seed = 123456789;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'C8VEC_UNIFORM_01_TEST\\n' );\n fprintf ( 1, ' C8VEC_UNIFORM_01 computes pseudorandom complex values\\n' );\n fprintf ( 1, ' in the unit circle.\\n' );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' The initial seed is %d\\n', seed );\n\n n = 10;\n\n [ x, seed ] = c8vec_uniform_01 ( n, seed );\n\n for i = 1 : n\n fprintf ( 1, ' %6d ( %f, %f )\\n', i, real ( x(i) ), imag ( x(i) ) );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/uniform/c8vec_uniform_01_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.546738151984614, "lm_q2_score": 0.7057850402140659, "lm_q1q2_score": 0.3858796085850248}} {"text": "function [ymu,ys2,fmu,fs2,dymu,dys2,dfmu,dfs2] = gpgrad(x0,gpstruct,method,dx)\n%GPGRAD Gradient of Gaussian process mean prediction\n\nif nargin < 3 || isempty(method); method = 'central'; end\nif nargin < 4 || isempty(dx); dx = 1e-6; end\n\nD = size(x0,2);\nNhyp = length(gpstruct.hyp);\n\n% Initialize variables\nymu = zeros(Nhyp,1);\nfmu = zeros(Nhyp,1);\nys2 = zeros(Nhyp,1);\nfs2 = zeros(Nhyp,1);\n\nif nargout > 4\n dymu = zeros(Nhyp,D);\n dfmu = zeros(Nhyp,D);\n dys2 = zeros(Nhyp,D);\n dfs2 = zeros(Nhyp,D);\nend\n\n% Compute predictions and derivatives for each hyperparameter sample\nfor i = 1:Nhyp\n \n try\n if nargout > 4\n [dy,y0] = fgrad(@(xi_) gpfunc(xi_,gpstruct,gpstruct.hyp(i)),x0,method,'Vectorized','Step',dx); \n else\n y0 = gpfunc(x0,gpstruct,gpstruct.hyp(i));\n end\n catch\n y0 = NaN(1,4);\n if nargout > 4; dy = NaN(4,D); end\n warning('bads:gpGradFail', 'Error in computing the GP derivative.');\n end\n \n ymu(i) = y0(1); \n ys2(i) = y0(2);\n fmu(i) = y0(3);\n fs2(i) = y0(4);\n \n if nargout > 4\n dymu(i,:) = dy(1,:);\n dfmu(i,:) = dy(2,:);\n dys2(i,:) = dy(3,:);\n dfs2(i,:) = dy(4,:);\n end\n \n \nend\n\n%--------------------------------------------------------------------------\n\nfunction yy = gpfunc(xi,gpstruct,hyp)\n if gpstruct.gpmlext\n % Pre-computed Laplace approximation at MAP\n if isfield(gpstruct,'hypSigma') && ~isempty(gpstruct.hypSigma)\n hyp.Sigma = gpstruct.hypSigma;\n end\n \n if isfield(gpstruct,'post') && ~isempty(gpstruct.post)\n % [ymuib,ys2ib,fmuib,fs2ib] = mygp(hyp,gpstruct.inf,gpstruct.mean,gpstruct.cov, ...\n %gpstruct.lik,gpstruct.x,gpstruct.post,xi);\n \n [ymui,ys2i,fmui,fs2i] = mgp(hyp,gpstruct.inf,gpstruct.mean,gpstruct.cov, ...\n gpstruct.lik,gpstruct.x,gpstruct.post,xi);\n \n %[fmuib(:) - fmui(:), sqrt(fs2ib(:)) - sqrt(fs2i(:))]\n \n else\n [ymui,ys2i,fmui,fs2i] = mgp(hyp,gpstruct.inf,gpstruct.mean,gpstruct.cov, ...\n gpstruct.lik,gpstruct.x,gpstruct.y,xi);\n end\n yy = [ymui,ys2i,fmui,fs2i];\n else\n \n if isfield(gpstruct,'post') && ~isempty(gpstruct.post)\n [ymui,ys2i,fmui,fs2i] = mygp(hyp,gpstruct.inf,gpstruct.mean,gpstruct.cov, ...\n gpstruct.lik,gpstruct.x,gpstruct.post,gpstruct.s,xi);\n else\n [ymui,ys2i,fmui,fs2i] = mygp(hyp,gpstruct.inf,gpstruct.mean,gpstruct.cov, ...\n gpstruct.lik,gpstruct.x,gpstruct.y,gpstruct.s,xi);\n end\n \n if 1\n % [~, ymui, ys2i] = feval(gpstruct.lik{:}, hyp.lik, [], fmui, fs2i);\n \n lik = hyp.lik; lik(end) = -Inf;\n % fmuiold = fmui; fs2iold = fs2i;\n [~, fmui, fs2i] = feval(gpstruct.lik{:}, lik, [], [], fmui, fs2i);\n end\n \n yy = [ymui,ys2i,fmui,fs2i];\n % [ymui,sqrt(ys2i),fmui,sqrt(fs2i),fmuiold,sqrt(fs2iold)]\n end\n \n ", "meta": {"author": "acerbilab", "repo": "bads", "sha": "019f0b432b9e157a31defbbd303aadcdf57862e7", "save_path": "github-repos/MATLAB/acerbilab-bads", "path": "github-repos/MATLAB/acerbilab-bads/bads-019f0b432b9e157a31defbbd303aadcdf57862e7/utils/gpgrad.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850402140659, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.38587960858502474}} {"text": "function [p] = get_line_xyz(h)\n% File: get_line_xyz.m\n% Author: Ioannis Filippidis, jfilippidis@gmail.com\n% Date: 2012.06.15\n% Language: MATLAB R2012a\n% Purpose: get line point coordinates and fix z if empty\n% Copyright: Ioannis Filippidis, 2012-\n\n% get defined data-points\nx = get(h, 'XData');\ny = get(h, 'YData');\nz = get(h, 'ZData');\n\n% 2d line ?\nif isempty(z)\n z = zeros(size(x) );\nend\n\np = [x; y; z];\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/37640-export-figure-to-3d-interactive-pdf/fig2u3d/fig2idtf/auxiliary/get_line_xyz.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.7057850216484838, "lm_q1q2_score": 0.3858795984345127}} {"text": "function [tc,relres,iter,xrec] = gabgrouplasso(x,g,a,M,lambda,varargin)\n%GABGROUPLASSO Group LASSO regression in Gabor domain\n% Usage: [tc,xrec] = gabgrouplasso(x,g,a,M,group,lambda,C,maxit,tol)\n%\n% `gabgrouplasso` has been deprecated. Please use |franagrouplasso| instead.\n%\n% A call to `gabgrouplasso(x,g,a,M,lambda)` can be replaced by ::\n%\n% F=frame('dgt',g,a,M);\n% tc=franagrouplasso(F,lambda);\n%\n% Any additional parameters passed to `gabgrouplasso` can be passed to\n% |franagrouplasso| in the same manner.\n%\n% See also: frame, franagrouplasso\n\nwarning(['LTFAT: GABGROUPLASSO has been deprecated, please use FRANAGROUPLASSO ' ...\n 'instead. See the help on FRANAGROUPLASSO for more details.']); \n\nF=newframe('dgt',[],g,a,M);\n[tc,relres,iter,xrec] = framegrouplasso(F,lambda,varargin{:});\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/deprecated/gabgrouplasso.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850154599563, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3858795950510086}} {"text": "function test_bug1249\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_componentanalysis ft_rejectcomponent\n\nload(dccnpath('/home/common/matlab/fieldtrip/data/test/latest/raw/meg/preproc_ctf275.mat'));\n\ncfg = [];\ncfg.method = 'fastica';\ncfg.numcomponent = 20;\ncfg.channel = 'MEG';\ncomp = ft_componentanalysis(cfg, data);\n\ncfg = [];\ncfg.component = 1:5;\ndatanew = ft_rejectcomponent(cfg, comp);\n\nif size(datanew.grad.chanpos,1)~=numel(datanew.grad.label)\n error('labels in the grad structure are inconsistent with the chanpos');\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug1249.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850154599562, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.38587959505100855}} {"text": "classdef L1_Magic < handle\n % L1_Magic: using modified total variation of L1-magic package\n %\n % (c) Thomas Kuestner \n % ---------------------------------------------------------------------\n \n properties\n% oversampling % oversampling along space directions\n type % reconstruction type\n solver % define which optimization problem should be solved\n measPara % struct containing all measurement parameters (dim, dimension, ...)\n% dimension % 2D (x-y or x-y-t), 3D (x,y,z) or 4D (x,y,z,t) problem\n% dim % nPha x nFreq x nZ x nTime x nCha \n fullMask % mask of acquired data points\n trafo % struct of (tight frame) transformation in sparse basis\n epsilon % relaxation parameter\n lbtol % log barrier algorithm terminates when the duality gap <= lbtol\n mu % increase of barrier constant at each iteration\n cgtol % tolerance for Conjugate Gradients\n cgmaxiter % maximum number of iterations for Conjugate Gradients\n pdmaxiter % maximum number of iterations for primal dual algorithm\n pf % partial fourier parameters\n window % cut out window options\n kernelSize % kernel window dimension for convolution with calibration data\n currSlice % current slice, just needed for 2D with several slices\n currCha % current channel, just needed for 2D/3D with several channels\n lSense % apply SENSE mask for channel weighting\n kSpace % store kSpace in object\n espresso % ESPReSSo parameter\n dRecontime % recon time\n end\n \n methods\n function obj = L1_Magic(solver, measPara, epsilon, lbtol, mu, cgtol, cgmaxiter, pdmaxiter, espresso)\n obj.measPara = measPara;\n obj.epsilon = epsilon;\n obj.lbtol = lbtol;\n obj.mu = mu;\n obj.cgtol = cgtol;\n obj.cgmaxiter = cgmaxiter; \n obj.pdmaxiter = pdmaxiter;\n obj.solver = solver;\n obj.espresso = espresso;\n obj.type = 'L1_Magic';\n end\n end\n \nend\n\n", "meta": {"author": "thomaskuestner", "repo": "CS_MoCo_LAB", "sha": "a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b", "save_path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB", "path": "github-repos/MATLAB/thomaskuestner-CS_MoCo_LAB/CS_MoCo_LAB-a26e8e483624b2e4ee669e7a069ba9c74d2d2e4b/reconstruction/matlab/CS_LAB_matlab/@L1_Magic/L1_Magic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.737158174177441, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3858435887492197}} {"text": "function model = modelSetOutputWeights(model, W, b)\n \n% MODELSETOUTPUTWEIGHTS Wrapper function to return set output weight and bias matrices.\n% FORMAT\n% DESC sets the output weight and bias matrices for any mapping model\n% that can be interpreted as a generalised linear model (e.g. rbf\n% networks, kernel based regressions, multi layer perceptrons, linear).\n% RETURN model : the model with updated weights and bias matrices.\n% ARG model : the mapping model.\n% ARG W : the output weight matrix.\n% ARG b : the output biases.\n%\n% SEEALSO : mlpCreate, rbfCreate, kbrCreate, linearCreate\n% \n% COPYRIGHT : Neil D. Lawrence, 2008\n\n% MLTOOLS\n \nswitch model.type\n case 'mlp'\n model.w2 = W;\n model.b2 = b;\n case 'rbf'\n model.w2 = W;\n model.b2 = b;\n case 'kbr'\n model.A = W;\n model.bias = b;\n case 'linear'\n model.W = W;\n model.b = b;\n otherwise \n error('Model has no implementation of output weights and biases.');\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/modelSetOutputWeights.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.385843582704365}} {"text": "function [lstmStates, attnData, attnInfos] = rnnLayerForward(W_rnn, W_emb, prevState, input, masks, params, rnnFlags, attnData, model)\n% Running Multi-layer RNN for one time step.\n% Input:\n% W_rnn: recurrent connections of multiple layers, e.g., W_rnn{ll}.\n% prevState: previous hidden state, e.g., for LSTM, prevState.c{ll}, prevState.h{ll}.\n% input: indices for the current batch\n% isTest: 1 -- don't store intermediate results in each state\n% isAttn: for attention, require attnData to be non-empty, has\n% attnData.srcHidVecsOrig and attnData.srcLens.\n% isDecoder: 0 -- encoder, 1 -- decoder\n% Output:\n% nextState\n%\n% Thang Luong @ 2015, \n \nT = size(input, 2);\nlstmStates = cell(T, 1);\n\n% attention\nattnInfos = cell(T, 1);\nif rnnFlags.attn && rnnFlags.decode == 0 % encoder\n assert(T <= params.numSrcHidVecs);\n attnData.srcHidVecsOrig = zeroMatrix([params.lstmSize, params.curBatchSize, params.numSrcHidVecs], params.isGPU, params.dataType);\nend\n\nfor tt=1:T % time\n % local monotonic alignment\n if params.attnLocalMono\n attnData.tgtPos = tt;\n end\n \n % multi-layer RNN\n [prevState, attnInfos{tt}] = rnnStepLayerForward(W_rnn, W_emb(:, input(:, tt)), prevState, masks(:, tt), params, rnnFlags, attnData, model);\n \n % encoder, attention\n if rnnFlags.attn && rnnFlags.decode == 0\n attnData.srcHidVecsOrig(:, :, tt) = prevState{end}.h_t;\n end\n \n % store all states\n lstmStates{tt} = prevState;\nend", "meta": {"author": "lmthang", "repo": "nmt.matlab", "sha": "32f8564e39d4a3d30fa57038e44f4a3dbdc2068c", "save_path": "github-repos/MATLAB/lmthang-nmt.matlab", "path": "github-repos/MATLAB/lmthang-nmt.matlab/nmt.matlab-32f8564e39d4a3d30fa57038e44f4a3dbdc2068c/code/layers/rnnLayerForward.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.385843582704365}} {"text": "function chrpak_test006 ( )\n\n%*****************************************************************************80\n%\n%% TEST006 tests BINARY_TO_I4 and I4_TO_BINARY.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 09 June 2007\n%\n% Author:\n%\n% John Burkardt\n%\n test_num = 4;\n\n i4_test = [ 21, -32, 2, 128 ];\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST006\\n' );\n fprintf ( 1, ' BINARY_TO_I4 converts a binary to an integer.\\n' );\n fprintf ( 1, ' I4_TO_BINARY converts an integer to binary,\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' I4 ==> BINARY ==> I4\\n' );\n fprintf ( 1, '\\n' );\n\n for test = 1 : test_num\n \n i4 = i4_test(test);\n s = i4_to_binary ( i4 );\n j4 = binary_to_i4 ( s );\n\n fprintf ( 1, ' %8d %8s %8d\\n', i4, s, j4 );\n \n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/chrpak/chrpak_test006.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.7371581626286834, "lm_q1q2_score": 0.385843582704365}} {"text": "function Y=sparse(varargin)\n%SPARSE (overloaded)\n\nif nargin < 3\n error('At-least 3 arguments needed');\nend\n\ndata = varargin{3};\nns = varargin{1}(:);\nms = varargin{2}(:);\n\nif length(ns)~=length(ms) | length(ms)~=length(data)\n error('Length of first 3 arguments must be equal');\nend\n\nif min(size(data))>1\n error('Third argument should be a vector');\nend\n\nif nargin < 4\n n = max(ns);\nelse\n n = varargin{4};\nend\nif nargin < 5\n m = max(ms);\nelse\n m = varargin{5};\nend\n\nif any(ms>m)\n error('Dimension mismatch')\nend\n\nif any(ns>n)\n error('Dimension mismatch')\nend\n\nY = data;\nY.dim(1) = n;\nY.dim(2) = m;\n[i1,j1,s1] = find(data.basis);\nind = ns+(ms-1)*n;\nY.basis = sparse(ind(i1),j1,s1,n*m,1+length(Y.lmi_variables));\n% Reset info about conic terms\nY.conicinfo = [0 0];\nY = flush(Y);\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/@sdpvar/sparse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581510799252, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.38584357665950997}} {"text": "function job = clusterVariantGraph(job,varargin)\n% the MCL algorithm generalized to hyper graphs\n%\n% Syntax\n%\n% job.calcVariantGraph\n% job.clusterVariantGraph\n% job.calcParentFromVote('minProb',0.5)\n%\n% Input\n% job - @parentGrainReconstructor\n%\n% Output\n% job.votes - computed parent votes\n%\n% Options\n% inflationPower - inflation power of the MCL algorithm (default=1.05)\n% numIter - number of iterations (default=10)\n% cutOff - default 0.0001\n% withDiagonal -\n% keepGraph - do not kill graph after clustering \n% includeSimilar - similarly oriented variants share probability\n% includeTwins - potential twins share probability\n% minCluster - minimum cluster size (default 4)\n%\n% References\n%\n% * , arXiv, 2022\n%\n\n% ensure we have a variant graph\nif isempty(job.graph), job.calcVariantGraph(varargin{:}); end\n\n% extract parameters\np = get_option(varargin,'inflationPower', 1.05);\nnumIter = get_option(varargin,'numIter', 10);\ncutOff = get_option(varargin,'cutOff',0.0001);\n\n% some constants\nA = job.graph;\nnVG = size(A,1); % size of the variant graph\njob.graph = [];\np2cV = variants(job.p2c,'parent');\nnumV = length(p2cV);\n\n% indices to the variant graph\nisCP = job.isChild | job.isParent; % only child and parent phases go into the variant graph\n\n% rep2VG - how often it repeats to fit in the variant graph [numV numV 1 numV 0 1 numV ...]\nrep2VG = numV * job.isChild + job.isParent;\n\n% VG2ind - variant graph index -> grain index\nVG2ind = 1:length(job.grains);\nVG2ind = repelem(VG2ind(isCP), rep2VG(isCP));\n\n% indeces of the pseudo diagonal\nif check_option(varargin,'noPseudoDiagonal')\n\n % position of variant 1 of each child grain in the Matrix\n indV1 = [0;cumsum(rep2VG)];\n indV1(end) = [];\n indV1 = indV1(job.isChild);\n \n % a numV x numV matrix without diagonal\n [i,j] = meshgrid(1:numV,1:numV);\n i(eye(numV)==1) = [];\n j(eye(numV)==1) = [];\n\n pseudoDiag = sparse(indV1 + i(:).',indV1 + j(:).',true,size(A,1),size(A,2));\nend\n\nnormalize\n\n% this is an adaptation of the MCL algorithm\nfor iter = 1:numIter\n\n % expansion\n A = A * A;\n \n % remove pseudo diagonal entries, i.e., A(j+k,j+l)\n if exist('pseudoDiag','var'), A(pseudoDiag) = 0; end\n \n % inflation by Hadamard potentiation\n A = A.^p;\n \n % prune elements of A that are below minval\n %A = (A > cutOff) .* A;\n A = spfun(@(x) (x > cutOff) .* x,A);\n \n if check_option(varargin,'sym')\n A = sqrt(A.' .* A);\n normalize\n end\n \n % column re-normalisation\n normalize\n \n if check_option(varargin,'test2')\n A = sqrt(diag(diag(A)) * A);\n normalize\n end\n\n if check_option(varargin,'verbose'), disp(nnz(A)); end\nend \n\nif check_option(varargin,'test1')\n A = diag(diag(A)) * A;\n normalize\nend\n\nif check_option(varargin,'sym')\n A = sqrt(A.' .* A);\n normalize\nend\n\n% create a table of probabilities for the different parentIds of each child\n% grains\nif p>1\n s = full(sum(A,2)); % sum columns\nelse\n s = full(sum(A,2) - diag(A)); % sum columns\nend\n\n% ensure minimum cluster size\nminCluster = get_option(varargin,'minCluster',4);\ns = s .* (full(sum(A>0,2))>=minCluster);\n\n% store in numGrains x numVariant matrix\nisVGChild = job.isChild(VG2ind); % isChild in variant graph\npIdP = nan(length(job.grains),numV);\npIdP(job.isChild,:) = reshape(s(isVGChild),numV,[]).';\n\n% some post processing\nif check_option(varargin,'includeTwins')\n \n % define theoretical twinning of the packet\n tp2cV = p2cV(:) .* orientation.byAxisAngle(round(p2cV \\ Miller(0,1,1,p2cV.SS),'maxHKL',1),60*degree);\n \n M = 0.5*triu(angle_outer(p2cV,tp2cV,'noSym2') < 5 * degree);\n \n M(~sum(M),~sum(M)) = eye(nnz(~sum(M)));\n pIdP = pIdP * M;\nend\n\nif check_option(varargin,'includeSimilar')\n %M = triu(angle_outer(job.p2c.variants('parent'),job.p2c.variants('parent'),'noSym2')<5*degree);\n %M(:,sum(M)==1) = 0;\n \n M = angle_outer(p2cV,p2cV,'noSym2')<5*degree;\n M = 0.9*M + 0.1*eye(size(M));\n \n pIdP = pIdP * M;\n \nelseif check_option(varargin,'mergeSimilar')\n\n M = angle_outer(p2cV,p2cV,'noSym2')<5*degree; \n pIdP = pIdP * M;\n\nend\n\n% sort the table and store the highest probabilities in the job class\n[pIdP,pId] = sort(pIdP,2,'descend');\njob.votes = table(pId,pIdP,'VariableNames',{'parentId','prob'});\n\nif check_option(varargin,'keepGraph')\n job.graph = A;\nend\n\n\n function normalize2\n \n % column re-normalisation\n % sum over all targets\n s = full(sum(A));\n \n % sum over all variants\n s = accumarray(VG2ind.',s);\n s = repelem(s,rep2VG(isPC));\n \n % create sparse diagonal matrix for\n dinv = spdiags(1./s,0,nVG,nVG);\n A = A * dinv;\n \n end\n function normalize\n \n % column re-normalisation\n % sum over all targets\n s = full(sum(A,2)).';\n \n % sum over all variants\n s = accumarray(VG2ind.',s);\n s = repelem(s(isCP),rep2VG(isCP));\n \n % create sparse diagonal matrix for\n dinv = spdiags(1./s,0,nVG,nVG);\n A = dinv * A;\n \n end\nend \n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@parentGrainReconstructor/clusterVariantGraph.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8438950947024554, "lm_q2_score": 0.4571367168274948, "lm_q1q2_score": 0.38577543293910826}} {"text": "function [bn,burstiness,mburstf,mibsn,mbl,mibfr,mibif,burstf,ibsn,burstlen,ibfr,ibif,bp,normbnbdiff,burst,burstspikes,nonburstspikes] = burst_cls_kmeans(segspikes,sro)\n\n% K-means clustering of ISIs\ntivs = cell(1,size(segspikes,2));\nivnum = zeros(1,size(segspikes,2));\nsegfirstiv = zeros(1,size(segspikes,2));\nseglastiv = zeros(1,size(segspikes,2));\nfor b1 = 1 : size(segspikes,2)\n tivs{b1} = diff(segspikes{b1});\n ivnum(b1) = length(tivs{b1});\n if b1 == 1\n seglastiv(b1) = ivnum(b1);\n else\n seglastiv(b1) = sum(ivnum(1 : b1 - 1)) + ivnum(b1);\n end\n if b1 == 1\n segfirstiv(b1) = 1;\n else\n segfirstiv(b1) = seglastiv(b1 - 1) + 1;\n end\nend\nivs = cat(2,tivs{:});\n\n%k-means starts\nif length(ivs) > 49\n replino = 5;\n maxclust = 5;\n qual = zeros(1,maxclust);\n clustid = zeros(length(ivs),maxclust);\n for kmc1 = 2 : maxclust\n clustid(:,kmc1) = kmeans(ivs,kmc1,'emptyaction','drop','replicates',replino);\n qual(kmc1) = mean(silhouette(ivs',clustid(:,kmc1)));\n end\n ici = find(qual == max(qual));\n idealclust = clustid(:,ici);\n isiclusters = cell(1, ici);\n isiclustmean = zeros(1,ici);\n for kmc2 = 1 : ici\n isiclusters{kmc2} = ivs(idealclust == kmc2);\n isiclustmean(kmc2) = mean(isiclusters{kmc2});\n end\n ibclust = isiclusters{isiclustmean == min(isiclustmean)};\n%k-means ends\n\n%bf\n if isempty(ibclust) == 0\n firstspikes = cell(1,size(segspikes,2));\n lastspikes = cell(1,size(segspikes,2));\n segburstivs = cell(1,size(segspikes,2));\n for li1 = 1 : size(segspikes,2)\n segburstivs{li1} = find(tivs{li1} <= max(ibclust));\n sbiv1 = diff(segburstivs{li1});\n sbiv2 = find(sbiv1 > 1);\n firstspikes{li1} = segspikes{li1}(segburstivs{li1}(sbiv2 + 1));\n lastspikes{li1} = segspikes{li1}(segburstivs{li1}(sbiv2) + 1);\n firstspikes{li1} = [segspikes{li1}(1) firstspikes{li1}];\n lastspikes{li1} = [lastspikes{li1} segspikes{li1}(end)];\n end\n burst = [cat(2,firstspikes{:});cat(2,lastspikes{:})];\n burstlen = (burst(2,:) - burst(1,:)) / (sro / 1000); %length of bursts in ms\n burst(:,burstlen > 400) = [];\n burstlen(burstlen > 400) = [];\n%bf\n\n% maxthetacycle = 400;\n% nonbursts = burst(:,bli >= maxthetacycle);\n% burst(:,bli >= maxthetacycle) = [];\n\n%Selection of burst and non-burst spikes\n spktm = cat(2,segspikes{:});\n burstspikes = cell(1,size(burst,2));\n ibsn = zeros(1,size(burst,2));\n for bj = 1 : size(burst,2)\n burstspikes{bj} = spktm(spktm >= burst(1,bj) & spktm <= burst(2,bj));\n ibsn(bj) = length(burstspikes{bj});\n end\n burstspkvect = cat(2,burstspikes{:});\n nbs = zeros(1,length(spktm));\n for nbi = 1 : length(spktm)\n for nbj = 1 : length(burstspkvect)\n if spktm(nbi) == burstspkvect(nbj)\n nbs(nbi) = 1;\n end\n end\n end\n nonburstspikes = spktm(nbs == 0);\n%selection of burst & non-burst intervals\n nbss = zeros(1,length(ivs));\n for ni = 1 : length(ivs)\n for nj = 1 : length(ibclust)\n if ivs(ni) == ibclust(nj)\n nbss(ni) = 1;\n end\n end\n end\n nbivs = ivs(nbss ~= 1);\n\n%Comparison of burst and non-burst intervals\n if length(nbivs) >= 5\n bp = ranksum(ibclust,nbivs,0.01,'tail','both'); %ranksum test for burst - non-burst intervals\n else\n bp = -1;\n end\n normbnbdiff = (median(nbivs) - median(ibclust)) / (median(nbivs) + median(ibclust)); %normalized diff of burst - non-burst intervals\n\n%burst parameter definitions\n mbl = median(burstlen); %median burst length\n ibif = 1./ibclust * sro; %intraburst inst.frequency\n mibif = median(1./ibclust*sro); %median intraburst inst.frequency\n ibfr = (ibsn ./ (burstlen/1000)); %intraburst firing rate per burst\n mibfr = median(ibfr); %median intraburst firing rate\n burstiness = (size(burstspkvect,2) / size(cat(2,segspikes{:},2),2)) * 100; %proportion of burst spikes\n covibsi = std(ibclust) / mean(ibclust); %COV of intraburst intervals\n first_isis = diff(cat(2,firstspikes{:})); %inter-firstspike intervals\n mfisis = median(first_isis) / (sro / 1000); % median interburst interval (ms)\n burstf = (1./first_isis)*sro; %inter-firstspike IF \n mburstf = median(burstf); %burst occurrence frequency\n bn = size(burst,2); %number of bursts\n mibsn = median(ibsn); %median intraburst spike number\n else\n bn = NaN;\n burstiness = NaN;\n mburstf = NaN;\n mibsn = NaN;\n mbl = NaN;\n mibfr = NaN;\n mibif = NaN;\n burstf = NaN;\n ibsn = NaN;\n burstlen = NaN;\n ibfr = NaN;\n ibif = NaN;\n bp = NaN;\n normbnbdiff = NaN;\n burst = NaN;\n burstspikes = NaN;\n nonburstspikes = NaN;\n end\nelse\n bn = NaN;\n burstiness = NaN;\n mburstf = NaN;\n mibsn = NaN;\n mbl = NaN;\n mibfr = NaN;\n mibif = NaN;\n burstf = NaN;\n ibsn = NaN;\n burstlen = NaN;\n ibfr = NaN;\n ibif = NaN;\n bp = NaN;\n normbnbdiff = NaN;\n burst = NaN;\n burstspikes = NaN;\n nonburstspikes = NaN;\nend", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/analysis/spikes/burst_cls_kmeans.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723317123102956, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3857021859979893}} {"text": "function [coords] = GetSquare(x1,x2,x3,x4)\n\n% This function draws a square defined by vertices\n\n% Sanity check\nassert(numel(x1) <= 3,\"Coordinates can have upto three dimensions.\");\nassert(iscolumn(x1) == iscolumn(x2) == iscolumn(x3) == iscolumn(x3),\"The coordinate vectors must be the same length.\");\n\ncoords = zeros(5,3);\nfor i = 1:numel(x1)\n coords(:,i) = [x1(i);x2(i);x3(i);x4(i);x1(i)];\nend\n\nend", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/environment/common/GetSquare.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.672331699179286, "lm_q1q2_score": 0.3857021784650126}} {"text": "function [s_idx, seg] = Proc_cls_idx( cls_idx )\n\n[idx s_idx] = sort(cls_idx);\n\nidx2 = idx(1:end-1) - idx(2:end);\nseq = find(idx2);\n\nseg = [0; seq; length(cls_idx)];", "meta": {"author": "lbasek", "repo": "image-denoising-benchmark", "sha": "9d753198d715b7628c8e7d9259dfa5c219d033ea", "save_path": "github-repos/MATLAB/lbasek-image-denoising-benchmark", "path": "github-repos/MATLAB/lbasek-image-denoising-benchmark/image-denoising-benchmark-9d753198d715b7628c8e7d9259dfa5c219d033ea/algoritms/matlab/NCSR/Utilities/Proc_cls_idx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38566038773005334}} {"text": "function aistats2012_slides_gp\n\nrandn('state', 1);\n\nplot_gp(true, 0.2, 0.4, 100, false, ...\n '/home/jluttine/papers/aistats2012/slides/fig_short', ...\n 8, 8);\nplot_gp(true, 1.5, 0.4, 100, false, ...\n '/home/jluttine/papers/aistats2012/slides/fig_long', ...\n 8, 8);\nplot_gp(false, 1, 0.2, 6, 5, ...\n '/home/jluttine/papers/aistats2012/slides/fig_gp', ...\n 6, 4);\n\nfunction plot_gp(noisy, lengthscale, noise, N_all, samples, filename, width, height);\nxmin = 0;\nxmax = 10;\n\nNh = 1000;\nxh = linspace(xmin, xmax, Nh);\n\nx_all = linspace(xmin+0.5, xmax-0.5, N_all);\n%x_all = unifrnd(xmin, xmax, 1, N_all);\n\n% Generate data\ncovfunc_all = gp_cov_sum(gp_cov_se(sq_dist(x_all), ...\n 'lengthscale', lengthscale), ...\n gp_cov_scale(gp_cov_delta(N_all), ...\n 'scale', noise));\n\nK_y = covfunc_all([]);\nL_y = chol(K_y + 1e-6*eye(N_all), 'lower');\ny_all = L_y * randn(N_all,1);\n\nfor N = [N_all]\n x = x_all(:,1:N);\n y = y_all(1:N);\n\n covfunc_y = gp_cov_sum(gp_cov_se(sq_dist(x), ...\n 'lengthscale', lengthscale), ...\n gp_cov_scale(gp_cov_delta(N), ...\n 'scale', noise));\n covfunc_yf = gp_cov_se(sq_dist(x,xh), ...\n 'lengthscale', lengthscale);\n if noisy\n covfunc_f = gp_cov_sum(gp_cov_se(zeros(Nh,1), ...\n 'lengthscale', lengthscale), ...\n gp_cov_scale(gp_cov_wrap(ones(Nh,1)), ...\n 'scale', 0.3));\n else\n covfunc_f = gp_cov_se(zeros(Nh,1), ...\n 'lengthscale', lengthscale);\n end\n\n K_y = covfunc_y([]);\n K_yf = covfunc_yf([]);\n k_f = covfunc_f([]);\n\n [fh_mean, fh_var] = gp_predict(y, K_y, K_yf, k_f);\n figure\n errorplot(xh, fh_mean, sqrt(fh_var))\n hold on\n plot(x, y, 'r+')\n set(gca, 'xtick', [], 'ytick', []);\n set(gca, 'box', 'off');\n set_figure_size(width,height);\n print('-dpdf', [filename, '.pdf'])\n yl = get(gca, 'ylim');\n\n if samples\n covfunc_f = gp_cov_se(sq_dist(xh), ...\n 'lengthscale', lengthscale);\n K_f = covfunc_f([]);\n K_post = K_f - K_yf'*(K_y\\K_yf) + 1e-6*eye(Nh);\n L_post = chol(K_post, 'lower');\n f = bsxfun(@plus, ...\n K_yf'*(K_y\\y), ...\n L_post*randn(Nh,samples));\n figure\n plot(xh, f);\n hold on\n plot(x, y, 'k+');\n set(gca, 'xtick', [], 'ytick', []);\n set(gca, 'box', 'off');\n set(gca, 'ylim', yl);\n set_figure_size(width,height); \n print('-dpdf', [filename, '_samples.pdf'])\n end\n \nend\n\n", "meta": {"author": "jluttine", "repo": "matlab", "sha": "63406c7782b0869948f06e1dbc594460c165d24e", "save_path": "github-repos/MATLAB/jluttine-matlab", "path": "github-repos/MATLAB/jluttine-matlab/matlab-63406c7782b0869948f06e1dbc594460c165d24e/publications/aistats2012/aistats2012_slides_gp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38566038773005334}} {"text": "function [dP_dV, dP_dlam] = cpf_p_jac(parameterization, z, V, lam, Vprv, lamprv, pv, pq)\n%CPF_P_JAC Computes partial derivatives of CPF parameterization function.\n% [DP_DV, DP_DLAM ] = CPF_P_JAC(PARAMETERIZATION, Z, V, LAM, ...\n% VPRV, LAMPRV, PV, PQ)\n%\n% Computes the partial derivatives of the continuation power flow\n% parameterization function w.r.t. bus voltages and the continuation\n% parameter lambda.\n%\n% Inputs:\n% PARAMETERIZATION : Value of cpf.parameterization option.\n% Z : normalized tangent prediction vector from previous step\n% V : complex bus voltage vector at current solution\n% LAM : scalar lambda value at current solution\n% VPRV : complex bus voltage vector at previous solution\n% LAMPRV : scalar lambda value at previous solution\n% PV : vector of indices of PV buses\n% PQ : vector of indices of PQ buses\n%\n% Outputs:\n% DP_DV : partial of parameterization function w.r.t. voltages\n% DP_DLAM : partial of parameterization function w.r.t. lambda\n%\n% See also CPF_PREDICTOR, CPF_CORRECTOR.\n\n% MATPOWER\n% Copyright (c) 1996-2016, Power Systems Engineering Research Center (PSERC)\n% by Shrirang Abhyankar, Argonne National Laboratory\n% and Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\nif parameterization == 1 %% natural\n npv = length(pv);\n npq = length(pq);\n dP_dV = zeros(1, npv+2*npq);\n if lam >= lamprv\n dP_dlam = 1.0;\n else\n dP_dlam = -1.0;\n end\nelseif parameterization == 2 %% arc length\n Va = angle(V);\n Vm = abs(V);\n Vaprv = angle(Vprv);\n Vmprv = abs(Vprv);\n dP_dV = 2*([Va([pv; pq]); Vm(pq)] - [Vaprv([pv; pq]); Vmprv(pq)])';\n if lam == lamprv %% first step\n dP_dlam = 1.0; %% avoid singular Jacobian that would result\n %% from [dP_dV, dP_dlam] = 0\n else\n dP_dlam = 2*(lam-lamprv);\n end\nelseif parameterization == 3 %% pseudo arc length\n nb = length(V);\n dP_dV = z([pv; pq; nb+pq])';\n dP_dlam = z(2*nb+1);\nend \n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/cpf_p_jac.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239836484144, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3856015228640355}} {"text": "function varargout = getsamples(filename, varargin)\n% Read samples from acq file\n% filename - acq file\n% varargin - channel names\n% Returns column vectors of all channel data samples of requested channels.\n% Example:\n% [SourceR, EMG_L, EMG_R] = getsamples('myfile.acq', 'SourceR', 'EMG_L', 'EMG_R');\n% Note:\n% Developed and tested for version 3.5 AcqKnowledge files, but should\n% probably work with other versions as well.\n% Multiple sampling rates are not supported.\n% No copyright. Feel free to use this code snippet in any way you want.\n\nn = length(varargin); % Number of channels to read\n\n% Step through each file section until Channel Data Section is reached.\nfp = fopen(filename, 'r');\n% Graph Header Section\nfseek(fp, 6, 'bof');\nlExtItemHeaderLen = fread(fp, 1, 'int32');\nnChannels = fread(fp, 1, 'int16');\n% Per Channel Data Section\nsectionstart = lExtItemHeaderLen;\nfseek(fp, sectionstart, 'bof');\nlChanHeaderLen = fread(fp, 1, 'int32');\nfseek(fp, sectionstart+88, 'bof');\nlBufLength = fread(fp, 1, 'int32'); % Number of samples, same for all channels\nfor i=1:nChannels\n sectionstart = lExtItemHeaderLen + (i-1)*lChanHeaderLen;\n fseek(fp, sectionstart+6, 'bof');\n szCommentText(i,1:40) = fscanf(fp, '%40c', 1); % This is the channel label\n fseek(fp, sectionstart+92, 'bof');\n dAmplScale(i) = fread(fp, 1, 'double');\n dAmplOffset(i) = fread(fp, 1, 'double');\nend\n% Foreign Data Section\nfseek(fp, lExtItemHeaderLen+lChanHeaderLen*nChannels, 'bof');\nnLength = fread(fp, 1, 'int16');\n% Per Channel Data Types Section\nsectionstart = lExtItemHeaderLen + lChanHeaderLen*nChannels + nLength;\nfseek(fp, sectionstart, 'bof');\nfor i=1:nChannels\n nSize(i) = fread(fp, 1, 'int16');\n nType(i) = fread(fp, 1, 'int16');\nend\nchoffset = cumsum([0 nSize(1:end-1)]); % Interleave offset\n% Channel Data Section\n% First find indexes of channels to read by searching channel labels, ...\nfor k=1:n\n for i=1:nChannels\n chlabel = char(varargin{k});\n if strncmp(chlabel, szCommentText(i,:), length(chlabel))\n chindex(k) = i;\n break;\n end\n end\nend\n% ...then read samples, one channel at a time.\nsectionstart = lExtItemHeaderLen + lChanHeaderLen*nChannels + nLength + 4*nChannels;\nfseek(fp, sectionstart, 'bof');\nblocksize = sum(nSize);\nfor k=1:n\n fseek(fp, sectionstart + choffset(chindex(k)), 'bof');\n switch nType(chindex(k))\n case 1 % double\n varargout(k) = {fread(fp, lBufLength, 'double', blocksize-8)};\n case 2 % int\n varargout(k)= {dAmplScale(chindex(k)) * fread(fp, lBufLength, 'int16', blocksize-2) + ... \n dAmplOffset(chindex(k))};\n end\nend\n\nfclose(fp);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/4989-getsamples-m/getsamples.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239836484144, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3856015228640355}} {"text": "\nfunction d = generate(a)\n\n if ~isa(a.child,'cell') r=[]; r{1}=a.child; a.child=r; end;\n\n ps=a.prior;\n for j=1:length(ps) \n ps(j)=sum(ps(1:j));\n a.child{j}.l=1;\n end\n ps=[0 ps];\n \n k=length(a.child);\n \n xs=[]; ys=[];\n for i=1:a.l \n p=rand; j=max(find(p>ps)); %% choose class\n x=get_x(test(a.child{j})); %% generate data with that class\n y=-ones(1,k); y(j)=1;\n xs=[xs ; x]; ys=[ys ; y]; \n end\n\n if size(ys,2)==2 ys=ys(:,1); end;\n\n d=data(get_name(a),xs,ys); \n \n \n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/External/spider/density/@bayes/generate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3854992742495961}} {"text": "function [u v] = opticalFlow_Classic_NL(frame1, frame2)\n\n\n%tic\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nuv = estimate_flow_interface(frame1, frame2, 'classic+nl-fast');\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%toc\n\nu = uv(:,:,1);\nv = uv(:,:,2);\n", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/BayesianVSR/functions/opticalFlow_Classic_NL.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3854992742495961}} {"text": "% General state space model for gps imu integration formulated in n-frame\n% either in psi model or phi model. Psi model only appears in some\n% papers, Phi model is well documented in books like Jekeli 2000, Titterton\n% and Weston, 2000.\n\n% states: IMU position in e frame, IMU velocity in n frame, \n% attitude w.r.t n frame, accelerometer and gyro biases, accelerometer and gyro scale factors\n\n% the error states are delta(r x,y,z in earth centered\n% \"abused\" n frame), delta(vx, vy, vz in n frame),\n% delta(roll, pitch, yaw) of the imu, accelerometer and gyro bias drift, acc\n% scale and gyro scale factor error\n% accelerometer and gyro bias are usually modeled as random walk, it can\n% also be random constant, This does not make much difference\n% acc scale and gyro scale factor are usually modeled as random walk, it can\n% also be random constant, This does not make much difference\n\n% The state dynamics are driven by a 18 (accel and gyro white noise,\n% bias white noise and scale factor white noise) or 6 (only accel and\n% gyro white noise) dimensional white Gaussian\n% noise and the observations are corrupted by white Gaussian noise\n% test cases: (1) random walk bias and scale facotr error, random constant\n% bias and scale factor error, \n% (2) covariance update step > sample interval\n% (3) different imy types, 3DM GX3-35 AND h764g\n% (4) psi and phi model\n% There is a very subtle point in implementing a class in matlab. Always\n% call a class the same name, do not call it a filter in a function and a\n% model at another. It causes strange behaviors.\nclassdef EKF_filter_nframe < handle\n properties (Hidden)\n type = 'ekf';\n tag = 'EKF_IMU_GPS_NFRM'; % ID tag\n covDim=9+12; % the dimension of covariance matrix\n end\n % The following properties can be set only by class methods\n properties (SetAccess = private)\n invalidateIMUerrors; % reset IMU errors when they goes beyond expectation\n imuType; % the type of IMU, e.g., MEMS 3DX GM 3-35, HG1700, etc.\n imuErrorModel=3;\n % the IMU error model corresponding to random walk bias and\n % random walk scale factor error,\n % 1 without turn on bias estimates,first order GM bias and random walk scale factor errors\n % 2 with random constant turn on bias estimates, first order GM bias and random walk scale factor errors\n % 3 assumes bias and scale factors are random walks\n % 4 assumes random constant bias and random constant scale factor errors\n \n % transform from vehicle body frame to IMU sensor frame \n Cb2imu;\n dt; % sampling interval of IMU, unit sec\n % the translation from antenna to IMU sensor frame, i.e., the antenna's\n % position in the s-frame.\n Tant2imu;\n Cen; % rotation from e frame to n frame\n height; % h in geodetic coordinates\n qs2n; % q s(sensor) 2 navigation frame\n Vn; % velocity of the IMU sensor in n frame\n imuErrors; %ba, bg, sa, sg\n \n imuOrientSIP=7; % imu orientation covariance start index\n imuBiasDriftSIP=10; %imu bias error covariance start index\n imuScaleFactorSIP=16;\n p_k_k; % the covariance of the entire state vector\n mode=1; % 1 for phi model, 2 for psi model\n mechanization=2; % 1 for wander azimuth, 2 for local geodetic\n rvqs2e; % added only for compatibility\n camPose; % added only for compatibility\n end\n methods\n function filter = EKF_filter_nframe(options)\n filter.invalidateIMUerrors=options.InvalidateIMUerrors;\n filter.imuType=options.imutype;\n filter.imuErrorModel=options.imuErrorModel; \n filter.dt=options.dt;\n filter.Cb2imu=options.Cb2imu;\n filter.Tant2imu=filter.Cb2imu*(options.Tant2body-options.Timu2body);\n filter.Vn=options.Vn;\n % initialize states and covariance for imu gps integration,\n % For imu, rs in n, vs in n, q s2n, ba, bg, sa, sg. (s denotes imu)\n % the position of GPS antenna\n inillh=options.inillh_ant;\n % Cb2n initial value given by external reference\n initqbn=options.qb2n; % H764G INS data, this b refers to the vehicle body frame\n filter.qs2n=quatmult_v001(initqbn,rotro2qr(filter.Cb2imu),2);\n \n Ce2n0=llh2dcm_v000(inillh(1:2),[0;1]);\n qs2e=quatmult_v001(rotro2qr(Ce2n0), filter.qs2n,1);\n xyz_imu=ecef2geo_v000(inillh,1)-quatrot_v000(qs2e,filter.Tant2imu,0);\n inillh_imu=ecef2geo_v000(xyz_imu, 0);\n filter.height=inillh_imu(3); %elipsoidal height\n filter.Cen=llh2dcm_v000(inillh_imu(1:2),[0;1]);\n filter.imuErrors=options.imuErrors;\n filter.p_k_k=zeros(filter.covDim);\n filter.p_k_k(1:3,1:3)=eye(3)*1^2; %position errors in meter\n filter.p_k_k(4:6,4:6)=eye(3)*0.1^2; %vel error in m/s\n filter.p_k_k(filter.imuOrientSIP+(0:2),filter.imuOrientSIP+(0:2))=...\n diag([options.initAttVar,options.initAttVar,options.initAttVar*2].^2);\n \n IMU_ERRDEF=imu_err_defs_v000(options.imutype);\n filter.p_k_k(filter.imuBiasDriftSIP+(0:2),filter.imuBiasDriftSIP+(0:2))=4*eye(3)*IMU_ERRDEF.acc_bias_var;% enlarge initial std by 2\n filter.p_k_k(filter.imuBiasDriftSIP+(3:5),filter.imuBiasDriftSIP+(3:5))=4*eye(3)*IMU_ERRDEF.gyro_bias_var;\n \n filter.p_k_k(filter.imuScaleFactorSIP+(0:2),filter.imuScaleFactorSIP+(0:2))=4*eye(3)*IMU_ERRDEF.acc_scale_var;\n filter.p_k_k(filter.imuScaleFactorSIP+(3:5),filter.imuScaleFactorSIP+(3:5))=4*eye(3)*IMU_ERRDEF.gyro_scale_var;\n filter.mode= options.mode;\n end\n %===============================================================================================\n %-- State transition function\n % propogate state with accelerometer and gyro input at time k-1 to state at k,\n % i.e., X(k|k-1), from state at k-1. U1 contains IMU measurement\n % delta v, and delta angle of gyro or acc and angular rate\n % and 7th row is the previous epoch(k-1) and 8th row is the current epoch(k)\n % imuaccum records the accumulated delta v and delta angle for two speed\n % covariance update\n function imuaccum= ffun_state(filter, imuaccum, U1)\n if(sum(abs(U1(1:3,1)))<1)\n dt1=U1(8,end)-U1(7,1);\n gyroinc=sum(U1(4:6,:),2);\n accinc=sum(U1(1:3,:),2);\n \n %reset the imu errors if estimates diverges\n IMU_ERRDEF=imu_err_defs_v000(filter.imuType);\n \n if(filter.invalidateIMUerrors)\n spuracc=find(abs(filter.imuErrors(1:3))>2*IMU_ERRDEF.initacc_bias_err,1);\n spurgyro=find(abs(filter.imuErrors(4:6))>2*IMU_ERRDEF.initgyro_bias_err,1);\n if(~isempty(spuracc)||~isempty(spurgyro))\n disp(['IMU errors diverge at ' num2str(U1(8,end)) '!']);\n filter.imuErrors=zeros(12,1);\n end\n end \n angleinc=gyroinc-filter.imuErrors(4:6)*dt1-diag(gyroinc)*filter.imuErrors(6+(4:6))/1000;\n velinc=accinc-filter.imuErrors(1:3)*dt1-diag(accinc)*filter.imuErrors(6+(1:3))/1000;\n %imu data accumulator for the covariance update\n imuaccum=imuaccum+[velinc;angleinc];\n else\n dt1=U1(8,end)-U1(7,1);\n gyroinc=mean(U1(4:6,:),2);\n accinc=mean(U1(1:3,:),2);\n \n %reset the imu errors if estimates diverges\n IMU_ERRDEF=imu_err_defs_v000(filter.imuType);\n \n if(filter.invalidateIMUerrors)\n spuracc=find(abs(filter.imuErrors(1:3))>2*IMU_ERRDEF.initacc_bias_err,1);\n spurgyro=find(abs(filter.imuErrors(4:6))>2*IMU_ERRDEF.initgyro_bias_err,1);\n if(~isempty(spuracc)||~isempty(spurgyro))\n disp(['IMU errors diverge at ' num2str(U1(8,end)) '!']);\n filter.imuErrors=zeros(12,1);\n end\n end\n gyroinc=gyroinc-filter.imuErrors(4:6)-diag(gyroinc)*filter.imuErrors(6+(4:6))/1000;\n accinc=accinc-filter.imuErrors(1:3)-diag(accinc)*filter.imuErrors(6+(1:3))/1000;\n angleinc=gyroinc*dt1;\n velinc=accinc*dt1; \n %imu data accumulator for the covariance update\n imuaccum=imuaccum+[accinc;gyroinc]*dt1; \n end\n %run strapdown with angle and velocity increments\n [filter.qs2n, filter.Vn, filter.Cen, filter.height]=strapdown_Cen_quat_v000(...\n filter.qs2n, filter.Vn, filter.Cen, filter.height, velinc, angleinc, dt1); \n end\n function ffun_covariance(filter, imuaccum, covupt_time, curimutime)\n %propagate the covariance corresponds to states, rs in n, vs in n, \\psi or \\phi,\n % ba, bg, sa, sg\n covdt=curimutime-covupt_time; \n [STM, Qd]=sys_metric_phipsi_v000(filter.Cen, filter.height, ...\n filter.Vn, filter.qs2n, imuaccum(1:3)/covdt,imuaccum(4:6)/covdt, ...\n covdt,filter.mode,filter.imuType, filter.imuErrorModel); %use psi implementation with 2\n % if(filter.imuErrorModel==4)\n % [STM, Qd]=sys_metric_phipsi_v002(filter.Cen, filter.height, ...\n % filter.Vn, filter.qs2n, imuaccum(1:3)/covdt,imuaccum(4:6)/covdt, ...\n % covdt,filter.mode,filter.imuType); %use psi implementation with 2\n % assert(norm(STM1-STM)+norm(Qd1-Qd)<1e-5);\n % end\n filter.p_k_k=STM*filter.p_k_k*STM'+Qd; % the covariance of the navigation states and imu error terms\n end\n %==============================================================================================\n %update both the covariance and state\n function correctstates(filter, predict,measure, H,R, ~)\n p_km1_k=filter.p_k_k;\n inno= predict-measure;\n %Kalman\n K=p_km1_k*H'/(H*p_km1_k*H'+R);\n deltaX=K*inno;\n % update covariance\n filter.p_k_k=(eye(filter.covDim)-K*H)*p_km1_k*(eye(filter.covDim)-K*H)'+K*R*K';\n % compute updated state\n [filter.qs2n, filter.Vn, filter.Cen, filter.height]=correctnav_Cen_v000(...\n filter.qs2n, filter.Vn, filter.Cen, filter.height,...\n deltaX(1:filter.imuOrientSIP+2), filter.mode, filter.mechanization); \n filter.imuErrors = filter.imuErrors + deltaX(filter.imuBiasDriftSIP:end);\n end\n % output: position of the IMU in a NED frame anchored at some point or in geodetic coordinates,\n % velocity of the IMU in the body frame, and euler angles of\n % rotation from body frame to the moving NED frame, and covariances\n % of 9 navigation ERROR states in the filter\n function SaveToFile(filter, inillh_ant, preimutime, ffilres) \n vr_c=rotqr2eu('xyz',quatmult_v001(filter.qs2n, rotro2qr(filter.Cb2imu), 0))*180/pi; % body frame w.r.t the moving N frame\n xyz_imu= ecef2geo_v000([asin(-filter.Cen(3,3));asin(-filter.Cen(2,1));filter.height],1);\n % xyz_ant= xyz_imu + quatrot_v000(quatmult_v001(rotro2qr(filter.Cen),filter.qs2n,1),filter.Tant2imu,0);\n if(~isempty(inillh_ant))\n vr_a=posdiff_v001(xyz_imu, inillh_ant); % position of IMU in the initial N frame\n fwrite(ffilres,[preimutime;vr_a;filter.Vn;vr_c;sqrt(diag(filter.p_k_k(1:9,...\n 1:9)))],'double');\n else\n fwrite(ffilres,[preimutime;ecef2geo_v000(xyz_imu,0);filter.Vn;vr_c;sqrt(diag(filter.p_k_k(1:9,...\n 1:9)))],'double');\n end\n end\n function mag=GetVelocityMag(filter)\n mag=norm(filter.Vn,2); \n end\n function SetCamAndRvqs2e(filter, options)\n filter.rvqs2e=zeros(10,1);\n Ce2n=filter.Cen;\n heights2n=filter.height;\n Re=6378137/(sqrt(1.0-0.00669437999014*Ce2n(3,3)^2));\n filter.rvqs2e(1:3,1)=-[(Re+heights2n)*Ce2n(3,1);(Re+heights2n)*Ce2n(3,2);(Re*(1-0.00669437999014)+heights2n)*Ce2n(3,3)];\n filter.rvqs2e(4:6,1)=Ce2n'*filter.Vn;\n filter.rvqs2e(7:10,1)=quatmult_v001(rotro2qr(Ce2n),filter.qs2n,1); \n filter.camPose=zeros(7,1);\n filter.camPose(5:7)=options.Cimu2cam*options.Cb2imu*(options.Timu2body-options.Tcam2body);\n filter.camPose(1:4)=rotro2qr(options.Cimu2cam);\n end\n end\nend", "meta": {"author": "JzHuai0108", "repo": "ekfmonoslam", "sha": "443f6be744732453cdb90679abcaf5c962a6295e", "save_path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam", "path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam/ekfmonoslam-443f6be744732453cdb90679abcaf5c962a6295e/ekfmonoslam/ekf/EKF_filter_nframe.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8221891392358014, "lm_q2_score": 0.46879062662624377, "lm_q1q2_score": 0.3854345617876433}} {"text": "function [f0v,vrv,dfv,nf,aav]=fixpF0VexMltpBG4(x,fs,f0floor,nvc,nvo,mu,imgi,shiftm,smp,minm,pc,nc)\n\n%\tFixed point analysis to extract F0\n%\t[f0v,vrv,dfv,nf]=fixpF0VexMltpBG4(x,fs,f0floor,nvc,nvo,mu,imgi,shiftm,smp,minm,pc,nc)\n%\tx\t: input signal\n%\tfs\t: sampling frequency (Hz)\n%\tf0floor\t: lowest frequency for F0 search\n%\tnvc\t: total number of filter channels\n%\tnvo\t: number of channels per octave\n%\tmu\t: temporal stretching factor\n%\timgi\t: image display indicator (1: display image, default)\n%\tshiftm\t: frame shift in ms\n%\tsmp\t: smoothing length relative to fc (ratio)\n%\tminm\t: minimum smoothing length (ms)\n%\tpc\t: exponent to represent nonlinear summation\n%\tnc\t: number of harmonic component to use (1,2,3)\n\n%\tDesigned and coded by Hideki Kawahara\n%\t28/March/1999\n%\t04/April/1999 revised to multi component version\n%\t07/April/1999 bi-reciprocal smoothing for multi component compensation\n%\t01/May/1999 first derivative of Amplitude is taken into account\n%\t17/Dec./2000 display bug fix\n%\t19/Sep./2002 bug fix (mu information was discarded.)\n% 07/Dec./2002 waitbar was added\n%\t30/April/2005 modification for Matlab v7.0 compatibility\n%\t10/Aug./2005 modified by Takahashi on waitbar\n%\t10/Sept./2005 mofidied by Kawahara on waitbar\n% 11/Sept./2005 fixed waitbar problem\n\t\t\n%f0floor=40;\n%nvo=12;\n%nvc=52;\n%mu=1.1;\n\nx=cleaninglownoise(x,fs,f0floor);\n\nfxx=f0floor*2.0.^((0:nvc-1)/nvo)';\nfxh=max(fxx);\n\ndn=max(1,floor(fs/(fxh*6.3)));\n\nif nc>2\n\tpm3=multanalytFineCSPB(decimate(x,dn),fs/dn,f0floor,nvc,nvo,mu,3,imgi); % error crrect 2002.9.19 (mu was fixed 1.1)\n\tpif3=zwvlt2ifq(pm3,fs/dn);\n\t[~,mm]=size(pif3);\n\tpif3=pif3(:,1:3:mm);\n\tpm3=pm3(:,1:3:mm);\nend;\n\nif nc>1\n\tpm2=multanalytFineCSPB(decimate(x,dn),fs/dn,f0floor,nvc,nvo,mu,2,imgi);% error crrect 2002.9.19(mu was fixed 1.1)\n\tpif2=zwvlt2ifq(pm2,fs/dn);\n\t[~,mm]=size(pif2);\n\tpif2=pif2(:,1:3:mm);\n\tpm2=pm2(:,1:3:mm);\nend;\n\npm1=multanalytFineCSPB(decimate(x,dn*3),fs/(dn*3),f0floor,nvc,nvo,mu,1,imgi);% error crrect 2002.9.19(mu was fixed 1.1)\n%%%% safe guard added on 15/Jan./2003\nmxpm1=max(max(abs(pm1)));\neeps=mxpm1/10000000;\npm1(pm1==0)=pm1(pm1==0)+eeps;\n%%%% safe guard end\npif1=zwvlt2ifq(pm1,fs/(dn*3));\n%keyboard;\n\n[~,mm1]=size(pif1);\nmm=mm1;\nif nc>1\n\t[~,mm2]=size(pif2);\n\tmm=min(mm1,mm2);\nend;\n\nif nc>2\n\t[~,mm3]=size(pif3);\n\tmm=min([mm1 mm2 mm3]);\nend;\n\nif nc == 2\n\tfor ii=1:mm\n\t\tpif2(:,ii)=(pif1(:,ii).*(abs(pm1(:,ii))).^pc ...\n\t\t\t+pif2(:,ii)/2.*(abs(pm2(:,ii))).^pc )...\n\t\t\t./((abs(pm1(:,ii))).^pc+(abs(pm2(:,ii))).^pc);\n\tend;\nend;\nif nc == 3 \n\tfor ii=1:mm\n\t\tpif2(:,ii)=(pif1(:,ii).*(abs(pm1(:,ii))).^pc ...\n\t\t\t+pif2(:,ii)/2.*(abs(pm2(:,ii))).^pc ...\n\t\t\t+pif3(:,ii)/3.*(abs(pm3(:,ii))).^pc )... \n\t\t\t./((abs(pm1(:,ii))).^pc+(abs(pm2(:,ii))).^pc+(abs(pm3(:,ii))).^pc);\n\tend;\nend;\nif nc == 1\n\tpif2=pif1;\nend;\n\n\t\t \n%pif2=zwvlt2ifq(pm,fs/dn)*2*pi;\npif2=pif2*2*pi;\ndn=dn*3;\n\n[slp,~]=zifq2gpm2(pif2,f0floor,nvo);\n[nn,mm]=size(pif2);\ndpif=(pif2(:,2:mm)-pif2(:,1:mm-1))*fs/dn;\ndpif(:,mm)=dpif(:,mm-1);\n[dslp,~]=zifq2gpm2(dpif,f0floor,nvo);\n\ndamp=(abs(pm1(:,2:mm))-abs(pm1(:,1:mm-1)))*fs/dn;\ndamp(:,mm)=damp(:,mm-1);\ndamp=damp./abs(pm1);\n\n%[c1,c2]=znormwght(1000);\nfxx=f0floor*2.0.^((0:nn-1)/nvo)'*2*pi;\nmmp=0*dslp;\n[c1,c2b]=znrmlcf2(1);\nif imgi==1; hpg=waitbar(0,'P/N map calculation'); end; % 07/Dec./2002 by H.K.%10/Aug./2005\nfor ii=1:nn\n%\t[c1,c2]=znrmlcf2(fxx(ii)/2/pi); % This is OK, but the next Eq is much faster.\n\tc2=c2b*(fxx(ii)/2/pi)^2;\n\tcff=damp(ii,:)/fxx(ii)*2*pi*0;\n\tmmp(ii,:)=(dslp(ii,:)./(1+cff.^2)/sqrt(c2)).^2+(slp(ii,:)./sqrt(1+cff.^2)/sqrt(c1)).^2;\n if imgi==1; waitbar(ii/nn); end; %,hpg); % 07/Dec./2002 by H.K.%10/Aug./2005\nend;\nif imgi==1; close(hpg); end;%10/Aug./2005\n\nif smp~=0\n\tsmap=zsmoothmapB(mmp,fs/dn,f0floor,nvo,smp,minm,0.4);\nelse\n\tsmap=mmp;\nend;\n\nfixpp=zeros(round(nn/3),mm);\nfixvv=fixpp+100000000;\nfixdf=fixpp+100000000;\nfixav=fixpp+1000000000;\nnf=zeros(1,mm);\nif imgi==1; hpg=waitbar(0,'Fixed pints calculation'); end; % 07/Dec./2002 by H.K.%10/Aug./2005\nfor ii=1:mm\n\t[ff,vv,df,aa]=zfixpfreq3(fxx,pif2(:,ii),smap(:,ii),dpif(:,ii)/2/pi,pm1(:,ii));\n\tkk=length(ff);\n\tfixpp(1:kk,ii)=ff;\n\tfixvv(1:kk,ii)=vv;\n\tfixdf(1:kk,ii)=df;\n\tfixav(1:kk,ii)=aa;\n\tnf(ii)=kk;\n if imgi==1 && rem(ii,10)==0; waitbar(ii/mm); end;% 07/Dec./2002 by H.K.%10/Aug./2005\nend;\nif imgi==1; close(hpg); end; % 07/Dec./2002 by H.K.%10/Aug./2005\nfixpp(fixpp==0)=fixpp(fixpp==0)+1000000;\n\n%keyboard\n%[vvm,ivv]=min(fixvv);\n%\n%for ii=1:mm\n%\tff00(ii)=fixpp(ivv(ii),ii);\n%\tesgm(ii)=fixvv(ivv(ii),ii);\n%end;\nnp=max(nf);\nf0v=fixpp(1:np,round(1:shiftm/dn*fs/1000:mm))/2/pi;\nvrv=fixvv(1:np,round(1:shiftm/dn*fs/1000:mm));\ndfv=fixdf(1:np,round(1:shiftm/dn*fs/1000:mm));\naav=fixav(1:np,round(1:shiftm/dn*fs/1000:mm));\nnf=nf(round(1:shiftm/dn*fs/1000:mm));\n\nif imgi==1\n\tcnmap(fixpp,smap,fs,dn,nvo,f0floor,shiftm);\nend;\n%ff00=ff00(round(1:shiftm/dn*fs/1000:mm));\n%esgm=sqrt(esgm(round(1:shiftm/dn*fs/1000:mm)));\n%keyboard;\n\nreturn;\n%------------------------------------------------------------------\nfunction okid=cnmap(fixpp,smap,fs,dn,nvo,f0floor,shiftm)\n\n% \tThis function had a bug in map axis.\n%\t17/Dec./2000 bug fix by Hideki Kawahara.\n\ndt=dn/fs;\n[nn,mm]=size(smap);\naa=figure;\nset(aa,'PaperPosition',[0.3 0.25 8 10.9]);\nset(aa,'Position',[30 130 520 680]);\nsubplot(211);\nimagesc([0 (mm-1)*dt*1000],[1 nn],20*log10(smap(:,round(1:shiftm/dn*fs/1000:mm))));axis('xy')\nhold on;\ntx=((1:shiftm/dn*fs/1000:mm)-1)*dt*1000;\nplot(tx,(nvo*log(fixpp(:,round(1:shiftm/dn*fs/1000:mm))/f0floor/2/pi)/log(2)+0.5)','ko');\nplot(tx,(nvo*log(fixpp(:,round(1:shiftm/dn*fs/1000:mm))/f0floor/2/pi)/log(2)+0.5)','w.');\nhold off\nxlabel('time (ms)');\nylabel('channel #');\ncolormap(jet);\n\nokid=1;\nreturn;\n\n%------------------------------------------------------------------\n\n%%function pm=zmultanalytFineCSPm(x,fs,f0floor,nvc,nvo,mu,mlt);\n\n% Dual waveleta analysis using cardinal spline manipulation\n% pm=multanalytFineCSP(x,fs,f0floor,nvc,nvo);\n% Input parameters \n% \n% x : input signal (2kHz sampling rate is sufficient.)\n% fs : sampling frequency (Hz)\n% f0floor : lower bound for pitch search (60Hz suggested)\n% nvc : number of total voices for wavelet analysis\n% nvo : number of voices in an octave\n%\t\t\t\tmu\t\t: temporal stretch factor\n% Outpur parameters\n% pm : wavelet transform using iso-metric Gabor function\n%\n% If you have any questions, mailto:kawahara@hip.atr.co.jp\n%\n% Copyright (c) ATR Human Information Processing Research Labs. 1996\n% Invented and coded by Hideki Kawahara\n% 30/Oct./1996\n\n%t0=1/f0floor;\n%lmx=round(6*t0*fs*mu);\n%wl=2^ceil(log(lmx)/log(2));\n%x=x(:)';\n%nx=length(x);\n%tx=[x,zeros(1,wl)];\n%gent=((1:wl)-wl/2)/fs;\n\n%nvc=18;\n\n%wd=zeros(nvc,wl);\n%wd2=zeros(nvc,wl);\n%ym=zeros(nvc,nx);\n%pm=zeros(nvc,nx);\n%mpv=1;\n%mu=1.0;\n%for ii=1:nvc\n% t=gent*mpv;\n% t=t(abs(t)<3.5*mu*t0);\n% wbias=round((length(t)-1)/2);\n% wd1=exp(-pi*(t/t0/mu).^2);%.*exp(i*2*pi*t/t0); \n% wd2=max(0,1-abs(t/t0/mu));\n% wd2=wd2(wd2>0);\n% wwd=conv(wd2,wd1);\n% wwd=wwd(abs(wwd)>0.0001);\n% wbias=round((length(wwd)-1)/2);\n% wwd=wwd.*exp(i*2*pi*mlt*t(round((1:length(wwd))-wbias+length(t)/2))/t0);\n% pmtmp1=fftfilt(wwd,tx);\n% pm(ii,:)=pmtmp1(wbias+1:wbias+nx)*sqrt(mpv);\n% mpv=mpv*(2.0^(1/nvo));\n% keyboard;\n%end;\n%[nn,mm]=size(pm);\n%pm=pm(:,1:mlt:mm);\n\n%----------------------------------------------------------------\nfunction pif=zwvlt2ifq(pm,fs)\n%\tWavelet to instantaneous frequency map\n%\tfqv=wvlt2ifq(pm,fs)\n\n%\tCoded by Hideki Kawahara\n%\t02/March/1999\n\n[~,mm]=size(pm);\npm=pm./(abs(pm));\npif=abs(pm(:,:)-[pm(:,1),pm(:,1:mm-1)]);\npif=fs/pi*asin(pif/2);\npif(:,1)=pif(:,2);\n\n%----------------------------------------------------------------\n\nfunction [slp,pbl]=zifq2gpm2(pif,f0floor,nvo)\n%\tInstantaneous frequency 2 geometric parameters\n%\t[slp,pbl]=ifq2gpm(pif,f0floor,nvo)\n%\tslp\t\t: first order coefficient\n%\tpbl\t\t: second order coefficient\n\n%\tCoded by Hideki Kawahara\n%\t02/March/1999\n\n[nn,~]=size(pif);\nfx=f0floor*2.0.^((0:nn-1)/nvo)*2*pi;\n\nc=2.0^(1/nvo);\ng=[1/c/c 1/c 1;1 1 1;c*c c 1];\nh=inv(g);\n\n%slp=pif(1:nn-2,:)*h(1,1)+pif(2:nn-1,:)*h(1,2)+pif(3:nn,:)*h(1,3);\nslp=((pif(2:nn-1,:)-pif(1:nn-2,:))/(1-1/c) ...\n +(pif(3:nn,:)-pif(2:nn-1,:))/(c-1))/2;\nslp=[slp(1,:);slp;slp(nn-2,:)];\n\npbl=pif(1:nn-2,:)*h(2,1)+pif(2:nn-1,:)*h(2,2)+pif(3:nn,:)*h(2,3);\npbl=[pbl(1,:);pbl;pbl(nn-2,:)];\n\nfor ii=1:nn\n\tslp(ii,:)=slp(ii,:)/fx(ii);\n\tpbl(ii,:)=pbl(ii,:)/fx(ii);\nend;\n\n%------------------------------------------\n\n%function [c1,c2]=znormwght(n)\n\n%zz=0:1/n:3;\n%hh=[diff(zGcBs(zz,0)) 0]*n;\n%c1=sum((zz.*hh).^2)/n;\n%c2=sum((2*pi*zz.^2.*hh).^2)/n;\n\n%-------------------------------------------\n\nfunction p=zGcBs(x,k)\n\ntt=x+0.0000001;\np=tt.^k.*exp(-pi*tt.^2).*(sin(pi*tt+0.0001)./(pi*tt+0.0001)).^2;\n\n\n%--------------------------------------------\nfunction smap=zsmoothmapB(map,fs,f0floor,nvo,mu,mlim,pex)\n\n[nvc,mm]=size(map);\n%mu=0.4;\nt0=1/f0floor;\nlmx=round(6*t0*fs*mu);\nwl=2^ceil(log(lmx)/log(2));\ngent=((1:wl)-wl/2)/fs;\n\nsmap=map;\nmpv=1;\nzt=0*gent;\niiv=1:mm;\nfor ii=1:nvc\n\tt=gent*mpv; %t0*mu/mpv*1000\n\tt=t(abs(t)<3.5*mu*t0);\n\twbias=round((length(t)-1)/2);\n\twd1=exp(-pi*(t/(t0*(1-pex))/mu).^2);\n\twd2=exp(-pi*(t/(t0*(1+pex))/mu).^2);\n\twd1=wd1/sum(wd1);\n\twd2=wd2/sum(wd2);\n\ttm=fftfilt(wd1,[map(ii,:) zt]);\n\ttm=fftfilt(wd2,[1.0./tm(iiv+wbias) zt]);\n\tsmap(ii,:)=1.0./tm(iiv+wbias);\n\tif t0*mu/mpv*1000 > mlim\n\t\tmpv=mpv*(2.0^(1/nvo));\n\tend;\nend;\n\n%--------------------------------------------\n%function [ff,vv,df]=zfixpfreq2(fxx,pif2,mmp,dfv)\n%\n%nn=length(fxx);\n%iix=(1:nn)';\n%cd1=pif2-fxx;\n%cd2=[diff(cd1);cd1(nn)-cd1(nn-1)];\n%cdd1=[cd1(2:nn);cd1(nn)];\n%fp=(cd1.*cdd1<0).*(cd2<0);\n%ixx=iix(fp>0);\n%ff=pif2(ixx)+(pif2(ixx+1)-pif2(ixx)).*cd1(ixx)./(cd1(ixx)-cdd1(ixx));\n%vv=mmp(ixx);\n%vv=mmp(ixx)+(mmp(ixx+1)-mmp(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));\n%df=dfv(ixx)+(dfv(ixx+1)-dfv(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));\n\n%--------------------------------------------\nfunction [ff,vv,df,aa]=zfixpfreq3(fxx,pif2,mmp,dfv,pm)\n\naav=abs(pm);\nnn=length(fxx);\niix=(1:nn)';\ncd1=pif2-fxx;\ncd2=[diff(cd1);cd1(nn)-cd1(nn-1)];\ncdd1=[cd1(2:nn);cd1(nn)];\nfp=(cd1.*cdd1<0).*(cd2<0);\nixx=iix(fp>0);\nff=pif2(ixx)+(pif2(ixx+1)-pif2(ixx)).*cd1(ixx)./(cd1(ixx)-cdd1(ixx));\n%vv=mmp(ixx);\nvv=mmp(ixx)+(mmp(ixx+1)-mmp(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));\ndf=dfv(ixx)+(dfv(ixx+1)-dfv(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));\naa=aav(ixx)+(aav(ixx+1)-aav(ixx)).*(ff-fxx(ixx))./(fxx(ixx+1)-fxx(ixx));\n\n%--------------------------------------------\nfunction [c1,c2]=znrmlcf2(f)\n\nn=100;\nx=0:1/n:3;\ng=zGcBs(x,0);\ndg=[diff(g) 0]*n;\ndgs=dg/2/pi/f;\nxx=2*pi*f*x;\nc1=sum((xx.*dgs).^2)/n*2;\nc2=sum((xx.^2.*dgs).^2)/n*2;\n\n%--------------------------------------------\nfunction x=cleaninglownoise(x,fs,f0floor)\n\nflm=50;\nflp=round(fs*flm/1000);\nnn=length(x);\nwlp=fir1(flp*2,f0floor/(fs/2));\nwlp(flp+1)=wlp(flp+1)-1;\nwlp=-wlp;\n\ntx=[x(:)' zeros(1,2*length(wlp))];\nttx=fftfilt(wlp,tx);\nx=ttx((1:nn)+flp);\n\nreturn;\n\n", "meta": {"author": "HidekiKawahara", "repo": "legacy_STRAIGHT", "sha": "964684981fe12cd232c5e882259dff126b3af0f2", "save_path": "github-repos/MATLAB/HidekiKawahara-legacy_STRAIGHT", "path": "github-repos/MATLAB/HidekiKawahara-legacy_STRAIGHT/legacy_STRAIGHT-964684981fe12cd232c5e882259dff126b3af0f2/src/fixpF0VexMltpBG4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8152325073083131, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.3853469358084859}} {"text": "function t = subsasgn(t,s,b)\n%SUBSASGN Subscripted assignement for ktensor.\n%\n% See also KTENSOR.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2015, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2015) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\nswitch s(1).type\n case '.'\n switch s(1).subs\n case 'lambda'\n if length(s) == 1\n t = ktensor(b, t.u);\n else\n newlambda = subsasgn(t.lambda, s(2:end), b);\n t = ktensor(newlambda, t.u);\n end\n case {'u','U'}\n if length(s) == 1\n t = ktensor(t.lambda, b);\n else\n tmpu = subsasgn(t.u, s(2:end), b);\n t = ktensor(t.lambda, tmpu);\n end\n otherwise\n error(['No such field: ', s(1).subs]);\n end\n case '()'\n error('Cannot change individual entries in a ktensor.')\n case '{}'\n new_s(1).type = '.';\n new_s(1).subs = 'u';\n new_s(2:length(s)+1) = s;\n t = subsasgn(t, new_s, b);\n otherwise\n error('Invalid subsasgn.');\nend\n\n\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u5206\u7c7b\u7b97\u6cd5/DEEP-TENSOR-FACTORIZATION-FOR-HYPERSPECTRAL-IMAGE-CLASSIFICATION-master/code/tensor_toolbox_2.6/@ktensor/subsasgn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5851011542032313, "lm_q1q2_score": 0.38524083952624744}} {"text": "function gridlines_test03 ( )\n\n%*****************************************************************************80\n%\n%% GRIDLINES_TEST03 tests GRID_TRIANGULAR.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 30 July 2010\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'GRIDLINES_TEST03\\n' );\n fprintf ( 1, ' GRID_TRIANGULAR draws a triangular grid.\\n' );\n\n axis ( [ 0.0, 1.0, 0.0, 1.0 ] );\n\n xval = [ 0.1, 0.95, 0.25 ];\n yval = [ 0.1, 0.2, 0.90 ];\n ngrid = 10;\n grid_triangular ( xval, yval, ngrid );\n\n xval = [ 0.8, 0.6, 0.7 ];\n yval = [ 0.9, 0.9, 0.7 ];\n ngrid = 3;\n grid_triangular ( xval, yval, ngrid );\n\n xlabel ( 'X' )\n ylabel ( 'Y' )\n title ( 'Triangular grids' )\n axis equal\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'Press return to continue.\\n' )\n hold off\n pause\n clf\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/gridlines/gridlines_test03.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.585101139733739, "lm_q2_score": 0.658417500561683, "lm_q1q2_score": 0.3852408299992805}} {"text": "function y = objfun_grad(x)\n\ny = [(2/3)*x(1);x(2)];", "meta": {"author": "QiangLong2017", "repo": "Optimization-Theory-and-Algorithm", "sha": "13becd67be377356c221367ffbc7c90a1aabd917", "save_path": "github-repos/MATLAB/QiangLong2017-Optimization-Theory-and-Algorithm", "path": "github-repos/MATLAB/QiangLong2017-Optimization-Theory-and-Algorithm/Optimization-Theory-and-Algorithm-13becd67be377356c221367ffbc7c90a1aabd917/code/10_1SteepDesecntDirection+BisectionMethod/objfun_grad.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7826624688140728, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.38521718142423383}} {"text": "function mObject = setAnchorFromRawAnchor(mObject,rawAnchor);\n% Set anchor points using raw anchor information\n% mObject = setAnchorFromRawAnchor(mObject,rawAnchor);\n\n% Designed and coded by Hideki Kawahara\n% 27/Feb./2005\n% Copyright(c) 2005, Hideki Kawahara\n\nTIMINGmARGIN = 10; % threshould for merging location\n[dm1,indsrt] = sort(rawAnchor(:,1));\nsortedAnchor = rawAnchor(indsrt,1);\nsortedFrequency = rawAnchor(indsrt,2);\nindexNumber = 1:length(sortedAnchor);\n\n%anchorCandidate = sortedAnchor(diff([-100;sortedAnchor])>TIMINGmARGIN);\nanchorIndex = indexNumber(diff([-100;sortedAnchor])>TIMINGmARGIN);\nanchorCandidate = sortedAnchor(anchorIndex);\nmObject.anchorTimeLocation = anchorCandidate; \nnFrequency = mObject.maximumFrequencyPoints; \n\nnAnchor = length(anchorCandidate);\nsortedAnchor(end+1) = sortedAnchor(end)+1;\nanchorIndex(end+1) = anchorIndex(end)+1; % Terminator\nfrequencyAnchor = zeros(nAnchor,nFrequency);\nfor ii=1:nAnchor\n iFrequency = 0;\n anchorLocation = 0;\n for jj=1:min(nFrequency,anchorIndex(ii+1)-anchorIndex(ii)+1)\n if sortedAnchor((jj-1)+anchorIndex(ii)) < sortedAnchor(anchorIndex(ii+1))\n frequencyAnchor(ii,jj) = sortedFrequency((jj-1)+anchorIndex(ii));\n anchorLocation = anchorLocation+sortedAnchor((jj-1)+anchorIndex(ii));\n iFrequency = iFrequency+1;\n end;\n end;\n if iFrequency>1\n [dmy1,indsrt] = sort(frequencyAnchor(ii,1:iFrequency));\n frequencyAnchor(ii,1:iFrequency) = frequencyAnchor(ii,indsrt);\n mObject.anchorTimeLocation(ii) = anchorLocation/iFrequency;\n end;\nend;\nmObject.anchorFrequency = frequencyAnchor;\n", "meta": {"author": "HidekiKawahara", "repo": "legacy_STRAIGHT", "sha": "964684981fe12cd232c5e882259dff126b3af0f2", "save_path": "github-repos/MATLAB/HidekiKawahara-legacy_STRAIGHT", "path": "github-repos/MATLAB/HidekiKawahara-legacy_STRAIGHT/legacy_STRAIGHT-964684981fe12cd232c5e882259dff126b3af0f2/morphing_src/setAnchorFromRawAnchor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945416, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3851656462815392}} {"text": "function [labels,classes] = ml_string2label(strings)\n%ML_STRING2LABEL Converts a cell array of strings to a num array of labels.\n%\n% input -----------------------------------------------------------------\n%\n% o strings : cell(N x 1), cell array of string labels\n%\n% output ----------------------------------------------------------------\n%\n% o labels : (N x 1), numerical array of class labels\n% \n% o classes: cell(num_classes x 1), array of unique class names \n%\n\n\nclasses = unique(strings);\nlabels = zeros(size(strings,1),1);\n\nfor i=1:size(classes,1)\n \n idx = ismember(strings,classes{i}); \n labels(idx) = ones(sum(idx(:)),1) .* i;\n \nend\n\n\nend\n\n", "meta": {"author": "epfl-lasa", "repo": "ML_toolbox", "sha": "61cc1245a2abe0c86a737d7b48bd645b28ffebee", "save_path": "github-repos/MATLAB/epfl-lasa-ML_toolbox", "path": "github-repos/MATLAB/epfl-lasa-ML_toolbox/ML_toolbox-61cc1245a2abe0c86a737d7b48bd645b28ffebee/functions/useful/ml_string2label.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3851213774581187}} {"text": "function plotclustfir(infir,oXc)\n\ncolors = {'r' 'g' 'b' 'y' 'c' 'm' 'k'};\nif max(oXc)>length(colors)\n error('not enough colors!');\nend\n\nfor c=1:size(infir,1);\n for s=1:size(infir,2);\n fir(c,:,:,s)=infir{c,s};\n end\nend\n\nmfir=squeeze(mean(fir,4));\nfigure;\nfor c=1:max(oXc);\nleg{c}=['clust',num2str(c)];\nend\n\nfor n=1:size(fir,1); % for each condition\n subplot(1,size(mfir,1),n);\n for c=1:max(oXc);\n hold on;\n plotfir=squeeze(mean(mfir(n,:,oXc==c),3));\n plotfir=squeeze(mfir(n,:,oXc==c)); \n plot(plotfir,'color',colors{c},'LineWidth',3)\n end\n legend(leg)\nend\n\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Visualization_functions/plotclustfir.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.38508624962253424}} {"text": "function [favar,favar_hd_estimates]=favar_hdestimates(favar,hd_estimates,n,IRFt,endo,strctident,L_g)\n\n%% prelim\n% number of identified shocks & create labels for the contributions\nif IRFt==1||IRFt==2||IRFt==3\n identified=n; % fully identified\n labels=endo;\nelseif IRFt==4 || IRFt==6 %if the model is identified by sign restrictions or sign restrictions (+ IV)\n identified=size(strctident.signreslabels_shocks,1); % count the labels provided in the sign res sheet (+ IV)\n labels=strctident.signreslabels_shocks; % signreslabels\nelseif IRFt==5\n identified=1; % one IV shock\n labels{identified,1}=strcat('IV Shock (',strctident.Instrument,')'); % one label for the IV shock\nend\n\n% if favar.onestep==1\n% \n% else\n% L=favar.L(favar.plotX_index,:);\n% end\n\nL=L_g;\n\n% if the number of identified shocks is smaller than the number endo\n% variables (not fully identified) and we have blocks, (and sum the\n% shock contributions) then we have to compute blocks_index_shocks, to\n% know to which blocks the shocks are assigned to, this is identified\n% analogue to the Factors by checking for 'Blockidentifier'. [favar.bnames{jj,1} '.']&& identified\n % Description the process\n sProcess.Comment = 'Average files';\n sProcess.Category = 'Custom';\n sProcess.SubGroup = 'Average';\n sProcess.Index = 301;\n sProcess.Description = 'https://neuroimage.usc.edu/brainstorm/Tutorials/Averaging#Averaging';\n % Definition of the input accepted by this process\n sProcess.InputTypes = {'data', 'results', 'timefreq', 'matrix'};\n sProcess.OutputTypes = {'data', 'results', 'timefreq', 'matrix'};\n sProcess.nInputs = 1;\n sProcess.nMinFiles = 2;\n sProcess.isSeparator = 1;\n % Definition of the options\n % === AVERAGE TYPE\n sProcess.options.label1.Comment = 'Group files:';\n sProcess.options.label1.Type = 'label';\n sProcess.options.avgtype.Comment = {'Everything', 'By subject', 'By folder (subject average)', 'By folder (grand average)', 'By trial group (folder average)', 'By trial group (subject average)', 'By trial group (grand average)'};\n sProcess.options.avgtype.Type = 'radio';\n sProcess.options.avgtype.Value = 1;\n % === FUNCTION\n sProcess.options.label2.Comment = 'Function:';\n sProcess.options.label2.Type = 'label';\n sProcess.options.avg_func.Comment = {'Arithmetic average: mean(x)', ...\n 'Average absolute values: mean(abs(x))', ...\n 'Root mean square (RMS): sqrt(sum(x.^2)/N)', ...\n 'Standard deviation: sqrt(var(x))', ...\n 'Standard error: sqrt(var(x)/N)', ...\n 'Arithmetic average + Standard deviation', ...\n 'Arithmetic average + Standard error', ...\n 'Median: median(x)'};\n sProcess.options.avg_func.Type = 'radio';\n sProcess.options.avg_func.Value = 1;\n % === WEIGHTED AVERAGE\n sProcess.options.weighted.Comment = 'Weighted average: mean(x) = sum(Leff_i * x(i)) / sum(Leff_i)';\n sProcess.options.weighted.Type = 'checkbox';\n sProcess.options.weighted.Value = 0;\n sProcess.options.weightedlabel.Comment = '      Leff_i = Effective number of averages for file #i';\n sProcess.options.weightedlabel.Type = 'label';\n % === KEEP EVENTS\n sProcess.options.keepevents.Comment = 'Keep all the event markers from the individual epochs';\n sProcess.options.keepevents.Type = 'checkbox';\n sProcess.options.keepevents.Value = 0;\n sProcess.options.keepevents.InputTypes = {'data', 'matrix'};\n % === SCALE NORMALIZE SOURCE MAPS (DEPRECATED OPTION AFTER INVERSE 2018)\n sProcess.options.scalenormalized.Comment = 'Adjust normalized source maps for SNR increase.
Example: dSPM(Average) = sqrt(Navg) * Average(dSPM)';\n sProcess.options.scalenormalized.Type = 'checkbox';\n sProcess.options.scalenormalized.Value = 0;\n sProcess.options.scalenormalized.InputTypes = {'results'};\n sProcess.options.scalenormalized.Hidden = 1;\n % === MATCH ROWS WITH NAMES\n sProcess.options.matchrows.Comment = 'Match signals between files using their names';\n sProcess.options.matchrows.Type = 'checkbox';\n sProcess.options.matchrows.Value = 1;\n sProcess.options.matchrows.InputTypes = {'timefreq', 'matrix'};\n % === EXCLUDE ZEROS FROM THE AVERAGE\n sProcess.options.iszerobad.Comment = 'Exclude the flat signals from the average (zero at all times)';\n sProcess.options.iszerobad.Type = 'checkbox';\n sProcess.options.iszerobad.Value = 1;\n sProcess.options.iszerobad.InputTypes = {'timefreq', 'matrix'};\nend\n\n\n%% ===== FORMAT COMMENT =====\nfunction Comment = FormatComment(sProcess)\n % Function\n if isfield(sProcess.options, 'avg_func')\n switch(sProcess.options.avg_func.Value)\n case 1, Comment = 'Average: ';\n case 2, Comment = 'Average/abs: ';\n case 3, Comment = 'RMS: ';\n case 4, Comment = 'Standard deviation: ';\n case 5, Comment = 'Standard error: ';\n case 6, Comment = 'Average+Std: ';\n case 7, Comment = 'Average+Stderr: ';\n case 8, Comment = 'Median: '; \n end\n else\n Comment = 'Average: ';\n end\n % Weighted\n if isfield(sProcess.options, 'weighted') && isfield(sProcess.options.weighted, 'Value') && ~isempty(sProcess.options.weighted.Value) && sProcess.options.weighted.Value\n Comment = ['Weighted ' Comment];\n end\n % Average type\n iAvgType = sProcess.options.avgtype.Value;\n Comment = [Comment, sProcess.options.avgtype.Comment{iAvgType}];\nend\n\n\n%% ===== RUN =====\nfunction OutputFiles = Run(sProcess, sInputs) %#ok\n % Initialize returned list\n OutputFiles = {};\n % Get current progressbar position\n if bst_progress('isVisible')\n curProgress = bst_progress('get');\n bst_progress('text', 'Grouping files...');\n else\n curProgress = [];\n end\n % Weighted\n if isfield(sProcess.options, 'weighted') && isfield(sProcess.options.weighted, 'Value') && ~isempty(sProcess.options.weighted.Value)\n isWeighted = sProcess.options.weighted.Value;\n else\n isWeighted = 0;\n end\n % Keep events\n if isfield(sProcess.options, 'keepevents') && isfield(sProcess.options.keepevents, 'Value') && ~isempty(sProcess.options.keepevents.Value)\n KeepEvents = sProcess.options.keepevents.Value;\n else\n KeepEvents = 0;\n end\n % Scale normalized source maps (DEPRECATED AFTER INVERSE 2018) \n if isfield(sProcess.options, 'scalenormalized') && isfield(sProcess.options.scalenormalized, 'Value') && ~isempty(sProcess.options.scalenormalized.Value)\n isScaleDspm = sProcess.options.scalenormalized.Value;\n else\n isScaleDspm = 0;\n end\n % Match signals between files using their names\n if isfield(sProcess.options, 'matchrows') && isfield(sProcess.options.matchrows, 'Value') && ~isempty(sProcess.options.matchrows.Value)\n isMatchRows = sProcess.options.matchrows.Value;\n else\n isMatchRows = 1;\n end\n % Exclude zero values\n if isfield(sProcess.options, 'iszerobad') && isfield(sProcess.options.iszerobad, 'Value') && ~isempty(sProcess.options.iszerobad.Value)\n isZeroBad = sProcess.options.iszerobad.Value;\n else\n isZeroBad = 1;\n end\n \n % Check type of input files\n if ~isempty(strfind(sInputs(1).FileName, 'timefreq_pac')) || ~isempty(strfind(sInputs(1).FileName, 'timefreq_dpac'))\n bst_report('Error', sProcess, [], ['Cannot average PAC maps after their computation.' 10 'Please use the process option \"Save average PAC across trials\" instead.']);\n return;\n end\n \n % Group files\n [iGroups, GroupComments] = SortFiles(sInputs, sProcess.options.avgtype.Value);\n % Average each group\n for i = 1:length(iGroups)\n % Set progress bar at the same level for each loop\n if ~isempty(curProgress)\n bst_progress('set', curProgress);\n end\n % Do not process if there is only one input\n if (length(iGroups{i}) == 1)\n bst_report('Warning', sProcess, sInputs(iGroups{i}(1)), 'File is alone in its trial/comment group. Not processed.');\n continue;\n end\n % Set the comment of the output file\n if ~isempty(GroupComments)\n sProcess.options.Comment.Value = GroupComments{i};\n end\n % Compute group average\n OutputFiles{end+1} = AverageFiles(sProcess, sInputs(iGroups{i}), KeepEvents, isScaleDspm, isWeighted, isMatchRows, isZeroBad);\n end\nend\n\n\n\n%% ===== SORT FILES =====\nfunction [iGroups, GroupComments, GroupNames] = SortFiles(sInputs, avgtype)\n GroupComments = [];\n GroupNames = {};\n % Group files in different ways: by subject, by condition, or all together\n switch (avgtype)\n % === EVERYTHING ===\n case 1\n iGroups = {1:length(sInputs)};\n GroupNames{1} = 'All';\n \n % === BY SUBJECT ===\n case 2\n [uniqueSubj,I,J] = unique({sInputs.SubjectFile});\n iGroups = cell(1, length(uniqueSubj));\n for i = 1:length(uniqueSubj)\n iGroups{i} = find(J == i)';\n GroupNames{i} = sInputs(iGroups{i}(1)).SubjectName;\n end\n \n % === BY CONDITION ===\n case {3,4}\n % Subject average\n if (avgtype == 3)\n inputCondPath = cell(1,length(sInputs));\n for iInput = 1:length(sInputs)\n inputCondPath{iInput} = [sInputs(iInput).SubjectName, '/', sInputs(iInput).Condition];\n end\n % Grand average\n else\n inputCondPath = {sInputs.Condition};\n end\n % Process each condition independently\n [uniqueCond,I,J] = unique(inputCondPath);\n iGroups = cell(1, length(uniqueCond));\n GroupComments = cell(1, length(uniqueCond));\n for i = 1:length(uniqueCond)\n iGroups{i} = find(J == i)';\n GroupComments{i} = sInputs(iGroups{i}(1)).Condition;\n end\n GroupNames = uniqueCond;\n \n % === BY TRIAL GROUPS ===\n case {5,6,7}\n % Get the condition path (SubjectName/Condition/CommentBase) or (Condition/CommentBase) for each input file\n CondPath = cell(1, length(sInputs));\n trialComment = cell(1, length(sInputs));\n for iInput = 1:length(sInputs)\n % Default comment\n trialComment{iInput} = sInputs(iInput).Comment;\n % If results/timefreq and attached to a data file\n if any(strcmpi(sInputs(iInput).FileType, {'results','timefreq'})) && ~isempty(sInputs(iInput).DataFile)\n switch (file_gettype(sInputs(iInput).DataFile))\n case 'data'\n [sStudyAssoc, iStudyAssoc, iFileAssoc] = bst_get('DataFile', sInputs(iInput).DataFile);\n if ~isempty(sStudyAssoc)\n trialComment{iInput} = sStudyAssoc.Data(iFileAssoc).Comment;\n else\n bst_report('Warning', 'process_average', sInputs(iInput), ['File skipped, the parent node has been deleted:' 10 sInputs(iInput).DataFile]);\n end\n \n case {'results', 'link'}\n [sStudyAssoc, iStudyAssoc, iFileAssoc] = bst_get('ResultsFile', sInputs(iInput).DataFile);\n if ~isempty(sStudyAssoc)\n [sStudyAssoc2, iStudyAssoc2, iFileAssoc2] = bst_get('DataFile', sStudyAssoc.Result(iFileAssoc).DataFile);\n if ~isempty(sStudyAssoc2)\n trialComment{iInput} = sStudyAssoc2.Data(iFileAssoc2).Comment;\n else\n bst_report('Warning', 'process_average', sInputs(iInput), ['File skipped, the parent node has been deleted:' 10 sStudyAssoc.Result(iFileAssoc).DataFile]);\n end\n else\n bst_report('Warning', 'process_average', sInputs(iInput), ['File skipped, the parent node has been deleted:' 10 sInputs(iInput).DataFile]);\n end\n \n case 'matrix'\n [sStudyAssoc, iStudyAssoc, iFileAssoc] = bst_get('MatrixFile', sInputs(iInput).DataFile);\n if ~isempty(sStudyAssoc)\n trialComment{iInput} = sStudyAssoc.Matrix(iFileAssoc).Comment;\n else\n bst_report('Warning', 'process_average', sInputs(iInput), ['File skipped, the parent node has been deleted:' 10 sInputs(iInput).DataFile]);\n end\n end\n end\n % Condition average\n if (avgtype == 5)\n CondPath{iInput} = [sInputs(iInput).SubjectName, '/', sInputs(iInput).Condition, '/', str_remove_parenth(trialComment{iInput})];\n % Subject average\n elseif (avgtype == 6)\n CondPath{iInput} = [sInputs(iInput).SubjectName, '/', str_remove_parenth(trialComment{iInput})];\n % Grand average\n else\n CondPath{iInput} = str_remove_parenth(trialComment{iInput});\n end\n end\n \n % Process each condition independently\n [uniquePath,I,J] = unique(CondPath);\n iGroups = cell(1, length(uniquePath));\n GroupComments = cell(1, length(uniquePath));\n for i = 1:length(uniquePath)\n % Skip empty paths\n if isempty(uniquePath{i})\n continue;\n end\n % Find files in this condition\n iGroups{i} = find(J == i)';\n GroupComments{i} = str_remove_parenth(trialComment{iGroups{i}(1)});\n end\n GroupNames = uniquePath;\n end\nend\n\n\n%% ===== AVERAGE FILES =====\nfunction OutputFile = AverageFiles(sProcess, sInputs, KeepEvents, isScaleDspm, isWeighted, isMatchRows, isZeroBad)\n OutputFile = [];\n % Parse inputs\n if (nargin < 7) || isempty(isZeroBad)\n isZeroBad = 1;\n end\n if (nargin < 6) || isempty(isMatchRows)\n isMatchRows = 1;\n end\n if (nargin < 5) || isempty(isWeighted)\n isWeighted = 0;\n end\n if (nargin < 4) || isempty(isScaleDspm)\n isScaleDspm = 0;\n end\n if (nargin < 3) || isempty(KeepEvents)\n KeepEvents = 0;\n end\n \n % === PROCESS AVERAGE ===\n % Get function\n isResults = strcmpi(sInputs(1).FileType, 'results');\n % if isResults && isfield(sProcess.options, 'avg_func')\n if isfield(sProcess.options, 'avg_func') && isfield(sProcess.options.avg_func, 'Value') && ~isempty(sProcess.options.avg_func.Value)\n switch (sProcess.options.avg_func.Value)\n case 1, Function = 'mean'; isVariance = 0; strComment = 'Avg';\n case 2, Function = 'abs'; isVariance = 0; strComment = 'Avg(abs)';\n case 3, Function = 'rms'; isVariance = 0; strComment = 'RMS';\n case 4, Function = 'mean'; isVariance = 1; strComment = 'Std';\n case 5, Function = 'mean'; isVariance = 1; strComment = 'StdError';\n case 6, Function = 'mean'; isVariance = 1; strComment = 'AvgStd';\n case 7, Function = 'mean'; isVariance = 1; strComment = 'AvgStderr';\n case 8, Function = 'median'; isVariance = 0; strComment = 'Median';\n end\n else\n Function = 'mean'; isVariance = 0; strComment = 'Avg';\n end\n % Compute average\n [Stat, Messages, iAvgFile, Events] = bst_avg_files({sInputs.FileName}, [], Function, isVariance, isWeighted, isMatchRows, isZeroBad, 1);\n \n % Apply corrections on the variance value\n if strcmpi(strComment, 'Std') || strcmpi(strComment, 'AvgStd')\n Stat.var = sqrt(Stat.var);\n elseif strcmpi(strComment, 'StdError') || strcmpi(strComment, 'AvgStderr')\n Stat.var = sqrt(Stat.var / length(sInputs));\n end\n % Add messages to report\n if ~isempty(Messages)\n if isempty(Stat)\n bst_report('Error', sProcess, sInputs, Messages);\n return;\n else\n bst_report('Warning', sProcess, sInputs, Messages);\n end\n end\n \n % Load first file of the list\n [sMat, matName] = in_bst(sInputs(iAvgFile(1)).FileName);\n \n % === SCALE dSPM VALUES (DEPRECATED AFTER INVERSE 2018) ===\n % Apply a scaling to the dSPM functions, to compensate for the fact that the scaling applied to the NoiseCov was not correct\n if isScaleDspm && isResults && isfield(sMat, 'Function') && ismember(sMat.Function, {'dspm','mnp','glsp','lcmvp'}) && isfield(sMat, 'ImageGridAmp')\n if ~isWeighted\n bst_report('Warning', sProcess, [], 'You cannot scale the normalized maps if you do not compute a weighted average. Select the option \"Weighted\" to enable this option.');\n elseif (sMat.nAvg ~= Stat.nAvg)\n Factor = sqrt(Stat.nAvg) / sqrt(sMat.nAvg);\n bst_report('Warning', sProcess, [], sprintf('Averaging normalized maps (%s): scaling the values by %1.3f to match the number of trials averaged (%d => %d)', sMat.Function, Factor, sMat.nAvg, Stat.nAvg));\n % Apply on both .var and .mean fields\n if isfield(Stat, 'mean') && ~isempty(Stat.mean)\n Stat.mean = Factor * Stat.mean;\n end\n if isfield(Stat, 'var') && ~isempty(Stat.var)\n Stat.var = (Factor ^ 2) * Stat.var;\n end\n end\n % disp('BST> Warning: Averaging dSPM maps is different from computing the dSPM of the average. ');\n % disp('BST> => dSPM(Average) = sqrt(N) * Average(dSPM)');\n end\n \n % === CREATE OUTPUT STRUCTURE ===\n % Get output study\n [sStudy, iStudy, Comment, uniqueDataFile] = bst_process('GetOutputStudy', sProcess, sInputs);\n % Comment: forced in the options\n if isfield(sProcess.options, 'Comment') && isfield(sProcess.options.Comment, 'Value') && ~isempty(sProcess.options.Comment.Value)\n Comment = [strComment ': ' sProcess.options.Comment.Value, ' (' num2str(length(sInputs)) ' files)'];\n % Comment: Process default\n else\n % % Replace the number of files\n % Comment = strrep(Comment, [num2str(length(sInputs)) ' '], [num2str(length(iAvgFile)) ' ']);\n % % Add file name\n % Comment = [strComment ': ' Comment, ' (' num2str(length(sInputs)) ' files)'];\n Comment = [strComment ': ' Comment];\n end\n % Weighted\n if isWeighted && ~strcmpi(strComment, 'Median')\n Comment = ['W' Comment];\n end\n % Copy fields from Stat structure\n switch (strComment)\n case {'Avg', 'Avg(abs)', 'RMS', 'Median'}\n sMat.(matName) = Stat.mean;\n case {'Std', 'StdError'}\n sMat.(matName) = Stat.var;\n case {'AvgStd', 'AvgStderr'}\n sMat.(matName) = Stat.mean;\n sMat.Std = Stat.var;\n end\n sMat.ChannelFlag = Stat.ChannelFlag;\n sMat.Time = Stat.Time;\n sMat.nAvg = Stat.nAvg;\n sMat.Leff = Stat.Leff;\n sMat.Comment = Comment;\n \n % History: Average\n if isfield(sMat, 'History')\n % Copy the history of the first file (but remove the entries \"import_epoch\" and \"import_time\")\n prevHistory = sMat.History;\n if ~isempty(prevHistory)\n % Remove entry 'import_epoch'\n iLineEpoch = find(strcmpi(prevHistory(:,2), 'import_epoch'));\n if ~isempty(iLineEpoch)\n prevHistory(iLineEpoch,:) = [];\n end\n % Remove entry 'import_time'\n iLineTime = find(strcmpi(prevHistory(:,2), 'import_time'));\n if ~isempty(iLineTime)\n prevHistory(iLineTime,:) = [];\n end\n end\n % History for the new average file\n sMat = bst_history('reset', sMat);\n sMat = bst_history('add', sMat, 'average', FormatComment(sProcess));\n sMat = bst_history('add', sMat, 'average', 'History of the first file:');\n sMat = bst_history('add', sMat, prevHistory, ' - ');\n else\n sMat = bst_history('add', sMat, 'average', Comment);\n end\n % History: Number of files averaged for each channel\n if any(Stat.nGoodSamples(1) ~= Stat.nGoodSamples) && isfield(Stat, 'RowNames') && ~isempty(Stat.RowNames) && iscell(Stat.RowNames) && (length(Stat.RefRowNames) <= 1)\n strInfo = 'Number of files that were averaged, for each signal:';\n sMat = bst_history('add', sMat, 'average', strInfo);\n uniqueGood = unique(Stat.nGoodSamples);\n for i = length(uniqueGood):-1:1\n strHistoryGood = [sprintf(' - %d files: ', uniqueGood(i)), sprintf('%s ', Stat.RowNames{Stat.nGoodSamples == uniqueGood(i)})];\n sMat = bst_history('add', sMat, 'average', strHistoryGood);\n strInfo = [strInfo, 10, strHistoryGood];\n end\n % Generate process warning\n bst_report('Warning', sProcess, sInputs, strInfo);\n end\n % History: List files\n sMat = bst_history('add', sMat, 'average', 'List of averaged files:');\n for i = 1:length(iAvgFile)\n sMat = bst_history('add', sMat, 'average', [' - ' sInputs(iAvgFile(i)).FileName]);\n end\n \n % Averaging results from the different data file: reset the \"DataFile\" field\n if isfield(sMat, 'DataFile') && ~isempty(sMat.DataFile) && (length(uniqueDataFile) ~= 1)\n sMat.DataFile = [];\n end\n % Copy all the events found in the input files\n if KeepEvents && ~isempty(Events)\n sMat.Events = Events;\n else\n sMat.Events = [];\n end\n % Rownames\n if isfield(Stat, 'RowNames') && ~isempty(Stat.RowNames)\n if strcmpi(matName, 'TF')\n sMat.RowNames = Stat.RowNames;\n elseif strcmpi(matName, 'Value')\n sMat.Description = Stat.RowNames;\n end\n end\n\n % === AVERAGE WARPED BRAINS ===\n if isResults\n sMat = FixWarpedSurfaceFile(sMat, sInputs(1), sStudy);\n end\n \n % === SAVE FILE ===\n % Output filename\n if strcmpi(sInputs(1).FileType, 'data')\n allFiles = {};\n for i = 1:length(sInputs)\n [tmp, allFiles{end+1}, tmp] = bst_fileparts(sInputs(i).FileName);\n end\n fileTag = str_common_path(allFiles, '_');\n else\n fileTag = bst_process('GetFileTag', sInputs(1).FileName);\n end\n OutputFile = bst_process('GetNewFilename', bst_fileparts(sStudy.FileName), [fileTag, '_average']);\n % Save on disk\n bst_save(OutputFile, sMat, 'v6');\n % Register in database\n db_add_data(iStudy, OutputFile, sMat);\nend\n\n\n\n%% ===== FIX SURFACE FOR WARPED BRAINS =====\n% Average source files coming from different subjects that are all different deformations of the default brain: \n% should re-use the initial cortex surface instead of the first cortex surface available\nfunction [sMat, isFixed] = FixWarpedSurfaceFile(sMat, sInput, sStudyDest)\n isFixed = 0;\n % Not a warped surface: skip\n if ~isfield(sMat, 'SurfaceFile') || isempty(sMat.SurfaceFile) || isempty(strfind(sMat.SurfaceFile, '_warped'))\n return;\n end\n % Must be from non-default to default anatomy\n isDestDefaultSubj = ismember(bst_fileparts(sStudyDest.BrainStormSubject), {bst_get('DirDefaultSubject'), bst_get('NormalizedSubjectName')});\n isSrcDefaultSubj = ismember(bst_fileparts(sInput.SubjectFile), {bst_get('DirDefaultSubject'), bst_get('NormalizedSubjectName')});\n if isSrcDefaultSubj || ~isDestDefaultSubj\n return;\n end\n % Rebuild possible target surface\n [tmp, fBase, fExt] = bst_fileparts(sMat.SurfaceFile);\n SurfaceFileDest = [bst_get('DirDefaultSubject'), '/', strrep([fBase, fExt], '_warped', '')];\n % Find destination file in database\n [sSubjectDest, iSubjectDes, iSurfDest] = bst_get('SurfaceFile', SurfaceFileDest);\n if isempty(iSurfDest)\n return;\n end\n % If this surface exists: use it if it has the same number of vertices as the source surface\n % Get the vertices number from source and destination surface files\n VarInfoSrc = whos('-file', file_fullpath(sMat.SurfaceFile), 'Vertices');\n VarInfoDest = whos('-file', file_fullpath(SurfaceFileDest), 'Vertices');\n % Number of vertices match: change the surface\n if (VarInfoSrc.size(1) == VarInfoDest.size(1))\n sMat.SurfaceFile = SurfaceFileDest;\n isFixed = 1;\n end\nend\n\n\n\n\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/toolbox/process/functions/process_average.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3850578851851527}} {"text": "function LU = extract_bounds_from_norm_operator(LU,extstruct,extvariables,i);\narg = extstruct(i).arg{1};\nif min(size(arg))==1 & length(extstruct(i).arg)>1\n p = extstruct(i).arg{2};\n % Maximize each element conservatively, and use the norm of\n % that worst-case vector\n U = max(abs(LU(getvariables(arg),:)),[],2);\n if ~all(isinf(U))\n xmax = abs(getbase(arg))*[1;U];\n LU(extvariables(i),2) = min([norm(xmax,p) LU(extvariables(i),2)]);\n end\nend\n% norms are positive...\nLU(extvariables(i),1) = max([0 LU(extvariables(i),1)]);\n\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/extract_bounds_from_norm_operator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702642896702, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3850578788705848}} {"text": "function varargout = spy(X,variablesonly)\n%SPY (overloaded)\n\nif nargin < 2\n variablesonly = 0;\nend\n if isa(X,'blkvar')\n X = sdpvar(X);\n end\n \nif variablesonly \n Z = X.basis(:,2:end); \nelse\n Z = X.basis; \nend\n\nZ = reshape(sum(abs(Z),2),X.dim(1),X.dim(2));\nZ = Z~=0;\nif nargout==0\n spy(Z)\nelse\n varargout{1}=Z;\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/@sdpvar/spy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3850328422054596}} {"text": "%DYADIC Dyadic datafile operations\n%\n% C = DYADIC(A,P,B,Q)\n%\n% Computes C = P*A + Q*B\n%\n% This datafile operation is, like others, either stored as\n% a preprocessing or as a postprocessing for datafiles using\n% a call to DYADICM.\n%\n% Note that in P a function name can be stored and in Q a cell\n% array with a set of parameters. In that case effectively \n% feval(p,a1,a2,q{:}) will be executed inside DYADICM.\n%\n% SEE ALSO (PRTools Guide)\n% DATAFILES, DYADICM\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/@prdatafile/dyadic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3850328422054596}} {"text": "function lam = prod_lambda_msgs(n, cs, msg, msg_type, except)\n\nif nargin < 5, except = -1; end\n\nlam = msg{n}.lambda_from_self;\nswitch msg_type\n case 'd',\n for i=1:length(cs)\n c = cs(i);\n if c ~= except\n lam = lam .* msg{n}.lambda_from_child{i};\n end\n end \n case 'g',\n if isinf(lam.precision) % isfield(lam, 'observed_val')\n return; % pass on the observed msg\n end\n for i=1:length(cs)\n c = cs(i);\n if c ~= except\n m = msg{n}.lambda_from_child{i};\n lam.precision = lam.precision + m.precision;\n lam.info_state = lam.info_state + m.info_state;\n end\n end \nend\n\n\n\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/static/@pearl_inf_engine/private/prod_lambda_msgs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044135, "lm_q2_score": 0.611381973294151, "lm_q1q2_score": 0.3850328422054596}} {"text": "function [varargout]=quiverCurve(varargin)\n\n%% Parse input\n\nswitch nargin\n case 1\n Vg=varargin{1};\n dirOpt=1;\n colorOpt='k';\n alphaLevel=1;\n case 2\n Vg=varargin{1};\n dirOpt=varargin{2};\n colorOpt='k';\n alphaLevel=1;\n case 3\n Vg=varargin{1};\n dirOpt=varargin{2};\n colorOpt=varargin{3}; \n alphaLevel=1;\n case 4\n Vg=varargin{1};\n dirOpt=varargin{2};\n colorOpt=varargin{3};\n alphaLevel=varargin{4};\nend\n\n%%\n\nif size(Vg,2)==2\n Vg(:,3)=0;\nend\n\nswitch dirOpt\n case 1 %Forward\n V=Vg(1:end-1,:);\n U=diff(Vg,1,1); \n case 2 %Backward\n V=Vg(2:end,:);\n U=flipud(diff(flipud(Vg),1,1)); \n case 3 %Central\n V=Vg;\n Uf=[diff(Vg,1,1); nan(1,size(Vg,2))];\n Ub=-[nan(1,size(Vg,2)); flipud(diff(flipud(Vg),1,1))];\n U=Uf;\n U(:,:,2)=Ub;\n U=gnanmean(U,3); \nend\nD=sqrt(sum(U.^2,2));\na=[min(D(:)) max(D(:))];\n\n\n[F,V,C]=quiver3Dpatch(V(:,1),V(:,2),V(:,3),U(:,1),U(:,2),U(:,3),[],a);\n\nif isempty(colorOpt) %If empty use colormapping\n h=gpatch(F,V,C,'none',alphaLevel);\nelse %else use specified which could be 'k'\n h=gpatch(F,V,colorOpt,'none',alphaLevel);\nend\n\nvarargout{1}=h;\n\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/quiverCurve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3850328422054596}} {"text": "function van_der_corput_seed_set ( seed )\n\n%*****************************************************************************80\n%\n%% VAN_DER_CORPUT_SEED_SET sets the seed of the van der Corput sequence.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 27 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Johannes van der Corput,\n% Verteilungsfunktionen I & II,\n% Nederl. Akad. Wetensch. Proc.,\n% Volume 38, 1935, pages 813-820, pages 1058-1066.\n%\n% Parameters:\n%\n% Input, integer SEED, the new value for the seed. SEED should be\n% nonnegative. Only the integer part of SEED is used. SEED = 0\n% is allowed, and returns R = 0.\n%\n% Global, integer VAN_DER_CORPUT_SEED, the current seed.\n%\n global van_der_corput_BASE\n global van_der_corput_SEED\n%\n if ( seed < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'VAN_DER_CORPUT_SEED_SET - Fatal error!\\n' );\n fprintf ( 1, ' Input value of SEED < 0!\\n' );\n fprintf ( 1, ' SEED = %d\\n', seed );\n return\n end\n\n van_der_corput_SEED = floor ( seed );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/van_der_corput/van_der_corput_seed_set.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.6992544335934767, "lm_q1q2_score": 0.3850146415197409}} {"text": "function update_editfield_date(src,~)\n %update_editfield_date general function to update x.Value with a datenum when x.String is updated, where x is an editfield\n % use as the callback\n %\n % initialdate = '2015-01-23 14:31:55.01'\n % uicontrol('Style','edit','string',initialdate,'Value',datenum(initialdate),'Callback',@update_editfield_date);\n % can interpret as decimal year or full date\n \n isTextdate = contains(src.String,{':',' ','/','-'});\n \n if isTextdate\n src.Value = datenum(datetime(src.String)); %provides extra parsing\n else\n d = str2double(get(src,'String'));\n if d >= 1800 && d < 3000\n %treat as year\n set(src,'String',[get(src,'String'), '-01-01 00:00:00']);\n update_editfield_date(src);\n return\n else\n try\n src.Value=str2double(src.String);\n catch ME\n warning(ME)\n end\n end\n end\nend", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/cgr_utils/gui/update_editfield_date.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587586, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.38501463461803276}} {"text": "function [V,F] = png2mesh( ...\n filename, laplacian_smoothness_iterations, max_points_on_boundary)\n % PNG2MESH\n %\n % [V,F] = png2mesh(filename, laplacian_smoothness_iterations,\n % max_points_on_boundary)\n %\n % Mesh the non transparent part of an image. Best to have the entire shape\n % surrounded by at least one transparent pixel. Also the outer boundary and\n % boundary of holes should be roughly the same size as resampling to meet the\n % max_points_on_boundary parameter is done by edge collapsing on the boundary\n % (small boundaries will end up with too many samples and therefor the\n % triangulation will be dense there).\n % \n % Inputs:\n % filename path to .png file\n % laplacian_smoothness_iterations Number of iterations of laplacian\n % smoothing of the positions of boundary curve points before handing\n % curve to Triangle\n % max_points_on_boundary maximum number of points in the input curve\n % before handing to Triangle\n % Outputs:\n % F #faces by 3, list of face indices\n % V #V by 2 list of polygon vertices, note that y-coordinates will be\n % \"flipped\" with respect to the image if you think of the image rows as\n % counting from 0 at the top left corner to size(im,1) at the bottom\n % right corner\n %\n % Copyright 2011, Alec Jacobson (jacobson@inf.ethz.ch)\n %\n % See also: bwmesh, png2poly, triangle\n %\n\n warning('obsolete: use bwmesh');\n\n basename = regexprep(filename,'\\.png$','');\n % use alpha channel of png image to define poly\n [V,E,H] = png2poly(...\n filename,...\n laplacian_smoothness_iterations, ...\n max_points_on_boundary);\n if ~isempty(H)\n warning('Holes non-empty, but I know holes sometimes come out broken');\n end\n\n unr = setdiff(1:size(V,1),E(:));\n if(~isempty(unr))\n warning('Unreferenced vertices in outline...\\n');\n end\n % get average squared edge length as a guess at the maximum area constraint\n % for the triangulation\n avg_sqr_edge_length = mean(sum((V(E(:,1),:)-V(E(:,2),:)).^2,2));\n % triangulate the polygon\n [V,F] = triangle(V,E,H,'MaxArea',avg_sqr_edge_length/2.0,'Quality',30);\n %[V,F] = triangle(V,E,[]);\n unr = setdiff(1:size(V,1),F(:));\n if(~isempty(unr))\n warning('Removing unreferenced vertices in mesh...');\n [V,~,F] = faces_first(V,[],F);\n V=V(1:max(F(:)),:);\n end\n\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/png2mesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3850146346180327}} {"text": "function g = restrict(f, s)\n%RESTRICT Restrict a BNDFUN to a subinterval.\n% RESTRICT(F, S) returns a BNDFUN that is restricted to the subinterval\n% [S(1), S(2)] of F.domain.\n%\n% If LENGTH(S) > 2, i.e., S = [S1, S2, S3, ...], then RESTRICT(F, S) returns\n% a cell-array of BNDFUN objects, where the cells contain F restricted to each\n% of the subintervals defined by S.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Deal with empty case:\nif ( isempty(f) )\n g = f;\n return\nend\n\n% Check if s is actually a subinterval:\nhs = diff(f.domain)*eps; % Some wiggle room.\nif ( s(1) < f.domain(1) )\n if ( abs(s(1) - f.domain(1)) < hs )\n s(1) = f.domain(1);\n else\n error('CHEBFUN:BNDFUN:restrict:badInterval', 'Not a valid interval.')\n end\nend\nif ( s(end) > f.domain(2) )\n if ( abs(s(end) - f.domain(2)) < hs )\n s(end) = f.domain(2);\n else\n error('CHEBFUN:BNDFUN:restrict:badInterval', 'Not a valid interval.')\n end\nend\nif ( any(diff(s) <= 0) )\n error('CHEBFUN:BNDFUN:restrict:badInterval', 'Not a valid interval.')\nend\n\nif ( (numel(s) == 2) && all( s == f.domain) ) \n % Nothing to do here!\n g = f;\n return\nend\n\n% Compute the breaks in [-1,1] space and restrict the onefun:\nt = f.mapping.Inv(s);\n\n% Restrict the ONEFUN field of f.\nrestrictedOnefuns = restrict(f.onefun, t);\n\n% In case S = [S1, S2], i.e., we are only restricting to one subinterval,\n% restrictedOnefuns will be a ONEFUN. In case S = [S1, S2, ..., SN], i.e., we\n% are restricting to multiple subinterval, restrictedOnefuns will be a\n% cell-array of ONEFUN objects. We need to treat the cases differently, as we\n% also want to either return a BNDFUN or cell-array of BNDFUN objects depending\n% on how many subintervals we are restricting to.\nif ( length(s) == 2 )\n % Only restricting to one subinterval -- return a BNDFUN.\n \n % Create an empty BNDFUN, and assign fields directly. This is faster than\n % using the BNDFUN constructor.\n g = bndfun();\n g.onefun = restrictedOnefuns;\n g.domain = s;\n g.mapping = bndfun.createMap(s);\nelse\n % Restricting to multiple subintervals -- return a cell-array of BNDFUN\n % objects.\n \n % Create a cell to be returned.\n g = cell(1, numel(s) - 1);\n \n % Create an empty BNDFUN:\n emptyBndfun = bndfun();\n \n % Loop over each of the new subintervals, make a bndfun with new mapping,\n % and store in the cell returned:\n for k = 1:(numel(s) - 1)\n % Assign fields directly to an empty temporary BNDFUN. This is faster\n % than using the BNDFUN constructor.\n gTemp = emptyBndfun;\n gTemp.onefun = restrictedOnefuns{k};\n gTemp.domain = s(k:k+1);\n gTemp.mapping = bndfun.createMap(s(k:k+1));\n g{k} = gTemp;\n end\nend\n\nend\n\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@bndfun/restrict.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6076631840431539, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.38490009763209}} {"text": "classdef net_model_acp < mp.net_model_ac & mp.form_acp\n\n% MATPOWER\n% Copyright (c) 2019-2022, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n properties\n va = [];\n vm = [];\n end\n\n methods\n function obj = net_model_acp()\n obj@mp.net_model_ac();\n obj.element_classes = ...\n { @mp.nme_bus_acp, @mp.nme_gen_acp, @mp.nme_load_acp, ...\n @mp.nme_branch_acp, @mp.nme_shunt_acp };\n\n %% Due to a bug related to inheritance in constructors in\n %% Octave 5.2 and earlier (https://savannah.gnu.org/bugs/?52614),\n %% INIT_SET_TYPES() cannot be called directly in the\n %% MP_IDX_MANAGER constructor, as desired.\n %%\n %% WORKAROUND: INIT_SET_TYPES() is called explicitly as needed\n %% (if obj.node is empty) in BUILD() and DISPLAY(),\n %% after object construction, but before object use.\n end\n\n function obj = def_set_types(obj)\n def_set_types@mp.net_model_ac(obj); %% call parent first\n obj.set_types.va = 'VOLTAGE ANG VARS (va)';\n obj.set_types.vm = 'VOLTAGE MAG VARS (vm)';\n end\n\n function va = initial_voltage_angle(obj, idx)\n va = obj.params_var('va');\n if nargin > 1 && ~isempty(idx)\n va = va(idx);\n end\n end\n end %% methods\nend %% classdef\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/+mp/net_model_acp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.63341027751814, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.38490009704140454}} {"text": "function [F_maxSize, F_maxLoc] = getFeatMatHeatmap( jobID, taskID, objIDs, CONTIG_THR )\n% Identify features covering a contig block w/ length at least CONTIG_THR\n% Input:\n% jobID : integer id of job\n% taskID : integer id of which run of the job to examine\n% objIDs : vector of objects to consider\n% if empty, we look at all objects\n% CONTIG_THR : integer specifying minimum length of a contig block\n% mocap data recorded at 120fps,\n% block-averaged so more like 10 fps\n% thus setting CONTIG_THR=10 means 1 sec\n% OUTPUT\n% F_maxSize : N x K matrix\n% where entry n,k gives integer length of *longest*\n% contig block assigned to feature k in sequence n\n% F_maxLoc : N x K matrix\n% where entry n,k gives timestep id of the start of the\n% where *longest* contig block of feat k in seq. n \n\n\n\nif ~exist( 'CONTIG_THR', 'var' )\n CONTIG_THR = 10;\nend\n\nINFO = loadSamplerInfo( jobID, taskID );\nQ = loadSamplerOutput( jobID, taskID );\n\ndata = INFO.data;\n\nF = Q.Psi(end).F;\nstateSeq = Q.Psi(end).stateSeq;\n\nK = size(F,2);\nif ~exist( 'objIDs', 'var') || isempty( objIDs )\n objIDs = 1:size(F,1);\nend\nN = length(objIDs);\n\n\n\n\nF_maxSize = zeros( N, K );\nF_maxLoc = zeros( N, K );\nfor aa = 1:length(objIDs )\n [bSiz,bLoc,bVal] = getContigBlocks( stateSeq( objIDs(aa) ).z );\n \n us = unique( bVal );\n for uu = 1:length( us )\n occurIDs = find( bVal == us(uu) );\n \n keepers = bSiz( occurIDs ) > CONTIG_THR;\n if any( keepers )\n occurIDs = occurIDs(keepers); \n if isempty( occurIDs )\n continue;\n end\n [maxSize,maxID] = max( bSiz( occurIDs ) ); \n F_maxSize( aa, us(uu) ) = maxSize;\n F_maxLoc( aa, us(uu) ) = bLoc( occurIDs(maxID) );\n end\n \n end\n \nend\n\n\n% if strcmp( INFO.model.obsModel.type, 'Multinomial' )\n% % Make sure each interval has STIPS in >1/2 of the included tsteps\n% doKeep = true(1, length(occurIDs) );\n% for oo = 1:length( occurIDs )\n% tstart = bLoc(occurIDs(oo));\n% tstop = tstart+bSiz( occurIDs(oo) )-1;\n% if sum( data_struct(aa).nEmissions(tstart:tstop) ) < length( tstart:tstop )/2\n% doKeep(oo) = false;\n% end\n% end\n% occurIDs = occurIDs( doKeep );\n% end", "meta": {"author": "michaelchughes", "repo": "NPBayesHMM", "sha": "22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd", "save_path": "github-repos/MATLAB/michaelchughes-NPBayesHMM", "path": "github-repos/MATLAB/michaelchughes-NPBayesHMM/NPBayesHMM-22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd/code/viz/getFeatMatHeatmap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.63341026367784, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.38490008863116393}} {"text": "function displaytable(data,headings,labels,cellsize,decimalsize,permutation,cellindices,cellcolors)\n%\n% Prints out a condensed, legible N-dimensional data table with dimension\n% headings and variable cell width and precision. \n%\n% Entries can be highlighted with color using the cprintf function available \n% on Matlab Central.\n%\n% data is an n-dimensional array\n% headings {'Row' 'Column'} is a cell array containing the name of each dimension.\n% labels {{1 2 3} {4 5 6}} is a cell array containing lists of values for each dimension.\n% each element of labels can be either: \n% cell array of strings; \n% cell array of numbers; \n% array of numbers.\n% \n% cellsize (optional, default 6) is the width of each displayed cell\n% decimalsize (optional, default 2) is the number of decimal places\n% displayed in each cell\n%\n% permutation [3 4 1 2] describes the ordering of dimensions in the final\n% displayed table. Data, headings, and labels are all permuted accordingly\n%\n% cellindices [m x ndim]: m n-dimensional tuplets containing the indices of\n% entries to be highlighted\n% cellcolors [m x 3]: [R,G,B] color tuplets for entries to be highlighted\n%\n% Matt Caywood\n%\n% Versions:\n% 0.1: 2010.06.16 Initial version\n% 0.2: 2010.06.29 Fixed degenerate tables with dimension values = 1\n% 0.3: 2010.07.15 Added convenient table permutations\n% 0.31: 2010.07.16 Fixed dimension error checking\n% 0.4: 2010.07.20 Added color highlighting of entries using cprintf\n% 0.41: 2010.07.21 Fixed header spacing\n% 0.42: 2011.03.08 Worked around -0 issue in printf\n\n% displaytable(rand(5,5),{'1' '2'},{{'C1' 'C2' 'C3' 'I1' 'I2'},{'C1' 'C2' 'C3' 'I1' 'I2'}})\n\nglobal cellwidth decimalplaces cellformat myprintf;\n\n%% check input valid\nif ~isnumeric(data), error('displaytable:NotNumeric','Data must be numeric.'); end\nif ~isreal(data), error('displaytable:NotReal','Data must contain only real elements.'); end\n\n% use headings as canonical length, because matlab ignores singleton trailing dimensions in data\nnd = length(headings);\ndims = size(data);\n\nif any(dims == 0), fprintf('[]\\n'); return; end % some dimension is zero\nif ndims(data) > nd, error('displaytable:headings','Not enough headings for data.'); end\nif length(labels) ~= nd, error('displaytable:headings','Headings and labels are different lengths.'); end\nfor i = 1:nd\n % accept singleton trailing dimensions\n if ~( (i > length(dims) && 1 == length(labels{i})) || (dims(i) == length(labels{i})) )\n error('displaytable:labels','Label list #%d (%s) is wrong length for data.',i,headings{i}); \n end\nend \n\n%% create cell format string\nif ~exist('cellsize','var'), cellwidth = 6; else cellwidth = cellsize; end\nif ~exist('decimalsize', 'var'), decimalplaces = 2; else decimalplaces = decimalsize; end\n\nassert(cellwidth > decimalplaces+1);\ncellformat = ['%' int2str(cellwidth-(decimalplaces+1)) '.' int2str(decimalplaces) 'f'];\n\n%% normalize labels to cell array of strings\nfor i = 1:nd\n if ~iscell(labels{i}), labels{i} = num2cell(labels{i}); end\n for j = 1:length(labels{i})\n if isnumeric(labels{i}{j}), labels{i}{j} = num2str(labels{i}{j}); end\n end\nend\n\n%% Use cprintf if available and cellindices specified, otherwise builtin fprintf\nmyprintf = @(col,fmt,varargin) fprintf(fmt,varargin{:});\n\nif ~exist('cellindices','var')\n cellindices = [];\n cellcolors = [];\nelse\n assert(size(cellindices,2) == nd,'Cellindices have wrong dimensions.');\n if ~exist('cprintf','file')\n fprintf('WARNING: cprintf not found, colors will not be shown!\\nPlease download cprintf from Matlab Central:\\nhttp://www.mathworks.com/matlabcentral/fileexchange/24093\\n');\n else\n myprintf = @cprintf;\n if ~exist('cellcolors','var')\n cellcolors = repmat([1 0 0],[size(cellindices,1) 1]); % default red\n else\n assert(size(cellcolors,2) == 3,'Colors must be RGB triplets');\n assert(size(cellcolors,1) == size(cellindices,1),'Colors must be equal length to indices');\n end\n end\nend\n\n%% permute table\nif exist('permutation','var') && ~isempty(permutation)\n assert(length(permutation) == nd,'Wrong permutation length.');\n data = permute(data,permutation);\n headings = {headings{permutation}};\n labels = {labels{permutation}};\n \n if ~isempty(cellindices)\n for m = 1:size(cellindices,1)\n cellindices(m,:) = cellindices(m,permutation);\n end\n end\nend\n\n% recurse to print out all tables\ndisplaytable_helper(data,headings,labels,cellindices,cellcolors);\n\nend\n\n%% recursion helper\nfunction displaytable_helper(data,headings,labels,cellindices,cellcolors)\n\nglobal myprintf;\n\nnd = ndims(data); % nd always >= 2\n\nif (nd == 2) % 1D row or column vector, or 2D matrix\n display2dtable(data,headings,labels,cellindices,cellcolors);\n \nelse % nd > 2\n title = headings{1};\n sublabels = labels{1};\n labelchars = maxchars(sublabels);\n\n nidx = size(data,1);\n remainingdims = size(data); remainingdims = remainingdims(2:nd);\n for subscr = 1:nidx\n \n whichidx = cell(1,nd);\n whichidx{1} = subscr; \n for i = 2:nd; whichidx{i} = ':'; end\n subs.type = '()';\n subs.subs = whichidx;\n subtab = subsref(data,subs);\n subtab = reshape(subtab,remainingdims);\n\n myprintf('text','%s = %s\\t\\n',title,truncpadstring(sublabels{subscr},labelchars));\n if isempty(cellindices), passindices = [];\n else passindices = (cellindices(:,1) == subscr); \n end\n displaytable_helper(subtab,headings(2:end),labels(2:end),cellindices(passindices,2:end),cellcolors(passindices,:));\n end\nend\nend\n\n%% base case\nfunction display2dtable(data,headings,labels,cellindices,cellcolors)\n\nassert(~isempty(headings));\nassert(nargin >= 3,'Need row, column labels');\nassert(nargin == ndims(data) + 3,'Wrong # arguments');\n\n[nrow,ncol] = size(data);\n\nglobal cellformat cellwidth decimalplaces myprintf;\n\nif length(headings) == 1\n % handle degenerate 1 x n, n x 1 cases\n if (ncol == 1)\n colheading = '';\n collabels = cell(size(data));\n rowheading = headings{1};\n rowlabels = labels{1};\n elseif (nrow == 1)\n colheading = headings{1};\n collabels = labels{1};\n rowheading = '';\n rowlabels = cell(size(data));\n end\nelse\n rowheading = headings{1};\n rowlabels = labels{1};\n colheading = headings{2};\n collabels = labels{2};\nend\n\nrowchars = max(3,maxchars(rowlabels));\n\n% squeeze dimension label into row label space\ndimchars = max(1,floor(rowchars/2));\ndim = [truncpadstring(rowheading,dimchars) '/' truncpadstring(colheading,dimchars)];\n\n% display header\nmyprintf('text',dim);\nfor i = 1:ncol\n myprintf('text',' %s',truncpadstring(collabels{i},cellwidth));\nend\nmyprintf('text','\\n');\n\n% display rows\nfor j = 1:nrow\n myprintf('text',truncpadstring(rowlabels{j},rowchars));\n for i = 1:ncol\n \n if isempty(cellindices)\n idx = [];\n else\n idx = find(cellindices(:,1) == j & cellindices(:,2) == i);\n if ~isempty(idx), idx = idx(1); end % use first only\n end\n\n % clean up the rounding a bit so \"-0.00\" never appears, only \"0.00\"\n roundeddata = fround(data(j,i),decimalplaces);\n if (roundeddata == 0), roundeddata = 0; end % this gets rid of floating point -0\n\n if isempty(idx)\n myprintf('text',' %s',truncpadstring(sprintf(cellformat,roundeddata),cellwidth));\n else\n myprintf(cellcolors(idx,:),' %s',truncpadstring(sprintf(cellformat,roundeddata),cellwidth));\n end\n end\n myprintf('text','\\n');\nend\n\nend\n\n%% -----------------\nfunction n = maxchars(c)\n% find maximum length in characters of strings in cell array\n\nn = 0;\nfor i = 1:length(c)\n n = max(n,length(c{i})); \nend\n\nend\n\n%% -----------------\nfunction ps = truncpadstring(s,n)\n% fit string s into n characters\n\nif length(s) > n\n ps = s(1:n);\nelse\n ps = sprintf(['%' num2str(n) 's'],s);\nend\n\nend\n\n%% -----------------\nfunction b = fround(a,n)\n% fix-round\n\nif ~exist('n','var'), n = 0; end\n\nb = round(a*10^n)/10^n;\n\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27920-displaytable/displaytable.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631698328917, "lm_q2_score": 0.6334102567576901, "lm_q1q2_score": 0.3849000844260438}} {"text": "%==============================================================================\n% This code is part of the Matlab-based toolbox\n% FAIR - Flexible Algorithms for Image Registration. \n% For details see \n% - https://github.com/C4IR and\n% - http://www.siam.org/books/fa06/\n%==============================================================================\n% This files simplifies the generation of FAIR data\n% Input\n% example the name of the game (for figures etc)\n% fileT name of a image file for the template image\n% fileR name of a image file for the reference image\n% varargin list of additional variables such as omega, m, LM\n%==============================================================================\n\nfunction expfile = jpgs2data(example,fileT,fileR,varargin)\n\nif nargin == 0,\n help(mfilename)\n runMinimalExample\n return;\nend\n\nomega = [];\nm = [];\nLM = [];\nviewPara = {'viewImage','viewImage2D','colormap','gray(256)'};\nimgPara = {'imgModel','linearInter'};\noverwrite = 0;\n\nfor k=1:2:length(varargin), % overwrite defaults\n eval([varargin{k},'=varargin{',int2str(k+1),'};']);\nend;\n\nif isempty(example),\n caller = dbstack;\n expfile = caller(min(2,length(caller))).name;\n example = expfile(6:end-5);\nelse\n expfile = sprintf('setup%sData',example);\nend\nexpfile = fullfile(FAIRpath,'temp',expfile);\n\nFAIRmessage(expfile)\nif exist([expfile,'.mat'],'file') & ~overwrite,\n fprintf('[%s] %s exists\\n',mfilename,expfile);\n return\nend;\n\n% do whatever needed to be done to get your data here\nimage = @(str) double(flipud(imread(str))'); % reads and converts\n\n% load the original data, set domain, initial discretization, and grid\ndataT = image(fileT);\ndataR = image(fileR);\n\nif isempty(omega), omega = [0,size(dataT,1),0,size(dataT,2)]; end;\nif isempty(m), m = size(dataR); end;\n\nviewImage('reset',viewPara{:});\nimgModel('reset',imgPara{:});\n\nomegaI = @(i) omega(min(i,size(omega,1)),:);\nxc = @(k) getCellCenteredGrid(omegaI(k),m);\n\nviewData = @(I,k) viewImage(imgModel(I,omegaI(k),xc(k)),omegaI(k),m);\n\nFAIRfigure(1,'figname',expfile); clf;\nsubplot(1,2,1); viewData(dataT,1); title('template');\nsubplot(1,2,2); viewData(dataR,2); title('reference');\n\nML = getMultilevel({dataT,dataR},omega,m,'fig',2);\n\n% save to outfile\nsave(expfile,'example','dataT','dataR','omega','m','ML','viewPara','imgPara');\nif ~isempty(LM),\n save(expfile,'-append','LM','example');\nend;\n\n%------------------------------------------------------------------------------\n\nfunction runMinimalExample\nsetup2DhandData;\n\n%==============================================================================\n\n", "meta": {"author": "C4IR", "repo": "FAIR.m", "sha": "975edebd37b833ae76696792870de5c05efcb9cb", "save_path": "github-repos/MATLAB/C4IR-FAIR.m", "path": "github-repos/MATLAB/C4IR-FAIR.m/FAIR.m-975edebd37b833ae76696792870de5c05efcb9cb/kernel/data/jpgs2data.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102498375401, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3849000802209234}} {"text": "function t = sensitivityinfo(fid,seekset,channum)\n% T = SENSITIVITYINFO(FID,SEEKSET,CHANNUM);\n% FID = valid filepointer to a sqdfile/ sqd-filename\n% SEEKSET = starting point of file read\n% CHANNUM = Channelnumber(s)\n% Gets the info regarding senstivity of sensors from the file pointed\n% to by fid for given channel_number and returns a structure \n\nif nargin<1\n error('First argument must be valid file-pointer to a sqd-file');\nelseif nargin<2\n seekset = -1; \nend;\nfilename = '';\nif ischar(fid)\n filename = fid;\n fid = fopen(filename,'rb','l');\nend;\n\nif fid~=-1\n % Get channelcount \n fseek( fid, 16, seekset);\n basic_offset = fread(fid,1,'long')+(3*32+8*128+8*128)/8;\n fseek( fid, basic_offset, seekset );\n channelcount\t= fread(fid,1,'int');\n if nargin<3\n channum = 0:channelcount-1;\n end;\n if (~isempty(find(channum<0)))|(~isempty(find(channum>channelcount-1)))\n error([ 'Sorry - Invalid channel number, ' num2str(channum) ', given to sensorinfo']);\n end;\n % Get offset of sensitivity values\n fseek( fid, 80, seekset );\n sensitivity_offset = fread(fid,1,'long');\n % Read sensitivity data\n fseek( fid, sensitivity_offset, seekset ); %sizeof(double) = 8 bytes and read 2 doubles\n data = fread(fid,channelcount*2,'double');\n t.Offsets = [data(channum*2+1)]';\n% t.Gains = [data(channum*2+2)*10^12]';\n t.Gains = [data(channum*2+2)*10^15]';\n if ~isempty(filename)\n fclose(fid);\n end;\nelse\n error('Invalid filename');\nend;", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/sqdproject/@sqdhandle/private/sensitivityinfo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38485794032542747}} {"text": "function varargout = cutMeshByPlane(v, f, plane, varargin)\n%CUTMESHBYPLANE Cut a mesh by a plane.\n%\n% [ABOVE, IN, BELOW] = cutMeshByPlane(MESH, PLANE)\n% where MESH, ABOVE, IN, BELOW are structs with the fields vertices and\n% faces, and PLANE is given as a row containing initial point and 2\n% direction vectors. ABOVE, IN, BELOW contain the corresponding parts of\n% the input mesh.\n%\n% [ABOVE_V, ABOVE_F, IN_V, IN_F, BELOW_V,BELOW_F] = ...\n% cutMeshByPlane(V, F, PLANE) where V is a [NVx3] array containing\n% coordinates and F is a [NFx3] array containing indices of vertices of\n% the triangular faces.\n%\n% BELOW = cutMeshByPlane(V, F, PLANE, 'part', 'below') BELOW is a struct\n% with the fields vertices and faces. Other options are:\n% 'part' - 'above': Faces above the plane\n% - 'in' : Faces in the plane\n% - 'below': Faces below the plane\n%\n% [BELOW_V, BELOW_F] = cutMeshByPlane(MESH, PLANE, 'part', 'below') is\n% possible, too.\n%\n\n% ---------\n% Authors: oqilipo, David Legland\n% Created: 2017-07-09\n% Copyright 2017\n\nnarginchk(2,5)\nnargoutchk(1,6)\n\n\n%% Parse inputs\n% If first argument is a struct\nif nargin == 2 || nargin == 4\n if ~isempty(varargin)\n varargin = [{plane}, varargin(:)'];\n end\n plane = f;\n [v, f] = parseMeshData(v);\nend\n\np = inputParser;\naddRequired(p,'plane',@isPlane)\nvalidStrings = {'above','in','below'};\naddParameter(p,'part','above',@(x) any(validatestring(x, validStrings)))\nparse(p, plane, varargin{:});\npart=p.Results.part;\n\n\n%% Algorithm\n% Logical index to the vertices below the plane\nVBPl_LI = isBelowPlane(v, plane);\n\n% Logical index to three vertices of each face\nFBP_LI = VBPl_LI(f);\nswitch nargout\n case {1, 2}\n switch part\n case 'above'\n % Faces above the plane, all three vertices == 0 -> sum has to be 0\n above = removeMeshFaces(v, f, ~(sum(FBP_LI, 2) == 0) );\n case 'in'\n % Faces in the plane, 1 or 2 vertices == 0 -> sum can be 1 or 2\n inside = removeMeshFaces(v, f, ~((sum(FBP_LI, 2) > 0 & sum(FBP_LI, 2) < 3)));\n case 'below'\n % Faces below the plane, all three vertices == 1 -> sum has to be 3\n below = removeMeshFaces(v, f, ~(sum(FBP_LI, 2) == 3) );\n end\n case {3, 6}\n % Faces above the plane, all three vertices == 0 -> sum has to be 0\n above = removeMeshFaces(v, f, ~(sum(FBP_LI, 2) == 0) );\n % Faces in the plane, 1 or 2 vertices == 0 -> sum can be 1 or 2\n inside = removeMeshFaces(v, f, ~((sum(FBP_LI, 2) > 0 & sum(FBP_LI, 2) < 3)));\n % Faces below the plane, all three vertices == 1 -> sum has to be 3\n below = removeMeshFaces(v, f, ~(sum(FBP_LI, 2) == 3) );\n otherwise\n error('Invalid number of output arguments')\nend\n\n\n%% Parse outputs\nswitch nargout\n case 1\n switch part\n case 'above'\n varargout{1}=above;\n case 'in'\n varargout{1}=inside;\n case 'below'\n varargout{1}=below;\n end\n case 2\n switch part\n case 'above'\n varargout{1}=above.vertices;\n varargout{2}=above.faces;\n case 'in'\n varargout{1}=inside.vertices;\n varargout{2}=inside.faces;\n case 'below'\n varargout{1}=below.vertices;\n varargout{2}=below.faces;\n end\n case 3\n varargout{1}=above;\n varargout{2}=inside;\n varargout{3}=below;\n case 6\n varargout{1}=above.vertices;\n varargout{2}=above.faces;\n varargout{3}=inside.vertices;\n varargout{4}=inside.faces;\n varargout{5}=below.vertices;\n varargout{6}=below.faces;\n otherwise\n error('Invalid number of output arguments')\nend\n\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_geom3d/meshes3d/cutMeshByPlane.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38485794032542747}} {"text": "function [clpot, loglik] = enter_soft_evidence(engine, CPDpot, observed, pot_type, filter)\n% ENTER_SOFT_EVIDENCE Add the specified soft evidence to the network (bk)\n% [clpot, loglik] = enter_soft_evidence(engine, CPDpot, observed, pot_type, filter)\n\n[ss T] = size(CPDpot);\nC = length(engine.clusters);\nS = length(engine.separators);\nQ = length(cliques_from_engine(engine.sub_engine));\nQ1 = length(cliques_from_engine(engine.sub_engine1));\nclpot = cell(Q,T);\nalpha = cell(C,T);\n\n% Forwards\n% The method is a generalization of the following HMM equation:\n% alpha(j,t) = normalise( (sum_i alpha(i,t-1) * transmat(i,j)) * obsmat(j,t) )\n% where alpha(j,t) = Pr(Q(t)=j | y(1:t))\nt = 1;\n[clpot(1:Q1,t), logscale(t)] = enter_soft_evidence(engine.sub_engine1, engine.clq_ass_to_node1(:), ...\n\t\t\t\t\t CPDpot(:,1), find(observed(:,1)), pot_type);\nfor c=1:C\n k = engine.clq_ass_to_cluster1(c);\n alpha{c,t} = marginalize_pot(clpot{k,t}, engine.clusters{c});\nend\n\n%=== FH: For each separator s, divide some cluster potential by s's potential\nalpha_orig = alpha(:,t);\nfor s=1:S\n c = engine.cluster_ass_to_separator(s);\n alpha{c,t} = divide_by_pot(alpha{c,t}, marginalize_pot(alpha_orig{c}, engine.separators{s}));\nend\n\n% For filtering, clpot{1} contains evidence on slice 1 only\n\n%fprintf('alphas t=%d\\n', t);\n%for c=1:8\n% temp = pot_to_marginal(alpha{c,t});\n% temp.T\n%end\n\n% clpot{t} contains evidence from slices t-1, t for t > 1\nclqs = [engine.clq_ass_to_cluster(:,1); engine.clq_ass_to_node(:,2)];\nfor t=2:T\n pots = [alpha(:,t-1); CPDpot(:,t)];\n [clpot(:,t), logscale(t)] = enter_soft_evidence(engine.sub_engine, clqs, pots, find(observed(:,t-1:t)), pot_type);\n for c=1:C\n k = engine.clq_ass_to_cluster(c,2);\n cl = engine.clusters{c};\n alpha{c,t} = marginalize_pot(clpot{k,t}, cl+ss); % extract slice 2 posterior\n alpha{c,t} = set_domain_pot(alpha{c,t}, cl); % shift back to slice 1 for re-use as prior\n end\n %=== FH: For each separator s, divide some cluster potential by s's potential\n alpha_orig = alpha(:,t);\n for s=1:S\n c = engine.cluster_ass_to_separator(s);\n alpha{c,t} = divide_by_pot(alpha{c,t}, marginalize_pot(alpha_orig{c}, engine.separators{s}));\n end\nend\n\nloglik = sum(logscale); \n\nif filter\n return;\nend\n\n% Backwards\n% The method is a generalization of the following HMM equation:\n% beta(i,t) = (sum_j transmat(i,j) * obsmat(j,t+1) * beta(j,t+1))\n% where beta(i,t) = Pr(y(t+1:T) | Q(t)=i)\nt = T;\nbnet = bnet_from_engine(engine);\nbeta = cell(C,T);\nfor c=1:C\n beta{c,t} = mk_initial_pot(pot_type, engine.clusters{c} + ss, bnet.node_sizes(:), bnet.cnodes(:), ...\n\t\t\t find(observed(:,t-1:t)));\nend\n%=== FH: For each separator s, divide some cluster potential by s's potential\nbeta_orig = beta(:,t);\nfor s=1:S\n c = engine.cluster_ass_to_separator(s);\n beta{c,t} = divide_by_pot(beta{c,t}, marginalize_pot(beta_orig{c}, engine.separators{s}+ss));\nend\n\nfor t=T-1:-1:1\n clqs = [engine.clq_ass_to_cluster(:,2); engine.clq_ass_to_node(:,2)];\n pots = [beta(:,t+1); CPDpot(:,t+1)];\n temp = enter_soft_evidence(engine.sub_engine, clqs, pots, find(observed(:,t:t+1)), pot_type);\n for c=1:C\n k = engine.clq_ass_to_cluster(c,1);\n cl = engine.clusters{c};\n beta{c,t} = marginalize_pot(temp{k}, cl); % extract slice 1\n beta{c,t} = set_domain_pot(beta{c,t}, cl + ss); % shift fwd to slice 2\n end\n %=== FH: For each separator s, divide some cluster potential by s's potential\n beta_orig = beta(:,t);\n for s=1:S\n c = engine.cluster_ass_to_separator(s);\n beta{c,t} = divide_by_pot(beta{c,t}, marginalize_pot(beta_orig{c}, engine.separators{s}+ss));\n end\nend\n\n% Combine\n% The method is a generalization of the following HMM equation:\n% xi(i,j,t) = normalise( alpha(i,t) * transmat(i,j) * obsmat(j,t+1) * beta(j,t+1) )\n% where xi(i,j,t) = Pr(Q(t)=i, Q(t+1)=j | y(1:T))\nfor t=1:T-1\n clqs = [engine.clq_ass_to_cluster(:); engine.clq_ass_to_node(:,2)];\n pots = [alpha(:,t); beta(:,t+1); CPDpot(:,t+1)];\n clpot(:,t+1) = enter_soft_evidence(engine.sub_engine, clqs, pots, find(observed(:,t:t+1)), pot_type);\nend\n% for smoothing, clpot{1} is undefined\nfor k=1:Q1\n clpot{k,1} = []; \nend\n\n\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/dynamic/@cbk_inf_engine/enter_soft_evidence.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.38485794032542736}} {"text": "function test_bug2370\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_filetype ft_read_headshape ft_write_headshape read_ply write_ply\n\nfilename = [tempname '.ply'];\n\n[pos, tri] = mesh_sphere(162);\n\n% combine them in a structure\nmesh1.pos = pos;\nmesh1.tri = tri;\n\nft_write_headshape(filename, mesh1, 'format', 'ply');\nmesh2 = ft_read_headshape(filename);\nassert(isequal(mesh1.tri, mesh2.tri));\nratio = mesh1.pos(:)\\mesh2.pos(:);\nassert(ratio>0.99 && ratio<1.01);\ndelete(filename);\n\nft_write_headshape(filename, mesh1, 'format', 'ply_ascii');\nmesh2 = ft_read_headshape(filename);\nassert(isequal(mesh1.tri, mesh2.tri));\nratio = mesh1.pos(:)\\mesh2.pos(:);\nassert(ratio>0.99 && ratio<1.01);\ndelete(filename);\n\nft_write_headshape(filename, mesh1, 'format', 'ply_binary');\nmesh2 = ft_read_headshape(filename);\nassert(isequal(mesh1.tri, mesh2.tri));\nratio = mesh1.pos(:)\\mesh2.pos(:);\nassert(ratio>0.99 && ratio<1.01);\ndelete(filename);\n\n\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug2370.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3848579331983095}} {"text": "% center distance to closest larva\nfunction [data,units] = compute_dcentral(trx,n)\n\nlarvae = trx.exp2flies{n};\nnlarvae = numel(larvae);\ndata = cell(1,nlarvae);\n\nfor i1 = 1:nlarvae,\n larva1 = larvae(i1);\n % access closestlarva to ensure that dcentral is computed\n trx(larva1).closestlarva_central;\n data{i1} = trx(larva1).dcentral;\nend\nunits = parseunits('mm');\n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/perframe/larva_compute_perframe_features/compute_dcentral.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38485792607119146}} {"text": "% LFUnpackRawBuffer - Unpack a buffer of packed raw binary data into an image\n% \n% Usage:\n% \n% ImgOut = LFUnpackRawBuffer( Buff, BitPacking, ImgSize )\n% \n% Used by LFReadRaw and LFReadLFP, this helper function unpacks a raw binary data buffer in one of several formats.\n%\n% Inputs :\n% \n% Buff : Buffer of chars to be unpacked\n% BitPacking : one of '12bit', '10bit' or '16bit'; default is '12bit'\n% ImgSize : size of the output image\n% \n% Outputs:\n% \n% Img : an array of uint16 gray levels. No demosaicing (decoding Bayer pattern) is performed.\n%\n% User guide: LFToolbox.pdf\n% See also: LFDecodeLensletImageDirect, demosaic\n\n% Copyright (c) 2013-2020 Donald G. Dansereau\n\nfunction ImgOut = LFUnpackRawBuffer( Buff, BitPacking, ImgSize )\n\nswitch( BitPacking )\n case '8bit'\n ImgOut = reshape(Buff, ImgSize);\n \n case '10bit'\n t0 = uint16(Buff(1:5:end));\n t1 = uint16(Buff(2:5:end));\n t2 = uint16(Buff(3:5:end));\n t3 = uint16(Buff(4:5:end));\n lsb = uint16(Buff(5:5:end));\n \n t0 = bitshift(t0,2);\n t1 = bitshift(t1,2);\n t2 = bitshift(t2,2);\n t3 = bitshift(t3,2);\n \n t0 = t0 + bitand(lsb,bin2dec('00000011'));\n t1 = t1 + bitshift(bitand(lsb,bin2dec('00001100')),-2);\n t2 = t2 + bitshift(bitand(lsb,bin2dec('00110000')),-4);\n t3 = t3 + bitshift(bitand(lsb,bin2dec('11000000')),-6);\n \n ImgOut = zeros(ImgSize, 'uint16');\n ImgOut(1:4:end) = t0;\n ImgOut(2:4:end) = t1;\n ImgOut(3:4:end) = t2;\n ImgOut(4:4:end) = t3;\n \n case '12bit'\n t0 = uint16(Buff(1:3:end));\n t1 = uint16(Buff(2:3:end));\n t2 = uint16(Buff(3:3:end));\n \n a0 = bitshift(t0,4) + bitshift(bitand(t1,bin2dec('11110000')),-4);\n a1 = bitshift(bitand(t1,bin2dec('00001111')),8) + t2;\n \n ImgOut = zeros(ImgSize, 'uint16');\n ImgOut(1:2:end) = a0;\n ImgOut(2:2:end) = a1;\n \n case '16bit'\n t0 = uint16(Buff(1:2:end));\n t1 = uint16(Buff(2:2:end));\n a0 = bitshift(t1, 8) + t0;\n ImgOut = zeros(ImgSize, 'uint16');\n ImgOut(:) = a0;\n \n otherwise\n error('Unrecognized bit packing');\nend\n", "meta": {"author": "doda42", "repo": "LFToolbox", "sha": "5dd4a8acf6555ae362a7c5b8d5bd4b9827790a4e", "save_path": "github-repos/MATLAB/doda42-LFToolbox", "path": "github-repos/MATLAB/doda42-LFToolbox/LFToolbox-5dd4a8acf6555ae362a7c5b8d5bd4b9827790a4e/SupportFunctions/LFUnpackRawBuffer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7520125848754472, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3848173266272668}} {"text": "function [fP] = callback_GetPercentile(fPercentile, vDistribution, fValue)\n % get percentile\n fP = abs(prctile(vDistribution, fPercentile) - fValue);\nend\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/danijel/calc/callback_GetPercentile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125737597972, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3848173209392042}} {"text": "function analyse_eval_lin_fusion(key_dev,ndx_eval,dev_scores_obj_array,eval_scores_obj_array,dev_scr_lin,eval_scr_lin)\n% Does some analyses on evaluation scores for all systems and all\n% fusions. For each system, it calculates the estimated percentage\n% of targets in the database. It also calculates a KL divergence\n% matrix of all systems against all systems.\n% Inputs:\n% key_dev: The Key for the dev trials.\n% ndx_eval: The Ndx describing the eval trials.\n% dev_scores_obj_array: An array of Scores objects containing\n% system scores for the dev trials.\n% eval_scores_obj_array: An array of Scores objects containing\n% system scores for the eval trials.\n% dev_scr_lin: The dev scores resulting from the linear fusion.\n% eval_scr_lin: The eval scores resulting from the linear fusion.\n\nassert(nargin==6)\nassert(isa(key_dev,'Key'))\nassert(isa(ndx_eval,'Ndx'))\nassert(isa(dev_scr_lin,'Scores'))\nassert(isa(eval_scr_lin,'Scores'))\nassert(key_dev.validate())\nassert(ndx_eval.validate())\nassert(dev_scr_lin.validate())\nassert(eval_scr_lin.validate())\n\neval_stacked_scores = stackScores(ndx_eval,eval_scores_obj_array);\ntrialmask = ndx_eval.trialmask;\neval_lin_fusion = eval_scr_lin.scoremat(trialmask(:))';\neval_scores = [eval_stacked_scores;eval_lin_fusion]; \n\nptar = estimate_target_proportions(eval_scores,0.08);\nlogprint(Logger.Info,'\\nSystem Ptar estimates:\\n');\nlogprint(Logger.Info,'%s',sprintfmatrix(100*ptar'));\n\nptar_best = ptar(end); \n\ndev_stacked_scores = stackScores(key_dev,dev_scores_obj_array);\ntrialmask = key_dev.to_ndx().trialmask;\ndev_lin_fusion = dev_scr_lin.scoremat(trialmask(:))';\ndev_scores = [dev_stacked_scores;dev_lin_fusion]; \n\n\ndevKL = 100*kldivergence_of_systems(dev_scores,ptar_best,key_dev);\nevalKL = 100*kldivergence_of_systems(eval_scores,ptar_best);\nlogprint(Logger.Info,'\\nDev score divergence:\\n%s',sprintfmatrix(devKL));\nlogprint(Logger.Info,'\\nEval score divergence:\\n%s',sprintfmatrix(evalKL));\nend\n", "meta": {"author": "nesl", "repo": "asvspoof2019", "sha": "8b780369f7273345c22d979192119198bbf3db13", "save_path": "github-repos/MATLAB/nesl-asvspoof2019", "path": "github-repos/MATLAB/nesl-asvspoof2019/asvspoof2019-8b780369f7273345c22d979192119198bbf3db13/baseline/tDCF_v1/bosaris_toolkit.1.06/bosaris_toolkit/fusion/analyse_eval_lin_fusion.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125626441471, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3848173152511414}} {"text": "function calpak_test39 ( )\n\n%*****************************************************************************80\n%\n%% CALPAK_TEST39 tests MONTH_TO_MONTH_NAME_COMMON.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 01 April 2013\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CALPAK_TEST39\\n' );\n fprintf ( 1, ' For the Common calendar,\\n' );\n fprintf ( 1, ' MONTH_TO_MONTH_NAME_COMMON names the months:\\n' );\n fprintf ( 1, '\\n' );\n\n y = 1;\n months = year_length_months_common ( y );\n\n for m = 1 : months\n month_name = month_to_month_name_common ( m );\n fprintf ( 1, ' %2d %s\\n', m, month_name );\n end\n\n return\nend", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/calpak_test39.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5078118642792044, "lm_q2_score": 0.7577943658046608, "lm_q1q2_score": 0.3848169696395422}} {"text": "function [ clmParams, pdm_right, pdm_left ] = Load_CLM_params_eye() \n%LOAD_CLM_PARAMS_WILD Summary of this function goes here\n% Detailed explanation goes here\n clmParams.window_size = [15,15; 13,13;];\n clmParams.numPatchIters = size(clmParams.window_size,1);\n \n % the PDM created from in the wild data\n pdmLoc = ['../models/hierarch_pdm/pdm_6_r_eye.mat'];\n\n load(pdmLoc);\n\n pdm_right = struct;\n pdm_right.M = double(M);\n pdm_right.E = double(E);\n pdm_right.V = double(V);\n\n pdmLoc = ['../models/hierarch_pdm/pdm_6_l_eye.mat'];\n\n load(pdmLoc);\n\n pdm_left = struct;\n pdm_left.M = double(M);\n pdm_left.E = double(E);\n pdm_left.V = double(V);\n \n % the default model parameters to use\n clmParams.regFactor = 0.1; \n clmParams.sigmaMeanShift = 2;\n clmParams.tikhonov_factor = 0;\n\n clmParams.startScale = 1;\n clmParams.num_RLMS_iter = 5;\n clmParams.fTol = 0.01;\n clmParams.useMultiScale = true;\n clmParams.use_multi_modal = 1;\n clmParams.tikhonov_factor = 0;\nend\n\n", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/matlab_version/models/Load_CLM_params_eye.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.757794360334681, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.38481696686182154}} {"text": "function [VV,FF,J] = extrude(V,F,varargin)\n % EXTRUDE Extrude a 2d mesh in the z direction by 1, connecting boundaries\n % apropriately \n %\n % [VV,FF] = extrude(V,F)\n % [VV,FF,J] = extrude(V,F,'ParmeterName',ParameterValue,...)\n %\n % Inputs:\n % V #V by 2 list of 2d vertex positions\n % F #F by 3 list of triangle indices into V\n % or\n % E #E by 2 list of segment indices into V, CCW order\n % Optional:\n % 'Cap' followed by {true} of false whether to put a *bottom cap*\n % 'Levels' followed by number of \"stacks\" or \"levels\" {1}\n % Outputs:\n % VV #VV by 3 list of 3d vertex positions\n % FF #FF by 3 list of triangle indices into VV\n % J #VV indices into V\n %\n\n cap = [];\n levels = 1;\n % Map of parameter names to variable names\n params_to_variables = containers.Map( ...\n {'Cap','Levels'}, ...\n {'cap','levels'});\n v = 1;\n while v <= numel(varargin)\n param_name = varargin{v};\n if isKey(params_to_variables,param_name)\n assert(v+1<=numel(varargin));\n v = v+1;\n % Trick: use feval on anonymous function to use assignin to this workspace \n feval(@()assignin('caller',params_to_variables(param_name),varargin{v}));\n else\n error('Unsupported parameter: %s',varargin{v});\n end\n v=v+1;\n end\n if isempty(cap)\n cap = size(F,2) > 2;\n end\n\n %assert(size(V,2) == 2, 'Vertices should be 2d');\n\n %% Copy top and bottom\n % VV = [V 1+0*V(:,1);V 0*V(:,1)];\n switch size(F,2)\n case {3,4}\n % connect boundaries\n O = outline(F);\n case 2\n assert(~cap,'Cap should be false when input is curve');\n % Curve as input\n FF = [];\n O = F;\n % Use triangles\n F = zeros(0,3);\n end\n assert(size(unique(sort(O,2),'rows'),1) == size(O,1));\n\n % Rearrange vertices on bottom\n [VB,FB,OB,IM] = faces_first(V,F,O);\n n = size(V,1);\n JB = (1:n)';\n\n no = numel(unique(OB));\n\n VL = [ ...\n repmat(VB(1:max(OB(:)),:),[levels 1]) ...\n reshape(repmat(linspace(1-1/levels,0,levels),[no,1]),[no*levels 1])];\n JL = repmat((1:no)',levels,1);\n if cap\n VV = [VB ones(n,1);VL(1:no*(levels-1),:);VB zeros(n,1)];\n J = [JB;JL(1:no*(levels-1));JB];\n else\n VV = [VB ones(n,1);VL];\n J = [JB;JL];\n end\n FO = ones(2*size(OB,1)*levels,size(F,2));\n for level = 1:levels\n if level == 1\n off_t = 0;\n else\n off_t = n+(level-2)*no;\n end\n off_b = n+(level-1)*no;\n switch size(F,2)\n case 4\n FO((level-1)*size(OB,1)+(1:size(OB,1)),:) = [ ...\n off_t+OB(:,[2 1]) off_b+OB(:,1:2)];\n case 3\n FO((level-1)*2*size(OB,1)+(1:size(OB,1)*2),:) = [ ...\n off_b+OB(:,1) off_t+OB(:,[2 1]); ...\n off_t+OB(:,2) off_b+OB(:,1:2)];\n end\n end\n \n % remap so that faces on planes are consistent with input\n if cap\n FF = [FB;FO;n+(levels-1)*no+fliplr(FB)];\n RIM = 1:(n+(levels-1)*no+n);\n RIM(IM) = 1:n;\n RIM(n+IM) = n+(1:n);\n else\n FF = [FB;FO];\n RIM = 1:(n+levels*no);\n RIM(IM) = 1:n;\n end\n\n VV(RIM,:) = VV;\n J(RIM,:) = RIM(J);\n FF = RIM(FF);\n\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/extrude.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3847778134997738}} {"text": "function check_point = terminate(xi_1,xi,pi_1,pi)\n\ntemp1 = max(abs(xi_1(1,:)-xi(1,:))) + max(abs(pi_1(1,:)-pi(1,:)));\ntemp2 = max(abs(xi_1(2,:)-xi(2,:))) + max(abs(pi_1(2,:)-pi(2,:)));\n\ncheck_point = temp1+temp2;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13406-quasi-linearization-for-optimal-control-trajectory/QL/terminate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3847778134997737}} {"text": "function st = spm_cfg_st\n% SPM Configuration file for Slice Timing Correction\n%__________________________________________________________________________\n% Copyright (C) 2005-2016 Wellcome Trust Centre for Neuroimaging\n\n% $Id: spm_cfg_st.m 7591 2019-05-15 10:57:38Z john $\n\n%--------------------------------------------------------------------------\n% scans Session\n%--------------------------------------------------------------------------\nscans = cfg_files;\nscans.tag = 'scans';\nscans.name = 'Session';\nscans.help = {'Select images to slice-time correct.'};\nscans.filter = 'image';\nscans.ufilter = '.*';\nscans.num = [1 Inf];\nscans.preview = @(f) spm_check_registration(char(f));\n\n%--------------------------------------------------------------------------\n% generic Data\n%--------------------------------------------------------------------------\ngeneric = cfg_repeat;\ngeneric.tag = 'generic';\ngeneric.name = 'Data';\ngeneric.help = {'Subjects or sessions. The same parameters specified below will be applied to all sessions.'};\ngeneric.values = {scans };\ngeneric.num = [1 Inf];\n\n%--------------------------------------------------------------------------\n% nslices Number of Slices\n%--------------------------------------------------------------------------\nnslices = cfg_entry;\nnslices.tag = 'nslices';\nnslices.name = 'Number of Slices';\nnslices.help = {'Enter the number of slices.'};\nnslices.strtype = 'n';\nnslices.num = [1 1];\n\n%--------------------------------------------------------------------------\n% tr TR\n%--------------------------------------------------------------------------\ntr = cfg_entry;\ntr.tag = 'tr';\ntr.name = 'TR';\ntr.help = {'Enter the TR (in seconds).'};\ntr.strtype = 'r';\ntr.num = [1 1];\n\n%--------------------------------------------------------------------------\n% ta TA\n%--------------------------------------------------------------------------\nta = cfg_entry;\nta.tag = 'ta';\nta.name = 'TA';\nta.help = {\n 'Enter the TA (in seconds). It is usually calculated as TR-(TR/nslices).'\n ''\n 'You can simply enter this equation with the variables replaced by appropriate numbers.'\n ''\n 'If the next two items are entered in milliseconds, this entry will not be used and can be set to 0.'\n }';\nta.strtype = 'r';\nta.num = [1 1];\n\n%--------------------------------------------------------------------------\n% so Slice order\n%--------------------------------------------------------------------------\nso = cfg_entry;\nso.tag = 'so';\nso.name = 'Slice order';\nso.help = {\n 'Enter the slice order.'\n ''\n 'Bottom slice = 1. Sequence types and examples of code to enter are given below:'\n ''\n ' ascending (first slice=bottom): [1:1:nslices]'\n ''\n ' descending (first slice=top): [nslices:-1:1]'\n ''\n ' interleaved (middle-top):'\n ' for k = 1:nslices'\n ' round((nslices-k)/2 + (rem((nslices-k),2) * (nslices - 1)/2)) + 1,'\n ' end'\n ''\n ' interleaved (bottom -> up): [1:2:nslices 2:2:nslices]'\n ''\n ' interleaved (top -> down): [nslices:-2:1, nslices-1:-2:1]'\n ''\n 'Alternatively you can enter the slice timing in ms for each slice individually.'\n 'If doing so, the next item (Reference Slice) will contain a reference time (in ms) instead of the slice index of the reference slice.'\n 'For Siemens scanners, this can be acquired in MATLAB from the dicom header as follows (use any volume after the first one):'\n ' hdr = spm_dicom_headers(''dicom.ima'');'\n ' slice_times = hdr{1}.Private_0019_1029'\n 'Note that slice ordering is assumed to be from foot to head. If it is not, enter instead: TR - INTRASCAN_TIME - SLICE_TIMING_VECTOR'\n }';\nso.strtype = 'r';\nso.num = [1 Inf];\n\n%--------------------------------------------------------------------------\n% refslice Reference Slice\n%--------------------------------------------------------------------------\nrefslice = cfg_entry;\nrefslice.tag = 'refslice';\nrefslice.name = 'Reference Slice';\nrefslice.help = {'Enter the reference slice.'\n ''\n 'If slice times are provided instead of slice indices in the previous item, this value should represent a reference time (in ms) instead of the slice index of the reference slice.'};\nrefslice.strtype = 'r';\nrefslice.num = [1 1];\n\n%--------------------------------------------------------------------------\n% prefix Filename Prefix\n%--------------------------------------------------------------------------\nprefix = cfg_entry;\nprefix.tag = 'prefix';\nprefix.name = 'Filename Prefix';\nprefix.help = {'Specify the string to be prepended to the filenames of the slice-time corrected image file(s).','Default prefix is ''a''.'};\nprefix.strtype = 's';\nprefix.num = [1 Inf];\nprefix.def = @(val)spm_get_defaults('slicetiming.prefix', val{:});\n\n%--------------------------------------------------------------------------\n% st Slice Timing\n%--------------------------------------------------------------------------\nst = cfg_exbranch;\nst.tag = 'st';\nst.name = 'Slice Timing';\nst.val = {generic nslices tr ta so refslice prefix};\nst.help = {\n 'Correct differences in image acquisition time between slices.'\n ''\n 'Slice-time corrected files are prepended with an ''a''.'\n ''\n 'Note: The sliceorder arg that specifies slice acquisition order is a vector of N numbers, where N is the number of slices per volume. Each number refers to the position of a slice within the image file. The order of numbers within the vector is the temporal order in which those slices were acquired. To check the order of slices within an image file, use the SPM Display option and move the cross-hairs to a voxel co-ordinate of z=1. This corresponds to a point in the first slice of the volume.'\n ''\n 'The function corrects differences in slice acquisition times. This routine is intended to correct for the staggered order of slice acquisition that is used during echo-planar scanning. The correction is necessary to make the data on each slice correspond to the same point in time. Without correction, the data on one slice will represent a point in time as far removed as 1/2 the TR from an adjacent slice (in the case of an interleaved sequence).'\n ''\n 'This routine \"shifts\" a signal in time to provide an output vector that represents the same (continuous) signal sampled starting either later or earlier. This is accomplished by a simple shift of the phase of the sines that make up the signal. Recall that a Fourier transform allows for a representation of any signal as the linear combination of sinusoids of different frequencies and phases. Effectively, we will add a constant to the phase of every frequency, shifting the data in time.'\n ''\n 'Shifter - This is the filter by which the signal will be convolved to introduce the phase shift. It is constructed explicitly in the Fourier domain. In the time domain, it may be described as an impulse (delta function) that has been shifted in time the amount described by TimeShift. The correction works by lagging (shifting forward) the time-series data on each slice using sinc-interpolation. This results in each time series having the values that would have been obtained had the slice been acquired at the same time as the reference slice. To make this clear, consider a neural event (and ensuing hemodynamic response) that occurs simultaneously on two adjacent slices. Values from slice \"A\" are acquired starting at time zero, simultaneous to the neural event, while values from slice \"B\" are acquired one second later. Without correction, the \"B\" values will describe a hemodynamic response that will appear to have began one second EARLIER on the \"B\" slice than on slice \"A\". To correct for this, the \"B\" values need to be shifted towards the Right, i.e., towards the last value.'\n ''\n 'This correction assumes that the data are band-limited (i.e. there is no meaningful information present in the data at a frequency higher than that of the Nyquist). This assumption is support by the study of Josephs et al (1997, Human Brain Mapping)/* \\cite{josephs1997event} */ that obtained event-related data at an effective TR of 166 msecs. No physio-logical signal change was present at frequencies higher than our typical Nyquist (0.25 HZ).'\n ''\n 'When using the slice timing correction it is very important that you input the correct slice order, and if there is any uncertainty then users are encouraged to work with their physicist to determine the actual slice acquisition order.'\n ''\n 'One can also consider augmenting the model by including the temporal derivative in the informed basis set instead of slice timing, which can account for +/- 1 second of changes in timing.'\n ''\n 'Written by Darren Gitelman at Northwestern U., 1998. Based (in large part) on ACQCORRECT.PRO from Geoff Aguirre and Eric Zarahn at U. Penn.'\n }';\nst.prog = @spm_run_st;\nst.vout = @vout;\nst.modality = {'FMRI'};\n\n\n%==========================================================================\nfunction dep = vout(job)\nfor k=1:numel(job.scans)\n dep(k) = cfg_dep;\n dep(k).sname = sprintf('Slice Timing Corr. Images (Sess %d)', k);\n dep(k).src_output = substruct('()',{k}, '.','files');\n dep(k).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/config/spm_cfg_st.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499941, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.38477781349977364}} {"text": "function model_3d = train_nrsfm(cls,train_set)\n globals;\n params = get_params();\n md = isnan(train_set.points(1:end/2,:));\n points = train_set.points;\n points_bak = points;\n points(isnan(points))=0;\n try\n seg.poly_x = train_set.poly_x;\n seg.poly_y = train_set.poly_y;\n catch\n seg = train_set.mask;\n end\n\n % Setup variables for converting to PASCAL 3D frame\n load(fullfile(datadir,'partNames',cls));\n load(fullfile(datadir,'voc_kp_metadata'));\n cInd = find(ismember(metadata.categories,cls));\n [~,I] = sort(metadata.kp_names{cInd});\n invI(I) = 1:numel(I);\n rightCoordSys = metadata.right_coordinate_sys{cInd};\n rightCoordSys(1:6) = invI(rightCoordSys(:));\n names = partNames(rightCoordSys);\n\n % Do non-rigid SFM\n [P3, S_bar, V, RO, Tr, Z, sigma_sq, ~, ~, ~, ~,c]...\n = em_sfm(points, md, params.nrsfm.nBasis, seg, train_set.imsize, train_set.bbox,...\n params.nrsfm.tol, params.nrsfm.max_em_iter,rightCoordSys,train_set.rotP3d);\n\n model_3d.class = cls;\n model_3d.S_bar = S_bar;\n model_3d.defBasis = V;\n model_3d.part_names = train_set.labels;\n model_3d.sigma_sq = sigma_sq;\n model_3d.points3 = P3;\n model_3d.rots = RO;\n model_3d.trs = Tr;\n model_3d.def_weights = Z;\n model_3d.voc_image_id = train_set.voc_image_id;\n if(isfield(train_set,'voc_rec_id'))\n model_3d.voc_rec_id = train_set.voc_rec_id;\n end\n model_3d.bbox = train_set.bbox;\n model_3d.points2 = points_bak;\n model_3d.params = params;\n model_3d.c = c;\n model_3d.seg = seg;\n if(isfield(train_set,'flip'))\n model_3d.flip = train_set.flip;\n end\n if(isfield(train_set,'subtype'))\n model_3d.subtype = train_set.subtype;\n end\n if(isfield(train_set,'rotP3d'))\n model_3d.rotP3d = train_set.rotP3d;\n end\n\nend\n", "meta": {"author": "akar43", "repo": "CategoryShapes", "sha": "55c9dab2293bcaceaaa3bf5fea782fdbf930fadb", "save_path": "github-repos/MATLAB/akar43-CategoryShapes", "path": "github-repos/MATLAB/akar43-CategoryShapes/CategoryShapes-55c9dab2293bcaceaaa3bf5fea782fdbf930fadb/nrsfm/train_nrsfm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3847241795537734}} {"text": "function value = hammersley_base_check ( dim_num, base )\n\n%*****************************************************************************80\n%\n%% HAMMERSLEY_BASE_CHECK checks BASE for a Hammersley sequence.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 September 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer BASE(1:DIM_NUM), the bases. \n% Bases should not be 0 or 1.\n%\n% Output, logical VALUE, is true if BASE is legal.\n%\n if ( any ( base(1:dim_num) == 0 ) | any ( base(1:dim_num) == 1 ) )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'HAMMERSLEY_BASE_CHECK - Fatal error!\\n' );\n fprintf ( 1, ' BASE(I) = 0 or 1 for some I!\\n' );\n value = 0;\n else\n value = 1;\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/hammersley/hammersley_base_check.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5156199157230156, "lm_q2_score": 0.7461389873857265, "lm_q1q2_score": 0.3847241217934845}} {"text": "function CPD = maximize_params(CPD, temp)\n% MAXIMIZE_PARAMS Set the params of a tabular node to their ML/MAP values.\n% CPD = maximize_params(CPD, temp)\n\nif ~adjustable_CPD(CPD), return; end\n\n%assert(approxeq(sum(CPD.counts(:)), CPD.nsamples)); % false!\nswitch CPD.prior_type\n case 'none',\n counts = reshape(CPD.counts, size(CPD.CPT));\n CPD.CPT = mk_stochastic(counts);\n case 'dirichlet',\n counts = reshape(CPD.counts, size(CPD.CPT));\n CPD.CPT = mk_stochastic(counts + CPD.dirichlet);\n \n % case 'entropic',\n% % For an HMM,\n% % CPT(i,j) = pr(X(t)=j | X(t-1)=i) = transprob(i,j)\n% % counts(i,j) = E #(X(t-1)=i, X(t)=j) = exp_num_trans(i,j)\n% Z = 1-temp;\n% fam_sz = CPD.sizes;\n% psz = prod(fam_sz(1:end-1));\n% ssz = fam_sz(end);\n% counts = reshape(CPD.counts, psz, ssz);\n% CPT = zeros(psz, ssz);\n% for i=CPD.entropic_pcases(:)'\n% [CPT(i,:), logpost] = entropic_map_estimate(counts(i,:), Z);\n% end\n% non_entropic_pcases = mysetdiff(1:psz, CPD.entropic_pcases);\n% for i=non_entropic_pcases(:)'\n% CPT(i,:) = mk_stochastic(counts(i,:));\n% end\n% %for i=1:psz\n% % [CPT(i,:), logpost] = entropic_map(counts(i,:), Z);\n% %end\n% if CPD.trim & (temp < 2) % at high temps, we would trim everything!\n% % grad(j) = d log lik / d theta(i ->j)\n% % CPT(i,j) = 0 => counts(i,j) = 0\n% % so we can safely replace 0s by 1s in the denominator\n% denom = CPT(i,:) + (CPT(i,:)==0);\n% grad = counts(i,:) ./ denom;\n% trim = find(CPT(i,:) <= exp(-(1/Z)*grad)); % eqn 32\n% if ~isempty(trim)\n% CPT(i,trim) = 0;\n% if all(CPD.trimmed_trans(i,trim)==0) % trimming for 1st time\n% \tdisp(['trimming CPT(' num2str(i) ',' num2str(trim) ')']) \n% end\n% CPD.trimmed_trans(i,trim) = 1;\n% end\n% end\n% CPD.CPT = myreshape(CPT, CPD.sizes);\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/CPDs/@tabular_CPD/maximize_params.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389817407017, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.38472411888279734}} {"text": "%sim_dMul.m\n%Jamie Near, 2020.\n%\n% USAGE:\n% d_out = sim_dMul(d_in,factor)\n% \n% DESCRIPTION:\n% Multiply a density matrix by a scalar. This function is necessary becuase\n% the density matrix is a cell array, so cannot be scaled using simple\n% multiplication. \n% \n% INPUTS:\n% d_in = input density matrix to be multiplied.\n% factor = scalar multiplcation factor.\n%\n% OUTPUTS:\n% d_out = output, result of d_in * factor.\n\nfunction d_out = sim_dMul(d_in,factor)\n\nd_out=cell(size(d_in));\nfor m=1:length(d_in)\n d_out{m}=d_in{m}.*factor;\nend\n\n\n\n\n", "meta": {"author": "CIC-methods", "repo": "FID-A", "sha": "c24da581e376f6eed66979dcc662ec26903a2eef", "save_path": "github-repos/MATLAB/CIC-methods-FID-A", "path": "github-repos/MATLAB/CIC-methods-FID-A/FID-A-c24da581e376f6eed66979dcc662ec26903a2eef/simulationTools/sim_dMul.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3847231758504419}} {"text": "function pos = xyzhumanevaJoint2pos(joint)\n\n% XYZHUMANEVAJOINT2POS\n%\n% COPYRIGHT : Carl Henrik Ek and Neil Lawrence, 2008\n\n% MOCAP\n\n\npos = zeros(1,prod(size(joint)));\n\npos(1:3:end) = joint(:,1);\npos(2:3:end) = joint(:,2);\npos(3:3:end) = joint(:,3);\n\nreturn\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mocap/xyzhumanevaJoint2pos.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307806984444, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.38472316752709035}} {"text": "function [g1, g2] = simwhiteXrbfinfwhiteKernGradient(simKern, rbfKern, t1, varargin)\n\n% SIMWHITEXRBFINFWHITEKERNGRADIENT Compute a cross gradient between a\n% SIM-WHITE kernel and an RBF-WHITE kernel (with integration limits between\n% minus infinity and infinity).\n% FORMAT\n% DESC computes cross gradient of parameters of a cross kernel between a\n% SIM-WHITE and an RBF-WHITE kernels for the multiple output kernel. \n% ARG simKern : the kernel structure associated with the SIM-WHITE kernel.\n% ARG rbfKern : the kernel structure associated with the RBF-WHITE kernel.\n% ARG t1 : inputs for which kernel is to be computed.\n% ARG covGrad : gradient of the objective function with respect to\n% the elements of the cross kernel matrix.\n% RETURN g1 : gradient of the parameters of the SIM-WHITE kernel, for\n% ordering see simwhiteKernExtractParam.\n% RETURN g2 : gradient of the parameters of the RBF-WHITE kernel, for\n% ordering see rbfwhiteKernExtractParam.\n%\n% FORMAT\n% DESC computes cross kernel terms between a SIM-WHITE kernel and an\n% RBF-WHITE kernel (with integration limits between minus infinity and\n% infinity) for the multiple output kernel. \n% ARG simKern : the kernel structure associated with the SIM-WHITE kernel.\n% ARG rbfKern : the kernel structure associated with the RBF-WHITE kernel.\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% ARG covGrad : gradient of the objective function with respect to\n% the elements of the cross kernel matrix.\n% RETURN g1 : gradient of the parameters of the SIM-WHITE kernel, for\n% ordering see simwhiteKernExtractParam.\n% RETURN g2 : gradient of the parameters of the RBF-WHITE kernel, for\n% ordering see rbfwhiteKernExtractParam.\n%\n% SEEALSO : multiKernParamInit, multiKernCompute, simwhiteKernParamInit,\n% rbfinfwhiteKernParamInit, simwhiteKernExtractParam, rbfinfwhiteKernExtractParam\n%\n% COPYRIGHT : David Luengo, 2009\n\n% KERN\n\n\nif nargin < 5\n t2 = t1;\nelse\n t2 = varargin{1};\nend\ncovGrad = varargin{end};\n\nif size(t1, 2) > 1 | size(t2, 2) > 1\n error('Input can only have one column');\nend\nif simKern.variance ~= rbfKern.variance\n error('Kernels cannot be cross combined if they have different variances.')\nend\n\ng1 = zeros(1, simKern.nParams);\ng2 = zeros(1, rbfKern.nParams);\n\nT1 = repmat(t1, 1, size(t2, 1));\nT2 = repmat(t2.', size(t1, 1), 1);\ndeltaT = T1 - T2;\n\n% Parameters required for further computations\nisStationary = simKern.isStationary;\nvariance = simKern.variance;\ndecay = simKern.decay;\nsensitivity = simKern.sensitivity;\ninvWidth = rbfKern.inverseWidth;\n\n% Setting normalised parameters for computation of K\nsimKern.variance = 1;\nrbfKern.variance = 1;\nsimKern.sensitivity = 1;\nK = simwhiteXrbfinfwhiteKernCompute(simKern, rbfKern, t1, t2);\n\n% Gradient w.r.t. the decay (simKern)\ng1(1) = variance * sensitivity * sum(sum( ...\n ((decay/invWidth-deltaT) .* K + 1/sqrt(2*pi*invWidth) ...\n * (exp(-(decay*T1+0.5*invWidth*(T2.^2))) * (~isStationary) ...\n - exp(-0.5*invWidth*(deltaT.^2)))) ...\n .* covGrad));\n% * exp(0.5*(decay^2)/invWidth-decay*deltaT) ...\n% .* (exp(-0.5*invWidth*((T2+decay/invWidth).^2)) * (~isStationary) ...\n% - exp(-0.5*invWidth*((deltaT-decay/invWidth).^2)))) ...\n\n% Gradient w.r.t. the inverse width (rbfKern)\ng2(1) = 0.5 * variance * sensitivity * sum(sum( ...\n ((-(decay/invWidth)^2) * K + 1/sqrt(2*pi*invWidth) ...\n * ((T2-decay/invWidth) .* exp(-(decay*T1+0.5*invWidth*(T2.^2))) * (~isStationary) ...\n + (deltaT+decay/invWidth) .* exp(-0.5*invWidth*(deltaT.^2)))) ...\n .* covGrad));\n% * exp(0.5*(decay^2)/invWidth - decay*deltaT) ...\n% .* ((T2-decay/invWidth) .* exp(-0.5*invWidth*((T2+decay/invWidth).^2)) * (~isStationary) ...\n% + (deltaT+decay/invWidth) .* exp(-0.5*invWidth*((deltaT-decay/invWidth).^2)))) ...\n\n% Gradient w.r.t. sigma_r^2\ng1(2) = sensitivity * sum(sum(K .* covGrad));\ng2(2) = 0; % Otherwise it is counted twice\n\n% Gradient w.r.t. sensitivity (only simKern)\ng1(3) = variance * sum(sum(K .* covGrad));\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/simwhiteXrbfinfwhiteKernGradient.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8006920020959544, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.38471543469059616}} {"text": "clear\nclose all\nclc;\n\n%time\ndt=0.01;\n\n%coeffs\nCg=50.;\nCd=.3;\nminSpeed=5;\n\nname='greenpyr.tiff'\nsanitizedname=[strrep(name,'.','') '_']\nmkdir([sanitizedname 'outputdir'])\n%green\n%greenheight=double(imread('testgreen.tiff'))/256*1.7;\n%greenheight=double(imread('greencone.tiff'))/256*.3;\n%greenheight=double(imread('greenconeinv.tiff'))/256*.3;\ngreenheight=fliplr(rot90(rot90(double(imread(name))/256*.4)));\ngreenheightPLOT=fliplr(rot90(rot90(double(imread(name))/256*.2)));\n[gradX,gradY]=gradient(greenheight(:,:,1));\nforceFun=@(R,RL) (RL-R)/dt*Cd + [interp2(-gradX,R(1,:),R(2,:));interp2(-gradY,R(1,:),R(2,:))]*Cg;\n%forceFun=@(R,RL) [interp2(-gradX,R(1,:),R(2,:));interp2(-gradY,R(1,:),R(2,:))];\nl=size(greenheight,1);\n\n%pin\nholeLoc=size(greenheight)'/2;\nholeRadius=3;\n\n%graphics\n%sph=sphere(30)\nalt=30.85;\naz=-39+90;\ncmapgreen=flipud([181,228,138; 160,220,104; 124,216,87; 81,212,76; 52,188,67; 37,167,60; 32,154,61; 1,114,56; 0,86,19]/255);\nstickX=[holeLoc(1),holeLoc(1)];\nstickY=[holeLoc(2),holeLoc(2)];\nstickZ=[greenheight(floor(holeLoc(1)),floor(holeLoc(1))),greenheight(floor(holeLoc(1)),floor(holeLoc(1)))+100];\nflagX=[stickX;stickX+40];\nflagY=[stickY;stickY];\nflagZ=[stickZ(2),stickZ(2)-30;stickZ(2),stickZ(2)-30];\nflagC=zeros(2,2,3);\nflagC(:,:,1)=.9;\n\n% balls\nstartLoc=[64;64]*3.5;\n\n%angles=(45)*pi/180;\n%speeds=400;\n%angles=linspace((45-15)*pi/180,(45+15)*pi/180,10);%-pi/4;\nangles=linspace((45-180)*pi/180,(45+180)*pi/180,100);%-pi/4;\nspeeds=linspace(minSpeed,300,100);\n\nnumParticles=length(speeds)*length(angles);\n\nspeeds=reshape(speeds,1,1,length(speeds));\nangleVectors=[cos(angles);sin(angles)];\nstartConditions=bsxfun(@times,speeds,angleVectors);\nstartConditions=reshape(startConditions,2,length(speeds)*length(angles));\n\nr=repmat(startLoc,1,numParticles);\nrl=r-startConditions*dt;\n\nrstart=r;\nrlstart=rl;\n\n%sequentialhits staging\n%each ball laucnhes after 1/4 second (300 iters/4) = 80 ticks\nlaunchTicks=80\n\ni=0;\nwhile sum(sum(r~=rl))\n %energy verlet + drag\n i=i+1;\n rn=2*r-rl+(forceFun(r,rl))*dt^2;\n rl=r;\n r=rn;\n \n %%%LAUNCH CONDITIONS\n if i<50\n r=rstart;\n rl=rlstart;\n end\n \n %%%STOP CONDITIONS\n %static friction\n dr=rl-r;\n s=sqrt(dr(1,:).^2+dr(2,:).^2)/dt;\n %walls\n haltBallsEdge=(r>l)|(r<1);\n %in the hole\n distToHole=bsxfun(@minus,holeLoc,rl);%use rl not r to check if the ball is in the hole so it can't escape\n distToHole=sqrt(distToHole(1,:).^2+distToHole(2,:).^2);\n %stop those in stop conditions\n holeBalls=(distToHole=video_res_x|y_stimulus<=0|y_stimulus>=video_res_y;\n all_fixation(y_stimulus(~t),x_stimulus(~t),index) = 1;\n end\n end\n end\n end \nend", "meta": {"author": "wenguanwang", "repo": "DHF1K", "sha": "35570c7c01128f1acb4de161965e7a260cfc162f", "save_path": "github-repos/MATLAB/wenguanwang-DHF1K", "path": "github-repos/MATLAB/wenguanwang-DHF1K/DHF1K-35570c7c01128f1acb4de161965e7a260cfc162f/record_mapping.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.38453636304155686}} {"text": "%Copyright 2013 The MathWorks, Inc\nfunction [sSAnt, sSAntPlat] = splitSubArrays(sAnt)\nfaceSlope = 45; % Change face slope\nsAnt.SubarrayNormal = [0 90 180 -90;90-faceSlope 90-faceSlope 90-faceSlope 90-faceSlope];\n\n%% Build 4 separate arrays\nepos = getElementPosition(sAnt);\naznorm = [0 90 180 -90];\nfor i=1:4,\n sSAnt{i} = phased.ConformalArray; %#ok<*AGROW>\n set(sSAnt{i},'ElementPosition',epos(:,(i-1)*16+(1:16)),...\n 'ElementNormal',repmat([aznorm(i);faceSlope],1,16));\n % Use isotropic antenna elements \n sSAnt{i}.Element.FrequencyRange = sAnt.Subarray.Element.FrequencyRange;\n sSAnt{i}.Element.BackBaffled = true;\nend\n\n%% Antenna Platform\nsSAntPlat = phased.Platform([2.5e4; 0; 0]);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/41021-radar-system-design-and-analysis-with-matlab-webinar/RadarSystemDesign_Webinar_Examples/splitSubArrays.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.38451873673412335}} {"text": "function mono_print_test ( )\n\n%*****************************************************************************80\n%\n%% MONO_PRINT_TEST tests MONO_PRINT.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 06 November 2014\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MONO_PRINT_TEST\\n' );\n fprintf ( 1, ' MONO_PRINT can print out a monomial.\\n' );\n fprintf ( 1, '\\n' );\n\n m = 1;\n f = [ 5 ];\n mono_print ( m, f, ' Monomial [5]:' );\n\n m = 1;\n f = [ -5 ];\n mono_print ( m, f, ' Monomial [5]:' );\n\n m = 4;\n f = [ 2, 1, 0, 3 ];\n mono_print ( m, f, ' Monomial [2,1,0,3]:' );\n\n m = 3;\n f = [ 17, -3, 199 ];\n mono_print ( m, f, ' Monomial [17,-3,199]:' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/monomial/mono_print_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5350984286266115, "lm_q2_score": 0.7185944046238981, "lm_q1q2_score": 0.38451873673412335}} {"text": "function [L,perm,xsuper,split,tmpsiz] = symfctmex(adjncy, perm, cachsz) %#ok\n% [L,perm,xsuper,split,tmpsiz] = symfctmex(X, perm, cachsz)\n%\n% Computes sparse symbolic factor L, updated permutation PERM,\n% super-node partition XSUPER, and a splitting of supernodes\n% (SPLIT) to optimize use of the computer cache (assuming\n% CACHSZ*1024 byte available). TMPSIZ is the amount of floating\n% point working storage that has to be allocated within blkfctmex.\n%\n% Invokes ORNL block Cholesky library (Fortran).\n%\n% ********** INTERNAL FUNCTION OF CHOLTOOL **********\n%\n% See also sedumi\n\n% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko\n% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)\n%\n% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)\n% Dept. Econometrics & O.R., Tilburg University, the Netherlands.\n% Supported by the Netherlands Organization for Scientific Research (NWO).\n%\n% Affiliation SeDuMi 1.03 and 1.04Beta (2000):\n% Dept. Quantitative Economics, Maastricht University, the Netherlands.\n%\n% Affiliations up to SeDuMi 1.02 (AUG1998):\n% CRL, McMaster University, Canada.\n% Supported by the Netherlands Organization for Scientific Research (NWO).\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA\n% 02110-1301, USA\n\n%Indicate to the user Matlab cannot find the SeDuMi binaries\nsedumi_binary_error();", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sedumi/symfctmex.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3845187302845595}} {"text": "function varargout = findcoord(DEM)\n\n%FINDCOORD Find coordinates of nonzero elements in GRIDobj\n%\n% Syntax\n%\n% [x,y] = findcoord(DEM)\n% [x,y,val] = findcoord(DEM)\n%\n% Description\n%\n% This function returns the coordinates of nonzero values in DEM. \n%\n% Input arguments\n%\n% DEM GRIDobj\n%\n% Output arguments\n%\n% x,y coordinate pair\n% val value of nonzero element in DEM.Z\n%\n% See also: find, GRIDobj/coord2ind, GRIDobj/ind2coord, GRIDobj/find \n%\n% Author: Wolfgang Schwanghart (w.schwanghart[at]geo.uni-potsdam.de)\n% Date: 10. December, 2014\n\nix = find(DEM);\n[x,y] = ind2coord(DEM,ix);\n\nvarargout{1} = x;\nvarargout{2} = y;\nif nargout == 3\n varargout{3} = DEM.Z(ix);\nend\n\n", "meta": {"author": "GERSL", "repo": "CCDC", "sha": "11b47273a9599b6943040f068d7a0af0db96c885", "save_path": "github-repos/MATLAB/GERSL-CCDC", "path": "github-repos/MATLAB/GERSL-CCDC/CCDC-11b47273a9599b6943040f068d7a0af0db96c885/GRIDobj/findcoord.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5350984286266115, "lm_q2_score": 0.718594386544335, "lm_q1q2_score": 0.3845187270597775}} {"text": "% This folder contains scripts/utilities to support the functionality of classifiers\n%\n%\n%CLSUTIL_SHRINKAGE - Determine shrinkage parameter of a classifier. \n% Example: the degree of regularization of the estimated covariance matrix \n% towards a unit sphere (used in LDA classifiers)\n", "meta": {"author": "bbci", "repo": "bbci_public", "sha": "2e6fe9481537dcfee702e74544191dcf737f02ce", "save_path": "github-repos/MATLAB/bbci-bbci_public", "path": "github-repos/MATLAB/bbci-bbci_public/bbci_public-2e6fe9481537dcfee702e74544191dcf737f02ce/classification/utils/Contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635868562172, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.38450219083556636}} {"text": "function [elem,bdFlag] = sortelem(elem,bdFlag)\n%% SORTELEM sort elem in ascend ordering\n%\n% [elem,bdFlag] = SORTELEM(elem,bdFlag) sorts the elem such that\n% elem(t,1)< elem(t,2)< elem(t,3). A simple sort(elem,2) cannot\n% switch bdFlag.\n%\n% See also sortelem3\n%\n% Copyright (C) Long Chen. See COPYRIGHT.txt for details.\n\n%% Dimension check\nif size(elem,2) >= 4 % 3D case\n [elem,bdFlag] = sortelem3(elem,bdFlag);\n return\nend\n\n%% Step 1: make elem(:,3) to the largest one\n[tempvar,idx] = max(elem,[],2); %#ok\nelem(idx==1,1:3) = elem(idx==1,[2 3 1]);\nelem(idx==2,1:3) = elem(idx==2,[3 1 2]);\nif exist('bdFlag','var') && ~isempty(bdFlag)\n bdFlag(idx==1,1:3) = bdFlag(idx==1,[2 3 1]);\n bdFlag(idx==2,1:3) = bdFlag(idx==2,[3 1 2]);\nend\n\n%% Step 2: swtich the first two vertices such that elem(:,1).\n%\n% http://www.petercorke.com\n\n% TODO\n% auto detect the axis scaling\nfunction tranimate(P2, varargin)\n\n opt.fps = 10;\n opt.nsteps = 50;\n opt.axis = [];\n opt.movie = [];\n\n [opt, args] = tb_optparse(opt, varargin);\n \n if ~isempty(opt.movie)\n anim = Animate(opt.movie);\n end\n P1 = [];\n\n % convert quaternion and rotation matrix to hom transform\n if isa(P2, 'Quaternion')\n T2 = P2.T; % convert quaternion to transform\n if ~isempty(args) && isa(args{1},'Quaternion')\n T1 = T2;\n Q2 = args{1};\n T2 = Q2.T;\n args = args(2:end);\n else\n T1 = eye(4,4);\n end\n elseif isrot(P2)\n T2 = r2t(P2);\n if ~isempty(args) && isrot(args{1})\n T1 = T2;\n T2 = r2t(args{1});\n args = args(2:end);\n else\n T1 = eye(4,4);\n end\n elseif ishomog(P2)\n T2 = P2;\n if ~isempty(args) && ishomog(args{1})\n T1 = T2;\n T2 = args{1};\n args = args(2:end);\n else\n T1 = eye(4,4);\n end\n end\n \n % at this point\n % T1 is the initial pose\n % T2 is the final pose\n %\n % T2 may be a sequence\n \n if size(T2,3) > 1\n % tranimate(Ts)\n % we were passed a homog sequence\n if ~isempty(P1)\n error('only 1 input argument if sequence specified');\n end\n Ttraj = T2;\n else\n % tranimate(P1, P2)\n % create a path between them\n Ttraj = ctraj(T1, T2, opt.nsteps);\n end\n \n if isempty(opt.axis)\n % create axis limits automatically based on motion of frame origin\n t = transl(Ttraj);\n mn = min(t) - 1.5; % min value + length of axis + some\n mx = max(t) + 1.5; % max value + length of axis + some\n axlim = [mn; mx];\n axlim = axlim(:)';\n args = [args 'axis' axlim];\n end\n \n hg = trplot(eye(4,4), args{:}); % create a frame at the origin\n\n % animate it for all poses in the sequence\n for i=1:size(Ttraj,3)\n T = Ttraj(:,:,i);\n trplot(hg, T);\n \n if ~isempty(opt.movie)\n anim.add();\n end\n \n pause(1/opt.fps);\n end\n", "meta": {"author": "Allopart", "repo": "rbpf-gmapping", "sha": "affe0adc25fa446fc7af4902d699d92864bdba1b", "save_path": "github-repos/MATLAB/Allopart-rbpf-gmapping", "path": "github-repos/MATLAB/Allopart-rbpf-gmapping/rbpf-gmapping-affe0adc25fa446fc7af4902d699d92864bdba1b/rvctools/robot/tranimate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.384502174363668}} {"text": "function display(ker)\n\n% DISPLAY\n%\n% Display a textual representation of a linear kernel object. \n%\n% display(ker);\n\n%\n% File : @linear/display.m\n%\n% Date : Tuesday 12th September \n%\n% Author : Dr Gavin C. Cawley\n%\n% Description : Display method for a class implementing a linear kernel.\n% Part of an object-oriented implementation of Vapnik's Support\n% Vector Machine, as described in [1]. \n%\n% References : [1] V.N. Vapnik,\n% \"The Nature of Statistical Learning Theory\",\n% Springer-Verlag, New York, ISBN 0-387-94559-8,\n% 1995.\n%\n% History : 12/09/2000 - v1.00\n%\n% Copyright : (c) Dr Gavin C. Cawley, September 2000.\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n%\n\nfprintf(1,'\\nlinear kernel\\n\\n');\n\n% bye bye...\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/RSVista/mrMethods/svm/cawleyTools/@linear/display.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6001883449573376, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.38450217343668763}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ndomain = [-1,1,-1,1,-1,1];\nbc = [1,1,1,1,1,1];\nnx = 10;\nny = nx;\nnz = nx;\nr1 = 1; r2 = 0; r3 = 0; x0 = pi/10^4; y0 = 0; z0 = 0;\nbm = 1; bp = 1; am = 1; ap = 1;\npde = ConstFun(am,ap,bm,bp,r1,r2,r3,x0,y0,z0);\nmesh = genMesh3D(domain, nx, ny, nz);\nmesh = enrichMesh3D(mesh,2); % Mesh detail level = 1 (for IFE).\nmesh = genIntfMesh3D(mesh,pde.intf);\nfem = genNedFEM3D(mesh,bc);\n\n%% 1. use vectorization to generate face and face2elem data structure\n\n% reoder the nodes such that the nodes of interface elements appear at the\n% end\n\nIntMeshNode = unique(reshape(mesh.t(mesh.tLoc<0,:),[],1));\nMeshNodeID = true(size(mesh.p,1),1);\nMeshNodeID(IntMeshNode) = false;\nNodeOrderNew = zeros(size(mesh.p,1),1);\nNodeOrderNew(MeshNodeID) = 1:sum(MeshNodeID);\nNodeOrderNew(~MeshNodeID) = sum(MeshNodeID)+1:size(mesh.p,1);\n\nmesh.t = NodeOrderNew(mesh.t);\nmesh.e = NodeOrderNew(mesh.e);\n[~,NodeOrderNewSortID] = sort(NodeOrderNew);\nmesh.p = mesh.p(NodeOrderNewSortID,:);\nmesh.pLoc = mesh.pLoc(NodeOrderNewSortID);\n\ntic\n\nNp = size(mesh.p,1);\nnode = [mesh.p;mesh.eIntP];\nallCutElem = mesh.t(mesh.tLoc<0,:);\nisCutElem = (mesh.tLoc<0);\nvSign = [mesh.pLoc;zeros(size(mesh.eIntP,1),1)];\nisInterfaceNode = false(size(node,1), 1);\nisInterfaceNode(allCutElem(:)) = true; % include the vertices of allCutElem \nnumCutElemV1 = sum(isInterfaceNode);\nisInterfaceNode(Np+1:end) = true; % and the cut points and the aux points\nallCutElemReoderTmp = zeros(size(node,1),1);\nnumCutElemV2 = sum(isInterfaceNode);\nallCutElemReoderTmp(isInterfaceNode) = 1:numCutElemV2;\nallCutElemReoder = allCutElemReoderTmp(allCutElem);\ninterfaceNode = node(isInterfaceNode,:);\nntI = -min(mesh.tLoc);\nintID = find(mesh.tLoc<0);\n\ntetElem = zeros(12*ntI,4);\ntetElemLoc = zeros(12*ntI,1);\nidx2cube = zeros(12*ntI,1);\ntetcount = 0;\n\nfor i = 1:ntI\n tID = intID(i);\n t_e = mesh.t_e(tID,:);\n pLocK = mesh.pLoc(mesh.t(tID,:));\n vert0 = mesh.p(mesh.t(tID,:),:);\n nodeid = [allCutElemReoder(i,:),numCutElemV1-mesh.eLoc(t_e(mesh.eLoc(t_e)<0))'];\n vert2 = vert0(pLocK>0,:); % plus domain\n vert1 = vert0(pLocK<0,:); % minus domain\n intpt0 = mesh.eIntP(-mesh.eLoc(t_e(mesh.eLoc(t_e)<0)),:);\n id1 = [find(pLocK<0)', 5:4+size(intpt0,1)];\n id2 = [find(pLocK>0)', 5:4+size(intpt0,1)];\n p1 = [vert1;intpt0]; DT = delaunayTriangulation(p1); t1 = DT.ConnectivityList;\n p2 = [vert2;intpt0]; DT = delaunayTriangulation(p2); t2 = DT.ConnectivityList;\n tetElem(tetcount+1:tetcount+size(t1,1),:) = nodeid(id1(t1));\n idx2cube(tetcount+1:tetcount+size(t1,1)) = tID;\n tetElemLoc(tetcount+1:tetcount+size(t1,1)) = 1; % inside subdomain\n tetcount = tetcount+size(t1,1);\n tetElem(tetcount+1:tetcount+size(t2,1),:) = nodeid(id2(t2));\n idx2cube(tetcount+1:tetcount+size(t2,1)) = tID;\n tetElemLoc(tetcount+1:tetcount+size(t2,1)) = 2; % outside subdomain\n tetcount = tetcount+size(t2,1);\nend\ntetElem(tetcount+1:end,:) = [];\ntetElemLoc(tetcount+1:end,:) = [];\nidx2cube(tetcount+1:end,:) = [];\n[tetElem, ortidx, volume] = fixorder3(interfaceNode, tetElem);\n% there are some tets which are coplane, need to get rid of them\nidPlane = (volume<=10^(-12));\ntetElem(idPlane,:) = [];\nvolume(idPlane,:) = [];\ntetElemLoc(idPlane,:) = [];\nidx2cube(idPlane,:) = [];\nlocalidx2globalidx = find(isInterfaceNode); % tetElem points to interfaceNode\ntetElem = localidx2globalidx(tetElem); \n% reorder tetElem such that the index of its nodes are local, i.e.,\n% starting from 1,2,...\n\n% there are some tets which are on the interface, but contained in the surrounding tets\n% need to get rid of them (but the following algorithm may not be robust)\ntetSign = vSign(tetElem);\nidSliver = (sum(abs(tetSign),2)==0);\ntetElem(idSliver,:) = [];\nvolume(idSliver,:) = [];\ntetElemLoc(idSliver,:) = [];\nidx2cube(idSliver,:) = [];\nPolyVolume = accumarray([idx2cube,tetElemLoc],volume);\nPolyVolume = PolyVolume(mesh.tLoc<0,:); \nh = (PolyVolume(:,1) + PolyVolume(:,2)).^(1/3);\n% the first component contains the volume of the polyhedron on the\n% subdomain 1, the first component contains the volume of the polyhedron\n% on the subdomain 2\n\ntoc\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% Get triangular faces for interrior elements and interface\n\ntic\nlocalFace = [2 3 4; 1 4 3; 1 2 4; 1 3 2];\nNT = size(tetElem,1);\ntface = zeros(4*NT, 3);\ntface2elem = zeros(4*NT, 1);\niface = zeros(4*NT, 3);\niface2elem = zeros(4*NT, 1);\n% find the interior tet elements\nisIntTet = min(vSign(tetElem),[], 2) == -1; % can not be == -1 as there is sliver\nintTet = tetElem(isIntTet,:);\n% find the corresponding cube indices\nintIdx2cube = idx2cube(isIntTet); \n% find triangular interface\nT = auxstructure3(intTet);\nneighbor = T.neighbor; % if a face is on the boundary, then the neighbor element index is itself\nclear T;\ntmp = (1:size(intTet, 1))';\nct = 0;\nci = 0;\nfor i = 1:4\n face = intTet(:, localFace(i,:));\n % find the triangle faces of polyhedron\n % 1. face and its neighbor associated to different cubes, and\n % 2. face is not on the boundary of all cut elements (which are squares)\n isPolyTriFace = ((neighbor(:, i) == tmp) | (intIdx2cube ~= intIdx2cube(neighbor(:,i)))) &...\n (sum(abs(vSign(face)), 2) > 0);% & (sum(abs(vSign(face)), 2) > 0);\n c2 = ct + sum(isPolyTriFace);\n tface((ct+1):c2,:) = face(isPolyTriFace,:);\n tface2elem((ct+1):c2,:) = intIdx2cube(isPolyTriFace); % the indices of the polyhedron\n ct = c2;\n % note that only interior elements are treated\n \n % find the triangle faces on interface with normal points to exterior\n % 1. face is on the boundary and\n % 2. all vertices are on the interface\n isInterface = (sum(abs(vSign(face)), 2) == 0);\n \n % add to interface \n c4 = ci + sum(isInterface);\n iface((ci+1):c4,:) = face(isInterface,:); % the interface tri faces.\n iface2elem((ci+1):c4,:) = intIdx2cube(isInterface); % the indices of the polyhedron\n ci = c4;\nend\niface((ci+1):end,:) = [];\niface2elem((ci+1):end,:) = [];\nc2old = c2;\n% plot to check\n%trisurf(tface(1:c2,:),node(:,1),node(:,2),node(:,3))\n%trisurf(iface(1:ci,:),node(:,1),node(:,2),node(:,3))\n\n% Find the triangular faces for exterior elements \nextTet = tetElem(~isIntTet, :);\nextIdx2cube = idx2cube(~isIntTet);\n\nT = auxstructure3(extTet);\nneighbor = T.neighbor;\nclear T;\ntmp = (1:size(extTet,1))';\nfor i = 1:4\n face = extTet(:, localFace(i,:));\n % find the triangle faces of polyhedron\n % 1. face and its neighbor associated to different cubes, and\n % 2. face is not on the boundary of all cut elements (which are squares)\n isPolyTriFace = ((neighbor(:, i) == tmp) | (extIdx2cube ~= extIdx2cube(neighbor(:,i)))) &...\n (sum(abs(vSign(face)), 2) > 0);\n c2 = ct + sum(isPolyTriFace);\n tface((ct+1):c2,:) = face(isPolyTriFace,:);\n tface2elem((ct+1):c2,:) = extIdx2cube(isPolyTriFace); \n % index of exterior polyhedron is append to the end of elem\n ct = c2;\nend\ntoc\n\ntface((ct+1):end,:) = []; % remove empty meomory\ntface2elem((ct+1):end) = [];\nface2elemLoc = [ones(c2old,1);2*ones(c2-c2old,1)];\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% generate edge structure of elements\n% reorder the DoFs: put the DoFs of the edges of non-interface elements (sans those of interface elements)\n% at the begining, then cancate the new edges including interface edges and\n% non-interface edges\n\nIntNodeID = [unique(reshape(mesh.t(mesh.tLoc<0,:),[],1));...\n (size(mesh.p,1)+1:size(mesh.p,1) + size(mesh.eIntP,1))'];\nAllNodeID = zeros(size(node,1),1);\nAllNodeID(IntNodeID) = 1:length(IntNodeID);\ntfaceNew = AllNodeID(tface);\n[face2EDoF,Newedge,face2EDoFSign] = dof3edge(tfaceNew);\n% IMPORTANT: the Newedge contains those inside elements (4 intersection points)\n% the edge orientation of dof3edge is from 1->2, 2->3, 3->1 of nodes of tfacenew\n% face2EDoFSign assigns a sign such that orientation is from small to large \nNewedge = IntNodeID(Newedge); % transfer the node index of edges to the global ones\n% the new index of non-interface edges of interface elements (starting from 1)\nNewedgeNintID = find(abs(sum(vSign(Newedge),2))==2);\n\nOldedgeID = unique(reshape(mesh.t_e(mesh.tLoc<0,:),[],1));\nOldedge = mesh.e(OldedgeID,:);\nOldEtmp = abs(sum(vSign(Oldedge),2))==2;\nOldedgeNintID = OldedgeID(OldEtmp); \n% the old index of non-interface edges of interface elements\nOldedgeNint = Oldedge(OldEtmp,:);\n[OldedgeNintSort,OldedgeNintSortID] = sortrows(OldedgeNint);\n% ~ should be exactly the same as Newedge(NewedgeNintID)\n% therefore OldedgeNintSortID should be the new index of all the\n% non-interface edges of interface elements\nBasicEdge = ones(size(mesh.e,1),1); BasicEdge(OldedgeID) = false;\nBasicEdge = logical(BasicEdge);\n% basically the non-interface edges sans edges of interface elements\nBasicEdgeNum = sum(BasicEdge);\nTotalOldEdge = zeros(size(mesh.e,1),1);\nTotalOldEdge(BasicEdge) = 1:BasicEdgeNum;\nTotalOldEdge(OldedgeNintID(OldedgeNintSortID)) = BasicEdgeNum + NewedgeNintID; \n% map OldedgeNintSortID to global ones and put them at the location of\n% the original non-interface edges\n% NOTE: at the location of interface edges, TotalOldEdge still contains zero\n\n% generate new global edge DoF structure\nNumEdge = size(mesh.e,1) - size(Oldedge,1) + size(Newedge,1);\n% NumEdge should equal size(mesh.e,1) + sum(mesh.eLoc<0) + 2*sum(mesh.fLoc<0)\ngdof = zeros(NumEdge,2); \ngdof(1:BasicEdgeNum,:) = mesh.e(BasicEdge,:);\ngdof(BasicEdgeNum+1:end,:) = Newedge;\nNintElem = mesh.tLoc>0;\ng2ldofNint = TotalOldEdge(mesh.t_e(NintElem,:));\nface2EDoF = face2EDoF + BasicEdgeNum;\n% each row contains the DoFs of each element\n\n% generate orientation structure for each edge\nt_e_orit = zeros(size(g2ldofNint));\ne_ind = [1,2; 1,3; 1,4; 2,3; 2,4; 3,4];\nfor i = 1:6\n d = mesh.p(mesh.t(NintElem,e_ind(i,2)),:) - mesh.p(mesh.t(NintElem,e_ind(i,1)),:);\n %d_crect = mesh.p(mesh.e(mesh.t_e(NintElem,i),2),:) - mesh.p(mesh.e(mesh.t_e(NintElem,i),1),:);\n d_crect = node(gdof(g2ldofNint(:,i),2),:) - node(gdof(g2ldofNint(:,i),1),:);\n t_e_orit(:,i) = sign(sum(d.*d_crect,2));\nend\n\nmeshI.tface = tface;\nmeshI.tface2elem = tface2elem;\nmeshI.iface = iface;\nmeshI.iface2elem = iface2elem;\nmeshI.face2elemLoc = face2elemLoc;\nmeshI.PolyVolume = PolyVolume;\n% meshI.vSign = vSign;\nmeshI.node = node;\nmeshI.tetElem = tetElem;\nmeshI.tetElemLoc = tetElemLoc;\nmeshI.idx2cube = idx2cube;\nmeshI.tetVolume = volume;\nmeshI.face2EDoF = face2EDoF;\nmeshI.face2EDoFSign = face2EDoFSign;\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% 2.use face, face2elem and face2EDoF data structure to compute ife functions\n\nface2elem = meshI.tface2elem;\ntface = meshI.tface;\nN = size(node, 1); NEdof = NumEdge;\nNF = size(tface,1); NC = size(mesh.t, 1);\n\nNP = max(face2elem);\nisCutPoly = false(NP, 1);\nisCutPoly(face2elem) = true;\n% this is the same as:\n% isCutPoly = (mesh.tLoc<0);\n% isCutPoly = isCutPoly(1:max(face2elem));\ncutPolyIdx = zeros(NP, 1);\nisExtPoly = false(NP,1);\nisExtPoly(NC+1:NP) = true;\n\nNP = sum(isCutPoly); % this new NP is max(-mesh.tLoc(mesh.tLoc<0));\ncutPolyIdx(isCutPoly) = 1:NP;\n% this is the same as:\n% cutPolyIdx = zeros(size(mesh.tLoc,1), 1);\n% cutPolyIdx(mesh.tLoc<0) = -mesh.tLoc(mesh.tLoc<0);\n% cutPolyIdx = cutPolyIdxNew(1:max(face2elem));\nface2elem = cutPolyIdx(face2elem);\n% the old face2elem is the global index of interface elements\n% the new one is only the index of interface elements\nisExtPoly = isExtPoly(isCutPoly);\n%%%clear isCutPoly cutPolyIdx\n\n% prepare new data structure to compute projections\npoly2node = sparse(face2elem(:)*ones(1,3), tface(:), 1, NP,N);\npoly2node = (poly2node > 0);\nNV = poly2node*ones(N, 1);\n\npoly2edge = sparse(face2elem(:)*ones(1,3), face2EDoF(:), 1, NP,NEdof);\npoly2edge = (poly2edge > 0);\nNE = poly2edge*ones(NEdof, 1);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% generate local IFE basis functions which are not associated with any DoFs\n% IFEbasis(:,i,:,:) for minus subdomain (i=1) or plus domain (i=2)\niface = meshI.iface;\niface2elem = meshI.iface2elem;\n[iface2elemReduce, uniID] = unique(iface2elem);\n% length(uniID) should be NP\nifaceReduce = iface(uniID,:);\n[IntFnormal,IntFarea,unitNormal,unittgt1,unittgt2] = facenormaltgt(node,ifaceReduce);\n[Fnormal,Farea,FunitNormal,Funittgt1,Funittgt2] = facenormaltgt(node,tface);\n% IFEbasis contains the associated IFE function on each face\n% IFEbasisA is for curl term and IFEbasisB is for u term\nIFEbasisA = zeros(size(face2elem,1),3,3);\n% for two pieces of an ife function, only the normal vector is different\n% on the minus subdomain (1) ife = n; on the plus subdomain (2) ife = n*bm/bp\nIFEbasisA(:,1,:) = unitNormal(face2elem,:);\nIFEbasisA(:,2,:) = unittgt1(face2elem,:);\nIFEbasisA(:,3,:) = unittgt2(face2elem,:);\nIFEbasisB = IFEbasisA;\npiece1tmp = (face2elemLoc==1);\nIFEbasisA(~piece1tmp,2,:) = IFEbasisA(~piece1tmp,2,:)*am/ap;\nIFEbasisA(~piece1tmp,3,:) = IFEbasisA(~piece1tmp,3,:)*am/ap;\nIFEbasisB(~piece1tmp,1,:) = IFEbasisB(~piece1tmp,1,:)*bm/bp;\n% Xmf the centroid of a triangular face on the interface of each interface\n% element but assigned to each face\n% Xf the centroid of each triangular face\nXmf = (node(ifaceReduce(face2elem,1),:) + node(ifaceReduce(face2elem,2),:) +...\n node(ifaceReduce(face2elem,3),:))/3; % the Xm point on the approximate interface plane\nXf = (node(tface(:,1),:) + node(tface(:,2),:) +...\n node(tface(:,3),:))/3;\n\n%% generate boundary integral for computing projections\n% for the curl term, need to compute surface curl (rot) on each face\nBIFEA = zeros(length(face2elem),3);\nBIFEB = zeros(length(face2elem),3,3);\n% BIFEA contains (alpha*(grad vi).(xf -xm))for i=1,2,3 (vi is the test function)\nBIFEA(:,1) = sum(squeeze(IFEbasisA(:,1,:)).*(Xf - Xmf),2);\nBIFEA(:,2) = sum(squeeze(IFEbasisA(:,2,:)).*(Xf - Xmf),2);\nBIFEA(:,3) = sum(squeeze(IFEbasisA(:,3,:)).*(Xf - Xmf),2);\n% no need multiply area for this case as computing curl generates |F|^(-1)\nBIFEA(piece1tmp,:) = am*BIFEA(piece1tmp,:);\nBIFEA(~piece1tmp,:) = ap*BIFEA(~piece1tmp,:);\n% BIFEB contains wh=(beta*(curl vi)times(xf -xm))times n for i=1,2,3\n% position to match the structure of mytimes\nBIFEB(:,:,1) = -cross(cross(squeeze(IFEbasisB(:,1,:)),(Xf - Xmf)),FunitNormal)/2;\nBIFEB(:,:,2) = -cross(cross(squeeze(IFEbasisB(:,2,:)),(Xf - Xmf)),FunitNormal)/2;\nBIFEB(:,:,3) = -cross(cross(squeeze(IFEbasisB(:,3,:)),(Xf - Xmf)),FunitNormal)/2;\n% devided by 2 is because curl(c times x) = 2c\nBIFEB(piece1tmp,:) = bm*BIFEB(piece1tmp,:);\nBIFEB(~piece1tmp,:) = bp*BIFEB(~piece1tmp,:);\n% project the 3D vector onto each face\nFNT = zeros(length(face2elem),3,3);\nFNT(:,1,:) = Funittgt1;\nFNT(:,2,:) = Funittgt2;\nFNT(:,3,:) = FunitNormal;\nBIFEB = mytimes(FNT,BIFEB); \nBIFEB = BIFEB(:,1:2,:);\n%%%%%%%%%%%%%%%%\n% mutiply the inverse the matrix on the left hand side of each interface\n% element for computing projection\n% this is a blocal diagonal matrix\n% for BIFEA (curl):\nVdiagTmp1 = (am*PolyVolume(:,1) + ap*PolyVolume(:,2)).^(-1);\nVdiagTmp2 = (am*PolyVolume(:,1) + am^2/ap*PolyVolume(:,2)).^(-1);\nVdiagTmp3 = (am*PolyVolume(:,1) + am^2/ap*PolyVolume(:,2)).^(-1);\nVdiag1 = VdiagTmp1(face2elem);\nVdiag2 = VdiagTmp2(face2elem);\nVdiag3 = VdiagTmp3(face2elem);\nMdiag = zeros(size(Vdiag1,1),3,3);\nMdiag(:,1,1) = Vdiag1; Mdiag(:,2,2) = Vdiag2; Mdiag(:,3,3) = Vdiag3;\nBIFEA = mytimes(Mdiag,BIFEA);\n%%%%%%%%%%%%%%%%\n% for BIFEB (u):\nVdiagTmp1 = (bm*PolyVolume(:,1) + bm^2/bp*PolyVolume(:,2)).^(-1);\nVdiagTmp2 = (bm*PolyVolume(:,1) + bp*PolyVolume(:,2)).^(-1);\nVdiagTmp3 = (bm*PolyVolume(:,1) + bp*PolyVolume(:,2)).^(-1);\nVdiag1 = VdiagTmp1(face2elem);\nVdiag2 = VdiagTmp2(face2elem);\nVdiag3 = VdiagTmp3(face2elem);\nMdiag = zeros(size(Vdiag1,1),3,3);\nMdiag(:,1,1) = Vdiag1; Mdiag(:,2,2) = Vdiag2; Mdiag(:,3,3) = Vdiag3;\n%%%%%%%%%%%%%%%%\n% compute [-(ym-y1),(xm-x1)]\nVecXm2Pt = (Xf - node(tface(:,1),:))/2;\nVecXm2Pt = mytimes(FNT,VecXm2Pt);\nVecXm2Pt = VecXm2Pt(:,[2,1]); VecXm2Pt(:,1) = -VecXm2Pt(:,1);\n% compute [-(ym-y1),(xm-x1)].wh\nBIFEB1 = zeros(size(VecXm2Pt));\nfor i = 1:3\n BIFEB1(:,i) = sum(VecXm2Pt.*squeeze(BIFEB(:,:,i)),2);\nend\nBIFEB1 = mytimes(Mdiag,BIFEB1);\n% compute inv([t1;t2]) where t1 and t2 are for the 1st and 3rd edges\nMatT = zeros(length(face2elem),3,2);\nMatT(:,:,1) = node(tface(:,2),:) - node(tface(:,1),:);\nMatT(:,:,2) = node(tface(:,1),:) - node(tface(:,3),:);\nMatT = mytimes(FNT,MatT); \nMatT = MatT(:,1:2,:); MatTInv = zeros(size(MatT));\nMatTInv(:,1,1) = MatT(:,2,2)./(-2*Farea); % generate inverse matrix\nMatTInv(:,2,2) = MatT(:,1,1)./(-2*Farea); \nMatTInv(:,1,2) = -MatT(:,1,2)./(-2*Farea); \nMatTInv(:,2,1) = -MatT(:,2,1)./(-2*Farea); \nclear MatT\nBIFEB2 = mytimes(MatTInv,BIFEB,[2,2]); % T^(-1)w_h \nBIFEB2 = mytimes(Mdiag,permute(BIFEB2,[1,3,2]));\nBIFEB2 = permute(BIFEB2,[1,3,2]);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% compute projections to IFE spaces and form the matrices\nface2EDoF = meshI.face2EDoF;\nface2EDoFSign = meshI.face2EDoFSign;\nIFNT = zeros(length(ifaceReduce),3,3);\nIFNT(:,:,1) = unitNormal;\nIFNT(:,:,2) = unittgt1;\nIFNT(:,:,3) = unittgt2;\n\nnnz = sum(NE.^2);\niiP = zeros(nnz, 1);\njjP = zeros(nnz, 1);\nssKC = zeros(nnz, 1);\nssMU = zeros(nnz, 1);\nindexP = 0;\niiF = zeros(nnz, 1);\njjF = zeros(nnz, 1);\nssSC = zeros(nnz, 1);\nssSU = zeros(nnz, 1);\nindexF = 0;\nune = unique(NE);\nhF = h(face2elem);\nb = zeros(NEdof, 1);\n\nfor kk = 1:length(une) % group polys according to their # of nodes\n \n tic\n %% generate IFE functions including the IFE basis functions on each interface\n %% elements which are not associated with any DoFs, and projections of gradients\n %% and the IFE functions with matching face average\n ne = une(kk);\n % some data related to element\n isCurrentFace = (NE(face2elem) == ne);\n CurrentFace = tface(isCurrentFace,:);\n CurrentFaceE = face2EDoF(isCurrentFace,:);\n CurrentFaceS = face2EDoFSign(isCurrentFace,:);\n CNF = size(CurrentFaceE,1);\n Currentfaceloc = face2elemLoc(isCurrentFace);\n Currentface2elem = face2elem(isCurrentFace);\n CurrentFnormal = FunitNormal(isCurrentFace,:);\n FareaCurrent = Farea(isCurrentFace);\n % some data related to face\n isCurrentElem = false(NP, 1);\n isCurrentElem(face2elem(isCurrentFace)) = true;\n CurrentPolyVolume = PolyVolume(isCurrentElem,:);\n IFNTCurrent = IFNT(isCurrentElem,:,:);\n % Current elem to node matrix\n currentPoly2edge = poly2edge(isCurrentElem, :);\n CNP = size(currentPoly2edge, 1);\n currentPolyLocalIdx = zeros(NP, 1);\n currentPolyLocalIdx(isCurrentElem) = 1:CNP;\n \n % currentElem(i,:) contains the edge index of the (current) i-th element\n [I, ~] = find(currentPoly2edge');\n currentElem = reshape(I, ne, [])';\n % localIdx(i,j) contains the (current) i-th element having the\n % node(dof=1,2,3,4) on the j-th location (j is the global node index)\n localIdx = sparse(repmat((1:CNP)', 1, ne), currentElem, ones(CNP, 1)*(1:ne), CNP, NEdof);\n clear currentPoly2edge\n \n %% Deal with current triangle face cases\n %% (1) for projection of curl u\n subs1 = currentPolyLocalIdx(face2elem(isCurrentFace));\n subs2 = [ones(CNF, 1); 2*ones(CNF, 1); 3*ones(CNF, 1)];\n val = BIFEA(isCurrentFace,:);\n \n % compute the projection of gradients\n GPA1 = zeros(CNP,3,ne); \n % coefficient of n t1 and t2 for the subelement on the subdomain 1 \n for m = 1:3\n subs3 = full(localIdx((CurrentFaceE(:, m) - 1)*CNP + subs1));\n SignCurrentE = repmat(CurrentFaceS(:,m),3,1);\n % subs1: new order (range in 1:CNP) of the element index\n % subs2: three components in the vector\n % subs3: the local index (DoF) (w.r.t. element) of the m-th edge of this face\n GPA1 = GPA1 + accumarray([repmat(subs1,3,1), subs2, repmat(subs3, 3, 1)],...\n SignCurrentE.*val(:), [CNP, 3, ne]);\n end\n GPA2 = GPA1; GPA2(:,2,:) = am/ap*GPA2(:,2,:); GPA2(:,3,:) = am/ap*GPA2(:,3,:);\n GPA1 = mytimes(IFNTCurrent,GPA1);\n GPA2 = mytimes(IFNTCurrent,GPA2);\n % the updated GP contains three component values of the projection vector \n % generate IFE vectors on each face\n % clear currentPolyLocalIdx localIdx\n % clear subs1 subs2 subs3\n \n % generate the data for computing stabilization matrices\n CurrentFace2DoF = zeros(NP,ne);\n CurrentFace2DoF(isCurrentElem,:) = currentElem;\n CurrentFace2DoF = CurrentFace2DoF(Currentface2elem,:);\n % CurrentFace2DoF contains the DoFs of the element associated with each face\n \n % compute curl uh.n on each face (uh is an IFE function)\n GPA1tmp = zeros(NP,3,ne); GPA2tmp = zeros(NP,3,ne);\n GPA1tmp(isCurrentElem,:,:) = GPA1; GPA2tmp(isCurrentElem,:,:) = GPA2;\n GAface = zeros(CNF,3,ne);\n GAface(Currentfaceloc==1,:,:) = GPA1tmp(Currentface2elem(Currentfaceloc==1),:,:);\n GAface(Currentfaceloc==2,:,:) = GPA2tmp(Currentface2elem(Currentfaceloc==2),:,:);\n clear GPA1tmp GPA2tmp \n GAfaceP = zeros(size(GAface,1),ne);\n for n = 1:ne\n GAfaceP(:,n) = sum(squeeze(GAface(:,:,n)).*CurrentFnormal,2);\n end\n \n % compute rot_F uh on each face according to DoFs\n TrueCurlTmp = CurrentFaceS./FareaCurrent;\n TrueCurl = zeros(CNF,ne);\n for i = 1:ne\n for j = 1:3\n IDij = (CurrentFaceE(:,j) == CurrentFace2DoF(:,i));\n TrueCurl(IDij,i) = TrueCurlTmp(IDij,j);\n end\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% (2) for projection of u\n val = BIFEB1(isCurrentFace,:); \n GPB1 = zeros(CNP,3,ne);\n % coefficient of n t1 and t2 for the subelement on the subdomain 1\n for m = 1:3\n subs3 = full(localIdx((CurrentFaceE(:, m) - 1)*CNP + subs1));\n SignCurrentE = repmat(CurrentFaceS(:,m),3,1);\n % subs1: new order (range in 1:CNP) of the element index\n % subs2: three components in the vector\n % subs3: the local index (DoF) (w.r.t. element) of the m-th edge of this face\n GPB1 = GPB1 + accumarray([repmat(subs1,3,1), subs2, repmat(subs3, 3, 1)],...\n SignCurrentE.*val(:), [CNP, 3, ne]);\n end\n \n edgetmp = [1,3];\n for mm = 1:2\n val = squeeze(BIFEB2(isCurrentFace,mm,:));\n m = edgetmp(mm);\n subs3 = full(localIdx((CurrentFaceE(:, m) - 1)*CNP + subs1));\n SignCurrentE = repmat(CurrentFaceS(:,m),3,1);\n Areatmp = repmat(FareaCurrent,3,1);\n % subs1: new order (range in 1:CNP) of the element index\n % subs2: three components in the vector\n % subs3: the local index (DoF) (w.r.t. element) of the m-th edge of this face\n GPB1 = GPB1 + accumarray([repmat(subs1,3,1), subs2, repmat(subs3, 3, 1)],...\n SignCurrentE.*val(:).*Areatmp, [CNP, 3, ne]);\n end \n GPB2 = GPB1; GPB2(:,2,:) = am/ap*GPB2(:,2,:); GPB2(:,3,:) = am/ap*GPB2(:,3,:);\n GPB1 = mytimes(IFNTCurrent,GPB1);\n GPB2 = mytimes(IFNTCurrent,GPB2);\n % the updated GP contains three component values of the projection vector \n % generate IFE vectors on each face\n clear currentPolyLocalIdx localIdx\n clear subs1 subs2 subs3\n \n % compute uh^(\\tau) (projection onto each face)\n GPB1tmp = zeros(NP,3,ne); GPB2tmp = zeros(NP,3,ne);\n GPB1tmp(isCurrentElem,:,:) = GPB1; GPB2tmp(isCurrentElem,:,:) = GPB2;\n GBface = zeros(CNF,3,ne);\n GBface(Currentfaceloc==1,:,:) = GPB1tmp(Currentface2elem(Currentfaceloc==1),:,:);\n GBface(Currentfaceloc==2,:,:) = GPB2tmp(Currentface2elem(Currentfaceloc==2),:,:);\n clear GPA1tmp GPA2tmp \n GBfaceP = zeros(size(GBface));\n for n = 1:ne\n GBfaceP(:,:,n) = GBface(:,:,n) - sum(GBface(:,:,n).*CurrentFnormal,2).*CurrentFnormal;\n end\n clear GBface\n GBfaceP = mytimes(FNT(isCurrentFace,:,:),GBfaceP);\n GBfaceP = GBfaceP(:,1:2,:);\n \n % compute u^(tau)(xm) uh on each face according to DoFs\n TrueUtTmp = zeros(CNF,2,ne);\n TrueUt = zeros(CNF,2,ne);\n MatTInvCurrent = MatTInv(isCurrentFace,:,:);\n for i = 1:ne\n TrueUt(:,:,i) = TrueUt(:,:,i) + TrueCurl(:,i).*VecXm2Pt(isCurrentFace,:);\n for j = 1:2\n jj = edgetmp(j);\n IDij = (CurrentFaceE(:,jj) == CurrentFace2DoF(:,i));\n TrueUtTmp(IDij,:,i) = MatTInvCurrent(IDij,j,:).*CurrentFaceS(IDij,jj);\n end\n end\n TrueUt = TrueUt + TrueUtTmp;\n clear TrueUtTmp\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% generate stiffness and mass matrices\n for n = 1:ne\n for m = 1:ne\n iiP(indexP+1:indexP + CNP) = currentElem(:, n);\n jjP(indexP+1:indexP + CNP) = currentElem(:, m);\n ssKC(indexP+1:indexP + CNP) = am*dot(GPA1(:,:,n), GPA1(:,:,m),2).*CurrentPolyVolume(:,1)+...\n ap*dot(GPA2(:,:,n), GPA2(:,:,m),2).*CurrentPolyVolume(:,2);\n ssMU(indexP+1:indexP + CNP) = bm*dot(GPB1(:,:,n), GPB1(:,:,m),2).*CurrentPolyVolume(:,1)+...\n bp*dot(GPB2(:,:,n), GPB2(:,:,m),2).*CurrentPolyVolume(:,2);\n indexP = indexP + CNP;\n \n iiF(indexF+1:indexF + CNF) = CurrentFace2DoF(:, n);\n jjF(indexF+1:indexF + CNF) = CurrentFace2DoF(:, m);\n ssSC(indexF+1:indexF + CNF) = dot((TrueCurl(:,m) - GAfaceP(:,m)),...\n (TrueCurl(:,n) - GAfaceP(:,n)),2).*...\n Farea(isCurrentFace).*hF(isCurrentFace);\n ssSU(indexF+1:indexF + CNF) = ( dot((TrueUt(:,1,m) - GBfaceP(:,1,m)),...\n (TrueUt(:,1,n) - GBfaceP(:,1,n)),2) + dot((TrueUt(:,2,m) - GBfaceP(:,2,m)),...\n (TrueUt(:,2,n) - GBfaceP(:,2,n)),2) ).*Farea(isCurrentFace).*hF(isCurrentFace);\n indexF = indexF + CNF;\n end\n end\n \n %% form the right-hand side vector\n idx2cubeNew = -mesh.tLoc(idx2cube);\n TetID = isCurrentElem(idx2cubeNew);\n currentvolume = volume(TetID);\n %%% DoFs of elements for tet\n currentTetDoF = zeros(size(isCurrentElem,1),ne);\n currentTetDoF(isCurrentElem,:) = currentElem;\n currentTetDoF = currentTetDoF(idx2cubeNew(TetID),:);\n %%% quadrature points\n X1 = node(tetElem(TetID,1),:); \n X2 = node(tetElem(TetID,2),:); \n X3 = node(tetElem(TetID,3),:);\n X4 = node(tetElem(TetID,4),:);\n ng = 1;\n [gx, gy, gz] = gaussPtetra(X1, X2, X3, X4, ng);\n gw = gaussWtetra(ng);\n Xm = (node(ifaceReduce(isCurrentElem,1),:) + node(ifaceReduce(isCurrentElem,2),:) +...\n node(ifaceReduce(isCurrentElem,3),:))/3;\n Xmtet = zeros(size(isCurrentElem,1),3);\n Xmtet(isCurrentElem,:) = Xm;\n Xmtet = Xmtet(idx2cubeNew(TetID),:);\n %%% projection of u\n Bas1 = zeros(size(isCurrentElem,1),3,ne); Bas2 = Bas1;\n Bas1(isCurrentElem,:,:) = GPB1; \n Bas2(isCurrentElem,:,:) = GPB2; \n Bas1 = Bas1(idx2cubeNew(TetID),:,:); Bas2 = Bas2(idx2cubeNew(TetID),:,:);\n Bas = zeros(sum(TetID),3,ne);\n piecetmp = tetElemLoc(TetID);\n Bas(piecetmp==1,:,:) = Bas1(piecetmp==1,:,:);\n Bas(piecetmp==2,:,:) = Bas2(piecetmp==2,:,:);\n \n \n ft1 = pde.f1(gx,gy,gz);\n ft2 = pde.f2(gx,gy,gz);\n ft3 = pde.f3(gx,gy,gz);\n Currentb = zeros(size(ft1));\n cnt = size(ft1,1);\n bii = ne*cnt;\n count = 0 ;\n for i = 1:ne\n Basi = squeeze(Bas(:,:,i));\n Currentb(:,i) = sum(gw*(ft1.*Basi(:,1)+ft2.*Basi(:,2)+ft3.*Basi(:,3)),2).*...\n currentvolume;\n bii(count+1:count+cnt) = currentTetDoF(:,i);\n count = count+cnt;\n end\n b = b + sparse(bii,1,reshape(Currentb,[],1),NEdof,1);\n \n toc \n \nend\n\nKcurl = sparse(iiP, jjP, ssKC, NEdof, NEdof);\nScurl = sparse(iiF, jjF, ssSC, NEdof, NEdof);\nMU = sparse(iiP, jjP, ssMU, NEdof, NEdof);\nSU = sparse(iiF, jjF, ssSU, NEdof, NEdof);\n\nMatI = Kcurl + Scurl + MU +SU;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% generate matrix on non-interface elements (for test)\nfeEvalBas1 = @EvalNed1Bas3D;\nfeEvalBas2 = @EvalNed1Bas3D;\n\ndof1 = 6; dof2 = 6; nloc = dof1*dof2; \nntID = find(mesh.tLoc > 0); ntN = length(ntID);\n\n%% 1. Matrix on noninterface elements\nMatInd = 1;\nAN = fem.area(ntID); \ngxN = fem.gx(ntID,:); gyN = fem.gy(ntID,:); gzN = fem.gz(ntID,:); gw = fem.gw;\nXN = zeros(nloc*ntN, 1);\n\ncoefN = feval(pde.A,gxN,gyN,gzN);\nIbasx = cell(dof1,1); Ibasy = cell(dof1,1); Ibasz = cell(dof1,1); \nJbasx = cell(dof2,1); Jbasy = cell(dof2,1); Jbasz = cell(dof2,1);\n\nfor i = 1:dof1\n Ibasx{i} = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, MatInd, 1).*t_e_orit(:,i);\n Ibasy{i} = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, MatInd, 2).*t_e_orit(:,i);\n Ibasz{i} = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, MatInd, 3).*t_e_orit(:,i);\nend\nfor j = 1:dof2\n Jbasx{j} = feEvalBas2(fem.bas, ntID, gxN, gyN, gzN, j, MatInd, 1).*t_e_orit(:,j);\n Jbasy{j} = feEvalBas2(fem.bas, ntID, gxN, gyN, gzN, j, MatInd, 2).*t_e_orit(:,j);\n Jbasz{j} = feEvalBas2(fem.bas, ntID, gxN, gyN, gzN, j, MatInd, 3).*t_e_orit(:,j);\nend\n\nIN = reshape(repmat(g2ldofNint(:,1:6),6,1),nloc*ntN,1);\nJN = repmat(reshape(g2ldofNint(:,1:6),dof2*ntN,1),6,1);\nind = 0;\nfor i = 1:dof1\n for j = 1:dof2\n XN(ind+1:ind+ntN) = AN.*(sum(((Ibasx{i}.*(coefN.*Jbasx{j})).*gw'),2) + ...\n sum(((Ibasy{i}.*(coefN.*Jbasy{j})).*gw'),2) + ...\n sum(((Ibasz{i}.*(coefN.*Jbasz{j})).*gw'),2));\n ind = ind + ntN;\n end\nend\nID = find(XN~=0); \nSN = sparse(IN(ID),JN(ID),XN(ID),NEdof,NEdof);\n\nStiffCurl = SN + Kcurl + Scurl;\n\n%%%%%%\n\nMatInd = 0;\nAN = fem.area(ntID); \ngxN = fem.gx(ntID,:); gyN = fem.gy(ntID,:); gzN = fem.gz(ntID,:); gw = fem.gw;\nXN = zeros(nloc*ntN, 1);\n\ncoefN = feval(pde.A,gxN,gyN,gzN);\nIbasx = cell(dof1,1); Ibasy = cell(dof1,1); Ibasz = cell(dof1,1); \nJbasx = cell(dof2,1); Jbasy = cell(dof2,1); Jbasz = cell(dof2,1);\n\nfor i = 1:dof1\n Ibasx{i} = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, MatInd, 1).*t_e_orit(:,i);\n Ibasy{i} = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, MatInd, 2).*t_e_orit(:,i);\n Ibasz{i} = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, MatInd, 3).*t_e_orit(:,i);\nend\nfor j = 1:dof2\n Jbasx{j} = feEvalBas2(fem.bas, ntID, gxN, gyN, gzN, j, MatInd, 1).*t_e_orit(:,j);\n Jbasy{j} = feEvalBas2(fem.bas, ntID, gxN, gyN, gzN, j, MatInd, 2).*t_e_orit(:,j);\n Jbasz{j} = feEvalBas2(fem.bas, ntID, gxN, gyN, gzN, j, MatInd, 3).*t_e_orit(:,j);\nend\n\nIN = reshape(repmat(g2ldofNint(:,1:6),6,1),nloc*ntN,1);\nJN = repmat(reshape(g2ldofNint(:,1:6),dof2*ntN,1),6,1);\nind = 0;\nfor i = 1:dof1\n for j = 1:dof2\n XN(ind+1:ind+ntN) = AN.*(sum(((Ibasx{i}.*(coefN.*Jbasx{j})).*gw'),2) + ...\n sum(((Ibasy{i}.*(coefN.*Jbasy{j})).*gw'),2) + ...\n sum(((Ibasz{i}.*(coefN.*Jbasz{j})).*gw'),2));\n ind = ind + ntN;\n end\nend\nID = find(XN~=0); \nMN = sparse(IN(ID),JN(ID),XN(ID),NEdof,NEdof);\n\nMassU = MN + MU + SU;\n\n%%%%%%%%%%\n\ndof = 6; nloc = dof;\nX = zeros(nloc*ntN, 1);\n\nfN1 = feval(pde.exactu1,gxN,gyN,gzN);\nfN2 = feval(pde.exactu2,gxN,gyN,gzN);\nfN3 = feval(pde.exactu3,gxN,gyN,gzN);\nind = 0;\nI = reshape(g2ldofNint(:,1:6),nloc*ntN,1);\nfor i = 1:dof\n ibas1 = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, 0, 1);\n ibas2 = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, 0, 2);\n ibas3 = feEvalBas1(fem.bas, ntID, gxN, gyN, gzN, i, 0, 3);\n X(ind+1:ind+ntN) = AN.*sum((ibas1.*fN1+ibas2.*fN2+ibas3.*fN3).*gw',2).*fem.t_e_orit(ntID,i);\n ind = ind + ntN;\nend\nrhsN = sparse(I,1,X,NEdof,1);\n\nrhs = rhsN + b;\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n[gew,gex,gey,gez] = gaussPedge(node(gdof(:,1),:),node(gdof(:,2),:),1);\n\n\ntu1 = sum(feval(pde.exactu1,gex,gey,gez).*gew,2);\ntu2 = sum(feval(pde.exactu2,gex,gey,gez).*gew,2);\ntu3 = sum(feval(pde.exactu3,gex,gey,gez).*gew,2);\n\ntgt = node(gdof(:,2),:) - node(gdof(:,1),:);\ntgt = tgt./sum(tgt.^2,2).^(1/2);\ntu = tu1.*tgt(:,1) + tu2.*tgt(:,2) + tu3.*tgt(:,3);\n\nAtotal = StiffCurl + MassU;\n%b = ones(size(MassU,1),1);\nx0 = zeros(size(b));\n\nbcind = fem.bcind;\n[bc,mapper] = boundaryEdge3D(node,gdof,bcind);\nbdidx = zeros(NEdof,1); \nisBdEdge = true(NEdof,1);\nisBdEdge(mapper) = false;\nbdidx(isBdEdge) = 1;\nTbd = spdiags(bdidx,0,NEdof,NEdof);\nT = spdiags(1-bdidx,0,NEdof,NEdof);\nA = T*Atotal*T + Tbd;\n\nub = tu;\nub(mapper) = 0;\nrhsB = Atotal*ub;\nf = rhs - rhsB;\nf(isBdEdge) = tu(isBdEdge);\n\noption.outsolver = 'cg';\nalpha = am*ones(size(gdof,1),1);\n% alpha(femI.eLoc>0) = ap;\n% alpha(femI.eLoc==0) = (am+ap)/2;\nbeta = bm*ones(size(gdof,1),1);\n% beta(femI.eLoc>0) = bp;\n% beta(femI.eLoc==0) = (bm+bp)/2;\noption.alpha = alpha;\noption.beta = beta;\noption.solver = 'amg';\nedge = gdof;\noption.isBdEdge = isBdEdge;\noption.smoother = 'BD';\nD = diag(A); D = D(1:BasicEdgeNum);\nM = sparse(1:BasicEdgeNum,1:BasicEdgeNum,D,NEdof,NEdof);\nM(BasicEdgeNum+1:end,BasicEdgeNum+1:end) = M(BasicEdgeNum+1:end,BasicEdgeNum+1:end) +...\n A(BasicEdgeNum+1:end,BasicEdgeNum+1:end);\noption.M = M;\n%option.M = A(BasicEdgeNum+1:end,BasicEdgeNum+1:end);\noption.blkId = BasicEdgeNum;\n[x,info] = amgMaxwell(A,f,node,edge,option);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% generate exact solution \n\n% [gew,gex,gey,gez] = gaussPedge(node(gdof(:,1),:),node(gdof(:,2),:),1);\n% \n% \n% tu1 = sum(feval(pde.exactu1,gex,gey,gez).*gew,2);\n% tu2 = sum(feval(pde.exactu2,gex,gey,gez).*gew,2);\n% tu3 = sum(feval(pde.exactu3,gex,gey,gez).*gew,2);\n% \n% tgt = node(gdof(:,2),:) - node(gdof(:,1),:);\n% tgt = tgt./sum(tgt.^2,2).^(1/2);\n% tu = tu1.*tgt(:,1) + tu2.*tgt(:,2) + tu3.*tgt(:,3);\n% \n% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% %% test\n% DC = full(StiffCurl*tu);\n% DU = full(SU*tu);\n\n\n% for i = 1:CNP\n% vv = sum(tu(currentElem(1,:)).*(squeeze(GPA1(1,:,:))'),1);\n% if sum(abs(vv)) > 10^(-8)\n% stp\n% end\n% end", "meta": {"author": "lyc102", "repo": "ifem", "sha": "29f31c812001ca8d93dad08e67208ca60e8716d4", "save_path": "github-repos/MATLAB/lyc102-ifem", "path": "github-repos/MATLAB/lyc102-ifem/ifem-29f31c812001ca8d93dad08e67208ca60e8716d4/research/IVEM/TestFunFiles/TestFace2elemHcurl2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3844277324436496}} {"text": "function [vol, M, dcminfo, mr_parms] = load_dicom_fl(flist)\n% [vol, M, dcminfo, mr_parms] = load_dicom_fl(flist)\n%\n% Loads a volume from the dicom files in flist.\n%\n% The volume dimensions are arranged such that the\n% readout dimension is first, followed by the phase-encode,\n% followed by the slices (this is not implemented yet)\n%\n% M is the 4x4 vox2ras transform such that\n% vol(i1,i2,i3), xyz1 = M*[i1 i2 i3 1] where the\n% indicies are 0-based. \n%\n% mr_parms = [tr flipangle te ti]\n%\n% Does not handle multiple frames correctly yet.\n%\n\n\n%\n% load_dicom_fl.m\n%\n% Original Author: Doug Greve\n% CVS Revision Info:\n% $Author: nicks $\n% $Date: 2011/03/02 00:04:12 $\n% $Revision: 1.11 $\n%\n% Copyright \u00a9 2011 The General Hospital Corporation (Boston, MA) \"MGH\"\n%\n% Terms and conditions for use, reproduction, distribution and contribution\n% are found in the 'FreeSurfer Software License Agreement' contained\n% in the file 'LICENSE' found in the FreeSurfer distribution, and here:\n%\n% https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferSoftwareLicense\n%\n% Reporting: freesurfer@nmr.mgh.harvard.edu\n%\n\n\nvol=[];\nM=[];\n\nif(nargin ~= 1)\n fprintf('[vol, M] = load_dicom_fl(flist)\\n');\n return;\nend\n\nnfiles = size(flist,1);\n\ntic\nfprintf('Loading dicom info foreach file \\n');\nfor n = 1:nfiles\n fname = deblank(flist(n,:));\n % fprintf('n = %d/%d, %s %g\\n',n,nfiles,fname,toc);\n tmpinfo = dicominfo(fname);\n if(isempty(tmpinfo)) \n fprintf('ERROR: reading %s\\n',fname);\n return;\n end\n if(n > 1)\n % Check that the nth series number agrees with the first\n if(tmpinfo.SeriesNumber ~= dcminfo0(1).SeriesNumber)\n fprintf('ERROR: series number inconsistency (%s)\\n',fname);\n return;\n end\n end\n tmpinfo.fname = fname;\n dcminfo0(n) = tmpinfo;\nend\n\n% Sort by slice location %\ndcminfo = sort_by_sliceloc(dcminfo0);\n\n% Slice direction cosine %\nsdc = dcminfo(nfiles).ImagePositionPatient-dcminfo(1).ImagePositionPatient;\nsdc = sdc /sqrt(sum(sdc.^2));\n\n% Distance between slices %\ndslice = sqrt(sum((dcminfo(2).ImagePositionPatient-dcminfo(1).ImagePositionPatient).^2));\n\n% Matrix of direction cosines %\nMdc = zeros(3,3);\nMdc(:,1) = dcminfo(1).ImageOrientationPatient(1:3);\nMdc(:,2) = dcminfo(1).ImageOrientationPatient(4:6);\nMdc(:,3) = sdc;\n\n% Voxel resolution %\ndelta = [dcminfo(1).PixelSpacing; dslice];\nD = diag(delta);\n\n% XYZ of first voxel in first slice %\nP0 = dcminfo(1).ImagePositionPatient;\n\n% Change Siemens to be RAS %\n% GE is also LPS - change it to be RAS, too - ebeth %\nManufacturer = dcminfo(1).Manufacturer;\nif(strcmpi(Manufacturer,'Siemens') | strcmpi(Manufacturer,'ge medical systems'))\n % Change to RAS\n Mdc(1,:) = -Mdc(1,:); \n Mdc(2,:) = -Mdc(2,:); \n P0(1) = -P0(1);\n P0(2) = -P0(2);\nend\n\n% Compute vox2ras transform %\nM = [Mdc*D P0; 0 0 0 1];\nif (0&strcmpi(Manufacturer,'Siemens'))\n % Correcting for P0 being at corner of \n % the first voxel instead of at the center\n M = M*[[eye(3) [0.5 0.5 0]']; 0 0 0 1]; %'\nend\n\n% Pre-allocate vol. Note: column and row designations do\n% not really mean anything. The \"column\" is the fastest\n% dimension. The \"row\" is the next fastest, etc.\nndim1 = dcminfo(1).Columns;\nndim2 = dcminfo(1).Rows;\nndim3 = nfiles;\nvol = zeros(ndim1,ndim2,ndim3);\n\nfprintf('Loading data from each file.\\n');\nfor n = 1:nfiles\n %fprintf('n = %d, %g\\n',n,toc);\n fname = dcminfo(n).fname;\n x = dicomread(fname);\n if(isempty(x))\n fprintf('ERROR: could not load pixel data from %s\\n',fname);\n return;\n end\n % Note: dicomread will transposed the image. This is supposed\n % to help. Anyway, to make the vox2ras transform agree with\n % the volume, the image is transposed back.\n vol(:,:,n) = x'; %'\nend\n\n% Reorder dimensions so that ReadOut dim is first %\nif(0 & ~strcmpi(dcminfo(1).PhaseEncodingDirection,'ROW'))\n % This does not work\n fprintf('INFO: permuting vol so that ReadOut is first dim\\n');\n vol = permute(vol,[2 1 3]);\n Mtmp = M;\n M(:,1) = Mtmp(:,2);\n M(:,2) = Mtmp(:,1);\nend\n\n% Lines below correct for the Z-offset in GE machines - ebeth %\n% We're told ge machines recenter along superior/inferior axis but\n% don't update c_ras - but now c_s should be zero.\nif(strcmpi(Manufacturer,'ge medical systems'))\n % Lines below correct for the Z-offset in GE machines\n firstZ = dcminfo(1).ImagePositionPatient(3);\n lastXYZ = M*[size(vol)';1]; %'\n % size(imvol) = number of slices in all 3 dirs\n lastZ = lastXYZ(3);\n offsetZ = (lastZ + firstZ)/2.0;\n % Z0 = Z + offsetZ; [XYZ1]' = M*[CRS1]', need to add to M(3,4)(?)\n M(3,4) = M(3,4) - offsetZ;\nend\n\n% if(strcmpi(Manufacturer,'ge medical systems')) \n% M(3,4) = 0; % Wow - that was actually completely wrong!\n% end\n\n% Pull out some info from the header %\nif(isfield(dcminfo(1),'FlipAngle')) FlipAngle = pi*dcminfo(1).FlipAngle/180; \nelse FlipAngle = 0;\nend\nif(isfield(dcminfo(1),'EchoTime')) EchoTime = dcminfo(1).EchoTime; \nelse EchoTime = 0;\nend\nif(isfield(dcminfo(1),'RepetitionTime')) RepetitionTime = dcminfo(1).RepetitionTime; \nelse RepetitionTime = 0;\nend\nInversionTime = 0;\nmr_parms = [RepetitionTime FlipAngle EchoTime InversionTime];\n\nreturn;\n\n%----------------------------------------------------------%\nfunction dcminfo2 = sort_by_sliceloc(dcminfo)\n nslices = length(dcminfo);\n sliceloc = zeros(nslices,1);\n for n = 1:nslices\n sliceloc(n) = dcminfo(n).SliceLocation;\n end\n\n [tmp ind] = sort(sliceloc);\n dcminfo2 = dcminfo(ind);\nreturn;\n\n%----------------------------------------------------------%\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/freesurfer/load_dicom_fl.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3844277324436496}} {"text": "%% ANAP-building\n% %{\nimfolder = 'images\\ANAP-building';\nim_n = 2;\nimfile = cell(im_n,1);\nimfile{1} = [imfolder '\\' 'building0.jpg'];\nimfile{2} = [imfolder '\\' 'building1.jpg'];\n\nim = cell(im_n,1);\nfor ii = 1:im_n\n im{ii} = imread(imfile{ii});\nend\n\nedge_list = [1,2];\n\nimsize = zeros(im_n,3);\n\nfor ii = 1:im_n\n imsize(ii,:) = size(im{ii});\n if imsize(ii,1) > 720\n scale = 720/size(im{ii}, 1);\n im{ii} = imresize(im{ii}, scale);\n\n imsize(ii,:) = size(im{ii});\n end\nend\n\nmosaic = REW_mosaic( im, edge_list, 1, 'persp', 200, imfolder );\n%}", "meta": {"author": "gain2217", "repo": "Robust_Elastic_Warping", "sha": "36ad3cb2f709fbea17225642ea1fa7b083924fd9", "save_path": "github-repos/MATLAB/gain2217-Robust_Elastic_Warping", "path": "github-repos/MATLAB/gain2217-Robust_Elastic_Warping/Robust_Elastic_Warping-36ad3cb2f709fbea17225642ea1fa7b083924fd9/multiple_views/examples/ANAP_building.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5660185351961013, "lm_q1q2_score": 0.3844277324436495}} {"text": "% Usage: [xopt, fmin, retcode] = nlopt_minimize(algorithm, f, f_data, lb, ub,\n% xinit, stop)\n%\n% Minimizes a nonlinear multivariable function f(x, f_data{:}), where\n% x is a row vector, returning the optimal x found (xopt) along with\n% the minimum function value (fmin = f(xopt)) and a return code (retcode).\n% A variety of local and global optimization algorithms can be used,\n% as specified by the algorithm parameter described below. lb and ub\n% are row vectors giving the upper and lower bounds on x, xinit is\n% a row vector giving the initial guess for x, and stop is a struct\n% containing termination conditions (see below).\n%\n% This function is a front-end for the external routine nlopt_minimize\n% in the free NLopt nonlinear-optimization library, which is a wrapper\n% around a number of free/open-source optimization subroutines. More\n% details can be found on the NLopt web page (ab-initio.mit.edu/nlopt)\n% and also under 'man nlopt_minimize' on Unix.\n%\n% f should be a handle (@) to a function of the form:\n%\n% [val, gradient] = f(x, ...)\n%\n% where x is a row vector, val is the function value f(x), and gradient\n% is a row vector giving the gradient of the function with respect to x.\n% The gradient is only used for gradient-based optimization algorithms;\n% some of the algorithms (below) are derivative-free and only require\n% f to return val (its value). f can take additional arguments (...)\n% which are passed via the argument f_data: f_data is a cell array\n% of the additional arguments to pass to f. (Recall that cell arrays\n% are specified by curly brackets { ... }. For example, pass f_data={}\n% for functions that require no additional arguments.)\n%\n% stop describes the termination criteria, and is a struct with a\n% number of optional fields:\n% stop.ftol_rel = fractional tolerance on function value\n% stop.ftol_abs = absolute tolerance on function value\n% stop.xtol_rel = fractional tolerance on x\n% stop.xtol_abs = row vector of absolute tolerances on x components\n% stop.fmin_max = stop when f < fmin_max is found\n% stop.maxeval = maximum number of function evaluations\n% stop.maxtime = maximum run time in seconds\n% stop.verbose = > 0 indicates verbose output\n% Minimization stops when any one of these conditions is met; any\n% condition that is omitted from stop will be ignored. WARNING:\n% not all algorithms interpret the stopping criteria in exactly the\n% same way, and in any case ftol/xtol specify only a crude estimate\n% for the accuracy of the minimum function value/x.\n%\n% The algorithm should be one of the following constants (name and\n% interpretation are the same as for the C function). Names with\n% _G*_ are global optimization, and names with _L*_ are local\n% optimization. Names with _*N_ are derivative-free, while names\n% with _*D_ are gradient-based algorithms. Algorithms:\n%\n% NLOPT_GD_MLSL_LDS, NLOPT_GD_MLSL, NLOPT_GD_STOGO, NLOPT_GD_STOGO_RAND, \n% NLOPT_GN_CRS2_LM, NLOPT_GN_DIRECT_L, NLOPT_GN_DIRECT_L_NOSCAL, \n% NLOPT_GN_DIRECT_L_RAND, NLOPT_GN_DIRECT_L_RAND_NOSCAL, NLOPT_GN_DIRECT, \n% NLOPT_GN_DIRECT_NOSCAL, NLOPT_GN_ISRES, NLOPT_GN_MLSL_LDS, NLOPT_GN_MLSL, \n% NLOPT_GN_ORIG_DIRECT_L, NLOPT_GN_ORIG_DIRECT, NLOPT_LD_AUGLAG_EQ, \n% NLOPT_LD_AUGLAG, NLOPT_LD_LBFGS, NLOPT_LD_LBFGS_NOCEDAL, NLOPT_LD_MMA, \n% NLOPT_LD_TNEWTON, NLOPT_LD_TNEWTON_PRECOND, \n% NLOPT_LD_TNEWTON_PRECOND_RESTART, NLOPT_LD_TNEWTON_RESTART, \n% NLOPT_LD_VAR1, NLOPT_LD_VAR2, NLOPT_LN_AUGLAG_EQ, NLOPT_LN_AUGLAG, \n% NLOPT_LN_BOBYQA, NLOPT_LN_COBYLA, NLOPT_LN_NELDERMEAD, \n% NLOPT_LN_NEWUOA_BOUND, NLOPT_LN_NEWUOA, NLOPT_LN_PRAXIS, NLOPT_LN_SBPLX\n%\n% For more information on individual algorithms, see their individual\n% help pages (e.g. \"help NLOPT_LN_SBPLX\").\nfunction [xopt, fmin, retcode] = nlopt_minimize(algorithm, f, f_data, lb, ub, xinit, stop)\n \n [xopt, fmin, retcode] = nlopt_minimize_constrained(algorithm, f, f_data, {}, {}, lb, ub, xinit, stop);\n \n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/OptiToolbox/Solvers/nlopt/distribution/nlopt_minimize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3844277250924534}} {"text": "filename='Sphere_Tetrahedra_Linear_Unstructured';\nptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'sphere';\nfracRadius = 1-1e-6;\ncost = {'compliance'};\nweights = [1];\nconstraint = {'volumeConstraint'};\noptimizer = 'HAMILTON-JACOBI'; \nincrementFactor = 1;\ndesignVariable = 'LevelSet';\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 1;\nPerimeter_target=3.5;\noptimality_final =1e-5;\nconstr_final =1e-5;\n\nBCscale_factor = 0.3;\nHJiter0 = 1;\ne2 = 5;\n\nVfrac_initial = 1;\noptimality_initial = 5e-2;\nconstr_initial = 5e-2;\n\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\n\n% maxiter = 10;\n% maxiter = 1;\nTOL.nu_plus = 0.3;\nTOL.nu_minus = 0.3;\n\nplotting = 0;\nprinting = 0;\nmonitoring = 0;\nmonitoring_interval = 0;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/test_sphere_tetrahedra.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8198933359135362, "lm_q2_score": 0.4687906266262437, "lm_q1q2_score": 0.384358310709588}} {"text": "function ndx = mysub2ind(siz,subinds)\n\nk = [1 cumprod(siz(1:end-1))];\nndx = ones(size(subinds,1),1);\nfor i = 1:size(subinds,2)\n for r =1:size(subinds,1)\n v = subinds(r,i);\n ndx(r) = ndx(r) + (v-1)*k(i);\n end;\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/32248-fast-volterra-filtering/mysub2ind.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.6654105521116443, "lm_q1q2_score": 0.38427150979020663}} {"text": "function [spectrum,ntaper,freqoi] = ft_specest_mtmfft(dat, time, varargin)\n\n% FT_SPECEST_MTMFFT computes a fast Fourier transform using multitapering with\n% multiple tapers from the DPSS sequence or using a variety of single tapers.\n%\n% Use as\n% [spectrum,ntaper,freqoi] = ft_specest_mtmfft(dat,time...)\n% where\n% dat = matrix of chan*sample\n% time = vector, containing time in seconds for each sample\n% spectrum = matrix of taper*chan*freqoi of fourier coefficients\n% ntaper = vector containing number of tapers per element of freqoi\n% freqoi = vector of frequencies in spectrum\n%\n% Optional arguments should be specified in key-value pairs and can include\n% taper = 'dpss', 'hanning' or many others, see WINDOW (default = 'dpss')\n% pad = number, total length of data after zero padding (in seconds)\n% padtype = string, indicating type of padding to be used (see ft_preproc_padding, default: zero)\n% freqoi = vector, containing frequencies of interest\n% tapsmofrq = the amount of spectral smoothing through multi-tapering. Note: 4 Hz smoothing means plus-minus 4 Hz, i.e. a 8 Hz smoothing box\n% dimord = 'tap_chan_freq' (default) or 'chan_time_freqtap' for memory efficiency (only when use variable number slepian tapers)\n% polyorder = number, the order of the polynomial to fitted to and removed from the data prior to the fourier transform (default = 0 -> remove DC-component)\n% taperopt = additional taper options to be used in the WINDOW function, see WINDOW\n% verbose = output progress to console (0 or 1, default 1)\n%\n% See also FT_FREQANALYSIS, FT_SPECEST_MTMCONVOL, FT_SPECEST_TFR, FT_SPECEST_HILBERT, FT_SPECEST_WAVELET\n\n% Copyright (C) 2010, Donders Institute for Brain, Cognition and Behaviour\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% these are for speeding up computation of tapers on subsequent calls\npersistent previous_argin previous_tap\n\n% get the optional input arguments\ntaper = ft_getopt(varargin, 'taper'); if isempty(taper), ft_error('You must specify a taper'); end\npad = ft_getopt(varargin, 'pad');\npadtype = ft_getopt(varargin, 'padtype', 'zero');\nfreqoi = ft_getopt(varargin, 'freqoi', 'all');\ntapsmofrq = ft_getopt(varargin, 'tapsmofrq');\ndimord = ft_getopt(varargin, 'dimord', 'tap_chan_freq');\nfbopt = ft_getopt(varargin, 'feedback');\nverbose = ft_getopt(varargin, 'verbose', true);\npolyorder = ft_getopt(varargin, 'polyorder', 0);\ntapopt = ft_getopt(varargin, 'taperopt');\n\nif isempty(fbopt)\n fbopt.i = 1;\n fbopt.n = 1;\nend\n\n% throw errors for required input\nif isempty(tapsmofrq) && (strcmp(taper, 'dpss') || strcmp(taper, 'sine'))\n ft_error('you need to specify tapsmofrq when using dpss or sine tapers')\nend\n\n% this does not work on integer data\ndat = cast(dat, 'double');\n\n% Set n's\n[nchan,ndatsample] = size(dat);\n\n% This does not work on integer data\nif ~isa(dat, 'double') && ~isa(dat, 'single')\n dat = cast(dat, 'double');\nend\n\n% Remove polynomial fit from the data -> default is demeaning\nif polyorder >= 0\n dat = ft_preproc_polyremoval(dat, polyorder, 1, ndatsample);\nend\n\n% Determine fsample and set total time-length of data\nfsample = 1./mean(diff(time));\ndattime = ndatsample / fsample; % total time in seconds of input data\n\n% Zero padding\nif round(pad * fsample) < ndatsample\n ft_error('the padding that you specified is shorter than the data');\nend\nif isempty(pad) % if no padding is specified padding is equal to current data length\n pad = dattime;\nend\npostpad = ceil((pad - dattime) * fsample);\nendnsample = round(pad * fsample); % total number of samples of padded data\nendtime = pad; % total time in seconds of padded data\n\n% Set freqboi and freqoi\nfreqoiinput = freqoi;\nif isnumeric(freqoi) % if input is a vector\n freqboi = round(freqoi ./ (fsample ./ endnsample)) + 1; % is equivalent to: round(freqoi .* endtime) + 1;\n freqboi = unique(freqboi);\n freqoi = (freqboi-1) ./ endtime; % boi - 1 because 0 Hz is included in fourier output\nelseif strcmp(freqoi,'all') % if input was 'all'\n freqboilim = round([0 fsample/2] ./ (fsample ./ endnsample)) + 1;\n freqboi = freqboilim(1):1:freqboilim(2);\n freqoi = (freqboi-1) ./ endtime;\nend\nnfreqboi = length(freqboi);\nnfreqoi = length(freqoi);\nif (strcmp(taper, 'dpss') || strcmp(taper, 'sine')) && numel(tapsmofrq)~=1 && (numel(tapsmofrq)~=nfreqoi)\n ft_error('tapsmofrq needs to contain a smoothing parameter for every frequency when requesting variable number of slepian tapers')\nend\n\n% throw a warning if input freqoi is different from output freqoi\nif isnumeric(freqoiinput)\n % check whether padding is appropriate for the requested frequency resolution\n rayl = 1/endtime;\n if any(rem(freqoiinput,rayl)) % not always the case when they mismatch\n ft_warning('padding not sufficient for requested frequency resolution, for more information please see the FAQs on www.ru.nl/neuroimaging/fieldtrip');\n end\n if numel(freqoiinput) ~= numel(freqoi) % freqoi will not contain double frequency bins when requested\n ft_warning('output frequencies are different from input frequencies, multiples of the same bin were requested but not given');\n else\n if any(abs(freqoiinput-freqoi) >= eps*1e6)\n ft_warning('output frequencies are different from input frequencies');\n end\n end\nend\n\n% determine whether tapers need to be recomputed\ncurrent_argin = {time, postpad, taper, tapsmofrq, freqoi, tapopt, dimord}; % reasoning: if time and postpad are equal, it's the same length trial, if the rest is equal then the requested output is equal\nif isequal(current_argin, previous_argin)\n % don't recompute tapers\n tap = previous_tap;\n \nelse\n % recompute tapers\n switch taper\n \n case 'dpss'\n if numel(tapsmofrq)==1\n % create a sequence of DPSS tapers, ensure that the input arguments are double precision\n tap = double_dpss(ndatsample,ndatsample*(tapsmofrq./fsample))';\n % remove the last taper because the last slepian taper is always messy\n tap = tap(1:(end-1), :);\n \n % give error/warning about number of tapers\n if isempty(tap)\n ft_error('datalength to short for specified smoothing\\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',ndatsample/fsample,tapsmofrq,fsample/ndatsample);\n elseif size(tap,1) == 1\n ft_warning('using only one taper for specified smoothing');\n end\n elseif numel(tapsmofrq)>1\n tap = cell(1,nfreqoi);\n for ifreqoi = 1:nfreqoi\n % create a sequence of DPSS tapers, ensure that the input arguments are double precision\n currtap = double_dpss(ndatsample, ndatsample .* (tapsmofrq(ifreqoi) ./ fsample))';\n % remove the last taper because the last slepian taper is always messy\n currtap = currtap(1:(end-1), :);\n \n % give error/warning about number of tapers\n if isempty(currtap)\n ft_error('%.3f Hz: datalength to short for specified smoothing\\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), ndatsample/fsample,tapsmofrq(ifreqoi),fsample/ndatsample(ifreqoi));\n elseif size(currtap,1) == 1\n disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])\n end\n tap{ifreqoi} = currtap;\n end\n end\n \n case 'sine'\n if numel(tapsmofrq)==1\n % create a sequence of sine tapers, \n tap = sine_taper(ndatsample, ndatsample*(tapsmofrq./fsample))';\n % remove the last taper \n tap = tap(1:(end-1), :);\n \n % give error/warning about number of tapers\n if isempty(tap)\n ft_error('datalength to short for specified smoothing\\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',ndatsample/fsample,tapsmofrq,fsample/ndatsample);\n elseif size(tap,1) == 1\n ft_warning('using only one taper for specified smoothing');\n end\n elseif numel(tapsmofrq)>1\n tap = cell(1,nfreqoi);\n for ifreqoi = 1:nfreqoi\n % create a sequence of sine tapers\n currtap = sine_taper(ndatsample, ndatsample .* (tapsmofrq(ifreqoi) ./ fsample))';\n % remove the last taper because the last slepian taper is always messy\n currtap = currtap(1:(end-1), :);\n \n % give error/warning about number of tapers\n if isempty(currtap)\n ft_error('%.3f Hz: datalength to short for specified smoothing\\ndatalength: %.3f s, smoothing: %.3f Hz, minimum smoothing: %.3f Hz',freqoi(ifreqoi), ndatsample/fsample,tapsmofrq(ifreqoi),fsample/ndatsample(ifreqoi));\n elseif size(currtap,1) == 1\n disp([num2str(freqoi(ifreqoi)) ' Hz: WARNING: using only one taper for specified smoothing'])\n end\n tap{ifreqoi} = currtap;\n end\n end \n \n case 'sine_old'\n % to provide compatibility with the tapers being scaled (which was default\n % behavior prior to 29apr2011) yet this gave different magnitude of power\n % when comparing with slepian multi tapers\n tap = sine_taper_scaled(ndatsample, ndatsample*(tapsmofrq./fsample))';\n tap = tap(1:(end-1), :); % remove the last taper\n \n case 'alpha'\n ft_error('not yet implemented');\n \n case 'hanning'\n tap = hanning(ndatsample)';\n tap = tap./norm(tap, 'fro');\n \n otherwise\n % create the taper and ensure that it is normalized\n if isempty(tapopt) % some windowing functions don't support nargin>1, and window.m doesn't check it\n tap = window(taper, ndatsample)';\n else\n tap = window(taper, ndatsample, tapopt)';\n end\n tap = tap ./ norm(tap,'fro');\n \n end % switch taper\nend % isequal currargin\n\n% set ntaper\nif ~((strcmp(taper,'dpss') || strcmp(taper,'sine')) && numel(tapsmofrq)>1) % variable number of slepian tapers not requested\n ntaper = repmat(size(tap,1),nfreqoi,1);\nelse % variable number of slepian tapers requested\n ntaper = cellfun(@size,tap,repmat({1},[1 nfreqoi]));\nend\n\n% determine phase-shift so that for all frequencies angle(t=0) = 0\ntimedelay = time(1);\nif timedelay ~= 0\n angletransform = complex(zeros(1,nfreqoi));\n for ifreqoi = 1:nfreqoi\n missedsamples = round(timedelay * fsample);\n % determine angle of freqoi if oscillation started at 0\n % the angle of wavelet(cos,sin) = 0 at the first point of a cycle, with sine being in upgoing flank, which is the same convention as in mtmconvol\n anglein = (missedsamples) .* ((2.*pi./fsample) .* freqoi(ifreqoi));\n coswav = cos(anglein);\n sinwav = sin(anglein);\n angletransform(ifreqoi) = atan2(sinwav, coswav);\n end\n angletransform = repmat(angletransform,[nchan,1]);\nend\n\n% compute fft\nif ~((strcmp(taper,'dpss') || strcmp(taper,'sine')) && numel(tapsmofrq)>1) % ariable number of slepian tapers not requested\n str = sprintf('nfft: %d samples, datalength: %d samples, %d tapers',endnsample,ndatsample,ntaper(1));\n [st, cws] = dbstack;\n if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis')\n % specest_mtmfft has been called by ft_freqanalysis, meaning that ft_progress has been initialised\n ft_progress(fbopt.i./fbopt.n, ['processing trial %d/%d ',str,'\\n'], fbopt.i, fbopt.n);\n elseif verbose\n fprintf([str, '\\n']);\n end\n spectrum = cell(ntaper(1),1);\n \n for itap = 1:ntaper(1)\n dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap(itap,:)), padtype, 0, postpad),[], 2);\n dum = dum(:,freqboi);\n % phase-shift according to above angles\n if timedelay ~= 0\n dum = dum .* exp(-1i*angletransform);\n end\n dum = dum .* sqrt(2 ./ endnsample);\n spectrum{itap} = dum;\n end\n \n spectrum = reshape(vertcat(spectrum{:}),[nchan ntaper(1) nfreqboi]); % collecting in a cell-array and later reshaping provides significant speedups\n spectrum = permute(spectrum, [2 1 3]);\n \n \nelse % variable number of slepian tapers requested\n switch dimord\n \n case 'tap_chan_freq' % default\n % start fft'ing\n spectrum = complex(NaN([max(ntaper) nchan nfreqoi]));\n for ifreqoi = 1:nfreqoi\n str = sprintf('nfft: %d samples, datalength: %d samples, frequency %d (%.2f Hz), %d tapers',endnsample,ndatsample,ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));\n [st, cws] = dbstack;\n if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose\n % specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised\n ft_progress(fbopt.i./fbopt.n, ['processing trial %d, ',str,'\\n'], fbopt.i);\n elseif verbose\n fprintf([str, '\\n']);\n end\n for itap = 1:ntaper(ifreqoi)\n \n dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap{ifreqoi}(itap,:)), padtype, 0, postpad), [], 2);\n \n dum = dum(:,freqboi(ifreqoi));\n % phase-shift according to above angles\n if timedelay ~= 0\n dum = dum .* exp(-1i*angletransform(:,ifreqoi));\n end\n dum = dum .* sqrt(2 ./ endnsample);\n spectrum(itap,:,ifreqoi) = dum;\n end\n end % for nfreqoi\n \n case 'chan_freqtap' % memory efficient representation\n % create tapfreqind\n freqtapind = cell(1,nfreqoi);\n tempntaper = [0; cumsum(ntaper(:))];\n for ifreqoi = 1:nfreqoi\n freqtapind{ifreqoi} = tempntaper(ifreqoi)+1:tempntaper(ifreqoi+1);\n end\n \n % start fft'ing\n spectrum = complex(zeros([nchan sum(ntaper)]));\n for ifreqoi = 1:nfreqoi\n str = sprintf('nfft: %d samples, datalength: %d samples, frequency %d (%.2f Hz), %d tapers',endnsample,ndatsample,ifreqoi,freqoi(ifreqoi),ntaper(ifreqoi));\n [st, cws] = dbstack;\n if length(st)>1 && strcmp(st(2).name, 'ft_freqanalysis') && verbose\n % specest_mtmconvol has been called by ft_freqanalysis, meaning that ft_progress has been initialised\n ft_progress(fbopt.i./fbopt.n, ['processing trial %d, ',str,'\\n'], fbopt.i);\n elseif verbose\n fprintf([str, '\\n']);\n end\n for itap = 1:ntaper(ifreqoi)\n \n dum = fft(ft_preproc_padding(bsxfun(@times,dat,tap{ifreqoi}(itap,:)), padtype, 0, postpad), [], 2);\n \n dum = dum(:,freqboi(ifreqoi));\n % phase-shift according to above angles\n if timedelay ~= 0\n dum = dum .* exp(-1i*angletransform(:,ifreqoi));\n end\n dum = dum .* sqrt(2 ./ endnsample);\n spectrum(:,freqtapind{ifreqoi}(itap)) = dum;\n end\n end % for nfreqoi\n end % switch dimord\nend\n\n% remember the current input arguments, so that they can be\n% reused on a subsequent call in case the same input argument is given\nprevious_argin = current_argin;\nprevious_tap = tap;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% SUBFUNCTION ensure that the first two input arguments are of double\n% precision this prevents an instability (bug) in the computation of the\n% tapers for MATLAB 6.5 and 7.0\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [tap] = double_dpss(a, b, varargin)\ntap = dpss(double(a), double(b), varargin{:});\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/specest/ft_specest_mtmfft.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7745833945721304, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.3842660424578724}} {"text": "function gr = lme_mass_RgGradient1(X,Zcols,SIGMA,W,invH,L,phi,re,ni,G,GDa,GDb)\n% gr = lme_mass_RgGradient1(X,Zcols,W,invH,L,phi,re,ni,G,GDa,GDb)\n% \n% Gradient vector of the restricted log-likelihood for a whole region. This\n% is less computationally efficient than lme_mass_RgGradient but more \n% numerically stable.\n%\n% Input\n% X: Ordered design Matrix (according to time for each subject).\n% Zcols: Vector with the indices of the colums of X that will be considered\n% as random effects.\n% W: Inverses of the estimated temporal covariance matrices for each \n% subject stacked in W.\n% invH: Asymptotic covariance matrix of the fixed effects.\n% L: Cholesky factor of the covariance matrix of the random effects (D).\n% phi: Within-subject standard deviation of the errors.\n% re: Residuals;\n% ni: Vector whose entries are the number of repeated measures for each\n% subject in the study (ordered according to X).\n% G: Spatial covariance matrix.\n% GDa: Derivative of the spatial covariance matrix for the first spatial \n% parameter.\n% GDb: Derivative of the spatial covariance matrix for the second spatial \n% parameter (empty for spatial models with a single parameter).\n%\n% Output\n% gr: Gradient vector.\n%\n% $Revision: 1.2 $ $Date: 2015/01/06 17:14:55 $\n% Original Author: Jorge Luis Bernal Rusiel \n% CVS Revision Info:\n% $Author: mreuter $\n% $Date: 2015/01/06 17:14:55 $\n% $Revision: 1.2 $\n%\nm = length(ni);\nq = length(Zcols);\nZ = X(:,Zcols);\nnth = q*(q+1)/2+1;\nnv = size(G,1);\n%Log-likelihoood derivative for L\ngr = zeros(nth+2,1);\njk = 0;\nfor k=1:q\n for j=1:k\n jk = jk + 1;\n posi = 1; posir = 1;\n a1 = 0; a2 = 0; M1 = 0;\n for i=1:m\n posf = posi+ni(i)-1;\n posfr = posir+ni(i)*nv-1;\n Zi = Z(posi:posf,:);\n Wi = W(posi:posf,1:ni(i));\n SIGMAi = SIGMA(posi:posf,1:ni(i));\n Xi = X(posi:posf,:);\n rei = re(posir:posfr);\n Mjki = Zi(:,k)*L(j,:)*Zi';\n Mjki = Mjki + Mjki';\n Maux = Mjki*Wi;\n a1 = a1 - trace(Maux);\n a2 = a2 + (rei'/kron(G,SIGMAi))*(kron(eye(nv),Mjki*Wi)*rei);\n M1 = M1 + Xi'*Wi*Maux*Xi;\n posi = posf+1;\n posir = posfr+1;\n end;\n a3 = -trace(invH*M1);\n gr(jk) = (nv*a1+a2-nv*a3)/2;\n end;\nend;\n%Log-likelihoood derivative for phi\nposi = 1; posir = 1;\na1 = 0; a2 =0; M1 = 0;\nfor i=1:m\n posf = posi+ni(i)-1;\n posfr = posir+ni(i)*nv-1;\n Wi = W(posi:posf,1:ni(i));\n SIGMAi = SIGMA(posi:posf,1:ni(i));\n Xi = X(posi:posf,:);\n rei = re(posir:posfr);\n a1 = a1 - trace(Wi);\n Maux = Wi*Wi;\n a2 = a2 + (rei'/kron(G,SIGMAi))*(kron(eye(nv),Wi)*rei);\n M1 = M1 + Xi'*Maux*Xi;\n posi = posf+1;\n posir = posfr+1;\nend;\na3 = -trace(invH*M1);\ngr(nth) = phi*(nv*a1+a2-nv*a3);\n%Log-likelihoood derivative for a\nposi = 1; posir = 1;\na2 =0; \nfor i=1:m\n posf = posi+ni(i)-1;\n posfr = posir+ni(i)*nv-1;\n SIGMAi = SIGMA(posi:posf,1:ni(i));\n rei = re(posir:posfr);\n a2 = a2 + (rei'/kron(G,eye(ni(i))))*(kron(GDa,eye(ni(i))))*(kron(G,SIGMAi)\\rei);\n posi = posf+1;\n posir = posfr+1;\nend;\naux = -trace(G\\GDa);\na1 = sum(ni)*aux;\na3 = size(X,2)*aux;\ngr(nth+1) = (a1+a2-a3)/2;\nif ~isempty(GDb)\n %Log-likelihoood derivative for b\n posi = 1; posir = 1;\n a2 =0;\n for i=1:m\n posf = posi+ni(i)-1;\n posfr = posir+ni(i)*nv-1;\n SIGMAi = SIGMA(posi:posf,1:ni(i));\n rei = re(posir:posfr);\n a2 = a2 + (rei'/kron(G,eye(ni(i))))*(kron(GDb,eye(ni(i))))*(kron(G,SIGMAi)\\rei);\n posi = posf+1;\n posir = posfr+1;\n end;\n aux = -trace(G\\GDb);\n a1 = sum(ni)*aux;\n a3 = size(X,2)*aux;\n gr(nth+2) = (a1+a2-a3)/2;\nelse\n gr = gr(1:nth+1);\nend;\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/freesurfer/lme/mass_univariate/lme_mass_RgGradient1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7745833841649233, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3842660372949212}} {"text": "function [ y, m ] = month_carry_english ( y, m )\n\n%*****************************************************************************80\n%\n%% MONTH_CARRY_ENGLISH carries a year of months on the English calendar.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 April 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, M, the year and month.\n% On output, M is no greater than 12.\n%\n while ( 1 )\n\n months = year_length_months_english ( y );\n\n if ( m <= months )\n break\n end\n\n m = m - months;\n y = y + 1;\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/month_carry_english.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5234203489363239, "lm_q2_score": 0.7341195327172402, "lm_q1q2_score": 0.38425310197582896}} {"text": "function [gmu, gsigmavar, factors] = gpPosteriorGradMeanCovar(model, X);\n\n% GPPOSTERIORGRADMEANCOVAR Gadient of the mean and variances of the posterior at points given by X.\n% FORMAT\n% DESC computes the gradient of the mean and covariances of the\n% posterior distribution of a Gaussian process with respect to the\n% input locations. \n% ARG model : the model for which gradients are to be computed.\n% ARG X : the input locations where gradients are to be computed.\n% RETURN gmu : the gradient of the posterior mean with respect to\n% the input locations.\n% RETURN gCovar : the gradients of the posterior covariance with\n% respect to the input locations. By raw, we mean that the gradient\n% has not yet been multiplied by any output scale in that direction\n% (as is done for gpPosteriorGradMeanCovar). The gradients are\n% stored in a cell array of dimension MODEL.q x MODEL.d. \n%\n% DESC computes the gradient of the mean and covariances of the\n% posterior distribution of a Gaussian process with respect to the\n% input locations. Returns a compact representation for the\n% covariances which separates the factors associated with the\n% different dimensions from the covariance gradients.\n% ARG model : the model for which gradients are to be computed.\n% ARG X : the input locations where gradients are to be computed.\n% RETURN gmu : the gradient of the posterior mean with respect to\n% the input locations.\n% RETURN grCovar : the 'raw' gradient of the posterior covariance with\n% respect to the input locations. By raw, we mean that the gradient\n% has not yet been multiplied by any output scale in that direction\n% (as is done for gpPosteriorGradMeanCovar). The gradients are\n% stored in a cell array of length MODEL.q. \n% RETURN factors : the factors for multiplying the 'raw' gradients\n% of the covariances by. \n%\n% SEEALSO : gpCreate, gpPosteriorMeanVar\n%\n% COPYRIGHT : Neil D. Lawrence, 2005, 2006, 2009\n\n% GP\n\n\nif ~isfield(model, 'alpha')\n model = gpComputeAlpha(model);\nend\n\nswitch model.approx\n case 'ftc'\n gX = kernGradX(model.kern, X, model.X);\n kX_star = kernCompute(model.kern, X, model.X)';\n case {'dtc', 'dtcvar', 'fitc', 'pitc'}\n gX = kernGradX(model.kern, X, model.X_u);\n kX_star = kernCompute(model.kern, X, model.X_u)';\n otherwise\n error('Unrecognised approximation type');\n \nend\nK = kernGradX(model.kern, X);\n\n\nif ~model.isMissingData\n for i = 1:model.q\n switch model.approx\n case 'ftc'\n KinvgK = model.invK_uu*squeeze(gX(:, i, :));\n case {'dtc', 'dtcvar', 'fitc', 'pitc'}\n KinvgK = (model.invK_uu - (1/model.beta)*model.Ainv)*squeeze(gX(:, i, :));\n otherwise\n error('Unrecognised approximation type');\n end\n kXTKinvgK = kX_star'*KinvgK;\n gCovar{i} = squeeze(K(:, i, :))-kXTKinvgK - diag(diag(kXTKinvgK));\n gmu{i} = squeeze(gX(:, i, :))'*model.alpha.*repmat(model.scale, ...\n size(X, 1), 1);\n end\n \n \n % Deal with scaling.\n if nargout < 3\n for i = 1:model.q\n for j = 1:model.d\n gsigmavar{i, j} = gCovar{i}*model.scale(j)*model.scale(j);\n end\n end\n else\n factors = model.scale.*model.scale;\n gsigmavar = gCovar;\n end\nelse\n error('Not yet implemented for models trained on missing data.');\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/gp/gpPosteriorGradMeanCovar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.38425309893106296}} {"text": "%% Set bounds for optimization problem\n\n% Set Bounds\nmodel_bounds = rabbit.getLimits();\nmodel_bounds.states.x.lb = [-10, 0.5, -1, 2, 0.5, 2, 0.5];\nmodel_bounds.states.x.ub = [10, 2, 1, 5, 2, 5, 2];\nmodel_bounds.states.dx.lb = -20*ones(1,7);\nmodel_bounds.states.dx.ub = 20*ones(1,7);\nmodel_bounds.states.ddx.lb = -100*ones(1,7);\nmodel_bounds.states.ddx.ub = 100*ones(1,7);\nbounds = struct();\n\n% Right Stance\nbounds.RightStance = model_bounds;\n\nbounds.RightStance.time.t0.lb = 0;\nbounds.RightStance.time.t0.ub = 0;\nbounds.RightStance.time.t0.x0 = 0;\n\nbounds.RightStance.time.tf.lb = 0.25;\nbounds.RightStance.time.tf.ub = 0.75;\nbounds.RightStance.time.tf.x0 = 0.75;\n\nbounds.RightStance.time.duration.lb = 0.25;\nbounds.RightStance.time.duration.ub = 0.75;\nbounds.RightStance.time.duration.x0 = 0.75;\n\nbounds.RightStance.inputs.ConstraintWrench.fRightToe.lb = -1000;\nbounds.RightStance.inputs.ConstraintWrench.fRightToe.ub = 1000;\nbounds.RightStance.inputs.ConstraintWrench.fRightToe.x0 = 100;\n\nbounds.RightStance.inputs.Control.u.lb = -100*ones(4,1);\nbounds.RightStance.inputs.Control.u.ub = 100*ones(4,1);\nbounds.RightStance.inputs.Control.u.x0 = zeros(4,1);\n\nbounds.RightStance.params.pRightToe.lb = -0*ones(3,1);\nbounds.RightStance.params.pRightToe.ub = 0*ones(3,1);\nbounds.RightStance.params.pRightToe.x0 = zeros(3,1);\n\nbounds.RightStance.params.atime.lb = -10*ones(6*4,1);\nbounds.RightStance.params.atime.ub = 10*ones(6*4,1);\nbounds.RightStance.params.atime.x0 = zeros(6*4,1);\n\nbounds.RightStance.params.ptime.lb = [bounds.RightStance.time.tf.lb, bounds.RightStance.time.t0.lb];\nbounds.RightStance.params.ptime.ub = [bounds.RightStance.time.tf.ub, bounds.RightStance.time.t0.ub];\nbounds.RightStance.params.ptime.x0 = [bounds.RightStance.time.t0.x0, bounds.RightStance.time.tf.x0];\n\nbounds.RightStance.time.kp = 100;\nbounds.RightStance.time.kd = 20;\n\n% Right Impact\nbounds.RightImpact = model_bounds;", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/example/rabbit/utils/setBounds.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.38425309284153075}} {"text": "function [geneKO] = calculateGeneKOMatrix(model, varargin)\n% Build a rxn-gene matrix such that the i-th column indicates what\n% reactions become inactive because of the i-th gene's knock-out.\n%\n% USAGE:\n%\n% geneKO = calculateGeneKOMatrix(model, SeparateTranscript, printLevel)\n%\n% INPUT:\n% model: The COBRA Model structure\n%\n% OPTIONAL INPUTS:\n% SeparateTranscript Character used to separate\n% different transcripts of a gene. (default = '')\n% Examples:\n% - SeparateTranscript = ''\n% - gene 10005.1 ==> gene 10005.1\n% - gene 10005.2 ==> gene 10005.2\n% - gene 10005.3 ==> gene 10005.3\n% - SeparateTranscript = '.'\n% - gene 10005.1\n% - gene 10005.2 ==> gene 10005\n% - gene 10005.3\n% printLevel: Integer. 1 if the process is wanted to be shown\n% on the screen, 0 otherwise. (default = 1)\n%\n% OUTPUT:\n% geneKO: Struct which contains matrix with blocked\n% reactions for each gene in the metabolic model,\n% name of reactions and name of genes.\n%\n% .. Authors:\n% - Luis V. Valcarcel, Oct 2017, University of Navarra, CIMA & TECNUN School of Engineering.\n% - Luis V. Valcarcel, 03/11/2018, University of Navarra, CIMA & TECNUN School of Engineering.\n\np = inputParser; % check the input information\naddRequired(p, 'model');\naddOptional(p, 'SeparateTranscript', '', @ischar);\naddOptional(p, 'printLevel', 1, @(x)isnumeric(x)&&isscalar(x));\nparse(p, model, varargin{:});\n\n% define gene set\ngenes = unique(strtok(model.genes, p.Results.SeparateTranscript));\nngenes = numel(genes);\n\n% generate output matrix\nko_rxn_gene = zeros(numel(model.rxns),ngenes);\n\n% affected reactions\nif p.Results.printLevel > 0\n showprogress(0, 'Calculate Gene Knock-out matrix');\nend\nfor gen = 1:ngenes\n if p.Results.printLevel > 0\n showprogress(gen/ngenes, 'Calculate Gene Knock-out matrix');\n end\n\n transcripts = model.genes(strcmp(strtok(model.genes,p.Results.SeparateTranscript),genes{gen})); % to support R2015b\n [~, hasEffect, constrRxnNames] = deleteModelGenes(model, transcripts);\n\n if hasEffect\n % search index of bloced reactions\n [~,idx] = ismember(constrRxnNames,model.rxns);\n ko_rxn_gene(idx,gen) = 1;\n end\nend\nif p.Results.printLevel > 0\n fprintf('\\tGeneKOMatrix calculated\\n');\nend\n\n% geneKO\ngeneKO.genes = genes;\ngeneKO.rxns = model.rxns;\ngeneKO.matrix = (ko_rxn_gene~=0);\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/rMTA/calculateGeneKOMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.3842371990162575}} {"text": "\n% input in seconds\n\nTR = 2; % 1 = leave in seconds; 2, downsample by 2, etc.\n\nlen = 200; % length in s\ntp = 5; % estimates 20 time points\n\nscanspersess = [40 40 10]; % images per session; length is num sessions\n\n[X,delta,delta_hires,hrf] = onsets2delta(ons,TR,len);\n\n[DX,sf] = tor_make_deconv_mtx3(delta,tp,1,0,1,0,scanspersess);\n\n\n% for phys data, .01 s -> 1s\nY = RESAMPLE(X,1,100);\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/GA3/tmp_onsets2dx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8128673269042767, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.3842289541122714}} {"text": " function fit = de_ftab_fit_exp3(xrs, mac, varargin)\n%|function fit = de_ftab_fit_exp3(xrs, mac, [options])\n%|\n%| Fit to DE table fm(), suitable for subsequent interpolation / extrapolation.\n%| Uses a special experimental exponential model:\n% todo -log(sum_k p_k exp(-m_k . s))\n% fit a 3-term exponential model that has the proper derivatives\n% at 0, and at +/- infinity\n%|\n%| in\n%|\txrs\tstrum\t\tX-ray spectra; see xray_read_spectra.m\n%|\tmac\t[Ne,L]\t\tmass attenuation coefficients\n%|\n%| option\n%|\t'show'\t1|0\t\tplot?\n%|\n%| out\n%|\tfit\tstrum\t\tstrum object for fitted f_m(s_1,...,s_L)\n%|\n%|\tmethods:\n%|\t.fmfun(sll)\t\tfm function evaluation, for stacked array sll\n%|\t.fgrad(sll)\t\tfm gradient evaluation, for stacked array sll\n%|\t.show_sp(en, sp)\tplot true spectrum vs fitted spectrum\n%|\t.show_fm(sl, fm)\tmesh plot of fm and its fit\n%|\t.show_err(sl, fm)\tmesh plot of fit error\n%|\t.mac_eff\t\teffective mass atten coef based on fit\n%|\t\t\t\t(valid for 'exp' only)\n%|\n%| Copyright 2008-8-10, Jeff Fessler, University of Michigan\n\n%if nargin == 1 && streq(xrs, 'test'), de_ftab_fit_exp3_test, return, end\nif nargin < 2, ir_usage, end\n\narg.show = false;\narg = vararg_pair(arg, varargin);\n\nLL = ncol(mac);\nif LL ~= 1, fail 'only 1 component done', end\n\nMM = ncol(xrs.Ide);\n\nfit.MM = MM;\nfit.type = 'exp3';\n\nmassbar = (xrs.Ide' * mac) ./ sum(xrs.Ide)'; % [M,1]\n\n%if ~isempty(wt), warn 'weighting ignored', end\n% if isempty(wt), wt = num2cell(ones(MM,1)); end\n\nfit.kev = cell(1,MM);\nfit.mac = cell(1,MM);\nfit.coef = cell(1,MM);\nfor mm=1:MM\n\tgood = xrs.sp(:,mm) > 0;\n\tsp_m = xrs.sp(good,mm); % nonzero spectrum\n\tsp_m = sp_m / sum(sp_m);\n\t[mac_m ii] = sort(mac(good));\n\tif any(mac_m(2:end)) == mac_m(1), error 'non unique min', end\n\tif any(mac_m(1:end-1)) == mac_m(end), error 'non unique max', end\n\tkev_m = xrs.en(good);\n\tkev_m = kev_m(ii);\n\tq1 = sp_m(1);\n\tqN = sp_m(end);\n\tb1 = mac_m(1);\n\tbN = mac_m(end);\n\tmac_mid = (massbar(mm) - q1 * b1 - qN * bN) / (1 - q1 - qN);\n\tfit.mac{mm} = [b1 mac_mid bN]';\n\tfit.coef{mm} = [q1 1-q1-qN qN]';\n\n\tkev_mid = interp1(mac_m, kev_m, mac_mid);\n\tfit.kev{mm} = [kev_m(1) kev_mid kev_m(end)]';\nend\n\nmeth = {'fmfun', @de_ftab_fit_exp_eval, '(sll)'; ...\n\t'fgrad', @de_ftab_fit_exp_grad, '(sll)'; ...\n\t'show_err', @de_ftab_fit_show_err, '(sl, fm)'; ...\n\t'show_fm', @de_ftab_fit_show_fm, '(sl, fm)'; ...\n\t'show_sp', @de_ftab_fit_show_sp, '(en, sp)'; ...\n\t};\nfit = strum(fit, meth);\n\nif arg.show\n\tfit.show_fm(sl, fm);\nend\n\nend % de_ftab_fit_exp3()\n\n\n%\n% de_ftab_fit_exp()\n% todo: more documentation\n%\nfunction [fit, ffun, fgrad] = de_ftab_fit_exp(sl, fm, MM, wt, mtype, mac, kev)\n\nsll = ndgrid_jf('mat', sl{:});\n\nif isempty(mac)\n\tif isempty(mtype), error 'mac or mtype required', end\n\tmac = xray_read_atten(mtype, kev);\nend\n\nLL = length(sl);\n\nif isempty(wt), wt = num2cell(ones(MM,1)); end\n\nAb = 1;\nfor ll=1:LL\n\tsl = col(stackpick(sll, ll));\n\tAb = Ab .* exp(-sl * mac(:,ll)'); % [#s*, #E]\nend\n\nfit.kev = cell(1,MM);\nfit.mac = cell(1,MM);\nfit.coef = cell(1,MM);\nfor mm=1:MM\n\tif LL == 1\n\t\tdat = fm(:,mm);\n\telseif LL == 2\n\t\tdat = fm(:,:,mm);\n\telse\n\t\tfail 'not done'\n\tend\n\tdat = stackpick(fm,mm);\n\ty = exp(-dat);\n\tWh = spdiag(sqrt(wt{mm}(:)), 'nowarn');\n\tx = wls_simplex(Ab, y(:), Wh); % coefficients for each energy\n\n\tie = x > 1e-6; % find key energies\n\tfit.kev{mm} = kev(ie);\n\tfit.mac{mm} = mac(ie,:); % [#E,L]\n\tA = 1;\n\tfor ll=1:LL\n\t\tsl = col(stackpick(sll,ll));\n\t\tA = A .* exp(-sl * fit.mac{mm}(:,ll)'); % [#s*, #E]\n\tend\n\tfit.coef{mm} = wls_simplex(A, y(:), Wh); % refit with key energies\nend\nffun = @de_ftab_fit_exp_eval;\nfgrad = @de_ftab_fit_exp_grad;\n\nend % de_ftab_fit_exp()\n\n\n%\n% de_ftab_fit_exp_eval()\n% evaluate \n% in\n%\tsll\t[(Nd),L]\tstackup of s1,s2,...,s_L\n% out\n%\tf\t[(Nd),M]\tstackup of f1,f2,...,f_M\n%\nfunction f = de_ftab_fit_exp_eval(fit, sll)\nNd = size(sll); LL = Nd(end); Nd = Nd(1:end-1);\nsll = reshape(sll, [], LL); % [*Nd,L]\nMM = fit.MM;\nf = zeros(prod(Nd),MM);\nfor mm=1:MM\n\tA = 1;\n\tmac = fit.mac{mm};\n\tfor ll=1:LL\n\t\tsl = sll(:,ll);\n\t\tA = A .* exp(-sl * mac(:,ll)'); % [*Nd,ne]\n\tend\n\ttmp = -log(A * fit.coef{mm}); % [*Nd,1]\n\tf(:,mm) = tmp;\nend\nf = reshape(f, [Nd MM]);\n\nend % de_ftab_fit_exp_eval()\n\n\n%\n% de_ftab_fit_exp_grad()\n% evaluate gradient of f for each of the given s vectors.\n% in\n%\tsll\t[(Nd),L]\tstackup of s1,s2,...,s_L\n% out\n%\tg\t[(Nd),L,M]\tstackup of gradients of f(s)\n%\nfunction g = de_ftab_fit_exp_grad(fit, sll)\nNd = size(sll); LL = Nd(end); Nd = Nd(1:end-1);\nsll = reshape(sll, [], LL); % [*Nd,L]\nMM = fit.MM;\ng = zeros(prod(Nd), LL, MM);\nfor mm=1:fit.MM\n\tA = 1;\n\tmac = fit.mac{mm}; % [ne,L]\n\talf = fit.coef{mm}; % [ne,1]\n\tfor ll=1:LL\n\t\tsl = sll(:,ll);\n\t\tA = A .* exp(-sl * mac(:,ll)'); % [*Nd,ne]\n\tend\n\tvm = A * alf; % [*Nd,1]\n\ttmp = A * (mac .* repmat(alf, [1 LL])); % [*Nd,L]\n\tg(:,:,mm) = tmp ./ repmat(vm, [1 LL]);\nend\ng = reshape(g, [Nd LL MM]);\n\nend % de_ftab_fit_exp_grad()\n\n\n%\n% de_ftab_fit_show_sp()\n% compare true spectra to fitted spectra\n%\nfunction out = de_ftab_fit_show_sp(fit, en, sp)\nif nargin < 3, fail 'de_ftab_fit_show_sp(fit, en, sp)', end\n\nif ~streq(fit.type, 'exp3'), printm 'show_sp only done for exp3', return, end\nif im\n\tclf, pl = (fit.MM+1)*100 + 10 + 1;\n\tsubplot(pl)\n\tplot(en, sp * diag(1 ./ max(sp)))\n\tif isfield(fit, 'kev')\n\t\tfor mm=1:fit.MM\n\t\t\tsubplot(pl+mm)\n\t\t\tbar(fit.kev{mm}, fit.coef{mm})\n\t\t\taxis tight, axisx(minmax(en))\n\t\tend\n\telse\n\t\twarn 'kev unknown'\n\tend\nend\n\nif nargout, out = []; end\n\nend % de_ftab_fit_show_sp()\n\n\n%\n% de_ftab_fit_show_fm()\n% compare fit to sampled fm\n%\nfunction out = de_ftab_fit_show_fm(fit, sl, fm)\nif nargin < 3, error 'de_ftab_fit_show_fm(fit, sl, fm)', end\n\nsll = ndgrid_jf('mat', sl{:});\n\nif fit.MM ~= 2, error 'only M=2 done', end\n\nfh = fit.fmfun(sll);\n\nswitch length(sl) % LL\ncase 1\n\ts1 = sl{1};\n\tim clf\n\tplot(\ts1, fm(:,1), 'c.', s1, fm(:,2), 'y.', ...\n\t\ts1, fh(:,1), 'c-', s1, fh(:,2), 'y-')\n\txlabel 's1'\n\tylabel 'fm(s1)'\n\tlegend('true m=1', 'true m=2', 'fit m=1', 'fit m=2', 4)\n\ncase 2\n\ts1 = sl{1};\n\ts2 = sl{2};\n\tsmax(1) = max(s1);\n\tsmax(2) = max(s2);\n\tfmax = max(fm(:));\n\n\tax = [0 smax(1) 0 smax(2) 0 fmax];\n\tcax = [0 fmax];\n\n\tim clf\n\tim pl 2 2\n\n\tshow(1, s1, s2, fm(:,:,1), ax, cax, 'f_1(s)')\n\t% text(-60, 10, '[cm^2/g]')\n\tshow(2, s1, s2, fm(:,:,2), ax, cax, 'f_2(s)')\n\n\tshow(3, s1, s2, fh(:,:,1), ax, cax, 'f_1 approx')\n\tshow(4, s1, s2, fh(:,:,2), ax, cax, 'f_2 approx')\notherwise\n\tfail 'not done'\nend\n\nif nargout, out = []; end\n\nend % de_ftab_fit_show_fm()\n\n\n%\n% de_ftab_fit_show_err()\n% show fit errors, and relate to HU\n% f = mac s, mac(70kev,H2O) = 0.2 cm^2 / g = 1000 HU\n% mh = mac * 1000 HU / (0.2 g/cm^2)\n% so Df/Dmh = Df/Dmac * Dmac/Dmh = (50 g/cm^2) (0.2 cm^2/g) / 1000 HU = 1/100 HU\n% so Dmh = 100 HU * Df for 50 cm of H2O.\n%\nfunction out = de_ftab_fit_show_err(fit, sl, fm)\nif nargin < 3, error 'de_ftab_fit_show_err(fit, sl, fm)', end\n\nsll = ndgrid_jf('mat', sl{:});\n\nfh = fit.fmfun(sll);\nerr = fh - fm;\nprintm('worst model error = %g of %g', max(abs(err(:))), max(fm(:)))\nprintm('worst model error = %g HU over 50cm H2O', 100*max(abs(err(:))))\nfor mm=1:fit.MM\n\tee = stackpick(err,mm);\n\tprintm('worst error (mm=%d): %g', mm, max(abs(ee(:))))\nend\n\nif max(abs(err(:))) == 0, return, end\nif fit.MM > 2, error 'only M=2 done', end\nif 0\n\te1 = err(:,:,1);\n\te2 = err(:,:,2);\n\tdisp([minmax(e1); minmax(e2)]')\n\tprintm('worst error1 %g', max(col(abs(err(:,1,:)))))\n\tprintm('worst error2 %g', max(col(abs(err(:,2,:)))))\nend\n%err = abs(err);\n\nswitch length(sl) % LL\ncase 1\n\ts1 = sl{1};\n\tplot(s1, err(:,1), 'c-', s1, err(:,2), 'y-')\n\txlabel 's1'\n\tylabel 'error'\n\tlegend('m=1', 'm=2', 4)\n\ncase 2\n\ts1 = sl{1};\n\ts2 = sl{2};\n\tsmax(1) = max(s1);\n\tsmax(2) = max(s2);\n\n\telim = minmax(err(:))';\n\t%elim = [-1 1] * 0.01; % +/- 1 HU\n\tax = [0 smax(1) 0 smax(2) elim];\n\tim plc 1 2\n\tfor mm=1:fit.MM\n\t\tshow(mm, s1, s2, err(:,:,mm), ax, elim, sprintf('f_%d error', mm))\n\tend\notherwise\n\tfail 'not done'\nend\n\nif nargout, out = []; end\n\nend % de_ftab_fit_show_err()\n\n\n%\n% show()\n%\nfunction show(pl, x, y, f, ax, cax, ti)\nif ~im, return, end\nim('subplot', pl)\nif 1\n\tmesh(x,y,f')\n\tcolormap hsv, caxis(cax), cbar\n\taxis(ax)\n\txtick, ytick, ztick, zwhite\nelse\n\tim(x,y,f), cbar\n\txtick, ytick\nend\nxlabel 's_1', ylabel 's_2', title(ti)\n\nend % show()\n\n\n%\n% de_ftab_fit_exp3_test()\n%\nfunction de_ftab_fit_exp3_test\n\n%stype = 'mono,70';\nstype = 'ps1';\nxrs = xray_read_spectra(stype);\n\nif 1 % L=1 component\n\tsl{1} = linspace(0, 50, 26);\n\tmtype = {'water'};\n\tmas = xray_read_mac(mtype);\n\tmac = mas.mac(xrs.en);\n\tif im\n\t\tclf, semilogy(xrs.en, mac), legend(mtype{:})\n\tend\n\tsll = ndgrid_jf('mat', sl{:});\n\tfm = de_ftab_fm(sll, mac, xrs.Ide);\n\tfit = de_ftab_fit(sl, fm, 'type', 'exp', 'mtype', mtype);\n\tg = fit.fgrad(sll);\n%\tfit = de_ftab_fit(sl, fm, 'type', 'poly')\n\n\tif 1\n\t\tfit.show_sp(xrs.en, xrs.sp);\n\t\tprompt\n\t\tfit.show_fm(sl, fm);\n\t\tprompt\n\t\tfit.show_err(sl, fm);\n\t\tprompt\n\tend\nend\n\nif 1 % L=2\n\tsl{1} = linspace(0, 50, 26);\n\tsl{2} = linspace(0, 30, 31);\n\tmtype = {'water', 'bone'};\n\tmas = xray_read_mac(mtype);\n\tmac = mas.mac(xrs.en);\n\tif im\n\t\tclf, semilogy(xrs.en, mac), legend(mtype{:})\n\tend\n\tsll = ndgrid_jf('mat', sl{:});\n\tfm = de_ftab_fm(sll, mac, xrs.Ide);\n\tfit = de_ftab_fit(sl, fm, 'type', 'exp', 'mtype', mtype);\n\tg = fit.fgrad(sll);\n\t%fit = de_ftab_fit(sl, fm, 'type', 'poly')\n\n\tif 1\n\t\tfit.show_sp(xrs.en, xrs.sp);\n\t\tprompt\n\t\tfit.show_fm(sl, fm);\n\t\tprompt\n\t\tfit.show_err(sl, fm);\n\t\tprompt\n\tend\nend\n\nend % de_ftab_fit_exp3_test()\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/ct/arch/de_ftab_fit_exp3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.48438008427698437, "lm_q1q2_score": 0.38416472747513797}} {"text": "% drawLineSegments draws Lines using given set of points.\n% Input - MapSize : The size of EdgeMap which can be expressed as\n% [ROW COL]\n% LineSegments : The set of points which will be drawn.\n% EdgeContour can be used as input as well.\nfunction drawLineSegments(MapSize, LineSegments)\n\n%% Initialize\nNumberOfSegments = length(LineSegments);\n\n% Default setting for plot.\nhold on;\nminx = 1; maxx = MapSize(2);\nminy = 1; maxy = MapSize(1);\naxis([minx maxx miny maxy]);\naxis off;\nset(gca, 'Ydir', 'reverse')\n\n% Use different colors to distinguish each edge.\nColorSet = [\n0.00 0.00 1.00 % Data 1 - blue\n0.00 1.00 0.00 % Data 2 - green\n1.00 0.00 0.00 % Data 3 - red\n0.00 1.00 1.00 % Data 4 - cyan\n1.00 0.00 1.00 % Data 5 - magenta\n0.75 0.75 0.00 % Data 6 - RGB\n0.25 0.25 0.25 % Data 7\n0.75 0.25 0.25 % Data 8\n0.95 0.95 0.00 % Data 9\n0.25 0.25 0.75 % Data 10\n0.75 0.75 0.75 % Data 11\n0.00 0.50 0.00 % Data 12\n0.76 0.57 0.17 % Data 13\n0.54 0.63 0.22 % Data 14\n0.34 0.57 0.92 % Data 15\n1.00 0.10 0.60 % Data 16\n0.88 0.75 0.73 % Data 17\n0.10 0.49 0.47 % Data 18\n0.66 0.34 0.65 % Data 19\n0.99 0.41 0.23 % Data 20\n];\n\n\n%% Draw each Segement.\nfor i=1:NumberOfSegments\n Segment = LineSegments{i};\n x = Segment(:,2);\n y = Segment(:,1);\n plot(x, y, 'LineWidth', 2, 'Color', ColorSet(mod(i,20)+1,:));\nend\n\nend\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u68c0\u6d4b\u7b97\u6cd5/Sushi-Dish-master/src/drawLineSegments.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.38409998529389927}} {"text": "function D = driving_function_mono_localwfs_sbl(x0,xs,src,f,conf)\n%DRIVING_FUNCTION_MONO_LOCALWFS_SBL driving signal for local WFS using spatial\n%bandwidth limitation\n%\n% Usage: D = driving_function_mono_localwfs_sbl(x0,xs,src,f,conf)\n%\n% Input parameters:\n% x0 - position and direction of the secondary source / m [nx7]\n% xs - position of point source or direction of plane\n% wave / m [1x3]\n% src - source type of the virtual source\n% 'pw' - plane wave\n% 'ps' - point source\n% f - frequency of the monochromatic source / Hz\n% conf - configuration struct (see SFS_config)\n%\n% Output parameters:\n% D - driving function [nx1]\n%\n% See also: sound_field_mono, sound_field_mono_localwfs_sbl\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n\n%% ===== Checking of input parameters ==================================\nnargmin = 5;\nnargmax = 5;\nnarginchk(nargmin,nargmax);\nisargsecondarysource(x0);\nisargxs(xs);\nisargchar(src);\nisargpositivescalar(f);\nisargstruct(conf);\n\n\n%% ===== Computation ==========================================================\nswitch src\ncase 'ps'\n D = driving_function_mono_localwfs_sbl_ps(x0,xs,f,conf);\ncase 'pw'\n xs = xs./norm(xs);\n D = driving_function_mono_localwfs_sbl_pw(x0,xs,f,conf);\notherwise\n error('%s: %s is not a known source type.',upper(mfilename),src);\nend\n", "meta": {"author": "sfstoolbox", "repo": "sfs-matlab", "sha": "02194f0243d1ead26572f760032c40527718919d", "save_path": "github-repos/MATLAB/sfstoolbox-sfs-matlab", "path": "github-repos/MATLAB/sfstoolbox-sfs-matlab/sfs-matlab-02194f0243d1ead26572f760032c40527718919d/SFS_monochromatic/driving_function_mono_localwfs_sbl.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.38409998529389927}} {"text": "gammaa=[];\ndeltaa=[];\nalphaa=[];\nfor lc=1:25\n gamma=4*pi*(rand-0.5)\n delta=4*pi*(rand-0.5)\n alpha=4*pi*(rand-0.5)\n an=ax_an_bounding(gamma,delta,alpha)\n gamma=an(2);\n delta=an(3);\n alpha=an(4);\n gammaa=[gammaa gamma];\n deltaa=[deltaa delta];\n alphaa=[alphaa alpha];\nend\n\nfigure;\nplot(gammaa,zeros(1,length(gammaa)),'.b');\ntitle('gamma');\n\nfigure;\nplot(deltaa,zeros(1,length(deltaa)),'.r');\ntitle('delta');\n\nfigure;\nplot(alphaa,zeros(1,length(alphaa)),'.r');\ntitle('alpha');", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/24067-eular-angles-gui/euler_files/zz_axan_bound_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3840999852938992}} {"text": "function [slcstack, interfstack] = ImgRead_isce(InSAR_path,nline,reference_date,slcslist)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% This file is part of TomoSAR.\n%\n% TomoSAR is distributed in the hope that it will be useful,\n% but without warranty of any kind; without even the implied \n% warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \n% See the Apache License for more details.\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% Author : Dinh Ho Tong Minh (INRAE) and Yen Nhi Ngo, Mar. 2022 \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nN_int = size(slcslist,1);\n\nfor ii=1:N_int\n interfstack.datastack(:,:,ii)=single(freadbkj([InSAR_path,'/',num2str(slcslist(ii)),'/isce_minrefdem.int'],nline,'cpxfloat32'));\n interfstack.filename(ii,2)=slcslist(ii);\n \n tempstack(:,:,ii)=single(freadbkj([InSAR_path,'/',num2str(slcslist(ii)),'/secondary.slc'],nline,'cpxfloat32'));\n \n fprintf('Reading slc/interferogram %d / %d \\n',ii,N_int); \nend\ninterfstack.filename(:,1) = reference_date;\n\n% insert reference_date in to slc list\nslcslist = [reference_date; slcslist];\nslcslist_datenum = sort(datenum(num2str(slcslist),'yyyymmdd'));\n\nslcslist = datestr(slcslist_datenum,'yyyymmdd'); \nN_slc = size(slcslist,1);\n\n[~,reference_ind]=ismember(datenum(num2str(reference_date),'yyyymmdd'),slcslist_datenum);\nif reference_ind > 1\n slcstack.datastack(:,:,[1:reference_ind-1,reference_ind+1:N_slc]) = tempstack;\n slcstack.datastack(:,:,reference_ind) = single(freadbkj([InSAR_path,'/',num2str(slcslist(1,:)),'/reference.slc'],nline,'cpxfloat32'));\nelse\n slcstack.datastack(:,:,1) = single(freadbkj([InSAR_path,'/',num2str(slcslist(2,:)),'/reference.slc'],nline,'cpxfloat32'));\n slcstack.datastack(:,:,[2:N_slc]) = tempstack;\nend \n\nfor ii = 1:N_slc\n slcstack.filename(ii,1) = str2double(slcslist(ii,:));\nend\n\n\n\n\n\n\n", "meta": {"author": "DinhHoTongMinh", "repo": "TomoSAR", "sha": "ea6a3306680c4cc59d6f7d764a934915186cc65e", "save_path": "github-repos/MATLAB/DinhHoTongMinh-TomoSAR", "path": "github-repos/MATLAB/DinhHoTongMinh-TomoSAR/TomoSAR-ea6a3306680c4cc59d6f7d764a934915186cc65e/Tomography/scripts/ImgRead_isce.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3840999852938992}} {"text": "function [result_features]=back_find_low_node_Nopara(result_dir,nSubj,k_times,nROI,w,cross_val,meth_FEX,meth_FS,varargin)\n% This function aims to find features used in the classification, suitable\n% for the PC, aHOFC, tHOFC brain network construction method. And it is also\n% suitable for the LOOCV or the 10-fold cross validation. The found\n% features can be applied on the visualization software to present the\n% important brain regions or links.\n% Input:\n% result_dir: the directory you want to store all the result files;\n% nSubj: number of subjects;\n% k_times: times of 10-fold cross validation;\n% nROI: number of ROIs \n% w: weight of each selected features;\n% cross_val: loocv or 10-fold;\n% meth_FEX: feature extraction method(connection coefficients or local clustering coefficients);\n% meth_FS: feature selection method (ttest,lasso,ttest+lasso);\n% varargin: the feature selection indexes;\n% \n% Output:\n% result_features: cell array, consisting of the averaged weight and occurrence of the features;\n% Written by Zhen Zhou, zzstefan@email.unc.edu\n% IDEA lab, https://www.med.unc.edu/bric/ideagroup\n% Department of Radiology and BRIC, University of North Carolina at Chapel Hill\n\n\n\n\n%clear all\n% load SR_10_fold_middle.mat;\n% load SR_loocv_middle.mat;\n% cross_val='loocv';\n% ttest_p=feature_index_ttest;\n% midw_lasso=feature_index_lasso;\n%load tHOFC_loocv_middle_clus.mat;\n%load tHOFC_coef_LASSO_kfold.mat;\n% load tHOFC_clus_LASSO_kfold.mat;\n%load PC_loocv_coef_middle.mat;\n% cross_val='10-fold';\n%ttest_p=feature_index_ttest;\n% midw_lasso=feature_index_lasso;\nfprintf('Begin contributing feature identification\\n');\n\n\nswitch meth_FS\n case 't-test + LASSO'\n ttest_p=varargin{1};\n midw_lasso=varargin{2};\n if strcmpi(cross_val,'10-fold')\n for i=1:size(ttest_p,1)\n for j=1:size(ttest_p,2)\n tmp=find(ttest_p{i,j}<0.05);\n tmp_b{i,j}=find(midw_lasso{i,j});\n index=tmp(tmp_b{i,j});\n if strcmpi(meth_FEX,'coef')\n for k=1:length(index)\n [first{i,j,k}(1),first{i,j,k}(2)]=find_elements(nROI,index(k));\n end\n elseif strcmpi(meth_FEX,'clus')\n for k=1:length(index)\n first{i,j,k}=index(k);\n end\n end\n end\n end\n elseif strcmpi(cross_val,'loocv')\n for i=1:length(ttest_p)\n tmp=find(ttest_p{i}<0.05);\n tmp_b{i}=find(midw_lasso{i});\n index=tmp(tmp_b{i});\n if strcmpi(meth_FEX,'coef')\n for k=1:length(index)\n [first{i,k}(1),first{i,k}(2)]=find_elements(nROI,index(k));\n end\n elseif strcmpi(meth_FEX,'clus')\n for k=1:length(index)\n first{i,k}=index(k);\n end\n end\n end\n end\n case 't-test'\n ttest_p=varargin{1};\n if strcmpi(cross_val,'10-fold')\n for i=1:size(ttest_p,1)\n for j=1:size(ttest_p,2)\n tmp=find(ttest_p{i,j}<0.05);\n if strcmpi(meth_FEX,'coef')\n for k=1:length(tmp)\n [first{i,j,k}(1),first{i,j,k}(2)]=find_elements(nROI,tmp(k));\n end\n elseif strcmpi(meth_FEX,'clus')\n for k=1:length(tmp)\n first{i,j,k}=tmp(k);\n end\n end\n end\n end\n elseif strcmpi(cross_val,'loocv')\n for i=1:length(ttest_p)\n tmp=find(ttest_p{i}<0.05);\n if strcmpi(meth_FEX,'coef')\n for k=1:length(tmp)\n [first{i,k}(1),first{i,k}(2)]=find_elements(nROI,tmp(k));\n end\n elseif strcmpi(meth_FEX,'clus')\n for k=1:length(tmp)\n first{i,k}=tmp(k);\n end\n end\n end\n end\n case 'LASSO'\n midw_lasso=varargin{1};\n if strcmpi(cross_val,'10-fold')\n for i=1:size(midw_lasso,1)\n for j=1:size(midw_lasso,2)\n tmp=find(midw_lasso{i,j});\n if strcmpi(meth_FEX,'coef')\n for k=1:length(tmp)\n [first{i,j,k}(1),first{i,j,k}(2)]=find_elements(nROI,tmp(k));\n end\n elseif strcmpi(meth_FEX,'clus')\n for k=1:length(tmp)\n first{i,j,k}=tmp(k);\n end\n end\n end\n end\n elseif strcmpi(cross_val,'loocv')\n for i=1:length(midw_lasso)\n tmp=find(midw_lasso{i});\n if strcmpi(meth_FEX,'coef')\n for k=1:length(tmp)\n [first{i,k}(1),first{i,k}(2)]=find_elements(nROI,tmp(k));\n end\n elseif strcmpi(meth_FEX,'clus')\n for k=1:length(tmp)\n first{i,k}=tmp(k);\n end\n end\n end\n end\nend\n\n%first=cellfun(@(x) x',first,'UniformOutput',false);\ntemp=first(:);\n\n[a1,b,c]=unique(cellfun(@char,temp,'un',0));\nlo=histc(c,1:max(c));\nloo=lo(:)>1;\nout=[temp(b(loo)),num2cell(lo(loo))];\nout(1,:)=[];\n\nAll_link=out(find(cell2mat(out(:,2))>0),1);%find all links which exists in any one LOOCV fold\nif strcmpi(cross_val,'10-fold')\n for j=1:length(All_link)\n weight=[];\n temp_index=cell2mat(cellfun(@(x)isequal(x,All_link{j}),first,'un',0));\n ind=find(temp_index);\n [A,B,C]=ind2sub(size(temp_index),ind);\n for k=1:length(A)\n weight=[weight,w{A(k),B(k)}(C(k))];\n end\n all_weight(j)=mean(weight);\n end\nelseif strcmpi(cross_val,'loocv')\n for j=1:length(All_link)\n weight=[];\n temp_index=cell2mat(cellfun(@(x)isequal(x,All_link{j}),first,'un',0));\n [A,B]=find(temp_index);\n for k=1:length(A)\n weight=[weight,w{A(k)}(B(k))];\n end\n all_weight(j)=mean(weight);\n end\nend\n\nif strcmpi(meth_FEX,'coef')\n matrix_1=zeros(nROI,nROI);\n matrix_2=zeros(nROI,nROI);\n for m=1:size(out,1)\n matrix_1(out{m,1}(1),out{m,1}(2))=all_weight(m);\n matrix_1(out{m,1}(2),out{m,1}(1))=all_weight(m);\n matrix_2(out{m,1}(1),out{m,1}(2))=out{m,2};\n matrix_2(out{m,1}(2),out{m,1}(1))=out{m,2};\n end\n result_features{1}=matrix_1;\n %result_features{2}=matrix_2;\n \nelseif strcmpi(meth_FEX,'clus')\n matrix_1=zeros(1,nROI);\n matrix_2=zeros(1,nROI);\n for m=1:size(out,1)\n matrix_1(out{m,1})=all_weight(m);\n matrix_2(out{m,1})=out{m,2};\n end\n result_features{1}=matrix_1;\n %result_features{2}=matrix_2;\nend\nif strcmpi(cross_val,'loocv')\n matrix_2=matrix_2/nSubj;\nelseif strcmpi(cross_val,'10-fold')\n matrix_2=matrix_2/(10*k_times);\nend\nresult_features{2}=matrix_2;\n\nif strcmpi(meth_FEX,'coef')\n figure('visible','off');\n subplot(1,2,1);\n imagesc(matrix_1);\n colormap jet\n colorbar\n axis square\n xlabel('ROI');\n ylabel('ROI');\n title('Averaged weight');\n \n subplot(1,2,2);\n imagesc(matrix_2);\n colormap jet\n colorbar\n axis square\n xlabel('ROI');\n ylabel('ROI');\n title('Normalized occurence');\n print(gcf,'-r1000','-dtiff',char(strcat(result_dir,'/result_features_weigthAndOccurence.tiff')));\nend\n\nfprintf('End contributing feature identification\\n');\n% node_matrix=eye(116,116);\n% for i=1:length(NEW)\n% for j=1:length(NEW{i,3})\n% node_matrix(NEW{i,3}(j,1),NEW{i,3}(j,2))=1;\n% node_matrix(NEW{i,3}(j,2),NEW{i,3}(j,1))=1;\n% end\n% end\n", "meta": {"author": "zzstefan", "repo": "BrainNetClass", "sha": "556cda9516429a964100e1ac0bace4258194b4a1", "save_path": "github-repos/MATLAB/zzstefan-BrainNetClass", "path": "github-repos/MATLAB/zzstefan-BrainNetClass/BrainNetClass-556cda9516429a964100e1ac0bace4258194b4a1/Function/AddedFuntions/back_find_low_node_Nopara.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.38404952947560345}} {"text": "function lambda = idem_random_eigenvalues ( n, rank, key )\n\n%*****************************************************************************80\n%\n%% IDEM_RANDOM_EIGENVALUES returns the eigenvalues of the IDEM_RANDOM matrix.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 24 October 2007\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the order of A.\n%\n% Input, integer RANK, the rank of A.\n%\n% Input, integer KEY, a positive value that selects the data.\n%\n% Output, real LAMBDA(N,1), the eigenvalues.\n%\n lambda = zeros ( n, 1 );\n\n lambda(1:rank,1) = 1.0;\n lambda(rank+1:n,1) = 0.0;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_mat/idem_random_eigenvalues.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.6926419894793246, "lm_q1q2_score": 0.3840495259577165}} {"text": "% -------------------------------------------------------------------------- %\n% hfssCoaxialCable(fid, Names, Axis, Center, Radii, Height, Units)\n%\n% Description :\n% -------------\n% This function creates the VBScript necessary to draw a Coaxial Cable in \n% HFSS. The \"Coaxial Cable\" can have as many cylinders as you specify. This\n% function only creates the geometric structure and does not set any material\n% properties.\n%\n% Parameters :\n% ------------\n% fid - file identifier of the HFSS VBScript File.\n% Name - a cell of strings that contains the names of each cylinder that is a\n% part of the co-axial cable (see example).\n% Axis - axis of the Coaxial Cable (choose between 'X', 'Y' or 'Z').\n% Center - Coordinates of the Center of the Coaxial Cable ([x, y, z]).\n% Radii - an array of Radii of the Cylinders present in the Coaxial cable.\n% each radius corresponds to the respective name specfied in the \n% 'Name' parameter.\n% Height - length of the coaxial cable.\n% Units - can be either 'in' or 'mm' or 'meter' or anything defined in HFSS.\n%\n% Example:\n% ---------\n% ...\n% hfssCoaxialCable(fid, {'Cyl1_In', 'Cyl1_Er', 'Cyl1_Out'}, 'Z', [0, 0, 0], \n% 0.02, 0.03, 0.04], 10, 'in')\n% ...\n% -------------------------------------------------------------------------- %\n\n% ----------------------------------------------------------------------------\n% This file is part of HFSS-MATLAB-API.\n%\n% HFSS-MATLAB-API is free software; you can redistribute it and/or modify it \n% under the terms of the GNU General Public License as published by the Free \n% Software Foundation; either version 2 of the License, or (at your option) \n% any later version.\n%\n% HFSS-MATLAB-API is distributed in the hope that it will be useful, but \n% WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY \n% or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License \n% for more details.\n%\n% You should have received a copy of the GNU General Public License along with\n% Foobar; if not, write to the Free Software Foundation, Inc., 59 Temple \n% Place, Suite 330, Boston, MA 02111-1307 USA\n%\n% Copyright 2004, Vijay Ramasami (rvc@ku.edu)\n% ----------------------------------------------------------------------------\nfunction hfssCoaxialCable(fid, Names, Axis, Center, Radii, Height, Units)\n\n% Sort the Radii first in Ascending order.\n[Radii, iR] = sort(Radii);\nNames = cellstr(char(Names{iR}));\n\n% Get the # of Cylinders.\nnCylinders = length(Radii);\n\n% First create the N-1 hollow cylinders.\nfor iR = nCylinders:-1:2\n\thfssHollowCylinder(fid, Names{iR}, Axis, Center, Radii(iR-1), ...\n\t Radii(iR), Height, Units);\nend\n\n% Finally create the inner cylinder.\nhfssCylinder(fid, Names{1}, Axis, Center, Radii(1), Height, Units);", "meta": {"author": "yuip", "repo": "hfss-api", "sha": "93ac0700830f473f1438f335a7fa964383b07abb", "save_path": "github-repos/MATLAB/yuip-hfss-api", "path": "github-repos/MATLAB/yuip-hfss-api/hfss-api-93ac0700830f473f1438f335a7fa964383b07abb/3dmodeler/hfssCoaxialCable.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3840495224398296}} {"text": "function [x,testdata]=alstpz_solve(A,y,tol,varargin)\n%Solution of linear systems in TT-format via ALS(t+z) iteration\n%!Note! This method is provided mostly for test purposes.\n%!Note! You may prefer to use amen_solve2 instead.\n% [X,somedata]=ALSTPZ_SOLVE(A,Y,TOL,OPTIONS) Attempts to solve the linear\n% system A*X = Y with accuracy/residual TOL using the global (t+z)-enriched ALS.\n% Matrix A has to be given in the TT-format, right-hand side Y should be\n% given in the TT-format also. Options are provided in form\n% 'PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2 and so\n% on. The parameters are set to default (in brackets in the following)\n% The list of option names and default values are:\n% o x0 - initial approximation [random rank-2 tensor]\n% o nswp - maximal number of sweeps [10]\n% o max_full_size - maximal size of the local matrix to full solver [50]\n% o local_prec - local preconditioner: '' (no prec.), 'ljacobi',\n% 'cjacobi', 'rjacobi' ['']\n% o local_iters - number of local gmres restarts [2]\n% o local_restart - dimension of local gmres [40]\n% o kickrank - compression rank of the residual Z, i.e. expansion\n% size [4]\n% o kicktype - how to approximate the residual: via the SVD rounding ('svd'),\n% or using one approximation ALS sweep ('als'). ['svd']\n% o ismex - shall we use the MEX lib solve3d_2 for local solution [true]\n% o resid_damp - solve local problems with accuracy tol/resid_damp.\n% Larger value may reduce a spurious noise from inexact local\n% solutions, but increase CPU time [2]\n% o symm - shall we consider the symmetrized system (A'A)x=(A'y). [false]\n%\n% Example:\n% d=8; f=8;\n% mat=tt_qlaplace_dd(d*ones(1,f)); % Laplace in the QTT-format\n% rhs=tt_ones(2,d*f); % Right-hand side of all ones\n% sol = alstpz_solve(mat, rhs, 1e-5); % solve the Poisson eqn.\n%\n%********\n% References:\n% S. Dolgov, D. Savostyanov.\n% http://arxiv.org/abs/1301.6068 \n% http://arxiv.org/abs/1304.1222\n% \n% Please send feedback to: {sergey.v.dolgov,dmitry.savostyanov}@gmail.com\n%\n%********\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n% Inner parameters\nmax_full_size=50;\n\nresid_damp = 2; % Truncation error to true residual treshold\n\nnswp=10;\nlocal_restart=40;\nlocal_iters=2;\n\nlocal_prec = '';\n\nismex = true;\n\n% kicktype = 'als';\nkicktype = 'svd';\n\nkickrank = 4;\nx=[];\nsymm = false;\nverb = 3;\n\nfor i=1:2:length(varargin)-1\n switch lower(varargin{i})\n case 'nswp'\n nswp=varargin{i+1};\n case 'x0'\n x=varargin{i+1};\n case 'local_prec'\n local_prec=varargin{i+1};\n case 'local_restart'\n local_restart=varargin{i+1};\n case 'ismex'\n ismex=varargin{i+1}; \n case 'local_iters'\n local_iters=varargin{i+1};\n case 'kickrank'\n kickrank=varargin{i+1};\n case 'kicktype'\n kicktype=varargin{i+1}; \n case 'max_full_size'\n max_full_size=varargin{i+1};\n case 'resid_damp'\n resid_damp = varargin{i+1};\n case 'symm'\n symm=varargin{i+1};\n case 'verb'\n verb=varargin{i+1};\n \n otherwise\n error('Unrecognized option: %s\\n',varargin{i});\n end\nend\n\n% Disable MEX if it does not exist\nif (ismex)&&(exist('solve3d_2', 'file')<2)\n warning('MEX local solver is not found, disabled');\n ismex = false;\nend;\n\n% Extract sizes and TT blocks\nd = y.d;\nn = A.n;\nif (isempty(x))\n x = tt_rand(n, A.d, 2);\nend;\n\nif (symm)\n % Symmetrize the system if necessary\n A2 = A'*A;\n Ay = A'*y;\nend;\n\nif (strcmp(kicktype, 'als'))&&(kickrank>0)\n z = tt_rand(n, d, kickrank);\n rz = z.r;\n phi = cell(d+1,1); phi{1}=1; phi{d+1}=1;\nend;\n\n% Test output data -- e.g. for convergence tracking\ntestdata = cell(3,1);\ntestdata{2} = cell(d, nswp);\ntestdata{1} = zeros(d, nswp);\ntestdata{3} = zeros(1, nswp);\nt_corr_amen = tic;\n\n% ALS(t+z) sweeps\nfor swp=1:nswp\n % Truncate the solution first\n x = round(x,tol);\n if (strcmp(kicktype, 'als'))&&(kickrank>0)\n % Update the residual approximation via one ALS sweep for |z-ZZ|->min\n % Exact residual\n if (symm)\n ZZ = Ay - A2*x;\n else\n ZZ = y - A*x;\n end;\n rZZ = ZZ.r;\n ZZ = core2cell(ZZ);\n z = core2cell(z); % Approximate one\n for i=1:d-1\n % Go backward and prepare projections\n cr = reshape(z{i}, rz(i)*n(i), rz(i+1));\n [cr,rv]=qr(cr,0);\n cr2 = reshape(z{i+1}, rz(i+1), n(i+1)*rz(i+2));\n cr2 = rv*cr2;\n rz(i+1) = size(cr, 2);\n z{i} = reshape(cr, rz(i), n(i), rz(i+1));\n z{i+1} = reshape(cr2, rz(i+1), n(i+1), rz(i+2));\n \n phi{i+1} = compute_next_Phi(phi{i}, z{i}, [], ZZ{i}, 'lr');\n end;\n for i=d:-1:1\n % Go forward and project exact ZZ\n cr = reshape(ZZ{i}, rZZ(i)*n(i), rZZ(i+1));\n cr = cr*phi{i+1};\n cr = reshape(cr, rZZ(i), n(i)*rz(i+1));\n cr = phi{i}*cr;\n if (i>1)\n [cr,rv]=qr(cr.', 0);\n cr2 = reshape(z{i-1}, rz(i-1)*n(i-1), rz(i));\n cr2 = cr2*rv.';\n rz(i) = size(cr, 2);\n z{i} = reshape(cr.', rz(i), n(i), rz(i+1));\n z{i-1} = reshape(cr2, rz(i-1), n(i-1), rz(i));\n \n phi{i} = compute_next_Phi(phi{i+1}, z{i}, [], ZZ{i}, 'rl');\n else\n z{i} = reshape(cr, rz(i), n(i), rz(i+1));\n end;\n end;\n z = cell2core(tt_tensor, z);\n else\n % SVD rounding of the exact residual up to kickrank\n if (kickrank>0)\n if (symm)\n z = round(Ay - A2*x, tol, kickrank);\n else\n z = round(y - A*x, tol, kickrank);\n end;\n end;\n end;\n\n % Augment the solution with Z basis\n if (kickrank>0)\n x = x+0*z;\n end;\n t_old = toc(t_corr_amen);\n % Update via the ALS iteration\n if (symm)\n [x,td_als] = als_solve(A2, Ay, tol, 'max_full_size', max_full_size, 'x0', x, 'verb', verb, 'local_prec', local_prec, 'local_iters', local_iters, 'local_restart', local_restart, 'resid_damp', resid_damp, 'ismex', ismex);\n else\n [x,td_als] = als_solve(A, y, tol, 'max_full_size', max_full_size, 'x0', x, 'verb', verb, 'local_prec', local_prec, 'local_iters', local_iters, 'local_restart', local_restart, 'resid_damp', resid_damp, 'ismex', ismex);\n end;\n testdata{1}(:, swp) = t_old+td_als{1}(:,1);\n testdata{2}(:, swp) = td_als{2};\n testdata{3}(swp) = max(td_als{3});\nend;\n\nend\n\n\n\nfunction [x,td]=als_solve(A, y, tol, varargin)\n% One sweep of the one-site DMRG solution scheme.\n% Uses the same parameters as in the main function\n\nlocal_prec_char = 0;\nverb = 1;\nismex = true;\n\nx=[];\n\nfor i=1:2:length(varargin)-1\n switch lower(varargin{i})\n case 'x0'\n x=varargin{i+1};\n case 'verb'\n verb=varargin{i+1};\n case 'local_prec'\n local_prec=varargin{i+1};\n case 'local_restart'\n local_restart=varargin{i+1};\n case 'local_iters'\n local_iters=varargin{i+1};\n case 'ismex'\n ismex=varargin{i+1}; \n case 'max_full_size'\n max_full_size=varargin{i+1};\n case 'resid_damp'\n resid_damp = varargin{i+1};\n \n otherwise\n error('Unrecognized option: %s\\n',varargin{i});\n end\nend\n\nif (strcmp(local_prec, 'cjacobi')); local_prec_char = 1; end;\nif (strcmp(local_prec, 'ljacobi')); local_prec_char = 2; end;\nif (strcmp(local_prec, 'rjacobi')); local_prec_char = 3; end;\n\n% Extract sizes and TT cores\nd = y.d;\nn = A.n;\nif (isempty(x))\n x = tt_rand(n, A.d, 2);\nend;\n\n\nry = y.r;\nra = A.r;\nrx = x.r;\n\ncry = core2cell(y);\ncrA = core2cell(A);\ncrx = core2cell(x);\n\n% Interfaces\nphia = cell(d+1,1); phia{1}=1; phia{d+1}=1;\nphiy = cell(d+1,1); phiy{1}=1; phiy{d+1}=1;\n\n\n% This is some convergence output for test purposes\ntd = cell(3,1); \ntd{1} = zeros(d, 1);\ntd{2} = cell(d, 1);\ntd{3} = zeros(d, 1);\n\nt_amr_solve = tic;\n\n% Orthogonalization\nfor i=d:-1:2\n cr = crx{i};\n cr = reshape(cr, rx(i), n(i)*rx(i+1));\n [cr, rv]=qr(cr.', 0);\n cr2 = crx{i-1};\n cr2 = reshape(cr2, rx(i-1)*n(i-1), rx(i));\n cr2 = cr2*(rv.');\n rx(i) = size(cr, 2);\n cr = reshape(cr.', rx(i), n(i), rx(i+1));\n crx{i-1} = reshape(cr2, rx(i-1), n(i-1), rx(i));\n crx{i} = cr;\n\n phia{i} = compute_next_Phi(phia{i+1}, cr, crA{i}, cr, 'rl');\n phiy{i} = compute_next_Phi(phiy{i+1}, cr, [], cry{i}, 'rl');\nend;\n\nmax_res = 0;\nmax_dx = 0;\n\n% DMRG sweep\nfor i=1:d\n % Extract elements - matrix\n Phi1 = phia{i}; Phi2 = phia{i+1};\n % Phi1: rx'1, rx1, ra1, or rx'1, ry1\n % Phi2: rx2, ra2, rx'2, or ry'2, rx2\n A1 = crA{i}; y1 = cry{i};\n % RHS - rewrite it in accordance with new index ordering\n rhs = phiy{i}; % rx'1, ry1\n y1 = reshape(y1, ry(i), n(i)*ry(i+1));\n rhs = rhs*y1;\n rhs = reshape(rhs, rx(i)*n(i), ry(i+1));\n rhs = rhs*phiy{i+1}; \n rhs = reshape(rhs, rx(i)*n(i)*rx(i+1),1);\n norm_rhs = norm(rhs);\n % sol_prev\n sol_prev = reshape(crx{i}, rx(i)*n(i)*rx(i+1), 1);\n\n real_tol = (tol/sqrt(d))/resid_damp;\n\n if (rx(i)*n(i)*rx(i+1)real_tol)\n sol = B \\ rhs;\n res_new = norm(B*sol-rhs)/norm_rhs;\n else\n sol = sol_prev;\n res_new = res_prev;\n end;\n\n else % Structured solution.\n \n res_prev = norm(bfun3(Phi1, A1, Phi2, sol_prev) - rhs)/norm_rhs;\n \n if (res_prev>real_tol)\n if (~ismex)\n sol = solve3d_2ml(Phi1, A1, Phi2, rhs, real_tol, sol_prev, local_prec_char, local_restart, local_iters);\n else % use MEX\n sol = solve3d_2(Phi1, A1, Phi2, rhs, real_tol, 1, sol_prev, local_prec_char, local_restart, local_iters, 0);\n end;\n \n res_new = norm(bfun3(Phi1, A1, Phi2, sol) - rhs)/norm_rhs;\n else\n sol = sol_prev;\n res_new = res_prev;\n end;\n \n end;\n\n if (res_prev/res_newreal_tol)\n fprintf('--warn-- the residual damp was smaller than in the truncation\\n');\n end;\n\n dx = norm(sol-sol_prev)/norm(sol);\n max_dx = max(max_dx, dx);\n max_res = max(max_res, res_prev);\n \n td{3}(i) = dx;\n \n % QR\n sol = reshape(sol, rx(i)*n(i), rx(i+1));\n [u,v]=qr(sol, 0);\n r = size(u,2);\n\n if (verb==2)\n fprintf('=als_solve= block %d, dx: %3.3e, res: %3.3e, r: %d\\n', i, dx, res_prev, r);\n end;\n\n if (i2)\n td{1}(i) = toc(t_amr_solve);\n if (verb>3)||(i==d) % each microstep is returned only if really asked for\n % Otherwise the memory will blow up\n x = cell2core(x, crx); % for test\n td{2}{i} = x;\n end;\n end;\n\nend;\n\nif (verb>0) \n fprintf('=als_solve= max_dx: %3.3e, max_res: %3.3e, erank: %g\\n', max_dx, max_res, sqrt(rx(1:d)'*(n.*rx(2:d+1))/sum(n)));\nend;\n\nx = cell2core(x, crx);\n\nend\n\n\nfunction [Phi] = compute_next_Phi(Phi_prev, x, A, y, direction)\n% Performs the recurrent Phi (or Psi) matrix computation\n% Phi = Phi_prev * (x'Ay).\n% If direction is 'lr', computes Psi\n% if direction is 'rl', computes Phi\n% A can be empty, then only x'y is computed.\n\n% Phi1: rx1, ry1, ra1, or rx1, ry1\n% Phi2: ry2, ra2, rx2, or ry2, rx2\n\n\nrx1 = size(x,1); n = size(x,2); rx2 = size(x,3);\nry1 = size(y,1); m = size(y,2); ry2 = size(y,3);\nif (~isempty(A))\n ra1 = size(A,1); ra2 = size(A,4);\nelse\n ra1 = 1; ra2 = 1;\nend;\n\nif (strcmp(direction, 'lr'))\n %lr: Phi1\n x = reshape(x, rx1, n*rx2);\n Phi = reshape(Phi_prev, rx1, ry1*ra1);\n Phi = x'*Phi;\n if (~isempty(A))\n Phi = reshape(Phi, n*rx2*ry1, ra1);\n Phi = Phi.';\n Phi = reshape(Phi, ra1*n, rx2*ry1);\n A = reshape(A, ra1*n, m*ra2);\n Phi = A.'*Phi;\n Phi = reshape(Phi, m, ra2*rx2*ry1);\n else\n Phi = reshape(Phi, n, rx2*ry1);\n end;\n Phi = Phi.';\n Phi = reshape(Phi, ra2*rx2, ry1*m);\n\n y = reshape(y, ry1*m, ry2);\n Phi = Phi*y;\n if (~isempty(A))\n Phi = reshape(Phi, ra2, rx2*ry2);\n Phi = Phi.';\n end;\n Phi = reshape(Phi, rx2, ry2, ra2); \nelse\n %rl: Phi2\n y = reshape(y, ry1*m, ry2);\n Phi = reshape(Phi_prev, ry2, ra2*rx2);\n Phi = y*Phi;\n if (~isempty(A))\n Phi = reshape(Phi, ry1, m*ra2*rx2);\n Phi = Phi.';\n Phi = reshape(Phi, m*ra2, rx2*ry1);\n A = reshape(A, ra1*n, m*ra2);\n Phi = A*Phi;\n Phi = reshape(Phi, ra1*n*rx2, ry1);\n Phi = Phi.';\n end;\n \n Phi = reshape(Phi, ry1*ra1, n*rx2);\n x = reshape(x, rx1, n*rx2);\n Phi = Phi*x';\n if (~isempty(A))\n Phi = reshape(Phi, ry1, ra1, rx1);\n else\n Phi = reshape(Phi, ry1, rx1);\n end;\nend;\n\nend\n\n\n% new\nfunction [y]=bfun3(Phi1, A, Phi2, x)\n% Phi1: ry1, rx1, ra1\nry1 = size(Phi1,1);\nrx1 = size(Phi1,2);\nra1 = size(Phi1,3);\n% Phi2: rx2, ra2, ry2\nry2 = size(Phi2,3);\nrx2 = size(Phi2,1);\nra2 = size(Phi2,2);\n\nn = size(A,2);\nm = size(A,3);\n\ny = reshape(x, rx1*m, rx2);\nPhi2 = reshape(Phi2, rx2, ra2*ry2);\ny = y*Phi2;\ny = reshape(y, rx1, m*ra2*ry2);\ny = y.';\ny = reshape(y, m*ra2, ry2*rx1);\nA = reshape(A, ra1*n, m*ra2);\ny = A*y;\ny = reshape(y, ra1*n*ry2, rx1);\ny = y.';\ny = reshape(y, rx1*ra1, n*ry2);\nPhi1 = reshape(Phi1, ry1, rx1*ra1);\ny = Phi1*y;\ny = reshape(y, ry1*n*ry2, 1);\nend\n\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/solve/alstpz_solve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419704455589, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3840495154040556}} {"text": "function grid = getGrid(~, N, dom)\n%GETGRID Returns a grid correspoding to a SPINOP3 object.\n%\n% See also SPINOP3.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nxx = trigpts(N, dom(1:2));\nyy = trigpts(N, dom(3:4));\nzz = trigpts(N, dom(5:6));\n[xx, yy, zz] = meshgrid(xx, yy, zz);\ngrid = {xx; yy; zz};\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spinop3/getGrid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982315512488, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.38392837534973784}} {"text": "function test_ChallengeDB_SVR(testDatabase, testMethod, Trainingproportion)\n \n %% set up database\n if ~exist(fullfile('result', testDatabase, testMethod), 'dir')\n mkdir(fullfile('result', testDatabase, testMethod));\n end\n \n fprintf('processing LIVE ChallengeDB images.....');\n Path = fullfile('databases', testDatabase);\n imageList = load(fullfile(Path,'Data','AllImages_release.mat'));\n mos = load(fullfile(Path,'Data','AllMOS_release.mat'));\n imageList = fullfile(Path,'Images',imageList.AllImages_release(8:end));\n mos = mos.AllMOS_release(8:end);\n \n \n %% feature extraction\n if ~exist(fullfile('result', testDatabase, testMethod, 'features.mat'), 'file')\n for i = 1:length(mos)\n fprintf('processing image %d / %d \\n',i,length(mos));\n features{i} = CallingTheSourceCodeForFeatureExtraction(imageList{i},testMethod);\n end\n features = cat(2,features{:});\n save(fullfile('result', testDatabase, testMethod, 'features.mat'),'features');\n else\n load(fullfile('result', testDatabase, testMethod, 'features.mat'),'features');\n end\n \n %% train SVR and test\n tic;\n trainingNum = ceil(length(mos)*Trainingproportion);\n for seed = 1:10\n rng(seed-1);\n randomsplit = randperm(length(mos),length(mos));\n trainingSet = randomsplit(1:trainingNum);\n testingSet = randomsplit(trainingNum+1:end);\n trainX = features(:,trainingSet)';\n testX = features(:,testingSet)';\n [trainX, testX] = featNormalize(trainX, testX);\n switch testMethod\n case 'BRISQUE'\n svm_model = svmtrain(mos(trainingSet)', double(trainX), '-s 4 -t 2 -c 10000 -g 0.05');\n case 'CORNIA'\n svm_model = svmtrain(mos(trainingSet)', double(trainX), '-s 4 -t 0');\n case 'HOSA'\n svm_model = train(mos(trainingSet)', sparse(trainX), '-s 11 -c 128');\n case 'DIIVINE'\n svm_model = svmtrain(mos(trainingSet)', double(trainX), '-s 4 -t 2 -c 4096 -g 0.02');\n case 'FRIQUEE'\n svm_model = svmtrain(mos(trainingSet)', double(trainX), '-s 4 -t 2 -c 256 -g 0.02');\n otherwise \n error('Unsupported Method!');\n end\n if strcmp(testMethod,'HOSA')\n [scores, ~,~] = predict(mos(testingSet)', sparse(testX), svm_model,'-q');\n else\n [scores, ~,~] = svmpredict(mos(testingSet)', double(testX), svm_model,'-q');\n end\n \n SRCC(seed) = corr(scores, mos(testingSet)', 'type', 'Spearman');\n PLCC(seed) = RegressionLIVE(scores, mos(testingSet)');\n end\n toc;\n \n fprintf('SRCC = %.4f, std = %.4f; PLCC = %.4f, std = %.4f \\n', abs(median(SRCC)), std(SRCC), abs(median((PLCC))), std((PLCC)));\n\nend\n", "meta": {"author": "HuiZeng", "repo": "BIQA_Toolbox", "sha": "39d606574f0cbfde82ecbc3c208b353d9fa9a450", "save_path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox", "path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox/BIQA_Toolbox-39d606574f0cbfde82ecbc3c208b353d9fa9a450/tools/src/test_ChallengeDB_SVR.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38388120312297636}} {"text": "function [x y pos trials map mapping] = getBehavEvents_linearTrack(pos,bins)\ndbstop if error\nscatter(pos(:,8),pos(:,10),'.')\n% axis([-1 1 -1 1])\n[x y]=ginput();\ncx = x(end-1:end);\ny = y(end-1:end);\ndist(:,1)=fastrms(abs(pos(:,8)-x(1))+abs(pos(:,10)-y(1)),120);\ndist(:,2)=fastrms(abs(pos(:,8)-x(2))+abs(pos(:,10)-y(2)),120);\n\nplot(dist,'.')\n% axis([0 length(dist) 0 3])\n[xx yy] = ginput();\n\n[pks_one locs_one]=findpeaks(-dist(:,1),'MINPEAKHEIGHT',-yy);\n[pks_two locs_two]=findpeaks(-dist(:,2),'MINPEAKHEIGHT',-yy);\nc=1;\nlastTrial = 0;\nfor i=1:length(locs_one)\n f = locs_one(i)-locs_two;\n ff = find(f>0);\n [a b]=min(locs_one(i)-locs_two(ff));\n if a < 500 & a > 60 & locs_two(ff(b)) > lastTrial + 60\n trials{c} = pos(locs_two(ff(b)):locs_one(i),:); \n c=1+c;\n lastTrial = locs_two(ff(b));\n end\n f = locs_two-locs_one(i);\n ff = find(f>0);\n [a b]=min(locs_two(ff)-locs_one(i));\n if a < 500 & a > 60 & locs_one(i) > lastTrial + 60\n trials{c} = pos(locs_one(i):locs_two(ff(b)),:); \n c=1+c;\n lastTrial = locs_one(i);\n end\nend\n\n% for i=1:length(locs_one)\n% two = locs_two(locs_two-locs_one(i)>0);\n% if ~isempty(two)\n% [a b]=min(abs(two-locs_one(i))); \n% if two(b)-locs_one(i) < 24000 && two(b)-locs_one(i) > 120 && locs_one(i) > lastTrial-60\n% trials{c} = pos(locs_one(i):two(b),:);\n% c=1+c;\n% lastTrial = two(b);\n% end\n% end\n% two = locs_two(locs_one(i)-locs_two>0);\n% if ~isempty(two)\n% [a b]=min(abs(two-locs_one(i))); \n% if locs_one(i)-two(b) < 24000 && locs_one(i)-two(b) > 120 && two(b) > lastTrial-60\n% trials{c} = pos(two(b):locs_one(i),:);\n% c=1+c;\n% lastTrial = locs_one(i);\n% end\n% end\n% end\n\n%% fine tune trials here\n% for i=1:length(trials)\n% clear t tt ttt tttt; t = trials{i};\n% tt=t(:,8:10);\n% d = diff(trials{i}(:,8:10));\n% tt(find(d==0)+1)=nan;\n% for j=1:3\n% tttt(:,j) = smooth(fillmissing(tt(:,j),'pchip'),15);\n% end\n% subplot(3,1,1)\n% plot((tttt))\n% axis([0 length(tttt) -1 1])\n% % hold on\n% % plot(tttt(:,2));\n% % hold off\n% subplot(3,1,2)\n% plot(diff(tttt))\n% hold on\n% plot(sum(abs(diff(tttt(:,[1 3])))'))\n% hold off\n% axis([0 length(tttt) -.015 .015])\n% subplot(3,1,3)\n% plot(abs(tttt(:,1)-tttt(:,3)))\n% axis([0 length(tttt) 0 1.4])\n% % scatter3(tttt(:,1),tttt(:,3),tttt(:,2),'.k')\n% [xxx yyy]=ginput();\n% if xxx(2) > length(trials{i})\n% xxx(2)=length(trials{i});\n% end\n% trials_new{i}=trials{i}(round(xxx(1)):round(xxx(2)),:)\n% end\n\n\n%% merge trials to the same length\ntrials_unsorted = trials;\nfor i=1:length(trials_unsorted)\n d = pdist(trials_unsorted{i}(:,[8 9 10]),'euclidean');\n dd = squareform(d);\n dd(dd==0)=nan;\n [mins ind] = min(dd(:));\n [row col] = ind2sub(size(dd),ind);\n% f = find(abs(row-col)==1); % this worked but it was sloowww,\n% row = row(f); % removed and replaced w ind2sub\n% col = col(f);\n while length(trials_unsorted{i})>bins\n [mins ind] = min(dd(:));\n [row col] = ind2sub(size(dd),ind);\n % check that row and col are adjacent \n if ((row(1)-col(1)))== -1\n trials_unsorted{i} = [trials_unsorted{i}(1:row(1)-1,:);...\n nanmean(trials_unsorted{i}(row(1):col(1),:));...\n trials_unsorted{i}(col(1)+1:end,:)]; \n dd(row,:)=[];\n dd(:,col)=[];\n elseif ((row(1)-col(1)))== 1\n trials_unsorted{i} = [trials_unsorted{i}(1:col(1)-1,:);...\n nanmean(trials_unsorted{i}(col(1):row(1),:));...\n trials_unsorted{i}(row(1)+1:end,:)];\n dd(row,:)=[];\n dd(:,col)=[];\n elseif abs((row(1)-col(1)))>1 | abs((row(1)-col(1)))<1\n dd(row,col)=nan;\n end\n end\n i\nend\n\n% cluster similarity\nfor i=1:length(trials_unsorted)\n for j =1:length(trials_unsorted)\n for ax = 8:10\n temp(ax-7,:)=crosscorr(trials_unsorted{i}(:,[ax]),trials_unsorted{j}(:,[ax]),bins-1);\n end\n if sum(~isreal(temp(:)))>0\n disp([i j]);\n end\n a = trials_unsorted{i}(:,[8 9 10]);\n b = trials_unsorted{j}(:,[8 9 10]);\n% a = [trials_unsorted{i}(:,[9]) trials_unsorted{i}(:,[10])-trials_unsorted{i}(:,[9])];\n% b = [trials_unsorted{j}(:,[9]) trials_unsorted{j}(:,[10])-trials_unsorted{j}(:,[9])];\n% temp = corrcoef(reshape(a,bins*3,1),reshape(b,bins*2,1));\n% temp = crosscorr(reshape(a,bins*3,1),reshape(b,bins*,1),120);\n% cc(i,j)=temp(2);\n [cc(i,j) locs]=max(nanmean(temp));\n end\nend\n% remove NaN's?\nn = isnan(cc(:,1));\n\n%% \nnumConditions = str2num(input('How many conditions were there: ','s'));\nwhile ~isnumeric(numConditions) || isempty(numConditions)\n numConditions = str2num(input('How many conditions were there: ','s'));\nend\nexitC=0;\nwhile exitC == 0\n clust = kmeans(cc,numConditions);\n clear trials\n for i=1:numConditions\n f = find(clust==i);\n for j=1:length(f)\n trials{i}{j}=trials_unsorted{f(j)};\n end\n end\n for i=1:numConditions\n subplot(4,5,i)\n hold off\n for t = 1:length(trials{i})\n scatter3(trials{i}{t}(:,8),trials{i}{t}(:,10),trials{i}{t}(:,9),'.k')\n hold on\n scatter3(trials{i}{t}(1,8),trials{i}{t}(1,10),trials{i}{t}(1,9),'.g')\n scatter3(trials{i}{t}(end,8),trials{i}{t}(end,10),trials{i}{t}(end,9),'.r')\n end\n end\n pause(.01);\n adjust = input('merge[m]/split[s] ','s');\n if strcmp(adjust,'s')\n numConditions = numConditions+1;\n end\n if strcmp(adjust,'m')\n on = str2num(input('condition #1:','s'));\n tw = str2num(input('condition #2','s'));\n for t = 1:length(trials{tw})\n trials{on}{length(trials{on})+1}=trials{tw}{t};\n end\n trials{tw}=[];\n end\n if ~strcmp(adjust,'s') && ~strcmp(adjust,'m')\n exitC = 1; \n clf();\n end\nend\n% check that clustering was correct \n\nc=1;\nfor tt = 1:length(trials)\n% if d == 5 %% only for rec 21st\n% bins = 100;\n% elseif d == 4\n% bins = 100;\n% else\n% bins = 80;\n% end\n \n hold off\n map{tt}=[];\n t_conc=[];\n for t = 1:length(trials{tt})\n t_conc = [trials{tt}{t}(:,:),20*(trials{tt}{t}(:,1)-trials{tt}{t}(1,1))];\n if length(t_conc)>=bins\n while length(t_conc)>bins+1\n di = pdist(t_conc);\n s = squareform(di);\n s(find(eye(size(s))))=nan;\n [a b] = min(s(:));\n \n [coords blah] = find(s==a);\n t_conc(coords(1),:) = (t_conc(coords(1),:)+t_conc(coords(2),:))./2;\n t_conc(coords(2),:) = [];\n % debug\n% scatter(t_conc(:,1),t_conc(:,2))\n% pause(.01)\n end\n t_conc_all(t,:,:) = t_conc;\n end\n end\n if length(trials{tt})>0\n map{tt} = squeeze(median(t_conc_all(:,:,:),1));\n\n if ~isempty(trials{tt})\n subplot(8,4,c)\n c=1+c\n for t = 1:length(trials{tt})\n scatter(trials{tt}{t}(:,1),trials{tt}{t}(:,2),'.k')\n hold on\n scatter(trials{tt}{t}(1,1),trials{tt}{t}(1,2),'.g')\n scatter(trials{tt}{t}(end,1),trials{tt}{t}(end,2),'.r')\n end\n end\n end\n clear t_conc_all\n for t =1:length(trials{tt}) % all trial types (rotations)\n for p = 1:length(trials{tt}{t})\n [a b] = min(nansum(abs([trials{tt}{t}(p,1)-map{tt}(:,1),...\n trials{tt}{t}(p,8)-map{tt}(:,8),...\n trials{tt}{t}(p,9)-map{tt}(:,9),...\n trials{tt}{t}(p,10)-map{tt}(:,10),...\n (trials{tt}{t}(p,1)-trials{tt}{t}(1,1))*50-map{tt}(:,1),... % penalty for time differences\n 40*(p./length(trials{tt}{t})*length(map{tt}) - (1:length(map{tt})))'])')); % penalty for order differences\n mapping{tt}{t}(p,:) = [map{tt}(b,1:end) b trials{tt}{t}(p,1)];\n% plot(nansum(abs([trials{tt}{t}(p,1)-map{tt}(:,1),...\n% trials{tt}{t}(p,2)-map{tt}(:,2),...\n% trials{tt}{t}(p,3)-map{tt}(:,3),...\n% trials{tt}{t}(p,4)-map{tt}(:,4),...\n% (trials{tt}{t}(p,5)-trials{tt}{t}(1,5))*20-map{tt}(:,5),... % penalty for time differences\n% 50*(p./length(trials{tt}{t})*length(map{tt}) - (1:length(map{tt})))'])'))\n% pause\n end\n end\nend\n\n%% incorporate this below to reformat things and double check trial assignments...\n% load behav\n% \nc=1\nclear m mm tt\nfor i=1:length(trials)\n if ~isempty(trials{i})\n tt{c}=trials{i};\n m{c}=map{i};\n mm{c}=mapping{i};\n \n tt{c}=tt{c}(~cellfun('isempty',tt{c}));\n mm{c}=mm{c}(~cellfun('isempty',mm{c}));\n c=1+c;\n end\nend \ndbmap=m;\nmapping=mm;\ntrials= tt;\n\nfor tt = 1:length(trials)\nsubplot(5,4,tt)\nfor t = 1:length(trials{tt})\n% scatter(map{tt}(:,1),map{tt}(:,2),'.')\nscatter(trials{tt}{t}(:,8),trials{tt}{t}(:,10),'.k')\nhold on\n\n% axis([0 550 0 550])\nend\nfor t = 1:length(trials{tt})\n% scatter(map{tt}(:,1),map{tt}(:,2),'.')\nscatter(trials{tt}{t}(1,8),trials{tt}{t}(1,10),'.g')\nscatter(trials{tt}{t}(end,8),trials{tt}{t}(end,10),'.r')\nhold on\n\n% axis([0 550 0 550])\nend\ntitle(tt);\nend\n\n\nend", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/preprocessing/ratemapping/getBehavEvents_linearTrack.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38388120312297636}} {"text": "function [opts]=test_rnn(net,opts)\n\n opts.training=0;\n\n\n opts.MiniBatchError=[];\n opts.MiniBatchLoss=[];\n \n \n \n for mini_b=1:opts.n_test_batch\n idx=1+(mini_b-1)*opts.parameters.batch_size:mini_b*opts.parameters.batch_size;\n opts.input_data=opts.test(:,idx,:);\n opts.input_labels=opts.test_labels(idx,:);\n\n %forward\n if strcmp(opts.network_name,'lstm')\n [ net,res,opts ] = lstm_ff( net,opts );\n end\n if strcmp(opts.network_name,'gru')\n [ net,res,opts ] = gru_ff( net,opts );\n end\n if strcmp(opts.network_name,'rnn')\n [ net,res,opts ] = rnn_ff( net,opts );\n end\n if strcmp(opts.network_name,'qrnn')\n [ net,res,opts ] = qrnn_ff( net,opts );\n end\n \n if isfield(opts,'err')\n opts.MiniBatchError=[opts.MiniBatchError;gather( opts.err(1))];\n end\n opts.MiniBatchLoss=[opts.MiniBatchLoss;gather( opts.loss)];\n \n \n end\n \n opts.results.TestEpochError=[opts.results.TestEpochError;mean(opts.MiniBatchError(:))];\n opts.results.TestEpochLoss=[opts.results.TestEpochLoss;mean(opts.MiniBatchLoss(:))];\n \nend\n\n\n", "meta": {"author": "yechengxi", "repo": "LightNet", "sha": "5dc29cefccf1ea6d9377aa90732581337408ce73", "save_path": "github-repos/MATLAB/yechengxi-LightNet", "path": "github-repos/MATLAB/yechengxi-LightNet/LightNet-5dc29cefccf1ea6d9377aa90732581337408ce73/RNN/test_rnn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.712232184238947, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38388119653853164}} {"text": "classdef prtClassRvmForContext < prtClass\n % prtClassRvmForContext Relevance vector machine classifier for\n % context-dependent applications\n\n\n\n\n\n\n\n \n properties (SetAccess=private)\n name = 'Relevance Vector Machine' % Relevance Vector Machine\n nameAbbreviation = 'RVM' % RVM\n isNativeMary = false; % False\n useForContext = true;\n end\n \n properties\n kernels = prtKernelDc & prtKernelDirect; % The kernels to be used\n \n verboseText = true; % Whether or not to display text during training\n verbosePlot = false; % Whether or not to plot during training\n \n maxIterations = 1000; % The maximum number of iterations\n convergenceThreshold = .01; % Learning tolerance; \n \n prior = struct('a',1e-6,'b',1e-6','c',1e-6,'d',1e-6);\n weights = [];\n \n end\n \n\n \n \n methods\n \n function Obj = prtClassRvm(varargin)\n Obj = prtUtilAssignStringValuePairs(Obj,varargin{:});\n end\n \n function Obj = set.maxIterations(Obj,val)\n if ~prtUtilIsPositiveInteger(val)\n error('prt:prtClassRvm:maxIterations','maxIterations must be a positive integer');\n end\n Obj.learningMaxIterations = val;\n end\n \n function Obj = set.convergenceThreshold(Obj,val)\n if ~prtUtilIsPositiveScalar(val)\n error('prt:prtClassRvm:convergenceThreshold','convergenceThreshold must be a positive scalar');\n end\n Obj.learningConvergedTolerance = val;\n end\n \n \n function Obj = set.kernels(Obj,val)\n assert(numel(val)==1 && isa(val,'prtKernel'),'prt:prtClassRvm:kernels','kernels must be a prtKernel');\n \n Obj.kernels = val;\n end\n \n function Obj = set.verbosePlot(Obj,val)\n assert(isscalar(val) && (islogical(val) || prtUtilIsPositiveInteger(val)),'prt:prtClassRvm:verbosePlot','verbosePlot must be a logical value or a positive integer');\n Obj.verbosePlot = val;\n end\n \n function Obj = set.verboseText(Obj,val)\n assert(isscalar(val) && islogical(val),'prt:prtClassRvm:verboseText','verboseText must be a logical value, but value provided is a %s',class(val));\n Obj.verboseText = val;\n end\n \n function varargout = plot(Obj)\n % plot - Plot output confidence of the prtClassRvm object\n %\n % CLASS.plot plots the output confidence of the prtClassRvm\n % object. The dimensionality of the dataset must be 3 or\n % less, and verboseStorage must be true.\n \n HandleStructure = plot@prtClass(Obj);\n \n holdState = get(gca,'nextPlot');\n hold on;\n Obj.sparseKernels.plot;\n set(gca, 'nextPlot', holdState);\n \n varargout = {};\n if nargout > 0\n varargout = {HandleStructure};\n end\n end\n \n end\n \n methods (Access=protected, Hidden = true)\n \n function Obj = trainAction(Obj,DataSet)\n %Note: do not assume that getTargets returns a double array or\n %values \"0\" and \"1\", instead use this:\n Y = Obj.getMinusOneOneTargets(DataSet);\n Y(Y==-1) = 0;\n \n Obj.kernels = Obj.kernels.train(DataSet);\n GRAMM = Obj.kernels.run_OutputDoubleArray(DataSet);\n \n prior = Obj.prior;\n prior.A = diag(repmat(prior.a,1,size(GRAMM,2)));\n prior.S = eye(size(GRAMM,2));\n prior.m = zeros(size(GRAMM,2),1);\n \n if isfield(DataSet.observationInfo,'contextPosterior')\n for i = 1:DataSet.nObservations\n pCgivenX(i,:) = DataSet.observationInfo(i).contextPosterior;\n end\n else\n pCgivenX = ones(DataSet.nObservations,1);\n end\n pCgivenXmat = repmat(pCgivenX',size(GRAMM,2),1);\n\n % Run VB\n iter = 0;\n finished = false;\n while ~finished\n iter = iter + 1;\n \n phi = GRAMM';\n N = size(phi,2); % Number of samples\n D = size(phi,1); % Dimensionality\n t = Y;\n \n if iter == 1 %% Initialization\n a = repmat(prior.a,1,D);\n b = repmat(prior.b,1,D);\n S = prior.S;\n m = prior.m;\n end\n \n xi = sqrt(diag(phi'*(S+m*m')*phi));\n lambda = (1./(4*xi)).*tanh(xi./2);\n \n A = diag(a./b);\n S = inv(A + 2*pCgivenXmat.*phi*diag(lambda)*phi');\n \n m = .5*S*sum(pCgivenXmat.*repmat(2*t'-1,D,1).*phi,2);\n \n a = repmat(prior.a,D,1) + .5;\n b = diag(diag(repmat(prior.b,1,D)) + .5*(diag(m.^2) + diag(diag(S))));\n \n % Calculate Negative Free Energy (Convergence Criterion)\n sig = (1 + exp(-xi)).^-1;\n logF = sum(pCgivenX.*(log(sig) + .5*(2*t-1).*(phi'*m) - .5*xi - lambda.*((diag(phi'*(S+m*m')*phi)) - xi.^2)));\n \n KLDalpha = 0;\n for d = 1:D\n KLDalpha = KLDalpha + prtRvUtilGammaKld(a(d),b(d),prior.a,prior.b);\n end\n if det(S) ~= 0\n KLDw = .5*(-sum(log(diag(A))) -log(det(S)) + trace(A.*S)' + sum(diag(A).*m.^2) - N);\n else\n KLDw = .5*(-sum(log(diag(A))) -log(realmin) + trace(A.*S)' + sum(diag(A).*m.^2) - N);\n end\n \n NFE(iter) = logF - KLDalpha - KLDw;\n if Obj.verbosePlot\n figure(666),plot(NFE)\n end\n \n if iter > 1\n if NFE(iter) > 0\n Lpct = 100*(NFE(iter) - NFE(iter-1))/NFE(iter-1);\n else\n Lpct = 100*(NFE(iter-1) - NFE(iter))/NFE(iter-1);\n end\n else\n Lpct = nan;\n end\n \n %% Progress mssages, check convergence\n if Obj.verboseText\n fprintf(['Iteration #',num2str(iter),': Negative Free Energy = ',num2str(NFE(iter)),' (',num2str(Lpct),'%%)\\n'])\n end\n \n if iter > 1\n if abs(Lpct) <= Obj.convergenceThreshold;\n finished = true;\n Obj.weights = m;\n if Obj.verboseText\n fprintf('NFE Converged! Congratulation.\\n')\n end\n elseif iter == Obj.maxIterations;\n finished = true;\n Obj.weights = m;\n if Obj.verboseText\n fprintf('Max iterations reached. Get out of here!\\n')\n end\n elseif isinf(Lpct)\n finished = true;\n Obj.weights = m;\n if Obj.verboseText\n fprintf('Inf found...exiting\\n')\n end\n end\n end\n end\n \n end\n \n function DataSetOut = runAction(Obj,DataSet)\n \n GRAMM = Obj.kernels.run_OutputDoubleArray(DataSet);\n x = DataSet.X;\n w = Obj.weights;\n for n = 1:size(x,1);\n y(n,:) = w'*GRAMM(n,:)';\n end\n Yout = (1 + exp(-y)).^(-1);\n \n\n DataSetOut = prtDataSetClass(Yout,DataSet.Y);\n if isa(DataSet,'prtDataSetClassContext')\n DataSetOut = prtDataSetClassContext(DataSetOut,prtDataSetClass);\n end\n end\n end\n\n methods (Access=protected, Hidden = true)\n \n function y = getMinusOneOneTargets(Obj, DataSet) %#ok\n yMat = double(DataSet.getTargetsAsBinaryMatrix());\n y = nan(size(yMat,1),1);\n y(yMat(:,1) == 1) = -1;\n y(yMat(:,2) == 1) = 1;\n end\n \n function G = regularizeGramInnerProduct(Obj, gram)\n nBasis = size(gram,2);\n \n sigmaSquared = 1e-6;\n \n %Check to make sure the problem is well-posed. This can be fixed either\n %with changes to kernels, or by regularization\n G = gram'*gram;\n while rcond(G) < 1e-6\n if sigmaSquared == eps && Obj.verboseText\n %warning('prt:prtClassRvm:illConditionedG','RVM initial G matrix ill-conditioned; regularizing diagonal of G to resolve; this can be modified by changing kernel parameters\\n');\n fprintf('\\n\\tRegularizing Gram matrix...\\n');\n end\n G = (sigmaSquared*eye(nBasis) + gram'*gram);\n sigmaSquared = sigmaSquared*2;\n end\n \n end\n \n function verboseIterationPlot(Obj,DataSet,relevantIndices)\n DsSummary = DataSet.summarize;\n \n [linGrid, gridSize,xx,yy] = prtPlotUtilGenerateGrid(DsSummary.lowerBounds, DsSummary.upperBounds, Obj.plotOptions); %#ok\n \n localKernels = Obj.kernels.train(DataSet);\n cKernels = localKernels.retainKernelDimensions(relevantIndices);\n cPhiDataSet = cKernels.run(prtDataSetClass([xx(:),yy(:)]));\n cPhi = cPhiDataSet.getObservations;\n \n confMap = reshape(prtRvUtilNormCdf(cPhi*Obj.beta(relevantIndices)),gridSize);\n imagesc(xx(1,:),yy(:,1),confMap,[0,1])\n colormap(Obj.plotOptions.twoClassColorMapFunction());\n axis xy\n hold on\n plot(DataSet);\n cKernels.plot();\n hold off;\n \n set(gcf,'color',[1 1 1]);\n drawnow;\n end\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/]submissions/Ratto2012/prtClassRvmForContext.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.712232184238947, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38388119653853164}} {"text": "function [v,H,var,n,vsat,idx]=robust_spp(v0,H0,var0,nv,vsat,idx,flag)\n\n[nr,nl]=size(H0);\nave_distance=zeros(nv,1); exc=zeros(nv,1); n=0; %#ok\nv=zeros(nr,1); H=zeros(nr,nl); var=zeros(nr,nr); \n\nif flag==0\n MAX_DISTANCE=3; %for pseudorange\nelse\n MAX_DISTANCE=0.2; %for doppler\nend\n\nfor i=1:nv\n vi=abs(v0(i));\n if vi3*sum(v_other)/(nv-1)\n exc(i)=1;\n vsat(idx(i))=0;\n end\nend\n\nfor i=1:nv\n if exc(i)==1,continue;end\n v(n+1)=v0(i);\n H(n+1,:)=H0(i,:);\n var(n+1,n+1)=var0(i,i);\n n=n+1;\nend\n\n\nreturn\n\n", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/gnss/spp/robust_spp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.38388119653853153}} {"text": "clear\nclc\n\n% mysql default configure\nmdl_data = get_default_mysql_data('iris');\nclass_index = 1;\nnode_sizes = get_node_sizes(mdl_data);\n% make a dag\n[mdl_data_row,mdl_data_col] = size(mdl_data);\n\n% make a naive struct\ndag = mk_naive_struct(length(node_sizes),class_index);\n\n%\n% order = catty_order_algorithm(mdl_data,'class_node',1,'subtract_type','sum');\n% dag = learn_struct_K2(mdl_data,node_size,order);\n% draw_graph(dag);\n%\n% % make a bnet\nbnet = get_bnet(mdl_data,dag,'tabular');\n% % set classified times\ntimes = 10;\nclass_test_algorithm = 'CV-5';\n[correct_rate, confusion_matrix] = times_classified_test(bnet,mdl_data,...\n class_index,class_test_algorithm,times);\n%\n[avg_correct_rate,avg_confusion_matrix] ...\n = computer_avg_classified(correct_rate,confusion_matrix);", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/Utils/classified/classified_experiment/iris_classified_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754489059775, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3838734828227798}} {"text": "classdef TVPsettings < bear.settings.BASEsettings\n %TVPSETTINGS Panel VAR settings class\n % The bear.settings.TVPsettings class is a class that creates a settings\n % object to run a time-varying VAR. It can be created directly by\n % running:\n %\n % bear.settings.TVPsettings(ExcelFile, varargin)\n %\n % or in its more convenient form:\n %\n % BEARsettings('TVP', ExcelFile = 'path/To/file.xlsx')\n %\n % TVPsettings Properties:\n % tvbvar - choice of time-varying BVAR model\n % It - Gibbs sampler iterations\n % Bu - Gibbs sampler burn-in iterations\n % pick - retain only one post burn iteration\n % pickf - frequency of iteration picking \n % ar - auto-regressive coefficients\n % PriorExcel - Select individual priors\n % priorsexogenous - Gibbs sampler burn-in iterations\n % lambda4 - hyperparameter\n % gamma - hyperparameter\n % alpha0 - hyperparameter\n % delta0 - hyperparameter\n % alltirf - calculate IRFs for every sample period\n % favar - FAVAR Options\n \n properties\n % choice of time-varying BVAR model\n % 1 = time-varying coefficients (TVP)\n % 2 = general time-varying (TVP_SV)\n tvbvar (1,1) bear.TVPtype = 2;\n % switch to Excel interface\n PriorExcel (1,1) logical = false; % set to 1 if you want individual priors, 0 for default\n % switch to Excel interface for exogenous variables\n priorsexogenous (1,1) logical = true; % set to 1 if you want individual priors, 0 for default\n % hyperparameter: lambda4\n lambda4=100;\n end\n \n properties %Hyperparameters\n % hyperparameter: gamma\n gamma (1,1) double = 0.85;\n % hyperparameter: alpha0\n alpha0 (1,1) double = 0.001;\n % hyperparameter: delta0\n delta0 (1,1) double = 0.001;\n % calculate IRFs for every sample period (1=yes, 0=no)\n alltirf (1,1) logical = true;\n end\n \n properties\n % total number of iterations for the Gibbs sampler\n It (1,1) double {mustBeGreaterThanOrEqual(It,1)} = 2000;\n % number of burn-in iterations for the Gibbs sampler\n Bu (1,1) double = 1000;\n % choice of retaining only one post burn iteration over 'pickf' iterations (1=yes, 0=no)\n pick (1,1) logical = false;\n % frequency of iteration picking (e.g. pickf=20 implies that only 1 out of 20 iterations will be retained)\n pickf=20;\n % just for the code to run (do not touch)\n ar=0; \n end\n \n properties % FAVAR\n % FAVAR options\n favar (1,1) bear.settings.favar.FAVARsettings = bear.settings.favar.VARtypeSpecificFAVARsettings; % augment VAR model with factors (1=yes, 0=no)\n end\n \n methods\n \n function obj = TVPsettings(excelPath, varargin)\n \n obj@bear.settings.BASEsettings(6, excelPath)\n \n obj = parseBEARSettings(obj, varargin{:});\n \n end\n \n function obj = set.Bu(obj,value)\n if (value <= obj.It-1) %#ok\n obj.Bu = value;\n else\n error('bear:settings:TVPsettings',\"The maximum value of Bu is It-1: \" + (obj.It-1)) %#ok\n end\n end\n \n function obj = set.It(obj,value)\n if (value > obj.Bu-1) %#ok\n obj.It = value;\n else\n error('bear:settings:TVPsettings',\"The minimum value of It is Bu+1: \" + (obj.Bu+1)) %#ok\n end\n end\n \n end\n \nend", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tbx/bear/+bear/+settings/TVPsettings.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754371026367, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3838734765986831}} {"text": "function value = r8vec_dif_f ( x )\n\n%*****************************************************************************80\n%\n%% R8VEC_DIF_F evaluates the function used in R8VEC_DIF_TEST.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n value = exp ( x );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/r8lib/r8vec_dif_f.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765155565327, "lm_q2_score": 0.6825737344123242, "lm_q1q2_score": 0.3837269236223306}} {"text": "clc\nclose all\nclear\n% This file tests safety performance for various approaches\n\n%% Setup and simulations\ntimestep = 0.1;\nsystem_param.A = [[1 ,timestep, 0]; [0, 1, timestep]; [0, 0, 1]];\nsystem_param.B = [0; 0; timestep];\nsystem_param.ul = -1;\nsystem_param.uu = 1;\nsystem_param.timestep = timestep;\nx0 = [-2.0;0.0;1.0];\nt0 = 0.0;\n\ngammalist = [0.05, 0.10, 0.15, 0.2];\n\n%% MPC-DCBF simulator\nmpcdcbf_simulators = {};\nfor index = 1:length(gammalist)\n mpcdcbf_simulators{index} = CBFDT(system_param, x0, t0);\n param_mpcdcbf = ParamMPCDCBF(8, gammalist(index), 10.0*eye(3), 10.0*eye(3), 1.0);\n mpcdcbf_simulators{index}.setOpt('mpcdcbf', param_mpcdcbf);\n mpcdcbf_simulators{index}.sim(10.0);\nend\n\n%% MPC-GCBF simulator\nmpcgcbf_simulators = {};\nfor index = 1:length(gammalist)\n mpcgcbf_simulators{index} = CBFDT(system_param, x0, t0);\n param_mpcgcbf = ParamMPCGCBF(8, gammalist(index), 10.0*eye(3), 10.0*eye(3), 1.0);\n mpcgcbf_simulators{index}.setOpt('mpcgcbf', param_mpcgcbf);\n mpcgcbf_simulators{index}.sim(10.0);\nend\n\n%% NMPC-DCBF simulator\nnmpcdcbf_simulators = {};\nfor index = 1:length(gammalist)\n nmpcdcbf_simulators{index} = CBFDT(system_param, x0, t0);\n param_nmpcdcbf = ParamNMPCDCBF(8, 8, gammalist(index), 10.0*eye(3), 10.0*eye(3), 1.0, 10.0);\n nmpcdcbf_simulators{index}.setOpt('nmpcdcbf', param_nmpcdcbf);\n nmpcdcbf_simulators{index}.sim(10.0);\nend\n\n%% Plotting\nfigure('Renderer', 'painters', 'Position', [0 0 500 400]);\ncolor1 = '[0, 0.4470, 0.7410]';\ncolor2 = '[0.8500, 0.3250, 0.0980]';\ncolor3 = '[0.9290, 0.6940, 0.1250]';\ncolor4 = '[0.4940, 0.1840, 0.5560]';\nset(gca,'LineWidth', 0.2, 'FontSize', 20);\nhold on;\ngrid on;\nset(gca, 'YScale', 'log');\nplot(mpcdcbf_simulators{2}.tlog, -mpcdcbf_simulators{2}.xlog(1, :), 'Color', color2, 'LineWidth', 1.0);\nplot(mpcdcbf_simulators{3}.tlog, -mpcdcbf_simulators{3}.xlog(1, :), 'Color', color3, 'LineWidth', 1.0);\nplot(mpcdcbf_simulators{4}.tlog, -mpcdcbf_simulators{4}.xlog(1, :), 'Color', color4, 'LineWidth', 1.0);\nh_legend = legend('MPC-DCBF ($\\gamma=0.10$)', 'MPC-DCBF ($\\gamma=0.15$)', 'MPC-DCBF ($\\gamma=0.20$)');\nset(h_legend, 'Interpreter','latex', 'Location', 'SouthWest');\nxlim([0, 10]);\n% save data and generate figures\nprint(gcf, 'figures/safety-mpcdcbf.eps', '-depsc');\nprint(gcf, 'figures/safety-mpcdcbf.png', '-dpng', '-r800');\nsave('data/safety-mpcdcbf.mat');\n\nfigure('Renderer', 'painters', 'Position', [0 0 500 400]);\nset(gca,'LineWidth', 0.2, 'FontSize', 20);\nhold on;\ngrid on;\nset(gca, 'YScale', 'log');\nplot(mpcgcbf_simulators{2}.tlog, -mpcgcbf_simulators{2}.xlog(1, :), 'Color', color2, 'LineWidth', 1.0);\nplot(mpcgcbf_simulators{3}.tlog, -mpcgcbf_simulators{3}.xlog(1, :), 'Color', color3, 'LineWidth', 1.0);\nplot(mpcgcbf_simulators{4}.tlog, -mpcgcbf_simulators{4}.xlog(1, :), 'Color', color4, 'LineWidth', 1.0);\nh_legend = legend('MPC-GCBF ($\\gamma=0.10$)', 'MPC-GCBF ($\\gamma=0.15$)', 'MPC-GCBF ($\\gamma=0.20$)');\nset(h_legend, 'Interpreter','latex', 'Location', 'SouthWest');\nxlim([0, 10]);\nylim([0.01, 2]);\n% save data and generate figures\nprint(gcf, 'figures/safety-mpcgcbf.eps', '-depsc');\nprint(gcf, 'figures/safety-mpcgcbf.png', '-dpng', '-r800');\nsave('data/safety-mpcgcbf.mat');\n\nfigure('Renderer', 'painters', 'Position', [0 0 500 400]);\nset(gca,'LineWidth', 0.2, 'FontSize', 20);\nhold on;\ngrid on;\nset(gca, 'YScale', 'log');\nplot(nmpcdcbf_simulators{1}.tlog, -nmpcdcbf_simulators{1}.xlog(1, :), 'Color', color1, 'LineWidth', 1.0);\nplot(nmpcdcbf_simulators{2}.tlog, -nmpcdcbf_simulators{2}.xlog(1, :), 'Color', color2, 'LineWidth', 1.0);\nplot(nmpcdcbf_simulators{3}.tlog, -nmpcdcbf_simulators{3}.xlog(1, :), 'Color', color3, 'LineWidth', 1.0);\nplot(nmpcdcbf_simulators{4}.tlog, -nmpcdcbf_simulators{4}.xlog(1, :), 'Color', color4, 'LineWidth', 1.0);\nh_legend = legend('NMPC-DCBF ($\\gamma=0.05$)', 'NMPC-DCBF ($\\gamma=0.10$)', 'NMPC-DCBF ($\\gamma=0.15$)', 'NMPC-DCBF ($\\gamma=0.20$)');\nset(h_legend, 'Interpreter','latex', 'Location', 'SouthWest');\nxlim([0, 10]);\n% save data and generate figures\nprint(gcf, 'figures/safety-nmpcdcbf.eps', '-depsc');\nprint(gcf, 'figures/safety-nmpcdcbf.png', '-dpng', '-r800');\nsave('data/safety-nmpccbf.mat');\n", "meta": {"author": "HybridRobotics", "repo": "NMPC-DCLF-DCBF", "sha": "3f40c67578f49114301b02e744e5a86fa671a981", "save_path": "github-repos/MATLAB/HybridRobotics-NMPC-DCLF-DCBF", "path": "github-repos/MATLAB/HybridRobotics-NMPC-DCLF-DCBF/NMPC-DCLF-DCBF-3f40c67578f49114301b02e744e5a86fa671a981/matlab/cdc2021/testSafety.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.38372691360847244}} {"text": "function p = abss(p);\n%ABSS Polynomial with absolute values of coefficients\n%\n% r = abss(p);\n%\n% Obsolete, replaced by mag (thanks to Arnold for better naming).\n%\n\n% written 08/28/00 S.M. Rump\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n% modified 10/18/08 S.M. Rump obsolete\n%\n\n p = mag(p);\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/polynom/@polynom/abss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.38372217011930604}} {"text": "function A=storageclass(lwl,hwl,sto_class)\n%STORAGECLASS berfungsi untuk membagi kapasitas tampungan dalam beberapa\n%kelas\n%lwl adalah low water level operation (m3)\n%hwl adalah high water level operation (m3)\n%sto_class adalah jumlah storage class\n%berbeda dengan inflowclass, nilai kelas disini adalah nilai batas\nincr=(hwl-lwl)/(sto_class-1);\n%penentuan nilai maksimum per kelas\nfor a=0:(sto_class-1)\n A(a+1,:)=lwl+incr*a;\nend\nA;\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/32339-stochastic-dynamic-programming-for-water-reservoir/storageclass.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5888891451980404, "lm_q2_score": 0.6513548646660543, "lm_q1q2_score": 0.383575809473778}} {"text": "%**************************************************************\n%* mex interface to Andy Liaw et al.'s C code (used in R package randomForest)\n%* Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )\n%* License: GPLv2\n%* Version: 0.02\n%\n% Calls Regression Random Forest\n% A wrapper matlab file that calls the mex file\n% This does prediction given the data and the model file\n%**************************************************************\n\nfunction [Y_hat,prediction_per_tree, nodes] = regRF_predict(X,model,extra_options)\n %function Y_hat = regRF_predict(X,model)\n %requires 2 arguments\n %X: data matrix\n %model: generated via regRF_train function\n\tif nargin<2\n\t\terror('need atleast 2 parameters,X matrix and model');\n end\n if exist('extra_options','var')\n if isfield(extra_options,'predict_all') \n predict_all = extra_options.predict_all;\n end\n if isfield(extra_options,'nodes') \n nodes = extra_options.nodes;\n end\n end\n \n if ~exist('predict_all','var'); predict_all=0;end\n \n if ~exist('nodes','var'); nodes=0;end\n \n if isfield(model, 'categorical_feature')\n % have to map prediction array to the correct categories\n for i=1:size(X,2)\n if model.categorical_feature(i) \n tmp_uniques_in_feature = model.orig_uniques_in_feature{i};\n tmp_mapped_uniques_in_feature = model.mapped_uniques_in_feature{i};\n X_loc = X(:,i); %cannot change the original array which may cause chained change of categories to something totally wrong\n for j=1:length(tmp_uniques_in_feature)\n indices_to_change = find( X(:,i) == tmp_uniques_in_feature(j) );\n X_loc(indices_to_change) = tmp_mapped_uniques_in_feature(j);\n end\n X(:,i) = X_loc;\n end\n end\n ncat = model.ncat;\n else\n ncat = ones(1,size(X,2));\n end\n \n maxcat = max(ncat);\n\t[Y_hat,prediction_per_tree, nodes] = mexRF_predict(X',model.lDau,model.rDau,model.nodestatus,model.nrnodes,model.upper,model.avnode,model.mbest,model.ndtree,model.ntree,predict_all, nodes, int32(ncat), maxcat );\n \n if ~isempty(find(model.coef)) %for bias corr\n Y_hat = model.coef(1) + model.coef(2)*Y_hat;\n end\n\tclear mexRF_predict\n ", "meta": {"author": "s-gupta", "repo": "rcnn-depth", "sha": "7a7baf7dcccc6fdf6be7c13d16828064d89dff4e", "save_path": "github-repos/MATLAB/s-gupta-rcnn-depth", "path": "github-repos/MATLAB/s-gupta-rcnn-depth/rcnn-depth-7a7baf7dcccc6fdf6be7c13d16828064d89dff4e/mcg/src/external/RF_Reg_C/regRF_predict.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548782017745, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3835758080456301}} {"text": "function r = GetRadar(dt)\n%\n%\npersistent posp\n\n\nif isempty(posp)\n posp = 0;\nend\n\n\nvel = 100 + 5*randn;\nalt = 1000 + 10*randn;\n\npos = posp + vel*dt;\n\nv = 0 + pos*0.05*randn;\n\nr = sqrt(pos^2 + alt^2) + v;\n\nposp = pos;", "meta": {"author": "philbooks", "repo": "Kalman-Filter-for-Beginners", "sha": "5190a723dcbf96eacda71ed56abddb3a11779a82", "save_path": "github-repos/MATLAB/philbooks-Kalman-Filter-for-Beginners", "path": "github-repos/MATLAB/philbooks-Kalman-Filter-for-Beginners/Kalman-Filter-for-Beginners-5190a723dcbf96eacda71ed56abddb3a11779a82/14.EKF/GetRadar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867873410141, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.38351173241691633}} {"text": "function [ dose ] = matRad_interpDicomDoseCube( ct, currDose )\n% matRad function to interpolate a given Dicom Dose Cube dicom RTDOSE data\n%\n% call\n% [ dose ] = matRad_interpDicomDoseCube( ct, currDose )\n%\n% input\n% ct: ct imported by the matRad_importDicomCt function\n% currDose: one (of several) dose cubes which should be interpolated\n%\n% output\n% dose: struct with different actual current dose cube and several\n% meta data\n%\n% References\n% -\n%\n% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% Copyright 2015 the matRad development team.\n%\n% This file is part of the matRad project. It is subject to the license\n% terms in the LICENSE file found in the top-level directory of this\n% distribution and at https://github.com/e0404/matRad/LICENSES.txt. No part\n% of the matRad project, including this file, may be copied, modified,\n% propagated, or distributed except according to the terms contained in the\n% LICENSE file.\n%\n% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% read information out of the RT file\ndosefile = currDose{1};\nif verLessThan('matlab','9')\n doseInfo = dicominfo(dosefile);\nelse\n doseInfo = dicominfo(dosefile,'UseDictionaryVR',true);\nend\n\n% read the dosefile itself\ndosedata = dicomread(dosefile);\ndose.cube = double(dosedata);\n% dose.cube = single(dosedata);\n\n% give it an internal name\ndose.internalName = currDose{12};\n\n% read out the resolution\ndose.resolution.x = doseInfo.PixelSpacing(1);\ndose.resolution.y = doseInfo.PixelSpacing(2);\ndose.resolution.z = doseInfo.SliceThickness;\n\n% target resolution is ct.resolution\ntarget_resolution = ct.resolution;\n\n% convert dosedata to 3-D cube\ndose.cube = squeeze(dose.cube(:,:,1,:));\n\n% ct resolution is target resolution, now convert to new cube;\n\n% generating grid vectors\nx = doseInfo.ImagePositionPatient(1) + doseInfo.ImageOrientationPatient(1) * ...\n doseInfo.PixelSpacing(1) * double([0:doseInfo.Columns - 1]);\ny = doseInfo.ImagePositionPatient(2) + doseInfo.ImageOrientationPatient(5) * ...\n doseInfo.PixelSpacing(2) * double([0:doseInfo.Rows - 1]);\nz = [doseInfo.ImagePositionPatient(3) + doseInfo.GridFrameOffsetVector];\n\n% set up grid matrices - implicit dimension permuation (X Y Z-> Y X Z)\n% Matlab represents internally in the first matrix dimension the\n% ordinate axis and in the second matrix dimension the abscissas axis\n[ X, Y, Z] = meshgrid(x,y,z);\n[Xq, Yq, Zq] = meshgrid(ct.x,ct.y,ct.z);\n\n% get GridScalingFactor\ngridScale = double(doseInfo.DoseGridScaling);\n% rescale dose.cube\ndose.cube = gridScale * dose.cube;\n\n% interpolation to ct grid - cube is now stored in Y X Z\ndose.cube = interp3(X,Y,Z,dose.cube,Xq,Yq,Zq,'linear',0);\n\n% write new parameters\ndose.resolution = ct.resolution;\ndose.x = ct.x;\ndose.y = ct.y;\ndose.z = ct.z;\n\n% write Dicom-Tags\ndose.dicomInfo.PixelSpacing = [target_resolution.x; ...\n target_resolution.y];\ndose.dicomInfo.ImagePositionPatient = [min(dose.x); min(dose.y); min(dose.z)];\ndose.dicomInfo.SliceThickness = target_resolution.z;\ndose.dicomInfo.ImageOrientationPatient = doseInfo.ImageOrientationPatient;\ndose.dicomInfo.DoseType = doseInfo.DoseType;\ndose.dicomInfo.DoseSummationType = doseInfo.DoseSummationType;\n%dose.dicomInfo.InstanceNumber = doseInfo.InstanceNumber; %Not\n%always given\ndose.dicomInfo.SOPClassUID = doseInfo.SOPClassUID;\ndose.dicomInfo.SOPInstanceUID = doseInfo.SOPInstanceUID;\ndose.dicomInfo.ReferencedRTPlanSequence = doseInfo.ReferencedRTPlanSequence;\n\nend\n", "meta": {"author": "e0404", "repo": "matRad", "sha": "0a03aee5ef4a100dbc4bef8927db41b59f44946e", "save_path": "github-repos/MATLAB/e0404-matRad", "path": "github-repos/MATLAB/e0404-matRad/matRad-0a03aee5ef4a100dbc4bef8927db41b59f44946e/dicom/matRad_interpDicomDoseCube.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7981867777396212, "lm_q2_score": 0.48047867804790706, "lm_q1q2_score": 0.38351172780365184}} {"text": "node = [0,0,0; 1,0,0; 0,1,0; 0,0,1];\nelem = [1 2 3 4];", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/iFEM/mesh/reftet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3833967563541127}} {"text": "function SO3VF = plus(SO3VF1, SO3VF2)\n% overloads |SO3VF1 + SO3VF2|\n%\n% Syntax\n% SO3VF = SO3VF1 + SO3VF2\n% SO3VF = a + SO3VF1\n% SO3VF = SO3VF1 + a\n% SO3VF = SO3VF1 + SO3F;\n% SO3VF = SO3F + SO3VF2;\n%\n% Input\n% SO3VF1, SO3VF2 - @SO3VectorField\n% a - double, @vector3d\n% SO3F - @SO3Fun\n%\n% Output\n% SO3VF - @SO3VectorField\n%\n\nif isa(SO3VF2,'vector3d')\n SO3VF2 = SO3VF2.xyz.';\nend\n\nif isnumeric(SO3VF1) || isa(SO3VF1,'SO3Fun')\n SO3VF = SO3VF2;\n SO3VF.SO3F = SO3VF1 + SO3VF2.SO3F;\n return\nend\nif isnumeric(SO3VF2) || isa(SO3VF2,'SO3Fun')\n SO3VF = SO3VF2 + SO3VF1;\n return\nend\n\nensureCompatibleSymmetries(SO3VF1,SO3VF2)\nSO3VF1 = SO3VectorFieldHarmonic(SO3VF1);\nSO3VF2 = SO3VectorFieldHarmonic(SO3VF2);\nSO3VF = SO3VF1;\nSO3VF.SO3F = SO3VF1.SO3F+SO3VF2.SO3F;\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/SO3Fun/@SO3VectorFieldHarmonic/plus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.38339675635411263}} {"text": " % Left Stance Domain \n %\n % Contact: Left Toe\nfunction domain = LeftStance(model, load_path)\n % construct the right stance domain of Cassie\n %\n % Parameters:\n % model: the right body model of Cassie robot\n \n %% first make a copy of the robot model\n %| @note Do not directly assign with the model variable, since it is a\n %handle object.\n domain = copy(model);\n % set the name of the new copy\n domain.setName('LeftStance');\n \n % Extract state variables\n q = domain.States.x;\n \n if nargin < 2\n load_path = [];\n end\n \n %% Add contact\n % left foot point contact\n [left_foot, fric_coef] = sys.frames.LeftFoot(model);\n \n p_left_foot = getCartesianPosition(domain, left_foot);\n r_left_foot = getRelativeEulerAngles(domain, left_foot );\n \n constr = [p_left_foot(1);p_left_foot(2);p_left_foot(3);r_left_foot(3)];\n hol = HolonomicConstraint(domain, constr, 'LeftFoot',...\n 'ConstrLabel',{{'LeftFootX','LeftFootY','LeftFootZ','LeftFootYaw'}},...\n 'DerivativeOrder',2);\n domain = addHolonomicConstraint(domain,hol);\n % domain = addContact(domain,left_foot,fric_coef, geom, load_path);\n if ~isempty(fric_coef)\n \n f = domain.Inputs.ConstraintWrench.fLeftFoot;\n % get the friction cone constraint\n % [friction_cone, fc_label, auxdata] = getFrictionCone(left_foot, f, fric_coef);\n mu = SymVariable('mu');\n gamma = SymVariable('gamma');\n % x, y, z, roll, yaw\n constr = [f(3) - 300; % fz >= 0\n f(1) + (mu/sqrt(2))*f(3); % -mu/sqrt(2) * fz < fx\n -f(1) + (mu/sqrt(2))*f(3); % fx < mu/sqrt(2) * fz\n f(2) + (mu/sqrt(2))*f(3); % -mu/sqrt(2) * fz < fu\n -f(2) + (mu/sqrt(2))*f(3); % fy < mu/sqrt(2) * fz\n f(4) + gamma * f(3); % -gamma * fz < wy\n -f(4) + gamma * f(3)]; % wy < gamma * fz\n \n % create a symbolic function object\n friction_cone = SymFunction(['u_friction_cone_', left_foot.Name],...\n constr,{f},{[mu;gamma]});\n \n % create the label text\n fc_label = {'normal_force';\n 'friction_x_pos';\n 'friction_x_neg';\n 'friction_y_pos';\n 'friction_y_neg';\n 'tor_firction_neg';\n 'tor_firction_pos';\n };\n \n \n auxdata = [fric_coef.mu; fric_coef.gamma];\n % create an unilateral constraint object\n fc_cstr = UnilateralConstraint(domain, friction_cone,...\n ['fc' left_foot.Name], 'fLeftFoot', ...\n 'ConstrLabel',{fc_label(:)'},...\n 'AuxData',auxdata);\n % add as a set of unilateral constraitns\n domain = addUnilateralConstraint(domain, fc_cstr);\n end\n \n %% Add event\n % height of non-stance foot (left toe)\n [right_foot_frame] = sys.frames.RightFoot(model);\n p_swingFoot = getCartesianPosition(domain, right_foot_frame);\n h_nsf = UnilateralConstraint(domain,p_swingFoot(3),'rightFootHeight','x');\n domain = addEvent(domain, h_nsf);\n \n % phase variable: time\n t = SymVariable('t');\n p = SymVariable('p',[2,1]);\n tau = (t-p(1))/(p(2)-p(1));\n \n % relative degree two outputs:\n ya_2 = [ q('qHLeft');\n (q('qALeft')+q('qBLeft'))./2;\n -q('qALeft')+q('qBLeft');\n q('qHRight');\n (q('qARight')+q('qBRight'))./2;\n -q('qARight')+q('qBRight');];\n \n y2 = VirtualConstraint(domain,ya_2,'output','DesiredType','Bezier','PolyDegree',5,...\n 'RelativeDegree',2,'PhaseType','TimeBased',...\n 'PhaseVariable',tau,'PhaseParams',p,'Holonomic',true, 'LoadPath', load_path);\n \n domain = addVirtualConstraint(domain,y2);\n \n \n \n domain.PreProcess = @sim.LeftStancePreProcess;\nend\n ", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/example/marlo/+sys/+domains/LeftStance.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.38339675635411263}} {"text": "function out = dfun(in)\n\nglobal X\n\nout = L2_distance(X,X(:,in)); \nout = out'; \n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAnatomy/mrFlatMesh/mex/CSource/dfun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7549149868676284, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3833547868535615}} {"text": "function a = dtiGetAlgoHeaderSizeWordAligned()\n% Assume a word is 4 bytes\n\na = dtiGetAlgoHeaderSize();\na = ceil(a/4)*4;", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/fileFilters/cinch/utils/dtiGetAlgoHeaderSizeWordAligned.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7549149758396752, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.383354781253436}} {"text": "function i4_abs_test ( )\n\n%*****************************************************************************80\n%\n%% I4_ABS_TEST tests I4_ABS.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 10 March 2015\n%\n% Author:\n%\n% John Burkardt\n%\n i4_lo = -100;\n i4_hi = +100;\n test_num = 10;\n seed = 123456789;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4_ABS_TEST\\n' );\n fprintf ( 1, ' I4_ABS returns the absolute value of an I4.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' A B=I4_ABS(A)\\n' );\n fprintf ( 1, '\\n' );\n\n for test = 1 : test_num\n [ a, seed ] = i4_uniform_ab ( i4_lo, i4_hi, seed );\n b = i4_abs ( a );\n fprintf ( 1, ' %10d %10d\\n', a, b );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/i4lib/i4_abs_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7490872187162396, "lm_q1q2_score": 0.38332036818876064}} {"text": "function job = calcParent2Child(job, varargin)\n% compute optimal parent to child orientation relationship\n%\n% The function |calcParent2Child| uses the parent to child orientation\n% relationship stored in |job.p2c| as a starting point for an iterative\n% process to find a parent to child orientation\n% relationship that best possible fits to the child to child\n% misorientations in the measured grain data |job.grains|.\n%\n% Syntax\n%\n% % find optimal parent to child orientation relationship\n% job.calcParent2Child\n%\n% % display distribtion of the misfit\n% histogram(job.calcGBFit ./ degree)\n%\n% Input\n% job - @parentGrainReconstructor\n%\n% Output\n% job.p2c - fitted parent to child orientation relationship\n%\n% Options\n% c2c - consider only child to child misorientations\n% p2c - consider only parent to child misorientations\n% peakFitting - use peak fitting algorithm\n% quantile - consider only misorientation within this quantile to the current p2c guess (default 0.9)\n% threshold - only consider misorientations that are within this threshold of the current parent to child OR guess\n%\n% References\n%\n% * Tuomo Nyyss\u00f6nen, \n%\n% See also\n% calcParent2Child\n%\n\nnoOpt = ~check_option(varargin,{'p2c','c2c'});\nthreshold = get_option(varargin,'threshold',5*degree);\nquant = get_option(varargin,'quantile',0.5);\n\nif ~isempty(job.p2c), p2c0 = job.p2c; end\np2c0 = getClass(varargin,'orientation',p2c0);\n\n% get p2c from parent 2 child OR\nif nnz(job.ebsdPrior.phaseId==job.parentPhaseId) > 0.01 * length(job.ebsdPrior) ...\n && (noOpt || check_option(varargin,'p2c'))\n \n p2cPairs = neighbors(job.grains(job.csParent),job.grains(job.csChild));\n \n p2c = inv(job.grains(p2cPairs(:,2)).meanOrientation) .* ...\n job.grains(p2cPairs(:,1)).meanOrientation;\n \n for k = 1:3\n omega = angle(p2c,p2c0);\n ind = omega < min(threshold, quantile(omega, quant));\n p2c0 = mean(p2c(ind));\n end\n \n if check_option(varargin,'peakFitting') \n mdf = calcDensity(p2c(ind),'halfwidth',1*degree);\n p2c0 = steepestDescent(mdf,p2c0);\n end\n \n p2cData = p2c0;\n \nelse % some default parent2child orientation relationship\n \n p2cData = [];\n \nend\n\n% consider also child to child \nif (noOpt && angle(p2c0)>5*degree) || check_option(varargin,'c2c') \n\n % get neighbouring grain pairs\n [c2cPairs, oriChild] = getC2CPairs(job, varargin{:});\n \n % compute c2c misorientation\n mori = inv(oriChild(:,1)) .* oriChild(:,2);\n\n % ignore pairs with misorientation angle smaller then 5 degree\n mori(mori.angle < 5 * degree) = [];\n \n if ~isempty(job.p2c), p2c0 = job.p2c; end\n p2c0 = getClass(varargin,'orientation',p2c0);\n \n % compute an optimal parent to child orientation relationship\n if check_option(varargin,'v3')\n \n p2c = fitP2C(mori,p2c0);\n \n elseif check_option(varargin,'v2')\n \n p2c = calcParent2Child2(mori,p2c0);\n \n else\n \n p2c = calcParent2Child(mori,p2c0,varargin{:});\n \n end\n \n % combine p2c and c2c orientation relationships\n if ~isempty(p2cData) && ~check_option(varargin,'noP2C')\n \n p2c = mean([p2c,p2cData],'weights',[length(c2cPairs),length(p2cPairs)]);\n \n end \n \nelse \n\n p2c = p2c0;\n \nend\n\n% compute new variantMap\nif ~isempty(job.p2c) && length(p2c.variants) == length(job.p2c.variants)\n [~,new2old] = min(angle_outer(p2c.variants,job.p2c.variants,'noSym1'),[],2);\n p2c.opt.variantMap = new2old;\nend\n\n% update p2c\njob.p2c = p2c;\n\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/EBSDAnalysis/@parentGrainReconstructor/calcParent2Child.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872131147276, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.38332036532237396}} {"text": "function trsoutput = trs_tCG_cached(problem, trsinput, options, storedb, key)\n% Truncated (Steihaug-Toint) Conjugate-Gradient method with caching.\n%\n% minimize + .5*\n% subject to _[inverse precon] <= Delta^2\n%\n% function trsoutput = trs_tCG_cached(problem, trsinput, options, storedb, key)\n%\n% trs_tCG_cached stores information (when options.trscache == true) \n% which can help avoid redundant computations (using tCG_rejectedstep) \n% upon step rejection by trustregions compared to trs_tCG at the cost of\n% using extra memory.\n%\n% Inputs:\n% problem: Manopt optimization problem structure\n% trsinput: structure with the following fields:\n% x: point on the manifold problem.M\n% fgradx: gradient of the cost function of the problem at x\n% Delta = trust-region radius\n% options: structure containing options for the subproblem solver\n% storedb, key: manopt's caching system for the point x\n%\n% Options specific to this subproblem solver:\n% kappa (0.1)\n% kappa convergence tolerance.\n% kappa > 0 is the linear convergence target rate: trs_tCG_cached\n% terminates early if the residual was reduced by a factor of kappa.\n% theta (1.0)\n% theta convergence tolerance.\n% 1+theta (theta between 0 and 1) is the superlinear convergence\n% target rate. trs_tCG_cached terminates early if the residual \n% was reduced by a power of 1+theta.\n% mininner (1)\n% Minimum number of inner iterations.\n% maxinner (problem.M.dim())\n% Maximum number of inner iterations.\n% trscache (true)\n% Set to false if no caching for the trs_tCG_cached is desired. It is\n% default true to improve computation time if there are many step\n% rejections in trustregions. Setting trscache to false can reduce\n% memory usage.\n% memorytCG_warningtol (1000)\n% Tolerance memory value in MB before issuing warning when \n% trscache = true.\n% The default is 1GB but this value can be increased depending on the\n% user's machine. To disable the warning completely use: \n% warning('off', 'manopt:trs_tCG_cached:memory')\n%\n% Output: the structure trsoutput contains the following fields:\n% eta: approximate solution to the trust-region subproblem at x\n% Heta: Hess f(x)[eta] -- this is necessary in the outer loop, and it\n% is often naturally available to the subproblem solver at the\n% end of execution, so that it may be cheaper to return it here.\n% limitedbyTR: true if a boundary solution is returned\n% printstr: logged information to be printed by trustregions.\n% stats: structure with the following statistics:\n% numinner: number of inner loops before returning\n% hessvecevals: number of Hessian calls issued\n% memorytCG_MB: memory of store_iters and store_last in MB\n%\n% Stored Information:\n% store_iters: a struct array with enough information to compute the next\n% step upon step rejection when the algorithm exits due to negative \n% curvature or trust-region radius violation.\n% store_last: an additional struct to store_iters to compute the next\n% step upon step rejection when the algorithm exits but not due to \n% negative curvature or trust-region radius violation\n%\n%\n% trs_tCG_cached can also be called in the following way (by trustregions) \n% to obtain part of the header to print and an initial stats structure:\n%\n% function trsoutput = trs_tCG_cached([], [], options)\n%\n% In this case trsoutput contains the following fields:\n% printheader: subproblem header to be printed before the first pass of \n% trustregions\n% initstats: struct with initial values for stored stats in subsequent\n% calls to trs_tCG_cached. Used in the first call to savestats \n% in trustregions to initialize the info struct properly.\n%\n% See also: trustregions trs_tCG tCG_rejectedstep\n\n% This file is part of Manopt: www.manopt.org.\n% This code is an adaptation to Manopt of the original GenRTR code:\n% RTR - Riemannian Trust-Region\n% (c) 2004-2007, P.-A. Absil, C. G. Baker, K. A. Gallivan\n% Florida State University\n% School of Computational Science\n% (http://www.math.fsu.edu/~cbaker/GenRTR/?page=download)\n% See accompanying license file.\n% The adaptation was executed by Nicolas Boumal.\n%\n% Change log:\n%\n% VL June 24, 2022:\n% trs_tCG_cached by default stores information at each iteration\n% compared to trs_tCG.\n% This can be useful for the next call to trs_tCG_cached and the work \n% is passed to tCG_rejectedstep rather than the normal tCG loop.\n\n\n% See trs_tCG for references to relevant equations in\n% [CGT2000] Conn, Gould and Toint: Trust-region methods, 2000.\n\n% trustregions only wants header and default values for stats.\nif nargin == 3 && isempty(problem) && isempty(trsinput)\n trsoutput.printheader = '';\n if options.verbosity == 2\n trsoutput.printheader = sprintf('%9s %9s %9s %s', ...\n 'numinner', 'hessvec', 'numstored', ...\n 'stopreason');\n elseif options.verbosity > 2\n trsoutput.printheader = sprintf('%9s %9s %9s %9s %s', ...\n 'numinner', 'hessvec', 'numstored', ...\n 'memtCG_MB', 'stopreason');\n end\n trsoutput.initstats = struct('numinner', 0, 'hessvecevals', 0, ...\n 'memorytCG_MB', 0);\n return;\nend\n\nif isfield(options, 'useRand') && options.useRand\n warning('manopt:trs_tCG_cached:rand', ...\n ['options.useRand = true but @trs_tCG_cached ignores it.\\n' ...\n 'You may set options.subproblemsolver = @trs_tCG;\\n', ...\n 'Alternatively, set options.useRand = false;']);\nend\n\nx = trsinput.x;\nDelta = trsinput.Delta;\ngrad = trsinput.fgradx;\n\ninner = @(u, v) problem.M.inner(x, u, v);\nlincomb = @(a, u, b, v) problem.M.lincomb(x, a, u, b, v);\ntangent = @(u) problem.M.tangent(x, u);\n\n% Set local defaults here\nlocaldefaults.kappa = 0.1;\nlocaldefaults.theta = 1.0;\nlocaldefaults.mininner = 1;\nlocaldefaults.maxinner = problem.M.dim();\nlocaldefaults.trscache = true;\nlocaldefaults.memorytCG_warningtol = 1000;\n\n% Merge local defaults with user options, if any\nif ~exist('options', 'var') || isempty(options)\n options = struct();\nend\noptions = mergeOptions(localdefaults, options);\n\n% If the previous step was rejected and we want to use caching,\nif ~trsinput.accept && options.trscache\n % Then check if there is cached information for the current point.\n store = storedb.get(key);\n if isfield(store, 'store_iters')\n % If so, use that cache to produce the same output as would have\n % been produced by running the code below (after the 'return'), but\n % without issuing Hessian-vector calls that were already issued.\n trsoutput = tCG_rejectedstep(problem, trsinput, options, store);\n return;\n end\nend\n\n% returned boolean to trustregions. true if we are limited by the TR\n% boundary (returns boundary solution). Otherwise false.\nlimitedbyTR = false;\n\ntheta = options.theta;\nkappa = options.kappa;\n\neta = problem.M.zerovec(x);\nHeta = problem.M.zerovec(x);\nr = grad;\ne_Pe = 0;\n\nr_r = inner(r, r);\nnorm_r = sqrt(r_r);\nnorm_r0 = norm_r;\n\n% Precondition the residual.\nz = getPrecon(problem, x, r, storedb, key);\n\n% Compute z'*r.\nz_r = inner(z, r);\nd_Pd = z_r;\n\n% Initial search direction (we maintain -delta in memory, called mdelta, to\n% avoid a change of sign of the tangent vector.)\nmdelta = z;\ne_Pd = 0;\n\n% If the Hessian or a linear Hessian approximation is in use, it is\n% theoretically guaranteed that the model value decreases strictly\n% with each iteration of trs_tCG. Hence, there is no need to monitor the model\n% value. But, when a nonlinear Hessian approximation is used (such as the\n% built-in finite-difference approximation for example), the model may\n% increase. It is then important to terminate the trs_tCG iterations and return\n% the previous (the best-so-far) iterate. The variable below will hold the\n% model value.\n%\n% This computation could be further improved based on Section 17.4.1 in\n% Conn, Gould, Toint, Trust Region Methods, 2000.\n% If we make this change, then also modify trustregions to gather this\n% value from trs_tCG rather than recomputing it itself.\nmodel_fun = @(eta, Heta) inner(eta, grad) + .5*inner(eta, Heta);\nmodel_value = 0;\n\n% Pre-assume termination because j == end.\nstopreason_str = 'maximum inner iterations';\n\n% Track certain iterations in case step is rejected.\n% store_iters tracks candidate etas with increasing squared\n% norm relevant when limitedbyTR = true, or when <= 0\nstore_iters = struct('normsq', [], 'numinner', [], 'e_Pe', [], ...\n 'd_Pd', [], 'e_Pd', [], 'd_Hd', [], 'eta', [], 'Heta', [], ...\n 'mdelta', [], 'Hmdelta', []);\n\nmax_normsq = 0;\n\n% only need to compute memory for one item in store_iters in Megabytes(MB)\nperitermemory_MB = 0;\n\n% total cached memory stored in MB\nmemorytCG_MB = 0;\n\n% number of iterations where trs_tCG_cached stores information. This value\n% will be length(store_iters) plus 1 if store_last is used.\nnumstored = 0;\n\n% string that is printed by trustregions. For printing\n% per-iteration information\nprintstr = '';\n\n% Begin inner/trs_tCG loop.\nfor j = 1 : options.maxinner\n \n % This call is the computationally expensive step.\n Hmdelta = getHessian(problem, x, mdelta, storedb, key);\n \n % Compute curvature (often called kappa).\n d_Hd = inner(mdelta, Hmdelta);\n \n \n % Note that if d_Hd == 0, we will exit at the next \"if\" anyway.\n alpha = z_r/d_Hd;\n % _P =\n % _P + 2*alpha*_P + alpha*alpha*_P\n e_Pe_new = e_Pe + 2.0*alpha*e_Pd + alpha*alpha*d_Pd;\n \n if options.debug > 2\n fprintf('DBG: (r,r) : %e\\n', r_r);\n fprintf('DBG: (d,Hd) : %e\\n', d_Hd);\n fprintf('DBG: alpha : %e\\n', alpha);\n end\n\n if options.trscache\n % Selectively store info in store_iter.\n % next_smallest = (1/4^n Delta)^2 with n the smallest integer such\n % that max_normsq <= next_smallest. \n % We use this condition to only store relevant iterations in case\n % of rejection in trustregions.\n if max_normsq > 0\n next_smallest = (1/16)^floor(-(1/4)*(log2(max_normsq) - ...\n log2(Delta^2))) * Delta^2;\n else\n next_smallest = 0;\n end\n \n if d_Hd <= 0 || e_Pe_new >= next_smallest\n numstored = numstored + 1;\n\n store_iters(numstored) = struct('normsq', e_Pe_new, 'numinner', ...\n j, 'e_Pe', e_Pe, 'd_Pd', d_Pd, 'e_Pd', e_Pd,...\n 'd_Hd', d_Hd, 'eta', eta, 'Heta', Heta, ...\n 'mdelta', mdelta, 'Hmdelta', Hmdelta);\n max_normsq = e_Pe_new;\n \n % getSize for one entry in store_iters which will be the same\n % for all others.\n if peritermemory_MB == 0\n peritermemory_MB = getsize(store_iters(numstored))/1024^2;\n end\n \n memorytCG_MB = memorytCG_MB + peritermemory_MB;\n \n if memorytCG_MB > options.memorytCG_warningtol\n warning('manopt:trs_tCG_cached:memory', ...\n [sprintf('trs_tCG_cached will cache %.2f [MB] for at least one iteration of trustregions until a step is accepted.', memorytCG_MB) ...\n 'If memory is limited turn off caching by options.trscache = false.\\n' ...\n 'To disable this warning: warning(''off'', ''manopt:trs_tCG_cached:memory'')']);\n end\n \n end\n end\n\n % Check against negative curvature and trust-region radius violation.\n % If either condition triggers, we bail out.\n if d_Hd <= 0 || e_Pe_new >= Delta^2\n % want\n % ee = _prec,x\n % ed = _prec,x\n % dd = _prec,x\n % Note (Nov. 26, 2021, NB): numerically, it might be better to call\n % tau = max(real(roots([d_Pd, 2*e_Pd, e_Pe-Delta^2])));\n % This should be checked.\n % Also, we should safe-guard against 0/0: could happen if grad = 0.\n\n % store new struct containing all the required info in store_iter\n tau = (-e_Pd + sqrt(e_Pd*e_Pd + d_Pd*(Delta^2-e_Pe))) / d_Pd;\n if options.debug > 2\n fprintf('DBG: tau : %e\\n', tau);\n end\n eta = lincomb(1, eta, -tau, mdelta);\n \n % If only a nonlinear Hessian approximation is available, this is\n % only approximately correct, but saves an additional Hessian call.\n Heta = lincomb(1, Heta, -tau, Hmdelta);\n\n % Technically, we may want to verify that this new eta is indeed\n % better than the previous eta before returning it (this is always\n % the case if the Hessian approximation is linear, but I am unsure\n % whether it is the case or not for nonlinear approximations.)\n % At any rate, the impact should be limited, so in the interest of\n % code conciseness (if we can still hope for that), we omit this.\n \n limitedbyTR = true;\n \n if d_Hd <= 0\n stopreason_str = 'negative curvature';\n else\n stopreason_str = 'exceeded trust region';\n end\n break;\n end\n \n % No negative curvature and eta_prop inside TR: accept it.\n e_Pe = e_Pe_new;\n new_eta = lincomb(1, eta, -alpha, mdelta);\n \n % If only a nonlinear Hessian approximation is available, this is\n % only approximately correct, but saves an additional Hessian call.\n % TODO: this computation is redundant with that of r, L241. Clean up.\n new_Heta = lincomb(1, Heta, -alpha, Hmdelta);\n \n % Verify that the model cost decreased in going from eta to new_eta. If\n % it did not (which can only occur if the Hessian approximation is\n % nonlinear or because of numerical errors), then we return the\n % previous eta (which necessarily is the best reached so far, according\n % to the model cost). Otherwise, we accept the new eta and go on.\n new_model_value = model_fun(new_eta, new_Heta);\n if new_model_value >= model_value\n stopreason_str = 'model increased';\n break;\n end\n \n eta = new_eta;\n Heta = new_Heta;\n model_value = new_model_value; %% added Feb. 17, 2015\n \n % Update the residual.\n r = lincomb(1, r, -alpha, Hmdelta);\n \n % Compute new norm of r.\n r_r = inner(r, r);\n norm_r = sqrt(r_r);\n\n % Check kappa/theta stopping criterion.\n % Note that it is somewhat arbitrary whether to check this stopping\n % criterion on the r's (the gradients) or on the z's (the\n % preconditioned gradients). [CGT2000], page 206, mentions both as\n % acceptable criteria.\n if j >= options.mininner && norm_r <= norm_r0*min(norm_r0^theta, kappa)\n % Residual is small enough to quit\n if kappa < norm_r0^theta\n stopreason_str = 'reached target residual-kappa (linear)';\n else\n stopreason_str = 'reached target residual-theta (superlinear)';\n end\n break;\n end\n \n % Precondition the residual.\n z = getPrecon(problem, x, r, storedb, key);\n \n % Save the old z'*r.\n zold_rold = z_r;\n % Compute new z'*r.\n z_r = inner(z, r);\n \n % Compute new search direction.\n beta = z_r/zold_rold;\n mdelta = lincomb(1, z, beta, mdelta);\n \n % Since mdelta is passed to getHessian, which is the part of the code\n % we have least control over from here, we want to make sure mdelta is\n % a tangent vector up to numerical errors that should remain small.\n % For this reason, we re-project mdelta to the tangent space.\n % In limited tests, it was observed that it is a good idea to project\n % at every iteration rather than only every k iterations, the reason\n % being that loss of tangency can lead to more inner iterations being\n % run, which leads to an overall higher computational cost.\n mdelta = tangent(mdelta);\n \n % Update new P-norms and P-dots [CGT2000, eq. 7.5.6 & 7.5.7].\n e_Pd = beta*(e_Pd + alpha*d_Pd);\n d_Pd = z_r + beta*beta*d_Pd;\n \nend % of trs_tCG loop\n\nif options.trscache\n store = storedb.get(key);\n store.store_iters = store_iters;\n if ~limitedbyTR\n % Store extra information since we did not exit because we were \n % limited by TR (model value increased or kappa/theta stopping \n % criterion satisfied)\n store_last = struct('numinner', j, 'stopreason_str', ...\n stopreason_str, 'eta', eta, 'Heta', Heta);\n memorytCG_MB = memorytCG_MB + getsize(store_last)/1024^2;\n \n if memorytCG_MB > options.memorytCG_warningtol\n warning('manopt:trs_tCG_cached:memory', ...\n [sprintf('trs_tCG_cached will cache %.2f [MB] for at least one iteration of trustregions until a step is accepted.', memorytCG_MB) ...\n 'If memory is limited turn off caching by options.trscache = false.\\n' ...\n 'If more memory can be used without problem increase options.memorytCG_warningtol accordingly.\\n' ...\n 'To disable this warning: warning(''off'', ''manopt:trs_tCG_cached:memory'')']);\n end\n store.store_last = store_last;\n \n numstored = numstored + 1;\n end\n\n storedb.set(store, key);\nend\nstats = struct('numinner', j, 'hessvecevals', j, ...\n 'memorytCG_MB', memorytCG_MB);\n\nif options.verbosity == 2\n printstr = sprintf('%9d %9d %9d %s', j, j, numstored, ...\n stopreason_str);\nelseif options.verbosity > 2\n printstr = sprintf('%9d %9d %9d %9.2f %s', j, j, numstored, ...\n memorytCG_MB, stopreason_str);\nend\n\ntrsoutput.eta = eta;\ntrsoutput.Heta = Heta;\ntrsoutput.limitedbyTR = limitedbyTR;\ntrsoutput.printstr = printstr;\ntrsoutput.stats = stats;\nend\n", "meta": {"author": "NicolasBoumal", "repo": "manopt", "sha": "b8b54a6af8b965f7ae572972ba0d15787427744b", "save_path": "github-repos/MATLAB/NicolasBoumal-manopt", "path": "github-repos/MATLAB/NicolasBoumal-manopt/manopt-b8b54a6af8b965f7ae572972ba0d15787427744b/manopt/solvers/trustregions/trs_tCG_cached.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7606506526772884, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.38329655750105807}} {"text": "function gaps = findRootNPmets(model, findNCmets)\n% Finds the root no production (and no consumption)\n% metabolites in a model, used by `gapFind`\n%\n% USAGE:\n%\n% gaps = findRootNPmets(model, findNCmets)\n%\n% INPUT:\n% model a COBRA model\n%\n% OPTIONAL INPUT:\n% findNCmets: find no consumption mets as well as no production (default = false)\n%\n% OUTPUT:\n% gaps: all root no production metabolites\n%\n% .. Author: - Jeff Orth 7/15/09\n\nif nargin < 2\n findNCmets = false;\nend\n\nisRootNPmet = zeros(length(model.mets),1);\n\nfor i = 1:length(model.mets)\n row = find(model.S(i,:)); %which rxns this met participates in\n rowR = ismember(row,find(model.lb < 0)); %reversible rxns\n if any(model.S(i,row) > 0) %if met is produced by any reaction\n %don't do anything\n elseif any(rowR) %if met is in any reverible rxns\n %don't do anything\n else\n isRootNPmet(i) = 1;\n end\nend\n\nif findNCmets\n\n isRootNCmet = zeros(length(model.mets),1);\n\n for i = 1:length(model.mets)\n row = find(model.S(i,:)); %which rxns this met participates in\n rowR = ismember(row,find(model.lb < 0)); %reversible rxns\n if any(model.S(i,row) < 0) %if met is consumed by any reaction\n %don't do anything\n elseif any(rowR) %if met is in any reverible rxns\n %don't do anything\n else\n isRootNCmet(i) = 1;\n end\n end\nend\n\nif findNCmets\n gaps = model.mets((isRootNPmet+isRootNCmet)>=1);\nelse\n gaps = model.mets(isRootNPmet==1);\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/exploration/findRootNPmets.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.38319977986898784}} {"text": "function a = lt( x, y )\n\n% Disciplined convex programming information for LT (<):\n% The left-hand side of a less-than constraint must be convex. The\n% right-hand side must be concave. Of course, real constant and \n% affine expressions are both convex and concave and can be used on\n% either side as well.\n% \n% Disciplined geometric programming information for LT (<):\n% The left-hand side of a less-than constraint must be log-convex,\n% including positive constants, monomials, posynomials, generalized\n% posynomials, and products thereof. The right-hand side must be \n% log-concave---including positive constants, monomials, \n% reciprocals of log-convex expressions, and products thereof.\n% \n% Note that CVX does not distinguish between strict less-than (<) and\n% less-than-or-equal (<=) constraints; they are treated identically. \n% Feasible interior-point solvers tend to return points which satisfy\n% strict inequality, but not all solvers do.\n\nevalin( 'caller', 'cvx_verify' );\nb = cvx_pushcnstr( x, y, '<' );\nif nargout, a = b; end\n\n% Copyright 2005-2014 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/cvx-w64/cvx/builtins/@cvxcnst/lt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680086124812, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.383192225968809}} {"text": "% NIFTI Object\n%\n% create - Create a NIFTI-1 file\n% disp - Disp a NIFTI-1 object\n% display - Display a NIFTI-1 object\n% fieldnames - Fieldnames of a NIFTI-1 object\n% nifti - Create a NIFTI-1 object\n% subsasgn - Subscript assignment\n% subsref - Subscript referencing\n%\n% other operations are unlikely to work.\n%\n% Example usage.\n%\n% % Example of creating a simulated .nii file.\n% dat = file_array;\n% dat.fname = 'junk.nii';\n% dat.dim = [64 64 32];\n% dat.dtype = 'FLOAT64-BE';\n% dat.offset = ceil(348/8)*8;\n% \n% % alternatively:\n% % dat = file_array( 'junk.nii',dim,dtype,off,scale,inter)\n% \n% disp(dat)\n% \n% % Create an empty NIFTI structure\n% N = nifti;\n% \n% fieldnames(N) % Dump fieldnames\n% \n% % Creating all the NIFTI header stuff\n% N.dat = dat;\n% N.mat = [2 0 0 -110 ; 0 2 0 -110; 0 0 -2 92; 0 0 0 1];\n% N.mat_intent = 'xxx'; % dump possibilities\n% N.mat_intent = 'Scanner';\n% N.mat0 = N.mat;\n% N.mat0_intent = 'Aligned';\n% \n% N.diminfo.slice = 3;\n% N.diminfo.phase = 2;\n% N.diminfo.frequency = 2;\n% N.diminfo.slice_time.code='xxx'; % dump possibilities \n% N.diminfo.slice_time.code = 'sequential_increasing';\n% N.diminfo.slice_time.start = 1;\n% N.diminfo.slice_time.end = 32;\n% N.diminfo.slice_time.duration = 3/32;\n% \n% N.intent.code='xxx' ; % dump possibilities\n% N.intent.code='FTEST'; % or N.intent.code=4;\n% N.intent.param = [4 8];\n% \n% N.timing.toffset = 28800;\n% N.timing.tspace=3;\n% N.descrip = 'This is a NIFTI-1 file';\n% N.aux_file='aux-file-name.txt';\n% N.cal = [0 1];\n% \n% create(N); % Writes hdr info\n% \n% dat(:,:,:)=0; % Write out the data as all zeros\n% \n% [i,j,k] = ndgrid(1:64,1:64,1:32);\n% dat(find((i-32).^2+(j-32).^2+(k*2-32).^2 < 30^2))=1; % Write some ones in the file\n% dat(find((i-32).^2+(j-32).^2+(k*2-32).^2 < 15^2))=2;\n% \n% \n% % displaying a slice\n% imagesc(dat(:,:,12));colorbar\n% \n% % get a handle to 'junk.nii';\n% M=nifti('junk.nii');\n% \n% imagesc(M.dat(:,:,12));\n%\n% _______________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n%\n% $Id: Contents.m 2696 2009-02-05 20:29:48Z guillaume $\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/spm12/@nifti/Contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.38317966184416113}} {"text": "%MDL_IRB140 Create model of ABB IRB 140 manipulator\n%\n% MDL_IRB140 is a script that creates the workspace variable robot which\n% describes the kinematic characteristics of an ABB IRB 140 manipulator\n% using standard DH conventions.\n%\n% Also define the workspace vectors:\n% qz zero joint angle configuration\n% qr vertical 'READY' configuration\n% qd lower arm horizontal as per data sheet\n%\n% Reference::\n% - \"IRB 140 data sheet\", ABB Robotics.\n% - \"Utilizing the Functional Work Space Evaluation Tool for Assessing a \n% System Design and Reconfiguration Alternatives\"\n% A. Djuric and R. J. Urbanic\n%\n% Notes::\n% - SI units of metres are used.\n% - Unlike most other mdl_xxx scripts this one is actually a function that\n% behaves like a script and writes to the global workspace.\n%\n% See also SerialLink, mdl_fanuc10l, mdl_m16, mdl_motormanHP6, mdl_S4ABB2p8, mdl_puma560.\n\n% MODEL: ABB, IRB140, 6DOF, standard_DH\n\n\n% Copyright (C) 1993-2015, by Peter I. Corke\n%\n% This file is part of The Robotics Toolbox for MATLAB (RTB).\n% \n% RTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% RTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with RTB. If not, see .\n%\n% http://www.petercorke.com\n\nfunction r = mdl_irb140()\n \n deg = pi/180;\n \n % robot length values (metres)\n d1 = 0.352;\n a1 = 0.070;\n a2 = 0.360;\n d4 = 0.380;\n d6 = 0.065;\n \n % DH parameter table\n % theta d a alpha\n dh = [0 d1 a1 -pi/2\n 0 0 a2 0\n 0 0 0 pi/2\n 0 d4 0 -pi/2\n 0 0 0 pi/2\n 0 d6 0 pi/2];\n \n \n % and build a serial link manipulator\n \n robot = SerialLink(dh, 'name', 'IRB 140', ...\n 'manufacturer', 'ABB', 'ikine', 'nooffset'); \n \n % place the variables into the global workspace\n if nargin == 1\n r = robot;\n elseif nargin == 0\n assignin('base', 'irb140', robot);\n assignin('base', 'qz', [0 0 0 0 0 0]); % zero angles\n assignin('base', 'qd', [0 -90 180 0 0 -90]*deg); % data sheet pose, horizontal\n assignin('base', 'qr', [0 -90 90 0 90 -90]*deg); % ready pose, arm up\n end\nend\n\n", "meta": {"author": "Allopart", "repo": "rbpf-gmapping", "sha": "affe0adc25fa446fc7af4902d699d92864bdba1b", "save_path": "github-repos/MATLAB/Allopart-rbpf-gmapping", "path": "github-repos/MATLAB/Allopart-rbpf-gmapping/rbpf-gmapping-affe0adc25fa446fc7af4902d699d92864bdba1b/rvctools/robot/mdl_irb140.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850402140659, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3831447841446464}} {"text": "function origin = get_origin(this)\n% Computes the origin of this image geometry.\n%\n% Y = MrImageGeometry()\n% Y.get_origin()\n%\n% This is a method of class MrImageGeometry.\n%\n% OUT Voxel indices x, y, z of the origin, i.e. those voxel who are\n% at location [0 0 0].\n%\n% EXAMPLE\n% origin = Y.get_origin()\n%\n% See also MrImageGeometry demo/MrImageGeometry/definition_of_geometry\n\n% Author: Saskia Bollmann & Lars Kasper\n% Created: 2018-11-06\n% Copyright (C) 2018 Institute for Biomedical Engineering\n% University of Zurich and ETH Zurich\n%\n% This file is part of the TAPAS UniQC Toolbox, which is released\n% under the terms of the GNU General Public License (GPL), version 3.\n% You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version).\n% For further details, see the file COPYING or\n% .\n\ninvA = inv(this.get_affine_matrix());\norigin = invA(1:3,4);\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrImageGeometry/get_origin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3831447774255979}} {"text": "function [W,BC,DV,Q,r,B] = voxelize(V,F,side,varargin)\n % VOXELIZE Given a mesh compute a voxelization of that mesh on a regular grid\n % fit to the bounding box.\n %\n % W = voxelize(V,F,side)\n % [W,BC,DV,Q] = voxelize(V,F,side,'ParameterName',ParameterValue, ...)\n %\n % Inputs:\n % V #V by 3 list of vertex positions\n % F #F by 3 list of triangle indices into V, expects counterclockwise\n % orientation to produce outward pointing normal\n % side either the number of cells in the x direction or a triple\n % containing the number of cells in each dimension\n % Optional:\n % 'Pad' followed by number of padding to add to each side. 1 would mean\n % add one extra cell on the top, bottom, left, right, front, and back\n % of bounding box lattice {0}.\n % 'Boundary' followed by wether to consider any cell intersecting the\n % mesh as inside {true}.\n % 'Interior' followed by whether to consider any cell full inside the\n % mesh as inside {true}\n % 'Closed' followed by whether to assume mesh is closed when determining\n % interior (avoid winding number computation, use flood filling)\n % 'Centers' followed by prod(side) centers (e.g., already produced by\n % call to previous call to voxel_grid.m)\n % Outputs:\n % W side(1) by side(2) by side(3) matrix with W(i,j,k) ~= if location\n % cell centered at BC(i,j,k) overlaps with the volume of (V,F)\n % BC prod(side) by dim matrix of cell barycenters\n % DV side(1)+1 by side(2)+1 by side(3)+1 matrix of cell corner locations\n % Q #Q by 4 list of quads indexing DV\n % r dim-long list of voxel widths in each direction\n %\n % Known issues: the ouput surface mesh will contain non-manifold edges and\n % vertices at voxels that meet at such edges or vertices. \n %\n % Example:\n % [W,BC,DV,Q] = voxelize(V,F,50);\n % % Get triangles from quads\n % DF = [Q(:,[1 2 3]);Q(:,[1 3 4])];\n % % Remove unreferenced corners\n % [SV,IM] = remove_unreferenced(DV,DF);\n % % re-index\n % SF = IM(DF);\n % SQ = IM(Q);\n %\n % [W,BC] = voxelize(V,F,50,'Pad',1);\n % % Use matlab's isosurface to extract surface as triangle mesh\n % BC = reshape(BC,[size(W) 3]);\n % surf = isosurface(BC(:,:,:,1),BC(:,:,:,2),BC(:,:,:,3),W,0.5);\n % DV = bsxfun(@plus,bsxfun(@times,bsxfun(@rdivide,surf.vertices-1, ...\n % [size(W,2) size(W,1) size(W,3)]-1),max(BC)-min(BC)),min(BC));\n % DF = surf.faces;\n % \n %\n % See also: bwboundaries, isosurface\n\n with_boundary = true;\n with_interior = true;\n pad_count = 0;\n closed = [];\n BC = [];\n % default values\n % Map of parameter names to variable names\n params_to_variables = containers.Map( ...\n {'Boundary','Interior','Pad','Centers','Closed'}, ...\n {'with_boundary','with_interior','pad_count','BC','closed'});\n v = 1;\n while v <= numel(varargin)\n param_name = varargin{v};\n if isKey(params_to_variables,param_name)\n assert(v+1<=numel(varargin));\n v = v+1;\n % Trick: use feval on anonymous function to use assignin to this workspace\n feval(@()assignin('caller',params_to_variables(param_name),varargin{v}));\n else\n error('Unsupported parameter: %s',varargin{v});\n end\n v=v+1;\n end\n if isempty(closed)\n closed = isempty(boundary_faces(F));\n end\n\n\n assert(any(size(side) == 1),'side should be a vector');\n % Make sure we have a row vector\n side = side(:)';\n\n dim = size(V,2);\n\n if isempty(BC)\n [BC,side,r] = voxel_grid(V,side,'Pad',pad_count);\n else\n assert(prod(side) == size(BC,1),'side dims must match BC');\n r = (max(BC)-min(BC))./(side-1);\n end\n NV = min(BC);\n XV = max(BC);\n\n switch dim\n case 2\n W = zeros([side(2) side(1)]);\n [DV,~,QT,QL] = voxel_surface(W,'Centers',BC);\n\n if with_interior && ~closed\n WDV = reshape(winding_number(V,F,DV),[side(2) side(1)]+1);\n WDV = abs(WDV) >= 0.5;\n W = ( ...\n WDV(1:end-1,1:end-1) | ...\n WDV(1:end-1, 2:end) | ...\n WDV( 2:end,1:end-1) | ...\n WDV( 2:end, 2:end));\n end\n Q = [QT;QL];\n if with_boundary\n for ei = 1:size(F,1)\n\n sqrD = segment_segment_squared_distance( ...\n V(F(ei,1),:), V(F(ei,2),:), ...\n DV(Q(:,1),:), DV(Q(:,2),:));\n IF = mod(find(sqrDsize(QT,1))-size(QT,1);\n\n [II,JJ] = ind2sub([side(2) side(1)]+1,max(QT(iQT,:),[],2));\n W(sub2ind(side([2 1]),II-1,JJ-1)) = 1;\n W(sub2ind(side([2 1]),II ,JJ-1)) = 1;\n\n [II,JJ] = ind2sub([side(2) side(1)]+1,max(QL(iQL,:),[],2));\n W(sub2ind(side([2 1]),II-1,JJ-1)) = 1;\n W(sub2ind(side([2 1]),II-1,JJ )) = 1;\n\n %clf;\n %hold on;\n %surf(reshape(BC(:,1),size(W)),reshape(BC(:,2),size(W)),reshape(BC(:,1)*0,size(W)),'CData',W*1,fphong,'EdgeColor','none');\n %plot_edges(V,F(ei,:),'y','LineWidth',8);\n %plot_edges(V,F,'g','LineWidth',4);\n %text(BC(:,1),BC(:,2),num2str((1:size(BC,1))'),'BackgroundCOlor',[0.8 0.8 0.8]);\n %text(DV(:,1),DV(:,2),num2str((1:size(DV,1))'),'BackgroundCOlor',[0.8 0.1 0.1]);\n %plot_edges(DV,QT,'--r','LineWidth',1);\n %plot_edges(DV,QL,'--b','LineWidth',1);\n %plot_edges(DV,QT(iQT,:),'r','LineWidth',3);\n %plot_edges(DV,QL(iQL,:),'b','LineWidth',3);\n %hold off;\n %axis equal;\n %colormap([zeros(20,3);1 1 1]);\n %drawnow;\n\n end\n end\n if with_interior && closed\n W = imfill(W,'holes');\n end\n % Pad winding number with 0s and take differences in all 6 directions\n Wp = padarray(W,[1 1],0);\n Dy = diff(Wp,1,1);\n Dx = diff(Wp,1,2);\n Q = [ ...\n QL(Dx(2:end-1,1:end,2:end-1)>0.5,:); ...\n QT(Dy(1:end,2:end-1,2:end-1)>0.5,:); ...\n fliplr(QL(Dx(2:end-1,1:end,2:end-1)<-0.5,:)); ...\n fliplr(QT(Dy(1:end,2:end-1,2:end-1)<-0.5,:)); ...\n ];\n case 3\n W = zeros([side(2) side(1) side(3)]);\n [DV,~,QT,QF,QL] = voxel_surface(W,'Centers',BC);\n \n if with_interior && ~closed\n % Winding number is a heavy handed way of determining inside/outside for a\n % simple closed polyhedron. If the boundary has already been detected then\n % this should be floodfilling instead.\n \n %W = winding_number(V,F,BC);\n WDV = reshape(winding_number(V,F,DV,'Fast',true),[side(2) side(1) side(3)]+1);\n WDV = abs(WDV) >= 0.5;\n W = ( ...\n WDV(1:end-1,1:end-1,1:end-1) | ...\n WDV(1:end-1,1:end-1,2:end) | ...\n WDV(1:end-1, 2:end,1:end-1) | ...\n WDV(1:end-1, 2:end,2:end) | ...\n WDV( 2:end,1:end-1,1:end-1) | ...\n WDV( 2:end,1:end-1,2:end) | ...\n WDV( 2:end, 2:end,1:end-1) | ...\n WDV( 2:end, 2:end,2:end));\n end\n \n Q = [QT;QF;QL];\n \n if with_boundary\n % TODO: Could at least ignore already-inside cells.\n DF = [Q(:,[3 2 1]);Q(:,[4 3 1])];\n IF = intersect_other(V,F,DV,DF);\n JF = IF(:,1);\n IF = mod(IF(:,2)-1,size(Q,1))+1;\n B = zeros(side(2),side(1),side(3));\n % Force winding number to mark voxels intersecting boundary as inside\n % (This should just be replaced with rasterizing the surface)\n iQ = cell(3,1);\n iQ{1} = IF(IF<=size(QT,1));\n iQ{3} = IF(IF>size(QT,1) & IF<=size(QT,1)+size(QF,1))-size(QT,1);\n iQ{2} = IF(IF>size(QT,1)+size(QF,1))-size(QT,1)-size(QF,1);\n jQ{1} = JF(IF<=size(QT,1));\n jQ{3} = JF(IF>size(QT,1) & IF<=size(QT,1)+size(QF,1));\n jQ{2} = JF(IF>size(QT,1)+size(QF,1));\n\n side123 = side([2 1 3]);\n for d = 1:3\n sz = side123;\n sz(d) = sz(d)+1;\n II = cell(3,1);\n [II{1},II{2},II{3}] = ind2sub(sz,iQ{d});\n for pass = 0:1\n II{d} = II{d}-pass;\n keep = II{d}<=side123(d);\n B(sub2ind(side123,II{1}(keep),II{2}(keep),II{3}(keep))) = jQ{d}(keep);\n end\n end\n\n W = W | B;\n end\n \n if with_interior && closed\n W = imfill(W,'holes');\n end\n \n %trisurf(Q(IF,:),DV(:,1),DV(:,2),DV(:,3),'FaceColor','r');\n %hold on;\n %tsurf(F,V,'FaceColor','g','FaceAlpha',0.2,'EdgeAlpha',0.2);\n %hold off;\n \n %% From cells to faces:\n %[II,JJ,KK] = ind2sub([side(2) side(1) side(3)],find(abs(W)>0.5));\n %Q = [ ...\n % QT(sub2ind([side(2)+1 side(1) side(3) ],II+1,JJ,KK),:); ...\n % QT(sub2ind([side(2)+1 side(1) side(3) ],II+0,JJ,KK),:); ...\n % QF(sub2ind([side(2) side(1) side(3)+1],II,JJ,KK+1),:); ...\n % QF(sub2ind([side(2) side(1) side(3)+1],II,JJ,KK+0),:); ...\n % QL(sub2ind([side(2) side(1)+1 side(3) ],II,JJ+1,KK),:); ...\n % QL(sub2ind([side(2) side(1)+1 side(3) ],II,JJ+0,KK),:); ...\n % ];\n %trisurf(Q,DV(:,1),DV(:,2),DV(:,3),'FaceAlpha',0.5,'EdgeAlpha',0.5);\n %hold on;\n %tsurf(F,V,'FaceColor','g','FaceAlpha',0.2,'EdgeAlpha',0.2);\n %hold off;\n %axis equal\n %\n %error\n \n % Pad winding number with 0s and take differences in all 6 directions\n Wp = padarray(W,[1 1 1],0);\n Dy = diff(Wp,1,1);\n Dx = diff(Wp,1,2);\n Dz = diff(Wp,1,3);\n Q = [ ...\n QF(Dz(2:end-1,2:end-1,1:end)>0.5,:); ...\n QL(Dx(2:end-1,1:end,2:end-1)>0.5,:); ...\n QT(Dy(1:end,2:end-1,2:end-1)>0.5,:); ...\n fliplr(QF(Dz(2:end-1,2:end-1,1:end)<-0.5,:)); ...\n fliplr(QL(Dx(2:end-1,1:end,2:end-1)<-0.5,:)); ...\n fliplr(QT(Dy(1:end,2:end-1,2:end-1)<-0.5,:)); ...\n ];\n end\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/voxelize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3831447774255979}} {"text": "filename = 'SquareCantilever6400';%'CantileverSquareNew';%'CantileverSquareSym';%'CantileverSquareNewFine';%'LshapeTriFine';%'CantileverSquareNew';'ArchTriFine';%'CantileverSquare';%'ArchTriFine';%'CantileverSquare';%'Lshape';%'LshapeTriFine';%'CantileverSquareSmall';%'';%'Lshape';'CantileverSquare';'Lshape';%'CantileverSquare';%'LshapeFine';%'Bridge_quad_coarse';%'Arch_quad_coarse';%'BridgeCool_Quadrilateral_Bilinear_Structured_Coarse';%'Bridge';%'CantileverSquareSmall';\nptype = 'MACRO';\ninitial_case = 'given';\nm1 = 0.0101;\nm2 = 0.0101;\ncost = {'compliance'};\n%cost = {'stressNorm'};\n%cost = {'stressNorm','compliance'};\n%weights = [0.55,0.45];\nweights = 1;\nconstraint = {'volumeConstraint'};\nfilterType = 'PDE';\nconstraint_case = 'EQUALITY';\n\nVfrac_initial = 0.3;\noptimality_initial = 1e-5;\nconstr_initial = 1e-5;\n\nVfrac_final = 0.3;\noptimality_final = 1e-5;\nconstr_final = 1e-5;\n\nstressNormExponent_initial = 2;\nstressNormExponent_final = 16;\n\noptimizer = 'DualNestedInPrimal';\noptimizerUnconstrained = 'PROJECTED GRADIENT';\n\ndesignVariable = 'MicroParams';\nub = 0.989;\nlb = 0.011;\nhomegenizedVariablesComputer = 'ByVademecum';\n% \n%vademecumFileName = 'SuperEllipseQMax';\n%vademecumFileName = 'SuperEllipseQ2';\nvademecumFileName = 'SuperEllipseQOptAnalytic';\n% \n% designVariable = 'Density';\n% homegenizedVariablesComputer = 'ByInterpolation';\n% method = 'SIMPALL';\n% materialType = 'ISOTROPIC';\n\nline_search_initiator = 'INCREASING LAST STEP';\nincrementFactor = 1.95;\n%\n\n%kfrac = 2;\nnsteps = 8;%17;\n\nplotting = true;\nprinting = true;\nmonitoring = true;\nmonitoring_interval = 3;\nmaxiter = 800;\n\n% \n% \n% % % % \n% isDirichletPartX = @(x) x > -1e-12 & x < 0.1;\n% %isDirichletPart1 = @(y) y > 0.20 & y < 0.30;\n% isDirichletPart1 = @(y) y > 0.30 & y < 0.50;\n% isDirichletPartY = @(y) isDirichletPart1(y) ;%| isDirichletPart2(y);\n% isDirichletPart = @(x,y) isDirichletPartX(x) & isDirichletPartY(y);\n% isNeumannPartX = @(x) x > (2-0.1) & x < (2+1e-12);\n% isNeumannPartY = @(y) y > 0.00 & y < 0.1;\n% isNeumannPart = @(x,y) isNeumannPartX(x) & isNeumannPartY(y);\n% \n% iNotOptimizable = @(coord) isDirichletPart(coord(:,1),coord(:,2)) | isNeumannPart(coord(:,1),coord(:,2));\n% \n% costDomainNotOptimizable = {iNotOptimizable};\n% constraintDomainNotOptimizable = {[]};\n% \n% isDesignVariableFixed.nodes = iNotOptimizable;\n% isDesignVariableFixed.values = @(x) [m1*ones(size(x,1),1);m2*ones(size(x,1),1)];\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/LatticeExperiments/CantileverSymmetricFixingDirichletZone.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3831447774255979}} {"text": "%\n\ndbName = '/home/admin/databases/PLUTONS/wf/plutons';\nds = datasource('antelope',dbName);\n\n\n%t1 = datenum('2010/2/27 6:35');\n%t2 = datenum('2010/2/27 6:55');\n%filterObj = filterobject('b',[0.033 0.2],3);\n%stachan = {\n% 'UTLO' 'BHZ' \n% 'UTKH' 'BHZ' \n% 'UTSA' 'BHZ' \n% 'UTQU' 'BHZ' \n% 'UTLV' 'BHZ' \n% 'UTSM' 'BHZ' \n% 'UTLL' 'SHZ' \n% 'UTSS' 'SHZ' \n% 'UTLA2' 'SHZ' \n% 'UTSW' 'SHZ' \n% 'UTMK' 'SHZ' \n% 'UTCM' 'SHZ' \n% 'UTCA' 'SHZ' \n% 'UTZN' 'SHZ' \n% 'UTTM' 'SHZ'} \n\n%t1 = datenum('2009/9/22 22:47:10');\n%t2 = datenum('2009/9/22 22:47:30');\nt1 = datenum('2010/02/27 22:47:10');\nt2 = datenum('2010/02/27 22:47:30');\n\nfilterObj = filterobject('b',[0.5 10],2);\nstachan = {\n'UTSM' 'BHZ' \n'UTQU' 'BHZ' \n'UTTM' 'SHZ' \n'UTLA2' 'SHZ' \n'UTCA' 'SHZ' \n'UTLV' 'BHZ' \n'UTCM' 'SHZ' \n'UTSW' 'SHZ' \n'UTSA' 'BHZ' \n'UTZN' 'SHZ' \n'UTSS' 'SHZ' \n'UTMK' 'SHZ' \n'UTLO' 'BHZ' \n'UTLL' 'SHZ' \n'UTKH' 'BHZ'\n} \n\nfor n = 1:size(stachan,1)\n scnl = scnlobject(stachan(n,1),stachan(n,2),'','');\n try\n w(n) = waveform(ds,scnl,t1,t2);\n catch\n w(n) = waveform;\n end\nend\nf = find(get(w,'DATA_LENGTH')~=0);\nw = w(f);\n\n\n% APPLY RESPONSES TO ORIGINAL WAVEFORMS (SHORT PERIOD)\n\nwFilt = filtfilt(filterObj,w);\nwNew = response_apply(wFilt,filterObj,'antelope',dbName);\n\n% for n =1:numel(w)\n% n\n% wFilt(n) = filtfilt(filterObj,w(n));\n% wNew(n) = response_apply(wFilt(n),filterObj,dbName);\n% end\nsave\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% check one channel\nn = 3;\nfigure\nplot(wFilt(n),'r');\nhold on;\nplot(wNew(n),'b');\nresponse_plot(get(wNew(n),'RESPONSE'),[0.01 50])\n\n\nload\n% compare all channels\ncNew = correlation(wNew);\n%cNew = xcorr(cNew);\n%cNew = adjusttrig(cNew);\nplot(cNew,'wig',0.6)\ntitle('Filtered and corrected for instrument response','FontSize',16);\n%print(gcf,'-dpsc2','demo_corrected.ps');\n\ncFilt = correlation(wFilt);\nplot(cFilt,'wig',.6)\ntitle('Filtered only (30.5 - 10 Hz)','FontSize',16);\n%print(gcf,'-dpsc2','demo_filtered.ps');\n\nc = correlation(w);\nplot(c,'wig',.6)\ntitle('Raw','FontSize',16);\n%print(gcf,'-dpsc2','demo_raw.ps');\n\n% \n% % compare all channels\n% cNew = correlation(wNew);\n% cNew = crop(cNew,[0 600]);\n% cNew = xcorr(cNew,[100 300]);\n% cNew = adjusttrig(cNew);\n% plot(cNew,'wig',0.6)\n% title('Filtered and corrected for instrument response','FontSize',16);\n% print(gcf,'-dpsc2','demo_corrected.ps');\n% \n% cFilt = correlation(wFilt);\n% cNew = crop(cFilt,[0 600]);\n% plot(cFilt,'wig',.6)\n% title('Filtered only (30-5 s)','FontSize',16);\n% print(gcf,'-dpsc2','demo_filtered.ps');\n% \n% c = correlation(w);\n% cNew = crop(c,[0 600]);\n% plot(c,'wig',.6)\n% title('Raw','FontSize',16);\n% print(gcf,'-dpsc2','demo_raw.ps');\n% \n% \n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/contributed/instrument_response/demo_plutons.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3831447774255979}} {"text": "classdef linopConstraint\n%LINOPCONSTRAINT Class for linop constraints.\n%\n% A linop operates on a set of chebfuns and scalars (the \"variables\" of the\n% linop). An instance of this class may be assigned to the 'constraint'\n% property of a linop in order to impose a constraint on that variable (for\n% purposes of solving a linear system or eigenvalue problem).\n% \n% Each LINOPCONSTRAINT object has a 'functional' property, which is a\n% chebmatrix of vertically concatenated functionalBlocks, and a 'values'\n% property, a vector of the same length. If u is the variable of the\n% linop, then the constraint imposed by object C is:\n%\n% C.functional * u = C.values.\n%\n% The preferred way to add contraints to a linop is through LINOP.ADDBC,\n% not through direct use of this class.\n%\n% See also LINOP, LINOP.ADDBC.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% CLASS PROPERTIES:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n properties ( Access = public )\n functional % applied to the variable to get values\n values % constraint on the result of the functional\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% CLASS CONSTRUCTOR:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n methods ( Access = public, Static = false )\n \n % Input a functional and a value to create a constraint, or create\n % an empty constraint if no inputs.\n function C = linopConstraint(op, vals)\n if ( nargin == 0 )\n return\n end\n C.functional = op;\n C.values = vals;\n end\n \n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %% CLASS METHODS:\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n methods ( Access = public, Static = false )\n \n function n = length(C)\n %LENGTH Number of constraints in the object. \n n = size(C.functional, 1);\n end\n \n function e = isempty(C)\n %ISEMPTY True if no constraints in the object. \n e = isempty(C.functional);\n end\n \n function C = append(C, func, value)\n %APPEND Insert an additional constraint.\n % C = APPEND(C, FUNC, VAL) appends the constraint FUNC*u=VAL to the\n % current list. If VAL is omitted, it defaults to zero.\n \n % Appending empty does nothing:\n if ( isempty(func) )\n return\n end \n \n % Check if func is of an allowed class.\n validateattributes(func, {'linBlock', 'chebmatrix'}, {})\n \n % Check the value.\n if ( nargin < 3 )\n value = 0;\n end\n validateattributes(value, {'double'}, {})\n \n C.functional = [ C.functional ; func ];\n C.values = [ C.values ; value ];\n end\n \n function C = uminus(C)\n %- Negate the VALUES property of a LINOPCONSTRAINT.\n % This is useful at the CHEBOP level, where we need different signs\n % for the boundary conditions of a LINOP when we call LINOP(N) where N\n % is a CHEBOP, compared to what we want when we call LINEARIZE() from\n % within a Newton iteration. This is because when problems are solved\n % with LINOP backslash, the solution to the problem is the output\n % itself, while in a Newton iteration, we have to add the output of\n % the LINOP solution to the current guess.\n C.values = -C.values;\n end\n \n end\n \nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@linopConstraint/linopConstraint.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723317123102956, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.38313000888984233}} {"text": "function [text,AIC,BIC]=agarch_display(parameters,ll,vcv,epsilon,p,q,modelType,errorType)\n% Display parameters, tstats, pvals, log-likelihood and AIC/BIC\n% from estimates of a AGARCH(P,Q) or NAGARCH(P,Q) produced using agarch\n%\n% USAGE:\n% [TEXT] = agarch_display(PARAMETERS,LL,VCV,DATA,P,Q)\n% [TEXT,AIC,BIC] = agarch_display(PARAMETERS,LL,VCV,DATA,P,Q,MODELTYPE,ERRORTYPE)\n%\n% INPUTS:\n% PARAMETERS - A 2+p+q column vector of parameters with\n% [omega alpha(1) ... alpha(p) gamma beta(1) ... beta(q) [nu lambda]]'\n% LL - The log likelihood at the optimum\n% VCV - Variance-covariance matrix (Robust or inverse Hessian)\n% EPSILON - Column of mean zero data used to fit the model\n% P - Positive, scalar integer representing the number of\n% symmetric innovations\n% Q - Non-negative, scalar integer representing the number\n% of lags of conditional variance (0 for ARCH)\n% MODEL_TYPE - [OPTIONAL] The type of variance process, either\n% 'AGARCH' - Asymmetric GARCH, Engle (1990) [DEFAULT]\n% 'NAGARCH' - Nonlinear Asymmetric GARCH, Engle & Ng (1993)\n% ERRORTYPE - [OPTIONAL] The error distribution used, valid types are:\n% 'NORMAL' - Gaussian Innovations [DEFAULT]\n% 'STUDENTST' - T distributed errors\n% 'GED' - Generalized Error Distribution\n% 'SKEWT' - Skewed T distribution\n%\n% OUTPUTS:\n% TEXT - Character matrix with the formatted parameters of the model\n% AIC - Aikake Information Criteria computed from the LL\n% BIC - Schwartz/Bayesian Information Criteria computed from the LL\n%\n% See also AGGARCH\n\n% Copyright: Kevin Sheppard\n% kevin.sheppard@economics.ox.ac.uk\n% Revision: 1 Date: 7/12/2005\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETER CHECKING\n%%%%%%%%%%%%%%%%%%%%%%%%%%\nswitch nargin\n case 5\n q=0;\n modelType = 'AGARCH';\n errorType = 'NORMAL';\n case 6\n modelType = 'AGARCH';\n errorType = 'NORMAL';\n case 7\n errorType = 'NORMAL';\n case 8\n otherwise\n error('5 to 8 inputs required')\nend\n\n% parameters, N by 1, real\nif any(~isreal(parameters)) || size(parameters,2)~=1\n error('PARAMETERS must be a column vector.')\nend\n% LL\nif ~isscalar(ll) || ~isreal(ll)\n error('LL must be a scalar.')\nend\n% VCV\nif size(vcv,2)~=size(vcv,1) || any(min(eig(vcv))<=0) || size(vcv,1)~=length(parameters)\n error('VCV must be a square positive definite matrix compatible with PARAMETERS.')\nend\n% epsilon\nif any(~isreal(epsilon)) || size(epsilon,2)~=1\n error('EPSILON must be a T by 1 column vector.')\nend\n% p\nif ~isscalar(p) || p<1 || floor(p)~=p\n error('P must be a postitive scalar integer')\nend\n% q\nif ~isscalar(q) || q<0 || floor(q)~=q\n error('Q must be a non-negative scalar integer')\nend\n% errorType\nif ~ischar(errorType)\n errorType=[];\nend\nif isempty(errorType)\n errorType='NORMAL';\nend\nerrorType = upper(errorType);\nswitch errorType\n case 'NORMAL'\n errorType=1;\n extraP=0;\n case 'STUDENTST'\n errorType=2;\n extraP=1;\n case 'GED'\n errorType=3;\n extraP=1;\n case 'SKEWT'\n errorType=4;\n extraP=2;\n otherwise\n error('ERRORTYPE is not one of the supported distributions')\nend\n% modelType\nmodelType\nif ~ischar(modelType)\n modelType=[];\nend\nmodelType = upper(modelType);\nif isempty(modelType)\n modelType='AGARCH';\nend\nswitch modelType\n case 'AGARCH'\n modelType=1;\n case 'NAGARCH'\n modelType=2;\n otherwise\n error('MODELTYPE must be either ''AGARCH'' or ''NAGARCH''.')\nend\n\nif length(parameters)~=(2+p+q+extraP)\n error('Size of PARAMETERS is not compatible with input P and Q')\nend\n%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETER CHECKING\n%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif modelType == 1\n model_name = ['AGARCH(' num2str(p) ',' num2str(q) ')'];\nelse\n model_name = ['NAGARCH(' num2str(p) ',' num2str(q) ')'];\nend\n\nparameters_text=num2str(parameters,'%4.4f');\nstderr=sqrt(diag(vcv));\nstderr_text=num2str(stderr,'%4.4f');\ntstats=parameters./stderr;\ntstats_text=num2str(tstats,'%4.4f');\npvals=2-2*normcdf(abs(tstats));\npvals_text=num2str(pvals,'%4.4f');\n\nT=length(epsilon);\nAIC = -ll/T+2*length(parameters)/T;\nBIC = -ll/T+log(T)*length(parameters)/T;\n\n\n\n\n% Format the output\ntext=[];\ntext{1,1}= ' ';\ntext{2,1}= ' ';\ntext{3,1}=repmat('-',1,50);\ntext{4,1}=model_name;\ntext{5,1}=repmat('-',1,50);\ntext{6,1}=' ';\ntext{7,1}=['Loglikelihood: ' sprintf('%1.2f',ll)];\ntext{8,1}=['AIC: ' sprintf('%1.4f',AIC)];\ntext{9,1}=['BIC: ' sprintf('%1.4f',BIC)];\ntext{10,1}=' ';\n\n\nfor i=1:size(text,1);\n disp(text{i,1})\nend\n\n\n% Format the parameter table, need to right align everything\nK=size(parameters_text,1);\nfor i=1:K\n N=size(parameters_text,2);\n if any(parameters_text(i,:)==' ')\n numSpace=sum(parameters_text(i,:)==' ');\n parameters_text(i,:)=[repmat(' ',1,numSpace) parameters_text(i,1:N-numSpace)];\n end\n N=size(stderr_text,2);\n if any(stderr_text(i,:)==' ')\n numSpace=sum(stderr_text(i,:)==' ');\n stderr_text(i,:)=[repmat(' ',1,numSpace) stderr_text(i,1:N-numSpace)];\n end\n N=size(tstats_text,2);\n if any(tstats_text(i,:)==' ')\n numSpace=sum(tstats_text(i,:)==' ');\n tstats_text(i,:)=[repmat(' ',1,numSpace) tstats_text(i,1:N-numSpace)];\n end\n N=size(pvals_text,2);\n if any(pvals_text(i,:)==' ')\n numSpace=sum(pvals_text(i,:)==' ');\n pvals_text(i,:)=[repmat(' ',1,numSpace) pvals_text(i,1:N-numSpace)];\n end\nend\n% Append column labels\nlabels={' Parameters',' Std. Err.',' T-stat',' P-val'};\ncols = {parameters_text,stderr_text,tstats_text,pvals_text};\nfor i=1:length(labels);\n text1=labels{i};\n text2=cols{i};\n maxcols=max(size(text1,2),size(text2,2));\n if size(text1,2) 1\n opt.decay=0.9;\nend\nif ~isfield(opt,'stepadj')\n opt.stepadj=0.1;\nend\nif ~isfield(opt,'stepsf')\n opt.stepsf=[];\nend\nif ~isfield(opt,'window') | opt.window < 0\n opt.window=1;\nend\nif opt.window > opt.steps\n opt.window=opt.steps;\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/mc/hmc2_opt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723316991792861, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3831300014071017}} {"text": "function [l,m] = findnei(k)\n % This script finds overlapping alarms in space-time\n % and groups them togetehr\n %\n % Stefan Wiemer 4/95\n global abo iala\n\n report_this_filefun(mfilename('fullpath'));\n\n d = sqrt(((abo(k,1) - abo(:,1))).^2 + ((abo(k,2) - abo(:,2))).^2);\n m = d < abo(:,3)+abo(k,3) & abs(abo(:,5)-abo(k,5)) < iala;\n l = find(m == 1);\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/findneic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.38313000140710163}} {"text": "function [P,Y] = preprocess_data(Y,p,options)\n% PREPROCESS_DATA - Preprocess data for CNMF analysis of image signals\n%\n% [P_PARMS,Y] = PREPROCESS_DATA(Y, P_ORDER, OPTIONS)\n% \n% Inputs:\n% Y - the image data to be examined\n% P_ORDER - The order of the autoregressive system\n% OPTIONS - A structure of options (see help CNMFSetParms)\n%\n% Outputs:\n% P_PARMS - A structure of parameters extracted from the pre-processed data\n% P_PARMS has the following fields:\n%\n% Fieldname: | Description\n% --------------------------------------------------------------------------\n% p | P_ORDER as above\n% mis_data | Index locations of missing (NaN) values in Y\n% mis_values | Interpolated values at the missing index locations\n% pixels | Index values of pixels that are not saturated\n% sn | Noise power of each pixel\n% g | Autoregressive model parameters\n% \n% Y - A processed version of the data Y with the following changes:\n% (i) identifying and interpolating missing entries (assumed to have the\n% value NaN). Interpolated entries are passed back to Y.\n% (ii) identifying saturated pixels\n% (iii) estimating noise level for every pixel\n% (iv) estimating global discrete time constants (if needed)\n% \n% This function replaces ARPFIT, present in the previous versions of the code.\n%\n\n% Author: Eftychios A. Pnevmatikakis\n% Simons Foundation, 2015\n\ndefoptions = CNMFSetParms;\n\nif nargin < 3 || isempty(options); options = defoptions; end\nif nargin < 2 || isempty(p); p = 2; end\nP.p = p;\n\nif ~isfield(options,'noise_range'); options.noise_range = defoptions.noise_range; end\nif ~isfield(options,'noise_method'); options.noise_method = defoptions.noise_method; end\nif ~isfield(options,'block_size'); options.block_size = defoptions.block_size; end\nif ~isfield(options,'flag_g'); options.flag_g = defoptions.flag_g; end\nif ~isfield(options,'lags'); options.lags = defoptions.lags; end\nif ~isfield(options,'include_noise'); options.include_noise = defoptions.include_noise; end; include_noise = options.include_noise;\nif ~isfield(options,'split_data'); split_data = defoptions.split_data; else split_data = options.split_data; end\nif ~isfield(options,'cluster_pixels'); cluster_pixels = defoptions.cluster_pixels; else cluster_pixels = options.cluster_pixels; end\nif ~isfield(options,'extract_max'); extract_max = defoptions.extract_max; else extract_max = options.extract_max; end\nif ~isfield(options,'max_nlocs'); options.max_nlocs = defoptions.max_nlocs; end\nif ~isfield(options,'max_width'); options.max_width = defoptions.max_width; end\n\n%% interpolate missing data\n\nif any(isnan(Y(:)))\n Y_interp = interp_missing_data(Y); % interpolate missing data\n mis_data = find(Y_interp);\n Y(mis_data) = Y_interp(mis_data); % introduce interpolated values for initialization\nelse\n Y_interp = sparse(size(Y));\n mis_data = [];\nend\nP.mis_values = full(Y_interp(mis_data));\nP.mis_entries = mis_data;\n\n%% indentify saturated pixels\n\nP.pixels = find_unsaturatedPixels(Y); % pixels that do not exhibit saturation\n\n%% estimate noise levels\n\nfprintf('Estimating the noise power for each pixel from a simple PSD estimate...');\n[sn,psx] = get_noise_fft(Y,options);\nP.sn = sn(:);\nfprintf(' done \\n');\n\n%% cluster pixels based on PSD\nif cluster_pixels\n psdx = sqrt(psx(:,3:end-1));\n X = psdx(:,1:min(size(psdx,2),1500));\n P.psdx = X;\n X = bsxfun(@minus,X,mean(X,2)); % center\n X = bsxfun(@times,X,1./sqrt(mean(X.^2,2)));\n [L,Cx] = kmeans_pp(X',2);\n [~,ind] = min(sum(Cx(max(1,end-49):end,:),1));\n P.active_pixels = (L==ind);\n P.centroids = Cx;\n\n if (0) % not necessary at the moment\n %[P.W,P.H] = nnmf(psdx,2); %,'h0',H0);\n psdx = psdx(:,1:min(size(psdx,2),600));\n r = sort(rand(1,size(psdx,2)),'descend');\n er = ones(1,length(r))/sqrt(length(r));\n H = [r/norm(r); er];\n W_ = rand(size(psdx,1),2);\n for iter = 1:100\n W = max((H*H')\\(H*psdx'),0)';\n %H = max((W'*W)\\(W'*psdx),0);\n r = max((W(:,1)'*psdx - (W(:,1)'*W(:,2))*er)/norm(W(:,1))^2,0);\n H = [r/norm(r); er];\n if norm(W-W_,'fro')/norm(W_,'fro') < 1e-3\n break;\n else\n W_ = W;\n end\n end\n disp(iter)\n W = max((H*H')\\(H*psdx'),0)';\n P.W = W;\n P.H = H;\n end\nend\n\n%% extract maximum activity for each pixel\nif extract_max\n [LOCS,Ym] = extract_max_activity(Y,options.max_nlocs,options.max_width);\n P.max_locs = LOCS;\n P.max_data = Ym;\nend\n%% estimate global time constants\n\nif options.flag_g\n if ndims(Y) == 3\n Y = reshape(Y,size(Y,1)*size(Y,2),size(Y,3));\n end\n\n ff = options.pixels;\n np = length(ff);\n\n fprintf('Estimating time constant through autocorrelation function.. \\n');\n tt1 = tic;\n mp = max(p);\n lags = options.lags + mp;\n if split_data \n Ycl = mat2cell(Y(ff,:),ones(np,1),size(Y,2));\n XC = cell(np,1);\n parfor j = 1:np\n XC{j} = xcov(Ycl{j},lags,'biased');\n end\n XC = cell2mat(XC); \n else\n XC = zeros(np,2*lags+1);\n for j = 1:np\n XC(j,:) = xcov(Y(ff(j),:),lags,'biased');\n end\n end\n \n gv = zeros(np*lags,1);\n if ~include_noise\n g = XC(:,lags:-1:1);\n clear XC;\n lags = lags - p;\n end\n A = zeros(np*lags,p);\n for i = 1:np\n if ~include_noise\n A((i-1)*lags + (1:lags),:) = toeplitz(g(i,p:p+lags-1),g(i,p:-1:1));\n else\n A((i-1)*lags + (1:lags),:) = toeplitz(XC(i,lags+(1:lags)),XC(i,lags+(1:p))) - sn(i)^2*eye(lags,p);\n gv((i-1)*lags + (1:lags)) = XC(i,lags+2:end)';\n end\n end\n if ~include_noise\n gv = g(:,p+1:end)';\n end\n %ph = pinv(A)*gv(:);\n ph = A\\gv(:);\n disp(ph);\n fprintf('Done after %2.2f seconds. \\n',toc(tt1));\n P.g = ph(:);\nend\n", "meta": {"author": "flatironinstitute", "repo": "CaImAn-MATLAB", "sha": "49b7884e93348d50df7173e1619d7499468bb1f6", "save_path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB", "path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB/CaImAn-MATLAB-49b7884e93348d50df7173e1619d7499468bb1f6/preprocess_data.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3829841046497422}} {"text": "% This subroutine assigns Parameter values for the grid\n% which is used to calculate a Max Z value map.\n% dx, dy is the grid spacing in degrees.\n% For each one of the grid points, Ni events are counted.\n%\n\nreport_this_filefun(mfilename('fullpath'));\n\n% initial values\n%\ndx = 1.00;\ndy = 1.00 ;\ndz = 10.00 ;\nni = 100;\n\n%\n% make the interface\n%\nfigure_w_normalized_uicontrolunits(...\n 'Name','Grid Input Parameter',...\n 'NumberTitle','off', ...\n 'MenuBar','none', ...\n 'NextPlot','new', ...\n 'units','points',...\n 'Visible','off', ...\n 'Position',[ wex+200 wey-200 450 250]);\naxis off\n\n% creates a dialog box to input grid parameters\n%\nfreq_field=uicontrol('Style','edit',...\n 'Position',[.60 .50 .22 .10],...\n 'Units','normalized','String',num2str(ni),...\n 'Callback','ni=str2double(get(freq_field,''String'')); set(freq_field,''String'',num2str(ni));');\n\nfreq_field2=uicontrol('Style','edit',...\n 'Position',[.60 .40 .22 .10],...\n 'Units','normalized','String',num2str(dx),...\n 'Callback','dx=str2double(get(freq_field2,''String'')); set(freq_field2,''String'',num2str(dx));');\n\nfreq_field3=uicontrol('Style','edit',...\n 'Position',[.60 .30 .22 .10],...\n 'Units','normalized','String',num2str(dy),...\n 'Callback','dy=str2double(get(freq_field3,''String'')); set(freq_field3,''String'',num2str(dy));');\n\nfreq_field6=uicontrol('Style','edit',...\n 'Position',[.60 .20 .22 .10],...\n 'Units','normalized','String',num2str(par1),...\n 'Callback','par1=str2double(get(freq_field6,''String'')); set(freq_field6,''String'',num2str(par1));');\n\nfreq_field7=uicontrol('Style','edit',...\n 'Position',[.60 .60 .22 .10],...\n 'Units','normalized','String',num2str(dz),...\n 'Callback','dz=str2double(get(freq_field7,''String'')); set(freq_field7,''String'',num2str(dz));');\n\nuicontrol('Units','normal','Position',[.1 .90 .15 .12],'String','LoadGrid', 'Callback','close;loadgrid')\n\nclose_button=uicontrol('Style','Pushbutton',...\n 'Position',[.60 .05 .15 .12 ],...\n 'Units','normalized','Callback','close;done','String','Cancel');\n\ngo_button1=uicontrol('Style','Pushbutton',...\n 'Position',[.20 .05 .15 .12 ],...\n 'Units','normalized',...\n 'Callback',' gomakegr',...\n 'String','ZmapGrid');\n\ngo_button2=uicontrol('Style','Pushbutton',...\n 'Position',[.40 .05 .15 .12 ],...\n 'Units','normalized',...\n 'Callback','close;think; genascum',...\n 'String','GenasGrid');\n\n\ntxt3 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0.30 0.94 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.l ,...\n 'FontWeight','bold',...\n 'String',' Grid Parameter ');\n\n\ntxt5 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.42 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.m ,...\n 'FontWeight','bold',...\n 'String','Spacing in x (dx) in deg:');\n\ntxt6 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.32 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.m ,...\n 'FontWeight','bold',...\n 'String','Spacing in y (dy) in deg:');\n\ntext(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.20 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.m ,...\n 'FontWeight','bold',...\n 'String','Time steps in days:');\n\n\ntxt1 = text(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.53 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.m,...\n 'FontWeight','bold',...\n 'String','Number of Events (Ni):');\n\ntext(...\n 'Color',[0 0 0 ],...\n 'EraseMode','normal',...\n 'Position',[0. 0.63 0 ],...\n 'Rotation',0 ,...\n 'FontSize',ZmapGlobal.Data.fontsz.m,...\n 'FontWeight','bold',...\n 'String','Depth increment in (km) :');\n\n\n\nset(gcf,'visible','on');\nwatchoff\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/inmagr3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.38298409748071227}} {"text": "function [result_features]=back_find_high_node(W,C,nROI,w,midw_lasso,IDX,opt_t)\n\n% This function aims to find features used in the classification, suitable\n% for the dHOFC network construction method. And it is also\n% suitable for the LOOCV or the 10-fold cross validation. The found\n% features can be applied on the visualization software to present the\n% important high-order nodes (a set of links in each high-order node).\n% Input:\n% W: window length\n% C: number of cluster\n% nROI: number of ROIs \n% w: weight of each selected features;\n% midw_lasso: the feature selection indexes of lasso;\n% IDX: the index in clustering;\n% opt_t: the selected feat in each outer LOOCV;\n% Output:\n% result_features: cell array, consisting of occurrence of the features, \n% node number, the cluster matrix and weight of the cluster;\n\n% Written by Zhen Zhou, zzstefan@email.unc.edu\n% IDEA lab, https://www.med.unc.edu/bric/ideagroup\n% Department of Radiology and BRIC, University of North Carolina at Chapel Hill\n\n% \n% load dHOFC_loocv_middle.mat;\n%load dHOFC_kfold_middle.mat;\nfprintf('Begin contributing feature identification\\n');\n\n\nfor i =1:size(midw_lasso,1)\n for j=1:size(midw_lasso,2)\n which_C=ceil(opt_t(i,j)/length(W));\n which_W=mod(opt_t(i,j),length(W));\n if which_W ==0\n which_W=length(W);\n end\n index{i,j}=IDX{which_W,which_C};\n high_index{i,j}=find(midw_lasso{i,j}~=0);\n end\nend\n%% index means the corresponding cluster number of each of the 6670 lines in the original low-order FC;\n%% high_index ,each LOOCV ,there is one combination of hyper-parameter constructed brain network being choosen,\n%% find the cluster number after feature selection\n\n\nindex=index(:);\nhigh_index=high_index(:);\nfor i=1:length(high_index) \n for j=1:length(high_index{i})\n tmp{i,j}=find(index{i}==high_index{i}(j));\n end\n %length_test(i)=length(find(~cellfun(@isempty,tmp(i,:))));\nend\n\n% B=unique(length_test);\n% for i=1:length(B)\n% A(i)=length(find(length_test==B(i))); \n% end\n\n%% find the frequency of each element in the cell array\ntmp=cellfun(@(x) x',tmp,'UniformOutput',false);\ntemp=tmp(:);\n\n[a1,b,c]=unique(cellfun(@char,temp,'un',0));\nlo=histc(c,1:max(c));\nloo=lo(:)>1;\nout=[temp(b(loo)),num2cell(lo(loo))];\nout(1,:)=[];\nnew_out=out;\n\n%% find the weight of each cluster and the averaged accuracy would be the mean weight for each cluster.\nfor k=1:length(new_out)\n weight=[];\n test{k}=cellfun(@(x)isequal(x,new_out{k}),tmp,'un',0);\n [location{k}(:,1),location{k}(:,2)]=find(cell2mat(test{k}));\n for j=1:length(location{k})\n weight=[weight,w{location{k}(j,1)}(location{k}(j,2))];\n end\n W(k)=mean(weight);\nend\n\n\n\nfor j=1:length(new_out)\n inner_tmp=new_out{j};\n for i=1:length(inner_tmp)\n [first{j}(i,1),first{j}(i,2)]=find_elements(116,new_out{j,1}(i));\n end\n new_out(j,3)=first(j);\nend\n\n%%according to the connection between ROI, create the 0-1 matrix for the\n%%convenience of drawing in brainnet viewer\n\n\n%Matrix=create_matrix(first);\n\nfor m=1:length(first)\n node_matrix{m}=zeros(nROI,nROI);\n for n=1:length(first{m})\n node_matrix{m}(first{m}(n,1),first{m}(n,2))=1;\n node_matrix{m}(first{m}(n,2),first{m}(n,1))=1;\n end\nend\n\n\n% nROI=116;\n% node_matrix=eye(nROI,nROI);\n% for m=1:length(test)\n% \n% node_matrix(test{m}(:,1),test{m}(:,2))=1;\n% node_matrix(test{m}(:,2),test{m}(:,1))=1;\n% \n% end\n\n\nresult_features(:,1)=new_out(:,2);\nresult_features(:,2)=new_out(:,3);\nresult_features(:,3)=node_matrix';\nresult_features(:,4)=num2cell(W);\n%result_features=sortrows(result_features,1,'descend');%% sort according to the frequency of each cluster ,descend\nresult_features=sortrows(result_features,-1);\n\nfprintf('End contributing feature identification\\n');\n\n\n\n\n\n", "meta": {"author": "zzstefan", "repo": "BrainNetClass", "sha": "556cda9516429a964100e1ac0bace4258194b4a1", "save_path": "github-repos/MATLAB/zzstefan-BrainNetClass", "path": "github-repos/MATLAB/zzstefan-BrainNetClass/BrainNetClass-556cda9516429a964100e1ac0bace4258194b4a1/Function/AddedFuntions/back_find_high_node.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679928, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3829840903116822}} {"text": "function [img, mmPerVoxNew, dimOrder, dimFlip] = applyCannonicalXform(img, img2std, mmPerVox, insertMarkerFlag)\n% Applies the cannonical xform specified in img2std to img\n%\n% [img, mmPerVoxNew, dimOrder, dimFlip] = ...\n% applyCannonicalXform(img, img2std, mmPerVox, insertMarkerFlag)\n%\n% Applies the cannonical xform specified in img2std. NOTE! This function\n% does not do a full affine transform- it assumes that the transform\n% specified is a set of simple rotations and flips.\n%\n% When used with computeCannonicalXformFromIfile, img is reoriented to a\n% standard axial orientation. That is, the image will be reoriented so that\n% left-right is along the x-axis, anterior-posterior is along the y-axis,\n% superior-inferior is along the z-axis, and the leftmost, anterior-most,\n% superior-most point is at 0,0,0 (which, for Analyze, is the lower\n% left-hand corner of the last slice).\n%\n% To help you find the 0,0,0 point, a 4-pixel rectange is drawn there with a pixel\n% value equal to the maximum image intensity. Set insertMarkerFlag to\n% false to disbale this. Also, if ndims(img)>3, this is automatically\n% diabled.\n%\n% To adjust an img-to-standard space xofrm, use:\n%\n% newXform = inv(canXform*inv(imToScanXform));\n%\n% SEE ALSO: computeCannonicalXformFromIfile\n%\n% HISTORY:\n% 2003.06.19 RFD (bob@white.stanford.edu): wrote it.\n%%\n\nif(nargin<2)\n help(mfilename);\n return;\nend\nif(~exist('insertMarkerFlag','var')||isempty(insertMarkerFlag))\n insertMarkerFlag = true;\nend\n\n% Extract rotation & scale matrix. We have set things up so that the scales\n% should be 1.\nimg2stdRot = round(img2std(1:3,1:3));\n\n% Note that we have constructed this transform matrix so that it will only\n% involve cannonical rotations. We did this by specifying corresponding\n% points from cannonical locations (the corners of the volume- see\n% stdCoords and volCoords).\n\n% We use shortcuts to apply the transform. Since all rotations are\n% cannonical, we can achieve them efficiently by swapping dimensions with\n% 'permute'. The dimension permutation logic- we want to know which of the\n% current dimensions should be x, which should be y, and which should be z:\nxdim = find(abs(img2stdRot(1,:))==1);\nydim = find(abs(img2stdRot(2,:))==1);\nzdim = find(abs(img2stdRot(3,:))==1);\ndimOrder = [xdim, ydim, zdim];\ndimFlip = [0 0 0];\nif exist('mmPerVox','var')\n mmPerVoxNew = [mmPerVox(xdim), mmPerVox(ydim), mmPerVox(zdim)];\nelse\n mmPerVoxNew = [];\nend\n\n% Allow >3 dims- just leave the extra dims alone.\nimg = permute(img, [dimOrder, 4, 5]);\n\n% Now do any necessary mirror flips (indicated by negative rotation matrix values).\nif img2stdRot(1,xdim)<0\n dimFlip(xdim) = 1;\n % flip each slice ud (ie. along matlab's first dimension- our x-axis)\n %for(jj=1:size(img,3)) img(:,:,jj) = flipud(squeeze(img(:,:,jj))); end\n img = flipdim(img, 1);\nend\nif img2stdRot(2,ydim)<0\n dimFlip(ydim) = 1;\n % flip each slice lr (ie. along matlab's second dimension- our y-axis)\n %for(jj=1:size(img,3)) img(:,:,jj) = fliplr(squeeze(img(:,:,jj))); end\n img = flipdim(img, 2);\nend \nif img2stdRot(3,zdim)<0\n dimFlip(zdim) = 1;\n % reorder slices (ie. flip along the 3rd dim)\n %for(jj=1:size(img,1)) img(jj,:,:) = fliplr(squeeze(img(jj,:,:))); end\n img = flipdim(img, 3);\nend\n\nif insertMarkerFlag&&ndims(img)==3\n % insert a marker at 1,end,end (should be left, anterior, superior \n % given stdCoords of [0,0,0; 0,-1,0; 0,0,-1; -1,0,0])\n img(1,end,end) = max(img(:));\n img(2,end,end) = img(end,1,end);\n img(1,end-1,end) = img(end,1,end);\n img(2,end-1,end) = img(end,1,end);\nend\n\nreturn;\n\n%%", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAnatomy/xform/applyCannonicalXform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581741774411, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.38296938913645545}} {"text": "function train_id_net_vgg16(varargin)\n% -------------------------------------------------------------------------\n% Part 4.1: prepare the data\n% -------------------------------------------------------------------------\n\nimdb = load('./dataset/CUHK-PEDES-prepare/url_data.mat');\nimdb = imdb.imdb;\nimdb.images.set(imdb.images.set==2)=3;\nload('./dataset/CUHK-PEDES-prepare/cuhk_word2.mat');\nimdb.charcnn = wordcnn; \n%imdb.charmean = mean(imdb.charcnn(:,:,:,imdb.images.set==1),4);\n% -------------------------------------------------------------------------\n% Part 4.2: initialize a CNN architecture\n% -------------------------------------------------------------------------\nnet = cuhk_word2_Rankloss_vgg16();\nnet.conserveMemory = true;\nim_mean = imdb.rgbMean;\nnet.meta.normalization.averageImage = im_mean;\n%net.meta.normalization.charmean = imdb.charmean;\n% -------------------------------------------------------------------------\n% Part 4.3: train and evaluate the CNN\n\n% -------------------------------------------------------------------------\nopts.train.averageImage = net.meta.normalization.averageImage;\nopts.train.batchSize = 32;\nopts.train.continue = true;\nopts.train.gpus = 1;\nopts.train.prefetch = false ;\nopts.train.nesterovUpdate = true ;\nopts.train.expDir = './data/vgg16_cuhk_batch32_Rankloss_2:1:0.5_margin1_re';\nopts.train.derOutputs = {'objective_f',2,'objective_img',1,'objective_txt',0.5} ;\n%opts.train.gamma = 0.9;\nopts.train.momentum = 0.9;\n%opts.train.constraint = 100;\nopts.train.learningRate = [0.1*ones(1,40),0.01*ones(1,20)] ;\nopts.train.weightDecay = 0.0001;\nopts.train.numEpochs = numel(opts.train.learningRate) ;\n[opts, ~] = vl_argparse(opts.train, varargin) ;\n% Call training function in MatConvNet\n[net,info] = cnn_train_dag_batchsize(net, imdb, @getBatch,opts) ;\n\n% --------------------------------------------------------------------\nfunction inputs = getBatch(imdb,batch,opts)\n% --------------------------------------------------------------------\nbatchsize = numel(batch);\nhalf = batchsize/2;\nlabel_img = imdb.images.label(batch(1:half));\ntxt_batch = zeros(1,batchsize,'single');\nfor i= 1:half % Yp ~ Xp\n txt_batch(i) = rand_same_class(imdb, label_img(i)); \nend\nfor i= half+1:batchsize % Yn ~ Xp\n txt_batch(i) = rand_diff_class2(imdb, label_img(i-half)); %negative pair\nend\nfor i= half+1:batchsize % Xn ~ Xp\n if(imdb.images.label(batch(i))== imdb.images.label(batch(i-half)))\n batch(i) = rand_diff_class3(imdb, label_img(i-half));\n end\nend\n%-- img data\nim_url = imdb.images.data(batch) ;\nim = vl_imreadjpeg(im_url,'Pack','Resize',[224,224],'Flip',...\n 'CropLocation','random','CropSize',[0.8,1],...\n 'Interpolation', 'bicubic','NumThreads',16,... %'Brightness', double(0.1*imdb.rgbCovariance),...\n 'SubtractAverage',imdb.rgbMean,...\n 'CropAnisotropy',[3/4,4/3]);\noim = im{1}; \nlabel_img = imdb.images.label(batch);\n%-- txt data\nlabel_txt = imdb.images.label2(txt_batch);\ntxt = single(imdb.charcnn(:,txt_batch));\ntxtinput = zeros(1,56,7263,batchsize,'single');\nfor i=1:batchsize\n len = sum(txt(:,i)>0);\n location = randi(57-len);\n for j=1:len\n v = txt(j,i);\n txtinput(1,location,v,i)=1;\n location = location+1;\n end\nend\ntxtinput = gpuArray(txtinput);\n%--\ninputs = {'x0',gpuArray(oim),'data2',txtinput,'label_img',label_img,'label_txt',label_txt};\n", "meta": {"author": "layumi", "repo": "Image-Text-Embedding", "sha": "58f858da887f12ca94301c4f44113e2464d414ee", "save_path": "github-repos/MATLAB/layumi-Image-Text-Embedding", "path": "github-repos/MATLAB/layumi-Image-Text-Embedding/Image-Text-Embedding-58f858da887f12ca94301c4f44113e2464d414ee/train_cuhk_Rankloss_shift_vgg16.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.38296938313662954}} {"text": "function y = sparbwslv(L,b)\n% y = sparbwslv(L,b)\n%\n% SPARBWSLV Solves block sparse upper-triangular system.\n% y = sparbwslv(L,b) yields the same result as\n% y(L.perm,:) = L.L'\\b\n% However, SPARBWSLV is faster than the built-in operator \"\\\",\n% because it uses dense linear algebra and loop-unrolling on\n% supernodes.\n%\n% Typical use, with X sparse m x m positive definite and b is m x n:\n% L = sparchol(symbchol(X),X);\n% L.d(L.dep) = inf;\n% y = sparbwslv(L,sparfwslv(L,b) ./ L.d);\n% Then y solves X*y=b.\n%\n% See also symbchol, sparchol, sparfwslv, mldivide, mrdivide.\n\n% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko\n% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)\n%\n% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)\n% Dept. Econometrics & O.R., Tilburg University, the Netherlands.\n% Supported by the Netherlands Organization for Scientific Research (NWO).\n%\n% Affiliation SeDuMi 1.03 and 1.04Beta (2000):\n% Dept. Quantitative Economics, Maastricht University, the Netherlands.\n%\n% Affiliations up to SeDuMi 1.02 (AUG1998):\n% CRL, McMaster University, Canada.\n% Supported by the Netherlands Organization for Scientific Research (NWO).\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA\n% 02110-1301, USA\n\ny = bwblkslv(L,b);\n%y(L.perm,:) = L.L'\\b;", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sedumi/sparbwslv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581626286833, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3829693831366295}} {"text": "function [dv, rp, orbitIn, orbitOut, deltaVVect, vInfDNorm, vInfDepart, vInfArrive, totDV, r1B, r2B, v1Output, v2Output, xferRp] = multiFlybyObjFunc(x, numRevsArr,bodiesInfo,includeDepartVInf,includeArrivalVInf,celBodyData)\n%multiFlybyObjFunc Summary of this function goes here\n% Detailed explanation goes here\n numX = size(x,1);\n \n if(numX==0)\n dv = 9E99;\n rp = [];\n orbitIn = [];\n orbitOut = [];\n deltaVVect = [];\n vInfDNorm = [];\n vInfDepart = [];\n vInfArrive = [];\n totDV = [];\n r1B = [];\n r2B = [];\n v1Output = []; \n v2Output = []; \n xferRp = [];\n return;\n end\n\n flybyBodies = bodiesInfo(2:end-1);\n numFB = length(flybyBodies);\n numREVS = length(bodiesInfo) - 1;\n \n tm = x(:,end-numREVS-numFB:end-numREVS);\n tm = round(tm);\n tm(tm==2) = -1;\n numTM = size(tm,2);\n \n numRevInds = x(:,end-numREVS+1:end);\n \n x = x(:,1:end-numTM-numREVS);\n daTimes = cumsum(x,2);\n\n gmu = zeros(length(bodiesInfo),numX);\n rVectsB = zeros(3,numX,size(x,2));\n vVectsB = zeros(3,numX,size(x,2));\n for(i=1:length(bodiesInfo)) %#ok<*NO4LP>\n bodyInfo = bodiesInfo{i};\n [rVect, vVect] = getStateAtTime(bodyInfo, daTimes(:,i)', getParentGM(bodyInfo, celBodyData));\n \n rVectsB(:,:,i) = rVect;\n vVectsB(:,:,i) = vVect;\n \n gmu(i,:) = bodyInfo.gm * ones(1,numX);\n \n if(i==1)\n vBDepart = vVect;\n elseif(i==length(bodiesInfo))\n vBArrive = vVect;\n end\n end\n gmu(1,:) = [];\n gmu(end,:) = [];\n gmu = reshape(gmu',1,numel(gmu'));\n \n rVectsB = reshape(rVectsB,3,length(bodiesInfo)*numX);\n r1B = rVectsB(:,1:end-size(x,1));\n r2B = rVectsB(:,size(x,1)+1:end);\n\n vVectsB = reshape(vVectsB,3,length(bodiesInfo)*numX);\n vB = vVectsB(:,size(x,1)+1:end-size(x,1));\n\n tempXferGmu = zeros(1,length(bodiesInfo)-1);\n for(i=1:length(bodiesInfo)-1)\n parentBodyInfo = bodiesInfo{i}.getParBodyInfo(celBodyData);\n tempXferGmuScalar = parentBodyInfo.gm;\n \n% tempXferGmuScalar = getParentGM(bodiesInfo{i}, celBodyData);\n tempXferGmu((i-1)*numX+1:i*numX) = tempXferGmuScalar;\n end\n xferGmuL = tempXferGmu;\n \n% xferGmuL = xferGmu * ones(1,(length(bodiesInfo)-1)*numX);\n\n dt = x(:,2:end) .* tm;\n dt = reshape(dt,1,numel(dt));\n\n popSize = size(r1B,2) / (length(bodiesInfo)-1);\n\n for(i=1:size(numRevInds,2))\n numRevInd = round(numRevInds(:,i));\n numRev((i-1)*popSize+1 : i*popSize) = numRevsArr{i}(numRevInd); \n end\n \n bool = numRev == 0;\n \n v1 = zeros(size(r1B));\n v2 = v1;\n \n xferRp = zeros(1,size(r1B,2));\n \n if(any(bool)) %use the faster vectorized solver\n [v1(:,bool), v2(:,bool)] = lambertBattinVector(r1B(:,bool), r2B(:,bool), dt(bool), numRev(bool), xferGmuL(bool));\n \n [xferSma, xferEcc, ~, ~, ~, ~] = vect_getKeplerFromState(r1B(:,bool),v1(:,bool),xferGmuL(bool), true);\n [~, xferRp(bool)] = computeApogeePerigee(xferSma, xferEcc);\n end\n if(any(~bool)) %use the slower but multi-rev capable lambert loop\n bool = ~bool;\n inds = find(bool);\n \n for(i=1:length(inds))\n ind = inds(i);\n try\n [v1L, v2L, ~, exitflag] = orbit.lambert(r1B(:,ind)', r2B(:,ind)', dt(ind)/86400, numRev(ind), xferGmuL(ind));\n\n [xferSma, xferEcc, ~, ~, ~, ~] = getKeplerFromState(r1B(:,ind),v1L,xferGmuL(ind), true);\n [~, xferRp(ind)] = computeApogeePerigee(xferSma, xferEcc);\n \n if(any(isnan(v1L)) || any(isnan(v2L)) || exitflag == -1 || exitflag == -2)\n v1L(isnan(v1L)) = 9E99;\n v2L(isnan(v2L)) = 9E99;\n end\n catch ME %#ok\n v1L = 9E99 * ones(1,3);\n v2L = 9E99 * ones(1,3);\n end\n \n v1(:,ind) = v1L';\n v2(:,ind) = v2L';\n end\n end\n \n xferRp(isnan(xferRp)) = Inf;\n \n v1Output = v1;\n v2Output = v2;\n \n v1D = v1(:,1:numX);\n v1 = v1(:,numX+1:end);\n v2A = v2(:,end-numX+1:end);\n v2 = v2(:,1:end-numX);\n \n vInfIn = v2 - vB;\n vInfOut = v1 - vB;\n \n vInfDepart = v1D - vBDepart;\n vInfDNorm = sqrt(sum(abs(vInfDepart).^2,1));\n vInfDNorm = (vInfDNorm');\n \n vInfArrive = v2A - vBArrive;\n vInfANorm = sqrt(sum(abs(vInfArrive).^2,1));\n vInfANorm = (vInfANorm');\n \n [smaIn, eIn, hHat, sHat, smaOut, eOut, oHat] = computeMultiFlyByParameters(vInfIn, vInfOut, gmu);\n [hSMAIn, hEccIn, hIncIn, hRAANIn, hArgIn, ~, ~, rp] = computeHyperOrbitFromMultiFlybyParams(smaIn, eIn, hHat, sHat, true);\n [hSMAOut, hEccOut, hIncOut, hRAANOut, hArgOut, ~, ~, ~] = computeHyperOrbitFromMultiFlybyParams(smaOut, eOut, hHat, oHat, false);\n\n% if(any(abs(rp-rp2)>1E-6))\n% warning(num2str(abs(rp-rp2)));\n% end\n \n orbitIn = [hSMAIn', hEccIn', hIncIn', hRAANIn', hArgIn', zeros(size(hSMAIn')), ((1-eIn).*smaIn)'];\n orbitOut = [hSMAOut', hEccOut', hIncOut', hRAANOut', hArgOut', zeros(size(hSMAOut')), ((1-eOut).*smaOut)'];\n \n [~,vVectIn]=vect_getStatefromKepler(hSMAIn, hEccIn, hIncIn, hRAANIn, hArgIn, zeros(size(hArgIn)), gmu);\n [~,vVectOut]=vect_getStatefromKepler(hSMAOut, hEccOut, hIncOut, hRAANOut, hArgOut, zeros(size(hArgOut)), gmu);\n deltaVVect = vVectOut-vVectIn;\n deltaV = sqrt(sum(abs(deltaVVect).^2,1));\n totDV = sum(reshape(deltaV,numX,length(flybyBodies)),2);\n \n dv = totDV;\n \n if(includeDepartVInf)\n dv = dv + vInfDNorm;\n end\n \n if(includeArrivalVInf)\n dv = dv + vInfANorm;\n end\n \n% dv = vInfDNorm + totDV + vInfANorm;\n\n dv(dv>=1E99) = NaN;\n dv(isnan(dv)) = max(dv)+10;\nend\n\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/astrodynamics/multi_flyby/multiFlybyObjFunc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581510799253, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3829693771368035}} {"text": "function [net, info] = cnn_cifar(varargin)\n% CNN_CIFAR Demonstrates MatConvNet on CIFAR-10\n% The demo includes two standard model: LeNet and Network in\n% Network (NIN). Use the 'modelType' option to choose one.\n\nrun(fullfile(fileparts(mfilename('fullpath')), ...\n '..', '..', 'matlab', 'vl_setupnn.m')) ;\n\nopts.modelType = 'lenet' ;\n[opts, varargin] = vl_argparse(opts, varargin) ;\n\nopts.expDir = fullfile('data', sprintf('cifar-%s', opts.modelType)) ;\n[opts, varargin] = vl_argparse(opts, varargin) ;\n\nopts.dataDir = fullfile('data','cifar') ;\nopts.imdbPath = fullfile(opts.expDir, 'imdb.mat');\nopts.whitenData = true ;\nopts.contrastNormalization = true ;\nopts.networkType = 'simplenn' ;\nopts.train = struct() ;\nopts = vl_argparse(opts, varargin) ;\n\n% -------------------------------------------------------------------------\n% Prepare model and data\n% -------------------------------------------------------------------------\n\nswitch opts.modelType\n case 'lenet'\n net = cnn_cifar_init('networkType', opts.networkType) ;\n case 'nin'\n net = cnn_cifar_init_nin('networkType', opts.networkType) ;\n otherwise\n error('Unknown model type ''%s''.', opts.modelType) ;\nend\n\nif exist(opts.imdbPath, 'file')\n imdb = load(opts.imdbPath) ;\nelse\n imdb = getCifarImdb(opts) ;\n mkdir(opts.expDir) ;\n save(opts.imdbPath, '-struct', 'imdb') ;\nend\n\nnet.meta.classes.name = imdb.meta.classes(:)' ;\n\n% -------------------------------------------------------------------------\n% Train\n% -------------------------------------------------------------------------\n\nswitch opts.networkType\n case 'simplenn', trainfn = @cnn_train ;\n case 'dagnn', trainfn = @cnn_train_dag ;\nend\n\n[net, info] = trainfn(net, imdb, getBatch(opts), ...\n 'expDir', opts.expDir, ...\n net.meta.trainOpts, ...\n opts.train, ...\n 'val', find(imdb.images.set == 3)) ;\n\n% -------------------------------------------------------------------------\nfunction fn = getBatch(opts)\n% -------------------------------------------------------------------------\nswitch lower(opts.networkType)\n case 'simplenn'\n fn = @(x,y) getSimpleNNBatch(x,y) ;\n case 'dagnn'\n bopts = struct('numGpus', numel(opts.train.gpus)) ;\n fn = @(x,y) getDagNNBatch(bopts,x,y) ;\nend\n\n% -------------------------------------------------------------------------\nfunction [images, labels] = getSimpleNNBatch(imdb, batch)\n% -------------------------------------------------------------------------\nimages = imdb.images.data(:,:,:,batch) ;\nlabels = imdb.images.labels(1,batch) ;\nif rand > 0.5, images=fliplr(images) ; end\n\n% -------------------------------------------------------------------------\nfunction inputs = getDagNNBatch(opts, imdb, batch)\n% -------------------------------------------------------------------------\nimages = imdb.images.data(:,:,:,batch) ;\nlabels = imdb.images.labels(1,batch) ;\nif rand > 0.5, images=fliplr(images) ; end\nif opts.numGpus > 0\n images = gpuArray(images) ;\nend\ninputs = {'input', images, 'label', labels} ;\n\n% -------------------------------------------------------------------------\nfunction imdb = getCifarImdb(opts)\n% -------------------------------------------------------------------------\n% Preapre the imdb structure, returns image data with mean image subtracted\nunpackPath = fullfile(opts.dataDir, 'cifar-10-batches-mat');\nfiles = [arrayfun(@(n) sprintf('data_batch_%d.mat', n), 1:5, 'UniformOutput', false) ...\n {'test_batch.mat'}];\nfiles = cellfun(@(fn) fullfile(unpackPath, fn), files, 'UniformOutput', false);\nfile_set = uint8([ones(1, 5), 3]);\n\nif any(cellfun(@(fn) ~exist(fn, 'file'), files))\n url = 'http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz' ;\n fprintf('downloading %s\\n', url) ;\n untar(url, opts.dataDir) ;\nend\n\ndata = cell(1, numel(files));\nlabels = cell(1, numel(files));\nsets = cell(1, numel(files));\nfor fi = 1:numel(files)\n fd = load(files{fi}) ;\n data{fi} = permute(reshape(fd.data',32,32,3,[]),[2 1 3 4]) ;\n labels{fi} = fd.labels' + 1; % Index from 1\n sets{fi} = repmat(file_set(fi), size(labels{fi}));\nend\n\nset = cat(2, sets{:});\ndata = single(cat(4, data{:}));\n\n% remove mean in any case\ndataMean = mean(data(:,:,:,set == 1), 4);\ndata = bsxfun(@minus, data, dataMean);\n\n% normalize by image mean and std as suggested in `An Analysis of\n% Single-Layer Networks in Unsupervised Feature Learning` Adam\n% Coates, Honglak Lee, Andrew Y. Ng\n\nif opts.contrastNormalization\n z = reshape(data,[],60000) ;\n z = bsxfun(@minus, z, mean(z,1)) ;\n n = std(z,0,1) ;\n z = bsxfun(@times, z, mean(n) ./ max(n, 40)) ;\n data = reshape(z, 32, 32, 3, []) ;\nend\n\nif opts.whitenData\n z = reshape(data,[],60000) ;\n W = z(:,set == 1)*z(:,set == 1)'/60000 ;\n [V,D] = eig(W) ;\n % the scale is selected to approximately preserve the norm of W\n d2 = diag(D) ;\n en = sqrt(mean(d2)) ;\n z = V*diag(en./max(sqrt(d2), 10))*V'*z ;\n data = reshape(z, 32, 32, 3, []) ;\nend\n\nclNames = load(fullfile(unpackPath, 'batches.meta.mat'));\n\nimdb.images.data = data ;\nimdb.images.labels = single(cat(2, labels{:})) ;\nimdb.images.set = set;\nimdb.meta.sets = {'train', 'val', 'test'} ;\nimdb.meta.classes = clNames.label_names;\n", "meta": {"author": "willard-yuan", "repo": "cnn-for-image-retrieval", "sha": "2e3e8ab76e2c971314be55b5ae44e02884003261", "save_path": "github-repos/MATLAB/willard-yuan-cnn-for-image-retrieval", "path": "github-repos/MATLAB/willard-yuan-cnn-for-image-retrieval/cnn-for-image-retrieval-2e3e8ab76e2c971314be55b5ae44e02884003261/matconvnet-1.0-beta17/examples/cifar/cnn_cifar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581510799252, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.38296937713680346}} {"text": "function model = ml_traincov(varargin)\n% Learn a linear predictive model using covariance-based classification.\n% Model = ml_traincov(Trials, Targets, Options...)\n%\n% This method assumes that the given trials values represent covariance matrices and offers various\n% methods, including information geometric approaches, to classify them. This implementation uses\n% the covariance toolbox by Alexandre Barachant.\n%\n% In:\n% Trials : training data, as in ml_train\n%\n% Targets : target variable, as in ml_train\n%\n% Out:\n% Model : the predictive model; can be used with ml_predictcov\n%\n% Examples:\n% % learn a model using the defaults\n% model = ml_traincov(trials,targets);\n%\n% See also:\n% ml_predictcov\n%\n% Christian Kothe, Syntrogi\n% 2015-04-21\ndp;\n\narg_define([0 3],varargin, ...\n arg_norep('trials'), ...\n arg_norep('targets'), ...\n arg({'classifier','ClassificationMethod'},'mdm',{'mdm','fgmdm','tslda'}, 'Classification method to use. The mdm method (minimum distance to mean) is based on minimum distance to class mean using a given distance metric and mean estimation metric. The fgmdm (filtered geodesic mdm) method additionally performs geodesic filtering. The tslda method (tangent-space linear discriminant analysis) is an LDA implementation that respects the Riemannian geometry of the data.'), ...\n arg({'mean_est','MeanEstimator'},'riemann',{'arithmetic','riemann','riemanndiag','riemanntrim','median','riemannmed','logeuclid','opttransp','ld','geodesic','harmonic','geometric'},'Method to average covariance matrices. Various methods are supported, including Riemannian mean/median/trimmed mean, log-euclidean mean, optimal transportation mean, log determinant mean, and geodesic iterative mean.'), ...\n arg({'distance_metric','DistanceMetric'},'riemann',{'euclid','riemann','kullback','logeuclid','opttransp','ld'},'Distance metric to use. This is only used for the mdm and fgmdm methods. Different distance metrics are supported, including the Euclidean metric, the Riemannian distance, Kullback-Leibler divergence, log-euclidean distance, optimal transportation distance, and log determinant distance'));\n\n% find the class labels\nclasses = unique(targets);\nif length(classes) == 1\n error('BCILAB:only_one_class','Your training data set has no trials for one of your classes; you need at least two classes to train a classifier.\\n\\nThe most likely reasons are that one of your target markers does not occur in the data, or that all your trials of a particular class are concentrated in a single short segment of your data (10 or 20 percent). The latter would be a problem with the experiment design.');\nelse\n % reformat feature shape to DxDxN\n if ndims(trials) == 2 %#ok\n [N,F] = size(trials);\n D = sqrt(F);\n if abs(D-round(D)) > 0\n error('The number of features in your trials must be a square of an integer.'); end\n trials = reshape(trials',[D,D,N]);\n else\n [U,V,N] = size(trials); %#ok\n if U ~= V\n error('Your feature matrices are not square, i.e., cannot be covariance matrices.'); end\n end\n \n model.classes = classes;\n switch classifier\n case 'mdm'\n % minimum distance to mean: estimate class means\n for c=length(classes):-1:1\n model.C{c} = mean_covariances(trials(:,:,targets==classes(c)),mean_est); end\n case 'fgmdm'\n % filtered geodesic minimum distance to mean \n % geodesic filtering\n [model.W,model.Cg] = fgda(trials,targets,mean_est,{},'shcov',{});\n trials = geodesic_filter(trials,model.Cg,model.W(:,1:length(model.classes)-1));\n % estimate class means\n for c=length(classes):-1:1\n model.C{c} = mean_covariances(trials(:,:,targets==classes(c)),mean_est); end\n case 'tslda'\n error('This variant is not yet implemented!');\n otherwise\n error('Unsupported classification method: %s',hlp_tostring(classifier));\n end\nend\n\nmodel.classifier = classifier;\nmodel.mean_est = mean_est;\nmodel.distance_metric = distance_metric;\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/code/machine_learning/ml_traincov.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7718434873426302, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3829067913879946}} {"text": "%IPAD Pad an image with constants\n%\n% OUT = IPAD(IM, SIDES, N) is a padded version of the image IM with a block \n% of NaN values N pixels wide on the sides of IM as specified by SIDES.\n%\n% OUT = IPAD(IM, SIDES, N, V) as above but pads with pixels of value V.\n%\n% SIDES is a string containing one or more of the characters:\n% 't' top\n% 'b' bottom\n% 'l' left\n% 'r' right\n%\n% Examples::\n%\n% Add a band of zero pixels 20 pixels high across the top of the image:\n% ipad(im, 't', 20, 0)\n%\n% Add a band of white pixels 10 pixels wide on all sides of the image:\n% ipad(im, 'tblr', 10, 255)\n%\n% Notes::\n% - Not a tablet computer.\n\n\n% Copyright (C) 1993-2011, by Peter I. Corke\n%\n% This file is part of The Machine Vision Toolbox for Matlab (MVTB).\n% \n% MVTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% MVTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with MVTB. If not, see .\n\nfunction out = ipad(in, sides, n, val)\n\n if nargin < 4\n val = NaN;\n end\n \n if ndims(in) > 2\n % multiplane case\n d = size(in);\n nimages = prod(d(3:end));\n out = [];\n for i=1:nimages\n out(:,:,i) = ipad(in(:,:,i), sides, n, val);\n end\n\n d2 = size(out);\n out = reshape(out, [d2(1) d2(2) d(3:end)]);\n return\n end\n \n out = in;\n for side=sides\n [w,h] = isize(out);\n\n switch side\n case 't'\n out = [val*ones(n,w); out];\n case 'b'\n out = [out; val*ones(n,w)];\n case 'l'\n out = [val*ones(h,n) out];\n case 'r'\n out = [out val*ones(h,n)];\n end\n end\n\n \n", "meta": {"author": "petercorke", "repo": "machinevision-toolbox-matlab", "sha": "2d791168c19c5e56acef74d22eafd227b4b58e42", "save_path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab/machinevision-toolbox-matlab-2d791168c19c5e56acef74d22eafd227b4b58e42/ipad.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804478040617, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3828892338844111}} {"text": "function varargout = showXSlice(img, sliceIndex)\n%SHOWXSLICE Show YZ slice of a 3D image\n%\n% showXSlice(IMG, INDEX)\n% Display the given slice as a 3D planar image. INDEX is the slice index,\n% between 1 and stackSize(img, 1).\n%\n% Example\n% % Display 3D orthoslices of a humain head\n% img = analyze75read(analyze75info('brainMRI.hdr'));\n% figure(1); clf; hold on;\n% showZSlice(img, 13);\n% showXSlice(img, 60);\n% showYSlice(img, 80);\n% axis equal\n% xlabel('x'); ylabel('y'); zlabel('z');\n%\n% See also\n% showYSlice, showZSlice, getSlice\n\n% ------\n% Author: David Legland\n% e-mail: david.legland@inra.fr\n% Created: 2010-06-30, using Matlab 7.9.0.529 (R2009b)\n% http://www.pfl-cepia.inra.fr/index.php?page=slicer\n% Copyright 2010 INRA - Cepia Software Platform.\n\n\n%% Extract image info\n\ndim = stackSize(img);\n\n% compute voxel positions\nlx = 1:dim(1);\n\n% position vectors of voxel corners\nvy = ((0:dim(2)) + .5);\nvz = ((0:dim(3)) + .5);\n\n% global parameters for surface display\nparams = {'facecolor', 'texturemap', 'edgecolor', 'none'};\n\n% compute position of voxel vertices in 3D space\n[yz_y, yz_z] = meshgrid(vy, vz);\nyz_x = ones(size(yz_y)) * lx(sliceIndex);\n\n% extract slice in x direction\nslice = stackSlice(img, 'x', sliceIndex);\n\n% eventually converts to uint8, rescaling data between 0 and max value\nif ~isa(slice, 'uint8')\n slice = double(slice);\n slice = uint8(slice * 255 / max(slice(:)));\nend\n\n% convert grayscale to rgb (needed by 'surface' function)\nif length(size(slice)) == 2\n slice = repmat(slice, [1 1 3]);\nend\n\n% display voxel values in appropriate reference space\nhs = surface(yz_x, yz_y, yz_z, slice, params{:});\n\n\n%% process output arguments\n\nif nargout > 0\n varargout = {hs};\nend\n", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/matImage/imStacks/showXSlice.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878696277513, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3828671839588636}} {"text": "function f = filterobject(anything, cutoff, poles)\n% FILTEROBJECT constructor for a filter object\n% f = filterobject() creates a new default filterobject\n% f = filterobject(filterobject) duplicates a filterobject\n% f = filterobject(type, cutoff, poles) create user-defined filterobject\n%\n% TYPE: 'B' : Bandpass, 'H' : Highpass, 'L' : Lowpass\n% CUTOFF: [low, high] for bandpass, single value for others\n% POLES: number of poles used in the filter\n%\n% default new object: Bandpass from 0.8 Hz to 5Hz, 2 poles (as dictated\n% by this constructor file\n\n% VERSION: 1.0 of filter objects\n% AUTHOR: Celso Reyes\n% LASTUPDATE: 1/30/2007\n\nload_global_namespace;\n\nswitch nargin\n case 0\n %create a fresh filterobject\n f.type = 'B';\n f.cutoff = [0.8 5];\n f.poles = 2;\n f = class(f, 'filterobject');\n\n case 1\n if isa(anything, 'filterobject')\n f = anything;\n else\n error(['trying to use filterobject(' class(anything) ')']);\n end\n \n case 3\n f = filterobject;\n f = set(f,'type',anything, 'cutoff', cutoff,'poles',poles);\n\n otherwise\n disp('Invalid arguments in filterobject constructor');\nend;\n\n%% LOAD filterobject's global namespace\n% replaces SUITE_STUFF\nfunction load_global_namespace()\n\npersistent FILTER_NAMESPACE\n\nif FILTER_NAMESPACE\n return\nelse\n FILTER_NAMESPACE = true;\nend\n% \n% global FILTER_LONG \n% global FILTER_STANDARD\n% \n% FILTER_LONG = filterobject('L',0.999,2);\n% FILTER_STANDARD = filterobject('B', [0.8 5.0] ,2);", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/@filterobject/filterobject.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3828671751749137}} {"text": "function varargout = drawDirectedEdges(p, e, varargin)\n%DRAWDIRECTEDEDGES Draw edges with arrow indicating direction\n% \n% usage:\n% drawDirectedEdges(NODES, EDGES);\n%\n% drawDirectedEdges(NODES, EDGES, STYLE);\n% specifies style of arrrows. Can be one of:\n% 'left'\n% 'right'\n% 'arrow'\n% 'triangle'\n% 'fill'\n%\n% drawDirectedEdges(NODES, EDGES, STYLE, DIRECT) : also specify the base\n% direction of all edges. DIRECT is true by default. If DIRECT is false\n% all edges are inverted.\n% \n% H = drawDirectedEdges(NODES, EDGES) : return handles to each of the\n% lines created.\n%\n% TODO: now only style 'arrow' is implemented ...\n%\n% -----\n%\n% author : David Legland \n% INRA - TPV URPOI - BIA IMASTE\n% created the 12/03/2003.\n%\n\n% HISTORY\n\n\nb=1;\n\nif ~isempty(varargin)\n b = varargin{1};\nend\n\nh = zeros(length(e),1);\nhold on;\nfor l=1:length(e)\n p1 = e(l, 1);\n p2 = e(l, 2);\n h(l*4) = line([p(p1,1) p(p2,1)], [p(p1,2) p(p2,2)]);\n \n % position of middles of edge\n xm = (p(p1,1) + p(p2,1))/2;\n ym = (p(p1,2) + p(p2,2))/2;\n \n % orientation of edge\n theta = atan2(p(p2,2) - p(p1,2), p(p2,1) - p(p1,1)) + (b==0)*pi;\n \n % pin of the arrow\n xa0 = xm + 10*cos(theta);\n ya0 = ym + 10*sin(theta);\n \n % right side of the arrow\n xa1 = xm + 3*cos(theta-pi/2);\n ya1 = ym + 3*sin(theta-pi/2);\n \n % left side of the arrow\n xa2 = xm + 3*cos(theta+pi/2);\n ya2 = ym + 3*sin(theta+pi/2);\n \n h(l*4+1) = line([xa1 xa0], [ya1 ya0]);\n h(l*4+2) = line([xa2 xa0], [ya2 ya0]);\nend\n\nif nargout==1\n varargout(1) = {h};\nend\n", "meta": {"author": "rpng", "repo": "lips", "sha": "a97157e586b509c9c2e3e01e64e4347f36d0b63e", "save_path": "github-repos/MATLAB/rpng-lips", "path": "github-repos/MATLAB/rpng-lips/lips-a97157e586b509c9c2e3e01e64e4347f36d0b63e/lips_matlab/matlab/functions/matGeom/graphs/drawDirectedEdges.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945417, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3828671665591857}} {"text": "function [resampSigM,TTHPv,SHPv,timeOutV] = halfPeak(ROIDataM,timeV,smoothFlag,resampFlag)\n% =======================================================================================\n% AI 09/28/16\n% AI 10/20/16 Added smoothing/resampling options.\n% ======================================================================================\n% INPUTS\n% ROIDataM : (no. voxels x time pts) Matrix of temporal signals of\n% raster-ordered voxels along rows\n% timeV : Vector of time pts of DCE image acquisition.\n% smoothFlag : Flag (1-Smooth 0-No smoothing )\n% resampFlag : Flag (1-Resample 0-No resampling )\n% =====================================================================================\n\n%% Smooth/resample if selected\nnVox = size(ROIDataM,1);\n[resampSigM,timeOutV] = smoothResamp(ROIDataM,timeV,smoothFlag,resampFlag);\nnormalizedBaseline = 1;\nrelSigEnhM = resampSigM - normalizedBaseline;\n\n%% Compute TTHP, SHP\n%Identify first time point where changeSig > half-peak\ngts50 = bsxfun(@ge,relSigEnhM,(max(resampSigM,[],2) - normalizedBaseline)/2);\n[~,SHPcolIdx] = max(gts50,[],2);\nSHProwIdx = (1:nVox).';\nSHPidx = sub2ind([nVox,numel(timeOutV)],SHProwIdx,SHPcolIdx);\n%Get signal at half-peak\nSHPv = resampSigM(SHPidx).';\n%Get time to half-peak\nTTHPv = timeOutV(1,SHPcolIdx);\n\nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanAnalysis/DCE-MR analysis/TTHP analysis for DCE-MR/halfPeak.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3828222494520571}} {"text": "function data = read_asa_msr(fn);\n\n% READ_ASA_MSR reads EEG or MEG data from an ASA data file\n% converting the units to uV or fT\n\n% Copyright (C) 2002, Robert Oostenveld\n% \n% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id: read_asa_msr.m 945 2010-04-21 17:41:20Z roboos $\n\nNpnt = read_asa(fn, 'NumberPositions=', '%d');\nNtime = read_asa(fn, 'NumberTimesteps=', '%d');\nUnitT = read_asa(fn, 'UnitTime', '%s');\nUnitM = read_asa(fn, 'UnitMeas', '%s');\nTimesteps = read_asa(fn, 'Timesteps', '%s');\nlab = read_asa(fn, 'Labels', '%s', Npnt);\n\nval = read_asa(fn, 'Values', '%f');\nif any(size(val)~=[Npnt,Ntime])\n msm_file = read_asa(fn, 'Values', '%s');\n [path, name, ext] = fileparts(fn);\n fid = fopen(fullfile(path, msm_file), 'rb', 'ieee-le');\n val = fread(fid, [Ntime, Npnt], 'float32')';\n fclose(fid);\nend\n\ntmp = sscanf(Timesteps, '%f(%f)%f');\ntime = linspace(tmp(1), tmp(3), Ntime);\n\nif strcmpi(UnitT,'ms')\n time = 1*time;\nelseif strcmpi(UnitT,'s')\n time = 1000*time;\nelseif ~isempty(UnitT)\n error(sprintf('Unknown unit of time (%s)', UnitT));\nend\n\nif strcmpi(UnitM,'uv')\n val = 1*val;\nelseif strcmpi(UnitM,'?v')\n val = 1*val;\nelseif strcmpi(UnitM,'mv')\n val = 1000*val;\nelseif strcmpi(UnitM,'v')\n val = 1000000*val;\nelseif strcmpi(UnitM,'ft')\n val = 1*val;\nelseif strcmpi(UnitM,'pt')\n val = 1000*val;\nelseif ~isempty(UnitM)\n error(sprintf('Unknown unit of measurement (%s)', UnitM));\nend\n\nif length(size(lab))==2\n lab = tokenize(lab{1});\nend\n\ndata.time = time;\ndata.data = val;\ndata.label = lab;\n\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/external/fileio/private/read_asa_msr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3828222494520571}} {"text": "function [pOutIdxs,chOutIdxs] = treeWpBFrange(wt)\n%TREEWPBFRANGE Wavelet packet tree output ranges in BF order\n% Usage: [pOutIdxs,chOutIdxs] = treeBFranges(wt);\n%\n% Input parameters:\n% wt : Filterbank tree struct.\n% Output parameters:\n% pOutIdxs : Array of parent nodes in BF order\n% chOutIdxs : Cell array of children nodes in BF order\n%\n% `[pOutIdxs,chOutIdxs] = treeBFranges(wt)` is a helper function\n% determining direct relationship between nodes in tree *wt*. \n% Elements in both returned arrays are ordered according to the BF order.\n% `pOutIdxs` is array of indices in the subbands\n%\n\ntreePath = nodeBForder(0,wt);\ntrLen = numel(treePath);\npOutIdxs = zeros(1,trLen);\nchOutIdxs = cell(1,trLen);\npRunIdx = [0];\nchRunIdx = 1;\n% do trough tree and look for nodeNo and its parent\nfor ii=1:trLen\n tmpfiltNo = length(wt.nodes{treePath(ii)}.g);\n locRange = nodesLocOutRange(treePath(ii),wt);\n diffRange = 1:tmpfiltNo;\n diffRange(locRange{1})=[];\n chOutIdxs{ii} = chRunIdx:chRunIdx+tmpfiltNo-1;\n chRunIdx = chRunIdx + tmpfiltNo;\n pOutIdxs(ii) = pRunIdx(1);\n pRunIdx = [pRunIdx(2:end),chOutIdxs{ii}(diffRange)];\nend\n\npOutIdxs = pOutIdxs(end:-1:1); \nchOutIdxs = chOutIdxs(end:-1:1);\n\n\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/wavelets/wfbtmanip/treeWpBFrange.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819874558603, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.3828010438680054}} {"text": "function [ y2, m2, d2, f2 ] = ymdf_inc_hebrew ( y1, m1, d1, f1, days )\n\n%*****************************************************************************80\n%\n%% YMDF_INC_HEBREW increments a Hebrew YMDF date by DAYS days.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 April 2103\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer Y1, M1, D1, real F1,\n% the YMDF date.\n%\n% Input, real DAYS, the number of days to advance the date.\n%\n% Output, integer Y2, M2, D2, real F2,\n% the incremented YMDF date.\n%\n\n%\n% Copy the parameters.\n%\n y2 = y1;\n m2 = m1;\n d2 = d1;\n f2 = f1 + days;\n%\n% Check the parameters.\n%\n [ y2, m2, d2, f2, ierror ] = ymdf_check_hebrew ( y2, m2, d2, f2 );\n\n return\nend", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/ymdf_inc_hebrew.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3828010435316367}} {"text": "function xyb = Xb(s)\n\nx = s ;\n\nif s <= 0.5\n y = -s ;\nelseif s>0.5\n y = s-1 ;\nend\n\nxyb = [x ; y] ;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/40681-transfinite-interpolation/TFI/Chevron/Xb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241632752915, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.382801026470397}} {"text": "function msns_l_i\n%\n% Generates the data used in 'msns_l'. Data are stored in global\n% variables.\n%\n% Calling sequence:\n%\n% msns_l_i\n%\n% Remarks:\n% \n% Call 'msns_m_i' before calling this routine.\n%\n%\n% LYAPACK 1.0 (Thilo Penzl, October 1999)\n\n\nglobal LP_N LP_NU\n\nif ~length(LP_N)\n error('This routine needs global data which must be generated by calling ''msns_m_i'' first.');\nend \n\n[LP_NU,t] = chol(-LP_N); % Note the minus!\n\nif t~=0\n error('N is not (numerically) negative definite!');\nend\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/21-lyapack/lyapack/usfs/msns_l_i.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241632752915, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.382801026470397}} {"text": "function [idx dst] = prisearch(ann, query, k, epsl, asm)\n% \n% kNN search\n% Usage:\n% [idx dst] = prisearch(ann, query, k, asm, eps)\n%\n% Inputs:\n% ann - ann class object\n% query - (d)x(N) query points\n% k - number of nearest nieghbors (if points in ann < k than less than k\n% points are returned)\n% epsl - epsilon search precision \n% asm - allow self match flag, if false points with dst = 0 are ignored \n% (defualt is true)\n%\nif nargin == 4\n asm = true;\nend\n\nif ~asm\n k = k+1;\nend\n\nif ~isa(query, ann.ccls)\n query = ann.cfun(query);\nend\n\n[idx dst] = annmex(ann.modes.PRISEARCH, ann.kd_ptr, query, k, epsl);\n\nif ~asm\n gsm = dst(1,:)==0;\n dst(1:end-1,gsm) = dst(2:end,gsm);\n idx(1:end-1,gsm) = idx(2:end,gsm);\n dst(end,:) = [];\n idx(end,:) = [];\nend\nidx = idx + 1; % fix zero indexing of ann", "meta": {"author": "CHLNDDEV", "repo": "OceanMesh2D", "sha": "56222604a5c1fe897d10c8b08cb3380ef8b43740", "save_path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D", "path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D/OceanMesh2D-56222604a5c1fe897d10c8b08cb3380ef8b43740/@ann/prisearch.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3827401280108103}} {"text": "% This script test under 10-fold Cross Validation, divided by ID, how dtfv works\nfunction [AUC, tt, tf, ft, ff] = auc_fun(label, score, pred)\nlie_id = find(score<0);\nif ~isempty(lie_id)\n if pred(lie_id(1)) == 0\n isign = -1;\n else\n isign = 1;\n end\nelse\n if pred(1) == 1\n isign = -1;\n else\n isign = 1;\n end\nend\n[~,~,~,AUC] = perfcurve(label,isign*score,0);\ntt = sum(pred(label==1)==1);\ntf = sum(pred(label==1)==0);\nft = sum(pred(label==0)==1);\nff = sum(pred(label==0)==0);\n\n%fprintf('Partation:%d\\tacc is %f, auc is %f, tt:%d, tf:%d, ft:%d, ff:%d\\n',part, acc(1),AUC,tt,tf,ft,ff);\nend\n", "meta": {"author": "Doubaibai", "repo": "DARE", "sha": "db991afa90629477b96918884fbb353e29383620", "save_path": "github-repos/MATLAB/Doubaibai-DARE", "path": "github-repos/MATLAB/Doubaibai-DARE/DARE-db991afa90629477b96918884fbb353e29383620/auc_fun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.38274012021825804}} {"text": "% SYNTAX:\n% yAvgStd = hmrS_SessAvgStd2_oldversion_nirs(yAvgRuns, ySum2Runs, mlActRuns, nTrialsRuns)\n%\n% UI NAME:\n% Run_Average_Standard_Deviation\n%\n% DESCRIPTION:\n% Calculate avearge HRF standard deviation of all runs for one subject. \n%\n% INPUTS:\n% yAvgRuns:\n% ySum2Runs:\n% mlActRuns:\n% nTrialsRuns:\n%\n% OUTPUTS:\n% yAvgStdOut: the standard deviation across runs\n%\n% USAGE OPTIONS:\n% Run_Average_Standard_Deviation_on_Concentration_Data: dcAvgStd = hmrS_SessAvgStd2_oldversion_nirs(dcAvgRuns, dcSum2Runs, mlActRuns, nTrialsRuns)\n% Run_Average_Standard_Deviation_on_Delta_OD_Data: dodAvgStd = hmrS_SessAvgStd2_oldversion_nirs(dodAvgRuns, dodSum2Runs, mlActRuns, nTrialsRuns)\n%\n\nfunction yAvgStdOut = hmrS_SessAvgStd2_oldversion_nirs(yAvgRuns, ySum2Runs, mlActRuns, nTrialsRuns)\n\nyAvgStdOut = DataClass().empty();\n\nnDataBlks = length(yAvgRuns{1});\nnTrials_tot = cell(nDataBlks,1);\n\nfor iBlk = 1:nDataBlks\n \n grp1 = [];\n \n for iRun = 1:length(yAvgRuns)\n \n yAvgStdOut(iBlk) = DataClass();\n \n yAvg = yAvgRuns{iRun}(iBlk).GetDataTimeSeries('reshape');\n if isempty(yAvg)\n continue;\n end\n \n yAvgStd = zeros(size(yAvg,1), size(yAvg,2), size(yAvg,3), size(yAvg,4));\n ySum2 = ySum2Runs{iRun}(iBlk).GetDataTimeSeries('reshape');\n tHRF = yAvgRuns{iRun}(iBlk).GetTime();\n nTrials = nTrialsRuns{iRun}{iBlk};\n if isempty(mlActRuns{iRun})\n mlActRuns{iRun} = cell(length(nDataBlks),1);\n end\n \n % \n datatype = yAvgRuns{iRun}(iBlk).GetDataTypeLabel();\n if strncmp(datatype{1}, 'HRF Hb', length('HRF Hb'))\n ml = yAvgRuns{iRun}(iBlk).GetMeasListSrcDetPairs('reshape');\n elseif strcmp(datatype{1}, 'HRF dOD')\n ml = yAvgRuns{iRun}(iBlk).GetMeasList('reshape');\n end\n if isempty(mlActRuns{iRun}{iBlk})\n mlActRuns{iRun}{iBlk} = ones(size(ml,1),1);\n end\n mlAct = mlActRuns{iRun}{iBlk}(1:size(ml,1));\n \n nCond = size(nTrials,2);\n yAvgStdOut(iBlk).SetTime(tHRF);\n \n if strcmp(datatype{1}, 'HRF dOD')\n \n if isempty(grp1)\n grp1 = zeros(size(yAvg,1), size(yAvg,2), nCond);\n grp1Sum2 = zeros(size(yAvg,1), size(yAvg,2), nCond);\n nTrials_tot{iBlk} = zeros(size(yAvg,2), nCond);\n end\n \n lstChInc = find(mlAct==1);\n for iC = 1:nCond\n nT = nTrials(iC);\n if nT>0\n if iRun==1\n grp1(:,lstChInc,iC) = yAvg(:,lstChInc,iC) * nT;\n grp1Sum2(:,lstChInc,iC) = ySum2(:,lstChInc,iC);\n nTrials_tot{iBlk}(lstChInc,iC) = nT;\n else\n for iCh=1:length(lstChInc) %size(yAvg,2)\n % Make sure 3rd arg to interp1 is column vector to guarauntee interp1 output is column vector\n % which matches grp1 dimensions when adding the two.\n grp1(:,lstChInc(iCh),iC) = grp1(:,lstChInc(iCh),iC) + interp1(tHRF,yAvg(:,lstChInc(iCh),iC),tHRF(:)) * nT;\n grp1Sum2(:,lstChInc(iCh),iC) = grp1Sum2(:,lstChInc(iCh),iC) + interp1(tHRF,ySum2(:,lstChInc(iCh),iC),tHRF(:));\n nTrials_tot{iBlk}(lstChInc(iCh),iC) = nTrials_tot{iBlk}(lstChInc(iCh),iC) + nT;\n end\n end\n end\n end\n \n if ~isempty(grp1)\n for iC = 1:size(grp1,3)\n for iCh = 1:size(grp1,2)\n yAvg(:,iCh,iC) = grp1(:,iCh,iC) / nTrials_tot{iBlk}(iCh,iC);\n \n % We want to distinguish between no trials and 1 trial:\n % If there are no trials, we have no HRF data and no std which\n % the first case will calculate as opposed to one trial (2nd case)\n % where we have all zeros.\n if(nTrials_tot{iBlk}(iCh,iC)~=1)\n yAvgStd(:,iCh,iC) = ( (1/(nTrials_tot{iBlk}(iCh,iC)-1))*grp1Sum2(:,iCh,iC) - (nTrials_tot{iBlk}(iCh,iC)/(nTrials_tot{iBlk}(iCh,iC)-1))*(grp1(:,iCh,iC) / nTrials_tot{iBlk}(iCh,iC)).^2).^0.5 ;\n else\n yAvgStd(:,iCh,iC) = zeros(size(grp1Sum2(:,iCh,iC)));\n end\n \n %%%% Snirf stuff: Once we get to the last run, we've accumulated our averages. \n %%%% Now we can set channel descriptors for avg and standard deviation\n if iRun == length(yAvgRuns)\n yAvgStdOut(iBlk).AddChannelDod(ml(iCh,1), ml(iCh,2), ml(iCh,4), iC);\n end\n end\n \n %%%% Snirf stuff: Once we get to the last run, we've accumulated our averages.\n %%%% Now we can set channel descriptors for avg and standard deviation\n if iRun == length(yAvgRuns)\n yAvgStdOut(iBlk).AppendDataTimeSeries(yAvgStd(:,:,iC));\n end\n end\n end\n \n elseif strncmp(datatype{1}, 'HRF Hb', length('HRF Hb'))\n \n if isempty(grp1)\n grp1 = zeros(size(yAvg,1), size(yAvg,2), size(yAvg,3), nCond);\n grp1Sum2 = zeros(size(yAvg,1), size(yAvg,2), size(yAvg,3), nCond);\n nTrials_tot{iBlk} = zeros(size(yAvg,3), nCond);\n end\n \n lstChInc = find(mlAct==1);\n for iC = 1:1:nCond\n nT = nTrials(iC);\n if nT>0\n if iRun==1\n grp1(:,:,lstChInc,iC) = yAvg(:,:,lstChInc,iC) * nT;\n grp1Sum2(:,:,lstChInc,iC) = ySum2(:,:,lstChInc,iC);\n nTrials_tot{iBlk}(lstChInc,iC) = nT;\n else\n for iCh=1:length(lstChInc) %size(yAvg,3)\n for iHb=1:size(yAvg,2)\n % Make sure 3rd arg to interp1 is column vector to guarauntee interp1 output is column vector\n % which matches grp1 dimensions when adding the two.\n grp1(:,iHb,lstChInc(iCh),iC) = grp1(:,iHb,lstChInc(iCh),iC) + interp1(tHRF,yAvg(:,iHb,lstChInc(iCh),iC),tHRF(:)) * nT;\n grp1Sum2(:,iHb,lstChInc(iCh),iC) = grp1Sum2(:,iHb,lstChInc(iCh),iC) + interp1(tHRF,ySum2(:,iHb,lstChInc(iCh),iC),tHRF(:));\n end\n nTrials_tot{iBlk}(lstChInc(iCh),iC) = nTrials_tot{iBlk}(lstChInc(iCh),iC) + nT;\n end\n end\n end\n end\n \n if ~isempty(grp1)\n for iC = 1:size(grp1,4)\n for iCh = 1:size(grp1,3)\n yAvg(:,:,iCh,iC) = grp1(:,:,iCh,iC) / nTrials_tot{iBlk}(iCh,iC);\n \n % We want to distinguish between no trials and 1 trial:\n % If there are no trials, we have no HRF data and no std which\n % the first case will calculate as opposed to one trial (2nd case)\n % where we have all zeros.\n if(nTrials_tot{iBlk}(iCh,iC)~=1)\n yAvgStd(:,:,iCh,iC) = ( (1/(nTrials_tot{iBlk}(iCh,iC)-1))*grp1Sum2(:,:,iCh,iC) - (nTrials_tot{iBlk}(iCh,iC)/(nTrials_tot{iBlk}(iCh,iC)-1))*(grp1(:,:,iCh,iC) / nTrials_tot{iBlk}(iCh,iC)).^2).^0.5 ;\n else\n yAvgStd(:,:,iCh,iC) = zeros(size(grp1Sum2(:,:,iCh,iC)));\n end\n \n %%%% Snirf stuff: Once we get to the last run, we've accumulated our averages. \n %%%% Now we can set channel descriptors for avg and standard deviation\n if iRun == length(yAvgRuns)\n yAvgStdOut(iBlk).AddChannelHbO(ml(iCh,1), ml(iCh,2), iC);\n yAvgStdOut(iBlk).AddChannelHbR(ml(iCh,1), ml(iCh,2), iC);\n yAvgStdOut(iBlk).AddChannelHbT(ml(iCh,1), ml(iCh,2), iC);\n end\n end\n \n %%%% Snirf stuff: Once we get to the last run, we've accumulated our averages.\n %%%% Now we can set channel descriptors for avg and standard deviation\n if iRun == length(yAvgRuns)\n yAvgStdOut(iBlk).AppendDataTimeSeries(yAvgStd(:,:,:,iC));\n end\n end \n end \n end\n end\nend\n \n", "meta": {"author": "BUNPC", "repo": "Homer3", "sha": "d0fac4b22d1069eaa5cba268a225eb117ddcdca1", "save_path": "github-repos/MATLAB/BUNPC-Homer3", "path": "github-repos/MATLAB/BUNPC-Homer3/Homer3-d0fac4b22d1069eaa5cba268a225eb117ddcdca1/FuncRegistry/UserFunctions/Archive/hmrS_SessAvgStd2_oldversion_nirs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.38265094245336506}} {"text": "function density = p02_density ( m, n, point )\n\n%*****************************************************************************80\n%\n%% P02_DENSITY returns the density for problem 02.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Per-Olof Persson and Gilbert Strang,\n% A Simple Mesh Generator in MATLAB,\n% SIAM Review,\n% Volume 46, Number 2, June 2004, pages 329-345.\n%\n% Parameters:\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real POINT(M,N), the coordinates of the points.\n%\n% Output, real DENSITY(N), the mesh density at each point.\n%\n density = ones ( 1, n );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_triangulation/p02_density.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.731058584489497, "lm_q1q2_score": 0.38265093938638767}} {"text": "function v = isnaturalnumber(x)\n\nv = isnumeric(x) & x > 0 & round(x) == x;", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/misc/isnaturalnumber.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3826509363194103}} {"text": "function output = callqpas(interfacedata)\n\n% Retrieve needed data\noptions = interfacedata.options;\nmodel = yalmip2quadprog(interfacedata);\n\nif size(model.Aeq,1)==0\n model.Aeq = [];\n model.beq = [];\nend\n\nif options.savedebug\n save debugfile model\nend\n\nif options.showprogress;showprogress(['Calling ' interfacedata.solver.tag],options.showprogress);end\nsolvertime = tic;\n[x,flag,lm] = qpas(model.Q, model.c, model.A, model.b, model.Aeq, model.beq, model.lb, model.ub, options.verbose);\nsolvertime = toc(solvertime);\n\n% Internal format for duals\nif ~isempty(lm)\n D_struc = [lm.equality;lm.inequality];\nelse\n D_struc = [];\nend\n\nif isempty(flag)\n problem = 9;\nelse\n % Check, currently not exhaustive...\n switch flag\n case 0\n problem = 0;\n case 2\n problem = 1;\n otherwise\n problem = 1;\n end\nend\n\n% Save all data sent to solver?\nif options.savesolverinput\n solverinput = model;\nelse\n solverinput = [];\nend\n\n% Save all data from the solver?\nif options.savesolveroutput\n solveroutput.x = x;\n solveroutput.flag = flag;\n solveroutput.lm = lm;\nelse\n solveroutput = [];\nend\n\n% Standard interface \noutput = createOutputStructure(x(:),D_struc,[],problem,interfacedata.solver.tag,solverinput,solveroutput,solvertime);", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/solvers/callqpas.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3826509363194103}} {"text": "function [Y, Phi] = modelOut(model, X, varargin)\n\n% MODELOUT Give the output of a model for given X.\n% FORMAT\n% DESC gives the output of the model for a given input X. For\n% latent variable models it gives a position in data space given a\n% position in latent space.\n% ARG model : structure specifying the model.\n% ARG X : input location(s) for which output is to be computed.\n% RETURN Y : output location(s) corresponding to given input\n% locations.\n%\n% FORMAT\n% DESC gives the output of the model for a given input X. For\n% latent variable models it gives a position in data space given a\n% position in latent space.\n% ARG model : structure specifying the model.\n% ARG X : input location(s) for which output is to be computed.\n% RETURN Phi : output basis function(s) corresponding to given input\n% RETURN Y : output location(s) corresponding to given input\n% locations.\n%\n% SEEALSO : modelCreate\n%\n% COPYRIGHT : Neil D. Lawrence, 2005, 2006\n%\n% MODIFICATIONS : Cark Henrik Ek, 2008\n\n% MLTOOLS\n\nfhandle = str2func([model.type 'Out']);\nif nargout > 1\n [Y, Phi] = fhandle(model, X, varargin{:});\nelse\n Y = fhandle(model, X, varargin{:});\nend\nif(isfield(model,'indexOut')&&~isempty(model.indexOut))\n Y(:,setdiff(1:1:size(Y,2),model.indexOut)) = NaN;\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/modelOut.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585669110203, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.38265093018545526}} {"text": "function connection = skelConnectionMatrix(skel);\n\n% SKELCONNECTIONMATRIX Compute the connection matrix for the structure.\n% FORMAT\n% DESC computes the connection matrix for the structure. Returns a matrix\n% which has zeros at all entries except those that are connected in the\n% skeleton.\n% ARG skel : the skeleton for which the connectivity is required.\n% RETURN connection : connectivity matrix.\n%\n% COPYRIGHT : Neil D. Lawrence, 2006\n%\n% SEEALSO : skelVisualise, skelModify\n \n% MOCAP\n\nconnection = zeros(length(skel.tree));\nfor i = 1:length(skel.tree);\n for j = 1:length(skel.tree(i).children) \n connection(i, skel.tree(i).children(j)) = 1;\n end\nend\n\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mocap/skelConnectionMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.38253663040239844}} {"text": "% OPTIMI toolbox\n% Version 0.13\t\tMonday 21 Nov 2005 at 08:49\n% Copyright (c) 2005 Neil D. Lawrence\n% \n% CMPNDTIEPARAMETERS Tie parameters together.\n% EXPTRANSFORM Constrains a parameter to be positive through exponentiation.\n% NEGLOGLOGIT Constrains a parameter to be positive.\n% OPTIMISEPARAMS Optimise parameters.\n% OPTOPTIONS Give optimisation options for NETLAB.\n% SIGMOIDTRANSFORM Constrains a parameter to be between 0 and 1.\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/optimi/Contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6334102775181399, "lm_q1q2_score": 0.3825366304023984}} {"text": "function varargout = dsxy2figxy2(varargin)\n% dsxy2figxy -- Transform point or position from axis to figure coords\n% Transforms [axx axy] or [xypos] from axes hAx (data) coords into coords\n% wrt GCF for placing annotation objects that use figure coords into data\n% space. The annotation objects this can be used for are\n% arrow, doublearrow, textarrow\n% ellipses (coordinates must be transformed to [x, y, width, height])\n% Note that line, text, and rectangle anno objects already are placed\n% on a plot using axes coordinates and must be located within an axes.\n% Usage: Compute a position and apply to an annotation, e.g.,\n% [axx axy] = ginput(2);\n% [figx figy] = getaxannopos(gca, axx, axy);\n% har = annotation('textarrow',figx,figy);\n% set(har,'String',['(' num2str(axx(2)) ',' num2str(axy(2)) ')'])\n%% Obtain arguments (only limited argument checking is performed).\n% Determine if axes handle is specified\nif length(varargin{1})== 1 && ishandle(varargin{1}) && ...\n strcmp(get(varargin{1},'type'),'axes') \n hAx = varargin{1};\n varargin = varargin(2:end);\nelse\n hAx = gca;\nend;\n% Parse either a position vector or two 2-D point tuples\nif length(varargin)==1 % Must be a 4-element POS vector\n pos = varargin{1};\nelse\n [x,y] = deal(varargin{:}); % Two tuples (start & end points)\nend\n%% Get limits\naxun = get(hAx,'Units');\nset(hAx,'Units','normalized'); % Need normaized units to do the xform\naxpos = get(hAx,'Position');\naxlim = axis(hAx); % Get the axis limits [xlim ylim (zlim)]\naxwidth = diff(axlim(1:2));\naxheight = diff(axlim(3:4));\nyisreversed = strcmpi(get(hAx,'ydir'),'reverse');\nxisreversed = strcmpi(get(hAx,'xdir'),'reverse');\n%% Transform data from figure space to data space\nif exist('x','var') % Transform a and return pair of points\n xout = (x-axlim(1))/axwidth;\n yout = (y-axlim(3))/axheight;\n if xisreversed,\n xout = 1 - xout;\n end\n if yisreversed\n yout = 1 - yout;\n end\n \n varargout{1} = xout*axpos(3) + axpos(1);\n varargout{2} = yout*axpos(4) + axpos(2);\nelse % Transform and return a position rectangle\n xout = (pos(1)-axlim(1))/axwidth;\n yout = (pos(2)-axlim(3))/axheight;\n if xisreversed,\n xout = 1 - xout;\n end\n if yisreversed,\n yout = 1 - yout;\n end\n pos(1) = xout*axpos(3) + axpos(1);\n pos(2) = yout*axpos(4) + axpos(2);\n pos(3) = pos(3)*axpos(3)/axwidth;\n pos(4) = pos(4)*axpos(4)/axheight;\n varargout{1} = pos;\nend\n%% Restore axes units\nset(hAx,'Units',axun)", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/gui_setup/dsxy2figxy2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778403, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3825366220438009}} {"text": "function varargout = process_baseline_norm2( varargin )\n% PROCESS_BASELINE_NORM2: Normalization with respect to a baseline (A=baseline).\n\n% @=============================================================================\n% This function is part of the Brainstorm software:\n% https://neuroimage.usc.edu/brainstorm\n% \n% Copyright (c) University of Southern California & McGill University\n% This software is distributed under the terms of the GNU General Public License\n% as published by the Free Software Foundation. Further details on the GPLv3\n% license can be found at http://www.gnu.org/copyleft/gpl.html.\n% \n% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED \"AS IS,\" AND THE\n% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY\n% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF\n% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY\n% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.\n%\n% For more information type \"brainstorm license\" at command prompt.\n% =============================================================================@\n%\n% Authors: Francois Tadel, 2016\n\neval(macro_method);\nend\n\n\n%% ===== GET DESCRIPTION =====\nfunction sProcess = GetDescription() %#ok\n % Description the process\n sProcess.Comment = 'Baseline normalization (A=baseline)';\n sProcess.FileTag = @GetFileTag;\n sProcess.Category = 'Filter2';\n sProcess.SubGroup = 'Standardize';\n sProcess.Index = 205;\n sProcess.Description = 'https://neuroimage.usc.edu/brainstorm/Tutorials/SourceEstimation#Z-score';\n % Definition of the input accepted by this process\n sProcess.InputTypes = {'data', 'results', 'timefreq', 'matrix'};\n sProcess.OutputTypes = {'data', 'results', 'timefreq', 'matrix'};\n sProcess.nInputs = 2;\n sProcess.nMinFiles = 1;\n % Default values for some options\n sProcess.isSourceAbsolute = 0;\n sProcess.processDim = 1; % Process channel by channel\n sProcess.isPaired = 1;\n \n % === Process description\n sProcess.options.label1.Comment = ['This process normalizes each signal and frequency bin (FilesB)
' ...\n 'with respect to a baseline (FilesA). In the formulas below:
'...\n '  x = data to normalize (FilesB)
' ...\n '  μ = mean over the baseline (FilesA) [mean(x(iBaseline))]
' ...\n '  σ = standard deviation over the baseline (FilesA) [std(x(iBaseline))]

' ...\n 'Data selection:'];\n sProcess.options.label1.Type = 'label';\n % Common options\n sProcess = process_baseline_norm('DefineOptions', sProcess);\nend\n\n\n%% ===== FORMAT COMMENT =====\nfunction Comment = FormatComment(sProcess) %#ok\n Comment = process_baseline_norm('FormatComment', sProcess);\nend\n\n\n%% ===== GET FILE TAG =====\nfunction fileTag = GetFileTag(sProcess)\n fileTag = sProcess.options.method.Value;\nend\n\n\n%% ===== RUN =====\nfunction sInputB = Run(sProcess, sInputA, sInputB) %#ok\n % Call the corresponding process1\n sInputB = process_baseline_norm('Run', sProcess, sInputA, sInputB);\nend\n\n\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/toolbox/process/functions/process_baseline_norm2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.38249528960617923}} {"text": "function [imuData, frameRange] = loadImuData(imuDataFolder, imageTimestamps)\n% loadImageData Read captured image data into memory. Tries to load\n% individual images or a saved mat file if one exists.\n \n\n %Read IMU data\n oxtsData = loadOxtsliteData(imuDataFolder);\n % load IMU Data\n v_index = 9:11; % 12:14 body frame, 15:17 FLU frame\n a_index = 15:17; % 15:17 FLU frame\n omega_index = 21:23; % 18:20 body frame, 21:23 FLU frame\n \n\n \n dateStrings = loadTimestamps([imuDataFolder '/oxts']);\n timestamps = zeros(1, length(dateStrings));\n for i = 1:length(dateStrings)\n timestamps(i) = datenum_to_unixtime(datenum(dateStrings(i))) + 0.00001;\n end\n \n frameRange = 1:length(timestamps);\n frameNum = length(frameRange);\n imuData.timestamps = zeros(1, frameNum);\n imuData.measVel = zeros(3, frameNum);\n imuData.measOrient = zeros(4, frameNum);\n imuData.measOmega = zeros(3,frameNum);\n imuData.measAccel = zeros(3, frameNum);\n imuData.initialVelocity = zeros(3,1);\n \n \n % for all oxts packets do\n for meas_i=1:length(frameRange)\n\n i = frameRange(meas_i);\n % if there is no data \n if isempty(oxtsData{i})\n continue;\n end\n \n\n \n imuData.timestamps(1,meas_i) = timestamps(i);\n imuData.measOmega(:,meas_i) = oxtsData{i}(omega_index);\n\n \n rx = oxtsData{i}(4); % roll\n ry = oxtsData{i}(5); % pitch\n rz = oxtsData{i}(6); % heading \n Rx = [1 0 0; 0 cos(rx) -sin(rx); 0 sin(rx) cos(rx)]; % base => nav (level oxts => rotated oxts)\n Ry = [cos(ry) 0 sin(ry); 0 1 0; -sin(ry) 0 cos(ry)]; % base => nav (level oxts => rotated oxts)\n Rz = [cos(rz) -sin(rz) 0; sin(rz) cos(rz) 0; 0 0 1]; % base => nav (level oxts => rotated oxts)\n R = Rz*Ry*Rx;\n\n imuData.measOrient(:,meas_i) = rotMatToQuat(R);\n imuData.measVel(:,meas_i) = oxtsData{i}(v_index);\n imuData.measAccel(:,meas_i) = oxtsData{i}(a_index)' - R'*[0;0;9.81];\n\n \n if meas_i == 1\n imuData.initialVelocity = getRnb(oxtsData{i})'*[ oxtsData{i}(8); oxtsData{i}(7); 0; ];\n end\n end\n \n function dn = datenum_to_unixtime( date_num )\n dn = (date_num - 719529)*86400; %# 719529 == datenum(1970,1,1)\n end\n \nend", "meta": {"author": "yuzhou42", "repo": "MSCKF", "sha": "d95d90c85b24f27001bd0ecdce8739b6e602b6df", "save_path": "github-repos/MATLAB/yuzhou42-MSCKF", "path": "github-repos/MATLAB/yuzhou42-MSCKF/MSCKF-d95d90c85b24f27001bd0ecdce8739b6e602b6df/kitti_extraction/utils/loadImuData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3824952822140998}} {"text": "function t_opf_tspopf_pdipm(quiet)\n%T_OPF_TSPOPF_PDIPM Tests for PDIPM-based optimal power flow.\n\n% MATPOWER\n% Copyright (c) 2004-2016, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\nif nargin < 1\n quiet = 0;\nend\n\nnum_tests = 159;\n\nt_begin(num_tests, quiet);\n\n[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...\n VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;\n[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...\n MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...\n QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;\n[F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...\n TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...\n ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;\n[PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;\n\ncasefile = 't_case9_opf';\nif quiet\n verbose = 0;\nelse\n verbose = 0;\nend\n\nt0 = 'PDIPMOPF : ';\nmpopt = mpoption('opf.violation', 1e-6, 'pdipm.gradtol', 1e-8, ...\n 'pdipm.comptol', 1e-8, 'pdipm.costtol', 1e-9);\nmpopt = mpoption(mpopt, 'out.all', 0, 'verbose', verbose, 'opf.ac.solver', 'PDIPM');\n\n%% turn off some warnings\nif have_feature('matlab')\n sing_matrix_warn_id = 'MATLAB:nearlySingularMatrix';\n s2 = warning('query', sing_matrix_warn_id);\n warning('off', sing_matrix_warn_id);\nend\n\nif have_feature('pdipmopf')\n %% set up indices\n ib_data = [1:BUS_AREA BASE_KV:VMIN];\n ib_voltage = [VM VA];\n ib_lam = [LAM_P LAM_Q];\n ib_mu = [MU_VMAX MU_VMIN];\n ig_data = [GEN_BUS QMAX QMIN MBASE:APF];\n ig_disp = [PG QG VG];\n ig_mu = (MU_PMAX:MU_QMIN);\n ibr_data = (1:ANGMAX);\n ibr_flow = (PF:QT);\n ibr_mu = [MU_SF MU_ST];\n ibr_angmu = [MU_ANGMIN MU_ANGMAX];\n\n %% get solved AC OPF case from MAT-file\n load soln9_opf; %% defines bus_soln, gen_soln, branch_soln, f_soln\n\n %% run OPF\n t = t0;\n [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(casefile, mpopt);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n\n %% run with automatic conversion of single-block pwl to linear costs\n t = [t0 '(single-block PWL) : '];\n mpc = loadcase(casefile);\n mpc.gencost(2, NCOST) = 2;\n [r, success] = runopf(mpc, mpopt);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n xr = [r.var.val.Va;r.var.val.Vm;r.var.val.Pg;r.var.val.Qg;0;r.var.val.y];\n t_is(r.x, xr, 8, [t 'raw x returned from OPF']);\n\n% %% get solved AC OPF case from MAT-file\n% load soln9_opf_Plim; %% defines bus_soln, gen_soln, branch_soln, f_soln\n% \n% %% run OPF with active power line limits\n% t = [t0 '(P line lim) : '];\n% mpopt1 = mpoption(mpopt, 'opf.flow_lim', 'P');\n% [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(casefile, mpopt1);\n% t_ok(success, [t 'success']);\n% t_is(f, f_soln, 3, [t 'f']);\n% t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n% t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n% t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n% t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n% t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n% t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n% t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n% t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n% t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n% t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n% \n% %% run OPF with active power line limits\n% t = [t0 '(P^2 line lim) : '];\n% mpopt1 = mpoption(mpopt, 'opf.flow_lim', '2');\n% [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(casefile, mpopt1);\n% t_ok(success, [t 'success']);\n% t_is(f, f_soln, 3, [t 'f']);\n% t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n% t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n% t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n% t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n% t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n% t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n% t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n% t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n% t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n% t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n\n %%----- test OPF with quadratic gen costs moved to generalized costs -----\n mpc = loadcase(casefile);\n mpc.gencost = [\n 2 1500 0 3 0.11 5 0;\n 2 2000 0 3 0.085 1.2 0;\n 2 3000 0 3 0.1225 1 0;\n ];\n [baseMVA, bus_soln, gen_soln, gencost, branch_soln, f_soln, success, et] = runopf(mpc, mpopt);\n branch_soln = branch_soln(:,1:MU_ST);\n\n A = sparse(0,0);\n l = [];\n u = [];\n nb = size(mpc.bus, 1); % number of buses\n ng = size(mpc.gen, 1); % number of gens\n thbas = 1; thend = thbas+nb-1;\n vbas = thend+1; vend = vbas+nb-1;\n pgbas = vend+1; pgend = pgbas+ng-1;\n qgbas = pgend+1; qgend = qgbas+ng-1;\n nxyz = 2*nb + 2*ng;\n N = sparse((1:ng)', (pgbas:pgend)', mpc.baseMVA * ones(ng,1), ng, nxyz);\n fparm = [ 1 0 0 1;\n 1 -100 100 1;\n 1 -10 10 1 ];\n H = 2 * spdiags(mpc.gencost(:, 5), 0, ng, ng);\n Cw = mpc.gencost(:, 6);\n mpc.gencost(:, 5:7) = 0;\n\n %% run OPF with quadratic gen costs moved to generalized costs\n t = [t0 'w/quadratic generalized gen cost : '];\n [r, success] = opf(mpc, A, l, u, mpopt, N, fparm, H, Cw);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n t_is(r.cost.usr, f, 12, [t 'user cost']);\n\n %%----- run OPF with legacy costs and deadzone -----\n load soln9_opf;\n mpc = loadcase(casefile);\n mpc.N = sparse((1:nb)', (vbas:vend)', ones(nb,1), nb, nxyz);\n mpc.fparm = ones(nb,1) * [ 2 1.08 0.02 1e8 ];\n mpc.Cw = ones(nb, 1);\n t = [t0 'w/legacy cost, in deadzone : '];\n r = runopf(mpc, mpopt);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(r.success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n t_is(r.cost.usr, 0, 12, [t 'user cost']);\n\n t = [t0 'w/legacy cost, not in deadzone : '];\n mpc.fparm = ones(nb,1) * [ 2 1.08 0.01 1e8 ];\n r = runopf(mpc, mpopt);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(r.success, [t 'success']);\n t_is(f, 9009.0890, 3, [t 'f']);\n t_is([min(bus(:, VM)) mean(bus(:, VM)) max(bus(:, VM))], ...\n [1.066624, 1.083980, 1.091698], 5, [t 'bus voltage']);\n t_is(r.cost.usr, 1673.065465, 5, [t 'user cost']);\n\n %%----- run OPF with extra linear user constraints & costs -----\n %% single new z variable constrained to be greater than or equal to\n %% deviation from 1 pu voltage at bus 1, linear cost on this z\n %% get solved AC OPF case from MAT-file\n load soln9_opf_extras1; %% defines bus_soln, gen_soln, branch_soln, f_soln\n A = sparse([1;1;2;2],[10;25;10;25],[-1;1;1;1],2,25);\n u = [Inf; Inf];\n l = [-1; 1];\n\n N = sparse(1, 25, 1, 1, 25); %% new z variable only\n fparm = [1 0 0 1]; %% w = r = z\n H = sparse(1,1); %% no quadratic term\n Cw = 100;\n\n t = [t0 'w/extra constraints & costs 1 : '];\n [r, success] = opf(casefile, A, l, u, mpopt, N, fparm, H, Cw);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n t_is(r.var.val.z, 0.025419, 6, [t 'user variable']);\n t_is(r.cost.usr, 2.5419, 4, [t 'user cost']);\n\n %%----- test OPF with capability curves -----\n mpc = loadcase('t_case9_opfv2');\n %% remove angle diff limits\n mpc.branch(1, ANGMAX) = 360;\n mpc.branch(9, ANGMIN) = -360;\n\n %% get solved AC OPF case from MAT-file\n load soln9_opf_PQcap; %% defines bus_soln, gen_soln, branch_soln, f_soln\n \n %% run OPF with capability curves\n t = [t0 'w/capability curves : '];\n [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(mpc, mpopt);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n\n %%----- test OPF with angle difference limits -----\n mpc = loadcase('t_case9_opfv2');\n %% remove capability curves\n mpc.gen(2:3, [PC1, PC2, QC1MIN, QC1MAX, QC2MIN, QC2MAX]) = zeros(2,6);\n\n %% get solved AC OPF case from MAT-file\n load soln9_opf_ang; %% defines bus_soln, gen_soln, branch_soln, f_soln\n \n %% run OPF with angle difference limits\n t = [t0 'w/angle difference limits : '];\n [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(mpc, mpopt);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 1, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n t_is(branch(:,ibr_angmu ), branch_soln(:,ibr_angmu ), 2, [t 'branch angle mu']);\n\n %%----- test OPF with ignored angle difference limits -----\n %% get solved AC OPF case from MAT-file\n load soln9_opf; %% defines bus_soln, gen_soln, branch_soln, f_soln\n\n %% run OPF with ignored angle difference limits\n t = [t0 'w/ignored angle difference limits : '];\n mpopt1 = mpoption(mpopt, 'opf.ignore_angle_lim', 1);\n [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(mpc, mpopt1);\n %% ang limits are not in this solution data, so let's remove them\n branch(1, ANGMAX) = 360;\n branch(9, ANGMIN) = -360;\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n\n %% angle bounded above by 0, unbounded below\n %% for issue/18\n t = [t0 'w/angle difference limit = 0 : '];\n mpc = loadcase(casefile);\n b = 5;\n mpc.branch(b, ANGMAX) = 0;\n r = runopf(mpc, mpopt);\n t_ok(success, [t 'success']);\n diff = r.bus(r.branch(b, F_BUS), VA) - r.bus(r.branch(b, T_BUS), VA);\n t_is(diff, 0, 5, [t 'angle diff']);\n\n %%----- OPF with ref bus not = bus 1, ref angle not = 0 -----\n t = [t0 'ref bus ~= 1, ref ang ~= 0 : '];\n mpc = loadcase(casefile);\n mpc.bus([1;3], BUS_TYPE) = [PV; REF]; %% swap bus types\n bus_soln([1;3], BUS_TYPE) = bus_soln([3;1], BUS_TYPE); %% swap bus types\n mpc.bus(3, VA) = 3.3014277;\n r = runopf(mpc, mpopt);\n [success, f, bus, gen, branch] = deal(r.success, r.f, r.bus, r.gen, r.branch);\n t_ok(success, [t 'success']);\n t_is(f, f_soln, 3, [t 'f']);\n t_is( bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n\n %%----- test OPF with opf.use_vg -----\n %% get solved AC OPF case from MAT-file\n load soln9_opf_vg; %% defines bus_soln, gen_soln, branch_soln, f_soln\n %% and bus_soln1, gen_soln1, branch_soln1, f_soln1\n \n %% run with opf.use_vg = 1\n t = [t0 'w/opf.use_vg = 1 : '];\n mpc = loadcase(casefile);\n mpc.gen = mpc.gen([1 2 1 3], :);\n mpc.gencost = mpc.gencost([1 2 1 3], :);\n mpc.gen([1 3], [PMAX PMIN]) = mpc.gen([1 3], [PMAX PMIN]) / 2;\n mpc.gen(3, [QMIN, QMAX]) = 0; %% no reactive capability for gen 3\n mpc.gencost([1 3], COST:end) = mpc.gencost([1 3], COST:end) / 2;\n mpc.gen(1, VG) = 1.05;\n mpc.gen(3, VG) = 1.06;\n mpopt1 = mpoption(mpopt, 'opf.use_vg', 1);\n r = runopf(mpc, mpopt1);\n t_ok(r.success, [t 'success']);\n t_is(r.f, f_soln, 3, [t 'f']);\n t_is( r.bus(:,ib_data ), bus_soln(:,ib_data ), 10, [t 'bus data']);\n t_is( r.bus(:,ib_voltage), bus_soln(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( r.bus(:,ib_lam ), bus_soln(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( r.bus(:,ib_mu ), bus_soln(:,ib_mu ), 2, [t 'bus mu']);\n t_is( r.gen(:,ig_data ), gen_soln(:,ig_data ), 10, [t 'gen data']);\n t_is( r.gen(:,ig_disp ), gen_soln(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( r.gen(:,ig_mu ), gen_soln(:,ig_mu ), 3, [t 'gen mu']);\n t_is(r.branch(:,ibr_data ), branch_soln(:,ibr_data ), 10, [t 'branch data']);\n t_is(r.branch(:,ibr_flow ), branch_soln(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(r.branch(:,ibr_mu ), branch_soln(:,ibr_mu ), 2, [t 'branch mu']);\n\n %% run with opf.use_vg = 0.9\n t = [t0 'w/opf.use_vg = 0.9 : '];\n mpopt1 = mpoption(mpopt, 'opf.use_vg', 0.9);\n r = runopf(mpc, mpopt1);\n t_ok(r.success, [t 'success']);\n t_is(r.f, f_soln1, 3, [t 'f']);\n t_is( r.bus(:,ib_data ), bus_soln1(:,ib_data ), 10, [t 'bus data']);\n t_is( r.bus(:,ib_voltage), bus_soln1(:,ib_voltage), 3, [t 'bus voltage']);\n t_is( r.bus(:,ib_lam ), bus_soln1(:,ib_lam ), 3, [t 'bus lambda']);\n t_is( r.bus(:,ib_mu ), bus_soln1(:,ib_mu ), 2, [t 'bus mu']);\n t_is( r.gen(:,ig_data ), gen_soln1(:,ig_data ), 10, [t 'gen data']);\n t_is( r.gen(:,ig_disp ), gen_soln1(:,ig_disp ), 3, [t 'gen dispatch']);\n t_is( r.gen(:,ig_mu ), gen_soln1(:,ig_mu ), 3, [t 'gen mu']);\n t_is(r.branch(:,ibr_data ), branch_soln1(:,ibr_data ), 10, [t 'branch data']);\n t_is(r.branch(:,ibr_flow ), branch_soln1(:,ibr_flow ), 3, [t 'branch flow']);\n t_is(r.branch(:,ibr_mu ), branch_soln1(:,ibr_mu ), 2, [t 'branch mu']);\n\n t = [t0 'hi-deg polynomial Pg costs : '];\n mpc = loadcase(casefile);\n mpc.gencost = [\n 2 1500 0 6 1e-6/5 0 0 0 0 0;\n 2 3000 0 5 1e-4/4 0 0 0 0 0;\n 2 2000 0 3 1/2 0 0 0 0 0;\n ];\n r = runopf(mpc, mpopt);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(r.success, [t 'success']);\n t_is(f, 11899.4652, 4, [t 'f']);\n t_is(gen(:, PG), [100.703628; 88.719864; 128.679485], 5, [t 'Pg']);\n t_is(gen(:, QG), [8.151114; -27.105856; 12.471647], 5, [t 'Qg']);\n t_is([min(bus(:, VM)) mean(bus(:, VM)) max(bus(:, VM))], ...\n [1.059191 1.079404 1.1], 5, [t 'bus voltage']);\n\n t = [t0 'hi-deg polynomial Qg costs : '];\n mpc = loadcase(casefile);\n mpc.gencost = [\n 2 1500 0 6 1e-6/5 0 0 0 0 0;\n 2 3000 0 5 1e-4/4 0 0 0 0 0;\n 2 2000 0 3 1/2 0 0 0 0 0;\n 2 0 0 6 1e-6/5 0 0 0 0 0;\n 2 0 0 3 1/2 0 0 0 0 0;\n 2 0 0 5 1e-4/4 0 0 0 0 0;\n ];\n r = runopf(mpc, mpopt);\n [f, bus, gen, branch] = deal(r.f, r.bus, r.gen, r.branch);\n t_ok(r.success, [t 'success']);\n t_is(f, 11998.8345, 4, [t 'f']);\n t_is(gen(:, PG), [100.853092; 89.258007; 128.518423], 5, [t 'Pg']);\n t_is(gen(:, QG), [-20.834352; -7.966093; 34.591995], 5, [t 'Qg']);\n t_is([min(bus(:, VM)) mean(bus(:, VM)) max(bus(:, VM))], ...\n [1.007729 1.050776 1.1], 5, [t 'bus voltage']);\n\n% %% OPF with user-defined nonlinear constraints\n% t = [t0 'w/nonlin eq constraint : '];\n% mpc = loadcase('case30');\n% mpc.user_constraints.nle = {\n% {'Pg_usr', 1, 'opf_nle_fcn1', 'opf_nle_hess1', {'Pg'}, {}}\n% };\n% r = runopf(mpc, mpopt);\n% t_ok(r.success, [t 'success']);\n% t_is(r.gen(1, PG) * r.gen(2, PG) / 100, r.gen(6, PG), 8, t);\n% t_is(r.gen(6, PG), 20.751163, 5, t);\n% %% check for indexing error, issue #77\n% t_is(r.raw.pimul(61), 0, 6, [t 'issue #77']);\n% t_is(r.mu.nln.u(61), 0, 6, [t 'issue #77']);\n\n %% OPF with all buses isolated\n t = [t0 'all buses isolated : '];\n mpc.bus(:, BUS_TYPE) = NONE;\n try\n r = runopf(mpc, mpopt);\n t_is(r.success, 0, 12, [t 'success = 0']);\n catch\n t_ok(0, [t 'unexpected fatal error']);\n end\n\n %% OPF with no branch limits\n t = [t0 'w/no branch limits : '];\n mpc = loadcase(casefile);\n mpc.branch(:, RATE_A) = 0;\n r = runopf(mpc, mpopt);\n t_ok(r.success, [t 'success']);\n t_is(r.f, 5496.128635, 4, [t 'f']);\n t_is(r.gen(:, PG), [90; 220.463932; 10], 5, [t 'Pg']);\n t_is([min(r.bus(:, VM)) mean(r.bus(:, VM)) max(r.bus(:, VM))], ...\n [1.070692 1.090449 1.1], 5, [t 'bus voltage']);\nelse\n t_skip(num_tests, [t0 'not available']);\nend\n\nif have_feature('matlab')\n warning(s2.state, sing_matrix_warn_id);\nend\n\nt_end;\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/t/t_opf_tspopf_pdipm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592641, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.38249528221409973}} {"text": "function [ resized_patch ] = get_pixels(im, pos, sz, resize_target)\n\nif isscalar(sz) %square sub-window\n sz = [sz, sz];\nend\n\n%make sure the size is not to small\nif sz(1) < 1\n sz(1) = 2;\nend\nif sz(2) < 1\n sz(2) = 2;\nend\n\n\nxs = floor(pos(2)) + (1:sz(2)) - floor(sz(2)/2);\nys = floor(pos(1)) + (1:sz(1)) - floor(sz(1)/2);\n\n%check for out-of-bounds coordinates, and set them to the values at\n%the borders\nxs(xs < 1) = 1;\nys(ys < 1) = 1;\nxs(xs > size(im,2)) = size(im,2);\nys(ys > size(im,1)) = size(im,1);\n\n%extract image\nim_patch = im(ys, xs, :);\n\nif isempty(resize_target)\n resized_patch = im_patch;\nelse\n resized_patch = mexResize(im_patch,resize_target,'auto');\nend\nend\n\n", "meta": {"author": "vision4robotics", "repo": "AutoTrack", "sha": "e9b34ae09702f152407a7bf7cce5e3ed75bf2797", "save_path": "github-repos/MATLAB/vision4robotics-AutoTrack", "path": "github-repos/MATLAB/vision4robotics-AutoTrack/AutoTrack-e9b34ae09702f152407a7bf7cce5e3ed75bf2797/feature/get_pixels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883592602051, "lm_q2_score": 0.6370307944803831, "lm_q1q2_score": 0.38233846733740606}} {"text": "function change_making_test01 ( )\n\n%*****************************************************************************80\n%\n%% CHANGE_MAKING_TEST01 lists the problem data.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 August 2014\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CHANGE_MAKING_TEST01:\\n' );\n fprintf ( 1, ' List the problem data.\\n' );\n\n test_num = 7;\n\n coin_num_list = [ ...\n 3, ...\n 5, ...\n 6, ...\n 7, ...\n 3, ...\n 6, ...\n 3 ];\n coin_value_list = { ...\n [ 5, 9, 13 ], ...\n [ 1, 4, 5, 8, 11 ], ...\n [ 1, 5, 10, 25, 50, 100 ], ...\n [ 1, 2, 6, 12, 24, 48, 60 ], ...\n [ 1, 3, 4 ], ...\n [ 16, 17, 23, 24, 39, 40 ], ...\n [ 6, 9, 20 ] };\n target_list = [ ...\n 19, ...\n 29, ...\n 96, ...\n 96, ...\n 6, ...\n 100, ...\n 43 ];\n\n for test = 1 : test_num\n\n coin_num = coin_num_list(test);\n coin_value = coin_value_list{test};\n target = target_list(test);\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Test %d:\\n', test );\n fprintf ( 1, ' Number of coins = %d\\n', coin_num );\n fprintf ( 1, ' Values = ' );\n for i = 1 : coin_num\n fprintf ( 1, ' %d', coin_value(i) );\n end\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Target = %d\\n', target );\n\n end\n\n return\nend\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/change_making/change_making_test01.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.6992544210587585, "lm_q1q2_score": 0.38230906993673663}} {"text": "function [fx,dfdx,dfdp] = f_HRF2(Xt,P,ut,in)\n% Balloon (HRF) model evolution function in log-space\n% function [fx,dfdx,dfdp] = f_HRF2(Xt,P,ut,in)\n% This function evaluates the evolution function derived from the balloon\n% model for the hemodynamic response function. It can be called in two\n% ways: (i) as a \"stand-alone\" evolution function, whereby the system's\n% states are hemodynamic states of the balloon model, or (ii) as a\n% generalized observation function, where the real system's states are the\n% neuronal states of a DCM for fMRI model. Note that the hemodynamic states\n% are in log-space, for positivity constrints.\n\n\ndeltat = in.deltat;\nn = size(Xt,1);\n\n% Get parameters\n[E0,V0,tau0,kaf,kas,epsilon,alpha] = BOLD_parameters;\nif isfield(in,'fullDCM') && in.fullDCM\n nreg = n./5;\n ind1 = in.ind1;\n ind2 = in.ind2;\n ind3 = in.ind3;\n ind4 = in.ind4;\n n1 = in.n1;\n n2 = in.n2;\n n3 = in.n3;\n n4 = in.n4;\n try, n5=in.n5; catch, n5=[];end\n epsilon = 1;\n alpha = alpha.*exp(P(in.ind5));\nelse\n nreg = n./4;\n ind1 = 1;\n ind2 = 2;\n ind3 = 3;\n ind4 = 4;\n n1 = 1;\n n2 = 2;\n n3 = 3;\n n4 = 4;\n epsilon = epsilon.*exp(P(5));\n alpha = alpha.*exp(P(6));\nend\n% [E0,dsdp] = sigm(P(ind1)-0.6633,struct('beta',1,'G0',1,'INV',0));\n% E0 = E0(:);\nE0 = 1./(1+exp(-(P(ind1)-0.6633)));\ndsdp = E0.*(1-E0);\ntau0 = tau0.*exp(P(ind2));\nkaf = kaf.*exp(P(ind3));\nkas = kas.*exp(P(ind4));\n\nif isfield(in,'xshift') % for numerical stability\n xshift = in.xshift;\nelse\n xshift = 0;\nend\n\n% hemodynamic states ...\nif isfield(in,'linearized') && in.linearized\n x1 = zeros(nreg,1);\n x2 = ones(nreg,1);\n x3 = ones(nreg,1);\n x4 = ones(nreg,1);\nelse\n % vasodilatory signal s(t)\n x1 = Xt(n1,:);\n % blood inflow f(t)\n if isfield(in,'logx2') && ~in.logx2\n x2 = Xt(n2,:) + 1; % deviation to steady-state!\n else\n x2 = exp(Xt(n2,:)) + xshift;\n end\n % blood volume v(t)\n x3 = exp(Xt(n3,:)) + 0.*xshift;\n % dHb content q(t)\n x4 = exp(Xt(n4,:)) + 0.*xshift;\nend\n% blood outflow\nfv = x3.^(1./alpha);\n% d[blood flow]/dXt(3)\ndfvdx = (1./alpha).*fv;\n% oxygen extraction\nff = (1-(1-E0).^(1./x2))./E0;\n% d[O2 extraction]/dXt(2)\nif isfield(in,'logx2') && ~in.logx2\n dffdx = log(1-E0).*(1-E0).^(1./x2)./(E0.*x2.^2);\nelse\n dffdx = log(1-E0).*(1-E0).^(1./x2)./(E0.*x2);\nend\n% ... and flow field, derivatives, etc...\nf = zeros(n,1);\nJ = zeros(n,n);\ndfdp = zeros(size(P,1),n);\n\n% Evaluate flow field\nf(n1) = (epsilon.*ut - kas.*x1 - kaf.*(x2 - 1));\nif isfield(in,'logx2') && ~in.logx2\n f(n2) = x1;\nelse\n f(n2) = x1./x2;\nend\nf(n3) = (x2 - fv)./(tau0.*x3);\nf(n4) = (x2.*ff./x4 - fv./x3)./tau0;\n\n\n% Evaluate jacobian and gradients wrt parameters\nfor i=1:nreg\n \n if isfield(in,'logx2') && ~in.logx2\n J(n1(i),n1(i):n1(i)+3) = [ -kas(i) , 1, 0, 0 ];\n J(n2(i),n1(i):n1(i)+3) = [ -kaf(i), 0, ...\n 1./(tau0(i).*x3(i)), ...\n (ff(i)+x2(i).*dffdx(i))./(x4(i).*tau0(i))];\n else\n J(n1(i),n1(i):n1(i)+3) = [ -kas(i) , 1./x2(i), 0, 0 ];\n J(n2(i),n1(i):n1(i)+3) = [ -kaf(i).*x2(i), -x1(i)./x2(i), ...\n x2(i)./(tau0(i).*x3(i)), ...\n x2(i).*(ff(i)+dffdx(i))./(tau0(i).*x4(i))];\n end\n J(n3(i),n1(i):n1(i)+3) = [ 0, 0,...\n -f(n3(i)) - dfvdx(i)./(tau0(i).*x3(i)) , ...\n (fv(i)-dfvdx(i))./(tau0(i).*x3(i))];\n J(n4(i),n1(i):n1(i)+3) = [ 0, 0, 0, ...\n -(x2(i).*ff(i))./(tau0(i).*x4(i)) ];\n \n \n if isfield(in,'linearized') && in.linearized\n \n tmp = log(1-E0(i))./E0(i);\n \n dfdp(ind1(i),n1(i):n1(i)+3) = [0,0,0,...\n -dsdp(i).*(1+tmp).*Xt(n2(i))./(tau0(i).*E0(i))];\n dfdp(ind2(i),n1(i):n1(i)+3) = [0,0,...\n (-Xt(n2(i))+Xt(n3(i))./alpha(i))./tau0(i),...\n -((ff(i)+dffdx(i)).*Xt(n2(i)) + (fv(i)-dfvdx(i)).*Xt(n3(i)) ...\n - ff(i).*Xt(n4(i)))./tau0(i)];\n dfdp(ind3(i),n1(i):n1(i)+3) = kaf(i).*[-Xt(n2(i)),0,0,0];\n dfdp(ind4(i),n1(i):n1(i)+3) = kas(i).*[-Xt(n1(i)),0,0,0];\n \n if isfield(in,'fullDCM') && in.fullDCM\n if ~isempty(n5)\n J(n5(i),n1(i)) = epsilon;\n end\n dfdp(in.ind5(i),n1(i):n1(i)+3) = [0,0,...\n Xt(n3(i))./(tau0(i).*alpha(i)),...\n Xt(n3(i))./(tau0(i).*alpha(i))];\n else\n dfdp(5,:) = epsilon.*[ut,0,0,0];\n dfdp(6,:) = [0,0,...\n Xt(n3(i))./(tau0(i).*alpha(i)),...\n Xt(n3(i))./(tau0(i).*alpha(i))];\n end\n \n else\n \n % gradient wrt parameters\n dfdp(ind1(i),n1(i):n1(i)+3) = [0,0,0,...\n (((1-E0(i)).^(-1+1./x2(i)))-x2(i).*ff(i))...\n .*dsdp(i)./(tau0(i).*x4(i).*E0(i))];\n dfdp(ind2(i),n1(i):n1(i)+3) = [0,0,...\n -(x2(i) - fv(i))./(tau0(i).*x3(i)),...\n -(x2(i).*ff(i)./x4(i) - fv(i)./x3(i))./tau0(i)];\n dfdp(ind3(i),n1(i):n1(i)+3) = kaf(i).*[-x2(i)+1,0,0,0];\n dfdp(ind4(i),n1(i):n1(i)+3) = kas(i).*[-x1(i),0,0,0];\n \n % complement gradients if used for full DCM model\n if isfield(in,'fullDCM') && in.fullDCM\n if ~isempty(n5)\n J(n5(i),n1(i)) = epsilon;\n end\n dfdp(in.ind5(i),n1(i):n1(i)+3) = [0,0,...\n log(x3(i)).*fv(i)./(tau0(i).*x3(i).*alpha(i)),...\n log(x3(i)).*fv(i)./(tau0(i).*x3(i).*alpha(i))];\n else\n dfdp(5,:) = epsilon.*[ut,0,0,0];\n dfdp(6,:) = [0,0,...\n log(x3).*fv./(tau0.*x3.*alpha),...\n log(x3).*fv./(tau0.*x3.*alpha)];\n end\n \n end\n \nend\n\n% Apply Euler discretization\nif isfield(in,'linearized') && in.linearized\n if isfield(in,'fullDCM') && in.fullDCM && ~isempty(n5)\n Cu = 0;\n else \n Cu = zeros(n,1);\n Cu(n1) = epsilon.*ut;\n end\n fx = Xt + deltat.*(J'*Xt + Cu);\nelse\n fx = Xt + deltat.*f;\nend\ndfdp = deltat.*dfdp;\ndfdx = eye(n) + deltat.*J;\n\n\n", "meta": {"author": "MBB-team", "repo": "VBA-toolbox", "sha": "01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414", "save_path": "github-repos/MATLAB/MBB-team-VBA-toolbox", "path": "github-repos/MATLAB/MBB-team-VBA-toolbox/VBA-toolbox-01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414/demos/_models/f_HRF2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7956581000631542, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.38229675209645364}} {"text": "function [img, v2smap]=surf2vol(node,face,xi,yi,zi,varargin)\n%\n% [img, v2smap]=surf2vol(node,face,xi,yi,zi,'options',values,...)\n%\n% convert a triangular surface to a shell of voxels in a 3D image\n%\n% author: Qianqian Fang (fangq nmr.mgh.harvard.edu)\n%\n% input:\n%\t node: node list of the triangular surface, 3 columns for x/y/z\n%\t face: triangle node indices, each row is a triangle\n% if face contains the 4th column, it indicates the label of\n% the face triangles (each face componment must be closed); if\n% face contains 5 columns, it stores a tetrahedral mesh with\n% labels, where the first 4 columns are the element list and \n% the last column is the element label;\n%\t xi,yi,zi: x/y/z grid for the resulting volume\n% options: 'fill', if set to 1, the enclosed voxels are labeled by 1\n% 'label', if set to 1, the enclosed voxels are labeled by\n% the corresponding label of the face or element;\n% setting 'label' to 1 also implies 'fill'.\n%\n% output:\n%\t img: a volumetric binary image at position of ndgrid(xi,yi,zi)\n% v2smap (optional): a 4x4 matrix denoting the Affine transformation to map\n% the voxel coordinates back to the mesh space.\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\nfprintf(1,'converting a closed surface to a volumetric binary image ...\\n');\n\nopt=varargin2struct(varargin{:});\nlabel=jsonopt('label',0,opt);\n\nelabel=[1];\nif(size(face,2)>=4)\n elabel=unique(face(:,end));\n if(size(face,2)==5)\n label=1;\n el=face;\n face=[];\n for i=1:length(elabel)\n fc=volface(el(el(:,5)==elabel(i),1:4));\n fc(:,4)=elabel(i);\n face=[face ; fc];\n end\n end\nelse\n fc=face;\nend\n\nimg=zeros(length(xi),length(yi),length(zi));\n\nfor i=1:length(elabel)\n if(size(face,2)==4)\n fc=face(face(:,4)==elabel(i),1:3);\n end\n im=surf2volz(node(:,1:3),fc(:,1:3),xi,yi,zi);\n im=im | shiftdim(surf2volz(node(:,[3 1 2]),fc(:,1:3),zi,xi,yi),1);\n im=im | shiftdim(surf2volz(node(:,[2 3 1]),fc(:,1:3),yi,zi,xi),2);\n\n v2smap=[];\n\n % here we assume the grid is uniform; surf2vol can handle non-uniform grid, \n % but the affine output is not correct in this case\n\n if(jsonopt('fill',0,opt) || label)\n im=imfill(im,'holes');\n if(label)\n im=im*elabel(i);\n end\n end\n img=max(im,img);\nend\n \nif(nargout>1) \n dlen=abs([xi(2)-xi(1) yi(2)-yi(1) zi(2)-zi(1)]);\n p0=min(node);\n offset=p0;\n v2smap=diag(abs(dlen));\n v2smap(4,4)=1;\n v2smap(1:3,4)=offset';\nend", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/iso2mesh/surf2vol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.38225740061669117}} {"text": "function expmDimAdjust = getExpmDimAdjust(disc)\n%GETEXPMDIMADJUST Adjust dimension of discretization for LINOP/EXPM.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nexpmDimAdjust = max(getDiffOrder(disc.source), 0);\nexpmDimAdjust = max(expmDimAdjust, [], 1);\n \nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@ultraS/getExpmDimAdjust.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.6619228891883799, "lm_q1q2_score": 0.38225740061669106}} {"text": "function plotOcclusionBoundaries(bndinfo, blabels)\n% im = drawOcclusionBoundaries(im, bndinfo, blabels)\n% blabels(i) = (0, 1, or 2) for off, left, or right\n%\n\nif numel(blabels)==bndinfo.ne*2\n blabels = blabels(1:end/2) + 2*blabels(end/2+1:end);\nend\n\nhold on\nimsize = bndinfo.imsize;\n\ncolor = [0.01 0.01 0.01];\n\nindices = bndinfo.edges.indices;\n\narrowdist = ceil(sqrt(imsize(1).^2 + imsize(2).^2)/10);\n\nfor k = 1:numel(indices)\n \n if blabels(k)>0\n \n ind = double(indices{k});\n [ey, ex] = ind2sub(bndinfo.imsize(1:2), ind);\n npix = numel(ind);\n\n narrows = ceil(npix/arrowdist);\n\n epos = ceil((1:narrows) / (narrows+1) * npix);\n\n for j = 1:numel(epos)\n\n [ay, ax] = ind2sub(imsize(1:2), ind(epos(j)));\n\n\n if blabels(k)==1\n [y1, x1] = ind2sub(imsize(1:2), ind(max(epos(j)-10,1)));\n [y2, x2] = ind2sub(imsize(1:2), ind(min(epos(j),npix)));\n else % blabels(k)==2;\n [y1, x1] = ind2sub(imsize(1:2), ind(min(epos(j)+10,npix)));\n [y2, x2] = ind2sub(imsize(1:2), ind(min(epos(j),npix)));\n end\n theta = atan2(y2-y1, x2-x1);\n% if blabels(k)==2\n% theta = mod(theta+pi, 2*pi);\n% end\n\n asx = ax - cos(theta);\n asy = ay - sin(theta);\n\n %[ax,ay] = dsxy2figxy(gca, ax, ay);\n %[asx, asy] = dsxy2figxy(gca, asx, asy);\n ax = (ax-1)/(imsize(2)-1); ay = 1-(ay-1)/(imsize(1)-1); \n asx = (asx-1)/(imsize(2)-1); asy = 1-(asy-1)/(imsize(1)-1);\n \n plot(ex, ey, 'Color', 1-color, 'LineWidth', 3);\n plot(ex, ey, 'Color', color, 'LineWidth', 1);\n \n annotation('arrow', [asx ax], [asy ay], 'LineStyle', 'none', ...\n 'HeadWidth', 17, 'HeadLength', 10);\n end\n end\nend\n\n\n% arrhsv = ones(5, 3);\n% arrhsv(:, 1) = [100 0 135 169 42]/255; \n% \n% colors = max(hsv2rgb(arrhsv), 1/255); % avoid pixel intensity of 0\n% \n% [imh, imw] = size(bndinfo.wseg);\n% edgeim = zeros([imh imw 3]);\n% \n% hasarrow = false(bndinfo.ne*2, 1);\n% arrowpos = zeros(1000, 2);\n% narrow = 0;\n% \n% for k = 1:numel(blabels)\n% if blabels(k) > 0\n% \n% ku = mod(k-1, bndinfo.ne)+1;\n% \n% cols = colors(blabels(k), :);\n% pix = bndinfo.edges.indices{ku};\n% npix = size(edgeim, 1)*size(edgeim, 2);\n% for b = 1:3\n% edgeim(pix + (b-1)*npix) = cols(b);\n% end \n% \n% jcts = bndinfo.edges.junctions(ku, :);\n% if k~=ku\n% jcts = jcts([2 1]);\n% end \n% \n% x = bndinfo.junctions.position(jcts, 1);\n% y = bndinfo.junctions.position(jcts, 2); \n% \n% if ~any(sum((arrowpos(1:narrow, :) - repmat([x(2) y(2)], narrow, 1)).^2, 2) < 20^2) ...\n% && (numel(pix)>10)\n% \n% narrow = narrow + 1;\n% arrowpos(narrow, :) = [x(2) y(2)];\n% \n% arrow = struct('x', x(2), 'y', y(2), ...\n% 'angle', atan2(-(y(2)-y(1)), x(2)-x(1)), ...\n% 'radius', 0, 'head_length', round(sqrt(npix)/50), ...\n% 'head_base_angle', 30);\n% arrow.angle = mod(arrow.angle/pi*180, 360);\n% edgeim = draw_arrow_image(edgeim, arrow, cols);\n% end\n% \n% end\n% end\n% \n% sz = ceil(sqrt(size(im, 1).^2 + size(im,2).^2) / 500);\n% \n% for b = 1:3\n% edgeim(:, :, b) = ordfilt2(edgeim(:, :, b), sz*sz, ones(sz, sz));\n% end\n% \n% if strcmp(class(im), 'uint8')\n% edgeim = im2uint8(edgeim);\n% end\n% \n% im(edgeim>0) = edgeim(edgeim>0);\n% \n% % hold off, clf, imagesc(im), axis image, hold on\n% % drawnow;\n% \n% % dy = -1;\n% % dx = -1;\n% %\n% % for k = 1:numel(blabels)\n% % if blabels(k) > 0\n% % ku = mod(k-1, bndinfo.ne)+1;\n% % jcts = bndinfo.edges.junctions(ku, :);\n% % if k~=ku\n% % jcts = jcts([2 1]);\n% % end\n% % \n% % x = min(max((bndinfo.junctions.position(jcts, 1)+dx),1), imw);\n% % y = min(max((bndinfo.junctions.position(jcts, 2)+dy), 1), imh);\n% % [arrowx,arrowy] = dsxy2figxy(gca, x, y); \n% % \n% % if mod(k, 5)==0\n% % annotation('arrow', arrowx, 1-arrowy, ...\n% % 'Color', colors(blabels(k), :), 'HeadStyle', 'vback2', 'LineStyle', 'none'); \n% % end\n% % \n% % end\n% % end\n% \n% \n", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/iccv07Final/src/display/plotOcclusionBoundaries.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.38225739291383515}} {"text": "function [ eigenvalues, kpoints, nelect ] = import_eigenval( filename )\n%IMPORT_EIGENVAL Import a VASP EIGENVAL file.\n% [eigenvalues,kpoints,nelect] = IMPORT_EIGENVAL(filename) imports a VASP\n% EIGENVAL file. Optional parameter filename specifies the name of the \n% file. eigenvalues is a NKPOINTS x NBANDS x ISPIN array of eigenvalues,\n% kpoints is a NKPOINTS x 4 array of k-point coordinates and weights, and\n% nelect is the number of electrons.\n\n% todo:\n% check compatibility with non-spin-polarized files\n\n if nargin == 0\n filename='EIGENVAL';\n end\n \n fid = fopen(filename);\n if fid==-1\n error(['File ' filename ' not found']); \n end\n \n buffer = fscanf(fid, '%d', 4); % various data\n ispin = buffer(4); % 1 = non-polarized, 2 = polarized\n fgetl(fid); % empty string\n fgetl(fid); % various data\n fgetl(fid); % various data\n fgetl(fid); % various data\n fgetl(fid); % comment\n nelect = fscanf(fid, '%d', 1); % number of electrons\n nkpoints = fscanf(fid, '%d', 1); % number of k-points\n nbands = fscanf(fid, '%d', 1); % number of bands\n\n fgetl(fid); % empty string\n \n kpoints = zeros(nkpoints,4);\n eigenvalues = zeros(nkpoints, nbands, ispin);\n \n for kpoint = 1:nkpoints\n fgetl(fid); % blank line\n kpoints(kpoint,:) = fscanf(fid, '%f', 4)';\n fgetl(fid); % empty string\n for band = 1:nbands\n buffer = fscanf(fid,'%f',ispin+1);\n eigenvalues(kpoint,band,1:ispin) = buffer(2:(ispin+1));\n fgetl(fid); % empty string\n end\n end\n \n eigenvalues = sort(eigenvalues,2); % sort the bands by energy\n \nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/36836-vasplab/vasplab/import_eigenval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768249, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.38223607393474995}} {"text": "function noisyOut = findNoisyChannels(signal, noisyIn)\n% Identify bad channels in EEG using a two-stage approach\n%\n% reference = findNoisyChannels(signal)\n% reference = findNoisyChannels(signal, reference)\n%\n% First remove bad channels by amplitude, noise level, and correlation\n% Apply ransac after these channels have been removed.\n%\n% Input parameters:\n% signal - structure with srate, chanlocs, chaninfo, and data fields\n% noisyIn - structure with input parameters \n%\n% Notes: the signal is assumed to be high-passed. Removing line noise\n% is a good idea too.\n%\n% noisyIn: (fields are filled in on input if not present and propagated to output)\n% name - name of the input file\n% srate - sample rate in HZ\n% samples - number of samples in the data\n% evaluationChannels - a vector of channels to use\n% channelLocations - a structure of EEG channel locations\n% chaninfo - standard EEGLAB chaninfo (nose direction is relevant)\n% chanlocs - standard EEGLAB chanlocs structure\n% robustDeviationThreshold - z score cutoff for robust channel deviation\n% highFrequencyNoiseThreshold - z score cutoff for SNR (signal above 50 Hz)\n% correlationWindowSeconds - correlation window size in seconds (default = 1 sec)\n% correlationThreshold - correlation below which window is bad (default = 0.4)\n% badTimeThreshold - cutoff fraction of bad corr windows (default = 0.01)\n% ransacSampleSize - samples for computing ransac (default = 50)\n% ransacChannelFraction - fraction of channels for robust reconstruction (default = 0.25)\n% ransacCorrelationThreshold - cutoff correlation for abnormal wrt neighbors(default = 0.75)\n% ransacUnbrokenTime - cutoff fraction of time channel can have poor ransac predictability (default = 0.4)\n% ransacWindowSeconds - correlation window for ransac (default = 5 sec)\n%\n% Output parameters (c channels, w windows):\n% ransacPerformed - true if there were enough good channels to do ransac\n% noisyChannels - list of identified bad channel numbers\n% badChannelsFromCorrelation - list of bad channels identified by correlation\n% badChannelsFromDeviation - list of bad channels identified by amplitude\n% badChannelsFromHFNoise - list of bad channels identified by SNR\n% badChannelsFromRansac - list of channels identified by ransac\n% fractionBadCorrelationWindows - c x 1 vector with fraction of bad correlation windows\n% robustChannelDeviation - c x 1 vector with robust measure of average channel deviation\n% zscoreHFNoise - c x 1 vector with measure of channel noise level\n% maximumCorrelations - w x c array with max window correlation\n% ransacCorrelations = c x wr array with ransac correlations\n%\n% This function uses 4 methods for detecting bad channels after removing\n% from consideration channels that have NaN data or channels that are\n% identically constant.\n%\n% Method 1: too low or high amplitude. If the z score of robust\n% channel deviation falls below robustDeviationThreshold, the channel is\n% considered to be bad.\n% Method 2: too low an SNR. If the z score of estimate of signal above\n% 50 Hz to that below 50 Hz above highFrequencyNoiseThreshold, the channel\n% is considered to be bad.\n%\n% Method 3: low correlation with other channels. Here correlationWindowSize is the window\n% size over which the correlation is computed. If the maximum\n% correlation of the channel to the other channels falls below\n% correlationThreshold, the channel is considered bad in that window.\n% If the fraction of bad correlation windows for a channel\n% exceeds badTimeThreshold, the channel is marked as bad.\n%\n% After the channels from methods 2 and 3 are removed, method 4 is\n% computed on the remaining signals\n%\n% Method 4: each channel is predicted using ransac interpolation based\n% on a ransac fraction of the channels. If the correlation of\n% the prediction to the actual behavior is too low for too\n% long, the channel is marked as bad.\n%\n% Assumptions:\n% - The signal is a structure of continuous data with data, srate, chanlocs,\n% and chaninfo fields.\n% - The signal.data has been high pass filtered.\n% - No segments of the EEG data have been removed\n\n% Methods 1 and 4 are adapted from code by Christian Kothe and Methods 2\n% and 3 are adapted from code by Nima Bigdely-Shamlo\n%\n%% Check the incoming parameters\nif nargin < 1\n error('findNoisyChannels:NotEnoughArguments', 'requires at least 1 argument');\nelseif isstruct(signal) && ~isfield(signal, 'data')\n error('findNoisyChannels:NoDataField', 'requires a structure data field');\nelseif size(signal.data, 3) ~= 1\n error('findNoisyChannels:DataNotContinuous', 'data must be a 2D array');\nelseif nargin < 2 || ~exist('noisyIn', 'var') || isempty(noisyIn)\n noisyIn = struct();\nend\n\n%% Set the defaults and initialize as needed\nnoisyOut = getNoisyStructure();\ndefaults = getPrepDefaults(signal, 'reference');\n[noisyOut, errors] = checkPrepDefaults(noisyIn, noisyOut, defaults);\nif ~isempty(errors)\n error('findNoisyChannels:BadParameters', ['|' sprintf('%s|', errors{:})]);\nend\n%% Fix the channel locations\nchannelLocations = noisyOut.channelLocations;\nevaluationChannels = sort(noisyOut.evaluationChannels); % Make sure channels are sorted\nevaluationChannels = evaluationChannels(:)'; % Make sure row vector\nnoisyOut.evaluationChannels = evaluationChannels; \noriginalChannels = 1:size(signal.data, 1);\n\n%% Extract the data required\ndata = signal.data;\noriginalNumberChannels = size(data, 1); % Save the original channels\ndata = double(data(evaluationChannels, :))'; % Remove the unneeded channels\nsignalSize = size(data, 1);\ncorrelationFrames = noisyOut.correlationWindowSeconds * signal.srate;\ncorrelationWindow = 0:(correlationFrames - 1);\ncorrelationOffsets = 1:correlationFrames:(signalSize-correlationFrames);\nWCorrelation = length(correlationOffsets);\nransacFrames = noisyOut.ransacWindowSeconds*noisyOut.srate;\nransacWindow = 0:(ransacFrames - 1);\nransacOffsets = 1:ransacFrames:(signalSize-ransacFrames);\nWRansac = length(ransacOffsets);\nnoisyOut.zscoreHFNoise = zeros(originalNumberChannels, 1);\nnoisyOut.noiseLevels = zeros(originalNumberChannels, WCorrelation);\nnoisyOut.maximumCorrelations = ones(originalNumberChannels, WCorrelation);\nnoisyOut.dropOuts = zeros(originalNumberChannels, WCorrelation);\nnoisyOut.correlationOffsets = correlationOffsets;\nnoisyOut.channelDeviations = zeros(originalNumberChannels, WCorrelation);\nnoisyOut.robustChannelDeviation = zeros(originalNumberChannels, 1);\nnoisyOut.ransacCorrelations = ones(originalNumberChannels, WRansac);\nnoisyOut.ransacOffsets = ransacOffsets;\n\n%% Detect constant or NaN channels and remove from consideration\nnanChannelMask = sum(isnan(data), 1) > 0;\nnoSignalChannelMask = mad(data, 1, 1) < 10e-10 | std(data, 1, 1) < 10e-10;\nnoisyOut.noisyChannels.badChannelsFromNaNs = evaluationChannels(nanChannelMask);\nnoisyOut.noisyChannels.badChannelsFromNoData = evaluationChannels(noSignalChannelMask);\nevaluationChannels = setdiff(evaluationChannels, ...\n union(noisyOut.noisyChannels.badChannelsFromNaNs, ...\n noisyOut.noisyChannels.badChannelsFromNoData));\ndata = signal.data;\ndata = double(data(evaluationChannels, :))'; \n[signalSize, numberChannels] = size(data);\n\n%% Method 1: Unusually high or low amplitude (using robust std)\nchannelDeviation = 0.7413 *iqr(data); % Robust estimate of SD\nchannelDeviationSD = 0.7413 * iqr(channelDeviation);\nchannelDeviationMedian = nanmedian(channelDeviation);\nnoisyOut.robustChannelDeviation(evaluationChannels) = ...\n (channelDeviation - channelDeviationMedian) / channelDeviationSD;\n\n% Find channels with unusually high deviation \nbadChannelsFromDeviation = ...\n abs(noisyOut.robustChannelDeviation) > ...\n noisyOut.robustDeviationThreshold | ...\n isnan(noisyOut.robustChannelDeviation);\nbadChannelsFromDeviation = originalChannels(badChannelsFromDeviation);\nnoisyOut.noisyChannels.badChannelsFromDeviation = badChannelsFromDeviation(:)';\nnoisyOut.channelDeviationMedian = channelDeviationMedian;\nnoisyOut.channelDeviationSD = channelDeviationSD;\n\n%% Method 2: Compute the SNR (based on Christian Kothe's clean_channels)\n% Note: RANSAC uses the filtered values X of the data\nif noisyOut.srate > 100\n % Remove signal content above 50Hz and below 1 Hz\n B = design_fir(100,[2*[0 45 50]/noisyOut.srate 1],[1 1 0 0]);\n X = zeros(signalSize, numberChannels);\n parfor k = 1:numberChannels % Could be changed to parfor\n X(:,k) = filtfilt_fast(B, 1, data(:, k)); end\n % Determine z-scored level of EM noise-to-signal ratio for each channel\n noisiness = mad(data- X, 1)./mad(X, 1);\n noisinessMedian = nanmedian(noisiness);\n noisinessSD = mad(noisiness, 1)*1.4826;\n zscoreHFNoiseTemp = (noisiness - noisinessMedian) ./ noisinessSD;\n noiseMask = (zscoreHFNoiseTemp > noisyOut.highFrequencyNoiseThreshold) | ...\n isnan(zscoreHFNoiseTemp);\n % Remap channels to original numbering\n badChannelsFromHFNoise = evaluationChannels(noiseMask);\n noisyOut.noisyChannels.badChannelsFromHFNoise = badChannelsFromHFNoise(:)';\nelse\n X = data;\n noisinessMedian = 0;\n noisinessSD = 1;\n zscoreHFNoiseTemp = zeros(numberChannels, 1);\n noisyOut.noisyChannels.badChannelsFromHFNoise = [];\nend\n\n% Remap the channels to original numbering for the zscoreHFNoise\nnoisyOut.zscoreHFNoise(evaluationChannels) = zscoreHFNoiseTemp;\nnoisyOut.noisinessMedian = noisinessMedian;\nnoisyOut.noisinessSD = noisinessSD;\n\n%% Method 3: Global correlation criteria (from Nima Bigdely-Shamlo)\nchannelCorrelations = ones(WCorrelation, numberChannels);\nnoiseLevels = zeros(WCorrelation, numberChannels);\nchannelDeviations = zeros(WCorrelation, numberChannels);\nn = length(correlationWindow);\nxWin = reshape(X(1:n*WCorrelation, :)', numberChannels, n, WCorrelation);\ndataWin = reshape(data(1:n*WCorrelation, :)', numberChannels, n, WCorrelation);\nparfor k = 1:WCorrelation \n eegPortion = squeeze(xWin(:, :, k))';\n dataPortion = squeeze(dataWin(:, :, k))';\n windowCorrelation = corrcoef(eegPortion);\n abs_corr = abs(windowCorrelation - diag(diag(windowCorrelation)));\n channelCorrelations(k, :) = quantile(abs_corr, 0.98);\n noiseLevels(k, :) = mad(dataPortion - eegPortion, 1)./mad(eegPortion, 1);\n channelDeviations(k, :) = 0.7413 *iqr(dataPortion);\nend\ndropOuts = isnan(channelCorrelations) | isnan(noiseLevels);\nchannelCorrelations(dropOuts) = 0.0;\nnoiseLevels(dropOuts) = 0.0;\nclear xWin;\nclear dataWin;\nnoisyOut.maximumCorrelations(evaluationChannels, :) = channelCorrelations';\nnoisyOut.noiseLevels(evaluationChannels, :) = noiseLevels';\nnoisyOut.channelDeviations(evaluationChannels, :) = channelDeviations';\nnoisyOut.dropOuts(evaluationChannels, :) = dropOuts';\nthresholdedCorrelations = ...\n noisyOut.maximumCorrelations < noisyOut.correlationThreshold;\nfractionBadCorrelationWindows = mean(thresholdedCorrelations, 2);\nfractionBadDropOutWindows = mean(noisyOut.dropOuts, 2);\n\n% Remap channels to their original numbers\nbadChannelsFromCorrelation = find(fractionBadCorrelationWindows > noisyOut.badTimeThreshold);\nnoisyOut.noisyChannels.badChannelsFromCorrelation = badChannelsFromCorrelation(:)';\nbadChannelsFromDropOuts = find(fractionBadDropOutWindows > noisyOut.badTimeThreshold);\nnoisyOut.noisyChannels.badChannelsFromDropOuts = badChannelsFromDropOuts(:)';\nnoisyOut.medianMaxCorrelation = median(noisyOut.maximumCorrelations, 2);\n\n%% Bad so far by amplitude and correlation (take these out before doing ransac)\nnoisyChannels = union(noisyOut.noisyChannels.badChannelsFromDeviation, ...\n union(noisyOut.noisyChannels.badChannelsFromCorrelation, ...\n noisyOut.noisyChannels.badChannelsFromDropOuts));\n \n%% Method 4: Ransac corelation (may not be performed)\n% Setup for ransac (if a 2-stage algorithm, remove other bad channels first)\nif noisyOut.ransacOff\n noisyOut.ransacBadWindowFraction = 0;\n noisyOut.ransacPerformed = false;\nelseif isempty(channelLocations) \n warning('findNoisyChannels:noChannelLocation', ...\n 'ransac could not be computed because there were no channel locations');\n noisyOut.ransacBadWindowFraction = 0;\n noisyOut.ransacPerformed = false;\nelse % Set up parameters and make sure enough good channels to proceed\n [ransacChannels, idiff] = setdiff(evaluationChannels, noisyChannels);\n X = X(:, idiff);\n\n % Calculate the parameters for ransac\n ransacSubset = round(noisyOut.ransacChannelFraction*size(data, 2));\n if noisyOut.ransacUnbrokenTime < 0\n error('find_noisyChannels:BadUnbrokenParameter', ...\n 'ransacUnbrokenTime must be greater than 0');\n elseif noisyOut.ransacUnbrokenTime < 1\n ransacUnbrokenFrames = signalSize*noisyOut.ransacUnbrokenTime;\n else\n ransacUnbrokenFrames = srate*noisyOut.ransacUnbrokenTime;\n end\n\n nchanlocs = channelLocations(ransacChannels);\n if length(nchanlocs) ~= size(nchanlocs, 2)\n nchanlocs = nchanlocs';\n end\n if length(nchanlocs) < ransacSubset + 1 || length(nchanlocs) < 3 || ...\n ransacSubset < 2\n warning('find_noisyChannels:NotEnoughGoodChannels', ...\n 'Too many channels have failed quality tests to perform ransac');\n noisyOut.ransacBadWindowFraction = 0;\n noisyOut.ransacPerformed = false;\n end\nend\n\nif noisyOut.ransacPerformed \n try \n % Calculate all-channel reconstruction matrices from random channel subsets\n locs = [cell2mat({nchanlocs.X}); cell2mat({nchanlocs.Y});cell2mat({nchanlocs.Z})];\n catch err\n error('findNoisyChannels:NoXYZChannelLocations', ...\n 'Must provide valid channel locations');\n end \n if isempty(locs) || size(locs, 2) ~= length(ransacChannels) ...\n || any(isnan(locs(:))) \n error('find_noisyChannels:EmptyChannelLocations', ...\n 'The signal chanlocs must have valid X, Y, and Z components'); \n end\n P = hlp_microcache('cleanchans', @calc_projector, locs, ...\n noisyOut.ransacSampleSize, ransacSubset);\n ransacCorrelationsT = zeros(length(locs), WRansac);\n\n % Calculate each channel's correlation to its RANSAC reconstruction for each window\n n = length(ransacWindow);\n m = length(ransacChannels);\n p = noisyOut.ransacSampleSize;\n Xwin = reshape(X(1:n*WRansac, :)', m, n, WRansac);\n parfor k = 1:WRansac\n ransacCorrelationsT(:, k) = ...\n calculateRansacWindow(squeeze(Xwin(:, :, k))', P, n, m, p);\n end\n clear Xwin;\n noisyOut.ransacCorrelations(ransacChannels, :) = ransacCorrelationsT;\n flagged = noisyOut.ransacCorrelations < noisyOut.ransacCorrelationThreshold;\n badChannelsFromRansac = find(sum(flagged, 2)*ransacFrames > ransacUnbrokenFrames)';\n noisyOut.noisyChannels.badChannelsFromRansac = badChannelsFromRansac(:)';\n noisyOut.ransacBadWindowFraction = sum(flagged, 2)/size(flagged, 2);\nend\n\n% Combine bad channels detected from all methods\nnoisy = noisyOut.noisyChannels;\nnoisyOut.noisyChannels.badChannelsFromLowSNR = ...\n intersect(noisy.badChannelsFromHFNoise, noisy.badChannelsFromCorrelation);\nnoisyChannels = union(noisyChannels, ...\n union(union(noisy.badChannelsFromRansac, ...\n noisy.badChannelsFromHFNoise), ...\n union(noisy.badChannelsFromNaNs, ...\n noisy.badChannelsFromNoData)));\nnoisyOut.noisyChannels.all = noisyChannels(:)';\nnoisyOut.medianMaxCorrelation = median(noisyOut.maximumCorrelations, 2);\n\n%% Helper functions for findNoisyChannels\nfunction P = calc_projector(locs, numberSamples, subsetSize)\n% Calculate a bag of reconstruction matrices from random channel subsets\n\n[permutedLocations, subsets] = getRandomSubsets(locs, subsetSize, numberSamples);\nrandomSamples = cell(1, numberSamples);\nparfor k = 1:numberSamples\n tmp = zeros(size(locs, 2));\n slice = subsets(k, :);\n tmp(slice, :) = real(spherical_interpolate(permutedLocations(:, :, k), locs))';\n randomSamples{k} = tmp;\nend\nP = horzcat(randomSamples{:});\n\nfunction [permutedLocations, subsets] = getRandomSubsets(locs, subsetSize, numberSamples)\n stream = RandStream('mt19937ar', 'Seed', 435656);\n numberChannels = size(locs, 2);\n permutedLocations = zeros(3, subsetSize, numberSamples);\n subsets = zeros(numberSamples, subsetSize);\n for k = 1:numberSamples\n subset = randsample(1:numberChannels, subsetSize, stream);\n subsets(k, :) = subset;\n permutedLocations(:, :, k) = locs(:, subset);\n end\n\nfunction Y = randsample(X, num, stream)\nY = zeros(1, num);\nfor k = 1:num\n pick = round(1 + (length(X)-1).*rand(stream));\n Y(k) = X(pick);\n X(pick) = [];\nend\n\nfunction rX = calculateRansacWindow(XX, P, n, m, p)\n YY = sort(reshape(XX*P, n, m, p),3);\n YY = YY(:, :, round(end/2));\n rX = sum(XX.*YY)./(sqrt(sum(XX.^2)).*sqrt(sum(YY.^2)));\n\nfunction noisyOut = getNoisyStructure()\n noisyOut = struct('srate', [], ...\n 'samples', [], ...\n 'evaluationChannels', [], ...\n 'channelLocations', [], ...\n 'robustDeviationThreshold', [], ...\n 'highFrequencyNoiseThreshold', [], ...\n 'correlationWindowSeconds', [], ...\n 'correlationThreshold', [], ...\n 'badTimeThreshold', [], ...\n 'ransacSampleSize', [], ...\n 'ransacChannelFraction', [], ...\n 'ransacCorrelationThreshold', [], ...\n 'ransacUnbrokenTime', [], ...\n 'ransacWindowSeconds', [], ...\n 'noisyChannels', getBadChannelStructure(), ...\n 'ransacPerformed', true, ...\n 'channelDeviationMedian', [], ...\n 'channelDeviationSD', [], ...\n 'channelDeviations', [], ...\n 'robustChannelDeviation', [], ...\n 'noisinessMedian', [], ...\n 'noisinessSD', [], ...\n 'zscoreHFNoise', [], ...\n 'noiseLevels', [], ...\n 'maximumCorrelations', [], ...\n 'dropOuts', [], ...\n 'medianMaxCorrelation', [], ...\n 'correlationOffsets', [], ...\n 'ransacCorrelations', [], ...\n 'ransacOffsets', [], ...\n 'ransacBadWindowFraction', []);\n \n", "meta": {"author": "VisLab", "repo": "EEG-Clean-Tools", "sha": "9ac9ea0c21d44b57f9e9f93b62ca727c7b75c73e", "save_path": "github-repos/MATLAB/VisLab-EEG-Clean-Tools", "path": "github-repos/MATLAB/VisLab-EEG-Clean-Tools/EEG-Clean-Tools-9ac9ea0c21d44b57f9e9f93b62ca727c7b75c73e/PrepPipeline/utilities/findNoisyChannels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768249, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.38223607393474995}} {"text": "function [DMIN,DMIN_aerr] = dicomrt_MINcal(inputdose,inputerror,dose_xmesh,dose_ymesh,dose_zmesh,VOI,voi2use)\n% dicomrt_MINcal(inputdose,inputerror,dose_xmesh,dose_ymesh,dose_zmesh,VOI,voi2use)\n%\n% Calculate the MIN Dose for a given 3D dose distribution within a given VOI\n% \n% inputdose is the input 3D dose (e.g. RTPLAN or MC generated)\n% inputerror is the relative error asociated with the calculated dose. If inputerror=0 error\n% calculation is not performed (e.g. for TPS dose matrices), otherwise\n% inputerror dimensions must match those of inputdose (e.g. for MC dose matrices).\n% dose_xmesh,dose_ymesh,dose_zmesh are x-y-z coordinates of the center of the dose-pixel \n% \n% VOI is a cell array which contain the patients VOIs as read by dicomrt_loadvoi\n% voi2use is a vector pointing to the number of VOIs to be used ot the analysis and for the display.\n%\n% Example:\n%\n% [A]=dicomrt_MINcal(B,0,dose_xmesh,dose_ymesh,dose_zmesh,demo_voi,9);\n% \n% returns in A the min dose for the dose matrix B and the voi # 9 within demo_voi.\n%\n% NOTE: \n% due to the algorithm that MATLAB uses to filter matrices (roipoly), it can happen that \n% some of the voxels which are partially outside the patient are included in the VOI.\n% This can happen when the border of the VOI are too close to the patient outline with \n% respect to the size of the calculation matrix used.\n% This is not a problem for MC which calculate dose also outside the patient outline.\n% It may represent a problem when dealing with TPS generated data, which do not calculate\n% dose outside the patient outline, because voxels with zero dose can be counted in the target\n% volume. This event is rare (1/10000) and should not influence dose analysis.\n% A simple way to overcome this problem is to define VOIs as separate as possible.\n% In this function the minimum dose ~=0 is reported.\n%\n% See also dicomrt_MDNcal, dicomrt_MDcal, dicomrt_MAXcal\n%\n% Copyright (C) 2002 Emiliano Spezi (emiliano.spezi@physics.org) \n\n% Check case and set-up some parameters and variables\n[dose_temp,derror_temp,type_dose,doselabel]=dicomrt_checkinputanderr(inputdose,inputerror,1);\ndose=dicomrt_varfilter(dose_temp);\nderror=dicomrt_varfilter(derror_temp);\n[VOI_temp,type,label]=dicomrt_checkinput(VOI);\nVOI=dicomrt_varfilter(VOI_temp);\n\n% Initialise parameters\ncount=0;\n\n[mask_dose,volume_VOI,mask4VOI]=dicomrt_mask(VOI_temp,dose_temp,dose_xmesh,dose_ymesh,dose_zmesh,voi2use,'nan','n');\nmask=dicomrt_varfilter(mask_dose);\n\nif size(derror)~=1\n [mask_error,volume_VOI,mask4VOI]=dicomrt_mask(VOI_temp,derror_temp,dose_xmesh,dose_ymesh,dose_zmesh,voi2use,'nan','n');\n msk_error=dicomrt_varfilter(mask_error);\nend\n\nfor k=1:size(mask,3)\n [ilocation,jlocation]=find(isnan(mask(:,:,k))~=1);\n if isnumeric(ilocation)==1 | isnumeric(jlocation)==1\n for i=1:length(ilocation)\n count=count+1;\n dose_VOI(count)=mask(ilocation(i),jlocation(i),k);\n if size(derror)~=1\n % this is absolute error now\n error_VOI(count)=msk_error(ilocation(i),jlocation(i),k).*mask(ilocation(i),jlocation(i),k);\n else\n error_VOI=0;\n end\n end\n end\nend\n\nif size(derror)~=1 \n % Mean is calculated as weighted average of data points\n [DMIN,I]=min(dose_VOI);\n % Dose min cannot be 0.\n if DMIN==0\n dose_VOI(I)=[];\n [DMIN,I]=min(dose_VOI);\n end\n % error is calulated as standard error of the mean\n DMIN_aerr=error_VOI(I);\nelse\n % Mean is calculated as average of data points\n [DMIN,I]=min(dose_VOI);\n % Dose min cannot be 0.\n if DMIN==0\n dose_VOI(I)=[];\n [DMIN,I]=min(dose_VOI);\n end\n % error is calulated as standard error of the mean\n DMIN_aerr=0;\nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Importing/dicomrt-toolbox-v2/analysis/dicomrt_MINcal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3822360739347499}} {"text": "function truefalse = ch_is_format_code ( c )\n\n%*****************************************************************************80\n%\n%% CH_IS_FORMAT_CODE returns TRUE if a character is a FORTRAN format code.\n%\n% Discussion:\n%\n% The format codes accepted here are not the only legal format\n% codes in FORTRAN90. However, they are more than sufficient\n% for my needs!\n%\n% Table:\n%\n% A Character\n% B Binary digits\n% D Real number, exponential representation\n% E Real number, exponential representation\n% F Real number, fixed point\n% G General format\n% I Integer\n% L Logical variable\n% O Octal digits\n% Z Hexadecimal digits\n% * Free format\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 November 2003\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, character C, the character to be analyzed.\n%\n% Output, logical TRUEFALSE, is TRUE if C is a FORTRAN format code\n% and FALSE otherwise.\n%\n if ( ch_eqi ( c, 'A' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'B' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'D' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'E' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'F' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'G' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'I' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'L' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'O' ) )\n truefalse = 1;\n elseif ( ch_eqi ( c, 'Z' ) )\n truefalse = 1;\n elseif ( c == '*' )\n truefalse = 1;\n else\n truefalse = 0;\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/chrpak/ch_is_format_code.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.6893056231680122, "lm_q1q2_score": 0.38219960937780484}} {"text": "function [X,S] = calculator2(D)\n%UNTITLED Summary of this function goes here\n% Detailed explanation goes here\n\nglobal K_S S_0 mu_max Y_XS\n\nX = Y_XS ./ 3 .* (S_0 - D .* K_S ./ (mu_max - D));\n\nS = D .* K_S ./ (mu_max - D);\n\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/43583-simulation-tool-for-continuous-microbial-cultivation/calculator2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.782662489091802, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.3821610975444343}} {"text": "function M_hat = run_mc(params)\n M = params.M;\n A = inexact_alm_mc(M,1e-4,100);\n M_hat = A.U*A.V';\nend\n", "meta": {"author": "andrewssobral", "repo": "lrslibrary", "sha": "06d457349cb5f1fc56a583cd61af9f1d5150e3a1", "save_path": "github-repos/MATLAB/andrewssobral-lrslibrary", "path": "github-repos/MATLAB/andrewssobral-lrslibrary/lrslibrary-06d457349cb5f1fc56a583cd61af9f1d5150e3a1/algorithms/mc/IALM-MC/run_mc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7090191337850933, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3821494162566816}} {"text": "function [mpe, ll] = calc_mpe_bucket(bnet, new_evidence, max_over)\n%\n% PURPOSE:\n% CALC_MPE Computes the most probable explanation to the network nodes\n% given the evidence.\n% \n% [mpe, ll] = calc_mpe(engine, new_evidence, max_over)\n%\n% INPUT:\n% bnet - the bayesian network\n% new_evidence - optional, if specified - evidence to be incorporated [cell(1,n)]\n% max_over - optional, if specified determines the variable elimination order [1:n]\n%\n% OUTPUT:\n% mpe - the MPE assignmet for the net variables (or [] if no satisfying assignment)\n% ll - log assignment probability.\n%\n% Notes:\n% 1. Adapted from '@var_elim_inf_engine\\marginal_nodes' for MPE by Ron Zohar, 8/7/01\n% 2. Only discrete potentials are supported at this time.\n% 3. Complexity: O(nw*) where n is the number of nodes and w* is the induced tree width.\n% 4. Implementation based on:\n% - R. Dechter, \"Bucket Elimination: A Unifying Framework for Probabilistic Inference\", \n% UA1 96, pp. 211-219.\n\n\nns = bnet.node_sizes;\nn = length(bnet.dag);\nevidence = cell(1,n);\nif (nargin<2)\n new_evidence = evidence;\nend\n\nonodes = find(~isemptycell(new_evidence)); % observed nodes\nhnodes = find(isemptycell(new_evidence)); % hidden nodes\npot_type = determine_pot_type(bnet, onodes);\n\nif pot_type ~= 'd'\n error('only disrete potentials supported at this time') \nend\n\nfor i=1:n\n fam = family(bnet.dag, i);\n CPT{i} = convert_to_pot(bnet.CPD{bnet.equiv_class(i)}, pot_type, fam(:), evidence); \nend \n\n% handle observed nodes: set impossible cases' probability to zero\n% rather than prun matrix (this makes backtracking easier)\n\nfor ii=onodes\n lIdx = 1:ns(ii);\n lIdx = setdiff(lIdx, new_evidence{ii});\n \n sCPT=struct(CPT{ii}); % violate object privacy\n \n sargs = '';\n for jj=1:(length(sCPT.domain)-1)\n sargs = [sargs, ':,']; \n end \n for jj=lIdx\n eval(['sCPT.T(', sargs, num2str(jj), ')=0;']);\n end\n CPT{ii}=dpot(sCPT.domain, sCPT.sizes, sCPT.T); \nend\n\nB = cell(1,n); \nfor b=1:n\n B{b} = mk_initial_pot(pot_type, [], [], [], []);\nend\n\nif (nargin<3)\n max_over = (1:n);\nend \norder = max_over; % no attempt to optimize this\n\n\n% Initialize the buckets with the CPDs assigned to them\nfor i=1:n\n b = bucket_num(domain_pot(CPT{i}), order);\n B{b} = multiply_pots(B{b}, CPT{i});\nend\n\n% Do backward phase\nmax_over = max_over(length(max_over):-1:1); % reverse\nfor i=max_over(1:end-1) \n % max-ing over variable i which occurs in bucket j\n j = bucket_num(i, order);\n rest = mysetdiff(domain_pot(B{j}), i);\n %temp = marginalize_pot_max(B{j}, rest);\n temp = marginalize_pot(B{j}, rest, 1);\n b = bucket_num(domain_pot(temp), order);\n % fprintf('maxing over bucket %d (var %d), putting result into bucket %d\\n', j, i, b);\n sB=struct(B{b}); % violate object privacy\n if ~isempty(sB.domain)\n B{b} = multiply_pots(B{b}, temp);\n else\n B{b} = temp;\n end\nend\nresult = B{1};\nmarginal = pot_to_marginal(result);\n[prob, mpe] = max(marginal.T);\n\n% handle impossible cases\nif ~(prob>0)\n mpe = []; \n ll = -inf;\n %warning('evidence has zero probability')\n return\nend\n\nll = log(prob);\n\n% Do forward phase \nfor ii=2:n\n marginal = pot_to_marginal(B{ii});\n mpeidx = [];\n for jj=order(1:length(mpe))\n assert(ismember(jj, marginal.domain)) %%% bug\n temp = find_equiv_posns(jj, marginal.domain);\n mpeidx = [mpeidx, temp] ;\n if isempty(temp)\n mpeidx = [mpeidx, Inf] ;\n end\n end\n [mpeidxsorted sortedtompe] = sort(mpeidx) ;\n \n % maximize the matrix obtained from assigning values from previous buckets.\n % this is done by building a string and using eval.\n \n kk=1;\n sargs = '(';\n for jj=1:length(marginal.domain)\n if (jj~=1)\n sargs = [sargs, ','];\n end\n if (mpeidxsorted(kk)==jj)\n sargs = [sargs, num2str(mpe(sortedtompe(kk)))];\n if (kk 180 && bbox(1,1) < 180\n % bbox straddles 180/-180 meridian\n loop = 2; minus = 0;\nelseif all(bbox(1,:) > 180)\n % beyond 180 in 0 to 360 format\n loop = 1; minus = 1;\nelse\n loop = 1; minus = 0;\nend\nif (size(finputname,1)~=0)\n for fname = finputname\n for nn = 1:loop\n bboxt = bbox';\n if loop == 2\n if nn == 1\n bboxt(2,1) = 180;\n else\n bboxt(1,1) = -180; bboxt(2,1) = bboxt(2,1) - 360;\n end\n end\n if minus \n bboxt(:,1) = bboxt(:,1) - 360; \n end \n % Read the structure\n try \n % The shaperead is faster if it is available\n S = shaperead(fname{1},'BoundingBox',bboxt);\n % Get rid of unwanted components;\n D = struct2cell(S);\n S = cell2struct(D(3:4,:)',{'X','Y'},2);\n disp('Read shapefile with shaperead')\n sr = 1;\n catch\n % If only m_shaperead is available or if some error occured\n % with shaperead (e.g., 3D shapefile, m_shaperead may work)\n disp('Reading shapefile with m_shaperead')\n % This uses m_map (slower but free)\n S = m_shaperead(fname{1},reshape(bboxt',4,1));\n % Let's just keep the x-y data\n D = S.ncst;\n if isfield(S,'dbf') || isfield(S,'dbfdata')\n code = S.dbfdata(:,1);\n S = cell2struct([D code]',{'points' 'type'},1);\n else\n S = cell2struct(D','points',1);\n end\n sr = 0;\n end\n if ~isempty(S)\n % Keep the following polygons\n SG = [SG; S];\n end\n end\n end\nelse\n sr = 1 ; \n % convert NaN-delimited vector to struct \n count = 1; j=1;\n for i = 1 : length(polygon)\n % the end of the segment \n \n if(isnan(polygon(i,1))==1)\n % put NaN at end \n SG(count,1).X(:,j) =NaN; \n SG(count,1).Y(:,j) =NaN; \n % reset \n j = 1 ; count = count + 1;\n\n continue\n else\n % keep going \n SG(count,1).X(:,j) = polygon(i,1);\n SG(count,1).Y(:,j) = polygon(i,2);\n j=j+1;\n end\n end\nend\n% If we don't have an outer polygon already then make it by bbox\npolygon_struct.outer = boubox;\n% Densify the outer polygon (fills gaps larger than half min edgelength).\n[latout,lonout] = my_interpm(polygon_struct.outer(:,2),...\n polygon_struct.outer(:,1),h0/2);\npolygon_struct.outer = [];\npolygon_struct.outer(:,1) = lonout;\npolygon_struct.outer(:,2) = latout;\n\n%% Find whether the polygons are wholey inside the bbox..\n%% Set as islands or mainland\ndisp('Partitioning the boundary into islands, mainland, ocean')\npolygon_struct.inner = [];\npolygon_struct.mainland = [];\npolygon_struct.innerb = [];\npolygon_struct.mainlandb = [];\npolygon_struct.innerb_type = [];\npolygon_struct.mainlandb_type = [];\nedges = Get_poly_edges( polygon_struct.outer );\n\nif isempty(SG); return; end\n\nif sr\n tmpM = [[SG.X]',[SG.Y]'] ; % MAT \n if bbox(1,2) > 180\n tmpM(tmpM(:,1) < 0,1) = tmpM(tmpM(:,1) < 0,1) + 360;\n end\n for i = 1 : length(SG) \n dims(i) = length(SG(i).X) ; \n end\n tmpC = mat2cell(tmpM,dims); % TO CELL \nelse\n tmpC = struct2cell(SG)';\n tmpCC = []; nn = 0;\n for ii = 1:size(tmpC,1)\n % may have NaNs inside \n isnan1 = find(isnan(tmpC{ii,1}(:,1)));\n if isempty(isnan1)\n isnan1 = length(tmpC{ii,1})+1; \n elseif isnan1(end) ~= length(tmpC{ii,1})\n isnan1(end+1) = length(tmpC{ii,1})+1;\n end\n is = 1;\n for jj = 1:length(isnan1)\n nn = nn + 1;\n ie = isnan1(jj)-1;\n tmpCC{nn,1} = tmpC{ii,1}(is:ie,:);\n tmpCC{nn,2} = tmpC{ii,2};\n is = isnan1(jj)+1;\n end\n end\n if ~isempty(tmpCC)\n tmpC = tmpCC;\n end \n tmpM = cell2mat(tmpC(:,1)); \n if size(tmpM,2) == 3\n tmpM = tmpM(:,1:2); \n end\nend\n% Get current polygon\n% Check proportion of polygon that is within bbox\ntmpIn = inpoly(tmpM,polygon_struct.outer, edges);\ntmpInC = mat2cell(tmpIn,cellfun(@length,tmpC(:,1)));\n\nj = 0 ; k = 0 ; height = []; new_islandb = []; new_mainb = [];\nnew_islandb_type = []; new_mainb_type = [];\nfor i = 1 : size(tmpC,1)\n if sr\n % using shaperead\n points = tmpC{i,1}(1:end-1,:) ;\n In = tmpInC{i,1}(1:end-1) ;\n else\n % using m_shaperead\n points = tmpC{i,1}(1:end,:) ;\n if size(points,2) == 3\n points = points(:,1:2);\n end\n if shapefile_3d\n % if 3-D shapefile\n height = points(:,3); \n points = points(:,1:2); \n type = tmpC{i,2};\n if strcmp(type,'BA040')\n type = 'ocean';\n elseif strcmp(type,'BH080')\n type = 'lake'; \n elseif strcmp(type,'BH140')\n type = 'river';\n end \n else\n height = [];\n end\n In = tmpInC{i,1}(1:end) ;\n end\n if bbox(1,2) > 180\n lond = abs(diff(points(:,1)));\n if any(lond > 350)\n points(points(:,1) > 180,1) = 0;\n end\n end\n % lets calculate the area of the\n % feature using the shoelace algorithm and decided whether to keep or\n % not based on area.\n if all(points(1,:) == points(end,:))\n area = shoelace(points(:,1),points(:,2));\n else\n area = 999; % not a polygon\n end\n if length(find(In == 1)) == length(points)\n % Wholey inside box\n if area < 4*h0^2 % too small, then don't consider it.\n continue;\n end\n % Set as island (with NaN delimiter)\n k = k + 1 ; \n new_island{k} = [points; NaN NaN];\n if ~isempty(height)\n new_islandb{k} = [points height; NaN NaN NaN];\n new_islandb_type{k} = type;\n end\n else\n %Partially inside box\n if area < 100*h0^2 % too small, then don't consider it.\n continue;\n end\n % Set as mainland\n j = j + 1 ; \n new_main{j} = [points; NaN NaN];\n if ~isempty(height)\n new_mainb{j} = [points height; NaN NaN NaN];\n new_mainb_type{j} = type;\n end\n end\nend\nif k > 0\n polygon_struct.inner = [polygon_struct.inner; cell2mat(new_island')];\n polygon_struct.innerb = cell2mat(new_islandb');\n polygon_struct.innerb_type = new_islandb_type;\nend\nif j > 0\n polygon_struct.mainland = [polygon_struct.mainland; cell2mat(new_main')];\n polygon_struct.mainlandb = cell2mat(new_mainb');\n polygon_struct.mainlandb_type = new_mainb_type;\nend\n% Merge overlapping mainland and inner\nif exist('polybool','file') || exist('polyshape','file')\n if ~isempty(new_mainb) && k > 0\n polym = polygon_struct.mainland;\n mergei = false(k,1);\n for kk = 1:k\n polyi = new_island{kk};\n IA = find(ismembertol(polym,polyi,1e-5,'ByRows',true));\n if length(IA) > 2\n if exist('polyshape','file')\n polyout = union(polyshape(polym),polyshape(polyi));\n polym = polyout.Vertices;\n else\n [x,y] = polybool('union',polym(:,1),polym(:,2),...\n polyi(:,1),polyi(:,2));\n polym = [x,y];\n end\n mergei(kk) = 1;\n end\n end\n if ~isnan(polym(end,1)); polym(end+1,:) = NaN; end\n polygon_struct.mainland = polym;\n new_island(mergei) = [];\n polygon_struct.inner = cell2mat(new_island');\n end\nelse\n warning(['no polyshape or polybool available to merge possible ' ...\n 'overlapping of mainland and inner'])\nend\n% Remove parts of inner and mainland overlapping with outer \npolygon_struct.outer = [polygon_struct.outer; polygon_struct.mainland];\n%% Plot the map\nif plot_on >= 1 && ~isempty(polygon_struct)\n figure(1);\n hold on\n plot(polygon_struct.outer(:,1),polygon_struct.outer(:,2))\n if ~isempty(polygon_struct.inner)\n plot(polygon_struct.inner(:,1),polygon_struct.inner(:,2))\n end\n if ~isempty(polygon_struct.mainland)\n plot(polygon_struct.mainland(:,1),polygon_struct.mainland(:,2))\n end\nend\n%EOF\nend\n", "meta": {"author": "CHLNDDEV", "repo": "OceanMesh2D", "sha": "56222604a5c1fe897d10c8b08cb3380ef8b43740", "save_path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D", "path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D/OceanMesh2D-56222604a5c1fe897d10c8b08cb3380ef8b43740/@geodata/private/Read_shapefile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850933, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3821494162566816}} {"text": "function mask2conv()\n global config mem;\n curr_layer_idx = config.misc.current_layer;\n in = mem.mask_li{curr_layer_idx};\n for m = 1:config.batch_size\n for n = 1:config.chs\n mem.mask_inputs{curr_layer_idx}((n-1)*config.kernel_size(1, 1)*config.kernel_size(1, 2)+1:n*config.kernel_size(1, 1)*config.kernel_size(1, 2), (m-1)*(size(mem.mask_inputs{curr_layer_idx}, 2)/config.batch_size)+1:m*size(mem.mask_inputs{curr_layer_idx}, 2)/config.batch_size) = ...\n config.IM2COL(in(:,:,n,m), [config.kernel_size(1, 1), config.kernel_size(1, 2)]);\n end\n end\n % only for SR now\n gen_mask_patch_cat_idx_for_super_res(mem.mask_inputs{1});\nend\n\n", "meta": {"author": "jimmy-ren", "repo": "vcnn_double-bladed", "sha": "a4de90e845875f6e30632f2e879d3afb81c0ebc1", "save_path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed", "path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed/vcnn_double-bladed-a4de90e845875f6e30632f2e879d3afb81c0ebc1/layers_adapters/mask2conv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.38214941625668153}} {"text": "function sphere_llt_grid_test ( )\n\n%*****************************************************************************80\n%\n%% SPHERE_LLT_GRID_TEST tests the SPHERE_LLT_GRID library.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 29 April 2015\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SPHERE_LLT_GRID_TEST\\n' );\n fprintf ( 1, ' MATLAB version\\n' );\n fprintf ( 1, ' Test the SPHERE_LLT_GRID library.\\n' );\n\n sphere_llt_grid_point_count_test ( );\n sphere_llt_grid_points_test ( );\n sphere_llt_grid_line_count_test ( );\n sphere_llt_grid_lines_test ( );\n sphere_llt_grid_display_test ( );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SPHERE_LLT_GRID_TEST\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/sphere_llt_grid/sphere_llt_grid_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5389832058771035, "lm_q2_score": 0.7090191399336402, "lm_q1q2_score": 0.38214940906966}} {"text": "function imout=padimage(im, sizeimout)\n% imout=padimage(im, sizeimout)\n\nsizeim = size(im);\n\nsizedifhalf = floor((sizeimout-sizeim)/2);\n\nimout = padarray(im, sizedifhalf);\n\nsizedif = sizeimout-size(imout);\n\nif sizedif(1)>0\n imout = [imout; zeros(1,size(imout,2))];\nend\nif sizedif(2)>0\n imout = [imout, zeros(size(imout,1),1)];\nend", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/rory/padimage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635868562172, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.3820964666965074}} {"text": "% pdfbcreate_equiv_models\n% written by: Duncan Po\n% Date: December 5/2002\n% Usage: models = pdfbcreate_equiv_models(model)\n% Input: model - original model\n% Output: models - an array of equivalent models\n%\n% create equivalent models by flipping the states\n\nfunction models = pdfbcreate_equiv_models(model)\n\nl = 1;\ntemp_model{l}{1} = model;\nfor j = 1:length(model.stdv)\n for k= 1:length(model.stdv{j})\n l = l+1;\n for mm = 1:2.^(l-1)\n if mod(mm, 2) == 1\n temp_model{l}{mm} = pdfbflip_model(temp_model{l-1}{ceil(mm/2)}, j, k);\n else\n temp_model{l}{mm} = temp_model{l-1}{ceil(mm/2)};\n end;\n end;\n end;\nend;\n\nnum = length(temp_model{end});\nfor ddd = 1:num\n models{ddd} = temp_model{end}{ddd};\nend;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/29322-hidden-markov-tree-model-of-contourlet-transform/contourletHMT/pdfbcreate_equiv_models.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635868562172, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.38209646669650726}} {"text": "function y = squish(x)\n% y = squish(x); SQUISH \"x\" to remove all singleton dimensions.\n% Since singleton dimensions can confuse many operations, this function removes\n% absolutely ALL singleton dimensions in \"x\". SQUEEZE is similar, however\n% it will not operate on 2D arrays, of which row vectors are included. Thus the\n% expected result may not always occur with SQUEEZE.\n% NOTE! This function will convert all row vectors to column vectors!\n% Example: [1;2;3;4;5] = squish(shiftdim([1:5]',-5))\n\n% To see the differences between SQUISH and SQUEEZE compare the results\n% of the following for any positive or negative n:\n% size(squeeze(shiftdim([1:3]',n)))\n% size(squish(shiftdim([1:3]',n)))\n% created 08/16/2006 by Mirko Hrovat with Matlab ver.7.2\n% modified 02/25/2010 by MIH as per Jan Simon's suggestion (slight speed improvement)\n% contact: mhrovat@email.com\n\ndims = size(x);\ny = reshape(x,[dims(dims~=1),1,1]); % the extra 1's help in case x is a scalar or vector.\n%**************** END ***************", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/11945-squish/squish.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6406358548398982, "lm_q1q2_score": 0.3820964585120884}} {"text": "%% Compare the two implementations\n% Copyright 2013 The MathWorks, Inc.\n\n%% Run the data through the two implementations\nadjustedImageCPU = whitebalance(imageData);\nadjustedImageGPU = whitebalance_gpu(imageData);\n\n%% Visualize the results and their difference\nsubplot(1,2,1); imshow(adjustedImageCPU); title('CPU Output');\nsubplot(1,2,2); imshow(adjustedImageGPU); title('GPU Output');\n\ndifference = double(adjustedImageCPU(:) - adjustedImageGPU(:));\nmsgbox(['The norm of the difference is: ' num2str(norm(difference))]);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/38401-matlab-for-cuda-programmers/02_compute_factors/verify.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331319177487, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.38209644932096465}} {"text": "function [xs,nxs] = get_position_and_orientation_ls(xs,conf);\n%GET_POSITION_AND_ORIENTATION_LS position and orientation for a line source\n%\n% Usage: [xs,nxs] = get_position_and_orientation_ls(xs,conf);\n%\n% Input parameters:\n% xs - combined position and orientation / m [nx3] or [nx6]\n% args - list of args\n%\n% Output parameters:\n% xs - position of line source / m [nx3]\n% nxs - orientation of line source / m [nx3]\n%\n% GET_POSITION_AND_ORIENTATION_LS(xs,conf) returns the position and\n% orientation of a point source. The orientation is a vector perpendicular to\n% the traveling direction of the line source. For 2D or 2.5D the orientation\n% will always be returned as [0 0 1]. For 3D [0 0 1] will be returned if no\n% explicit orientation is given.\n%\n% See also: secondary_source_selection, driving_function_mono_wfs\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n\n%% ===== Checking of input parameters ==================================\nnargmin = 2;\nnargmax = 2;\nnarginchk(nargmin,nargmax);\nisargnumeric(xs);\nisargstruct(conf);\n\n\n%% ===== Configuration ===================================================\ndimension = conf.dimension;\n\n\n%% ===== Checking for vector =============================================\n% Handling of line source orientation\nif (strcmp('2D',dimension) || strcmp('2.5D',dimension))\n % Ignore orientation for 2D and 2.5D\n if size(xs,2)>3\n warning('%s: %s-WFS ignores virtual line source orientation.', ...\n upper(mfilename),dimension);\n end\n xs(:,3) = 0;\n nxs = repmat([0 0 1],[size(xs,1) 1]);\nelse\n if size(xs,2)~=6\n warning('%s: set ls orientation to [0 0 1]',upper(mfilename));\n nxs = repmat([0 0 1],[size(xs,1) 1]);\n else\n nxs = xs(:,4:6) / norm(xs(1,4:6),2);\n end\nend\nxs = xs(:,1:3);\n", "meta": {"author": "sfstoolbox", "repo": "sfs-matlab", "sha": "02194f0243d1ead26572f760032c40527718919d", "save_path": "github-repos/MATLAB/sfstoolbox-sfs-matlab", "path": "github-repos/MATLAB/sfstoolbox-sfs-matlab/sfs-matlab-02194f0243d1ead26572f760032c40527718919d/SFS_helper/get_position_and_orientation_ls.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125848754473, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.38188091268702434}} {"text": "% DC to Dc Buck Converter Parameters\n% Dick Benson\n% Copyright 2013 The MathWorks, Inc.\n\nFET_Ron=.004; % FET \nFET_Snub= 1000;\n\nL1=250e-9; % Inductor\nL1_R = 0.01;\n\nCout=1000e-6; % Filter Cap\nCout_R = 0.0012;\n\nRload=1.0; % Load Resistance\n\n\nVinput=12; % Vin to converter\n\nFswitch=500e3; % PWM switching frequency \nComp_Tau=100e-9; % PWM Comparitor time constant\n\nFs_ADC=2.5e6; % Sampling rate of discrete time controller", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/1320-analog-mixed-signal-examples/circuit_level/parameter_definition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7520125848754472, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3818809126870243}} {"text": "function Offspring = Operator(Problem,Particle,Pbest,Gbest,W)\n% The particle swarm optimization in dMOPSO\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n %% Parameter setting\n if nargin < 5\n W = 0.4;\n end\n ParticleDec = Particle.decs;\n PbestDec = Pbest.decs;\n GbestDec = Gbest.decs;\n [N,D] = size(ParticleDec);\n ParticleVel = Particle.adds(zeros(N,D));\n\n %% Particle swarm optimization\n r1 = repmat(rand(N,1),1,D);\n r2 = repmat(rand(N,1),1,D);\n OffVel = W.*ParticleVel + r1.*(PbestDec-ParticleDec) + r2.*(GbestDec-ParticleDec);\n OffDec = ParticleDec + OffVel;\n \n %% Deterministic back\n repair = OffDec < repmat(Problem.lower,N,1) | OffDec > repmat(Problem.upper,N,1);\n OffVel(repair) = -OffVel(repair);\n Offspring = Problem.Evaluation(OffDec,OffVel);\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/dMOPSO/Operator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7520125848754472, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3818809126870243}} {"text": "function [SGP4Elements,TTEpoch1,TTEpoch2,otherInfo,checksumIsBad]=TLE2SGP4OrbEls(TLELine1,TLELine2)\n%%TLE2SGP4ORBELS Convert a North American Aerospace Defense Command (NORAD)\n% two-line element (TLE) satellite ephemerides into a format\n% that can be used with the propagateOrbitSGP4 function for\n% determining the position and velocity of the satellite at\n% different times using the Simplified General\n% Perturbations 4 (SGP4) model/ the Simplified Deep Space\n% Perturbations 4 (SDP4) model for distant satellites.\n% TLEs are how the Air Force Space Command (AFSPC) has\n% publicly released information on satellite orbits for\n% years.\n%\n%INPUTS: TLELine1, TLELine2 The character strings for each of the two lines\n% that make up the TLE ephemeride, including all\n% spaces as the positions of the characters are\n% important. With checksums, these should both be\n% 69 characters long, without checksums, 68\n% characters long.\n%\n%OUTPUTS: SGP4Elements The 7X1 vector of orbital elements that can be given\n% to the propagateOrbitSGP4 function along with the\n% epoch time to predict the location of the satellite\n% at various times. They are similar, but not\n% identical to, Keplerian orbital elements of the same\n% name. If either of the TLE strings is too short,\n% this is an empty matrix. The elements of\n% SGP4Elements are\n% 1) eccentricity\n% 2) inclination (radians)\n% 3) argument of perigee (radians)\n% 4) right ascension of the ascending node (radians)\n% 5) mean anomaly (radians)\n% 6) mean motion (radians per second [TT])\n% 7) BSTAR drag term. This pseudo ballistic\n% coefficient has units of inverse Earth radii.\n% Normally, a ballistic coefficient BC is mass per\n% unit area divided by a drag coefficient. The BSTAR\n% drag term is a scaled version of the normal\n% ballistic coefficient. That is,\n% BC=Re*rho_0/(2*BSTAR) where Re is the radius of\n% the Earth in meters, and rho=2.461e-5 kg/m^2.\n% TTEpoch1, TTEpoch2 The epoch time of the SGP4Elements given in\n% terrestrial time (TT) as a two-part Julian date.\n% This will be incorrect from 2057 onward, since the\n% TLE data only provides the final two digits of the\n% year starting in 1957 and the century must be\n% guessed. If either of the TLE strings is too short,\n% these are empty matrices.\n% otherInfo A structure holding the other information present in\n% the TLE. If either of the TLE strings is too short,\n% this is an empty matrix. The fields of this\n% structure are\n% line1Number The number starting the first TLE line.\n% This should be 1.\n% line2Number The number starting the second TLE line.\n% This should be 2.\n% satelliteNumber1 The NORAD catalog number of the\n% satellite as given by the first line of\n% the TLE.\n% satelliteNumber2 The NORAD catalog number of the\n% satellite as given by the second line of\n% the TLE. This should be the same as\n% satelliteNumber1\n% classification A character indicating the\n% classification level of the satellite.\n% 'U'=unclassified.\n% IDLaunchYear The last two digits of the launch year\n% of the satellite.\n% IDLaunchNumber The number of the launch in in the\n% launch year that put up the satellite.\n% IDPieceOfLaunch A string indicating which piece of\n% the launch the satellite is.\n% firstDerivMeanMotion The first derivative of the\n% mean motion in radians per second\n% squared. This is useful with the older\n% orbital propagators.\n% secondDerivMeanMotion The second derivative of the\n% mean motion in radians per second cubed.\n% ephemerisType Originally, this was a number from\n% 1-5 indicating the type of orbital\n% propagator used to generate the\n% ephemeris with 1=SGP, 2=SGP4, 3=SDP4,\n% 4=SGP8, and 5=SDP8. However, it is\n% always set to zero in TLEs that are\n% publicly released and is thus\n% meaningless.\n% elementNumber A number indicating which TLE set this\n% TLE is from. The number is supposed to\n% be incremented everytime a new set comes\n% out. However, in practice, it is not.\n% revolutionNumberAtEpoch The number of orbits the\n% satellite has made since its launch.\n% checksumIsBad A 2X1 boolean vector indicating whether the checksum\n% value for each of the strings is bad.\n% checksumIsBad(1) is true if the checksum of TLELine1\n% is invalid and checksumIsBad(2) is true if the\n% checksum of TLELine2 is invalid. If a checksums is\n% omitted then the value will be true. If iether of\n% the strings is too short, then this will be an empty\n% matrix.\n%\n%Note that parts of the input strings that cannot be read will be filled\n%with NaN values.\n%\n%Information of the format of the TLE sets can be found at [1]. The\n%documentation discussing how the element sets are used is in [2] and [3].\n%The decimal point parsing part of this function is loosely based on David\n%Vallado's public-domain code for the SGP4 propagator that was downloaded\n%from http://www.centerforspace.com/downloads/\n%\n%A sample TLE that accompanies Vallado's code is:\n%TLELine1='1 11801U 80230.29629788 .01431103 00000-0 14311-1 13'\n%TLELine2='2 11801 46.7916 230.4354 7318036 47.4722 10.4117 2.28537848 13'\n%\n%REFERENCES:\n%[1] T. C. for Space Standards and Innovation. (2012, 27 Sep.) NORAD two-\n% line element sets. [Online].\n% Available: http://www.celestrak.com/NORAD/elements/\n%[2] F. R. Hoots and R. L. Roehrich, \"Spacetrack report no. 3: Models for\n% propagation of NORAD element sets,\" Department of Defense, Tech. Rep.,\n% 31 Dec. 1988. [Online].\n% Available: http://www.amsat.org/amsat/ftp/docs/spacetrk.pdf\n%[3] D. A. Vallado, P. Crawford, R. Hujsak, and T. S. Kelso, \"Revisiting\n% spacetrack report # 3: Rev 2,\" in Proceedings of the AIAA/AAS\n% Astrodynamics Specialist Conference and Exhibit, Keystone, CO, 21-24\n% Aug. 2006. [Online].\n% Available: http://celestrak.com/publications/AIAA/2006-6753/AIAA-2006-6753.pdf\n%\n%December 2014 David F. Crouse, Naval Research Laboratory, Washington D.C.*/\n%(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release.\n\n%Multiplication coefficient to convert from degrees to radians.\ndeg2Rad=pi/180;\n\n%If either of the strings is too short.\nif(length(TLELine1)<68||length(TLELine2)<68)\n SGP4Elements=[];\n TTEpoch1=[];\n TTEpoch2=[];\n otherInfo=[];\n checksumIsBad=[];\n return;\nend\n\n%If the strings have no checksums at the end, then just mark the checksums\n%as bad.\nif(length(TLELine1)<69)\n checksumIsBad(1)=true;\nelse\n checksumIsBad(1)=~validateTLEChecksum(TLELine1);\nend\n \nif(length(TLELine2)<69)\n checksumIsBad(2)=true;\nelse\n checksumIsBad(2)=~validateTLEChecksum(TLELine2);\nend\n\n%Set the implied decimal points to help deal with bad values when doing a\n%formatted read.\nfor j=11:16\n if(TLELine1(j)==' ')\n TLELine1(j)='_';\n end\nend\n\nif(TLELine1(45)~=' ')\n TLELine1(44)=TLELine1(45);\nend\nTLELine1(45)='.';\n\nif(TLELine1(8)==' ')\n TLELine1(8)='U';\nend\n\nif(TLELine1(10)==' ')\n TLELine1(10)='.';\nend\n\nfor j=46:50\n if (TLELine1(j)==' ')\n TLELine1(j)='0';\n end\nend\n\nif(TLELine1(52)==' ')\n TLELine1(52)='0';\nend\n\nif(TLELine1(54)~=' ')\n TLELine1(53)=TLELine1(54);\nend\nTLELine1(54)='.';\nTLELine2(26)='.';\n\nfor j=27:33\n if(TLELine2(j)==' ')\n TLELine2(j)='0';\n end\nend\n\nif(TLELine1(63)==' ')\n TLELine1(63)='0';\nend\n\nif((length(TLELine1)<68)||(TLELine1(68)==' '))\n TLELine1(68)='0';\nend\n\n%Parse the stuff that most folks do not care about.\notherInfo.line1Number = str2double(TLELine1(1));\notherInfo.line2Number = str2double(TLELine2(1));\notherInfo.satelliteNumber1 = str2double(TLELine1(3:7));\notherInfo.satelliteNumber2 = str2double(TLELine2(3:7));\n\notherInfo.classification = TLELine1(8);\notherInfo.IDLaunchYear = str2double(TLELine1(10:11));\notherInfo.IDLaunchNumber= str2double(TLELine1(12:14));\notherInfo.IDPieceOfLaunch= TLELine1(15:17);\n\n%Convert revolutions per day squared into radians per second squared,\n%with 86400 seconds per TT Julian day.\notherInfo.firstDerivMeanMotion=str2double(TLELine1(34:43))*(2*pi/86400^2);\n%Convert revolutions per day cubed into radians per second cubed,\n%with 86400 seconds per TT Julian day.\notherInfo.secondDerivMeanMotion=str2double(TLELine1(44:50))*10.0^str2double(TLELine1(51:52))*(2*pi/86400^3); \notherInfo.ephemerisType = str2double(TLELine1(63));\notherInfo.elementNumber = str2double(TLELine1(65:68));\notherInfo.revolutionNumberAtEpoch=str2double(TLELine2(64:68));\n\n%Parse the stuff that most folks care about\ninclination = str2double(TLELine2(8:16))*deg2Rad;\nRAAscendingNode = str2double(TLELine2(17:25))*deg2Rad;\neccentricity = str2double(TLELine2(26:33));\nargumentOfPerigee = str2double(TLELine2(34:42))*deg2Rad;\nmeanAnomaly = str2double(TLELine2(43:51))*deg2Rad;\n%Convert from revolutions per day to radians per second, with 86400\n%seconds per TT Julian day.\nmeanMotion=str2double(TLELine2(52:63))*(2*pi/86400); \nBSTARDrag= str2double(TLELine1(53:59))*10.0^str2double(TLELine1(60:61));\n\n%Get the time of the orbital elements.\nepochYear = str2double(TLELine1(19:20));\nepochDays = str2double(TLELine1(21:32));\n\n%Assume that the years only run from 1957->2057 and find the actual\n%epoch year.\nif (epochYear < 57)\n year=epochYear+2000;\nelse\n year=epochYear+1900;\nend\n%Convert into a two-part Julian date in TT.\n[month,dayOfMonth]=dayOfYear2MonthDay(year,fix(epochDays));\ndayFrac=epochDays-fix(epochDays);\n[hour,minute,second]=fracDayOfMonth2HourMinSec(year,month,dayOfMonth,dayFrac);\n[TTEpoch1,TTEpoch2]=Cal2TT(year,month,dayOfMonth,hour,minute,second);\n\nSGP4Elements=zeros(7,1);\nSGP4Elements(1)=eccentricity;\nSGP4Elements(2)=inclination;\nSGP4Elements(3)=argumentOfPerigee;\nSGP4Elements(4)=RAAscendingNode;\nSGP4Elements(5)=meanAnomaly;\nSGP4Elements(6)=meanMotion;\nSGP4Elements(7)=BSTARDrag;\nend\n\nfunction isValid=validateTLEChecksum(theTLELine)\n%The validation comes from the explanation of how the checksum is formed\n%from http://www.celestrak.com/NORAD/elements/ It is the last digit of the\n%sum of all of the digits in the string plus an extra 1 for each '-'. \n theSum=0;\n for curCharIdx=1:68\n curChar=theTLELine(curCharIdx);\n if(curChar=='-')\n theSum=theSum+1;\n elseif(curChar>='0'&&curChar<='9')\n theSum=theSum+str2double(curChar);\n end\n end\n\n %Get the last digit of the sum.\n sumStr=num2str(theSum);\n isValid=(sumStr(end)==theTLELine(69));\nend\n\n%LICENSE:\n%\n%The source code is in the public domain and not licensed or under\n%copyright. The information and software may be used freely by the public.\n%As required by 17 U.S.C. 403, third parties producing copyrighted works\n%consisting predominantly of the material produced by U.S. government\n%agencies must provide notice with such work(s) identifying the U.S.\n%Government material incorporated and stating that such material is not\n%subject to copyright protection.\n%\n%Derived works shall not identify themselves in a manner that implies an\n%endorsement by or an affiliation with the Naval Research Laboratory.\n%\n%RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE\n%SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY THE NAVAL\n%RESEARCH LABORATORY FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE ACTIONS\n%OF RECIPIENT IN THE USE OF THE SOFTWARE.\n", "meta": {"author": "USNavalResearchLaboratory", "repo": "TrackerComponentLibrary", "sha": "9f6e329de5be06a371757c4b853200beb6def2d0", "save_path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary", "path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary/TrackerComponentLibrary-9f6e329de5be06a371757c4b853200beb6def2d0/Astronomical_Code/TLE2SGP4OrbEls.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7520125848754472, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3818809126870243}} {"text": "% Change to your downloaded location\nclear\naddpath('C:\\liblinear\\matlab')\naddpath('../training_code/');\naddpath('../utilities/');\naddpath('../../data extraction/');\n%% load shared definitions and AU data\nshared_defs;\n\n% Set up the hyperparameters to be validated\nhyperparams.c = 10.^(-7:0.5:1);\nhyperparams.e = 10.^(-3);\n\nhyperparams.validate_params = {'c', 'e'};\n\n% Set the training function\nsvm_train = @svm_train_linear;\n \n% Set the test function (the first output will be used for validation)\nsvm_test = @svm_test_linear;\n\npca_loc = '../../pca_generation/generic_face_rigid.mat';\n\nhog_data_dir_BP4D = hog_data_dir;\n\naus = [1, 2, 4, 6, 7, 10, 12, 14, 15, 17, 23];\n%%\nfor a=1:numel(aus)\n \n au = aus(a);\n\n rest_aus = setdiff(all_aus, au); \n\n % load the training and testing data for the current fold\n [train_samples, train_labels, valid_samples, valid_labels, ~, PC, means, scaling] = Prepare_HOG_AU_data_generic(train_recs, devel_recs, au, BP4D_dir, hog_data_dir_BP4D);\n\n train_samples = sparse(train_samples);\n valid_samples = sparse(valid_samples);\n\n %% Cross-validate here \n [ best_params, ~ ] = validate_grid_search_no_par(svm_train, svm_test, false, train_samples, train_labels, valid_samples, valid_labels, hyperparams);\n model = svm_train(train_labels, train_samples, best_params); \n \n [~, predictions_all] = svm_test(valid_labels, valid_samples, model);\n \n name = sprintf('results_BP4D_devel/AU_%d_static.mat', au);\n\n [ accuracies, F1s, corrs, ccc, rms, classes ] = evaluate_regression_results( predictions_all, valid_labels );\n \n save(name, 'model', 'F1s', 'accuracies', 'predictions_all', 'valid_labels');\n \n % Write out the model\n name = sprintf('models/AU_%d_static.dat', au);\n\n pos_lbl = model.Label(1);\n neg_lbl = model.Label(2);\n \n w = model.w(1:end-1)';\n b = model.w(end);\n\n svs = bsxfun(@times, PC, 1./scaling') * w;\n \n write_lin_svm(name, means, svs, b, pos_lbl, neg_lbl);\nend\n\n\n", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/model_training/AU_training/experiments/BP4D/Script_HOG_SVM_static.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943822145998, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.38185726519020935}} {"text": "function [mustUU, pos_mustUU, mustUU_linear, pos_mustUU_linear] = findMustUUWithGAMS(model, minFluxesW, maxFluxesW, constrOpt, excludedRxns, mustSetFirstOrder, solverName, runID, outputFolder, outputFileName, printExcel, printText, printReport, keepInputs, keepGamsOutputs, verbose)\n% This function runs the second step of `optForce`, that is to solve a\n% bilevel mixed integer linear programming problem to find a second order\n% `MustUU` set.\n%\n% USAGE:\n%\n% [mustUU, pos_mustUU, mustUU_linear, pos_mustUU_linear] = findMustUUWithGAMS(model, minFluxesW, maxFluxesW, varargin)\n%\n% INPUTS:\n% model: (structure) a metabolic model with at\n% least the following fields:\n%\n% * .rxns - Reaction IDs in the model\n% * .mets - Metabolite IDs in the model\n% * .S - Stoichiometric matrix (sparse)\n% * .b - RHS of `Sv = b` (usually zeros)\n% * .c - Objective coefficients\n% * .lb - Lower bounds for fluxes\n% * .ub - Upper bounds for fluxes\n% minFluxesW: (double array of size `n_rxns x 1`) minimum\n% fluxes for each reaction in the model for\n% wild-type strain. This can be obtained by\n% running the function `FVAOptForce`. E.g.:\n% `minFluxesW = [-90; -56];`\n% maxFluxesW: (double array of size `n_rxns x 1`) maximum\n% fluxes for each reaction in the model for\n% wild-type strain. This can be obtained by\n% running the function `FVAOptForce`. E.g.:\n% `maxFluxesW = [90; 56];`\n%\n% OPTIONAL INPUTS:\n% constrOpt: (Structure) structure containing\n% additional contraints. Include here only\n% reactions whose flux is fixed, i.e.,\n% reactions whose lower and upper bounds\n% have the same value. Do not include here\n% reactions whose lower and upper bounds\n% have different values. Such contraints\n% should be defined in the lower and upper\n% bounds of the model. The structure has the\n% following fields:\n%\n% * .rxnList - Reaction list (cell array)\n% * .values - Values for constrained\n% reactions (double array)\n% E.g.: `struct('rxnList', {{'EX_gluc', 'R75', 'EX_suc'}}, 'values', [-100, 0, 155.5]');`\n% excludedRxns: (cell array) Reactions to be excluded to\n% the `MustUU` set. This could be used to\n% avoid finding transporters or exchange\n% reactions in the set. Default = empty.\n% mustSetFirstOrder: (cell array) Reactions that belong to\n% `MustU` and `MustL` (first order sets).\n% Default = empty.\n% solverName: (string) Name of the solver used in\n% GAMS. Default = 'cplex'.\n% runID: (string) ID for identifying this run.\n% Default = ['run' date hour].\n% outputFolder: (string) name for folder in which\n% results will be stored. Default =\n% 'OutputsFindMustUU'.\n% outputFileName: (string) name for files in which\n% results. will be stored Default =\n% 'MustUUSet'.\n% printExcel: (double) boolean to describe wheter\n% data must be printed in an excel file or\n% not. Default = 1\n% printText: (double) boolean to describe wheter\n% data must be printed in an plaint text\n% file or not. Default = 1\n% printReport: (double) 1 to generate a report in a\n% plain text file. 0 otherwise. Default = 1\n% keepInputs: (double) 1 to mantain folder with\n% inputs to run `findMustUU.gms`. 0 otherwise.\n% Default = 1\n% keepGamsOutputs: (double) 1 to mantain files returned by\n% `findMustUU.gms`. 0 otherwise. Default = 1\n% verbose: (double) 1 to print results in console.\n% 0 otherwise. Default = 0\n%\n% OUTPUTS:\n% mustUU: (cell array of size number of sets found X\n% 2) Cell array containing the reactions IDs\n% which belong to the `MustUU` set. Each row\n% contain a couple of reactions that must\n% decrease their flux.\n% pos_mustUU: (double array of size number of sets found\n% X 2) double array containing the positions\n% of each reaction in `mustUU` with regard to\n% `model.rxns`\n% mustUU_linear: (cell array of size number of unique\n% reactions found X 1) Cell array containing\n% the unique reactions ID which belong to\n% the `MustUU` Set\n% pos_mustUU_linear: (double array of size number of unique\n% reactions found X 1) double array\n% containing positions for reactions in\n% `mustUU_linear`. with regard to `model.rxns`\n% outputFileName.xls: (file) File containing one column\n% array with identifiers for reactions in\n% MustUU. This file will only be generated\n% if the user entered `printExcel = 1`. Note\n% that the user can choose the name of this\n% file entering the input `outputFileName = 'PutYourOwnFileNameHere';`\n% outputFileName.txt: (file) File containing one column\n% array with identifiers for reactions in\n% MustUU. This file will only be generated\n% if the user entered `printText = 1`. Note\n% that the user can choose the name of this\n% file entering the input `outputFileName = 'PutYourOwnFileNameHere';`\n% outputFileName_Info.xls: (file) File containing one column\n% array. In each row the user will find a\n% couple of reactions. Each couple of\n% reaction was found in one iteration of\n% `FindMustUU.gms`. This file will only be\n% generated if the user entered `printExcel = 1`.\n% Note that the user can choose the name\n% of this file entering the input\n% `outputFileName = 'PutYourOwnFileNameHere';`\n% outputFileName_Info.txt: (file) File containing one column\n% array. In each row the user will find a\n% couple of reactions. Each couple of\n% reaction was found in one iteration of\n% `FindMustUU.gms`. This file will only be\n% generated if the user entered `printText = 1`.\n% Note that the user can choose the name\n% of this file entering the input\n% `outputFileName = 'PutYourOwnFileNameHere';`\n% findMustUU.lst: (file) file autogenerated by GAMS. It\n% contains information about equations,\n% variables, parameters as well as\n% information about the running (values at\n% each iteration). This file only will be\n% saved in the output folder is the user\n% entered `keepGamsOutputs = 1`\n% GtoMUU.gdx: (file) file containing values for\n% variables, parameters, etc. which were\n% found by GAMS when solving `findMustUU.gms`.\n% This file only will be saved in the output\n% folder is the user entered `keepInputs = 1`\n%\n% NOTE:\n%\n% This function is based in the GAMS files written by Sridhar\n% Ranganathan which were provided by the research group of Costas D.\n% Maranas. For a detailed description of the `optForce` procedure, please\n% see: `Ranganathan S, Suthers PF, Maranas CD (2010) OptForce: An\n% Optimization Procedure for Identifying All Genetic Manipulations\n% Leading to Targeted Overproductions. PLOS Computational Biology 6(4):\n% e1000744`. https://doi.org/10.1371/journal.pcbi.1000744\n%\n% .. Author: - Sebastian Mendoza, May 30th 2017, Center for Mathematical Modeling, University of Chile, snmendoz@uc.cl\n\noptionalParameters = {'constrOpt', 'excludedRxns', 'mustSetFirstOrder', 'solverName', 'runID', 'outputFolder', 'outputFileName', ...\n 'printExcel', 'printText', 'printReport', 'keepInputs', 'keepGamsOutputs', 'verbose'};\n\nif (numel(varargin) > 0 && (~ischar(varargin{1}) || ~any(ismember(varargin{1},optionalParameters))))\n\n tempargin = cell(1,2*(numel(varargin)));\n for i = 1:numel(varargin)\n\n tempargin{2*(i-1)+1} = optionalParameters{i};\n tempargin{2*(i-1)+2} = varargin{i};\n end\n varargin = tempargin;\n\nend\n\nparser = inputParser();\nparser.addRequired('model', @(x) isstruct(x) && isfield(x, 'S') && isfield(model, 'rxns')...\n && isfield(model, 'mets') && isfield(model, 'lb') && isfield(model, 'ub') && isfield(model, 'b')...\n && isfield(model, 'c'))\nparser.addRequired('minFluxesW', @isnumeric)\nparser.addRequired('maxFluxesW', @isnumeric)\nparser.addParamValue('constrOpt', struct('rxnList', {{}}, 'values', []),@ (x) isstruct(x) && isfield(x, 'rxnList') && isfield(x, 'values') ...\n && length(x.rxnList) == length(x.values) && length(intersect(x.rxnList, model.rxns)) == length(x.rxnList))\nparser.addParamValue('excludedRxns', {}, @(x) iscell(x) && length(intersect(x, model.rxns)) == length(x))\nparser.addParamValue('mustSetFirstOrder', {}, @(x) iscell(x) && length(intersect(x, model.rxns)) == length(x))\nsolvers = checkGAMSSolvers('MIP');\nif isempty(solvers)\n error('there is no GAMS solvers available to solve Mixed Integer Programming problems') ;\nelse\n if ismember('cplex', lower(solvers))\n defaultSolverName = 'cplex';\n else\n defaultSolverName = lower(solvers(1));\n end\nend\n\nparser.addParamValue('solverName', defaultSolverName, @(x) ischar(x))\nhour = clock; defaultRunID = ['run-' date '-' num2str(hour(4)) 'h' '-' num2str(hour(5)) 'm'];\nparser.addParamValue('runID', defaultRunID, @(x) ischar(x))\nparser.addParamValue('outputFolder', 'OutputsFindMustUU', @(x) ischar(x))\nparser.addParamValue('outputFileName', 'MustUUSet', @(x) ischar(x))\nparser.addParamValue('printExcel', 1, @(x) isnumeric(x) || islogical(x));\nparser.addParamValue('printText', 1, @(x) isnumeric(x) || islogical(x));\nparser.addParamValue('printReport', 1, @(x) isnumeric(x) || islogical(x));\nparser.addParamValue('keepInputs', 1, @(x) isnumeric(x) || islogical(x));\nparser.addParamValue('keepGamsOutputs', 1, @(x) isnumeric(x) || islogical(x));\nparser.addParamValue('verbose', 1, @(x) isnumeric(x) || islogical(x));\n\nparser.parse(model, minFluxesW, maxFluxesW, varargin{:})\nmodel = parser.Results.model;\nminFluxesW = parser.Results.minFluxesW;\nmaxFluxesW = parser.Results.maxFluxesW;\nconstrOpt= parser.Results.constrOpt;\nexcludedRxns= parser.Results.excludedRxns;\nmustSetFirstOrder = parser.Results.mustSetFirstOrder;\nsolverName = parser.Results.solverName;\nrunID = parser.Results.runID;\noutputFolder = parser.Results.outputFolder;\noutputFileName = parser.Results.outputFileName;\nprintExcel = parser.Results.printExcel;\nprintText = parser.Results.printText;\nprintReport = parser.Results.printReport;\nkeepInputs = parser.Results.keepInputs;\nkeepGamsOutputs = parser.Results.keepGamsOutputs;\nverbose = parser.Results.verbose;\n\n% correct size of constrOpt\nif ~isempty(constrOpt.rxnList)\n if size(constrOpt.rxnList, 1) > size(constrOpt.rxnList,2); constrOpt.rxnList = constrOpt.rxnList'; end;\n if size(constrOpt.values, 1) > size(constrOpt.values,2); constrOpt.values = constrOpt.values'; end;\nend\n\n% first, verify that GAMS is installed in your system\ngamsPath = which('gams');\nif isempty(gamsPath); error('OptForce: GAMS is not installed in your system. Please install GAMS.'); end;\n\n%name of the function to solve the optimization problem in GAMS\ngamsMustUUFunction = 'findMustUU.gms';\n%path of that function\npathGamsFunction = which(gamsMustUUFunction);\nif isempty(pathGamsFunction); error(['OptForce: ' gamsMustUUFunction ' not in MATLAB path.']); end;\n%current path\nworkingPath = pwd;\n%go to the path associate to the ID for this run.\nif ~isdir(runID); mkdir(runID); end; cd(runID);\n\n% if the user wants to generate a report.\nif printReport\n %create name for file.\n hour = clock;\n reportFileName = ['report-' date '-' num2str(hour(4)) 'h' '-' num2str(hour(5)) 'm.txt'];\n freport = fopen(reportFileName, 'w');\n reportClosed = 0;\n % print date of running.\n fprintf(freport, ['findMustUUWithGAMS.m executed on ' date ' at ' num2str(hour(4)) ':' num2str(hour(5)) '\\n\\n']);\n % print matlab version.\n fprintf(freport, ['MATLAB: Release R' version('-release') '\\n']);\n % print gams version.\n fprintf(freport, ['GAMS: ' regexprep(gamsPath, '\\\\', '\\\\\\') '\\n']);\n % print solver used in GAMS to solve optForce.\n fprintf(freport, ['GAMS solver: ' solverName '\\n']);\n\n %print each of the inputs used in this running.\n fprintf(freport, '\\nThe following inputs were used to run OptForce: \\n');\n fprintf(freport, '\\n------INPUTS------\\n');\n %print model.\n fprintf(freport, '\\nModel:\\n');\n for i = 1:length(model.rxns)\n rxn = printRxnFormula(model, model.rxns{i}, false);\n fprintf(freport, [model.rxns{i} ': ' rxn{1} '\\n']);\n end\n %print lower and upper bounds, minimum and maximum values for each of\n %the reactions in wild-type and mutant strain\n fprintf(freport, '\\nLB\\tUB\\tMin_WT\\tMax_WT\\n');\n for i = 1:length(model.rxns)\n fprintf(freport, '%6.4f\\t%6.4f\\t%6.4f\\t%6.4f\\n', model.lb(i), model.ub(i), minFluxesW(i), maxFluxesW(i));\n end\n\n %print constraints\n fprintf(freport,'\\nConstrained reactions:\\n');\n for i = 1:length(constrOpt.rxnList)\n fprintf(freport,'%s: fixed in %6.4f\\n',constrOpt.rxnList{i},constrOpt.values(i));\n end\n\n fprintf(freport, '\\nExcluded Reactions:\\n');\n for i = 1:length(excludedRxns)\n rxn = printRxnFormula(model, excludedRxns{i}, false);\n fprintf(freport, [excludedRxns{i} ': ' rxn{1} '\\n']);\n end\n\n fprintf(freport, '\\nReactions from first order sets(MustU and MustL):\\n');\n for i = 1:length(mustSetFirstOrder)\n rxn = printRxnFormula(model, mustSetFirstOrder{i}, false);\n fprintf(freport, [mustSetFirstOrder{i} ': ' rxn{1} '\\n']);\n end\n\n fprintf(freport,'\\nrunID(Main Folder): %s \\n\\noutputFolder: %s \\n\\noutputFileName: %s \\n',...\n runID, outputFolder, outputFileName);\n\n\n fprintf(freport,'\\nprintExcel: %1.0f \\n\\nprintText: %1.0f \\n\\nprintReport: %1.0f \\n\\nkeepInputs: %1.0f \\n\\nkeepGamsOutputs: %1.0f \\n\\nverbose: %1.0f \\n',...\n printExcel,printText,printReport,keepInputs,keepGamsOutputs,verbose);\n\nend\n\ncopyfile(pathGamsFunction);\n\n% export inputs for running the optimization problem in GAMS to find the\n% MustUU Set\ninputFolder = 'InputsMustUU';\nexportInputsMustOrder2ToGAMS(model, 'UU', minFluxesW, maxFluxesW, constrOpt, excludedRxns, mustSetFirstOrder, inputFolder)\n\n% create a directory to save results if this don't exist\nif ~exist(outputFolder, 'dir')\n mkdir(outputFolder);\nend\n\n%run\nif verbose\n run = system(['gams ' gamsMustUUFunction ' lo=3 --myroot=' inputFolder '/ --solverName=' solverName ' gdx=GtoMUU']);\nelse\n run=system(['gams ' gamsMustUUFunction ' --myroot=' inputFolder '/ --solverName=' solverName ' gdx=GtoMUU']);\nend\n\nif printReport; fprintf(freport, '\\n------RESULTS------\\n'); end;\n\n%if user decide not to show inputs files for findMustUU.gms\nif ~keepInputs; rmdir(inputFolder,'s'); end;\n\n%if findMustUU.gms was executed correctly \"run\" should be 0\nif run == 0\n\n if printReport; fprintf(freport,'\\nGAMS was executed correctly\\n'); end;\n if verbose; fprintf('GAMS was executed correctly\\nSummary of information exported by GAMS:\\n'); end;\n %show GAMS report in MATLAB console\n if verbose; gdxWhos GtoMUU; end;\n try\n findMustUU.name = 'findMustUU';\n rgdx('GtoMUU',findMustUU); %if do not exist the variable findMustUU in GtoMUU, an error will ocurr.\n if printReport; fprintf(freport,'\\nGAMS variables were read by MATLAB correctly\\n'); end;\n if verbose; fprintf('GAMS variables were read by MATLAB correctly\\n'); end;\n\n %Using GDXMRW to read solutions found by findMustUU.gms\n %extract matrix 1 found by findMustII.gms. This matrix contains the\n %first reaction in each couple of reactions\n m1.name = 'matrix1';\n m1.compress = 'true';\n m1 = rgdx('GtoMUU',m1);\n uels_m1 = m1.uels{2};\n\n\n if ~isempty(uels_m1)\n %if the uel array for m1 is not empty, at least 1 couple of reations was found.\n if printReport; fprintf(freport,'\\na MustUU set was found\\n'); end;\n if verbose; fprintf('a MustUU set was found\\n'); end;\n\n %find values for matrix 1\n val_m1 = m1.val;\n m1_full = full(sparse(val_m1(:,1),val_m1(:,2:end-1),val_m1(:,3)));\n\n %find values for matrix 2\n m2.name = 'matrix2';\n m2.compress = 'true';\n m2 = rgdx('GtoMUU',m2);\n uels_m2 = m2.uels{2};\n val_m2 = m2.val;\n m2_full = full(sparse(val_m2(:,1),val_m2(:,2:end-1),val_m2(:,3)));\n\n %initialize empty array for storing\n n_mustSet = size(m1_full,1);\n mustUU = cell(n_mustSet,2);\n pos_mustUU = zeros(size(mustUU));\n mustUU_linear = {};\n\n %write each couple of reactions.\n for i = 1:n_mustSet\n rxn1 = uels_m1(m1_full(i,:) == 1);\n rxn2 = uels_m2(m2_full(i,:) == 1);\n mustUU(i,1) = rxn1;\n mustUU(i,2) = rxn2;\n pos_mustUU(i,1) = find(strcmp(model.rxns,rxn1));\n pos_mustUU(i,2) = find(strcmp(model.rxns,rxn2));\n mustUU_linear = union(mustUU_linear,[rxn1;rxn2]);\n end\n pos_mustUU_linear = cell2mat(arrayfun(@(x)find(strcmp(x,model.rxns)),mustUU_linear,'UniformOutput', false))';\n else\n %if the uel array for m1 is empty, no couple of reations was found.\n if printReport; fprintf(freport,'\\na MustUU set was not found\\n'); end;\n if verbose; fprintf('a MustUU set was not found\\n'); end;\n\n %initialize arrays to be returned by this function\n mustUU = {};\n pos_mustUU = [];\n mustUU_linear = {};\n pos_mustUU_linear = [];\n end\n\n % print info into an excel file if required by the user\n if printExcel\n if ~isempty(uels_m1)\n currentFolder = pwd;\n cd(outputFolder);\n must = cell(size(mustUU,1),1);\n for i = 1:size(mustUU,1)\n must{i} = strjoin(mustUU(i,:),' or ');\n end\n xlswrite([outputFileName '_Info'],[{'Reactions'};must]);\n xlswrite(outputFileName,mustUU_linear);\n cd(currentFolder);\n if verbose\n fprintf(['MustUU set was printed in ' outputFileName '.xls \\n']);\n fprintf(['MustUU set was also printed in ' outputFileName '_Info.xls \\n']);\n end\n if printReport\n fprintf(freport,['\\nMustUU set was printed in ' outputFileName '.xls \\n']);\n fprintf(freport,['\\nMustUU set was printed in ' outputFileName '_Info.xls \\n']);\n end\n else\n if verbose; fprintf('No mustUU set was found. Therefore, no excel file was generated\\n'); end;\n if printReport; fprintf(freport, '\\nNo mustUU set was found. Therefore, no excel file was generated\\n'); end;\n end\n end\n\n % print info into a plain text file if required by the user\n if printText\n if ~isempty(uels_m1)\n currentFolder = pwd;\n cd(outputFolder);\n f = fopen([outputFileName '_Info.txt'],'w');\n fprintf(f,'Reactions\\n');\n for i = 1:size(mustUU,1)\n fprintf(f,'%s or %s\\n',mustUU{i,1},mustUU{i,2});\n end\n fclose(f);\n\n f = fopen([outputFileName '.txt'],'w');\n for i = 1:length(mustUU_linear)\n fprintf(f,'%s\\n',mustUU_linear{i});\n end\n fclose(f);\n\n cd(currentFolder);\n if verbose\n fprintf(['MustUU set was printed in ' outputFileName '.txt \\n']);\n fprintf(['MustUU set was also printed in ' outputFileName '_Info.txt \\n']);\n end\n if printReport\n fprintf(freport,['\\nMustUU set was printed in ' outputFileName '.txt \\n']);\n fprintf(freport,['\\nMustUU set was printed in ' outputFileName '_Info.txt \\n']);\n end\n\n else\n if verbose; fprintf('No mustUU set was found. Therefore, no plain text file was generated\\n'); end;\n if printReport; fprintf(freport, '\\nNo mustUU set was found. Therefore, no plain text file was generated\\n'); end;\n end\n end\n\n %close file for saving report\n if printReport; fclose(freport); reportClosed = 1; end;\n if printReport; movefile(reportFileName,outputFolder); end;\n delete(gamsMustUUFunction);\n\n %remove or move additional files that were generated during running\n if keepGamsOutputs\n if ~isdir(outputFolder); mkdir(outputFolder); end;\n movefile('GtoMUU.gdx',outputFolder);\n movefile(regexprep(gamsMustUUFunction,'gms','lst'),outputFolder);\n else\n delete('GtoMUU.gdx');\n delete(regexprep(gamsMustUUFunction,'gms','lst'));\n end\n\n %go back to the original path\n cd(workingPath);\n catch\n %GAMS variables were not read correctly by MATLAB\n if verbose; fprintf('GAMS variables were not read by MATLAB corretly\\n'); end;\n if printReport && ~reportClosed; fprintf(freport, '\\nGAMS variables were not read by MATLAB corretly\\n'); fclose(freport); end;\n cd(workingPath);\n error('OptForce: GAMS variables were not read by MATLAB corretly');\n\n end\n\n %if findMustUU.gms was not executed correctly \"run\" should be different from 0\nelse\n %if GAMS was not executed correcttly\n if printReport && ~reportClosed; fprintf(freport, '\\nGAMS was not executed correctly\\n'); fclose(freport); end;\n if verbose; fprintf('GAMS was not executed correctly\\n'); end;\n cd(workingPath);\n error('OptForce: GAMS was not executed correctly');\n\nend\n\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/design/optForceGAMS/findMustUUWithGAMS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7577943712746406, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.38185725967749634}} {"text": "function test_bug2265\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_convert_units ft_prepare_sourcemodel\n\nclear all\nclose all\n\nload(dccnpath('/home/common/matlab/fieldtrip/template/headmodel/standard_bem.mat'));\nload(dccnpath('/home/common/matlab/fieldtrip/template/headmodel/standard_mri.mat'));\nelecs = ft_read_sens(dccnpath('/home/common/matlab/fieldtrip/template/electrode/standard_1020.elc'));\n\n%%\nCMMM = 'cm'; scale=1;\nCMMM = 'mm'; scale=10; % prepare_leadfield, or another method does not work with mm (a bugg)\n\nvol = ft_convert_units(vol, CMMM); % Convert the vol to cm, or mm\n\n% construct the dipole grid in the template brain coordinates\n% the source units are in cm\n% the negative inwardshift means an outward shift of the brain surface for inside/outside detection\ncfg = [];\ncfg.xgrid = scale*[-20:1:20];\ncfg.ygrid = scale*[-20:1:20];\ncfg.zgrid = scale*[-20:1:20];\ncfg.unit = CMMM;\ncfg.tight = 'yes';\ncfg.inwardshift = -scale*0;\ncfg.headmodel = vol;\ntemplate_grid = ft_prepare_sourcemodel(cfg);\n\nassert(strcmp(vol.unit, CMMM));\nassert(strcmp(template_grid.unit, CMMM));\n\n\n%% make a figure with the template head model and dipole grid\nfigure\nhold on\nft_plot_headmodel(vol, 'facecolor', 'cortex', 'edgecolor', 'none');alpha 0.5;\ncamlight;\nft_plot_mesh(template_grid.pos(template_grid.inside,:));\n\nelecs = ft_convert_units(elecs, CMMM);\n\n[vol, elecs] = ft_prepare_vol_sens(vol, elecs);\n\nft_plot_mesh(elecs.elecpos,'vertexcolor',[1 .3 .3]);\n\n\ndata = [];\ncfg.sourcemodel = template_grid;\ncfg.headmodel = vol;\ncfg.elec = elecs;\ncfg.unit = CMMM;\n[grid] = ft_prepare_leadfield(cfg, data);\n\ngrid = ft_convert_units(grid, CMMM); %% does not really functional!!\n\n\n%% Dipole simulation\n% note that beamformer scanning will be done with a 1cm grid, so you should\n% not put the dipole on a position that will not be covered by a grid\n% location later\ncfg = [];\ncfg.headmodel = vol;\ncfg.elec = elecs;\ncfg.dip.pos = scale*[\n 3 -3 6 % dipole 1\n ];\ncfg.dip.mom = [ 1 0 0 ]';\n\ncfg.dip.frequency = [10]*1;\ncfg.dip.phase=pi/4*[1];\ncfg.dip.amplitude=[10];\ncfg.relnoise = .1;\ncfg.ntrials = 20;\ndata = ft_dipolesimulation(cfg);\n\n\n%% compute the data covariance matrix, which will capture the activity of\n% the simulated dipole\ncfg = [];\ncfg.covariance = 'yes';\ncfg.covariancewindow = [data.time{1}(1) data.time{1}(end)];\ntimelock = ft_timelockanalysis(cfg, data);\n\n\n%% source analysis\ncfg = [];\nMETHOD = 'lcmv'; % 'lcmv' 'rv' 'mne'\ncfg.method = METHOD;\ncfg.sourcemodel = grid;\n\n\ncfg.headmodel = vol;\ncfg.elec = elecs;\ncfg.snr = 10;\nsource = ft_sourceanalysis(cfg, timelock);\n\n%% interpolate onto the anatomical MRI\n\ncfg = [];\ncfg.downsample = 2;\nif strcmp(METHOD,'lcmv')\n cfg.parameter = 'avg.pow';\nelseif strcmp(METHOD,'rv')\n cfg.parameter = 'avg.rv';\nelse\n cfg.parameter = 'avg.pow';\nend\nsource = ft_sourceinterpolate(cfg, source , mri); % Note: this function crashes if mne method is used\n\n%% plot the source reconstruction\n\ncfg = [];\nif strcmp(METHOD,'lcmv')\n try, source=rmfield(source,'time'); end\n cfg.funparameter = 'avg.pow';\nelseif strcmp(METHOD,'rv')\n try, source=rmfield(source,'time'); end\n cfg.funparameter = 'avg.rv';\nelse\n cfg.funparameter = 'avg.pow';\nend\n\ncfg.method = 'ortho';\nft_sourceplot(cfg, source);\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug2265.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7577943603346811, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3818572541647833}} {"text": "%CONVERTTO Converts an array to another data type with optional scaling\n%\n% dst = cv.convertTo(src)\n% dst = cv.convertTo(src, 'OptionName', optionValue, ...)\n%\n% ## Input\n% * __src__ Input matrix.\n%\n% ## Output\n% * __dst__ Output image of the same size as `src`, and the specified type.\n%\n% ## Options\n% * __RType__ desired output matrix type (`uint8`, `int32`, `double`, etc.),\n% or rather the depth since the number of channels are the same as the input\n% has; if it is negative, the output matrix will have the same type as the\n% input. Default -1\n% * __Alpha__ optional scale factor. default 1.0\n% * __Beta__ optional delta added to the scaled values. default 0.0\n%\n% The method converts source pixel values to the target data type.\n% Saturation is applied at the end to avoid possible overflows:\n%\n% dst = cast(src*alpha + beta, RType);\n%\n% See also: cv.copyTo, cv.normalize, cast, typecast, im2double, im2uint8,\n% mat2gray\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/convertTo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857982, "lm_q2_score": 0.6791787121629466, "lm_q1q2_score": 0.381818311879888}} {"text": "function [varargout]=cmaperise(varargin)\n\n% function [Cmapped,indMap]=cmaperise(C,cmap,clim)\n%-------------------------------------------------------------------------\n% This function creates RGB colors for the data C using the colormap cmap\n% and the limits clim. \n%\n%\n% Change log:\n% 2019/06/25 Added variable input handling\n%-------------------------------------------------------------------------\n\n%% Parse input \n\nswitch nargin\n case 1\n C=varargin{1};\n cmap=[];\n clim=[];\n case 2\n C=varargin{1};\n cmap=varargin{2};\n clim=[]; \n case 3\n C=varargin{1};\n cmap=varargin{2};\n clim=varargin{3};\nend\n\nif isempty(cmap)\n cmap=viridis(250);\nend\n\nif isempty(clim)\n clim=[min(C(:)) max(C(:))]; \n if diff(clim)1)=1;\n\np(isnan(p))=0; %Force nan data to 0\n\nIND_cmap=round((p*(size(cmap,1)-1))+1);\nCmapped=cmap(IND_cmap,:);\n\n%%\nvarargout{1}=Cmapped;\nif nargout==2\n varargout{2}=IND_cmap;\nend\n\nend\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/cmaperise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.679178699175393, "lm_q1q2_score": 0.3818183045785905}} {"text": "classdef crossvalidator\n% CROSSVALIDATOR crossvalidation class.\n%\n% DESCRIPTION\n% The crossvalidator class performs crossvalidation. It uses a\n% particular crossvalidation on a multivariate analysis specified in the\n% property mva.\n%\n% One may use 'type' equal to:\n% - 'nfold' : n-fold cross-validation specified by 'folds' (default: 5)\n% - 'split' : data is split into train and test data; amount of training\n% data is given by 'proportion' (default: 0.75)\n% - 'loo' : leave-one-out cross-validation; takes 1 trial per fold\n% - 'bloo' : balanced loo cv; takes 1 trial from each class per fold.\n% Assumes that each class has the same nr of trials.\n% \n% Alternatively one can specify the cell-arrays 'trainfolds' and\n% 'testfolds' to contain for each fold the trial indices that need to be\n% used. If one of these is specified then the other one is automatically\n% filled using the complement of the trials. If these cell-arrays are\n% non-empty then the settings above are ignored.\n%\n% In order to balance the occurrence of different classes one may set\n% 'resample' equal to true (default: false). Resample will upsample less\n% occurring classes during training and downsample often occurring\n% classes during testing.\n%\n% In case of memory problems, use 'compact' equal to true (default:\n% false). This will not store the trained multivariate methods but just\n% the classification outcomes and the parameters that are returned by the\n% model function of the multivariate methods.\n%\n% EXAMPLE\n% X = rand(10,20); Y = [1 1 1 1 1 2 2 2 2 2]';\n% m = dml.crossvalidator('mva',dml.svm)\n% m = m.train(X,Y);\n% m.statistic('accuracy')\n%\n% DEVELOPER\n% Marcel van Gerven (m.vangerven@donders.ru.nl)\n \n properties\n \n mva % multivariate analysis\n \n result % crossvalidation result\n \n design % the real outputs\n \n model % estimated model per fold\n \n type = 'nfold'; % 'type' : crossvalidation type 'nfold', 'split', 'loo'\n \n folds = 5; % 'folds' : number of folds when using nfold\n \n proportion = 0.75; % 'proportion' : proportion of used training data when using split\n \n resample = false; % 'resample' : whether or not to use resampling to balance classes\n \n % cell array indicating used trials per training fold\n % for multiple datasets this should be come a cell array of cell\n % arrays, e.g. trainfolds = { {f1 ... fn} {f1 ... fn} }\n trainfolds \n \n % cell array indicating used trials per test fold\n % for multiple datasets this should be come a cell array of cell\n % arrays, e.g. testfolds = { {f1 ... fn} {f1 ... fn} }\n testfolds \n \n stat = ''; % test statistic used to quantify performance of this cross-validator\n \n verbose = false; % generate output when true\n\n compact = false; % drop mva details when true \n \n end\n\n methods\n \n function obj = crossvalidator(varargin)\n \n % parse options\n for i=1:2:length(varargin)\n if ismember(varargin{i},fieldnames(obj))\n obj.(varargin{i}) = varargin{i+1};\n else\n error('unrecognized fieldname %s',varargin{i});\n end\n end\n \n if ~isa(obj.mva,'dml.analysis'), obj.mva = dml.analysis(obj.mva); end\n \n end\n \n function obj = train(obj,X,Y)\n \n % complete the folds when only train or test is specified\n if isempty(obj.trainfolds) && isempty(obj.testfolds)\n [obj.trainfolds,obj.testfolds] = obj.create_folds(Y);\n elseif isempty(obj.trainfolds)\n obj.trainfolds = obj.complement(Y,obj.testfolds);\n else\n obj.testfolds = obj.complement(Y,obj.trainfolds);\n end\n \n if iscell(Y)\n ndata = length(Y);\n else\n ndata = 1;\n end\n \n if ndata == 1\n nfolds = length(obj.trainfolds);\n else\n nfolds = length(obj.trainfolds{1});\n end\n \n obj.result = cell(nfolds,1);\n obj.design = cell(nfolds,1);\n obj.model = cell(nfolds,1);\n \n if ~iscell(obj.mva)\n obj.mva = repmat({obj.mva},[1 nfolds]);\n end\n \n for f=1:nfolds % iterate over folds\n \n if obj.verbose\n if ndata == 1\n fprintf('validating fold %d of %d for %d datasets\\n',f,nfolds,ndata);\n else\n fprintf('validating fold %d of %d for %d datasets\\n',f,nfolds,ndata);\n end \n end\n\n % construct X and Y for each fold\n if ndata == 1\n trainX = X(obj.trainfolds{f},:);\n testX = X(obj.testfolds{f},:);\n trainY = Y(obj.trainfolds{f},:);\n testY = Y(obj.testfolds{f},:);\n else\n trainX = cell([length(X) 1]);\n testX = cell([length(X) 1]);\n for c=1:length(X)\n trainX{c} = X{c}(obj.trainfolds{c}{f},:);\n testX{c} = X{c}(obj.testfolds{c}{f},:);\n end\n trainY = cell([length(Y) 1]);\n testY = cell([length(Y) 1]);\n for c=1:length(Y)\n trainY{c} = Y{c}(obj.trainfolds{c}{f},:);\n testY{c} = Y{c}(obj.testfolds{c}{f},:);\n end\n end\n \n tproc = obj.mva{f}.train(trainX,trainY);\n if ~isempty(testY)\n obj.result{f} = tproc.test(testX);\n obj.design{f} = testY;\n end\n obj.model{f} = tproc.model();\n \n if ~obj.compact, obj.mva{f} = tproc; end\n \n clear tproc;\n clear trainX;\n clear testX;\n clear trainY;\n clear testY;\n \n end\n \n % return unique model instead of cell array in case of one fold\n if length(obj.model)==1, obj.model = obj.model{1}; end\n \n \n end\n \n function [train,test] = create_folds(obj,Y)\n % get predefined sequence for train and test folds\n \n if strcmp(obj.type,'loo') || strcmp(obj.type,'bloo')\n \n if iscell(Y)\n obj.folds = min(cellfun(@(x)(size(x,1)),Y));\n if strcmp(obj.type,'bloo')\n nclasses = max(cellfun(@(x)(max(x)),Y));\n obj.folds = obj.folds/nclasses;\n end\n else\n obj.folds = size(Y,1);\n if strcmp(obj.type,'bloo')\n nclasses = max(Y);\n for k = 1:nclasses\n N(k,1) = sum(Y==k);\n end\n obj.folds = min(N);\n %obj.folds = obj.folds/nclasses;\n end\n end\n obj.type = 'nfold';\n \n end\n \n if strcmp(obj.type,'split'), obj.folds = 1; end\n \n if ~iscell(Y)\n \n test = create_test_folds(Y);\n \n train = obj.complement(Y,test);\n \n if obj.resample\n train = upsample(train,Y);\n test = downsample(test,Y);\n end\n \n else\n \n train = cell(length(Y),1);\n test = cell(length(Y),1);\n \n for c=1:length(Y)\n \n test{c} = create_test_folds(Y{c});\n \n train{c} = obj.complement(Y{c},test{c});\n \n if obj.resample\n train{c} = upsample(train{c},Y{c});\n test{c} = downsample(test{c},Y{c});\n end\n \n end\n \n end\n \n function y = create_test_folds(Y)\n \n % NOTE: Fixing of the random seed has been removed here in the fieldtrip \n % version since the randomseed is dealt with higher up in the code \n % hierarchy (i.e. specify cfg.randomseed in ft_timelockstatistics).\n \n y = cell(obj.folds,1);\n \n % determine indices of labeled (non-nan) datapoints\n % nan datapoints should end up in the training set\n labeled = find(any(~isnan(Y(1:size(Y,1),:)),2));\n if obj.verbose && numel(labeled)0\n x = setdiff(idxs,y{1});\n x = x(randperm(numel(x)));\n y{1} = [y{1}; x(1:n)];\n end\n \n end\n \n case 'nfold'\n \n if obj.verbose, fprintf('creating sample indices using %d-fold cross-validation\\n',obj.folds); end\n \n if mx == nsamples % unique samples\n \n for f=1:obj.folds\n y{f} = idxs((floor((f-1)*(length(idxs)/obj.folds))+1):floor(f*(length(idxs)/obj.folds)));\n end\n \n else\n \n % take labeled indices\n idx = idx(idxs);\n \n f=1;\n for j=1:mx\n iidx = find(idx == j);\n for k=1:length(iidx)\n y{f} = [y{f}; idxs(iidx(k))];\n f = f+1; if f > obj.folds, f=1; end\n end\n end\n \n end\n \n otherwise\n error('unrecognized option for type');\n end\n \n end\n \n function y = downsample(F,Y)\n % make sure all classes are represented equally in the\n % train samples by sampling with replacement and in the\n % test samples by using the minimum number of trials in a\n % condition. This ensures that training makes most use of\n % the data while testing has no inherent bias in the\n % data. We lose power by removing superfluous trials.\n \n y = cell(size(F));\n \n if obj.verbose\n fprintf('balancing test samples by removing superfluous trials\\n');\n end\n \n for f=1:length(F)\n \n % get unique rows of Y\n [unq,t,idx] = unique(Y,'rows');\n \n idx = idx(F{f});\n \n minsmp = min(arrayfun(@(x)(sum(idx == x)),unq));\n \n if minsmp > 0\n \n tmp = [];\n for j=1:length(unq)\n \n iidx = find(idx == unq(j));\n \n if obj.verbose && length(iidx) - minsmp ~=0\n fprintf('removing %d superfluous samples for label %d\\n',length(iidx) - minsmp,unq(j));\n end\n \n tmp = [tmp; F{f}(iidx(1:minsmp))];\n \n end\n \n y{f} = tmp(randperm(length(tmp)));\n \n end\n \n end\n \n end\n \n function y = upsample(F,Y)\n % make sure all classes are represented equally in the\n % train samples by sampling with replacement and in the\n % test samples by using the minimum number of trials in a\n % condition. This ensures that training makes most use of\n % the data while testing has no inherent bias in the\n % data. We lose power by removing superfluous trials.\n \n y = cell(size(F));\n \n if obj.verbose\n fprintf('balancing training samples by sampling with replacement\\n');\n end\n \n for f=1:length(F)\n \n % get unique rows of Y\n [unq,t,idx] = unique(Y,'rows');\n \n idx = idx(F{f});\n \n maxsmp = max(arrayfun(@(x)(sum(idx == x)),unq));\n \n tmp = F{f};\n for j=1:length(unq)\n \n iidx = find(idx == unq(j));\n \n if obj.verbose && maxsmp - length(iidx) ~= 0\n fprintf('drawing %d additional samples for label %d\\n',maxsmp - length(iidx),unq(j));\n end\n \n % nameclash with fieldtrip_private!\n tmp = [tmp; randsample(F{f}(iidx),maxsmp - length(iidx),true)];\n \n end\n \n y{f} = tmp(randperm(length(tmp)));\n \n end\n \n end\n \n end\n \n \n function s = statistic(obj,stat)\n % report statistics on a trained crossvalidator object; also see\n % dml.statistic\n \n if nargin<2, stat = obj.stat; end\n \n if iscell(obj.design{1}) && iscell(obj.result{1})\n \n s = zeros(length(obj.design),1);\n for c=1:length(obj.design{1}) % iterate over datasets\n D = [];\n P = [];\n for f=1:length(obj.design) % iterate over folds\n D = cat(1,D,obj.design{f}{c});\n P = cat(1,P,obj.result{f}{c});\n end\n s(c) = dml.statistic(stat,D,P);\n end\n \n else\n \n D = cell2mat(obj.design);\n P = cell2mat(obj.result);\n s = dml.statistic(stat,D,P);\n \n end\n \n end\n \n end\n \n methods(Access=private,Static=true)\n \n function y = complement(Y,folds)\n % create complement of trials in each of the folds when only training\n % or test folds are specified\n \n if iscell(Y)\n ndata = length(Y);\n else\n ndata = 1;\n end\n \n y = cell(size(folds));\n for c=1:length(folds)\n if ndata == 1\n y{c} = setdiff(1:size(Y,1),folds{c})';\n else\n for f=1:length(folds{c})\n y{c}{f} = setdiff(1:size(Y{c},1),folds{c}{f})';\n end\n end\n end\n \n end\n \n end\n \n \nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/+dml/crossvalidator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461390043208003, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3818117179283865}} {"text": "%% calculate AUC\n\nfor j=1:15\n[~,~,~,AUC(j)] = perfcurve(ans_auc(:,j),prop(:,j),0);\nend\n\nmean_AUC = mean(AUC);\ndisp(mean_AUC)", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/CNN_for_decoding_ERP/calculate_AUC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3818117121510809}} {"text": "% easy11 Creates a stereographic plot of GPS satellite orbits\n% from an epehemerides or almanac file. The plot is as\n% seen from the position (phi, lambda). All (parts of)\n% orbits with elevation angle lower than a given\n% cut-off angle (mask) are omitted.\n% As input we use the ephemerides in our basic RINEX\n% navigation file. It only contains nine ephemerides. The\n% result shows two windows with a considerable amount\n% of visible satellites. This is like the actual situation in the\n% early 1990es. Then you could have a window of about\n% one hour at say 5--6 am and this repeated 12 hours later.\n%\n% An additional plot is created showing number\n% of visible satellites and when they are visible.\n% Finally a stem plot depicts the number of\n% satelliets visible for how long\n%\n% Alternatively, if you want to include all GPS satellites,\n% we need an almanac file which can be downloaded from\n% http://www.navcen.uscg.gov/?pageName=gpsAlmanacs\n\n%Kai Borre 26-08-2008\n%Copyright (c) by Kai Borre\n%$Revision: 1.1 $ $Date: 2009/04/05 $\n% Total revision January 10, 2016\n\n% RINEX version 3.03\n\nset(0,'DefaultTextFontName','Times');\nset(0,'DefaultAxesFontName','Times');\nset(0,'DefaultTextFontSize',12);\n\n% If you want to use a RINEX ephemeris file uncomment\n% line 37 and comment line 41 out.\n\n% the following five assignments are mandatory\n%%rinexe('log_24h.15n','eph.dat');\n% in case you want to include all GPS satellites in the constellation,\n% we need an almanac. This is read and converted to the usual\n% eph format by the following call\nrinexa('current.alm','eph.dat');\n\nephemerides = 'eph.dat';\nmask = 10;\nphi = [57 12 43];\nlambda = [50 10 39];\n\n%reading ephemerides\nfide = fopen(ephemerides,'r');\nEph = fread(fide,inf,'double');\nm = length(Eph);\neph = reshape(Eph,21,m/21);\n\n% transformation of given location (phi,lambda,h) to (X,Y,Z)\nPhi = dms2rad(phi(1),phi(2),phi(3));\nPhi = Phi*180/pi;\nLambda = dms2rad(lambda(1),lambda(2),lambda(3));\nLambda = Lambda*180/pi;\n[M(1,1),M(2,1),M(3,1)] = frgeod(6378137,298.257222101,Phi,Lambda,0);\n\n% Computation of (azimuth, elevation) for each satellite\n% for each 15 min.s. We use only one ephemeris for each PRN.\n% Anyway, the plot is only for visual use\n[prns, ind] = unique(eph(1,:));\nsatrows = length(ind);\n az = ones(satrows,96)*inf; % satrows is number of PRN and 96 quaters of an hour in 24 hours\nel = ones(satrows,96)*inf;\n\nstart_time = max(eph(21,:));\nfor sat = ind'\n j = 0;\n for time = start_time:900:start_time+86400\n S = satpos(time,eph(:,sat)); %sat\n j = j+1;\n [azimuth,elevation,distance] = topocent(M,S-M);\n az(sat,j) = azimuth; % sat runs over PRN, j runs over sow\n el(sat,j) = elevation;\n end\nend\n% We assume that there are satrows PRNs\nXX = zeros(satrows,40)*inf; % a matrix of NaNs to store plot data\nYY = XX;\n\nfigure(1);\n% polarhg draws coordinate lines of a polar plot. We add\n% circles with radii 30 and 60 degrees\npolarhg([30 60])\nhold on\nfor k = ind' % 1:32\n % if az(k,1) == 0, break, end % continue\n AZ = az(k,:);\n EL = el(k,:);\n % remove data below the cut-off angle\n AZ(find(EL <= mask)) = nan;\n EL(find(EL <= mask)) = nan;\n % conversion from polar to rectangular coordinates\n xx = (90-EL).*cos(AZ*pi/180);\n yy = (90-EL).*sin(AZ*pi/180);\n XX(k,1:length(xx)) = xx;\n YY(k,1:length(yy)) = yy;\nend % k\n%the first coord. moves text vertically (increasing values up),\n% the second coord. moves text horizontally (increasing values right)\ntext(135,-95,{['Skyplot for the position (\\phi, \\lambda) = (' ...\n num2str(round(Phi)) '\\circ, ' num2str(round(Lambda)) '\\circ)']})\ntext(115,-45,{['Elevation mask ' num2str(mask) '\\circ' ]}) %120\ntext(-120,-120,['All PRNs except ' num2str(setdiff(1:32,prns)) ])\nplot(XX',YY','linewidth',2)\nhold off\nset(gca,'Fontsize',9);\n\nprint('easy111','-dpdf')\n\n\n% preparation for visibility plot %%%\n\n% we choose a resolution of 5 min.s,\n% ie. 24 hours times 12 = 288 which becomes the range of j\nsatsum = zeros(1,288);\nvisible = zeros(2*(size(prns,2)+1),288);\n\nfor sat = ind'\n %Az = [];\n %El = [];\n i = eph(1,sat);\n for j = 1:288\n time = 300*(j-1); % in s, 0 mask\n % Az = [Az az];\n % El = [El el];\n satsum(j) = satsum(j)+1;\n visible(2*i,j) = 1;\n end\n end\nend\n\nfigure(2);\nset(gca,'Fontsize',16);\narea(satsum)\nset(gca,'XTick',1:71:288)\nset(gca,'XTickLabel',{'0','6','12','18','24'})\nxlabel('GPS Time [hours]')\nylabel('# of Visible Satellites')\ntitle(['Elevation Mask ' num2str(mask) '\\circ'])\ncolormap summer\n\nprint -dpdf easy112\n\nfigure(3);\nset(gca,'Fontsize',16);\nimagesc(flipud(visible));\ncolormap(autumn(5))\nset(gca,'XTick',1:71:288)\nset(gca,'XTickLabel',{'0','6','12','18','24'})\nset(gca,'YTick',-3:16:(2*(size(prns,2)+1)))\nset(gca,'YTickLabel',{'2','8','16','24','32'});\nxlabel('GPS Time [hours]')\nylabel('PRNs')\ntitle('Yellow Lines Indicate Visible Satellites')\ncolormap winter\n\nprint -dpdf easy113\n\nfigure(4);\nset(gca,'Fontsize',16);\nan = sum(visible,1);\n% we assume the total # of PRNs always is between 1 and 20\ntotal = zeros(1,20);\nfor i = 1:288\n j = an(i);\n if j == 0, j = j+1; total(j) = 0.01; continue, end\n total(j) = total(j)+1;\nend\n% the adder total adds per 5 minutes, division by 12 changes to per hour\nbar(1:20,total/12); % 10-> 32\ntitle('Number of Visible Satellites')\nylabel('Hours')\n\nprint -dpdf easy114\n\n%%%%%%%%%%%%%%%%%%%%% end easy11.m %%%%%%%%%%%%%%\n", "meta": {"author": "yandld", "repo": "nav_matlab", "sha": "da70cb2083de407409ebe1ec1096a308611cf063", "save_path": "github-repos/MATLAB/yandld-nav_matlab", "path": "github-repos/MATLAB/yandld-nav_matlab/nav_matlab-da70cb2083de407409ebe1ec1096a308611cf063/example/gps_spp_test/easysuite/easy11.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389817407016, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.38181170637377504}} {"text": "function test_suite = test_distancePointLine\n%TESTDISTANCEPOINTEDGE One-line description here, please.\n% output = test_distancePointLine(input)\n%\n% Example\n% testDistancePointLine\n%\n% See also\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2012-10-24, using Matlab 7.7.0.471 (R2008b)\n% Copyright 2009 INRA - Cepia Software Platform.\n\ntest_suite = functiontests(localfunctions);\n\nfunction testBasic(testCase) %#ok<*DEFNU>\npoint = [0 0];\nline = [1 2 1 0];\ntestCase.assertEqual(2, distancePointLine(point, line), 'AbsTol', .01);\n\nfunction testHorizontal(testCase)\n% an horizontal line, with points all around\nline = [2 2 2 0];\ntestCase.assertEqual(distancePointLine([1 1], line), 1, 'AbsTol', .01);\ntestCase.assertEqual(distancePointLine([2 1], line), 1, 'AbsTol', .01);\ntestCase.assertEqual(distancePointLine([3 1], line), 1, 'AbsTol', .01);\ntestCase.assertEqual(distancePointLine([4 1], line), 1, 'AbsTol', .01);\ntestCase.assertEqual(distancePointLine([5 1], line), 1, 'AbsTol', .01);\ntestCase.assertEqual(distancePointLine([5 2], line), 0, 'AbsTol', .01);\ntestCase.assertEqual(distancePointLine([5 3], line), 1, 'AbsTol', .01);\n\n\nfunction testDiagonal(testCase)\n% diagonal (slope 2)\nline = [1 1 3 6];\ntestCase.assertEqual(0, distancePointLine([3 5], line));\ntestCase.assertEqual(sqrt(5), distancePointLine([3 0], line), 'AbsTol', .01);\n\nfunction testSingleMulti(testCase)\npoint = [5 5];\nlines = [0 0 3 0;10 0 0 3;10 10 -3 0;10 0 3 3];\nexp = [5 5 5 5*sqrt(2)];\ntestCase.assertEqual(exp, distancePointLine(point, lines), 'AbsTol', .01);\n\nfunction testSingleMultiWithInvalid(testCase)\npoint = [5 5];\nlines = [0 0 3 0;10 0 0 3;10 10 -3 0;10 0 3 3;10 0 0 0];\nexp = [5 5 5 5*sqrt(2) 5*sqrt(2)];\ntestCase.assertEqual(exp, distancePointLine(point, lines), 'AbsTol', .01);\n\n\nfunction testMultiSingle(testCase)\nline = [10 10 5 0];\npoints = [10 10;15 10;20 10;10 0;30 10];\nexp = [0; 0; 0; 10; 0];\ntestCase.assertEqual(exp, distancePointLine(points, line), 'AbsTol', .01);\n\nfunction testMultiSingleInvalidLine(testCase)\nline = [15 10 0 0];\npoints = [10 10; 15 10; 20 10; 10 10; 30 10];\nexp = [5; 0; 5; 5; 15];\ntestCase.assertEqual(exp, distancePointLine(points, line), 'AbsTol', .01);\n\nfunction testMultiMulti(testCase)\nlines = [10 30 10 0; 20 30 0 10;20 40 -10 0;10 40 0 -10];\npoints = [14 33;15 38];\nexp = [3 6 7 4;8 5 2 5];\ntestCase.assertEqual(exp, distancePointLine(points, lines), 'AbsTol', .01);\n\nfunction testMultiMultiWithInvalid(testCase)\nlines = [10 30 10 0; 20 30 0 10;20 40 -10 0;10 40 0 -10;10 30 0 0];\npoints = [14 33;15 38];\nexp = [3 6 7 4 5;8 5 2 5 hypot(8, 5)];\ntestCase.assertEqual(exp, distancePointLine(points, lines), 'AbsTol', .01);\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/tests/geom2d/test_distancePointLine.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5926666143434, "lm_q2_score": 0.6442251201477016, "lm_q1q2_score": 0.38181072083290835}} {"text": "function F = vertcat(varargin)\n%VERTCAT Vertical concatenation of SEPARABLEAPPROX objects.\n%\n% VERTCAT(F, G) is the vertical concatenation of SEPARABLEAPPROX objects F and G. \n% This function returns a CHEBFUN2V object. \n% \n% [F; G] is equivalent to VERTCAT(F, G).\n%\n% VERTCAT(F) returns the SEPARABLEAPPROX F. \n% \n% See also CHEBFUN2V.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif ( nargin == 1 ) \n % VERTCAT of one argument just returns the same thing back to the user:\n F = varargin{1}; \nelseif ( nargin > 1 )\n if ( isa(varargin{2}, 'chebfun2v') )\n f = varargin{1}; \n F = varargin{2}; \n if ( F.nComponents > 2 ) \n error('CHEBFUN:SEPARABLEAPPROX:vertcat:tooManyComponents', ...\n 'Only CHEBFUN2V objects with 2 or 3 components are valid.');\n else\n Fc = F.components; \n g = Fc{1};\n h = Fc{2};\n F = chebfun2v({f, g, h});\n end\n elseif ( isa(varargin{ 2 }, 'separableApprox' ) )\n % call the CHEBFUN2V constructor.\n F = chebfun2v( varargin{:} );\n end\nelse\n error('CHEBFUN:SEPARABLEAPPROX:vertcat:tooManyInputs', ...\n 'Cannot vertically concatenate more than three SEPARABLEAPPROX objects.');\nend\n \nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@separableApprox/vertcat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.38181070346632523}} {"text": "function [text, timeStamp] = ReadPraatTextGrid(transFile)\nfeature('DefaultCharacterSet', 'UTF8');\n\ntrans = my_cat(transFile);\n\nfor i=1:length(trans)\n if length(trans{i})>4 && strcmp(trans{i}(1:4), 'item')\n break;\n end\nend\ni = i+ 6;\nidx = regexp(trans{i}, '=');\nnInterval = str2num(trans{i}(idx+1:end));\n\ni = i + 1;\nfor cnt = 1:nInterval\n idx = regexp(trans{i+1}, '=');\n timeStamp(1,cnt) = str2num(trans{i+1}(idx+1:end));\n \n idx = regexp(trans{i+2}, '=');\n timeStamp(2,cnt) = str2num(trans{i+2}(idx+1:end));\n\n idx = regexp(trans{i+3}, '\"');\n text{cnt} = trans{i+3}(idx(1)+1:idx(end)-1);\n i = i+4;\n \n% fprintf('%2.2f %2.2f %s\\n', timeStamp(1,cnt), timeStamp(2,cnt), text{cnt});\nend\n\ncnt = 1;\ntext2 = {};\nfor j=1:length(text)\n if length(text{j})>0\n text2{cnt} = text{j};\n timeStamp2(:,cnt) = timeStamp(:,j);\n cnt = cnt + 1;\n end\nend\n\ntext = text2;\ntimeStamp = timeStamp2;", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/utils/io/ReadPraatTextGrid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.38181070346632523}} {"text": "function params = mrParamsCorAnal(mr);\n% Put up a dialog to get params for a coherence analysis.\n%\n% params = mrParamsCorAnal(mr);\n%\n% This is an attempt to emulate the style of mrLoadRet end+1.0,\n% in which analyses have related GUIs to get params.\n% So, corAnal has a corresponding corAnalGUI to get cor anal\n% params. This is the equivalent mrVista 2.0 implementation.\n% \n% Thought on naming conventions: for other analyses, it might\n% be good to also start with mrParams -- mr since the params are\n% operating on mr objects, and params, because that is the output\n% of this dialog.\n%\n% Note: an mr struct must be entered, since it's needed for\n% the default set of frames (all).\n%\n% ras, 07/05.\n\n%%%%% default params (if omitted from params struct):\nnCycles = 6; % just a guess that many scans use\nnoiseBand = 0; % use all available spectral bands for analysis\nsaveDir = fileparts(mr.path);\ndetrend = 1;\n\n% put up dialog to get params\ndlg(1).fieldName = 'nCycles';\ndlg(1).style = 'edit';\ndlg(1).string = 'Number of Cycles in Time Series';\ndlg(1).value = num2str(nCycles);\n\ndlg(end+1).fieldName = 'detrend';\ndlg(end).style = 'checkbox';\ndlg(end).string = 'Detrend Time Series?';\ndlg(end).value = detrend; \n\ndlg(end+1).fieldName = 'noiseBand';\ndlg(end).style = 'edit';\ndlg(end).string = 'Noise Band Option';\ndlg(end).value = num2str(noiseBand); \n\ndlg(end+1).fieldName = 'frames';\ndlg(end).style = 'edit';\ndlg(end).string = 'Frames to Analyze';\ndlg(end).value = sprintf('1:%i',size(mr.data,4));\n\ndlg(end+1).fieldName = 'saveDir';\ndlg(end).style = 'edit';\ndlg(end).string = 'Save directory';\ndlg(end).value = saveDir; \n \nparams = generalDialog(dlg,sprintf('Coherence Analysis: %s',mr.name));\n\n% if canceled, exit quietly\nif isempty(params), disp('User Aborted corAnal.'); return; end \n\n% parse params\nparams.nCycles = str2num(params.nCycles);\nparams.noiseBand = str2num(params.noiseBand);\nparams.frames = str2num(params.frames);\n\nreturn\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/RSVista/mrMethods/functional_analyses/mrParamsCorAnal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6442250996557036, "lm_q1q2_score": 0.38181069941801765}} {"text": "function h = get_parent_stats(h)\n\nh.dat.stat(1).V = [];\nfor i = 1:length(h.dat.stat)\n if ~isfield(h.dat.stat(i), 'V') || isempty(h.dat.stat(i).V)\n h.dat.stat(i).V = sum([h.dat.stat(i).region.V]);\n h.dat.stat(i).mrs = min(h.dat.stat(i).mrs, 1e4);\n % this is a parent region \n h.dat.stat(i).parent = i;\n h.dat.stat(i).VperPix = h.dat.stat(i).V/h.dat.stat(i).npix;\n h.dat.stat(i).npix_res = numel(h.dat.stat(i).ipix);\n h.dat.stat(i).nregions = numel(h.dat.stat(i).region);\n end\nend\n\nnreg = [h.dat.stat.nregions];\nnpix_res = [h.dat.stat.npix_res];\nnpix = [h.dat.stat.npix];\n\nVperPix = [h.dat.stat.VperPix];\nmrs = [h.dat.stat.mrs]./[h.dat.stat.mrs0];\niparent = [h.dat.stat.parent];\n\nh.dat.cl.nreg = nreg(iparent);\nh.dat.cl.npix_res = npix_res(iparent);\nh.dat.cl.npix_par = npix(iparent);\nh.dat.cl.VperPix = VperPix(iparent);\nh.dat.cl.mrs_parent = mrs(iparent);\n", "meta": {"author": "cortex-lab", "repo": "Suite2P", "sha": "c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5", "save_path": "github-repos/MATLAB/cortex-lab-Suite2P", "path": "github-repos/MATLAB/cortex-lab-Suite2P/Suite2P-c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5/gui2P/get_parent_stats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.38181069536970996}} {"text": "function conv2conv()\n global config mem;\n curr_layer_idx = config.misc.current_layer;\n conv_layer_idx = get_conv_layer_idx_from_layer_idx(curr_layer_idx);\n P_reshape = reshape(mem.activations{curr_layer_idx-1}', config.feature_map_sizes{curr_layer_idx-1}(1), config.feature_map_sizes{curr_layer_idx-1}(2)*config.feature_map_sizes{curr_layer_idx-1}(3)*config.batch_size);\n P_expand = config.IM2COL(P_reshape, [config.kernel_size(conv_layer_idx, 1), config.kernel_size(conv_layer_idx, 2)]);\n P_expand(:, mem.conv2conv{curr_layer_idx}{2}) = 0;\n input_size = [0 0];\n input_size(1) = config.kernel_size(conv_layer_idx, 1)*config.kernel_size(conv_layer_idx, 2)*config.feature_map_sizes{curr_layer_idx-1}(3);\n input_size(2) = (config.feature_map_sizes{curr_layer_idx-1}(1)-config.kernel_size(conv_layer_idx, 1)+1)*(config.feature_map_sizes{curr_layer_idx-1}(2)-config.kernel_size(conv_layer_idx, 2)+1)*config.batch_size;\n mem.layer_inputs{curr_layer_idx} = reshape(accumarray(mem.conv2conv{curr_layer_idx}{1}, P_expand(:), [input_size(1)*input_size(2), 1]), input_size(1), input_size(2));\n % memory redundancy, need improve\n mem.orig_activation_size{curr_layer_idx-1} = size(mem.activations{curr_layer_idx-1});\n mem.activations{curr_layer_idx-1} = mem.layer_inputs{curr_layer_idx};\nend\n\n", "meta": {"author": "jimmy-ren", "repo": "vcnn_double-bladed", "sha": "a4de90e845875f6e30632f2e879d3afb81c0ebc1", "save_path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed", "path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed/vcnn_double-bladed-a4de90e845875f6e30632f2e879d3afb81c0ebc1/layers_adapters/conv2conv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3817418817771462}} {"text": "function [PowerPhaseRatemap,spikebinIDs] = bz_PowerPhaseRatemap(spikes,filteredLFP,varargin)\n%[PowerPhaseRatemap,spikebinIDs] = bz_PowerPhaseRatemap(spikes,filteredLFP,varargin)\n%\n%INPUTS\n% spikes structure containing spikes.times from bz_getSpikes\n% filteredLFP structure containing filteredLFP.timestamps, \n% filteredLFP.amp, filteredLFP.phase,\n% filteredLFP.samplingRate. from bz_Filter(lfp).\n% \n% (options)\n% 'ints'\n% 'powernorm' (default: 'modZ')\n% 'ratenorm' (default: 'none')\n% 'numbins' (default: 20)\n% 'metric' if you would like to calculate average of some other\n% metric (i.e. not rate) as function of power/phase\n% should be cell array (similar to spikes) with value of\n% other metric for each spike\n% 'Nspikethresh' number of spikes threshold to count mean metric\n% (default: 10)\n%\n%OUTPUTS\n% PowerPhaseRatemap\n% spikebinIDs\n%\n%DLevenstein 2018\n%% DEV\np = inputParser;\naddParameter(p,'ints',[0 Inf],@isnumeric)\naddParameter(p,'powernorm','Zlog')\naddParameter(p,'metric',[])\naddParameter(p,'Nspikethresh',10)\n\nparse(p,varargin{:})\nints = p.Results.ints;\npowernorm = p.Results.powernorm;\nmetric = p.Results.metric;\nNspikethresh = p.Results.Nspikethresh;\n\n%% Find lfp and spikes in the intervals\ninstatespiketimes = cellfun(@(X) InIntervals(X,ints),...\n spikes.times,'UniformOutput',false);\ninstateLFPtimes = InIntervals(filteredLFP.timestamps,ints);\n\n%%\nnumcells = length(spikes.times);\n%%\n\n%Normalize Power\nswitch powernorm\n case 'Zlog'\n filteredLFP.amp = NormToInt(log10(filteredLFP.amp),'Z',ints,filteredLFP.samplingRate);\nend\n\n%%\n\n%Get Power/Phase at each spike\nspikes.amp = cellfun(@(X) interp1(filteredLFP.timestamps,filteredLFP.amp,X,'nearest'),...\n spikes.times,'uniformoutput',false);\nspikes.phase = cellfun(@(X) interp1(filteredLFP.timestamps,filteredLFP.phase,X,'nearest'),...\n spikes.times,'uniformoutput',false);\n\n%%\nnumbins = 20;\n\n%Power/Phase Bins\nphaseedges = linspace(-pi,pi,numbins+1);\nPowerPhaseRatemap.phasebins=phaseedges(1:end-1)+0.5.*diff(phaseedges(1:2));\npoweredges = linspace(-1.8,1.8,numbins+1);\nPowerPhaseRatemap.powerbins=poweredges(1:end-1)+0.5.*diff(poweredges(1:2));\npoweredges(1) = -Inf; poweredges(end) = Inf;\n\n%Calculate Power/Phase Spike Histogram\n%phaseamphist = cellfun(@(X,Y) hist3([X,Y],{powerbins,phasebins}),spikeamp,spikephase,'UniformOutput',false);\n\n[PowerPhaseRatemap.Nspikes,~,~,spikebinIDs.powerbin,spikebinIDs.phasebin] = ...\n cellfun(@(X,Y,Z) histcounts2(X(Z),Y(Z),poweredges,phaseedges),...\n spikes.amp,spikes.phase,instatespiketimes,...\n 'UniformOutput',false);\n\n%Calculate Power/Phase Time Histogram\n%phaseamphist_t = hist3([t_amp,t_phase],{powerbins,phasebins});\n%phaseamphist_t = phaseamphist_t./sf_LFP;\n\nPowerPhaseRatemap.occupancy = ...\n histcounts2(filteredLFP.amp(instateLFPtimes),...\n filteredLFP.phase(instateLFPtimes),poweredges,phaseedges);\nPowerPhaseRatemap.occupancy = ...\n PowerPhaseRatemap.occupancy./filteredLFP.samplingRate;\nPowerPhaseRatemap.powerdist = sum(PowerPhaseRatemap.occupancy,2);\n\n%Normalize Rate\n%totaltime = sum(diff(ints,1,2));\n%meanrate = cellfun(@(X) length(X)./totaltime,spiketimes,'UniformOutput',false);\nPowerPhaseRatemap.ratemap = cellfun(@(X) X./PowerPhaseRatemap.occupancy,...\n PowerPhaseRatemap.Nspikes,'UniformOutput',false);\n%phaseamprate = cellfun(@(X,Y) X./Y,phaseamprate,meanrate,'UniformOutput',false);\n\nPowerPhaseRatemap.meanrate = nanmean(cat(3,PowerPhaseRatemap.ratemap{:}),3);\n\nif ~isempty(metric)\n for po = 1:length(PowerPhaseRatemap.powerbins)\n for ph = 1:length(PowerPhaseRatemap.phasebins)\n\n %Find the spikes in the right bin\n inbinspikes = cellfun(@(X,Y,Z) X==po & Y==ph ,...\n spikebinIDs.powerbin,spikebinIDs.phasebin,...\n 'UniformOutput',false);\n \n %Find the metric from spikes in the state\n instatmetric = cellfun(@(X,Y) X(Y),metric,instatespiketimes,...\n 'UniformOutput',false);\n\n %Map for each cell\n for cc = 1:numcells\n PowerPhaseRatemap.metricmap{cc}(po,ph) = ...\n nanmean(instatmetric{cc}(inbinspikes{cc}));\n \n %Threshold.\n if sum(inbinspikes{cc}) < Nspikethresh\n PowerPhaseRatemap.metricmap{cc}(po,ph) = nan;\n end\n end\n\n end\n end\n \n\tPowerPhaseRatemap.meanmetric = nanmean(cat(3,PowerPhaseRatemap.metricmap{:}),3);\n\nend\n%%\n%excell = randsample(spikes.numcells,1);\nfigure\n% subplot(2,2,1)\n% imagesc(PowerPhaseRatemap.phasebins,PowerPhaseRatemap.powerbins,...\n% PowerPhaseRatemap.ratemap{excell})\n% hold on\n% imagesc(PowerPhaseRatemap.phasebins+2*pi,PowerPhaseRatemap.powerbins,...\n% PowerPhaseRatemap.ratemap{excell})\n% xlim([-pi 3*pi])\n% axis xy\n% colorbar\n \nsubplot(2,2,1)\n imagesc(PowerPhaseRatemap.phasebins,PowerPhaseRatemap.powerbins,...\n PowerPhaseRatemap.meanrate)\n hold on\n imagesc(PowerPhaseRatemap.phasebins+2*pi,PowerPhaseRatemap.powerbins,...\n PowerPhaseRatemap.meanrate)\n plot(linspace(-pi,3*pi,100),cos(linspace(-pi,3*pi,100)),'k')\n xlim([-pi 3*pi])\n axis xy\n colorbar \n xlabel('Phase');\n ylabel('Power (Z(log))')\n \nsubplot(2,2,3)\n bar(PowerPhaseRatemap.powerbins,PowerPhaseRatemap.powerdist)\n xlabel('Power (Z(log))');ylabel('Time (s)')\n box off\n axis tight\n \nif ~isempty(metric)\n subplot(2,2,2)\n h = imagesc(PowerPhaseRatemap.phasebins,PowerPhaseRatemap.powerbins,...\n PowerPhaseRatemap.meanmetric);\n hold on\n h2 = imagesc(PowerPhaseRatemap.phasebins+2*pi,PowerPhaseRatemap.powerbins,...\n PowerPhaseRatemap.meanmetric);\n set(h,'AlphaData',~isnan(PowerPhaseRatemap.meanmetric));\n set(h2,'AlphaData',~isnan(PowerPhaseRatemap.meanmetric));\n plot(linspace(-pi,3*pi,100),cos(linspace(-pi,3*pi,100)),'k')\n xlim([-pi 3*pi])\n axis xy\n colorbar \n xlabel('Phase');\n ylabel('Power (Z(log))')\nend\n\nend\n\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/analysis/lfp_spikes/bz_PowerPhaseRatemap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3817418817771462}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Spherical Harmonic Modeling and Analysis Toolkit (SPHARM-MAT) is a 3D \n% shape modeling and analysis toolkit. \n% It is a software package developed at Shenlab in Center for Neuroimaging, \n% Indiana University (SpharmMat@gmail.com, http://www.iupui.edu/~shenlab/)\n% It is available to the scientific community as copyright freeware \n% under the terms of the GNU General Public Licence.\n% \n% Copyright 2009, 2010, ShenLab, Center for Neuroimaging, Indiana University\n% \n% This file is part of SPHARM-MAT.\n% \n% SPHARM-MAT is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% SPHARM-MAT is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with SPHARM-MAT. If not, see .\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n%\n% match fvec to atlas by rotating the parameterization of fvec\n% - object does not transform in the object space\n% - alpha, beta, gamma: samples in the rotation space\n% - gran = # of alphas to process together\n% - res: base res R + step of hierarchy Hs + depth of hierarchy Hd + top N \n%\n\nfunction [best_fvec, best_angl] = match_param_hie(fvec,atlas,A,B,G,gran,res,max_d)\n\n% base resolution R, step of hierarchy Hs, depth of hierarchy Hd, top N \nR = res(1); Hs = res(2); Hd = res(3); N = res(4);\ndisp(sprintf('----- Base Res %d, Step %d, Depth %d -----',R,Hs,Hd));\nalpha = A{1}; beta = B{1}; gamma = G{1};\n[fvec, Aprm] = match_param(fvec,atlas,alpha,beta,gamma,gran,N,max_d); \nfvec = fvec(:,:,1); Aprm = Aprm(1,:); % remove later on\nbest_angl = Aprm;\nfor i=1:Hd\n disp(sprintf('----- Res %d -----',R+Hs*i));\n alpha = A{i+1}; beta = B{i+1}; gamma = G{i+1};\n [fvec, Aprm] = match_param(fvec,atlas,alpha,beta,gamma,gran,1,max_d);\n best_angl(i+1,:) = Aprm;\nend\nbest_fvec = fvec;\n \nreturn;\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/SpharmToolbox/code/match_param_hie.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105720171531, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3817316772568639}} {"text": "function allFactors = BuildOCRNetwork (images, imageModel, pairwiseModel, tripletList)\n% This function constructs the Markov network for one word by putting\n% together the full list of different types of factors.\n%\n% Input:\n% images: A struct array of the images for each character in the word.\n% imageModel: The provided image model.\n% pairwiseModel: The provided pairwise factor model.\n% tripletList: The provided triplet factor list.\n%\n% Output:\n% allFactors: An array of factor structs that constitutes the full Markov\n% network.\n%\n% NOTE:\n% The default implementation of each ConstructFactors function returns an\n% empty list, so as you implement each of those in succession, more and\n% more factors will be added to the resulting network.\n%\n% You can control which factors are added after you've implemented all of\n% the factor functions in the following way:\n%\n% Pairwise factors: pass in an empty array (ie, []) for the pairwiseModel,\n% and no pairwise factors will be added.\n%\n% Triplet factors: pass in an empty array for the tripletList, and no\n% triplet factors will be added.\n%\n% Similarity factors: if you set imageModel.ignoreSimilarity = 1, then the\n% similarity factors will not be added (nb: this is a bit of a kludge.\n% Apologies.)\n%\n% Copyright (C) Daphne Koller, Stanford University, 2012\n\nif (~exist('pairwiseModel', 'var'))\n pairwiseModel = [];\nend\nif (~exist('tripletList', 'var'))\n tripletList = [];\nend\n\nsingletonFactors = ComputeSingletonFactors(images, imageModel);\n\nif (~isempty(pairwiseModel))\n %%%%%%%%%%%%%%%%%%%%%%%%%%%\n % FOR STUDENTS:\n % Once you've tested out ComputeEqualPairwiseFactors, as discussed in\n % the assignment handout, you should comment out that line and\n % uncomment the following line to use the \"real\" pairwise factor\n % implementation (which you must provide.\n %%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n %pairwiseFactors = ComputeEqualPairwiseFactors(images, imageModel.K);\n pairwiseFactors = ComputePairwiseFactors(images, pairwiseModel, imageModel.K);\nelse\n pairwiseFactors = [];\nend\n\nif (~isempty(tripletList)) \n tripletFactors = ComputeTripletFactors(images, tripletList, imageModel.K);\nelse\n tripletFactors = [];\nend\n\n% Your code here:\n\nif (isfield(imageModel, 'ignoreSimilarity') && imageModel.ignoreSimilarity)\n simFactors = [];\nelse\n allSimFactors = ComputeAllSimilarityFactors(images, imageModel.K);\n %%%%%%%%%%%%%%%%%%%%%%%%%%%\n % FOR STUDENTS:\n % In the provided implementation of ChooseTopSimilarityFactors, all\n % factors are returned, so no selection occurs. Once you try to run\n % inference using all factors (as described in the assignment handout),\n % you should implement the function so that the network contains only\n % the selected factors.\n %%%%%%%%%%%%%%%%%%%%%%%%%%%\n simFactors = ChooseTopSimilarityFactors(allSimFactors, 2);\nend\n\n% This mess is necessary since Octave crashes if you try to vertcat onto a\n% scalar, and it is possible that tripletFactors is scalar (for length 3\n% words).\ncellFactors{1} = singletonFactors;\ncellFactors{2} = pairwiseFactors;\ncellFactors{3} = tripletFactors;\ncellFactors{4} = simFactors;\nfactorsPresent = ~[isempty(singletonFactors) isempty(pairwiseFactors) isempty(tripletFactors) isempty(simFactors)];\n\nallFactors = vertcat(cellFactors{factorsPresent});\nend\n", "meta": {"author": "anhncs", "repo": "Probabilistic-Graphical-Models", "sha": "7fd4ef255db59ecbfe1a134cadbc4be5ca839894", "save_path": "github-repos/MATLAB/anhncs-Probabilistic-Graphical-Models", "path": "github-repos/MATLAB/anhncs-Probabilistic-Graphical-Models/Probabilistic-Graphical-Models-7fd4ef255db59ecbfe1a134cadbc4be5ca839894/3.Markov Networks for OCR/BuildOCRNetwork.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.6654105587468141, "lm_q1q2_score": 0.38173166964395694}} {"text": "function F = coeffs2chebfun2v(X, Y)\n%COEFFS2DISKFUNV Convert componentwise matrices of bivariate Chebyshev\n% coefficients to a chebfun2v. \n% \n% F = coeffs2chebfun2v(X, Y) returns a chebfun2v object F that has a\n% bivariate Chebyshev matrices of coefficients X, Y, for each component. \n% \n% See also CHEBFUN2V/COEFFS2.\n\n% Copyright 2019 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nU = chebfun2(X, 'coeffs'); \nV = chebfun2(Y, 'coeffs'); \nF = chebfun2v(U, V); \nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun2v/coeffs2chebfun2v.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3817316696439569}} {"text": "% SOM Toolbox\n% Version 2.0beta, May 30 2002\n% \n% Copyright 1997-2000 by\n% Esa Alhoniemi, Johan Himberg, Juha Parhankangas and Juha Vesanto\n% Contributed files may contain copyrights of their own.\n% \n% SOM Toolbox comes with ABSOLUTELY NO WARRANTY; for details\n% see License.txt in the program package. This is free software,\n% and you are welcome to redistribute it under certain conditions;\n% see License.txt for details.\n% \n% \n% Demos\n% \n% som_demo1 SOM Toolbox demo 1: basic properties\n% som_demo2 SOM Toolbox demo 2: basic usage\n% som_demo3 SOM Toolbox demo 3: visualization\n% som_demo4 SOM Toolbox demo 4: data analysis\n% \n% Creation of structs\n% \n% som_set create & set (& check) values to structs\n% som_info print out information on a given struct \n% som_data_struct create & initialize a data struct \n% som_map_struct create & initialize a map struct \n% som_topol_struct create & initialize a topology struct \n% som_train_struct create & initialize a train struct \n% som_clstruct create a cluster struct\n% som_clset set properties in a cluster struct\n% som_clget get stuff from a cluster struct\n% \n% Struct conversion and file I/O\n% \n% som_vs1to2 converts a version 1.0 struct to version 2.0 struct\n% som_vs2to1 converts a version 2.0 struct to version 1.0 struct\n% som_read_data reads a (SOM_PAK format) ASCII data file\n% som_write_data writes a SOM_PAK format codebook file\n% som_write_cod writes a SOM_PAK format data file\n% som_read_cod reads a SOM_PAK format codebook file\n% \n% Data preprocessing\n% \n% som_normalize normalize data set\n% som_denormalize denormalize data set \n% som_norm_variable (de)normalize one variable\n% preprocess preprocessing GUI\n% \n% Initialization and training functions\n% \n% som_make create, initialize and train a SOM\n% som_randinit random initialization algorithm\n% som_lininit linear initialization algorithm\n% som_seqtrain sequential training algorithm\n% som_batchtrain batch training algorithm\n% som_gui SOM initialization and training GUI\n% som_prototrain a simple version of sequential training: easy to modify\n% \n% Clustering algorithms\n% \n% som_kmeans k-means algorithm (was earlier kmeans)\n% kmeans_clusters try and evaluate several k-means clusterings\n% neural_gas neural gas vector quantization algorithm\n% som_linkage hierarchical clustering algorithms\n% som_cllinkage hierarchical clustering of SOM\n% som_dmatminima local minima from distance (or U-) matrix\n% som_dmatclusters distance (or U-) matrix based clustering\n% som_clspread spreads clusters to unassinged map units\n% som_cldist calculate distances between clusters\n% som_gapindex gap validity index of clustering\n% db_index Davies-Bouldin validity index of clustering \n% \n% Supervised/classification algorithms\n% \n% som_supervised supervised SOM algorithm\n% lvq1 LVQ1 algorithm\n% lvq3 LVQ3 algorithm\n% knn k-NN classification algorithm \n% knn_old k-NN classification algorithm (old version)\n% \n% SOM error measures\n% \n% som_quality quantization and topographic error of SOM\n% som_distortion SOM distortion measure\n% som_distortion3 elements of the SOM distortion measure\n% \n% Auxiliary functions\n% \n% som_bmus calculates BMUs for given data vectors\n% som_eucdist2 pairwise squared euclidian distances between vectors\n% som_mdist calculates pairwise distances between vectors \n% som_divide extract subsets of data based on map\n% som_label give labels to map units\n% som_label2num rcodes string data labels to interger class labels \n% som_autolabel automatically labels the SOM based on given data\n% som_unit_coords calculates coordinates in output space for map units\n% som_unit_dists distances in output space between map units\n% som_unit_neighs units in 1-neighborhood for each map unit\n% som_neighborhood calculates neighborhood matrix for the given map\n% som_neighbors calculates different kinds of neighborhoods \n% som_neighf calculates neighborhood function values\n% som_select GUI for manual selection of map units\n% som_estimate_gmm create Gaussian mixture model on top of SOM\n% som_probability_gmm evaluate Gaussian mixture model\n% som_ind2sub from linear index to subscript index \n% som_sub2ind from subscript index to linear index\n% som_ind2cod from linear index to SOM_PAK linear index \n% som_cod2ind from SOM_linear index to SOM_PAK linear index \n% nanstats mean, std and median which ignore NaNs\n% som_modify_dataset add, remove, or extract samples and components\n% som_fillnans fill NaNs in a data set based on given SOM\n% som_stats statistics of a data set\n% som_drmake calculate descriptive rules for a cluster\n% som_dreval evaluate descriptive rules for a cluster\n% som_drsignif rule significance measures\n% \n% Using SOM_PAK from Matlab\n% \n% som_sompaktrain uses SOM_PAK to train a map\n% sompak_gui GUI for using SOM_PAK from Matlab\n% sompak_init call SOM_PAK's initialization programs from Matlab\n% sompak_init_gui GUI for using SOM_PAK's initialization from Matlab\n% sompak_rb_control an auxiliary function for sompak_*_gui functions.\n% sompak_sammon call SOM_PAK's Sammon program from Matlab\n% sompak_sammon_gui GUI for using SOM_PAK's Sammon program from Matlab\n% sompak_train call SOM_PAK's training program from Matlab\n% sompak_train_gui GUI for using SOM_PAK's training program from Matlab \n% \n% Visualization\n% \n% som_show basic visualization\n% som_show_add add labels, hits and trajectories\n% som_show_clear remove extra markers\n% som_recolorbar refresh/reconfigure colorbars\n% som_show_gui GUI for using som_show and associated functions\n% som_grid visualization of SOM grid\n% som_cplane component planes and U-matrices\n% som_barplane bar chart visualization of map\n% som_pieplane pie chart visualization of map\n% som_plotplane plot chart visualization of map\n% som_trajectory launches a GUI for presenting comet-trajectories \n% som_dendrogram visualization of clustering tree\n% som_plotmatrix pairwise scatter plots and histograms\n% som_order_cplanes order and visualize the component planes\n% som_clplot plots of clusters (based on cluster struct)\n% som_projections_plot projections plots (see som_projections)\n% som_stats_plot plots of statistics (see som_stats)\n% \n% Auxiliary functions for visualization\n% \n% hits calculates hits, or sum of values for each map unit\n% som_hits calculates the response of data on the map\n% som_umat calculates the U-matrix\n% cca curvilinear component analysis projection algorithm\n% pcaproj principal component projection algorithm\n% sammon Sammon's mapping projection algorithm\n% som_connection connection matrix for map \n% som_vis_coords map unit coordinates used in visualizations\n% som_colorcode create color coding for map/2D data\n% som_bmucolor colors of the BMUs from a given map color code\n% som_normcolor simulate indexed colormap\n% som_clustercolor color coding which depends on clustering structure\n% som_kmeanscolor color coding according to k-means clustering\n% som_kmeanscolor2 a newer version of the som_kmeanscolor function\n% som_fuzzycolor a fuzzy color coding \n% som_coloring a SOM-based color coding \n% som_projections calculates a default set of projections\n% \n% Report generation stuff\n% \n% som_table_struct creates a table struct\n% som_table_modify modifies a table struct\n% som_table_print print a table in various formats\n% rep_utils various utilities for printing report elements\n% som_stats_table a table of data set statistics\n% som_stats_report report on data set statistics\n% \n% Low level routines used by visualization functions\n% \n% vis_patch defines hexagonal and rectangular patches\n% vis_som_show_data returns UserData and subplot handles stored by som_show.m\n% vis_valuetype used for type checks \n% vis_footnote adds a movable text to the current figure \n% vis_trajgui the actual GUI started by som_trajectory.m \n% vis_PlaneAxisProperties set axis properties in visualization functions\n% vis_footnoteButtonDownFcn callback function for vis_footnote.m\n% vis_planeGetArgs converts topol struct to lattice, msize argument pair\n% vis_show_gui_comp internal function used by som_show_gui.m\n% vis_show_gui_tool internal function used by som_show_gui.m\n% \n% Other\n% \n% somtoolbox this file\n% iris.data IRIS data set (used in demos)\n% License.txt GNU General Public License \n% Copyright.txt Copyright notice\n", "meta": {"author": "ilarinieminen", "repo": "SOM-Toolbox", "sha": "f2597abc1ae33c2060e0443d49e854011ff21831", "save_path": "github-repos/MATLAB/ilarinieminen-SOM-Toolbox", "path": "github-repos/MATLAB/ilarinieminen-SOM-Toolbox/SOM-Toolbox-f2597abc1ae33c2060e0443d49e854011ff21831/som/somtoolbox.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3817316696439569}} {"text": "% MSH_EVALUATE_ELEMENT_LIST: evaluate the parameterization in a given list of elements.\n%\n% msh_elems = msh_evaluate_element_list (msh, elements)\n%\n% INPUTS:\n%\n% msh: mesh object (see msh_cartesian)\n% element_list: numbering of the elements where the evaluations are performed.\n%\n% OUTPUT:\n%\n% msh_elems: structure containing the quadrature rule in the given elements of the physical domain, which contains the following fields\n%\n% FIELD_NAME (SIZE) DESCRIPTION\n% npatch (scalar) number of patches\n% ndim (scalar) dimension of the parametric space\n% rdim (scalar) dimension of the physical space\n% nel (scalar) number of elements in the list\n% elem_list (1 x nel) numbering of the elements in the list\n% nqn (scalar) number of quadrature points per element (must be the same for every patch)\n% nqn_dir (1 x ndim) number of quadrature points in each direction (must be the same for every patch)\n% nel_per_patch (1 x npatch) number of selected elements on each patch\n% elem_list_of_patch (1 x npatch cell-array) selected elements on the patch, with local numbering\n% nel_dir_of_patch (1 x npatch cell-array) the total number of elements in each direction, for each patch\n% quad_weights, geo_map, geo_map_jac, deo_map_der2, jacdet, element_size (see msh_evaluate_col for details)\n%\n% The function only works if the number of quadrature points is the same for all the patches and all directions.\n%\n% Copyright (C) 2015 Rafael Vazquez\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\nfunction msh_col = msh_evaluate_element_list (msh, elem_list, varargin)\n\n elem_list = elem_list(:)';\n\n msh_col.npatch = msh.npatch;\n msh_col.ndim = msh.ndim;\n msh_col.rdim = msh.rdim;\n\n msh_col.nel = numel (elem_list);\n msh_col.elem_list = elem_list;\n\n if (isempty (elem_list)), return, end\n \n fields = {'quad_weights', 'geo_map', 'geo_map_jac', 'geo_map_der2', 'jacdet', 'element_size'};\n cat_position = [2 3 4 5 2 2];\n for ii = 1:numel (fields)\n msh_col.(fields{ii}) = [];\n end\n \n Nelem = cumsum ([0, msh.nel_per_patch]);\n \n indices = cell (1, msh.npatch);\n for iptc = 1:msh.npatch\n [~,indices{iptc},~] = intersect ((Nelem(iptc)+1):Nelem(iptc+1), elem_list);\n end\n active_patches = find (~cellfun (@isempty, indices));\n\n \n for iptc = active_patches\n msh_patch = msh_evaluate_element_list (msh.msh_patch{iptc}, indices{iptc});\n \n if (msh_patch.nqn_dir ~= msh.msh_patch{active_patches(1)}.nqn_dir)\n error ('msh_evaluate_element_list: for multipatch geometries, the number of quadrature points should be the same on each patch')\n end\n\n for ii = 1:numel (fields)\n if (isfield (msh_patch, fields{ii}))\n msh_col.(fields{ii}) = cat (cat_position(ii), msh_col.(fields{ii}), msh_patch.(fields{ii}));\n end\n end\n end\n \n msh_col.nel_per_patch = cellfun (@numel, indices);\n msh_col.elem_list_of_patch = indices;\n msh_col.nel_dir_of_patch = cell (1, msh.npatch);\n for iptc = 1:msh.npatch\n msh_col.nel_dir_of_patch{iptc} = msh.msh_patch{iptc}.nel_dir;\n end\n msh_col.nqn = msh.msh_patch{active_patches(1)}.nqn;\n msh_col.nqn_dir = msh.msh_patch{active_patches(1)}.nqn_dir;\n\nend", "meta": {"author": "rafavzqz", "repo": "geopdes", "sha": "3bfa57b1a38bd4da3148536c9f67cce81afce701", "save_path": "github-repos/MATLAB/rafavzqz-geopdes", "path": "github-repos/MATLAB/rafavzqz-geopdes/geopdes-3bfa57b1a38bd4da3148536c9f67cce81afce701/geopdes/inst/multipatch/@msh_multipatch/msh_evaluate_element_list.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3817316696439569}} {"text": "function [V,F,UV,C,N] = readOFF( filename )\n % READOFF reads an OFF file with vertex/face information\n %\n % [V,F,UV,C,N] = readOFF( filename )\n %\n % Input:\n % filename path to .off file\n % Outputs:\n % V #V by 3 list of vertices\n % F #F by 3 list of triangle indices\n % UV #V by 2 list of texture coordinates\n % C #V by 3 list of colors\n % N #V by 3 list of normals\n %\n % See also: load_mesh, readOBJfast, readOBJ\n\n% (C) 2007 Denis Kovacs, NYU\n%-------------------------------------------------------------------------\n\n V = [];\n F = [];\n UV = [];\n C = [];\n N = [];\n \n fp = fopen( filename, 'r' );\n OFFheader = upper(fscanf( fp, '%s\\n', 1 ));\n if OFFheader(end-2:end) ~= 'OFF'\n warning('no OFF file!') \n fclose(fp);\n return;\n end\n OFFdim = 3;\n OFF_N = 0; OFF_C=0; OFF_ST=0;\n \n if find(OFFheader=='N') OFFdim = OFFdim+3; OFF_N=1; end\n if find(OFFheader=='C') OFFdim = OFFdim+3; OFF_C=1; end\n if find(OFFheader=='S') OFFdim = OFFdim+2; OFF_ST=1; end\n\n % eat any comments before\n line = eat_comments(fp,'#');\n \n d = sscanf( line, '%d', 3);\n nV = d(1); nF = d(2); nE = d(3);\n \n %disp(sprintf(' - Reading %d vertices', nV));\n \n switch OFFdim\n case 3; OFFV = textscan( fp, '%f %f %f', nV);\n case 5; OFFV = textscan( fp, '%f %f %f %f %f', nV);\n case 6; OFFV = textscan( fp, '%f %f %f %f %f %f', nV);\n case 7; OFFV = textscan( fp, '%f %f %f %f %f %f %f', nV);\n case 8; OFFV = textscan( fp, '%f %f %f %f %f %f %f %f', nV);\n case 9; OFFV = textscan( fp, '%f %f %f %f %f %f %f %f %f', nV);\n case 10; OFFV = textscan( fp, '%f %f %f %f %f %f %f %f %f %f', nV);\n case 11; OFFV = textscan( fp, '%f %f %f %f %f %f %f %f %f %f %f', nV);\n otherwise; fclose(fp); error('Unsupported number of vertex entries');\n end\n \n try\n OFFV = cell2mat(OFFV); \n end\n \n OFFdim = 1;\n V = OFFV(:,OFFdim:(OFFdim+2)); OFFdim = OFFdim + 3;\n if (OFF_N) N = OFFV(:,OFFdim:(OFFdim+2)); OFFdim = OFFdim + 3; end\n if (OFF_C) C = OFFV(:,OFFdim:(OFFdim+2)); OFFdim = OFFdim + 3; end\n if (OFF_ST) UV = OFFV(:,OFFdim:(OFFdim+1)); OFFdim = OFFdim + 2; end\n \n if (nF ~= 0)\n %disp(sprintf(' - Reading %d faces', nF));\n temp = textscan( fp, '%d %d %d %d %d %d %d %d %d %d %d', nF );\n sz = temp{1}(1);\n if all(sz == cell2mat(temp(1)))\n F = double (cell2mat( temp(2:sz+1 ))) +1;\n else\n warning('Trivially triangulating high degree facets');\n F = zeros(sum(temp{1}-2),3);\n fi = 1;\n for f = 1:size(temp{1},1)\n for j = 3:temp{1}(f);\n F(fi,:) = [temp{2}(f) temp{j}(f) temp{j+1}(f)]+1;\n fi = fi+1;\n end\n end\n end\n else\n F = [];\n end\n\n fclose(fp);\n \n %disp(' - done.');\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/readOFF.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764746, "lm_q2_score": 0.5736784074525098, "lm_q1q2_score": 0.38173166203104975}} {"text": "% IAIF Glottal Inverse Filtering\n% [g,dg,a,ag] = iaif(x,fs,p_vt,p_gl,d,hpfilt)\n%\n% Description\n% This function estimates vocal tract linear prediction coefficients and\n% the glottal volume velocity waveform from a speech signal frame using\n% Iterative Adaptive Inverse Filtering (IAIF) method.\n%\n% Inputs\n% x : Speech signal frame [samples]\n% fs : Sampling frequency [Hz]\n% p_vt : Order of LPC analysis for vocal tract\n% p_gl : Order of LPC analysis for glottal source\n% d : Leaky integration coefficient (e.g. 0.99)\n% hpfilt : High-pass filter flag (0: do not apply, 1...N: apply N times)\n%\n% Outputs\n% g : Glottal volume velocity waveform\n% dg : Glottal volume velocity derivative waveform\n% a : LPC coefficients of vocal tract\n% ag : LPC coefficients of source spectrum\n%\n% Notes\n% This function does not perform pitch synchronous analysis. This ensures\n% the robustness of the method regardless of the GCI estimation\n% performance.\n%\n% Example\n% Simplest, type g = iaif(x,fs) to estimate the glottal flow of a speech\n% frame.\n%\n% References\n% [1] P. Alku, \"Glottal wave analysis with pitch synchronous iterative\n% adaptive inverse filtering\", Speech Communication, vol. 11, no. 2-3,\n% pp. 109\u2013118, 1992.\n%\n% Copyright (c) 2013 Aalto University\n%\n% License\n% This file is under the LGPL license, you can\n% redistribute it and/or modify it under the terms of the GNU Lesser General \n% Public License as published by the Free Software Foundation, either version 3 \n% of the License, or (at your option) any later version. This file is\n% distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; \n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A \n% PARTICULAR PURPOSE. See the GNU Lesser General Public License for more\n% details.\n%\n% This function is part of the Common Speech Processing Repository \n% http://covarep.github.io/covarep/\n%\n% Octave Compatible\n% \n% Author\n% Tuomo Raitio tuomo.raitio@aalto.fi\n%\n% $Id $\n\nfunction [g,dg,a,ag,hpfilter_out] = iaif(x,fs,p_vt,p_gl,d,hpfilt,hpfilter_in)\n\n% Set default parameters\nif nargin < 7\n hpfilter_in = [];\n if nargin < 6\n hpfilt = 1;\n if nargin < 5\n d = 0.99;\n if nargin < 4\n p_gl = 2*round(fs/4000);\n if nargin < 3\n p_vt = 2*round(fs/2000)+4;\n if nargin < 2\n disp('Error: Not enough input arguments.');\n end\n end\n end\n end\n end\nend\npreflt = p_vt+1;\n\n% Ensure column vector form\nx = x(:);\n\n% High-pass filter speech in order to remove possible low frequency\n% fluctuations (Linear-phase FIR, Fc = 70 Hz)\nhpfilter_out = [];\nif hpfilt > 0\n Fstop = 40; % Stopband Frequency\n Fpass = 70; % Passband Frequency\n Nfir = round(300/16000*fs); % FIR numerator order\n if mod(Nfir,2) == 1\n Nfir = Nfir + 1;\n end\n \n % it is very very expensive to calculate the firls filter! However, as \n % long as the fs does not change, the firls filter does not change.\n % Therefore, the computed filter is returned and can be passed to this\n % function later on to avoid the calculated of the (same) filter.\n if ~isempty(hpfilter_in)\n B = hpfilter_in;\n else\n B = hpfilter_fir(Fstop,Fpass,fs,Nfir);\n end\n hpfilter_out = B;\n \n for i = 1:hpfilt\n x = filter(B,1,[x ; zeros(round(length(B)/2)-1,1)]);\n x = x(round(length(B)/2):end);\n end\nend\n\n\n% Estimate the combined effect of the glottal flow and the lip radiation\n% (Hg1) and cancel it out through inverse filtering. Note that before\n% filtering, a mean-normalized pre-frame ramp is appended in order to\n% diminish ripple in the beginning of the frame. The ramp is removed after\n% filtering.\nif length(x)>p_vt\n win = hanning(length(x));\n signal = [linspace(-x(1),x(1),preflt)' ; x];\n idx = preflt+1:numel(signal);\n \n Hg1 = lpc(x.*win,1);\n y = filter(Hg1,1,signal);\n y = y(idx);\n\n % Estimate the effect of the vocal tract (Hvt1) and cancel it out through\n % inverse filtering. The effect of the lip radiation is canceled through\n % intergration. Signal g1 is the first estimate of the glottal flow.\n Hvt1 = lpc(y.*win,p_vt);\n g1 = filter(Hvt1,1,signal);\n g1 = filter(1,[1 -d],g1);\n g1 = g1(idx);\n\n % Re-estimate the effect of the glottal flow (Hg2). Cancel the contribution\n % of the glottis and the lip radiation through inverse filtering and\n % integration, respectively.\n Hg2 = lpc(g1.*win,p_gl);\n y = filter(Hg2,1,signal);\n y = filter(1,[1 -d],y);\n y = y(idx);\n\n % Estimate the model for the vocal tract (Hvt2) and cancel it out through\n % inverse filtering. The final estimate of the glottal flow is obtained\n % through canceling the effect of the lip radiation.\n Hvt2 = lpc(y.*win,p_vt);\n dg = filter(Hvt2,1,signal);\n g = filter(1,[1 -d],dg);\n g = g(preflt+1:end);\n dg = dg(idx);\n\n % Set vocal tract model to 'a' and glottal source spectral model to 'ag'\n a = Hvt2;\n ag = Hg2;\nelse g=[];\n dg=[];\n a=[];\n ag=[];\n disp('IAIF - frame not analysed!!')\nend\n\n\n\n\n\n\nfunction B = hpfilter_fir(Fstop,Fpass,fs,N)\n% FIR least-squares Highpass filter design using the FIRLS function\n%\n% Tuomo Raitio\n% 20.8.2013\n\n% Calculate the coefficients using the FIRLS function.\nB = firls(N, [0 Fstop Fpass fs/2]/(fs/2), [0 0 1 1], [1 1]);\n\n\n\n\n", "meta": {"author": "covarep", "repo": "covarep", "sha": "5a2be5d6b776f14a0b275c69fde90eb13849e60d", "save_path": "github-repos/MATLAB/covarep-covarep", "path": "github-repos/MATLAB/covarep-covarep/covarep-5a2be5d6b776f14a0b275c69fde90eb13849e60d/glottalsource/iaif.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3817240833901484}} {"text": "%kMulWave 'multiplies each element with exp(-ikx) '\n% This MatLab function was automatically generated by a converter (KhorosToMatLab) from the Khoros MulWave.pane file\n%\n% Parameters: \n% InputFile: i 'Input ', required: 'First Input data object'\n% InputFile: OrderFactors 'Order Factors', optional: 'a matrix which supplies float value order factors (positive or negative)'\n% Integer: nx 'OrdersX', default: 2: 'number of orders along x (0 .. +- OrdersX)'\n% Integer: ny 'OrdersY', default: 0: 'number of orders along y (0 .. +- OrdersY)'\n% Toggle: auto 'Determine Grid automatically', default: 0: 'if selected, the grid values are ignored and the grid position, direction and shift is determined from the first order in X and Y'\n% Integer: aorderx 'UseOrder X #', default: 1: 'which order to use for shift determination'\n% Integer: aordery 'Y', default: 1: 'which y order to use for shift determination'\n% Double: angle 'Angle', default: 0: 'angle, with which the pattern is oriented to the X-Axis'\n% Double: periodx 'Grid Spacing X', default: 4: 'number of pixels from grid to grid element'\n% Double: periody 'Grid Spacing Y', default: 4: 'number of pixels from grid to grid element'\n% Toggle: autom 'Determine Gridshift automatically', default: 0: 'The grid zero position will be determined automatically'\n% Double: mx 'Grid shift X [rad]', default: 0: 'exp(-i val) will be applied to first order peak in X'\n% Double: my 'Y [rad]', default: 0: 'exp(-i val) will be applied to first order peak in Y'\n% Double: of 'Order Enhancement Factor', default: 1: 'Will determine the enhancement of higher orders in the sum'\n% Double: zw 'Zero Order Weight', default: 1: 'if 1.0, the zero order will not have and ignore radius, if ==0.0 the zero order will be ignored in the center like all other orders'\n% Double: ir 'Ignore Zero Radius', default: 0: 'The reconstructed zero peak in each order is ignored by weigthing with a certain gaussian radius'\n% Double: ar 'Apodize Radius', default: 0: 'relative max. frequency to apodize to by a cos window (linear edge), see Gabor 1946. If this is zero, no apodization will be performed and the orders will be plainly added'\n% Double: ary 'Apo Radius Y', default: 0.9: 'If given an anisotropic apodization will be performed'\n% Double: kxmax 'Order Kmax X', default: 0.5: 'This defines the border of each reconstructed peak, as a relative frequency'\n% Double: kymax 'Order Kmax Y', default: 0.5: 'This defines the border of each reconstructed peak, as a relative frequency'\n% OutputFile: o 'Output', required: 'Resulting output data object'\n% OutputFile: sum 'Sum', required: 'The sum of all elements (reconstructed Fourier-components) will be stored here'\n% OutputFile: pat 'Patterns', optional: 'If given, patterns will be generated for each class of distances and saved (each class along depth), moved patterns along elements.'\n% Integer: PStepsX 'Pattern Steps X', default: 3: 'Number of steps along X for pattern movement'\n% Integer: PStepsY 'Y', default: 3: 'Number of steps along Y for pattern movement'\n%\n% Example: [o, sum, pat] = kMulWave({i, OrderFactors}, {'i','';'OrderFactors','';'nx',2;'ny',0;'auto',0;'aorderx',1;'aordery',1;'angle',0;'periodx',4;'periody',4;'autom',0;'mx',0;'my',0;'of',1;'zw',1;'ir',0;'ar',0;'ary',0.9;'kxmax',0.5;'kymax',0.5;'o','';'sum','';'pat','';'PStepsX',3;'PStepsY',3})\n%\n% Khoros helpfile follows below:\n%\n% PROGRAM\n% MulWave - multiplies each element with exp(-ikx)\n%\n% DESCRIPTION\n%\n% \n%\n% EXAMPLES\n%\n% \"SEE ALSO\"\n%\n% RESTRICTIONS \n%\n% REFERENCES \n%\n% COPYRIGHT\n% Copyright (C) 1996-2003, Rainer Heintzmann, All rights reserved.\n% \n\n\nfunction varargout = kMulWave(varargin)\nif nargin ==0\n Inputs={};arglist={'',''};\nelseif nargin ==1\n Inputs=varargin{1};arglist={'',''};\nelseif nargin ==2\n Inputs=varargin{1}; arglist=varargin{2};\nelse error('Usage: [out1,..] = kMulWave(Inputs,arglist).');\nend\nif size(arglist,2)~=2\n error('arglist must be of form {''ParameterTag1'',value1;''ParameterTag2'',value2}')\n end\nnarglist={'i', '__input';'OrderFactors', '__input';'nx', 2;'ny', 0;'auto', 0;'aorderx', 1;'aordery', 1;'angle', 0;'periodx', 4;'periody', 4;'autom', 0;'mx', 0;'my', 0;'of', 1;'zw', 1;'ir', 0;'ar', 0;'ary', 0.9;'kxmax', 0.5;'kymax', 0.5;'o', '__output';'sum', '__output';'pat', '__output';'PStepsX', 3;'PStepsY', 3};\nmaxval={0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1};\nminval={0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1};\nistoggle=[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0];\nwas_set=istoggle * 0;\nparamtype={'InputFile','InputFile','Integer','Integer','Toggle','Integer','Integer','Double','Double','Double','Toggle','Double','Double','Double','Double','Double','Double','Double','Double','Double','OutputFile','OutputFile','OutputFile','Integer','Integer'};\n% identify the input arrays and assign them to the arguments as stated by the user\nif ~iscell(Inputs)\nInputs = {Inputs};\nend\nNumReqOutputs=2; nextinput=1; nextoutput=1;\n for ii=1:size(arglist,1)\n wasmatched=0;\n for jj=1:size(narglist,1)\n if strcmp(arglist{ii,1},narglist{jj,1}) % a given argument was matched to the possible arguments\n wasmatched = 1;\n was_set(jj) = 1;\n if strcmp(narglist{jj,2}, '__input')\n if (nextinput > length(Inputs)) \n error(['Input ' narglist{jj,1} ' has no corresponding input!']); \n end\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n elseif strcmp(narglist{jj,2}, '__output')\n if (nextoutput > nargout) \n error(['Output nr. ' narglist{jj,1} ' is not present in the assignment list of outputs !']); \n end\n if (isempty(arglist{ii,2}))\n narglist{jj,2} = 'OK_out';\n else\n narglist{jj,2} = arglist{ii,2};\n end\n\n nextoutput = nextoutput + 1;\n if (minval{jj} == 0) \n NumReqOutputs = NumReqOutputs - 1;\n end\n elseif isstr(arglist{ii,2})\n narglist{jj,2} = arglist{ii,2};\n else\n if strcmp(paramtype{jj}, 'Integer') & (round(arglist{ii,2}) ~= arglist{ii,2})\n error(['Argument ' arglist{ii,1} ' is of integer type but non-integer number ' arglist{ii,2} ' was supplied']);\n end\n if (minval{jj} ~= 0 | maxval{jj} ~= 0)\n if (minval{jj} == 1 & maxval{jj} == 1 & arglist{ii,2} < 0)\n error(['Argument ' arglist{ii,1} ' must be bigger or equal to zero!']);\n elseif (minval{jj} == -1 & maxval{jj} == -1 & arglist{ii,2} > 0)\n error(['Argument ' arglist{ii,1} ' must be smaller or equal to zero!']);\n elseif (minval{jj} == 2 & maxval{jj} == 2 & arglist{ii,2} <= 0)\n error(['Argument ' arglist{ii,1} ' must be bigger than zero!']);\n elseif (minval{jj} == -2 & maxval{jj} == -2 & arglist{ii,2} >= 0)\n error(['Argument ' arglist{ii,1} ' must be smaller than zero!']);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} < minval{jj})\n error(['Argument ' arglist{ii,1} ' must be bigger than ' num2str(minval{jj})]);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} > maxval{jj})\n error(['Argument ' arglist{ii,1} ' must be smaller than ' num2str(maxval{jj})]);\n end\n end\n end\n if ~strcmp(narglist{jj,2},'OK_out') & ~strcmp(narglist{jj,2},'OK_in') \n narglist{jj,2} = arglist{ii,2};\n end\n end\n end\n if (wasmatched == 0 & ~strcmp(arglist{ii,1},''))\n error(['Argument ' arglist{ii,1} ' is not a valid argument for this function']);\n end\nend\n% match the remaining inputs/outputs to the unused arguments and test for missing required inputs\n for jj=1:size(narglist,1)\n if strcmp(paramtype{jj}, 'Toggle')\n if (narglist{jj,2} ==0)\n narglist{jj,1} = ''; \n end;\n narglist{jj,2} = ''; \n end;\n if ~strcmp(narglist{jj,2},'__input') && ~strcmp(narglist{jj,2},'__output') && istoggle(jj) && ~ was_set(jj)\n narglist{jj,1} = ''; \n narglist{jj,2} = ''; \n end;\n if strcmp(narglist{jj,2}, '__input')\n if (minval{jj} == 0) % meaning this input is required\n if (nextinput > size(Inputs)) \n error(['Required input ' narglist{jj,1} ' has no corresponding input in the list!']); \n else\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n end\n else % this is an optional input\n if (nextinput <= length(Inputs)) \n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end;\n else \n if strcmp(narglist{jj,2}, '__output')\n if (minval{jj} == 0) % this is a required output\n if (nextoutput > nargout & nargout > 1) \n error(['Required output ' narglist{jj,1} ' is not stated in the assignment list!']); \n else\n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n NumReqOutputs = NumReqOutputs-1;\n end\n else % this is an optional output\n if (nargout - nextoutput >= NumReqOutputs) \n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end\n end\n end\nend\nif nargout\n varargout = cell(1,nargout);\nelse\n varargout = cell(1,1);\nend\nglobal KhorosRoot\nif exist('KhorosRoot') && ~isempty(KhorosRoot)\nw=['\"' KhorosRoot];\nelse\nif ispc\n w='\"C:\\Program Files\\dip\\khorosBin\\';\nelse\n[s,w] = system('which cantata');\nw=['\"' w(1:end-8)];\nend\nend\n[varargout{:}]=callKhoros([w 'mulwave\" -k'],Inputs,narglist);\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/matlab_tools/Converted/kMulWave.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.3817240833901483}} {"text": "clf; hold on\nK = 10; \ncolor = .7*[1 1 1]; \ndx = .9; \nbinedges = (0:5*K)+.5;\nfor ki = 1:K\n Data = poissrnd(2*ki,1,200); \n xpos = ki; \n p = boxyviolin(Data, binedges, xpos,dx, color)\n Data = randn(1,200)+3*K; \n xpos = ki; \n p = boxyviolin(Data, binedges, xpos,dx, [1 .8 .8])\nend\nshg", "meta": {"author": "FeeLab", "repo": "seqNMF", "sha": "229b9b19ac3a34b8378945ec7f9e331e004bb777", "save_path": "github-repos/MATLAB/FeeLab-seqNMF", "path": "github-repos/MATLAB/FeeLab-seqNMF/seqNMF-229b9b19ac3a34b8378945ec7f9e331e004bb777/misc_elm/demoboxyviolin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.3817240769874594}} {"text": "%\n% This .m file creates a rectangular grid and calculates the\n% cumulative number curve at each grid point. The grid is\n% saved in the file \"cumugrid.mat\".\n% Operates on catalogue \"a\"\n%\n% define size of the area\n%\n% ________________________________________________________________________\n% Please use the left mouse button or the cursor to select the lower\n% left corner of the area of investigation. Please use the left\n% mouse again to select the upper right corner. The calculation might take\n% some time. This time can be reduced by using a smaller area and/or\n% a larger grid-spacing! The amount of calculation done will be displayed\n% in percent of the total time.\n%\n%_________________________________________________________________________\n\nreport_this_filefun(mfilename('fullpath'));\n\nselgp\n\nitotal = length(newgri(:,1));\nif length(gx) < 2 || length(gy) < 2\n errordlg('Selection too small! (not a matrix)');\n return\nend\n\nclose(gpf)\nzmap_message_center.clear_message();;think\n% make grid, calculate start- endtime etc. ...\n%\nt0b = min(a.Date) ;\nn = a.Count;\nteb = a(n,3) ;\ntdiff = round((teb - t0b)*365/par1);\ncumu = zeros(length(t0b:par1/365:teb)+2);\nncu = length(cumu);\ncumuall = zeros(ncu,length(newgri(:,1)));\nloc = zeros(3,length(newgri(:,1)));\n\n% loop over all points\n%\ni2 = 0.;\ni1 = 0.;\nallcount = 0.;\n%\n% loop for all grid points\nwai = waitbar(0,' Please Wait ... ');\nset(wai,'NumberTitle','off','Name','Makegrid - Percent completed');;\ndrawnow\n\n\nx = newgri(:,1);y = newgri(:,2);\n% calculate distance from center point and sort wrt distance\n%\nlea = a.Count;\nlex = length(x(:,1));\nal = a.Longitude * ones(1,lex);\nala = a.Latitude * ones(1,lex);\nalt = a.Date * ones(1,lex);\nal = (al' - x * ones(1,lea)) * cos(pi/180*mean(y)*111);\nala = (ala' - y * ones(1,lea)) * 111;\nl = sqrt(al.^2 + ala.^2);\n[s,is] = sort(l);\nl2 = is <= ni;\nalt = reshape(alt(l2),ni,lea);\ncumuall = [histogram(alt,t0b:par1/365:teb) ];\n\n%cumuall(:,allcount) = [cumu'; x; l(ni,:)];\nloc= [x ; y; s(:,ni)];\n\nwaitbar(allcount/itotal)\n\n\n%\n% save data\n%\n% set(txt1,'String', 'Saving data...')\nclose(wai)\ndrawnow\n%save cumugrid.mat cumuall par1 ni dx dy gx gy tdiff t0b teb loc\n\ncatSave3 =...\n [ 'zmap_message_center.set_info(''Save Grid'','' '');think;',...\n ' [file1,path1] = uiputfile(fullfile(hodi, ''eq_data'', ''*.mat''), ''Grid Datafile'');',...\n ' sapa2 = [''save '' path1 file1 '' x y tmpgri newgri xvect yvect ll cumuall par1 ni dx dy gx gy tdiff t0b teb loc a main faults mainfault coastline''];',...\n ' if length(file1) > 1, eval(sapa2),end , done'];\n\neval(catSave3)\n\nwatchoff\nzmapmenu\nreturn\n\nfigure_w_normalized_uicontrolunits(mess)\nclf\nset(gca,'visible','off')\n\nte = text(0.01,0.95,'The cumulative number array \\newlinehas been saved in \\newlinefile cumugrid.mat \\newlinePlease rename it \\newlineto protect if from overwriting.');\nset(te,'FontSize',ZmapGlobal.Data.fontsz.m,'FontWeight','bold')\n\nuicontrol('Units','normal','Position',...\n [.7 .10 .2 .12],'String','Options ', 'Callback','zmapmenu')\n\nuicontrol('Units','normal','Position',...\n [.3 .10 .2 .12],'String','Back', 'Callback','welcome')\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/makegrid2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943805178138, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.38172407058477037}} {"text": "function varargout = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf)\n%SOUND_FIELD_MONO_WFS sound field for WFS\n%\n% Usage: [P,x,y,z,x0] = sound_field_mono_wfs(X,Y,Z,xs,src,f,conf)\n%\n% Input parameters:\n% X - x-axis / m; single value or [xmin,xmax] or nD-array\n% Y - y-axis / m; single value or [ymin,ymax] or nD-array\n% Z - z-axis / m; single value or [zmin,zmax] or nD-array\n% xs - position of virtual source / m\n% src - source type of the virtual source\n% 'pw' - plane wave (xs is the direction of the\n% plane wave in this case)\n% 'ps' - point source\n% 'fs' - focused source\n% f - monochromatic frequency / Hz\n% conf - configuration struct (see SFS_config)\n%\n% Output parameters:\n% P - simulated sound field\n% x - corresponding x values / m\n% y - corresponding y values / m\n% z - corresponding z values / m\n% x0 - active secondary sources / m\n%\n% SOUND_FIELD_MONO_WFS(X,Y,Z,xs,src,f,conf) simulates a monochromatic sound\n% field for the given source type (src) synthesized with wave field synthesis\n% for the frequency f.\n%\n% To plot the result use:\n% plot_sound_field(P,X,Y,Z,x0,conf);\n% or simple call the function without output argument:\n% sound_field_mono_wfs(X,Y,Z,xs,src,f,conf)\n%\n% See also: plot_sound_field, sound_field_imp_wfs, driving_function_mono_wfs\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n\n%% ===== Checking of input parameters ==================================\nnargmin = 7;\nnargmax = 7;\nnarginchk(nargmin,nargmax);\nisargxs(xs);\nisargpositivescalar(f);\nisargchar(src);\nisargstruct(conf);\n\n\n%% ===== Configuration ==================================================\nif strcmp('2D',conf.dimension)\n greens_function = 'ls';\nelse\n greens_function = 'ps';\nend\n\n\n%% ===== Computation ====================================================\n% Get the position of the loudspeakers and its activity\nx0 = secondary_source_positions(conf);\nx0 = secondary_source_selection(x0,xs,src);\nx0 = secondary_source_tapering(x0,conf);\n% Driving function\nD = driving_function_mono_wfs(x0,xs,src,f,conf);\n% Wave field\n[varargout{1:min(nargout,4)}] = ...\n sound_field_mono(X,Y,Z,x0,greens_function,D,f,conf);\n% Return secondary sources if desired\nif nargout==5, varargout{5}=x0; end\n", "meta": {"author": "sfstoolbox", "repo": "sfs-matlab", "sha": "02194f0243d1ead26572f760032c40527718919d", "save_path": "github-repos/MATLAB/sfstoolbox-sfs-matlab", "path": "github-repos/MATLAB/sfstoolbox-sfs-matlab/sfs-matlab-02194f0243d1ead26572f760032c40527718919d/SFS_monochromatic/sound_field_mono_wfs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.78793120560257, "lm_q2_score": 0.48438008427698437, "lm_q1q2_score": 0.38165818377423877}} {"text": "function [patches, pdm, clmParams, early_term_params] = Load_CECLM_general()\n%LOAD_PATCH_EXPERTS Summary of this function goes here\n% Detailed explanation goes here\n \n % Load the patch experts/local detectors\n [patches] = Load_CECLM_Patch_Experts( '../models/cen/', 'cen_patches_*_general.mat');\n\n % the default PDM to use\n pdmLoc = ['../models/pdm/pdm_68_aligned_wild.mat'];\n\n load(pdmLoc);\n\n pdm = struct;\n pdm.M = double(M);\n pdm.E = double(E);\n pdm.V = double(V);\n\n clmParams = struct;\n\n clmParams.window_size = [25,25; 23,23; 21,21; 21,21];\n clmParams.numPatchIters = size(clmParams.window_size,1);\n\n clmParams.regFactor = 0.9*[35, 27, 20, 20];\n clmParams.sigmaMeanShift = 1.5*[1.25, 1.375, 1.5, 1.5]; \n clmParams.tikhonov_factor = [2.5, 5, 7.5, 7.5];\n\n clmParams.startScale = 1;\n clmParams.num_RLMS_iter = 10;\n clmParams.fTol = 0.01;\n clmParams.useMultiScale = true;\n clmParams.use_multi_modal = 1;\n clmParams.multi_modal_types = patches(1).multi_modal_types;\n clmParams.numPatchIters = 4;\n \n % As the orientations are not equally reliable reweigh them\n load('../models/cen/cen_general_mapping.mat'); \nend\n\n", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/matlab_version/models/Load_CECLM_general.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.38164864217489447}} {"text": "function denoised = WNNM_WRAP(image_path, sigma)\n\n N_Img = double(rgb2gray(imread(image_path)));\n\n Par = ParSet(sigma); \n Denoised_Image = WNNM_DeNoising(N_Img, Par);\n \n recombinedRGBImage = cat(3, Denoised_Image, Denoised_Image, Denoised_Image);\n \n denoised = uint8(recombinedRGBImage);\n \nend\n\n\n\n", "meta": {"author": "lbasek", "repo": "image-denoising-benchmark", "sha": "9d753198d715b7628c8e7d9259dfa5c219d033ea", "save_path": "github-repos/MATLAB/lbasek-image-denoising-benchmark", "path": "github-repos/MATLAB/lbasek-image-denoising-benchmark/image-denoising-benchmark-9d753198d715b7628c8e7d9259dfa5c219d033ea/algoritms/matlab/WNNM/WNNM_WRAP.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.38164864217489447}} {"text": "function ykplus1 = sparseGalerkinControl_Discrete(t,y,u,p)\n\nif isfield(p,'SelectVars')==0\n p.SelectVars = 1:length(y);\nend\npolyorder = p.polyorder;\nusesine = p.usesine;\nahat = p.ahat;\nyPool = poolData([y(p.SelectVars)' u],length(p.SelectVars)+1,polyorder,usesine);\nykplus1 = (yPool*ahat)';", "meta": {"author": "eurika-kaiser", "repo": "SINDY-MPC", "sha": "e1dfd9908b2b56af303ee9fb30a133aced4fd757", "save_path": "github-repos/MATLAB/eurika-kaiser-SINDY-MPC", "path": "github-repos/MATLAB/eurika-kaiser-SINDY-MPC/SINDY-MPC-e1dfd9908b2b56af303ee9fb30a133aced4fd757/utils/sparseGalerkinControl_Discrete.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743620390162, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.38164864217489436}} {"text": "function [varargout] = stdDevDose(planC, varargin)\n%Calculate the std dev of the dose (non-variance corrected).\n%Stand alone metric : stdDevDose(planC, structNum, doseNum);\n%Request m object : stdDevDose(planC, 'getnewmetric');\n%Evaluate m object : stdDevDose(planC, m, 'evaluate');\n%LM: 6 Oct 06, JOD: new metric.\n%\n% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.\n% \n% This file is part of The Computational Environment for Radiotherapy Research (CERR).\n% \n% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.\n% \n% CERR has been financially supported by the US National Institutes of Health under multiple grants.\n% \n% CERR is distributed under the terms of the Lesser GNU Public License. \n% \n% This version of CERR is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n% See the GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with CERR. If not, see .\n\nindexS = planC{end};\noptS = planC{indexS.CERROptions};\n\nif(nargin > 1)\n call = varargin{end};\nelse\n warning('Incorrect Usage, try: stdDevDose(planC, structNum, doseNum);');\n return;\nend\n\nswitch upper(call)\n case 'GETNEWMETRIC'\n m.name = 'stdDevDose';\n m.valueV = [];\n m.description = 'Returns the standard deviation (non-variance corrected) dose in specified structure';\n m.functionName = @stdDevDose;\n m.note = '';\n m.params(1).name = 'Structure';\n m.params(1).type = 'DropDown';\n m.params(1).list = {planC{indexS.structures}.structureName};\n m.params(1).value = 1;\n m.params(2).name = 'IsTarget?';\n m.params(2).type = 'DropDown';\n m.params(2).list ={'Target', 'Not Target'};\n m.params(2).value = 2;\n m.units = [];\n m.range = [0 inf];\n m.doseSets = [1];\n varargout = {planC,m};\n return;\n\n case 'EVALUATE'\n m = varargin{1};\n structName = planC{indexS.structures}(m.params(1).value).structureName;\n m.note = structName;\n m.valueV = [];\n\n maxD = -inf;\n for i=1:length(m.doseSets)\n [planC, doseBinsV, volsHistV] = getDVHMatrix(planC, m.params(1).value, m.doseSets(i));\n ans = calc_stdDevDose(doseBinsV, volsHistV);\n m.valueV = [m.valueV ans];\n maxD = max(maxD, max(planC{indexS.dose}(m.doseSets(i)).doseArray(:)));\n end\n if m.params(2).value == 1\n %Is target, high dose is best.\n m.range = [0 max(m.valueV)];\n elseif m.params(2).value == 2\n m.range = [maxD min(m.valueV)];\n end\n m.units = getDoseUnitsStr(i,planC);\n varargout = {planC,m};\n return;\n\n otherwise %No specific call has been made, assume user just wants raw metric.\n if(nargin == 3)\n structNum = varargin{1};\n doseNum = varargin{2};\n [planC, doseBinsV, volsHistV] = getDVHMatrix(planC, structNum, doseNum);\n varargout = {calc_stdDevDose(doseBinsV, volsHistV)};\n else\n error('Not enough parameters, try: stdDevDose(planC, structNum, doseNum);')\n return;\n end\nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanMetrics/stdDevDose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7690802370707281, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.3815359599788201}} {"text": "function c = unifytracelengths(c)\n %unifytracelengths make all traces the same length (mode length)\n % C = unifytracelengths(C) if traces are of unequal lengths, then they\n % are either trimmed or zero-padded to the same size. The final length\n % will be the mode length of the original set of traces.\n %\n % See also mode\n \n if isempty(c.traces)\n return\n end\n \n lengths = [c.traces.nsamples];\n ideal = mode(lengths);\n \n tooShort = lengths < ideal;\n tooLong = lengths > ideal;\n \n for i = 1:numel(lengths)\n if tooShort(i)\n c.traces(i).data(ideal) = 0;\n elseif tooLong(i)\n c.traces(i).data = c.traces(i).data(1:ideal);\n end\n end\nend\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/dev/@NewCorrelation/unifytracelengths.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982315512489, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38148133749115376}} {"text": "%SerialLink.perturb Perturb robot parameters\n%\n% RP = R.perturb(P) is a new robot object in which the dynamic parameters (link\n% mass and inertia) have been perturbed. The perturbation is multiplicative so \n% that values are multiplied by random numbers in the interval (1-P) to (1+P).\n% The name string of the perturbed robot is prefixed by 'P/'.\n%\n% Useful for investigating the robustness of various model-based control \n% schemes. For example to vary parameters in the range +/- 10 percent is:\n% r2 = p560.perturb(0.1);\n%\n% See also SerialLink.rne.\n\n\n% Copyright (C) 1993-2017, by Peter I. Corke\n%\n% This file is part of The Robotics Toolbox for MATLAB (RTB).\n% \n% RTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% RTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with RTB. If not, see .\n%\n% http://www.petercorke.com\n\nfunction r2 = perturb(r, p)\n\n\tif nargin == 1\n\t\tp = 0.1;\t% 10 percent disturb by default\n\tend\n\n r2 = SerialLink(r);\n\n links = r2.links;\n\tfor i=1:r.n\n\t\ts = (2*rand-1)*p + 1;\n\t\tlinks(i).m = links(i).m * s;\n\n\t\ts = (2*rand-1)*p + 1;\n\t\tlinks(i).I = links(i).I * s;\n\tend\n\n\tr2.name = ['P/' r.name];\n", "meta": {"author": "petercorke", "repo": "robotics-toolbox-matlab", "sha": "bd7a9d75176c660f43fc799b24d838f70b02250c", "save_path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab/robotics-toolbox-matlab-bd7a9d75176c660f43fc799b24d838f70b02250c/@SerialLink/perturb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982315512488, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3814813374911537}} {"text": "function [varargout]=pillowHex(E,V,C,shrinkFactor)\n\n%Defive core element\n[E_core,V_core]=scalePatch(E,V,shrinkFactor);\n\nVp=[V;V_core]; %Collect nodes \nE_core=E_core+size(V,1); %Fix node indices in E_core\n\n%% FORMAT FOR FACES\nindTop=1:1:4;\nindBottom=5:1:8;\nindFront=[2 3 7 6];\nindBack=[5 8 4 1];\nindSide1=[1 2 6 5];\nindSide2=[3 4 8 7];\n\n%% THE TOP ELEMENT\n% top-of-core top-of-outer\nE1=[E_core(:,indTop) E(:,indTop)];\n\n%% THE BOTTOM ELEMENT\n% bottom-of-core bottom-of-outer\nE2=[E_core(:,indBottom) E(:,indBottom)];\n\n%% THE FRONT ELEMENT\n% bottom=front of E2 top=front of E1\nE3=[E2(:,indFront) E1(:,indFront)];\n\n%% THE BACK ELEMENT\n% bottom=back of E2 top=back of E1\nE4=[E2(:,indBack) E1(:,indBack)];\n\n%% THE SIDE1 ELEMENT\n% bottom=side1 of E2 top=side1 of E1\nE5=[E2(:,indSide1) E1(:,indSide1)];\n\n%% THE SIDE2 ELEMENT\n% bottom=side2 of E2 top=side2 of E1\nE6=[E2(:,indSide2) E1(:,indSide2)];\n\n%% Gather element sets\nEp=[E_core; E1; E2; E3; E4; E5; E6];\nCp=repmat(C,[7,1]);\n \n%% Collect output\nvarargout{1}=Ep;\nvarargout{2}=Vp;\nvarargout{3}=Cp;\n\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/pillowHex.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982315512488, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3814813374911537}} {"text": "\n% fmri_data.subs\n\n% This is different from fmri_data.apply_parcellation, which returns\n% averages or weighted averages per image for a set of images in a data\n% object. apply_parcellation can be used to return local pattern responses\n% for any parcellation, but it does not return vectors with the local\n% weights themselves. \n\n% expand into atlas subregions\n% Take an image object (one image) and an integer-valued parcellation/atlas whose values\n% indicate k regions, and expand the image object into a set of k images with\n% the original values only for voxels in the kth region, and zero\n% elsewhere. Useful for breaking a pattern mask into local atlas-defined subregions.\n\n\n% define target image obj to sample to : nps\n\nnps = replace_empty(nps); % just in case\ntarget_obj = nps; % this will be expanded to set of images\n\norig_image_vector = target_obj.dat(:, 1);\n\n\nparcellation_file = which('BN_Atlas_274_noCb_uint16.nii');\nparcel_obj = fmri_data(parcellation_file);\n\nparcel_obj = resample_space(parcel_obj, nps);\n\nnames_file = fullfile(fileparts(parcellation_file), 'cluster_names.mat');\nclear names\nload(names_file, 'names'); \nnames; % returns names var. make sure: break if not\n\n% Find which names match\n%wh = ~cellfun(@isempty, strfind(names, string_to_find));\n\n% Index values to look for\n% indx = find(wh)';\n\n%% Do expansion\n% -----------------------------------------------------------------------\nfor indx = 1:length(names)\n \n output_obj = select_voxels_by_value(parcel_obj, indx);\n \n target_subregion_vector = orig_image_vector; % will become image values only in region, 0 elsewhere\n target_subregion_vector(output_obj.removed_voxels) = 0;\n \n target_obj.dat(:, indx) = target_subregion_vector;\n \n \nend\n\n% Add image for everything not already covered\n% *******\n\n\n% Remove empty images, attach names to object\n\nempty_imgs = sum(abs(target_obj.dat)) < 10*eps;\ntarget_obj.dat(:, empty_imgs) = [];\n\nnames(empty_imgs) = [];\ntarget_obj.additional_info = names;\n\n\n%% Get region object, r\n% May have different length (n regions) because of contiguity requirement\n% -----------------------------------------------------------------------\n\ndat_wh = get_wh_image(target_obj, 1); \nr = region(dat_wh);\n\nregion_names = repmat(names(1), 1, length(r));\n\nfor i = 2:size(target_obj.dat, 2)\n \n dat_wh = get_wh_image(target_obj, i); \n \n % threshold at 20% probability, get rid of stray voxels\n %dat_wh = threshold(dat_wh, [.2 Inf], 'raw-between', 'k', 3);\n\n r_wh = region(dat_wh);\n \n for j = 1:length(r_wh)\n [r_wh(j).title, r_wh(j).shorttitle] = deal(names{i});\n end\n \n r = [r r_wh];\n \n region_names = [region_names repmat(names(i), 1, length(r_wh))];\n \nend\n%% \n\n% similarity_output = canlab_pattern_similarity(dat, pattern_weights, varargin)\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/@image_vector/expand_into_atlas_subregions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.38148132948276886}} {"text": "classdef ConstantDetectionProbabilityX < DetectionModelX\n% ConstantDetectionProbabilityX class\n%\n% Summary of ConstantDetectionProbabilityX\n% This is a class implementation of a detection model, described by a Poisson\n% distributed false alarm rate and a Uniform spatial distribution.\n%\n% ConstantDetectionProbabilityX Properties:\n% + DetectionProbability - The detection probability.\n%\n% ConstantDetectionProbabilityX Methods:\n% + pdf - Function to evaluate the instensity p(b_t) at a given point in\n% the state space.\n%\n% (+) denotes puplic properties/methods\n%\n% February 2018 Lyudmil Vladimirov, University of Liverpool \n \n properties\n DetectionProbability\n end\n \n methods (Access = protected)\n function initialise_(this, config)\n if(isfield(config,'DetectionProbability'))\n this.DetectionProbability = config.DetectionProbability;\n end\n end\n end\n \n methods\n function this = ConstantDetectionProbabilityX(varargin)\n % ConstantDetectionProbabilityX Constructor method\n % \n % Parameters\n % ----------\n % DetectionProbability: scalar\n % The detection probability over the search space.\n %\n % See also pdf. \n \n % Call SuperClass method\n this@DetectionModelX();\n \n % First check to see if a structure was received\n if(nargin==1)\n if(isstruct(varargin{1}))\n config = varargin{1};\n this.initialise_(config);\n return;\n end\n end\n \n % Otherwise, fall back to input parser\n parser = inputParser;\n parser.KeepUnmatched = true;\n parser.parse(varargin{:});\n config = parser.Unmatched;\n this.initialise_(config);\n \n end\n \n function int = pdf(this, varargin)\n % pdf Evaluates the detection intensity at given points xk of the state space\n %\n % Parameters\n % ----------\n % xk: matrix\n % A (NumStateDims x Ns) matrix, whose columns correspond to Ns individual state vectors.\n %\n % Returns\n % -------\n % prob: matrix\n % A (1 x Ns) matrix, where :math:`prob(i,j)=p(D_k^i|x_k^j) \n \n Ns = 1;\n if(nargin>1)\n xk = varargin{1};\n Ns = size(xk,2);\n end\n int = this.DetectionProbability*ones(1,Ns);\n x = [-3422.85261310741,-3191.58441229017,-2993.55608122595,-3228.08558459284, -3422.85261310741];\n y = [1.472966334316646e+03,1.123217741935625e+03,1.243952901078573e+03,1.579667558371468e+03, 1.472966334316646e+03];\n a = find(inpolygon(xk(1,:),xk(3,:),x,y));\n if numel(a)>0\n int(a) = 0.1;\n end\n end\n end\nend", "meta": {"author": "sglvladi", "repo": "TrackingX", "sha": "f737445c070f0d7d470f52f8a2b5540d5bb682da", "save_path": "github-repos/MATLAB/sglvladi-TrackingX", "path": "github-repos/MATLAB/sglvladi-TrackingX/TrackingX-f737445c070f0d7d470f52f8a2b5540d5bb682da/Models/Detection/ConstantDetectionProbabilityX/ConstantDetectionProbabilityX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3813907410418577}} {"text": "function density = p14_density ( m, n, point )\n\n%*****************************************************************************80\n%\n%% P14_DENSITY returns the density for problem 14.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Per-Olof Persson and Gilbert Strang,\n% A Simple Mesh Generator in MATLAB,\n% SIAM Review,\n% Volume 46, Number 2, June 2004, pages 329-345.\n%\n% Parameters:\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real POINT(M,N), the coordinates of the points.\n%\n% Output, real DENSITY(N), the mesh density at each point.\n%\n density = ones ( 1, n );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_triangulation/p14_density.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5195213219520929, "lm_q2_score": 0.7341195152660687, "lm_q1q2_score": 0.3813907410418576}} {"text": "addpath('../toolbox/');\naddpath('../image_blur/');\naddpath('../blur_functions//');\naddpath('../convolutional_wasserstein/');\naddpath('../../data/images/shapes/'); % low-res images\n\nrep = '../results/shapes/';\nif not(exist(rep))\n mkdir(rep);\nend\n\n%% Read data\n\nif not(exist('imresize'))\n imresize = @(x,s)image_resize(x,s); \nend\n\ntargetSize = 199;\n\nshape_list = [2 3 4];\nnImages = length(shape_list);\n\ndata = zeros(targetSize*targetSize,nImages);\nfor i=1:nImages\n im = imread(sprintf('shape%dfilled.png', shape_list(i)));\n im = im2double(rgb2gray(im));\n \n padding = abs(size(im,2)-size(im,1));\n pad1 = floor(padding/2);\n pad2 = padding-pad1;\n \n if size(im,1) < size(im,2)\n im = [zeros(pad1,size(im,2)) ; im ; zeros(pad2,size(im,2))];\n elseif size(im,2) < size(im,1)\n im = [zeros(size(im,1),pad1) im zeros(size(im,1),pad2)];\n end\n \n im = 1-imresize(im,[targetSize targetSize]);\n im(im<0) = 0;\n \n im = im > .01;\n \n im = im + 1e-3;\n im = im / sum(im(:));\n \n % figure;imagesc(-im);axis equal;axis off;colormap gray;\n \n data(:,i) = im(:);\nend\n\nn = size(data,1);\nareaWeights = ones(n,1)/n;\ndata = data*n;\n\nentropies = -sum(bsxfun(@times,data.*log(data),areaWeights),1);\nmaxEntropy = max(entropies);\n\n%% Set up blur\n\nfilterSize = 1.5; %was 5\nimSize = [targetSize targetSize];\n\nif exist('imfilter')\n % using image toolbox\n h = fspecial('gaussian',[1 max(imSize)],filterSize);% hsize sigma\n h = h / sum(h);\n imBlur = @(x) imfilter(imfilter(x,h,'replicate'),h','replicate');\nelse\n blur = load_filtering('imgaussian', targetSize);\n imBlur = @(x)blur(x,filterSize);\nend\n\nimagesc(imBlur(reshape(data(:,1),imSize)));\n\nblurColumn = @(x) reshape(imBlur(reshape(x,imSize)),[],1);\nblurAll2 = @(x) cell2mat(cellfun(blurColumn, num2cell(x,1), 'UniformOutput', false));\nblurAll = @(x) blurAll2(blurAll2(x));\n\n% blurColumn = @(x) reshape(fastBlur(reshape(x,[targetSize,targetSize]),filterSize),[],1);\n% blurAll = @(x) cell2mat(cellfun(blurColumn, num2cell(x,1), 'UniformOutput', false));\n\nimagesc(reshape(blurAll(data(:,1)),imSize));\naxis equal;\naxis off;\n\n%% Compute barycenter\n\nentropyLimit = Inf;\n\nsteps = linspace(0,1,5);% linspace(-.5,1.5,9);\n\naverages = cell(length(steps),length(steps));\nbarycenters = cell(length(steps),length(steps));\n\noptions.niter = 400; %not 300\noptions.verb = 2;\noptions.tol = 1e-15;\nresh = @(x)reshape(x, imSize);\noptions.disp = @(x)imageplot(-resh(x));\n\nW = { ...\n [0, 0, 1] ...\n [1, 0, 3] [0, 1, 3] ...\n [1,0,1] [1,1,2] [0,1,1] ...\n [3,0,1] [2,1,1] [1,2,1] [0,3,1] ... \n [1,0,0] [3,1,0] [1,1,0] [1,3,0] [0,1,0] ... \n };\n\nB = {};\nfor i=1:length(W)\n alpha = W{i}; alpha = alpha/sum(alpha);\n B{i} = convolutionalBarycenter(data,alpha,areaWeights,blurAll,blurAll,entropyLimit,options);\n u = rescale(-resh(B{i}));\n imwrite(u, [rep 'shape-barycenter-' num2str(i) '.png'], 'png');\n imwrite(double(u>.5), [rep 'tresh-barycenter-' num2str(i) '.png'], 'png');\nend\n\n", "meta": {"author": "gpeyre", "repo": "2015-SIGGRAPH-convolutional-ot", "sha": "484b83c5ee396f3d998f67ed35652249b5e29e81", "save_path": "github-repos/MATLAB/gpeyre-2015-SIGGRAPH-convolutional-ot", "path": "github-repos/MATLAB/gpeyre-2015-SIGGRAPH-convolutional-ot/2015-SIGGRAPH-convolutional-ot-484b83c5ee396f3d998f67ed35652249b5e29e81/code/figures/generateTriangleBarycenterFigure.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514777, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3813777802469826}} {"text": "function [D,x0,xv,idx] = driving_function_mono_localwfs_vss(x0,xs,src,f,conf)\n%DRIVING_FUNCTION_MONO_LOCALWFS_VSS driving signal for local WFS using virtual\n%secondary sources\n%\n% Usage: [D,xv,x0,idx] = driving_function_mono_localwfs_vss(x0,xs,src,f,conf)\n%\n% Input parameters:\n% x0 - position and direction of the secondary source / m [nx7]\n% xs - position of virtual source or direction of plane\n% wave / m [1x3]\n% src - source type of the virtual source\n% 'pw' - plane wave (xs is the direction of the\n% plane wave in this case)\n% 'ps' - point source\n% 'ls' - line source\n% 'fs' - focused source\n%\n% f - frequency of the monochromatic source / Hz\n% conf - configuration struct (see SFS_config)\n%\n% Output parameters:\n% D - driving function signal [nx1]\n% x0 - position, direction, and weights of the real secondary\n% sources / m [nx7]\n% xv - position, direction, and weights of the virtual secondary\n% sources / m [mx7]\n% idx - index of the selected sources from the original x0\n% matrix [mx1]\n%\n% See also: plot_sound_field, sound_field_mono_wfs\n%\n% References:\n% Spors (2010) - \"Local Sound Field Synthesis by Virtual Secondary\n% Sources\", 40th Conference of the Audio Engineering Society, Paper 6-3,\n% http://www.aes.org/e-lib/browse.cfm?elib=15561\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n%% ===== Checking of input parameters ==================================\nnargmin = 5;\nnargmax = 5;\nnarginchk(nargmin,nargmax);\nisargsecondarysource(x0);\nisargxs(xs);\nisargpositivescalar(f);\nisargchar(src);\nisargstruct(conf);\n\n\n%% ===== Configuration ==================================================\nvirtualconf = conf;\nvirtualconf.usetapwin = conf.localwfs_vss.usetapwin;\nvirtualconf.tapwinlen = conf.localwfs_vss.tapwinlen;\nvirtualconf.secondary_sources.size = conf.localwfs_vss.size;\nvirtualconf.secondary_sources.center = conf.localwfs_vss.center;\nvirtualconf.secondary_sources.geometry = conf.localwfs_vss.geometry;\nvirtualconf.secondary_sources.number = conf.localwfs_vss.number;\nvirtualconf.wfs = conf.localwfs_vss.wfs;\nvirtualconf.nfchoa = conf.localwfs_vss.nfchoa;\nvirtualconf.driving_functions = conf.localwfs_vss.driving_functions;\nmethod = conf.localwfs_vss.method;\n\n\n%% ===== Computation ====================================================\n\n% Determine driving functions of virtual array with different sfs methods\nswitch method\ncase 'wfs'\n % === Wave Field Synthesis ===\n % Create virtual source array\n xv = virtual_secondary_source_positions(x0,xs,src,conf);\n % Secondary_source_selection\n xv = secondary_source_selection(xv, xs, src);\n % Optional tapering\n xv = secondary_source_tapering(xv,virtualconf);\n % Driving functions for virtual source array\n Dv = driving_function_mono_wfs(xv,xs,src,f,virtualconf);\ncase 'nfchoa'\n % === Near-Field-Compensated Higher Order Ambisonics ===\n % Create virtual source array\n xv = secondary_source_positions(virtualconf);\n % Driving functions for virtual source array\n Dv = driving_function_mono_nfchoa(xv,xs,src,f,virtualconf);\notherwise\n error('%s: %s is not a supported method for localsfs!',upper(mfilename),method);\nend\n\n% Select secondary sources\n[x0,idx] = secondary_source_selection(x0,xv(:,1:6),'vss');\n% Driving functions for real source array\nD = driving_function_mono_wfs_vss(x0,xv,'fs',Dv,f,conf);\n", "meta": {"author": "sfstoolbox", "repo": "sfs-matlab", "sha": "02194f0243d1ead26572f760032c40527718919d", "save_path": "github-repos/MATLAB/sfstoolbox-sfs-matlab", "path": "github-repos/MATLAB/sfstoolbox-sfs-matlab/sfs-matlab-02194f0243d1ead26572f760032c40527718919d/SFS_monochromatic/driving_function_mono_localwfs_vss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514777, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3813777802469826}} {"text": "function optimParam = tuneParamForModel(model,varargin)\n% Optimizes cplex parameters to make model resolution faster.\n% Particularly interetsing for large-scale MILP models and repeated runs of\n% optimisation.\n% While, it won't optimize memory space nor model constraints for numerical\n% infeasibilities, tuneParam will provide the optimal set of solver\n% parameters for feasbile models. It requires IBM ILOG cplex (for now).\n%\n% USAGE:\n%\n% optimalParameters = tuneParam(model,contFunctName,1000,1000,0);\n%\n% INPUT:\n% model: A COBRA model struct.\n% contFunctName: Parameters structure containing the name and value.\n% A set of routine parameters will be added by the solver\n% but won't be reported.\n% timelimit: default is 10000 second\n% nrepeat: number of row/column permutation of the original\n% problem, reports robust results.\n% sets the CPX_PARAM_TUNINGREPEAT parameter\n% High values of nrepeat would require consequent\n% memory and swap.\n% printLevel: 0/1/2/3\n%\n% OUTPUT:\n% optimParam: structure of optimal parameter values directly usable as\n% contFunctName argument in solveCobraLP function\n%\n% NOTE:\n% This is just a wrapper function that calls the tuneParam function\n% using a Cobra model structure converted to a LP problem.\n%\n% .. Author: Thomas Pfau Dec 2017\n\noptimParam = tuneParam(buildLPproblemFromModel(model),varargin{:});", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/base/solvers/cplex/tuneParamForModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3813777734849297}} {"text": "% nbins = 8;\n% psize = 10;\n% npatches = 8;\n% optflowwinsig = 3;\n% optflowsig = 2;\n% optreliability = 1e-4;\n% patchsz = psize*npatches;\n\nexpdir = '/groups/branson/home/kabram/bransonlab/data/katie/20170308_133311/20170308_133311_08';\nmoviefilestr = 'movie.avi';\nframes = 2831:2900; \nvidoutfile = sprintf('%s_From%d_To%d_HOF_%s.avi',expname,fly,t0,t1,datestr(now,'yyyymmdd'));\nmakeVideo = true;\n\n\n%%\nparams = getParamsKatie;\nnpatchesx = params.npatchesx;\nnpatchesy = params.npatchesy;\npsize = params.psize;\nnbins = params.nbins; \nscale = params.scale;\n\noptflowwinsig = params.optflowwinsig ;\noptflowsig = params.optflowsig ;\noptreliability = params.optreliability ;\n\nmaxflow = 5;\nfly_thres = 90;\nflow_thres = params.flow_thres;\n\n\n% Antennal grooming for andy\n\n\n[~,expname] = fileparts(expdir);\nmoviefile = fullfile(expdir,moviefilestr);\n\n\n[readframe,nframes] = get_readframe_fcn(moviefile);\nfor i = 1:numel(frames)\n curf = readframe(frames(i));\n nextf = readframe(frames(i)+1);\n \n curpatch = curf;\n curpatch2 = nextf;\n\n im1(:,:,i) = curpatch;\n im2(:,:,i) = curpatch2;\nend\n\n\n[nr,nc,~] = size(im1);\n%\n% figure out the histogram bins\ntmptheta = (0:179)*pi/180;\nres = nan(nbins,numel(tmptheta));\nm = single(ones(10,10));\no = single(zeros(10,10));\nfor i = 1:numel(tmptheta),\n% fprintf('i = %d, theta = %f\\n',i,tmptheta(i));\n o(:) = single(tmptheta(i));\n rescurr = gradientHist(m,o,1,nbins,1);\n res(:,i) = rescurr(1,1,:);\nend\n\nbincenters = nan(1,nbins);\nfor i = 1:nbins,\n bincenters(i) = tmptheta(argmax(res(i,:)));\nend\n\n% this seems to be what the centers correspond to\nbincenters = linspace(0,pi,nbins+1);\nbincenters = bincenters(1:nbins);\n\n% mayank divides by 2\nbincenters2 = bincenters*2;\ndt = mean(diff(bincenters2));\nbinedges2 = [bincenters2(1)-dt/2,(bincenters2(1:end-1)+bincenters2(2:end))/2,bincenters2(end)+dt/2];\n\n\n%% make a video\n\ntr = 191;\nhfig = 100;\nt0 = frames(1);\nt1 = frames(end);\ncolorpos = [1,0,0];\ncolorneg = [0,.3,1];\n\nmaxv2 = 0;\ncolors = hsv(nbins);\nsz = size(im1);\nbwimg = zeros(sz(1),sz(2));\nctr = [ceil( (sz(1)+1)/2),ceil( (sz(2)+1)/2)];\nbwimg(ctr(1),ctr(2))=1;\ndimg = bwdist(bwimg,'euclidean');\n[xx,yy]= meshgrid(1:sz(2),1:sz(1));\naimg = atan2(-(yy-ctr(1)),-(xx-ctr(2)));\n\nfor t = t0:20:t1,\n\n im1curr = gaussSmooth(im1(:,:,t-t0+1),1,'same');\n im2curr = gaussSmooth(im2(:,:,t-t0+1),1,'same');\n uv = estimate_flow_interface(im1curr,im2curr,'hs-brightness',{'max_warping_iters',2});\n Vx = uv(:,:,1); Vy = uv(:,:,2);\n\n M = sqrt(Vx.^2 + Vy.^2);\n O = mod(atan2(Vy,Vx)/2,pi);\n O = min(O,pi-1e-6);\n H = gradientHist(single(M),single(O),psize,nbins,1);\n maxv2 = max(maxv2,max(H(:)));\nend\n\n%%\n\nmaxv2 = 4;\n\nif makeVideo\n vid = VideoWriter(vidoutfile);\n open(vid);\nend\n\n\nfor t = t0:t1\n\n im1curr = gaussSmooth(im1(:,:,t-t0+1),1,'same');\n im2curr = gaussSmooth(im2(:,:,t-t0+1),1,'same');\n\n imsz = size(im1curr);\n pairimg = zeros(2*imsz(1),imsz(2),3);\n ttimg = [];\n tt(:,:,1) = im2curr;\n tt(:,:,2) = im1curr;\n tt(:,:,3) = im2curr;\n pairimg(1:imsz(1),:,:) = tt;\n \n uv = estimate_flow_interface(im1curr,im2curr,'hs-brightness',...\n {'max_warping_iters',2 });\n uvorig = uv;\n pairimg(imsz(1)+(1:imsz(1)),1:imsz(2),:) = flowToColor(uv,maxflow);\n \n pairimg = uint8(pairimg);\n pairimg = imresize(pairimg,scale);\n Vx = uvorig(:,:,1); Vy = uvorig(:,:,2);\n M = sqrt(Vx.^2 + Vy.^2);\n O = mod(atan2(Vy,Vx)/2,pi);\n O = min(O,pi-1e-6);\n Horig = gradientHist(single(M),single(O),psize,nbins,1);\n \n if t == t0,\n figure(hfig);\n clf;\n hax = axes('Position',[0,0,1,1]);\n set(hfig,'Units','pixels','Position',get(0,'ScreenSize'));\n\n him = imshow(pairimg);\n axis image;\n truesize;\n colormap gray;\n hold on;\n axis off;\n htext = text(1,nr-1,sprintf('%.2f s',(t-1)/200),'Color','k','HorizontalAlignment','left','VerticalAlignment','bottom','FontSize',18);\n\n else\n delete(horig(ishandle(horig)));\n set(him,'CData',pairimg);\n set(htext,'String',sprintf('%.2f s',(t-1)/200));\n end\n\n \n horig = plotHofFeatures(Horig,hax,maxv2,colors,binedges2,psize*scale,[0 0]);\n \n drawnow;\n if makeVideo\n fr = getframe(hax);\n writeVideo(vid,fr);\n elseif t0 3 && ~iscell(x2)\n error('Time course information is not matched in Cell format!');\n end\n % Collate arguments.\n for i=1:kern.numBlocks\n arg{i}{1} = x{i};\n if nargin > 2\n arg{i}{2} = x2{i};\n else\n arg{i}{2} = arg{i}{1};\n end\n end\n for i = 1:kern.numBlocks\n if nargin > 2\n gX = multiKernGradientBlockX(kern, arg{i}{:}, i, i);\n else\n gX = multiKernGradientBlockX(kern, arg{i}{1}, i, i);\n end\n for j = 1:i-1\n if ~isempty(kern.block{i}.cross{j})\n gX = multiKernGradientBlockX(kern, arg{i}{1}, arg{j}{2}, i, j);\n end\n end\n end\nend\n\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/multiKernGradX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.38137776672287654}} {"text": "function [week,sow]=time2gpst(t)\n\ngpst0=[1980,1, 6,0,0,0]; %gps time reference\n\nt0=epoch2time(gpst0);\n\nsec=t.time-t0.time;\nweek=fix(sec/7/86400);\nsow=sec-week*7*86400+t.sec;\n\nreturn", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/common/time2gpst.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3813737845796758}} {"text": "% /*M-FILE SCRIPT SwarmBat_demo_SO_std MMM SGALAB */ %\n% /*==================================================================================================\n% Swarm Optimisation and Algorithm Laboratory Toolbox for MATLAB\n%\n% Copyright 2012 The SxLAB Family - Yi Chen - leo.chen.yi@live.co.uk\n% ====================================================================================================\n% File description:\n%\n%Appendix comments:\n%\n%Usage:\n%\n%===================================================================================================\n% See Also:\n%\n%===================================================================================================\n%===================================================================================================\n%Revision -\n%Date Name Description of Change email\n%16-May-2011 Chen Yi Initial version leo.chen.yi@live.co.uk\n%26-Jul-2011 Chen Yi Add eachtimeplot leo.chen.yi@live.co.uk\n%HISTORY$\n%==================================================================================================*/\n%==================================================================================================*/\n\n% SwarmBat_demo_SO_std Begin\n\n\n\n% fresh\nclear ;\nclose ('all');\nwarning off\n% to delete old output_*.txt\n!del SwarmBat_O_*.*\n% set working path\n\n% begin to count time during calculating\nhome ;\ntic % timer start >>\n\n% data preparation\n\n% open data files\n\n%%%input data files\nfid1 = fopen('SwarmBat_I_min_confines.txt' , 'r' );\nfid2 = fopen('SwarmBat_I_max_confines.txt' , 'r' );\n%fid3 = fopen('SwarmBat_I_soundspeed.txt' , 'r' );\nfid4 = fopen('SwarmBat_I_distpara.txt' , 'r' );\nfid5 = fopen('SwarmBat_I_population.txt' , 'r' );\nfid6 = fopen('SwarmBat_I_randomstep.txt' , 'r' );\nfid7 = fopen('SwarmBat_I_max_generation.txt' , 'r' );\nfid8 = fopen('SwarmBat_I_loundness_min.txt' , 'r' );\nfid9 = fopen('SwarmBat_I_PErate_min.txt','r');\n% fid10 = fopen('INPUT_deta_fitness_max.txt','r');\n% fid11 = fopen('INPUT_max_probability_crossover.txt','r');\n% fid12 = fopen('INPUT_probability_crossover_step.txt','r');\n% fid13 = fopen('INPUT_max_no_change_fitness_generation.txt','r');\n% fid22 = fopen('INPUT_tournament_size.txt','r');\nfid10 = fopen('SwarmBat_I_loundness_alpha.txt' , 'r' );\nfid11 = fopen('SwarmBat_I_PErate_gamma.txt','r');\n\nfid20= fopen('SwarmBat_I_fHz.txt','r');\n\n% set total test number\nfid1000= fopen('SwarmBat_I_testnumber.txt','r');\n\n%output data files\nfid120 = fopen('SwarmBat_O_best_fitness.txt','a+');\nfid130 = fopen('SwarmBat_O_maxfitness.txt','a+');\nfid140 = fopen('SwarmBat_O_minfitness.txt','a+');\nfid150 = fopen('SwarmBat_O_meanfitness.txt','a+');\nfid160 = fopen('SwarmBat_O_best_solutions.txt','a+');\n% fid19 = fopen('OUTPUT_best_coding_space.txt','w+');\n% fid20 = fopen('OUTPUT_now_generation.txt','w+');\n% fid21 = fopen('OUTPUT_now_probability_crossover.txt','w+');\n\n% begin to load data from file\n\n% read data from these files\ndisp('/*==================================================================================================*/')\ndisp('/* Swarm Optimisation and Algorithm Laboratory Toolbox 1.0.0.1 */ ')\ndisp('');\ndisp(' 30-Mar-2012 Chen Yi leo.chen.yi@live.co.uk Glasgow ')\ndisp('/*==================================================================================================*/')\ndisp('>>>>')\ndisp(' Begin to Evaluate...Waiting Please ...');\n\nmin_confines = fscanf( fid1 , '%f' ); min_confines = min_confines' ;\n\nmax_confines = fscanf( fid2 , '%f' ); max_confines = max_confines';\n%\n% probability_crossover = fscanf( fid3 , '%f' ); probability_mutation = fscanf(fid4,'%f');\n%\npopulation = fscanf( fid5 , '%f' );\n%\nrandom_step = fscanf( fid6 , '%f' );\n%\nmax_generation = fscanf( fid7 , '%f' );\n%\n%soundspeed = fscanf( fid3 , '%f' );\n%\nbeta = fscanf( fid4 , '%f' ); % random distribution parameters\n%\nloudness_min = fscanf( fid8 , '%f' );\n%\nPErate_min = fscanf( fid9,'%f' );\n%\nalpha = fscanf(fid10,'%f');\n%\ngamma = fscanf(fid11,'%f');\n%\n\n%\n% now_probability_crossover = probability_crossover;\n%\nfHz = fscanf(fid20,'%f'); % Hz = [fmin, fmax] is the frequency range\n% %\n\ntestnumber = fscanf(fid1000,'%f');\n\ndisp(' the total test number is');\ndisp(testnumber);\n\n% Step into SGALAB()\n%\neachtimeplot = 0;\nstatisticalplot = [1,1,1,1,1];\n%statisticalplot(1) - plot MIN,MEAN,MAX or not, 0-NO, 1-YES\n%statisticalplot(2) - plot mAP or not, 0-NO, 1-YES\n%statisticalplot(3) - plot mSTD or not, 0-NO, 1-YES\n%statisticalplot(4) - plot mmAP or not, 0-NO, 1-YES\n%statisticalplot(5) - plot mmSTD or not, 0-NO, 1-YES\n\noptions = { ...\n fHz, % 1, Hz range\n random_step, % 2, bat random walk step\n [], % 3, sound speed, 340m/s in default\n beta, % 4, distribution parameters\n eachtimeplot, % 5, plot each test, 1 - plot each time, 0 - no plots\n statisticalplot, % 6, statistical plots, 1 - yes , 0 - no plots\n 'Roulettewheel', % 7, selection method\n loudness_min, % 8, loudness min\n PErate_min, % 9, Pulse Emission rate min\n alpha, % 10, alpha for loudness\n gamma }; % 11, gamma for pulse emission rate\n\n\nSwarmBat_Procedure_h = timebar('SwarmsLAB::SwarmFish','Total Progress...');\n\nfor idx = 1 : 1 : testnumber\n % Output\n \n timebar( SwarmBat_Procedure_h , idx/testnumber );\n \n disp('Test NO.'); disp(idx);\n disp('');\n \n [ fitness_data ,...\n best_decimal_space ,...\n error_status ]= SwarmBat__entry_SO_std...\n ( options,...\n min_confines ,...\n max_confines ,...\n population ,...\n max_generation,...\n [testnumber,idx] );\n \n disp('');\n \n if ( error_status ~= 0 ) return ; end\n \n %write data to output files\n \n % OUTPUT_bestfitness.txt\n fprintf( fid120 , '%f\\n', fitness_data(1));\n \n % OUTPUT_maxfitness.txt\n fprintf( fid130 , '%f\\n', fitness_data(2));\n \n % OUTPUT_minfitness.txt\n fprintf( fid140, '%f\\n', fitness_data(3));\n \n % OUTPUT_meanfitness.txt\n fprintf( fid150, '%f\\n', fitness_data(4));\n \n % OUTPUT_best_result_space.txt\n fprintf( fid160, '%f\\n', best_decimal_space );\n \n % % OUTPUT_best_coding_space\n % fprintf( fid19 , '%f\\n' , best_coding_space );\n \n % % OUTPUT_now_generation.txt\n % fprintf( fid20, '%f\\n' , now_generation );\n %\n % % OUTPUT_now_probability_crossover.txt\n % fprintf( fid21, '%f\\n' , now_probability_crossover );\n \nend\n\n%close files\nclose( SwarmBat_Procedure_h );\nstatus = fclose( 'all' );\n\ndisp('End SwarmFish Evaluating');\ndisp('');\n\ndisp(' More detail result in text files with \" Swarm_O_*.txt \" ' )\ndisp('----------------------------------------------------------------------------------------')\nresult_files = list_current_dir_files ('SwarmBat_O_*.*')\n\ndisp('----------------------------------------------------------------------------------------')\n\n% timer end\ntoc\n% SwarmBat_demo_SO_std End", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/39116-swarmbat-the-artificial-bat-algorithm-aba/SwarmBat1001/SwarmBat_demo_SO_std.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3813737845796758}} {"text": "function [data,units] = compute_min_wing_area(trx,n)\n\nflies = trx.exp2flies{n};\nnflies = numel(flies);\ndata = cell(1,nflies);\nfor i = 1:nflies,\n fly = flies(i);\n\n data{i} = min(trx(fly).wing_areal_mm,trx(fly).wing_arear_mm);\n \nend\nunits = parseunits('mm^2');\n\n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/perframe/compute_perframe_features/compute_min_wing_area.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5506073655352403, "lm_q1q2_score": 0.38137377759292135}} {"text": "function [g1, g2, g3] = sdlfmaXsdlfmvKernGradientBlock(lfmKern1, lfmKern2, ...\n t1, t2, kyy, kyv, kvy, kvv, i, j, generalConst, generalConstGrad, ...\n covGrad)\n\n% SDLFMAXSDLFMVKERNGRADIENTBLOCK Gradients of the parameters in block i,j\n% FORMAT\n% DESC computes the kernel parameters gradients for the SDLFM kernel \n% function in the block specified at indeces i,j. It assumes the \n% computation for functions that system 1 describes an acceleration and \n% system 2 describes a velocity.\n% ARG lfmKern1 : structure containing parameters for the system 1\n% ARG lfmKern2 : structure containing parameters for the system 2\n% ARG t1 : times at which the system 1 is evaluated\n% ARG t2 : times at which the system 2 is evaluated\n% ARG kyy : covariance for the initial conditions between position 1 and\n% position 2 at block i,j\n% ARG kyv : covariance for the initial conditions between position 1 and\n% velocity 2 at block i,j\n% ARG kvy : covariance for the initial conditions between velocity 1 and\n% position 2 at block i,j\n% ARG kvv : covariance for the initial conditions between velocity 1 and\n% velocity 2 at block i,j\n% ARG i : interval to be evaluated for system 1\n% ARG j : interval to be evaluated for system 2\n% ARG generalConstant : constants evaluated with sdlfmKernComputeConstant.m\n% ARG generalConstGrad : derivatives of the constants computed with\n% sdlfmKernGradientConstant.m\n% ARG covGrad : partial derivatives of the objective function wrt portion\n% of the kernel matrix in block i,j\n% RETURN g1 : gradients of parameters for the system 1\n% RETURN g2 : gradients of parameters for the system 2\n% RETURN g3 : gradients of switching points\n%\n% COPYRIGHT : Mauricio A. Alvarez, 2010.\n\n% KERN\n\nif nargin<11\n j = i;\n generalConst = [];\nend\n\ng3 = [];\n\n% Compute derivatives of the mean terms with respect to the parameters\n\n[g1Mean, g2Mean, gsp1Mean, gsp2Mean] = sdlfmKernGradientMean(lfmKern1(1), ...\n lfmKern2(1), t1, t2, kyy, kyv, kvy, kvv, covGrad, {'sdlfma','sdlfmv'}, ...\n {'sdlfmj', 'sdlfma'});\n\nif i==j\n [g1, g2, g3t] = sdlfmaXsdlfmKernGradientBlockIEJ(lfmKern1, lfmKern2, t1, ...\n t2, covGrad, g1Mean, g2Mean, gsp1Mean, gsp2Mean, {'lfma', 'lfmv'}, ...\n {'lfmj', 'lfmv'}, {'lfma', 'lfma'});\n g3(i) = g3t;\nelse \n if i>j\n [g1, g2, g3] = sdlfmXsdlfmvKernGradientBlockIGJ(lfmKern1, lfmKern2, ...\n t1, t2, i, j, generalConst, generalConstGrad, covGrad, g1Mean, ...\n g2Mean, gsp1Mean, gsp2Mean, 'sdlfma', 'sdlfmj', 'lfmvXlfm', ...\n 'lfmvXlfmv', {'lfmvXlfmv', 'lfmaXlfm'}, {'lfmaXlfmv', 'lfmaXlfmv'});\n else \n [g1, g2, g3] = sdlfmaXsdlfmKernGradientBlockILJ(lfmKern1, lfmKern2, ...\n t1, t2, i, j, generalConst, generalConstGrad, covGrad, g1Mean, ...\n g2Mean, gsp1Mean, gsp2Mean, 'sdlfmv', 'sdlfma', 'lfmaXlfm', ...\n 'lfmaXlfmv',{'lfmjXlfm', 'lfmaXlfmv'}, {'lfmjXlfmv', 'lfmaXlfma'});\n end\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/sdlfmaXsdlfmvKernGradientBlock.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7745833841649233, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.38124075181243844}} {"text": "function spm_dem_search_movie(DEM)\n% creates a movie of visual search in extrinsic and intrinsic coordinates\n% FORMAT spm_dem_search_movie(DEM)\n%\n% DEM - {DEM} structures from visual search simulations\n%\n% hidden causes and states\n%==========================================================================\n% x - hidden states:\n% o(1) - oculomotor angle\n% o(2) - oculomotor angle\n% x(1) - relative amplitude of visual hypothesis 1\n% x(2) - relative amplitude of visual hypothesis 2\n% x(3) - ...\n%\n% v - hidden causes\n%\n% g - sensations:\n% g(1) - oculomotor angle (proprioception - x)\n% g(2) - oculomotor angle (proprioception - y)\n% g(3) - retinal input - channel 1\n% g(4) - retinal input - channel 2\n% g(5) - ...\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_dem_search_movie.m 6901 2016-10-08 13:21:41Z karl $\n\n\n% Preliminaries\n%--------------------------------------------------------------------------\nclf, global STIM\nif ~iscell(DEM), DEM = {DEM}; end\nif ~isfield(STIM,'W'), STIM.W = 1/6; end\nif ~isfield(STIM,'P'), STIM.P = [0;0]; end\nif ~isfield(STIM,'U'), STIM.U = STIM.V; end\nif ~isfield(STIM,'S'), STIM.S = STIM.H; end\n\nN = length(DEM);\nS = spm_read_vols(STIM.U);\n\n% Stimulus\n%==========================================================================\nDx = STIM.P(1)*16 + STIM.U.dim(1)/2;\nDy = STIM.P(2)*16 + STIM.U.dim(2)/2;\n\ndim = size(STIM.R);\nvox = STIM.U.dim(1);\ndx = vox/dim(1)*STIM.W;\ndi = dx*([1 dim(1)] - dim(1)/2) + Dx;\ndj = dx*([1 dim(2)] - dim(2)/2) + Dy;\ndi = [di;di]; di = di(:);\ndj = [dj;dj]';dj = dj(:);\nax = [(Dy - vox) (Dy + vox) (Dx - vox) (Dx + vox)]/2;\n\n\na = [];\nfor i = 1:N\n \n % i-th saccade - position\n %----------------------------------------------------------------------\n pU = DEM{i}.pU.x{1}(1:2,:)*16;\n qU = DEM{i}.qU.x{1}(1:2,:)*16;\n T = length(pU);\n a = [a DEM{i}.qU.a{2}];\n \n % eye movements in extrinsic coordinates\n %======================================================================\n subplot(2,2,1)\n for t = 1:T\n image((S + 1)*32), axis image, hold on\n plot(qU(2,t) + Dy,qU(1,t) + Dx,'.g','Markersize',8)\n plot(pU(2,t) + Dy,pU(1,t) + Dx,'.r','Markersize',16)\n plot(pU(2,t) + dj,pU(1,t) + di,'+' ,'Markersize',16)\n \n % show location of image ccentre\n %------------------------------------------------------------------\n plot(Dy,Dx,'+r','Markersize',32); % axis(ax);\n\n drawnow, hold off\n \n % save\n %------------------------------------------------------------------\n Me(t + T*(i - 1)) = getframe(gca);\n \n end\n \n % sensory input\n %======================================================================\n subplot(2,2,2)\n for t = 1:T\n \n o = DEM{i}.pU.x{1}(:,t);\n s = ADEM_sample_image(STIM.U,o,STIM.R);\n image(s*64), axis image, drawnow\n \n % save\n %----------------------------------------------------------------------\n Mi(t + T*(i - 1)) = getframe(gca);\n \n end\n \n % i-th saccade - percept\n %----------------------------------------------------------------------\n qU = DEM{i}.qU.x{1}(3:end,:);\n \n % percept\n %======================================================================\n subplot(2,2,4)\n for t = 1:T\n \n % hypotheses\n %------------------------------------------------------------------\n h = spm_softmax(qU(:,t),2);\n H = 1 + h'*log(h)/log(length(h));\n \n \n % retinotopic predictions\n %------------------------------------------------------------------\n s = 0;\n for j = 1:length(h)\n s = s + h(j)*spm_read_vols(STIM.S{j});\n end\n image(s*H*64), axis image, drawnow\n \n % save\n %------------------------------------------------------------------\n Mq(t + T*(i - 1)) = getframe(gca);\n \n end\n \nend\n\n% set ButtonDownFcn\n%--------------------------------------------------------------------------\nsubplot(2,2,3)\nplot(a')\ntitle('Action (EOG)','FontSize',16)\nxlabel('time')\naxis square\n\nsubplot(2,2,1)\nset(gca,'Userdata',{Me,16})\nset(gca,'ButtonDownFcn','spm_DEM_ButtonDownFcn')\ntitle('saccades (click axis for movie)','FontSize',16)\n\nsubplot(2,2,2)\nset(gca,'Userdata',{Mi,16})\nset(gca,'ButtonDownFcn','spm_DEM_ButtonDownFcn')\ntitle('samples (click axis for movie)','FontSize',16)\n\nsubplot(2,2,4)\nset(gca,'Userdata',{Mq,16})\nset(gca,'ButtonDownFcn','spm_DEM_ButtonDownFcn')\ntitle('percept (click axis for movie)','FontSize',16)\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/DEM/spm_dem_search_movie.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7745833841649233, "lm_q2_score": 0.4921881357207955, "lm_q1q2_score": 0.3812407518124384}} {"text": "function c8_uniform_01_test ( )\n\n%*****************************************************************************80\n%\n%% C8_UNIFORM_01_TEST tests C8_UNIFORM_01.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 10 February 2015\n%\n% Author:\n%\n% John Burkardt\n%\n seed = 123456678;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'C8_UNIFORM_01_TEST\\n' );\n fprintf ( 1, ' C8_UNIFORM_01 returns a uniformly random \"unit\" C8.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' C1=C8_UNIFORM_01\\n' );\n fprintf ( 1, ' ---------------------\\n' );\n fprintf ( 1, '\\n' );\n\n for test = 1 : 10\n \n [ c1, seed ] = c8_uniform_01 ( seed );\n\n fprintf ( 1, ' (%12f %12f)\\n', real ( c1 ), imag ( c1 ));\n \n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/c8lib/c8_uniform_01_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5698526660244838, "lm_q2_score": 0.6688802735722128, "lm_q1q2_score": 0.3811632071463115}} {"text": "function [grid3d, ge, osc] = read_grid(filenamebase)\n\nchkarg(istypesizeof(filenamebase, 'char', [1 0]), '\"filenamebase\" should be string.');\n\ninputfile = ['./', filenamebase, '.h5'];\n\nlambda = h5read(inputfile, '/lambda');\nL0 = h5read(inputfile, '/L0');\nNpml = h5read(inputfile, '/Npml').';\nge = h5read(inputfile, '/ge');\nge = GT.elems(ge+1);\nbc = BC.elems(h5read(inputfile, '/bc').' + 1);\nbc = bc(:, Sign.n).';\n\nlprim = cell(1, Axis.count);\nfor w = Axis.elems\n\tlprim{w} = h5read(inputfile, ['/', char(w), '_prim']).';\nend\n\nunit = PhysUnit(L0);\nosc = Oscillation(lambda, unit);\ngrid3d = Grid3d(unit, lprim, Npml, bc);\n", "meta": {"author": "wsshin", "repo": "maxwellfdfd", "sha": "f7d583813781694c8a6f0533a91f56c2a78a9ee5", "save_path": "github-repos/MATLAB/wsshin-maxwellfdfd", "path": "github-repos/MATLAB/wsshin-maxwellfdfd/maxwellfdfd-f7d583813781694c8a6f0533a91f56c2a78a9ee5/io/read_grid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5698526660244837, "lm_q2_score": 0.6688802603710085, "lm_q1q2_score": 0.38116319962357}} {"text": "function [y,z]=amen_sum(X, c, tol, varargin)\n%Approximate the linear combination of TT tensors via the AMEn iteration\n% [y,z]=amen_sum(X, v, tol, varargin)\n% Attempts to approximate the y(j) = sum_i X{i}*c(i,j)\n% with accuracy TOL using the AMEn+ALS iteration.\n%\n% Options are provided in form\n% 'PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2 and so\n% on. The parameters are set to default (in brackets in the following)\n% The list of option names and default values are:\n% o y0 - initial approximation to y [rand rank-2]\n% o nswp - maximal number of sweeps [20]\n% o verb - verbosity level, 0-silent, 1-sweep info, 2-block info [1]\n% o kickrank - compression rank of the error, \n% i.e. enrichment size [3]\n% o init_qr - perform QR of the input (save some time in ts, etc) [true]\n% o renorm - Orthog. and truncation methods: direct (svd,qr) or gram\n% (apply svd to the gram matrix, faster for m>>n) [direct]\n% o fkick - Perform solution enrichment during forward sweeps [false]\n% (rather questionable yet; false makes error higher, but \"better\n% structured\": it does not explode in e.g. subsequent matvecs)\n% o z0 - initial approximation to the error Ax-y [rand rank-kickrank]\n% o can - whether the input is in CP format [false]\n% o multrank - shall we try to grow ranks multiplicatively by adding\n% the previous iterand [false]\n%\n%\n%********\n% For description of adaptive ALS please see\n% Sergey V. Dolgov, Dmitry V. Savostyanov,\n% Alternating minimal energy methods for linear systems in higher dimensions. \n% Part I: SPD systems, http://arxiv.org/abs/1301.6068,\n% Part II: Faster algorithm and application to nonsymmetric systems, http://arxiv.org/abs/1304.1222\n%\n% Use {sergey.v.dolgov, dmitry.savostyanov}@gmail.com for feedback\n%********\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\n% Special case: amen_sum called from another amen package\nif (~isempty(varargin))\n v1 = varargin{1};\n if (isa(v1, 'cell'))\n varargin=v1;\n end;\nend;\n\n% Default valuse\nnswp = 20;\nkickrank = 4;\nkickrank2 = 0;\nverb = 1;\ny = [];\nz = [];\ninit_qr = true;\nrenorm = 'direct';\n% renorm = 'gram';\nfkick = false;\nrmax = Inf;\nmultrank = false;\n\ncan = false; % Whether the input is the canonical format\n\n% Read parameters from input sequence\nfor i=1:2:length(varargin)-1\n switch lower(varargin{i})\n case 'nswp'\n nswp=varargin{i+1};\n case 'y0'\n y=varargin{i+1};\n case 'z0'\n z=varargin{i+1};\n case 'verb'\n verb=varargin{i+1};\n case 'kickrank'\n kickrank=varargin{i+1};\n case 'kickrank2'\n kickrank2=varargin{i+1}; \n case 'init_qr'\n init_qr = varargin{i+1};\n case 'renorm'\n renorm = varargin{i+1};\n case 'fkick'\n fkick = varargin{i+1};\n case 'rmax'\n rmax = varargin{i+1};\n case 'can'\n can = varargin{i+1};\n case 'multrank'\n multrank = varargin{i+1}; \n \n otherwise\n warning('Unrecognized option: %s\\n',varargin{i});\n end\nend\n\n% Convert input to canonical or TT cell array\nN = size(c,1);\nM = size(c,2);\nXin = X;\n\nif (can)\n N = 1;\n % X itself is already given in the required format\n d = numel(X);\n R = size(X{1}, 2); \n nrms = ones(d,1);\n n = zeros(d,1);\n for i=1:d\n n(i) = size(X{i}, 1);\n end;\n vectype = 1;\nelse\n R = 1;\n for j=1:N\n if (isa(Xin{j}, 'tt_tensor'))\n if (j==1)\n d = Xin{j}.d;\n n = Xin{j}.n;\n X = cell(d,N);\n \n % A storage for norms.\n % Z may be kept normalized, but for y we will have y_real = y*prod(nrms).\n % The same for all x. But note that we keep only the _scale_ for all x vecs.\n nrms = ones(d,1);\n end;\n X(:,j) = core2cell(Xin{j});\n vectype = 1; % tt_tensor\n else\n if (j==1)\n d = numel(Xin{j});\n n = zeros(d,1);\n for i=1:d\n n(i) = size(Xin{j}{i}, 2);\n end;\n X = cell(d,N);\n end;\n X(:,j) = Xin{j};\n vectype = 0; % cell\n end;\n end;\nend;\n\n% Initial guess\nif (isempty(y))\n init_qr = false;\n [y,ry] = gen_rand(n,d,2);\nelse\n if (isa(y, 'tt_tensor'))\n y = core2cell(y);\n end;\n ry = ones(d+1,1);\n for i=1:d\n ry(i+1) = size(y{i}, 3);\n end;\nend;\n\n% Enrichment vector\nif (kickrank+kickrank2>0)\n if (isempty(z))\n [z,rz] = gen_rand(n,d,kickrank+kickrank2);\n init_qr_z = false;\n else\n init_qr_z = true;\n if (isa(z, 'tt_tensor'))\n z = core2cell(z);\n end;\n rz = ones(d+1,1);\n for i=1:d\n rz(i+1) = size(z{i}, 3);\n end;\n end;\n \n phizx = cell(d+1,N);\n for j=1:N\n phizx{1,j}=ones(1,R); phizx{d+1,j}=ones(R,1);\n end;\n phizy = cell(d+1,1); phizy{1}=1; phizy{d+1}=1;\nend;\n\nphiyx = cell(d+1,N);\nfor j=1:N\n phiyx{1,j}=ones(1,R); phiyx{d+1,j}=ones(R,1);\nend;\n\n% Initial ort\nfor i=1:d-1\n if (init_qr)\n cr = reshape(y{i}, ry(i)*n(i), ry(i+1));\n if (strcmp(renorm, 'gram'))&&(ry(i)*n(i)>5*ry(i+1))\n [cr,~,R]=svdgram(cr);\n else\n [cr,R]=qr(cr, 0);\n end; \n nrmr = norm(R, 'fro');\n if (nrmr>0)\n R = R/nrmr;\n end;\n cr2 = reshape(y{i+1}, ry(i+1), n(i+1)*ry(i+2));\n cr2 = R*cr2;\n ry(i+1) = size(cr, 2);\n y{i} = reshape(cr, ry(i), n(i), ry(i+1));\n y{i+1} = reshape(cr2, ry(i+1), n(i+1), ry(i+2));\n end;\n % We will extract the norms of Y'X\n [phiyx(i+1,:),nrms(i)] = compute_next_Phi(phiyx(i,:), y{i}, X(i,:), 'lr', can);\n \n if (kickrank+kickrank2>0)\n if (init_qr_z)\n cr = reshape(z{i}, rz(i)*n(i), rz(i+1));\n if (strcmp(renorm, 'gram'))&&(rz(i)*n(i)>5*rz(i+1))\n [cr,~,R]=svdgram(cr);\n else\n [cr,R]=qr(cr, 0);\n end;\n nrmr = norm(R, 'fro');\n if (nrmr>0)\n R = R/nrmr;\n end;\n cr2 = reshape(z{i+1}, rz(i+1), n(i+1)*rz(i+2));\n cr2 = R*cr2;\n rz(i+1) = size(cr, 2);\n z{i} = reshape(cr, rz(i), n(i), rz(i+1));\n z{i+1} = reshape(cr2, rz(i+1), n(i+1), rz(i+2));\n end;\n \n % But we have to renorm Z'X/|Y'X| to keep Z in the same\n % scale. Hope it will not make |Z'X| too small\n phizx(i+1,:) = compute_next_Phi(phizx(i,:), z{i}, X(i,:), 'lr', can, nrms(i));\n % Z'Y is actually an orthogonal matrix and does not require renorm\n phizy(i+1) = compute_next_Phi(phizy(i), z{i}, y(i), 'lr');\n end;\nend;\n\ni = d;\ndir = -1;\nswp = 1;\nmax_dx = 0;\ny{d} = reshape(y{d}, ry(d)*n(d), ry(d+1));\ny{d} = y{d}(:,1:min(ry(d+1), M));\ny{d} = [y{d}, zeros(ry(d)*n(d), M-ry(d+1))];\ny{d} = reshape(y{d}, ry(d), n(d), 1, M);\nry(d+1) = 1;\n\nwhile (swp<=nswp)\n % Project the sum\n cry = proj_sum(phiyx(i,:), X(i,:), phiyx(i+1,:), c);\n % It will survive in the terminal block. All we need.\n nrms(i) = norm(cry, 'fro');\n % The main goal is to keep y{i} of norm 1\n if (nrms(i)>0)\n cry = cry/nrms(i);\n else\n nrms(i)=1;\n end;\n \n % Check stopping criteria\n y{i} = reshape(y{i}, ry(i)*n(i)*ry(i+1), M);\n dx = norm(cry-y{i}, 'fro')/norm(cry, 'fro');\n max_dx = max(max_dx, dx);\n \n % Truncation and enrichment\n if ((dir>0)&&(irmax)\n u = u(:,1:rmax);\n v = v(:,1:rmax);\n end;\n r = size(u,2);\n else\n [u,s,v]=svd(cry, 'econ');\n s = diag(s);\n r = my_chop2(s, tol*norm(s)/sqrt(d));\n r = min(r,rmax);\n u = u(:,1:r);\n v = conj(v(:,1:r))*diag(s(1:r));\n end; \n if (M==1)&&(multrank)\n % Remove auxiliary previous solution\n v = reshape(v, ry(i+1), 2, r);\n v = v(:,1,:);\n v = reshape(v, ry(i+1), r);\n end;\n \n % Prepare enrichment, if needed\n if (kickrank+kickrank2>0)\n cry = u*v.';\n cry = reshape(cry, ry(i)*n(i)*ry(i+1), M);\n % For updating z\n crys = cry.';\n crys = reshape(crys, M*ry(i)*n(i), ry(i+1));\n crys = crys*phizy{i+1};\n crys = reshape(crys, M, ry(i)*n(i)*rz(i+1));\n crys = crys.';\n cryz = reshape(crys, ry(i), n(i)*rz(i+1)*M);\n cryz = phizy{i}*cryz;\n cryz = reshape(cryz, rz(i)*n(i)*rz(i+1), M);\n \n crz = proj_sum(phizx(i,:), X(i,:), phizx(i+1,:), c);\n crz = crz/nrms(i) - cryz;\n nrmz = norm(crz, 'fro');\n crz = reshape(crz, rz(i)*n(i), rz(i+1)*M);\n [crz,~,~]=svd(crz, 'econ');\n crz = crz(:, 1:min(size(crz,2), kickrank));\n if (kickrank2>0)\n crz = [crz, randn(rz(i)*n(i), kickrank2)];\n [crz,~]=qr(crz,0);\n end;\n % For adding into solution\n if (fkick)\n crs = proj_sum(phiyx(i,:), X(i,:), phizx(i+1,:), c);\n crs = crs/nrms(i) - crys;\n crs = reshape(crs, ry(i)*n(i), rz(i+1)*M);\n [crs,~,~]=svd(crs, 'econ');\n crs = crs(:, 1:min(size(crs,2), kickrank));\n u = [u,crs];\n if (strcmp(renorm, 'gram'))&&(ry(i)*n(i)>5*(ry(i+1)+rz(i+1)))\n [u,~,R]=svdgram(u);\n else\n [u,R]=qr(u, 0);\n end;\n v = [v, zeros(ry(i+1)*M, size(crs,2))];\n v = v*R.';\n r = size(u, 2);\n end;\n end;\n y{i} = reshape(u, ry(i), n(i), r);\n \n cr2 = reshape(y{i+1}, ry(i+1), n(i+1)*ry(i+2));\n v = reshape(v, ry(i+1), M*r);\n cr2 = v.'*cr2;\n cr2 = reshape(cr2, M, r*n(i+1)*ry(i+2));\n y{i+1} = reshape(cr2.', r, n(i+1), ry(i+2), M);\n \n ry(i+1) = r;\n \n [phiyx(i+1,:), nrms(i)] = compute_next_Phi(phiyx(i,:), y{i}, X(i,:), 'lr', can);\n \n if (kickrank+kickrank2>0)\n rz(i+1) = size(crz, 2);\n z{i} = reshape(crz, rz(i), n(i), rz(i+1));\n % z{i+1} will be recomputed from scratch in the next step\n phizx(i+1,:) = compute_next_Phi(phizx(i,:), z{i}, X(i,:), 'lr', can, nrms(i));\n phizy(i+1) = compute_next_Phi(phizy(i), z{i}, y(i), 'lr');\n end;\n elseif ((dir<0)&&(i>1))\n cry = reshape(cry.', M*ry(i), n(i)*ry(i+1));\n if (M==1)&&(multrank)\n % Try to accelerate the rank growth\n cry = [cry; reshape(y{i}, ry(i), n(i)*ry(i+1))];\n end;\n [u,s,v]=svd(cry, 'econ');\n s = diag(s);\n r = my_chop2(s, tol*norm(s)/sqrt(d));\n r = min(r,rmax);\n u = u(:,1:r)*diag(s(1:r));\n v = conj(v(:,1:r));\n \n if (M==1)&&(multrank)\n % Remove auxiliary previous solution\n u = reshape(u, ry(i), 2, r);\n u = u(:,1,:);\n u = reshape(u, ry(i), r);\n end; \n \n % Prepare enrichment, if needed\n if (kickrank+kickrank2>0)\n cry = u*v.';\n cry = reshape(cry, M, ry(i)*n(i)*ry(i+1));\n % For updating z\n crys = cry.';\n crys = reshape(crys, ry(i), n(i)*ry(i+1)*M);\n crys = phizy{i}*crys;\n crys = reshape(crys, rz(i)*n(i)*ry(i+1), M);\n cryz = reshape(crys.', M*rz(i)*n(i), ry(i+1));\n cryz = cryz*phizy{i+1};\n cryz = reshape(cryz, M, rz(i)*n(i)*rz(i+1));\n cryz = cryz.';\n crz = proj_sum(phizx(i,:), X(i,:), phizx(i+1,:), c);\n crz = crz/nrms(i) - cryz;\n nrmz = norm(crz, 'fro');\n crz = reshape(crz.', M*rz(i), n(i)*rz(i+1));\n [~,~,crz]=svd(crz, 'econ');\n crz = crz(:, 1:min(size(crz,2), kickrank));\n if (kickrank2>0)\n crz = [crz, randn(n(i)*rz(i+1), kickrank2)];\n [crz,~]=qr(crz,0);\n end; \n crz = crz';\n % To add into solution\n crs = proj_sum(phizx(i,:), X(i,:), phiyx(i+1,:), c);\n crs = crs/nrms(i) - crys;\n crs = reshape(crs.', M*rz(i), n(i)*ry(i+1));\n [~,~,crs]=svd(crs, 'econ');\n crs = crs(:, 1:min(size(crs,2), kickrank));\n v = [v,conj(crs)];\n if (strcmp(renorm, 'gram'))&&(ry(i+1)*n(i)>5*(ry(i)+rz(i)))\n [v,~,R]=svdgram(v);\n else\n [v,R]=qr(v, 0);\n end;\n u = [u, zeros(M*ry(i), size(crs,2))];\n u = u*R.';\n r = size(v, 2);\n end;\n y{i} = reshape(v.', r, n(i), ry(i+1));\n \n cr2 = reshape(y{i-1}, ry(i-1)*n(i-1), ry(i));\n u = reshape(u, M, ry(i)*r);\n u = u.';\n u = reshape(u, ry(i), r*M);\n cr2 = cr2*u;\n cr2 = reshape(cr2, ry(i-1), n(i-1), r, M);\n y{i-1} = cr2;\n \n ry(i) = r;\n \n [phiyx(i,:), nrms(i)] = compute_next_Phi(phiyx(i+1,:), y{i}, X(i,:), 'rl', can);\n \n if (kickrank+kickrank2>0)\n rz(i) = size(crz, 1);\n z{i} = reshape(crz, rz(i), n(i), rz(i+1));\n % z{i+1} will be recomputed from scratch in the next step\n phizx(i,:) = compute_next_Phi(phizx(i+1,:), z{i}, X(i,:), 'rl', can, nrms(i));\n phizy(i) = compute_next_Phi(phizy(i+1), z{i}, y(i), 'rl');\n end;\n else\n y{i} = reshape(y{i}, ry(i), n(i), ry(i+1), M);\n end;\n \n if (verb>1)\n fprintf('amen-sum: swp=[%d,%d], dx=%3.3e, r=%d, |y|=%3.3e, |z|=%3.3e\\n', swp, i, dx, r, norm(cry, 'fro'), nrmz);\n end;\n \n % Stopping or reversing\n if ((dir>0)&&(i==d))||((dir<0)&&(i==1))\n if (verb>0)\n fprintf('amen-sum: swp=%d{%d}, max_dx=%3.3e, max_r=%d\\n', swp, (1-dir)/2, max_dx, max(ry));\n end;\n if ((max_dx0)\n break;\n end;\n max_dx = 0;\n if (dir>0); swp = swp+1; end;\n dir = -dir;\n else\n i = i+dir;\n end;\nend;\n\ny{d} = reshape(cry, ry(d), n(d), M);\n\n% Distribute norms equally...\nnrms = exp(sum(log(nrms))/d);\n% ... and plug them into y\nfor i=1:d\n y{i} = y{i}*nrms;\nend;\n\nif (vectype==1)\n y = cell2core(tt_tensor, y);\n z = cell2core(tt_tensor, z);\nend;\n\nend\n\n\nfunction [Phi,nrm] = compute_next_Phi(Phi_prev, x, Y, direction, can, extnrm)\n% Performs the recurrent Phi (or Psi) matrix computation\n% Phi = Phi_prev * (x'y).\n% If direction is 'lr', computes Psi\n% if direction is 'rl', computes Phi\n% A can be empty, then only x'y is computed.\n\n% Phi1: rx1, ry1\n% Phi2: ry2, rx2\n\nif (nargin<5)||(isempty(can))\n can = false;\nend;\nif (nargin<6)\n extnrm = [];\nend;\n\nrx1 = size(x,1); n = size(x,2); rx2 = size(x,3);\nN = numel(Y);\nif (can) % We are working with the canonical format\n Phi = cell(1,1);\n R = size(Y{1},2);\n % Phi1: rx1, R\n % Phi2: R, rx2\n \n if (strcmp(direction, 'lr'))\n %lr: Phi1\n x = reshape(x, rx1, n*rx2);\n Phi{1} = x'*Phi_prev{1};\n Phi{1} = reshape(Phi{1}, n*rx2, R);\n Y = repmat(Y{1}, rx2, 1); % equalize the sizes for Hadamard product\n Phi{1} = Phi{1}.*Y;\n Phi{1} = reshape(Phi{1}, n, rx2*R);\n Phi{1} = sum(Phi{1}, 1);\n Phi{1} = reshape(Phi{1}, rx2, R);\n if (nargout>1)\n % Extract the scale to prevent overload\n nrm = norm(Phi{1}, 'fro');\n if (nrm>0)\n Phi{1} = Phi{1}/nrm;\n else\n nrm=1;\n end;\n elseif (~isempty(extnrm))\n % Override the normalization by the external one\n Phi{1} = Phi{1}/extnrm;\n end;\n else\n %rl: Phi2\n x = reshape(x, rx1*n, rx2);\n Phi{1} = Phi_prev{1}*x';\n Phi{1} = reshape(Phi{1}, R, rx1*n);\n Y = Y{1}.';\n Y = repmat(Y,rx1,1); % equalize the sizes for Hadamard product\n Y = reshape(Y, R, rx1*n);\n Phi{1} = Phi{1}.*Y;\n Phi{1} = reshape(Phi{1}, R*rx1, n);\n Phi{1} = sum(Phi{1}, 2);\n Phi{1} = reshape(Phi{1}, R, rx1);\n if (nargout>1)\n % Extract the scale to prevent overload\n nrm = norm(Phi{1}, 'fro');\n if (nrm>0)\n Phi{1} = Phi{1}/nrm;\n else\n nrm=1;\n end;\n elseif (~isempty(extnrm))\n % Override the normalization by the external one\n Phi{1} = Phi{1}/extnrm;\n end;\n end;\nelse % a set of TT-tensors\n Phi = cell(1,N);\n if (strcmp(direction, 'lr'))\n %lr: Phi1\n x = reshape(x, rx1, n*rx2);\n if (nargout>1)\n nrm = 0;\n end;\n for i=1:N\n y = Y{i};\n ry1 = size(y,1); ry2 = size(y,3);\n Phi{i} = x'*Phi_prev{i};\n Phi{i} = reshape(Phi{i}, n, rx2*ry1);\n Phi{i} = Phi{i}.';\n Phi{i} = reshape(Phi{i}, rx2, ry1*n);\n y = reshape(y, ry1*n, ry2);\n Phi{i} = Phi{i}*y;\n Phi{i} = reshape(Phi{i}, rx2, ry2);\n if (nargout>1)\n nrm = max(nrm, norm(Phi{i}, 'fro'));\n end;\n end;\n if (nargout>1)\n % Extract the scale to prevent overload\n if (nrm>0)\n for i=1:N\n Phi{i} = Phi{i}/nrm;\n end;\n else\n nrm=1;\n end;\n elseif (~isempty(extnrm))\n % Override the normalization\n for i=1:N\n Phi{i} = Phi{i}/extnrm;\n end;\n end;\n else\n %rl: Phi2\n x = reshape(x, rx1, n*rx2);\n if (nargout>1)\n nrm = 0;\n end;\n for i=1:N\n y = Y{i};\n ry1 = size(y,1); ry2 = size(y,3);\n y = reshape(y, ry1*n, ry2);\n Phi{i} = y*Phi_prev{i};\n Phi{i} = reshape(Phi{i}, ry1, n*rx2);\n Phi{i} = Phi{i}*x';\n Phi{i} = reshape(Phi{i}, ry1, rx1);\n if (nargout>1)\n nrm = max(nrm, norm(Phi{i}, 'fro'));\n end;\n end;\n if (nargout>1)\n % Extract the scale to prevent overload\n if (nrm>0)\n for i=1:N\n Phi{i} = Phi{i}/nrm;\n end;\n else\n nrm=1;\n end;\n elseif (~isempty(extnrm))\n % Override the normalization\n for i=1:N\n Phi{i} = Phi{i}/extnrm;\n end;\n end;\n end;\nend;\n\nend\n\n\nfunction [x,r]=gen_rand(n,d,r)\n% Generate an orthogonal random vector\nif (numel(r)==1)\n r = [1; r*ones(d-1,1); 1];\nend;\nx = cell(d,1);\nfor i=1:d\n cr = randn(r(i)*n(i), r(i+1));\n [cr,~]=qr(cr,0);\n r(i+1) = size(cr,2);\n x{i} = reshape(cr, r(i), n(i), r(i+1));\nend;\nend\n\nfunction [y]=proj_sum(Phi1, X, Phi2, c)\nN = size(c,1);\nM = size(c,2);\n\nry1 = size(Phi1{1},1);\nry2 = size(Phi2{1},2);\n\nif (numel(X)==1) % Canonical format\n X = X{1}; \n n = size(X,1);\n Phi1 = repmat(Phi1{1}, n, 1); % size ry1*n, R\n X = reshape(X, 1, n*N);\n X = repmat(X, ry1, 1);\n X = reshape(X, ry1*n, N);\n y = X.*Phi1;\n c = repmat(c, ry2, 1); % size N*ry2, M\n c = reshape(c, N, ry2*M);\n Phi2 = repmat(Phi2{1}, 1, M); % size N, ry2*M\n Phi2 = Phi2.*c;\n y = y*Phi2;\n y = reshape(y, ry1*n*ry2, M);\n if (issparse(y))\n y = full(y);\n end;\nelse\n n = size(X{1}, 2);\n y = zeros(ry1*n*ry2, M);\n for j=1:N\n rx1 = size(X{j},1); rx2 = size(X{j},3);\n cry = reshape(X{j}, rx1, n*rx2);\n cry = Phi1{j}*cry;\n cry = reshape(cry, ry1*n, rx2);\n cry = cry*Phi2{j};\n cry = reshape(cry, ry1*n*ry2, 1);\n cry = cry*c(j,:);\n y = y+cry;\n end;\nend;\nend", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/core/amen_sum.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802471698041, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3811631823282696}} {"text": "function varargout = vl_nnmax(M, varargin)\n% VL_NNMAX Element-wise maximum\n% Y = VL_NNMAX(M, X1, ..., XM) applies the elementwise max operator to\n% the given M input tensors, each of which should have the same input\n% dimension.\n%\n% [DZDX1,..,DZDXM] = VL_NNMAX(M,X1, ...,XM, DZDY) computes the\n% derivatives of the block projected onto DZDY.\n%\n% Copyright (C) 2017 Samuel Albanie\n% Licensed under The MIT License [see LICENSE.md for details]\n\n assert(M >= 2, 'at least two input tensors expected') ;\n ins = varargin(1:M) ; varargin(1:M) = [] ;\n [~, dzdy] = vl_argparsepos(struct(), varargin) ;\n\n shared = cat(5, ins{:}) ;\n if isempty(dzdy)\n varargout{1} = max(shared, [], 5) ;\n else\n % recompute forward max and insert derivatives at max locations\n [~,I] = max(shared, [], 5) ;\n dzdx = zeros(size(shared), 'like', shared) ;\n offsets = (I - 1) .* numel(dzdy{1}) ;\n idx = offsets(:) + (1:numel(dzdy{1}))' ;\n dzdx(idx) = dzdy{1} ;\n varargout = arrayfun(@(x) {dzdx(:,:,:,:,x)}, 1:M) ;\n end\n", "meta": {"author": "ShuaiBai623", "repo": "MFT", "sha": "8762f8cdf494ce0b1a1c3d431660c5c8fd91744a", "save_path": "github-repos/MATLAB/ShuaiBai623-MFT", "path": "github-repos/MATLAB/ShuaiBai623-MFT/MFT-8762f8cdf494ce0b1a1c3d431660c5c8fd91744a/external_libs/matconvnet/contrib/mcnExtraLayers/matlab/vl_nnmax.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.38111432914054627}} {"text": "function Matrices = removeExplorationConstraints(Matrices);\ncandidates = find((~any(Matrices.G,2)) & (sum(Matrices.E | Matrices.E,2) == 1));\nif ~isempty(candidates)\n Matrices.bndA = -Matrices.E(candidates,:);\n Matrices.bndb = Matrices.W(candidates,:);\n Matrices.G(candidates,:) = [];\n Matrices.E(candidates,:) = [];\n Matrices.W(candidates,:) = [];\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/parametric/removeExplorationConstraints.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321720225279, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3811143160665731}} {"text": "function sF = norm(sVF)\n% pointwise norm of the vectorfield\n%\n% Syntax\n% norm(sVF)\n%\n% Output\n% sF - S2FunTri\n%\n\nsF = S2FunTri(sVF.tri,norm(sVF.values));\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/S2Fun/@S2VectorFieldTri/norm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.38110848311199774}} {"text": "classdef computingOptimal < handle\n \n methods (Access = public)\n \n function obj = computingOptimal()\n obj.init()\n end\n \n end\n \n methods (Access = private)\n \n function init(obj)\n \n end\n \n function obj = computingOpt()\n fileName = 'OptimalSuperEllipse';\n outputFolder = fullfile(pwd,'Output',fileName);\n gmsFile = [fullfile(outputFolder,fileName),'.msh'];\n createMesh(fileName,outputFolder);\n homog = obj.createNumericalHomogenizer(fileName,gmsFile);\n maxSnorm = obj.computeMaxStressNorm(homog);\n end\n \n \n \n function maxSnorm = computeMaxStressNorm(obj,homog)\n Ch = homog.cellVariables.Ch;\n microProblem = homog.getMicroProblem();\n stress = [cos(pi/4) sin(pi/4) 0]';\n strain = Ch\\stress;\n microProblem.element.setVstrain(strain');\n microProblem.computeVariables;\n stresses = microProblem.variables.stress;\n sx = squeeze(stresses(:,1,:));\n sy = squeeze(stresses(:,2,:));\n sxy = squeeze(stresses(:,3,:));\n sNorm = sqrt(sx.*sx + 2*sxy.*sxy + sy.*sy);\n maxSnorm = max(sNorm);\n end\n \n function createMesh(obj,fileName,outputFolder)\n d = SettingsFreeFemMeshGenerator();\n d.freeFemFileName = 'SmoothRectangle';\n d.hMax = 0.02;%0.0025;\n d.mxV = 0.5;\n d.myV = 0.5;\n d.fileName = fileName;\n d.printingDir = outputFolder;\n d.qNorm = 32;\n \n fG = FreeFemMeshGenerator(d);\n fG.generate();\n \n end\n \n function homog = createNumericalHomogenizer(obj,fileName,gmsFile)\n d.gmsFile = gmsFile;\n d.outFile = fileName;\n d.print = false;\n d.iter = 0;\n nH = NumericalHomogenizerCreatorFromGmsFile(d);\n homog = nH.getHomogenizer();\n end\n \n end\n \nend\n\n\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Sources/VadamecumCalculator/computingOptimal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.38109934875713497}} {"text": "function arrayIndices = sample2index(this, samplingPoints, iDims)\n% Returns voxel samplingPoints corresponding to label (coordinate) samplingPoints\n%\n% Y = MrDimInfo()\n% arrayIndices = sample2index(this, samplingPoints)\n%\n% Inverse operation to get_samplingPoints\n%\n% This is a method of class MrDimInfo.\n%\n% IN\n% samplingPoints [nVoxels, nDims] of voxel samplingPoints\n% (one per row) in coordinate system given by dimInfo\n% iDims if specified, samplingPoints are assumed to be subset\n% of all dimensions only\n%\n% OUT\n% arrayIndices [nVoxels, nDims] of absolute\n% voxel samplingPoints within array\n%\n% EXAMPLE\n% sample2index\n%\n% See also MrDimInfo MrDimInfo.get_samplingPoints\n\n% Author: Saskia Bollmann & Lars Kasper\n% Created: 2016-01-23\n% Copyright (C) 2016 Institute for Biomedical Engineering\n% University of Zurich and ETH Zurich\n%\n% This file is part of the TAPAS UniQC Toolbox, which is released\n% under the terms of the GNU General Public License (GPL), version 3.\n% You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version).\n% For further details, see the file COPYING or\n% .\n\nif nargin < 3\n iDims = 1:this.nDims;\nend\n\nnDimsSubset = numel(iDims);\n\nisRowVector = nDimsSubset == 1 && size(samplingPoints,1) == 1;\n\nif isRowVector\n samplingPoints = samplingPoints(:); % allows row/column vectors as input for 1-dim trafo\nend\n\nnVoxels = size(samplingPoints,1);\n\narrayIndices = zeros(nVoxels,nDimsSubset);\n\nfor v = 1:nVoxels\n % find voxel index with closest (euclidean) sampling point in array\n for d = 1:nDimsSubset \n iDim = iDims(d);\n [~, arrayIndices(v,d)] = ...\n min(abs(this.samplingPoints{iDim} - samplingPoints(v,d)));\n end\nend\n\nif isRowVector % transform back to row vector for output\n arrayIndices = reshape(arrayIndices, 1, []);\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrDimInfo/sample2index.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3810993415467051}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting lengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: updates the resting lengths and/or spring stiffness\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction springs = update_Springs(dt,current_time,xLag,yLag,springs)\n\n% dt: time-step\n% current_time: current time of simulation\n% xLag: Vector of all xLagrangian Pts \n% springs: col 1: starting spring pt (by lag. discretization)\n% col 2: ending spring pt. (by lag. discretization)\n% col 3: spring stiffness\n% col 4: spring resting lengths\n\ns_1 = springs(:,1); % MASTER Node Indices\ns_2 = springs(:,2); % SLAVE Node Indices\nk_Vec = springs(:,3); % Springs Stiffnesses Vector\nRL_Vec= springs(:,4); % Resting Lengths Vectors\n\nN = length(xLag); % Gives total number of Lagrangian pts!\nN_springs = length( springs(:,1) ); % Gives total number of springs!\n\nfreq = 10; % Frequency for pumping\nd = 1.0; % Diameter of Heart Tube\n\nfor i=(N-2)+10:(N-2)+20 % Loops over desired springs!\n \n RL_Vec(i) = d - abs( 0.9*d*sin( 2*pi*freq*current_time ) );\n\nend\n\n\nsprings(:,4) = RL_Vec; % Update the springs_info\n\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_HeartTube/EM_Pump_w_Calcium_and_Muscles/update_Springs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754371026367, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3810371573053351}} {"text": "function rtk=detslip_tdcpins(rtk,cur_obs,old_obs,nav,rcv)\n\nglobal glc\ndt=timediff(cur_obs(1).time,old_obs(1).time);\nif abs(dt)>5\n return;\nend\n\ncur_sv=satposs(cur_obs,nav,rtk.opt.sateph);\nold_sv=satposs(old_obs,nav,rtk.opt.sateph);\n\nif rcv==1\n cur_pos=rtk.ins.pos; cur_rr=blh2xyz(cur_pos);\n old_pos=rtk.ins.oldpos; old_rr=blh2xyz(old_pos);\nelseif rcv==2\n cur_rr=rtk.basepos; cur_pos=xyz2blh(cur_rr);\n old_rr=cur_rr; old_pos=cur_pos;\nend\n\nn_cur=size(cur_obs,1);\nn_old=size(old_obs,1);\n\nv=zeros(n_cur,1); H=zeros(n_cur,4); P=zeros(n_cur,n_cur);\nnv=0; vsat=zeros(n_cur,1); vv=zeros(n_cur,1);\n\nfor i=1:n_cur\n \n cur_obsi=cur_obs(i); cur_svi=cur_sv(i);\n lam=nav.lam(cur_obsi.sat,:);\n [sys,~]=satsys(cur_obsi.sat);\n if rtk.mask(sys)==0,continue;end\n \n if lam(1)==0,continue;end\n\n old_idx=0;\n for j=1:n_old\n if cur_obsi.sat==old_obs(j).sat\n old_idx=j;break;\n end\n end\n if old_idx==0,continue;end\n \n old_obsi=old_obs(old_idx); old_svi=old_sv(old_idx);\n \n if cur_svi.svh~=0||old_svi.svh~=0||norm(cur_svi.pos)<=0||norm(old_svi.pos)<=0\n continue;\n end\n if cur_obsi.L(1)==0||old_obsi.L(1)==0,continue;end\n \n [cur_range,cur_LOS]=geodist(cur_svi.pos,cur_rr); \n cur_azel=satazel(cur_pos,cur_LOS);\n [old_range,old_LOS]=geodist(old_svi.pos,old_rr); \n old_azel=satazel(old_pos,old_LOS); %#ok\n \n tdcp_obs=cur_obsi.L(1)*lam(1)-old_obsi.L(1)*lam(1);\n tdcp_pre=cur_range-old_range;\n \n v(nv+1,1)=tdcp_obs-tdcp_pre+glc.CLIGHT*(cur_svi.dts-old_svi.dts);\n \n H(nv+1,:)=[-cur_LOS,1];\n \n P(nv+1,nv+1)=(0.05^2/sin(cur_azel(2))^2)^-1;\n \n vv(i,1)=v(nv+1,1);\n \n nv=nv+1;\n\n vsat(i)=1;\n\nend\n\nif nv<4,return;end\nif nv3*ave_v\n exc(i)=1;\n end\nend\nn=0; v0=zeros(nv,1); H0=zeros(nv,4); P0=zeros(nv,nv);\nfor i=1:nv\n if exc(i)==1,continue;end\n v0(n+1,1)=v(i);\n H0(n+1,:)=H(i,:);\n P0(n+1,n+1)=P(i,i);\n n=n+1;\nend\nif n<4,return;end\nif n3*ave_v&&abs(vv(i))>0.15\n slip(i)=1;\n end\nend\n\nidx=find(slip==1);\nratio=size(idx,1)/n_cur;\nif ratio>=0.5\n return;\nend\n\nfor i=1:n_cur\n sat=cur_obs(i).sat;\n if slip(i)==1\n rtk.sat(sat).slip(1)=bitor(rtk.sat(sat).slip(1),slip(i));\n end\nend\n\nreturn\n\n", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/gnss_ins_tc/rtkins/detslip_tdcpins.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7799929104825007, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3808575866370755}} {"text": "\nclassdef inversion_recovery < AbstractModel\n%inversion_recovery: Compute a T1 map using Inversion Recovery data\n%\n% Assumptions:\n% (1) Gold standard for T1 mapping\n% (2) Infinite TR\n%\n% Inputs:\n% IRData Inversion Recovery data (4D)\n% (Mask) Binary mask to accelerate the fitting (OPTIONAL)\n%\n% Outputs:\n% T1 transverse relaxation time [ms]\n% b arbitrary fit parameter (S=a + b*exp(-TI/T1))\n% a arbitrary fit parameter (S=a + b*exp(-TI/T1))\n% idx index of last polarity restored datapoint (only used for magnitude data)\n% res Fitting residual\n%\n%\n% Protocol:\n%\tIRData [TI1 TI2...TIn] inversion times [ms]\n% TimingTable [TR] repetition time [ms]\n%\n% Options:\n% method Method to use in order to fit the data, based on whether complex or only magnitude data acquired.\n% 'complex' Complex dataset.\n% 'magnitude' Magnitude dataset.\n%\n%\n% fitModel T1 fitting moddel.\n% 'Barral' Fitting equation: a+bexp(-TI/T1)\n% 'General' Fitting equation: c(1-2exp(-TI/T1)+exp(-TR/T1))\n%\n% Example of command line usage (see also showdemo inversion_recovery_batch):\n% Model = inversion_recovery; % Create class from model\n% Model.Prot.IRData.Mat=[350.0000; 500.0000; 650.0000; 800.0000; 950.0000; 1100.0000; 1250.0000; 1400.0000; 1700.0000];\n% data = struct; % Create data structure\n% data.MET2data ='IRData.mat'; % Load data\n% data.Mask = 'Mask.mat';\n% FitResults = FitData(data,Model); %fit data\n% FitResultsSave_mat(FitResults);\n%\n% For more examples: qMRusage(inversion_recovery)\n%\n% Author: Ilana Leppert, 2017\n%\n% References:\n% Please cite the following if you use this module:\n% A robust methodology for in vivo T1 mapping. Barral JK, Gudmundson E, Stikov N, Etezadi-Amoli M, Stoica P, Nishimura DG. Magn Reson Med. 2010 Oct;64(4):1057-67. doi: 10.1002/mrm.22497.\n% In addition to citing the package:\n% Karakuzu A., Boudreau M., Duval T.,Boshkovski T., Leppert I.R., Cabana J.F., \n% Gagnon I., Beliveau P., Pike G.B., Cohen-Adad J., Stikov N. (2020), qMRLab: \n% Quantitative MRI analysis, under one umbrella doi: 10.21105/joss.02343\n\nproperties (Hidden=true)\n onlineData_url = 'https://osf.io/cmg9z/download?version=3';\nend\n\n\tproperties\n MRIinputs = {'IRData','Mask'}; % input data required\n xnames = {'T1','rb','ra'}; % name of the fitted parameters\n voxelwise = 1; % voxel by voxel fitting?\n\n % fitting options\n st = [ 600 -1000 500 ]; % starting point\n lb = [ 0.0001 -10000 0.0001 ]; % lower bound\n ub = [ 5000 0 10000 ]; % upper bound\n fx = [ 0 0 0 ]; % fix parameters\n\n % Protocol\n Prot = struct('IRData', struct('Format',{'TI(ms)'},'Mat',[350 500 650 800 950 1100 1250 1400 1700]'),...\n 'TimingTable', struct('Format',{{'TR(ms)'}},'Mat',2500)); %default protocol\n % Model options\n buttons = {'method',{'Magnitude','Complex'}, 'fitModel',{'Barral','General'}}; %selection buttons\n options = struct(); % structure filled by the buttons. Leave empty in the code\n\n % Simulation Options\n Sim_Single_Voxel_Curve_buttons = {'SNR',50,'T1',600,'M0',1000,'TR',3000,'FAinv',180,'FAexcite',90,'Update input variables','pushbutton'};%'FArefocus',180\n Sim_Optimize_Protocol_buttons = {'# of volumes',5,'Population size',100,'# of migrations',100};\n\n end\n\nmethods (Hidden=true)\n% Hidden methods goes here.\nend\n\n methods\n % -------------CONSTRUCTOR-------------------------------------------------------------------------\n function obj = inversion_recovery()\n obj.options = button2opts(obj.buttons);\n end\n\n function obj = UpdateFields(obj)\n obj.Prot.IRData.Mat = sort(obj.Prot.IRData.Mat);\n end\n function xnew = SimOpt(obj,x,Opt)\n [ra,rb] = ComputeRaRb(obj,x,Opt);\n xnew = [Opt.T1 rb ra];\n\n end\n\n % -------------IR EQUATION-------------------------------------------------------------------------\n function Smodel = equation(obj, x)\n % Generates an IR signal based on fit parameters\n x = mat2struct(x,obj.xnames); % if x is a structure, convert to vector\n\n % equation\n Smodel = x.ra + x.rb * exp(-obj.Prot.IRData.Mat./x.T1);\n if (strcmp(obj.options.method, 'Magnitude'))\n Smodel = abs(Smodel);\n end\n end\n\n % -------------EXPLICIT IR EQUATION-------------------------------------------------------------------------\n function [ra,rb] = ComputeRaRb(obj,x,Opt)\n\n % Some sanity checks\n [ErrMsg]=[];\n\n for brkloop=1:1\n if Opt.TR < max(obj.Prot.IRData.Mat) %TR can't be less than max TI\n txt=['The TR (' num2str(Opt.TR) ') cannot be less than max TI (' num2str(max(obj.Prot.IRData.Mat)),')'];\n ErrMsg = txt; break\n end\n if Opt.T1 < 0 || Opt.T1 > 10000\n txt='Choose a reasonable value for T1 (0-10000 s)';\n ErrMsg = txt; break\n end\n if Opt.FAinv < 120 || Opt.FAinv > 220\n txt='Choose a reasonable value for the inversion FA (120-220 deg)';\n ErrMsg = txt; break\n end\n if Opt.FAexcite < 50 || Opt.FAexcite > 120\n txt='Choose a reasonable value for the excitation FA (50-120 deg)';\n ErrMsg = txt; break\n end\n end\n if ~isempty(ErrMsg)\n if moxunit_util_platform_is_octave\n errordlg(ErrMsg,'Input Error');\n else\n Mode = struct('WindowStyle','modal','Interpreter','tex');\n errordlg(ErrMsg,'Input Error', Mode);\n error(ErrMsg);\n end\n end\n\n % equation for GRE-IR\n ra = Opt.M0 * (1-cos(Opt.FAinv*pi/180)*exp(-Opt.TR/Opt.T1))/(1-cos(Opt.FAinv*pi/180)*cos(Opt.FAexcite*pi/180)*exp(-Opt.TR/Opt.T1));\n rb = -Opt.M0 * (1-cos(Opt.FAinv*pi/180))/(1-cos(Opt.FAinv*pi/180)*cos(Opt.FAexcite*pi/180)*exp(-Opt.TR/Opt.T1));\n %Smodel = ra + rb * exp(-obj.Prot.IRData.Mat./x.T1);\n %if (strcmp(obj.options.method, 'Magnitude'))\n % Smodel = abs(Smodel);\n %end\n end\n\n % -------------DATA FITTING-------------------------------------------------------------------------\n function FitResults = fit(obj,data)\n % Fits the data\n %\n \n data = data.IRData;\n \n switch obj.options.fitModel\n case 'Barral'\n [T1,rb,ra,res,idx] = fitT1_IR(data,obj.Prot.IRData.Mat,obj.options.method);\n FitResults.T1 = T1;\n FitResults.rb = rb;\n FitResults.ra = ra;\n FitResults.res = res;\n if (strcmp(obj.options.method, 'Magnitude'))\n FitResults.idx = idx;\n end\n case 'General'\n approxFlag = 3; % Selects the equation c(1-2exp(-TI/T1)+exp(TR/T1))\n\n params.TI = obj.Prot.IRData.Mat';\n params.TR = obj.Prot.TimingTable.Mat;\n \n if strcmp(obj.options.method, 'Magnitude')\n % Make sure data vector is a column vector\n data = data(:);\n\n % Find the min of the data (which is nearest to\n % signal null to flip\n [~, minInd] = min(data);\n \n % Signal inversion algorithm to fir the T1 curve\n for ii = 1:2\n % Fit the data by inverting the sign of the\n % datapoints up until the TI where signal is\n % null, then also without that point. The\n % fit with the smallest residual is our best\n % guess for up to where to flip the sign of the\n % signal.\n if ii == 1\n % First, we set all elements up to and including\n % the smallest element to minus\n dataTmp = data.*[-ones(minInd,1); ones(length(data) - minInd,1)];\n elseif ii == 2\n % Second, we set all elements up to (not including)\n % the smallest element to minus\n dataTmp = data.*[-ones(minInd-1,1); ones(length(data) - (minInd-1),1)];\n end\n [fitVals{ii}, resnorm(ii)] = inversion_recovery.fit_lm(dataTmp, params, approxFlag);\n end\n [~,ind] = min(resnorm); % Index of the minimum residual will be which signal fit results to choose.\n FitResults.T1 = fitVals{ind}.T1;\n FitResults.ra = fitVals{ind}.ra;\n FitResults.rb = fitVals{ind}.rb;\n FitResults.res = resnorm(ind);\n FitResults.idx = ind;\n elseif strcmp(obj.options.method, 'Complex')\n params.dataType = 'complex';\n [fitVals, resnorm] = inversion_recovery.fit_lm(data(:), params, 3);\n FitResults.T1 = fitVals.T1;\n FitResults.ra = fitVals.ra;\n FitResults.rb = fitVals.rb;\n FitResults.res = resnorm;\n end\n end\n end\n\n function plotModel(obj, FitResults, data)\n % Plots the fit\n %\n % :param FitResults: [struct] Fitting parameters\n % :param data: [struct] input data\n if nargin<2 || isempty(FitResults), FitResults = obj.st; end\n if exist('data','var')\n data = data.IRData;\n % plot\n plot(obj.Prot.IRData.Mat,data,'.','MarkerSize',15)\n hold on\n if (strcmp(obj.options.method, 'Magnitude'))\n % plot the polarity restored data points\n data_rest = -1.*data(1:FitResults.idx);\n plot(obj.Prot.IRData.Mat(1:FitResults.idx),data_rest,'o','MarkerSize',5,'MarkerEdgeColor','b','MarkerFaceColor',[1 0 0])\n end\n end\n\n % compute model\n obj.Prot.IRData.Mat = linspace(min(obj.Prot.IRData.Mat),max(obj.Prot.IRData.Mat),100);\n Smodel = equation(obj, FitResults);\n\n % plot fitting curve\n plot(obj.Prot.IRData.Mat,Smodel,'Linewidth',3)\n hold off\n xlabel('Inversion Time [ms]','FontSize',15);\n ylabel('Signal','FontSize',15);\n legend('data', 'polarity restored', 'fit','Location','best')\n set(gca,'FontSize',15)\n end\n\n function [FitResults, data] = Sim_Single_Voxel_Curve(obj, x, Opt,display)\n % Simulates Single Voxel\n %\n % :param x: [struct] fit parameters\n % :param Opt.SNR: [struct] signal to noise ratio to use\n % :param display: 1=display, 0=nodisplay\n % :returns: [struct] FitResults, data (noisy dataset)\n\n if ~exist('display','var'), display = 1; end\n\n Smodel = equation(obj, x);\n sigma = max(abs(Smodel))/Opt.SNR;\n if (strcmp(obj.options.method, 'Magnitude'))\n data.IRData = ricernd(Smodel,sigma);\n else\n data.IRData = random('normal',Smodel,sigma);\n end\n FitResults = fit(obj,data);\n if display\n plotModel(obj, FitResults, data);\n end\n end\n\n function SimVaryResults = Sim_Sensitivity_Analysis(obj, OptTable, Opt)\n % SimVaryGUI\n SimVaryResults = SimVary(obj, Opt.Nofrun, OptTable, Opt);\n end\n\n function SimRndResults = Sim_Multi_Voxel_Distribution(obj, RndParam, Opt)\n % SimRndGUI\n SimRndResults = SimRnd(obj, RndParam, Opt);\n end\n\n% function schemeLEADER = Sim_Optimize_Protocol(obj,xvalues,Opt)\n% % schemeLEADER = Sim_Optimize_Protocol(obj,xvalues,nV,popSize,migrations)\n% % schemeLEADER = Sim_Optimize_Protocol(obj,obj.st,30,100,100)\n% % Optimize Inversion times\n% nV = Opt.Nofvolumes;\n% popSize = Opt.Populationsize;\n% migrations = Opt.Nofmigrations;\n%\n% sigma = .05;\n% TImax = 5000;\n% TImin = 50;\n% GenerateRandFunction = @() rand(nV,1)*(TImax-TImin)+TImin; % do not sort TI values... or you might fall in a local minima\n% CheckProtInBoundFunc = @(Prot) min(max(50,Prot),TImax);\n% % Optimize Protocol\n% [retVal] = soma_all_to_one(@(Prot) mean(SimCRLB(obj,Prot,xvalues,sigma)), GenerateRandFunction, CheckProtInBoundFunc, migrations, popSize, nV, obj.Prot.IRData.Mat(:,1));\n%\n% % Generate Rest\n% schemeLEADER = retVal.schemeLEADER;\n%\n% fprintf('SOMA HAS FINISHED \\n')\n%\n% end\n\n end\n\n % CLI-only implemented static methods. Can be called directly from\n % class - no object needed.\n methods(Static)\n function Mz = analytical_solution(params, seqFlag, approxFlag)\n %ANALYTICAL_SOLUTION Analytical equations for the longitudinal magnetization of\n %steady-state inversion recovery experiments with either a gradient echo\n %(GRE-IR) or spin-echo (SE-IR) readouts.\n % Reference: Barral, J. K., Gudmundson, E. , Stikov, N. , Etezadi?Amoli,\n % M. , Stoica, P. and Nishimura, D. G. (2010), A robust methodology for\n % in vivo T1 mapping. Magn. Reson. Med., 64: 1057-1067.\n % doi:10.1002/mrm.22497\n %\n % params: struct with the required parameters for the sequence and\n % approximation. See below for list.\n %\n % seqFlag: String. Either 'GRE-IR' or 'SE-IR'\n % approxFlag: Integer between 1 and 4.\n % 1: General equation (no approximation).\n % 2: Ideal 180 degree pulse approximation of case 1.\n % 3: Ideal 90 degree pulse approximation of case 2, and readout term\n % absorbed into constant.\n % 4: Long TR (TR >> T1) approximation of case 3.\n %\n % **PARAMS PROPERTIES**\n % All times in ms, all angles in degrees.\n % 'GRE-IR'\n % case 1: T1, TR, TI, EXC_FA, INV_FA, constant (optional)\n % case 2: T1, TR, TI, EXC_FA, constant (optional)\n % case 3: T1, TR, TI, constant (optional)\n % case 4: T1, TI, constant (optional)\n %\n % 'SE-IR'\n % case 1: Same as 'GRE-IR' case + SE_FA, TE\n % case 2: Same as 'GRE-IR' case + TE\n % case 3: Same as 'GRE-IR' case + TE\n % case 4: Same as 'GRE-IR' case\n %\n\n Mz = ir_equations(params, seqFlag, approxFlag);\n\n end\n\n function [Mz, Msig] = bloch_sim(params)\n %BLOCH_SIM Bloch simulations of the GRE-IR pulse sequence.\n % Simulates 100 spins params.Nex repetitions of the IR pulse\n % sequences.\n %\n % params: Struct with the following fields:\n % INV_FA: Inversion pulse flip angle in degrees.\n % EXC_FA: Excitation pulse flip angle in degrees.\n % TI: Inversion time (ms).\n % TR: Repetition time (ms).\n % TE: Echo time (ms).\n % T1: Longitudinal relaxation time (ms).\n % T2: Transverse relaxation time (ms).\n % Nex: Number of excitations\n %\n % (optional\n % df: Off-resonance frequency of spins relative to excitation pulse (in Hz)\n % crushFlag: Numeric flag for perfect spoiling (1) or partial spoiling (2).\n % partialDephasing: Partial dephasing fraction (between [0, 1]). 1 = no dephasing, 0 = complete dephasing (sele\n % inc: Phase spoiling increment in degrees.\n %\n % Outputs:\n % Mz: Longitudinal magnetization at time TI (prior to excitation pulse).\n % Msig: Complex signal produced by the transverse magnetization at time TE after excitation.\n %\n\n %% Setup parameters\n %\n\n alpha = deg2rad(params.INV_FA);\n beta = deg2rad(params.EXC_FA);\n TI = params.TI;\n TR = params.TR;\n T1 = params.T1;\n\n TE = params.TE;\n T2 = params.T2;\n\n Nex = params.Nex;\n\n %% Optional parameers\n\n if isfield(params, 'df')\n df = params.df;\n else\n df = 0;\n end\n\n if isfield(params, 'crushFlag')\n crushFlag = params.crushFlag;\n else\n crushFlag = 1;\n end\n\n if isfield(params, 'partialDephasing')\n partialDephasing = params.partialDephasing;\n else\n partialDephasing = 1;\n end\n\n if isfield(params, 'inc')\n inc = deg2rad(params.inc);\n else\n inc = 0;\n end\n\n %% Simulate for every TI's\n %\n\n for ii = 1:length(TI)\n\n [Msig(ii), Mz(ii)] = ir_blochsim( ...\n alpha, ...\n beta, ...\n TI(ii), ...\n T1, ...\n T2, ...\n TE, ...\n TR, ...\n crushFlag, ...\n partialDephasing, ...\n df, ...\n Nex, ...\n inc ...\n );\n\n end\n\n end\n\n function [fitVals, resnorm] = fit_lm(data, params, approxFlag)\n % FIT_LM Levenberg-Marquardt fitting of GRE-IR data.\n %\n % data: Array for a single voxel (length = #TI)\n % params: Properties TI and TR (except for approxFlag = 4,\n % where only TI is needed)\n % approxFlag: Same flags numbering & equations as for the\n % analytical_solution class method.\n\n switch approxFlag\n case 1\n TI = params.TI;\n TR = params.TR;\n\n % [constant, T1, EXC_FA, INV_FA]\n x0 = [1, 1000, 90, 180];\n\n options.Algorithm = 'levenberg-marquardt';\n options.Display = 'off';\n\n [x, resnorm] = lsqnonlin(@(x)ir_loss_func_1(x, TR, TI, data), x0, [], [], options);\n\n fitVals.INV_FA = x(4);\n fitVals.EXC_FA = x(3);\n fitVals.T1 = x(2);\n fitVals.c = x(1);\n case 2\n TI = params.TI;\n TR = params.TR;\n\n % [constant, T1, EXC_FA]\n x0 = [1, 1000, 90];\n\n options.Algorithm = 'levenberg-marquardt';\n options.Display = 'off';\n\n [x, resnorm] = lsqnonlin(@(x)ir_loss_func_2(x, TR, TI, data), x0, [], [], options);\n\n fitVals.EXC_FA = x(3);\n fitVals.T1 = x(2);\n fitVals.c = x(1);\n\n case 3\n TI = params.TI;\n TR = params.TR;\n\n % Find the min of the data\n [~, minInd] = min(abs(data));\n\n T1est = -TI(minInd)/log(1/2); % Estimate from null (or min) of data and the equation in Case 4. Used as the first guess for the fitting point.\n\n if isfield(params, 'dataType') && strcmp(params.dataType,'complex')\n % Fit comlex data\n % [constant, T1]\n if max(abs(data)) > 0\n dataNorm = data/max(abs(data)); % Normalize the data to fit with the initial constant guess of 1.\n else\n dataNorm = data;\n end\n \n % Initial fit estimates\n % [Re(constant), Im(constant), T1)]\n x0 = [1, 0, T1est];\n\n options.Algorithm = 'trust-region-reflective';\n options.Display = 'off';\n \n % Bound the fitting variables to -2 to 2\n % (constant) and 0 to 5000 (T1 in ms).\n [x, resnorm] = lsqnonlin(@(x)ir_loss_func_3(x, TR, TI, dataNorm(:)', params.dataType), x0, [-2, -2, 0], [2, 2, 5000], options);\n \n fitVals.T1 = x(3);\n \n % ra and rb calculation from Equation 3\n if max(abs(data)) > 0\n fitVals.ra = (x(1)+1i*x(2))*max(abs(data)) * (1 + exp(-TR/fitVals.T1));\n fitVals.rb = -2*(x(1)+1i*x(2))*max(abs(data));\n else\n fitVals.ra = (x(1)+1i*x(2)) * (1 + exp(-TR/fitVals.T1));\n fitVals.rb = -2*(x(1)+1i*x(2));\n end\n else\n % Fit magnitude data\n % [constant, T1]\n x0 = [1, T1est];\n if max(abs(data)) > 0\n dataNorm = data/max(abs(data)); % Normalize the data to fit with the initial constant guess of 1.\n else\n dataNorm = data;\n end\n\n options.Algorithm = 'trust-region-reflective';\n options.Display = 'off';\n\n % Bound the fitting variables to -2 to 2\n % (constant) and 0 to 5000 (T1 in ms).\n [x, resnorm] = lsqnonlin(@(x)ir_loss_func_3(x, TR, TI, dataNorm(:)'), x0, [0, 0], [2, 5000], options);\n\n fitVals.T1 = x(2);\n \n % ra and rb calculation from Equation 3\n if max(abs(data)) > 0\n fitVals.ra = x(1)*max(abs(data)) * (1 + exp(-TR/fitVals.T1));\n fitVals.rb = -2*x(1)*max(abs(data));\n else\n fitVals.ra = x(2) * (1 + exp(-TR/fitVals.T1));\n fitVals.rb = -2*x(2);\n end\n\n end\n\n\n case 4\n TI = params.TI;\n % [constant, T1]\n x0 = [1, 1000];\n\n options.Algorithm = 'levenberg-marquardt';\n options.Display = 'off';\n\n [x, resnorm] = lsqnonlin(@(x)ir_loss_func_4(x, TI, data), x0, [], [], options);\n\n fitVals.T1 = x(2);\n fitVals.c = x(1);\n end\n\n end\n\n end\n\n methods(Access = protected)\n function obj = qMRpatch(obj,loadedStruct, version)\n obj = qMRpatch@AbstractModel(obj,loadedStruct, version);\n % 2.0.10\n if checkanteriorver(version,[2 0 10])\n % Update buttons for simulation\n snrValue = obj.Sim_Single_Voxel_Curve_buttons{2};\n obj.Sim_Single_Voxel_Curve_buttons = {'SNR' snrValue 'T1' 600 'M0' 1000 'TR' 3000 'FAinv' 180 'FAexcite' 90 'Update input variables' 'pushbutton'};\n end\n if checkanteriorver(version,[2 4 1])\n % Update buttons for simulation\n obj.Prot = struct('IRData', struct('Format',{'TI(ms)'},'Mat',[350 500 650 800 950 1100 1250 1400 1700]'),...\n 'TimingTable', struct('Format',{{'TR(ms)'}},'Mat',2500)); %default protocol\n % Model options\n obj.buttons = {'method',{'Magnitude','Complex'}, 'fitModel',{'Barral','General'}}; %selection buttons\n obj.options = button2opts(obj.buttons);\n end\n end\n end\n\nend\n", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/src/Models/T1_relaxometry/inversion_recovery.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7799929104825007, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3808575866370755}} {"text": "function output = callclp(interfacedata)\n\n% Retrieve needed data\noptions = interfacedata.options;\nF_struc = interfacedata.F_struc;\nc = interfacedata.c;\nK = interfacedata.K;\nub = interfacedata.ub;\nlb = interfacedata.lb;\nQ = interfacedata.Q; \n\nn = length(c);\n\nif options.showprogress;showprogress(['Calling CLP'],options.showprogress);end\n\nif K.f>0\n Aeq = -F_struc(1:K.f,2:end);\n beq = F_struc(1:K.f,1);\nelse\n Aeq = [];\n beq = [];\nend\n\nif any(K.l)\n A = -F_struc(1+K.f:end,2:end);\n b = F_struc(1+K.f:end,1);\nelse\n A = [];\n b = [];\nend\n\n% Fix for bug in mexclp or clp\nfixed = 0;\nif size(A,1)==0 & size(Aeq,2)==0\n A = [ones(1,length(c))];\n if ~isempty(ub)\n A(isinf(ub)) = 0; \n dummy = ub;\n dummy(isinf(ub)) = 0;\n b = sum(dummy);\n else\n b = 1e8;\n end\n fixed = 1;\n options.saveduals = 0;\nend\n% lb(lb==-inf)=-1e12\n% ub(ub==inf)=1e12\n\nops = options.clp;\nops.verbose = options.verbose;\n\nif options.savedebug\n save clpdebug\nend\n\n% Call mex-interfacec\nsolvertime = tic;\n[x,lambda,problem] = clp(2*Q,c,A,b,Aeq,beq,lb,ub,ops);%,interfacedata.integer_variables);\nsolvertime = toc(solvertime);\n\nif options.saveduals\n D_struc = -lambda; \nelse\n D_struc = [];\nend\n\n% Save all data sent to solver?\nif options.savesolverinput\n\tsolverinput = [];\t\nelse\n\tsolverinput = [];\nend\n\n% Save all data from the solver?\nif options.savesolveroutput\n\tsolveroutput = [];\t\nelse\n\tsolveroutput = [];\nend\n\n% Standard interface \noutput = createOutputStructure(x,D_struc,[],problem,interfacedata.solver.tag,solverinput,solveroutput,solvertime);", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/solvers/callclp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7799929002541068, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.3808575816427206}} {"text": "function mec_weighting = lmsSR_computeWeightsMECv4(mec_confMapN, mec_thr_scaler, mec_weight_exp)\n%\n% LMSSR_COMPUTEWEIGHTSMECV4 Computes weights depending on the quality of the motion estimation/compensation stage. (Version 4: One global threshold, adapted by number of images)\n% mec_weighting = LMSSR_COMPUTEWEIGHTSMECV4(mec_confMapN, mec_thr_scaler, mec_weight_exp)\n%\n% Parameters: mec_confMapN - 3-D matrix containing confidence information in form of SSD values for each pixel and each auxiliary frame\n% mec_thr_scaler - Scalar value responsible for scaling the standard deviation threshold which cuts off SSD values that are too large [default: 20]\n% mec_weight_exp - Exponent for intensifying the weighting [default: 2]\n%\n%\n% Author: Michel B\u00e4tz (LMS)\n%\n% See also: lmsSR_framework\n%\n\n[height,width,num_imgs] = size(mec_confMapN);\n\n% 1-SSD Weighting + Setting SSD values larger than twice the standard deviation to 0\nmec_weighting = ones(height,width,num_imgs+1); % Highest weight is set to 1 => Reference frame weights need no further adaptation\nmec_conf_stddev = std(mec_confMapN(:));\nmec_weighting(:,:,2:end) = 1 - (mec_confMapN / (mec_thr_scaler*(1/num_imgs)*mec_conf_stddev)); % SSD values larger than threshold_scaler times standard deviation are set to 0 [default: 20]\nmec_weighting(mec_weighting < 0) = 0;\n\n%mec_weighting(mec_weighting > 0) = 1; % QUICK-TEST\nmec_weighting = mec_weighting.^mec_weight_exp; % Default: 2\n\n", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/lmsSR_framework/lmsSR_computeWeightsMECv4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8056321889812553, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.38080902396498933}} {"text": "% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\nfunction amgausst\n%AMGAUSST Unit test for the function AMGAUSS.\n\n%\tO. Lemoine - February 1996.\n\n\nN=256; t0=149; T=50; \nsig=amgauss(N,t0,T);\nif abs(sig(t0)-1)>sqrt(eps),\t\t\t\t% sig(t0)=1\n error('amgauss test 1 failed ');\nend\n[tm,T1]=loctime(sig);\nif abs(T-T1)>sqrt(eps),\t\t\t\t\t% width\n error('amgauss test 2 failed ');\t\nend\ndist=1:min([N-t0,t0-1]);\nif any(abs(sig(t0-dist)-sig(t0+dist))>sqrt(eps))~=0, \t% symmetry\n error('amgauss test 3 failed ');\nend\n\nN=121; t0=60; T=27; \nsig=amgauss(N,t0,T);\nif abs(sig(t0)-1)>sqrt(eps),\t\t\t\t% sig(t0)=1\n error('amgauss test 4 failed ');\nend\n[tm,T1]=loctime(sig);\nif abs(T-T1)>sqrt(eps),\t\t\t\t\t% width\n error('amgauss test 5 failed ');\t\nend\ndist=1:min([N-t0,t0-1]);\nif any(abs(sig(t0-dist)-sig(t0+dist))>sqrt(eps))~=0, \t% symmetry\n error('amgauss test 6 failed ');\nend\n\nN=534; t0=333; T=70; \nsig=amgauss(N,t0,T);\nif abs(sig(t0)-1)>sqrt(eps),\t\t\t\t% sig(t0)=1\n error('amgauss test 7 failed ');\nend\n[tm,T1]=loctime(sig);\nif abs(T-T1)>sqrt(eps),\t\t\t\t\t% width\n error('amgauss test 8 failed ');\t\nend\ndist=1:min([N-t0,t0-1]);\nif any(abs(sig(t0-dist)-sig(t0+dist))>sqrt(eps))~=0, \t% symmetry\n error('amgauss test 9 failed ');\nend\n", "meta": {"author": "HeLiangHIT", "repo": "time_frequency", "sha": "09c2abe92355ff5cd867bdb169229682e9d7af7c", "save_path": "github-repos/MATLAB/HeLiangHIT-time_frequency", "path": "github-repos/MATLAB/HeLiangHIT-time_frequency/time_frequency-09c2abe92355ff5cd867bdb169229682e9d7af7c/tf_tool_box/tftb-0.2/tests/amgausst.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5813031051514763, "lm_q2_score": 0.6548947290421275, "lm_q1q2_score": 0.38069233953952347}} {"text": "function S = querylpv(lpv, p)\n%QUERYLPV Query an LPV model at given parameter point\n%\tS = QUERYLPV(lpv, p)\n%\t\n%\tlpv - LPV model\n%\tp - given parameter\n%\t\n%\tS - system matrix at the given point\n\n% TODO: convert to lti sys\n\nS = zeros(size(lpv));\nfor i = 1:size(lpv,1)\n\tfor j = 1:size(lpv,2)\n\t\tS(i,j) = lpv{i,j}(p);\n\tend\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/25514-tp-tool/tptool/util/querylpv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421276, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.38069233003885894}} {"text": "function t = subsasgn(t,s,b)\n%SUBSASGN Subscripted assignement for ktensor.\n%\n% See also KTENSOR.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2012, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2012) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\nswitch s(1).type\n case '.'\n switch s(1).subs\n case 'lambda'\n if length(s) == 1\n t = ktensor(b, t.u);\n else\n newlambda = subsasgn(t.lambda, s(2:end), b);\n t = ktensor(newlambda, t.u);\n end\n case {'u','U'}\n if length(s) == 1\n t = ktensor(t.lambda, b);\n else\n tmpu = subsasgn(t.u, s(2:end), b);\n t = ktensor(t.lambda, tmpu);\n end\n otherwise\n error(['No such field: ', s(1).subs]);\n end\n case '()'\n error('Cannot change individual entries in a ktensor.')\n case '{}'\n new_s(1).type = '.';\n new_s(1).subs = 'u';\n new_s(2:length(s)+1) = s;\n t = subsasgn(t, new_s, b);\n otherwise\n error('Invalid subsasgn.');\nend\n\n\n", "meta": {"author": "andrewssobral", "repo": "mtt", "sha": "0152a77df09f24af4c294f46845931e4e0e63b55", "save_path": "github-repos/MATLAB/andrewssobral-mtt", "path": "github-repos/MATLAB/andrewssobral-mtt/mtt-0152a77df09f24af4c294f46845931e4e0e63b55/libs/tensor_toolbox_2.5/@ktensor/subsasgn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421276, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.38069233003885894}} {"text": "function displayIm = shownsct( y )\n% SHOWNSSC Show nonsubsampled Contourlet transform coefficients. \n%\n% shownsct(y)\n% Input:\n%\ty:\ta cell vector of length n+1, one for each layer of \n%\t\tsubband images from NSCT, y{1} is the lowpass image\n%\n% NOTE:\n% It need further improvement later!!!!\n\n% History:\n% 08/08/2003 Created by Jianping Zhou.\n\n% Level of decomposition.\nclevels = length( y ) ;\n\n% Show the subband images.\nfor i=1:clevels\n figure;\n if iscell( y{i} )\n % The number of directional subbands.\n csubband = length( y{i} ) ;\n if csubband > 7\n col = 4 ;\n else\n col = 2 ;\n end\n row = csubband / col ;\n for j = 1:csubband\n subplot( row, col, j ) ;\n imshow( uint8(y{i}{j}) );\n title( sprintf('NSSC coefficients: level %d', i) );\n end\n else\n imshow ( uint8(y{i}) ) ;\n title( sprintf('Nonsubsampled Contourlet coefficients level %d', i) );\n end\nend", "meta": {"author": "xingchenzhang", "repo": "VIFB", "sha": "7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa", "save_path": "github-repos/MATLAB/xingchenzhang-VIFB", "path": "github-repos/MATLAB/xingchenzhang-VIFB/VIFB-7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa/methods/NSCT_SR/nsct_toolbox/shownsct.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.38069233003885883}} {"text": "function [B,L] = ordered_outline(F)\n % ORDERED_OUTLINE Find outline (boundary) edges of mesh\n %\n % [B,L] = outline(F)\n %\n % Input:\n % F #F by 3 face list of indices\n % Outputs:\n % B #B by 1 list of outline edges \n % L #loops+1 by 1 list of boundary loop start indices into B, the last\n % entries is (by tradition) always the numel of B + 1\n %\n % Example:\n % V = [0 0; 1 0; 1 1 ; 0 1; 4 0; 4 4; 0 4];\n % F = [1 2 3; 1 3 4; 5 6 7];\n % [B,L] = ordered_outline(F);\n % hold on\n % for l = 1:(numel(L)-1)\n % plot(V([B(L(l):(L(l+1)-1)) B(L(l))],1),V([B(L(l):(L(l+1)-1)) B(L(l))],2));\n % end\n % hold off\n %\n % See also: outline\n %\n\n if size(F,2) == 2\n O = F;\n else\n O = outline(F);\n end\n % determine uniqueness of indices \n [u,m,n] = unique(O(:),'rows');\n % determine counts for each unique edge\n counts = accumarray(n(:), 1);\n % all counts should be 2\n assert(all(counts == 2));\n\n % number of outline edges\n no = size(O,1);\n\n % list of boundary \n B = [];\n L = [];\n unseen = true(no,1);\n while any(unseen)\n L = [L numel(B)+1];\n % find first unseen index\n f = find(unseen,1);\n % append start vertex to boundary\n next = O(f,1);\n % keep track of start\n start = next;\n unseen(f) = false;\n B = [B next];\n next = O(f,2);\n % loop until back at start\n while next ~= start\n B = [B next];\n % try to find next as source\n f = find(unseen & O(:,1) == next);\n if isempty(f)\n % try to find next as dest\n f = find(unseen & O(:,2) == next);\n assert(~isempty(f));\n next = O(f,1);\n else\n next = O(f,2);\n end\n unseen(f) = false;\n end\n end\n L = [L numel(B)+1];\n\nend\n\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/ordered_outline.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5813030906443133, "lm_q2_score": 0.6548947290421275, "lm_q1q2_score": 0.38069233003885883}} {"text": "function r4_uniform_01_test ( )\n\n%*****************************************************************************80\n%\n%% R4_UNIFORM_01_TEST tests R4_UNIFORM_01.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R4_UNIFORM_01_TEST\\n' );\n fprintf ( 1, ' R4_UNIFORM_01 produces a sequence of random values.\\n' );\n\n seed = 123456789;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' SEED = %d\\n', seed );\n fprintf ( 1, '\\n' );\n\n for i = 1 : 10\n [ r, seed ] = r4_uniform_01 ( seed );\n fprintf ( 1, ' %2d %14g\\n', i, r );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/normal/r4_uniform_01_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813030761371503, "lm_q2_score": 0.6548947223065755, "lm_q1q2_score": 0.3806923166227972}} {"text": "function deg = degree(x,y,z)\n%DEGREE Polynomial degree\n%\n% DEG = DEGREE(p,x,flag,vector)\n%\n% p : SDPVAR object.\n% x : Degree w.r.t linear SDPVAR objects.\n% flag : 'max', 'min'. Default 'max'\n% vector : If vector = 1, returns degree of each element in p\n%\n% Examples\n% x1 = sdpvar(1,1);x2 = sdpvar(1,1);\n% p = [x1;x1*x2+x2^2];\n%\n% degree(p) returns 2\n%\n% degree(p,x1) returns 1\n%\n% degree(p,[x1 x2]) returns [1 2]\n%\n% degree(p,[x1 x2],'max',1) returns [1 0;1 2]\n%\n% degree(p,[],1) returns [1;2] \n\nif isa(x,'double')\n deg = 0;\nelse\n error('DEGREE only defined for SDPVAR and DOUBLE.');\nend\n ", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/degree.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3806043300268062}} {"text": "function plot_catalog(mCatalog, vMain,bFaults)\n\nif bFaults\n load ~/data/faults/mCA-faults.mat\nend\nfigure\nplot(mCatalog(:,1),mCatalog(:,2),'k.');\nhold on;plot(mCatalog(~vMain,1),mCatalog(~vMain,2),'r.');\nxlim([-118.2 -115]);\nylim([32 36]);\nset(gca,'FontSize',16);\nif bFaults\n hold on; plot(mFaults(:,1),mFaults(:,2),'k-','LineWidth',1);\nend\n\nfigure\nplot(mCatalog(:,3),cumsum(ones(size(mCatalog,1),1)),'r',...\n 'LineWidth',2);\nhold on;plot(mCatalog(:,3),cumsum(vMain),'k',...\n 'LineWidth',2);\nset(gca,'FontSize',16);\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/thomas/plot/plot_catalog.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3806043300268062}} {"text": "function []=panel4fevddisp(n,N,Units,endo,fevd_estimates,IRFperiods,pref)\n\nif pref.plot\n % plot the figure\n fevd=figure('Tag','BEARresults');\n set(fevd,'Color',[0.9 0.9 0.9]);\n set(fevd,'name','forecast error variance decomposition');\n % initiate the count\n count=0;\n % loop over units\n for ii=1:N\n % loop over endogenous variables\n for jj=1:n\n % loop over shocks\n for kk=1:n\n % increment count\n count=count+1;\n % then plot\n subplot(N*n,n,count)\n temp=fevd_estimates{jj,kk,ii};\n hold on\n Xpatch=[(1:IRFperiods) (IRFperiods:-1:1)];\n Ypatch=[temp(1,:) fliplr(temp(3,:))];\n FEVDpatch=patch(Xpatch,Ypatch,[0.7 0.78 1]);\n set(FEVDpatch,'facealpha',0.5);\n set(FEVDpatch,'edgecolor','none');\n plot(temp(2,:),'Color',[0.4 0.4 1],'LineWidth',2);\n hold off\n set(gca,'XLim',[1 IRFperiods],'YLim',[0 1],'FontName','Times New Roman');\n % top labels\n if jj==1\n title([Units{ii,1} '\\_' endo{kk,1}],'FontWeight','normal');\n end\n % side labels\n if kk==1\n ylabel([Units{ii,1} '\\_' endo{jj,1}],'FontWeight','normal');\n end\n end\n end\n end\n % top supertitle\n ax=axes('Units','Normal','Position',[.11 .075 .85 .88],'Visible','off');\n set(get(ax,'Title'),'Visible','on')\n title('Contribution of shock:','FontSize',11,'FontName','Times New Roman','FontWeight','normal');\n % side supertitle\n ylabel('Variance of:','FontSize',12,'FontName','Times New Roman','FontWeight','normal');\n set(get(ax,'Ylabel'),'Visible','on');\nend\n\n\n\n% save on Excel\n% create the cell that will be saved on excel\nfevdcell={};\n% build preliminary elements: space between the tables\nvertspace=repmat({''},IRFperiods+3,1);\nhorzspace=repmat({''},2,5*n);\n% loop over units\nfor ii=1:N\n % loop over endogenous variables\n for jj=1:n\n % initiate the cell of results\n endocell={};\n % loop over shocks\n for kk=1:n\n % create a header\n header=[{['part of ' Units{ii,1} '_' endo{jj,1} ' fluctuation due to ' Units{ii,1} '_' endo{kk,1} ' shocks']} {''} {''} {''};{''} {''} {''} {''};{''} {'lower bound'} {'median'} {'upper bound'}];\n % complete the cell\n tempcell=[[header;num2cell((1:IRFperiods)') num2cell((fevd_estimates{jj,kk,ii})')] vertspace];\n % concatenate to the previous parts of unitcell\n endocell=[endocell tempcell];\n end\n % concatenate to the previous parts of irfcell\n fevdcell=[fevdcell;horzspace;endocell];\n end\n fevdcell=[fevdcell;horzspace];\nend\n% trim\nfevdcell=fevdcell(3:end-2,1:end-1);\n% write in excel\nif pref.results==1\n bear.xlswritegeneral(fullfile(pref.results_path, [pref.results_sub '.xlsx']),fevdcell,'FEVD','B2');\nend", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tbx/bear/+bear/panel4fevddisp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3806043300268062}} {"text": "function [ y, symm ] = cvx_s_banded( m, n, symm, lower, upper )\n\n%CVX_S_BANDED (U,L)-banded matrices.\n\nif nargin < 4,\n error( 'Bandwidth arguments missing.' );\nend\nif ~isnumeric( lower ) || length( lower ) ~= 1 || lower < 0 || lower ~= floor( lower ),\n error( 'Bandwidth arguments must be nonnegative integers.' );\nelseif nargin < 5, \n upper = lower;\nelseif ~isnumeric( upper ) || length( upper ) ~= 1 || upper < 0 || upper ~= floor( upper ),\n error( 'Bandwidth arguments must be nonnegative integers.' );\nend\n\nstflag = length(symm) == 2;\nif stflag,\n toep = symm(2);\n symm = symm(1);\nelse\n toep = false;\nend\n\nif symm,\n lower = min( lower, upper );\n upper = 0;\nend\n\nc = 0 : n - 1;\nc = c( ones( 1, m ), : );\nr = ( 0 : m - 1 )';\nr = r( :, ones( 1, n ) );\ntemp = r - c;\ntemp = temp <= lower & temp >= -upper;\nr = r( temp );\nc = c( temp );\nnu = length( r );\n\nif toep,\n v = r - c;\n v = abs( v ) + max( v ) * ( v < 0 ) + 1;\n nu = max( v );\n toep = false;\nelse\n v = ( 1 : nu )';\nend\n\nif symm,\n tt = r ~= c;\n r = [ r ; c(tt) ];\n c = [ c ; r(tt) ];\n v = [ v ; v(tt) ];\n symm = false;\nend\n\nif stflag,\n symm = [ symm, toep ];\nend\n\ny = sparse( v, r + m * c + 1, 1, nu, m * n );\n\n% Copyright 2005-2016 CVX Research, Inc. \n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/structures/cvx_s_banded.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804196836383, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.38060432137854067}} {"text": "filename = 'ArchTriFine';%'CantileverSquareNewFine';%'LshapeTriFine';%'CantileverSquareNew';'ArchTriFine';%'CantileverSquare';%'ArchTriFine';%'CantileverSquare';%'Lshape';%'LshapeTriFine';%'CantileverSquareSmall';%'';%'Lshape';'CantileverSquare';'Lshape';%'CantileverSquare';%'LshapeFine';%'Bridge_quad_coarse';%'Arch_quad_coarse';%'BridgeCool_Quadrilateral_Bilinear_Structured_Coarse';%'Bridge';%'CantileverSquareSmall';\nptype = 'MACRO';\ninitial_case = 'given';\nm1 = 0.0101;\nm2 = 0.0101;\n%cost = {'compliance'};\ncost = {'stressNorm'};\n%cost = {'stressNorm','compliance'};\n%weights = [0.55,0.45];\nweights = 1;\nconstraint = {'volumeConstraint'};\nfilterType = 'PDE';\nconstraint_case = 'EQUALITY';\n\nVfrac_initial = 0.3;\noptimality_initial = 1e-5;\nconstr_initial = 1e-5;\n\nVfrac_final = 0.3;\noptimality_final = 1e-5;\nconstr_final = 1e-5;\n\nstressNormExponent_initial = 2;\nstressNormExponent_final = 64;\n\noptimizer = 'DualNestedInPrimal';\noptimizerUnconstrained = 'PROJECTED GRADIENT';\n\ndesignVariable = 'MicroParams';\nub = 0.989;\nlb = 0.011;\nhomegenizedVariablesComputer = 'ByVademecum';\n% \n%vademecumFileName = 'SuperEllipseQMax';\n%vademecumFileName = 'SuperEllipseQ2';\nvademecumFileName = 'SuperEllipseQOptAnalytic';\n% \n% designVariable = 'Density';\n% homegenizedVariablesComputer = 'ByInterpolation';\n% method = 'SIMPALL';\n% materialType = 'ISOTROPIC';\n\nkfrac = 2;\nnsteps = 50;\n\nplotting = false;\nprinting = true;\nmonitoring = true;\nmonitoring_interval = 1;\nmaxiter = 1000;\n\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/LatticeExperiments/ArchTriFineSuperEllipsePDEStressNormP64.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.3805871246298596}} {"text": "%============================================================================\n% Copyright (C) 2015, Heikki Hyyti\n%\n% Permission is hereby granted, free of charge, to any person obtaining a\n% copy of this software and associated documentation files (the \"Software\"),\n% to deal in the Software without restriction, including without limitation\n% the rights to use, copy, modify, merge, publish, distribute, sublicense,\n% and/or sell copies of the Software, and to permit persons to whom the\n% Software is furnished to do so, subject to the following conditions:\n%\n% The above copyright notice and this permission notice shall be included in\n% all copies or substantial portions of the Software.\n%\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER\n% DEALINGS IN THE SOFTWARE.\n%============================================================================\n\nclassdef DCM_IMU < handle\n% DCM_IMU Implementation of Hyyti's IMU algorithm\n%\n% If you use the algorithm in any scientific context, please cite: \n% Heikki Hyyti and Arto Visala, \"A DCM Based Attitude Estimation Algorithm for Low-Cost MEMS IMUs,\"\n% International Journal of Navigation and Observation, vol. 2015, Article ID 503814, 18 pages, 2015. \n% http://dx.doi.org/10.1155/2015/503814 \n%\n% Date Author Notes\n% 1/12/2015 Heikki Hyyti Initial release\n\n %% Public properties\n properties (Access = public)\n g0 = 9.8189; % gravitation around Helsinki, Finland (change according to your area)\n state = [0 0 1 0 0 0]'; % States are lowest row of rotation matrix and gyroscope x y and z biases\n % (C_31, C_32, C_33, w_b1, w_b2, w_b3)\n q_dcm2 = 0.1^2; % estimated variance of dcm states (gyro variance per second)\n q_gyro_bias2 = 0.0001^2; % very small number to make bias change slowly\n r_acc2 = 0.5^2; % variance of calibrated accelerometer (g-component)\n r_a2 = 10^2; % large variance for some unknown acceleration (acc = a + g)\n q_dcm2_init = 1^2; % initial variance of dcm states (for attitude estimation)\n q_gyro_bias2_init = 0.1^2; % initial variance of bias states (for bias estimator)\n a = zeros(3,1); % estimated non-gravitational accelerations\n yaw = 0; % Yaw angle around z axis (in ZYX convention)\n pitch = 0; % Pitch angle around y axis\n roll = 0; % Roll angle around x axis\n P = []; % estimate covariance (these are initialized in constructor below)\n H = []; % observation model (static)\n Q = []; % proces noise covariance (static part)\n first_row = [1 0 0]'; % first row of of the rotation matrix (for yaw angle estimate)\n end\n\n %% Public methods\n methods (Access = public)\n function obj = DCM_IMU(varargin)\n updateP = true;\n for i = 1:2:nargin\n if strcmp(varargin{i}, 'Gravity'), obj.g0 = varargin{i+1};\n elseif strcmp(varargin{i}, 'State'), obj.state = varargin{i+1};\n elseif strcmp(varargin{i}, 'Covariance'), obj.P = varargin{i+1}; updateP = false;\n elseif strcmp(varargin{i}, 'DCMVariance'), obj.q_dcm2 = varargin{i+1};\n elseif strcmp(varargin{i}, 'BiasVariance'), obj.q_gyro_bias2 = varargin{i+1};\n elseif strcmp(varargin{i}, 'InitialDCMVariance'), obj.q_dcm2_init = varargin{i+1};\n elseif strcmp(varargin{i}, 'InitialBiasVariance'), obj.q_gyro_bias2_init = varargin{i+1}; \n elseif strcmp(varargin{i}, 'MeasurementVariance'), obj.r_acc2 = varargin{i+1};\n elseif strcmp(varargin{i}, 'MeasurementVarianceVariableGain'), obj.r_a2 = varargin{i+1};\n else error('Invalid argument');\n end\n end;\n \n if (updateP), obj.P = [obj.q_dcm2_init*eye(3), zeros(3,3); zeros(3,3), obj.q_gyro_bias2_init*eye(3)]; end;\n obj.H = [eye(3)*obj.g0, zeros(3,3)];\n obj.Q = [obj.q_dcm2*eye(3), zeros(3,3); zeros(3,3) obj.q_gyro_bias2*eye(3)];\n end\n function obj = UpdateIMU(obj, Gyroscope, Accelerometer, SamplePeriod)\n x = obj.state;\n x_last = x;\n Q_ = SamplePeriod^2 * obj.Q; %Process noise covariance with time dependent noise\n \n % control input (angular velocities from gyroscopes)\n if (size(Gyroscope,1) == 3), u = Gyroscope;\n else u = Gyroscope';\n end\n \n % \"rotation operators\"\n C3X = [0 -x(3) x(2); x(3) 0 -x(1); -x(2) x(1) 0];\n UX = [0 -(u(3)-x(6)) u(2)-x(5); \n u(3)-x(6) 0 -(u(1)-x(4)); \n -(u(2)-x(5)) u(1)-x(4) 0];\n\n % Model generation\n A = [zeros(3,3) -SamplePeriod*C3X; zeros(3,6)];\n B = [SamplePeriod*C3X; zeros(3,3)];\n F = eye(6) + [-SamplePeriod*UX, -SamplePeriod*C3X; zeros(3,6)];\n\n % Kalman a priori prediction\n x_predict = x + A*x + B*u;\n P_predict = F * obj.P * F' + Q_;\n\n % measurements/observations (acceleromeres)\n if (size(Accelerometer,1) == 3), z = Accelerometer;\n else z = Accelerometer';\n end \n \n % recompute R using the error between acceleration and the model of g \n % (estimate of the magnitude of a0 in a = a0 + g)\n a_predict = z - x_predict(1:3)*obj.g0;\n a_len = sqrt(a_predict'*a_predict);\n R = (a_len*obj.r_a2 + obj.r_acc2)*eye(3);\n\n % Kalman innovation\n y = z - obj.H*x_predict;\n S = obj.H * P_predict * obj.H' + R;\n\n % Kalman gain\n K = P_predict * obj.H' / S;\n\n % update a posteriori\n x = x_predict + K * y;\n\n % update a posteriori covariance\n IKH = eye(6) - K*obj.H;\n obj.P = IKH * P_predict * IKH' + K * R * K'; % for using any K\n\n % normalization of x & P (divide by DCM vector length)\n dcm_vector_length = sqrt(x(1)^2 + x(2)^2 + x(3)^2);\n J_33 = [x(2)^2 + x(3)^2, -x(1)*x(2), -x(1)*x(3); ...\n -x(1)*x(2), x(1)^2 + x(3)^2, -x(2)*x(3); ...\n -x(1)*x(3), -x(2)*x(3), x(1)^2 + x(2)^2]; \n J = [ J_33 / (dcm_vector_length^3), zeros(3,3); zeros(3,3), eye(3)];\n\n % Laplace approximation of normalization function for x to P, J = Jacobian(f,x)\n % P_new = E[J*(x-x0)*(x-x0)'*J'] = J*E[(x-x0)*(x-x0)']*J' = J*P*J'\n obj.P = J*obj.P*J';\n x(1:3) = x(1:3) ./ dcm_vector_length;\n obj.state = x;\n\n \n % compute Euler angles (not exactly a part of the extended Kalman filter)\n % yaw integration through full rotation matrix\n u_nb = u - x(4:6);\n if (true)\n % Fill rotation matrix from angular values\n \n % cy = cos(obj.yaw); %old angles (last state before integration)\n % sy = sin(obj.yaw);\n % cp = cos(obj.pitch);\n % sp = sin(obj.pitch);\n % cr = cos(obj.roll);\n % sr = sin(obj.roll);\n \n % % compute needed parts of rotation matrix R\n % R11 = cy*cp;\n % R12 = cy*sp*sr-sy*cr;\n % R13 = cy*sp*cr+sy*sr;\n % R21 = sy*cp;\n % R22 = sy*sp*sr+cy*cr;\n % R23 = sy*sp*cr-cy*sr;\n \n % compute needed parts of rotation matrix R using state x and yaw\n cy = cos(obj.yaw); %old yaw angle (last state before integration)\n sy = sin(obj.yaw);\n d = sqrt(x_last(2)^2 + x_last(3)^2);\n d_inv = 1 / d;\n\n % compute needed parts of rotation matrix R (state and angle based version, equivalent with the commented version above)\n R11 = cy * d;\n R12 = -(x_last(3)*sy + x_last(1)*x_last(2)*cy) * d_inv;\n R13 = (x_last(2)*sy - x_last(1)*x_last(3)*cy) * d_inv;\n R21 = sy * d;\n R22 = (x_last(3)*cy - x_last(1)*x_last(2)*sy) * d_inv;\n R23 = -(x_last(2)*cy + x_last(1)*x_last(3)*sy) * d_inv;\n\n % update needed parts of R for yaw computation\n R11_new = R11 + SamplePeriod*(u_nb(3)*R12 - u_nb(2)*R13);\n R21_new = R21 + SamplePeriod*(u_nb(3)*R22 - u_nb(2)*R23);\n\n obj.yaw = atan2(R21_new,R11_new);\n else\n % alternative method estimating the whole rotation matrix\n % integrate full rotation matrix (using first row estimate in memory)\n x1 = obj.first_row + SamplePeriod*UX'*obj.first_row; %rotate x1 by x1 x u_nb\n x2 = C3X * x1; %second row x2 = (state x x1)\n x2 = x2 ./ sqrt(x2(1)^2 + x2(2)^2 + x2(3)^2); % normalize length of the second row\n x1 = C3X' * x2; %recalculate first row x1 = (x2 * state) (ensure perpendicularity)\n obj.first_row = x1 ./ sqrt(x1(1)^2 + x1(2)^2 + x1(3)^2); % normalize length\n obj.yaw = atan2(x2(1),obj.first_row(1));\n end\n \n %compute new pitch and roll angles from a posteriori states\n obj.pitch = asin(-x(1));\n obj.roll = atan2(x(2),x(3)); \n \n % save the estimated non-gravitational acceleration\n obj.a = z - x(1:3)*obj.g0; % acceleration estimate (g reduced) \n end\n end\nend\n", "meta": {"author": "hhyyti", "repo": "dcm-imu", "sha": "762992befcc87be972f9d07c01d039889b545f23", "save_path": "github-repos/MATLAB/hhyyti-dcm-imu", "path": "github-repos/MATLAB/hhyyti-dcm-imu/dcm-imu-762992befcc87be972f9d07c01d039889b545f23/@DCM_IMU/DCM_IMU.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.721743206297598, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3805871183176711}} {"text": "% rigid registration of frames with offsets ds\nfunction [dreg] = rigidMovie(data, ops1, dsall, yFOVs, xFOVs)\n\nix0 = 0;\nNbatch = 1000;\ndreg = zeros(size(data), 'single');\nwhile ix0size(data,3)) = [];\n for l = 1:size(xFOVs,2)\n dreg(yFOVs(:,l), xFOVs(:,l), indxr) = ...\n rigidRegFrames(data(yFOVs(:,l), xFOVs(:,l), indxr), ops1{1,l}, dsall(indxr,:,l));\n end\n ix0 = ix0 + Nbatch;\nend", "meta": {"author": "cortex-lab", "repo": "Suite2P", "sha": "c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5", "save_path": "github-repos/MATLAB/cortex-lab-Suite2P", "path": "github-repos/MATLAB/cortex-lab-Suite2P/Suite2P-c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5/registration/rigidMovie.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.38058711831767106}} {"text": "function deformed_image = PTKInterpolateToMatch(original_image, deformation_field, interpolation_type, reporting)\n % PTKInterpolateToMatch. Interpolates an image to match the origin and voxel\n % size specified in a deformation field\n %\n %\n % Licence\n % -------\n % Part of the TD Pulmonary Toolkit. https://github.com/tomdoel/pulmonarytoolkit\n % Author: Tom Doel, 2012. www.tomdoel.com\n % Distributed under the GNU GPL v3 licence. Please see website for details.\n %\n\n % This is similar to PTKDeformImage but there is no actual image deformation;\n % we are just reinterpolating to match the template provided by the\n % deformation field\n deformed_image = deformation_field.BlankCopy;\n deformed_image.ImageType = PTKImageType.Grayscale;\n [i_o, j_o, k_o] = original_image.GetGlobalCoordinatesMm;\n [i_o, j_o, k_o] = ndgrid(i_o, j_o, k_o);\n \n [i_r, j_r, k_r] = deformation_field.GetGlobalCoordinatesMm;\n [i_r, j_r, k_r] = ndgrid(i_r, j_r, k_r);\n\n deformed_image_raw = interpn(i_o, j_o, k_o, single(original_image.RawImage), ...\n i_r , ...\n j_r , ...\n k_r , ...\n interpolation_type, 0);\n deformed_image.ChangeRawImage(deformed_image_raw);\nend\n\n", "meta": {"author": "tomdoel", "repo": "pulmonarytoolkit", "sha": "09688a006d548fb85795df0338d1ed4f4a010fb9", "save_path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit", "path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit/pulmonarytoolkit-09688a006d548fb85795df0338d1ed4f4a010fb9/Library/Registration/PTKInterpolateToMatch.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.38058711831767106}} {"text": "function epoch = mydatesowi (sow, epoch2)\n bow2 = mydatesow_aux (epoch2);\n epoch = sow + bow2;\nend\n\n%!test\n%! % on a Sunday, sow == sod.\n%! vec = [2008 11 30 13 14 15];\n%! num = mydatenum(vec);\n%! sod = mydatesod(num);\n%! sow = mydatesow(num);\n%! num2 = mydatesodi(sod, num);\n%! num3 = mydatesowi(sow, num);\n%! %sod, sow % DEBUG\n%! %num, num2, num3 % DEBUG\n%! myassert (sow, sod, -sqrt(eps));\n%! myassert (num2, num, -sqrt(eps));\n%! myassert (num3, num, -sqrt(eps));\n\n%!test\n%! % random sow (within one weeek):\n%! sow = randint(0, 7*24*3600);\n%! bow_vec = [2008 11 30 0 0 0];\n%! bow_num = mydatenum(bow_vec);\n%! num = bow_num + sow;\n%! sow2 = mydatesow(num);\n%! num2 = mydatesowi(sow2, num);\n%! %sow2, sow, sow2-sow % DEBUG\n%! %num2, num, num2-num % DEBUG\n%! tol = 1e-7;\n%! myassert (sow2, sow, -tol);\n%! myassert (num2, num, -tol);\n\n%!test\n%! % epoch2 <> epoch.\n%! sow = randint(0, 7*24*3600);\n%! bow_vec = [2008 11 30 0 0 0];\n%! bow_num = mydatenum(bow_vec);\n%! num = bow_num + sow;\n%! bow_vec2 = [2008 11 30-7 0 0 0];\n%! bow_num2 = mydatenum(bow_vec2);\n%! sow2a = mydatesow(num, bow_num);\n%! sow2b = mydatesow(num, bow_num2);\n%! num2a = mydatesowi(sow2a, bow_num);\n%! num2b = mydatesowi(sow2b, bow_num2);\n%! %num, num2a, num2b % DEBUG\n%! tol = 1e-7;\n%! myassert (sow2a, sow, -tol);\n%! myassert (sow2b, sow+7*24*3600, -tol);\n%! myassert (num2a, num, -tol);\n%! myassert (num2b, num, -tol);\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/31065-mydate/mydate/mydate/mydatesowi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819874558603, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3805604230206354}} {"text": "function tap_delay = tapped_delay_fcn(input)\n% The Tapped Delay function delays its input by the specified number \n% of sample periods, and outputs all the delayed versions in a vector\n% form. The output includes current input\n\n% NOTE: To instruct Embedded MATLAB to compile an external function, \n% add the following compilation directive or pragma to the function code\n%#eml\n\npersistent u_d;\nif isempty(u_d)\n u_d = fi(zeros(1,40), numerictype(input), fimath(input));\nend\n\n\nu_d = [u_d(2:40), input];\n\ntap_delay = u_d;\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/16278-vectorized-adaptive-noise-canceler-using-lms-filter/lms_eml/tapped_delay_fcn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.6224593382055109, "lm_q1q2_score": 0.38056041848745664}} {"text": "function varargout = drawPlatform(plane, siz, varargin)\n%DRAWPLATFORM Draw a rectangular platform with a given size.\n%\n% drawPlatform(PLANE, SIZ) draws a rectangular platform with the\n% dimensions specified by SIZ. If SIZ contains only one value instead of \n% two the platform will be quadratic.\n%\n% drawPlatform(...,'PropertyName',PropertyValue,...) sets the value of \n% the specified patch property. Multiple property values can be set with\n% a single statement. See function patch for details.\n%\n% drawPlane3d(AX,...) plots into AX instead of GCA.\n%\n% H = drawPlatform(...) returns a handle H to the patch object.\n%\n% Example\n%\n% p0 = [1 2 3];\n% v1 = [1 0 1];\n% v2 = [0 -1 1];\n% plane = [p0 v1 v2];\n% axis([-10 10 -10 10 -10 10]);\n% drawPlatform(plane, [7,3])\n% set(gcf, 'renderer', 'zbuffer');\n%\n% See also\n% planes3d, createPlane, patch\n\n% ------\n% Author: oqilipo\n% Created: 2018-08-09\n% Copyright 2018\n\n%% Parse inputs\n\n% extract axis handle\nif numel(plane) == 1 && ishandle(plane)\n hAx = plane;\n plane = siz;\n siz = varargin{1};\n varargin(1) = [];\nelse\n hAx = gca;\nend\n\n% parse optional arguments\np = inputParser;\naddRequired(p, 'plane', @(x) size(x,1)==1 && isPlane(x))\naddRequired(p, 'siz', @(x)validateattributes(x,{'numeric'},...\n {'size',[1, nan],'positive','nonnan','real','finite'}))\nparse(p, plane, siz)\n\nif ~isempty(varargin)\n if length(varargin) == 1\n if isstruct(varargin{1})\n % if options are specified as struct, need to convert to \n % parameter name-value pairs\n varargin = [fieldnames(varargin{1}) struct2cell(varargin{1})]';\n varargin = varargin(:)';\n else\n % if option is a single argument, assume it corresponds to \n % plane color\n varargin = {'FaceColor', varargin{1}};\n end\n end\nelse\n % default face color\n varargin = {'FaceColor', 'm'};\nend\n\nif numel(siz) == 1\n siz(2) = siz(1);\nend\n\n\n%% Algorithm\n% Calculate vertex points of the platform \npts(1,:) = planePoint(plane, [1,1]*0.5.*siz);\npts(2,:) = planePoint(plane, [1,-1]*0.5.*siz);\npts(3,:) = planePoint(plane, [-1,-1]*0.5.*siz);\npts(4,:) = planePoint(plane, [-1,1]*0.5.*siz);\n\npf.vertices = pts;\npf.faces = [1 2 3 4];\n\n% Draw the patch\nh = patch(hAx, pf, varargin{:});\n\n\n%% Parse outputs\n% Return handle to plane if needed\nif nargout > 0\n varargout{1} = h;\nend\n\nend\n\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_geom3d/geom3d/drawPlatform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3805604142055474}} {"text": "function fiff_write_complex_matrix(fid,kind,mat)\n%\n% fiff_write_complex_matrix(fid,kind,mat)\n%\n% Writes a single-precision complex matrix tag\n%\n% fid An open fif file descriptor\n% kind The tag kind\n% mat The data matrix\n%\n\n%\n%\n% Author : Matti Hamalainen, MGH Martinos Center\n% License : BSD 3-clause\n%\n% Revision 1.1 2006/09/23 14:43:56 msh\n% Added routines for writing complex and double complex matrices.\n% Added routine for writing double-precision real matrix.\n%\n%\n\nme='MNE:fiff_write_complex_matrix';\n\nif nargin ~= 3\n error(me,'Incorrect number of arguments');\nend\n\nFIFFT_COMPLEX_FLOAT = 20;\nFIFFT_MATRIX = bitshift(1,30);\nFIFFT_MATRIX_COMPLEX = bitor(FIFFT_COMPLEX_FLOAT,FIFFT_MATRIX);\nFIFFV_NEXT_SEQ=0;\n\ndatasize = 2*4*numel(mat) + 4*3;\n\ncount = fwrite(fid,int32(kind),'int32');\nif count ~= 1\n error(me,'write failed');\nend\ncount = fwrite(fid,int32(FIFFT_MATRIX_COMPLEX),'int32');\nif count ~= 1\n error(me,'write failed');\nend\ncount = fwrite(fid,int32(datasize),'int32');\nif count ~= 1\n error(me,'write failed');\nend\ncount = fwrite(fid,int32(FIFFV_NEXT_SEQ),'int32');\nif count ~= 1\n error(me,'write failed');\nend\nnrow = size(mat,1);\nncol = size(mat,2);\nfor j = 1:nrow\n for k = 1:ncol\n count = fwrite(fid,real(mat(j,k)),'single');\n if count ~= 1\n error(me,'write failed');\n end\n count = fwrite(fid,imag(mat(j,k)),'single');\n if count ~= 1\n error(me,'write failed');\n end\n end\nend\ndims(1) = size(mat,2);\ndims(2) = size(mat,1);\ndims(3) = 2;\ncount = fwrite(fid,int32(dims),'int32');\nif count ~= 3\n error(me,'write failed');\nend\n\nreturn;\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/mne/fiff_write_complex_matrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.611381973294151, "lm_q2_score": 0.6224593312018545, "lm_q1q2_score": 0.3805604142055473}} {"text": "function tests = test_stackRotate90(varargin)\n%TEST_STACKROTATE90 One-line description here, please.\n% output = test_stackRotate90(input)\n%\n% Example\n% test_stackRotate90\n%\n% See also\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2010-05-18, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2010 INRA - Cepia Software Platform.\n\ntests = functiontests(localfunctions);\n\n\nfunction testRotateX(testCase)\n\nimg = createBasicTestImage;\n\nrotX1th = cat(3, [5 6;1 2], [7 8;3 4]);\nimgRX1 = stackRotate90(img, 1, 1);\nassertEqual(testCase, rotX1th, imgRX1);\nimgRX1 = stackRotate90(img, 'x', 1);\nassertEqual(testCase, rotX1th, imgRX1);\n\nrotX2th = cat(3, [7 8;5 6], [3 4;1 2]);\nimgRX2 = stackRotate90(img, 1, 2);\nassertEqual(testCase, rotX2th, imgRX2);\nimgRX2 = stackRotate90(img, 'x', 2);\nassertEqual(testCase, rotX2th, imgRX2);\n\nrotX3th = cat(3, [3 4;7 8], [1 2;5 6]);\nimgRX3 = stackRotate90(img, 1, 3);\nassertEqual(testCase, rotX3th, imgRX3);\nimgRX3 = stackRotate90(img, 'x', 3);\nassertEqual(testCase, rotX3th, imgRX3);\n\n\nfunction testRotateY(testCase)\n\nimg = createBasicTestImage;\n\nrotY1th = cat(3, [2 6;4 8], [1 5;3 7]);\nimgRY1 = stackRotate90(img, 2, 1);\nassertEqual(testCase, rotY1th, imgRY1);\nimgRY1 = stackRotate90(img, 'y', 1);\nassertEqual(testCase, rotY1th, imgRY1);\n\nrotY2th = cat(3, [6 5;8 7], [2 1;4 3]);\nimgRY2 = stackRotate90(img, 2, 2);\nassertEqual(testCase, rotY2th, imgRY2);\nimgRY2 = stackRotate90(img, 'y', 2);\nassertEqual(testCase, rotY2th, imgRY2);\n\nrotY3th = cat(3, [5 1;7 3], [6 2;8 4]);\nimgRY3 = stackRotate90(img, 2, 3);\nassertEqual(testCase, rotY3th, imgRY3);\nimgRY3 = stackRotate90(img, 'y', 3);\nassertEqual(testCase, rotY3th, imgRY3);\n\n\nfunction testRotateZ(testCase)\n\nimg = createBasicTestImage;\n\nrotZ1th = cat(3, [3 1;4 2], [7 5;8 6]);\nimgRZ1 = stackRotate90(img, 3, 1);\nassertEqual(testCase, rotZ1th, imgRZ1);\nimgRZ1 = stackRotate90(img, 'z', 1);\nassertEqual(testCase, rotZ1th, imgRZ1);\n\nrotZ2th = cat(3, [4 3;2 1], [8 7;6 5]);\nimgRZ2 = stackRotate90(img, 3, 2);\nassertEqual(testCase, rotZ2th, imgRZ2);\nimgRZ2 = stackRotate90(img, 'z', 2);\nassertEqual(testCase, rotZ2th, imgRZ2);\n\nrotZ3th = cat(3, [2 4;1 3], [6 8;5 7]);\nimgRZ3 = stackRotate90(img, 3, 3);\nassertEqual(testCase, rotZ3th, imgRZ3);\nimgRZ3 = stackRotate90(img, 'z', 3);\nassertEqual(testCase, rotZ3th, imgRZ3);\n\n\nfunction testRotateGrayscaleY(testCase)\n\nimg = createTestImageGray;\ndim = size(img);\n\n% rotate around Y-axis\nimg2 = stackRotate90(img, 2, 1);\n\n% check dimension\nassertEqual(testCase, dim([1 3 2]), size(img2));\n\n\nfunction testRotateGrayscaleX(testCase)\n\nimg = createTestImageGray;\ndim = size(img);\n\n% rotate around X-axis\nimg2 = stackRotate90(img, 1, 1);\n\nassertEqual(testCase, dim([3 2 1]), size(img2));\n\n\nfunction testRotateGrayscaleZ(testCase)\n\nimg = createTestImageGray;\ndim = size(img);\n\n% rotate around Z-axis\nimg2 = stackRotate90(img, 3, 1);\nassertEqual(testCase, dim([2 1 3]), size(img2));\n\nfunction testColorImage(testCase)\n\n% Create rgb image with non equal size in each dimension\nlx = 1:50;\nly = 1:52;\nlz = 1:54;\nr = uint8(discreteBall(lx, ly, lz, [20 30 30], 15)*255);\ng = uint8(discreteBall(lx, ly, lz, [30 20 30], 15)*255);\nb = uint8(discreteBall(lx, ly, lz, [30 30 20], 15)*255);\nimg = imMergeChannels(r, g, b);\n\n% basic checks\nassertEqual(testCase, 'uint8', class(img));\nassertEqual(testCase, [52 50 3 54], size(img));\n\n% dimension of base image, without color\ndim = size(r);\n\n% rotate around Y-axis\nimg2 = stackRotate90(img, 2, 1);\nassertEqual(testCase, [dim(1) dim(3) 3 dim(2)], size(img2));\nassertEqual(testCase, img(1,1,:,1), img2(1, end,:,1));\nassertEqual(testCase, img(1,1,:,end), img2(1, 1,:,1));\n\n% rotate around X-axis\nimg2 = stackRotate90(img, 1, 1);\nassertEqual(testCase, [dim(3) dim(2) 3 dim(1)], size(img2));\n\n% rotate around Z-axis\nimg2 = stackRotate90(img, 3, 1);\nassertEqual(testCase, [dim(2) dim(1) 3 dim(3)], size(img2));\n\n\n\nfunction img = createBasicTestImage\nimg = cat(3, [1 2;3 4], [5 6;7 8]);\n\nfunction img = createTestImageGray\n% create a 3D gray-scale test image\n% ______\n% |1 2|\\ \n% | 5 |6|\n% |3____4| |\n% \\7____\\8|\n%\nlx = 1:10;\nly = 30:5:60;\nlz = 50:10:200;\n[x, y, z] = meshgrid(lx, ly, lz);\nimg = uint8(x+y+z);\n\n\n\n", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/tests/imStacks/test_stackRotate90.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.6224593241981982, "lm_q1q2_score": 0.38056040992363815}} {"text": "function [y,D,nz] = ksvddenoise(params,msgdelta)\n%KSVDDENOISE K-SVD denoising.\n% [Y,D] = KSVDDENOISE(PARAMS) denoises the specified (possibly\n% multi-dimensional) signal using K-SVD denoising. Y is the denoised\n% signal and D is the trained dictionary produced by K-SVD.\n%\n% [Y,D] = KSVDDENOISE(PARAMS,MSGDELTA) specifies the frequency of message\n% printing during the process. MSGDELTA should be a positive number\n% representing the interval in seconds between messages. A zero or\n% negative value cancels all messages. Default is MSGDELTA=5.\n%\n% [Y,D,NZ] = KSVDDENOISE(...) also returns the average number of non-zero\n% coefficients in the representations of the denoised blocks.\n%\n%\n% Required fields in PARAMS:\n% --------------------------\n%\n% 'x' - Noisy signal.\n% The signal to denoise (can be multi-dimensional). Should be of type\n% double, and (for PSNR computations) with values within [0,1] (to\n% specify a different range, see parameter 'maxval' below).\n%\n% 'blocksize' - Size of block.\n% Indicates the size of the blocks to operate on. Should be either an\n% array of the form [N1 N2 ... Np], where p is the number of\n% dimensions of x, or simply a scalar N, representing the square block\n% [N N ... N]. See parameter 'stepsize' below to specify the amount of\n% overlap between the blocks.\n%\n% 'dictsize' - Size of dictionary to train.\n% Specifies the number of dictionary atoms to train by K-SVD.\n%\n% 'psnr' / 'sigma' - Noise power.\n% Specifies the noise power in dB (psnr) or the noise standard\n% deviation (sigma), used to determine the target error for\n% sparse-coding each block. If both fields are present, sigma is used\n% unless the field 'noisemode' is specified (below). When specifying\n% the noise power in psnr, make sure to set the 'maxval' parameter\n% as well (below) if the signal values are not within [0,1].\n%\n% 'trainnum' - Number of training blocks.\n% Specifies the number of training blocks to extract from the noisy\n% signal for K-SVD training.\n%\n%\n% Optional fields in PARAMS:\n% --------------------------\n%\n% 'initdict' - Initial dictionary.\n% Specifies the initial dictionary for the K-SVD training. Should be\n% either a matrix of size NxL where N=(N1*N2*...*Np), the string\n% 'odct' to specify the overcomplete DCT dictionary, or the string\n% 'data' to initialize using random signal blocks. When a matrix is\n% specified for 'initdict', L must be >= dictsize, and in this case\n% the dictionary is initialized using the first dictsize columns from\n% initdict. By default, initdict='odct'.\n%\n% 'stepsize' - Interval between neighboring blocks.\n% Specifies the interval (in pixels/voxels) between neighboring blocks\n% to denoise in the OMP denoising step. By default, all overlapping\n% blocks are denoised and averaged. This can be changed by specifying\n% an alternate stepsize, as an array of the form [S1 S2 ... Sp] (where\n% p is the number of dimensions of x). This sets the distance between\n% neighboring blocks to be Si in the i-th dimension. Stepsize can also\n% be a scalar S, corresponding to the step size [S S ... S]. Each Si\n% must be >= 1, and, to ensure coverage of the entire noisy signal,\n% size(x,i)-Ni should be a multiple of Si for all i. The default\n% stepsize is 1.\n%\n% 'iternum' - Number of K-SVD iterations.\n% Specifies the number of K-SVD training iterations to perform. If not\n% specified, the default is 10.\n%\n% 'maxval' - Maximal intensity value.\n% Specifies the range of the signal values. Used to determine the\n% noise standard deviation when the noise power is specified in psnr.\n% By default, the signal values are assumed to be within [0,1]. When\n% 'maxval' is specified, this range changes to [0,maxval].\n%\n% 'memusage' - Memory usage.\n% This parameter controls memory usage of the function. 'memusage'\n% should be one of the strings 'high', 'normal' (default) or 'low'.\n% When 'memusage' is specified, both KSVD and OMPDENOISE are invoked\n% using their corresponding memusage setting. Additionallly, when set\n% to 'low', the use of the functions OMPDENOISE2 and OMPDENOISE3 to\n% accelerate denoising of 2-D and 3-D signals is disabled, reverting\n% to the function OMPDENOISE. Note that the 'low' setting will\n% significantly increase runtime.\n%\n%\n% Optional fields in PARAMS - advanced:\n% -------------------------------------\n%\n% 'noisemode' - Noise power mode.\n% Specifies whether the 'psnr' or 'sigma' fields should be used to\n% determine the noise power. This is useful when both fields are\n% present in PARAMS. 'noisemode' should be one of the string 'psnr' or\n% 'sigma'. If it is not present, and both fields are specified,\n% 'sigma' is used.\n%\n% 'gain' - Noise gain.\n% A positive value (usually near 1) controlling the target error for\n% sparse-coding each block. When gain=1, the target error is precisely\n% the value derived from the psnr/sigma fields. When gain is different\n% from 1, the target error is multiplied by this value. The default\n% value is gain = 1.15.\n%\n% 'lambda' - Weight of the input signal.\n% Specifies the relative weight attributed to the noisy input signal\n% in determining the output. The default value is 0.1*(maxval/sigma),\n% where sigma is the standard deviation of the noise. See function\n% OMPDENOISE for more information.\n%\n% 'maxatoms' - Maximal number of atoms.\n% This parameter can be used to specify a hard limit on the number of\n% atoms used to sparse-code each block. Default value is\n% prod(blocksize)/2, i.e. half the number of samples in a block. See\n% function OMP2 for more information.\n%\n% 'exact' - Exact K-SVD update.\n% Specifies whether the exact or approximate dictionary update should\n% be used in the K-SVD training. By default, the approximate\n% computation is used. However, specifying a nonzero value for 'exact'\n% causes the exact computation to be used instead. See function KSVD\n% for more information.\n%\n%\n% Summary of all fields in PARAMS:\n% --------------------------------\n%\n% Required:\n% 'x' signal to denoise\n% 'blocksize' size of block to process\n% 'dictsize' size of dictionary to train\n% 'psnr' / 'sigma' noise power in dB / standard deviation\n% 'trainnum' number of training signals\n%\n% Optional (default values in parenthesis):\n% 'initdict' initial dictionary ('odct')\n% 'stepsize' distance between neighboring blocks (1)\n% 'iternum' number of training iterations (10)\n% 'maxval' maximal intensity value (1)\n% 'memusage' 'low, 'normal' or 'high' ('normal')\n% 'noisemode' 'psnr' or 'sigma' ('sigma')\n% 'gain' noise gain (1.15)\n% 'lambda' weight of input signal (0.1*maxval/sigma)\n% 'maxatoms' max # of atoms per block (prod(blocksize)/2)\n% 'exact' exact update instead of approximate (0)\n%\n%\n% References:\n% [1] M. Elad and M. Aharon, \"Image Denoising via Sparse and Redundant\n% representations over Learned Dictionaries\", the IEEE Trans. on Image\n% Processing, Vol. 15, no. 12, pp. 3736-3745, December 2006.\n%\n% See also KSVD, OMPDENOISE, OMP2.\n\n\n% Ron Rubinstein\n% Computer Science Department\n% Technion, Haifa 32000 Israel\n% ronrubin@cs\n%\n% August 2009\n\n\n%%%%% parse input parameters %%%%%\naddpath('ompbox');\n\nx = params.x;\nblocksize = params.blocksize;\ntrainnum = params.trainnum;\ndictsize = params.dictsize;\n\np = ndims(x);\nif (p==2 && any(size(x)==1) && length(blocksize)==1)\n p = 1;\nend\n\n\n% blocksize %\nif (numel(blocksize)==1)\n blocksize = ones(1,p)*blocksize;\nend\n\n\n% maxval %\nif (isfield(params,'maxval'))\n maxval = params.maxval;\nelse\n maxval = 1;\n params.maxval = maxval;\nend\n\n\n% gain %\nif (isfield(params,'gain'))\n gain = params.gain;\nelse\n gain = 1.15;\n params.gain = gain;\nend\n\n\n% msgdelta %\nif (nargin<2)\n msgdelta = 5;\nend\n\nverbose = 't';\nif (msgdelta <= 0)\n verbose='';\n msgdelta = -1;\nend\n\n\n% initial dictionary %\n\nif (~isfield(params,'initdict'))\n params.initdict = 'odct';\nend\n\nif (isfield(params,'initdict') && ischar(params.initdict))\n if (strcmpi(params.initdict,'odct'))\n params.initdict = odctndict(blocksize,dictsize,p);\n elseif (strcmpi(params.initdict,'data'))\n params = rmfield(params,'initdict'); % causes initialization using random examples\n else\n error('Invalid initial dictionary specified.');\n end\nend\n\nif (isfield(params,'initdict'))\n params.initdict = params.initdict(:,1:dictsize);\nend\n\n\n% noise mode %\nif (isfield(params,'noisemode'))\n switch lower(params.noisemode)\n case 'psnr'\n sigma = maxval / 10^(params.psnr/20);\n case 'sigma'\n sigma = params.sigma;\n otherwise\n error('Invalid noise mode specified');\n end\nelseif (isfield(params,'sigma'))\n sigma = params.sigma;\nelseif (isfield(params,'psnr'))\n sigma = maxval / 10^(params.psnr/20);\nelse\n error('Noise strength not specified');\nend\n\nparams.Edata = sqrt(prod(blocksize)) * sigma * gain; % target error for omp\nparams.codemode = 'error';\n\nparams.sigma = sigma;\nparams.noisemode = 'sigma';\n\n\n% make sure test data is not present in params\nif (isfield(params,'testdata'))\n params = rmfield(params,'testdata');\nend\n\n\n%%%% create training data %%%\n\nids = cell(p,1);\nif (p==1)\n ids{1} = reggrid(length(x)-blocksize+1, trainnum, 'eqdist');\nelse\n [ids{:}] = reggrid(size(x)-blocksize+1, trainnum, 'eqdist');\nend\nparams.data = sampgrid(x,blocksize,ids{:});\nparams.data = remove_dc(params.data,'columns');\n\n\n%%%%% KSVD training %%%%%\n\nif (msgdelta>0)\n disp('KSVD training...');\nend\nD = ksvd(params,verbose,msgdelta);\n\n\n%%%%% denoise the signal %%%%%\n\nif (~isfield(params,'lambda'))\n params.lambda = maxval/(10*sigma);\nend\n\nparams.dict = D;\n\nif (msgdelta>0)\n disp('OMP denoising...');\nend\n\n% call the appropriate ompdenoise function\nif (p>3 || (isfield(params,'memusage') && strcmpi(params.memusage,'low')))\n [y,nz] = ompdenoise(params,msgdelta);\nelseif (p==1)\n [y,nz] = ompdenoise1(params,msgdelta);\nelseif (p==2)\n [y,nz] = ompdenoise2(params,msgdelta);\nelse\n [y,nz] = ompdenoise3(params,msgdelta);\nend\n\nreturn;\n\n", "meta": {"author": "xingchenzhang", "repo": "VIFB", "sha": "7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa", "save_path": "github-repos/MATLAB/xingchenzhang-VIFB", "path": "github-repos/MATLAB/xingchenzhang-VIFB/VIFB-7a89c52b46cfe52dd4d93d4f93cf367a0ed3f8fa/methods/NSCT_SR/sparsefusion/ksvdbox/ksvddenoise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945417, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3805604056417288}} {"text": "classdef testNotCommutingHomogPlaneStress < ...\n testCommutingHomogPlaneStress\n\n methods (Access = protected, Static)\n\n function nu = createPoissonValue()\n nu = 1/3;\n end\n end\n\n methods (Access = public)\n\n function hasPassed = hasPassed(obj)\n c1 = obj.vhpTensor.getValue();\n c2 = obj.vphTensor.getValue();\n error = norm(c2-c1)/norm(c1);\n hasPassed = error > 1e-6;\n end\n\n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/tests/Source/HomogenizationTests/testNotCommutingHomogPlaneStress.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723317123102956, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.38055221096776026}} {"text": "function range = p00_range ( prob )\n\n%*****************************************************************************80\n%\n%% P00_RANGE returns an interval bounding the root for any problem.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 15 January 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer PROB, the number of the problem.\n%\n% Output, real RANGE(2), the minimum and maximum values of\n% an interval containing the root.\n%\n if ( prob == 1 )\n range = p01_range ( );\n elseif ( prob == 2 )\n range = p02_range ( );\n elseif ( prob == 3 )\n range = p03_range ( );\n elseif ( prob == 4 )\n range = p04_range ( );\n elseif ( prob == 5 )\n range = p05_range ( );\n elseif ( prob == 6 )\n range = p06_range ( );\n elseif ( prob == 7 )\n range = p07_range ( );\n elseif ( prob == 8 )\n range = p08_range ( );\n elseif ( prob == 9 )\n range = p09_range ( );\n elseif ( prob == 10 )\n range = p10_range ( );\n elseif ( prob == 11 )\n range = p11_range ( );\n elseif ( prob == 12 )\n range = p12_range ( );\n elseif ( prob == 13 )\n range = p13_range ( );\n elseif ( prob == 14 )\n range = p14_range ( );\n elseif ( prob == 15 )\n range = p15_range ( );\n elseif ( prob == 16 )\n range = p16_range ( );\n elseif ( prob == 17 )\n range = p17_range ( );\n elseif ( prob == 18 )\n range = p18_range ( );\n elseif ( prob == 19 )\n range = p19_range ( );\n else\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P00_RANGE - Fatal error%\\n' );\n fprintf ( 1, ' Illegal problem number = %d\\n', prob );\n error ( 'P00_RANGE - Fatal error%' );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_zero/p00_range.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185205547239, "lm_q2_score": 0.6723316991792861, "lm_q1q2_score": 0.3805521936915032}} {"text": "function [dataout] = ft_denoise_dssp(cfg, datain)\n\n% FT_DENOISE_DSSP implements a dual signal subspace projection algorithm\n% to suppress interference outside a predefined source region of\n% interest. It is based on: Sekihara et al. J. Neural Eng. 2016 13(3), and\n% Sekihara et al. J. Neural Eng. 2018 15(3).\n%\n% Use as\n% dataout = ft_denoise_dssp(cfg, datain)\n% where cfg is a configuration structure that contains\n% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details\n% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')\n% cfg.sourcemodel = structure, source model with precomputed leadfields, see FT_PREPARE_LEADFIELD\n% cfg.dssp = structure with parameters that determine the behavior of the algorithm\n% cfg.dssp.n_space = 'all', or scalar. Number of dimensions for the\n% initial spatial projection.\n% cfg.dssp.n_in = 'all', or scalar. Number of dimensions of the\n% subspace describing the field inside the ROI.\n% cfg.dssp.n_out = 'all', or scalar. Number of dimensions of the\n% subspace describing the field outside the ROI.\n% cfg.dssp.n_intersect = scalar (default = 0.9). Number of dimensions (if\n% value is an integer>=1), or threshold for the\n% included eigenvalues (if value<1), determining\n% the dimensionality of the intersection.\n%\n% See also FT_DENOISE_PCA, FT_DENOISE_SYNTHETIC, FT_DENOISE_TSR\n\n% these are used by the ft_preamble/ft_postamble function and scripts\nft_revision = '$Id$';\nft_nargin = nargin;\nft_nargout = nargout;\n\n% do the general setup of the function\nft_defaults\nft_preamble init\nft_preamble debug\nft_preamble loadvar datain\nft_preamble provenance datain\nft_preamble trackconfig\n\n% the ft_abort variable is set to true or false in ft_preamble_init\nif ft_abort\n % do not continue function execution in case the outputfile is present and the user indicated to keep it\n return\nend\n\n% check the input data\ndatain = ft_checkdata(datain, 'datatype', {'raw'}); % FIXME how about timelock and freq?\n\ncfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});\ncfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});\ncfg = ft_checkconfig(cfg, 'renamed', {'grid', 'sourcemodel'});\n\n% get the options\ncfg.trials = ft_getopt(cfg, 'trials', 'all', 1);\ncfg.channel = ft_getopt(cfg, 'channel', 'all');\ncfg.sourcemodel = ft_getopt(cfg, 'sourcemodel');\ncfg.dssp = ft_getopt(cfg, 'dssp'); % sub-structure to hold the parameters\ncfg.dssp.n_space = ft_getopt(cfg.dssp, 'n_space', 'all'); % number of spatial components to retain from the Gram matrix\ncfg.dssp.n_in = ft_getopt(cfg.dssp, 'n_in', 'all'); % dimensionality of the Bin subspace to be used for the computation of the intersection\ncfg.dssp.n_out = ft_getopt(cfg.dssp, 'n_out', 'all'); % dimensionality of the Bout subspace to be used for the computation of the intersection\ncfg.dssp.n_intersect = ft_getopt(cfg.dssp, 'n_intersect', 0.9); % dimensionality of the intersection\ncfg.output = ft_getopt(cfg, 'output', 'original');\n\n% select channels and trials of interest, by default this will select all channels and trials\ntmpcfg = keepfields(cfg, {'trials', 'channel', 'showcallinfo'});\ndatain = ft_selectdata(tmpcfg, datain);\n% restore the provenance information\n[cfg, datain] = rollback_provenance(cfg, datain);\n\n% match the input data's channels with the labels in the leadfield\nsourcemodel = cfg.sourcemodel;\nif ~isfield(sourcemodel, 'leadfield')\n ft_error('cfg.sourcemodel needs to contain leadfields');\nend\n[indx1, indx2] = match_str(datain.label, sourcemodel.label);\nif ~isequal(indx1(:),(1:numel(datain.label))')\n ft_error('unsupported mismatch between data channels and leadfields');\nend\nif islogical(sourcemodel.inside)\n inside = find(sourcemodel.inside);\nelse\n inside = sourcemodel.inside;\nend\nfor k = inside(:)'\n sourcemodel.leadfield{k} = sourcemodel.leadfield{k}(indx2,:);\nend\n\n% compute the Gram-matrix of the supplied forward model\nlf = cat(2, sourcemodel.leadfield{:});\nG = lf*lf';\n\ndat = cat(2,datain.trial{:});\n[dum, Ae, N, Nspace, Sout, Sin, Sspace, S] = dssp(dat, G, cfg.dssp.n_in, cfg.dssp.n_out, cfg.dssp.n_space, cfg.dssp.n_intersect);\ndatAe = dat*Ae; % the projection is a right multiplication\n% with a matrix (eye(size(Ae,1))-Ae*Ae'), since Ae*Ae' can become quite\n% sizeable, it's computed slightly differently here.\n\n% put some diagnostic information in the output cfg.\ncfg.dssp.S_space = Sspace;\ncfg.dssp.n_space = Nspace;\ncfg.dssp.S_out = Sout;\ncfg.dssp.S_in = Sin;\ncfg.dssp.S_intersect = S;\ncfg.dssp.n_intersect = N;\n\n% compute the cleaned data and put in a cell-array\nnsmp = cellfun(@numel, datain.time);\ncsmp = cumsum([0 nsmp]);\ntrial = cell(size(datain.trial));\nswitch cfg.output\n case 'original'\n for k = 1:numel(datain.trial)\n trial{k} = datain.trial{k} - datAe*Ae((csmp(k)+1):csmp(k+1),:)';\n end\n case 'complement'\n for k = 1:numel(datain.trial)\n trial{k} = datAe*Ae((csmp(k)+1):csmp(k+1),:)';\n end\n otherwise\n ft_error(sprintf('cfg.output = ''%s'' is not implemented',cfg.output));\nend\n\n% create the output argument\ndataout = keepfields(datain, {'label','time','fsample','trialinfo','sampleinfo','grad', 'elec', 'opto'}); % grad can be kept and does not need to be balanced, since the cleaned data is a mixture over time, not space.\ndataout.trial = trial;\n\nft_postamble debug\nft_postamble trackconfig\nft_postamble previous datain\nft_postamble provenance dataout\nft_postamble history dataout\nft_postamble savevar dataout\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% subfunctions for the computation of the projection matrix\n% kindly provided by Kensuke, and adjusted a bit by Jan-Mathijs\nfunction [Bclean, Ae, Nee, Nspace, Sout, Sin, Sspace, S] = dssp(B, G, Nin, Nout, Nspace, Nee)\n\n% Nc: number of sensors\n% Nt: number of time points\n% inputs\n% B(Nc,Nt): interference overlapped sensor data\n% G(Nc,Nc): Gram matrix of voxel lead field\n% Nout and Nin: dimensions of the two row spaces\n% recom_Nspace: recommended value for the dimension of the pseudo-signal subspace\n% outputs\n% Bclean(Nc,Nt): cleaned sensor data\n% Nee: dimension of the intersection\n% Nspace: dimension of the pseudo-signal subspace\n% ------------------------------------------------------------\n% programmed by K. Sekihara, Signal Analysis Inc.\n% All right reserved by Signal Analysis Inc.\n% -------------------------------------------------------------\n%\n% The code below is modified by Jan-Mathijs, no functional changes\n% merely cosmetics\n\n% eigen decomposition of the Gram matrix, matrix describing the spatial\n% components\n[U,S] = eig(G);\nSspace = abs(diag(S));\n\n[Sspace, iorder] = sort(-Sspace);\nSspace = -Sspace;\nU(:,:) = U(:,iorder);\n\nif isempty(Nspace)\n ttext = 'enter the spatial dimension: ';\n Nspace = input(ttext);\nelseif ischar(Nspace) && isequal(Nspace, 'interactive')\n figure, plot(log10(Sspace),'-o');\n Nspace = input('enter spatial dimension of the ROI subspace: ');\nelseif ischar(Nspace) && isequal(Nspace, 'all')\n Nspace = find(Sspace./Sspace(1)>1e5*eps, 1, 'last');\nend\nfprintf('Using %d spatial dimensions\\n', Nspace);\n\n% spatial subspace projector\nUs = U(:,1:Nspace);\nUSUS = Us*Us';\n\n% Bin and Bout creations\nBin = USUS * B;\nBout = (eye(size(USUS))-USUS) * B;\n\n% create the temporal subspace projector and apply it to the data\n%[AeAe, Nee] = CSP01(Bin, Bout, Nout, Nin, Nee);\n%Bclean = B*(eye(size(AeAe))-AeAe);\n\n[Ae, Nee, Sout, Sin, S] = CSP01(Bin, Bout, Nin, Nout, Nee);\nBclean = B - (B*Ae)*Ae'; % avoid computation of Ae*Ae'\n\n\nfunction [Ae, Nee, Sout, Sin, S] = CSP01(Bin, Bout, Nin, Nout, Nee)\n%\n% interference rejection by removing the common temporal subspace of the two subspaces\n% K. Sekihara, March 28, 2012\n% Golub and Van Loan, Matrix computations, The Johns Hopkins University Press, 1996\n%\n% Nc: number of channels\n% Nt: number of time points\n% inputs\n% Bout(1:Nc,1:Nt): interference data\n% Bin(1:Nc,1:Nt): signal plus interference data\n% ypost(1:Nc,1:Nt): denoised data\n% Nout: dimension of the interference subspace\n% Nin: dimension of the signal plus interference subspace\n% Nee: dimension of the intersection of the two subspaces\n% outputs\n% Ae = matrix from which the projector onto the intersection can\n% be obtained:\n% AeAe: projector onto the intersection, which is equal to the\n% interference subspace.\n% Nee: dimension of the intersection\n% ------------------------------------------------------------\n% programmed by K. Sekihara, Signal Analysis Inc.\n% All right reserved by Signal Analysis Inc.\n% -------------------------------------------------------------\n%\n\n[dum,Sout,Vout] = svd(Bout,'econ');\n[dum,Sin, Vin] = svd(Bin, 'econ');\nSout = diag(Sout);\nSin = diag(Sin);\n\nif isempty(Nout)\n ttext = 'enter the spatial dimension for the outside field: ';\n Nout = input(ttext);\nelseif ischar(Nout) && isequal(Nout, 'interactive')\n figure, plot(Sout,'-o');\n Nout = input('enter dimension of the outside field: ');\nelseif ischar(Nout) && isequal(Nout, 'all')\n Nout = find(Sout./Sout(1)>1e5*eps, 1, 'last');\nend\nfprintf('Using %d spatial dimensions for the outside field\\n', Nout);\n\nif isempty(Nin)\n ttext = 'enter the spatial dimension for the inside field: ';\n Nin = input(ttext);\nelseif ischar(Nin) && isequal(Nin, 'interactive')\n figure, plot(log10(Sin),'-o');\n Nin = input('enter dimension of the inside field: ');\nelseif ischar(Nin) && isequal(Nin, 'all')\n Nin = find(Sin./Sin(1)>1e5*eps, 1, 'last');\nend\nfprintf('Using %d spatial dimensions for the inside field\\n', Nin);\n\nQout = Vout(:,1:Nout);\nQin = Vin(:, 1:Nin);\n\nC = Qin'*Qout;\n[U,S] = svd(C);\nS = diag(S);\nif (ischar(Nee) && strcmp(Nee, 'auto'))\n ft_error('automatic determination of intersection dimension is not supported');\nelseif ischar(Nee) && strcmp(Nee, 'interactive')\n figure, plot(S,'-o');\n Nee = input('enter dimension of the intersection: ');\nelseif Nee<1\n % treat a numeric value < 1 as a threshold\n Nee = find(S>Nee,1,'last');\n if isempty(Nee), Nee = 1; end\nend\nfprintf('Using %d dimensions for the interaction\\n', Nee);\n\nAe = Qin*U;\nAe = Ae(:,1:Nee);\n%AeAe = Ae*Ae';\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/ft_denoise_dssp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583376458152, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3805069753827569}} {"text": "function linplus_test534 ( )\n\n%*****************************************************************************80\n%\n%% TEST534 tests R8S3_WRITE.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 March 2009\n%\n% Author:\n%\n% John Burkardt\n%\n n = 100;\n nz_num = 3 * n - 2;\n output_file = 'r8s3_matrix.txt';\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST534\\n' );\n fprintf ( 1, ' For a R8S3 system,\\n' );\n fprintf ( 1, ' R8S3_WRITE writes the matrix to a file.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Matrix order N = %d\\n', n );\n fprintf ( 1, ' Matrix nonzeros NZ_NUM = %d\\n', nz_num );\n\n isym = 0;\n%\n% Set the matrix values.\n%\n k = 0;\n for i = 1 : n\n k = k + 1;\n j = i;\n row(k) = i;\n col(k) = j;\n a(k) = 100 * i + j;\n end\n\n for i = 2 : n\n j = i - 1;\n k = k + 1;\n row(k) = i;\n col(k) = j;\n a(k) = 100 * i + j;\n end\n\n for i = 1 : n-1\n j = i + 1;\n k = k + 1;\n row(k) = i;\n col(k) = j;\n a(k) = 100 * i + j;\n end\n\n r8s3_print_some ( n, n, nz_num, isym, row, col, a, 1, 1, ...\n 10, 10, ' Initial 10x10 block of R8S3 matrix:' );\n\n r8s3_write ( n, nz_num, isym, row, col, a, output_file );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' R8S3_WRITE wrote the matrix data to \"%s\"\\n.', ...\n output_file );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/linplus/linplus_test534.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.546738151984614, "lm_q2_score": 0.6959583313396339, "lm_q1q2_score": 0.3805069719349271}} {"text": "%% SOBOL_TEST02 tests BIT_HI1_BASE_2.\n%\nfprintf ( 1, '\\n' );\nfprintf ( 1, 'SOBOL_TEST02\\n' );\nfprintf ( 1, ' BIT_HI1_BASE_2 returns the location of the high 1 bit.\\n' );\n\nfprintf ( 1, '\\n' );\nfprintf ( 1, ' I BIT_HI1_BASE_2\\n' );\nfprintf ( 1, '\\n' );\n\nseed = get_seed ( 0 );\n\nfor ( test = 1 : 10 )\n\n [ i, seed ] = i_random ( 0, 100, seed );\n\n j = bit_hi1_base_2 ( i );\n\n fprintf ( 1, '%6d %6d %6d\\n', i, j );\n\nend \n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/GA3/Sobol/sobol_test02.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.6959583250334526, "lm_q1q2_score": 0.3805069684870971}} {"text": "% Test file for @chebfun/assignColumns.m.\n\nfunction pass = test_assignColumns(pref)\n\nif ( nargin < 1 )\n pref = chebfunpref();\nend\n\nfunlist = {@chebfun, @quasimatrix};\n\nfor k = 1:2\n myfun = funlist{k};\n \n % Generate a few random points to use as test values.\n seedRNG(6178);\n x = 2 * rand(10, 1) - 1;\n\n % Check a few examples.\n f = myfun(@(x) [sin(x) cos(x) exp(x)], [-1 0 1], pref);\n g = myfun(@(x) x, [-1 1], pref);\n\n h = assignColumns(f, 1, g);\n h_exact = @(x) [x cos(x) exp(x)];\n err = feval(h, x) - h_exact(x);\n pass(k,1) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n h = assignColumns(f, 3, g);\n h_exact = @(x) [sin(x) cos(x) x];\n err = feval(h, x) - h_exact(x);\n pass(k,2) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n g = myfun(@(x) [x x.^2], [-1 0 1], pref);\n\n h = assignColumns(f, [3 1], g);\n h_exact = @(x) [x.^2 cos(x) x];\n err = feval(h, x) - h_exact(x);\n pass(k,3) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n h = assignColumns(f, [2 2], g);\n h_exact = @(x) [sin(x) x.^2 exp(x)];\n err = feval(h, x) - h_exact(x);\n pass(k,4) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n g = myfun(@(x) [x x.^2 x.^3], [-1 -0.5 0.5 1], pref);\n\n h = assignColumns(f, [1 2 3], g);\n h_exact = @(x) [x x.^2 x.^3];\n err = feval(h, x) - h_exact(x);\n pass(k,5) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n hc = assignColumns(f, ':', g);\n pass(k,6) = isequal(hc, h);\n\n h = assignColumns(f, [2 1], [-0.5 0.5]);\n h_exact = @(x) [(0.5 + 0*x) (-0.5 + 0*x) exp(x)];\n err = feval(h, x) - h_exact(x);\n pass(k,7) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n h = assignColumns(f.', [2 1], [-0.5 ; 0.5]);\n h_exact = @(x) [(0.5 + 0*x) (-0.5 + 0*x) exp(x)].';\n err = feval(h, x) - h_exact(x);\n pass(k,8) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n % Check error conditions.\n try\n h = assignColumns(f, [1 2 3], g.');\n pass(k,9) = false;\n catch ME\n pass(k,9) = strcmp(ME.identifier, ...\n 'CHEBFUN:CHEBFUN:assignColumns:numCols');\n end\n\n try\n h = assignColumns(f, [1 2], g);\n pass(k,10) = false;\n catch ME\n pass(k,10) = strcmp(ME.identifier, ...\n 'CHEBFUN:CHEBFUN:assignColumns:numCols');\n end\n\n try\n g2 = myfun(@(x) [x x.^2 x.^3], [0 1], pref);\n h = assignColumns(f, [1 2 3], g2);\n pass(k,11) = false;\n catch ME\n pass(k,11) = strcmp(ME.identifier, ...\n 'CHEBFUN:CHEBFUN:assignColumns:domain');\n end\n\n % Test assign outside of dimension of f:\n h = assignColumns(f, [1 2 4], g);\n h_exact = @(x) [x x.^2 exp(x) x.^3];\n err = feval(h, x) - h_exact(x);\n pass(k,12) = norm(err(:), inf) < 10*vscale(h)*eps;\n\n %% Test for function defined on unbounded domain:\n \n % Functions on [-inf b]:\n \n % Set the domain:\n dom = [-Inf -3*pi];\n domCheck = [-1e6 -3*pi];\n \n % Generate a few random points to use as test values:\n x = diff(domCheck) * rand(100, 1) + domCheck(1);\n \n % Array-valued function:\n op = @(x) [exp(x) x.*exp(x) (1-exp(x))./x];\n opg = @(x) exp(-x.^2);\n oph = @(x) [exp(x) exp(-x.^2) (1-exp(x))./x];\n \n f = myfun(op, dom);\n g = myfun(opg, dom);\n h = assignColumns(f, 2, g);\n err = feval(h, x) - oph(x); \n pass(k,13) = norm(err, inf) < 1e2*vscale(h)*eps;\n \n \n %% Test removing columns (#889)\n \n x = chebfun('x');\n xx = [x 2*x];\n if ( k == 2 )\n xx = cheb2quasi(xx);\n end\n xx(:,2) = [];\n pass(k,14) = numColumns(xx) == 1 && norm(x - xx) < eps;\n \n x = chebfun('x');\n xx = [x 2*abs(x)];\n if ( k == 1 )\n xx = quasi2cheb(xx);\n end\n xx(:,2) = [];\n pass(k,15) = numColumns(xx) == 1 && norm(x - xx) < eps;\n \nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/chebfun/test_assignColumns.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3804726107222933}} {"text": "function [gSig, gSiz, ring_radius, min_corr, min_pnr] = set_parameters(obj)\n%% choose parameters used in CNMF-E\n\n%% Author: Pengcheng Zhou, Columbia University, 2017\n%zhoupc1988@gmail.com\n\ngSiz = obj.options.gSiz;\ngSig = obj.options.gSig;\nring_radius = obj.options.ring_radius;\nmin_corr = obj.options.min_corr;\nmin_pnr = obj.options.min_pnr;\n\n%% choose gSiz, which is the neuron diameter\nfprintf('\\n*** Determine the neuron diameter (gSiz) and the gaussian width (gSig) of the filtering kernel.\\n');\nfprintf('\\t-------------------------- GUIDE --------------------------\\n');\nfprintf('\\tgSiz is usually slightly larger than a neuron;\\n');\nfprintf('\\tgSig is usually selected as 1/4 of gSiz when the data is 1p\\n');\nfprintf('\\tgSig is usually selected as 1 when the data is 2p.\\n');\nfprintf('\\tIntegers are preferred for both values, but not necessary.\\n');\nfprintf('\\tOdd number is preferred for gSiz. \\n');\nfprintf('\\tWhen you want to make a change, an image will be shown.\\n');\nfprintf('\\tYou can zoon in to see the size of a typical neuron.\\n');\nfprintf('\\t-------------------------- END --------------------------\\n\\n');\n\nfprintf('You current selection of parameters (gSiz, gSig) are (%.1f, %.1f).\\n', gSiz, gSig);\ntemp = input('Do you want to make a change? (y/n) ', 's');\nif strcmpi(temp, 'n')\n fprintf('Your values for (gSiz, gSig) will stay the same\\n');\nelse\n Y = get_patch_data(obj.P.mat_data, [], [1,100]);\n [d1,d2, T] = size(Y);\n Y = reshape(Y, d1*d2, T);\n fprintf('Wait for a few second ....\\n');\n if obj.options.center_psf\n [u, v] = nnmf(double(Y),1);\n img = reshape(max(double(Y)-u*v, [], 2), d1,d2);\n else\n img = reshape(max(Y,[],2), d1,d2);\n end\n fig_1 = figure;\n imagesc(img); axis equal;\n while true\n temp = input('type new values for (gSiz, gSig): ', 's');\n try\n new_values = str2num(temp); %#ok<*ST2NM>\n gSiz = new_values(1);\n gSig = new_values(2);\n obj.options.gSig = gSig;\n obj.options.gSiz = gSiz;\n fprintf('Good! You current selection of parameters (gSiz, gSig) are (%.1f, %.1f).\\n', gSiz, gSig);\n break;\n catch\n warning('values are bad. try again');\n continue;\n end\n end\n try\n close(fig_1);\n end\nend\n\n%%\n%% choose the radius of the ring\nif strcmpi('obj.options.background_model', 'ring')\n fprintf('\\n*** Determine the ring radius for estimating background fluctuations.\\n');\n fprintf('\\t-------------------------- GUIDE --------------------------\\n');\n fprintf('\\tThe ring radius is selected to be larger than neuron diameters. \\n');\n fprintf('\\tThus pixels in the center only shares the common background fluctuations with pixels on the ring.\\n');\n fprintf('\\tA usual ratio between ring radius and neuron diameter is between 1 to 3. 1.5 is the default value.\\n');\n fprintf('\\tSmall values have a change of being smaller than neuron size.\\n');\n fprintf('\\tLarge values increase the computation cost.\\n');\n fprintf('\\t-------------------------- END --------------------------\\n\\n');\n \n fprintf('You current selection of ring_radius is %d pixels.\\n', ring_radius);\n temp = input('Do you want to make a change? (y/n) ', 's');\n if strcmpi(temp, 'n')\n fprintf('Your values for ring_radius will stay the same\\n');\n else\n while true\n temp = input('type new values for ring_radius: ', 's');\n try\n ring_radius = str2double(temp);\n obj.options.ring_radius = ring_radius;\n fprintf('Good! You current selection of parameters ring_radius is %2d.\\n', ring_radius);\n break;\n catch\n warning('values are bad. try again');\n continue;\n end\n end\n end\nend\n%% choose parameters for min_corr and min_pnr\nfprintf('\\n*** Determine min_corr and min_pnr for screening seed pixels.\\n');\nfprintf('\\t-------------------------- GUIDE --------------------------\\n');\nfprintf('\\tA seed pixel is used for initializing one neuron.\\n');\nfprintf('\\tSeed pixel usually locates at the center of each neuron.\\n');\nfprintf('\\tSeed pixel is determined using two values: min_corr and min_pnr.\\n');\nfprintf('\\tmin_pnr stands for minimum local correlation. \\n');\nfprintf('\\tPNR stands for minimum peak-to-noise ratio.\\n');\nfprintf('\\tWe want to pick thresholds that all neuron centers are above the thresholds,\\n');\nfprintf('\\tand include the least number of non-ROI pixels. \\n');\nfprintf('\\tThere is a trade-of between missing neurons and acquiring more false positives.\\n');\nfprintf('\\tWhen it is hard to determine, we tend to choose missing neurons, i.e., larger threshlds.\\n');\nfprintf('\\tThose missed neurons can be picked up from the residual video later.\\n');\nfprintf('\\tTip: use Data Cursor to help you pick thresholds.\\n');\nfprintf('\\t-------------------------- END --------------------------\\n\\n');\n\nfprintf('You current selection of parameters (min_corr, min_pnr) are (%.3f, %.3f).\\n', min_corr, min_pnr);\ntemp = input('Do you want to make a change? (y/n) ', 's');\nif strcmpi(temp, 'n')\n fprintf('Your values for (min_corr, min_pnr) will stay the same\\n');\nelse\n \n if isempty(obj.Cn) || isempty(obj.PNR)\n fprintf('computing the correlation image and the peak-to-noise ratio image....\\n');\n [cn, pnr] = obj.correlation_pnr_parallel([1, 5000]);\n obj.Cn = cn;\n obj.PNR = pnr;\n fprintf('Done\\n');\n else\n cn = obj.Cn;\n pnr = obj.PNR;\n end\n \n %find all local maximum as initialization point\n tmp_d = max(1,round(gSiz/4));\n v_max = ordfilt2(cn.*pnr, tmp_d^2, true(tmp_d));\n ind = (v_max==cn.*pnr);\n \n figure('papersize', [12, 3]);\n init_fig;\n subplot(131);\n imagesc(cn, [0, 1]);\n title('local corr. image');\n axis equal off tight;\n subplot(132);\n pnr_vmax = max(pnr(:))*0.8;\n imagesc(pnr, [3, pnr_vmax]);\n axis equal off tight;\n title('PNR image');\n subplot(133);\n imagesc(cn.*pnr, [3, pnr_vmax]);\n hold on;\n \n tmp_ind = ind & (cn>=min_corr) & (pnr>=min_pnr);\n [r, c] = find(tmp_ind);\n ax_seeds = plot(c, r, '.m', 'markersize', 10);\n axis equal off tight;\n title('candidate seed pixels');\n ylabel('PNR');\n xlabel('Cn');\n \n while true\n temp = input('type new values for (min_corr, min_pnr): ', 's');\n try\n new_values = str2num(temp); %#ok<*ST2NM>\n min_corr = new_values(1);\n min_pnr = new_values(2);\n obj.options.min_corr = min_corr;\n obj.options.min_pnr = min_pnr;\n tmp_ind = ind & (cn>=min_corr) & (pnr>=min_pnr);\n [r, c] = find(tmp_ind);\n delete(ax_seeds);\n subplot(133); \n ax_seeds = plot(c, r, '.m', 'markersize', 10);\n \n temp = input('Is this good? (y/n) ', 's');\n if strcmpi(temp, 'y')\n fprintf('Good! You current selection of parameters (min_corr, min_pnr) are (%2d, %2d).\\n', min_corr, min_pnr);\n break;\n \n end\n catch\n warning('values are bad. try again');\n continue;\n end\n end\nend\n\nfprintf('\\nThe parameters used in CNMF-E are \\ngSig:\\t\\t%d\\ngSiz:\\t\\t%d\\nring_radius\\t%d\\nmin_corr:\\t%.3f\\nmin_pnr:\\t%.3f\\n', ...\n gSig, gSiz, ring_radius, min_corr, min_pnr);\nend", "meta": {"author": "zhoupc", "repo": "CNMF_E", "sha": "ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f", "save_path": "github-repos/MATLAB/zhoupc-CNMF_E", "path": "github-repos/MATLAB/zhoupc-CNMF_E/CNMF_E-ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f/ca_source_extraction/@Sources2D/set_parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.38047260224356205}} {"text": " function val = byte_to_uint32(buff)\n%function val = byte_to_uint32(buff)\n% convert 4-byte buffer into uint32\n\ntry\n\tval = typecast(buff, 'uint32')\ncatch\n\tu = @(x) uint32(x);\n\tbuff = u(buff);\n\ts = u(256);\n\tval = buff(4) + s * (buff(3) + s * (buff(2) + s * buff(1)));\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/arch/byte_to_uint32.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631556226291, "lm_q2_score": 0.6261241702517976, "lm_q1q2_score": 0.38047258910680753}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%% BREATHING FILTER DETECTION TASK ANALYSIS %%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% -------------------------------------------------------------------------\n% Author: Olivia Harrison\n% Created: 14/08/2018\n%\n% This software is free software: you can redistribute it and/or modify it \n% under the terms of the GNU General Public License as published by the \n% Free Software Foundation, either version 3 of the License, or (at your \n% option) any later version. This software is distributed in the hope that \n% it will be useful, but WITHOUT ANY WARRANTY; without even the implied \n% warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the \n% GNU General Public License for more details: http://www.gnu.org/licenses/\n% -------------------------------------------------------------------------\n\n% This analysis script uses either Brian Maniscalco's single subect\n% analysis or Steve Fleming's Hierarchical Bayesian toolbox (for group\n% analysis) to calculate perceptual decision and metacognitive metrics, \n% specific to data produced by running the tapas_filter_detection_task.\n\n% IMPORTANT ANALYSIS NOTES:\n% 1) The code requires JAGS software to run, which can be found here:\n% http://mcmc-jags.sourceforge.net/\n% The code has been tested on JAGS 3.4.0; there are compatibility\n% issues between matjags and JAGS 4.X.\n% 2) The code requires the HMeta-d toolbox (provided as a submodule\n% from https://github.com/metacoglab/HMeta-d) to be on your path.\n% 3) This script is looking for specific results files that were output\n% from the tapas_filter_detection_task, which are located in the\n% FDT/results/ folder. The results are expected to contain a \n% results.filterThreshold.xx structure, where values for xx:\n% - results.filterThreshold.filterNum: a value to determine the\n% number of filters where trials were performed\n% - results.filterThreshold.filters: a vector with 1 meaning\n% filters were presented, 0 when filters were absent (dummy)\n% - results.filterThreshold.response: a vector with 1 meaning\n% response was 'yes', 0 when response was 'no'\n% - results.filterThreshold.confidence: a vector containing\n% confidence score (1-10) on each trial\n% If your results are formatted differently, refer directly to the\n% original scripts from the HMeta-d toolbox \n% (https://github.com/metacoglab/HMeta-d).\n\n% TO RUN THIS SCRIPT:\n% type tapas_filter_detection_analysis into the MATLAB terminal from the \n% main FDT folder, and follow the prompts.\n\n% ANALYSIS OPTIONS:\n% This script allows you to run either:\n% - A single subject analysis: A non-Bayesian estimation of meta-d',\n% fitting one subject at a time using a single point maximum\n% likelihood estimation (from the original Maniscalco & Lau 2012\n% paper, more info can be found here: \n% http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html).\n% HOWEVER: Simulations have shown this analysis to be VERY unstable\n% when estimating meta-d' using 60 trials. It is STRONGLY encouraged\n% to utilise the hierarchical models, or collect many more trials \n% (200+ trials) for each subject to have a more reliable measure of\n% meta-d'.\n% - A group mean analysis: A hierarchical Bayesian analysis, whereby all\n% subjects are fit together and information from the group mean is\n% used as prior information for each subject. This hierarchical model\n% helps with much more accurate estimations of meta-d' with small\n% trial numbers, such as using 60 trials per subject.\n% - A group regression analysis: A hierarchical Bayesian regression\n% analysis that is an extension on the group mean analysis, whereby \n% subjects are fit together in one model, and the relationship between\n% single subject log(meta-d'/d') values and the covariate(s) is\n% estimated within the hierarchical model structure.\n% - A group difference analysis: A hierarchical Bayesian analysis,\n% whereby each group of subjects is fitted separately, and the groups\n% are then compared. Frequentist statistics (such as parametric\n% unpaired T-tests, or non-parametric Wilcoxon signed-rank tests) can\n% be used for all values that are not fitted using hierarchical\n% information, such as d', c, filter number, accuracy and average\n% confidence. As the group values for log(meta-d'/d') are calculated\n% using two separate hierarchical models, group differences are then\n% inferred via comparison of the resulting log(meta-d'/d')\n% distributions, and whether the 95% highest-density interval (HDI) of\n% the difference between the distributions spans zero. The HDI is the\n% shortest possible interval containing 95% of the MCMC samples, and\n% may not be symmetric. NOTE: If single subject values for\n% log(meta-d'/d') (or any related meta-d' metric) are required for\n% further analyses that span both groups (such as entry into general \n% linear models), it is recommended to fit all subjects together in\n% one regression model with a regressor denoting group identity.\n% - A session difference analysis (paired group difference): A\n% hierarchical Bayesian analysis, whereby two sessions / measures from\n% the same participants are fitted in a single model using a\n% multivariate normal distribution. This distribution allows for the\n% non-independence between sessions for each participant. NOTE:\n% Participants must be listed in the same order for analysis, and must\n% have data for both sessions / each measure.\n\n% NOTES ON NON-BAYESIAN SINGLE SUBJECT ANALYSIS FROM AUTHORS' WEBSITE \n% (columbia.edu/~bsm2105/type2sdt/archive/index.html):\n% This analysis is intended to quantify metacognitive sensitivity (i.e. the\n% efficacy with which confidence ratings discriminate between correct and\n% incorrect judgments) in a signal detection theory framework. A central\n% idea is that primary task performance can influence metacognitive\n% sensitivity, and it is informative to take this influence into account.\n% Description of the methodology can be found here: Maniscalco, B., & Lau, \n% H. (2012). A signal detection theoretic approach for estimating\n% metacognitive sensitivity from confidence ratings. Consciousness and\n% Cognition, 21(1), 422\u2013430. doi:10.1016/j.concog.2011.09.021 \n% If you use these analysis files, please reference the Consciousness & \n% Cognition paper and website. Brian Maniscalco: brian@psych.columbia.edu\n\n% NOTES ON HIERARCHICAL TOOLBOX FROM ORIGINAL SCRIPTS (FOR GROUP ANALYSES):\n% This MATLAB toolbox implements the meta-d\u2019 model (Maniscalco & Lau, 2012)\n% in a hierarchical Bayesian framework using Matlab and JAGS, a program for\n% conducting MCMC inference on arbitrary Bayesian models. A paper with more\n% details on the method and the advantages of estimating meta-d\u2019 in a\n% hierarchal Bayesian framework is available here https://academic.oup.com/\n% nc/article/doi/10.1093/nc/nix007/3748261/HMeta-d-hierarchical-Bayesian-\n% estimation-of. For a more general introduction to Bayesian models of \n% cognition see Lee & Wagenmakers, Bayesian Cognitive Modeling: A Practical\n% Course http://bayesmodels.com/. This code is being released with a\n% permissive open-source license. You should feel free to use or adapt the\n% utility code as long as you follow the terms of the license provided. If\n% you use the toolbox in a publication we ask that you cite the following\n% paper: Fleming, S.M. (2017) HMeta-d: hierarchical Bayesian estimation of\n% metacognitive efficiency from confidence ratings, Neuroscience of\n% Consciousness, 3(1) nix007, https://doi.org/10.1093/nc/nix007. Copyright\n% (c) 2017, Stephen Fleming. For more information and/or licences, please \n% see the original code: https://github.com/metacoglab/HMeta-d.\n\n% KEY ANALYSIS OUTPUT VALUES:\n% The primary measures to come out of this analysis can be found in\n% analysis.{single/groupMean/groupDiff}.xx, and they are:\n% 1) xx = filterNum: Number of filters. Less filters means more sensitive\n% to changes in breathing.\n% 2) xx = d1: d prime, discriminability between filter and dummy trials.\n% Larger d' means more discriminability at specific filter number\n% 3) xx = c1: Decision criterion, or where the decision boundary exists.\n% Negative criterion values mean bias towards 'yes' (lower, more \n% liberal criterion), while positive values mean bias towards \n% 'no' response (higher, more strngent criterion).\n% 4) xx = meta_d: A measure of metacognition, or 'type 2' sensitivity.\n% This reflects how much information, in signal-to-noise units,\n% is available for metacognition (see Maniscalco & Lau, 2012).\n% NB: ISSUES WITH THIS ESTIMATION (AND ALL RELATED ESTIMATIONS)\n% IF USING SINGLE SUBJECT ANALYSES, AS DESCRIBED ABOVE.\n% 5) xx = Mratio: Meta-d' to d' ratio, as a measure of metacognitive\n% 'efficiency' (see Rouault et al., 2018).\n% 6) xx = log_Mratio: log(meta_d/d1), reported in papers to help with\n% normalisation of data (see Rouault et al., 2018).\n% 7) xx = avgConfidence: A second measure of metacognition, thought to be\n% independent from meta-d'. NB: Average confidence should only be\n% compared between two groups if there is no difference in d'\n% between the groups (i.e. task difficulty was comparable).\n\n% ADDITIONAL GROUP DIFFERENCE OUTPUT VALUES:\n% If the analysis is a two-group or two-session (paired) difference, the \n% following will also be calculated for the non-hierarchical measures \n% (test = groupDiff or sessionDiff; xx = filterNum, d1, c1 and \n% avgConfidence):\n% 1) analysis.test.xx.h = Results of null hypothesis test, where h =\n% 1 for rejection of the null, and h = 0 for no rejection.\n% 2) analysis.test.xx.p = The p-value for the statistical test.\n% 3) analysis.test.xx.stats = Further statistics (such as tstats,\n% number of samples, degrees of freedom) associated with the test.\n% 4) analysis.test.xx.ci = Confidence interval of the difference,\n% calculated only when T-test is specified.\n% The highest density interval (HDI) for the difference in log(meta-d'/d') \n% between the groups / sessions will be calculated and recorded, as \n% frequentist statistics cannot be used here. A summary Figure for each of \n% these metrics will be created and saved in the FDT/analysis/ folder.\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% SET UP THE ANALYSIS\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction tapas_filter_detection_analysis()\n\n% Check folder location is main FDT folder\n[~,dir_name] = fileparts(pwd);\nif ~strcmp(dir_name,'FDT')\n error('Not currently in main FDT folder. Please move to FDT folder and try again.');\nend\n\n% Add relevant paths\naddpath('analysis');\n\n% Display setup on screen\nfprintf('\\n________________________________________\\n\\n SET UP ANALYSIS FOR FILTER TASK\\n________________________________________\\n');\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% CHOOSE THE TYPE OF ANALYSIS TO RUN AND SPECIFY FILES\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ntry\n analysis.type = input('Type of analysis (single or group) = ', 's'); % Ask for type of analysis to be run\ncatch\n fprintf('\\nOption does not exist, please try again.\\n');\n return\nend\n\ntry\n if strcmp(analysis.type,'single') == 1 % If single subject analysis specified\n analysis.PPIDs = input('PPID = ', 's'); % Ask for PPID\n try\n analysis.data = load(fullfile('results', ['filter_task_results_', analysis.PPIDs, '.mat'])); % Load data\n analysis.ratings = analysis.data.results.setup.confidenceUpper - analysis.data.results.setup.confidenceLower + 1; % Calculate number of confidence rating bins\n catch\n fprintf('\\nInvalid PPID.\\n');\n return\n end\n elseif strcmp(analysis.type,'group') == 1 % If group analysis specified\n analysis.type = input('Type of analysis (mean, diff, paired or regress) = ', 's'); % Ask for type of group analysis to be run\n if strcmp(analysis.type,'mean') == 1 % If group mean analysis specified\n analysis.PPIDs = input('Input group PPIDs (e.g. {''001'', ''002'', ''003'',...}) = '); % Ask for PPIDs\n analysis.groupsize(1) = length(analysis.PPIDs);\n for n = 1:length(analysis.PPIDs)\n PPID = char(analysis.PPIDs(n));\n try\n analysis.data(n) = load(fullfile('results', ['filter_task_results_', PPID, '.mat'])); % Load data\n catch\n fprintf('\\nInvalid PPIDs.\\n');\n return\n end\n end\n analysis.ratings = analysis.data(1).results.setup.confidenceUpper - analysis.data(1).results.setup.confidenceLower + 1; % Calculate number of confidence rating bins\n elseif strcmp(analysis.type,'diff') == 1 % If two group difference analysis specified\n analysis.PPIDs.group1 = input('Input group 1 PPIDs (e.g. {''001'', ''002'', ''003'',...}) = '); % Ask for PPIDs\n analysis.PPIDs.group2 = input('Input group 2 PPIDs (e.g. {''004'', ''005'', ''006'',...}) = '); % Ask for PPIDs\n analysis.groupDiff.test = input('Type 1 variable tests (ttest or wilcoxon) = ', 's'); % Ask for parametric or non-parmetric test options for type 1 variables (d', c etc.)\n analysis.groupsize(1) = length(analysis.PPIDs.group1);\n analysis.groupsize(2) = length(analysis.PPIDs.group2);\n for n = 1:analysis.groupsize(1)\n PPID = char(analysis.PPIDs.group1(n));\n try\n analysis.group1.data(n) = load(fullfile('results', ['filter_task_results_', PPID, '.mat'])); % Load data\n catch\n fprintf('\\nInvalid PPIDs for group 1.\\n');\n return\n end\n end\n for n = 1:analysis.groupsize(2)\n PPID = char(analysis.PPIDs.group2(n));\n try\n analysis.group2.data(n) = load(fullfile('results', ['filter_task_results_', PPID, '.mat'])); % Load data\n catch\n fprintf('\\nInvalid PPIDs for group 2.\\n');\n return\n end\n end\n analysis.ratings = analysis.group1.data(1).results.setup.confidenceUpper - analysis.group1.data(1).results.setup.confidenceLower + 1; % Calculate number of confidence rating bins\n elseif strcmp(analysis.type,'paired') == 1 % If paired difference analysis specified\n fprintf('\\nNOTE: PPIDs from each session need to be paired and in the same order\\n');\n analysis.PPIDs.session1 = input('Input session 1 PPIDs (e.g. {''001a'', ''002a'', ''003a'',...}) = '); % Ask for PPIDs\n analysis.PPIDs.session2 = input('Input session 2 PPIDs (e.g. {''001b'', ''002b'', ''003b'',...}) = '); % Ask for PPIDs\n analysis.sessionDiff.test = input('Type 1 variable tests (ttest or wilcoxon) = ', 's'); % Ask for parametric or non-parmetric test options for type 1 variables (d', c etc.)\n analysis.sessionSize(1) = length(analysis.PPIDs.session1);\n analysis.sessionSize(2) = length(analysis.PPIDs.session2);\n if analysis.sessionSize(1) ~= analysis.sessionSize(2)\n error('Number of PPIDs in each session does not match!');\n end\n for n = 1:analysis.sessionSize(1)\n PPID = char(analysis.PPIDs.session1(n));\n try\n analysis.session1.data(n) = load(fullfile('results', ['filter_task_results_', PPID, '.mat'])); % Load data\n catch\n fprintf('\\nInvalid PPIDs for session 1.\\n');\n return\n end\n end\n for n = 1:analysis.sessionSize(2)\n PPID = char(analysis.PPIDs.session2(n));\n try\n analysis.session2.data(n) = load(fullfile('results', ['filter_task_results_', PPID, '.mat'])); % Load data\n catch\n fprintf('\\nInvalid PPIDs for session 2.\\n');\n return\n end\n end\n analysis.ratings = analysis.session1.data(1).results.setup.confidenceUpper - analysis.session1.data(1).results.setup.confidenceLower + 1; % Calculate number of confidence rating bins\n elseif strcmp(analysis.type,'regress') == 1 % If regression analysis specified\n analysis.PPIDs = input('Input group PPIDs (e.g. {''001'', ''002'', ''003'',...}) = '); % Ask for PPIDs\n analysis.groupsize(1) = length(analysis.PPIDs);\n for n = 1:length(analysis.PPIDs)\n PPID = char(analysis.PPIDs(n));\n try\n analysis.data(n) = load(fullfile('results', ['filter_task_results_', PPID, '.mat'])); % Load data\n catch\n fprintf('\\nInvalid PPIDs.\\n');\n return\n end\n end\n analysis.ratings = analysis.data(1).results.setup.confidenceUpper - analysis.data(1).results.setup.confidenceLower + 1; % Calculate number of confidence rating bins\n fprintf('\\nNote: Covariate text file required to be placed in results folder\\n--> Scores need to be in the SAME ORDER as PPID input order.\\n');\n analysis.covariate.fileName = input('Input covariate file name (e.g. covariate_example.txt) = ', 's'); % Ask for covariate file name\n try\n analysis.covariate.data = load(fullfile('results', analysis.covariate.fileName)); % Load data\n catch\n fprintf('\\nCovariate file cannot be found in results folder.\\n');\n return\n end\n [a,b] = size(analysis.covariate.data);\n if a > b % Re-shape vector if needed\n analysis.covariate.data = analysis.covariate.data';\n end\n end\n end\ncatch\n fprintf('\\nInvalid.\\n');\n return\nend\n\n% Save results\nif strcmp(analysis.type,'single') == 1\n resultsFile = fullfile('analysis', ['filter_task_analysis_', analysis.type, analysis.PPIDs]); % Create figure file name\nelse\n resultsFile = fullfile('analysis', ['filter_task_analysis_', analysis.type]); % Create figure file name\nend\nsave(resultsFile, 'analysis'); % Save results\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% RUN TRIALS2COUNTS SCRIPT\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif strcmp(analysis.type,'single') == 1 || strcmp(analysis.type,'mean') == 1 || strcmp(analysis.type,'regress') == 1\n \n % Run trials2counts script for single subject or whole group\n for n = 1:length(analysis.data)\n stimID = analysis.data(n).results.thresholdTrials.filters;\n response = analysis.data(n).results.thresholdTrials.response;\n rating = analysis.data(n).results.thresholdTrials.confidence;\n [analysis.trials2counts.nR_S1{n}, analysis.trials2counts.nR_S2{n}] = trials2counts(stimID,response,rating,analysis.ratings,0); % Run for number of ratings and no cell padding\n end\n \nelseif strcmp(analysis.type,'diff') == 1\n \n % Run trials2counts script for group 1\n for n = 1:length(analysis.group1.data)\n stimID = analysis.group1.data(n).results.thresholdTrials.filters;\n response = analysis.group1.data(n).results.thresholdTrials.response;\n rating = analysis.group1.data(n).results.thresholdTrials.confidence;\n [analysis.group1.trials2counts.nR_S1{n}, analysis.group1.trials2counts.nR_S2{n}] = trials2counts(stimID,response,rating,analysis.ratings,0); % Run for number of ratings and no cell padding\n end\n % Run trials2counts script for group 2\n for n = 1:length(analysis.group2.data)\n stimID = analysis.group2.data(n).results.thresholdTrials.filters;\n response = analysis.group2.data(n).results.thresholdTrials.response;\n rating = analysis.group2.data(n).results.thresholdTrials.confidence;\n [analysis.group2.trials2counts.nR_S1{n}, analysis.group2.trials2counts.nR_S2{n}] = trials2counts(stimID,response,rating,analysis.ratings,0); % Run for number of ratings and no cell padding\n end\n \nelseif strcmp(analysis.type,'paired') == 1\n \n % Run trials2counts script for session 1\n for n = 1:length(analysis.session1.data)\n stimID = analysis.session1.data(n).results.thresholdTrials.filters;\n response = analysis.session1.data(n).results.thresholdTrials.response;\n rating = analysis.session1.data(n).results.thresholdTrials.confidence;\n [analysis.trials2counts.nR_S1(1).counts{n}, analysis.trials2counts.nR_S2(1).counts{n}] = trials2counts(stimID,response,rating,analysis.ratings,0); % Run for number of ratings and no cell padding\n end\n % Run trials2counts script for session 2\n for n = 1:length(analysis.session2.data)\n stimID = analysis.session2.data(n).results.thresholdTrials.filters;\n response = analysis.session2.data(n).results.thresholdTrials.response;\n rating = analysis.session2.data(n).results.thresholdTrials.confidence;\n [analysis.trials2counts.nR_S1(2).counts{n}, analysis.trials2counts.nR_S2(2).counts{n}] = trials2counts(stimID,response,rating,analysis.ratings,0); % Run for number of ratings and no cell padding\n end\n \nend\n\n% Save results\nsave(resultsFile, 'analysis');\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% RUN SINGLE SUBJECT ANALYSIS IF SPECIFIED\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif strcmp(analysis.type,'single') == 1 % If single subject analysis specified\n \n % Pad ratings so that zero counts do not interfere with fit\n analysis.trials2counts.nR_S1_padded = analysis.trials2counts.nR_S1{1} + 1/(2*10);\n analysis.trials2counts.nR_S2_padded = analysis.trials2counts.nR_S2{1} + 1/(2*10);\n \n % Fit data\n analysis.single.fit = fit_meta_d_MLE(analysis.trials2counts.nR_S1_padded, analysis.trials2counts.nR_S2_padded);\n \n % Pull out key variables\n analysis.single.filterNum = mean(analysis.data.results.thresholdTrials.filterNum);\n analysis.single.accuracy = analysis.data.results.thresholdTrials.accuracyTotal;\n analysis.single.d1 = analysis.single.fit.d1;\n analysis.single.c1 = analysis.single.fit.c1;\n analysis.single.meta_d = analysis.single.fit.meta_d;\n analysis.single.Mratio = analysis.single.fit.M_ratio;\n analysis.single.fit.log_Mratio = log(analysis.single.fit.M_ratio);\n analysis.single.avgConfidence = mean(analysis.data(1).results.thresholdTrials.confidence);\n \n % Save results\n save(resultsFile, 'analysis'); % Save results\n \n % Display completion message on screen\n fprintf('\\n________________________________________\\n\\n COMPLETED SINGLE SUBJECT ANALYSIS\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n fprintf('\\n MRATIO = %.2f\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n', analysis.single.Mratio);\n fprintf('\\n RESULTS CAN BE FOUND IN: \\n FDT/analysis/\\n________________________________________\\n');\n \nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% RUN GROUP MEAN ANALYSIS IF SPECIFIED\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif strcmp(analysis.type,'mean') == 1 % If group mean analysis specified\n \n % Specify parameters\n analysis.groupMean.mcmc_params = fit_meta_d_params;\n\n % Fit group data all at once\n analysis.groupMean.fit = fit_meta_d_mcmc_group(analysis.trials2counts.nR_S1, analysis.trials2counts.nR_S2, analysis.groupMean.mcmc_params);\n \n % Calculate log of Mratio for single subjects values\n for n = 1:length(analysis.groupMean.fit.Mratio)\n analysis.groupMean.log_Mratio.singleSubject(n) = log(analysis.groupMean.fit.Mratio(n));\n end\n \n % Pull out group mean values\n analysis.groupMean.d1.groupMean = mean(analysis.groupMean.fit.d1);\n analysis.groupMean.d1.singleSubject = analysis.groupMean.fit.d1;\n analysis.groupMean.c1.groupMean = mean(analysis.groupMean.fit.c1);\n analysis.groupMean.c1.singleSubject = analysis.groupMean.fit.c1;\n analysis.groupMean.meta_d.groupMean = mean(analysis.groupMean.fit.meta_d);\n analysis.groupMean.meta_d.singleSubject = analysis.groupMean.fit.meta_d;\n analysis.groupMean.Mratio.groupMean = exp(analysis.groupMean.fit.mu_logMratio);\n analysis.groupMean.Mratio.singleSubject = analysis.groupMean.fit.Mratio;\n analysis.groupMean.Mratio.hdi = calc_HDI(exp(analysis.groupMean.fit.mcmc.samples.mu_logMratio(:)));\n analysis.groupMean.log_Mratio.groupMean = analysis.groupMean.fit.mu_logMratio;\n analysis.groupMean.log_Mratio.hdi = calc_HDI(analysis.groupMean.fit.mcmc.samples.mu_logMratio(:));\n \n % Calculate average confidence, add filter number and accuracy to analysis results\n for n = 1:length(analysis.data)\n analysis.groupMean.avgConfidence.singleSubject(n) = mean(analysis.data(n).results.thresholdTrials.confidence);\n analysis.groupMean.filterNum.singleSubject(n) = mean(analysis.data(n).results.thresholdTrials.filterNum);\n analysis.groupMean.accuracy.singleSubject(n) = analysis.data(n).results.thresholdTrials.accuracyTotal;\n end\n analysis.groupMean.avgConfidence.groupMean = mean(analysis.groupMean.avgConfidence.singleSubject);\n analysis.groupMean.filterNum.groupMean = mean(analysis.groupMean.filterNum.singleSubject);\n analysis.groupMean.accuracy.groupMean = mean(analysis.groupMean.accuracy.singleSubject);\n \n % Save results\n save(resultsFile, 'analysis'); % Save results\n \n % Display completion message on screen\n fprintf('\\n________________________________________\\n\\n COMPLETED GROUP MEAN ANALYSIS\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n fprintf('\\n GROUP MRATIO = %.2f (HDI: %.2f to %.2f)\\n', analysis.groupMean.Mratio.groupMean, analysis.groupMean.Mratio.hdi(1), analysis.groupMean.Mratio.hdi(2));\n if (analysis.groupMean.Mratio.hdi(1) > 0 && analysis.groupMean.Mratio.hdi(2) > 0) || (analysis.groupMean.Mratio.hdi(1) < 0 && analysis.groupMean.Mratio.hdi(2) < 0)\n fprintf(' HDI DOES NOT SPAN ZERO: MRATIO SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n else\n fprintf(' HDI SPANS ZERO: MRATIO NOT SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n end\n fprintf('\\n RESULTS CAN BE FOUND IN: \\n FDT/analysis/\\n________________________________________\\n');\n \nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% RUN GROUP DIFFERENCE ANALYSIS (UNPAIRED) IF SPECIFIED\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif strcmp(analysis.type,'diff') == 1 % If group difference analysis specified\n \n % For two-group difference analysis: Print message about groups being fit separately --> no t-tests possible on meta-d' metrics\n fprintf('\\nNOTE: Groups are fit using separate hierarchical models.\\nFrequentist statistics (such as t-tests) are not possible on any metrics involving meta-d''.\\nFrequentist statistics will still be applied to all type 1 metrics and average confidence values.\\n');\n \n % Specify parameters\n analysis.groupDiff.mcmc_params = fit_meta_d_params;\n \n % Fit each group using a separate hierarchical Bayesian model\n analysis.group1.fit = fit_meta_d_mcmc_group(analysis.group1.trials2counts.nR_S1, analysis.group1.trials2counts.nR_S2, analysis.groupDiff.mcmc_params);\n analysis.group2.fit = fit_meta_d_mcmc_group(analysis.group2.trials2counts.nR_S1, analysis.group2.trials2counts.nR_S2, analysis.groupDiff.mcmc_params);\n \n % Compute HDI of difference for log(meta-d'/d')\n analysis.group1.logMratio.groupMean = analysis.group1.fit.mu_logMratio;\n analysis.group1.logMratio.singleSubject = log(analysis.group1.fit.Mratio);\n analysis.group1.Mratio.groupMean = exp(analysis.group1.fit.mu_logMratio);\n analysis.group1.Mratio.singleSubject = analysis.group1.fit.Mratio;\n analysis.group2.logMratio.groupMean = analysis.group2.fit.mu_logMratio;\n analysis.group2.logMratio.singleSubject = log(analysis.group2.fit.Mratio);\n analysis.group2.Mratio.groupMean = exp(analysis.group2.fit.mu_logMratio);\n analysis.group2.Mratio.singleSubject = analysis.group2.fit.Mratio;\n analysis.groupDiff.log_Mratio.sampleDiff = analysis.group1.fit.mcmc.samples.mu_logMratio - analysis.group2.fit.mcmc.samples.mu_logMratio;\n analysis.groupDiff.log_Mratio.mean = analysis.group1.fit.mu_logMratio - analysis.group2.fit.mu_logMratio;\n analysis.groupDiff.log_Mratio.hdi = calc_HDI(analysis.groupDiff.log_Mratio.sampleDiff(:));\n analysis.groupDiff.Mratio.mean = exp(analysis.group1.fit.mu_logMratio) - exp(analysis.group2.fit.mu_logMratio);\n analysis.groupDiff.Mratio.hdi = calc_HDI((exp(analysis.group1.fit.mcmc.samples.mu_logMratio(:)) - exp(analysis.group2.fit.mcmc.samples.mu_logMratio(:))));\n\n % Pull out group mean values for all non-hierarchical metrics\n analysis.group1.d1.groupMean = mean(analysis.group1.fit.d1);\n analysis.group1.d1.singleSubject = analysis.group1.fit.d1;\n analysis.group1.c1.groupMean = mean(analysis.group1.fit.c1);\n analysis.group1.c1.singleSubject = analysis.group1.fit.c1;\n analysis.group2.d1.groupMean = mean(analysis.group2.fit.d1);\n analysis.group2.d1.singleSubject = analysis.group2.fit.d1;\n analysis.group2.c1.groupMean = mean(analysis.group2.fit.c1);\n analysis.group2.c1.singleSubject = analysis.group2.fit.c1;\n \n % Calculate average confidence, add filter number and accuracy to results for group 1\n for n = 1:length(analysis.group1.data)\n analysis.group1.avgConfidence.singleSubject(n) = mean(analysis.group1.data(n).results.thresholdTrials.confidence);\n analysis.group1.filterNum.singleSubject(n) = mean(analysis.group1.data(n).results.thresholdTrials.filterNum);\n analysis.group1.accuracy.singleSubject(n) = analysis.group1.data(n).results.thresholdTrials.accuracyTotal;\n end\n analysis.group1.avgConfidence.groupMean = mean(analysis.group1.avgConfidence.singleSubject);\n analysis.group1.filterNum.groupMean = mean(analysis.group1.filterNum.singleSubject);\n analysis.group1.accuracy.groupMean = mean(analysis.group1.accuracy.singleSubject);\n \n % Calculate average confidence, add filter number and accuracy to results for group 2\n for n = 1:length(analysis.group2.data)\n analysis.group2.avgConfidence.singleSubject(n) = mean(analysis.group2.data(n).results.thresholdTrials.confidence);\n analysis.group2.filterNum.singleSubject(n) = mean(analysis.group2.data(n).results.thresholdTrials.filterNum);\n analysis.group2.accuracy.singleSubject(n) = analysis.group2.data(n).results.thresholdTrials.accuracyTotal;\n end\n analysis.group2.avgConfidence.groupMean = mean(analysis.group2.avgConfidence.singleSubject);\n analysis.group2.filterNum.groupMean = mean(analysis.group2.filterNum.singleSubject);\n analysis.group2.accuracy.groupMean = mean(analysis.group2.accuracy.singleSubject);\n \n % Calculate group difference values for all non-hierarchical metrics\n analysis.groupDiff.filterNum.meanDiff = analysis.group1.filterNum.groupMean - analysis.group2.filterNum.groupMean;\n analysis.groupDiff.accuracy.meanDiff = analysis.group1.accuracy.groupMean - analysis.group2.accuracy.groupMean;\n analysis.groupDiff.d1.meanDiff = analysis.group1.d1.groupMean - analysis.group2.d1.groupMean;\n analysis.groupDiff.c1.meanDiff = analysis.group1.c1.groupMean - analysis.group2.c1.groupMean;\n analysis.groupDiff.avgConfidence.meanDiff = analysis.group1.avgConfidence.groupMean - analysis.group2.avgConfidence.groupMean;\n\n % Run specified statistical test on all non-hierarchical metrics\n if strcmp(analysis.groupDiff.test,'wilcoxon') == 1\n analysis.groupDiff.testType = 'Wilcoxon rank sum test';\n [analysis.groupDiff.filterNum.p,analysis.groupDiff.filterNum.h,analysis.groupDiff.filterNum.stats] = ranksum(analysis.group1.filterNum.singleSubject,analysis.group2.filterNum.singleSubject);\n [analysis.groupDiff.accuracy.p,analysis.groupDiff.accuracy.h,analysis.groupDiff.accuracy.stats] = ranksum(analysis.group1.accuracy.singleSubject,analysis.group2.accuracy.singleSubject);\n [analysis.groupDiff.d1.p,analysis.groupDiff.d1.h,analysis.groupDiff.d1.stats] = ranksum(analysis.group1.d1.singleSubject,analysis.group2.d1.singleSubject);\n [analysis.groupDiff.c1.p,analysis.groupDiff.c1.h,analysis.groupDiff.c1.stats] = ranksum(analysis.group1.c1.singleSubject,analysis.group2.c1.singleSubject);\n [analysis.groupDiff.avgConfidence.p,analysis.groupDiff.avgConfidence.h,analysis.groupDiff.avgConfidence.stats] = ranksum(analysis.group1.avgConfidence.singleSubject,analysis.group2.avgConfidence.singleSubject);\n elseif strcmp(analysis.groupDiff.test,'ttest') == 1\n analysis.groupDiff.testType = 'Unpaired T-test';\n [analysis.groupDiff.filterNum.h,analysis.groupDiff.filterNum.p,analysis.groupDiff.filterNum.ci,analysis.groupDiff.filterNum.stats] = ttest2(analysis.group1.filterNum.singleSubject,analysis.group2.filterNum.singleSubject);\n [analysis.groupDiff.accuracy.h,analysis.groupDiff.accuracy.p,analysis.groupDiff.accuracy.ci,analysis.groupDiff.accuracy.stats] = ttest2(analysis.group1.accuracy.singleSubject,analysis.group2.accuracy.singleSubject);\n [analysis.groupDiff.d1.h,analysis.groupDiff.d1.p,analysis.groupDiff.d1.ci,analysis.groupDiff.d1.stats] = ttest2(analysis.group1.d1.singleSubject,analysis.group2.d1.singleSubject);\n [analysis.groupDiff.c1.h,analysis.groupDiff.c1.p,analysis.groupDiff.c1.ci,analysis.groupDiff.c1.stats] = ttest2(analysis.group1.c1.singleSubject,analysis.group2.c1.singleSubject);\n [analysis.groupDiff.avgConfidence.h,analysis.groupDiff.avgConfidence.p,analysis.groupDiff.avgConfidence.ci,analysis.groupDiff.avgConfidence.stats] = ttest2(analysis.group1.avgConfidence.singleSubject,analysis.group2.avgConfidence.singleSubject);\n end\n \n % Save results\n save(resultsFile, 'analysis'); % Save results\n\n % Create Figure to display results\n figure\n set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 0.6 0.6]);\n labels = ['Group 1'; 'Group 2'];\n % Plot Type 1 metrics on top line\n ax1 = subplot(2,4,1);\n bar(ax1, [analysis.group1.filterNum.groupMean; analysis.group2.filterNum.groupMean]);\n hold on\n errorbar(ax1, [analysis.group1.filterNum.groupMean; analysis.group2.filterNum.groupMean], [std(analysis.group1.filterNum.singleSubject), std(analysis.group2.filterNum.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.groupDiff.filterNum.h == 0\n title('FILTER NUMBER: NON-SIG DIFF')\n elseif analysis.groupDiff.filterNum.h > 0\n title('FILTER NUMBER: SIG DIFF')\n end\n hold off\n ax2 = subplot(2,4,2);\n bar(ax2, [analysis.group1.accuracy.groupMean; analysis.group2.accuracy.groupMean]);\n hold on\n errorbar(ax2, [analysis.group1.accuracy.groupMean; analysis.group2.accuracy.groupMean], [std(analysis.group1.accuracy.singleSubject), std(analysis.group2.accuracy.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.groupDiff.accuracy.h == 0\n title('ACCURACY: NON-SIG DIFF')\n elseif analysis.groupDiff.accuracy.h > 0\n title('ACCURACY: SIG DIFF')\n end\n ax3 = subplot(2,4,3);\n bar(ax3, [analysis.group1.d1.groupMean; analysis.group2.d1.groupMean]);\n hold on\n errorbar(ax3, [analysis.group1.d1.groupMean; analysis.group2.d1.groupMean], [std(analysis.group1.d1.singleSubject), std(analysis.group2.d1.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.groupDiff.d1.h == 0\n title('d'': NON-SIG DIFF')\n elseif analysis.groupDiff.d1.h > 0\n title('d'': SIG DIFF')\n end\n hold off\n ax4 = subplot(2,4,4);\n bar(ax4, [analysis.group1.c1.groupMean; analysis.group2.c1.groupMean]);\n hold on\n errorbar(ax4, [analysis.group1.c1.groupMean; analysis.group2.c1.groupMean], [std(analysis.group1.c1.singleSubject), std(analysis.group2.c1.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.groupDiff.c1.h == 0\n title('CRITERION: NON-SIG DIFF')\n elseif analysis.groupDiff.c1.h > 0\n title('CRITERION: SIG DIFF')\n end\n hold off\n % Plot group Mratio and the difference\n ax5 = subplot(2,4,5);\n histogram(ax5, exp(analysis.group1.fit.mcmc.samples.mu_logMratio))\n xlim([0 2])\n xlabel('MRatio');\n ylabel('Sample count');\n hold on\n histogram(ax5, exp(analysis.group2.fit.mcmc.samples.mu_logMratio))\n hold off\n lgd = legend('Group 1', 'Group 2', 'Location', 'northeast');\n lgd.FontSize = 10;\n if (analysis.groupDiff.Mratio.hdi(1) > 0 && analysis.groupDiff.Mratio.hdi(2) > 0) || (analysis.groupDiff.Mratio.hdi(1) < 0 && analysis.groupDiff.Mratio.hdi(2) < 0)\n title('MRATIO: SIG DIFF')\n else\n title('MRATIO: NON-SIG DIFF')\n end\n ax6 = subplot(2,4,6);\n histogram(ax6, analysis.group1.fit.mcmc.samples.mu_logMratio)\n xlabel('log(MRatio)');\n ylabel('Sample count');\n hold on\n histogram(ax6, analysis.group2.fit.mcmc.samples.mu_logMratio)\n hold off\n lgd = legend('Group 1', 'Group 2', 'Location', 'northwest');\n lgd.FontSize = 10;\n if (analysis.groupDiff.log_Mratio.hdi(1) > 0 && analysis.groupDiff.log_Mratio.hdi(2) > 0) || (analysis.groupDiff.log_Mratio.hdi(1) < 0 && analysis.groupDiff.log_Mratio.hdi(2) < 0)\n title('LOG(MRATIO): SIG DIFF')\n else\n title('LOG(MRATIO): NON-SIG DIFF')\n end\n ax7 = subplot(2,4,7);\n histogram(ax7, analysis.groupDiff.log_Mratio.sampleDiff)\n xlabel('log(MRatio)');\n ylabel('Sample count');\n if (analysis.groupDiff.log_Mratio.hdi(1) > 0 && analysis.groupDiff.log_Mratio.hdi(2) > 0) || (analysis.groupDiff.log_Mratio.hdi(1) < 0 && analysis.groupDiff.log_Mratio.hdi(2) < 0)\n title('LOG(MRATIO) DIFF: SIG DIFF')\n else\n title('LOG(MRATIO) DIFF: NON-SIG DIFF')\n end\n hold on\n ln2 = line([analysis.groupDiff.log_Mratio.hdi(1) analysis.groupDiff.log_Mratio.hdi(1)], [0 1800]);\n ln2.Color = 'r';\n ln2.LineWidth = 1.5;\n ln2.LineStyle = '--';\n ln2 = line([analysis.groupDiff.log_Mratio.hdi(2) analysis.groupDiff.log_Mratio.hdi(2)], [0 1800]);\n ln2.Color = 'r';\n ln2.LineWidth = 1.5;\n ln2.LineStyle = '--';\n hold off\n % Plot average confidence\n ax8 = subplot(2,4,8);\n bar(ax8, [analysis.group1.avgConfidence.groupMean; analysis.group2.avgConfidence.groupMean]);\n hold on\n errorbar(ax8, [analysis.group1.avgConfidence.groupMean; analysis.group2.avgConfidence.groupMean], [std(analysis.group1.avgConfidence.singleSubject), std(analysis.group2.avgConfidence.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.groupDiff.avgConfidence.h == 0\n title('CONFIDENCE: NON-SIG DIFF')\n elseif analysis.groupDiff.avgConfidence.h > 0\n title('CONFIDENCE: SIG DIFF')\n end\n hold off\n\n % Print figure\n figureFile = fullfile('analysis', ['filter_task_analysis_', analysis.type]); % Create figure file name\n print(figureFile, '-dtiff');\n\n % Display completion message on screen\n fprintf('\\n________________________________________\\n\\n COMPLETED GROUP DIFFERENCE ANALYSIS\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n fprintf('\\n DIFF MRATIO = %.2f (HDI: %.2f to %.2f)\\n', analysis.groupDiff.Mratio.mean, analysis.groupDiff.Mratio.hdi(1), analysis.groupDiff.Mratio.hdi(2));\n if (analysis.groupDiff.Mratio.hdi(1) > 0 && analysis.groupDiff.Mratio.hdi(2) > 0) || (analysis.groupDiff.Mratio.hdi(1) < 0 && analysis.groupDiff.Mratio.hdi(2) < 0)\n fprintf('HDI DOES NOT SPAN ZERO: MRATIO DIFF SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n else\n fprintf(' HDI SPANS ZERO: MRATIO DIFF NOT SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n end\n fprintf('\\n RESULTS CAN BE FOUND IN: \\n FDT/analysis/\\n________________________________________\\n');\n \nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% RUN SESSION DIFFERENCE ANALYSIS (PAIRED) IF SPECIFIED\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif strcmp(analysis.type,'paired') == 1 % If session difference analysis specified\n \n % For two-session difference analysis: Print message about groups being fit together --> t-tests possible on meta-d' metrics\n fprintf('\\nNOTE: Groups are fit using one hierarchical model.\\nFrequentist statistics (such as t-tests) are possible on any metrics involving meta-d''.\\nFrequentist statistics are applied to all type 1 metrics and average confidence values.\\n');\n \n % Specify parameters\n analysis.sessionDiff.mcmc_params = fit_meta_d_params;\n \n % Fit each group using a separate hierarchical Bayesian model\n analysis.sessionDiff.fit = fit_meta_d_mcmc_groupCorr(analysis.trials2counts.nR_S1, analysis.trials2counts.nR_S2, analysis.sessionDiff.mcmc_params);\n \n % Compute HDI of difference for log(meta-d'/d')\n analysis.session1.logMratio.sessionMean = analysis.sessionDiff.fit.mu_logMratio(1);\n analysis.session1.logMratio.singleSubject = log(analysis.sessionDiff.fit.Mratio(:,1));\n analysis.session1.Mratio.sessionMean = exp(analysis.sessionDiff.fit.mu_logMratio(1));\n analysis.session1.Mratio.singleSubject = analysis.sessionDiff.fit.Mratio(:,1);\n analysis.session2.logMratio.sessionMean = analysis.sessionDiff.fit.mu_logMratio(2);\n analysis.session2.logMratio.singleSubject = log(analysis.sessionDiff.fit.Mratio(:,2));\n analysis.session2.Mratio.sessionMean = exp(analysis.sessionDiff.fit.mu_logMratio(2));\n analysis.session2.Mratio.singleSubject = analysis.sessionDiff.fit.Mratio(:,2);\n analysis.sessionDiff.log_Mratio.sampleDiff = analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,1) - analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,2);\n analysis.sessionDiff.log_Mratio.mean = analysis.session1.logMratio.sessionMean - analysis.session2.logMratio.sessionMean;\n analysis.sessionDiff.log_Mratio.hdi = calc_HDI(analysis.sessionDiff.log_Mratio.sampleDiff(:));\n analysis.sessionDiff.Mratio.mean = exp(analysis.session1.logMratio.sessionMean) - exp(analysis.session2.logMratio.sessionMean);\n analysis.sessionDiff.Mratio.hdi = calc_HDI((exp(analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,1)) - exp(analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,2))));\n\n % Pull out session mean values for all non-hierarchical metrics\n analysis.session1.d1.sessionMean = mean(analysis.sessionDiff.fit.d1(:,1));\n analysis.session1.d1.singleSubject = analysis.sessionDiff.fit.d1(:,1);\n analysis.session1.c1.sessionMean = mean(analysis.sessionDiff.fit.c1(:,1));\n analysis.session1.c1.singleSubject = analysis.sessionDiff.fit.c1(:,1);\n analysis.session2.d1.sessionMean = mean(analysis.sessionDiff.fit.d1(:,2));\n analysis.session2.d1.singleSubject = analysis.sessionDiff.fit.d1(:,2);\n analysis.session2.c1.sessionMean = mean(analysis.sessionDiff.fit.c1(:,2));\n analysis.session2.c1.singleSubject = analysis.sessionDiff.fit.c1(:,2);\n \n % Calculate average confidence, add filter number and accuracy to results for session 1\n for n = 1:length(analysis.session1.data)\n analysis.session1.avgConfidence.singleSubject(n) = mean(analysis.session1.data(n).results.thresholdTrials.confidence);\n analysis.session1.filterNum.singleSubject(n) = mean(analysis.session1.data(n).results.thresholdTrials.filterNum);\n analysis.session1.accuracy.singleSubject(n) = analysis.session1.data(n).results.thresholdTrials.accuracyTotal;\n end\n analysis.session1.avgConfidence.sessionMean = mean(analysis.session1.avgConfidence.singleSubject);\n analysis.session1.filterNum.sessionMean = mean(analysis.session1.filterNum.singleSubject);\n analysis.session1.accuracy.sessionMean = mean(analysis.session1.accuracy.singleSubject);\n \n % Calculate average confidence, add filter number and accuracy to results for session 2\n for n = 1:length(analysis.session2.data)\n analysis.session2.avgConfidence.singleSubject(n) = mean(analysis.session2.data(n).results.thresholdTrials.confidence);\n analysis.session2.filterNum.singleSubject(n) = mean(analysis.session2.data(n).results.thresholdTrials.filterNum);\n analysis.session2.accuracy.singleSubject(n) = analysis.session2.data(n).results.thresholdTrials.accuracyTotal;\n end\n analysis.session2.avgConfidence.sessionMean = mean(analysis.session2.avgConfidence.singleSubject);\n analysis.session2.filterNum.sessionMean = mean(analysis.session2.filterNum.singleSubject);\n analysis.session2.accuracy.sessionMean = mean(analysis.session2.accuracy.singleSubject);\n \n % Calculate session difference values for all non-hierarchical metrics\n analysis.sessionDiff.filterNum.meanDiff = analysis.session1.filterNum.sessionMean - analysis.session2.filterNum.sessionMean;\n analysis.sessionDiff.accuracy.meanDiff = analysis.session1.accuracy.sessionMean - analysis.session2.accuracy.sessionMean;\n analysis.sessionDiff.d1.meanDiff = analysis.session1.d1.sessionMean - analysis.session2.d1.sessionMean;\n analysis.sessionDiff.c1.meanDiff = analysis.session1.c1.sessionMean - analysis.session2.c1.sessionMean;\n analysis.sessionDiff.avgConfidence.meanDiff = analysis.session1.avgConfidence.sessionMean - analysis.session2.avgConfidence.sessionMean;\n\n % Run specified statistical test on all non-hierarchical metrics\n if strcmp(analysis.sessionDiff.test,'wilcoxon') == 1\n analysis.sessionDiff.testType = 'Wilcoxon signed rank test';\n [analysis.sessionDiff.filterNum.p,analysis.sessionDiff.filterNum.h,analysis.sessionDiff.filterNum.stats] = signrank(analysis.session1.filterNum.singleSubject,analysis.session2.filterNum.singleSubject);\n [analysis.sessionDiff.accuracy.p,analysis.sessionDiff.accuracy.h,analysis.sessionDiff.accuracy.stats] = signrank(analysis.session1.accuracy.singleSubject,analysis.session2.accuracy.singleSubject);\n [analysis.sessionDiff.d1.p,analysis.sessionDiff.d1.h,analysis.sessionDiff.d1.stats] = signrank(analysis.session1.d1.singleSubject,analysis.session2.d1.singleSubject);\n [analysis.sessionDiff.c1.p,analysis.sessionDiff.c1.h,analysis.sessionDiff.c1.stats] = signrank(analysis.session1.c1.singleSubject,analysis.session2.c1.singleSubject);\n [analysis.sessionDiff.avgConfidence.p,analysis.sessionDiff.avgConfidence.h,analysis.sessionDiff.avgConfidence.stats] = signrank(analysis.session1.avgConfidence.singleSubject,analysis.session2.avgConfidence.singleSubject);\n elseif strcmp(analysis.sessionDiff.test,'ttest') == 1\n analysis.sessionDiff.testType = 'Paired T-test';\n [analysis.sessionDiff.filterNum.h,analysis.sessionDiff.filterNum.p,analysis.sessionDiff.filterNum.ci,analysis.sessionDiff.filterNum.stats] = ttest(analysis.session1.filterNum.singleSubject,analysis.session2.filterNum.singleSubject);\n [analysis.sessionDiff.accuracy.h,analysis.sessionDiff.accuracy.p,analysis.sessionDiff.accuracy.ci,analysis.sessionDiff.accuracy.stats] = ttest(analysis.session1.accuracy.singleSubject,analysis.session2.accuracy.singleSubject);\n [analysis.sessionDiff.d1.h,analysis.sessionDiff.d1.p,analysis.sessionDiff.d1.ci,analysis.sessionDiff.d1.stats] = ttest(analysis.session1.d1.singleSubject,analysis.session2.d1.singleSubject);\n [analysis.sessionDiff.c1.h,analysis.sessionDiff.c1.p,analysis.sessionDiff.c1.ci,analysis.sessionDiff.c1.stats] = ttest(analysis.session1.c1.singleSubject,analysis.session2.c1.singleSubject);\n [analysis.sessionDiff.avgConfidence.h,analysis.sessionDiff.avgConfidence.p,analysis.sessionDiff.avgConfidence.ci,analysis.sessionDiff.avgConfidence.stats] = ttest(analysis.session1.avgConfidence.singleSubject,analysis.session2.avgConfidence.singleSubject);\n end\n \n % Save results\n save(resultsFile, 'analysis'); % Save results\n\n % Create Figure to display results\n figure\n set(gcf, 'Units', 'Normalized', 'OuterPosition', [0 0 0.6 0.6]);\n labels = ['Session 1'; 'Session 2'];\n % Plot Type 1 metrics on top line\n ax1 = subplot(2,4,1);\n bar(ax1, [analysis.session1.filterNum.sessionMean; analysis.session2.filterNum.sessionMean]);\n hold on\n errorbar(ax1, [analysis.session1.filterNum.sessionMean; analysis.session2.filterNum.sessionMean], [std(analysis.session1.filterNum.singleSubject), std(analysis.session2.filterNum.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.sessionDiff.filterNum.h == 0\n title('FILTER NUMBER: NON-SIG DIFF')\n elseif analysis.sessionDiff.filterNum.h > 0\n title('FILTER NUMBER: SIG DIFF')\n end\n hold off\n ax2 = subplot(2,4,2);\n bar(ax2, [analysis.session1.accuracy.sessionMean; analysis.session2.accuracy.sessionMean]);\n hold on\n errorbar(ax2, [analysis.session1.accuracy.sessionMean; analysis.session2.accuracy.sessionMean], [std(analysis.session1.accuracy.singleSubject), std(analysis.session2.accuracy.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.sessionDiff.accuracy.h == 0\n title('ACCURACY: NON-SIG DIFF')\n elseif analysis.sessionDiff.accuracy.h > 0\n title('ACCURACY: SIG DIFF')\n end\n ax3 = subplot(2,4,3);\n bar(ax3, [analysis.session1.d1.sessionMean; analysis.session2.d1.sessionMean]);\n hold on\n errorbar(ax3, [analysis.session1.d1.sessionMean; analysis.session2.d1.sessionMean], [std(analysis.session1.d1.singleSubject), std(analysis.session2.d1.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.sessionDiff.d1.h == 0\n title('d'': NON-SIG DIFF')\n elseif analysis.sessionDiff.d1.h > 0\n title('d'': SIG DIFF')\n end\n hold off\n ax4 = subplot(2,4,4);\n bar(ax4, [analysis.session1.c1.sessionMean; analysis.session2.c1.sessionMean]);\n hold on\n errorbar(ax4, [analysis.session1.c1.sessionMean; analysis.session2.c1.sessionMean], [std(analysis.session1.c1.singleSubject), std(analysis.session2.c1.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.sessionDiff.c1.h == 0\n title('CRITERION: NON-SIG DIFF')\n elseif analysis.sessionDiff.c1.h > 0\n title('CRITERION: SIG DIFF')\n end\n hold off\n % Plot session Mratio and the difference\n ax5 = subplot(2,4,5);\n histogram(ax5, exp(analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,1)))\n xlim([0 2])\n xlabel('MRatio');\n ylabel('Sample count');\n hold on\n histogram(ax5, exp(analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,2)))\n hold off\n lgd = legend('Session 1', 'Session 2', 'Location', 'northeast');\n lgd.FontSize = 10;\n if (analysis.sessionDiff.Mratio.hdi(1) > 0 && analysis.sessionDiff.Mratio.hdi(2) > 0) || (analysis.sessionDiff.Mratio.hdi(1) < 0 && analysis.sessionDiff.Mratio.hdi(2) < 0)\n title('MRATIO: SIG DIFF')\n else\n title('MRATIO: NON-SIG DIFF')\n end\n ax6 = subplot(2,4,6);\n histogram(ax6, analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,1))\n xlabel('log(MRatio)');\n ylabel('Sample count');\n hold on\n histogram(ax6, analysis.sessionDiff.fit.mcmc.samples.mu_logMratio(:,:,2))\n hold off\n lgd = legend('Session 1', 'Session 2', 'Location', 'northwest');\n lgd.FontSize = 10;\n if (analysis.sessionDiff.log_Mratio.hdi(1) > 0 && analysis.sessionDiff.log_Mratio.hdi(2) > 0) || (analysis.sessionDiff.log_Mratio.hdi(1) < 0 && analysis.sessionDiff.log_Mratio.hdi(2) < 0)\n title('LOG(MRATIO): SIG DIFF')\n else\n title('LOG(MRATIO): NON-SIG DIFF')\n end\n ax7 = subplot(2,4,7);\n histogram(ax7, analysis.sessionDiff.log_Mratio.sampleDiff)\n xlabel('log(MRatio)');\n ylabel('Sample count');\n if (analysis.sessionDiff.log_Mratio.hdi(1) > 0 && analysis.sessionDiff.log_Mratio.hdi(2) > 0) || (analysis.sessionDiff.log_Mratio.hdi(1) < 0 && analysis.sessionDiff.log_Mratio.hdi(2) < 0)\n title('LOG(MRATIO) DIFF: SIG DIFF')\n else\n title('LOG(MRATIO) DIFF: NON-SIG DIFF')\n end\n hold on\n ln2 = line([analysis.sessionDiff.log_Mratio.hdi(1) analysis.sessionDiff.log_Mratio.hdi(1)], [0 1800]);\n ln2.Color = 'r';\n ln2.LineWidth = 1.5;\n ln2.LineStyle = '--';\n ln2 = line([analysis.sessionDiff.log_Mratio.hdi(2) analysis.sessionDiff.log_Mratio.hdi(2)], [0 1800]);\n ln2.Color = 'r';\n ln2.LineWidth = 1.5;\n ln2.LineStyle = '--';\n hold off\n % Plot average confidence\n ax8 = subplot(2,4,8);\n bar(ax8, [analysis.session1.avgConfidence.sessionMean; analysis.session2.avgConfidence.sessionMean]);\n hold on\n errorbar(ax8, [analysis.session1.avgConfidence.sessionMean; analysis.session2.avgConfidence.sessionMean], [std(analysis.session1.avgConfidence.singleSubject), std(analysis.session2.avgConfidence.singleSubject)], 'o', 'marker', 'none', 'linewidth', 1, 'Color','k');\n set(gca,'XTickLabel',labels);\n set(gca,'XTickLabelRotation',90)\n if analysis.sessionDiff.avgConfidence.h == 0\n title('CONFIDENCE: NON-SIG DIFF')\n elseif analysis.sessionDiff.avgConfidence.h > 0\n title('CONFIDENCE: SIG DIFF')\n end\n hold off\n\n % Print figure\n figureFile = fullfile('analysis', ['filter_task_analysis_', analysis.type]); % Create figure file name\n print(figureFile, '-dtiff');\n\n % Display completion message on screen\n fprintf('\\n________________________________________\\n\\n COMPLETED SESSION DIFFERENCE ANALYSIS\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n fprintf('\\n DIFF MRATIO = %.2f (HDI: %.2f to %.2f)\\n', analysis.sessionDiff.Mratio.mean, analysis.sessionDiff.Mratio.hdi(1), analysis.sessionDiff.Mratio.hdi(2));\n if (analysis.sessionDiff.Mratio.hdi(1) > 0 && analysis.sessionDiff.Mratio.hdi(2) > 0) || (analysis.sessionDiff.Mratio.hdi(1) < 0 && analysis.sessionDiff.Mratio.hdi(2) < 0)\n fprintf('HDI DOES NOT SPAN ZERO: MRATIO DIFF SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n else\n fprintf(' HDI SPANS ZERO: MRATIO DIFF NOT SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n end\n fprintf('\\n RESULTS CAN BE FOUND IN: \\n FDT/analysis/\\n________________________________________\\n');\n \nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% RUN GROUP REGRESSION ANALYSIS IF SPECIFIED\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif strcmp(analysis.type,'regress') == 1 % If group regression analysis specified\n \n % Specify parameters\n analysis.groupRegression.mcmc_params = fit_meta_d_params;\n \n % Standardise covariate\n analysis.groupRegression.cov = zscore(analysis.covariate.data);\n\n % Fit group data all at once\n analysis.groupRegression.fit = fit_meta_d_mcmc_regression(analysis.trials2counts.nR_S1, analysis.trials2counts.nR_S2, analysis.groupRegression.cov, analysis.groupRegression.mcmc_params);\n \n % Calculate log of Mratio for single subjects values\n for n = 1:length(analysis.groupRegression.fit.Mratio)\n analysis.groupRegression.log_Mratio.singleSubject(n) = log(analysis.groupRegression.fit.Mratio(n));\n end\n \n % Pull out group and single subject values\n analysis.groupRegression.d1.groupMean = mean(analysis.groupRegression.fit.d1);\n analysis.groupRegression.d1.singleSubject = analysis.groupRegression.fit.d1;\n analysis.groupRegression.c1.groupMean = mean(analysis.groupRegression.fit.c1);\n analysis.groupRegression.c1.singleSubject = analysis.groupRegression.fit.c1;\n analysis.groupRegression.meta_d.groupMean = mean(analysis.groupRegression.fit.meta_d);\n analysis.groupRegression.meta_d.singleSubject = analysis.groupRegression.fit.meta_d;\n analysis.groupRegression.Mratio.groupMean = exp(analysis.groupRegression.fit.mu_logMratio);\n analysis.groupRegression.Mratio.singleSubject = analysis.groupRegression.fit.Mratio;\n analysis.groupRegression.Mratio.hdi = calc_HDI(exp(analysis.groupRegression.fit.mcmc.samples.mu_logMratio(:)));\n analysis.groupRegression.log_Mratio.groupMean = analysis.groupRegression.fit.mu_logMratio;\n analysis.groupRegression.log_Mratio.hdi = calc_HDI(analysis.groupRegression.fit.mcmc.samples.mu_logMratio(:));\n analysis.groupRegression.beta1.groupMean = analysis.groupRegression.fit.mu_beta1;\n analysis.groupRegression.beta1.hdi = calc_HDI(analysis.groupRegression.fit.mcmc.samples.mu_beta1(:));\n \n % Calculate average confidence, add filter number and accuracy to analysis results\n for n = 1:length(analysis.data)\n analysis.groupRegression.avgConfidence.singleSubject(n) = mean(analysis.data(n).results.thresholdTrials.confidence);\n analysis.groupRegression.filterNum.singleSubject(n) = mean(analysis.data(n).results.thresholdTrials.filterNum);\n analysis.groupRegression.accuracy.singleSubject(n) = analysis.data(n).results.thresholdTrials.accuracyTotal;\n end\n analysis.groupRegression.avgConfidence.groupMean = mean(analysis.groupRegression.avgConfidence.singleSubject);\n analysis.groupRegression.filterNum.groupMean = mean(analysis.groupRegression.filterNum.singleSubject);\n analysis.groupRegression.accuracy.groupMean = mean(analysis.groupRegression.accuracy.singleSubject);\n \n % Save results\n save(resultsFile, 'analysis'); % Save results\n \n % Display completion message on screen plus results\n fprintf('\\n________________________________________\\n\\n COMPLETED GROUP REGRESSION ANALYSIS\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n fprintf('\\n GROUP MRATIO = %.2f (HDI: %.2f to %.2f)\\n', analysis.groupRegression.Mratio.groupMean, analysis.groupRegression.Mratio.hdi(1), analysis.groupRegression.Mratio.hdi(2));\n if analysis.groupRegression.Mratio.hdi(1) > 0\n fprintf(' HDI DOES NOT SPAN ZERO: MRATIO SIG.\\n');\n else\n fprintf(' HDI SPANS ZERO: MRATIO NOT SIG.\\n');\n end\n fprintf('\\n GROUP BETA = %.2f (HDI: %.2f to %.2f)\\n', analysis.groupRegression.beta1.groupMean, analysis.groupRegression.beta1.hdi(1), analysis.groupRegression.beta1.hdi(2));\n if analysis.groupRegression.beta1.hdi(1) > 0\n fprintf(' HDI DOES NOT SPAN ZERO: BETA SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n else\n fprintf(' HDI SPANS ZERO: BETA NOT SIG.\\n _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _\\n');\n end\n fprintf('\\n RESULTS CAN BE FOUND IN: \\n FDT/analysis/\\n________________________________________\\n');\n \nend\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/task/FDT/scripts/tapas_filter_detection_analysis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850154599563, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3804062807457142}} {"text": "function [model,output] = normalizeExponentialCone(model)\n\n% N.B: YALMIP Definition % x2*exp(x1/x2) <= x3\n\n% Temporarily extract the data in a more standard name min c'*y, b + Ay >= 0\noutput.problem = 0;\nif ~isempty(model.evalMap)\n\n % Temporarily extract the data in a more standard name min c'*y, b + Ay >= 0 \n data.A = model.F_struc(:,2:end); \n data.b = full(model.F_struc(:,1));\n data.c = full(model.c);\n cones = model.K;\n % Clear away the SDP cone to easier add new rows. Will be put back in\n % place later\n data.A(end-sum(model.K.s.^2)+1:end,:)=[];\n data.b(end-sum(model.K.s.^2)+1:end) = [];\n sdpData = model.F_struc(end-sum(model.K.s.^2)+1:end,:);\n \n % First check that we have only exponentials\n convexFunctions = [];\n concaveFunctions = [];\n vectorentropy = [];\n vectorkullback = [];\n vectorlogsumexp = [];\n for i = 1:length(model.evalMap)\n switch model.evalMap{i}.fcn\n case {'exp','pexp'}\n convexFunctions = [convexFunctions model.evalMap{i}.computes];\n case {'log','plog','slog'}\n concaveFunctions = [concaveFunctions model.evalMap{i}.computes];\n case 'entropy'\n concaveFunctions = [concaveFunctions model.evalMap{i}.computes];\n if length(model.evalMap{i}.variableIndex) > 1\n vectorentropy = [vectorentropy i];\n end\n case 'kullbackleibler'\n convexFunctions = [convexFunctions model.evalMap{i}.computes];\n if length(model.evalMap{i}.variableIndex) > 2\n vectorkullback = [vectorkullback i];\n end\n case 'logsumexp'\n convexFunctions = [convexFunctions model.evalMap{i}.computes];\n vectorlogsumexp = [vectorlogsumexp i];\n otherwise\n % Standard interface, return solver not applicable\n % This should not be able to happen as we check this\n % earlier\n output = createoutput([],[],[],-4,model.solver.tag,[],[],0);\n return\n end\n end\n % Check that all exp/log enter in a convex fashion\n if model.K.f > 0\n if nnz(data.A(1:model.K.f,convexFunctions))>0 || nnz(data.A(1:model.K.f,concaveFunctions))>0\n output = createoutput([],[],[],19,model.solver.tag,[],[],0);\n return\n end\n end\n % Check sign in objective on exp/log terms\n if any(data.c(convexFunctions) < 0) || any(data.c(concaveFunctions) > 0)\n output = createoutput([],[],[],19,model.solver.tag,[],[],0);\n return\n end\n % Check sign in elementwise inequalities on exp/log terms\n if model.K.l > 0\n if nnz(data.A(1+model.K.f:model.K.f+model.K.l,convexFunctions)>0) || nnz(data.A(1+model.K.f:model.K.f+model.K.l,concaveFunctions)<0)\n output = createoutput([],[],[],19,model.solver.tag,[],[],0);\n return\n end\n end\n % Check so there are no exp/log terms in quadratic or SDP cone\n if sum(model.K.q) + sum(model.K.s) > 0\n if nnz(data.A(1+model.K.f+model.K.l:end,convexFunctions))>0 || nnz(data.A(1+model.K.f+model.K.l:end,concaveFunctions))>0\n output = createoutput([],[],[],19,model.solver.tag,[],[],0);\n return\n end\n end\n % Scalarize entropy operator\n if ~isempty(vectorentropy)\n for i = vectorentropy(:)'\n involved = model.evalMap{i}.variableIndex;\n computes = model.evalMap{i}.computes;\n n = length(data.c);\n m = length(involved);\n data.A = [sparse(ones(1,m+1),[computes n+(1:m)],[-1 ones(1,m)],1,n+m);\n data.A spalloc(size(data.A,1),m,0)];\n data.b = [0;data.b];\n data.c = [data.c;zeros(m,1)];\n cones.f = cones.f + 1;\n % The original strucuture now just relates to the first new term\n model.evalMap{i}.computes = n+1;\n model.evalMap{i}.variableIndex = involved(1);\n % and then we add some\n for j = 2:length(involved)\n model.evalMap{end+1} = model.evalMap{i};\n model.evalMap{end}.variableIndex = involved(j);\n model.evalMap{end}.computes = n+j;\n end\n end\n end\n \n % Scalarize kullbackleibler operator\n if ~isempty(vectorkullback)\n for i = vectorkullback(:)'\n involved = model.evalMap{i}.variableIndex;\n computes = model.evalMap{i}.computes;\n n = length(data.c);\n m = length(involved)/2;\n data.A = [sparse(ones(1,m+1),[computes n+(1:m)],[-1 ones(1,m)],1,n+m);\n data.A spalloc(size(data.A,1),m,0)];\n data.b = [0;data.b];\n data.c = [data.c;zeros(m,1)];\n cones.f = cones.f + 1;\n % The original strucuture now just relates to the first new term\n model.evalMap{i}.computes = n+1;\n model.evalMap{i}.variableIndex = involved([1 m+1]);\n % and then we add some\n for j = 2:length(involved)/2\n model.evalMap{end+1} = model.evalMap{i};\n model.evalMap{end}.variableIndex = involved([j j+m]);\n model.evalMap{end}.computes = n+j;\n end\n end\n end\n \n % Scalarize logsumexp operator\n % write log(expx1+expx2..)<= z as exp(x1-z)+exp(x2-z)+...<=1\n if ~isempty(vectorlogsumexp)\n for i = vectorlogsumexp(:)'\n involved = model.evalMap{i}.variableIndex;\n computes = model.evalMap{i}.computes;\n % Orignal #variables\n n = length(data.c);\n % Number of terms in logsumexp\n m = length(involved);\n \n % exp(x1-z)+exp(x2-z)+...<=1\n data.A = [data.A(1:cones.f,:) spalloc(cones.f,m,0);\n spalloc(1,n,0) -ones(1,m);\n data.A(cones.f+1:end,:) spalloc(cones.l+sum(cones.q)+sum(cones.s),m,0)];\n data.b = [data.b(1:cones.f);\n 1;\n data.b(cones.f+1:end)];\n data.c = [data.c;zeros(m,1)];\n cones.l = cones.l + 1;\n \n % The original strucuture now just relates to the first new term\n model.evalMap{i}.computes = n+1;\n model.evalMap{i}.variableIndex = [involved(1) computes];\n model.evalMap{i}.fcn = 'expdiff';\n % and then we add some new\n for j = 2:length(involved)\n model.evalMap{end+1} = model.evalMap{i};\n model.evalMap{end}.variableIndex = [involved(j) computes];\n model.evalMap{end}.computes = n+j;\n end\n end\n end\n \n % Describe all exponential cones\n m = length(model.evalMap);\n cones.e = model.K.e + m; \n for i = 1:m\n switch model.evalMap{i}.fcn\n case 'exp'\n % 1*exp(xv/1) <= xc\n % y*exp(x/y) <= z. y new variable, xv the original variable, and xc the \"computed\"\n x = model.evalMap{i}.variableIndex;\n z = model.evalMap{i}.computes;\n data.A = [data.A;\n -sparse([1;3],[x z],-1,3,size(data.A,2))];\n data.b = [data.b;[0;1;0]];\n case 'pexp'\n % xv(1)*exp(xv(2)/xv(1)) <= xc\n x = model.evalMap{i}.variableIndex(2);\n y = model.evalMap{i}.variableIndex(1);\n z = model.evalMap{i}.computes;\n data.A = [data.A;\n -sparse([1;2;3],[x y z],[-1 -1 -1],3,size(data.A,2))];\n data.b = [data.b;[0;0;0]];\n case 'log'\n % log(xv) >= xc i.e. xv >= exp(xc/1)*1\n z = model.evalMap{i}.variableIndex;\n x = model.evalMap{i}.computes;\n data.A = [data.A;\n -sparse([1;3],[x z],-1,3,size(data.A,2))];\n data.b = [data.b;[0;1;0]];\n case 'plog'\n % xv(1)log(xv(2)/xv(1))>=xc i.e.\n % -xc >= -xv(1)log(xv(2)/xv(1))\n z = model.evalMap{i}.computes;\n y = model.evalMap{i}.variableIndex(1);\n x = model.evalMap{i}.variableIndex(2);\n data.A = [data.A;\n -sparse([1;2;3],[x y z],[1 -1 1],3,size(data.A,2))];\n data.b = [data.b;[0;0;0]];\n case 'slog'\n % log(1+xv) >= xc i.e. (1+xv) >= exp(xc/1)*1\n z = model.evalMap{i}.variableIndex;\n x = model.evalMap{i}.computes;\n data.A = [data.A;\n -sparse([1;3],[x z],-1,3,size(data.A,2))];\n data.b = [data.b;0;1;1];\n case 'entropy'\n % -xv*log(xv)>=xc i.e. 1 >= exp(xc/xv)*xv\n x = model.evalMap{i}.computes;\n y = model.evalMap{i}.variableIndex;\n data.A = [data.A;\n -sparse([1;2],[x y],[-1 -1],3,size(data.A,2))];\n data.b = [data.b;[0;0;1]];\n case 'kullbackleibler'\n % -xv1*log(xv1/xv2)>=-xc i.e. xv2 >= exp(-xc/xv1)*xv1\n x = model.evalMap{i}.computes;\n y = model.evalMap{i}.variableIndex(1);\n z = model.evalMap{i}.variableIndex(2);\n data.A = [data.A;\n -sparse([1;2;3],[x y z],[1 -1 -1],3,size(data.A,2))];\n data.b = [data.b;[0;0;0]];\n case 'expdiff'\n % exp(xv(1)-xv(2)) <= xc\n x = model.evalMap{i}.variableIndex;\n z = model.evalMap{i}.computes;\n data.A = [data.A;\n -sparse([1;1;3],[x(1) x(2) z],[-1 1 -1],3,size(data.A,2))];\n data.b = [data.b;[0;1;0]];\n otherwise\n end\n end\n model.F_struc = [data.b data.A];\n model.c = data.c;\n model.K = cones; \n % Put back the SDP cone in place\n if model.K.s(1)>0\n if size(sdpData,2) < size(model.F_struc,2)\n sdpDAta(end,size(model.F_struc,2)) = 0;\n end\n model.F_struc = [model.F_struc;sdpData];\n end\nend\nn = size(model.F_struc,2)-1;\nif n > length(model.lb)\n missing = n - length(model.lb);\n model.lb = [model.lb;-inf(missing,1)];\nend\nif size(model.F_struc,2)-1 > length(model.ub)\n missing = n - length(model.ub);\n model.ub = [model.ub;inf(missing,1)];\nend\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/extras/normalizeExponentialCone.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7490872131147276, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.38039537419950353}} {"text": "function hammersley_step_set ( step )\n\n%*****************************************************************************80\n%\n%% HAMMERSLEY_STEP_SET sets the step of the leaped Hammersley subsequence.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 29 January 2005\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer STEP, the step of the leaped Hammersley subsequence.\n%\n global hammersley_STEP\n\n step = floor ( step );\n\n if ( ~halham_step_check ( step ) )\n error ( 'HAMMERSLEY_STEP_SET - Fatal error!' );\n end\n\n hammersley_STEP = step;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/hammersley/hammersley_step_set.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5078118642792044, "lm_q2_score": 0.7490872075132152, "lm_q1q2_score": 0.3803953713549891}} {"text": "function pass = test_emptyObjects( pref ) \n% For empty diskfun objects, does each command deal with them\n% appropriately?\n\n% Check things work for empty diskfuns.\nf = diskfun();\ntry\n f + f;\n 2*f;\n f*2;\n f.^2;\n 2.^f;\n f.^f;\n sqrt(f);\n sum(f);\n integral2(f);\n norm(f);\n squeeze(f);\n diff(f);\n cos(f);\n sin(f);\n sinh(f);\n f.^f + f;\n diag(f);\n trace(f);\n mean(f);\n minandmax2(f);\n median(f);\n flipud(f);\n flipdim(f,1);\n pass = 1;\ncatch\n pass = 0;\nend\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/diskfun/test_emptyObjects.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3803409334837929}} {"text": "function vtuk_puvw_write ( output_unit, title, node_num, element_num, ...\n element_order, xyz, element_node, p, uvw )\n\n%*****************************************************************************80\n%\n%% VTU_PUVW_WRITE writes pressure and velocity data to a VTU file.\n%\n% Discussion:\n%\n% The data is assumed to have been computed by a finite element program\n% for a 3D geometry which has been meshed using tetrahedral elements \n% of 4 or 10 nodes.\n%\n% The solution data includes the pressure and velocity vector at each node.\n%\n% The VTU format used here is the modern XML-based format used by the\n% Visual Toolkit for unstructured grid data.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 20 December 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer OUTPUT_UNIT, the output unit.\n%\n% Input, string TITLE, a title for the data.\n%\n% Input, integer NODE_NUM, the number of nodes.\n%\n% Input, integer ELEMENT_NUM, the number of elements.\n%\n% Input, integer ELEMENT_ORDER, the order of the elements.\n%\n% Input, real XYZ(3,NODE_NUM), the node coordinates.\n%\n% Input, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), the\n% nodes that make up each element. The node indices are zero based.\n%\n% Input, real P(1,NODE_NUM), the pressure at each node.\n%\n% Input, real UVW(3,NODE_NUM), the velocity at each node.\n%\n if ( element_order == 10 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'VTU_PUVW_WRITE - Note:\\n' );\n fprintf ( 1, ' As a temporary measure, we are handling quadratic tets\\n' );\n fprintf ( 1, ' as though they were linear. That is, the element information\\n' );\n fprintf ( 1, ' will only use the vertices, not the midside nodes.\\n' );\n element_order = 4;\n end\n\n fprintf ( output_unit, '\\n' );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n', ...\n node_num, element_num );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n for node = 1 : node_num\n fprintf ( output_unit, '%f\\n', p(node ) );\n end\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n for node = 1 : node_num\n fprintf ( output_unit, '%f %f %f\\n', uvw(1:3,node) );\n end\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n for node = 1 : node_num\n fprintf ( output_unit, '%f %f %f\\n', xyz(1:3,node) );\n end\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n\n fprintf ( output_unit, ' \\n' );\n for element = 1 : element_num\n for order = 1 : element_order\n fprintf ( output_unit, ' %d', element_node(order,element) );\n end\n fprintf ( output_unit, '\\n' );\n end\n fprintf ( output_unit, ' \\n' );\n\n fprintf ( output_unit, ' \\n' );\n offset = 0;\n for element = 1 : element_num\n offset = offset + element_order;\n fprintf ( output_unit, '%d\\n', offset );\n end\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n if ( element_order == 4 )\n for element = 1 : element_num\n fprintf ( output_unit, '10\\n' );\n end\n elseif ( element_order == 10 )\n for element = 1 : element_num\n fprintf ( output_unit, '24\\n' );\n end\n end\n fprintf ( output_unit, ' \\n' );\n\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, ' \\n' );\n fprintf ( output_unit, '\\n' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/threed_to_vtu/vtu_puvw_write.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3803409334837929}} {"text": "function f = replace_chromosome(intermediate_chromosome, M, V,pop)\n\n%% function f = replace_chromosome(intermediate_chromosome,pro,pop)\n% This function replaces the chromosomes based on rank and crowding\n% distance. Initially until the population size is reached each front is\n% added one by one until addition of a complete front which results in\n% exceeding the population size. At this point the chromosomes in that\n% front is added subsequently to the population based on crowding distance.\n\n% Copyright (c) 2009, Aravind Seshadri\n% All rights reserved.\n\n[N, m] = size(intermediate_chromosome);\nf = zeros(pop,m); % modified by zzb\n% Get the index for the population sort based on the rank\n% [temp,index] = sort(intermediate_chromosome(:,M + V + 1)); % modified by zzb\n[~,index] = sort(intermediate_chromosome(:,M + V + 1)); % modified by zzb\n% clear temp m; % modified by zzb\nsorted_chromosome = zeros(N,m); % modified by zzb\n% Now sort the individuals based on the index\nfor i = 1 : N\n sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);\nend\n\n% Find the maximum rank in the current population\nmax_rank = max(intermediate_chromosome(:,M + V + 1));\n\n% Start adding each front based on rank and crowing distance until the\n% whole population is filled.\nprevious_index = 0;\nfor i = 1 : max_rank\n % Get the index for current rank i.e the last the last element in the\n % sorted_chromosome with rank i. \n % current_index = max(find(sorted_chromosome(:,M + V + 1) == i)); % modified by zzb\n current_index = find(sorted_chromosome(:,M + V + 1) == i, 1, 'last' ); % modified by zzb\n % Check to see if the population is filled if all the individuals with\n % rank i is added to the population. \n if current_index > pop\n % If so then find the number of individuals with current rank i.\n remaining = pop - previous_index;\n % Get information about the individuals in the current rank i.\n temp_pop = sorted_chromosome(previous_index + 1 : current_index, :);\n % Sort the individuals with rank i in the descending order based on\n % the crowding distance.\n % [temp_sort,temp_sort_index] = sort(temp_pop(:, M + V + 2),'descend'); % modified by zzb\n [~,temp_sort_index] = sort(temp_pop(:, M + V + 2),'descend'); % modified by zzb\n % Start filling individuals into the population in descending order\n % until the population is filled.\n for j = 1 : remaining\n f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);\n end\n return;\n elseif current_index < pop\n % Add all the individuals with rank i into the population.\n f(previous_index + 1 : current_index, :) = ...\n sorted_chromosome(previous_index + 1 : current_index, :);\n else\n % Add all the individuals with rank i into the population.\n f(previous_index + 1 : current_index, :) = ...\n sorted_chromosome(previous_index + 1 : current_index, :);\n return;\n end\n % Get the index for the last added individual.\n previous_index = current_index;\nend\n", "meta": {"author": "sfvsfv", "repo": "Mathematical-modeling", "sha": "cef1a3688246851f067777b3599b1b3831d3d948", "save_path": "github-repos/MATLAB/sfvsfv-Mathematical-modeling", "path": "github-repos/MATLAB/sfvsfv-Mathematical-modeling/Mathematical-modeling-cef1a3688246851f067777b3599b1b3831d3d948/\u7f8e\u8d5bA\u9898\u5e38\u89c1\u4ee3\u7801/\u591a\u76ee\u6807\u5feb\u901f\u975e\u652f\u914d\u6392\u5e8f\u9057\u4f20\u7b97\u6cd5\u4f18\u5316\u4ee3\u7801/replace_chromosome.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318337259584, "lm_q2_score": 0.629774600455747, "lm_q1q2_score": 0.38034092928727203}} {"text": "classdef prtUiRocSelector < prtUiManagerPanel\n\n\n\n\n\n properties\n\n prtDs\n \n pf = [];\n pd = [];\n thresholds = [];\n selectedIndex = [];\n \n handleStruct\n end\n \n properties (Hidden, SetAccess='protected', GetAccess='protected')\n retainObsUpdateCallbackDepHelper = [];\n retainObsDepHelper = [];\n end\n properties (Dependent)\n retainObs\n retainObsUpdateCallback\n end\n \n methods \n function self = prtUiRocSelector(varargin)\n if nargin == 1\n self.prtDs = varargin{1};\n else\n self = prtUtilAssignStringValuePairs(self,varargin{:});\n end\n \n if nargin~=0 && ~self.hgIsValid\n self.create()\n end\n \n init(self);\n end\n \n function init(self)\n self.handleStruct.axes = axes('parent',self.managedHandle,'units','normalized','position',[0.1 0.1 0.85 0.8]);\n hold on\n grid on\n self.handleStruct.rocLine = plot(self.handleStruct.axes,nan,nan,'k');\n self.handleStruct.selectX = plot(self.handleStruct.axes,nan,nan,'kx','MarkerSize',12,'HitTest','off');\n hold off\n self.handleStruct.title = title(self.handleStruct.axes,'');\n set(self.handleStruct.rocLine,'HitTest','on','ButtonDownFcn',@(h,e)self.infoUpdate());\n \n self.updateRoc();\n end\n function updateRoc(self)\n \n self.selectedIndex = [];\n set(self.handleStruct.selectX,'XData',nan','YData',nan);\n set(self.handleStruct.title,'String','')\n \n if isempty(self.prtDs)\n set(self.handleStruct.rocLine,'XData',nan','YData',nan);\n self.selectedIndex = [];\n return\n end\n \n try\n if ~isempty(self.retainObs)\n [self.pf ,self.pd, self.thresholds] = prtScoreRoc(self.prtDs.retainObservations(self.retainObs));\n else\n [self.pf ,self.pd, self.thresholds] = prtScoreRoc(self.prtDs);\n end\n catch ME\n msgbox(ME.message,ME.identifier,'Error','Modal')\n set(self.handleStruct.rocLine,'XData',nan','YData',nan);\n return\n end\n set(self.handleStruct.rocLine,'XData',self.pf,'YData',self.pd);\n axis(self.handleStruct.axes,[0 1 0 1]);\n end\n function infoUpdate(self)\n cp = get(self.handleStruct.axes,'CurrentPoint');\n self.selectedIndex = mean(find(cp(1,1) > self.pf,1,'last'),find(cp(1,2) < self.pd,1,'first'));\n \n set(self.handleStruct.selectX,'XData',self.pf(self.selectedIndex),'YData',self.pd(self.selectedIndex));\n set(self.handleStruct.title,'String',sprintf('Pd = %0.3f, Pf = %0.3f, Theshold = %g',self.pd(self.selectedIndex), self.pf(self.selectedIndex),self.thresholds(self.selectedIndex)));\n \n end\n \n function val = get.retainObsUpdateCallback(self)\n val = self.retainObsUpdateCallbackDepHelper;\n end\n function set.retainObsUpdateCallback(self,val)\n assert(isempty(val) || (isa(val, 'function_handle') && nargin(val)==1),'retainObsUpdateCallback must be a function handle that accepts one input')\n \n self.retainObsUpdateCallbackDepHelper = val;\n end\n function val = get.retainObs(self)\n val = self.retainObsDepHelper;\n end\n function set.retainObs(self, val)\n if ~isempty(self.retainObsUpdateCallback)\n self.retainObsUpdateCallback(val)\n end\n self.retainObsDepHelper = val;\n self.updateRoc();\n end\n function updateRetainObs(self, val)\n self.retainObs = val;\n end \n \n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/plot/ui/prtUiRocSelector.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297745935070808, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.38034092509075124}} {"text": "% FEATURE_WRAPPER Wrapper for feature functions\n%\n% Usage\n% feature = FEATURE_WRAPPER(x, objects, feature_fun, options)\n%\n% Input\n% x (numeric): The file data.\n% object (struct): The objects contained in the data.\n% feature_fun (function handle): The real feature function handle, takes as\n% input one signal (or multiple, arranged as columns of a matrix) and \n% outputs the corresponding feature vectors. These are arranged with \n% feature dimension along the first axis, time/space along second and \n% third axes and signal index along the fourth axis (if more than one \n% signal are input).\n% options (struct): Various parameters for the wrapper, such as:\n% options.input_sz (int): The size of the input vectors to be given to \n% feature_fun. If empty, takes the rectangle specified by the objects\n% structure, otherwise takes the rectangle of size input_sz centered \n% on the object (default empty).\n% options.output_sz (int): The desired size of the data covered by the \n% feature vector. If empty, keeps the output from feature_fun, other-\n% wise extracts the time/space rectangle of size output_sz centered \n% on the original data, taking into account any subsampling by \n% feature_fun (default empty).\n% options.obj_normalize (int): The normalization of the input vectors \n% before being given to feature_fun. Can be empty, 1, 2, or Inf \n% (default []).\n% options.collapse (boolean): If true, collapses the time/space dimen-\n% sion into one vector, otherwise leaves this dimension intact\n% (default false).\n%\n% Output\n% feature (numeric): An PxNxK array where P is the feature dimension, N is \n% the space/time dimension and K is the signal index, if multiple \n% objects are given as input.\n%\n% See also\n% PREPARE_DATABASE\n\nfunction t = feature_wrapper(x,objects,fun,options)\n\tif nargin < 4\n\t\toptions = struct();\n\tend\n\t\n\toptions = fill_struct(options, 'input_sz', []);\n\toptions = fill_struct(options, 'output_sz', []);\n\toptions = fill_struct(options, 'obj_normalize', []);\n\toptions = fill_struct(options, 'collapse', 0);\n\t\n\tif isempty(options.input_sz)\n\t\tsz=objects(1).u2-objects(1).u1+ones(size(objects(1).u1));\n\n if length(sz)==1\n sz=[sz 1];\n end\n buf = zeros([sz, ...\n\t\t\tlength(objects)]);\n\t\t\n\t\tu1 = [objects.u1];\n\t\tu2 = [objects.u2];\n\telse\n\t\tif length(options.input_sz) == 1\n\t\t\toptions.input_sz = [options.input_sz 1];\t\n\t\tend\n\n\t\tbuf = zeros([options.input_sz,length(objects)]);\n\t\t\n\t\tif options.input_sz(2)==1\n\t\t\tu1 = round(([objects.u1]+[objects.u2]+1)/2-options.input_sz(1)/2);\n\t\t\tu2 = u1+options.input_sz(1)-1;\n\t\telse\n\t\t\tu1 = round(([objects.u1]+[objects.u2]+1)/2-options.input_sz/2);\n\t\t\tu2 = u1+options.input_sz-1;\n\t\tend\n\tend\n\t\n\t% extract objects with bounding box\n\tfor l = 1:length(objects)\n\t\tn_dim = sum(size(x)>1);\n\t\tswitch n_dim\n\t\t\tcase 1\n\t\t\t\tind = max(u1(l),1):min(u2(l),length(x));\n\t\t\t\tbuf(:,1,l) = [zeros(max(0,1-u1(l)),1); x(ind); zeros(max(0,u2(l)-length(x)),1)];\n\t\t\tcase 2\n\t\t\t\tbuf = x;\n\t\t\t\t% TODO : extract bounding box\n\t\tend\n\tend\n\t\n\t% normalize\n\tif ~isempty(options.obj_normalize)\n\t\tif options.obj_normalize == 1\n\t\t\tn = sum(abs(buf),1);\n\t\telseif options.obj_normalize == 2\n\t\t\tn = sqrt(sum(abs(buf).^2,1));\n\t\telseif options.obj_normalize == Inf\n\t\t\tn = max(abs(buf),[],1);\n\t\tend\n\t\t\n\t\tbuf = bsxfun(@times,buf,1./n);\n\tend\n\t\n\tt = fun(buf);\n\t\n\tif ~isempty(options.output_sz)\n\t\tif length(options.output_sz) == 1\n\t\t\toptions.output_sz = [options.output_sz 1];\n\t\tend\n\t\t\n\t\tN = [size(t,2) size(t,3)];\n\t\textent = floor(options.output_sz./(2*options.input_sz).*N);\n\t\n\t\tif options.input_sz(2) > 1\n\t\t\tt = t(:,N(1)/2+1-extent(1):N(1)/2+1+extent(1), ...\n\t\t\t\tN(2)/2+1-extent(2):N(2)/2+1+extent(2),:);\n\t\telse\n\t\t\tt = t(:,N(1)/2+1-extent(1):N(1)/2+1+extent(1),1,:);\n\t\tend\n\tend\n\t\n\tt = reshape(t,[size(t,1) size(t,2)*size(t,3) size(t,4)]);\n\t\n\tif options.collapse\n\t\tt = reshape(t,[size(t,1)*size(t,2) 1 size(t,3)]);\n\tend\nend\n", "meta": {"author": "scatnet", "repo": "scatnet", "sha": "59d935afa20359845282a3518134e24244862c1f", "save_path": "github-repos/MATLAB/scatnet-scatnet", "path": "github-repos/MATLAB/scatnet-scatnet/scatnet-59d935afa20359845282a3518134e24244862c1f/classification/feature_wrapper.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.38033872037725547}} {"text": "function [Gamma,Gammasum,Xi,LL] = hsinference_batched(T,hmm,residuals,XX)\n\n\nN = length(T);\nK = hmm.K;\n\nsetstateoptions;\nrangeK = 1:K;\nndim = size(residuals,2);\n\n% Cache shared results for use in obslike\nfor k = rangeK\n hmm.cache.train{k} = train;\n if k == 1 && strcmp(train.covtype,'uniquediag') || strcmp(train.covtype,'shareddiag') \n ldetWishB = 0;\n PsiWish_alphasum = 0;\n for n = 1:ndim\n if ~regressed(n), continue; end\n ldetWishB = ldetWishB+0.5*log(hmm.Omega.Gam_rate(n));\n PsiWish_alphasum = PsiWish_alphasum+0.5*psi(hmm.Omega.Gam_shape);\n end\n C = hmm.Omega.Gam_shape ./ hmm.Omega.Gam_rate;\n elseif k == 1 && strcmp(train.covtype,'uniquefull') || strcmp(train.covtype,'sharedfull')\n ldetWishB = 0.5*logdet(hmm.Omega.Gam_rate(regressed,regressed));\n PsiWish_alphasum = 0;\n for n = 1:sum(regressed)\n PsiWish_alphasum = PsiWish_alphasum+psi(hmm.Omega.Gam_shape/2+0.5-n/2);\n end\n PsiWish_alphasum=PsiWish_alphasum*0.5;\n C = hmm.Omega.Gam_shape * hmm.Omega.Gam_irate;\n for kk = rangeK\n [hmm.cache.WishTrace{kk},hmm.cache.codevals] = computeWishTrace(hmm,regressed,XX,C,kk);\n end\n elseif strcmp(train.covtype,'diag')\n ldetWishB=0;\n PsiWish_alphasum = 0;\n for n = 1:ndim\n if ~regressed(n), continue; end\n ldetWishB = ldetWishB+0.5*log(hmm.state(k).Omega.Gam_rate(n));\n PsiWish_alphasum = PsiWish_alphasum+0.5*psi(hmm.state(k).Omega.Gam_shape);\n end\n C = hmm.state(k).Omega.Gam_shape ./ hmm.state(k).Omega.Gam_rate;\n if episodic, iC = hmm.state(k).Omega.Gam_rate / hmm.state(k).Omega.Gam_shape; end\n elseif strcmp(train.covtype,'full')\n ldetWishB = 0.5*logdet(hmm.state(k).Omega.Gam_rate(regressed,regressed));\n PsiWish_alphasum = 0;\n for n = 1:sum(regressed)\n PsiWish_alphasum = PsiWish_alphasum+0.5*psi(hmm.state(k).Omega.Gam_shape/2+0.5-n/2);\n end\n C = hmm.state(k).Omega.Gam_shape * hmm.state(k).Omega.Gam_irate;\n if episodic, iC = hmm.state(k).Omega.Gam_rate / hmm.state(k).Omega.Gam_shape; end\n [hmm.cache.WishTrace{k},hmm.cache.codevals] = computeWishTrace(hmm,regressed,XX,C,k);\n end\n % Set up cache\n if ~isfield(train,'distribution') || strcmp(train.distribution,'Gaussian')\n hmm.cache.ldetWishB{k} = ldetWishB;\n hmm.cache.PsiWish_alphasum{k} = PsiWish_alphasum;\n hmm.cache.C{k} = C;\n end\nend\n\nGamma = cell(N,1);\nLL = cell(N,1);\nXi = cell(N,1);\n \nfor j = 1:N\n \n t0 = sum(T(1:j-1)) - order*(j-1); \n if order > 0\n R = [zeros(order,size(residuals,2)); residuals(t0+1:t0+T(j)-order,:)];\n else\n R = residuals(t0+1:t0+T(j),:);\n end\n \n Tj = size(R,1);\n \n L = obslike([],hmm,residuals,XX,hmm.cache);\n L(Lrealmax) = realmax;\n L = embeddata_batched(L,Tj,hmm.train.embeddedlags_batched); \n L = permute(mean(L,2),[1,3,2]);\n\n [Gamma{j},Xij,LL{j}] = fb_Gamma_inference_sub(L,hmm.P,hmm.Pi,size(L,1),order);\n \n Xi{j} = reshape(Xij,size(Xij,1),K,K);\n \nend\n\nGamma = cell2mat(Gamma);\nXi = cell2mat(Xi);\nLL = cell2mat(LL);\nGammasum = sum(Gamma);\n\n\nend", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/train/hsinference_batched.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3803387132577442}} {"text": "function [globalOpt, options, optionsDyn, initXOptions] = ...\n hsvargplvmRegressionInitX(globalOpt, options, optionsDyn, inpX, Ytr, stackedOpt)\n\nif nargin < 6 || isempty(stackedOpt)\n stackedOpt = [];\nend\n\n% ---- Potential special initialisations for X -----\nif ~iscell(globalOpt.initX) && strcmp(globalOpt.initX, 'inputs')\n options = rmfield(options, 'initX');\n for i=1:options.H\n options.initX{i} = inpX;\n end\n optionsDyn.initX = inpX;\n globalOpt.initX = options.initX;\nend\n\n% Initialise half of the latent spaces with inputs, half with PCA on outputs\nif ~iscell(globalOpt.initX) && strcmp(globalOpt.initX, 'inputsOutputs')\n options = rmfield(options, 'initX');\n if iscell(globalOpt.Q)\n oldQ = globalOpt.Q{end};\n else\n oldQ = globalOpt.Q;\n end\n for i=options.H:-1:floor(options.H/2)+1\n options.initX{i} = inpX;\n Q{i} = size(inpX,2);\n end\n optionsDyn.initX = inpX;\n\n YtrScaled = scaleData(Ytr{1}, options.scale2var1); \n Xpca = ppcaEmbed(YtrScaled, oldQ);\n for i=1:floor(options.H/2)\n options.initX{i} = Xpca;\n Q{i} = oldQ;\n end\n options.Q = Q;\n globalOpt.Q = Q;\n globalOpt.initX = options.initX;\nend\n\n\n% Just rewrite all options into a struct of cells\noptionsAll = hsvargplvmCreateOptions(Ytr, options, globalOpt);\n% Don't mind the following for loop... it just gives the extra possibility\n% of initialising the latent space with Bayesian GPLVM or GPLVM (see\n% hsvargplvm_init on how to activate this). \ninitXOptions = cell(1, options.H);\nfor h=1:options.H\n if strcmp(optionsAll.initX, 'vargplvm') | strcmp(optionsAll.initX, 'fgplvm')\n initXOptions{h}{1} = optionsAll;\n % DOn't allow the D >> N trick for layers > 1\n if h~=1\n if isfield(initXOptions{h}{1}, 'enableDgtN')\n initXOptions{h}{1}.enableDgtN = false;\n end\n end\n initXOptions{h}{1}.latentDim = optionsAll.Q{h};\n initXOptions{h}{1}.numActive = optionsAll.K{h}{1};\n initXOptions{h}{1}.kern = optionsAll.kern{h}{1};\n initXOptions{h}{1}.initX = 'ppca';\n initXOptions{h}{1}.initSNR = 90;\n initXOptions{h}{1}.numActive = 50;\n initXOptions{h}{2} = 160;\n initXOptions{h}{3} = 30;\n if isfield(stackedOpt, 'stackedInitVardistIters'), initXOptions{h}{2} = stackedOpt.stackedInitVardistIters; end\n if isfield(stackedOpt, 'stackedInitIters'), initXOptions{h}{3} = stackedOpt.stackedInitIters; end\n if isfield(stackedOpt, 'stackedInitSNR'), initXOptions{h}{1}.initSNR = stackedOpt.stackedInitSNR; end\n if isfield(stackedOpt, 'stackedInitK'), initXOptions{h}{1}.numActive = stackedOpt.stackedInitK; end\n else\n initXOptions{h} = {};\n end\nend", "meta": {"author": "SheffieldML", "repo": "deepGP", "sha": "f72410a0fb354451f2bf58cfe247d2b5d3b08e58", "save_path": "github-repos/MATLAB/SheffieldML-deepGP", "path": "github-repos/MATLAB/SheffieldML-deepGP/deepGP-f72410a0fb354451f2bf58cfe247d2b5d3b08e58/deepGP/matlab/hsvargplvmRegressionInitX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3803387132577442}} {"text": "function h = rgb2hsv(m)\n\n% RGB2HSV converts red-green-blue colors to hue-saturation-value.\n%\n% this code is based on the comments in\n% http://stackoverflow.com/questions/3018313/algorithm-to-convert-rgb-to-hsv-and-hsv-to-rgb-in-range-0-255-for-both\n\nif isvector(m) && length(m)==3\n r = m(1);\n g = m(2);\n b = m(3);\nelseif ismatrix(m) && size(m,2)==3\n r = m(:,1);\n g = m(:,2);\n b = m(:,3);\nelseif ndims(m)==3\n r = m(:,:,1);\n g = m(:,:,2);\n b = m(:,:,3);\nend\n\n% ensure these to be double precision column vectors\nr = double(r(:));\ng = double(g(:));\nb = double(b(:));\n\nminrgb = min([r g b], [], 2);\nmaxrgb = max([r g b], [], 2);\ndelta = maxrgb - minrgb;\n\nh = nan(size(delta)); % will be determined further down\nv = maxrgb;\ns = delta./maxrgb;\n\n% set for each element in the array the proper hue, depending on whether red, green or blue is the largest value\n% the 0, 2 and 4 are there to end up in the right corner of the color circle\nsel = (r==maxrgb);\nhue = 0.0 + (g-b)./delta; % between yellow & magenta\nh(sel) = hue(sel);\nsel = (g==maxrgb);\nhue = 2.0 + (b-r)./delta; % between cyan & yellow\nh(sel) = hue(sel);\nsel = (b==maxrgb);\nhue = 4.0 + (r-g)./delta; % between magenta & cyan\nh(sel) = hue(sel);\n\n% these should not be NaN\nh(delta==0) = 0;\ns(delta==0) = 0;\n\n% convert to degrees between 0 and 360\nh = h * 60;\nh = mod(h, 360);\n\n% convert to a fraction between 0 and 1\nh = h/360;\n\nif nargout==3\n % return the three output arguments separately\nelse\n % combine the hue-saturation-value in a single array\n h = reshape([h(:) s(:) v(:)], size(m));\n clear s v\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/images/rgb2hsv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3803387132577442}} {"text": "classdef ShFunWithElasticPdes < ShapeFunctional\n \n properties (Access = protected)\n interpolation\n physicalProblem\n end\n \n properties (Access = private)\n orientationUpdater\n alpha\n end\n \n properties (Access = public)\n regDesignVariable\n end\n \n methods (Access = public)\n \n function computeFunctionAndGradient(obj)\n obj.updateAlpha();\n obj.computeFunction();\n obj.updateAlpha();\n obj.computeGradient();\n obj.updateAlpha();\n end\n \n function computeFunction(obj)\n obj.updateHomogenizedMaterialProperties();\n obj.solveState();\n obj.computeFunctionValue();\n obj.normalizeFunction();\n end\n \n function computeGradient(obj)\n obj.solveAdjoint();\n obj.computeGradientValue();\n obj.filterGradient();\n obj.normalizeGradient();\n end\n \n function f = getPhysicalProblems(obj)\n f{1} = obj.physicalProblem;\n end\n \n function f = getRegularizedDesignVariable(obj)\n f = obj.regDesignVariable{1:end-1};\n end\n \n function q = getQuad(obj)\n q = obj.physicalProblem.getQuadrature();\n end\n \n end\n \n methods (Access = protected)\n \n function createOrientationUpdater(obj)\n cParams.type = 'MinimumEigenValue';\n obj.orientationUpdater = OrientationUpdater.create(cParams);\n end\n \n function createEquilibriumProblem(obj,fileName)\n a.fileName = fileName;\n s = FemDataContainer(a);\n obj.physicalProblem = FEM.create(s);\n obj.initPrincipalDirections();\n end\n \n function updateHomogenizedMaterialProperties(obj)\n obj.filterDesignVariable();\n obj.homogenizedVariablesComputer.computeCtensor(obj.regDesignVariable);\n end\n \n function filterDesignVariable(obj)\n nx = length(obj.designVariable.value)/obj.designVariable.nVariables;\n x = obj.designVariable.value;\n xf = cell(obj.designVariable.nVariables,1);\n for ivar = 1:obj.designVariable.nVariables\n i0 = nx*(ivar-1) + 1;\n iF = nx*ivar;\n xs = x(i0:iF);\n xf{ivar} = obj.filter.getP0fromP1(xs);\n end\n xf{ivar+1} = obj.designVariable.alpha;\n obj.regDesignVariable = xf;\n end\n \n function filterGradient(obj)\n g = obj.gradient;\n gf = zeros(size(obj.Msmooth,1),obj.nVariables);\n for ivar = 1:obj.nVariables\n gs = g(:,:,ivar);\n gf(:,ivar) = obj.filter.getP1fromP0(gs);\n end\n gf = obj.Msmooth*gf;\n g = gf(:);\n obj.gradient = g;\n end\n \n function v = getPdeVariableToPrint(obj,p)\n cParams.physicalProblem = p;\n g = PdeVariableToPrintGetter(cParams);\n v = g.compute();\n end\n \n function fP = addHomogPrintVariablesNames(obj,fP)\n fH = obj.homogenizedVariablesComputer.createPrintVariables();\n nP = numel(fP);\n for i = 1:numel(fH)\n fP{nP+i} = fH{i};\n end\n end\n \n function updateAlpha(obj)\n if isequal(obj.designVariable.type,'MicroParams')\n if isfield(obj.physicalProblem.variables,'principalStress')\n cParams.pD = obj.physicalProblem.variables.principalDirections;\n cParams.pS = obj.physicalProblem.variables.principalStress;\n obj.orientationUpdater.compute(cParams);\n alpha = obj.orientationUpdater.alpha;\n obj.designVariable.alpha = alpha;\n end\n end\n end\n \n function fP = addHomogVariables(obj,fP)\n fH = obj.homogenizedVariablesComputer.addPrintableVariables(obj.designVariable);\n for i = 1:numel(fH)\n fP{end+1} = fH{i};\n end\n end\n \n end\n \n methods (Access = private)\n\n function s = createFEMparameters(obj, file)\n gidParams = obj.createGiDparameters(file);\n s.dim = gidParams.pdim;\n s.type = gidParams.ptype;\n s.scale = gidParams.scale;\n s.mesh = gidParams.mesh;\n s.dirichlet = gidParams.dirichlet;\n s.pointload = gidParams.pointload;\n end\n\n function gidParams = createGiDparameters(obj,file)\n gidReader = FemInputReader_GiD();\n gidParams = gidReader.read(file);\n end\n \n function initPrincipalDirections(obj)\n if isempty(obj.designVariable.alpha)\n dim = obj.physicalProblem.getDimensions();\n nelem = size(obj.dvolu,1);\n ndim = dim.ndimf; %dim.ndim\n alpha0 = zeros(ndim,nelem);\n alpha0(1,:) = 1;\n obj.designVariable.alpha = alpha0;\n end\n obj.physicalProblem.variables.principalDirections = obj.designVariable.alpha;\n end\n \n end\n\n methods (Access = protected, Abstract)\n computeFunctionValue(obj)\n computeGradientValue(obj)\n solveState(obj)\n solveAdjoint(obj)\n end\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Shape Functions/ShFunWithElasticPdes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7606506418255928, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3803253209127964}} {"text": "function varargout = SIGN(varargin)\n%SIGN (overloaded)\n\nswitch class(varargin{1})\n\n case 'double'\n error('Overloaded SDPVAR/SIGN CALLED WITH DOUBLE. Report error')\n\n case 'sdpvar' \n varargout{1} = InstantiateElementWise(mfilename,varargin{:});\n\n case 'char' \n switch varargin{1}\n case {'graph','exact'}\n\n t = varargin{2};\n X = varargin{3};\n \n d1 = binvar(1);\n d2 = binvar(1);\n d3 = binvar(1);\n [M,m] = derivebounds(X);\n if isequal(getbase(X),[0 1]) && ismember(getvariables(X),yalmip('tempintvariables'))\n % Numerically unstable case with integer X\n % d1: Negative <= -1\n % d2: 0\n % d3: Postive >= 1\n F = [X >= m*d1, X <= M*d3, X <= (1-d1)*(M+1)-1,X >=(1-d3)*(m-1)+1, m*(1-d2) <= X <= M*(1-d2), t == -d1 + d3,d1+d2+d3==1]; \n else\n % Numerically unstable case with continuous X\n F = [X >= m*d1, X <= M*d3, X <= (1-d1)*M,X >=(1-d3)*m, m*(1-d2) <= X <= M*(1-d2), t == -d1 + d3,d1+d2+d3==1];\n end\n\n varargout{1} = F;\n varargout{2} = struct('convexity','none','monotonicity','none','definiteness','none');\n varargout{3} = X;\n\n otherwise\n error('SDPVAR/SIGN called with CHAR argument?');\n end\n otherwise\n error('Strange type on first argument in SDPVAR/SIGN');\nend\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/@sdpvar/sign.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7431680199891789, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3802914159135799}} {"text": "% NSA v1 (Aybat et al. 2011)\n% process_video('RPCA', 'NSA1', 'dataset/demo.avi', 'output/demo_NSA1.avi');\nstdev = 1;\ntol = 5e-6; % optimality tolerance for stopping_type 1\nL = nsa_v1(M,stdev,tol,1);\nS = M - L;", "meta": {"author": "andrewssobral", "repo": "lrslibrary", "sha": "06d457349cb5f1fc56a583cd61af9f1d5150e3a1", "save_path": "github-repos/MATLAB/andrewssobral-lrslibrary", "path": "github-repos/MATLAB/andrewssobral-lrslibrary/lrslibrary-06d457349cb5f1fc56a583cd61af9f1d5150e3a1/algorithms/rpca/NSA1/run_alg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7431680086124812, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3802914100919348}} {"text": "function F = coth(F, varargin)\n%COTH Hyperbolic cotangent of a CHEBFUN.\n% COTH(F) computes the hyperbolic cotangent of the CHEBFUN F.\n%\n% COTH(F, PREF) does the same but uses the CHEBFUNPREF object PREF when\n% computing the composition.\n%\n% See also ACOTH.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Call the compose method:\nF = compose(F, @coth, varargin{:});\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/coth.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6584174871563662, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3802330471900902}} {"text": "function varargout = waterfall(varargin)\n%WATERFALL Waterfall plot of a DISKFUN.\n% WATERFALL(F) displays the waterfall plot of F.\n%\n% WATERFALL(F, S) displays the column and row chebfuns of F that are used\n% for its approximation. This is a 3D version of plot(f, S), where S is a\n% string (see PLOT).\n%\n% WATERFALL(F, S, 'nslices', N) displays the first min(N, length(f)) \n% column and rows.\n%\n% WATERFALL supports passing options to the plot, similar to standard \n% Matlab plot commands. The options supported are:\n% 'color': Color of lines and markers plotted.\n% 'marker': Marker for pivot points.\n% 'markersize': Size of markers plotted at pivot points.\n%\n% H = WATERFALL(...) returns a handle to a waterfall plot object.\n%\n% See also DISKFUN/PLOT.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n%switch to polar\nf = varargin{1}; \nf = cart2pol(f, 'cdr'); \n\n[varargout{1:nargout}] = waterfall@separableApprox(f,varargin{2:end});\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@diskfun/waterfall.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.38016546689537667}} {"text": "%% 3D Model Demo\n% This is short demo that loads and renders a 3D model of a human femur. It\n% showcases some of MATLAB's advanced graphics features, including lighting and\n% specular reflectance.\n\n% Copyright 2011 The MathWorks, Inc.\n\n\n%% Load STL mesh\n% Stereolithography (STL) files are a common format for storing mesh data. STL\n% meshes are simply a collection of triangular faces. This type of model is very\n% suitable for use with MATLAB's PATCH graphics object.\n\n% Import an STL mesh, returning a PATCH-compatible face-vertex structure\nfv = stlread('femur.stl');\n\n\n%% Render\n% The model is rendered with a PATCH graphics object. We also add some dynamic\n% lighting, and adjust the material properties to change the specular\n% highlighting.\n\npatch(fv,'FaceColor', [0.8 0.8 1.0], ...\n 'EdgeColor', 'none', ...\n 'FaceLighting', 'gouraud', ...\n 'AmbientStrength', 0.15);\n\n% Add a camera light, and tone down the specular highlighting\ncamlight('headlight');\nmaterial('dull');\n\n% Fix the axes scaling, and set a nice view angle\naxis('image');\nview([-135 35]);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/22409-stl-file-reader/STLRead/stldemo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.38016546689537667}} {"text": "function disp_(u,str)\n%DISP_ Display of slope variables in \"_\" notation\n%\n% disp_(u)\n%\n\n%Second parameter name for internal purposes: display full structure\n%\n\n% written 06/04/09 S.M. Rump\n% modified 02/28/10 S.M. Rump vector output and multi-dimensional arrays\n% modified 08/26/12 S.M. Rump global variables removed\n%\n\n INTLAB_SLOPE = getappdata(0,'INTLAB_SLOPE');\n\n loose = strcmp(get(0,'FormatSpacing'),'loose');\n\n numvar = size(u.s,2);\n if numvar~=INTLAB_SLOPE.NUMVAR\n warning('**** number of dependent variables in slope expansion inconsitent')\n end\n\n if nargin==2\n if isequal(str,'internal')\n disp([ 'slope range (internal structure) ' inputname(1) '.r = ' ])\n display(u.r,'',1);\n disp([ 'slope slope ' inputname(1) '.s = ' ])\n display(u.s,'',1);\n return\n else\n error('Invalid call of slope disp_')\n end\n end\n\n if loose, disp(' '); end\n disp([ 'slope intval center ' inputname(1) '.c = ' ])\n if loose, disp(' '); end\n ur = u.r(:,1);\n disp_( reshape(ur,u.size) , '' , 1 )\n if loose, disp(' '); end\n\n if loose, disp(' '); end\n disp([ 'slope intval range ' inputname(1) '.r = ' ])\n if loose, disp(' '); end\n ur = u.r(:,INTLAB_SLOPE.NUMVAR+1);\n disp_( reshape(ur,u.size) , '' , 1 )\n if loose, disp(' '); end\n\n if loose, disp(' '); end\n disp([ 'slope intval slope ' inputname(1) '.s = ' ])\n if loose, disp(' '); end\n if ( length(u.size)==2 ) & ( u.size(2)==1 )\n disp_( reshape(u.s,[u.size(1) numvar]) , '' , 1 )\n else\n disp_( reshape(u.s,[u.size numvar]) , '' , 1 )\n end\n if loose, disp(' '); end\n\n ", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/slope/@slope/disp_.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102498375401, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.38016545858858974}} {"text": "function f = restrict(f, dom)\n% RESTRICT Restrict the domain of a CHEBFUN3.\n%\n% F = RESTRICT(F, DOM) returns a \n% - CHEBFUN3 on the domain DOM that approximates F on that domain if DOM \n% is a nondegenarate cuboid,\n% - CHEBFUN2 that approximates F on the domain if DOM is a plane, and\n% - CHEBFUN that approximates F on the domain if DOM is a line.\n% DOM should be a vector of length 6 specifying the underlying cuboid.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif ( isa(dom, 'double') )\n if ( numel(dom) == 6 ) % Restrict to DOM. \n xlen = diff(dom(1:2));\n ylen = diff(dom(3:4));\n zlen = diff(dom(5:6));\n \n if ( ( xlen == 0 ) && ( ylen == 0) && ( zlen == 0 ) ) \n % DOM is a point.\n f = feval(f, dom(1), dom(3), dom(5));\n \n elseif ( ( xlen ~= 0 ) && ( ylen == 0 ) && ( zlen == 0 ) )\n % DOM is a vertical line (corresponding to a column).\n cols = restrict(f.cols, dom(1:2));\n rows = feval(f.rows, dom(3));\n tubes = feval(f.tubes, dom(5));\n core = chebfun3.txm(chebfun3.txm(f.core, rows, 2), tubes, 3);\n f = chebfun(cols*core);\n \n elseif ( ( xlen == 0 ) && ( ylen ~= 0 ) && ( zlen == 0 ) )\n % DOM is a horizontal line (corresponding to a row).\n cols = feval(f.cols, dom(1));\n rows = restrict(f.rows, dom(3:4));\n tubes = feval(f.tubes, dom(5));\n core = chebfun3.txm(chebfun3.txm(f.core, cols, 1), tubes, 3);\n f = chebfun(rows*core.');\n \n elseif ( ( xlen == 0 ) && ( ylen == 0 ) && ( zlen ~= 0 ) )\n % DOM is an oblique line (corresponding to a tube).\n cols = feval(f.cols, dom(1));\n rows = feval(f.rows, dom(3));\n tubes = restrict(f.tubes, dom(5:6));\n core = squeeze(chebfun3.txm(chebfun3.txm(f.core, cols, 1), ...\n rows, 2));\n f = chebfun(tubes*core);\n \n elseif ( ( xlen == 0 ) && ( ylen ~= 0 ) && ( zlen ~= 0 ) )\n % DOM is a horizontal plane (corresponding to a horizontal slice).\n cols = feval(f.cols, dom(1));\n rows = restrict(f.rows, dom(3:4));\n tubes = restrict(f.tubes, dom(5:6));\n core = squeeze(chebfun3.txm(f.core, cols, 1));\n f = chebfun2(tubes*core.'*rows.');\n \n elseif ( ( xlen ~= 0 ) && ( ylen == 0 ) && ( zlen ~= 0 ) )\n % DOM is a lateral plane (corresponding to a lateral slice).\n cols = restrict(f.cols, dom(1:2));\n rows = feval(f.rows, dom(3));\n tubes = restrict(f.tubes, dom(5:6));\n core = squeeze(chebfun3.txm(f.core, rows, 2));\n f = chebfun2(tubes*core.'*cols.');\n \n elseif ( ( xlen ~= 0 ) && ( ylen ~= 0 ) && ( zlen == 0 ) )\n % DOM is a frontal plane (corresponding to a frontal slice).\n cols = restrict(f.cols, dom(1:2));\n rows = restrict(f.rows, dom(3:4));\n tubes = feval(f.tubes,dom(5));\n core = chebfun3.txm(f.core, tubes, 3);\n f = chebfun2(rows*core.'*cols.');\n \n else\n % DOM is not degenerate\n f.cols = restrict(f.cols, dom(1:2));\n f.rows = restrict(f.rows, dom(3:4));\n f.tubes = restrict(f.tubes, dom(5:6));\n f.domain = dom;\n end\n else\n error('CHEBFUN:CHEBFUN3:restrict:domain', 'Domain not determined.');\n end\n \nelse\n error('CHEBFUN:CHEBFUN3:restrict:domain', 'Unrecognizable domain.');\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3/restrict.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6001883449573377, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.3801654578357938}} {"text": "function pi = CPD_to_pi(CPD, msg_type, n, ps, msg, evidence)\n% CPD_TO_PI Compute the pi vector (gaussian)\n% function pi = CPD_to_pi(CPD, msg_type, n, ps, msg, evidence)\n\nswitch msg_type\n case 'd',\n error('gaussian_CPD can''t create discrete msgs')\n case 'g',\n dps = ps(CPD.dps);\n k = evidence{dps};\n if isempty(k)\n error('gmux node must have observed discrete parent')\n end\n m = msg{n}.pi_from_parent{k}; \n B = CPD.weights(:,:,k);\n pi.mu = CPD.mean(:,k) + B * m.mu;\n pi.Sigma = CPD.cov(:,:,k) + B * m.Sigma * B';\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/CPDs/@gmux_CPD/CPD_to_pi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7662936430859598, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3801535478977358}} {"text": "function [p,priors]=edo_params()\n% Conversion of Dynare file [Dynare_edo.mod] into RISE file [edo.rs]\n%\n% Done 22-Jul-2017 19:19:44.\n% \n% Remarks: \n% - The parameters and shocks variances or \n% standard deviations found in the dynare file are assigned. \n% - Shock standard deviations not assigned in the \n% dynare file get a value of 0 following dynare's convention\n% - RISE will set all other parameters without a value to nan\n\np=struct();\n\np.h=0.715162417869797;\np.r_inf=1.46344163969035;\np.r_y=0.263123294207851;\np.phi_pc=3.54471453295450;\np.phi_H=3.22894079106560;\np.phi_wc=5.49395755514723;\np.phi_ic=0.253308786976374;\np.phi_cd=0.470089385005009;\np.phi_ech=9.13986886546163;\np.gam_pc=0.314488926051065;\np.gam_wc=-0.230018833252054;\np.sigman=39.4075260618789;\np.sigmah=21.8859803402692;\np.rho_R=0.833200065745674;\np.rho_XiL=0.263567746111198;\np.rho_lpref=0.979092048897712;\np.rho_B=0.895267027146152;\np.rho_STAR=0.909187927454138;\np.rho_EFFK=0.937829274540004;\np.rho_EFFECD=-0.240286975088701;\np.rho_HG=0.582395471123139;\np.rho_EFFECH=0.877235725078934;\np.tp2=0.000307314910763576;\np.sig_HG=0.579315931803017;\np.sig_XiL=2.49313873916751;\np.sig_lpref=5.66476748114241;\np.sig_R=0.124100461010359;\np.sig_MUZK=0.936167718269030;\np.sig_MUZM=0.597390920898135;\np.sig_PMKC=0.451830653200989;\np.sig_PMKK=0.685376191952156;\np.sig_EFFECH=0.514704527091087;\np.sig_EFFECD=9.11199585973990;\np.sig_EFFK=0.402779878811407;\np.sig_B=0.295232712196573;\np.sig_STAR=0.104877885500673;\np.r_dy=0;\np.ONE=1;\np.MUZKSS=1.009250;\np.MUZMSS=1.001000;\np.gam_ic=1.0;\np.gam_icd=1.0;\np.r_dinf=0;\np.rpr=0.965;\np.phi_u=1;\np.rho_MUZK=0;\np.rho_MUZM=0;\np.pbeta=0.99862;\np.delta_=0.03;\np.h_cd=0.0;\np.h_ch=0.0;\np.delta_cd=0.055;\np.delta_ch=0.0035;\np.alpha_=0.26;\np.theta_c=7;\np.theta_k=7;\np.unempSS=.06;\np.g_y=0.0;\np.a_ks=0.2;\np.s_AS=0.2;\np.gam_h=1;\np.gam_ech=1;\np.icoef=3;\np.betarl=.958;\np.std_eHG=p.sig_HG;\np.std_eXiL=p.sig_XiL;\np.std_eLpref=p.sig_lpref;\np.std_eR=p.sig_R;\np.std_eMUZK=p.sig_MUZK;\np.std_eMUZM=p.sig_MUZM;\np.std_ePMKC=p.sig_PMKC;\np.std_ePMKK=p.sig_PMKK;\np.std_eEFFECH=p.sig_EFFECH;\np.std_eEFFECD=p.sig_EFFECD;\np.std_eEFFK=p.sig_EFFK;\np.std_eB=p.sig_B;\np.std_eSTAR=p.sig_STAR;\n\n\n\n\npriors=struct();\n\npriors.h={.673, -1, 1};\n\npriors.r_inf={1.461, 1.5000, 0.0625000, 'normal', -999, 999};\n\npriors.r_y={0.214, 0.125, 0.125000, 'normal', -999, 999};\n\npriors.phi_pc={3.126, 4.0000, 4.0000^.5, 'gamma', 0, 999};\n\npriors.phi_H={4.064, 4.0000, 4.0000^.5, 'gamma', 0, 999};\n\npriors.phi_wc={5.119, 4.0000, 4.0000^.5, 'gamma', 0, 999};\n\npriors.phi_ic={.325, 4.0000, 4.0000^.5, 'gamma', 0, 999};\n\npriors.phi_cd={.651, 4.0000, 4.0000^.5, 'gamma', 0, 999};\n\npriors.phi_ech={10.948, 4.0000, 4.0000^.5, 'gamma', 0, 999};\n\npriors.gam_pc={0.386, 0.000, 0.250, 'normal', -999, 999};\n\npriors.gam_wc={0.213, 0.000, 0.250, 'normal', -999, 999};\n\npriors.sigman={1.25, 1.25, 12.5^.5, 'gamma', 0, 999};\n\npriors.sigmah={10, 10, 100^.5, 'gamma', 0, 999};\n\npriors.rho_R={0.654, 0.5, 0.25, 'normal', -1, 1};\n\npriors.rho_XiL={0.654, 0.5, 0.25, 'normal', -1, 1};\n\npriors.rho_lpref={0.954, 0.5, 0.25, 'normal', -1, 1};\n\npriors.rho_B={0.825, 0, 0.5, 'normal', -1, 1};\n\npriors.rho_STAR={0.825, 0, 0.5, 'normal', -1, 1};\n\npriors.rho_EFFK={0.850, 0, 0.5, 'normal', -1, 1};\n\npriors.rho_EFFECD={.230, 0, 0.5, 'normal', -1, 1};\n\npriors.rho_HG={0.596, 0.5, 0.015^.5, 'beta'};\n\npriors.rho_EFFECH={0.844, 0, 0.5, 'normal', -1, 1};\n\npriors.tp2={0.001, 0.0, 0.0005, 'normal', -999, 999};\n\npriors.std_eHG={.745, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eXiL={3.621, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eLpref={1.621, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eR={0.165, 0.354491, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eMUZK={.834, 0.443113, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eMUZM={.484, 0.443113, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_ePMKC={.391, 0.354491, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_ePMKK={.552, 0.354491, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eEFFECH={.526, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eEFFECD={13.349, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eEFFK={.499, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eB={0.5, 1.772454, 4, 'inv_gamma', 0.0001, 999};\n\npriors.std_eSTAR={0.05, 0.354491, 4, 'inv_gamma', 0.0001, 999};\n\n", "meta": {"author": "jmaih", "repo": "RISE_toolbox", "sha": "1b2edfa27830c6d522f9d7d2335d33c3e4d84285", "save_path": "github-repos/MATLAB/jmaih-RISE_toolbox", "path": "github-repos/MATLAB/jmaih-RISE_toolbox/RISE_toolbox-1b2edfa27830c6d522f9d7d2335d33c3e4d84285/examples/VariousModels/frb/EDO/edo_params.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7662936430859598, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.38015354789773576}} {"text": "function [MI, sequences, indexes, mini, sds, mn, sd] = motionCompDetectMotionMI(view,ROI,scans,plotMI,histogramClip)\n\n% [MI, sequences, indexes, mini, sds, mn, sd] = motionCompDetectMotionMI(view, [ROI], [scans], [plotMI], [histogramClip])\n% \n% gb 01/31/05\n%\n% Remove outliers within a scan and returns an array 'sequences' whose rows\n% are the sequences between the outliers. The error computed is based on\n% mutual information.\n%\n% Input arguments :\n% - view : current inplane\n% - ROI : Region of interest where the error has to be computed\n% Default = ones\n% - scan : scan to analyse. \n% Default = current scan\n% - plotMI : indicates if the user wants a plot of the Mutual Information.\n% Should be the value '1' if so.\n% Default = 1\n% - histogramClip : sets the clipping value of the histogram\n% Default = 0.1\n% \n% It returns :\n% - MI = Mutual Information between consecutive frames\n% - sequences = array representing the resulting sequences between the outliers\n% - indexes = indexes corresponding to the outliers\n% - mini = minimum of MI\n% - sds = array representing the standard deviations of each sequence\n% - mn = mean of MSE after having been clipped\n% - sd = standard deviation of MSE after having been clipped\n\nglobal dataTYPES\n\n% Initializes arguments and variables\nif ieNotDefined('histogramClip')\n histogramClip = .1;\nend\n\nif ieNotDefined('scans')\n scans = selectScans(view);\nend\n\nif ieNotDefined('ROI')\n ROI = '';\nend\n\ncurDataType = viewGet(view,'currentdatatype');\nMI = [];\nlastFrame = 0;\nh = mrvWaitbar(0,'Computing Mutual Information...');\n\nfor scan = scans\n \n mrvWaitbar((scan - 1)/scans(end),h,['Computing Mutual Information for scan ' num2str(scan)]);\n \n clear tSeriesAllSlices;\n\t\n\ttSeriesAllSlices = motionCompLoadImages(view,scan);\n\tnFrames = size(tSeriesAllSlices,1);\n nSlices = size(tSeriesAllSlices,4);\n\n % Computes the Mutual Information when changing scans\n firstFrame = tSeriesAllSlices(1,:,:,:);\n if isequal(lastFrame,0)\n MI = [MI;0];\n else\n MI = [MI;motionCompMI(firstFrame,ROI,lastFrame)];\n end\n lastFrame = tSeriesAllSlices(nFrames,:,:,:); \n \n % Computes the Mutual Information\n\tMI = [MI;motionCompMI(tSeriesAllSlices,ROI)];\n \nend\nmrvWaitbar(1,h)\n\nMI(1) = MI(2);\n\n% Clips the histogram to calculate the mean and the standard deviation\n% of MI without taking into account the outliers\nhistClip = mrAnatHistogramClip(MI,histogramClip,1,0);\n\n% Computes the mean and the standard deviation of the clipped MI\nmn = mean(histClip);\nsd = std(histClip);\n\n% Finds the outliers. Are considered outliers all the values above the mean\n% - two standard deviations\nindexes = (find(MI < mn - 2*sd));\nmini = min(MI);\n\n% Finds the resulting sequences between the outliers.\nsequences = horzcat([1;indexes + 2],[indexes - 2;nFrames - 1]);\nsequences = sequences(find(sequences(:,2) - sequences(:,1) > 5),:);\n\n% Computes all the standard deviations\nsds = zeros(size(sequences,1),1);\nfor i = 1:size(sequences,1)\n sds(i) = std(MI(sequences(i,1):sequences(i,2)));\nend\n\n% Plots the curves\nif ieNotDefined('plotMI')\n plotMI = 0;\nend\n\nif plotMI > 0\n figure\n title(['MI for ' view.sessionCode]); \n \n plot(MI)\n hold on\n plot(1:length(MI),mn*ones(1,length(MI)),'-.')\n plot([1 length(MI)],[mn - 2*sd, mn - 2*sd],'r')\n \n % Another measure can be used. Sometimes we can assume that the signal\n % is equally distributed around its mean. The explicit measure is :\n % mn - (max(MI) - mn)\n %\n % plot([1 nFrames],[2*mn - max(MI),2*mn - max(MI)],'black')\n \n for scanIndex = 1:(length(scans) - 1)\n plot([nFrames*scanIndex nFrames*scanIndex],[mini max(MI)],'-.','Color','m');\n end\nend\n\nclose(h);", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/MotionComp/MI/MI/motionCompDetectMotionMI.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581510799253, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.38009342373436505}} {"text": "classdef TraceData\n %TraceData Handles the data associated with timeseries.\n %\n % TraceData contains the functionality associated with data\n % manipulation, including dealing with units.\n %\n % TraceData might be considered a \"light\" version of MATLAB's timeseries\n % class. Whereas the timeseries class has lots of functionality, it\n % suffers (at the time of this writing) from much slower execution times.\n %\n % About TraceData vs waveform\n %\n % TraceData Properties:\n % data - column of evenly sampled data\n % samplerate - number of samples per second\n % units - units for the data, ex. 'counts', 'm / sec'\n % duration - time between first and last samples\n % hasnan - true if any value is nan\n %\n % TraceData Methods:\n %\n % Derived properties:\n % nyquist - Nyquist frequency (samplerate / 2)\n % period - Period (1/samplerate)\n % formattedduration - retrieve duration as formatted text\n %\n % additional Methods:\n % nsamples - return number of data samples\n %\n % Mathamatical operations:\n % plus - (+)addition\n % minus - (-)subtraction\n % times - (.*) element multiplication\n % mtimes - (*) matrix multiplication\n % rdivide - (./) element division\n %\n % uminus - (-A) unary minus\n % sign - signum of data (returns array of +1, 0, or -1)\n % abs - Absolute value\n %\n % forEach - apply a function element-wise Tnew(n) = f(T(n), values(n))\n %\n % Binary Operators:\n % eq - (A==B) true if data, samplerate and units match.\n % ne - (A~=B) false if data, samplerate and units match.\n %\n % Statistics (returns a single value for each trace):\n % min - Minimum value of data\n % max - Maximum value of data\n % mean - Average value of data\n % median - Median value of data\n % var - Variance of data\n % std - Standard Deviation of data\n %\n % Advance Mathamatical operations:\n % diff - Difference and approximate derivative for traces\n % integrate - cumulative sums of data\n %\n % hilbert - Hilbert envelope (real only)\n % taper - Apply a taper to the data\n % resample - Resample the data\n % demean - Remove the mean\n % detrend - Remove trend from data\n % clip - Clip the data\n %\n % extract - Retrieve a subset of the data\n %\n % Conversion operations:\n % double - retrieve data as 1xN array of double\n %\n % stack - stack all waveforms\n % binStack - stack N waveforms at a time (with optional overlap)\n %\n % compatibleWith - Compare units, samplerate and datalength\n % assertCompatibleWith - Error if units, samplerate and datalength do not match\n %\n % fillgaps - replace nan values (can replace other values)\n % zero2nan - Replace values close to zero with nans\n % amplitude_spectrum\n % setlength - adjust length of data to allow batch processing\n %\n % See also Seismictrace, waveform, timeseries\n \n \n % Error recovery and trapping with traces\n % trying new tactic. I won't try to anticipate all the various ways\n % someone can provide incompatible data. Instead, I'm going to provide a\n % comment with my expectations which will show up automatically in the\n % displayed error.\n \n % Waveform functions included in Tracedata:\n % - functions that manipulate the data itself\n %\n % Waveform functions NOT added to Tracedata:\n % - functions that require knowledge of time\n % - functions that require knowledge of location\n % - function that access user defined fields\n % - functions that access history\n % - additinal not-so-sure-we-need-these functions\n % : getpeaks\n \n properties\n data = []% time-series data, kept in a column\n samplerate = NaN % in samples/sec\n units = 'none' % text description of data units\n end\n \n properties(Dependent)\n duration % duration in seconds. To get matlab duration, divide by 86400\n hasnan;\n end\n \n properties(Hidden=true)\n % when trust_assignments is false, then data\n trust_assignments = false; % if not trusted, then slows down computations somewhat, but is useful for debugging.\n debug_level\n end\n \n methods\n function obj = TraceData(varargin)\n %TraceData construct a TraceData object\n switch nargin\n case 1\n if isa(varargin{1}, 'waveform')\n obj.samplerate = get(varargin{1},'freq');\n obj.data = get(varargin{1},'data');\n obj.units = get(varargin{1}, 'units');\n \n elseif isa(varargin{1},'TraceData') && ~strcmp(class(varargin{1}),'TraceData')\n if numel(varargin{1})==1;\n obj.data = varargin{1}.data;\n obj.samplerate = varargin{1}.samplerate;\n obj.units = varargin{1}.units;\n else\n for n=1:numel(varargin{1})\n obj(n) = TraceData(varargin{1}(n));\n end\n reshape(obj,size(varargin{1}));\n end\n else\n error('Unknown conversion');\n end\n case 3 % TraceData(data, samplerate, units);\n obj.data = varargin{1};\n obj.samplerate = varargin{2};\n obj.units = varargin{3};\n end %switch\n end\n \n function tf = get.hasnan(obj)\n %get.hasnan functional hasnan allows for\n % NOTE: technically, hasnan could be set as data is entered.\n % any([T.hasnan])\n tf = any(isnan(obj.data));\n end\n function obj = set.data(obj, values)\n %set.data Assign values to data as a column\n obj.data = values(:);\n end\n \n \n function N = nyquist(T)\n %nyquist the nyquist frequency calculated as (samplerate / 2)\n N=[T.samplerate] ./ 2;\n reshape(N,size(T));\n end\n \n function p = period(T)\n %period Period, calculated as (1 / samplerate)\n p = 1 ./ [T.samplerate];\n % NOT reshaped\n end\n \n function val = sampletimes(obj)\n %sampletimes MATLAB time offset of each sample.\n %\n % equivalent to waveform's get(w,'timevector');\n assert(numel(obj) == 1, 'only works on one TraceData at a time');\n val = (0:(numel(obj.data)-1)) .* obj.period / 86400;\n val = val(:);\n end\n \n function secondsOfData = get.duration(obj)\n %secondsOfData Duration of samples, in seconds\n if isempty(obj.data) || isempty(obj.samplerate)\n secondsOfData = 0;\n else\n secondsOfData = numel(obj.data) / obj.samplerate;\n end\n end\n \n function n = nsamples(obj)\n %nsamples number of samples in the trace(s)\n % n = nsamples(traces) will return the number of samples for\n % each trace in an array of the same size as traces\n %\n % See also numel\n n = zeros(size(obj));\n for m=1:numel(obj)\n n(m) = numel(obj(m).data);\n end\n end\n \n \n function s = formattedduration(obj, fmt)\n %formattedduration Duration as a formatted string\n % s = trace.formattedduration() retrieves the duration in the\n % default format as 'dd:hh:mm:ss.SSS'\n % s = trace.formattedduration(fmt) retrieves duration in format\n % specified.\n %\n % depends upon the duration class, introduced in r2014b\n %\n % See also duration\n secsOfData = obj.duration;\n if exist('duration','class') %available in recent r2014b and later of matlab\n if exist('fmt','var') && ~isempty(fmt)\n s = char(duration(0,0,secsOfData,'Format',fmt));\n else\n s = char(duration(0,0,secsOfData,'Format','dd:hh:mm:ss.SSS'));\n end\n else\n error('advanced duration functions supported in r2014b and later');\n end\n end\n \n %% Mathamatical - BASIC OPERATIONS\n function A = plus(A, B)\n %+ Plus.\n % C=A+B add something to the TraceData's data.\n %\n % valid combinations\n % TraceData + NumericVector; % same length as TraceData.data\n % TraceData + Scalar;\n %\n % To avoid ambiguity with the metadata, two traces are added\n % together by explicitly adding the data from one to the other:\n %\n % % assertCompatiblewith(TraceData1, TraceData2); % for debug\n % TraceData1 + TraceData2.data\n %\n % See also minus, arrayApply, compatiblewith, assertCompatiblewith\n \n if ~isa(A, 'TraceData')\n [A, B] = deal(B, A); % swap values\n end\n \n % A is guaranteed to be TraceData\n if isnumeric(B)\n for n = 1: numel(A)\n A(n).data = A(n).data + B; % add to either a scalar or a COLUMN of numbers (same length as TraceData's data)\n end\n elseif isa(B,'TraceData')\n error('TraceData:plus:ambiguousOperation',...\n ['Adding two TraceData objects results in ambiguous metadata.'...\n '\\nInstead, add the data explicitly to the Trace whose'...\n ' metadata you wish to keep.\\nEx. T = T1 + T2.data']);\n else\n error('TraceData:plus:unknownClass','do not know how to add a %s to a TraceData object', class(B));\n end\n end\n \n function A = minus(A, B)\n %- Subtract something from the Trace's data,\n % C=A-B This will return a TraceData object\n %\n % valid combinations\n % TraceData - NumericVector; % same length as TraceData.data\n % TraceData - Scalar;\n %\n % To avoid ambiguity with the metadata, two traces are subtracted\n % by explicitly subtracting the one's data from the other:\n %\n % % assertCompatiblewith(TraceData1, TraceData2); % for debug\n % TraceData1 - TraceData2.data\n %\n % See also plus, arrayApply, compatiblewith, assertCompatiblewith\n \n if isnumeric(B)\n % A is guaranteed to be a TraceData\n for n = 1:numel(A)\n A(n).data = A(n).data - B; % subtract either a scalar or a COLUMN of numbers (same length as TraceData's data)\n end\n elseif isa(B,'TraceData')\n error('TraceData:minus:ambiguousOperation',...\n ['Subtracting a Trace from a constant is not supported.\\n'...\n 'For equivalent functionality, add the negative.\\nEx. ans = 5 + (-T)']);\n else\n error('TraceData:minus:unknownClass','do not know how to subtract a %s from a %s', class(B), class(A));\n end\n end\n \n function A = times(A,B)\n %.* Elementwise Trace data multiplication\n % C=A.*B or C=B.*A when A is a TraceData object\n % Either A or B can be a scalar, or a vector of same size as the\n % data elements of the TraceData object.\n %\n % To avoid ambiguity with the metadata, two traces are multiplied\n % by explicitly multiplying one's data with the other:\n %\n % % assertCompatiblewith(TraceData1, TraceData2); % for debug\n % TraceData1 .* TraceData2.data\n %\n % See also arrayApply, mtimes, compatiblewith, assertCompatiblewith\n if isnumeric(B)\n for n=1:numel(A)\n A(n).data = A(n).data .* B; % B should be either scalar or same size as obj.data\n end\n elseif isnumeric(A)\n [A, B] = deal(B, A); % swap values\n for n=1:numel(A)\n A(n).data = A(n).data .* B; % B should be either scalar or same size as obj.data\n end\n else\n error('TraceData:times:unknownClass','do not know how to multiply a %s with a TraceData object', class(B));\n end\n end\n \n function C = mtimes(A, B)\n %* Matrix multiplication against data within a trace\n % C=A*B matrix multiplication against data within a trace\n % result is a matrix, vector, or scalar. (NOT a TraceDataObject)\n %\n % See also times, arrayApply\n if isa(A,'TraceData')\n C = A.data * B;\n else\n C = A * B.data;\n end\n end\n \n function A = rdivide(A, B)\n %./ Divide data elements of A by B\n % C=A./B performs elementwise division on trace data\n % A must be a TraceData object\n % B can be either a scalar or vector of numbers the same size as A.data\n %\n % To avoid ambiguity with the metadata, two traces are multiplied\n % by explicitly dividing one's data from the other:\n %\n % % assertCompatiblewith(TraceData1, TraceData2); % for debug\n % TraceData1 ./ TraceData2.data\n %\n % See also times, mtimes, arrayApply, compatiblewith, assertCompatiblewith\n \n if isnumeric(B)\n % A is guaranteed to be a TraceData\n for n=1:numel(A)\n A(n).data = A(n).data ./ B; % subtract either a scalar or a COLUMN of numbers (same length as TraceData's data)\n end\n else\n error('TraceData:rdivide:unknownClass','do not know how to divide a %s from a TraceData object', class(B));\n end\n end\n \n function A = power(A, B)\n %.^ Array power for TraceData\n % C=A.^B raises each data element of A to the power B and then\n % returns the resulting trace(s)\n %\n % See also power, arrayApply\n \n assert(isa(A,'TraceData'),'TraceData:power:invalidType',...\n 'for A .^ B, B cannot be a TraceData object');\n assert(isnumeric(B),'TraceData:power:invalidType',...\n 'for A .^ B, B must be numeric');\n for n=1:numel(A)\n A(n).data = A(n).data .^ B; % B should be scalar or same length as A\n end\n end\n \n function A = uminus(A)\n %- Unary minus.\n % -A negates the data in A and returns the resulting trace(s)\n %\n % see also uminus\n for n=1:numel(A)\n A(n).data = -A(n).data;\n end\n end\n \n function trace = abs(trace)\n %Absolute value of trace data\n % T = abs(trace) returns traces containing the absolute values of\n % the data.\n %\n %See also abs, sign\n for n=1:numel(trace)\n trace(n).data = abs(trace(n).data);\n end\n end\n \n function trace = sign(trace)\n %sign Convert each data point to its signum (+1, 0, +1)\n % T = sign(trace) returns a a trace containing the signs of the\n % data, instead of the data.\n %\n % See also sign\n for n=1:numel(trace)\n trace(n).data = sign(trace(n).data);\n %trace(n).units = ['sign(', trace(n).units, ')'];\n end\n end\n \n %% more complicated\n function T = diff(T, varargin)\n %diff Difference and approximate derivative for traces\n % A = diff(trace)\n % A = diff(trace, options) see the builtin diff for details on\n % available options.\n %\n % trace must have samplerate and data assigned, otherwise you may\n % get \"a Matrix dimensions must agree\" error\n %\n % units are automatically changed. Assuming the sample rate is\n % samples/sec, then the new trace is in currentunits / sec.\n %\n % See also diff\n if isempty(varargin)\n for I=1:numel(T)\n T(I).data = diff(T(I).data) .* T(I).samplerate; % must have data and sample rate\n end\n else\n error('not implemented yet');\n end\n for I=1:numel(T)\n tempUnits = T(I).units;\n whereInUnits = strfind(tempUnits,' * sec');\n if isempty(whereInUnits)\n T(I).units = [tempUnits, ' / sec'];\n else\n tempUnits(whereInUnits(1) :whereInUnits(1)+5) = [];\n T(I).units = tempUnits;\n end\n end\n end\n \n function T = integrate (T,method)\n %integrate Integrate a tracedata signal\n % trace = trace.integrate([method])\n % goes from Acceleration -> Velocity, and from Velocity -> displacement\n %\n % tr = trace.integrate()\n % tr = integrate(trace,'cumsum') performs integration by summing the\n % data points with the cumsum function, taking into account time interval\n % and updating the units as appropriate.\n %\n % tr = trace.integrate('trapz') as above, but uses matlab's\n % cumtrapz function to perform the integration.\n %\n % Input Arguments\n % trace: tracedata N-DIMENSIONAL\n % METHOD: either 'cumtrapz' or 'cumsum' [default is cumsum]\n %\n % Actual implementation merely does a cumulative sum of the trace's\n % samples, and updates the units accordingly. These units may be a\n % little kludgey.\n %\n % See also cumsum, cumtrapz, diff\n \n Nmax = numel(T);\n allfreq = [T.samplerate];\n \n if ~exist('method','var')\n method = 'cumsum';\n end\n \n switch lower(method)\n case 'cumsum'\n integratefn = str2func('cumsum');\n case 'trapz'\n integratefn = str2func('cumtrapz');\n otherwise\n error('TraceData:integrate:unknownMethod',...\n 'Unknown integration method. Valid methods are ''cumsum'' and ''trap''');\n end\n \n for I = 1 : Nmax\n T(I).data = integratefn(T(I).data) ./ allfreq(I);\n tempUnits = T(I).units;\n whereInUnits = strfind(tempUnits,' / sec');\n if isempty(whereInUnits)\n T(I).units = [tempUnits, ' * sec'];\n else\n tempUnits(whereInUnits(1) :whereInUnits(1)+5) = [];\n T(I).units = tempUnits;\n end\n end\n end\n \n function A = demean(A)\n %demean Remove the average from TraceData\n % A = demean(A) will subtract the mean of a trace from its data.\n %\n % See also demean\n for n=1:numel(A);\n A(n) = A(n) - mean(A(n).data(~isnan(A(n).data)));\n end\n end\n \n function A = detrend(A, varargin)\n %detrend Remove the trend from TraceData\n % A = detrend(A) will subtract the trend of a trace from its\n % data. \n % A = detrand(A, ...) allows for additional options. For an\n % explanation of these, see MATLAB's builtin detrend.\n %\n % See also detrend\n for n=1:numel(A);\n A(n).data = detrend(A(n).data,varargin{:});\n end\n end\n \n function val = bulkCalculate(T, F)\n %bulkCalculate Run a function against the data\n % vals = T.bulkCalculate(funcHandle) will against the data field\n % of each element in T shape is preserved, and all empty\n % traces return nan FH must return a single value\n %\n % basically, this will run:\n % funcHandle(T.data)\n %\n % for each trace in T\n %\n % See also max, min, mean, median\n \n val = nan(size(T));\n for n=numel(T) : -1 : 1\n hasdata(n) = ~isempty(T(n).data);\n end\n val(hasdata) = arrayfun(F,T(hasdata));\n end\n \n function T = forEach(T, f, values, varargin)\n %forEach applies a function element-wise to an array B(n) = f(T(n), values(n))\n % VALUES must be a numeric array of the same size (shape) as T.\n % Either T or VALUES could also be individual values. \n % \n % When numel(T)==1:\n % the output will be an array of T the same size as VALUES.\n %\n % When numel(V)==1, \n % you might as well use the standard operator instead. \n % eg. T = T + VALUE;\n % \n % the function f can either be a function handle, string name of\n % a function (such as 'plus'), or the valid representation of a\n % simple mathamatical function, such as: '.*' './' '+' '-' '.^'\n %\n % This means that\n % Tsq = forEach(T, @power, valueArray);\n % is equivelent to\n % Tsq = T.forEach('power', valueArray);\n % which is equivelent to\n % Tsq = T.forEach('.^', valueArray);\n %\n %\n % apply(...,'loose') ignores the size restriction, but\n % enforces the number of elements. Most useful in getting around\n % applying something 1xN to something Nx1\n %\n % example:\n % % add offset to each trace\n % offsets = 1:numel(T);\n % Toffset = T.apply('+', offsets, 'loose');\n %\n % example:\n % % you can also create your own function of the form f(T,x):\n % myfn = @(T, x) T .* x + x;\n % newT = T.apply(T, myfn, values)\n %\n % See also times, rdivide, plus, minus, power\n TisScalar = numel(T)==1;\n VisScalar = numel(values)==1;\n eitherIsScalar = TisScalar || VisScalar;\n ignoreShape = eitherIsScalar || (~isempty(varargin) && strcmpi(varargin{end},'loose'));\n if ignoreShape\n assert(eitherIsScalar || numel(values)==numel(T), ...\n 'Both the traces and values must have the same number of elements T:[%d] vs values:[%d',...\n numel(T), numel(values) );\n else\n assert(eitherIsScalar || all(size(values)==size(T)),...\n ['Both the traces and the values must be the same size.'...\n 'T:[%s] vs values:[%s]\\n',...\n 'Use arrayApply(...,''loose'') if only the number of elements matters'],...\n TraceData.size2str(T), TraceData.size2str(values));\n end\n if ischar(f)\n f=str2func(f);\n end\n \n if VisScalar\n T = f(T, values); % not necessary to use arrayApply when either is a scalar\n return\n elseif TisScalar\n T = repmat(T,size(values));\n for n=1:numel(values)\n T(n) = f(T(n), values(n));\n end\n return\n end\n \n for n=1:numel(T)\n T(n) = f(T(n), values(n));\n end\n end\n \n \n \n function val = max(T)\n %max Maximum value for trace data\n % maxVals = max(traces);\n %\n % See also max\n F = @(X) max(X.data);\n val = T.bulkCalculate(F);\n end\n function val = min(T)\n %min Minimum value for trace data\n % minVals = min(traces);\n %\n % See also min\n F = @(X) min(X.data);\n val = T.bulkCalculate(F);\n end\n function val = mean(T)\n %mean Average or mean value for trace data\n % meanVals = mean(traces);\n %\n % See also mean\n F = @(X) mean(X.data(~isnan(X.data)));\n val = T.bulkCalculate(F);\n end\n function val = median(T)\n %median Median value for trace data\n % medianVals = median(traces);\n %\n % See also median\n F = @(X) median(X.data(~isnan(X.data)));\n val = T.bulkCalculate(F);\n end\n function val = std(T, varargin)\n %std standard deviation for traces\n % vals = std(traces) retrieves the std from each trace, returning\n % a traces array of the same shape as T.\n % vals = std(traces, options); lets you declare options as per the\n % builtin version of std\n % useful option:\n %\n % vals = T.std('omitnan') % or 'includenan'\n %\n % See also std, bulkCalculate\n if exist('varargin','var')\n F = @(X) std(X.data,varargin{:});\n else\n F = @(X) std(X.data);\n end\n val = T.bulkCalculate(F);\n end\n function val = var(T, varargin)\n %var calulate variance for traces\n % vals = var(traces);\n % vals = var(traces,options); lets you declare options as per the\n % builtin version of var.\n % useful option:\n % vals = traces.var(taces,'omitnan') % or 'includenan'\n %\n % See also var, bulkCalculate\n if exist('varargin','var')\n F = @(X) var(X.data,varargin{:});\n else\n F = @(X) var(X.data);\n end\n val = T.bulkCalculate(F);\n end\n %% extended functionality\n [A, phi, f] = amplitude_spectrum(td)\n \n function obj = clip(obj, vals)\n %clip clips a trace's data at a particular max/min value range\n % clippedtraces = clip(traces, values)\n %\n % Input Arguments\n % TRACES: an N-dimensional TraceData object\n % VALUES: a number. If a scalar, then amplitudes will be\n % clipped at +/- value. If a pair, eg. [Max, Min] then\n % traces will be clipped between these two values\n %\n % All values beyond maximum ranges will be set to the maximum range\n \n if nargin < 2,\n vals = [];\n end\n \n switch numel(vals)\n case 0\n warning('TraceData:clip:noClipValue',...\n 'No values given, TraceData remains unclipped');\n return\n \n case 1 % clip at +/- input value\n if ~isnumeric(vals)\n error('TraceData:clip:invalidClipValue','Non-numeric clip value');\n end\n vals = abs(vals);\n disp(['Clipping at +/- ' num2str(vals)]);\n vals = [-vals vals];\n \n case 2\n if ~isnumeric(vals)\n error('TraceData:clip:invalidClipValue','Non-numeric clip value');\n end\n if vals(1) > vals(2)\n error('TraceData:clip:reversedValues',...\n 'Clipping values are reversed: Value1 %f > Value2 %f', vals(1),vals(2));\n end\n %everything is AOK\n otherwise\n warning('TraceData:clip:invalidClipValue',...\n 'Invalid clip values. TraceData remains unclipped. specify [min max] values');\n return\n end\n \n for N = 1: numel(obj)\n d = obj(N).data;\n d(d < vals(1)) = vals(1);\n d(d > vals(2)) = vals(2);\n obj(N).data = d;\n end\n end\n \n function d = double(obj,option)\n %double TraceData data as double\n % d = double(T) returns the data within T as a column. If T is\n % an array with N elements, then data is returned in array with\n % size N x maximum_data_length_in_T.\n %\n % d = double(T, fillfunction) allows you to specify how the array\n % is filled. FILLFUNCTION is a handle or name of any function\n % that can accept (row, col) arguments, and return an array of some\n % value. By default, the array is filled with zeros.\n %\n % Example. Retrieve array using nan as filler\n % d = double(T, @nan);\n %\n % See also zeros, nan\n \n if nargin == 1\n createDefaultArray = @zeros;\n else\n if ischar(option)\n createDefaultArray = str2func(option);\n elseif isa(option,'function_handle')\n createDefaultArray = option;\n else\n error('TraceData:double:invalidOption',...\n '''option'' must be either a function handle or function name.');\n end\n end\n dlens = obj.nsamples();\n maxlen = max(dlens(:));\n d = createDefaultArray(maxlen, numel(obj));\n for n = 1:numel(obj)\n d(1:dlens(n),n) = double(obj(n).data);\n end\n end\n \n function tf = eq(A, B)\n %== Equal for TraceData\n % eq(A,B) is called for A==B when A or B is a TraceData object.\n % will return equal if the data , samplerate, and units match.\n %\n % See also ne\n tf = all(A.data == B.data) && A.samplerate==B.samplerate && strcmp(A.units, B.units);\n end\n \n function tf = ne(A,B)\n %~= Not equal for TraceData.\n % A~=B compares the data, samplerate, and units\n %\n % C = ne(A,B) is called for the syntax 'A ~= B' when A or B is a\n % TraceData object.\n % See also eq\n tf = ~eq(A,B);\n end;\n \n function outT = extract(Tr, method, startPos, endPos)\n %extract Retrieve subset of TraceData\n %\n % subTraces = extract(traces, 'index', startPos, endPos)\n %\n %\n % waveform = T.extract('INDEX', startPos, endPos)\n % returns traces with the subset of data from startIndex to\n % endIndex. Essentially, this is equivelent to \n % T.data = T.data(startPos, endPos)\n %\n % data into an array, as in D = get(W,'data'), then returning a\n % waveform with the subset of data,\n % ie. waveform = set(waveform,'data', D(startIndex:endIndex));\n %\n % See also SeismicTrace/extract\n switch lower(method)\n case 'index'\n assert(numel(startPos) == numel(endPos), 'number of start and end indices must match');\n outT = repmat(TraceData,numel(Tr),numel(startPos));\n for n=1:numel(T);\n for t=1:numel(startPos)\n outT(n,t) = Tr(n);\n outT(n,t).data = Tr(n).data(startPos(t), endPos(t));\n end\n end\n end\n end\n \n function td = fillgaps(td,value, gapvalue)\n %fillgaps fill missing data with values of your choice\n % T = T.fillgaps(value) fills data with the number of your choice\n % VALUE can also be nan or inf or -inf\n %\n % T = T.fillgaps([]) removes missing data from trace. Warning, the\n % resulting timing issues are NOT corrected for!\n %\n % T = T.fillgaps('method') replaces data using an interpolation method of\n % your choice. Valid methods are:\n %\n % 'meanall' - replace missing values with the mean of the whole\n % dataset\n %\n % 'number' - replace missing value with a numeric value of your\n % choice (can also be Inf, -Inf, NaN)\n %\n % 'interp' - assuming missing values are marked by NaN, this will use\n % cubic interpolation to estimate the missing values\n %\n % FILLGAPS is designed to replace NaN values. However, if if you\n % use T = T.fillgaps(number, gapvalue), then ALL data points with\n % the value GAPVALUE will be replaced by NUMBER.\n \n if ~(isnumeric(value) && (isscalar(value) || isempty(value)) || ischar(value))\n warning('TraceData:fillgaps:invalidGapValue',...\n 'Value to replace data with must be string or scalar or []');\n end\n \n if ~exist('gapvalue','var') || isnan(gapvalue)\n getgaps = @(x) isnan(x.data);\n else\n getgaps = @(x) x.data == gapvalue;\n end;\n \n if ischar(value)\n fillmethod = lower(value);\n else\n fillmethod = 'number';\n end\n \n switch fillmethod\n case 'meanall'\n for N = 1:numel(td);\n allgaps = getgaps(td(N));\n % do not include the values to be replaced\n meanVal = mean(td(N).data(~allgaps));\n if isnan(meanVal)\n meanVal = 0;\n end\n td(N).data(allgaps) = meanVal;\n end\n case 'number'\n for N = 1:numel(td);\n td(N).data(getgaps(td(N))) = value;\n end\n case 'interp' % blame Glenn, inspired by http://www.mathworks.com/matlabcentral/fileexchange/8225-naninterp by E Rodriguez\n for N = 1:numel(td);\n X = td(N).data;\n X(isnan(X)) = interp1(find(~isnan(X)), X(~isnan(X)), find(isnan(X)),'cubic');\n td(N).data = X;\n end\n otherwise\n error('TraceData:fillgaps:unimplementedMethod',...\n 'Unimplemented fillgaps method [%s]', fillmethod);\n end\n end\n \n function T = zero2nan(T,mgl)\n %zero2nan replaces zeros with nan values.\n % Should be replaced with T.fillgaps(nan, 0)\n % however, it was designed to have a minimum gap length Perhaps this\n % should be added to fillgaps\n %\n %This function replaces gaps that have been filled with zeros and\n %converts them to NaN values. This is the inverse of T =\n %T.fillgaps(0). An input mgl defines the minimum gap length to be\n %converted to NaN gaps, i.e. if only 5 consecutive zero values\n %exist in a given small gap, they will be converted to NaN values\n %if mgl <= 5 and left as zero values if mgl > 5\n %\n %USAGE: T = T.zero2nan(mgl)\n %\n %REQUIRED INPUTS:\n % mgl - minimum gap length (datapoints) to convert to NaN values\n %\n %OUTPUTS: w - trace with gaps converted to NaN\n %\n %See also nan, fillgaps\n \n % Author: Dane Ketner, Alaska Volcano Observatory\n % Modified: Celso Reyes: rewrote algorithm to elimenate looping (2x faster)\n % results differ because old method converted\n % 5 zeros only if mgl <5 (not <=5)\n \n for nw = 1:numel(T)\n closeToZero = abs(T(nw).data) < 0.1; % 0.1 was already chosen -CR\n \n % --- the logic below should be pulled into a new function, since it is\n % shared across a couple different areas, such as trace/clean -- %\n firstZeros = find(diff([false; closeToZero(:)]) == 1);\n lastZeros = find(diff([closeToZero(:); false]) == -1);\n assert(numel(firstZeros) == numel(lastZeros));\n nContiguousZeros = lastZeros - firstZeros + 1;\n firstZeros(nContiguousZeros < mgl) = [];\n lastZeros(nContiguousZeros < mgl) = [];\n \n for c=1:numel(firstZeros)\n T(nw).data(firstZeros(c) : lastZeros(c)) = NaN;\n end\n end\n end\n \n function t = setlength(t, maxlen)\n %setlength adjust length of trace data to allow batch processing\n % trace = traces.setlength()\n % adjusts all traces to the length of the largest, while\n % zero-padding all shorter traces\n %\n % trace = traces.setlength(maxlength)\n % sets all data lengths to maxlength, padding with zero or\n % truncating as necessary.\n %\n % examples\n % % let traces be a 1x2 TraceData object\n % % 3000 samples in traces(1)\n % % 10025 samples in traces(2)\n %\n % % set both waves' data to a length of to 10025 while padding the\n % % smaller of the two with zeroes.\n % outTraces = traces.setlength\n %\n % % set both sample lengths to 500 truncating both of them...\n % outTraces = traces.setlength(500)\n datalengths = arrayfun(@(x) numel(x.data), t);\n if ~exist('maxlen','var')\n maxlen = max(datalengths);\n end\n \n for n=find(datalengths < maxlen)\n t(n).data(maxlen) = 0;\n end\n \n for n=find(datalengths > maxlen);\n t(n).data = t(n).data(1:maxlen);\n end\n end\n \n function T = hilbert(T, n)\n %hilbert Discrete-time analytic Hilbert transform for traces.\n % trace = trace.hilbert()\n % trace = trace.hilbert(N);\n %\n % THIS version only returns the abs value in the trace. If you\n % want to keep the imaginary values, then you should use the\n % built-in hilbert transform. ie. Don't feed it a trace, feed it\n % a vector... - CR\n %\n % See also FFT, IFFT, HILBERT\n \n if nargin==2\n T = arrayfun(@myHilbertN,T);\n else\n T = arrayfun(@myHilbert,T);\n end\n \n function Tr = myHilbert(Tr)\n Tr.data = abs(hilbert(Tr.data));\n Tr.units = 'abs(hilbert)';\n end\n \n function Tr = myHilbertN(Tr)\n Tr.data = abs(hilbert(Tr.data, n));\n Tr.units = 'abs(hilbert)';\n end\n end\n \n function T = resample(T, method, crunchFactor)\n %resample Resample a trace over a specified interval\n % T = trace.resample(method, crunchfactor)\n %\n % Input Arguments\n % Trace: TraceData or Trace N-dimensional\n %\n % METHOD: which method of sampling to perform within each sample\n % window\n % 'max' : maximum value\n % 'min' : minimum value\n % 'mean': average value\n % 'median' : median value\n % 'rms' : rms value (added 2011/06/01)\n % 'absmax': absolute maximum value (greatest deviation from zero)\n % 'absmin': absolute minimum value (smallest deviation from zero)\n % 'absmean' : mean deviation from zero (added 2011/06/01)\n % 'absmedian' : median deviation from zero (added 2011/06/01)\n % 'builtin': Use MATLAB's built in resample routine\n %\n % CRUNCHFACTOR : the number of samples making up the sample window\n %\n % For example, T.resample('max',5) would grab the max value of every 5\n % samples and return that in a trace with an adjusted frequency. as a\n % result, the trace will have 1/5 of the samples\n %\n %\n % To use matlab's built-in RESAMPLE method...\n % % assume T is an existing trace\n % D = double(T);\n % ResampleD = D.resample(P,Q); % see matlab's RESAMPLE for specifics\n %\n % %put back into trace, but don't forget to update the frequency\n % T.data = ResampleD;\n % T.samplerate = NewFrequency;\n %\n % See also RESAMPLE, MIN, MAX, MEAN, MEDIAN.\n \n % AUTHOR: Celso Reyes, Glenn Thompson\n \n persistent STATS_INSTALLED;\n if isempty(STATS_INSTALLED)\n STATS_INSTALLED = ~isempty(ver('stats'));\n end\n \n if ~(round(crunchFactor) == crunchFactor)\n disp ('val needs to be an integer');\n return;\n end;\n method = lower(method);\n \n % determine which function to use on the data. This will\n % automatically determine whether it can use the NaN-safe version\n if ~strcmp(method,'builtin')\n if STATS_INSTALLED\n if numel(method) > 3 && strcmpi(method(1:3),'ABS')\n methodfn = str2func(['nan' method(4:end)]);\n else\n methodfn = str2func(['nan', method]);\n end\n else\n if numel(method) > 3 && strcmpi(method(1:3),'ABS')\n methodfn = str2func(method(4:end));\n else\n methodfn = str2func(method);\n end\n end\n end\n \n for i=1:numel(T)\n nRows = ceil(length(T(i).data) / crunchFactor);\n totVals = nRows * crunchFactor; % total number of values that can be accomodated\n if length(T(i).data) < totVals\n T(i).data(end+1:totVals) = mean(T(i).data((nRows-1)*totVals : end)); %pad it with the avg value\n end;\n \n d = reshape(T(i).data,crunchFactor,nRows); % produces ( val x rowcount) matrix\n switch upper(method)\n case {'MAX', 'MIN', 'RMS'}\n T(i).data = methodfn(d, [], 1);\n case {'MEAN', 'MEDIAN'}\n T(i).data = methodfn(d, 1);\n case {'ABSMAX', 'ABSMIN'}\n T(i).data = methodfn(abs(d),[],1);\n case {'ABSMEAN', 'ABSMEDIAN'}\n T(i).data = methodfn(abs(d), 1);\n case 'BUILTIN'\n % assume T is an existing trace\n ResampleD = resample(T(i).data,1,crunchFactor); % see matlab's RESAMPLE for specifics\n T(i).data = ResampleD(:);\n otherwise\n error('TraceData:resample:UnknownSampleMethod',...\n 'Don''t know what you mean by resample via %s', method);\n end;\n T(i).samplerate = T(i).samplerate ./ crunchFactor;\n end\n end\n \n function A = smooth(A, varargin)\n %smooth Smooth response data\n % A = smooth(T) smooths the Trace's data using a moving average\n % filter.\n %\n % smooth requires the signal fitting toolbox. For additional\n % options, see that smooth\n % See also smooth\n for n = 1:numel(A)\n A(n).data = smooth(A(n).data,varargin{:});\n end\n end\n \n function T = taper(T, style, R)\n %taper apply a taper to a trace\n % trace = trace.taper() applies a cosine (tukey) taper to the ends\n % of a trace with a default taper to the first and last 10% of the\n % trace. This is same as trace.taper('tukey', 0.2)\n %\n % trace = trace.taper(style) applies the tapering window function\n % STYLE to the trace. STYLE can be any valid windowing function\n % some possible taper styles include hanning, tukey, and gaussian.\n % see help for WINDOW for a more complete list.\n %\n % trace = trace.taper(style, R)\n % R varies in meaning according to the window style. For the\n % default cosine (tukey) taper, R is the ratio of tapered to\n % constant sections and is between 0 and 1. For example, if R =\n % 0.1 then the taper at each end of the trace is 5% of the total\n % trace length. R can be either a scalar or the same size as\n % TRACE. If R is a scalar, it is applied uniformly to each\n % trace.\n %\n % for a tukey taper, setting R ito 1 results in a hanning taper\n %\n % All tapers require the signal processing toolbox.\n %\n % See also window\n % AUTHOR: Michael West\n % Modified: Celso Reyes\n a=ver;\n HAVE_SIGBOX = ismember('Signal Processing Toolbox',{a.Name});\n if ~HAVE_SIGBOX\n error('TraceData:taper:signalToolboxNotInstalled',...\n 'Using a taper requires access to the Signal Processing Toolbox');\n end\n if ~exist('style','var') || isempty(style) || strcmpi(style,'cosine')\n style = 'tukeywin';\n end\n if exist(lower(style))\n taperfun = str2func(lower(style));\n else\n error('TraceData:taper:invalidTaperType',...\n 'This style of taper is not recognized.');\n end\n \n %% massage R into place\n if strcmpi(style,'tukeywin') && (~exist('R','var') || isempty(R))\n R = 0.2; %assign default taper\n end\n if exist('R','var') && ~isnumeric(R)\n error('TraceData:taper:InvalidRValue',...\n 'R, if specified, must be numeric');\n end\n \n if isscalar(R)\n R = repmat(R,size(T));\n end\n \n if (isvector(R) && isvector(T)) && numel(R) == numel(T)\n if all(size(T)) ~= size(R)\n % same number of elements, but R is Nx1 and w is 1xN or vice-versa\n warning('TraceData:taper:columnsVsRows',...\n ['One input (either R or the wavform) is arranged in '...\n 'columns while the other is arranged in Rows. While they '...\n 'should be the same shape, taper is continuing with R''']);\n R = R';\n end\n end\n \n if ~all(size(T) == size(R))\n error('TraceData:taper:InvalidRSize',...\n 'R must either be a scalar value, or must be the same size as the input traces');\n end\n nsamples = T.nsamples();\n %% Do the window processing\n if exist('R','var')\n for N=1:numel(T)\n T(N) = T(N) .* window(taperfun, nsamples(N), R(N));\n end\n else\n for N=1:numel(T)\n T(N) = T(N) .* window(taperfun, nsamples(N));\n end\n end\n \n end\n \n function [tf, msg] = compatiblewith(A, B)\n %compatiblewith confirm units, samplerate, and data length match\n % tf = A.compatiblewith(B) will make sure that A and B have\n % matching units, sample frequencies, and data length.\n % If units are empty for either A or B, then units will pass\n % If samplerate is empty for either A or B, then samplerate will\n % pass. samplerate is compared within a tolerance of 10e-2\n %\n % [tf, msg] = A.compatiblewith(B) will also return a message\n % describing how the test failed.\n %\n % sample usage:\n % % assume A & B are TraceData\n % if A.compatiblewith(B)\n % dosomething(A, B)\n % end\n %\n % See also assertCompatiblewith\n TOL = 10e-2;\n if ~(numel(A.data) == numel(B.data))\n tf = false;\n msg = 'Data lengths do not match';\n elseif ~(isempty(B.units) ||isempty(A.units) || strcmp(A.units, B.units))\n tf = false;\n msg = sprintf('Units do not match [%s] vs [%s]', A.units, B.units);\n elseif ~(isempty(A.samplerate) || isempty(B.samplerate) || isnan(A.samplerate) || isnan(B.samplerate) || ismembertol(A.samplerate,B.samplerate, TOL))\n tf = false;\n msg = sprintf('Frequencies do not match [%f] vs [%f]',A.samplerate, B.samplerate);\n else\n tf = true;\n msg = '';\n end\n end\n \n function assertCompatiblewith(A, B)\n %assertCompatiblewith asserts units, samplerate, and data length match\n % assertCompatiblewith(A, B) will error unless A and B have\n % matching units, sample frequencies, and data length. The error\n % message will describe what is wrong\n %\n % use this within a try-catch, or when debugging\n %\n % sample debugging usage:\n % % assume A & B are TraceData\n % A.assertCompatiblewith(B)\n % C = A + B.data;\n %\n % sample prduction usage:\n % try\n % A.assertCompatiblewith(B)\n % C = A + B.data;\n % catch er\n % % handle this failure somehow\n % end\n %\n % See also compatiblewith\n [tf, msg] = compatiblewith(A, B);\n assert(tf, 'TraceData:compatabilityCheckFailed', msg);\n end\n \n %% stacking functions\n function out = stack(T)\n %stack stacks data from array of traces\n % StackedTraces = stack(traces)\n % ASSUMES frequencies are the same. data does not need to be the same\n % length, but shorter traces will be padded with zeros at the end\n % prior to stacking.\n %\n % Stacks all traces, regardless of dimension\n %\n % Data is summed, but the average is not taken, nor is it normalized. You\n % may wish to change the station and/or channel names to reflect the\n % properties of this trace. Possibly change the units, also, if that\n % makes sense.\n %\n % Output retains the same info as the very first trace (minus history)\n % the station name becomes the original name with \"- stack (N)\" tacked onto\n % the end.\n %\n % To ensure frequency and time matching, use ALIGN\n %\n % See also trace.align\n \n out = T(1);\n out.station = [out.station ' - stack (' num2str(numel(T)) ')'];\n out.data = sum(double(T),2);\n end\n function stackedTraces = binStack(T,nBins,binOverlap)\n %binStack Stack traces with specified number of traces per stack.\n %\n %USAGE: stk = binStack(T,nBins,binOverlap)\n % If input T contains 100 traces then:\n % stk = binStack(T,20,0) % stk has 5 stacks of 20 traces\n % stk = binStack(T,5,0) % stk has 20 stacks of 5 traces\n % stk = binStack(T,20,10) % stk has 9 stacks of 20 traces\n %\n %OUTPUTS: stk - Array of stacked traces\n \n % Author: Dane Ketner, Alaska Volcano Observatory\n \n nw = numel(T);\n inc = nBins - binOverlap;\n n=1;\n while 1\n if (n-1)*inc+nBins > nw\n return\n else\n stackedTraces(n) = stack(T((n-1)*inc+1:(n-1)*inc+nBins));\n n=n+1;\n end\n end\n end\n function info(T)\n fprintf('[%s] TraceData array with:\\n', TraceData.size2str(T));\n fprintf(' nSaples sampleRate Units Duration(sec) min max hasnan?\\n');\n for n=1:numel(T)\n if T(n).hasnan; hnt = 'Y'; else hnt = 'N';end\n fprintf('%8d %f %10s %8.3f %8.3f %8.3f %s \\n',...\n T(n).nsamples, T(n).samplerate, T(n).units, T(n).duration, min(T(n)), max(T(n)), hnt);\n end\n end\n %} \n end\n \n %% protected methods\n methods(Static, Access=protected)\n function s = size2str(A)\n sz = size(A);\n s = num2str(sz(1));\n for n=2:numel(sz)\n s = [s, 'x', num2str(sz(n))];\n end\n end\n end\n \n methods(Static)\n function setParameter(name, val)\n %setParameter controlstate behavior for the TraceData objects\n %\n % TRUST_ASSIGNMENTS\n % set_parameter('trust_assignments', true) will verify the\n % shapes and types of each calculation before storing the data\n % in the object\n % set_parameter('trust_assignments', false) will not perform\n % size/class checks. Use this only when you are looking for\n % extra speed and tightly control the inputs to this class.\n %\n % DEBUG_LEVEL\n disp(val)\n disp('not active yet');\n switch lower(name)\n case 'trust_assignments'\n % set the parameter trust_assignments to logical(val);\n case 'debug_level'\n % set the parameter debug_level to numerical val\n otherwise\n end\n end\n \n newunit = autoscale(axishandle, oldunit);\n \n\n end\nend\n\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/dev/@TraceData/TraceData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3800399389429446}} {"text": "clear;clc;\nutil;\naddpath(genpath('jsonlab-master'));\ndataset = {};\n\n%% pre-defined paramters\nwalllabel = 'wall';\nfloorlabel = 'floor';\n\n%% load the scene list\nscenedir = dir(house_folder);\nfor i = 3:length(scenedir)\n scenelist{i-2} = scenedir(i).name;\nend\n\n%% binary label vectors\nlabelset = load(labelsetname); % 'entirelabelset.mat' is a list of all fine-grained labels\nlabelset = labelset.labelset;\n\n%% process each scene(house)\nfor i = 1:length(scenelist)\n scenename = scenelist{i};\n filename = [house_folder, filesep, scenename];\n filename = [filename, filesep, 'house.json'];\n % load the scene as a list of rooms\n try\n roomlist = parsehouse(filename); \n [ roomlist ] = query_obj_metadata( roomlist, scenename ); % fill in the object info (label, orientation, etc)\n catch\n fprintf([scenename,': ERROR in parsing house.json!\\n']);\n continue;\n end\n\n for j = 1:length(roomlist)\n room = roomlist{j};\n roomname = room.roomname;\n try\n % only preserve the rooms meet our requirements\n [ iscontinue, floorobb, wallobblist, wallnum ] = selectroom( room, wcf_folder, roomtype );\n if(iscontinue)\n % transform the objects into [obb+label] format vector\n % and remove the objects with labels not in labelset\n room = convert_room_rep(room,labelset);\n \n % add wall objects to the room\n wallidx = strmatch(walllabel,labelset,'exact');\n wallonehot = zeros(length(labelset),1);\n wallonehot(wallidx) = 1;\n for v = 1:size(wallobblist,2)\n room.labellist{length(room.labellist)+1} = walllabel;\n room.obblist(1:size(room.obblist,1),size(room.obblist,2)+1) = [wallobblist(:,v);wallonehot];\n end\n \n % add floor to the room\n room.labellist{length(room.labellist)+1} = floorlabel;\n flooridx = strmatch(floorlabel,labelset,'exact');\n flooronehot = zeros(length(labelset),1);\n flooronehot(flooridx) = 1;\n room.obblist(1:size(room.obblist,1),size(room.obblist,2)+1) = [floorobb(:);flooronehot];\n \n % align the rooms, the floor is located at [0,0,0]\n room = alignroom( room );\n\n % extract the object-object relations, and relative\n % distance between objects\n [ Rmat, Dmat, sur ] = build_relationgraph( room.obblist', RELATIONS, length(labelset) );\n \n % add room to the dataset \n room.Rmat = Rmat;\n room.Dmat = Dmat;\n room.sur = sur;\n dataset{length(dataset)+1} = room;\n \n fprintf([num2str(length(dataset)), ':', scenename,', ',roomname, '\\n']);\n end\n catch\n fprintf([scenename,',', roomname,': ERROR in parsing organizing room! \\n']);\n continue;\n end\n end\n\nend\nsave(output_filename, 'dataset');\n\n\n", "meta": {"author": "ManyiLi12345", "repo": "GRAINS", "sha": "7806359dada1283a110886d4b634fdedf6963e63", "save_path": "github-repos/MATLAB/ManyiLi12345-GRAINS", "path": "github-repos/MATLAB/ManyiLi12345-GRAINS/GRAINS-7806359dada1283a110886d4b634fdedf6963e63/1-genSuncgDataset/main_gendata.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3800399324966877}} {"text": "function [ res ] = run_KCF_RANSAC( seq, res_path, bSaveImage )\n%UNTITLED Summary of this function goes here\n% Detailed explanation goes here\nproject_dir = fileparts(fileparts(fileparts(mfilename('fullpath'))));\naddpath(fullfile(project_dir, 'trackers', 'KCF'));\naddpath(fullfile(project_dir, 'trackers', 'KCF', 'mex'));\n\n\nkernel_type = 'gaussian';\nkernel.type = kernel_type;\n\t\nfeatures.gray = false;\nfeatures.hog = false;\n\npadding = 1.5; %extra area surrounding the target\nlambda = 1e-4; %regularization\noutput_sigma_factor = 0.1; %spatial bandwidth (proportional to target)\n\ninterp_factor = 0.02;\n\t\t\nkernel.sigma = 0.5;\n\nkernel.poly_a = 1;\nkernel.poly_b = 9;\n\nfeatures.hog = true;\nfeatures.hog_orientations = 9;\ncell_size = 4;\n\n\ntarget_sz = seq.init_rect(1,[4,3]);\npos = seq.init_rect(1,[2,1]) + floor(target_sz/2);\nimg_files = seq.s_frames;\nvideo_path = [];\nvisualization = 0;\n\n%call tracker function with all the relevant parameters\npositions = tracker_ransac(video_path, img_files, pos, target_sz, ...\n padding, kernel, lambda, output_sigma_factor, interp_factor, ...\n cell_size, features, visualization);\n\n%return results to benchmark, in a workspace variable\nrects = [positions(:,2) - target_sz(2)/2, positions(:,1) - target_sz(1)/2];\nrects(:,3) = target_sz(2);\nrects(:,4) = target_sz(1);\nres.type = 'rect';\nres.res = rects;\n\nend\n\n", "meta": {"author": "flyers", "repo": "drone-tracking", "sha": "c42e1833acfb858ac8f4ec69fa04ab02ac4c19ad", "save_path": "github-repos/MATLAB/flyers-drone-tracking", "path": "github-repos/MATLAB/flyers-drone-tracking/drone-tracking-c42e1833acfb858ac8f4ec69fa04ab02ac4c19ad/experiments/trackers/run_KCF_RANSAC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.38003992605043063}} {"text": "function display(f,varargin)\n% standard output\n\n\nrefSystems = [char(f.CS,'compact') ' ' getMTEXpref('arrowChar') ' ' char(f.SS,'compact')];\n\ndisplayClass(f,inputname(1),varargin{:},'moreInfo',refSystems);\n\nif length(f)~=1, disp([' size: ' size2str(f)]); end\n\n% display symmetry\n%dispLine(f.CS);\n%dispLine(f.SS);\n\nif f.antipodal, disp(' antipodal: true'); end\ndisp(' ');\n\nif length(f)~=1, return; end\n\ndisp([' h || r: ' char(round(f.h)) ' || (' char(round(f.r)) ')']);\n\n% display starting and end orientation\nif angle(f.o2,f.o1,'noSymmetry')>0\n disp([' o1 ' getMTEXpref('arrowChar') ' o2: ' char(f.o1) ' ' getMTEXpref('arrowChar') ' ' char(f.o2)]);\nend\n\nend\n\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@fibre/display.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6370308082623216, "lm_q1q2_score": 0.37994628923939383}} {"text": "%MAXPOOLING implements a max-pooling operation for 4D tensors shaped as:\n% (rows, cols, channels, samples) and returns the pooled data with the\n% corresponding indices.\n%\n% [m, idx] = MaxPooling(IM, [2 2])\n%\n% IM can also be a 2D tensor, the missing dims are set to 1.\n\n% AUTORIGHTS\n% Copyright (C) 2011 Jonathan Masci \n%\n% This file is available under the terms of the\n% GNU GPLv2.\n", "meta": {"author": "kyunghyuncho", "repo": "deepmat", "sha": "6fd133406b5d78e1b87e2f736e27cfb2024807af", "save_path": "github-repos/MATLAB/kyunghyuncho-deepmat", "path": "github-repos/MATLAB/kyunghyuncho-deepmat/deepmat-6fd133406b5d78e1b87e2f736e27cfb2024807af/MaxPooling.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.37994628101938893}} {"text": "function[]=yoffset(i1,i2)\n%YOFFSET Offsets lines in the y-direction after plotting.\n%\t \t \t \n% YOFFSET allows data to be manipulated after it has been plotted, by\n% operating on the data stored in the figure itself. This may be used \n% only with 2-D line plots (not symbol plots, contour plots, etc.). \n%\n% YOFFSET offsets all lines in the current axes a specified amount.\n%\t\t\n% YOFFSET(N) or YOFFSET N, where N is a *real* number, offsets each\n% column of the Y-data by an amount N from the previous column. N must \n% be a number, not a variable whose value is a number.\n%\n% YOFFSET(N) or YOFFSET N, where N is an *imaginary* number, offsets\n% each column of the Y-data by an amount imag(N)*DY from the previous \n% column, where DY is the Y-axis length of the original (unoffset) plot.\n%\n% YOFFSET(M,N) or YOFFSET M N, applies the same offsets to each of M \n% groups of lines. For example, for complex-valued data Z use UVPLOT(Z) \n% followed by YOFFSET 2 N.\n%\n% YOFFSET with no arguments returns the data to its original (unoffset) \n% orientation [as do YOFFSET(0) and YOFFSET(0i)].\n% \n% YOFFSET also allow multiple axes to be manipulated simultaneously.\n%\n% YOFFSET LOCK and YOFFSET UNLOCK lock and unlock all Y-data in the\n% current figure. When LOCK is on, calls to YOFFSET are applied to each\n% subplot individually.\n%\n% See also YOFFSET, LINESTYLE.\n% __________________________________________________________________\n% This is part of JLAB --- type 'help jlab' for more information\n% (C) 2000--2015 J.M. Lilly --- type 'help jlab_license' for details \n\n\n\nif strcmpi(i1,'--t')\n return\nend\n\nbcontinue=1;\nif nargin==1;\n N=10000; %Very large number of lines\nend\nif nargin==2\n N=i1;\n i1=i2;\n if ischar(N)\n N=str2double(N);\n end \nend\n\nif nargin>0\n if ischar(i1)\n if isempty(str2double(i1))\n i1=deblank(i1);\n i1=fliplr(deblank(fliplr(i1)));\t\n if strcmpi(i1,'lock')\n if isappdata(gca,'lastyoffset')\n lastoff=getappdata(gca,'lastyoffset');\n setappdata(gcf,'yoffsetlock',1)\n yoffsetloop(0,N);\n yoffsetloop(lastoff,N); \n else\n setappdata(gcf,'yoffsetlock',1)\n end\t\t \n bcontinue=0;\n end\n if strcmpi(i1,'unlock')\n setappdata(gcf,'yoffsetlock',0)\n bcontinue=0;\n end\n end\n end\nend\n\nif bcontinue\t\n if nargin>0\n delta=i1;\n else \n delta=0;\n end\n\n h=linehandles;\n if plotmodified(h)\n %If the plot has been changed, the old \"lastyoffset\" may no\n %longer be correct. If so, we set it to zero\n setappdata(gca,'lastyoffset',0)\t\t \n end\n yoffsetloop(delta,N);\nend\n\n\n\nfunction[]=yoffsetloop(delta,N)\n\nh=gca;\nif isappdata(gcf,'yoffsetlock')\n if getappdata(gcf,'yoffsetlock')\n h=axeshandles(gcf);\t\n end \nend\n\nfor i=1:length(h)\n axes(h(i))\n if isappdata(gca,'lastyoffset')\n lastdelta=getappdata(gca,'lastyoffset');\n yoffsetapply(-1*lastdelta,N);\n setappdata(gca,'lastyoffset',0)\n end\n yoffsetapply(delta,N);\nend\n\naxes(h(1))\n\nfunction[]=yoffsetapply(delta,N)\nh=linehandles;\n \nif ischar(delta),delta=str2double(delta);end\nyy=get(h,{'ydata'});\n\nif length(delta)==1 && ~isreal(delta)\n ax=axis;\n dy=ax(4)-ax(3);\n delta=dy.*imag(delta)/100;\nend\n\nif length(delta)==1\n for i=length(yy):-1:1\n yy{i}=yy{i}+delta*(mod(length(yy)-i,round(length(yy)/N)));\n end\nelseif length(delta)==length(h)\n for i=length(yy):-1:1\n yy{i}=yy{i}+delta(i);\n end\nelse\n error('Number of line handles does not equal offset array length.')\nend\n\nset(h,{'ydata'},yy);\nsetappdata(gca,'lastyoffset',delta)\t\t\nsetappdata(gca,'lasthandles',h)\t\t\n\nfunction[b]=plotmodified(h)\nb=0; \nif isappdata(gca,'lasthandles')\n b=1;\n h2=getappdata(gca,'lasthandles');\n if length(h2)==length(h)\n if all(h2==h)\n b=0;\n end\n end\nend\n \n", "meta": {"author": "jonathanlilly", "repo": "jLab", "sha": "9f32f63e647209bc1cb81c8713deb954857f1919", "save_path": "github-repos/MATLAB/jonathanlilly-jLab", "path": "github-repos/MATLAB/jonathanlilly-jLab/jLab-9f32f63e647209bc1cb81c8713deb954857f1919/jGraph/yoffset.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6370307944803831, "lm_q1q2_score": 0.37994628101938893}} {"text": "function [LCpL,Q,sumLCpL,QE,Cy,M,Cp,Cq,Lq] = spm_eeg_assemble_priors(L,Qp,Qe,ploton,h)\n% Predict sensor level impact of sources in Qp given sensor noise Qe\n% FORMAT [LCpL,Q,sumLCpL,QE,Cy,M,Cp,Cq,Lq] = spm_eeg_assemble_priors(L,Qp,Qe,ploton,h)\n% L - lead fields\n% Qp - priors on source level dipole moment nAm/(mm2) per sample\n% Qe - sensor level variance in fT^2 per sample\n% h - optional hyperparameters that scale the variance components in\n% Qe and Qp (assume sensor followed by source level parameters)\n\n% LCpL - sensor level covariance components corresponding to the source\n% priors Qp\n% Q - sparse array over sources holding dipole moment density nAm/(mm2)\n% sumLCpL - predicted sensor level variance due to sources (in fT^2)\n% QE - predicted sensor level noise variance (in fT^2)\n% Cy - total sensor noise covariance predicted : Cy = QE+sumLCpL\n% M - MAP estimator : M = Cp*L'*inv(Qe + L*Cp*L'))\n% Cp - total source covariance matrix\n% Cq - conditional source covariance - need to implement\n% Lq - cell array of the L*q (impact of each source component at sensor level)\n%__________________________________________________________________________\n% Copyright (C) 2010-2017 Wellcome Trust Centre for Neuroimaging\n\n% Gareth Barnes\n% $Id: spm_eeg_assemble_priors.m 7132 2017-07-10 16:22:58Z guillaume $\n\nif nargin < 4\n ploton = ~spm('CmdLine');\nend\n\nif nargin < 5\n h=[];\nend\n\nNe = length(Qe);\nif iscell(Qp)\n Np = length(Qp); % number of source components\nelse\n Np = size(Qp,2);\nend\n\nif isempty(h)\n h = ones(Ne+Np,1);\nend\n\nif length(h)~=Ne+Np\n error('There must be as many hyperparameters as priors.');\nend\n\nhe = h(1:Ne); % sensor level\nhp = h(Ne + (1:Np)); % source level\n\nNs = size(L,2); % number sources\n\nQ = sparse(Ns,Np);\nLq = {};\n\nfprintf('Assembling %d prior components\\n',Np);\nfor i = 1:Np\n if iscell(Qp)\n if isfield(Qp{i},'q')\n %Q(:,i) = Qp{i}.q; % patch amplitudes can be positive or negative\n q = Qp{i}.q;\n v = 1;\n if isfield(Qp{i},'v')\n v = sqrt(Qp{i}.v);\n end\n \n Q(:,i) = q*v;\n \n % Lq is the sensor level projection of the prior Q{i}.q\n Lq{i}.q = L*Q(:,i); % supply an eigen mode in q\n else % no .q field, check it is 2D\n if size(Qp{i},1)~=size(Qp{i},2)\n disp('making Qp 2D');\n Qp{i} = diag(sparse(Qp{i}));\n end\n end \n end\nend\n\n\n%-Assemble empirical priors\n%==========================================================================\n\nLCpL = {};\n\nsumLCpL = zeros(size(L,1),size(L,1));\n\nCp = sparse(0);\nLCp = sparse(0);\n\nfor i = 1:Np\n \n if isfield(Qp{i},'q') % sparse diagonbal representation\n \n Q(:,i) = Q(:,i)*sqrt(hp(i)); % update moment by sqrt of variance scaling\n \n LQp = L*Q(:,i);\n LCpL{i} = LQp*LQp';\n Cp = Cp + Q(:,i)*Q(:,i)'; %% Q is already scaled by root hp\n %LCp = LCp+LQp;\n LCp = LCp+L*Cp;\n else % full matrix version\n Qtmp = Qp{i}*hp(i);\n LCpL{i} = L*Qtmp*L';\n Cp = Cp + Qtmp;\n % Q(:,i)=diag(Qtmp);\n end\n \n sumLCpL = sumLCpL + LCpL{i};\n \nend\n\nQE = zeros(size(Qe{1}));\nfor i=1:length(Qe)\n QE = QE + Qe{i}*he(i);\nend\n\nCy = sumLCpL + QE;\n\n% This is equivalent to M = Cp*UL'*inv(Qe + UL*Cp*UL'))\n% with Cp the posterior source covariance (with optimal h values)\n%Qsum=sum(Q(:,i).^2); % diagonal of posterior source cov matrix\n%Cp=diag(Qsum);\nM = Cp*L'/Cy;\n\n% conditional variance (leading diagonal)\n% Cq = Cp - Cp*L'*iC*L*Cp;\n%----------------------------------------------------------------------\n%Cq = Cp - sum(LCp.*M')'; in original\n\nCq = diag(Cp) - sum(LCp.*M')';\n\ndisp('end assemble');\n\nif ploton\n subplot(3,1,1);\n imagesc(sumLCpL);colorbar;\n title('source prior');\n subplot(3,1,2);\n imagesc(QE);colorbar;\n title('sensor noise prior');\n subplot(3,1,3);\n imagesc(Cy);colorbar;\n title('Sensor covariance per sample (fT^2)');\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_eeg_assemble_priors.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8104788995148792, "lm_q2_score": 0.4687906266262437, "lm_q1q2_score": 0.3799449111709286}} {"text": "function cS = rutile\n\n%\ncs_Rt = crystalSymmetry('4/mmm',[1 1 0.644]);\nN = Miller({1,0,0},{1,1,0},{1,0,1},cs_Rt);\ndist= [0.35, 0.5, 1];\ncS = crystalShape(N./dist);", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/+crystalShape/rutile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8104788995148791, "lm_q2_score": 0.4687906266262437, "lm_q1q2_score": 0.37994491117092855}} {"text": "function computeAllPrediction_LGG(pathModels,pathResults,training,param,maxOrder,nBoot,imbalance,seed)\n% -------------------------------------------------------------------------\n% function computeAllPrediction_LGG(pathModels,pathResults,training,param,maxOrder,nBoot,imbalance,seed)\n% -------------------------------------------------------------------------\n% DESCRIPTION: \n% This function computes prediction performance estimation for a given \n% feature set type, and for all model orders of all experiments with \n% different degrees of freedom. See ref. [1] for more details.\n% -------------------------------------------------------------------------\n% REFERENCE:\n% [1] Vallieres, M. et al. (2015). A radiomics model from joint FDG-PET and \n% MRI texture features for the prediction of lung metastases in soft-tissue \n% sarcomas of the extremities. Physics in Medicine and Biology, 60(14), \n% 5471-5496. doi:10.1088/0031-9155/60/14/5471\n% -------------------------------------------------------------------------\n% INPUTS:\n% 1. pathModels: Full path to the Models folder of the corresponding experiment.\n% --> Ex: '/myProject/WORKSPACE/LOGISTIC_REGRESSION/MODELS'\n% 2. pathResults: Full path to the Results folder of the corresponding experiment.\n% --> Ex: '/myProject/WORKSPACE/LOGISTIC_REGRESSION/RESULTS'\n% 3. training: Structure defining all parameters for the given experiment \n% to perform. See organizeRadiomicsExp_LGG.m for more details.\n% --> IMPORTANT VARIABLE DEFINING ALL PARAMETERS IN TRAINING\n% 4. param: Cell of two strings, defining 1) The feature set type/name; and\n% 2) the outcome to model in the 'training' structure.\n% 5. maxOrder: Integer specifying the maximal model order to construct.\n% --> Ex: 10\n% 6. nBoot: Number of bootstrap samples to use.\n% --> Ex: 100\n% 7. imbalance: String specifying the type of imbalance-adjustement strategy\n% employed. Either 'IABR' for imbalance-adjusted bootstrap\n% resampling (see ref.[1]), or 'IALR' for imbalance-adjusted\n% logistic regression (formal reference to come).\n% --> Ex: 'IALR'\n% 7. seed: Random generator seed for reproducibility of experiments.\n% -------------------------------------------------------------------------\n% OUTPUTS: Prediction performance results are saved in a folder named 'RESULTS' in the\n% corresponding folder of each experiment (e.g. 'Experiment1', 'Experiment2', etc.)\n% -------------------------------------------------------------------------\n% AUTHOR(S): Martin Vallieres \n% -------------------------------------------------------------------------\n% HISTORY:\n% - Creation: January 2017\n%--------------------------------------------------------------------------\n% STATEMENT:\n% This file is part of , \n% a package providing MATLAB programming tools for radiomics analysis.\n% --> Copyright (C) 2015-2017 Martin Vallieres\n%\n% This package is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This package is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this package. If not, see .\n% -------------------------------------------------------------------------\n\nstartpath = pwd;\nwarning off\n\ncd(pathModels)\nfSetName = param{1};\noutcomeName = param{2};\noutcome = training.(outcomeName).outcome;\nmodels = load(['MODELS_',fSetName,'_',outcomeName]); models = struct2cell(models); models = models{1};\n\ntic\nfprintf(['\\n --> COMPUTING PREDICTION PERFORMANCE (MODEL ORDERS OF 1 to % u) FOR \"',fSetName,'\" FEATURE SET AND \"',outcomeName,'\" OUTCOME ... '],maxOrder)\nfor j = 1:maxOrder\n orderName = ['Order',num2str(j)];\n data = models.(orderName).Data;\n [orderResults] = predictionPerformanceEstimation(data,outcome,nBoot,imbalance,seed);\n results.(orderName) = orderResults;\n results.(orderName).Data = models.(orderName).Data;\n results.(orderName).Name = models.(orderName).Name;\nend\ncd(pathResults), save(['RESULTS_',fSetName,'_',outcomeName],'results')\nfprintf('DONE!\\n'), toc\n\ncd(startpath)\nend\n", "meta": {"author": "mvallieres", "repo": "radiomics", "sha": "d3a61737730e1b2b46d04c9e22a3fcc390912f1a", "save_path": "github-repos/MATLAB/mvallieres-radiomics", "path": "github-repos/MATLAB/mvallieres-radiomics/radiomics-d3a61737730e1b2b46d04c9e22a3fcc390912f1a/STUDIES/LGG_study/Functions/computeAllPrediction_LGG.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3798989861652788}} {"text": "function value = function_2d_name ( ifunc )\n\n%*****************************************************************************80\n%\n%% FUNCTION_2D_NAME returns the name of the current 2D function.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 07 April 2008\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer IFUNC, the index of the function.\n%\n% Output, character FUNCTION_2D_NAME(7), the name of the function.\n%\n if ( ifunc == 1 )\n value = ' 1';\n elseif ( ifunc == 2 )\n value = ' X';\n elseif ( ifunc == 3 )\n value = ' X^2';\n elseif ( ifunc == 4 )\n value = ' X^3';\n elseif ( ifunc == 5 )\n value = ' X^4';\n elseif ( ifunc == 6 )\n value = ' X^5';\n elseif ( ifunc == 7 )\n value = ' X^6';\n elseif ( ifunc == 8 )\n value = ' R';\n elseif ( ifunc == 9 )\n value = ' SIN(X)';\n elseif ( ifunc == 10 )\n value = ' EXP(X)';\n elseif ( ifunc == 11 )\n value = '1/(1+R)';\n elseif ( ifunc == 12 )\n value = 'SQRT(R)';\n else\n value = '???????';\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/stroud/function_2d_name.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857982, "lm_q2_score": 0.6757646010190476, "lm_q1q2_score": 0.37989897882337564}} {"text": "\nfunction [Intensity T1vector IntensityBeforeComb]=MP2RAGE_lookuptable(nimages,MPRAGE_tr,invtimesAB,flipangleABdegree,nZslices,FLASH_tr,sequence,varargin)\n% first extra parameter is the inversion efficiency\n% second extra parameter is the alldata\n% if ==1 all data is shown\n% if ==0 only the monotonic part is shown\nalldata=0;\nif nargin >=9\n if ~isempty(varargin{2})\n alldata=varargin{2};\n end\nend\n\ninvtimesa=invtimesAB(1);\ninvtimesb=invtimesAB(2);\n\nB1vector=1;\nflipanglea=flipangleABdegree(1);\nflipangleb=flipangleABdegree(2);\n\nT1vector=0.05:0.05:5;\n\n\nif length(nZslices)==2\n nZ_bef=nZslices(1);\n nZ_aft=nZslices(2);\n nZslices2=(nZslices);\n \n nZslices=sum(nZslices);\nelseif length(nZslices)==1\n nZ_bef=nZslices/2;\n nZ_aft=nZslices/2;\n nZslices2=(nZslices);\nend;\n\n\n\nj=0;\nfor T1=T1vector\n j=j+1;\n for MPRAGEtr=MPRAGE_tr\n for inversiontimesa=invtimesa\n for inversiontimesb=invtimesb\n m=0;\n for B1=B1vector\n m=m+1;\n % T1=1;%testline\n inversiontimes2=[inversiontimesa inversiontimesb];\n if and(and((diff(inversiontimes2))>=nZslices*FLASH_tr,inversiontimesa>=nZ_bef*FLASH_tr),inversiontimesb<=(MPRAGEtr-nZ_aft*FLASH_tr));\n if nargin == 7\n Signal(j,m,1:2)=1*MPRAGEfunc(nimages,MPRAGEtr,inversiontimes2,nZslices2,FLASH_tr,B1*[flipanglea flipangleb],sequence,T1);\n else\n if ~isempty(varargin{1})\n Signal(j,m,1:2)=1*MPRAGEfunc(nimages,MPRAGEtr,inversiontimes2,nZslices2,FLASH_tr,B1*[flipanglea flipangleb],sequence,T1,varargin{1});\n else\n Signal(j,m,1:2)=1*MPRAGEfunc(nimages,MPRAGEtr,inversiontimes2,nZslices2,FLASH_tr,B1*[flipanglea flipangleb],sequence,T1);\n \n end;\n end;\n else\n Signal(j,m,1:2)=0;\n end;\n end;\n end;\n end;\n end;\nend;\nIntensity=squeeze(real(Signal(:,:,1).*conj(Signal(:,:,2)))./(abs(Signal(:,:,1)).^2+abs(Signal(:,:,2)).^2));\nT1vector=squeeze(T1vector);\nif alldata==0\n [a minindex]=max(Intensity);\n [a maxindex]=min(Intensity);\n Intensity=Intensity(minindex:maxindex);\n T1vector=T1vector(minindex:maxindex);\n IntensityBeforeComb=squeeze(Signal(minindex:maxindex,1,:));\n Intensity([1 end])=[0.5 -0.5]; % pads the look up table to avoid points that fall out ot the lookuptable\nelse\n Intensity=squeeze(real(Signal(:,:,1).*conj(Signal(:,:,2)))./(abs(Signal(:,:,1)).^2+abs(Signal(:,:,2)).^2));\n T1vector=squeeze(T1vector);\n IntensityBeforeComb=squeeze(Signal(:,1,:));\nend;\n", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/src/Models_Functions/MP2RAGE/func/MP2RAGE_lookuptable.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3798989788233756}} {"text": "function f = constructor(f, op, varargin)\n%CONSTRUCTOR Main CHEBFUN3T constructor.\n% Classical full tensor approach for 3D functions. No low-rank technique\n% is involved here. This is experimental code, not for ordinary use.\n%\n% See also CHEBFUN3. \n\n% The 'trig' flag is NOT implemented.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Parse the inputs:\n[op, dom, pref, vectorize] = parseInputs(op, varargin{:});\n\n% Set preferences:\ntech = pref.tech();\ntpref = tech.techPref;\ngrid = tpref.minSamples;\nmaxSample = 363;\n% Since 363*363*363=(6916)^2, this is equivalent to working with a matrix \n% of size 6916 * 6916 which needs 380MB of memory.\npseudoLevel = pref.cheb3Prefs.chebfun3eps; \nprefStruct = pref.cheb2Prefs;\npassSampleTest = prefStruct.sampleTest;\n\n[xx, yy, zz] = ndgrid(dom(1:2), dom(3:4), dom(5:6));\nA = op(xx, yy, zz);\nif ( isscalar(A) )\n op = @(x,y,z) op(x,y,z) + 0*x + 0*y + 0*z;\nend\n\n%%\nisHappy = 0;\nm = grid; n = grid; p = grid;\nfor i=1:10\n %% Compute values at 3D chebpts\n out = tech.tensorGrid([m, n, p], dom);\n xx = out{1};\n yy = out{2};\n zz = out{3};\n F = op(xx,yy,zz);\n \n % Does the function blow up or evaluate to NaN?:\n vscale = max(abs(F(:)));\n if ( isinf(vscale) )\n error('CHEBFUN:CHEBFUN3T:constructor:inf', ...\n 'Function returned INF when evaluated');\n elseif ( any(isnan(F(:)) ) )\n error('CHEBFUN:CHEBFUN3T:constructor:nan', ...\n 'Function returned NaN when evaluated');\n end\n \n %% Call 3D vals2coeffs\n coeffs3D = chebfun3t.vals2coeffs(F);\n % happinessCheck\n [isHappyX, isHappyY, isHappyZ, cutoffX2, cutoffY2, cutoffZ2] = ...\n happinessCheck3D(coeffs3D, pref);\n isHappy = isHappyX & isHappyY & isHappyZ;\n \n %% PHASE II\n % This phase refines the grid ONLY in \"unhappy\" directions.\n % We don't refine here if ALL the directions are nonhappy (as mentioned \n % in the following). If, however, less than 3 directions are nonhappy, \n % we refine in those directions only.\n \n m2 = m; n2 = n; p2 = p;\n while (~isHappy)\n % We need to refine the grid. We refine in 2 different ways: If all\n % 3 directions are unhappy, the new grid is bigger in each\n % direction by a factor of sqrt(2). If 1 or 2 of the directions are\n % unhappy, we refine (only those unhappy directions) by a factor of\n % 2.\n \n if (~isHappyX && ~isHappyY && ~isHappyZ)\n % All directions are unhappy. To avoid getting an unncecessarily\n % big tensor, refine differently.\n break;\n end\n if (~isHappyX)\n m2 = gridRefinePhase2(m2, pref);\n end\n if (~isHappyY)\n n2 = gridRefinePhase2(n2, pref);\n end\n if (~isHappyZ)\n p2 = gridRefinePhase2(p2, pref);\n end\n out = tech.tensorGrid([m2, n2, p2], dom);\n xx = out{1};\n yy = out{2};\n zz = out{3};\n F = op(xx,yy,zz);\n coeffs3D = chebfun3t.vals2coeffs(F);\n [isHappyX, isHappyY, isHappyZ, cutoffX2, cutoffY2, cutoffZ2] = ...\n happinessCheck3D(coeffs3D,pref);\n isHappy = isHappyX & isHappyY & isHappyZ;\n end\n \n if ( isHappy )\n % Chop the tail:\n coeffs3D = coeffs3D(1:cutoffX2, 1:cutoffY2, 1:cutoffZ2);\n \n % Construct a CHEBFUN3T object:\n f.coeffs = coeffs3D;\n f.vscale = max(abs(F(:)));\n f.domain = dom;\n \n % Step 2: Apply a SAMPLETEST:\n [m2, n2, p2] = size(coeffs3D);\n if ( passSampleTest )\n tol2 = getTol3D(xx, yy, zz, F, length(xx), dom, pseudoLevel);\n pass = sampleTest(f, op, tol2, vectorize);\n if ( pass ) % :)\n break\n end \n end\n end\n m = gridRefinePhase1(m);\n n = gridRefinePhase1(n);\n p = gridRefinePhase1(p);\nend\n\n% Reached maximum allowed tensor size and still unhappy?\nif ( i == 10 && ~isHappy )\n % Throw a warning and construct from the latest unhappy approximation\n warning('CHEBFUN:CHEBFUN3T:constructor:notResolved', ...\n 'Unresolved with maximum CHEBFUN3T length: %u.', maxSample);\n f.coeffs = coeffs3D;\n f.vscale = max(abs(F(:)));\n f.domain = dom;\nend\n\nend\n\n%%\nfunction [isHappyX, isHappyY, isHappyZ, cutoffX2, cutoffY2, cutoffZ2] = ...\n happinessCheck3D(simple_3D_coeffs, pref)\n% An alternative technique: check whether all the rows, columns and tubes have been resolved.\n% Somewhat similar to Chebfun2 constructor (but with all the rows, cols and tubes instead of the pivot ones)\n\n% TODO: THIS DOES NOT PROPERLY WORK WITH TRIGs.\n\ncolChebtech = sum(chebfun3t.unfold(abs(simple_3D_coeffs), 1), 2);\nfCol = chebtech2({[], colChebtech});\n[isHappyX, cutoffX2] = happinessCheck(fCol, [], [], [], pref);\n \nrowChebtech = sum(chebfun3t.unfold(abs(simple_3D_coeffs), 2), 2);\nfRow = chebtech2({[], rowChebtech});\n[isHappyY, cutoffY2] = happinessCheck(fRow, [], [], [], pref);\n\ntubeChebtech = sum(chebfun3t.unfold(abs(simple_3D_coeffs), 3), 2);\nfTube = chebtech2({[], tubeChebtech});\n[isHappyZ, cutoffZ2] = happinessCheck(fTube, [], [], [], pref);\nend\n%%\nfunction grid = gridRefinePhase1(grid)\n% Grid refinement strategy in Phase 1. It does the same for all TECHS.\ngrid = floor(sqrt(2)^(floor(2*log2(grid)) + 1)) + 1;\nend\n\n%%\nfunction grid = gridRefinePhase2(grid, pref)\n% Grid refinement strategy for tech in Phase 2 \n\n% What tech am I based on?:\ntech = pref.tech();\n\n% What is the next grid size?\nif ( isa(tech, 'chebtech2') )\n % Double sampling on tensor grid:\n grid = 2*grid-1;\nelseif ( isa(tech, 'trigtech') )\n % Double sampling on tensor grid:\n grid = 2^(floor(log2(grid)+1));\nelseif ( isa(tech, 'chebtech1') )\n grid = 3 * grid;\nelse\n error('CHEBFUN:CHEBFUN3:constructor:gridRefinePhase2:techType', ...\n 'Technology is unrecognized.');\nend\n\nend\n%%\n\nfunction tol = getTol3D(xx, yy, zz, vals, grid, dom, pseudoLevel)\n%See https://github.com/chebfun/chebfun/issues/1491\n[m,n,p] = size(vals);\n% Remove some edge values so that df_dx, df_dy and df_dz have the same size. \ndf_dx = diff(vals(:,1:n-1,1:p-1),1,1) ./ diff(xx(:,1:n-1,1:p-1),1,1); % xx changes in the first mode.\ndf_dy = diff(vals(1:m-1,:,1:p-1),1,2) ./ diff(yy(1:m-1,:,1:p-1),1,2); % yy changes row-wise (2nd mode).\ndf_dz = diff(vals(1:m-1,1:n-1,:),1,3) ./ diff(zz(1:m-1,1:n-1,:),1,3); % zz changes tube-wise (3rd mode).\n\nJ = max(max(abs(df_dx),abs(df_dy)), abs(df_dz));\nJac_norm = max(J(:)); % An approximation for the norm of the Jacobian over the whole domain.\nvscale = max(abs(vals(:)));\ntol = grid^(4/5) * max( abs(dom(:) ) ) * max(Jac_norm, vscale) * pseudoLevel;\nend\n%%\nfunction [op, dom, pref, vectorize] = parseInputs(op, varargin)\nvectorize = 0;\npref = chebfunpref();\n\nif ( isa(op, 'char') ) % CHEBFUN3T( CHAR )\n op = str2op(op);\nend\n\nif nargin == 1\n dom = [-1 1 -1 1 -1 1];\nelseif ( ( (nargin == 2) && ~any(strcmpi(varargin{1}, {'trig', 'periodic'})) )) \n % DOMAIN is specified\n dom = varargin{1};\nelseif ( ( (nargin == 2) && any(strcmpi(varargin{1}, {'trig', 'periodic'})) )) \n % TECH is specified\n pref.tech = @trigtech; \n dom = [-1 1 -1 1 -1 1];\nelseif ( ( (nargin == 3) && any(strcmpi(varargin{2}, {'trig', 'periodic'})) ))\n % DOMAIN and TECH are specified\n dom = varargin{1};\n pref.tech = @trigtech;\nelseif ( ( (nargin == 3) && any(strcmpi(varargin{1}, {'trig', 'periodic'})) ))\n % TECH and DOMAIN are specified\n pref.tech = @trigtech;\n dom = varargin{3};\nelseif ( (nargin == 3) && strcmpi(varargin{1}, 'eps') )\n % EPS is specified\n pref.chebfuneps = varargin{2};\n dom = [-1 1 -1 1 -1 1];\nelseif ( (nargin == 4) && strcmpi(varargin{1}, 'eps') ...\n && any(strcmpi(varargin{3}, {'trig', 'periodic'})) )\n % EPS and TECH are specified\n pref.tech = @trigtech;\n pref.chebfuneps = varargin{3};\n dom = [-1 1 -1 1 -1 1];\nelseif ( (nargin == 4) && strcmpi(varargin{2}, 'eps') && ...\n any(strcmpi(varargin{1}, {'trig', 'periodic'})) )\n % TECH and EPS are specified\n pref.tech = @trigtech;\n pref.chebfuneps = varargin{3};\n dom = [-1 1 -1 1 -1 1];\nelseif ( (nargin == 4) && strcmpi(varargin{2}, 'eps') && ...\n ~any(strcmpi(varargin{1}, {'trig', 'periodic'})) )\n % DOMAIN and EPS are specified\n pref.chebfuneps = varargin{3};\n dom = varargin{1}; \nelseif ( (nargin == 4) && strcmpi(varargin{1}, 'eps') && ...\n ~any(strcmpi(varargin{3}, {'trig', 'periodic'})) )\n % EPS and DOMAIN are specified\n pref.chebfuneps = varargin{2};\n dom = varargin{3};\nelseif ( (nargin == 5) && any(strcmpi(varargin{2}, {'trig', 'periodic'}))...\n && strcmpi(varargin{3}, 'eps') )\n % DOMAIN, TECH and EPS are specified\n dom = varargin{1};\n pref.tech = @trigtech;\n pref.chebfuneps = varargin{4};\nelseif ( (nargin == 5) && strcmpi(varargin{2}, 'eps') ...\n && any(strcmpi(varargin{4}, {'trig', 'periodic'})) )\n % DOMAIN, EPS and TECH are specified\n dom = varargin{1};\n pref.chebfuneps = varargin{3};\n pref.tech = @trigtech;\nelseif ( (nargin == 5) && any(strcmpi(varargin{1}, {'trig', 'periodic'}))...\n && strcmpi(varargin{2}, 'eps') )\n % TECH, EPS and DOMAIN are specified\n pref.tech = @trigtech; \n pref.chebfuneps = varargin{3};\n dom = varargin{4};\nelseif ( (nargin == 5) && any(strcmpi(varargin{1}, {'trig', 'periodic'}))...\n && strcmpi(varargin{3}, 'eps') )\n % TECH, DOMAIN and EPS are specified\n pref.tech = @trigtech; \n dom = varargin{2}; \n pref.chebfuneps = varargin{4};\nelseif ( (nargin == 5) && any(strcmpi(varargin{4}, {'trig', 'periodic'}))...\n && strcmpi(varargin{1}, 'eps') )\n % EPS, DOMAIN and TECH are specified\n pref.chebfuneps = varargin{2};\n dom = varargin{3};\n pref.tech = @trigtech; \nelseif ( (nargin == 5) && any(strcmpi(varargin{3}, {'trig', 'periodic'}))...\n && strcmpi(varargin{1}, 'eps') )\n % EPS, TECH and DOMAIN are specified\n pref.chebfuneps = varargin{2};\n pref.tech = @trigtech;\n dom = varargin{4};\nelse\n error('CHEBFUN:CHEBFUN3T:constructor', ...\n 'Domain not valid or fully determined.');\nend\nend\n%%\nfunction op = str2op( op )\n% OP = STR2OP(OP), finds independent variables in a string and returns an op\n% handle than can be evaluated.\n\nvars = symvar(op); % Independent variables\nif ( numel(vars) > 3)\n error('CHEBFUN:CHEBFUN3T:constructor:str2op:depvars', ...\n 'Too many independent variables in string input.');\nelse\n op = eval(['@(' vars{1} ',' vars{2} ',' vars{3} ')' op]);\nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3t/constructor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7718435083355187, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.3798922174358573}} {"text": "% Coupled nonlinear PDE's\n% Buckley Leverett equation\n% dependent variables: pressure and water saturation\n% Prepared for educational purposes by ** AAE **\n% For whatever reason, the code is very slow and does not converge\n% DOES NOT WORK WELL\n% Written by Ali A. Eftekhari\n% Last checked: June 2021\nclc; clear;\n%% define the geometry\nNx = 50; % number of cells in x direction\nNy = 30; % number of cells in y direction\nW = 50; % [m] length of the domain in x direction\nH = 30; % [m] length of the domain in y direction\nx1=linspace(0,W, Nx);\nx2=x1+0.001;\nx=zeros(2*Nx,1);\nj=0;\nfor i=1:Nx\n j=j+1;\n x(j)=x1(i);\n j=j+1;\n x(j)=x2(i);\nend\ny1=linspace(0,H, Ny);\ny2=y1+0.01;\ny=zeros(2*Ny,1);\nj=0;\nfor i=1:Ny\n j=j+1;\n y(j)=y1(i);\n j=j+1;\n y(j)=y2(i);\nend\nm = createMesh2D(x, y); % creates a 2D mesh\n[X,Y]=ndgrid(m.cellsize.x, m.cellsize.y);\n%% define the physical parametrs\np0 = 1e5; % [bar] pressure\npin = 50e5; % [bar] injection pressure at the left boundary\nq_in=5e-5; % [m^3/s] water injection\nsw0 = 0; % initial water saturation\nswin = 1;\nmu_oil = 1e-3; % [Pa.s] oil viscosity\nmu_water = 1e-3; % [Pa.s] water viscosity\n% reservoir\nk0 = 2e-12; % [m^2] average reservoir permeability\nk_frac=100e-12; % [m^2] fracture permeability\nphi0 = 0.2; % average porosity\nclx=0.05;\ncly=0.05;\nV_dp=0.1; % Dykstra-Parsons coef.\nperm_val= field2d(2*Nx,2*Ny,k0,V_dp,clx,cly);\nk=createCellVariable(m, k0);\nfor i=4:2:2*Nx\n k.value(i,3:end-2)=k_frac;\nend\nfor j=4:2:2*Ny\n k.value(3:end-2,j)=k_frac;\nend\nk.value(1:2,:)=k_frac;\nk.value(end-1:end,:)=k_frac;\nk.value(:,1:2)=k_frac;\nk.value(:,end-1:end)=k_frac;\n%k.value(1:2,:)=k_frac;\nphi=createCellVariable(m, phi0);\nkrw0 = 0.4;\nkro0 = 0.8;\nnw = 1;\nno = 1;\nkrw = @(sw)(krw0*sw.^nw);\ndkrwdsw = @(sw)(krw0*nw*sw.^(nw-1));\nkro = @(sw)(kro0*(1-sw).^no);\ndkrodsw = @(sw)(-kro0*no*(1-sw).^(no-1));\nlw = geometricMean(k)/mu_water;\nlo = geometricMean(k)/mu_oil;\nLw = @(sw)(krw(sw));\nLo = @(sw)(k/mu_oil*kro(sw));\ndLwdsw = @(sw)(k/mu_water*dkrwdsw(sw));\ndLodsw = @(sw)(k/mu_oil*dkrodsw(sw));\n%% Define the boundaries\nBCp = createBC(m); % Neumann BC for pressure\nBCs = createBC(m); % Neumann BC for saturation\n% change the right boandary to constant pressure (Dirichlet)\nBCp.right.a(end-5:end)=0; BCp.right.b(end-5:end)=1; BCp.right.c(end-5:end)=p0;\n% change the left boundary to constant flow\nBCp.left.a(1:5)=-k_frac/mu_water; BCp.left.b(1:5)=0; BCp.left.c(1:5)=q_in;\n% change the left boundary to constant saturation (Dirichlet)\nBCs.left.a(1:5)=0; BCs.left.b(1:5)=1; BCs.left.c(1:5)=1;\n%% define the time step and solver properties\ndt = 10; % [s] time step\nt_end = 1000*dt; % [s] final time\neps_p = 1e-5; % pressure accuracy\neps_sw = 1e-5; % saturation accuracy\n%% define the variables\nsw_old = createCellVariable(m, sw0, BCs);\np_old = createCellVariable(m, p0, BCp);\nsw = sw_old;\np = p_old;\nuw = -gradientTerm(p_old); % an estimation of the water velocity\n%% start the main loop\n% generate intial pressure profile (necessary to initialize the fully\n% implicit solver)\n\nt = 0;\nwhile (teps_p) || (error_sw>eps_sw))\n % calculate parameters\n pgrad = gradientTerm(p);\n sw_face = upwindMean(sw, -pgrad); % average value of water saturation\n labdao = lo.*funceval(kro, sw_face);\n labdaw = lw.*funceval(krw, sw_face);\n dlabdaodsw = lo.*funceval(dkrodsw, sw_face);\n dlabdawdsw = lw.*funceval(dkrwdsw, sw_face);\n labda = labdao+labdaw;\n dlabdadsw = dlabdaodsw+dlabdawdsw;\n % compute [Jacobian] matrices\n Mdiffp1 = diffusionTerm(-labda);\n Mdiffp2 = diffusionTerm(-labdaw);\n Mconvsw1 = convectionUpwindTerm(-dlabdadsw.*pgrad);\n Mconvsw2 = convectionUpwindTerm(-dlabdawdsw.*pgrad);\n [Mtranssw2, RHStrans2] = transientTerm(sw_old, dt, phi);\n % Compute RHS values\n RHS1 = divergenceTerm(-dlabdadsw.*sw_face.*pgrad);\n RHS2 = divergenceTerm(-dlabdawdsw.*sw_face.*pgrad);\n % include boundary conditions\n [Mbcp, RHSbcp] = boundaryCondition(BCp);\n [Mbcsw, RHSbcsw] = boundaryCondition(BCs);\n % Couple the equations; BC goes into the block on the main diagonal\n M = [Mdiffp1+Mbcp Mconvsw1; Mdiffp2 Mconvsw2+Mtranssw2+Mbcsw];\n RHS = [RHS1+RHSbcp; RHS2+RHStrans2+RHSbcsw];\n % solve the linear system of equations\n x = M\\RHS;\n % x = agmg(M, RHS, [], 1e-10, 500, [], [p.value(:); sw.value(:)]);\n % separate the variables from the solution\n p_new = reshapeCell(m,full(x(1:(2*Nx+1)*(2*Ny+1))));\n sw_new = reshapeCell(m,full(x((2*Nx+1)*(2*Ny+1)+1:end)));\n % calculate error values\n error_p = max(abs((p_new(:)-p.value(:))./p_new(:)));\n error_sw = max(abs(sw_new(:)-sw.value(:)));\n % assign new values of p and sw\n p.value = p_new;\n sw.value = sw_new;\n end\n t=t+dt;\n p_old = p;\n sw_old = sw;\n figure(1);visualizeCells(sw);shading interp; drawnow;\n sw_tot=sw.value.*X.*Y/(W*H);\n oil_prod=(sum(sum(sw_tot(2:end-1,2:end-1))));\n figure(2);semilogx(t, p_new(2,2), 'o'); drawnow;\nend\n", "meta": {"author": "simulkade", "repo": "FVTool", "sha": "49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6", "save_path": "github-repos/MATLAB/simulkade-FVTool", "path": "github-repos/MATLAB/simulkade-FVTool/FVTool-49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6/Examples/Advanced/BL2Dcoupled_frac_flow.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.9073122163480667, "lm_q2_score": 0.41869690935568665, "lm_q1q2_score": 0.37988882080559366}} {"text": "function plotIntCon(prob,data)\n%PLOTINTCON Plot Integer Constraints on the current figure\n% plotIntCon(prob)\n\n% Copyright (C) 2011 Jonathan Currie (I2C2)\n\n%Check we have integer variables in this plot\nif(all(prob.int.str(data.idx) == 'C'))\n return; %nothing to do!\nend\n\nxl = round(xlim); yl = round(ylim);\nhold on;\n\n%Get Problem Components\nif(~isempty(prob.rl))\n [A,b,Aeq,beq] = row2gen(prob.A,prob.rl,prob.ru);\nelse\n A = prob.A; b = prob.b;\n Aeq = prob.Aeq; beq = prob.beq;\nend\nQ = prob.Q; l = prob.l; qrl = prob.qrl; qru = prob.qru;\nif(isempty(prob.lb)), lb = -Inf; else lb = prob.lb; end\nif(isempty(prob.ub)), ub = Inf; else ub = prob.ub; end\n\n%Check for 1D problem\nif(prob.sizes.ndec == 1)\n if(prob.int.ind(1) == -1)\n X = 0:1; Y = [];\n else\n X = (floor(xl(1))+1):(ceil(xl(2))-1); Y = [];\n end\nelse\n %Generate Grid and check for binary constraints\n if(prob.int.ind(1) == -1)\n x = 0:1;\n else\n try\n x = (floor(xl(1))+1):(ceil(xl(2))-1);\n catch ME\n optiwarn('opti:plotint',['Could not plot integer constraints due to plotting error: ' ME.message]);\n return;\n end\n end\n if(prob.int.ind(2) == -1)\n y = 0:1;\n else\n try\n y = (floor(yl(1))+1):(ceil(yl(2))-1);\n catch ME\n optiwarn('opti:plotint',['Could not plot integer constraints due to plotting error: ' ME.message]);\n return;\n end\n end\n [X,Y] = meshgrid(x,y);\nend\n\n%Check for row nonlinear constraints\nif(~isempty(prob.cl))\n prob = nrow2mix(prob,0,false);\nend\n\n%Work out feasible integer points\nidx = zeros(numel(X),1); Xv = X(:); Yv = Y(:); \nfor i=1:numel(X)\n if(isempty(Yv))\n xy = Xv(i);\n else\n xy = data.fixval;\n xy(data.idx) = [Xv(i), Yv(i)]';\n end\n if(~isempty(prob.A))\n idx(i) = all(b >= A*xy) && all(xy >= lb) && all(xy <= ub); \n else\n idx(i) = all(xy >= lb) && all(xy <= ub); \n end\n if(~isempty(Aeq))\n idx(i) = idx(i) && (abs(Aeq*xy-beq) < 1e-6);\n end\n if(~isempty(Q))\n for n = 1:prob.sizes.nqc\n if(iscell(Q))\n nQ = Q{n}; nl = l(:,n); nrl = qrl(n); nru = qru(n);\n else\n nQ = Q; nl = l; nrl = qrl; nru = qru;\n end\n if(~isinf(nru))\n qu = all(xy'*nQ*xy + nl'*xy <= nru);\n else\n qu = true;\n end\n if(~isinf(nrl))\n ql = all(xy'*-nQ*xy - nl'*xy <= -nrl);\n else\n ql = true;\n end\n idx(i) = idx(i) && ql && qu;\n end\n end\n if(~isempty(prob.nle))\n vals = prob.nlcon(xy);\n leI = find(prob.nle == -1);\n geI = find(prob.nle == 1); \n eqI = find(prob.nle == 0);\n nlrhs = prob.nlrhs;\n idx(i) = idx(i) && all(vals(leI) <= nlrhs(leI)) && all(vals(geI) >= nlrhs(geI)) && all(abs(vals(eqI)-nlrhs(eqI)) < 1e-6);\n end\nend\n%Plot points\nidx = logical(idx);\nif(isempty(Y))\n Y = zeros(size(X));\n for i = 1:length(Y)\n Y(i) = prob.objective(X(i));\n end\nend\nplot(X(idx),Y(idx),'bo','markerface','b','markersize',5);\nplot(X(~idx),Y(~idx),'bo','markersize',5);\n\nhold off;\n\nend\n\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/OptiToolbox/Utilities/Plots/plotIntCon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37980052528254044}} {"text": "function bvanofit(mycat, seg1, seg2) \n % bvanofit Calculates Freq-Mag functions (b-value) for two time-segments\n % finds best fit to the foreground for a modified background\n % assuming a change in time of the following types:\n % Mnew = Mold + d , i.e. Simple magnitude shift\n % Mnew = c*Mold + d , i.e. Mag stretch plus shift\n % Nnew = fac*Nold , i.e. Rate change (N = number of events)\n %\n % bvanofit(catalog)\n % R. Zuniga IGF-UNAM/GI-UAF 6/94\n % turned into function by Celso G Reyes 2017\n \n % used to work from newt2 and set newcat\n \n report_this_filefun();\n ZG=ZmapGlobal.Data;\n ms3 = 5;\n t1p=seg1(1);\n t2p=seg1(2);\n t3p=seg2(1);\n t4p=seg2(2);\n % This is the info window text\n %\n ttlStr='Comparing Seismicity rates ';\n hlpStr1map= ...\n [' '\n ' To be Implemented '\n ' '];\n % Find out if figure already exists\n %\n bvfig=findobj('Type','Figure','-and','Name','Compare two rates');\n \n \n % Set up the Seismicity Map window Enviroment\n %\n if isempty(bvfig)\n bvfig= figure_w_normalized_uicontrolunits( ...\n 'Name','Compare two rates',...\n 'NumberTitle','off', ...\n 'backingstore','on',...\n 'Visible','on');%, ...\n %'Position',position_in_current_monitor(ZG.map_len(1), ZG.map_len(2)+200));\n \n %{\n uicontrol('Units','normal',...\n 'Position',[.0 .93 .08 .06],'String','Print ',...\n 'callback',@callbackfun_001)\n \n uicontrol('Units','normal',...\n 'Position',[.0 .75 .08 .06],'String','Close ',...\n 'callback',@callbackfun_002)\n \n uicontrol('Units','normal',...\n 'Position',[.0 .85 .08 .06],'String','Info ',...\n 'callback',@callbackfun_003)\n %}\n axis off\n \n \n end % if figure exits\n \n figure(bvfig);\n clf\n %delete(findobj(bvfig,'Type','axes'));\n format short;\n \n if isempty(mycat),\n mycat = ZG.primeCatalog; % points to same thing\n end\n [minmag2, maxmag] = bounds(mycat.Magnitude);\n n = mycat.Count;\n tdiff = round(days(mycat.DateSpan()));\n \n % number of mag units\n %nmagu = (maxmag*10)+1;\n \n %backg_beN = [ ];\n %backg_abN = [ ];\n td12 = t2p - t1p;\n td34 = t4p - t3p;\n \n \n magsteps_desc = (maxmag:-0.1:minmag2);\n xt3edges = fliplr([magsteps_desc+.05 magsteps_desc(end)-.05]);\n \n \n %bg_seg = segmentAnalytics(mycat,'background',t1p,t2p); %instead of first segment\n %fg_seg = segmentAnalytics(mycat,'foreground',t3p,t4p); %instead of second segment\n \n %% first segment\n l = mycat.Date > t1p & mycat.Date < t2p ;\n backg = mycat.subset(l);\n [bval,~] = histcounts(backg.Magnitude,xt3edges);%hist\n xt2=magsteps_desc; % based off of magnitude centers, not edges\n bval = bval / days(td12); % normalization\n assert(size(bval,1)<=1,'expecting a long row');\n bvalsum = cumsum(bval); % N for M <=\n bvalsum_bkw = cumsum(fliplr(bval)); % N for M >= (counted backwards) (was valsum3)\n %[cumux, xt] = hist(mycat.Date(l),t1p:days(ZG.bin_dur):t2p);\n [cumux, xt] = histcounts(mycat.Date(l),'BinWidth',ZG.bin_dur);\n mean1 = mean(cumux);\n var1 = cov(cumux);\n \n %% second segment\n l = mycat.Date > t3p & mycat.Date < t4p ;\n foreg = mycat.subset(l);\n [bval2,xt3a] = histcounts(foreg.Magnitude,xt3edges); %was histogram\n bval2 = bval2/days(td34);\n bvalsum2 = cumsum(bval2);\n bvalsum2_bkw=cumsum(fliplr(bval2)); % was bvalsum4\n % [cumux2, xt] = hist(mycat.Date(l),t3p:days(ZG.bin_dur):t4p);\n [cumux2, xt] = histcounts(mycat.Date(l),'BinWidth',ZG.bin_dur);\n mean2 = mean(cumux2);\n var2 = cov(cumux2);\n zscore = (mean1 - mean2)/(sqrt(var1/length(cumux)+var2/length(cumux2)));\n \n %change in percent\n R1 = backg.Count/days(t2p-t1p);\n R2 = foreg.Count/days(t4p-t3p);\n change = -((R1-R2)/R1)*100;\n \n %{\n backg_be = log10(bvalsum);\n backg_ab = log10(bvalsum_bkw);\n foreg_be = log10(bvalsum2);\n foreg_ab = log10(bvalsum2_bkw);\n %}\n \n % plot b-value plot\n %\n orient tall\n set(gcf,'PaperPosition',[2 1 5.5 7.5])\n p1 = subplot(5,1,[1 2]);\n %rect = [0.20, 0.7, 0.70, 0.25]; % plot Freq-Mag curves\n %axes('position',rect)\n figure(bvfig);\n \n d2char=@(d)[char(d,'yyyy-') num2str(days(d-dateshift(d,'start','year')),'%06.2f') ];\n \n segA_linespec = 'xb-';\n segA_dispname = [ d2char(t3p) ' - ' d2char(t4p)];\n \n segB_linespec = 'om-.';\n segB_dispname = [d2char(t1p) ' - ' d2char(t2p)]\n \n semilogy(p1,magsteps_desc,bvalsum2_bkw,segA_linespec,'MarkerSize',ms3,'DisplayName',segA_dispname);\n set(gca,'NextPlot','add')\n semilogy(p1,magsteps_desc,bvalsum_bkw,segB_linespec,'MarkerSize',ms3,'DisplayName',segB_dispname);\n legend show\n \n te1 = max([bvalsum bvalsum2 bvalsum2_bkw bvalsum_bkw]);\n te1 = te1 - 0.2*te1;\n \n ylabel(p1,'Cum. rate/year','FontSize',ZmapGlobal.Data.fontsz.s,'FontWeight','bold')\n str = { 'Event rate comparison for 2 time periods',['Change in %: ' num2str(change,6) ]};\n \n title(p1,str,'FontSize',ZmapGlobal.Data.fontsz.s,'FontWeight','bold')\n \n % find b-values;\n set(p1,'box','on',...\n 'SortMethod','childorder','TickDir','out','FontWeight',...\n 'bold','FontSize',ZmapGlobal.Data.fontsz.s,'Linewidth',1.0)\n \n \n % Plot histogram\n %rect = [0.20, 0.40 0.70, 0.25];\n %axes('position',rect)\n p2=subplot(5,1,[3 4]);\n plot(p2,xt2,bval2,segA_linespec,'MarkerSize',ms3,'LineWidth',1.0)\n set(gca,'NextPlot','add')\n plot(p2,xt2,bval,segB_linespec,'MarkerSize',ms3,'LineWidth',1.0)\n disp([' Summation: ' num2str(sum(bval-bval2))])\n v = axis;\n xlabel(p2,'Magnitude ','FontSize',ZmapGlobal.Data.fontsz.s,'FontWeight','bold')\n ylabel(p2,'rate/year','FontSize',ZmapGlobal.Data.fontsz.s,'FontWeight','bold')\n set(p2,'box','on',...\n 'SortMethod','childorder','TickDir','out','FontWeight',...\n 'bold','FontSize',ZmapGlobal.Data.fontsz.s,'Linewidth',1.0)\n \n uic = uicontrol('Units','normal','Position',[.35 .05 .30 .06],'String','Magnitude Signature? ', 'callback',@callbackfun_004,'enable','off');\n \n watchoff\n \n % Plot he b-value comparison\n ZG.hold_state=false;\n bdiff(backg)\n ZG.hold_state=true;\n bdiff(foreg)\n \n function callbackfun_004(mysrc,myevt)\n \n callback_tracker(mysrc,myevt,mfilename('fullpath'));\n delete(uic);\n synsig3;\n end\n \n \n \n function seg = segmentAnalytics(mycat, name, t1, t2)\n % alternate way of dong this for the functions\n seg=struct('name',name,'start',t1,'end',t2);\n seg.duration= seg.end - seg.start;\n index = mycat.Date > seg.start & mycat.Date < seg.end;\n seg.catalog = mycat.subset(index);\n seg.bvals = histcounts(seg.catalog.Magnitude, xt3edges);\n seg.scaledbvals = seg.bvals / days(seg.duration);\n seg.bvalcum = cumsum(seg.scaledbvals);\n seg.bvalcum_bkw = cumsum(fliplr(seg.scaledbvals));\n [seg.datecounts, seg.date_edges] = histcounts(seg.catalog.Date,'BinWidth',ZG.bin_dur);\n seg.meanEventsTime = mean(seg.datecounts);\n seg.covEventsTime = cov(seg.datecounts);\n end\n \nend", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/bvanofit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37980051919427826}} {"text": "classdef dat_wc_reader < handle\n\tproperties\n sr\n min_index\n max_segments\n raw_filename\n sr_infile\n t0_segments\n max_index\n segmentLength\n spikes_file\n end \n\tmethods \n function obj = dat_wc_reader(par, raw_filename)\n obj.sr = [];\n obj.max_segments = [];\n obj.raw_filename = raw_filename;\n obj.spikes_file = false;\n data = csvread(raw_filename);\n\n \n obj.sr_infile = false;\n if isfield(par,'sr')\n obj.sr = par.sr;\n end\n obj.min_index = floor(par.tmin * obj.sr); %min time to read (in micro-sec)\n \n if strcmp(par.tmax,'all')\n obj.max_index = max(size(data));\n else\n obj.max_index = ceil(par.tmax * obj.sr); \n end\n t0 = (obj.min_index-1)/obj.sr*1000;\n n = obj.max_index - obj.min_index;\n\n %Segments the data in par.segments pieces\n obj.max_segments = ceil(n/ obj.sr / ...\n (par.segments_length * 60)); %number of segments in which data is cutted\n\n obj.segmentLength = floor (n/obj.max_segments);\n\n obj.t0_segments = ones(1,obj.max_segments);\n obj.t0_segments(1) = t0;\n for i = 2:obj.max_segments\n obj.t0_segments(i) = obj.t0_segments(i-1) + obj.segmentLength/obj.sr*1000;\n end\n \n \n end\n \n function [sr,max_segments,with_raw,with_spikes] = get_info(obj)\n if isempty(obj.max_segments)\n with_raw = false;\n max_segments = 0;\n else\n with_raw = true;\n max_segments = obj.max_segments;\n end\n \n with_spikes = obj.spikes_file;\n if obj.sr_infile\n sr = obj.sr;\n else\n sr = [];\n end\n end\n \n function index_ts = index2ts(obj,index,i)\n index_ts = (index)/obj.sr*1000 + obj.t0_segments(i);\n end\n \n function x = get_segment(obj,i)\n \n if i ~= obj.max_segments\n lastsample = obj.min_index+obj.segmentLength*i;\n else\n lastsample = obj.max_index;\n end\n firstsample = obj.min_index+obj.segmentLength*(i-1)+1;\n \n x = csvread(obj.raw_filename); %it's sub optimal but the best way to handle inconsistent .dat files\n x = x(firstsample:lastsample);\n end\n end\nend\n", "meta": {"author": "csn-le", "repo": "wave_clus", "sha": "3cbc9e7a747353dde2b97984eef48bbbd7991928", "save_path": "github-repos/MATLAB/csn-le-wave_clus", "path": "github-repos/MATLAB/csn-le-wave_clus/wave_clus-3cbc9e7a747353dde2b97984eef48bbbd7991928/Raw_data_readers/dat_wc_reader.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300048, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3798005191942782}} {"text": "% Author: Yong Yuan\n% Homepage: yongyuan.name\n\nclear all;close all;clc;\n\n% version: matconvnet-1.0-beta17\n%run ./matconvnet-1.0-beta17/matlab/vl_compilenn\nrun ./matconvnet-1.0-beta17/matlab/vl_setupnn\n\n%% Step 1 lOADING PATHS\npath_imgDB = './facesDataset/';\naddpath(path_imgDB);\naddpath tools;\n\n% viesion: matconvnet-1.0-beta17\nnet = load('vgg-face.mat') ;\n\n%% Step 2 LOADING IMAGE AND EXTRACTING FEATURE\nimgFiles = dir(path_imgDB);\nimgNamList = {imgFiles(~[imgFiles.isdir]).name};\nclear imgFiles;\nimgNamList = imgNamList';\n\nnumImg = length(imgNamList);\nfeat = [];\nrgbImgList = {};\n\n%parpool;\n\n%parfor i = 1:numImg\nfor i = 1:numImg\n oriImg = imread(imgNamList{i, 1}); \n featVec = extractCNN(oriImg, net);\n feat = [feat; featVec'];\n fprintf('extract %d image\\n\\n', i);\nend\n\nfeat_norm = normalize1(feat);\nsave('feat4096Norml.mat','feat_norm', 'imgNamList', '-v7.3');\n", "meta": {"author": "willard-yuan", "repo": "CNN-for-Face-Image-Retrieval", "sha": "9c4f92b26c1f3f06bd00793bd8d70398e0485e59", "save_path": "github-repos/MATLAB/willard-yuan-CNN-for-Face-Image-Retrieval", "path": "github-repos/MATLAB/willard-yuan-CNN-for-Face-Image-Retrieval/CNN-for-Face-Image-Retrieval-9c4f92b26c1f3f06bd00793bd8d70398e0485e59/extractCNN_VGG_Face.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585669110203, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3798005131060159}} {"text": "function Centers = NSGA2ESelection(tr_x, tr_y, models, str, Problem, Ke)\n% NSGA-II based selection\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n nn=0; \n while (nn==100||nn==0)\n population = rand(Problem.N,Problem.D); %N*D \n population = population.*repmat(Problem.upper,Problem.N,1)+(1-population).*repmat(Problem.lower,Problem.N,1);%N*D \n population(:,Problem.D+1:Problem.D+Problem.M)=Estimate(population(:,1:Problem.D), tr_x, tr_y, models, str, Problem.M);%The value of objective by model\n \n [~,FrontNo,CrowdDis] = EnvironmentalSelection(population,Problem.N,Problem.D,Problem.M);%N*(D+M)\n\n %% Optimization of NSGA-II\n for i=1:floor(Problem.maxFE/Problem.N)\n MatingPool = TournamentSelection(2,Problem.N,FrontNo,-CrowdDis);\n parent = population(MatingPool,:);\n offspring = OperatorGA(Problem,parent(:,1:Problem.D),{1,20,1,20});\n offspring(:,Problem.D+1:Problem.D+Problem.M)=Estimate(offspring(:,1:Problem.D), tr_x, tr_y, models, str, Problem.M);%The value of objective by model\n [population,FrontNo,CrowdDis] = EnvironmentalSelection([population;offspring],Problem.N,Problem.D,Problem.M);\n end\n [Centers, nn]=Kmean([population,FrontNo',CrowdDis'], tr_x, Problem.N, Problem.D, Ke);\n end\nend\n\nfunction objv_LCB=Estimate(x, tr_x, tr_y, models, str,m)\n alpha=2;\n TestSamNum=size(x,1);n=length(models);\n sum=zeros(TestSamNum, size(tr_y,2));\n for i=1:n\n clear y;\n stri=str(i,:);\n M=models(i).M;p=models(i).p;\n if strcmp(stri(1), 'FE')%PCA\n x_pca=x*M;\n if strcmp(stri(2), 'RBF1')%RBF\n y= sim(p,x_pca');y=y';\n elseif strcmp(stri(2), 'SVM')\n y=SVMtest(x_pca, p, TestSamNum,m);\n elseif strcmp(stri(2), 'RBF2')%RBF\n y=RBF2test(x_pca, p, TestSamNum);\n end\n\n elseif strcmp(stri(1), 'NONE')%NONE\n if strcmp(stri(2), 'RBF1')%RBF\n y= sim(p,x');y=y';\n elseif strcmp(stri(2), 'SVM')\n y=SVMtest(x, p, TestSamNum, m);\n elseif strcmp(stri(2), 'RBF2')%RBF\n y=RBF2test(x, p, TestSamNum);\n end\n\n elseif strcmp(stri(1), 'FS')%CSO\n x_cso=x(:,M);\n if strcmp(stri(2), 'RBF1')%RBF\n y= sim(p,x_cso');y=y';\n elseif strcmp(stri(2), 'SVM')\n y=SVMtest(x_cso, p, TestSamNum,m);\n elseif strcmp(stri(2), 'RBF2')%RBF\n y=RBF2test(x_cso, p, TestSamNum);\n end \n end\n result(i).y=y;\n sum=sum+y;\n end\n me=sum/n;\n sum=zeros(TestSamNum, size(tr_y,2));\n for i=1:n\n y=result(i).y;\n sum=sum+(y-me).^2;\n end\n s2=sum/(n-1);\n %fmin=min(tr_y);\n %fmin_matrix=repmat(fmin,TestSamNum,1);\n objv_LCB=me-alpha*sqrt(s2);\nend\n\nfunction y=SVMtest(x, p, N, M)\n ps1=p{1};ps2=p{2};\n xtest0=mapminmax('apply',x',ps1);xtest0=xtest0';\n% py = zeros(N,M);\n for j=1:M\n for k=1:N\n py(k,j) = svmpredict(0,xtest0(k,:),p{j+2}, '-q');\n end\n end\n y=mapminmax('reverse',py',ps2);y=y'; \nend\n\nfunction y=RBF2test(x, p, N)\n Centers=p.Centers;Spreads=p.Spreads;\n W2=p.W2;B2=p.B2;\n TestDistance = dist(Centers,x');\n TestSpreadsMat = repmat(Spreads,1,N);\n TestHiddenUnitOut = radbas(TestDistance./TestSpreadsMat);\n y= (W2*TestHiddenUnitOut+repmat(B2,1,N))'; \nend\n\nfunction [population,FrontNo,CrowdDis] = EnvironmentalSelection(population,N,D,M)\n% The environmental selection of NSGA-II\n\n %% Non-dominated sorting\n [FrontNo,MaxFNo] = NDSort(population(:,D+1:D+M),[],N);\n Next = FrontNo < MaxFNo;\n \n %% Calculate the crowding distance of each solution\n CrowdDis = CrowdingDistance(population(:,D+1:D+M),FrontNo);\n \n %% Select the solutions in the last front based on their crowding distances\n Last = find(FrontNo==MaxFNo);\n [~,Rank] = sort(CrowdDis(Last),'descend');\n Next(Last(Rank(1:N-sum(Next)))) = true;\n \n %% Population for next generation\n population = population(Next,:);\n FrontNo = FrontNo(Next);\n CrowdDis = CrowdDis(Next);\nend\n\nfunction [Centers, nn]=Kmean(chromosome, tr_x, N, D, Ke)\n % Delete the multiple solutions between chromosome and the train data\n Q=[];P=[];\n for i=1:N\n PandQ=[tr_x;Q];\n matrix=dist(chromosome(i,1:D),PandQ');%1*size(PandQ,1) array\n if isempty(find(matrix<=10^-06))\n Q=[Q;chromosome(i,1:D)];\n P=[P;chromosome(i,:)];\n end\n end\n if size(Q,1)T) = [];\nend\n\n\n%% plot W's\naxW = subplot('Position', [m m ww hdata]);\nhold on\nset(gca, 'ColorOrder', kColors); \n\nWsToPlot = zeros(N,K*(L+sep)); \nXsToPlot = zeros(3,K); \nYsToPlot = [N*ones(1,K); zeros(2,K)]+.5;\nfor ki = 1:K\n WsToPlot(:,((L+sep)*(ki-1)+1):((L+sep)*(ki-1)+L)) = squeeze(W(:,ki,:));\n XsToPlot(:,ki) = [(L+sep)*(ki-1)+1 (L+sep)*(ki-1)+1 (L+sep)*(ki-1)+L];\nend\nclims = [0 prctile(WsToPlot(WsToPlot>0),99)]; % if all W's are empty this line will bug\nimagesc(WsToPlot, clims); \ncmap = 1/256*flipud([158,1,66;213,62,79;244,109,67;253,174,97;254,224,139;255,255,191;230,245,152;171,221,164;102,194,165;50,136,189;94,79,162;1 1 1]);\n% cmap = flipud(gray); \ncolormap(cmap)\nplot(XsToPlot,YsToPlot, 'linewidth', 2);\nxlim([1 K*(L+sep)]);ylim([0 N+.1]+.5)\nset(gca, 'ydir', 'reverse')\naxis off\n\n%% plot data\naxIm = subplot('Position', [m+ww m wdata hdata]);\nif plotData\n clims = [0 prctile(Data(Data>0),99)]; \n Im = imagesc(Data(:,indplot), clims);\nelse\n toplot = helper.reconstruct(W,H(:,indplot));\n clims = [0 prctile(toplot(:),99.9)]; \n Im = imagesc(toplot,clims);\nend\nset(gca,'ydir','reverse')\nhold on; plot([0 0 length(indplot)+1], [N 0 0]+.5, 'k')\nxlim([0 length(indplot)+1]);ylim([0 N+.1]+.5)\naxis off\n%% plot Wflat (collapse out L dimension of W)\naxWflat = subplot('Position', [m+ww+wdata m wwflat hdata]);\nhold on\nset(gca, 'ColorOrder', kColors); \nplot(squeeze(sum(W,3)), 1:N,'>', 'markersize', 2.5);\nylim([0 N+.1]+.5)\naxis tight\nxlims = xlim; \nxlim([xlims(2)*.1 xlims(2)])\nset(gca, 'ydir', 'reverse')\naxis off\n%% plot H's\naxH = subplot('Position', [m+ww m+hdata wdata hh]);\nHrescaled = squeeze(max(sum(W,1),[],3))'.*H; % rescale by approximate loading\ndn = prctile(Hrescaled(:),100)/2;\nfor ki = K:-1:1\n Xs = [1 1:length(indplot) length(indplot)]; \n Ys = [dn*ki (dn*ki + Hrescaled(K-ki+1,indplot)) dn*ki]-dn/2;\n patch(Xs,Ys, kColors(K-ki+1,:), 'edgecolor', kColors(K-ki+1,:))\n hold on\nend\nylim([0 dn*K+dn*3]);xlim([0 length(indplot)+1])\naxis off\n%%\nif plotAll\n linkaxes([axIm axW axWflat], 'y'); linkaxes([axIm axH], 'x');\nend\n\n", "meta": {"author": "FeeLab", "repo": "seqNMF", "sha": "229b9b19ac3a34b8378945ec7f9e331e004bb777", "save_path": "github-repos/MATLAB/FeeLab-seqNMF", "path": "github-repos/MATLAB/FeeLab-seqNMF/seqNMF-229b9b19ac3a34b8378945ec7f9e331e004bb777/misc_elm/SimpleWHPlotSpectrograms.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.3796834738966314}} {"text": "function x = ndmax(x,dim)\n% NDMAX Multi-dimensional maximization.\n% NDMAX(X,DIM) takes the maximum element along the dimensions in DIM,\n% and squeezes the result.\n\n% Written by Thomas P Minka\n% (c) Microsoft Corporation. All rights reserved.\n\nsz = size(x);\nfor i=1:length(dim)\n x = max(x, [], dim(i));\nend\nx = mysqueeze(x);\naddflops(2*(prod(sz)-prod(size(x))));\n", "meta": {"author": "andrewssobral", "repo": "lrslibrary", "sha": "06d457349cb5f1fc56a583cd61af9f1d5150e3a1", "save_path": "github-repos/MATLAB/andrewssobral-lrslibrary", "path": "github-repos/MATLAB/andrewssobral-lrslibrary/lrslibrary-06d457349cb5f1fc56a583cd61af9f1d5150e3a1/libs/+lightspeed/ndmax.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3796834657638978}} {"text": "%% \n% Test function to compare nn_bnorm and its GPU/CPU implementation with\n% using VLFEAT\n%%\n\ngpu = false;\ngpu = true ;\n\nT = 1 ;\nx = randn(64,64,32,32,'single') ;\ng = randn(32,1,'single') ;\nb = randn(32,1,'single') ;\n\nif gpu\n x = gpuArray(x) ;\n g = gpuArray(g) ;\n b = gpuArray(b) ;\nend\n\na=vl_nnbnorm(x,g,b);\na_=vl_nnbnorm_old(x,g,b);\n\nvl_testsim(a,a_)\n", "meta": {"author": "willard-yuan", "repo": "cnn-for-image-retrieval", "sha": "2e3e8ab76e2c971314be55b5ae44e02884003261", "save_path": "github-repos/MATLAB/willard-yuan-cnn-for-image-retrieval", "path": "github-repos/MATLAB/willard-yuan-cnn-for-image-retrieval/cnn-for-image-retrieval-2e3e8ab76e2c971314be55b5ae44e02884003261/matconvnet-1.0-beta18/matlab/xtest/vl_test_bnorm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.37959955759348524}} {"text": "function x = evaluate_nonlinear(p,x,qq)\n\n% FIX: We have to apply computations to make sure we are evaluating\n% expressions such as log(1+sin(x.^2).^2) correctly\n\nif ~isempty(p.bilinears) & all(p.variabletype <= 2) & length(p.evalMap)==0\n x(p.bilinears(:,1)) = x(p.bilinears(:,2)).*x(p.bilinears(:,3));\nelse\n oldx = 0*p.c;old(1:length(x))=x;\n %try\n x = process_polynomial(x,p);\n %catch\n % 1\n %end\n x = process_evaluations(x,p);\n while norm(x - oldx)>1e-8\n oldx = x;\n x = process_polynomial(x,p);\n x = process_evaluations(x,p);\n end\nend\n\nfunction x = process_evaluations(x,p)\nfor i = 1:length(p.evalMap)\n arguments = {p.evalMap{i}.fcn,x(p.evalMap{i}.variableIndex)};\n arguments = {arguments{:},p.evalMap{i}.arg{2:end-1}};\n x(p.evalVariables(i)) = feval(arguments{:});\n if ~isempty(p.bilinears)\n x = process_bilinear(x,p);\n end\nend\n\nfunction x = process_bilinear(x,p)\nx(p.bilinears(:,1)) = x(p.bilinears(:,2)).*x(p.bilinears(:,3));\n\nfunction x = process_polynomial(x,p)\nx = x(1:length(p.c));\nnonlinear = find(p.variabletype);\nx(nonlinear) = prod(repmat(x(:)',length(nonlinear),1).^p.monomtable(nonlinear,:),2);\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/modules/global/evaluate_nonlinear.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544335934765, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3795995575934852}} {"text": "function x = p01_start ( option, nvar )\n\n%*****************************************************************************80\n%\n%% P01_START returns a starting point for problem 1.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 02 September 2008\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer OPTION, the option index.\n%\n% Input, integer NVAR, the number of variables.\n%\n% Output, real X(NVAR), the starting point.\n%\n x = zeros ( nvar, 1 );\n\n if ( option == 1 | option == 2 | option == 3 )\n x(1:3) = [ 15.0, -2.0, 0.0 ]';\n elseif ( option == 4 | option == 5 | option == 6 )\n x(1:3) = [ 4.0, 3.0, 0.0 ]';\n else\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P01_START - Fatal error!\\n' );\n fprintf ( 1, ' Unrecognized option = %d\\n', option );\n error ( 'P01_START - Fatal error!' );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_con/p01_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5428632831725052, "lm_q2_score": 0.6992544085240401, "lm_q1q2_score": 0.3795995439842086}} {"text": "function [periods,quiescence] = QuietPeriods(v,velocity,duration,brief)\n\n%QuietPeriods - Find periods of immobility.\n%\n% Find periods of immobility, i.e. periods of sufficient duration\n% where instantaneous linear velocity remains low. Brief movements\n% can be ignored.\n%\n% USAGE\n%\n% [periods,quiescence] = QuietPeriods(v,velocity,duration,brief)\n%\n% v linear velocity samples [t v]\n% velocity maximum velocity of a quiet period\n% duration minimum duration of a quiet period\n% brief optional maximum duration of a 'brief' movement\n%\n% OUTPUT\n%\n% periods list of [start stop] pairs\n% quiescence list of [t s] pairs, where s is 1 if the animal\n% is quiet at time t (and 0 otherwise)\n%\n% SEE\n%\n% See also BrainStates, PlotIntervals.\n\n% Copyright (C) 2008-2011 by Micha\u00ebl Zugaro\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\nif nargin < 3,\n\terror('Incorrect number of parameters (type ''help QuietPeriods'' for details).');\nend\nif nargin == 3,\n\tbrief = 0;\nend\n\n% Determine beginning/end of quiet periods\nbelow = v(:,2) < velocity;\ncrossings = diff(below); % yields -1 for upward crossings, and 1 for downward crossings\nstart = find(crossings == 1);\nstop = find(crossings == -1);\n\n% The previous code would ignore quiet periods beginning at the first sample, or ending at the last sample; correct for this\nif below(1),\n\tstart = [1;start];\nend\nif below(end),\n\tstop = [stop;length(below)];\nend\n\n% Determine durations of movements, and discard brief ones\ndurations = v(start(2:end),1) - v(stop(1:end-1),1);\nignore = find(durations <= brief);\nstart(ignore+1) = [];\nstop(ignore) = [];\n\n% Keep only long enough periods\ndurations = v(stop,1)-v(start,1);\ndiscard = durations < duration;\nstart(discard) = [];\nstop(discard) = [];\n\n% Outputs\nperiods = [v(start,1) v(stop,1)];\nquiescence = zeros(size(v,1),2);\nquiescence(:,1) = v(:,1);\nfor i = 1:length(start),\n\tquiescence(start(i):stop(i),2) = 1;\nend\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/FMAToolbox/Analyses/QuietPeriods.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505784, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3795367567354543}} {"text": "function new_regions = split_regions(regions, bndinfo, sp_areas)\n\nspLR = bndinfo.edges.spLR;\n\nn_sps = bndinfo.nseg;\n\nif(iscell(regions))\n % get overlapping regions\n overlapping = [];\n\n sp_map = zeros(numel(regions), n_sps);\n \n for prop = 1:length(regions)\n sp_map(prop,regions{prop}) = 1;\n end\nelse\n sp_map = regions;\nend\n\n\ninds = double([spLR(:,[1 2]); spLR(:, [2 1]); repmat([1:n_sps]', 1, 2)]);\n\n%sp_map_sparse = sparse(sp_map);\n%sparse_adjacency = sparse(inds(:,1), inds(:,2), ones(2*size(spLR,1), 1));\nadjacency = (accumarray(inds, ones(size(inds,1), 1), [n_sps n_sps]));\n%adjacency_s = sparse(accumarray(inds, ones(size(inds,1), 1), [n_sps n_sps]));\n\n[adjacency_x adjacency_y adjacency_val] = find(adjacency);\n\nnew_regions = cell(size(sp_map,1), 1);\nnew_r_ind = 1;\ntic;\nfor i = 1:size(sp_map,1)\n sp_inds = find(sp_map(i, :));\n% sub_graph = sparse(adjacency(sp_inds, sp_inds));\n\n ok = ismember_sorted(adjacency_x, sp_inds) & ismember_sorted(adjacency_y, sp_inds);\n ind = zeros(max(adjacency_x),1);\n ind(sp_inds) = 1:length(sp_inds);\n sub_graph = sparse(ind(adjacency_x(ok)), ind(adjacency_y(ok)), adjacency_val(ok), length(sp_inds), length(sp_inds));\n\n [conn1 comps1] = graphconncomp(sub_graph, 'Directed', true);\n\n\n \n if(conn1 > 1)\n if(toc>1) \n fprintf('%d (%d/%d)\\n',new_r_ind, i, size(sp_map,1) );\n tic;\n end \n\n for j = 1:conn1\n if(new_r_ind>=numel(new_regions))\n fprintf('growing\\n')\n new_regions{2*end}= [];\n end\n if(sum(sp_areas(sp_inds(comps1==j)))>(24*24))\n new_regions{new_r_ind} = sp_inds(comps1==j);\n new_r_ind = new_r_ind+1;\n end\n end \n% pause\n else\n if(new_r_ind>=numel(new_regions))\n fprintf('growing\\n')\n new_regions{2*end}= [];\n end\n \n new_regions{new_r_ind} = sp_inds;\n new_r_ind = new_r_ind+1;\n % pause(0.3)\n end\n \nend\n\nnew_regions(new_r_ind+1:end) = [];\n\n\n", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/objectProposals/utils/split_regions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3795367497068784}} {"text": "% Like a durational HMM, except we use soft evidence on the observed nodes.\n% Should give the same results as HSMM/test_mgram2.\n\npast = 1;\n% If past=1, P(Yt|Qt=j,Dt=d) = P(y_{t-d+1:t}|j)\n% If past=0, P(Yt|Qt=j,Dt=d) = P(y_{t:t+d-1}|j) - future evidence\n\nwords = {'the', 't', 'h', 'e'};\ndata = 'the';\nnwords = length(words);\nword_len = zeros(1, nwords);\nword_prob = normalise(ones(1,nwords));\nword_logprob = log(word_prob);\nfor wi=1:nwords\n word_len(wi)=length(words{wi});\nend\nD = max(word_len);\n\n\nalphasize = 26*2;\ndata = letter2num(data);\nT = length(data);\n\n% node numbers\nW = 1; % top level state = word id\nL = 2; % bottom level state = letter position within word\nF = 3;\nO = 4;\n\nss = 4;\nintra = zeros(ss,ss);\nintra(W,[F L O])=1;\nintra(L,[O F])=1;\n\ninter = zeros(ss,ss);\ninter(W,W)=1;\ninter(L,L)=1;\ninter(F,[W L O])=1;\n\n% node sizes\nns = zeros(1,ss);\nns(W) = nwords;\nns(L) = D;\nns(F) = 2;\nns(O) = alphasize;\nns2 = [ns ns];\n\n% Make the DBN\nbnet = mk_dbn(intra, inter, ns, 'observed', O);\neclass = bnet.equiv_class;\n\n% uniform start distrib over words, uniform trans mat\nWstart = normalise(ones(1,nwords));\nWtrans = mk_stochastic(ones(nwords,nwords));\n%Wtrans = ones(nwords,nwords);\n\n% always start in state d = length(word) for each bottom level HMM\nLstart = zeros(nwords, D);\nfor i=1:nwords\n l = length(words{i});\n Lstart(i,l)=1;\nend\n\n% make downcounters\nRLtrans = mk_rightleft_transmat(D, 0); % 0 self loop prob\nLtrans = repmat(RLtrans, [1 1 nwords]);\n\n% Finish when downcoutner = 1\nFprob = zeros(nwords, D, 2);\nFprob(:,1,2)=1;\nFprob(:,2:end,1)=1;\n\n\n% Define CPDs for slice 1\nbnet.CPD{eclass(W,1)} = tabular_CPD(bnet, W, 'CPT', Wstart);\nbnet.CPD{eclass(L,1)} = tabular_CPD(bnet, L, 'CPT', Lstart);\nbnet.CPD{eclass(F,1)} = tabular_CPD(bnet, F, 'CPT', Fprob);\n\n\n% Define CPDs for slice 2\nbnet.CPD{eclass(W,2)} = hhmmQ_CPD(bnet, W+ss, 'Fbelow', F, 'startprob', Wstart, 'transprob', Wtrans);\nbnet.CPD{eclass(L,2)} = hhmmQ_CPD(bnet, L+ss, 'Fself', F, 'Qps', W+ss, 'startprob', Lstart, 'transprob', Ltrans);\n\n\nif 0\n% To test it is generating correctly, we create an artificial\n% observation process that capitalizes at the start of a new segment\n% Oprob(Ft-1,Qt,Dt,Yt)\nOprob = zeros(2,nwords,D,alphasize);\nOprob(1,1,3,letter2num('t'),1)=1;\nOprob(1,1,2,letter2num('h'),1)=1;\nOprob(1,1,1,letter2num('e'),1)=1;\nOprob(2,1,3,letter2num('T'),1)=1;\nOprob(2,1,2,letter2num('H'),1)=1;\nOprob(2,1,1,letter2num('E'),1)=1;\nOprob(1,2,1,letter2num('a'),1)=1;\nOprob(2,2,1,letter2num('A'),1)=1;\nOprob(1,3,1,letter2num('b'),1)=1;\nOprob(2,3,1,letter2num('B'),1)=1;\nOprob(1,4,1,letter2num('c'),1)=1;\nOprob(2,4,1,letter2num('C'),1)=1;\n\n% Oprob1(Qt,Dt,Yt)\nOprob1 = zeros(nwords,D,alphasize);\nOprob1(1,3,letter2num('t'),1)=1;\nOprob1(1,2,letter2num('h'),1)=1;\nOprob1(1,1,letter2num('e'),1)=1;\nOprob1(2,1,letter2num('a'),1)=1;\nOprob1(3,1,letter2num('b'),1)=1;\nOprob1(4,1,letter2num('c'),1)=1;\n\nbnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', Oprob);\nbnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', Oprob1);\n\nevidence = cell(ss,T);\n%evidence{W,1}=1;\nsample = cell2num(sample_dbn(bnet, 'length', T, 'evidence', evidence));\nstr = num2letter(sample(4,:))\nend\n\n\nif 1\n\n[log_obslik, obslik, match] = mk_mgram_obslik(lower(data), words, word_len, word_prob);\n% obslik(j,t,d)\nsoftCPDpot = cell(ss,T);\nens = ns;\nens(O)=1;\nens2 = [ens ens];\nfor t=2:T\n dom = [F W+ss L+ss O+ss];\n % tab(Ft-1, Q2, Dt)\n tab = ones(2, nwords, D);\n if past\n tab(1,:,:)=1; % if haven't finished previous word, likelihood is 1\n %tab(2,:,:) = squeeze(obslik(:,t,:)); % otherwise likelihood of this segment\n for d=1:min(t,D)\n tab(2,:,d) = squeeze(obslik(:,t,d));\n end\n else\n for d=1:max(1,min(D,T+1-t))\n tab(2,:,d) = squeeze(obslik(:,t+d-1,d));\n end\n end\n softCPDpot{O,t} = dpot(dom, ens2(dom), tab);\nend\nt = 1;\ndom = [W L O];\n% tab(Q2, Dt)\ntab = ones(nwords, D);\nif past\n %tab = squeeze(obslik(:,t,:));\n tab(:,1) = squeeze(obslik(:,t,1));\nelse\n for d=1:min(D,T-t)\n tab(:,d) = squeeze(obslik(:,t+d-1,d));\n end\nend\nsoftCPDpot{O,t} = dpot(dom, ens(dom), tab);\n\n\n%bnet.observed = [];\n% uniformative observations\n%bnet.CPD{eclass(O,2)} = tabular_CPD(bnet, O+ss, 'CPT', mk_stochastic(ones(2,nwords,D,alphasize)));\n%bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', mk_stochastic(ones(nwords,D,alphasize)));\n\nengine = jtree_dbn_inf_engine(bnet);\nevidence = cell(ss,T);\n% we add dummy data to O to force its effective size to be 1.\n% The actual values have already been incorporated into softCPDpot \nevidence(O,:) = num2cell(ones(1,T));\n[engine, ll_dbn] = enter_evidence(engine, evidence, 'softCPDpot', softCPDpot);\n\n\n%evidence(F,:) = num2cell(2*ones(1,T));\n%[engine, ll_dbn] = enter_evidence(engine, evidence);\n\n\ngamma = zeros(nwords, T);\nfor t=1:T\n m = marginal_nodes(engine, [W F], t);\n gamma(:,t) = m.T(:,2);\nend\n\ngamma\n\nxidbn = zeros(nwords, nwords);\nfor t=1:T-1\n m = marginal_nodes(engine, [W F W+ss], t);\n xidbn = xidbn + squeeze(m.T(:,2,:));\nend\n\n% thee\n% xidbn(1,4) = 0.9412 the->e\n% (2,3)=0.0588 t->h\n% (3,4)=0.0588 h-e\n% (4,4)=0.0588 e-e\n\n\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/examples/dynamic/HHMM/Mgram/mgram2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3795367497068784}} {"text": "%% Copyright (C) 2016 Lagu\n%% Copyright (C) 2017, 2019 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym zeros (@var{n})\n%% @defmethodx @@sym zeros (@var{n}, @var{m})\n%% Return a matrix whose elements are all 0.\n%%\n%% Example:\n%% @example\n%% @group\n%% y = zeros (sym(3))\n%% @result{} y = (sym 3\u00d73 matrix)\n%% \u23a10 0 0\u23a4\n%% \u23a2 \u23a5\n%% \u23a20 0 0\u23a5\n%% \u23a2 \u23a5\n%% \u23a30 0 0\u23a6\n%% @end group\n%% @end example\n%%\n%% @seealso{zeros, @@sym/ones, @@sym/eye}\n%% @end defmethod\n\n\nfunction y = zeros(varargin)\n\n % partial workaround for issue #13: delete when/if fixed properly\n if ((isa (varargin{nargin}, 'char')) && (strcmp (varargin{nargin}, 'sym')))\n varargin = varargin(1:(nargin-1));\n end\n\n if (isa (varargin{end}, 'char'))\n varargin = cell2nosyms (varargin);\n y = zeros (varargin{:});\n return\n end\n\n for i = 1:length(varargin)\n varargin{i} = sym(varargin{i});\n end\n if (length (varargin) == 1 && ~isscalar (varargin{1}))\n y = pycall_sympy__ ('return zeros(*_ins[0])', varargin{1});\n else\n y = pycall_sympy__ ('return zeros(*_ins)', varargin{:});\n end\nend\n\n\n%!test\n%! y = zeros(sym(2));\n%! x = [0 0; 0 0];\n%! assert( isequal( y, sym(x)))\n\n%!test\n%! y = zeros(sym(2), 1);\n%! x = [0; 0];\n%! assert( isequal( y, sym(x)))\n\n%!test\n%! y = zeros(sym(1), 2);\n%! x = [0 0];\n%! assert( isequal( y, sym(x)))\n\n%!test\n%! y = zeros (sym([2 3]));\n%! x = sym (zeros ([2 3]));\n%! assert (isequal (y, x))\n\n%% Check types:\n%!assert( isa( zeros(sym(2), 'double'), 'double'))\n%!assert( isa( zeros(3, sym(3), 'single') , 'single'))\n%!assert( isa( zeros(3, sym(3)), 'sym'))\n%!assert( isa( zeros(3, sym(3), 'sym'), 'sym'))\n\n%!xtest\n%! % Issue #13\n%! assert( isa( zeros(3, 3, 'sym'), 'sym'))\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/zeros.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.6893056104028799, "lm_q1q2_score": 0.3795367461925905}} {"text": "%COPYMAKEBORDER Forms a border around an image\n%\n% dst = cv.copyMakeBorder(src, top, bottom, left, right)\n% dst = cv.copyMakeBorder(src, [top, bottom, left, right])\n% [...] = cv.copyMakeBorder(..., 'OptionName', optionValue, ...)\n%\n% ## Input\n% * __src__ Source image.\n% * __top__, __bottom__, __left__, __right__ Parameter specifying how many\n% pixels in each direction from the source image rectangle to extrapolate.\n% For example, `top=1`, `bottom=1`, `left=1`, `right=1` mean that 1\n% pixel-wide border needs to be built.\n%\n% ## Output\n% * __dst__ Destination image of the same type as `src` and the size\n% `[size(src,1)+top+bottom, size(src,2)+left+right, size(src,3)]`.\n%\n% ## Options\n% * __BorderType__ Border type, one of:\n% * __Constant__ `iiiiii|abcdefgh|iiiiiii` with some specified `i`\n% * __Replicate__ `aaaaaa|abcdefgh|hhhhhhh`\n% * __Reflect__ `fedcba|abcdefgh|hgfedcb`\n% * __Reflect101__ `gfedcb|abcdefgh|gfedcba`\n% * __Wrap__ `cdefgh|abcdefgh|abcdefg`\n% * __Default__ same as 'Reflect101' (default)\n% * __Value__ Border value when `BorderType` is 'Constant'. default zeros\n%\n% The function copies the source image into the middle of the destination\n% image. The areas to the left, to the right, above and below the copied\n% source image will be filled with extrapolated pixels. This is not what\n% filtering functions based on it do (they extrapolate pixels on-fly), but\n% what other more complex functions, including your own, may do to simplify\n% image boundary handling.\n%\n% See also: cv.borderInterpolate, padarray\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/copyMakeBorder.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5234203489363239, "lm_q2_score": 0.724870282120402, "lm_q1q2_score": 0.37941185600103244}} {"text": "% Sample codes for the task-related component analysis (TRCA)-based steady\n% -state visual evoked potential (SSVEP) detection method [1]. The filter\n% bank analysis [2] can also be combined to the TRCA-based algorithm.\n%\n% Dataset (sample.mat):\n% A 40-target SSVEP dataset recorded from a single subject. The stimuli\n% were generated by the joint frequency-phase modulation (JFPM) [3]\n% - Stimulus frequencies : 8.0 - 15.8 Hz with an interval of 0.2 Hz\n% - Stimulus phases : 0pi, 0.5pi, 1.0pi, and 1.5pi\n% - # of channels : 9 (1: Pz, 2: PO5,3: PO3, 4: POz, 5: PO4,\n% 6: PO6, 7: O1, 8: Oz, and 9: O2)\n% - # of recording blocks : 6\n% - Data length of epochs : 5 [seconds]\n% - Sampling rate : 250 [Hz]\n%\n% See also:\n% train_trca.m\n% test_trca.m\n% filterbank.m\n% itr.m\n%\n% Reference:\n% [1] M. Nakanishi, Y. Wang, X. Chen, Y.-T. Wang, X. Gao, and T.-P. Jung,\n% \"Enhancing detection of SSVEPs for a high-speed brain speller using\n% task-related component analysis\", \n% IEEE Trans. Biomed. Eng, 65(1): 104-112, 2018.\n% [2] X. Chen, Y. Wang, S. Gao, T. -P. Jung and X. Gao,\n% \"Filter bank canonical correlation analysis for implementing a \n% high-speed SSVEP-based brain-computer interface\",\n% J. Neural Eng., 12: 046008, 2015.\n% [3] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T. -P. Jung, S. Gao,\n% \"High-speed spelling with a noninvasive brain-computer interface\",\n% Proc. Int. Natl. Acad. Sci. U. S. A, 112(44): E6058-6067, 2015.\n%\n% Masaki Nakanishi, 22-Dec-2017\n% Swartz Center for Computational Neuroscience, Institute for Neural\n% Computation, University of California San Diego\n% E-mail: masaki@sccn.ucsd.edu\n\n%% Clear workspace\nclear all\nclose all\nclc\nhelp tutorial_trca\n\n%% Set paths\n\naddpath('../src');\n\n%% Parameter for analysis (Modify according to your analysis)\n\n% Filename\nfilename = '../data/sample.mat';\n\n% Data length for target identification [s]\nlen_gaze_s = 0.5; \n\n% Visual latency being considered in the analysis [s]\nlen_delay_s = 0.13; \n\n% The number of sub-bands in filter bank analysis\nnum_fbs = 5;\n\n% 1 -> The ensemble TRCA-based method, 0 -> The TRCA-based method\nis_ensemble = 0;\n\n% 100*(1-alpha_ci): confidence intervals\nalpha_ci = 0.05; \n\n%% Fixed parameter (Modify according to the experimental setting)\n\n% Sampling rate [Hz]\nfs = 250; \n\n% Duration for gaze shifting [s]\nlen_shift_s = 0.5; \n\n% List of stimulus frequencies\nlist_freqs = [8:1:15 8.2:1:15.2 8.4:1:15.4 8.6:1:15.6 8.8:1:15.8];\n \n% The number of stimuli\nnum_targs = length(list_freqs); \n\n% Labels of data\nlabels = [1:1:num_targs]; \n\n%% Preparing useful variables (DONT'T need to modify)\n\n% Data length [samples]\nlen_gaze_smpl = round(len_gaze_s*fs); \n\n% Visual latency [samples]\nlen_delay_smpl = round(len_delay_s*fs); \n\n% Selection time [s]\nlen_sel_s = len_gaze_s + len_shift_s;\n\n% Confidence interval\nci = 100*(1-alpha_ci); \n\n%% Performing the TRCA-based SSVEP detection algorithm\n\nfprintf('Results of the ensemble TRCA-based method.\\n');\n\n% Preparing data\nload(filename);\n[~, num_chans, ~, num_blocks] = size(eeg);\nsegment_data = len_delay_smpl+1:len_delay_smpl+len_gaze_smpl;\neeg = eeg(:, :, segment_data, :); \n\n% Estimate classification performance\nfor loocv_i = 1:1:num_blocks\n \n % Training stage \n traindata = eeg;\n traindata(:, :, :, loocv_i) = [];\n model = train_trca(traindata, fs, num_fbs);\n \n % Test stage\n testdata = squeeze(eeg(:, :, :, loocv_i));\n estimated = test_trca(testdata, model, is_ensemble);\n \n % Evaluation \n is_correct = (estimated==labels);\n accs(loocv_i) = mean(is_correct)*100;\n itrs(loocv_i) = itr(num_targs, mean(is_correct), len_sel_s);\n fprintf('Trial %d: Accuracy = %2.2f%%, ITR = %2.2f bpm\\n',...\n loocv_i, accs(loocv_i), itrs(loocv_i));\n \nend % loocv_i\n\n% Summarize\n[mu, ~, muci, ~] = normfit(accs, alpha_ci);\nfprintf('Mean accuracy = %2.2f %% (%2d%% CI: %2.2f - %2.2f %%)\\n',...\n mu, ci, muci(1), muci(2));\n\n[mu, ~, muci, ~] = normfit(itrs, alpha_ci);\nfprintf('Mean ITR = %2.2f bpm (%2d%% CI: %2.2f - %2.2f bpm)\\n\\n',...\n mu, ci, muci(1), muci(2));", "meta": {"author": "mnakanishi", "repo": "TRCA-SSVEP", "sha": "c3f7a761fa641c8bad88659f1025171ceec3941e", "save_path": "github-repos/MATLAB/mnakanishi-TRCA-SSVEP", "path": "github-repos/MATLAB/mnakanishi-TRCA-SSVEP/TRCA-SSVEP-c3f7a761fa641c8bad88659f1025171ceec3941e/tutorial/tutorial_trca.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3794118528900432}} {"text": "filename = 'CantileverSquareSmall';%'CantileverSquareNewFine';%'LshapeTriFine';%'CantileverSquareNew';'ArchTriFine';%'CantileverSquare';%'ArchTriFine';%'CantileverSquare';%'Lshape';%'LshapeTriFine';%'CantileverSquareSmall';%'';%'Lshape';'CantileverSquare';'Lshape';%'CantileverSquare';%'LshapeFine';%'Bridge_quad_coarse';%'Arch_quad_coarse';%'BridgeCool_Quadrilateral_Bilinear_Structured_Coarse';%'Bridge';%'CantileverSquareSmall';\nptype = 'MACRO';\ninitial_case = 'given';\nm1 = 0.0101;\nm2 = 0.0101;\n%cost = {'compliance'};\ncost = {'stressNorm'};\n%cost = {'stressNorm','compliance'};\n%weights = [0.55,0.45];\nweights = 1;\nconstraint = {'volumeConstraint'};\nfilterType = 'P1';\nconstraint_case = 'EQUALITY';\n\nVfrac_initial = 0.3;\noptimality_initial = 1e-5;\nconstr_initial = 1e-5;\n\nVfrac_final = 0.3;\noptimality_final = 1e-5;\nconstr_final = 1e-5;\n\nstressNormExponent_initial = 2;\nstressNormExponent_final = 64;\n\noptimizer = 'DualNestedInPrimal';\noptimizerUnconstrained = 'PROJECTED GRADIENT';\n\ndesignVariable = 'MicroParams';\nub = 0.989;\nlb = 0.011;\nhomegenizedVariablesComputer = 'ByVademecum';\n% \n%vademecumFileName = 'SuperEllipseQMax';\n%vademecumFileName = 'SuperEllipseQ2';\nvademecumFileName = 'SuperEllipseQOptAnalytic';\n% \n% designVariable = 'Density';\n% homegenizedVariablesComputer = 'ByInterpolation';\n% method = 'SIMPALL';\n% materialType = 'ISOTROPIC';\n\nkfrac = 2;\nnsteps = 250;\n\nplotting = false;\nprinting = true;\nmonitoring = true;\nmonitoring_interval = 1;\nmaxiter = 5000;\n\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/LatticeExperiments/LatticeExperimentInputCantileverTriFineSuperEllipse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702642896702, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3794118466680646}} {"text": "function scale = GetScalingFactors(modelname)\n%\n% function scale = GetScalingFactors(modelname)\n%\n% Returns an array of scaling factors for the parameters of the model\n% intended to rescale so that they all have value close to 1.\n%\n% Note that including the scaling factor for sigma increases the number\n% of model variables by 1.\n%\n% Note that the scaling factor not set for theta and phi\n%\n% author: Gary Hui Zhang (gary.zhang@ucl.ac.uk)\n%\n\nparameterStrings = GetParameterStrings(modelname);\n\n% here the scaling factors do not include the ones for theta and phi\n% but include one for the sigma\nscale = zeros(1, length(parameterStrings) - 1);\n\n% the scaling factor for sigma is set to 1\nscale(end) = 1;\n\nfor i=1:length(parameterStrings)\n if (strcmp(parameterStrings(i), 'di') ||...\n strcmp(parameterStrings(i), 'dh') ||...\n strcmp(parameterStrings(i), 'diso'))\n scale(i) = 1E9;\n elseif (strcmp(parameterStrings(i), 'rad'))\n scale(i) = 1E6;\n elseif (strcmp(parameterStrings(i), 'ficvf') ||...\n strcmp(parameterStrings(i), 'fiso') ||...\n strcmp(parameterStrings(i), 'irfrac') ||...\n strcmp(parameterStrings(i), 'psi') ||...\n strcmp(parameterStrings(i), 'b0') ||...\n strcmp(parameterStrings(i), 't1'))\n scale(i) = 1;\n elseif (strcmp(parameterStrings(i), 'kappa') ||...\n strcmp(parameterStrings(i), 'beta'))\n scale(i) = 0.1;\n end\nend\n\n", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/External/NODDI_toolbox_v1.0/models/GetScalingFactors.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.709019146082187, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.37939503093476024}} {"text": "% Gtomo2_wtfmex_test.m\n% Test the Gtomo2_wtfmex object\n\nif ~has_aspire\n\treturn\nend\n\n% test new vewsion\nif 1\n\tig = image_geom('nx', 32, 'ny', 30, 'dx', 2);\n\tsg = sino_geom('par', 'nb', 40, 'na', 20, 'dr', 1.8);\n\tig.mask = ig.circ(ig.fov/2) > 0;\n\tim(ig.mask)\n\tG = Gtomo2_wtmex(sg, ig, 'chat', 0, 'nthread', 2);\n\tGtomo2_test(G, ig.mask) % put it through paces\n\tclear G\nend\n\nif ~isvar('G'),\tprintm 'setup Gtomo2_wtfmex_test'\n\tf.dir = test_dir;\n\tf.dsc = [f.dir 't.dsc'];\n\tf.wtf = strrep(f.dsc, 'dsc', 'wtf');\n\n\tos_run(sprintf('wt -chat 0 dsc 2 >! %s', f.dsc))\n\tos_run(sprintf('echo y | wt -chat 0 gen %s', f.dsc))\n\n\tG = Gtomo2_wtfmex(f.wtf);\n\tim(331, G.mask, 'mask')\nprompt\nend\n\nif 1,\tprintm 'basic tests'\n\tx = G.mask;\n\ty = reshape(G * x(:), G.nb, G.na);\n\tim(332, y)\n\n\ty = ones(G.nb, G.na);\n\tx = reshape(G' * y(:), G.nx, G.ny);\n\tim(333, x, 'x'), cbar\n\n\tx2 = reshape((G.^2)' * y(:), G.nx, G.ny);\n\tim(337, x2, 'x2'), cbar\n\n\tt = reshape(G(:,2718), G.nb, G.na);\n\tim(334, t)\n\n\tt = reshape(G(:,[2718 2710]), [G.nb G.na 2]);\n\tim(335, t)\n\n\tt = reshape(G([202 210],:), [G.nx G.ny 2]);\n\tim(336, t)\nprompt\nend\n\nif 1, printm 'adjoint test'\n\n\tos_run(sprintf('wt -chat 0 dsc 2 nx 12 ny 14 nb 16 na 10 >! %s', f.dsc))\n\tos_run(sprintf('echo y | wt -chat 0 gen %s', f.dsc))\n\tG = Gtomo2_wtfmex(f.wtf);\n\ttest_adjoint(G);\n\tclear G\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/arch/Gtomo2_wtfmex_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191460821871, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37939503093476024}} {"text": "\nfunction [retransformed_irf_estimates]=favar_retransX_irf_estimates(irf_estimates,transformationindex,levels)\n% number of variables and shocks, and iterations (It-Bu)\n[n1,n2]=size(irf_estimates);\nItBu=1;\n% initialise\nretransformed_irf_estimates=cell(size(irf_estimates));\n% different treatment for different cases\nif levels==1 % only cum sum, also for second differences\n for oo=1:n1 % variables\n for ll=1:n2 % shocks\n for ii=1:3 %for up.,median,low.\n if transformationindex(oo)==1 %1: no transformation, Level\n retransformed_irf_estimates{oo,ll}(ii,:)=irf_estimates{oo,ll}(ii,:);\n elseif transformationindex(oo)==2\n retransformed_irf_estimates{oo,ll}(ii,:)=cumsum(irf_estimates{oo,ll}(ii,:),2); %2: First Difference\n% retransformed_irf_estimates{oo,ll}(ii,:)=irf_estimates{oo,ll}(ii,:);\n elseif transformationindex(oo)==3\n %retransformed_irf_record{oo,ll}(ii,:)=cumsum(irf_record{oo,ll}(ii,:),2); %3: Second Difference\n retransformed_irf_estimates{oo,ll}(ii,:)=irf_estimates{oo,ll}(ii,:);\n elseif transformationindex(oo)==4\n %retransformed_irf_record{oo,ll}(ii,:)=irf_record{oo,ll}(ii,:);\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(irf_estimates{oo,ll}(ii,:))-ones(ItBu,1); %4: Log-Level\n elseif transformationindex(oo)==5\n retransformed_irf_estimates{oo,ll}(ii,:)=cumsum(irf_estimates{oo,ll}(ii,:),2); %5: Log-First-Difference\n% retransformed_irf_estimates{oo,ll}(ii,:)=exp(cumsum(irf_estimates{oo,ll}(ii,:),2))-ones(ItBu,1); %5: Log-First-Difference\n elseif transformationindex(oo)==6\n %retransformed_irf_record{oo,ll}(ii,:)=cumsum(irf_record{oo,ll}(ii,:),2); %6: Log-Second-Difference\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(cumsum(irf_estimates{oo,ll}(ii,:),2))-ones(ItBu,1); %5: Log-First-Difference\n end\n end\n end\n end\nelseif levels==2 % exp + cum sum\n for oo=1:n1 % variable\n for ll=1:n2 % shocks\n for ii=1:3 %for up.,median,low.\n if transformationindex(oo)==1 %1: no transformation, Level\n retransformed_irf_estimates{oo,ll}(ii,:)=irf_estimates{oo,ll}(ii,:);\n elseif transformationindex(oo)==2\n retransformed_irf_estimates{oo,ll}(ii,:)=cumsum(irf_estimates{oo,ll}(ii,:),2); %2: First Difference\n elseif transformationindex(oo)==3\n retransformed_irf_estimates{oo,ll}(ii,:)=cumsum(irf_estimates{oo,ll}(ii,:),2); % 6: Second Difference\n elseif transformationindex(oo)==4\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(irf_estimates{oo,ll}(ii,:))-ones(ItBu,1); %4: Log-Level\n elseif transformationindex(oo)==5\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(cumsum(irf_estimates{oo,ll}(ii,:),2))-ones(ItBu,1); %5: Log-First-Difference\n elseif transformationindex(oo)==6\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(cumsum(irf_estimates{oo,ll}(ii,:),2))-ones(ItBu,1); %6: Log-Second-Difference\n end\n end\n end\n end\nelseif levels==3 % exp + cum sum + cum sum for second differences types\n for oo=1:n1 % variables\n for ll=1:n2 % shocks\n for ii=1:3 %for up.,median,low.\n if transformationindex(oo)==1 %1: no transformation, Level\n retransformed_irf_estimates{oo,ll}(ii,:)=irf_estimates{oo,ll}(ii,:);\n elseif transformationindex(oo)==2\n retransformed_irf_estimates{oo,ll}(ii,:)=cumsum(irf_estimates{oo,ll}(ii,:),2); %2: First Difference\n elseif transformationindex(oo)==3\n retransformed_irf_estimates{oo,ll}(ii,:)=cumsum(cumsum(irf_estimates{oo,ll}(ii,:),2),2); % 6: Second Difference\n elseif transformationindex(oo)==4\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(irf_estimates{oo,ll}(ii,:))-ones(ItBu,1); %4: Log-Level\n elseif transformationindex(oo)==5\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(cumsum(irf_estimates{oo,ll}(ii,:),2))-ones(ItBu,1); %5: Log-First-Difference\n elseif transformationindex(oo)==6\n retransformed_irf_estimates{oo,ll}(ii,:)=exp(cumsum(cumsum(irf_estimates{oo,ll}(ii,:),2),2))-ones(ItBu,1); %6: Log-Second-Difference\n end\n end\n end\n end\n \nelse % do nothing, e.g. levels=0\n retransformed_irf_estimates=irf_estimates;\nend\n", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tbx/bear/+bear/favar_retransX_irf_estimates.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879992, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3793950177744489}} {"text": "function data = simulate_hinge(setup)\n\n%This function simulates the hinge phase of the dynamics\n\n%Set up the integration algorithm\nTspan = setup.Tspan;\nIC = [setup.IC.th;\n setup.IC.dth];\neventFunc = @(t,z)events_hinge(t,z,setup.P);\noptions = odeset(...\n 'RelTol',setup.tol,...\n 'AbsTol',setup.tol,...\n 'Vectorized','on',...\n 'MaxStep',setup.odeMaxStep,...\n 'Events',eventFunc);\nuserfun = @(t,z)dynamics_hinge(t,z,setup.P);\n\n%Check that the event function is initially satisfied:\neventVal = feval(eventFunc,Tspan(1),IC);\nif (sum(eventVal<0)>0) %IC violates constraints\n tspan = [Tspan(1), Tspan(1) + eps];\n nTime = 2;\n t = tspan;\n Z = IC*ones(1,2);\n [~, C, E] = dynamics_hinge(t,Z,setup.P);\n \n triggered = eventVal<0;\n index = 1:length(triggered);\n code = index(triggered);\n %Check that the number of possible transitions is one\n if length(code) >1\n disp('WARNING - multiple possible transitions!');\n end\n \nelse %IC satisfied constraints\n \n %Run simulation\n sol = feval(setup.solver,userfun,Tspan,IC,options);\n \n %Format for post processing\n tspan = [sol.x(1),sol.x(end)];\n nTime = ceil(setup.dataFreq*diff(tspan));\n t = linspace(tspan(1),tspan(2),nTime);\n Z = deval(sol,t);\n [~, C, E] = dynamics_hinge(t,Z,setup.P);\n \n code = sol.ie;\n \nend\n\n%Store in a nice format for plotting\ndata.time = t;\ndata.state.th = Z(1,:);\ndata.state.dth = Z(2,:);\ndata.state.x = zeros(1,nTime) + setup.IC.x;\ndata.state.dx = zeros(1,nTime);\ndata.state.y = zeros(1,nTime) + setup.IC.y;\ndata.state.dy = zeros(1,nTime);\ndata.contact.h = C(1,:);\ndata.contact.v = C(2,:);\ndata.energy.potential = E(1,:);\ndata.energy.kinetic = E(2,:);\ndata.P = setup.P;\n\n%Get transitions for finite state machine\ndata.phase = 'HINGE';\nif isempty(code)\n data.exit = 'TIMEOUT';\nelse\n switch code(end)\n case 1\n data.exit = 'FALL_NEG';\n case 2\n data.exit = 'FALL_POS';\n case 3\n data.exit = 'LIFT';\n case 4\n data.exit = 'SLIP_NEG';\n case 5\n data.exit = 'SLIP_POS';\n otherwise\n error('Invalid exit condition in simulate hinge')\n end\nend\n\nend\n\n\n", "meta": {"author": "MatthewPeterKelly", "repo": "dscTutorials", "sha": "e1e97a9be03ec146f88bd6ddd9e06db7ee52e242", "save_path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials", "path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials/dscTutorials-e1e97a9be03ec146f88bd6ddd9e06db7ee52e242/toppling_stick/simulate_hinge.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879991, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37939501777444884}} {"text": "function [KKTConstraints, details] = kkt(F,h,parametricVariables,ops);\n%KKT Create KKT system\n%\n% [KKTConstraints, details] = kkt(Constraints,Objective,parameters)\n\nif nargin == 2\n [KKTConstraints, details] = kkt(lmi(F),h);\nelseif nargin==3\n [KKTConstraints, details] = kkt(lmi(F),h,parametricVariables); \nelse\n [KKTConstraints, details] = kkt(lmi(F),h,parametricVariables,ops); \nend\n\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/@constraint/kkt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863698, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3793771629775723}} {"text": "load -ascii letter_A\nload -ascii letter_T\n\n[N, m] = size(letter_A)\n\nclass = N\n\napp = letter_A;size(app)\ntest = letter_T;size(test)\n\nNapp = size(app,2);\nNtest = size(test,2);\n\nunique(app(class,:))\nunique(test(class,:))\n\nns1 = max(letter_A');\nns2 = max(letter_T');\nns = max(ns1,ns2)\nclear letter_A letter_T ns1 ns2\n\n% N, ns(class), Napp, Ntest, mean(ns),\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/SLP/examples/UCI_DataSets/letterD.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.37937716297757224}} {"text": "function newBb = convertBb_X1Y1X2Y2_to_X1Y1WH( bb )\n%convertBb_X1Y1X2Y2_to_X1Y1WH converts the bounding boxes from [X1,Y1,X2,Y2] format to [X1,Y1,W,H] format\n\nnumBb = size(bb, 1);\n\nnewBb = zeros(numBb, 4);\n\nnewBb(:, 1) = bb(:, 1);\nnewBb(:, 2) = bb(:, 2);\nnewBb(:, 3) = bb(:, 3) - bb(:, 1) + 1;\nnewBb(:, 4) = bb(:, 4) - bb(:, 2) + 1;\n\nend\n\n", "meta": {"author": "aosokin", "repo": "cnn_head_detection", "sha": "80624e7a25c62f7b504fa6f4d830136beb66eec8", "save_path": "github-repos/MATLAB/aosokin-cnn_head_detection", "path": "github-repos/MATLAB/aosokin-cnn_head_detection/cnn_head_detection-80624e7a25c62f7b504fa6f4d830136beb66eec8/utils/convertBb_X1Y1X2Y2_to_X1Y1WH.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6442251064863697, "lm_q1q2_score": 0.37937716297757224}} {"text": "function [ X2 Y2 ] = LKTrackWrapper( imgseq,X1,Y1 )\n% [ X2 Y2 ] = LKTrackWrapper( imgseq,X1,Y1 )\n%\tcalls LKTrackPyr for each 2 neighboring frames in imgseq.\n%\timgseq(M-by-N-by-F) are F grayscale images, it can be either from\n%\ta image sequence or a video(like from VideoReader).\n%\tif X1 and Y1 are not specified, function calls corner_ST to find\n%\tmaxPtsNum corners. if X2 and Y2 are not required to output, function\n%\twill show these points in a figure. You should press a key to\n%\tstart the show.\n\n\nif nargin > 0 % image sequence or video\n\t[M N imgNum] = size(imgseq);\n\tmaxPtsNum = 50;\n\tif ~exist('Y1','var')\n\t\t[Y1 X1] = corner_ST(imgseq(:,:,1),maxPtsNum);\n\t\tborderTh = 10;\n\t\tdiscard = Y1M-borderTh |...\n\t\t\tX1N-borderTh; % discard points on the image border\n\t\tY1 = Y1(~discard);\n\t\tX1 = X1(~discard);\n\tend\n\n\tX2 = zeros(length(X1),imgNum);\n\tY2 = zeros(length(X1),imgNum);\n\tX2(:,1) = X1;\n\tY2(:,1) = Y1;\n\n\tfor p = 2:imgNum\n\t\t[X2(:,p) Y2(:,p)] = LKTrackPyr(imgseq(:,:,p-1),imgseq(:,:,p),...\n\t\t\tX2(:,p-1),Y2(:,p-1));\n\tend\n\n\tif nargout == 0\n\t\tfigure,pause % show the points\n\t\tsc = min(M,N)/30; % scale of the line indicating the speed\n\t\tfor p = 1:imgNum\n\t\t\timshow(imgseq(:,:,p)),hold on\n\t\t\tX2p = X2(:,p); Y2p = Y2(:,p);\n\t\t\tplot(X2p,Y2p,'go');\n\t\t\tif p > 1 % draw speed lines\n\t\t\t\tplot([X2p,X2p+(X2p-X2pl)*sc]',...\n\t\t\t\t\t[Y2p,Y2p+(Y2p-Y2pl)*sc]','m-');\n\t\t\tend\n\t\t\tpause;\n\t\t\tX2pl = X2p; Y2pl = Y2p;\n\t\tend\n\tend\n\t\nelse % webcam, not finished\n\t\n\tvid = videoinput('winvideo',1); % specify your own name and index\n\tvid.TriggerRepeat = Inf;\n\tvid.FrameGrabInterval = 3;\n\tvid.ReturnedColorSpace='grayscale'; % 'rgb'\n\tfigure\n\twhile vid.FramesAcquired<=100\n\t\tdata = getdata(vid,1);\n\t\timshow(data);\n\t\tdrawnow\n\tend\n\tstop(vid);\n\tdelete(vid);\n\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/30822-lucas-kanade-tracker-with-pyramid-and-iteration/LK Tracker/LKTrackWrapper.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.5888891307678321, "lm_q1q2_score": 0.3793771549325623}} {"text": "\nfunction [figureHandles g] = vis_TimeFreqGrid(varargin)\n%\n% Create a Time-Frequency Grid from a connectivity matrix. For details on\n% the Interactive Time-Frequency Grid see [1].\n%\n% Inputs:\n%\n% ALLEEG: Array of EEGLAB datasets\n% Conn: SIFT Connectivity Structure\n%\n% Optional:\n%\n% Stats: A structure containing statistics.\n% Input Data Type: structure\n%\n% VisualizationMode: Visualization Modes\n% Create Time-Frequency imageplots, Causality x Frequency plots (collapsing across time), Causality x\n% Time plots (collapsing across frequency)\n% Possible values: {'TimeXFrequency','TimeXCausality','FrequencyXCausality'}\n% Default value : 'TimeXFrequency'\n% Input Data Type: string\n%\n% MatrixLayout: Select the measure and layout\n% Possible values: {'Full','Partial'}\n% Default value : 'Full'\n% Input Data Type: string\n% -------------\n%\n% UpperTriangle: Estimator to render on upper triangle\n% Possible values: {'none',''}\n% Default value : 'n/a'\n% Input Data Type: string\n%\n% LowerTriangle: Estimator to render on upper triangle\n% Possible values: {'none',''}\n% Default value : 'n/a'\n% Input Data Type: string\n%\n% Diagonal: Estimator to render on diagonal\n% Possible values: {'none',''}\n% Default value : 'n/a'\n% Input Data Type: string\n%\n% Estimator: Estimator to visualize\n% Possible values: {''}\n% Default value : 'n/a'\n% Input Data Type: string\n%\n% ColorLimits: Color/Y-axis scaling limits\n% If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If\n% scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is\n% prctile(abs(Conn),scalar)\n% Input Data Type: real number (double)\n%\n% TimesToPlot: [Min Max] Time range to image (sec)\n% Leave blank to use all timewindows\n% Input Data Type: real number (double)\n%\n% FrequenciesToPlot: Vector of frequencies (Hz) to image\n% Leave blank to use all frequencies\n% Input Data Type: any evaluable Matlab expression.\n%\n% TimeWindowsToPlot: Time window centers (sec)\n% If a vector of times, will plot a separate curve for each specified time\n% Input Data Type: real number (double)\n%\n% LineColor: Color of line for single-window plots\n% Input Data Type: real number (double)\n%\n% PlotConfidenceIntervals: Plot confidence intervals (if available)\n% Does not apply to for time-frequency images.\n% Input Data Type: boolean\n%\n% PlotContour: Plot contours around significant regions\n% Input Data Type: boolean\n% ------------\n%\n% ContourColor: Contour Color\n% Can use any allowable Matlab color specification (see 'help ColorSpec').\n% Input Data Type: any evaluable Matlab expression.\n%\n% Thresholding: Thresholding options\n% You can choose to use statistics (passed in as 'stats' structure), or simple percentile or absolute\n% thresholds.\n% Possible values: {'None','Statistics','Simple'}\n% Default value : 'None'\n% Input Data Type: string\n% -------------\n%\n% AlphaSignificance: P-value threshold for significance. e.g., 0.05 for p<0.05\n% Input Range : [0 1]\n% Default value: 0.05\n% Input Data Type: real number (double)\n%\n% PercentileThreshold: Percentile threshold\n% If of form [percentile, dimension], percentile is applied elementwise across the specified\n% dimension.\n% Input Data Type: real number (double)\n%\n% AbsoluteThreshold: Exact threshold\n% Input Data Type: real number (double)\n%\n% Baseline: Time range of baseline [Min Max] (sec)\n% Will subtract baseline from each point. Leave blank for no baseline.\n% Input Data Type: real number (double)\n%\n% FigureHandles: Vector of figure handles to superimpose new graph onto\n% New figures and grid will *not* be created. Old grid will be used and new subplots overlaid\n% Input Data Type: real number (double)\n%\n% Smooth2D: Smooth time-freq image\n% This will apply nearest-neighbor interpolation.\n% Input Data Type: boolean\n%\n% XTickLabels: Labels for X-Tickmarks\n% Must equal number of time windows\n% Input Data Type: real number (double)\n%\n% YTickLabels: Labels for Y-Tickmarks\n% Must equal number of time windows\n% Input Data Type: real number (double)\n%\n% PlottingOrder: Specify index order\n% Subset of [1:nbchan] in which to arrange columns/rows. Useful for grouping channels.\n% Input Data Type: real number (double)\n%\n% SourceMarginPlot: What to plot on margins\n% Options: 'Topoplot': plot source scalp projection. 'Dipole': plot dipole\n% Possible values: {'none','topoplot','dipole'}\n% Default value : 'dipole'\n% Input Data Type: string\n%\n% DipolePlottingOptions: Options for dipole plotting\n% Input Data Type: string\n% ----------------------\n%\n% mri: Dipplot MRI structure\n% Can be the name of matlab variable (in the base workspace) containing MRI structure. May also be a\n% path to a Matlab file containing MRI structure. Default uses MNI brain.\n% Input Data Type: string\n%\n% DipoleCoordinateFormat: Coordinate format for dipplot\n% Possible values: {'spherical','mni'}\n% Default value : 'mni'\n% Input Data Type: string\n%\n% DipplotOptions: Additional dipplot options\n% Cell array of <'name',value> pairs of additional options for dipplot (see 'doc dipplot')\n% Input Data Type: any evaluable Matlab expression.\n%\n% NodeLabels: List of labels for each node. e.g., {'Node1','Node2',...}\n% Leave blank to use defaults.\n% Input Data Type: any evaluable Matlab expression.\n%\n% FrequencyMarkers: Vector of frequencies (Hz) at which to draw horizontal lines\n% Input Data Type: real number (double)\n%\n% FrequencyMarkerColor: Coloring for frequency markers\n% If an [1 x 3] array of RBG values, then color all lines using this color. If an [N x 3] matrix of\n% RBG values, then color the kth line with the colorspec from the kth row. If empty then cycle\n% through colorlist\n% Input Data Type: real number (double)\n%\n% ClusterMaps: Cell matrix of mean cluster maps to topoplot\n% Input Data Type: real number (double)\n%\n% EventMarkers: Event marker time and style\n% Specify event markers with a cell array of {time linecolor linestyle linewidth} cell arrays. Ex. {\n% { 0.2 'y' ':' 2} { 1.5 'r' ':' 2}} will render two dotted-line event makers, yellow at 200 ms and\n% red at 1500 ms\n% Input Data Type: any evaluable Matlab expression.\n%\n% FrequencyScale: Make the y-scale logarithmic or linear\n% Possible values: {'linear','log'}\n% Default value : 'linear'\n% Input Data Type: string\n%\n% Transform: transform the data (logarithmically or other)\n% Possible values: {'log','linear',''}\n% Default value : 'n/a'\n% Input Data Type: string\n%\n% TitleString: Figure title string\n% Input Data Type: string\n%\n% TitleFontSize: Title Font Size\n% Input Data Type: real number (double)\n%\n% AxesFontSize: Axes Font Size\n% Input Data Type: real number (double)\n%\n% TextColor: Text color\n% See 'doc ColorSpec'.\n% Input Data Type: any evaluable Matlab expression.\n%\n% Colormap: Colormap\n% Matlab expression denoting colormap to use (e.g., 'jet(64)'). See 'help colormap'.\n% Input Data Type: any evaluable Matlab expression.\n%\n% BackgroundColor: Background Color\n% See 'doc ColorSpec'.\n% Input Data Type: any evaluable Matlab\n% expression.\n%\n% Outputs:\n%\n% figureHandles: Handles to figures.\n%\n% g: Argument specification. Can be\n% supplied in lieu of \n% argument pairs to exactly reconstruct\n% TF-grid.\n%\n%\n% See Also: pop_vis_TimeFreqGrid()\n%\n% References:\n%\n% [1] Mullen T (2010) The Source Information Flow Toolbox (SIFT):\n% Theoretical Handbook and User Manual. Chapter 6.\n% Available at: http://www.sccn.ucsd.edu/wiki/Sift\n%\n% Author: Tim Mullen, 2010, SCCN/INC, UCSD.\n% Email: tim@sccn.ucsd.edu\n\n% This function is part of the Source Information Flow Toolbox (SIFT)\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n\n\nfigureHandles = [];\n\n% extract some stuff from inputs for arg defaults\nConn = arg_extract(varargin,'Conn',2);\nnumConds = length(Conn);\nif ~isempty(Conn)\n Conn = Conn(1);\n ConnNames = hlp_getConnMethodNames(Conn);\n conndef = ConnNames{1};\n freqrange = [Conn.freqs(1) Conn.freqs(end)];\n freqdef = Conn.freqs; %['[' num2str(freqrange(1)) ':' num2str(Conn.freqs(2)-Conn.freqs(1)) ':' num2str(freqrange(end)) ']'];\n timerange = [Conn.erWinCenterTimes(1) Conn.erWinCenterTimes(end)];\n timedef = [timerange(1) timerange(end)];\n clear Conn;\nelse\n ConnNames = {''};\n conndef = '';\n [freqrange, freqdef, timerange, timedef] = deal([]);\nend\n\n\n% get some defaults from ALLEEG\nALLEEG = arg_extract(varargin,{'ALLEEG','EEG'},1);\n[MyComponentNames MyChannelNames] = deal([]);\nif ~isempty(ALLEEG)\n if isfield(ALLEEG(1).CAT,'curComponentNames') && ~isempty(ALLEEG(1).CAT.curComponentNames)\n MyComponentNames = ALLEEG(1).CAT.curComponentNames;\n else\n MyComponentNames = ALLEEG(1).CAT.curComps;\n MyComponentNames = strtrim(cellstr(num2str(MyComponentNames'))');\n end\n \n if isfield(ALLEEG(1),'chanlocs') && ~isempty(ALLEEG(1).chanlocs)\n MyChannelNames = {ALLEEG(1).chanlocs.labels};\n else\n MyChannelNames = strtrim(cellstr(num2str((1:ALLEEG(1).nbchan)'))');\n end\n \n % set allowable options for marginal plots\n sourceMarginOptions = {'none'};\n if isfield(ALLEEG(1),'chanlocs') && isfield(ALLEEG(1).chanlocs,'X')\n sourceMarginOptions = [sourceMarginOptions 'topoplot'];\n end\n if isfield(ALLEEG(1),'dipfit') && ~isempty(ALLEEG(1).dipfit)\n sourceMarginOptions = [sourceMarginOptions 'dipole'];\n end\n if ~isempty(arg_extract(varargin,{'customTopoMatrix'},[],[]))\n \tsourceMarginOptions = [sourceMarginOptions 'customtopo'];\n end\n \n % get the condition names\n for cnd=1:length(ALLEEG)\n conditionNames{cnd} = ALLEEG(cnd).condition;\n setNames{cnd} = ALLEEG(cnd).setname;\n fileNames{cnd} = ALLEEG(cnd).filename;\n end\n \n % set up condition difference order defaults\n if length(ALLEEG)==2\n if ~any(cellfun(@isempty,conditionNames))\n % use condition names for labeling\n CondDiffOrderDefaults = ...\n {sprintf('%s-%s',conditionNames{1},conditionNames{2}), ...\n sprintf('%s-%s',conditionNames{2},conditionNames{1})};\n CondLabels = conditionNames;\n elseif ~any(cellfun(@isempty,setNames))\n % use set names for labeling\n CondDiffOrderDefaults = ...\n {sprintf('%s-%s',setNames{1},setNames{2}), ...\n sprintf('%s-%s',setNames{2},setNames{1})};\n CondLabels = setNames;\n elseif ~any(cellfun(@isempty,fileNames))\n % use set filenames for labeling\n CondDiffOrderDefaults = ...\n {sprintf('%s-%s',fileNames{1},fileNames{2}), ...\n sprintf('%s-%s',fileNames{2},fileNames{1})};\n CondLabels = fileNames;\n else\n % use set numbers for labeling\n CondDiffOrderDefaults = {'Set 1 - Set 2','Set 2 - Set 1'};\n CondLabels = {'Set 1','Set 2'};\n end\n else\n CondDiffOrderDefaults = {''};\n if ~isempty(conditionNames{1})\n CondLabels = conditionNames;\n elseif ~isempty(setNames{1})\n CondLabels = setNames;\n elseif ~isempty(fileNames{1})\n CondLabels = fileNames;\n else\n CondLabels = {'Set 1'};\n end\n end\n \nelse\n sourceMarginOptions = {'none','topoplot','dipole','customtopo'};\nend\n\n\n% determine whether statistics are present\n% (PROBLEM 'Stats' argument is case-sensitive)\nif isfield(varargin{1},'icaact') && length(varargin)==2\n stats = [];\nelseif isfield(varargin{1},'icaact')\n stats = arg_extract(varargin(3:end),'Stats',[],[]);\nelse\n stats = arg_extract(varargin,'Stats',[],[]);\nend\n\nif isempty(stats)\n usestatsdef = []; % false\n StatThreshMethods = {'none'};\n def_alpha = 0.05;\nelse\n usestatsdef = {}; % true\n methods = intersect_bc(fieldnames(stats),ConnNames);\n StatThreshMethods = intersect_bc(fieldnames(stats.(methods{1})),{'pval','thresh','logical'});\n StatThreshMethods = [StatThreshMethods 'none'];\n def_alpha = stats.alpha;\nend\n\n% clear stats ALLEEG;\n\n% setup the argument list\n% -----------------------------------------------------\ng = arg_define([0 2],varargin, ...\n arg_norep({'ALLEEG','EEG'},mandatory),...\n arg_norep({'Conn'},mandatory),...\n arg_subtoggle({'plotCondDiff','PlotConditionDifference'},{}, ...\n {...\n arg({'condOrder','ConditionOrder'},CondDiffOrderDefaults{1},CondDiffOrderDefaults,'Order in which to take difference.') ...\n }, 'Plot difference between selected conditions','cat','DisplayProperties'), ...\n arg_norep({'stats','Stats'},[],[],'A structure containing statistics.'), ...\n arg_nogui({'vismode','VisualizationMode'},'TimeXFrequency',{'TimeXFrequency','TimeXCausality','FrequencyXCausality'},'Visualization Modes. Create Time-Frequency imageplots, Causality x Frequency plots (collapsing across time), Causality x Time plots (collapsing across frequency)'), ...\n arg_nogui({'msubset'},'all',{'tril','triu','diag','nodiag','all'},'Subset of the full matrix to keep. Lower/upper triangle (''tril''/''triu''), diagonals (''diag''), everything except diagonal (''nodiag''), everything (''all'').'), ...\n arg_subswitch({'MatrixLayout'},'Full', ...\n {'Full', ...\n { ...\n arg({'estimator','Estimator'},ConnNames{1},ConnNames,'Estimator to visualize','shape','row') ...\n arg({'clim','ColorLimits'},100,[],'Color/Y-axis scaling limits. If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is prctile(abs(Conn),scalar)','type','denserealdouble','shape','row','cat','DisplayProperties'), ...\n } ...\n 'Partial', ...\n {...\n arg({'triu','UpperTriangle'},ConnNames{1},['none' ConnNames],'Estimator to render on upper triangle.','shape','row'), ...\n arg({'ut_clim','UT_ColorLimits'},100,[],'Color/Y-axis scaling limits for upper triangle. If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is prctile(abs(Conn),scalar)','type','denserealdouble','shape','row','cat','DisplayProperties'), ...\n arg({'tril','LowerTriangle'},ConnNames{1},['none' ConnNames],'Estimator to render on upper triangle.','shape','row'), ...\n arg({'lt_clim','LT_ColorLimits'},100,[],'Color/Y-axis scaling limits for lower triangle. If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is prctile(abs(Conn),scalar)','type','denserealdouble','shape','row','cat','DisplayProperties'), ...\n arg({'diag','Diagonal'},ConnNames{1},['none' ConnNames],'Estimator to render on diagonal.','shape','row') ...\n arg({'d_clim','D_ColorLimits'},100,[],'Color/Y-axis scaling limits for diagonal. If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is prctile(abs(Conn),scalar)','type','denserealdouble','shape','row','cat','DisplayProperties'), ...\n arg({'clim','AllColorLimits','ColorLimits'},[],[],'Color/Y-axis scaling limits for all subplots. If set, overrides all other colorlimits options. If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is prctile(abs(Conn),scalar)','type','denserealdouble','shape','row','cat','DisplayProperties'), ...\n }, ...\n },'Select the measure and layout','cat','DisplayProperties'), ...\n arg_nogui({'clim','ColorLimits'},100,[],'Color/Y-axis scaling limits. If [min max], scale by [min max]. If scalar, and all(Conn>0), limits are set to [0 maxprc]. If scalar, and any(Conn<0), limits are set to [-maxprc maxprc] where maxprc is prctile(abs(Conn),scalar)','type','denserealdouble','shape','row','cat','DisplayProperties'), ...\n arg({'timeRange','TimesToPlot'},timedef,[],'[Min Max] Time range to image (sec). Leave blank to use all timewindows','shape','row','type','denserealdouble','cat','DisplayProperties'), ...\n arg({'freqValues','FrequenciesToPlot'},freqdef,[],'Vector of frequencies (Hz) to image. Leave blank to use all frequencies','type','expression','shape','row','cat','DisplayProperties'), ...\n arg_nogui({'windows','TimeWindowsToPlot'},[],[],'Time window centers (sec). If a vector of times, will plot a separate curve for each specified time','shape','row','cat','DisplayProperties'),...\n arg_subtoggle({'pcontour','PlotContour'},[], ...\n {...\n arg({'contourcolor','ContourColor'},[0 0 0],[],'Contour Color. Can use any allowable Matlab color specification (see ''help ColorSpec'').','shape','row','type','expression','cat','DisplayProperties') ...\n }, 'Plot contours around significant regions','cat','DisplayProperties'), ...\n arg_subswitch({'thresholding','Thresholding'},'None', ...\n {'None' ...\n { ...\n arg_norep({'dummy1'},[],[],'dummy') ...\n }, ...\n 'Statistics' ...\n {...\n arg({'plotci','PlotConfidenceIntervals'},false,[],'Plot confidence intervals (if available). Does not apply to for time-frequency images.'), ...\n arg({'sigthreshmethod','ThresholdingMethod'},StatThreshMethods{1},StatThreshMethods,'Method to use for significance masking') ...\n arg({'alpha','AlphaSignificance'},def_alpha,[0 1],'P-value threshold for significance. e.g., 0.05 for p<0.05') ...\n }, ...\n 'Simple' ...\n {...\n arg({'prcthresh','PercentileThreshold'},0,[],'Percentile threshold. If of form [percentile, dimension], percentile is applied elementwise across the specified dimension.','type','denserealdouble','shape','row','cat','Thresholding'), ...\n arg({'absthresh','AbsoluteThreshold'},[],[],'Exact threshold.','cat','Thresholding') ...\n } ...\n }, 'Thresholding options. You can choose to use statistics (passed in as ''stats'' structure), or simple percentile or absolute thresholds.','cat','Thresholding'), ...\n arg({'baseline','Baseline'},[],[],'Time range of baseline [Min Max] (sec). Will subtract baseline from each point. Leave blank for no baseline.','shape','row','type','denserealdouble','cat','DataProcessing'), ...\n arg_nogui({'fighandles','FigureHandles'},[],[],'Vector of figure handles to superimpose new graph onto. New figures and grid will *not* be created. Old grid will be used and new subplots overlaid'), ...\n arg({'smooth','Smooth2D'},false,[],'Smooth time-freq image. This will apply nearest-neighbor interpolation.','cat','DataProcessing'), ...\n arg_nogui({'xord','XTickLabels'},[],[],'Labels for X-Tickmarks. Must equal number of time windows','cat','DisplayProperties'), ...\n arg_nogui({'yord','YTickLabels'},[],[],'Labels for Y-Tickmarks. Must equal number of time windows','cat','DisplayProperties'), ...\n arg_norep({'channels','VariablesToKeep'},[],[],'List of indices of channels to keep. Can be [vector], a subset of [1:nbchan]'), ...\n arg({'plotorder','PlottingOrder'},[],[],'Specify index order. Subset of [1:nbchan] in which to arrange columns/rows. Useful for grouping channels.','cat','DisplayProperties'), ...\n arg({'topoplot','SourceMarginPlot'},sourceMarginOptions{end},sourceMarginOptions,'What to plot on margins. Options: ''Topoplot'': plot source scalp projection. ''Dipole'': plot dipole','cat','DisplayProperties'), ...\n arg_nogui({'topoplot_opts','TopoplotOptions'},{},[],'Additional options (name,value) for topoplot','type','cellstr'), ... \n arg_nogui({'customTopoMatrix','CustomTopoMatrix'},[],[],'Custom topoplot matrix. For N channels/sources, this is a 1 X N cell array of symmetric matrices comprised the topoplot *surface* (not a component vector) for each channel/source. This is provided as input to toporeplot() if ''SourceMarginPlot'' is chosen to be ''customtopo''.','shape','matrix','cat','DisplayProperties'), ...\n arg_sub({'dipplot','DipolePlottingOptions'},[], ...\n { ...\n arg_nogui({'mri'},'',[],'Dipplot MRI structure. Can be the name of matlab variable (in the base workspace) containing MRI structure. May also be a path to a Matlab file containing MRI structure. Default uses MNI brain.','type','expression'), ...\n arg({'coordformat','DipoleCoordinateFormat'},'mni',{'spherical','mni'},'Coordinate format for dipplot','type','char','shape','row'), ...\n arg({'showCortexMesh','ShowCortexMesh'},isstruct(ALLEEG(1)) && ~isempty(ALLEEG(1).dipfit) && isfield(ALLEEG(1).dipfit.model,'meshVertices'),[],'Show cortex surface instead of MRI volume.'), ...\n arg({'colorROIs','ColorROIs'},isstruct(ALLEEG(1)) && isfield(ALLEEG(1).dipfit,'surfmesh'),[],'Color ROIs.'), ...\n arg({'dipsize','DipoleSize'},80,[],'Dipole sphere size'), ...\n arg_nogui({'dipplotopt','DipplotOptions'},'{}','','Additional dipplot options. Cell array of <''name'',value> pairs of additional options for dipplot (see ''doc dipplot'')','type','expression','shape','row') ...\n arg({'row_view'},[1 0 0],[],'View angle for row marginals'), ...\n arg({'col_view'},[0 0 1],[],'View angle for column marginals'), ...\n },'Options for dipole plotting'), ...\n arg({'nodelabels','NodeLabels'},MyComponentNames,{},'List of labels for each node. e.g., {''Node1'',''Node2'',...}. Leave blank to use defaults.','shape','row','type','cellstr','cat','DisplayProperties'),...\n arg({'foilines','FrequencyMarkers'},[],[],'Vector of frequencies (Hz) at which to draw horizontal lines','cat','FrequencyMarkers'), ...\n arg({'foilinecolor','FrequencyMarkerColor'},[],[],'Coloring for frequency markers. If an [1 x 3] array of RBG values, then color all lines using this color. If an [N x 3] matrix of RBG values, then color the kth line with the colorspec from the kth row. If empty then cycle through colorlist','shape','matrix','cat','FrequencyMarkers'), ...\n arg({'events','EventMarkers'},{{0 'r' ':' 2}},[],'Event marker time and style. Specify event markers with a cell array of {time linecolor linestyle linewidth} cell arrays. Ex. { { 0.2 ''y'' '':'' 2} { 1.5 ''r'' '':'' 2}} will render two dotted-line event makers, yellow at 200 ms and red at 1500 ms','type','expression','shape','row','cat','DisplayProperties'), ...\n arg({'freqscale','FrequencyScale'},'linear',{'linear','log'},'Make the y-scale logarithmic or linear','cat','DisplayProperties'), ...\n arg_nogui({'transform','Transform'},'linear',{'log','linear',''},'transform the data (logarithmically or other)'), ...\n arg({'yTickLoc','YTickLabelLoc'},'right',{'left','right','both'},'Y-tick label location.','cat','TextAndFont'), ...\n arg({'titleString','TitleString'},[],[],'Figure title string','type','char','shape','row','cat','TextAndFont'), ...\n arg({'titleFontSize','TitleFontSize'},12,[],'Title Font Size','cat','TextAndFont'), ...\n arg({'axesFontSize','AxesFontSize'},11,[],'Axes Font Size','cat','TextAndFont'), ...\n arg({'textColor','TextColor'},[1 1 1],[],'Text color. See ''doc ColorSpec''.','type','expression','shape','row','cat','TextAndFont'), ...\n arg({'linecolor','LineColor'},[1 1 1],[],'Linecolor for lineplots','shape','row','type','denserealdouble','cat','TextAndFont'), ...\n arg({'patchcolor','PatchColor'},[1 1 1],[],'FaceColor for shaded regions','shape','row','type','denserealdouble','cat','TextAndFont'), ...\n arg({'colormap','Colormap'},'jet(300)',[],'Colormap. Matlab expression denoting colormap to use (e.g., ''jet(64)''). See ''help colormap''.','type','expression','cat','DisplayProperties'), ...\n arg({'backgroundColor','BackgroundColor'},[0 0 0],[],'Background Color. See ''doc ColorSpec''.','type','expression','shape','row','cat','TextAndFont'), ...\n arg({'colorscheme','TFCellColorScheme','ColorScheme'},'black',{'black','white','eeglab'},'Color scheme for TimeFreqCell popout'), ...\n arg_norep({'report_args'},[],[],'Need this to allow recursive calls...') ...\n );\n\n% arg_sub({'subplotargs','SubplotExpansionProperties'},[],@vis_TimeFreqCell,'Additional arguments for subplot callback function.','cat','SubplotExpansion'), ...\n\n\n% Commit ALLEEG and Conn variables to workspace\n[data g] = hlp_splitstruct(g,{'ALLEEG','Conn'});\narg_toworkspace(data);\nclear data;\n \n% initialize default variables\ngridmargin_bot_left = [0.1 0.1]; % [0.05 0.05]; % margin (normalized units) around grid of subplots [horiz vert]\ngridmargin_top_right = 1-gridmargin_bot_left;\npmargin = 0.005; % margin between subplots\nOFFSET = 0; 0.05;\ncolorlist = {'k','g','b','c','m','y','r'}; % list of colors for sequential overlapping plots of different time windows\nStatsMatrix = [];\nTwoSidedThresholding = false;\nGridType = '';\n\n% handle plotting multiple estimators on the grid\nswitch lower(g.MatrixLayout.arg_selection)\n case 'full'\n g.connmethods = g.MatrixLayout.estimator;\n g.msubset = 'all';\n case 'partial'\n layouts = {g.MatrixLayout.triu g.MatrixLayout.tril g.MatrixLayout.diag};\n if sum(~strcmpi(layouts,'none')) > 1\n % if there is more than one layout to plot...\n if 0; %all(strcmpi(layouts,layouts{1}))\n % ... and all layouts use the same conn. estimator\n % then just plot the full TimeFreqGrid\n figureHandles = vis_TimeFreqGrid('ALLEEG',ALLEEG,'Conn',Conn,g, ...\n 'MatrixLayout',['Full', ...\n hlp_struct2varargin(g.MatrixLayout,'suppress',{'arg_direct','arg_selection'}), ...\n 'estimator',g.MatrixLayout.triu]);\n return;\n elseif ~strcmpi(g.MatrixLayout.diag,'none') ...\n && isequal(g.MatrixLayout.triu,g.MatrixLayout.tril)\n % same estimator on upper/lower triangles, with different\n % estimator on diagonal\n % ... first plot diagonals...\n g.arg_direct = 0;\n figureHandles = vis_TimeFreqGrid('ALLEEG',ALLEEG,'Conn',Conn,g, ...\n 'FigureHandles', [g.fighandles], ...\n 'MatrixLayout',['Partial', ...\n hlp_struct2varargin(g.MatrixLayout,'suppress',{'arg_direct','arg_selection'}), ...\n 'tril','none','diag',g.MatrixLayout.diag,'triu','none']);\n % then continue with off-diagonals\n g.fighandles = [g.fighandles figureHandles];\n g.connmethods = g.MatrixLayout.tril;\n g.msubset = 'nodiag';\n \n elseif strcmpi(g.MatrixLayout.diag,'none') ...\n && isequal(g.MatrixLayout.triu,g.MatrixLayout.tril)\n % same estimator on upper/lower triangles, with no\n % estimator on diagonal\n g.arg_direct = 0;\n \n % plot off-diagonals, ignoring diagnonals\n g.fighandles = [g.fighandles figureHandles];\n g.connmethods = g.MatrixLayout.tril;\n g.msubset = 'nodiag';\n else\n % different connectivity estimators for upper, lower, diag\n % so plot each separately via recursive calls to\n % vis_TimeFreqGrid\n if ~strcmpi(g.MatrixLayout.triu,'none')\n % plot upper triangle\n figureHandles = vis_TimeFreqGrid('ALLEEG',ALLEEG,'Conn',Conn,g, ...\n 'FigureHandles', [g.fighandles figureHandles], ...\n 'MatrixLayout',['Partial', ...\n hlp_struct2varargin(g.MatrixLayout,'suppress',{'arg_direct','arg_selection'}), ...\n 'tril','none','diag','none','triu',g.MatrixLayout.triu]);\n end\n if ~strcmpi(g.MatrixLayout.tril,'none')\n % plot upper triangle\n figureHandles = vis_TimeFreqGrid('ALLEEG',ALLEEG,'Conn',Conn,g, ...\n 'FigureHandles', [g.fighandles figureHandles], ...\n 'MatrixLayout',['Partial', ...\n hlp_struct2varargin(g.MatrixLayout,'suppress',{'arg_direct','arg_selection'}), ...\n 'triu','none','diag','none','tril',g.MatrixLayout.tril]);\n end\n if ~strcmpi(g.MatrixLayout.diag,'none')\n % plot upper triangle\n figureHandles = vis_TimeFreqGrid('ALLEEG',ALLEEG,'Conn',Conn,g, ...\n 'FigureHandles', [g.fighandles figureHandles], ...\n 'MatrixLayout',['Partial', ...\n hlp_struct2varargin(g.MatrixLayout,'suppress',{'arg_direct','arg_selection'}), ...\n 'tril','none','triu','none','diag',g.MatrixLayout.diag]);\n end\n \n return;\n end\n elseif sum(~strcmpi(layouts,'none')) == 1\n % there is just one layout to plot\n g.connmethods = layouts{~strcmpi(layouts,'none')};\n allowedLayouts = {'triu','tril','diag'};\n g.msubset = allowedLayouts{~strcmpi(layouts,'none')};\n else\n return;\n end\nend\n\n% if ~isstruct(g.plotCondDiff) && g.plotCondDiff==0\n% g.plotCondDiff.arg_selection = 0;\n% elseif g.plotCondDiff==0\n% g = rmfield(g,'plotCondDiff');\n% g.plotCondDiff.arg_selection = 0;\n% end\n\n% determine connectivity method\nif isempty(g.connmethods)\n % if no connectivity methods specified, select all of them\n g.connmethods = hlp_getConnMethodNames(Conn(1)); end\nif isempty(g.freqValues)\n g.freqValues = freqdef; end\nif isempty(g.timeRange)\n g.timeRange = timedef; end\n\nCEstimator = g.connmethods;\n\n\n\n% check if confidence intervals are present\nif strcmpi(g.thresholding.arg_selection,'statistics') && g.thresholding.plotci ...\n && ~willPlotStatCI(g,CEstimator)\n fprintf('No confidence intervals found for estimator %s -- ignoring...\\n',CEstimator);\n g.thresholding.plotci = false;\nend\n% if ~isempty(g.stats) && strcmpi(g.thresholding.arg_selection,'statistics') ...\n% && ~isfield(g.stats.(CEstimator),'ci') || isempty(g.stats.(CEstimator).ci)\n% fprintf('No confidence intervals found -- ignoring...\\n');\n% g.thresholding.plotci = false;\n% end\n\n% if user chose to plot stats, but none present, inform user\nif strcmpi(g.thresholding.arg_selection,'statistics') && ~willPlotStats(g,CEstimator) && ~willPlotStatCI(g,CEstimator)\n fprintf('No statistics found for estimator ''%s.'' This estimator will be unthresholded.\\n',CEstimator);\n g.thresholding = struct('arg_direct',0,'arg_selection','None');\nend\n\n% if we have stats, inform user if significance threshold used for confidence\n% intervals is not the same as the p-value they have selected for plotting\nif strcmpi(g.thresholding.arg_selection,'statistics') && ~isempty(g.stats) ...\n && g.thresholding.plotci && strcmpi(g.thresholding.sigthreshmethod,'pval') ...\n && g.stats.alpha ~= g.thresholding.alpha\n \n error(['The chosen significance level of alpha=' num2str(g.thresholding.alpha) ...\n ' does not match those of your confidence intervals (alpha=' num2str(g.stats.alpha) ')' char(10) ...\n 'You may resolve this by doing one of the following: ' char(10) ...\n '(1) recompute your confidence intervals' char(10) ...\n '(2) disable the PlotConfidenceIntervals option' char(10) ...\n '(3) select another p-value for thresholding']);\nend\n \nif length(ALLEEG)<2\n g.plotCondDiff = struct('arg_selection',false);\nend\n\n% establish the order for difference plots\nif isfield(g,'plotCondDiff') && g.plotCondDiff.arg_selection\n \n if strcmpi(g.plotCondDiff.condOrder,CondDiffOrderDefaults{2})\n % reverse order\n CondLabels = CondLabels(end:-1:1);\n ALLEEG = ALLEEG(end:-1:1);\n Conn = Conn(end:-1:1);\n \n % also need to invert confidence intervals (flip about 0) for statistics\n % (p-value will remain the same, since this is a two-sided test)\n if willPlotStatCI(g,CEstimator)\n \n % flip ci about y=0\n g.stats.(CEstimator).ci = -g.stats.(CEstimator).ci;\n \n end\n \n end\nend\n\n\n% do some error checking\nif ~isfield(Conn(1),'erWinCenterTimes') || isempty(Conn(1).erWinCenterTimes)\n error('Conn.erWinCenterTimes not found!'); end\n\n\nif isempty(g.channels)\n g.channels = 1:ALLEEG(1).CAT.nbchan; end\n\nif ~isempty(g.plotorder)\n for cnd=1:length(Conn)\n sz = size(Conn(cnd).(CEstimator));\n if sz(1)~=length(unique_bc(g.plotorder)) || any(g.plotorder>sz(1))\n fprintf('error: each channel index in connectivity matrix must appear in ''plotorder'' exactly once\\n');\n figureHandles = [];\n return;\n end\n end\nelse\n g.plotorder = 1:size(Conn(1).(CEstimator),1);\nend\n\nif ~isfield(Conn(1),'freqs') || isempty(Conn(1).freqs)\n error('''freqs'' must be a field of Conn');\nend\n\n% load the MRI file for dipole plotting, if necessary\nif strcmpi(g.topoplot,'dipole')\n if isempty(g.dipplot.mri)\n g.dipplot.mri = ALLEEG(1).dipfit.mrifile;\n if isempty(g.dipplot.mri)\n siftRoot = hlp_getSiftRoot;\n g.dipplot.mri = fullfile(siftRoot,'resources','standard_BEM','standard_mri.mat');\n% eeglabpath = fileparts(which('eeglab'));\n% g.dipplot.mri = fullfile(eeglabpath,'plugins','dipfit2.2','standard_BEM','standard_mri.mat');\n% g.dipplot.mri = fullfile(eeglabpath,'plugins','dipfit2.2','standard_BESA','avg152t1.mat');\n end\n tmp = load(g.dipplot.mri);\n fn = fieldnames(tmp);\n g.dipplot.mri = tmp.(fn{1});\n elseif evalin('base',['exist(''' g.dipplot.mri ''',''var'')'])==1\n % MRI variable is in workspace, so copy it\n g.dipplot.mri = evalin('base',g.dipplot.mri);\n if ~isfield(g.dipplot.mri,'anatomy')\n error('MRI structure is invalid format (see ''dipplot'' for more info)');\n end\n elseif isdir(fileparts(g.dipplot.mri)) || exist(g.dipplot.mri,'file')\n % User specified path to MRI file, so load it up\n tmp = load(g.dipplot.mri);\n fn = fieldnames(tmp);\n g.dipplot.mri = tmp.(fn{1});\n else\n % User specified an invalid path to MRI file\n error('Unable to load MRI file for dipplot');\n end\n \n if isempty(ALLEEG(1).dipfit) || ~isfield(ALLEEG(1).dipfit,'surfmesh')\n g.dipplot.showCortexMesh = false;\n end\n if g.dipplot.showCortexMesh && isempty(g.dipplot.dipplotopt)\n dipsize = g.dipplot.dipsize;\n BG_COLOR = [0.2 0.2 0.2];\n FaceAlpha = 0.3;\n if g.dipplot.colorROIs ...\n && ~isempty(ALLEEG(1).dipfit) ...\n && isfield(ALLEEG(1).dipfit.model,'meshVertices')\n MeshColorTable = hlp_getROIVertexColorTable( ...\n 'NumVerticesInMesh',size(ALLEEG(1).dipfit.surfmesh.vertices,1), ...\n 'RoiVertices',{ALLEEG(1).dipfit.model.meshVertices}, ...\n 'BackgroundColor',BG_COLOR,'RoiColors',@(x)distinguishable_colors(x,[1 0 0; BG_COLOR]));\n\n else\n MeshColorTable = [0.6 0.6 0.7];\n end\n g.dipplot.dipplotopt = {'spheres',fastif(dipsize>0,'on','off'),'dipolesize' dipsize ...\n 'projlines' 'off' 'hidemri','on', ...\n 'mesh','on', ...\n 'meshdata',{'faces',ALLEEG(1).dipfit.surfmesh.faces, ...\n 'vertices',ALLEEG(1).dipfit.surfmesh.vertices}, ...\n 'meshfacecolor','interp', 'meshedgecolor','none', ...\n 'meshoptions',{'facealpha',FaceAlpha,'edgealpha',FaceAlpha, ...\n 'FaceVertexCData',MeshColorTable, ...\n 'facelighting','gouraud'}};\n end\nend\n\n% set up figure labels\nif length(Conn)>1\n if length(ALLEEG)<2\n error('To get between-condition labels, ALLEEG must contain datasets for both conditions');\n end\n condstring = sprintf('(%s) - (%s)', ...\n CondLabels{1}, ...\n CondLabels{2});\nelse\n condstring = sprintf('(%s)', ...\n CondLabels{1});\nend\n\n% set up the node labels\nif isempty(g.nodelabels)\n if isfield(ALLEEG(1).CAT,'curComponentNames') && ~isempty(ALLEEG(1).CAT.curComponentNames)\n g.nodelabels = ALLEEG(1).CAT.curComponentNames;\n else\n g.nodelabels = cell(size(ALLEEG(1).CAT.curComps));\n for i=1:length(g.nodelabels)\n g.nodelabels{i} = fastif(ALLEEG(1).chanlocs(i).labels, ...\n ALLEEG(1).chanlocs(i).labels,num2str(ALLEEG(1).chanlocs(i).urchan));\n end\n end\nend\n\n% determine whether or not we will plot sources on row-col margins\ng.PlotSourceOnMargin = true; %~strcmpi(g.topoplot,'none');\n\n% some more input error checking\nif strcmpi(g.topoplot,'customtopo') && (isempty(g.customTopoMatrix) ...\n || ~ iscell(g.customTopoMatrix) || length(g.customTopoMatrix) ~= ALLEEG(1).CAT.nbchan)\n error('If ''SourceMarginPlot'' is chosen to be ''customtopo'', a cell array of topographic surfaces must be provided in argument ''CustomTopoMatrix''');\nend\n\n% extract some variables for convenience\nnch = ALLEEG(1).CAT.nbchan;\nerWinCenterTimes = Conn(1).erWinCenterTimes;\n\n\n% get indices of selected time range\ntimeIndices = getindex(erWinCenterTimes,g.timeRange);\ntimeIndices = timeIndices(1):timeIndices(2);\nerWinCenterTimes = erWinCenterTimes(timeIndices);\ng.erWinCenterTimesSelected = erWinCenterTimes;\n\n\n% get indices of selected freq range\nfreqIndices = getindex(Conn(1).freqs,g.freqValues);\n\n\n% select time and frequency range from Statistics (if it exists) ...\nif willPlotStats(g,CEstimator)\n \n \n if ~isequal(size(g.stats.(CEstimator).(g.thresholding.sigthreshmethod)),size(Conn(1).(CEstimator)))\n error('Stats matrix must be same size as Connectivity matrix');\n end\n \n g.stats.(CEstimator).(g.thresholding.sigthreshmethod) ...\n = g.stats.(CEstimator).(g.thresholding.sigthreshmethod)(:,:,freqIndices,timeIndices);\n \n \nend\n% ...and from confidence interval\nif willPlotStatCI(g,CEstimator)\n g.stats.(CEstimator).ci = g.stats.(CEstimator).ci(:,:,:,freqIndices,timeIndices);\nend\n% ... and from Connectivity\nfor i=1:length(Conn)\n Conn(i).(CEstimator) = Conn(i).(CEstimator)(:,:,freqIndices,timeIndices);\nend\n\n\n\n% do logarithmic transform if desired\nif strcmpi(g.transform,'log')\n for i=1:length(Conn)\n Conn(i).(CEstimator) = log(Conn(i).(CEstimator));\n end\nend\n\n\n% specify new x- and y-axes (TODO: remove this)\nif ~isempty(g.xord), erWinCenterTimes = g.xord; end\nif ~isempty(g.yord), freqValues = g.yord; end\n\n\n\n% if there's more than one window, compute the step size\n% if length(erWinCenterTimes)>1\n% g.winstep = abs(erWinCenterTimes(2)-erWinCenterTimes(1));\n% else\n% g.winstep = 1;\n% end\n\n% ---------------------------------------------------------------------------\n% | Set up the Time Frequency Grid [nch x nch]\n% | for current connectivity measure\n% ---------------------------------------------------------------------------\nsz = size(Conn(1).(CEstimator));\n\nif sz(2)==1 && sz(1)~=sz(2)\n % we have a univariate measure (ERSP, mCOH, etc)\n % so expand univariate onto diagonals\n if ~isempty(g.stats)\n error('stats not currently compatible with univariate connectivity measures');\n end\n \n for cnd=1:length(Conn)\n tmp(cnd).(CEstimator) = zeros(sz(1),sz(1),sz(3),sz(4),'single');\n for ch=1:sz(1)\n tmp(cnd).(CEstimator)(ch,ch,:,:) = squeeze(Conn(cnd).(CEstimator)(ch,1,:,:));\n end\n end\n Conn = tmp; clear tmp;\nend\n\n\n% generate figure and subplot array\nnumSubplotRows = nch + g.PlotSourceOnMargin;\nnumSubplotCols = nch + g.PlotSourceOnMargin;\ng.titleString = sprintf('Subj %s. Cond %s. %s', ...\n ALLEEG(1).subject, ...\n condstring,g.titleString);\nif ~isempty(g.fighandles)\n % set focus to the selected figure\n figureHandles(end+1) = figure(g.fighandles);\nelse\n % create a new figure\n figureHandles(end+1) = figure('units','normalized','visible','off');\n % initialize subplot array\n switch g.yTickLoc\n case 'right'\n yTickLoc = 'RightMargin';\n case 'left'\n yTickLoc = 'Margin';\n case 'both'\n yTickLoc = 'BothMargins';\n end\n axh=hlp_subplot1(numSubplotRows,numSubplotCols, ...\n 'Min',gridmargin_bot_left,'Max',gridmargin_top_right,...\n 'Gap',[pmargin pmargin], ...\n 'YTickL',yTickLoc,'LeftMarginCol',2);\n set(figureHandles(end),'name', g.titleString);\n set(axh,'XColor',g.textColor,'YColor',g.textColor,'ZColor',g.textColor);\n set(axh,'Color',g.backgroundColor);\nend\n\nset(figureHandles(end),'defaultTextInterpreter','none');\nset(figureHandles(end),'color',g.backgroundColor);\ncolormap(g.colormap);\n\nif length(Conn)>1\n % we are creating difference plot\n ConnMatrix = Conn(1).(CEstimator) - Conn(2).(CEstimator);\n TwoSidedThresholding = true;\nelse\n ConnMatrix = Conn.(CEstimator);\nend\n\nif ~isempty(g.baseline)\n % subtract baseline from connectivity matrix\n ConnMatrix = hlp_rmbaseline(ConnMatrix,g.baseline,erWinCenterTimes);\n TwoSidedThresholding = true;\nend\n\nif ~strcmpi(g.msubset,'all')\n % only plot a subset of the full TF Grid matrix\n switch lower(g.msubset)\n case 'nodiag'\n % NaN diagonal elements of nch x nch grid\n Dd = single(~eye(nch));\n Dd(Dd==0)=nan;\n case 'diag'\n % NaN off-diagonal elements of nch x nch grid\n Dd = eye(nch);\n Dd(Dd==0)=nan;\n case 'tril'\n % NaN everything except lower triangle of nch x nch grid\n Dd = tril(ones(nch),-1);\n Dd(Dd==0)=nan;\n case 'triu'\n % NaN everything except upper triangle of nch x nch grid\n Dd = triu(ones(nch),1);\n Dd(Dd==0)=nan;\n end\n ConnMatrix=ConnMatrix.*(repmat(Dd,[1,1,size(ConnMatrix,3),size(ConnMatrix,4)]));\n% if willPlotStatCI(g,CEstimator)\n% for k=1:2\n% g.stats.(CEstimator).ci(k,:,:,:,:) ...\n% = squeeze(g.stats.(CEstimator).ci(k,:,:,:,:) ...\n% .*(repmat(Dd,[1,size(g.stats.(CEstimator).ci,4),size(g.stats.(CEstimator).ci,5)])));\n% end\n% end\nend\n\n\n% ----------------------------------------------------------------\n% | Apply statistics and thresholding\n% ----------------------------------------------------------------\n\nif strcmpi(g.thresholding.arg_selection,'simple')\n if any(ConnMatrix(:)<0), TwoSidedThresholding = true; end\n \n if ~isempty(g.thresholding.prcthresh)\n % percentile Thresholding\n \n if length(g.thresholding.prcthresh)>1\n % get percentiles across a specified dimension\n dim=g.thresholding.prcthresh(2);\n sz=size(ConnMatrix); nd=length(sz);\n odims = setdiff_bc(1:nd,dim);\n Cntmp = permute(ConnMatrix,[odims(1) dim odims(2:end)]); % put dim in second dim (for reshape)\n Cntmp = reshape(Cntmp,[prod(sz(odims)) sz(dim)]); % we'll take percentiles for ea. col\n \n if TwoSidedThresholding\n % apply two-sided thresholding\n StatsMatrix(2,:)= prctile(Cntmp,g.thresholding.prcthresh(1),1); % upper limit\n StatsMatrix(1,:)= prctile(Cntmp,100-g.thresholding.prcthresh(1),1); % lower limit\n \n % expand StatsMatrix to same size as ConnMatrix\n SMtmp(2,:,:,:,:,:) = repmat(StatsMatrix(2,:),[sz(odims(1)) 1 sz(odims(2:end))]);\n SMtmp(1,:,:,:,:,:) = repmat(StatsMatrix(1,:),[sz(odims(1)) 1 sz(odims(2:end))]);\n StatsMatrix = ipermute(SMtmp,[1 1+[odims(1) dim odims(2:end)]]);\n clear SMtmp\n else\n % apply single-sided thresholding\n StatsMatrix = prctile(Cntmp,g.thresholding.prcthresh(1),1);\n \n % expand StatsMatrix to same size as ConnMatrix\n StatsMatrix = repmat(StatsMatrix,[sz(odims(1)) 1 sz(odims(2:end))]);\n StatsMatrix = ipermute(StatsMatrix,[odims(1) dim odims(2:end)]);\n end\n \n clear Cntmp\n \n else\n % get percentiles of complete data matrix\n if TwoSidedThresholding\n StatsMatrix(2,:)= prctile(ConnMatrix(:),g.thresholding.prcthresh(1),1); % upper limit\n StatsMatrix(1,:)= prctile(ConnMatrix(:),100-g.thresholding.prcthresh(1),1); % lower limit\n else\n StatsMatrix = prctile(ConnMatrix(:),g.thresholding.prcthresh);\n end\n end\n end\n \n % additonally, use absolute thresholding\n if ~isempty(g.thresholding.absthresh)\n % use scalar threshold\n StatsMatrix = g.thresholding.absthresh; %*ones(size(ConnMatrix));\n end\n \nelseif willPlotStats(g,CEstimator)\n \n if ~isfield(g.stats,'tail')\n if any(ConnMatrix(:)<0), TwoSidedThresholding = true; end\n else\n switch g.stats.tail\n case {'both'}\n TwoSidedThresholding = true;\n otherwise\n TwoSidedThresholding = false;\n end\n end\n \n % Use Statistics Structure for thresholding\n if nargin>3 && isfield(g.stats,CEstimator)\n if length(g.stats)>1\n fprintf('WARNING: Stats contains more than one structure. Taking the first one...\\n');\n g.stats = g.stats(1);\n end\n if isstruct(g.stats.(CEstimator))\n if ~isfield(g.stats.(CEstimator),g.thresholding.sigthreshmethod)\n fprintf('ERROR: %s is not a field of g.stats.%s\\n',g.thresholding.sigthreshmethod,CEstimator);\n return;\n end\n StatsMatrix = g.stats.(CEstimator).(g.thresholding.sigthreshmethod);\n else\n StatsMatrix = g.stats.(CEstimator);\n end\n else\n StatsMatrix = [];\n end\n \n if strcmpi(g.thresholding.sigthreshmethod,'pval')\n StatsMatrix = StatsMatrix <= g.thresholding.alpha;\n end\nelse\n TwoSidedThresholding = any(ConnMatrix(:)<0);\nend\n\n% ---------------------------------------------------------------\n% | Apply significance mask\n% ---------------------------------------------------------------\n\n% preserve the original connectivity matrix\nOrigConnMatrix = ConnMatrix;\n\nif ~isempty(StatsMatrix) && isempty(g.windows) && ~g.pcontour.arg_selection\n \n if TwoSidedThresholding % two-sided thresholds (x < lothresh | x > hithresh = nan)\n if isscalar(StatsMatrix) % && ~g.pcontour.arg_selection\n % uniform two-sided threshold\n ConnMatrix(abs(ConnMatrix) < abs(StatsMatrix)) = 0;\n elseif length(StatsMatrix)==2 %&& ~g.pcontour.arg_selection\n % uniform two-sided threshold\n ConnMatrix(ConnMatrix > StatsMatrix(1) & ConnMatrix < StatsMatrix(2)) = 0;\n elseif isequal(size(StatsMatrix),size(ConnMatrix)) && islogical(StatsMatrix)\n % logical thresholding (e.g., p-value)\n ConnMatrix(~StatsMatrix) = 0;\n elseif isequal(size(StatsMatrix),[2 size(ConnMatrix)])\n % two-sided numeric thresholding\n ConnMatrix(ConnMatrix > squeeze(StatsMatrix(1,:,:,:,:)) ...\n & ConnMatrix < squeeze(StatsMatrix(2,:,:,:,:))) = 0;\n else\n error('unknown statistical thresholding paradigm');\n end\n \n else % single-sided thresholding (x < thresh = 0)\n if isscalar(StatsMatrix) % && ~g.pcontour.arg_selection\n ConnMatrix(ConnMatrix < StatsMatrix) = 0;\n elseif isvector(StatsMatrix) && ndims(ConnMatrix)>3\n % sz=size(StatsMatrix);\n % % expand vector thresh to dims of ConnMatrix\n % StatsMatrix = repmat(StatsMatrix,fastif(sz(1)==1,[length(freqs) 1],[1 length(erWinCenterTimes)]));\n elseif isequal(size(StatsMatrix),size(ConnMatrix))\n if islogical(StatsMatrix)\n % logical thresholding (e.g., p-value)\n ConnMatrix(~StatsMatrix) = 0;\n else\n % single-sided numeric thresholding\n ConnMatrix(ConnMatrix < StatsMatrix) = 0;\n end\n else\n error('unknown statistical thresholding paradigm');\n end\n end\n \nend\n\n\nif ~isempty(g.windows)\n % Instead of Time-Frequency plots, user wishes to plot causal\n % spectra for individual selected window(s)\n g.windows = unique_bc(g.windows);\n windowIndex = getindex(erWinCenterTimes,g.windows);\n ConnMatrix=ConnMatrix(:,:,:,windowIndex);\n if ~isempty(StatsMatrix) && ~isscalar(StatsMatrix)\n StatsMatrix = StatsMatrix(:,:,:,windowIndex);\n end\n \n OrigConnMatrix = OrigConnMatrix(:,:,:,windowIndex);\n \n % select window for confidence interval\n if ~isempty(g.stats) && isfield(g.stats.(CEstimator),'ci') && g.thresholding.plotci\n g.stats.(CEstimator).ci = g.stats.(CEstimator).ci(:,:,:,:,windowIndex);\n end\nend\n\n\n[nch nch nfreqs ntime] = size(ConnMatrix);\n\n\n% -------------------------------------------------------------------------\n% | set up the color limits\n% -------------------------------------------------------------------------\nif ~isempty(g.MatrixLayout.clim)\n clim = g.MatrixLayout.clim;\nelse\n switch g.msubset\n case 'all'\n clim = g.MatrixLayout.clim;\n case 'tril'\n clim = g.MatrixLayout.lt_clim;\n case 'diag'\n clim = g.MatrixLayout.d_clim;\n case 'triu'\n clim = g.MatrixLayout.ut_clim;\n case 'nodiag'\n if ~isequal(g.MatrixLayout.ut_clim,g.MatrixLayout.lt_clim)\n fprintf('UT_ColorLimits and LT_ColorLimits cannot differ for ''msubset''=''nodiag''. Using UT_ColorLimits\\n');\n end\n clim = g.MatrixLayout.ut_clim;\n otherwise\n clim = [];\n end\nend\n\nif isempty(clim)\n clim = 100; end\n\nif ~isempty(clim)\n if isscalar(clim)\n % use percentile colorlimits\n if ~strcmpi(CEstimator,'S')...\n && (~TwoSidedThresholding || all(ConnMatrix(~isnan(ConnMatrix))>=0))\n if 0 %willPlotStatCI(g,CEstimator) && ndims(squeeze(ConnMatrix))<4\n clim=[0 prctile(g.stats.(CEstimator).ci(2,:),clim)];\n else\n clim=[0 prctile(ConnMatrix(:),clim)];\n end\n else \n if 0 %willPlotStatCI(g,CEstimator) && ndims(squeeze(ConnMatrix))<4\n maxprc=prctile(abs(g.stats.(CEstimator).ci(:)),clim);\n else\n maxprc=prctile(abs(ConnMatrix(:)),clim);\n end\n clim=[-maxprc maxprc];\n end\n end\nend\n\nif any(isnan(clim)) || diff(clim)<=0\n clim = [0 1]; % clims are nan or non-increasing\nend\n\n% ------------------------------------------------------------------\n% | Plot the source locations or topoplots on marginal\n% ------------------------------------------------------------------\nif ~strcmpi(g.topoplot,'none')\n \n hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],1,1));\n \n set(gca,'visible','off');\n chidx=0;\n for ch=g.plotorder\n chidx = chidx+1;\n \n % row marginals\n % --------------\n hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],1,chidx+1));\n plotmarginal(ALLEEG,ch,g,'view',g.dipplot.row_view); % [0 -1 0] for zeynep\n pos = get(gca,'position');\n th = ylabel(g.nodelabels(ch),'color',g.textColor, ...\n 'horizontalalignment','center','fontsize',g.axesFontSize, ...\n 'verticalalignment','middle','edgecolor','none', ...\n 'rotation',0);\n% th=annotation('textbox',[pos(1)-0.01 pos(2) 0.01 pos(4)]);\n% set(th,'string',g.nodelabels(ch),'color',g.textColor, ...\n% 'horizontalalignment','center','fontsize',g.axesFontSize, ...\n% 'verticalalignment','middle','edgecolor','none');\n \n % column marginals\n % ----------------\n hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],chidx+1,1));\n plotmarginal(ALLEEG,ch,g,'view',g.dipplot.col_view) % [0 0 1] for zeynep\n title(g.nodelabels(ch),'color',g.textColor,'fontsize',g.axesFontSize);\n set(gco,'tag','coltitle');\n end\nelse\n hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],1,1));\n \n set(gca,'visible','off');\n chidx=0;\n hsub = [];\n for ch=g.plotorder\n chidx = chidx+1;\n \n hsub=[hsub hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],1,chidx+1))];\n set(gca,'visible','off')\n hsub=[hsub hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],chidx+1,1))];\n set(gca,'visible','off')\n end\n \n % [ax,h]=suplabel('FROM','t',[1/numSubplotCols 0 (numSubplotCols-1)/numSubplotCols (numSubplotRows-1)/numSubplotRows]);\n % set(h,'FontSize',g.axesFontSize,'Color',g.textColor);\nend\n\n% backup frequency values for logimagesc\norigFreqValues = g.freqValues;\n\n% ---------------------------------\n% | Plot Information Flow\n% | column ch_j --> row ch_i\n% ---------------------------------\nfor ch_i=1:nch\n for ch_j=1:nch\n \n % plot in specified order\n i = g.plotorder(ch_i);\n j = g.plotorder(ch_j);\n \n % Index the appropriate subplot.\n % subplot1 counts linearly by columns, so we flip ch_i,ch_j\n hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],ch_j+numSubplotRows-nch,ch_i+numSubplotCols-nch));\n set(gca,'tag','causalplot');\n \n % create column/row titles, if necessary\n if ch_i==1 && strcmpi(g.topoplot,'none')\n ht=title(g.nodelabels(j));\n set(ht,'tag','title','color',g.textColor, ...\n 'fontsize',g.axesFontSize);\n end\n if ch_j==1 && strcmpi(g.topoplot,'none')\n th = ylabel(g.nodelabels(i),'color',g.textColor, ...\n 'horizontalalignment','center','fontsize',g.axesFontSize, ...\n 'verticalalignment','middle','edgecolor','none', ...\n 'rotation',0);\n elseif ch_j==1 && ~strcmpi(g.topoplot,'none')\n lbltag = sprintf('row_ylabel_%d_%d',i,j);\n if isempty(findall(gcf,'tag',lbltag))\n pos = get(gca,'position');\n lbuf = 0.01; %fastif(any(strcmp(g.yTickLoc,{'both','left'})),0.05,0.01);\n th=annotation('textbox',[pos(1)-pos(3)-pmargin-lbuf pos(2) 0.02 pos(4)]);\n set(th,'string',g.nodelabels(i),'color',g.textColor, ...\n 'horizontalalignment','center','fontsize',g.axesFontSize, ...\n 'verticalalignment','middle','edgecolor','none','tag',lbltag);\n end\n end\n \n % check if we want to image this cell\n if (ch_i==ch_j && strcmpi(g.msubset,'nodiag')) || ...\n (ch_i~=ch_j && strcmpi(g.msubset,'diag')) || ...\n (ch_i>=ch_j && strcmpi(g.msubset,'triu')) || ...\n (ch_i<=ch_j && strcmpi(g.msubset,'tril')) ...\n \n % if we get here, then we don't want to actually image this cell\n set(gca,'color',get(gcf,'color'));\n \n % if this is the bottom-right most subplot, and this cell is empty\n % then borrow x-y ticks from left,upper neighbors\n if ch_i==nch && ch_j == nch && isempty(get(gca,'children'));\n % get left neighbor\n% hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],nch,nch));\n curplot = gca;\n leftplot=hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],(ch_j-1)+numSubplotRows-nch,ch_i+numSubplotCols-nch));\n xticks = get(leftplot,'Xtick');\n xticklabels = get(leftplot,'XTickLabel');\n xlim = get(leftplot,'XLim');\n upperplot=hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],ch_j+numSubplotRows-nch,(ch_i-1)+numSubplotCols-nch));\n yticks = get(upperplot,'Ytick');\n yticklabels = get(upperplot,'YTickLabel');\n ylim = get(upperplot,'YLim');\n set(curplot,'XTick',xticks,'YTick',yticks,'XTickLabel',xticklabels,'YTickLabel',yticklabels,'XLim',xlim,'YLim',ylim);\n end\n\n continue;\n end\n \n\n if ntime > 1 && nfreqs > 1 && isempty(g.windows)\n % ---------------------------------\n % | Format is Time x Frequency\n % ---------------------------------\n \n GridType = 'TimeXFreq';\n \n C=squeeze(ConnMatrix(i,j,:,:));\n \n if g.smooth\n h=pcolor(erWinCenterTimes,g.freqValues,double(C));\n shading interp\n else\n if strcmpi(g.freqscale,'log')\n nomargin = isempty(get(gca,'YTickLabel'));\n [g.freqValues C h] = logimagesc(erWinCenterTimes,origFreqValues,C,'plot','on');\n % h = gco;\n if nomargin, set(gca,'YTickLabel',[],'YTick',[]); end\n else\n h=imagesc(erWinCenterTimes,g.freqValues,C);\n end\n end\n \n set(gca,'Clim',clim,'YDir','normal');\n \n % extract the stats matrix for this pair\n if isequal(size(StatsMatrix),size(ConnMatrix))\n Sji = squeeze(StatsMatrix(i,j,:,:));\n Sij = squeeze(StatsMatrix(j,i,:,:));\n elseif size(StatsMatrix,1)==2 && ndims(StatsMatrix)==5\n Sji = permute(squeeze(squeeze(StatsMatrix(:,i,j,:,:))),[2 3 1]);\n Sij = permute(squeeze(squeeze(StatsMatrix(:,j,i,:,:))),[2 3 1]);\n else\n Sji = StatsMatrix;\n Sij = StatsMatrix;\n end\n \n % Plot contour\n if g.pcontour.arg_selection\n if isscalar(Sji) && any(C(:)-C(1))\n % use contour for constant threshold\n hold on;\n contour(erWinCenterTimes,g.freqValues,C,[Sji Sji], ...\n 'color',g.pcontour.contourcolor);\n hold off\n elseif length(Sji)==2 && any(C(:)-C(1))\n hold on;\n contour(erWinCenterTimes,g.freqValues,C,Sji, ...\n 'color',g.pcontour.contourcolor);\n hold off\n end\n end\n \n \n \n % Prepare the arguments for vis_TimeFreqCell()\n % This function will be called when user clicks on subplot\n if strcmpi(g.topoplot,'topoplot')\n subargs.topovec = squeeze(ALLEEG(1).icawinv(:,ALLEEG(1).CAT.curComps([j i])))';\n elseif strcmpi(g.topoplot,'customtopo')\n subargs.customTopoMatrix = g.customTopoMatrix([j i]);\n else\n subargs.topovec = [];\n subargs.customTopoMatrix = {};\n end\n \n if ~isempty(ALLEEG(1).dipfit) && isfield(ALLEEG(1).dipfit,'model')\n subargs.dipfitstruct = ALLEEG(1).dipfit;\n subargs.dipfitstruct.model = subargs.dipfitstruct.model(ALLEEG(1).CAT.curComps([j i]));\n else\n subargs.dipfitstruct = [];\n end\n subargs.elocs = ALLEEG(1).chanlocs;\n subargs.chaninfo = ALLEEG(1).chaninfo;\n subargs.alltimes = erWinCenterTimes;\n subargs.allfreqs = origFreqValues;\n \n if ~isempty(Sji)\n subargs.StatsMatrix(1,:,:,:,:) = Sji;\n subargs.StatsMatrix(2,:,:,:,:) = Sij;\n else\n subargs.StatsMatrix = [];\n end\n \n subargs.ConnMatrix(1,:,:) = squeeze(OrigConnMatrix(i,j,:,:));\n subargs.ConnMatrix(2,:,:) = squeeze(OrigConnMatrix(j,i,:,:));\n subargs.baseline = g.baseline;\n subargs.freqscale = g.freqscale;\n subargs.events = g.events;\n subargs.topoplot = g.topoplot;\n subargs.topoplot_opts = g.topoplot_opts;\n subargs.titleString = g.titleString;\n subargs.titleFontSize = g.titleFontSize;\n subargs.axesFontSize = g.axesFontSize;\n subargs.textColor = g.textColor;\n subargs.backgroundColor = g.backgroundColor;\n subargs.clim = clim;\n subargs.thresholding = g.thresholding;\n subargs.bidir = fastif(i==j,false,true);\n subargs.connmethod = CEstimator;\n subargs.nodelabels = g.nodelabels([j i]);\n subargs.dipplot = g.dipplot;\n subargs.foilines = g.foilines;\n subargs.foilinecolor = g.foilinecolor;\n subargs.smooth = g.smooth;\n subargs.colorscheme = g.colorscheme;\n \n set(gca,'userdata',subargs)\n set([gca h],'buttondownfcn','vis_TimeFreqCell(get(gca,''UserData''));');\n % set([gca h],'tooltip',sprintf('%s --> %s. Click to expand',g.nodelabels{j},g.nodelabels{i}));\n \n set(gca,'Xlim',[erWinCenterTimes(1)+OFFSET erWinCenterTimes(end)-OFFSET]);\n % [erWinCenterTimes(1)-winlen/(2*ALLEEG(1).srate) erWinCenterTimes(end)+winlen/(2*ALLEEG(1).srate)]\n set(gca,'Ylim',g.freqValues([1 end]));\n \n set(gca,'XColor',g.textColor,'YColor',g.textColor);\n set(gca,'fontsize',g.axesFontSize);\n \n \n % draw event markers\n if ~isempty(g.events)\n for i=1:length(g.events)\n events = g.events{i};\n \n % set defaults\n if length(events) < 4\n events{4} = 2; end\n if length(events) < 3\n events{3} = ':'; end\n if length(events) < 2\n events{2} = 'r'; end\n \n vl = vline(events{1});\n set(vl,'color',events{2},'linestyle',events{3},'linewidth',events{4});\n end\n end\n \n % draw horizontal lines at frequencies of interest\n if ~isempty(g.foilines)\n for ln=1:length(g.foilines)\n hl = hline(g.foilines(ln));\n if isempty(g.foilinecolor)\n color = colorlist{mod(ln-1,length(colorlist))+1};\n elseif size(g.foilinecolor,1) > 1\n color = g.foilinecolor(ln,:);\n elseif size(g.foilinecolor,1) == 1\n color = g.foilinecolor;\n end\n \n \n set(hl,'color',color,'linestyle','-','linewidth',1);\n set(hl,'tag','foilines');\n end\n end\n \n % create a red border around diagonal plots\n if ch_i==ch_j\n % hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],ch_j+numSubplotRows-nch,ch_i+numSubplotCols-nch));\n pos = get(gca,'position');\n hborder = annotation('rectangle',pos,'edgecolor',[1 0 0],'linewidth',2);\n set(hborder,'userdata',gca);\n set(hborder,'buttondownfcn','vis_TimeFreqCell(get(get(gco,''UserData''),''UserData''));');\n end\n \n \n elseif nfreqs > 1\n % ---------------------------------\n % | Format is Causality x Frequency\n % ---------------------------------\n \n GridType = 'CausalityXFreq';\n \n if isequal(size(StatsMatrix),size(ConnMatrix))\n S = squeeze(StatsMatrix(i,j,:,:));\n else\n S = StatsMatrix;\n end\n \n hold on\n for tt=1:ntime\n % plot a set of causality x frequency traces for each time window\n \n % plot confidence intervals\n if willPlotStatCI(g,CEstimator)\n ci = g.stats.(CEstimator).ci;\n if ndims(ci)>=4 && size(ci,1)==2\n % asymmetric confidence intervals\n ciplot(squeeze(ci(1,i,j,:,tt)),squeeze(ci(2,i,j,:,tt)),g.freqValues,[0.7 0.7 0.7],0,'Ylim',clim,'FaceAlpha',0.5,'EdgeColor',[0.2 0.2 0.2]);\n else\n % symmetric confidence intervals (about zero)\n ciplot(-squeeze(ci(i,j,:,tt)),squeeze(ci(i,j,:,tt)),g.freqValues,[0.7 0.7 0.7],1,'FaceAlpha',0.5,'EdgeColor',[0.2 0.2 0.2]);\n end\n end\n \n if strcmpi(g.thresholding.arg_selection,'statistics') ...\n && strcmpi(g.thresholding.sigthreshmethod,'thresh')\n % plot statistical thresholds\n if ~isempty(S)\n if isscalar(S)\n % constant threshold\n plot(g.freqValues,S(ones(1,length(g.freqValues))),'r:');\n elseif isvector(S)\n % variable threshold\n plot(g.freqValues,S,'r:');\n end\n end\n end\n \n if strcmpi(g.thresholding.arg_selection,'statistics') ...\n && strcmpi(g.thresholding.sigthreshmethod,'pval') && islogical(S)\n % shade significant regions\n \n set(gca,'Ylim',clim);\n \n % identify intervals of significance\n sigidx = hlp_bittok(S,1);\n \n for k=1:size(sigidx,1)\n % create patch to shade interval\n [hpatch{k} htext{k}]=hlp_vrect(g.freqValues(sigidx(k,:)),'label',{},'textPosition',[0.5 0.9],'yscale',0.1,'dock','bottom','patchProperties',{'FaceAlpha',0.2,'FaceColor',g.patchcolor},'textProperties',{'Color','b','EdgeColor','k','BackgroundColor','r','FontSize',14});\n box on;\n end\n end\n \n % plot causality trace\n if ntime==1\n if strcmpi(g.freqscale,'log')\n h = semilogx(g.freqValues,squeeze(OrigConnMatrix(i,j,:,:)),'color',g.linecolor);\n else\n h=plot(g.freqValues,squeeze(OrigConnMatrix(i,j,:,:)),'color',g.linecolor);\n end\n else\n if strcmpi(g.freqscale,'log')\n h = semilogx(g.freqValues,squeeze(OrigConnMatrix(i,j,:,tt)),'color',colorlist{mod(tt-1,length(colorlist))+1});\n else\n h=plot(g.freqValues,squeeze(OrigConnMatrix(i,j,:,tt)),'color',colorlist{mod(tt-1,length(colorlist))+1});\n end\n end\n \n \n end\n \n if g.plotCondDiff.arg_selection || ~isempty(g.baseline)\n % make line at zero\n zh = hline(0);\n set(zh,'color',g.linecolor,'linestyle','-.')\n end\n \n \n set(gca,'Ylim',clim);\n set(gca,'Xlim',[g.freqValues(1) g.freqValues(end)]);\n set(gca,'tag','lineplot');\n \n\n % draw vertical lines at frequencies of interest\n if ~isempty(g.foilines)\n for ln=1:length(g.foilines)\n hl = vline(g.foilines(ln));\n if isempty(g.foilinecolor)\n color = colorlist{mod(ln-1,length(colorlist))+1};\n elseif size(g.foilinecolor,1) > 1\n color = g.foilinecolor(ln,:);\n elseif size(g.foilinecolor,1) == 1\n color = g.foilinecolor;\n end\n \n \n set(hl,'color',color,'linestyle','-','linewidth',1);\n set(hl,'tag','foilines');\n end\n end\n \n hold off\n \n elseif ntime > 1\n % ---------------------------------\n % | Format is Causality x Time\n % ---------------------------------\n \n GridType = 'CausalityXTime';\n \n hold on\n \n if isequal(size(StatsMatrix),size(ConnMatrix))\n S = squeeze(StatsMatrix(i,j,:,:));\n else\n S = StatsMatrix;\n end\n \n for ff=1:nfreqs\n \n % plot confidence intervals\n if ~isempty(g.stats) && strcmpi(g.thresholding.arg_selection,'statistics') ...\n && isfield(g.stats.(CEstimator),'ci') && g.thresholding.plotci\n ci = g.stats.(CEstimator).ci;\n if ndims(ci)>=4 && size(ci,1)==2\n % asymmetric confidence intervals\n ciplot(squeeze(ci(1,i,j,ff,:)),squeeze(ci(2,i,j,ff,:)),erWinCenterTimes,[0.7 0.7 0.7],0,'Ylim',clim,'FaceAlpha',0.5,'EdgeColor',[0.2 0.2 0.2]);\n else\n % symmetric confidence intervals (about zero)\n ciplot(-squeeze(ci(i,j,ff,:)),squeeze(ci(i,j,ff,:)),erWinCenterTimes,[0.7 0.7 0.7],1,'FaceAlpha',0.5,'EdgeColor',[0.2 0.2 0.2]);\n end\n end\n \n if strcmpi(g.thresholding.arg_selection,'statistics') ...\n && strcmpi(g.thresholding.sigthreshmethod,'thresh')\n % plot statistical thresholds\n if ~isempty(S)\n if isscalar(S)\n % constant threshold\n plot(erWinCenterTimes,S(ones(1,length(erWinCenterTimes))),'r:');\n elseif isvector(S)\n % variable threshold\n plot(erWinCenterTimes,S,'r:');\n end\n end\n end\n \n if strcmpi(g.thresholding.arg_selection,'statistics') ...\n && strcmpi(g.thresholding.sigthreshmethod,'pval') && islogical(S)\n % shade significant regions\n \n set(gca,'Ylim',clim);\n \n % identify intervals of significance\n sigidx = hlp_bittok(S,1);\n \n for k=1:size(sigidx,1)\n % create patch to shade interval\n [hpatch{k} htext{k}]=hlp_vrect(erWinCenterTimes(sigidx(k,:)),'label',{},'textPosition',[0.5 0.9],'yscale',0.1,'dock','bottom','patchProperties',{'FaceAlpha',0.2,'FaceColor',g.patchcolor},'textProperties',{'Color','b','EdgeColor','k','BackgroundColor','r','FontSize',14});\n box on;\n end\n end\n \n \n % plot causality trace\n if nfreqs==1\n if strcmpi(g.freqscale,'log')\n h = semilogx(erWinCenterTimes,squeeze(OrigConnMatrix(i,j,:,:)),'color',g.linecolor);\n else\n h=plot(erWinCenterTimes,squeeze(OrigConnMatrix(i,j,:,:)),'color',g.linecolor);\n end\n else\n if strcmpi(g.freqscale,'log')\n h = semilogx(erWinCenterTimes,squeeze(OrigConnMatrix(i,j,ff,:)),'color',colorlist{mod(ff-1,length(colorlist))+1});\n else\n h=plot(erWinCenterTimes,squeeze(OrigConnMatrix(i,j,ff,:)),'color',colorlist{mod(ff-1,length(colorlist))+1});\n end\n end\n \n \n end\n \n if g.plotCondDiff.arg_selection || ~isempty(g.baseline)\n % make line at zero\n zh = hline(0);\n set(zh,'color',g.linecolor,'linestyle','-.')\n end\n \n \n set(gca,'Ylim',clim); \n set(gca,'Xlim',[erWinCenterTimes(1) erWinCenterTimes(end)]);\n set(gca,'tag','lineplot');\n \n % draw baseline shaded region\n if ~isempty(g.baseline)\n hlp_vrect(g.baseline,'yscale',1,'patchProperties',{'FaceAlpha',0.5,'FaceColor',[0.7 0.7 1],'EdgeColor','none'});\n end\n \n % draw event markers\n if ~isempty(g.events)\n for i=1:length(g.events)\n events = g.events{i};\n \n % set defaults\n if length(events) < 4\n events{4} = 2; end\n if length(events) < 3\n events{3} = ':'; end\n if length(events) < 2\n events{2} = 'r'; end\n \n vl = vline(events{1});\n set(vl,'color',events{2},'linestyle',events{3},'linewidth',events{4});\n end\n end\n \n \n hold off\n \n end\n \n end\nend\n\n \n% ---------------------------------\n% | Beautify the image\n% ---------------------------------\nset(gcf,'color',g.backgroundColor);\n\nfor ch_i=1:nch\n hlp_subplot1(sub2ind([numSubplotRows,numSubplotCols],ch_i+numSubplotRows-nch,ch_i+numSubplotCols-nch));\n % give diagonals a red-ish border/background\n% set(gca,'color','r');\n set(gca,'xcolor','r');\n set(gca,'ycolor','r');\nend\n\n\n% axcopy all lineplots\nlineplots = findobj(gcf,'tag','lineplot');\nfor i=1:length(lineplots)\n axcopy(lineplots(i));\nend\n\n% axcopy all topoplots\ntopos = findobj(gcf,'tag','topo');\nfor i=1:length(topos)\n axcopy(topos(i));\nend\n\n% create legend\nhlp_subplot1(1);\nif isempty(findall(gcf,'tag','legendborder'))\n % create border around legend\n pos = get(gca,'position');\n annotation('rectangle',pos,'edgecolor',[1 0 0],'tag','legendborder');\nend\n\nlegendsettings = {'horizontalalignment','left','units','normalized','parent',gca,'edgecolor','none','color',g.textColor,'fontsize',g.axesFontSize};\nif strcmpi(g.MatrixLayout.arg_selection,'full')\n leghandle = text(0.1,0.5, CEstimator,legendsettings{:});\nelse\n upperstr = g.MatrixLayout.triu;\n diagstr = g.MatrixLayout.diag;\n lowerstr = g.MatrixLayout.tril;\n leghandle = [];\n if ~strcmpi(upperstr,'none')\n leghandle = [leghandle text(0.1,0.85, sprintf('upper: %s',upperstr),legendsettings{:})];\n end\n if ~strcmpi(diagstr,'none')\n leghandle = [leghandle text(0.1,0.5, sprintf('diag: %s',diagstr),legendsettings{:})];\n end\n if ~strcmpi(lowerstr,'none')\n leghandle = [leghandle text(0.1,0.15, sprintf('lower: %s',lowerstr),legendsettings{:})];\n end\nend\nset(leghandle,'Interpreter','none','fontsize',g.axesFontSize);\n\n\n% place axis labels on top/bottom/right/left of Grid\nswitch GridType\n case 'TimeXFreq'\n RightLabelString = 'Frequency (Hz)';\n BotLabelString = 'Time (sec)';\n case 'CausalityXFreq'\n RightLabelString = 'Coupling';\n BotLabelString = 'Frequency (Hz)';\n case 'CausalityXTime'\n RightLabelString = 'Coupling';\n BotLabelString = 'Time (sec)';\nend\n\n% plot labels\n% ------------------------------------------------------------------------------------------------\n\nif isempty(findall(gcf,'tag','tlabel'))\n % top label\n pos = [0.5 0.5 0.5 0.01];\n hlabel(1)=annotation('textbox',pos,'string','FROM', ...\n 'color',g.textColor,'FontSize',g.titleFontSize, ...\n 'FontWeight','bold','HorizontalAlignment','Center', ...\n 'Margin', 0,'LineStyle','none','FitHeightToText','on');\n renderpos = get(hlabel(1),'Position');\n px = gridmargin_bot_left(1) + (1-gridmargin_bot_left(1))/2 - renderpos(3)/2;\n py = gridmargin_top_right(2) + (1-gridmargin_top_right(2))/2 - renderpos(4)/2;\n set(hlabel(1),'Position',[px py renderpos(3) renderpos(4)], ...\n 'tag','tlabel');\n\n\n % left label\n pos = [0.5 0.5];\n hlabel(2)=annotation('textarrow',pos,pos,'string','TO', ...\n 'HeadStyle','none','LineStyle','none', ...\n 'color',g.textColor,'FontSize',g.titleFontSize, ...\n 'FontWeight','bold','TextRotation',90, ...\n 'HorizontalAlignment','Center');\n renderpos = get(hlabel(2),'Position');\n px = gridmargin_bot_left(1)/1.5;\n py = gridmargin_bot_left(2) + (1-gridmargin_bot_left(2))/2 - renderpos(4)/2;\n set(hlabel(2),'X',[px px], ...\n 'Y',[py py], ...\n 'tag','tlabel');\n\n % right label\n pos = [0.5 0.5];\n hlabel(3)=annotation('textarrow',pos,pos,'string',RightLabelString, ...\n 'HeadStyle','none','LineStyle','none', ...\n 'color',g.textColor,'FontSize',g.titleFontSize, ...\n 'FontWeight','bold','TextRotation',-90, ...\n 'HorizontalAlignment','Center');\n renderpos = get(hlabel(3),'Position');\n px = 0.99;\n py = gridmargin_bot_left(2) + (1-gridmargin_bot_left(2))/2 - renderpos(4)/2;\n set(hlabel(3),'X',[px px], ...\n 'Y',[py py], ...\n 'tag','tlabel');\n\n % bottom label\n pos = [0.5 0.5 0.5 0.01];\n hlabel(4)=annotation('textbox',pos,'string',BotLabelString, ...\n 'color',g.textColor,'FontSize',g.titleFontSize, ...\n 'FontWeight','bold','HorizontalAlignment','Center', ...\n 'Margin', 0,'LineStyle','none','FitHeightToText','on');\n renderpos = get(hlabel(4),'Position');\n px = gridmargin_bot_left(1) + (1-gridmargin_bot_left(1))/2 - renderpos(3)/2;\n py = 0.016; %gridmargin_bot_left(2)/2 - renderpos(4)/2;\n set(hlabel(4),'Position',[px py renderpos(3) renderpos(4)], ...\n 'tag','tlabel');\nend\n\n% turn off rotate3D tool\nrotate3d off;\n\n% -----------------------------------------------------------------------------\n% | function h = plotmarginal(ALLEEG,curch,g,varargin)\n% | render topoplot or dipplot in the current axis\n% | varargin can be a list of <'name',value> argument pairs for pop_dipplot\n% -----------------------------------------------------------------------------\nfunction h = plotmarginal(ALLEEG,curch,g,varargin)\n\nif strcmpi(g.msubset,'diag'), return; end\n\ndipplotdefs ={'color',{'r'},'verbose','off','dipolelength',0.01,...\n 'dipolesize',20,'view',[1 0 0],'projimg', 'off', ...\n 'projlines', 'on', 'axistight', 'on', ...\n 'cornermri', 'on', 'normlen', 'on','gui','off','mri',g.dipplot.mri,'coordformat',g.dipplot.coordformat};\n\ndipplotargs = [hlp_struct2varargin(hlp_varargin2struct(varargin,dipplotdefs{:})) g.dipplot.dipplotopt];\n\nswitch lower(g.topoplot)\n case 'dipole'\n % plot dipole locations\n \n cbstr=pop_dipplot_sift(ALLEEG(1),ALLEEG(1).CAT.curComps(curch), ...\n dipplotargs{:});\n set(gca,'buttondownfcn',['figure;' cbstr]);\n\n case 'topoplot'\n % plot topoplots\n \n color = get(gcf,'color');\n topoplot(squeeze(ALLEEG(1).icawinv(:,ALLEEG(1).CAT.curComps(curch))), ...\n ALLEEG(1).chanlocs,'electrodes','off',g.topoplot_opts{:});\n set(gcf,'color',color)\n set(findobj(gca,'type','patch'),'facecolor',color);\n % ylabel(g.nodelabels(curch),'color','w');\n % cbstr = 'topoplot(squeeze(ALLEEG(1).icawinv(:,ALLEEG(1).CAT.curComps(curch))),fastif(isfield(ALLEEG(1),''chanlocs''),ALLEEG(1).chanlocs,ALLEEG(1).chanlocs),''electrodes'',''off'');';\n \n case 'customtopo'\n % plot custom topographic surface\n \n toporeplot(g.customTopoMatrix{curch},'plotrad',.75,'intrad',.75);\nend\n\nset(gca,'tag','topo');\n\n\n% -----------------------------------------------------------------------------\n% | function x = willPlotStatCI(g,CEstimator)\n% | check whether confidence intervals will be plotted for a given\n% | estimator\n% -----------------------------------------------------------------------------\nfunction x = willPlotStatCI(g,CEstimator)\nx = (~isempty(g.stats) && strcmpi(g.thresholding.arg_selection,'statistics') ...\n && g.thresholding.plotci) && isfield(g.stats,CEstimator) && (isfield(g.stats.(CEstimator),'ci')) ...\n && ~isempty(g.stats.(CEstimator).ci); \n\n% -----------------------------------------------------------------------------\n% | function x = willPlotStats(g,CEstimator)\n% | check whether stats will be plotted for a given estimator\n% -----------------------------------------------------------------------------\nfunction x = willPlotStats(g,CEstimator)\nx = (~isempty(g.stats) && strcmpi(g.thresholding.arg_selection,'statistics') ...\n && isfield(g.stats,CEstimator) && ~strcmp(g.thresholding.sigthreshmethod,'none'));\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/SIFT-private/vis/vis_TimeFreqGrid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3793771549325622}} {"text": "classdef dislocationSystem\n% class representing dislocation\n%\n% Syntax\n% dS = dislocationSystem(b,l)\n% dS = dislocationSystem(sS)\n%\n% Input\n% b - @Miller Burgers vector\n% l - @Miller line vector\n% sS - @slipSystem\n% pr - poisson ratio\n%\n% Class Properties\n% b - @Miller Burgers vector\n% l - @Miller line vector\n% u - energy\n% CS - @crystalSymmetry\n% isEdge - is edge dislocation\n% isScrew - is screw dislocation\n%\n% See also\n% DislocationSystems SlipSystems GND\n\n properties\n b % burgers vector\n l % line vector\n u % line energy of the dislocation system\n end\n \n properties (Dependent = true)\n CS\n isEdge\n isScrew\n end\n \n methods\n function dS = dislocationSystem(sS,l,u)\n \n if nargin == 0, return; end\n \n % adjust length burger vector edge dislocation a/2\n % for screw dislocations ??\n \n if isa(sS,'slipSystem')\n \n % define edge dislocations\n if sS.CS.lattice == 'hexagonal' %#ok\n dS.b = 1/3 * sS.b; \n elseif sS.CS.lattice == 'cubic' %#ok\n dS.b = 1/2 * sS.b;\n else\n dS.b = sS.b;\n warning('I could not determine the correct length of the Burgers vector. Please adjust it manually.')\n end\n dS.l = cross(sS.b,sS.n);\n \n % define screw dislocations\n b = 0.5*unique(sS.b,'antipodal','noSymmetry');\n dS.b = [dS.b(:);b(:)];\n dS.l = [dS.l(:);b(:)];\n \n % line energy\n dS.u = 1 + dS.isEdge;\n \n else\n \n b = sS;\n omega = angle(b,l,'noSymmetry');\n assert(all(omega > pi/2-1e-5 | omega<1e-5),...\n 'line vector and burgers vector should be either be orthogonal! or identical')\n \n dS.b = sS;\n l.antipodal = true;\n dS.l = l;\n if nargin < 3, u = 1; end\n if numel(u) ~= length(dS.b), u = repmat(u,size(dS.b)); end\n dS.u = u;\n \n end\n \n end\n \n function CS = get.CS(sS)\n if isa(sS.b,'Miller')\n CS = sS.b.CS;\n else\n CS = specimenSymmetry;\n end\n end\n \n function isEdge = get.isEdge(dS)\n isEdge = angle(dS.b,dS.l,'noSymmetry') > pi/2 - 1e-5;\n end\n \n function isScrew = get.isScrew(dS)\n isScrew = angle(dS.b,dS.l,'noSymmetry') < 1e-5;\n end\n \n \n function display(dS,varargin)\n % standard output\n \n displayClass(dS,inputname(1),varargin{:});\n\n % display symmetry\n if isa(dS.CS,'crystalSymmetry')\n if ~isempty(dS.CS.mineral)\n disp([' mineral: ',char(dS.CS,'verbose')]);\n else\n disp([' symmetry: ',char(dS.CS,'verbose')]);\n end\n end\n \n toChar = @(x) char(round(x),'spaceSep');\n \n if any(dS.isEdge(:))\n \n disp([' edge dislocations : ',size2str(submatrix(ones(size(dS)),dS.isEdge))]);\n \n if isa(dS.CS,'crystalSymmetry')\n matrix = [arrayfun(toChar,dS.b(dS.isEdge),'UniformOutput',false),...\n arrayfun(toChar,dS.l(dS.isEdge),'UniformOutput',false),...\n vec2cell(dS.u(dS.isEdge))];\n \n cprintf(matrix,'-L',' ','-Lc',...\n {'Burgers vector' 'line vector' 'energy'},'-d',' ','-ic',true);\n disp(' ');\n \n end\n \n end\n \n if any(dS.isScrew(:))\n\n \n disp([' screw dislocations: ',size2str(submatrix(ones(size(dS)),dS.isScrew))]);\n \n if isa(dS.CS,'crystalSymmetry')\n matrix = [arrayfun(toChar,dS.l(dS.isScrew),'UniformOutput',false),...\n vec2cell(dS.u(dS.isScrew))];\n \n cprintf(matrix,'-L',' ','-Lc',...\n {'Burgers vector' 'energy'},'-d',' ','-ic',true);\n disp(' ');\n end\n end\n\n end\n \n function n = numArgumentsFromSubscript(varargin)\n n = 0;\n end\n \n end\n \n methods (Static = true)\n function dS = fcc(cs,varargin)\n dS = dislocationSystem(symmetrise(slipSystem.fcc(cs),'antipodal'));\n end\n \n function dS = bcc(cs,varargin)\n dS = dislocationSystem(symmetrise(slipSystem.bcc(cs),'antipodal'));\n end\n \n function dS = hcp(cs,varargin)\n dS = dislocationSystem(symmetrise(slipSystem.hcp(cs),'antipodal'));\n end\n \n end\n \nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@dislocationSystem/dislocationSystem.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3792038089785083}} {"text": "classdef PerformanceTests < handle & matlab.unittest.TestCase\n\n properties (TestParameter)\n \n end\n\n\n methods (Test, TestTags = {'Performance'})\n\n function test2D(testCase)\n index = 1;\n s.dim = '2D';\n s.length = 1;\n s.height = 0.1;\n steps = 0.0001:0.0001:0.1;\n index = 1;\n tic\n % tic should start AFTer assembling the connec\n % maybe store it?\n temps = zeros(size(steps));\n nelems = zeros(size(steps));\n% for step = steps\n step = 0.0001;\n test = PerformanceTest(s);\n sol = test.compute(step);\n nelem = sol.getMesh().nelem;\n disp(nelem)\n temps(index) = toc;\n nelems(index) = nelem;\n index = index+1;\n% end\n disp(temps)\n disp(nelems)\n plot(nelems, temps)\n end\n\n% function test3D(testCase)\n% index = 1;\n% for i = 0.2:0.1:0.5\n% gg = @() testCase.example3D(i);\n% temps(index) = timeit(gg);\n% connecs(index) = size(testCase.example3D(i),1);\n% index = index+1;\n% end\n% end\n\n end\n\n methods (Access = private)\n\n function connec = example2D(testCase, step)\n s.dim = '2D';\n s.length = 1;\n s.height = 0.1;\n test = PerformanceTest(s);\n sol = test.compute(step);\n connec = test.getConnec();\n end\n\n function connec = example3D(testCase, step)\n s.dim = '3D';\n s.length = 1;\n s.height = 0.1;\n test = PerformanceTest(s);\n sol = test.compute(step);\n connec = test.getConnec();\n end\n\n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/tests/Source/PerformanceTests/PerformanceTests.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791786991753931, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.37920380172720664}} {"text": "function annotate(aline)\n %%\n% s = regexp(aline, '/', 'split');\n% if strcmp(s{4}, 'ShadowImages')\n% im = imread(aline);\n% file_name = [s{1},'/',s{2},'/',s{3},'/annotation/',s{5}];\n% file_name = [file_name(1:length(file_name)-4), '.mat'];\n% disp 'Segmenting'\n% [dummy seg] = edison_wrapper(im, @RGB2Luv, ...\n% 'SpatialBandWidth', 9, 'RangeBandWidth', 15, ...\n% 'MinimumRegionArea', 200);\n% seg = seg + 1;\n% s{4} = 'ShadowMasks'\n% mask_name = [s{1},'/',s{2},'/',s{3},'/',s{4},'/',s{5}];\n% mask_name = [mask_name(1:length(mask_name)-4), '.png'];\n% mask = imread(mask_name);\n% shadow = [];\n% lit = [];\n% segnum = max(max(seg));\n% temp = zeros(2, segnum);\n% for i = 1:size(mask, 1)\n% for j = 1:size(mask, 2)\n% if mask(i,j) == 0\n% temp(1, seg(i,j)) = temp(1, seg(i,j)) + 1;\n% else\n% temp(2, seg(i,j)) = temp(2, seg(i,j)) + 1;\n% end\n% end\n% end\n% for i = 1:size(temp, 2)\n% if temp(1, i) <= temp(2, i)\n% shadow = [shadow, i];\n% else\n% lit = [lit, i];\n% end\n% end\n% save(file_name, 'seg', 'shadow', 'lit', 'segnum');\n% end\n \n %%\n s = regexp(aline, '/', 'split');\n if strcmp(s{3}, 'Our_test') && strcmp(s{4}, 'original')\n aline\n im = imread(aline);\n file_name = [s{1},'/',s{2},'/',s{3},'/annotation/',s{5}];\n file_name = [file_name(1:length(file_name)-4), '.mat'];\n disp 'Segmenting'\n [dummy seg] = edison_wrapper(im, @RGB2Luv, ...\n 'SpatialBandWidth', 9, 'RangeBandWidth', 15, ...\n 'MinimumRegionArea', 200);\n seg = seg + 1;\n s{4} = 'gt';\n mask_name = [s{1},'/',s{2},'/',s{3},'/',s{4},'/',s{5}];\n mask_name = [mask_name(1:length(mask_name)-4), '.png'];\n mask = imread(mask_name);\n mask = imresize(mask, [size(im,1), size(im,2)]);\n shadow = [];\n lit = [];\n segnum = max(max(seg));\n temp = zeros(2, segnum);\n for i = 1:size(mask, 1)\n for j = 1:size(mask, 2)\n if mask(i,j) == 0\n temp(1, seg(i,j)) = temp(1, seg(i,j)) + 1;\n else\n temp(2, seg(i,j)) = temp(2, seg(i,j)) + 1;\n end\n end\n end\n for i = 1:size(temp, 2)\n if temp(1, i) <= temp(2, i)\n shadow = [shadow, i];\n else\n lit = [lit, i];\n end\n end\n save(file_name, 'seg', 'shadow', 'lit', 'segnum');\n end\nend", "meta": {"author": "kittenish", "repo": "Image-Shadow-Detection-and-Removal", "sha": "03de533b7ba1104a2551b0b670e7210d9c114b1e", "save_path": "github-repos/MATLAB/kittenish-Image-Shadow-Detection-and-Removal", "path": "github-repos/MATLAB/kittenish-Image-Shadow-Detection-and-Removal/Image-Shadow-Detection-and-Removal-03de533b7ba1104a2551b0b670e7210d9c114b1e/src/annotate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3792037944759047}} {"text": "% Genralized Sentiment Analysis\n%\n\nclc;\nclose all;\nclear all;\n\ntic;\n% \n fid = fopen('data\\english.stop');\n \n stopwords = textscan(fid, '%s');\n stopwords = stopwords{1,1};\n fclose(fid);\n\n\n% params\n% n:minimum appearances of a stem\nn=30;\n\n% reading the data file\n% xls is easier to read than csv\n[num,txt,raw] = xlsread('data\\final104.xls');\n\n% reading the description of each shoe\ndescriptions = raw(2:size(raw,1),2);\nstyle_ratings = num(1:size(num,1),1);\ncomfort_ratings = num(1:size(num,1),4);\noveral_ratings = num(1:size(num,1),5);\n\n% only take m data points\nm=50;\nm = length(descriptions);\ndescriptions = descriptions(1:m);\nstyle_ratings = style_ratings(1:m);\ncomfort_ratings = comfort_ratings(1:m);\noveral_ratings = overal_ratings(1:m);\ng = containers.Map();\ntoc;\n\nfor i = 1:size(descriptions,1)\n comment = descriptions{i};\n comment = SanitizeComment(comment);\n comment = lower(comment);\n r=regexp(comment,' ','split');\n for j =1:size(r,2)\n word = porterStemmer(cell2mat(r(j)));\n tfflag = ~isStopWord(word, stopwords);\n if isKey(g, word) && tfflag\n g(word) = g(word)+1;\n elseif tfflag\n g(word) = 1;\n end\n \n end\n \n \n \n \nend\ntoc;\nselectedheaders =containers.Map();\ngkeys = keys(g);\n\nfor i=1:size(gkeys,2)\n if g(gkeys{i})>=n\n \n selectedheaders(gkeys{i})=1;\n \n end\n \nend\nheaders = keys(selectedheaders);\n\noutputMatrix = zeros(m,length(headers));\nfor i = 1:size(descriptions,1)\n comment = descriptions{i};\n comment = SanitizeComment(comment);\n comment = lower(comment);\n \n r=regexp(comment,' ','split');\n comment = [];\n for j =1:size(r,2)\n word = porterStemmer(cell2mat(r(j)));\n \n comment = [comment,' ',word];\n end\n outputMatrix(i,:) = term_count(comment, headers);\n \n if mod(i,300)==0\n a = sprintf('%d', i);\n disp(a)\n end\n \n \n \nend\n\n\ntoc;\ncsvwrite('forWeka_featuresonly.csv', outputMatrix);\n\noutputmatrix_all = [style_ratings,comfort_ratings,overal_ratings, outputMatrix];\noutputmatrix_all = [ones(1,size(outputmatrix_all,2));outputmatrix_all];\ncsvwrite('forWeka_everything.csv', outputmatrix_all);\n\n", "meta": {"author": "faridani", "repo": "MatlabNLP", "sha": "e18e8bc44ecbc8bb6aa57312c1ee22930f805a6f", "save_path": "github-repos/MATLAB/faridani-MatlabNLP", "path": "github-repos/MATLAB/faridani-MatlabNLP/MatlabNLP-e18e8bc44ecbc8bb6aa57312c1ee22930f805a6f/sandboxes/siamak sandbox/univariate/main.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410572017153, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3791859787429856}} {"text": "function dt = datatypes\n% Dictionary of datatypes\n%__________________________________________________________________________\n% Copyright (C) 2005-2017 Wellcome Trust Centre for Neuroimaging\n\n%\n% $Id: datatypes.m 7147 2017-08-03 14:07:01Z spm $\n\n\npersistent dtype\nif isempty(dtype)\n t = true;\n f = false;\n table = {...\n 0 ,'UNKNOWN' ,'uint8' ,@uint8 ,1,1 ,t,t,f\n 1 ,'BINARY' ,'uint1' ,@logical,1,1/8,t,t,f\n 256 ,'INT8' ,'int8' ,@int8 ,1,1 ,t,f,t\n 2 ,'UINT8' ,'uint8' ,@uint8 ,1,1 ,t,t,t\n 4 ,'INT16' ,'int16' ,@int16 ,1,2 ,t,f,t\n 512 ,'UINT16' ,'uint16' ,@uint16 ,1,2 ,t,t,t\n 8 ,'INT32' ,'int32' ,@int32 ,1,4 ,t,f,t\n 768 ,'UINT32' ,'uint32' ,@uint32 ,1,4 ,t,t,t\n 1024,'INT64' ,'int64' ,@int64 ,1,8 ,t,f,f\n 1280,'UINT64' ,'uint64' ,@uint64 ,1,8 ,t,t,f\n 16 ,'FLOAT32' ,'float32' ,@single ,1,4 ,f,f,t\n 64 ,'FLOAT64' ,'double' ,@double ,1,8 ,f,f,t\n 1536,'FLOAT128' ,'float128',@error ,1,16 ,f,f,f\n 32 ,'COMPLEX64' ,'float32' ,@single ,2,4 ,f,f,f\n 1792,'COMPLEX128','double' ,@double ,2,8 ,f,f,f\n 2048,'COMPLEX256','float128',@error ,2,16 ,f,f,f\n 128 ,'RGB24' ,'uint8' ,@uint8 ,3,1 ,t,t,f};\n dtype = struct(...\n 'code' ,table(:,1),...\n 'label' ,table(:,2),...\n 'prec' ,table(:,3),...\n 'conv' ,table(:,4),...\n 'nelem' ,table(:,5),...\n 'size' ,table(:,6),...\n 'isint' ,table(:,7),...\n 'unsigned' ,table(:,8),...\n 'min',-Inf,'max',Inf',...\n 'supported',table(:,9));\n for i=1:length(dtype)\n if dtype(i).isint\n if dtype(i).unsigned\n dtype(i).min = 0;\n dtype(i).max = 2^(8*dtype(i).size)-1;\n else\n dtype(i).min = -2^(8*dtype(i).size-1);\n dtype(i).max = 2^(8*dtype(i).size-1)-1;\n end\n end\n end\nend\n\ndt = dtype;\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/@file_array/private/datatypes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3791859711808477}} {"text": "function [Eft1, Eft2, Covf, lpyt] = pred_coxph(gp, x, y, xt, varargin)\n% PRED_COXPH Wrapper for returning useful values for coxph likelihood\n%\n% Description\n% [EF1, EF2, COVF, LPYT] = PRED_COXPH(GP,X,Y,XT, OPTIONS)\n% Returns predictions for the two latent processes EF1 and EF2,\n% covariance matrix COVF and logarithms of predictive densities at XT.\n\n% Copyright (c) 2012-2013 Ville Tolvanen\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\nip=inputParser;\nip.FunctionName = 'PRED_COXPH';\nip.addRequired('gp',@isstruct);\nip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\nip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\nip.addRequired('xt', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\nip.addParamValue('yt', [], @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('zt', [], @(x) isreal(x) && all(isfinite(x(:))))\nip.addParamValue('predcf', [], @(x) isempty(x) || ...\n isvector(x) && isreal(x) && all(isfinite(x)&x>0))\nip.addParamValue('tstind', [], @(x) isempty(x) || iscell(x) ||...\n (isvector(x) && isreal(x) && all(isfinite(x)&x>0)))\nip.parse(gp, x, y, xt, varargin{:});\n\nif ~strcmp(gp.lik.type, 'Coxph')\n error('Likelihood not Coxph')\nend\nif nargout > 3\n if numel(gp.jitterSigma2)==1\n [Ef, Covf, lpyt] = gp_pred(gp, x, y, xt, varargin{:});\n else\n [Ef, Covf, lpyt] = gpmc_preds(gp, x, y, xt, varargin{:});\n end\nelse\n if numel(gp.jitterSigma2)==1\n [Ef, Covf] = gp_pred(gp, x, y, xt, varargin{:});\n else\n [Ef, Covf] = gpmc_preds(gp, x, y, xt, varargin{:}); \n end\nend\nntime=size(gp.lik.xtime,1);\nif isfield(gp.lik, 'stratificationVariables')\n ind_str=gp.lik.stratificationVariables;\n nf1=ntime.*unique([x(:,ind_str); xt(:,ind_str)], 'rows');\nelse\n nf1=ntime;\nend\n\nEft1 = Ef(1:nf1,:); Ef(1:nf1,:) = []; Eft2 = Ef;\n\nend\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/gp/pred_coxph.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3791859711808477}} {"text": "function t_miqps_master(quiet)\n%T_MIQPS_MASTER Tests of MILP/MIQP solvers via MIQPS_MASTER().\n\n% MP-Opt-Model\n% Copyright (c) 2010-2020, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MP-Opt-Model.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://github.com/MATPOWER/mp-opt-model for more info.\n\nif nargin < 1\n quiet = 0;\nend\n\nalgs = {'DEFAULT', 'CPLEX', 'MOSEK', 'GUROBI', 'GLPK', 'OT'};\nnames = {'DEFAULT', 'CPLEX', 'MOSEK', 'Gurobi', 'glpk', 'intlin/lin/quadprog'};\ncheck = {@have_miqp_solver, 'cplex', 'mosek', 'gurobi', 'glpk', 'intlinprog'};\ndoes_qp = [0 1 1 1 0 0];\nif have_feature('gurobi') || have_feature('cplex') || have_feature('mosek')\n does_qp(1) = 1;\nend\n\nn = 48;\nnqp = 28;\nnmiqp = 6;\nt_begin(n*length(algs), quiet);\n\ndiff_alg_warn_id = 'optim:linprog:WillRunDiffAlg';\nif have_feature('quadprog') && have_feature('quadprog', 'vnum') == 7.005\n s1 = warning('query', diff_alg_warn_id);\n warning('off', diff_alg_warn_id);\nend\n\nfor k = 1:length(algs)\n if ~isempty(check{k}) && ...\n (ischar(check{k}) && ~have_feature(check{k}) || ...\n isa(check{k}, 'function_handle') && ~check{k}())\n t_skip(n, sprintf('%s not installed', names{k}));\n else\n opt = struct('verbose', 0, 'alg', algs{k});\n mpopt = struct( ...\n 'verbose', 0, ...\n 'opf', struct( ...\n 'violation', 5e-6 ), ...\n 'cplex', struct( ...\n 'lpmethod', 0, ...\n 'qpmethod', 0, ...\n 'opt', 0 ), ...\n 'mosek', struct( ...\n 'lp_alg', 0, ...\n 'max_it', 0, ...\n 'gap_tol', 0, ...\n 'max_time', 0, ...\n 'num_threads', 0, ...\n 'opt', 0 ) ...\n );\n switch names{k}\n case 'CPLEX'\n% alg = 0; %% default uses barrier method with NaN bug in lower lim multipliers\n alg = 2; %% use dual simplex\n mpopt.cplex.lpmethod = alg;\n mpopt.cplex.qpmethod = min([4 alg]);\n opt.cplex_opt = cplex_options([], mpopt);\n case 'MOSEK'\n% sc = mosek_symbcon;\n% alg = sc.MSK_OPTIMIZER_DUAL_SIMPLEX; %% use dual simplex\n% alg = sc.MSK_OPTIMIZER_INTPNT; %% use interior point\n% mpopt.mosek.lp_alg = alg;\n mpopt.mosek.gap_tol = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_TOL_PFEAS = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_TOL_DFEAS = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_TOL_INFEAS = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_TOL_REL_GAP = 1e-10;\n vnum = have_feature('mosek', 'vnum');\n if vnum >= 8\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_QO_TOL_PFEAS = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_QO_TOL_DFEAS = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_QO_TOL_INFEAS = 1e-10;\n% mpopt.mosek.opts.MSK_DPAR_INTPNT_QO_TOL_MU_RED = 1e-10;\n mpopt.mosek.opts.MSK_DPAR_INTPNT_QO_TOL_REL_GAP = 1e-10;\n end\n% opt.verbose = 3;\n opt.mosek_opt = mosek_options([], mpopt);\n end\n\n t = sprintf('%s - 3-d LP : ', names{k});\n %% based on example from 'doc linprog'\n c = [-5; -4; -6];\n A = [1 -1 1;\n -3 -2 -4;\n 3 2 0];\n l = [-Inf; -42; -Inf];\n u = [20; Inf; 30];\n xmin = [0; 0; 0];\n x0 = [];\n [x, f, s, out, lam] = miqps_master([], c, A, l, u, xmin, [], [], [], opt);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [0; 15; 3], 6, [t 'x']);\n t_is(f, -78, 6, [t 'f']);\n t_is(lam.mu_l, [0;1.5;0], 9, [t 'lam.mu_l']);\n t_is(lam.mu_u, [0;0;0.5], 9, [t 'lam.mu_u']);\n t_is(lam.lower, [1;0;0], 9, [t 'lam.lower']);\n t_is(lam.upper, zeros(size(x)), 9, [t 'lam.upper']);\n\n if does_qp(k)\n t = sprintf('%s - unconstrained 3-d quadratic : ', names{k});\n %% from http://www.akiti.ca/QuadProgEx0Constr.html\n H = [5 -2 -1; -2 4 3; -1 3 5];\n c = [2; -35; -47];\n x0 = [0; 0; 0];\n [x, f, s, out, lam] = miqps_master(H, c, [], [], [], [], [], [], [], opt);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [3; 5; 7], 7, [t 'x']);\n t_is(f, -249, 11, [t 'f']);\n t_ok(isempty(lam.mu_l), [t 'lam.mu_l']);\n t_ok(isempty(lam.mu_u), [t 'lam.mu_u']);\n t_is(lam.lower, zeros(size(x)), 13, [t 'lam.lower']);\n t_is(lam.upper, zeros(size(x)), 13, [t 'lam.upper']);\n \n t = sprintf('%s - constrained 2-d QP : ', names{k});\n %% example from 'doc quadprog'\n H = [ 1 -1;\n -1 2 ];\n c = [-2; -6];\n A = [ 1 1;\n -1 2;\n 2 1 ];\n l = [];\n u = [2; 2; 3];\n xmin = [0; 0];\n x0 = [];\n [x, f, s, out, lam] = miqps_master(H, c, A, l, u, xmin, [], x0, [], opt);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [2; 4]/3, 7, [t 'x']);\n t_is(f, -74/9, 6, [t 'f']);\n t_is(lam.mu_l, [0;0;0], 13, [t 'lam.mu_l']);\n t_is(lam.mu_u, [28;4;0]/9, 4, [t 'lam.mu_u']);\n t_is(lam.lower, zeros(size(x)), 7, [t 'lam.lower']);\n t_is(lam.upper, zeros(size(x)), 13, [t 'lam.upper']);\n\n t = sprintf('%s - constrained 4-d QP : ', names{k});\n %% from https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm\n H = [ 1003.1 4.3 6.3 5.9;\n 4.3 2.2 2.1 3.9;\n 6.3 2.1 3.5 4.8;\n 5.9 3.9 4.8 10 ];\n c = zeros(4,1);\n A = [ 1 1 1 1;\n 0.17 0.11 0.10 0.18 ];\n l = [1; 0.10];\n u = [1; Inf];\n xmin = zeros(4,1);\n x0 = [1; 0; 0; 1];\n [x, f, s, out, lam] = miqps_master(H, c, A, l, u, xmin, [], x0, [], opt);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [0; 2.8; 0.2; 0]/3, 5, [t 'x']);\n t_is(f, 3.29/3, 6, [t 'f']);\n t_is(lam.mu_l, [6.58;0]/3, 6, [t 'lam.mu_l']);\n t_is(lam.mu_u, [0;0], 13, [t 'lam.mu_u']);\n t_is(lam.lower, [2.24;0;0;1.7667], 4, [t 'lam.lower']);\n t_is(lam.upper, zeros(size(x)), 13, [t 'lam.upper']);\n\n t = sprintf('%s - (struct) constrained 4-d QP : ', names{k});\n p = struct('H', H, 'A', A, 'l', l, 'u', u, 'xmin', xmin, 'x0', x0, 'opt', opt);\n [x, f, s, out, lam] = miqps_master(p);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [0; 2.8; 0.2; 0]/3, 5, [t 'x']);\n t_is(f, 3.29/3, 6, [t 'f']);\n t_is(lam.mu_l, [6.58;0]/3, 6, [t 'lam.mu_l']);\n t_is(lam.mu_u, [0;0], 13, [t 'lam.mu_u']);\n t_is(lam.lower, [2.24;0;0;1.7667], 4, [t 'lam.lower']);\n t_is(lam.upper, zeros(size(x)), 13, [t 'lam.upper']);\n else\n t_skip(nqp, sprintf('%s does not handle QP problems', names{k}));\n end\n\n t = sprintf('%s - infeasible LP : ', names{k});\n p = struct('A', sparse([1 1]), 'c', [1;1], 'u', -1, 'xmin', [0;0], 'opt', opt);\n [x, f, s, out, lam] = miqps_master(p);\n t_ok(s <= 0, [t 'no success']);\n\n% opt.verbose = 3;\n t = sprintf('%s - 2-d MILP : ', names{k});\n %% from MOSEK 6.0 Guided Tour, section 7.13.1, https://docs.mosek.com/6.0/toolbox/node009.html\n c = [-2; -3];\n A = sparse([195 273; 4 40]);\n u = [1365; 140];\n xmax = [4; Inf];\n vtype = 'I';\n p = struct('c', c, 'A', A, 'u', u, 'xmax', xmax, 'vtype', vtype, 'opt', opt);\n [x, f, s, out, lam] = miqps_master(p);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [4; 2], 12, [t 'x']);\n t_is(lam.mu_l, [0; 0], 12, [t 'lam.mu_l']);\n t_is(lam.mu_u, [0; 0], 12, [t 'lam.mu_u']);\n t_is(lam.lower, [0; 0], 12, [t 'lam.lower']);\n t_is(lam.upper, [2; 3], 12, [t 'lam.upper']);\n\n if does_qp(k)\n t = sprintf('%s - 4-d MIQP : ', names{k});\n %% from cplexmiqpex.m, CPLEX_Studio_Academic124/cplex/examples/src/matlab/cplexmiqpex.m\n H = sparse([ 33 6 0 0;\n 6 22 11.5 0;\n 0 11.5 11 0;\n 0 0 0 0]);\n c = [-1 -2 -3 -1]';\n Aineq = [-1 1 1 10;\n 1 -3 1 0];\n bineq = [20 30]';\n Aeq = [0 1 0 -3.5];\n beq = 0;\n xmin = [ 0; 0; 0; 2];\n xmax = [40; Inf; Inf; 3];\n A = sparse([Aeq; Aineq]);\n l = [beq; -Inf; -Inf];\n u = [beq; bineq];\n vtype = 'CCCI';\n p = struct('H', H, 'c', c, 'A', A, 'l', l, 'u', u, ...\n 'xmin', xmin, 'xmax', xmax, 'vtype', vtype, 'opt', opt);\n [x, f, s, out, lam] = miqps_master(p);\n t_is(s, 1, 12, [t 'success']);\n t_is(x, [7; 7; 0; 2], 7, [t 'x']);\n t_is(lam.mu_l, [466; 0; 0], 6, [t 'lam.mu_l']);\n t_is(lam.mu_u, [0; 272; 0], 6, [t 'lam.mu_u']);\n t_is(lam.lower, [0; 0; 349.5; 4350], 5, [t 'lam.lower']);\n t_is(lam.upper, [0; 0; 0; 0], 7, [t 'lam.upper']);\n else\n t_skip(nmiqp, sprintf('%s does not handle MIQP problems', names{k}));\n end\n% opt.verbose = 0;\n end\nend\n\nif have_feature('quadprog') && have_feature('quadprog', 'vnum') == 7.005\n warning(s1.state, diff_alg_warn_id);\nend\n\nt_end;\n\nfunction TorF = have_miqp_solver()\nTorF = have_feature('cplex') || have_feature('glpk') || ...\n have_feature('gurobi') || have_feature('intlinprog') || ...\n have_feature('mosek');\n\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/mp-opt-model/lib/t/t_miqps_master.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105587468139, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3791859711808476}} {"text": "function AnimateTrajectory(x,y,z)\n\nax = newplot([]);\naxis(ax,[min(x) max(x) min(y) max(y) min(z) max(z)])\n%axis(ax,[0 max(x) 0 max(y) 0 max(z)])\nhead = line('parent',ax,'color','r','marker','.','markersize',15,'erase','xor', ...\n 'xdata',x(1),'ydata',y(1),'zdata',z(1));\nbody = line('parent',ax,'color','b','linestyle','-','erase','none', ...\n 'xdata',[],'ydata',[],'zdata',[]);\nbox on\n%set(gca,'yDir','reverse')\n% Grow the body\nfor i = 1:length(x)\n pause(.01)\n set(head,'xdata',x(i),'ydata',y(i),'zdata',z(i))\n set(body,'xdata',x(1:i),'ydata',y(1:i),'zdata',z(1:i))\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/24120-review-of-statistical-arbitrage-cointegration-and-multivariate-ornstein-uhlenbeck/MultivariateOUnCointegration/Theory/AnimateTrajectory.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5698526514141571, "lm_q2_score": 0.6654105521116443, "lm_q1q2_score": 0.37918596739977867}} {"text": "% collect the training data annotations (from the menpo challenge)\nclear\ntrain_data_loc = 'C:\\Users\\tbaltrus\\Documents\\menpo_data_orig/';\n\ndataset_locs = {[train_data_loc, '/train/'];};\n\n\nleft_to_frontal_map = [17,28; 18,29; 19,30; 20,31;\n 21,34; 22,32; 23,39; 24,38; 25,37; 26,42; 27,41;\n 28,52; 29,51; 30,50; 31,49; 32,60; 33,59; 34,58;\n 35,63; 36,62; 37,61; 38,68; 39,67];\n \nright_to_frontal_map = [17,28; 18,29; 19,30; 20,31;\n 21,34; 22,36; 23,44; 24,45; 25,46; 26,47; 27,48;\n 28,52; 29,53; 30,54; 31,55; 32,56; 33,57; 34,58;\n 35,63; 36,64; 37,65; 38,66; 39,67];\n \nall_pts_left = [];\nall_pts_right = [];\nall_pts_orig_left = [];\nall_pts_orig_right = [];\n\nfor i=1:numel(dataset_locs)\n landmarkLabels = dir([dataset_locs{i} '\\*.pts']);\n landmarkImgs = dir([dataset_locs{i} '\\*.jpg']);\n\n for p=1:numel(landmarkLabels)\n landmarks = importdata([dataset_locs{i}, landmarkLabels(p).name], ' ', 3);\n img = imread([dataset_locs{i}, landmarkImgs(p).name]);\n landmarks = landmarks.data;\n landmark_labels = -ones(68,2); \n \n if(size(landmarks,1) == 39)\n % Determine if the points are clock-wise or counter clock-wise\n % Clock-wise points are facing left, counter-clock-wise right\n sum = 0;\n for k=1:11\n step = (landmarks(k+1,1) - landmarks(k,1)) * (landmarks(k+1,2) + landmarks(k,2));\n sum = sum + step;\n end\n \n if(sum > 0)\n % First need to resample the face outline as there are 9\n % points in the near-frontal and 10 points in profile for\n % the outline of the face\n \n outline = iterate_piece_wise(landmarks(1:10,:), 9);\n brow = iterate_piece_wise(landmarks(13:16,:), 5);\n landmark_labels(1:9,:) = outline;\n landmark_labels(18:22,:) = brow;\n landmark_labels(left_to_frontal_map(:,2),:) = landmarks(left_to_frontal_map(:,1),:);\n \n all_pts_orig_right = cat(3, all_pts_orig_right, landmarks);\n all_pts_right = cat(3, all_pts_right, landmark_labels);\n else\n outline = iterate_piece_wise(landmarks(10:-1:1,:), 9);\n brow = iterate_piece_wise(landmarks(16:-1:13,:), 5);\n \n landmark_labels(9:17,:) = outline;\n landmark_labels(23:27,:) = brow;\n \n landmark_labels(right_to_frontal_map(:,2),:) = landmarks(right_to_frontal_map(:,1),:); \n \n all_pts_orig_left = cat(3, all_pts_orig_left, landmarks);\n all_pts_left = cat(3, all_pts_left, landmark_labels);\n end\n end\n \n if(mod(p,50) == 0)\n fprintf('%d/%d\\n', p, numel(landmarkLabels))\n end\n end\nend\n\n%%\n\nsave('menpo_68_pts_train_profile', 'all_pts_orig_right', 'all_pts_right', 'all_pts_orig_left', 'all_pts_left');\n", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/model_training/pdm_generation/menpo_pdm/menpo_chin/Collect_menpo_annotations_profile_train.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.37902748501457606}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: September 9th, 2016\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction Make_Your_Plates_and_Input_Files()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 256; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nLx = 1.0; % Length of Eulerian Grid in x-Direction\ndx = Lx/Nx; % Grid spatial resolution\n\n%\n% Immersed Structure Geometric / Dynamic Parameters %\n%\nds = 0.5*dx; % Lagrangian Pt. Spacing (2x resolution of Eulerian grid)\nstruct_name = 'plates'; % Name for .vertex, .spring, etc files. (must match what's in 'input2d')\n\n\n% Call function to construct geometry\n[xLag,yLag,dist] = give_Me_Immsersed_Boundary_Geometry(ds,Nx,Lx);\n\n\n% Plot Geometry to test\nplot(xLag,yLag,'r-'); hold on;\nplot(xLag,yLag,'*'); hold on;\nxlabel('x'); ylabel('y');\naxis([0 Lx 0 Lx]);\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n\n% Prints .spring file!\nk_Spring = 2.5e4; % Spring stiffness (does not need to be equal for all springs)\nds_Plates = dist; % Spring resting length (does not need to be equal for all springs)\nprint_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Plates,ds,struct_name);\n\n\n% Prints .beam file!\n% k_Beam = 0.5; % Beam Stiffness (does not need to be equal for all beams)\n% C = compute_Curvatures(xLag,yLag) % Computes curvature of initial configuration\n%print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name);\n\n\n% Prints .target file!\n%k_Target = 1e7;\n%print_Lagrangian_Target_Pts(xLag,k_Target,struct_name);\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called 'struct_name'.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag); % Total # of Lag. Pts\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid);\n\n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called 'struct_name'.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Plates,ds,struct_name)\n\n N = length(xLag);\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N-2 + N/2 ); % Print # of springs \n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N/2 \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds); \n elseif s > N/2\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds); \n end\n end\n \n % SPRINGS ACROSS PLATES\n for s=1:N/2\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+N/2, k_Spring, ds_Plates); \n end\n \n fclose(spring_fid); \n \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints TARGET points to a file called 'struct_name'.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called 'struct_name'.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C(s) ); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, 1, k_Beam, C(s) ); \n end\n end\n fclose(beam_fid); \n \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: computes \"curvature\" of starting configuration\n% \n% NOTE: not curvature in the traditional geometric sense, in the 'discrete'\n% sense through cross product.\n%\n% NOTE: assumes a CLOSED structure\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction C = compute_Curvatures(xLag,yLag)\n\nN = length(xLag);\nC = zeros( N );\n\n%Note: needs to be done same order as you print .beam file!\nfor i=1:N\n \n % Pts Xp -> Xq -> Xr (same as beam force calc.)\n \n if ( (i > 1) && (i < N) )\n \n Xp = xLag(i-1); Xq = xLag(i); Xr = xLag(i+1);\n Yp = yLag(i-1); Yq = yLag(i); Yr = yLag(i+1);\n \n elseif (i==1)\n \n Xp = xLag(N); Xq = xLag(i); Xr = xLag(i+1);\n Yp = yLag(N); Yq = yLag(i); Yr = yLag(i+1);\n \n elseif (i==N)\n \n Xp = xLag(N-1); Xq = xLag(N); Xr = xLag(1);\n Yp = yLag(N-1); Yq = yLag(N); Yr = yLag(1);\n \n end\n \n C(i) = (Xr-Xq)*(Yq-Yp) - (Yr-Yq)*(Xq-Xp); %Cross product btwn vectors\n \nend\n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \nfunction [xLag,yLag,dist] = give_Me_Immsersed_Boundary_Geometry(ds,Nx,L)\n\n% ds: Lagrangian pt. spacing\n% Nx: Eulerian grid resolution\n% L: Length of computational domain\n\nyLag = 0:ds:L/5; % Make plate of length L/10\nxLag = zeros(1,length(yLag)); % Make corresponding xPts for Vertical Plate\n\n% Translate points\nyLag = yLag + (L/2-L/10); % Translate them symmetrically\n\n% Make sides\nxLag_Left = xLag + (L/2-L/10);\nxLag_Right = xLag + (L/2+L/10);\n\n% Combine Pts Into ONE Vector\nxLag = [xLag_Left xLag_Right];\nyLag = [yLag yLag];\n\n% Distance between plates\ndist = (L/2+L/10) - (L/2-L/10);\n\n% Plot the Geometry\n% plot(xLag,yLag,'*'); hold on;\n% axis([0 L 0 L]);\n\n\n\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Examples_First_Year_Seminar/Plates/Make_Your_Plates_and_Input_Files.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185944046238982, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37892670316628396}} {"text": "function [b, mpe] = back_mpe(engine, bfuture, f, ev2, t)\n\nif f.t ~= t\n error('mixed up time stamps')\nend\nif t==1\n error('should call back1_mpe')\nend\n\nmaximize = 1;\nbnet = bnet_from_engine(engine);\nss = bnet.nnodes_per_slice;\n\nint = engine.interface;\nD = engine.in_clq;\nC = engine.out_clq;\nphiD = marginalize_pot(bfuture.clpot{D}, int, maximize);\nphiD = set_domain_pot(phiD, int+ss); % shift to slice 2\nphiC = marginalize_pot(f.clpot{C}, int+ss, maximize);\nratio = divide_by_pot(phiD, phiC);\nf.clpot{C} = multiply_by_pot(f.clpot{C}, ratio);\n\n[mpe, b.clpot] = find_max_config(engine.jtree_engine, f.clpot, f.seppot, ev2);\nmpe = mpe((1:ss)+ss); % extract values for slice 2\nfor c=1:length(b.clpot)\n [b.clpot{c}, ll(c)] = normalize_pot(b.clpot{c});\nend\nb.t = t;\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/online/@jtree_2TBN_inf_engine/back_mpe.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3789266968105157}} {"text": "function p05_title ( )\n\n%*****************************************************************************80\n%\n%% P05_TITLE prints a title for problem 05.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 March 2007\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% None\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'Problem 05\\n' );\n fprintf ( 1, ' Name: ST04\\n' );\n fprintf ( 1, ' Stroud #4, page 26.\\n' );\n fprintf ( 1, ' Region: 0 <= X(i) <= 1\\n' );\n fprintf ( 1, ' Integrand: F(X) = 1 / ( 1 + sum ( 2 * X(i) ) )\\n' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/quadrature_test/p05_title.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5078118642792044, "lm_q2_score": 0.7461389986757757, "lm_q1q2_score": 0.3788982359289645}} {"text": "function iou = evaluateRoomObject3D(sequenceName,gtRoom3D,gtObject3D,outRoom3D,outObject3D,visualization,cutoff,delta)\n\n%% set parameters\n\n% set cutoff distance\nif ~exist('cutoff','var')\n cutoff = 5.5;\nend\n\n% granuality\nif ~exist('delta','var')\n delta = 0.1;\nend\n\nif ~exist('visualization','var')\n visualization = false;\nend\n\n\n%% evaluate the accuracy\nrangeX = min(min(outRoom3D(1,:)),min(gtRoom3D(1,:)))-delta:delta:max(max(outRoom3D(1,:)),max(gtRoom3D(1,:)))+delta;\nrangeY = min(min(outRoom3D(2,:)),min(gtRoom3D(2,:)))-delta:delta:max(max(outRoom3D(2,:)),max(gtRoom3D(2,:)))+delta;\nrangeZ = min(min(outRoom3D(3,:)),min(gtRoom3D(3,:)))-delta:delta:max(max(outRoom3D(3,:)),max(gtRoom3D(3,:)))+delta;\n[gridX, gridY, gridZ] = ndgrid(rangeX,rangeY,rangeZ);\ngridXYZ = [gridX(:)'; gridY(:)'; gridZ(:)'];\nclear gridX gridY gridZ\n%plot3(gridXYZ(1,:),gridXYZ(2,:),gridXYZ(3,:),'.');\n\ndata=readframe(fullfile('/n/fs/sun3d/data/',sequenceName));\nimgSize= size(imread(data.depthpath));\n\nextrinsicsFiles = dirSmart(fullfile('http://sun3d.cs.princeton.edu/data/',sequenceName,'extrinsics/'),'txt');\nextrinsicsC2W = permute(reshape(readValuesFromTxt(fullfile('http://sun3d.cs.princeton.edu/data/',sequenceName,'extrinsics',extrinsicsFiles(end).name)),4,3,[]),[2 1 3]);\n\n\nproj2D = data.K * extrinsicsC2W(1:3,1:3)' * gridXYZ;\nproj2D(1:2,:) = proj2D(1:2,:) ./ proj2D([3 3],:);\ninCamera = proj2D(3,:) > 1.0 & proj2D(3,:)< cutoff & 0 0.5^2\n count=count+1;\n end\n end\n intersectCount(i) = count;\n end\nend\ninGroundTruth = inGroundTruth & (intersectCount==0);\n\n\nfor j=1:length(gtObject3D.objects)\n if ~isempty(gtObject3D.objects{j})\n [inon, on] = inpolygon(gridXYZ(1,:),gridXYZ(3,:), gtObject3D.objects{j}.polygon{1}.X, gtObject3D.objects{j}.polygon{1}.Z);\n in = inon&~on;\n in = in & gtObject3D.objects{j}.polygon{1}.Ymin < gridXYZ(2,:) & gridXYZ(2,:) < gtObject3D.objects{j}.polygon{1}.Ymax;\n inGroundTruth = inGroundTruth & ~in;\n end\nend\n\n\nif visualization\n hold on;\n plot3(gridXYZ(1,inGroundTruth),gridXYZ(2,inGroundTruth),gridXYZ(3,inGroundTruth),'.b');\nend\n\n%% inside the prediction results\n[inon,on] = inpolygon(gridXYZ(1,:),gridXYZ(3,:),outRoom3D(1,1:end/2),outRoom3D(3,1:end/2));\nin = inon&~on;\ninResult = in & min(outRoom3D(2,:)) < gridXYZ(2,:) & gridXYZ(2,:) < max(outRoom3D(2,:));\n\nintersectCount = zeros(1,length(inResult));\nfor i=find(inResult) \n [xi,yi] = polyxpoly([0 gridXYZ(1,i)],[0 gridXYZ(3,i)],outRoom3D(1,1:end/2),outRoom3D(3,1:end/2));\n if ~isempty(xi)\n count = 0;\n for k=1:length(xi)\n disSq = xi(k)^2+yi(k)^2;\n if disSq > 0.5^2\n count=count+1;\n end\n end\n intersectCount(i) = count;\n end\nend\ninResult = inResult & (intersectCount==0);\n\n\nfor j=1:length(outObject3D.objects)\n if ~isempty(outObject3D.objects{j})\n [inon, on] = inpolygon(gridXYZ(1,:),gridXYZ(3,:), outObject3D.objects{j}.polygon{1}.X, outObject3D.objects{j}.polygon{1}.Z);\n in = inon&~on;\n in = in & outObject3D.objects{j}.polygon{1}.Ymin < gridXYZ(2,:) & gridXYZ(2,:) < outObject3D.objects{j}.polygon{1}.Ymax;\n inResult = inResult & ~in;\n end\nend\n\n\nif visualization\n hold on;\n plot3(gridXYZ(1,inResult),gridXYZ(2,inResult),gridXYZ(3,inResult),'.k');\nend\n\n%% evaluate\nintersectionGR = inGroundTruth & inResult;\nunionGR = inGroundTruth | inResult;\niou = sum(intersectionGR) / sum(unionGR);\n\n", "meta": {"author": "thusiyuan", "repo": "cooperative_scene_parsing", "sha": "0689c8057757a9efec387c272ddae9074861b07a", "save_path": "github-repos/MATLAB/thusiyuan-cooperative_scene_parsing", "path": "github-repos/MATLAB/thusiyuan-cooperative_scene_parsing/cooperative_scene_parsing-0689c8057757a9efec387c272ddae9074861b07a/evaluation/holisticScene/evaluateRoomObject3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3788982330623541}} {"text": "function data = readframeSUNRGBD(thispath,dataRoot,cls,bbmode) \n % example code to read annotation from \".json\" file.\n % thispath: full path to the data folder.\n % dataRoot: root directory of all data folder.\n % cls : object category of ground truth to load. If not speficfy, the code will load all ground truth. \n if ~exist('cls','var')\n cls =[];\n end\n if ~exist('bbmode','var')\n bbmode ='2Dbb';\n end\n\n if ~exist('dataRoot','var')||isempty(dataRoot)\n dataRoot = '/n/fs/sun3d/data/';\n end\n sequenceName = getSequenceName(thispath,dataRoot);\n if ~exist(thispath,'dir')\n data.sequenceName = sequenceName;\n data.valid = 0;\n return;\n end\n indd = find(sequenceName=='/');\n sensorType = sequenceName(indd(1)+1:indd(2)-1);\n % get K\n fID = fopen([thispath '/intrinsics.txt'],'r');\n K = reshape(fscanf(fID,'%f'),[3,3])';\n fclose(fID);\n \n % get image and depth path\n depthpath = dir([thispath '/depth/' '/*.png']);\n depthname = depthpath(1).name;\n depthpath = [thispath '/depth/' depthpath(1).name];\n \n rgbpath = dir([thispath '/image/' '/*.jpg']);\n rgbname = rgbpath(1).name;\n rgbpath = [thispath '/image/' rgbpath(1).name];\n \n if exist(sprintf('%s/annotation3Dfinal/index.json',thispath),'file')\n annoteImage =loadjson(sprintf('%s/annotation3Dfinal/index.json',thispath));\n % get Box\n filename = dir([fullfile(thispath,'extrinsics') '/*.txt']);\n Rtilt = dlmread([fullfile(thispath,'extrinsics') '/' filename(end).name]);\n Rtilt = Rtilt(1:3,1:3);\n anno_extrinsics = Rtilt;\n % convert it into matlab coordinate\n Rtilt = [1 0 0; 0 0 1 ;0 -1 0]*Rtilt*[1 0 0; 0 0 -1 ;0 1 0];\n\n\n cnt =1;\n for obji =1:length(annoteImage.objects)\n annoteobject =annoteImage.objects(obji);\n if ~isempty(annoteobject)&&~isempty(annoteobject{1})&&~isempty(annoteobject{1}.polygon)\n annoteobject =annoteobject{1};\n box = annoteobject.polygon{1};\n\n % class name and label \n ind = find(annoteobject.name==':');\n if isempty(ind)\n classname = annoteobject.name;\n labelname ='';\n else\n if ismember(annoteobject.name(ind-1),{'_',' '}),\n clname = annoteobject.name(1:ind-2);\n else\n clname = annoteobject.name(1:ind-1);\n end\n %[~,classId]= ismember(clname,classNames);\n classname = clname;\n labelname = annoteobject.name(ind+2:end);\n %[~,label]= ismember(Labelname,labelNames);\n end\n if ismember(classname,{'wall','floor','ceiling'})||(~isempty(cls)&&~(sum(ismember(cls,{classname}))>0)), \n continue;\n end\n\n\n x =box.X;\n y =box.Z;\n vector1 =[x(2)-x(1),y(2)-y(1),0];\n coeff1 =norm(vector1);\n vector1 =vector1/norm(vector1);\n vector2 =[x(3)-x(2),y(3)-y(2),0];\n coeff2 = norm(vector2);\n vector2 =vector2/norm(vector2);\n up = cross(vector1,vector2);\n vector1 = vector1*up(3)/up(3);\n vector2 = vector2*up(3)/up(3);\n zmax =-box.Ymax;\n zmin =-box.Ymin;\n centroid2D = [0.5*(x(1)+x(3)); 0.5*(y(1)+y(3))];\n\n thisbb.basis = [vector1;vector2; 0 0 1]; % one row is one basis\n thisbb.coeffs = abs([coeff1, coeff2, zmax-zmin])/2;\n thisbb.centroid = [centroid2D(1), centroid2D(2), 0.5*(zmin+zmax)];\n thisbb.classname = classname;\n thisbb.labelname = labelname;\n thisbb.sequenceName = sequenceName;\n orientation = [([0.5*(x(2)+x(1)),0.5*(y(2)+y(1))] - centroid2D(:)'), 0];\n thisbb.orientation = orientation/norm(orientation);\n\n if strcmp(bbmode,'2Dbb'),\n [bb2d,bb2dDraw] = projectStructBbsTo2d(thisbb,Rtilt,[],K);\n %gtBb2D = crop2DBB(gtBb2D,427,561);\n thisbb.gtBb2D = bb2d(1:4);\n end\n groundtruth3DBB(cnt) =thisbb;\n cnt=cnt+1;\n end\n end\n if cnt==1,groundtruth3DBB =[];end\n else\n groundtruth3DBB =[];\n filename = dir([fullfile(thispath,'extrinsics') '/*.txt']);\n Rtilt = dlmread([fullfile(thispath,'extrinsics') '/' filename(end).name]);\n Rtilt = Rtilt(1:3,1:3);\n anno_extrinsics = Rtilt;\n Rtilt = [1 0 0; 0 0 1 ;0 -1 0]*Rtilt*[1 0 0; 0 0 -1 ;0 1 0];\n \n end\n % read in room \n gtCorner3D =[];\n if exist([thispath '/annotation3Dlayout/index.json'],'file')\n json=loadjson([thispath '/annotation3Dlayout/index.json']);\n for objectID=1:length(json.objects)\n try\n groundTruth = json.objects{objectID}.polygon{1};\n numCorners = length(groundTruth.X);\n\n gtCorner3D(1,:) = [groundTruth.X groundTruth.X];\n gtCorner3D(2,:) = [repmat(groundTruth.Ymin,[1 numCorners]) repmat(groundTruth.Ymax,[1 numCorners])];\n gtCorner3D(3,:) = [groundTruth.Z groundTruth.Z];\n gtCorner3D = anno_extrinsics'*gtCorner3D;\n gtCorner3D = gtCorner3D([1,3,2],:);\n gtCorner3D(3,:) = -1*gtCorner3D(3,:); \n gtCorner3D = Rtilt*gtCorner3D;\n break;\n catch\n end\n end\n \n end\n \n data =struct('sequenceName',sequenceName,'groundtruth3DBB',...\n groundtruth3DBB,'Rtilt',Rtilt,'K',K,...\n 'depthpath',depthpath,'rgbpath',rgbpath,'anno_extrinsics',anno_extrinsics,'depthname',depthname,...\n 'rgbname',rgbname,'sensorType',sensorType,'valid',1,'gtCorner3D',gtCorner3D);\n\nend", "meta": {"author": "thusiyuan", "repo": "cooperative_scene_parsing", "sha": "0689c8057757a9efec387c272ddae9074861b07a", "save_path": "github-repos/MATLAB/thusiyuan-cooperative_scene_parsing", "path": "github-repos/MATLAB/thusiyuan-cooperative_scene_parsing/cooperative_scene_parsing-0689c8057757a9efec387c272ddae9074861b07a/evaluation/vis/readframeSUNRGBD.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7577943712746406, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3788971856373203}} {"text": "function [Wrot, CC] = get_whitening_matrix_faster(rez)\n% based on a subset of the data, compute a channel whitening matrix\n% this requires temporal filtering first (gpufilter)\n\nops = rez.ops;\nNbatch = ops.Nbatch;\ntwind = ops.twind;\nNchanTOT = ops.NchanTOT;\nNT = ops.NT;\nNTbuff = ops.NTbuff;\nchanMap = ops.chanMap;\nNchan = rez.ops.Nchan;\nxc = rez.xc;\nyc = rez.yc;\n\n% load data into patches, filter, compute covariance\nfprintf('Getting channel whitening matrix... \\n');\n\nibatch = 1;\nibatch = ibatch:ops.nSkipCov:Nbatch;\n\n% scrappy progress bar in command window\n% allBatches = 1:Nbatch;\npb = progBar(ibatch, 20);\n\nif getOr(ops, 'useMemMapping',0)\n %% Parallelize raw data loading (needs memmapfile implement for parallel read access)\n % slice ops for parallel\n ntbuff = ops.ntbuff; % NOTE: this is just the buffer length, not \".NTbuff\" (which == the actual batch + buffer length)\n NT = ops.NT;\n bufferedNT = NT + 2*ntbuff;\n tend = ops.tend;\n twind = ops.twind;\n doCAR = logical(ops.CAR);\n CC = cell(1, numel(ibatch));\n [CC{:}] = deal(zeros(Nchan, Nchan, 'single')); % we'll estimate the covariance from data batches, then add to this variable\n \n % set up the parameters of the filter % just one instance of filters\n if isfield(ops,'fslow')&&ops.fslowfine)\nEToVi = [1 5 7 8; 5 2 6 9; 7 6 3 10; 8 9 10 4; 8 5 7 9; 7 5 6 9; 8 9 7 10; 9 6 7 10];\nVXi = [-1 1 -1 -1 0 0 -1 -1 0 -1];\nVYi = [-1 -1 1 -1 -1 0 0 -1 -1 0];\nVZi = [-1 -1 -1 1 -1 -1 -1 0 0 0];\n\nv1 = EToVi(:,1); v2 = EToVi(:,2); v3 = EToVi(:,3); v4 = EToVi(:,4);\nri = 0.5*(-(r+s+t+1)*VXi(v1) + (1+r)*VXi(v2) + (1+s)*VXi(v3) + (1+t)*VXi(v4) );\nsi = 0.5*(-(r+s+t+1)*VYi(v1) + (1+r)*VYi(v2) + (1+s)*VYi(v3) + (1+t)*VYi(v4) );\nti = 0.5*(-(r+s+t+1)*VZi(v1) + (1+r)*VZi(v2) + (1+s)*VZi(v3) + (1+t)*VZi(v4) );\n\ninterp = Vandermonde3D(N, ri(:), si(:), ti(:))*invV;\nri = [-1;1;-1;-1]; si = [-1;-1;1;-1]; ti = [-1;-1;-1;1]; refNp = length(ri);\ninterp1 = Vandermonde3D(N, ri(:), si(:), ti(:))*invV;\n\nNlevels = length(levels);\n\nsk = 1;\nF = spalloc(Np,Np,1);\nfor i=0:N % old ordering\n for j=0:N - i\n for k=0:N - i - j\n if(i+j+k<=1), F(sk,sk) = 1.; end;\n sk = sk+1;\n end\n end\nend\n\nhold on;\nfor n=1:Nlevels\n \n xref = x; yref = y; zref = z; uref = u; Kref = K; Jref = J;\n \n err = 1;\n while(err > tol)\n \n level = levels(n);\n \n umin = min(uref, [], 1);\n umax = max(uref, [], 1);\n \n refineflag = (umin <= level & umax >= level);\n \n toref = find( refineflag);\n Nref = length(toref);\n \n uref = reshape(interp*uref(:,toref), Np, 8*Nref);\n xref = reshape(interp*xref(:,toref), Np, 8*Nref);\n yref = reshape(interp*yref(:,toref), Np, 8*Nref);\n zref = reshape(interp*zref(:,toref), Np, 8*Nref);\n Jref = reshape(interp*Jref(:,toref), Np, 8*Nref)/8;\n\n Kref = 8*Nref;\n\n ufilt = V*(F*(invV*uref));\n err = max(max(abs(ufilt-uref)));\n\n end\n \n xref = interp1*xref; yref = interp1*yref; zref = interp1*zref; uref = interp1*uref; \n \n tets = reshape(1:4*Kref, 4, Kref)';\n \n x1 = xref(1,:)'; y1 = yref(1,:)'; z1 = zref(1,:)'; u1 = uref(1,:)' + 1e-10*rand(Kref,1);\n x2 = xref(2,:)'; y2 = yref(2,:)'; z2 = zref(2,:)'; u2 = uref(2,:)' + 1e-10*rand(Kref,1);\n x3 = xref(3,:)'; y3 = yref(3,:)'; z3 = zref(3,:)'; u3 = uref(3,:)' + 1e-10*rand(Kref,1);\n x4 = xref(4,:)'; y4 = yref(4,:)'; z4 = zref(4,:)'; u4 = uref(4,:)' + 1e-10*rand(Kref,1);\n \n trix = []; triy = []; triz = []; triu = [];;\n \n umin = min(uref, [], 1);\n umax = max(uref, [], 1);\n \n lev = levels(n);\n \n % find candidate elements\n ks = find(umin<= lev & umax >= lev);\n \n Nks = length(ks);\n \n if(Nks>0)\n \n fc = zeros(Nks,6);\n \n u1ks = u1(ks); u2ks = u2(ks); u3ks = u3(ks); u4ks = u4(ks);\n \n % find local coordinate at each of 6 edges\n c1 = (lev-u1ks)./(u2ks-u1ks); fc(:,1) = (c1>=0 & c1<=1);\n c2 = (lev-u2ks)./(u3ks-u2ks); fc(:,2) = (c2>=0 & c2<=1);\n c3 = (lev-u3ks)./(u1ks-u3ks); fc(:,3) = (c3>=0 & c3<=1);\n c4 = (lev-u1ks)./(u4ks-u1ks); fc(:,4) = (c4>=0 & c4<=1); \n c5 = (lev-u2ks)./(u4ks-u2ks); fc(:,5) = (c5>=0 & c5<=1); \n c6 = (lev-u3ks)./(u4ks-u3ks); fc(:,6) = (c6>=0 & c6<=1); \n\n % find triangle intersection\n tris = find(sum(fc, 2)==3); Ntris = length(tris); tfc = fc(tris,:); ids = find(tfc');\n ktris = ks(tris);\n \n % trim list\n tc1 = c1(tris); tc2 = c2(tris); tc3 = c3(tris); tc4 = c4(tris); tc5 = c5(tris); tc6 = c6(tris);\n \n tx1 = x1(ktris); ty1 = y1(ktris); tz1 = z1(ktris);\n tx2 = x2(ktris); ty2 = y2(ktris); tz2 = z2(ktris);\n tx3 = x3(ktris); ty3 = y3(ktris); tz3 = z3(ktris);\n tx4 = x4(ktris); ty4 = y4(ktris); tz4 = z4(ktris);\n \n xc = zeros(Ntris, 6); yc = zeros(Ntris, 6); zc = zeros(Ntris, 6);\n xc(:,1) = (1-tc1).*tx1 + tc1.*tx2; yc(:,1) = (1-tc1).*ty1 + tc1.*ty2; zc(:,1) = (1-tc1).*tz1 + tc1.*tz2;\n xc(:,2) = (1-tc2).*tx2 + tc2.*tx3; yc(:,2) = (1-tc2).*ty2 + tc2.*ty3; zc(:,2) = (1-tc2).*tz2 + tc2.*tz3;\n xc(:,3) = (1-tc3).*tx3 + tc3.*tx1; yc(:,3) = (1-tc3).*ty3 + tc3.*ty1; zc(:,3) = (1-tc3).*tz3 + tc3.*tz1;\n xc(:,4) = (1-tc4).*tx1 + tc4.*tx4; yc(:,4) = (1-tc4).*ty1 + tc4.*ty4; zc(:,4) = (1-tc4).*tz1 + tc4.*tz4;\n xc(:,5) = (1-tc5).*tx2 + tc5.*tx4; yc(:,5) = (1-tc5).*ty2 + tc5.*ty4; zc(:,5) = (1-tc5).*tz2 + tc5.*tz4;\n xc(:,6) = (1-tc6).*tx3 + tc6.*tx4; yc(:,6) = (1-tc6).*ty3 + tc6.*ty4; zc(:,6) = (1-tc6).*tz3 + tc6.*tz4;\n xc = xc'; yc = yc'; zc = zc';\n \n ids = reshape(ids, 3, Ntris);\n \n trix = [trix, xc(ids)];\n triy = [triy, yc(ids)];\n triz = [triz, zc(ids)];\n triu = [triu, lev*ones(size(ids))];\n \n % find quadrilateral intersection\n quads = find(sum(fc, 2)==4); Nquads = length(quads); qfc = fc(quads,:); ids = find(qfc');\n kquads = ks(quads);\n \n % quad list\n qc1 = c1(quads); qc2 = c2(quads); qc3 = c3(quads); qc4 = c4(quads); qc5 = c5(quads); qc6 = c6(quads);\n \n qx1 = x1(kquads); qy1 = y1(kquads); qz1 = z1(kquads);\n qx2 = x2(kquads); qy2 = y2(kquads); qz2 = z2(kquads);\n qx3 = x3(kquads); qy3 = y3(kquads); qz3 = z3(kquads);\n qx4 = x4(kquads); qy4 = y4(kquads); qz4 = z4(kquads);\n \n xc = zeros(Nquads, 6); yc = zeros(Nquads, 6); zc = zeros(Nquads, 6);\n xc(:,1) = (1-qc1).*qx1 + qc1.*qx2; yc(:,1) = (1-qc1).*qy1 + qc1.*qy2; zc(:,1) = (1-qc1).*qz1 + qc1.*qz2;\n xc(:,2) = (1-qc2).*qx2 + qc2.*qx3; yc(:,2) = (1-qc2).*qy2 + qc2.*qy3; zc(:,2) = (1-qc2).*qz2 + qc2.*qz3;\n xc(:,3) = (1-qc3).*qx3 + qc3.*qx1; yc(:,3) = (1-qc3).*qy3 + qc3.*qy1; zc(:,3) = (1-qc3).*qz3 + qc3.*qz1;\n xc(:,4) = (1-qc4).*qx1 + qc4.*qx4; yc(:,4) = (1-qc4).*qy1 + qc4.*qy4; zc(:,4) = (1-qc4).*qz1 + qc4.*qz4;\n xc(:,5) = (1-qc5).*qx2 + qc5.*qx4; yc(:,5) = (1-qc5).*qy2 + qc5.*qy4; zc(:,5) = (1-qc5).*qz2 + qc5.*qz4;\n xc(:,6) = (1-qc6).*qx3 + qc6.*qx4; yc(:,6) = (1-qc6).*qy3 + qc6.*qy4; zc(:,6) = (1-qc6).*qz3 + qc6.*qz4;\n xc = xc'; yc = yc'; zc = zc';\n \n ids1 = reshape(ids, 4, Nquads);\n ids2 = ids1([1;4;2;3],:);\n ids3 = ids1([1;3;4;2],:);\n \n % find length perimeters bounded by 4 nodes\n perims1 = QuadPerimeter3D(xc(ids1),yc(ids1),zc(ids1));\n perims2 = QuadPerimeter3D(xc(ids2),yc(ids2),zc(ids2)); \n perims3 = QuadPerimeter3D(xc(ids3),yc(ids3),zc(ids3));\n \n % locate minimum perimeter quad\n idsA = find(perims1\n test_labels = subjective_scores(test_im_index);\n\n p = 10; % number of components;\n eval(['[~,~,~,~,beta1] = plsregress(feature1.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);\n eval(['predict_statistics1 = [ones(length(test_im_index(:)),1) feature1.' layer_name '(test_im_index, :)]*beta1;']);\n eval(['[~,~,~,~,beta2] = plsregress(feature2.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);\n eval(['predict_statistics2 = [ones(length(test_im_index(:)),1) feature2.' layer_name '(test_im_index, :)]*beta2;']);\n eval(['[~,~,~,~,beta3] = plsregress(feature3.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);\n eval(['predict_statistics3 = [ones(length(test_im_index(:)),1) feature3.' layer_name '(test_im_index, :)]*beta3;']);\n % \n predict_statistics = [predict_statistics1 predict_statistics2 predict_statistics3];\n\n srocc(k,:,i) = corr(predict_statistics, test_labels, 'type', 'Spearman');\n end\n end\n\n train_im_index = index(t,1:ceil(train_ratio*size(index,2))); \n train_im_index = cell2mat(arrayfun(@(i)find(ref_ids==train_im_index(i))',...\n 1:length(train_im_index),'UniformOutput',false));\n test_im_index = index(t,1+ceil(train_ratio*size(index,2)):size(index,2));\n test_im_index = cell2mat(arrayfun(@(i)find(ref_ids==test_im_index(i))',...\n 1:length(test_im_index),'UniformOutput',false));\n train_labels = subjective_scores(train_im_index);\n test_labels = subjective_scores(test_im_index);\n\n Avesrocc = mean(srocc,3);\n [bestK, bestS] = find(Avesrocc==max(Avesrocc(:)),1,'first'); %\n\n layer_name = layer_names{bestK}; \n p = 10; % number of components;\n clear predict_statistics\n eval(['[~,~,~,~,beta1] = plsregress(feature1.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);\n eval(['predict_statistics(:, 1) = [ones(length(test_im_index(:)),1) feature1.' layer_name '(test_im_index, :)]*beta1;']);\n eval(['[~,~,~,~,beta2] = plsregress(feature2.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);\n eval(['predict_statistics(:, 2) = [ones(length(test_im_index(:)),1) feature2.' layer_name '(test_im_index, :)]*beta2;']);\n eval(['[~,~,~,~,beta3] = plsregress(feature3.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);\n eval(['predict_statistics(:, 3) = [ones(length(test_im_index(:)),1) feature3.' layer_name '(test_im_index, :)]*beta3;']);\n w = Avesrocc(bestK,:)'/sum(Avesrocc(bestK,:));\n objective_scores = predict_statistics*w;\n results.srocc(t) = corr(objective_scores, test_labels, 'type', 'Spearman');\n results.plcc(t) = corr(objective_scores, test_labels);\n results.krocc(t) = corr(objective_scores, test_labels, 'type', 'Kendall');\n results.RMSE(t) = sqrt(mean((objective_scores-test_labels).^2));\n results.OR(t) = mean(abs(objective_scores-test_labels)>2*subjective_scoresSTD(test_im_index));\n median(results.srocc)\nend\nsave(save_path);\n", "meta": {"author": "lidq92", "repo": "SFA", "sha": "0af9c26c97cf853d06b5b32ccac76c296c18b49d", "save_path": "github-repos/MATLAB/lidq92-SFA", "path": "github-repos/MATLAB/lidq92-SFA/SFA-0af9c26c97cf853d06b5b32ccac76c296c18b49d/TMMintra.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743735019594, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3787595172974554}} {"text": "#!/usr/bin/octave\n% Copyright 2018-2020 Marc Ren\u00e9 Sch\u00e4dler\n%\n% This file is part of the mobile hearing aid prototype project\n% The the mobile hearing aid prototype project is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.\n%\n% The mobile hearing aid prototype project is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License along with the mobile hearing aid prototype project. If not, see http://www.gnu.org/licenses/.\n\ncd(fileparts(mfilename('fullpath')))\n\nclose all\nclear\nclc\n\ngraphics_toolkit qt;\n\nthresholds_freqs = [125 250 500 1000 2000 4000 8000 16000];\nthresholds_init = [ 39 71 71 62 60 58 58 36]; % dB SPL at mic\nnormal_threshold = [ 33 24 13 5 13 15 14 11]; % Estimated\n\nplot_freqs = 1000 .* 2.^(-3:0.5:4);\nplot_threshold = interp1(thresholds_freqs,normal_threshold,plot_freqs);\nplot_levels = 20:15:110;\nplot_colors = lines(length(plot_levels));\n\nset (0, \"defaultaxesfontsize\", 20);\nset (0, \"defaulttextfontsize\", 20);\nh_figure = figure('Position', [ 500 200 1500 1000],\n 'NumberTitle', 'off',\n 'Name', 'Simple self-fitting GUI',\n 'toolbar', 'none',\n 'menubar', 'none');\nh.thresholds_freqs = thresholds_freqs;\nh.plot_freqs = plot_freqs;\nh.plot_threshold = plot_threshold;\nh.plot_levels = plot_levels;\nh.plot_colors = plot_colors;\n\nfigure_positions = {[0.075 0.37 0.4 0.5],[0.55 0.37 0.4 0.5]};\nposition_title = {'L E F T', 'R I G H T'};\nfor i=1:2\n h.ax(i) = axes ('position', figure_positions{i});\n box('on');\n h_threshold = plot(log(thresholds_freqs), zeros(size(thresholds_freqs)),'-k','linewidth',3);\n hold on;\n title(position_title{i});\n plot(log(plot_freqs), plot_threshold,'--k','linewidth',3);\n xlim(log([min(plot_freqs) max(plot_freqs)]));\n ylim([0 130]);\n set(gca,'xtick',log(plot_freqs(1:2:end)));\n set(gca,'xticklabel',plot_freqs(1:2:end));\n set(gca,'ytick',0:10:100);\n xlabel('Frequency / Hz');\n ylabel('Levels / dB SPL (in device)');\n for j=1:length(plot_levels)\n plot(log(plot_freqs),ones(size(plot_freqs)).*plot_levels(j),'--','color',plot_colors(j,:),'linewidth',3);\n end\n h_amplified = zeros(size(plot_levels));\n for j=1:length(plot_levels)\n h_amplified(j) = plot(log(plot_freqs),ones(size(plot_freqs)).*plot_levels(j),'-','color',plot_colors(j,:),'linewidth',3);\n end\n h.h_activedata{i} = h_amplified;\n h.h_threshold{i} = h_threshold;\nend\n\nfunction s = gt_data2string(gt_data)\n [num_rows, num_cols] = size(gt_data);\n s = '[';\n for i=1:num_rows\n s = [s, '['];\n for j=1:num_cols\n s = [s, sprintf('%.2f',gt_data(i,j))];\n if j < num_cols\n s = [s, ' '];\n else\n s = [s, ']'];\n end\n end\n if i < num_rows\n s = [s, ';'];\n else\n s = [s, ']'];\n end\n end\nend\n\nfunction text2speech(message)\n system(['echo text2speech \"',message,'\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction mhacontrol(command)\n system(['echo mhacontrol \"',command,'\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction mhaplay(filename)\n system(['echo mhaplay \"',filename,'\" \"yes\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction thresholdnoise(status)\n system(['echo thresholdnoise \"',status,'\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction live(status)\n system(['echo live \"',status,'\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction feedback(duration)\n if isnumeric(duration)\n duration = num2str(duration);\n end\n system(['echo feedback \"',duration,'\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction record(duration)\n system(['echo record \"',duration,'\" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction send_gaintable(gt_data)\n system(['echo \" | nc -w 1 127.0.0.1 33338']);\nend\n\nfunction update_gaintable (obj)\n tic\n h = guidata (obj);\n offset = 30+30.*(0.5-get(h.offset_slider,'value'));\n rolloff = 1+2.^-(get(h.rolloff_slider,'value').*3);\n marginfactor = get(h.marginfactor_slider,'value');\n center = 50+get(h.center_slider,'value').*40;\n focus = round(get(h.focus_slider,'value').*100)./10;\n\n thresholds_left = zeros(size(h.thresholds_freqs));\n thresholds_right = zeros(size(h.thresholds_freqs));\n\n for i=1:length(h.thresholds_freqs)\n thresholds_left(i) = str2num(get(h.thresholds_left{i},'string'));\n thresholds_right(i) = str2num(get(h.thresholds_right{i},'string'));\n end\n\n set(h.h_threshold{1},'ydata',thresholds_left);\n set(h.h_threshold{2},'ydata',thresholds_right);\n\n [gt_data, gt_freqs, gt_levels] = prescription_minimalistic(h.thresholds_freqs, thresholds_left, thresholds_right, offset, marginfactor, rolloff, center, focus);\n for i=1:2\n gain = interp2(gt_levels,gt_freqs.',gt_data(1+(i-1).*length(gt_freqs):i.*length(gt_freqs),:),h.plot_levels.',h.plot_freqs,'linear');\n for j=1:length(h.plot_levels)\n set(h.h_activedata{i}(j),'ydata',h.plot_levels(j)+gain(:,j));\n end\n end\n mhacontrol(['mha.transducers.mhachain.altplugs.dynamiccompression.mhachain.dc.gtdata = ',gt_data2string(gt_data)]);\n toc\n drawnow;\nend\n\nfunction update_live(obj)\n h = guidata (obj);\n if get(h.live_checkbox,'value')\n live('on');\n else\n live('off');\n end\nend\n\nfunction update_noise(obj)\n h = guidata (obj);\n if get(h.noise_checkbox,'value')\n thresholdnoise('on');\n else\n thresholdnoise('off');\n end\nend\n\nfunction start_recording()\n record('10');\nend\n\nfunction update_amplification(obj)\n h = guidata (obj);\n if get(h.amplification_checkbox,'value')\n mhacontrol('mha.transducers.mhachain.altplugs.select = dynamiccompression');\n else\n mhacontrol('mha.transducers.mhachain.altplugs.select = identity');\n end\nend\n\nfunction update_calib(obj)\n h = guidata (obj);\n if get(h.calib_checkbox,'value')\n\t% values taken from current openMHA.cfg\n mhacontrol('mha.transducers.calib_in.fir = [[-0.674757033017875 -0.339128228007168 0.030117856798366 -0.119542483672035 0.131726684555067 -0.071387589553860 0.056561094657502 -0.013365060531109 0.007091265106959 0.006913350591302 -0.002602409570910 0.023338189483743 -0.018652297865493 0.021281416315377 -0.014374905102702 0.015659551668403];[-0.674757033017875 -0.339128228007168 0.030117856798366 -0.119542483672035 0.131726684555067 -0.071387589553860 0.056561094657502 -0.013365060531109 0.007091265106959 0.006913350591302 -0.002602409570910 0.023338189483743 -0.018652297865493 0.021281416315377 -0.014374905102702 0.015659551668403]]');\n mhacontrol('mha.transducers.calib_out.fir = [[-0.723329250680037 1.285750531421244 -1.764370643350338 1.702299222653803 0.569187694811727 -1.301642333817312 0.540112043557634 -0.111972475691304 0.187607100395961 0.532899301077540 -0.733701264924906 0.290587502735630 0.470074681167595 -0.330332208101367 -0.010615612830630 -0.221018479662762 -0.020491963942295 0.385847945936633 -0.198969798086483 -0.123437157204177 0.152968427130900 -0.205009361694624 -0.071974598348291 0.041537565470939 -0.058703551389704 0.006171609199330 -0.037439953306526 -0.032735557865821 0.028903184718236 -0.019431703287974 -0.069837180982837 0.038967963643885 -0.015801874625706 -0.060091628384134 0.057102986709234 -0.043134256115441 -0.016815289718170 0.002879163232524 -0.031134102833679 0.026124175604008 -0.040758325083950 0.022598560658844 0.012982112833010 -0.029909215215110 0.018353193685970 0.012015086827306 0.031537385134343 -0.028980188877489 0.026113358679986 0.017332696993042 -0.018853690496196 0.059665425003585 -0.017281793549857 0.007285675861939 0.010218784848149 0.003173184622963 0.040817408121183 -0.024810702312558 0.007344195504224 0.007639434860116 -0.004797394889051 0.025321400227842 -0.005638659121956 -0.002191206231116];[-0.723329250680037 1.285750531421244 -1.764370643350338 1.702299222653803 0.569187694811727 -1.301642333817312 0.540112043557634 -0.111972475691304 0.187607100395961 0.532899301077540 -0.733701264924906 0.290587502735630 0.470074681167595 -0.330332208101367 -0.010615612830630 -0.221018479662762 -0.020491963942295 0.385847945936633 -0.198969798086483 -0.123437157204177 0.152968427130900 -0.205009361694624 -0.071974598348291 0.041537565470939 -0.058703551389704 0.006171609199330 -0.037439953306526 -0.032735557865821 0.028903184718236 -0.019431703287974 -0.069837180982837 0.038967963643885 -0.015801874625706 -0.060091628384134 0.057102986709234 -0.043134256115441 -0.016815289718170 0.002879163232524 -0.031134102833679 0.026124175604008 -0.040758325083950 0.022598560658844 0.012982112833010 -0.029909215215110 0.018353193685970 0.012015086827306 0.031537385134343 -0.028980188877489 0.026113358679986 0.017332696993042 -0.018853690496196 0.059665425003585 -0.017281793549857 0.007285675861939 0.010218784848149 0.003173184622963 0.040817408121183 -0.024810702312558 0.007344195504224 0.007639434860116 -0.004797394889051 0.025321400227842 -0.005638659121956 -0.002191206231116]]');\n else\n mhacontrol('mha.transducers.calib_in.fir = 1');\n mhacontrol('mha.transducers.calib_out.fir = 1');\n end\nend\n\nfunction measure_feedback(obj)\n feedback(3);\nend\n\nfunction update_playback(obj)\n h = guidata (obj);\n string = get(h.playback_popup,'string');\n value = get(h.playback_popup,'value');\n selection = string{value};\n switch selection\n case 'off'\n filename = '';\n case 'last record'\n filename ='/dev/shm/recording.wav';\n otherwise\n filename = ['/home/pi/hearingaid-prototype/recordings/' selection '.wav'];\n end\n mhaplay(filename);\nend\n\nfor i=1:length(thresholds_freqs)\n uicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', num2str(thresholds_freqs(i)) ,\n 'horizontalalignment', 'center',\n 'position', [0.02+i*0.05 0.95 0.05 0.05]);\n h.thresholds_left{i} = uicontrol ('style', 'edit',\n 'units', 'normalized',\n 'string', num2str(thresholds_init(i)),\n 'callback', @update_gaintable,\n 'position', [0.02+i*0.05 0.90 0.05 0.05]);\nend\n\nfor i=1:length(thresholds_freqs)\n uicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', num2str(thresholds_freqs(i)) ,\n 'horizontalalignment', 'center',\n 'position', [0.50+i*0.05 0.95 0.05 0.05]);\n h.thresholds_right{i} = uicontrol ('style', 'edit',\n 'units', 'normalized',\n 'string', num2str(thresholds_init(i)),\n 'callback', @update_gaintable,\n 'position', [0.50+i*0.05 0.90 0.05 0.05]);\nend\n\nuicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', 'gain' ,\n 'horizontalalignment', 'left',\n 'position', [0.05 0.25 0.15 0.05]);\n\nh.offset_slider = uicontrol ('style', 'slider',\n 'units', 'normalized',\n 'sliderstep', [0.1 0.1],\n 'string', 'slider',\n 'callback', @update_gaintable,\n 'value', 0.5,\n 'position', [0.15 0.25 0.65 0.05]);\n\nuicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', 'compression' ,\n 'horizontalalignment', 'left',\n 'position', [0.05 0.2 0.15 0.05]);\n\nh.rolloff_slider = uicontrol ('style', 'slider',\n 'units', 'normalized',\n 'sliderstep', [0.1 0.1],\n 'string', 'slider',\n 'callback', @update_gaintable,\n 'value', 0.5,\n 'position', [0.15 0.2 0.65 0.05]);\n\nuicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', 'boost factor' ,\n 'horizontalalignment', 'left',\n 'position', [0.05 0.15 0.15 0.05]);\n\nh.marginfactor_slider = uicontrol ('style', 'slider',\n 'units', 'normalized',\n 'sliderstep', [0.1 0.1],\n 'string', 'slider',\n 'callback', @update_gaintable,\n 'value', 0.5,\n 'position', [0.15 0.15 0.65 0.05]);\n\nuicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', 'boost level' ,\n 'horizontalalignment', 'left',\n 'position', [0.05 0.1 0.15 0.05]);\n\nh.center_slider = uicontrol ('style', 'slider',\n 'units', 'normalized',\n 'sliderstep', [0.1 0.1],\n 'string', 'slider',\n 'callback', @update_gaintable,\n 'value', 0.5,\n 'position', [0.15 0.1 0.65 0.05]);\n\nuicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', 'focus' ,\n 'horizontalalignment', 'left',\n 'position', [0.05 0.05 0.15 0.05]);\n\nh.focus_slider = uicontrol ('style', 'slider',\n 'units', 'normalized',\n 'sliderstep', [0.1 0.1],\n 'string', 'slider',\n 'callback', @update_gaintable,\n 'value', 0.5,\n 'position', [0.15 0.05 0.65 0.05]);\n\nh.live_checkbox = uicontrol ('style', 'checkbox',\n 'units', 'normalized',\n 'string', 'live',\n 'value', 1,\n 'callback', @update_live,\n 'position', [0.85 0.275 0.05 0.025]);\n\nh.record_button = uicontrol ('style', 'pushbutton',\n 'units', 'normalized',\n 'string', 'record',\n 'callback', @start_recording,\n 'position', [0.90 0.275 0.05 0.025]);\n\nuicontrol ('style', 'text',\n 'units', 'normalized',\n 'string', 'playback' ,\n 'horizontalalignment', 'left',\n 'position', [0.85 0.25 0.1 0.025]);\n\nh.playback_popup = uicontrol ('style', 'popupmenu',\n 'units', 'normalized',\n 'string', {'off' 'last record' '35-29-25_fridge' '36-26-19_clock' '53-41-34_footsteps' '55-44-33_handwash' '63-57-37_microwave' '63-57-51_coffeemachine' '64-33-24_keyboardwriting' '64-42-35_foyer' '64-53-46_autobahn' '66-56-48_siren' '68-57-50_drivingnews' '68-59-52_street' '70-61-53_street' '72-57-49_bird' '72-63-60_coffeegrinder' '73-50-42_steeldrum-steps' '73-60-50_cardriveby' '73-63-57_steet-laughter' '75-25-17_phone' '77-54-46_ducks' '78-68-60_street' '78-69-62_lisboa-bride-bird' '79-59-50_bar' '81-54-34_coffeemachine' '81-61-47_traincrossing' '81-66-60_lisboa-plane-landing' '82-53-35_shakeout' '83-69-60_mainstreet' '83-73-65_traffic' '86-75-68_lisboa-bride-train' '88-73-65_lisboa-train' '100-64-37_flute'},\n 'callback', @update_playback,\n 'position', [0.85 0.225 0.1 0.025]);\n\nh.amplification_checkbox = uicontrol ('style', 'checkbox',\n 'units', 'normalized',\n 'string', 'amplification',\n 'value', 0,\n 'callback', @update_amplification,\n 'position', [0.85 0.15 0.1 0.025]);\n\nh.noise_checkbox = uicontrol ('style', 'checkbox',\n 'units', 'normalized',\n 'string', 'threshold noise',\n 'value', 0,\n 'callback', @update_noise,\n 'position', [0.85 0.175 0.1 0.025]);\n\nh.calib_checkbox = uicontrol ('style', 'checkbox',\n 'units', 'normalized',\n 'string', 'calibration',\n 'value', 1,\n 'callback', @update_calib,\n 'position', [0.85 0.125 0.1 0.025]);\n\nh.feedback_button = uicontrol ('style', 'pushbutton',\n 'units', 'normalized',\n 'string', 'feedback',\n 'callback', @measure_feedback,\n 'position', [0.85 0.05 0.1 0.05]);\n\n\nguidata(gcf, h);\nupdate_calib(gcf);\nupdate_amplification(gcf);\nupdate_gaintable(gcf);\nupdate_noise(gcf);\nupdate_playback(gcf);\nupdate_live(gcf);\nwaitfor(h_figure);\n", "meta": {"author": "m-r-s", "repo": "hearingaid-prototype", "sha": "973b4c8e793a0ac78e8d1e7bd40e518876fc3c83", "save_path": "github-repos/MATLAB/m-r-s-hearingaid-prototype", "path": "github-repos/MATLAB/m-r-s-hearingaid-prototype/hearingaid-prototype-973b4c8e793a0ac78e8d1e7bd40e518876fc3c83/tools/selffitting_gui.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743735019594, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3787595172974554}} {"text": "%\n% HDR Toolbox demo Fusion:\n%\t 1) Load \"Bottles_Small.pfm\" HDR image\n%\t 2) Apply Fusion TMO\n%\t 3) Show the image without gamma encoding, because it is working in\n%\t gamma space\n%\t 4) Save the tone mapped image as PNG\n%\n% Author: Francesco Banterle\n% Copyright 2012-16 (c)\n%\n\nclear all;\n\ndisp('1) Load the image Bottles_Small.pfm using hdrimread');\nimg = hdrimread('demos/Bottles_Small.hdr');\n\ndisp('2) Apply Fusion Operator by Mertens et al.');\nimgTMO = MertensTMO(img);\n\ndisp('3) Show the image after fusion, note that there is no need of gamma correction!');\nh = figure(1);\nset(h,'Name','Exposure fusion by Mertens et al.');\nGammaTMO(imgTMO, 1.0, 0.5, 1);\n\ndisp('4) Save the tone mapped image as a PNG.');\nimwrite(imgTMO, 'demos/output/Bottles_Small_TMO_fusion.png');\n", "meta": {"author": "banterle", "repo": "HDR_Toolbox", "sha": "a2b45dc48b7169192fb633097a83879e71a0c0f2", "save_path": "github-repos/MATLAB/banterle-HDR_Toolbox", "path": "github-repos/MATLAB/banterle-HDR_Toolbox/HDR_Toolbox-a2b45dc48b7169192fb633097a83879e71a0c0f2/demos/demo_fusion.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.3786937978460438}} {"text": "classdef PrincipalDirectionComputerIn3D < PrincipalDirectionComputer\n \n methods (Access = public, Static)\n \n function obj = PrincipalDirectionComputerIn3D(cParams)\n obj.ndim = 3;\n obj.init(cParams)\n end\n \n end\n \n methods (Access = public)\n \n function compute(obj,tensor)\n s1 = squeeze(tensor(1,1,:));\n s2 = squeeze(tensor(1,2,:));\n s3 = squeeze(tensor(1,3,:));\n s12 = squeeze(tensor(1,4,:));\n s13 = squeeze(tensor(1,5,:));\n s23 = squeeze(tensor(1,6,:));\n eG = obj.eigenComputer;\n for i = 1:obj.ndim\n for j = 1:obj.ndim\n d = eG.eigenVectorFunction{i,j}(s1,s12,s13,s2,s23,s3);\n obj.direction(i,j,:) = real(d);\n obj.assertSmallImaginaryValue(d);\n end\n end\n end\n\n end\n \n \n \n methods (Access = private, Static)\n \n function assertSmallImaginaryValue(d)\n imagD = imag(d);\n% assert(norm(imagD(:)) < 1e6) % To be fixed\n end\n \n end\n \nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/FEM/PrincipalDirectionComputer/PrincipalDirectionComputerIn3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347362, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.37869379784604373}} {"text": "% Calculate border coverage for detected fields\n%\n% This function calculates firing map border coverage that is further\n% used in calculation of a border score.\n%\n% USAGE\n% coverage = analyses.borderCoverage(fields, )\n% fields Array of structures with information about detected fields.\n% Optional list of property-value pairs (see table below)\n%\n% ==============================================================================================\n% Properties Values\n% ----------------------------------------------------------------------------------------------\n% 'searchWidth' If map is not perfect, but contains NaN values along borders, then\n% search for border pixels can have NaNs. To mitigate this, we check\n% searchWidth rows/columns near border and if the closest to the border pixel\n% equals to NaN, we search for first non-NaN value in searchWidth rows-columns.\n% This argument is optional and default value is 8.\n% 'walls' Definition of walls along which the border score is calculated. Provided by\n% a string which contains characters that stand for walls:\n% T - top wall (we assume the bird-eye view on the arena)\n% R - right wall\n% B - bottom wall\n% L - left wall\n% Characters are case insensitive. Default value is 'TRBL' meaning that border\n% score is calculated along all walls. Any combination is possible, e.g.\n% 'R' to calculate along right wall, 'BL' to calculate along two walls, e.t.c.\n% ==============================================================================================\n% coverage Border coverage, ranges from 0 to 1.\n%\nfunction coverage = borderCoverage(fields, varargin)\n coverage = 0;\n\n inp = inputParser;\n defaultSearchWidth = 8;\n defaultWalls = 'TRBL'; % top, right, bottom, left\n\n checkSearchWidth = @(x) isnumeric(x) && isscalar(x) && (x > 0);\n checkWalls = @internCheckWalls;\n\n addRequired(inp, 'fields');\n addParameter(inp, 'searchWidth', defaultSearchWidth, checkSearchWidth);\n addParameter(inp, 'walls', defaultWalls, checkWalls);\n\n inp.KeepUnmatched = true;\n parse(inp, fields, varargin{:});\n\n % get parsed results\n walls = inp.Results.walls;\n searchWidth = inp.Results.searchWidth;\n\n % find out what walls are present\n dict = {'B', 'L', 'R', 'T'}; % already sorted\n u = unique(walls);\n t = ['^' sprintf('%c{0,%d}', [u; histc(walls, u)]) '$'];\n wallsIdx = find(~cellfun('isempty', regexpi(dict, t))); % indices in dict of present walls\n\n for i=1:length(fields)\n curField = fields(i).map;\n\n % coverage for left wall\n if any(ismember(wallsIdx, 2))\n aux_map = curField(:, 1:searchWidth);\n [covered, norm] = wall_field(aux_map);\n if (covered/norm > coverage)\n coverage = covered/norm;\n end\n end\n\n % coverage for right wall\n if any(ismember(wallsIdx, 3))\n aux_map = curField(:, end:-1:end+1-searchWidth);\n [covered, norm] = wall_field(aux_map);\n if (covered/norm > coverage)\n coverage=covered/norm;\n end\n end\n\n % coverage for bottom wall, since we are dealing with data that came from a camera\n % 'bottom' is actually at the top of the matrix curField.\n if (any(ismember(wallsIdx, 1)))\n aux_map = curField(1:searchWidth, :)';\n [covered, norm] = wall_field(aux_map);\n if (covered/norm > coverage)\n coverage=covered/norm;\n end\n end\n\n % coverage for top wall\n if (any(ismember(wallsIdx, 4)))\n aux_map = curField(end:-1:end+1-searchWidth, :)';\n [covered, norm] = wall_field(aux_map);\n if (covered/norm > coverage)\n coverage = covered/norm;\n end\n end\n end\nend\n\n% 'covered' pixels will have distance to border 0.\n% Essentially we need to calculate number of elements,\n% that equal to zero and take NaNs into account.\nfunction [covered, norm] = wall_field(map)\n ly = size(map, 1);\n\n D = bwdist(map);\n nanIndices = find(isnan(map(:, 1)));\n numNans = length(nanIndices);\n for i = 1:numNans\n testRow = nanIndices(i);\n nonNan = find(~isnan(map(testRow, :)), 1, 'first');\n if ~isempty(nonNan)\n numNans = numNans - 1;\n D(testRow, 1) = D(testRow, nonNan);\n end\n end\n\n norm = ly - numNans;\n covered = nansum(D(:, 1) == 0) - numNans;\nend\n\n% check input argument that defines walls\n% We need to figure out if argument contains one of the characters\n% from the dictionary.\n% Rise descriptive exception in case of an error.\nfunction res = internCheckWalls(walls)\n res = true;\n if ~ischar(walls)\n error('BNT:args:notChar', 'Argument is not a string.')\n end\n if length(walls) > 4\n error('BNT:args:length', 'Argument can not exceed 4 characters (default ''TLBR'')');\n end\n\n dict = {'T', 'R', 'B', 'L'};\n\n % http://stackoverflow.com/questions/19343339/matlab-find-the-indices-of-a-cell-array-of-strings-with-characters-all-containe\n u = unique(walls);\n t = ['^' sprintf('%c{0,%d}', [u; histc(walls, u)]) '$'];\n s = cellfun(@sort, dict, 'uni', 0);\n idx = find(~cellfun('isempty', regexp(s, t)), 1);\n %res = ~isempty(idx); % if it is not empty, then we have characters from dict in walls\n if isempty(idx)\n error('BNT:args:noValidChars', 'There is no information about the walls in the argument.');\n end\nend", "meta": {"author": "kavli-ntnu", "repo": "MINI2P_toolbox", "sha": "83311a49baea69ecf027e19390e608fd4eaeae8d", "save_path": "github-repos/MATLAB/kavli-ntnu-MINI2P_toolbox", "path": "github-repos/MATLAB/kavli-ntnu-MINI2P_toolbox/MINI2P_toolbox-83311a49baea69ecf027e19390e608fd4eaeae8d/Analysis/+analyses/borderCoverage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3786519129647713}} {"text": "function [y]=fort_mvk4(A,x,eps,varargin)\n\nnswp = 10;\nkickrank = 5;\nrmax = 256;\ny0 = [];\nverb = 1;\nfor i=1:2:length(varargin)-1\n switch lower(varargin{i})\n case 'nswp'\n nswp=varargin{i+1};\n case 'rmax'\n rmax=varargin{i+1};\n case 'y0'\n y0=varargin{i+1};\n case 'kickrank'\n kickrank=varargin{i+1};\n case 'verb'\n verb=varargin{i+1}; \n\n otherwise\n error('Unrecognized option: %s\\n',varargin{i});\n end\nend\n\nrx = x.r;\nd = x.d;\ntailranks = [false,false];\nif (rx(1)~=1)\n e1 = tt_tensor;\n e1.d=1;\n e1.n = [rx(1)];\n e1.r = [1; rx(1)];\n e1.ps = [1; rx(1)^2+1];\n e1.core = reshape(eye(rx(1)), rx(1)^2, 1);\n x = kron(e1, x);\n \n A = kron(tt_matrix(eye(rx(1))), A);\n tailranks(1)=true;\nend;\nif (rx(d+1)~=1)\n e1 = tt_tensor;\n e1.d=1;\n e1.n = [rx(d+1)];\n e1.r = [rx(d+1); 1];\n e1.ps = [1; rx(d+1)^2+1];\n e1.core = reshape(eye(rx(d+1)), rx(d+1)^2, 1);\n x = kron(x, e1);\n \n A = kron(A, tt_matrix(eye(rx(d+1))));\n tailranks(2)=true;\nend;\n\nd = x.d;\nn = A.n;\n\nif (isempty(y0))\n y0 = tt_rand(n, d, 2);\nend;\n\n[ry,cry]=fort_mvk4_mex(int64(d), int64(n), int64(A.m), ...\n int64(x.r), int64(A.r), A.core, x.core, y0.core, int64(y0.r), eps, ...\n int64(rmax), int64(nswp), int64(kickrank), int64(verb));\n% fprintf('fort_mvk4 done.\\n');\n\nry = double(ry);\nps = cumsum([1; ry(1:d).*n.*ry(2:d+1)]);\nif (tailranks(1))\n cr1 = reshape(cry(1:ps(2)-1), n(1), ry(2));\n cr2 = reshape(cry(ps(2):ps(3)-1), ry(2), n(2)*ry(3));\n cr2 = cr1*cr2;\n cry = [cr2(:); cry(ps(3):ps(d+1)-1)];\n ry = ry(2:d+1);\n ry(1) = n(1);\n n = n(2:d);\n d = d-1;\n ps = cumsum([1; ry(1:d).*n.*ry(2:d+1)]);\nend;\nif (tailranks(2))\n cr1 = reshape(cry(ps(d-1):ps(d)-1), ry(d-1)*n(d-1), ry(d));\n cr2 = reshape(cry(ps(d):ps(d+1)-1), ry(d), n(d));\n cr2 = cr1*cr2;\n cry = [cry(1:ps(d-1)-1); cr2(:)];\n d = d-1;\n ry = ry(1:d+1);\n ry(d+1) = n(d+1);\n n = n(1:d);\n ps = cumsum([1; ry(1:d).*n.*ry(2:d+1)]);\nend;\n\ny = y0;\ny.r = ry;\ny.core = cry;\ny.ps = ps;\ny.n = n;\ny.d = d;\n\nend\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/fmex/fort_mvk4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3786519129647713}} {"text": "function z = plus( x, y )\n %PLUS Addition of two TT/MPS tensors.\n % Z = PLUS(X,Y) adds two TT/MPS tensors. The rank of the resulting\n % tensor is 2*R.\n %\n % See also MINUS, UMINUS.\n \n % TTeMPS Toolbox. \n % Michael Steinlechner, 2013-2016\n % Questions and contact: michael.steinlechner@epfl.ch\n % BSD 2-clause license, see LICENSE.txt\n \n % add sanity check...\n rx = x.rank;\n ry = y.rank;\n nx = x.size;\n\n z = TTeMPS( cell(1, x.order) );\n \n % first core:\n p = size(x.U{1},4);\n tmp = zeros( 1, nx(1), rx(2)+ry(2), p );\n tmp( 1, :, 1:rx(2), : ) = x.U{1};\n tmp( 1, :, rx(2)+1:end, : ) = y.U{1};\n z.U{1} = tmp;\n\n % central cores:\n for i = 2:x.order-1\n % possibility of block format:\n p = size(x.U{i},4);\n tmp = zeros( rx(i)+ry(i), nx(i), rx(i+1)+ry(i+1), p);\n tmp( 1:rx(i), :, 1:rx(i+1), :) = x.U{i};\n tmp( rx(i)+1:end, :, rx(i+1)+1:end, :) = y.U{i};\n z.U{i} = tmp;\n end\n\n % last core:\n p = size(x.U{end},4);\n tmp = zeros( rx(end-1)+ry(end-1), nx(end), 1, p );\n tmp( 1:rx(end-1), :, 1, : ) = x.U{end};\n tmp( rx(end-1)+1:end, :, 1, : ) = y.U{end};\n z.U{end} = tmp;\nend\n", "meta": {"author": "NicolasBoumal", "repo": "manopt", "sha": "b8b54a6af8b965f7ae572972ba0d15787427744b", "save_path": "github-repos/MATLAB/NicolasBoumal-manopt", "path": "github-repos/MATLAB/NicolasBoumal-manopt/manopt-b8b54a6af8b965f7ae572972ba0d15787427744b/manopt/manifolds/ttfixedrank/TTeMPS_1.1/@TTeMPS/plus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3786519129647713}} {"text": "function stats = ReconstructPosition(positions,spikes,phases,varargin)\n\n%ReconstructPosition - Bayesian reconstruction of positions from spike trains.\n%\n% Instantaneous positions are reconstructed using a Bayesian algorithm.\n% Instantaneous population firing rates can be estimated either over fixed time\n% windows, or over fractions of the theta cycle (or of any other brain rhythm).\n% Similarly, positions will be reconstructed either over time or phase windows.\n% The model is first trained on a subset of the data, then tested on the rest.\n%\n% USAGE\n%\n% stats = ReconstructPosition(positions,spikes,phases,)\n%\n% positions linear or two-dimensional positions, in [0..1]\n% spikes list of (t,group,cluster) triplets (obtained via e.g.\n% GetSpikes, using full output)\n% phases optional unwrapped phase of the LFP (see Phase)\n%\n% =========================================================================\n% Properties Values\n% -------------------------------------------------------------------------\n% 'training' time interval over which the model should be trained\n% (default = first half of the position data)\n% 'window' length of the time or phase window (default = 0.020 s for\n% time, and pi/3 for phases)\n% 'type' two letters (one for X and one for Y) indicating which\n% coordinates are linear ('l') and which are circular ('c')\n% - for 1D data, only one letter is used (default 'll')\n% 'nBins' firing curve or map resolution (default = [200 200])\n% =========================================================================\n%\n% OUTPUT\n%\n% stats.positions real position across time or phase windows\n% stats.spikes cell firing vector across time or phase windows\n% stats.estimations estimated position across time or phase windows\n% stats.errors estimation error across time or phase windows\n% stats.average average estimation error in each phase window\n% stats.windows time windows (possibly computed from phases)\n% stats.phases phase windows (empty for fixed time windows)\n%\n\n% Copyright (C) 2012-2013 by Micha\u00ebl Zugaro, (C) 2012 by Karim El Kanbi\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\n\n% Defaults\nwt = 0.020; % default time window\nwp = pi/3; % default phase window\nwindow = [];\nnBins = 200;\ntraining = 0.5;\ntype = '';\nnDimensions = 1;\n\n% Check number of parameters\nif nargin < 2 || mod(length(varargin),2) ~= 0,\n\tbuiltin('error','Incorrect number of parameters (type ''help ReconstructPosition'' for details).');\nend\n\n% Optional parameter 'phases'\nif nargin == 2,\n\tphases = [];\nelseif nargin >= 3 && ischar(phases),\n\tvarargin = {phases,varargin{:}};\n\tphases = [];\nend\n\n% Check parameter sizes\nif ~isdmatrix(positions),\n\tbuiltin('error','Incorrect positions (type ''help ReconstructPosition'' for details).');\nend\nif ~isdmatrix(spikes),\n\tbuiltin('error','Incorrect spikes (type ''help ReconstructPosition'' for details).');\nend\nif size(positions,2) > 3,\n\tnDimensions = 2;\nend\nif ~isempty(phases) && ~isdmatrix(phases),\n\tbuiltin('error','Incorrect value for property ''phases'' (type ''help ReconstructPosition'' for details).');\nend\n\n% Check number of output parameters\nif isempty(phases) && nargout == 3,\n\tbuiltin('error','Too many output parameters or missing phases (type ''help ReconstructPosition'' for details).');\nend\n\n% Parse parameters\nfor i = 1:2:length(varargin),\n\tif ~ischar(varargin{i}),\n\t\tbuiltin('error',['Parameter ' num2str(i+2) ' is not a property (type ''help ReconstructPosition'' for details).']);\n\tend\n\tswitch(lower(varargin{i})),\n\t\tcase 'training',\n\t\t\ttraining = varargin{i+1};\n\t\t\tif ~isdvector(training,'>'),\n\t\t\t\tbuiltin('error','Incorrect value for property ''training'' (type ''help ReconstructPosition'' for details).');\n\t\t\tend\n\t\tcase 'window',\n\t\t\twindow = varargin{i+1};\n\t\t\tif ~isdscalar(window,'>0'),\n\t\t\t\tbuiltin('error','Incorrect value for property ''window'' (type ''help ReconstructPosition'' for details).');\n\t\t\tend\n\t\tcase 'show',\n\t\t\tshow = varargin{i+1};\n\t\t\tif ~isstring_FMAT(show,'on','off'),\n\t\t\t\tbuiltin('error','Incorrect value for property ''show'' (type ''help ReconstructPosition'' for details).');\n\t\t\tend\n\t\tcase 'nBins',\n\t\t\tnBins = varargin{i+1};\n\t\t\tif ~isinteger(nBins),\n\t\t\t\tbuiltin('error','Incorrect value for property ''nBins'' (type ''help ReconstructPosition'' for details).');\n\t\t\tend\n\t\tcase 'type',\n\t\t\ttype = lower(varargin{i+1});\n\t\t\tif (nDimensions == 1 && ~isstring_FMAT(type,'cc','cl','lc','ll')) || (nDimensions == 2 && ~isstring_FMAT(type,'ccl','cll','lcl','lll','ccc','clc','lcc','llc')),\n\t\t\t\tbuiltin('error','Incorrect value for property ''type'' (type ''help ReconstructPosition'' for details).');\n\t\t\tend\n\t\totherwise,\n\t\t\tbuiltin('error',['Unknown property ''' num2str(varargin{i}) ''' (type ''help ReconstructPosition'' for details).']);\n\tend\nend\n\n% Defaults\nif isempty(window),\n\tif isempty(phases),\n\t\twindow = wt;\n\telse\n\t\twindow = wp;\n\t\tif ~isiscalar((2*pi)/window),\n\t\t\tbuiltin('error',['Incorrect phase window: not an integer fraction of 2pi (type ''help ReconstructPosition'' for details).']);\n\t\tend\n\tend\nend\nif isdscalar(training),\n\ttraining = [-Inf positions(1,1)+training*(positions(end,1)-positions(1,1))];\nelse\n\tif min([positions(1,1) spikes(1,1)]) < training(1) & min([positions(end,1) spikes(end,1)]) > training(2),\n\t\tbuiltin('error',['Spikes or positions occur both before and after training interval (type ''help ReconstructPosition'' for details).']);\n\tend\nend\nif isempty(type),\n\tif nDimensions == 2,\n\t\ttype = 'lll';\n\telse\n\t\ttype = 'll';\n\tend\nend\nnBinsX = nBins(1);\nif length(nBins) > 2,\n\tnBinsY = nBins(2);\nelse\n\tif nDimensions == 2,\n\t\tnBinsY = nBinsX;\n\telse\n\t\tnBinsY = 1;\n\tend\nend\n\n\n% List units, assign them an ID (number them from 1 to N), and associate these IDs with each spike\n% (IDs will be easier to manipulate than (group,cluster) pairs in subsequent computations)\n[units,~,i] = unique(spikes(:,2:end),'rows');\nnUnits = length(units);\nindex = 1:nUnits;\nid = index(i)';\nspikes = [spikes(:,1) id];\n\n% Split data (training vs test)\ntrainingPositions = Restrict(positions,training);\ntrainingSpikes = Restrict(spikes,training);\ntestPositions = positions(~InIntervals(positions,training),:);\ntestSpikes = spikes(~InIntervals(spikes,training),:);\n\n% TRAINING\n\n% Compute occupancy probability P(x) (i.e. normalized occupancy map)\nfirstUnit = trainingSpikes(:,2) == 1;\ns = trainingSpikes(firstUnit,1);\nmap = Map(trainingPositions,s,'nbins',nBins,'smooth',5,'type',type);\nPx = map.time;\nPx = Px ./ sum(Px(:));\n\n% Compute average firing probability lambda for each unit (i.e. firing maps)\nlambda(:,:,1) = map.z;\nfor i = 2:nUnits,\n\tnextUnit = trainingSpikes(:,2) == i;\n\ts = trainingSpikes(nextUnit,1);\n\tmap = Map(trainingPositions,s,'nbins',nBins,'smooth',5,'type',type);\n\tlambda(:,:,i) = map.z;\nend\n\n% TEST\n\n% Determine time windows (using unwrapped phases if necessary)\nif ~isempty(phases),\n\ttestPhases = phases(~InIntervals(phases,training),:);\n\tdrop = testPhases(:,1) < testPositions(1,1);\n\ttestPhases(drop,:) = [];\n\tstartPhase = ceil(testPhases(1,2)/(2*pi))*2*pi;\n\tstopPhase = floor(testPhases(end,2)/(2*pi))*2*pi;\n\twindows = (startPhase:window:stopPhase)';\n\tstats.phases = windows;\n\twindows = Interpolate(testPhases(:,[2 1]),windows);\n\twindows = [windows(1:end-1,2) windows(2:end,2)];\nelse\n\tstats.phases = [];\n\twindows = (testPositions(1,1):window:testPositions(end,1))';\n\twindows = [windows(1:end-1) windows(2:end)];\nend\nnWindows = size(windows,1);\n\nstats.estimations = nan(nBinsY,nBinsX,nWindows);\nstats.spikes = zeros(nUnits,nWindows);\n% Loop over data windows\nfor i = 1:nWindows,\n \n\t% Get spikes for this window\n\ts = Restrict(testSpikes,windows(i,:));\n\n\tif isempty(s),\n\t\t% No spikes: set uniform probability\n\t\tstats.estimations(:,:,i) = ones(nBinsY,nBinsX,1)/(nBinsX*nBinsY);\n\t\tcontinue;\n\tend\n \n\t% Population spike count vector\n\tstats.spikes(:,i) = Accumulate(s(:,2),1,nUnits);\n\t% To avoid 'for' loops, prepare for vector computation:\n\t% assign a spike count to each position and unit (3D array)\n\tn = reshape(repmat(stats.spikes(:,i),1,nBinsX*nBinsY)',nBinsY,nBinsX,nUnits);\n\n\t% For each cell i, compute P(ni|x) using a Poisson model\n\tdt = windows(i,2) - windows(i,1);\n\tPnix = (dt*lambda).^n./factorial(n).*exp(-dt*lambda);\n\t% Compute P(n|x) assuming independent probabilities across units (hmm...)\n\t% i.e. P(n|x) = product over i of P(ni|x)\n\tPnx = prod(Pnix,3);\n \n\t% Compute P(n) = sum over x of P(n|x)*P(x)\n\tPn = sum(sum(Pnx.*Px));\n \n\t% Compute P(x|n) = P(n|x)*P(x)/P(n)\n\tPxn = Pnx .* Px / Pn;\n\n\t% Store result\n\tstats.estimations(:,:,i) = Pxn;\n\nend\nstats.estimations = squeeze(stats.estimations);\nstats.windows = windows;\n\n% Estimation error\n\nstats.errors = [];\nstats.average = [];\nif nDimensions == 1,\n\t% Bin test positions and compute distance to center\n\tstats.positions = Interpolate(testPositions,windows(:,1));\n\tstats.positions(:,2) = Bin(stats.positions(:,2),[0 1],nBinsX);\n\tdx = (round(nBinsX/2)-stats.positions(:,2))';\n\t% Shift estimated position by the real distance to center\n\tstats.errors = CircularShift(stats.estimations(:,1:length(dx)),dx);\n\t% Average over one or more cycles\n\tk = 2*pi/window;\n\tn = floor(size(stats.errors,2)/k)*k;\n\tstats.average = reshape(stats.errors(:,1:n),nBins,k,[]);\n\tstats.average = nanmean(stats.average,3);\nelse\n\twarning('Computation of estimation error not yet implemented for 2D environments');\nend\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/FMAToolbox/Analyses/ReconstructPosition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.37865190625104933}} {"text": "function [pnt, dhk] = read_off(fn);\n\n% READ_OFF reads vertices and triangles from a OFF format triangulation file\n%\n% [pnt, dhk] = read_off(filename)\n%\n% See also READ_TRI, READ_BND\n\n% Copyright (C) 1998, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id: read_off.m 945 2010-04-21 17:41:20Z roboos $\n\nfid = fopen(fn, 'rt');\nif fid~=-1\n\n % scan the file type\n [s, count] = fscanf(fid, '%s\\n', 1);\n if ~strcmp(s,'OFF')\n msg = sprintf('wrong file type %s', s);\n error(msg);\n end\n\n % read the number of vertex points and triangles\n [val, count] = fscanf(fid, '%d', 3);\n Npnt = val(1)\n Ndhk = val(2)\n\n % read the vertex points\n pnt = fscanf(fid, '%f', [3, Npnt]);\n pnt = pnt(1:3,:)';\n\n % read the triangles\n dhk = fscanf(fid, '%d', [4, Ndhk]);\n dhk = (dhk(2:4,:)+1)';\n fclose(fid);\n\nelse\n error('unable to open file');\nend\n\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/external/fileio/private/read_off.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3786345959365858}} {"text": "% SP_TO_VTK: Export to VTK format for plotting (store data in\n% binary base64 encoded format).\n%\n% sp_to_vtk (u, space, geometry, npts, filename,\n% fieldname, [option], [precision])\n% sp_to_vtk (u, space, geometry, pts, filename,\n% fieldname, [option], [precision])\n%\n% INPUT:\n% \n% u: vector of dof weights\n% space: object representing the space of discrete functions (see sp_scalar)\n% geometry: geometry structure (see geo_load)\n% npts: number of points along each parametric direction where to evaluate\n% pts: cell array with the coordinates along each parametric direction of the points where to evaluate\n% filename: name of the output file. \n% fieldname: how to name the saved variable in the vtk file\n% option: accepted options are 'value' (default), 'gradient',\n% and for vectors also 'curl', 'divergence'\n% precision: accepted options are 32 (default), or 64, other\n% values are silently ignored\n%\n%\n% OUTPUT:\n%\n% a vtk structured mesh file named is produced, data are\n% base64-encoded and appended at the end of the file to save disk\n% space and write time.\n% \n% Copyright (C) 2009, 2010, 2014 Carlo de Falco\n% Copyright (C) 2011, 2012 Rafael Vazquez\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\nfunction sp_to_vtk_raw (u, space, geometry, npts, filename, fieldname, varargin)\n\n if (nargin == 6)\n option = 'value';\n else\n option = varargin{1};\n end\n\n if (~(numel (varargin) >= 2) || ~(varargin{2} == 64))\n precision = 32;\n else\n precision = 64;\n end\n\n [eu, F] = sp_eval (u, space, geometry, npts, option);\n\n if (space.ncomp == 1 || ~strcmp(option, 'gradient'))\n msh_to_vtk_raw (F, eu, filename, fieldname, precision);\n else\n error ('sp_to_vtk: For vector fields, the gradient cannot be saved')\n end\n\nend\n", "meta": {"author": "rafavzqz", "repo": "geopdes", "sha": "3bfa57b1a38bd4da3148536c9f67cce81afce701", "save_path": "github-repos/MATLAB/rafavzqz-geopdes", "path": "github-repos/MATLAB/rafavzqz-geopdes/geopdes-3bfa57b1a38bd4da3148536c9f67cce81afce701/geopdes/inst/obsolete/sp_to_vtk_raw.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3786345959365857}} {"text": "% Make new eyeCatch library\n\n% find ori_map on eyeCatch webiste, filename:\n% 'eyeChannelWeightNormalizedpart1.mat' and 'eyeChannelWeightNormalizedpart1.mat'\n\nfunction new_map = interpo_lib(ori_map, downsize)\n\n[sampleNumber, oldsize] = size(ori_map);\nif downsize > sqrt(oldsize)\n error('Downsize map should be smaller than original map.');\nend\n\noldsize = sqrt(oldsize);\n\n% reshape old_map\nori_map = reshape(ori_map, [sampleNumber, oldsize, oldsize]);\nnew_map = zeros(sampleNumber, downsize^2);\n\n%% resize\nfor i = 1:sampleNumber\n new_map(i,:) = reshape(imresize(squeeze(ori_map(i,:,:)),[32 32],'nearest'), [1, downsize^2]);\nend\n\n% save to mat\nfilename = 'libEyeCatch';\n\n% for oversize library\n% k = 1;\n% filename = ['new_lib',int2str(k)];\n% while exist([filename,'.mat'],'file')\n% k = k+1;\n% filename = ['new_lib.mat', int2str(k)];\n% end\n\nsave(filename, 'new_map');\n\nend\n\n\n\n\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/eyeCatch/interpo_lib.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.37863458806822964}} {"text": "function [trl, event] = ft_trialfun_edf(cfg)\n\n% FT_TRIALFUN_EDF is an example trial function for EDF data. It searches for events\n% of type \"up\" in an analog data channel, as indentified by thresholding. This\n% threshold can be a hard threshold, i.e. a numeric, or can flexibly be defined\n% depending on the data, for example calculating the 'median' of an analog signal.\n%\n% You can use this as a template for your own conditial trial definitions.\n%\n% Use this function by calling \n% [cfg] = ft_definetrial(cfg)\n% where the configuration structure should contain\n% cfg.dataset = string with the filename\n% cfg.trialfun = 'ft_trialfun_edf'\n%\n% See also FT_DEFINETRIAL, FT_TRIALFUN_GENERAL\n\nft_warning('this trial function is only an example, please copy it and adapt it to your specific EDF situation - see http://www.fieldtriptoolbox.org/getting_started/edf');\n\n% read the header information\nhdr = ft_read_header(cfg.dataset);\n\n% read the events from the data\nchanindx = 1; % this should be adapted to your data\ndetectflank = 'up';\nthreshold = '(3/2)*nanmedian'; % or, e.g., 1/2 times the median for down flanks\nevent = ft_read_event(cfg.dataset, 'trigindx', trigindx, 'detectflank', detectflank, 'threshold', threshold);\n\n% define trials around the events\ntrl = [];\npretrig = 1 * hdr.Fs; % e.g., 1 sec before trigger\nposttrig = 2 * hdr.Fs; % e.g., 2 sec after trigger\nfor i = 1:numel(event)\n offset = -hdr.nSamplesPre; % number of samples prior to the trigger\n trlbegin = event(i).sample - pretrig;\n trlend = event(i).sample + posttrig;\n newtrl = [trlbegin trlend offset];\n trl = [trl; newtrl]; % store in the trl matrix\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/trialfun/ft_trialfun_edf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3785986251967852}} {"text": "function [D, optinf] = ccmod(X, S, dsz, opt)\n\n% ccmod -- Convolutional Constrained Method of Optimal Directions (MOD)\n%\n% argmin_{d_m} (1/2) \\sum_k ||\\sum_m x_k,m * d_m - s_k||_2^2\n% such that ||d_m||_2 = 1\n%\n% The solution of the Convolutional Constrained MOD problem\n% (see wohlberg-2016-efficient) is computed using the ADMM\n% approach (see boyd-2010-distributed).\n%\n% Usage:\n% [D, optinf] = ccmod(X, S, dsz, opt)\n%\n% Input:\n% X Coefficient maps (3D array)\n% S Input images\n% dsz Dictionary size\n% opt Algorithm parameters structure\n%\n% Output:\n% D Dictionary filter set (3D array)\n% optinf Details of optimisation\n%\n%\n% Options structure fields:\n% Verbose Flag determining whether iteration status is displayed.\n% Fields are iteration number, functional value,\n% data fidelity term, l1 regularisation term, and\n% primal and dual residuals (see Sec. 3.3 of\n% boyd-2010-distributed). The values of rho and sigma\n% are also displayed if options request that they are\n% automatically adjusted.\n% MaxMainIter Maximum main iterations\n% AbsStopTol Absolute convergence tolerance (see Sec. 3.3.1 of\n% boyd-2010-distributed)\n% RelStopTol Relative convergence tolerance (see Sec. 3.3.1 of\n% boyd-2010-distributed)\n% G0 Initial value for G\n% H0 Initial value for H\n% sigma ADMM penalty parameter\n% AutoSigma Flag determining whether sigma is automatically updated\n% (see Sec. 3.4.1 of boyd-2010-distributed)\n% AutoSigmaPeriod Iteration period on which sigma is updated\n% SigmaRsdlRatio Primal/dual residual ratio in sigma update test\n% SigmaScaling Multiplier applied to sigma when updated\n% AutoSigmaScaling Flag determining whether SigmaScaling value is\n% adaptively determined (see wohlberg-2015-adaptive). If\n% enabled, SigmaScaling specifies a maximum allowed\n% multiplier instead of a fixed multiplier.\n% StdResiduals Flag determining whether standard residual definitions\n% (see Sec 3.3 of boyd-2010-distributed) are used instead\n% of normalised residuals (see wohlberg-2015-adaptive)\n% RelaxParam Relaxation parameter (see Sec. 3.4.3 of\n% boyd-2010-distributed)\n% LinSolve Linear solver for main problem: 'SM' or 'CG'\n% MaxCGIter Maximum CG iterations when using CG solver\n% CGTol CG tolerance when using CG solver\n% CGTolAuto Flag determining use of automatic CG tolerance\n% CGTolFactor Factor by which primal residual is divided to obtain CG\n% tolerance, when automatic tolerance is active\n% ZeroMean Force learned dictionary entries to be zero-mean\n% AuxVarObj Flag determining whether objective function is computed\n% using the auxiliary (split) variable\n%\n%\n% Author: Brendt Wohlberg Modified: 2015-12-18\n%\n% This file is part of the SPORCO library. Details of the copyright\n% and user license can be found in the 'License' file distributed with\n% the library.\n\n\nif nargin < 4,\n opt = [];\nend\ncheckopt(opt, defaultopts([]));\nopt = defaultopts(opt);\n\n% Set up status display for verbose operation\nhstr = 'Itn Obj Cnst r s ';\nsfms = '%4d %9.2e %9.2e %9.2e %9.2e';\nnsep = 44;\nif opt.AutoSigma,\n hstr = [hstr ' sigma '];\n sfms = [sfms ' %9.2e'];\n nsep = nsep + 10;\nend\nif opt.Verbose && opt.MaxMainIter > 0,\n disp(hstr);\n disp(char('-' * ones(1,nsep)));\nend\n\n% Collapsing of trailing singleton dimensions greatly complicates\n% handling of both SMV and MMV cases. The simplest approach would be\n% if S could always be reshaped to 4d, with dimensions consisting of\n% image rows, image cols, a single dimensional placeholder for number\n% of filters, and number of measurements, but in the single\n% measurement case the third dimension is collapsed so that the array\n% is only 3d.\nif size(S,3) > 1,\n xsz = size(X);\n % Insert singleton 3rd dimension (for number of filters) so that\n % 4th dimension is number of images in input s volume\n S = reshape(S, [size(S,1) size(S,2) 1 size(S,3)]);\nelse\n xsz = [size(X) 1];\nend\n\n% Set dsz to correct form\nif numel(dsz) == 3, dsz = dsz(1:2); end\n\n% Mean removal and normalisation projections\nPzmn = @(x) bsxfun(@minus, x, mean(mean(x,1),2));\nPnrm = @(x) normalise(x);\n\n% Projection of filter to full image size and its transpose\n% (zero-pad and crop respectively)\nPzp = @(x) zpad(x, xsz(1:2));\nPzpT = @(x) bcrop(x, dsz);\n\n% Projection of dictionary filters onto constraint set\nif opt.ZeroMean,\n Pcn = @(x) Pnrm(Pzp(Pzmn(PzpT(x))));\nelse\n Pcn = @(x) Pnrm(Pzp(PzpT(x)));\nend\n\n% Start timer\ntstart = tic;\n\n% Compute coefficients in DFT domain\nXf = fft2(X, size(S,1), size(S,2));\n% Compute signal in DFT domain\nSf = fft2(S);\n% S convolved with all coefficients in DFT domain\nXSf = sum(bsxfun(@times, conj(Xf), Sf), 4);\n\n% Set up algorithm parameters and initialise variables\nsigma = opt.sigma;\nif isempty(sigma), sigma = size(S,3); end;\nNd = prod(xsz(1:3));\ncgt = opt.CGTol;\noptinf = struct('itstat', [], 'opt', opt);\nr = Inf;\ns = Inf;\nepri = 0;\nedua = 0;\n\n% Initialise main working variables\nD = []; Df = [];\nif isempty(opt.G0),\n G = zeros([xsz(1) xsz(2) xsz(3)], class(S));\nelse\n G = opt.G0;\nend\nGprv = G;\nif isempty(opt.H0),\n if isempty(opt.G0),\n H = zeros([xsz(1) xsz(2) xsz(3)], class(S));\n else\n H = G;\n end\nelse\n H = opt.H0;\nend\n\n\n% Main loop\nk = 1;\nwhile k <= opt.MaxMainIter && (r > epri | s > edua),\n\n % Solve subproblems and update dual variable\n if strcmp(opt.LinSolve, 'SM'),\n Df = solvemdbi_ism(Xf, sigma, XSf + sigma*fft2(G - H));\n else\n [Df, cgst] = solvemdbi_cg(Xf, sigma, XSf + sigma*fft2(G - H), ...\n cgt, opt.MaxCGIter, Df(:));\n end\n D = ifft2(Df, 'symmetric');\n\n % See pg. 21 of boyd-2010-distributed\n if opt.RelaxParam == 1,\n Dr = D;\n else\n Dr = opt.RelaxParam*D + (1-opt.RelaxParam)*G;\n end\n\n G = Pcn(Dr + H);\n H = H + Dr - G;\n\n % Compute data fidelity term in Fourier domain (note normalisation)\n if opt.AuxVarObj,\n Gf = fft2(G); % This represents unnecessary computational cost\n Job = sum(vec(abs(sum(bsxfun(@times,Gf,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2));\n Jcn = 0;\n else\n Job = sum(vec(abs(sum(bsxfun(@times,Df,Xf),3)-Sf).^2))/(2*xsz(1)*xsz(2));\n Jcn = norm(vec(Pcn(D) - D));\n end\n\n nD = norm(D(:)); nG = norm(G(:)); nH = norm(H(:));\n if opt.StdResiduals,\n % See pp. 19-20 of boyd-2010-distributed\n r = norm(vec(D - G));\n s = norm(vec(sigma*(Gprv - G)));\n epri = sqrt(Nd)*opt.AbsStopTol+max(nD,nG)*opt.RelStopTol;\n edua = sqrt(Nd)*opt.AbsStopTol+sigma*nH*opt.RelStopTol;\n else\n % See wohlberg-2015-adaptive\n r = norm(vec(D - G))/max(nD,nG);\n s = norm(vec(Gprv - G))/nH;\n epri = sqrt(Nd)*opt.AbsStopTol/max(nD,nG)+opt.RelStopTol;\n edua = sqrt(Nd)*opt.AbsStopTol/(sigma*nH)+opt.RelStopTol;\n end\n\n if opt.CGTolAuto && (r/opt.CGTolFactor) < cgt,\n cgt = r/opt.CGTolFactor;\n end\n\n % Record and display iteration details\n tk = toc(tstart);\n optinf.itstat = [optinf.itstat; [k Job Jcn r s epri edua sigma tk]];\n if opt.Verbose,\n if opt.AutoSigma,\n disp(sprintf(sfms, k, Job, Jcn, r, s, sigma));\n else\n disp(sprintf(sfms, k, Job, Jcn, r, s));\n end\n end\n\n % See wohlberg-2015-adaptive and pp. 20-21 of boyd-2010-distributed\n if opt.AutoSigma,\n if k ~= 1 && mod(k, opt.AutoSigmaPeriod) == 0,\n if opt.AutoSigmaScaling,\n sigmlt = sqrt(r/s);\n if sigmlt < 1, sigmlt = 1/sigmlt; end\n if sigmlt > opt.SigmaScaling, sigmlt = opt.SigmaScaling; end\n else\n sigmlt = opt.SigmaScaling;\n end\n ssf = 1;\n if r > opt.SigmaRsdlRatio*s, ssf = sigmlt; end\n if s > opt.SigmaRsdlRatio*r, ssf = 1/sigmlt; end\n sigma = ssf*sigma;\n H = H/ssf;\n end\n end\n\n Gprv = G;\n k = k + 1;\n\nend\n\n% Record run time and working variables\noptinf.runtime = toc(tstart);\noptinf.D = D;\noptinf.G = G;\noptinf.H = H;\noptinf.sigma = sigma;\noptinf.cgt = cgt;\nif exist('cgst'), optinf.cgst = cgst; end\n\nD = PzpT(G);\n\nif opt.Verbose && opt.MaxMainIter > 0,\n disp(char('-' * ones(1,nsep)));\nend\n\nreturn\n\n\nfunction u = vec(v)\n\n u = v(:);\n\nreturn\n\n\nfunction u = normalise(v)\n\n nrm = sqrt(sum(sum(v.^2, 1), 2));\n nrm(nrm == 0) = 1;\n u = bsxfun(@rdivide, v, nrm);\n\nreturn\n\n\nfunction u = zpad(v, sz)\n\n u = zeros(sz(1), sz(2), size(v,3), size(v,4), class(v));\n u(1:size(v,1), 1:size(v,2),:,:) = v;\n\nreturn\n\n\nfunction u = bcrop(v, sz)\n\n if numel(sz) <= 2,\n if numel(sz) == 1\n cs = [sz sz];\n else\n cs = sz;\n end\n u = v(1:cs(1), 1:cs(2), :);\n else\n if size(sz,1) < size(sz,2), sz = sz'; end\n cs = max(sz);\n u = zeros(cs(1), cs(2), size(v,3));\n for k = 1:size(v,3),\n u(1:sz(k,1), 1:sz(k,2), k) = v(1:sz(k,1), 1:sz(k,2), k);\n end\n end\n\nreturn\n\n\nfunction opt = defaultopts(opt)\n\n if ~isfield(opt,'Verbose'),\n opt.Verbose = 0;\n end\n if ~isfield(opt,'MaxMainIter'),\n opt.MaxMainIter = 200;\n end\n if ~isfield(opt,'AbsStopTol'),\n opt.AbsStopTol = 1e-6;\n end\n if ~isfield(opt,'RelStopTol'),\n opt.RelStopTol = 1e-4;\n end\n if ~isfield(opt,'G0'),\n opt.G0 = [];\n end\n if ~isfield(opt,'H0'),\n opt.H0 = [];\n end\n if ~isfield(opt,'sigma'),\n opt.sigma = [];\n end\n if ~isfield(opt,'AutoSigma'),\n opt.AutoSigma = 0;\n end\n if ~isfield(opt,'AutoSigmaPeriod'),\n opt.AutoSigmaPeriod = 10;\n end\n if ~isfield(opt,'SigmaRsdlRatio'),\n opt.SigmaRsdlRatio = 10;\n end\n if ~isfield(opt,'SigmaScaling'),\n opt.SigmaScaling = 2;\n end\n if ~isfield(opt,'AutoSigmaScaling'),\n opt.AutoSigmaScaling = 0;\n end\n if ~isfield(opt,'StdResiduals'),\n opt.StdResiduals = 0;\n end\n if ~isfield(opt,'RelaxParam'),\n opt.RelaxParam = 1;\n end\n if ~isfield(opt,'LinSolve'),\n opt.LinSolve = 'SM';\n end\n if ~isfield(opt,'MaxCGIter'),\n opt.MaxCGIter = 1000;\n end\n if ~isfield(opt,'CGTol'),\n opt.CGTol = 1e-3;\n end\n if ~isfield(opt,'CGTolAuto'),\n opt.CGTolAuto = 0;\n end\n if ~isfield(opt,'CGTolAutoFactor'),\n opt.CGTolFactor = 50;\n end\n if ~isfield(opt,'ZeroMean'),\n opt.ZeroMean = 0;\n end\n if ~isfield(opt,'AuxVarObj'),\n opt.AuxVarObj = 0;\n end\n\nreturn\n", "meta": {"author": "thfylsty", "repo": "Classic-and-state-of-the-art-image-fusion-methods", "sha": "5d9457df396f1ea6921e1b9b3703995205940862", "save_path": "github-repos/MATLAB/thfylsty-Classic-and-state-of-the-art-image-fusion-methods", "path": "github-repos/MATLAB/thfylsty-Classic-and-state-of-the-art-image-fusion-methods/Classic-and-state-of-the-art-image-fusion-methods-5d9457df396f1ea6921e1b9b3703995205940862/ConvSR_Image_Fusion_Codes/sporco/DictLearn/ccmod.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3785986251967852}} {"text": "function [ im_data ] = prepare_img_deng( im_data, mean_data, im_size_h,im_size_w )\n%PREPARE_IMG Summary of this function goes here\n% Detailed explanation goes here\n% Convert an image returned by Matlab's imread to im_data in caffe's data\n% format: W x H x C with BGR channels\nim_data = im_data(:, :, [3, 2, 1]); % permute channels from RGB to BGR\nim_data = permute(im_data, [2, 1, 3]); % flip width and height\nim_data = single(im_data); % convert from uint8 to single\nim_data = imresize(im_data, [im_size_w im_size_h ], 'bilinear'); % resize im_data\nim_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)\nend\n\n", "meta": {"author": "Simon4Yan", "repo": "Learning-via-Translation", "sha": "f73210e35e1515528c454c681e7d6695fdecf818", "save_path": "github-repos/MATLAB/Simon4Yan-Learning-via-Translation", "path": "github-repos/MATLAB/Simon4Yan-Learning-via-Translation/Learning-via-Translation-f73210e35e1515528c454c681e7d6695fdecf818/duke_evaluation/utils/prepare_img_deng.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.668880247169804, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37859861772465875}} {"text": "%GETCOST Get classification cost matrix\n%\n% [COST,LABLIST] = GETCOST(A)\n%\n% Returns the classification cost matrix as defined for the dataset A.\n% An empty cost matrix is interpreted as equal costs for misclassification.\n% In that case COST = ONES(C+1) - EYE(C+1) is returned, if C is the number\n% of classes. Row C+1 and column C+1 in COST refer to unlabeld objects.\n% In LABLIST the class labels are returned.\n%\n% If A has target labels an error is returned as in that case no classes\n% and thereby no costs are defined.\n%\n% See DATASETS\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/@prdataset/getcost.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.668880247169804, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37859861772465875}} {"text": "function [gx,dgdx,dgdp] = g_DCMwHRFext(Xt,P,ut,in) \n\n%- initializations\nidX1 = 1:in.n5(end);\nnreg=length(in.n5);\nnresp=length(in.r);\n\n\ngxr=zeros(nresp,1);\ndgdxr=zeros(length(Xt),nresp);\ndgdpr=zeros(length(P),nresp);\n\n%== compute gradients\n[gxn,dgdxn,dgdpn] = g_HRF3(Xt(idX1),P,ut,in) ;\nfor iR = 1:numel(in.sourceRespIdx)\n respIdx = in.sourceRespIdx{iR};\n idRinX = in.r(respIdx);\n idRinPhi = in.indr(iR);\n [gxr(respIdx),dgdxr(idRinX,respIdx),dgdpr(idRinPhi,respIdx)] = g_softmax4decoding(Xt(idRinX),P(idRinPhi),ut,in);\nend\n%== concatenate BOLD and behavioral responses\n%- state\ngx = [gxn ; gxr] ;\n\n%- Jacobian\ndgdx = zeros(length(Xt),length(gx));\ndgdx(idX1,1:nreg) = dgdxn ;\ndgdx(:,nreg+(1:nresp)) = dgdxr ;\n\n%- gradient wrt parameters\ndgdp = zeros(length(P),nreg+nresp);\ndgdp(1:size(dgdpn,1),1:nreg) = dgdpn ;\ndgdp(:,nreg+(1:nresp)) = dgdpr ;\n\n\nend", "meta": {"author": "MBB-team", "repo": "VBA-toolbox", "sha": "01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414", "save_path": "github-repos/MATLAB/MBB-team-VBA-toolbox", "path": "github-repos/MATLAB/MBB-team-VBA-toolbox/VBA-toolbox-01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414/demos/_models/g_DCMwHRFext.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7879311856832191, "lm_q2_score": 0.48047867804790706, "lm_q1q2_score": 0.3785841344897931}} {"text": "classdef tattention < matlab.unittest.TestCase\n % tattention Tests for transformer.layer.attention\n \n % Copyright 2020 The Mathworks, Inc.\n \n % The attention function has 3 purposes:\n % 1. Apply the pre and post attention fully connected layers.\n % 2. Rearrange data format for applying multi-head attention.\n % 3. Preserve the key and value matrices, and append to them when using\n % values from the past. This is done pre-attention.\n \n properties(Constant,Access=private)\n attention = @transformer.layer.attention\n multiheadAttention = @transformer.layer.multiheadAttention\n end\n \n properties(TestParameter)\n NumQueries = {1,2}\n NumObs = {1,3}\n end\n \n methods(Test)\n function checkSingleHeadNoFullyConnected(test,NumQueries,NumObs)\n % Verify that multiheadAttention is used.\n % Do this by setting the fully connected weights to identity\n % and the bias to 0.\n % With a single head we do not need split and merge heads.\n latentDim = 10;\n hyperParams.NumHeads = 1;\n past = [];\n % Set up the fc weights to be identity matrices and biases to\n % be 0.\n weights = test.prepareWeightsStructWithIdentityFC(hyperParams.NumHeads,latentDim);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*3,NumQueries,NumObs));\n yAct = test.attention(x,past,weights,hyperParams);\n % Verify against multiheadAttention by splitting the arbitrary\n % input into query, key and value.\n [q,k,v] = iSplitQKV(x,hyperParams.NumHeads,latentDim);\n yExp = test.multiheadAttention(q,k,v);\n % Note that for numObs > 1 we need to merge heads. Since we\n % have a single head here, no merger needs to take place -- we\n % just need to permute the observation dimension from 4 to 3\n yExp = permute(yExp, [1 2 4 3]);\n test.verifyEqual(yAct,yExp);\n end\n \n function checkMultiHeadNoFullyConnected(test,NumQueries,NumObs)\n % Verify the multiple head case. Multi head attention is\n % achieved by simply creating a \"head dimension\" and pushing it\n % to the back so that it is treated as a \"batch\"\n % dimension for matrix multiplication.\n latentDim = 10;\n hyperParams.NumHeads = 2;\n past = [];\n % Set up the fc weights to be identity matrices and biases to\n % be 0. \n weights = test.prepareWeightsStructWithIdentityFC(hyperParams.NumHeads,latentDim);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,NumQueries,NumObs));\n yAct = test.attention(x,past,weights,hyperParams);\n [Q,K,V] = iSplitQKV(x,hyperParams.NumHeads,latentDim);\n % Verify against the multiheadAttention function.\n yExp = test.multiheadAttention(Q,K,V);\n yExp = iMergeHeads(yExp);\n test.verifyEqual(yAct,yExp);\n end\n \n function checkPastPresentCaching(test,NumQueries,NumObs)\n % Verify the 2nd input and output of attention - the pasts\n % passed in are the keys and values for the previous time step.\n % These are concatenated to the keys and values for the current\n % time step before the multiheadAttention call, and these\n % concatenated key and values are passed out as a second\n % output.\n latentDim = 10;\n hyperParams.NumHeads = 2;\n % Set up a fake past by making an initial call to attention.\n past = [];\n % Set up the fc weights to be identity matrices and biases to\n % be 0. \n weights = test.prepareWeightsStructWithIdentityFC(hyperParams.NumHeads,latentDim);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,NumQueries,NumObs));\n [~,past] = test.attention(x,past,weights,hyperParams);\n % Verify the expected value of past - it is the key and values\n % concatenated on the 4th dimension.\n [~,K,V] = iSplitQKV(x,hyperParams.NumHeads,latentDim);\n test.verifyEqual(past,cat(5,K,V));\n % Now verify second call to attention is possible with the first \n % past as input - and verify the value of the attention output.\n [yAct,present] = test.attention(x,past,weights,hyperParams);\n [Q,K,V] = iSplitQKV(x,hyperParams.NumHeads,latentDim);\n % Verify the correct value for present.\n pastK = past(:,:,:,:,1);\n pastV = past(:,:,:,:,2);\n test.verifyEqual(extractdata(present),extractdata(cat(5,cat(2,pastK,K),cat(2,pastV,V))),'AbsTol',1e-5);\n % To compute the expected value, concatenate the pasts\n K = cat(2,K,pastK);\n V = cat(2,V,pastV);\n yExp = test.multiheadAttention(Q,K,V);\n yExp = iMergeHeads(yExp);\n test.verifyEqual(extractdata(yAct),extractdata(yExp),'AbsTol',1e-5);\n end\n \n function checkInputOutputFC(test,NumQueries,NumObs)\n % The tests above ensure multiheadAttention is used by\n % attention. Now verify the input and output FC operations are\n % used.\n latentDim = 10;\n hyperParams.NumHeads = 2;\n % Set up a fake past by making an initial call to attention.\n past = [];\n params = test.prepareWeightsStructUsingGenerators(hyperParams.NumHeads,latentDim,@randn,@randn);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,NumQueries,NumObs));\n yAct = test.attention(x,past,params,hyperParams);\n % Verify this matches the full attention implementation\n z = fullyconnect(x,params.attn_c_attn_w_0,params.attn_c_attn_b_0,'DataFormat','CBT');\n [Q,K,V] = iSplitQKV(z,hyperParams.NumHeads,latentDim);\n z = test.multiheadAttention(Q,K,V);\n z = iMergeHeads(z);\n yExp = fullyconnect(z,params.attn_c_proj_w_0,params.attn_c_proj_b_0,'DataFormat','CBT');\n test.verifyEqual(extractdata(yAct),extractdata(yExp),'AbsTol',1e-5);\n end\n \n function defaultIsMaksed(test)\n % Verify the default for the 'CausalMask' NVP is true\n latentDim = 10;\n hyperParams.NumHeads = 2;\n past = [];\n numQueries = 2;\n % Set up the fc weights to be identity matrices and biases to\n % be 0. \n weights = test.prepareWeightsStructWithIdentityFC(hyperParams.NumHeads,latentDim);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,numQueries));\n default = test.attention(x,past,weights,hyperParams);\n masked = test.attention(x,past,weights,hyperParams,'CausalMask',true);\n test.verifyEqual(extractdata(default),extractdata(masked)); \n end\n \n function canTurnOffMask(test)\n % Verify the 'CausalMask' NVP can be set to false - the expectation\n % is this simply sets 'Masked' to false for the\n % multiheadAttention call.\n latentDim = 10;\n hyperParams.NumHeads = 2;\n past = [];\n numQueries = 2;\n % Set up the fc weights to be identity matrices and biases to\n % be 0. \n weights = test.prepareWeightsStructWithIdentityFC(hyperParams.NumHeads,latentDim);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,numQueries));\n yAct = test.attention(x,past,weights,hyperParams,'CausalMask',false);\n [Q,K,V] = iSplitQKV(x,hyperParams.NumHeads,latentDim);\n % Verify against the multiheadAttention function with 'Masked'\n % set to false.\n yExp = test.multiheadAttention(Q,K,V,'CausalMask',false);\n yExp = iMergeHeads(yExp);\n test.verifyEqual(yAct,yExp);\n end\n \n function canDropout(test)\n % Verify dropout can be applied to attention - the expectation\n % is that this matches simply setting the Dropout NVP in the\n % multiheadAttention call\n latentDim = 10;\n hyperParams.NumHeads = 2;\n past = [];\n numQueries = 2;\n % Set up the fc weights to be identity matrices and biases to\n % be 0. \n weights = test.prepareWeightsStructWithIdentityFC(hyperParams.NumHeads,latentDim);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,numQueries));\n p = 0.5;\n % Set global rng between non-deterministic calls.\n rng(0);\n yAct = test.attention(x,past,weights,hyperParams,'Dropout',p);\n [Q,K,V] = iSplitQKV(x,hyperParams.NumHeads,latentDim);\n % Verify against the multiheadAttention function with 'Dropout'\n % set to p\n % Set global rng between non-deterministic calls.\n rng(0);\n yExp = test.multiheadAttention(Q,K,V,'Dropout',p);\n yExp = iMergeHeads(yExp);\n test.verifyEqual(yAct,yExp);\n end\n \n function defaultIsNoDropout(test)\n % Verify the default Dropout is 0.\n latentDim = 10;\n hyperParams.NumHeads = 2;\n numQueries = 2;\n % Set up a fake past by making an initial call to attention.\n past = [];\n params = test.prepareWeightsStructUsingGenerators(hyperParams.NumHeads,latentDim,@randn,@randn);\n % Call attention on an arbitrary input.\n x = dlarray(rand(latentDim*hyperParams.NumHeads*3,numQueries));\n yDefault = test.attention(x,past,params,hyperParams);\n yNoDropout = test.attention(x,past,params,hyperParams,'Dropout',0);\n test.verifyEqual(yDefault,yNoDropout);\n end\n end\n \n methods(Access=private)\n function s = prepareWeightsStruct(~,W1,b1,W2,b2)\n % Prepare a struct compatible with the weights input of\n % attention. These are for the fully connected layers.\n s = struct(...\n 'attn_c_attn_w_0',W1,...\n 'attn_c_attn_b_0',b1,...\n 'attn_c_proj_w_0',W2,...\n 'attn_c_proj_b_0',b2);\n end\n \n function s = prepareWeightsStructUsingGenerators(test,nHeads,latentDim,weightGenerator,biasGenerator)\n % Use function handles weightGenerator and biasGenerator to\n % create weight and bias values for the fc layers in attention.\n % The expectation is these function handles map a size vector\n % to an array of that size.\n \n % The query, key and value vectors are flattened into 1\n % dimension for the input.\n % There are nHeads of each, and each is a latentDim\n % dimensional vector \n inputDim = 3*nHeads*latentDim;\n W1 = dlarray(weightGenerator([inputDim,inputDim]));\n b1 = dlarray(biasGenerator([inputDim,1]));\n \n % For the output we don't need the 3 - the multiheadAttention\n % has taken an expectation of the value vectors under some\n % probability distribution. \n outputDim = nHeads*latentDim;\n W2 = dlarray(weightGenerator([outputDim,outputDim]));\n b2 = dlarray(biasGenerator([outputDim,1]));\n s = test.prepareWeightsStruct(W1,b1,W2,b2);\n end\n \n function s = prepareWeightsStructWithIdentityFC(test,nHeads,latentDim)\n % Prepare a struct compatible with the weights input of\n % attention such that the fc layers are identity operations.\n s = test.prepareWeightsStructUsingGenerators(nHeads,latentDim,@eye,@zeros);\n end\n end\nend\n\nfunction [Q,K,V] = iSplitQKV(X, nHeads, latentDim)\n% Split an input array X into the corresponding Q, K and V arrays.\nsplitSize = latentDim*nHeads;\nQ = iSplitHeads(X(1:splitSize,:,:),splitSize,nHeads);\nK = iSplitHeads(X((splitSize+1):2*splitSize,:,:),splitSize,nHeads);\nV = iSplitHeads(X((2*splitSize+1):3*splitSize,:,:),splitSize,nHeads);\nend\n\nfunction X = iSplitHeads(X, splitSize, numHeads)\nX = reshape(X, splitSize/numHeads, numHeads, [], size(X,3)); % Split states\nX = permute(X,[1 3 2 4]);\nend\n\nfunction X = iMergeHeads(X)\nX = permute(X, [1 3 2 4]);\nX = reshape(X, size(X,1)*size(X,2), [], size(X,4)); % Merge states\nend", "meta": {"author": "matlab-deep-learning", "repo": "transformer-models", "sha": "87f02af6b91c5bd7ac8479ea433f20435644d165", "save_path": "github-repos/MATLAB/matlab-deep-learning-transformer-models", "path": "github-repos/MATLAB/matlab-deep-learning-transformer-models/transformer-models-87f02af6b91c5bd7ac8479ea433f20435644d165/test/transformer/layer/tattention.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.37852664859089247}} {"text": "function losses = loss_func(o)\n% Compute the loss associated with the intersection over union\n% overlap between a ground-truth bounding box and any other \n% windows.\n% losses = loss_func(o)\n%\n% Return value\n% losses Loss for each element in the input\n%\n% Argument\n% o Vector of overlap values\n\n% AUTORIGHTS\n% -------------------------------------------------------\n% Copyright (C) 2011-2012 Ross Girshick\n% \n% This file is part of the voc-releaseX code\n% (http://people.cs.uchicago.edu/~rbg/latent/)\n% and is available under the terms of an MIT-like license\n% provided in COPYING. Please retain this notice and\n% COPYING if you use this file (or a portion of it) in\n% your project.\n% -------------------------------------------------------\n\n% The PASCAL VOC detection task loss\n% Loss is 0 for IoU >= 0.5\n% Loss is 1 for IoU < 0.5\nlosses = zeros(size(o));\nI = find(o < 0.5);\nlosses(I) = 1.0;\n", "meta": {"author": "rbgirshick", "repo": "voc-dpm", "sha": "c0b88564bd668bcc6216bbffe96cb061613be768", "save_path": "github-repos/MATLAB/rbgirshick-voc-dpm", "path": "github-repos/MATLAB/rbgirshick-voc-dpm/voc-dpm-c0b88564bd668bcc6216bbffe96cb061613be768/gdetect/loss_func.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.734119526900183, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3785266485908924}} {"text": "\nimage = imread('Training4.png');\ntrimap = imread('Training4Trimap.png');\n\n% Closed-form matting\na_cf = closedFormMatting(image, trimap);\n% Some alternatives:\n% a_ifm = informationFlowMatting(image, trimap);\n% a_knn = KNNMatting(image, trimap);\n\n% Get the parameter struct and edit for customization if desired\nparams = getMattingParams('IFM');\nparams.useKnownToUnknown = 0;\n% params.iu_xyw = 0.1;\n% params.loc_mult = 3;\na_ifm = informationFlowMatting(image, trimap, params);\n\n% Trim the trimap\ntrimmed = patchBasedTrimming(image, trimap);\n% An alternative:\n% trimmed = trimmingFromUnknownToKnownEdges(image, trimap);\n\n% Run K-to-U information flow to get a rough alpha and confidences\n[alphaHat, conf] = knownToUnknownColorMixture(image, trimmed);\n\n% Refine alphaHat shared matting\na_sm_ref = sharedMattingMatteRefinement(image, trimmed, alphaHat, conf);\n% Alternative:\n% a_ifm_ref = informationFlowMatteRefinement(image, trimmed, alphaHat, conf);", "meta": {"author": "yaksoy", "repo": "AffinityBasedMattingToolbox", "sha": "ab3951065321b67d3ad67333779cbb2078474939", "save_path": "github-repos/MATLAB/yaksoy-AffinityBasedMattingToolbox", "path": "github-repos/MATLAB/yaksoy-AffinityBasedMattingToolbox/AffinityBasedMattingToolbox-ab3951065321b67d3ad67333779cbb2078474939/demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.37852664259211144}} {"text": "function [ ISIstats ] = bz_ISIStats( spikes,varargin )\n%ISIstats = bz_ISIStats(spikes,varargin) calculates the statistics \n%inter-spike intervals for the spiketimes in spikes.\n%\n% INPUTS\n% spikes Structure with spikes.times and spikes.UID\n%\n% (options)\n% 'ints' A structure with intervals in which to calculate ISIs.\n% states.stateNAME = [start stop]\n% Will calculate ISIsstats separately for each state\n% (Can also 'load' from SleepState.states.mat)\n% 'cellclass' Cell array of strings - label for each cell. \n% (Can also 'load' from CellClass.cellinfo.mat)\n% 'savecellinfo' logical (default: false) save a cellinfo file?\n% 'basePath'\n% 'figfolder' a folder to save the figure in\n% 'showfig' logical (default: false) show the figure?\n% 'forceRedetect' logical (default: false) to re-compute even if saved\n% 'shuffleCV2' logical (devault: false)\n% 'numISIbins' number of bins for ISI distribution (default: 60)\n% 'numCV2bins' number pf bins for CV2 distribution (default: 60)\n%\n% OUTPUTS\n% ISIstats cellinfo structure with ISI statistics\n% .summstats summary statistics\n% .ISIhist histograms of ISIs etc\n% .sorts sorting indices\n% .allspikes ISI/CV2 value for each spike \n% (ISI is PRECEDING interval for the spike at allspikes.times)\n%\n%DLevenstein 2018\n%% Parse the inputs\ndefaultstates.ALL = [-Inf Inf];\n\n% parse args\np = inputParser;\naddParameter(p,'ints',defaultstates)\naddParameter(p,'savecellinfo',false,@islogical)\naddParameter(p,'basePath',pwd,@isstr)\naddParameter(p,'figfolder',false)\naddParameter(p,'showfig',false,@islogical);\naddParameter(p,'cellclass',[]);\naddParameter(p,'forceRedetect',false,@islogical);\naddParameter(p,'shuffleCV2',false,@islogical);\naddParameter(p,'numISIbins',60,@islogical);\naddParameter(p,'numCV2bins',50,@islogical);\n\n\nparse(p,varargin{:})\nints = p.Results.ints;\ncellclass = p.Results.cellclass;\nbasePath = p.Results.basePath;\nSAVECELLINFO = p.Results.savecellinfo;\nfigfolder = p.Results.figfolder;\nSHOWFIG = p.Results.showfig;\nforceRedetect = p.Results.forceRedetect;\nSHUFFLECV2 = p.Results.shuffleCV2;\nnumISIbins = p.Results.numISIbins;\nnumCV2bins = p.Results.numCV2bins;\n\n\n%% Load the stuff\nbaseName = bz_BasenameFromBasepath(basePath);\ncellinfofilename = fullfile(basePath,[baseName,'.ISIStats.cellinfo.mat']);\n\nif exist(cellinfofilename,'file') && ~forceRedetect\n ISIstats = bz_LoadCellinfo(basePath,'ISIStats');\n return\nend\n \nif strcmp(cellclass,'load')\n cellclass = bz_LoadCellinfo(basePath,'CellClass');\n cellclass = cellclass.label;\nend\n\nif strcmp(ints,'load')\n ints = bz_LoadStates(basePath,'SleepState');\n ints = ints.ints;\nend\n\n\n%% Get the States\nints.ALL = [-Inf Inf]; %Add ALL to the options\nstatenames = fieldnames(ints);\nnumstates = length(statenames);\n\n\n%% ISI and CV2 statistics\nnumcells = length(spikes.times);\n\n%Calculate ISI and CV2 for allspikes\nallspikes.ISIs = cellfun(@diff,spikes.times,'UniformOutput',false);\nallspikes.meanISI = cellfun(@(X) (X(1:end-1)+X(2:end))./2,allspikes.ISIs,'UniformOutput',false);\nallspikes.CV2 = cellfun(@(X) 2.*abs(X(2:end)-X(1:end-1))./(X(2:end)+X(1:end-1)),allspikes.ISIs ,'UniformOutput',false);\n%Make sure times line up\nallspikes.times = cellfun(@(X) X(2:end-1),spikes.times,'UniformOutput',false);\nallspikes.ISIs = cellfun(@(X) X(1:end-1),allspikes.ISIs,'UniformOutput',false);\n%%\nfor ss = 1:numstates\n%ss=1;\n\n%Find which spikes are during state of interest\nstatespikes = cellfun(@(X) InIntervals(X,ints.(statenames{ss})),...\n allspikes.times,'UniformOutput',false);\nCV2 = cellfun(@(X,Y) X(Y(2:end-1)),allspikes.CV2,statespikes,'Uniformoutput',false);\nISIs = cellfun(@(X,Y) X(Y(2:end-1)),allspikes.ISIs,statespikes,'Uniformoutput',false);\nnormISIs = cellfun(@(X) X./mean(X),ISIs,'Uniformoutput',false);\n\n\n%Summary Statistics\nsummstats.(statenames{ss}).meanISI = cellfun(@(X) mean(X),ISIs);\nsummstats.(statenames{ss}).meanrate = 1./summstats.(statenames{ss}).meanISI;\nsummstats.(statenames{ss}).ISICV = cellfun(@(X) std(X)./mean(X),ISIs);\nsummstats.(statenames{ss}).meanCV2 = cellfun(@(X) mean(X),CV2);\n\n\n\n%Account for no spikes\nsummstats.(statenames{ss}).meanrate(isnan(summstats.(statenames{ss}).meanrate))=0;\n\n\nif SHUFFLECV2\n % CV2 for shuffled ISIs\n numshuffle = 100;\n for sh = 1:numshuffle\n ISIs_shuffle = cellfun(@(X) shuffle(X),ISIs,'UniformOutput',false);\n CV2_shuffle = cellfun(@(X) 2.*abs(X(2:end)-X(1:end-1))./(X(2:end)+X(1:end-1)),...\n ISIs_shuffle ,'UniformOutput',false);\n meanshuffle(sh,:) = cellfun(@(X) mean(X),CV2_shuffle);\n end\n summstats.(statenames{ss}).shufflemeanCV2 = mean(meanshuffle);\n summstats.(statenames{ss}).shufflestdCV2 = std(meanshuffle);\n\nend\n%%\n%Set up all the bins and matrices\nISIhist.linbins = linspace(0,10,numISIbins);\nISIhist.logbins = linspace(log10(0.001),log10(200),numISIbins);\nISIhist.(statenames{ss}).lin = zeros(numcells,numISIbins);\nISIhist.(statenames{ss}).log = zeros(numcells,numISIbins);\nISIhist.(statenames{ss}).return = zeros(numISIbins,numISIbins,numcells);\nISIhist.(statenames{ss}).meannorm = zeros(numcells,numISIbins);\n\nCV2hist.bins = linspace(0,2,numCV2bins+1);\nCV2hist.bins = CV2hist.bins(1:end-1)+0.5.*diff(CV2hist.bins([1 2]));\nCV2hist.(statenames{ss}) = zeros(numcells,numCV2bins);\n\nJointhist.(statenames{ss}).log = zeros(numcells,numISIbins,numCV2bins);\nJointhist.(statenames{ss}).norm = zeros(numcells,numISIbins,numCV2bins);\n\n\n\n%Calculate all the histograms: ISI, log(ISI), 1/ISI, log(1/ISI)\nfor cc = 1:numcells\n numspks(cc) = length(ISIs{cc});\n spikethresh = 100; %need 100 spikes to show in mean plot\n enoughspikes(cc) = numspks(cc)>spikethresh;\n \n if numspks(cc)<1\n continue\n end\n %Calculate ISI histograms\n ISIhist.(statenames{ss}).lin(cc,:) = hist(ISIs{cc},ISIhist.linbins);\n ISIhist.(statenames{ss}).log(cc,:) = hist(log10(ISIs{cc}),ISIhist.logbins);\n ISIhist.(statenames{ss}).loginv(cc,:) = hist(log10(1./ISIs{cc}),ISIhist.logbins);\n ISIhist.(statenames{ss}).meannorm(cc,:) = hist(log10(normISIs{cc}),ISIhist.logbins);\n \n CV2hist.(statenames{ss})(cc,:) = hist(CV2{cc},CV2hist.bins);\n Jointhist.(statenames{ss}).log(cc,:,:) = hist3(...\n [log10([ISIs{cc};ISIs{cc}(2:end)]),[CV2{cc};CV2{cc}(1:end-1)]],...\n {ISIhist.logbins,CV2hist.bins});\n Jointhist.(statenames{ss}).norm(cc,:,:) = hist3(...\n [log10([normISIs{cc};normISIs{cc}(2:end)]),[CV2{cc};CV2{cc}(1:end-1)]],...\n {ISIhist.logbins,CV2hist.bins});\n \n \n %Normalize histograms to number of spikes\n ISIhist.(statenames{ss}).lin(cc,:) = ISIhist.(statenames{ss}).lin(cc,:)./numspks(cc);\n ISIhist.(statenames{ss}).log(cc,:) = ISIhist.(statenames{ss}).log(cc,:)./numspks(cc);\n ISIhist.(statenames{ss}).loginv(cc,:) = ISIhist.(statenames{ss}).loginv(cc,:)./numspks(cc);\n ISIhist.(statenames{ss}).meannorm(cc,:) = ISIhist.(statenames{ss}).meannorm(cc,:)./numspks(cc);\n \n CV2hist.(statenames{ss})(cc,:) = CV2hist.(statenames{ss})(cc,:)./numspks(cc);\n \n Jointhist.(statenames{ss}).log(cc,:,:) = Jointhist.(statenames{ss}).log(cc,:,:)./numspks(cc);\n Jointhist.(statenames{ss}).norm(cc,:,:) = Jointhist.(statenames{ss}).norm(cc,:,:)./numspks(cc);\n\n %Calculate Return maps\n if numspks(cc)>1\n ISIhist.(statenames{ss}).return(:,:,cc) = hist3(log10([ISIs{cc}(1:end-1) ISIs{cc}(2:end)]),{ISIhist.logbins,ISIhist.logbins});\n end\n ISIhist.(statenames{ss}).return(:,:,cc) = ISIhist.(statenames{ss}).return(:,:,cc)./numspks(cc);\n \nend\n\nsummstats.(statenames{ss}).numspikes = numspks;\n\n%Sortings\n[~,sorts.(statenames{ss}).rate]=sort(summstats.(statenames{ss}).meanrate);\n[~,sorts.(statenames{ss}).ISICV]=sort(summstats.(statenames{ss}).ISICV);\n[~,sorts.(statenames{ss}).CV2]=sort(summstats.(statenames{ss}).meanCV2);\n\n%Make the cell-type specific sortings and average distributions\nif ~isempty(cellclass)\n %Check for empty cell class entries\n noclass = cellfun(@isempty,cellclass);\n sorts.numclassycells = sum(~noclass);\n %cellclass(noclass)={'none'};\n classnames = unique(cellclass(~noclass));\n numclasses = length(classnames);\n for cl = 1:numclasses\n inclasscells{cl} = strcmp(classnames{cl},cellclass);\n \n %Mean distributions\n meandists.(statenames{ss}).(classnames{cl}).ISIdist = squeeze(nanmean(ISIhist.(statenames{ss}).log(inclasscells{cl}&enoughspikes,:),1));\n meandists.(statenames{ss}).(classnames{cl}).CV2dist = squeeze(nanmean(CV2hist.(statenames{ss})(inclasscells{cl}&enoughspikes,:),1));\n meandists.(statenames{ss}).(classnames{cl}).Jointdist = squeeze(nanmean(Jointhist.(statenames{ss}).log(inclasscells{cl}&enoughspikes,:,:),1));\n \n %Sorts\n sorttypes = {'rate','ISICV','CV2'};\n for tt = 1:length(sorttypes)\n sorts.(statenames{ss}).([sorttypes{tt},classnames{cl}]) = ...\n intersect(sorts.(statenames{ss}).(sorttypes{tt}),find(inclasscells{cl}),'stable');\n \n if cl==1\n sorts.(statenames{ss}).([sorttypes{tt},'byclass'])=[];\n end\n sorts.(statenames{ss}).([sorttypes{tt},'byclass']) = ...\n [sorts.(statenames{ss}).([sorttypes{tt},'byclass']) sorts.(statenames{ss}).([sorttypes{tt},classnames{cl}])];\n end\n \n end \nelse\n numclasses = 1; cl=1;\n classnames{1} = 'ALL';\n sorts.numclassycells = numcells;\n inclasscells{1} = true(1,numcells);\n sorts.(statenames{ss}).ratebyclass = sorts.(statenames{ss}).rate;\n sorts.(statenames{ss}).ISICVbyclass = sorts.(statenames{ss}).ISICV;\n sorts.(statenames{ss}).CV2byclass = sorts.(statenames{ss}).CV2;\n \n %Mean distributions\n meandists.(statenames{ss}).(classnames{cl}).ISIdist = squeeze(nanmean(ISIhist.(statenames{ss}).log(inclasscells{cl}&enoughspikes,:),1));\n meandists.(statenames{ss}).(classnames{cl}).CV2dist = squeeze(nanmean(CV2hist.(statenames{ss})(inclasscells{cl},:)&enoughspikes,1));\n meandists.(statenames{ss}).(classnames{cl}).Jointdist = squeeze(nanmean(Jointhist.(statenames{ss}).log(inclasscells{cl}&enoughspikes,:,:),1));\nend\n\n\n\n%% ACG - get its own analysis\n%[ccg,t] = CCG(statespiketimes,[],)\n\n%%\nif SHOWFIG | figfolder\nfigure\n subplot(2,2,1)\n for cl = 1:numclasses\n plot(log10(summstats.(statenames{ss}).meanrate(inclasscells{cl})),...\n log2(summstats.(statenames{ss}).ISICV(inclasscells{cl})),'.','markersize',11)\n hold on\n end\n plot(get(gca,'xlim'),log2([1 1]),'k')\n LogScale('x',10);LogScale('y',2);\n xlabel('Mean Rate (Hz)');ylabel('ISI CV')\n title(statenames{ss})\n box off\n \n subplot(2,2,2)\n for cl = 1:numclasses\n \n if SHUFFLECV2\n plot([log10(summstats.(statenames{ss}).meanrate(inclasscells{cl}));...\n log10(summstats.(statenames{ss}).meanrate(inclasscells{cl}))],...\n [summstats.(statenames{ss}).shufflemeanCV2(inclasscells{cl});...\n summstats.(statenames{ss}).meanCV2(inclasscells{cl})],...\n 'color',0.8.*[1 1 1],'linewidth',0.25)\n hold on\n plot([log10(summstats.(statenames{ss}).meanrate(inclasscells{cl}));...\n log10(summstats.(statenames{ss}).meanrate(inclasscells{cl}))],...\n [summstats.(statenames{ss}).shufflemeanCV2(inclasscells{cl})-summstats.(statenames{ss}).shufflestdCV2(inclasscells{cl});...\n summstats.(statenames{ss}).shufflemeanCV2(inclasscells{cl})+summstats.(statenames{ss}).shufflestdCV2(inclasscells{cl})],...\n 'color',0.8.*[1 1 1],'linewidth',2.5)\n end\n \n plot(log10(summstats.(statenames{ss}).meanrate(inclasscells{cl})),...\n (summstats.(statenames{ss}).meanCV2(inclasscells{cl})),'.','markersize',11)\n hold on\n \n \n\n \n end\n plot(get(gca,'xlim'),[1 1],'k')\n LogScale('x',10);\n xlabel('Mean Rate (Hz)');ylabel('ISI ')\n title(statenames{ss})\n box off\n\n subplot(2,3,4)\n imagesc((ISIhist.logbins),[1 sorts.numclassycells],...\n ISIhist.(statenames{ss}).log(sorts.(statenames{ss}).ratebyclass,:))\n hold on\n plot(log10(1./(summstats.(statenames{ss}).meanrate(sorts.(statenames{ss}).ratebyclass))),[1:sorts.numclassycells],'k.','LineWidth',2)\n plot(ISIhist.logbins([1 end]),sum(inclasscells{1}).*[1 1]+0.5,'r')\n LogScale('x',10)\n xlabel('ISI (s)')\n xlim(ISIhist.logbins([1 end]))\n %colorbar\n % legend('1/Mean Firing Rate (s)','location','southeast')\n ylabel('Cell (Sorted by FR, Type)')\n %legend('1/Mean Firing Rate (s)','location','southeast')\n caxis([0 0.1])\n title('ISI Distribution (Log Scale)')\n \n \n subplot(2,3,5)\n imagesc((CV2hist.bins),[1 sorts.numclassycells],...\n CV2hist.(statenames{ss})(sorts.(statenames{ss}).ratebyclass,:))\n hold on\n plot((summstats.(statenames{ss}).meanCV2(sorts.(statenames{ss}).ratebyclass)),[1:sorts.numclassycells],'k.','LineWidth',2)\n plot(CV2hist.bins([1 end]),sum(inclasscells{1}).*[1 1]+0.5,'r')\n %LogScale('x',10)\n xlabel('CV2')\n xlim(CV2hist.bins([1 end]))\n %colorbar\n xlim([0 2])\n % legend('1/Mean Firing Rate (s)','location','southeast')\n ylabel('Cell (Sorted by FR, Type)')\n %legend('1/Mean Firing Rate (s)','location','southeast')\n %caxis([0 0.1])\n title('CV2 Distribution')\n \n\tfor cl = 1:numclasses\n subplot((numclasses.*2),3,cl.*3+(numclasses.*3))\n imagesc(ISIhist.logbins,CV2hist.bins,meandists.(statenames{ss}).(classnames{cl}).Jointdist')\n hold on\n plot(ISIhist.logbins,meandists.(statenames{ss}).(classnames{cl}).ISIdist.*20,'k')\n plot(meandists.(statenames{ss}).(classnames{cl}).CV2dist.*20-3,CV2hist.bins,'k')\n axis xy\n LogScale('x',10)\n ylabel({(classnames{cl}),'CV2'});\n xlabel('ISI (s)');\n \n bottomrow = meandists.(statenames{ss}).(classnames{cl}).Jointdist(:,1);\n caxis([0 max([bottomrow;0])])\n\tend\n \n% subplot(2,3,5)\n% imagesc((ISIhist.logbins),[1 sorts.numclassycells],...\n% ISIhist.(statenames{ss}).log(sorts.(statenames{ss}).ISICVbyclass,:))\n% hold on\n% plot(log10(1./(summstats.(statenames{ss}).meanrate(sorts.(statenames{ss}).ISICVbyclass))),[1:sorts.numclassycells],'k.','LineWidth',2)\n% plot(ISIhist.logbins([1 end]),sum(inclasscells{1}).*[1 1]+0.5,'r')\n% LogScale('x',10)\n% xlabel('ISI (s)')\n% xlim(ISIhist.logbins([1 end]))\n% %colorbar\n% % legend('1/Mean Firing Rate (s)','location','southeast')\n% ylabel('Cell (Sorted by CV, Type)')\n% %legend('1/Mean Firing Rate (s)','location','southeast')\n% caxis([0 0.1])\n% title('ISI Distribution (Log Scale)')\n% \n% subplot(2,3,6)\n% imagesc((ISIhist.logbins),[1 sorts.numclassycells],...\n% ISIhist.(statenames{ss}).log(sorts.(statenames{ss}).CV2byclass,:))\n% hold on\n% plot(log10(1./(summstats.(statenames{ss}).meanrate(sorts.(statenames{ss}).CV2byclass))),[1:sorts.numclassycells],'k.','LineWidth',2)\n% plot(ISIhist.logbins([1 end]),sum(inclasscells{1}).*[1 1]+0.5,'r')\n% LogScale('x',10)\n% xlabel('ISI (s)')\n% xlim(ISIhist.logbins([1 end]))\n% %colorbar\n% % legend('1/Mean Firing Rate (s)','location','southeast')\n% ylabel('Cell (Sorted by CV2, Type)')\n% %legend('1/Mean Firing Rate (s)','location','southeast')\n% caxis([0 0.1])\n% title('ISI Distribution (Log Scale)')\n \n% subplot(2,2,3)\n% plot(log2(summstats.(statenames{ss}).meanrate(CellClass.pE)),...\n% log2(summstats.(statenames{ss}).meanCV2(CellClass.pE)),'k.')\n% hold on\n% plot(log2(summstats.(statenames{ss}).meanrate(CellClass.pI)),...\n% log2(summstats.(statenames{ss}).meanCV2(CellClass.pI)),'r.')\n% LogScale('xy',2)\n% xlabel('Mean Rate (Hz)');ylabel('Mean CV2')\n% title(statenames{ss})\n% box off\n\n\nif figfolder\n NiceSave(['ISIstats_',(statenames{ss})],figfolder,baseName);\nend\n\n\n%exneurons %top/bottom 25 %ile rate/ISICV\n%%\n% exwindur = 4; %s\n% STATEtimepoints = Restrict(lfp.timestamps,double(SleepState.ints.(statenames{ss})));\n% samplewin = STATEtimepoints(randi(length(STATEtimepoints))) + [0 exwindur];\n% %%\n% figure\n% bz_MultiLFPPlot( lfp,'spikes',spikes,'timewin',samplewin,...\n% 'sortmetric',summstats.(statenames{ss}).meanCV2,...\n% 'cellgroups',{CellClass.pI,CellClass.pE})\n\n\nend\n\nISIstats.summstats = summstats;\nISIstats.ISIhist = ISIhist;\nISIstats.CV2hist = CV2hist;\nISIstats.Jointhist = Jointhist;\nISIstats.sorts = sorts;\nISIstats.UID = spikes.UID;\nISIstats.allspikes = allspikes;\n\n\nif SAVECELLINFO\n save(cellinfofilename,'ISIstats')\nend\n \nend\n\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/analysis/spikes/bz_ISIStats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37846698305000187}} {"text": " function y = mtimes_block(ob, x, iblock, nblock)\n%function y = mtimes_block(ob, x, iblock, nblock)\n% y = G(i'th block) * x\tor y = G'(i'th block) * x\n% in either case the project data will be \"small\"\n% iblock is 1,...,nblock\n\n% support 'exists' option for seeing if this routine is available\nif nargin == 2 & ischar(x) & streq(x, 'exists')\n\ty = 1;\n\treturn\nend\n\nif nargin ~= 4, ir_usage, end\n\nnb = ob.nb;\nna = ob.na;\n\n%\n% forward projection\n%\nif ~ob.is_transpose\n\tif ob.apower ~= 1, error notdone, end\n\n\t% if needed, expand concise column\n\tif ob.is_masked\n\t\tidim = size(x);\n\t\tnp = sum(ob.mask(:));\n\t\tnxy = numel(ob.mask);\n\t\tif idim(1) ~= np\n\t\t\terror 'size mismatch'\n\t\tend\n\t\tx = embed(x, ob.mask);\n\t\tx = reshape(x, nxy, idim(2));\n\tend\n\n\ty = double(wtfmex('dsc,proj', ob.arg', single(x), uint8(ob.mask), ...\n\t\tint32(iblock-1), int32(nblock), ...\n\t\tint32(ob.nthread), int32(ob.chat)));\n\n\t% fix: extract the relevent columns - should do in wtfmex?\n\tia = iblock:nblock:na;\n\tnv = length(ia);\n\n\tif ndims(y) == 3\t\t\t% [nb,na,nz]\n\t\ty = y(:,ia,:);\t\t\t% [nb,nv,nz]\n\n\telseif size(y,1) == nb*na\t\t% [nba,nz]\n\t\tnz = size(y,2);\n\t\ty = reshape(y, nb, na, nz);\t% [nb,na,nz]\n\t\ty = y(:,ia,:);\t\t\t% [nb,nv,nz]\n\t\ty = reshape(y, nb*nv, nz);\t% [nb*nv,nz]\n\n\telseif size(y,1) == nb\t\t\t% [nb,na]\n\t\ty = y(:,ia);\t\t\t% [nb,nv]\n\n\telse\n\t\terror size\n\tend\n\n\n%\n% backprojection\n%\nelse\n\tif ob.apower ~= 1, error notdone, end\n\n\tia = iblock:nblock:na;\n\tnv = length(ia);\n\n\tif ndims(x) == 3\t\t% [nb,nv,nz]\n\t\terror todo\n\n\telseif size(x,1) == nb*nv\t% [nb*nv,nz]\n\t\tnz = size(x,2);\n\t\ttmp = zeros(nb, na, nz);\n\t\ttmp(:,ia,:) = reshape(x, [nb nv nz]);\n\t\tx = reshape(tmp, [nb*na nz]);\n\n\telseif size(x,1) == nb\t\t% [nb,nv]\n\t\terror todo\n\n\telse\n\t\terror bug\n\tend\n\n\ty = double(wtfmex('dsc,back', ob.arg', single(x), uint8(ob.mask), ...\n\t\tint32(iblock-1), int32(nblock), ...\n\t\tint32(ob.nthread), int32(ob.chat)));\n\n\tif ob.is_masked\n\t\tif size(y,1) == numel(ob.mask)\n\t\t\ty = y(ob.mask,:);\t% [nxy,nz] -> [np,nz]\n\t\telse\n\t\t\ty = y(ob.mask);\t\t% [nx,ny] -> [np]\n\t\tend\n\tend\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/arch/@Gtomo2_dsc/mtimes_block.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37846698305000187}} {"text": "filename='Gripping_quad_coarse';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'nonadjoint_compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\nconstraint_case = 'INEQUALITY';\noptimizer = 'SLERP'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.5;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Gripping/GrippingQuadCoarse_Case_1_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3783444122861927}} {"text": "function test_tutorial_networkanalysis\n\n% MEM 3gb\n% WALLTIME 00:30:00\n% DEPENDENCY ft_networkanalysis\n\n%% read the continuous data and segment into 2 seconds epochs\ncfg = [];\ncfg.dataset = dccnpath('/home/common/matlab/fieldtrip/data/ftp/test/ctf/SubjectRest.ds');\ncfg.trialdef.triallength = 2;\ncfg.trialdef.ntrials = Inf;\n\ncfg = ft_definetrial(cfg);\ncfg.continuous = 'yes';\ncfg.channel = {'MEG'};\ndata = ft_preprocessing(cfg);\n\ndatadir = dccnpath('/home/common/matlab/fieldtrip/data/ftp/tutorial/networkanalysis');\ncd(datadir);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% BYPASS THE INTERACTIVE PART, DECLARE TRIALS 38 91 153 AS BAD\n%% make a visual inspection and reject bad trials/sensors\n%cfg = [];\n%cfg.method = 'summary';\n%cfg.channel = 'MEG';\n%cfg.layout = 'CTF275.lay';\n%dataclean = ft_rejectvisual(cfg, data);\n%\n%% you can check the rejected trial numbers by typing\n%trlind = [];\n%for i=1:length(dataclean.cfg.artfctdef.summary.artifact)\n% trlind(i) = find(data.sampleinfo(:,1)==dataclean.cfg.artfctdef.summary.artifact(i));\n%end;\n%disp(trlind);\n\ncfg = [];\ncfg.trials = setdiff(1:numel(data.trial), [38 91 153]);\ndataclean = ft_selectdata(cfg, data);\n\n%% downsample the data to speed up component analysis\ncfg = [];\ncfg.resamplefs = 60;\ncfg.detrend = 'yes';\ndatads = ft_resampledata(cfg, dataclean);\n\n%% use ICA in order to identify cardiac and blink components\ncfg = [];\ncfg.method = 'runica';\ncfg.runica.maxsteps = 50;\ncfg.randomseed = 0;\ncomp = ft_componentanalysis(cfg, datads);\n%load(fullfile(datadir,'comp.mat'));\n\n%% visualize components\n\n% these were the indices of the bad components that were identified\n% they may be different if you re-run the ICA decomposition\nbadcomp = [1 3 8 23];\n\ncfg = [];\ncfg.channel = badcomp;\ncfg.layout = 'CTF275.lay';\ncfg.compscale = 'local';\ncfg.continuous = 'yes';\nft_databrowser(cfg, comp);\n\ncfg = [];\ncfg.component = badcomp;\ndataica = ft_rejectcomponent(cfg, comp);\n\n%% compute the power spectrum\ncfg = [];\ncfg.output = 'pow';\ncfg.method = 'mtmfft';\ncfg.taper = 'dpss';\ncfg.foilim = [1 20];\ncfg.tapsmofrq = 2;\ncfg.keeptrials = 'no';\nfft_data = ft_freqanalysis(cfg, dataica);\n\n%% compute the planar transformation\nload ctf275_neighb; % loads the neighbourhood structure for the channels\n\ndataicatmp = dataica;\ndataicatmp.grad = data.grad;\n\ncfg = [];\ncfg.neighbours = neighbours;\ncfg.planarmethod = 'sincos';\nplanar = ft_megplanar(cfg, dataicatmp);\nclear dataicatmp;\n\n%% compute the power spectrum\ncfg = [];\ncfg.output = 'pow';\ncfg.method = 'mtmfft';\ncfg.taper = 'dpss';\ncfg.foilim = [1 20];\ncfg.tapsmofrq = 2;\ncfg.keeptrials = 'no';\nfft_data_planar = ft_freqanalysis(cfg, planar);\n\n%% plot the topography and the spectrum\nfigure;\n\ncfg = [];\ncfg.layout = 'CTF275.lay';\ncfg.xlim = [9 11];\nsubplot(2,1,1); ft_topoplotER(cfg, fft_data);\n\n\ncfg = [];\ncfg.channel = {'MRO22', 'MRO32', 'MRO33'};\nsubplot(2,1,2); ft_singleplotER(cfg, fft_data);\n\n%% load the required geometrical information\n\n%% load the template source model, which is in MNI coordinates\n%template = load('standard_sourcemodel3d2cm.mat');\n% load mri % individual mri\n% load hdm % individual volume model\n%\n% %% compute the source model\n% cfg = [];\n% cfg.sourcemodel.warpmni = 'yes';\n% cfg.sourcemodel.template = template.sourcemodel;\n% cfg.sourcemodel.nonlinear = 'yes'; % use non-linear normalization\n% cfg.mri = mri;\n% sourcemodel = ft_prepare_sourcemodel(cfg);\n\nload hdm\nload sourcemodel_4k\n\n%% check for the correct alignment of sensors (green) headmodel(transparent) and sourcemodel(blue)\nfigure;\n\n% make the headmodel surface transparent\nft_plot_headmodel(hdm, 'edgecolor', 'none');\nalpha 0.4\n\n% add the source model positions and sensors\nft_plot_mesh(ft_convert_units(sourcemodel, 'cm'),'vertexcolor',sourcemodel.sulc);\nft_plot_sens(dataclean.grad);\n\nview([0 -90 0])\n\n%% compute sensor level Fourier spectra\ncfg = [];\ncfg.method = 'mtmfft';\ncfg.output = 'fourier';\ncfg.keeptrials = 'yes';\ncfg.tapsmofrq = 2;\ncfg.foi = 10;\nfreq = ft_freqanalysis(cfg, dataica);\n\n%% compute the leadfield\ncfg = [];\ncfg.sourcemodel = sourcemodel;\ncfg.headmodel = hdm;\ncfg.channel = {'MEG'};\nlf = ft_prepare_leadfield(cfg, freq);\n\n%% compute the actual source reconstruction\ncfg = [];\ncfg.frequency = freq.freq;\ncfg.grad = freq.grad;\ncfg.method = 'pcc';\ncfg.sourcemodel = lf;\ncfg.headmodel = hdm;\ncfg.keeptrials = 'yes';\ncfg.pcc.lambda = '10%';\ncfg.pcc.projectnoise = 'yes';\ncfg.pcc.fixedori = 'yes';\nsource = ft_sourceanalysis(cfg, freq);\n\n%% reduce the source reconstructed data to the dominant orientation\ncfg = [];\ncfg.projectmom = 'yes';\nsource_proj = ft_sourcedescriptives(cfg,source);\n\n% and provide the dimension and grid positions of the MRI template positions again\nsource_proj.dim = template.sourcemodel.dim;\nsource_proj.pos = template.sourcemodel.pos;\n\n[ftver, ftdir] = ft_version;\nif isunix\n templatefile = [ftdir '/template/anatomy/single_subj_T1.nii'];\nelseif ispc\n templatefile = [ftdir '\\template\\anatomy\\single_subj_T1.nii'];\nend\n\ntemplate_mri = ft_read_mri(templatefile);\n\ncfg = [];\ncfg.parameter = 'nai';\ncfg.interpmethod = 'nearest';\nsource_int = ft_sourceinterpolate(cfg, source_proj, template_mri);\n\n%% plot the neural activity index (power/noise)\ncfg = [];\ncfg.method = 'ortho';\ncfg.funparameter = 'nai';\ncfg.maskparameter = cfg.funparameter;\ncfg.funcolorlim = [0.0 10];\ncfg.opacitylim = [3 10];\ncfg.opacitymap = 'rampup';\ncfg.funcolormap = 'jet';\nft_sourceplot(cfg, source_int);\n\ncfg = [];\ncfg.method = 'ortho';\ncfg.funparameter = 'nai';\ncfg.location = [16 -80 -2];\ncfg.maskparameter = cfg.funparameter;\ncfg.funcolorlim = [0.0 10];\ncfg.opacitylim = [3 10];\ncfg.opacitymap = 'rampup';\ncfg.funcolormap = 'jet';\nft_sourceplot(cfg,source_int);\n\n%% add the scalp topographies to the figure\n\ncfg = [];\ncfg.layout = 'CTF275.lay';\ncfg.xlim = [9.777650 11.309908];\nsubplot(2,2,2); ft_topoplotER(cfg,fft_data);\ntitle('axial gradient')\n\ncfg = [];\nfft_data_planar_cmb = ft_combineplanar(cfg, fft_data_planar);\n\ncfg = [];\ncfg.layout = 'CTF275.lay';\ncfg.xlim = [9.777650 11.309908];\nsubplot(2,2,3); ft_topoplotER(cfg, fft_data_planar_cmb);\ntitle('planar gradient')\n\n%% compute the power spectrum again but keep the individual trials\ncfg = [];\ncfg.output = 'pow';\ncfg.method = 'mtmfft';\ncfg.taper = 'dpss';\ncfg.foilim = [8 12];\ncfg.tapsmofrq = 2;\ncfg.keeptrials = 'yes';\nfft_data = ft_freqanalysis(cfg, dataica);\n\n\n%% identify the indices of trials with high and low alpha power\ntmp = mean(fft_data.powspctrm,3); % mean over frequencies between 8-12Hz\nind = find(mean(tmp,1)==max(mean(tmp,1))); % find the sensor where power is max\nindlow = find(tmp(:,ind)<=median(tmp(:,ind)));\nindhigh = find(tmp(:,ind)>=median(tmp(:,ind)));\n\n%% compute the planar transformation\ncfgneigh = [];\ncfgneigh.feedback = 'no';\ncfgneigh.method = 'template';\n\ncfg = [];\ncfg.neighbours = ft_prepare_neighbours(cfgneigh, dataica);\ncfg.planarmethod = 'sincos';\nplanar = ft_megplanar(cfg, dataica);\n\n%% compute the power spectrum\ncfg = [];\ncfg.output = 'pow';\ncfg.method = 'mtmfft';\ncfg.taper = 'dpss';\ncfg.foilim = [1 20];\ncfg.tapsmofrq = 2;\ncfg.keeptrials = 'no';\n\ncfg.trials = indlow;\ntmp = ft_freqanalysis(cfg, planar);\nfft_data_planar_low = ft_combineplanar([], tmp);\n\ncfg.trials = indhigh;\ntmp = ft_freqanalysis(cfg, planar);\nfft_data_planar_high = ft_combineplanar([], tmp);\n\n%% and also do the axial representation for comparison purposes\ncfg = [];\ncfg.output = 'pow';\ncfg.method = 'mtmfft';\ncfg.taper = 'dpss';\ncfg.foilim = [1 20];\ncfg.tapsmofrq = 2;\ncfg.keeptrials = 'no';\ncfg.trials = indlow;\nfft_data_low = ft_freqanalysis(cfg,dataica);\n\ncfg.trials = indhigh;\nfft_data_high = ft_freqanalysis(cfg,dataica);\n\n%% compute the difference between high and low\ncfg = [];\ncfg.parameter = 'powspctrm';\ncfg.operation = 'subtract';\ndiff = ft_math(cfg, fft_data_high, fft_data_low);\ndiff_planar = ft_math(cfg, fft_data_planar_high, fft_data_planar_low);\ndiff_axial = ft_math(cfg, fft_data_high, fft_data_low);\n\n%% plot the topography of the difference along with the spectra\nfigure;\n\ncfg = [];\ncfg.layout = 'CTF275.lay';\ncfg.xlim = [9.777650 11.309908];\n\nsubplot(1,3,1); ft_topoplotER(cfg, diff_planar); title ('planar gradient')\n\nsubplot(1,3,2); ft_topoplotER(cfg, diff_axial); title ('axial gradient')\n\ncfg = [];\ncfg.channel = {'MLO21', 'MRO31'};\nsubplot(1,3,3); ft_singleplotER(cfg,fft_data_high, fft_data_low);\n\nobj = subplot(1,3,3);\nset(obj, 'Position', [.7 .37 .2 .3])\ntitle('')\nlegend('high alpha','low alpha','Location','northoutside','Orientation','horizontal');\n\n%% compute fourier spectra for frequency of interest\ncfg = [];\ncfg.method = 'mtmfft';\ncfg.output = 'fourier';\ncfg.keeptrials = 'yes';\ncfg.tapsmofrq = 2;\ncfg.foi = 10;\n\ncfg.trials = indlow;\nfreq_low = ft_freqanalysis(cfg, dataica);\n\ncfg.trials = indhigh;\nfreq_high = ft_freqanalysis(cfg, dataica);\n\n%% compute the beamformer filters based on the entire data\ncfg = [];\ncfg.frequency = freq.freq;\ncfg.grad = freq.grad;\ncfg.method = 'pcc';\ncfg.sourcemodel = lf;\ncfg.headmodel = hdm;\ncfg.keeptrials = 'yes';\ncfg.pcc.lambda = '5%';\ncfg.pcc.projectnoise = 'yes';\ncfg.pcc.keepfilter = 'yes';\nsource = ft_sourceanalysis(cfg, freq);\n\n% use the precomputed filters\ncfg = [];\ncfg.frequency = freq.freq;\ncfg.grad = freq.grad;\ncfg.method = 'pcc';\ncfg.sourcemodel = lf;\ncfg.sourcemodel.filter = source.avg.filter;\ncfg.headmodel = hdm;\ncfg.keeptrials = 'yes';\ncfg.pcc.lambda = '5%';\ncfg.pcc.projectnoise = 'yes';\nsource_low = ft_sourceanalysis(cfg, freq_low);\nsource_high = ft_sourceanalysis(cfg, freq_high);\n\n%% project dipole moments along the dominant orientation\ncfg = [];\ncfg.projectmom = 'yes';\nsource_proj_high = ft_sourcedescriptives(cfg,source_high);\nsource_proj_low = ft_sourcedescriptives(cfg,source_low);\nsource_proj_high.dim = template.sourcemodel.dim;\nsource_proj_high.pos = template.sourcemodel.pos;\nsource_proj_low.dim = template.sourcemodel.dim;\nsource_proj_low.pos = template.sourcemodel.pos;\n\n%% interpolate the results onto an anatomical brain template\n[ftver, ftdir] = ft_version;\nif isunix\n templatefile = [ftdir '/template/anatomy/single_subj_T1.nii'];\nelseif ispc\n templatefile = [ftdir '\\template\\anatomy\\single_subj_T1.nii'];\nend\n\ntemplate_mri = ft_read_mri(templatefile);\n\ncfg = [];\ncfg.parameter = 'pow';\ncfg.interpmethod = 'nearest';\nsource_int_high = ft_sourceinterpolate(cfg, source_proj_high, template_mri);\nsource_int_low = ft_sourceinterpolate(cfg, source_proj_low, template_mri);\n\ncfg = [];\ncfg.operation = '(x1-x2)/x2';\ncfg.parameter = 'pow';\nsource_int = ft_math(cfg, source_int_high, source_int_low);\n\ncfg = [];\ncfg.operation = '(x1-x2)/x2';\ncfg.parameter = 'pow';\nsource_int = ft_math(cfg, source_int_high, source_int_low);\n\n% up to 50 percent of maximum\nsource_int.mask = source_int.pow > max(source_int.pow(:))*.5;\n\n% copy the anatomy\nsource_int.anatomy = source_int_high.anatomy;\n\ncfg = [];\ncfg.method = 'ortho';\ncfg.funparameter = 'pow';\ncfg.maskparameter = 'mask';\ncfg.funcolorlim = [-1 1];\ncfg.location = [16 -78 38];\ncfg.funcolormap = 'jet';\nft_sourceplot(cfg, source_int);\n\ncfg = [];\ncfg.layout = 'CTF275.lay';\ncfg.xlim = [9.777650 11.309908];\nsubplot(2,2,2); ft_topoplotER(cfg, diff_planar);\n\n%% reduce memory demands and compute connectivity\n\n% compute the sparse representation\nsource_sparse = ft_source2sparse(source_proj);\n\n% then compute connectivity\ncfg=[];\ncfg.method ='coh';\ncfg.complex = 'absimag';\nsource_conn = ft_connectivityanalysis(cfg, source_sparse);\n\n%% reassign the connectivity\ncohspctrm_full = nan(size(source_proj.pos,1));\nfor i=1:size(source_conn.pos)\n pos1 = source_conn.pos(i,1:3);\n pos2 = source_conn.pos(i,4:6);\n ind1 = find(source_proj.pos(:,1)==pos1(1) & source_proj.pos(:,2)==pos1(2) & source_proj.pos(:,3)==pos1(3));\n ind2 = find(source_proj.pos(:,1)==pos2(1) & source_proj.pos(:,2)==pos2(2) & source_proj.pos(:,3)==pos2(3));\n cohspctrm_full(ind1,ind2) = source_conn.cohspctrm(i);\nend\n\n% then go to the 'full' representation again\nsource_conn_full = [];\nsource_conn_full.pos = source_proj.pos;\nsource_conn_full.dim = source_proj.dim;\nsource_conn_full.inside = source_proj.inside;\nsource_conn_full.cohspctrm = cohspctrm_full;\nsource_conn_full.dimord = 'pos_pos';\n\n%% compute graph metric\ncfg = [];\ncfg.method = 'degrees';\ncfg.parameter = 'cohspctrm';\ncfg.threshold = .1;\nnetwork = ft_networkanalysis(cfg,source_conn_full);\n\n%% interpolate on anatomical mri and plot the result\nnetwork.pos = template.sourcemodel.pos;\nnetwork.dim = template.sourcemodel.dim;\nnetwork.inside = template.sourcemodel.inside;\n\ncfg = [];\ncfg.parameter = 'degrees';\ncfg.interpmethod = 'nearest';\nnetwork_int = ft_sourceinterpolate(cfg, network, template_mri);\n\n%%\ncfg = [];\ncfg.method = 'ortho';\ncfg.funparameter = 'avg.degrees';\ncfg.funcolormap = 'jet';\ncfg.location = 'max';\ncfg.funparameter = 'degrees';\nft_sourceplot(cfg, network_int);\n\n% we increase the threshold here to highlight the dominant links\nedge = source_conn.cohspctrm >.15;\ndlmwrite('edge.edge',edge,'\\t');\n\nload standard_sourcemodel3d2cm.mat\n\nnode = zeros(372,6);\nnode(:,1:3) = sourcemodel.pos(sourcemodel.inside,:);\nnode(:,4) = 4;\nnode(:,5) = network.degrees(network.inside);\nnode(:,6) = 0;\nnode(:,1:3) = node(:,1:3)*10;\ndlmwrite('node.node',node,' ');\n\nBrainNet_MapCfg('/yourpath/mesh.nv','/yourpath/node.node','/yourpath/edge.edge');\nview([0 -90 0])\n\ncfg = [];\ncfg.method = 'plv';\nsource_conn = ft_connectivityanalysis(cfg, source_sparse);\n\n%% then compute graph metric\nsource_conn.dim = source_sparse.dim;\nsource_conn.outside = source_proj.outside;\n\n% then go to the 'full' representation again\nsource_conn_full = ft_source2full(source_conn);\nsource_conn_full.dimord='pos_pos';\n\n%%\nfn=fieldnames(source_conn_full);\ncfg = [];\ncfg.method = 'degrees';\ncfg.parameter = fn{4};\ncfg.threshold = .5;\ndeg = ft_networkanalysis(cfg,source_conn_full);\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/failed_tutorial_networkanalysis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3783444122861927}} {"text": "function out=resampleImageStack(in, zoom, interpolation_method)\n% Uses resample.m function on the stack on images. Resamples each of the\n% image in the scatck by zoom value.\n% out=resampleImageStack(in, zoom, interpolation_method)\n% default interpolation_method = '4-cubic';\n% out(:,:,ii)=resample(in(:,:,ii),zoom, interpolation_method)\nif ~exist('interpolation_method','var')\n interpolation_method = '4-cubic'; \n fprintf('Default interpolation method: %s\\n',interpolation_method)\nelse\n fprintf('Interpolation method used: %s\\n',interpolation_method)\nend\nnz=size(in,3); \n\nout=zeros(zoom*size(in,1),zoom*size(in,2), size(in,3)); \nfor ii=1:nz\n out(:,:,ii)=resample(in(:,:,ii), zoom,0,interpolation_method);\nend\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/image_proc/resampleImageStack.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160664, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3783330700033534}} {"text": "function c = multiprod(a, b, idA, idB)\n%MULTIPROD Multiplying 1-D or 2-D subarrays contained in two N-D arrays.\n% C = MULTIPROD(A,B) is equivalent to C = MULTIPROD(A,B,[1 2],[1 2])\n% C = MULTIPROD(A,B,[D1 D2]) is eq. to C = MULTIPROD(A,B,[D1 D2],[D1 D2])\n% C = MULTIPROD(A,B,D1) is equival. to C = MULTIPROD(A,B,D1,D1)\n%\n% MULTIPROD performs multiple matrix products, with array expansion (AX)\n% enabled. Its first two arguments A and B are \"block arrays\" of any\n% size, containing one or more 1-D or 2-D subarrays, called \"blocks\" (*).\n% For instance, a 5?6?3 array may be viewed as an array containing five\n% 6?3 blocks. In this case, its size is denoted by 5?(6?3). The 1 or 2\n% adjacent dimensions along which the blocks are contained are called the\n% \"internal dimensions\" (IDs) of the array (?).\n%\n% 1) 2-D by 2-D BLOCK(S) (*)\n% C = MULTIPROD(A, B, [DA1 DA2], [DB1 DB2]) contains the products\n% of the P?Q matrices in A by the R?S matrices in B. [DA1 DA2] are\n% the IDs of A; [DB1 DB2] are the IDs of B.\n%\n% 2) 2-D by 1-D BLOCK(S) (*)\n% C = MULTIPROD(A, B, [DA1 DA2], DB1) contains the products of the\n% P?Q matrices in A by the R-element vectors in B. The latter are\n% considered to be R?1 matrices. [DA1 DA2] are the IDs of A; DB1 is\n% the ID of B.\n%\n% 3) 1-D by 2-D BLOCK(S) (*)\n% C = MULTIPROD(A, B, DA1, [DB1 DB2]) contains the products of the \n% Q-element vectors in A by the R?S matrices in B. The vectors in A\n% are considered to be 1?Q matrices. DA1 is the ID of A; [DB1 DB2]\n% are the IDs of B.\n%\n% 4) 1-D BY 1-D BLOCK(S) (*)\n% (a) If either SIZE(A, DA1) == 1 or SIZE(B, DB1) == 1, or both,\n% C = MULTIPROD(A, B, DA1, DB1) returns products of scalars by \n% vectors, or vectors by scalars or scalars by scalars.\n% (b) If SIZE(A, DA1) == SIZE(B, DB1), \n% C = MULTIPROD(A, B, [0 DA1], [DB1 0]) or \n% C = MULTIPROD(A, B, DA1, DB1) virtually turns the vectors\n% contained in A and B into 1?P and P?1 matrices, respectively,\n% then returns their products, similar to scalar products.\n% Namely, C = DOT2(A, B, DA1, DB1) is equivalent to \n% C = MULTIPROD(CONJ(A), B, [0 DA1], [DB1 0]).\n% (c) Without limitations on the length of the vectors in A and B,\n% C = MULTIPROD(A, B, [DA1 0], [0 DB1]) turns the vectors\n% contained in A and B into P?1 and 1?Q matrices, respectively,\n% then returns their products, similar to outer products.\n% Namely, C = OUTER(A, B, DA1, DB1) is equivalent to\n% C = MULTIPROD(CONJ(A), B, [DA1 0], [0 DB1]).\n%\n% Common constraints for all syntaxes:\n% The external dimensions of A and B must either be identical or \n% compatible with AX rules. The internal dimensions of each block\n% array must be adjacent (DA2 == DA1 + 1 and DB2 == DB1 + 1 are\n% required). DA1 and DB1 are allowed to be larger than NDIMS(A) and\n% NDIMS(B). In syntaxes 1, 2, and 3, Q == R is required, unless the\n% blocks in A or B are scalars. \n%\n% Array expansion (AX):\n% AX is a powerful generalization to N-D of the concept of scalar\n% expansion. Indeed, A and B may be scalars, vectors, matrices or\n% multi-dimensional arrays. Scalar expansion is the virtual\n% replication or annihilation of a scalar which allows you to combine\n% it, element by element, with an array X of any size (e.g. X+10,\n% X*10, or []-10). Similarly, in MULTIPROD, the purpose of AX is to\n% automatically match the size of the external dimensions (EDs) of A\n% and B, so that block-by-block products can be performed. ED matching\n% is achieved by means of a dimension shift followed by a singleton\n% expansion:\n% 1) Dimension shift (see SHIFTDIM).\n% Whenever DA1 ~= DB1, a shift is applied to impose DA1 == DB1.\n% If DA1 > DB1, B is shifted to the right by DA1 - DB1 steps.\n% If DB1 > DA1, A is shifted to the right by DB1 - DA1 steps.\n% 2) Singleton expansion (SX).\n% Whenever an ED of either A or B is singleton and the\n% corresponding ED of the other array is not, the mismatch is\n% fixed by virtually replicating the array (or diminishing it to\n% length 0) along that dimension.\n% \n% MULTIPROD is a generalization for N-D arrays of the matrix\n% multiplication function MTIMES, with AX enabled. Vector inner, outer,\n% and cross products generalized for N-D arrays and with AX enabled are\n% performed by DOT2, OUTER, and CROSS2 (MATLAB Central, file #8782).\n% Elementwise multiplications (see TIMES) and other elementwise binary\n% operations with AX enabled are performed by BAXFUN (MATLAB Central,\n% file #23084). Together, these functions make up the ?ARRAYLAB toolbox?.\n%\n% Input and output format:\n% The size of the EDs of C is determined by AX. Block size is\n% determined as follows, for each of the above-listed syntaxes:\n% 1) C contains P?S matrices along IDs MAX([DA1 DA2], [DB1 DB2]).\n% 2) Array Block size ID(s)\n% ----------------------------------------------------\n% A P?Q (2-D) [DA1 DA2]\n% B R (1-D) DB1\n% C (a) P (1-D) MAX(DA1, DB1)\n% C (b) P?Q (2-D) MAX([DA1 DA2], [DB1 DB1+1])\n% ----------------------------------------------------\n% (a) The 1-D blocks in B are not scalars (R > 1).\n% (b) The 1-D blocks in B are scalars (R = 1).\n% 3) Array Block size ID(s)\n% ----------------------------------------------------\n% A Q (1-D) DA1\n% B R?S (2-D) [DB1 DB2]\n% C (a) S (1-D) MAX(DA1, DB1)\n% C (b) R?S (2-D) MAX([DA1 DA1+1], [DB1 DB2])\n% ----------------------------------------------------\n% (a) The 1-D blocks in A are not scalars (Q > 1).\n% (b) The 1-D blocks in A are scalars (Q = 1).\n% 4) Array Block size ID(s)\n% --------------------------------------------------------------\n% (a) A P (1-D) DA1\n% B Q (1-D) DB1\n% C MAX(P,Q) (1-D) MAX(DA1, DB1)\n% --------------------------------------------------------------\n% (b) A P (1-D) DA1\n% B P (1-D) DB1\n% C 1 (1-D) MAX(DA1, DB1)\n% --------------------------------------------------------------\n% (c) A P (1-D) DA1\n% B Q (1-D) DB1\n% C P?Q (2-D) MAX([DA1 DA1+1], [DB1 DB1+1])\n% --------------------------------------------------------------\n%\n% Terminological notes:\n% (*) 1-D and 2-D blocks are generically referred to as \"vectors\" and \n% \"matrices\", respectively. However, both may be also called\n% ?scalars? if they have a single element. Moreover, matrices with a\n% single row or column (e.g. 1?3 or 3?1) may be also called ?row\n% vectors? or ?column vectors?.\n% (?) Not to be confused with the \"inner dimensions\" of the two matrices\n% involved in a product X * Y, defined as the 2nd dimension of X and\n% the 1st of Y (DA2 and DB1 in syntaxes 1, 2, 3).\n%\n% Examples:\n% 1) If A is .................... a 5?(6?3)?2 array,\n% and B is .................... a 5?(3?4)?2 array,\n% C = MULTIPROD(A, B, [2 3]) is a 5?(6?4)?2 array.\n%\n% A single matrix A pre-multiplies each matrix in B\n% If A is ........................... a (1?3) single matrix,\n% and B is ........................... a 10?(3?4) 3-D array,\n% C = MULTIPROD(A, B, [1 2], [3 4]) is a 10?(1?4) 3-D array.\n%\n% Each matrix in A pre-multiplies each matrix in B (all possible\n% combinations)\n% If A is .................... a (6?3)?5 array,\n% and B is .................... a (3?4)?1?2 array,\n% C = MULTIPROD(A, B, [1 2]) is a (6?4)?5?2 array.\n%\n% 2a) If A is ........................... a 5?(6?3)?2 4-D array,\n% and B is ........................... a 5?(3)?2 3-D array,\n% C = MULTIPROD(A, B, [2 3], [2]) is a 5?(6)?2 3-D array.\n%\n% 2b) If A is ........................... a 5?(6?3)?2 4-D array,\n% and B is ........................... a 5?(1)?2 3-D array,\n% C = MULTIPROD(A, B, [2 3], [2]) is a 5?(6?3)?2 4-D array.\n%\n% 4a) If both A and B are .................. 5?(6)?2 3-D arrays,\n% C = MULTIPROD(A, B, 2) is .......... a 5?(1)?2 3-D array, while\n% 4b) C = MULTIPROD(A, B, [2 0], [0 2]) is a 5?(6?6)?2 4-D array\n%\n% See also DOT2, OUTER, CROSS2, BAXFUN, MULTITRANSP, MULTITRACE, MULTISCALE.\n\n% $ Version: 2.1 $\n% CODE by: Paolo de Leva\n% (Univ. of Rome, Foro Italico, IT) 2009 Jan 24\n% optimized by: Paolo de Leva\n% Jinhui Bai (Georgetown Univ., D.C.) 2009 Jan 24\n% COMMENTS by: Paolo de Leva 2009 Feb 24\n% OUTPUT tested by: Paolo de Leva 2009 Feb 24\n% -------------------------------------------------------------------------\n\n%error( nargchk(2, 4, nargin) ); % Allow 2 to 4 input arguments % HK\nnarginchk(2, 4); % added by HK\nswitch nargin % Setting IDA and/or IDB\n case 2, idA = [1 2]; idB = [1 2];\n case 3, idB = idA;\nend\n\n% ESC 1 - Special simple case (both A and B are 2D), solved using C = A * B\n\n if ndims(a)==2 && ndims(b)==2 && ...\n isequal(idA,[1 2]) && isequal(idB,[1 2])\n c = a * b; return\n end\n\n% MAIN 0 - Checking and evaluating array size, block size, and IDs\n\n sizeA0 = size(a);\n sizeB0 = size(b);\n [sizeA, sizeB, shiftC, delC, sizeisnew, idA, idB, ...\n squashOK, sxtimesOK, timesOK, mtimesOK, sumOK] = ...\n sizeval(idA,idB, sizeA0,sizeB0);\n\n% MAIN 1 - Applying dimension shift (first step of AX) and \n% turning both A and B into arrays of either 1-D or 2-D blocks\n\n if sizeisnew(1), a = reshape(a, sizeA); end \n if sizeisnew(2), b = reshape(b, sizeB); end\n\n% MAIN 2 - Performing products with or without SX (second step of AX)\n\n if squashOK % SQUASH + MTIMES (fastest engine)\n c = squash2D_mtimes(a,b, idA,idB, sizeA,sizeB, squashOK); \n elseif timesOK % TIMES (preferred w.r. to SX + TIMES)\n if sumOK, c = sum(a .* b, sumOK);\n else c = a .* b; end\n elseif sxtimesOK % SX + TIMES\n if sumOK, c = sum(bsxfun(@times, a, b), sumOK);\n else c = bsxfun(@times, a, b); end\n elseif mtimesOK % MTIMES (rarely used)\n c = a * b;\n end\n\n% MAIN 3 - Reshaping C (by inserting or removing singleton dimensions)\n\n [sizeC sizeCisnew] = adjustsize(size(c), shiftC, false, delC, false);\n if sizeCisnew, c = reshape(c, sizeC); end\n\n\nfunction c = squash2D_mtimes(a, b, idA, idB, sizeA, sizeB, squashOK)\n% SQUASH2D_MTIMES Multiproduct with single-block expansion (SBX).\n% Actually, no expansion is performed. The multi-block array is\n% rearranged from N-D to 2-D, then MTIMES is applied, and eventually the\n% result is rearranged back to N-D. No additional memory is required.\n% One and only one of the two arrays must be single-block, and its IDs\n% must be [1 2] (MAIN 1 removes leading singletons). Both arrays\n% must contain 2-D blocks (MAIN 1 expands 1-D blocks to 2-D).\n\n if squashOK == 1 % A is multi-block, B is single-block (squashing A)\n\n % STEP 1 - Moving IDA(2) to last dimension\n nd = length(sizeA);\n d2 = idA(2); \n order = [1:(d2-1) (d2+1):nd d2]; % Partial shifting\n a = permute(a, order); % ...?Q\n\n % STEP 2 - Squashing A from N-D to 2-D \n q = sizeB(1);\n s = sizeB(2);\n lengthorder = length(order);\n collapsedsize = sizeA(order(1:lengthorder-1)); \n n = prod(collapsedsize);\n a = reshape(a, [n, q]); % N?Q \n fullsize = [collapsedsize s]; % Size to reshape C back to N-D\n\n else % B is multi-block, A is single-block (squashing B)\n\n % STEP 1 - Moving IDB(1) to first dimension\n nd = length(sizeB);\n d1 = idB(1); \n order = [d1 1:(d1-1) (d1+1):nd]; % Partial shifting\n b = permute(b, order); % Q?...\n\n % STEP 2 - Squashing B from N-D to 2-D \n p = sizeA(1);\n q = sizeA(2);\n lengthorder = length(order);\n collapsedsize = sizeB(order(2:lengthorder)); \n n = prod(collapsedsize);\n b = reshape(b, [q, n]); % Q?N\n fullsize = [p collapsedsize]; % Size to reshape C back to N-D\n\n end\n\n % FINAL STEPS - Multiplication, reshape to N-D, inverse permutation\n invorder(order) = 1 : lengthorder;\n c = permute (reshape(a*b, fullsize), invorder);\n\n\nfunction [sizeA, sizeB, shiftC, delC, sizeisnew, idA, idB, ...\n squashOK, sxtimesOK, timesOK, mtimesOK, sumOK] = ...\n sizeval(idA0,idB0, sizeA0,sizeB0)\n%SIZEVAL Evaluation of array size, block size, and IDs\n% Possible values for IDA and IDB:\n% [DA1 DA2], [DB1 DB2]\n% [DA1 DA2], [DB1]\n% [DA1], [DB1 DB2]\n% [DA1], [DB1]\n% [DA1 0], [0 DB1]\n% [0 DA1], [DB1 0]\n%\n% sizeA/B Equal to sizeA0/B0 if RESHAPE is not needed in MAIN 1\n% shiftC, delC Variables controlling MAIN 3.\n% sizeisnew 1x2 logical array; activates reshaping of A and B.\n% idA/B May change only if squashOK ~= 0\n% squashOK If only A or B is a multi-block array (M-B) and the other\n% is single-block (1-B), it will be rearranged from N-D to\n% 2-D. If both A and B are 1-B or M-B arrays, squashOK = 0.\n% If only A (or B) is a M-B array, squashOK = 1 (or 2).\n% sxtimesOK, timesOK, mtimesOK Flags controlling MAIN 2 (TRUE/FALSE).\n% sumOK Dimension along which SUM is performed. If SUM is not\n% needed, sumOK = 0.\n\n% Initializing output arguments\n\n idA = idA0;\n idB = idB0;\n squashOK = 0;\n sxtimesOK = false;\n timesOK = false;\n mtimesOK = false;\n sumOK = 0;\n shiftC = 0;\n delC = 0;\n\n% Checking for gross input errors\n\n NidA = numel(idA);\n NidB = numel(idB);\n idA1 = idA(1);\n idB1 = idB(1);\n if NidA>2 || NidB>2 || NidA==0 || NidB==0 || ...\n ~isreal(idA1) || ~isreal(idB1) || ...\n ~isnumeric(idA1) || ~isnumeric(idB1) || ...\n 0>idA1 || 0>idB1 || ... % negative \n idA1~=fix(idA1) || idB1~=fix(idB1) || ... % non-integer\n ~isfinite(idA1) || ~isfinite(idB1) % Inf or NaN \n error('MULTIPROD:InvalidDimensionArgument', ...\n ['Internal-dimension arguments (e.g., [IDA1 IDA2]) must\\n', ...\n 'contain only one or two non-negative finite integers']);\n end\n\n% Checking Syntaxes containing zeros (4b/c)\n\n declared_outer = false;\n idA2 = idA(NidA); % It may be IDA1 = IDA2 (1-D block)\n idB2 = idB(NidB);\n\n if any(idA==0) || any(idB==0)\n \n % \"Inner products\": C = MULTIPROD(A, B, [0 DA1], [DB1 0])\n if idA1==0 && idA2>0 && idB1>0 && idB2==0\n idA1 = idA2;\n idB2 = idB1;\n % \"Outer products\": C = MULTIPROD(A, B, [DA1 0], [0 DB1]) \n elseif idA1>0 && idA2==0 && idB1==0 && idB2>0\n declared_outer = true;\n idA2 = idA1;\n idB1 = idB2;\n else\n error('MULTIPROD:InvalidDimensionArgument', ...\n ['Misused zeros in the internal-dimension arguments\\n', ...\n '(see help heads 4b and 4c)']);\n end\n NidA = 1; \n NidB = 1;\n idA = idA1;\n idB = idB1;\n\n elseif (NidA==2 && idA2~=idA1+1) || ... % Non-adjacent IDs\n (NidB==2 && idB2~=idB1+1)\n error('MULTIPROD:InvalidDimensionArgument', ...\n ['If an array contains 2-D blocks, its two internal dimensions', ... \n 'must be adjacent (e.g. IDA2 == IDA1+1)']);\n end\n\n% ESC - Case for which no reshaping is needed (both A and B are scalars)\n\n scalarA = isequal(sizeA0, [1 1]);\n scalarB = isequal(sizeB0, [1 1]);\n if scalarA && scalarB\n sizeA = sizeA0;\n sizeB = sizeB0;\n sizeisnew = [false false];\n timesOK = true; return\n end\n\n% Computing and checking adjusted sizes\n% The lengths of ADJSIZEA and ADJSIZEB must be >= IDA(END) and IDB(END)\n\n NsA = idA2 - length(sizeA0); % Number of added trailing singletons\n NsB = idB2 - length(sizeB0);\n adjsizeA = [sizeA0 ones(1,NsA)];\n adjsizeB = [sizeB0 ones(1,NsB)];\n extsizeA = adjsizeA([1:idA1-1, idA2+1:end]); % Size of EDs\n extsizeB = adjsizeB([1:idB1-1, idB2+1:end]);\n p = adjsizeA(idA1);\n q = adjsizeA(idA2);\n r = adjsizeB(idB1);\n s = adjsizeB(idB2); \n scalarsinA = (p==1 && q==1);\n scalarsinB = (r==1 && s==1);\n singleA = all(extsizeA==1);\n singleB = all(extsizeB==1);\n if q~=r && ~scalarsinA && ~scalarsinB && ~declared_outer\n error('MULTIPROD:InnerDimensionsMismatch', ...\n 'Inner matrix dimensions must agree.');\n end\n\n% STEP 1/3 - DIMENSION SHIFTING (FIRST STEP OF AX)\n% Pipeline 1 (using TIMES) never needs left, and may need right shifting.\n% Pipeline 2 (using MTIMES) may need left shifting of A and right of B.\n\n shiftA = 0;\n shiftB = 0;\n diffBA = idB1 - idA1; \n if scalarA % Do nothing\n elseif singleA && ~scalarsinB, shiftA = -idA1 + 1; % Left shifting A\n elseif idB1 > idA1, shiftA = diffBA; % Right shifting A \n end \n if scalarB % Do nothing\n elseif singleB && ~scalarsinA, shiftB = -idB1 + 1; % Left shifting B\n elseif idA1 > idB1, shiftB = -diffBA; % Right shifting B\n end\n\n% STEP 2/3 - SELECTION OF PROPER ENGINE AND BLOCK SIZE ADJUSTMENTS\n\n addA = 0; addB = 0;\n delA = 0; delB = 0;\n swapA = 0; swapB = 0;\n idC1 = max(idA1, idB1);\n idC2 = idC1 + 1;\n checktimes = false;\n\n if (singleA||singleB) &&~scalarsinA &&~scalarsinB % Engine using MTIMES\n\n if singleA && singleB \n mtimesOK = true;\n shiftC=idC1-1; % Right shifting C\n idC1=1; idC2=2;\n elseif singleA\n squashOK = 2;\n idB = [idB1, idB1+1] + shiftB;\n else % singleB\n squashOK = 1;\n idA = [idA1, idA1+1] + shiftA;\n end\n\n if NidA==2 && NidB==2 % 1) 2-D BLOCKS BY 2-D BLOCKS\n % OK \n elseif NidA==2 % 2) 2-D BLOCKS BY 1-D BLOCKS\n addB=idB1+1; delC=idC2;\n elseif NidB==2 % 3) 1-D BLOCKS BY 2-D BLOCKS\n addA=idA1; delC=idC1;\n else % 4) 1-D BLOCKS BY 1-D BLOCKS\n if declared_outer\n addA=idA1+1; addB=idB1;\n else\n addA=idA1; addB=idB1+1; delC=idC2;\n end\n end \n\n else % Engine using TIMES (also used if SCALARA || SCALARB)\n \n sxtimesOK = true;\n\n if NidA==2 && NidB==2 % 1) 2-D BLOCKS BY 2-D BLOCKS\n\n if scalarA || scalarB\n timesOK=true; \n elseif scalarsinA && scalarsinB % scal-by-scal\n checktimes=true;\n elseif scalarsinA || scalarsinB || ... % scal-by-mat\n (q==1 && r==1) % vec-by-vec (\"outer\")\n elseif p==1 && s==1 % vec-by-vec (\"inner\")\n swapA=idA1; sumOK=idC1; checktimes=true;\n elseif s==1 % mat-by-vec\n swapB=idB1; sumOK=idC2;\n elseif p==1 % vec-by-mat\n swapA=idA1; sumOK=idC1;\n else % mat-by-mat\n addA=idA2+1; addB=idB1; sumOK=idC2; delC=idC2;\n end\n\n elseif NidA==2 % 2) 2-D BLOCKS BY 1-D BLOCKS\n\n if scalarA || scalarB\n timesOK=true; \n elseif scalarsinA && scalarsinB % scal-by-scal\n addB=idB1; checktimes=true;\n elseif scalarsinA % scal-by-vec\n delA=idA1;\n elseif scalarsinB % mat-by-scal\n addB=idB1;\n elseif p==1 % vec-by-vec (\"inner\")\n delA=idA1; sumOK=idC1; checktimes=true;\n else % mat-by-vec\n addB=idB1; sumOK=idC2; delC=idC2;\n end\n\n elseif NidB==2 % 3) 1-D BLOCKS BY 2-D BLOCKS\n\n if scalarA || scalarB\n timesOK=true; \n elseif scalarsinA && scalarsinB % scal-by-scal\n addA=idA1+1; checktimes=true;\n elseif scalarsinB % vec-by-scal\n delB=idB2;\n elseif scalarsinA % scal-by-mat\n addA=idA1+1;\n elseif s==1 % vec-by-vec (\"inner\")\n delB=idB2; sumOK=idC1; checktimes=true;\n else % vec-by-mat\n addA=idA1+1; sumOK=idC1; delC=idC1;\n end\n\n else % 4) 1-D BLOCKS BY 1-D BLOCKS\n\n if scalarA || scalarB\n timesOK=true; \n elseif declared_outer % vec-by-vec (\"outer\")\n addA=idA1+1; addB=idB1;\n elseif scalarsinA && scalarsinB % scal-by-scal\n checktimes=true;\n elseif scalarsinA || scalarsinB % vec-by-scal\n else % vec-by-vec\n sumOK=idC1; checktimes=true;\n end\n end\n end\n\n% STEP 3/3 - Adjusting the size of A and B. The size of C is adjusted\n% later, because it is not known yet.\n\n [sizeA, sizeisnew(1)] = adjustsize(sizeA0, shiftA, addA, delA, swapA);\n [sizeB, sizeisnew(2)] = adjustsize(sizeB0, shiftB, addB, delB, swapB);\n\n if checktimes % Faster than calling BBXFUN\n diff = length(sizeB) - length(sizeA);\n if isequal([sizeA ones(1,diff)], [sizeB ones(1,-diff)])\n timesOK = true;\n end\n end\n\n\nfunction [sizeA, sizeisnew] = adjustsize(sizeA0, shiftA, addA, delA, swapA)\n% ADJUSTSIZE Adjusting size of a block array.\n\n % Dimension shifting (by adding or deleting trailing singleton dim.)\n if shiftA>0, [sizeA,newA1] = addsing(sizeA0, 1, shiftA);\n elseif shiftA<0, [sizeA,newA1] = delsing(sizeA0, 1,-shiftA); \n else sizeA = sizeA0; newA1 = false;\n end\n % Modifying block size (by adding, deleting, or moving singleton dim.)\n if addA, [sizeA,newA2] = addsing(sizeA, addA+shiftA, 1); % 1D-->2D \n elseif delA, [sizeA,newA2] = delsing(sizeA, delA+shiftA, 1); % 2D-->1D\n elseif swapA, [sizeA,newA2] = swapdim(sizeA,swapA+shiftA); % ID Swapping\n else newA2 = false;\n end\n sizeisnew = newA1 || newA2;\n\n\nfunction [newsize, flag] = addsing(size0, dim, ns)\n%ADDSING Adding NS singleton dimensions to the size of an array.\n% Warning: NS is assumed to be a positive integer.\n% Example: If the size of A is ..... SIZE0 = [5 9 3]\n% NEWSIZE = ADDSING(SIZE0, 3, 2) is [5 9 1 1 3]\n\n if dim > length(size0)\n newsize = size0;\n flag = false;\n else \n newsize = [size0(1:dim-1), ones(1,ns), size0(dim:end)];\n flag = true;\n end\n\n\nfunction [newsize, flag] = delsing(size0, dim, ns)\n%DELSING Removing NS singleton dimensions from the size of an array.\n% Warning: Trailing singletons are not removed\n% Example: If the size of A is SIZE0 = [1 1 1 5 9 3]\n% NEWSIZE = DELSING(SIZE, 1, 3) is [5 9 3]\n\n if dim > length(size0)-ns % Trailing singletons are not removed\n newsize = size0;\n flag = false;\n else % Trailing singl. added, so NEWSIZE is guaranteed to be 2D or more\n newsize = size0([1:dim-1, dim+ns:end, dim]);\n flag = true;\n end\n\n\nfunction [newsize, flag] = swapdim(size0, dim)\n%SWAPDIM Swapping two adjacent dimensions of an array (DIM and DIM+1).\n% Used only when both A and B are multi-block arrays with 2-D blocks.\n% Example: If the size of A is .......... 5?(6?3)\n% NEWSIZE = SWAPIDS(SIZE0, 2) is 5?(3?6)\n\n newsize = [size0 1]; % Guarantees that dimension DIM+1 exists.\n newsize = newsize([1:dim-1, dim+1, dim, dim+2:end]);\n flag = true;\n", "meta": {"author": "hiroyuki-kasai", "repo": "ClassifierToolbox", "sha": "63aa78304a8ac10c432840c45d63170ea2bbabb0", "save_path": "github-repos/MATLAB/hiroyuki-kasai-ClassifierToolbox", "path": "github-repos/MATLAB/hiroyuki-kasai-ClassifierToolbox/ClassifierToolbox-63aa78304a8ac10c432840c45d63170ea2bbabb0/lib/SPD_DR_ECCV2014/local_manopt/multiprod.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878414043814, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.37833306132342737}} {"text": "function f = times(f, g)\n%.* CHEBFUN multiplication.\n% F.*G multiplies F and G, where F and G may be CHEBFUN objects or scalars.\n% If F and/or G is array-valued, the dimensions must match.\n%\n% See also MTIMES.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Deal with the special cases:\nif ( ~isa(f, 'chebfun') ) % ??? * CHEBFUN\n\n % Ensure CHEBFUN is the first input:\n if ( ~g(1).isTransposed )\n f = times(g, f);\n else\n f = times(g.', f.').';\n end\n\nelseif ( isempty(g) ) % CHEBFUN * []\n\n f = [];\n return\n\nelseif ( isempty(f) ) % empty CHEBFUN * CHEBFUN\n\n % Nothing to do here. (Return an empty CHEBFUN as output.)\n return \n\nelseif ( isnumeric(g) ) % CHEBFUN * double\n\n if ( numel(f) == 1 )\n % Array-valued case:\n\n % Loop over the funs:\n for k = 1:numel(f.funs)\n f.funs{k} = times(f.funs{k}, g);\n end\n\n % Multiply the pointValues:\n if ( numel(g) > 1 )\n f.pointValues = bsxfun(@times, f.pointValues, g);\n else\n f.pointValues = f.pointValues .* g;\n end\n \n else\n % Quasimatrix case:\n\n numCols = numel(f);\n % Promote g if required:\n if ( ~isscalar(g) )\n error('CHEBFUN:CHEBFUN:times:dim', 'Matrix dimensions must agree.');\n end\n % Loop over the columns:\n for k = 1:numCols\n f(k) = f(k).*g;\n end\n \n end\n\n\nelseif ( ~isa(g, 'chebfun') ) % CHEBFUN * ???\n\n error('CHEBFUN:CHEBFUN:times:unknown', ...\n ['Undefined function ''times'' for input arguments of type ' ...\n '%s and %s.'], class(f), class(g));\n\nelse % CHEBFUN .* CHEBFUN \n\n % Check to see if one of the CHEBFUNs is transposed:\n if ( xor(f(1).isTransposed, g(1).isTransposed) )\n error('CHEBFUN:CHEBFUN:times:matdim', ...\n 'Matrix dimensions must agree. (One input is transposed).');\n end\n \n dimCheck(f, g);\n \n if ( numel(f) == 1 && numel(g) == 1 )\n % CHEBFUN case:\n\n % If one of the two CHEBFUNs uses a PERIODICTECH reprensetation, \n % cast it to a NONPERIODICTECH.\n if ( ~isPeriodicTech(f.funs{1}) && isPeriodicTech(g.funs{1}) )\n g = chebfun(g, g.domain, 'tech', get(f.funs{1}, 'tech'));\n elseif ( isPeriodicTech(f.funs{1}) && ~isPeriodicTech(g.funs{1}) )\n f = chebfun(f, f.domain, 'tech', get(g.funs{1}, 'tech'));\n end\n \n % Overlap:\n [f, g] = overlap(f, g);\n\n % Loop over the FUNs:\n for k = 1:numel(f.funs)\n f.funs{k} = times(f.funs{k}, g.funs{k});\n end\n f.pointValues = f.pointValues .* g.pointValues;\n \n else\n % QUASIMATRIX case:\n\n % Convert to cell for simplicity\n f = cheb2cell(f);\n g = cheb2cell(g);\n \n % Loop over the columns:\n if ( numel(f) == 1 )\n for k = numel(g):-1:1\n h(k) = f{1} .* g{k};\n end\n elseif ( numel(g) == 1 )\n for k = numel(f):-1:1\n h(k) = f{k} .* g{1};\n end\n else % numel(f) = numel(g)\n for k = numel(f):-1:1\n h(k) = f{k} .* g{k};\n end\n end\n f = h;\n end\nend\n\n% Set small breakpoint values to zero:\nf = thresholdBreakpointValues(f);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/times.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819874558603, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3783112113811143}} {"text": "function handle = imageVisualiseVargplvm(imageVals, imageSize, transpose, negative, ...\n\t\t\t\t scale, thresh)\n\n% IMAGEVISUALISE Helper code for showing an image during 2-D visualisation.\n% FORMAT\n% DESC is a helper function for plotting image data using latent\n% variable models.\n% ARG imageValues : the values to set the image data to.\n% ARG imageSize : the size of the image.\n% ARG transpose : whether the resized image needs to be transposed\n% (default 1, which is yes).\n% ARG negative : whether to display the negative of the image\n% (default 0, which is no).\n% ARG scale : whether or not to use the imagesc function (defaults\n% to 1, which is yes).\n% ARG thresh : An array, thresh = [minVal, threshDown, threshUp, maxVal]\n% which gives value minVal to all image elements smaller than threshDown\n% and value maxVal to all image elements larger than threshUp. \n% RETURN handle : a the handle to the image data.\n%\n% COPYRIGHT : Neil D. Lawrence, 2003, 2004, 2006\n%\n% SEEALSO : imageModify, lvmResultsDynamic\n\n% SHEFFIELDML\n\nif nargin < 3 || isempty(transpose)\n transpose = 1;\nend\nif nargin< 4 || isempty(negative)\n negative = 0;\nend\nif nargin < 5 || isempty(scale)\n scale = 1;\nend\nif nargin < 6\n thresh = [];\nend\nif negative\n imageVals = -imageVals;\nend\nimageData = reshape(imageVals, imageSize(1), imageSize(2));\nif transpose\n imageData = imageData';\nend\nif ~isempty(thresh)\n imageData(imageData < thresh(2)) = thresh(1);\n imageData(imageData >= thresh(3)) = thresh(4);\nend\nif scale\n handle = imagesc(imageData);\nelse\n handle = image(imageData);\nend\ncolormap gray", "meta": {"author": "SheffieldML", "repo": "vargplvm", "sha": "480201fde5ac84ff36e4a9f06d3fafeafa8ef06d", "save_path": "github-repos/MATLAB/SheffieldML-vargplvm", "path": "github-repos/MATLAB/SheffieldML-vargplvm/vargplvm-480201fde5ac84ff36e4a9f06d3fafeafa8ef06d/vargplvm/matlab/utils/imageVisualiseVargplvm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3783112026181258}} {"text": "%\u6269\u9891\u51fd\u6570\nfunction [out] = spread(data, code)\n\n% ****************************************************************\n% data : \u8f93\u5165\u6570\u636e\u5e8f\u5217\n% code : \u6269\u9891\u7801\u5e8f\u5217\n% out : \u6269\u9891\u540e\u7684\u8f93\u51fa\u6570\u636e\u5e8f\u5217\n% ****************************************************************\n\nswitch nargin\ncase { 0 , 1 } %\u5982\u679c\u8f93\u5165\u53c2\u6570\u4e2a\u6570\u4e0d\u5bf9\uff0c\u63d0\u793a\u9519\u8bef\n error('\u7f3a\u5c11\u8f93\u5165\u53c2\u6570');\nend\n\n[hn,vn] = size(data);\n[hc,vc] = size(code);\n\nif hn > hc %\u5982\u679c\u6269\u9891\u7801\u6570\u5c0f\u4e8e\u8f93\u5165\u7684\u5f85\u6269\u9891\u7684\u6570\u636e\u5e8f\u5217\uff0c\u63d0\u793a\u9519\u8bef\n error('\u7f3a\u5c11\u6269\u9891\u7801\u5e8f\u5217');\nend\n\nout = zeros(hn,vn*vc);\n\nfor ii=1:hn\n out(ii,:) = reshape(code(ii,:).'*data(ii,:),1,vn*vc);\nend\n\n%******************************** end of file ********************************\n", "meta": {"author": "2417677728", "repo": "OFDM", "sha": "2850c0b77692ae6ed6b292b839513716bfad2447", "save_path": "github-repos/MATLAB/2417677728-OFDM", "path": "github-repos/MATLAB/2417677728-OFDM/OFDM-2850c0b77692ae6ed6b292b839513716bfad2447/spread.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631698328917, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3782456102901808}} {"text": "function [V,F] = simple_cube()\n%SIMPLE_CUBE construct a triangle mesh for a simple cube\n%\n% [V,F] = simple_cube();\n%\n% Outputs:\n% V,F the triangle mesh of a simple cube\n\nV = [?, ?, ?; ... %dots in MATLAB allow us to insert a linebreak, but continue with the same statement\n ?, ?, ?; ...\n ?, ?, ?; ...\n ?, ?, ?; ...\n ?, ?, ?; ...\n ?, ?, ?; ...\n ?, ?, ?; ...\n ?, ?, ?];\n\nF = [ ];\n\nend\n\n", "meta": {"author": "odedstein", "repo": "sgi-introduction-course", "sha": "52278fc3b3dab52febb110a1a09d770f46b5e417", "save_path": "github-repos/MATLAB/odedstein-sgi-introduction-course", "path": "github-repos/MATLAB/odedstein-sgi-introduction-course/sgi-introduction-course-52278fc3b3dab52febb110a1a09d770f46b5e417/003_a_triangle_mesh/exercise/simple_cube.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593171945417, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37824560177845257}} {"text": "function y = polyval( p, x )\n\n% Disciplined convex/geometric programming information for POLYVAL:\n% POLYVAL can be used with CVX variables in two ways:\n% -- If P is constant and X is a variable, then POLYVAL(P,X)\n% represents a polynomial function of X, p(X). If p(X) is affine\n% then the basic DCP or DCP rules for sums and products apply.\n% If P is nonlinear then:\n% -- for DCPs, the polynomial must be convex or concave, and X\n% must be affine (such polynomials cannot be monotonic).\n% -- for DGPs, the elements of P must be nonnegative, in which\n% case p(X) is nondecreasing, so X must be log-convex.\n% -- If X is a constant and P is a variable, then POLYVAL(P,X)\n% performs a weighted sum of the elements of P. The weights are,\n% of course, [X^N,X^(N-1),...,X,1]. As in the affine case above,\n% then standard DCP or DGP rules for sums and products apply.\n\nsp = size( p );\nif isempty( p ),\n p = zeros( 1, 0 );\nelseif length( sp ) > 2 || ~any( sp == 1 ),\n error( 'First argument must be a vector.' );\nend\nsx = size(x);\n\npersistent remap\nif isempty( remap ),\n remap_1 = cvx_remap( 'real-affine' );\n remap_2 = cvx_remap( 'log-convex' );\n remap = remap_1 + 2 * remap_2;\nend\n\nif cvx_isconstant( p ),\n p = cvx_constant( p );\n if cvx_isconstant( x ),\n y = cvx( polyval( p, cvx_constant( x ) ) );\n return\n end\n if any( isinf( p ) | isnan( p ) ),\n error( 'Inf and NaN not accepted here.' );\n end\n ndxs = find( p );\n if isempty( ndxs ),\n y = zeros( sx );\n return\n end\n for k = ndxs(:)',\n pt = p( k : end );\n if ~any( isinf( pt ./ pt(1) ) ),\n p = pt;\n break;\n end\n end\n n = length( p );\n switch length( p ),\n case 0,\n % Zero\n y = zeros(sx);\n case 1,\n % Constant\n y = cvx( p(1) * ones(sx) );\n case 2,\n % Affine\n y = p(1) * x + p(2);\n otherwise,\n vu = remap(cvx_classify(x));\n p = reshape( p, n, 1 );\n t0 = vu == 0;\n if any( t0 ),\n error( 'Disciplined convex programming error:\\n Illegal operation: polyval( p, {%s} ).', cvx_class( cvx_subsref( x, t0 ), false, true ) );\n end\n t1 = vu == 1;\n if any( t1 ),\n pd = roots( (n-2:-1:1).*(n-1:-1:2).*p(1:end-2,:)' );\n pd = pd( imag(pd) == 0 );\n if ~isempty( pd ),\n pr = diff( [ 0, find(diff(sort(pd))~=0), length(pd) ] );\n if any( rem( pr, 2 ) ),\n error( 'Polynomials in DCPs must be affine, convex, or concave.' );\n end\n end\n end\n t2 = vu == 2;\n if any( t2 ) && any( p < 0 ),\n error( 'Polynomials in DGPs must have nonnegative coefficients.' );\n end\n if any( t2 ),\n if all( t2 ),\n y = x;\n else\n y = cvx_subsref( x, t2 );\n end\n ny = numel(y);\n y = reshape( y, ny, 1 );\n q = find( p(1:end-2) );\n y = ( ( y * ones(1,length(q)) ) .^ ( ones(ny,1) * (n-q)' ) ) * p(q,:) + p(end-1) * y + p(end);\n if all( t2 ),\n y = reshape( y, sx );\n else\n y = cvx_subsasgn( x, t2, y );\n end\n end\n if all( t1 ),\n y = poly_env( p, x );\n elseif any( t1 ),\n y = cvx_subsasgn( y, t1, poly_env( p, cvx_subsref( x, t1 ) ) );\n end\n end\n \nelseif cvx_isconstant( x ),\n \n n = length( p );\n [ ii, jj, vv ] = find( p );\n jj = ii + jj - 1;\n nv = length(vv);\n nx = prod( sx );\n y = reshape( x, nx, 1 ) * ones( 1, nv );\n y = y .^ ( ones( nx, 1 ) * (n-jj(:))' );\n y = reshape( y * reshape( vv, nv, 1 ), sx );\n \nelse\n \n error( 'At least one of the arguments must be constant.' );\n \nend\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/builtins/@cvx/polyval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7745833841649232, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.37821620475978657}} {"text": "%%*****************************************************************************\n%% checkdepconst: compute AAt to determine if the\n%% constraint matrices Ak are linearly independent.\n%%\n%% [At,b,y,idxB,neardepconstr,feasible,AAt] = checkdepconstr(blk,At,b,y,rmdepconstr);\n%%\n%% rmdepconstr = 1, if want to remove dependent columns in At\n%% = 0, otherwise.\n%%\n%% idxB = indices of linearly independent columns of original At.\n%% neardepconstr = 1 if there is nearly dependent columns in At\n%% = 0, otherwise.\n%% Note: the definition of \"nearly dependent\" is dependent on the\n%% threshold used to determine the small diagonal elements in\n%% the LDLt factorization of A*At.\n%%\n%% SDPT3: version 3.1\n%% Copyright (c) 1997 by\n%% K.C. Toh, M.J. Todd, R.H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************************\n\nfunction [At,b,y,idxB,neardepconstr,feasible,AAt] = ...\n checkdepconstr(blk,At,b,y,rmdepconstr)\n\nglobal existlowrank printlevel\nglobal nnzmatold\n%%\n%% compute AAt\n%%\nm = length(b);\nAAt = sparse(m,m); numdencol = 0; UU = [];\nfor p = 1:size(blk,1)\n pblk = blk(p,:);\n if strcmp(pblk{1},'s');\n m1 = size(At{p,1},2); m2 = m - m1;\n if (m2 > 0)\n if (m2 > 0.3*m); AAt = full(AAt); end\n dd = At{p,3};\n lenn = size(dd,1);\n idxD = [0; find(diff(dd(:,1))); lenn];\n ss = [0, cumsum(pblk{3})];\n if (existlowrank)\n AAt(1:m1,1:m1) = AAt(1:m1,1:m1) + At{p,1}'*At{p,1}; %#ok\n for k = 1:m2\n idx = ss(k)+1 : ss(k+1);\n idx2 = idxD(k)+1: idxD(k+1);\n ii = dd(idx2,2)-ss(k); %% undo cumulative indexing\n jj = dd(idx2,3)-ss(k);\n len = pblk{3}(k);\n Dk = spconvert([ii,jj,dd(idx2,4); len,len,0]);\n tmp = svec(pblk,At{p,2}(:,idx)*Dk*At{p,2}(:,idx)');\n tmp2 = AAt(1:m1,m1+k) + (tmp'*At{p,1})';\n AAt(1:m1,m1+k) = tmp2; %#ok\n AAt(m1+k,1:m1) = tmp2'; %#ok\n end\n end\n DD = spconvert([dd(:,2:4); sum(pblk{3}),sum(pblk{3}),0]);\n VtVD = (At{p,2}'*At{p,2})*DD;\n VtVD2 = VtVD'.*VtVD;\n for k = 1:m2\n idx0 = ss(k)+1 : ss(k+1);\n %%tmp = VtVD(idx0,:)' .* VtVD(:,idx0);\n tmp = VtVD2(:,idx0);\n tmp = tmp*ones(length(idx0),1);\n tmp3 = AAt(m1+1:m1+m2,m1+k) + mexqops(pblk{3},tmp,ones(length(tmp),1),1);\n AAt(m1+1:m1+m2,m1+k) = tmp3; %#ok\n end\n else\n AAt = AAt + abs(At{p,1})'*abs(At{p,1});\n end\n else\n decolidx = checkdense(At{p,1}');\n if ~isempty(decolidx);\n n2 = size(At{p,1},1);\n dd = ones(n2,1);\n len= length(decolidx);\n dd(decolidx) = zeros(len,1);\n AAt = AAt + (abs(At{p,1})' *spdiags(dd,0,n2,n2)) *abs(At{p,1});\n tmp = At{p,1}(decolidx,:)';\n UU = [UU, tmp]; %#ok\n numdencol = numdencol + len;\n else\n AAt = AAt + abs(At{p,1})'*abs(At{p,1});\n end\n end\nend\nif (numdencol > 0) && (printlevel)\n fprintf('\\n number of dense column in A = %d',numdencol);\nend\nnumdencol = size(UU,2);\n%%\n%%\n%%\nfeasible = 1; neardepconstr = 0;\nif ~issparse(AAt); AAt = sparse(AAt); end\nnnzmatold = mexnnz(AAt);\nrho = 1e-15;\ndiagAAt = diag(AAt);\nmexschurfun(AAt,rho*max(diagAAt,1));\n[L.R,indef,L.perm] = chol(AAt,'vector');\nL.d = full(diag(L.R)).^2;\nif (indef)\n msg = 'AAt is not pos. def.';\n idxB = 1:m;\n neardepconstr = 1;\n if (printlevel); fprintf('\\n checkdepconstr: %s',msg); end\n return;\nend\n%%\n%% find independent rows of A\n%%\ndd = zeros(m,1);\nidxB = (1:m)';\ndd(L.perm) = abs(L.d);\nidxN = find(dd < 1e-13*mean(L.d));\nddB = dd(setdiff(1:m,idxN));\nddN = dd(idxN);\nif ~isempty(ddN) && ~isempty(ddB) && (min(ddB)/max(ddN) < 10)\n %% no clear separation of elements in dd\n %% do not label constraints as dependent\n idxN = [];\nend\nif ~isempty(idxN)\n neardepconstr = 1;\n if (printlevel)\n fprintf('\\n number of nearly dependent constraints = %1.0d',length(idxN));\n end\n if (numdencol==0)\n if (rmdepconstr)\n idxB = setdiff((1:m)',idxN);\n if (printlevel)\n fprintf('\\n checkdepconstr: removing dependent constraints...');\n end\n [W,resnorm] = findcoeffsub(blk,At,idxB,idxN);\n tol = 1e-8;\n if (resnorm > sqrt(tol))\n idxB = (1:m)';\n neardepconstr = 0;\n if (printlevel)\n fprintf('\\n checkdepconstr: basis rows cannot be reliably identified,');\n fprintf(' abort removing nearly dependent constraints');\n end\n return;\n end\n tmp = W'*b(idxB) - b(idxN);\n nnorm = norm(tmp)/max(1,norm(b));\n if (nnorm > tol)\n feasible = 0;\n if (printlevel)\n fprintf('\\n checkdepconstr: inconsistent constraints exist,');\n fprintf(' problem is infeasible.');\n end\n else\n feasible = 1;\n for p = 1:size(blk,1)\n At{p,1} = At{p,1}(:,idxB);\n end\n b = b(idxB);\n y = y(idxB);\n AAt = AAt(idxB,idxB);\n end\n else\n if (printlevel)\n fprintf('\\n To remove these constraints,');\n fprintf(' re-run sqlp.m with OPTIONS.rmdepconstr = 1.');\n end\n end\n else\n if (printlevel)\n fprintf('\\n warning: the sparse part of AAt may be nearly singular.');\n end\n end\nend\n%%*****************************************************************************\n%% findcoeffsub:\n%%\n%% [W,resnorm] = findcoeffsub(blk,At,idXB,idXN);\n%%\n%% idXB = indices of independent columns of At.\n%% idxN = indices of dependent columns of At.\n%%\n%% AB = At(:,idxB); AN = At(:,idxN) = AB*W\n%%\n%% SDPT3: version 3.0\n%% Copyright (c) 1997 by\n%% K.C. Toh, M.J. Todd, R.H. Tutuncu\n%% Last modified: 2 Feb 01\n%%*****************************************************************************\n\nfunction [W,resnorm] = findcoeffsub(blk,At,idxB,idxN)\n\nAB = []; AN = [];\nfor p = 1:size(blk,1)\n AB = [AB; At{p,1}(:,idxB)]; %#ok\n AN = [AN; At{p,1}(:,idxN)]; %#ok\nend\nn = size(AB,2);\n%%\n%%-----------------------------------------\n%% find W so that AN = AB*W\n%%-----------------------------------------\n%%\n[L,U,P,Q] = lu(sparse(AB));\nrhs = P*AN;\nLhat = L(1:n,:);\nW = Q*( U \\ (Lhat \\ rhs(1:n,:)));\nresnorm = norm(AN-AB*W,'fro')/max(1,norm(AN,'fro'));\n%%*****************************************************************************\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sdpt3/Solver/checkdepconstr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754371026368, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3781987614322146}} {"text": "Vh = zeros(size(mesh.t,1),3);\n\nfeEvalBas = @EvalNed1Bas3D;\nIfeEvalBas = @evalNed1IFEBas3D;\noption.ng = 1;\noption.nge = 1;\n\np = mesh.p; t = mesh.t;\nfem = genNedFEM3D(mesh,bc,option);\nntID = find(mesh.tLoc>0); \ngxN = fem.gx(ntID,:); gyN = fem.gy(ntID,:); gzN = fem.gz(ntID,:);\n\ndof = fem.ldof; \nntID = find(mesh.tLoc>0); \nuhK = uh(fem.g2ldof); \nuK1 = 0; uK2 = 0; uK3 = 0;\nfor i = 1:dof\n uK1 = uK1 + uhK(ntID,i).*feEvalBas(fem.bas, ntID, gxN, gyN, gzN, i, 0, 1).*fem.t_e_orit(ntID,i);\n uK2 = uK2 + uhK(ntID,i).*feEvalBas(fem.bas, ntID, gxN, gyN, gzN, i, 0, 2).*fem.t_e_orit(ntID,i);\n uK3 = uK3 + uhK(ntID,i).*feEvalBas(fem.bas, ntID, gxN, gyN, gzN, i, 0, 3).*fem.t_e_orit(ntID,i);\nend\n\nVh(ntID,:) = [uK1,uK2,uK3];\n\n% interface elements\nepsm = 8.85*10^(-3)*5;\nepsp = 8.85*10^(-3);\nsigm = 100;\nsigp = 1;\nmum = (4*pi);\nmup = (4*pi)*2;\nbm = epsm/deltaT^2 + sigm/(2*deltaT);\nbp = epsp/deltaT^2 + sigp/(2*deltaT);\nam = mum^(-1); ap = mup^(-1);\nfemI = genNed1IFEM3D(mesh,fem,am,ap,bm,bp,option);\ngx = femI.gx; gy = femI.gy; gz = femI.gz; \ntIntfID = femI.tIntfID;\nitID = find(mesh.tLoc < 0); ntI = length(itID);\nuhK = uh(fem.g2ldof); uhKitmp = uhK(itID,:); uhKi = zeros(length(femI.g2ldof),6);\nuK1 = 0; uK2 = 0; uK3 = 0;\nid = 0;\nfor i = 1:ntI\n tmp = uhKitmp(i,:);\n uhKi(id+1:id+femI.quadT(i),:) = repmat(tmp,femI.quadT(i),1);\n id = id + femI.quadT(i);\nend\n\nfor i = 1:dof\n BAS = femI.bas(:,:,i);\n uK1 = uK1 + uhKi(:,i).*IfeEvalBas(BAS, gx, gy, gz, 0, 1).*fem.t_e_orit(tIntfID,i);\n uK2 = uK2 + uhKi(:,i).*IfeEvalBas(BAS, gx, gy, gz, 0, 2).*fem.t_e_orit(tIntfID,i);\n uK3 = uK3 + uhKi(:,i).*IfeEvalBas(BAS, gx, gy, gz, 0, 3).*fem.t_e_orit(tIntfID,i);\nend\ntIntfIDtmp = -mesh.tLoc(tIntfID);\nVi1 = accumarray(tIntfIDtmp,uK1)./femI.quadT;\nVi2 = accumarray(tIntfIDtmp,uK2)./femI.quadT;\nVi3 = accumarray(tIntfIDtmp,uK3)./femI.quadT;\nVh(itID,:) = [Vi1,Vi2,Vi3];\n\nfMall = (mesh.p(mesh.t(:,1),:)+mesh.p(mesh.t(:,2),:)+...\n mesh.p(mesh.t(:,3),:)+mesh.p(mesh.t(:,4),:))/4;\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\ntol = 10^(-12);\nzCut = -0.3125;\nfp1 = mesh.p(mesh.f(:,1),:);\nfp2 = mesh.p(mesh.f(:,2),:);\nfp3 = mesh.p(mesh.f(:,3),:);\nfZid = (abs(fp1(:,3)-zCut) \n% MOPSO with crowding distance\n\n%------------------------------- Reference --------------------------------\n% C. R. Raquel and P. C. Naval Jr, An effective use of crowding distance in\n% multiobjective particle swarm optimization, Proceedings of the Annual\n% Conference on Genetic and Evolutionary Computation, 2005, 257-264.\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n methods\n function main(Algorithm,Problem)\n %% Generate random population\n Population = Problem.Initialization();\n Archive = UpdateArchive(Population,Problem.N);\n Pbest = Population;\n\n %% Optimization\n while Algorithm.NotTerminated(Archive)\n Gbest = Archive(randi(ceil(length(Archive)*0.1),1,Problem.N));\n Population = Operator(Problem,Population,Pbest,Gbest);\n Archive = UpdateArchive([Archive,Population],Problem.N);\n Pbest = UpdatePbest(Pbest,Population);\n end\n end\n end\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/MOPSO-CD/MOPSOCD.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947425132314, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3781986784859468}} {"text": "function [ALLEEG_out cfg] = pop_pre_prepData(ALLEEG,typeproc,varargin)\n%\n% Preprocess EEG dataset(s) for connectivity analysis. See [1] for\n% mathematical details on preprocessing steps.\n%\n%\n% Input:\n%\n% ALLEEG: Array of EEGLAB datasets to preprocess.\n% typeproc: Reserved for future use. Use 0\n%\n% Optional:\n%\n% <'Name',value> pairs as defined in pre_prepData()\n%\n% Output:\n%\n% ALLEEG: Prepocessed EEG structure(s)\n% cfg: Argument specification structure.\n%\n%\n% See Also: pre_prepData()\n%\n% References:\n%\n% [1] Mullen T (2010) The Source Information Flow Toolbox (SIFT):\n% Theoretical Handbook and User Manual. Section 6.5.1\n% Available at: http://www.sccn.ucsd.edu/wiki/Sift\n%\n% Author: Tim Mullen 2009, SCCN/INC, UCSD.\n% Email: tim@sccn.ucsd.edu\n%\n% Revised Jan 2010.\n\n% This function is part of the Source Information Flow Toolbox (SIFT)\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n\nif nargin<2\n typeproc = 0;\nend\n\n% set default output\nALLEEG_out = ALLEEG;\ncfg = [];\n \n% generate splash screen\n% initialize SIFT, etc\nStartSIFT(~strcmpi(typeproc,'nogui'),true);\n\nfcnName = strrep(mfilename,'pop_','');\nfcnHandle = str2func(fcnName);\n\n% check if we've applied SIFT to this dataset before\nres = hlp_checkeegset(ALLEEG,{'cat'});\nif isempty(res) && isfield(ALLEEG(1).CAT.configs,fcnName)\n % get default configuration (from prior use) and merge with varargin\n varargin = [hlp_struct2varargin(ALLEEG(1).CAT.configs.(fcnName)) varargin];\nend\n\nif strcmpi(typeproc,'nogui')\n % get the default config from function and overload supplied args\n cfg = arg_tovals(arg_report('rich',fcnHandle,[{'EEG',ALLEEG(1)},varargin]),false);\nelse\n % render the GUI\n [PGh figh] = feval(['gui_' fcnName],ALLEEG(1),varargin{:});\n \n if isempty(PGh)\n % user chose to cancel\n return;\n end\n \n % get the specification of the PropertyGrid\n ps = PGh.GetPropertySpecification;\n cfg = arg_tovals(ps,false);\nend\n\ndrawnow;\n\nif strcmpi(typeproc,'cfg_only')\n return;\nend\n\n% initialize progress bar\nif cfg.verb==2 && length(ALLEEG)>1\n waitbarTitle = 'Preprocessing datasets';\n \n multiWaitbar(waitbarTitle,'Reset');\n multiWaitbar(waitbarTitle,'ResetCancel',true);\n multiWaitbar(waitbarTitle,...\n 'Color', [0.8 0.0 0.1], ...\n 'CanCancel','on', ...\n 'CancelFcn',@(a,b)disp('[Cancel requested. Please wait...]'));\nend\n\n\n% re-initialize output\nclear ALLEEG_out;\n\n% preprocess datasets\nfor cnd=1:length(ALLEEG)\n \n % execute the low-level function\n [ALLEEG_out(cnd)] = feval(fcnHandle,'EEG',ALLEEG(cnd),cfg);\n \n if ~isempty(cfg)\n % store the configuration structure\n ALLEEG_out(cnd).CAT.configs.(fcnName) = cfg;\n end\n\n \n if cfg.verb==2 && length(ALLEEG)>1\n % update waitbar\n drawnow;\n cancel = multiWaitbar(waitbarTitle,cnd/length(ALLEEG));\n if cancel && hlp_confirmWaitbarCancel(waitbarTitle)\n % restore original dataset\n ALLEEG_out = ALLEEG;\n break;\n end\n end\n \n \nend\n\n% cleanup progress bar\nif cfg.verb==2 && length(ALLEEG)>1\n multiWaitbar(waitbarTitle,'Close');\nend\n\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/SIFT-private/pop/pop_pre_prepData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.6548947357776795, "lm_q1q2_score": 0.3781986745961967}} {"text": "function x = triu( x, k )\n\n% Disciplined convex/geometric programming information for TRIU:\n% TRIU imposes no convexity restrictions on its arguments.\n\n%\n% Check inputs\n%\n\nif nargin < 2, k = 0; end\ns = x.size_;\nif length( s ) > 2,\n error( 'The first argument must be 2-D.' );\nelseif ~isnumeric( k ) || length( k ) ~= 1,\n error( 'The second argument must be an integer scalar.' );\nend\n\n%\n% Zero out the elements outside of the desired triangle\n%\n\nb = x.basis_;\nb( :, ~triu(ones(s),k) ) = 0;\nx = cvx( s, b );\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd.\n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/builtins/@cvx/triu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.37819867070644664}} {"text": "function calpak_test ( )\n\n%*****************************************************************************80\n%\n%% CALPAK_TEST tests the CALPAK library.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 23 April 2013\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CALPAK_TEST\\n' );\n fprintf ( 1, ' MATLAB version.\\n' );\n fprintf ( 1, ' Test the CALPAK library.\\n' );\n\n calpak_test0005 ( );\n calpak_test0007 ( );\n\n calpak_test001 ( );\n calpak_test002 ( );\n calpak_test003 ( );\n calpak_test004 ( );\n calpak_test005 ( );\n calpak_test006 ( );\n calpak_test0065 ( );\n calpak_test007 ( );\n calpak_test0075 ( );\n calpak_test00755 ( );\n calpak_test00756 ( );\n calpak_test0076 ( );\n calpak_test0006 ( );\n calpak_test008 ( );\n calpak_test009 ( );\n\n calpak_test010 ( );\n calpak_test011 ( );\n calpak_test012 ( );\n calpak_test0125 ( );\n calpak_test013 ( );\n calpak_test014 ( );\n calpak_test015 ( );\n calpak_test016 ( );\n calpak_test017 ( );\n calpak_test0175 ( );\n calpak_test018 ( );\n calpak_test019 ( );\n\n calpak_test020 ( );\n\n calpak_test165 ( );\n calpak_test17 ( );\n calpak_test175 ( );\n calpak_test18 ( );\n calpak_test185 ( );\n calpak_test19 ( );\n calpak_test195 ( );\n\n calpak_test20 ( );\n calpak_test21 ( );\n calpak_test215 ( );\n calpak_test22 ( );\n calpak_test23 ( );\n calpak_test24 ( );\n calpak_test25 ( );\n calpak_test255 ( );\n calpak_test26 ( );\n calpak_test265 ( );\n calpak_test27 ( );\n calpak_test275 ( );\n calpak_test28 ( );\n calpak_test29 ( );\n\n calpak_test30 ( );\n calpak_test31 ( );\n calpak_test315 ( );\n calpak_test32 ( );\n calpak_test325 ( );\n calpak_test326 ( );\n calpak_test327 ( );\n calpak_test328 ( );\n calpak_test33 ( );\n calpak_test335 ( );\n calpak_test336 ( );\n calpak_test337 ( );\n calpak_test34 ( );\n calpak_test344 ( );\n calpak_test345 ( );\n calpak_test35 ( );\n calpak_test36 ( );\n calpak_test365 ( );\n calpak_test37 ( );\n calpak_test373 ( );\n calpak_test375 ( );\n calpak_test376 ( );\n calpak_test38 ( );\n calpak_test389 ( );\n calpak_test39 ( );\n calpak_test394 ( );\n calpak_test395 ( );\n\n calpak_test40 ( );\n calpak_test41 ( );\n calpak_test415 ( );\n calpak_test42 ( );\n calpak_test43 ( );\n calpak_test435 ( );\n calpak_test44 ( );\n calpak_test445 ( );\n calpak_test45 ( );\n calpak_test46 ( );\n calpak_test47 ( );\n calpak_test48 ( );\n calpak_test49 ( );\n calpak_test492 ( );\n calpak_test493 ( );\n calpak_test495 ( );\n\n calpak_test50 ( );\n calpak_test501 ( );\n calpak_test502 ( );\n calpak_test503 ( );\n calpak_test51 ( );\n calpak_test515 ( );\n calpak_test5153 ( )\n calpak_test51535 ( );\n calpak_test5154 ( );\n calpak_test5155 ( );\n calpak_test5156 ( );\n calpak_test52 ( );\n calpak_test525 ( );\n calpak_test53 ( );\n calpak_test535 ( );\n calpak_test54 ( );\n calpak_test555 ( );\n calpak_test56 ( );\n calpak_test565 ( );\n calpak_test566 ( );\n calpak_test57 ( );\n calpak_test58 ( );\n calpak_test585 ( );\n calpak_test59 ( );\n\n calpak_test60 ( );\n calpak_test605 ( );\n calpak_test61 ( );\n calpak_test615 ( );\n calpak_test616 ( );\n calpak_test62 ( );\n calpak_test621 ( );\n calpak_test622 ( );\n calpak_test623 ( );\n calpak_test624 ( );\n calpak_test63 ( );\n calpak_test635 ( );\n calpak_test636 ( );\n calpak_test64 ( );\n calpak_test65 ( );\n calpak_test66 ( );\n calpak_test67 ( );\n calpak_test675 ( );\n calpak_test68 ( );\n calpak_test685 ( );\n calpak_test686 ( );\n calpak_test687 ( );\n calpak_test688 ( );\n calpak_test689 ( );\n calpak_test69 ( );\n calpak_test695 ( );\n\n calpak_test70 ( );\n calpak_test71 ( );\n calpak_test72 ( );\n calpak_test73 ( );\n calpak_test74 ( );\n calpak_test75 ( );\n calpak_test76 ( );\n calpak_test77 ( );\n calpak_test775 ( );\n calpak_test78 ( );\n calpak_test79 ( );\n calpak_test795 ( );\n\n calpak_test80 ( );\n calpak_test805 ( );\n calpak_test81 ( );\n calpak_test82 ( );\n calpak_test83 ( );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CALPAK_TEST\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\n\n\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/calpak_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.577495350642608, "lm_q2_score": 0.6548947155710233, "lm_q1q2_score": 0.37819865340267916}} {"text": "function yout = naninsert(nanvec, y)\n% Insert NaNs back into data series from which they were removed\n%\n% :Usage:\n% ::\n%\n% yout = naninsert(nanvec, y)\n%\n% nanvec is logical indicator for NaNs, of size size(yout). y is data.\n%\n% If y is a matrix, length(nanvec) should equal number of rows in y.\n% NaNs are inserted for true values in nanvec in all columns of y.\n%\n% ..\n% Tor Wager, July 2007; Bug fix, March 2008;\n% Updated functionality to include all columns in matrix, April 2015\n% ..\n%\n% :See also:\n% nanremove.m\n\n wh = find(nanvec);\n \n if isempty(wh), yout = y; return, end\n \n yout = NaN * ones(length(nanvec), size(y, 2));\n\n yout(~nanvec, :) = y;\n \n% yout(1:wh(1) - 1) = y(1:wh(1) - 1);\n% for i = 2:length(wh)\n% ystart = wh(i-1) + 2 - i; % NaN index value - num previous removed; wh(i-1) + 1 - i + 1; \n% yend = wh(i) - i; % wh(i) - 1 - i + 1\n% \n% yout(wh(i-1) + 1 : wh(i) - 1, :) = y(ystart : yend, :);\n% end\n% % last segment\n% i = i+1;\n% if isempty(i), i = 2; end\n% ystart = wh(end) + 2 - i;\n% yout(wh(end)+1:end, :) = y(ystart:size(y, 1), :);\n% \n% yout(wh, :) = NaN;\n\nend % function\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Misc_utilities/naninsert.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318479832804, "lm_q2_score": 0.6261241842048092, "lm_q1q2_score": 0.37813633563383425}} {"text": "function Z = minus(X,Y)\n%MINUS Binary subtraction (-) for tensors.\n%\n% MINUS(A,B) is called for the syntax 'A - B' when A or B is a tensor. A\n% and B must have the same size, unless one is a scalar. A scalar can be\n% subtracted from a tensor of any size. \n%\n% See also TENSOR.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2012, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2012) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\nZ = tenfun(@minus,X,Y);\n", "meta": {"author": "andrewssobral", "repo": "mtt", "sha": "0152a77df09f24af4c294f46845931e4e0e63b55", "save_path": "github-repos/MATLAB/andrewssobral-mtt", "path": "github-repos/MATLAB/andrewssobral-mtt/mtt-0152a77df09f24af4c294f46845931e4e0e63b55/libs/tensor_toolbox_2.5/@tensor/minus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318337259584, "lm_q2_score": 0.6261241702517975, "lm_q1q2_score": 0.3781363182803122}} {"text": "%CALIBRATECAMERACHARUCO Calibrate a camera using ChArUco corners\n%\n% [cameraMatrix, distCoeffs, reprojErr] = cv.calibrateCameraCharuco(charucoCorners, charucoIds, board, imageSize)\n% [cameraMatrix, distCoeffs, reprojErr, rvecs, tvecs, stdDevsIntrinsics, stdDevsExtrinsics, perViewErrors] = cv.calibrateCameraCharuco(...)\n% [...] = cv.calibrateCameraCharuco(..., 'OptionName',optionValue, ...)\n%\n% ## Input\n% * __charucoCorners__ cell-array of detected charuco corners per frame\n% `{{[x,y],..}, ..}`.\n% * __charucoIds__ cell-array of identifiers for each corner in\n% `charucoCorners` per frame (0-based) `{[id,..], ..}`\n% * __board__ Marker board layout.\n% * __imageSize__ input image size `[w,h]`.\n%\n% ## Output\n% * __cameraMatrix__ Output 3x3 floating-point camera matrix\n% `A = [fx 0 cx; 0 fy cy; 0 0 1]`. If any of `UseIntrinsicGuess`,\n% `FixAspectRatio`, or `FixFocalLength` are specified, some or all of `fx`,\n% `fy`, `cx`, `cy` must be initialized before calling the function.\n% * __distCoeffs__ Output vector of distortion coefficients\n% `[k1,k2,p1,p2,k3,k4,k5,k6,s1,s2,s3,s4]` of 4, 5, 8 or 12 elements.\n% * __reprojErr__ the overall RMS re-projection error.\n% * __rvecs__ Output cell-array of rotation vectors estimated for each board\n% view. That is, each k-th rotation vector together with the corresponding\n% k-th translation vector (see the next output parameter description) brings\n% the board pattern from the model coordinate space (in which object points\n% are specified) to the world coordinate space, that is, a real position of\n% the board pattern in the k-th pattern view (`k=0..M-1`).\n% * __tvecs__ Output cell-array of translation vectors estimated for each\n% pattern view.\n% * __stdDevsIntrinsics__ Output vector of standard deviations estimated for\n% intrinsic parameters. Order of deviations values:\n% `(fx,fy,cx,cy,k1,k2,p1,p2,k3,k4,k5,k6,s1,s2,s3,s4,taux,tauy)`. If one of\n% parameters is not estimated, its deviation is equals to zero.\n% * __stdDevsExtrinsics__ Output vector of standard deviations estimated for\n% extrinsic parameters. Order of deviations values: `(R1, T1, ..., RM, TM)`\n% where `M` is number of pattern views, `Ri, Ti` are concatenated 1x3\n% vectors.\n% * __perViewErrors__ Output vector of average re-projection errors estimated\n% for each pattern view.\n%\n% ## Options\n% * __CameraMatrix__, __DistCoeffs__, __UseIntrinsicGuess__,\n% __FixPrincipalPoint__, __FixFocalLength__, __FixAspectRatio__,\n% __ZeroTangentDist__, __FixTangentDist__, __FixK1__, ..., __FixK6__,\n% __RationalModel__, __ThinPrismModel__, __FixS1S2S3S4__, __TiltedModel__,\n% __FixTauXTauY__, __UseLU__, __UseQR__\n% Different flags for the calibration process. See cv.calibrateCamera for\n% details.\n% * __Criteria__ Termination criteria for the iterative optimization algorithm.\n% default `struct('type','Count+EPS', 'maxCount',30, 'epsilon',eps)`\n%\n% This function calibrates a camera using a set of corners of a ChArUco Board.\n% The function receives a list of detected corners and its identifiers from\n% several views of the Board.\n%\n% See also: cv.interpolateCornersCharuco, cv.calibrateCameraAruco,\n% cv.calibrateCamera, cv.Rodrigues\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/opencv_contrib/+cv/calibrateCameraCharuco.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241632752916, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3781363140669782}} {"text": "function varargout = removeMeshFaces(v, f, fI)\n%REMOVEMESHFACES Remove faces from a mesh by face indices.\n% [V2, F2] = removeMeshFaces(V, F, FI) removes faces from the mesh by\n% the face indices FI into faces F of the mesh. The mesh is represented \n% by the vertex array V and the face array F. The result is the new set \n% of vertices V2 and faces F2 without the faces indexed by FI. FI can be\n% either a linear or a logical index.\n%\n% [V2, F2] = removeMeshFaces(MESH, FI) with the struct MESH containing \n% the fields \"vertices\" (V) and \"faces\" (F)\n% \n% MESH2 = removeMeshFaces(V, F, FI) with the struct MESH2 containing the\n% fields \"vertices\" (V2) and \"faces\" (F2)\n% \n% MESH2 = removeMeshFaces(MESH, FI) with the structs MESH and MESH2 \n% containing the fields \"vertices\" (V, V2) and \"faces\" (F, F2)\n% \n% Example\n% [v, f] = createSoccerBall;\n% f = triangulateFaces(f);\n% fI = true(length(f),1);\n% fI(1:length(f)/2) = false;\n% [v2, f2] = removeMeshFaces(v, f, fI);\n% drawMesh(v, f, 'faceColor', 'none', 'faceAlpha', .2);\n% drawMesh(v2, f2, 'faceAlpha', .7);\n% view(3); axis equal\n% \n% See also\n% meshes3d, drawMesh\n% \n% ---------\n% Authors: oqilipo, David Legland\n% Created: 2017-07-04\n\n% parse inputs\nnarginchk(2,3)\nnargoutchk(1,2)\n\nif nargin == 2\n fI = f;\n [v, f] = parseMeshData(v);\nend\n\np = inputParser;\nisIndexToFaces = @(x) ...\n (islogical(x) && isequal(length(fI), size(f,1))) || ...\n (all(floor(x)==x) && min(x)>=1 && max(x)<=size(f,1));\naddRequired(p,'fI',isIndexToFaces)\nparse(p, fI);\nif ~islogical(p.Results.fI)\n fI=false(size(f,1),1);\n fI(p.Results.fI)=true;\nelse\n fI=p.Results.fI;\nend\n \n\n% algorithm\nf2 = f(~fI,:);\n[unqVertIds, ~, newVertIndices] = unique(f2);\nv2 = v(unqVertIds,:);\nf2 = reshape(newVertIndices,size(f2));\n\n\n% parse outputs\nif nargout == 1\n mesh2.vertices=v2;\n mesh2.faces=f2;\n varargout{1}=mesh2;\nelse\n varargout{1}=v2;\n varargout{2}=f2;\nend\n\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_geom3d/meshes3d/removeMeshFaces.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6001883592602049, "lm_q2_score": 0.6297746213017459, "lm_q1q2_score": 0.3779833966628117}} {"text": "% load motor seeds from VAR, save into file and save into GUIdata for each\n% fish % careful!!! overwrite!!! \nhfig = figure;\nInitializeAppData(hfig);\nResetDisplayParams(hfig);\n\n%%\nrange_fish = GetFishRange;%[1:3,5:18];\nfor i_fish = 9:18 %range_fish,\n %% load\n save_masterdir = GetCurrentDataDir();\n save_dir = fullfile(save_masterdir,['subject_' num2str(i_fish)]);\n % load 'data'\n load(fullfile(save_dir,'data_full.mat'),'data'); % struct with many fields\n \n %% get full-length motorseed regressor\n% ClusterIDs = [11,1];\n% [~,stimrange] = GetStimRange('F',i_fish); % full range\n% setappdata(hfig,'isMotorseed',0);\n% [cIX,gIX,M] = LoadSingleFishDefault(i_fish,hfig,ClusterIDs,stimrange); \n% Behavior_full_motorseed = FindClustermeans(gIX,M);\n % need to do this in raw time instead! (note that full range is not the\n % same sequence as CellResp for fishset=2)\n LoadFullFish(hfig,i_fish);\n ClusterIDs = [11,1];\n [cIX,gIX] = LoadCluster_Direct(i_fish,ClusterIDs(1),ClusterIDs(2));\n \n CellRespZ = getappdata(hfig,'CellRespZ');\n CellRespAvrZ = getappdata(hfig,'CellRespAvrZ');\n \n Behavior_full_motorseed = FindClustermeans(gIX,CellRespZ(cIX,:));\n BehaviorAvr_motorseed = FindClustermeans(gIX,CellRespAvrZ(cIX,:));\n \n %% compute stim-rep averaged motor regressor\n \n% if length(data.timelists_names)==1, % fish with single stimulus set\n% period = data.periods;\n% BehaviorAvr_motorseed = mean(reshape(Behavior_full_motorseed,size(Behavior_full_motorseed,1),period,[]),3);\n% \n% else % fish with multiple stimulus sets\n% nTypes = length(data.timelists_names);\n% periods = data.periods;\n% BehaviorAvr_motorseed = [];\n% for i = 1:nTypes,\n% M_behav = Behavior_full_motorseed(:,data.timelists{i});\n% if mod(numel(M_behav),size(M_behav,1)*periods(i))==0, \n% avr = mean(reshape(M_behav,size(M_behav,1),periods(i),[]),3);\n% else % for patterns with dummy periods where the stimulus is constant, like 'spont'\n% nrep = floor(numel(M_behav)/(size(M_behav,1)*periods(i)));\n% M2_behav = M_behav(:,1:nrep*periods(i));\n% avr = mean(reshape(M2_behav,size(M_behav,1),periods(i),[]),3);\n% end\n% BehaviorAvr_motorseed = horzcat(BehaviorAvr_motorseed,avr); %#ok\n% end\n% end\n \n %% save into GUIdata % careful!!! overwrite!!! \n data.Behavior_full_motorseed = Behavior_full_motorseed;\n data.BehaviorAvr_motorseed = BehaviorAvr_motorseed;\n save(fullfile(save_dir,'data_full.mat'),'data');\nend", "meta": {"author": "xiuyechen", "repo": "FishExplorer", "sha": "c61392cf0835480d64fc03c15f1992935fdc7106", "save_path": "github-repos/MATLAB/xiuyechen-FishExplorer", "path": "github-repos/MATLAB/xiuyechen-FishExplorer/FishExplorer-c61392cf0835480d64fc03c15f1992935fdc7106/GUI preload processing/IncludeMotorseedInGUIdata_onetime.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7931059414036511, "lm_q2_score": 0.47657965106367595, "lm_q1q2_score": 0.37797815281068026}} {"text": "function S = spm_cfg_eeg_contrast\n% configuration file for computing contrast over epochs\n%_______________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% Stefan Kiebel\n% $Id: spm_cfg_eeg_contrast.m 5377 2013-04-02 17:07:57Z vladimir $\n\nD = cfg_files;\nD.tag = 'D';\nD.name = 'File Name';\nD.filter = 'mat';\nD.num = [1 1];\nD.help = {'Select the EEG mat file.'};\n\nc = cfg_entry;\nc.tag = 'c';\nc.name = 'Contrast coefficients';\nc.strtype = 'r';\nc.num = [1 inf];\nc.help = {'Enter the contrast vector.'};\n\nlabel = cfg_entry;\nlabel.tag = 'label';\nlabel.name = 'New condition label';\nlabel.strtype = 's';\nlabel.help = {'Enter the label for the condition derived by applying the contrast.'};\n\ncontrast = cfg_branch;\ncontrast.tag = 'contrast';\ncontrast.name = 'Contrast';\ncontrast.val = {c label};\n\ncontrasts = cfg_repeat;\ncontrasts.tag = 'contrasts';\ncontrasts.name = 'Contrasts';\ncontrasts.help = {'Each contrast defines a new condition in the output file.'};\ncontrasts.values = {contrast};\ncontrasts.num = [1 Inf];\n\nweighted = cfg_menu;\nweighted.tag = 'weighted';\nweighted.name = 'Weight by replications';\nweighted.labels = {'Yes', 'No'};\nweighted.values = {1 , 0};\nweighted.val = {1};\nweighted.help = {'Weight the contrast by the numner of replications from which the average was computed.'};\n\nprefix = cfg_entry;\nprefix.tag = 'prefix';\nprefix.name = 'Filename Prefix';\nprefix.help = {'Specify the string to be prepended to the filenames of the output dataset. Default prefix is ''w''.'};\nprefix.strtype = 's';\nprefix.num = [1 Inf];\nprefix.val = {'w'};\n\nS = cfg_exbranch;\nS.tag = 'contrast';\nS.name = 'Contrast over epochs';\nS.val = {D contrasts weighted prefix};\nS.help = {'Computes contrasts over EEG/MEG epochs.'};\nS.prog = @eeg_contrast;\nS.vout = @vout_eeg_contrast;\nS.modality = {'EEG'};\n\nfunction out = eeg_contrast(job)\n% construct the S struct\nS.D = job.D{1};\nS.c = cat(1, job.contrast(:).c);\nS.label = {job.contrast.label};\n\nS.weighted = job.weighted;\nS.prefix = job.prefix;\n\nout.D = spm_eeg_contrast(S);\n\nout.Dfname = {fullfile(out.D)};\n\nfunction dep = vout_eeg_contrast(job)\n% Output is always in field \"D\", no matter how job is structured\ndep = cfg_dep;\ndep.sname = 'Contrast of M/EEG epochs';\n% reference field \"D\" from output\ndep.src_output = substruct('.','D');\n% this can be entered into any evaluated input\ndep.tgt_spec = cfg_findspec({{'strtype','e'}});\n\ndep(2) = cfg_dep;\ndep(2).sname = 'Contrast Datafile';\n% reference field \"Dfname\" from output\ndep(2).src_output = substruct('.','Dfname');\n% this can be entered into any file selector\ndep(2).tgt_spec = cfg_findspec({{'filter','mat'}});\n\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/config/spm_cfg_eeg_contrast.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723317123102955, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.377969089461159}} {"text": "% Test file read\n% File: c:\\M-files\\shortcut_updates\\readtxt_TwinT.m\n% 2/15/07\n%\nclc;clear;\nns=1e-9;\n[time,v1,v3]=textread('c:\\Spiceapps\\datfiles\\xformer_tran.txt','%f %f %f');\n%\nh=plot(time/ns,v1,'k',time/ns,v3,'r');\nset(h,'LineWidth',2);\naxis([0 200 -5 15]);\ngrid on\nxlabel('Time (ns)');\nylabel('Volts');\ntitle('Transformer Pulse Response');\nlegend('V1','V3',0);\nfigure(1)\n%\n\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/2435-shortcut-state-space-circuit-analysis/Matlab_Files/readtxt_xfrmr_tran.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723316991792861, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3779690820792141}} {"text": " function [kp, iop, rfp] = example_spsp_param1()\n%function [kp, iop, rfp] = example_spsp_param1()\n% setup parameters for spectral-spatial pulse design.\n%\n%Chun-yu Yip, 4/7/09\n\nkp = kparametersSPSP(); % k-space trajectory parameters\niop = ioparametersSPSP(); % input/ouput parameters\nrfp = rfparametersSPSP(); % RF pulse design parameters\n\n\nfunction [iop] = ioparametersSPSP()\n%function [iop] = ioparametersSPSP()\n%iop is a structure that contains parameters for input and\n%output of the pulse design code.\n\niop.writetofile_sim = logical(1); %Write designed pulse and gz waveforms\n %to files for Bloch simulation.\n\niop.writetofile_scanner = logical(1); %Write designed pulse and gz waveforms\n %to files for MRI scanner.\n\n%Bloch simulation parameters\niop.bfovz = 3; %cm; range of z (space) in Bloch\n %simulation = [-bfovz/2, bfovz/2).\niop.bdimz = 200; %Number of z samples in Bloch simulation\niop.bfovf = 500; %Hz; range of f (frequency) in Bloch\n %simulation = [-bfovf/2, bfovf/2).\niop.bdimf = 200; %Number of f samples in Bloch simulation\n\n%File names\niop.infname = 'spspexample'; %File name for RF and z gradient waveform\n %files. Extension should not be included.\niop.outfname_from_sim = 'mspsp'; %File name for Bloch simulation results.\n %Extension should not be included.\n\niop.show_blochsimresults = logical(1); %Display Bloch simulation results\n\niop.waveformfilespath = '.'; %Where pulse gradient waveforms and\n %simulation results reside.\n\n\n\n\n function [rfp] = rfparametersSPSP()\n%function [rfp] = rfparametersSPSP()\n%rfp is a structure that contains SPSP RF waveform computation parameters.\n% Note: default parameter values as on our paper. They will generate\n% the alpha=-2E-4 pulse, as shown in Fig. 3b.\n\n\n %Slice selection parameters\n rfp.slthickz = .5 ; %cm; slice thickness. Full width\n %half max (FWHM) when shape is\n %\"gaussian\".\n rfp.flipangle = 30; %degrees; flip angle.\n rfp.profileshape = 'rect'; %'rect' (recommended) or 'gaussian'\n rfp.smoothprofile = logical(0); %Smoothing of the slice profile applied\n %to the desired pattern (not recommended).\n rfp.kernelstdv = 0.3; %cm; Gaussian smoothing kernel std dev.\n %This parameter is useless when\n %rfp.smoothprofile = logical(0).\n rfp.hamming = logical(1); %Hamming window in k-space applied\n %directly to the designed pulse, as\n %described in paper. It is intended to\n %smooth the excited slice profile.\n %Recommended, although theoretically\n %suboptimal.\n\n %Desired pattern parameters\n rfp.dfovz = 20; %cm; range of desired pattern definition\n %along z (space). d defined over [-dfovz/2,\n %dfovz/2).\n rfp.ddimz = 1200; %Number of samples along z.\n rfp.dfovf = 500; %Hz; range of desired pattern definition\n %along f (frequency). f defined over\n %[-dfovf/2, dfovf/2).\n rfp.ddimf = 300; %Number of samples along f.\n\n %Phase pattern parameters\n rfp.zshift = -rfp.slthickz/2; %cm; z-direction shift applied to phase\n %pattern. Refer to Eq. 5 in paper.\n rfp.alpha = -2E-4; %g/cm/Hz; key proportionality constant\n %between field offset and field gradient\n %Refer to Eq. 3 in paper.\n rfp.TE = 30E-3; %s; echo time of GRE sequence for fMRI.\n %Note that it is defined as from SPSP\n %pulse *center* to the time when the DC\n %sample is acquired.\n\n %Conjugate gradient parameter\n rfp.Niter = 100; %Number of CG iterations in design process\n rfp.beta = 0; %Tikhonov regularization parameter; controls\n %pulse energy.\n\n\n\n\n%function [kp] = kparametersSPSP() kp is a structure that contains\n%excitation k-space trajectory parameters for spectral-spatial pulse\n%design. The trajectory comes from an oscillatory Gz waveform comprised of\n%trapazoids with opposite polarities, which is most commonly used for\n%conventional SPSP pulses.\n%\n% Note: default parameter values as on our paper. They will generate\n% the alpha=-2E-4 pulse, as shown in Fig. 3b.\n\nfunction [kp] = kparametersSPSP()\nkp.pointtime = 4E-6; %s; RF pulse sampling period,\n %assuming it is same for z gradient.\n %For example, for Siemens Trio, it is\n %2.5E-6 s. For GE Signa (3T) in Michigan,\n %it was 4E-6 s.\n\nkp.gmax = 4; %g/cm; maximum gradient amplitude\nkp.dgdtmax = 15000; %g/cm/s; maximum gradient slew rate\n\nkp.T = 0.003; %s; z gradient oscillation period\nkp.Ntraps = 7; %Number of trapezoids in z gradient waveform\n %Note:\n %These two parameters determine the shape\n %of the Gz waveform. Suitable values of\n %these two values depend on 1. slice\n %profile shape and thickness, 2. \"alpha\", 3.\n %TE(and TD), and perhaps more. As I have\n %not come up with formuli for them,\n %I always find good values for them by trial\n %and error (ie, put in some reasonable\n %values, do the pulse design, and perform Bloch\n %simulation to see if those values give me\n %a good excitation pattern). For a certain\n %excitation accuracy, those values should\n %be chosen so that the pulse is as short as\n %possible. For pulses that we show in Fig. 3\n %of our paper, we used:\n % alpha=-2: T = 0.003; Ntraps = 7;\n % alpha=-2.5: T = 0.003; Ntraps = 8;\n % alpha=-3: T = 0.003; Ntraps = 9;\n %Other good values for different alphas:\n % alpha=-1: T = 0.0025; Ntraps = 6;\n % alpha=-1.25:T = 0.0025; Ntraps = 6;\n % alpha=-1.5: T = 0.0025; Ntraps = 6;\n % alpha=-1.75:T = 0.0025; Ntraps = 7;\n % alpha=-2.25:T = 0.003; Ntraps = 7;\n % alpha=-2.75:T = 0.003; Ntraps = 8;\n % alpha=-3.25:T = 0.003; Ntraps = 10;\n % alpha=-3.5: T = 0.003; Ntraps = 10;\n\nkp.pw = 9999; %s; pulse duration. Will be filled once the\n %pulse is designed (9999: not known yet)\nkp.npnts = 9999; %Number of pulse samples. Will be filled once\n %the pulse is designed (9999: not known yet)\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/mri-rf/yip-spsp/example_spsp_param1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3779690820792141}} {"text": "% function [ opti_cost ] = get_the_optimal( cutCostsFile, cut_num )\nfunction [ opti_cuts ] = get_the_optimal( cutCostsFile, cut_num )\n\n%GET_THE_OPTIMAL Summary of this function goes here\n% Detailed explanation goes here\n\n file_t = fopen(cutCostsFile);\n cut_costs = fscanf(file_t, '%d');\n fclose(file_t);\n \n \n cut_costs_sorted = sort(cut_costs);\n \n opti_cost = sum(cut_costs_sorted(1:cut_num-1));\n \n \n \n \n % get the optimal cuts, sequential~!\n cut_costs_sorted_top = cut_costs_sorted(1:cut_num-1);\n \n for i=1:(cut_num-1)\n \n cut_value = cut_costs_sorted_top(i); \n \n opti_cuts(i,:) = find(cut_costs == cut_value);\n \n end\nend\n\n", "meta": {"author": "HuanYin94", "repo": "map_compression", "sha": "3c126a5cc832bf51f0c313c6ad8aa58a2930312c", "save_path": "github-repos/MATLAB/HuanYin94-map_compression", "path": "github-repos/MATLAB/HuanYin94-map_compression/map_compression-3c126a5cc832bf51f0c313c6ad8aa58a2930312c/gurobi/before/graph_cut/DP_cut/get_the_optimal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37796908207921404}} {"text": "% LEARNALGOKISSME Keep it simple and straightforward metric learning!\n%\n% LearnAlgoKISSME properties:\n% p - Parameter struct.\n% p.roccolor - default 'g'.\n% p.pmetric - Backproject on the cone of p.s.d. matrices? Default 1.\n% p.lambda - Influence of the dissimilar pairs. Range 0 to 1, default\n% 1.\n% s - struct to store the last result\n% available - if the LearnAlgoKISSME is ready\n%\n% LearnAlgoKISSME properties (Constant):\n% type - string identifier default 'kissme'\n%\n% LearnAlgoKISSME methods:\n% LearnAlgoKISSME - ctor.\n% learnPairwise - learn from pairwise equivalence labels\n% learn - learn with fully supervised data\n% dist - calculate distance between pairs of samples\n%\n% See also LearnAlgoLMNN,LearnAlgoITML,LearnAlgoLDML\n%\n% copyright by Martin Koestinger (2011)\n% Graz University of Technology\n% contact koestinger@icg.tugraz.at\n%\n% For more information, see the ICG Web site.\n%\nclassdef LearnAlgoKISSME < LearnAlgo\n \n properties \n p %parameters \n s %struct\n available %are we ready?\n end\n \n properties (Constant)\n type = 'kissme'\n end\n \n methods\n function obj = LearnAlgoKISSME(p) \n % obj = LearnAlgoKISSME(p) \n % Constructor\n %\n % parameters:\n % p - Parameter struct.\n % p.roccolor - default 'g'.\n % p.pmetric - Backproject on the cone of p.s.d. matrices? Default 1.\n % p.lambda - Influence of the dissimilar pairs. Range 0 to 1, default 1.\n %\n % return:\n % obj - object handle to instance of class LearnAlgoKISSME\n % \n if nargin < 1\n p = struct(); \n end\n \n if ~isfield(p,'lambda')\n p.lambda = 1;\n end\n \n if ~isfield(p,'roccolor')\n p.roccolor = 'g';\n end\n \n if ~isfield(p,'pmetric')\n p.pmetric = 1;\n end\n \n obj.p = p;\n check(obj);\n end\n \n function bool = check(obj)\n % bool = check(obj)\n % Checks if all dependencies are satisfied\n %\n bool = exist('SOPD') ~= 0; \n if ~bool\n className = class(obj);\n fprintf('Sorry %s not available\\n',className);\n end\n obj.available = bool;\n end\n \n function s = learnPairwise(obj,X,idxa,idxb,matches)\n % s = learnPairwise(obj,X,idxa,idxb,matches)\n % Learn from pairwise equivalence labels\n %\n % parameters:\n % obj - instance of class LearnAlgoKISSME\n % X - input matrix, each column is an input vector \n % [DxN*2]. N is the number of pairs. D is the feature \n % dimensionality\n % idxa - index of image A in X [1xN]\n % idxb - index of image B in X [1xN]\n % matches - matches defines if a pair is similar (1) or \n % dissimilar (0)\n %\n % return:\n % s - Result data struct\n % s.M - Trained quadratic distance metric\n % s.t - Training time in seconds\n % s.p - Used parameters, see LearnAlgoKISSME properties for details.s\n % s.learnAlgo - class handle to obj\n % s.roccolor - line color for ROC curve, default 'g'\n % \n if ~obj.available\n s = struct();\n return;\n end\n \n idxa = double(idxa);\n idxb = double(idxb);\n \n %--------------------------------------------------------------\n % KISS Metric Learning CORE ALGORITHM\n %\n \n tic;\n % Eqn. (12) - sum of outer products of pairwise differences (similar pairs)\n % normalized by the number of similar pairs.\n covMatches = SOPD(X,idxa(matches),idxb(matches)) / sum(matches);\n % Eqn. (13) - sum of outer products of pairwise differences (dissimilar pairs)\n % normalized by the number of dissimilar pairs.\n covNonMatches = SOPD(X,idxa(~matches),idxb(~matches)) / sum(~matches);\n t = toc;\n \n tic;\n % Eqn. (15-16)\n s.M = inv(covMatches) - obj.p.lambda * inv(covNonMatches); \n if obj.p.pmetric\n % to induce a valid pseudo metric we enforce that M is p.s.d.\n % by clipping the spectrum\n s.M = validateCovMatrix(s.M);\n end\n s.t = toc + t; \n \n %\n % END KISS Metric Learning CORE ALGORITHM\n %--------------------------------------------------------------\n \n s.learnAlgo = obj;\n s.roccolor = obj.p.roccolor;\n end\n \n function s = learn(obj,X,y)\n % not implemented yet, sorry.\n if ~obj.available\n s = struct();\n return;\n end\n \n s.roccolor = obj.p.roccolor;\n error('not implemented yet!');\n end\n \n function d = dist(obj, s, X, idxa,idxb)\n % d = dist(obj, s, X, idxa,idxb)\n % Calculate the distance between pairs of samples\n %\n % parameters:\n % obj - instance of class LearnAlgoKISSME\n % s - struct with member M, quadratic form\n % X - Input matrix (each column is an input vector)\n % idxa,idxb - idxa(c),idxb(c) index of images a,b, pair c in X\n % matches - matches(c) defines if pair c is similar (1) or dissimilar (0)\n %\n % return:\n % d - distance for each pair specified in idxa,idxb\n % \n d = cdistM(s.M,X,idxa,idxb); \n end\n end \nend\n\n", "meta": {"author": "zhunzhong07", "repo": "IDE-baseline-Market-1501", "sha": "8be027b5e45adce1d8ea381cc5a17ec20ed521e5", "save_path": "github-repos/MATLAB/zhunzhong07-IDE-baseline-Market-1501", "path": "github-repos/MATLAB/zhunzhong07-IDE-baseline-Market-1501/IDE-baseline-Market-1501-8be027b5e45adce1d8ea381cc5a17ec20ed521e5/market_evaluation/KISSME/toolbox/learnAlgos/LearnAlgoKISSME.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583376458153, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3778102281256862}} {"text": "%SimuNF_nl.m\n%tic\nfunction []=timecourse_VF(x0,i)\npara\ntf=1.5;\n[t1,y1]=ode_yu_VF(0,tf,[-x0(1),-x0(2),0,0,0,0,0,0]',dt);\n[t2,y2]=ode_yu_VF(0,tf,[-x0(1),-x0(2),0,0,0,0,0,0]',dt);\n[t3,y3]=ode_yu_VF(0,tf,[-x0(1),-x0(2),0,0,0,0,0,0]',dt);\n[t4,y4]=ode_yu_VF(0,tf,[-x0(1),-x0(2),0,0,0,0,0,0]',dt);\n[t5,y5]=ode_yu_VF(0,tf,[-x0(1),-x0(2),0,0,0,0,0,0]',dt);\n\n\n%%\nfigure(1)\nsubplot(222)\n%\n% hold on\n% draw_bg\n% line([-0.03 -0.03],[-0.2 0.01], 'linewidth', 2, 'color', [0,0,0])\n% line([ 0.03 0.03],[-0.2 0.01], 'linewidth', 2, 'color', [0,0,0])\nplot(y1(:,1)+x0(1),y1(:,2)+x0(2), 'b-', ...\n y2(:,1)+x0(1),y2(:,2)+x0(2), 'b-', ...\n y3(:,1)+x0(1),y3(:,2)+x0(2), 'b-', ...\n y4(:,1)+x0(1),y4(:,2)+x0(2), 'b-', ...\n y5(:,1)+x0(1),y5(:,2)+x0(2), 'b-', ...\n 'Linewidth', 1.2)\n\n\nfigure(2)\nsubplot(8,3,(i-1)*3+2)\nplot(t1,sqrt(y1(:,3).^2+y1(:,4).^2), 'b-', ...\n t2,sqrt(y2(:,3).^2+y2(:,4).^2), 'b-', ...\n t3,sqrt(y3(:,3).^2+y3(:,4).^2), 'b-', ...\n t4,sqrt(y4(:,3).^2+y4(:,4).^2), 'b-', ...\n t5,sqrt(y5(:,3).^2+y5(:,4).^2), 'b-', ...\n 'Linewidth', 1.2)\n\nfigure(1)\n%hold on\n%hold off\n%axis equal\n%axis([-0.075 0.075 -0.3 .075])\n\n\nend", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/Chapter7_Example2/old/timecourse_VF.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3778102212788976}} {"text": "function [idname,nodes,id]=eval(Tree,X,subtrees)\n%EVAL Compute fitted value for decision tree applied to data.\n% YFIT = EVAL(T,X) takes a classification or regression tree T and a\n% matrix X of predictor values, and produces a vector YFIT of predicted\n% response values. For a regression tree, YFIT(J) is the fitted response\n% value for a point having the predictor values X(J,:). For a\n% classification tree, YFIT(J) is the class into which the tree would\n% assign the point with data X(J,:).\n%\n% YFIT = EVAL(T,X,SUBTREES) takes an additional vector SUBTREES of\n% pruning levels, with 0 representing the full, unpruned tree. T must\n% include a pruning sequence as created by the CLASSREGTREE constructor or\n% the PRUNE method. If SUBTREES has K elements and X has N rows, then the\n% output YFIT is an N-by-K matrix, with the Ith column containing the\n% fitted values produced by the SUBTREES(I) subtree. SUBTREES must be\n% sorted in ascending order. (To compute fitted values for a tree that is\n% not part of the optimal pruning sequence, first use PRUNE to prune the\n% tree.)\n%\n% [YFIT,NODE] = EVAL(...) also returns an array NODE of the same size\n% as YFIT containing the node number assigned to each row of X. The\n% VIEW method can display the node numbers for any node you select.\n%\n% [YFIT,NODE,CNUM] = EVAL(...) is valid only for classification trees.\n% It returns a vector CNUM containing the predicted class numbers.\n%\n% NaN values in the X matrix are treated as missing. If the EVAL method\n% encounters a missing value when it attempts to evaluate the split rule\n% at a branch node, it cannot determine whether to proceed to the left or\n% right child node. Instead, it sets the corresponding fitted value\n% equal to the fitted value assigned to the branch node.\n%\n% For a tree T, the syntax [...]=T(X) or [...]=T(X,SUBTREES) also invokes\n% the EVAL method.\n%\n% Example: Find predicted classifications for Fisher's iris data.\n% load fisheriris;\n% t = classregtree(meas, species); % create decision tree\n% sfit = eval(t,meas); % find assigned class names\n% mean(strcmp(sfit,species)) % proportion correctly classified\n%\n% See also CLASSREGTREE, CLASSREGTREE/PRUNE, CLASSREGTREE/VIEW, CLASSREGTREE/TEST.\n\n% Copyright 2006-2007 The MathWorks, Inc. \n% $Revision: 1.1.6.5 $ $Date: 2009/11/05 17:04:07 $\n\nif ~isfloat(X)\n error('stats:classregtree:eval:BadData',...\n 'X must be a matrix of floating-point numbers.');\nend\n\n[nr,nc] = size(X);\nif nc~=Tree.npred\n error('stats:treeval:BadInput',...\n 'The X matrix must have %d columns.',Tree.npred);\nend\n\nif nargin<3\n subtrees = 0;\nelseif numel(subtrees)>length(subtrees)\n error('stats:treeval:BadSubtrees','SUBTREES must be a vector.');\nelseif any(diff(subtrees)<0)\n error('stats:treeval:BadSubtrees','SUBTREES must be sorted.');\nend\n\nif ~isempty(Tree.prunelist)\n prunelist = Tree.prunelist;\nelseif ~isequal(subtrees,0)\n Tree = prune(Tree);\nelse\n prunelist = Inf(size(Tree.node));\nend\nif isequal(Tree.method,'classification') || ~isempty(Tree.catcols)\n nodes = classregtreeEval(X',Tree.node,Tree.var,Tree.cut,Tree.children,...\n prunelist,subtrees);\n nodes = nodes';\n id = Tree.class(nodes);\n if nr==1\n id = id(:)';\n end\n\n if isequal(Tree.method,'classification')\n idname = Tree.classname(id);\n if nr==1\n idname = idname(:)';\n end\n else\n idname = id;\n end\nelse\n [idname, nodes] = regtreeEval(X',Tree.node, Tree.var, Tree.cut, Tree.children,...\n Tree.reg_ws, Tree.reg_pvars);\nend", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/rigor/rigor_src/extern_src/fuxin_lib_src/@classregtree_fuxin/eval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3778102212788976}} {"text": "function test_bug2820\n\n% WALLTIME 00:10:00\n% MEM 3gb\n% DEPENDENCY\n\n% it should be is2Dana && ~is2Dfun, so start with a surface\n[ftver, ftpath] = ft_version;\nsurffile = fullfile(ftpath, 'template', 'anatomy', 'surface_pial_both.mat');\nanatomical = ft_read_headshape(surffile);\n\nfunctional = [];\nfunctional.dim = [256 256 256];\nfunctional.transform = eye(4);\nfunctional.transform(1,4) = -128.5; % place the center of the cube in the origin\nfunctional.transform(2,4) = -128.5;\nfunctional.transform(3,4) = -128.5;\nfunctional.pow = randn(functional.dim);\n\ncfg = [];\ncfg.funparameter = 'pow';\nft_sourceplot(cfg, functional);\n\n% see whether they fit\nft_determine_coordsys(functional, 'interactive', 'no');\nft_plot_mesh(anatomical, 'edgecolor', 'none', 'facecolor', 'skin');\ncamlight\n\ncfg = [];\ncfg.parameter = 'pow';\n% cfg.interpmethod default does not cause aproblem\ninterp1 = ft_sourceinterpolate(cfg, functional, anatomical);\n\ncfg = [];\ncfg.parameter = 'pow';\ncfg.interpmethod = 'project'; % needed to get to the bug\ninterp2 = ft_sourceinterpolate(cfg, functional, anatomical);\n\n%% the figures should be specled green (on MATLAB 2014b and later)\nfigure; ft_plot_mesh(interp1, 'vertexcolor', interp1.pow, 'edgecolor', 'none'); camlight; colorbar\nfigure; ft_plot_mesh(interp2, 'vertexcolor', interp2.pow, 'edgecolor', 'none'); camlight; colorbar\n\n%% use the high-level functionality to get the same figure, this will call ft_sourceinterpolate\ncfg = [];\ncfg.surffile = surffile;\ncfg.funparameter = 'pow';\ncfg.method = 'surface';\nft_sourceplot(cfg, functional);\n\n%% another approach to use the high-level functionality to get the same figure, again calling ft_sourceinterpolate internally\ncfg = [];\ncfg.funparameter = 'pow';\ncfg.method = 'surface';\nft_sourceplot(cfg, functional, anatomical);\n\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug2820.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3778102212788976}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the HEART-TUBE-EXAMPLE geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction HeartTube()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 128; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nNy = 128; % # of Eulerian Grid Pts. in y-Direction (MUST BE EVEN!!!)\nLx = 5.0; % Length of Eulerian Grid in x-Direction\nLy = 5.0; % Length of Eulerian Grid in y-Direction\ndx = Lx/Nx; % Eulerian Grid-step in x-direction\ndy = Ly/Ny; % Eulerian Grid-step in y-direction\n\n\n% Immersed Structure Geometric / Dynamic Parameters %\nds = Lx/(2*Nx); % Lagrangian Spacing\nd = 1.0; % Diameter of the tube\nL = 3.0; % Length of the heart-tube\nstruct_name = 'HeartTube'; % Name for .vertex, .spring, etc files.\n\n\n% Call function to construct geometry\n[xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(ds,L,d,Lx,Ly);\nyLag = yLag - 1.25;\n\n\nfprintf('\\nUSER-INPUT FOR MODEL IN FITZHUGH_NAGUMO_1d:\\n');\nfprintf('numPtsAlongTube = %d\\n',length(xLag)/2);\nfprintf('ind_Start = %d\\n',length(xLag)-2+1);\nfprintf('ind_End = %d\\n\\n',length(xLag)-2+length(xLag)/2)\n\n% Plot Geometry to test\nplot(xLag(1:end/2),yLag(1:end/2),'r-'); hold on;\nplot(xLag(end/2+1:end),yLag(end/2+1:end),'r-'); hold on;\nplot(xLag,yLag,'*'); hold on;\nxlabel('x'); ylabel('y');\naxis([0 Lx 0 Ly]);\n\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n\n% Prints .spring file!\nk_Spring = 1e7;\nprint_Lagrangian_Springs(xLag,k_Spring,ds,d,struct_name);\n\n% Prints .muscle file!\n%LFO = d; SK = 0.3; a = 0.25; b = 4.0; Fmax = 1e5;\n%print_Lagrangian_Muscles(xLag,LFO,SK,a,b,Fmax,struct_name)\n\n\n% Prints .beam file!\nk_Beam = 2.5e6; C = 0.0;\nprint_Lagrangian_Beams(xLag,k_Beam,C,struct_name);\n\n\n% Prints .target file!\nk_Target = 1e7;\nprint_Lagrangian_Target_Pts(xLag,k_Target,struct_name);\n\n% Prints .concentration file!\nkDiffusion = 5e-5;\nConcentration = give_Me_Initial_Concentration(Lx,Ly/2,Nx,Ny/2,dx,dy);\nprint_Concentration_Info(Nx,Ny/2,Concentration,kDiffusion,struct_name);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints Vertex points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag); % Total Number of Lagrangian Pts\n num = 1; % Number of target points on each end\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', 4*num );\n\n %Loops over all Lagrangian Pts.\n %for s = 1:N\n \n \n %Left Bottom Target Points\n for s=1:num\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n %Right Bottom Target Points\n for s=(N/2)-(num-1):N/2\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n %Left Top Target Points\n for s=(N/2+1):(N/2+1)+(num-1)\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n %Right Top Target Points\n for s=N-(num-1):N\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n \n\n\n %end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called rubberband.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N - 4 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N/2-1\n % Bottom of tube\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n elseif ( ( s >= N/2+2 ) && ( s <= N-1 ) )\n % Top of Tube\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n end\n end\n fclose(beam_fid); \n \n \n \n\n \n \n\n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints MUSCLE points to a file called \"struct_name\".muscle\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Muscles(xLag,LFO,SK,a,b,Fmax,struct_name)\n\n N = length(xLag); %Number of Lagrangian Pts. Total\n\n muscle_fid = fopen([struct_name '.muscle'], 'w');\n\n fprintf(muscle_fid, '%d\\n', N/2-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %MUSCLES BETWEEN VERTICES\n for s = 2:N/2-1\n fprintf(muscle_fid, '%d %d %1.16e %1.16e %1.16e %1.16e %1.16e\\n', s, s+N/2, LFO, SK, a,b,Fmax); \n end\n fclose(muscle_fid);\n \n \n \n \n \n \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called rubberband.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,k_Spring,ds_Rest,d,struct_name)\n\n N = length(xLag); %Number of Lagrangian Pts. Total\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N-2 + N/2 ); %(N-2) btwn adajcent Lag. Pts, (N/2) btwn opposite sides of HT\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N/2 \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n elseif ( ( s >= N/2+1 ) && ( s < N ) )\n %Case s=N\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n end\n end\n \n for s = 1:N/2\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+N/2, k_Spring/1e10, 0.0); \n end\n fclose(spring_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(ds,L,d,Lx,Ly)\n\n% The immsersed structure is a straight heart-tube %\nx1 = [-L/2:ds:L/2 L/2]; % Constructs x-Values for bottom of tube\ny1 = -d/2*ones(1,length(x1)); % Constructs y-Values for bottom of tube\n\nx2 = x1; % Constructs x-Values for top of tube\ny2 = -y1; % Constructs y-Values for top of tube\n\nx1 = x1 + Lx/2; % Shift into correct box\nx2 = x2 + Lx/2; % Shift into correct box\n\ny1 = y1 + Ly/2; % Shift into correct box\ny2 = y2 + Ly/2; % Shift into correct box\n\nxLag = [x1 x2];\nyLag = [y1 y2];\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints CONCENTRATION INFO to file called\n% 'struct_name'.concentration\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \nfunction print_Concentration_Info(Nx,Ny,C,kDiffusion,struct_name)\n\n con_fid = fopen([struct_name '.concentration'], 'w');\n \n fprintf(con_fid, '%d\\n', kDiffusion );\n\n for i=1:Ny\n for j=1:Nx\n fprintf(con_fid, '%1.16e ', C(i,j) );\n end\n fprintf(con_fid,'\\n');\n end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: gives initial concentration gradient inside channel\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction C = give_Me_Initial_Concentration(Lx,Ly,Nx,Ny,dx,dy)\n\n%WHERE OUTER TUBE LIES\n%xMin = 0.15; xMax = 0.45;\n%yMin = 0.85; yMax = 1.15;\n\nxMin = 1.6; xMax = 2.2;\nyMin = 0.8; yMax = 1.7;\n\nxMid = (xMin+xMax)/2;\nyMid = (yMin+yMax)/2;\n\nxDiff = (xMax-xMin)/2;\nyDiff = (yMax-yMin)/2;\n\nx = 0:dx:Lx;\ny = 0:dy:Ly;\ninds = give_Me_Indices_To_Apply_Force(x,y,xMin,xMax,yMin,yMax);\n\nC = zeros(Ny,Nx);\nfor i=1:length( inds(:,1) )\n xInd = inds(i,1);\n yInd = inds(i,2);\n xPt = x(xInd);\n yPt = y(yInd);\n %C(xInd,yInd ) = (-0.5/yDiff^2)*( (yPt-yMid) - yDiff )*( (yPt-yMid) + yDiff ) + (-0.5/xDiff^2)*( (xPt-xMid) - xDiff )*( (xPt-xMid) + xDiff ); %1.0;\n C(yInd,xInd ) = (-1.0/xDiff^2)*( (xPt-xMid) - xDiff )*( (xPt-xMid) + xDiff ); %1.0;\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: computes indices for placing initial concentration \n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction inds = give_Me_Indices_To_Apply_Force(x,y,xMin,xMax,yMin,yMax)\n\nj=1; noMinYet = 1;\nwhile noMinYet\n \n if ( x(j) >= xMin )\n iX_min = j;\n noMinYet = 0;\n end\n j=j+1;\nend\n\nj=length(x); noMaxYet = 1;\nwhile noMaxYet\n \n if ( x(j) <= xMax )\n iX_max = j;\n noMaxYet = 0;\n end\n j=j-1;\nend\n\nj=1; noMinYet = 1;\nwhile noMinYet\n \n if ( y(j) >= yMin )\n iY_min = j;\n noMinYet = 0;\n end\n j=j+1;\nend\n\nj=length(y); noMaxYet = 1;\nwhile noMaxYet\n \n if ( y(j) <= yMax )\n iY_max = j;\n noMaxYet = 0;\n end\n j=j-1;\nend\n\niX_Vec = iX_min:1:iX_max;\niY_Vec = iY_min:1:iY_max;\n\nn = 1;\nfor i=1:length(iX_Vec)\n for j=1:length(iY_Vec)\n inds(n,1) = iX_Vec(i);\n inds(n,2) = iY_Vec(j);\n n = n+1; \n end\nend\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_HeartTube/128x128_Electromechanical_Pumping_w_Ca_Dynamics/HeartTube.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3778102212788976}} {"text": "function varargout = root(F)\n%ROOT Find one common zero of a CHEBFUN3V object.\n% R = ROOT(F) finds one common zero of the three CHEBFUN3 objects F(1),\n% F(2) and F(3) in their domain of definition under the assumption that\n% the solution set is zero-dimensional. R is a row vector storing the\n% x-value, y-value, and z-value of the common root.\n% This function is also called by the syntax ROOT(F, G, H), where F, G and\n% H are CHEBFUN3 objects.\n%\n% [x, y, z] = ROOT(F) returns the x-value, y-value and z-value as \n% three separate entries.\n%\n% See also CHEBFUN3/ROOT and CHEBFUN2/ROOTS.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Empty check:\nif ( isempty(F) )\n varargout = {[]};\n return\nend\n\nf = F.components{1};\ng = F.components{2};\nh = F.components{3};\n\nr = root(f, g, h);\n\nif ( nargout <= 1 )\n varargout{1} = r;\nelse\n varargout = {r(1), r(2), r(3)};\nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3v/root.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.3777868846964938}} {"text": "function inspect_issue509\n\n% WALLTIME 00:10:00\n% MEM 1gb\n% DEPENDENCY\n\n%%\n% all defaults, should resemble design from Stefan\n\ncfg = [];\ndata = ft_steadystatesimulation(cfg);\n\ncfg = [];\ncfg.viewmode = 'vertical';\nft_databrowser(cfg, data);\n\n%%\n% the following is an attempt to resemble the design from Cassia\n\ncfg = [];\ncfg.ntrials = 120;\ncfg.level1.condition = [1 2]; % attend low/high\ncfg.level1.gain = [1.1 1.2];\ncfg.level2.condition = [1 2]; % sequence goes up/down\ncfg.level2.gain = [1.1 1.2];\ncfg.level3.condition = [1 2 3]; % note 1 2 3\ncfg.level3.gain = [1.1 1.2 1.3];\ncfg.stimulus1.mode = 'periodic';\ncfg.stimulus1.isi = 1/20;\ncfg.baseline = 0.1;\ncfg.stimulus1.onset = 0;\ncfg.stimulus1.onsetjitter = 0;\ncfg.stimulus2.mode = 'off';\n\ndata = ft_steadystatesimulation(cfg);\n\ncfg = [];\ncfg.viewmode = 'vertical';\ncfg.channel = [2 3];\nft_databrowser(cfg, data);\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/inspect_issue509.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.37778687644168024}} {"text": "function [] = tet_mesh_boundary(mesh_root)\n%%\n% tet_mesh_boundary - a function that reads in a tet_mesh along with neighbor\n% information and produces lists of boundary nodes and \n% boundary edges. The tet_mesh can correspond to either \n% linear (4 vertices with right-hand orientation) or \n% quadratic (4 vertices + 6 midside nodes). In the\n% latter case, we assume the following ordering:\n% 1 2 3 4 (1+2) (2+3) (1+3) (2+4) (3+4) (1+4).\n%\n%%\n\n\n e_conn = load(strcat(mesh_root,'.elem'));\n tet_adj = load(strcat(mesh_root,'.neighbors'));\n\n [n_elem,n_dof] = size(e_conn);\n\n\n [ boundary_faces ] = define_boundary_faces( e_conn, tet_adj );\n\n\n % preallocate storage for boundary_nodes array\n [ n_faces, npf ] = size( boundary_faces );\n\n \n boundary_nodes = zeros( 1,n_faces*npf );\n boundary_nodes_counter = 0;\n\n for n_f=1:n_faces\n boundary_nodes( boundary_nodes_counter+1:boundary_nodes_counter+npf ) =...\n boundary_faces( n_f, 1:npf );\n boundary_nodes_counter = boundary_nodes_counter+npf;\n end\n\n [ boundary_nodes ] = unique( boundary_nodes );\n\n filename = strcat(mesh_root,'.boundary');\n [fid] = fopen(filename,'w');\n\n print_str = ' %10d\\n ';\n\n fprintf(fid,print_str,boundary_nodes);\n\n fclose(fid);\n\nend % function tet_mesh_boundary\n \n\n\n\nfunction [ boundary_faces ] = define_boundary_faces( e_conn, tet_adj )\n%%\n% define_boundary_faces - a function that loops over elements, finds\n% boundary faces from -1 entries to the\n% adjacency array and stores information\n%--------------------------------------------------------------------------\n [n_elem,n_dof] = size(e_conn);\n\n % Estimate the number of boundary faces for preallocation\n % (these will always be unique)\n boundary_faces = zeros(n_elem,1+n_dof/2);\n boundary_faces_counter = 0;\n\n if ( n_dof==4 )\n %----------------------------------------------------------------------\n % Case: Linear Tetrahedron (4 vertices)\n %----------------------------------------------------------------------\n for n_el=1:n_elem\n % A 1-FACE\n if ( tet_adj(n_el,1) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 2) e_conn(n_el, 3) e_conn(n_el, 4) ];\n end\n\n\n % A 2-FACE\n if ( tet_adj(n_el,2) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 3) e_conn(n_el, 1) e_conn(n_el, 4) ];\n end\n\n\n % A 3-FACE\n if ( tet_adj(n_el,3) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 1) e_conn(n_el, 2) e_conn(n_el, 4) ];\n end\n\n\n % A 4-FACE\n if ( tet_adj(n_el,4) < 0 )\n boundary_face_counter = boundary_face_counter+1;\n boundary_face(boundary_face_counter,:) = ...\n [ e_conn(n_el, 1) e_conn(n_el, 3) e_conn(n_el, 2) ];\n end\n\n end % element loop\n\n % end linear tetrahedron case\n\n elseif ( n_dof==10 )\n %----------------------------------------------------------------------\n % Case: Quadratic Tetrahedron (10 noded)\n %----------------------------------------------------------------------\n for n_el=1:n_elem\n % A 1-FACE\n if ( tet_adj(n_el,1) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 2) e_conn(n_el, 3) e_conn(n_el, 4) ...\n e_conn(n_el, 6) e_conn(n_el, 9) e_conn(n_el, 8) ];\n end\n\n\n % A 2-FACE\n if ( tet_adj(n_el,2) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 3) e_conn(n_el, 1) e_conn(n_el, 4) ...\n e_conn(n_el, 7) e_conn(n_el,10) e_conn(n_el, 9) ];\n end\n\n\n % A 3-FACE\n if ( tet_adj(n_el,3) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 1) e_conn(n_el, 2) e_conn(n_el, 4) ...\n e_conn(n_el, 5) e_conn(n_el, 8) e_conn(n_el,10) ];\n end\n\n\n % A 4-FACE\n if ( tet_adj(n_el,4) < 0 )\n boundary_faces_counter = boundary_faces_counter+1;\n boundary_faces(boundary_faces_counter,:) = ...\n [ e_conn(n_el, 1) e_conn(n_el, 3) e_conn(n_el, 2) ...\n e_conn(n_el, 7) e_conn(n_el, 6) e_conn(n_el, 5) ];\n end\n\n end % element loop\n\n % end quadratic tetrahedron case\n\n else\n\n error('tet_mesh_boundary: the routine only accounts for 4 noded\\n')\n error('of 10 noded tetrahedra\\n')\n\n end\n\n boundary_faces = boundary_faces(1:boundary_faces_counter,:);\n\nend % function define_boundary_faces\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/ns3d_fem/tet_mesh_boundary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.37778687644168024}} {"text": "function movePTPEllipse(tKuka,c,dir,ratio,theta,velocity,accel,TefTool)\n%% This funciton is used to\n% Move end-effector of the robot on an ellipse.\n\n%% Syntax:\n% movePTPEllipse(tKuka,c,dir,ratio,TefTool)\n\n%% Arreguments:\n% tKuka: TCP/IP connection obejct.\n% c: 3x1 vector, is a vector defining the displacment of the the center\n% point of the ellipse in relation to the start point of the ellipse,\n% position units in (mm).\n% dir: the direction vector of the (a) axis of the ellipse.\n% ratio: the radious ratio (a/b) of the ellipse.\n% theta: is the angle of the ellipe part , for drawing a complete\n% ellipse this angle is equal to 2*pi.\n% TefTool: 4X4 Transform matrix of the end-efector in the reference frame\n% of the flange of the KUKA iiwa, position units in (mm).\n% accel: is the acceleration (mm/sec2).\n% velocity: is the motion velocity (mm/sec).\n \n% Copy right: Mohammad SAFEEA\n% 12th-Nov-2017\n\n%% Convert inputs to a column vectors\nc=colVec(c);\ndir=colVec(dir);\nratio=colVec(ratio);\ntheta=colVec(theta);\nvelocity=colVec(velocity);\naccel=colVec(accel);\n\n%% Check input variables\nif(size(c,1)~=3)\nfprintf('Error: the vector (c) shall be a 3x1 vector \\n');\nreturn;\nend\n\nif(size(dir,1)~=3)\nfprintf('Error: the vector (dir) shall be a 3x1 vector \\n');\nreturn;\nend\n\nif(size(ratio,1)~=1)\nfprintf('Error: the ratio shall be a scalar \\n');\nreturn;\nend\n\nif(size(theta,1)~=1)\nfprintf('Error: the variable (theta) shall be a scalar \\n');\nreturn;\nend\n\nif(size(TefTool,1)~=4)\nfprintf('Error: the transform matrix (TefTool) shall be 4x4 \\n');\nreturn;\nend\n\nif(size(TefTool,2)~=4)\nfprintf('Error: the transform matrix (TefTool) shall be 4x4 \\n');\nreturn;\nend\n\nif(size(velocity,1)~=1)\nfprintf('Error: the velocity on the path shall be a scalar \\n');\nreturn;\nend\n\nif(size(accel,1)~=1)\nfprintf('Error: the acceleration on the path shall be a scalar \\n');\nreturn;\nend\n\n%% Convert the units to (meter)\nunitConverter=1000;\nc=c/unitConverter;\nvelocity=velocity/unitConverter;\naccel=accel/unitConverter;\nTefTool(1:3,4)=TefTool(1:3,4)/unitConverter;\n\n%% start the direct servo\n realTime_startDirectServoJoints(tKuka);\n \n%% get current joints angles of robot\n jPos = getJointsPos( tKuka );\n \n%% Calculate the current position of TCP point of the robot (p0)\n qs=zeros(7,1);\nfor i=1:7\n qs(i)=jPos{i};\nend\n T0=directKinematics(qs,TefTool); % TCP point transformation matrix\n p0=T0(1:3,4); % Current position of TCP point of the robot\n Tt=T0;\n\n%% Calculate the parameters of the ellipse, \np=p0; % this is the starting point of the ellipse\nc=c+p; % calculate the center coordinates from the center displacment vector\n[R,theta0,a,b,c,errorFlag]=getEllipseParameters(p,c,ratio,dir);\nif errorFlag==true % this happens when the start point is on the (dir) vector direction.\n % in such case the ellipse plane can not be specified in space.\n realTime_stopDirectServoJoints(tKuka);\n beep;\n fprintf('Error executing the ellipse function:\\n');\n fprintf('Starting point of the ellipse shall not be on the line aligned with the (dir) vector and passing from the center (c)\\n');\n return;\nend\n\n \n%% Get the length of the ellipse arc as a function of the parametric angle (theta)\ntheta1=theta0+theta;\n[ thetaVec,sVec ] = getEllipseLengthVector( a,b, theta0,theta1 );\nsizesVec=max(size(sVec));\nL=sVec(end); % L is the length of the elliptic curve\n\n%% Calculate the times:\n[t0,t1,t2]=calculateInterpolationTimes(L,velocity,accel);\n\n%% Joint space control\n\n [Ttemp,J]=directKinematics(qs,TefTool); \n vec=Ttemp(1:3,4); \n\n\n \n%% dls solver parameters \n numberOfIterationForSolver=100;\n lambda=0.5;\n TefTool=eye(4);\n \n sCoordinate=0;\n interpolationCounter=1;\n thetaVar=theta0;\n\n%% start of time\n dateVector0=datevec(now);\n time0=dateVector0(6)+dateVector0(5)*60+dateVector0(4)*60*60; % calculate time at this instant\nwhile true\n \n % Calculate the elapsed time\n dateVector=datevec(now);\n timeNow=dateVector(6)+dateVector(5)*60+dateVector(4)*60*60; % calculate time at this instant\n deltaT=timeNow-time0; % elapsed is zero at first excution\n\n % calculate position of servo point\n if deltaTt2\n break;\n end\n%% Interpolate theta from the sVec,thetaVec\n for counter=interpolationCounter:(sizesVec-1)\n if(sCoordinate>sVec(counter))\n tetaRange=thetaVec(counter+1)-thetaVec(counter);\n sRange=sVec(counter+1)-sVec(counter);\n thetaVar=(sCoordinate-sVec(counter))...\n *tetaRange/sRange+thetaVec(counter);\n interpolationCounter=counter;\n end\n end\n \n pPrime=R*ellipseParametricFunction( a,b,thetaVar );\n p=c+pPrime;\n \n % calculate target transform\n Tt(1:3,4)=p;\n\n [ qs ] = kukaDLSSolver( qs, Tt, TefTool,numberOfIterationForSolver,lambda );\n \n for i=1:7\n jPos{i}=qs(i);\n end\n \n\t%% Send joint positions to robot\n\tsendJointsPositions( tKuka,jPos);\n\nend\n\n % Stop the reltime motion\n realTime_stopDirectServoJoints(tKuka);\n \n\nend\n\nfunction [R,theta0,a,b,c,errorFlag]=getEllipseParameters(p,c,ratio,dir)\n\n%% About\n% This function returns the parameters of the ellipse\n\n%% Arreguments:\n% p: the starting point of the ellipse\n% c: the center of the ellipse\n% ratio: the ratio (a/b) of the ellipse\n% dir: direction of the \n\n\n%% Return values:\n% R, the rotation matrix from the ellipse frame to the base frame of the\n% robot\n% theta0: the starting angle of the ellipse (given by the parametric equation of the ellipse)\n% a,b: the big and the small radious of the ellipse\n% c: is the center of the ellipse\n% error flag: returns true if an error happens, this error is when the\n% vector (p-c) is coinsident with the vector (dir).\n\n\np=colVec(p);\nc=colVec(c);\ndir=colVec(dir);\n\n% X dirction vector\ni=dir/norm(dir);\n\nu=p-c;\n% \nk=cross(u,i);\nnormk=norm(k);\n\nif(normk==0)\n errorFlag=true;\nelse\n errorFlag=false;\nend\n\nk=k/norm(k);\nj=cross(k,i);\n\n% rotation matrix from ellipse frame to base frame\nR=[i,j,k];\n% calculate a,b minimum,maximum radious of the ellipse\nx=u'*i; % x coordinate of the starting point of the ellipse in the ellipse frame\ny=u'*j; % y coordinate of the starting point of the ellipse in the ellipse frame\na=(x*x+y*y/(ratio*ratio))^0.5;\nb=ratio*a;\n% calculate theta0, begining angle of the ellipse\ntheta0=atan2(y,x);\n\nend\n\n\nfunction y=colVec(x)\n if size(x,2)==1\n y=x;\n else\n y=x';\n end\nend\n\nfunction [ thetaVec,sVec ] = getEllipseLengthVector( a,b, theta0,theta1 )\n%% About:\n% This function is used to return the length of the ellipse as a function\n% of the angle theta.\n\n%% Inputs:\n% theta0, theta1: start/end angle of the arc of the ellipse (from the parametric equation of the ellipse)\n% a,b: the big and the small radious of the ellipse.\n\nthetaSpan = [theta0 theta1];\ns0 = 0;\nopts = odeset('RelTol',1e-2,'AbsTol',1e-4);\n[thetaVec,sVec] = ode45(@(theta,s) ((a*a*sin(theta)*sin(theta)+b*b*cos(theta)*cos(theta))^0.5), thetaSpan, s0,opts);\n\nend\n\nfunction [ vec ] = ellipseParametricFunction( a,b,theta )\n%% About:\n% Calculate the X and Y coordinates of the ellipse point corrsponding to\n% angle (theta) from the parametric equation\n\n%% inputs:\n% theta: angle of point on the ellipse (from the parametric equation of the ellipse)\n% a,b: the big and the small radious of the ellipse\n\n%% Return value:\n% The return value is a column vector, vec=[x;y;0] where:\n% x: the x coordiante of the point on the ellipse correspodning to angle\n% (theta) as described in the frame of the ellipse\n% y: the y coordiante of the point on the ellipse correspodning to angle\n% (theta) as described in the frame of the ellipse\n\nx=a*cos(theta);\ny=b*sin(theta);\nvec=[x;y;0];\n\nend\n\nfunction [t0,t1,t2]=calculateInterpolationTimes(L,v,a)\n%% About:\n% calculates the times of the acceleration, stable motion, deceleration\n\n%% Arreguments:\n% L: length of the curve (mm).\n% v: linear velocity of eef on the the curve (mm/sec).\n% a: linear acceleration of eef on the the curve (mm/sec2).\n\n%% Return values:\n% t0; time for acceleration.\n% t1: time for acceleration, constant velocity.\n% t2: time for acceleration, constant velocity and for deceleration\n\ntaw=v/a;\n\nif(L>a*taw*taw)\n t0=taw;\n deltat=(L-a*taw*taw)/v;\n t1=t0+deltat;\n t2=t1+taw;\nelse\n taw1=(L/a)^0.5;\n t0=taw1;\n t1=taw1;\n t2=2*taw1;\nend\n\nend\n\n\n", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/Matlab_client/movePTPEllipse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.37777508714825975}} {"text": "clear Models, clear MM\n\n% User-Specified Parameters\n% ===============================================================\n\n% Conditions and stimuli\n% ---------------------------------------------------------------\nGA.conditions = [1 2];\nGA.freqConditions = [.5 .5];\nGA.scanLength = 480; \nGA.ISI = 2; \nGA.TR = 2; \nGA.doepochs = 1; % build epochs instead of events\n\n% Hox optimization parameters\n% A hox gene is a master gene. These numbers control the stimulus\n% parameters, which can be optimized within the GA rather than\n% pre-specified.\n% Hox elements in this GA go in the stimlist as the first several elements.\n% hox sequence currently codes, in number order: \n% ISI TR cuelen cuerest stimlen stimrest resplen resprest (in s)\n% TR does not work right now\n% use zeros to use default rather than variable hox parameters\n% ---------------------------------------------------------------\nGA.numhox = 8;\nGA.hoxrange = [0 0; 1 1; 1 10; 1 10; 1 10; 1 10; 1 10; 1 10];\n % rows are each hox gene's allowable range, cols index hox elements\n\n% Genetic algorithm parameters\n% ---------------------------------------------------------------\nnmodels = 1; \nGA.cbalColinPowerWeights = [0 1 1 1];\t% 1 = cbal, 2 = eff, 3 = hrf shape, 4 = freq\nGA.numGenerations = 100000; \nGA.sizeGenerations = 20; \nGA.maxTime = 20;\t\t\t\t\t\t% max time to run in s, or Inf\nGA.alph = 2.1; \nGA.plotFlag = 0; \n\n% Filtering, counterbalancing, and design tolerance\n% ---------------------------------------------------------------\nGA.lowerLimit = []; \nGA.HPlength = [120]; \nGA.LPsmooth = []; \nGA.maxOrder = 1; \nGA.NumStimthresh = []; \nGA.maxCbalDevthresh = []; \t% counterbalancing deviation\nGA.maxFreqDevthresh = []; \n\n% Contrast setup\n% ---------------------------------------------------------------\nGA.contrasts = [-1 0 0 1 0 0; 0 -1 0 0 1 0; 1 -1 0 1 -1 0]; % three elements per condition (3 epochs)!\nGA.contrastweights = [1 1 1];\t % or predictor weights, if no contrasts\n\n\n% Autocorrelation and special options\n% ---------------------------------------------------------------\nAutocorrelationFileName = 'myscannerxc';\nGA.restlength = []; \nGA.restevery = []; \nGA.trans2switch = 0; \nGA.trans2block = 0; \nGA.dofirst = 0; \nGA.nonlinthreshold = [2]; \n\neval(['load ' AutocorrelationFileName]); \nGA.xc = myscannerxc;\n\n\n\n% =============================================\n% * vary by parameter - set this in this script\n% * if running multiple models, nmodels > 1\n% ---------------------------------------------\n\nvaryparam = 0;\nfieldname = 'alph';\t\t% or 'freqConditions(end), etc.\nincrementby = 0.3;\nincrementevery = 5;\t\t% every n models\ncontrastsofinterest = 1;% contrasts or predictors, if no cons specified\n\n% =============================================\n\n\nif varyparam\n\teval(['paramvalue = GA.' fieldname ';'])\n\tdisp(' ');disp('* *********************************************************************')\n\tdisp('* You have selected to vary a parameter across models in ga_gui_script')\n\tdisp(['* GA.' fieldname ' starting at ' num2str(paramvalue)]) \n\tdisp('* *********************************************************************')\nend\n\n\nfor nm = 1:nmodels\n\n eval(['diary model' num2str(nm) '.log'])\n disp(['Starting Model ' num2str(nm)])\n % freqConditions\n\n M = optimizeGA_epochs(GA);\n\n\n Models(:,nm) = M.stimlist;\n MM{nm} = M;\n save GAworkspace\n \n if varyparam\n \tif isfield(M,'consebeta'),\n\t\tFit(1,nm) = mean(M.consebeta(contrastsofinterest));\n\telse \n\t\tFit(1,nm) = mean(M.sebeta(contrastsofinterest));\n\tend\n \teval(['Fit(2,nm) = GA.' fieldname ';'])\n \tFC(nm,:) = GA.freqConditions;\n \tALPH(nm,:) = GA.alph;\n\tstr = ['if mod(nm,' num2str(incrementevery) ') == 0,GA.' fieldname ' = GA.' fieldname '+' num2str(incrementby) ';,end']\n \teval(str);\n\teval(['paramvalue = GA.' fieldname ';'])\n\tdisp('* *********************************************************************')\n\tdisp('* Varying parameter option on.')\n\tdisp(['* GA.' fieldname ' is now ' num2str(paramvalue)]) \n\tdisp('* *********************************************************************')\n end\n\n eval(['save model' num2str(nm) '_' M.date ' M'])\n save GAworkspace\n diary off\n fprintf('\\n')\nend\n\n\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/example_scripts/ga_text_script_epochs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.37777508088271}} {"text": "% Copyright (C) 2017-2018 Titus Cieslewski, RPG, University of Zurich, \n% Switzerland\n% You can contact the author at \n% Copyright (C) 2017-2018 Siddharth Choudhary, College of Computing,\n% Georgia Institute of Technology, Atlanta, GA, USA\n% Copyright (C) 2017-2018 Davide Scaramuzza, RPG, University of Zurich, \n% Switzerland\n%\n% This file is part of dslam_open.\n%\n% dslam_open is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% dslam_open is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with dslam_open. If not, see .\n\nfunction plotDataOverTime(data_increments, data_increment_times, vo_end_time)\n\nopt_traffic = ...\n cumsum(cellfun(@(x) sum(sum(x(:, :, 1))), data_increments));\nnetvlad_traffic = ...\n cumsum(cellfun(@(x) sum(sum(x(:, :, 2))), data_increments));\ngv_traffic = ...\n cumsum(cellfun(@(x) sum(sum(x(:, :, 3))), data_increments));\n\nopt_filter = [true; opt_traffic(2:end) ~= opt_traffic(1:end-1)];\n\nnv_filt = [true; netvlad_traffic(2:end) ~= netvlad_traffic(1:end-1)];\ngv_filt = [true; gv_traffic(2:end) ~= gv_traffic(1:end-1)];\n\nplot(data_increment_times(opt_filter), opt_traffic(opt_filter) / 1e6, '-x');\nhold on;\nplot(data_increment_times(nv_filt), netvlad_traffic(nv_filt) / 1e6);\nplot(data_increment_times(gv_filt), gv_traffic(gv_filt) / 1e6);\ny_lim = ylim;\nplot([vo_end_time vo_end_time], ylim, 'k--');\nset(gca, 'YLim', y_lim);\nhold off;\nlegend('DOpt', 'DVPR', 'RelPose', 'VO end time', 'Location', 'NorthWest');\ntitle('Total data transmission');\nxlabel('time [s]');\nylabel('total transmitted [MB]');\ngrid on;\n\nend\n\n", "meta": {"author": "uzh-rpg", "repo": "dslam_open", "sha": "3428893cffa5e832e8d51a6f3e18213b47205a83", "save_path": "github-repos/MATLAB/uzh-rpg-dslam_open", "path": "github-repos/MATLAB/uzh-rpg-dslam_open/dslam_open-3428893cffa5e832e8d51a6f3e18213b47205a83/dslam/matlab/plotDataOverTime.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975978, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.37777508088270995}} {"text": "function p = pwaproj(h)\n\n% Rewrites a0+c'*x+sum(f_i(x)) to a0+c'*x+max(aix+bi)\n\nif prod(size(h))>1\n error('pwaproj is currently only applicable to scalars');\nend\n\nhvars = getvariables(h);\nbasis = getbase(h);\ncoefficients = basis(2:end);\n\nComplicating = find(ismember(hvars,yalmip('extvariables')));\nif length(Complicating)==length(hvars)\n LinearTerm = 0;\nelse\n NonComplicating = find(~ismember(hvars,yalmip('extvariables')));\n LinearTerm = recover(hvars(NonComplicating))'*coefficients(NonComplicating)';\nend\n\nif isempty(Complicating)\n p = h;\n return\nend\n\nbasis = getbase(h);\ncoefficients = basis(2:end);\n\ntotalobjective = 0;\ntotalF = [];\nallz = [];\nallargs = [];\nif ~isempty(Complicating)\n for i = 1:length(Complicating)\n extstruct = yalmip('extstruct',hvars(Complicating(i)));\n [properties{i},F{i},arguments{i}]=model(recover(hvars(Complicating(i))));\n RequiresEpi(i) = 1;\n z = sdpvar(size(arguments{i},1),size(arguments{i},2));\n allz = [allz;z];\n allargs = [allargs;arguments{i}];\n extstruct.arg{1} = z;\n t = feval(properties{i}{1}.name,z);\n f = eval(['@' properties{i}{1}.name]);\n t = f(extstruct.arg{1:end-1});\n [dummy{i},thisF]=model(t);\n totalF = totalF + thisF;\n totalobjective=coefficients(Complicating(i))*t+totalobjective;\n end\nend\nsdpvar t\n\ntotalF = [totalF, totalobjective < t];\nP = projection([totalF,t<1234],[allz;t]);\n\nP = full(getbase(P));\nb = P(:,1);\nA = P(:,2:end);\nrmv = find(A(:,end)== 0);\nA(rmv,:)=[];\nb(rmv) = [];\nrmv = find(abs(b-1234)<1e-8);\nA(rmv,:)=[];\nb(rmv) = [];\n\np = basis(1)+LinearTerm+max((A(:,1:end-1)*allargs-b)./A(:,end));\n\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/@sdpvar/pwaproj.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217431943271999, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3777750746171601}} {"text": "function varargout = ikmeans(varargin)\n% VL_IKMEANS Integer K-means\n% C = VL_IKMEANS(X,K) returns the centers of a K-means paritioning of\n% the data space X. X must be of class UINT8. C is of class UINT32.\n%\n% [C, I] = VL_IKMEANS(...) returns the cluster associations I of the\n% data as well.\n%\n% VL_IKMEANS() accepts the following options:\n%\n% MaxPasses:: 200\n% Maximum number of iterations before giving up (the algorithm\n% stops as soon as there is no change in the data to cluster\n% associations).\n%\n% Method:: Lloyd\n% Algorithm to use ('Lloyd', 'Elkan').\n%\n% Verbose::\n% Increase the verbosity level.\n%\n% See also: VL_IKMEANSPUSH(), VL_IKMEANSHIST(), VL_HIKMEANS(), VL_HELP().\n[varargout{1:nargout}] = vl_ikmeans(varargin{:});\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/SiftFu/SiftFu/SIFTransac/vlfeat/toolbox/noprefix/ikmeans.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.37771990316108817}} {"text": "function deform_GUI(V,F,C,W)\n%%%%%%%%%%\n% you dont need \n\nfprintf( ...\n ['Linear Blend Skinning: \\n' ...\n '- CLICK handles to visualize weights \\n', ...\n '- DRAG a handle to move\\n', ... \n '- SHIFT+DRAG a handle to rotate\\n'] ...\n );\n\nP = 1:size(C,1); % set default point handles\nif(size(C,2) == 3)\nC = C(:,1:2); % Be sure that control vertices are in 2D\nend\nCW = W; % Weights used for contours\nWVW = W; % Weights used for weight visualization\nnp = numel(P); % number of point handles\n\nDeformOBJ.new_C = [];\n% keep track of rotations stored at each control point, for 2D this is a m\n% by 1 list of angles\nDeformOBJ.R = zeros(np,1);\nDeformOBJ.update_positions = @update_positions;\n \nsubplot(1,2,1)\nDeformOBJ.tsh = tsurf(F,V);\naxis equal\nhold on \nC_plot = scatter3( ...\n C(:,1),C(:,2),0.1+0*C(:,1), ... \n 'o','MarkerFaceColor',[0.9 0.8 0.1], 'MarkerEdgeColor','k',...\n 'LineWidth',2,'SizeData',100, ...\n 'ButtonDownFcn',@oncontrolsdown);\nhold off;\n% axis manual\n\nsubplot(1,2,2)\n% plot the original mesh\nDeformOBJ.wvsh = tsurf(F,V);\nview(2);\naxis equal\n% axis manual\n\n% keep track of window xmin, xmax, ymin, ymax\nwin_min = min([C(:,1:2); V(:,1:2)]);\nwin_max = max([C(:,1:2); V(:,1:2)]);\n% keep track of down position\ndown_pos = [];\n% keep track of last two drag positions\ndrag_pos = [];\nlast_drag_pos = [];\n% keep track of mesh vertices at mouse down\ndown_V = [];\n% keep track of index of selected control point\nci = [];\n% type of click ('left','right')\ndown_type = '';\n\n% Callback for mouse down on control points\n function oncontrolsdown(src,ev)\n % get current mouse position, and remember old one\n down_pos=get(gca,'currentpoint');\n down_pos=[down_pos(1,1,1) down_pos(1,2,1)];\n last_drag_pos=down_pos;\n drag_pos=down_pos;\n % keep track of control point positions at mouse down\n DeformOBJ.new_C = [get(C_plot,'XData')' get(C_plot,'YData')'];\n % get index of closest control point\n [minD,ci] = ...\n min(sum((DeformOBJ.new_C(:,1:2) - ...\n repmat(down_pos,size(DeformOBJ.new_C,1),1)).^2,2));\n % keep track of mesh vertices at mouse down\n down_V = get(DeformOBJ.tsh,'Vertices');\n down_V = down_V(:,1:2);\n\n % tell window that drag and up events should be handled by controls\n set(gcf,'windowbuttonmotionfcn',@oncontrolsdrag)\n set(gcf,'windowbuttonupfcn',@oncontrolsup)\n set(gcf,'KeyPressFcn',@onkeypress)\n if(strcmp('normal',get(gcf,'SelectionType')))\n % left-click\n down_type = 'left';\n else\n % other (right) click\n down_type = 'right';\n end\n\n % try to find ci in list of point handles\n [found, iP] = ismember(ci,P);\n if(found)\n % set color of mesh plot to weights of selected\n %set(tsh,'CData',W(:,iP));\n % change weights in weight visualization\n set(DeformOBJ.wvsh,'CData',WVW(:,iP));\n end\n\n end\n\n % Callback for mouse drag on control points\n function oncontrolsdrag(src,ev)\n % keep last drag position\n last_drag_pos=drag_pos;\n % get current mouse position\n drag_pos=get(gca,'currentpoint');\n drag_pos=[drag_pos(1,1,1) drag_pos(1,2,1)];\n if(strcmp('left',down_type))\n % move selected control point by drag offset\n DeformOBJ.new_C(ci,:) = ...\n DeformOBJ.new_C(ci,:) + drag_pos-last_drag_pos;\n else\n [found, iP] = ismember(ci,P);\n if(found)\n DeformOBJ.R(iP) = ...\n DeformOBJ.R(iP) + 2*pi*(drag_pos(1)-last_drag_pos(1))/100;\n end\n end\n update_positions();\n end\n\n function update_positions()\n % update display positions\n set(C_plot,'XData',DeformOBJ.new_C(:,1));\n set(C_plot,'YData',DeformOBJ.new_C(:,2));\n \n % USING LINEAR BLEND SKINNING\n % get transformations stored at each point and bone handle\n TR = ...\n skinning_transformations(C,P,[],DeformOBJ.new_C,DeformOBJ.R);\n\n % linear blend skinning\n [new_V] = linear_blend_skinning(V(:,1:2),TR,W);\n\n % update mesh positions\n set(DeformOBJ.tsh,'Vertices',new_V(:,1:2));\n end\n\n % Callback for mouse release of control points\n function oncontrolsup(src,ev)\n % Tell window to handle drag and up events itself\n set(gcf,'windowbuttonmotionfcn','');\n set(gcf,'windowbuttonupfcn','');\n cur_V = get(DeformOBJ.tsh,'Vertices');\n cur_V = cur_V(:,1:2);\n\n % scale window to fit\n win_min = min([win_min; cur_V]);\n win_max = max([win_max; cur_V]);\n axis(reshape([win_min;win_max],1,2*size(cur_V,2)))\n end\n\n function onkeypress(src,ev)\n if(strcmp(ev.Character,'r'))\n DeformOBJ.new_C = C;\n DeformOBJ.R = zeros(np,1);\n update_positions();\n elseif(strcmp(ev.Character,'u'))\n update_positions();\n end\n end\nend", "meta": {"author": "odedstein", "repo": "sgi-introduction-course", "sha": "52278fc3b3dab52febb110a1a09d770f46b5e417", "save_path": "github-repos/MATLAB/odedstein-sgi-introduction-course", "path": "github-repos/MATLAB/odedstein-sgi-introduction-course/sgi-introduction-course-52278fc3b3dab52febb110a1a09d770f46b5e417/104_skinning/exercise/deform_GUI.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3776888293823031}} {"text": "function [p q m1 n1 tol] = spqr_singletons (A,tol) %#ok\n%SPQR_SINGLETONS finds the singleton permutation of a sparse matrix A.\n% [p q m1 n1 tol] = spqr_singletons (A, tol) finds permutation vectors p and q\n% so that C=A(p,q) is a block 2-by-2 matrix in the form [C11 C12 ; 0 C22] where\n% C11 is upper triangular (or \"squeezed\" upper trapezoidal), of dimension\n% m1-by-n1. The columns of C11 are the column singletons of A. If C11 is\n% square then all of its diagonal entries are larger in magnitude than tol.\n%\n% The input tol is optional; it defaults to 20*(m+n)*eps*maxcol2norm where\n% [m n] = size(A) and maxcol2norm is the maximum 2-norm of the columns of A.\n% The output tol is the tolerance used.\n%\n% If C11 is rectangular, then some of the column singletons have no\n% corresponding row singleton. A column j in C11 has a corresponding row i if\n% if i = max(find(C(:,j))) > max(find(C(:,j-1))). If present, abs(C(i,j)) will\n% be larger than tol.\n%\n% Example:\n%\n% A = [1 8 0 0\n% 2 9 3 7\n% 0 4 0 0\n% 0 6 0 0 ]\n% [p q m1 n1 tol] = spqr_singletons (sparse (A))\n% C = A(p,q)\n%\n% In this example, C11 is 2-by-3. One of the 3 column singletons (the 2nd on\n% in C) has no corresponding row singleton. This is an auxiliary routine that\n% illustrates the singleton removal step used by SuiteSparseQR. It is not need\n% to solve a least-squares problem or find a sparse QR factorization; use\n% SPQR_SOLVE or SPQR for those tasks, respectively.\n%\n% See also DMPERM, SPQR, SPQR_SOLVE.\n\n% Copyright 2008, Timothy A. Davis\n% http://www.cise.ufl.edu/research/sparse\n\nerror ('spqr_singletons mexFunction not found') ;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/SuiteSparse/SPQR/MATLAB/spqr_singletons.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3776888223123948}} {"text": "function lik = lik_inputdependentnoise(varargin)\n%lik_inputdependentnoise Create input-dependent noise likelihood structure \n%\n% Description\n% LIK = LIK_INPUTDEPENDENTNOISE('PARAM1',VALUE1,'PARAM2,VALUE2,...) \n% creates a Gaussian likelihood with input dependent noise structure \n% in which the named parameters have the specified values. Any unspecified\n% parameters are set to default values.\n%\n% LIK = LIK_INPUTDEPENDENTNOISE(LIK,'PARAM1',VALUE1,'PARAM2,VALUE2,...) \n% modify a likelihood function structure with the named\n% parameters altered with the specified values.\n%\n% Parameters for Gaussian likelihood function [default]\n% sigma2 - variance [0.1]\n% sigma2_prior - prior for sigma2 [prior_logunif]\n% n - number of observations per input (See using average\n% observations below)\n%\n% Note! If the prior is 'prior_fixed' then the parameter in\n% question is considered fixed and it is not handled in\n% optimization, grid integration, MCMC etc.\n%\n% The likelihood is defined as follows:\n% __ n\n% p(y|f1, f2) = || i=1 N(y_i | f1_i, sigma2*exp(f2_i))\n%\n% where f1 is the first latent variable defining the mean of the\n% gaussian distribution, f2 is the second latent variable defining\n% the noise structure and sigma2 is coefficient for noise.\n%\n% See also\n% GP_SET, LIK_*, PRIOR_*\n%\n% Copyright (c) 2007-2010 Jarno Vanhatalo & Jouni Hartikainen\n% Copyright (c) 2010 Aki Vehtari\n% Copyright (c) 2011 Ville Tolvanen\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'LIK_INPUTDEPENDENTNOISE';\n ip.addOptional('lik', [], @isstruct);\n ip.addParamValue('sigma2',0.1, @(x) isscalar(x) && x>0);\n ip.addParamValue('sigma2_prior',prior_logunif(), @(x) isstruct(x) || isempty(x));\n ip.parse(varargin{:});\n lik=ip.Results.lik;\n \n if isempty(lik)\n init=true;\n lik.nondiagW=true;\n lik.type = 'Inputdependentnoise';\n else\n if ~isfield(lik,'type') || ~isequal(lik.type,'Inputdependentnoise')\n error('First argument does not seem to be a valid likelihood function structure')\n end\n init=false;\n end\n\n % Initialize parameters\n if init || ~ismember('sigma2',ip.UsingDefaults)\n lik.sigma2 = ip.Results.sigma2;\n end\n % Initialize prior structure\n if init\n lik.p=[];\n end\n if init || ~ismember('sigma2_prior',ip.UsingDefaults)\n lik.p.sigma2=ip.Results.sigma2_prior;\n end\n \n if init\n % Set the function handles to the subfunctions\n lik.fh.pak = @lik_inputdependentnoise_pak;\n lik.fh.unpak = @lik_inputdependentnoise_unpak;\n lik.fh.lp = @lik_inputdependentnoise_lp;\n lik.fh.lpg = @lik_inputdependentnoise_lpg;\n lik.fh.ll = @lik_inputdependentnoise_ll;\n lik.fh.llg = @lik_inputdependentnoise_llg; \n lik.fh.llg2 = @lik_inputdependentnoise_llg2;\n lik.fh.llg3 = @lik_inputdependentnoise_llg3;\n lik.fh.predy = @lik_inputdependentnoise_predy;\n lik.fh.invlink = @lik_inputdependentnoise_invlink;\n lik.fh.predprcty = @lik_inputdependentnoise_predprcty;\n lik.fh.recappend = @lik_inputdependentnoise_recappend;\n end\n\n function [w,s,h] = lik_inputdependentnoise_pak(lik)\n %LIK_INPUTDEPENDENTNOISE_PAK Combine likelihood parameters into one vector.\n %\n % Description \n % W = LIK_INPUTDEPENDENTNOISE_PAK(LIK) takes a likelihood structure LIK and\n % combines the parameters into a single row vector W. This is a mandatory \n % subfunction used for example in energy and gradient computations.\n % \n % w = log(lik.sigma2)\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_UNPAK, GP_PAK\n \n w = []; s = {}; h=[];\n if isfield(lik.p, 'sigma2') && ~isempty(lik.p.sigma2)\n w = [w log(lik.sigma2)];\n s = [s 'log(gaussian.sigma2)'];\n h = [h 0];\n % Hyperparameters of sigma2\n [wh, sh, hh] = lik.p.sigma2.fh.pak(lik.p.sigma2);\n w = [w wh];\n s = [s sh];\n h = [h hh];\n end \n end\n\n\n function [lik, w] = lik_inputdependentnoise_unpak(lik, w)\n %LIK_INPUTDEPENDENTNOISE_UNPAK Extract likelihood parameters from the vector.\n %\n % Description\n % [LIK, W] = LIK_INPUTDEPENDENTNOISE_UNPAK(W, LIK) takes a likelihood\n % structure LIK and extracts the parameters from the vector W\n % to the LIK structure. This is a mandatory subfunction used for \n % example in energy and gradient computations.\n % \n % Assignment is inverse of \n % w = log(lik.sigma2)\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_PAK, GP_UNPAK\n\n if ~isempty(lik.p.sigma2)\n lik.sigma2 = exp(w(1));\n w = w(2:end);\n \n % Hyperparameters of sigma2\n [p, w] = lik.p.sigma2.fh.unpak(lik.p.sigma2, w);\n lik.p.sigma2 = p;\n end\n end\n\n\n function lp = lik_inputdependentnoise_lp(lik, varargin)\n %LIK_INPUTDEPENDENTNOISE_LP log(prior) of the likelihood parameters\n %\n % Description\n % LP = LIK_INPUTDEPENDENTNOISE_LP(LIK) takes a likelihood structure \n % LIK and returns log(p(th)), where th collects the parameters. This\n % subfunction is needed when there are likelihood parameters.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LLG, LIK_INPUTDEPENDENTNOISE_LLG3, LIK_INPUTDEPENDENTNOISE_LLG2, GPLA_E\n \n\n % If prior for sigma2 parameter, add its contribution\n lp = 0;\n\n if ~isempty(lik.p.sigma2)\n likp=lik.p;\n lp = likp.sigma2.fh.lp(lik.sigma2, likp.sigma2) + log(lik.sigma2);\n end\n \n end\n\n \n function lpg = lik_inputdependentnoise_lpg(lik)\n %LIK_INPUTDEPENDENTNOISE_LPG d log(prior)/dth of the likelihood \n % parameters th\n %\n % Description\n % E = LIK_INPUTDEPENDENTNOISE_LPG(LIK) takes a likelihood structure \n % LIK and returns d log(p(th))/dth, where th collects the parameters.\n % This subfunction is needed when there are likelihood parameters.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LLG, LIK_INPUTDEPENDENTNOISE_LLG3, LIK_INPUTDEPENDENTNOISE_LLG2, GPLA_G\n \n\n lpg = [];\n \n if ~isempty(lik.p.sigma2)\n likp=lik.p;\n \n lpgs = likp.sigma2.fh.lpg(lik.sigma2, likp.sigma2);\n lpg = lpgs(1).*lik.sigma2 + 1;\n if length(lpgs) > 1\n lpg = [lpg lpgs(2:end)];\n end\n end\n end \n \n function ll = lik_inputdependentnoise_ll(lik, y, ff, z)\n %LIK_INPUTDEPENDENTNOISE_LL Log likelihood\n %\n % Description\n % LL = LIK_INPUTDEPENDENTNOISE_LL(LIK, Y, F, Z) takes a likelihood\n % structure LIK, incedence counts Y, expected counts Z, and\n % latent values F. Returns the log likelihood, log p(y|f,z).\n % This subfunction is needed when using Laplace approximation \n % or MCMC for inference with non-Gaussian likelihoods. This\n % subfunction is also used in information criteria (DIC, WAIC)\n % computations.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LLG, LIK_INPUTDEPENDENTNOISE_LLG3, LIK_INPUTDEPENDENTNOISE_LLG2, GPLA_E\n \n \n f=ff(:);\n n=size(y,1);\n f1=f(1:n);\n f2=f((n+1):2*n);\n expf2=exp(f2);\n expf2(expf21e6)=1e6;\n sigma2 = lik.sigma2;\n \n ll = sum(-0.5*log(2*pi.*sigma2.*expf2) - 1./(2.*sigma2.*expf2).*(y-f1).^2);\n \n end\n\n function llg = lik_inputdependentnoise_llg(lik, y, ff, param, z)\n %LIK_INPUTDEPENDENTNOISE_LLG Gradient of the log likelihood\n %\n % Description \n % LLG = LIK_INPUTDEPENDENTNOISE_LLG(LIK, Y, F, PARAM) takes a likelihood\n % structure LIK, incedence counts Y, expected counts Z and\n % latent values F. Returns the gradient of the log likelihood\n % with respect to PARAM. At the moment PARAM can be 'param' or\n % 'latent'. This subfunction is needed when using Laplace\n % approximation or MCMC for inference with non-Gaussian likelihoods.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LL, LIK_INPUTDEPENDENTNOISE_LLG2, LIK_INPUTDEPENDENTNOISE_LLG3, GPLA_E\n\n\n f=ff(:);\n n=size(y,1);\n f1=f(1:n);\n f2=f((n+1):2*n);\n expf2 = exp(f2);\n expf2(expf21e6)=1e6;\n sigma2 = lik.sigma2;\n \n switch param\n case 'param'\n \n llg=sum(-0.5./sigma2+(y-f1).^2./(2*expf2.*sigma2^2));\n % correction for the log transformation\n llg = llg.*lik.sigma2;\n \n case 'latent'\n \n llg1= (y-f1)./(sigma2*expf2);\n llg2= -0.5+(y-f1).^2./(2.*(expf2.*sigma2));\n \n% llg1=(-y+f1)/(sqrt(2*pi).*(sigma2.*expf2).^(3/2)).*exp(-1/(2.*sigma2*expf2).*(y-f1).^2);\n% llg2=-exp(f2-(y-f1).^2/(2.*expf2.*sigma2)).*sigma2/(2.*sqrt(2.*pi).*(expf2.*sigma2).^(3/2))+exp(-f2-(y-f1).^2/(2*expf2*sigma2)).*(y-f1).^2/(2.*sqrt(2.*pi.*expf2).*sigma2.^(3/2));\n \n llg=[llg1; llg2];\n end\n end\n\n function [llg2] = lik_inputdependentnoise_llg2(lik, y, ff, param, z)\n %function [pi_vec, pi_mat] = lik_inputdependentnoise_llg2(lik, y, ff, param, z)\n %LIK_INPUTDEPENDENTNOISE_LLG2 Second gradients of the log likelihood\n %\n % Description \n % LLG2 = LIK_INPUTDEPENDENTNOISE_LLG2(LIK, Y, F, PARAM) takes a likelihood\n % structure LIK, incedence counts Y, expected counts Z, and\n % latent values F. Returns the Hessian of the log likelihood\n % with respect to PARAM. At the moment PARAM can be only\n % 'latent'. LLG2 is a vector with diagonal elements of the\n % Hessian matrix (off diagonals are zero). This subfunction\n % is needed when using Laplace approximation or EP for\n % inference with non-Gaussian likelihoods.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LL, LIK_INPUTDEPENDENTNOISE_LLG, LIK_INPUTDEPENDENTNOISE_LLG3, GPLA_E\n\n\n f=ff(:);\n \n n=length(y);\n f1=f(1:n);\n f2=f((n+1):2*n);\n sigma2 = lik.sigma2;\n expf2=exp(f2);\n expf2(expf21e6)=1e6;\n\n switch param\n case 'param'\n \n case 'latent'\n \n% llg2 = [2./(sigma2.*expf2); 3/2.*(y-f1).^2./(sigma2.*expf2)];\n% llg2mat = [diag(1./sqrt(sigma2.*expf2)); diag(-(y-f1)./sqrt(sigma2.*expf2))];\n \n llg2_11=-1./(sigma2.*expf2);\n llg2_12=-(y-f1)./(sigma2*expf2);\n llg2_22=-(y-f1).^2./(2.*sigma2.*expf2);\n \n llg2 = [llg2_11 llg2_12; llg2_12 llg2_22];\n \n case 'latent+param'\n \n llg2_1=-(y-f1)./(expf2.*sigma2^2);\n llg2_2=-(y-f1).^2./(2*sigma2.^2.*expf2);\n \n llg2=[llg2_1; llg2_2];\n % correction for the log transformation\n llg2 = llg2.*lik.sigma2;\n \n end\n end \n \n function llg3 = lik_inputdependentnoise_llg3(lik, y, ff, param, z)\n %LIK_INPUTDEPENDENTNOISE_LLG3 Third gradients of the log likelihood\n %\n % Description\n % LLG3 = LIK_INPUTDEPENDENTNOISE_LLG3(LIK, Y, F, PARAM) takes a likelihood\n % structure LIK, incedence counts Y, expected counts Z and\n % latent values F and returns the third gradients of the log\n % likelihood with respect to PARAM. At the moment PARAM can be\n % only 'latent'. LLG3 is a vector with third gradients. This\n % subfunction is needed when using Laplace approximation for\n % inference with non-Gaussian likelihoods.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LL, LIK_INPUTDEPENDENTNOISE_LLG, LIK_INPUTDEPENDENTNOISE_LLG2, GPLA_E, GPLA_G\n\n f=ff(:);\n \n n=size(y,1);\n f1=f(1:n);\n f2=f((n+1):2*n);\n expf2=exp(f2);\n expf2(expf21e6)=1e6;\n sigma2 = lik.sigma2;\n \n switch param\n case 'param'\n \n case 'latent'\n nl=2;\n llg3=zeros(nl,nl,nl,n);\n \n % y=0:\n % thrid derivative derivative wrt f1 (11)\n % llg3(1,1,1,:) = 0\n % thrid derivative derivative wrt f2 (11)\n llg3(1,1,2,:) = 1./(expf2.*sigma2);\n \n % thrid derivative derivative wrt f1 (12/21)\n llg3(1,2,1,:) = 1./(expf2.*sigma2);\n llg3(2,1,1,:) = llg3(1,2,1,:);\n % thrid derivative derivative wrt f2 (12/21)\n llg3(1,2,2,:) = (y-f1)./(expf2.*sigma2);\n llg3(2,1,2,:) = llg3(1,2,2,:);\n \n % thrid derivative derivative wrt f1 (22)\n llg3(2,2,1,:) = llg3(1,2,2,:);\n % thrid derivative derivative wrt f1 (22)\n llg3(2,2,2,:) = (y-f1).^2./(2.*expf2.*sigma2);\n \n case 'latent2+param'\n \n llg3_11=1./(expf2.*sigma2.^2);\n llg3_12=(y-f1)./(expf2.*sigma2.^2);\n llg3_22=(y-f1).^2./(2.*expf2.*sigma2.^2);\n \n \n llg3 = [diag(llg3_11) diag(llg3_12); diag(llg3_12) diag(llg3_22)];\n % correction for the log transformation\n llg3 = llg3.*lik.sigma2;\n \n end\n end\n \n\n function [lpy, Ey, Vary] = lik_inputdependentnoise_predy(lik, Ef, Varf, yt, z)\n %LIK_INPUTDEPENDENTNOISE_PREDY Returns the predictive mean, variance and density of y\n %\n % Description \n % [LPY] = LIK_INPUTDEPENDENTNOISE_PREDY(LIK, EF, VARF, YT) takes a\n % likelihood structure LIK, posterior mean EF, posterior\n % variance VARF of the latent variable and observations YT and \n % returns the logarithm of the predictive density PY of YT, that is \n % p(yt | th) = \\int p(yt | f, th) p(f|y) df.\n % This subfunction is needed when computing posterior predictive \n % distributions for future observations.\n % \n % [LPY, EY, VARY] = LIK_INPUTDEPENDENTNOISE_PREDY(LIK, EF, VARF YT)\n % Returns also the posterior predictive mean EY and variance VARY of \n % the observations related to the latent variables. This subfunction \n % is needed when computing posterior predictive distributions for \n % future observations.\n %\n % See also\n % GPLA_PRED, GPEP_PRED, GPMC_PRED\n\n\n% ntest=size(yt,1);\n Ef = Ef(:);\n ntest = 0.5*size(Ef,1);\n Ef1=Ef(1:ntest); Ef2=Ef(ntest+1:end);\n if size(Varf,2) == size(Varf,1)\n Varf1=diag(Varf(1:ntest,1:ntest));Varf2=diag(Varf(ntest+1:end,ntest+1:end));\n else\n if size(Varf,2)==1\n Varf=reshape(Varf,ntest,2);\n end\n Varf1=Varf(:,1); Varf2=Varf(:,2);\n end\n sigma2=lik.sigma2;\n \n lpy = zeros(size(yt));\n \n Ey=Ef1;\n Vary=Varf1 + sigma2.*exp(Ef2+Varf2/2);\n \n if ~isempty(yt)\n for i2=1:ntest\n m1=Ef1(i2); m2=Ef2(i2);\n s1=sqrt(Varf1(i2)); s2=sqrt(Varf2(i2));\n pd=@(f1,f2) norm_pdf(yt(i2), f1, sqrt(sigma2.*exp(f2))).*norm_pdf(f1,Ef1(i2),sqrt(Varf1(i2))).*norm_pdf(f2,Ef2(i2),sqrt(Varf2(i2)));\n lpy(i2) = log(dblquad(pd, m1-6.*s1, m1+6.*s1, m2-6.*s2, m2+6.*s2));\n end\n else\n lpy=[];\n end\n% sigma2 = lik.sigma2;\n% Ef1=Ef(1:ntest);\n% Ef2=Ef((ntest+1):2*ntest);\n% Ey = Ef1;\n% Vary = Varf + sigma2.*exp(Ef2);\n \n\n end\n\n function prctys = lik_inputdependentnoise_predprcty(lik, Ef, Varf, zt, prcty)\n %LIK_BINOMIAL_PREDPRCTY Returns the percentiles of predictive density of y\n %\n % Description\n % PRCTY = LIK_BINOMIAL_PREDPRCTY(LIK, EF, VARF YT, ZT)\n % Returns percentiles of the predictive density PY of YT, that is\n % This requires also the succes counts YT, numbers of trials ZT. This\n % subfunction is needed when using function gp_predprcty.\n %\n % See also\n % GP_PREDPCTY\n \n n=size(Ef,1)./2;\n prcty = prcty./100;\n prcty = norminv(prcty, 0, 1);\n prctys = bsxfun(@plus, Ef(1:n), bsxfun(@times, sqrt(Varf(1:n) + lik.sigma2.*exp(Ef(n+1:end))), prcty));\n \n end\n\n function p = lik_inputdependentnoise_invlink(lik, f, z)\n %LIK_INPUTDEPENDENTNOISE_INVLINK Returns values of inverse link function\n % \n % Description \n % P = LIK_INPUTDEPENDENTNOISE_INVLINK(LIK, F) takes a likelihood structure LIK and\n % latent values F and returns the values of inverse link function P.\n % This subfunction is needed when using function gp_predprcty.\n %\n % See also\n % LIK_INPUTDEPENDENTNOISE_LL, LIK_INPUTDEPENDENTNOISE_PREDY\n \n p = exp(f);\n end\n \n function reclik = lik_inputdependentnoise_recappend(reclik, ri, lik)\n %RECAPPEND Append the parameters to the record\n %\n % Description \n % RECLIK = GPCF_INPUTDEPENDENTNOISE_RECAPPEND(RECLIK, RI, LIK) takes a\n % likelihood record structure RECLIK, record index RI and\n % likelihood structure LIK with the current MCMC samples of\n % the parameters. Returns RECLIK which contains all the old\n % samples and the current samples from LIK. This subfunction \n % is needed when using MCMC sampling (gp_mc).\n % \n % See also\n % GP_MC\n\n % Initialize record\n if nargin == 2\n reclik.type = 'Inputdependentnoise';\n reclik.nondiagW=true;\n\n % Initialize parameter\n\n % Set the function handles\n reclik.fh.pak = @lik_inputdependentnoise_pak;\n reclik.fh.unpak = @lik_inputdependentnoise_unpak;\n reclik.fh.lp = @lik_inputdependentnoise_lp;\n reclik.fh.lpg = @lik_inputdependentnoise_lpg;\n reclik.fh.ll = @lik_inputdependentnoise_ll;\n reclik.fh.llg = @lik_inputdependentnoise_llg; \n reclik.fh.llg2 = @lik_inputdependentnoise_llg2;\n reclik.fh.llg3 = @lik_inputdependentnoise_llg3;\n reclik.fh.predy = @lik_inputdependentnoise_predy;\n reclik.fh.predprcty = @lik_inputdependentnoise_predprcty;\n reclik.fh.invlink = @lik_inputdependentnoise_invlink;\n reclik.fh.recappend = @lik_inputdependentnoise_recappend;\n reclik.p=[];\n if ~isempty(ri.p.sigma2)\n reclik.p.sigma2 = ri.p.sigma2;\n end\n return\n end\n \n reclik.sigma2(ri,:)=lik.sigma2;\n if ~isempty(lik.p.sigma2)\n reclik.p.sigma2 = feval(lik.p.sigma2.fh.recappend, reclik.p.sigma2, ri, lik.p.sigma2);\n end\n end\nend\n", "meta": {"author": "gpstuff-dev", "repo": "gpstuff", "sha": "114937ec0a201306489a66cbba38283e722fb998", "save_path": "github-repos/MATLAB/gpstuff-dev-gpstuff", "path": "github-repos/MATLAB/gpstuff-dev-gpstuff/gpstuff-114937ec0a201306489a66cbba38283e722fb998/gp/lik_inputdependentnoise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37768882231239476}} {"text": "function [area]=findano2() % autogenerated function wrapper\n % This script file is supposed to find an anomaly\n % and estimate the extent in time and space\n %\n % Stefan Wiemer 11/94\n % turned into function by Celso G Reyes 2017\n \n ZG=ZmapGlobal.Data; % used by get_zmap_globals\n \n report_this_filefun(mfilename('fullpath'));\n \n is3 = [];\n ni = 80;\n \n [i,j] = find(re3 > 5.5);\n X = reshape(loc(1,:),length(gy),length(gx));\n Y = reshape(loc(2,:),length(gy),length(gx));\n figure(map);\n hold on\n for k = 1:length(i)\n xa0 = X(i(k),j(k));\n ya0 = Y(i(k),j(k));\n plot(xa0,ya0,'xk')\n l=ZG.primeCatalog.epicentralDistanceTo(ya0,xa0);\n [s,is] = sort(l);\n is3 = [is3 ; is(1:ni)];\n end % for k\n \n is3 = sort(is3);\n \n l = [];\n for k = 1:length(is3)-1\n if is3(k) ~= is3(k+1)\n l = [l ; is3(k)];\n end\n end\n \n l = sort(l);\n ZG.newt2= (a(l,:));\n figure(map);\n hold on\n plot(ZG.newt2.Longitude,ZG.newt2.Latitude,'bo');\n \n % estimate length of anomaly\n %\n i1 = find(ZG.newt2.Longitude == min(ZG.newt2.Longitude));i1 = max(i1);\n i2 = find(ZG.newt2.Longitude == max(ZG.newt2.Longitude));i2 = max(i2);\n di = sqrt(((ZG.newt2.Longitude(i1)-ZG.newt2.Longitude(i2))*cosd(ya0)*111).^2 + ((ZG.newt2.Latitude(i1)-ZG.newt2.Latitude(i2))*111).^2) ;\n li = [ZG.newt2.Longitude(i1) ZG.newt2.Latitude(i1) ; ZG.newt2.Longitude(i2) ZG.newt2.Latitude(i2)];\n plot(li(:,1),li(:,2))\n \n \n \n i1 = find(ZG.newt2.Latitude == min(ZG.newt2.Latitude));i1 = max(i1);\n i2 = find(ZG.newt2.Latitude == max(ZG.newt2.Latitude));i2 = max(i2)\n di2 = sqrt(((ZG.newt2.Longitude(i1)-ZG.newt2.Longitude(i2))*cosd(ya0)*111).^2 + ((ZG.newt2.Latitude(i1)-ZG.newt2.Latitude(i2))*111).^2) ;\n \n li = [ZG.newt2(i1,1) ZG.newt2(i1,2) ; ZG.newt2(i2,1) ZG.newt2(i2,2)];\n plot(li(:,1),li(:,2))\n \n di = max([di; di2])\n area = (di/2)^2 *pi;\nend\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/findano2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37766445934377396}} {"text": "function outputImage = power(this, otherImage)\n% Computes input image to the power of other image per pixel as new image\n%\n% NOTE: If voxel dimensions of 2nd image do not match - or a scalar is\n% given as 2nd argument - data in the 2nd argument is automatically\n% replicated to match this image geometry.\n%\n%\n% Y = MrImage()\n% outputImage = power(Y, otherImage, ...\n% functionHandle)\n%\n% OR\n%\n% outputImage = Y.^otherImage\n%\n% This is a method of class MrImage.\n%\n%\n% IN\n% otherImage image that will be subtracted from this one\n%\n% OUT\n% outputImage new MrImage, difference of this and otherImage\n%\n% EXAMPLE\n%\n% % Compute difference of 2 images\n%\t\tY = MrImage();\n%\t\tZ = MrImage();\n%\t\tX = Y.power(Z);\n%\n% % OR (cool overload!):\n% X = Y.^Z\n% \n% e.g. take square of image\n% X = Y.^2\n% \n% e.g. take square root of image\n% X = Y.^(1/2)\n%\n% See also MrImage perform_binary_operation MrImage.plus\n\n% Author: Saskia Bollmann & Lars Kasper\n% Created: 2014-11-13\n% Copyright (C) 2014 Institute for Biomedical Engineering\n% University of Zurich and ETH Zurich\n%\n% This file is part of the TAPAS UniQC Toolbox, which is released\n% under the terms of the GNU General Public Licence (GPL), version 3. \n% You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version).\n% For further details, see the file COPYING or\n% .\n%\n\n\noutputImage = this.perform_binary_operation(otherImage, @power);", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrDataNd/power.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370111, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3776644593437739}} {"text": "function out = MF_FitSubsegments(y,model,order,subsetHow,samplep,randomSeed)\n% MF_FitSubsegments Robustness of model parameters across different segments of a time series\n%\n% The spread of parameters obtained (including in-sample goodness of fit\n% statistics) provide some indication of stationarity.\n%\n% Values of goodness of fit provide some indication of model suitability.\n%\n% This code inherits strongly from MF_CompareTestSets\n%\n%---INPUTS:\n% y, the input time series.\n%\n% model, the model to fit in each segments of the time series:\n% 'arsbc': fits an AR model using the ARfit package. Outputs\n% statistics are on how the optimal order, p_{opt}, and\n% the goodness of fit varies in different parts of the\n% time series.\n% 'ar': fits an AR model of a specified order using the code\n% ar from Matlab's System Identification Toolbox. Outputs are\n% on how Akaike's Final Prediction Error (FPE), and the fitted\n% AR parameters vary across the different segments of time\n% series.\n% 'ss': fits a state space model of a given order using the code\n% n4sid from Matlab's System Identification Toolbox. Outputs\n% are on how the FPE varies.\n% 'arma': fits an ARMA model using armax code from Matlab's System\n% Identification Toolbox. Outputs are statistics on the FPE,\n% and fitted AR and MA parameters.\n%\n% subsetHow, how to choose segments from the time series, either 'uniform'\n% (uniformly) or 'rand' (at random).\n%\n% samplep, a two-vector specifying how many segments to take and of what length.\n% Of the form [nsamples, length], where length can be a proportion of\n% the time-series length. e.g., [20,0.1] takes 20 segments of 10% the\n% time-series length.\n%\n% randomSeed, whether (and how) to reset the random seed, using BF_ResetSeed\n% (for when subsetHow is 'rand')\n%\n%---OUTPUTS: depend on the model, as described above.\n\n% ------------------------------------------------------------------------------\n% Copyright (C) 2020, Ben D. Fulcher ,\n% \n%\n% If you use this code for your research, please cite the following two papers:\n%\n% (1) B.D. Fulcher and N.S. Jones, \"hctsa: A Computational Framework for Automated\n% Time-Series Phenotyping Using Massive Feature Extraction, Cell Systems 5: 527 (2017).\n% DOI: 10.1016/j.cels.2017.10.001\n%\n% (2) B.D. Fulcher, M.A. Little, N.S. Jones, \"Highly comparative time-series\n% analysis: the empirical structure of time series and their methods\",\n% J. Roy. Soc. Interface 10(83) 20130048 (2013).\n% DOI: 10.1098/rsif.2013.0048\n%\n% This function is free software: you can redistribute it and/or modify it under\n% the terms of the GNU General Public License as published by the Free Software\n% Foundation, either version 3 of the License, or (at your option) any later\n% version.\n%\n% This program is distributed in the hope that it will be useful, but WITHOUT\n% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more\n% details.\n%\n% You should have received a copy of the GNU General Public License along with\n% this program. If not, see .\n% ------------------------------------------------------------------------------\n\n% ------------------------------------------------------------------------------\n%% Preliminaries\n% ------------------------------------------------------------------------------\nN = length(y); % length of time series\n\n% ------------------------------------------------------------------------------\n%% Check Inputs\n% ------------------------------------------------------------------------------\n\n% (1) y: column vector time series\nif nargin < 1 || isempty(y)\n error('Give us a time series, ya mug');\nend\n% Convert y to time series object\ny = iddata(y,[],1);\n\n% (2) model, the type of model to fit\nif nargin < 2 || isempty(model)\n model = 'ss'; % fit a state space model by default\nend\n\n% (3) order of model, order\nif nargin < 3 || isempty(order)\n order = 2; % model of order 2 by default. Not very good defaults.\nend\n\n% (4) How to choose subsets from the time series, subsetHow\nif nargin < 4 || isempty(subsetHow)\n subsetHow = 'rand'; % takes segments randomly from time series\nend\n\n% (5) Sampling parameters, samplep\nif nargin < 5 || isempty(samplep)\n samplep = [20, 0.1]; % sample 20 times with 10%-length subsegments\nend\n\n% (6) randomSeed: how to treat the randomization\nif nargin < 6\n randomSeed = [];\nend\n\n% ------------------------------------------------------------------------------\n%% Set the ranges beforehand\n% ------------------------------------------------------------------------------\n% Number of samples to take, numPred\nnumPred = samplep(1);\nr = zeros(numPred,2); % ranges\n\nswitch subsetHow\n case 'rand'\n if samplep(2) < 1 % specified a fraction of time series\n l = floor(N*samplep(2));\n else % specified an absolute interval\n l = samplep(2);\n end\n\n % Control the random seed (for reproducibility):\n BF_ResetSeed(randomSeed);\n\n % numPred random starting points:\n spts = randi(N-l+1,numPred,1);\n r(:,1) = spts;\n r(:,2) = spts+l-1;\n\n case 'uniform'\n if length(samplep) == 1 % size will depend on number of unique subsegments\n spts = round(linspace(0,N,numPred+1)); % numPred+1 boundaries = numPred portions\n r(:,1) = spts(1:numPred)+1;\n r(:,2) = spts(2:end);\n else\n if samplep(2) < 1 % specified a fraction of time series\n l = floor(N*samplep(2));\n else % specified an absolute interval\n l = samplep(2);\n end\n spts = round(linspace(1,N-l+1,numPred)); % numPred+1 boundaries = numPred portions\n r(:,1) = spts;\n r(:,2) = spts+l-1;\n end\n\n otherwise\n error('Unknown subset method ''%s''',subsetHow);\nend\n\n% ------------------------------------------------------------------------------\n%% Fit the model to each training set\n% ------------------------------------------------------------------------------\n% model will be stored as a model object, m\n% model is fitted using the entire dataset as the training set\n% test sets will be smaller chunks of this.\n% [could also fit multiple models using data not in multiple test sets, but\n% this is messier]\nswitch model\n case 'arsbc'\n %% Fit AR models of 'best' order according to SBC, using arfit package\n % fit AR models of 'best' order, return statistics on how this best\n % order changes. The order input argument is not used for this\n % option.\n orders = zeros(numPred,1);\n sbcs = zeros(numPred,1);\n yy = y.y;\n for i = 1:numPred\n % Use arfit software to retrieve the optimum AR(p) order by\n % Schwartz's Bayesian Criterion, SBC (or BIC); in the range\n % p = 1-10\n % Enforce zero mean level. This could be relaxed.\n try\n [west, Aest, Cest, SBC] = ARFIT_arfit(yy(r(i,1):r(i,2)), 1, 10, 'sbc', 'zero');\n catch emsg\n if strcmp(emsg.message,'Time series too short.')\n fprintf(1,'Time Series is too short for ARFIT\\n');\n out = NaN; return\n else\n error('Problem fitting AR model');\n end\n end\n orders(i) = length(Aest);\n sbcs(i) = min(SBC);\n end\n\n % Return statistics\n out.orders_mode = mode(orders);\n out.orders_mean = mean(orders);\n out.orders_std = std(orders);\n out.orders_max = max(orders);\n out.orders_min = min(orders);\n out.orders_range = range(orders);\n\n out.sbcs_mean = mean(sbcs);\n out.sbcs_std = std(sbcs);\n out.sbcs_range = range(sbcs);\n out.sbcs_min = min(sbcs);\n out.sbcs_max = max(sbcs);\n\n case 'ar'\n %% Fit AR model of specified order\n % Return statistics on parameters and goodness of fit\n\n %% Check that a System Identification Toolbox license is available to run the 'ar' function:\n BF_CheckToolbox('identification_toolbox')\n\n fpes = zeros(numPred,1);\n as = zeros(numPred,order+1);\n for i = 1:numPred\n % fit the ar model\n m = ar(y(r(i,1):r(i,2)),order);\n % get parameters and goodness of fit\n fpes(i) = m.EstimationInfo.FPE;\n as(i,:) = m.a;\n end\n\n % statistics on FPE\n out.fpe_std = std(fpes);\n out.fpe_mean = mean(fpes);\n out.fpe_max = max(fpes);\n out.fpe_min = min(fpes);\n out.fpe_range = range(fpes);\n\n % Statistics on fitted AR parameters\n for i = 1:order % first column will be ones\n % Dynamic field referencing:\n out.(['a_',num2str(i),'_std']) = std(as(:,i+1));\n out.(['a_',num2str(i),'_mean']) = mean(as(:,i+1));\n out.(['a_',num2str(i),'_max']) = max(as(:,i+1));\n out.(['a_',num2str(i),'_min']) = min(as(:,i+1));\n % eval(sprintf('out.a_%u_std = std(as(:,%u+1));',i,i));\n % eval(sprintf('out.a_%u_mean = mean(as(:,%u+1));',i,i));\n % eval(sprintf('out.a_%u_max = max(as(:,%u+1));',i,i));\n % eval(sprintf('out.a_%u_min = min(as(:,%u+1));',i,i));\n end\n\n case 'ss'\n %% Fit state space models of specified order\n % Return statistics on goodness of fit\n % Could do parameters too, but I this would involve many outputs\n fpes = zeros(numPred,1);\n for i = 1:numPred\n try m = n4sid(y(r(i,1):r(i,2)),order);\n catch\n % Some range of the time series is invalid for fitting the\n % model to.\n error('Couldn''t fit this state space model')\n end\n fpes(i) = m.EstimationInfo.FPE;\n end\n\n % statistics on FPE\n out.fpe_std = std(fpes);\n out.fpe_mean = mean(fpes);\n out.fpe_max = max(fpes);\n out.fpe_min = min(fpes);\n out.fpe_range = range(fpes);\n\n case 'arma'\n %% fit an ARMA model of specified order(s)\n % Note: order should be a two-component vector\n % Output parameters and goodness of fit\n fpes = zeros(numPred,1);\n ps = zeros(numPred,order(1)+1);\n qs = zeros(numPred,order(2)+1);\n\n for i = 1:numPred\n try\n m = armax(y(r(i,1):r(i,2)),order);\n catch emsg\n error('Couldn''t fit this ARMA model')\n end\n fpes(i) = m.EstimationInfo.FPE;\n ps(i,:) = m.a;\n qs(i,:) = m.c;\n end\n\n % statistics on FPE\n out.fpe_std = std(fpes);\n out.fpe_mean = mean(fpes);\n out.fpe_max = max(fpes);\n out.fpe_min = min(fpes);\n out.fpe_range = range(fpes);\n\n % Statistics on fitted AR parameters, p\n for i = 1:order % first column will be ones\n out.(['p_',num2str(i),'_std']) = std(ps(:,i+1));\n out.(['p_',num2str(i),'_mean']) = mean(ps(:,i+1));\n out.(['p_',num2str(i),'_max']) = max(ps(:,i+1));\n out.(['p_',num2str(i),'_min']) = min(ps(:,i+1));\n end\n\n % Statistics on fitted MA parameters, q\n for i = 1:order % first column will be ones\n out.(['q_',num2str(i),'_std']) = std(qs(:,i+1));\n out.(['q_',num2str(i),'_mean']) = mean(qs(:,i+1));\n out.(['q_',num2str(i),'_max']) = max(qs(:,i+1));\n out.(['q_',num2str(i),'_min']) = min(qs(:,i+1));\n end\n otherwise\n error('Unknown model ''%s''',model);\nend\n\n\nend\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/Operations/MF_FitSubsegments.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850154599563, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3776644527208313}} {"text": "\n% clc;\nclear;\nwarning off\naddpath('support_methods/');\naddpath(genpath('tools'));\nvl_setupnn;\n\n%% general parameters\n% 4 supported datasets: ChallengeDB_release LIVE TID2013 CSIQ\ntestDatabase = 'ChallengeDB_release'; \n% 3 supported CNN architectures: ResNet AlexNet S_CNN\nModelType = 'S_CNN'; \nrepetitions = 10;\ntrainingPropertion = 0.8;\n%% parameters for PQR\nquantizationMethod = 'uniform'; % LloydMax\nbeta = 64;\nbins = 5; % set bins=1 for scalar quality score regression\n\nswitch ModelType\n case 'AlexNet'\n patchSize = 227;\n patchStep = 16;\n epoch = 20;\n case 'ResNet'\n patchSize = 224;\n patchStep = 16;\n epoch = 10;\n case 'S_CNN'\n patchSize = 64;\n patchStep = 8;\n epoch = 40;\nend\n\nfor patchNum = [50]\n if strcmp(ModelType,'S_CNN')\n patchNum = patchNum * 10;\n end\n\n%% training\nfor seed = 1:repetitions\n TrainModel('Model',ModelType,'Database',testDatabase,'PatchNum', patchNum,... \n 'seed',seed, 'trainingpropertion', trainingPropertion,...\n 'quantizationMethod',quantizationMethod,...\n 'bins',bins, 'beta', beta,'patchSize',patchSize,...\n 'patchStep',patchStep,'epoch',epoch);\nend\n\n%% testing\nfor seed = 1:repetitions\n fprintf('seed = %d....\\n', seed);\n for i = 1:epoch\n netStruct = load(fullfile('data',[ModelType '_' testDatabase '_TrainPropertion' num2str(trainingPropertion)...\n '_PatchSize' num2str(patchSize) '_PatchNum' num2str(patchNum) '_Seed' num2str(seed) '_bins' num2str(bins)...\n '_beta' num2str(beta)],['net-epoch-' num2str(i) '.mat']));\n net = dagnn.DagNN.loadobj(netStruct.net) ;\n move(net, 'gpu')\n net.mode = 'test';\n [SRCC(seed,i),PLCC(seed,i)] = testModel(ModelType, net, testDatabase,seed,trainingPropertion); \n end\nend\n\n%% save results\nmedian_SRCC =[]; median_PLCC=[]; std_SRCC=[]; std_PLCC=[];\nmedian_SRCC = median(SRCC);\nmedian_PLCC = median(PLCC);\nstd_SRCC = std(SRCC);\nstd_PLCC = std(PLCC);\n[max_SRCC,idx] = max(median_SRCC);\nmax_PLCC = median_PLCC(idx);\nfile = fopen(fullfile('result','results.txt'),'a');\nfprintf(file,'Parameters: %s; %s; bins = %d; patches = %d;\\n',testDatabase,ModelType,bins,patchNum);\nfprintf(file,'SRCC: ');fprintf(file,'%.4f; ',median_SRCC);fprintf(file,'\\n');\nfprintf(file,'std_SRCC: ');fprintf(file,'%.4f; ',std_SRCC);fprintf(file,'\\n');\nfprintf(file,'PLCC: ');fprintf(file,'%.4f; ',median_PLCC);fprintf(file,'\\n');\nfprintf(file,'std_PLCC: ');fprintf(file,'%.4f; ',std_PLCC);fprintf(file,'\\n');\nfprintf(file,'best_SRCC: %.4f; best_PLCC: %.4f \\n',max_SRCC,max_PLCC);\nfclose(file);\n\nend\n", "meta": {"author": "HuiZeng", "repo": "BIQA_Toolbox", "sha": "39d606574f0cbfde82ecbc3c208b353d9fa9a450", "save_path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox", "path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox/BIQA_Toolbox-39d606574f0cbfde82ecbc3c208b353d9fa9a450/training_testing_CNNs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850154599562, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37766445272083127}} {"text": "function plotnsgtf(c,shift,sr,fmin,fmax,bins,cutout,dynrange)\n%PLOTNSGTF Plot nonstationary Gabor filterbank coefficients\n% Usage: plotnsgtf(c,shift,sr,fmin,fmax,bins,cutout,dynrange)\n% plotnsgtf(c,shift,sr,fmin,fmax,bins,cutout)\n% plotnsgtf(c,shift,sr,fmin,fmax,bins)\n% plotnsgtf(c,shift,sr,cutout,dynrange)\n% plotnsgtf(c,shift,sr,cutout)\n% plotnsgtf(c,shift,sr)\n% plotnsgtf(c,shift)\n% plotnsgtf(c)\n%\n% Input parameters:\n% c : Array of coefficients.\n% shift : Vector of frequency shifts\n% sr : signal sample rate in Hz (default 1 Hz)\n% fmin : Minimum frequency used in the transform\n% fmax : Maximum frequency used in the transform\n% bins : Bins per octave (in constant or vector form)\n% cutout : Desired part of the spectrogram, e.g.\n% choice of 2 shows frequencies up to Nyquist\n% (X shows the number_of_bins/X lowest frequency \n% bins)\n% dynrange : Colorscale dynamic range in dB (default 60 dB)\n%\n% Given a coefficient array c and the frequency shift vector shift, \n% this function plots the dB-scaled nonstationary Gabor filterbank \n% spectrogram corresponding to c. The vector shift and sampling rate \n% sr are used to determine the correct time axis labels. The frequency\n% axis is by default labeled by bin number. \n%\n% For constant-Q nonstationary Gabor filterbanks, labeling with the\n% actual center frequencies is supported, requiring the filterbank \n% parameters fmin, fmax and bins as additional input.\n%\n% The shown frequency range can be controlled with the cutout parameter \n% (default: 2) and the dynamic range of the spectrogram can be adjusted \n% with dynrange.\n%\n% See also: nsgtf, plotnsgt, plotslicq\n%\n% Url: http://nsg.sourceforge.net/doc/plotting/plotnsgtf.php\n\n% Copyright (C) 2013 Nicki Holighaus.\n% This file is part of NSGToolbox version 0.1.0\n% \n% This work is licensed under the Creative Commons \n% Attribution-NonCommercial-ShareAlike 3.0 Unported \n% License. To view a copy of this license, visit \n% http://creativecommons.org/licenses/by-nc-sa/3.0/ \n% or send a letter to \n% Creative Commons, 444 Castro Street, Suite 900, \n% Mountain View, California, 94041, USA.\n\n% Author: Gino Velasco, Nicki Holighaus and Radu C. Frunza\n% Original code by Florent Jaillet\n% Date: 26.04.13\n\nticklabels = 0;\n\nif nargin < 8\n % Default value for colorscale dynamic.\n dynrange = 60;\n if nargin < 7 % Default value for frequency cutout.\n cutout = 2;\n if nargin < 6\n ticklabels = 0;\n if nargin == 5\n cutout = fmin;\n dynrange = fmax;\n elseif nargin < 4\n cutout = 2;\n if nargin < 3\n % Default sampling rate\n sr = 1;\n if nargin < 2\n error('Not enough input arguments');\n end\n end\n else\n cutout = fmin;\n end\n end\n end\nend\n\nN = length(shift)-2;\nL=sum(shift);\n\n% For the coefficient output of nsgtf_real, adjust the frequeny\n% channels shown, if necessary\n\nif N > size(c,1) && cutout < 2\n cutout = cutout/2;\nend\n\ncla %Clear previous axes\n\n% Compute maximum of the representation for colorscale dynamic handling.\nif iscell(c) == 1\n if size(c{1},2) > 1\n error(['Multichannel spectrograms are not supported. Please ',...\n 'use ''cellfun(@(x) x(:,k),c,''UniformOutput'',0)'' to ',...\n 'select the k-th channel.']);\n end\n temp=cell2mat(c);\nelse\n if size(c,3) > 1\n error(['Multichannel spectrograms are not supported. Please ',...\n 'use ''c(:,:,k)'' to select the k-th channel.']);\n end\n temp=c;\nend\nma=20*log10(max(abs(temp(:))));\n\n% Plot the representation: as the sampling grid in the time frequency plane\n% is irregular, the representation by done by plotting many images next to\n% each other, with one image for each window\nif iscell(c) == 1\n hold('on');\n for ii=1:floor((N-1)/cutout)+1\n temp = 20*log10(abs(c{ii})+eps);\n % +eps is here to avoid log of 0\n % Octave cannot plot images that are only one point wide, so we use\n % images that are to points wide\n imagesc([0,L-1]/sr,[ii,ii+1],[temp,temp].',...\n [ma-dynrange,ma]);\n end\n hold('off');\n axis('tight');\nelse\n imagesc([0, (L-1)/sr],[1 size(c,2)],...\n 20*log10(abs(c)'+eps),[ma-dynrange, ma]);\n select=[0,(L-1)/sr,1,round(size(c,2)/cutout)+1];\n axis(select);\n set(gca,'YDir','normal');\nend\n\n% Compute YTickLabels for the correct frequencies\nif ticklabels == 1\n \n vfq = [0, fmin*2.^(0:log2(fmax/fmin))];\n \n if length(bins) < length(vfq) - 1\n xbins = [bins, bins(end)*ones(1,length(vfq)-length(bins)-1)];\n else\n xbins = bins(1:length(vfq)-1);\n end;\n \n sbins = [0,2,1+cumsum(xbins)];\n \n yTick = [2;2+2*cumsum(xbins(1:end-1))';(1+N/2)];\n yTick = unique([yTick(yTick <= floor((length(shift)-1)/cutout)+1);...\n floor((N-1)/cutout)+1]);\n \n yTickLabel = zeros(length(yTick),1);\n \n for kk = 1:length(yTick)\n ind = find(yTick(kk) < sbins,1);\n yTickLabel(kk) = vfq(ind-1)*...\n 2^(((yTick(kk)-1)-sbins(ind-1))/(sbins(ind)-sbins(ind-1)));\n end;\n \n yTickLabel = num2str(round(yTickLabel),5);\n set(gca,'YTick',yTick,'YTickLabel',yTickLabel);\nend\n\n", "meta": {"author": "nesl", "repo": "asvspoof2019", "sha": "8b780369f7273345c22d979192119198bbf3db13", "save_path": "github-repos/MATLAB/nesl-asvspoof2019", "path": "github-repos/MATLAB/nesl-asvspoof2019/asvspoof2019-8b780369f7273345c22d979192119198bbf3db13/baseline/CQCC_v1.0/CQT_toolbox_2013/plotnsgtf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370308082623217, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3775468831988232}} {"text": "function y = isnan(X)\n % True for Not-a-Number for symbolic arrays.\n % ISNAN(X) returns an array that contains 1's where\n % the elements of X are symbolic NaN's and 0's where they are not.\n % For example, ISNAN(sym([pi NaN Inf -Inf])) is [0 1 0 0].\n %\n % For any X, exactly one of ISFINITE(X), ISINF(X), or ISNAN(X)\n % is 1 for each element.\n %\n % See also SYM/ISFINITE, SYM/ISINF.\n \n % Convert inputs to SymExpression\n % X = SymExpression(X);\n \n % evaluate the operation in Mathematica and return the\n % expression string\n ret = eval_math(['Boole/@Map[SameQ, ' X.s ', NaN]'], 'math2matlab');\n \n y = logical(ret);\nend\n", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/symbolic/@SymExpression/isnan.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3775468750307285}} {"text": "function img = gen_img_mesh(size, res)\n img = zeros(size);\n qs = 1 : res : size(1);\n for i = 1 : numel(qs)\n% qs(i)\n img(ceil(qs(i)), :) = 1;\n end\n qs = 1 : res : size(2);\n for i = 1 : numel(qs)\n img(:, ceil(qs(i))) = 1;\n end\n img(end, :) = 1;\n img(:, end) = 1;\nend", "meta": {"author": "visva89", "repo": "pTVreg", "sha": "c359620e3c8435392db02354274d6c74d682d437", "save_path": "github-repos/MATLAB/visva89-pTVreg", "path": "github-repos/MATLAB/visva89-pTVreg/pTVreg-c359620e3c8435392db02354274d6c74d682d437/mutils/My/image_registration_utils/gen_img_mesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3775468750307285}} {"text": "function [distMat_cl,cluster_Groupi,ord,handles] = BF_ClusterDown(distMat,varargin)\n% BF_ClusterDown Reduce a pairwise distance matrix into smaller clusters.\n%\n% Yields a visualization of a pairwise distance matrix, including a set of\n% clusters of objects showing highly correlated behavior.\n%\n%---INPUTS:\n% distMat, a pairwise distance vector or matrix (e.g., generated from pdist)\n% [EXTRA OPTIONS]:\n% 'clusterThreshold', the threshold in the dendrogram for forming clusters\n% 'objectLabels', labels for axes\n% 'whatDistance', the type of distance metric used:\n% (i) 'corr' (default): provide 1-R, where R is correlation coefficient\n% (ii) 'abscorr': provide correlation distances, 1-R, but clustering is\n% done on abscorr distances (sign of R is ignored), and\n% correlations, R, are plotted\n% (iii) 'abscorr_ii': provide correlation distances, 1-R, but clustering\n% is done on abscorr distances (sign of R is ignored), and\n% absolute correlations, |R|, are plotted\n% (iv) 'general': provide any distance matrix, plots the distance matrix\n% 'linkageMeth', the linkage method to use (for Matlab's linkage function)\n%\n%---OUTPUTS:\n% distMat_cl, the distance matrix re-ordered by clustering\n% cluster_Groupi, the assignment of nodes to clusters (cell of indices)\n% ord, the ordering of objects in the dendrogram\n% handles, structure containing handles to plotting elements, f (figure),\n% ax1 (dendrogram), ax2 (pairwise correlation matrix)\n\n% ------------------------------------------------------------------------------\n% Copyright (C) 2020, Ben D. Fulcher ,\n% \n%\n% If you use this code for your research, please cite the following two papers:\n%\n% (1) B.D. Fulcher and N.S. Jones, \"hctsa: A Computational Framework for Automated\n% Time-Series Phenotyping Using Massive Feature Extraction, Cell Systems 5: 527 (2017).\n% DOI: 10.1016/j.cels.2017.10.001\n%\n% (2) B.D. Fulcher, M.A. Little, N.S. Jones, \"Highly comparative time-series\n% analysis: the empirical structure of time series and their methods\",\n% J. Roy. Soc. Interface 10(83) 20130048 (2013).\n% DOI: 10.1098/rsif.2013.0048\n%\n% This work is licensed under the Creative Commons\n% Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of\n% this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send\n% a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,\n% California, 94041, USA.\n% ------------------------------------------------------------------------------\n\n%-------------------------------------------------------------------------------\n% Check Inputs\n%-------------------------------------------------------------------------------\n% Custom plotting options using an input parser\ninputP = inputParser;\n\n% Cluster threshold:\ndefault_clusterThreshold = 0.2;\naddParameter(inputP,'clusterThreshold',default_clusterThreshold,@isnumeric);\n\n% Object labels for axes\ndefault_objectLabels = {};\naddParameter(inputP,'objectLabels',default_objectLabels,@iscell);\n\n% Default input is a distance matrix based on (Spearman) correlation coefficients\ndefault_whatDistance = 'corr';\naddParameter(inputP,'whatDistance',default_whatDistance,@ischar);\n\n% errth Set error threshold instead of just top number\n% default_errTh = 30;\n% addParameter(inputP,'errTh',default_errTh,@isnumeric);\n\n% miOrCorr\n% default_miOrCorr = 'corr'; % 'mi','corr'\n% addParameter(inputP,'miOrCorr',default_miOrCorr,@ischar);\n\n% clusterMeth, what method to use to do the clustering\n% default_clusterMeth = 'linkage'; % 'linkage', 'kmedoids'\n% addParameter(inputP,'clusterMeth',default_clusterMeth,@ischar);\n\n% linkageMeth, what method to use to do the linkage clustering\ndefault_linkageMeth = 'average';\naddParameter(inputP,'linkageMeth',default_linkageMeth,@ischar);\n\n% plotBig, whether to make a big plot\n% default_plotBig = 0;\n% check_plotBig = @(x) x==1 || x==0;\n% addParameter(inputP,'plotBig',default_plotBig,check_plotBig);\n\n%% Parse inputs:\nparse(inputP,varargin{:});\n\n% Make variables from results of input parser:\nclusterThreshold = inputP.Results.clusterThreshold;\nobjectLabels = inputP.Results.objectLabels;\nwhatDistance = inputP.Results.whatDistance;\n% errTh = inputP.Results.errTh;\n% miOrCorr = inputP.Results.miOrCorr;\n% clusterMeth = inputP.Results.clusterMeth;\nlinkageMeth = inputP.Results.linkageMeth;\n% plotBig = inputP.Results.plotBig;\nclear('inputP');\n\n%-------------------------------------------------------------------------------\n%% Process input distance data\n%-------------------------------------------------------------------------------\n[distVec,links,distVec0,numItems] = BF_DoLinkage(distMat,whatDistance,linkageMeth);\n\n% ------------------------------------------------------------------------------\n%% Compute dendrogram\n% ------------------------------------------------------------------------------\nf = figure('color','w');\nf.Position(3:4) = [1200,800];\n\n% Get the dendrogram reordering:\nax1 = subplot(1,6,6);\nord = BF_LinkageOrdering(distVec,links);\nh_dend = dendrogram(links,0,'Orientation','right','Reorder',ord);\nax1.YDir = 'reverse'; % needs to be reversed to match the reversed y-axis of the imagesc plot\n\n% Save the clustered distance matrix for output\ndistMat_cl = distMat(ord,ord);\n\n% Make the dendrogram look aight\nset(h_dend,'color','k','LineWidth',1)\nax1.YTickLabel = {};\nxlabel('Distance');\n\n%-------------------------------------------------------------------------------\n%% Cluster into groups:\n%-------------------------------------------------------------------------------\n% Cluster the dendrogram:\nT = cluster(links,'cutoff',clusterThreshold,'criterion','distance');\nnumClusters = max(T);\n\nfprintf(1,'%s distance-based clustering with %u clusters.\\n',whatDistance,numClusters);\n\n% Reorder members of each cluster by distance to other members of the cluster:\ncluster_Groupi = cell(numClusters,1);\nfor j = 1:numClusters\n cluster_Groupi{j} = find(T==j);\n if sum(T==j) > 1\n % Sort by increasing sum of distances to other members of the cluster\n [~,ix] = sort(sum(distMat(cluster_Groupi{j},cluster_Groupi{j})),'ascend');\n cluster_Groupi{j} = cluster_Groupi{j}(ix);\n end\nend\n\n% Reorder by decreasing cluster size\n[~,ix] = sort(cellfun(@length,cluster_Groupi),'descend');\ncluster_Groupi = cluster_Groupi(ix);\n\n% Select the closest to cluster centre in each group\nclusterCenters = cellfun(@(x) x(1),cluster_Groupi);\n\ncluster_Groupi_cl = cellfun(@(x) arrayfun(@(y)find(ord==y),x),cluster_Groupi,...\n 'UniformOutput',false);\nclusterCenters_cl = arrayfun(@(y) find(ord==y),clusterCenters);\n\n%-------------------------------------------------------------------------------\n%% Plot it\n%-------------------------------------------------------------------------------\n% Make a square distance matrix, and plot as a pairwise similarity matrix\n% (reordered by ord determined above)\nax2 = subplot(1,6,2:5);\nswitch whatDistance\ncase {'corr','abscorr_ii','corr_fast'}\n % Input is a correlation distance matrix, plot correlation coefficients:\n distMat0 = squareform(distVec0);\n BF_PlotCorrMat(1 - distMat0(ord,ord),'n1to1');\n rectangleColors = BF_GetColorMap('accent',5,true);\ncase 'abscorr'\n distMat0 = squareform(distVec0);\n % Input is correlation distance matrix, plot absolute correlation coefficients:\n BF_PlotCorrMat(abs(1 - distMat0(ord,ord)),'0to1');\n % (red colormap)\n rectangleColors = {[0,0,0],ones(1,3)*0.5};\ncase 'general'\n % Input is a general distance matrix (grayscale colormap):\n BF_PlotCorrMat(distMat_cl);\n rectangleColors = BF_GetColorMap('accent',5,true);\notherwise\n warning('No special plotting options for distance metric: ''%s''',whatDistance);\n BF_PlotCorrMat(distMat_cl);\n rectangleColors = BF_GetColorMap('accent',5,true);\nend\n\n%-------------------------------------------------------------------------------\n%% Add rectangles to group highly correlated clusters:\n%-------------------------------------------------------------------------------\nfor i = 1:numClusters\n % Label cluster borders:\n rectangle('Position',[min(cluster_Groupi_cl{i})-0.5,min(cluster_Groupi_cl{i})-0.5, ...\n length(cluster_Groupi_cl{i}),length(cluster_Groupi_cl{i})], ...\n 'EdgeColor',rectangleColors{1},'LineWidth',3);\n\n % Label cluster centers:\n rectangle('Position',[clusterCenters_cl(i)-0.5,clusterCenters_cl(i)-0.5,1,1], ...\n 'EdgeColor',rectangleColors{2},'LineWidth',3);\nend\n\n%-------------------------------------------------------------------------------\n%% Tweak plot details:\n%-------------------------------------------------------------------------------\n\n% Add object labels on y-axis if provided\nif ~isempty(objectLabels)\n ax2.YTick = 1:numItems;\n ax2.YTickLabel = objectLabels(ord);\n ax2.TickLabelInterpreter = 'none';\nelse\n ax2.YTick = [];\nend\n\n% Remove X-ticks\nax2.XTick = [];\n\n% Add a color bar:\ncB = colorbar('southoutside');\nswitch whatDistance\ncase {'corr','abscorr_ii'}\n cB.Label.String = 'Spearman correlation, \\rho';\ncase 'abscorr'\n cB.Label.String = 'Magnitude of Spearman correlation, |\\rho|';\ncase 'general'\n cB.Label.String = 'distance';\nend\n\n% Link axes:\nlinkaxes([ax1,ax2],'y');\n\n% Fix limits\nax2.YLim = [0.5,numItems+0.5];\n\n% Align with dendrogram\nax1.Position(1) = ax2.Position(1) + ax2.Position(3);\nax1.Position(4) = ax2.Position(4);\nax1.Position(2) = ax2.Position(2);\n\n% Handles\nif nargout > 3\n handles = struct();\n handles.f = f;\n handles.ax1 = ax1;\n handles.ax2 = ax2;\nend\n\nend\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/PeripheryFunctions/BF_ClusterDown.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307806984444, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3775468668626337}} {"text": "function [inF] = prepare_dcm(A,B,C,D,kernelGroup)\n% prepares matrices and indices vectors for DCM (without HRF)\n% function [options] = prepare_fullDCM(A,B,C,D,TR,microDT,homogeneous)\n% IN:\n% - A: binary matrix indicating where the connections are\n% - B: cell-array of binary matrices of modulatory effects\n% - C: binary matrix of input-state coupling\n% - D: cell-array of binay matrices for gating effects\n% OUT:\n% - inF: the optional input structure to @f_dcm4fmri\n\n%check for empty matrices\n\nif nargin<5\n kernelGroup=1;\nend\n\nnu = max([numel(B) size(C,2)]);\nnx1 = max([size(A,1) cellfun(@(cel) size(cel,1),B) size(C,1) cellfun(@(cel) size(cel,1),D) ]);\nnx2 = max([size(A,2) cellfun(@(cel) size(cel,2),B) size(C,1) cellfun(@(cel) size(cel,2),D) ]);\n\nif isempty(A)\n A = zeros(nx1,nx2);\nend\nfor i=1:nu\n if isempty(B) || numel(B) 4e12\nprint_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name,Nbefore,Ntot);\n\n\n% Prints .target file!\nk_Target = 2.5e4;\nprint_Lagrangian_Target_Pts(xLag,k_Target,struct_name,Nbefore);\n\n\n% Prints .mass file!\nk_Mass = 1e0; % 'spring' stiffness parameter for tethering\nMass = 0.5e-3; % \"MASS\" value for 'ghost' lag movement\nprint_Lagrangian_Mass_Pts(xLag,k_Mass,Mass,struct_name,Nbefore,Ntot);\n\n% Call function for initial concentration\n[Concentration]= give_Me_Initial_Concentration(Nx,Ny);\n\n% Prints .concentration file!\nprint_Concentration_Info(Nx,Ny,Concentration,struct_name);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called .vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints TARGET points to a file called .target\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name,Nbefore)\n\n %N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', Nbefore+3 );\n\n %Loops over any Channel/Cylinder Pts AND First 3 Pts Along LEAF\n for s = 1:Nbefore+3\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAMs (Torsional Springs) to a file called .beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name,Nbefore,Ntot)\n \n % k_Beam: beam stiffness\n % C: beam curvature\n \n if Nbefore ~= 0\n N = Ntot-Nbefore-1;\n else\n N = Ntot-Nbefore-2; % NOTE: Total number of beams \n end\n \n \n \n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n \n %------------------------------------------------\n % BEAM BETWEEN CYLINDER AND LEAF\n % (including those TETHERED in place by \n % TARGET PTS)\n %------------------------------------------------\n if Nbefore ~= 0 \n s1 = Nbefore;\n s2 = Nbefore+1;\n s3 = Nbefore+2;\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s1, s2, s3, k_Beam, C); \n end\n\n %------------------------------------------------\n % BEAM BETWEEN VERTICES ALONG \"LEAF\"\n % (including those TETHERED in place by \n % TARGET PTS)\n %------------------------------------------------\n for s = Nbefore+2:Ntot-1\n s1 = s-1;\n s2 = s;\n s3 = s+1;\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s1, s2, s3, k_Beam, C); \n end\n fclose(beam_fid); \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called .spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,struct_name,Nbefore,Ntot)\n\n if Nbefore ~= 0\n N = Ntot-Nbefore;\n else\n N = Ntot-Nbefore-1;\n end\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n \n %------------------------------------------------\n % SPRINGS BETWEEN CYLINDER AND LEAF\n % (including those TETHERED in place by \n % TARGET PTS)\n %------------------------------------------------\n if Nbefore ~= 0\n \n % springs between adjacent pts on cylinder\n for i=1:Nbefore\n if i.mass\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n \nfunction print_Lagrangian_Mass_Pts(xLag,kMass,Mass,struct_name,Nbefore,Ntot)\n\n %LOOP OVER LAG PTS FOR MASS PTS IN LAGRANGIAN INDEXING\n N = (Ntot-Nbefore);\n \n mass_fid = fopen([struct_name '.mass'], 'w');\n\n fprintf(mass_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = Nbefore+1:Ntot%Nbefore:Ntot\n fprintf(mass_fid, '%d %1.16e %1.16e\\n', s, kMass, Mass );\n end\n \n fclose(mass_fid); \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for channel\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Channel_Immersed_Boundary_Geometry(ds,L,w,Lx,Ly)\n\n% The immsersed structure is a channel %\nx = (Lx-L)/2:ds:(L+(Lx-L)/2); %xPts\nyBot = (Ly-w)/2; %yVal for bottom of Channel\nyTop = Ly - (Ly-w)/2; %yVal for top of Channel\n\nxLag = [x x];\nyLag = [yBot*ones(1,length(x)) yTop*ones(1,length(x))];\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry for cylinder\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLagN,yLagN] = give_Me_Cylinder_Immersed_Boundary_Geometry(ds,r,x0,y0)\n\n% The immsersed structure is a cylinder %\n\ndtheta = ds/ (4*r);\ntheta = 0; i=1;\nwhile theta < 2*pi\n xLag(i) = (x0-r-ds) + r*cos(theta);\n yLag(i) = y0 + r*sin(theta);\n theta = theta + dtheta;\n i=i+1;\nend\n\nfor i=1:length(xLag)\n xLagN(i) = xLag(end-(i-1));\n yLagN(i) = yLag(end-(i-1));\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints initial concentration to a file called\n% .concentration\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n\nfunction print_Concentration_Info(Nx,Ny,C,struct_name)\n\n con_fid = fopen([struct_name '.concentration'], 'w');\n\n for i=1:Ny\n for j=1:Nx\n fprintf(con_fid, '%1.16e ', C(i,j) );\n end\n fprintf(con_fid,'\\n');\n end \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: gives initial concentration gradient inside channel\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [C] = give_Me_Initial_Concentration(Nx,Ny)\n\nC = zeros(Ny,Nx);\n\n\n\n \n \n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_Concentration_Dynamics/Leaf_64/Leaf_Leaf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7431680086124812, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.377389531926168}} {"text": "function pathcosts(ch,~,~,controls,~)\nF = controls.F;\nch.add( 1e-3*F^2 );\n", "meta": {"author": "OpenOCL", "repo": "OpenOCL", "sha": "348fc31929791ddc8ed15a15733cf060a2e4674c", "save_path": "github-repos/MATLAB/OpenOCL-OpenOCL", "path": "github-repos/MATLAB/OpenOCL-OpenOCL/OpenOCL-348fc31929791ddc8ed15a15733cf060a2e4674c/+ocl/+examples/+pendulum/pathcosts.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3773895319261679}} {"text": "% This class is derived from:\n%\n% An implementation of direct collocation\n% Joel Andersson, 2016\n% https://github.com/casadi/casadi/blob/master/docs/examples/matlab/direct_collocation.m\n%\n% CasADi -- A symbolic framework for dynamic optimization.\n% Copyright (C) 2010-2014 Joel Andersson, Joris Gillis, Moritz Diehl,\n% K.U. Leuven. All rights reserved.\n% Copyright (C) 2011-2014 Greg Horn\n% Under GNU Lesser General Public License\n\nclassdef Collocation < handle\n\n properties\n\n daefun\n pathcostfun\n \n coefficients\n coeff_eval\n coeff_der\n coeff_int\n\n vars\n num_x\n num_z\n num_u\n num_p\n num_t\n\n num_i\n \n tau_root\n order\n end\n\n methods\n\n function self = Collocation(states, algvars, controls, parameters, statesOrder, daefun, pathcostfun, d)\n\n nx = length(states);\n nz = length(algvars);\n nu = length(controls);\n np = length(parameters);\n nt = d;\n \n v = ocl.types.Structure();\n v.addRepeated({'states', 'algvars'}, {states, algvars}, d);\n\n tau = [0 ocl.collocation.collocationPoints(d)];\n \n coeff = ocl.collocation.coefficients(tau);\n \n self.daefun = daefun;\n self.pathcostfun = pathcostfun;\n \n self.coefficients = coeff;\n self.coeff_eval = ocl.collocation.evalCoefficients(coeff, d, 1.0);\n self.coeff_der = ocl.collocation.evalCoefficientsDerivative(coeff, tau, d);\n self.coeff_int = ocl.collocation.evalCoefficientsIntegral(coeff, d, 1.0);\n\n self.vars = v;\n self.num_x = nx;\n self.num_z = nz;\n self.num_u = nu;\n self.num_p = np;\n self.num_t = nt;\n \n self.num_i = length(v);\n \n self.tau_root = tau;\n self.order = d;\n \n end\n\n end\nend\n", "meta": {"author": "OpenOCL", "repo": "OpenOCL", "sha": "348fc31929791ddc8ed15a15733cf060a2e4674c", "save_path": "github-repos/MATLAB/OpenOCL-OpenOCL", "path": "github-repos/MATLAB/OpenOCL-OpenOCL/OpenOCL-348fc31929791ddc8ed15a15733cf060a2e4674c/+ocl/+collocation/Collocation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7606506418255927, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3773540897927711}} {"text": "function CPT = CPD_to_CPT(CPD)\n% Compute the big CPT for an HHMM Q node (including F parents)\n% by combining internal transprob and startprob\n% function CPT = CPD_to_CPT(CPD)\n\nQsz = CPD.Qsz;\n\nif ~isempty(CPD.Fbelow_ndx)\n if ~isempty(CPD.Fself_ndx) % general case\n error('not implemented')\n else % no F from self, hence no startprob (top level)\n nps = length(CPD.dom_sz)-1; % num parents\n CPT = 0*myones(CPD.dom_sz);\n % when Fself=1, the CPT(i,j) = delta(i,j) for all k\n for k=1:prod(CPD.Qpsizes)\n Qps_vals = ind2subv(CPD.Qpsizes, k);\n ndx = mk_multi_index(nps+1, [CPD.Fbelow_ndx CPD.Qps_ndx], [1 Qps_vals]);\n CPT(ndx{:}) = eye(Qsz); % CPT(:,2,k,:) or CPT(:,k,2,:) etc\n end\n ndx = mk_multi_index(nps+1, CPD.Fbelow_ndx, 2);\n CPT(ndx{:}) = CPD.transprob; % we assume transprob is in topo order\n end\nelse % no F signal from below\n if ~isempty(CPD.Fself_ndx) % bottom level\n nps = length(CPD.dom_sz)-1; % num parents\n CPT = 0*myones(CPD.dom_sz);\n ndx = mk_multi_index(nps+1, CPD.Fself_ndx, 1);\n CPT(ndx{:}) = CPD.transprob;\n ndx = mk_multi_index(nps+1, CPD.Fself_ndx, 2);\n CPT(ndx{:}) = CPD.startprob;\n else % no F from self\n error('An hhmmQ node without any F parents is just a tabular_CPD')\n end\nend\n\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/CPDs/@hhmm2Q_CPD/CPD_to_CPT.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7853085808877581, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.3773240288046279}} {"text": "function data=createdatamatpb(data,E,Fs,win)\n%\n% Helper function to create an event triggered matrix from a single\n% channel of data. \n% Usage: data=createdatamatpb(data,E,Fs,win)\n% Inputs:\n% data (input time series as a single vector) - required\n% E (events to use as triggers) - required \n% Fs (sampling frequency of data) - required\n% win (window around triggers to use data matrix -[winl winr]) - required \n% e.g [1 1] uses a window starting 1 sec before E and\n% ending 1 sec after E if E is in secs\n% Note that E, Fs, and win must have consistent units \n%\n% Outputs:\n% data (event triggered data)\n%\nif nargin < 4\n error('Need all input arguments'); \nend\nNE=length(E);\nnwinl=round(win(1)*Fs);\nnwinr=round(win(2)*Fs);\nnE=floor(E*Fs)+1;\ndatatmp=[];\nfor n=1:NE;\n indx=nE(n)-nwinl:nE(n)+nwinr-1; \n datatmp=[datatmp data(indx)];\nend\ndata=datatmp;", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/chronux_2_12/spectral_analysis/pointbinned/createdatamatpb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3772976185652084}} {"text": "function [results] = vdpgm(given_data, opts)\n%\n% function [results] = vdpgm(given_data, opts)\n%\n\nstart_time = clock;\nif nargin == 1\n opts = struct();\nend\nif issparse(given_data)\n given_data = full(given_data);\nend\nif ~ isfield(opts, 'algorithm')\n % algorithm can be one of 'vdp', 'bj', 'cdp', 'csb' and 'non_dp'\n % vdp : variational DP\n % bj : Blei and Jordan\n % cdp : collapsed Dirichlet prior\n % csb : collapsed stick-breaking\n % non_dp : variational Bayes for Gaussian mixtures\n opts.algorithm = 'vdp';\nend\nif ~ isfield(opts, 'collapsed_means')\n opts.collapsed_means = 0;\nend\nif ~ isfield(opts, 'do_sort')\n opts.do_sort = '0';\nend\nif ~ isfield(opts, 'get_q_of_z')\n opts.get_q_of_z = 0;\nend\nif ~ isfield(opts, 'weight')\n opts.weight = 1;\nend\nif ~ isfield(opts, 'get_log_likelihood')\n opts.get_log_likelihood = 0;\nend\nif ~ isfield(opts, 'use_kd_tree')\n opts.use_kd_tree = 1;\nend\nif ~ isfield(opts, 'threshold')\n opts.threshold = 1.0e-5;\nend\nif ~ isfield(opts, 'sis')\n opts.sis = 0;\nend\nif ~ isfield(opts, 'initial_depth')\n opts.initial_depth = 3;\nend\nif ~ isfield(opts, 'initial_K')\n opts.initial_K = 1;\nend\nif ~ isfield(opts, 'ite')\n opts.ite = inf;\nend\nif ~ isfield(opts, 'do_split')\n opts.do_split = 0;\nend\nif ~ isfield(opts, 'do_merge')\n opts.do_merge = 0;\nend\nif ~ isfield(opts, 'do_greedy')\n opts.do_greedy = 1;\nend\nif ~ isfield(opts, 'max_target_ratio')\n opts.max_target_ratio = 0.5;\nend\nif ~ isfield(opts, 'init_of_split')\n % 'pc', 'rnd', 'rnd_close' or 'close_f'\n opts.init_of_split = 'pc';\nend\nif ~ isfield(opts, 'recursive_expanding_depth')\n opts.recursive_expanding_depth = 2;\nend\nif ~ isfield(opts, 'recursive_expanding_threshold')\n opts.recursive_expanding_threshold = 1.0e-1;\nend\nif ~ isfield(opts, 'recursive_expanding_frequency')\n opts.recursive_expanding_frequency = 3;\nend\nif isfield(opts, 'seed')\n rand('state', opts.seed);\nelse\n seed = rand('state');\n results.seed = seed;\nend\n\ndata.given_data = given_data;\nif opts.use_kd_tree\n partitions = init_kdtree_partitions(given_data, opts.initial_depth);\n data.kdtree = partitions;\nend\n\n% the hyperparameters of priors\nhp_prior = mk_hp_prior(data, opts);\n\nif isfield(opts, 'hp_posterior')\n opts.use_kd_tree = 0;\n if opts.get_q_of_z\n results.q_of_z = mk_q_of_z(data, opts.hp_posterior, opts.hp_prior, opts);\n end\n if opts.get_log_likelihood\n results.log_likelihood = mk_log_likelihood(data, opts.hp_posterior, opts.hp_prior, opts);\n end\n if isfield(opts, 'test_data')\n results.predictive_posterior = log_predictive_dist(data, opts.q_of_z, opts.hp_posterior, ...\n opts.hp_prior, opts);\n end\n return\nend\n\nif opts.sis > 0\n q_of_z = sequential_importance_sampling(data, hp_prior, opts);\nelseif isfield(opts, 'q_of_z')\n q_of_z = opts.q_of_z;\nelse\n q_of_z = rand_q_of_z(data, opts.initial_K, opts);\nend\n\nhp_posterior = mk_hp_posterior(data, q_of_z, hp_prior, opts);\nif opts.do_greedy\n [free_energy, hp_posterior, data] = greedy(data, hp_posterior, hp_prior, opts);\nelse\n [free_energy, hp_posterior, data] = split_merge(data, hp_posterior, hp_prior, opts);\nend\n\nresults.algorithm = opts.algorithm;\nresults.elapsed_time = etime(clock, start_time);\nresults.free_energy = free_energy;\nresults.hp_prior = hp_prior;\nresults.hp_posterior = hp_posterior;\nresults.K = length(hp_posterior.eta);\nresults.opts = opts;\nif opts.get_q_of_z\n results.q_of_z = mk_q_of_z(data, hp_posterior, hp_prior, opts);\n if opts.use_kd_tree\n results.q_of_z = mk_non_kdtree_q_of_z(data, results.q_of_z);\n end\nend\nif opts.get_log_likelihood\n results.log_likelihood = mk_log_likelihood(data, hp_posterior, hp_prior, opts);\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction log_likelihood = mk_log_likelihood(data, hp_posterior, hp_prior, opts);\n[D,N] = size(data.given_data);\nK = size(hp_posterior.m, 2);\nlog_likelihood = zeros(K,N);\nE_pi = mk_E_pi(hp_posterior, hp_prior, opts);\nfor c=1:K\n mu = hp_posterior.m(:,c);\n f = hp_posterior.eta(c) + 1 - D;\n Sigma = (hp_posterior.xi(c)+1) / hp_posterior.xi(c) / f * hp_posterior.B{c};\n log_likelihood(c,:) = log_no_w(E_pi(c)) + logmvtpdf(data.given_data, mu, f, Sigma);\nend\nlog_likelihood = log_sum_exp(log_likelihood, 1); % 1 by N\nlog_likelihood = sum(log_likelihood, 2);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction log_prob = log_predictive_dist(data, q_of_z, hp_posterior, hp_prior, opts);\nif opts.use_kd_tree\n N = length(data.kdtree);\n D = size(data.kdtree(1).sum_x, 1);\n Na = [data.kdtree(:).N];\n if isequal(opts.algorithm, 'vdp')\n true_Nc = Na*q_of_z; % 1*K\n q_of_z(:,end) = 0;\n end\n Nc = Na*q_of_z; % 1*K\n sum_x = [data.kdtree(:).sum_x] * q_of_z;\nelse\n [D,N] = size(data.given_data);\n if isequal(opts.algorithm, 'vdp')\n true_Nc = sum(q_of_z, 1); % 1*K\n q_of_z(:,end) = 0;\n end\n Nc = sum(q_of_z, 1); % 1*K\n sum_x = data.given_data * q_of_z;\nend\nE_pi = mk_E_pi(hp_posterior, hp_prior, opts);\nm = (sum_x + repmat(hp_prior.xi0*hp_prior.m0, 1, size(sum_x,2))) ./ repmat(Nc, D, 1);\nE_pi(find(Nc==0)) = 0;\nn = size(opts.test_data, 2);\nlog_prob = zeros(size(m,2), n);\nfor c=1:size(m,2)\n f = hp_posterior.eta(c) + 1 - D;\n sigma = hp_posterior.B{c} * (hp_posterior.xi(c)+1) / hp_posterior.xi(c) / f;\n if E_pi(c) > 0\n log_prob(c,:) = log(E_pi(c)) + log_T_dist(opts.test_data, m(:,c), ...\n sigma, f);\n else\n log_prob(c,:) = -inf;\n end\nend\nlog_prob = log_sum_exp(log_prob,1);\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction log_prob = log_T_dist(X, m, sigma, f);\n% X is a D by n matrix\n[D,n] = size(X);\ndiff = X-repmat(m,1,n);\nlog_prob = gammaln((f+D)/2) ...\n - D/2*log(f*pi) ...\n - gammaln(f/2) ...\n - 0.5*detln(sigma) ...\n - (f+D)/2*log(1 + sum( diff .* ((f*sigma) \\ diff), 1));\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction quad_term = mk_quad_term(data, q_of_z, hp_prior, opts)\n% calculate the quad_term in marginalizing out means\n% quad_term : D by D by K\n%\n[N, K] = size(q_of_z);\nD = size(data.given_data, 1);\nNc = sum(q_of_z, 1); % 1 by K\nxi = Nc + hp_prior.xi0;\nf0 = 1 ./ (xi.^2);\nf1 = - 2 ./ (xi.^3);\nf2 = 3 ./ (xi.^4);\nv = q_of_z.*(1 - q_of_z); % N by K\nc = v.*((1-q_of_z).^2 + q_of_z.^2);\nq = v.*((1-q_of_z).^3 + q_of_z.^3);\np_x = data.given_data * q_of_z; % D by K\nv_x = data.given_data * v; % D by K\nc_x = data.given_data * c; % D by K\nv_p_x = data.given_data * (q_of_z + v); % D by K\nc_p_x = data.given_data * (q_of_z + c); % D by K\nfor t=1:K\n first_term = f0(t) ...\n *((repmat(v(:,t)', D, 1).*data.given_data)*data.given_data' ...\n + p_x(:,t)*p_x(:,t)');\n second_term = f1(t) ...\n *((repmat(c(:,t)', D, 1).*data.given_data)*data.given_data' ...\n + v_p_x(:,t)*v_p_x(:,t)' - v_x(:,t)*v_x(:,t)' - p_x(:,t)*p_x(:,t)');\n tmp = q(:,t) - 3*v(:,t).^2 + v(:,t)*sum(v(:,t));\n third_term = f2(t) ...\n *((repmat(tmp', D, 1).*data.given_data)*data.given_data' ...\n + c_p_x(:,t)*c_p_x(:,t)' - c_x(:,t)*c_x(:,t)' - p_x(:,t)*p_x(:,t)' ...\n + 2*v_x(:,t)*v_x(:,t)' ...\n + sum(v(:,t))*p_x(:,t)*p_x(:,t)');\n quad_term(:,:,t) = first_term + second_term + third_term;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction E_log_p_of_z_given_other_z = mk_E_log_p_of_z_given_other_z(hp_posterior, hp_prior, opts);\n% returns E[log p(z_n|Z^-n)]_q(Z^-n)\n% E_log_p_of_z_given_other_z : N by K\nq_of_z = hp_posterior.q_of_z;\n[N,K] = size(q_of_z);\n[E_Nc_minus_n, V_Nc_minus_n] = mk_E_Nc_minus_n(q_of_z); % N by K\nuse_variance = 1;\nif isequal(opts.algorithm, 'cdp')\n if use_variance\n E_log_p_of_z_given_other_z = ...\n log(E_Nc_minus_n + hp_prior.alpha/K) ...\n - 0.5*V_Nc_minus_n./((E_Nc_minus_n+hp_prior.alpha/K).^2) ...\n - log(N - 1 + hp_prior.alpha);\n else\n E_log_p_of_z_given_other_z = ...\n log(E_Nc_minus_n + hp_prior.alpha/K) ...\n - log(N - 1 + hp_prior.alpha);\n end\nelseif isequal(opts.algorithm, 'csb')\n E_Nc_minus_n_cumsum_geq = fliplr(cumsum(fliplr(E_Nc_minus_n), 2));\n q_of_z_cumsum_geq = fliplr(cumsum(fliplr(q_of_z), 2));\n dummy = q_of_z_cumsum_geq.*(1-q_of_z_cumsum_geq);\n v_Nc_cumsum_geq = repmat(sum(dummy, 1), N, 1) - dummy;\n\n E_Nc_minus_n_cumsum = E_Nc_minus_n_cumsum_geq - E_Nc_minus_n;\n q_of_z_cumsum = q_of_z_cumsum_geq - q_of_z;\n dummy = q_of_z_cumsum.*(1-q_of_z_cumsum);\n v_Nc_cumsum = repmat(sum(dummy, 1), N, 1) - dummy;\n \n if use_variance\n first_term = ...\n (log(1+E_Nc_minus_n) ...\n - 0.5*V_Nc_minus_n./((1+E_Nc_minus_n).^2) ...\n - log(1+hp_prior.alpha+E_Nc_minus_n_cumsum_geq) ...\n + 0.5*v_Nc_cumsum_geq./((1+hp_prior.alpha+E_Nc_minus_n_cumsum_geq).^2));\n first_term(:,end) = 0;\n dummy = log(hp_prior.alpha+E_Nc_minus_n_cumsum) ...\n - 0.5*v_Nc_cumsum./((hp_prior.alpha+E_Nc_minus_n_cumsum).^2) ...\n - log(1+hp_prior.alpha+E_Nc_minus_n_cumsum_geq) ...\n + 0.5*v_Nc_cumsum_geq./((1+hp_prior.alpha+E_Nc_minus_n_cumsum_geq).^2);\n second_term = cumsum(dummy, 2) - dummy;\n else\n first_term = log(1+E_Nc_minus_n) - log(1+hp_prior.alpha+E_Nc_minus_n_cumsum_geq);\n first_term(:,end) = 0;\n dummy = log(hp_prior.alpha+E_Nc_minus_n_cumsum) ...\n - log(1+hp_prior.alpha+E_Nc_minus_n_cumsum_geq);\n second_term = cumsum(dummy, 2) - dummy;\n end\n E_log_p_of_z_given_other_z = first_term + second_term;\nelse\n error('unsupported algorithm');\nend\n% Gaussian approximation may not give a proper distribution.\n% note. E[log p] is not need to be proper\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [E_Nc_minus_n, V_Nc_minus_n] = mk_E_Nc_minus_n(q_of_z)\n% returns E[Nc^-n]; the expected value of Nc-n; N by K\n% V[Nc^-n]; the variance of Nc-n; N by K\n% q_of_z : N by K\nN = size(q_of_z, 1);\nE_Nc_minus_n = repmat(sum(q_of_z, 1), N, 1) - q_of_z;\ntmp = q_of_z.*(1-q_of_z);\nV_Nc = sum(tmp, 1);\nV_Nc_minus_n = repmat(V_Nc, N, 1) - tmp;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction E_pi = mk_E_pi(hp_posterior, hp_prior, opts);\nif isequal(opts.algorithm, 'cdp') | isequal(opts.algorithm, 'non_dp')\n E_pi = hp_posterior.tilde_alpha / sum(hp_posterior.tilde_alpha);\nelseif isequal(opts.algorithm, 'bj')\n second_term = [0 cumsum(log(hp_posterior.gamma(2,:)) - log(sum(hp_posterior.gamma)),2)]; % 1 by K\n E_pi = exp([(log(hp_posterior.gamma(1,:)) ...\n - log(sum(hp_posterior.gamma,1)) ...\n + second_term(1:end-1)) ...\n , second_term(end)]); % 1 by K\nelseif isequal(opts.algorithm, 'vdp')\n opts_tmp = opts;\n opts_tmp.algorithm = 'bj';\n E_pi = mk_E_pi(hp_posterior, hp_prior, opts_tmp);\n E_pi(end) = max(1 - sum(E_pi(1:end-1)), 0);\nelseif isequal(opts.algorithm, 'csb')\n [N,K] = size(hp_posterior.q_of_z);\n a = 1 + hp_posterior.Nc; % 1 by K\n b = hp_prior.alpha + N - cumsum(hp_posterior.Nc, 2); % 1 by K\n first_term = a ./ (a+b);\n first_term(end) = 1;\n second_term = cumprod(b./(a+b)) ./ (b./(a+b));\n E_pi = first_term .* second_term;\nelse\n error('not supported algorithm')\nend\n\n%\n% p_TSB(z_test|Z)\n%\n% \\begin{align*}\n% p_{\\text{TSB}}(Z) =& \n% \\alpha^{T-1}\n% \\prod_{ii})}\n% {\\Gamma(1+\\alpha+N_{\\geq i})}\n% \\\\\n% p_{\\text{TSB}}(z_{test}=t,Z) = &\n% \\left(\n% \\frac{1+N_t}{1+\\alpha+N_{\\geq t}}\n% \\right)^{\\mathbb{I}(tj}}\n% {1+\\alpha+N_{\\geq j}}\n% \\right\\}\n% \\alpha^{T-1}\n% \\prod_{ii})}\n% {\\Gamma(1+\\alpha+N_{\\geq i})}\n% \\\\\n% p_{\\text{TSB}}(z_{test}=t|Z) = &\n% \\left(\n% \\frac{1+N_t}{1+\\alpha+N_{\\geq t}}\n% \\right)^{\\mathbb{I}(tj}}\n% {1+\\alpha+N_{\\geq j}}\n% \\end{align*}\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction q_of_z = sequential_importance_sampling(data, hp_prior, opts);\ndisp('start SIS.')\nN = size(data.given_data, 2);\nfor r = 1:opts.sis\n I = randperm(N);\n% I = I(1:ceil(N*0.1));\n data_r.given_data = data.given_data(:,I);\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% data_r_sub.given_data = data_r.given_data(:,1);\n% q_of_z = ones(1,opts.initial_K) / opts.initial_K;\n% hp_posterior = mk_hp_posterior(data_r_sub, q_of_z, hp_prior, opts);\n% for n = 1:N\n% data_r_sub.given_data = data_r.given_data(:,1:n);\n% q_of_z = mk_q_of_z(data_r_sub, hp_posterior, hp_prior, opts);\n% q_of_z = sort_q_of_z(data, q_of_z, opts); \n% hp_posterior = mk_hp_posterior(data_r_sub, q_of_z, hp_prior, opts);\n% end\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n q_of_z = [];\n for n = 1:size(data_r.given_data,2)\n data_r_sub.given_data = data_r.given_data(:,1:n);\n q_of_z(n,:) = ones(1, opts.initial_K) / opts.initial_K;\n hp_posterior = mk_hp_posterior(data_r_sub, q_of_z, hp_prior, opts);\n q_of_z = mk_q_of_z(data_r_sub, hp_posterior, hp_prior, opts);\n% q_of_z = sort_q_of_z(data, q_of_z, opts); \n end\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n hist(r).hp_posterior = hp_posterior;\n hist(r).free_energy = mk_free_energy(data, hp_posterior, hp_prior, opts);\n [min_f, best_r] = min([hist(:).free_energy]);\n hp_posterior = hist(best_r).hp_posterior;\n disp(['SIS: ' num2str(r) '; best f = ' num2str(min_f) '; best Nc = ' num2str(hp_posterior.Nc)])\nend\ndisp('SIS done.')\nq_of_z = mk_q_of_z(data, hp_posterior, hp_prior, opts);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction nonkdtree_q_of_z = mk_non_kdtree_q_of_z(data, q_of_z);\nnonkdtree_q_of_z = zeros(size(data.given_data,2), size(q_of_z, 2)); % N*K\nfor a=1:length(data.kdtree);\n nonkdtree_q_of_z(data.kdtree(a).indices,:) = repmat(q_of_z(a,:), length(data.kdtree(a).indices), 1);\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [free_energy, hp_posterior, data] = greedy(data, hp_posterior, hp_prior, opts);\nfree_energy = mk_free_energy(data, hp_posterior, hp_prior, opts);\ndisp_status(free_energy, hp_posterior, opts);\nwhile 1\n disp('finding the best one....')\n [new_free_energy, new_hp_posterior, new_data, c] = find_best_splitting(data, ...\n hp_posterior, ...\n hp_prior, opts);\n if c == -1\n break\n end\n disp(['finding the best one.... done. component ' num2str(c) ' was split.'])\n disp_status(new_free_energy, new_hp_posterior, opts);\n [new_free_energy, new_hp_posterior, new_data] = update_posterior2(new_data, ...\n new_hp_posterior, ...\n hp_prior, opts, 1, opts.ite);\n if free_energy_improved(free_energy, new_free_energy, 0, opts) == 0\n break\n end\n free_energy = new_free_energy;\n hp_posterior = new_hp_posterior;\n data = new_data;\nend\ndisp_status(free_energy, hp_posterior, opts);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [free_energy, hp_posterior, data, c] = find_best_splitting(data, ...\n hp_posterior, ...\n hp_prior, opts);\nc_max = 10;\nK = size(hp_posterior.m, 2);\ncandidates = find(hp_posterior.Nc>2);\nif isempty(candidates)\n free_energy = 0;\n c = -1;\n return\nend\nq_of_z = mk_q_of_z(data, hp_posterior, hp_prior, opts);\nnew_free_energy = ones(1,max(candidates))*inf;\n%%%%%%%%%%%%%%%%%%%%%\nfc = mk_E_log_q_p_eta(data, hp_posterior, hp_prior, opts);\nlog_lambda = mk_log_lambda(data, hp_posterior, hp_prior, opts);\n%%%%%%%%%%%%%%%%%%%%%\nfor c = candidates(1:min(c_max, length(candidates)))\n disp(['splitting ' num2str(c) '...'])\n [new_data(c), new_q_of_z, info] = split(c, data, q_of_z, hp_posterior, hp_prior, opts, 1);\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n new_c = info.new_c;\n relating_n = find(sum(new_q_of_z(:,[c new_c]),2) > 0.5);\n if isempty(relating_n)\n continue\n end\n new_K = size(new_q_of_z, 2);\n sub_q_of_z = new_q_of_z(relating_n, [c new_c new_K]);\n if opts.use_kd_tree\n sub_data.kdtree = new_data(c).kdtree(relating_n);\n else\n sub_data.given_data = new_data(c).given_data(:,relating_n);\n end\n sub_hp_posteior = mk_hp_posterior(sub_data, sub_q_of_z, hp_prior, opts);\n [sub_f, sub_hp_posteior, dummy, sub_q_of_z] = update_posterior2(sub_data, ...\n sub_hp_posteior, ...\n hp_prior, opts, 0, 10, 0);\n if size(sub_q_of_z,2) < 3\n continue\n end\n if length(find(sum(sub_q_of_z,1)<1.0e-10)) > 1\n continue\n end\n new_log_lambda = log_lambda;\n if opts.use_kd_tree\n updated_data.kdtree = new_data(c).kdtree(info.updated_I);\n new_log_lambda(info.updated_I,:) = mk_log_lambda(updated_data, hp_posterior, hp_prior, opts);\n end\n sub_log_lambda = mk_log_lambda(new_data(c), sub_hp_posteior, hp_prior, opts);\n insert_indices = [c new_c new_K:(new_K+size(sub_q_of_z,2)-3)];\n new_log_lambda(:,insert_indices) = sub_log_lambda;\n new_fc = fc;\n new_fc(insert_indices) = mk_E_log_q_p_eta(sub_data, sub_hp_posteior, hp_prior, opts);\n new_free_energy(c) = mk_free_energy(new_data(c), sub_hp_posteior, hp_prior, opts, new_fc, new_log_lambda);\n new_q_of_z(relating_n,:) = 0;\n new_q_of_z(relating_n,insert_indices) = sub_q_of_z;\n new_q_of_z_cell{c} = new_q_of_z;\nend\n[free_energy, c] = min(new_free_energy);\nif isinf(free_energy)\n c = -1;\n return\nend\ndata = new_data(c);\nhp_posterior = mk_hp_posterior(data, new_q_of_z_cell{c}, hp_prior, opts);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [free_energy, hp_posterior, data] = split_merge(data, hp_posterior, hp_prior, opts);\n%\n% split: \n% tdp: if an empty cluster exists, split is available.\n% otherwise, make a new empty cluster. => K<-K+1.\n%\n% non-dp: if \n%\nc_max = 3;\n[free_energy, hp_posterior] = update_posterior2(data, hp_posterior, hp_prior, opts, 0, opts.ite);\nwhile 1\n K = size(hp_posterior.m, 2);\n new_free_energy = inf;\n %%% split\n if ~ opts.do_split\n break\n end\n disp(['### start splitting'])\n [dummy, candidates_for_splliting] = sort(hp_posterior.Nc, 2, 'descend');\n candidates_for_splliting(find(hp_posterior.Nc(candidates_for_splliting)<1)) = [];\n q_of_z = mk_q_of_z(data, hp_posterior, hp_prior, opts); % N*K\n for c=candidates_for_splliting(1:min(c_max, length(candidates_for_splliting)))\n disp(['### start splitting k=' num2str(c) '...'])\n [new_data, new_q_of_z] = split(c, data, q_of_z, hp_posterior, hp_prior, opts);\n new_hp_posterior = mk_hp_posterior(new_data, new_q_of_z, hp_prior, opts);\n [new_free_energy, new_hp_posterior, new_data] = update_posterior2(new_data, ...\n new_hp_posterior, ...\n hp_prior, ...\n opts, 1);\n if free_energy_improved(free_energy, new_free_energy, 0, opts)\n disp(['### splitting k=' num2str(c) ' improved the free energy. ' ...\n num2str(free_energy) ' -> ' num2str(new_free_energy)])\n break\n else\n disp(['### splitting k=' num2str(c) ' did not improve the free energy.'])\n end\n end\n disp('### end splitting')\n if free_energy_improved(free_energy, new_free_energy, 0, opts)\n free_energy = new_free_energy;\n hp_posterior = new_hp_posterior;\n data = new_data;\n continue\n end\n if ~ opts.do_merge\n break\n end\n %%% merge\n disp(['### start merging'])\n q_of_z = mk_q_of_z(data, hp_posterior, hp_prior, opts); % N*K\n candidates_for_merging = mkcandidates_to_merge(q_of_z'); % 2*#pairs\n for i=1:min(c_max, size(candidates_for_merging,2))\n pair = candidates_for_merging(:,i);\n c1 = pair(1); c2 = pair(2);\n disp(sprintf('### start merging c1=%d, c2=%d ...', c1, c2))\n new_q_of_z = q_of_z;\n new_q_of_z(:,c1) = new_q_of_z(:,c1) + new_q_of_z(:,c2);\n new_q_of_z(:,c2) = zeros(size(new_q_of_z,1),1);\n new_hp_posterior = mk_hp_posterior(data, new_q_of_z, hp_prior, opts);\n [new_free_energy, new_hp_posterior] = update_posterior2(data, ...\n new_hp_posterior, ...\n hp_prior, opts);\n if free_energy_improved(free_energy, new_free_energy, 0, opts)\n disp(sprintf('### merging c1=%d, c2=%d improved the free energy. %0.5g -> %0.5g', ...\n c1, c2, free_energy, new_free_energy))\n break\n else\n disp(sprintf('### merging c1=%d, c2=%d did not improve the free energy.', c1, c2))\n end\n end\n disp(['### end merging'])\n if free_energy_improved(free_energy, new_free_energy, 0, opts)\n free_energy = new_free_energy;\n hp_posterior = new_hp_posterior;\n continue\n end\n break\nend % while 1\ndisp_status(free_energy, hp_posterior, opts);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction log_p_of_x_given_c = mk_map_log_p_of_x_given_c(data, clusters, hp_posterior, opts);\n% clusters: e.g [1:K]\n[D,N] = size(data);\nK = length(clusters);\nlog_p_of_x_given_c = zeros(K,N);\nfor i = 1:K\n c = clusters(i);\n m = hp_posterior.m(:,c);\n precision = hp_posterior.inv_B(:,:,c)*hp_posterior.eta(c);\n d = data - repmat(m, 1, N);\n log_p_of_x_given_c(i,:) = (-D*0.5)*log(2*pi)+0.5*detln(precision)-0.5*sum(d.*(precision*d),1);\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [new_data, new_q_of_z, info] = split(c, data, q_of_z, ...\n hp_posterior, hp_prior, opts, update_kdtree)\n% q_of_z: N*K\nif nargin < 7\n update_kdtree = 1;\nend\nnew_data = data;\nif opts.use_kd_tree & update_kdtree\n [dummy, indices] = max(q_of_z,[],2);\n target_partitions = find(indices==c)';\n if ~ isempty(target_partitions)\n m = [data.kdtree(target_partitions).mean];\n log_p_of_m_given_c = mk_map_log_p_of_x_given_c(m, c, hp_posterior, opts); % 1*|target_partitions|\n [dummy, I] = sort(log_p_of_m_given_c, 2, 'descend');\n target_partitions = target_partitions(I(1:ceil(length(I)*opts.max_target_ratio)));\n % target_partitions = find(q_of_z(:,c)>0.01)';\n [new_data, q_of_z, updated_I] = expand_all_nodes(new_data, q_of_z, hp_posterior, ...\n hp_prior, target_partitions, opts);\n info.updated_I = updated_I;\n else\n info.updated_I = [];\n end\nend\nif isequal(opts.init_of_split, 'pc') % principal eigenvector\n if opts.use_kd_tree\n arg1_data = [new_data.kdtree(:).mean];\n else\n arg1_data = new_data.given_data;\n end\n dir = divide_by_principal_component(arg1_data, ...\n hp_posterior.B{c}/hp_posterior.eta(c), ...\n hp_posterior.m(:,c));\n q_of_z_c1 = zeros(size(q_of_z,1),1);\n q_of_z_c2 = q_of_z(:,c);\n I = find(dir>=0);\n q_of_z_c1(I) = q_of_z(I,c);\n q_of_z_c2(I) = 0;\nelse\n q_of_z_c = q_of_z(:,c);\n if isequal(opts.init_of_split, 'rnd') % random\n r = rand(size(q_of_z,1),1);\n elseif isequal(opts.init_of_split, 'rnd_close') % make close clusters\n r = 0.5 + (rand(size(q_of_z,1),1)-0.5)*0.01;\n elseif isequal(opts.init_of_split, 'close_f') % one is almost zero.\n r = 0.98 + rand(size(q_of_z,1),1)*0.01;\n else\n init_of_split = opts.init_of_split\n error('unknown option')\n end\n q_of_z_c1 = q_of_z_c.*r;\n q_of_z_c2 = q_of_z_c.*(1-r);\nend\nnew_q_of_z = zeros(size(q_of_z,1), size(q_of_z,2)+1);\nnew_q_of_z(:,[1:end-2 end]) = q_of_z;\nnew_q_of_z(:,c) = q_of_z_c1;\nnew_c = size(new_q_of_z, 2) - 1;\nnew_q_of_z(:,new_c) = q_of_z_c2;\ninfo.new_c = new_c;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [new_data, new_q_of_z, updated_I] = expand_all_nodes(data, ...\n q_of_z, hp_posterior, ...\n hp_prior, ...\n target_partitions, opts);\nif size(target_partitions, 1) ~= 1\n error('target_partitions must be a row vector.')\nend\nnew_data = data;\nfor a=target_partitions\n if isempty(data.kdtree(a).children)\n children = mk_children_of_partition(data.kdtree(a));\n data.kdtree(a).children = children;\n else\n children = data.kdtree(a).children;\n end\n if length(children) == 1\n continue\n end\n new_data.kdtree(a) = children(1);\n new_data.kdtree(end+1) = children(2);\nend % while a <= length(data.kdtree)\nupdated_I = [target_partitions length(data.kdtree)+1:length(new_data.kdtree)];\nsub_data.given_data = data.given_data;\nsub_data.kdtree = new_data.kdtree(updated_I);\nsub_q_of_z = mk_q_of_z(sub_data, hp_posterior, hp_prior, opts);\nnew_q_of_z = zeros(length(new_data.kdtree),size(q_of_z,2));\nnew_q_of_z(1:size(q_of_z,1),:) = q_of_z;\nnew_q_of_z(updated_I,:) = sub_q_of_z;\ndisp(['### building kd-tree done; #partition ' num2str(length(data.kdtree)) ...\n ' -> ' num2str(length(new_data.kdtree))])\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [data, q_of_z] = expand_recursively_until_convergence(data, ...\n q_of_z, hp_posterior, ...\n hp_prior, opts);\nkdtree_size = length(data.kdtree);\nfor a=1:length(data.kdtree)\n [data, q_of_z] = expand_recursively_until_convergence2(data, a, ...\n q_of_z, hp_posterior, ...\n hp_prior, opts, ...\n opts.recursive_expanding_depth);\nend\n[prob, best_c] = max(q_of_z, [], 2);\n% for c=1:size(q_of_z,2);\n% I_n = \n% end\ndisp(['### building kd-tree done; #partition ' num2str(kdtree_size) ...\n ' -> ' num2str(length(data.kdtree))])\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [data, q_of_z] = expand_recursively_until_convergence2(data, a, ...\n q_of_z, hp_posterior, ...\n hp_prior, opts, depth);\n% q_of_z : N*K\nif depth == 0\n return\nend\nif isempty(data.kdtree(a).children)\n children = mk_children_of_partition(data.kdtree(a));\n data.kdtree(a).children = children;\nelse\n children = data.kdtree(a).children;\nend\nif length(children) == 1\n return\nend\nsub_data.given_data = data.given_data;\nsub_data.kdtree = children;\nsub_q_of_z = mk_q_of_z(sub_data, hp_posterior, hp_prior, opts); % 2*K\ndiff = sub_q_of_z - repmat(q_of_z(a,:), 2, 1);\nif sum(sum(diff.*diff, 1), 2)/prod(size(sub_q_of_z)) < opts.recursive_expanding_threshold\n return\nend\nb = length(data.kdtree)+1;\ndata.kdtree(a) = children(1);\ndata.kdtree(b) = children(2);\nq_of_z([a b],:) = sub_q_of_z;\n[data, q_of_z] = expand_recursively_until_convergence2(data, a, ...\n q_of_z, hp_posterior, ...\n hp_prior, opts, depth-1);\n[data, q_of_z] = expand_recursively_until_convergence2(data, b, ...\n q_of_z, hp_posterior, ...\n hp_prior, opts, depth-1);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [free_energy, hp_posterior, data, q_of_z] = update_posterior2(data, hp_posterior, hp_prior, opts, upkdtree, ite, do_sort);\n% update q_of_z: N*K\ndisp(['### updating posterior ...'])\nfree_energy = inf;\nif nargin == 4\n upkdtree = 0;\nend\nif nargin < 6\n ite = inf;\nend\nif nargin < 7\n do_sort = 1;\nend\ni = 0;\nlast_Nc = 0;\nstart_sort = 0;\nwhile 1\n i = i+1;\n [new_free_energy, log_lambda] = mk_free_energy(data, hp_posterior, hp_prior, opts);\n disp_status(new_free_energy, hp_posterior, opts);\n if (~isinf(ite) && i>=ite) || ...\n (isinf(ite) && free_energy_improved(free_energy, new_free_energy, 0, opts) == 0)\n free_energy = new_free_energy;\n if do_sort && opts.do_sort && ~ start_sort\n start_sort = 1;\n else\n break\n end\n end\n last_Nc = hp_posterior.Nc;\n free_energy = new_free_energy;\n [q_of_z, data] = mk_q_of_z(data, hp_posterior, hp_prior, opts, log_lambda);\n freq = opts.recursive_expanding_frequency;\n if opts.use_kd_tree & upkdtree & (freq==1 | mod(i,freq)==1)\n [data, q_of_z] = expand_recursively_until_convergence(data, ...\n q_of_z, ...\n hp_posterior, ...\n hp_prior, opts);\n end\n % check if the last component is small enough\n if isequal(opts.algorithm, 'vdp') & sum(q_of_z(:,end)) > 1.0e-20\n q_of_z(:,end+1) = 0;\n end\n if start_sort\n q_of_z = sort_q_of_z(data, q_of_z, opts);\n end\n if isequal(opts.algorithm, 'vdp') & sum(q_of_z(:,end-1)) < 1.0e-10\n q_of_z(:,end-1) = [];\n end\n hp_posterior = mk_hp_posterior(data, q_of_z, hp_prior, opts);\nend\n% disp_status(free_energy, hp_posterior, opts);\ndisp(['### updating posterior ... done.'])\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [q_of_z, I] = sort_q_of_z(data, q_of_z, opts);\ndisp('sorting...')\nif opts.use_kd_tree\n Nc = [data.kdtree(:).N]*q_of_z; % 1*K\nelse\n Nc = sum(q_of_z, 1); % 1*K\nend\nif isequal(opts.algorithm, 'vdp')\n [dummy,I] = sort(Nc(1:end-1), 2, 'descend');\n I(end+1) = length(Nc);\nelse\n [dummy,I] = sort(Nc, 2, 'descend');\nend\nq_of_z = q_of_z(:,I);\ndisp('sorting... done.')\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction disp_status(free_energy, hp_posterior, opts);\nif isequal(opts.algorithm, 'vdp')\n Nc = hp_posterior.true_Nc;\nelse\n Nc = hp_posterior.Nc;\nend\ndisp(['F=' num2str(free_energy) ...\n '; Nc=[' num2str(Nc, ' %0.5g ') ...\n '];'])\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction bool = free_energy_improved(free_energy, new_free_energy, warn_when_increasing, opts);\ndiff = new_free_energy - free_energy;\nif abs(diff/free_energy) < opts.threshold\n bool = 0;\nelseif diff > 0\n if warn_when_increasing\n if abs(diff/free_energy) > 1.0e-3\n error(['the free energy increased. the diff is ' num2str(new_free_energy-free_energy)])\n else\n warning(['the free energy increased. the diff is ' num2str(new_free_energy-free_energy)])\n end\n end\n bool = 0;\nelseif diff == 0\n bool = 0\nelse\n bool = 1;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction partitions = init_kdtree_partitions(given_data, depth);\n[D,N] = size(given_data);\nroot = mk_kdtree_partition(given_data, [1:N]);\npartitions = expand_recursively(root, depth);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction partitions = expand_recursively(partition, depth);\nchildren = mk_children_of_partition(partition);\nif depth == 1 | length(children) == 1\n partitions = children;\nelse\n partitions1 = expand_recursively(children(1), depth-1);\n partitions2 = expand_recursively(children(2), depth-1);\n partitions = [partitions1 partitions2];\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction children = mk_children_of_partition(partition);\nif partition.N == 1\n children = partition;\n return\nend\ndir = divide_by_principal_component(partition.given_data(:,partition.indices), ...\n partition.sigma, ...\n partition.mean);\npositive_I = find(dir>=0);\nnegative_I = find(dir<0);\nif length(positive_I) == 0 | length(negative_I) == 0\n children = partition;\n return\nend\nchildren(1) = mk_kdtree_partition(partition.given_data, partition.indices(positive_I));\nchildren(2) = mk_kdtree_partition(partition.given_data, partition.indices(negative_I));\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction direction = divide_by_principal_component(data, covariance, mean);\nN = size(data, 2);\nif size(data,1) <= 16\n [V,D] = eig(covariance);\n [eig_val, principal_component_i] = max(diag(D));\n principal_component = V(:,principal_component_i);\nelse\n [principal_component,eig_val] = power_method(covariance);\nend\ndirection = sum((data - repmat(mean, 1, N)).*repmat(principal_component, 1, N), 1);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction partition = mk_kdtree_partition(given_data, indices);\npartition.N = length(indices);\nif partition.N == 0\n error('indices must have at least one index.')\nend\ndata_a = given_data(:,indices);\npartition.given_data = given_data;\npartition.indices = indices;\npartition.sum_x = sum(data_a, 2); % D*1\nmean = partition.sum_x / partition.N; % D*1\npartition.mean = mean;\npartition.sum_xx = data_a*data_a'; % D*D\npartition.sigma = partition.sum_xx / partition.N - mean*mean';\npartition.children = [];\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction q_of_z = rand_q_of_z(data, K, opts);\n% q_of_z: N*K\nif opts.use_kd_tree\n N = length(data.kdtree);\nelse\n N = size(data.given_data, 2);\nend\nif isequal(opts.algorithm, 'vdp')\n q_of_z = zeros(N, K+1);\nelse\n q_of_z = zeros(N, K);\nend\nq_of_z(:,1:K) = rand(N, K);\nq_of_z = normalize(q_of_z, 2);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction hp_posterior = mk_hp_posterior(data, q_of_z, hp_prior, opts);\n% the last component of q_of_z represents the infinite rest of components\n% the last component is the prior.\n% q_of_z: N*K\n% q_of_z(:,end) is the rest of responsibilities.\nthreshold_for_N = 1.0e-200;\nK = size(q_of_z, 2);\nif opts.use_kd_tree\n N = length(data.kdtree);\n D = size(data.kdtree(1).sum_x, 1);\n Na = [data.kdtree(:).N];\n if isequal(opts.algorithm, 'vdp')\n true_Nc = Na*q_of_z; % 1*K\n q_of_z(:,end) = 0;\n end\n Nc = Na*q_of_z; % 1*K\n sum_x = [data.kdtree(:).sum_x] * q_of_z;\nelse\n [D,N] = size(data.given_data);\n if isequal(opts.algorithm, 'vdp')\n true_Nc = sum(q_of_z, 1); % 1*K\n q_of_z(:,end) = 0;\n end\n Nc = sum(q_of_z, 1); % 1*K\n sum_x = data.given_data * q_of_z;\nend\nI = find(Nc>threshold_for_N);\ninv_Nc = zeros(1,K);\ninv_Nc(I) = 1./Nc(I);\nhp_posterior.eta = hp_prior.eta0 + Nc;\nhp_posterior.xi = hp_prior.xi0 + Nc;\nmeans = sum_x .* repmat(inv_Nc, D, 1); % D*K\nhp_posterior.inv_B = zeros(D,D,K);\nif opts.use_kd_tree\n t1 = reshape([data.kdtree(:).sum_xx],D,D,N);\n for c=1:K\n v0 = means(:,c) - hp_prior.m0;\n q_of_z_c = reshape(q_of_z(:,c), 1, 1, N);\n S = sum(repmat(q_of_z_c,[D,D,1]).*t1, 3) - Nc(c)*means(:,c)*means(:,c)';\n hp_posterior.B{c} = hp_prior.B0 ...\n + S ...\n + Nc(c)*hp_prior.xi0*v0*v0'/(hp_posterior.xi(c)); % D*D\n end\nelse\n if opts.collapsed_means\n quad_term = mk_quad_term(data, q_of_z, hp_prior, opts);\n end\n for c=1:K\n if opts.collapsed_means\n hp_posterior.B{c} = hp_prior.B0 ...\n + (repmat(q_of_z(:,c),1,D)'.*data.given_data)*data.given_data' ...\n + quad_term(:,:,c);\n else\n v = data.given_data - repmat(means(:,c),1,N); % D*N\n v0 = means(:,c) - hp_prior.m0;\n hp_posterior.B{c} = hp_prior.B0 ...\n + (repmat(q_of_z(:,c),1,D)'.*v)*v' ...\n + Nc(c)*hp_prior.xi0*v0*v0'/(hp_posterior.xi(c)); % D*D\n end\n end\nend\nfor c=1:K\n hp_posterior.inv_B(:,:,c) = inv(hp_posterior.B{c});\nend\nhp_posterior.m = (sum_x + repmat(hp_prior.xi0*hp_prior.m0,1,K)) ...\n ./ repmat(Nc+hp_prior.xi0,D,1);\nif isequal(opts.algorithm, 'vdp')\n % gamma: 2*K\n hp_posterior.gamma = zeros(2,K);\n hp_posterior.gamma(1,:) = 1 + true_Nc;\n hp_posterior.gamma(2,:) = hp_prior.alpha + sum(true_Nc) - cumsum(true_Nc,2);\nelseif isequal(opts.algorithm, 'bj')\n hp_posterior.gamma = zeros(2,K-1);\n hp_posterior.gamma(1,:) = 1 + Nc(1:K-1);\n hp_posterior.gamma(2,:) = hp_prior.alpha + sum(Nc) - cumsum(Nc(1:K-1),2);\nelseif isequal(opts.algorithm, 'non_dp') | isequal(opts.algorithm, 'cdp')\n hp_posterior.tilde_alpha = hp_prior.alpha/K + Nc;\nelseif isequal(opts.algorithm, 'csb')\n 1;\nelse\n error('unknown algorithm')\nend\n\nhp_posterior.Nc = Nc; \nif isequal(opts.algorithm, 'vdp')\n hp_posterior.true_Nc = true_Nc;\nend\nhp_posterior.q_of_z = q_of_z; % q_of_z is a N by K matrix where N is\n % #given_data or #nodes in a kd-tree.\n\n\n\f\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction fc = mk_E_log_q_p_eta(data, hp_posterior, hp_prior, opts);\n% returns E[ log q(eta)/p(eta) ]_q\n% fc : 1 by K\nD = size(hp_posterior.m, 1);\nK = size(hp_posterior.eta, 2);\nlog_det_B = zeros(1,K);\nfor c=1:K\n log_det_B(c) = detln(hp_posterior.B{c});\n d = hp_posterior.m(:,c)-hp_prior.m0; % D*1\n term_eta(1,c) = sum(sum(hp_posterior.inv_B(:,:,c).*(hp_prior.xi0*d*d'),1),2);\n term_eta(2,c) = sum(sum(hp_posterior.inv_B(:,:,c).*hp_prior.B0,1),2) - D;\nend\nE_log_q_p_mean = ...\n + 0.5*D*(hp_prior.xi0./hp_posterior.xi ...\n - log(hp_prior.xi0./hp_posterior.xi) ...\n - 1) ...\n + 0.5*(hp_posterior.eta).* term_eta(1,:); \n\npsi_sum = sum(psi( (repmat(hp_posterior.eta+1,D,1) - repmat([1:D]',1,K))*0.5 ), 1); % 1*K\nE_log_q_p_cov = ...\n 0.5*hp_prior.eta0*(log_det_B-detln(hp_prior.B0)) ...\n + 0.5*hp_posterior.Nc.*psi_sum ...\n + 0.5*(hp_posterior.eta).* term_eta(2,:) ...\n + gamma_multivariate_ln(hp_prior.eta0*0.5,D) ...\n - gamma_multivariate_ln(hp_posterior.eta*0.5,D);\n\n%debug\nif length(find(E_log_q_p_mean<-1.0e-8,1)) > 0\n E_log_q_p_mean\n error('E_log_q_p_mean is negative.')\nend\nif length(find(E_log_q_p_cov<-1.0e-8,1)) > 0\n E_log_q_p_cov\n error('E_log_q_p_mean is negative.')\nend\n\nfc = E_log_q_p_mean + E_log_q_p_cov;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [free_energy, log_lambda] = mk_free_energy(data, hp_posterior, ...\n hp_prior, opts, ...\n fc, log_lambda);\nif nargin == 4\n fc = mk_E_log_q_p_eta(data, hp_posterior, hp_prior, opts); % 1*K\n log_lambda = mk_log_lambda(data, hp_posterior, hp_prior, opts); % N*K\nend\n[N,K] = size(log_lambda);\nif isequal(opts.algorithm, 'vdp') || isequal(opts.algorithm, 'bj')\n % note when bj, if full hp_posterior is given, len_gamma = K - 1.\n len_gamma = size(hp_posterior.gamma, 2);\n if isequal(opts.algorithm, 'bj') && len_gamma ~= K - 1\n error('invalid length')\n end\n E_log_p_of_V = ...\n gammaln(sum(hp_posterior.gamma, 1)) ...\n - gammaln(1+hp_prior.alpha) ...\n - sum(gammaln(hp_posterior.gamma), 1) ...\n + gammaln(hp_prior.alpha) ...\n + ((hp_posterior.gamma(1,:)-1) ...\n .*(psi(hp_posterior.gamma(1,:))-psi(sum(hp_posterior.gamma,1)))) ...\n + ((hp_posterior.gamma(2,:)-hp_prior.alpha) ...\n .*(psi(hp_posterior.gamma(2,:))-psi(sum(hp_posterior.gamma,1))));\n extra_term = sum(E_log_p_of_V);\nelseif isequal(opts.algorithm, 'non_dp')\n E_log_p_of_pi = ...\n sum(gammaln(hp_prior.alpha/K) ...\n - gammaln(hp_posterior.tilde_alpha) ...\n + hp_posterior.Nc.*(psi(hp_posterior.tilde_alpha) ...\n - psi(sum(hp_posterior.tilde_alpha)))) ...\n + gammaln(sum(hp_prior.alpha+size(data,2))) - gammaln(hp_prior.alpha);\n extra_term = E_log_p_of_pi;\nelseif isequal(opts.algorithm, 'cdp') || isequal(opts.algorithm, 'csb')\n E_log_p_of_z_given_other_z = ...\n mk_E_log_p_of_z_given_other_z(hp_posterior, hp_prior, opts); % N by K\n q_of_z = mk_q_of_z(data,hp_posterior,hp_prior,opts,log_lambda);\n% q_of_z = hp_posterior.q_of_z;\n E_Nc = hp_posterior.Nc;\n V_Nc = sum(q_of_z.*(1-q_of_z), 1); % 1 by K\n if isequal(opts.algorithm, 'cdp')\n E_log_p_of_z = gammaln(hp_prior.alpha) - gammaln(N+hp_prior.alpha) ...\n + sum(gammaln(hp_prior.alpha/K + E_Nc) ...\n - 0.5*psi(1, hp_prior.alpha/K + E_Nc).*V_Nc - gammaln(hp_prior.alpha/K));\n else % csb\n E_Nc_geq_to_i = cumsum(E_Nc, 2);\n q_of_z_geq_to_i = cumsum(q_of_z, 2);\n V_Nc_geq_to_i = sum(q_of_z_geq_to_i.*(1-q_of_z_geq_to_i), 1);\n\n E_Nc_greater_than_i = cumsum(E_Nc, 2) - E_Nc;\n q_of_z_greater_than_i = q_of_z_geq_to_i - q_of_z;\n V_Nc_greater_than_i = sum(q_of_z_greater_than_i.*(1-q_of_z_greater_than_i), 1);\n \n tmp = gammaln(1 + E_Nc) - 0.5*psi(1, 1 + E_Nc).*V_Nc ... % E[log p(1+Nc)]\n + (gammaln(1 + E_Nc_greater_than_i) ... % E[log p(1+N_{>c})]\n - 0.5*psi(1, 1 + E_Nc_greater_than_i).*V_Nc_greater_than_i) ...\n - (gammaln(1 + hp_prior.alpha + E_Nc_geq_to_i) ... % E[log p(1+alpha+N_{>=c})]\n - 0.5*psi(1, 1 + hp_prior.alpha + E_Nc_geq_to_i).*V_Nc_geq_to_i);\n E_log_p_of_z = sum(tmp(1:end-1));\n end\n extra_term = sum(sum(E_log_p_of_z_given_other_z.*q_of_z, 2), 1) - E_log_p_of_z;\nelse\n error('unknown algorithm')\nend\nif opts.use_kd_tree\n free_energy = extra_term + sum(fc) - [data.kdtree(:).N]*log_sum_exp(log_lambda, 2);\nelse\n free_energy = extra_term + sum(fc) - sum(log_sum_exp(log_lambda, 2), 1);\nend\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction log_lambda = mk_log_lambda(data, hp_posterior, hp_prior, opts);\n% log_lambda: N*K\n% q(z_n=c|x_n) = lambda_n_c / sum_c lambda_n_c\n\nif isequal(opts.algorithm, 'vdp')\n if abs(hp_posterior.gamma(2,end) - hp_prior.alpha) > 1.0e-5\n hp_posterior.gamma(2,end)\n hp_prior.alpha\n diff = hp_prior.alpha - hp_posterior.gamma(2,end)\n error('must be alpha')\n end\nend\n\nif opts.use_kd_tree\n N = length(data.kdtree);\n D = size(data.kdtree(1).sum_x, 1);\nelse\n [D,N] = size(data.given_data);\nend\nK = size(hp_posterior.eta, 2);\n\npsi_sum = sum(psi( (repmat(hp_posterior.eta+1,D,1) - repmat([1:D]',1,K))*0.5 ), 1); % 1*K\nlog_lambda = zeros(N,K);\nif opts.use_kd_tree\n t1 = reshape([data.kdtree(:).sum_xx],D,D,N);\n sum_x = repmat(reshape([data.kdtree(:).sum_x],D,1,N),[1,D,1]);\n Na = repmat(reshape([data.kdtree(:).N],1,1,N),[D,D,1]);\nend\nif isequal(opts.algorithm, 'csb') | isequal(opts.algorithm, 'cdp')\n E_log_p_of_z_given_other_z = mk_E_log_p_of_z_given_other_z(hp_posterior, hp_prior, opts);\nend\nfor c=1:K\n% Precision = 0.5*hp_posterior.inv_B(:,:,c)*hp_posterior.eta(c);\n% if isequal(opts.algorithm, 'vdp')\n% constant = psi(hp_posterior.gamma(1,c)) - psi(sum(hp_posterior.gamma(:,c),1)) ...\n% + sum(psi(hp_posterior.gamma(2,[1:c-1])) - psi(sum(hp_posterior.gamma(:,[1:c-1]),1)), 2);\n% elseif isequal(opts.algorithm, 'bj')\n% if c < K\n% constant = psi(hp_posterior.gamma(1,c)) - psi(sum(hp_posterior.gamma(:,c),1)) ...\n% + sum(psi(hp_posterior.gamma(2,[1:c-1])) - psi(sum(hp_posterior.gamma(:,[1:c-1]),1)), 2);\n% else\n% constant = sum(psi(hp_posterior.gamma(2,[1:c-1])) - psi(sum(hp_posterior.gamma(:,[1:c-1]),1)), 2);\n% end\n% elseif isequal(opts.algorithm, 'non_dp')\n% % E[log pi] ; pi is the weight of mixtures.\n% constant = psi(hp_posterior.tilde_alpha(c)) - psi(sum(hp_posterior.tilde_alpha));\n% elseif isequal(opts.algorithm, 'cdp')\n% constant = 0;\n% elseif isequal(opts.algorithm, 'csb')\n% constant = 0;\n% else\n% error('unknown algorithm')\n% end\n% constant = constant - 0.5*D*log(pi) - 0.5*detln(hp_posterior.B{c}) ...\n% + 0.5*psi_sum(c) - 0.5*D/(hp_posterior.xi(c));\n% if opts.use_kd_tree\n% t2 = sum_x.*repmat(hp_posterior.m(:,c)',[D,1,N]);\n% term_dependent_on_n = (t1 - t2 - permute(t2,[2,1,3]))./Na + ...\n% repmat(hp_posterior.m(:,c)*hp_posterior.m(:,c)',[1,1,N]);\n% column_c = - sum(sum(repmat(Precision,[1,1,N]).*term_dependent_on_n,2),1) + constant;\n% else\n% d = data.given_data - repmat(hp_posterior.m(:,c),1,N);\n% column_c = - sum(d.*(Precision*d),1) + constant; % 1*N\n% end\n% if isequal(opts.algorithm, 'csb') | isequal(opts.algorithm, 'cdp')\n% column_c = column_c + E_log_p_of_z_given_other_z(:,c)';\n% end\n% log_lambda(:,c) = column_c;\n if isequal(opts.algorithm, 'vdp')\n E_log_p_of_z_given_other_z_c = ...\n psi(hp_posterior.gamma(1,c)) ...\n - psi(sum(hp_posterior.gamma(:,c),1)) ...\n + sum(psi(hp_posterior.gamma(2,[1:c-1])) - psi(sum(hp_posterior.gamma(:,[1:c-1]),1)), 2);\n elseif isequal(opts.algorithm, 'bj')\n if c < K\n E_log_p_of_z_given_other_z_c = ...\n psi(hp_posterior.gamma(1,c)) ...\n - psi(sum(hp_posterior.gamma(:,c),1)) ...\n + sum(psi(hp_posterior.gamma(2,[1:c-1])) - psi(sum(hp_posterior.gamma(:,[1:c-1]),1)), 2);\n else\n E_log_p_of_z_given_other_z_c = sum(psi(hp_posterior.gamma(2,[1:c-1])) ...\n - psi(sum(hp_posterior.gamma(:,[1:c-1]),1)), 2);\n end\n elseif isequal(opts.algorithm, 'non_dp')\n % E[log pi] ; pi is the weight of mixtures.\n E_log_p_of_z_given_other_z_c = psi(hp_posterior.tilde_alpha(c)) ...\n - psi(sum(hp_posterior.tilde_alpha));\n elseif isequal(opts.algorithm, 'csb') | isequal(opts.algorithm, 'cdp')\n E_log_p_of_z_given_other_z_c = E_log_p_of_z_given_other_z(:,c)';\n else\n error('unknown algorithm')\n end\n\n Precision = 0.5*hp_posterior.inv_B(:,:,c)*hp_posterior.eta(c);\n E_log_p_of_x = - 0.5*D*log(pi) - 0.5*detln(hp_posterior.B{c}) ...\n + 0.5*psi_sum(c) - 0.5*D/(hp_posterior.xi(c));\n if opts.use_kd_tree\n t2 = sum_x.*repmat(hp_posterior.m(:,c)',[D,1,N]);\n term_dependent_on_n = (t1 - t2 - permute(t2,[2,1,3]))./Na + ...\n repmat(hp_posterior.m(:,c)*hp_posterior.m(:,c)',[1,1,N]);\n E_log_p_of_x = - sum(sum(repmat(Precision,[1,1,N]).*term_dependent_on_n,2),1) + E_log_p_of_x;\n else\n d = data.given_data - repmat(hp_posterior.m(:,c),1,N);\n E_log_p_of_x = - sum(d.*(Precision*d),1) + E_log_p_of_x; % 1*N\n end\n log_lambda(:,c) = E_log_p_of_x + E_log_p_of_z_given_other_z_c;\nend\nif isequal(opts.algorithm, 'vdp')\n log_lambda(:,end) = log_lambda(:,end) - log(1- exp(psi(hp_prior.alpha) - psi(1+hp_prior.alpha)));\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [q_of_z, data, log_lambda] = mk_q_of_z(data, hp_posterior, hp_prior, opts, log_lambda);\n% q_of_z: N*K\nif nargin == 4\n log_lambda = mk_log_lambda(data, hp_posterior, hp_prior, opts);\nend\nq_of_z = exp(normalizeln(log_lambda, 1));\nif opts.weight ~= 1\n q_of_z = q_of_z .* repmat(opts.weight, 1, size(q_of_z,2));\nelse\n q_of_z = q_of_z;\nend\n\nfunction M =normalizeln(M ,dimension);\nM = lpt2lcpt(M, dimension);\n\nfunction lcpt=lpt2lcpt(lpt,dimension);\n% function lcpt=lpt2lcpt(lpt,dimension);\n%\n% make a log conditional probability table with log probability table\n%\n% lpt is a matrix.\n% dimension must be either 1 or 2.\n%\n% lcpt = log( exp(lpt) / sum(exp(lpt)) )\n% = lpt - log(sum(exp(lpt)))\n%\n\nthe_other_dimension=-(dimension-1.5)+1.5;\nlpt=permute(lpt,[dimension,the_other_dimension]);\n% now we can calculate as if dimension=1.\n\nlog_sum_exp_lpt = log_sum_exp(lpt,2); % Mx1\nlcpt = lpt - repmat(log_sum_exp_lpt,1,size(lpt,2));\n\nlcpt=permute(lcpt,[dimension,the_other_dimension]);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction hp_prior = mk_hp_prior(data, opts)\nif isfield(opts, 'xi0')\n hp_prior.xi0 = opts.xi0;\nelse\n hp_prior.xi0 = 0.01;\nend\nif isfield(opts, 'eta_p')\n eta_p = opts.eta_p;\nelse\n eta_p = 1;\nend\nif isfield(opts, 'alpha')\n hp_prior.alpha = opts.alpha;\nelse\n hp_prior.alpha = 1;\nend\n[D,N] = size(data.given_data);\nif opts.use_kd_tree\n sum_xx = sum(reshape([data.kdtree(:).sum_xx],D,D,length(data.kdtree)),3);\n sum_x = sum([data.kdtree(:).sum_x],2);\n covariance = sum_xx/N - sum_x*sum_x'/(N*N);\nelse\n covariance = cov(data.given_data');\nend\nhp_prior.m0 = mean(data.given_data, 2);\nif D > 16\n [dummy, max_eig] = power_method(covariance);\nelse\n max_eig = max(eig(covariance));\nend\nhp_prior.eta0 = eta_p * D + 1;\nhp_prior.B0 = hp_prior.eta0 * max_eig * eye(D) * hp_prior.xi0;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [vec,value]=power_method(A, start, precision)\n\nswitch nargin\n case 1\n start = ones(length(A),1);\n precision = 1e-10;\n case 2\n precision = 1e-10;\n case 3\n otherwise\n error 'invalid number of arguments'\nend\n\n%\n% xp = A^p * x\n% x(p+1) = lambda * xp when p is big enough\n% lambda = x(p+1)'*xp / xp'*xp\n% \ndiff=precision+1;\nx=start;\nn=norm(x)+diff;\ni = 0;\nwhile diff> precision\n i = i + 1;\n y=A*x;\n n2 = norm(x);\n diff=abs(n2-n);\n n=n2;\n if n < 1.0e-200\n x = zeros(length(A), 1);\n break\n else\n x=y/n;\n end\n if i > 100\n break\n end\nend\nn = norm(x);\nif n < 1.0e-200\n vec = zeros(length(A), 1);\nelse\n vec = x/n;\nend\nvalue=n;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction m=normalize(m,dim)\n% return m normalized with 'dimension'\n%\n% e.g.\n% m : i by j by k by ...\n% m = sum(normalize(m,2), 2);\n% m(i, :, k, ...) = ones(1, J, 1, ...)\n%\n\ndims = ones(1, ndims(m));\ndims(dim) = size(m, dim);\nm = m ./ repmat(sum(m, dim), dims);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [Y] = detln( X )\n% Y = logdet( X )\n% return a log determinant of X\n[d err] = chol(X);\nif err\n error('error in Choleski disposition for detln');\nend\nY = sum(log(diag(d))) *2;\n\n% Local Variables: ***\n% mode: matlab ***\n% End: ***\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/vdpgm-2010-06-01/vdpgm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.37729761127357875}} {"text": "classdef InertialSideSlipAngleConstraint < AbstractConstraint\n %InertialSideSlipAngleConstraint Summary of this class goes here\n % Detailed explanation goes here\n \n properties\n normFact = 1;\n event LaunchVehicleEvent\n eventNode(1,1) ConstraintStateComparisonNodeEnum = ConstraintStateComparisonNodeEnum.FinalState;\n \n lb(1,1) double = 0;\n ub(1,1) double = 0;\n \n evalType(1,1) ConstraintEvalTypeEnum = ConstraintEvalTypeEnum.FixedBounds;\n stateCompType(1,1) ConstraintStateComparisonTypeEnum = ConstraintStateComparisonTypeEnum.Equals;\n stateCompEvent LaunchVehicleEvent\n stateCompNode(1,1) ConstraintStateComparisonNodeEnum = ConstraintStateComparisonNodeEnum.FinalState;\n end\n \n methods\n function obj = InertialSideSlipAngleConstraint(event, lb, ub)\n obj.event = event;\n obj.lb = lb;\n obj.ub = ub; \n \n obj.id = rand();\n end\n \n function [lb, ub] = getBounds(obj)\n lb = obj.lb;\n ub = obj.ub;\n end\n \n function [c, ceq, value, lwrBnd, uprBnd, type, eventNum, valueStateComp] = evalConstraint(obj, stateLog, celBodyData) \n type = obj.getConstraintType();\n \n switch obj.eventNode\n case ConstraintStateComparisonNodeEnum.FinalState\n stateLogEntry = stateLog.getLastStateLogForEvent(obj.event);\n \n case ConstraintStateComparisonNodeEnum.InitialState\n stateLogEntry = stateLog.getFirstStateLogForEvent(obj.event);\n \n otherwise\n error('Unknown event node.');\n end\n \n ut = stateLogEntry.time;\n rVect = stateLogEntry.position;\n vVect = stateLogEntry.velocity;\n bodyInfo = stateLogEntry.centralBody;\n \n [~,~,inertAngOfSideslip] = stateLogEntry.attitude.getInertialAeroAngles(ut, rVect, vVect, bodyInfo);\n value = rad2deg(inertAngOfSideslip);\n \n if(obj.evalType == ConstraintEvalTypeEnum.StateComparison)\n switch obj.stateCompNode\n case ConstraintStateComparisonNodeEnum.FinalState\n stateLogEntryStateComp = stateLog.getLastStateLogForEvent(obj.stateCompEvent).deepCopy();\n\n case ConstraintStateComparisonNodeEnum.InitialState\n stateLogEntryStateComp = stateLog.getFirstStateLogForEvent(obj.stateCompEvent).deepCopy();\n\n otherwise\n error('Unknown event node.');\n end\n \n cartElem = stateLogEntryStateComp.getCartesianElementSetRepresentation();\n cartElem = cartElem.convertToFrame(stateLogEntry.centralBody.getBodyCenteredInertialFrame());\n stateLogEntryStateComp.setCartesianElementSet(cartElem);\n\n ut = stateLogEntryStateComp.time;\n rVect = stateLogEntryStateComp.position;\n vVect = stateLogEntryStateComp.velocity;\n bodyInfo = stateLogEntryStateComp.centralBody;\n \n [~,~,inertAngOfSideslip] = stateLogEntryStateComp.attitude.getInertialAeroAngles(ut, rVect, vVect, bodyInfo);\n valueStateComp = rad2deg(inertAngOfSideslip);\n else\n valueStateComp = NaN;\n end\n \n [c, ceq] = obj.computeCAndCeqValues(value, valueStateComp); \n \n lwrBnd = obj.lb;\n uprBnd = obj.ub;\n \n eventNum = obj.event.getEventNum();\n end\n \n function sF = getScaleFactor(obj)\n sF = obj.normFact;\n end\n \n function setScaleFactor(obj, sF)\n obj.normFact = sF;\n end\n \n function tf = usesStage(obj, stage)\n tf = false;\n end\n \n function tf = usesEngine(obj, engine)\n tf = false;\n end\n \n function tf = usesTank(obj, tank)\n tf = false;\n end\n \n function tf = usesEngineToTankConn(obj, engineToTank)\n tf = false;\n end\n \n function tf = usesEvent(obj, event)\n tf = obj.event == event;\n if(obj.evalType == ConstraintEvalTypeEnum.StateComparison)\n tf = tf || obj.stateCompEvent == event;\n end\n end\n \n function tf = usesStopwatch(obj, stopwatch)\n tf = false;\n end\n \n function tf = usesExtremum(obj, extremum)\n tf = false;\n end\n \n function tf = canUseSparseOutput(obj)\n tf = true;\n end\n \n function event = getConstraintEvent(obj)\n event = obj.event;\n end\n \n function type = getConstraintType(obj)\n type = 'Inertial Side Slip Angle';\n end\n \n% function name = getName(obj)\n% name = sprintf('%s - Event %i', obj.getConstraintType(), obj.event.getEventNum());\n% end\n \n function [unit, lbLim, ubLim, usesLbUb, usesCelBody, usesRefSc] = getConstraintStaticDetails(obj)\n unit = 'deg';\n lbLim = -360;\n ubLim = 360;\n usesLbUb = true;\n usesCelBody = false;\n usesRefSc = false;\n end\n \n function addConstraintTf = openEditConstraintUI(obj, lvdData)\n% addConstraintTf = lvd_EditGenericMAConstraintGUI(obj, lvdData);\n \n output = AppDesignerGUIOutput({false});\n lvd_EditGenericMAConstraintGUI_App(obj, lvdData, output);\n addConstraintTf = output.output{1}; \n end\n end\n \n methods(Static)\n function constraint = getDefaultConstraint(~, ~) \n constraint = InertialSideSlipAngleConstraint(LaunchVehicleEvent.empty(1,0),0,0);\n end\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/classes/Optimization/constraints/@InertialSideSlipAngleConstraint/InertialSideSlipAngleConstraint.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.37729761127357875}} {"text": "function [result] = smallMatrix(size)\n result =10^(-50)*ones(size, 'double', 'gpuArray');\nend\n", "meta": {"author": "jiweil", "repo": "Hierarchical-Neural-Autoencoder", "sha": "2cea5c0b687e6d3dfb20dee4bec97aec6b57a95f", "save_path": "github-repos/MATLAB/jiweil-Hierarchical-Neural-Autoencoder", "path": "github-repos/MATLAB/jiweil-Hierarchical-Neural-Autoencoder/Hierarchical-Neural-Autoencoder-2cea5c0b687e6d3dfb20dee4bec97aec6b57a95f/misc/smallMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3772976112735787}} {"text": "function [eparams, errors] = msCalibrateEdgeClassifier(efeatures, adjlist, imsegs, eclassifier, labels, ncv)\n% [eparams, errors] = calibrateEdgeClassifier(efeatures, adjlist, imsegs,\n% eclassifier, ncv)\n\nnimages = numel(imsegs);\nfor k = 1:ncv \n if ncv > 1\n testind = [(k-1)*nimages/ncv+1:k*nimages/ncv];\n trainind = setdiff([1:nimages], testind);\n else\n trainind = (1:nimages);\n end\n [edata{k}, elab{k}] = formatData(efeatures(trainind), adjlist(trainind), labels(trainind));\n econf{k} = test_boosted_dt_mc(eclassifier, edata{k});\n% econf{k} = 1 ./ (1+exp(-econf{k}));\nend\n \nfor k = 1:ncv\n disp(['iter: ' num2str(k)])\n if ncv>1\n traink = setdiff([1:ncv], k);\n else\n traink = k;\n end\n eparams{k} = fminunc(@(x) objective(x, cat(1, econf{traink}), cat(1, elab{traink})), [-1 0], optimset('TolFun', 0.001)); \nend\n\nfor k = 1:ncv\n econf{k} = 1 ./ (1+exp(eparams{k}(1)*econf{k}+eparams{k}(2)));\nend\n\nelab = cat(1, elab{:});\neconf = cat(1, econf{:});\n\neerror = mean((econf>0.5)~=elab);\n\neconf2 = 1-abs(elab-econf);\n\nind1 = find(elab==0);\nind2 = find(elab==1);\npx = [0.025:0.05:0.975];\nf1 = ksdensity(econf(ind1), px, 'support', [0 1]);\nf2 = ksdensity(econf(ind2), px, 'support', [0 1]);\nfc = ksdensity(econf2, px, 'support', [0 1]);\n%fc = fc;\n\nerrors.err = eerror;\nerrors.pneg = f1;\nerrors.ppos = f2;\nerrors.conf = fc;\nerrors.px = px;\n\nmedFS = 18;\nbigFS = 20;\n\nfigure(1), hold on, plot(px, fc, 'y', 'LineWidth', 2);\n%axis([0 1 0 1])\nxlabel('Confidence in True Label', 'FontSize', medFS)\nylabel('Frequency', 'FontSize', medFS)\ntitle('Same Label Confidence', 'FontSize', bigFS) \nset(gca, 'FontSize', medFS)\n\nfigure(2), hold on, plot(px, f2 ./ (f1+f2), 'y', 'LineWidth', 2)\nhold on, plot(px, px, '--k')\naxis([0 1 0 1])\nxlabel('Estimated Probability', 'FontSize', medFS)\nylabel('Empirical Probability', 'FontSize', medFS)\n%title('Same Label Confidence', 'FontSize', bigFS) \nset(gca, 'FontSize', medFS)\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction err = objective(param, econf, elab)\neconf = 1./(1+exp(param(1)*econf+param(2)));\npx = [0.025:0.05:0.975];\nf1 = ksdensity(econf(elab==0), px, 'support', [0 1])+1E-10;\nf2 = ksdensity(econf(elab==1), px, 'support', [0 1])+1E-10;\nf1 = f1 / sum(f1+f2);\nf2 = f2 / sum(f1+f2);\nerr = sum((f1+f2).*(px - f2./(f1+f2)).^2);\ndisp(num2str([sum((f1+f2).*abs(px - f2./(f1+f2))) param]))\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [data, lab] = formatData(features, adjlist, labels)\n% concatenate data and select ndata random datapoints\n\nnimages = numel(features);\n\n[tmp, nvars] = size(features{1});\n\n% count edges\nne = 0;\nfor f = 1:nimages \n ne = ne + size(features{f}, 1);\nend\n\ndata = zeros(ne, nvars);\nlab = zeros(ne, 1);\n\n% concatenate data\nc = 0;\nfor f = 1:nimages\n cf = size(features{f}, 1); \n data(c+1:c+cf, :) = features{f}; \n s1 = adjlist{f}(:, 1);\n s2 = adjlist{f}(:, 2);\n lab(c+1:c+cf) = (labels{f}(s1)==labels{f}(s2));\n c = c + cf;\nend", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/Toolbox/SpatialLayout_shrink/spatiallayoutcode/GeometricContext/ms/multipleSegmentations/msCalibrateEdgeClassifier.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3772634836144764}} {"text": "function y = kron(X,Y)\n%KRON (overloaded)\n\nif isequal(X,1)\n y = Y;\n return;\nend\n\nif isequal(Y,1);\n y = X;\nend\n\nif (isa(X,'sdpvar') & isa(Y,'sdpvar'))\n y = [];\n s.type = '()';\n for i = 1:size(X,1)\n this_row = []; \n for j = 1:size(X,2);\n s.subs = {i,j};\n this_row = [this_row subsref(X,s)*Y];\n end\n y = [y;this_row];\n end \n return\nend\n\nif isa(X,'sdpvar')\n lmi_variables = getvariables(X);\n nv = length(lmi_variables);\n y = X;\n sparse_Y = sparse(Y);\n % This one used also for checking size\n temp = kron(getbasematrix(X,0),sparse_Y);\n if size(Y,2)==1\n % Special case\n % [kron([N1(:) N2(:)],vec(M))]=[vec(kron(N1,M)) vec(kron(N2,M))]\n y.basis = kron(X.basis,sparse_Y);\n else\n y.basis=temp(:);\n X_base = X.basis;\n for i = 1:nv\n % temp = kron(getbasematrix(X,lmi_variables(i)),sparse_Y); \n temp = kron(reshape(X_base(:,i+1),X.dim),sparse_Y);\n y.basis(:,i+1) = temp(:);\n end;\n end\nend\n\nif isa(Y,'sdpvar')\n lmi_variables = getvariables(Y);\n nv = length(lmi_variables);\n y = Y;\n sparse_X = sparse(X);\n % This one used also for checking size\n temp = kron(sparse_X,getbasematrix(Y,0));\n if size(X,1)==1\n % In this special case\n %[kron(vec(M),[N1(:) N2(:)])]==[vec(kron(M,N1)) vec(kron(M,N2))] \n y.basis = kron(sparse_X(:),Y.basis);\n else\n y.basis = temp(:);\n y.basis = spalloc(length(temp(:)),nv+1,0);\n y.basis(:,1) = temp(:);\n Y_base = Y.basis;\n for i = 1:nv\n % temp = kron(sparse_X,getbasematrix(Y,lmi_variables(i)));\n temp = kron(sparse_X,reshape(Y_base(:,i+1),Y.dim));\n y.basis(:,i+1) = temp(:);\n end\n end\nend\ny.dim(1) = size(temp,1);\ny.dim(2) = size(temp,2);\ny = clean(y);\n% Reset info about conic terms\nif isa(y,'sdpvar')\n y.conicinfo = [0 0];\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/@sdpvar/kron.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37725490059787614}} {"text": "function [g,geq,dg,dgeq,xevaled] = fmincon_con(x,model,xevaled)\n\nglobal latest_xevaled\nglobal latest_x_xevaled\n% Early bail for linear problems\ng = [];\ngeq = [];\ndg = [];\ndgeq = [];\nif model.linearconstraints\n xevaled = [];\n return\nend\n\nif nargin<3\n if isequal(x,latest_x_xevaled)\n xevaled = latest_xevaled;\n else\n xevaled = zeros(1,length(model.c));\n xevaled(model.linearindicies) = x;\n xevaled = apply_recursive_evaluation(model,xevaled);\n latest_x_xevaled = x;\n latest_xevaled = xevaled;\n end\nend\n\nif model.nonlinearinequalities\n g = full(model.Anonlinineq*xevaled(:)-model.bnonlinineq);\nend\n\nif nnz(model.K.q) > 0\n top = 1;\n for i = 1:length(model.K.q)\n z = model.F_struc(top:top+model.K.q(i)-1,:)*[1;xevaled];\n % g = [g;-(z(1)^2 - z(2:end)'*z(2:end))];\n g = [g;-(z(1) - sqrt(z(2:end)'*z(2:end)))];\n top = top + model.K.q(i);\n end\nend\n\nif model.nonlinearequalities\n geq = full(model.Anonlineq*xevaled(:)-model.bnonlineq);\nend\n\ndgAll_test = [];\n\nif nargout == 2 || ~model.derivative_available\n return\nelseif ~isempty(dgAll_test) & isempty(model.evalMap) \n dgAll = dgAll_test;\nelseif isempty(model.evalMap) & (model.nonlinearinequalities==0) & (model.nonlinearequalities==0) & (model.nonlinearcones==0) & any(model.K.q)\n dg = computeConeDeriv(model,xevaled);\nelseif isempty(model.evalMap) & (model.nonlinearinequalities | model.nonlinearequalities | model.nonlinearcones) \n n = length(model.c);\n linearindicies = model.linearindicies; \n % xevaled = zeros(1,n);\n % xevaled(linearindicies) = x;\n % FIXME: This should be vectorized\n \n news = model.fastdiff.news;\n allDerivemt = model.fastdiff.allDerivemt;\n c = model.fastdiff.c;\n \n if model.fastdiff.univariateDifferentiates\n zzz = c.*(x(model.fastdiff.univariateDiffMonom).^model.fastdiff.univariateDiffPower);\n else\n % X = repmat(x(:)',length(c),1);\n O = ones(length(c),length(x));\n nz = find(allDerivemt);\n % O(nz) = X(nz).^allDerivemt(nz);\n O(nz) = x(ceil(nz/length(c))).^allDerivemt(nz); \n zzz = c.*prod(O,2); \n end\n \n newdxx = model.fastdiff.newdxx;\n newdxx(model.fastdiff.linear_in_newdxx) = zzz; \n %newdxx = newdxx';\n \n if ~isempty(model.Anonlineq) \n dgeq = model.Anonlineq*newdxx; \n end\n if ~isempty(model.Anonlinineq)\n dg = model.Anonlinineq*newdxx; \n end\n \n if nnz(model.K.q)>0\n dg = [dg;computeConeDeriv(model,xevaled,newdxx);];\n end \nelse \n requested = model.fastdiff.requested;\n dx = apply_recursive_differentiation(model,xevaled,requested,model.Crecursivederivativeprecompute); \n conederiv = computeConeDeriv(model,xevaled,dx); \n if ~isempty(model.Anonlineq)\n dgeq = [model.Anonlineq*dx]; \n end\n if ~isempty(model.Anonlinineq)\n dg = [model.Anonlinineq*dx];\n end \n if ~isempty(conederiv)\n dg = [dg;conederiv];\n end\nend\n\nif model.nonlinearequalities\n dgeq = dgeq';\nend\nif model.nonlinearinequalities | any(model.K.q)\n dg = dg';\nend\n \n\nfunction conederiv = computeConeDeriv(model,z,dzdx)\nconederiv = [];\nz = z(:);\nif any(model.K.q)\n top = 1 + model.K.f + model.K.l; \n for i = 1:length(model.K.q)\n d = model.F_struc(top,1);\n c = model.F_struc(top,2:end)';\n b = model.F_struc(top+1:top+model.K.q(i)-1,1);\n A = model.F_struc(top+1:top+model.K.q(i)-1,2:end);\n \n if nargin == 2\n % No inner derivative\n A = A(:,model.linearindicies);\n c = c(model.linearindicies);\n % -c'*x - d + ||Ax+b||>=0\n e = A*z(model.linearindicies) + b;\n smoothed = sqrt(10^-10 + e'*e);\n conederiv = [conederiv;-c'+(A'*b + A'*A*z(model.linearindicies))'/smoothed]; \n % conederiv = [conederiv;(2*A(:,model.linearindicies)'*(A(:,model.linearindicies)*z(model.linearindicies)+b)-2*c(model.linearindicies)*(c(model.linearindicies)'*z(model.linearindicies)+d))'];\n else\n \n \n % -c'*x - d + ||Ax+b||>=0\n e = A*z + b;\n smoothed = sqrt(10^-10 + e'*e);\n % conederiv = [conederiv;-c'+(dzdx'*A'*b + dzdx'*A'*A*z(model.linearindicies))'/smoothed]; \n aux = z'*(A'*A-c*c')*dzdx+(b'*A-d*c')*dzdx;\n conederiv = [conederiv;(-dzdx'*c+aux'/smoothed)']; \n \n % inner derivative\n % aux = 2*z'*(A'*A-c*c')*dzdx+2*(b'*A-d*c')*dzdx;\n % conederiv = [conederiv;aux];\n \n \n \n end\n top = top + model.K.q(i);\n end\nend\n", "meta": {"author": "shamilmamedov", "repo": "dynamic_calibration", "sha": "11af40e7deb758ec080a175fed8fcdd6c99aca29", "save_path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration", "path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration/dynamic_calibration-11af40e7deb758ec080a175fed8fcdd6c99aca29/utils/YALMIP-master/extras/fmincon_con.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3772548941988592}} {"text": "function x = p42_start ( n )\n\n%*****************************************************************************80\n%\n%% P42_START returns a starting point for optimization for problem 42.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 March 2002\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of variables X.\n%\n% Output, real X(N), a starting point for the optimization.\n%\n x = [ 0.0, 1.0, 2.0 ]';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_opt/p42_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.7154239897159438, "lm_q1q2_score": 0.37725489099935067}} {"text": "function myrng()\n% Author\t\t: Tiep Vu (http://www.personal.psu.edu/thv102/)\n% Time created\t: Wed Jan 27 00:23:58 2016\n% Last modified\t: Wed Jan 27 00:23:59 2016\n% Description\t: make sure that random function does not return \n% the same output\n\n c = clock; %get current time \n\n t = mod(floor(c(6))*13, 100); % c(6) is 'second'\n for i = 1: t\n randi(t);\n end\nend", "meta": {"author": "tiepvupsu", "repo": "DICTOL", "sha": "1a0361aa35c32d70525d06910d0e9b87997ff246", "save_path": "github-repos/MATLAB/tiepvupsu-DICTOL", "path": "github-repos/MATLAB/tiepvupsu-DICTOL/DICTOL-1a0361aa35c32d70525d06910d0e9b87997ff246/utils/myrng.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3772548877998421}} {"text": "function rfParams = rmPlotGUI_getRFParams(model, modelName, viewType, coords, params)\n% For the retinotopy model GUI: get PRF params for a single voxel.\n%\n% rmParams = rmPlotGUI_getRFParams(model, modelName, viewType, coords, params)\n%\n% ras, 11/2008. Trying to make the large GUI code more modular and\n% more manageable.\nswitch modelName,\n case {'2D pRF fit (x,y,sigma, positive only)',...\n '2D RF (x,y,sigma) fit (positive only)',...\n '1D pRF fit (x,sigma, positive only)'};\n rfParams = zeros(1,6);\n \n rfParams(1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(3) = rmCoordsGet(viewType, model, 'sigmamajor',coords);\n rfParams(5) = rmCoordsGet(viewType, model, 'sigmaminor',coords);\n rfParams(6) = rmCoordsGet(viewType, model, 'sigmatheta',coords);\n \n case {'2D pRF fit (x,y,sigma_major,sigma_minor)' ...\n 'oval 2D pRF fit (x,y,sigma_major,sigma_minor,theta)'};\n rfParams = zeros(1,4);\n \n rfParams(1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(3) = rmCoordsGet(viewType, model, 'sigmamajor',coords);\n rfParams(5) = rmCoordsGet(viewType, model, 'sigmaminor',coords);\n rfParams(6) = rmCoordsGet(viewType, model, 'sigmatheta',coords);\n \n case 'unsigned 2D pRF fit (x,y,sigma)';\n rfParams = zeros(1,4);\n \n rfParams(1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(3) = rmCoordsGet(viewType, model, 'sigmamajor',coords);\n \n case {'Double 2D pRF fit (x,y,sigma,sigma2, center=positive)',...\n 'Difference 2D pRF fit (x,y,sigma,sigma2, center=positive)',...\n 'Difference 1D pRF fit (x,sigma, sigma2, center=positive)'},\n rfParams = zeros(2,4);\n \n % get RF parameters\n rfParams(1,1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(1,2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(1,3) = rmCoordsGet(viewType, model, 'sigmamajor',coords);\n rfParams(2,1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(2,2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(2,3) = rmCoordsGet(viewType, model, 'sigma2major',coords);\n \n case {'Two independent 2D pRF fit (2*(x,y,sigma, positive only))',...\n 'Mirrored 2D pRF fit (2*(x,y,sigma, positive only))',...\n 'Shifted 2D pRF fit (2*(x,y,sigma, positive only))'},\n rfParams = zeros(2,3);\n \n % get RF parameters\n rfParams(1,1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(1,2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(1,3) = rmCoordsGet(viewType, model, 's',coords);\n rfParams(2,1) = rmCoordsGet(viewType, model, 'x02', coords);\n rfParams(2,2) = rmCoordsGet(viewType, model, 'y02', coords);\n rfParams(2,3) = rmCoordsGet(viewType, model, 's2',coords);\n \n case {'Sequential 2D pRF fit (2*(x,y,sigma, positive only))'},\n rfParams = zeros(2,3);\n \n % get RF parameters\n rfParams(1,1) = rmCoordsGet(viewType, model, 'x0', coords);\n rfParams(1,2) = rmCoordsGet(viewType, model, 'y0', coords);\n rfParams(1,3) = rmCoordsGet(viewType, model, 's',coords);\n rfParams(2,1) = rmCoordsGet(viewType, model, 'x02', coords);\n rfParams(2,2) = rmCoordsGet(viewType, model, 'y02', coords);\n rfParams(2,3) = rmCoordsGet(viewType, model, 's2',coords);\n \n case {'fitprf' 'css' '2D nonlinear pRF fit (x,y,sigma,exponent, positive only)' ...\n '2D nonlinear pRF fit with boxcar (x,y,sigma,exponent, positive only)'}\n rfParams = zeros(1,6);\n \n \n rfParams(1) = rmCoordsGet(viewType, model, 'x0', coords); % x coordinate (in deg) \n rfParams(2) = rmCoordsGet(viewType, model, 'y0', coords); % y coordinate (in deg) \n rfParams(3) = rmCoordsGet(viewType, model, 'sigmamajor',coords); % sigma (in deg) \n rfParams(6) = rmCoordsGet(viewType, model, 'sigmatheta',coords); % sigma theta (0 unless we have anisotropic Gaussians)\n rfParams(7) = rmCoordsGet(viewType, model, 'exponent' ,coords); % pRF exponent\n rfParams(8) = rmCoordsGet(viewType, model, 'bcomp1', coords); % gain ? \n rfParams(5) = rfParams(3) / sqrt(rfParams(7)); % sigma adjusted by exponent (not for calculations - just for diplay)\n\n otherwise,\n error('Unknown modelName: %s',modelName{M.modelNum});\nend;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Analysis/retinotopyModel/rmPlotGUI/rmPlotGUI_getRFParams.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3772548877998421}} {"text": "function pop = InitializeFun(pop_size, chromosome_size)\npop = round(rand(pop_size, chromosome_size));\nend", "meta": {"author": "LiYangSir", "repo": "Smart-Algorithm", "sha": "b0653c32aa1ed4ce0d97c8c138f93c9fde75ae6d", "save_path": "github-repos/MATLAB/LiYangSir-Smart-Algorithm", "path": "github-repos/MATLAB/LiYangSir-Smart-Algorithm/Smart-Algorithm-b0653c32aa1ed4ce0d97c8c138f93c9fde75ae6d/Immunity_Algorithm/IMA\u89e3\u51b3\u975e\u7ebf\u6027\u95ee\u9898\u6c42\u89e3/InitializeFun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.37721607211031083}} {"text": "function [dfuncGrad] = gpsimMapFunctionalLikeGrad2(model, p)\n \n% GPSIMMAPFUNCTIONALLIKEGRAD2 Compute the functional gradient for GPSIMMAP.\n% FORMAT\n% DESC computes the functional gradient of the log likelihood for\n% use in the MAP approximation to the GPSIM posterior solution.\n% ARG model : the model for which the gradient is to be computed.\n% RETURN p: the gradient of the log likelihood with respect to the\n% points of the function.\n% \n% SEEALSO : gpsimMapLikeGradientImplicit\n%\n% COPYRIGHT : Pei Gao, Magnus Rattray and Neil D. Lawrence, 2008\n\n% SHEFFIELDML\n \ndfuncGrad = zeros(1, model.numParams-model.kern.nParams);\ngB = zeros(model.numGenes, 1);\ngD = zeros(model.numGenes, 1);\ngS = zeros(model.numGenes, 1);\nngParamk = model.ngParam/model.numGenes;\n\nif isfield(model,'includeNoise') && model.includeNoise\n gn = zeros(model.numGenes, 1);\n noiseMat = ones(length(model.t),1)*model.noiseVar;\n yvar = model.yvar + noiseMat;\nelse\n yvar = model.yvar;\nend\n\nif isfield(model, 'includeRepression') && model.includeRepression\n galpha = zeros(model.numGenes, 1);\n nBaseParams = 4;\nelse\n nBaseParams = 3;\nend\n \nif model.ngParam > 0\n ggParam= zeros(model.numGenes, ngParamk);\nend \n\nnumData = length(model.t);\nfor k = 1:model.numGenes\n if model.ngParam\n gInd = k;\n else\n gInd = 1;\n end\n for i=1:numData\n arg = model.t(i)-model.mapt(p);\n if arg >= 0\n ind = i + (k-1)*numData;\n beta_ik=1/yvar(ind);\n\n [dxdB dxdD dxdS dxdalpha dxdgParam] = gpsimXGradient(model, i, k);\n \n gB(k) = gB(k) - beta_ik*model.g_grad(p,gInd)*dxdB*exp(-model.D(k)*arg ...\n +log(model.S(k)) +log(model.step));\n\n factor = model.ypred(model.times_index(i), k) - model.y(ind);\n gD(k) = gD(k) - beta_ik*model.g_grad(p,gInd)* (dxdD-arg*factor) ...\n *exp(-model.D(k)*arg+log(model.S(k)) +log(model.step));\n \n gS(k) = gS(k) - beta_ik*model.g_grad(p,gInd)* (dxdS*model.S(k) + ...\n factor) *exp(-model.D(k)*arg+log(model.step));\n \n if isfield(model, 'includeRepression') && model.includeRepression \n galpha(k) = galpha(k) - beta_ik*model.g_grad(p,gInd)*dxdalpha ...\n *exp(-model.D(k)*arg+log(model.S(k)) +log(model.step));\n end\n \n if model.ngParam > 0\n ggParam(k,:) = ggParam(k,:) - beta_ik* (model.g_grad(p,gInd)* ...\n dxdgParam+factor*model.dggrad(p, gInd)) *exp(-model.D(k)* ...\n arg+log(model.S(k))+log(model.step));\n end\n \n if isfield(model,'includeNoise') && model.includeNoise\n gn(k) = gn(k) + 2*sqrt(model.noiseVar(k))*beta_ik^2* ...\n model.g_grad(p,gInd)*model.S(k)*factor*exp(-model.D(k)*arg+log(model.step));\n end\n end\n end\nend\n \ngeneParam = nBaseParams + ngParamk; \nstartPoint = 1;\nendPoint = geneParam;\n \nfor k = 1:model.numGenes\n dfuncGrad(startPoint:(startPoint+2)) = [gB(k) gS(k) gD(k)];\n \n if isfield(model, 'includeRepression') && model.includeRepression\n dfuncGrad(startPoint+3) = galpha(k);\n end\n \n if model.ngParam > 0\n dfuncGrad((startPoint+nBaseParams):endPoint) = ggParam(k,:)';\n end \n startPoint = startPoint + geneParam;\n endPoint = endPoint + geneParam;\nend\n\nif isfield(model,'includeNoise') && model.includeNoise\n dfuncGrad(end-length(gn)+1:end) = gn';\nend\n \n \n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/gpsim/gpsimMapFunctionalLikeGrad2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.37721607211031083}} {"text": "% Visualize faces in a face recognition model.\n% The model can be downloaded from\n% https://github.com/AlfredXiangWu/face_verification_experiment .\n% This model is trained with CASIA-webface, People_ID can be set from 1\n% to 10575, to get the memorized face of the corresponding person.\n\n% Based on paper:\n% Feng Wang, Haijun Liu, Jian Cheng, \n% Visualizing Deep Neural Network by Alternately Image Blurring and Deblurring\ncaffe.reset_all();\ncaffe.set_mode_gpu();\ngpu_id = 0; % we will use the first gpu in this demo\ncaffe.set_device(gpu_id);\n\n% net_model = 'DeepFace_set003_inception.prototxt';% Please, remember to add force_backward:true to this file.\n% net_weights = 'D:\\project\\lfw_face_verification_experiment\\model\\DeepFace_set003_net_iter.caffemodel';\nnet_model = 'LightenedCNN_B_deploy.prototxt';% Please, remember to add force_backward:true to this file.\nnet_weights = 'D:\\project\\lfw_face_verification_experiment\\model\\LightenedCNN_B.caffemodel';\n\nmean_file = [];\n\ntrain_net = caffe.Net(net_model,net_weights,'test');\nif isempty(mean_file)\n mean_image = zeros(128,128);\nelse\n mean_image = caffe.read_mean(mean_file);\nend;\nfor People_ID = 1:10575\n\n% mean_image = mean_image(17:240,17:240,:);\n% mean_image = mean_image + randn(size(mean_image));\ninput_data = zeros(size(mean_image,1), size(mean_image,2), 1, 1, 'single');\n\nmean_file = 'webface_mean.proto';\nmean_face = caffe.read_mean(mean_file);\nmean_face = mean_face / 256;\ninput_data(:,:,1,1) = imresize(mean_face,[128,128]);\n\nuse_clip = false;\nuse_cv_norm = false;\nuse_weight_decay = false;\nuse_image_blur = false;\nuse_image_deblur = false;\nuse_gradient_blur = false;\nuse_dropout = false;\nuse_maxGray = false;\n\nH = fspecial('gaussian',[7 7],1.2);\nprob = train_net.forward({input_data});\n% input_data = input_data - min(input_data(:));\n% input_data = input_data / max(input_data(:));\n[max_prob,max_idx] = sort(prob{1},'descend');\nmax_idx = People_ID;%max_idx(1);\nthis_prob = prob{1}(max_idx);\nback_data = ones(size(prob{1}),'single') * -1;\nback_data(max_idx) = 1;\nback_cell = prob;\nback_cell{1} = back_data;\nblur_data = zeros(size(input_data));\nbase_lr = 0.01;\nmax_lr = 0.01;\nlambda1 = 0.00001;\nlambda2 = 0.1;\nlast_prob = -999;\nmomentum = 0.8;\nmomentum2 = 0.99;\nlastgrad = zeros(size(mean_image));\nlastgrad2 = zeros(size(mean_image));\nmask = ones(size(mean_image,1), size(mean_image,2));\niter = 1;\ndropout = 0.5;\n\nwhile 1\n lr = base_lr;% * sqrt(this_prob / (1 - this_prob));\n res = train_net.backward(back_cell);\n \n bak_data = input_data;\n \n if use_gradient_blur\n res{1} = imfilter(res{1},H,'same');\n end;\n grad = res{1};\n \n if use_clip\n app_gradient = sum(abs(res{1} .* input_data(:,:,:,1)),3);\n app_gradient = app_gradient < mean(app_gradient(:)) * 0.5;\n clip_grad = reshape(res{1},[size(mean_image,1)*size(mean_image,2) 3]);\n clip_grad(app_gradient==1,:) = 0;\n clip_grad = reshape(clip_grad,size(input_data));\n res{1} = clip_grad;\n end;\n \n if use_cv_norm\n I = input_data(:,:,:,1);\n% Gx = sign(I(2:end-1,2:end-1,:) - I(1:end-2,2:end-1,:)) - sign(I(3:end,2:end-1,:) - I(2:end-1,2:end-1,:));\n% Gy = sign(I(2:end-1,2:end-1,:) - I(2:end-1,1:end-2,:)) - sign(I(2:end-1,3:end,:) - I(2:end-1,2:end-1,:));\n Gx = smoothL1(I(2:end-1,:,:) - I(1:end-2,:,:)) - smoothL1(I(3:end,:,:) - I(2:end-1,:,:));\n Gx = [smoothL1(I(1,:,:) - I(2,:,:)); Gx; smoothL1(I(end,:,:) - I(end-1,:,:))];\n Gy = smoothL1(I(:,2:end-1,:) - I(:,1:end-2,:)) - smoothL1(I(:,3:end,:) - I(:,2:end-1,:));\n Gy = [smoothL1(I(:,1,:) - I(:,2,:)) Gy smoothL1(I(:,end,:) - I(:,end-1,:))];\n% Gx = sign(I(2:end-1,:,:) - I(1:end-2,:,:)) - sign(I(3:end,:,:) - I(2:end-1,:,:));\n% Gx = [sign(I(1,:,:) - I(2,:,:)); Gx; sign(I(end,:,:) - I(end-1,:,:))];\n% Gy = sign(I(:,2:end-1,:) - I(:,1:end-2,:)) - sign(I(:,3:end,:) - I(:,2:end-1,:));\n% Gy = [sign(I(:,1,:) - I(:,2,:)) Gy sign(I(:,end,:) - I(:,end-1,:))];\n grad = grad - lambda2 * (Gx + Gy);\n end;\n \n lastgrad = (1 - momentum) * lr * res{1} + momentum * lastgrad;%/ norm(res{1}(:))\n input_data(:,:,:,1) = input_data(:,:,:,1) + lastgrad;\n% lastgrad = (1 - momentum) * grad + momentum * lastgrad;%/ norm(res(:))\n% lastgrad2 = (1 - momentum2) * grad.^2 + momentum2 * lastgrad2;%/ norm(res(:))\n% lg_correct = lastgrad ./ (1 - momentum^iter);\n% lg2_correct = lastgrad2 ./ (1 - momentum2^iter);\n% input_data(:,:,:,1) = input_data(:,:,:,1) + lr * lg_correct ./ (sqrt(lg2_correct) + 1e-8);\n \n \n \n if use_weight_decay\n input_data(:,:,:,1) = input_data(:,:,:,1) - lr * lambda1 * I;\n end;\n if use_maxGray\n% if max(input_data(:))>1\n input_data(:,:,:,1) = input_data(:,:,:,1) - min(input_data(:));\n input_data(:,:,:,1) = input_data(:,:,:,1) / max(input_data(:));\n% end;\n end;\n% input_data = (input_data -mean(input_data(:))) / std(input_data(:)) * 30;\n% end;\n\n% for_forward = reshape(input_data,[size(mean_image,1)*size(mean_image,2) 3]);\n% mask = rand(size(mean_image,1), size(mean_image,2)) < dropout;\n% for_forward(mask==1,:) = 0;\n% for_forward = reshape(for_forward,size(input_data));\n \n if mod(iter,10) ==0%&&iter<2000\n if mod(iter,20) ~= 0\n H = fspecial('gaussian',[5 5],rand()/2+0.5);\n if use_image_blur\n input_data(:,:,:,1) = imfilter(input_data(:,:,:,1),H,'same');\n end\n else\n if mod(iter,20) == 0\n if use_image_deblur\n input_data(:,:,:,1) = deconvlucy(input_data(:,:,:,1), H);\n end;\n end;\n end;\n end;\n prob = train_net.forward({input_data});\n \n this_prob = prob{1}(max_idx);\n fprintf('id=%d,iter=%d,lr=%f,prob1=%f,last_prob=%f\\n',People_ID,iter,lr,prob{1}(max_idx),last_prob);\n iter = iter + 1;\n \n if mod(iter,100)==0\n figure(2);\n % imshow(uint8(mean_image + input_data));\n output = input_data(:,:,:,1);\n output = output';\n imshow(output);\n I = output;\n% Gx = abs(I(2:end-1,2:end-1,:) - I(1:end-2,2:end-1,:)) + abs(I(3:end,2:end-1,:) - I(2:end-1,2:end-1,:));\n% Gy = abs(I(2:end-1,2:end-1,:) - I(2:end-1,1:end-2,:)) + abs(I(2:end-1,3:end,:) - I(2:end-1,2:end-1,:));\n% figure(3);hist(I(:),1000);\n% figure(4);hist(Gy(:),1000);\n if iter == 200\n break;\n end;\n end;\n if this_problast_prob&&base_lrlast_prob\n last_prob = this_prob;\n% end;\n if lr<0.000001\n break;\n end;\nend;\noutput = input_data(:,:,:,1);\noutput = output';\nimwrite(output, ['gallery/' num2str(People_ID) '.png']);\nend;", "meta": {"author": "happynear", "repo": "DeepVisualization", "sha": "6e39593b1b4bd3087e0486da97733c1228ca7420", "save_path": "github-repos/MATLAB/happynear-DeepVisualization", "path": "github-repos/MATLAB/happynear-DeepVisualization/DeepVisualization-6e39593b1b4bd3087e0486da97733c1228ca7420/FaceVis/Inceptionism_face.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286833, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3772160721103108}} {"text": "function Z = minus(A,B)\n%minus Overloaded\n\n% Standard case A.cx + A.logdetP - (B.cx + B.logdetP)\n\nif isa(A,'sdpvar') | isa(A,'double') \n if prod(size(A))>1\n error('Only scalar terms can be added to a logdet term');\n end\n Acx = A;\n Alog = {};\n Again = [];\nelse\n Z = A;\n Acx = A.cx;\n Alog = A.P;\n Again = A.gain;\nend\n\nif isa(B,'sdpvar') | isa(B,'double') \n if prod(size(B))>1\n error('Only scalar terms can be added to a logdet term');\n end\n Bcx = B;\n Blog = {};\n Bgain = [];\nelse\n Z = B;\n Bcx = B.cx;\n Blog = B.P;\n Bgain = B.gain;\nend\n\nif isempty(Acx)\n Acx = 0;\nend\nif isempty(Bcx)\n Bcx = 0;\nend\n\nif isequal(Acx-Bcx,0)\n Z.cx = [];\nelse\n Z.cx = Acx - Bcx;\nend\n \nZ.P = {Alog{:},Blog{:}};\nZ.gain = [Again -Bgain];\n\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/@logdet/minus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.3772160721103107}} {"text": "function cout = medianfilt(cin, len)\n\n%tstoolbox/@core/medianfilt\n% Syntax:\n% * medianfilt(cin,len)\n%\n% Input Arguments:\n% * cin - core object\n%\n% moving median filter\n%\n% Copyright 1997-2001 DPI Goettingen, License http://www.physik3.gwdg.de/tstool/gpl.txt\n\nN = dlens(cin,1); \t% Laenge in der ersten Dimension (sollte auch die einzige sein (skalar))\nts = data(cin);\t\t% Die Datenwerte des Input-Signals werden nach ts kopiert\n\nmd = zeros(N-len+1,1);\n\nfor i=1:N-len+1\n\tmd(i) = median(ts(i:i+len-1));\nend\n\ncout = core(md);\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/Toolboxes/OpenTSTOOL/tstoolbox/@core/medianfilt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.37719851343571764}} {"text": "function tapas_sem_trapp_int_check_input(u, theta, ptheta)\n% Check whether the input is compatible with mpdcm. If not an error is \n% returned.\n% \n% Input:\n% u -- Structure. Inputs to DCM in mpdcm format.\n% theta -- Structure. Model parameters in mpdcm format.\n% ptheta -- Structure. Priors of the model in mpdcm format.\n%\n% Output:\n%\n\n% aponteeduardo@gmail.com\n%\n% Author: Eduardo Aponte, TNU, UZH & ETHZ - 2015\n% Copyright 2016 by Eduardo Aponte \n%\n\ntapas_mpdcm_check_input_u(u);\ntapas_mpdcm_check_input_ptheta(ptheta);\n\ncheck_theta(theta)\n\nsu = size(u);\nst = size(theta);\n\nassert(su(1) == st(1), ...\n 'mpdcm:fmri:int:input:dmatch', ...\n 'Dimensions of u and theta doesn''t match')\n\nsu = size(u{1});\ndu = theta{1}.dim_u;\nassert(su(1) == du, ...\n 'mpdcm:fmri:int:input:theta:dim_u:match_u', ...\n 'theta.dim_u doesn''t match u.');\nend\n\n\nfunction check_theta(theta)\n%% Throws an error if something is wrong with theta\n\nassert(iscell(theta), ...\n 'mpdcm:fmri:int:input:theta:not_cell', ...\n 'theta should be a cell array')\nassert(ndims(theta) == 2, ...\n 'mpdcm:fmri:int:input:theta:ndim', ...\n 'theta should be two dimensional, number of dimensions is %d', ...\n ndims(theta))\n\nofD = 0;\nnfD = 0;\n\nfor i = 1:numel(theta)\n\n assert(isstruct(theta{i}), ...\n 'mpdcm:fmri:int:input:theta:cell:not_struct', ...\n 'theta{%d} is not struct', i)\n\n assert(isscalar(theta{i}), ...\n 'mpdcm:fmri:int:input:theta:cell:ndim', ...\n 'theta{%d} should be 1 x 1', i)\n\n tapas_mpdcm_check_input_matrix(theta, [1, 1], 'dim_x', i);\n tapas_mpdcm_check_input_matrix(theta, [1, 1], 'dim_u', i);\n\n if i == 1\n dx = theta{i}.dim_x;\n du = theta{i}.dim_u;\n end\n\n assert(dx == theta{i}.dim_x, ...\n 'mpdcm:fmri:int:input:theta:cell:dim_x:not_match', ...\n 'theta{%d}.dim_x doesn''t match previous values', i);\n\n assert(du == theta{i}.dim_u, ...\n 'mpdcm:fmri:int:input:theta:cell:dim_u:not_match', ...\n 'theta{%d}.dim_u doesn''t match previous values', i);\n\n tapas_mpdcm_check_input_matrix(theta, [dx, dx], 'A', i);\n tapas_mpdcm_check_input_matrix(theta, [dx, dx], 'B', i);\n tapas_mpdcm_check_input_matrix(theta, [dx, du], 'C', i);\n\n tapas_mpdcm_check_input_matrix(theta, [dx, 1], 'x0', i);\n tapas_mpdcm_check_input_matrix(theta, [dx, 1], 'beta', i);\n tapas_mpdcm_check_input_matrix(theta, [dx, 1], 'theta', i);\n tapas_mpdcm_check_input_matrix(theta, [1, 1], 'tau', i);\n\nend\n\nend\n\n\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/sem/neural/tapas_sem_trapp_int_check_input.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.37719850583480313}} {"text": "function draw_images(data,wait,lim,dispsize)\n% Draw data of image array to figure. Reduce size or scale image for resolutions above 800x600 \n%\n% * Input parameters :\n% data [uint16(,,)] image data array (height,width,count)\n% wait time to wait between images (optional) default: 0.01)\n% lim [low up] upper and lower limits to display (optional)\n% default: [0 m], where m is maximal value calculated from first image \n% dispsize [width height] size of top-left corner to display (optional) \n% default: full image scaled for bigger sizes \n%\n% * Output parameters :\n\n if(nargin<1)\n error('Wrong number of input arguments. Need data array');\n end \n\n if(nargin<2)\n wait=0.010;\n end \n\n if(nargin<3)\n ulim=max(max(data(10:end-10,10:end-10,1)));\n lim=[0 ulim]; \n end \n \n disp(['waittime set to ',num2str(wait)]);\n disp(['limits set to [0 ',num2str(lim(2)),']']);\n \n [h,w,count]=size(data);\n\n if(nargin==4)\n if(dispsize(1) nx2 Start/Stop Time (datenum) array (unsorted) \n%\n%OUTPUTS: N --> nx2 Start/Stop Time (datenum) array (sorted)\n%\n% See also ADD_SST, CHK_T, COMPARE_SST, DELETE_SST, EXTRACT_SST, IS_SST, \n% ISTEQUAL, MERGE_SST, SEARCH_SST, SORT_SST, NAN2SST, SSD2SST, \n% SST2NAN, SST2SSD, SST2VAL, SST2WFA, WFA2SST\n%\n% Author: Dane Ketner, Alaska Volcano Observatory\n% $Date$\n% $Revision$\n\n[S N] = sort(sst(:,1));\nsst = [S; sst(N,2)];", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/deprecated/@helicorder/private/SST/sort_sst.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3769368613651355}} {"text": "function y = fx(x)\ni = find((x > -pi) & (x <= 0));\ny = 2*x;\ny(i) = 0;\ny(1) = y(end);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/24779-fourier-series-calculator/fx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3769368533718744}} {"text": "function obj = setHessianPattern(obj, hes_sp, sp_form)\n % This function configure the sparsity pattern of the Hessian\n % of the function\n %\n % The form of given sparsity pattern is determined by the input\n % argument 'sp_form'. It can be one of the followings:\n % 'MatrixForm': the sparsity pattern is given as a matrix\n % (dense or sparse). In this case we extract the row and column\n % indices of non-zero elements from this matrix \n % 'Indexform': the sparsity pattern is directly given as\n % vectors row and column indices of non-zero entries\n %\n % @note In MATLAB's sparse matrix, the values of same set of\n % row and column indices are added together. For example,\n % sparse([1;1],[1;1],[1,2]) will results in a sparse matrix\n % with 1+2 = 3 at entry (1,1).\n %\n % Parameters:\n % hes_sp: a matrix array consists of sparsity pattern of Hessian\n % of each element of the function @type cell \n % sp_form: the type of given sparsity pattern. @type char\n\n % default form \n if nargin < 3\n sp_form = 'MatrixForm';\n end\n\n dimDeps = sum([obj.DepVariables.Dimension]);\n\n if isempty(hes_sp)\n obj.Type = NlpFunction.LINEAR;\n obj.HessPattern.Rows = [];\n obj.HessPattern.Cols = [];\n else\n\n switch sp_form\n case 'MatrixForm'\n\n [m, n, n_mat] = size(hes_sp);\n\n\n assert(n_mat == obj.Dimension && m==dimDeps && n==dimDeps,...\n 'NlpFunction:wrongDimension',...\n ['The size of the Hessian matrix is incorrect.\\n',...\n 'It must be a %d x %d x %d matrix.\\n'], ...\n dimDeps, dimDeps, obj.Dimension);\n\n % check the dimension\n sp_rows = cell(n_mat,1);\n sp_cols = cell(n_mat,1);\n for i=1:n_mat\n [sp_rows{i}, sp_cols{i}] = find(hes_sp(:,:,i));\n end\n obj.HessPattern.Rows = vertcat(sp_rows{:});\n obj.HessPattern.Cols = vertcat(sp_cols{:});\n\n\n case 'IndexForm'\n\n % check if the maximum index exceeds the size of the\n % function or dependent variabbles\n m = max(hes_sp(:,1)); % the maximum row index\n n = max(hes_sp(:,2)); % the maximum column index\n\n assert(m <= dimDeps && n <= dimDeps,...\n 'NlpFunction:wrongDimension',...\n 'The size of the Hessian matrix is incorrect.\\n');\n\n obj.HessPattern.Rows = hes_sp(:,1);\n obj.HessPattern.Cols = hes_sp(:,2);\n\n\n otherwise\n error('Unspecified form of the sparsity pattern.\\n');\n end\n end\n obj.nnzHess = length(obj.HessPattern.Rows);\nend", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/nlp/@NlpFunction/setHessianPattern.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3769368533718744}} {"text": "% POP_CHANCENTER - recenter cartesian X,Y,Z channel coordinates\n%\n% Usage: \n% >> chanlocs = pop_chancenter(chanlocs); % pop up interactive window\n% >> [chanlocs centerloc] = pop_chancenter(chanlocs, center, omitchan); \n%\n% Inputs:\n% chanlocs = eeglab channel location structure (see READLOCS)\n% center = [X Y Z] known center different from [0 0 0]\n% [] will optimize the center location according\n% to the best sphere. Default is [0 0 0].\n% omitchan = indices of channel to omit when computing center\n%\n% Outputs:\n% chanlocs = updated channel location structure\n% centerloc = 3-D location of the new center (in the old coordinate\n% frame).\n%\n% Author: Arnaud Delorme, SCCN/INC/UCSD, La Jolla, Feb 2004\n%\n% See also: CHANCENTER, SPHERROR, CART2TOPO\n\n% Copyright (C) 2004, Arnaud Delorme, SCCN/INC/UCSD, arno@salk.edu\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\nfunction [ chanlocs, newcenter, com] = pop_chancenter( chanlocs, center, omitchans)\n\noptim = 0;\n\nif nargin<1\n help pop_chancenter\n return;\nend\n\ncom = '';\nnewcenter = [];\nif nargin < 3\n omitchans = [];\nend\nif nargin < 2\n cb_browse = [ 'tmpchans = get(gcbf, ''userdata'');' ...\n 'set(findobj(gcbf, ''tag'', ''chans''), ''string'', ' ...\n 'int2str(pop_chansel( { tmpchans.labels } )));' ];\n cb_opt = [ 'if get(gcbo, ''value''), ' ...\n ' set(findobj(gcbf, ''tag'', ''center''), ''enable'', ''off'');' ...\n 'else,' ...\n ' set(findobj(gcbf, ''tag'', ''center''), ''enable'', ''on'');' ...\n 'end;' ];\n geometry = { [1.3 0.28 1 1] [1] [1] [2 1] };\n uilist = { { 'Style', 'text', 'string', 'Optimize center location', 'fontweight', 'bold' } ...\n\t\t\t { 'Style', 'checkbox', 'value', 1 'callback' cb_opt } ... \n { 'Style', 'text', 'string', 'or specify center', 'fontweight', 'bold' } ...\n { 'Style', 'edit', 'string', '0 0 0', 'tag' 'center' 'enable' 'off' } ...\n { } ...\n\t\t\t { 'Style', 'text', 'string', 'Channel indices to ignore for best-sphere matching' } ...\n\t\t\t { 'Style', 'edit', 'string', '', 'tag', 'chans' } ...\n\t\t\t { 'Style', 'pushbutton', 'string', 'Browse', 'callback', cb_browse } };\n \n results = inputgui( geometry, uilist, 'pophelp(''pop_chancenter'');', ...\n 'Convert channel locations -- pop_chancenter()', chanlocs );\n\tif isempty(results), return; end\n\tif results{1}\n center = [];\n else\n center = eval( [ '[' results{2} ']' ] );\n end\n if ~isempty(results{3})\n omitchans = eval( [ '[' results{3} ']' ] );\n end\nend\n\n% remove channels\n% ---------------\nc = setdiff_bc([1:length(chanlocs)], union(omitchans, find(cellfun('isempty', { chanlocs.theta }))));\n\n% optimize center\n% ---------------\n[X, Y, Z, newcenter]= chancenter( [ chanlocs(c).X ]', [ chanlocs(c).Y ]', [ chanlocs(c).Z ]', center);\nfor index = 1:length(c)\n chanlocs(c(index)).X = X(index);\n chanlocs(c(index)).Y = Y(index);\n chanlocs(c(index)).Z = Z(index);\nend\ndisp('Note: automatically convert XYZ coordinates to spherical and polar');\nchanlocs = convertlocs(chanlocs, 'cart2all');\nif ~isempty(omitchans)\n disp('Important warning: the location of omitted channels has not been modified');\nend\nif nargout > 2\n com = sprintf('%s = pop_chancenter( %s, %s);', inputname(1), inputname(1), vararg2str({ center omitchans }));\nend\n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/popfunc/pop_chancenter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.37693684537861316}} {"text": "clear all;\nclose all;\nclc;\n\n\nimage = 'cow';\n% image = 'bungee';\n% image = 'man';\n\nAorg = imread([image '.png']);\nMorg = imread([image '-mask.png']);\n\ntic\nA=patch_inpaint(Aorg,Morg);\ntoc\n\nimshow(A)", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/34170-inpainting-coherency-sensitive-hashing/inpainting/test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3768864066983544}} {"text": "classdef gammaSections < ODFSections\n\n properties\n gamma\n sR\n maxGamma\n end\n\n methods\n\n function oS = gammaSections(varargin)\n % gamma sections for ODF and orientation plotting\n %\n % Syntax\n %\n % oS = gammaSections(cs1,cs2,'sections',5)\n % oS = gammaSections(cs1,cs2,'gamma',(0:15:90)*degree)\n %\n % Input\n % cs1, cs2 - @crystalSymmetry, @specimenSymmetry\n %\n % Options\n % sections - number of sections\n % gamma - explicite section values\n %\n\n oS = oS@ODFSections(varargin{:});\n\n % get fundamental plotting region\n [alpha,beta,oS.maxGamma] = fundamentalRegionEuler(oS.CS1,oS.CS2,varargin{:}); %#ok<*PROP>\n oS.sR = sphericalRegion('maxTheta',beta,'maxRho',alpha);\n\n % get sections\n nsec = get_option(varargin,'sections',6);\n oS.gamma = linspace(0,oS.maxGamma,nsec+1);\n oS.gamma(end) = [];\n oS.gamma = get_option(varargin,'gamma',oS.gamma,'double');\n\n oS.updateTol(oS.gamma);\n end\n\n function ori = makeGrid(oS,varargin)\n\n oS.plotGrid = plotS2Grid(oS.sR,varargin{:});\n oS.gridSize = (0:numel(oS.gamma)) * length(oS.plotGrid);\n alpha = repmat(oS.plotGrid.rho,[1,1,numel(oS.gamma)]);\n beta = repmat(oS.plotGrid.theta,[1,1,numel(oS.gamma)]);\n gamma = repmat(reshape(oS.gamma,1,1,[]),[size(oS.plotGrid) 1]);\n\n ori = orientation.byEuler(alpha,beta,gamma,'ZYZ',oS.CS,oS.SS);\n\n end\n\n function ori = quiverGrid(oS,varargin)\n\n maxbeta = oS.sR.thetaMax;\n maxalpha = oS.sR.rhoMax;\n res = get_option(varargin,'resolution',15*degree);\n \n [alpha,beta,gamma] = meshgrid(res/2:res:maxalpha,res/2:res:maxbeta,oS.gamma);\n \n ori = orientation.byEuler(alpha,beta,gamma,'ZYZ',oS.CS,oS.SS);\n\n end\n\n\n function n = numSections(oS)\n n = numel(oS.gamma);\n end\n\n function [S2Pos,secPos] = project(oS,ori,varargin)\n\n % maybe this can be done more efficiently\n ori = ori.symmetrise('proper').';\n [alpha,beta,gamma] = Euler(ori,'ZYZ'); %#ok<*PROPLC>\n\n secPos = oS.secList(gamma,oS.gamma);\n S2Pos = vector3d.byPolar(beta,alpha);\n\n end\n\n function ori = iproject(oS,alpha,beta,igamma)\n ori = orientation.byEuler(alpha,beta,oS.gamma(igamma),'ZYZ',oS.CS,oS.SS);\n end\n\n function h = plotSection(oS,ax,sec,v,data,varargin)\n\n % plot data\n h = plot(v,data{:},oS.sR,'TR',[int2str(oS.gamma(sec)./degree),'^\\circ'],...\n 'parent',ax,'projection','plain','xAxisDirection','east',...\n 'xlabel','$\\alpha$','ylabel','$\\beta$','dynamicMarkerSize',...\n 'zAxisDirection','intoPlane',varargin{:},'doNotDraw');\n\n end\n\n function h = quiverSection(oS,ax,sec,v,data,varargin)\n\n % translate rotational data into tangential data\n if iscell(data) && isa(data{1},'quaternion')\n [v2,sec2] = project(oS,data{1},'noSymmetry','preserveOrder');\n data{1} = v2 - v;\n data{1}(sec2 ~= sec)=NaN;\n end\n if check_option(varargin,'normalize'), data{1} = normalize(data{1}); end\n \n % plot data\n h = quiver(v,data{:},oS.sR,'TR',[int2str(oS.gamma(sec)./degree),'^\\circ'],...\n 'parent',ax,'projection','plain','xAxisDirection','east',...\n 'xlabel','$\\alpha$','ylabel','$\\beta$',...\n 'zAxisDirection','intoPlane',varargin{:},'doNotDraw'); \n\n end\n\n\n end\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/plotting/ODFSections/gammaSections.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.3768863999423515}} {"text": "function rhs=ch_rom_deim_rhs(tspan, a,dummy,P_NL,P_Psi,L)\nN=P_Psi*a;\nrhs=L*a + i*P_NL*((abs(N).^2).*N);\n", "meta": {"author": "dynamicslab", "repo": "databook_matlab", "sha": "d390d39d18489a4804ee87a143ae8db8a1f3010b", "save_path": "github-repos/MATLAB/dynamicslab-databook_matlab", "path": "github-repos/MATLAB/dynamicslab-databook_matlab/databook_matlab-d390d39d18489a4804ee87a143ae8db8a1f3010b/CH11/extra/ch_rom_deim_rhs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7718434978390747, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.37687836376187667}} {"text": "function Z = variable_replace(X,Y,W)\n\n% Check so that Y is a simple unit variable\nYbase = getbase(Y);\nYvariables = getvariablesSORTED(Y);\nXbase = getbase(X);\nXvariables = getvariables(X);\n[i,j,k] = find(Ybase);\nif ~isequal(sort(i),1:length(i))\nend\nif ~isequal(sort(j),2:(length(i)+1))\nend\nif ~all(k == 1)\nend\n\n[mt,variabletype] = yalmip('monomtable');\n% Linear, or at least linear in Y\nif all(variabletype(Xvariables) == 0) %| all(sum(mt(any(mt(getvariables(X),getvariables(Y)),2),:),2)==1)\n % Simple linear replacement\n v = 1;\n v1 = [];\n v2 = [];\n i1 = [];\n i2 = [];\n for i = 1:length(Xvariables)\n XisinY = find(Xvariables(i) == Yvariables);\n if ~isempty(XisinY)\n % v = [v;W(XisinY)];\n v1 = [v1 XisinY];\n i1 = [i1 i];\n else\n % v = [v;recover(Xvariables(i))];\n v2 = [v2 Xvariables(i)];\n i2 = [i2 i];\n end\n end\n v = sparse(i1,ones(length(i1),1),W(v1),length(Xvariables),1);\n v = v + sparse(i2,ones(length(i2),1),recover(v2),length(Xvariables),1);\n \n Z = Xbase*[1;v];\n %Z = Xbase*[v];\n Z = reshape(Z,size(X,1),size(X,2));\nelse\n if nnz(mt(getvariables(X),getvariables(Y)))==0\n Z = X;\n else\n Z = nonlinearreplace(X,Y,W);\n end\n return\n% error('Nonlinear replacement not supported yet')\nend\n\n% This has not been tested (copied from variable_replace) so it is placed\n% in a catch to be safe.\ntry\n Xvariables = getvariables(Z);\n extvar = yalmip('extvariables');\n Xext = find(ismember(Xvariables,extvar));\n if ~isempty(Xext)\n %We must dig down in extended operators to see if they use the replaced\n %set of variables\n for i = 1:length(Xext)\n extstruct = yalmip('extstruct',Xvariables(Xext(i)));\n anychanged = 0;\n for j = 1:length(extstruct.arg)\n if isa(extstruct.arg{j},'sdpvar')\n XinY = find(ismembc(getvariables(extstruct.arg{j}),Yvariables));\n if ~isempty(XinY)\n anychanged = 1;\n extstruct.arg{j} = replace(extstruct.arg{j},Y,W);\n else\n end\n end\n end\n if anychanged\n Zi = yalmip('define',extstruct.fcn,extstruct.arg{:});\n Xvariables(Xext(i)) = getvariables(Zi);\n end\n end\n % And now recover this sucker\n Z = struct(Z);\n Z.lmi_variables = Xvariables;\n % Messed up order (lmi_variables should be sorted)\n if any(diff(Z.lmi_variables)<0)\n [i,j]=sort(Z.lmi_variables);\n Z.basis = [Z.basis(:,1) Z.basis(:,j+1)];\n Z.lmi_variables = Z.lmi_variables(j);\n end\n Z = sdpvar(Z.dim(1),Z.dim(2),[],Z.lmi_variables,Z.basis);\n end\ncatch\nend\n\n\nfunction Yvariables = getvariablesSORTED(Y);\nY = Y(:);\nfor i = 1:length(Y)\n Yvariables(i) = getvariables(Y(i));\nend\n", "meta": {"author": "shamilmamedov", "repo": "dynamic_calibration", "sha": "11af40e7deb758ec080a175fed8fcdd6c99aca29", "save_path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration", "path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration/dynamic_calibration-11af40e7deb758ec080a175fed8fcdd6c99aca29/utils/YALMIP-master/extras/variable_replace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.3768696860530741}} {"text": "function [cmc,ind]=get_cmc_multi_cam(Y_gallery,Y_cam_gallery,Y_probe,Y_cam_probe,dist)\n[~, ind]=sort(dist,2);\nY_result=Y_gallery(ind);\nY_cam_result=Y_cam_gallery(ind);\nvalid_probe_sample_count=0;\ngallery_unique_count=length(unique(Y_gallery));\nmatch_counter=zeros(1,gallery_unique_count);\nprobe_sample_count=length(Y_probe);\nfor i=1:probe_sample_count\n % remove gallery samples from the same camera of the probe\n Y_result_i=Y_result(i,:);\n Y_result_i(Y_cam_result(i,:)==Y_cam_probe(i))=[];\n % remove duplicated id\n Y_result_unique_i=unique(Y_result_i,'stable');\n % match for probe i\n match_i=(Y_result_unique_i==Y_probe(i));\n if sum(match_i)~=0 % if there is true matching in gallery\n valid_probe_sample_count=valid_probe_sample_count+1;\n for r=1:length(match_i)\n match_counter(r)=match_counter(r)+match_i(r);\n end\n end\nend\nrankk=match_counter/valid_probe_sample_count;\ncmc=cumsum(rankk);\nend", "meta": {"author": "wuancong", "repo": "SYSU-MM01", "sha": "b1f8f3691f59da47bd481b9343aeaf6a03675dfe", "save_path": "github-repos/MATLAB/wuancong-SYSU-MM01", "path": "github-repos/MATLAB/wuancong-SYSU-MM01/SYSU-MM01-b1f8f3691f59da47bd481b9343aeaf6a03675dfe/evaluation/get_cmc_multi_cam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.37686967907388924}} {"text": "function irepistruct = irepifit(irepistruct)\n% irepistruct = irepifit(irepistruct)\n% Performs LMS fit.\n%\n\ns = irepistruct; % copy into s for easy handling\n\n% s = irepitiming(s); Need to do this if fitting seq params\n\n% Need to be able to cache so not recomputing every slice\n% Need this way too for incremental\ns = irepisynth(s); \n\ns.X0 = s.yRead;\n\ns.iexclude1 = [];\nif(s.nexclude > 0)\n % Just skip the first n\n % s.iexclude1 = [1:s.nexclude]';\n\n % This skips time points according to a rule. If a given time\n % point was the last acquired slice, then the next time point\n % for that slice is skipped. \n %indSlice = find((s.EventSliceNo == s.sliceno | s.EventSliceNo < 0) & s.IsReadOut);\n %nthSliceAcq = s.AcqSliceNo(indSlice);\n %indLast = find(nthSliceAcq == s.nslices);\n %if(~isempty(indLast))\n % indEx = indLast + 1;\n % ok = find(indEx <= s.ntp);\n % indEx = indEx(ok);\n %else\n % indEx = []; \n %end\n %s.iexclude1 = indEx;\n\n % This skips time points of the first acquired slice after inversion\n indSlice = find(s.EventSliceNo == s.sliceno | s.EventSliceNo < 0);\n indROS = find(s.IsReadOut(indSlice));\n nthSliceAcq = s.AcqSliceNo(indSlice(indROS));\n s.iexclude1 = find(nthSliceAcq <= s.nexclude);\n %s.iexclude1 = find(nthSliceAcq > s.nexclude);\nend\ns.iexclude2 = [];\nif(s.nminexclude > 0)\n [ysort isort] = sort(s.y);\n s.iexclude2 = sort(isort(1:s.nminexclude));\nend\n\nif(~isempty(s.iexclude1) & isempty(s.iexclude2))\n s.iexclude = s.iexclude1;\nelseif(isempty(s.iexclude1) & ~isempty(s.iexclude2))\n s.iexclude = s.iexclude2;\nelse\n s.iexclude = unique([s.iexclude1; s.iexclude2]);\nend\ns.indkeep = setdiff([1:s.ntp],s.iexclude);\n\n% remove the mean\n%s.X0 = s.X0-repmat(mean(s.X0),[size(s.X0,1) 1]);\n%s.y = s.y-mean(s.y);\n\ns.yFit = s.y(s.indkeep,:);\ns.X = s.X0(s.indkeep,:);\n\ns.tFit = s.tRead(s.indkeep);\n\nnX = size(s.X,2);\nXvar = sum(s.X.*s.X); % need to cache, unless exclude\ns.M0 = sum(s.X.*repmat(s.yFit,[1 nX]))./Xvar;\ns.yhat = s.X.*repmat(s.M0,[length(s.yFit) 1]);\ns.res = repmat(s.yFit,[1 nX])-s.yhat;\ns.yhat0 = s.X0.*repmat(s.M0,[length(s.y) 1]);\nif(0)\n s.M0 = inv(s.X'*s.X)*(s.X'*s.y);\n s.yhat = s.M0*s.X;\n s.res = s.y-s.yhat;\n s.yhat0 = s.M0*s.X0;\nend\ns.rstd = std(s.res);\nerr = s.rstd;\ns.err = err;\n\nirepistruct = s;\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/freesurfer/irepifit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.37686967907388924}} {"text": "%{\n * Copyright (C) 2020-2030, The Regents of The University of Michigan.\n * All rights reserved.\n * This software was developed in the Biped Lab (https://www.biped.solutions/) \n * under the direction of Jessy Grizzle, grizzle@umich.edu. This software may \n * be available under alternative licensing terms; contact the address above.\n * Redistribution and use in source and binary forms, with or without\n * modification, are permitted provided that the following conditions are met:\n * 1. Redistributions of source code must retain the above copyright notice, this\n * list of conditions and the following disclaimer.\n * 2. Redistributions in binary form must reproduce the above copyright notice,\n * this list of conditions and the following disclaimer in the documentation\n * and/or other materials provided with the distribution.\n * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\n * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR\n * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\n * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND\n * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n * The views and conclusions contained in the software and documentation are those\n * of the authors and should not be interpreted as representing official policies,\n * either expressed or implied, of the Regents of The University of Michigan.\n * \n * AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)\n * WEBSITE: https://www.brucerobot.com/\n%}\n\nfunction difference = H_diff(H1, H2)\n difference = H1 \\ H2;\n logR = logm(difference(1:3,1:3));\n v = [-logR(1,2) logR(1,3) -logR(2,3) difference(1:3,4)'];\n difference = norm(v);\nend", "meta": {"author": "UMich-BipedLab", "repo": "extrinsic_lidar_camera_calibration", "sha": "d423c81e95c6de595e1dff79871385348b1c68f4", "save_path": "github-repos/MATLAB/UMich-BipedLab-extrinsic_lidar_camera_calibration", "path": "github-repos/MATLAB/UMich-BipedLab-extrinsic_lidar_camera_calibration/extrinsic_lidar_camera_calibration-d423c81e95c6de595e1dff79871385348b1c68f4/H_diff.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.37663760976798283}} {"text": "function datapt = lvd_ThrottleTask(stateLogEntry, subTask, inFrame)\n%lvd_ThrottleTask Summary of this function goes here\n% Detailed explanation goes here\n\n switch subTask\n case 'throttle'\n datapt = 100*stateLogEntry.throttle;\n \n case 't2w'\n throttle = stateLogEntry.throttle;\n tankStates = stateLogEntry.getAllActiveTankStates();\n \n tankMasses = zeros(size(tankStates));\n for(i=1:length(tankStates))\n tankMasses(i) = tankStates(i).tankMass;\n end\n \n powerStorageStates = stateLogEntry.getAllActivePwrStorageStates();\n storageSoCs = NaN(size(powerStorageStates));\n for(i=1:length(powerStorageStates))\n storageSoCs(i) = powerStorageStates(i).getStateOfCharge();\n end\n \n datapt = computeTWRatio(throttle, stateLogEntry.time, stateLogEntry.position, stateLogEntry.velocity, tankMasses, stateLogEntry.getTotalVehicleDryMass(), ...\n stateLogEntry.stageStates, stateLogEntry.lvState, tankStates, stateLogEntry.centralBody, storageSoCs, powerStorageStates);\n case 'totalthrust'\n [totalThrust] = getThrustParameters(stateLogEntry);\n datapt = totalThrust;\n \n case 'thrust_x'\n vehElemSet = stateLogEntry.getCartesianElementSetRepresentation();\n [~, ~, ~, rotMat] = inFrame.getOffsetsWrtInertialOrigin(stateLogEntry.time, vehElemSet);\n \n [~, thrustForceVector] = getThrustParameters(stateLogEntry);\n thrustForceVector = thrustForceVector(:);\n thrustForceVector = rotMat * thrustForceVector;\n \n datapt = thrustForceVector(1);\n if(isnan(datapt))\n datapt = 0;\n end\n \n case 'thrust_y'\n vehElemSet = stateLogEntry.getCartesianElementSetRepresentation();\n [~, ~, ~, rotMat] = inFrame.getOffsetsWrtInertialOrigin(stateLogEntry.time, vehElemSet);\n \n [~, thrustForceVector] = getThrustParameters(stateLogEntry);\n thrustForceVector = thrustForceVector(:);\n thrustForceVector = rotMat * thrustForceVector;\n \n datapt = thrustForceVector(2);\n if(isnan(datapt))\n datapt = 0;\n end\n \n case 'thrust_z'\n vehElemSet = stateLogEntry.getCartesianElementSetRepresentation();\n [~, ~, ~, rotMat] = inFrame.getOffsetsWrtInertialOrigin(stateLogEntry.time, vehElemSet);\n \n [~, thrustForceVector] = getThrustParameters(stateLogEntry);\n thrustForceVector = thrustForceVector(:);\n thrustForceVector = rotMat * thrustForceVector;\n \n datapt = thrustForceVector(3);\n if(isnan(datapt))\n datapt = 0;\n end\n\n case 'thrust_vector'\n [~, thrustForceVector] = getThrustParameters(stateLogEntry);\n \n datapt = thrustForceVector(:);\n if(any(isnan(datapt)))\n datapt = [0;0;0];\n end\n \n otherwise\n error('Unrecongized task: %s', subTask);\n \n end\nend\n\nfunction [totalThrust, thrustForceVector] = getThrustParameters(stateLogEntry) \n if(stateLogEntry.event.propagatorObj.canProduceThrust())\n ut = stateLogEntry.time;\n rVect = stateLogEntry.position;\n vVect = stateLogEntry.velocity;\n\n bodyInfo = stateLogEntry.centralBody;\n tankStates = stateLogEntry.getAllActiveTankStates();\n stageStates = stateLogEntry.stageStates;\n lvState = stateLogEntry.lvState;\n\n dryMass = stateLogEntry.getTotalVehicleDryMass();\n tankStatesMasses = [tankStates.tankMass]';\n\n throttleModel = stateLogEntry.throttleModel;\n steeringModel = stateLogEntry.steeringModel;\n\n altitude = norm(rVect) - bodyInfo.radius;\n pressure = getPressureAtAltitude(bodyInfo, altitude); \n\n powerStorageStates = stateLogEntry.getAllActivePwrStorageStates();\n storageSoCs = NaN(size(powerStorageStates));\n for(i=1:length(powerStorageStates)) %#ok<*NO4LP> \n storageSoCs(i) = powerStorageStates(i).getStateOfCharge();\n end\n\n attState = LaunchVehicleAttitudeState();\n attState.dcm = steeringModel.getBody2InertialDcmAtTime(ut, rVect, vVect, bodyInfo);\n \n throttle = throttleModel.getThrottleAtTime(ut, rVect, vVect, tankStatesMasses, dryMass, stageStates, lvState, tankStates, bodyInfo, storageSoCs, powerStorageStates);\n\n [~, totalThrust, thrustForceVector] = LaunchVehicleStateLogEntry.getTankMassFlowRatesDueToEngines(tankStates, tankStatesMasses, stageStates, throttle, lvState, pressure, ut, rVect, vVect, bodyInfo, steeringModel, storageSoCs, powerStorageStates, attState);\n thrustForceVector = 1000*thrustForceVector; %in order to recover kN\n else\n totalThrust = 0;\n thrustForceVector = [0;0;0];\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/process_data/GraphicalAnalysis/tasks/lvd_ThrottleTask.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.37663760976798283}} {"text": "function a = r8vec_permute ( n, a, p )\n\n%*****************************************************************************80\n%\n%% R8VEC_PERMUTE permutes an R8VEC in place.\n%\n% Discussion:\n%\n% This routine permutes an array of real \"objects\", but the same\n% logic can be used to permute an array of objects of any arithmetic\n% type, or an array of objects of any complexity. The only temporary\n% storage required is enough to store a single object. The number\n% of data movements made is N + the number of cycles of order 2 or more,\n% which is never more than N + N/2.\n%\n% P(I) = J means that the I-th element of the output array should be \n% the J-th element of the input array. P must be a legal permutation\n% of the integers from 1 to N, otherwise the algorithm will\n% fail catastrophically.\n%\n% Example:\n%\n% Input:\n%\n% N = 5\n% P = ( 2, 4, 5, 1, 3 )\n% A = ( 1.0, 2.0, 3.0, 4.0, 5.0 )\n%\n% Output:\n%\n% A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ).\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 24 May 2015\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of objects.\n%\n% Input, real A(N), the array to be permuted.\n%\n% Input, integer P(N), the permutation. \n%\n% Output, real A(N), the permuted array.\n%\n ierror = perm1_check ( n, p );\n\n if ( ierror ~= 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R8VEC_PERMUTE - Fatal error!\\n' );\n fprintf ( 1, ' PERM1_CHECK finds the permuation illegal.\\n' );\n error ( 'R8VEC_PERMUTE - Fatal error!' );\n end\n%\n% Search for the next element of the permutation that has not been used.\n%\n for istart = 1 : n\n\n if ( p(istart) < 0 )\n\n continue\n\n elseif ( p(istart) == istart )\n\n p(istart) = -p(istart);\n continue\n\n else\n\n a_temp = a(istart);\n iget = istart;\n%\n% Copy the new value into the vacated entry.\n%\n while ( 1 )\n\n iput = iget;\n iget = p(iget);\n\n p(iput) = -p(iput);\n\n if ( iget < 1 || n < iget )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R8VEC_PERMUTE - Fatal error!\\n' );\n fprintf ( 1, ' A permutation index is out of range.\\n' );\n fprintf ( 1, ' P(%d) = %d\\n', iput, iget );\n error ( 'R8VEC_PERMUTE - Fatal error!' );\n end\n\n if ( iget == istart )\n a(iput) = a_temp;\n break\n end\n\n a(iput) = a(iget);\n\n end\n\n end\n\n end\n%\n% Restore the signs of the entries.\n%\n% p(1:n) = -p(1:n);\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/r8lib/r8vec_permute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5312093733737563, "lm_q2_score": 0.7090191337850932, "lm_q1q2_score": 0.37663760976798283}} {"text": "function maximise( varargin )\n\n%MAXIMISE Specifiies a concave (or affine) objective to be maximized.\n\nglobal cvx___\nprob = evalin( 'caller', 'cvx_problem', '[]' );\nif ~isa( prob, 'cvxprob' ),\n error( 'No CVX model exists in this scope.' );\nelseif isempty( cvx___.problems ) || cvx___.problems( end ).self ~= prob,\n error( 'Internal CVX data corruption. Please CLEAR ALL and rebuild your model.' );\nelseif nargin < 1,\n error( 'Objective expression missing.' );\nelseif iscellstr( varargin ),\n x = evalin( 'caller', sprintf( '%s ', varargin{:} ) );\nelseif nargin > 1,\n error( 'Too many input arguments.' );\nelse\n x = varargin{1};\nend\ntry\n newobj( prob, 'maximize', x );\ncatch exc\n rethrow( exc )\nend\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/keywords/maximise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3766347097658911}} {"text": "function [ y, next ] = p37_equil ( neqn, next )\n\n%*****************************************************************************80\n%\n%% P37_EQUIL returns equilibrium solutions of problem p37.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 February 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer NEQN, the number of equations.\n%\n% Input, integer NEXT, the index of the previous\n% equilibrium, which should be 0 on first call.\n%\n% Output, real Y(NEQN), the \"next\" equilibrium solution, if any.\n%\n% Output, integer NEXT, the index of the current equilibrium, \n% or 0 if there are no more.\n%\n if ( next == 0 )\n next = 1;\n y(1:neqn,1) = [ 0.0; 0.0 ];\n else\n next = 0;\n y = [];\n end\n\n return\nend\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_ode/p37_equil.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6654105454764747, "lm_q1q2_score": 0.3766347022546331}} {"text": "% CONFIGSTATEMACHINE configures the state machine (type of demo, velocity\n% of the demo, repeat movements, and so on).\n\n%% --- Initialization ---\n\n% If true, the robot CoM will follow a desired reference trajectory (COORDINATOR DEMO ONLY)\nConfig.LEFT_RIGHT_MOVEMENTS = false;\n\n% If equal to one, the desired values of the center of mass are smoothed internally \nConfig.SMOOTH_COM_DES = true; \n\n% If equal to one, the desired values of the postural tasks are smoothed internally \nConfig.SMOOTH_JOINT_DES = true; \n\n% Joint torques saturation [Nm]\nSat.torque = 60;\n\n% Joint torques rate of change saturation\nSat.uDotMax = 300;\n\n% max unsigned difference between two consecutive (measured) joint positions, \n% i.e. delta_qj = abs(qj(k) - qj(k-1))\nSat.maxJointsPositionDelta = 15*pi/180; % [rad] \n\n%% Regularization parameters\nReg.pinvDamp_baseVel = 1e-7;\nReg.pinvDamp = 1; \nReg.pinvTol = 1e-5;\nReg.KP_postural = 0.1;\nReg.KD_postural = 0;\nReg.HessianQP = 1e-7; \n\n%% State Machine configuration\n\n% time between two yoga positions\nStateMachine.joints_pauseBetweenYogaMoves = 5;\n\n% contact forces threshold\nStateMachine.wrench_thresholdContactOn = 50;\nStateMachine.wrench_thresholdContactOff = 100;\n\n% threshold on CoM and joints error\nStateMachine.CoM_threshold = 0.01; \nStateMachine.joints_thresholdNotInContact = 5;\nStateMachine.joints_thresholdInContact = 50;\n\n% initial state for state machine\nStateMachine.initialState = 1;\n\n% other configuration parameters for state machine\nStateMachine.tBalancing = 1;\nStateMachine.tBalancingBeforeYoga = 1;\nStateMachine.yogaExtended = true;\nStateMachine.skipYoga = false;\nStateMachine.demoOnlyBalancing = false;\nStateMachine.demoStartsOnRightSupport = false; % If false, the Yoga demo is performed on the left foot first\nStateMachine.yogaAlsoOnRightFoot = false; % TO DO: yoga on both feet starting from right foot (not available for now)\n\n%%%% List of possible \"Yoga in loop\" %%%%\n\n% the robot will repeat the FULL DEMO (two feet balancing, yoga on left\n% foot, back on two feet, yoga right foot, back on two feet). The demo is\n% repeated until the user stops the Simulink model. This option is ignored\n% if Sm.demoStartsOnRightSupport = true.\nStateMachine.twoFeetYogaInLoop = false;\n\n% the robot will repeat the ONE FOOT yoga for the number of times the user\n% specifies in the Sm.yogaCounter option. The robot WILL NOT go back to two\n% feet balancing in between to consecutive yoga. WARNING: if the option \n% Sm.yogaAlsoOnRightFoot is true, then the robot will repeat first the yoga\n% on left foot for the number of times the user specifies in the Sm.yogaCounter,\n% and then it will repeat the yoga on the right foot for the same number of times.\nStateMachine.oneFootYogaInLoop = false;\nStateMachine.yogaCounter = 5;\n\n%% Parameters for motors reflected inertia\n\n% transmission ratio (1/N)\nConfig.Gamma = 0.01*eye(ROBOT_DOF);\n\n% modify the value of the transmission ratio for the hip pitch. \n% TODO: avoid to hard-code the joint numbering\nConfig.Gamma(end-5, end-5) = 0.0067;\nConfig.Gamma(end-11,end-11) = 0.0067;\n\n% motors inertia (Kg*m^2)\nlegsMotors_I_m = 0.0827*1e-4;\ntorsoPitchRollMotors_I_m = 0.0827*1e-4;\ntorsoYawMotors_I_m = 0.0585*1e-4;\narmsMotors_I_m = 0.0585*1e-4;\n\n% add harmonic drives reflected inertia\nif Config.INCLUDE_HARMONIC_DRIVE_INERTIA\n \n legsMotors_I_m = legsMotors_I_m + 0.054*1e-4;\n torsoPitchRollMotors_I_m = torsoPitchRollMotors_I_m + 0.054*1e-4;\n torsoYawMotors_I_m = torsoYawMotors_I_m + 0.021*1e-4;\n armsMotors_I_m = armsMotors_I_m + 0.021*1e-4; \nend\n \nConfig.I_m = diag([torsoPitchRollMotors_I_m*ones(2,1);\n torsoYawMotors_I_m;\n armsMotors_I_m*ones(8,1);\n legsMotors_I_m*ones(12,1)]);\n\n% parameters for coupling matrices. Updated according to the wiki:\n%\n% http://wiki.icub.org/wiki/ICub_coupled_joints \n%\n% and corrected according to https://github.com/robotology/robots-configuration/issues/39\nt = 0.615;\nr = 0.022;\nR = 0.04;\n\n% coupling matrices\nT_LShoulder = [-1 0 0;\n -1 -t 0;\n 0 t -t];\n\nT_RShoulder = [ 1 0 0;\n 1 t 0;\n 0 -t t];\n\nT_torso = [ 0.5 -0.5 0;\n 0.5 0.5 0;\n r/(2*R) r/(2*R) r/R];\n \nif Config.INCLUDE_COUPLING\n \n Config.T = blkdiag(T_torso,T_LShoulder,1,T_RShoulder,1,eye(12));\nelse \n Config.T = eye(ROBOT_DOF);\nend\n\n% gain for feedforward term in joint torques calculation. Valid range: a\n% value between 0 and 1\nConfig.K_ff = 0;\n\n% Config.USE_DES_JOINT_ACC_FOR_MOTORS_INERTIA if true, the desired joints\n% accelerations are used for computing the feedforward term in joint\n% torques calculations. Not effective if Config.K_ff = 0.\nConfig.USE_DES_JOINT_ACC_FOR_MOTORS_INERTIA = false;\n\n%% Constraints for QP for balancing\n\n% The friction cone is approximated by using linear interpolation of the circle. \n% So, numberOfPoints defines the number of points used to interpolate the circle \n% in each cicle's quadrant\nnumberOfPoints = 4; \nforceFrictionCoefficient = 1/3; \ntorsionalFrictionCoefficient = 1/75;\nfZmin = 10;\n\n% physical size of the foot \nfeet_size = [-0.07 0.12 ; % xMin, xMax\n -0.045 0.045 ]; % yMin, yMax \n \n% Compute contact constraints (friction cone, unilateral constraints)\n[ConstraintsMatrix, bVectorConstraints] = wbc.computeRigidContactConstraints ...\n (forceFrictionCoefficient, numberOfPoints, torsionalFrictionCoefficient, feet_size, fZmin);", "meta": {"author": "robotology", "repo": "whole-body-controllers", "sha": "90ff965a523f0a120e6a8981b71326c1485e7742", "save_path": "github-repos/MATLAB/robotology-whole-body-controllers", "path": "github-repos/MATLAB/robotology-whole-body-controllers/whole-body-controllers-90ff965a523f0a120e6a8981b71326c1485e7742/controllers/simulink-balancing-simulator/app/robots/iCubGazeboV2_5/configStateMachine.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37658556412316274}} {"text": "function varargout = spm_bsplins(varargin)\n% Sample a volume using B-spline interpolation - a compiled routine\n% FORMAT [f,dfx,dfy,dfz] = spm_bsplins(c,x,y,z,d)\n% c - volume of B-spline coefficients (from spm_bsplinc)\n% x,y,z - co-ordinates of sampled points\n% d(1:3) - degree of B-spline (from 0 to 7) along different dimensions\n% - these must be same as used by spm_bsplinc\n% d(4:6) - 1/0 to indicate wrapping along the dimensions\n% f - sampled data\n% dfx,dfy,dfz - sampled first derivatives\n%\n% This function takes B-spline basis coefficients from spm_bsplinc,\n% and re-convolves them with B-splines centred at the new sample points.\n%\n% Note that nearest neighbour interpolation is used instead of 0th\n% degree B-splines, and the derivatives of trilinear interpolation are\n% returned insted of those of 1st degree B-splines. The difference is\n% extremely subtle.\n%\n%_______________________________________________________________________\n%\n% References:\n% M. Unser, A. Aldroubi and M. Eden.\n% \"B-Spline Signal Processing: Part I-Theory,\"\n% IEEE Transactions on Signal Processing 41(2):821-832 (1993).\n%\n% M. Unser, A. Aldroubi and M. Eden.\n% \"B-Spline Signal Processing: Part II-Efficient Design and\n% Applications,\"\n% IEEE Transactions on Signal Processing 41(2):834-848 (1993).\n%\n% M. Unser.\n% \"Splines: A Perfect Fit for Signal and Image Processing,\"\n% IEEE Signal Processing Magazine, 16(6):22-38 (1999)\n%\n% P. Thevenaz and T. Blu and M. Unser.\n% \"Interpolation Revisited\"\n% IEEE Transactions on Medical Imaging 19(7):739-758 (2000).\n%_______________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n\n% John Ashburner\n% $Id: spm_bsplins.m 2696 2009-02-05 20:29:48Z guillaume $\n\n\n%-This is merely the help file for the compiled routine\nerror('spm_bsplins.c not compiled - see Makefile');\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/spm12/spm_bsplins.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37658556412316274}} {"text": "%% Example of using KST class for interfacing with KUKA iiwa robots\n\n% Used to test switching between various operation modes.\n\n% First start the server on the KUKA iiwa controller\n% Then run this script using Matlab\n\n% Tested under Matlab2013b, for higher versions, the realtime plot might\n% not work.\n\n% This example works with Sunrise application version KST_1.7 and higher.\n% Copyright Mohammad SAFEEA, 1st-March-2019\n\n% Operation modes:\n% 1st impedance motion\n% 2nd (PTP) move on lines\n% 3rd (PT) move on circles\n% 4th direct servo\n% 5th impedance again\n% 6th (PTP) move lines again\nclose all;clear;clc;\nwarning('off');\n%% Create the robot object\nip='172.31.1.147'; % The IP of the controller\narg1=KST.LBR7R800; % choose the robot iiwa7R800 or iiwa14R820\narg2=KST.Medien_Flansch_elektrisch; % choose the type of flange\nTef_flange=eye(4); % transofrm matrix of EEF with respect to flange\niiwa=KST(ip,arg1,arg2,Tef_flange); % create the object\n\n%% Start a connection with the server\nflag=iiwa.net_establishConnection();\nif flag==0\nreturn;\nend\npause(1);\ndisp('Testing KST under various operation modes');\n \n%% Move point to point to an initial position\njPos={0,0,0,-pi/2,0,pi/2,0};\nrelVel=0.15;\niiwa.movePTPJointSpace(jPos, relVel); % move to initial configuration\n\n%% Pause for 3 seocnds\npause(3); \n\n%% 1st\ndisp('First test, real time impedance mode');\n% Tool/Impedance parameters \nmassOfTool=0.5; % the mass of the tool attached to flange in Kg\ncOMx=0; % X coordinate of the center of mass of the tool in (mm)\ncOMy=0; % Y coordinate of the center of mass of the tool in (mm)\ncOMz=40; % Z coordinate of the center of mass of the tool in (mm)\ncStiness=900; % cartizian stifness\nrStifness=80; % rotational stifness\nnStifness=50; % null space stifness\n\n% Start the soft realtime control with impedance\niiwa.realTime_startImpedanceJoints(massOfTool,cOMx,cOMy,cOMz,...\ncStiness,rStifness,nStifness);\n\nw=0.6; % motion constants, frequency rad/sec\nA=0.2; % motion constants, amplitude of motion\n\na=datevec(now);\nt0=a(6)+a(5)*60+a(4)*60*60; % calculate initial time\n\ndt=0;\ntstart=t0;\ncounter=0;\nduration=0.2*60; %0.2 minutes\n\n% Control loop\n% real time plot handles\n colors={'k','b','r','g','c','m','y'};\n figureHandle=figure('Units','inches','Position',[0 0 5 3.75]);\n numOfSamples=120; % number of samples to show in the plot\n timeVec=1:numOfSamples;\n tawVec=zeros(7,numOfSamples);\n plotHandle=[];\n for i=1:7\n plotHandle=[plotHandle,plot(timeVec,tawVec(i,:),colors{i},'LineWidth',2)];\n hold on;\n end\n% format the plot\nylim([0,8]);\ntemp=title('External torques');\nset(temp,'FontSize',16);\ntemp=xlabel('Time (seconds)');\nset(temp,'FontSize',14);\ntemp=ylabel('Distance (m)');\nset(temp,'FontSize',14);\n\n\nwhile(dt0.003)\n counter=counter+1;\n iiwa.sendEEfPositionf(eefposDist);\n t_0=toc;\n end\nend\nend\ntstart=t0;\ntend=time;\nrate=counter/(tend-tstart);\n% Stop the direct servo motion\niiwa.realTime_stopDirectServoCartesian( );\nfprintf('\\nThe rate of update per second is: \\n');\ndisp(rate);\nfprintf('\\n')\npause(2);\n\n%% 5th\ndisp('Fifth test, realtime impedance motion mode, repeat procedure for 3 times');\nfor i=1:3\n massOfTool=0.5; % the mass of the tool attached to flange in Kg\n cOMx=0; % X coordinate of the center of mass of the tool in (mm)\n cOMy=0; % Y coordinate of the center of mass of the tool in (mm)\n cOMz=40; % Z coordinate of the center of mass of the tool in (mm)\n cStiness=900; % cartizian stifness\n rStifness=80; % rotational stifness\n nStifness=50; % null space stifness\n\n % Start the soft realtime control with impedance\n iiwa.realTime_startImpedanceJoints(massOfTool,cOMx,cOMy,cOMz,...\n cStiness,rStifness,nStifness);\n\n w=0.6; % motion constants, frequency rad/sec\n A=0.2; % motion constants, amplitude of motion\n\n a=datevec(now);\n t0=a(6)+a(5)*60+a(4)*60*60; % calculate initial time\n\n dt=0;\n tstart=t0;\n counter=0;\n duration=10; %10 seconds\n\n % Control loop\n while(dt 1\n d = size(varargin{3});\n \n if min(d) > 1\n % Matrix case, vectorize\n varargout{1} = interp1(varargin{1},varargin{2},reshape(varargin{3},[],1),varargin{4},varargin{5});\n varargout{1} = reshape(varargout{1},d);\n return\n end\n \n if any(any(isnan(varargin{1})))\n error('Interpolation grid contains NaNs');\n end\n if any(any(isnan(varargin{2})))\n error('Interpolation data contains NaNs');\n end\n \n % If only one data sequence, place in row vector\n if min(size(varargin{1})) == 1\n varargin{1} = repmat(varargin{1}(:)',max(d),1);\n end\n if min(size(varargin{2})) == 1\n varargin{2} = repmat(varargin{2}(:)',max(d),1);\n end \n \n out = [];\n varargin{3} = reshape(varargin{3},1,max(d));\n for i = 1:max(d)\n Y.type = '()';\n Y.subs{1} = 1;\n Y.subs{2} = i;\n xij = subsref(varargin{3},Y); \n out = [out;interp1(varargin{1}(i,:),varargin{2}(i,:),xij,varargin{4},varargin{5})]; \n end\n if d(1)==1\n out = out';\n end\n varargout{1} = out;\n return\n else\n if min(size(varargin{1})) > 1 || min(size(varargin{2})) > 1\n error('Data should be vectors for scalar interpolant');\n end \n % Column vector assumed format\n varargin{1} = reshape(varargin{1},[],1);\n varargin{2} = reshape(varargin{2},[],1); \n end\n \n if ~isa(varargin{1},'double') || ~isa(varargin{2},'double')\n error('First 2 arguments in interp1 should be approximation data');\n end\n \n %if any(diff(varargin{1})<0)\n % error('First arguments in interp1 should be monotonically increasing');\n %end\n \n if isequal(varargin{4},'graph')\n if ~isconvexdata(varargin{1},varargin{2}) && ~isconvexdata(varargin{1},-varargin{2})\n error('Data has to be convex or concave for graph approximant');\n end\n end\n \n % Reorder arguments to make sure sdpvar is first argument.\n % Use local version of interp to deal with this\n % Arguments xi yi x method -> x xi yi method\n varargout{1} = yalmip('define','interp1_internal',varargin{[3 1 2 4 5]}); \n \n case 'double'\n if isa(varargin{1},'double') && isa(varargin{2},'sdpvar') \n % User is trying to do nonlinear programming where the knot\n % function values in an interpolant are free variables\n zi = varargin{3};\n [n,m] = size(zi);\n if n*m == 1\n varargout{1} = yalmip('define','interp1_nonlinear',varargin{1},varargin{2},varargin{3},varargin{4});\n else\n out = [];\n zi = reshape(zi,1,n*m);\n for i = 1:n*m\n Y.type = '()';\n Y.subs{1} = 1;\n Y.subs{2} = i;\n zij = subsref(zi,Y);\n out = [out yalmip('define','interp1_nonlinear',varargin{1},varargin{2},zij,varargin{4})];\n end\n varargout{1} = reshape(out,n,m);\n end\n\n \n elseif isa(varargin{1},'sdpvar') && isa(varargin{2},'sdpvar') \n % User is trying to do nonlinear programming where the knot\n % function values and locations in an interpolant are free variables\n \n zi = varargin{3};\n [n,m] = size(zi);\n if n*m == 1\n varargout{1} = yalmip('define','interp1_nonlinear',[varargin{1},varargin{2}],[],varargin{3},varargin{4});\n else\n out = [];\n zi = reshape(zi,1,n*m);\n for i = 1:n*m\n Y.type = '()';\n Y.subs{1} = 1;\n Y.subs{2} = i;\n zij = subsref(zi,Y);\n out = [out yalmip('define','interp1_nonlinear',[varargin{1},varargin{2}],[],zij,varargin{4})];\n end\n varargout{1} = reshape(out,n,m);\n end \n else\n error('SDPVAR/INTERP1 called with strange arguments!'); \n end\n \n otherwise\n error('SDPVAR/INTERP1 called with strange argument!');\nend\n\nfunction isconvex = isconvexdata(xi,yi)\nfinterp = (yi(1:end-2) + yi(3:end))/2;\nif all(finterp >= yi(2:end-1))\n isconvex = 1;\nelse\n isconvex = 0;\nend", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/@sdpvar/interp1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.72487026428967, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3765855579475324}} {"text": "classdef QuadrilateralNodesCalculator < NodesCalculator\n\n properties (Access = public)\n nvert\n div\n boundNodes\n totalNodes\n end\n \n methods (Access = public)\n \n function obj = QuadrilateralNodesCalculator(cParams)\n obj.init(cParams);\n obj.computeBoundaryNodes();\n obj.computeTotalNodes();\n end\n \n end\n \n methods (Access = private)\n \n function computeTotalNodes(obj)\n divA = obj.div(1);\n divB = obj.div(2);\n obj.totalNodes = obj.boundNodes+(divA-1)*(divB-1);\n end\n \n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/ShapesInMicrostructures/SourceCode/QuadrilateralNodesCalculator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3765845363242132}} {"text": "function s=sss(n_id_1,n_id_2,slot_num);\n\n% s=sss(n_id_1,n_id_2,slot_num);\n%\n% Return the sss for slot slot_num for the specified n_id_1 and n_id_2.\n%\n% s is of length 62 and only includes the non-zero subcarriers. The calling\n% function must insert the DC subcarrier and the 5 zero subcarriers that\n% surround the sss.\n\n% Copyright 2012 Evrytania LLC (http://www.evrytania.com)\n%\n% Written by James Peroulas \n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\nerror(nargchk(3,3,nargin));\nerror(chk_param(n_id_1,'n_id_1','scalar','real','integer','>=',0,'<=',167));\nerror(chk_param(n_id_2,'n_id_2','scalar','real','integer','>=',0,'<=',2));\nerror(chk_param(slot_num,'slot_num','scalar','real','integer','>=',0,'<=',10));\nif ((slot_num~=0)&&(slot_num~=10))\n error('slot_num must be either 0 or 10');\nend\n\n% Calculate m0 and m1 from n_id_1\nqp=floor(n_id_1/30);\nq=floor((n_id_1+qp*(qp+1)/2)/30);\nmp=n_id_1+q*(q+1)/2;\nm0=mod(mp,31);\nm1=mod(m0+floor(mp/31)+1,31);\n\n%s_td=[0 0 0 0 1];\n%for t=1:26\n% s_td=[s_td mod(s_td(end-2)+s_td(end-4),2)];\n%end\ns_td=[0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1];\ns_td=1-2*s_td;\n\n%c_td=[0 0 0 0 1];\n%for t=1:26\n% c_td=[c_td mod(c_td(end-1)+c_td(end-4),2)];\n%end\nc_td=[0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1];\nc_td=1-2*c_td;\n\n%z_td=[0 0 0 0 1];\n%for t=1:26\n% z_td=[z_td mod(z_td(end)+z_td(end-2)+z_td(end-3)+z_td(end-4),2)];\n%end\nz_td=[0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1];\nz_td=1-2*z_td;\n\ns0_m0=s_td(mod(m0:30+m0,31)+1);\ns1_m1=s_td(mod(m1:30+m1,31)+1);\n\nc0=c_td(mod(n_id_2:30+n_id_2,31)+1);\nc1=c_td(mod(n_id_2+3:30+n_id_2+3,31)+1);\n\nz1_m0=z_td(mod((0:30)+mod(m0,8),31)+1);\nz1_m1=z_td(mod((0:30)+mod(m1,8),31)+1);\n\nif (slot_num==0)\n s(2:2:62)=s1_m1.*c1.*z1_m0;\n s(1:2:62)=s0_m0.*c0;\nelseif (slot_num==10)\n s(2:2:62)=s0_m0.*c1.*z1_m1;\n s(1:2:62)=s1_m1.*c0;\nelse\n error('Check code...');\nend\n\n", "meta": {"author": "JiaoXianjun", "repo": "rtl-sdr-LTE", "sha": "037a25f164f17b1a1d82e2eb02285550f50af9b9", "save_path": "github-repos/MATLAB/JiaoXianjun-rtl-sdr-LTE", "path": "github-repos/MATLAB/JiaoXianjun-rtl-sdr-LTE/rtl-sdr-LTE-037a25f164f17b1a1d82e2eb02285550f50af9b9/matlab/sss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3765845363242132}} {"text": "function d=drectangle(p,x1,x2,y1,y2)\n\n% Copyright (C) 2004-2006 Per-Olof Persson. See COPYRIGHT.TXT for details.\n\nd=-min(min(min(-y1+p(:,2),y2-p(:,2)),-x1+p(:,1)),x2-p(:,1));\n", "meta": {"author": "lyc102", "repo": "ifem", "sha": "29f31c812001ca8d93dad08e67208ca60e8716d4", "save_path": "github-repos/MATLAB/lyc102-ifem", "path": "github-repos/MATLAB/lyc102-ifem/ifem-29f31c812001ca8d93dad08e67208ca60e8716d4/mesh/distmeshModified/drectangle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3765845219217833}} {"text": "a = Twist(SE3([1 2 3]))\n%a.SE\n% a.Ad\nx = inv(a.SE); \nx.Ad\n\nXtrans([1 2 3])\n\na = Twist(SE3.Rx(pi/2))\n%a.SE\nx = inv(a.SE); \nx.Ad\n\nXrotx(pi/2)", "meta": {"author": "petercorke", "repo": "spatialmath-matlab", "sha": "6eeff4a79f14286705560b84f1fe72e0b7e0e7f7", "save_path": "github-repos/MATLAB/petercorke-spatialmath-matlab", "path": "github-repos/MATLAB/petercorke-spatialmath-matlab/spatialmath-matlab-6eeff4a79f14286705560b84f1fe72e0b7e0e7f7/unit_test/featherstone_test/twist_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3765845219217833}} {"text": "%% Affine invariant feature-based image matching\n%\n% This sample is similar to |feature_homography_demo.m|, but uses the affine\n% transformation space sampling technique, called\n% . While the original\n% implementation is based on SIFT, you can try to use SURF or ORB detectors\n% instead. Homography RANSAC is used to reject outliers.\n%\n% Sources:\n%\n% * \n%\n\nfunction asift_demo()\n % load input grayscale images\n files = {\n fullfile(mexopencv.root(),'test','aero1.jpg')\n fullfile(mexopencv.root(),'test','aero3.jpg')\n };\n for i=1:numel(files)\n if exist(files{i}, 'file') ~= 2\n disp('Downloading...')\n url = 'https://cdn.rawgit.com/opencv/opencv/3.2.0/samples/data/';\n [~,fname,ext] = fileparts(files{i});\n urlwrite([url fname ext], files{i});\n end\n end\n img1 = cv.imread(files{1}, 'Grayscale',true);\n img2 = cv.imread(files{2}, 'Grayscale',true);\n\n % ASIFT\n [vis, H] = run_asift(img1, img2, 'BRISK', true);\n imshow(vis), title('ASIFT')\n\n % interactive exploration\n if ~mexopencv.isOctave() && mexopencv.require('images')\n % interactively select region in img1\n pos1 = select_poly(gca) - 1;\n if isempty(pos1), return; end\n\n\n % apply homography\n pos2 = cv.perspectiveTransform(pos1, H);\n pos2(:,1) = pos2(:,1) + size(img1,2);\n\n % draw region in img1 and transformed region in img2\n vis = cv.polylines(vis, pos1, 'Closed',true, ...\n 'Color',[0 255 0], 'Thickness',2, 'LineType','AA');\n vis = cv.polylines(vis, pos2, 'Closed',true, ...\n 'Color',[0 255 0], 'Thickness',2, 'LineType','AA');\n imshow(vis), title('ASIFT')\n end\nend\n\nfunction [vis, H] = run_asift(img1, img2, feature_name, use_flann)\n %RUN_ASIFT Run ASIFT algorithm, estimate homography and visualize matches\n\n % create detector and matcher objects\n [detector, matcher] = init_feature(feature_name, use_flann);\n\n % detect features using ASIFT method\n disp('Detecting...')\n tic, [kp1, desc1] = affine_detect(detector, img1); toc\n tic, [kp2, desc2] = affine_detect(detector, img2); toc\n fprintf('img1: %d features, img2: %d features\\n', numel(kp1), numel(kp2));\n\n % match ASIFT features\n disp('Matching...')\n tic, matches = matcher.knnMatch(desc1, desc2, 2); toc\n fprintf('%d matches\\n', numel(matches));\n\n % filter matches\n [matches, p1, p2] = filter_matches(kp1, kp2, matches);\n fprintf('%d good matches\\n', numel(matches));\n assert(numel(matches) >= 4, 'not enough matches for homography estimation');\n\n % estimate homography with RANSAC method\n [H,inliers] = cv.findHomography(p1, p2, 'Method','Ransac');\n assert(~isempty(H), 'homography estimation failed');\n inliers = logical(inliers);\n fprintf('%d inliers\\n', nnz(inliers));\n\n % visualize good and inlier matches\n vis = cv.drawMatches(img1, kp1, img2, kp2, matches, ...\n 'NotDrawSinglePoints',true, 'MatchesMask',inliers);\nend\n\nfunction [detector, matcher] = init_feature(feature_name, use_flann)\n %INIT_FEATURE Create detector and matcher objects\n\n % detector\n switch upper(feature_name)\n case 'SURF'\n detector = cv.SURF('HessianThreshold',400);\n case 'SIFT'\n detector = cv.SIFT();\n case 'ORB'\n detector = cv.ORB();\n case 'BRISK'\n detector = cv.BRISK();\n case 'AKAZE'\n detector = cv.AKAZE();\n case 'KAZE'\n detector = cv.KAZE();\n otherwise\n error('unrecognized feature: %s', feature_name)\n end\n\n % matcher\n if use_flann\n if ~isempty(strfind(detector.defaultNorm(), 'Hamming'))\n opts = {'LSH', 'TableNumber',6, 'KeySize',12, 'MultiProbeLevel',1};\n else\n opts = {'KDTree', 'Trees',5};\n end\n matcher = cv.DescriptorMatcher('FlannBasedMatcher', 'Index',opts);\n else\n matcher = cv.DescriptorMatcher('BFMatcher', ...\n 'NormType',detector.defaultNorm());\n end\nend\n\nfunction [kpts, descs] = affine_detect(detector, img, mask)\n %AFFINE_DETECT Affine-SIFT (ASIFT) algorithm\n %\n % [kpts, descs] = affine_detect(detector, img)\n % [kpts, descs] = affine_detect(detector, img, mask)\n %\n % ## Input\n % * __detector__ detector object\n % * __img__ input image\n % * __mask__ optional mask, default all image included\n %\n % ## Output\n % * __kpts__ concatenated keypoints\n % * __descs__ corresponding concatenated descriptors\n %\n % Applies a set of affine transormations to the image, detect keypoints,\n % and reproject them into initial image coordinates.\n % See: http://www.ipol.im/pub/algo/my_affine_sift/ for the details.\n %\n\n % default mask if not specified\n if nargin < 3\n mask = 255 * ones(size(img,1), size(img,2), 'uint8');\n end\n\n % parameter sampling: Tilt and Phi\n % (simulates all possible affine distortions caused by the change of\n % camera optical axis orientation from a frontal position)\n params = [1 0]; % no tilt and no rotation, thus original image\n for t = sqrt(2).^(1:5) % geometric series 1, a, a^2, .., a^n; a=sqrt(2), n=5\n for p = 0:72/t:180-72/t % arithmetic series 0, b/t, .., k*b/t < 180; b=72\n params(end+1,:) = [t, p];\n end\n end\n\n % for each pair of distortion parameters\n % (this loop is candidate for parallelization, i.e parfor)\n N = size(params,1);\n kpts = cell(N, 1);\n descs = cell(N, 1);\n for i=1:N\n % transform image\n [timg, tmask, Ai] = affine_skew(params(i,1), params(i,2), img, mask);\n\n % detect features using a similarity invariant matching method (SIFT)\n [kp, feat] = detector.detectAndCompute(timg, 'Mask',tmask);\n\n %TODO: Remove keypoints close to the boundary of the transformed image\n\n % project keypoints from the coordinates of the rotated and tilted\n % image back to the original image corrdinates\n for j=1:numel(kp)\n kp(j).pt = [kp(j).pt, 1] * Ai.';\n end\n kpts{i} = kp(:);\n descs{i} = feat;\n end\n\n % concatenate all features from all simulated images\n kpts = cat(1, kpts{:});\n descs = cat(1, descs{:});\nend\n\nfunction [img, mask, Ai] = affine_skew(tilt, phi, img, mask)\n %AFFINE_SKEW Transform image/mask by an affine distortion\n %\n % [img, mask, Ai] = affine_skew(tilt, phi, img, mask)\n %\n % ## Input\n % * __tilt__ tilt\n % * __phi__ rotation angle in degrees\n % * __img__ image\n % * __mask__ mask\n %\n % ## Output\n % * __img__ transformed image\n % * __mask__ transformed mask\n % * __Ai__ affine transform matrix from output/skewed `img` to input `img`\n %\n\n % initialize affine transformation matrix (identity)\n A = eye(2,3);\n [h,w,~] = size(img);\n\n % in the case of (tilt=1, phi=0), then no transformation (identity)\n\n if phi ~= 0\n % rotate image\n A = [cosd(phi) -sind(phi); sind(phi) cosd(phi)];\n corners = [0 0; w 0; w h; 0 h];\n corners = round(corners * A.');\n rect = cv.boundingRect(corners);\n A(:,3) = -rect(1:2);\n img = cv.warpAffine(img, A, 'DSize',rect(3:4), ...\n 'Interpolation','Linear', 'BorderType','Replicate');\n end\n\n if tilt ~= 1\n % anti-aliasing filtering in the vertical direction, then tilt image\n % (subsample in vertical direction by a factor of tilt)\n s = 0.8 * sqrt(tilt^2 - 1);\n img = cv.GaussianBlur(img, 'KSize',[0 0], 'SigmaX',s, 'SigmaY',0.01);\n img = cv.resize(img, 1/tilt, 1, 'Interpolation','Nearest');\n A(1) = A(1) / tilt;\n end\n\n if phi ~= 0 || tilt ~= 1\n % apply same transformation on mask\n [h,w,~] = size(img);\n mask = cv.warpAffine(mask, A, 'DSize',[w h], 'Interpolation','Nearest');\n end\n\n % inverse affine transformation\n Ai = cv.invertAffineTransform(A);\nend\n\nfunction [matches, p1, p2] = filter_matches(kp1, kp2, matches, ratio)\n %FILTER_MATCHES Filter out 2-NN matches using Lowe's ratio test\n\n if nargin < 4, ratio = 0.75; end\n\n % good matches\n idx = cellfun(@(m) (numel(m) == 2) && ...\n (m(1).distance < ratio * m(2).distance), matches);\n matches = cellfun(@(m) m(1), matches(idx));\n\n % corresponding points\n p1 = cat(1, kp1([matches.queryIdx]+1).pt);\n p2 = cat(1, kp2([matches.trainIdx]+1).pt);\nend\n\nfunction pos = select_poly(ax)\n %SELECT_POLY Select polygon area using the mouse\n %\n % pos = select_poly()\n % pos = select_poly(ax)\n %\n % ## Input\n % * __ax__ axes handle, default gca\n %\n % ## Output\n % * __pos__ Nx2 matrix of points\n %\n\n if nargin < 1, ax = gca; end\n hRoi = impoly(ax);\n api = iptgetapi(hRoi);\n try\n api.setColor('green');\n api.setPositionConstraintFcn(makeConstrainToRectFcn('impoly', ...\n get(ax,'XLim').*[1 0.5], get(ax,'YLim')));\n pos = wait(hRoi);\n catch\n pos = zeros(0,2);\n end\n delete(hRoi);\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/samples/asift_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3765845219217833}} {"text": " function [xs, info] = ir_pwls_os_rlalm(x, Ab, yi, R, varargin)\n%function [xs, info] = ir_pwls_os_rlalm(x, Ab, yi, R, [options])\n%|\n%| penalized weighted least squares estimation / image reconstruction\n%| using relaxed linearized augmented lagrangian method with\n%| (optionally relaxed) ordered subsets. (relaxed OS-LALM)\n%|\n%| See ?. 201? IEEE T-MI by Hung Nien & J A Fessler\n%| \"Relaxed linearized algorithms for faster X-ray CT image reconstruction\"\n%|\thttp://dx.doi.org/10.1109/TMI.201?\n%|\n%|\n%| cost(x) = (y-Ax)' W (y-Ax) / 2 + R(x)\n%|\n%| in\n%|\tx\t[np 1]\t\tinitial estimate\n%|\tAb\t[nd np]\t\tGblock object (needs abs(Ab) method)\n%|\t\t\t\tor sparse matrix (implies nsubset=1)\n%|\tyi\t[nb na]\t\tmeasurements (noisy sinogram data)\n%|\tR\tpenalty\t\tobject (see Reg1.m), can be []\n%|\n%| option\n%|\tniter\t\t\t# of iterations (default: 1)\n%|\twi\t[nb na]\t\tweighting sinogram (default: [] for uniform)\n%|\tpixmax\t[1] or [2]\tmax pixel value, or [min max] (default [0 inf])\n%|\tdenom\t[np 1]\t\tprecomputed denominator\n%|\taai\t[nb na]\t\tprecomputed row sums of |Ab|\n%|\trelax0\t[1] or [2]\trelax0 or (relax0, relax_rate) (default 1)\n%|\trho\t\t\tAL penalty parameter (default: [] for decreasing rho)\n%|\talpha\t\t\tover-relaxation parameter (default: 1.999)\n%|\tuserfun\t@\t\tuser-defined function handle (see default below)\n%|\t\t\t\t\ttaking arguments (x, userarg{:})\n%|\tuserarg\t{}\t\tuser arguments to userfun (default {})\n%|\tchat\n%|\n%| out\n%|\txs\t[np niter]\titerates\n%|\tinfo\t[niter 1]\ttime\n%|\n%| 2015-11-30, Hung Nien, based on ir_pwls_os_lalm\n%| 2015-11-30, tweaks by Jeff Fessler\n\nif nargin == 1 && streq(x, 'test'), ir_pwls_os_rlalm_test, return, end\nif nargin < 4, ir_usage, end\n\n% defaults\narg.niter = 1;\narg.isave = [];\narg.userfun = @userfun_default;\narg.userarg = {};\narg.pixmax = inf;\narg.chat = false;\narg.wi = [];\narg.aai = [];\narg.rho = []; % default: decreasing rho\narg.alpha = 1.999;\narg.relax0 = 1;\narg.denom = [];\narg.scale_nblock = true; % traditional scaling\narg.update_even_if_denom_0 = true;\narg = vararg_pair(arg, varargin);\n\narg.isave = iter_saver(arg.isave, arg.niter);\n\nAb = block_op(Ab, 'ensure'); % make it a block object (if not already)\nnblock = block_op(Ab, 'n');\nstarts = subset_start(nblock);\n\ncpu etic\n\nwi = arg.wi;\nif isempty(wi)\n\twi = ones(size(yi), class(yi));\nend\nif isempty(arg.aai) && isempty(arg.denom)\n\targ.aai = reshape(sum(abs(Ab)'), size(yi)); % a_i = sum_j |a_ij|\nend\n\n% check input sinogram sizes for OS\nif (ndims(yi) ~= 2) || (size(yi,2) == 1 && nblock > 1)\n\tfail 'bad yi size'\nend\nif (ndims(wi) ~= 2) || (size(wi,2) == 1 && nblock > 1)\n\tfail 'bad wi size'\nend\n\nrelax0 = arg.relax0(1);\nif length(arg.relax0) == 1\n\trelax_rate = 0;\nelseif length(arg.relax0) == 2\n\trelax_rate = arg.relax0(2);\nelse\n\terror relax\nend\n\nif length(arg.pixmax) == 2\n\tpixmin = arg.pixmax(1);\n\tpixmax = arg.pixmax(2);\nelseif length(arg.pixmax) == 1\n\tpixmin = 0;\n\tpixmax = arg.pixmax;\nelse\n\terror pixmax\nend\n\n% likelihood denom, if not provided\ndenom = arg.denom;\nif isempty(denom)\n\tdenom = abs(Ab)' * col(arg.aai .* wi); % needs abs(Ab)\n arg = rmfield(arg, 'aai'); % clear to save memory - not needed below\nend\nif ~arg.update_even_if_denom_0\n\t% todo: this may not work for LALM because \"denom\" appears in numerator!\n\tdenom(denom == 0) = inf; % trick: prevents pixels where denom=0 being updated\nend\n\nif isempty(R)\n\tpgrad = 0; % unregularized default\n\tRdenom = 0;\nend\n\nalpha = arg.alpha;\nif alpha<1 || alpha>2\n\tfail 'alpha should be between 1 and 2'\nend\n\nrho = arg.rho;\nif isempty(rho)\n\trho = @(k) pi/(alpha*k) * sqrt(1 - (pi/(2*(alpha*k)))^2) * (k>1) + (k==1);\nelse\n\trho = @(k) rho; % constant user-specified value\nend\n\n[nb na] = size(yi);\n\nx = x(:);\nnp = length(x);\nxs = zeros(np, length(arg.isave), 'single');\nif any(arg.isave == 0)\n\txs(:, arg.isave == 0) = single(x);\nend\n\n%info = zeros(niter,?); % do not initialize since size may change\n\n% initialization\niblock = nblock;\nia = iblock:nblock:na;\nli = Ab{iblock} * x;\nli = reshape(li, nb, length(ia));\nresid = wi(:,ia) .* (li - yi(:,ia));\nif arg.scale_nblock\n\tscale = nblock; % traditional way\nelse\n\tscale = na / numel(ia); % alternative - untested\nend\nzeta = scale * Ab{iblock}' * resid(:);\n\ng = rho(1) * zeta;\nh = denom .* x - zeta;\n\n% iterate\nfor iter = 1:arg.niter\n\tticker(mfilename, iter, arg.niter)\n\n\trelax = relax0 / (1 + relax_rate * (iter-1));\n\n\t% loop over subsets\n\tfor iset = 1:nblock\n\t\tk = nblock*(iter-1)+iset;\n\n\t\tnum = rho(k) * (denom .* x - h) + (1-rho(k)) * g;\n\t\tden = rho(k) * denom;\n\t\tif ~isempty(R)\n\t\t\tnum = num + R.cgrad(R, x);\n\t\t\tden = den + R.denom(R, x);\n\t\tend\n\t\tx = x - relax * num ./ den;\n\t\tx = max(x, pixmin);\n\t\tx = min(x, pixmax);\n\n\t\tiblock = starts(iset);\n\t\tia = iblock:nblock:na;\n\n\t\tli = Ab{iblock} * x;\n\t\tli = reshape(li, nb, length(ia));\n\t\tresid = wi(:,ia) .* (li - yi(:,ia));\n\n\t\tif arg.scale_nblock\n\t\t\tscale = nblock; % traditional way\n\t\telse\n\t\t\tscale = na / numel(ia); % alternative - untested\n\t\tend\n\n\t\tzeta = scale * Ab{iblock}' * resid(:); % A' * W * (y - A*x)\n\t\tg = (rho(k) * (alpha * zeta + (1-alpha) * g) + g) / (rho(k)+1);\n\t\th = alpha * (denom .* x - zeta) + (1-alpha) * h;\n\tend\n\n\tif any(arg.isave == iter)\n\t\txs(:, arg.isave == iter) = single(x);\n\tend\n\tinfo(iter,:) = arg.userfun(x, arg.userarg{:});\nend\n\n\n% default user function.\n% using this evalin('caller', ...) trick, one can compute anything of interest\nfunction out = userfun_default(x, varargin)\nchat = evalin('caller', 'arg.chat');\nif chat\n%\tx = evalin('caller', 'x');\n\tprintm('minmax(x) = %g %g', min(x), max(x))\nend\nout = cpu('etoc');\n\n\n% ir_pwls_os_rlalm_test()\n% test with small quadratic case 1/2 |y - A x|_2^2 + 1/2 |C x|_2^2\n% see also ir_ct_fan_beam_sqs_vs_lalm.m\nfunction ir_pwls_os_rlalm_test\nrng(0)\nnd = 99; np = 38;\nA = randn(nd,np);\nA = abs(A);\nR = Reg1(ones(np,1), 'type_penal', 'mat', 'type_diff', 'sparse', 'beta', 2^0);\nC = R.C;\nC = full(C);\nif 0 % try to make it so unit step size is reasonable?\n\tD = abs(A)' * (abs(A) * ones(np,1)) + abs(C)' * (abs(C) * ones(np,1));\n\tA = A * diag(sqrt(1 ./ D));\n\tC = C * diag(sqrt(1 ./ D));\nend\nH = A' * A + C' * C;\npr cond(H)\n\nxtrue = ones(np,1); xtrue(10:20) = 2;\nyi = A * xtrue; yi = yi + 0.01 * max(yi(:)) * randn(nd,1);\nxhat = H \\ (A' * yi);\n% nrms(xhat, xtrue)\n\nx0 = zeros(np,1);\nniter = 100;\n\nprintm 'Nesterov' % todo: replace with OGM\ngradfun = @(x) A' * (A * x - yi) + C' * (C * x);\nstep = abs(A') * (abs(A) * ones(np,1)) + abs(C)' * (abs(C) * ones(np,1));\nstep = 1 / max(step); % todo: use D\nxf = ir_fista(x0, 'gradfun', gradfun, 'step', step, 'niter', niter, ...\n\t'isave', 'all');\n\nprintm 'Relaxed LALM'\nxl = ir_pwls_os_rlalm(x0, Gmatrix(A), yi, R, 'niter', niter, 'isave', 'all');\n\nprintm 'CG'\nxc = qpwls_pcg1(x0, A, 1, yi, R.C, 'niter', niter, 'isave', 'all');\n\nif im\n\tim plc 1 2\n\tim subplot 1\n\tplot([xtrue xhat xl(:,end) xc(:,end) xf(:,end)])\n\tim subplot 2\n\txlabel 'iteration', ylabelf 'NRMSD $x^n$ vs $\\hat{x}$'\n\tplot(\t0:niter, nrms(xl, xhat), 'r-', ...\n\t\t0:niter, nrms(xf, xhat), 'g-', ...\n\t\t0:niter, nrms(xc, xhat), 'c-')\n\tlegend('Relaxed LALM', 'FGM', 'CG')\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/wls/ir_pwls_os_rlalm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3765845219217833}} {"text": "% PREPARE_DATABASE Calculates the features from objects in a source\n%\n% Usage\n% database = PREPARE_DATABASE(src, feature_fun, options)\n%\n% Input\n% src (struct): The source specifying the objects.\n% feature_fun (cell): The feature functions applied to each object.\n% options (struct): Options for calculating the features:\n% options.feature_sampling (int): specifies how to sample the feature \n% vectors in time/space (default 1).\n% options.file_normalize (int): The normalization of each file before \n% being given to feature_fun. Can be empty, 1, 2, or Inf (default []).\n% options.parallel (boolean): If true, tries to use the Distributed \n% Computing Toolbox to speed up calculation (default true).\n% Other options are listed in the help for the FEATURE_WRAPPER function.\n% Output\n% database (struct): The database of feature vectors.\n%\n% See also\n% CREATE_SRC, FEATURE_WRAPPER\n\nfunction db = prepare_database(src,feature_fun,opt)\n\tif nargin < 3\n\t\topt = struct();\n\tend\n\t\n\topt = fill_struct(opt, 'feature_sampling', 1);\n\topt = fill_struct(opt, 'file_normalize', []);\n\topt = fill_struct(opt, 'parallel', 1);\n\t\n\tfeatures = cell(1,length(src.files));\n\tobj_ind = cell(1,length(src.files));\n\t\n\trows = 0;\n\tcols = 0;\n\tprecision = 'double';\n\t\n\tif opt.parallel\n\t\t% parfor loop - note that the contents are the same as the serial loop, but\n\t\t% MATLAB doesn't seem to offer an easy way of deduplicating the code.\n\n\t\t% Loop through all the files in the source\n\t\tparfor k = 1:length(src.files)\n\t\t\t% Identify all the objects contained in the current file\n\t\t\tfile_objects = find([src.objects.ind]==k);\n\t\n\t\t\tif length(file_objects) == 0\n\t\t\t\t% No objects, skip.\n\t\t\t\tcontinue;\n\t\t\tend\n\t\t\t\n\t\t\ttm0 = tic;\n\n\t\t\t% Load the complete file and normalize as needed.\n\t\t\tx = data_read(src.files{k});\n\t\t\t\n\t\t\tif ~isempty(opt.file_normalize)\n\t\t\t\tif opt.file_normalize == 1\n\t\t\t\t\tx = x/sum(abs(x(:)));\n\t\t\t\telseif opt.file_normalize == 2\n\t\t\t\t\tx = x/sqrt(sum(abs(x(:)).^2));\n\t\t\t\telseif opt.file_normalize == Inf\n\t\t\t\t\tx = x/max(abs(x(:)));\n\t\t\t\tend\n\t\t\tend\n\t\t\n\t\t\t% Due to parallelization constraints, each file stores its feature vectors \n\t\t\t% in one index of the features cell array. The corresponding object indices\n\t\t\t% are stored in the obj_ind cell array.\n\t\t\tfeatures{k} = cell(1,length(file_objects));\n\t\t\tobj_ind{k} = file_objects;\n\t\t\t\n\t\t\t% Apply all the feature functions to the objects contained in x. The output\n\t\t\t% buf is a PxNxK vector, where P corresponds to number of feature coeffi-\n\t\t\t% cients, N corresponds to the number of features - the number of \"windows\"\n\t\t\t% - in each object, and K corresponds to the number of objects.\n\t\t\tbuf = apply_features(x,src.objects(file_objects),feature_fun,opt);\n\t\t\t\n\t\t\t% Subsample among the features as needed.\n\t\t\tbuf = buf(:,1:opt.feature_sampling:end,:);\n\n\t\t\t% Separate each of the objects into its own array element.\n\t\t\tfor l = 1:length(file_objects)\n\t\t\t\tfeatures{k}{l} = buf(:,:,l);\n\t\t\tend\n\t\t\tfprintf('.');\n\t\tend\n\telse\n\t\ttime_start = clock;\n\t\tfor k = 1:length(src.files)\n\t\t\tfile_objects = find([src.objects.ind]==k);\n\t\t\t\n\t\t\tif length(file_objects) == 0\n\t\t\t\tcontinue;\n\t\t\tend\n\t\t\t\n\t\t\ttm0 = tic;\n\t\t\tx = data_read(src.files{k});\n\t\t\t\n\t\t\tif ~isempty(opt.file_normalize)\n\t\t\t\tif opt.file_normalize == 1\n\t\t\t\t\tx = x/sum(abs(x(:)));\n\t\t\t\telseif opt.file_normalize == 2\n\t\t\t\t\tx = x/sqrt(sum(abs(x(:)).^2));\n\t\t\t\telseif opt.file_normalize == Inf\n\t\t\t\t\tx = x/max(abs(x(:)));\n\t\t\t\tend\n\t\t\tend\n\t\t\t\n\t\t\tfeatures{k} = cell(1,length(file_objects));\n\t\t\tobj_ind{k} = file_objects;\n\t\t\t\n\t\t\tbuf = apply_features(x,src.objects(file_objects),feature_fun,opt);\n\t\t\t\n\t\t\tbuf = buf(:,1:opt.feature_sampling:end,:);\n\n\t\t\tfor l = 1:length(file_objects)\n\t\t\t\tfeatures{k}{l} = buf(:,:,l);\n\t\t\tend\n\t\t\ttime_elapsed = etime(clock, time_start);\n\t\t\testimated_time_left = time_elapsed * (length(src.files)-k) / k;\n\t\t\tfprintf('.');\n\t\tend\n\tend\n\tfprintf('\\n');\n\n\t% Identify the files for which objects have been computed.\n\tnonempty = find(~cellfun(@isempty,features));\n\n\t% Determine the size of the features array. Each row corresponds to a feature \n\t% coefficient, each column corresponds to a feature vector.\n\trows = size(features{nonempty(1)}{1},1);\n\tcols = sum(cellfun(@(x)(sum(cellfun(@(x)(size(x,2)),x))),features(nonempty)));\n\tprecision = class(features{nonempty(1)}{1});\n\t\n\tdb.src = src;\n\t\n\tdb.features = zeros(rows,cols,precision);\n\t\n\tdb.indices = cell(1,length(src.objects));\n\t\n\t% Fill in the features array using the pre-calculated features.\n\tr = 1;\n\tfor k = 1:length(features)\n\t\tfor l = 1:length(features{k})\n\t\t\tind = r:r+size(features{k}{l},2)-1;\n\t\t\tdb.features(:,ind) = features{k}{l};\n\t\t\tdb.indices{obj_ind{k}(l)} = ind;\n\t\t\tr = r+length(ind);\n\t\tend\n\tend\nend\n\nfunction out = apply_features(x,objects,feature_fun,opt)\n\t% For each feature function, apply it to the objects in x and concatenate\n\t% the results.\n\n\tif ~iscell(feature_fun)\n\t\tfeature_fun = {feature_fun};\n\tend\n\t\n\tout = {};\n\tfor k = 1:length(feature_fun)\n\t\tif nargin(feature_fun{k}) == 2\n\t\t\t% If only two inputs are given, the feature function will handle the cut\n\t\t\t% ting up of x into objects itself.\n\t\t\tout{k,1} = feature_fun{k}(x,objects);\n\t\telseif nargin(feature_fun{k}) == 1\n\t\t\t% If only one input is given, the feature function relies on us to cut up\n\t\t\t% the input x into objects and feed them to it.\n\t\t\tout{k,1} = feature_wrapper(x,objects,feature_fun{k},opt);\n\t\telse\n\t\t\terror('Invalid number of inputs for feature function!')\n\t\tend\n\tend\n\n\tif length(feature_fun) == 1\n\t\tout = out{1};\n\telse\n\t\t% Concatenate along the first dimension - the feature dimension - of each\n\t\t% element.\n\t\tout = cellfun(@(x)(permute(x,[2 1 3])),out,'UniformOutput',false);\n\t\tout = permute([out{:}],[2 1 3]);\n\tend\nend\n", "meta": {"author": "scatnet", "repo": "scatnet", "sha": "59d935afa20359845282a3518134e24244862c1f", "save_path": "github-repos/MATLAB/scatnet-scatnet", "path": "github-repos/MATLAB/scatnet-scatnet/scatnet-59d935afa20359845282a3518134e24244862c1f/classification/prepare_database.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982315512489, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3765671141146616}} {"text": "function F = extractColumns(F, colIdx)\n%EXTRACTCOLUMNS Extract columns (or rows) of an array-valued CHEBFUN.\n% G = EXTRACTCOLUMNS(F, COLIDX) extracts the columns specified by the row\n% vector COLIDX from the CHEBFUN F so that G = F(:,COLIDX). COLIDX need not be\n% increasing in order or unique, but it must contain only integers in the\n% range [1, M] where F has M columns.\n%\n% If F is a row CHEBFUN, then EXTRACTCOLUMNS(F, ROWIDX) behaves as described\n% above, except that extracts the rows of F so G = F(ROWIDX,:).\n%\n% See also MAT2CELL.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Number of columns (or rows if f.isTransposed) of f:\nnumCols = numColumns(F);\n\n% Trivial cases:\nif ( isempty(F) )\n return\n \nelseif ( ~isnumeric(colIdx) && strcmp(colIdx, ':') )\n return\n \nelseif ( (numel(colIdx) == numel(numCols)) && all(colIdx == 1:numCols) )\n return\n \nelseif ( max(colIdx) > numCols )\n error('CHEBFUN:CHEBFUN:extractColumns:dimensions', ...\n 'Index exceeds CHEBFUN dimensions.')\n \nend\n\nif ( numel(F) > 1 )\n % Quasimatrix case:\n F = F(colIdx);\n \nelse\n % Array-valued CHEBFUN case:\n \n % Extract the columns of the FUNs:\n for k = 1:numel(F.funs)\n F.funs{k} = extractColumns(F.funs{k}, colIdx);\n end\n\n % Extract the columns from the impulses:\n F.pointValues = F.pointValues(:,colIdx);\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/extractColumns.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813030906443134, "lm_q2_score": 0.6477982315512489, "lm_q1q2_score": 0.3765671141146616}} {"text": "function [a]=plus(b,c)\n%A=B+C\n% [A]=PLUS(B,C) A is the sum of TT-matrices B and C\n%\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\nif ( isempty(b) )\n a=c;\n return\nelseif (isempty(c) )\n a=b;\n return\nend\n a=tt_matrix;\na.n=b.n;\na.m=b.m;\na.tt=b.tt+c.tt;\nreturn\nend", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/@tt_matrix/plus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3765671062094402}} {"text": "function findedge3(node,edge,range,varargin)\n%% FINDEDGE3 highlights edges in certain range in 3-D\n%\n% Copyright (C) Long Chen. See COPYRIGHT.txt for details.\n\nhold on\n% set up range\nif (nargin<=2) || (isempty(range)) \n range = (1:size(edge,1))'; \nend\nif islogical(range)\n range = find(range); \nend\nif size(range,2)>size(range,1)\n range = range'; \nend\nmidEdge = (node(edge(range,1),:)+node(edge(range,2),:))/2;\nif length(range) 3\n if strcmp(varargin{1},'noindex') || strcmp(varargin{1},'index')\n startidx = 2;\n else\n startidx = 1;\n end\n set(h,varargin{startidx:end});\nend\nif (nargin <=3) || ~(strcmp(varargin{1},'noindex'))\n text(midEdge(:,1)+0.025,midEdge(:,2)-0.025,midEdge(:,3),int2str(range), ...\n 'FontSize',12,'FontWeight','bold','Color','k');\nend\n%% TODO: help and example", "meta": {"author": "lyc102", "repo": "ifem", "sha": "29f31c812001ca8d93dad08e67208ca60e8716d4", "save_path": "github-repos/MATLAB/lyc102-ifem", "path": "github-repos/MATLAB/lyc102-ifem/ifem-29f31c812001ca8d93dad08e67208ca60e8716d4/tool/findedge3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813030906443133, "lm_q2_score": 0.647798211152541, "lm_q1q2_score": 0.37656710225682954}} {"text": "function movePTPEllipse_1(iiwa,c,dir,ratio,theta,velocity,accel,TefTool)\n%% This funciton is used to\n% Move end-effector of the robot on an ellipse.\n% this function is used from within the KST class\n\n%% Syntax:\n% movePTPEllipse_1(iiwa,c,dir,ratio,TefTool)\n\n%% Arreguments:\n% iiwa: KST obejct.\n% c: 3x1 vector, is a vector defining the displacment of the the center\n% point of the ellipse in relation to the start point of the ellipse,\n% position units in (mm).\n% dir: the direction vector of the (a) axis of the ellipse.\n% ratio: the radious ratio (a/b) of the ellipse.\n% theta: is the angle of the ellipe part , for drawing a complete\n% ellipse this angle is equal to 2*pi.\n% TefTool: 4X4 Transform matrix of the end-efector in the reference frame\n% of the flange of the KUKA iiwa, position units in (mm).\n% accel: is the acceleration (mm/sec2).\n% velocity: is the motion velocity (mm/sec).\n \n% Copy right: Mohammad SAFEEA\n% 25th-June-2018\n\n%% Convert inputs to a column vectors\nc=colVec(c);\ndir=colVec(dir);\nratio=colVec(ratio);\ntheta=colVec(theta);\nvelocity=colVec(velocity);\naccel=colVec(accel);\n\n%% Check input variables\nif(size(c,1)~=3)\nfprintf('Error: the vector (c) shall be a 3x1 vector \\n');\nreturn;\nend\n\nif(size(dir,1)~=3)\nfprintf('Error: the vector (dir) shall be a 3x1 vector \\n');\nreturn;\nend\n\nif(size(ratio,1)~=1)\nfprintf('Error: the ratio shall be a scalar \\n');\nreturn;\nend\n\nif(size(theta,1)~=1)\nfprintf('Error: the variable (theta) shall be a scalar \\n');\nreturn;\nend\n\nif(size(TefTool,1)~=4)\nfprintf('Error: the transform matrix (TefTool) shall be 4x4 \\n');\nreturn;\nend\n\nif(size(TefTool,2)~=4)\nfprintf('Error: the transform matrix (TefTool) shall be 4x4 \\n');\nreturn;\nend\n\nif(size(velocity,1)~=1)\nfprintf('Error: the velocity on the path shall be a scalar \\n');\nreturn;\nend\n\nif(size(accel,1)~=1)\nfprintf('Error: the acceleration on the path shall be a scalar \\n');\nreturn;\nend\n\n%% Convert the units to (meter)\nunitConverter=1000;\nc=c/unitConverter;\nvelocity=velocity/unitConverter;\naccel=accel/unitConverter;\nTefTool(1:3,4)=TefTool(1:3,4)/unitConverter;\n\n%% start the direct servo\n iiwa.realTime_startDirectServoJoints();\n \n%% get current joints angles of robot\n jPos = iiwa.getJointsPos();\n \n%% Calculate the current position of TCP point of the robot (p0)\n qs=zeros(7,1);\nfor i=1:7\n qs(i)=jPos{i};\nend\n T0=iiwa.directKinematics(qs); % TCP point transformation matrix\n p0=T0(1:3,4); % Current position of TCP point of the robot\n Tt=T0;\n\n%% Calculate the parameters of the ellipse, \np=p0; % this is the starting point of the ellipse\nc=c+p; % calculate the center coordinates from the center displacment vector\n[R,theta0,a,b,c,errorFlag]=getEllipseParameters(p,c,ratio,dir);\nif errorFlag==true % this happens when the start point is on the (dir) vector direction.\n % in such case the ellipse plane can not be specified in space.\n iiwa.realTime_stopDirectServoJoints();\n beep;\n fprintf('Error executing the ellipse function:\\n');\n fprintf('Starting point of the ellipse shall not be on the line aligned with the (dir) vector and passing from the center (c)\\n');\n return;\nend\n\n \n%% Get the length of the ellipse arc as a function of the parametric angle (theta)\ntheta1=theta0+theta;\n[ thetaVec,sVec ] = getEllipseLengthVector( a,b, theta0,theta1 );\nsizesVec=max(size(sVec));\nL=sVec(end); % L is the length of the elliptic curve\n\n%% Calculate the times:\n[t0,t1,t2]=calculateInterpolationTimes(L,velocity,accel);\n\n%% Joint space control\n\n [Ttemp,J]=iiwa.directKinematics(qs); \n vec=Ttemp(1:3,4); \n\n\n \n%% dls solver parameters \n numberOfIterationForSolver=100;\n lambda=0.5;\n TefTool=eye(4);\n \n sCoordinate=0;\n interpolationCounter=1;\n thetaVar=theta0;\n\n%% start of time\n dateVector0=datevec(now);\n time0=dateVector0(6)+dateVector0(5)*60+dateVector0(4)*60*60; % calculate time at this instant\nwhile true\n \n % Calculate the elapsed time\n dateVector=datevec(now);\n timeNow=dateVector(6)+dateVector(5)*60+dateVector(4)*60*60; % calculate time at this instant\n deltaT=timeNow-time0; % elapsed is zero at first excution\n\n % calculate position of servo point\n if deltaTt2\n break;\n end\n%% Interpolate theta from the sVec,thetaVec\n for counter=interpolationCounter:(sizesVec-1)\n if(sCoordinate>sVec(counter))\n tetaRange=thetaVec(counter+1)-thetaVec(counter);\n sRange=sVec(counter+1)-sVec(counter);\n thetaVar=(sCoordinate-sVec(counter))...\n *tetaRange/sRange+thetaVec(counter);\n interpolationCounter=counter;\n end\n end\n \n pPrime=R*ellipseParametricFunction( a,b,thetaVar );\n p=c+pPrime;\n \n % calculate target transform\n Tt(1:3,4)=p;\n [ qs ] = iiwa.gen_InverseKinematics( qs, Tt,numberOfIterationForSolver,lambda );\n \n for i=1:7\n jPos{i}=qs(i);\n end\n \n\t%% Send joint positions to robot\n\tiiwa.sendJointsPositions( jPos);\n\nend\n\n % Stop the reltime motion\n iiwa.realTime_stopDirectServoJoints();\n \n\nend\n\nfunction [R,theta0,a,b,c,errorFlag]=getEllipseParameters(p,c,ratio,dir)\n\n%% About\n% This function returns the parameters of the ellipse\n\n%% Arreguments:\n% p: the starting point of the ellipse\n% c: the center of the ellipse\n% ratio: the ratio (a/b) of the ellipse\n% dir: direction of the \n\n\n%% Return values:\n% R, the rotation matrix from the ellipse frame to the base frame of the\n% robot\n% theta0: the starting angle of the ellipse (given by the parametric equation of the ellipse)\n% a,b: the big and the small radious of the ellipse\n% c: is the center of the ellipse\n% error flag: returns true if an error happens, this error is when the\n% vector (p-c) is coinsident with the vector (dir).\n\n\np=colVec(p);\nc=colVec(c);\ndir=colVec(dir);\n\n% X dirction vector\ni=dir/norm(dir);\n\nu=p-c;\n% \nk=cross(u,i);\nnormk=norm(k);\n\nif(normk==0)\n errorFlag=true;\nelse\n errorFlag=false;\nend\n\nk=k/norm(k);\nj=cross(k,i);\n\n% rotation matrix from ellipse frame to base frame\nR=[i,j,k];\n% calculate a,b minimum,maximum radious of the ellipse\nx=u'*i; % x coordinate of the starting point of the ellipse in the ellipse frame\ny=u'*j; % y coordinate of the starting point of the ellipse in the ellipse frame\na=(x*x+y*y/(ratio*ratio))^0.5;\nb=ratio*a;\n% calculate theta0, begining angle of the ellipse\ntheta0=atan2(y,x);\n\nend\n\n\nfunction y=colVec(x)\n if size(x,2)==1\n y=x;\n else\n y=x';\n end\nend\n\nfunction [ thetaVec,sVec ] = getEllipseLengthVector( a,b, theta0,theta1 )\n%% About:\n% This function is used to return the length of the ellipse as a function\n% of the angle theta.\n\n%% Inputs:\n% theta0, theta1: start/end angle of the arc of the ellipse (from the parametric equation of the ellipse)\n% a,b: the big and the small radious of the ellipse.\n\nthetaSpan = [theta0 theta1];\ns0 = 0;\nopts = odeset('RelTol',1e-2,'AbsTol',1e-4);\n[thetaVec,sVec] = ode45(@(theta,s) ((a*a*sin(theta)*sin(theta)+b*b*cos(theta)*cos(theta))^0.5), thetaSpan, s0,opts);\n\nend\n\nfunction [ vec ] = ellipseParametricFunction( a,b,theta )\n%% About:\n% Calculate the X and Y coordinates of the ellipse point corrsponding to\n% angle (theta) from the parametric equation\n\n%% inputs:\n% theta: angle of point on the ellipse (from the parametric equation of the ellipse)\n% a,b: the big and the small radious of the ellipse\n\n%% Return value:\n% The return value is a column vector, vec=[x;y;0] where:\n% x: the x coordiante of the point on the ellipse correspodning to angle\n% (theta) as described in the frame of the ellipse\n% y: the y coordiante of the point on the ellipse correspodning to angle\n% (theta) as described in the frame of the ellipse\n\nx=a*cos(theta);\ny=b*sin(theta);\nvec=[x;y;0];\n\nend\n\nfunction [t0,t1,t2]=calculateInterpolationTimes(L,v,a)\n%% About:\n% calculates the times of the acceleration, stable motion, deceleration\n\n%% Arreguments:\n% L: length of the curve (mm).\n% v: linear velocity of eef on the the curve (mm/sec).\n% a: linear acceleration of eef on the the curve (mm/sec2).\n\n%% Return values:\n% t0; time for acceleration.\n% t1: time for acceleration, constant velocity.\n% t2: time for acceleration, constant velocity and for deceleration\n\ntaw=v/a;\n\nif(L>a*taw*taw)\n t0=taw;\n deltat=(L-a*taw*taw)/v;\n t1=t0+deltat;\n t2=t1+taw;\nelse\n taw1=(L/a)^0.5;\n t0=taw1;\n t1=taw1;\n t2=2*taw1;\nend\n\nend", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/Matlab_client/movePTPEllipse_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529716, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.37656709830421886}} {"text": "function out=icassoGet(sR,field,index)\n%function out=icassoGet(sR,field,[index])\n%\n%PURPOSE \n%\n%Auxiliary function for obtaining various information from the\n%Icasso result data structure. Using icassoGet, you can return\n%information related to original data, e.g.: data matrix,\n%(de)whitening matrix, total number of estimates, number of\n%estimates on each round. You can also return specified estimated\n%independent components (sources), and rows of demixing matrices\n%from. (However, it is easier to use function icassoResult to return\n%the final estimation results from the complete Icasso procedure.) \n%\n%EXAMPLES OF BASIC USAGE\n%\n% M=icassoGet(sR,'m'); \n% \n%returns total number of estimates.\n%\n% nic=icassoGet(sR,'numOfIC')\n%\n%returns number of estimated IC components on each round in an Nx1\n%vector (The number may differ in deflatory estimation mode due to\n%convergence problems.)\n%\n% r=icassoGet(sR,'round',[25 17 126]); \n% \n%workspace variable r contains now a 3x2 matrix where the first \n%column shows the number of estimation cycle. The second column \n%is the order of appearance of the estimate within the cycle: \n%e.g. 2 5 : estimate 25 was 5th estimate in cycle 2\n% 1 17 : 17 1st 1\n% 7 6 : 126 6th 7\n%\n% W=icassoGet(sR,'demixingmatrix',[25 17 126]); \n%\n%returns the demixing matrix rows for estimates 25, 17, and 126.\n% \n% s=icassoGet(sR,'source'); \n%\n%returns _all_ M estimated independent components (sources), i.e.,\n%estimates from all resampling cycles.\n%\n%INPUT\n%\n%[An argument in brackets is optional. If it isn't given or it's\n% an empty matrix/string, the function will use a default value.] \n%\n% sR (struct) Icasso result data structure (from icassoEst).\n% field (string) (case insensitive) determines what is returned: \n% 'data' the original data centered \n% 'N' the number of estimation cycles\n% 'M' the total number of estimates available;\n% equal to sum(icassoGet(sR,'numofic'));\n% 'numofic' number of ICs extracted on each cycle (Nx1\n% vector) \n% 'odim' original data dimension\n% 'rdim' reduced data dimension (after PCA)\n% 'round' output is an Mx2 matrix that identifies from\n% which estimation round each estimate\n% originates: \n% out(i,1) is the estimation round for \n% estimate i, \n% out(i,2) is the ordinal number of the\n% estimate within the round.\n% 'source' estimated source signals \n% 'dewhitemat' dewhitening matrix for the original data\n% 'whitemat' dewhitening matrix for the original data\n% 'demixingmatrix' demixing matrix rows ('W' works as well)\n%\n% [index] (vector of integers) specifies which estimates to return \n% Applies only for 'demixingmatrix', and 'source'\n% Default: leaving this argument out corresponds to\n% selecting all estimates, i.e., giving [1:M] as index\n% vector. \n%\n%OUTPUT\n%\n% out (type and meaning vary according to input argument 'field')\n%\n%SEE ALSO\n% icassoResult\n\n\n%COPYRIGHT NOTICE\n%This function is a part of Icasso software library\n%Copyright (C) 2003-2005 Johan Himberg\n%\n%This program is free software; you can redistribute it and/or\n%modify it under the terms of the GNU General Public License\n%as published by the Free Software Foundation; either version 2\n%of the License, or any later version.\n%\n%This program is distributed in the hope that it will be useful,\n%but WITHOUT ANY WARRANTY; without even the implied warranty of\n%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n%GNU General Public License for more details.\n%\n%You should have received a copy of the GNU General Public License\n%along with this program; if not, write to the Free Software\n%Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.\n\n% ver 1.2 100105\n\nM=size(sR.index,1);\n\nif nargin<3,\n index=1:M;\nend\n\nswitch lower(field)\n case 'm'\n out=size(sR.index,1);\n case 'n'\n out=length(sR.A);\n case 'odim'\n out=size(sR.whiteningMatrix,2);\n case 'rdim'\n out=size(sR.whiteningMatrix,1);\n case 'numofic'\n for i=1:length(sR.A),\n out(i,1)=size(sR.A{i},2);\n end\n case {'w','demixingmatrix'}\n out=getDeMixing(sR,index); \n case 'data'\n out=sR.signal; \n case {'dewhitemat'}\n out=sR.dewhiteningMatrix;\n case {'whitemat'}\n out=sR.whiteningMatrix;\n case 'source'\n out=getSource(sR,index);\n case 'round'\n out=sR.index(index,:)\n otherwise \n error('Unknown operation.');\nend\n\n%function A=getMixing(sR,index);\n%\n%function A=getMixing(sR,index);\n%\n\n% reindex\n%index2=sR.index(index,:);\n%N=size(index2,1); A=[];\n%for i=1:N,\n% A(:,i)=sR.A{index2(i,1)}(:,index2(i,2));\n%end\n \nfunction W=getDeMixing(sR,index);\n%\n%function W=getDeMixing(sR,index);\n%\n\n% reindex\nindex2=sR.index(index,:);\nN=size(index2,1); W=[];\nfor i=1:N,\n W(i,:)=sR.W{index2(i,1)}(index2(i,2),:);\nend\n \nfunction S=getSource(sR,index)\n%function S=getSource(sR,index)\n%\n\nX=sR.signal;\nW=getDeMixing(sR,index);\nS=W*X;\n\n%% Old stuff \n%function dWh=getDeWhitening(sR,index);\n%\n%function dWh=getDeWhitening(sR,index);\n%\n%\n%index=sR.index(index,:);\n%Nindex=size(index,1); W=[];\n%for i=1:Nindex,\n% dWh(:,i)=sR.dewhiteningMatrix{1}(:,index(i,2));\n%end\n\n\n%function W=getWhitening(sR,index);\n%\n%function W=getWhitening(sR,index);\n%\n%\n%index=sR.index(index,:);\n%Nindex=size(index,1); W=[];\n%for i=1:Nindex,\n% W(:,i)=sR.whiteningMatrix{index(i,1)}(:,index(i,2));\n%end\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/icasso/icassoGet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.37656709830421886}} {"text": "%% Microstrip low-pass filter analysis using 3D FDTD code with UPML \n%% absorbing borders (ABC)\n%\n% Here we use FDTD 3D with UPML to calculate scattering coefficients S_{11} \n% and S_{21} for planar microstrip low-pass filter following by the original \n% paper by D. Sheen, S. Ali, M. Abouzahra, J. Kong \"Application of the \n% Three-Dimensional Finite-Difference Time-Domain Method to the Analysis of\n% planar Microstrip Circuits\", IEEE Trans. on Microwave Theory and Techniques\n% (http://dx.doi.org/10.1109/22.55775). \n% Also |S_{21}| dependence can be taken from the paper \"Computational\n% electromagnetic method for interconnects and small structures\" by C.\n% Balanis, A. Policarpou and S. Georgakopoulos \n% (http://dx.doi.org/10.1006/spmi.2000.0865)\n%% Current code includes some improvements in comparison with the original \n%% calculations:\n% 1) imposing UPML instead of Mur ABCs;\n% 2) using real metal (copper) as a patch conductor material instead of PEC;\n% 3) applying matched load at the ends of filter's transmission microstrip\n% lines to prevent physical reflections;\n% 4) no \"magnetic wall\" or \"electric wall\" conditions at the Ez source plane.\n%\nfunction FDTD_3D_Lowpass\nclose all; clear; clc;\n%% Physical constants\n epsilon0 = 8.85418782e-12; mu0 = 1.25663706e-6;\n c = 1.0/sqrt(mu0*epsilon0);\n\n%% Gaussian half-width\n t_half = 15.0e-12;\n\n%% Microstrip transmission lines parameters\n lineW = 2.413e-3; \n lineH = 1.0e-3;\n lineEr = 2.2;\n Z0 = 49.2526;\n\n%% End time\n t_end = 1.5e-9;\n\n%% Total mesh dimensions and grid cells sizes (without PML)\n nx = 80; ny = 100; nz = 16;\n dx = 0.4064e-3; dy = 0.4233e-3; dz = 0.2650e-3;\n\n%% Number of PML layers\n PML = 5;\n\n%% Matrix of material's constants\n number_of_materials = 4;\n % For material of number x = 1,2,3... :\n % Material(x,1) - relative permittivity, Material(x,2) - relative permeability,\n % Material(x,3) - specific conductivity\n % Vacuum\n Material(1,1) = 1.0; Material(1,2) = 1.0; Material(1,3) = 0.0;\n % Metal (Copper)\n Material(2,1) = 1.0; Material(2,2) = 1.0; Material(2,3) = 5.88e+7;\n % Substrate material (RT/Duroid 5880)\n Material(3,1) = lineEr; Material(3,2) = 1.0; Material(3,3) = 0.0;\n % Matched load material is calculated from transmission line parameters\n Material(4,1) = 1.0; Material(4,2) = 1.0; Material(4,3) = lineH/(Z0*lineW*dy);\n\n% Add PML layers\n nx = nx + 2*PML; ny = ny + 2*PML; nz = nz + 2*PML;\n% Calculate dt \n dt = (1.0/c/sqrt( 1.0/(dx^2) + 1.0/(dy^2) + 1.0/(dz^2)))*0.9999;\n number_of_iterations = ceil(t_end/dt);\n\n%% 3D array for geometry\n Index = ones(nx, ny, nz);\n\n%% Define of low-pass filter geometry\n % Ground plane \n Index((1+PML):(nx-PML), (1+PML):(ny-PML), PML+1) = 2;\n % Rectangular patch (one cell thickness)\n Index((nx/2-25):(nx/2+25), (ny/2-3):(ny/2+3), PML+5) = 2;\n % Transmission line from port 1 to rectangular patch\n Index((nx/2-10):(nx/2-5), (PML+1):ny/2, PML+5) = 2;\n % Transmission line from rectangular patch to port 2\n Index((nx/2+5):(nx/2+10), ny/2:(ny-PML), PML+5) = 2;\n % Dielectric substrate between ground plane and filter patch\n Index((1+PML):(nx-PML), (1+PML):(ny-PML), (PML+2):(PML+4)) = 3;\n % Matched load before port 1\n Index((nx/2-10):(nx/2-5), PML+1, (PML+2):(PML+4)) = 4;\n % Matched load after port 2\n Index((nx/2+5):(nx/2+10), ny-PML, (PML+2):(PML+4)) = 4;\n \n%% 3D FDTD physical (fields) and additional arrays are defined as 'single' \n%% to increase performance\n Ex = zeros(nx, ny+1, nz+1, 'single'); \n Gx = zeros(nx, ny+1, nz+1, 'single'); \n Fx = zeros(nx, ny+1, nz+1, 'single'); \n Ey = zeros(nx+1, ny, nz+1, 'single'); \n Gy = zeros(nx+1, ny, nz+1, 'single'); \n Fy = zeros(nx+1, ny, nz+1, 'single');\n Ez = zeros(nx+1, ny+1, nz, 'single'); \n Gz = zeros(nx+1, ny+1, nz, 'single'); \n Fz = zeros(nx+1, ny+1, nz, 'single');\n Hx = zeros(nx+1, ny, nz, 'single'); \n Bx = zeros(nx+1, ny, nz, 'single'); \n Hy = zeros(nx, ny+1, nz, 'single');\n By = zeros(nx, ny+1, nz, 'single'); \n Hz = zeros(nx, ny, nz+1, 'single'); \n Bz = zeros(nx, ny, nz+1, 'single');\n\n%% FDTD PML coefficients arrays. Here they are already filled with values \n%% corresponding to free space \n m = 4; ka_max = 1.0; R_err = 1.0e-16;\n eta = sqrt(mu0/epsilon0*Material(1,1)/Material(1,2));\n k_Ex_c = ones(nx, ny, nz, 'single')*2.0*epsilon0; \n k_Ex_d = ones(nx, ny, nz, 'single')*(-2.0*epsilon0);\n k_Ey_a = ones(nx+1, ny, nz, 'single');\n k_Ey_b = ones(nx+1, ny, nz, 'single')/(2.0*epsilon0);\n k_Gz_a = ones(nx+1, ny, nz, 'single');\n k_Gz_b = ones(nx+1, ny, nz, 'single');\n k_Hy_a = ones(nx, ny, nz, 'single'); \n k_Hy_b = ones(nx, ny, nz, 'single')/(2.0*epsilon0);\n k_Hx_c = ones(nx+1, ny, nz, 'single')*2.0*epsilon0/mu0;\n k_Hx_d = ones(nx+1, ny, nz, 'single')*(-2.0*epsilon0/mu0);\n k_Bz_a = ones(nx, ny, nz, 'single');\n k_Bz_b = ones(nx, ny, nz, 'single')*dt;\n k_Gx_a = ones(nx, ny+1, nz, 'single');\n k_Gx_b = ones(nx, ny+1, nz, 'single');\n k_Ey_c = ones(nx, ny, nz, 'single')*2.0*epsilon0; \n k_Ey_d = ones(nx, ny, nz, 'single')*(-2.0*epsilon0);\n k_Ez_a = ones(nx, ny+1, nz, 'single'); \n k_Ez_b = ones(nx, ny+1, nz, 'single')/(2.0*epsilon0);\n k_Bx_a = ones(nx, ny, nz, 'single'); \n k_Bx_b = ones(nx, ny, nz, 'single')*dt;\n k_Hy_c = ones(nx, ny+1, nz, 'single')*2.0*epsilon0/mu0;\n k_Hy_d = ones(nx, ny+1, nz, 'single')*(-2.0*epsilon0/mu0);\n k_Hz_a = ones(nx, ny, nz, 'single');\n k_Hz_b = ones(nx, ny, nz, 'single')/(2.0*epsilon0);\n k_Ex_a = ones(nx, ny, nz+1, 'single');\n k_Ex_b = ones(nx, ny, nz+1, 'single')/(2.0*epsilon0);\n k_Gy_a = ones(nx, ny, nz+1, 'single'); \n k_Gy_b = ones(nx, ny, nz+1, 'single');\n k_Ez_c = ones(nx, ny, nz, 'single')*2.0*epsilon0;\n k_Ez_d = ones(nx, ny, nz, 'single')*(-2.0*epsilon0);\n k_Hx_a = ones(nx, ny, nz, 'single');\n k_Hx_b = ones(nx, ny, nz, 'single')/(2.0*epsilon0);\n k_By_a = ones(nx, ny, nz, 'single'); \n k_By_b = ones(nx, ny, nz, 'single')*dt;\n k_Hz_c = ones(nx, ny, nz+1, 'single')*2.0*epsilon0/mu0; \n k_Hz_d = ones(nx, ny, nz+1, 'single')*(-2.0*epsilon0/mu0);\n\n%% General FDTD coefficients \n I = 1:number_of_materials;\n K_a(I) = (2.0*epsilon0*Material(I,1) - Material(I,3)*dt)./...\n (2.0*epsilon0*Material(I,1) + Material(I,3)*dt);\n K_b(I) = 2.0*dt./(2.0*epsilon0*Material(I,1) + Material(I,3)*dt);\n K_c(I) = Material(I,2);\n Ka = single(K_a(Index)); Kb = single(K_b(Index)); Kc = single(K_c(Index));\n \n%% PML coefficients along x-axis\n sigma_max = -(m + 1.0)*log(R_err)/(2.0*eta*PML*dx);\n for I=0:(PML-1)\n sigma_x = sigma_max*((PML - I)/PML)^m;\n ka_x = 1.0 + (ka_max - 1.0)*((PML - I)/PML)^m;\n k_Ey_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...\n (2.0*epsilon0*ka_x + sigma_x*dt);\n k_Ey_a(nx-I,:,:) = k_Ey_a(I+1,:,:);\n k_Ey_b(I+1,:,:) = 1.0/(2.0*epsilon0*ka_x + sigma_x*dt);\n k_Ey_b(nx-I,:,:) = k_Ey_b(I+1,:,:);\n k_Gz_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...\n (2.0*epsilon0*ka_x + sigma_x*dt);\n k_Gz_a(nx-I,:,:) = k_Gz_a(I+1,:,:);\n k_Gz_b(I+1,:,:) = 2.0*epsilon0/(2.0*epsilon0*ka_x + sigma_x*dt);\n k_Gz_b(nx-I,:,:) = k_Gz_b(I+1,:,:);\n k_Hx_c(I+1,:,:) = (2.0*epsilon0*ka_x + sigma_x*dt)/mu0;\n k_Hx_c(nx-I,:,:) = k_Hx_c(I+1,:,:);\n k_Hx_d(I+1,:,:) = -(2.0*epsilon0*ka_x - sigma_x*dt)/mu0;\n k_Hx_d(nx-I,:,:) = k_Hx_d(I+1,:,:);\n\n sigma_x = sigma_max*((PML - I - 0.5)/PML)^m;\n ka_x = 1.0 + (ka_max - 1.0)*((PML - I - 0.5)/PML)^m;\n k_Ex_c(I+1,:,:) = 2.0*epsilon0*ka_x + sigma_x*dt;\n k_Ex_c(nx-I-1,:,:) = k_Ex_c(I+1,:,:);\n k_Ex_d(I+1,:,:) = -(2.0*epsilon0*ka_x - sigma_x*dt);\n k_Ex_d(nx-I-1,:,:) = k_Ex_d(I+1,:,:);\n k_Hy_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...\n (2.0*epsilon0*ka_x + sigma_x*dt);\n k_Hy_a(nx-I-1,:,:) = k_Hy_a(I+1,:,:);\n k_Hy_b(I+1,:,:) = 1.0/(2.0*epsilon0*ka_x + sigma_x*dt);\n k_Hy_b(nx-I-1,:,:) = k_Hy_b(I+1,:,:);\n k_Bz_a(I+1,:,:) = (2.0*epsilon0*ka_x - sigma_x*dt)/...\n (2.0*epsilon0*ka_x + sigma_x*dt);\n k_Bz_a(nx-I-1,:,:) = k_Bz_a(I+1,:,:);\n k_Bz_b(I+1,:,:) = 2.0*epsilon0*dt/(2.0*epsilon0*ka_x + sigma_x*dt);\n k_Bz_b(nx-I-1,:,:) = k_Bz_b(I+1,:,:);\n end\n\n%% PML coefficients along y-axis\n sigma_max = -(m + 1.0)*log(R_err)/(2.0*eta*PML*dy);\n for J=0:(PML-1)\n sigma_y = sigma_max*((PML - J)/PML)^m;\n ka_y = 1.0 + (ka_max - 1.0)*((PML - J)/PML)^m;\n k_Gx_a(:,J+1,:) = (2.0*epsilon0*ka_y - sigma_y*dt)/...\n (2.0*epsilon0*ka_y + sigma_y*dt);\n k_Gx_a(:,ny-J,:) = k_Gx_a(:,J+1,:);\n k_Gx_b(:,J+1,:) = 2.0*epsilon0/(2.0*epsilon0*ka_y + sigma_y*dt);\n k_Gx_b(:,ny-J,:) = k_Gx_b(:,J+1,:);\n k_Ez_a(:,J+1,:) = (2.0*epsilon0*ka_y - sigma_y*dt)/...\n (2.0*epsilon0*ka_y + sigma_y*dt);\n k_Ez_a(:,ny-J,:) = k_Ez_a(:,J+1,:);\n k_Ez_b(:,J+1,:) = 1.0/(2.0*epsilon0*ka_y + sigma_y*dt);\n k_Ez_b(:,ny-J,:) = k_Ez_b(:,J+1,:);\n k_Hy_c(:,J+1,:) = (2.0*epsilon0*ka_y + sigma_y*dt)/mu0;\n k_Hy_c(:,ny-J,:) = k_Hy_c(:,J+1,:);\n k_Hy_d(:,J+1,:) = -(2.0*epsilon0*ka_y - sigma_y*dt)/mu0;\n k_Hy_d(:,ny-J,:) = k_Hy_d(:,J+1,:);\n\n sigma_y = sigma_max*((PML - J - 0.5)/PML)^m;\n ka_y = 1.0 + (ka_max - 1.0)*((PML - J - 0.5)/PML)^m;\n k_Ey_c(:,J+1,:) = 2.0*epsilon0*ka_y+sigma_y*dt;\n k_Ey_c(:,ny-J-1,:) = k_Ey_c(:,J+1,:);\n k_Ey_d(:,J+1,:) = -(2.0*epsilon0*ka_y-sigma_y*dt);\n k_Ey_d(:,ny-J-1,:) = k_Ey_d(:,J+1,:);\n k_Bx_a(:,J+1,:) = (2.0*epsilon0*ka_y-sigma_y*dt)/...\n (2.0*epsilon0*ka_y+sigma_y*dt);\n k_Bx_a(:,ny-J-1,:) = k_Bx_a(:,J+1,:);\n k_Bx_b(:,J+1,:) = 2.0*epsilon0*dt/(2.0*epsilon0*ka_y+sigma_y*dt);\n k_Bx_b(:,ny-J-1,:) = k_Bx_b(:,J+1,:);\n k_Hz_a(:,J+1,:) = (2.0*epsilon0*ka_y-sigma_y*dt)/...\n (2.0*epsilon0*ka_y+sigma_y*dt);\n k_Hz_a(:,ny-J-1,:) = k_Hz_a(:,J+1,:);\n k_Hz_b(:,J+1,:) = 1.0/(2.0*epsilon0*ka_y+sigma_y*dt);\n k_Hz_b(:,ny-J-1,:) = k_Hz_b(:,J+1,:);\n end\n\n%% PML coefficients along z-axis \n sigma_max = -(m + 1.0)*log(R_err)/(2.0*eta*PML*dz);\n for K=0:(PML-1)\n sigma_z = sigma_max*((PML - K)/PML)^m;\n ka_z = 1.0 + (ka_max - 1.0)*((PML-K)/PML)^m;\n k_Ex_a(:,:,K+1) = (2.0*epsilon0*ka_z - sigma_z*dt)/...\n (2.0*epsilon0*ka_z + sigma_z*dt);\n k_Ex_a(:,:,nz-K) = k_Ex_a(:,:,K+1);\n k_Ex_b(:,:,K+1) = 1.0/(2.0*epsilon0*ka_z + sigma_z*dt);\n k_Ex_b(:,:,nz-K) = k_Ex_b(:,:,K+1);\n k_Gy_a(:,:,K+1) = (2.0*epsilon0*ka_z - sigma_z*dt)/...\n (2.0*epsilon0*ka_z + sigma_z*dt);\n k_Gy_a(:,:,nz-K) = k_Gy_a(:,:,K+1);\n k_Gy_b(:,:,K+1) = 2.0*epsilon0/(2.0*epsilon0*ka_z + sigma_z*dt);\n k_Gy_b(:,:,nz-K) = k_Gy_b(:,:,K+1);\n k_Hz_c(:,:,K+1) = (2.0*epsilon0*ka_z + sigma_z*dt)/mu0;\n k_Hz_c(:,:,nz-K) = k_Hz_c(:,:,K+1);\n k_Hz_d(:,:,K+1) = -(2.0*epsilon0*ka_z - sigma_z*dt)/mu0;\n k_Hz_d(:,:,nz-K) = k_Hz_d(:,:,K+1);\n\n sigma_z = sigma_max*((PML - K - 0.5)/PML)^m;\n ka_z = 1.0 + (ka_max - 1.0)*((PML - K - 0.5)/PML)^m;\n k_Ez_c(:,:,K+1) = 2.0*epsilon0*ka_z + sigma_z*dt;\n k_Ez_c(:,:,nz-K-1) = k_Ez_c(:,:,K+1);\n k_Ez_d(:,:,K+1) = -(2.0*epsilon0*ka_z - sigma_z*dt);\n k_Ez_d(:,:,nz-K-1) = k_Ez_d(:,:,K+1);\n k_Hx_a(:,:,K+1) = (2.0*epsilon0*ka_z - sigma_z*dt)/...\n (2.0*epsilon0*ka_z + sigma_z*dt);\n k_Hx_a(:,:,nz-K-1) = k_Hx_a(:,:,K+1);\n k_Hx_b(:,:,K+1) = 1.0/(2.0*epsilon0*ka_z + sigma_z*dt);\n k_Hx_b(:,:,nz-K-1) = k_Hx_b(:,:,K+1);\n k_By_a(:,:,K+1) = (2.0*epsilon0*ka_z - sigma_z*dt)/...\n (2.0*epsilon0*ka_z + sigma_z*dt);\n k_By_a(:,:,nz-K-1) = k_By_a(:,:,K+1);\n k_By_b(:,:,K+1) = 2.0*epsilon0*dt/(2.0*epsilon0*ka_z + sigma_z*dt);\n k_By_b(:,:,nz-K-1) = k_By_b(:,:,K+1);\n end\n \n%% Main 3D FDTD+UPML routine (operates with 'singles' to increase speed) \n hhh = waitbar(0, 'Calculations in progress...');\n tic;\n for T=0:(number_of_iterations-1)\n %% Calculate Fx -> Gx -> Ex\n I = 1:nx; J = 2:ny; K = 2:nz;\n Fx_r = Fx(I,J,K);\n Fx(I,J,K) = Ka(I,J,K).*Fx(I,J,K) + Kb(I,J,K).*...\n ((Hz(I,J,K) - Hz(I,J-1,K))/dy - (Hy(I,J,K) - Hy(I,J,K-1))/dz);\n Gx_r = Gx(I,J,K);\n Gx(I,J,K) = k_Gx_a(I,J,K).*Gx(I,J,K) + k_Gx_b(I,J,K).*(Fx(I,J,K) - Fx_r);\n Ex(I,J,K) = k_Ex_a(I,J,K).*Ex(I,J,K) + k_Ex_b(I,J,K).*...\n (k_Ex_c(I,J,K).*Gx(I,J,K) + k_Ex_d(I,J,K).*Gx_r);\n\n %% Calculate Fy -> Gy -> Ey\n I = 2:nx; J = 1:ny; K = 2:nz;\n Fy_r = Fy(I,J,K);\n Fy(I,J,K) = Ka(I,J,K).*Fy(I,J,K) + Kb(I,J,K).*...\n ((Hx(I,J,K) - Hx(I,J,K-1))/dz - (Hz(I,J,K) - Hz(I-1,J,K))/dx);\n Gy_r = Gy(I,J,K);\n Gy(I,J,K) = k_Gy_a(I,J,K).*Gy(I,J,K) + k_Gy_b(I,J,K).*(Fy(I,J,K) - Fy_r);\n Ey(I,J,K) = k_Ey_a(I,J,K).*Ey(I,J,K) + k_Ey_b(I,J,K).*...\n (k_Ey_c(I,J,K).*Gy(I,J,K) + k_Ey_d(I,J,K).*Gy_r);\n\n %% Calculate Fz -> Gz -> Ez\n I = 2:nx; J = 2:ny; K = 1:nz;\n Fz_r = Fz(I,J,K);\n Fz(I,J,K) = Ka(I,J,K).*Fz(I,J,K) + Kb(I,J,K).*...\n ((Hy(I,J,K) - Hy(I-1,J,K))/dx - (Hx(I,J,K) - Hx(I,J-1,K))/dy);\n Gz_r = Gz(I,J,K);\n Gz(I,J,K) = k_Gz_a(I,J,K).*Gz(I,J,K) + k_Gz_b(I,J,K).*(Fz(I,J,K) - Fz_r);\n Ez(I,J,K) = k_Ez_a(I,J,K).*Ez(I,J,K) + k_Ez_b(I,J,K).*...\n (k_Ez_c(I,J,K).*Gz(I,J,K) + k_Ez_d(I,J,K).*Gz_r);\n\n %% Source of vertical electric field Ez applied to the whole face \n %% plane at the port 1\n if (T*dt<=10.0*t_half)\n Ez((nx/2-10):(nx/2-5), PML+2, (PML+2):(PML+4)) = Source(t_half, 1.0, T*dt);\n end\n\n %% Save reflected Ez at port 1, passed through Ez at port 2 and Ez \n %% distribution between electrodes\n Incident(T+1) = Source(t_half, 1.0, T*dt); \n Reflected(T+1) = Ez(nx/2-7, PML+2, PML+3) - Incident(T+1);\n Passed(T+1) = Ez(nx/2+7, ny-PML-1, PML+3);\n Ez_saved(1:(ny-2*PML-1), 1:(nx-2*PML-1), T+1) = ...\n Ez((PML+1):(nx-PML-1), (PML+1):(ny-PML-1), PML+3)';\n\n %% Calculate Bx -> Hx\n I = 2:nx; J = 1:ny; K = 1:nz;\n Bx_r = Bx(I,J,K);\n Bx(I,J,K) = k_Bx_a(I,J,K).*Bx(I,J,K) + k_Bx_b(I,J,K).*...\n ((Ey(I,J,K+1) - Ey(I,J,K))/dz - (Ez(I,J+1,K) - Ez(I,J,K))/dy);\n Hx(I,J,K) = k_Hx_a(I,J,K).*Hx(I,J,K) + k_Hx_b(I,J,K).*...\n (k_Hx_c(I,J,K).*Bx(I,J,K) + k_Hx_d(I,J,K).*Bx_r)./Kc(I,J,K);\n \n %% Calculate By -> Hy\n I = 1:nx; J = 2:ny; K = 1:nz;\n By_r = By(I,J,K);\n By(I,J,K) = k_By_a(I,J,K).*By(I,J,K) + k_By_b(I,J,K).*...\n ((Ez(I+1,J,K) - Ez(I,J,K))/dx - (Ex(I,J,K+1) - Ex(I,J,K))/dz);\n Hy(I,J,K) = k_Hy_a(I,J,K).*Hy(I,J,K) + k_Hy_b(I,J,K).*...\n (k_Hy_c(I,J,K).*By(I,J,K) + k_Hy_d(I,J,K).*By_r)./Kc(I,J,K);\n\n %% Calculate Bz -> Hz\n I = 1:nx; J = 1:ny; K = 2:nz;\n Bz_r = Bz(I,J,K);\n Bz(I,J,K) = k_Bz_a(I,J,K).*Bz(I,J,K) + k_Bz_b(I,J,K).*...\n ((Ex(I,J+1,K) - Ex(I,J,K))/dy - (Ey(I+1,J,K) - Ey(I,J,K))/dx);\n Hz(I,J,K) = k_Hz_a(I,J,K).*Hz(I,J,K) + k_Hz_b(I,J,K).*...\n (k_Hz_c(I,J,K).*Bz(I,J,K) + k_Hz_d(I,J,K).*Bz_r)./Kc(I,J,K);\n \n %% Progress bar updates at every time percent\n if ( mod(T, ceil(number_of_iterations/100)) == 0 )\n waitbar((T+1)/number_of_iterations, hhh);\n end\n \n end\n toc\n close(hhh);\n \n%% Plots: signals, scattering parameters and Ez field between plates\n figure('units','normalized','outerposition',[0 0 1 1]);\n set(gcf, 'doublebuffer', 'on'); \n % Input signal, reflected (at port 1) and passed through (port 2)\n subplot(2,2,1);\n plot(1e9*dt*(0:T), Incident, 'k-', 1e9*dt*(0:T), Reflected, 'r-', 1e9*dt*(0:T), Passed, 'b-', 'LineWidth', 2);\n title('Input, reflected (Port 1) and passed (Port 2) signals', 'FontSize', 18);\n xlabel('Time, [ns]', 'FontSize', 16);\n ylabel('Strength, [V/cm]', 'FontSize', 16);\n legend('Incident (Port 1)' ,'Reflected (Port 1)', 'Passed (Port 2)');\n grid on;\n % |S_11| and |S_21|\n NFFT = 2^nextpow2(T);\n S_11 = fft(Reflected, NFFT)./fft(Incident, NFFT);\n S_21 = fft(Passed, NFFT)./fft(Incident, NFFT);\n subplot(2,2,3);\n f = (0.5/dt)*linspace(0, 1, NFFT/2);\n plot(f*1e-9, 20*log10(abs(S_11(1:NFFT/2))), 'r', ...\n f*1e-9, 20*log10(abs(S_21(1:NFFT/2))), 'b', 'LineWidth', 2);\n title('Scattering parameters - |S_{11}| and |S_{21}|', 'FontSize', 18);\n xlabel('Frequency, [GHz]', 'FontSize', 16);\n ylabel('Magnitude, [dB]', 'FontSize', 16);\n legend('Reflected (Port 1)', 'Passed (Port 2)', 'Location', 'SouthEast');\n xlim([0 20]);\n grid on;\n % Electric field strength Ez between electrodes\n for T=1:20:number_of_iterations\n subplot(2,2,[2 4]);\n contour(1e3*dx*(1:(nx-2*PML-1)), 1e3*dy*(1:(ny-2*PML-1)), ...\n Index((PML+1):(nx-PML-1), (PML+1):(ny-PML-1), PML+5)', 1);\n hold on;\n subplot(2,2,[2 4]);\n pcolor(1e3*dx*(1:(nx-2*PML-1)), 1e3*dy*(1:(ny-2*PML-1)), double(Ez_saved(:, :, T)));\n title(['Time t = ', num2str(round(T*dt*1e12)),' ps'], 'FontSize', 18);\n xlabel('[mm]', 'FontSize', 16);\n ylabel('[mm]', 'FontSize', 16);\n shading interp;\n axis image;\n caxis([-1 1]);\n colorbar;\n drawnow;\n end\n\n%% Gauss function for voltage source\nfunction [res] = Source(t_half, amplitude, t)\n% Pulse delay\nt0 = 3.0*t_half;\nres = amplitude*exp(-0.5*((t-t0)/(t_half/2.35482))^2.0);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/43337-microstrip-low-pass-filter-analysis-using-3d-fdtd-code-with-upml/FDTD_3D_Lowpass.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7772998611746911, "lm_q2_score": 0.48438008427698437, "lm_q1q2_score": 0.37650857226428514}} {"text": "function tapas_hgf_binary_mab_plotTraj(r)\n% Plots the estimated or generated trajectories for the binary HGF perceptual model for multi-armed\n% bandit situations.\n%\n% Usage example: est = tapas_fitModel(responses, inputs); tapas_hgf_binary_plotTraj(est);\n%\n% --------------------------------------------------------------------------------------------------\n% Copyright (C) 2013 Christoph Mathys, TNU, UZH & ETHZ\n%\n% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public\n% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version). For further details, see the file\n% COPYING or .\n\n% Optional plotting of standard deviations (true or false)\nplotsd = true;\n\n% Optional plotting of responses (true or false)\nploty = true;\n\n% Set up display\nscrsz = get(0,'screenSize');\nouterpos = [0.2*scrsz(3),0.2*scrsz(4),0.8*scrsz(3),0.8*scrsz(4)];\nfigure(...\n 'OuterPosition', outerpos,...\n 'Name', 'HGF trajectories');\n\n% Set up colors\ncolors = [1 0 0; 0.67 0 1; 0 0.67 1; 0.67 1 0];\n\n% Number of bandits\nb = r.c_prc.n_bandits;\n\n% Number of trials\nn = size(r.u,1);\n\n% Time axis\nif size(r.u,2) > 1\n t = r.u(:,end)';\nelse\n t = ones(1,n);\nend\n\nts = cumsum(t);\nts = [0, ts];\n\n% Number of levels\ntry\n l = r.c_prc.n_levels;\ncatch\n l = (length(r.p_prc.p)+1)/5;\nend\n\n% Upper levels\nfor j = 1:l-2\n\n % Subplots\n subplot(l,1,j);\n\n if plotsd == true\n upperprior = r.p_prc.mu_0(l-j+1) +sqrt(r.p_prc.sa_0(l-j+1));\n lowerprior = r.p_prc.mu_0(l-j+1) -sqrt(r.p_prc.sa_0(l-j+1));\n upper = [upperprior; r.traj.mu(:,l-j+1,1)+sqrt(r.traj.sa(:,l-j+1,1))];\n lower = [lowerprior; r.traj.mu(:,l-j+1,1)-sqrt(r.traj.sa(:,l-j+1,1))];\n \n plot(0, upperprior, 'ob', 'LineWidth', 1);\n hold all;\n plot(0, lowerprior, 'ob', 'LineWidth', 1);\n fill([ts, fliplr(ts)], [(upper)', fliplr((lower)')], ...\n 'b', 'EdgeAlpha', 0, 'FaceAlpha', 0.15);\n end\n plot(ts, [r.p_prc.mu_0(l-j+1); r.traj.mu(:,l-j+1,1)], 'b', 'LineWidth', 2);\n hold all;\n plot(0, r.p_prc.mu_0(l-j+1), 'ob', 'LineWidth', 2); % prior\n xlim([0 ts(end)]);\n title(['Posterior expectation of x_' num2str(l-j+1)], 'FontWeight', 'bold');\n ylabel(['\\mu_', num2str(l-j+1)]);\nend\n\n% Second level\nsubplot(l,1,l-1)\n\n\nif plotsd == true\n for j=1:b\n upperprior = r.p_prc.mu_0(2) +sqrt(r.p_prc.sa_0(2));\n lowerprior = r.p_prc.mu_0(2) -sqrt(r.p_prc.sa_0(2));\n upper = [upperprior; r.traj.mu(:,2,j)+sqrt(r.traj.sa(:,2,j))];\n lower = [lowerprior; r.traj.mu(:,2,j)-sqrt(r.traj.sa(:,2,j))];\n \n plot(0, upperprior, 'o', 'Color', colors(j,:), 'LineWidth', 1);\n hold all;\n plot(0, lowerprior, 'o', 'Color', colors(j,:), 'LineWidth', 1);\n fill([ts, fliplr(ts)], [(upper)', fliplr((lower)')], ...\n colors(j,:), 'EdgeAlpha', 0, 'FaceAlpha', 0.15);\n end\nend\nfor j=1:b\n plot(ts, [r.p_prc.mu_0(1); r.traj.mu(:,2,j)], 'Color', colors(j,:), 'LineWidth', 2);\n hold all;\n plot(0, r.p_prc.mu_0(1), 'o', 'Color', colors(j,:), 'LineWidth', 2); % prior\nend\nxlim([0 ts(end)]);\ntitle('Posterior expectations of x_2', 'FontWeight', 'bold');\nylabel('\\mu_2');\n\n% Input level\nsubplot(l,1,l);\n\nfor j=1:b\n plot(ts, [tapas_sgm(r.p_prc.mu_0(2), 1); tapas_sgm(r.traj.mu(:,2,j), 1)], 'Color', colors(j,:), 'LineWidth', 2);\n hold all;\n plot(0, tapas_sgm(r.p_prc.mu_0(2), 1), 'o', 'Color', colors(j,:), 'LineWidth', 2); % prior\nend\nplot(ts(2:end), r.u(:,1), '.', 'Color', [0 0 0]); % inputs\nplot(ts(2:end), r.traj.wt(:,1), 'k') % implied learning rate \nif (ploty == true) && ~isempty(find(strcmp(fieldnames(r),'y'))) && ~isempty(r.y)\n y = r.y(:,1);\n if ~isempty(find(strcmp(fieldnames(r),'irr')))\n y(r.irr) = NaN; % weed out irregular responses\n plot(ts(r.irr)+1, 1.08.*ones([1 length(r.irr)]), 'x', 'Color', [1 0.7 0], 'Markersize', 11, 'LineWidth', 2); % irregular responses\n end\n for j=1:b\n plot(find(y==j), 1.08*ones([1 length(find(y==j))]), '.', 'Color', colors(j,:)); % responses\n end\n title(['Response y, input u (black dots), learning rate (fine black line), and posterior expectation of reward s(\\mu_2) ', ...\n '(colour coded) for \\rho=', num2str(r.p_prc.rho(2:end)), ', \\kappa=', ...\n num2str(r.p_prc.ka(2:end)), ', \\omega=', num2str(r.p_prc.om(2:end))], ...\n 'FontWeight', 'bold');\n ylabel('y, u, s(\\mu_2)');\n axis([0 ts(end) -0.15 1.15]);\nelse\n title(['Input u (black dots), learning rate (fine black line), and posterior expectation of input s(\\mu_2) ', ...\n '(red) for \\rho=', num2str(r.p_prc.rho(2:end)), ', \\kappa=', ...\n num2str(r.p_prc.ka(2:end)), ', \\omega=', num2str(r.p_prc.om(2:end))], ...\n 'FontWeight', 'bold');\n ylabel('u, s(\\mu_2)');\n axis([0 ts(end) -0.1 1.1]);\nend\nplot(ts(2:end), 0.5, 'k');\nxlabel('Trial number');\nhold off;\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/HGF/tapas_hgf_binary_mab_plotTraj.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5774953797290153, "lm_q2_score": 0.6513548646660542, "lm_q1q2_score": 0.37615442490866435}} {"text": "function [ SparsityMatrix ] = sparsity_grid( x, side, width, width_end)\n%SIMILARITYNEIGHBOR Summary of this function goes here\n% Detailed explanation goes here\n\n % this assumes that the patch is laid out with first column, then second\n % column, ... final column (column major)\n\n SimilarityMatrix = zeros(side*side);\n for i=1:width\n SimilarityMatrix = (similarity_neighbor_grid_further(x, side, [1,2,3,4], i) | SimilarityMatrix);\n end\n \n SimilarityMatrix_end = zeros(side*side);\n for i=1:width_end\n SimilarityMatrix_end = (similarity_neighbor_grid_further(x, side, [1,2,3,4], i) | SimilarityMatrix_end);\n end\n \n SparsityMatrix = double(SimilarityMatrix_end & (~SimilarityMatrix));\n \n assert(isequal(SparsityMatrix, SparsityMatrix'));\nend", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/matlab_version/CCNF/sparsity_grid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548782017745, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.37615442325269366}} {"text": "function vscl = vscale( f )\n%VSCALE Estimate the vertical scale of a function. \n% VSCALE(F) estimates the vertical scale (also known as the dynamical range)\n% of a function. This is required because a CHEBTECH does not store its\n% interpolation data. If F is an array-valued CHEBTECH with K columns, then\n% the result is a row vector of length K.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Get the coefficients:\nc = f.coeffs;\n\n% Check isempty: \nif ( isempty( c ) ) \n vscl = 0;\nelseif ( size(c, 1) == 1 )\n vscl = abs(c);\nelse\n % Compute values:\n vals = f.coeffs2vals( c );\n % Take max:\n vscl = max(abs(vals), [], 1);\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebtech/vscale.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6513548714339145, "lm_q1q2_score": 0.3761544193442859}} {"text": "classdef LevelSetSphere < LevelSetSphereNdim\n \n methods (Access = public)\n \n function obj = LevelSetSphere(cParams)\n obj.fracRadius = cParams.fracRadius;\n obj.compute(cParams);\n end\n end\n \n methods (Access = protected)\n function computeLevelSetValue(obj)\n ls = obj.dist - 1;\n obj.levelSet = ls;\n end\n end\n \nend\n\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/DesignVaribleInitializer/LevelSetInitializer/LevelSetSphere.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.3761544154358779}} {"text": "%GM_PHD_Predict_Birth\n%Last modified 2nd September 2013\n%Matlab code by Bryan Clarke b.clarke@acfr.usyd.edu.au \n\n%This file performs prediction for newly birthed and spawned targets\n%This is necessary since their positions were initialised in a previous timestep and they may\n%have moved between then and now\n%We iterate through j = 1..J_b,k where J_b,k is number of birthed landmarks\n%at time k (but the landmarks correspond to the measurement from time k-1)\n%For this implementation, birthed and spawned targets are identical except\n%they have weights that are calculated from different functions, and\n%different starting covariances. A target is spawned or birthed depending\n%on which weighting function will give it a higher starting weight.\n\n%The means of these will be the position in Cartesian space where they are detected\n%The covariances & weights are calculated according to Vo&Ma\ns = sprintf('Step 1: Prediction for birthed and spawned targets.');\ndisp(s);\n\nm_birth_before_prediction = [m_birth, m_spawn]; %Need to store these BEFORE prediction for use in the update step.\n\n%Perform prediction for birthed targets using birthed velocities.\nfor j = 1:numBirthedTargets\n i = i + 1;\n %w_birth was already instantiated in GM_PHD_Create_Birth\n m_birth(:,j) = F * m_birth(:,j);\n P_range = calculateDataRange4(j); \n P_birth(:,P_range) = Q + F * P_birth(:,P_range) * F';\nend\n%Perform prediction for birthed targets using birthed velocities.\nfor j = 1:numSpawnedTargets\n i = i + 1;\n %w_birth was already instantiated in GM_PHD_Create_Birth\n m_spawn(:,j) = F * m_spawn(:,j);\n P_range = calculateDataRange4(j); \n P_spawn(:,P_range) = Q + F * P_spawn(:,P_range) * F';\nend\n\nif(VERBOSE == 1)\n for j = 1:numBirthedTargets\n thisM = m_birth(:,j);\n s = sprintf('Birthed target %d: %3.4f %3.4f %3.4f %3.4f Weight %3.9f', j, thisM(1), thisM(2), thisM(3), thisM(4), w_birth(j));\n disp(s); \n end\n for j = 1:numSpawnedTargets\n thisM = m_spawn(:,j);\n s = sprintf('Spawned target %d: %3.4f %3.4f %3.4f %3.4f Weight %3.9f', j, thisM(1), thisM(2), thisM(3), thisM(4), w_birth(j));\n disp(s); \n end\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/42769-gaussian-mixture-probability-hypothesis-density-filter-gm-phd/GM_PHD_Filter_v104/GM_PHD_Filter/GM_PHD_Predict_Birth.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.37612692770312334}} {"text": "function SubOffspring = CreateOff(Problem,Population,SubPopulation,RMP)\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n\n %% Parent selection\n Parent11 = [];\n Parent21 = [];\n Parent12 = [];\n Parent22 = [];\n for i = 1 : floor(length(Population)/2)\n P1 = Population(i);\n P2 = Population(i+floor(length(Population)/2));\n rmp = RMP(P1.dec(end),P2.dec(end));\n if (P1.dec(end) == P2.dec(end)) || (rand 0\n % We are minimizing x(i), since an upper bound is UPPER\n % this means c(i)*x(i) has to be < UPPER in optimal solution\n p.ub(i) = min([p.ub(i) upper/p.c(i)]);\n elseif p.c(i) < 0\n % We are maximizing x(i), since an lower bound is -UPPER\n % this means x(i) has to be > -UPPER in optimal solution\n p.lb(i) = max([p.lb(i) -upper/abs(p.c(i))]);\n end\n \n end\n if ~isempty(p.bilinears) & nnz(p.Q)==0\n quad_v = find(p.bilinears(:,2) == p.bilinears(:,3));\n quad_x = p.bilinears(quad_v,2);\n quad_v = p.bilinears(quad_v,1);\n i = find(p.c(quad_v)>0);\n quad_v = quad_v(i);\n quad_x = quad_x(i);\n if ~isempty(quad_v) & ~any(isinf(p.lb(quad_x))) & ~any(isinf(p.ub(quad_x)))\n % x'*D*x + c'*x + f + h(x) < U\n D = diag(p.c(quad_v));\n if all(diag(D)>0)\n c = p.c(quad_x);\n h = p.c;\n h(quad_x) = 0;\n h(quad_v) = 0;\n % Complete\n % (x + D^-0.5*c/2)'*D*(x + D^-0.5*c/2) - c'*D*c/4 + f + h(x) < U\n xc = -(D^-1)*c/2;\n rhs = upper - p.f - (h(h<0)'*p.ub(h<0) + h(h>=0)'*p.lb(h>=0)) + xc'*D*xc;\n if rhs>0\n D = D/rhs;\n % (x-xc)'*D*(x-xc) <= 1\n for i = 1:length(quad_x)\n p.lb(quad_x(i)) = max(p.lb(quad_x(i)),xc(i) - 1/sqrt(D(i,i)));\n p.ub(quad_x(i)) = min(p.ub(quad_x(i)),xc(i) + 1/sqrt(D(i,i)));\n end\n end\n end\n end\n end\n if ~isequal(LU,[p.lb p.ub])\n p.changedbounds = 1;\n end\n \n % Some initial code for using inverse objective to derive bounds.\n if nnz(p.Q)==0 && nnz(p.c)==1\n [pos,~,val] = find(p.c);\n if val == -1 \n fi = find(p.evalVariables == pos);\n if ~isempty(fi)\n % We're maximizing f(x)\n if ~isempty(p.evalMap{fi}.properties.inverse)\n if strcmp(p.evalMap{fi}.properties.definiteness,'positive')\n if strcmp(p.evalMap{fi}.properties.monotonicity,'increasing')\n if length(p.evalMap{fi}.arg)==2 \n lower = -upper;\n p.lb(p.evalMap{fi}.variableIndex) = max([p.lb(p.evalMap{fi}.variableIndex) p.evalMap{fi}.properties.inverse(lower)]);\n end\n end\n end\n end\n end\n end\n if val == 1\n fi = find(p.evalVariables == pos);\n if ~isempty(fi)\n % We're minimizing f(x)\n if ~isempty(p.evalMap{fi}.properties.inverse)\n if strcmp(p.evalMap{fi}.properties.definiteness,'positive')\n if strcmp(p.evalMap{fi}.properties.monotonicity,'increasing')\n if length(p.evalMap{fi}.arg)==2 \n p.ub(p.evalMap{fi}.variableIndex) = min([p.ub(p.evalMap{fi}.variableIndex) p.evalMap{fi}.properties.inverse(upper)]);\n end\n end\n end\n end\n end\n end\n end\n if any(p.lb > p.ub + 1e-7)\n p.feasible = 0;\n end\nend", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/modules/global/updateboundsfromupper.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.782662489091802, "lm_q2_score": 0.48047867804790706, "lm_q1q2_score": 0.3760526381165135}} {"text": "%UNDISTORT Transforms an image to compensate for lens distortion\n%\n% dst = cv.undistort(src, cameraMatrix, distCoeffs)\n% dst = cv.undistort(..., 'OptionName', optionValue, ...)\n%\n% ## Input\n% * __src__ Input (distorted) image.\n% * __cameraMatrix__ Input camera matrix `A = [fx 0 cx; 0 fy cy; 0 0 1]`.\n% * __distCoeffs__ Input vector of distortion coefficients\n% `[k1,k2,p1,p2,k3,k4,k5,k6,s1,s2,s3,s4,taux,tauy]` of 4, 5, 8, 12 or 14\n% elements. If the vector is empty, the zero distortion coefficients are\n% assumed.\n%\n% ## Output\n% * __dst__ Output (corrected) image that has the same size and type as `src`.\n%\n% ## Options\n% * __NewCameraMatrix__ Camera matrix of the distorted image. By default, it\n% is the same as `cameraMatrix` but you may additionally scale and shift the\n% result by using a different matrix. Not set by default\n%\n% The function transforms an image to compensate radial and tangential lens\n% distortion.\n%\n% The function is simply a combination of cv.initUndistortRectifyMap (with\n% unity `R`) and cv.remap (with bilinear interpolation). See the former\n% function for details of the transformation being performed.\n%\n% Those pixels in the destination image, for which there is no correspondent\n% pixels in the source image, are filled with zeros (black color).\n%\n% A particular subset of the source image that will be visible in the\n% corrected image can be regulated by `NewCameraMatrix`. You can use\n% cv.getOptimalNewCameraMatrix to compute the appropriate `NewCameraMatrix`\n% depending on your requirements.\n%\n% The camera matrix and the distortion parameters can be determined using\n% cv.calibrateCamera. If the resolution of images is different from the\n% resolution used at the calibration stage, `fx`, `fy`, `cx` and `cy` need to\n% be scaled accordingly, while the distortion coefficients remain the same.\n%\n% See also: cv.undistortPoints, cv.calibrateCamera,\n% cv.initUndistortRectifyMap, cv.remap, undistortImage\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/undistort.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765155565326, "lm_q2_score": 0.6688802603710086, "lm_q1q2_score": 0.37602877409991986}} {"text": "function g = mrdivide(f,c)\n%/ Right scalar divide for BALLFUN objects.\n% X = B/A or X = mrdivide(B, A) is equivalent to X = B./A.\n%\n% See also MTIMES.\n\n% Copyright 2019 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\ng = f*(1/c);\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@ballfun/mrdivide.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3760287642869552}} {"text": "function [cmps2] = Gal2cmps2(Gal)\n% Convert acceleration from galileos to centimeters per second-squared\n% Chad A. Greene 2012\ncmps2 = Gal; \nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35258-unit-converters/unit_converters/Gal2cmps2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37602876428695514}} {"text": "function obj = replace_basis_set(obj, condition_num, xBF_hires)\n% Replace a basis set in an fmri_model object with another one of your\n% choosing.\n%\n% This allows one to use a custom basis set, and also to use different\n% basis sets for different trial types.\n%\n% Each condition across all sessions must be modeled with the same basis\n% set. That is, there can be only one basis set per condition, e.g., one\n% for anticipation (used in each session) and one for pain.\n%\n% :Usage:\n% ::\n%\n% obj = replace_basis_set(obj, condition_num, xBF_hires)\n%\n% :Examples:\n% ::\n%\n% % generate a custom spline basis set and use that for Condition 1,\n% % and the standard one for Condition 2:\n%\n% [xBF_hires, xBF] = fmri_spline_basis(2, 'length', 12, 'nbasis', 3, 'order', 3, 'plot');\n%\n% %save this to get info that is not typically in basis set until after\n% %model is built.\n\noldBF = obj.xBF(1); \n\n% SPM adds these things here, so we will too, for consistency\nxBF_hires.T = oldBF.T;\nxBF_hires.T0 = oldBF.T0;\nxBF_hires.UNITS = oldBF.UNITS;\nxBF_hires.Volterra = oldBF.Volterra;\n\nobj.xBF(condition_num) = xBF_hires;\n\nend\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/@fmri_glm_design_matrix/replace_basis_set.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37602876428695514}} {"text": "function [gX, kern] = pathKernGradSym(kern, X, X2)\n\n% PATHKERNGRADSYM Gradient of the symetric PATH kernel's parameters.\n% FORMAT\n% DESC computes the gradient of functions with respect to the\n% path\n% kernel's parameters. As well as the kernel structure and the\n% input positions, the user provides a matrix PARTIAL which gives\n% the partial derivatives of the function with respect to the\n% relevant elements of the kernel matrix. \n% ARG kern : the kernel structure for which the gradients are being\n% computed.\n% ARG x : the input locations for which the gradients are being\n% computed. \n% ARG partial : matrix of partial derivatives of the function of\n% interest with respect to the kernel matrix. The argument takes\n% the form of a square matrix of dimension numData, where numData is\n% the number of rows in X.\n% RETURN g : gradients of the function of interest with respect to\n% the kernel parameters. The ordering of the vector should match\n% that provided by the function kernExtractParam.\n% RETURN kern : the updated kernel structure\n%\n% FORMAT\n% DESC computes the derivatives as above, but input locations are\n% now provided in two matrices associated with rows and columns of\n% the kernel matrix. \n% ARG kern : the kernel structure for which the gradients are being\n% computed.\n% ARG x1 : the input locations associated with the rows of the\n% kernel matrix.\n% ARG x2 : the input locations associated with the columns of the\n% kernel matrix.\n% ARG partial : matrix of partial derivatives of the function of\n% interest with respect to the kernel matrix. The matrix should\n% have the same number of rows as X1 and the same number of columns\n% as X2 has rows.\n% RETURN g : gradients of the function of interest with respect to\n% the kernel parameters.\n% RETURN kern : the updated kernel structure\n%\n% SEEALSO pathKernParamInit, kernGradient, pathKernDiagGradient\n%\n% COPYRIGHT : Andrea Baisero, Carl Henrik Ek, 2013\n\n% SHEFFIELDML\n\n\nmaxl=max(cellfun(@(x)size(x,1),[X,X2]));\nkern=pathKernUpdateWMat(kern,maxl);\n\nnum=length(X);\nnum2=length(X2);\n\ngX=cell(num,num2);\nfor i=1:num\n for j=1:num2\n gX{i,j}=pathKernGradSymSeq(kern,X{i},X2{j});\n end\nend\n\nfunction gX = pathKernGradSymSeq(kern, x, x2)\n\nl=size(x,1);\nl2=size(x2,1);\ndim=size(x,2);\n\nt=kernGradX(kern.gkern,x,x2);\nkw=kern.wmat(1:l,1:l2);\n\ngX=zeros(size(x));\nfor i=1:l\n gX(i,:)=sum((kw(i,:)'*ones(1,dim)).*t(:,:,i));\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/pathKernGradSym.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37602876428695514}} {"text": "\nseed = 0;\nrand('state', seed);\nrandn('state', seed);\n\nchars = ['a', 'c', 'g', 't'];\nmotif = 'accca';\nmotif_length = length(motif);\nmotif_code = zeros(1, motif_length);\nfor i=1:motif_length\n motif_code(i) = find(chars == motif(i));\nend\n\n[bnet_init, Qnodes, Fnodes, Onode] = mk_motif_hhmm('motif_length', length(motif));\n%[bnet_init, Qnodes, Fnodes, Onode] = mk_motif_hhmm('motif_pattern', motif);\nss = bnet_init.nnodes_per_slice;\n\n\n\n% We generate a training set by creating uniform sequences,\n% and inserting a single motif at a random location.\nntrain = 100;\nT = 20;\ncases = cell(1, ntrain);\n\nif 1\n % uniform background \n background_dist = normalise(ones(1, length(chars)));\nend\nif 0\n % use a constant background\n background_dist = zeros(1, length(chars));\n m = find(chars=='t');\n background_dist(m) = 1.0;\nend\nif 0\n % use a background skewed away from the motif\n p = 0.01; q = (1-(2*p))/2;\n background_dist = [p p q q];\nend\n\nunif_pos = normalise(ones(1, T-length(motif)));\ncases = cell(1, ntrain);\ndata = zeros(1,T);\nfor i=1:ntrain\n data = sample_discrete(background_dist, 1, T);\n L = sample_discrete(unif_pos, 1, 1);\n data(L:L+length(motif)-1) = motif_code;\n cases{i} = cell(ss, T);\n cases{i}(Onode,:) = num2cell(data);\nend\ndisp('sample training cases')\nfor i=1:5\n chars(cell2num(cases{i}(Onode,:)))\nend\n\nengine_init = hmm_inf_engine(bnet_init);\n\n[bnet_learned, LL, engine_learned] = ...\n learn_params_dbn_em(engine_init, cases, 'max_iter', 100, 'thresh', 1e-2);\n%\t\t\t'anneal', 1, 'anneal_rate', 0.7);\n\n% extract the learned motif profile\neclass = bnet_learned.equiv_class;\nCPDO=struct(bnet_learned.CPD{eclass(Onode,1)});\nfprintf('columns = chars, rows = states\\n');\nprofile_learned = squeeze(CPDO.CPT(2,:,:))\n[m,ndx] = max(profile_learned, [], 2);\nmap_motif_learned = chars(ndx)\nback_learned = squeeze(CPDO.CPT(1,1,:))'\n%map_back_learned = chars(argmax(back_learned))\n\nCPDO_init = struct(bnet_init.CPD{eclass(Onode,1)});\nprofile_init = squeeze(CPDO_init.CPT(2,:,:));\nback_init = squeeze(CPDO_init.CPT(1,1,:))';\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/examples/dynamic/HHMM/Motif/learn_motif_hhmm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37602876428695514}} {"text": "function sgmga_product_weight_tests ( )\n\n%****************************************************************************80\n%\n%% SGMGA_PRODUCT_WEIGHT_TESTS calls SGMGA_PRODUCT_WEIGHT_TEST.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 15 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n addpath ( '../sandia_rules' );\n\n timestamp ( );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SGMGA_PRODUCT_WEIGHT_TESTS\\n' );\n fprintf ( 1, ' Call SGMGA_PRODUCT_WEIGHT_TEST with various arguments.\\n' );\n\n dim_num = 2;\n order_1d = [ 3, 5 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 1, 1 ]';\n np = [ 0, 0 ]';\n np_sum = sum ( np(1:dim_num) );\n p = [];\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n\n dim_num = 2;\n order_1d = [ 3, 7 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 1, 5 ]';\n np = [ 0, 0 ]';\n np_sum = sum ( np(1:dim_num) );\n p = [];\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n\n dim_num = 2;\n order_1d = [ 3, 3 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 3, 7 ]';\n np = [ 0, 0 ]';\n np_sum = sum ( np(1:dim_num) );\n p = [];\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n\n dim_num = 2;\n order_1d = [ 5, 5 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 1, 8 ]';\n np = [ 0, 1 ]';\n np_sum = sum ( np(1:dim_num) );\n p(1,1) = 1.5;\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n\n dim_num = 2;\n order_1d = [ 5, 5 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 2, 9 ]';\n np = [ 0, 2 ]';\n np_sum = sum ( np(1:dim_num) );\n p(1,1) = 0.5;\n p(2,1) = 1.5;\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n\n dim_num = 2;\n order_1d = [ 7, 9 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 6, 10 ]';\n np = [ 1, 0 ]';\n np_sum = sum ( np(1:dim_num) );\n p(1,1) = 2.0;\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n\n dim_num = 3;\n order_1d = [ 2, 3, 3 ]';\n order_nd = prod ( order_1d(1:dim_num) );\n rule = [ 1, 4, 5 ]';\n np = [ 0, 0, 0 ]';\n np_sum = sum ( np(1:dim_num) );\n p = [];\n sgmga_product_weight_test ( dim_num, order_1d, order_nd, rule, np, p );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'SGMGA_PRODUCT_WEIGHT_TESTS:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n rmpath ( '../sandia_rules' );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/sgmga/sgmga_product_weight_tests.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.6688802603710085, "lm_q1q2_score": 0.3760287642869551}} {"text": "function f = toFunctionIn(disc, coeffs)\n%TOFUNCTION Convert discrete values of a TRIGSPEC to a CHEBFUN.\n% F = TOFUNCTIONIN(DISC, COEFFS) converts the coeffs returned by TRIGSPEC \n% to a CHEBFUN. \n%\n% See also TOVALUES, TOFUNCTIONOUT.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Get the domain:\ndom = disc.domain; \n\n% Create a TRIGTECH object from the coefficients: \ntech = trigtech({[], coeffs});\n\n% Create a BNDFUN from the TRIGTECH:\nfun{1} = bndfun(tech, struct('domain', dom));\n\n% Create a CHEBFUN from the BNDFUN:\nf = chebfun(fun);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@trigspec/toFunctionIn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804478040617, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.37601008834323235}} {"text": "function varargout = drawPolyline3d(varargin)\n%DRAWPOLYLINE3D Draw a 3D polyline specified by a list of vertex coords.\n%\n% drawPolyline3d(POLY);\n% packs coordinates in a single N-by-3 array.\n%\n% drawPolyline3d(PX, PY, PZ);\n% specifies coordinates in separate numeric vectors (either row or\n% columns)\n%\n% drawPolyline3d(..., CLOSED);\n% Specifies if the polyline is closed or open. CLOSED can be one of:\n% - 'closed'\n% - 'open' (the default)\n% - a boolean variable with value TRUE for closed polylines.\n%\n% drawPolyline3d(..., PARAM, VALUE);\n% Specifies style options to draw the polyline, see plot for details.\n%\n% H = drawPolyline3d(...);\n% also returns a handle to the list of created line objects.\n%\n% Example\n% t = linspace(0, 2*pi, 100)';\n% xt = 10 * cos(t);\n% yt = 5 * sin(t);\n% zt = zeros(1,100);\n% figure; drawPolyline3d(xt, yt, zt, 'b');\n% \n% See also \n% polygons3d, drawPolygon3d, fillPolygon3d\n%\n\n% ------\n% Author : David Legland \n% E-mail: david.legland@inra.fr\n% Created: 2005-02-15\n% Copyright 2005-2022 INRA - TPV URPOI - BIA IMASTE\n\n%% Process input arguments\n\n% Check if axes handle is specified\nif isAxisHandle(varargin{1})\n hAx = varargin{1};\n varargin(1) = [];\nelse\n hAx = gca;\nend\n\n% check case we want to draw several curves, stored in a cell array\nvar = varargin{1};\nif iscell(var)\n hold on;\n h = zeros(length(var(:)), 1);\n for i = 1:length(var(:))\n h(i) = drawPolyline3d(hAx, var{i}, varargin{2:end});\n end\n if nargout > 0\n varargout = {h};\n end\n return;\nend\n\n% extract curve coordinates\nif min(size(var)) == 1\n % if first argument is a vector (either row or column), then assumes\n % first argument contains x coords, second argument contains y coords\n % and third one the z coords\n px = var;\n if length(varargin) < 3\n error('geom3d:drawPolyline3d:Wrong number of arguments in drawPolyline3d');\n end\n if isnumeric(varargin{2}) && isnumeric(varargin{3})\n py = varargin{2};\n pz = varargin{3};\n varargin(1:3) = [];\n else\n px = var(:, 1);\n py = var(:, 2);\n pz = var(:, 3);\n varargin(1) = [];\n end\nelse\n % all coordinates are grouped in the first argument\n px = var(:, 1);\n py = var(:, 2);\n pz = var(:, 3);\n varargin(1) = [];\nend\n\n% check if curve is closed or open (default is open)\nclosed = false;\nif ~isempty(varargin)\n var = varargin{1};\n if islogical(var)\n % check boolean flag\n closed = var;\n varargin = varargin(2:end);\n \n elseif ischar(var)\n % check string indicating close or open\n if strncmpi(var, 'close', 5)\n closed = true;\n varargin = varargin(2:end);\n \n elseif strncmpi(var, 'open', 4)\n closed = false;\n varargin = varargin(2:end);\n end\n \n end\nend\n\n\n%% draw the curve\n\n% for closed curve, add the first point at the end to close curve\nif closed\n px = [px(:); px(1)];\n py = [py(:); py(1)];\n pz = [pz(:); pz(1)];\nend\n\nh = plot3(hAx, px, py, pz, varargin{:});\n\nif nargout > 0\n varargout = {h};\nend\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/geom3d/drawPolyline3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37601007979935946}} {"text": "function varargout = AffineTrnasformation(varargin)\n% AFFINETRNASFORMATION M-file for AffineTrnasformation.fig\n% Affine_Transf computes and applies the geometric affine transformation to a 2-D image.\n%\n% The program main functions are:\n% - Load Image: Load the image to be transformed.\n% - Transform Image: Computes the transformation matrix from the transformation parameters specified by the user, then it applies the transformation to the loaded image.\n% - Save Image: Save the transformed image.\n% - Quit: Exit the program.\n% The transformation parameters are specified by the user by editing the\n% values of the rotation, scale (x and y), and shear (x and y). The\n% translation is not icluded because it can be easily (normalized or) removed from image by\n% subtracting the shape cetroid.\n%\n% The affine matrix and the transformation are computed using Matlab Image Processing Toolbox\n% functions: maketform and imtransform, so this program is only demonstrates the computation and the applying of these functions to a 2-D image.\n%\n% Version 1.0\n% Copyright Feb 2003, Ibrahim El Rube\n% ielrube@yahoo.com\n\n% Begin initialization code - DO NOT EDIT\nglobal gg gc;\ngui_Singleton = 1;\ngui_State = struct('gui_Name', mfilename, ...\n 'gui_Singleton', gui_Singleton, ...\n 'gui_OpeningFcn', @AffineTrnasformation_OpeningFcn, ...\n 'gui_OutputFcn', @AffineTrnasformation_OutputFcn, ...\n 'gui_LayoutFcn', [] , ...\n 'gui_Callback', []);\nif nargin & isstr(varargin{1})\n gui_State.gui_Callback = str2func(varargin{1});\nend\n\nif nargout\n [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});\nelse\n gui_mainfcn(gui_State, varargin{:});\nend\n% End initialization code - DO NOT EDIT\n\n\n% --- Executes just before AffineTrnasformation is made visible.\nfunction AffineTrnasformation_OpeningFcn(hObject, eventdata, handles, varargin)\n% This function has no output args, see OutputFcn.\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n% varargin command line arguments to AffineTrnasformation (see VARARGIN)\n\n% Choose default command line output for AffineTrnasformation\nhandles.output = hObject;\n\n% Update handles structure\nguidata(hObject, handles);\n\n% UIWAIT makes AffineTrnasformation wait for user response (see UIRESUME)\n% uiwait(handles.figure1);\n\n% --- Outputs from this function are returned to the command line.\nfunction varargout = AffineTrnasformation_OutputFcn(hObject, eventdata, handles)\n% varargout cell array for returning output args (see VARARGOUT);\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nglobal gg\n% Get default command line output from handles structure\nvarargout{1} = handles.output;\n\ngg=2;\n% --- Executes on button press in Load_image.\nfunction Load_image_Callback(hObject, eventdata, handles)\n% hObject handle to Load_image (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nglobal gg gc;\n\nh=guidata(gcbo);\nset(h.message_text,'String',''); % Clear Messages\ngg=gg+2;\nh.image_filename=1;\nh.image_pathname=1;\n[filename, pathname] = uigetfile( ...\n {'*.bmp;*.tif;*.jpg;*.pcx;*.png;*.hdf;*.xwd;*.ras;*.pbm;*.pgm;*.ppm;*.pnm', 'All MATLAB SUPPORTED IMAGE Files (*.bmp,*.tif,*.jpg,*.pcx,*.png,*.hdf,*.xwd,*.ras,*.pbm,.pgm,*.ppm,*.pnm)'} ...\n ,'Pick a file'); % Load Image file and path names\n if filename~=0\n gg=1;\n h.gg=1;\n h.image_filename=filename; % Image file name\n h.image_pathname=pathname; % Image path name\n set(h.Showaxes,'visible','off');\n axes(h.axes1);\n set(h.figure1_title,'Visible','on');\n image_1=imread([pathname filename]); % Load Image\n imshow(image_1); % Show Loaded Image\n h.image_1=image_1;\n set(h.axes2,'Visible','off');\n axes(h.axes2);\n cla;\n set(h.figure2_title,'Visible','off');\n gc=0;\n h.axis12=0;\n guidata(gcbo,h);\n end\n% --- Executes during object creation, after setting all properties.\nfunction xscale_CreateFcn(hObject, eventdata, handles)\n% hObject handle to xscale (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\nfunction xscale_Callback(hObject, eventdata, handles)\n% hObject handle to xscale (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of xscale as text\n% str2double(get(hObject,'String')) returns contents of xscale as a\n% double\n\n% --- Executes during object creation, after setting all properties.\nfunction rot_CreateFcn(hObject, eventdata, handles)\n% hObject handle to rot (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\n\n\nfunction rot_Callback(hObject, eventdata, handles)\n% hObject handle to rot (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of rot as text\n% str2double(get(hObject,'String')) returns contents of rot as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction xshear_CreateFcn(hObject, eventdata, handles)\n% hObject handle to xshear (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\n\n\nfunction xshear_Callback(hObject, eventdata, handles)\n% hObject handle to xshear (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of xshear as text\n% str2double(get(hObject,'String')) returns contents of xshear as a double\n\n\n% --- Executes during object creation, after setting all properties.\nfunction xtrans_CreateFcn(hObject, eventdata, handles)\n% hObject handle to xtrans (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\n\n\nfunction xtrans_Callback(hObject, eventdata, handles)\n% hObject handle to xtrans (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of xtrans as text\n% str2double(get(hObject,'String')) returns contents of xtrans as a double\n\n\n% --- Executes on button press in deg.\nfunction deg_Callback(hObject, eventdata, handles)\n% hObject handle to deg (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hint: get(hObject,'Value') returns toggle state of deg\nh=guidata(gcbo);\n%set(h.rad,'Value',0);\nch=get(hObject,'Value');\nswitch ch\ncase 0\n set(h.rad,'Value',1)\ncase 1\n set(h.rad,'Value',0)\nend\nguidata(gcbo,h);\n% --- Executes on button press in rad.\nfunction rad_Callback(hObject, eventdata, handles)\n% hObject handle to rad (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hint: get(hObject,'Value') returns toggle state of rad\nh=guidata(gcbo);\n%set(h.rad,'Value',0);\nch=get(hObject,'Value');\nswitch ch\ncase 0\n set(h.deg,'Value',1)\ncase 1\n set(h.deg,'Value',0)\nend\nguidata(gcbo,h);\n% --- Executes on button press in bshear.\nfunction bshear_Callback(hObject, eventdata, handles)\n% hObject handle to bshear (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hint: get(hObject,'Value') returns toggle state of bshear\n\n\n% --- Executes on button press in checkbox2.\nfunction checkbox2_Callback(hObject, eventdata, handles)\n% hObject handle to checkbox2 (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hint: get(hObject,'Value') returns toggle state of checkbox2\n\n\n% --- Executes during object creation, after setting all properties.\nfunction ytrans_CreateFcn(hObject, eventdata, handles)\n% hObject handle to ytrans (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\n\n\nfunction ytrans_Callback(hObject, eventdata, handles)\n% hObject handle to ytrans (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of ytrans as text\n% str2double(get(hObject,'String')) returns contents of ytrans as a double\n\n\n% --- Executes on button press in btrans.\nfunction btrans_Callback(hObject, eventdata, handles)\n% hObject handle to btrans (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hint: get(hObject,'Value') returns toggle state of btrans\n\n\n% --- Executes during object creation, after setting all properties.\nfunction yscale_CreateFcn(hObject, eventdata, handles)\n% hObject handle to yscale (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\n\n\nfunction yscale_Callback(hObject, eventdata, handles)\n% hObject handle to yscale (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of yscale as text\n% str2double(get(hObject,'String')) returns contents of yscale as a double\n\n\n% --- Executes on button press in bscale.\nfunction bscale_Callback(hObject, eventdata, handles)\n% hObject handle to bscale (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hint: get(hObject,'Value') returns toggle state of bscale\n\n\n% --- Executes on button press in Transform.\nfunction Transform_Callback(hObject, eventdata, handles)\n% hObject handle to Transform (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nglobal gg gc;\ngc=0;\nh=guidata(gcbo);\nif gg~=2 \n h=guidata(gcbo);\n image_1=h.image_1; % Get Image 1\n hb(1)=num_check(h.rot); % Rotation\n hb(2)=num_check(h.xscale); % Scale in x-direction\n hb(3)=num_check(h.yscale); % Scale in y-direction\n hb(4)=num_check(h.xshear); % Shear\n hb(5)=num_check(h.yshear);\n hc=sum(hb);\n switch hc\n case 0\n a=str2num(get(h.xscale,'String')); \n b=str2num(get(h.xshear,'String'));\n c=str2num(get(h.yshear,'String'));\n d=str2num(get(h.yscale,'String'));\n th=str2num(get(h.rot,'String')); %2*pi/10;\n ch=get(h.deg,'Value');\n switch ch\n case 0\n th=th;\n otherwise\n th=th*pi/180;;\n end \n k=1;\n TT=k*[cos(th) -sin(th); sin(th) cos(th)]*[a b; c d];\n TTT=[ 1 0 0; 0 1 0; 0 0 1];\n TTT(1:2,1:2)=TT;\n set(h.message_text,'String','Transformaing .... Please Wait');\n tform=maketform('affine',TTT);\n [image_2] = imtransform(image_1,tform);\n h.image_2=image_2;\n axes(h.axes2);\n set(h.figure2_title,'Visible','on');\n imshow(image_2,[]);\n gc=1;\n axes(h.axes2);\n g2=h.axis12;\n switch g2\n case 0\n axes(h.axes1); \n axis on;\n axes(h.axes2); \n axis on;\n otherwise\n axes(h.axes1); \n axis off;\n axes(h.axes2); \n axis off;\n end\n set(h.message_text,'String','Done');\n set(h.Showaxes,'Visible','on');\n guidata(gcbo,h); \n otherwise\n set(h.message_text,'String','Invalid value: enter a real number only');\n end\nend\n\n\n% --- Executes on button press in Save_image.\nfunction Save_image_Callback(hObject, eventdata, handles)\n% hObject handle to Save_image (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nglobal gg gc;\nh=guidata(gcbo);\nset(h.message_text,'String',''); \nif gc~=0\n dot='.';\n pathname=h.image_pathname;\n [filename, pathname] = uiputfile('*.*', 'Save Transformed Image');\n if filename~=0 \n try_again=find(filename==dot);\n if ~isempty(try_again) \n image_ex=filename(try_again+1:end);\n valid_ex=['BMP'; 'TIF'; 'JPG'; 'PCX'; 'PNG'; 'HDF'; 'XWD'; 'RAS'; 'PBM'; 'PGM'; 'PPM'; 'PNM';];\n p=['\\<' image_ex '\\>'];\n g=regexpi(valid_ex,p); % Match Exact extension, ignoring case. \n b=cell2mat(g); % Convert cell to matrix \n if b~=0 & length(image_ex)==3\n CMap=colormap(h.axes1);\n h.savedimage_filename=filename;\n h.savedimage_pathname=pathname;\n imwrite(h.image_2,CMap,[pathname filename]);\n savedto=['Image Saved to: ' pathname filename];\n set(h.message_text,'String',savedto); \n else\n set(h.message_text,'String','Invalid file extension: Image NOT saved, use one of these extensions, BMP TIF JPG PCX PNG HDF XWD RAS PBM PGM PPM PNM'); \n end\n else\n set(h.message_text,'String','Empty file extension: Image NOT saved, use one of these extensions, BMP TIF JPG PCX PNG HDF XWD RAS PBM PGM PPM PNM'); \n end\n \n end\nend\n% --- Executes on button press in pushbutton4.\nfunction pushbutton4_Callback(hObject, eventdata, handles)\n% hObject handle to pushbutton4 (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nclose;\n\n\n% --- Executes during object creation, after setting all properties.\nfunction yshear_CreateFcn(hObject, eventdata, handles)\n% hObject handle to yshear (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles empty - handles not created until after all CreateFcns called\n\n% Hint: edit controls usually have a white background on Windows.\n% See ISPC and COMPUTER.\nif ispc\n set(hObject,'BackgroundColor','white');\nelse\n set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));\nend\n\nfunction yshear_Callback(hObject, eventdata, handles)\n% hObject handle to yshear (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Hints: get(hObject,'String') returns contents of yshear as text\n% str2double(get(hObject,'String')) returns contents of yshear as a double\n\nfunction hb=num_check(ha);\n% This function checks the validation of the entered transformation\n% parameters\n% ha is the handle to be checked\n% hb is a flag, 1 for correct range, 0 for incorrect range.\nh=guidata(gcbo);\nba=get(ha,'String');\nbb=str2num(ba);\nhb=0;\nif isempty(bb) | ba=='i' | ba=='j'\n axes(h.axes2);\n cla;\n set(h.message_text,'String','Invalid value: enter a real number only');\n switch ha\n case h.xscale\n set(ha,'String','1');\n case h.yscale\n set(ha,'String','1');\n otherwise\n set(ha,'String','0');\n end\n hb=1;\n %break\nend\n%hb=ha;\n%guidata(gcbo,h);\n\n\n% --- Executes on button press in Showaxes.\nfunction Showaxes_Callback(hObject, eventdata, handles)\n% hObject handle to Showaxes (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nh=guidata(gcbo);\nsh=get(h.Showaxes,'String');\nswitch sh\n case 'Show Axes'\n set(h.Showaxes,'String','Hide Axes');\n h.axis12=0;\n otherwise\n set(h.Showaxes,'String','Show Axes'); \n h.axis12=1;\nend\ng1=get(h.axes1,'visible');\naxes(h.axes1);\nswitch g1\n case 'off'\n axis on;\n set(h.axes1,'visible','on');\n otherwise\n axis off;\n set(h.axes1,'visible','off');\nend\ng2=get(h.axes2,'visible');\naxes(h.axes2);\nswitch g2\n case 'off' \n axis on;\n set(h.axes2,'visible','on');\n otherwise\n axis off;\n set(h.axes2,'visible','off');\nend;\nguidata(gcbo,h);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/3025-affine-transformation/AffineTrnasformation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804196836383, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37601007125548663}} {"text": "function test_headmodel_dipoli_new_old\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_headmodel_dipoli mesh_sphere ft_prepare_vol_sens ft_compute_leadfield\n\n% tests the old and new version of dipoli wrapper\n\n% generate a unit sphere\n[pnt, tri] = mesh_sphere(162);\n\n% create the BEM geometries\ngeom = [];\ngeom.bnd(1).pnt = pnt * 100;\ngeom.bnd(1).tri = tri;\ngeom.bnd(2).pnt = pnt * 90;\ngeom.bnd(2).tri = tri;\ngeom.bnd(3).pnt = pnt * 80;\ngeom.bnd(3).tri = tri;\n\nelec.chanpos = pnt * 100;\nelec.elecpos = pnt * 100;\nfor i=1:size(pnt,1)\n elec.label{i} = sprintf('%d', i);\nend\n\narg(1).name = 'conductivity';\narg(1).value = {[], [1 1/20 1], [0.33 0.125 0.33], [1 1 1], [0.1 0.1 0.1]};\n\narg(2).name = 'isolatedsource';\narg(2).value = {'yes' , 'no'};\n\noptarg = constructalloptions(arg);\n\nfor i=1:size(optarg,1)\n \n vol = {};\n arg = optarg(i,:);\n \n % new way - low level:\n vol{1} = ft_headmodel_dipoli(geom.bnd,arg{:});\n\n % old way:\n tmpcfg = ft_keyval2cfg(arg{:});\n tmpcfg.method = 'dipoli';\n vol{2} = ft_prepare_bemmodel(tmpcfg,geom);\n vol{2} = rmfield(vol{2},'unit');\n \n % new way - high level:\n tmpcfg = ft_keyval2cfg(arg{:});\n tmpcfg.method = 'bem_dipoli';\n vol{3} = ft_prepare_headmodel(tmpcfg,geom.bnd);\n vol{3} = rmfield(vol{3},'unit');\n \n % compute the leadfields for a comparison\n [vol{1}, elec] = ft_prepare_vol_sens(vol{1}, elec);\n [vol{2}, elec] = ft_prepare_vol_sens(vol{2}, elec);\n [vol{3}, elec] = ft_prepare_vol_sens(vol{3}, elec);\n lf{1} = ft_compute_leadfield([0 10 60], elec, vol{1});\n lf{2} = ft_compute_leadfield([0 10 60], elec, vol{2});\n lf{3} = ft_compute_leadfield([0 10 60], elec, vol{3});\n \n % compare the leadfields in all possible combinations\n comb = nchoosek(1:numel(vol),2);\n for j=1:size(comb,1)\n chk = comb(j,:);\n err = norm(lf{chk(1)} - lf{chk(2)}) / norm(lf{chk(1)});\n if err>0.001\n error('combination %d %d not successful\\n',chk(1),chk(2));\n end\n end\n \nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/obsolete_headmodel_dipoli_new_old.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.37600990791612615}} {"text": "% function spm_induced_demo\n% Demo routine for induced responses\n%==========================================================================\n%\n% This demonstration illustrates the generative or forward model used for\n% time frequency responses - in other words, a biophysically plausible\n% dynamic causal model for induced responses. The basic idea is to\n% integrate a neural mass model to obtain expected hidden neuronal\n% states produced by an unknown (parameterised) exogenous input. The states \n% are used as the expansion point for a linear perturbation analysis of\n% the frequency response properties that are local in peristimulus time.\n% The ensuing spectra (induced complex cross spectra) are then convolved\n% with a wavelet window to generate predictions of a conventional time\n% frequency (wavelet) transform. Crucially, these predictions are complex\n% and can be used to characterise delays - in terms of cross covariance\n% functions. Nonlinearities in the neural mass model mean that the spectral\n% responses caused by random neuronal fluctuations are state dependent and\n% therefore change with the expected hidden states over peristimulus time.\n%\n% This routine first creates a simple - two source - generative model using\n% a canonical microcircuit architecture and convolution based dynamics. It\n% then produces predictions of induced responses to a short and sustained\n% input to the first source - as measured by two local field potential\n% recordings at each source. Exactly the same model is then integrated in\n% time, using (serially correlated) random fluctuations to drive each\n% source (in addition to the exogenous input). This is repeated over 16\n% trials and the simulated responses are characterised in terms of a\n% wavelet transform - to produce complex cross spectral data features. \n% These are shown graphically with their analytic predictions from the \n% generative model.\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n \n% Karl Friston\n% $Id: spm_induced_demo.m 7679 2019-10-24 15:54:07Z spm $\n \n \n% Model specification\n%==========================================================================\nrng('default')\nclear spm_fp_cmc_tfm\n \n% number of regions in coupled map lattice\n%--------------------------------------------------------------------------\nNc = 2; % number of channels\nNs = 2; % number of sources\noptions.spatial = 'LFP';\noptions.model = 'TFM';\noptions.analysis = 'TFM';\nM.dipfit.model = options.model;\nM.dipfit.type = options.spatial;\nM.dipfit.Nc = Nc;\nM.dipfit.Ns = Ns;\n \n% extrinsic connections (forward an backward)\n%--------------------------------------------------------------------------\nA{1} = [0 0; 1 0];\nA{2} = [0 1; 0 0];\nA{3} = [0 0; 0 0];\nC = [1 0;0 1];\n\n% get priors\n%--------------------------------------------------------------------------\npE = spm_dcm_neural_priors(A,{},C,options.model);\npE = spm_L_priors(M.dipfit,pE);\npE = spm_ssr_priors(pE);\nx = spm_dcm_x_neural(pE,options.model);\n\n% extrinsic connections\n%--------------------------------------------------------------------------\npE.A{1} = pE.A{1} + 1;\npE.A{2} = pE.A{2} + 1;\npE.A{3} = pE.A{3} - 1;\npE.A{4} = pE.A{4} - 1;\n\n% supress noise\n%--------------------------------------------------------------------------\npE.a(1,:) = -2;\npE.b(1,:) = -4;\npE.c(1,:) = -4;\n \n% orders and model\n%==========================================================================\nnx = length(spm_vec(x));\nnu = size(pE.C,2);\n\n\n% create forward model\n%--------------------------------------------------------------------------\nM.g = 'spm_gx_erp';\nM.f = 'spm_fx_cmc_tfm';\nM.h = 'spm_fp_cmc_tfm';\nM.x = x;\nM.n = nx;\nM.pE = pE;\nM.m = nu;\nM.l = Nc;\nM.Hz = 2:64;\nM.Rft = 4;\nM.ds = 4;\n \n% solve for steady state\n%--------------------------------------------------------------------------\nM.x = spm_dcm_neural_x(pE,M);\n \n% Integrate system to see response (time-frequency)\n%==========================================================================\n \n% invoke exogenous inputs\n%--------------------------------------------------------------------------\nN = 128;\nU.dt = 6/1024;\npst = ((1:N)' - N/4)*U.dt;\nU.u = sparse(N,M.m);\n \n\n% exogenous input - a sustained input of about 128 seconds\n%--------------------------------------------------------------------------\nM.ons = 64;\nU.u(:,1) = spm_erp_u(pst,pE,M);\n\n \n% integrate generative model to simulate a time frequency response\n%--------------------------------------------------------------------------\n[csd,erp,CSD,mtf,w,pst,x,dP] = spm_csd_int(pE,M,U);\n\n\n% plot expected responses\n%==========================================================================\nspm_figure('GetWin','Simulated time-frequency responses');\npst = 1000*pst;\n \nsubplot(4,2,1)\nplot(pst,U.u)\nxlabel('peristimulus time (ms)')\ntitle('Exogenous input','FontSize',16)\nspm_axis tight\n \n% LFP - expectation\n%--------------------------------------------------------------------------\nsubplot(4,2,2)\nj = find(kron(sparse(1,[3 1 5],1,1,8),ones(Ns,1)));\nplot(pst,x(j,:))\nxlabel('peristimulus time (ms)')\ntitle('Hidden neuronal states','FontSize',16)\nspm_axis tight\n\nsubplot(4,2,3)\nplot(pst,erp{1})\nxlabel('peristimulus time (ms)')\ntitle('Evoked response','FontSize',16)\nspm_axis tight\n \n% LFP - expectation\n%--------------------------------------------------------------------------\nsubplot(4,2,4)\nplot(pst,dP{1})\nxlabel('peristimulus time (ms)')\ntitle('intrinsic connectivity','FontSize',16)\nspm_axis tight\n\n\n% expected time frequency response (coherence and cross-covariance)\n%--------------------------------------------------------------------------\nspm_dcm_tfm_image(CSD{1},pst,w,1)\n\n\n% expected time frequency response\n%--------------------------------------------------------------------------\nspm_figure('GetWin','transfer functions');\n\nspm_dcm_tfm_transfer(mtf{1},pst,w)\n\n\n% simulated responses\n%==========================================================================\nspm_figure('GetWin','Predicted responses');\n \n% time-frequency\n%--------------------------------------------------------------------------\nxY.erp = erp;\nxY.csd = csd;\nspm_dcm_tfm_response(xY,pst,w)\n\n\n\n% Integrate system to simulate responses\n%==========================================================================\nspm_figure('GetWin','Simulated trials');\n\n\n% get spectral density of neuronal fluctuations\n%--------------------------------------------------------------------------\nHz = 2:128;\nGu = spm_csd_mtf_gu(pE,Hz);\n \n% simulate Nt trials\n%--------------------------------------------------------------------------\nM.ds = 0; % switch to ERP generation\nNt = 8;\nV = U;\nfor j = 1:Nt\n \n fprintf('\\nsimulating trial %i',j)\n y = 32;\n while max(abs(spm_vec(y))) > 1\n V.u = U.u + spm_rand_power_law(Gu,Hz,U.dt,N)*2;\n y = spm_csd_int(pE,M,V);\n end\n D(:,:,j) = full(real(y{1}));\n \n % LFP - random fluctuations\n %----------------------------------------------------------------------\n subplot(2,2,1)\n plot(pst,D(:,:,j)), hold on\n xlabel('time (s)')\n title('simulated response and ERP','FontSize',16)\n spm_axis tight, axis square; drawnow\n \nend\nhold off\n\n% LFP - expectations\n%--------------------------------------------------------------------------\nsubplot(2,2,2)\nplot(pst*1000,erp{1},'-.'), hold on\nplot(pst*1000,mean(D,3)), hold off\nxlabel('time (s)')\ntitle('LFP response - expectation','FontSize',16)\nspm_axis tight, axis square\n\n\n% Time frequency response\n%--------------------------------------------------------------------------\nNf = length(M.Hz);\nP = zeros(N,Nf,Nc,Nc);\nQ = zeros(N,Nf,Nc,Nc);\nE = mean(D,3);\nfor k = 1:Nt\n \n d = full(double(D(:,:,k)));\n G = spm_morlet(d - E,w*U.dt,M.Rft);\n for i = 1:Nc\n for j = 1:Nc\n P(:,:,i,j) = (G(:,:,i).*conj(G(:,:,j)));\n end\n end\n Q = Q + P;\nend\n\n% scale induced responsest sample variance\n%--------------------------------------------------------------------------\nVm = mean(mean((var(D))));\nVs = mean(diag(squeeze(mean(squeeze(mean(Q))))));\nQ = Vm*Q/Vs;\n\n% time-frequency\n%--------------------------------------------------------------------------\nspm_dcm_tfm_image(Q,pst,w,1)\n\n% simulated responses\n%==========================================================================\nspm_figure('GetWin','Predicted responses - simulated');\n \n% time-frequency\n%--------------------------------------------------------------------------\nxY.erp{1} = E;\nxY.csd{1} = Q;\nspm_dcm_tfm_response(xY,pst,w)\n\n\n% compare expected and simulated responses\n%==========================================================================\nspm_figure('GetWin','Expected and simulated responses');\n\nspm_dcm_tfm_image(csd{1},pst,w,0)\nspm_dcm_tfm_image(Q,pst,w,1)\n \n \n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/toolbox/Neural_Models/spm_induced_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7520125848754471, "lm_q2_score": 0.5, "lm_q1q2_score": 0.37600629243772354}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This code is to replicate the results of RUSBoost model %\n% Our results are generated using Matlab R2020b on Windows 10 %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ndiary(\"results_rusboost.txt\");\nfor year_test = 2003:2014\n rng(0,'twister'); % fix random seed for reproducing the results\n % read training data\n fprintf('==> Running RUSBoost (training period: %d-%d, testing period: %d, with %d-year gap)...\\n',1991,year_test-2,year_test,2);\n data_train = data_reader('data_FraudDetection_JAR2020.csv','data_default',1991,year_test-2);\n y_train = data_train.labels;\n X_train = data_train.features;\n paaer_train = data_train.paaers;\n % read testing data\n data_test = data_reader('data_FraudDetection_JAR2020.csv','data_default',year_test,year_test);\n y_test = data_test.labels;\n X_test = data_test.features;\n paaer_test = unique(data_test.paaers(data_test.labels~=0));\n \n % handle serial frauds using PAAER\n y_train(ismember(paaer_train,paaer_test)) = 0;\n\n % train model\n t1 = tic;\n t = templateTree('MinLeafSize',5); % base model\n % see \"tune_RUSBoost.m\" for the tuning of the number of trees\n rusboost = fitensemble(X_train,y_train,'RUSBoost',300,t,'LearnRate',0.1,'RatioToSmallest',[1 1]);\n t_train = toc(t1);\n \n % test model\n t2 = tic;\n [label_predict,dec_values] = predict(rusboost,X_test);\n dec_values = dec_values(:,2);\n t_test = toc(t2);\n\n % print performance results\n fprintf('Training time: %g seconds | Testing time %g seconds \\n', t_train, t_test);\n for topN = [0.01, 0.02, 0.03, 0.04, 0.05]\n metrics = evaluate(y_test,label_predict,dec_values,topN);\n fprintf('Performance (top%d%% as cut-off thresh): \\n',topN*100);\n fprintf('AUC: %.4f \\n', metrics.auc);\n fprintf('NCDG@k: %.4f \\n', metrics.ndcg_at_k);\n fprintf('Sensitivity: %.2f%% \\n', metrics.sensitivity_topk*100);\n fprintf('Precision: %.2f%% \\n', metrics.precision_topk*100);\n end\nend\ndiary off;\n", "meta": {"author": "JarFraud", "repo": "FraudDetection", "sha": "2d10bc6c7ce18f5dea051a90d823546907abaa84", "save_path": "github-repos/MATLAB/JarFraud-FraudDetection", "path": "github-repos/MATLAB/JarFraud-FraudDetection/FraudDetection-2d10bc6c7ce18f5dea051a90d823546907abaa84/run_RUSBoost.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461390043208003, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3759840483496755}} {"text": "classdef PTKFissurenessHessianFactor < PTKPlugin\n % PTKFissureApproximation. Plugin to detect fissures using analysis of the\n % Hessian matrix\n %\n % This is a plugin for the Pulmonary Toolkit. Plugins can be run using \n % the gui, or through the interfaces provided by the Pulmonary Toolkit.\n % See PTKPlugin.m for more information on how to run plugins.\n %\n % Plugins should not be run directly from your code.\n %\n % This is an intermediate stage towards lobar segmentation.\n %\n % PTKFissurenessHessianFactor computes the components of the fissureness\n % generated using analysis of eigenvalues of the Hessian matrix.\n %\n % For more information, see \n % [Doel et al., Pulmonary lobe segmentation from CT images using\n % fissureness, airways, vessels and multilevel B-splines, 2012]\n %\n % Licence\n % -------\n % Part of the TD Pulmonary Toolkit. https://github.com/tomdoel/pulmonarytoolkit\n % Author: Tom Doel, 2012. www.tomdoel.com\n % Distributed under the GNU GPL v3 licence. Please see website for details.\n %\n\n properties\n ButtonText = 'Fissureness
(Hessian part)'\n ToolTip = 'The part of the fissureness filter which uses Hessian-based analysis'\n Category = 'Fissures'\n\n AllowResultsToBeCached = false\n AlwaysRunPlugin = false\n PluginType = 'ReplaceOverlay'\n HidePluginInDisplay = false\n FlattenPreviewImage = false\n PTKVersion = '1'\n ButtonWidth = 6\n ButtonHeight = 2\n GeneratePreview = true\n Visibility = 'Developer'\n Version = 2\n \n MemoryCachePolicy = 'Temporary'\n DiskCachePolicy = 'Off' \n end\n \n methods (Static)\n function results = RunPlugin(dataset, reporting)\n reporting.UpdateProgressValue(0);\n left_and_right_lungs = dataset.GetResult('PTKLeftAndRightLungs');\n \n right_lung = dataset.GetResult('PTKGetRightLungROI');\n \n fissureness_right = PTKFissurenessHessianFactor.ComputeFissureness(right_lung, left_and_right_lungs, reporting, false);\n \n reporting.UpdateProgressValue(50);\n left_lung = dataset.GetResult('PTKGetLeftLungROI');\n fissureness_left = PTKFissurenessHessianFactor.ComputeFissureness(left_lung, left_and_right_lungs, reporting, true);\n \n reporting.UpdateProgressValue(100);\n results = PTKCombineLeftAndRightImages(dataset.GetTemplateImage(PTKContext.LungROI), fissureness_left, fissureness_right, left_and_right_lungs);\n \n results.ImageType = PTKImageType.Scaled;\n end \n end\n \n methods (Static, Access = private)\n \n function lung = DuplicateImageInMask(lung, mask_raw)\n mask_raw = mask_raw > 0;\n if any(mask_raw(:) > 0)\n [~, labelmatrix] = bwdist(mask_raw);\n lung(~mask_raw(:)) = lung(labelmatrix(~mask_raw(:)));\n else\n lung(:) = 0;\n end\n end\n \n function fissureness = ComputeFissureness(image_data, left_and_right_lungs, reporting, is_left_lung)\n \n left_and_right_lungs = left_and_right_lungs.Copy;\n left_and_right_lungs.ResizeToMatch(image_data);\n image_data.ChangeRawImage(PTKFissurenessHessianFactor.DuplicateImageInMask(image_data.RawImage, left_and_right_lungs.RawImage));\n \n mask = [];\n fissureness = PTKImageDividerHessian(image_data, @PTKFissurenessHessianFactor.ComputeFissurenessPartImage, mask, 1.5, [], false, false, is_left_lung, reporting);\n end\n \n function fissureness_wrapper = ComputeFissurenessPartImage(hessian_eigs_wrapper, voxel_size)\n fissureness_wrapper = PTKComputeFissurenessFromHessianeigenvalues(hessian_eigs_wrapper, voxel_size);\n end\n end\nend", "meta": {"author": "tomdoel", "repo": "pulmonarytoolkit", "sha": "09688a006d548fb85795df0338d1ed4f4a010fb9", "save_path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit", "path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit/pulmonarytoolkit-09688a006d548fb85795df0338d1ed4f4a010fb9/Plugins/Fissures/PTKFissurenessHessianFactor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3759840426605501}} {"text": "function [ node_num, edge_num ] = grf_example_size ( )\n\n%*****************************************************************************80\n%\n%% GRF_EXAMPLE_SIZE sizes a GRF example.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 January 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Stephen Skiena,\n% Implementing Discrete Mathematics,\n% Combinatorics and Graph Theory with Mathematica,\n% Addison-Wesley, 1990.\n%\n% Parameters:\n%\n% Output, integer NODE_NUM, the number of nodes.\n%\n% Output, integer EDGE_NUM, the number of edges.\n%\n node_num = 28;\n edge_num = 84;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/grf_io/grf_example_size.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5039061705290805, "lm_q2_score": 0.7461389873857264, "lm_q1q2_score": 0.37598403981598727}} {"text": "function [C_offset] = updateTemporal_endoscope(obj, Y, smin)\n%% run HALS by fixating all spatial components\n% input:\n% Y: d*T, fluorescence data\n% smin: scalar, threshold for detecting one spikes (>smin*sigma)\n% output:\n% C_raw: K*T, temporal components without being deconvolved\n\n% Author: Pengcheng Zhou, Carnegie Mellon University, adapted from Johannes\n\n% options\nmaxIter = obj.options.maxIter;\nif ~exist('smin', 'var') || isempty(smin)\n smin = 3;\nend\n%% initialization\nA = obj.A;\nK = size(A, 2); % number of components\nC = obj.C;\nC_raw = zeros(size(C));\nC_offset = zeros(K, 1);\nS = zeros(size(C));\nA = full(A);\nU = A'*Y;\nV = A'*A;\naa = diag(V); % squares of l2 norm all all components\nsn = zeros(1, K);\nkernel = obj.kernel;\nkernel_pars = zeros(K, 2);\n\n%% updating\nind_del = false(K, 1);\nfor miter=1:maxIter\n for k=1:K\n if ind_del\n continue;\n end\n temp = C(k, :) + (U(k, :)-V(k, :)*C)/aa(k);\n % estimate noise\n if miter==1\n sn(k) = get_noise_fft(temp);\n end\n \n % remove baseline\n [temp, C_offset(k)] = remove_baseline(temp, sn(k));\n \n % deconvolution\n if obj.options.deconv_flag\n if miter==1\n [ck, sk, kernel] = deconvCa(temp, kernel, smin, true, false, sn(k));\n kernel_pars(k, :) = kernel.pars;\n else\n kernel.pars = kernel_pars(k, :);\n [ck, sk, kernel] = deconvCa(temp, kernel, smin, false, false, sn(k));\n end\n else\n ck = max(0, temp);\n end\n \n % save convolution kernels and deconvolution results\n C(k, :) = ck;\n \n if sum(ck(2:end))==0\n ind_del(k) = true;\n end\n % save the spike count in the last iteration\n if miter==maxIter\n if obj.options.deconv_flag\n S(k, :) = sk;\n end\n C_raw(k, :) = temp;\n end\n end\nend\nobj.A = bsxfun(@times, A, sn);\nobj.C = bsxfun(@times, C, 1./sn');\nobj.C_raw = bsxfun(@times, C_raw, 1./sn');\nobj.S = bsxfun(@times, S, 1./sn');\nobj.P.kernel_pars = kernel_pars;\nobj.delete(ind_del);\n", "meta": {"author": "flatironinstitute", "repo": "CaImAn-MATLAB", "sha": "49b7884e93348d50df7173e1619d7499468bb1f6", "save_path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB", "path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB/CaImAn-MATLAB-49b7884e93348d50df7173e1619d7499468bb1f6/Sources2D/updateTemporal_endoscope.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7577943822145998, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3759371170243905}} {"text": "function options = spset(varargin)\n% SPSET Create/alter sparse interpolation OPTIONS structure\n% OPTIONS = SPSET('NAME1',VALUE1,'NAME2',VALUE2,...) creates an\n% options structure OPTIONS in which the named properties have\n% the specified values. Any unspecified properties have default\n% values. It is sufficient to type only the leading characters\n% that uniquely identify the property. Case is ignored for\n% property names. \n% \n% OPTIONS = SPSET(OLDOPTS,'NAME1',VALUE1,...) alters an existing\n% options structure OLDOPTS.\n% \n% OPTIONS = SPSET(OLDOPTS,NEWOPTS) combines an existing options\n% structure OLDOPTS with a new options structure NEWOPTS. Any new\n% properties overwrite corresponding old properties. \n% \n% SPSET with no input arguments displays all property names and\n% their possible values. \n% \n% See also SPGET, SPINTERP, SPVALS.\n%\n%\n% SPSET PROPERTIES\n%\n% GridType - Sparse grid type and basis functions to use \n% [ {Clenshaw-Curtis} | Maximum | NoBoundary | Chebyshev |\n% Gauss-Patterson ]. For an illustration of the grid types, \n% run CMPGRIDS.\n%\n% RelTol - Relative error tolerance [ positive scalar {1e-2} ]\n% A relative error tolerance that applies to all hierarchical\n% surpluses of the sparse grid representation. The grid is\n% further refined until all hierarchical surpluses are less than\n% max(RelTol*(max(fevalRange)-min(fevalRange)),AbsTol), with\n% fevalRange containing all results evaluating FUN up to\n% that point. \n% \n% AbsTol - Absolute error tolerance [ positive scalar {1e-6} ]\n% Used by the error control stated under RelTol.\n%\n% Vectorized - Vectorized function FUN [ on | {off} ]\n% Indicates if FUN is available for vectorized evaluation. \n% Vectorized coding of FUN can significantly reduce the\n% computation time used by SPVALS. For an example using a\n% vectorized function, please see SPDEMO.\n%\n% MinDepth - Minimum interpolation depth [ integer {2} ]\n% Minimum number of hierarchical interpolation levels n to\n% compute. \n%\n% MaxDepth - Maximum interpolation depth [ integer {8} ]\n% Maximum number of hierarchical interpolation levels n to\n% compute. The maximum supported depth (and the default) is 6\n% for the Gauss-Patterson grid.\n%\n% VariablePositions - Position of the ranges to interpolate in the\n% argument list when FUN is evaluated. [ 1xD vector {[]} ] \n% By setting VariablePositions, SPVALS will evaluate FUN with respect\n% to some of its input parameters, but not necessarily the first\n% D ones. With VARPOS, the actual position of each variable may\n% be set. VARPOS must be a 1xD array.\n% \n% NumberOfOutputs - Number of outputs [ integer {1} ]\n% If FUN produces multiple outputs (all must be scalar), indicate\n% this here to perform the sparse grid computation for many\n% output variables at once. Also see the example SPDEMOVAROUT.\n%\n% PrevResults - Previous sparse grid representation [ struct {[]} ]\n% An existing result structure obtained from SPVALS may be\n% provided to further refine an existing sparse grid.\n%\n% FunctionArgType - Function argument type [ {list} | vector ]\n% Indicates whether the objective function takes the input\n% parameters as a comma-separated list (default) or as a vector.\n%\n% KeepFunctionValues - Keep the function evaluations [ {off} | on ]\n% If this parameter is set, a structure field 'fvals' is\n% returned, containing a cell array with the function values at\n% the sparse grid points.\n%\n% KeepGrid - Keep the sparse grid points [ {off} | on ]\n% If this parameter is set, a structure field 'grid' is\n% returned, containing a cell array with the the sparse grid\n% points. \n%\n% DimensionAdaptive - Set dimension adaptivity option [ {off} | on ]\n% Dimension-adaptive grids try to adaptively find important\n% dimensions and adjust the sparse grid structure\n% accordingly. The implementation of dimension-adaptive sparse\n% grids follows the approach by Gerstner/Griebel.\n%\n% MinPoints - Minimum number of support nodes [ integer {100} ]\n% This parameter only applies to dimension-adaptive sparse grids,\n% and indicates the minimum number of support nodes\n% (i.e. function evaluations to perform).\n%\n% MaxPoints - Maximum number of support nodes [ integer {10000} ]\n% This parameter only applies to dimension-adaptive sparse grids.\n% The dimension-adaptive algorithm is aborted once the function\n% evaluation count exceeds this number.\n%\n% DimadaptDegree - Fine-tuning parameter to alter the degree of\n% dimension-adaptivity [ positive scalar {0.9} ]. A value of 1\n% places complete emphasis on the error estimates, and thus leads\n% to \"greedy\" dimension-adaptivity. A value of 0 disregards the\n% error estimates, and constructs a conventional sparse grid\n% based on the amount of work involved. \n%\n% DegreeStrategy - [ {balancing} | depth ] Strategy for the degree\n% of dimensional adaptivity. \n% The 'balancing' strategy balances the number of grid points \n% generated according to the greedy, error estimate-based refine-\n% ment rule compared to the number of points generated by the \n% conventional (regular) sparse grid refinement rule. I.e., a \n% DimadaptDegree value of 0.9 would mean that around 90% of the \n% grid points are generated by the error estimate-based rule, and\n% the remaining points are selected according to the regular \n% rule.\n% The 'depth' strategy makes sure that the maximum level depth\n% reached by the error estimate-based refinement in one dimension\n% does not get too deep compared to the depth reached in the other\n% dimensions. This measurement degree strategy is the one used \n% prior to version 5.1.0 of the toolbox, and is described on page\n% 61 of A. Klimke, \"Uncertainty modeling using fuzzy arithmetic \n% and sparse grids\". This approach is still supported but no \n% the default strategy.\n%\n% SparseIndices - [ {auto} | on | off ] Manually turn the efficient\n% sparse storage scheme (new feature since version 3.0) of the \n% multi-index arrays on or off. The default switch auto uses the\n% new scheme for the ClenshawCurtis and the Chebyshev grid, and \n% the old (full) storage scheme from version 2.x for the Maximum \n% and the NoBoundary grid (the sparse grid storage scheme is not\n% supported for these two grid types).\n%\n% DropTol - Drop tolerance [ {auto} | off | 1x2 double vector ]\n% During the sparse grid construction progress, the spvals \n% algorithm may add subgrids with hierarchical surpluses that are \n% all close to zero or of negligible magnitude compared to the \n% surpluses of other sub-grids. In particular, this occurs when\n% additive structure is present in the objective function. \n% To increase the performance of the spinterp algorithm, \n% subgrids where all (absolute) hierarchical surpluses are less \n% than max(relDropTol*(max(fevalRange)-min(fevalRange),absDropTol))\n% can be omitted from the interpolation process by running the\n% sppurge algoritm (see help sppurge).\n% You may specify the absolute and the relative drop tolerance \n% as a vector [ absDropTol, relDropTol ], or turn it off completely\n% (= behavior of version 3.0 and earlier). The switch 'auto' uses \n% the values absDropTol = 0, relDropTol = 100*eps, that is, by \n% default, only a relative drop tolerance is used.\n%\n% EnableDCT - [ {on} | off ] Use the DCT when constructing the\n% Chebyshev-Gauss-Lobatto type sparse grid. \n\n% Author : Andreas Klimke, Universitaet Stuttgart\n% Version: 1.9\n% Date : November 18, 2007\n\t\n% Change log:\n% V1.0 : Sep 23, 2003\n% Initial release\n% V1.1 : Dec 23, 2003\n% Added FunctionArgType handling for more flexibility in\n% defining the objective function.\n% V1.2 : Jan 07, 2004\n% Added KeepFunctionValues property to allow the user to\n% access the function values at the sparse grid points.\n% V1.3 : Jan 08, 2004\n% Added KeepGrid property to allow the user to access the\n% sparse grid points.\n% V1.4 : Apr 22, 2004\n% Added options for dimension-adaptive sparse grids.\n% V1.5 : Feb 22, 2005\n% Added handling of sparse sets of indices (useful for\n% high-dimensional interpolation)\n% V1.6 : January 13, 2006\n% Added documentation of SparseIndices property\n% V1.7 : February 2, 2006\n% Added DropTol property\n% V1.8 : March 1, 2006\n% Added DCT feature\n% V1.9 : November 18, 2007\n% Added new grid type : Gauss-Patterson\n% V2.0 : January 20, 2007\n% Added new parameter for dimensional adaptivity degree\n% strategy.\n\n% ------------------------------------------------------------\n% Sparse Grid Interpolation Toolbox\n% Copyright (c) 2006 W. Andreas Klimke, Universitaet Stuttgart \n% Copyright (c) 2007-2008 W. A. Klimke. All Rights Reserved.\n% See LICENSE.txt for license. \n% email: klimkeas@ians.uni-stuttgart.de\n% web : http://www.ians.uni-stuttgart.de/spinterp\n% ------------------------------------------------------------\n\n% Note: SPSET is similar in syntax and code the the options\n% handling with ODEGET and ODESET of the MATLAB ODE suite by Marc\n% Reichelt and Lawrence Shampine.\n\n% Print out possible values of properties.\nif (nargin == 0) && (nargout == 0)\n fprintf([' GridType: [ {Clenshaw-Curtis} | Maximum |' ...\n\t\t\t\t\t ' NoBoundary | Chebyshev | Gauss-Patterson ]\\n']);\n fprintf(' RelTol: [ positive scalar {1e-2} ]\\n');\n fprintf(' AbsTol: [ positive scalar {1e-6} ]\\n');\n fprintf(' Vectorized: [ {off} | on ]\\n');\n\tfprintf(' MinDepth: [ positive integer {2} ]\\n');\n\tfprintf(' MaxDepth: [ positive integer {8} ] (6 for Gauss-Patt.)\\n');\n fprintf(' VariablePositions: [ double matrix {[]} ]\\n');\n fprintf(' NumberOfOutputs: [ positive integer {1} ]\\n');\n fprintf(' PrevResults: [ struct {[]} ]\\n');\n\tfprintf(' FunctionArgType: [ {list} | vector ]\\n');\n\tfprintf('KeepFunctionValues: [ {off} | on ]\\n');\n\tfprintf(' KeepGrid: [ {off} | on ]\\n');\n\tfprintf(' DimensionAdaptive: [ {off} | on ]\\n');\n\tfprintf(' MinPoints: [ positive integer {100} ]\\n');\n\tfprintf(' MaxPoints: [ positive integer {10000} ]\\n');\n\tfprintf(' DimadaptDegree: [ positive scalar in [0,1] {0.9} ]\\n');\n\tfprintf(' DegreeStrategy: [ {balancing} | depth ]\\n');\n\tfprintf(' SparseIndices: [ {auto} | on | off ]\\n');\n\tfprintf([' DropTol: [ {auto} | off |' ...\n\t\t\t\t\t ' [absTol, relTol] (pos. scalars)]\\n']);\n\tfprintf(' EnableDCT: [ {on} | off ]\\n');\n fprintf('\\n');\n return;\nend\n\nNames = {'GridType', 'RelTol', 'AbsTol', 'Vectorized', 'MinDepth', ...\n\t\t\t\t 'MaxDepth', 'VariablePositions', 'NumberOfOutputs', ...\n\t\t\t\t 'PrevResults', 'FunctionArgType', 'KeepFunctionValues', ...\n\t\t\t\t 'KeepGrid', 'DimensionAdaptive', 'MinPoints', ...\n\t\t\t\t 'MaxPoints', 'DimadaptDegree', 'DegreeStrategy', ...\n\t\t\t\t 'SparseIndices', 'DropTol', 'EnableDCT'};\n\n\nm = length(Names);\nnames = cell(m,1);\nfor k = 1:m\n\tnames{k} = lower(Names{k});\nend\n\n% Combine all leading options structures o1, o2, ... in odeset(o1,o2,...).\noptions = [];\nfor k = 1:m\n options.(Names{k}) = [];\nend\n\nk = 1;\nwhile k <= nargin\n arg = varargin{k};\n if ischar(arg) % arg is an option name\n break;\n end\n if ~isempty(arg) % [] is a valid options argument\n if ~isa(arg,'struct')\n msg = sprintf(['Expected argument %d to be a string property' ...\n\t\t\t\t\t\t\t\t\t\t ' name or an options structure\\ncreated with' ...\n\t\t\t\t\t\t\t\t\t\t ' SPSET.'], k);\n error(msg); \n end\n for l = 1:m\n if any(strcmp(fieldnames(arg),Names{l}))\n val = arg.(Names{l});\n else\n val = [];\n end\n if ~isempty(val)\n options.(Names{l}) = val;\n end\n end\n\t\tk = k + 1;\n else\n\t\tk = k + 1;\n\t\tbreak;\n\tend\nend\n\n% now process the name-value pairs.\nif rem(nargin-k+1,2) ~= 0\n error('Arguments must occur in name-value pairs.');\nend\n\nexpectval = 0; % start expecting a name, not a\n % value\nwhile k <= nargin\n arg = varargin{k};\n \n if ~expectval\n if ~ischar(arg)\n msg = sprintf(['Expected argument %d to be a string property' ...\n\t\t\t\t\t\t\t\t\t\t ' name.'], k);\n error(msg); \n end\n lowArg = lower(arg);\n matched = strmatch(lowArg,names);\n if isempty(matched)\n msg = sprintf('Unrecognized property name ''%s''.', arg);\n error(msg);\n elseif length(matched) > 1\n msg = sprintf('Ambiguous property name ''%s'' ', arg);\n msg = [msg '(' Names{matched(1)}];\n for l = matched(2:length(matched))'\n msg = [msg ', ' Names{l}];\n end\n msg = sprintf('%s).', msg);\n error(msg);\n end\n expectval = 1; % we expect a value next\n \n else\n options.(Names{matched}) = arg;\n expectval = 0;\n \n end\n k = k + 1;\nend\n\nif expectval\n msg = sprintf('Expected value for property ''%s''.', arg);\n error(msg);\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/spinterp/spset.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318479832805, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3759230141871729}} {"text": "function imResult = blendMode_Glow(A, B, offsetW, offsetH)\n%% Glow blending mode: This mode is a variation of reflect mode (base and \n% blend color swapped). \n% \n% Input:\n% A - Base Image\n% B - Top Image\n% offsetW - move picture B horizontally in respect to the top-left\n% corner of picture A. Default value = 1.\n% offsetH - move picture B vertically in respect to the top-left\n% corner of picture A. Default value = 1.\n%\n% Output:\n% imResult - Result of the blending, having the same size of the\n% Base Image A.\n% \n\n%% Check Input\na = size(A);\nb = size(B);\nblendMode_checkInput(nargin, a, b, func2str(@blendMode_Glow));\n\nif nargin < 3\n offsetW = 1;\n offsetH = 1;\nend\n\nif nargin < 4\n offsetH = 1;\nend\n\n%% Implementation\nimResult = A;\n\nif (((offsetW ~= 1) || (offsetH ~= 1)) || (sum(a == b) ~= length(a)))\n [A, B] = blendMode_ResizeImages(A, B, a, b, offsetW, offsetH);\nend\n\nC = blendMode_Reflect(B, A);\n\nif (((offsetW ~= 1) || (offsetH ~= 1)) || (sum(a == b) ~= length(a)))\n imResult = blendMode_CreateResult(imResult, C, offsetW, offsetH);\nelse\n imResult = C;\nend\n\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/43122-blend-images/blendModes/blendMode_Glow.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018545, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3759230053125696}} {"text": "function [ status ] = export_poscar( filename, geometry )\n%EXPORT_POSCAR Export a geometry struct as a VASP POSCAR file.\n% status = EXPORT_POSCAR(filename,geometry) exports the geometry as a \n% VASP POSCAR file. \n%\n% See also IMPORT_POSCAR.\n\n % write selective dynamics and chemical symbols\n\n fid = fopen(filename,'w');\n if fid==-1\n error(['Error opening ' filename]); \n end\n \n fprintf(fid,[geometry.comment '\\n']);\n fprintf(fid,'1.0\\n'); % scale factor\n fprintf(fid, '%19.16f %19.16f %19.16f\\n', geometry.lattice'); % lattice vectors \n if ~isempty(geometry.symbols)\n cellfun(@(x) fprintf(fid, '%s ', x), geometry.symbols);\n fprintf(fid, '\\n');\n end\n fprintf(fid, '%d ', geometry.atomcount); % number of each species\n fprintf(fid, '\\nDirect\\n');\n fprintf(fid, '%19.16f %19.16f %19.16f\\n', geometry.coords'); \n \n fclose(fid);\n\n status = 0;\n \nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/36836-vasplab/vasplab/export_poscar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.37592272977513763}} {"text": "%\n% Optimize the order of strokes in a MotorProgram,\n% before the relations are fixed\n%\n% Input\n% Q: reference to MotorProgram object\n%\nfunction optimize_order_MP(Q,lib)\n\n ps = defaultps_bottomup;\n\n % get all the permutations to try\n if Q.ns <= ps.max_ns_all_perm\n % try all possible combinations\n P = perms(1:Q.ns);\n else\n % try a subset of the permutations\n np = factorial(ps.max_ns_all_perm); %720 \n P = zeros(np,Q.ns);\n for i=1:np\n P(i,:) = randperm(Q.ns);\n end\n P = unique(P,'rows');\n end\n \n % score all the permutations \n n = size(P,1);\n scores = zeros(n,1);\n for i=1:n\n QQ = Q.copy(); \n perm = P(i,:); \n QQ.S = QQ.S(perm); \n scores(i) = scoreMP_NoRel(QQ,lib,'type',true,'token',true,'stat',false,'image',false);\n end\n\n % pick the best order, and return Q without instantiating relations\n [~,windx] = randmax(scores);\n perm = P(windx,:);\n Q.S = Q.S(perm);\nend", "meta": {"author": "brendenlake", "repo": "BPL", "sha": "2c7f679bb0055f29cbade7ef099897c3342bcb79", "save_path": "github-repos/MATLAB/brendenlake-BPL", "path": "github-repos/MATLAB/brendenlake-BPL/BPL-2c7f679bb0055f29cbade7ef099897c3342bcb79/bottomup/initialize/optimize_order_MP.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3759227297751375}} {"text": "function x = true(x)\n% TRUE Constrains a variable to be positive\n%\n% TRUE(x) returns the constraint (x>=0.5). It is assumed that x is\n% binary. The reason (x>=0.5) is used instead of x==1 is that some big-M\n% modelling turns out to be less sensitive to numerical issues in this\n% form. Once the model enters the solver, it will be trivially presolved\n% anyway.\n%\n% For safety, it is advised to use the TRUE operator when working with\n% logic constraints, instead of relying on the automatic constraints used\n% by YALMIP (expression generated using AND and OR are automatically\n% assumed to be constrained to be true.\n%\n% (a|b) is automatically changed to (TRUE(a|b)). To constrain a to be true,\n% the user has to explicitely use (TRUE(a)). \n%\n% See also SDPVAR/FALSE, SDPVAR/AND, SDPVAR/OR, SDPVAR/NOT, BINVAR, BINARY\n\nx = (x>=.5);", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/@sdpvar/true.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37583012568832064}} {"text": "function test_suite = test_it\n initTestSuite;\nend\n\n\nfunction test_entropy\n data = [0 0 0 1 1 1 2 2 2 3 3 3];\n h = SPX_IT.entropy(data);\n assertElementsAlmostEqual(h, 2.0);\nend\n", "meta": {"author": "indigits", "repo": "sparse-plex", "sha": "43cae2978f62938d001baaa03308a2a717ee6c9b", "save_path": "github-repos/MATLAB/indigits-sparse-plex", "path": "github-repos/MATLAB/indigits-sparse-plex/sparse-plex-43cae2978f62938d001baaa03308a2a717ee6c9b/library/+spx/+prob/tests/test_it.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5506073655352403, "lm_q2_score": 0.6825737344123242, "lm_q1q2_score": 0.3758301256883206}} {"text": "% ----- Global evaluation parameters -----\n% Range of binning factors used for this evaluation.\nbinningFactors = [2, 3, 4];\n% Range of compression levels (index 1 means uncoded; indices 2-5 mean \n% coded with the corresponding QP setting using H.265/HEVC coder.\ncompressions = [NaN, 10, 20, 30, 40];\n% Range of number of frames for SR at the different binning factors.\nnumberOfFrames = [5, ... % Number of frames for binning factor 2\n 11, ... % Number of frames for binning factor 3\n 17]; % Number of frames for binning factor 4\n% Index of the first reference frame for sliding window processing.\nstartReferenceFrame = 9;\n\n% ----- Settings considered for this evaluation -----\n% This is the index of the SR method that is evaluated.\nsr_method = 0:length(SRMethods);\n% This is the index of the binning factor that is evaluated.\nbinning_val = 1:3;\n% This is the index of the compression setting.\ncompress_val = 1:5;\n% This is the index that indicates the number of input frames.\nnumberOfFrames_val = 1;\n% This is the index of the scene according to datasets.mat.\nscenes_val = 1:14;\n% This is the index of the sliding window that is evaluated.\nsliding_val = 1;", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/quantitativeStudy/initEvaluationParametersForCompression.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979745, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3758301185775846}} {"text": "%% Piggyback image\n% Changed: Dec 31st, 2011\n%\nfunction [I,lim] = piggyback(I,scale)\n\n if nargin<2; scale = 2; end; % default, piggybacked image twice as big\n \n if size(size(I),2)>3; [I,lim]=piggyback_multichannel(I,scale); return; end; % check if I is multichannel\n \n Ip = zeros(ceil(size(I)*scale));\n lim = bsxfun(@plus, floor(size(I)*(scale-1)/2), [[1 1 1]; size(I)]); % image limits\n Ip(lim(1):lim(2),lim(3):lim(4),lim(5):lim(6)) = I; % piggybacked image\n I = Ip;\n\nend\n\n%% Piggyback image\n% Changed: Dec 31st, 2011\n%\nfunction [I,lim] = piggyback_multichannel(I,scale)\n\n if nargin<2; scale = 2; end; % default, piggybacked image twice as big\n nchannels = size(I,4);\n\n for i=1:nchannels\n Ip(:,:,:,i) = piggyback(I(:,:,:,i),scale);\n end\n \n imagesize = [size(I,1) size(I,2) size(I,3)];\n lim = bsxfun(@plus, floor(imagesize*(scale-1)/2), [[1 1 1]; imagesize]); % image limits\n I = Ip;\n\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/39194-diffeomorphic-log-demons-image-registration/demons/demons3d/piggyback.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.3757924426238012}} {"text": "function varargout = line(rot,varargin)\n% draw rotations connected by lines\n%\n% Syntax\n% line(rot,'linecolor','r','linewith',2)\n%\n% Input\n% rot - list of @rotation\n%\n% Example\n% cs1 = crystalSymmetry('321')\n% cs2 = crystalSymmetry('432')\n% oR = fundamentalRegion(cs1,cs2)\n% plot(oR)\n%\n% % connect to vertices of the fundamental region\n% f = fibre(oR.V(1),oR.V(2))\n%\n% % determine some orientations along the fibre\n% o = f.orientation\n%\n% % plot the line\n% hold on\n% line(o,'color','r','linewidth',2)\n% hold off\n%\n% See also\n% \n\n[varargout{1:nargout}] = plot(reshape(rot,[],1),'all','edgecolor',...\n get_option(varargin,{'color','linecolor'},'k'),'Marker','none',varargin{:});\n\n\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@rotation/line.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883449573376, "lm_q2_score": 0.6261241842048092, "lm_q1q2_score": 0.37579243785564764}} {"text": "%% Machine Learning Online Class\n% Exercise 6 | Spam Classification with SVMs\n%\n% Instructions\n% ------------\n% \n% This file contains code that helps you get started on the\n% exercise. You will need to complete the following functions:\n%\n% gaussianKernel.m\n% dataset3Params.m\n% processEmail.m\n% emailFeatures.m\n%\n% For this exercise, you will not need to change any code in this file,\n% or any other files other than those mentioned above.\n%\n\n%% Initialization\nclear ; close all; clc\n\n%% ==================== Part 1: Email Preprocessing ====================\n% To use an SVM to classify emails into Spam v.s. Non-Spam, you first need\n% to convert each email into a vector of features. In this part, you will\n% implement the preprocessing steps for each email. You should\n% complete the code in processEmail.m to produce a word indices vector\n% for a given email.\n\nfprintf('\\nPreprocessing sample email (emailSample1.txt)\\n');\n\n% Extract Features\nfile_contents = readFile('emailSample1.txt');\nword_indices = processEmail(file_contents);\n\n% Print Stats\nfprintf('Word Indices: \\n');\nfprintf(' %d', word_indices);\nfprintf('\\n\\n');\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n%% ==================== Part 2: Feature Extraction ====================\n% Now, you will convert each email into a vector of features in R^n. \n% You should complete the code in emailFeatures.m to produce a feature\n% vector for a given email.\n\nfprintf('\\nExtracting features from sample email (emailSample1.txt)\\n');\n\n% Extract Features\nfile_contents = readFile('emailSample1.txt');\nword_indices = processEmail(file_contents);\nfeatures = emailFeatures(word_indices);\n\n% Print Stats\nfprintf('Length of feature vector: %d\\n', length(features));\nfprintf('Number of non-zero entries: %d\\n', sum(features > 0));\n\nfprintf('Program paused. Press enter to continue.\\n');\npause;\n\n%% =========== Part 3: Train Linear SVM for Spam Classification ========\n% In this section, you will train a linear classifier to determine if an\n% email is Spam or Not-Spam.\n\n% Load the Spam Email dataset\n% You will have X, y in your environment\nload('spamTrain.mat');\n\nfprintf('\\nTraining Linear SVM (Spam Classification)\\n')\nfprintf('(this may take 1 to 2 minutes) ...\\n')\n\nC = 0.1;\nmodel = svmTrain(X, y, C, @linearKernel);\n\np = svmPredict(model, X);\n\nfprintf('Training Accuracy: %f\\n', mean(double(p == y)) * 100);\n\n%% =================== Part 4: Test Spam Classification ================\n% After training the classifier, we can evaluate it on a test set. We have\n% included a test set in spamTest.mat\n\n% Load the test dataset\n% You will have Xtest, ytest in your environment\nload('spamTest.mat');\n\nfprintf('\\nEvaluating the trained Linear SVM on a test set ...\\n')\n\np = svmPredict(model, Xtest);\n\nfprintf('Test Accuracy: %f\\n', mean(double(p == ytest)) * 100);\npause;\n\n\n%% ================= Part 5: Top Predictors of Spam ====================\n% Since the model we are training is a linear SVM, we can inspect the\n% weights learned by the model to understand better how it is determining\n% whether an email is spam or not. The following code finds the words with\n% the highest weights in the classifier. Informally, the classifier\n% 'thinks' that these words are the most likely indicators of spam.\n%\n\n% Sort the weights and obtin the vocabulary list\n[weight, idx] = sort(model.w, 'descend');\nvocabList = getVocabList();\n\nfprintf('\\nTop predictors of spam: \\n');\nfor i = 1:15\n fprintf(' %-15s (%f) \\n', vocabList{idx(i)}, weight(i));\nend\n\nfprintf('\\n\\n');\nfprintf('\\nProgram paused. Press enter to continue.\\n');\npause;\n\n%% =================== Part 6: Try Your Own Emails =====================\n% Now that you've trained the spam classifier, you can use it on your own\n% emails! In the starter code, we have included spamSample1.txt,\n% spamSample2.txt, emailSample1.txt and emailSample2.txt as examples. \n% The following code reads in one of these emails and then uses your \n% learned SVM classifier to determine whether the email is Spam or \n% Not Spam\n\n% Set the file to be read in (change this to spamSample2.txt,\n% emailSample1.txt or emailSample2.txt to see different predictions on\n% different emails types). Try your own emails as well!\nfilename = 'spamSample1.txt';\n\n% Read and predict\nfile_contents = readFile(filename);\nword_indices = processEmail(file_contents);\nx = emailFeatures(word_indices);\np = svmPredict(model, x);\n\nfprintf('\\nProcessed %s\\n\\nSpam Classification: %d\\n', filename, p);\nfprintf('(1 indicates spam, 0 indicates not spam)\\n\\n');\n\n", "meta": {"author": "Ayatans", "repo": "Machine-Learning-homework", "sha": "4550cfc0426c9da8072dff165130fff40d138c10", "save_path": "github-repos/MATLAB/Ayatans-Machine-Learning-homework", "path": "github-repos/MATLAB/Ayatans-Machine-Learning-homework/Machine-Learning-homework-4550cfc0426c9da8072dff165130fff40d138c10/machine-learning-ex6/ex6/ex6_spam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6001883449573376, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.3757924336684302}} {"text": "% Digital Video Stabilization and Rolling Shutter Correction using Gyroscopes\n% Copyright (C) 2011 Alexandre Karpenko\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\nfunction new_theta = integrate_and_resample(w, old_time, new_time)\n\ndT = old_time(2:end) - old_time(1:end-1);\ntheta = cumsum( w(2:end) .* dT );\n\nnew_theta = interp1(old_time(2:end), theta(:,1), new_time);\nnew_theta(isnan(new_theta)) = 0;", "meta": {"author": "alex-golts", "repo": "Video-Stabilization", "sha": "03455a8bb589cb8fcb1e6900cf59bc3d8cc24078", "save_path": "github-repos/MATLAB/alex-golts-Video-Stabilization", "path": "github-repos/MATLAB/alex-golts-Video-Stabilization/Video-Stabilization-03455a8bb589cb8fcb1e6900cf59bc3d8cc24078/integrate_and_resample.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.37577765023688386}} {"text": "%\n% Call the Fit() method of the model to fit\n%\nfunction AMICO_Fit()\n\n\tglobal CONFIG niiSIGNAL niiMASK bMATRIX\n\n\t% Fit right model to each voxel\n % =============================\n\tif ~isempty(CONFIG.model)\n\n % fit the model to the data\n fprintf( '\\n-> Fitting \"%s\" model to %d voxels:\\n', CONFIG.model.name, nnz(niiMASK.img) );\n TIME = tic;\n progress = ProgressBar( nnz(niiMASK.img) );\n for iz = 1:niiSIGNAL.hdr.dime.dim(4)\n for iy = 1:niiSIGNAL.hdr.dime.dim(3)\n for ix = 1:niiSIGNAL.hdr.dime.dim(2)\n if niiMASK.img(ix,iy,iz)==0, continue, end\n progress.update();\n \n try\n % Read the signal\n b0 = mean( squeeze( niiSIGNAL.img(ix,iy,iz,CONFIG.scheme.b0_idx) ) );\n if ( b0 < 1e-3 ), continue, end\n y = double( squeeze( niiSIGNAL.img(ix,iy,iz,:) ) ./ ( b0 + eps ) );\n y( y < 0 ) = 0; % [NOTE] this should not happen!\n\n % Find the MAIN DIFFUSION DIRECTIONS\n if any(strcmp(properties(CONFIG.model), 'max_dirs'))==false || CONFIG.model.max_dirs>0\n % using DTI\n [ ~, ~, V ] = AMICO_FitTensor( y, bMATRIX );\n vox_DIRs = V(:,1);\n if ( vox_DIRs(2)<0 ), vox_DIRs = -vox_DIRs; end\n [ i1, i2 ] = AMICO_Dir2idx( vox_DIRs );\n DIRs(ix,iy,iz,:) = vox_DIRs;\n else\n % not needed by the model\n DIRs(ix,iy,iz,:) = 0;\n i1 = 1;\n i2 = 1;\n end\n\n % Dispatch to the right handler for each model\n vox_MAPs = CONFIG.model.Fit( y, i1, i2 );\n\n % Store results\n MAPs(ix,iy,iz,:) = vox_MAPs;\n catch exception\n % set output maps to NaN in case of problems\n MAPs(ix,iy,iz,:) = NaN;\n end\n end\n end\n end\n progress.close();\n\n TIME = toc(TIME);\n fprintf( ' [ %.0fh %.0fm %.0fs ]\\n', floor(TIME/3600), floor(mod(TIME/60,60)), mod(TIME,60) )\n\t\tCONFIG.OPTIMIZATION.fit_time = TIME;\n\telse\n\t\terror( '[AMICO_Fit] Model not set' )\n end\n\n\n\t% Save CONFIGURATION and OUTPUT to file\n % =====================================\n fprintf( '\\n-> Saving output to \"AMICO/*\":\\n' );\n\n fprintf( '\\t- CONFIG.mat' );\n save( fullfile(CONFIG.OUTPUT_path,'CONFIG.mat'), '-v6', 'CONFIG' )\n fprintf( ' [OK]\\n' );\n\n fprintf( '\\t- FIT_dir.nii' );\n niiMAP = niiMASK;\n niiMAP.hdr.dime.dim(1) = 4;\n niiMAP.hdr.dime.datatype = 16;\n niiMAP.hdr.dime.bitpix = 32;\n niiMAP.hdr.dime.glmin = -1;\n niiMAP.hdr.dime.glmax = 1;\n niiMAP.hdr.dime.calmin = niiMAP.hdr.dime.glmin;\n niiMAP.hdr.dime.calmax = niiMAP.hdr.dime.glmax;\n niiMAP.hdr.dime.scl_slope = 1;\n niiMAP.hdr.dime.scl_inter = 0;\n\n niiMAP.img = DIRs;\n niiMAP.hdr.dime.dim(5) = size(DIRs,4);\n save_untouch_nii( niiMAP, fullfile(CONFIG.OUTPUT_path,'FIT_dir.nii') );\n fprintf( ' [OK]\\n' );\n\n niiMAP.hdr.dime.dim(5) = 1;\n for i = 1:numel(CONFIG.model.OUTPUT_names)\n fprintf( '\\t- AMICO/FIT_%s.nii', CONFIG.model.OUTPUT_names{i} );\n\n niiMAP.img = MAPs(:,:,:,i);\n niiMAP.hdr.hist.descrip = CONFIG.model.OUTPUT_descriptions{i};\n niiMAP.hdr.dime.glmin = min(niiMAP.img(:));\n niiMAP.hdr.dime.glmax = max(niiMAP.img(:));\n niiMAP.hdr.dime.calmin = niiMAP.hdr.dime.glmin;\n niiMAP.hdr.dime.calmax = niiMAP.hdr.dime.glmax;\n save_untouch_nii( niiMAP, fullfile(CONFIG.OUTPUT_path,['FIT_' CONFIG.model.OUTPUT_names{i} '.nii']) );\n\n fprintf( ' [OK]\\n' );\n end\n\n fprintf( ' [ DONE ]\\n' )\nend\n", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/External/AMICO/AMICO_matlab/optimization/AMICO_Fit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7634837635542924, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.37577765023688386}} {"text": "function boundary = p11_boundary_nearest ( m, n, point )\n\n%*****************************************************************************80\n%\n%% P11_BOUNDARY_NEAREST returns a nearest boundary point in problem 11.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real POINT(M,N), the coordinates of the points.\n%\n% Output, real BOUNDARY(M,N), points on the boundary\n% that are nearest to each point.\n%\n q1 = [ ...\n 0.00, 0.00; ...\n 1.00, 0.00; ...\n 0.75, 0.25; ...\n 0.25, 0.25 ]';\n q2 = [ ...\n 0.00, 0.00; ...\n 0.25, 0.25; ...\n 0.25, 0.75; ...\n 0.00, 1.00 ]';\n q3 = [ ...\n 0.50, 0.50; ...\n 0.50, 0.25; ...\n 0.75, 0.25; ...\n 1.00, 0.50 ]';\n q4 = [ ...\n 0.50, 0.50; ...\n 0.25, 0.50; ...\n 0.25, 0.25; ...\n 0.50, 0.25 ]';\n q5 = [ ...\n 0.50, 0.50; ...\n 0.50, 1.00; ...\n 0.25, 0.75; ...\n 0.25, 0.50 ]';\n t1 = [ ...\n 1.00, 0.00; ...\n 1.00, 0.50; ...\n 0.75, 0.25 ]';\n t2 = [ ...\n 0.00, 1.00; ...\n 0.25, 0.25; ...\n 0.50, 1.00 ]';\n t3 = [ ...\n 0.50, 0.50; ...\n 1.00, 0.50; ...\n 1.00, 1.00 ]';\n t4 = [ ...\n 0.50, 0.50; ...\n 1.00, 1.00; ...\n 0.50, 1.00 ]';\n\n x1 = 0.0;\n x2 = 0.5;\n x3 = +1.0;\n y1 = 0.0;\n y2 = 0.5;\n y3 = +1.0;\n\n for j = 1 : n\n\n if ( point(1,j) <= x1 & point(2,j) <= y1 )\n\n boundary(1,j) = x1;\n boundary(2,j) = y1;\n\n elseif ( point(1,j) <= x1 & point(2,j) <= y3 )\n\n boundary(1,j) = x1;\n boundary(2,j) = point(2,j);\n\n elseif ( point(1,j) <= x1 & y3 <= point(2,j) )\n\n boundary(1,j) = x1;\n boundary(2,j) = y3;\n\n elseif ( point(1,j) <= x3 & point(2,j) <= y1 )\n\n boundary(1,j) = point(1,j);\n boundary(2,j) = y1;\n\n elseif ( quad_contains_point_2d ( q1, point(1:2,j) ) )\n\n boundary(1,j) = point(1,j);\n boundary(2,j) = y1;\n\n elseif ( quad_contains_point_2d ( q2, point(1:2,j) ) )\n\n boundary(1,j) = x1;\n boundary(2,j) = point(2,j);\n\n elseif ( triangle_contains_point_2d ( t1, point(1:2,j) ) )\n\n boundary(1,j) = x3;\n boundary(2,j) = point(2,j);\n\n elseif ( quad_contains_point_2d ( q3, point(1:2,j) ) )\n\n boundary(1,j) = point(1,j);\n boundary(2,j) = y2;\n\n elseif ( quad_contains_point_2d ( q4, point(1:2,j) ) )\n\n boundary(1,j) = x2;\n boundary(2,j) = y2;\n\n elseif ( quad_contains_point_2d ( q5, point(1:2,j) ) )\n\n boundary(1,j) = x2;\n boundary(2,j) = point(2,j);\n\n elseif ( triangle_contains_point_2d ( t2, point(1:2,j) ) )\n\n boundary(1,j) = point(1,j);\n boundary(2,j) = y3;\n\n elseif ( x1 <= point(1,j) & point(1,j) <= x2 & y3 <= point(2,j) )\n\n boundary(1,j) = point(1,j);\n boundary(2,j) = y3;\n\n elseif ( triangle_contains_point_2d ( t3, point(1:2,j) ) )\n\n boundary(1,j) = point(1,j);\n boundary(2,j) = y2;\n\n elseif ( triangle_contains_point_2d ( t4, point(1:2,j) ) )\n\n boundary(1,j) = x2;\n boundary(2,j) = point(2,j);\n\n elseif ( x2 <= point(1,j) & point(1,j) <= x3 & y3 <= point(2,j) )\n\n boundary(1,j) = x2;\n boundary(2,j) = y3;\n\n elseif ( x3 <= point(1,j) & point(2,j) <= y1 )\n\n boundary(1,j) = x3;\n boundary(2,j) = y1;\n\n elseif ( x3 <= point(1,j) & y1 <= point(2,j) & point(2,j) <= y2 )\n\n boundary(1,j) = x3;\n boundary(2,j) = point(2,j);\n\n elseif ( x3 <= point(1,j) & y2 <= point(2,j) & point(2,j) <= y3 )\n\n boundary(1,j) = x3;\n boundary(2,j) = y2;\n\n elseif ( x3 <= point(1,j) & y3 <= point(2,j) & point(2,j) <= point(1,j) )\n\n boundary(1,j) = x3;\n boundary(2,j) = y2;\n\n elseif ( x3 <= point(1,j) & y3 <= point(2,j) & point(1,j) <= point(2,j) )\n\n boundary(1,j) = x2;\n boundary(2,j) = y3;\n\n else\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P11_BOUNDARY_NEAREST - Fatal error!\\n' );\n fprintf ( 1, ' Orphan point = ( %f, %f )\\n', point(1:2,j) );\n error ( 'P11_BOUNDARY_NEAREST - Fatal error!' );\n\n end\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_triangulation/p11_boundary_nearest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3756611517523899}} {"text": "% LIONSAMBA example script\n% Continuous custom current profile: this script shows how to run a continuous custom current\n% profile charge/discharge.\n\n% This file is part of the LIONSIMBA Toolbox\n%\n%\tOfficial web-site: \thttp://sisdin.unipv.it/labsisdin/lionsimba.php\n% \tOfficial GitHUB: \thttps://github.com/lionsimbatoolbox/LIONSIMBA\n%\n% LIONSIMBA: A Matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control\n% Copyright (C) 2016-2018 :Marcello Torchio, Lalo Magni, Davide Raimondo,\n% University of Pavia, 27100, Pavia, Italy\n% Bhushan Gopaluni, Univ. of British Columbia, \n% Vancouver, BC V6T 1Z3, Canada\n% Richard D. Braatz, \n% Massachusetts Institute of Technology, \n% Cambridge, Massachusetts 02142, USA\n% \n% Main code contributors to LIONSIMBA 2.0:\n% Ian Campbell, Krishnakumar Gopalakrishnan,\n% Imperial college London, London, UK\n%\n% LIONSIMBA is a free Matlab-based software distributed with an MIT\n% license.\n\n% Clear the workspace\nclear\nclose all\n\n%% Parameters\n% Define the integration times.\nt0 = 0;\ntf = 10^4;\n\n% Define the initial state structure\ninitialState.Y = [];\ninitialState.YP = [];\n\n% Define the parameters structure.\nparam{1} = Parameters_init;\n\nparam{1}.Np = 10;\nparam{1}.Ns = 10;\nparam{1}.Nn = 10;\n\nparam{1}.hcell = 1;\nparam{1}.Tref = 298.15;\n\nparam{1}.AbsTol = 1e-6;\nparam{1}.RelTol = 1e-6;\n\nparam{1}.CutoffSOC = 20;\n\nparam{1}.SolidPhaseDiffusion = 1;\n\nif(param{1}.SolidPhaseDiffusion == 3)\n multp = param{1}.Nr_p;\n multn = param{1}.Nr_n;\nelse\n multp = 1;\n multn = 1;\nend\nI1C = 29.5;\n\nC_rate = 1.5;\n%% Discharge section\n% Discharge the battery to the 20% of SOC\nout = startSimulation(t0,tf,initialState,-25,param);\n\n% Store the Jacobian matrix for future computations. This is possible\n% because the different scenarios share the same model structure, and the\n% only quantity which differs is the applied current density.\nparam{1}.JacobianFunction = out.JacobianFun;\n\n% Update the initial states\ninitialState = out.initialState;\n\n% Redefine the cutoff SOC in order to avoid simulation interruptions\nparam{1}.CutoffSOC = 2;\n\n% Rest the battery with no current applied\nout2 = startSimulation(0,5000,initialState,0,param);\n\n% Update the initial states\ninitialState = out2.initialState;\n\n% Apply a custom current profile\nparam{1}.OperatingMode = 4;\n\n% Define which external function is going to be used from the simulato to\n% gather the value of the applied current density at each time step\nparam{1}.CurrentDensityFunction = @getInputCurrent;\n\n% Run the simulation\nout3 = startSimulation(0,5000,initialState,0,param);\n\n% Update the initial states\ninitialState = out3.initialState;\n\n% Go back to galvanostatic operating conditions\nparam{1}.OperatingMode= 1;\n\n% Run the simulation\nout4 = startSimulation(0,5000,initialState,0,param);\n%% Plot the results\n\n% Concatenate all the time results\ntime = [out.time{1};out2.time{1}+out.time{1}(end);out3.time{1}+out2.time{1}(end)+out.time{1}(end);out4.time{1}+out3.time{1}(end)+out2.time{1}(end)+out.time{1}(end)];\n\nfigure(1)\nplot(time,[out.Voltage{1};out2.Voltage{1};out3.Voltage{1};out4.Voltage{1}],'LineWidth',6)\nhold on\nxlabel('Time [s]')\nylabel('Voltage [V]')\ngrid on\nbox on\ntitle('Cell Voltage')\n\nfigure(2)\nplot(time,[out.SOC{1};out2.SOC{1};out3.SOC{1};out4.SOC{1}],'LineWidth',6)\nhold on\nxlabel('Time [s]')\nylabel('SOC [%]')\ngrid on\nbox on\ntitle('Cell SOC')\n\nfigure(3)\nplot(time,[out.Temperature{1}(:,end);out2.Temperature{1}(:,end);out3.Temperature{1}(:,end);out4.Temperature{1}(:,end)],'LineWidth',6)\nhold on\nxlabel('Time [s]')\nylabel('Temperature[K]')\ngrid on\nbox on\ntitle('Cell Temperature')\n\nfigure(4)\nplot(time,[out.curr_density;out2.curr_density;out3.curr_density;out4.curr_density],'LineWidth',6)\nhold on\nxlabel('Time [s]')\nylabel('Applied Current [A/m^2]')\ngrid on\nbox on\ntitle('Cell Input Current')\n\nfigure(5)\nplot(time,[out.cs_average{1}(:,[1 param{1}.Np*multp]);out2.cs_average{1}(:,[1 param{1}.Np*multp]);out3.cs_average{1}(:,[1 param{1}.Np*multp]);out4.cs_average{1}(:,[1 param{1}.Np*multp])],'LineWidth',6)\nhold on\nline([time(1) time(end)],[param{1}.cs_maxp param{1}.cs_maxp],'LineWidth',6,'LineStyle','--')\nxlabel('Time [s]')\nylabel('Positive electrode average concentration [mol/m^3]')\ngrid on\nbox on\nlegend('c^* x=0','c^* x=l_p','c^* max')\n\nfigure(6)\nplot(time,[out.cs_average{1}(:,[(param{1}.Np+1)*multn (param{1}.Np+param{1}.Nn)*multn]);out2.cs_average{1}(:,[param{1}.Np+1 param{1}.Np+param{1}.Nn]*multn);out3.cs_average{1}(:,[param{1}.Np+1 param{1}.Np+param{1}.Nn]*multn);out4.cs_average{1}(:,[param{1}.Np+1 param{1}.Np+param{1}.Nn]*multn)],'LineWidth',6)\nhold on\nline([time(1) time(end)],[param{1}.cs_maxn param{1}.cs_maxn],'LineWidth',6,'LineStyle','--')\nxlabel('Time [s]')\nylabel('Negative electrode average concentration [mol/m^3]')\ngrid on\nbox on\nlegend('c^* x=l_p+l_s','c^* x=l_p+l_s+l_n','c^* max')", "meta": {"author": "lionsimbatoolbox", "repo": "LIONSIMBA", "sha": "d1cf29a4dcfa8e7824fc2416ac3e6ec760bb9b66", "save_path": "github-repos/MATLAB/lionsimbatoolbox-LIONSIMBA", "path": "github-repos/MATLAB/lionsimbatoolbox-LIONSIMBA/LIONSIMBA-d1cf29a4dcfa8e7824fc2416ac3e6ec760bb9b66/example_scripts/continous_custom_current_profile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.3756611517523898}} {"text": "function [high_fissure_indices, ref_image] = PTKGetMaxFissurePoints(fissure_approximation, lung_mask, fissureness, image_roi, image_size)\n % PTKGetMaxFissurePoints. function for finding candidate points of high\n % fissureness given an initial fissure approximation.\n %\n % PTKGetMaxFissurePoints is an intermediate stage in segmenting the\n % lobes. It is not intended to be a general-purpose algorithm. \n %\n % For more information, see \n % [Doel et al., Pulmonary lobe segmentation from CT images using\n % fissureness, airways, vessels and multilevel B-splines, 2012]\n %\n % Licence\n % -------\n % Part of the TD Pulmonary Toolkit. https://github.com/tomdoel/pulmonarytoolkit\n % Author: Tom Doel, 2012. www.tomdoel.com\n % Distributed under the GNU GPL v3 licence. Please see website for details.\n %\n\n data_points_indices = find(fissure_approximation);\n \n bin_size = 2;\n\n [high_fissure_indices, ref_image] = GetFissurePoints(data_points_indices, image_size, lung_mask, fissureness, image_roi, bin_size);\nend\n\n\nfunction [maximum_fissureness_indices, ref_image] = GetFissurePoints(indices_for_model, image_size, lung_segmentation, fissureness, image_roi, bin_size)\n\n % Get the coordinates of every voxel in the lung segmentation\n candidate_indices = find(lung_segmentation.RawImage);\n \n % An image for debugging\n ref_image = zeros(image_size, 'uint8');\n ref_image(candidate_indices) = 2;\n\n % Remove points with low fissureness\n max_fissureness = max(fissureness.RawImage(candidate_indices));\n fissureness_threshold = max_fissureness/3;\n intensity_threshold_hu = -900;\n intensity_threshold = image_roi.HounsfieldToGreyscale(intensity_threshold_hu);\n candidate_indices = candidate_indices((fissureness.RawImage(candidate_indices) > fissureness_threshold) & (image_roi.RawImage(candidate_indices) > intensity_threshold));\n ref_image(candidate_indices) = 4;\n\n if isempty(candidate_indices)\n maximum_fissureness_indices = [];\n return;\n end\n \n % Find a rotation matrix\n [eigv, m] = GetRotationMatrix(indices_for_model, image_size);\n \n [x_all, y_all, z_all] = MimImageCoordinateUtilities.FastInd2sub(image_size, candidate_indices);\n X_all = [x_all(:), y_all(:), z_all(:)]';\n \n % Transform to new basis\n em_all = X_all - m(:, ones(1, size(X_all, 2)));\n em_all = eigv*em_all;\n \n % We allocate each point to a bin according to the x-y coordinates in the\n % transformed domain\n x1_all = em_all(1, :);\n y1_all = em_all(2, :);\n\n % Get the coordinates of each of the model points\n [x_model, y_model, z_model] = MimImageCoordinateUtilities.FastInd2sub(image_size, indices_for_model); \n X_model = [x_model(:), y_model(:), z_model(:)]';\n \n % Transform to new basis\n em_model = X_model - m(:, ones(1, size(X_model, 2)));\n em_model = eigv*em_model;\n \n % We allocate each point to a bin according to the x-y coordinates in the\n % transformed domain\n x1_model = em_model(1, :);\n y1_model = em_model(2, :);\n \n % Project the candidate points onto the fissure plane, and remove those that\n % are not within the convex hull formed by the model points on the plane. In\n % effect, we are using the model coordinates (the initial guess) as a bound\n % for the x-y coordinates used to construct the fissure surface.\n xy_coords_model = [x1_model', y1_model'];\n dt = DelaunayTri(xy_coords_model);\n simplex_index = pointLocation(dt, x1_all', y1_all');\n is_valid = ~isnan(simplex_index);\n candidate_indices_ok = candidate_indices(is_valid);\n \n if isempty(candidate_indices_ok)\n maximum_fissureness_indices = [];\n return;\n end\n \n % Turn into x,y,z vectors\n [x_all, y_all, z_all] = MimImageCoordinateUtilities.FastInd2sub(image_size, candidate_indices_ok);\n X_all = [x_all(:), y_all(:), z_all(:)]'; \n\n % Transform to new basis\n em_all = X_all - m(:, ones(1, size(X_all, 2)));\n em_all = eigv*em_all;\n \n % We allocate each point to a bin according to the x-y coordinates in the\n % transformed domain\n x1_all = em_all(1, :);\n y1_all = em_all(2, :); \n \n [maximum_fissureness_indices, all_maxima] = SortIntoBins(x1_all, y1_all, candidate_indices_ok, fissureness, bin_size, image_size);\n \n ref_image(all_maxima) = 6;\n ref_image(maximum_fissureness_indices) = 3;\n\n % Remove non-connected points (outliers)\n [x_all, y_all, z_all] = MimImageCoordinateUtilities.FastInd2sub(image_size, maximum_fissureness_indices);\n points_coords = ArraysToPoints(x_all(:), y_all(:), z_all(:));\n \n min_dilate_size_mm = 2.5;\n max_dilate_size_mm = 2.5;\n \n dilate_size_mm = min_dilate_size_mm;\n \n calculate_again = true;\n target_number_of_points = round(numel(x_all)/2);\n \n % Perform the removal of connected points with a variable dilation size\n while calculate_again\n points_coords_new = RemoveNonConnectedPoints(points_coords, lung_segmentation, image_size, dilate_size_mm);\n number_of_found_points = numel(points_coords_new);\n if (number_of_found_points >= target_number_of_points) || (dilate_size_mm > max_dilate_size_mm)\n calculate_again = false;\n else\n dilate_size_mm = dilate_size_mm + 0.5;\n end\n \n end\n \n [x_all, y_all, z_all] = PointsToArrays(points_coords_new);\n maximum_fissureness_indices = MimImageCoordinateUtilities.FastSub2ind(image_size, x_all(:), y_all(:), z_all(:));\n ref_image(maximum_fissureness_indices) = 1;\n \nend\n\n\nfunction [rot_matrix, m] = GetRotationMatrix(indices, image_size)\n [x, y, z] = ind2sub(image_size, indices);\n X = [x, y, z]';\n\n % Find a suitable basis for these points using PCA\n m = mean(X, 2);\n em = X - m(:, ones(1, size(X, 2)));\n eigv = pts_pca(em);\n \n rot_matrix = eigv';\nend\n\n\nfunction [maximum_fissureness_indices, all_maxima] = SortIntoBins(x1, y1, candidate_indices, fissureness, bin_size, image_size)\n binx = floor(x1/bin_size);\n binx = binx - min(binx);\n biny = floor(y1/bin_size);\n biny = biny - min(biny);\n \n % bin is an array containing the bin to which each element of indices has been allocated\n bin = binx + (max(binx)+1)*biny;\n \n % Now sort the indices and bins by fissureness\n fissureness_at_indices = fissureness.RawImage(candidate_indices);\n \n is_maxima = GetMaxima(candidate_indices, bin, fissureness_at_indices, fissureness, image_size);\n all_maxima = candidate_indices(is_maxima);\n bin = bin(is_maxima);\n candidate_indices = candidate_indices(is_maxima);\n\n fissureness_at_indices = fissureness.RawImage(candidate_indices);\n \n [~, sorted_indices] = sort(fissureness_at_indices, 'descend');\n indices_sorted_by_fissureness = candidate_indices(sorted_indices);\n bins_sorted_by_fissureness = bin(sorted_indices);\n\n % Use unique to obtain the first indices corresponding to each bin - this\n % will be the point with the largest fissureness\n maximum_fissureness_indices = [];\n for selection_index = 1 : 1\n [~, bin_indices, ~] = unique(bins_sorted_by_fissureness, 'first');\n maximum_fissureness_indices = [maximum_fissureness_indices; indices_sorted_by_fissureness(bin_indices)];\n \n bins_sorted_by_fissureness(bin_indices) = [];\n indices_sorted_by_fissureness(bin_indices) = [];\n end\n \n maximum_fissureness_indices = maximum_fissureness_indices(fissureness.RawImage(maximum_fissureness_indices) > 0);\n\nend\n\nfunction is_maxima = GetMaxima(candidate_indices, bin, fissureness_at_indices, fissureness, image_size)\n bin_allocation = zeros(image_size, 'int32');\n bin_allocation(candidate_indices) = bin;\n \n [linear_offsets, ~] = MimImageCoordinateUtilities.GetLinearOffsets(image_size);\n neighbours = repmat(int32(candidate_indices), 1, 6) + repmat(int32(linear_offsets), length(candidate_indices), 1);\n fissureness_neighbours = fissureness.RawImage(neighbours);\n bins_neighbours = bin_allocation(neighbours);\n bins_match = bins_neighbours == repmat(bin', 1, 6);\n fissureness_centre = repmat(fissureness_at_indices, 1, 6);\n \n % Force neighbouring points in different bins to have a lower fissureness\n fissureness_neighbours(~bins_match) = fissureness_centre(~bins_match) - 1;\n fissureness_less = fissureness_neighbours < fissureness_centre;\n sums = sum(fissureness_less, 2);\n is_maxima = sums == 6;\nend\n\n\nfunction points_coords = RemoveNonConnectedPoints(points_coords, template_image, image_size, dilate_size_mm)\n voxel_volume = prod(template_image.VoxelSize);\n min_component_size_mm3 = 300;\n min_component_size_voxels = round(min_component_size_mm3/voxel_volume);\n\n \n image_mask = false(image_size);\n indices = sub2ind(image_size, points_coords(:,1), points_coords(:,2), points_coords(:,3));\n image_mask(indices) = true;\n \n tci = template_image.BlankCopy;\n tci.ChangeRawImage(image_mask);\n tci.BinaryMorph(@imdilate, dilate_size_mm);\n connected_image = tci.RawImage;\n \n connected_components = bwconncomp(connected_image, 26);\n num_components = connected_components.NumObjects;\n for component = 1 : num_components\n pixels = connected_components.PixelIdxList{component};\n if length(pixels) < min_component_size_voxels\n connected_image(pixels) = false;\n end\n end\n image_mask = image_mask & connected_image;\n indices = find(image_mask(:));\n [i2_coords, j2_coords, k2_coords] = ind2sub(image_size, indices);\n points_coords = ArraysToPoints(i2_coords, j2_coords, k2_coords);\nend\n\n\nfunction points = ArraysToPoints(i, j, k)\n points = [i(:), j(:), k(:), ones(size(i(:)))];\nend\n\n\nfunction [is, js, ks] = PointsToArrays(points)\n is = points(:, 1);\n js = points(:, 2);\n ks = points(:, 3);\nend\n", "meta": {"author": "tomdoel", "repo": "pulmonarytoolkit", "sha": "09688a006d548fb85795df0338d1ed4f4a010fb9", "save_path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit", "path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit/pulmonarytoolkit-09688a006d548fb85795df0338d1ed4f4a010fb9/Library/Lobes/PTKGetMaxFissurePoints.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.3756611517523898}} {"text": "% compute the source zones for landers\n\nreport_this_filefun(mfilename('fullpath'));\n\n% compute the source zones for landers\n\n% define Input parameters\nif ~exist('nb', 'var'); nb = 10; end\nif ~exist('tmin1', 'var'); tmin1 = 0.05; end\nif ~exist('tpre', 'var'); tpre = 30; end\nif ~exist('Tobs', 'var'); Tobs = 30; end\nif ~exist('prol', 'var'); prol = 0.5; end\nif isempty(storedcat); storedcat=a; end\n\n\ndef = {num2str(nb),num2str(tmin1),num2str(tpre),num2str(Tobs), num2str(prol)};\n\ntit ='Hazard analysis input parameters';\nprompt={ 'Number of source zones',...\n 'Minimum Time (tmin1) [days]',...\n 'Prediction Time (tpre) [days]',...\n 'Data period considered (Tobs) [days] ',...\n 'Probability level (prol)',...\n };\n\n\nni2 = inputdlg(prompt,tit,1,def);\n\nl = ni2{1}; nb= str2double(l);\nl = ni2{2}; tmin1= str2double(l);\nl = ni2{3}; tpre= str2double(l);\nl = ni2{4}; Tobs = str2double(l);\nl = ni2{5}; prol= str2double(l);\n\ntlen = Tobs;\nl=storedcat.Date < min(maepi.Date) + days(Tobs);\na=storedcat.subset(l);\nda = []; anz = [];\nB = [];\ndt = 1;\nupdate(mainmap())\n\ncd /home2/stefan/ZMAP/aspar\nfid2 = fopen('sourczones.txt','w');\n\nl1 = [];\n\nfor kk = 1:nb-1\n l1 = [l1 prctile2(a.Latitude,kk*100/nb)];\nend\n\nbo = [34.35 l1 34.88 ];\nfor ii = 1:length(bo)-1\n l = a.Latitude >= bo(ii) & a.Latitude < bo(ii+1);\n figure_w_normalized_uicontrolunits(map)\n hold on\n plot(a(l,1),a(l,2),'k+')\n\n b1 = prctile2(a(l,1),25);\n b2 = prctile2(a(l,1),75);\n plot(b1,bo(ii),'+r','Markersize',12)\n plot(b2,bo(ii),'+r','Markersize',12)\n plot(b1,bo(ii+1),'+r','Markersize',12)\n plot(b2,bo(ii+1),'+r','Markersize',12)\n drawnow\n\n newt2 = a.subset(l);\n calcp\n B = [B ; b1 bo(ii) b2 bo(ii)];\n\n anz = [];\n for m2 = 4.25:0.5:6.25\n M2 = maepi(1,6) - m2;\n t0 = days(max(a.Date) - min(maepi));\n pla = 0; pla2 = 0;\n\n for t = t0:dt:t0+tpre\n pla = pla + (10^(A + bv*(M2)) * (t + c)^(-p)) *dt;\n pla2 = pla2 + (10^(A + bv*(M2-0.5)) * (t + c)^(-p)) *dt;\n end\n\n %fac = length(a(l,1))/a.Count\n anz = [anz ; m2+0.25 (pla-pla2)/tpre];\n\n end\n\n % write info to file\n s = ['0 1. -1 zn035.00']; s = s';\n fprintf(fid2,'%s\\n',s);\n s = ['2 1 1']; s = s';\n fprintf(fid2,'%s\\n',s);\n s = [num2str(-b1,5) ' ' num2str(bo(ii)) ' ' num2str(-b2,5) ' ' num2str(bo(ii))]; s = s';\n fprintf(fid2,'%s\\n',s);\n s = [num2str(-b1,5) ' ' num2str(bo(ii+1)) ' ' num2str(-b2,5) ' ' num2str(bo(ii+1))]; s = s';\n fprintf(fid2,'%s\\n',s);\n fprintf(fid2,'%7.6f ',anz(:,2));\n fprintf(fid2,'\\n');\n fprintf(fid2,'\\n');\n fprintf(fid2,'%3.2f ',anz(:,1));\n fprintf(fid2,'\\n');\nend\n\nfclose(fid2)\n\n%return\ncd /home2/stefan/ZMAP/aspar\ndo = [' ! cat head5.txt | sed -e\"s/sub1/' num2str(prol) ' 1 ' num2str(tpre) '/\" > head2.txt ' ]; eval(do)\ndo = [' ! cat head2.txt sourczones.txt tail.txt > /home2/stefan/srisk/myrisk.inp']; eval(do)\ncd /home2/stefan/srisk/\n\ndo = [ '! /nfs/alaska/home2/stefan/srisk/seis4b.exe myrisk.inp myrisk.out f2 f3' ]; eval(do)\ndo = [' !cat myrisk.out | grep -e \"LAT \" -e \"' num2str(tpre) ' YE\" > tmp2 ']; eval(do)\ntry\n condata2\ncatch ME\n error_handler(ME, @do_nothing);\nend\n\n[X2,Y2] = meshgrid((-116.8:0.02:-115.7),(33.92:0.01:35.3));\n\n\nZ = griddata(-da(:,1),da(:,2),da(:,3),X2,Y2,'linear');\nfigure\n\naxes('pos',[0.05 0.1 0.4 0.7])\npcolor(X2,Y2,Z);\nset(gca,'TickDir','out');\ncolorbar; shading flat\nhold on\nshading interp\noverlay\n[ca1, ca2] = caxis;\n\ncd /home2/stefan/ZMAP\n\nmati = decyear(min(maepi.Date));\nl = obs(:,3) > mati + tlen/365 & obs(:,3) < mati+ tlen/365 + tpre/365;\nb = obs(l,:);\nl = b(:,6) > 3;\nb = b(l,:);\n\nve = [];dx = 0.02; dy = 0.02\n\nfor x = -116.8:dx:-115.7\n for y = 33.92:dy:35.3\n ve = [ ve ; x y ];\n end\nend\n\nle = length(ve);\nY0 = zeros(le,1);\n\n\nfor i = 1:length(b)\n di2 = deg2km((distance(ve(:,2),ve(:,1),repmat(b(i,2),le,1),repmat(b(i,1),le,1))));\n R = di2;\n r = sqrt(R.^2 + 5.57^2);\n M = b(i,6);\n Y = -0.136 + 0.229*(M-6) - 0.778 * log10(r) + 0.161*1 ;\n Y = 10.^Y;\n c = [Y , Y0];\n mapga = max(c');\n Y0 = mapga';\nend\n\nmapga = mapga';\n\nl1 = length(-116.8:dx:-115.7);\nl2 = length(33.92:dy:35.3);\n\naxes('pos',[0.55 0.1 0.4 0.7])\nre = reshape(mapga,l2,l1);\nrey = reshape(ve(:,2),l2,l1);\nrex = reshape(ve(:,1),l2,l1);\npcolor(rex,rey,re);\nset(gca,'YTicklabels',[],'TickDir','out');\ncaxis([ca1 ca2]);\nshading interp\n\ncolorbar;\noverlay\nhold on\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/deleteme/hectorhaz2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.734119526900183, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.37566115175238973}} {"text": "filename='Gripping_tetrahedra_coarse';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'nonadjoint_compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\nconstraint_case = 'INEQUALITY';\noptimizer = 'MMA'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.4;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Gripping/GrippingTetrahedraCoarse_Case_3_1_2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3756611457990203}} {"text": "function plotAbsolute(simOutputArray, Xref)\n% plotAbsolute Plot absolute position and velocity from simulation output\n% This function plots the absolute position and velocity of the ACC\n% vehicle as well as the tracking vehicle for all the simulation\n% cases.\n%\n% Author : Ajinkya Khade, askhade@ncsu.edu\n\n% List of y-axis labels for the 2 subplots\nylabelArray = {'Absolute Position (m)', 'Absolute Velocity (m/s)'};\n\n% List of titles for the 2 subplots\ntitleArray = {'(a)', '(b)', '(c)', '(d)'};\n\n% List of line colors to be used for the different simulation cases\nlineColorArray = {'k', 'b', 'r', 'm'};\n\n% initializing array to store plot handles\nh = zeros(2, length(simOutputArray));\n\n% empty cell array to store legend entries\nlegendLog = {};\n\nfigure('units','normalized','outerposition',[0 0 1 1])\n\n% plotting data for each simulation object stored in array\nfor i = 1:length(simOutputArray)\n \n tplot = 0:simOutputArray(i).ts:simOutputArray(i).tsim; % Array containing simulation time steps\n Nsim = floor(simOutputArray(i).tsim/simOutputArray(i).ts) + 1; % Number of time steps in simulation\n\n % calculating absolute position and velocity\n yplot = simOutputArray(i).empc(1:2,:) + Xref(1:2,1:end-1); \n yplot(1,:) = yplot(1,:) - simOutputArray(i).sivd;\n\n % Searching for point where relative distance becomes\n % positive, indicating a collision\n tcInd = find((simOutputArray(i).empc(1,:) - simOutputArray(i).sivd) > 0.0001, 1);\n \n % Setting point of collision to end point - this is just to prevent\n % errors because of the way the code works\n if isempty(tcInd)\n tcInd = Nsim;\n end\n \n % plotting position and velocity on different subplots\n for subplotNum = 1:2\n subplot(2,1,subplotNum)\n\n hold on; grid on;\n\n h(subplotNum,2*i-1) = plot(tplot(1:tcInd-1), yplot(subplotNum,1:tcInd-1),'LineStyle', '-', 'Color', lineColorArray{i});\n h(subplotNum,2*i) = plot(tplot(1:tcInd-1), Xref(subplotNum,1:tcInd-1),'LineStyle', '--', 'Color', lineColorArray{i});\n \n % if collision is detected, use different line styles before and\n % after collision\n if tcInd < Nsim\n plot(tplot(tcInd), yplot(subplotNum,tcInd), 'xk','MarkerSize', 12);\n plot(tplot(tcInd), Xref(subplotNum,tcInd), 'xk','MarkerSize', 12);\n plot(tplot(tcInd+1:end), yplot(subplotNum,tcInd+1:end), 'LineStyle', '-.', 'Color', lineColorArray{i});\n plot(tplot(tcInd+1:end), Xref(subplotNum,tcInd+1:end-1),'LineStyle', ':', 'Color', lineColorArray{i});\n end\n\n hold off\n\n xlabel('Time (s)', 'FontSize', 12);\n ylabel(ylabelArray{subplotNum}, 'FontSize', 12);\n title ( titleArray{subplotNum}, 'FontSize', 14);\n \n end\n \n legendLog = [legendLog, ['ACC vehicle - ', simOutputArray(i).displayname], ['Target vehicle - ', simOutputArray(i).displayname]];\n \nend\n\n% Adding legend entries\nfor subPlotNum = 1:2\n legend(h(subPlotNum,:), legendLog);\nend\n\nend", "meta": {"author": "ajinkya-khade", "repo": "ACC_Vehicle_MPC", "sha": "4c5f643977ac417e8186f347bdde4bfff2a33d84", "save_path": "github-repos/MATLAB/ajinkya-khade-ACC_Vehicle_MPC", "path": "github-repos/MATLAB/ajinkya-khade-ACC_Vehicle_MPC/ACC_Vehicle_MPC-4c5f643977ac417e8186f347bdde4bfff2a33d84/plotAbsolute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.596433160611502, "lm_q2_score": 0.6297746004557471, "lm_q1q2_score": 0.3756184554226671}} {"text": "function test_suite = test_index_unique\n% tests for cosmo_index_unique\n%\n% # For CoSMoMVPA's copyright information and license terms, #\n% # see the COPYING file distributed with CoSMoMVPA. #\n try % assignment of 'localfunctions' is necessary in Matlab >= 2016\n test_functions=localfunctions();\n catch % no problem; early Matlab versions can use initTestSuite fine\n end\n initTestSuite;\n\n\nfunction test_index_unique_()\n n=100;\n a=round(rand(n,1)*2)+1;\n b=round(rand(n,1)*2)+1;\n c=round(rand(n,1)*2)+1;\n\n abc=[a b c];\n [unq1,unused,idx1]=unique(abc,'rows');\n [idx2,vals2]=cosmo_index_unique({a,b,c});\n\n assertEqual(unq1,[vals2{:}]);\n\n nunq=size(unq1,1);\n assert(nunq==numel(idx2));\n\n % test some random elements\n rp=randperm(nunq);\n rp=rp(1:10);\n for j=rp\n assertEqual(find(idx1==j),idx2{j})\n end\n\n % test with some string labels\n labels={'a','bb','ccc'}';\n\n [idx3,vals3]=cosmo_index_unique({labels(a),b,labels(c)});\n assertEqual(idx3,idx2);\n v2to3={labels(vals2{1}),vals2{2},labels(vals2{3})};\n assertEqual(vals3,v2to3)\n\n % test with matrix input\n [idx4,vals4]=cosmo_index_unique(abc);\n assertEqual(idx4,idx2);\n assertEqual(vals4,[vals2{:}]);\n\n % test vector input\n rp=randperm(10);\n [idx5,vals5]=cosmo_index_unique(rp+20);\n assertEqual(idx5,{1});\n assertEqual(vals5,rp+20);\n\n [idx6,vals6]=cosmo_index_unique(rp'+20);\n assertEqual(cell2mat(idx6(rp))',1:numel(rp));\n assertEqual(vals6,(1:numel(rp))'+20);\n\n % test empty input\n\n % test wrong inputs\n n=100;\n a=round(rand(n,1)*2)+1;\n b=round(rand(n,1)*2)+1;\n c=round(rand(n,1)*2)+1;\n\n abc=[a b c];\n [unq1,unused,idx1]=unique(abc,'rows');\n [idx2,vals2]=cosmo_index_unique({a,b,c});\n\n assertEqual(unq1,[vals2{:}]);\n\n nunq=size(unq1,1);\n assert(nunq==numel(idx2));\n\n % test some random elements\n rp=randperm(nunq);\n rp=rp(1:10);\n for j=rp\n assertEqual(find(idx1==j),idx2{j})\n end\n\n % test with some string labels\n labels={'a','bb','ccc'}';\n\n [idx3,vals3]=cosmo_index_unique({labels(a),b,labels(c)});\n assertEqual(idx3,idx2);\n v2to3={labels(vals2{1}),vals2{2},labels(vals2{3})};\n assertEqual(vals3,v2to3)\n\n % test with matrix input\n [idx4,vals4]=cosmo_index_unique(abc);\n assertEqual(idx4,idx2);\n assertEqual(vals4,[vals2{:}]);\n\n % test vector input\n rp=randperm(10);\n [idx5,vals5]=cosmo_index_unique(rp+20);\n assertEqual(idx5,{1});\n assertEqual(vals5,rp+20);\n\n [idx6,vals6]=cosmo_index_unique(rp'+20);\n assertEqual(cell2mat(idx6(rp))',1:numel(rp));\n assertEqual(vals6,(1:numel(rp))'+20);\n\n % test empty input\n\n % test wrong inputs\n aet=@(x)assertExceptionThrown(@()cosmo_index_unique(x),'');\n aetp=@(x,m)assertExceptionThrown(@()cosmo_index_unique(x),m);\n aet({[1,2],[3]});\n aet({[1,2],'a'});\n\n if cosmo_wtf('is_matlab')\n v=cosmo_wtf('version');\n is_prior_to_2012b=str2num(v(1))<=7;\n\n if is_prior_to_2012b\n id_different_classes='MATLAB:CELL:UNIQUE:InputClass';\n else\n id_different_classes='MATLAB:UNIQUE:InputClass';\n end\n else\n id_different_classes='';\n end\n aetp({[1,2],{1,2}},id_different_classes);\n aet(ones([2 2 2]));\n\n\nfunction test_unique_with_nans\n n_rows_half=100+ceil(rand()*20);\n %n_rows_half=2;\n n_rows=n_rows_half*2;\n x=ceil(rand(n_rows,2)*sqrt(n_rows_half));\n\n rp=get_non_identity_randperm(n_rows);\n\n rp1=rp(1:n_rows_half);\n rp2=rp(n_rows_half+(1:n_rows_half));\n\n % first column, half of the rows become NaN\n x(rp1,1)=NaN;\n x(rp1,2)=1:n_rows_half;\n x(rp2,1)=1:n_rows_half;\n x(rp2,2)=1:n_rows_half;\n\n\n rp_y=get_non_identity_randperm(n_rows);\n\n y=x(rp_y,:);\n\n % test with numeric input\n [x_idx,x_unq]=cosmo_index_unique(x);\n [y_idx,y_unq]=cosmo_index_unique(y);\n\n assertFalse(isequal(x_unq,y_unq));\n % due to NaNs, the indices must be different\n assertFalse(isequal([x_idx{:}],rp_y([y_idx{:}])));\n\n % test with cell input\n [xx_idx,xx_unq]=cosmo_index_unique({x(:,1),x(:,2)});\n [yy_idx,yy_unq]=cosmo_index_unique({y(:,1),y(:,2)});\n\n assertFalse(isequal(xx_unq,yy_unq));\n % due to NaNs, the indices must be different\n assertFalse(isequal([xx_idx{:}],rp_y([yy_idx{:}])));\n\n\nfunction test_index_unique_empty()\n empty_args={{},{[],{}},{[]},{{},{}}};\n for k=1:numel(empty_args)\n empty_arg=empty_args{k};\n\n [idxs,unq]=cosmo_index_unique(empty_arg);\n assertTrue(iscell(idxs));\n assertTrue(numel(idxs)==1);\n assertEqual(numel(unq),numel(empty_arg));\n assertTrue(all(cellfun(@isempty,unq)));\n end\n\n\nfunction rp=get_non_identity_randperm(n)\n while true\n rp=randperm(n);\n if ~isequal(rp,1:n)\n break;\n end\n end\n", "meta": {"author": "CoSMoMVPA", "repo": "CoSMoMVPA", "sha": "5de75a1b4bef89b082d39d69e2b99d7f894ad717", "save_path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA", "path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA/CoSMoMVPA-5de75a1b4bef89b082d39d69e2b99d7f894ad717/tests/test_index_unique.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6297746143530797, "lm_q1q2_score": 0.3756184546761985}} {"text": "function g = cell2mat(f)\n%CELL2MAT Convert an array of CHEBTECH objects into an array-valued CHEBTECH.\n% G = CELL2MAT(F) converts the CHEBTECH array F into a single array-valued\n% CHEBTECH G. F should be a vector array (i.e., not a matrix).\n%\n% Example:\n% f = chebtech.constructor(@sin);\n% g = chebtech.constructor(@cos);\n% h = cell2mat([f g]);\n%\n% See also MAT2CELL.\n%\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% TODO: This function is probably not needed anymore.\n\n% Return an empty result:\nif ( isempty(f) || numel(f) == 1 )\n g = f;\n return\nend\n\n% Extract the coeffs from each of the CHEBTECH objects:\ncoeffs = { f.coeffs }; \n\n% These should all have the same length...\nlengths = cellfun(@(x) size(x, 1), coeffs);\nminlength = min(lengths);\nmaxlength = max(lengths);\n\n% If not, then prolong and get the new values:\nif ( minlength ~= maxlength )\n for k = 1:numel(f)\n f(k) = prolong(f(k), maxlength);\n end\n coeffs = { f.coeffs };\nend\n\n% Append new data to an empty CHEBTECH:\ng = f.make(); % Make an empty CHEBTECH.\ng.ishappy = min([f.ishappy]);\ng.coeffs = cell2mat(coeffs);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebtech/cell2mat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044135, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3756184505317836}} {"text": "function draw_shape(x, y, color)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Draw face given x, y\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% inverse y for better visual\n\nbbox = getbbox([x y]);\n\nradius = bbox(4) / 20;\n\nif 1\n %hold on;\n \n n = size(x,1);\n \n for i = 1 : n\n \n r = x(i) - radius/2;\n c = y(i) - radius/2;\n \n rectangle('Position',[r,c,radius,radius],'Curvature',[1,1],...\n 'FaceColor',color);\n \n end\n \n %plot(x, y, color);\n %plot(x, y, [color '.']);\n \n %hold off;\nend\n\n", "meta": {"author": "tntrung", "repo": "sdm_face_alignment", "sha": "f546cbb1e77b8bad971e8c5914d2ca73e0bb9b67", "save_path": "github-repos/MATLAB/tntrung-sdm_face_alignment", "path": "github-repos/MATLAB/tntrung-sdm_face_alignment/sdm_face_alignment-f546cbb1e77b8bad971e8c5914d2ca73e0bb9b67/common/graphic/draw_shape.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.3756184505317836}} {"text": "%% Copyright (C) 2014, 2016, 2018-2019 Colin B. Macdonald\n%% Copyright (C) 2016 Lagu\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym imag (@var{z})\n%% Imaginary part of a symbolic expression.\n%%\n%% Examples:\n%% @example\n%% @group\n%% syms z\n%% imag(z)\n%% @result{} ans = (sym) im(z)\n%% @end group\n%%\n%% @group\n%% syms x real\n%% imag(x)\n%% @result{} ans = (sym) 0\n%% imag(1i*x)\n%% @result{} ans = (sym) x\n%% @end group\n%%\n%% @group\n%% imag([x sym(pi) + 6i 7 3i])\n%% @result{} ans = (sym) [0 6 0 3] (1\u00d74 matrix)\n%% @end group\n%% @end example\n%%\n%% @seealso{@@sym/real, @@sym/conj, @@sym/ctranspose}\n%% @end defmethod\n\n\nfunction y = imag(z)\n if (nargin ~= 1)\n print_usage ();\n end\n\n y = elementwise_op ('im', z);\n\nend\n\n\n%!assert (isequal (imag (sym (4) + 3i),3))\n\n%!test\n%! syms x y real\n%! z = x + 1i*y;\n%! assert (isequal (imag (z),y))\n\n%!test\n%! syms x y real\n%! Z = [4 x + 1i*y; 1i*y 4 + 3i];\n%! assert (isequal (imag (Z),[0 y; y 3]))\n\n%!test\n%! syms x real\n%! d = exp (x*i);\n%! assert (isequal (imag (d), sin (x)))\n\n%!test\n%! % round trip\n%! syms x\n%! d = 3 - 5i;\n%! f = imag (x);\n%! A = imag (d);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/imag.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6297746074044134, "lm_q1q2_score": 0.3756184505317836}} {"text": "function r = isintval(a)\n%ISINTVAL Returns 1 if a is intval\n%\n% r = isintval(a)\n%\n\n% written 09/02/00 S.M. Rump\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n r = logical(1);\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/intval/@intval/isintval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.712232184238947, "lm_q1q2_score": 0.37557179923191686}} {"text": "% op_CSImakeK0fid.m\n% Jamie Near & Sneha Senthil, Sunnybrook Research Insitute 2021.\n% \n% USAGE:\n% out=op_CSImakeK0fid(in,start,interval);\n% \n% DESCRIPTION:\n% Extract points with repeating periodic interval from a spatio-spectral \n% MRSI signal. This is useful for Rosette MRSI data, when we want to extract \n% the FIDs from the centre of k-space. \n% \n% INPUTS:\n% in = input MRSI data in matlab structure format.\n% start = The index of the first point to extract.\n% interval = The interval between subsequently extracted points.\n%\n% OUTPUTS:\n% out = Extracted FID. \n\nfunction out=op_CSImakeK0fid(in,start,interval);\n\n%extract the desired points;\nfids=in.data(start:interval:end,:,:,:);\n\n%recalculate the size;\nsz=size(fids);\n\n%remake the time vector:\nt=in.adcTime(start:interval:end);\n\n%dwelltime\ndwelltime=t(2)-t(1);\n\n%FILLING IN DATA STRUCTURE\nout=in;\nout.fids=fids;\nout.sz=sz;\nout.t=t; \nout.dwelltime=dwelltime;\nout.sw=1/dwelltime;\n\n\n%FILLING IN THE FLAGS\nout.flags=in.flags;\nout.flags.writtentostruct=1;\n", "meta": {"author": "CIC-methods", "repo": "FID-A", "sha": "c24da581e376f6eed66979dcc662ec26903a2eef", "save_path": "github-repos/MATLAB/CIC-methods-FID-A", "path": "github-repos/MATLAB/CIC-methods-FID-A/FID-A-c24da581e376f6eed66979dcc662ec26903a2eef/processingTools/MRSI/op_CSImakeK0fid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3755717992319168}} {"text": "%fill_prmm Compute the null-space and fill PRMM.\n%\n% Parameters:\n\nfunction [P,X, u1,u2, lambda, info] = fill_prmm(M, Idepths, central, ...\n opt, info)\n\n[NULLSPACE, result] = create_nullspace(M, Idepths, central, ...\n opt.create_nullspace);\n\ninfo.create_nullspace = opt.create_nullspace;\ninfo.sequence{end}.tried = result.tried;\ninfo.sequence{end}.tried_perc = result.tried/comb(size(M,2), 4) *100;\ninfo.sequence{end}.used = result.used;\ninfo.sequence{end}.used_perc = result.used/result.tried *100;\ninfo.sequence{end}.failed = result.failed;\ninfo.sequence{end}.size_nullspace = size(NULLSPACE);\n\nif opt.verbose\n disp(sprintf('Tried/used: %d/%d (%.1e %%/ %2.1f %%)', result.tried, ...\n result.used, info.sequence{end}.tried_perc, ...\n info.sequence{end}.used_perc));\n disp(sprintf('%d x %d'' is size of the nullspace', size(NULLSPACE,2), ...\n size(NULLSPACE,1))); end\n\n[m,n] = size(M); m = m/3;\n\nif size(NULLSPACE,2) == 0\n P = []; X = []; u1 = 1:m; u2 = 1:n; lambda=[];\nelse\n r = 4;\n [L, S] = nullspace2L(NULLSPACE, r, opt);\n clear NULLSPACE;\n\n if isempty(opt.create_nullspace), threshold = .01;\n else, threshold = opt.create_nullspace.threshold; end\n if svd_suff_data(S, r, threshold)\n if opt.verbose\n dS = diag(S); %disp(diag(S));\n fprintf(1,'Smallest 2r singular values:%s.\\n', sprintf(' %f', ...\n dS(end-2*r:end))); end\n [Mdepths, lambda] = L2depths(L, M, Idepths, opt); info.Mdepths = Mdepths;\n [P,X, u1b,u2] = approximate(Mdepths, r, L, opt);\n u1 = union(ceil(u1b/3),[]); killb = setdiff(k2i(u1),u1b);\n if ~isempty(killb), r1b = setdiff(1:3*m,u1b); kill = killb;\n for ib = killb(1:end-1), lower = find(killb > ib);\n if kill(lower(1)-1) < kill(lower(1)) - 1,\n kill(lower) = kill(lower) -1; end; end\n P = P(setdiff(1:length(r1b),kill),:);end\n lambda = lambda(setdiff(1:m,u1),setdiff(1:n,u2)); % to fit P*X\n else P=[]; X=[]; u1=1:m; u2=1:n; lambda=[]; end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [L,S] = nullspace2L(NULLSPACE, r, opt)\n% Compute the basis of MM (L) from the null-space.\n\nif opt.verbose, fprintf(1,'Computing the basis...'); tic; end\nif size(NULLSPACE,2) < 10*size(NULLSPACE,1) % orig:[A,S,U] = svd(NULLSPACE',0);\n [U,S,V] = svd(NULLSPACE);\nelse\n [U,SS] = eig(NULLSPACE*NULLSPACE');\n dSS = diag(SS); l = length(dSS);\n [sortdSS(l:-1:1),I] = sort(dSS); I(l:-1:1) = I; U = U(:,I);\n sortdSS = max(sortdSS,zeros(1,l)); sortdSS=sqrt(sortdSS);\n for i=1:l, S(i,i) = sortdSS(i); end\nend\n\nlenU = length(U);\nL = U(:,lenU+1-r:lenU);\nif opt.verbose, disp(['(' num2str(toc) ' sec)']); end\n\nfunction r = comb(n,k)\n\n% returns combination number n over k\n\nr=1;\nfor i=1:k\n r=r*(n-i+1)/i;\nend\n\nfunction y = svd_suff_data(S,r, threshold)\n\n% S is the singular value part of the svd of the nullspaces of the column\n% r-tuples. We'll want to be able to take the r least significant columns\n% of U. This is right because the columns of U should span the whole space\n% that M's columns might span. That is, M is FxP. The columns of U should\n% span the F-dimensional Euclidean space, since U is FxF. However, we want\n% to make sure that the F-r-1'th singular value of S isn't tiny. If it is,\n% our answer is totally unreliable, because the nullspaces of the column\n% r-tuples don't have sufficient rank. If this happens, it means that the\n% intersection of the column cross-product spaces is bigger than r-dimensional,\n% and randomly choosing an r-dimensional subspace of that isn't likely to\n% give the right answer.\n\nSnumcols = size(S,2);\nSnumrows = size(S,1);\nif (Snumrows == 0 | Snumcols + r < Snumrows | Snumrows <= r)\n y = 0;\nelse\n y = S(Snumrows-r,Snumrows-r) > threshold;\nend\n", "meta": {"author": "strawlab", "repo": "MultiCamSelfCal", "sha": "0a26c88c63d8513eab76553033a9a6fb15ba6575", "save_path": "github-repos/MATLAB/strawlab-MultiCamSelfCal", "path": "github-repos/MATLAB/strawlab-MultiCamSelfCal/MultiCamSelfCal-0a26c88c63d8513eab76553033a9a6fb15ba6575/MultiCamSelfCal/MartinecPajdla/fill_mm/fill_prmm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3755717992319168}} {"text": "function [nodes, edges, faces] = gcontour3d(img)\n%GCONTOUR3D Create contour graph of a 3D binary image.\n%\n%\n%\n% ---------\n%\n% author : David Legland \n% INRA - TPV URPOI - BIA IMASTE\n% created the 28/06/2004.\n%\n\nnodes = zeros([0 3]); % 3 coordinates vertices\nedges = zeros([0 2]); % first node and second nodes\nfaces = zeros([0 4]); % indices of 4 corners of each square face\n\nD1 = size(img, 1);\nD2 = size(img, 2);\nD3 = size(img, 3);\n\n% first direction for image\nfor y = 1:D2 \n for z = 1:D3\n % find transitions between the two phases\n ind = find(img(1:D1-1, y, z)~=img(2:D1, y, z));\n \n % process each transition in direction 1\n for i2 = 1:length(ind)\n \n % coordinates of each node\n n1 = [ind(i2)+.5 y-.5 z-.5];\n n2 = [ind(i2)+.5 y-.5 z+.5];\n n3 = [ind(i2)+.5 y+.5 z+.5];\n n4 = [ind(i2)+.5 y+.5 z-.5];\n \n % add the face (and edges) with the 4 given nodes\n [nodes, edges, faces] = addFace(nodes, edges, faces, [n1; n2; n3; n4]);\n end \n end\nend\n\n% second direction for image\nfor x=1:D1 \n for z=1:D3\n % find transitions between the two phases\n ind = find(img(x, 1:D2-1, z)~=img(x, 2:D2, z));\n \n % process each transition in direction 1\n for i2 = 1:length(ind)\n \n % coordinates of each node\n n1 = [x-.5 ind(i2)+.5 z-.5];\n n2 = [x-.5 ind(i2)+.5 z+.5];\n n3 = [x+.5 ind(i2)+.5 z+.5];\n n4 = [x+.5 ind(i2)+.5 z-.5]; \n \n % add the face (and edges) with the 4 given nodes\n [nodes, edges, faces] = addFace(nodes, edges, faces, [n1; n2; n3; n4]);\n end \n end\nend\n\n% third direction for image\nfor x=1:D1 \n for y=1:D2\n % find transitions between the two phases\n ind = find(img(x, y, 1:D3-1)~=img(x, y, 2:D3));\n \n % process each transition in direction 1\n for i2 = 1:length(ind)\n \n % coordinates of each node\n n1 = [x-.5 y-.5 ind(i2)+.5];\n n2 = [x-.5 y+.5 ind(i2)+.5];\n n3 = [x+.5 y+.5 ind(i2)+.5];\n n4 = [x+.5 y-.5 ind(i2)+.5];\n \n % add the face (and edges) with the 4 given nodes\n [nodes, edges, faces] = addFace(nodes, edges, faces, [n1; n2; n3; n4]);\n end \n end\nend\n\n\n\nreturn;\n\n\n\nfunction [nodes, edges, faces] = addFace(nodes, edges, faces, faceNodes)\n% add given nodes and coresponding face to the graph.\n\n\nn1 = faceNodes(1,:);\nn2 = faceNodes(2,:);\nn3 = faceNodes(3,:);\nn4 = faceNodes(4,:);\n\n% search indices of each nodes\nind1 = find(ismember(nodes, n1, 'rows')); \nind2 = find(ismember(nodes, n2, 'rows'));\nind3 = find(ismember(nodes, n3, 'rows')); \nind4 = find(ismember(nodes, n4, 'rows'));\n\n% if nodes are not in the list, we add them\nif isempty(ind1)\n nodes = [nodes; n1];\n ind1 = size(nodes, 1);\nend\nif isempty(ind2)\n nodes = [nodes; n2];\n ind2 = size(nodes, 1);\nend\nif isempty(ind3)\n nodes = [nodes; n3];\n ind3 = size(nodes, 1);\nend\nif isempty(ind4)\n nodes = [nodes; n4];\n ind4 = size(nodes, 1);\nend\n\n% add current face to the list\nfaces(size(faces, 1)+1, 1:4) = [ind1(1) ind2(1) ind3(1) ind4(1)];\n\n% create edges of the face \n% (first index is the smallest one, by convention)\ne1 = [min(ind1, ind2) max(ind1, ind2)];\ne2 = [min(ind2, ind3) max(ind2, ind3)];\ne3 = [min(ind3, ind4) max(ind3, ind4)];\ne4 = [min(ind4, ind1) max(ind4, ind1)];\n\n % if nodes are not in the list, we add them\nif isempty(find(ismember(edges, e1, 'rows'), 1))\n edges = [edges; e1];\nend\nif isempty(find(ismember(edges, e2, 'rows'), 1))\n edges = [edges; e2];\nend\nif isempty(find(ismember(edges, e3, 'rows'), 1))\n edges = [edges; e3];\nend\nif isempty(find(ismember(edges, e4, 'rows'), 1))\n edges = [edges; e4];\nend\n", "meta": {"author": "rpng", "repo": "lips", "sha": "a97157e586b509c9c2e3e01e64e4347f36d0b63e", "save_path": "github-repos/MATLAB/rpng-lips", "path": "github-repos/MATLAB/rpng-lips/lips-a97157e586b509c9c2e3e01e64e4347f36d0b63e/lips_matlab/matlab/functions/matGeom/graphs/gcontour3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3754011155526398}} {"text": "function [y, x] = max(f, flag, dim)\n%MAX Maximum value of a CHEBFUN.\n% MAX(F) and MAX(F, 'global') return the maximum value of the CHEBFUN F.\n%\n% [Y, X] = MAX(F) returns also a point X such that F(X) = Y.\n%\n% [Y, X] = MAX(F, 'local') returns not just the global maximum value but all\n% of the local maxima.\n%\n% If F is complex-valued, absolute values are taken to determine the maxima,\n% but the resulting values correspond to those of the original function.\n%\n% If F is array-valued, then the columns of X and Y correspond to the columns\n% of F. NaNs are used to pad Y and X when the 'local' flag is used and the\n% columns are not of the same length.\n%\n% H = MAX(F, G), where F and G are CHEBFUNs defined on the same domain,\n% returns a CHEBFUN H such that H(x) = max(F(x), G(x)) for all x in the\n% domain of F and G. Alternatively, either F or G may be a scalar.\n%\n% MAX(F, [], DIM) computes the maximum of the CHEBFUN F in the dimension DIM.\n% If DIM = 1 and F is a column CHEBFUN or DIM = 2 and F is a row CHEBFUN, this\n% is equivalent to MAX(F). Otherwise, MAX(F, [], DIM) returns a CHEBFUN which\n% is the maximum across the discrete dimension of F. For example, if F is a\n% quasimatrix with two columns, MAX(F, [], 2) = MAX(F(:,1), F(:,2)).\n%\n% See also MIN, MINANDMAX, ROOTS.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Trivial empty case.\nif ( isempty(f) )\n x = [];\n y = [];\n return\nend\n\nif ( nargin == 3 )\n if ( ~any(dim == [1 2]) )\n error('CHEBFUN:CHEBFUN:max:badDim', ...\n 'DIM input to CHEBFUN MAX must be 1 or 2.');\n end\n\n if ( dim ~= 1 + f(1).isTransposed )\n % Take max across discrete dimension of a quasimatrix:\n f = cheb2cell(f);\n y = -realmax;\n for k = 1:numel(f)\n y = maxOfTwoChebfuns(y, f{k});\n end\n y = merge(y);\n return\n end\nend\n\nif ( (nargin > 2) && isempty(flag) )\n % MAX(F, [], 1).\n flag = 'global';\nend\n\nif ( (nargin == 1) || strcmp(flag, 'global') ) \n % MAX(F) or MAX(F, 'global')\n [y, x] = globalMax(f); \n \nelseif ( isa(flag, 'chebfun') || isnumeric(flag) )\n % MAX(F, G)\n y = maxOfTwoChebfuns(f, flag);\n \nelseif ( strcmp(flag, 'local') )\n % MAX(F, 'local')\n [y, x] = localMax(f);\n \nelse\n error('CHEBFUN:CHEBFUN:max:flag', 'Unrecognized flag.');\n \nend\n\nend\n\n%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% GLOBAL MAXIMUM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [y, x] = globalMax(f)\n\n% Call MINANDMAX():\n[y, x] = minandmax(f);\n\n% Extract the maximum:\ny = y(2,:);\nx = x(2,:);\n\nend\n\n%% %%%%%%%%%%%%%%%%%%%%%%%%%%%% LOCAL MAXIMA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [y, x] = localMax(f)\n\n% Call MINANDMAX():\n[y, x] = minandmax(f, 'local');\n\n% Determine which are maxima.\n\nends = f(1).domain([1, end]).'; % Endpoints of the domain are special.\nf = mat2cell(f); % Convert f into a cell of scalar-valued CHEBFUNs.\n\n% Loop over the FUNs:\nfor k = 1:numel(f)\n % Compute 1st and 2nd derivatives.\n dfk = diff(f{k});\n dfk2 = diff(dfk);\n\n % For interior extrema, look at 2nd derivative:\n maximaLoc = feval(diff(f{k}, 2), x(:,k)) < 0;\n\n % For end-points, look at 1st derivative:\n dfk_ends = feval(dfk, ends);\n endptMaxLoc = dfk_ends.*[1, -1]' < 0;\n\n % If 1st derivative is small at an endpoint, assume it's zero and try to\n % use 2nd derivative to determine if it's a minimum:\n %\n % [TODO]: What if the 2nd derivative is zero, so that rounding error\n % precludes us from accurately determining the sign?\n smallEndDer = abs(dfk_ends) < 1e3*vscale(dfk)*eps;\n endptMaxLoc(smallEndDer) = feval(dfk2, ends(smallEndDer)) < 0;\n\n maximaLoc(1) = endptMaxLoc(1);\n maximaLoc(x(:,k) == ends(2)) = endptMaxLoc(2);\n\n % Set points corresponding to local maxima to NaN:\n y(~maximaLoc,k) = NaN;\n x(~maximaLoc,k) = NaN;\n\n % Sort the result\n [x(:,k), maximaLoc] = sort(x(:,k));\n y(:,k) = y(maximaLoc,k);\nend\n\n% Remove any rows which contain only NaNs.\nx(all(isnan(x), 2),:) = []; \ny(all(isnan(y), 2),:) = [];\n\nend\n\n%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% MAX(F, G) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction h = maxOfTwoChebfuns(f, g)\n% Return the function h(x) = max(f(x), g(x)) for all x. \n\n% If one is complex, use abs(f) and abs(g) to determine which function values to\n% keep. (experimental feature)\nif ( isreal(f) && isreal(g) && (nargin < 3) )\n\tS = sign(f - g);\nelse\n\tS = sign(abs(f) - abs(g));\nend\n\n% Heaviside function (0 where f > g, 1 where f < g);\nH = 0.5*(S + 1);\nnotH = 0.5*(1 - S); % ~H.\n\n% Combine for output:\nh = H.*f + notH.*g;\n\n% [TODO]: Enforce continuity?\n\n% TODO: Why simplify?\n% Simplify:\nh = simplify(h);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/max.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3754011155526398}} {"text": "function [nlp] = updateDesiredGait(nlp, sys, target_gait)\n domains = sys.Gamma.Nodes.Domain;\n \n \n idx = [7:9, 12:14]; \n for j=1:numel(domains) %% HECK!!!!!!\n domain = domains{j};\n phase_idx = getPhaseIndex(nlp,sys.Gamma.Nodes.Name{j});\n for i = 1:nlp.Phase(phase_idx).NumNode\n x_star_val = target_gait(j).states.x(idx, i);\n dx_star_val = target_gait(j).states.dx(idx, i);\n% u_star_val = target_gait(j).inputs.u(:,i);\n updateCostProp(nlp.Phase(phase_idx), ['stateDeviation_', domain.Name], i, 'AuxData',...\n {{x_star_val, dx_star_val}});\n end\n end\n nlp.update();\nend\n", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/example/marlo/+trans_opt/updateDesiredGait.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37540110734995635}} {"text": "function B = multitransp(A, unused) %#ok\n% Transpose the matrix slices of an N-D array (no complex conjugate)\n%\n% function B = multitransp(A)\n%\n% If A is a 3-D array, then B is a 3-D array such that\n%\n% B(:, :, i) = A(:, :, i).'\n%\n% for each i. If A is an N-D array, then B is an N-D array with the slices\n% A(:, :, i, j, k, ...) transposed.\n%\n% This function is just a wrapper for pagetranspose, with a fallback call\n% to multitransp_legacy in case pagetranspose is not available.\n% If pagetranspose is available, it is better to call it directly.\n% Note that pagemtimes also allows to compute products with transposes\n% without explicitly transposing arrays.\n%\n% See also: multiprod multihconj multiscale multiskew multiskewh multitrace\n\n% This file is part of Manopt: www.manopt.org.\n% Original author: Nicolas Boumal, Aug. 12, 2021.\n% Contributors: Xiaowen Jiang\n% Change log: \n%\n% Aug. 12, 2021 (NB):\n% Matlab R2020b introduced a built-in function pagetranspose which\n% does essentially everything we ever needed to do with multitransp\n% in Manopt. Accordingly, multitransp became a wrapper for\n% pagetranspose, and the old code for multitransp remains available\n% as multitransp_legacy.\n\n assert(nargin == 1, ...\n 'The new multitransp only takes one input. Check multitransp_legacy.');\n\n if exist('pagetranspose', 'file') % Added to Matlab R2020b\n B = pagetranspose(A);\n else\n % warning('manopt:multi', ...\n % ['Matlab R2020b introduced pagetranspose.\\n' ...\n % 'Calling the old code multitransp_legacy instead.\\n' ...\n % 'To disable this warning: warning(''off'', ''manopt:multi'')']);\n B = multitransp_legacy(A);\n end\n\nend\n", "meta": {"author": "NicolasBoumal", "repo": "manopt", "sha": "b8b54a6af8b965f7ae572972ba0d15787427744b", "save_path": "github-repos/MATLAB/NicolasBoumal-manopt", "path": "github-repos/MATLAB/NicolasBoumal-manopt/manopt-b8b54a6af8b965f7ae572972ba0d15787427744b/manopt/tools/multitransp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37540110734995635}} {"text": "function E =extA(A, c)\n%------------------------------------------------------------------------------\n%\n% Design and implementation by:\n% Dr. Paul M. de Zeeuw http://homepages.cwi.nl/~pauldz/\n% Last Revision: June 6, 1999.\n% (c) 1999-2002 Stichting CWI, Amsterdam\n%------------------------------------------------------------------------------\nE=extU(extD(extR(extL(A, c), c), c), c);\n%------------------------------------------------------------------------------\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13507-lisq-a-toolbox-for-the-lifting-scheme-on-2d-quincunx-grids/LISQ/extA.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37540110734995635}} {"text": "%% Testing SCIP Option Setting Methods\n% 17/5/15\nclc\nclear\n% Default Problem\na = 100;\nfun = @(x) a*(x(2) - x(1)^2)^2 + (1 - x(1))^2;\nlb = [-1.5; -1.5]; ub = [2;2]; x0 = [-2; 1]; \n%Convert to Ins List\nzs = zeros(size(x0));\nx = scipvar(size(x0));\nfs = fun(x); nl.obj_instr = fs.ins; nl.obj_val = fun(x0); nl.x0 = x0;\nopts = optiset('solver','scip');\n\n%% No scipopts Field\nsopts = [];\nsopts.maxiter = 1;\nsopts.display = 3;\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Not a cell array\nsopts.scipopts = 'a';\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Cell array of one column\nsopts.scipopts = {'a';1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Empty Name\nsopts.scipopts = {'',1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Empty Val (will skip it)\nsopts.scipopts = {'a',[]};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Unknown Option\nsopts.scipopts = {'limits/times',1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Wrong Datatype for Option\nsopts.scipopts = {'limits/time','a'};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Outside Option Limits\nsopts.scipopts = {'limits/time',-1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Bool Option logical\nsopts.scipopts = {'display/lpinfo',false};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Bool Option double\nsopts.scipopts = {'display/lpinfo',1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Char Option not char\nclc\nsopts.scipopts = {'lp/initalgorithm',1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Char Option not valid char\nclc\nsopts.scipopts = {'lp/initalgorithm','a'};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% Char Option \nclc\nsopts.scipopts = {'lp/initalgorithm','p'};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% String Option not string\nclc\nsopts.scipopts = {'nlp/solver',1};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% String Option unknown\nclc\nsopts.scipopts = {'nlp/solver','a'};\nscip([],zs,[],[],[],lb,ub,[],[],[],nl,sopts)\n\n%% opti_scipnl test\nclc\nfun = @(x) -x(1)*x(2)*x(3);\nnlcon = @(x) -x(1)^2 - 2*x(2)^2 - 4*x(3)^2 + 48;\ncl = 0;\ncu = inf;\nx0 = [1;1;1];\nopts = optiset('display','iter','solverOpts',scipset('scipopts',{'nlp/disable',true}));\nopti_scipnl(fun,[],[],[],[],[],nlcon,cl,cu,[],x0,opts);\n\n\n%% opti test\nclc\nfun = @(x) (x(1)-x(2))^2 + (x(3)-1)^2 + (x(4)-1)^4 + (x(5)-1)^6;\nnlcon = @(x) [x(1) + x(2) + x(3) + 4*x(4) - 7;\n x(3) + 5*x(5) - 6];\ncl = [0;0];\ncu = [0;0];\nx0 = [10;7;2;-3;0.8];\n\nsopts = scipset('scipopts',{'limits/solutions',1}); %find first feasible solution\nopts = optiset('solver','scip','display','iter','solverOpts',sopts);\nOpt = opti('fun',fun,'nl',nlcon,cl,cu,'x0',x0,'opts',opts)\n\n[x,f,e,i] = solve(Opt)\n\n\n\n%% MIQCQP1 [-2.5429] [non-convex]\nclc\n% Objective\nH = eye(2); f = [-2;-2];\n% Linear Constraints\nA = [-1 1; 1 3]; b = [2;5];\n% Quadratic Constraint\nQ = [1 0;0 1]; l = [0;-2];\nqrl = 3.5; qru = 5;\n% Bounds\nlb = [0;0]; ub = [40;inf];\n% Integrality\nxtype = 'IC';\n% Options\nsopts = scipset('scipopts',{'propagating/obbt/freq',1;...\n 'propagating/obbt/itlimitfactor',0;\n 'constraints/quadratic/maxproprounds',10;\n 'separating/maxrounds',20;\n 'limits/solutions',1});\nopts = optiset('solver','scip','display','iter','solverOpts',sopts); \n%Build & Solve\nOpt = opti('H',H,'f',f,'ineq',A,b,'qcrow',Q,l,qrl,qru,'bounds',lb,ub,'xtype',xtype,'opts',opts)\n[x,fval,exitflag,info] = solve(Opt)\n% Plot\nplot(Opt)\n\n%% Global Emphasis\nclc\nfun = @(x) -x(1)*x(2)*x(3);\nnlcon = @(x) -x(1)^2 - 2*x(2)^2 - 4*x(3)^2 + 48;\ncl = 0;\ncu = inf;\nx0 = [1;1;1];\n\nsopts = scipset('globalEmphasis','hardlp'); \nopts = optiset('solver','scip','display','iter','solverOpts',sopts);\nOpt = opti('fun',fun,'nl',nlcon,cl,cu,'x0',x0,'opts',opts)\n\n[x,f,e,i] = solve(Opt)\n\n%% Presolving Emphasis\nclc\nfun = @(x) -x(1)*x(2)*x(3);\nnlcon = @(x) -x(1)^2 - 2*x(2)^2 - 4*x(3)^2 + 48;\ncl = 0;\ncu = inf;\nx0 = [1;1;1];\n\nsopts = scipset('presolvingEmphasis','fast'); \nopts = optiset('solver','scip','display','iter','solverOpts',sopts);\nOpt = opti('fun',fun,'nl',nlcon,cl,cu,'x0',x0,'opts',opts)\n\n[x,f,e,i] = solve(Opt)\n\n\n%% Heuristics Emphasis\nclc\nfun = @(x) -x(1)*x(2)*x(3);\nnlcon = @(x) -x(1)^2 - 2*x(2)^2 - 4*x(3)^2 + 48;\ncl = 0;\ncu = inf;\nx0 = [1;1;1];\n\nsopts = scipset('heuristicsEmphasis','aggressive'); \nopts = optiset('solver','scip','display','iter','solverOpts',sopts);\nOpt = opti('fun',fun,'nl',nlcon,cl,cu,'x0',x0,'opts',opts)\n\n[x,f,e,i] = solve(Opt)\n\n%% Separating Emphasis\nclc\nfun = @(x) -x(1)*x(2)*x(3);\nnlcon = @(x) -x(1)^2 - 2*x(2)^2 - 4*x(3)^2 + 48;\ncl = 0;\ncu = inf;\nx0 = [1;1;1];\n\nsopts = scipset('separatingEmphasis','aggressive'); \nopts = optiset('solver','scip','display','iter','solverOpts',sopts);\nOpt = opti('fun',fun,'nl',nlcon,cl,cu,'x0',x0,'opts',opts)\n\n[x,f,e,i] = solve(Opt)\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/math/opti/Test Problems/Development/test_scip_opts.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.37540110734995635}} {"text": "function gescatter(filename,lon,lat,c,varargin)\n% GESCATTER - create a scatter plot in Google Earth\n%\n% GESCATTER(FILENAME,LON,LAT,C) - creates a .kml file that\n% displays colored circles at the locations specified by the \n% vectors LON and LAT similar to ML's builtin function, SCATTER.\n% The color of the circles is scaled relative to the\n% values provided in third input, C.\n%\n% OPTIONS AND SYNTAX - Optional inputs are entered as \n% property/value pairs. Valid optional properties are:\n%\n% GESCATTER(...,'colormap','hot') - uses Matlabs 'hot'\n% colormap instead of the default (jet). Also accepts function\n% handles (@hot), or custom colormaps (m x 3 matrices).\n%\n% GESCATTER(...,'clims',[low high]) - limit the color\n% values to a specified values (similar to CAXIS on a ML\n% figure). Clims should be supplied as a 2-element array.\n%\n% GESCATTER(...,'time',timevector) - assigns a time to each\n% point. The length of the timevector array should be the same\n% as LAT, LON, and C.\n%\n% GESCATTER(...,'scale',size) - scales the size of the dots in the\n% Google Earth file. Default value is 0.4.\n%\n% EXAMPLE\n%\n% %generate some data\n% x=(0:0.05:6*pi);\n% lon = -122.170087 + cos(x)*0.01;\n% lat = 37.455697 + x*0.001;\n%\n% %color the points according to their latitude\n% gescatter('foo.kml',lon,lat,lat)\n%\n% SEE ALSO scatter\n\n% A. Stevens @ USGS 3/04/2009\n% astevens@usgs.gov\n\n%default values\nclims=[min(c) max(c)];\ncmap=fliplr(jet);\nt=[];\nscale=0.5;\n\n\n%parse inputs and do some error-checking\nif nargin>0\n [m,n]=size(varargin);\n opts={'clims','time','scale','colormap'};\n for i=1:n;\n indi=strcmpi(varargin{i},opts);\n ind=find(indi==1);\n if isempty(ind)~=1\n switch ind\n case 1\n clims=varargin{i+1};\n if numel(clims)~=2\n error('Clims should be a two-element array.')\n end\n \n case 2\n t=varargin{i+1};\n if any(isnan(t))\n error('Time vector should not contain NaNs.')\n end\n if ~isnumeric(t)\n error('Time should be entered in ML Datenum format.')\n end\n case 3\n scale=varargin{i+1};\n case 4\n cmap=varargin{i+1};\n %check size of numeric colormap input\n if isa(cmap,'numeric')\n [m,n]=size(cmap);\n if n~=3\n error('Custom colormap must have 3 columns.')\n end\n cmap=fliplr(cmap);\n else\n %if standard colormap is supplied\n if isa(cmap,'function_handle')\n cmap= func2str(cmap); \n end\n cmap=fliplr(feval(cmap));\n end\n \n end\n end\n end\nend\n\n\n[pathstr,namer] = fileparts(filename);\n\n%get rid on nans\ngind=(isfinite(lon) & isfinite(lat) & isfinite(c));\nlon=lon(gind);\nlat=lat(gind);\nc=c(gind);\n\n\n%figure out the rgb colors of each value\ncvals=[-inf;linspace(clims(1),clims(2),...\n length(cmap(:,1))-2)';inf];\n[n,bin]=histc(c,cvals);\ncolors=cmap(bin,:);\n\n%convert to GE's hex format\nrgb=cellfun(@(x)(dec2hex(floor(x.*255),2)),...\n num2cell(colors),'uni',0);\n\n%write the GE file\nheader=['',...\n '',...\n '',namer,''];\nfooter='';\n\nh = waitbar(0,'Creating file, Please wait...');\nset(h,'name','Creating Google Earth file')\n\nfid = fopen(filename, 'wt');\nfprintf(fid, '%s \\n',header);\n\nfor i=1:length(lon)\n \n %create a style to hide each point in one document\n fprintf(fid,'%s \\n','');\n \n %define the point style\n fprintf(fid,'%s \\n','');\n \n %add the placemark\n fprintf(fid, '%s \\n','');\n fprintf(fid,'%s \\n','#cpoint');\n \n %create a simple description for each point\n fprintf(fid, '%s \\n','');\n fprintf(fid, '%s \\n',['

Filename: ',namer,'
']);\n fprintf(fid, '%s \\n',['

Value: ',sprintf('%.1f',c(i)),'
']);\n if ~isempty(t)\n fprintf(fid, '%s \\n',['Time (GMT): ',datestr(t(i)),'
']);\n end\n fprintf(fid, '%s \\n',']]>');\n \n \n fprintf(fid,'%s \\n','');\n fprintf(fid,'%s','');\n fprintf(fid, ' %.6f, %.6f, %.2f', [lon(i) lat(i) c(i)]);\n fprintf(fid,'%s \\n','');\n fprintf(fid,'%s \\n','');\n \n if ~isempty(t)\n fprintf(fid,'%s \\n','');\n fprintf(fid,'%s \\n',['',datestr(t(1),29),...\n 'T',datestr(t(1),13),'Z']);\n fprintf(fid,'%s \\n',['',datestr(t(end),29),...\n 'T',datestr(t(end),13),'Z']);\n fprintf(fid,'%s \\n','');\n end\n \n \n fprintf(fid, '%s \\n','');\n \n waitbar(i/length(lon),h,sprintf('%d%% complete...',...\n round((i/length(lon))*100)));\n \nend\n\nfprintf(fid, '%s \\n','#folderStyle');\nfprintf(fid, '%s \\n',footer);\n\nclose(h);\nfclose(fid);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23187-gescatter/gescatter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6334102567576901, "lm_q1q2_score": 0.3754011032486146}} {"text": "function symb_pvec = amplexpr(pvec)\n%AMPLEXPR Converts SDPVAR variable to AMPL string\n\nfor pi = 1:size(pvec,1)\n for pj = 1:size(pvec,2)\n p = pvec(pi,pj);\n\n if isa(p,'double')\n symb_p = num2str(p);\n else\n LinearVariables = depends(p);\n x = recover(LinearVariables);\n exponent_p = full(exponents(p,x));\n names = cell(length(LinearVariables),1);\n for i = 1:length(LinearVariables)\n names{i}=['x[' num2str(LinearVariables(i)) ']'];\n end\n\n symb_p = '';\n if all(exponent_p(1,:)==0)\n symb_p = num2str(getbasematrix(p,0));\n exponent_p = exponent_p(2:end,:);\n end\n\n for i = 1:size(exponent_p,1)\n coeff = getbasematrixwithoutcheck(p,i);\n switch full(coeff)\n case 1\n coeff='+';\n case -1\n coeff = '-';\n otherwise\n if coeff >0\n coeff = ['+' num2str2(coeff)];\n else\n coeff=num2str2(coeff);\n end\n end\n if strcmp(symb_p,'') & (strcmp(coeff,'+') | strcmp(coeff,'-'))\n symb_p = [symb_p coeff symbmonom(names,exponent_p(i,:))];\n else\n symb_p = [symb_p coeff '*' symbmonom(names,exponent_p(i,:))];\n end\n end\n if symb_p(1)=='+'\n symb_p = symb_p(2:end);\n end\n end\n\n symb_p = strrep(symb_p,'+*','+');\n symb_p = strrep(symb_p,'-*','-');\n symb_pvec{pi,pj} = symb_p;\n end\nend\n\nfunction s = symbmonom(names,monom)\ns = '';\nfor j = 1:length(monom)\n if monom(j)>0\n if strcmp(s,'')\n s = [s names{j}];\n else\n s = [s '*' names{j}];\n end\n end\n if monom(j)>1\n s = [s '^' num2str(monom(j))];\n end\nend\n\nfunction s = num2str2(x)\ns = num2str(x);\nif isequal(s,'1')\n s = '';\nend\nif isequal(s,'-1')\n s = '-';\nend\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/amplexpr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.63341024983754, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3754010991472727}} {"text": "% This function do a cross validation test of DNN.\n%\n% Author: Xiong Xiao, NTU\n% Date Created: 10 Oct 2013\n% Last Modified: 20 Jul 2015\n%\nfunction [cost,cost_pure,subcost,subacc] = CrossValidationTest_tree4(layer, data, para)\npara.NET.sentenceMinibatch = 1;\n[sentIdxInBlock] = shuffle_data(layer, para, data, 1); nBlock = length(sentIdxInBlock);\nif isfield(para.NET, 'nSequencePerMinibatchCV')\n para.NET.nSequencePerMinibatch = para.NET.nSequencePerMinibatchCV;\nend\n\ncost_cv = [];\nif para.useGPU; \tcost_cv= gpuArray(cost_cv); end\ncost_cv_pure = cost_cv; subcost = cost_cv; subacc = cost_cv;\n\nnTestSample = [];\nfor blk_i = 1:nBlock\n pause(.1);\n if para.useGPU && para.displayGPUstatus==1\n gpuStatus = gpuDevice;\n fprintf('GPU has %2.2E free memory!\\n', gpuStatus.FreeMemory);\n end\n \n [block_data] = BlockDataGeneration(data, para, sentIdxInBlock{blk_i});\n [minibatch] = MinibatchPackaging_tree4(block_data, para);\n \n clear cost_func\n for batch_i=1:minibatch.nBatch\n batch_data = GetMinibatch2(minibatch, para, batch_i);\n for si=1:length(batch_data)\n batch_nFr(si) = size(batch_data{si},2);\n end\n \n % Evaluate the cost function and gradient on current batch\n nTestSample(end+1) = max(batch_nFr);\n [cost_func(batch_i)] = DNN_Cost10(layer, batch_data, para, 2);\n \n if mod(batch_i,para.displayInterval)==0 || (batch_i==minibatch.nBatch && para.displayInterval>batch_i)\n fprintf('CV cost at utterance %d/%d = %.4g / %.4g - %s\\n', ...\n batch_i, minibatch.nBatch, mean([cost_func(max(1,batch_i-para.displayInterval+1) : batch_i).cost]), ...\n mean([cost_func(max(1,batch_i-para.displayInterval+1) : batch_i).cost_pure]), datestr(now));\n end\n end\n cost_cv = [cost_cv [cost_func(:).cost]];\n cost_cv_pure = [cost_cv_pure [cost_func(:).cost_pure]];\n subcost = [subcost [cost_func(:).subcost]];\n subacc = [subacc [cost_func(:).subacc]];\n clear minibatch;\n layer = clean_network_layer(layer);\nend\n\nsubcost = gather(subcost * nTestSample') / sum(nTestSample);\ncost = gather(cost_cv(:)' * nTestSample') / sum(nTestSample);\ncost_pure = gather(cost_cv_pure(:)' * nTestSample') / sum(nTestSample);\nif isfield(cost_func(1),'subacc')\n subacc = gather(subacc * nTestSample') / sum(nTestSample);\nelse\n subacc = [];\nend\n\nfprintf(' ----Development cost/cost_pure before training = %f / %f - %s\\n', cost, cost_pure, datestr(now));\nif length(subcost)>1\n fprintf(' ----subcosts = %f\\n', subcost);\nend\nif length(subacc)>0\n fprintf(' ----(Sub)task accuracy = %2.2f%%\\n', 100*subacc);\nend\n\nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/tools/CrossValidationTest_tree4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723317123102956, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.37538094413056305}} {"text": "function rot = byMatrix(M,varargin)\n% define rotations by matrices\n%\n% Syntax\n% M = eye(3)\n% rot = rotation.byMatrix(M)\n%\n% Input\n% M - 3x3 rotation matrix\n%\n% Output\n% rot - @rotation\n%\n% See also\n% rotation/rotentation rotation/byEuler rotation/byAxisAngle\n\n% negative determinant indicates improper rotation\nisInv = false(size(M,3),1);\nfor i = 1:size(M,3)\n isInv(i) = det(M(:,:,i))<0;\nend\n\n% ensure M is proper \nM(:,:,isInv) = -M(:,:,isInv);\n\nrot = rotation(mat2quat(M));\nrot.i = isInv;", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@rotation/byMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754607093178, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3753586456993619}} {"text": "function [boxes, labels] = imBoundingBox(img, varargin)\n% Bounding box of regions within a 2D or 3D binary or label image.\n%\n% BOX = imBoundingBox(IMG)\n% Compute the bounding boxes of the particles in labeled image IMG. If\n% the image is binary, one box, corresponding to the foreground (i.e.\n% the pixels with value 1) will be computed.\n%\n% The result is a N-by-4 array BOX = [XMIN XMAX YMIN YMAX], containing\n% coordinates of the box extent.\n%\n% The same result could be obtained with the regionprops function. The\n% advantage of using imBoundingBox is that equivalent boxes can be\n% obtained in one call. \n%\n% BOX = imBoundingBox(IMG3D)\n% If input image is a 3D array, the result is a N-by-6 array, containing\n% the maximal coordinates in the X, Y and Z directions:\n% BOX = [XMIN XMAX YMIN YMAX ZMIN ZMAX].\n%\n% [BOX, LABELS] = imBoundingBox(...)\n% Also returns the labels of the regions for which a bounding box was\n% computed. LABELS is a N-by-1 array with as many rows as BOX.\n%\n% [...] = imBoundingBox(IMG, LABELS)\n% Specifies the labels of the regions whose bounding box need to be\n% computed.\n%\n%\n% Example\n% % Draw a complex particle together with its bounding box\n% img = imread('circles.png');\n% imshow(img); hold on;\n% boxes = imBoundingBox(img);\n% drawBox(boxes)\n%\n% % Compute and display the bounding box of several particles\n% img = imread('rice.png');\n% img2 = img - imopen(img, ones(30, 30));\n% lbl = bwlabel(img2 > 50, 4);\n% boxes = imBoundingBox(lbl);\n% imshow(img); hold on;\n% drawBox(boxes, 'linewidth', 2, 'color', 'g');\n%\n% See also\n% regionprops, drawBox, imOrientedBox, imEquivalentEllipse\n\n% ------\n% Author: David Legland\n% e-mail: david.legland@inrae.fr\n% Created: 2011-03-30, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2011 INRA - Cepia Software Platform.\n\n% History\n% 2013-03-29 add support for 3D images\n\n\n%% Process input arguments\n\n% default spatial calibration\nnd = ndims(img);\nspacing = ones(1, nd);\norigin = ones(1, nd);\ncalib = false;\n\n% extract spacing\nif ~isempty(varargin) && all(size(varargin{1}) == [1 nd])\n spacing = varargin{1};\n varargin(1) = [];\n calib = true;\n origin = zeros(1, nd);\n \n % extract origin\n if ~isempty(varargin) && all(size(varargin{1}) == [1 nd])\n origin = varargin{1};\n varargin(1) = [];\n end\nend\n\n% check if labels are specified\nlabels = [];\nif ~isempty(varargin) && size(varargin{1}, 2) == 1\n labels = varargin{1};\nend\n\n\n%% Initialisations\n\n% extract the set of labels, without the background\nif isempty(labels)\n labels = imFindLabels(img);\nend\n\nif nd == 2\n %% Process planar case \n props = regionprops(img, 'BoundingBox');\n bb = reshape([props.BoundingBox], [4 length(props)])';\n bb = bb(labels, :);\n \n % convert to MatImage convention\n boxes = [bb(:, 1) bb(:, 1)+bb(:, 3) bb(:, 2) bb(:, 2)+bb(:, 4)];\n \n % spatial calibration\n if calib\n boxes = bsxfun(@plus, bsxfun(@times, (boxes - 1), spacing([1 1 2 2])), origin([1 1 2 2]));\n end\n \nelseif nd == 3\n %% Process 3D case\n stats = regionprops3(img, 'BoundingBox');\n bb = reshape([stats.BoundingBox], [6 size(stats, 1)])';\n bb = bb(labels, :);\n\n % convert to MatImage convention\n boxes = [bb(:, 1) bb(:, 1)+bb(:, 4) bb(:, 2) bb(:, 2)+bb(:, 5) bb(:, 3) bb(:, 3)+bb(:, 6)];\n \n % spatial calibration\n if calib\n boxes = bsxfun(@plus, bsxfun(@times, (boxes - 1), spacing([1 1 2 2 3 3])), origin([1 1 2 2 3 3]));\n end\nelse\n error('Image dimension must be 2 or 3');\nend\n", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/matImage/imMeasures/imBoundingBox.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6584175139669998, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.37520096607161263}} {"text": "function grid = reshapeGrid(~, grid)\n%RESHAPEGRID Add the repeated endpoints in the lambda- and theta-directions \n%and extract half of the points in the theta-direction.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Note: We use periodic discretizations in longitude (lambda) and latitude\n% (theta). These dicretizations do not include the repeated endpoints. Before \n% plotting data with SPINOPERATOR/INITIALIZEMOVIE, we add these repeated \n% endpoints to the grid, and extract half of the points in theta, those that\n% correspond to [0, pi]. (We use the DFS method with doubled-up [-pi, pi] \n% theta-grid.)\n\n% Get the points:\nll = grid{1};\ntt = grid{2};\n\n% Get the number of grid points:\nN = length(ll);\n\n% Add the endpoints in lambda and theta:\nll = [ll, 2*ll(:,end) - ll(:,end-1)];\nll = [ll; ll(1,:)];\ntt = [tt; 2*tt(end,:) - tt(end-1,:)];\ntt = [tt, tt(:,1)];\n\n% Extract half of the points in the theta-direction:\nll = ll(N/2+1:end,:);\ntt = tt(N/2+1:end,:);\n\n% Output the new grid:\ngrid{1} = ll;\ngrid{2} = tt;\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spinopsphere/reshapeGrid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6584175139669997, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3752009660716126}} {"text": "function res = vl_simplenn_globalModel(net, x, dzdy, res, varargin)\n% VL_SIMPLENN Evaluates a simple CNN\n% RES = VL_SIMPLENN(NET, X) evaluates the convnet NET on data X.\n% RES = VL_SIMPLENN(NET, X, DZDY) evaluates the convnent NET and its\n% derivative on data X and output derivative DZDY.\n%\n% The network has a simple (linear) topology, i.e. the computational\n% blocks are arranged in a sequence of layers. Please note that\n% there is no need to use this wrapper, which is provided for\n% convenience. Instead, the individual CNN computational blocks can\n% be evaluated directly, making it possible to create significantly\n% more complex topologies, and in general allowing greater\n% flexibility.\n%\n% The NET structure contains two fields:\n%\n% - net.layers: the CNN layers.\n% - net.normalization: information on how to normalize input data.\n%\n% The network expects the data X to be already normalized. This\n% usually involves rescaling the input image(s) and subtracting a\n% mean.\n%\n% RES is a structure array with one element per network layer plus\n% one representing the input. So RES(1) refers to the zeroth-layer\n% (input), RES(2) refers to the first layer, etc. Each entry has\n% fields:\n%\n% - res(i+1).x: the output of layer i. Hence res(1).x is the network\n% input.\n%\n% - res(i+1).aux: auxiliary output data of layer i. For example,\n% dropout uses this field to store the dropout mask.\n%\n% - res(i+1).dzdx: the derivative of the network output relative to\n% variable res(i+1).x, i.e. the output of layer i. In particular\n% res(1).dzdx is the derivative of the network output with respect\n% to the network input.\n%\n% - res(i+1).dzdw: the derivative of the network output relative to\n% the parameters of layer i. It can be a cell array for multiple\n% parameters.\n%\n% net.layers is a cell array of network layers. The following\n% layers, encapsulating corresponding functions in the toolbox, are\n% supported:\n%\n% Convolutional layer::\n% The convolutional layer wraps VL_NNCONV(). It has fields:\n%\n% - layer.type = 'conv'\n% - layer.weights = {filters, biases}\n% - layer.stride: the sampling stride (usually 1).\n% - layer.padding: the padding (usually 0).\n%\n% Max pooling layer::\n% The max pooling layer wraps VL_NNPOOL(). It has fields:\n%\n% - layer.type = 'pool'\n% - layer.method: pooling method ('max' or 'avg').\n% - layer.pool: the pooling size.\n% - layer.stride: the sampling stride (usually 1).\n% - layer.padding: the padding (usually 0).\n%\n% Normalization layer::\n% The normalization layer wraps VL_NNNORMALIZE(). It has fields\n%\n% - layer.type = 'normalize'\n% - layer.param: the normalization parameters.\n%\n% Spatial normalization layer:\n% This is similar to the layer above, but wraps VL_NNSPNORM():\n%\n% - layer.type = 'spnorm'\n% - layer.param: the normalization parameters.\n%\n% Batch normalization layer:\n% This layer wraps VL_NNBNORM(). It has fields:\n%\n% - layer.type = 'bnorm'\n% - layer.weights = {multipliers, biases}.\n%\n% ReLU and Sigmoid layers::\n% The ReLU layer wraps VL_NNRELU(). It has fields:\n%\n% - layer.type = 'relu'\n%\n% The sigmoid layer is the same, but for the sigmoid function, with\n% `relu` replaced by `sigmoid`.\n%\n% Dropout layer::\n% The dropout layer wraps VL_NNDROPOUT(). It has fields:\n%\n% - layer.type = 'dropout'\n% - layer.rate: the dropout rate.\n%\n% Softmax layer::\n% The softmax layer wraps VL_NNSOFTMAX(). It has fields\n%\n% - layer.type = 'softmax'\n%\n% Log-loss layer::\n% The log-loss layer wraps VL_NNLOSS(). It has fields:\n%\n% - layer.type = 'loss'\n% - layer.class: the ground-truth class.\n%\n% Softmax-log-loss layer::\n% The softmax-log-loss layer wraps VL_NNSOFTMAXLOSS(). It has\n% fields:\n%\n% - layer.type = 'softmaxloss'\n% - layer.class: the ground-truth class.\n%\n% P-dist layer:\n% The pdist layer wraps VL_NNPDIST(). It has fields:\n%\n% - layer.type = 'pdist'\n% - layer.p = P parameter of the P-distance\n% - layer.noRoot = whether to raise the distance to the P-th power\n% - layer.epsilon = regularization parameter for the derivatives\n%\n% Custom layer::\n% This can be used to specify custom layers.\n%\n% - layer.type = 'custom'\n% - layer.forward: a function handle computing the block.\n% - layer.backward: a function handle computing the block derivative.\n%\n% The first function is called as res(i+1) = forward(layer, res(i), res(i+1))\n% where res() is the struct array specified before. The second function is\n% called as res(i) = backward(layer, res(i), res(i+1)). Note that the\n% `layer` structure can contain additional fields if needed.\n\n% Copyright (C) 2014 Andrea Vedaldi.\n% All rights reserved.\n%\n% This file is part of the VLFeat library and is made available under\n% the terms of the BSD license (see the COPYING file).\n\nopts.res = [] ;\nopts.conserveMemory = false ;\nopts.sync = false ;\nopts.disableDropout = false ;\nopts.freezeDropout = false ;\nopts.accumulate = false;\nopts.backPropDepth = +inf ;\n\nopts = vl_argparse(opts, varargin);\n\nn = numel(net.layers) ;\n\nif (nargin <= 2) || isempty(dzdy)\n doder = false ;\nelse\n doder = true ;\nend\n\ngpuMode = isa(x, 'gpuArray') ;\n\nif nargin <= 3 || isempty(res)\n res = struct(...\n 'x', cell(1,n+1), ...\n 'dzdx', cell(1,n+1), ...\n 'dzdw', cell(1,n+1), ...\n 'aux', cell(1,n+1), ...\n 'time', num2cell(zeros(1,n+1)), ...\n 'backwardTime', num2cell(zeros(1,n+1))) ;\nend\nres(1).x = x ;\n\nfor i=1:n\n l = net.layers{i} ;\n res(i).time = tic ;\n switch l.type\n case 'conv'\n res(i+1).x = vl_nnconv(res(i).x, l.weights{1}, l.weights{2}, 'pad', l.pad, 'stride', l.stride) ;\n case 'pool'\n res(i+1).x = vl_nnpool(res(i).x, l.pool, 'pad', l.pad, 'stride', l.stride, 'method', l.method) ;\n case 'normalize'\n res(i+1).x = vl_nnnormalize(res(i).x, l.param) ;\n case 'softmax'\n res(i+1).x = vl_nnsoftmax(res(i).x) ;\n case 'loss'\n res(i+1).x = vl_nnloss(res(i).x, l.class) ;\n case 'softmaxloss'\n res(i+1).x = vl_nnsoftmaxloss(res(i).x, l.class) ;\n case 'svmloss_multiclass'\n res(i+1).x = vl_nnsvmloss(res(i).x, l.class) ;\n case 'relu'\n res(i+1).x = vl_nnrelu(res(i).x) ;\n case 'sigmoid'\n res(i+1).x = vl_nnsigmoid(res(i).x) ;\n case 'noffset'\n res(i+1).x = vl_nnnoffset(res(i).x, l.param) ;\n case 'spnorm'\n res(i+1).x = vl_nnspnorm(res(i).x, l.param) ;\n case 'reshape'\n res(i+1).x = vl_nnreshape(res(i).x, [l.numOutput l.numClasses]);\n case 'dropout'\n if opts.disableDropout\n res(i+1).x = res(i).x ;\n elseif opts.freezeDropout\n [res(i+1).x, res(i+1).aux] = vl_nndropout(res(i).x, 'rate', l.rate, 'mask', res(i+1).aux) ;\n else\n [res(i+1).x, res(i+1).aux] = vl_nndropout(res(i).x, 'rate', l.rate) ;\n end\n case 'bnorm'\n if isfield(l, 'weights')\n res(i+1).x = vl_nnbnorm(res(i).x, l.weights{1}, l.weights{2}) ;\n else\n res(i+1).x = vl_nnbnorm(res(i).x, l.filters, l.biases) ;\n end\n case 'pdist'\n res(i+1) = vl_nnpdist(res(i).x, l.p, 'noRoot', l.noRoot, 'epsilon', l.epsilon) ;\n case 'custom'\n res(i+1) = l.forward(l, res(i), res(i+1)) ;\n otherwise\n error('Unknown layer type %s', l.type) ;\n end\n % optionally forget intermediate results\n forget = opts.conserveMemory ;\n forget = forget & (~doder || strcmp(l.type, 'relu')) ;\n forget = forget & ~(strcmp(l.type, 'loss') || strcmp(l.type, 'softmaxloss')) ;\n forget = forget & (~isfield(l, 'rememberOutput') || ~l.rememberOutput) ;\n if forget\n res(i).x = [] ;\n end\n if gpuMode & opts.sync\n % This should make things slower, but on MATLAB 2014a it is necessary\n % for any decent performance.\n wait(gpuDevice) ;\n end\n res(i).time = toc(res(i).time) ;\nend\n\nif doder\n res(n+1).dzdx = dzdy ;\n for i=n:-1:max(1, n-opts.backPropDepth+1)\n l = net.layers{i} ;\n res(i).backwardTime = tic ;\n switch l.type\n case 'conv'\n if ~opts.accumulate\n [res(i).dzdx, res(i).dzdw{1}, res(i).dzdw{2}] = ...\n vl_nnconv(res(i).x, l.weights{1}, l.weights{2}, ...\n res(i+1).dzdx, ...\n 'pad', l.pad, 'stride', l.stride) ;\n else\n dzdw = cell(1,2) ;\n [res(i).dzdx, dzdw{1}, dzdw{2}] = ...\n vl_nnconv(res(i).x, l.weights{1}, l.weights{2}, ...\n res(i+1).dzdx, ...\n 'pad', l.pad, 'stride', l.stride) ;\n for j=1:2\n res(i).dzdw{j} = res(i).dzdw{j} + dzdw{j} ;\n end\n clear dzdw ;\n end\n \n case 'pool'\n res(i).dzdx = vl_nnpool(res(i).x, l.pool, res(i+1).dzdx, ...\n 'pad', l.pad, 'stride', l.stride, 'method', l.method) ;\n case 'normalize'\n res(i).dzdx = vl_nnnormalize(res(i).x, l.param, res(i+1).dzdx) ;\n case 'softmax'\n res(i).dzdx = vl_nnsoftmax(res(i).x, res(i+1).dzdx) ;\n case 'loss'\n res(i).dzdx = vl_nnloss(res(i).x, l.class, res(i+1).dzdx) ;\n case 'softmaxloss'\n res(i).dzdx = vl_nnsoftmaxloss(res(i).x, l.class, res(i+1).dzdx) ;\n case 'reshape'\n res(i).dzdx = vl_nnreshape(res(i).x, [l.numOutput l.numClasses], res(i+1).dzdx);\n case 'svmloss_multiclass'\n res(i).dzdx = vl_nnsvmloss(res(i).x, l.class, res(i+1).dzdx) ;\n case 'relu'\n if ~isempty(res(i).x)\n res(i).dzdx = vl_nnrelu(res(i).x, res(i+1).dzdx) ;\n else\n % if res(i).x is empty, it has been optimized away, so we use this\n % hack (which works only for ReLU):\n res(i).dzdx = vl_nnrelu(res(i+1).x, res(i+1).dzdx) ;\n end\n case 'sigmoid'\n res(i).dzdx = vl_nnsigmoid(res(i).x, res(i+1).dzdx) ;\n case 'noffset'\n res(i).dzdx = vl_nnnoffset(res(i).x, l.param, res(i+1).dzdx) ;\n case 'spnorm'\n res(i).dzdx = vl_nnspnorm(res(i).x, l.param, res(i+1).dzdx) ;\n case 'dropout'\n if opts.disableDropout\n res(i).dzdx = res(i+1).dzdx ;\n else\n res(i).dzdx = vl_nndropout(res(i).x, res(i+1).dzdx, 'mask', res(i+1).aux) ;\n end\n case 'bnorm'\n if ~opts.accumulate\n if isfield(l, 'weights')\n [res(i).dzdx, res(i).dzdw{1}, res(i).dzdw{2}] = ...\n vl_nnbnorm(res(i).x, l.weights{1}, l.weights{2}, ...\n res(i+1).dzdx) ;\n else\n [res(i).dzdx, res(i).dzdw{1}, res(i).dzdw{2}] = ...\n vl_nnbnorm(res(i).x, l.filters, l.biases, ...\n res(i+1).dzdx) ;\n end\n else\n dzdw = cell(1,2) ;\n if isfield(l, 'weights')\n [res(i).dzdx, dzdw{1}, dzdw{2}] = ...\n vl_nnbnorm(res(i).x, l.weights{1}, l.weights{2}, ...\n res(i+1).dzdx) ;\n else\n [res(i).dzdx, dzdw{1}, dzdw{2}] = ...\n vl_nnbnorm(res(i).x, l.filters, l.biases, ...\n res(i+1).dzdx) ;\n end\n for j=1:2\n res(i).dzdw{j} = res(i).dzdw{j} + dzdw{j} ;\n end\n clear dzdw ;\n end\n case 'pdist'\n res(i).dzdx = vl_nnpdist(res(i).x, l.p, res(i+1).dzdx, ...\n 'noRoot', l.noRoot, 'epsilon', l.epsilon) ;\n case 'custom'\n res(i) = l.backward(l, res(i), res(i+1)) ;\n end\n if opts.conserveMemory\n res(i+1).dzdx = [] ;\n end\n if gpuMode & opts.sync\n wait(gpuDevice) ;\n end\n res(i).backwardTime = toc(res(i).backwardTime) ;\n end\nend\n", "meta": {"author": "aosokin", "repo": "cnn_head_detection", "sha": "80624e7a25c62f7b504fa6f4d830136beb66eec8", "save_path": "github-repos/MATLAB/aosokin-cnn_head_detection", "path": "github-repos/MATLAB/aosokin-cnn_head_detection/cnn_head_detection-80624e7a25c62f7b504fa6f4d830136beb66eec8/globalModel/vl_simplenn_globalModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6584175139669997, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3752009660716126}} {"text": "function B = biharm(f)\n%BIHARM Biharmonic operator applied to a CHEBFUN3.\n% B = BIHARM(F) returns a CHEBFUN3 object B representing the biharmonic \n% operator applied to a CHEBFUN3 object F.\n%\n% This is shorthand for BIHARMONIC(F).\n%\n% See also CHEBFUN3/BIHARMONIC.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Call Biharmonic: \nB = biharmonic(f);\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3/biharm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.3752009584325574}} {"text": "function gui_components(rval_space,rval_time,max_pr,sizeA,A,Cn,options)\n \n\n figure;CC = plot_contours(A,Cn,options,0); title('Selected components','fontweight','bold','fontsize',14); close all;\n\n plt_cont = @(x) plot_contours(A,Cn,options,0,[],CC,[],x);\n\n d1 = options.d1;\n d2 = options.d2;\n\n figure;\n screensize = get(0,'Screensize' );\n fac = min(min((screensize(3:4)-200)./[2*d2,1.2*d1]),10);\n fig_size = round([100 100 fac*2*d2 fac*1.2*d1]);\n set(gcf, 'Position', fig_size);\n\n imagesc(Cn); axis equal; axis tight; axis off;\n set(gca,'Position',[0.01,0.1,0.5,0.8]);\n\n thr_space = @(x,y,z,w,v) find((rval_space >= x) & (rval_time >= y) & (sizeA >= z) & (sizeA < w) & (log(1-max_pr) < v));\n\n hsl1 = uicontrol('Style','slider','Min',0,'Max',1,...\n 'SliderStep',[0.01,0.01],'Value',options.space_thresh,'Tag','space_corr',...\n 'Position',[round(0.55*fig_size(3)) 50 20 round(0.85*fig_size(4))]);\n txt1 = uicontrol('Style','text','Position',[round(0.55*fig_size(3))-50 50+round(0.85*fig_size(4)) 100 50],'String','space threshold' );\n %ved1 = uicontrol('Style','edit','Position',[round(0.55*fig_size(3))-50 50+round(0.85*fig_size(4)) 100 50],'String',['val=',num2str(x1)] );\n\n hsl2 = uicontrol('Style','slider','Min',0,'Max',1,...\n 'SliderStep',[0.01,0.01],'Value',options.time_thresh,'Tag','time_corr',...\n 'Position',[round(0.6*fig_size(3)) 50 20 round(0.85*fig_size(4))]); \n txt2 = uicontrol('Style','text','Position',[round(0.6*fig_size(3))-50 50+round(0.85*fig_size(4)) 100 50],'String','time threshold' );\n\n\n hsl3 = uicontrol('Style','slider','Min',0,'Max',120,...\n 'SliderStep',[0.01,0.01],'Value',options.min_size_thr,'Tag','min_size',...\n 'Position',[round(0.65*fig_size(3)) 50 20 round(0.85*fig_size(4))]);\n txt3 = uicontrol('Style','text','Position',[round(0.65*fig_size(3))-50 50+round(0.85*fig_size(4)) 100 50],'String','minimum size' );\n\n\n hsl4 = uicontrol('Style','slider','Min',0,'Max',500,...\n 'SliderStep',[.01,.05],'Value',options.max_size_thr,'Tag','max_size',...\n 'Position',[round(0.7*fig_size(3)) 50 20 round(0.85*fig_size(4))]); \n\n txt4 = uicontrol('Style','text','Position',[round(0.7*fig_size(3))-50 50+round(0.85*fig_size(4)) 100 50],'String','maximum size' );\n\n hsl5 = uicontrol('Style','slider','Min',-10,'Max',0,...\n 'SliderStep',[0.01,0.01],'Value',log10(1-options.max_pr_thr),'Tag','max_pr',...\n 'Position',[round(0.75*fig_size(3)) 50 20 round(0.85*fig_size(4))]); \n\n txt5 = uicontrol('Style','text','Position',[round(0.75*fig_size(3))-50 50+round(0.85*fig_size(4)) 100 50],'String','log(1-max_pr)' );\n\n pb = uicontrol('Style','pushbutton','Callback',@close_Callback);\n\n set(hsl1,'Callback',@(hObject,eventdata) plt_cont(thr_space(get(hObject,'Value'),hsl2.Value,hsl3.Value,hsl4.Value,hsl5.Value))) \n set(hsl2,'Callback',@(hObject,eventdata) plt_cont(thr_space(hsl1.Value,get(hObject,'Value'),hsl3.Value,hsl4.Value,hsl5.Value))) \n set(hsl3,'Callback',@(hObject,eventdata) plt_cont(thr_space(hsl1.Value,hsl2.Value,get(hObject,'Value'),hsl4.Value,hsl5.Value))) \n set(hsl4,'Callback',@(hObject,eventdata) plt_cont(thr_space(hsl1.Value,hsl2.Value,hsl3.Value,get(hObject,'Value'),hsl5.Value))) \n set(hsl5,'Callback',@(hObject,eventdata) plt_cont(thr_space(hsl1.Value,hsl2.Value,hsl3.Value,hsl4.Value,get(hObject,'Value')))) \n\n% function close_Callback(hObject, eventdata)\n% \n% close all; \n% end\n\nend", "meta": {"author": "flatironinstitute", "repo": "CaImAn-MATLAB", "sha": "49b7884e93348d50df7173e1619d7499468bb1f6", "save_path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB", "path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB/CaImAn-MATLAB-49b7884e93348d50df7173e1619d7499468bb1f6/utilities/gui_components.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370308082623217, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3751405189499281}} {"text": "function [h,s,v] = hsl2hsv(hh,ss,ll)\n\nh = hh;\nll = ll*2;\n\nind = ll <= 1;\nss(ind) = ss(ind) .* ll(ind);\nss(~ind) = ss(~ind) .* (2 - ll(~ind));\n\nv = (ll + ss) ./ 2;\ns = (2 * ss) ./ (ll + ss);\ns(isnan(s)) = 0;\n\nend\n\n% r = linspace(1,2,30);\n% omega = linspace(0,2*pi);\n% [r,omega] = meshgrid(r,omega);\n% x = r .* cos(omega);\n% y = r .* sin(omega);\n% z = zeros(size(r));\n% rgb = hsv2rgb(omega./2./pi,ones(size(omega)),ones(size(omega)));\n% surf(x,y,z,rgb)\n% axis equal", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/plotting/plotting_tools/hsl2hsv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.37514051083389427}} {"text": "function Ctrans = transformCost(C,u,v,neg)\n%% \n% Ctrans = transformCost(C,u,v,neg)\n%\n% Compute Ctrans = C - (u1' + 1v)\n% \n% -----------------------------------------------------------\n% author: Sebastien Bougleux\n% institution: Normandie Univ, CNRS - ENSICAEN - UNICAEN, GREYC\n% ----------------------------------------------------------- \n% This file is part of LSAPE.\n% LSAPE is free software: you can redistribute it and/or modify\n% it under the terms of the CeCILL-C License. See README file \n% for more details.\n% ----------------------------------------------------------- \n\n [n,m] = size(C);\n Ctrans = C - (repmat(u,1,m) + repmat(v,n,1));\n \n if exist('neg','var') && neg\n idxs = C < 0;\n Ctrans(idxs) = C(idxs);\n end\n \nend\n", "meta": {"author": "optimaltransport", "repo": "optimaltransport.github.io", "sha": "2fa6db6e6a48ab9bd6676088db00bd7c5c8b4203", "save_path": "github-repos/MATLAB/optimaltransport-optimaltransport.github.io", "path": "github-repos/MATLAB/optimaltransport-optimaltransport.github.io/optimaltransport.github.io-2fa6db6e6a48ab9bd6676088db00bd7c5c8b4203/_site/code/toolbox/toolbox-lsap/transformCost.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6370307806984444, "lm_q1q2_score": 0.37514050271786037}} {"text": "function parPath = er_deconvolvedParfile(view, stim, params);\n%\n% parPath = er_deconvolvedParfile(view, , );\n%\n% Create a parfile representing the deconvolved time courses\n% from a GLM. The format the data are stored in is alternating\n% beta values and residual variance from the GLM, each taking\n% [nh] time points, where nh is the number of temporal frames in the\n% estimated hemodynamic response. (This should correspond to the number of\n% MR frames contained within the event-related 'timeWindow' parameter.\n%\n% stim: stim/'trials' struct loaded from er_concatParfiles for the \n% source scans from the deconvolution.\n% params: event-related parameters from the source scans for the \n% deconvolution. \n% \n%\n% ras, 02/2006.\nif notDefined('view'), view = getSelectedInplane; end\nif notDefined('stim'), stim = er_concatParfiles(view); end\nif notDefined('params'), params = er_getParams(view); end\n\ntr = params.framePeriod;\nframeWindow = unique(round(params.timeWindow/tr));\nnh = length(frameWindow);\nnConds = sum(stim.condNums>=1);\n\n% construct the par struct \npar.cond = [1:nConds 0];\npar.onset = 0:2*nh:2*nh*nConds;\npar.label = stim.condNames([2:nConds+1 1]);\npar.color = stim.condColors([2:nConds+1 1]);\n \n% write out the parfile\nmrGlobals\ndt = existDataType('Deconvolved');\nif dt==0, \n scan = 1;\nelse\n scan = length(dataTYPES(dt).scanParams); % assume last deconvolved scan\nend\nparFileName = sprintf('deconvolved_scan%i.par', scan);\nparPath = fullfile(parfilesDir(view), parFileName);\nwriteParfile(par, parPath);\n\nreturn", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/EventRelated/er_deconvolvedParfile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307806984443, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3751405027178603}} {"text": "function [l,c]=count(a);\n% \n% function [l,c]=count(a); \n%\n% INPUT: \n%\n% a : sorted list of doubles\n%\n% OUTPUT:\n%\n% l : sorted list of doubles with only unique elements\n% c : count how many times each element appears\n%\n% EXAMPLE:\n%\n% [l,c]=count([1 1 2 2 3 3 3 4 5 5]);\n%\n% l=1 2 3 4 5\n% c=2 2 3 1 2 \n%\n%\n% copyright 2005 by Kilian Q. Weinberger\n% University of Pennsylvania\n% kilianw@seas.upenn.edu\n% ********************************************\n\nerror('not yet implemented!\\n\\n\\n');\n[l,index]=unique(a(1,:));\nl=a(:,index);\nc=[index(1) diff(index)];\n", "meta": {"author": "zhunzhong07", "repo": "IDE-baseline-Market-1501", "sha": "8be027b5e45adce1d8ea381cc5a17ec20ed521e5", "save_path": "github-repos/MATLAB/zhunzhong07-IDE-baseline-Market-1501", "path": "github-repos/MATLAB/zhunzhong07-IDE-baseline-Market-1501/IDE-baseline-Market-1501-8be027b5e45adce1d8ea381cc5a17ec20ed521e5/market_evaluation/KISSME/toolbox/lib/LMNN/mexfunctions/count.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5389832206876841, "lm_q2_score": 0.6959583187272712, "lm_q1q2_score": 0.3751098560920104}} {"text": "clear\n\n[solversToUse] = prepareTest('requireOneSolverOf',{'gurobi','ibm_cplex'});\n\nprintLevel=1;\nsolverOK = changeCobraSolver('ibm_cplex','LP');\nmodelToLoad='Recon3DModel_301';\n%modelToLoad='ecoli_core_model';\n\nswitch modelToLoad\n case 'ecoli_core_model'\n load('ecoli_core_model')\n case 'Recon3DModel_301'\n load('Recon3DModel_301.mat')\n \n case 'Recon3D'\n load('Recon3D_301.mat')\n model = Recon3D;\n case 'Recon2betaModel'\n %graphStoich/data/modelCollection/121114_Recon2betaModel.mat\n load 121114_Recon2betaModel.mat\n model=modelRecon2beta121114;\n case 'KEGGMatrix'\n load ~/work/modeling/projects/graphStoich/data/modelCollectionBig/KEGGMatrix.mat\n model=KEGG;\nend\n\nif 1\n %[SConsistentMetBool, SConsistentRxnBool, SInConsistentMetBool, SInConsistentRxnBool, unknownSConsistencyMetBool, unknownSConsistencyRxnBool, model, stoichConsistModel] = findStoichConsistentSubset(model, massBalanceCheck, printLevel, fileName, epsilon)\n [SConsistentMetBool, SConsistentRxnBool, SInConsistentMetBool, SInConsistentRxnBool, unknownSConsistencyMetBool, unknownSConsistencyRxnBool, model, stoichConsistModel] = findStoichConsistentSubset(model,0,1);\n if strcmp(modelToLoad,'Recon3DModel_301')\n % load('Recon3DModel_301.mat') should be fully stoichiometrically\n % consistent\n assert(nnz(SConsistentMetBool)==5835)\n assert(nnz(SConsistentRxnBool)==8791)\n assert(nnz(SInConsistentMetBool)==0)\n assert(nnz(SInConsistentRxnBool)==1809)\n assert(nnz(unknownSConsistencyMetBool)==0)\n assert(nnz(unknownSConsistencyRxnBool)==0)\n end\nelse\n \n %finds the exchange reactions\n model=findSExRxnInd(model);\n \n [nMet,nIntRxn]=size(model.S(:,model.SIntRxnBool));\n m=sparse(nMet,15);\n i=1;\n \n if 1\n if 1\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='gurobi5';\n method.param.Method=1;\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 1\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='gurobi5';\n method.param.Method=2;\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 1\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='gurobi5';\n method.param.Method=3;\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 1\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='gurobi5';\n method.param.Method=4;\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 0\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='mosek_linprog';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 0\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='mosek';\n method.param.MSK_IPAR_OPTIMIZER='MSK_OPTIMIZER_PRIMAL_SIMPLEX';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 0\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='mosek';\n method.param.MSK_IPAR_OPTIMIZER='MSK_OPTIMIZER_DUAL_SIMPLEX';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 0 %still debugging this solve with Erling @ Mosek\n %by default, the check for stoichiometric consistency omits the columns\n %of S corresponding to exchange reactions\n clear method\n method.interface='solveCobraLP';\n method.solver='mosek';\n method.param.MSK_IPAR_OPTIMIZER='MSK_OPTIMIZER_INTPNT';\n printLevelZ=3;\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevelZ,method);\n i=i+1;\n end\n end\n \n if 1\n clear method\n method.interface='solveCobraLP';\n method.solver='ibm_cplex';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel+1,method);\n i=i+1;\n end\n \n if 0\n clear method\n method.interface='solveCobraLP';\n method.solver='pdco';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel+1,method);\n i=i+1;\n end\n \n if 0\n clear method\n method.interface='cvx';\n method.solver='gurobi';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n if 0\n clear method\n method.interface='cvx';\n method.solver='mosek';\n [inform(i),m(:,i),models{i}]=checkStoichiometricConsistency(model,printLevel,method);\n i=i+1;\n end\n \n m=full(m);\n \nend\n\n ", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/additionalTests/testStoichiometricConsistency/testStoichiometricConsistency.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583124210896, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3751098526930844}} {"text": "function trueFalse = is2DData( Data )\n%\n% Purpose : Tests if the input argument represents valid 2D homogeneous\n% coordinates.\n%\n% Uses (syntax) :\n% is2DData( Data )\n%\n% Input Parameters :\n% Data := the variable to be tested (should be 3xn, n greater than 0)\n%\n% Return Parameters :\n% trueFalse := 0 or 1 (false or true)\n%\n% Description and algorithms:\n% Tests the size of the input argument\n%\n% References :\n%\n% Cite this as :\n%\n% Author : Matthew Harker\n% Date : July 13, 2005\n% Version : 1.0\n%--------------------------------------------------------------------------\n% (c) 2005, O'Leary, Harker, University of Leoben, Leoben, Austria\n% email: automation@unileoben.ac.at, url: automation.unileoben.ac.at\n%--------------------------------------------------------------------------\n% History:\n% Date: Comment:\n% July 13, 2005 Original Version 1.0\n%--------------------------------------------------------------------------\n%\n[m,n] = size( Data ) ;\n%\nif (m == 3) & (n > 0)\n %\n trueFalse = 1 ;\n %\nelse\n %\n trueFalse = 0 ;\n %\nend\n\n \n", "meta": {"author": "tobycollins", "repo": "IPPE", "sha": "3304dfa40c7cbd046ba0d540b8b1143283c83f4e", "save_path": "github-repos/MATLAB/tobycollins-IPPE", "path": "github-repos/MATLAB/tobycollins-IPPE/IPPE-3304dfa40c7cbd046ba0d540b8b1143283c83f4e/matlab/homogEstimationMethods/harker/is2DData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.546738151984614, "lm_q2_score": 0.6859494550081925, "lm_q1q2_score": 0.37503473738603227}} {"text": "classdef SO3FunHandle < SO3Fun\n% a class representing a function on the rotation group by an function\n% handle\n%\n% Syntax\n% SO3F = SO3FunHandle(fun)\n%\n% Input\n% fun - @function_handle\n%\n% Output\n% SO3F - @SO3FunHandle\n%\n% Example\n%\n% r = orientation.rand;\n% SO3F = SO3FunHandle(@(rot) angle(rot,r))\n%\nproperties\n fun\n % TODO: antipodal wird weder erkannt noch gesetzt/verwendet\n antipodal = false\n SLeft = specimenSymmetry\n SRight = specimenSymmetry\n bandwidth = 96\nend\n\nmethods\n function SO3F = SO3FunHandle(fun,varargin)\n \n SO3F.fun = fun;\n\n [SRight,SLeft] = extractSym(varargin);\n SO3F.SRight = SRight;\n SO3F.SLeft = SLeft;\n \n end\n \n function f = eval(SO3F,rot,varargin)\n\n% if isa(rot,'orientation')\n% ensureCompatibleSymmetries(SO3F,rot)\n% end\n\n s = size(rot);\n rot = rot(:);\n f = SO3F.fun(rot);\n if numel(f)==length(rot)\n f = reshape(f,s);\n end\n if isalmostreal(f)\n f = real(f);\n end\n end\n\nend\n\n\nmethods (Static = true)\n \n SO3F = example(varargin)\n\nend\n\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/SO3Fun/@SO3FunHandle/SO3FunHandle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3750347373860322}} {"text": "function [newFluenceMap rowLeafPositions] = mergeFluenceMap(inflMap, rowLeafPositions, resolution);\n% JC Sept 18, 2007\n% ALG: For each pixel, search the 8 neighbors, merge them, if the change of\n% the intensity is less than the threshold.\n\n% General flow:\n% Step, group the inter-leaf leakage part, i.e.\n%type A: interleaf leakage part, with width 1mm.\n%type B: the full leaf width, eg. 0.5cm or 1cm\n\n% How to distinguish them?\n% At the first column, check the gradient.\n%\n\n% The first colume of inflMap\n% Do not use, since the \n% s = diff(inflMap(:,1));\n\n% Why s = diff(inflMap(:,2)) is always zero?\n% The second colume of inflMap\n% s = diff(inflMap(:,2));\n% Use first column. Worked for both \"bar pattern\" and the \"complimental bar\n% pattern\"\ns = diff(inflMap(:,1));\n\nnewFluenceMap = struct('width', [], 'intensity', []);\n\nnewRow = 1;\ny=0;\n\nwidthLeaf = 5/resolution; % The width of the MLC leaf is 5mm. (Should work for 10mm=1cm leaf width)\n% Havent' tried on resolution = 0.5mm.\niStart = mod(size(inflMap,1), widthLeaf)+1;\nnewFluenceMap(newRow).width = iStart-1; %mm\nnewFluenceMap(newRow).intensity = inflMap(1+1,:); % second row.\n\n\nfor i = iStart: length(s),\n if (s(i) ~= 0)\n newRow = newRow + 1;\n newFluenceMap(newRow).width = resolution;\n newFluenceMap(newRow).intensity = inflMap(i+1,:);\n else\n if (i == iStart)\n newRow = newRow + 1;\n newFluenceMap(newRow).width = resolution;\n end\n newFluenceMap(newRow).width = newFluenceMap(newRow).width + resolution;\n newFluenceMap(newRow).intensity = inflMap(i+1,:);\n end\nend\n\ny = 0;\nrowLeafPositions = zeros(size(newFluenceMap,2)+1,1);\nrowLeafPositions(1) = y+1;\nfor i=1:length(newFluenceMap)\n % Following works for resolution == 1.\n % y =y+newFluenceMap(i).width;\n y =y+newFluenceMap(i).width/resolution;\n rowLeafPositions(i+1) = y+1;\nend\n\n\n[Ncol Nrow] = size(inflMap);\n\n% for i = 1 : Nrow,\nfigure;hAxis1 = axes;imagesc(inflMap);\nset(gcf, 'renderer', 'zbuffer')\nfigure;hAxis2 = axes;hold on;\nset(gcf, 'renderer', 'zbuffer')\nxL = get(hAxis1, 'xlim');\nyL = get(hAxis1, 'ylim');\nset(hAxis2, 'xlim', xL);\nset(hAxis2, 'ylim', yL);\naxis(hAxis2, 'manual');\n% w_colors = floor((w_field ./ max(w_field))*255)+1;\n%set(gcf, 'doublebuffer', 'on');\n\n%y=0.05; %(?)\ny=0;\nfor i=1:length(newFluenceMap)\n % Following works for resolution == 1.\n % y =y+newFluenceMap(i).width;\n y =y+newFluenceMap(i).width/resolution;\n for j=1:length(newFluenceMap(i).intensity)\n% The display scheme here is problematic. To be worked on. \n patch([xL(1) xL(1) xL(2) xL(2) xL(1)], [y-newFluenceMap(i).width/resolution y y y-newFluenceMap(i).width/resolution y-newFluenceMap(i).width/resolution], newFluenceMap(i).intensity(j));\n end\nend\naxis([hAxis1 hAxis2], 'ij');\nkids = get(hAxis2, 'children');\n% set(kids, 'edgecolor', 'none');\ncMap = colormap('jet');\nset(hAxis2, 'color', cMap(1,:));\n\nreturn;\n \n \n ", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/IMRTP/recompDose/MC/mergeFluenceMapTG.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.37503473738603216}} {"text": "function [ y, m, ierror ] = ym_check_islamic ( y, m )\n\n%*****************************************************************************80\n%\n%% YM_CHECK_ISLAMIC checks an Islamic YM date.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 March 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, M, the YM date.\n%\n% Output, integer IERROR, is 0 if no error was found in the date\n% and 1 otherwise.\n%\n\n%\n% Check the year.\n%\n [ y, ierror ] = y_check_islamic ( y );\n\n if ( ierror ~= 0 )\n return\n end\n%\n% Make sure the month isn't too small or too big.\n%\n [ y, m ] = month_borrow_islamic ( y, m );\n\n [ y, m ] = month_carry_islamic ( y, m );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/ym_check_islamic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.6859494485880927, "lm_q1q2_score": 0.3750347338759187}} {"text": "% File Name: checkValidity.m\n% Author: Heung-Il Suk\n% Cite: H.-I. Suk and S.-W. Lee, \"A Novel Bayesian Framework for Discriminative \n% Feature Extraction in Brain-Computer Interfaces,\" IEEE Trans. on PAMI,\n% 2012. (Accepted)\n\nfunction sample = opt_checkValidity( sample )\n% We enforce the samples to be within min_freq and max_freq\n\nmin_freq = 0.05;\nmax_freq = 40;\n\nif sample(1) <= min_freq\n sample(1) = min_freq;\nend\n\nif sample(2) <= min_freq\n sample(2) = min_freq;\nend\n\nif sample(1) > max_freq\n sample(1) = max_freq;\nend\n\nif sample(2) > max_freq\n sample(2) = max_freq;\nend\n\nif sample(1) > sample(2)\n temp = sample(2);\n sample(2) = sample(1);\n sample(1) = temp;\nend\n\nif (sample(1) - sample(2)) < 1\n sample(1) = sample(1);\n sample(2) = sample(2) + 0.5;\nend\n\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/GigaScience/function_MI/bssfo/opt_checkValidity.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3750347303658052}} {"text": "% CONFIGSTATEMACHINE configures the state machine (type of demo, velocity\n% of the demo, repeat movements, and so on).\n\n%% --- Initialization ---\n\n% If true, the robot CoM will follow a desired reference trajectory (COORDINATOR DEMO ONLY)\nConfig.LEFT_RIGHT_MOVEMENTS = false;\n\n% If equal to one, the desired values of the center of mass are smoothed internally \nConfig.SMOOTH_COM_DES = true; \n\n% If equal to one, the desired values of the postural tasks are smoothed internally \nConfig.SMOOTH_JOINT_DES = true; \n\n% Joint torques saturation [Nm]\nSat.torque = 60;\n\n% Joint torques rate of change saturation\nSat.uDotMax = 300;\n\n% max unsigned difference between two consecutive (measured) joint positions, \n% i.e. delta_qj = abs(qj(k) - qj(k-1))\nSat.maxJointsPositionDelta = 15*pi/180; % [rad] \n\n%% Regularization parameters\nReg.pinvDamp_baseVel = 1e-7;\nReg.pinvDamp = 1; \nReg.pinvTol = 1e-5;\nReg.KP_postural = 0.1;\nReg.KD_postural = 0;\nReg.HessianQP = 1e-7; \n\n%% State Machine configuration\n\n% time between two yoga positions\nStateMachine.joints_pauseBetweenYogaMoves = 3;\n\n% contact forces threshold\nStateMachine.wrench_thresholdContactOn = 25;\nStateMachine.wrench_thresholdContactOff = 85;\n\n% threshold on CoM and joints error\nStateMachine.CoM_threshold = 0.01; \nStateMachine.joints_thresholdNotInContact = 5;\nStateMachine.joints_thresholdInContact = 50;\n\n% initial state for state machine\nStateMachine.initialState = 1;\n\n% other configuration parameters for state machine\nStateMachine.tBalancing = 1;\nStateMachine.tBalancingBeforeYoga = 1;\nStateMachine.skipYoga = false;\nStateMachine.demoOnlyBalancing = false;\nStateMachine.demoStartsOnRightSupport = false; % If false, the Yoga demo is performed on the left foot first\nStateMachine.yogaAlsoOnRightFoot = false; % TO DO: yoga on both feet starting from right foot (not available for now)\n\n%%%% List of possible \"Yoga in loop\" %%%%\n\n% the robot will repeat the FULL DEMO (two feet balancing, yoga on left\n% foot, back on two feet, yoga right foot, back on two feet). The demo is\n% repeated until the user stops the Simulink model. This option is ignored\n% if Sm.demoStartsOnRightSupport = true.\nStateMachine.twoFeetYogaInLoop = false;\n\n% the robot will repeat the ONE FOOT yoga for the number of times the user\n% specifies in the Sm.yogaCounter option. The robot WILL NOT go back to two\n% feet balancing in between to consecutive yoga. WARNING: if the option \n% Sm.yogaAlsoOnRightFoot is true, then the robot will repeat first the yoga\n% on left foot for the number of times the user specifies in the Sm.yogaCounter,\n% and then it will repeat the yoga on the right foot for the same number of times.\nStateMachine.oneFootYogaInLoop = false;\nStateMachine.yogaCounter = 5;\n\n%% Parameters for motors reflected inertia\n\n% transmission ratio (1/N)\nConfig.Gamma = 0.01*eye(ROBOT_DOF);\n\n% modify the value of the transmission ratio for the hip pitch. \n% TODO: avoid to hard-code the joint numbering\nConfig.Gamma(end-5, end-5) = 0.0067;\nConfig.Gamma(end-11,end-11) = 0.0067;\n\n% motors inertia (Kg*m^2)\nlegsMotors_I_m = 0.0827*1e-4;\ntorsoPitchRollMotors_I_m = 0.0827*1e-4;\ntorsoYawMotors_I_m = 0.0585*1e-4;\narmsMotors_I_m = 0.0585*1e-4;\n\n% add harmonic drives reflected inertia\nif Config.INCLUDE_HARMONIC_DRIVE_INERTIA\n \n legsMotors_I_m = legsMotors_I_m + 0.054*1e-4;\n torsoPitchRollMotors_I_m = torsoPitchRollMotors_I_m + 0.054*1e-4;\n torsoYawMotors_I_m = torsoYawMotors_I_m + 0.021*1e-4;\n armsMotors_I_m = armsMotors_I_m + 0.021*1e-4; \nend\n \nConfig.I_m = diag([torsoPitchRollMotors_I_m*ones(2,1);\n torsoYawMotors_I_m;\n armsMotors_I_m*ones(8,1);\n legsMotors_I_m*ones(12,1)]);\n\n% parameters for coupling matrices. Updated according to the wiki:\n%\n% http://wiki.icub.org/wiki/ICub_coupled_joints \n%\n% and corrected according to https://github.com/robotology/robots-configuration/issues/39\nt = 0.615;\nr = 0.022;\nR = 0.04;\n\n% coupling matrices\nT_LShoulder = [-1 0 0;\n -1 -t 0;\n 0 t -t];\n\nT_RShoulder = [ 1 0 0;\n 1 t 0;\n 0 -t t];\n\nT_torso = [ 0.5 -0.5 0;\n 0.5 0.5 0;\n r/(2*R) r/(2*R) r/R];\n \nif Config.INCLUDE_COUPLING\n \n Config.T = blkdiag(T_torso,T_LShoulder,1,T_RShoulder,1,eye(12));\nelse \n Config.T = eye(ROBOT_DOF);\nend\n\n% gain for feedforward term in joint torques calculation. Valid range: a\n% value between 0 and 1\nConfig.K_ff = 0;\n\n% Config.USE_DES_JOINT_ACC_FOR_MOTORS_INERTIA if true, the desired joints\n% accelerations are used for computing the feedforward term in joint\n% torques calculations. Not effective if Config.K_ff = 0.\nConfig.USE_DES_JOINT_ACC_FOR_MOTORS_INERTIA = false;\n\n%% Constraints for QP for balancing\n\n% The friction cone is approximated by using linear interpolation of the circle. \n% So, numberOfPoints defines the number of points used to interpolate the circle \n% in each cicle's quadrant\nnumberOfPoints = 4; \nforceFrictionCoefficient = 1/3; \ntorsionalFrictionCoefficient = 1/75;\nfZmin = 10;\n\n% physical size of the foot \nfeet_size = [-0.05 0.10; % xMin, xMax\n -0.025 0.025]; % yMin, yMax \n \n% Compute contact constraints (friction cone, unilateral constraints)\n[ConstraintsMatrix, bVectorConstraints] = wbc.computeRigidContactConstraints ...\n (forceFrictionCoefficient, numberOfPoints, torsionalFrictionCoefficient, feet_size, fZmin);", "meta": {"author": "robotology", "repo": "whole-body-controllers", "sha": "90ff965a523f0a120e6a8981b71326c1485e7742", "save_path": "github-repos/MATLAB/robotology-whole-body-controllers", "path": "github-repos/MATLAB/robotology-whole-body-controllers/whole-body-controllers-90ff965a523f0a120e6a8981b71326c1485e7742/controllers/floating-base-balancing-torque-control/app/robots/icubGazeboSim/configStateMachine.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37496098464567024}} {"text": "close all;\nclear all;\nclc;\n\ndata_file_path = 'bin/mmv_phase_transition_noiseless_s_8.mat';\noptions.export = true;\noptions.export_dir = 'bin';\noptions.export_name = 'mmv_noiseless_s_8';\noptions.subtitle = 'Noiseless, S = 8';\noptions.chosen_ks = [2, 4, 8, 16, 32, 64];\nspx.pursuit.PhaseTransitionAnalysis.print_results(data_file_path, ...\n 'CoSaMP', options);\n\n", "meta": {"author": "indigits", "repo": "sparse-plex", "sha": "43cae2978f62938d001baaa03308a2a717ee6c9b", "save_path": "github-repos/MATLAB/indigits-sparse-plex", "path": "github-repos/MATLAB/indigits-sparse-plex/sparse-plex-43cae2978f62938d001baaa03308a2a717ee6c9b/experiments/cosamp_mmv/print_mmv_phase_transition_noiseless_s_8.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.705785040214066, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.37491962894868536}} {"text": "function fd1d_heat_implicit_test ( )\n\n%*****************************************************************************80\n%\n%% FD1D_HEAT_IMPLICIT_TEST tests the FD1D_HEAT_IMPLICIT library.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 30 January 2012\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'FD1D_HEAT_IMPLICIT_TEST:\\n' );\n fprintf ( 1, ' MATLAB version.\\n' );\n fprintf ( 1, ' Test the FD1D_HEAT_IMPLICIT library.\\n' );\n\n fd1d_heat_implicit_test01 ( );\n fd1d_heat_implicit_test02 ( );\n fd1d_heat_implicit_test03 ( );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'FD1D_HEAT_IMPLICIT_TEST:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/fd1d_heat_implicit/fd1d_heat_implicit_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5312093733737562, "lm_q2_score": 0.7057850402140659, "lm_q1q2_score": 0.37491962894868525}} {"text": "function medit_io_test03 ( filename )\n\n%*****************************************************************************80\n%\n%% MEDIT_IO_TEST03 reads and prints the sizes in a MESH dataset.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 October 2010\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'MEDIT_IO_TEST03\\n' );\n fprintf ( 1, ' Read a mesh file and print its sizes.\\n' );\n\n [ dim, vertices, edges, triangles, quadrilaterals, tetrahedrons, ...\n hexahedrons ] = mesh_size_read ( filename );\n%\n% Print information.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Header information for \"%s\":\\n', filename );\n\n mesh_size_print ( dim, vertices, edges, triangles, quadrilaterals, ...\n tetrahedrons, hexahedrons );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/medit_io/medit_io_test03.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5312093733737562, "lm_q2_score": 0.7057850340255386, "lm_q1q2_score": 0.37491962566128156}} {"text": "% This is material illustrating the methods from the book\n% Financial Modelling - Theory, Implementation and Practice with Matlab\n% source\n% Wiley Finance Series\n% ISBN 978-0-470-74489-5\n%\n% Date: 02.05.2012\n%\n% Authors: Joerg Kienitz\n% Daniel Wetterau\n%\n% Please send comments, suggestions, bugs, code etc. to\n% kienitzwetterau_FinModelling@gmx.de\n%\n% (C) Joerg Kienitz, Daniel Wetterau\n% \n% Since this piece of code is distributed via the mathworks file-exchange\n% it is covered by the BSD license \n%\n% This code is being provided solely for information and general \n% illustrative purposes. The authors will not be responsible for the \n% consequences of reliance upon using the code or for numbers produced \n% from using the code.\n\n% Creates a Matlab array d0 for the absorbtion probability in the SABR\n% model. It uses a csv file which can be downloaded via P. Dousts page\n% mentioned in his RISK article \"No-Arbitrage SABR\" \n\nn1 = length(sabrVol);\nn2 = length(sabrbeta);\nn3 = length(sabrrho);\nn4 = length(sabrnu);\nn5 = length(sabrtau);\n\nd0 = zeros(n1,n2,n3,n4,n5);\nxindex = 1;\nfor j2=1:n2\n for j4 = 1:n4\n for j3=1:n3\n for j1=1:n1\n for j5 = 1:n5\n value = data(xindex,4 + j5);\n d0(j1,j2,j3,j4,j5) = value; \n end\n xindex = xindex+1;\n end\n end\n end\nend\n\nd0 = d0/2500000;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/38322-the-sabr-model-densities-and-mc/Densities_Prices_MC/Created0.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3749196223738779}} {"text": "Wxkpixbg=reshape(Wxk*Hkt,peval.nx,peval.ny,peval.nt)+peval.bg;\nresid=(Wxkpixbg-dpixc);\nresid_norm=resid./Wxkpixbg;\nrnm=mean(resid_norm,3);", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/residualanalysis/residanalysisdraft.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.3748880783340613}} {"text": "function polar_info_esti = FastSCL_decoder(llr, L, info_bits, lambda_offset, llr_layer_vec, bit_layer_vec, psi_vec, node_type_matrix, H_crc)\n%2018.1.7.14:16 Yu Y. R.\n%LLR-based SCL deocoder\n%Systematic polar code used\n%4 nodes are identified and decoded, i.e., rate0, rate1, rep, spc,\n%No BLER loss, while using fast algorithms.\n%const\nN = length(llr);\nm = log2(N);\n%memory declared\nP = zeros(N - 1, L); %llr is public-used, so N - 1 is enough.\nC = zeros(2 * N - 1, 2 * L);\nPM = zeros(L, 1);\nactivepath = zeros(L, 1);\nlazy_copy = zeros(m, L); \n%initialize the 1st SC decoder\nactivepath(1) = 1;\nlazy_copy(:, 1) = 1;\n%decoding starts\n%default: in the case of path clone in REP and leaf node,\n%origianl always corresponds to bit 0s, while the new path bit 1s.\nfor i_node = 1 : size(node_type_matrix, 1)\n current_index = node_type_matrix(i_node, 1);\n llr_layer = llr_layer_vec(current_index);\n M = node_type_matrix(i_node, 2);%number of leaf nodes in this constituent node\n reduced_layer = log2(M); %For LLR recursion, this reduced layer denotes where to stop; For Bit recursion, this denotes where to start.\n psi = psi_vec(i_node);%This psi is used for bits recursion\n psi_mod_2 = mod(psi, 2);%To decide whether the bit recuision should continue. 1 : continue; 0 : stop.\n for l_index = 1 : L\n if activepath(l_index) == 0\n continue;\n end\n switch current_index\n case 1\n index_1 = lambda_offset(m);\n for beta = 0 : index_1 - 1\n P(beta + index_1, l_index) = sign(llr(beta + 1)) * sign(llr(beta + index_1 + 1)) * min(abs(llr(beta + 1)), abs(llr(beta + index_1 + 1)));\n end\n for i_layer = m - 2 : -1 : reduced_layer\n index_1 = lambda_offset(i_layer + 1);\n index_2 = lambda_offset(i_layer + 2);\n for beta = index_1 : index_2 - 1\n P(beta, l_index) = sign(P(beta + index_1, l_index)) * sign(P(beta + index_2, l_index)) * ...\n min(abs(P(beta + index_1, l_index)), abs(P(beta + index_2, l_index)));\n end\n end\n case N/2 + 1\n index_1 = lambda_offset(m);\n for beta = 0 : index_1 - 1\n x_tmp = C(beta + index_1, 2 * l_index - 1);\n P(beta + index_1, l_index) = (1 - 2 * x_tmp) * llr(beta + 1) + llr(beta + index_1 + 1);\n end\n for i_layer = m - 2 : -1 : reduced_layer\n index_1 = lambda_offset(i_layer + 1);\n index_2 = lambda_offset(i_layer + 2);\n for beta = index_1 : index_2 - 1\n P(beta, l_index) = sign(P(beta + index_1, l_index)) * sign(P(beta + index_2, l_index)) * ...\n min(abs(P(beta + index_1, l_index)), abs(P(beta + index_2, l_index)));\n end\n end\n otherwise\n index_1 = lambda_offset(llr_layer + 1);\n index_2 = lambda_offset(llr_layer + 2);\n for beta = index_1 : index_2 - 1\n %lazy copy\n P(beta, l_index) = (1 - 2 * C(beta, 2 * l_index - 1)) * P(beta + index_1, lazy_copy(llr_layer + 2, l_index)) + P(beta + index_2, lazy_copy(llr_layer + 2, l_index));\n end\n for i_layer = llr_layer - 1 : -1 : reduced_layer\n index_1 = lambda_offset(i_layer + 1);\n index_2 = lambda_offset(i_layer + 2);\n for beta = index_1 : index_2 - 1\n P(beta, l_index) = sign(P(beta + index_1, l_index)) * sign(P(beta + index_2, l_index)) * ...\n min(abs(P(beta + index_1, l_index)), abs(P(beta + index_2, l_index)));\n end\n end\n end\n end%LLR calculations. You may fold thiis code block.\n index_vec = M : 2 * M - 1;\n switch node_type_matrix(i_node, 3)\n case -1%****RATE 0*****\n x = zeros(M, 1);\n for l_index = 1 : L\n if activepath(l_index) == 0\n continue;\n end\n C(index_vec, psi_mod_2 + 2 * l_index - 1) = x;\n PM(l_index) = PM(l_index) + sum(log(1 + exp(-P(index_vec, l_index)))); \n %Do not forget updating path metric in rate 0 nodes\n %No copy in Rate 0 node\n end\n case 1%*****RATE 1*****\n %input LLR: P(index_vec, :)\n [PM, activepath, selected_subcodeword, lazy_copy] = Rate1(M, P(index_vec, :), activepath, PM, L, lazy_copy);\n %output: estimated sub polar codeword: 'selected_subcodeword'.\n for l_index = 1 : L\n if activepath(l_index) == 0\n continue\n end\n C(index_vec, 2 * l_index - 1 + psi_mod_2) = selected_subcodeword(:, l_index);\n end\n case 2%*****REP*****\n [PM, activepath, lazy_copy, selected_subcodeword] = Rep(PM, P(index_vec, :), activepath, L, M, lazy_copy);\n for l_index = 1 : L\n if activepath(l_index) == 0\n continue\n end\n C(index_vec, 2 * l_index - 1 + psi_mod_2) = selected_subcodeword(:, l_index);\n end\n case 3%*******SPC*******\n [PM, activepath, selected_subcodeword, lazy_copy] = SPC(index_vec, P(index_vec, :), activepath, PM, L, lazy_copy);\n for l_index = 1 : L\n if activepath(l_index) == 0\n continue\n end\n C(index_vec, 2 * l_index - 1 + psi_mod_2) = selected_subcodeword(:, l_index);\n end\n end\n %Internal Bits Update for each active path\n bit_layer = bit_layer_vec(current_index + M - 1);\n for l_index = 1 : L\n if activepath(l_index) == 0\n continue;\n end\n if psi_mod_2 == 1%right child of its mother\n for i_layer = reduced_layer : bit_layer - 1\n index_1 = lambda_offset(i_layer + 1);\n index_2 = lambda_offset(i_layer + 2);\n for beta = index_1 : index_2 - 1\n C(beta + index_1, 2 * l_index) = mod(C(beta, 2 * lazy_copy(i_layer + 1, l_index) - 1) + C(beta, 2 * l_index), 2);\n C(beta + index_2, 2 * l_index) = C(beta, 2 * l_index);\n end\n end\n index_1 = lambda_offset(bit_layer + 1);\n index_2 = lambda_offset(bit_layer + 2);\n for beta = index_1 : index_2 - 1\n C(beta + index_1, 2 * l_index - 1) = mod(C(beta, 2 * lazy_copy(bit_layer + 1, l_index) - 1) + C(beta, 2 * l_index), 2);\n C(beta + index_2, 2 * l_index - 1) = C(beta, 2 * l_index);\n end\n end\n end\n %lazy copy\n if i_node < size(node_type_matrix, 1)\n for i_layer = 1 : llr_layer_vec(current_index + M) + 1\n for l_index = 1 : L\n lazy_copy(i_layer, l_index) = l_index;\n end\n end\n end\nend\n%select the best path\n[~, path_ordered] = sort(PM);\nfor l_index = 1 : L\n path_num = path_ordered(l_index);\n x = C(end - N + 1 : end, 2 * path_num - 1);\n info_with_crc = x(info_bits);\n err = sum(mod(H_crc * info_with_crc, 2));\n if err == 0\n polar_info_esti = info_with_crc;\n break;\n else\n if l_index == L\n x = C(end - N + 1 : end, 2 * path_ordered(1) - 1);\n polar_info_esti = x(info_bits);\n end\n end\nend\nend", "meta": {"author": "YuYongRun", "repo": "PolarCodeDecodersInMatlab", "sha": "f1b512d10bf057e83f18685ea012d242bdaaf6ac", "save_path": "github-repos/MATLAB/YuYongRun-PolarCodeDecodersInMatlab", "path": "github-repos/MATLAB/YuYongRun-PolarCodeDecodersInMatlab/PolarCodeDecodersInMatlab-f1b512d10bf057e83f18685ea012d242bdaaf6ac/PolarFastSCL/FastSCL_decoder.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7931059511841119, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.3748880783340613}} {"text": "function n = gqu_order ( l )\n\n%*****************************************************************************80\n%\n%% GQU_ORDER computes the order of a GQU rule from the level.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 26 June 2012\n%\n% Author:\n%\n% John Burkardt.\n%\n% Parameters:\n%\n% Input, integer L, the level of the rule. \n% 1 <= L.\n%\n% Output, integer N, the order of the rule.\n%\n if ( l < 1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'GQU_ORDER - Fatal error!\\n' );\n fprintf ( 1, ' 1 <= L required.\\n' );\n fprintf ( 1, ' Input L = %d\\n', l );\n error ( 'GQU_ORDER - Fatal error!' );\n elseif ( l <= 25 )\n n = l;\n else\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'GQU_ORDER - Fatal error!\\n' );\n fprintf ( 1, ' L <= 25 required.\\n' );\n fprintf ( 1, ' Input L = %d\\n', l );\n error ( 'GQU_ORDER - Fatal error!' );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/sparse_grid_hw/gqu_order.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5851011542032312, "lm_q2_score": 0.640635868562172, "lm_q1q2_score": 0.3748367861197163}} {"text": "function [tempimg ]=displayout(Polyg,w,h,img)\n\n\nr=[255 0 0 0 255 255 0];\ng=[0 255 0 255 255 0 0];\nb=[0 0 255 255 0 255 0];\n\nrl=[0 0 0 255 255 255 0];\ngl=[255 255 0 0 255 0 0];\nbl=[0 255 255 0 0 255 0];\n\nfields=zeros(h,w);\n%1 floor\npolyg=Polyg{1};\nif numel(polyg)>0\n tempimg1=poly2mask(polyg(:,1),polyg(:,2),h,w);\nelse\n tempimg1=zeros(h,w);\nend\nfields=fields.*(fields~=0)+1*tempimg1.*(fields==0);\n\n%2 middlewall\n\npolyg=Polyg{2};\nif numel(polyg)>0\n tempimg1=poly2mask(polyg(:,1),polyg(:,2),h,w);\nelse\n tempimg1=zeros(h,w);\nend\nfields=fields.*(fields~=0)+2*tempimg1.*(fields==0);\n%3 right wall\n\npolyg=Polyg{3};\nif numel(polyg)>0\n tempimg1=poly2mask(polyg(:,1),polyg(:,2),h,w);\nelse\n tempimg1=zeros(h,w);\nend\nfields=fields.*(fields~=0)+3*tempimg1.*(fields==0);\n%4 left wall\n\npolyg=Polyg{4};\nif numel(polyg)>0\n tempimg1=poly2mask(polyg(:,1),polyg(:,2),h,w);\nelse\n tempimg1=zeros(h,w);\nend\nfields=fields.*(fields~=0)+4*tempimg1.*(fields==0);\n%\n%5 ceiling\n\npolyg=Polyg{5};\nif numel(polyg)>0\n tempimg1=poly2mask(polyg(:,1),polyg(:,2),h,w);\nelse\n tempimg1=zeros(h,w);\nend\nfields=fields.*(fields~=0)+5*tempimg1.*(fields==0);\n\nfields = fields.*(fields~=0) + 6*(fields==0);\n\nmask_r = r(fields);\nmask_g = g(fields);\nmask_b = b(fields);\nmask_color(:,:,1) = mask_r;\nmask_color(:,:,2) = mask_g;\nmask_color(:,:,3) = mask_b;\n\ntempimg = double(img)*0.5 + mask_color*0.5;\n% figure;\n% imshow(uint8(tempimg),[]);\n\nreturn", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/Toolbox/SpatialLayout_shrink/spatiallayoutcode/Visualize/displayout.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5851011542032313, "lm_q1q2_score": 0.3748367780907981}} {"text": "function [y]=tt_rc2(d,n,elem_fun,eps,varargin)\n%[Y]=TT_RC2(D,N,ARR,ELEM_FUN,EPS,[OPTIONS])\n%The TT-Renormalization-Cross algorithm\n%input is: the dimension of the array d, the \n%size vector n, the function that computes the prescribed element\n%of an array, accuracy parameter eps\n%and also additional arguments specified as 'rmax',10,'nswp',10\n%'verb',true and so on\n% 'x0', x0\n%The elem function has syntax elem_fun(ind); all other additional\n%information\n%has to be passed as \"anonymous\" arguments\n\n%The algorithm. It needs left & right index sets to be initialized.\n%It needs supecores to be precomputed\n%It is a good idea to store also the supercores (there will be d-1,\n%i think) & update them; also certain indices maybe removed from the\n%index set?? we will not do that; \n%Two possibilities: current index contains maxvol submatrix;\n%If not, increase, increase & increase (maybe even beyond the rank!)\n%rank one subtraction can be made very stable\n\n\n%Default parameters\nif ( numel(n) == 1 )\n n=n*ones(1,d);\nend\nnswp=10;\nrmax=1000;\nx0=[];\nverb=true;\nvec=false; %If there is a vectorization in options, i.e. if elem_fun\n%supports vectorized computations of many elements at once\nfor i=1:2:length(varargin)-1\n switch lower(varargin{i})\n case 'nswp'\n nswp=varargin{i+1};\n case 'rmax'\n rmax=lower(varargin{i+1});\n case 'x0'\n x0=varargin{i+1};\n case 'verb'\n verb=varargin{i+1};\n case 'vec'\n vec=varargin{i+1};\n otherwise\n error('Unrecognized option: %s\\n',varargin{i});\n end\nend\n\n%The initial setup is done. \n\n%We need initial index sets. Say, the vector of all ones (he-he)\n%i_left;\n%r_left;\n%i_right;\n%r_right;\ni_left=cell(d,1);\ni_right=cell(d,1);\nr_left=cell(d,1);\nr_right=cell(d,1);\nry=ones(d+1,1); %Initial ranks\n%Find fiber maximum\nind=2*ones(d,1);\nind=find_fiber_maximum(elem_fun,ind);\nfor i=1:d\n i_left{i}=ind(i);\n i_right{i}=ind(i);\n r_left{i}=1;\n r_right{i}=1;\nend\n\n%Before we get the multiindex sets (helps to compute s-u-p-e-r-c-o-r-e-s)\n\nind_left=get_multi_left(i_left,r_left,ry);\nind_right=get_multi_right(i_right,r_right,ry);\n\n%Now we have to compute s-u-p-e-r-c-o-r-e-s (not cores!) using ind_left &\n%ind_right\nsuper_core=cell(d-1,1);\nfor i=1:d-1 %There are d-1 s-u-p-e-r-c-o-r-e-s\n %Compute the index set for the i-th one\n index_set=zeros(d,ry(i),n(i),n(i+1),ry(i+2));\n if ( i == 1 )\n ileft=zeros(1,0);\n else\n ileft=ind_left{i-1}; \n end\n if ( i == d - 1 )\n iright = zeros(1,0);\n else\n iright=ind_right{i+2};\n end\n for s1=1:ry(i)\n for s2=1:ry(i+2)\n for i1=1:n(i)\n for i2=1:n(i+1)\n index_set(:,s1,i1,i2,s2)=[ileft(s1,:),i1,i2,iright(s2,:)];\n end\n end\n end\n end\n M=ry(i)*n(i)*n(i+1)*ry(i+2);\n index_set=reshape(index_set,[d,M]);\n if ( vec ) \n super_core{i}=reshape(elem_fun(index_set),[ry(i),n(i),n(i+1),ry(i+2)]);\n else\n cur_core=zeros(M,1);\n for k=1:M\n cur_core(k)=elem_fun(index_set(:,k));\n end\n super_core{i}=reshape(cur_core,[ry(i),n(i),n(i+1),ry(i+2)]);\n end\n \nend\n%Initialization is done. \n%Now to the main iteration\n\n%Through all the s-u-p-e-r-c-o-r-e-s\nswp=1;\ndir='lr';\ni=1;\nwhile ( swp <= nswp )\n %The method acts as follows.\n %1) Test if the current supercore is well approximated by the\n %current cross\n %2) If yes, do nothing. \n %3) If no, add the required indices to the cross and perform\n %modifications of the s-u-p-e-r-c-o-r-e-s\n \n %Nikrena ne soobrajau\n %Bilo: (i1,i2,i3,i4,i5) \n %Pofiksili (i1,i2), uvelichili r2. Rashirilos' mnojestvo (i2,i3,i4,i5)\n %(nikomu ne nujno)\n %V seredine: (i1,i2) (i3,i4,i5)+ - uvelichilos' mojectvo\n %Kogda uvelichili (i3,i4,i5) viros ry(3), uvelichilos 1 superyadro\n cur_core=super_core{i}; \n %we have to convert the pair i_left{i} & r_left{i} to the \n %index set for the matrix cur_core\n \n cur_core=reshape(cur_core,[ry(i)*n(i),n(i+1)*ry(i+2)]);\n %i1=get_full_ind(i_left{i},r_left{i});\n %i2=get_full_ind(i_right{i+1},r_right{i+1});\n %ry(i)*n(i)\n \n i1=r_left{i}+(i_left{i}-1)*ry(i); \n i2=i_right{i+1}+(r_right{i+1}-1)*n(i+1);\n % if ( numel(i1)==2)\n % if ( i1(1) == 2 && i1(2) == 2 )\n % keyboard;\n % end\n % end\n [i1,i2]=new_cross(cur_core,i1,i2,eps); \n %Increase i_left{i} & i_right{i+1}\n [radd_left,iadd_left]=ind2sub([ry(i);n(i)],i1);\n [iadd_right,radd_right]=ind2sub([n(i+1);ry(i+2)],i2);\n i_left{i}=iadd_left;\n r_left{i}=radd_left;\n %if ( i == 8 )\n % keyboard\n %end\n i_right{i+1}=iadd_right;\n r_right{i+1}=radd_right;\n ry(i+1)=numel(i1);\n %Zaglushka\n ind_left=get_multi_left(i_left,r_left,ry);\n \n ind_right=get_multi_right(i_right,r_right,ry);\n \n % fprintf('Index set in question: \\n');\n % ind_left{3}\n % if ( i == 3 && swp == 2 )\n % keyboard;\n % end\n %keyboard;\n if ( i > 1 ) \n %Recompute supercore{i-1} \n super_core{i-1}=compute_supercore(i-1,elem_fun,d,n,ry,ind_left,ind_right,vec);\n end\n if ( i < d - 1)\n super_core{i+1}=compute_supercore(i+1,elem_fun,d,n,ry,ind_left,ind_right,vec);\n %Recompute supercore{i+1}; \n end\n\n %Convert iadd1 to i_left and i_right format; compute new\n %ind_left{i+1},ind_right{i+1}\n if ( strcmp(dir,'lr') )\n if ( i == d-1 )\n dir='rl';\n else\n i=i+1;\n end\n else\n if ( i == 1 )\n dir ='lr';\n swp=swp+1;\n else\n i=i-1;\n end\n end\n fprintf('Step %d sweep %d rank=%3.1f \\n',i,swp,mean(ry));\nend\nfprintf('Done! \\n');\nkeyboard;\n\n\n\n\n\n\n\nreturn\nend\n\nfunction [super_core]=compute_supercore(i,elem_fun,d,n,ry,ind_left,ind_right,vec)\n%[super_core]=compute_supercore(i,elem_fun,n,ry,ind_left,ind_right)\n index_set=zeros(d,ry(i),n(i),n(i+1),ry(i+2));\n if ( i == 1 )\n ileft=zeros(1,0);\n else\n ileft=ind_left{i-1}; \n end\n if ( i == d - 1 )\n iright = zeros(1,0);\n else\n iright=ind_right{i+2};\n end\n for s1=1:ry(i)\n for s2=1:ry(i+2)\n for i1=1:n(i)\n for i2=1:n(i+1)\n index_set(:,s1,i1,i2,s2)=[ileft(s1,:),i1,i2,iright(s2,:)];\n end\n end\n end\n end\n M=ry(i)*n(i)*n(i+1)*ry(i+2);\n index_set=reshape(index_set,[d,M]);\n if ( vec ) \n super_core=reshape(elem_fun(index_set),[ry(i),n(i),n(i+1),ry(i+2)]);\n else\n cur_core=zeros(M,1);\n for k=1:M\n cur_core(k)=elem_fun(index_set(:,k));\n end\n super_core=reshape(cur_core,[ry(i),n(i),n(i+1),ry(i+2)]);\n end\n \n\nreturn\nend\n\nfunction [i1,i2]=new_cross(mat,i1,i2,eps)\n%[i1,i2]=enlarge_cross(mat,i1,i2,eps) \n%Tests whether the current index set gives a reasonable approximation\n%to the matrix, and enlarges the basis if necessary.\n%The method acts as follows. \n\n%A-C*A11^{-1} R\n\n%sbm=mat(i1,i2); \n%[u,s,v]=svd(sbm,'econ');\n%nrm=norm(mat);s=diag(s); \n%r=numel(find(\n%mat_save=mat;\ni1=[];\ni2=[];\ndesirata=eps*norm(mat,'fro');\ner=norm(mat,'fro');\nwhile ( er > desirata )\n %Find maximal element in mat\n [~,ind]=max(abs(mat(:)));\n ind=tt_ind2sub(size(mat),ind);\n i=ind(1); j=ind(2);\n i1=[i1;i];\n i2=[i2;j];\n u1=mat(:,j); u2=mat(i,:);\n u1=u1/mat(i,j);\n mat=mat-u1*u2;\n er=norm(mat,'fro');\nend\n% i0=[i1;iadd1]; j0=[i2;iadd2];\n% sbm=mat_save(i0,j0);\n% ss=svd(sbm);\n% fprintf('%10.10e \\n',ss)\n% sbm=mat_save(i1,i2);\n% fprintf('AND PREVIOUS \\n');\n% ss=svd(sbm);\n% fprintf('%10.10e \\n',ss)\n\nreturn\nend\n\nfunction [ind_left]=get_multi_left(i_left,r_left,ry)\n%[ind_left]=get_multi_left(i_left,r_left,ry)\n%Computes (all) left multiindex sets for a given compact representation\n d=numel(i_left);\n ind_left=cell(d,1);\n ind_left{1}=i_left{1};\n for i=2:d\n %ind_cur=zeros(\n %ind_cur is an array of size ry(i-1) x i\n ind_cur=zeros(ry(i+1),i);\n r_prev=r_left{i};\n ind_prev=ind_left{i-1};\n i_prev=i_left{i};\n for s=1:ry(i+1)\n %ind_prev(p1(s\n ind_cur(s,:)=[ind_prev(r_prev(s),:),i_prev(s)];\n end\n ind_left{i}=ind_cur;\n end\nreturn\nend\n\nfunction [ind_right]=get_multi_right(i_right,r_right,ry)\n%[ind_right]=get_multi_right(i_right,r_right,ry)\n%Computes (all) right multiindex sets for a given compact representation\n d=numel(i_right);\n ind_right=cell(d,1);\n ind_right{d}=i_right{d};\n for i=d-1:-1:1\n %ind_cur=zeros(\n %ind_cur is an array of size ry(i) x i\n ind_cur=zeros(ry(i),d-i+1);\n r_prev=r_right{i};\n ind_prev=ind_right{i+1};\n i_prev=i_right{i};\n for s=1:ry(i)\n ind_cur(s,:)=[i_prev(s), ind_prev(r_prev(s),:)];\n end\n ind_right{i}=ind_cur;\n end\n\nreturn\nend\n\nfunction [ind]=find_fiber_maximum(elem_fun,ind)\n%[ind]=find_fiber_maximum(elem_fun,ind)\n%Simple ALS method to compute (approximate) maximum in a tensor\n%In fact, need some non-zero\n%fact=2; %If the new one <= fact times larger than the previous, stop\n\nreturn\nend\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/cross/oldcross/tt_rc2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.374836778090798}} {"text": "% GEODEMO_4 Compare horizontal slices from two different CF compliant structured\n% grid models (CH3D and ROMS) at a particular time step and depth\nclear\n\n%% CH3D salinity\nurl{1}='http://testbedapps.sura.org/thredds/dodsC/estuarine_hypoxia/ch3d/agg.nc';\nvar{1}='salinity';\ntitl{1}='CH3D';\n\n%% ROMS salt\nurl{2}='http://testbedapps.sura.org/thredds/dodsC/estuarine_hypoxia/chesroms_1tdo/agg.nc';\nvar{2}='salt';\ntitl{2}='CHESROMS';\n\n%% Choose a date,depth, and spatial extent\ndat=[2005 1 10 0 0 0]; % Jan 10, 2005 00:00 UTC\ndepth=-5; % horizontal slice 5 m from surface\nax=[ -77.4572 -75.4157 36.7224 39.6242]; %lon/lat range\ncax=[0 33]; %color range\nlat_mid=38; % for scaling plots\n\n\n%% Perform analysis without using dataset dependant code\n% Access datasets, get 3d field at given time data, interpolate data to a constant z, plot results at z depth\n\nfigure;\nfor i=1:length(url);\n nc{i}=ncgeodataset(url{i});\n jd{i}=nj_time(nc{i},var{i}); % using nj_time\n itime=date_index(jd{i},dat);\n disp(['reading data from ' titl{i} '...'])\n \n % using nj_tslice here, which doesn't allow for subsetting or\n % striding: you get the whole 3D field at a particular time step:\n [s{i},g{i}]=nj_tslice(nc{i},var{i},itime);\n sz{i}=zsliceg(s{i},g{i}.z,depth);\n a{i}=subplot(1,length(url),i);\n pcolorjw(g{i}.lon,g{i}.lat,double(sz{i}));colorbar\n axis(ax);\n caxis(cax);\n title(sprintf('%s, depth=%f: %s',titl{i},depth,datestr(g{i}.time)));\n set (a{i}, 'DataAspectRatio', [1 cos(lat_mid*pi/180) 1000] );\n\nend\n", "meta": {"author": "nctoolbox", "repo": "nctoolbox", "sha": "af757acccfcac373e35fde89fc8ed7e64b67de82", "save_path": "github-repos/MATLAB/nctoolbox-nctoolbox", "path": "github-repos/MATLAB/nctoolbox-nctoolbox/nctoolbox-af757acccfcac373e35fde89fc8ed7e64b67de82/demos/geodemo_4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.374691519772093}} {"text": "function square_symq_gnuplot ( n, x, header )\n\n%*****************************************************************************80\n%\n%% SQUARE_SYMQ_GNUPLOT: GNUPLOT plot of the symmetric square quadrature rule.\n%\n% Licensing:\n%\n% This code is distributed under the GNU GPL license.\n%\n% Modified:\n%\n% 11 July 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% Hong Xiao, Zydrunas Gimbutas,\n% A numerical algorithm for the construction of efficient quadrature\n% rules in two and higher dimensions,\n% Computers and Mathematics with Applications,\n% Volume 59, 2010, pages 663-676.\n%\n% Parameters:\n%\n% Input, real N, the number of nodes.\n%\n% Input, real X(2,N), the coordinates of the nodes.\n%\n% Input, string HEADER, a string to be used to identify\n% the files created.\n%\n\n%\n% Create the vertex file.\n%\n vertex_filename = strcat ( header, '_vertices.txt' );\n vertex_unit = fopen ( vertex_filename, 'wt' );\n fprintf ( vertex_unit, '%g %g\\n', -1.0, -1.0 );\n fprintf ( vertex_unit, '%g %g\\n', +1.0, -1.0 );\n fprintf ( vertex_unit, '%g %g\\n', +1.0, +1.0 );\n fprintf ( vertex_unit, '%g %g\\n', -1.0, +1.0 );\n fprintf ( vertex_unit, '%g %g\\n', -1.0, -1.0 );\n fclose ( vertex_unit );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Created vertex file \"%s\"\\n', vertex_filename );\n%\n% Create node file.\n%\n node_filename = strcat ( header, '_nodes.txt' );\n node_unit = fopen ( node_filename, 'wt' );\n for j = 1 : n\n fprintf ( node_unit, '%g %g\\n', x(1:2,j) );\n end\n fclose ( node_unit );\n fprintf ( 1, ' Created node file \"%s\"\\n', node_filename );\n%\n% Create graphics command file.\n%\n command_filename = strcat ( header, '_commands.txt' );\n command_unit = fopen ( command_filename, 'wt' );\n fprintf ( command_unit, '# %s\\n', command_filename );\n fprintf ( command_unit, '#\\n' );\n fprintf ( command_unit, '# Usage:\\n' );\n fprintf ( command_unit, '# gnuplot < %s\\n', command_filename );\n fprintf ( command_unit, '#\\n' );\n fprintf ( command_unit, 'set term png\\n' );\n plot_filename = strcat ( header, '.png' );\n fprintf ( command_unit, 'set output \"%s\"\\n', plot_filename );\n fprintf ( command_unit, 'set xlabel \"<--- X --->\"\\n' );\n fprintf ( command_unit, 'set ylabel \"<--- Y --->\"\\n' );\n fprintf ( command_unit, 'set title \"%s\"\\n', header );\n fprintf ( command_unit, 'set grid\\n' );\n fprintf ( command_unit, 'set key off\\n' );\n fprintf ( command_unit, 'set size ratio -1\\n' );\n fprintf ( command_unit, 'set style data lines\\n' );\n fprintf ( command_unit, 'set timestamp\\n' );\n fprintf ( command_unit, 'plot \"%s\" with lines lw 3, \\\\\\n', vertex_filename );\n fprintf ( command_unit, ' \"%s\" with points pt 7 lt 0\\n', node_filename );\n fclose ( command_unit );\n\n fprintf ( 1, ' Created command file \"%s\"\\n', command_filename );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/square_symq_rule/square_symq_gnuplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.6757646075489392, "lm_q1q2_score": 0.374691516151461}} {"text": "function ho=comprose(x,y,n,w,az,varargin)\n%COMPROSE Compass rose plot\n%\n% COMPROSE(X,Y,N,W,AZ) adds a compass rose on current axis located at\n% position X,Y with N points (N is 1, 4, 8 or 16), width W (radius)\n% and North pointing to azimuth AZ (in degree, AZ = 0 means an arrow\n% pointing to positive Y-axis direction, rotating clockwise).\n%\n% COMPROSE(...,FS) adds Cardinal directions with font size FS.\n%\n% COMPROSE(...,'param1',value1,'param2',value2,...) specifies any\n% additionnal properties of the Patch using standard parameter/value\n% pairs. Note that 'FaceColor' concerns only the default black-filled\n% parts of the drawing.\n%\n%\tH=COMPROSE(...) returns a Nx3 matrix of object handles: first column\n%\taddresses solid filled patches, second column for white patches, third\n%\tcolumn for Cardinal direction text.\n%\n% Examples:\n%\t\tcomprose(0,0,8,.5,10)\n%\n%\t\tcomprose(2,-1,1,2,0,20,'LineWidth',2,'FaceColor',.5*[1,1,1])\n%\t\t\n%\t\th = comprose(1,2.5,16,1,-10);\n%\t\tset(h(:,1),'FaceColor',[0,.5,.5],'EdgeColor',.5*[1,1,1])\n%\t\tset(h(:,2),'FaceColor',.9*[1,1,1])\n%\n% See also PATCH.\n%\n%\tAuthor: Francois Beauducel \n%\tCreated: 2012-06-24\n\n%\tCopyright (c) 2012, Fran\u00e7ois Beauducel, covered by BSD License.\n%\tAll rights reserved.\n%\n%\tRedistribution and use in source and binary forms, with or without \n%\tmodification, are permitted provided that the following conditions are \n%\tmet:\n%\n%\t * Redistributions of source code must retain the above copyright \n%\t notice, this list of conditions and the following disclaimer.\n%\t * Redistributions in binary form must reproduce the above copyright \n%\t notice, this list of conditions and the following disclaimer in \n%\t the documentation and/or other materials provided with the distribution\n%\t \n%\tTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" \n%\tAND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE \n%\tIMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE \n%\tARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE \n%\tLIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR \n%\tCONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF \n%\tSUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS \n%\tINTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN \n%\tCONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) \n%\tARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE \n%\tPOSSIBILITY OF SUCH DAMAGE.\n\nif nargin < 5\n\terror('Not enough input arguments.')\nend\n\nif nargin > 5 & isnumeric(varargin{1})\n\tfs = varargin{1};\n\tvarargin = varargin(2:end);\nelse\n\tfs = 0;\nend\n\nif ~isnumeric(x) | ~isnumeric(y) | ~isnumeric(n) | ~isnumeric(w) | ~isnumeric(az)\n\terror('X,Y,N,W, and AZ must be numeric.')\nend\n\nif all(n ~= [1,4,8,16])\n\terror('N must be equal to 1, 4, 8 or 16.')\nend\n\nhh = [];\n\nfor k = n:-1:1\n\th = branch(x,y,k,w,az,fs,varargin{:});\n\thh = [hh;h];\nend\n\nif nargout > 0\n\tho = hh;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction h = branch(x,y,k,w,az,fs,varargin)\n\ncpt = {'N','E','S','W','NE','SE','SW','NW', ...\n\t'NNE','ENE','ESE','SSE','SSW','WSW','WNW','NNW'};\ncph = {'center','left','center','right','left','left','right','right', ...\n\t'left','left','left','left','right','right','right','right'};\ncpv = {'bottom','middle','top','middle','bottom','top','top','bottom', ...\n\t'bottom','bottom','top','top','top','top','bottom','bottom'};\n\nif k <= 4\n\ta = (k-1)*90 + az;\nelse\n\tif k <= 8\n\t\ta = (k-8)*90 - 45 + az;\n\t\tw = w*.8;\n\t\tfs = fs*.8;\n\telse\n\t\ta = (k-16)*45 - 22.5 + az;\n\t\tw = w*.6;\n\t\tfs = fs*.6;\n\tend\nend\n\nr = .15;\nxx = w*[0 0 r];\nyy = w*[0 1 r];\nx1 = xx*cosd(a) + yy*sind(a);\ny1 = -xx*sind(a) + yy*cosd(a);\nx2 = -xx*cosd(a) + yy*sind(a);\ny2 = xx*sind(a) + yy*cosd(a);\nh(1) = patch(x1 + x,y1 + y,'k',varargin{:});\nh(2) = patch(x2 + x,y2 + y,'k',varargin{:},'FaceColor','w');\n\n% Cardinal points\nxp = 1.03*x1(2) + x;\nyp = 1.03*y1(2) + y;\nh(3) = text(xp,yp,cpt{k}, ...\n\t'HorizontalAlignment',cph{k},'VerticalAlignment',cpv{k},'Rotation',-az);\nif fs > 0\n\tset(h(3),'FontSize',fs','FontWeight','bold')\nelse\n\tset(h(3),'Visible','off')\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/37340-comprose-compass-rose-plot/comprose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37469151253082894}} {"text": "function [newbnd] = mesh2edge(bnd)\n\n% MESH2EDGE finds the edge lines from a triangulated mesh or the edge\n% surfaces from a tetrahedral or hexahedral mesh. An edge is defined as an\n% element that does not border any other element. This also implies that a\n% closed triangulated surface has no edges.\n%\n% Use as\n% [edge] = mesh2edge(mesh)\n%\n% See also POLY2TRI\n\n% Copyright (C) 2013-2015, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\nif isfield(bnd, 'tri')\n % make a list of all edges\n edge1 = bnd.tri(:, [1 2]);\n edge2 = bnd.tri(:, [2 3]);\n edge3 = bnd.tri(:, [3 1]);\n edge = cat(1, edge1, edge2, edge3);\n \nelseif isfield(bnd, 'tet')\n % make a list of all triangles that form the tetraheder\n tri1 = bnd.tet(:, [1 2 3]);\n tri2 = bnd.tet(:, [2 3 4]);\n tri3 = bnd.tet(:, [3 4 1]);\n tri4 = bnd.tet(:, [4 1 2]);\n edge = cat(1, tri1, tri2, tri3, tri4);\n \nelseif isfield(bnd, 'hex')\n % make a list of all \"squares\" that form the cube/hexaheder\n % FIXME should be checked, this is impossible without a drawing\n square1 = bnd.hex(:, [1 2 3 4]);\n square2 = bnd.hex(:, [5 6 7 8]);\n square3 = bnd.hex(:, [1 2 6 5]);\n square4 = bnd.hex(:, [2 3 7 6]);\n square5 = bnd.hex(:, [3 4 8 7]);\n square6 = bnd.hex(:, [4 1 5 8]);\n edge = cat(1, square1, square2, square3, square4, square5, square6);\n \nend % isfield(bnd)\n\n% soort all polygons in the same direction\n% keep the original as \"edge\" and the sorted one as \"sedge\"\nsedge = sort(edge, 2);\n\n% % find the edges that are not shared -> count the number of occurences\n% n = size(sedge,1);\n% occurences = ones(n,1);\n% for i=1:n\n% for j=(i+1):n\n% if all(sedge(i,:)==sedge(j,:))\n% occurences(i) = occurences(i)+1;\n% occurences(j) = occurences(j)+1;\n% end\n% end\n% end\n%\n% % make the selection in the original, not the sorted version of the edges\n% % otherwise the orientation of the edges might get flipped\n% edge = edge(occurences==1,:);\n\n% find the edges that are not shared\nindx = findsingleoccurringrows(sedge);\nedge = edge(indx, :);\n\n% replace pnt by pos\nbnd = fixpos(bnd);\n\n% the naming of the output edges depends on what they represent\nnewbnd.pos = bnd.pos;\nif isfield(bnd, 'tri')\n % these have two vertices in each edge element\n newbnd.line = edge;\nelseif isfield(bnd, 'tet')\n % these have three vertices in each edge element\n newbnd.tri = edge;\nelseif isfield(bnd, 'hex')\n % these have four vertices in each edge element\n newbnd.poly = edge;\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% SUBFUNCTION, see http://bugzilla.fieldtriptoolbox.org/show_bug.cgi?id=1833#c12\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction indx = findsingleoccurringrows(X)\n[X, indx] = sortrows(X);\nsel = any(diff([X(1,:)-1; X],1),2) & any(diff([X; X(end,:)+1],1),2);\nindx = indx(sel);\n\nfunction indx = finduniquerows(X)\n[X, indx] = sortrows(X);\nsel = any(diff([X(1,:)-1; X],1),2);\nindx = indx(sel);\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/forward/private/mesh2edge.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37469151253082894}} {"text": "function [node,elem,face]=s2m(v,f,keepratio,maxvol,method,regions,holes)\n%\n% [node,elem,face]=s2m(v,f,keepratio,maxvol,method)\n% [node,elem,face]=s2m(v,f,keepratio,maxvol,'tetgen',regions,holes)\n%\n% volumetric mesh generation from a closed surface, shortcut for surf2mesh\n%\n% author: Qianqian Fang (fangq nmr.mgh.harvard.edu)\n%\n% inputs and outputs are similar to those defined in surf2mesh\n%\n% if method='cgalpoly', s2m will call cgals2m and keepratio should be a \n% structure (as the 'opt' input in cgals2m)\n%\n% input default values:\n% method: if ignored, iso2mesh uses surf2mesh ('tetgen') to do the\n% tetrahedral mesh generation\n% regions,holes: if ignored, iso2mesh assumes both are empty\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\np0=min(v(:,1:3));\np1=max(v(:,1:3));\nif(nargin>=5 && strcmp(method,'cgalpoly'))\n [node,elem,face]=cgals2m(v,f,keepratio,maxvol);\n return;\nend\nif(nargin<=5)\n regions=[];\nend\nif(nargin<=6)\n holes=[];\nend\n[node,elem,face]=surf2mesh(v,f,p0,p1,keepratio,maxvol,regions,holes);\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/iso2mesh/s2m.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37469151253082894}} {"text": "%% Simulation Data\nsimu = simulationClass(); % Initialize Simulation Class\nsimu.simMechanicsFile = 'RM3.slx'; % Specify Simulink Model File\nsimu.mode = 'normal'; % Specify Simulation Mode ('normal','accelerator','rapid-accelerator')\nsimu.explorer = 'on'; % Turn SimMechanics Explorer (on/off)\nsimu.startTime = 0; % Simulation Start Time [s]\nsimu.rampTime = 100; % Wave Ramp Time [s]\nsimu.endTime = 400; % Simulation End Time [s]\nsimu.solver = 'ode4'; % simu.solver = 'ode4' for fixed step & simu.solver = 'ode45' for variable step \nsimu.dt = 0.1; \t\t\t\t\t\t\t% Simulation time-step [s]\n\n%% Wave Information \n% % noWaveCIC, no waves with radiation CIC \n% waves = waveClass('noWaveCIC'); % Initialize Wave Class and Specify Type \n\n% Regular Waves \nwaves = waveClass('regular'); % Initialize Wave Class and Specify Type \nwaves.height = 2.5; % Wave Height [m]\nwaves.period = 8; % Wave Period [s]\n\n% % Regular Waves with CIC\n% waves = waveClass('regularCIC'); % Initialize Wave Class and Specify Type \n% waves.height = 2.5; % Wave Height [m]\n% waves.period = 8; % Wave Period [s]\n\n% % Irregular Waves using PM Spectrum \n% waves = waveClass('irregular'); % Initialize Wave Class and Specify Type\n% waves.height = 2.5; % Significant Wave Height [m]\n% waves.period = 8; % Peak Period [s]\n% waves.spectrumType = 'PM'; % Specify Wave Spectrum Type\n\n% % Irregular Waves using JS Spectrum with Equal Energy and Seeded Phase\n% waves = waveClass('irregular'); % Initialize Wave Class and Specify Type\n% waves.height = 2.5; % Significant Wave Height [m]\n% waves.period = 8; % Peak Period [s]\n% waves.spectrumType = 'JS'; % Specify Wave Spectrum Type\n% waves.bem.option = 'EqualEnergy'; % Uses 'EqualEnergy' bins (default) \n% waves.phaseSeed = 1; % Phase is seeded so eta is the same\n\n% % Irregular Waves using PM Spectrum with Traditional and State Space \n% waves = waveClass('irregular'); % Initialize Wave Class and Specify Type\n% waves.height = 2.5; % Significant Wave Height [m]\n% waves.period = 8; % Peak Period [s]\n% waves.spectrumType = 'PM'; % Specify Wave Spectrum Type\n% simu.stateSpace = 1; % Turn on State Space\n% waves.bem.option = 'Traditional'; % Uses 1000 frequnecies\n\n% % Irregular Waves with imported spectrum\n% waves = waveClass('spectrumImport'); % Create the Wave Variable and Specify Type\n% waves.spectrumFile = 'spectrumData.mat'; % Name of User-Defined Spectrum File [:,2] = [f, Sf]\n\n% % Waves with imported wave elevation time-history \n% waves = waveClass('elevationImport'); % Create the Wave Variable and Specify Type\n% waves.elevationFile = 'elevationData.mat'; % Name of User-Defined Time-Series File [:,2] = [time, eta]\n\n%% Body Data\n% Float\nbody(1) = bodyClass('hydroData/rm3.h5'); \n % Create the body(1) Variable, Set Location of Hydrodynamic Data File \n % and Body Number Within this File. \nbody(1).geometryFile = 'geometry/float.stl'; % Location of Geomtry File\nbody(1).mass = 'equilibrium'; \n % Body Mass. The 'equilibrium' Option Sets it to the Displaced Water \n % Weight.\nbody(1).inertia = [20907301 21306090.66 37085481.11]; % Moment of Inertia [kg*m^2] \n\n% Spar/Plate\nbody(2) = bodyClass('hydroData/rm3.h5'); \nbody(2).geometryFile = 'geometry/plate.stl'; \nbody(2).mass = 'equilibrium'; \nbody(2).inertia = [94419614.57 94407091.24 28542224.82];\n\n%% PTO and Constraint Parameters\n% Floating (3DOF) Joint\nconstraint(1) = constraintClass('Constraint1'); % Initialize Constraint Class for Constraint1\nconstraint(1).location = [0 0 0]; % Constraint Location [m]\n\n% Translational PTO\npto(1) = ptoClass('PTO1'); % Initialize PTO Class for PTO1\npto(1).stiffness = 0; % PTO Stiffness [N/m]\npto(1).damping = 1200000; % PTO Damping [N/(m/s)]\npto(1).location = [0 0 0]; % PTO Location [m]\n", "meta": {"author": "WEC-Sim", "repo": "WEC-Sim", "sha": "973dd8c437077b20b361a5c0dba733da98ca9285", "save_path": "github-repos/MATLAB/WEC-Sim-WEC-Sim", "path": "github-repos/MATLAB/WEC-Sim-WEC-Sim/WEC-Sim-973dd8c437077b20b361a5c0dba733da98ca9285/examples/RM3/wecSimInputFile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37469151253082894}} {"text": "classdef DotProduct < dagnn.ElementWise\n \n properties (Transient)\n numInputs\n end\n \n methods\n function outputs = forward(obj, inputs, params)\n obj.numInputs = numel(inputs) ;\n outputs{1} = inputs{1} ;\n for k = 2:obj.numInputs\n outputs{1} = outputs{1} .* inputs{k} ;\n end\n end\n \n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n for k = 1:obj.numInputs\n derInputs{k} = derOutputs{1} ;\n for ko = 1:obj.numInputs\n if ko ~= k\n derInputs{k} = derInputs{k} .* inputs{ko};\n end\n end\n end\n derParams = {} ;\n end\n \n function outputSizes = getOutputSizes(obj, inputSizes)\n outputSizes{1} = inputSizes{1} ;\n for k = 2:numel(inputSizes)\n if all(~isnan(inputSizes{k})) && all(~isnan(outputSizes{1}))\n if ~isequal(inputSizes{k}, outputSizes{1})\n warning('DotProduct layer: the dimensions of the input variables is not the same.') ;\n end\n end\n end\n end\n \n function rfs = getReceptiveFields(obj)\n numInputs = numel(obj.net.layers(obj.layerIndex).inputs) ;\n rfs.size = [1 1] ;\n rfs.stride = [1 1] ;\n rfs.offset = [1 1] ;\n rfs = repmat(rfs, numInputs, 1) ;\n end\n \n function obj = DotProduct(varargin)\n obj.load(varargin) ;\n end\n end\nend\n", "meta": {"author": "aimerykong", "repo": "Recurrent-Pixel-Embedding-for-Instance-Grouping", "sha": "748ade6b969c7861c2a9009cd0f0ffb27004677c", "save_path": "github-repos/MATLAB/aimerykong-Recurrent-Pixel-Embedding-for-Instance-Grouping", "path": "github-repos/MATLAB/aimerykong-Recurrent-Pixel-Embedding-for-Instance-Grouping/Recurrent-Pixel-Embedding-for-Instance-Grouping-748ade6b969c7861c2a9009cd0f0ffb27004677c/libs/layerExt/DotProduct.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5544704649604272, "lm_q1q2_score": 0.3746915125308289}} {"text": "function F = real(F)\n%REAL Complex real part of a CHEBFUN.\n% REAL(F) is the real part of F.\n%\n% See also IMAG, ISREAL.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Handle the empty case:\nif ( isempty(F) )\n return\nend\n\nfor j = 1:numel(F)\n % Take real part of the pointValues:\n F(j).pointValues = real(F(j).pointValues);\n\n % Take real part of the FUNs:\n for k = 1:numel(F(j).funs)\n F(j).funs{k} = real(F(j).funs{k});\n end\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/real.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.6757645944891559, "lm_q1q2_score": 0.37469150891019687}} {"text": "function cheby_u_test ( )\n\n%*****************************************************************************80\n%\n%% CHEBY_U_TEST tests the use of the MEX file CHEBY_U.CPP\n%\n% Discussion:\n%\n% The file cheby_u.cpp is a C++ function which computes the \n% Chebyshev U polynomials.\n%\n% This M file \"compiles\" cheby_u.cpp, and then shows how it can be called.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 28 September 2013\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CHEBY_U_TEST\\n' );\n fprintf ( 1, ' MATLAB version\\n' );\n fprintf ( 1, ' Demonstrate a simple use of the MEX compiler,\\n' );\n fprintf ( 1, ' which allows MATLAB to call C++ functions.\\n' );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Get a directory listing.\\n' );\n fprintf ( 1, ' The file CHEBY_U.CPP should be there.\\n' );\n\n ls\n \n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Compile the file CHEBY_U.CPP.\\n' );\n\n mex cheby_u.cpp\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Get a directory listing. A new file should show up,\\n' );\n fprintf ( 1, ' containing the compiled information.\\n' );\n\n ls\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Now use CHEBY_U as though it were a MATLAB M-file\\n' );\n fprintf ( 1, ' function.\\n' );\n\n n = 12;\n x = 0.2;\n\n cx_check(1:n+1) = [ ...\n 1.0000000000, ...\n 0.4000000000, ...\n -0.8400000000, ...\n -0.7360000000, ...\n 0.5456000000, ...\n 0.9542400000, ...\n -0.1639040000, ...\n -1.0198016000, ...\n -0.2440166400, ... \n 0.9221949440, ...\n 0.6128946176, ...\n -0.6770370970, ...\n -0.8837094564 ];\n\n cx = cheby_u ( n, x );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Evaluation point X = %f\\n', x );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' N U(N,X) U(N,X)\\n' );\n fprintf ( 1, ' (computed) (tabulated)\\n' );\n fprintf ( 1, '\\n' );\n\n for i = 1 : n + 1\n\n fprintf ( 1, ' %2d %14f %14f\\n', i-1, cx(i), cx_check(i) );\n\n end\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CHEBY_U_TEST:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\nfunction timestamp ( )\n\n%*****************************************************************************80\n%\n%% TIMESTAMP prints the current YMDHMS date as a timestamp.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n t = now;\n c = datevec ( t );\n s = datestr ( c, 0 );\n fprintf ( 1, '%s\\n', s );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/matlab_calls_c++/cheby_u_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5544704502361149, "lm_q2_score": 0.6757646075489392, "lm_q1q2_score": 0.37469150620129177}} {"text": "function OUT = VARmakelags(DATA,lag)\n% =======================================================================\n% Builds a matrix with lagged values of DATA, i.e. if DATA = [x1 x2],\n% VARmakelags(DATA,1) yields OUT = [x1 x2 x1(-1) x2(-1)]. Serves as an\n% input to VARmakexy\n% =======================================================================\n% OUT = VARmakelags(DATA,lag)\n% -----------------------------------------------------------------------\n% INPUT\n% - DATA: matrix containing the original data\n% - lag: lag order\n% -----------------------------------------------------------------------\n% OUTPUT\n% - OUT: matrix of lagged values\n% -----------------------------------------------------------------------\n% EXAMPLE\n% x = [1 2; 3 4; 5 6; 7 8; 9 10];\n% OUT = VARmakelags(x,2)\n% =======================================================================\n% VAR Toolbox 3.0\n% Ambrogio Cesa-Bianchi\n% ambrogiocesabianchi@gmail.com\n% March 2012. Updated November 2020\n% -----------------------------------------------------------------------\n\n% Get dimesion of DATA\n[nobs, ~]= size(DATA);\n\n% Create the lagged matrix\nOUT = [];\nfor jj=0:lag-1\n OUT = [DATA(jj+1:nobs-lag+jj,:), OUT];\nend\n\n% Finally, save the non-lagged values...\naux = DATA(lag+1:end,:);\n\n%... and append to the lagged matrix\nOUT = [aux OUT];", "meta": {"author": "ambropo", "repo": "VAR-Toolbox", "sha": "9fe5d763da307cdded2827851325766b3a7c60e1", "save_path": "github-repos/MATLAB/ambropo-VAR-Toolbox", "path": "github-repos/MATLAB/ambropo-VAR-Toolbox/VAR-Toolbox-9fe5d763da307cdded2827851325766b3a7c60e1/v3dot0/VAR/VARmakelags.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6619228825191871, "lm_q1q2_score": 0.37466062037629144}} {"text": "function cy = zcopy ( n, cx, incx, cy, incy )\n\n%*****************************************************************************80\n%\n%% ZCOPY copies a complex vector X to a vector Y.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 09 May 2006\n%\n% Author:\n%\n% MATLAB version by John Burkardt\n%\n% Reference:\n%\n% Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,\n% LINPACK User's Guide,\n% SIAM, 1979.\n%\n% Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,\n% Basic Linear Algebra Subprograms for Fortran Usage,\n% Algorithm 539,\n% ACM Transactions on Mathematical Software,\n% Volume 5, Number 3, September 1979, pages 308-323.\n%\n% Parameters:\n%\n% Input, integer N, the number of elements in CX and CY.\n%\n% Input, complex CX(*), the first vector.\n%\n% Input, integer INCX, the increment between successive entries of CX.\n%\n% Input, complex CY(*), the second vector.\n%\n% Input, integer INCY, the increment between successive entries of CY.\n%\n% Output, complex CY(*), the second vector, with certain elements\n% copied from CX.\n%\n cy(1:incy:1+(n-1)*incy) = cx(1:incx:1+(n-1)*incx);\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/blas1_z/zcopy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5660185351961016, "lm_q2_score": 0.6619228625116081, "lm_q1q2_score": 0.37466060905163096}} {"text": "function gp_save_loudspeakers(file,x0)\n%GP_SAVE_LOUDSPEAKERS saves x0 as a text file in a Gnuplot compatible format\n%\n% Usage: gp_save_loudspeakers(file,x0)\n%\n% Input parameters:\n% file - filename of the data file\n% x0 - secondary sources [nx7]\n%\n% GP_SAVE_LOUDSPEAKERS(file,x0) saves x0(:,1:2) as positions of the\n% loudspeakers, an orientation value calculated from x0(:,4:6), and the\n% activity x0(:,7) of the loudspeakers in a text file useable by gnuplot.\n%\n% See also: gp_save, gp_save_matrix\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n\n%% ===== Checking of input parameters ==================================\nnargmin = 2;\nnargmax = 2;\nnarginchk(nargmin,nargmax);\nisargchar(file);\nisargsecondarysource(x0);\n\n\n%% ===== Main ============================================================\n% Write header to the file\nfid = fopen(file,'w');\nfprintf(fid,'# Loudspeaker file generated by gp_save_loudspeakers.m\\n');\nfprintf(fid,'# x0 y0 phi ls_activity\\n');\nfclose(fid);\n\n% Calculate phi\nloudspeaker(:,1:2) = x0(:,1:2);\n[loudspeaker(:,3),~,~] = cart2sph(x0(:,4),x0(:,5),x0(:,6));\nloudspeaker(:,4) = x0(:,7);\n\n\n% Append the data to the file using tabulator as a delimiter between the data\nif isoctave\n dlmwrite(file,loudspeaker,'\\t','-append');\nelse\n dlmwrite(file,loudspeaker,'delimiter','\\t','-append');\nend\n", "meta": {"author": "sfstoolbox", "repo": "sfs-matlab", "sha": "02194f0243d1ead26572f760032c40527718919d", "save_path": "github-repos/MATLAB/sfstoolbox-sfs-matlab", "path": "github-repos/MATLAB/sfstoolbox-sfs-matlab/sfs-matlab-02194f0243d1ead26572f760032c40527718919d/SFS_plotting/gp_save_loudspeakers.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.661922862511608, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37466060905163084}} {"text": "clear all; close all; clc;\n%% Initialization \n%data load\n% name={'1_bykim','2_dblee','3_eskim','9_prchoi','10_smkang','12_yskim'}; %session 0\nname={'1_bykim','2_dblee','3_eskim','4_jhsuh','5_mgjung','6_mhlee','7_mjkim','8_oykwon','9_prchoi','10_smkang','11_spseo','12_yskim','13_jyha','14_hmyoo','15_jwlee','16_wbsim','17_hwnoh','18_dysull','19_jyhan','20_jwbae','21_syjung','22_dkhan','23_hjwon','24_nkkil','25_khshim'}; % session 1\n% name={'1_bykim','2_dblee','3_eskim','4_jhsuh','5_mgjung','7_mjkim','9_prchoi','10_smkang','12_yskim','13_jyha','14_hmyoo','15_jwlee','16_wbsim','17_hwnoh','18_dysull','19_jyhan','20_jwbae','21_syjung','22_dkhan','23_hjwon'}; % session 2\nsession = {'session1'};\ntask = {'mi_off','mi_on'};\nfs=100; \n\n%pre-processing\nchannel_index = [1:32];\nband = [8 30];\ntime_interval = [1000 3500];\n\n%feature-extraction\nCSPFilter=2;\n%classifiaction\n\n%% Data load and mat save\nfor sub=1:length(name)\n for onoff=1:2\n file3 = ['E:\\Users\\cvpr\\Desktop\\StarlabDB_2nd\\',name{sub},'\\'];\n BMI.EEG_DIR=['E:\\Users\\cvpr\\Desktop\\StarlabDB_2nd\\',name(sub),'\\',session];\n BMI.EEG_DIR=cell2mat(BMI.EEG_DIR);\n file=fullfile(BMI.EEG_DIR, task{onoff});\n marker={'1','left';'2','right'};\n [EEG.data, EEG.marker, EEG.info]=Load_EEG(file,{'device','brainVision';'marker', marker;'fs', fs});\n field={'x','t','fs','y_dec','y_logic','y_class','class', 'chan'};\n CNT=opt_eegStruct({EEG.data, EEG.marker, EEG.info}, field);\n CNTT{sub,onoff} = CNT;\n end\n % filename1= ['mi_cnt_s1_on'];\n % save([file3, filename1], 'CNT');\nend\n%% 'mat' load\n% for sub=1:11\n% \n% % name={'bykim','dblee','ejlee','eskim','mhlee','prchoi','sbsim','smkang','yelee','yskim'};\n% name={'bykim','eskim','prchoi','smkang','oykwon'};\n% file3 = ['E:\\Users\\cvpr\\Desktop\\StarlabDB_2nd\\',name{sub},'\\']; \n% filename4 = ['mi_cnt_s1_on.mat']; \n% \n% cnt = load([file3, filename4]); \n% % MI 19 ch\n% cnt= prep_selectChannels(cnt.CNT, {'Name',{'FC5','FC3','FC1','C5','C3','C1','Cz','CP5','CP3','CP1','CP6','CP4','CP2','C6','C4','C2','FC6','FC4','FC2'}});\n% cnt=prep_filter(cnt, {'frequency', [7 13]});\n% new_smt{sub,1}=prep_segmentation(cnt, {'interval', [750 3500]});\n% \n% end\n%% Pre-processing\nclear CNT clear BMI ans EEG field file file3 marker sub\nfor NUM=1:length(CNTT)\n for onoff=1:2\n CNTch = prep_selectChannels(CNTT{NUM,onoff}, {'Index', channel_index});\n CNTchfilt =prep_filter(CNTch , {'frequency', band});\n all_SMT{NUM,onoff} = prep_segmentation(CNTchfilt, {'interval', time_interval});\n clear CNTch CNTchfilt\n end\nend\n%% Feature extraction and classification\n%% CSP - LDA\nfor num = 1:length(all_SMT)\n [SMT, CSP_W, CSP_D]=func_csp(all_SMT{num,1},{'nPatterns', CSPFilter});\n FT=func_featureExtraction(SMT, {'feature','logvar'});\n [CF_PARAM]=func_train(FT,{'classifier','LDA'}); \n SMT_te=func_projection(all_SMT{num,2}, CSP_W);\n \n FT_te=func_featureExtraction(SMT_te, {'feature','logvar'});\n [cf_out]=func_predict(FT_te, CF_PARAM);\n [loss out]=eval_calLoss(FT_te.y_dec, cf_out);\n sub_acc(:,num)=1-loss'; \n clear SMT CSP_W CSP_D FT CF_PARAM SMT_te FT_Te cf_out loss out \nend\n all_acc =sub_acc';\n all_mean_acc = mean(sub_acc,2);\n%% FBCSP - LDA\n\n%% BSSFO - LDA\n\n\n\n\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_StarLab/MI_offTOon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7490872131147275, "lm_q2_score": 0.5, "lm_q1q2_score": 0.37454360655736374}} {"text": "function [sys,x0,str,ts]=abcrtoqdor(t,x,u,flag)\n%dfsfgsfdgdghdhdfg\nswitch flag\n case 0\n [sys,x0,str,ts]=mdlInitializeSizes;\n case 3\n sys=mdlOutput(t,x,u);\n case {1,2,4,9}\n sys=[];\n otherwise \n error(['Unhandel flag =',num2str(flag)]);\nend;\n%========================================================================\n%========================================================================\nfunction [sys,x0,str,ts]=mdlInitializeSizes\nsizes=simsizes;\nsizes.NumContStates= 0;\nsizes.NumDiscStates= 0;\nsizes.NumOutputs= 1;\nsizes.NumInputs= 2;\nsizes.DirFeedthrough=1;\nsizes.NumSampleTimes=1;\nsys=simsizes(sizes);\nx0=[];\nstr=[];\nts=[-1 0];\n%=========================================================================\n%=========================================================================\nfunction sys=mdlOutput(t,x,u);\n%=========================================================================\n vc=u(1);\n vm=u(2);\nq=(vc*pi)/(3*vm);\nif q>1 \n q=1;\nend\nif q<-1 \n q=-1;\nend\na=acos(q);\n sys=a*180/pi;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/9074-armature-and-field-control-of-dc-motor/sfunction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8056321889812553, "lm_q2_score": 0.46490157137338844, "lm_q1q2_score": 0.3745396706063682}} {"text": "function [C_trialAvr,C_trialRes,C_score,C_d2var_perstim,C_p] = GetTrialAvrLongTrace(hfig,C)\n%%\n\nisFulllength = 0; % isFulllength = true for analyses before 12/18/17 - XC\n \nfishset = getappdata(hfig,'fishset');\nperiods = getappdata(hfig,'periods');\n\nif fishset == 1\n period = periods;\n C_3D_0 = reshape(C,size(C,1),period,[]);\n\n% C_3D = zscore(C_3D_0,0,2);\n% C_d2var_perstim = nanmean(nanstd(C_3D,0,3),2);\n% C_score = C_d2var_perstim;\n \n C_period = mean(C_3D_0,3);%prctile(C_3D_0,20,3);%mean(C_3D_0,3);\n nPeriods = round(size(C,2)/period);\n C_trialAvr = repmat(C_period,1,nPeriods);\n \n C_trialRes = C-C_trialAvr;\n C_3D_tRes = reshape(C_trialRes,size(C,1),period,[]);\n% C_3D_tRes = zscore(C_3D_tRes_0,0,2);\n d2var = (nanstd(C_3D_tRes,0,3)).^2;\n C_score = nanmean(d2var,2); \n \n C_p = C;\n C_d2var_perstim = [];\nelse\n stimset = getappdata(hfig,'stimset');\n stimrange = getappdata(hfig,'stimrange');\n timelists = getappdata(hfig,'timelists');\n \n C_trialAvr = [];\n% C_d2std = [];\n C_d2var_perstim = [];\n C_p = []; % 12/18/17 - XC\n for i = 1:length(stimrange)\n i_stim = stimrange(i);\n if stimset(i_stim).nReps(1)>1 \n offset = length(horzcat(timelists{stimrange(1:i-1)}));% works for i=0 too\n tIX_ = 1+offset:length(timelists{stimrange(i)})+offset;\n\n period = periods(i_stim);\n C_this = C(:,tIX_);\n \n C_this = zscore(C_this,0,2); % 05/11/18\n \n C_3D_0 = reshape(C_this,size(C,1),period,[]);\n C_period = mean(C_3D_0,3);%median(C_3D_0,3);\n nPeriods = length(tIX_)/period;\n C_trialAvr_this = repmat(C_period,1,nPeriods);\n C_trialAvr = horzcat(C_trialAvr,C_trialAvr_this); %#ok\n C_trialRes_this = C_this-C_trialAvr_this;\n \n C_3D_tRes = reshape(C_trialRes_this,size(C,1),period,[]);\n d2var = (nanstd(C_3D_tRes,0,3)).^2; % d2var = (mad(C_3D_tRes,0,3)).^2;\n C_d2var_perstim = horzcat(C_d2var_perstim,nanmean(d2var,2)); %#ok\n \n C_p = horzcat(C_p,C_this); % 12/18/17 - XC\n \n% C_3D = zscore(C_3D_0,0,2);\n% % C_d2std = horzcat(C_d2std,nanstd(C_3D,0,3));\n% d2var = (nanstd(C_3D,0,3)).^2;\n% C_d2var_perstim = horzcat(C_d2var_perstim,nanmean(d2var,2));\n% % C_3D = zscore(C_3D_0,0,2);\n% % H_raw = horzcat(H_raw,nanmean(nanstd(C_3D,0,3),2));\n else % taking out 12/18/17 - XC\n if isFulllength\n offset = length(horzcat(timelists{stimrange(1:i-1)}));% works for i=0 too\n tIX_ = 1+offset:length(timelists{stimrange(i)})+offset;\n C_trialAvr = horzcat(C_trialAvr,zeros(size(C,1),length(tIX_))); %#ok\n end\n end\n end\n \n % condense C_d2var_perstim for multiple stimsets down to 1 score\n if isempty(C_d2var_perstim)\n errordlg('chosen stimulus range not suitable for stim-lock analysis');\n% C_score = 1:numU;\n return;\n end\n C_score = zeros(size(C_d2var_perstim,1),1);\n for i = 1:size(C_d2var_perstim,1)\n C_score(i) = min(C_d2var_perstim(i,:));\n end\n \n if isFulllength\n C_trialRes = C-C_trialAvr;\n else\n C_trialRes = C_p-C_trialAvr; % 12/18/17 - XC\n end\nend\n\nend", "meta": {"author": "xiuyechen", "repo": "FishExplorer", "sha": "c61392cf0835480d64fc03c15f1992935fdc7106", "save_path": "github-repos/MATLAB/xiuyechen-FishExplorer", "path": "github-repos/MATLAB/xiuyechen-FishExplorer/FishExplorer-c61392cf0835480d64fc03c15f1992935fdc7106/GUI functions/GetTrialAvrLongTrace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7549149868676283, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3745086667601506}} {"text": "% This is material illustrating the methods from the book\n% Financial Modelling - Theory, Implementation and Practice with Matlab\n% source\n% Wiley Finance Series\n% ISBN 978-0-470-74489-5\n%\n% Date: 02.05.2012\n%\n% Authors: Joerg Kienitz\n% Daniel Wetterau\n%\n% Please send comments, suggestions, bugs, code etc. to\n% kienitzwetterau_FinModelling@gmx.de\n%\n% (C) Joerg Kienitz, Daniel Wetterau\n% \n% Since this piece of code is distributed via the mathworks file-exchange\n% it is covered by the BSD license \n%\n% This code is being provided solely for information and general \n% illustrative purposes. The authors will not be responsible for the \n% consequences of reliance upon using the code or for numbers produced \n% from using the code. \n\n\n\nfunction y = Spread(S1,S2)\n nsim = size(S1,1);\n nt = size(S1,2);\n A = S1(:,nt)./S1(:,1) - S2(:,nt)./S2(:,1);\n val = [max(A,[],2) zeros(nsim,1)];\n y = mean(max(val,[],2));\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/37618-monte-carlo-simulation-and-derivatives-pricing/StandardMonteCarlo/Spread.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.37449005341256303}} {"text": "% Steffen Urban email: steffen.urban@kit.edu\n% Copyright (C) 2014 Steffen Urban\n% \n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License along\n% with this program; if not, write to the Free Software Foundation, Inc.,\n% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.\n\n% 04.03.2014 by Steffen Urban\n% this is a modified file from\n% Davide Scaramuzzas Toolbox OcamCalib\n% original filename: click_calib.m\n\nfunction click_calibUrban(calib_data)\n\ncalib_data.calibrated = 0; %this flag is - when the camera has not yet been calibrated\n\nif isempty(calib_data.n_ima),\n data_calib(calib_data);\nend;\n\ncheck_active_images(calib_data);\n\nif isempty(calib_data.I{calib_data.ind_active(1)}),\n ima_read_calib(calib_data);\n if isempty(calib_data.ind_read),\n disp('Cannot extract corners without images');\n return;\n end;\nend;\n\nfprintf(1,'\\nExtraction of the grid corners on the images\\n');\n\nif isempty(calib_data.map), calib_data.map = gray(256); end;\n\nif ~isempty(calib_data.dX),\n dX_default = calib_data.dX;\nend;\n\nif ~isempty(calib_data.dY),\n dY_default = calib_data.dY;\nend;\n\nif ~isempty(calib_data.n_sq_x),\n n_sq_x_default = calib_data.n_sq_x;\nend;\n\nif ~isempty(calib_data.n_sq_y),\n n_sq_y_default = calib_data.n_sq_y;\nend;\n\nif ~isempty(calib_data.taylor_order),\n calib_data.taylor_order_default = calib_data.taylor_order;\nend;\n\n\nif ~exist('dX_default')|~exist('dY_default');\n dX_default = 30;\n dY_default = 30;\nend;\n\nif ~exist('n_sq_x_default')|~exist('n_sq_y_default'),\n n_sq_x_default = 10;\n n_sq_y_default = 10;\nend;\n\nif ~exist('wintx_default')|~exist('winty_default'),\n wintx_default = max(round(calib_data.ocam_model.width/128),round(calib_data.ocam_model.height/96));\n winty_default = wintx_default;\n clear wintx winty\nend;\n\nif ~exist('xc_default'),\n xc_default = round(calib_data.ocam_model.height/2);\nend;\n\nif ~exist('yc_default'),\n yc_default = round(calib_data.ocam_model.width/2);\nend;\n\nif ~exist('taylor_order_default')\n calib_data.taylor_order_default=4;\nend;\n\nif ~exist('wintx') | ~exist('winty'),\n for kk = 1:calib_data.n_ima,\n eval(['clear wintx_' num2str(kk)]);\n eval(['clear winty_' num2str(kk)]);\n end;\n\nend;\n\n\n\nif ~exist('dont_ask'),\n dont_ask = 0;\nend;\n\n\nif ~isempty(calib_data.ima_proc)\n fprintf(1,'\\nCurrently, corners have been extracted for the following image(s): %s\\n',num2str(calib_data.ima_proc));\n suppress_image = input(' Do you want to suppress the current image(s) ([] = no, other = yes)? ','s');\n if isempty(suppress_image),\n ima_numbers = input('Type a vector containing the Images to add (e.g. [1 2 3]) = ');\n for i=ima_numbers\n if ~isempty(find(calib_data.ima_proc==i)),\n fprintf(1,'\\nyou have already extracted corners from image %d',i);\n replace_image = input(', are you sure you want to replace this image ([] = yes, other = no)?\\n','s'); \n if isempty(replace_image)\n calib_data.ima_proc=calib_data.ima_proc(find(calib_data.ima_proc~=i));\n else\n ima_numbers(find(ima_numbers==i))=0;\n end\n end\n end\n ima_numbers= ima_numbers(find(ima_numbers~=0));\n else\n calib_data.ima_proc=[];\n ima_numbers=[];\n answer = input('\\nType the images you want to process (e.g. [1 2 3], [] = all images) = ');\n if isempty(answer)\n ima_numbers = 1:calib_data.n_ima;\n else\n ima_numbers=answer;\n end\n end;\nelse\n answer=input('\\nType the images you want to process (e.g. [1 2 3], [] = all images) = ');\n if isempty(answer)\n ima_numbers = 1:calib_data.n_ima;\n else\n ima_numbers=answer;\n end\nend;\n\nmanual_squares=1;\n\nif manual_squares, \n calib_data.n_sq_x = input(['Number of squares along the X direction ([]=' num2str(n_sq_x_default) ') = ']); %6\n if isempty(calib_data.n_sq_x), calib_data.n_sq_x = n_sq_x_default; end;\n calib_data.n_sq_y = input(['Number of squares along the Y direction ([]=' num2str(n_sq_y_default) ') = ']); %6\n if isempty(calib_data.n_sq_y), calib_data.n_sq_y = n_sq_y_default; end; \nend;\n\nnum_points=(calib_data.n_sq_x+1)*(calib_data.n_sq_y+1);\n\nn_sq_x_default = calib_data.n_sq_x;\nn_sq_y_default = calib_data.n_sq_y;\n\n\nif (isempty(calib_data.dX))|(isempty(calib_data.dY)), % This question is now asked only once\n % Enter the size of each square\n \n calib_data.dX = input(['Size dX of each square along the X direction ([]=' num2str(dX_default) 'mm) = ']);\n calib_data.dY = input(['Size dY of each square along the Y direction ([]=' num2str(dY_default) 'mm) = ']);\n if isempty(calib_data.dX), calib_data.dX = dX_default; else dX_default = calib_data.dX; end;\n if isempty(calib_data.dY), calib_data.dY = dY_default; else dY_default = calib_data.dY; end;\n \nelse\n \n fprintf(1,['Size of each square along the X direction: dX=' num2str(calib_data.dX) 'mm\\n']);\n fprintf(1,['Size of each square along the Y direction: dY=' num2str(calib_data.dY) 'mm (Note: To reset the size of the squares, clear the variables dX and dY)\\n']);\n %fprintf(1,'Note: To reset the size of the squares, clear the variables dX and dY\\n');\n \nend;\n\nsquare_vert_side=calib_data.dX; %mm\nsquare_horiz_side=calib_data.dY; %mm\nnum_vert_square=calib_data.n_sq_x;\nnum_horiz_square=calib_data.n_sq_y;\n\ncalib_data.ocam_model.xc=input(['X coordinate (along height) of the omnidirectional image center = ([]=' num2str(xc_default) ') = ']); \ncalib_data.ocam_model.yc=input(['Y coordinate (along width) of the omnidirectional image center = ([]=' num2str(yc_default) ') = ']); \nif isempty(calib_data.ocam_model.xc), calib_data.ocam_model.xc = xc_default; else xc_default = calib_data.ocam_model.xc; end;\nif isempty(calib_data.ocam_model.yc), calib_data.ocam_model.yc = yc_default; else yc_default = calib_data.ocam_model.yc; end;\n% xc=385.48;\n% yc=516.36;\n\n\nfprintf(1,'\\nEXTRACTION OF THE GRID CORNERS\\n');\nfprintf(1,'Do you want to use the automatic image selection\\n');\nanswer=input('or do you want to process the images individually ( [] = automatic, other = individual )? ','s');\n\nif isempty(answer)\n use_video_mode = 1;\n %% ================ \n % added code steffen urban\n use_corner_find = 1;\n %% ================ \nelse\n use_video_mode = 0;\n fprintf(1,'Do you want to use the automatic corner extraction\\n');\n answer=input('or do you want to extract all the points manually ( [] = automatic, other = manual )? ','s');\n \n % If you opted for the AUTOMATIC extraction\n if isempty(answer)\n use_automatic = 1;\n %% ================ \n % added code steffen urban\n use_corner_find = 1;\n %% ================ \n else\n use_automatic = 0;\n end\n \n fprintf(1,'\\n');\n % If you opted for the MANUAL extraction\n if use_automatic == 0 %IF manual Extraction\n answer=input('Do you want your clicking to be assisted by a corner detector ( [] = yes, other = no )? ','s');\n if isempty(answer)\n use_corner_find=1;\n disp('Window size for corner finder (wintx and winty): ');\n calib_data.wintx = input(['wintx ([] = ' num2str(wintx_default) ') = ']);\n if isempty(calib_data.wintx), calib_data.wintx = wintx_default; end;\n calib_data.wintx = round(calib_data.wintx);\n calib_data.winty = input(['winty ([] = ' num2str(winty_default) ') = ']);\n if isempty(calib_data.winty), calib_data.winty = winty_default; end;\n winty = round(calib_data.winty);\n fprintf(1,'Window size = %dx%d\\n',2*calib_data.wintx+1,2*calib_data.winty+1);\n \n else\n %% ================ \n % added code steffen urban\n use_corner_find = 1;\n %% ================ \n end\n end\nend\n\n\n\n%Arranging the pixel of the world\ncalib_data.Xt=[];\ncalib_data.Yt=[];\nfor i=0:calib_data.n_sq_x\n for j=0:calib_data.n_sq_y\n calib_data.Yt=[calib_data.Yt;j*calib_data.dY];\n calib_data.Xt=[calib_data.Xt;i*calib_data.dX];\n end\nend\n\n\nif use_video_mode == 0\n for kk = ima_numbers,\n if ~isempty(calib_data.I{kk})\n if use_automatic == 0 %IF manual extraction\n click_ima_calib(kk,use_corner_find,calib_data);\n else %IF automatic extraction\n click_ima_calib_rufli(kk,use_corner_find,calib_data);\n %click_ima_calib_vladimir\n end\n calib_data.active_images(kk) = 1;\n calib_data.ima_proc= sort([calib_data.ima_proc, kk]);\n end;\n end;\nelse\n count = 0;\n for kk = ima_numbers\n \n [callBack, x, y] = get_checkerboard_cornersUrban(kk,use_corner_find,calib_data);\n \n if callBack == 1\n count = count + 1;\n calib_data.Xp_abs(:,:,kk) = x;\n calib_data.Yp_abs(:,:,kk) = y;\n calib_data.active_images(kk) = 1;\n calib_data.ima_proc= sort([calib_data.ima_proc, kk]);\n end\n end\nend\n\ncheck_active_images(calib_data);\n\nfprintf(1,'\\nCorner extraction finished.\\n');\n\nend\n\n\n", "meta": {"author": "urbste", "repo": "ImprovedOcamCalib", "sha": "164dd8d96b1bee7e4aba9b0b100a85fcb2f0ba4e", "save_path": "github-repos/MATLAB/urbste-ImprovedOcamCalib", "path": "github-repos/MATLAB/urbste-ImprovedOcamCalib/ImprovedOcamCalib-164dd8d96b1bee7e4aba9b0b100a85fcb2f0ba4e/src/click_calibUrban.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3744900454711885}} {"text": "function o = symmetrise(o,varargin) \n% all crystallographically equivalent orientations\n\nif nargin > 1 && isa(varargin{1},'symmetry')\n CS = varargin{1};\n SS = getClass(varargin(2:end),'symmetry',specimenSymmetry);\nelse\n CS = o.CS;\n SS = o.SS;\nend\n\nif check_option(varargin,'proper')\n CS = CS.properGroup;\n SS = SS.properGroup;\nend\no = symmetrise@rotation(o,CS,SS);\n\nif o.antipodal, o = [o;inv(o)]; end\n\nif check_option(varargin,'unique')\n [~,ind] = unique(o,'noSymmetry');\n o = subSet(o,ind);\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@orientation/symmetrise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7431680086124812, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3744869452796381}} {"text": "hb_setup();\n\nres = rproc.read('scoresroot', ...\n fullfile(hb_path, 'matlab', 'scores', 'scores_norm_small'));\n\n%%\n\ncategories = cellfun(@(a) a(1), res.matching.sequence, 'Uni', false);\nres.matching.category = categories;\n% Compute the matching scores averages\nres.matching_g = varfun(@mean, res.matching, ...\n 'GroupingVariables', {'descriptor', 'geom_noise', 'category'}, ...\n 'InputVariables', 'ap');\n\n%% Separate the normalisation type and split out of descriptor name\n\nres.verification_e = rproc.postproc_norm(res.verification);\nres.matching_ge = rproc.postproc_norm(res.matching_g);\nres.retrieval_e = rproc.postproc_norm(res.retrieval);\n\n\n%% Compute average over the norm splits\nres.verification_en = varfun(@mean, res.verification_e, ...\n 'GroupingVariables', {'descriptor', 'split', 'negs', 'geom_noise', 'method', 'norm_type'}, ...\n 'InputVariables', 'pr_ap');\n\n\nres.matching_gen = varfun(@mean, res.matching_ge, ...\n 'GroupingVariables', {'descriptor', 'geom_noise', 'category', 'norm_type'}, ...\n 'InputVariables', 'mean_ap');\n\nres.retrieval_en = varfun(@mean, res.retrieval_e, ...\n 'GroupingVariables', {'descriptor', 'split', 'geom_noise', 'method', 'norm_type'}, ...\n 'InputVariables', 'map');\n\n%% Pick the best normalisation per descriptor\n% Preprocess the results\n\nver_ = res.verification_en;\nver_(~cellfun(@(a) strcmp(a, 'b'), ver_.split), :) = [];\nver_(~cellfun(@(a) strcmp(a, 'imbalanced'), ver_.method), :) = [];\n\nver_ = varfun(@mean, ver_, ...\n 'GroupingVariables', {'descriptor', 'split', 'norm_type'}, ...\n 'InputVariables', 'mean_pr_ap');\nver_.split = []; ver_.GroupCount = [];\nver_ = unstack(ver_, 'mean_mean_pr_ap', 'norm_type');\nver_.Properties.RowNames = ver_.descriptor;\nver_.descriptor = [];\n\nmatch_ = res.matching_gen;\nmatch_.GroupCount = [];\nmatch_ = varfun(@mean, match_, ...\n 'GroupingVariables', {'descriptor', 'norm_type'}, ...\n 'InputVariables', 'mean_mean_ap');\nmatch_.GroupCount = [];\nmatch_ = unstack(match_, 'mean_mean_mean_ap', 'norm_type');\nmatch_.Properties.RowNames = match_.descriptor;\nmatch_.descriptor = [];\n\nretr_ = res.retrieval_en;\nretr_.GroupCount = [];\nretr_(cellfun(@(a) strcmp(a, 'keepquery'), retr_.method), :) = [];\nretr_ = varfun(@mean, retr_, ...\n 'GroupingVariables', {'descriptor', 'norm_type'}, ...\n 'InputVariables', 'mean_map');\nretr_.GroupCount = [];\nretr_ = unstack(retr_, 'mean_mean_map', 'norm_type');\nretr_.Properties.RowNames = retr_.descriptor;\nretr_.descriptor = [];\n\n%%\nver_best = max(max(ver_{:, :}));\nmatch_best = max(max(match_{:, :}));\nretr_best = max(max(retr_{:, :}));\n\n% Weight the scores relatively to the best score\ntotal_score = ver_;\ntotal_score{:,:} = (ver_{:,:} ./ ver_best + match_{:,:} ./ match_best + retr_{:,:} ./ retr_best) ./ 3;\n\n[~, best_norm] = max(total_score{:,:}, [], 2);\nbest_norm_name = total_score.Properties.VariableNames(best_norm)';\n\nbest_norm = struct('descriptor', total_score.Properties.RowNames, ...\n 'normstr', best_norm_name);\nbest_norm = struct2table(best_norm, 'asArray', true);\n%%\nwritetable(best_norm, fullfile(hb_path, 'matlab', 'data', 'best_normalizations.csv'));\n", "meta": {"author": "hpatches", "repo": "hpatches-benchmark", "sha": "d5bde9d4520a037e8efc839bd1b6fc70edca82ed", "save_path": "github-repos/MATLAB/hpatches-hpatches-benchmark", "path": "github-repos/MATLAB/hpatches-hpatches-benchmark/hpatches-benchmark-d5bde9d4520a037e8efc839bd1b6fc70edca82ed/matlab/res_norm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3744674838621414}} {"text": "%SerialLink.IKINEM Numerical inverse kinematics by minimization\n%\n% Q = R.ikinem(T) is the joint coordinates corresponding to the robot\n% end-effector pose T which is a homogenenous transform.\n%\n% Q = R.ikinem(T, Q0, OPTIONS) specifies the initial estimate of the joint\n% coordinates.\n%\n% In all cases if T is 4x4xM it is taken as a homogeneous transform sequence\n% and R.ikinem() returns the joint coordinates corresponding to each of the\n% transforms in the sequence. Q is MxN where N is the number of robot joints.\n% The initial estimate of Q for each time step is taken as the solution\n% from the previous time step.\n%\n% Options::\n% 'pweight',P weighting on position error norm compared to rotation\n% error (default 1)\n% 'stiffness',S Stiffness used to impose a smoothness contraint on joint\n% angles, useful when N is large (default 0)\n% 'qlimits' Enforce joint limits\n% 'ilimit',L Iteration limit (default 1000)\n% 'nolm' Disable Levenberg-Marquadt\n%\n% Notes::\n% - PROTOTYPE CODE UNDER DEVELOPMENT, intended to do numerical inverse kinematics\n% with joint limits\n% - The inverse kinematic solution is generally not unique, and\n% depends on the initial guess Q0 (defaults to 0).\n% - The function to be minimized is highly nonlinear and the solution is\n% often trapped in a local minimum, adjust Q0 if this happens.\n% - The default value of Q0 is zero which is a poor choice for most\n% manipulators (eg. puma560, twolink) since it corresponds to a kinematic\n% singularity.\n% - Such a solution is completely general, though much less efficient\n% than specific inverse kinematic solutions derived symbolically, like\n% ikine6s or ikine3.% - Uses Levenberg-Marquadt minimizer LMFsolve if it can be found,\n% if 'nolm' is not given, and 'qlimits' false\n% - The error function to be minimized is computed on the norm of the error \n% between current and desired tool pose. This norm is computed from distances\n% and angles and 'pweight' can be used to scale the position error norm to\n% be congruent with rotation error norm.\n% - This approach allows a solution to obtained at a singularity, but\n% the joint angles within the null space are arbitrarily assigned.\n% - Joint offsets, if defined, are added to the inverse kinematics to\n% generate Q.\n% - Joint limits become explicit contraints if 'qlimits' is set.\n%\n% See also fminsearch, fmincon, SerialLink.fkine, SerialLink.ikine, tr2angvec.\n\n\n\n\n% Copyright (C) 1993-2017, by Peter I. Corke\n%\n% This file is part of The Robotics Toolbox for MATLAB (RTB).\n% \n% RTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% RTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with RTB. If not, see .\n%\n% http://www.petercorke.com\n\nfunction qt = ikinem(robot, tr, varargin)\n \n opt.pweight = 1;\n opt.stiffness = 0;\n opt.qlimits = false;\n opt.ilimit = 1000;\n opt.lm = true;\n opt.col = 2;\n \n [opt,args] = tb_optparse(opt, varargin);\n \n % check if optional argument is a valid q\n q0 = args{1};\n if numel(q0) ~= robot.n\n error('q0 length must match number of joints in robot');\n end\n \n \n for i=1:size(tr,3)\n T = tr(:,:,i);\n \n if opt.qlimits\n % constrained optimization to handle joint limits\n options = optimset('MaxIter', opt.ilimit);\n qlim = robot.qlim;\n \n [q, ef, exflag, output] = fmincon( @(x) costfun(x, robot, T, opt), q0, ...\n [], [], [], [], ...\n qlim(:,1), qlim(:,2), ...\n [], options);\n \n if opt.verbose\n fprintf('final error %f, %d iterations, %d evalations\\n', ...\n ef, output.iterations, output.funcCount);\n end\n \n else\n % no joint limits, unconstrained optimization\n if exist('LMFsolve') == 2 && opt.lm\n [q, ef, count] = LMFsolve( @(x) costfun(x, robot, T, opt), q0, 'MaxIter', opt.ilimit);\n q = q';\n if opt.verbose\n fprintf('final error %f, %d iterations\\n', ...\n ef, count);\n end\n else\n options = optimset('MaxIter', opt.ilimit);\n [q, ef, exflag, output] = fminsearch( @(x) costfun(x, robot, T, opt), q0, options);\n \n if opt.verbose\n fprintf('final error %f, %d iterations, %d evalations\\n', ...\n ef, output.iterations, output.funcCount);\n end\n end\n end\n \n qt(i,:) = q;\n end\n \n if opt.verbose\n robot.fkine(qt)\n end\nend\n\n% The cost function, this is the value to be minimized\nfunction E = costfun(q, robot, T, opt)\n \n Tq = robot.fkine(q);\n % find the pose error in SE(3)\n dT = transl(T) - transl(Tq);\n \n % translation error\n E = norm(dT) * opt.pweight;\n \n % rotation error\n % find dot product of \n dd = dot(T(1:3,opt.col), Tq(1:3,opt.col));\n %E = E + (1 - dd)^2*100000 ;\n E = E + acos(dd)^2*1000 ;\n \n \n if opt.stiffness > 0\n % enforce a continuity constraint on joints, minimum bend\n E = E + sum( diff(q).^2 ) * opt.stiffness;\n end\nend\n \n", "meta": {"author": "petercorke", "repo": "robotics-toolbox-matlab", "sha": "bd7a9d75176c660f43fc799b24d838f70b02250c", "save_path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-robotics-toolbox-matlab/robotics-toolbox-matlab-bd7a9d75176c660f43fc799b24d838f70b02250c/@SerialLink/ikinem.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5234203489363239, "lm_q1q2_score": 0.3744674775104047}} {"text": "% dataset -> (1=>user data) or (2=>toy example)\n% type -> (1=> Regression model) or (2=>Classification model)\n% num_glevel -> number of hidden nodes in the net (gating levels)\n% num_exp -> number of experts in the net\n% branch_fact -> dimension of the hidden nodes in the net\n% cov_dim -> root node dimension\n% res_dim -> output node dimension\n% nodes_info -> 4 x num_glevel+2 matrix that contain all the info about the nodes:\n% nodes_info(1,:) = nodes type: (0=>gaussian)or(1=>softmax)or(2=>mlp)\n% nodes_info(2,:) = nodes size: [cov_dim num_glevel x branch_fact res_dim]\n% nodes_info(3,:) = hidden units number (for mlp nodes)\n% |- optimizer iteration number (for softmax & mlp CPD)\n% nodes_info(4,:) =|- covariance type (for gaussian CPD)-> \n% | (1=>Full)or(2=>Diagonal)or(3=>Full&Tied)or(4=>Diagonal&Tied)\n% fh1 -> Figure: data & decizion boundaries; fh2 -> confusion matrix; fh3 -> LL trace \n% test_data -> test data matrix\n% train_data -> training data matrix\n% ntrain -> size(train_data,2)\n% ntest -> size(test_data,2)\n% cases -> (cell array) training data formatted for the learning engine\n% bnet -> bayesian net before learning\n% bnet2 -> bayesian net after learning\n% ll -> log-likelihood before learning\n% LL2 -> log-likelihood trace\n% onodes -> obs nodes in bnet & bnet2\n% max_em_iter -> maximum number of interations of the EM algorithm\n% train_result -> prediction on the training set (as test_result)\n% \n% IMPORTANT: CHECK the loading path (lines 64 & 364)\n% ----------------------------------------------------------------------------------------------------\n% -> pierpaolo_b@hotmail.com or -> pampo@interfree.it\n% ----------------------------------------------------------------------------------------------------\n\nerror('this no longer works with the latest version of BNT')\n\nclear all;\nclc;\ndisp('---------------------------------------------------');\ndisp(' Hierarchical Mixtures of Experts models builder ');\ndisp('---------------------------------------------------');\ndisp(' ')\ndisp(' Using this script you can build both an HME model')\ndisp('as in [Wat94] and [Jor94] i.e. with ''softmax'' gating')\ndisp('nodes and ''gaussian'' ( for regression ) or ''softmax''') \ndisp('( for classification ) expert node, and its variants')\ndisp('called ''gated nets'' where we use ''mlp'' models in')\ndisp('place of a number of ''softmax'' ones [Mor98], [Wei95].')\ndisp(' You can decide to train and test the model on your')\ndisp('datasets or to evaluate its performance on a toy')\ndisp('example.')\ndisp(' ')\ndisp('Reference')\ndisp('[Mor98] P. Moerland (1998):')\ndisp(' Localized mixtures of experts. (http://www.idiap.ch/~perry/)')\ndisp('[Jor94] M.I. Jordan, R.A. Jacobs (1994):')\ndisp(' HME and the EM algorithm. (http://www.cs.berkeley.edu/~jordan/)')\ndisp('[Wat94] S.R. Waterhouse, A.J. Robinson (1994):') \ndisp(' Classification using HME. (http://www.oigeeza.com/steve/)')\ndisp('[Wei95] A.S. Weigend, M. Mangeas (1995):') \ndisp(' Nonlinear gated experts for time series.')\ndisp(' ')\n\nif 0\ndisp('(See the figure)')\npause(5);\n%%%%%WARNING!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nim_path=which('HMEforMatlab.jpg');\nfig=imread(im_path, 'jpg');\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfigure('Units','pixels','MenuBar','none','NumberTitle','off', 'Name', 'HME model');\nimage(fig); \naxis image;\naxis off;\nclear fig;\nset(gca,'Position',[0 0 1 1])\ndisp('(Press any key to continue)')\npause\nend\n\nclc\ndisp('---------------------------------------------------');\ndisp(' Specify the Architecture ');\ndisp('---------------------------------------------------');\ndisp(' ');\ndisp('What kind of model do you need?')\ndisp(' ')\ndisp('1) Regression ')\ndisp('2) Classification')\ndisp(' ')\ntype=input('1 or 2?: ');\nif (isempty(type)|(~ismember(type,[1 2]))), error('Invalid value'); end\nclc\ndisp('----------------------------------------------------');\ndisp(' Specify the Architecture ');\ndisp('----------------------------------------------------');\ndisp(' ')\ndisp('Now you have to set the number of experts and gating')\ndisp('levels in the net. This script builds only balanced')\ndisp('hierarchy with the same branching factor (>1)at each')\ndisp('(gating) level. So remember that: ')\ndisp(' ')\ndisp(' num_exp = branch_fact^num_glevel ')\ndisp(' ')\ndisp('with branch_fact >=2.')\ndisp('You can also set to zeros the number of gating level')\ndisp('in order to obtain a classical GLM model. ')\ndisp(' ')\ndisp('----------------------------------------------------');\ndisp(' ')\nnum_glevel=input('Insert the number of gating levels {0,...,20}: ');\nif (isempty(num_glevel)|(~ismember(num_glevel,[0:20]))), error('Invalid value'); end\nnodes_info=zeros(4,num_glevel+2);\nif num_glevel>0, %------------------------------------------------------------------------------------\n for i=2:num_glevel+1,\n clc\n disp('----------------------------------------------------');\n disp(' Specify the Architecture ');\n disp('----------------------------------------------------');\n disp(' ') \n disp(['-> Gating network ', num2str(i-1), ' is a: '])\n disp(' ')\n disp(' 1) Softmax model');\n disp(' 2) Two layer perceptron model')\n disp(' ')\n nodes_info(1,i)=input('1 or 2?: ');\n if (isempty(nodes_info(1,i))|(~ismember(nodes_info(1,i),[1 2]))), error('Invalid value'); end\n disp(' ')\n if nodes_info(1,i)==2,\n nodes_info(3,i)=input('Insert the number of units in the hidden layer: ');\n if (isempty(nodes_info(3,i))|(floor(nodes_info(3,i))~=nodes_info(3,i))|(nodes_info(3,i)<=0)), \n error(['Invalid value: ', num2str(nodes_info(3,i)), ' is not a positive integer!']);\n end\n disp(' ')\n end\n nodes_info(4,i)=input('Insert the optimizer iteration number: ');\n if (isempty(nodes_info(4,i))|(floor(nodes_info(4,i))~=nodes_info(4,i))|(nodes_info(4,i)<=0)), \n error(['Invalid value: ', num2str(nodes_info(4,i)), ' is not a positive integer!']);\n end \n end\n clc\n disp('---------------------------------------------------------');\n disp(' Specify the Architecture ');\n disp('---------------------------------------------------------');\n disp(' ')\n disp('Now you have to set the number of experts in the network');\n disp('The value will be adjusted in order to obtain a hierarchy');\n disp('as said above.')\n disp(' '); \n num_exp=input(['Insert the approximative number of experts (>=', num2str(2^num_glevel), '): ']);\n if (isempty(num_exp)|(num_exp<=0)|(num_exp<2^num_glevel)), \n error('Invalid value');\n end\n app1=0; base=2;\n while app1=(2^num_glevel)&(abs(app2-num_exp)0-------------------------------------------------------------------------\n\nif type==2,\n disp(['-> Expert node is a: '])\n disp(' ')\n disp(' 1) Softmax model');\n disp(' 2) Two layer perceptron model')\n disp(' ')\n nodes_info(1,end)=input('1 or 2?: ');\n if (isempty(nodes_info(1,end))|(~ismember(nodes_info(1,end),[1 2]))), \n error('Invalid value'); \n end\n disp(' ')\n if nodes_info(1,end)==2,\n nodes_info(3,end)=input('Insert the number of units in the hidden layer: ');\n if (isempty(nodes_info(3,end))|(floor(nodes_info(3,end))~=nodes_info(3,end))|(nodes_info(3,end)<=0)), \n error(['Invalid value: ', num2str(nodes_info(3,end)), ' is not a positive integer!']);\n end\n disp(' ')\n end\n nodes_info(4,end)=input('Insert the optimizer iteration number: ');\n if (isempty(nodes_info(4,end))|(floor(nodes_info(4,end))~=nodes_info(4,end))|(nodes_info(4,end)<=0)), \n error(['Invalid value: ', num2str(nodes_info(4,end)), ' is not a positive integer!']);\n end\nelseif type==1,\n disp('What kind of covariance matrix structure do you want?')\n disp(' ')\n disp(' 1) Full');\n disp(' 2) Diagonal')\n disp(' 3) Full & Tied');\n disp(' 4) Diagonal & Tied')\n\n disp(' ')\n nodes_info(4,end)=input('1, 2, 3 or 4?: ');\n if (isempty(nodes_info(4,end))|(~ismember(nodes_info(4,end),[1 2 3 4]))), \n error('Invalid value'); \n end \nend\nclc\ndisp('----------------------------------------------------');\ndisp(' Specify the Input ');\ndisp('----------------------------------------------------');\ndisp(' ')\ndisp('Do you want to...')\ndisp(' ')\ndisp('1) ...use your own dataset?')\ndisp('2) ...apply the model on a toy example?')\ndisp(' ')\ndataset=input('1 or 2?: ');\nif (isempty(dataset)|(~ismember(dataset,[1 2]))), error('Invalid value'); end\nif dataset==1,\n if type==1,\n clc\n disp('-------------------------------------------------------');\n disp(' Specify the Input - Regression problem ');\n disp('-------------------------------------------------------');\n disp(' ')\n disp('Be sure that each row of your data matrix is an example');\n disp('with the covariate values that precede the respond ones')\n disp(' ')\n disp('-------------------------------------------------------');\n disp(' ')\n cov_dim=input('Insert the covariate space dimension: ');\n if (isempty(cov_dim)|(floor(cov_dim)~=cov_dim)|(cov_dim<=0)), \n error(['Invalid value: ', num2str(cov_dim), ' is not a positive integer!']);\n end\n disp(' ')\n res_dim=input('Insert the dimension of the respond variable: ');\n if (isempty(res_dim)|(floor(res_dim)~=res_dim)|(res_dim<=0)), \n error(['Invalid value: ', num2str(res_dim), ' is not a positive integer!']);\n end \n disp(' ');\n elseif type==2\n clc\n disp('-------------------------------------------------------');\n disp(' Specify the Input - Classification problem ');\n disp('-------------------------------------------------------');\n disp(' ')\n disp('Be sure that each row of your data matrix is an example');\n disp('with the covariate values that precede the class labels');\n disp('(integer value >=1). ');\n disp(' ')\n disp('-------------------------------------------------------');\n disp(' ')\n cov_dim=input('Insert the covariate space dimension: ');\n if (isempty(cov_dim)|(floor(cov_dim)~=cov_dim)|(cov_dim<=0)), \n error(['Invalid value: ', num2str(cov_dim), ' is not a positive integer!']);\n end\n disp(' ')\n res_dim=input('Insert the number of classes: ');\n if (isempty(res_dim)|(floor(res_dim)~=res_dim)|(res_dim<=0)), \n error(['Invalid value: ', num2str(res_dim), ' is not a positive integer!']);\n end \n disp(' ') \n end \n % ------------------------------------------------------------------------------------------------\n % Loading training data --------------------------------------------------------------------------\n % ------------------------------------------------------------------------------------------------\n train_path=input('Insert the complete (with extension) path of the training data file:\\n >> ','s'); \n if isempty(train_path), error('You must specify a data set for training!'); end\n if ~isempty(findstr('.mat',train_path)),\n ap=load(train_path); app=fieldnames(ap); train_data=eval(['ap.', app{1,1}]);\n clear ap app;\n elseif ~isempty(findstr('.txt',train_path)),\n train_data=load(train_path, '-ascii');\n else\n error('Invalid data format: not a .mat or a .txt file')\n end\n if (size(train_data,2)~=cov_dim+res_dim)&(type==1),\n error(['Invalid data matrix size: ', num2str(size(train_data,2)), ' columns rather than ',...\n num2str(cov_dim+res_dim),'!']);\n elseif (size(train_data,2)~=cov_dim+1)&(type==2),\n error(['Invalid data matrix size: ', num2str(size(train_data,2)), ' columns rather than ',...\n num2str(cov_dim+1),'!']); \n elseif (~isempty(find(ismember(intersect([train_data(:,end)' 1:res_dim],...\n train_data(:,end)'),[1:res_dim])==0)))&(type==2),\n error('Invalid class label');\n end \n ntrain=size(train_data,1);\n train_d=train_data(:,1:cov_dim);\n if type==2,\n train_t=zeros(ntrain, res_dim);\n for m=1:res_dim,\n train_t((find(train_data(:,end)==m))',m)=1;\n end\n else\n train_t=train_data(:,cov_dim+1:end);\n end \n disp(' ')\n % ------------------------------------------------------------------------------------------------\n % Loading test data ------------------------------------------------------------------------------\n % ------------------------------------------------------------------------------------------------\n disp('(If you don''t want to specify a test-set press ''return'' only)');\n test_path=input('Insert the complete (with extension) path of the test data file:\\n >> ','s'); \n if ~isempty(test_path),\n if ~isempty(findstr('.mat',test_path)), \n ap=load(test_path); app=fieldnames(ap); test_data=eval(['ap.', app{1,1}]);\n clear ap app;\n elseif ~isempty(findstr('.txt',test_path)),\n test_data=load(test_path, '-ascii');\n else\n error('Invalid data format: not a .mat or a .txt file')\n end\n if (size(test_data,2)~=cov_dim)&(size(test_data,2)~=cov_dim+res_dim)&(type==1),\n error(['Invalid data matrix size: ', num2str(size(test_data,2)), ' columns rather than ',...\n num2str(cov_dim+res_dim), ' or ', num2str(cov_dim), '!']);\n elseif (size(test_data,2)~=cov_dim)&(size(test_data,2)~=cov_dim+1)&(type==2),\n error(['Invalid data matrix size: ', num2str(size(test_data,2)), ' columns rather than ',...\n num2str(cov_dim+1), ' or ', num2str(cov_dim), '!']);\n elseif (~isempty(find(ismember(intersect([test_data(:,end)' 1:res_dim],...\n test_data(:,end)'),[1:res_dim])==0)))&(type==2)&(size(test_data,2)==cov_dim+1),\n error('Invalid class label');\n end\n ntest=size(test_data,1); \n test_d=test_data(:,1:cov_dim);\n if (type==2)&(size(test_data,2)>cov_dim),\n test_t=zeros(ntest, res_dim);\n for m=1:res_dim,\n test_t((find(test_data(:,end)==m))',m)=1;\n end\n elseif (type==1)&(size(test_data,2)>cov_dim),\n test_t=test_data(:,cov_dim+1:end);\n end\n disp(' ');\n end\nelse \n clc\n disp('----------------------------------------------------');\n disp(' Specify the Input ');\n disp('----------------------------------------------------');\n disp(' ')\n ntrain = input('Insert the number of examples in training (<500): ');\n if (isempty(ntrain)|(floor(ntrain)~=ntrain)|(ntrain<=0)|(ntrain>500)), \n error(['Invalid value: ', num2str(ntrain), ' is not a positive integer <500!']);\n end \n disp(' ')\n test_path='toy';\n ntest = input('Insert the number of examples in test (<500): ');\n if (isempty(ntest)|(floor(ntest)~=ntest)|(ntest<=0)|(ntest>500)), \n error(['Invalid value: ', num2str(ntest), ' is not a positive integer <500!']);\n end \n\n if type==2,\n cov_dim=2;\n res_dim=3;\n seed = 42;\n [train_d, ntrain1, ntrain2, train_t]=gen_data(ntrain, seed);\n for m=1:ntrain\n q=[]; q = find(train_t(m,:)==1);\n train_data(m,:)=[train_d(m,:) q];\n end\n [test_d, ntest1, ntest2, test_t]=gen_data(ntest);\n for m=1:ntest\n q=[]; q = find(test_t(m,:)==1);\n test_data(m,:)=[test_d(m,:) q];\n end\n else\n cov_dim=1;\n res_dim=1;\n global HOME\n %%%%%WARNING!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n load([HOME '/examples/static/Misc/mixexp_data.txt'], '-ascii');\n %%%%%WARNING!%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n train_data = mixexp_data(1:ntrain, :);\n train_d=train_data(:,1:cov_dim); train_t=train_data(:,cov_dim+1:end);\n test_data = mixexp_data(ntrain+1:ntrain+ntest, :);\n test_d=test_data(:,1:cov_dim); \n if size(test_data,2)>cov_dim,\n test_t=test_data(:,cov_dim+1:end);\n end\n end \nend\n% Set the nodes dimension-----------------------------------\nif num_glevel>0,\n nodes_info(2,2:num_glevel+1)=branch_fact;\nend\nnodes_info(2,1)=cov_dim; nodes_info(2,end)=res_dim;\n%-----------------------------------------------------------\n% Prepare the training data for the learning engine---------\n%-----------------------------------------------------------\ncases = cell(size(nodes_info,2), ntrain);\nfor m=1:ntrain,\n cases{1,m}=train_data(m,1:cov_dim)';\n cases{end,m}=train_data(m,cov_dim+1:end)';\nend\n%-----------------------------------------------------------------------------------------------------\n[bnet onodes]=hme_topobuilder(nodes_info);\nengine = jtree_inf_engine(bnet, onodes);\nclc\ndisp('---------------------------------------------------------------------');\ndisp(' L E A R N I N G ');\ndisp('---------------------------------------------------------------------');\ndisp(' ')\nll = 0;\nfor l=1:ntrain\n scritta=['example number: ', int2str(l),'---------------------------------------------'];\n disp(scritta);\n ev = cases(:,l);\n [engine, loglik] = enter_evidence(engine, ev);\n ll = ll + loglik;\nend\ndisp(' ')\ndisp(['Log-likelihood before learning: ', num2str(ll)]);\ndisp(' ')\ndisp('(Press any key to continue)');\npause\n%-----------------------------------------------------------\nclc\ndisp('---------------------------------------------------------------------');\ndisp(' L E A R N I N G ');\ndisp('---------------------------------------------------------------------');\ndisp(' ')\nmax_em_iter=input('Insert the maximum number of the EM algorithm iterations: ');\nif (isempty(max_em_iter)|(floor(max_em_iter)~=max_em_iter)|(max_em_iter<=1)), \n error(['Invalid value: ', num2str(ntest), ' is not a positive integer >1!']);\nend \ndisp(' ')\ndisp(['Log-likelihood before learning: ', num2str(ll)]);\ndisp(' ')\n\n[bnet2, LL2] = learn_params_em(engine, cases, max_em_iter);\ndisp(' ')\nfprintf('HME: loglik before learning %f, after %d iters %f\\n', ll, length(LL2), LL2(end));\ndisp(' ')\ndisp('(Press any key to continue)');\npause\n%-----------------------------------------------------------------------------------\n% Classification problem: plot data & decision boundaries if the input data size = 2\n% Regression problem: plot data & prediction if the input data size = 1\n%-----------------------------------------------------------------------------------\nif (type==2)&(nodes_info(2,1)==2)&(~isempty(test_path)),\n fh1=hme_class_plot(bnet2, nodes_info, train_data, test_data);\n disp(' ');\n disp('(See the figure)');\nelseif (type==2)&(nodes_info(2,1)==2)&(isempty(test_path)),\n fh1=hme_class_plot(bnet2, nodes_info, train_data);\n disp(' ');\n disp('(See the figure)');\nelseif (type==1)&(nodes_info(2,1)==1)&(~isempty(test_path)),\n fh1=hme_reg_plot(bnet2, nodes_info, train_data, test_data);\n disp(' ');\n disp('(See the figure)');\nelseif (type==1)&(nodes_info(2,1)==1)&(isempty(test_path)),\n fh1=hme_reg_plot(bnet2, nodes_info, train_data);\n disp(' ')\n disp('(See the figure)');\nend\n%-----------------------------------------------------------------------------------\n% Classification problem: plot confusion matrix\n%-----------------------------------------------------------------------------------\nif (type==2)\n ztrain=fhme(bnet2, nodes_info, train_d, size(train_d,1)); \n [Htrain, trainRate]=confmat(ztrain, train_t); % CM on the training set\n fh2=figure('Name','Confusion matrix', 'MenuBar', 'none', 'NumberTitle', 'off');\n if (~isempty(test_path))&(size(test_data,2)>cov_dim),\n ztest=fhme(bnet2, nodes_info, test_d, size(test_d,1));\n [Htest, testRate]=confmat(ztest, test_t); % CM on the test set\n subplot(1,2,1);\n end\n plotmat(Htrain,'b','k',12)\n tick=[0.5:1:(0.5+nodes_info(2,end)-1)];\n set(gca,'XTick',tick)\n set(gca,'YTick',tick)\n grid('off')\n ylabel('True')\n xlabel('Prediction')\n title(['Confusion Matrix: training set (' num2str(trainRate(1)) '%)'])\n if (~isempty(test_path))&(size(test_data,2)>cov_dim),\n subplot(1,2,2)\n plotmat(Htest,'b','k',12)\n set(gca,'XTick',tick)\n set(gca,'YTick',tick)\n grid('off')\n ylabel('True')\n xlabel('Prediction')\n title(['Confusion Matrix: test set (' num2str(testRate(1)) '%)'])\n end\n disp(' ')\n disp('(Press any key to continue)');\n pause\nend\n%-----------------------------------------------------------------------------------\n% Regression & Classification problem: calculate the predictions & plot the LL trace\n%-----------------------------------------------------------------------------------\ntrain_result=fhme(bnet2,nodes_info,train_d,size(train_d,1));\nif ~isempty(test_path),\n test_result=fhme(bnet2,nodes_info,test_d,size(test_d,1));\nend\nfh3=figure('Name','Log-likelihood trace', 'MenuBar', 'none', 'NumberTitle', 'off')\nplot(LL2,'-ro',...\n 'MarkerEdgeColor','k',...\n 'MarkerFaceColor',[1 1 0],...\n 'MarkerSize',4)\ntitle('Log-likelihood trace')\n%-----------------------------------------------------------------------------------\n% Regression & Classification problem: save the predictions\n%-----------------------------------------------------------------------------------\nclc\ndisp('------------------------------------------------------------------');\ndisp(' Save the results ');\ndisp('------------------------------------------------------------------');\ndisp(' ')\n%-----------------------------------------------------------------------------------\nsave_quest_m=input('Do you want to save the HME model (Y/N)? [Y default]: ', 's');\nif isempty(save_quest_m),\n save_quest_m='Y';\nend\nif ~findstr(save_quest_m, ['Y', 'N']), error('Invalid input'); end\nif save_quest_m=='Y',\n disp(' ');\n m_save=input('Insert the complete path for save the HME model (.mat):\\n >> ', 's');\n if isempty(m_save), error('You must specify a path!'); end\n save(m_save, 'bnet2');\nend\n%----------------------------------------------------------------------------------- \ndisp(' ')\nsave_quest=input('Do you want to save the HME predictions (Y/N)? [Y default]: ', 's');\ndisp(' ')\nif isempty(save_quest),\n save_quest='Y';\nend\nif ~findstr(save_quest, ['Y', 'N']), error('Invalid input'); end\nif save_quest=='Y',\n tr_save=input('Insert the complete path for save the training data prediction (.mat):\\n >> ', 's'); \n if isempty(tr_save), error('You must specify a path!'); end\n save(tr_save, 'train_result'); \n if ~isempty(test_path),\n disp(' ')\n te_save=input('Insert the complete path for save the test data prediction (.mat):\\n >> ', 's');\n if isempty(te_save), error('You must specify a path!'); end\n save(te_save, 'test_result');\n end\nend\nclc\ndisp('----------------------------------------------------');\ndisp(' B Y E ! ');\ndisp('----------------------------------------------------');\npause(2)\n%clear \nclc\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/examples/static/HME/hmemenu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7371581626286833, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3743376608331046}} {"text": "function [axisLabelCell,orientationStr,iop] = returnViewerAxisLabels(planC,scanNum)\n\nindexS = planC{end};\n\nif ~exist('scanNum','var') || isempty(scanNum)\n scanNum = 1;\nend\n\ntry\n iop = planC{indexS.scan}(scanNum).scanInfo(1).imageOrientationPatient;\n \n if isempty(iop)\n iop = [1,0,0,0,1,0]'; % temporary. assign this during loading planC\n end\n \n [~,idx2] = max(abs(iop(1:3)));\n [~,idx1] = max(abs(iop(4:end)));\n \n iopProj = zeros(size(iop));\n iopProj(idx1 + 3) = iop(idx1 + 3);\n iopProj(idx2) = iop(idx2);\n \n iopProjSign = iopProj ./ abs(iop);\n \n iopProjSign(isnan(iopProjSign)) = 0;\n \n if isequal(abs(iopProjSign),[1; 0; 0; 0; 1; 0])\n sliceType = 'axial';\n elseif isequal(abs(iopProjSign),[1; 0; 0; 0; 0; 1])\n sliceType = 'coronal';\n else\n sliceType = 'sagittal';\n end\n \n switch sliceType\n \n case 'axial'\n % definitions \n HFS = [1; 0; 0; 0; 1; 0];\n HFP = [-1; 0; 0; 0; -1; 0];\n FFS = [-1; 0; 0; 0; 1; 0];\n FFP = [1; 0; 0; 0; -1; 0];\n \n if isequal(iopProjSign(:), HFS)\n axisLabelCell = {'A','P';'R','L';'S','I'};\n orientationStr = 'HFS';\n elseif isequal(iopProjSign(:), HFP)\n axisLabelCell = {'P','A';'L','R';'S','I'};\n orientationStr = 'HFP';\n elseif isequal(iopProjSign(:), FFS)\n axisLabelCell = {'A','P';'L','R';'S','I'};\n orientationStr = 'FFS';\n else %FFP\n axisLabelCell = {'P','A';'R','L';'S','I'};\n orientationStr = 'FFP';\n end\n case 'coronal'\n HFS = [1; 0; 0; 0; 0; 1];\n HFP = [-1; 0; 0; 0; 0; 1];\n FFS = [-1; 0; 0; 0; 0; -1];\n FFP = [1; 0; 0; 0; 0; -1];\n \n if isequal(iopProjSign(:), HFS)\n axisLabelCell = {'S','I';'R','L';'A','P'};\n orientationStr = 'HFS';\n elseif isequal(iopProjSign(:), HFP)\n axisLabelCell = {'S','I';'R','L';'A','P'};\n orientationStr = 'HFP';\n elseif isequal(iopProjSign(:), FFS)\n axisLabelCell = {'S','I';'R','L';'A','P'};\n orientationStr = 'FFS';\n else %FFP\n axisLabelCell = {'S','I';'R','L';'A','P'};\n orientationStr = 'FFP';\n end\n \n case 'sagittal' % eg [0; 1; 0; 0; 0; -1]\n HFS = [0; 1; 0; 0; 0; 1];\n HFP = [0; -1; 0; 0; 0; 1];\n FFS = [0; -1; 0; 0; 0; -1];\n FFP = [0; 1; 0; 0; 0; -1];\n \n if isequal(iopProjSign(:), HFS)\n axisLabelCell = {'A','P';'S','I';'R','L'};\n orientationStr = 'HFS';\n elseif isequal(iopProjSign(:), HFP)\n axisLabelCell = {'A','P';'I','S';'R','L'};\n orientationStr = 'HFP';\n elseif isequal(iopProjSign(:), FFS)\n axisLabelCell = {'P','A';'S','I';'R','L'};\n orientationStr = 'FFS';\n else %FFP\n axisLabelCell = {'P','A';'I','S';'R','L'};\n orientationStr = 'FFP';\n end\n end\ncatch err\n %default HFS\n disp(err);\n disp('Defaulting to HFS orientation');\n axisLabelCell = {'A','P';'R','L';'S','I'};\n orientationStr = 'HFS';\nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Extras/returnViewerAxisLabels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.374198710237396}} {"text": "function disp(F)\n%DISP Display a SPHEREFUNV.\n%\n% See also SPHEREFUNV/DISPLAY.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information. \n\nloose = strcmp(get(0,'FormatSpacing'),'loose');\n\n% Compact version:\nif ( isempty(F) )\n fprintf('empty spherefunv\\n\\n')\n return\nend\n\nif ( F.isTransposed )\n tString = 'Row vector';\nelse\n tString = 'Column vector';\nend\n\ndisp([' spherefunv object ' '(' tString ') containing' ])\nif ( loose )\n fprintf('\\n');\nend\n\n% Display its two SPHERFUN halves.\nfor j = 1:3\n disp( F.components{j} );\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spherefunv/disp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5428632831725052, "lm_q2_score": 0.6893056167854461, "lm_q1q2_score": 0.374198710237396}} {"text": "function [rstat]=AddObsErr_v000(finname, nrow, foutname, act_row, errdef, rstat)\n\n%randomize\nif (rstat(1)~=0)\n randn('state',rstat)\nelse\n rstat=randn('state');\nend\n\nfinp=fopen(finname,'rb');\ninp=fread(finp,[nrow,inf],'double');\nfclose(finp);\n\nfor in=1:size(act_row,1)\n fout=fopen(foutname(1,:),'wb');\n act_in=act_row(in,:);\n nd=size(act_in,2);\n if (~isempty(errdef))\n sR=errdef(in).sR;\n for (in1=1:size(inp,2))\n out=inp(act_in,in1)+sR*randn(nd,1);\n fwrite(fout,[inp(1,in1);out],'double');\n end\n else\n out=inp([1 act_in],:);\n fwrite(fout,out,'double');\n end\n fclose(fout);\nend\n", "meta": {"author": "JzHuai0108", "repo": "ekfmonoslam", "sha": "443f6be744732453cdb90679abcaf5c962a6295e", "save_path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam", "path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam/ekfmonoslam-443f6be744732453cdb90679abcaf5c962a6295e/instk/PathGen/AddObsErr_v000.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3741987102373959}} {"text": "function y = cumsum( x, dim )\n\n%Disciplined convex/geometric programming information for SUM:\n% CUMSUM(X) and CUMSUM(X,DIM) are vectorized forms of addition. So \n% when CUMSUM is used in a DCP or DGP, elements in each subvector \n% must satisfy the corresponding combination rules for addition (see\n% PLUS). For example, suppose that X looks like this:\n% X = [ convex concave affine ;\n% affine concave concave ]\n% Then CUMSUM(X,1) would be permittted, but CUMSUM(X,2) would not, \n% because the top row contains the sum of convex and concave terms, in\n% violation of the DCP ruleset. For DGPs, addition rules dictate that\n% the elements of X must be log-convex or log-affine.\n\ns = x.size_;\nswitch nargin,\n case 0,\n error( 'Not enough input arguments.' );\n case 1,\n dim = cvx_default_dimension( s );\n case 2,\n if ~cvx_check_dimension( dim, false ),\n error( 'Second argument must be a dimension.' );\n end\nend\n\nif dim > length( s ) || s( dim ) <= 1,\n\n y = x;\n\nelse\n\n b = x.basis_;\n sb = size( b );\n need_perm = any( s( 1 : dim - 1 ) > 1 );\n if need_perm,\n ndxs = reshape( 1 : prod( s ), s );\n ndxs = permute( ndxs, [ dim, 1 : dim - 1, dim + 1 : length( s ) ] );\n b = b( :, ndxs );\n end\n b = reshape( b, prod( sb ) / s( dim ), s( dim ) );\n b = cumsum( b, 2 );\n b = reshape( b, sb );\n if need_perm,\n b( :, ndxs ) = b;\n end\n y = cvx( s, b );\n v = cvx_vexity( y );\n if any( isnan( v( : ) ) ),\n error( 'Disciplined convex programming error:\\n Illegal addition encountered (e.g., {convex} + {concave}).', 1 ); %#ok\n end\n\nend\n\n% Copyright 2010 Michael C. Grant and Stephen P. Boyd.\n% See the file COPYING.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/cvx-1.21.b795/builtins/@cvx/cumsum.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3741987102373959}} {"text": "% PRELP Loads and preprocesses LP from an MPS file.\n%\n% > [A,b,c,lenx,lbounds] = PRELP('problemname')\n% The above command results in an LP in standard form,\n% - Instead of specifying the problemname, you can also use PRELP([]), to\n% get the problem from the file /tmp/default.mat.\n% - Also, you may type PRELP without any input arguments, and get prompted\n% for a name.\n%\n% MINIMIZE c'*x SUCH THAT A*x = b AND x>= 0.\n%\n% So, you can solve it with SeDuMi:\n% > [x,y,info] = SEDUMI(A,b,c);\n%\n% After solving, post-process it with\n% > [x,objp] = POSTPROCESS(x(1:lenx),lbounds).\n%\n% REMARK x(lenx+1:length(x)) will contain upper-bound slacks.\n%\n% IMPORTANT works only if LIPSOL is installed on your system.\n%\n% See also sedumi, getproblem, postprocess (LIPSOL), frompack, lipsol.\n\nfunction [A,b,c,lenx,lbounds,times] = prelp(pname)\n%\n% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko\n% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)\n%\n% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)\n% Dept. Econometrics & O.R., Tilburg University, the Netherlands.\n% Supported by the Netherlands Organization for Scientific Research (NWO).\n%\n% Affiliation SeDuMi 1.03 and 1.04Beta (2000):\n% Dept. Quantitative Economics, Maastricht University, the Netherlands.\n%\n% Affiliations up to SeDuMi 1.02 (AUG1998):\n% CRL, McMaster University, Canada.\n% Supported by the Netherlands Organization for Scientific Research (NWO).\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA\n% 02110-1301, USA%\n\n\nglobal OUTFID\nglobal Ubounds_exist\nif ~exist('loadata','file') || ~exist('preprocess','file')\n error('To use PRELP, you need to have LIPSOL installed.')\nend\n\n%--------------------------------------------------\n% LOAD LP PROBLEM INTO MEMORY\n%--------------------------------------------------\nif (nargin == 0)\n pname = input('Enter problem name: ','s');\nend\nt0 = cputime;\n[A,b,c,lbounds,ubounds,BIG,NAME] = loadata(pname);\ntimes(1) = cputime - t0;\n\n%--------------------------------------------------\n% PREPROCESS LP PROBLEM\n% NB: Y.Zhang's preprocess returns lbounds for post-\n% processing; the pre-processed problem has x>=0.\n%--------------------------------------------------\nt0 = cputime;\n[A,b,c,lbounds,ubounds,FEASIBLE] = ...\n preprocess(A,b,c,lbounds,ubounds,BIG);\nif ~FEASIBLE\n fprintf('\\n');\n if isempty(OUTFID)\n return;\n end;\n msginf = 'Infeasibility detected in preprocessing';\n fprintf(OUTFID, [pname ' 0 ' msginf '\\n']);\n return;\nend;\n%[A,b,c,ubounds] = scaling(A,b,c,ubounds);\n%--------------------------------------------------\n% INSERT UBOUND- CONSTRAINTS IN THE A-MATRIX\n%--------------------------------------------------\nb = full(b); c = full(c);\n[m,lenx] = size(A);\nif Ubounds_exist\n nub = nnz(ubounds);\n A= [ A sparse(m,nub); sparse(1:nub,find(ubounds),1,nub,lenx) speye(nub) ];\n b = [b; nonzeros(ubounds)];\n c = [c; zeros(nub,1)];\nelse\n ubounds = [];\nend\n%--------------------------------------------------\n% LOCATE DENSE COLUMNS\n%--------------------------------------------------\n%checkdense(A);\ntimes(2) = cputime - t0;\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sedumi/conversion/prelp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3741987102373959}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%% %%%%%\n%%%% IEEE PES Power Grid Library - Optimal Power Flow - v21.07 %%%%%\n%%%% (https://github.com/power-grid-lib/pglib-opf) %%%%%\n%%%% Benchmark Group - Active Power Increase %%%%%\n%%%% 29 - July - 2021 %%%%%\n%%%% %%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction mpc = pglib_opf_case24_ieee_rts__api\nmpc.version = '2';\nmpc.baseMVA = 100.0;\n\n%% area data\n%\tarea\trefbus\nmpc.areas = [\n\t1\t 1;\n\t2\t 3;\n\t3\t 8;\n\t4\t 6;\n];\n\n%% bus data\n%\tbus_i\ttype\tPd\tQd\tGs\tBs\tarea\tVm\tVa\tbaseKV\tzone\tVmax\tVmin\nmpc.bus = [\n\t1\t 2\t 207.30\t 22.00\t 0.0\t 0.0\t 1\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t2\t 2\t 186.19\t 20.00\t 0.0\t 0.0\t 1\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t3\t 1\t 345.50\t 37.00\t 0.0\t 0.0\t 1\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t4\t 1\t 142.04\t 15.00\t 0.0\t 0.0\t 1\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t5\t 1\t 136.28\t 14.00\t 0.0\t 0.0\t 1\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t6\t 1\t 261.04\t 28.00\t 0.0\t -100.0\t 2\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t7\t 2\t 239.93\t 25.00\t 0.0\t 0.0\t 2\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t8\t 1\t 328.23\t 35.00\t 0.0\t 0.0\t 2\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t9\t 1\t 335.90\t 36.00\t 0.0\t 0.0\t 1\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t10\t 1\t 374.29\t 40.00\t 0.0\t 0.0\t 2\t 1.00000\t 0.00000\t 138.0\t 1\t 1.05000\t 0.95000;\n\t11\t 1\t 0.0\t 0.0\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t12\t 1\t 0.0\t 0.0\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t13\t 3\t 508.65\t 54.00\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t14\t 2\t 372.37\t 39.00\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t15\t 2\t 608.47\t 64.00\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t16\t 2\t 191.94\t 20.00\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t17\t 1\t 0.0\t 0.0\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t18\t 2\t 639.18\t 68.00\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t19\t 1\t 347.42\t 37.00\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t20\t 1\t 245.69\t 26.00\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t21\t 2\t 0.0\t 0.0\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t22\t 2\t 0.0\t 0.0\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t23\t 2\t 0.0\t 0.0\t 0.0\t 0.0\t 3\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n\t24\t 1\t 0.0\t 0.0\t 0.0\t 0.0\t 4\t 1.00000\t 0.00000\t 230.0\t 1\t 1.05000\t 0.95000;\n];\n\n%% generator data\n%\tbus\tPg\tQg\tQmax\tQmin\tVg\tmBase\tstatus\tPmax\tPmin\nmpc.gen = [\n\t1\t 43.5\t 0.0\t 40.0\t -40.0\t 1.0\t 100.0\t 1\t 79\t 8.0; % PEL\n\t1\t 109.5\t 0.0\t 106.0\t -106.0\t 1.0\t 100.0\t 1\t 211\t 8.0; % PEL\n\t1\t 41.3\t 0.0\t 38.0\t -38.0\t 1.0\t 100.0\t 1\t 75\t 7.6; % PEL\n\t1\t 42.8\t 0.0\t 39.0\t -39.0\t 1.0\t 100.0\t 1\t 78\t 7.6; % NG\n\t2\t 98.0\t 0.0\t 94.0\t -94.0\t 1.0\t 100.0\t 1\t 188\t 8.0; % NG\n\t2\t 95.0\t 0.0\t 91.0\t -91.0\t 1.0\t 100.0\t 1\t 182\t 8.0; % PEL\n\t2\t 91.8\t 0.0\t 88.0\t -88.0\t 1.0\t 100.0\t 1\t 176\t 7.6; % NG\n\t2\t 335.3\t 0.0\t 332.0\t -332.0\t 1.0\t 100.0\t 1\t 663\t 7.6; % COW\n\t7\t 221.25\t 0.0\t 215.0\t -215.0\t 1.0\t 100.0\t 1\t 430\t 12.5; % NG\n\t7\t 82.75\t 0.0\t 77.0\t -77.0\t 1.0\t 100.0\t 1\t 153\t 12.5; % NG\n\t7\t 303.75\t 0.0\t 298.0\t -298.0\t 1.0\t 100.0\t 1\t 595\t 12.5; % COW\n\t13\t 289.25\t 0.0\t 272.0\t -272.0\t 1.0\t 100.0\t 1\t 544\t 34.5; % NG\n\t13\t 288.25\t 0.0\t 271.0\t -271.0\t 1.0\t 100.0\t 1\t 542\t 34.5; % NG\n\t13\t 321.75\t 0.0\t 305.0\t -305.0\t 1.0\t 100.0\t 1\t 609\t 34.5; % COW\n\t14\t 0.0\t 0.0\t 252.0\t -252.0\t 1.0\t 100.0\t 1\t 0\t 0.0; % SYNC\n\t15\t 80.1\t 0.0\t 94.8\t -94.8\t 1.0\t 100.0\t 1\t 159\t 1.2; % NG\n\t15\t 103.6\t 0.0\t 103.0\t -103.0\t 1.0\t 100.0\t 1\t 206\t 1.2; % COW\n\t15\t 98.1\t 0.0\t 98.0\t -98.0\t 1.0\t 100.0\t 1\t 195\t 1.2; % NG\n\t15\t 81.6\t 0.0\t 94.8\t -94.8\t 1.0\t 100.0\t 1\t 162\t 1.2; % NG\n\t15\t 70.1\t 0.0\t 94.8\t -94.8\t 1.0\t 100.0\t 1\t 139\t 1.2; % NG\n\t15\t 116.575\t 0.0\t 103.0\t -103.0\t 1.0\t 100.0\t 1\t 206\t 27.15; % NG\n\t16\t 308.075\t 0.0\t 295.0\t -295.0\t 1.0\t 100.0\t 1\t 589\t 27.15; % NG\n\t18\t 216.0\t 4.5\t 200.0\t -191.0\t 1.0\t 100.0\t 1\t 382\t 50.0; % NG\n\t21\t 362.5\t 0.0\t 338.0\t -338.0\t 1.0\t 100.0\t 1\t 675\t 50.0; % COW\n\t22\t 113.5\t 0.0\t 111.0\t -111.0\t 1.0\t 100.0\t 1\t 222\t 5.0; % NG\n\t22\t 94.5\t 0.0\t 92.0\t -92.0\t 1.0\t 100.0\t 1\t 184\t 5.0; % NG\n\t22\t 75.5\t 0.0\t 73.0\t -73.0\t 1.0\t 100.0\t 1\t 146\t 5.0; % NG\n\t22\t 119.0\t 0.0\t 117.0\t -117.0\t 1.0\t 100.0\t 1\t 233\t 5.0; % COW\n\t22\t 110.5\t 0.0\t 108.0\t -108.0\t 1.0\t 100.0\t 1\t 216\t 5.0; % NG\n\t22\t 44.0\t 0.0\t 42.0\t -42.0\t 1.0\t 100.0\t 1\t 83\t 5.0; % NG\n\t23\t 224.075\t 0.0\t 211.0\t -211.0\t 1.0\t 100.0\t 1\t 421\t 27.15; % NG\n\t23\t 159.575\t 0.0\t 146.0\t -146.0\t 1.0\t 100.0\t 1\t 292\t 27.15; % COW\n\t23\t 226.0\t 0.0\t 191.0\t -191.0\t 1.0\t 100.0\t 1\t 382\t 70.0; % NG\n];\n\n%% generator cost data\n%\t2\tstartup\tshutdown\tn\tc(n-1)\t...\tc0\nmpc.gencost = [\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 130.000000\t 400.684900; % PEL\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 130.000000\t 400.684900; % PEL\n\t2\t 1500.0\t 0.0\t 3\t 0.014142\t 16.081100\t 212.307600; % PEL\n\t2\t 1500.0\t 0.0\t 3\t 0.014142\t 16.081100\t 212.307600; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 130.000000\t 400.684900; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 130.000000\t 400.684900; % PEL\n\t2\t 1500.0\t 0.0\t 3\t 0.014142\t 16.081100\t 212.307600; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.014142\t 16.081100\t 212.307600; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.052672\t 43.661500\t 781.521000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.052672\t 43.661500\t 781.521000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.052672\t 43.661500\t 781.521000; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.007170\t 48.580400\t 832.757500; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.007170\t 48.580400\t 832.757500; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.007170\t 48.580400\t 832.757500; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.000000\t 0.000000; % SYNC\n\t2\t 1500.0\t 0.0\t 3\t 0.328412\t 56.564000\t 86.385200; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.328412\t 56.564000\t 86.385200; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.328412\t 56.564000\t 86.385200; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.328412\t 56.564000\t 86.385200; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.328412\t 56.564000\t 86.385200; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.008342\t 12.388300\t 382.239100; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.008342\t 12.388300\t 382.239100; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000213\t 4.423100\t 395.374900; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000213\t 4.423100\t 395.374900; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.001000\t 0.001000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.001000\t 0.001000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.001000\t 0.001000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.001000\t 0.001000; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.001000\t 0.001000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.000000\t 0.001000\t 0.001000; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.008342\t 12.388300\t 382.239100; % NG\n\t2\t 1500.0\t 0.0\t 3\t 0.008342\t 12.388300\t 382.239100; % COW\n\t2\t 1500.0\t 0.0\t 3\t 0.004895\t 11.849500\t 665.109400; % NG\n];\n\n%% branch data\n%\tfbus\ttbus\tr\tx\tb\trateA\trateB\trateC\tratio\tangle\tstatus\tangmin\tangmax\nmpc.branch = [\n\t1\t 2\t 0.0026\t 0.0139\t 0.4611\t 175.0\t 193.0\t 200.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t1\t 3\t 0.0546\t 0.2112\t 0.0572\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t1\t 5\t 0.0218\t 0.0845\t 0.0229\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t2\t 4\t 0.0328\t 0.1267\t 0.0343\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t2\t 6\t 0.0497\t 0.192\t 0.052\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t3\t 9\t 0.0308\t 0.119\t 0.0322\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t3\t 24\t 0.0023\t 0.0839\t 0.0\t 400.0\t 510.0\t 600.0\t 1.03\t 0.0\t 1\t -30.0\t 30.0;\n\t4\t 9\t 0.0268\t 0.1037\t 0.0281\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t5\t 10\t 0.0228\t 0.0883\t 0.0239\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t6\t 10\t 0.0139\t 0.0605\t 2.459\t 175.0\t 193.0\t 200.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t7\t 8\t 0.0159\t 0.0614\t 0.0166\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t8\t 9\t 0.0427\t 0.1651\t 0.0447\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t8\t 10\t 0.0427\t 0.1651\t 0.0447\t 175.0\t 208.0\t 220.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t9\t 11\t 0.0023\t 0.0839\t 0.0\t 400.0\t 510.0\t 600.0\t 1.03\t 0.0\t 1\t -30.0\t 30.0;\n\t9\t 12\t 0.0023\t 0.0839\t 0.0\t 400.0\t 510.0\t 600.0\t 1.03\t 0.0\t 1\t -30.0\t 30.0;\n\t10\t 11\t 0.0023\t 0.0839\t 0.0\t 400.0\t 510.0\t 600.0\t 1.02\t 0.0\t 1\t -30.0\t 30.0;\n\t10\t 12\t 0.0023\t 0.0839\t 0.0\t 400.0\t 510.0\t 600.0\t 1.02\t 0.0\t 1\t -30.0\t 30.0;\n\t11\t 13\t 0.0061\t 0.0476\t 0.0999\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t11\t 14\t 0.0054\t 0.0418\t 0.0879\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t12\t 13\t 0.0061\t 0.0476\t 0.0999\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t12\t 23\t 0.0124\t 0.0966\t 0.203\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t13\t 23\t 0.0111\t 0.0865\t 0.1818\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t14\t 16\t 0.005\t 0.0389\t 0.0818\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t15\t 16\t 0.0022\t 0.0173\t 0.0364\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t15\t 21\t 0.0063\t 0.049\t 0.103\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t15\t 21\t 0.0063\t 0.049\t 0.103\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t15\t 24\t 0.0067\t 0.0519\t 0.1091\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t16\t 17\t 0.0033\t 0.0259\t 0.0545\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t16\t 19\t 0.003\t 0.0231\t 0.0485\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t17\t 18\t 0.0018\t 0.0144\t 0.0303\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t17\t 22\t 0.0135\t 0.1053\t 0.2212\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t18\t 21\t 0.0033\t 0.0259\t 0.0545\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t18\t 21\t 0.0033\t 0.0259\t 0.0545\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t19\t 20\t 0.0051\t 0.0396\t 0.0833\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t19\t 20\t 0.0051\t 0.0396\t 0.0833\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t20\t 23\t 0.0028\t 0.0216\t 0.0455\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t20\t 23\t 0.0028\t 0.0216\t 0.0455\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n\t21\t 22\t 0.0087\t 0.0678\t 0.1424\t 500.0\t 600.0\t 625.0\t 0.0\t 0.0\t 1\t -30.0\t 30.0;\n];\n\n% INFO : === Translation Options ===\n% INFO : Load Model: from file ./pglib_opf_case24_ieee_rts.m.api.sol\n% INFO : Gen Active Capacity Model: stat\n% INFO : Gen Reactive Capacity Model: al50ag\n% INFO : Gen Active Cost Model: stat\n% INFO : \n% INFO : === Load Replacement Notes ===\n% INFO : Bus 1\t: Pd=108.0, Qd=22.0 -> Pd=207.30, Qd=22.00\n% INFO : Bus 2\t: Pd=97.0, Qd=20.0 -> Pd=186.19, Qd=20.00\n% INFO : Bus 3\t: Pd=180.0, Qd=37.0 -> Pd=345.50, Qd=37.00\n% INFO : Bus 4\t: Pd=74.0, Qd=15.0 -> Pd=142.04, Qd=15.00\n% INFO : Bus 5\t: Pd=71.0, Qd=14.0 -> Pd=136.28, Qd=14.00\n% INFO : Bus 6\t: Pd=136.0, Qd=28.0 -> Pd=261.04, Qd=28.00\n% INFO : Bus 7\t: Pd=125.0, Qd=25.0 -> Pd=239.93, Qd=25.00\n% INFO : Bus 8\t: Pd=171.0, Qd=35.0 -> Pd=328.23, Qd=35.00\n% INFO : Bus 9\t: Pd=175.0, Qd=36.0 -> Pd=335.90, Qd=36.00\n% INFO : Bus 10\t: Pd=195.0, Qd=40.0 -> Pd=374.29, Qd=40.00\n% INFO : Bus 13\t: Pd=265.0, Qd=54.0 -> Pd=508.65, Qd=54.00\n% INFO : Bus 14\t: Pd=194.0, Qd=39.0 -> Pd=372.37, Qd=39.00\n% INFO : Bus 15\t: Pd=317.0, Qd=64.0 -> Pd=608.47, Qd=64.00\n% INFO : Bus 16\t: Pd=100.0, Qd=20.0 -> Pd=191.94, Qd=20.00\n% INFO : Bus 18\t: Pd=333.0, Qd=68.0 -> Pd=639.18, Qd=68.00\n% INFO : Bus 19\t: Pd=181.0, Qd=37.0 -> Pd=347.42, Qd=37.00\n% INFO : Bus 20\t: Pd=128.0, Qd=26.0 -> Pd=245.69, Qd=26.00\n% INFO : \n% INFO : === Generator Setpoint Replacement Notes ===\n% INFO : Gen at bus 1\t: Pg=18.0, Qg=5.0 -> Pg=73.0, Qg=1.0\n% INFO : Gen at bus 1\t: Pg=18.0, Qg=5.0 -> Pg=73.0, Qg=1.0\n% INFO : Gen at bus 1\t: Pg=45.6, Qg=2.5 -> Pg=72.0, Qg=1.0\n% INFO : Gen at bus 1\t: Pg=45.6, Qg=2.5 -> Pg=72.0, Qg=1.0\n% INFO : Gen at bus 2\t: Pg=18.0, Qg=5.0 -> Pg=157.0, Qg=31.0\n% INFO : Gen at bus 2\t: Pg=18.0, Qg=5.0 -> Pg=157.0, Qg=31.0\n% INFO : Gen at bus 2\t: Pg=45.6, Qg=2.5 -> Pg=156.0, Qg=31.0\n% INFO : Gen at bus 2\t: Pg=45.6, Qg=2.5 -> Pg=156.0, Qg=31.0\n% INFO : Gen at bus 7\t: Pg=62.5, Qg=30.0 -> Pg=126.0, Qg=42.0\n% INFO : Gen at bus 7\t: Pg=62.5, Qg=30.0 -> Pg=126.0, Qg=42.0\n% INFO : Gen at bus 7\t: Pg=62.5, Qg=30.0 -> Pg=126.0, Qg=42.0\n% INFO : Gen at bus 13\t: Pg=133.0, Qg=40.0 -> Pg=410.0, Qg=105.0\n% INFO : Gen at bus 13\t: Pg=133.0, Qg=40.0 -> Pg=410.0, Qg=105.0\n% INFO : Gen at bus 13\t: Pg=133.0, Qg=40.0 -> Pg=410.0, Qg=105.0\n% INFO : Gen at bus 14\t: Pg=0.0, Qg=75.0 -> Pg=0.0, Qg=210.0\n% INFO : Gen at bus 15\t: Pg=7.2, Qg=3.0 -> Pg=132.0, Qg=79.0\n% INFO : Gen at bus 15\t: Pg=7.2, Qg=3.0 -> Pg=132.0, Qg=79.0\n% INFO : Gen at bus 15\t: Pg=7.2, Qg=3.0 -> Pg=132.0, Qg=79.0\n% INFO : Gen at bus 15\t: Pg=7.2, Qg=3.0 -> Pg=132.0, Qg=79.0\n% INFO : Gen at bus 15\t: Pg=7.2, Qg=3.0 -> Pg=132.0, Qg=79.0\n% INFO : Gen at bus 15\t: Pg=104.65, Qg=15.0 -> Pg=184.0, Qg=79.0\n% INFO : Gen at bus 16\t: Pg=104.65, Qg=15.0 -> Pg=522.0, Qg=-34.0\n% INFO : Gen at bus 18\t: Pg=250.0, Qg=75.0 -> Pg=301.0, Qg=32.0\n% INFO : Gen at bus 21\t: Pg=250.0, Qg=75.0 -> Pg=203.0, Qg=-118.0\n% INFO : Gen at bus 22\t: Pg=30.0, Qg=3.0 -> Pg=68.0, Qg=-9.0\n% INFO : Gen at bus 22\t: Pg=30.0, Qg=3.0 -> Pg=68.0, Qg=-9.0\n% INFO : Gen at bus 22\t: Pg=30.0, Qg=3.0 -> Pg=68.0, Qg=-9.0\n% INFO : Gen at bus 22\t: Pg=30.0, Qg=3.0 -> Pg=68.0, Qg=-9.0\n% INFO : Gen at bus 22\t: Pg=30.0, Qg=3.0 -> Pg=68.0, Qg=-9.0\n% INFO : Gen at bus 22\t: Pg=30.0, Qg=3.0 -> Pg=68.0, Qg=-9.0\n% INFO : Gen at bus 23\t: Pg=104.65, Qg=15.0 -> Pg=237.0, Qg=15.0\n% INFO : Gen at bus 23\t: Pg=104.65, Qg=15.0 -> Pg=237.0, Qg=15.0\n% INFO : Gen at bus 23\t: Pg=245.0, Qg=62.5 -> Pg=323.0, Qg=15.0\n% INFO : \n% INFO : === Generator Reactive Capacity Atleast Setpoint Value Notes ===\n% INFO : Gen at bus 1\t: Qg 1.0, Qmin 0.0, Qmax 10.0 -> Qmin -1.2, Qmax 10.0\n% INFO : Gen at bus 1\t: Qg 1.0, Qmin 0.0, Qmax 10.0 -> Qmin -1.2, Qmax 10.0\n% INFO : Gen at bus 2\t: Qg 31.0, Qmin 0.0, Qmax 10.0 -> Qmin -37.2, Qmax 37.2\n% INFO : Gen at bus 2\t: Qg 31.0, Qmin 0.0, Qmax 10.0 -> Qmin -37.2, Qmax 37.2\n% INFO : Gen at bus 2\t: Qg 31.0, Qmin -25.0, Qmax 30.0 -> Qmin -37.2, Qmax 37.2\n% INFO : Gen at bus 2\t: Qg 31.0, Qmin -25.0, Qmax 30.0 -> Qmin -37.2, Qmax 37.2\n% INFO : Gen at bus 7\t: Qg 42.0, Qmin 0.0, Qmax 60.0 -> Qmin -50.4, Qmax 60.0\n% INFO : Gen at bus 7\t: Qg 42.0, Qmin 0.0, Qmax 60.0 -> Qmin -50.4, Qmax 60.0\n% INFO : Gen at bus 7\t: Qg 42.0, Qmin 0.0, Qmax 60.0 -> Qmin -50.4, Qmax 60.0\n% INFO : Gen at bus 13\t: Qg 105.0, Qmin 0.0, Qmax 80.0 -> Qmin -126.0, Qmax 126.0\n% INFO : Gen at bus 13\t: Qg 105.0, Qmin 0.0, Qmax 80.0 -> Qmin -126.0, Qmax 126.0\n% INFO : Gen at bus 13\t: Qg 105.0, Qmin 0.0, Qmax 80.0 -> Qmin -126.0, Qmax 126.0\n% INFO : Gen at bus 14\t: Qg 210.0, Qmin -50.0, Qmax 200.0 -> Qmin -252.0, Qmax 252.0\n% INFO : Gen at bus 15\t: Qg 79.0, Qmin 0.0, Qmax 6.0 -> Qmin -94.8, Qmax 94.8\n% INFO : Gen at bus 15\t: Qg 79.0, Qmin 0.0, Qmax 6.0 -> Qmin -94.8, Qmax 94.8\n% INFO : Gen at bus 15\t: Qg 79.0, Qmin 0.0, Qmax 6.0 -> Qmin -94.8, Qmax 94.8\n% INFO : Gen at bus 15\t: Qg 79.0, Qmin 0.0, Qmax 6.0 -> Qmin -94.8, Qmax 94.8\n% INFO : Gen at bus 15\t: Qg 79.0, Qmin 0.0, Qmax 6.0 -> Qmin -94.8, Qmax 94.8\n% INFO : Gen at bus 15\t: Qg 79.0, Qmin -50.0, Qmax 80.0 -> Qmin -94.8, Qmax 80.0\n% INFO : Gen at bus 21\t: Qg -118.0, Qmin -50.0, Qmax 200.0 -> Qmin -141.6, Qmax 200.0\n% INFO : \n% INFO : === Generator Classification Notes ===\n% INFO : PEL 4 - 6.70\n% INFO : SYNC 1 - 0.00\n% INFO : COW 7 - 23.79\n% INFO : NG 21 - 69.51\n% INFO : \n% INFO : === Generator Active Capacity Stat Model Notes ===\n% INFO : Gen at bus 1 - PEL\t: Pg=73.0, Pmax=20.0 -> Pmax=79 samples: 7\n% INFO : Gen at bus 1 - PEL\t: Pg=73.0, Pmax=20.0 -> Pmax=211 samples: 1\n% INFO : Gen at bus 1 - PEL\t: Pg=72.0, Pmax=76.0 -> Pmax=75 samples: 9\n% INFO : Gen at bus 1 - NG\t: Pg=72.0, Pmax=76.0 -> Pmax=78 samples: 2\n% INFO : Gen at bus 2 - NG\t: Pg=157.0, Pmax=20.0 -> Pmax=188 samples: 1\n% WARNING : Failed to find a generator capacity within (157.0-785.0) after 100 samples, using percent increase model\n% INFO : Gen at bus 2 - PEL\t: Pg=157.0, Pmax=20.0 -> Pmax=182 samples: 100\n% INFO : Gen at bus 2 - NG\t: Pg=156.0, Pmax=76.0 -> Pmax=176 samples: 1\n% INFO : Gen at bus 2 - COW\t: Pg=156.0, Pmax=76.0 -> Pmax=663 samples: 3\n% INFO : Gen at bus 7 - NG\t: Pg=126.0, Pmax=100.0 -> Pmax=430 samples: 2\n% INFO : Gen at bus 7 - NG\t: Pg=126.0, Pmax=100.0 -> Pmax=153 samples: 1\n% INFO : Gen at bus 7 - COW\t: Pg=126.0, Pmax=100.0 -> Pmax=595 samples: 1\n% INFO : Gen at bus 13 - NG\t: Pg=410.0, Pmax=197.0 -> Pmax=544 samples: 18\n% INFO : Gen at bus 13 - NG\t: Pg=410.0, Pmax=197.0 -> Pmax=542 samples: 17\n% INFO : Gen at bus 13 - COW\t: Pg=410.0, Pmax=197.0 -> Pmax=609 samples: 2\n% INFO : Gen at bus 14 - SYNC\t: Pg=0.0, Pmax=0.0 -> Pmax=0 samples: 0\n% INFO : Gen at bus 15 - NG\t: Pg=132.0, Pmax=12.0 -> Pmax=159 samples: 4\n% INFO : Gen at bus 15 - COW\t: Pg=132.0, Pmax=12.0 -> Pmax=206 samples: 2\n% INFO : Gen at bus 15 - NG\t: Pg=132.0, Pmax=12.0 -> Pmax=195 samples: 3\n% INFO : Gen at bus 15 - NG\t: Pg=132.0, Pmax=12.0 -> Pmax=162 samples: 10\n% INFO : Gen at bus 15 - NG\t: Pg=132.0, Pmax=12.0 -> Pmax=139 samples: 1\n% INFO : Gen at bus 15 - NG\t: Pg=184.0, Pmax=155.0 -> Pmax=206 samples: 1\n% WARNING : Failed to find a generator capacity within (522.0-2610.0) after 100 samples, using percent increase model\n% INFO : Gen at bus 16 - NG\t: Pg=522.0, Pmax=155.0 -> Pmax=589 samples: 100\n% INFO : Gen at bus 18 - NG\t: Pg=301.0, Pmax=400.0 -> Pmax=382 samples: 10\n% INFO : Gen at bus 21 - COW\t: Pg=203.0, Pmax=400.0 -> Pmax=675 samples: 2\n% INFO : Gen at bus 22 - NG\t: Pg=68.0, Pmax=50.0 -> Pmax=222 samples: 2\n% INFO : Gen at bus 22 - NG\t: Pg=68.0, Pmax=50.0 -> Pmax=184 samples: 1\n% INFO : Gen at bus 22 - NG\t: Pg=68.0, Pmax=50.0 -> Pmax=146 samples: 2\n% INFO : Gen at bus 22 - COW\t: Pg=68.0, Pmax=50.0 -> Pmax=233 samples: 1\n% INFO : Gen at bus 22 - NG\t: Pg=68.0, Pmax=50.0 -> Pmax=216 samples: 1\n% INFO : Gen at bus 22 - NG\t: Pg=68.0, Pmax=50.0 -> Pmax=83 samples: 1\n% INFO : Gen at bus 23 - NG\t: Pg=237.0, Pmax=155.0 -> Pmax=421 samples: 2\n% INFO : Gen at bus 23 - COW\t: Pg=237.0, Pmax=155.0 -> Pmax=292 samples: 3\n% INFO : Gen at bus 23 - NG\t: Pg=323.0, Pmax=350.0 -> Pmax=382 samples: 35\n% INFO : \n% INFO : === Generator Active Capacity LB Model Notes ===\n% INFO : Gen at bus 1\t: Pmin=16.0 -> Pmin=8.0 \n% INFO : Gen at bus 1\t: Pmin=16.0 -> Pmin=8.0 \n% INFO : Gen at bus 1\t: Pmin=15.2 -> Pmin=7.6 \n% INFO : Gen at bus 1\t: Pmin=15.2 -> Pmin=7.6 \n% INFO : Gen at bus 2\t: Pmin=16.0 -> Pmin=8.0 \n% INFO : Gen at bus 2\t: Pmin=16.0 -> Pmin=8.0 \n% INFO : Gen at bus 2\t: Pmin=15.2 -> Pmin=7.6 \n% INFO : Gen at bus 2\t: Pmin=15.2 -> Pmin=7.6 \n% INFO : Gen at bus 7\t: Pmin=25.0 -> Pmin=12.5 \n% INFO : Gen at bus 7\t: Pmin=25.0 -> Pmin=12.5 \n% INFO : Gen at bus 7\t: Pmin=25.0 -> Pmin=12.5 \n% INFO : Gen at bus 13\t: Pmin=69.0 -> Pmin=34.5 \n% INFO : Gen at bus 13\t: Pmin=69.0 -> Pmin=34.5 \n% INFO : Gen at bus 13\t: Pmin=69.0 -> Pmin=34.5 \n% INFO : Gen at bus 15\t: Pmin=2.4 -> Pmin=1.2 \n% INFO : Gen at bus 15\t: Pmin=2.4 -> Pmin=1.2 \n% INFO : Gen at bus 15\t: Pmin=2.4 -> Pmin=1.2 \n% INFO : Gen at bus 15\t: Pmin=2.4 -> Pmin=1.2 \n% INFO : Gen at bus 15\t: Pmin=2.4 -> Pmin=1.2 \n% INFO : Gen at bus 15\t: Pmin=54.3 -> Pmin=27.15 \n% INFO : Gen at bus 16\t: Pmin=54.3 -> Pmin=27.15 \n% INFO : Gen at bus 18\t: Pmin=100.0 -> Pmin=50.0 \n% INFO : Gen at bus 21\t: Pmin=100.0 -> Pmin=50.0 \n% INFO : Gen at bus 22\t: Pmin=10.0 -> Pmin=5.0 \n% INFO : Gen at bus 22\t: Pmin=10.0 -> Pmin=5.0 \n% INFO : Gen at bus 22\t: Pmin=10.0 -> Pmin=5.0 \n% INFO : Gen at bus 22\t: Pmin=10.0 -> Pmin=5.0 \n% INFO : Gen at bus 22\t: Pmin=10.0 -> Pmin=5.0 \n% INFO : Gen at bus 22\t: Pmin=10.0 -> Pmin=5.0 \n% INFO : Gen at bus 23\t: Pmin=54.3 -> Pmin=27.15 \n% INFO : Gen at bus 23\t: Pmin=54.3 -> Pmin=27.15 \n% INFO : Gen at bus 23\t: Pmin=140.0 -> Pmin=70.0 \n% INFO : \n% INFO : === Generator Reactive Capacity Atleast Max 50 Percent Active Model Notes ===\n% INFO : Gen at bus 1 - PEL\t: Pmax 79.0, Qmin -1.2, Qmax 10.0 -> Qmin -40.0, Qmax 40.0\n% INFO : Gen at bus 1 - PEL\t: Pmax 211.0, Qmin -1.2, Qmax 10.0 -> Qmin -106.0, Qmax 106.0\n% INFO : Gen at bus 1 - PEL\t: Pmax 75.0, Qmin -25.0, Qmax 30.0 -> Qmin -38.0, Qmax 38.0\n% INFO : Gen at bus 1 - NG\t: Pmax 78.0, Qmin -25.0, Qmax 30.0 -> Qmin -39.0, Qmax 39.0\n% INFO : Gen at bus 2 - NG\t: Pmax 188.0, Qmin -37.2, Qmax 37.2 -> Qmin -94.0, Qmax 94.0\n% INFO : Gen at bus 2 - PEL\t: Pmax 182.0, Qmin -37.2, Qmax 37.2 -> Qmin -91.0, Qmax 91.0\n% INFO : Gen at bus 2 - NG\t: Pmax 176.0, Qmin -37.2, Qmax 37.2 -> Qmin -88.0, Qmax 88.0\n% INFO : Gen at bus 2 - COW\t: Pmax 663.0, Qmin -37.2, Qmax 37.2 -> Qmin -332.0, Qmax 332.0\n% INFO : Gen at bus 7 - NG\t: Pmax 430.0, Qmin -50.4, Qmax 60.0 -> Qmin -215.0, Qmax 215.0\n% INFO : Gen at bus 7 - NG\t: Pmax 153.0, Qmin -50.4, Qmax 60.0 -> Qmin -77.0, Qmax 77.0\n% INFO : Gen at bus 7 - COW\t: Pmax 595.0, Qmin -50.4, Qmax 60.0 -> Qmin -298.0, Qmax 298.0\n% INFO : Gen at bus 13 - NG\t: Pmax 544.0, Qmin -126.0, Qmax 126.0 -> Qmin -272.0, Qmax 272.0\n% INFO : Gen at bus 13 - NG\t: Pmax 542.0, Qmin -126.0, Qmax 126.0 -> Qmin -271.0, Qmax 271.0\n% INFO : Gen at bus 13 - COW\t: Pmax 609.0, Qmin -126.0, Qmax 126.0 -> Qmin -305.0, Qmax 305.0\n% INFO : Gen at bus 15 - COW\t: Pmax 206.0, Qmin -94.8, Qmax 94.8 -> Qmin -103.0, Qmax 103.0\n% INFO : Gen at bus 15 - NG\t: Pmax 195.0, Qmin -94.8, Qmax 94.8 -> Qmin -98.0, Qmax 98.0\n% INFO : Gen at bus 15 - NG\t: Pmax 206.0, Qmin -94.8, Qmax 80.0 -> Qmin -103.0, Qmax 103.0\n% INFO : Gen at bus 16 - NG\t: Pmax 589.0, Qmin -50.0, Qmax 80.0 -> Qmin -295.0, Qmax 295.0\n% INFO : Gen at bus 18 - NG\t: Pmax 382.0, Qmin -50.0, Qmax 200.0 -> Qmin -191.0, Qmax 200.0\n% INFO : Gen at bus 21 - COW\t: Pmax 675.0, Qmin -141.6, Qmax 200.0 -> Qmin -338.0, Qmax 338.0\n% INFO : Gen at bus 22 - NG\t: Pmax 222.0, Qmin -10.0, Qmax 16.0 -> Qmin -111.0, Qmax 111.0\n% INFO : Gen at bus 22 - NG\t: Pmax 184.0, Qmin -10.0, Qmax 16.0 -> Qmin -92.0, Qmax 92.0\n% INFO : Gen at bus 22 - NG\t: Pmax 146.0, Qmin -10.0, Qmax 16.0 -> Qmin -73.0, Qmax 73.0\n% INFO : Gen at bus 22 - COW\t: Pmax 233.0, Qmin -10.0, Qmax 16.0 -> Qmin -117.0, Qmax 117.0\n% INFO : Gen at bus 22 - NG\t: Pmax 216.0, Qmin -10.0, Qmax 16.0 -> Qmin -108.0, Qmax 108.0\n% INFO : Gen at bus 22 - NG\t: Pmax 83.0, Qmin -10.0, Qmax 16.0 -> Qmin -42.0, Qmax 42.0\n% INFO : Gen at bus 23 - NG\t: Pmax 421.0, Qmin -50.0, Qmax 80.0 -> Qmin -211.0, Qmax 211.0\n% INFO : Gen at bus 23 - COW\t: Pmax 292.0, Qmin -50.0, Qmax 80.0 -> Qmin -146.0, Qmax 146.0\n% INFO : Gen at bus 23 - NG\t: Pmax 382.0, Qmin -25.0, Qmax 150.0 -> Qmin -191.0, Qmax 191.0\n% INFO : \n% INFO : === Generator Setpoint Replacement Notes ===\n% INFO : Gen at bus 1\t: Pg=73.0, Qg=1.0 -> Pg=43.5, Qg=0.0\n% INFO : Gen at bus 1\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 1\t: Pg=73.0, Qg=1.0 -> Pg=109.5, Qg=0.0\n% INFO : Gen at bus 1\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 1\t: Pg=72.0, Qg=1.0 -> Pg=41.3, Qg=0.0\n% INFO : Gen at bus 1\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 1\t: Pg=72.0, Qg=1.0 -> Pg=42.8, Qg=0.0\n% INFO : Gen at bus 1\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 2\t: Pg=157.0, Qg=31.0 -> Pg=98.0, Qg=0.0\n% INFO : Gen at bus 2\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 2\t: Pg=157.0, Qg=31.0 -> Pg=95.0, Qg=0.0\n% INFO : Gen at bus 2\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 2\t: Pg=156.0, Qg=31.0 -> Pg=91.8, Qg=0.0\n% INFO : Gen at bus 2\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 2\t: Pg=156.0, Qg=31.0 -> Pg=335.3, Qg=0.0\n% INFO : Gen at bus 2\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 7\t: Pg=126.0, Qg=42.0 -> Pg=221.25, Qg=0.0\n% INFO : Gen at bus 7\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 7\t: Pg=126.0, Qg=42.0 -> Pg=82.75, Qg=0.0\n% INFO : Gen at bus 7\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 7\t: Pg=126.0, Qg=42.0 -> Pg=303.75, Qg=0.0\n% INFO : Gen at bus 7\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 13\t: Pg=410.0, Qg=105.0 -> Pg=289.25, Qg=0.0\n% INFO : Gen at bus 13\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 13\t: Pg=410.0, Qg=105.0 -> Pg=288.25, Qg=0.0\n% INFO : Gen at bus 13\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 13\t: Pg=410.0, Qg=105.0 -> Pg=321.75, Qg=0.0\n% INFO : Gen at bus 13\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 14\t: Pg=0.0, Qg=210.0 -> Pg=0.0, Qg=0.0\n% INFO : Gen at bus 14\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 15\t: Pg=132.0, Qg=79.0 -> Pg=80.1, Qg=0.0\n% INFO : Gen at bus 15\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 15\t: Pg=132.0, Qg=79.0 -> Pg=103.6, Qg=0.0\n% INFO : Gen at bus 15\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 15\t: Pg=132.0, Qg=79.0 -> Pg=98.1, Qg=0.0\n% INFO : Gen at bus 15\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 15\t: Pg=132.0, Qg=79.0 -> Pg=81.6, Qg=0.0\n% INFO : Gen at bus 15\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 15\t: Pg=132.0, Qg=79.0 -> Pg=70.1, Qg=0.0\n% INFO : Gen at bus 15\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 15\t: Pg=184.0, Qg=79.0 -> Pg=116.575, Qg=0.0\n% INFO : Gen at bus 15\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 16\t: Pg=522.0, Qg=-34.0 -> Pg=308.075, Qg=0.0\n% INFO : Gen at bus 16\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 18\t: Pg=301.0, Qg=32.0 -> Pg=216.0, Qg=4.5\n% INFO : Gen at bus 18\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 21\t: Pg=203.0, Qg=-118.0 -> Pg=362.5, Qg=0.0\n% INFO : Gen at bus 21\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 22\t: Pg=68.0, Qg=-9.0 -> Pg=113.5, Qg=0.0\n% INFO : Gen at bus 22\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 22\t: Pg=68.0, Qg=-9.0 -> Pg=94.5, Qg=0.0\n% INFO : Gen at bus 22\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 22\t: Pg=68.0, Qg=-9.0 -> Pg=75.5, Qg=0.0\n% INFO : Gen at bus 22\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 22\t: Pg=68.0, Qg=-9.0 -> Pg=119.0, Qg=0.0\n% INFO : Gen at bus 22\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 22\t: Pg=68.0, Qg=-9.0 -> Pg=110.5, Qg=0.0\n% INFO : Gen at bus 22\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 22\t: Pg=68.0, Qg=-9.0 -> Pg=44.0, Qg=0.0\n% INFO : Gen at bus 22\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 23\t: Pg=237.0, Qg=15.0 -> Pg=224.075, Qg=0.0\n% INFO : Gen at bus 23\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 23\t: Pg=237.0, Qg=15.0 -> Pg=159.575, Qg=0.0\n% INFO : Gen at bus 23\t: Vg=1.0 -> Vg=1.0\n% INFO : Gen at bus 23\t: Pg=323.0, Qg=15.0 -> Pg=226.0, Qg=0.0\n% INFO : Gen at bus 23\t: Vg=1.0 -> Vg=1.0\n% INFO : \n% INFO : === Writing Matpower Case File Notes ===\n", "meta": {"author": "power-grid-lib", "repo": "pglib-opf", "sha": "01681386d084d8bd03b429abcd1ee6966f68b9a3", "save_path": "github-repos/MATLAB/power-grid-lib-pglib-opf", "path": "github-repos/MATLAB/power-grid-lib-pglib-opf/pglib-opf-01681386d084d8bd03b429abcd1ee6966f68b9a3/api/pglib_opf_case24_ieee_rts__api.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3741987033076742}} {"text": "function [ result ] = CREST_tracking( opts, varargin, config, display)\n%Test function\nglobal objSize;\n\nLocGt=config.gt;\nnum_channels=64;\n\n% training options (SGD)\nopts.train = struct([]) ;\n[opts, varargin] = vl_argparse(opts, varargin) ;\n\noutput_sigma_factor = 0.1;\n\ngpuDevice(1);\n[net1,avgImg]=initVGG16Net();\n\nnFrame=config.nFrames;\n[Gt]=config.gt;\n\nresult = zeros(length(nFrame), 4); result(1,:) = Gt(1,:);\n\n% I only have a Titan Black GPU on my side. Its memory is limited.\n% For objects with large size, I have to perform the downsampling.\n% You can remove the downsampling on your side. The results might be little different.\nscale=1;\nglobal resize;\nobjSize=Gt(1,3:4);\nif objSize(1)*objSize(2)>resize*resize\n scale=resize/max(objSize); \n disp('resized');\nend\n\nim1=imread(config.imgList{1});\nim=imresize(im1,scale);\ncell_size=4;\nif size(im,3)==1\n im = cat(3, im, im, im);\n im1 = cat(3, im1, im1, im1);\nend\n\ntargetLoc=round(Gt(1,:)*scale);\ntarget_sz=[targetLoc(4) targetLoc(3)];\nim_sz=size(im);\nwindow_sz = get_search_window(target_sz, im_sz);\nl1_patch_num = ceil(window_sz/ cell_size);\nl1_patch_num=l1_patch_num-mod(l1_patch_num,2)+1;\ncos_window = hann(l1_patch_num(1)) * hann(l1_patch_num(2))';\n\nsz_window=size(cos_window);\npos = [targetLoc(2), targetLoc(1)] + floor(target_sz/2);\npatch = get_subwindow(im, pos, window_sz);\nmeanImg=zeros(size(patch));\nmeanImg(:,:,1)=avgImg(1);\nmeanImg(:,:,2)=avgImg(2);\nmeanImg(:,:,3)=avgImg(3);\npatch1 = single(patch) - meanImg;\nnet1.eval({'input',gpuArray(patch1)});\n\nindex=[23];\nfeat=cell(length(index),1);\nfor i=1:length(index)\n feat1 = gather(net1.vars(index(i)).value);\n feat1 = imResample(feat1, sz_window(1:2));\n feat{i} = bsxfun(@times, feat1, cos_window); \nend\nfeat=feat{1};\n\n[hf,wf,cf]=size(feat);\nmatrix=reshape(feat,hf*wf,cf);\ncoeff = pca(matrix);\ncoeff=coeff(:,1:num_channels);\n\ntarget_sz1=ceil(target_sz/cell_size);\noutput_sigma = target_sz1*output_sigma_factor;\nlabel=gaussian_shaped_labels(output_sigma, l1_patch_num);\n\nlabel1=imresize(label,[size(im1,1) size(im1,1)])*255;\npatch1=imresize(patch,[size(im1,1) size(im1,1)]);\nimd=[im1];\n%-------------------Display First frame----------\nif display \n figure(2);\n set(gcf,'Position',[200 300 480 320],'MenuBar','none','ToolBar','none');\n hd = imshow(imd,'initialmagnification','fit'); hold on;\n rectangle('Position', Gt(1,:), 'EdgeColor', [0 0 1], 'Linewidth', 1); \n set(gca,'position',[0 0 1 1]);\n text(10,10,'1','Color','y', 'HorizontalAlignment', 'left', 'FontWeight','bold', 'FontSize', 30);\n hold off;\n drawnow; \nend\n\n%-------------------first frame initialization-----------\ntrainOpts.numEpochs=4000;\n\nfeat_=reshape(feat,hf*wf,cf);\nfeat_=feat_*coeff;\nfeatPCA=reshape(feat_,hf,wf,num_channels);\n\nnet_online=initNet(target_sz1);\n\ntrainOpts.batchSize = 1 ;\ntrainOpts.numSubBatches = 1 ;\ntrainOpts.continue = true ;\ntrainOpts.gpus = 1 ;\ntrainOpts.prefetch = true ;\n\ntrainOpts.expDir = opts.expDir ;\ntrainOpts.learningRate=5e-8;\ntrainOpts.weightDecay= 1;\n\ntrain=1;\nimdb=[];\ninput={featPCA label};\nfeatPCA1st=featPCA;\nopts.train.gpus=1;\nbopts.useGpu = numel(opts.train.gpus) > 0 ;\ninfo = cnn_train_dag(net_online, imdb, input,getBatchWrapper(bopts), ...\n trainOpts, ...\n 'train', train, ... \n opts.train) ;\n\n \nnet_online.move('gpu');\n\n%----------------online prediction------------------\nmotion_sigma_factor=0.6;\ncell_size=4;\nglobal num_update;\nnum_update=2;\ncur=1;\nfeat_update=cell(num_update,1);\nlabel_update=cell(num_update,1);\ntarget_szU=target_sz;\nfor i=2:nFrame \n im1=imread(config.imgList{i}); \n im=imresize(im1,scale); \n if size(im1,3)==1\n im = cat(3, im, im, im);\n im1 = cat(3, im1, im1, im1);\n end \n \n patch = get_subwindow(im, pos, window_sz); \n patch1 = single(patch) - meanImg; \n net1.eval({'input',gpuArray(patch1)});\n \n feat=cell(length(index),1);\n for j=1:length(index)\n feat1 = gather(net1.vars(index(j)).value);\n feat1 = imResample(feat1, sz_window(1:2));\n feat{j} = bsxfun(@times, feat1, cos_window); \n end\n feat=feat{1};\n \n feat_=reshape(feat,hf*wf,cf);\n feat_=feat_*coeff;\n featPCA=reshape(feat_,hf,wf,num_channels); \n \n net_online.eval({'input1',gpuArray(featPCA),'input2',gpuArray(featPCA1st)}); \n regression_map=gather(net_online.vars(10).value); \n \n motion_sigma = target_sz1*motion_sigma_factor; \n motion_map=gaussian_shaped_labels(motion_sigma, l1_patch_num);\n \n response=regression_map.*motion_map; \n \n [vert_delta, horiz_delta] = find(response == max(response(:)), 1);\n vert_delta = vert_delta - ceil(hf/2);\n horiz_delta = horiz_delta - ceil(wf/2); \n \n pos = pos + cell_size * [vert_delta, horiz_delta];\n \n target_szU=scale_estimation(im,pos,target_szU,window_sz,...\n net1,net_online,coeff,meanImg,featPCA1st); \n \n targetLoc=[pos([2,1]) - target_szU([2,1])/2, target_szU([2,1])]; \n result(i,:)=round(targetLoc/scale); \n \n label1=imresize(regression_map,[size(im1,1) size(im1,1)])*255;\n patch1=imresize(patch,[size(im1,1) size(im1,1)]); \n imd=[im1];\n% -----------Display current frame-----------------\n if display \n hc = get(gca, 'Children'); delete(hc(1:end-1));\n set(hd,'cdata',imd); hold on; \n rectangle('Position', result(i,:), 'EdgeColor', [0 0 1], 'Linewidth', 1); \n set(gca,'position',[0 0 1 1]);\n text(10,10,num2str(i),'Color','y', 'HorizontalAlignment', 'left', 'FontWeight','bold', 'FontSize', 30); \n hold off;\n drawnow; \n end\n \n %-----------Model update------------------------- \n labelU=circshift(label,[vert_delta,horiz_delta]);\n feat_update{cur}=featPCA; \n label_update{cur}=labelU; \n \n if cur==num_update \n \n trainOpts.batchSize = 1 ;\n trainOpts.numSubBatches = 1 ;\n trainOpts.continue = true ;\n trainOpts.gpus = 1 ;\n trainOpts.prefetch = true ;\n\n trainOpts.expDir = 'exp/update/' ;\n trainOpts.learningRate = 2e-9; \n trainOpts.weightDecay= 1;\n trainOpts.numEpochs = 2;\n\n train=1;\n imdb=[];\n input={feat_update featPCA1st label_update};\n opts.train.gpus=1;\n bopts.useGpu = numel(opts.train.gpus) > 0 ;\n \n info = cnn_train_dag_update(net_online, imdb, input,getBatchWrapper(bopts), ...\n trainOpts, ...\n 'train', train, ... \n opts.train) ; \n net_online.move('gpu'); \n \n cur=1; \n else \n cur=cur+1; \n end\n \nend\n\nend\n\nfunction fn = getBatchWrapper(opts)\n% -------------------------------------------------------------------------\nfn = @(imdb,batch) getBatch(imdb,batch,false,opts,'prefetch',nargout==0) ;\nend\n", "meta": {"author": "ybsong00", "repo": "CREST-Release", "sha": "e331e6763e6b683b1696e1d61420e902bfce4ef7", "save_path": "github-repos/MATLAB/ybsong00-CREST-Release", "path": "github-repos/MATLAB/ybsong00-CREST-Release/CREST-Release-e331e6763e6b683b1696e1d61420e902bfce4ef7/CREST/CREST_tracking.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867873410141, "lm_q2_score": 0.46879062662624377, "lm_q1q2_score": 0.37418248420238237}} {"text": "% sub module for 1. order kinetics in simpltrans\nc1 = exp(-lambda*dtdiff)*c1; ", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/15646-environmental-modeling/kinetics.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867777396211, "lm_q2_score": 0.46879062662624377, "lm_q1q2_score": 0.37418247970133933}} {"text": "% EEGFILT - (high|low|band)-pass filter data using two-way least-squares \n% FIR filtering. Optionally uses the window method instead of \n% least-squares. Multiple data channels and epochs supported.\n% Requires the MATLAB Signal Processing Toolbox.\n% Usage:\n% >> [smoothdata] = eegfilt(data,srate,locutoff,hicutoff);\n% >> [smoothdata,filtwts] = eegfilt(data,srate,locutoff,hicutoff, ...\n% epochframes,filtorder,revfilt,firtype,causal);\n% Inputs:\n% data = (channels,frames*epochs) data to filter\n% srate = data sampling rate (Hz)\n% locutoff = low-edge frequency in pass band (Hz) {0 -> lowpass}\n% hicutoff = high-edge frequency in pass band (Hz) {0 -> highpass}\n% epochframes = frames per epoch (filter each epoch separately {def/0: data is 1 epoch}\n% filtorder = length of the filter in points {default 3*fix(srate/locutoff)}\n% revfilt = [0|1] reverse filter (i.e. bandpass filter to notch filter). {default 0}\n% firtype = 'firls'|'fir1' {'firls'}\n% causal = [0|1] use causal filter if set to 1 (default 0)\n%\n% Outputs:\n% smoothdata = smoothed data\n% filtwts = filter coefficients [smoothdata <- filtfilt(filtwts,1,data)]\n%\n% See also: FIRLS, FILTFILT\n\n% Author: Scott Makeig, Arnaud Delorme, Clemens Brunner SCCN/INC/UCSD, La Jolla, 1997\n\n% Copyright (C) 4-22-97 from bandpass.m Scott Makeig, SCCN/INC/UCSD, scott@sccn.ucsd.edu\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\n% 05-08-97 fixed frequency bound computation -sm\n% 10-22-97 added MINFREQ tests -sm\n% 12-05-00 added ERROR calls -sm\n% 01-25-02 reformated help & license, added links -ad\n% 03-20-12 added firtype option -cb\n\nfunction [smoothdata,filtwts] = eegfilt(data,srate,locutoff,hicutoff,epochframes,filtorder,revfilt,firtype,causal)\n\nif nargin<4\n fprintf('');\n help eegfilt\n return\nend\n\n%if ~exist('firls')\n% error('*** EEGFILT requires the signal processing toolbox. ***');\n%end\n\n[chans frames] = size(data);\nif chans > 1 && frames == 1,\n help eegfilt\n error('input data should be a row vector.');\nend\nnyq = srate*0.5; % Nyquist frequency\n%MINFREQ = 0.1/nyq;\nMINFREQ = 0;\n\nminfac = 3; % this many (lo)cutoff-freq cycles in filter\nmin_filtorder = 15; % minimum filter length\ntrans = 0.15; % fractional width of transition zones\n\nif locutoff>0 && hicutoff > 0 && locutoff > hicutoff,\n error('locutoff > hicutoff ???\\n');\nend\nif locutoff < 0 || hicutoff < 0,\n error('locutoff | hicutoff < 0 ???\\n');\nend\n\nif locutoff>nyq,\n error('Low cutoff frequency cannot be > srate/2');\nend\n\nif hicutoff>nyq\n error('High cutoff frequency cannot be > srate/2');\nend\n\nif nargin<6\n filtorder = 0;\nend\nif nargin<7\n revfilt = 0;\nend\nif nargin<8\n firtype = 'firls';\nend\nif nargin<9\n causal = 0;\nend\n\nif strcmp(firtype, 'firls')\n warning('Using firls to estimate filter coefficients. We recommend that you use fir1 instead, which yields larger attenuation. In future, fir1 will be used by default!');\nend\n\nif isempty(filtorder) || filtorder==0,\n if locutoff>0,\n filtorder = minfac*fix(srate/locutoff);\n elseif hicutoff>0,\n filtorder = minfac*fix(srate/hicutoff);\n end\n \n if filtorder < min_filtorder\n filtorder = min_filtorder;\n end\nend\n\nif nargin<5\n epochframes = 0;\nend\nif epochframes ==0,\n epochframes = frames; % default\nend\nepochs = fix(frames/epochframes);\nif epochs*epochframes ~= frames,\n error('epochframes does not divide frames.\\n');\nend\n\nif filtorder*3 > epochframes, % Matlab filtfilt() restriction\n fprintf('eegfilt(): filter order is %d. ',filtorder);\n error('epochframes must be at least 3 times the filtorder.');\nend\nif (1+trans)*hicutoff/nyq > 1\n error('high cutoff frequency too close to Nyquist frequency');\nend\n\nif locutoff > 0 && hicutoff > 0, % bandpass filter\n if revfilt\n fprintf('eegfilt() - performing %d-point notch filtering.\\n',filtorder);\n else\n fprintf('eegfilt() - performing %d-point bandpass filtering.\\n',filtorder);\n end\n fprintf(' If a message, ''Matrix is close to singular or badly scaled,'' appears,\\n');\n fprintf(' then Matlab has failed to design a good filter. As a workaround, \\n');\n fprintf(' for band-pass filtering, first highpass the data, then lowpass it.\\n');\n if strcmp(firtype, 'firls')\n f=[MINFREQ (1-trans)*locutoff/nyq locutoff/nyq hicutoff/nyq (1+trans)*hicutoff/nyq 1];\n fprintf('eegfilt() - low transition band width is %1.1g Hz; high trans. band width, %1.1g Hz.\\n',(f(3)-f(2))*srate/2, (f(5)-f(4))*srate/2);\n m=[0 0 1 1 0 0];\n elseif strcmp(firtype, 'fir1')\n filtwts = fir1(filtorder, [locutoff, hicutoff]./(srate/2));\n end\nelseif locutoff > 0 % highpass filter\n if locutoff/nyq < MINFREQ\n error(sprintf('eegfilt() - highpass cutoff freq must be > %g Hz\\n\\n',MINFREQ*nyq));\n end\n fprintf('eegfilt() - performing %d-point highpass filtering.\\n',filtorder);\n if strcmp(firtype, 'firls')\n f=[MINFREQ locutoff*(1-trans)/nyq locutoff/nyq 1];\n fprintf('eegfilt() - highpass transition band width is %1.1g Hz.\\n',(f(3)-f(2))*srate/2);\n m=[ 0 0 1 1];\n elseif strcmp(firtype, 'fir1')\n filtwts = fir1(filtorder, locutoff./(srate/2), 'high');\n end\nelseif hicutoff > 0 % lowpass filter\n if hicutoff/nyq < MINFREQ\n error(sprintf('eegfilt() - lowpass cutoff freq must be > %g Hz',MINFREQ*nyq));\n end\n fprintf('eegfilt() - performing %d-point lowpass filtering.\\n',filtorder);\n if strcmp(firtype, 'firls')\n f=[MINFREQ hicutoff/nyq hicutoff*(1+trans)/nyq 1];\n fprintf('eegfilt() - lowpass transition band width is %1.1g Hz.\\n',(f(3)-f(2))*srate/2);\n m=[ 1 1 0 0];\n elseif strcmp(firtype, 'fir1')\n filtwts = fir1(filtorder, hicutoff./(srate/2));\n end\nelse\n error('You must provide a non-0 low or high cut-off frequency');\nend\nif revfilt\n if strcmp(firtype, 'fir1')\n error('Cannot reverse filter using ''fir1'' option');\n else\n m = double(~m);\n end\nend\n\nif strcmp(firtype, 'firls')\n filtwts = firls(filtorder,f,m); % get FIR filter coefficients\nend\n\nsmoothdata = zeros(chans,frames);\nfor e = 1:epochs % filter each epoch, channel\n for c=1:chans\n try\n if causal\n smoothdata(c,(e-1)*epochframes+1:e*epochframes) = filter( filtwts,1,data(c,(e-1)*epochframes+1:e*epochframes));\n else smoothdata(c,(e-1)*epochframes+1:e*epochframes) = filtfilt(filtwts,1,data(c,(e-1)*epochframes+1:e*epochframes));\n end\n catch,\n if causal\n smoothdata(c,(e-1)*epochframes+1:e*epochframes) = filter( filtwts,1,double(data(c,(e-1)*epochframes+1:e*epochframes)));\n else smoothdata(c,(e-1)*epochframes+1:e*epochframes) = filtfilt(filtwts,1,double(data(c,(e-1)*epochframes+1:e*epochframes)));\n end\n end\n if epochs == 1\n if rem(c,20) ~= 0, fprintf('.');\n else fprintf('%d',c);\n end\n end\n end\nend\nfprintf('\\n');\n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/sigprocfunc/eegfilt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867777396211, "lm_q2_score": 0.46879062662624377, "lm_q1q2_score": 0.37418247970133933}} {"text": "%% CAVE-eitan_office\n% %{\nimfolder = 'images\\CAVE-eitan_office';\nim_n = 6;\nimfile = cell(im_n,1);\nfor ii = 1:im_n\n imfile{ii} = sprintf('%s\\\\e-%02d.jpg', imfolder, ii);\nend\n\nim = cell(im_n,1);\nfor ii = 1:im_n\n im{ii} = imread(imfile{ii});\nend\n\nimsize = zeros(im_n,3);\n\nfor ii = 1:im_n\n imsize(ii,:) = size(im{ii});\n if imsize(ii,1) > 720\n scale = 720/size(im{ii}, 1);\n im{ii} = imresize(im{ii}, scale);\n\n imsize(ii,:) = size(im{ii});\n end\nend\n\nmosaic = REW_mosaic( im, [], 0, 'persp', 0.01, imfolder );\n%}", "meta": {"author": "gain2217", "repo": "Robust_Elastic_Warping", "sha": "36ad3cb2f709fbea17225642ea1fa7b083924fd9", "save_path": "github-repos/MATLAB/gain2217-Robust_Elastic_Warping", "path": "github-repos/MATLAB/gain2217-Robust_Elastic_Warping/Robust_Elastic_Warping-36ad3cb2f709fbea17225642ea1fa7b083924fd9/multiple_views/examples/CAVE_eitan_office.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587586, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3741699419187527}} {"text": "function s = bear_settings_WGP2016_test(excelPath)\n\ns = BEARsettings(2, 'ExcelFile', excelPath);\n\ns.frequency=3;\ns.startdate='2014m5';\ns.enddate='2018m12';\ns.varendo='hicp gdp app 10y stockindex';\ns.varexo='';\ns.lags=2;\ns.const=1;\ns.results_path = fullfile(fileparts(mfilename('fullpath')),'results');\ns.results_sub='results_test_data_WGP2016_temp';\ns.results=1;\ns.plot=0;\ns.workspace=1;\n\ns.favar.FAVAR=0; % augment VAR model with factors (1=yes, 0=no)\n\ns.prior=41;\ns.ar=0.8; % this sets all AR coefficients to the same prior value (if PriorExcel is equal to 0)\ns.PriorExcel=0; % set to 1 if you want individual priors, 0 for default\ns.priorsexogenous=0; % set to 1 if you want individual priors, 0 for default\ns.lambda1=1000; % quasi-flat (diffuse) normal-wishart prior here, in the spirit of Uhlig (2005)\ns.lambda2=0.5;\ns.lambda3=1;\ns.lambda4=1;\ns.lambda5=0.001;\ns.lambda6=1;\ns.lambda7=0.1;\ns.lambda8=1;\ns.It=5000;\ns.Bu=1000;\ns.hogs=0;\ns.bex=0;\ns.scoeff=0;\ns.iobs=0;\ns.lrp=0;\ns.priorf=100;\n\ns.IRF=1;\ns.IRFperiods=36;\ns.F=0;\ns.FEVD=0;\ns.HD=0;\ns.HDall=0;%if we want to plot the entire decomposition, all contributions (includes deterministic part)HDall\ns.CF=0;\ns.IRFt=4;\n\ns.strctident.MM=0; % option for Median model (0=no (standard), 1=yes)\ns.strctident.CorrelShock=''; % exact labelname of the shock defined in one of the \"...res values\" excel sheets, otherwise if the shock is not identified yet name it 'CorrelShock'\ns.strctident.CorrelInstrument=''; % provide the IV variable in excel sheet \"IV\"\ns.Feval=0;\ns.CFt=1;\ns.Fstartdate='2014q1';\ns.Fenddate='2016q4';\ns.Fendsmpl=0;\ns.hstep=1;\ns.window_size=0;\ns.evaluation_size=0.5;\ns.cband=0.95;\ns.IRFband=0.68;\ns.Fband=0.68;\ns.FEVDband=0.68;\ns.HDband=0.68;", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tests/bear_settings_WGP2016_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3741699419187527}} {"text": "function rx = rxRecenterRx(rx,recenter3D);\n%\n% rx = rxRecenterRx(rx,[recenter3D]);\n%\n% Recenter a prescription using the mouse,\n% on the Rx Figure.\n%\n% The clicked-on location will be the center\n% of the prescription in the two dimensions \n% being displayed in the Rx Figure's image, but\n% the third dimension will be ignored. E.g.,\n% if you're looking at the prescription on axials,\n% it will recenter along the sagittal and coronal,\n% but not axial, dimensions. This can be overridden\n% if the recenter3D argument is entered as 1 [default\n% is 0, ignore 3rd dimension].\n%\n%\n% ras 03/05.\n% ras 01/06: think I fixed why it wasn't always working -- the mapping\n% of necessary rotations for the xform matrix (which goes: \n% coronal rotation, axial rotation, sagittal rotation\n% ), and the orientation button order (which goes:\n% axial, coronal, sagittal\n% and which corresponds to the mrVista conventions) is weird. This\n% seems to work, as long as you set 3D recenter to be the default.\n% setting it to 0 is nice, if the rx is orthogonal to where you're viewing\n% the volume, but weird if it's oblique w.r.t. the slice axis.\nif ieNotDefined('rx')\n cfig = findobj('Tag','rxControlFig');\n rx = get(cfig,'UserData');\nend\n\nif ieNotDefined('recenter3D')\n recenter3D = 1;\nend\n\nif ~ishandle(rx.ui.rxFig)\n % exit quietly\n return\nend\n\n%%%%%params\nslice = get(rx.ui.volSlice.sliderHandle,'Value');\nori = findSelectedButton(rx.ui.volOri);\n\npt = get(gca,'CurrentPoint');\nx = pt(1,1); y = pt(1,2);\n\n%%%%%figure out offset from current location\n% center of current rx (vol coordinate system)\ncen = rx2vol(rx,[rx.rxDims/2]')';\n\n% desired location (vol coordinate system)\nswitch ori\n case 1, tgt = [y slice x]; % axial\n case 2, tgt = [slice y x]; % coronal\n case 3, tgt = [x y slice]; % sagittal\n otherwise, return; % not yet implemented\nend\n\noffset = tgt - cen;\n\nif recenter3D ~= 1\n % ignore dimension orthogonal to view\n order = [2 1 3]; % weird mapping of orientation buttons -> trans axes\n offset(order(ori)) = 0; \nend\n\n%%%%%update existing rx\n[trans rot scale skew] = affineDecompose(rx.xform);\ntrans = trans + offset;\nnewXform = affineBuild(trans, rot, scale, skew);\nrx = rxSetXform(rx, newXform);\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAnatomy/mrRx/rxRecenterRx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3741699419187527}} {"text": "function y = prod( x, dim )\n\n% Disciplined geometric programming information for PROD:\n% PROD(X) and PROD(X,DIM) are vectorized versions of multiplication\n% so in most cases it would be incompatible with DCPs. Therefore it\n% has not been implemented to support DCPs. DGPs however support\n% products more liberally. When PROD is used in a DCP, elements in\n% each subvector must satisfy the corresponding combination rule\n% for multiplication (see TIMES). For example, suppose that X looks\n% like this:\n% X = [ log-convex log-concave log-affine ;\n% log-affine log-concave log-concave ]\n% Then PROD(X,1) would be permittted, but PROD(X,2) would not, \n% because the top row contains the product of log-convex and \n% log-concave terms, in violation of the DGP ruleset.\n\nnarginchk(1,2);\n\n%\n% Size check\n%\n\ntry\n ox = x;\n if nargin < 2, dim = []; end\n [ x, sx, sy, zx, zy, nx, nv, perm ] = cvx_reduce_size( x, dim ); %#ok\ncatch exc\n error( exc.message );\nend\n \n%\n% Quick exit for easy cases\n%\n\nif isempty( x ),\n if ~any( zy ), zy = 1; end\n y = cvx( ones( zy ) );\n return\nelseif nx == 1,\n y = ox;\n return\nend\n\n%\n% Type check\n%\n\npersistent remap_1 remap_2 remap_3 remap_0\nif isempty( remap_3 ),\n remap_0 = cvx_remap( 'zero' );\n remap_1 = cvx_remap( 'constant' );\n remap_2 = cvx_remap( 'log-convex' );\n remap_3 = cvx_remap( 'log-concave' );\nend\nvx = cvx_reshape( cvx_classify( x ), sx );\nt0 = any( reshape( remap_0( vx ), sx ) );\nt1 = all( reshape( remap_1( vx ), sx ) );\nt2 = all( reshape( remap_2( vx ), sx ) ) | ...\n all( reshape( remap_3( vx ), sx ) );\nt3 = t0 & t1;\nta = t3 + 2 * ( t2 & ~t3 );\nnu = sort( ta(:) );\nnu = nu([true;diff(nu)~=0]);\nnk = length( nu );\n\n%\n% Perform the computations\n%\n\nif nk > 1,\n y = cvx( [ 1, nv ], [] );\nend\nfor k = 1 : nk,\n\n if nk == 1,\n xt = x;\n else\n tt = ta == nu( k );\n xt = cvx_subsref( x, ':', tt );\n end\n\n switch nu( k ),\n case 0,\n error( 'Disciplined convex programming error:\\n Invalid computation: prod( {%s} )', cvx_class( xt, true, true ) );\n case 1,\n yt = cvx( prod( cvx_constant( xt ) ) );\n case 2,\n yt = exp( sum( log( xt ) ) );\n otherwise,\n error( 'Shouldn''t be here.' );\n end\n\n if nk == 1,\n y = yt;\n else\n y = cvx_subsasgn( y, tt, yt );\n end\n\nend\n\n%\n% Reverse the reshaping and permutation steps\n%\n\ny = reshape( y, sy );\nif ~isempty( perm ),\n y = ipermute( y, perm );\nend\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/builtins/@cvx/prod.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3741699419187527}} {"text": "function test_failed = test_libltfat_fftifftshift(varargin)\ntest_failed = 0;\n\nfprintf(' =============== %s ================ \\n',upper(mfilename));\n\ndefinput.flags.complexity={'double','single'};\n[flags]=ltfatarghelper({},definput,varargin);\ndataPtr = [flags.complexity, 'Ptr'];\n\nLarr = [1,9,11,110,111];\n\nfor L = Larr\n\n z = cast((1:L)',flags.complexity);\n zi = complex2interleaved(fft(z));\n zout = randn(size(zi),flags.complexity);\n\n ziPtr = libpointer(dataPtr,zi);\n zoutPtr = libpointer(dataPtr,zout);\n\n trueres = ifftshift(z);\n\n funname = makelibraryname('fftifftshift',flags.complexity,1);\n status = calllib('libltfat',funname,ziPtr,L,zoutPtr);\n\n res = norm(trueres - real(ifft(interleaved2complex(zoutPtr.Value))));\n\n [test_failed,fail]=ltfatdiditfail(res+status,test_failed);\n fprintf(['FFTIFFTSHIFT OP L:%3i, %s %s %s\\n'],L,flags.complexity,ltfatstatusstring(status),fail);\n\n status = calllib('libltfat', funname, ziPtr,L,ziPtr);\n\n res = norm(trueres - real(ifft(interleaved2complex(ziPtr.Value))));\n\n [test_failed,fail]=ltfatdiditfail(res+status,test_failed);\n fprintf(['FFTIFFTSHIFT IP L:%3i, %s %s %s\\n'],L,flags.complexity,ltfatstatusstring(status),fail);\n \n z = cast((1:L)',flags.complexity);\n zi = complex2interleaved(fftreal(z));\n zout = randn(size(zi),flags.complexity);\n\n ziPtr = libpointer(dataPtr,zi);\n zoutPtr = libpointer(dataPtr,zout);\n\n trueres = ifftshift(z);\n\n funname = makelibraryname('fftrealifftshift',flags.complexity,1);\n status = calllib('libltfat',funname,ziPtr,L,zoutPtr);\n\n res = norm(trueres - ifftreal(interleaved2complex(zoutPtr.Value),L));\n\n [test_failed,fail]=ltfatdiditfail(res+status,test_failed);\n fprintf(['FFTREALIFFTSHIFT OP L:%3i, %s %s %s\\n'],L,flags.complexity,ltfatstatusstring(status),fail);\n\n status = calllib('libltfat', funname, ziPtr,L,ziPtr);\n\n res = norm(trueres - ifftreal(interleaved2complex(ziPtr.Value),L));\n\n [test_failed,fail]=ltfatdiditfail(res+status,test_failed);\n fprintf(['FFTREALIFFTSHIFT IP L:%3i, %s %s %s\\n'],L,flags.complexity,ltfatstatusstring(status),fail);\n\nend\n\n\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/libltfat/modules/libltfat/testing/mUnit/test_libltfat_fftifftshift.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37416994191875264}} {"text": "function varargout=ceil(varargin)\n%CEIL (overloaded)\n\nswitch class(varargin{1})\n \n case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them.\n \n x = varargin{1};\n dim = size(x);\n x = reshape(x,prod(dim),1);\n y = [];\n for i = 1:prod(dim)\n y = [y;yalmip('define',mfilename,extsubsref(x,i))];\n end\n y = reshape(y,dim);\n varargout{1} = y;\n \n case 'char' % YALMIP send 'graph' when it wants the epigraph or hypograph\n switch varargin{1}\n case {'milp','graph','exact'}\n % Description using epigraphs\n t = varargin{2};\n X = varargin{3};\n \n F = ([X <= t <= X + 1]) + (integer(t));\n \n varargout{1} = F;\n varargout{2} = struct('convexity','none','monotonicity','none','definiteness','none','model','integer');\n varargout{3} = X;\n \n otherwise\n error('SDPVAR/CEIL called with CHAR argument?');\n end\n otherwise\n error('Strange type on first argument in SDPVAR/CEIL');\nend\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/@sdpvar/ceil.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37416994191875264}} {"text": "function SO3VF = power(SO3VF,a)\n% overloads |SO3VF.^2|\n%\n% Syntax\n% SO3VF = SO3VF.^2\n%\n% Input\n% SO3VF - @SO3VectorField\n% a - double\n%\n% Output\n% SO3VF - @SO3VectorField\n%\n\nif isa(a,'vector3d')\n a = a.xyz;\nend\n\nif ~isnumeric(a)\n error('The exponent has to be numeric.')\nend\n\nSO3VF = SO3VectorFieldHandle(@(rot) SO3VF.eval(rot).^(a(:)),SO3VF.SRight,SO3VF.SLeft);\n\n\nend", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/SO3Fun/@SO3VectorField/power.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544085240401, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3741699352114446}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Copyright 2014 the National Renewable Energy Laboratory and Sandia Corporation\n% \n% Licensed under the Apache License, Version 2.0 (the \"License\");\n% you may not use this file except in compliance with the License.\n% You may obtain a copy of the License at\n% \n% http://www.apache.org/licenses/LICENSE-2.0\n% \n% Unless required by applicable law or agreed to in writing, software\n% distributed under the License is distributed on an \"AS IS\" BASIS,\n% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n% See the License for the specific language governing permissions and\n% limitations under the License.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Plots solver-to-solver comparison for the newly run simulation for the\n% regular waves.\n\n%% Load Data\ncd regular\nload('regular_org.mat') % Load WEC-Sim Run Data\ncd .. ; cd regularCIC\nload('regularCIC_org.mat') % Load WEC-Sim Run Data\ncd .. ; cd regularSS\nload('regularSS_org.mat') % Load WEC-Sim Run Data\ncd .. \n\n\n%% Plot Heave Comparisons\nh=figure('units','normalized','outerposition',[0 0 1 1]);\n% First Row = All simulations, all times\n% Second Row = All simulations, t=350-400s\n% Third Row = Original and New WEC-Sim runs only, t=350-400s\n\n%First Column: Body 1 Heave\nstartTime = 100;\nsubplot(2,3,1)\nm = plot(regular.B1.WEC_Sim_new.time,regular.B1.WEC_Sim_new.heave,'k:',...\n\tregularCIC.B1.WEC_Sim_new.time,regularCIC.B1.WEC_Sim_new.heave,'r--',...\n regularSS.B1.WEC_Sim_new.time,regularSS.B1.WEC_Sim_new.heave,'b-.');\na=get(m(1),'LineWidth')+1;\nset(m(1),'LineWidth',a)\nxlabel('time(s)')\nylabel('Heave(m)')\ntitle('Float 1DOF 1200PTO')\nxlim([0 150])\nylim([-2 2])\n\nsubplot(2,3,4)\nm = plot( regular.B1.WEC_Sim_new.time(find( regular.B1.WEC_Sim_new.time==startTime):end),...\n regular.B1.WEC_Sim_new.heave(find( regular.B1.WEC_Sim_new.time==startTime):end),'k:',...\n regularCIC.B1.WEC_Sim_new.time(find( regularCIC.B1.WEC_Sim_new.time==startTime):end),...\n regularCIC.B1.WEC_Sim_new.heave(find(regularCIC.B1.WEC_Sim_new.time==startTime):end),'r--',...\n regularSS.B1.WEC_Sim_new.time(find( regularSS.B1.WEC_Sim_new.time==startTime):end),...\n regularSS.B1.WEC_Sim_new.heave(find( regularSS.B1.WEC_Sim_new.time==startTime):end),'b-.');\na=get(m(1),'LineWidth')+1;\nset(m(1),'LineWidth',a)\nxlabel('time(s)')\nylabel('Heave(m)')\nxlim([100 150])\nylim([-2 2])\n\n%Second Column: Body 2 Heave\nsubplot(2,3,2)\nm = plot( regular.B2.WEC_Sim_new.time, regular.B2.WEC_Sim_new.heave,'k:',...\n regularCIC.B2.WEC_Sim_new.time,regularCIC.B2.WEC_Sim_new.heave,'r--',...\n regularSS.B2.WEC_Sim_new.time, regularSS.B2.WEC_Sim_new.heave,'b-.');\na=get(m(1),'LineWidth')+1;\nset(m(1),'LineWidth',a)\nxlabel('time(s)')\nylabel('Heave(m)')\ntitle('Spar/Plate 1DOF 1200PTO')\nxlim([0 150])\nylim([-0.2 0.2])\n\nsubplot(2,3,5)\nm=plot( regular.B2.WEC_Sim_new.time(find( regular.B2.WEC_Sim_new.time==startTime):end),...\n regular.B2.WEC_Sim_new.heave(find( regular.B2.WEC_Sim_new.time==startTime):end),'k:',...\n regularCIC.B2.WEC_Sim_new.time(find( regularCIC.B2.WEC_Sim_new.time==startTime):end),...\n regularCIC.B2.WEC_Sim_new.heave(find(regularCIC.B2.WEC_Sim_new.time==startTime):end),'r--',...\n regularSS.B2.WEC_Sim_new.time(find( regularSS.B2.WEC_Sim_new.time==startTime):end),...\n regularSS.B2.WEC_Sim_new.heave(find( regularSS.B2.WEC_Sim_new.time==startTime):end),'b-.');\na=get(m(1),'LineWidth')+1;\nset(m(1),'LineWidth',a)\nxlabel('time(s)')\nylabel('Heave(m)')\nxlim([100 150])\nylim([-0.2 0.2])\n\n%Third Column: Relative Heave\nsubplot(2,3,3)\nm= plot( regular.Rel.WEC_Sim_new.time, regular.Rel.WEC_Sim_new.heave,'k:',...\n regularCIC.Rel.WEC_Sim_new.time,regularCIC.Rel.WEC_Sim_new.heave,'r--',...\n regularSS.Rel.WEC_Sim_new.time, regularSS.Rel.WEC_Sim_new.heave,'b-.');\na=get(m(1),'LineWidth')+1;\nset(m(1),'LineWidth',a)\nxlabel('time(s)')\nylabel('Heave(m)')\ntitle('Relative Motion 1DOF 1200PTO')\nxlim([0 150])\nylim([-2 2])\nl=legend('\"regular\"','\"regularCIC\"','\"regularCIC\" with State Space');\nset(l,'Position',[0.765 0.84 0.07 0.07],'Units','normalized',...\n 'FontSize',12);\n\nsubplot(2,3,6)\nm=plot( regular.Rel.WEC_Sim_new.time(find( regular.Rel.WEC_Sim_new.time==startTime):end),...\n regular.Rel.WEC_Sim_new.heave(find( regular.Rel.WEC_Sim_new.time==startTime):end),'k:',...\n regularCIC.Rel.WEC_Sim_new.time(find( regularCIC.Rel.WEC_Sim_new.time==startTime):end),...\n regularCIC.Rel.WEC_Sim_new.heave(find(regularCIC.Rel.WEC_Sim_new.time==startTime):end),'r--',...\n regularSS.Rel.WEC_Sim_new.time(find( regularSS.Rel.WEC_Sim_new.time==startTime):end),...\n regularSS.Rel.WEC_Sim_new.heave(find( regularSS.Rel.WEC_Sim_new.time==startTime):end),'b-.');\na=get(m(1),'LineWidth')+1;\nset(m(1),'LineWidth',a)\nxlabel('time(s)')\nylabel('Heave(m)')\nxlim([100 150])\nylim([-2 2])\n\nclear a h l m B1_H_Tolerance B2_H_Tolerance Rel_H_Tolerance str1 str2\n", "meta": {"author": "WEC-Sim", "repo": "WEC-Sim", "sha": "973dd8c437077b20b361a5c0dba733da98ca9285", "save_path": "github-repos/MATLAB/WEC-Sim-WEC-Sim", "path": "github-repos/MATLAB/WEC-Sim-WEC-Sim/WEC-Sim-973dd8c437077b20b361a5c0dba733da98ca9285/tests/RegressionTests/RegularWaves/printPlotRegular.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544085240401, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3741699352114445}} {"text": "\nfunction ExecFlag=DorfExec(handles)\n\nglobal VObj;\nglobal VMag;\nglobal VVar;\nglobal VSeq;\nglobal VCtl;\nglobal VSig;\nglobal VCoi;\n\n%preserve VObj VMag & VCoi\nVTmpObj=VObj;\nVTmpMag=VMag;\nVTmpCoi=VCoi;\n\nhandles.Simuh=guidata(handles.Simuh.SimuPanel_figure);\nDoDisableButton([],[],handles.Simuh);\n%% Do spin execution\ntry\n % Read tab parameters\n fieldname=fieldnames(handles.Attrh0);\n for i=1:length(fieldname)/2\n switch get(handles.Attrh0.(fieldname{i*2}),'Style')\n case 'edit'\n eval(['RF.' fieldname{i*2} '=[' get(handles.Attrh0.(fieldname{i*2}),'String') '];']);\n case 'popupmenu'\n TAttr=get(handles.Attrh0.(fieldname{i*2}),'String');\n eval(['RF.' fieldname{i*2} '=''' TAttr{get(handles.Attrh0.(fieldname{i*2}),'Value')} ''';']);\n end\n end\n \n % Prescan config\n DoPreScan(handles.Simuh);\n \n % Create SpinWatcher VOrf\n if strcmp(RF.Freq_Flag,'on') % spatial-spectral analysis\n if strcmp(RF.Spat_Flag,'on') % 2D spatial analysis\n error('Freq_Flag is incompatible with Spat_Flag! Turn Spat_Flag to off.');\n end\n set(handles.SliProfile_uipanel,'Title','Spin Response : Spatial-Spectral');\n Freq=linspace(RF.FreqDownLimit,RF.FreqUpLimit,RF.FreqRes)/VCtl.B0;\n \n VOrf=VObj;\n VOrf.Gyro=RF.Gyro;\n VOrf.ChemShift=Freq;\n VOrf.SpinNum=1;\n VOrf.TypeNum=length(Freq);\n VOrf.XDim=1;\n VOrf.YDim=1;\n VOrf.ZDim=RF.ZSpin;\n VOrf.XDimRes=1e-3;\n VOrf.YDimRes=1e-3;\n VOrf.ZDimRes=RF.ZSpinGap;\n VOrf=rmfield(VOrf, 'Rho');\n VOrf=rmfield(VOrf, 'T1');\n VOrf=rmfield(VOrf, 'T2');\n VOrf=rmfield(VOrf, 'T2Star');\n VOrf=rmfield(VOrf, 'Type');\n for i=1:VOrf.TypeNum\n VOrf.Rho(:,:,1:RF.ZSpin,i)=RF.Rho(1);\n VOrf.T1(:,:,1:RF.ZSpin,i)=RF.T1(1);\n VOrf.T2(:,:,1:RF.ZSpin,i)=RF.T2(1);\n VOrf.T2Star(:,:,1:RF.ZSpin,i)=0;\n end\n VOrf=rmfield(VOrf, 'Mx');\n VOrf=rmfield(VOrf, 'My');\n VOrf=rmfield(VOrf, 'Mz');\n VOrf.Mx= zeros(1,1,VOrf.ZDim,VOrf.SpinNum,VOrf.TypeNum);\n VOrf.My= zeros(1,1,VOrf.ZDim,VOrf.SpinNum,VOrf.TypeNum);\n VOrf.Mz= zeros(1,1,VOrf.ZDim,VOrf.SpinNum,VOrf.TypeNum);\n for i=1:VOrf.TypeNum\n VOrf.Mz(:,:,:,:,i)= ones(1,1,RF.ZSpin,VOrf.SpinNum,1).*(RF.Rho(1)./VOrf.SpinNum);\n end\n elseif strcmp(RF.Spat_Flag,'on') % 2D spatial analysis\n set(handles.SliProfile_uipanel,'Title','Spin Response : 2D Spatial');\n VOrf=VObj;\n VOrf.Gyro=RF.Gyro;\n VOrf.ChemShift=RF.ChemShift(1);\n VOrf.SpinNum=1;\n VOrf.TypeNum=1;\n VOrf.XDim=RF.XSpin;\n VOrf.YDim=RF.YSpin;\n VOrf.ZDim=1;\n VOrf.XDimRes=RF.XSpinGap;\n VOrf.YDimRes=RF.YSpinGap;\n VOrf.ZDimRes=1e-3;\n VOrf=rmfield(VOrf, 'Rho');\n VOrf=rmfield(VOrf, 'T1');\n VOrf=rmfield(VOrf, 'T2');\n VOrf=rmfield(VOrf, 'T2Star');\n VOrf=rmfield(VOrf, 'Type');\n\n VOrf.Rho(1:RF.YSpin,1:RF.XSpin,1,1)=RF.Rho(1);\n VOrf.T1(1:RF.YSpin,1:RF.XSpin,1,1)=RF.T1(1);\n VOrf.T2(1:RF.YSpin,1:RF.XSpin,1,1)=RF.T2(1);\n VOrf.T2Star(1:RF.YSpin,1:RF.XSpin,1,1)=0;\n\n VOrf=rmfield(VOrf, 'Mx');\n VOrf=rmfield(VOrf, 'My');\n VOrf=rmfield(VOrf, 'Mz');\n VOrf.Mx= zeros(VOrf.YDim,VOrf.XDim,1,VOrf.SpinNum,VOrf.TypeNum);\n VOrf.My= zeros(VOrf.YDim,VOrf.XDim,1,VOrf.SpinNum,VOrf.TypeNum);\n VOrf.Mz= zeros(VOrf.YDim,VOrf.XDim,1,VOrf.SpinNum,VOrf.TypeNum);\n for i=1:VOrf.TypeNum\n VOrf.Mz(:,:,:,:,i)= ones(VOrf.YDim,VOrf.XDim,1,VOrf.SpinNum,1).*(RF.Rho(i)./VOrf.SpinNum);\n end\n else % normal 1D analysis\n set(handles.SliProfile_uipanel,'Title','Spin Response : 1D Spatial');\n VOrf=VObj;\n VOrf.Gyro=RF.Gyro;\n VOrf.ChemShift=RF.ChemShift;\n VOrf.SpinNum=1;\n VOrf.TypeNum=RF.TypeNum;\n VOrf.XDim=1;\n VOrf.YDim=1;\n VOrf.ZDim=RF.ZSpin;\n VOrf.XDimRes=1e-3;\n VOrf.YDimRes=1e-3;\n VOrf.ZDimRes=RF.ZSpinGap;\n VOrf=rmfield(VOrf, 'Rho');\n VOrf=rmfield(VOrf, 'T1');\n VOrf=rmfield(VOrf, 'T2');\n VOrf=rmfield(VOrf, 'T2Star');\n VOrf=rmfield(VOrf, 'Type');\n for i=1:VOrf.TypeNum\n VOrf.Rho(:,:,1:RF.ZSpin,i)=RF.Rho(i);\n VOrf.T1(:,:,1:RF.ZSpin,i)=RF.T1(i);\n VOrf.T2(:,:,1:RF.ZSpin,i)=RF.T2(i);\n VOrf.T2Star(:,:,1:RF.ZSpin,i)=0;\n end\n VOrf=rmfield(VOrf, 'Mx');\n VOrf=rmfield(VOrf, 'My');\n VOrf=rmfield(VOrf, 'Mz');\n VOrf.Mx= zeros(1,1,VOrf.ZDim,VOrf.SpinNum,VOrf.TypeNum);\n VOrf.My= zeros(1,1,VOrf.ZDim,VOrf.SpinNum,VOrf.TypeNum);\n VOrf.Mz= zeros(1,1,VOrf.ZDim,VOrf.SpinNum,VOrf.TypeNum);\n for i=1:VOrf.TypeNum\n VOrf.Mz(:,:,:,:,i)= ones(1,1,RF.ZSpin,VOrf.SpinNum,1).*(RF.Rho(i)./VOrf.SpinNum);\n end\n end\n\n if strcmp(RF.Spat_Flag,'on') % 2D analysis\n % Gradient Grid\n VMrf=VMag;\n VMrf=rmfield(VMrf, 'Gxgrid');\n VMrf=rmfield(VMrf, 'Gygrid');\n VMrf=rmfield(VMrf, 'Gzgrid');\n VMrf=rmfield(VMrf, 'dB0');\n VMrf=rmfield(VMrf, 'dWRnd');\n VMrf=rmfield(VMrf, 'FRange');\n\n [VMrf.Gxgrid,VMrf.Gygrid,VMrf.Gzgrid]=meshgrid((-RF.XCenter+1)*RF.XSpinGap:RF.XSpinGap:(RF.XSpin-RF.XCenter)*RF.XSpinGap, ...\n (-RF.YCenter+1)*RF.YSpinGap:RF.YSpinGap:(RF.YSpin-RF.YCenter)*RF.YSpinGap,1);\n VMrf.dB0=ones([RF.YSpin RF.XSpin 1])*RF.dB0;\n VMrf.dWRnd=zeros(size(VOrf.Mz));\n VMrf.FRange=ones(size(VOrf.Rho));\n\n % Coil\n VCrf=VCoi;\n VCrf.TxCoilmg = ones([RF.YSpin RF.XSpin 1]); % Unit B1+ for rf analysis\n VCrf.TxCoilpe = zeros([RF.YSpin RF.XSpin 1]);\n VCrf.TxCoilNum = 1;\n \n else % spatial-spectral analysis or 1D analysis\n % Gradient Grid\n VMrf=VMag;\n VMrf=rmfield(VMrf, 'Gxgrid');\n VMrf=rmfield(VMrf, 'Gygrid');\n VMrf=rmfield(VMrf, 'Gzgrid');\n VMrf=rmfield(VMrf, 'dB0');\n VMrf=rmfield(VMrf, 'dWRnd');\n VMrf=rmfield(VMrf, 'FRange');\n\n [VMrf.Gxgrid,VMrf.Gygrid,VMrf.Gzgrid]=meshgrid(0,0,(-RF.ZCenter+1)*RF.ZSpinGap:RF.ZSpinGap:(RF.ZSpin-RF.ZCenter)*RF.ZSpinGap); % assume constant unit gradient in GzSS\n VMrf.dB0=ones([1 1 RF.ZSpin])*RF.dB0;\n VMrf.dWRnd=zeros(size(VOrf.Mz));\n VMrf.FRange=ones(size(VOrf.Rho));\n\n % Coil\n VCrf=VCoi;\n VCrf.TxCoilmg = ones([1 1 RF.ZSpin]); % Unit B1+ for rf analysis\n VCrf.TxCoilpe = zeros([1 1 RF.ZSpin]);\n VCrf.TxCoilNum = 1;\n \n end\n %% Spin execution\n VObj=VOrf;\n VMag=VMrf;\n VCoi=VCrf;\n \n % Generate Pulse line\n if isfield(handles,'rfNode')\n for parai=1:length(handles.rfNode.Attributes)\n if ~isempty(handles.rfNode.Attributes(parai).Value)\n switch handles.rfNode.Attributes(parai).Value(1)\n case '$'\n eval(['AttributeOpt={' handles.rfNode.Attributes(parai).Value(3:end) '};']);\n eval(['p.' handles.rfNode.Attributes(parai).Name '=AttributeOpt{' handles.rfNode.Attributes(parai).Value(2) '};']);\n otherwise\n if ~strcmp(handles.rfNode.Attributes(parai).Name,'Notes')\n eval(['p.' handles.rfNode.Attributes(parai).Name '=' handles.rfNode.Attributes(parai).Value ';']);\n else\n eval(['p.' handles.rfNode.Attributes(parai).Name '=''' handles.rfNode.Attributes(parai).Value ''';']);\n end\n end\n \n else\n eval(['p.' handles.rfNode.Attributes(parai).Name '=[];']);\n end\n end\n VVar.TRCount=1; % may used for rfUser\n eval(['[rfAmp,rfPhase,rfFreq,rfCoil,rfTime]=' handles.rfNode.Name '(p);']);\n else\n errordlg('Please choose a rf wave type (e.g. rfSinc)!');\n ExecFlag=0;\n %recover VObj VMag VCoi\n VObj=VTmpObj;\n VMag=VTmpMag;\n VCoi=VTmpCoi;\n return\n end\n \n if strcmp(RF.Spat_Flag,'off')\n if isfield(handles,'GzNode')\n for parai=1:length(handles.GzNode.Attributes)\n if ~isempty(handles.GzNode.Attributes(parai).Value)\n switch handles.GzNode.Attributes(parai).Value(1)\n case '$'\n eval(['AttributeOpt={' handles.GzNode.Attributes(parai).Value(3:end) '};']);\n eval(['p.' handles.GzNode.Attributes(parai).Name '=AttributeOpt{' handles.GzNode.Attributes(parai).Value(2) '};']);\n otherwise\n if ~strcmp(handles.GzNode.Attributes(parai).Name,'Notes')\n eval(['p.' handles.GzNode.Attributes(parai).Name '=' handles.GzNode.Attributes(parai).Value ';']);\n else\n eval(['p.' handles.GzNode.Attributes(parai).Name '=''' handles.GzNode.Attributes(parai).Value ''';']);\n end\n end\n \n else\n eval(['p.' handles.GzNode.Attributes(parai).Name '=[];']);\n end\n end\n VVar.TRCount=1; % may used for GzUser\n eval(['[GzAmp,GzTime]=' handles.GzNode.Name '(p);']);\n else\n GzAmp=[0 RF.ConstantGrad RF.ConstantGrad 0];\n GzTime=[0 VCtl.MinUpdRate max(rfTime)-VCtl.MinUpdRate max(rfTime)];\n warndlg('Please choose a GzSS gradient type (e.g. GzSelective), otherwise constant gradient (i.e. ConstantGrad) will be used!');\n end\n \n else\n if isfield(handles,'GyNode')\n for parai=1:length(handles.GyNode.Attributes)\n if ~isempty(handles.GyNode.Attributes(parai).Value)\n switch handles.GyNode.Attributes(parai).Value(1)\n case '$'\n eval(['AttributeOpt={' handles.GyNode.Attributes(parai).Value(3:end) '};']);\n eval(['p.' handles.GyNode.Attributes(parai).Name '=AttributeOpt{' handles.GyNode.Attributes(parai).Value(2) '};']);\n otherwise\n if ~strcmp(handles.GyNode.Attributes(parai).Name,'Notes')\n eval(['p.' handles.GyNode.Attributes(parai).Name '=' handles.GyNode.Attributes(parai).Value ';']);\n else\n eval(['p.' handles.GyNode.Attributes(parai).Name '=''' handles.GyNode.Attributes(parai).Value ''';']);\n end\n end\n \n else\n eval(['p.' handles.GyNode.Attributes(parai).Name '=[];']);\n end\n end\n VVar.TRCount=1; % may used for GyUser\n eval(['[GyAmp,GyTime]=' handles.GyNode.Name '(p);']);\n else\n GyAmp=[0 RF.ConstantGrad RF.ConstantGrad 0];\n GyTime=[0 VCtl.MinUpdRate max(rfTime)-VCtl.MinUpdRate max(rfTime)];\n warndlg('Please choose a GyPE gradient type, otherwise constant gradient (i.e. ConstantGrad) will be used!');\n end\n \n if isfield(handles,'GxNode')\n for parai=1:length(handles.GxNode.Attributes)\n if ~isempty(handles.GxNode.Attributes(parai).Value)\n switch handles.GxNode.Attributes(parai).Value(1)\n case '$'\n eval(['AttributeOpt={' handles.GxNode.Attributes(parai).Value(3:end) '};']);\n eval(['p.' handles.GxNode.Attributes(parai).Name '=AttributeOpt{' handles.GxNode.Attributes(parai).Value(2) '};']);\n otherwise\n if ~strcmp(handles.GxNode.Attributes(parai).Name,'Notes')\n eval(['p.' handles.GxNode.Attributes(parai).Name '=' handles.GxNode.Attributes(parai).Value ';']);\n else\n eval(['p.' handles.GxNode.Attributes(parai).Name '=''' handles.GxNode.Attributes(parai).Value ''';']);\n end\n end\n \n else\n eval(['p.' handles.GxNode.Attributes(parai).Name '=[];']);\n end\n end\n VVar.TRCount=1; % may used for GxUser\n eval(['[GxAmp,GxTime]=' handles.GxNode.Name '(p);']);\n else\n GxAmp=[0 RF.ConstantGrad RF.ConstantGrad 0];\n GxTime=[0 VCtl.MinUpdRate max(rfTime)-VCtl.MinUpdRate max(rfTime)];\n warndlg('Please choose a GxR gradient type, otherwise constant gradient (i.e. ConstantGrad) will be used!');\n end\n end\n \n if strcmp(RF.Spat_Flag,'on') % 2D analysis\n SEt=[0 max([rfTime, GxTime, GyTime])]; % SEt time landmark must start from 0\n SEflag=repmat([0 0 0 0 0 0]',[1 2]);\n rfflag=repmat([1 0 0 0 0 0]',[1 max(size(rfTime))]);\n Gyflag=repmat([0 0 1 0 0 0]',[1 max(size(GyTime))]);\n Gxflag=repmat([0 0 0 1 0 0]',[1 max(size(GxTime))]);\n \n ts=[SEt rfTime GyTime GxTime];\n flags=[SEflag rfflag Gyflag Gxflag];\n [ts,ind]=sort(ts);\n uts=unique(ts);\n flags=flags(:,ind);\n \n rfAmp(abs(rfAmp) 2)\n if (m ~= size (b,1))\n error ('%s and b must have the same number of rows', name) ;\n end\n if (ndims (b) ~= 2)\n error ('b must be a 2D matrix') ;\n end\nend\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/SuiteSparse/MATLAB_Tools/GEE/private/gee_its_simple_check.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6477982179521103, "lm_q1q2_score": 0.37410046844297207}} {"text": "function sig = fix_length(sig,N)\n%FIX_LENGTH pads zeros or removes entries from signal accroding to length N\n%\n% Usage: sig = fix_length(sig,N)\n%\n% Input parameters:\n% sig - input signal (matrix with sigs as columns)\n% N - number of samples size(sig,1) should be\n%\n% Output paramteres:\n% sig - corrected sig\n%\n% FIX_LENGTH(sig,N) pads zeros or removes the end of the given signal in\n% order to have a sig with a size(sig,1)==N.\n%\n% see also: fix_irs_length, convolution\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n\n%% ===== Checking of input parameters ==================================\nnargmin = 2;\nnargmax = 2;\nnarginchk(nargmin,nargmax);\n\n\n%% ===== Fix IR ==========================================================\n% Length of IR\nsamples = size(sig,1);\nchannels = size(sig,2);\n\nif samples.\n\n\nNallVols = sqpar.Ndummies+sqpar.Nscans;\nNslices = sqpar.Nslices;\nTR = sqpar.TR;\nLOCS = NaN(NallVols*Nslices,1);\n\n%default for equidistantly spaced slices\nif isempty(sqpar.time_slice_to_slice)\n sqpar.time_slice_to_slice = TR/Nslices;\nend\n\niFirstValidVolume = find(~isnan(VOLLOCS), 1);\ntRef = t(VOLLOCS(iFirstValidVolume));\n\n\nfor n = iFirstValidVolume:NallVols\n \n % first, restrict search interval to within TR\n LOCVOLSTART = VOLLOCS(n);\n \n if n == NallVols\n LOCVOLEND = numel(t);\n else\n LOCVOLEND = VOLLOCS(n+1);\n end\n \n % Then, find slice-by-slice nearest neighbour of actual and\n % reference time\n tSearchInterval = t(LOCVOLSTART:LOCVOLEND) - ...\n (tRef + sqpar.TR*(n-iFirstValidVolume));\n \n % Note: Why not the same as other slices? Some jitter problem...\n % if TR is not given with high enough precision, therefore reset for\n % each volume!\n LOCS((n-1)*Nslices + 1) = LOCVOLSTART; \n for s = 2:sqpar.Nslices\n [tmp, RELATIVELOC] = min(abs(tSearchInterval - ...\n sqpar.time_slice_to_slice*(s-1)) );\n \n LOCS((n-1)*Nslices + s) = LOCVOLSTART + RELATIVELOC - 1;\n end\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/PhysIO/code/sync/tapas_physio_create_LOCS_from_VOLLOCS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585903489892, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3740948196931981}} {"text": "function [bboxLeft3M,bboxRight3M] = getBreastMask(scan3M)\n% AI 1/16/18\n\n%Get no. of slices,rows, cols\nnSlices = size(scan3M,3);\nnCol = size(scan3M,2);\nnRow = size(scan3M,1);\nairTh = 400;\ntol = 0;\nfilt = gausswin(13,1.5);\nfilt = filt./sum(filt(:));\n\n%Loop over slices\nbboxLeft3M = false(size(scan3M));\nbboxRight3M = false(size(scan3M));\nfVoxV = nan(1,nSlices);\nbsizeV = nan(1,nSlices);\n\nfor i = 1: nSlices\n \n sliceM = scan3M(:,:,i);\n \n %Get index of last voxel in each column with inensity > threshold\n th_maskM = sliceM>airTh;\n th_maskM = bwareaopen(th_maskM,50);\n \n fVoxV(i) = nnz(th_maskM(:))/numel(th_maskM(:));\n rowIdxV = nan(nCol,1);\n for j = 1 : nCol\n idx = find(th_maskM(:,j),1,'last');\n if ~isempty(idx)\n rowIdxV(j) = idx;\n end\n end\n colIdxV = [1:nCol].';\n % startCol = find(~isnan(rowIdxV),1);\n % endCol = find(~isnan(rowIdxV),1,'last');\n \n try\n \n %Smooth outline\n outlineV = smooth(colIdxV,rowIdxV,'rlowess');\n \n %Find peaks\n outSmoothV = conv(outlineV,filt,'same');\n [~,boundsV] = findpeaks(outSmoothV,'MinPeakProminence',10,'SortStr','descend');\n boundsV = sort(boundsV(1:2));\n \n %AI 2/10/20\n %Added to handle cases where one side is not visible\n if abs(outSmoothV(boundsV(2))-outSmoothV(boundsV(1)))>100\n %skip slice\n emptyMaskM = false(size(th_maskM));\n bboxLeft3M(:,:,i) = emptyMaskM;\n bboxRight3M(:,:,i) = emptyMaskM;\n fVoxV(i) = 0;\n bsizeV(i)=0;\n else\n %Find valley between peaks\n flipSigV = nRow-outlineV(boundsV(1):boundsV(2));\n [~,locV] = findpeaks(flipSigV,'MinPeakProminence',30,'SortStr','descend');\n if isempty(locV)\n [~,locV] = findpeaks(flipSigV,'SortStr','descend');\n end\n loc = locV(1) + boundsV(1);\n rowLim = outlineV(loc);\n rowLim = rowLim-tol;\n \n % --- For testing ----\n %Display\n % figure,scatter(colIdxV,rowIdxV,'bo'),axis([1 nCol 1 nRow]);\n % hold on\n % plot(colIdxV,outlineV,'--r')\n %---------------------\n \n outlineV(outlineV0;\nend\nend1Idx = start1Idx+runsV(count)-1;\n% Find end slice\nrun2IdxV = startsV>end1Idx;\nstartsV = startsV(run2IdxV);\nrunsV = runsV(run2IdxV);\ncount = 0;\ndecFlag = 0;\nwhile ~decFlag\n count = count+1;\n start2Idx = startsV(count);\n decFlag = signV(start2Idx)<0;\nend\nend2Idx = start2Idx+runsV(count)-1;\nminSizIdx = find(smooth_bsizeV(start2Idx:end2Idx)>= smooth_bsizeV(start1Idx)*.8,1,'last');\nend2Idx = start2Idx + minSizIdx - 1;\nkeepSlicesV = start1Idx:end2Idx;\nskipIdxV = ~ismember(sliceV,keepSlicesV);\n\n\n% --- For testing (plot of bsizeV)----\n% h = figure('visible','On');\n% plot(sliceV,bsizeV,'-kx','lineWidth',1);\n% axis([1 numel(sliceV),0,max(smooth_bsizeV)])\n% hold on\n% plot(sliceV,smooth_bsizeV,'--bx','lineWidth',1);\n% line([start1Idx,start1Idx],[0,max(smooth_bsizeV)],'Color','r','LineStyle','--');\n% line([end2Idx,end2Idx],[0,max(smooth_bsizeV)],'Color','r','LineStyle','--');\n% xlabel('Size');\n% ylabel('Slice #');\n%----------------------------------\n\n%Skip selected slices\nbboxLeft3M(:,:,skipIdxV) = false(size(scan3M,1),size(scan3M,2),nnz(skipIdxV));\nbboxRight3M(:,:,skipIdxV) = false(size(scan3M,1),size(scan3M,2),nnz(skipIdxV));\n\n\n\nend", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanAnalysis/DCE-MR analysis/BPEanalysis/getBreastMask.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.374094819693198}} {"text": "function [ fighandle, surfh ] = DrawImageSlice3D( dicom_filename, fighandle, transparency )\n%============================\n% [ fighandle, surfh ] = DrawImageSlice3D( dicom_filename, fighandle, transparency )\n% This is a function for drawing slices in 3D space based on the dicom header\n% information.\n% Input:\n% dicom_filename = full path to a DICOM image file. Default = '*' \n% empty string ('') or and string with a wildcard (*) will prompt the file browser\n% figh = figure handle\n% transparency = alpha for the image slice. \n% Use values < 1 to get partial transparency when\n% plotting multiple slices in one figure\n% Example:\n% First pick and image (assuming the DICOM file extension is IMA) and draw the slice semi-transparent\n% [ fighandle, surfh(1) ] = DrawImageSlice3D( '*.IMA', [], 0.5 );\n% Next, call up a second image and draw a slice in the same figure\n% [ fighandle, surfh(2) ] = DrawImageSlice3D( 'mysecond_dicomim.IMA', fighandle, 0.5 );\n% \n% The axes are rotated at the end of this function. \n% A simple edit setting 'show_rotate' to 0 will suppress this.\n%\n% NOTE: In the DICOM file there are several series UID and reference frame UID to\n% ensure that the slices are from the same study and position. \n% No check for this is included in this function. One could compose figures\n% with slices of different subjects if so inclined.\n% The DICOM fields used should be universal, the reference frame should be\n% patient orientation dependend X = RL, Y =AP, Z = FH\n% \n%======================================================================\n\n%======================================================================\n% Ronald Ouwerkerk , NIH/NIDDK, June 2010\n% Tested on Mac OS 10.5 with Martlab 2008b on Siemens DICOM images (VB15 export to offline) \n% Images were all head first supine. Let me know if other orientations\n% create problems.\n%======================================================================\n\n%% Define constants\ntopl = 1;\ntopr = 2;\nbotl = 3;\nbotr = 4;\n\nX = 1;\nY = 2;\nZ = 3;\n\n%% Set defaults for input arguments\nif nargin <1\n dicom_filename = '*';\nend\n\nif nargin <2\n fighandle = [];\nend\n\nif ~ishandle( fighandle )\n msgstr = sprintf('Warning in %s: Second argument is not a valid figure handle. Creating a new one', mfilename);\n disp( msgstr)\n fighandle = [];\nend\n\nif nargin <3\n transparency = 1;\nend\n\nif isempty( dicom_filename )\n dicom_filename = '*';\nend\n\n%save the current path\norig_path = pwd;\n \n% Call the filebrowswer UI if the dicom filename contains a wildcard\nif ~isempty( findstr( dicom_filename, '*') )\n [ filename, fpath ] = uigetfile( dicom_filename , 'Select DICOM file');\n cd( fpath );\n dicom_filename =filename;\nend\n\n\n%% Read DICOM header and image data\ndinfo= dicominfo( dicom_filename );\nimdata = dicomread( dicom_filename );\ncd( orig_path )\n\n%% Calculate slice corner positions from the DICOM header info\n% Get the top left corner position in XYZ coordinates\npos = dinfo.ImagePositionPatient;\n \nnc = double(dinfo.Columns);\nnr = double(dinfo.Rows);\n\n% Get the row and column direction vercors in XYZ coordinates\nrow_dircos(X) = dinfo.ImageOrientationPatient(1);\nrow_dircos(Y) = dinfo.ImageOrientationPatient(2);\nrow_dircos(Z) = dinfo.ImageOrientationPatient(3);\ncol_dircos(X) = dinfo.ImageOrientationPatient(4);\ncol_dircos(Y) = dinfo.ImageOrientationPatient(5);\ncol_dircos(Z) = dinfo.ImageOrientationPatient(6);\n\n% % Check normality and orthogonality of the row and col vectors\n% Crownorm = dot(row_dircos, row_dircos);\n% Ccolnorm = dot(col_dircos, col_dircos);\n% Cdotprod = dot(row_dircos, col_dircos);\n% \n% if abs(Cdotprod) > 1e-5\n% warnstr = sprintf('Possible dicominfo error: the dotproduct of the row and col vectors is %f should be 0',Cdotprod );\n% disp(warnstr)\n% end\n\n% Calculate image dimensions\nrow_length = dinfo.PixelSpacing(1) * nr;\ncol_length = dinfo.PixelSpacing(2) * nc;\n\n\n%% Set up the corner positions matrix in XYZ coordinates\n% Top Left Hand Corner\ncorners( topl, X) = pos(X);\ncorners( topl, Y) = pos(Y);\ncorners( topl, Z) = pos(Z);\n\n% Top Right Hand Corner\ncorners( topr, X) = pos(X) + row_dircos(X) * row_length;\ncorners( topr, Y) = pos(Y) + row_dircos(Y) * row_length;\ncorners( topr, Z) = pos(Z) + row_dircos(Z) * row_length;\n\n% Bottom Left Hand Corner\ncorners( botl, X) = pos(X) + col_dircos(X) * col_length;\ncorners( botl, Y) = pos(Y) + col_dircos(Y) * col_length;\ncorners( botl, Z) = pos(Z) + col_dircos(Z) * col_length;\n\n% Bottom Right Hand Corner\ncorners( botr, X) = pos(X) + row_dircos(X) * row_length + col_dircos(X) * col_length;\ncorners( botr, Y) = pos(Y) + row_dircos(Y) * row_length + col_dircos(Y) * col_length;\ncorners( botr, Z) = pos(Z) + row_dircos(Z) * row_length + col_dircos(Z) * col_length;\n\n%% Prepare the figure\n% Select active figure, set hold on to alow multiple slices in one figure\nif isempty( fighandle )\n fighandle = figure;\n colormap( gray );\n newfig = 1;\nelse\n newfig = 0;\nend\n\nfigure( fighandle );\nhold on;\n\n%Tidy up the figure\n% set aspect ratio\ndaspect( [1,1,1]);\nset( gca, 'color', 'none')\n\n%% Display slice\n% normalize image data\nimdata = double( imdata );\nimdata = imdata / max( imdata(:));\n% scale the image\nI = imdata*255;\n% create an alternative matrix for corner points\nA( 1,1 , 1:3 ) = corners( topl, : );\nA( 1,2 , 1:3 ) = corners( topr, : );\nA( 2,1 , 1:3 ) = corners( botl, : );\nA( 2,2 , 1:3 ) = corners( botr, : );\n% extract the coordinates for the surfaces\nx = A( :,:,X );\ny = A( :,:,Y );\nz = A( :,:,Z );\n\n% plot surface\nsurfh = surface('XData',x,'YData',y,'ZData',z,...\n'CData', I,...\n'FaceColor','texturemap',...\n'EdgeColor','none',...\n'LineStyle','none',...\n'Marker','none',...\n'MarkerFaceColor','none',...\n'MarkerEdgeColor','none',...\n'CDataMapping','direct'); \n%set transparency level\nset( surfh, 'FaceAlpha', transparency );\n% label axes and optimize figure\nxlabel('RL');\nylabel('AP');\nzlabel('FH');\n\n% if only one slice is in the figure this may flatten the 3rd axis\nif ~newfig\n axis tight\nend\n\n%% Optional: rotate to show all\n% edit this to create a movie\ndo_movie = 0;\nshow_rotate = 1\n\nif do_movie\n % open avifile\n aviobj = avifile('slice3Drotate.avi');\n show_rotate = 1;\nend\n\nif show_rotate\n % tilt and rotate\n el = 22;\n for azplus = 0:10:360\n az = mod( 45+azplus, 360);\n view( [az, el] );\n if do_movie\n % add farem to the movie\n frame = getframe(fh);\n aviobj = addframe(aviobj,frame);\n else\n % needed to see the intemediate steps\n drawnow;\n end\n end\nend\n\nif do_movie\n % close avifile\n close( aviobj );\nend\n\nreturn\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27869-mri-slice-viewer/DrawImageSlice3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3740948136963992}} {"text": "function alpha_filter = getAlphaFilter(kgrid, medium, filter_cutoff, taper_ratio)\n%GETALPHAFILTER Create filter for medium.alpha_filter.\n%\n% DESCRIPTION:\n% getAlphaFilter uses getWin to create a Tukey window via rotation to\n% pass to the medium.alpha_filter input field of the first order\n% simulation functions (kspaceFirstOrder1D, kspaceFirstOrder2D, and\n% kspaceFirstOrder3D). This parameter is used to regularise time\n% reversal image reconstruction when absorption compensation is\n% included.\n% \n% USAGE:\n% alpha_filter = getAlphaFilter(kgrid, medium, filter_cutoff)\n% alpha_filter = getAlphaFilter(kgrid, medium, filter_cutoff, taper_ratio)\n% \n% INPUTS:\n% kgrid - k-Wave grid structure returned by makeGrid\n% medium - k-Wave medium structure\n% filter_cutoff - alpha_filter cutoff frequency [Hz], where\n% filter_cutoff = [f_all] in 1D \n% filter_cutoff = [f_all] or [f_x, f_y] in 2D \n% filter_cutoff = [f_all] or [f_x, f_y, f_z] in 3D\n%\n% Any of the filter_cutoff inputs may be set to\n% 'max' to set the cutoff frequency to the maximum\n% frequency supported by the grid\n%\n% OPTIONAL INPUTS\n% taper_ratio - taper ratio for Tukey Window (default = 0.5)\n% \n% OUTPUTS:\n% alpha_filter - filter\n%\n% ABOUT:\n% author - Bradley Treeby\n% date - 6th May 2010\n% last update - 28th October 2011\n%\n% This function is part of the k-Wave Toolbox (http://www.k-wave.org)\n% Copyright (C) 2009-2014 Bradley Treeby and Ben Cox\n%\n% See also getWin\n\n% This file is part of k-Wave. k-Wave is free software: you can\n% redistribute it and/or modify it under the terms of the GNU Lesser\n% General Public License as published by the Free Software Foundation,\n% either version 3 of the License, or (at your option) any later version.\n% \n% k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY\n% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n% FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for\n% more details. \n% \n% You should have received a copy of the GNU Lesser General Public License\n% along with k-Wave. If not, see . \n\n% update the command line status\ndisp('Creating absorption filter...');\n\n% check to see if the taper ratio is given\nif nargin == 3\n taper_ratio = 0.5;\nelseif nargin ~= 4\n error('incorrect number of inputs');\nend\n\n% update command line status\ndisp([' taper ratio: ' num2str(taper_ratio)]);\n\n% extract the dimensions\ndim = numDim(kgrid.k);\n\n% extract the alpha_filter cutoff frequencies\nif numel(filter_cutoff) == 1\n filter_cutoff_x = filter_cutoff;\n if dim > 2\n filter_cutoff_z = filter_cutoff;\n end\n if dim > 1\n filter_cutoff_y = filter_cutoff; \n end\nelseif numel(filter_cutoff) ~= dim\n error(['input filter_cutoff must have 1 or ' num2str(dim) ' elements for a ' num2str(dim) 'D grid']);\nelse\n if dim == 1\n filter_cutoff_x = filter_cutoff{1};\n end\n if dim == 2\n filter_cutoff_x = filter_cutoff{1};\n filter_cutoff_y = filter_cutoff{2}; \n end \n if dim == 3\n filter_cutoff_x = filter_cutoff{1};\n filter_cutoff_y = filter_cutoff{2}; \n filter_cutoff_z = filter_cutoff{3}; \n end\nend\n\n% extract the maximium sound speed\nc = max(medium.sound_speed(:));\n\n% calculate the alpha_filter size in the z direction for 3D data\nif dim > 2\n if strcmp(filter_cutoff_z, 'max')\n % set the alpha_filter size to be the same as the grid size\n filter_size_z = kgrid.Nz;\n filter_cutoff_z = kgrid.kz_max*c/(2*pi);\n else\n % convert the cutoff frequency to a wavenumber\n k_cutoff_z = 2*pi*filter_cutoff_z ./ c;\n \n % set the alpha_filter size\n filter_size_z = round(kgrid.Nz*k_cutoff_z/kgrid.kz(end));\n \n % check the alpha_filter size\n if filter_size_z > kgrid.Nz\n % set the alpha_filter size to be the same as the grid size\n filter_size_z = kgrid.Nz; \n filter_cutoff_z = kgrid.kz_max*c/(2*pi);\n end \n end\nend\n\n% calculate the alpha_filter size in the y direction for 2 and 3D data\nif dim > 1\n if strcmp(filter_cutoff_y, 'max')\n % set the alpha_filter size to be the same as the grid size\n filter_size_y = kgrid.Ny;\n filter_cutoff_y = kgrid.ky_max*c/(2*pi);\n else\n % convert the cutoff frequency to a wavenumber\n k_cutoff_y = 2*pi*filter_cutoff_y ./ c;\n \n % set the alpha_filter size\n filter_size_y = round(kgrid.Ny*k_cutoff_y/kgrid.ky(end));\n \n % check the alpha_filter size\n if filter_size_y > kgrid.Ny\n % set the alpha_filter size to be the same as the grid size\n filter_size_y = kgrid.Ny;\n filter_cutoff_y = kgrid.ky_max*c/(2*pi);\n end\n end \nend\n\n% calculate the alpha_filter size in the x direction for 1, 2, and 3D data\nif strcmp(filter_cutoff_x, 'max')\n % set the alpha_filter size to be the same as the grid size\n filter_size_x = kgrid.Nx;\n filter_cutoff_x = kgrid.kx_max*c/(2*pi);\nelse\n % convert the cutoff frequency to a wavenumber\n k_cutoff_x = 2*pi*filter_cutoff_x ./ c;\n \n % set the alpha_filter size\n filter_size_x = round(kgrid.Nx*k_cutoff_x/kgrid.kx(end));\n \n % check the alpha_filter size\n if filter_size_x > kgrid.Nx\n % set the alpha_filter size to be the same as the grid size\n filter_size_x = kgrid.Nx;\n filter_cutoff_x = kgrid.kx_max*c/(2*pi);\n end \nend \n \n% create the alpha_filter using getWin\nswitch dim\n case 1\n % create the alpha_filter\n filter_sec = getWin(filter_size_x, 'Tukey', 'Param', taper_ratio, 'Rotation', true);\n\n % enlarge the alpha_filter to the size of the grid\n alpha_filter = zeros(kgrid.Nx, 1);\n x_index = round((kgrid.Nx - filter_size_x)/2) + 1;\n alpha_filter(x_index:x_index + filter_size_x - 1) = filter_sec; \n \n % update the command line status\n disp([' filter cutoff: ' scaleSI(filter_cutoff_x) 'Hz']);\n case 2\n % create the alpha_filter\n filter_sec = getWin([filter_size_x, filter_size_y], 'Tukey', 'Param', taper_ratio, 'Rotation', true);\n\n % enlarge the alpha_filter to the size of the grid\n alpha_filter = zeros(kgrid.Nx, kgrid.Ny);\n x_index = round((kgrid.Nx - filter_size_x)/2) + 1;\n y_index = round((kgrid.Ny - filter_size_y)/2) + 1;\n alpha_filter(x_index:x_index + filter_size_x - 1, y_index:y_index + filter_size_y - 1) = filter_sec; \n \n % update the command line status\n disp([' filter cutoff: ' scaleSI(filter_cutoff_x) 'Hz by ' scaleSI(filter_cutoff_y) 'Hz']); \n case 3\n % create the alpha_filter\n filter_sec = getWin([filter_size_x, filter_size_y, filter_size_z], 'Tukey', 'Param', taper_ratio, 'Rotation', true);\n\n % enlarge the alpha_filter to the size of the grid\n alpha_filter = zeros(kgrid.Nx, kgrid.Ny, kgrid.Nz);\n x_index = round((kgrid.Nx - filter_size_x)/2) + 1;\n y_index = round((kgrid.Ny - filter_size_y)/2) + 1;\n z_index = round((kgrid.Nz - filter_size_z)/2) + 1;\n alpha_filter(x_index:x_index + filter_size_x - 1, y_index:y_index + filter_size_y - 1, z_index:z_index + filter_size_z - 1) = filter_sec;\n \n % update the command line status\n disp([' filter cutoff: ' scaleSI(filter_cutoff_x) 'Hz by ' scaleSI(filter_cutoff_y) 'Hz by ' scaleSI(filter_cutoff_z) 'Hz']); \nend\n", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/K-wave/k-Wave/getAlphaFilter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3740948136963992}} {"text": "function newcat2=plotmi(var1, newcat2, mi)\n %plot misfit (?)\n % TODO make this work with the new catalogs\n report_this_filefun(mfilename('fullpath'));\n \n global mif2 mif1\n global tmp % REALLY? global tmp? \"tmp\" is 1:nEvents\n % cumu2 mi2\n figNumber=findobj('Type','Figure','-and','Name','Misfit ');\n figure(figNumber);\n delete(findobj(figNumber,'Type','axes'));\n rect = [0.15, 0.15, 0.75, 0.65];\n axes('position',rect)\n ax=gca;\n nEvents=newcat2.Count;\n tmp=1:nEvents;\n sixSlices=round(0 : nEvents/5 : nEvents);\n sixSlices(1)=1;\n \n var2=var1;\n \n misfitAngle = mi(:,2);\n X = 1:nEvents;\n xtitle=sprintf('Number of Eqs (sorted by %s)',lower(var1));\n switch (var1)\n case {'Longitude','Latitude','Magnitude','Depth'}\n % plot_by_lon(); %by lon\n plot_by_field(var1);\n case 'Time'\n plot_by_time(); % by date\n case 'Strike'\n plot_by_strike(); % along strike\n case 'Default'\n option_7(); %unsorted\n otherwise\n error('unknown choice for plotmi');\n end\n \n grid('on')\n set(ax,'Color',color_bg);\n set(ax,'box','on',...\n 'SortMethod','childorder','TickDir','out','FontWeight',...\n 'bold','FontSize',ZmapGlobal.Data.fontsz.m,'Linewidth',1.2)\n ylabel('Cumulative Misfit ','FontWeight','bold','FontSize',ZmapGlobal.Data.fontsz.m);\n xlabel(xtitle,'FontWeight','bold','FontSize',ZmapGlobal.Data.fontsz.m)\n \n if ~ strcmp(var1 ,'Default')\n hold on\n for i=1:6\n plot(ax,tmp(sixSlices(i)),cumu2(sixSlices(i)),'xr');\n str=[' ',num2str(newcat2(sixSlices(i),var2))];\n te=text(tmp(sixSlices(i)),cumu2(sixSlices(i)),str);\n set(te,'FontWeight','bold','FontSize',ZmapGlobal.Data.fontsz.s)\n end\n else\n \n end\n \n \n function plot_by_field(name)\n % assumes that misfit matrix (mi) has same number of rows as \n % number of earthquakes in catalog\n [~,is] = sort(newcat2.(name));\n newcat2.sort(name); % sort the catalog itself by this field\n \n cumu2=cumsum(misfitAngle(is));\n plot(1:nEvents , cumu2 , 'o');\n xtitle=sprintf('Number of Eqs (sorted by %s)',lower(name));\n end\n \n \n function plot_by_time()\n [~,is] = sort(newcat2.Date);\n newcat2.sort(Date);\n cumu2=cumsum(misfitAngle(is));\n pl = plot(tmp,cumu2,'o');\n xtitle='Number of Eqs (sorted by time)';\n end\n \n function plot_by_strike()\n % [~,is] = sort(newcat2(:,15));\n [~,is] = sort(newcat2(:,end));\n newa2 = newcat2.subset(is) ;\n cumu2=cumsum(misfitAngle(is));\n pl = plot(newa2(:,16)-18.6,cumu2,'o');\n xtitle='Number of Eqs (sorted along strike)';\n var2=15;\n end\n \n function option_7()\n mi2 = mi ;\n cumu2=cumsum(mi2(:,2));\n pl = plot(tmp,cumu2,'o');\n xtitle='Number of Eqs ';\n end\nend", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/plotmi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3740948136963992}} {"text": "function outBfull()\n global config mem;\n current_layer = config.misc.current_layer;\n mem.grads{current_layer+1} = mem.deltas{current_layer+1} * mem.activations{current_layer}';\n mem.grads{current_layer+1+config.layer_num} = sum(mem.deltas{current_layer+1}, 2);\nend\n\n", "meta": {"author": "jimmy-ren", "repo": "vcnn_double-bladed", "sha": "a4de90e845875f6e30632f2e879d3afb81c0ebc1", "save_path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed", "path": "github-repos/MATLAB/jimmy-ren-vcnn_double-bladed/vcnn_double-bladed-a4de90e845875f6e30632f2e879d3afb81c0ebc1/layers_adapters/outBfull.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.37409481369639913}} {"text": "function res = removeObsRobpca(data,i,k,Hsets_min_i,same,factor_ind,csteps)\n\n%REMOVEOBSROBPCA is an auxiliary function to perform cross-validation with ROBPCA, \n% RPCR, RSIMPLS, RSIMCA (see cvRobpca.m, cvRpcr.m, cvRsimpls.m).\n%\n% Input: \n% data : the data set\n% i : the observation that is removed, index with respect to the whole data set.\n% k : the number of principal components that has to be calculated.\n% Hsets_min_i : contains H0_min_i, H1_min_i and Hfreq_min_i as first, second and third row respectively.\n% The h-subsets are implemented by means of indices of the observations in data_min_i, which is\n% is the original data set minus sample i. \n% same : structure : \n% same.value : indicates whether some part of this algorithm can be skipped (= 1) or not ( = 0). \n% same.res : if same.value = 1, then some additional information is needed. \n% factor : optional. default = 0, then the original consistency factor is used.\n% Else factor = 1, the consistency factor is adapted to the kmax approach.\n% csteps : optional structure: \n% csteps.value : 1 (default, then csteps are performed within robpca), 0 (no csteps are performed within robpca)\n% csteps.number : the number of csteps that need to be performed (default = 2).\n%\n% Output:\n% res is the result structure. It contains:\n% Pk_min_i : update of the loadingmatrix for a certain k when observation i is deleted.\n% Lk_min_i : update of the eigenvalues for a certain k when observation i is deleted.\n% muk_min_i : update of the center for a certain k when observation i is deleted.\n%\n% This function is part of LIBRA: the Matlab Library for Robust Analysis,\n% available at:\n% http://wis.kuleuven.be/stat/robust.html\n%\n% Written by S. Engelen\n\nrot = [];\ncenter = [];\nP1 = [];\n\nn = size(data,1);\np = size(data,2);\nh = size(Hsets_min_i,2) + 1;\n\nif nargin < 6 \n factor_ind = 0; \n csteps.number = 2; \n csteps.value = 1;\nelseif nargin == 6 \n csteps.number = 2; \n csteps.value = 1;\nend\n\ndata_min_i= removal(data,i,0);\nmu0 = mean(data);\ncenter = mu0;\n\nH0_min_j = Hsets_min_i(1,:);\nH1_min_t = Hsets_min_i(2,:);\n\nif ~same.value \n [PH0_min_i,TH0,LH0_min_i,rH0_min_i,centerX,mu1trafo]=kernelEVD(data_min_i(H0_min_j,:)); \n LH0_min_i = diag(LH0_min_i); \n \n % calculation of the projection\n % res.T2tilde = T2tilde; \n center = mu1trafo; \n rot = PH0_min_i; \n T2tilde = (data_min_i - repmat(mu1trafo,n-1,1))*PH0_min_i; \n T2tilde = T2tilde(:,1:k); \n rot = rot(:,1:k); \n \n % defining the outputstructure res: \n res.PH0_min_i = PH0_min_i; \n res.LH0_min_i = LH0_min_i; \n res.mu1trafo = mu1trafo;\nelse\n % defining the input structure input\n res = same.res; \n PH0_min_i = res.PH0_min_i; \n LH0_min_i = res.LH0_min_i; \n mu1trafo = res.mu1trafo; \n T2tilde = (data_min_i - repmat(mu1trafo,n-1,1))*PH0_min_i; \n center = mu1trafo; \n rot = PH0_min_i; \n rot = rot(:,1:k); \n T2tilde = T2tilde(:,1:k);\nend\n\nmah = libra_mahalanobis(T2tilde,zeros(1,k),'invcov',1./diag(LH0_min_i(1:k,1:k)));\noldobj = prod(diag(LH0_min_i(1:k,1:k)));P4 = eye(k);\n\nif csteps.value \n oldobj = prod(diag(LH0_min_i(1:k,1:k))); \n for j = 1:csteps.number \n [mahsort, indsort] = sort(mah); \n dataH1 = T2tilde(indsort(1:(h-1)),:); \n [P,T,L,r3,Xm,clmX] = classSVD(dataH1); \n obj = prod(L); \n T2tilde = (T2tilde - repmat(clmX,n-1,1))*P; \n center = center + clmX*rot'; \n rot = rot*P; \n mah = libra_mahalanobis(T2tilde,zeros(1,size(T2tilde,2)),'invcov',1./L); \n P4 = P4*P; \n if abs(oldobj - obj) > 1.e-12 \n oldobj = obj; \n else\n break \n end\n end\nelse\n obj = oldobj;\nend\n\n% extra reweighting:\nif k~=r3 \n XRc= data_min_i-repmat(center,n-1,1); \n Xtilde = T2tilde*rot'; \n Rdiff = XRc-Xtilde; \n for i=1:n \n odh(i,1)=norm(Rdiff(i,:)); \n end\n [m,s]=unimcd(odh.^(2/3),h); \n cutoffodh = sqrt(norminv(0.975,m,s).^3); \n indexset = find(odh<=cutoffodh)';\n [P,Threw,Lrew,rrew,Xmrew,clmX]=kernelEVD(data_min_i(indexset,:)); \n center = clmX; \n rot = P(:,1:k);\nend\nT2tilde = (data_min_i - repmat(center,n-1,1))*rot;\n\n% Perform mcdcov on some H-subsets:\n[res_min_i,raw_min_i] = mcdcov(T2tilde,'Hsets',Hsets_min_i,'h',h-1,'ntrial',250,'plots',0,'factor',1);\n% perform the last part of ROBPCA:\nif raw_min_i.objective < obj \n z = res_min_i;\nelse\n sortmah = sort(mah); \n if h==n \n factor=1; \n else\n if factor_ind == 1 \n factor = sortmah(h-1)/chi2inv((h-1)/size(T2tilde,1),size(T2tilde,2)/2); % adjusted factor. \n else\n factor = sortmah(h-1)/chi2inv((h-1)/size(T2tilde,1),size(T2tilde,2)); % non adjusted factor \n end\n end\n mah = mah/factor; \n weights = mah <= chi2inv(0.975,size(T2tilde,2)); \n [center_noMCD,cov_noMCD] = weightmecov(T2tilde,weights); \n mah = libra_mahalanobis(T2tilde,center_noMCD,'cov',cov_noMCD); \n z.flag = (mah <= chi2inv(0.975,size(T2tilde,2))); \n z.center = center_noMCD; \n z.cov = cov_noMCD;\nend\n\ncovf=z.cov;\ncenterf=z.center;\n\n% The final PC:\n[P6tilde,L6]=eig(covf);\n[L6,I]=greatsort(diag(L6));\nP6tilde=P6tilde(:,I);\nT_min_i=(T2tilde-repmat(centerf,n-1,1))*P6tilde;\n\nPk_min_i=rot(:,1:k)*P6tilde;\nLk_min_i = L6;\n\nres.Pk_min_i = Pk_min_i;\nres.Lk_min_i = Lk_min_i;\nres.muk_min_i = center + centerf*rot';\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/LIBRA/removeObsRobpca.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585669110203, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.37409480769960024}} {"text": "function [ y, j, f, ierror ] = yjf_check_english ( y, j, f )\n\n%*****************************************************************************80\n%\n%% YJF_CHECK_ENGLISH normalizes an English YJF date.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 06 March 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, J, real F, the YJF date.\n%\n% Output, integer IERROR, nonzero if there was an error.\n%\n [ y, j, ierror ] = yj_check_english ( y, j );\n\n if ( ierror ~= 0 )\n return\n end\n%\n% Force the fraction to lie between 0 and 1.\n%\n while ( f < 0.0 )\n f = f + 1.0\n j = j - 1;\n end\n\n while ( 1.0 <= f )\n f = f - 1.0;\n j = j + 1;\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/yjf_check_english.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.6654105720171531, "lm_q1q2_score": 0.3740781870290205}} {"text": "function [y] = ge(x, val)\n\ny = cell(size(x));\nfor k = 1:numel(x)\n y{k} = x{k}>=val;\nend \n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/cellfunction/@cell/ge.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857982, "lm_q2_score": 0.6654105653819836, "lm_q1q2_score": 0.3740781832988842}} {"text": "function c8_uniform_01_test ( )\n\n%*****************************************************************************80\n%\n%% C8_UNIFORM_01_TEST tests C8_UNIFORM_01.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 29 June 2006\n%\n% Author:\n%\n% John Burkardt\n%\n seed = 123456789;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'C8_UNIFORM_01_TEST\\n' );\n fprintf ( 1, ' C8_UNIFORM_01 computes pseudorandom complex values\\n' );\n fprintf ( 1, ' in the unit circle.\\n' );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' The initial seed is %d\\n', seed );\n fprintf ( 1, '\\n' );\n\n for i = 1 : 10\n [ x, seed ] = c8_uniform_01 ( seed );\n fprintf ( 1, ' %6d ( %f, %f )\\n', i, real ( x ), imag ( x ) );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/uniform/c8_uniform_01_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857982, "lm_q2_score": 0.6654105653819836, "lm_q1q2_score": 0.3740781832988842}} {"text": "%% QUAD_FSU uses the fsuClusterMatlab command to run the QUAD computation.\n%\n% Discussion:\n%\n% The arguments to fsuClusterMatlab mean:\n%\n% [] allows us to specify an output directory;\n% [] allows us to specify switches to the MOAB queue handler, such as more time.\n% 's' indicates this is a \"simple\" (task) job;\n% 'w' indicates that the MATLAB session should wait for completion;\n% task_num is the number of tasks;\n% @quad_task indicates the function we want to execute;\n% args contains input arguments to each of the tasks.\n%\n% The function \"quad_task\" must correspond to a MATLAB M-file \"quad_task.m\"\n% and that file must be in MATLAB's path.\n%\n% The easiest way to ensure that the file is in MATLAB's path is to\n% create a subdirectory called \"matlab\" immediately below your home directory,\n% and place the function file there (as well as any other files needed by the job).\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 02 April 2010\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'QUAD_FSU:\\n' );\n fprintf ( 1, ' Use MATLAB''s task computing on the FSU HPC cluster.\\n' );\n fprintf ( 1, ' Here, we estimate an integral over an interval by\\n' );\n fprintf ( 1, ' dividing the interval into subintervals.\\n' );\n\n n = 100001;\n a = 0.0;\n b = 1.0;\n\n task_num = 4;\n n_task = 1 + floor ( ( n - 1 ) / task_num );\n\n args = {};\n for task = 1 : task_num\n a_task = ( task - 1 ) / task_num;\n b_task = task / task_num;\n args{task} = { n_task, a_task, b_task };\n end\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Call fsuClusterMatlab:\\n' );\n\n results = fsuClusterMatlab ( [], [], 's', 'w', task_num, @quad_task, args )\n%\n% Convert RESULTS, which is a TASK_NUMx1 cell array, to\n% an ordinary MATLAB numeric array.\n%\n results = cell2mat ( results );\n%\n% Now we can use the SUM command to get our result.\n%\n q = sum ( results );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Quadrature result is %f\\n', q );\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/quad_tasks/quad_fsu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.6654105653819835, "lm_q1q2_score": 0.37407818329888404}} {"text": "function C=searchintial(X,method,varargin)\nswitch lower(method(1))\n case 's' \n K=varargin{1};\n C=X(randsample(size(X,1),K),:);\n case 'u' \n Xmins=min(X,[],1);\n Xmaxs=max(X,[],1);\n K=varargin{1};\n C=unifrnd(Xmins(ones(K,1),:), Xmaxs(ones(K,1),:));\nend", "meta": {"author": "decouples", "repo": "Matlab_deep_learning", "sha": "1b823b82686080e32b03e1f1a4648896bd6e3c44", "save_path": "github-repos/MATLAB/decouples-Matlab_deep_learning", "path": "github-repos/MATLAB/decouples-Matlab_deep_learning/Matlab_deep_learning-1b823b82686080e32b03e1f1a4648896bd6e3c44/\u7b2c 22 \u7ae0 \u57fa\u4e8e K-means \u805a\u7c7b\u7b97\u6cd5\u7684\u56fe\u50cf\u533a\u57df\u5206\u5272/searchintial.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37407817956874767}} {"text": "function f = abs(f)\n%ABS Absolute value of a CHEBFUN3.\n% ABS(F) returns the absolute value of a CHEBFUN3 object F. This function\n% gives an error if the function passes through or becomes numerically \n% close to zero.\n%\n% See also CHEBFUN3/COMPOSE.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif ( isempty(f) ) % check for empty CHEBFUN3.\n return \nend\n\nif ( isreal(f) )\n % Positive/negative test.\n [ss, ~, ispos] = singleSignTest(f); % Returns TRUE if there is no sign change.\n if ( ss )\n if (ispos)\n return\n else\n f = uminus(f);\n return\n end\n elseif( ~ss )\n error('CHEBFUN:CHEBFUN3:abs:notSmooth', ...\n 'Sign change detected. Unable to represent the result.');\n end\nelse\n % Call the constructor for complex f:\n f = compose(f, @abs);\nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3/abs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6654105454764747, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37407817210847477}} {"text": "% MCMCACF - autocorrelation plots\n% Copyright (c) 1998, Harvard University. Full copyright in the file Copyright\n% \n% This is not a function, but a way to get acf plots for MCMC runs.\n%\n% S = mcmcsumm(A) contains S.acf, a matrix of the autocorrelations.\n%\n% So, mcmctrace(S.acf) will plot the autocorrelations.\n%\n% See also: MCMCSUMM, MCMCTRACE\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/198-mcmc/mcmc/mcmcacf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791787121629465, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3739608014316573}} {"text": "function featureReducedS = reduceDirFeatures(featuresAllDirS, reduceType)\n% function featureReducedS = reduceDirFeatures(featuresAllDirS, reduceType)\n%\n% This function combines the directional feature values into a single\n% value. The reduceType specifies how the different directions should be\n% combined. The supported reduceTypes are 'avg', 'max', 'min', 'std',\n% 'mad', 'iqr'\n%\n% APA, 4/11/2017\n\nfiledNamC = fieldnames(featuresAllDirS);\n\nfor iField = 1:length(filedNamC)\n fieldName = filedNamC{iField};\n switch lower(reduceType)\n case 'avg'\n featureReducedS.(fieldName) = mean([featuresAllDirS.(fieldName)]);\n case 'min'\n featureReducedS.(fieldName) = min([featuresAllDirS.(fieldName)]);\n case 'max'\n featureReducedS.(fieldName) = max([featuresAllDirS.(fieldName)]);\n case 'std'\n featureReducedS.(fieldName) = std([featuresAllDirS.(fieldName)]);\n case 'mad'\n featureReducedS.(fieldName) = mad([featuresAllDirS.(fieldName)]);\n case 'iqr'\n featureReducedS.(fieldName) = mad([featuresAllDirS.(fieldName)]);\n end\nend\n\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanMetrics/heterogenity_metrics/reduceDirFeatures.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37396079428061463}} {"text": "function [sta_index, orid_index, eqtimes, eqindices, nstations, norigins] = arrivals_rearrange(arrivals, stations)\n%% Arrange info from earthquake catalogue into a more useful format\n\n% We want a column for each station and a row for each earthquake (origin).\n% Store arrival times in this format for now, so we can later replace them\n% with loaded waveforms.\n\n% Number of stations. Use user-specified list and order (rather than\n% unique values from arrivals table) for greater flexibility.\nnstations = length(stations);\n\n% Number of earthquakes\nnorigins = length(arrivals.unique_orids);\n\n% Allocate an array to store arrival times\neqtimes = zeros(norigins,nstations);\n\n% Allocate an additional array to store the indices, so we can retrieve\n% other data (e.g. event type) later\neqindices = zeros(norigins,nstations);\n\n% Now go through each arrival and place it in the array\nfor n = 1:length(arrivals.orid)\n\tsta_index = find(strcmp(arrivals.sta{n},stations),1);\n\torid_index = find(unique_orids == arrivals.orid(n),1); % Could do something more efficient here; orid is sorted in ascending order so a find is not really necessary\n\teqtimes(orid_index,sta_index) = arrivals.atime(n);\n\teqindices(orid_index,sta_index) = n;\nend", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/contributed_antelope/import_events/arrivals_rearrange.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37396079428061463}} {"text": "% LIONSIMBA example script\n% Multiple cells scenario: simulates three cells in serial connection.\n\n% This file is part of the LIONSIMBA Toolbox\n%\n%\tOfficial web-site: \thttp://sisdin.unipv.it/labsisdin/lionsimba.php\n% \tOfficial GitHUB: \thttps://github.com/lionsimbatoolbox/LIONSIMBA\n%\n% LIONSIMBA: A Matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control\n% Copyright (C) 2016-2018 :Marcello Torchio, Lalo Magni, Davide Raimondo,\n% University of Pavia, 27100, Pavia, Italy\n% Bhushan Gopaluni, Univ. of British Columbia, \n% Vancouver, BC V6T 1Z3, Canada\n% Richard D. Braatz, \n% Massachusetts Institute of Technology, \n% Cambridge, Massachusetts 02142, USA\n% \n% Main code contributors to LIONSIMBA 2.0:\n% Ian Campbell, Krishnakumar Gopalakrishnan,\n% Imperial college London, London, UK\n%\n% LIONSIMBA is a free Matlab-based software distributed with an MIT\n% license.\n\n% Clear the workspace\nclear\n\n% Define the integration times.\nt0 = 0;\ntf = 10^4;\n% Define the parameters structure.\nparam{1} = Parameters_init;\nparam{2} = Parameters_init;\nparam{3} = Parameters_init;\n\n% Modify the initial SOC of cell #1\nparam{1}.cs_n_init = 0.95*param{1}.cs_n_init;\n\n% Double the length of the positive electrode of cell #2\nparam{2}.len_p=2*param{2}.len_p;\n\n% Simulate the battery of 3 cells\nresults = startSimulation(t0,tf,[],-30,param);\n\nncells = length(param);\n\nv_tot = 0;\nfor i=1:ncells\n v_tot = v_tot + results.Phis{i}(:,1)-results.Phis{i}(:,end);\nend\n%% Plot the results\n\nfigure(1)\nsubplot(2,ncells,(1:ncells))\nplot(results.time{1},v_tot,'LineWidth',6)\ngrid on\nbox on\nxlabel('Time [s]')\nylabel('Pack Voltage [V]')\nhold on\nxlim([0 results.time{1}(end)])\nylim([2.5*length(param) 4.2*length(param)])\n\nfigure_index = ncells+1;\nfor i=1:ncells\n subplot(2,ncells,figure_index)\n plot(results.time{i},results.Voltage{i},'--','LineWidth',3)\n grid on\n box on\n xlabel('Time [s]')\n ylabel(['Cell #',num2str(i),' Voltage [V]'])\n figure_index = figure_index+1;\n ylim([2.5 4.2])\n xlim([0 results.time{1}(end)])\nend\n\nn_plots = 1;\nfigure_index = 1;\nfigure(2)\nfor i=1:ncells\n subplot(ncells,n_plots,figure_index)\n ce_indices = [1 results.parameters{i}.Np+1 results.parameters{i}.Np+results.parameters{i}.Ns results.parameters{i}.Np+results.parameters{i}.Ns+results.parameters{i}.Nn];\n plot(results.time{i},results.ce{i}(:,ce_indices),'LineWidth',3)\n grid on\n box on\n if(figure_index==ncells)\n xlabel('Time [s]')\n else\n% set(gca,'xtick',[])\n set(gca,'xticklabel',[])\n end\n ylabel(['Cell #',num2str(i),' - c_{e} [mol/m^3}'])\n xlim([0 results.time{1}(end)])\n ylim([0 2200])\n figure_index = figure_index+1;\nend\n\n\nn_plots = 1;\nfigure_index = 1;\nfigure(3)\nfor i=1:ncells\n subplot(ncells,n_plots,figure_index)\n phie_indices = [1 results.parameters{i}.Np+1 results.parameters{i}.Np+results.parameters{i}.Ns results.parameters{i}.Np+results.parameters{i}.Ns+results.parameters{i}.Nn];\n plot(results.time{i},results.Phie{i}(:,phie_indices),'LineWidth',3)\n grid on\n box on\n if(figure_index==ncells)\n xlabel('Time [s]')\n else\n% set(gca,'xtick',[])\n set(gca,'xticklabel',[])\n end\n ylabel(['Cell #',num2str(i)])\n xlim([0 results.time{1}(end)])\n ylim([-0.3 0])\n figure_index = figure_index+1;\nend\n\n\nn_plots = 1;\nfigure_index = 1;\nfigure(4)\nfor i=1:ncells\n subplot(ncells,n_plots,figure_index)\n cs_indices = [1 results.parameters{i}.Np results.parameters{i}.Np+1 results.parameters{i}.Np+results.parameters{i}.Nn];\n plot(results.time{i},results.cs_surface{i}(:,cs_indices),'LineWidth',3)\n grid on\n box on\n if(figure_index==ncells)\n xlabel('Time [s]')\n else\n% set(gca,'xtick',[])\n set(gca,'xticklabel',[])\n end\n ylabel(['Cell #',num2str(i)])\n xlim([0 results.time{1}(end)])\n ylim([100 51554])\n figure_index = figure_index+1;\nend\n\n\nn_plots = 1;\nfigure_index = 1;\nfigure(5)\nfor i=1:ncells\n subplot(ncells,n_plots,figure_index)\n cs_indices = [1 results.parameters{i}.Np results.parameters{i}.Np+1 results.parameters{i}.Np+results.parameters{i}.Nn];\n plot(results.time{i},results.Temperature{i}(:,end),'LineWidth',3)\n grid on\n box on\n if(figure_index==ncells)\n xlabel('Time [s]')\n else\n% set(gca,'xtick',[])\n set(gca,'xticklabel',[])\n end\n ylabel(['Cell #',num2str(i),' - Temp [K]'])\n xlim([0 results.time{1}(end)])\n ylim([296 315])\n figure_index = figure_index+1;\nend\n", "meta": {"author": "lionsimbatoolbox", "repo": "LIONSIMBA", "sha": "d1cf29a4dcfa8e7824fc2416ac3e6ec760bb9b66", "save_path": "github-repos/MATLAB/lionsimbatoolbox-LIONSIMBA", "path": "github-repos/MATLAB/lionsimbatoolbox-LIONSIMBA/LIONSIMBA-d1cf29a4dcfa8e7824fc2416ac3e6ec760bb9b66/example_scripts/multipleCells.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37396079428061463}} {"text": "function relaxPreprocess(dataDir, outDir, mtOffsetFreqs, excludeScans)\n%\n% relaxPreprocess(dataDir, outDir, mtOffsetFreqs, excludeScans)\n% \n% This file computes the T1 map (in seconds) of data obtained using\n% the TOF sequence. Also saved are:\n% S0: unsaturated reference map\n% PD: a map that includes spin-density (M0), scanner scaling constant\n% (G), and T2*: PD = M0 * G * exp(-TE / T2*).\n%\n% SEE ALSO:\n% \n% relaxAlignRefToAnat.m to align the reference image output by this\n% function to a structural anatomy template image. \n% \n% relaxMtFit.m to fit the f and k maps to the output of this function.\n%\n% HISTORY:\n% 2007.02.?? Nikola Stikov wrote it.\n% 2007.03.01 RFD: restructured the code and added auto-detection of\n% most scan params.\n\n\nif(~exist('dataDir','var')||isempty(dataDir))\n dataDir = fullfile(pwd,'raw');\nend\nif(~exist('outDir','var')||isempty(outDir))\n outDir = fileparts(dataDir);\n if(isempty(outDir)) outDir = pwd; end\nend\nif(~exist('mtOffsetFreqs','var')||isempty(mtOffsetFreqs))\n mtOffsetFreqs = [];\n error('Auto-detection of the mtOffsetFreqs is not implemented yet!');\nend\nif(~exist('excludeScans','var')||isempty(excludeScans))\n excludeScans = [];\nend\n\nshowFigs = false;\n\ns = dicomLoadAllSeries(dataDir);\n\n% Exclude scans that don't match most scans imSize\nfor(ii=1:length(s))\n sz(ii) = prod(size(s(ii).imData));\nend\nbadScans = find(sz~=median(sz));\nif(~isempty(badScans))\n disp(['Adding ' num2str(badScans) ' to exclude list due to size mis-match.']);\n excludeScans = [excludeScans badScans];\nend\n\n%% Apply exclusion list\n%\nif(~isempty(excludeScans))\n s(excludeScans) = [];\nend\n\nif(showFigs)\n for(ii=1:length(s))\n showMontage(s(ii).imData);\n set(gcf,'name',[s(ii).desc '(' num2str(s(ii).seriesNum) ')']);\n end\nend\n\n% Align all the images\ndisp('Aligning all series to the first...');\nbb = [1 1 1; size(s(1).imData)];\nfor(ii=2:length(s))\n xform = mrAnatRegister(s(ii).imData,s(1).imData);\n s(ii).imData = mrAnatResliceSpm(s(ii).imData, xform, bb, [1 1 1], [7 7 7 0 0 0], 0);\n s(ii).imData(isnan(s(ii).imData)|s(ii).imData<0) = 0;\nend\n\n%% Process the T1 relaxometry scans\n%\nt1Inds = find([s.mtOffset]==0);\nnT1 = length(t1Inds);\n\nmeanOfT1s = mean(cat(4,s(t1Inds).imData),4);\n%showMontage(mn);\n[brainMask,checkSlices] = mrAnatExtractBrain(meanOfT1s,[],0.25);\n%figure;image(checkSlices);\n\n% We save as we go\nxform = s(t1Inds(1)).imToScanXform;\ndtiWriteNiftiWrapper(uint8(brainMask), xform, fullfile(outDir,'brainMask'));\ndtiWriteNiftiWrapper(meanOfT1s, xform, fullfile(outDir,'ref'));\nclear meanOfT1s;\n\nbrainInds = find(brainMask);\nnVox = length(brainInds);\n\n%% Process MT scans\n%\n% For these, we average multiple repeats/\nmtInds = find([s.mtOffset]~=0);\nnMt = length(mtInds);\n\n% for(ii=1:length(mtInds)), for(jj=1:length(mtInds))\n% \trms(ii,jj) = sqrt(mean((s(mtInds(ii)).imData(brainInds)-s(mtInds(jj)).imData(brainInds)).^2));\n% end, end\nmtOffsets = unique(mtOffsetFreqs);\nfor(ii=1:length(mtOffsets))\n mt = mean(cat(4,s(mtInds(mtOffsetFreqs==mtOffsets(ii))).imData),4);\n dtiWriteNiftiWrapper(mt, xform, fullfile(outDir,sprintf('MT_%02dkHz',mtOffsets(ii))));\nend\nclear mt;\n\ntheta = [s(t1Inds).flipAngle]*pi/180;\nx = zeros(nVox,nT1);\ny = zeros(nVox,nT1);\nfor(ii=1:nT1)\n y(:,ii) = abs(s(t1Inds(ii)).imData(brainInds)./sin(theta(ii)));\n x(:,ii) = abs(s(t1Inds(ii)).imData(brainInds)./tan(theta(ii)));\nend\n\n% Following is a slow loop. Can it be vectorized?\ndisp('Fitting T1 estimates for each voxel (SLOW!)');\nt1 = zeros(nVox,1);\ntic;\nfor(ii=1:nVox)\n if(mod(ii,20000)==0)\n fprintf(' Processed %d of %d voxels (%0.1f %%) in %0.1f secs...\\n',ii,nVox,ii/nVox*100,toc);\n end\n if(max(y(ii,:)>0.001))\n d = polyfit (x(ii,:), y(ii,:), 1);\n t1(ii) = d(1);\n end\nend\n\n% Why do an abs here? All the negative values seem to be junk.\n%t1 = abs(t1);\nt1(t1<0) = NaN;\nT1 = (-log(t1)/20e-3).^-1;\n% Clip to plausible values\nT1(isnan(T1)|T1<0.2) = 0.2;\nT1(T1>20) = 20;\n% Get a PD map for each flip angle\nPDmap = zeros(nVox,nT1);\nfor(ii=1:nT1)\n PDmap(:,ii) = s(t1Inds(ii)).imData(brainInds)./sin(theta(ii)).*((1-cos(theta(ii)).*t1)./(1-t1));\nend\n% Could do least squares for better PDmap?\nPD = mean(PDmap,2);\n% WARNING: following clip values are empirically determined with no\n% theoretical basis!\nPD(PD<0) = 0;\nPD(PD>12000) = 12000;\n\n% compute the S0 for the flip angle used in the MT scans\ntheta = s(mtInds(1)).flipAngle*pi/180;\nS0 = PD.*sin(theta).*(1-exp(-32e-3./T1))./(1-cos(theta).*exp(-32e-3./T1));\n\nim=zeros(size(brainMask)); im(brainInds) = T1; T1 = im;\nim=zeros(size(brainMask)); im(brainInds) = PD; PD = im;\nim=zeros(size(brainMask)); im(brainInds) = S0; S0 = im;\n\ndtiWriteNiftiWrapper(T1, xform, fullfile(outDir,'T1'));\ndtiWriteNiftiWrapper(PD, xform, fullfile(outDir,'PD'));\ndtiWriteNiftiWrapper(S0, xform, fullfile(outDir,'S0'));\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrQuant/relaxometry/relaxPreprocess.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37396079428061463}} {"text": "% The COBRAToolbox: testDeletionStudy.m\n%\n% Purpose:\n% - tests the basic functionality of singleGeneDeletion/doubleGeneDeletion/singleRxnDeletion\n% Makes sure that these resultant values are correct:\n% singleGeneDeletion - hasEffect, delRxns, grRateKO, grRateWT\n% doubleGeneDeletion - grRatioDble, grRateKO, grRateWT\n% singleRXDeletion - hasEffect, delRxn, grRateKO, grRateWT\n% returns 1 if all are correct, else 0\n%\n% Author:\n% - Original file: Joseph Kang 11/16/09\n% - CI integration: Laurent Heirendt\n\nglobal CBTDIR\n\n% save the current path\ncurrentDir = pwd;\n\n% initialize the test\nfileDir = fileparts(which('testDeletionStudy'));\ncd(fileDir);\n\ntol = 1e-6;\n\n%load model\nmodel = getDistributedModel('ecoli_core_model.mat');\n\n% list of solver packages\nsolverPkgs = {'tomlab_cplex', 'gurobi', 'glpk'};\n%Load reference data.\nload('rxnDeletionData.mat');\n\nfor k = 1:length(solverPkgs)\n\n fprintf(' -- Running testfindBlockedReaction using the solver interface: %s ... ', solverPkgs{k});\n\n solverLPOK = changeCobraSolver(solverPkgs{k}, 'LP', 0);\n\n if solverLPOK\n\n fprintf('\\n*** Test basic single gene deletion: ***\\n\\n');\n\n %deleting gene for 'ENO')\n [grRatio, grRateKO, grRateWT, hasEffect, delRxns, fluxSolution] = singleGeneDeletion(model, 'FBA', {model.genes{1:4},'b2779'});\n\n % check if correct hasEffect value\n assert(isequal(hasEffect,hasEffectSD))\n\n % check if correctly deleted reactions\n assert(isequal(delRxns,delRxnsSD))\n\n % check if correct grRateKO value\n assert(all(abs(grRateKO-grRateSdKO) < tol))\n\n % check if correct grRateWT value\n assert(abs(grRateWT-grRateWTRef) < tol)\n\n %Now, we combine gene 1 and two. 1 has no effect, so 1 and 2 should\n %yield the same as 2.\n modelForUTest = model;\n modelForUTest.genes([1,5]) = strcat(model.genes(1),{'.1','.2'});\n targetValues = [1 2 3 4 ];\n %Check functionality of uniqueGene Flag\n [grRatio, grRateKO, grRateWT, hasEffect, delRxns] = singleGeneDeletion(modelForUTest,'FBA',modelForUTest.genes([1 2 3 4]),true,true);\n % check if correct hasEffect value\n assert(isequal(hasEffect,hasEffectSD(targetValues)))\n\n % check if correctly deleted reactions\n assert(isequal(delRxns,delRxnsSD(targetValues)))\n\n % check if correct grRateKO value\n assert(all(abs(grRateKO-grRateSdKO(targetValues)) < tol))\n\n % check if correct grRateWT value\n assert(abs(grRateWT-grRateWTRef) < tol)\n\n [grRatioDble, grRateKO, grRateWT] = doubleGeneDeletion(model, 'FBA', model.genes(1:4), {'b2779','b2287'});\n %Check against reference\n assert(all(all(abs(grRatioDble-grRatioDbRef) < tol)));\n\n % check if correct grRateDble value\n assert(all(all(abs(grRateKO-grRateDbKO) < tol)));\n\n % check if correct grRateWT value\n assert(abs(grRateWT - grRateWTRef) < tol);\n\n %% singleRxnDeletion Test\n fprintf('\\n\\nStarting singleRxnDeletion test:\\n');\n\n [test_grRatio, test_grRateKO, test_grRateWT, test_hasEffect, test_delRxn]= singleRxnDeletion(model, 'FBA');\n\n grRatio_Rxn_Ref(isnan(grRatio_Rxn_Ref)) = -1;\n test_grRatio(isnan(test_grRatio)) = -1;\n\n % check if correct grRatio values\n for i = 1:length(grRatio_Rxn_Ref)\n assert(abs(grRatio_Rxn_Ref(i) - test_grRatio(i)) < tol)\n end\n\n grRateKO_Rxn_Ref(isnan(grRateKO_Rxn_Ref)) = -1;\n test_grRateKO(isnan(test_grRateKO)) = -1;\n\n % check if correct grRateKO values\n for i = 1:length(grRateKO_Rxn_Ref)\n assert(abs(grRateKO_Rxn_Ref(i) - test_grRateKO(i)) < tol)\n end\n\n % check if correct grRateWT values\n assert(abs(grRateWTRef - test_grRateWT) < tol)\n\n % check if correct delRxn values\n assert(isequal(delRxn_Rxn_Ref, test_delRxn))\n end\n\n % output a success message\n fprintf('Done.\\n');\nend\n\n% change back to root folder\ncd(currentDir)\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/verifiedTests/analysis/testDeletionStudy/testDeletionStudy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37396078712957187}} {"text": "report_this_filefun(mfilename('fullpath'));\n\n[lat,lon] = meshgrat(tmap,tmapleg);\n\n\nren = interp2(X2,Y2,Z,lon,lat);\n\nl = ren < 0.01;\nren(l) = 0.01;\nmi = min(min(ren));\n\nl = isnan(ren);\nren(l) = mi-2;\n\n\nfigure_w_normalized_uicontrolunits('pos',[150 500 1000 700])\n\nhold on; axis off\naxesm('MapProjection','eqaconic','MapParallels',[],...\n 'MapLatLimit',[33.5 35 ],'MapLonLimit',[-117.3 -116])\n\nmeshm(ren,tmapleg,size(tmap),tmap);\n\ndaspectm('m',8);\ntightmap\nview([0 90])\n% hl = lightangle(45,25);\nhl = camlight\nlighting phong\nset(gca,'projection','perspective');\n\nload worldlo\n%h = displaym(POline); set(h(1),'color',[0.9 0.9 0.9],'Linewidth',1.7)\n% h2 = displaym(PPpoint);\n% h = displaym(PPtext); trimcart(h);\n\nplotm(faults(:,2), faults(:,1),'k','Linewidth',1.4);\n% plotm(mainfault(:,2), mainfault(:,1),'m','Linewidth',3);\n\npl = plotm(a.Latitude,a.Longitude,'ok');\nset(pl,'LineWidth',0.3,'MarkerSize',2,...\n 'MarkerFaceColor','k','MarkerEdgeColor','k')\npl = plotm(main(:,2),main(:,1),'hw');\nset(pl,'LineWidth',1,'MarkerSize',20,...\n 'MarkerFaceColor','w','MarkerEdgeColor','k')\n\n\nzdatam(handlem('allline'),10000) % keep line on surface\n%zdatam(handlem('alltext'),10000) % keep line on surface\ncaxis([0.008 0.09])\nj = jet;\n%j = j(64:-1:1,:);\nj = [ [ 0.85 0.9 0.9] ; j];\n\ncolormap(j); brighten(0.3);\n\naxis off; set(gcf,'color','w')\n\nsetm(gca,'ffacecolor','w')\nsetm(gca,'fedgecolor','k','flinewidth',3);\n\nsetm(gca,'mlabellocation',0.5)\nsetm(gca,'meridianlabel','on')\nsetm(gca,'plabellocation',0.5)\nsetm(gca,'parallellabel','on')\nsetm(gca,'Fontcolor','k','Fontweight','bold','FontSize',14,'Labelunits','dm')\n\nh5 = colorbar;\nset(h5,'position',[0.7 0.15 0.01 0.3],'TickDir','out','Ycolor','k','Xcolor','k',...\n 'Fontweight','bold','FontSize',14);\nset(gcf,'Inverthardcopy','off');\n\n\n\n\n\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/deleteme/dramap_lanhaz2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178686187839, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3739607871295718}} {"text": "function [Flux, FBAsolution, model] = testPathway(model, MetIn, MetOut, AdditionalMetsInorOut, ObjectiveOption)\n% Allows the user to see if given one metabolite `A`,\n% downstream metabolite `B` can be made made. Additional sinks can be added\n% for co-factors if needed\n% `A -->-->-->-->--> B`\n%\n% USAGE:\n%\n% [Flux, FBAsolution, model] = testPathway(model, MetIn, MetOut, AdditionalMetsInorOut, ObjectiveOption)\n%\n% INPUTS:\n% model: COBRA model structure\n% MetIn: The input metabolite(s) (`A`)\n% MetOut: The output metabolite (`B`)\n%\n% OPTIONAL INPUTS:\n% AdditionalMetsInorOut: Additional metabolites for which sinks will be added\n% ObjectiveOption: Boolean:\n%\n% * 1 = objective will be production of `B` (default)\n% * 0 = use objective in model\n%\n% OUTPUTS:\n% Flux: The rate of `B` production\n% FBAsolution: Solution to the FBA problem\n% model: COBRA model with sinks in it\n%\n% .. Author: Nathan Lewis, Feb 16 2009\n\nif ~iscell(MetIn)\n Met = MetIn; clear MetIn; MetIn{1} = Met;\nend\nif ~iscell(MetOut)\n Met = MetOut; clear MetOut; MetOut{1} = Met;\nend\nif nargin > 3\n if ~iscell(AdditionalMetsInorOut)\n Met = AdditionalMetsInorOut; clear AdditionalMetsInorOut; AdditionalMetsInorOut{1} = Met;\n end\n % add sink rxns for all AdditionalMetsInorOut\n for i = 1:length(AdditionalMetsInorOut)\n model = addReaction(model,cat(2,'Tempsink_',AdditionalMetsInorOut{i}),{AdditionalMetsInorOut{i} },-1 ,true);\n end\nend\nif nargin <5,ObjectiveOption=1;end\n\nfor i = 1:length(MetIn) % add inputs\n model = addReaction(model,cat(2,'TempInput_',MetIn{i}),{MetIn{i} },1 ,false);\nend\n[model, rxnExists] = addReaction(model,cat(2,'TempOutput_',MetOut{1}),{MetOut{1} },-1 ,false);\nif (ObjectiveOption==1 && isempty(rxnExists))\n\tmodel = changeObjective(model,cat(2,'TempOutput_',MetOut{1}));\nelseif (ObjectiveOption == 1 && ~isempty(rxnExists))\n\tmodel = changeObjective(model,model.rxns(rxnExists));\nend\nFBAsolution = optimizeCbModel(model,'max');\nFlux = FBAsolution.f;\nif ~isempty(FBAsolution.x)\n%printFluxVector(model,FBAsolution.x);\nelse display('zero flux in network')\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/reconstruction/testPathway.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37387750463714753}} {"text": "function [vacc, hacc, vcm, hcm, pg] = crfTestCV3(imsegs, pvSP, phSP, adjlist, pE, crfw, param, edgelen, priors)\n\nncv = numel(crfw);\nnimages = numel(imsegs);\n\nfor f = 1:nimages\n disp(num2str(f))\n c = ceil(f/nimages*ncv); \n pg{f} = crfTestImage(pvSP{f}, phSP{f}, adjlist{f}, pE{f}, crfw{c}, param{c}, edgelen{f}, priors{c});\n [tmpvacc2, tmphacc2] = mcmcProcessResult(imsegs(f), pg(f)); \n [tmpvacc1, tmphacc1] = mcmcProcessResult(imsegs(f), {[pvSP{f}(:, 1) repmat(pvSP{f}(:, 2), 1, 5).*phSP{f} pvSP{f}(:, 3)]}); \n disp([num2str(tmpvacc1) '-->' num2str(tmpvacc2) ' ' num2str(tmphacc1) '-->' num2str(tmphacc2)])\n im = rgb2gray(im2double(imread(['../images/all_images/' imsegs(f).imname])));\n figure(1), displayLabels(imsegs(f), pvSP{f}, im);\n figure(2), displayLabels(imsegs(f), pg{f}, im); \n drawnow;\n pause(1)\nend\n[vacc, hacc, vcm, hcm] = mcmcProcessResult(imsegs, pg);\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction displayLabels(imsegs, pg, im)\nif size(pg, 2)==7\n v2 = pg(:, 1);\n v1 = sum(pg(:, 2:6), 2);\n v3 = pg(:, 7);\nelse\n v2 = pg(:, 1);\n v1 = pg(:, 2);\n v3 = pg(:, 3);\nend\nlim = cat(3, v1(imsegs.segimage), v2(imsegs.segimage), v3(imsegs.segimage));\nimagesc(lim*0.5 + repmat(im, [1 1 3])*0.5), axis image\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction pg = crfTestImage(pvSP, phSP, adjlist, pE, crfw, param, edgelen, crfpriors)\n\n \n% get f1(y1, y2) = log(P(y1|x)) + log(P(y2|x))\n% and f2(y1, y2) = I(y1=y2)*log(P(y1=y2|x)) + I(y1~=y2)*log(P(y1~=y2|x))\n\nnpair = size(adjlist, 1);\n\nf1 = zeros(npair, 7, 7);\nf2 = zeros(npair, 7, 7);\nf3 = zeros(npair, 7, 7);\n\npg = [pvSP(:, 1) repmat(pvSP(:, 2), 1, 5).*phSP pvSP(:, 3)]; \ns1 = adjlist(:, 1);\ns2 = adjlist(:, 2); \n\nnb = zeros(size(pg, 1), 1);\nedgeperc = zeros(numel(s1), 2);\nnb = zeros(size(pg, 1), 1);\nfor k = 1:numel(s1)\n nb(s1(k)) = nb(s1(k))+1;\n nb(s2(k)) = nb(s2(k))+1;\n edgeperc(k, 1) = edgelen(s1(k), s2(k)) / (sum(edgelen(s1(k), :))+sum(edgelen(:, s1(k))));\n edgeperc(k, 2) = edgelen(s1(k), s2(k)) / (sum(edgelen(s2(k), :))+sum(edgelen(:, s2(k))));\nend\n\nfor k1 = 1:7\n for k2 = 1:7\n kp = param(k1 + (k2-1)*7, :);\n f1(:, k1, k2) = log(pg(s1, k1))./nb(s1) + log(pg(s2, k2))./nb(s2);\n if k1==k2\n f2(:, k1, k2) = ...\n log(kp(3)./(1+exp(-kp(1)-kp(2)*(log(pE)-log(1-pE))))).*...\n (edgeperc(:, 1) + edgeperc(:, 2));\n %f2(:, k1, k2) = log(1);\n else\n f3(:, k1, k2) = ...\n log(kp(3)./(1+exp(-kp(1)-kp(2)*(log(pE)-log(1-pE))))).*...\n (edgeperc(:, 1) + edgeperc(:, 2));\n %f2(:, k1, k2) = log(0.000001);\n end\n end\nend\n \nnsp = size(pvSP, 1);\nadjmat = zeros(nsp, nsp);\npotentials = cell(nsp, nsp);\n\nevidences = 1/7*ones(7, nsp); % exp(crfw(1)*log(pg'));\n%evidences = exp(log(pg'));\n\n%f2 = f2./nb(:, 1).^crfw(end) + f2./nb(:, 2).^crfw(end);\n%f3 = f3./nb(:, 1).^crfw(end) + f3./nb(:, 2).^crfw(end);\n\nfor k = 1:numel(s1)\n adjmat(s1(k), s2(k)) = 1; \n adjmat(s2(k), s1(k)) = 1; \n potentials{s1(k), s2(k)} = 0.5*squeeze(exp(crfw(1)*f1(k, :, :) + crfw(2)*f2(k, :, :) + crfw(3)*f3(k, :, :) + reshape(crfpriors, [1 7 7])));\n potentials{s2(k), s1(k)} = potentials{s1(k), s2(k)}'; \nend\n\n% mrf2 = mk_mrf2(adjmat, potentials);\n% engine = belprop_mrf2_inf_engine(mrf2);\n% engine = enter_soft_evidence(engine, evidences);\n% \n% pg = zeros(nsp, 7);\n% for s = 1:nsp\n% disp(marginal_nodes(engine, s))\n% pg(s, :) = marginal_nodes(engine, s)'; \n% end\n\n[pg, niter] = bp_mrf2_old(adjmat, potentials, evidences, 'max_iter', 50); \npg = pg';", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/GeometricContext/crf/crfTestCV3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37387750463714753}} {"text": "%% Copyright (C) 2014, 2016 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym numel (@var{x})\n%% Return number of elements in symbolic array.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% A = [1 2 x; x 3 4];\n%% numel(A)\n%% @result{} 6\n%% @end group\n%% @end example\n%%\n%% @seealso{@@sym/length, @@sym/size}\n%% @end defmethod\n\nfunction n = numel(x)\n\n %disp('numel call')\n d = size(x);\n n = prod(d);\n\nend\n\n\n%!test\n%! a = sym([1 2 3]);\n%! assert(numel(a) == 3);\n\n%!test\n%! % 2D array\n%! a = sym([1 2 3; 4 5 6]);\n%! assert(numel(a) == 6);\n\n%!test\n%! % empty\n%! a = sym([]);\n%! assert(numel(a) == 0);\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/numel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.7090191214879992, "lm_q1q2_score": 0.37387749815268667}} {"text": "function sclMask3M = perturbImageVolume(mask3M,scale)\n% function sclMask3M = perturbImageVolume(mask3M,scale)\n%\n% Scales mask3M by amount scale.\n%\n% APA, 2/25/2019\n\n\nsclMask3M = zeros(size(mask3M),'like',mask3M);\nsizV = size(mask3M);\niCtr = round(sizV(1)/2);\njCtr = round(sizV(2)/2);\n% scale = normrnd(0,2,1);\nfor slc = 1:size(mask3M,3)\n% sizV = size(mask3M(:,:,slc));\n% [iV,jV] = find3d(mask3M(:,:,slc));\n% maskM = mask3M(min(iV):max(iV),min(jV):max(jV),slc);\n maskM = mask3M(:,:,slc);\n% di = max(iV) - min(iV);\n% dj = max(jV) - min(jV);\n% iCtr = ceil((max(iV) + min(iV))/2);\n% jCtr = ceil((max(jV) + min(jV))/2);\n% minRow = -di*pctJitter/100;\n% maxRow = di*pctJitter/100;\n% minCol = -dj*pctJitter/100;\n% maxCol = dj*pctJitter/100;\n% numRows = minRow + (maxRow-minRow)*rand(1);\n% numCols = minCol + (maxCol-minCol)*rand(1);\n% minAng = -pctJitter/100*180;\n% maxAng = pctJitter/100*180;\n% angl = minAng + (maxAng-minAng)*rand(1);\n% scl = (100-pctJitter)/100 + 2*pctJitter/100*rand(1);\n% maskM = imtranslate(maskM,[numRows,numCols],'nearest','FillValues',0);\n% maskM = imrotate(maskM,angl,'bilinear');\n maskM = imresize(maskM, scale, 'nearest');\n newSiz = size(maskM);\n iStart = 1;\n jStart = 1;\n iEnd = 0;\n jEnd = 0;\n iMin = iCtr - ceil(newSiz(1)/2);\n if iMin < 0\n iStart = 1-iMin;\n iMin = 1;\n else\n iMin = iMin + 1;\n end\n iMax = iCtr + floor(newSiz(1)/2);\n if iMax > sizV(1)\n iEnd = iMax - sizV(1);\n iMax = sizV(1);\n end\n jMin = jCtr - ceil(newSiz(2)/2);\n if jMin < 0\n jStart = 1-jMin;\n jMin = 1;\n else\n jMin = jMin + 1;\n end\n jMax = jCtr + floor(newSiz(2)/2);\n if jMax > sizV(2)\n jEnd = jMax - sizV(2);\n jMax = sizV(2);\n end\n %mask3M(:,:,slc) = 0;\n sclMask3M(iMin:iMax,jMin:jMax,slc) = maskM(iStart:end-iEnd,jStart:end-jEnd);\nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanMetrics/heterogenity_metrics/perturbImageVolume.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819874558603, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3737879259272638}} {"text": "function id = mapWindowIndices(map,mapWindow)\n%\n% id = mapWindowIndices(map,mapWindow)\n%\n% Returns indices of vector map within mapWindow\n%\n% if mapWindow(1)mapWindow(2) returns map >= mapWindow(1) or map <= mapWindow(2)\n%\n% djh, 7/98\n\nif diff(mapWindow)>0\n id = find(map>=mapWindow(1) & map<=mapWindow(2));\nelse\n id = find(map>=mapWindow(1) | map<=mapWindow(2));\nend\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/UI/Thresholds/mapWindowIndices.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.611381973294151, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.37378791726905003}} {"text": "function writePLY(filename,V,F,mode)\n % WRITEPLY wrapper for write_ply\n %\n % Inputs:\n % filename path to output .ply file\n % V #V by 3 list of mesh vertex positions\n % F #F by 3 list of mesh triangle indices\n % mode followed by\n % 'ascii' ASCII text data\n % {'binary_little_endian'} binary data, little endian\n % 'binary_big_endian' binary data, big endian\n %\n %\n \n if nargin < 4\n mode = 'binary_little_endian';\n end\n\n fid = fopen(filename,'wt');\n fprintf(fid,'ply\\nformat %s 1.0\\n',mode);\n fprintf(fid,'element vertex %d\\n',size(V,1));\n fprintf(fid,'property double x\\n');\n fprintf(fid,'property double y\\n');\n fprintf(fid,'property double z\\n');\n fprintf(fid,'element face %d\\n',size(F,1));\n fprintf(fid,'property list int int vertex_indices\\n');\n fprintf(fid,'end_header\\n');\n FF = [size(F,2)*ones(size(F,1),1) F-1];\n switch mode\n case 'ascii'\n % do nothing\n fprintf(fid,'%0.17f %0.17f %0.17f\\n',V');\n format = [repmat('%d ',1,size(FF,2)) '\\n'];\n fprintf(fid,format,FF');\n case {'binary_little_endian','binary_big_endian'}\n fclose(fid);\n switch mode\n case 'binary_little_endian'\n fid = fopen(filename,'a','ieee-le');\n case 'binary_big_endian'\n fid = fopen(filename,'a','ieee-be');\n end\n fwrite(fid,V','double');\n fwrite(fid,FF','int');\n otherwise\n error('Unsupported format: %s',mode);\n end\n fclose(fid);\n\n %% OLD 200x slower way (possible to produce slightly smaller files and control\n %% over precision)\n %write_ply(V,F,filename,mode);\nend\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_gptoolbox/mesh/writePLY.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3737662360086086}} {"text": "function rs=surrogate_test(s1,ntests,method,func)\n\n%tstoolbox/@signal/surrogate_test\n% Syntax:\n% * rs=surrogate_test(s, ntests, method,func)\n%\n% Input Arguments:\n% * s - has to be a real, scalar signal\n% * ntests - is the number of surrogate data sets to create\n% * method - method to generate surrogate data sets:\n% + 1: surrogate1\n% + 2: surrogate2\n% + 3: surrogate3\n% * func - string with matlab-code, have to return a signal object\n% with a scalar time series. The data to process is a signal object\n% referred by the qualifier s (see example).\n%\n% Output Arguments:\n% * rs is a signal object with a three dimensional time series. The\n% first component is the result of the func function applied to the\n% original data set s. The second component is the mean of the\n% result of the func function applied to the ntests surrogate data\n% sets. The third component is the standard deviation. There is a\n% special plothint ('surrerrorbar') for the view function to show\n% this result in the common way.\n%\n% surrogate_test runs an automatic surrogate data test task. It\n% generates ntests surrogate data sets an performs the func function to\n% each set. func is a string with matlab-code who returns a signal s\n% with a scalar time series.\n%\n% Example:\n%st = surrogate_test(s, 10, 1, 1, 'largelyap(embed(s,3,1,1), 128,20,10);');\n%\n% Copyright 1997-2001 DPI Goettingen, License http://www.physik3.gwdg.de/tstool/gpl.txt\n\n\n\ns=s1;\ns=eval(func);\nx=[data(s)];\nfor tests=1:ntests\n switch(method)\n case 1\n s=surrogate1(s1);\n case 2\n s=surrogate2(s1);\n case 3\n s=surrogate3(s1);\n otherwise\n s=surrogate1(s1);\n end\n s=eval(func);\n x=[x data(s)];\nend\n\na=[];\nfor test=1:length(x(:,1))\n a=[a; mean(x(test,2:end)) std(x(test,2:end))];\nend\n\na=[x(:,1) a];\n\n\n\nrs = signal(core(a),s1);\t% special constructor calling syntax for working routines\n%rs=setaxis(rs,1,a);\nrs = addhistory(rs, ['Computed ' num2str(ntests) ' surrogate data function values']);\nrs = setplothint(rs, 'surrerrorbar');\nrs = addcommandlines(rs, 's = surrogate_test(s', ntests,method,func);\n\nreturn\n\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/Toolboxes/OpenTSTOOL/tstoolbox/@signal/surrogate_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3737662360086086}} {"text": "% NDIMS - number of dimension of memory mapped underlying array\n%\n% Author: Arnaud Delorme, SCCN, INC, UCSD, Nov. 2008\n\n% Copyright (C) 2008 Arnaud Delorme, SCCN, INC, UCSD\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\nfunction res = ndims(obj)\n\n if length(obj.dimensions) <= 2 || all(obj.dimensions(3:end) == 1), res = 2;\n else res = length(obj.dimensions);\n end\n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/@mmo/ndims.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631698328916, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3737662360086086}} {"text": "function [m,n] = size(a,dim)\n%SIZE Implements size(a) for intervals\n%\n% [m,n] = size(a,dim)\n%\n% functionality as Matlab function size, second argument dim optional\n%\n\n% written 10/16/98 S.M. Rump\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n if a.complex\n if nargout==2\n [m n] = size(a.mid);\n else\n if nargin==1\n m = size(a.mid);\n else\n m = size(a.mid,dim);\n end\n end\n else\n if nargout==2\n [m n] = size(a.inf);\n else\n if nargin==1\n m = size(a.inf);\n else\n m = size(a.inf,dim);\n end\n end\n end\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/intval/@intval/size.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631698328916, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3737662360086086}} {"text": "function result = UTCtimestamp()\n\n\ntime_unix = java.lang.System.currentTimeMillis;\n\n% http://stackoverflow.com/questions/12661862/converting-epoch-to-date-in-matlab\n\ntime_reference = datenum('1970', 'yyyy'); \ntime_matlab = time_reference + time_unix / 8.64e7;\nresult = datestr(time_matlab, 'yyyy-mm-ddTHH:MM:SSZ');\n\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/MatlabTurkTool/UTCtimestamp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878414043814, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37376622743345733}} {"text": "function [vor, dist] = spm_voronoi(img, seeds, distance)\n% Geodesic Discrete Voronoi Diagram - a compiled routine\n% FORMAT [vor, dist] = spm_voronoi(img, seeds, distance)\n%\n% img - binary image: > 0 : inside\n% <= 0 : outside \n% seeds - {n x 3} array of the n seeds positions [in voxels]\n% distance - type of chamfer distance to use ('d4', 'd8', 'd34' or 'd5711')\n% (default is 'd34')\n%\n% vor - Geodesic Discrete Voronoi diagram \n% (label is equal to the index of the seed in 'seeds')\n% dist - Geodesic Distance map of img with seeds as objects\n%\n% Compute the geodesic discrete Voronoi Diagram of an image of labelled \n% objects using front propagation. The distance map is also available \n% on output.\n%__________________________________________________________________________\n% Copyright (C) 2008-2014 Wellcome Trust Centre for Neuroimaging\n\n% Guillaume Flandin\n% $Id: spm_voronoi.m 6079 2014-06-30 18:25:37Z spm $\n\n%-This is merely the help file for the compiled routine\nerror('spm_voronoi.c not compiled - see Makefile')\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_voronoi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768249, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.37375755071241357}} {"text": "function Y = log(X)\n % Symbolic matrix element-wise natural logarithm.\n\n\n % Convert inputs to SymExpression\n % X = SymExpression(X);\n \n % construct the operation string\n sstr = ['Log[' X.s ']'];\n \n % create a new object with the evaluated string\n Y = SymExpression(sstr);\nend\n", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/matlab/symbolic/@SymExpression/log.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.3737575507124135}} {"text": "% Monopole Point Source In A Homogeneous Propagation Medium Example\n%\n% This example provides a simple demonstration of using k-Wave for the\n% simulation and detection of a time varying pressure source within a\n% two-dimensional homogeneous propagation medium. It builds on the\n% Homogeneous Propagation Medium and Recording The Particle Velocity\n% examples.\n%\n% author: Bradley Treeby\n% date: 2nd December 2009\n% last update: 2nd September 2012\n% \n% This function is part of the k-Wave Toolbox (http://www.k-wave.org)\n% Copyright (C) 2009-2014 Bradley Treeby and Ben Cox\n\n% This file is part of k-Wave. k-Wave is free software: you can\n% redistribute it and/or modify it under the terms of the GNU Lesser\n% General Public License as published by the Free Software Foundation,\n% either version 3 of the License, or (at your option) any later version.\n% \n% k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY\n% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n% FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for\n% more details. \n% \n% You should have received a copy of the GNU Lesser General Public License\n% along with k-Wave. If not, see . \n\nclear all;\n\n% =========================================================================\n% SIMULATION\n% =========================================================================\n\n% create the computational grid\nNx = 128; % number of grid points in the x (row) direction\nNy = 128; % number of grid points in the y (column) direction\ndx = 50e-3/Nx; \t% grid point spacing in the x direction [m]\ndy = dx; % grid point spacing in the y direction [m]\nkgrid = makeGrid(Nx, dx, Ny, dy);\n\n% define the properties of the propagation medium\nmedium.sound_speed = 1500; % [m/s]\nmedium.alpha_coeff = 0.75; % [dB/(MHz^y cm)]\nmedium.alpha_power = 1.5; \n\n% create the time array\n[kgrid.t_array, dt] = makeTime(kgrid, medium.sound_speed);\n\n% define a single source point\nsource.p_mask = zeros(Nx, Ny);\nsource.p_mask(end - Nx/4, Ny/2) = 1;\n\n% define a time varying sinusoidal source\nsource_freq = 0.25e6; % [Hz]\nsource_mag = 2; % [Pa]\nsource.p = source_mag*sin(2*pi*source_freq*kgrid.t_array);\n\n% filter the source to remove high frequencies not supported by the grid\nsource.p = filterTimeSeries(kgrid, medium, source.p);\n\n% define a single sensor point\nsensor.mask = zeros(Nx, Ny);\nsensor.mask(Nx/4, Ny/2) = 1;\n\n% define the acoustic parameters to record\nsensor.record = {'p', 'p_final'};\n\n% run the simulation\nsensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);\n\n% =========================================================================\n% VISUALISATION\n% =========================================================================\n\n% plot the final wave-field\nfigure;\nimagesc(kgrid.y_vec*1e3, kgrid.x_vec*1e3, sensor_data.p_final + source.p_mask + sensor.mask, [-1 1]);\ncolormap(getColorMap);\nylabel('x-position [mm]');\nxlabel('y-position [mm]');\naxis image;\n\n% plot the simulated sensor data\nfigure;\n[t_sc, scale, prefix] = scaleSI(max(kgrid.t_array(:)));\n\nsubplot(2, 1, 1), plot(kgrid.t_array*scale, source.p, 'k-');\nxlabel(['Time [' prefix 's]']);\nylabel('Signal Amplitude');\naxis tight;\ntitle('Input Pressure Signal');\n\nsubplot(2, 1, 2), plot(kgrid.t_array*scale, sensor_data.p, 'r-');\nxlabel(['Time [' prefix 's]']);\nylabel('Signal Amplitude');\naxis tight;\ntitle('Sensor Pressure Signal');", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/K-wave/k-Wave/examples/example_tvsp_homogeneous_medium_monopole.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768249, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.37375755071241346}} {"text": "function y=design(x)\n% DESIGN \n% DESIGN(x) creates a matrix of 1 and 0 corresponding to x\n% y: Rows(x) x Max(x)\n i=1:1:rows(x);\n k=ones(rows(x),1);\n s=sparse(i,x,k,rows(x),max(x));\n y=full(s);", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/173-gauss/gauss/design.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3737575507124134}} {"text": "function [c,r] = interactive()\n%INTERACTIVE Illustrates inputs from keyboard and mouse.\n% [C,R] = INTERACTIVE() accepts from the keyboard an image filename of\n% the form 'filename.ext' (with single or double quotes). Upon typing\n% Enter (Return), the function displays the image, and activates\n% crosshairs superimposed on the image. The mouse is used to control\n% the location of the crosshairs. The coordinates [C,R] of the center\n% of the crosshairs are captured by a left click from the mouse. Data\n% acquisition is terminated by typing Enter (Return) on the keyboard.\n% The output, [C,R], consists of two column vectors of size K-by-1,\n% containing the column and corresponding row coordinates,\n% respectively. K is the number of samples taken. This function\n% assumes that the image file is in the MATLAB path.\n%\n% Copyright 2002-2020 Gatesmark\n%\n% This function, and other functions in the DIPUM Toolbox, are based \n% on the theoretical and practical foundations established in the \n% book Digital Image Processing Using MATLAB, 3rd ed., Gatesmark \n% Press, 2020.\n%\n% Book website: http://www.imageprocessingplace.com\n% License: https://github.com/dipum/dipum-toolbox/blob/master/LICENSE.txt\n \n% Get image.\ndisp(' '); % Blank separator line.\nimageName = input('Type image file name, then Enter (Return): ');\n \n% Read the image from disk.\nf = imread(imageName);\n \n% Display instructions.\ndisp(' '); % Blank separator line.\ndisp('Image and crosshairs will be displayed next. Use the mouse')\ndisp('to control the location of the crosshairs, and left-click to')\ndisp('sample the coordinates.')\ndisp(' '); % Blank separator line.\n \n% Message to user:\ninput('Type Enter (Return) to start AND to stop when finished:');\n% Wait for user to type Enter (Return).\n \n% Display the image and activate the crosshairs.\nfigure, imshow(f)\n[c,r] = ginput; \nclose % Close the image window.\n", "meta": {"author": "dipum", "repo": "dipum-toolbox", "sha": "9ce653c4c0c4b7c56e46194c24bf152db4ab6832", "save_path": "github-repos/MATLAB/dipum-dipum-toolbox", "path": "github-repos/MATLAB/dipum-dipum-toolbox/dipum-toolbox-9ce653c4c0c4b7c56e46194c24bf152db4ab6832/dipum/interactive.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318479832805, "lm_q2_score": 0.6187804407739559, "lm_q1q2_score": 0.373701215092524}} {"text": "function p = prior_loggaussian(varargin)\n%PRIOR_LOGGAUSSIAN Log-Gaussian prior structure \n% \n% Description\n% P = PRIOR_LOGGAUSSIAN('PARAM1', VALUE1, 'PARAM2', VALUE2, ...) \n% creates Log-Gaussian prior structure in which the named\n% parameters have the specified values. Any unspecified\n% parameters are set to default values.\n% \n% P = PRIOR_LOGGAUSSIAN(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)\n% modify a prior structure with the named parameters altered\n% with the specified values.\n%\n% Parameters for Log-Gaussian prior [default]\n% mu - location [0]\n% s2 - scale squared (variance) [1]\n% mu_prior - prior for mu [prior_fixed]\n% s2_prior - prior for s2 [prior_fixed]\n%\n% See also\n% PRIOR_*\n%\n% Copyright (c) 2000-2001,2010 Aki Vehtari\n% Copyright (c) 2010 Jaakko Riihim\u00e4ki\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'PRIOR_LOGGAUSSIAN';\n ip.addOptional('p', [], @isstruct);\n ip.addParamValue('mu',0, @(x) isscalar(x));\n ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));\n ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);\n ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));\n ip.parse(varargin{:});\n p=ip.Results.p;\n \n if isempty(p)\n init=true;\n p.type = 'Log-Gaussian';\n else\n if ~isfield(p,'type') && ~isequal(p.type,'Log-Gaussian')\n error('First argument does not seem to be a valid prior structure')\n end\n init=false;\n end\n\n % Initialize parameters\n if init || ~ismember('mu',ip.UsingDefaults)\n p.mu = ip.Results.mu;\n end\n if init || ~ismember('s2',ip.UsingDefaults)\n p.s2 = ip.Results.s2;\n end\n % Initialize prior structure\n if init\n p.p=[];\n end\n if init || ~ismember('mu_prior',ip.UsingDefaults)\n p.p.mu=ip.Results.mu_prior;\n end\n if init || ~ismember('s2_prior',ip.UsingDefaults)\n p.p.s2=ip.Results.s2_prior;\n end\n\n if init\n % set functions\n p.fh.pak = @prior_loggaussian_pak;\n p.fh.unpak = @prior_loggaussian_unpak;\n p.fh.lp = @prior_loggaussian_lp;\n p.fh.lpg = @prior_loggaussian_lpg;\n p.fh.recappend = @prior_loggaussian_recappend;\n end\n\nend\n\nfunction [w, s, h] = prior_loggaussian_pak(p)\n \n w=[];\n s={};\n h=[];\n if ~isempty(p.p.mu)\n w = p.mu;\n s=[s; 'Log-Gaussian.mu'];\n h = 1;\n end\n if ~isempty(p.p.s2)\n w = [w log(p.s2)];\n s=[s; 'log(Log-Gaussian.s2)'];\n h = [h 1];\n end\nend\n\nfunction [p, w] = prior_loggaussian_unpak(p, w)\n\n if ~isempty(p.p.mu)\n i1=1;\n p.mu = w(i1);\n w = w(i1+1:end);\n end\n if ~isempty(p.p.s2)\n i1=1;\n p.s2 = exp(w(i1));\n w = w(i1+1:end);\n end\nend\n\nfunction lp = prior_loggaussian_lp(x, p)\n \n lJ = -log(x); % =log(1/x)=log(|J|) of transformation\n xt = log(x); % transformed x\n lp = 0.5*sum(-log(2*pi) -log(p.s2)- 1./p.s2 .* sum((xt-p.mu).^2,1)) +sum(lJ);\n \n if ~isempty(p.p.mu)\n lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);\n end\n if ~isempty(p.p.s2)\n lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);\n end\nend\n\nfunction lpg = prior_loggaussian_lpg(x, p)\n \n lJg = -1./x; % gradient of log(|J|) of transformation\n xt = log(x); % transformed x\n xtg = 1./x; % derivative of transformation\n lpg = xtg.*(1./p.s2).*(p.mu-xt) + lJg;\n \n if ~isempty(p.p.mu)\n lpgmu = sum((1./p.s2).*(xt-p.mu)) + p.p.mu.fh.lpg(p.mu, p.p.mu);\n lpg = [lpg lpgmu];\n end\n if ~isempty(p.p.s2)\n lpgs2 = (sum(-0.5*(1./p.s2-1./p.s2.^2.*(xt-p.mu).^2 )) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;\n lpg = [lpg lpgs2];\n end\nend\n\nfunction rec = prior_loggaussian_recappend(rec, ri, p)\n% The parameters are not sampled in any case.\n rec = rec;\n if ~isempty(p.p.mu)\n rec.mu(ri,:) = p.mu;\n end\n if ~isempty(p.p.s2)\n rec.s2(ri,:) = p.s2;\n end\nend \n", "meta": {"author": "gpstuff-dev", "repo": "gpstuff", "sha": "114937ec0a201306489a66cbba38283e722fb998", "save_path": "github-repos/MATLAB/gpstuff-dev-gpstuff", "path": "github-repos/MATLAB/gpstuff-dev-gpstuff/gpstuff-114937ec0a201306489a66cbba38283e722fb998/dist/prior_loggaussian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6187804337438502, "lm_q1q2_score": 0.3737012020246673}} {"text": "% take the covariance matrix of input trajectories\n\nfunction output = F_logdet(input)\n\nprecision = class(gather(input(1)));\nif ~strcmpi(precision, 'double') % we need to use double precision\n input = double(input);\nend\n\n[D,M,N] = size(input);\nif N==1\n output = log(det(input));\nelse\n % to be implemented\nend\n\nif strcmpi(precision, 'single')\n output = single(output);\nend\n\nend", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/F_logdet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7905303285397349, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.3736706240680549}} {"text": "%\n%\n% DIFFERENTIAL SEARCH ALGORITHM (DSA) (in MATLAB)\n% STANDARD VERSION of DSA (16.July.2013)\n%\n%\n% usage : > ds(method,fnc,mydata,popsize,dim,low,up,maxcycle)\n%\n% method\n%--------------------------------------------------------------\n% 1: Bijective DSA (B-DSA)\n% 2: Surjective DSA (S-DSA)\n% 3: Elitist DSA (strategy 1) (E1-DSA)\n% 4: Elitist DSA (strategy 2) (E2-DSA)\n% if method=[. . . ...], Hybrid-DSA (H-DSA)\n%--------------------------------------------------------------\n% example : \n% ds(1,'circlefit',mydata,10,3,-10,10,2000) ; % B-DSA\n% ds(2,'circlefit',mydata,10,3,-10,10,2000) ; % S-DSA\n% ds(3,'circlefit',mydata,10,3,-10,10,2000) ; % E1-DSA\n% ds(4,'circlefit',mydata,10,3,-10,10,2000) ; % E2-DSA\n% ds([1 2],'circlefit',mydata,10,3,-10,10,2000) ; % Hybrid-DSA, in this case B-DSA and S-DSA are hybridized.\n%--------------------------------------------------------------\n% Please cite this article as;\n% P.Civicioglu, \"Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm\", Computers & Geosciences, 46 (2012), 229-247.\n% P.Civicioglu, \"Understanding the nature of evolutionary search algorithms\", Additional technical report for the project of 110Y309-Tubitak,2013, Ankara, Turkey.\n%\n% \n%\n%\n%--------------------------------------------------------------\n%{\n19.March.2013\nCopyright Notice\nCopyright (c) 2012, Pinar Civicioglu\nAll rights reserved.\nRedistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:\n * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.\n * Redistributions in binary form must reproduce the copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution\n \nTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n%}\n\n\nfunction ds(method,fnc,mydata,size_of_superorganism,size_of_one_clan,low_habitat_limit,up_habitat_limit,epoch)\n\n% size_of_superorganism ; size of population.\n% size_of_one_clan ; size of problem dimension (1,2,3,...,d), where each clan (i.e. sub-superorganism) includes d-individuals.\n% mydata ; additional parameters for objective function, use mydata=[], if it is not needed. See Best-Fit Circle example (circlefit.m) for usage of mydata.\n\n%Initialization\n\n% control of habitat limits\nif numel(low_habitat_limit)==1,\n low_habitat_limit=low_habitat_limit*ones(1,size_of_one_clan);\n up_habitat_limit=up_habitat_limit*ones(1,size_of_one_clan);\nend\n\n\n% generate initial individuals, clans and superorganism.\nsuperorganism=genpop(size_of_superorganism,size_of_one_clan,low_habitat_limit,up_habitat_limit);\n% success of clans/superorganism\nfit_superorganism=feval(fnc,superorganism,mydata);\n\n\nfor epk=1:epoch\n \n\n % SETTING OF ALGORITHMIC CONTROL PARAMETERS\n % Trial-pattern generation strategy for morphogenesis; 'one-by-one morphogenesis'. \n % p1=0.0*rand; % i.e., 0.0 <= p1 <= 0.0\n % p2=0.0*rand; % i.e., 0.0 <= p2 <= 0.0\n \n % Trial-pattern generation strategy for morphogenesis; 'one-or-more morphogenesis'. (DEFAULT)\n p1=0.3*rand; % i.e., 0.0 <= p1 <= 0.3\n p2=0.3*rand; % i.e., 0.0 <= p2 <= 0.3\n \n %-------------------------------------------------------------------\n \n [direction,msg]=generate_direction(method(randi(numel(method))),superorganism,size_of_superorganism,fit_superorganism);\n \n map=generate_map_of_active_individuals(size_of_superorganism,size_of_one_clan,p1,p2);\n \n %-------------------------------------------------------------------\n % Recommended Methods for generation of Scale-Factor; R \n % R=4*randn; % brownian walk\n % R=4*randg; % brownian walk\n % R=lognrnd(rand,5*rand); % brownian walk\n R=1./gamrnd(1,0.5); % pseudo-stable walk\n % R=1/normrnd(0,5); % pseudo-stable walk\n\n %-------------------------------------------------------------------\n \n % bio-interaction (morphogenesis) \n stopover=superorganism+(R.*map).*(direction-superorganism);\n\n\n % Boundary Control\n stopover=update(stopover,low_habitat_limit,up_habitat_limit); \n \n % Selection-II\n fit_stopover=feval(fnc,stopover,mydata);\n ind=fit_stopover %10.16f\\n',msg,epk,globalminimum)\n \nend\n\n\nfunction pop=genpop(a,b,low,up)\npop=ones(a,b);\nfor i=1:a\n for j=1:b \n pop(i,j)=rand*(up(j)-low(j))+low(j);\n end\nend\n\n\nfunction p=update(p,low,up)\n[popsize,dim]=size(p);\nfor i=1:popsize\n for j=1:dim\n % first (standard)-method\n if p(i,j)up(j), if randup(j), p(i,j)=rand*(up(j)-low(j))+low(j); end\n else\n if p(i,j)up(j), p(i,j)=up(j); end \n end\n %}\n end \nend\n\n\nfunction [direction,msg]=generate_direction(method,superorganism,size_of_superorganism,fit_superorganism);\n switch method\n case 1, \n % BIJECTIVE DSA (B-DSA) (i.e., go-to-rnd DSA); \n % philosophy: evolve the superorganism (i.e.,population) towards to \"permuted-superorganism (i.e., random directions)\" \n direction=superorganism(randperm(size_of_superorganism),:); msg=' B-DSA';\n case 2, \n % SURJECTIVE DSA (S-DSA) (i.e., go-to-good DSA)\n % philosophy: evolve the superorganism (i.e.,population) towards to \"some of the random top-best\" solutions\n ind=ones(size_of_superorganism,1); \n [null_,B]=sort(fit_superorganism); \n for i=1:size_of_superorganism, ind(i)=B(randi(ceil(rand*size_of_superorganism),1)); end; \n direction=superorganism(ind,:); msg=' S-DSA'; \n case 3,\n % ELITIST DSA #1 (E1-DSA) (i.e., go-to-best DSA)\n % philosophy: evolve the superorganism (i.e.,population) towards to \"one of the random top-best\" solution\n [null,jind]=sort(fit_superorganism); ibest=jind(ceil(rand*size_of_superorganism)); msg='E1-DSA'; \n direction=repmat(superorganism(ibest,:),[size_of_superorganism 1]); \n case 4,\n % ELITIST DSA #2 (E2-DSA) (i.e., go-to-best DSA)\n % philosophy: evolve the superorganism (i.e.,population) towards to \"the best\" solution\n [null_,ibest]=min(fit_superorganism); msg='E2-DSA';\n direction=repmat(superorganism(ibest,:),[size_of_superorganism 1]); \n end\nreturn\n \n \nfunction map=generate_map_of_active_individuals(size_of_superorganism,size_of_one_clan,p1,p2);\n % strategy-selection of active/passive individuals\n map=zeros(size_of_superorganism,size_of_one_clan);\n if rand\np1 = [10 10];\np2 = [20 10];\np3 = [20 20];\np4 = [10 20];\nsquare = [p1;p2;p3;p4];\n\nexpanded5 = [5 5;25 5;25 25;5 25];\nexpanded = expandPolygon(square, 5);\ntestCase.assertTrue(length(expanded)==1);\ntestCase.assertTrue(distancePolygons(expanded{1}, expanded5)<1e-14);\n\nfunction testOverlap(testCase)\n\n% a polygon whose expansion overlaps at critical distance 10\npoly = [10 10;190 10;190 140;110 140;110 120;150 120;150 50;50 50;50 100;90 100;90 160;10 160];\n\n% small value: only one outline\nexpanded = expandPolygon(poly, 5);\ntestCase.assertTrue(length(expanded)==1);\n\n% value>10: two outlines\nexpanded = expandPolygon(poly, 20, 'cleanupLoops', true);\ntestCase.assertTrue(length(expanded)==2);\n\n% value>30: the inner outline disappear\nexpanded = expandPolygon(poly, 35, 'cleanupLoops', true);\ntestCase.assertTrue(length(expanded)==1);\n\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/tests/polygons2d/test_expandPolygon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.6513548646660543, "lm_q1q2_score": 0.373668221448067}} {"text": "%compute dratioarealength\n\nfunction [data,units]=compute_dratioarealength(trx,n)\n\nlarvae=trx.exp2flies{n};\nnumlarvae=numel(larvae);\ndratioarealength=cell(1,numlarvae);\nfor i=1:numlarvae\n larva=larvae(i);\n dratioarealength{1,i}=(trx(larva).ratioarealength(2:end)-trx(larva).ratioarealength(1:end-1))./trx(larva).dt;\nend\n\nunits=parseunits('mm/s');\ndata=dratioarealength;", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/perframe/larva_compute_perframe_features/compute_dratioarealength.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3736682214480669}} {"text": "function M = modelDiagnostics2(finput,varargin)\n% M = modelDiagnostics2(finput,optional arguments)\n%\n% M = modelDiagnostics(stimList,'stimList','all','ISI',1.2,'TR',2,'contrasts',[1 1 -1 -1;1 -1 1 -1],'screen')\n%\n%M = \n% stimlist: your original list of conditions\n% delta: delta matrix sampled at .01 seconds\n% model: model sampled at .01 seconds\n% modelatTR: model sampled at TR\n% smoothed: temporally smoothed model at TR\n% conmodel: predictors for contrasts\n% consmooth: temporally smoothed predictors for contrasts\n% power: power (abs(fft)) matrix for smoothed model\n% conPower: power matrix for smoothed contrasts\n% energy: sum of squared deviations from mean for each predictor\n% conEnergy: sum of squared deviations from mean for each contrast\n% eff: efficiency of design. 1/trace(xtxi)\n% resampleeffinf: efficiency loss due to resampling compared to TR = 1 s. eff(TR=1) / eff(TR)\n% smootheffinf: loss of efficiency due to smoothing; eff(nosmooth) / eff(smooth)\n% varbeta: variance of each individual beta\n% coneff: efficiency of contrast set\n% convarbeta: efficiency of each contrast beta\n% vif: variance inflation factors for predictors\n% conVif: variance inflation factors for contrasts\n% cond: condition number of model; larger is worse, > 30 is bad\n% conCond: condition number for contrast set\n% colin: correlation coefficients between individual predictors\n% conColin: correlation coefficients between contrasts\n% cbalfreqs: counterbalancing frequencies up to 3rd order\n% freq: frequencies with which each stimulus type occurs\n%\n% options: inptType is 'stimList', 'sampledModel','plot' (plot only)\n% outptType is 'all', 'short'\n%\n%\n% More examples:\n% M = modelDiagnostics(M.stimlist,'stimList','all','ISI',.85,'TR',2,'contrasts',[1 1 -1 -1],'screen')\n% M2 = modelDiagnostics(M,'plot')\n%\n% Tor Wager, 11/17/01\n\n%------------------------------------------------------------------------------\n% Set up arguments and default values\n%------------------------------------------------------------------------------\nprint2screen = 1;\noutptType = 'all';\nisfilt = 'n';\ndoverb = 0;\nxc = [];\n\nfor i = 1:length(varargin)\n if isstr(varargin{i})\n switch varargin{i}\n case 'ISI', ISI = varargin{i+1};\n case 'TR', TR = varargin{i+1};\n case 'HRF', HRF = varargin{i+1};\n case 'HPlength', HPlength = varargin{i+1};\n case 'LPsmooth',LPsmooth = varargin{i+1};\n case 'contrasts',contrasts = varargin{i+1};\n\t\tcase 'saturate',satval = varargin{i+1};\n\t\tcase 'contrastweights',contrastweights = varargin{i+1};\n\t\tcase 'maxOrder',maxOrder = varargin{i+1};\n\t\tcase 'xc',xc = varargin{i+1};\n\t\tcase 'screen',print2screen = 1;\n\t\tcase 'noplot',print2screen = 0;\n\t\tcase 'brief',outptType = 'brief';\n\t\tcase 'plot',outptType = 'plot';\n\t\tcase 'verbose',doverb = 1;\t\t\n end\n end\nend\n\n\nif doverb,disp('Computing model descriptives.'),end\n\n% -----------------------------------------------------------------------------------\n% * determine output type and just plot if only plot is specified\n% -----------------------------------------------------------------------------------\n\nswitch outptType\ncase 'all'\n dopower = 1;doenergy = 1;doeff = 1;dovif = 1;docondnum = 1; dohrf = 1;,\n docolin = 1; docbal = 1;dofreq = 1;dotimes = 0;\ncase 'brief'\n if doverb,disp('Brief output selected.'),end\n dopower = 0; doenergy = 0; doeff = 0; dovif = 0; docondnum = 0; docolin = 1; \n docbal = 0; dofreq = 1; dotimes = 0; dohrf = 0;\ncase 'plot'\n\tM = finput;,if doverb,disp('Using already-computed M and plotting.'),end\n\t\n\tif ~isfield(M.ga,'TR'),M.ga.TR = input('M.ga.TR not found: Enter TR in s: ');,end\n\tif ~isfield(M.ga,'HPlength'),M.ga.HPlength = input('M.ga.HPlength not found: Enter HPlength in s: ');,end\n\t\n\t% plot predictors\n plotvarious(M,M.ga.TR,'Predictors')\n\n\t% make Q structure with contrast information\n Q.model = M.model * M.contrasts';\n try,Q.smoothed = M.consmooth;,catch,disp('Error: contrasts should be empty but they''re not?'),contrasts,end\n\tQ.modelatTR = resample(Q.model,1,M.ga.TR*10);\n\n\tif isempty(M.ga.HPlength), specstring = 'none';,else specstring = 'specify';,end\n\t[S,KL,KH] = use_spm_filter(M.ga.TR,size(Q.modelatTR,1),'hrf',specstring,M.ga.HPlength); \n\tif isempty(KH),KH = eye(size(Q.modelatTR));,end\n Q.filtered = Q.modelatTR - KH*(KH'*Q.modelatTR);\n Q.delta = M.delta * M.contrasts(:,1:end-1)';\n\n\t% plot contrasts\n\tplotvarious(Q,M.ga.TR,'Contrasts')\n\n return\n\t\notherwise eval(['help modelDiagnostics']),error('unknown output type')\nend % end switch\n\n\n% 1. get every finput type to the stage of model at TR\n\n% -----------------------------------------------------------------------------------\n% * determine input type and set up.\n% -----------------------------------------------------------------------------------\nif \t\tisstruct(finput),inptType = 'Mstruct';\nelseif \tsize(finput,2) == 1, inptType = 'stimList';\nelseif \tsize(finput,2) > 1, inptType = 'model'\nelse\terror('Illegal input.')\t\nend\n\nswitch inptType\ncase 'Mstruct'\n\tif isfield(finput,'ga'),opt = finput.ga;\n\telse opt = finput;\n\tend\n\t\n\tM = finput;\n\t\n if isfield(M,'contrasts'), contrasts = M.contrasts;, end\n \n N = fieldnames(opt);\n for i = 1:length(N)\n eval([N{i} ' = opt.' N{i} ';'])\n end\n \n\tif ~isfield(M,'stimlist'), error('M must have stimlist field.'), end\n\t%if isfield(opt,'ISI'), ISI = opt.ISI;, end\n\t%if isfield(opt,'TR'), TR = opt.TR;, end\n\t%if isfield(opt,'nonlinthreshold'), satval = opt.nonlinthreshold;, end\n\t%if isfield(opt,'HPlength'), HPlength = opt.HPlength;, end\n\t%if isfield(opt,'LPsmooth'), LPsmooth = opt.LPsmooth;, end\n\t%if isfield(opt,'contrastweights'), contrastweights = opt.contrastweights;, end\n\t%if isfield(opt,'maxOrder'), maxOrder = opt.maxOrder;, end\n\t%if isfield(opt,'xc'), xc = opt.xc;, end\n\t%if isfield(opt,'contrasts'), contrasts = opt.contrasts;, end\n\t\n M.stimlist = double(M.stimlist);\n\tnumsamps = ceil(size(M.stimlist,1) * ISI ./ TR);\n\t\n\t\ncase 'model'\n\tM.model = finput;\n\tM.modelatTR = M.model;\n\tif ~(sum(M.model(:,size(M.model,2))) == size(M.model,1)) \n\t\tdisp('No intercept detected in last column: Adding intercept.') \n\t\tM.model(:,size(M.model,2)+1) = 1;\n\t\tM.modelatTR(:,size(M.modelatTR,2)+1) = 1;\n isfilt = input('Is the model filtered? (y/n) ','s');\n if strcmp(isfilt,'y')\n M.smoothed = M.modelatTR;\n end \n\tend\n numsamps = size(M.modelatTR,1);\n dohrf = 0; % can''t do hrf without delta function input\n dofreq = 0;\n docbal = 0;\n\ncase 'stimList'\n\t\n\tnumsamps = ceil(size(finput,1) * ISI ./ TR);\n\tM.stimlist = finput;\n\tM.stimlist = double(M.stimlist);\n \nend \t% end switch\n\n\n\n% -----------------------------------------------------------------------------------\n% * build X model matrix, if necessary\n% -----------------------------------------------------------------------------------\nif ~strcmp(inptType,'model')\n\tif ~exist('ISI') == 1, ISI = input('Enter ISI in s: ');,end\n\tif ~exist('TR') == 1, TR = input('Enter TR in s: ');,end\n\tif ~exist('satval') == 1, satval = 2; ,end % satval = input('Enter saturation threshold in s: ');,end\n\tif ~exist('HRF') == 1, \n \tHRF = spm_hrf(.1);\n \tHRF = HRF / max(HRF);\n\tend\n\n\t[M.modelatTR,M.model,M.delta] = rna2model(M.stimlist,ISI,HRF,TR,numsamps,satval,[]);\nend\n\n\n% 2. set up contrast and smoothing matrices\n\n\n% -----------------------------------------------------------------------------------\n% * set up filtering/smoothing and contrasts, do filtering\n% -----------------------------------------------------------------------------------\nif ~exist('TR') == 1, TR = input('Enter TR in s: ');,end\nif ~exist('HPlength') == 1, HPlength = input('Enter HPlength in s: ');,end\nif ~exist('LPsmooth') == 1, LPsmooth = input('Enter LPsmooth value (1,0): ');,end\nif ~exist('contrasts') == 1, contrasts = input('Enter contrast matrix: ');,end\nif ~exist('contrastweights') == 1, contrasts, contrastweights = input('Enter contrast weight vector: ');,end\n\t\nif doverb,fprintf(1,'setting up filtering...'),end\n \n% get smoothing matrix\n[S,Vi,svi] = getSmoothing(HPlength,LPsmooth,TR,numsamps,xc);\n\n% set up contrast weights\nif isempty(contrastweights),contrastweights = ones(1,size(contrasts,1));,end\n\n% set up contrasts for testing individual predictors (contrasts empty)\nif isempty(contrasts), \n\tcontrasts = eye(size(M.model,2) - 1);\n\tcontrasts(:,end+1) = 0;\nend\n\n% make sure contrasts are the right length\nif size(M.model,2) > size(contrasts,2)\n\t\t% warning('Model is larger than contrasts - extra intercept? Adding to contrasts...')\n\t\tcontrasts = [contrasts zeros(size(contrasts,1),size(M.model,2) - size(contrasts,2))]; \nend\n\nif size(M.model,2) < size(contrasts,2)\n warning('Model is smaller than contrasts - extra zero in contrasts? Truncating...') \n\tcontrasts = contrasts(:,1:size(M.model,2));\nend\n\nif isempty(S), S = 1;,end\nif ~(strcmp(inptType,'model')) | strcmp(isfilt,'n')\n M.smoothed = S * M.modelatTR;\nend\n\n% -----------------------------------------------------------------------------------\n% * assign other output values to M structure\n% -----------------------------------------------------------------------------------\t\n\nM.contrasts = contrasts;\nM.ga.contrasts = contrasts;\nM.ga.TR = TR;\nif exist('ISI') == 1, M.ga.ISI = ISI;, end\nM.ga.HPlength = HPlength;\nM.ga.LPsmooth = LPsmooth;\nM.ga.contrastweights = contrastweights;\nM.ga.xc = xc;\n\n\n\n\n% -----------------------------------------------------------------------------------\n% * make contrast-space predictors\n% -----------------------------------------------------------------------------------\t\nif isempty(contrasts)\n contrasts = eye(size(M.model,2));\nend\n\ntry\n\tM.conmodel = M.modelatTR * contrasts';\ncatch\n\t\twhos contrasts\n\t\tM\n\t\twarning('Contrasts are different size from modelatTR. This should not happen. Adding intercept 0 to contrast and trying again...')\n\t\tcontrasts = [contrasts zeros(size(contrasts,1),1)];\n\t\tM.contrasts = contrasts;\nend\n\t\nM.conmodel = M.modelatTR * contrasts';\nM.consmooth = M.smoothed * contrasts';\n\n\n% -----------------------------------------------------------------------------------\n% * calculate individual field values\n% -----------------------------------------------------------------------------------\n\nif doenergy\n M.energy = var(M.smoothed) * size(M.smoothed,1); \n M.conEnergy = var(M.consmooth) * size(M.consmooth,1); \nend\n\nif doeff \t\t% calculate efficiency\n if doverb,fprintf(1,'eff...'),end\t\n\txtxitx = pinv(M.smoothed); \t% inv(X'S'SX)*(SX)'; pseudoinv of (S*X)\n\t[M.eff_fitness,M.eff] = calcEfficiency(M.ga.contrastweights,contrasts,xtxitx,svi);\n M.eff = M.eff';\n\tM.se_contrasts = 1 ./ M.eff;\n \n % ========= calc inefficiency of sampling and smoothing =============== \n\tmyeff = 1/trace(inv(M.smoothed'*M.smoothed)); % brief form of model efficiency, not considering autocorrelation\n noresampeff = 1/trace(inv(M.model'*M.model)); % what would have happened at TR = .1?\n nosmootheff = 1/trace(inv(M.modelatTR'*M.modelatTR));\n M.resample_eff_loss = noresampeff / nosmootheff;\n M.smoothing_eff_loss = nosmootheff / myeff;\n\t\nend\n\nif dohrf\n if doverb,fprintf(1,'DX...'),end\n delta = [];\n for i = 1:max(M.stimlist(:,1))\n delta(:,i) = (M.stimlist == i);\n end \n %[M.DX] = tor_make_deconv_mtx2(M.delta,round(12 / M.ga.TR),10 * M.ga.TR);\n [M.DX] = tor_make_deconv_mtx2(delta,round(12 / M.ga.TR),M.ga.TR / M.ga.ISI);\n if ~isempty(S), M.DX = S * M.DX;,end\n xtxitx = pinv(M.DX); \t\t% inv(X'S'SX)*(SX)'; pseudoinv of (S*X)\n [M.hrf_eff_fitness,M.hrf_eff] = calcEfficiency([],[],xtxitx,svi);\n M.hrf_eff_avg = mean(M.hrf_eff(1:end-1));\nend\n \nif dovif\n if doverb,fprintf(1,'VIFs...'),end\n\twarning off\n M.vif = getvif(M.smoothed); \n if ~isempty(M.consmooth)\n M.conVif = getvif(M.consmooth);\n end\n\twarning on\nend\n \nif docondnum % calculate condition numbers\n M.cond = cond(M.smoothed);\n if ~isempty(M.consmooth)\n M.conCond = cond(M.consmooth);\n end\nend\nwarning off\nif docolin % calculate predictor colinearity\n if doverb,fprintf(1,'colin...'),end\n % sqrt of average squared correlation \n colin = corrcoef(M.smoothed);\n M.colin = colin;\n if ~isempty(M.consmooth)\n colin = corrcoef(M.consmooth);\n M.conColin = colin;\n end\nend\nwarning on\n% calculate counterbalancing\nif docbal\n if doverb,fprintf(1,'cbal...'),end\n\tif ~exist('maxOrder') == 1, maxOrder = input('Enter max counterbalancing order: ');,end\n\n\tconditions = 1:max(M.stimlist);\n\tfreqConditions = ones(1,size(conditions,2)) / size(conditions,2);\n [M.cBal M.cbalfreqs] = getCounterBal(M.stimlist, maxOrder,conditions,freqConditions);\n % M.cbalfreqs = round(M.cbalfreqs * 100);\nend\n\nif dofreq\n for i = 1:size(conditions,2)\n M.freq(i) = sum(M.stimlist == conditions(i)) / size(M.stimlist,1);\n end\nend\n\n% calculate average time between stimulus repetitions in each trial type\nif isfield(M,'stimlist')\n for i = 1:max(M.stimlist),M.timeBtwn(i) = mean(diff(find(M.stimlist==i))) .* M.ga.ISI;, end\nend\n\nif print2screen\n format short g\n format compact\n\n plotvarious(M,TR,'Predictors')\n if ~isempty(M.consmooth)\n Q.model = M.model * contrasts';\n\t\tQ.modelatTR = M.modelatTR * contrasts';\n Q.smoothed = M.consmooth;\n Q.delta = M.delta * contrasts(:,1:end-1)';\n plotvarious(Q,TR,'Contrasts')\n end\nend\n\n\nif doverb\n disp(' ')\n disp('Correlated columns:')\n [x,y] = find(abs(corrcoef(xX.X)) > .5 & abs(corrcoef(xX.X)) < 1); [x y]\nend\nreturn\n\n\n% subfunctions\n% ================================================================== %\nfunction plotvarious(M,TR,textlbl)\n\n\n if strcmp(textlbl,'Contrasts'), contit = 1;, else, contit = 0;, end\n \n % image the model\n % --------------------------------------\n\n\n figure; set(gcf,'Color','w')\n imagesc(M.modelatTR);colormap(copper)\n numsamp = size(M.smoothed,1);\n\n if contit\n title('Optimized Contrasts Heatmap, after filtering','FontSize',14)\n else\n title('Optimized Model Heatmap, after filtering','FontSize',14)\n end\n \n if isfield(M,'delta')\n \tnumregs = size(M.delta,2);\n\t% subtract one b/c last one is assumed to be intercept? sometimes...not always.\n\t\n else\n\tnumregs = size(M.smoothed,2);\t% subtract one b/c last one is assumed to be intercept? sometimes...not always.\n end\n\n nummodel = size(M.model,1);\n numsecs = numsamp * TR;\n deltascale = .1;\n x = 1:deltascale:numsecs+1;\n x = x(1:nummodel);\n x2 = 1:TR:numsecs+1;\n x2 = x2(1:numsamp);\n ymin = min(min(M.smoothed));\n ymax = max(max(M.smoothed));\n \n\n % Plot all columns in model after resampling and smoothing\n % --------------------------------------\n\n figure;set(gcf,'Color','w')\n for i = 1:numregs\n \t subplot(numregs,1,i)\n hold on\n plot(x,M.model(:,i),'k','LineWidth',1.5)\n plot(x2,M.modelatTR(:,i),'b','LineWidth',1.5)\n plot(x2,M.smoothed(:,i),'r','LineWidth',1.5)\n if isfield(M,'delta')\n for j = 1:size(M.delta,1)\n if M.delta(j,i) == 1\n plot([j*deltascale j*deltascale],[ymin 0],'k')\n end\n end\n end\n set(gca,'Ylim',[ymin ymax]);\n %axis([0 100 ymin ymax])\n set(gca,'XColor',[0 0 1])\n set(gca,'YColor',[0 0 1])\n end\n subplot(numregs,1,1);\n if contit\n title('Optimized Model Contrasts and Onsets','FontSize',14)\n else\n title('Optimized Model Regressors and Onsets','FontSize',14)\n end\n \n legend({'high-resolution' 'sampled at TR' 'filtered'})\n %title(textlbl,'FontSize',14)\n %title([textlbl ' Green: high-resolution Blue: resampled at TR Red: sampled and HP/LP filtered (smoothed)']) \n drawnow\n \n % Plot first column at various stages\n % --------------------------------------\n\n figure;set(gcf,'Color','w')\n subplot(3,1,1)\n ymin = min(min(M.model));\n ymax = max(max(M.model));\n plot(x,M.model(:,1),'k','LineWidth',2)\n title([textlbl '(#1): Original model - high samp rate'])\n set(gca,'Ylim',[ymin ymax]);\n if contit\n title('Optimized Model - first Contrast','FontSize',14)\n else\n title('Optimized Model - first Regressor','FontSize',14)\n end\n \n %axis([0 100 -1 2])\n subplot(3,1,2)\n plot(x2,M.modelatTR(:,1),'k','LineWidth',2)\n title('Resampled at TR')\n set(gca,'Ylim',[ymin ymax]);\n %axis([0 100 -1 2])\n subplot(3,1,3)\n plot(x2,M.smoothed(:,1),'k','LineWidth',2)\n title('Filtered')\n set(gca,'Ylim',[ymin ymax]); \n % axis([0 100 -1 2])\n \n drawnow\n \nreturn\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/core_functions/modelDiagnostics2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.37366821368291636}} {"text": "% Extended Kalman Filter.\n%\n% Files\n% innovation - Innovation of an observation.\n% correctBlockEkf - Correct in block-defined EKF.\n% predictBlockEkf - Covariance predict in block-defined EKF.\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/EKF/Contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8104789086703224, "lm_q2_score": 0.4610167793123159, "lm_q1q2_score": 0.37364437617575263}} {"text": "function p = obj2pnts(obj)\n\n% OBJ2PNTS Get points matrix from 3D object.\n% OBJ2PNTS(OBJ) returns the 3-by-N matrix of points in the structure OBJ,\n% stored in the N-by-3 matrix OBJ.vert.\n\n% Copyright 2009 Joan Sola @ LAAS-CNRS.\n\np = obj.vert';\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/Simulation/obj2pnts.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6001883592602049, "lm_q2_score": 0.6224593312018545, "lm_q1q2_score": 0.3735928447002455}} {"text": "function [i,pC,pE,Np] = spm_find_pC(varargin)\n% Utility routine that finds the indices of non-zero covariance\n% FORMAT [i,pC,pE,Np] = spm_find_pC(pC,pE,fields)\n% FORMAT [i,pC,pE,Np] = spm_find_pC(DCM,fields)\n% FORMAT [i,pC,pE,Np] = spm_find_pC(DCM)\n% \n% pC - covariance matrix or variance stucture\n% pE - parameter structure\n% fields - desired fields of pE\n%\n% or\n%\n% DCM - DCM structure\n%\n% i - find(diag(pC) > TOL)\n% rC - reduced covariances\n% rE - reduced expectation\n% \n%__________________________________________________________________________\n% Copyright (C) 2015-2019 Wellcome Trust Centre for Neuroimaging\n \n% Karl Friston\n% $Id: spm_find_pC.m 7714 2019-11-26 11:25:50Z spm $\n\n%-parse input arguments\n%--------------------------------------------------------------------------\nif nargin > 2\n pC = varargin{1};\n pE = varargin{2};\n fields = varargin{3};\nelseif numel(varargin) > 1\n DCM = varargin{1};\n fields = varargin{2};\nelse\n DCM = varargin{1};\nend\n\n%-get prior density from DCM\n%--------------------------------------------------------------------------\nif nargin < 3\n if ischar(DCM)\n DCM = load(DCM,'DCM');\n DCM = DCM.DCM;\n end\n if any(isfield(DCM,{'options','M'}))\n try, [pC,pE] = spm_find_rC(DCM); end\n end\nend\n\n%-Deal with variance structures\n%--------------------------------------------------------------------------\nif isstruct(pC)\n q = spm_vec(pC);\nelse\n q = diag(pC);\nend\n\n%-Get indices\n%--------------------------------------------------------------------------\ni = find(q > mean(q(q < 1024))/1024);\nNp = numel(q);\n\n%-subsample fields if necessary\n%--------------------------------------------------------------------------\nif nargin > 1\n if ischar(fields), fields = {fields}; end\n if isstruct(pE)\n j = spm_fieldindices(pE,fields{:});\n if isempty(j) && ~(~isempty(fields) && strcmp(fields{1},'none'))\n warning('%s not found. Returning all fields',...\n strjoin(cellstr(fields),','));\n else\n i = j(ismember(j,i));\n end\n end\nend\n\nreturn\n\n\nfunction [pC,pE] = spm_find_rC(DCM)\n% FORMAT [pC,pE] = spm_find_rC(DCM)\n% model priors\n%__________________________________________________________________________\n\n% Get full priors and posteriors\n%--------------------------------------------------------------------------\ntry\n pC = DCM.M.pC;\n pE = DCM.M.pE;\n return\nend\n\n% get priors from model specification\n%--------------------------------------------------------------------------\nif isfield(DCM.options,'spatial')\n \n % EEG or MEG\n %----------------------------------------------------------------------\n if strcmpi(DCM.options.analysis,'IND')\n [pE,dummy,pC] = spm_ind_priors(DCM.A,DCM.B,DCM.C,DCM.Nf);\n else\n [pE, pC] = spm_dcm_neural_priors(DCM.A,DCM.B,DCM.C,DCM.options.model); \n \n try %#ok\n try model = DCM.options.model; catch, model = 'NMM'; end\n try spatial = DCM.options.spatial; catch, spatial = 'LFP'; end\n DCM.M.dipfit.model = model;\n DCM.M.dipfit.type = spatial; \n [pE, pC] = spm_L_priors(DCM.M.dipfit,pE,pC);\n [pE, pC] = spm_ssr_priors(pE,pC);\n end\n end\n \nelse\n \n % fMRI\n %----------------------------------------------------------------------\n if ~isfield(DCM,'d')\n DCM.d = zeros(size(DCM.a,1),size(DCM.a,1),0);\n end\n [pE,pC] = spm_dcm_fmri_priors(DCM.a,DCM.b,DCM.c,DCM.d,DCM.options);\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_find_pC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7772998611746911, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.3734760097440372}} {"text": "function [paramtransformsettings, names] = nddisimKernExtractParamTransformSettings(kern)\n\n% NDDISIMKERNEXTRACTPARAMTRANSFORMSETTINGS Extract parameter transform settings from the NDDISIM kernel structure.\n% FORMAT\n% DESC Extract parameters from the single input motif kernel structure\n% into a vector of parameters for optimisation.\n% ARG kern : the kernel structure containing the parameters to be\n% extracted.\n% RETURN param : vector of parameters extracted from the kernel. If\n% the field 'transforms' is not empty in the kernel matrix, the\n% parameters will be transformed before optimisation (for example\n% positive only parameters could be logged before being returned).\n%\n% FORMAT\n% DESC Extract parameters and their names from the single input\n% motif kernel structure.\n% ARG kern : the kernel structure containing the parameters to be\n% extracted.\n% RETURN param : vector of parameters extracted from the kernel. If\n% the field 'transforms' is not empty in the kernel matrix, the\n% parameters will be transformed before optimisation (for example\n% positive only parameters could be logged before being returned).\n% RETURN names : cell array of strings containing parameter names.\n%\n% SEEALSO disimKernParamInit, disimKernExpandParam, kernExtractParam, scg, conjgrad\n%\n% COPYRIGHT : Neil D. Lawrence, 2006\n%\n% COPYRIGHT : Antti Honkela, 2007-2009\n%\n% COPYRIGHT : Jaakko Peltonen, 2011\n%\n% KERN\n\n\nparamtransformsettings = {kern.transforms(1).transformsettings,kern.transforms(2).transformsettings,kern.transforms(3).transformsettings,kern.transforms(4).transformsettings,kern.transforms(5).transformsettings};\n\nif nargout > 1\n names = {'inverse width', 'di_variance', 'decay', 'variance', 'delay'};\nend\n\n\n%fprintf(1, 'disimKern parameters physical values:\\n');\n%params\n%names\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/nddisimKernExtractParamTransformSettings.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.626124191181315, "lm_q1q2_score": 0.3734412212986655}} {"text": "function y_one_hot = one_hot(y)\n\ny_one_hot = zeros(size(y, 1), 30);\nfor i = 1:30 % TODO: 30 3D models in the graph\n rows = y == i;\n y_one_hot( rows, i ) = 1;\nend\n", "meta": {"author": "jhonykaesemodel", "repo": "image2mesh", "sha": "839fdadf64187a3d2d3e4a84a5fa92226fccd668", "save_path": "github-repos/MATLAB/jhonykaesemodel-image2mesh", "path": "github-repos/MATLAB/jhonykaesemodel-image2mesh/image2mesh-839fdadf64187a3d2d3e4a84a5fa92226fccd668/matlab/utils/one_hot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283035, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.37344121297662697}} {"text": "% Calibrate camera counts for the number of detected photons. \npathfile = './';\ndark = readtimeseries([pathfile 'R_20110413/Dark_2/img_000000*__000.tif']);\nbright = readtimeseries([pathfile 'R_20110413/Bright_2/img_000000*__000.tif']);\nsv= size(bright);\nout_cal = cal_readnoise(bright, dark(0:sv(1)-1,0:sv(2)-1,:));", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/image_proc/calibPhotonNumbers.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3734412129766269}} {"text": "function[]=xoffset(i1,i2)\n%XOFFSET Offsets lines in the x-direction after plotting.\n%\t \t \t \n% XOFFSET allows data to be manipulated after it has been plotted, by\n% operating on the data stored in the figure itself. This may be used \n% only with 2-D line plots (not symbol plots, contour plots, etc.). \n%\n% XOFFSET offsets all lines in the current axes a specified amount.\n%\t\t\n% XOFFSET(N) or XOFFSET N, where N is a *real* number, offsets each\n% column of the X-data by an amount N from the previous column. N must \n% be a number, not a variable whose value is a number.\n%\n% XOFFSET(N) or XOFFSET N, where N is an *imaginary* number, offsets\n% each column of the X-data by an amount imag(N)*DX from the previous \n% column, where DX is the X-axis length of the original (unoffset) plot.\n%\n% XOFFSET(M,N) or XOFFSET M N, applies the same offsets to each of M \n% groups of lines. For example, for complex-valued data Z use UVPLOT(Z) \n% followed by XOFFSET 2 N.\n%\n% XOFFSET with no arguments returns the data to its original (unoffset) \n% orientation [as do XOFFSET(0) and XOFFSET(0i)].\n% \n% XOFFSET also allow multiple axes to be manipulated simultaneously.\n%\n% XOFFSET LOCK and XOFFSET UNLOCK lock and unlock all Y-data in the\n% current figure. When LOCK is on, calls to XOFFSET are applied to each\n% subplot individually.\n%\n% See also YOFFSET, LINESTYLE.\n% __________________________________________________________________\n% This is part of JLAB --- type 'help jlab' for more information\n% (C) 2000--2015 J.M. Lilly --- type 'help jlab_license' for details \n\nif strcmpi(i1,'--t')\n return\nend\n\nif nargin==1;\n N=10000; %Very large number of lines\nend\nif nargin==2\n N=i1;\n i1=i2;\n if ischar(N)\n N=str2double(N);\n end \nend\n\nbcontinue=1;\nif nargin>0\n if ischar(i1)\n if isempty(str2double(i1))\n i1=deblank(i1);\n i1=fliplr(deblank(fliplr(i1)));\t\n if strcmpi(i1,'lock')\n if isappdata(gca,'lastxoffset')\n lastoff=getappdata(gca,'lastxoffset');\n setappdata(gcf,'xoffsetlock',1)\n xoffsetloop(0,N);\n xoffsetloop(lastoff,N); \n else\n setappdata(gcf,'xoffsetlock',1)\n end\t\t \n bcontinue=0;\n end\n if strcmpi(i1,'unlock')\n setappdata(gcf,'xoffsetlock',0)\n bcontinue=0;\n end\n end\n end\nend\n\n\nif bcontinue\t\n if nargin>0\n delta=i1;\n else \n delta=0;\n end\n\n h=linehandles;\n if plotmodified(h)\n %If the plot has been changed, the old \"lastxoffset\" may no\n %longer be correct. If so, we set it to zero\n setappdata(gca,'lastxoffset',0)\t\t \n end\n xoffsetloop(delta,N);\nend\n\n\n\n\nfunction[]=xoffsetloop(delta,N)\nh=gca;\nif isappdata(gcf,'xoffsetlock')\n if getappdata(gcf,'xoffsetlock')\n h=axeshandles(gcf);\t\n end \nend\n\nfor i=1:length(h)\n axes(h(i))\n if isappdata(gca,'lastxoffset')\n lastdelta=getappdata(gca,'lastxoffset');\n xoffsetapply(-1*lastdelta,N);\n setappdata(gca,'lastxoffset',0)\n end\n xoffsetapply(delta,N);\nend\n\naxes(h(1))\n\nfunction[]=xoffsetapply(delta,N)\nh=linehandles;\n\nif ischar(delta),delta=str2double(delta);end\nxx=get(h,{'xdata'});\n\nif length(delta)==1 && ~isreal(delta)\n ax=axis;\n dx=ax(2)-ax(1);\n delta=dx.*imag(delta)/100;\nend\n\nif length(delta)==1\n for i=length(xx):-1:1\n xx{i}=xx{i}+delta*(mod(length(xx)-i,round(length(xx)/N)));\n end\nelseif length(delta)==length(h)\n for i=length(xx):-1:1\n xx{i}=xx{i}+delta(i);\n end\nelse\n error('Number of line handles does not equal offset array length.')\nend\n\nset(h,{'xdata'},xx);\nsetappdata(gca,'lastxoffset',delta)\t\t\nsetappdata(gca,'lasthandles',h)\t\t\n\n\nfunction[b]=plotmodified(h)\nb=0; \nif isappdata(gca,'lasthandles')\n b=1;\n h2=getappdata(gca,'lasthandles');\n if length(h2)==length(h)\n if all(h2==h)\n b=0;\n end\n end\nend\n \n\n\n", "meta": {"author": "jonathanlilly", "repo": "jLab", "sha": "9f32f63e647209bc1cb81c8713deb954857f1919", "save_path": "github-repos/MATLAB/jonathanlilly-jLab", "path": "github-repos/MATLAB/jonathanlilly-jLab/jLab-9f32f63e647209bc1cb81c8713deb954857f1919/jGraph/xoffset.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.3734412129766269}} {"text": "function [MStitch, result] = GrayListMain_Process(file)\nfor i = 1 : length(file)-1\n if i == 1\n file1 = file{i};\n im1 = imread(file1);\n im1 = rgb2gray(im1);\n MStitch.im1 = double(im1);\n \n [Pheight, Pwidth] = size(im1);\n \n MStitch.Pwidth = Pwidth; \n MStitch.Pheight = Pheight; \n \n MStitch.W_min = round(0.60*Pwidth);\n MStitch.W_max = round(0.83*Pwidth);\n MStitch.H_min = round(0.98*Pheight); \n MStitch.minval = 255;\n \n im1 = imread(file1);\n MStitch.imrgb1 = double(im1);\n im1 = rgb2gray(im1);\n MStitch.im1 = double(im1);\n else\n MStitch.im1 = double(result1);\n end\n file2 = file{i+1}; \n im2 = imread(file2);\n MStitch.imrgb2 = double(im2);\n im2 = rgb2gray(im2);\n im2 = double(im2); \n [W_box, H_box, bdown, MStitch] = Fun_Match(im2, MStitch);\n [MStitch, result1] = Fun_Stitch(im2, W_box, H_box, bdown, MStitch);\nend\nresult = result1;", "meta": {"author": "decouples", "repo": "Matlab_deep_learning", "sha": "1b823b82686080e32b03e1f1a4648896bd6e3c44", "save_path": "github-repos/MATLAB/decouples-Matlab_deep_learning", "path": "github-repos/MATLAB/decouples-Matlab_deep_learning/Matlab_deep_learning-1b823b82686080e32b03e1f1a4648896bd6e3c44/\u7b2c 12 \u7ae0 \u57fa\u4e8e\u5757\u5339\u914d\u7684\u5168\u666f\u56fe\u50cf\u62fc\u63a5/GrayListMain_Process.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8031737963569014, "lm_q2_score": 0.4649015713733885, "lm_q1q2_score": 0.3733967600122534}} {"text": "function pcut = addEvalVariableCuts(p)\n\npcut = p;\nif ~isempty(p.evalMap)\n pcut = emptyNumericalModel;\n for i = 1:length(p.evalMap)\n y = p.evalVariables(i);\n x = p.evalMap{i}.variableIndex;\n xL = p.lb(x);\n xU = p.ub(x);\n \n % Generate a convex hull polytope\n if xL K.f);\n K.f = K.f - nnz(removeThese <= K.f);\n end\n F_structemp = zeros(size(b,1),length(p.c)+1);\n F_structemp(:,1+y) = -Ay;\n F_structemp(:,1+x) = -Ax;\n F_structemp(:,1) = b;\n localModel = createNumericalModel(F_structemp,K);\n pcut = mergeNumericalModels(pcut,localModel);\n end\n end\n end\n \n pcut = mergeNumericalModels(p,pcut);\nend\n\nfunction [Ax,Ay,b,K] = getOldHull(p,i)\n\nAx = p.evalMap{i}.oldhull.Ax;\nAy = p.evalMap{i}.oldhull.Ay;\nb = p.evalMap{i}.oldhull.b;\nK = p.evalMap{i}.oldhull.K;\n\nfunction [Ax,Ay,b,K,p] = updateHull(xL,xU,p,i)\n\nif strcmpi(p.evalMap{i}.fcn,'blackbox')\n [Ax,Ay,b,K]=feval(p.evalMap{i}.properties.convexhull,xL,xU);\nelse\n [Ax,Ay,b,K]=feval(p.evalMap{i}.properties.convexhull,xL,xU, p.evalMap{i}.arg{2:end-1});\nend\nif ~isempty(Ax)\n removeThese = find(any(isinf([Ax Ay b]),2) | any(isnan([Ax Ay b]),2));\n if any(removeThese)\n Ax(removeThese,:) = [];\n Ay(removeThese,:) = [];\n b(removeThese) = [];\n K.l = K.l - nnz(removeThese > K.f);\n K.f = K.f - nnz(removeThese <= K.f);\n end\nend\np = saveOldHull(xL,xU,Ax,Ay,b,K,p,i);\n\nfunction p = saveOldHull(xL,xU,Ax,Ay,b,K,p,i)\np.evalMap{i}.oldhull.xL = xL;\np.evalMap{i}.oldhull.xU = xU;\np.evalMap{i}.oldhull.Ax = Ax;\np.evalMap{i}.oldhull.Ay = Ay;\np.evalMap{i}.oldhull.b = b;\np.evalMap{i}.oldhull.K = K;\n\nfunction [Ax,Ay,b,K,p] = convexhullSampled(xL,xU,p,i)\n\nif length(xL)>1\n Ax = [];\n Ay = [];\n b = [];\n K = [];\n return\nend\n% sample function\nz = linspace(xL,xU,100);\n\nif isequal(p.evalMap{i}.fcn,'power_internal2')\n % Special code for automatically converting sigmonial\n % terms to be solvable with bmibnb\n fz = feval(p.evalMap{i}.fcn,z,p.evalMap{i}.arg{2});\nelse\n arg = p.evalMap{i}.arg;\n arg{1} = z;\n vectorized = 1;\n fz = real(feval(p.evalMap{i}.fcn,arg{1:end-1}));\n if length(fz) ~= length(z)\n % Operator is not vectorized?\n vectorized = 0;\n fz = [];\n for k = 1:length(z)\n arg{1} = z(k);\n fz = [fz real(feval(p.evalMap{i}.fcn,arg{1:end-1}))];\n end\n end\n if length(fz) ~= length(z)\n Ax = [];\n Ay = [];\n b = [];\n K = [];\n return\n end\n if isa(p.evalMap{i}.properties.stationary,'function_handle')\n [xS,fS] = feval(p.evalMap{i}.properties.stationary,xL,xU);\n if ~isempty(xS)\n % Add stationary points to the list of samples\n z = [z xS(:)'];\n fz = [fz fS(:)'];\n end\n end \n [minval,minpos] = min(fz);\n [maxval,maxpos] = max(fz);\n xtestmin = linspace(z(max([1 minpos-5])),z(min([100 minpos+5])),100);\n xtestmax = linspace(z(max([1 maxpos-5])),z(min([100 maxpos+5])),100);\n if vectorized\n arg{1} = xtestmin;\n fz1 = real(feval(p.evalMap{i}.fcn,arg{1:end-1}));\n arg{1} = xtestmax;\n fz2 = real(feval(p.evalMap{i}.fcn,arg{1:end-1}));\n z = [z(:);xtestmin(:);xtestmax(:)];\n fz = [fz(:);fz1(:);fz2(:)];\n else\n fz1 = [];\n for k = 1:length(xtestmin)\n arg{1} = xtestmin(k);\n fz1 = [fz1 real(feval(p.evalMap{i}.fcn,arg{1:end-1}))];\n end\n fz2 = [];\n for k = 1:length(xtestmax)\n arg{1} = xtestmax(k);\n fz2 = [fz2 real(feval(p.evalMap{i}.fcn,arg{1:end-1}))];\n end\n end\n [z,sorter] = sort(z);\n fz = fz(sorter);\n [z,ii,jj]=unique(z);\n fz = fz(ii);\nend\nif max(fz)-min(fz) < 1e-4\n Ax = [];\n Ay = [];\n b = [];\n K = [];\n return\nend\n[Ax,Ay,b,K] = convexhullFromSampled(z,fz,xL,xU);\nremoveThese = find(any(isnan([Ax Ay b]),2) | any(isinf([Ax Ay b]),2));\nAx(removeThese,:) = [];\nAy(removeThese,:) = [];\nb(removeThese) = [];\nK.l = K.l - length(removeThese);%[];\np = saveOldHull(xL,xU,Ax,Ay,b,K,p,i);\n\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/global/addEvalVariableCuts.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708562, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3733251087757725}} {"text": "%%*****************************************************************\n%% NTrhsfun: compute the right-hand side vector of the \n%% Schur complement equation for the NT direction. \n%%*****************************************************************\n%% SDPT3: version 4.0\n%% Copyright (c) 1997 by\n%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************\n\n function [rhs,EinvRc,hRd] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ);\n\n spdensity = par.spdensity; \n m = length(rp); \n if (nargin > 8) \n corrector = 1; \n else \n corrector = 0; \n hRd = zeros(m,1); \n end \n hEinvRc = zeros(m,1); \n EinvRc = cell(size(blk,1),1); \n rhsfree = []; \n%%\n for p = 1:size(blk,1)\n pblk = blk(p,:); \n n = sum(pblk{2}); numblk = length(pblk{2}); \n if strcmp(pblk{1},'l')\n\t if iscell(sigmu)\n EinvRc{p} = sigmu{p}./Z{p} -X{p};\n\t else\n EinvRc{p} = sigmu./Z{p} -X{p};\n end\n Rq = sparse(n,1); \n if (corrector) & (norm(par.parbarrier{p})==0)\n Rq = dX{p}.*dZ{p}./Z{p}; \n else\n tmp = par.dd{p}.*Rd{p};\n tmp2 = mexMatvec(At{p},tmp,1);\n hRd = hRd + tmp2;\n end\n\t EinvRc{p} = EinvRc{p} - Rq; \n tmp2 = mexMatvec(At{p},EinvRc{p},1); \n hEinvRc = hEinvRc + tmp2;\n\telseif strcmp(pblk{1},'q') \n\t if iscell(sigmu)\n EinvRc{p} = qops(pblk,-sigmu{p}./(par.gamz{p}.*par.gamz{p}),Z{p},4) -X{p};\n\t else\n EinvRc{p} = qops(pblk,-sigmu./(par.gamz{p}.*par.gamz{p}),Z{p},4) -X{p};\n end\n Rq = sparse(n,1); \n \t if (corrector) & (norm(par.parbarrier{p})==0)\n w = sqrt(par.gamz{p}./par.gamx{p}); \n hdx = qops(pblk,w,par.ff{p},5,dX{p}); \n hdz = qops(pblk,w,par.ff{p},6,dZ{p}); \n hdxdz = Arrow(pblk,hdx,hdz);\n vv = qops(pblk,w,par.ff{p},5,X{p}); \n Vihdxdz = Arrow(pblk,vv,hdxdz,1); \n Rq = qops(pblk,w,par.ff{p},6,Vihdxdz); \n else\n tmp = par.dd{p}.*Rd{p} + qops(pblk,qops(pblk,Rd{p},par.ee{p},1),par.ee{p},3);\n tmp2 = mexMatvec(At{p},tmp,1);\n hRd = hRd + tmp2;\n end\n\t EinvRc{p} = EinvRc{p} - Rq; \n tmp2 = mexMatvec(At{p},EinvRc{p},1); \n hEinvRc = hEinvRc + tmp2;\n elseif strcmp(pblk{1},'s') \n n2 = pblk{2}.*(pblk{2}+1)/2; \n\t if iscell(sigmu)\n \t %%ss = [0,cumsum(pblk{2})]; \n %%sigmuvec = zeros(n,1); \n %%for k = 1:length(pblk{2}); \n %% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1); \n %%end\n sigmuvec = mexexpand(pblk{2},sigmu{p}); \n tmp = spdiags(sigmuvec./par.sv{p} -par.sv{p},0,n,n);\n else\n tmp = spdiags(sigmu./par.sv{p} -par.sv{p},0,n,n);\n end\n EinvRc{p} = Prod3(pblk,par.G{p}',tmp,par.G{p},1);\n Rq = sparse(n,n); \n if (corrector) & (norm(par.parbarrier{p})==0)\n hdZ = Prod3(pblk,par.G{p},dZ{p},par.G{p}',1); \n hdX = spdiags(qops(pblk,par.parbarrier{p}',1./par.sv{p},3)-par.sv{p},0,n,n)-hdZ; \n tmp = Prod2(pblk,hdX,hdZ,0); \n tmp = 0.5*(tmp+tmp');\n if (numblk == 1) \n d = par.sv{p};\n e = ones(pblk{2},1); \n Rq = 2*tmp./(d*e'+e*d'); \n if (nnz(Rq) <= spdensity*n2); Rq = sparse(Rq); end \n else\n Rq = sparse(n,n);\n ss = [0, cumsum(pblk{2})]; \n for i = 1:numblk\n pos = [ss(i)+1 : ss(i+1)]; \n d = par.sv{p}(pos); e = ones(length(pos),1); \n Rq(pos,pos) = 2*tmp(pos,pos)./(d*e' + e*d'); \n end\n end\n Rq = Prod3(pblk,par.G{p}',Rq,par.G{p},1);\n else\n tmp = Prod3(pblk,par.W{p},Rd{p},par.W{p},1,par.nzlistAy{p});\n tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp}); \n hRd = hRd + tmp2;\n end \n EinvRc{p} = EinvRc{p} - Rq; \n tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); \n hEinvRc = hEinvRc + tmp2; \n elseif strcmp(pblk{1},'u') \n rhsfree = [rhsfree; Rd{p}]; \n end \n end\n%% \n rhs = rp + hRd - hEinvRc; \n rhs = full([rhs; rhsfree]); \n%%*******************************************************************\n", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/SDPT3-4.0/SDPT3-4.0/Solver/NTrhsfun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.37332510877577235}} {"text": "classdef prtClusterKmodes < prtCluster %prtClass %prtAction %should extent prtCluster\n %\n % Example:\n %\n % ds = prtDataGenMoon; % Load a prtDataSet\n % clusterAlgo = prtClusterKmodes; % Create a prtClusterKmeans object\n % clusterAlgo.nClusters = 3; % Set the number of desired clusters\n %\n % % Set the internal decision rule to be MAP. Not required for\n % % clustering, but necessary to plot the results.\n % clusterAlgo.internalDecider = prtDecisionMap;\n % clusterAlgo = clusterAlgo.train(ds); % Train the cluster algorithm\n % plot(clusterAlgo); % Plot the results\n %\n % See also prtCluster, prtClusterKMeans, prtClusterGmm\n\n% Copyright (c) 2014 CoVar Applied Technologieshnb\n%\n% Permission is hereby granted, free of charge, to any person obtaining a\n% copy of this software and associated documentation files (the\n% \"Software\"), to deal in the Software without restriction, including\n% without limitation the rights to use, copy, modify, merge, publish,\n% distribute, sublicense, and/or sell copies of the Software, and to permit\n% persons to whom the Software is furnished to do so, subject to the\n% following conditions:\n%\n% The above copyright notice and this permission notice shall be included\n% in all copies or substantial portions of the Software.\n%\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS\n% OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF\n% MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN\n% NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,\n% DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR\n% OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE\n% USE OR OTHER DEALINGS IN THE SOFTWARE.\n\n\n properties (SetAccess=private)\n name = 'K-Modes Clustering' % K-Means Clustering\n nameAbbreviation = 'K-ModesCluster' % K-MeansCluster\n end\n \n properties\n nClusters = 3; % The number of clusters to find\n \n kdeRv = prtRvKde;\n \n handleEmptyClusters = 'remove'; % Action to take when an empty cluster occurs\n distanceMetricFn = @prtDistanceEuclidean; % The distance metric; should be a function like D = prtDistanceEuclidean(dataSet1,dataSet2)\n initialClusterCenters = 'plusplus';\n trainingPlotVisualization = false;\n end\n \n properties (SetAccess = protected)\n clusterCenters = []; % The cluster centers\n end\n properties (SetAccess = private, Hidden = true)\n uY = [];\n end\n \n methods\n \n function self = set.nClusters(self,value)\n if ~prtUtilIsPositiveScalarInteger(value)\n error('prt:prtClusterKmodes:nClusters','value (%s) must be a positive scalar integer',mat2str(value));\n end\n self.nClusters = value;\n end\n \n function self = set.handleEmptyClusters(self,value)\n if ~isa(value,'char') || ~any(strcmpi(value,{'exit','regularize'}))\n error('prt:prtClusterKmodes:handleEmptyClusters','value (%s) must be one of ''remove'', or ''random''',mat2str(value));\n end\n self.kmeansHandleEmptyClusters = value;\n end\n function self = set.initialClusterCenters(self,value)\n if isa(value,'char')\n if ~any(strcmpi(value,{'random','plusplus'}))\n error('prt:prtClusterKmodes:initialClusterCenters','If specified as a string initialClusterCenters must be one of ''random'', or ''plusplus''');\n end\n else\n % initialMeans were specified as a matrix. Assume\n % everything will be ok and let prtUtilKMeans catch errors\n end\n self.initialClusterCenters = value;\n end\n \n function self = set.distanceMetricFn(self,value)\n if ~isa(value,'function_handle')\n error('prt:prtClusterKmeans:distanceMetricFn','distanceMetricFn must be a function handle');\n elseif nargin(value) ~= 2\n error('prt:prtClusterKmeans:distanceMetricFn','distanceMetricFn must be a function handle that takes two input arguments');\n end\n self.distanceMetricFn = value;\n end\n function self = prtClusterKmodes(varargin)\n % Allow for string, value pairs\n self = prtUtilAssignStringValuePairs(self,varargin{:});\n end\n end\n \n methods (Access=protected, Hidden = true)\n \n function self = trainAction(self,ds)\n %self.clusterCenters = prtUtilKmeans(ds.getObservations,slf.nClusters,'distanceMetricFn',Obj.distanceMetricFn,'handleEmptyClusters',Obj.kmeansHandleEmptyClusters,'initialMeans',Obj.initialMeans);\n \n if ischar(self.initialClusterCenters)\n nInitializeKMeansIterations = 1;\n self.clusterCenters = prtUtilKmeans(ds.getObservations,self.nClusters,'distanceMetricFn',self.distanceMetricFn,'handleEmptyClusters',self.handleEmptyClusters,'initialMeans',self.initialClusterCenters,'maxIterations',nInitializeKMeansIterations);\n else\n self.clusterCenters = self.initialClusterCenters;e\n end\n \n data = ds.data;\n \n [nSamples,nDimensions] = size(data);\n clusterIndexOld = nan(nSamples,1);\n \n nMaxIterations = 100;\n for iteration = 1:nMaxIterations\n \n distanceMat = self.distanceMetricFn(data,self.clusterCenters);\n [twiddle,clusterIndex] = min(distanceMat,[],2); %#ok\n \n if self.trainingPlotVisualization\n self.trainingIterationPlotVisualization(data,self.clusterCenters,clusterIndex,iteration);\n end\n %Handle empty clusters:\n nMaxFixSteps = 10;\n for iFix = 1:nMaxFixSteps\n if length(unique(clusterIndex)) ~= self.nClusters\n invalidClusters = setdiff(1:self.nClusters,clusterIndex);\n validClusters = intersect(1:self.nClusters,clusterIndex);\n switch lower(inputStructure.handleEmptyClusters)\n case 'remove'\n classMeans = classMeans(validClusters,:);\n self.nClusters = self.nClusters - length(invalidClusters);\n distanceMat = distanceMat(:,validClusters);\n [twiddle,clusterIndex] = min(distanceMat,[],2); %#ok\n case 'random'\n randInds = max(1,ceil(rand(1,length(invalidClusters))*nSamples));\n classMeans(invalidClusters,:) = data(randInds,:);\n distanceMat = inputStructure.distanceMetricFn(data,classMeans);\n [twiddle,clusterIndex] = min(distanceMat,[],2); %#ok\n otherwise\n error('invalid');\n end\n else\n break\n end\n end\n nSamplesForCdf = 1000;\n newClusters = zeros(self.nClusters,nDimensions);\n for clusterInd = 1:self.nClusters\n \n cData = data(clusterIndex == clusterInd,:);\n for iDim = 1:nDimensions\n % newClusters(clusterInd,iDim) = % mode(cData(:,iDim)); % would work for discrete data only\n \n cRv = mle(self.kdeRv,cData(:,iDim));\n \n cXSamples = sort(cat(1,linspace(min(cData(:,iDim)), max(cData(:,iDim)),nSamplesForCdf)',cData(:,iDim)),'ascend');\n cCdf = cRv.cdf(cXSamples);\n \n %cModeInd = find(cCdf >= 0.5,1,'first');\n [~,cModeInd] = max(cCdf);\n if isempty(cModeInd) \n % Something went horribly wrong\n cMode = mean(cData(:,iDim));\n else\n cMode = cXSamples(cModeInd);\n end\n \n newClusters(clusterInd,iDim) = cMode;\n end\n end\n self.clusterCenters = newClusters;\n \n \n if iFix == nMaxFixSteps\n %maxIterReached = true;\n return\n end\n \n %Check convergence:\n if all(clusterIndexOld == clusterIndex)\n %maxIterReached = false;\n return;\n else\n clusterIndexOld = clusterIndex;\n end\n end\n \n % maxIterReached = iteration == nMaxIterations; \n \n end\n \n \n function ds = runAction(self,ds)\n \n fn = self.distanceMetricFn;\n distance = fn(ds.getObservations,self.clusterCenters);\n \n if size(distance,1) ~= ds.nObservations || size(distance,2) ~= size(self.clusterCenters,1)\n error('prt:prtClusterKmodes:badDistanceMetric','Expected a matrix of size %s from the distance metric, but distance metric function output a matrix of size %s',mat2str([DataSet.nObservations, size(Obj.clusterCenters,1)]),mat2str(size(distance)));\n end\n \n %The smallest distance is the expected class:\n [dontNeed,clusters] = min(distance,[],2); %#ok\n \n binaryMatrix = zeros(size(clusters,1),self.nClusters);\n for i = 1:self.nClusters\n binaryMatrix(i == clusters,i) = 1;\n end\n ds = ds.setObservations(binaryMatrix);\n end\n end\n methods (Hidden)\n function trainingIterationPlotVisualization(~, data,classMeans,clusterIndex,iter)\n \n [nSamples,nDimensions] = size(data); %#ok\n \n if nDimensions > 3\n warning('prt:prtClusterKmods:iterationPlot','plotVisualization is true, but dimensionality of data (%d) is > 3',nDimensions);\n return;\n end\n ds = prtDataSetClass(data,clusterIndex);\n \n plot(ds);\n hold on;\n switch nDimensions\n case 1\n plot(classMeans,'b.');\n case 2\n plot(classMeans(:,1),classMeans(:,2),'b.');\n case 3\n plot3(classMeans(:,1),classMeans(:,2),classMeans(:,3),'b.');\n end\n hold off;\n title(sprintf('Iteration %d',iter));\n drawnow; %pause;\n \n end\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/cluster/prtClusterKmodes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3733224136927182}} {"text": "function [acc pred softpred] = testBNB(model, allSNumBi, labels, params)\n\nnbsenttst = allSNumBi;\nnblbltst = labels;\n\npred = zeros(size(labels));\n\nfor i = 1:length(nbsenttst)\n %words(nbsenttst{i})\n nbsentraw = nbsenttst{i};\n nbsentraw=nbsentraw(nbsentraw>0);\n ind = zeros(params.dictsize, 1);\n% updates = unique(nbsentraw);\n% counts = power(histc(nbsentraw, updates)', params.testp);\n \n ind(nbsentraw) = 1;\n ind = logical(ind);\n neglog = sum(model.lpwneg(ind)) + sum(model.mlpwneg(~ind));\n poslog = sum(model.lpwpos(ind)) + sum(model.mlpwpos(~ind));\n if neglog + model.pneg > poslog + model.ppos \n pred(i) = 0;\n else\n pred(i) = 1;\n end\n softpred(i) = poslog - neglog;\nend\n\nacc = sum(pred == labels) / length(labels);\nacc = acc*100\n", "meta": {"author": "sidaw", "repo": "nbsvm", "sha": "e3e7e3301718d3d50fd5454e5794465a745de1ed", "save_path": "github-repos/MATLAB/sidaw-nbsvm", "path": "github-repos/MATLAB/sidaw-nbsvm/nbsvm-e3e7e3301718d3d50fd5454e5794465a745de1ed/src/testBNB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3733224068534647}} {"text": "function value = i8_btest ( i, pos )\n\n%*****************************************************************************80\n%\n%% I8_BTEST returns TRUE if bit #POS of I is 1.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 June 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% MIL-STD 1753\n%\n% Parameters:\n%\n% Input, integer I, the integer to be tested.\n%\n% Input, integer POS, the bit position, between 0 and 63.\n%\n% Output, logical VALUE, is TRUE if the POS-th bit of I is 1.\n%\n if ( pos < 0 )\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I8_BTEST - Fatal error!\\n' );\n fprintf ( 1, ' POS < 0.\\n' );\n error ( 'I8_BTEST - Fatal error!' );\n\n elseif ( pos < 63 )\n\n j = i;\n for k = 1 : pos\n j = floor ( j / 2 );\n end\n\n if ( mod ( j, 2 ) == 0 )\n value = 0;\n else\n value = 1;\n end\n\n elseif ( pos == 63 )\n\n if ( i < 0 )\n value = 1;\n else\n value = 0;\n end\n\n elseif ( 63 < pos )\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I8_BTEST - Fatal error!\\n' );\n fprintf ( 1, ' 63 < POS.\\n' );\n error ( 'I8_BTEST - Fatal error!' );\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/subpak/i8_btest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5389832206876841, "lm_q2_score": 0.6926419831347361, "lm_q1q2_score": 0.3733224068534647}} {"text": "function my_stokes_GUI(nr,ntheta)\n% close all;\n% DEFINE function\nr = linspace(0,1,100);\ntheta = linspace(0,2*pi,100);\n\n[R,T]=meshgrid(r,theta);\nx = R.*cos(T);\ny = R.*sin(T);\n\n% figure;\nplot_curls(nr,ntheta,3);\ncamlight\ncaxis([-3 3])\nzlim([-3 3])\ngrid on;\nhold on;\n\n% slider\nset(gcf,'position',[410 150 560 626]);\nfigsize= get(gcf,'position');\nSliderH = uicontrol('style','slider','position',[figsize(3)*0.95, figsize(4)*0.1 20 300],...\n 'min', -3, 'max', 3,'SliderStep',[0.001, 0.01],'Value',3);\n\nbtn_on = uicontrol('style','pushbutton','String','LIGHT ON',...\n 'position',[20 45 70 20],...\n 'callback',@light_button_press);\n\nbtn_off = uicontrol('style','pushbutton','String','LIGHT OFF',...\n 'position',[20 20 70 20],...\n 'callback',@light_off_button_press);\n\naddlistener(SliderH, 'Value','PostSet',@callbackfn);\n\n\n function callbackfn(source, eventdata)\n [az,el]=view;\n num = get(eventdata.AffectedObject, 'Value');\n cla\n plot_curls(nr,ntheta,num)\n view([az,el]);\n zlim([-3 3])\n \n caxis([-3 3])\n camlight\n grid on;\n end\n\n function light_off_button_press(source,event)\n delete(findall(gcf,'Type','light'))\n \n end\n\n function light_button_press(source,event)\n camlight;\n end\nend\n", "meta": {"author": "angeloyeo", "repo": "gongdols", "sha": "7be9fbd988dec6edab1dc881cb22d63e6f69398d", "save_path": "github-repos/MATLAB/angeloyeo-gongdols", "path": "github-repos/MATLAB/angeloyeo-gongdols/gongdols-7be9fbd988dec6edab1dc881cb22d63e6f69398d/\ubbf8\uc801\ubd84\ud559/\uc2a4\ud1a1\uc2a4\uc815\ub9ac/my_stokes_GUI.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3732463753077828}} {"text": "function seq = sample_dbn(bnet, varargin)\n% SAMPLE_DBN Generate a random sequence from a DBN.\n% seq = sample_dbn(bnet, ...)\n%\n% seq{i,t} contains the values of the i'th node in the t'th slice.\n%\n% Optional arguments:\n%\n% length - length of sequence to be generated (can also just use sample_dbn(bnet,T))\n% stop_test - name of a function which is used to decide when to stop;\n% This will be called as feval(stop_test, seq(:,t))\n% i.e., stop_test is passed a cell array containing all the nodes in the current slice. \n% evidence - initial evidence; if evidence{i,t} is non-empty, this node won't be sampled.\n\nargs = varargin;\nnargs = length(args);\n\nif (nargs == 1) & ~isstr(args{1})\n % Old syntax: sample_dbn(bnet, T)\n T = args{1};\nelse\n % get length\n T = 1;\n for i=1:2:nargs\n switch args{i},\n case 'length', T = args{i+1}; \n case 'evidence', T = size(args{i+1}, 2);\n end\n end\nend\n\nss = length(bnet.intra);\n% set default arguments\nseq = cell(ss, T);\nstop_test = [];\nfor i=1:2:nargs\n switch args{i},\n case 'evidence', seq = args{i+1}; % initialise observed nodes\n case 'stop_test', stop_test = args{i+1};\n end\nend\n\nt = 1;\nfor i=1:ss\n if ~isempty(stop_test) | isempty(seq{i,t})\n ps = parents(bnet.dag, i);\n e = bnet.equiv_class(i,1);\n pvals = seq(ps);\n seq{i,t} = sample_node(bnet.CPD{e}, pvals);\n %fprintf('sample i=%d,t=%d,val=%d,ps\\n', i, t, seq(i,t)); pvals(:)'\n end\nend\nt = 2;\ndone = 0;\nwhile ~done\n for i=1:ss\n if ~isempty(stop_test) | isempty(seq{i,t})\n ps = parents(bnet.dag, i+ss) + (t-2)*ss;\n e = bnet.equiv_class(i,2);\n pvals = seq(ps);\n seq{i,t} = sample_node(bnet.CPD{e}, pvals);\n %fprintf('sample i=%d,t=%d,val=%d,ps\\n', i, t, seq(i,t)); pvals(:)'\n end\n end\n if ~isempty(stop_test)\n done = feval(stop_test, seq(:,t));\n else\n if t==T\n done = 1;\n end\n end\n t = t + 1;\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/general/sample_dbn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3732463753077828}} {"text": "function varargout = size(F, dim) \n%SIZE Size of a SPHEREFUNV object\n% D = SIZE(F) returns a three-element vector D = [K, M, N]. If F is a column\n% SPHEREFUNV object then K is the number of components in F, N and M are INF.\n% If F is a row vector then K and M are INF and N is the number of components\n% of F.\n%\n% [K, M, N] = SIZE(F) returns the dimensions of F as separate output \n% variables.\n%\n% D = SIZE(F, DIM) returns the dimensions specified by the dimension DIM.\n%\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Empty check: \nif ( isempty(F) ) \n varargout = {[], []}; \n return\nend\n\nnF = 3; \ntr = F.isTransposed; \n\n% Manually work out the size: \nif ( ~tr ) \n K = nF; \n M = inf; \n N = inf; \nelse\n N = nF;\n K = inf; \n M = inf; \nend\n\n% Default to vector:\nif ( nargin == 1 )\n dim = 0; \nend\n\n% Manually work out what should be displayed:\nif ( dim == 1 ) \n varargout = { K };\nelseif ( dim == 2 )\n varargout = { M }; \nelseif ( dim == 3 )\n varargout = { N }; \nelseif ( ( dim == 0 ) && ( nargin == 1 ) )\n if ( nargout <= 1 )\n varargout = { [K, M, N] };\n else\n varargout = { K, M, N }; \n end\nelse\n error('SPHEREFUN:SPHEREFUNV:size:dim', 'Unrecognised dimension.');\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spherefunv/size.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297745935070806, "lm_q2_score": 0.5926665999540697, "lm_q1q2_score": 0.3732463670712978}} {"text": "function testConvolutionalFilters\n% testConvolutionalFilters.m This script compares convolutional filter \n% responses as currently implemented to those submitted to IBSI-2 to \n% ensure continued compliance.\n%\n% AI 12/09/22\n\ninit_ML_DICOM\n\n%Path to \"gold standard\" response maps\nCERRPath = getCERRPath;\nCERRPathSlashes = strfind(getCERRPath,filesep);\ntopLevelCERRDir = CERRPath(1:CERRPathSlashes(end-1));\nstdDir = fullfile(topLevelCERRDir,'Unit_Testing','data_for_cerr_tests',...\n 'IBSI2_synthetic_phantoms','Results');\n\n%Create temp output dir\ntestDir = fullfile(topLevelCERRDir,'Unit_Testing','tests_for_cerr');\ntmpDir = fullfile(testDir,'IBSI2');\nmkdir(tmpDir)\n\n%Compute filter response maps (IBSI 2 -phase1)\nrunIBSI2benchmarkFilters(tmpDir,'all');\n\n%Assess deviation from standard\nconfigC = { '1a1','1a2','1a3','1a4','1b1','2a1','2b1','2c1','3a1','3a2',...\n '3a3','3b1','3b2','3b3','3c1','3c2','3c3','4a1','4a2','4b1','4b2',...\n '5a1','5a2','6a1','6a2'};\nassertTOL = 1e-5;\n\ndisp(['========= Maximum difference for filt config. =========='])\nfor n = 1:length(configC)\n currResponse3M = niftiread(fullfile(tmpDir,[configC{n},'.nii']));\n stdResponse3M = niftiread(fullfile(stdDir,[configC{n},'.nii']));\n diff3M = currResponse3M - stdResponse3M;\n maxDiff = max(diff3M(:));\n assertAlmostEqual(currResponse3M,stdResponse3M,assertTOL);\n disp([configC{n},': ', sprintf('%0.1g',maxDiff)])\n\nend\n\nrmdir(tmpDir,'s')\n\ndisp('========= testConvolutionalFilters succeeded. ==========')\n\nend", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/Unit_Testing/tests_for_cerr/testConvolutionalFilters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947425132315, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.3731935054183568}} {"text": "% plotmesh() - plot mesh defined by faces and vertex\n%\n% Usage: \n% plotmesh(faces, vertex);\n%\n% Input:\n% faces - array of N x 3. Each row defines a triangle. The 3 points\n% in each row are row indices in the matrix below.\n% vertex - array of M x 3 points, (x = first colum; y=second colum\n% z=3rd column). Each row defines a point in 3-D.\n%\n% Optional input:\n% normal - normal orientation for each face (for better lighting)\n%\n% Author: Arnaud Delorme, SCCN/INC/UCSD, 2003\n\n% Copyright (C) May 6, 2003 Arnaud Delorme, SCCN/INC/UCSD,\n% arno@sccn.ucsd.edu\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA\n\nfunction p1 = plotmesh(faces, vertex, normal, newfig)\n \n if nargin < 2\n help plotmesh;\n return;\n end;\n \n FaceColor = [.8 .55 .35]*1.1; % ~= ruddy Caucasian - pick your complexion!\n \n if any(any(faces == 0)), faces = faces+1; end;\n %vertex(:,3) = -vertex(:,3);\n %FCmap = [jet(64); FaceColor; FaceColor; FaceColor];\n %colormap(FCmap)\n %W = ones(1,size(vertex,1))*(size(FCmap,1)-1);\n %W = ones(1,size(vertex,1))' * FaceColor;\n %size(W)\n if nargin < 4\n figure; \n end;\n if nargin < 3 \n normal = [];\n end;\n if isempty(normal)\n p1 = patch('vertices', vertex, 'faces', faces, ...\n 'facecolor', [1,.75,.65]);\n else\n p1 = patch('vertices', vertex, 'faces', faces, ...\n 'facecolor', [1,.75,.65], 'vertexnormals', normal);\n end;\n % 'FaceVertexCdata',W(:), 'FaceColor','interp', 'vertexnormals', normal);\n set(p1,'EdgeColor','none')\n \n % Lights\n %Lights = [-125 125 80; ...\n % 125 125 80; ...\n % 125 -125 125; ...\n % -125 -125 125]; % default lights at four corners\n %for i = 1:size(Lights,1)\n % hl(i) = light('Position',Lights(i,:),'Color',[1 1 1],...\n % 'Style','infinite');\n %end\n %camlight left;\n lightangle(45,30);\n lightangle(45+180,30);\n %set(gcf, 'renderer', 'zbuffer'); % cannot use alpha then\n %set(hcap, 'ambientstrength', .6);\n set(p1, 'specularcolorreflectance', 0, 'specularexponent',50);\n \n set(p1,'DiffuseStrength',.6,'SpecularStrength',0,...\n 'AmbientStrength',.4,'SpecularExponent',5);\n axis equal\n view(18,8);\n rotate3d\n axis off;\n lighting phong;\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/functions/sigprocfunc/plotmesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947425132315, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3731935054183567}} {"text": "function outn=le(x,y)\n\nprecAndSize\n\nfor ii=1:max(ex,ey)\n imag=false;\n if ex==1\n [xrval,xival]=getVals(x,1);\n [yrval,yival]=getVals(y,ii);\n elseif ey==1\n [xrval,xival]=getVals(x,ii);\n [yrval,yival]=getVals(y,1);\n else\n [xrval,xival]=getVals(x,ii);\n [yrval,yival]=getVals(y,ii);\n end \n outn(ii)=mpfr_le(precision,xrval,yrval);\n if outn(ii)~=0, outn(ii)=1; end\nend % for ii=1:max(ex,\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/external/analysis/mptoolbox/@mp/le.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3731934977418124}} {"text": "function M = esvm_perform_calibration(grid, val_set, models, params)\n% 1. Perform LABOO calibration procedure and 2. Learn a combination\n% matrix M which multiplexes the detection results (by compiling\n% co-occurrence statistics on true positives) \n%\n% Copyright (C) 2011-12 by Tomasz Malisiewicz\n% All rights reserved.\n% \n% This file is part of the Exemplar-SVM library and is made\n% available under the terms of the MIT license (see COPYING file).\n% Project homepage: https://github.com/quantombone/exemplarsvm\n\n%% Perform calibration\nbetas = esvm_perform_platt_calibration(grid, val_set, models, ...\n params);\n\n%% Estimate the co-occurrence matrix M\nif ~(isfield(params,'SKIP_M') && params.SKIP_M==1)\n M = esvm_estimate_M(grid, models, params);\nend\n\n%concatenate results\nM.betas = betas;\n", "meta": {"author": "quantombone", "repo": "exemplarsvm", "sha": "54c07ec4faa96fb949991ebc512eaf7446e034f7", "save_path": "github-repos/MATLAB/quantombone-exemplarsvm", "path": "github-repos/MATLAB/quantombone-exemplarsvm/exemplarsvm-54c07ec4faa96fb949991ebc512eaf7446e034f7/esvm_perform_calibration.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947155710233, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.373193490065268}} {"text": "function hBodySurf = rts_initOrbPlot(hFig, orbitDispAxes, bodyInfo)\n%rts_initOrbPlot Summary of this function goes here\n% Detailed explanation goes here\n \n hold(orbitDispAxes,'on');\n set(orbitDispAxes,'XTickLabel',[]);\n set(orbitDispAxes,'YTickLabel',[]);\n set(orbitDispAxes,'ZTickLabel',[]);\n grid(orbitDispAxes,'on');\n view(orbitDispAxes,3);\n\n if(~isempty(bodyInfo))\n dRad = bodyInfo.radius;\n [X,Y,Z] = sphere(30);\n hold(orbitDispAxes,'on');\n hBodySurf = surf(orbitDispAxes, dRad*X,dRad*Y,dRad*Z);\n hold(orbitDispAxes,'on');\n colormap(orbitDispAxes,bodyInfo.bodycolor);\n else\n hBodySurf = [];\n end\n axis(orbitDispAxes, 'equal');\n hold(orbitDispAxes,'off');\nend\n\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_connect/rts_functions/rts_initOrbPlot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300698514778, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3731905581820248}} {"text": "%High speed MATLAB codes\n \n%This program use SCL with small list size as a \"filter\", i.e., under the\n%same noise realization, If CRC-SCL with smaller L is correct, then CRC-SCL\n%with larger L must be correct. You may not believe in this conjecture, but you can have\n%a try, This is true with high probability (almost 1)\n \n%This program has another accelerator. If in lower snr, CRC-SCL is correct, then at higher snr, \n%the same CRC-SCL must be correct. You may not believe in this conjecture, but you can have\n%a try, This is true with high probability (almost 1).\n \n%I know above methods sound dangerous, but it is safe under following 4\n%conditions\n \n%1. The same code word\n%2. The same AWGN noise realization with distribution N(0, 1) \n%3. CRC must be used (Only SCL is not permitted)\n%4. The same code construction in all SNR range.\n \n%This program satisfies above 4 conditions. You can verify the bler performance by comparisons with existing results. \n \n%Since MATLAB is not good at recursive function (too many parameters to be passed)\n%I cancel the well-known recursiveCalcP() and recursiveCalcB() proposed by\n%I. Tal\n%Instead, 'For' function is used. You may argue that we can use objective\n%oriented (OO) style. However, OO in matlab is also slow.\n \n%Besides, the algorithms of following papers are provided.\n \n%How to Construct Polar Codes\n%Fast Successive-Cancellation Decoding of Polar Codes: Identification and Decoding of New Nodes\n%beta-expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes\n \n%Above three algorithms are made by myself so the correctness is not guaranteed. \n\n\n\n\nclear\naddpath('GA/')\n% addpath('HowToConstructPolarCode/')\naddpath('NodeProcess/')\n% addpath('BECconstruction/')\n% addpath('PolarizaedChannelsPartialOrder/')\n%adding above folders will take round 2 seconds\n\ndesign_epsilon = 0.32;\ncrc_length = 16;\n[gen, det, g] = get_crc_objective(crc_length);\nn = 10;\nN = 2^n;\nK = N/2 + crc_length;\nebno_vec = [2 2.5]; %row vec, you can write it like [1 1.5 2 2.5 3] \nlist_vec = [1 16]; %row vec, you can write it like [1 4 16 32 ...]. The first element is always 1 for acceleration purpose. The ramaining elements are power of two.\nmax_runs = 1e7;\nmax_err = 100;\nresolution = 1e4;%the results are shown per max_runs/resolution.\n[bler, ber] = simulation(N, K, design_epsilon, max_runs, max_err, resolution, ebno_vec, list_vec, gen, det, g, crc_length);\n\n", "meta": {"author": "YuYongRun", "repo": "PolarCodeDecodersInMatlab", "sha": "f1b512d10bf057e83f18685ea012d242bdaaf6ac", "save_path": "github-repos/MATLAB/YuYongRun-PolarCodeDecodersInMatlab", "path": "github-repos/MATLAB/YuYongRun-PolarCodeDecodersInMatlab/PolarCodeDecodersInMatlab-f1b512d10bf057e83f18685ea012d242bdaaf6ac/PolarConventionalCASCL/main.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.373190551565136}} {"text": "function test_suite = test_angle3Points\n% One-line description here, please.\n% output = testAngle3Points(input)\n%\n% Example\n% testAngle3Points\n%\n% See also\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2009-04-22, using Matlab 7.7.0.471 (R2008b)\n% Copyright 2009 INRA - Cepia Software Platform.\n\ntest_suite = functiontests(localfunctions);\n\nfunction testSimple(testCase) %#ok<*DEFNU>\n% all points inside window, possibly touching edges\n\np1 = [10 0];\np2 = [0 0];\np3 = [0 10];\nangle = angle3Points(p1, p2, p3);\ntestCase.assertEqual(pi/2, angle, 'AbsTol', .01);\n\n\nfunction testBundledInput(testCase)\n% all points inside window, possibly touching edges\n\np1 = [10 0];\np2 = [0 0];\np3 = [0 10];\nangle = angle3Points([p1; p2; p3]);\ntestCase.assertEqual(pi/2, angle, 'AbsTol', .01);\n\nfunction testArray(testCase)\n% all points inside window, possibly touching edges\n\np1 = [10 0; 20 0];\np2 = [0 0;0 0];\np3 = [0 10; 0 20];\nangle = angle3Points(p1, p2, p3);\n\ntestCase.assertEqual(2, size(angle, 1));\ntestCase.assertEqual([pi/2;pi/2], angle, 'AbsTol', .01);\n\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/tests/geom2d/test_angle3Points.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.6825737279551493, "lm_q1q2_score": 0.37318909861544686}} {"text": "%% pathRRT\n%% - create a path from a start node to an end node\n%% using the RRT algorithm.\n%% - RRT = Rapidly-exploring Random Tree\n%% \n%% Last Modified - 6/8/2006 - R. Beard\n%% - 4/15/2010 - R. Beard\n\nfunction path_out=planRRT(wpp_start, wpp_end, map)\n\n % standard length of path segments\n segmentLength = 100;\n\n % desired down position is down position of end node\n pd = wpp_end(3);\n chi = -9999;\n \n % specify start and end nodes from wpp_start and wpp_end\n start_node = [wpp_start(1), wpp_start(2), pd, chi, 0, 0, 0];\n end_node = [wpp_end(1), wpp_end(2), pd, chi, 0, 0, 0];\n % format: [N, E, D, chi, cost, parent_idx, flag_connect_to_goal]\n\n % establish tree starting with the start node\n tree = start_node;\n \n % check to see if start_node connects directly to end_node\n if ( (norm(start_node(1:3)-end_node(1:3))= downAtNE(map, X(i), Y(i)),\n collision_flag = 1;\n end\n end\n \nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% pointsAlongPath\n%% Find points along straight-line path separted by Del (to be used in\n%% collision detection)\nfunction [X,Y,Z] = pointsAlongPath(start_node, end_node, Del)\n\n X = [start_node(1)];\n Y = [start_node(2)];\n Z = [start_node(3)];\n \n q = [end_node(1:3)-start_node(1:3)];\n L = norm(q);\n q = q/L;\n \n w = start_node(1:3);\n for i=2:floor(L/Del),\n w = w + Del*q;\n X = [X, w(1)];\n Y = [Y, w(2)];\n Z = [Z, w(3)];\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% downAtNE\n%% find the world down coordinate at a specified (n,e) location\nfunction down = downAtNE(map, n, e)\n\n [d_n,idx_n] = min(abs(n - map.buildings_n));\n [d_e,idx_e] = min(abs(e - map.buildings_e));\n\n if (d_n<=map.BuildingWidth) && (d_e<=map.BuildingWidth),\n down = -map.heights(idx_e,idx_n);\n else\n down = 0;\n end\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% extendTree\n%% extend tree by randomly selecting point and growing tree toward that\n%% point\nfunction [new_tree,flag] = extendTree(tree,end_node,segmentLength,map,pd,chi)\n\n flag1 = 0;\n loop_count = 0;\n while flag1==0,\n % select a random point\n randomNode=generateRandomNode(map,pd,chi);\n \n % find leaf on node that is closest to randomPoint\n tmp = tree(:,1:3)-ones(size(tree,1),1)*randomNode(1:3);\n [dist,idx] = min(diag(tmp*tmp'));\n L = min(sqrt(dist), segmentLength); \n cost = tree(idx,5) + L;\n tmp = randomNode(1:3)-tree(idx,1:3);\n new_point = tree(idx,1:3)+L*(tmp/norm(tmp));\n new_node = [new_point, chi, cost, idx, 0]; \n loop_count = loop_count+1\n if collision(tree(idx,:), new_node, map)==0,\n new_tree = [tree; new_node];\n flag1=1;\n end\n end\n \n % check to see if new node connects directly to end_node\n if ( (norm(new_node(1:3)-end_node(1:3))1,\n parent_node = tree(parent_node,6);\n path = [tree(parent_node,:); path];\n end\n \nend\n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% smoothPath\n%% smooth the waypoint path \nfunction newPath = smoothPath(path,map)\n\n newPath = path(1,:); % add the start node \n ptr =2; % pointer into the path\n while ptr <= size(path,1)-1,\n if collision(newPath(end,:), path(ptr+1,:), map)~=0, % if there is a collision\n newPath = [newPath; path(ptr,:)]; % add previous node\n end\n ptr=ptr+1;\n end\n newPath = [newPath; path(end,:)];\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% plotmap\n%% plot obstacles and path\nfunction plotmap(map,path,smoothedPath,tree)\n \n % setup plot\n figure(3), clf\n axis([0,map.width,0,map.width,0,2*map.MaxHeight]);\n xlabel('E')\n ylabel('N')\n zlabel('h')\n hold on\n \n % plot buildings \n V = [];\n F = [];\n patchcolors = [];\n count = 0;\n for i=1:map.NumBlocks,\n for j=1:map.NumBlocks,\n [Vtemp,Ftemp,patchcolorstemp] = buildingVertFace(map.buildings_n(i),...\n map.buildings_e(j),map.BuildingWidth,map.heights(j,i));\n V = [V; Vtemp];\n Ftemp = Ftemp + count;\n F = [F; Ftemp];\n count = count + 8;\n patchcolors = [patchcolors;patchcolorstemp];\n end\n end\n \n patch('Vertices', V, 'Faces', F,...\n 'FaceVertexCData',patchcolors,...\n 'FaceColor','flat');\n \n % draw tree\n for i=2:size(tree,1),\n X = [tree(i,1), tree(tree(i,6),1)];\n Y = [tree(i,2), tree(tree(i,6),2)]; \n Z = [tree(i,3), tree(tree(i,6),3)]; \n plot3(Y,X,-Z,'g')\n end\n \n % draw path\n X = path(:,1);\n Y = path(:,2);\n Z = path(:,3);\n plot3(Y,X,-Z,'r','linewidth',2);\n\n % draw smooth path\n X = smoothedPath(:,1);\n Y = smoothedPath(:,2);\n Z = smoothedPath(:,3);\n plot3(Y,X,-Z,'k','linewidth',2);\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% buildingVertFace(x,y,width,height)\n%% define patches for a building located at (x,y)\nfunction [V,F,patchcolors] = buildingVertFace(n,e,width,height)\n \n % vertices of the building\n V = [...\n e+width/2, n+width/2, 0;...\n e+width/2, n-width/2, 0;...\n e-width/2, n-width/2, 0;...\n e-width/2, n+width/2, 0;...\n e+width/2, n+width/2, height;...\n e+width/2, n-width/2, height;...\n e-width/2, n-width/2, height;...\n e-width/2, n+width/2, height;...\n ]; \n % define faces of fuselage\n F = [...\n 1, 4, 8, 5;... % North Side\n 1, 2, 6, 5;... % East Side\n 2, 3, 7, 6;... % South Side\n 3, 4, 8, 7;... % West Side\n 5, 6, 7, 8;... % Top\n ]; \n\n myred = [1, 0, 0];\n mygreen = [0, 1, 0];\n myblue = [0, 0, 1];\n myyellow = [1,1,0];\n mymagenta = [0, 1, 1];\n\n patchcolors = [...\n mygreen;... % North\n mygreen;... % East\n mygreen;... % South\n mygreen;... % West\n myyellow;... % Top\n ];\n\nend\n\n \n", "meta": {"author": "chengji253", "repo": "Multiple-fixed-wing-UAVs-flight-simulation-platform", "sha": "7c1fa69d9033355461c0753c2a7408a9bcf1e3e7", "save_path": "github-repos/MATLAB/chengji253-Multiple-fixed-wing-UAVs-flight-simulation-platform", "path": "github-repos/MATLAB/chengji253-Multiple-fixed-wing-UAVs-flight-simulation-platform/Multiple-fixed-wing-UAVs-flight-simulation-platform-7c1fa69d9033355461c0753c2a7408a9bcf1e3e7/platform_code/uavA1/planRRT.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979745, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.37318909508506304}} {"text": "function sVF1 = rdivide(sVF1, sVF2)\n%\n% Syntax\n%\n% sVF = sVF ./ a\n% sVF = sVF ./ sF\n%\n% Input\n% sVF - @S2VectorFieldHarmonic\n% sF - @S2Fun\n% a - double\n%\n% Output\n% sVF - @S2VectorFieldHarmonic\n%\n\nif isnumeric(sVF2)\n sVF1.sF = sVF1.sF .* (1./sVF2);\nelseif isa(sVF2,'S2Fun')\n sVF1.sF = sVF1.sF ./ sVF2;\nend\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/S2Fun/@S2VectorFieldHarmonic/rdivide.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.746138993030751, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3730694965153755}} {"text": "\nfunction [data_hull,sources] = get_reduced_graph_weights_sources(data,hull);\n\n\ndata_hull.hull = hull;\nswitch data.dag_type\n\tcase 'grid + input_space'\n\n\t\taffinity_hull = cell(1,size(hull,1));\n\t\tweights_hull = zeros(1,size(hull,1))';\n\t\tfor i=1:size(hull,1)\n\t\t\taffinity_hull{i} = find(all(hull - repmat(hull(i,:),size(hull,1),1) >= 0,2));\n\t\t\ttemp = 1;\n\t\t\tif all(hull(i,:)==1)\n\n\t\t\t\tweights_hull(i) = data.weight0;\n\t\t\telse\n\t\t\t\tfor j=1:data.p, temp = temp * data.weightA^(hull(i,j)-1); end\n\t\t\t\tweights_hull(i) = temp;\n\t\t\tend\n\t\tend\n\n\n\n\t\t% prepare data\n\t\tX_hull = [];\n\t\tgroups_hull = cell(1,size(hull,1));\n\t\tgroupdescs_hull = cell(1,size(hull,1));\n\n\t\tai1=1;\n\t\tfor i1=1:size(hull,1)\n\t\t\tXloc = get_data_reduced(hull(i1,:),data);\n\t\t\tX_hull = [ X_hull, Xloc ];\n\t\t\tgroups_hull{i1} = ai1:ai1+size(Xloc,2)-1; % records the indices of that group\n\t\t\tai1 = ai1 + size(Xloc,2);\n\t\tend\n\n\t\tfor i1=1:size(hull,1)\n\t\t\tgroupdescs_hull{i1}=[];\n\t\t\tfor i2=1:length(affinity_hull{i1})\n\t\t\t\tgroupdescs_hull{i1} = [ groupdescs_hull{i1}, groups_hull{affinity_hull{i1}(i2)} ];\n\t\t\tend\n\t\tend\n\n\t\tqq =data.qs;\n\n\t\t% sources = find_sources_complement_grid_fast_c(hull,data.qs);\n % this function finds the sources of the complement of the active\n % set defined by the hull\n \n if nargout>1\n \n \t\tsources = compute_sources(hull,data.qs);\n% \t\tsources_old =find_sources_complement_grid_fast_int_c( int32(hull'),int32(data.qs));\n\n end\n\t\tdata_hull.X = X_hull;\n\t\tdata_hull.weights = weights_hull;\n\t\tdata_hull.affinity = affinity_hull;\n\t\tdata_hull.groups = groups_hull;\n\t\tdata_hull.groupdescs = groupdescs_hull;\n\n\n\tcase 'mkl + input_space'\n\n\t\taffinity_hull = cell(1,size(hull,1));\n\t\tweights_hull = zeros(1,size(hull,1))';\n\t\tfor i=1:size(hull,1)\n\t\t\taffinity_hull{i} = find(all(hull - repmat(hull(i,:),size(hull,1),1) >= 0,2));\n\t\t\ttemp = 1;\n\t\t\tif all(hull(i,:)==1)\n\n\t\t\t\tweights_hull(i) = data.weight0;\n\t\t\telse\n\n\t\t\t\tweights_hull(i) = data.weightA;\n\t\t\tend\n\t\tend\n\n\n\n\t\t% prepare data\n\t\tX_hull = [];\n\t\tgroups_hull = cell(1,size(hull,1));\n\t\tgroupdescs_hull = cell(1,size(hull,1));\n\n\t\tincluded_kernels = [];\n\t\tai1=1;\n\t\tfor i1=1:size(hull,1)\n\t\t\tXloc = get_data_reduced(hull(i1,:),data);\n\t\t\tX_hull = [ X_hull, Xloc ];\n\t\t\tgroups_hull{i1} = ai1:ai1+size(Xloc,2)-1; % records the indices of that group\n\t\t\tai1 = ai1 + size(Xloc,2);\n\t\tend\n\n\t\tfor i1=1:size(hull,1)\n\t\t\tgroupdescs_hull{i1}=[];\n\t\t\tfor i2=1:length(affinity_hull{i1})\n\t\t\t\tgroupdescs_hull{i1} = [ groupdescs_hull{i1}, groups_hull{affinity_hull{i1}(i2)} ];\n\t\t\tend\n\t\tend\n\n\n\n\t\t%sources = find_sources_complement_mkl(hull,data.p,data.qs);\n\t\tincluded_kernels = find(max(hull,[],1)==2);\n\t\ttemp = 1:data.p;\n\t\ttemp(included_kernels) = [];\n\t\tsources = [];\n\t\tfor i=1:length(temp)\n\t\t\thloc = ones(1,data.p);\n\n\t\t\thloc(temp(i))=2;\n\t\t\tsources = [ sources; hloc];\n\t\tend\n\n\t\tdata_hull.X = X_hull;\n\t\tdata_hull.weights = weights_hull;\n\t\tdata_hull.affinity = affinity_hull;\n\t\tdata_hull.groups = groups_hull;\n\t\tdata_hull.groupdescs = groupdescs_hull;\n\n\n\n\n\tcase 'bimkl + input_space'\n\n\t\taffinity_hull = cell(1,size(hull,1));\n\t\tweights_hull = zeros(1,size(hull,1))';\n\t\tfor i=1:size(hull,1)\n\t\t\ttemp = 1;\n\t\t\tif all(hull(i,:)==1)\n\t\t\t\taffinity_hull{i} = 1:size(hull,1);\n\t\t\t\tweights_hull(i) = data.weight0;\n\t\t\telse\n\t\t\t\taffinity_hull{i} =i;\n\t\t\t\tfor j=1:data.p, temp = temp * data.weightA^(hull(i,j)-1); end\n\t\t\t\tweights_hull(i) = temp;\n\t\t\tend\n\t\tend\n\n\n\n\t\t% prepare data\n\t\tX_hull = [];\n\t\tgroups_hull = cell(1,size(hull,1));\n\t\tgroupdescs_hull = cell(1,size(hull,1));\n\n\t\tai1=1;\n\t\tfor i1=1:size(hull,1)\n\t\t\tXloc = get_data_reduced(hull(i1,:),data);\n\t\t\tX_hull = [ X_hull, Xloc ];\n\t\t\tgroups_hull{i1} = ai1:ai1+size(Xloc,2)-1; % records the indices of that group\n\t\t\tai1 = ai1 + size(Xloc,2);\n\t\tend\n\n\t\tfor i1=1:size(hull,1)\n\t\t\tgroupdescs_hull{i1}=[];\n\t\t\tfor i2=1:length(affinity_hull{i1})\n\t\t\t\tgroupdescs_hull{i1} = [ groupdescs_hull{i1}, groups_hull{affinity_hull{i1}(i2)} ];\n\t\t\tend\n\t\tend\n\n\t\tqq =data.qs;\n\t\tsave temp hull qq\n\n\t\tp = data.p;\n\n\t\tincluded_kernels_one = zeros(p,1);\n\t\tincluded_kernels_two = zeros(p,p);\n\t\tfor i=1:size(hull,1);\n\t\t\ttt = find(hull(i,:)==2);\n\t\t\tif length(tt)==1\n\t\t\t\tincluded_kernels_one(tt)=1;\n\t\t\telseif length(tt)==2\n\t\t\t\tincluded_kernels_one(tt(1),tt(2)) = 1;\n\t\t\t\tincluded_kernels_one(tt(2),tt(1)) = 1;\n\t\t\tend\n\t\tend\n\n\t\tsources = [];\n\t\tfor i=1:p\n\t\t\tif (included_kernels_one(i)==0),\n\t\t\t\thloc = ones(1,p);\n\t\t\t\thloc(i)=2;\n\t\t\t\tsources = [ sources; hloc];\n\t\t\tend\n\t\tend\n\t\tfor i=2:p\n\t\t\tfor j=1:i-1\n\t\t\t\tif (included_kernels_two(i,j)==0),\n\t\t\t\t\thloc = ones(1,p);\n\t\t\t\t\thloc(i)=2; hloc(j)=2;\n\t\t\t\t\tsources = [ sources; hloc];\n\t\t\t\tend\n\t\t\tend\n\t\tend\n\n\n\n\t\tdata_hull.X = X_hull;\n\t\tdata_hull.weights = weights_hull;\n\t\tdata_hull.affinity = affinity_hull;\n\t\tdata_hull.groups = groups_hull;\n\t\tdata_hull.groupdescs = groupdescs_hull;\n\n\n\n\n\n\nend\ndata_hull.dag_type = data.dag_type;\n \n\n\n% check that the total dimension of the input space is smaller than the\n% number of observations. If not -> store kernel matrices\nswitch data.dag_type\n\tcase {'grid + input_space', 'mkl + input_space', 'bimkl + input_space'}\n\n\t\tif size(data_hull.X,2) > size(data_hull.X,1)\n\t\t\tn = size(data_hull.X,1);\n\t\t\tdata_hull.kernels = zeros(n*(n+1)/2,size(hull,1),'single');\n\t\t\tfor i=1:size(hull,1)\n\t\t\t\tdata_hull.kernels(:,i) = symmetric_vectorize_single( single(data_hull.X(:,data_hull.groups{i})*data_hull.X(:,data_hull.groups{i})' ) );\n\t\t\tend\n\t\t\tswitch data.dag_type\n\t\t\t\tcase 'grid + input_space'\n\t\t\t\t\tdata_hull.dag_type = 'grid + kernels';\n\t\t\t\tcase 'mkl + input_space'\n\t\t\t\t\tdata_hull.dag_type = 'mkl + kernels';\n\t\t\t\tcase 'bimkl + input_space'\n\t\t\t\t\tdata_hull.dag_type = 'bimkl + kernels';\n\t\t\tend\n\n\t\tend\n\n\n\nend\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/hkl-3.0/get_reduced_graph_weights_sources.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.746138993030751, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3730694965153755}} {"text": "function [rot, trans, Mf] = regEstRot4(rot, trans, scaleFac, volume, numSlices, sagSize, NCoarseIter, coarseFlag, fineFlag);\n%\n% regEstRotFunction - Function to compute automatically the rotation and translation,\n% to be used as a callback.\n% It returns the rotation and translation in workspace variables\n% rot and trans.\n%\n% Oscar Nestares - 5/99\n% ON - Added option to use the rotation and translation in bestrotvol\n% as initial alignment (useful to recompute automatically previous\n% manual alignments).\n% AB 4/21 - added NCoarseIter = [];\n% SL 7/15/02 - Created regEstRot4 for use in mrAlign4 (based largely on regEstRot).\n% Changed it from a script into a function and eliminated the need for\n% 'Usebestrotvol' parameter and the function regParamInit.\n% SL 7/29/02 - removed NCoarseIter = [];\n% SL 8/02/02 - added coarseFlag and fineFlag parameters\n\nglobal INPLANE\n\n% registering\n[rot, trans, Mf]=regVolInp4(...\n reshape(volume,[sagSize, numSlices]),... % volume\n INPLANE.anat,... % inplanes\n scaleFac,... % inverse voxel size for inplanes and volume\n rot,... % initial rotation\n trans,... % initial translation\n NCoarseIter,... % number of coarse iterations\n coarseFlag,... % coarse iterations flag\n fineFlag,... % fine iterations flag\n 'regEstFilIntGrad',... % function to estimate the intensity grad.\n 0); % Plane by Plane flag = 0 (=>works globaly)\n\n% done\n\nmsgbox('Automatic computation done');\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAlign/registrationOscar/regEstRot4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7520125737597972, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3730687975267801}} {"text": "filename='Gripping_tetrahedra_coarse';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'nonadjoint_compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\nconstraint_case = 'INEQUALITY';\noptimizer = 'PROJECTED GRADIENT'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.2;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Gripping/GrippingTetrahedraCoarse_Case_2_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7520125737597972, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.37306879752678007}} {"text": "\n%% Demo to show the results of MCG\nclear all;close all;home;\n\n% Read an input image\nI = imread(fullfile(root_dir, 'demos','101087.jpg'));\n\ntic;\n% Test the 'fast' version, which takes around 5 seconds in mean\n[candidates_scg, ucm2_scg] = im2mcg(I,'fast');\ntoc;\n\ntic;\n% Test the 'accurate' version, which tackes around 30 seconds in mean\n[candidates_mcg, ucm2_mcg] = im2mcg(I,'accurate');\ntoc;\n\n%% Show UCM results (dilated for visualization)\nfigure;\nsubplot(1,3,1)\nimshow(I), title('Image')\n\nsubplot(1,3,2)\nimshow(imdilate(ucm2_scg,strel(ones(3))),[]), title('Fast UCM (SCG)')\n\nsubplot(1,3,3)\nimshow(imdilate(ucm2_mcg,strel(ones(3))),[]), title('Accurate UCM (MCG)')\n\n\n%% Show Object Candidates results and bounding boxes\n% Candidates in rank position 11 and 12\nid1 = 11; id2 = 12;\n\n% Get the masks from superpixels and labels\nmask1 = ismember(candidates_mcg.superpixels, candidates_mcg.labels{id1});\nmask2 = ismember(candidates_mcg.superpixels, candidates_mcg.labels{id2});\n\n% Bboxes is a matrix that contains the four coordinates of the bounding box\n% of each candidate in the form [up,left,down,right]. See folder bboxes for\n% more function to work with them\n\n% Show results\nfigure;\nsubplot(1,3,1)\nimshow(I), title('Image')\nsubplot(1,3,2)\nimshow(mask1), title('Candidate + Box')\nhold on\nplot([candidates_mcg.bboxes(id1,4) candidates_mcg.bboxes(id1,4) candidates_mcg.bboxes(id1,2) candidates_mcg.bboxes(id1,2) candidates_mcg.bboxes(id1,4)],...\n [candidates_mcg.bboxes(id1,3) candidates_mcg.bboxes(id1,1) candidates_mcg.bboxes(id1,1) candidates_mcg.bboxes(id1,3) candidates_mcg.bboxes(id1,3)],'r-')\nsubplot(1,3,3)\nimshow(mask2), title('Candidate + Box')\nhold on\nplot([candidates_mcg.bboxes(id2,4) candidates_mcg.bboxes(id2,4) candidates_mcg.bboxes(id2,2) candidates_mcg.bboxes(id2,2) candidates_mcg.bboxes(id2,4)],...\n [candidates_mcg.bboxes(id2,3) candidates_mcg.bboxes(id2,1) candidates_mcg.bboxes(id2,1) candidates_mcg.bboxes(id2,3) candidates_mcg.bboxes(id2,3)],'r-')\n", "meta": {"author": "jponttuset", "repo": "mcg", "sha": "e72031d793abf8921e39a8ef3c20de2198c8b26f", "save_path": "github-repos/MATLAB/jponttuset-mcg", "path": "github-repos/MATLAB/jponttuset-mcg/mcg-e72031d793abf8921e39a8ef3c20de2198c8b26f/full/demos/demo_im2mcg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.752012562644147, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.3730687920123746}} {"text": "function calpak_test75 ( )\n\n%*****************************************************************************80\n%\n%% CALPAK_TEST75 tests YMD_INC_YMD_COMMON and YMDF_DIF_YMDF_COMMON.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 22 April 2013\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'CALPAK_TEST75\\n' );\n fprintf ( 1, ' For the Common calendar,\\n' );\n fprintf ( 1, ' YMD_INC_YMD_COMMON increments a YMDF date by YMDF;\\n' );\n fprintf ( 1, ' YMDF_DIF_YMDF_COMMON finds the YMDF difference.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Date1 increment Date2 difference\\n' );\n fprintf ( 1, '\\n' );\n\n y1 = 1900;\n m1 = 5;\n d1 = 27;\n f1 = 0.0;\n\n yn1 = 50;\n mn1 = 9;\n dn1 = 10;\n fn2 = 0.0;\n\n [ y2, m2, d2 ] = ymd_inc_ymd_common ( y1, m1, d1, yn1, mn1, dn1 );\n f2 = 0.0;\n\n [ yn2, mn2, dn2, fn2, ierror ] = ymdf_dif_ymdf_common ( y1, m1, d1, f1, ...\n y2, m2, d2, f2 );\n\n s1 = ymdf_to_s_common ( y1, m1, d1, f1 );\n\n s2 = ymdf_to_s_common ( y2, m2, d2, f2 );\n\n fprintf ( 1, ' %15s %3d %3d %3d %15s %3d %3d %3d\\n', ...\n s1, yn1, mn1, dn1, s2, yn2, mn2, dn2 );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/calpak_test75.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5888891451980403, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.3730084287369086}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Max manipulability index ALONG A LINE.\n% Use stomp like to optimize along a surface/line\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction experiment1B_K10_N30\nclose all;\nglobal parameters\n\n%STOMP PARAMETERS\n%number of particles\nK = 10;\n\n%repeat experiment number of times\nparameters.n_repeat = 3;\nparameters.experiment_name = 'experiment1B_K10_N30_time.mat';\nparameters.experiment_number = 1;\nparameters.animate = 0;\n\n%repeat the experiment E times\nrandom_manips=[];\nGout = [];\ntic;\nfor i=1:parameters.n_repeat\n close all\n [pk, final_manip] = path_planning_SCO_4DOF(K);\n Gout{i}=pk;\n random_manips = [random_manips; final_manip];\n save(parameters.experiment_name)\nend\nelapsed = toc;\nfprintf('TIC TOC: %g\\n', elapsed/parameters.n_repeat);\n\n'ended'\nparameters.experiment_name\n \n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/lib/SCO_v0.5/experiment1/experiment1B_K10_N30.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.63341027751814, "lm_q2_score": 0.5888891307678321, "lm_q1q2_score": 0.3730084277470688}} {"text": "% This plots the convergence of the human observer study in terms of the\n% Kendall coefficients of agreement versus different numbers of workers and\n% error thresholds for the sanity checks.\nfunction plotObserverStudyConvergence(resultDir, outputDir)\n \n % Get precomputed coefficients.\n load([resultDir, '/observerStudy/observerStudyConvergence.mat']);\n \n % Mean and standard deviation of the Kendall coefficient of agreement\n % over the samples of the Monte Carlo simulation.\n kendallMean = mean(kendall, 3);\n kendallStd = std(kendall, [], 3);\n \n % Plot Kendall coefficient of agreement vs. number of workers.\n lineStyle = {'-', '--', '-.', ':'};\n lineColor = {[0 0 1], [1 0 0], [1 0.65 0], [0 1 0]};\n figure;\n for maxSanityCheckFailsIdx = 1:length(maxSanityCheckFails)\n errorbar(numWorkers, kendallMean(maxSanityCheckFailsIdx,:), kendallStd(maxSanityCheckFailsIdx,:), ...\n lineStyle{maxSanityCheckFailsIdx}, 'Color', lineColor{maxSanityCheckFailsIdx}, 'LineWidth', 1.5);\n legendStr{maxSanityCheckFailsIdx} = sprintf('$n_f$ = %s', num2str(maxSanityCheckFails(maxSanityCheckFailsIdx)));\n hold on;\n end\n hold off;\n grid on;\n xlabel('Number of user sessions');\n ylabel('Coefficient of agreement');\n xlim([numWorkers(1) numWorkers(end)]);\n \n % Add legend\n legend(legendStr, 'Location', 'NorthEast', 'Orientation', 'horizontal', 'Interpreter', 'latex');\n \n % Save to TikZ.\n matlab2tikz([outputDir, '/', 'userStudyConvergence.tikz'], ...\n 'height', '\\figureheight', 'width', '\\figurewidth', 'showInfo', false, ...\n 'extraaxisoptions', ['xlabel near ticks,', ...\n 'ylabel near ticks,', ...\n 'scaled y ticks=false,', ...\n 'yticklabel style={/pgf/number format/fixed, /pgf/number format/precision=2},']);", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/visualization/plotObserverStudyConvergence.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.37300841959666653}} {"text": "function varargout = removeMeshFaces(v, f, fI)\n%REMOVEMESHFACES Remove faces from a mesh by face indices.\n% [V2, F2] = removeMeshFaces(V, F, FI) removes faces from the mesh by\n% the face indices FI into faces F of the mesh. The mesh is represented \n% by the vertex array V and the face array F. The result is the new set \n% of vertices V2 and faces F2 without the faces indexed by FI. FI can be\n% either a linear or a logical index.\n%\n% [V2, F2] = removeMeshFaces(MESH, FI) with the struct MESH containing \n% the fields \"vertices\" (V) and \"faces\" (F)\n% \n% MESH2 = removeMeshFaces(V, F, FI) with the struct MESH2 containing the\n% fields \"vertices\" (V2) and \"faces\" (F2)\n% \n% MESH2 = removeMeshFaces(MESH, FI) with the structs MESH and MESH2 \n% containing the fields \"vertices\" (V, V2) and \"faces\" (F, F2)\n% \n% Example\n% [v, f] = createSoccerBall;\n% f = triangulateFaces(f);\n% fI = true(length(f),1);\n% fI(1:length(f)/2) = false;\n% [v2, f2] = removeMeshFaces(v, f, fI);\n% drawMesh(v, f, 'faceColor', 'none', 'faceAlpha', .2);\n% drawMesh(v2, f2, 'faceAlpha', .7);\n% view(3); axis equal\n% \n% See also \n% meshes3d, drawMesh\n\n% ------\n% Authors: oqilipo, David Legland\n% E-mail: david.legland@inrae.fr\n% Created: 2017-07-04\n% Copyright 2017-2022\n\n% parse inputs\nnarginchk(2,3)\nnargoutchk(1,2)\n\nif nargin == 2\n fI = f;\n [v, f] = parseMeshData(v);\nend\n\np = inputParser;\nisIndexToFaces = @(x) ...\n (islogical(x) && isequal(length(x), size(f,1))) || ...\n (all(floor(x)==x) && min(x)>=1 && max(x)<=size(f,1));\naddRequired(p,'fI',isIndexToFaces)\nparse(p, fI);\nif ~islogical(p.Results.fI)\n fI=false(size(f,1),1);\n fI(p.Results.fI)=true;\nelse\n fI=p.Results.fI;\nend\n \n\n% algorithm\nf2 = f(~fI,:);\n[unqVertIds, ~, newVertIndices] = unique(f2);\nv2 = v(unqVertIds,:);\nf2 = reshape(newVertIndices,size(f2));\n\n\n% parse outputs\nif nargout == 1\n mesh2.vertices=v2;\n mesh2.faces=f2;\n varargout{1}=mesh2;\nelse\n varargout{1}=v2;\n varargout{2}=f2;\nend\n\nend\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/meshes3d/removeMeshFaces.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5888891163376235, "lm_q2_score": 0.6334102498375401, "lm_q1q2_score": 0.37300840230602234}} {"text": "% Make NIfTI structure specified by an N-D matrix. Usually, N is 3 for \n% 3D matrix [x y z], or 4 for 4D matrix with time series [x y z t]. \n% Optional parameters can also be included, such as: voxel_size, \n% origin, datatype, and description. \n% \n% Once the NIfTI structure is made, it can be saved into NIfTI file \n% using \"save_nii\" command (for more detail, type: help save_nii). \n% \n% Usage: nii = make_nii(img, [voxel_size], [origin], [datatype], [description])\n%\n% Where:\n%\n%\timg:\t\tUsually, img is a 3D matrix [x y z], or a 4D\n%\t\t\tmatrix with time series [x y z t]. However,\n%\t\t\tNIfTI allows a maximum of 7D matrix. When the\n%\t\t\timage is in RGB format, make sure that the size\n%\t\t\tof 4th dimension is always 3 (i.e. [R G B]). In\n%\t\t\tthat case, make sure that you must specify RGB\n%\t\t\tdatatype, which is either 128 or 511.\n%\n%\tvoxel_size (optional):\tVoxel size in millimeter for each\n%\t\t\t\tdimension. Default is [1 1 1].\n%\n%\torigin (optional):\tThe AC origin. Default is [0 0 0].\n%\n%\tdatatype (optional):\tStorage data type:\n%\t\t2 - uint8, 4 - int16, 8 - int32, 16 - float32,\n%\t\t32 - complex64, 64 - float64, 128 - RGB24,\n%\t\t256 - int8, 511 - RGB96, 512 - uint16,\n%\t\t768 - uint32, 1792 - complex128\n%\t\t\tDefault will use the data type of 'img' matrix\n%\t\t\tFor RGB image, you must specify it to either 128\n%\t\t\tor 511.\n%\n%\tdescription (optional):\tDescription of data. Default is ''.\n%\n% e.g.:\n% origin = [33 44 13]; datatype = 64;\n% nii = make_nii(img, [], origin, datatype); % default voxel_size\n%\n% NIFTI data format can be found on: http://nifti.nimh.nih.gov\n%\n% - Jimmy Shen (jimmy@rotman-baycrest.on.ca)\n%\nfunction nii = make_nii(varargin)\n\n nii.img = varargin{1};\n dims = size(nii.img);\n dims = [length(dims) dims ones(1,8)];\n dims = dims(1:8);\n\n voxel_size = [0 ones(1,7)];\n origin = zeros(1,5);\n descrip = '';\n\n switch class(nii.img)\n case 'uint8'\n datatype = 2;\n case 'int16'\n datatype = 4;\n case 'int32'\n datatype = 8;\n case 'single'\n if isreal(nii.img)\n datatype = 16;\n else\n datatype = 32;\n end\n case 'double'\n if isreal(nii.img)\n datatype = 64;\n else\n datatype = 1792;\n end\n case 'int8'\n datatype = 256;\n case 'uint16'\n datatype = 512;\n case 'uint32'\n datatype = 768;\n otherwise\n error('Datatype is not supported by make_nii.');\n end\n\n if nargin > 1 & ~isempty(varargin{2})\n voxel_size(2:4) = double(varargin{2});\n end\n\n if nargin > 2 & ~isempty(varargin{3})\n origin(1:3) = double(varargin{3});\n end\n\n if nargin > 3 & ~isempty(varargin{4})\n datatype = double(varargin{4});\n\n if datatype == 128 | datatype == 511\n dims(5) = [];\n dims(1) = dims(1) - 1;\n dims = [dims 1];\n end\n end\n\n if nargin > 4 & ~isempty(varargin{5})\n descrip = varargin{5};\n end\n\n if ndims(nii.img) > 7\n error('NIfTI only allows a maximum of 7 Dimension matrix.');\n end\n\n maxval = round(double(max(nii.img(:))));\n minval = round(double(min(nii.img(:))));\n\n nii.hdr = make_header(dims, voxel_size, origin, datatype, ...\n\tdescrip, maxval, minval);\n\n switch nii.hdr.dime.datatype\n case 2\n nii.img = uint8(nii.img);\n case 4\n nii.img = int16(nii.img);\n case 8\n nii.img = int32(nii.img);\n case 16\n nii.img = single(nii.img);\n case 32\n nii.img = single(nii.img);\n case 64\n nii.img = double(nii.img);\n case 128\n nii.img = uint8(nii.img);\n case 256\n nii.img = int8(nii.img);\n case 511\n img = double(nii.img(:));\n img = single((img - min(img))/(max(img) - min(img)));\n nii.img = reshape(img, size(nii.img));\n nii.hdr.dime.glmax = double(max(img));\n nii.hdr.dime.glmin = double(min(img));\n case 512\n nii.img = uint16(nii.img);\n case 768\n nii.img = uint32(nii.img);\n case 1792\n nii.img = double(nii.img);\n otherwise\n error('Datatype is not supported by make_nii.');\n end\n\n return;\t\t\t\t\t% make_nii\n\n\n%---------------------------------------------------------------------\nfunction hdr = make_header(dims, voxel_size, origin, datatype, ...\n\tdescrip, maxval, minval)\n\n hdr.hk = header_key;\n hdr.dime = image_dimension(dims, voxel_size, datatype, maxval, minval);\n hdr.hist = data_history(origin, descrip);\n \n return;\t\t\t\t\t% make_header\n\n\n%---------------------------------------------------------------------\nfunction hk = header_key\n\n hk.sizeof_hdr = 348;\t\t\t% must be 348!\n hk.data_type = '';\n hk.db_name = '';\n hk.extents = 0;\n hk.session_error = 0;\n hk.regular = 'r';\n hk.dim_info = 0;\n \n return;\t\t\t\t\t% header_key\n\n\n%---------------------------------------------------------------------\nfunction dime = image_dimension(dims, voxel_size, datatype, maxval, minval)\n \n dime.dim = dims;\n dime.intent_p1 = 0;\n dime.intent_p2 = 0;\n dime.intent_p3 = 0;\n dime.intent_code = 0;\n dime.datatype = datatype;\n \n switch dime.datatype\n case 2,\n dime.bitpix = 8; precision = 'uint8';\n case 4,\n dime.bitpix = 16; precision = 'int16';\n case 8,\n dime.bitpix = 32; precision = 'int32';\n case 16,\n dime.bitpix = 32; precision = 'float32';\n case 32,\n dime.bitpix = 64; precision = 'float32';\n case 64,\n dime.bitpix = 64; precision = 'float64';\n case 128\n dime.bitpix = 24; precision = 'uint8';\n case 256 \n dime.bitpix = 8; precision = 'int8';\n case 511\n dime.bitpix = 96; precision = 'float32';\n case 512 \n dime.bitpix = 16; precision = 'uint16';\n case 768 \n dime.bitpix = 32; precision = 'uint32';\n case 1792,\n dime.bitpix = 128; precision = 'float64';\n otherwise\n error('Datatype is not supported by make_nii.');\n end\n \n dime.slice_start = 0;\n dime.pixdim = voxel_size;\n dime.vox_offset = 0;\n dime.scl_slope = 0;\n dime.scl_inter = 0;\n dime.slice_end = 0;\n dime.slice_code = 0;\n dime.xyzt_units = 0;\n dime.cal_max = 0;\n dime.cal_min = 0;\n dime.slice_duration = 0;\n dime.toffset = 0;\n dime.glmax = maxval;\n dime.glmin = minval;\n \n return;\t\t\t\t\t% image_dimension\n\n\n%---------------------------------------------------------------------\nfunction hist = data_history(origin, descrip)\n \n hist.descrip = descrip;\n hist.aux_file = 'none';\n hist.qform_code = 0;\n hist.sform_code = 0;\n hist.quatern_b = 0;\n hist.quatern_c = 0;\n hist.quatern_d = 0;\n hist.qoffset_x = 0;\n hist.qoffset_y = 0;\n hist.qoffset_z = 0;\n hist.srow_x = zeros(1,4);\n hist.srow_y = zeros(1,4);\n hist.srow_z = zeros(1,4);\n hist.intent_name = '';\n hist.magic = '';\n hist.originator = origin;\n \n return;\t\t\t\t\t% data_history\n\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/niftiToolbox/make_nii.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743735019595, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3729784340751337}} {"text": "new_folder = [];\nmax_memo_GB = [];\n% This code requires the file read_Intan_RHD2000_file.m which is provided\n% on the Intan Technologies web site.\n% new_folder: output folder with the parsed channels and metadata. \n% If it doen't exist or is [], it will be 'wc_data'.\n% max_memo_GB is an idea of the number of GB allocated for the data to be\n% stored in RAM, so it is used to compute the number of segments in which\n% the data should be split for processing\n% Based in read_intan_data.m version 1.1, June 26, 2010\n% (c) 2010, Intan Technologies, LLC\n% For more information, see http://www.intantech.com\n% For updates and latest version, see http://www.intantech.com/software.html\n\nwith_memory=true;\ntry\n\tmemory;\ncatch\n\twith_memory=false;\nend\nif with_memory\n\t[userview,systemview] = memory;\n\tmemo_avaible = floor(systemview.PhysicalMemory.Available*0.80);\n\tif exist('max_memo_GB','var') && ~isempty(max_memo_GB)\n max_memo = max_memo_GB*(1024)^3;\n\t\tif max_memo > memo_avaible\n\t\t\terror('max_memo_GB > 80% of Physical Memory Available')\n\t\tend\n\telse\n\t\tmax_memo = memo_avaible;\n\tend\nelse\n\tmax_memo = max_memo_GB*(1024)^3;\nend\n\n\nread_Intan_RHD2000_file;\n\nsr = frequency_parameters.amplifier_sample_rate;\nnum_channels = length(amplifier_channels); % info sale de la header file\n\nif ~exist('new_folder','var') || isempty(new_folder)\n new_folder = [pwd filesep 'wc_data'];\nend\n\nmkdir(new_folder)\n\n% Read 'info.rhd'\n\n\n\n% Read 'amplifier.dat'\nfileinfo = dir([path filesep 'amplifier.dat']);\nlts = fileinfo.bytes/(num_channels * 2); % int16 = 2 bytes\nsamples_per_channel = ceil(max_memo/(num_channels * 4)); %single (4 bytes)\nnum_segments = ceil(lts/samples_per_channel);\nchannels = 1:num_channels;\nsave([new_folder filesep 'intan_meta_data'],'sr','lts','channels')\n\n\nfid = fopen([path filesep 'amplifier.dat'], 'r');\n\noutfile_handles = cell(1,num_channels);\n\n[fname] = 'ch';\nfor i = 1:num_channels\n outfile_handles{i} = fopen([new_folder filesep fname '_' num2str(channels(i)) '.intch'],'w','l'); \nend\n\nfor j=1:num_segments\n ini = (j-1)*samples_per_channel;\n fin = min(j*samples_per_channel,lts);\n data2 = single(fread(fid,(fin-ini)*(num_channels),'int16')) * 0.195;\n for ind = 1:num_channels\n fwrite(outfile_handles{ind},data2(ind:num_channels:end),'single');\n end\n fprintf('Segment %d out of %d processed.\\n',j,num_segments);\nend\nfclose('all');\nclearvars\n%Auxiliar para gui_plot\n%time = num_samples / sr; %total time amplifier\n%j=-1;\n%save('trial','j')", "meta": {"author": "csn-le", "repo": "wave_clus", "sha": "3cbc9e7a747353dde2b97984eef48bbbd7991928", "save_path": "github-repos/MATLAB/csn-le-wave_clus", "path": "github-repos/MATLAB/csn-le-wave_clus/wave_clus-3cbc9e7a747353dde2b97984eef48bbbd7991928/tools/parse_intan_RHD2000.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.37297842829888594}} {"text": "function [c, ceq] = pathConstraint(z)\n% [c, ceq] = pathConstraint(z)\n%\n% Computes the path constraint so that the chain integrator dynamics match\n% the pendulum dynamics.\n%\n% INPUTS:\n% z = [x;v1;v2];\n%\n% OUTPUTS:\n% dz = dz/dt\n%\n% NOTES:\n% ddx = dv1 % definition\n% v1 = v2 % path constraint\n% dv2 = u2 % dynamics\n%\n\n% x = z(1,:); %Unused\nv1 = z(2,:);\nv2 = z(3,:); \n\nc = [];\nceq = v1-v2; \n\nend", "meta": {"author": "MatthewPeterKelly", "repo": "OptimTraj", "sha": "c97b57fda511dacc6a6187f683428f0f3a1965f2", "save_path": "github-repos/MATLAB/MatthewPeterKelly-OptimTraj", "path": "github-repos/MATLAB/MatthewPeterKelly-OptimTraj/OptimTraj-c97b57fda511dacc6a6187f683428f0f3a1965f2/demo/minimumSnap/minAccel/pathConstraint.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.37297842252263796}} {"text": "function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv)\n% UPDATE_ESS Update the Expected Sufficient Statistics of a hhmmF node.\n% function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv)\n\n% Figure out the node numbers associated with each parent\n% so we extract evidence from the right place\ndom = fmarginal.domain; % Q(1) .. Q(d) F(d+1) F(d)\nQps = fmarginal.domain(1:end-2);\nQ = Qps(end);\nQps = Qps(1:end-1);\n\nQsz = CPD.Qsizes(CPD.Q);\nQpsz = prod(CPD.Qsizes(CPD.Qps)); % may be 1\n\n% We assume the F node are always hidden, but allow some of the Q nodes\n% to be observed. We do case analysis for speed.\n%We only extract prob from fmarginal.T when F(d+1)=2 i.e., model below has finished.\n% wrong -> % We sum over the possibilities that F(d+1) = 1 or 2\n\nobs_self = ~hidden_bitv(Q);\nif obs_self\n self_val = evidence{Q};\nend\n\nif isempty(Qps) % independent of parent context\n counts = zeros(Qsz, 2);\n %fmarginal.T(Q(d), F(d+1), F(d))\n if obs_self\n marg = myreshape(fmarginal.T, [1 2 2]);\n counts(self_val,:) = marg(1,2,:);\n %counts(self_val,:) = marg(1,1,:) + marg(1,2,:);\n else\n marg = myreshape(fmarginal.T, [Qsz 2 2]);\n counts = squeeze(marg(:,2,:));\n %counts = squeeze(marg(:,2,:)) + squeeze(marg(:,1,:));\n end\nelse\n counts = zeros(Qpsz, Qsz, 2);\n %fmarginal.T(Q(1:d-1), Q(d), F(d+1), F(d))\n obs_Qps = ~any(hidden_bitv(Qps)); % we assume that all or none of the Q parents are observed\n if obs_Qps\n Qps_val = subv2ind(Qpsz, cat(1, evidence{Qps}));\n end\n if obs_self & obs_Qps\n marg = myreshape(fmarginal.T, [1 1 2 2]);\n counts(Qps_val, self_val, :) = squeeze(marg(1,1,2,:));\n %counts(Qps_val, self_val, :) = squeeze(marg(1,1,2,:)) + squeeze(marg(1,1,1,:));\n elseif ~obs_self & obs_Qps\n marg = myreshape(fmarginal.T, [1 Qsz 2 2]);\n counts(Qps_val, :, :) = squeeze(marg(1,:,2,:));\n %counts(Qps_val, :, :) = squeeze(marg(1,:,2,:)) + squeeze(marg(1,:,1,:));\n elseif obs_self & ~obs_Qps\n error('not yet implemented')\n else\n marg = myreshape(fmarginal.T, [Qpsz Qsz 2 2]);\n counts(:, :, :) = squeeze(marg(:,:,2,:));\n %counts(:, :, :) = squeeze(marg(:,:,2,:)) + squeeze(marg(:,:,1,:));\n end \nend\n\nCPD.sub_CPD_term = update_ess_simple(CPD.sub_CPD_term, counts);\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/CPDs/@hhmmF_CPD/Old/update_ess.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.37297842252263796}} {"text": "\nfunction w = dbnc(dsTrain, varargin)\n\n\tprtrace(mfilename);\n\n\t% Settings for the different training algorithms.\n if(~exist('nnet','dir'))\n\t\terror('Neural network toolbox not found')\n end\n\n cInput_types = {'gaussian', 'logsigm'};\n \n %argument definition\n p = inputParser; % Create instance of inputParser class.\n p.addRequired('dsTrain', @(x)( isdataset(x)));\n \n p.addParamValue('input_type', 'logsigm', @(x)( any(strcmpi(x,cInput_types))) );\n p.addParamValue('num_hidden', 3, @(x)( isnumeric(x) && x > 0 ));\n p.addParamValue('size_hidden', [], @(x)( (all(isnumeric(x)) && all(x > 0)) || isempty(x) ) );\n p.addParamValue('Initialization_dataset', [], @(x)( isdataset(x) ) );\n p.addParamValue('Validation_dataset', [], @(x)( isdataset(x) ) );\n\n\t% Check arguments\n try\n p.parse( dsTrain, varargin{:} );\n catch MyError\n rethrow(MyError); \n end\n\n dsTrain = p.Results.dsTrain;\n dsInitialization = p.Results.Initialization_dataset;\n dsValidation = p.Results.Validation_dataset;\n num_hidden = p.Results.num_hidden;\n size_hidden = p.Results.size_hidden;\n input_type = p.Results.input_type;\n\n % Dont know why this variable uses a lot of bytes to store at disk.\n clear p\n\n %Check the datasets\n islabtype(dsTrain,'crisp');\n isvaldfile(dsTrain,1,2); \t\t\t\t\t\t\t% At least 1 object per class, 2 classes\n dsTrain = testdatasize(dsTrain);\n %force domain to be in [0-1]\n w_scale_domain = scalem(dsTrain, 'domain');\n dsTrain = dsTrain * w_scale_domain;\n \n if( isempty(dsValidation) )\n dsValidation = dsTrain;\n else\n dsValidation = testdatasize(dsValidation);\n iscomdset(dsTrain, dsValidation); \t\t\t\t\t\t\t% Check whether training and tuning set match\n dsValidation = dsValidation * w_scale_domain;\n end\n \n if( isempty(dsInitialization) )\n dsInitialization = dsTrain;\n else\n dsInitialization = dsInitialization * w_scale_domain;\n end\n \n [train_m, train_k, train_c] = getsize(dsTrain); \n [ train_labels, train_lablist] = getnlab(dsTrain); \n \n if( isempty(size_hidden) )\n % num_hidden layers each of train_k size by default\n size_hidden = repmat(train_k, num_hidden, 1);\n end\n \n %train the first RBM on data\n top = +dsInitialization;\n %train all other RBM's on top of each other\n for ii=1:num_hidden\n [model{ii} , top ] = rbmBB(top, size_hidden(ii));\n end\n clear top\n\n model{num_hidden}.Wc = 0.1*randn(train_c, size(model{num_hidden}.W,2) );\n model{num_hidden}.cc = 0.1*randn(1, train_c);\n model{num_hidden}.labels = 1:train_c;\n \n %fine-tuning of the DBN\n targets = zeros(train_m, train_c);\n for ii = 1:train_c\n targets(train_labels == ii, ii) = 1;\n end\n \n for epoch = 1:20\n\n %%%%%%%%%%%%%%% PERFORM CONJUGATE GRADIENT WITH 3 LINESEARCHES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n max_iter=3;\n\n if epoch<6 % First update top-level weights holding other weights fixed. \n\n top = +dsTrain;\n for ii=1:num_hidden\n top = rbmVtoH(model{ii}, top);\n end\n\n VV = colvec([ model{num_hidden}.Wc'; model{num_hidden}.cc ]);\n Dim = [ size_hidden(end); train_c];\n XX = minimize(VV,'CG_CLASSIFY_INIT',max_iter,Dim,top,targets);\n aux = reshape(XX, size_hidden(end)+1, train_c);\n model{num_hidden}.Wc = aux(1:end-1,:)';\n model{num_hidden}.cc = aux(end,:);\n\n else\n\n VV = [];\n for ii=1:num_hidden\n VV = [VV; colvec([model{ii}.W; model{ii}.b ]) ];\n end\n VV = [VV; colvec([model{ii}.Wc'; model{ii}.cc ])];\n\n Dim = [ train_k; colvec(size_hidden); train_c];\n\n XX = minimize(VV,'CG_CLASSIFY',max_iter,Dim, +dsTrain,targets);\n\n xxx = 0;\n for ii=1:num_hidden\n aux = reshape(XX(xxx+1:xxx+(Dim(ii)+1)*Dim(ii+1)),Dim(ii)+1,Dim(ii+1));\n model{ii}.W = aux(1:end-1,:);\n model{ii}.b = aux(end,:);\n xxx = xxx+(Dim(ii)+1)*Dim(ii+1);\n end\n aux = reshape(XX(xxx+1:xxx+(Dim(ii+1)+1)*Dim(ii+2)),Dim(ii+1)+1,Dim(ii+2));\n model{ii}.Wc = aux(1:end-1,:)';\n model{ii}.cc = aux(end,:);\n\n end \n\n end\n\n % Create mapping.\n\n w = w_scale_domain*mapping('dbnPredict', 'trained', model, train_lablist, train_k, train_c);\n w = setname(w, 'DBN classifier');\n% w = setcost(w,a);\n\nreturn\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools_addins/dbnc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.37297842252263796}} {"text": "function TCP = jeongLungTCPmodel(paramS,doseBinsV,volHistV)\n% Usage: TCP = jeongLungTCPmodel(paramS);\n% Lung TCP model\n% Based on code by Jeho Jeong jeongj@mskcc.org\n%------------------------------------------------------------------------------------\n% INPUTS:\n% paramS : Parameter dictionary with fields\n% -frxSize (Fraction size (Gy)), \n% -treatmentSchedule(Vector indicating treatment days)\n% Example: \n% paramS.frxSize.val = 2; \n% paramS.treatmentSchedule.val = [ 1 2 3 4 5 ...\n% 8 9 10 11 12 ...\n% 15 16 17 18 19 ...\n% 22 23 24 25 26];\n% \n%----------------------------------------------------------------------------\n% AI 8/30/18\n\n%% Get fractionation \nfx_in = paramS.frxSize.val;\nnFrx = paramS.numFractions.val;\n\n%% Get treatment days\nschedule_in = paramS.treatmentSchedule.val;\nif isfield(paramS,'scheduleType')\n scheduleType = paramS.scheduleType;\nelse\n scheduleType = 'weekday';\nend\n%Check for numeric input\nif ~isnumeric(schedule_in)\n scheduleV = str2num(schedule_in);\nelse\n scheduleV = schedule_in;\nend\n%Otherwise, assume function specified\nif isempty(scheduleV)\n scheduleV = eval([schedule_in,'(',num2str(nFrx),',scheduleType)']);\n %scheduleV = getTreatmentSchedule(nFrx); %every weekday with weekend\n %breaks\nend\n\n%% Input variables for the analysis\nalpha_p_ori=0.305; \na_over_b=2.8;\noer_i=1.7;\nrho_t=10^6;\nv_t_ref=3e4;\nf_s=0.01;\nt_c=2;\nf_p_pro_in=0.5;\nht_loss=2; \nk_m=0.3; \nht_lys=3; \noer_h=1.37;\nF_p_cyc=[0.56;0.24;0.2];\nAlpha_ratio_p_cyc=[2;3];\n \nd_t=15; \nclf_in=0.92; \ngf_in=0.25;\n\nbeta_p_ori=alpha_p_ori/a_over_b; \n\n\n%% EQD2 estimation for each cohort\n\n\nEQD2=[]; \nn_pt=[];\nv_t=3e4; \nalpha_p=alpha_p_ori; \nbeta_p=beta_p_ori;\nn_t=rho_t*v_t; %No. cells\nn_t_ref=rho_t*v_t_ref;\ntotal_clono_cell=n_t*f_s;\ndelta_t=d_t/(60*24); %dt in days\nt_start=0;\n\n\nIC=[];\nGF=[];\nTCP=[];\nTD50=[];\nBED=[];\nReox_time=[];\nReox_time2=[];\nTreat_duration=[];\nvec_leng=[];\ncomp_size(1)=0; %Compartment size (P)\ncomp_size(2)=0; %Compartment size (H)\ncomp_size(3)=0; %Compartment size (I)\ncomp_size_ref(1)=0; \ncomp_size_ref(2)=0;\ncomp_size_ref(3)=0;\np_pre=[]; \ni_pre=[]; \nh_pre=[];\nT_end=[]; \n\n\nclf=clf_in;\ngf=gf_in;\n\n\n%% Run sub-routine for specific CLF and GF\n%---Variables for the initial st-st distribution--%\nf_p_pro=f_p_pro_in;\n\ncomp_size(1)=gf/f_p_pro*n_t;\ncomp_size(2)=(1-gf*(1/f_p_pro_in+clf*ht_loss/t_c))*n_t;\ncomp_size(3)=clf*gf*ht_loss/t_c*n_t;\n\ncomp_size_ref(1)=gf/f_p_pro*n_t_ref;\ncomp_size_ref(2)=(1-gf*(1/f_p_pro_in+clf*ht_loss/t_c))*n_t_ref;\ncomp_size_ref(3)=clf*gf*ht_loss/t_c*n_t_ref;\n%--- end ----%\n\n\n%Record number of cells\nf_p=comp_size(1)/sum(comp_size);\nf_i=comp_size(2)/sum(comp_size);\nf_h=comp_size(3)/sum(comp_size);\n\n\nfor d=fx_in\n Treat_day=scheduleV;\n \n %Cell cycle and dose-dependent radiosensitivity\n f = @(alpha_s)F_p_cyc(1)*exp(-Alpha_ratio_p_cyc(1)*alpha_s*2-...\n Alpha_ratio_p_cyc(1)*(alpha_s/a_over_b)*4)+F_p_cyc(2)*...\n exp(-alpha_s*2-(alpha_s/a_over_b)*4)+F_p_cyc(3)*...\n exp(-Alpha_ratio_p_cyc(2)*alpha_s*2-...\n Alpha_ratio_p_cyc(2)*(alpha_s/a_over_b)*4)-exp(-alpha_p*2-...\n (alpha_p/a_over_b)*4);\n \n alpha_s=0.3; grid=0.1; pre_f=f(alpha_s);\n while abs(f(alpha_s)) >= eps\n if pre_f*f(alpha_s)<0\n grid=grid*0.1;\n end\n pre_f = f(alpha_s);\n if f(alpha_s)>0\n alpha_s=alpha_s+grid;\n else\n alpha_s=alpha_s-grid;\n end\n end\n Alpha_p_cyc(2)= alpha_s;\n\n\n Alpha_p_cyc(1)=Alpha_p_cyc(2)*Alpha_ratio_p_cyc(1);\n Alpha_p_cyc(3)=Alpha_p_cyc(2)*Alpha_ratio_p_cyc(2);\n\n %Effective alpha, beta from survival fractions \n Su_p=F_p_cyc(1)*exp(-Alpha_p_cyc(1)*d-(Alpha_p_cyc(1)/a_over_b)*d^2)...\n +F_p_cyc(2)*exp(-Alpha_p_cyc(2)*d-(Alpha_p_cyc(2)/a_over_b)*d^2)...\n +F_p_cyc(3)*exp(-Alpha_p_cyc(3)*d-(Alpha_p_cyc(3)/a_over_b)*d^2);\n alpha_p_eff=-log(Su_p)/(d*(1+(d/a_over_b)));\n beta_p_eff=(alpha_p_eff/a_over_b);\n\n Su_i_2gy=exp(-alpha_p/oer_i*2-(alpha_p/a_over_b)/(oer_i^2)*2^2);\n oer_i_g1=(-(Alpha_p_cyc(1)*2)-sqrt((Alpha_p_cyc(1)*2)^2-...\n 4*log(Su_i_2gy)*(Alpha_p_cyc(1)/a_over_b)*2^2))/(2*log(Su_i_2gy));\n Su_h_2gy=exp(-alpha_p/oer_h*2-(alpha_p/a_over_b)/(oer_h^2)*2^2);\n oer_h_g1=(-(Alpha_p_cyc(1)*2)-sqrt((Alpha_p_cyc(1)*2)^2-...\n 4*log(Su_h_2gy)*(Alpha_p_cyc(1)/a_over_b)*2^2))/(2*log(Su_h_2gy));\n alpha_i=Alpha_p_cyc(1)/oer_i_g1;\n beta_i=(Alpha_p_cyc(1)/a_over_b)/(oer_i_g1^2);\n alpha_h=Alpha_p_cyc(1)/oer_h_g1;\n beta_h=(Alpha_p_cyc(1)/a_over_b)/(oer_h_g1^2);\n\n alpha_p=alpha_p_eff;\n beta_p=beta_p_eff;\n\n % Run sub-routine for a specific CLF and GF\n %--- RT fractional dose for SBRT schedule ---%\n\n % Assign proliferating fraction to the initial value\n f_p_pro=f_p_pro_in;\n\n % Cell distribution in each compartment \n % (1:Pv, 2:Pd, 3:Iv, 4:Id, 5:Hv, 6:Hd, 7:lysis)\n % Initially all compartments are fully filled with viable cells\n % \"comp_size\" is the size of each compartment (1:P, 2:I, 3:H)\n\n cell_dist=[];\n cell_dist(1)=comp_size(1);\n cell_dist(2)=0;\n cell_dist(3)=comp_size(2);\n cell_dist(4)=0;\n cell_dist(5)=comp_size(3);\n cell_dist(6)=0;\n cell_dist(7)=0;\n\n % variables (t:time(day), j:# of fraction, add_time:additional time for\n % weekend break, cum_cell_dist: cumulative cell distribution for\n % each time increment)\n t=0; \n j=0;\n cum_cell_dist_sbrt=[];\n\n\n % Treat for specific SBRT schedule\n while t(t_start+(Treat_day(j+1)-1)-delta_t/2) &&...\n t<(t_start+(Treat_day(j+1)-1)+delta_t/2)\n\n cell_dist(2)=cell_dist(2)+cell_dist(1)*(1-exp(-alpha_p*d-beta_p*d^2));\n cell_dist(1)=cell_dist(1)*exp(-alpha_p*d-beta_p*d^2);\n cell_dist(4)=cell_dist(4)+cell_dist(3)*(1-exp(-alpha_i*d-beta_i*d^2));\n cell_dist(3)=cell_dist(3)*exp(-alpha_i*d-beta_i*d^2);\n cell_dist(6)=cell_dist(6)+cell_dist(5)*(1-exp(-alpha_h*d-beta_h*d^2));\n cell_dist(5)=cell_dist(5)*exp(-alpha_h*d-beta_h*d^2);\n\n j=j+1;\n end\n\n % Cell Proliferation & Death \n cell_dist(1)=cell_dist(1)*(2)^(f_p_pro*delta_t/t_c); \n h_pre=cell_dist(5)+cell_dist(6);\n cell_dist(5)=cell_dist(5)*(0.5)^(delta_t/ht_loss); \n cell_dist(6)=cell_dist(6)*(0.5)^(delta_t/ht_loss); \n p_d_pre=cell_dist(2);\n cell_dist(2)=cell_dist(2)*(2)^(f_p_pro*(2*k_m-1)*delta_t/t_c); \n\n\n % Mitotically dead cell in 1 time step\n md=p_d_pre-cell_dist(2)+(h_pre-cell_dist(5)-cell_dist(6));\n cell_dist(7)=cell_dist(7)+md;\n cell_dist(7)=cell_dist(7)*(0.5)^(delta_t/ht_lys);\n\n\n % Recompartmentalization of the cell \n if cell_dist(1)+cell_dist(2)>=comp_size(1) \n p_ex=(cell_dist(1)+cell_dist(2))-comp_size(1); \n p_ratio=cell_dist(1)/(cell_dist(1)+cell_dist(2)); \n cell_dist(1)=comp_size(1)*p_ratio; \n cell_dist(2)=comp_size(1)*(1-p_ratio); \n cell_dist(3)=cell_dist(3)+p_ex*p_ratio; \n cell_dist(4)=cell_dist(4)+p_ex*(1-p_ratio); \n else \n if cell_dist(3)+cell_dist(4)>0 \n if cell_dist(3)+cell_dist(4)>comp_size(1)-...\n (cell_dist(1)+cell_dist(2)) \n p_def=comp_size(1)-(cell_dist(1)+cell_dist(2)); \n i_ratio=cell_dist(3)/(cell_dist(3)+cell_dist(4)); \n cell_dist(1)=cell_dist(1)+p_def*i_ratio; \n cell_dist(2)=cell_dist(2)+p_def*(1-i_ratio); \n cell_dist(3)=cell_dist(3)-p_def*i_ratio; \n cell_dist(4)=cell_dist(4)-p_def*(1-i_ratio); \n else \n cell_dist(1)=cell_dist(1)+cell_dist(3); \n cell_dist(2)=cell_dist(2)+cell_dist(4); \n cell_dist(3)=0; cell_dist(4)=0; \n if cell_dist(5)+cell_dist(6)>0 \n if cell_dist(5)+cell_dist(6)>comp_size(1)-...\n (cell_dist(1)+cell_dist(2)) \n p_def=comp_size(1)-(cell_dist(1)+cell_dist(2)); \n h_ratio=cell_dist(5)/(cell_dist(5)+cell_dist(6)); \n cell_dist(1)=cell_dist(1)+p_def*h_ratio; \n cell_dist(2)=cell_dist(2)+p_def*(1-h_ratio); \n cell_dist(5)=cell_dist(5)-p_def*h_ratio; \n cell_dist(6)=cell_dist(6)-p_def*(1-h_ratio); \n else \n cell_dist(1)=cell_dist(1)+cell_dist(5); \n cell_dist(2)=cell_dist(2)+cell_dist(6); \n cell_dist(5)=0; cell_dist(6)=0; \n end \n end \n end \n end \n end \n if cell_dist(3)+cell_dist(4)>=comp_size(2) \n i_ex=(cell_dist(3)+cell_dist(4))-comp_size(2); \n i_ratio=cell_dist(3)/(cell_dist(3)+cell_dist(4)); \n cell_dist(3)=comp_size(2)*i_ratio; \n cell_dist(4)=comp_size(2)*(1-i_ratio); \n cell_dist(5)=cell_dist(5)+i_ex*i_ratio; \n cell_dist(6)=cell_dist(6)+i_ex*(1-i_ratio); \n else \n if cell_dist(5)+cell_dist(6)>0 \n if cell_dist(5)+cell_dist(6)>comp_size(2)-...\n (cell_dist(3)+cell_dist(4)) \n i_def=comp_size(2)-(cell_dist(3)+cell_dist(4)); \n h_ratio=cell_dist(5)/(cell_dist(5)+cell_dist(6)); \n cell_dist(3)=cell_dist(3)+i_def*h_ratio; \n cell_dist(4)=cell_dist(4)+i_def*(1-h_ratio); \n cell_dist(5)=cell_dist(5)-i_def*h_ratio; \n cell_dist(6)=cell_dist(6)-i_def*(1-h_ratio); \n else \n cell_dist(3)=cell_dist(3)+cell_dist(5); \n cell_dist(4)=cell_dist(4)+cell_dist(6); \n cell_dist(5)=0; cell_dist(6)=0; \n end \n end \n end \n\n\n % time step increase and store the number of cells in each compartment\n t=t+delta_t; \n cum_cell_dist_sbrt=[cum_cell_dist_sbrt cell_dist'];\n\n end\n \n \n s_sbrt=cell_dist(1)+cell_dist(3)+cell_dist(5);\n sf_sbrt=s_sbrt/sum(comp_size);\n ntd2=length(Treat_day)*d*(1+(d/a_over_b))/(1+(2/a_over_b));\n d_sbrt=d;\n n_frac_sbrt=length(Treat_day);\n duration_sbrt=max(Treat_day);\n t_sbrt=t;\n %-------------------------------------------------------------------------------%\n\n \n %% EQD2 calculation\n d=2;\n alpha_p=alpha_p_ori; beta_p=beta_p_ori;\n alpha_i=alpha_p_ori/oer_i; beta_i=beta_p_ori/(oer_i^2);\n alpha_h=alpha_p_ori/oer_h; beta_h=beta_p_ori/(oer_h^2);\n s_eqd2=0; sf_eqd2=0; eqd2=0; \n \n\n %----- RT fractional dose for EQD2 estimation ----%\n\n % Assign proliferating fraction to the initial value\n\n f_p_pro=f_p_pro_in;\n\n % Cell distribution in each compartment \n % (1:Pv, 2:Pd, 3:Iv, 4:Id, 5:Hv, 6:Hd, 7:lysis)\n % Initially all compartments are fully filled with viable cells\n % \"comp_size\" is the size of each compartment (1:P, 2:I, 3:H)\n\n cell_dist=[];\n cell_dist(1)=comp_size_ref(1);\n cell_dist(2)=0;\n cell_dist(3)=comp_size_ref(2);\n cell_dist(4)=0;\n cell_dist(5)=comp_size_ref(3);\n cell_dist(6)=0;\n cell_dist(7)=0;\n\n % variables (t:time(day), j:# of fraction, add_time:additional time for\n % weekend break, cum_cell_dist: cumulative cell distribution for\n % each time increment)\n t=0; \n j=0;\n add_time=0;\n cum_cell_dist=[];\n\n\n\n\n % Treat until the SF becomes equivalent to SBRT regime\n while (cell_dist(1)+cell_dist(3)+cell_dist(5))>s_sbrt \n\n % Change in f_p_pro (k_p) as blood supply improves\n f_p_pro=1-0.5*(cell_dist(1)+cell_dist(2))/comp_size(1);\n\n\n % RT fraction\n if t>(t_start+j+add_time-delta_t/2) && t<(t_start+j+add_time+delta_t/2)\n\n cell_dist(2)=cell_dist(2)+cell_dist(1)*(1-exp(-alpha_p*d-beta_p*d^2));\n cell_dist(1)=cell_dist(1)*exp(-alpha_p*d-beta_p*d^2);\n cell_dist(4)=cell_dist(4)+cell_dist(3)*(1-exp(-alpha_i*d-beta_i*d^2));\n cell_dist(3)=cell_dist(3)*exp(-alpha_i*d-beta_i*d^2);\n cell_dist(6)=cell_dist(6)+cell_dist(5)*(1-exp(-alpha_h*d-beta_h*d^2));\n cell_dist(5)=cell_dist(5)*exp(-alpha_h*d-beta_h*d^2);\n\n j=j+1;\n\n % Week-end break\n if rem(j,5)==0\n add_time=add_time+2;\n end\n\n end\n\n % Cell Proliferation & Death \n cell_dist(1)=cell_dist(1)*(2)^(f_p_pro*delta_t/t_c);\n h_pre=cell_dist(5)+cell_dist(6);\n cell_dist(5)=cell_dist(5)*(0.5)^(delta_t/ht_loss); \n cell_dist(6)=cell_dist(6)*(0.5)^(delta_t/ht_loss); \n p_d_pre=cell_dist(2);\n cell_dist(2)=cell_dist(2)*(2)^(f_p_pro*(2*k_m-1)*delta_t/t_c); \n\n\n % Mitotically dead cell in 1 time step\n md=p_d_pre-cell_dist(2)+(h_pre-cell_dist(5)-cell_dist(6));\n cell_dist(7)=cell_dist(7)+md;\n cell_dist(7)=cell_dist(7)*(0.5)^(delta_t/ht_lys);\n\n\n % Recompartmentalization of the cell \n if cell_dist(1)+cell_dist(2)>=comp_size(1) \n p_ex=(cell_dist(1)+cell_dist(2))-comp_size(1); \n p_ratio=cell_dist(1)/(cell_dist(1)+cell_dist(2)); \n cell_dist(1)=comp_size(1)*p_ratio; \n cell_dist(2)=comp_size(1)*(1-p_ratio); \n cell_dist(3)=cell_dist(3)+p_ex*p_ratio; \n cell_dist(4)=cell_dist(4)+p_ex*(1-p_ratio); \n else \n if cell_dist(3)+cell_dist(4)>0 \n if cell_dist(3)+cell_dist(4)>comp_size(1)-...\n (cell_dist(1)+cell_dist(2)) \n p_def=comp_size(1)-(cell_dist(1)+cell_dist(2)); \n i_ratio=cell_dist(3)/(cell_dist(3)+cell_dist(4)); \n cell_dist(1)=cell_dist(1)+p_def*i_ratio; \n cell_dist(2)=cell_dist(2)+p_def*(1-i_ratio); \n cell_dist(3)=cell_dist(3)-p_def*i_ratio; \n cell_dist(4)=cell_dist(4)-p_def*(1-i_ratio); \n else \n cell_dist(1)=cell_dist(1)+cell_dist(3); \n cell_dist(2)=cell_dist(2)+cell_dist(4); \n cell_dist(3)=0; cell_dist(4)=0; \n if cell_dist(5)+cell_dist(6)>0 \n if cell_dist(5)+cell_dist(6)>comp_size(1)-...\n (cell_dist(1)+cell_dist(2)) \n p_def=comp_size(1)-(cell_dist(1)+cell_dist(2)); \n h_ratio=cell_dist(5)/(cell_dist(5)+cell_dist(6)); \n cell_dist(1)=cell_dist(1)+p_def*h_ratio; \n cell_dist(2)=cell_dist(2)+p_def*(1-h_ratio); \n cell_dist(5)=cell_dist(5)-p_def*h_ratio; \n cell_dist(6)=cell_dist(6)-p_def*(1-h_ratio); \n else \n cell_dist(1)=cell_dist(1)+cell_dist(5); \n cell_dist(2)=cell_dist(2)+cell_dist(6); \n cell_dist(5)=0; cell_dist(6)=0; \n end \n end \n end \n end \n end \n if cell_dist(3)+cell_dist(4)>=comp_size(2) \n i_ex=(cell_dist(3)+cell_dist(4))-comp_size(2); \n i_ratio=cell_dist(3)/(cell_dist(3)+cell_dist(4)); \n cell_dist(3)=comp_size(2)*i_ratio; \n cell_dist(4)=comp_size(2)*(1-i_ratio); \n cell_dist(5)=cell_dist(5)+i_ex*i_ratio; \n cell_dist(6)=cell_dist(6)+i_ex*(1-i_ratio); \n else \n if cell_dist(5)+cell_dist(6)>0 \n if cell_dist(5)+cell_dist(6)>comp_size(2)-...\n (cell_dist(3)+cell_dist(4)) \n i_def=comp_size(2)-(cell_dist(3)+cell_dist(4)); \n h_ratio=cell_dist(5)/(cell_dist(5)+cell_dist(6)); \n cell_dist(3)=cell_dist(3)+i_def*h_ratio; \n cell_dist(4)=cell_dist(4)+i_def*(1-h_ratio); \n cell_dist(5)=cell_dist(5)-i_def*h_ratio; \n cell_dist(6)=cell_dist(6)-i_def*(1-h_ratio); \n else \n cell_dist(3)=cell_dist(3)+cell_dist(5); \n cell_dist(4)=cell_dist(4)+cell_dist(6); \n cell_dist(5)=0; cell_dist(6)=0; \n end \n end \n end \n\n\n % time step increase and store the number of cells in each compartment\n t=t+delta_t; \n cum_cell_dist=[cum_cell_dist cell_dist'];\n\n s_eqd2_pre=s_eqd2;\n sf_eqd2_pre=sf_eqd2;\n eqd2_pre=eqd2;\n\n s_eqd2=cell_dist(1)+cell_dist(3)+cell_dist(5);\n sf_eqd2=s_eqd2/sum(comp_size);\n tcp=exp(-s_eqd2*f_s);\n eqd2=j*d;\n\n\n end\n \n \n %----------------------------------------------------------------------%\n\n\n eqd2=eqd2_pre+((eqd2-eqd2_pre)/(s_eqd2_pre-s_eqd2))*(s_eqd2_pre-s_sbrt);\n\n \nend\n\n%% Compute TCP\nTD_50 = 62.1;\ngamma_50 = 1.5;\nTCP_upper_bound = 0.95;\n\nTCP=TCP_upper_bound/(1+(TD_50/eqd2)^(4*gamma_50));\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/ModelImplementationLibrary/DosimetricModels/jeongLungTCPmodel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7577943822145998, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.3729774042418959}} {"text": "\n\nfunction DoToHDF5(Simuh)\n\n% convert MRiLab output to HDF5 file which works with Gadgetron\nglobal VCtl\nglobal VSig\nglobal VCoi\nglobal VObj\n\nvctl.protocolName = VCtl.SeriesName;\nvctl.systemVendor = 'MRiLab';\nvctl.systemModel = '2013a';\nvctl.systemFieldStrength_T = single(VCtl.B0);\nvctl.receiverChannels = uint16(VCoi.RxCoilNum);\nvctl.institutionName = 'WIMR';\nvctl.stationName = 'L1122-E';\nvctl.H1resonanceFrequency_Hz = uint32(VCtl.B0 * VObj.Gyro/(2*pi));\nvctl.ESMatrixSizeX = uint16(VCtl.ResFreq);\nvctl.ESMatrixSizeY = uint16(VCtl.ResPhase);\nvctl.ESMatrixSizeZ = uint16(VCtl.SliceNum);\nvctl.ESFOVX = single(VCtl.FOVFreq * 1000);\nvctl.ESFOVY = single(VCtl.FOVPhase * 1000);\nvctl.ESFOVZ = single(VCtl.FOVSlice * 1000);\nvctl.RSMatrixSizeX = uint16(VCtl.ResFreq);\nvctl.RSMatrixSizeY = uint16(VCtl.ResPhase);\nvctl.RSMatrixSizeZ = uint16(VCtl.SliceNum);\nvctl.RSFOVX = single(VCtl.FOVFreq * 1000);\nvctl.RSFOVY = single(VCtl.FOVPhase * 1000);\nvctl.RSFOVZ = single(VCtl.FOVSlice * 1000);\nvctl.trajectory = VCtl.TrajType;\nvctl.TR = single(VCtl.TR);\nvctl.TE = single(VCtl.TE);\nvctl.BW = single(VCtl.BandWidth);\nvctl.outputFile = [Simuh.OutputDir filesep 'Series' num2str(Simuh.ScanSeriesInd) '.h5'];\n\nSx=single(sum(reshape(VSig.Sx, length(VSig.Sx)/VObj.TypeNum, VObj.TypeNum),2));\nSy=single(sum(reshape(VSig.Sy, length(VSig.Sy)/VObj.TypeNum, VObj.TypeNum),2));\nKx=single(VSig.Kx);\nKy=single(VSig.Ky);\nKz=single(VSig.Kz);\nvsig.S = [Sx'; Sy'];\nvsig.K = [Kx; Ky; Kz];\nvsig.echoNumber = uint32(VCtl.TEPerTR);\nvsig.firstPhaseNumber = uint32(VCtl.FirstPhNum);\nvsig.secondPhaseNumber = uint32(VCtl.SecondPhNum);\nvsig.readoutNumber = uint32(length(VSig.Sx)/(VCtl.TEPerTR*VCtl.FirstPhNum*VCtl.SecondPhNum*VCoi.RxCoilNum*VObj.TypeNum));\n\n% convert MRiLab output to HDF5 file\nDoMatToHDF5(vsig,vctl);\n\n\nend", "meta": {"author": "leoliuf", "repo": "MRiLab", "sha": "5cdcf1f7b67759700685d3a26ffeb70e55325567", "save_path": "github-repos/MATLAB/leoliuf-MRiLab", "path": "github-repos/MATLAB/leoliuf-MRiLab/MRiLab-5cdcf1f7b67759700685d3a26ffeb70e55325567/Src/Main/DoToHDF5.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321964553656, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.372796824792352}} {"text": "% Copyright (C) 2017-2018 Titus Cieslewski, RPG, University of Zurich, \n% Switzerland\n% You can contact the author at \n% Copyright (C) 2017-2018 Siddharth Choudhary, College of Computing,\n% Georgia Institute of Technology, Atlanta, GA, USA\n% Copyright (C) 2017-2018 Davide Scaramuzza, RPG, University of Zurich, \n% Switzerland\n%\n% This file is part of dslam_open.\n%\n% dslam_open is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% dslam_open is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with dslam_open. If not, see .\n\nfunction writeG2oPose(file_id, robot_idx, frame_idx, T_W_C)\n\nframe_id = gtsamFrameId(robot_idx, frame_idx);\n\n\nx = T_W_C(1, 4); y = T_W_C(2, 4); z = T_W_C(3, 4);\nR = T_W_C(1:3, 1:3);\nassert(sum(sum(imag(R))) == 0);\n% Seems to be necessary to avoid complex quaternions\n% (to avoid trace(R) < -1)\nR = R / (det(R) + 1e-5);\nq = rot2quat(R, 1e-4);\n%quat2rot(q) - R\n%assert(all(all(quat2rot(q) - R < 1e-5)));\nassert(norm(q)>1e-3);\nq = q/norm(q);\nassert(norm(q)>1e-3);\nqw = q(1); qx = q(2); qy = q(3); qz = q(4);\nif (sum(imag(q)) ~= 0)\n q\n assert(false)\nend\n\nfprintf(file_id, ...\n 'VERTEX_SE3:QUAT %d %f %f %f %f %f %f %f\\n', ...\n frame_id, x, y, z, qx, qy, qz, qw);\n\nend\n\n", "meta": {"author": "uzh-rpg", "repo": "dslam_open", "sha": "3428893cffa5e832e8d51a6f3e18213b47205a83", "save_path": "github-repos/MATLAB/uzh-rpg-dslam_open", "path": "github-repos/MATLAB/uzh-rpg-dslam_open/dslam_open-3428893cffa5e832e8d51a6f3e18213b47205a83/dslam/matlab/writeG2oPose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195385342971, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3727946114668907}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Objectness measure\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% Top-level routine implementation\n% of the system described in the paper:\n%\n% B. Alexe, T. Deselaers, V. Ferrari\n% What is an object?\n% CVPR 2010\n%\n% The author and copyright holder is Bogdan Alexe.\n% You might redistribute, reuse, and mofidy this code for\n% research purposes. Any commercial application\n% is forbidden without prior agreement in written\n% by the author.\n\nfunction boxes = runObjectness(img,numberProposals,params)\n%This function computes the objectness measure and samples boxes from it.\n\n%INPUT\n%img - input image\n%numberProposals - number of windows sampled from the objectness measure\n%params - struct containing parameters of the function (loaded in startup.m)\n\n%OUTPUT\n%boxes - samples windows from the objectness measure\n% - each row contains a window using the format [xmin ymin xmax ymax score]\n\n%dir_root = rootpath;%change this to an absolute path\n\nimg = gray2rgb(img);\n%{\nif nargin < 3\n try \n struct = load([dir_root '/Data/params.mat']);\n params = struct.params;\n clear struct;\n catch\n params = defaultParams(dir_root);\n save([dir_root '/Data/params.mat'],'params');\n end\nend\n%params = updatePath(dir_root,params);\n%}\nif length(params.cues)==1 \n %single cues\n \n distributionBoxes = computeScores(img,params.cues{1},params); \n \n switch lower(params.sampling)\n case 'nms'\n %nms sampling\n \n %consider only params.distribution_windows (= 100k windows)\n if size(distributionBoxes,1) > params.distribution_windows\n indexSamples = scoreSampling(distributionBoxes(:,5),params.distribution_windows,1);\n distributionBoxes = distributionBoxes(indexSamples,:);\n end\n \n %sampling\n boxes = nms_pascal(distributionBoxes, 0.5,numberProposals);\n \n case 'multinomial' \n %multinomial sampling\n \n %sample from the distribution of the scores\n indexSamples = scoreSampling(distributionBoxes(:,end),numberProposals,1);\n boxes = distributionBoxes(indexSamples,:);\n \n otherwise\n display('sampling procedure unknown')\n end\n\nelse\n %combination of cues\n \n if not(ismember('MS',params.cues)) \n display('ERROR: combinations have to include MS');\n boxes = [];\n return\n end\n \n if length(unique(params.cues)) ~= length(params.cues)\n display('ERROR: repetead cues in the combination');\n boxes = [];\n return\n end\n \n distributionBoxes = computeScores(img,'MS',params); \n %rearrange the cues such that 'MS' is the first cue\n if ~strcmp(params.cues{1},'MS')\n params.cues{strcmp(params.cues,'MS')} = params.cues{1};\n params.cues{1} ='MS';\n end\n \n score = zeros(size(distributionBoxes,1),length(params.cues));\n score(:,1) = distributionBoxes(:,end);\n windows = distributionBoxes(:,1:4);\n for idx = 2:length(params.cues)\n temp = computeScores(img,params.cues{idx},params,windows);\n score(:,idx) = temp(:,end); \n end\n scoreBayes = integrateBayes(params.cues,score,params); \n \n switch lower(params.sampling)\n case 'nms'\n %nms sampling\n \n distributionBoxes(:,5) = scoreBayes;\n boxes = nms_pascal(distributionBoxes, 0.5, numberProposals);\n \n case 'multinomial' \n %multinomial sampling\n \n %sample from the distribution of the scores\n indexSamples = scoreSampling(scoreBayes,numberProposals,1); \n boxes = [windows(indexSamples,:) scoreBayes(indexSamples,:)]; \n \n otherwise\n display('sampling procedure unknown')\n end \n \nend\n\n \n", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/objectness-release-v2.2/runObjectness.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195152660688, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.37279459965100825}} {"text": "%==================================================================\n% General Data File\n% Title: Default_title\n% Units: SI\n% Dimensions: 2D\n% Type of problem: Plane_Stress\n% Type of Phisics: Stokes\n% Micro/Macro: MACRO\n%\n%==================================================================\n\n%% Data\norder={'QUADRATIC','LINEAR'};\nData_prb = {\n'TRIANGLE';\n'SI';\n'2D';\n'Plane_Stress';\n'Stokes';\n'MACRO'\n};\nstate = 'Transient';\ndtime = 0.01;\nfinalTime = 1;\n\n%% Coordinates\n% Node X Y Z\n\ncoord = [\n1 0 0 0\n2 0 0.25 0\n3 0.25 0 0\n4 0.25 0.25 0\n5 0 0.5 0\n6 0.5 0 0\n7 0.25 0.5 0\n8 0.5 0.25 0\n9 0.5 0.5 0\n10 0.75 0 0\n11 0 0.75 0\n12 0.75 0.25 0\n13 0.25 0.75 0\n14 0.75 0.5 0\n15 0.5 0.75 0\n16 1 0 0\n17 0 1 0\n18 1 0.25 0\n19 0.25 1 0\n20 0.75 0.75 0\n21 1 0.5 0\n22 0.5 1 0\n23 0.75 1 0\n24 1 0.75 0\n25 1 1 0\n];\n\n%% Conectivities\n% Element Node(1) Node(2) Node(3) Material\n\nconnec = [\n1 6 8 3 0\n2 8 9 4 0\n3 3 4 1 0\n4 8 4 3 0\n5 9 7 4 0\n6 7 5 2 0\n7 4 2 1 0\n8 7 2 4 0\n9 16 18 10 0\n10 18 21 12 0\n11 10 12 6 0\n12 18 12 10 0\n13 21 14 12 0\n14 14 9 8 0\n15 12 8 6 0\n16 14 8 12 0\n17 9 15 7 0\n18 15 22 13 0\n19 7 13 5 0\n20 15 13 7 0\n21 22 19 13 0\n22 19 17 11 0\n23 13 11 5 0\n24 19 11 13 0\n25 21 24 14 0\n26 24 25 20 0\n27 14 20 9 0\n28 24 20 14 0\n29 25 23 20 0\n30 23 22 15 0\n31 20 15 9 0\n32 23 15 20 0\n];\n\n\n\n\n\n%% Variable Prescribed\n% Node Dimension Value\n\nvelocityBC.domain = 'Border';\nvelocityBC.value = 0;\n\nvelocity = [\n1 1 0 \n1 2 0 \n5 1 0 \n5 2 0 \n6 1 0 \n6 2 0 \n16 1 0 \n16 2 0 \n17 1 0 \n17 2 0 \n21 1 0 \n21 2 0 \n22 1 0 \n22 2 0 \n25 1 0 \n25 2 0 \n];\n\npressure = [\n25 1 0 \n];\n\nnu=1;\nVol_force = @(x,y){nu*4*(x^3*((6 - 12*y)) + x^4*((-3 + 6*y)) + y*(1 - 3*y + 2*y^2)-6*x*y*(1 - 3*y + 2*y^2)...\n+ 3*x^2*((-1 + 4*y - 6*y^2 + 4*y^3)))+(2*x-1)*(y-1);\n-4*nu*(-3*((-1 + y)^2)*y^2 - 3*x^2*((1 - 6*y + 6*y^2))+2*x^3*((1 - 6*y + 6*y^2)) +...\nx*(1 - 6*y + 12*y^2 - 12*y^3 + 6*y^4))+x*(x-1)};\n\n% nu=1;\n% Vol_force = @(x,y){nu*4*(x^3*((6 - 12*y)) + x^4*((-3 + 6*y)) + y*(1 - 3*y + 2*y^2)-6*x*y*(1 - 3*y + 2*y^2)...\n% + 3*x^2*((-1 + 4*y - 6*y^2 + 4*y^3)))+nu*y*(1 - y)*(1 - 2*x);\n% -4*nu*(-3*((-1 + y)^2)*y^2 - 3*x^2*((1 - 6*y + 6*y^2))+2*x^3*((1 - 6*y + 6*y^2)) +...\n% x*(1 - 6*y + 12*y^2 - 12*y^3 + 6*y^4)+x*(1 - x)*(1 - 2*y))};\n\n\n\n\n\n%% Group Elements\n% Element Group_num\n\nGroup = [\n];\n\n%% Initial Holes\n% Elements that are considered holes initially\n% Element\n\nInitial_holes = [\n];\n\n%% Boundary Elements\n% Elements that can not be removed\n% Element\n\nBoundary_elements = [\n];\n\n%% Micro gauss post\n%\n% Element\n\nMicro_gauss_post = [\n];\n\n\n%% Micro Slave-Master\n% Nodes that are Slaves\n% Nodes Value (1-Slave,0-Master)\n\nMicro_slave = [\n];\n\n%% Nodes solid\n% Nodes that must remain \n% Nodes\n\n% nodesolid = unique(pointload_complete(:,1));\n\n%% External border Elements\n% Detect the elements that define the edge of the domain\n% Element Node(1) Node(2)\n\nExternal_border_elements = [\n1 3 6\n3 1 3\n6 5 2\n7 2 1\n9 16 18\n9 10 16\n10 18 21\n11 6 10\n21 22 19\n22 17 11\n22 19 17\n23 11 5\n25 21 24\n26 24 25\n29 25 23\n30 23 22\n];\n\n%% External border Nodes\n% Detect the nodes that define the edge of the domain\n% Node\n\nExternal_border_nodes = [\n];\n\n%% Materials\n% Materials that have been used\n% Material_Num Mat_density Young_Modulus Poisson\n\nMaterials = [\n];\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/test2d_stokes_triangle_transient.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3727945996510082}} {"text": "function element_node = gmsh_mesh2d_element_data_example ( element_num, ...\n element_order )\n\n%*****************************************************************************80\n%\n%% GMSH_MESH2D_ELEMENT_DATA_EXAMPLE returns element information for the example.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 23 October 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer ELEMENT_NUM, the number of elements.\n%\n% Input, integer ELEMENT_ORDER, the order of the elements.\n%\n% Output, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), \n% the indices of the nodes that make up each element.\n%\n element_node = [ ...\n 1, 2, 6; ...\n 7, 6, 2; ...\n 2, 3, 7; ...\n 8, 7, 3; ...\n 3, 4, 8; ...\n 9, 8, 4; ...\n 4, 5, 9; ...\n 10, 9, 5; ...\n 6, 7, 11; ...\n 12, 11, 7; ...\n 7, 8, 12; ...\n 13, 12, 8; ...\n 8, 9, 13; ...\n 14, 13, 9; ...\n 9, 10, 14; ...\n 15, 14, 10; ...\n 11, 12, 16; ...\n 17, 16, 12; ...\n 12, 13, 17; ...\n 18, 17, 13; ...\n 16, 17, 19; ...\n 20, 19, 17; ...\n 17, 18, 20; ...\n 21, 20, 18 ]';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/gmsh_io/gmsh_mesh2d_element_data_example.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.672331699179286, "lm_q1q2_score": 0.37278806985157287}} {"text": "function yp = p00_fun ( test, neqn, t, y )\n\n%*****************************************************************************80\n%\n%% P00_FUN evaluates the right hand side of any test problem.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 18 February 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer TEST, the test problem index.\n%\n% Input, integer NEQN, the number of equations.\n%\n% Input, real T, the value of the independent variable.\n%\n% Input, real Y(NEQN,1), the value of the dependent variables.\n%\n% Output, real YP(NEQN,1), the value of the derivative of the\n% dependent variables, as specified by the ODE.\n%\n yp = zeros ( neqn, 1 );\n \n if ( test == 1 )\n yp = p01_fun ( neqn, t, y );\n elseif ( test == 2 )\n yp = p02_fun ( neqn, t, y );\n elseif ( test == 3 )\n yp = p03_fun ( neqn, t, y );\n elseif ( test == 4 )\n yp = p04_fun ( neqn, t, y );\n elseif ( test == 5 )\n yp = p05_fun ( neqn, t, y );\n elseif ( test == 6 )\n yp = p06_fun ( neqn, t, y );\n elseif ( test == 7 )\n yp = p07_fun ( neqn, t, y );\n elseif ( test == 8 )\n yp = p08_fun ( neqn, t, y );\n elseif ( test == 9 )\n yp = p09_fun ( neqn, t, y );\n elseif ( test == 10 )\n yp = p10_fun ( neqn, t, y );\n elseif ( test == 11 )\n yp = p11_fun ( neqn, t, y );\n elseif ( test == 12 )\n yp = p12_fun ( neqn, t, y );\n elseif ( test == 13 )\n yp = p13_fun ( neqn, t, y );\n elseif ( test == 14 )\n yp = p14_fun ( neqn, t, y );\n elseif ( test == 15 )\n yp = p15_fun ( neqn, t, y );\n elseif ( test == 16 )\n yp = p16_fun ( neqn, t, y );\n elseif ( test == 17 )\n yp = p17_fun ( neqn, t, y );\n elseif ( test == 18 )\n yp = p18_fun ( neqn, t, y );\n elseif ( test == 19 )\n yp = p19_fun ( neqn, t, y );\n elseif ( test == 20 )\n yp = p20_fun ( neqn, t, y );\n elseif ( test == 21 )\n yp = p21_fun ( neqn, t, y );\n elseif ( test == 22 )\n yp = p22_fun ( neqn, t, y );\n elseif ( test == 23 )\n yp = p23_fun ( neqn, t, y );\n elseif ( test == 24 )\n yp = p24_fun ( neqn, t, y );\n elseif ( test == 25 )\n yp = p25_fun ( neqn, t, y );\n elseif ( test == 26 )\n yp = p26_fun ( neqn, t, y );\n elseif ( test == 27 )\n yp = p27_fun ( neqn, t, y );\n elseif ( test == 28 )\n yp = p28_fun ( neqn, t, y );\n elseif ( test == 29 )\n yp = p29_fun ( neqn, t, y );\n elseif ( test == 30 )\n yp = p30_fun ( neqn, t, y );\n elseif ( test == 31 )\n yp = p31_fun ( neqn, t, y );\n elseif ( test == 32 )\n yp = p32_fun ( neqn, t, y );\n elseif ( test == 33 )\n yp = p33_fun ( neqn, t, y );\n elseif ( test == 34 )\n yp = p34_fun ( neqn, t, y );\n elseif ( test == 35 )\n yp = p35_fun ( neqn, t, y );\n elseif ( test == 36 )\n yp = p36_fun ( neqn, t, y );\n elseif ( test == 37 )\n yp = p37_fun ( neqn, t, y );\n elseif ( test == 38 )\n yp = p38_fun ( neqn, t, y );\n elseif ( test == 39 )\n yp = p39_fun ( neqn, t, y );\n elseif ( test == 40 )\n yp = p40_fun ( neqn, t, y );\n else\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P00_FUN - Fatal error!\\n' );\n fprintf ( 1, ' Illegal problem index TEST = %d\\n', test );\n error ( 'P00_FUN - Fatal error!' );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_ode/p00_fun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.6723316926137812, "lm_q1q2_score": 0.37278806621119437}} {"text": "% DEMHUMANPOSESVARGPLVMMISSING Run the shared variational GPLVM on various kinds of data\n% allowing missing inputs.\n% DESC Run the shared variational GPLVM on various kinds of data\n% allowing missing inputs.\n%\n% COPYRIGHT: Andreas C. Damianou, Carl Henrik Ek, 2011\n% SEEALSO : demHumanPoseSvargplvm1\n%\n% VARGPLVM\n\n\n% Human pose data with the whole silhouette\n%clear ;close all; experimentNo=404; imageSilhouette=1;initLatent='ppca';\n%latentDimPerModel=7;dataSetNames =\n%{};toyDataCreate='humanPose';initVardistIters = 380;\n%itNo = [500 200 200 200 200 200 200 200 200 200]; indPoints=100;TEMPdemSharedVargplvm\n\n\n%___\n\n% Fix seeds\nrandn('seed', 1e5);\nrand('seed', 1e5);\n\n% Define constants (in a manner that allows other scripts to parametrize\n% this one).\nif ~exist('experimentNo') , experimentNo = 404; end\nif ~exist('itNo') , itNo = [500 500]; end % Default: 2000\nif ~exist('indPoints') , indPoints = 100; end % Default: 49\nif ~exist('latentDimPerModel') , latentDimPerModel = 6; end\n% Set to 1 to use dynamics or to 0 to use the standard var-GPLVM\nif ~exist('dynUsed') , dynUsed = 0; end\nif ~exist('initVardistIters'), initVardistIters = 180; end\nif ~exist('dynamicKern') , dynamicKern = {'rbf', 'white', 'bias'}; end\nif ~exist('mappingKern') , mappingKern = {'rbfard2', 'white', 'bias'}; end\n\n\n% 0.1 gives around 0.5 init.covars. 1.3 biases towards 0.\nif ~exist('vardistCovarsMult'), vardistCovarsMult=1.3; end\n% Set to empty value {} to work with toy data\n\nif ~exist('invWidthMultDyn'), invWidthMultDyn = 100; end\nif ~exist('invWidthMult'), invWidthMult = 5; end\nif ~exist('initX'), initX ='ppca'; end % That's for the dynamics initialisation\nif ~exist('dataType'), dataType = 'humanPose'; end\nif ~exist('enableParallelism'), enableParallelism = 1; end\nif ~exist('DgtN'), DgtN = false; end\n% Create initial X by doing e.g. ppca in the concatenated model.m's or by\n% doing ppca in the model.m's separately and concatenate afterwards?\nif ~exist('initial_X'), initial_X = 'separately'; end % Other options: 'together'\n% Which indices to use for training, rest for test\nif ~exist('indTr'), indTr = -1; end\n\n\ndemHumanPosePrepareData\n\n\ndataSetNames={'silhouette', 'pose'};\n% X_init = Xp;\n%mappingKern = {'linard2', 'white'};\n%mappingKern = {'rbfard2', 'white'};\nlatentDim = 5; % Anything > 2 and < 10\n%xyzankurAnim(Z_test, 3);\nnumberOfDatasets = length(Yall);\n\n\n\n%-- Load datasets\nfor i=1:numberOfDatasets\n Y = Yall{i};\n \n dims{i} = size(Y,2);\n N{i} = size(Y,1);\n if indTr == -1\n indTr = 1:N{i};\n end\n %t{i} = linspace(0, 2*pi, size(Yall{i}, 1)+1)'; t{i} = t{i}(1:end-1, 1);\n \n indTs = setdiff(1:size(Y,1), indTr);\n Ytr{i} = Y(indTr,:);\n Yts{i} = Y(indTs,:);\n \n d{i} = size(Ytr{i}, 2);\nend\n% timeStampsTraining = t{1}(indTr,1); %timeStampsTest = t(indTs,1);\n\n\nt = linspace(0, 2*pi, length(indTr)+1)'; t = t(1:end-1, 1);\n\n% Fix times:\nprevSeq = 1;\ntimeStampsTraining = [];\ndt=0.05;\nfor i=1:length(seq)\n t = ([0:(seq(i)-prevSeq)].*dt)';\n prevSeq = seq(i)+1;\n timeStampsTraining = [timeStampsTraining ;t];\nend;\n\ndt=t(2)-t(1);\ntimeStampsTest = ([0:size(Y_test,1)-1].*dt)';\n\nfor i=2:numberOfDatasets\n if N{i} ~= N{i-1}\n error('The number of observations in each dataset must be the same!');\n end\nend\n\n\nmodel = svargplvmRestorePrunedModel(prunedModel, Ytr);\nif isfield(model, 'dynamics') & ~isempty(model.dynamics)\n dynUsed=1;\nelse\n dynUsed = 0;\nend\nmakePlots=0;\n\n%%\n%---------------------------- PREDICTIONS ---------------\n\n% Set to 1 to test on the training data itself, set to 0 to use the test\n% dataset.\nif ~exist('testOnTraining')\n testOnTraining=0;\nend\n\n% 1 is for the HoG image features. 2 is for the pose features.\nobsMod = 1; % one of the involved sub-models (possible values: 1 or 2).\ninfMod = setdiff(1:2, obsMod);\n\n% Find the dimensions that are shared for obsMod and infMod\nif ~exist('sharedDims')\n s1 = model.comp{obsMod}.kern.comp{1}.inputScales;\n s2 = model.comp{infMod}.kern.comp{1}.inputScales;\n % Normalise values between 0 and 1\n s1 = s1 / max(s1);\n s2 = s2 / max(s2);\n \n % thresh = max(model.comp{obsMod}.kern.comp{1}.inputScales) * 0.001;\n thresh = 0.005;\n \n retainedScales{obsMod} = find(s1 > thresh);\n %thresh = max(model.comp{infMod}.kern.comp{1}.inputScales) * 0.001;\n retainedScales{infMod} = find(s2 > thresh);\n sharedDims = intersect(retainedScales{obsMod}, retainedScales{infMod});\nend\n\n% Find X_* only for the shared dimensions (Xs*):\nif ~exist('privateDims')\n privateDims = setdiff(1:model.comp{obsMod}.q, sharedDims);\nend\n\n\n% Number of test points to use\nnumberTestPoints = 10;\nif testOnTraining\n perm = randperm(model.N);\n testInd = perm(1:numberTestPoints);\nelse\n startInd = 60;\n missingInd = 1:25;\n Y_testOrig = Y_test;\n Y_test(startInd:end, missingInd) = NaN;\n\n %model.comp{2}.y(startInd:end, missingInd)=NaN; %%%???????????\n disp('# Initializing latent points...');\n indexPresent = setdiff(1:model.comp{1}.d, missingInd);\n \n Yts{obsMod} = Y_test;\n Yts{infMod} = Z_test;\n testInd = 1:size(Yts{1},1);\n ZpredAll = zeros(size(Z_test));\n indsAll = zeros(size(Z_test,1),1); \nend\n\nscrsz = get(0,'ScreenSize');\n\nx_star = zeros(length(testInd), size(model.X,2));\nif ~(~testOnTraining & dynUsed) % If we have a test set and dynamics, then we need a different inference procedure\n for i=1:length(testInd)\n curInd = testInd(i);\n fprintf('# Testing indice number %d ', curInd);\n if testOnTraining\n fprintf('taken from the training set\\n');\n y_star = model.comp{obsMod}.y(curInd,:);\n x_star(i,:) = model.comp{obsMod}.vardist.means(curInd,:);\n varx_star = model.comp{obsMod}.vardist.covars(curInd,:);\n else\n fprintf('taken from the test set\\n');\n y_star = Yts{obsMod}(curInd,:);\n z_star = Yts{infMod}(curInd,:);\n dst = dist2(y_star(indexPresent), Y_test(:,indexPresent));\n \n [mind, mini(i)] = min(dst);\n %miniAll(i) = mini;\n Init(i,:) = model.vardist.means(mini(i),:);\n vardistx = vardistCreate(model.comp{obsMod}.vardist.means(mini(i),:), model.q, 'gaussian');\n vardistx.covars = model.comp{obsMod}.vardist.covars(mini(i),:);\n model.comp{obsMod}.vardistx = vardistx;\n display=1;\n iters = 250;\n % Find p(X_* | Y_*) which is approximated by q(X_*)\n [x_star(i,:), varx_star, modelUpdated] = vargplvmOptimisePoint(model.comp{obsMod}, vardistx, y_star, display, iters);%%%\n end\n end\n fprintf('# Predicting images from the NN of X_* ');\n \n for i=1:length(testInd)\n curInd = testInd(i);\n y_star = Yts{obsMod}(curInd,:);\n z_star = Yts{infMod}(curInd,:);\n \n numberOfNN = 1;\n % Now we selected a datapoint X_* by taking into account only the\n % private dimensions for Y. Now, based on the shared dimensions of\n % that, we select the closest (in a NN manner) X from the training\n % data.\n % w = s1(sharedDims)+s2(sharedDims);\n % [ind, distInd] = nn_class2(model.X(:,sharedDims), x_star(i,sharedDims), numberOfNN, 'weighted', w);\n [ind, distInd] = nn_class(model.X(:,sharedDims), x_star(i,sharedDims), numberOfNN, 'euclidean');\n indsAll(i) = ind(1);\n \n ZpredMu = zeros(length(ind), size(model.comp{infMod}.y,2));\n ZpredSigma = zeros(length(ind), size(model.comp{infMod}.y,2));\n \n \n % Find p(y_*|x_*) for every x_* found from the NN\n for k=1:numberOfNN\n %fprintf('.');\n x_cur = model.X(ind(k),:);\n % Make the shared dimensions of the current NN the same as the\n % ones of the latent point for y_star\n % x_cur(sharedDims) = x_star(i,sharedDims); %%% OPTIONAL!!!\n \n % Make the shared dimensions for the current NN the same as the\n % ones of the closest NN to y_star but from the Z dataset\n % x_cur(sharedDims) = model.X(ind(1),sharedDims); %%%%% OPTIONAL #2 !!!!\n \n %[ZpredMu(k,:), ZpredSigma(k,:)] = vargplvmPosteriorMeanVar(model.comp{infMod}, model.X(ind(k),:));\n %if ~testOnTraining\n ZpredMu(k,:) = vargplvmPosteriorMeanVar(model.comp{infMod}, x_cur);\n %else\n % ZpredMu(k,:) = model.comp{infMod}(ind(k),:);\n %end\n end\n ZpredAll(i,:) = ZpredMu(1,:); \n \n %-- Plots\n if exist('makePlots') & ~makePlots\n continue\n end\n % Open a big figure (first 2 args control the position, last 2 control\n % the size)\n figure('Position',[scrsz(3)/100.86 scrsz(4)/6.666 scrsz(3)/1.0457 scrsz(4)/1.0682],...\n 'Name',['Fig: ' num2str(i) ' (Exp: ' num2str(experimentNo) ')'],'NumberTitle','off')\n numRows = 3;\n \n if testOnTraining\n numCols = ceil((numberOfNN+1)/numRows)*2;\n plotCounter = 2;\n else\n % For the real test image!\n numCols = ceil((numberOfNN+2)/numRows);\n plotCounter = 2;\n end\n \n \n if ~testOnTraining\n sil_star = Yim_test(curInd,:);\n pose_star = Z_test(curInd,:);\n subplot(numRows, numCols, 1)\n imagesc(reshape(sil_star,height,width))\n if obsMod == 1\n title(['Given (image #' num2str(curInd) ')']), colormap('gray')\n else\n title('Corresponding');\n end\n subplot(numRows, numCols, 2)\n handle = xyzankurVisualise2(pose_star);\n if obsMod == 1\n title(['Given (image #' num2str(curInd) ')']), colormap('gray')\n else\n title('Corresponding');\n end\n \n for k=1:numberOfNN\n subplot(numRows, numCols, k+plotCounter)\n if infMod == 1 && exist('imageSilhouette') && imageSilhouette\n imagesc(reshape( ZpredMu(k,:),height,width)), title(['NN #' num2str(k)]), colormap('gray')\n else\n handle = xyzankurVisualise2(ZpredMu(k,:)); title(['NN #' num2str(k)])\n end\n end\n %mserror(i) = mean(abs(ZpredMu(1,:) - Z_test(i,:)));\n else\n subplot(numRows, numCols, 1)\n imagesc(reshape(Yim(curInd,:),height,width)), title(['Original y (image #' num2str(curInd) ')']), colormap('gray')\n subplot(numRows, numCols, 2)\n handle = xyzankurVisualise2(model.comp{2}.y(curInd,:));\n % Start plotting from 2, the first is always the same as\n for k=2:numberOfNN\n % Start from k=2, the first NN we know it's the same as the\n % given point.\n subplot(numRows, numCols, k+plotCounter-1)\n imagesc(reshape(Yim(ind(k),:),height,width)), title(['NN #' num2str(k)]), colormap('gray')\n subplot(numRows, numCols, k+plotCounter)\n handle = xyzankurVisualise2(model.comp{2}.y(ind(k),:)); title(['NN #' num2str(k)])\n plotCounter = plotCounter+1;\n end\n end\n % pause\n % close\n end\n if ~testOnTraining\n meanPose = repmat(mean(Ytr{2}),size(Y_test,1),1);\n errors.meanPose = xyzankurError(meanPose, Z_test);\n errors.NNYspace = xyzankurError(Ytr{2}(mini,:), Z_test);\n errors.NNXspace = xyzankurError(Ytr{2}(indsAll,:),Z_test);\n errors.svargplvm = xyzankurError(ZpredAll, Z_test);\n fprintf('# Mean Pose Error: %d\\n', errors.meanPose)\n fprintf('# NN in the Y space Error: %d\\n',errors.NNYspace)\n fprintf('# NN in the X space Error: %d\\n',errors.NNXspace)\n fprintf('# Svargplvm Error: %d\\n', errors.svargplvm)\n xyzankurAnimCompareMultipleTEMP(Z_test, {ZpredAll, Ytr{2}(mini,:), Ytr{2}(indsAll,:)},-1,{'Gr. Truth', 'Svargplvm', 'NN_Y','NN_X'});\n end\nelse\n %%% Dynamics\n \n model.dynamics.t_star = timeStampsTest;\n model.comp{1}.dynamics.t_star = timeStampsTest;\n model.comp{2}.dynamics.t_star = timeStampsTest;\n \n\n for i=1:size(Y_test,1)\n % initialize the latent points using the nearest neighbour from the training data\n dst = dist2(Y_test(i,indexPresent), Ytr{1}(:, indexPresent));\n [mind, mini(i)] = min(dst);\n end\n \n \n indexMissingData = startInd:size(Y_test,1);\n \n vardistx = vardistCreate(model.dynamics.vardist.means(mini,:), model.q, 'gaussian');\n vardistx.covars = 0.2*ones(size(vardistx.covars));\n model.vardistx = vardistx;\n model.comp{1}.vardistx = vardistx;\n model.comp{2}.vardistx = vardistx;\n \n iters = 4000;\n\n [x, varx] = vargplvmOptimiseSeqDyn(model.comp{obsMod}, vardistx, Y_test, 1, iters);\n % keep the optimized variational parameters\n barmu = x;\n lambda = varx;\n \n % Get the variational means and variacnes for the new test sequcen and\n % update the model to be prepared for prediction\n [x_star, varx_star, modelUpdated] = vargplvmDynamicsUpdateModelTestVar(model.comp{obsMod}, barmu, lambda, Y_test);\n \n \n % Latent variables corresponding to the data with missing dimensions\n Testmeans = x(indexMissingData, :);\n Testcovars = varx(indexMissingData, :);\n \n modelOrig = model;\n model.comp{obsMod} = modelUpdated;\n model.vardist = modelUpdated.vardist;\n model.comp{1}.vardist = modelUpdated.vardist;\n model.comp{2}.vardist = modelUpdated.vardist;\n model.dynamics = modelUpdated.dynamics;\n model.comp{1}.dynamics = modelUpdated.dynamics;\n model.comp{2}.dynamics = modelUpdated.dynamics;\n model.X = model.vardist.means;\n model.comp{1}.X = model.X;\n model.comp{2}.X = model.X;\n \n numberOfNN = 2;\n \n fprintf('# Finding the %d NN of X_* with the training X based only on the shared dims.\\n', numberOfNN);\n ZpredAll = zeros(size(Z_test));\n indsAll = zeros(size(Z_test,1),1);\n indsAllOrig = zeros(size(Z_test,1),1);\n fprintf('# Predicting images from the NN of X_* ');\n for i=1:size(Z_test,1)\n [ind2,distInd] = nn_class(modelOrig.X(:,sharedDims), x_star(i,sharedDims), numberOfNN, 'euclidean');\n indsAllOrig(i) = ind2(1);\n \n % Actually this is a weighted NN.\n % w = s1(sharedDims)+s2(sharedDims);\n % [ind, distInd] = nn_class2(model.X(:,sharedDims), x_star(i,sharedDims), numberOfNN, 'weighted', w);\n [ind, distInd] = nn_class(model.X(:,sharedDims), x_star(i,sharedDims), numberOfNN, 'euclidean');\n indsAll(i) = ind(1);\n ZpredMu = zeros(length(ind), size(model.comp{infMod}.y,2));\n ZpredSigma = zeros(length(ind), size(model.comp{infMod}.y,2));\n % Find p(y_*|x_*) for every x_* found from the NN\n for k=1:numberOfNN\n x_cur = model.X(ind(k),:);%%%% % modelOrig.X(ind2(k));\n x_cur(sharedDims) = x_star(i,sharedDims); %%% OPTIONAL!!!\n \n %---- OPTIONAL 3\n % xcurOrig = x_cur(sharedDims);\n % s1new = s1/sum(s1);\n % x_cur(sharedDims) = s1new(sharedDims).*x_star(i,sharedDims) + (1-s1new(sharedDims)).*xcurOrig;\n %---- \n \n ZpredMu(k,:) = vargplvmPosteriorMeanVar(model.comp{infMod}, x_cur, varx_star(i,:)); % varx_star needed?\n end\n ZpredAll(i,:) = ZpredMu(1,:);\n end\n fprintf('\\n'); \n meanPose = repmat(mean(Ytr{2}),size(Z_test,1),1);\n errors.meanPose = xyzankurError(meanPose, Z_test);\n errors.NNYspace = xyzankurError(Ytr{2}(mini,:), Z_test);\n errors.NNXspace = xyzankurError(Ytr{2}(indsAllOrig,:),Z_test);\n errors.svargplvm = xyzankurError(ZpredAll, Z_test);\n fprintf('# Mean Pose Error: %d\\n', errors.meanPose)\n fprintf('# NN in the Y space Error: %d\\n',errors.NNYspace)\n fprintf('# NN in the X space Error: %d\\n',errors.NNXspace)\n fprintf('# Svargplvm Error: %d\\n', errors.svargplvm)\n prunedModelUpdated = vargplvmPruneModel(modelUpdated);\n % save(['demHumanPoseSvargplvm' num2str(experimentNo) '.mat'],'barmu','lambda','prunedModelUpdated','errors');\n \n % xyzankurAnimCompareMultipleTEMP(Z_test, {ZpredAll, Ytr{2}(mini,:), Ytr{2}(indsAllOrig,:)},-1,{'Gr. Truth', 'Svargplvm', 'NN_Y','NN_X'});\nend\n\n\n\n\n\n", "meta": {"author": "SheffieldML", "repo": "vargplvm", "sha": "480201fde5ac84ff36e4a9f06d3fafeafa8ef06d", "save_path": "github-repos/MATLAB/SheffieldML-vargplvm", "path": "github-repos/MATLAB/SheffieldML-vargplvm/vargplvm-480201fde5ac84ff36e4a9f06d3fafeafa8ef06d/vargplvm/matlab/demos/demHumanPoseSvargplvmMissing.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723316860482763, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3727880625708158}} {"text": "function [varargout]=grid2patch(varargin)\n\n% function [F,V,C,CV]=grid2patch(X,Y,Z,C,perdiocOpt);\n% ------------------------------------------------------------------------\n%\n%\n% 2019/12/16: Created as alternative to surf2patch (missing in Octave)\n% ------------------------------------------------------------------------\n\n%% parse input\n\nswitch nargin \n case 2\n X=varargin{1};\n Y=varargin{2};\n Z=zeros(size(X));\n C=[];\n perdiocOpt=false(1,2);\n case 3\n X=varargin{1};\n Y=varargin{2};\n Z=varargin{3};\n C=[];\n perdiocOpt=false(1,2);\n case 4\n X=varargin{1};\n Y=varargin{2};\n Z=varargin{3};\n C=varargin{4}; \n perdiocOpt=false(1,2);\n case 5\n X=varargin{1};\n Y=varargin{2};\n Z=varargin{3};\n C=varargin{4};\n perdiocOpt=varargin{5};\nend\n\nif isempty(C)\n C=Z(:);\nend\nsiz=size(X);\n\n%%\n\nV=[X(:) Y(:) Z(:)]; %Vertex set\n\n%Create row of faces\nf=[1 1+siz(1) 2+siz(1) 2]; %First element \nq=(0:1:siz(1)-2)';\nqq=q(:,ones(4,1));\nff=f(ones(siz(1)-1,1),:)+qq; %Row of faces by copying first\n\nif perdiocOpt(1)==1\n ff(end+1,:)=[siz(1) siz(1)+siz(1) 1+siz(1) 1];\nend\n\n%Create grid of faces by copying column\nq=0:siz(1):(siz(1)*(siz(2)-2));\nif perdiocOpt(1)==1\n Q=q(ones(siz(1),1),:);\nelse\n Q=q(ones(siz(1)-1,1),:);\nend\nQ=Q(:);\nQ=Q(:,ones(1,4));\nF=repmat(ff,[siz(2)-1 1])+Q; %Grid of faces\n\nif perdiocOpt(1)==1 && perdiocOpt(2)==1\n t=siz(1)*(siz(2)-1);\n f=[2 2+t 1+t 1]; %First element\n q=(0:1:siz(1)-2)';\n qq=q(:,ones(4,1));\n ff=f(ones(siz(1)-1,1),:)+qq; %Row of faces by copying first\n ff(end+1,:)=[1 1+t siz(1)+t siz(1)];\n F=[F;ff];\nelseif perdiocOpt(2)==1\n t=(siz(1)*(siz(2)-1));\n f=[2 2+t 1+t 1]; %First element\n q=(0:1:siz(1)-2)';\n qq=q(:,ones(4,1));\n ff=f(ones(siz(1)-1,1),:)+qq; %Row of faces by copying first\n F=[F;ff];\nend\n\n%% Collect output\n\nvarargout{1}=F; \nvarargout{2}=V; \nif nargout==3\n varargout{3}=vertexToFaceMeasure(F,C(:));\nend\nif nargout==4\n A=C;\n varargout{4}=A(:);\nend\n\nend\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/grid2patch.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5851011686727232, "lm_q2_score": 0.6370307806984444, "lm_q1q2_score": 0.3727274542671571}} {"text": "function res = imLUT(img, lut)\n%IMLUT apply a lut to a gray-scale image.\n%\n% IM2 = imLUT(IMG, LUT).\n% IMG is a gray-scale image, 1, 8 or 16 bits image, LUT is a double array\n% with 2**Nbits elements.\n% Each element x in IMG will by replaced by the value of the (x+1)-th\n% element in the LUT. \n%\n% ---------\n%\n% author : David Legland \n% INRA - TPV URPOI - BIA IMASTE\n% created the 25/10/2004.\n%\n\n% HISTORY\n\nres = zeros(size(img));\nfor i=0:length(lut)-1\n res(img==i) = lut(i+1);\nend", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/matImage/imMinkowski/private/imLUT.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3727274531134735}} {"text": "function [poly,poly_idx,max_index,max_size] = extdom_polygon(bnde,pts,order,line,min_size)\n% DESCRIPTION: Given a set of boundary edges of a singly- or multi-\n% polygonal region, organize them in a winding order.\n%\n% INPUTS:\n% bnde: the indices of each boundary edge as a nbnde x 2 matrix\n% pts: the x,y locations of all the points in the region\n% stored as an np x 2 matrix.\n% order:the order in which the traversal takes place\n% counter-clockwise (0) or clockwise (1) or add a negative\n% sign to append NaNs in each cell.\n% line:if desired output will be polylines\n% min_size: if the lenght of the polygon is less than min_size\n% points, throw it out. zero by default. \n% OUTPUTS:\n% poly: the boundary of each enclosing polygon sorted in winding-order\n% poly is returned as a cell-array of length number of polys.\n% poly_idx: indices of the polygon coordinates in the same format as\n% poly\n% max_index: is the index into poly that is the largest\n% max_size: is the size of the largest poly\n%\n% Last Edited:\n% kjr,UND,CHL,2017\n% kjr,UND,CHL -->revised for massive speed improvements March 2018.\n%\n% TRAVERSAL METHOD\n% Pick any unvisited edge segment [v_start,v_next] and add these vertices to the polygon loop.\n% Find the unvisited edge segment [v_i,v_j] that has either v_i = v_next or v_j = v_next and add the other vertex (the one not equal to v_next) to the polygon loop.\n% Reset v_next as this newly added vertex, mark the edge as visited and continue from 2.\n% Traversal is done when we get back to v_start.\n% NOTE: that the signed area will be positive if the vertices are\n% oriented counterclockwise, and will be negative if it is oriented clockwise\n\n% NOTE: By flipping the edges left-to-right, we can easily see the nodal\n% connectivity of the triangulation. However, since we are effectively\n% adding new \"edges\", we must also quickly locate and flag the \"flipped\" edge\n% in addition to the current edge under consideration. This is accomplished with the invmap\n% array which allows one, given a vertex gid, to quickly find it's linear\n% index inside the array bnde((boundary edges). This localizes the search to find\n% the connectivity to continue the \"walk\" on the boundary making the\n% calculation massively more efficient than compared to searching the entire bnde\n% array with edge under consideration.\n\n% if storing lines\nif(nargin < 4); line = 0; end\nif(nargin < 5); min_size = 1; end\n\nbnde = [bnde; fliplr(bnde)];\nbnde = sortrows(bnde,1);\nned = length(bnde);\nan = sign(order);\nactive = true(ned,1);\n\np = 0 ;\n% given a vertex with num gid, return where it exists last lid.\nfor lid = 1 : ned\n gid = bnde(lid,1);\n invmap(gid) = lid ;\nend\n\nwhile any(active)\n p = p + 1;\n \n rn = find(active,1);\n \n temp = pts(bnde(rn,:)',:);\n temp2 = bnde(rn,:)';\n \n v_start= bnde(rn,1);\n v_next = bnde(rn,2);\n \n active(rn) = false;\n \n % flag flipped edge too\n flipped = fliplr(bnde(rn,:));\n idx = invmap(flipped(1));\n st = max((idx - 1),1);\n ed = min(idx,ned);\n rn = find(flipped(2)==bnde(st:ed,2),1);\n \n active(rn+st-1) = false;\n \n k = 2 ;\n while v_next~=v_start\n \n % form local set to search for continuation of boundary walk.\n idx = invmap(v_next);\n st = max((idx - 1),1);\n ed = min(idx,ned);\n \n r = find(v_next==bnde(st:ed,1) & active(st:ed),1);\n tsel = bnde(st+r-1,:); tsel_inv = fliplr(tsel) ;\n sel=tsel(tsel~=v_next);\n \n if(line)\n if(isempty(sel))\n break\n end\n end\n % store points.\n k = k + 1;\n temp(k,:) = pts(sel,:);\n temp2(k,:)= sel;\n \n active(r+st-1) = false;\n \n % flag flipped edge too\n idx = invmap(tsel_inv(1));\n st = max((idx - 1),1);\n ed = min(idx,ned);\n r = find(tsel_inv(2)==bnde(st:ed,2),1);\n active(r+st-1) = false;\n \n v_next = sel;\n \n end\n \n if length(temp > min_size)\n poly{p} = temp;\n poly_idx{p} = temp2;\n else\n continue \n end\n if an < 0\n poly{p}(end+1,:) = [NaN NaN];\n poly_idx{p}(end+1,:) = NaN;\n end\n [area]=parea(poly{p}(:,1),poly{p}(:,2));\n if order==0 % ccw\n if sign(area)<0\n poly{p} = flipud(poly{p});\n poly_idx{p} = flipud(poly_idx{p});\n end\n else % cw\n if sign(area)>0\n poly{p} = flipud(poly{p});\n poly_idx{p} = flipud(poly_idx{p});\n end\n end\nend\n[max_size, max_index] = max(cellfun('size', poly, 1));\nend\n% helper function, computes area of polygon\nfunction [area]=parea(x,y)\nn = length(x);\nxp = [x; x(1)];\nyp = [y; y(1)];\narea = 0;\nfor i = 1:n\n area = area + det([xp(i), xp(i+1); yp(i), yp(i+1)]);\nend\narea = 1/2*area;\nend", "meta": {"author": "CHLNDDEV", "repo": "OceanMesh2D", "sha": "56222604a5c1fe897d10c8b08cb3380ef8b43740", "save_path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D", "path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D/OceanMesh2D-56222604a5c1fe897d10c8b08cb3380ef8b43740/utilities/extdom_polygon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3727274531134735}} {"text": "function outputImage = imfill(this, locations, nD)\n% Fills image slice-wise; mimicks imfill in matlab functionality\n%\n% Y = MrImage()\n% filledY = Y.imfill(locations, nD)\n%\n% This is a method of class MrImage.\n%\n% IN\n% locations\n% array of 2D coordinates or string 'holes' to fill all holes\n% nD dimensionality to perform operation\n% '2d' = slicewise application, separate 2d images\n% '3d' = as volume\n%\n% OUT\n% outputImage \n% MrImage where data matrix is inflated\n%\n% EXAMPLE\n% Y = MrImage();\n% filledY = Y.imfill()\n% filledY = Y.imfill('holes')\n%\n%\n% See also MrImage imfill MrImage.imerode perform_unary_operation\n\n% Author: Saskia Klein & Lars Kasper\n% Created: 2014-08-04\n% Copyright (C) 2014 Institute for Biomedical Engineering\n% University of Zurich and ETH Zurich\n%\n% This file is part of the TAPAS UniQC Toolbox, which is released\n% under the terms of the GNU General Public Licence (GPL), version 3.\n% You can redistribute it and/or modify it under the terms of the GPL\n% (either version 3 or, at your option, any later version).\n% For further details, see the file COPYING or\n% .\n\n\n% update geometry-header with flipping left-right\nif nargin < 2\n locations = 'holes';\nend\n\nif nargin < 3\n nD = '2d';\nend\n\nif isreal(this)\n outputImage = this.perform_unary_operation(...\n @(x) imfill(x, locations), nD);\nelse\n outputImage = this.abs.perform_unary_operation(...\n @(x) imfill(x, locations), nD);\nend", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrImage/imfill.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307806984444, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3727274450496453}} {"text": "function test_suite=test_align\n% tests for cosmo_align\n%\n% # For CoSMoMVPA's copyright information and license terms, #\n% # see the COPYING file distributed with CoSMoMVPA. #\n try % assignment of 'localfunctions' is necessary in Matlab >= 2016\n test_functions=localfunctions();\n catch % no problem; early Matlab versions can use initTestSuite fine\n end\n initTestSuite;\n\nfunction test_align_basics\n x=cosmo_synthetic_dataset('type','meeg','size','big');\n y=cosmo_slice(x,x.fa.chan<=6,2);\n orig_ds=cosmo_dim_transpose(y,'time');\n\n [nsamples,nfeatures]=size(orig_ds.samples);\n\n ds1=cosmo_slice(orig_ds,randperm(nsamples));\n ds2=cosmo_slice(orig_ds,randperm(nsamples));\n\n [mp,pm]=cosmo_align({ds1.sa.targets,ds1.sa.chunks,ds1.sa.time},...\n {ds2.sa.targets,ds2.sa.chunks,ds2.sa.time});\n assertEqual(cosmo_slice(ds1,mp),ds2);\n assertEqual(cosmo_slice(ds2,pm),ds1);\n\n [mp,pm]=cosmo_align([2 3 4],[4 2 3]);\n assertEqual(mp,[3 1 2]);\n assertEqual(pm,[2 3 1]);\n\n\n [mp,pm]=cosmo_align({{'b','c','c'},[3 2 3]},...\n {{'c','b','c'},[3 3 2]});\n assertEqual(mp,[3 1 2]);\n assertEqual(pm,[2 3 1]);\n\n % test structs\n p=struct();\n p.x={'b','c','c'};\n p.y=[3 2 3];\n q=struct();\n q.y=[3 3 2];\n q.x={'c','b','c'};\n [mp,pm]=cosmo_align(p,q);\n assertEqual(mp,[3 1 2]);\n assertEqual(pm,[2 3 1]);\n\n % test NaN\n [mp,pm]=cosmo_align([2 NaN 4],[4 2 NaN]);\n assertEqual(mp,[3 1 2]);\n assertEqual(pm,[2 3 1]);\n\n\n\n % test exceptions\n ds_small=cosmo_slice(ds1,1:nsamples-1);\n aet=@(varargin)assertExceptionThrown(@()...\n cosmo_align(varargin{:}),'');\n aet(ds1,ds2);\n aet([2 3 4 3],[4 2 3 4]);\n aet([2 3 4 3],[4 2 3 4]);\n aet([2 3 4 3],[4 2 3]);\n aet([2 3 4],{[2,3,4],[2,3,4]});\n\n aet([2 3 NaN NaN],[2 3 NaN Inf]);\n aet([2 NaN 3],[4 2 NaN]);\n\n aet(struct,struct('a',1));\n aet(struct('a',1),1);\n\n aet({'b','c','d','d'},{'d','b','c','d'});\n\n\nfunction test_align_multiple_nans\n n_rows_half=20+ceil(rand()*20);\n x=ceil(rand(n_rows_half*2,2)*sqrt(n_rows_half));\n rp=randperm(2*n_rows_half);\n\n rp1=rp(1:n_rows_half);\n rp2=rp(n_rows_half+(1:n_rows_half));\n\n % half of the rows become NaN\n x(rp1,1)=NaN;\n x(rp1,2)=1:n_rows_half;\n x(rp2,1)=1:n_rows_half;\n x(rp2,2)=1:n_rows_half;\n\n rp2=randperm(n_rows_half*2);\n y=x(rp2,:);\n\n assertExceptionThrown(@()cosmo_align(...\n {x(:,1),x(:,2)},{y(:,1),y(:,2)}),'');\n\n", "meta": {"author": "CoSMoMVPA", "repo": "CoSMoMVPA", "sha": "5de75a1b4bef89b082d39d69e2b99d7f894ad717", "save_path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA", "path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA/CoSMoMVPA-5de75a1b4bef89b082d39d69e2b99d7f894ad717/tests/test_align.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6584175139669998, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37267651680305985}} {"text": "function C = complex( A, B )\n%COMPLEX Construct complex SEPARABLEAPPROX from real and imaginary parts.\n% C = COMPLEX(A, B) returns the complex SEPARABLEAPPROX A + Bi, where A and B are\n% real valued SEPARABLEAPPROX objects with the same domain.\n%\n% C = COMPLEX(A) for real SEPARABLEAPPROX A returns the complex result C with real\n% part A and all zero imaginary part. isreal(C) returns false.\n%\n% See also IMAG, CONJ, ABS, REAL.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nif ( nargin == 2 )\n if ( ~isa(B, 'separableApprox') )\n error('CHEBFUN:SEPARABLEAPPROX:complex:inputs', ...\n 'Second input must be a CHEBFUN2.');\n elseif ( ~isreal( A ) || ~isreal( B ) )\n error('CHEBFUN:SEPARABLEAPPROX:complex:notReal1', ...\n 'Inputs must be real valued.');\n end\n C = A + 1i*B;\nelse\n if ( ~isreal( A ) )\n error('CHEBFUN:SEPARABLEAPPROX:complex:notReal2', ...\n 'Input must be real valued.');\n end\n % Make complex.\n C = A + 0*1i; \nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@separableApprox/complex.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37267650921540213}} {"text": "function varargout = removeMeshEars(varargin)\n%REMOVEMESHEARS Remove vertices that are connected to only one face.\n%\n% [V, F] = removeMeshEars(V, F)\n% [V, F] = removeMeshEars(MESH)\n% Remove vertices that are connected to only one face. This removes also\n% \"pending\" faces.\n% Note that if the mesh has boundary, this may remove some regular faces\n% located on the boundary.\n%\n% Example\n% removeMeshEars\n%\n% See also \n% meshes3d, ensureManifoldMesh\n%\n\n% ------\n% Author: David Legland\n% E-mail: david.legland@inra.fr\n% Created: 2019-01-08, using Matlab 8.6.0.267246 (R2015b)\n% Copyright 2019-2022 INRA - Cepia Software Platform\n\n[vertices, faces] = parseMeshData(varargin{:});\n\nnVertices = size(vertices, 1);\n\n% for each vertex, determine the number of faces it belongs to\nvertexDegree = zeros(nVertices, 1);\nfor iv = 1:nVertices\n vertexDegree(iv) = sum(sum(faces == iv, 2) > 0);\nend\n\n% remove vertices with degree 1\ninds = find(vertexDegree == 1);\n[vertices, faces] = removeMeshVertices(vertices, faces, inds);\n\n\n%% Format output\n\nvarargout = formatMeshOutput(nargout, vertices, faces);\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/meshes3d/removeMeshEars.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37267650921540213}} {"text": "%% This is for testing the Plotting functions in the robotics Toolbox\nfunction tests = TransformationsTest\n tests = functiontests(localfunctions);\n clc\nend\n\nfunction teardownOnce(tc)\n close all\nend\n\n% tranimate - animate a coordinate frame\nfunction tranimate_test(tc)\n X1 = eye(3,3); X2 = rotx(pi/2);\n tranimate(X1, X2);\n tranimate(X1, X2, 'nsteps', 10);\n \n clf\n tranimate(X1, X2, 'axis', [-10 10 -20 20 -30 30]);\n ax = gca; v = [ax.XLim ax.YLim ax.ZLim];\n tc.verifyEqual(v, [-10 10 -20 20 -30 30]); % 19b doesnt give \n \n tranimate(X1, X2, 'noxyz');\n tranimate(X1, X2, 'rgb');\n tranimate(X1, X2, 'retain');\n tranimate(X1, X2, 'fps', 20);\n \n \n X1 = eye(4,4); X2 = transl(1,2,3)*trotx(pi/2);\n tranimate(X1, X2);\n tranimate(X1, X2, 'nsteps', 10);\n \n clf\n tranimate(X1, X2, 'axis', [-10 10 -20 20 -30 30]);\n %v = axis;\n ax = gca; v = [ax.XLim ax.YLim ax.ZLim];\n tc.verifyEqual(v, [-10 10 -20 20 -30 30]);\n \n tranimate(X1, X2, 'noxyz');\n tranimate(X1, X2, 'rgb');\n tranimate(X1, X2, 'retain');\n tranimate(X1, X2, 'fps', 20);\nend\n\nfunction tranimate2_test(tc)\n X1 = eye(2,2); X2 = rot2(pi/2);\n tranimate2(X1, X2);\n tranimate2(X1, X2, 'nsteps', 10);\n \n clf\n tranimate2(X1, X2, 'axis', [-10 10 -20 20]);\n v = axis;\n tc.verifyEqual(v, [-10 10 -20 20]);\n \n tranimate2(X1, X2, 'noxyz');\n tranimate2(X1, X2, 'rgb');\n tranimate2(X1, X2, 'retain');\n tranimate2(X1, X2, 'fps', 20);\n \n \n X1 = eye(3,3); X2 = transl2(1,2)*trot2(pi/2);\n tranimate2(X1, X2);\n tranimate2(X1, X2, 'nsteps', 10);\n \n clf\n tranimate2(X1, X2, 'axis', [-10 10 -20 20]);\n v = axis;\n tc.verifyEqual(v, [-10 10 -20 20]);\n \n tranimate2(X1, X2, 'noxyz');\n tranimate2(X1, X2, 'rgb');\n tranimate2(X1, X2, 'retain');\n tranimate2(X1, X2, 'fps', 20);\nend\n\n% trplot - plot HT as a coordinate frame\nfunction trplot_test(tc)\n %%\n Rt1 = [1.0000 0 0 0\n 0 0.8253 -0.5646 0\n 0 0.5646 0.8253 0\n 0 0 0 1.0000];\n trplot(Rt1);\n clf\n h = trplot(Rt1);\n trplot(Rt1, 'handle', h);\n trplot(Rt1, 'color', 'r');\n trplot(Rt1, 'color', [1 0 1]);\n trplot(Rt1, 'noaxes');\n trplot(Rt1, 'frame', 'bob');\n trplot(Rt1, 'frame', 'A', 'text_opts', {'FontSize', 10, 'FontWeight', 'bold'})\n trplot(Rt1, 'view', [10 20]);\n trplot(Rt1, 'arrow')\n trplot(Rt1, '3d')\n trplot(Rt1, '3d', 'anaglyph', 'mo')\n trplot(Rt1, '3d', 'dispar', 0.3);\nend\n\n function trplot2_test(tc)\n %%\n Rt1 = [\n 0.9553 -0.2955 1.0000\n 0.2955 0.9553 2.0000\n 0 0 1.0000];\n trplot2(Rt1);\n clf\n h = trplot2(Rt1);\n trplot2(Rt1, 'handle', h);\n h = trplot2(Rt1, 'handle', h);\n trplot2(Rt1, 'color', 'r');\n trplot2(Rt1, 'color', [1 0 1]);\n trplot2(Rt1, 'noaxes');\n trplot2(Rt1, 'frame', 'bob');\n trplot2(Rt1, 'frame', 'A', 'text_opts', {'FontSize', 10, 'FontWeight', 'bold'})\n trplot2(Rt1, 'view', [10 20]);\n trplot2(Rt1, 'arrow')\n trplot2(Rt1, 'framelabel', 'A')\n \n clf\n a = gca;\n trplot2(Rt1, 'axhandle', a);\n \n h = trplot2(Rt1);\n tc.verifyWarning( @() trplot2(h, Rt1), 'SMTB:trplot2:deprecated')\nend\n\n% plot2 - plot trajectory\nfunction plot2_test(tc)\n %%\n th = [0:0.1:pi];\n sth = sin(th);\n p = [th' sth'];\n plot2(p);\n\n p = [th' sth' sth'];\n plot2(p);\nend\n \n\n% plot_box - draw a box\nfunction plot_box_test(tc)\n plot_box(1,1,5,5,'b');\n plot_box(2,2,4,4,'g');\nend\n\n% plot_circle - draw a circle\nfunction plot_circle_test(tc)\n plot_circle([1 2],2,'g');\n plot_circle([1 2],2,'fillcolor', 'g');\n plot_circle([1 2],2,'fillcolor', 'g', 'alpha', 0.5);\n plot_circle([1 2],2,'edgecolor', 'b');\n plot_circle([1 2],2,'fillcolor', 'g', 'edgecolor', 'b');\nend\n\n\n% plot_ellipse - draw an ellipse\nfunction plot_ellipse_test(tc)\n %%\n %2d\n \n C = diag([1,4]);\n plot_ellipse(C,[2 3],'r');\n plot_ellipse(C,[2 3],'fillcolor', 'g');\n plot_ellipse(C,[2 3],'fillcolor', 'g', 'alpha', 0.5);\n plot_ellipse(C,[2 3],'edgecolor', 'g');\n plot_ellipse(C,[2 3],'fillcolor', 'g', 'edgecolor', 'b');\n \n % with 3d centre\n plot_ellipse([1 0; 0 4],[2 3 1],'r');\n \n %3d\n \n C = diag([1,4,2]);\n plot_ellipse(C,[2 3 1],'r');\n plot_ellipse(C,[2 3 1],'fillcolor', 'g');\n plot_ellipse(C,[2 3 1],'fillcolor', 'g', 'alpha', 0.5);\n plot_ellipse(C,[2 3 1],'edgecolor', 'g');\n plot_ellipse(C,[2 3 1],'fillcolor', 'g', 'edgecolor', 'b');\nend\n\n% plot_homline - plot homogeneous line\nfunction plot_homline_test(tc)\n plot_homline([1 2 3]','y');\nend\n\n% plot_point - plot points\nfunction plot_point_test(tc)\n plot_point([1; 2]);\nend\n\n% plot_poly - plot polygon\nfunction plot_poly_test(tc)\n p = [1 2 2 1; 1 1 2 2]; \n plot_poly(p,'g');\nend\n\n% plot_sphere - draw a sphere\nfunction plot_sphere_test(tc)\n plot_sphere([1 2 3],5,'r');\nend\n\nfunction xyzlabel_test(tc)\n \n plot3(1, 2, 3)\n xyzlabel()\nend\n\nfunction plotvol_test(tc)\n \n % 2D cases\n plotvol([2 3])\n tc.verifyEqual(axis, [-2 2 -3 3]);\n plotvol([2 3 4 5])\n tc.verifyEqual(axis, [2 3 4 5]);\n \n % 3D cases\n plotvol(3)\n ax = gca; v = [ax.XLim ax.YLim ax.ZLim];\n tc.verifyEqual(v, 3*[-1 1 -1 1 -1 1]);\n \n plotvol([1 2 3]);\n ax = gca; v = [ax.XLim ax.YLim ax.ZLim];\n tc.verifyEqual(v, [-1 1 -2 2 -3 3]);\n \n plotvol([1 2 3 4 5 6]);\n ax = gca; v = [ax.XLim ax.YLim ax.ZLim];\n tc.verifyEqual(v, [1 2 3 4 5 6]);\nend\n", "meta": {"author": "petercorke", "repo": "spatialmath-matlab", "sha": "6eeff4a79f14286705560b84f1fe72e0b7e0e7f7", "save_path": "github-repos/MATLAB/petercorke-spatialmath-matlab", "path": "github-repos/MATLAB/petercorke-spatialmath-matlab/spatialmath-matlab-6eeff4a79f14286705560b84f1fe72e0b7e0e7f7/unit_test/PlotTest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.658417500561683, "lm_q1q2_score": 0.37267650921540213}} {"text": "function [SPM] = cl_ext_spm_spm(SPM)\n% [Re]ML Estimation of a General Linear Model\n%\n% :Usage:\n% ::\n%\n% FORMAT [SPM] = spm_spm(SPM)\n%\n% :Required fields of SPM:\n%\n% xY.VY - nScan x 1 struct array of image handles (see spm_vol)\n% Images must have the same orientation, voxel size and data type\n% - Any scaling should have already been applied via the image handle\n% scalefactors.\n%\n% xX - Structure containing design matrix information\n% - Required fields are:\n% xX.X - Design matrix (raw, not temporally smoothed)\n% xX.name - cellstr of parameter names corresponding to columns\n% of design matrix\n% - Optional fields are:\n% xX.K - cell of session-specific structures (see spm_filter)\n% - Design & data are pre-multiplied by K\n% (K*Y = K*X*beta + K*e)\n% - Note that K should not smooth across block boundaries\n% - defaults to speye(size(xX.X,1))\n% xX.W - Optional whitening/weighting matrix used to give\n% weighted least squares estimates (WLS). If not specified\n% spm_spm will set this to whiten the data and render\n% the OLS estimates maximum likelihood\n% i.e. W*W' = inv(xVi.V).\n%\n% xVi - Structure describing intrinsic temporal non-sphericity\n% - Required fields are:\n% xVi.Vi - array of non-sphericity components\n% - defaults to {speye(size(xX.X,1))} - i.i.d.\n% - specifying a cell array of constraints (Qi)\n% These constraints invoke spm_reml to estimate\n% hyperparameters assuming V is constant over voxels.\n% that provide a high precise estimate of xX.V\n% - Optional fields are:\n% xX.V - Optional non-sphericity matrix. Cov(e) = sigma^2*V\n% If not specified spm_spm will compute this using\n% a 1st pass to identify significant voxels over which\n% to estimate V. A 2nd pass is then used to re-estimate\n% the parameters with WLS and save the ML estimates\n% (unless xX.W is already specified).\n%\n% xM - Structure containing masking information, or a simple column vector\n% of thresholds corresponding to the images in VY [default: -Inf]\n% - If a structure, the required fields are:\n% xM.TH - nVar x nScan matrix of analysis thresholds, one per image\n% xM.I - Implicit masking (0=>none, 1 => implicit zero/NaN mask)\n% xM.VM - struct array of explicit mask image handles\n% - (empty if no explicit masks)\n% - Explicit mask images are >0 for valid voxels to assess.\n% - Mask images can have any orientation, voxel size or data\n% type. They are interpolated using nearest neighbour\n% interpolation to the voxel locations of the data Y.\n% - Note that voxels with constant data (i.e. the same value across\n% scans) are also automatically masked out.\n%\n% swd - Directory where the output files will be saved [default: pwd]\n% If exists, it becomes the current working directory.\n%\n% In addition, global SPM \"defaults\" variable is used (see spm_defaults):\n% \n% stats..UFp - critical F-threshold for selecting voxels over \n% which the non-sphericity is estimated (if \n% required) [default: 0.001]\n% \n% stats.maxres - maximum number of residual images for smoothness\n% estimation\n%\n% stats.maxmem - maximum amount of data processed at a time (in bytes)\n%\n% modality - SPM modality {'PET','FMRI','EEG'}\n%\n%__________________________________________________________________________\n%\n% spm_spm is the heart of the SPM package. Given image files and a\n% General Linear Model, it estimates the model parameters, variance\n% hyperparameters, and smoothness of standardised residual fields, writing\n% these out to disk in the current working directory for later\n% interrogation in the results section. (NB: Existing analyses in the\n% current working directory are overwritten). This directory\n% now becomes the working directory for this analysis and all saved\n% images are relative to this directory.\n%\n% The model is expressed via the design matrix (xX.X). The basic model\n% at each voxel is of the form is Y = X*B + e, for data Y, design\n% matrix X, (unknown) parameters B and residual errors e. The errors\n% are assumed to have a normal distribution.\n%\n% Sometimes confounds (e.g. drift terms in fMRI) are necessary. These\n% can be specified directly in the design matrix or implicitly, in terms\n% of a residual forming matrix K to give a generalised linear model\n% K*Y = K*X*B + K*e. In fact K can be any matrix (e.g. a convolution\n% matrix).\n%\n% In some instances i.i.d. assumptions about errors do not hold. For\n% example, with serially correlated (fMRI) data or correlations among the\n% levels of a factor in repeated measures designs. This non-sphericity\n% can be specified in terms of components (SPM.xVi.Vi{i}). If specified\n% these covariance components will then be estimated with ReML (restricted\n% maximum likelihood) hyperparameters. This estimation assumes the same\n% non-sphericity for voxels that exceed the global F-threshold. The ReML\n% estimates can then be used to whiten the data giving maximum likelihood\n% (ML) or Gauss-Markov estimators. This entails a second pass of the data\n% with an augmented model K*W*Y = K*W*X*B + K*W*e where W*W' = inv(xVi.V).\n% xVi.V is the non-sphericity based on the hyperparameter estimates.\n% W is stored in xX.W and cov(K*W*e) in xX.V. The covariance of the\n% parameter estimates is then xX.Bcov = pinv(K*W*X)*xX.V*pinv(K*W*X)'.\n%\n% If you do not want ML estimates but want to use ordinary least squares\n% (OLS) then simply set SPM.xX.W to the identity matrix. Any non-sphericity\n% V will still be estimated but will be used to adjust the degrees of freedom\n% of the ensuing statistics using the Satterthwaite approximation (c.f.\n% the Greenhouse-Geisser corrections).\n%\n% If [non-spherical] variance components Vi are not specified xVi.Vi and\n% xVi.V default to the identity matrix (i.e. i.i.d). The parameters are\n% then estimated by OLS. In this instance the OLS and ML estimates are\n% the same.\n%\n% Note that only a single voxel-specific hyperparameter (i.e. variance\n% component) is estimated, even if V is not i.i.d. This means spm_spm\n% always implements a fixed-effects model.\n% Random effects models can be emulated using a multi-stage procedure:\n% This entails summarising the data with contrasts such that the fixed\n% effects in a second model on the summary data are those effects of\n% interest (i.e. the population effects). This means contrasts are\n% re-entered into spm_spm to make an inference (SPM) at the next\n% level. At this higher hierarchical level the residual variance for the\n% model contains the appropriate variance components from lower levels.\n% See spm_RandFX.man for further details and below.\n%\n% Under the additional assumption that the standardised error fields\n% are non-stationary standard Gaussian random fields, results from\n% Random field theory can be applied to estimate the significance\n% statistic images (SPM's) adjusting p values for the multiple tests\n% at all voxels in the search volume. The parameters required for\n% this random field correction are the volume, and Lambda, the covariance\n% matrix of partial derivatives of the standardised error fields, estimated\n% by spm_est_smoothness.\n%\n% ----------------\n%\n% The volume analysed is the intersection of the threshold masks,\n% explicit masks and implicit masks. See spm_spm_ui for further details\n% on masking options.\n%\n%--------------------------------------------------------------------------\n%\n% The output of spm_spm takes the form of an SPM.mat file of the analysis\n% parameters, and 'float' flat-file images of the parameter and variance\n% [hyperparameter] estimates. An 8bit zero-one mask image indicating the\n% voxels assessed is also written out, with zero indicating voxels outside\n% tha analysed volume.\n%\n% ----------------\n%\n% The following SPM.fields are set by spm_spm (unless specified)\n%\n% xVi.V - estimated non-sphericity trace(V) = rank(V)\n% xVi.h - hyperparameters xVi.V = xVi.h(1)*xVi.Vi{1} + ...\n% xVi.Cy - spatially whitened (used by ReML to estimate h)\n% xVi.CY - <(Y - )*(Y - )'> (used by spm_spm_Bayes)\n%\n% ----------------\n%\n% Vbeta - struct array of beta image handles (relative)\n% VResMS - file struct of ResMS image handle (relative)\n% VM - file struct of Mask image handle (relative)\n%\n% ----------------\n%\n% xX.W - if not specified W*W' = inv(x.Vi.V)\n% xX.V - V matrix (K*W*Vi*W'*K') = correlations after K*W is applied\n% xX.xKXs - space structure for K*W*X, the 'filtered and whitened'\n% design matrix\n% - given as spm_sp('Set',xX.K*xX.W*xX.X) - see spm_sp\n% xX.pKX - pseudoinverse of K*W*X, computed by spm_sp\n% xX.Bcov - xX.pKX*xX.V*xX.pKX - variance-covariance matrix of\n% parameter estimates\n% (when multiplied by the voxel-specific hyperparameter ResMS\n% of the parameter estimates (ResSS/xX.trRV = ResMS) )\n% xX.trRV - trace of R*V\n% xX.trRVRV - trace of RVRV\n% xX.erdf - effective residual degrees of freedom (trRV^2/trRVRV)\n% xX.nKX - design matrix (xX.xKXs.X) scaled for display\n% (see spm_DesMtx('sca',... for details)\n%\n% ----------------\n%\n% xVol.M - 4x4 voxel->mm transformation matrix\n% xVol.iM - 4x4 mm->voxel transformation matrix\n% xVol.DIM - image dimensions - column vector (in voxels)\n% xVol.XYZ - 3 x S vector of in-mask voxel coordinates\n% xVol.S - Lebesgue measure or volume (in voxels)\n% xVol.R - vector of resel counts (in resels)\n% xVol.FWHM - Smoothness of components - FWHM, (in voxels)\n%\n% ----------------\n%\n% xCon - Contrast structure (created by spm_FcUtil.m)\n% xCon.name - Name of contrast\n% xCon.STAT - 'F', 'T' or 'P' - for F/T-contrast ('P' for PPMs)\n% xCon.c - (F) Contrast weights\n% xCon.X0 - Reduced design matrix (spans design space under Ho)\n% It is in the form of a matrix (spm99b) or the\n% coordinates of this matrix in the orthogonal basis\n% of xX.X defined in spm_sp.\n% xCon.iX0 - Indicates how contrast was specified:\n% If by columns for reduced design matrix then iX0 contains\n% the column indices. Otherwise, it's a string containing\n% the spm_FcUtil 'Set' action: Usually one of {'c','c+','X0'}\n% (Usually this is the input argument F_iX0.)\n% xCon.X1o - Remaining design space (orthogonal to X0).\n% It is in the form of a matrix (spm99b) or the\n% coordinates of this matrix in the orthogonal basis\n% of xX.X defined in spm_sp.\n% xCon.eidf - Effective interest degrees of freedom (numerator df)\n% xCon.Vcon - ...for handle of contrast/ESS image (empty at this stage)\n% xCon.Vspm - ...for handle of SPM image (empty at this stage)\n%\n% ----------------\n%\n%\n% The following images are written to file\n%\n% mask.{img,hdr} - analysis mask image\n% 8-bit (uint8) image of zero-s & one's indicating which voxels were\n% included in the analysis. This mask image is the intersection of the\n% explicit, implicit and threshold masks specified in the xM argument.\n% The XYZ matrix contains the voxel coordinates of all voxels in the\n% analysis mask. The mask image is included for reference, but is not\n% explicitly used by the results section.\n%\n% ----------------\n%\n% beta_????.{img,hdr} - parameter images\n% These are 32-bit (float32) images of the parameter estimates. The image\n% files are numbered according to the corresponding column of the\n% design matrix. Voxels outside the analysis mask (mask.img) are given\n% value NaN.\n%\n% ----------------\n%\n% ResMS.{img,hdr} - estimated residual variance image\n% This is a 64-bit (float64) image of the residual variance estimate.\n% Voxels outside the analysis mask are given value NaN.\n%\n% ----------------\n%\n% RPV.{img,hdr} - estimated resels per voxel image\n% This is a 64-bit (float64) image of the RESELs per voxel estimate.\n% Voxels outside the analysis mask are given value 0. These images\n% reflect the nonstationary aspects the spatial autocorrelations.\n%\n% ----------------\n%\n% ResI_????.{img,hdr} - standardised residual (temporary) images\n% These are 64-bit (float64) images of standardised residuals. At most\n% maxres images will be saved and used by spm_est_smoothness, after which\n% they will be deleted.\n%\n%--------------------------------------------------------------------------\n%\n% References:\n%\n% Christensen R (1996) Plane Answers to Complex Questions\n% Springer Verlag\n%\n% Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995)\n% ``Statistical Parametric Maps in Functional Imaging:\n% A General Linear Approach''\n% Human Brain Mapping 2:189-210\n%\n% Worsley KJ, Friston KJ (1995)\n% ``Analysis of fMRI Time-Series Revisited - Again''\n% NeuroImage 2:173-181\n%\n%__________________________________________________________________________\n% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging\n%\n% ..\n% % Andrew Holmes, Jean-Baptiste Poline & Karl Friston\n% $Id: spm_spm.m 3960 2010-06-30 17:41:24Z ged $\n% ..\n \nSVNid = '$Rev: 3960 $';\n \n%-Say hello\n%--------------------------------------------------------------------------\nSPMid = spm('FnBanner',mfilename,SVNid);\nFinter = spm('FigName','Stats: estimation...'); spm('Pointer','Watch');\n \n%-Get SPM.mat[s] if necessary\n%--------------------------------------------------------------------------\nif nargin == 0\n P = cellstr(spm_select(Inf,'^SPM\\.mat$','Select SPM.mat[s]'));\n for i = 1:length(P)\n swd = fileparts(P{i});\n load(fullfile(swd,'SPM.mat'));\n SPM.swd = swd;\n spm_spm(SPM);\n end\n return\nend\n \n%-Change to SPM.swd if specified\n%--------------------------------------------------------------------------\ntry\n cd(SPM.swd);\ncatch\n SPM.swd = pwd;\nend\n \n%-Ensure data are assigned\n%--------------------------------------------------------------------------\ntry\n SPM.xY.VY;\ncatch\n spm('alert!','Please assign data to this design', mfilename);\n spm('FigName','Stats: done',Finter); spm('Pointer','Arrow')\n return\nend\n \n%-Delete files from previous analyses\n%--------------------------------------------------------------------------\nif exist(fullfile(SPM.swd,'mask.img'),'file') == 2\n \n str = {'Current directory contains SPM estimation files:',...\n 'pwd = ',SPM.swd,...\n 'Existing results will be overwritten!'};\n if spm_input(str,1,'bd','stop|continue',[1,0],1)\n spm('FigName','Stats: done',Finter); spm('Pointer','Arrow')\n return\n else\n warning('Overwriting old results\\n\\t (pwd = %s) ',SPM.swd);\n try, SPM = rmfield(SPM,'xVol'); end\n end\nend\n \nfiles = {'^mask\\..{3}$','^ResMS\\..{3}$','^RPV\\..{3}$',...\n '^beta_.{4}\\..{3}$','^con_.{4}\\..{3}$','^ResI_.{4}\\..{3}$',...\n '^ess_.{4}\\..{3}$', '^spm\\w{1}_.{4}\\..{3}$'};\n \nfor i = 1:length(files)\n j = spm_select('List',SPM.swd,files{i});\n for k = 1:size(j,1)\n spm_unlink(deblank(j(k,:)));\n end\nend\n \n \n%==========================================================================\n% - A N A L Y S I S P R E L I M I N A R I E S\n%==========================================================================\n \n%-Initialise\n%==========================================================================\nfprintf('%-40s: %30s','Initialising parameters','...computing'); %-#\nxX = SPM.xX;\n[nScan nBeta] = size(xX.X);\n \n \n%-If xM is not a structure then assume it's a vector of thresholds\n%--------------------------------------------------------------------------\ntry\n xM = SPM.xM;\ncatch\n xM = -Inf(nScan,1);\nend\nif ~isstruct(xM)\n xM = struct('T', [],...\n 'TH', xM,...\n 'I', 0,...\n 'VM', {[]},...\n 'xs', struct('Masking','analysis threshold'));\nend\n \n%-Check confounds (xX.K) and non-sphericity (xVi)\n%--------------------------------------------------------------------------\nif ~isfield(xX,'K')\n xX.K = 1;\nend\ntry\n %-If covariance components are specified use them\n %----------------------------------------------------------------------\n xVi = SPM.xVi;\ncatch\n \n %-otherwise assume i.i.d.\n %----------------------------------------------------------------------\n xVi = struct( 'form', 'i.i.d.',...\n 'V', speye(nScan,nScan));\nend\n \n \n%-Get non-sphericity V\n%==========================================================================\ntry\n %-If xVi.V is specified proceed directly to parameter estimation\n %----------------------------------------------------------------------\n V = xVi.V;\n str = 'parameter estimation';\n \ncatch\n \n % otherwise invoke ReML selecting voxels under i.i.d assumptions\n %----------------------------------------------------------------------\n V = speye(nScan,nScan);\n str = '[hyper]parameter estimation';\nend\n \n%-Get whitening/Weighting matrix: If xX.W exists we will save WLS estimates\n%--------------------------------------------------------------------------\ntry\n %-If W is specified, use it\n %----------------------------------------------------------------------\n W = xX.W;\ncatch\n \n if isfield(xVi,'V')\n \n % otherwise make W a whitening filter W*W' = inv(V)\n %------------------------------------------------------------------\n W = spm_sqrtm(spm_inv(xVi.V));\n W = W.*(abs(W) > 1e-6);\n xX.W = sparse(W);\n \n else\n % unless xVi.V has not been estimated - requiring 2 passes\n %------------------------------------------------------------------\n W = speye(nScan,nScan);\n str = 'hyperparameter estimation (1st pass)';\n end\nend\n \n \n%-Design space and projector matrix [pseudoinverse] for WLS\n%==========================================================================\nxX.xKXs = spm_sp('Set',spm_filter(xX.K,W*xX.X)); % KWX\nxX.xKXs.X = full(xX.xKXs.X);\nxX.pKX = spm_sp('x-',xX.xKXs); % projector\nerdf = spm_SpUtil('trRV',xX.xKXs); % Working error df\n \n%-If xVi.V is not defined compute Hsqr and F-threshold under i.i.d.\n%--------------------------------------------------------------------------\nif ~isfield(xVi,'V')\n \n Fcname = 'effects of interest';\n iX0 = [SPM.xX.iB SPM.xX.iG];\n xCon = spm_FcUtil('Set',Fcname,'F','iX0',iX0,xX.xKXs);\n X1o = spm_FcUtil('X1o', xCon(1),xX.xKXs);\n Hsqr = spm_FcUtil('Hsqr',xCon(1),xX.xKXs);\n trRV = spm_SpUtil('trRV',xX.xKXs);\n trMV = spm_SpUtil('trMV',X1o);\n \n % Threshold for voxels entering non-sphericity estimates\n %----------------------------------------------------------------------\n try\n modality = lower(spm_get_defaults('modality'));\n UFp = spm_get_defaults(['stats.' modality '.ufp']);\n catch\n UFp = 0.001;\n end\n UF = spm_invFcdf(1 - UFp,[trMV,trRV]);\nend\n \n%-Image dimensions and data\n%==========================================================================\nVY = SPM.xY.VY;\nspm_check_orientations(VY);\n \n% check files exists and try pwd\n%--------------------------------------------------------------------------\nfor i = 1:numel(VY)\n if ~spm_existfile(VY(i).fname)\n [p,n,e] = fileparts(VY(i).fname);\n VY(i).fname = [n,e];\n end\nend\n \nM = VY(1).mat;\nDIM = VY(1).dim(1:3)';\nxdim = DIM(1); ydim = DIM(2); zdim = DIM(3);\nYNaNrep = spm_type(VY(1).dt(1),'nanrep');\n \n \n%-Maximum number of residual images for smoothness estimation\n%--------------------------------------------------------------------------\nMAXRES = spm_get_defaults('stats.maxres');\nnSres = min(nScan,MAXRES);\n \n \nfprintf('%s%30s\\n',repmat(sprintf('\\b'),1,30),'...done'); %-#\n \n \n%-Initialise output images (unless this is a 1st pass for ReML)\n%==========================================================================\nif isfield(xX,'W')\n fprintf('%-40s: %30s','Output images','...initialising'); %-#\n \n %-Initialise new mask name: current mask & conditions on voxels\n %----------------------------------------------------------------------\n VM = struct('fname', 'mask.img',...\n 'dim', DIM',...\n 'dt', [spm_type('uint8') spm_platform('bigend')],...\n 'mat', M,...\n 'pinfo', [1 0 0]',...\n 'descrip','spm_spm:resultant analysis mask');\n VM = spm_create_vol(VM);\n \n \n %-Initialise beta image files\n %----------------------------------------------------------------------\n Vbeta(1:nBeta) = deal(struct(...\n 'fname', [],...\n 'dim', DIM',...\n 'dt', [spm_type('float32') spm_platform('bigend')],...\n 'mat', M,...\n 'pinfo', [1 0 0]',...\n 'descrip', ''));\n \n for i = 1:nBeta\n Vbeta(i).fname = sprintf('beta_%04d.img',i);\n Vbeta(i).descrip = sprintf('spm_spm:beta (%04d) - %s',i,xX.name{i});\n end\n Vbeta = spm_create_vol(Vbeta);\n \n \n %-Initialise residual sum of squares image file\n %----------------------------------------------------------------------\n VResMS = struct('fname', 'ResMS.img',...\n 'dim', DIM',...\n 'dt', [spm_type('float64') spm_platform('bigend')],...\n 'mat', M,...\n 'pinfo', [1 0 0]',...\n 'descrip', 'spm_spm:Residual sum-of-squares');\n VResMS = spm_create_vol(VResMS);\n \n \n %-Initialise standardised residual images\n %----------------------------------------------------------------------\n VResI(1:nSres) = deal(struct(...\n 'fname', [],...\n 'dim', DIM',...\n 'dt', [spm_type('float64') spm_platform('bigend')],...\n 'mat', M,...\n 'pinfo', [1 0 0]',...\n 'descrip', 'spm_spm:StandardisedResiduals'));\n \n for i = 1:nSres\n VResI(i).fname = sprintf('ResI_%04d.img', i);\n VResI(i).descrip = sprintf('spm_spm:ResI (%04d)', i);\n end\n VResI = spm_create_vol(VResI);\n fprintf('%s%30s\\n',repmat(sprintf('\\b'),1,30),'...initialised'); %-#\nend % (xX,'W')\n \n \n%==========================================================================\n% - F I T M O D E L & W R I T E P A R A M E T E R I M A G E S\n%==========================================================================\n \n%-MAXMEM is the maximum amount of data processed at a time (bytes)\n%--------------------------------------------------------------------------\nMAXMEM = spm_get_defaults('stats.maxmem');\nmmv = MAXMEM/8/nScan;\nblksz = min(xdim*ydim,ceil(mmv)); %-block size\nnbch = ceil(xdim*ydim/blksz); %-# blocks\nnbz = max(1,min(zdim,floor(mmv/(xdim*ydim)))); nbz = 1; %-# planes\nblksz = blksz * nbz;\n \n%-Initialise variables used in the loop\n%==========================================================================\n[xords, yords] = ndgrid(1:xdim, 1:ydim);\nxords = xords(:)'; yords = yords(:)'; % plane X,Y coordinates\nS = 0; % Volume (voxels)\ns = 0; % Volume (voxels > UF)\nCy = 0; % spatially whitened\nCY = 0; % <(Y - ) * (Y - )'>\nEY = 0; % for ReML\ni_res = round(linspace(1,nScan,nSres))'; % Indices for residual\n \n%-Initialise XYZ matrix of in-mask voxel co-ordinates (real space)\n%--------------------------------------------------------------------------\nXYZ = zeros(3,xdim*ydim*zdim);\n \n%-Cycle over bunches blocks within planes to avoid memory problems\n%==========================================================================\nspm_progress_bar('Init',100,str,'');\n \nfor z = 1:nbz:zdim %-loop over planes (2D or 3D data)\n \n % current plane-specific parameters\n %----------------------------------------------------------------------\n CrPl = z:min(z+nbz-1,zdim); %-plane list\n zords = CrPl(:)*ones(1,xdim*ydim); %-plane Z coordinates\n CrBl = []; %-parameter estimates\n CrResI = []; %-residuals\n CrResSS = []; %-residual sum of squares\n Q = []; %-in mask indices for this plane\n \n for bch = 1:nbch %-loop over blocks\n \n %-Print progress information in command window\n %------------------------------------------------------------------\n if numel(CrPl) == 1\n str = sprintf('Plane %3d/%-3d, block %3d/%-3d',...\n z,zdim,bch,nbch);\n else\n str = sprintf('Planes %3d-%-3d/%-3d',z,CrPl(end),zdim);\n end\n if z == 1 && bch == 1\n str2 = '';\n else\n str2 = repmat(sprintf('\\b'),1,72); \n end\n fprintf('%s%-40s: %30s',str2,str,' ');\n \n %-construct list of voxels in this block\n %------------------------------------------------------------------\n I = (1:blksz) + (bch - 1)*blksz; %-voxel indices\n I = I(I <= numel(CrPl)*xdim*ydim); %-truncate\n xyz = [repmat(xords,1,numel(CrPl)); ...\n repmat(yords,1,numel(CrPl)); ...\n reshape(zords',1,[])];\n xyz = xyz(:,I); %-voxel coordinates\n nVox = size(xyz,2); %-number of voxels\n \n %-Get data & construct analysis mask\n %=================================================================\n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),'...read & mask data')\n Cm = true(1,nVox); %-current mask\n \n \n %-Compute explicit mask\n % (note that these may not have same orientations)\n %------------------------------------------------------------------\n for i = 1:length(xM.VM)\n \n %-Coordinates in mask image\n %--------------------------------------------------------------\n j = xM.VM(i).mat\\M*[xyz;ones(1,nVox)];\n \n %-Load mask image within current mask & update mask\n %--------------------------------------------------------------\n Cm(Cm) = spm_get_data(xM.VM(i),j(:,Cm),false) > 0;\n end\n \n %-Get the data in mask, compute threshold & implicit masks\n %------------------------------------------------------------------\n Y = zeros(nScan,nVox);\n for i = 1:nScan\n \n %-Load data in mask\n %--------------------------------------------------------------\n if ~any(Cm), break, end %-Break if empty mask\n Y(i,Cm) = spm_get_data(VY(i),xyz(:,Cm),false);\n \n Cm(Cm) = Y(i,Cm) > xM.TH(i); %-Threshold (& NaN) mask\n if xM.I && ~YNaNrep && xM.TH(i) < 0 %-Use implicit mask\n Cm(Cm) = abs(Y(i,Cm)) > eps;\n end\n end\n \n %-Mask out voxels where data is constant\n %------------------------------------------------------------------\n Cm(Cm) = any(diff(Y(:,Cm),1));\n Y = Y(:,Cm); %-Data within mask\n CrS = sum(Cm); %-# current voxels\n \n \n %==================================================================\n %-Proceed with General Linear Model (if there are voxels)\n %==================================================================\n if CrS\n \n %-Whiten/Weight data and remove filter confounds\n %--------------------------------------------------------------\n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),'...filtering');%-#\n \n KWY = spm_filter(xX.K,W*Y);\n \n %-General linear model: Weighted least squares estimation\n %--------------------------------------------------------------\n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),'...estimation');%-#\n \n beta = xX.pKX*KWY; %-Parameter estimates\n res = spm_sp('r',xX.xKXs,KWY); %-Residuals\n ResSS = sum(res.^2); %-Residual SSQ\n clear KWY %-Clear to save memory\n \n \n %-If ReML hyperparameters are needed for xVi.V\n %--------------------------------------------------------------\n if ~isfield(xVi,'V')\n \n %-F-threshold & accumulate spatially whitened Y*Y'\n %----------------------------------------------------------\n j = sum((Hsqr*beta).^2,1)/trMV > UF*ResSS/trRV;\n j = find(j);\n if ~isempty(j)\n q = size(j,2);\n s = s + q;\n q = spdiags(sqrt(trRV./ResSS(j)'),0,q,q);\n Y = Y(:,j)*q;\n Cy = Cy + Y*Y';\n end\n \n end % (xVi,'V')\n \n \n %-if we are saving the WLS (ML) parameters\n %--------------------------------------------------------------\n if isfield(xX,'W')\n \n %-sample covariance and mean of Y (all voxels)\n %----------------------------------------------------------\n CY = CY + Y*Y';\n EY = EY + sum(Y,2);\n \n %-Save betas etc. for current plane as we go along\n %----------------------------------------------------------\n CrBl = [CrBl, beta];\n CrResI = [CrResI, res(i_res,:)];\n CrResSS = [CrResSS, ResSS];\n \n end % (xX,'W')\n clear Y %-Clear to save memory\n \n end % (CrS)\n \n %-Append new inmask voxel locations and volumes\n %------------------------------------------------------------------\n XYZ(:,S + (1:CrS)) = xyz(:,Cm); %-InMask XYZ voxel coords\n Q = [Q I(Cm)]; %-InMask XYZ voxel indices\n S = S + CrS; %-Volume analysed (voxels)\n \n end % (bch)\n \n \n %-Plane complete, write plane to image files (unless 1st pass)\n %======================================================================\n if isfield(xX,'W')\n \n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),'...saving plane'); %-#\n \n jj = NaN(xdim,ydim,numel(CrPl));\n \n %-Write Mask image\n %------------------------------------------------------------------\n if ~isempty(Q), jj(Q) = 1; end\n VM = spm_write_plane(VM, ~isnan(jj), CrPl);\n \n %-Write beta images\n %------------------------------------------------------------------\n for i = 1:nBeta\n if ~isempty(Q), jj(Q) = CrBl(i,:); end\n Vbeta(i) = spm_write_plane(Vbeta(i), jj, CrPl);\n end\n \n %-Write standardised residual images\n %------------------------------------------------------------------\n for i = 1:nSres\n if ~isempty(Q), jj(Q) = CrResI(i,:)./sqrt(CrResSS/erdf); end\n VResI(i) = spm_write_plane(VResI(i), jj, CrPl);\n end\n \n %-Write ResSS into ResMS (variance) image scaled by tr(RV) above\n %------------------------------------------------------------------\n if ~isempty(Q), jj(Q) = CrResSS; end\n VResMS = spm_write_plane(VResMS, jj, CrPl);\n \n end % (xX,'W')\n \n %-Report progress\n %----------------------------------------------------------------------\n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),'...done'); %-#\n spm_progress_bar('Set',100*(bch + nbch*(z - 1))/(nbch*zdim));\n \n \nend % (for z = 1:zdim)\nfprintf('\\n'); %-#\nspm_progress_bar('Clear')\n \n%==========================================================================\n% - P O S T E S T I M A T I O N C L E A N U P\n%==========================================================================\nif S == 0, spm('alert!','No inmask voxels - empty analysis!'); return; end\n \n%-average sample covariance and mean of Y (over voxels)\n%--------------------------------------------------------------------------\nCY = CY/S;\nEY = EY/S;\nCY = CY - EY*EY';\n \n%-If not defined, compute non-sphericity V using ReML Hyperparameters\n%==========================================================================\nif ~isfield(xVi,'V')\n \n %-check there are signficant voxels\n %----------------------------------------------------------------------\n if s == 0\n spm('FigName','Stats: no significant voxels',Finter); \n spm('Pointer','Arrow');\n if isfield(SPM.xGX,'rg')&&~isempty(SPM.xGX.rg)\n figure(Finter);\n plot(SPM.xGX.rg);\n spm('alert*',{'Please check your data'; ...\n 'There are no significant voxels';...\n 'The globals are plotted for diagnosis'});\n else\n spm('alert*',{'Please check your data'; ...\n 'There are no significant voxels'});\n end\n warning('Please check your data: There are no significant voxels.');\n return\n end\n \n %-ReML estimate of residual correlations through hyperparameters (h)\n %----------------------------------------------------------------------\n str = 'Temporal non-sphericity (over voxels)';\n fprintf('%-40s: %30s\\n',str,'...ReML estimation'); %-#\n Cy = Cy/s;\n \n % ReML for separable designs and covariance components\n %----------------------------------------------------------------------\n if isstruct(xX.K)\n m = length(xVi.Vi);\n h = zeros(m,1);\n V = sparse(nScan,nScan);\n for i = 1:length(xX.K)\n \n % extract blocks from bases\n %--------------------------------------------------------------\n q = xX.K(i).row;\n p = [];\n Qp = {};\n for j = 1:m\n if nnz(xVi.Vi{j}(q,q))\n Qp{end + 1} = xVi.Vi{j}(q,q);\n p = [p j];\n end\n end\n \n % design space for ReML (with confounds in filter)\n %--------------------------------------------------------------\n Xp = xX.X(q,:);\n try\n Xp = [Xp xX.K(i).X0];\n end\n \n % ReML\n %--------------------------------------------------------------\n fprintf('%-30s\\n',sprintf(' ReML Block %i',i));\n [Vp,hp] = spm_reml(Cy(q,q),Xp,Qp);\n V(q,q) = V(q,q) + Vp;\n h(p) = hp;\n end\n else\n [V,h] = spm_reml(Cy,xX.X,xVi.Vi);\n end\n \n % normalize non-sphericity and save hyperparameters\n %----------------------------------------------------------------------\n V = V*nScan/trace(V);\n xVi.h = h;\n xVi.V = V; % Save non-sphericity xVi.V\n xVi.Cy = Cy; % spatially whitened \n SPM.xVi = xVi; % non-sphericity structure\n \n % If xX.W is not specified use W*W' = inv(V) to give ML estimators\n %----------------------------------------------------------------------\n if ~isfield(xX,'W')\n if spm_matlab_version_chk('7') >=0\n save('SPM','SPM','-V6');\n else\n save('SPM','SPM');\n end\n clear\n load SPM\n SPM = spm_spm(SPM);\n return\n end\nend\n \n \n%-Use non-sphericity xVi.V to compute [effective] degrees of freedom\n%==========================================================================\nxX.V = spm_filter(xX.K,spm_filter(xX.K,W*V*W')');% KWVW'K'\n[trRV trRVRV] = spm_SpUtil('trRV',xX.xKXs,xX.V); % trRV (for X)\nxX.trRV = trRV; % \nxX.trRVRV = trRVRV; %-Satterthwaite\nxX.erdf = trRV^2/trRVRV; % approximation\nxX.Bcov = xX.pKX*xX.V*xX.pKX'; % Cov(beta)\n \n \n%-Set VResMS scalefactor as 1/trRV (raw voxel data is ResSS)\n%--------------------------------------------------------------------------\nVResMS.pinfo(1) = 1/xX.trRV;\nVResMS = spm_create_vol(VResMS);\n \n%-Smoothness estimates of component fields and RESEL counts for volume\n%==========================================================================\ntry\n FWHM = SPM.xVol.FWHM;\n VRpv = SPM.xVol.VRpv;\n R = SPM.xVol.R;\ncatch\n [FWHM,VRpv,R] = spm_est_smoothness(VResI,VM,[nScan erdf]);\nend\n \n%-Delete the residuals images\n%==========================================================================\n% j = spm_select('List',SPM.swd,'^ResI_.{4}\\..{3}$');\n% for k = 1:size(j,1)\n% spm_unlink(deblank(j(k,:)));\n% end\n \n \n%-Compute scaled design matrix for display purposes\n%--------------------------------------------------------------------------\nxX.nKX = spm_DesMtx('sca',xX.xKXs.X,xX.name);\n \n \n%-Save remaining results files and analysis parameters\n%==========================================================================\nfprintf('%-40s: %30s','Saving results','...writing'); %-#\n \n%-place fields in SPM\n%--------------------------------------------------------------------------\nSPM.xVol.XYZ = XYZ(:,1:S); %-InMask XYZ coords (voxels)\nSPM.xVol.M = M; %-voxels -> mm\nSPM.xVol.iM = inv(M); %-mm -> voxels\nSPM.xVol.DIM = DIM; %-image dimensions\nSPM.xVol.FWHM = FWHM; %-Smoothness data\nSPM.xVol.R = R; %-Resel counts\nSPM.xVol.S = S; %-Volume (voxels)\nSPM.xVol.VRpv = VRpv; %-Filehandle - Resels per voxel\n \nSPM.Vbeta = Vbeta; %-Filehandle - Beta\nSPM.VResMS = VResMS; %-Filehandle - Hyperparameter\nSPM.VM = VM; %-Filehandle - Mask\n \nSPM.xVi = xVi; % non-sphericity structure\nSPM.xVi.CY = CY; %-<(Y - )*(Y - )'>\n \nSPM.xX = xX; %-design structure\n \nSPM.xM = xM; %-mask structure\n \nSPM.xCon = struct([]); %-contrast structure\n \nSPM.SPMid = SPMid;\nSPM.swd = pwd;\n \n \n%-Save analysis parameters in SPM.mat file\n%--------------------------------------------------------------------------\nif spm_matlab_version_chk('7') >=0\n save('SPM','SPM','-V6');\nelse\n save('SPM','SPM');\nend\n \n%==========================================================================\n%- E N D: Cleanup GUI\n%==========================================================================\nfprintf('%s%30s\\n',repmat(sprintf('\\b'),1,30),'...done') %-#\nspm('FigName','Stats: done',Finter); spm('Pointer','Arrow')\nfprintf('%-40s: %30s\\n','Completed',spm('time')) %-#\nfprintf('...use the results section for assessment\\n\\n') %-#\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/Image_thresholding/cl_ext_spm_spm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8152324983301568, "lm_q2_score": 0.45713671682749485, "lm_q1q2_score": 0.37267270773772404}} {"text": "classdef CasadiSolver < handle\n \n properties\n timeMeasures\n stageList\n collocationList\n nlpData\n stats\n end\n \n properties (Access = private)\n controls_regularization\n controls_regularization_value\n end\n \n methods\n \n function self = CasadiSolver(stageList, transitionList, ...\n nlp_casadi_mx, ...\n controls_regularization, controls_regularization_value, ...\n casadi_options, verbose, problem_userdata, transition_type)\n \n ocl.utils.assert(length(stageList)==length(transitionList)+1, ...\n 'You need to specify Ns-1 transitions for Ns stages.');\n \n self.controls_regularization = controls_regularization;\n self.controls_regularization_value = controls_regularization_value;\n \n constructTotalTic = tic;\n \n % create variables as casadi symbolics\n if nlp_casadi_mx\n casadi_sym = @casadi.MX.sym;\n else\n casadi_sym = @casadi.SX.sym;\n end\n \n vars = cell(length(stageList), 1);\n costs = cell(length(stageList), 1);\n constraints = cell(length(stageList), 1);\n constraints_LB = cell(length(stageList), 1);\n constraints_UB = cell(length(stageList), 1);\n \n v_stage = [];\n \n collocationList = cell(length(stageList), 1);\n \n for k=1:length(stageList)\n stage = stageList{k};\n \n x_struct = stage.x_struct;\n z_struct = stage.z_struct;\n u_struct = stage.u_struct;\n p_struct = stage.p_struct;\n x_order = stage.x_order;\n \n daefh = stage.daefh;\n pathcostsfh = stage.pathcostsfh;\n gridcostsfh = stage.gridcostsfh;\n gridconstraintsfh = stage.gridconstraintsfh;\n terminalcostfh = stage.terminalcostfh;\n \n userdata = stage.userdata;\n \n nx = stage.nx;\n nu = stage.nu;\n np = stage.np;\n d = stage.d;\n H_norm = stage.H_norm;\n T = stage.T;\n N = stage.N;\n \n if length(stageList) > 1\n name_suffix = ['_s',mat2str(k)];\n else\n name_suffix = '';\n end\n \n % create casadi primitives for model functions\n x = ocl.casadi.structToSym(x_struct, casadi_sym, name_suffix);\n z = ocl.casadi.structToSym(z_struct, casadi_sym, name_suffix);\n u = ocl.casadi.structToSym(u_struct, casadi_sym, name_suffix);\n p = ocl.casadi.structToSym(p_struct, casadi_sym, name_suffix);\n \n % casadi dae function\n [casadi_ode_sym, casadi_alg_sym] = ocl.model.dae( ...\n daefh, x_struct, z_struct, u_struct, p_struct, x_order, ...\n x, z, u, p, userdata);\n casadi_dae_fun = casadi.Function('odefun', {x,z,u,p}, {casadi_ode_sym, casadi_alg_sym});\n daefun = @(x,z,u,p) ocl.casadi.daefun(casadi_dae_fun,x,z,u,p);\n \n % casadi pathcost function\n pathcosts_sym = ocl.model.pathcosts(...\n pathcostsfh,x_struct, z_struct, u_struct, p_struct, ...\n x, z, u, p, userdata);\n casadi_pathcost_fun = casadi.Function('pathcosts', {x,z,u,p}, {pathcosts_sym});\n pathcostfun = @(x,z,u,p) ocl.casadi.pathcostfun(casadi_pathcost_fun,x,z,u,p);\n \n collocation = ocl.collocation.Collocation(x_struct, z_struct, u_struct, p_struct, x_order, daefun, pathcostfun, d);\n ni = collocation.num_i;\n \n x = casadi_sym(['x','_s',mat2str(k)], nx);\n vi = casadi_sym(['vi','_s',mat2str(k)], ni);\n u = casadi_sym(['u','_s',mat2str(k)], nu);\n h = casadi_sym(['h','_s',mat2str(k)]);\n p = casadi_sym(['p','_s',mat2str(k)], np);\n \n [xF, cost_integr, equations] = ocl.collocation.equations(collocation, x, vi, u, h, p);\n integrator_fun = casadi.Function('sys', {x,vi,u,h,p}, {xF, cost_integr, equations});\n \n integratormap = integrator_fun.map(N, 'serial');\n \n nv_stage = ocl.simultaneous.nvars(N, nx, ni, nu, np);\n v_last_stage = v_stage;\n v_stage = casadi_sym(['v','_s',mat2str(k)], nv_stage);\n \n gridcostfun = @(k,K,x,p) ocl.model.gridcosts(gridcostsfh, x_struct, p_struct, k, K, x, p, userdata);\n gridconstraintfun = @(k,K,x,p) ocl.model.gridconstraints(gridconstraintsfh, x_struct, p_struct, k, K, x, p, userdata);\n terminalcostfun = @(x,p) ocl.model.terminalcost(terminalcostfh, x_struct, p_struct, x, p, userdata);\n \n [costs_stage, constraints_stage, ...\n constraints_LB_stage, constraints_UB_stage] = ...\n ocl.simultaneous.equations(H_norm, T, nx, ni, nu, np, ...\n gridcostfun, gridconstraintfun, ...\n terminalcostfun, ...\n integratormap, v_stage, ...\n controls_regularization, controls_regularization_value);\n\n collocationList{k} = collocation;\n \n transition_eq = [];\n transition_lb = [];\n transition_ub = [];\n if k >= 2\n [x0_cur, p_cur] = ocl.simultaneous.getFirstState(stageList{k}, collocationList{k}, v_stage);\n [xF_prev, p_prev] = ocl.simultaneous.getLastState(stageList{k-1}, collocationList{k-1}, v_last_stage);\n transition_fun = transitionList{k-1};\n \n tansition_handler = ocl.Constraint(problem_userdata);\n \n x0_cur = ocl.Variable.create(stageList{k}.x_struct, x0_cur);\n xF_prev = ocl.Variable.create(stageList{k-1}.x_struct, xF_prev);\n \n p_cur = ocl.Variable.create(stageList{k}.p_struct, p_cur);\n p_prev = ocl.Variable.create(stageList{k-1}.p_struct, p_prev);\n \n if transition_type == 1\n transition_fun(tansition_handler,x0_cur,xF_prev);\n elseif transition_type == 2\n transition_fun(tansition_handler,x0_cur,xF_prev,p_cur,p_prev);\n else\n ocl.error('Transition type invalid.');\n end\n \n transition_eq = tansition_handler.values;\n transition_lb = tansition_handler.lowerBounds;\n transition_ub = tansition_handler.upperBounds;\n end\n \n vars{k} = v_stage;\n costs{k} = costs_stage;\n constraints{k} = vertcat(transition_eq, constraints_stage);\n constraints_LB{k} = vertcat(transition_lb, constraints_LB_stage);\n constraints_UB{k} = vertcat(transition_ub, constraints_UB_stage);\n \n end\n \n v = vertcat(vars{:});\n costs = sum([costs{:}]);\n constraints = vertcat(constraints{:});\n constraints_LB = vertcat(constraints_LB{:});\n constraints_UB = vertcat(constraints_UB{:});\n \n % get struct with nlp for casadi\n casadiNLP = struct;\n casadiNLP.x = v;\n casadiNLP.f = costs;\n casadiNLP.g = constraints;\n casadiNLP.p = [];\n \n if ~verbose\n casadi_options.ipopt.print_level = 0;\n casadi_options.print_time = 0;\n end\n \n constructSolverTic = tic;\n casadiSolver = casadi.nlpsol('my_solver', 'ipopt', casadiNLP, casadi_options);\n constructSolverTime = toc(constructSolverTic);\n\n nlpData = struct;\n nlpData.casadiNLP = casadiNLP;\n nlpData.constraints_LB = constraints_LB;\n nlpData.constraints_UB = constraints_UB;\n nlpData.solver = casadiSolver;\n \n timeMeasures.constructTotal = toc(constructTotalTic);\n timeMeasures.constructSolver = constructSolverTime;\n \n self.stageList = stageList;\n self.nlpData = nlpData;\n self.timeMeasures = timeMeasures;\n self.collocationList = collocationList;\n end\n \n function igMerged = getInitialGuessWithUserData(self)\n \n stage_list = self.stageList;\n colloc_list = self.collocationList;\n \n igMerged = cell(length(stage_list), 1);\n \n ig = self.getInitialGuess();\n for k=1:length(stage_list)\n stage = stage_list{k};\n colloc = colloc_list{k};\n \n igMerged{k} = ocl.simultaneous.getInitialGuessWithUserData(ig{k}, stage, colloc);\n end\n end\n \n function igList = getInitialGuess(self)\n stage_list = self.stageList;\n\n igList = cell(length(stage_list),1);\n for k=1:length(stage_list)\n stage = stage_list{k};\n \n colloc = self.collocationList{k};\n \n N = stage.N;\n x_struct = stage.x_struct;\n z_struct = stage.z_struct;\n u_struct = stage.u_struct;\n p_struct = stage.p_struct;\n \n nx = stage.nx;\n nu = stage.nu;\n np = stage.np;\n H_norm = stage.H_norm;\n T = stage.T;\n \n vi_struct = colloc.vars;\n ni = colloc.num_i;\n \n x_bounds = stage.x_bounds;\n x0_bounds = stage.x0_bounds;\n xF_bounds = stage.xF_bounds;\n z_bounds = stage.z_bounds;\n u_bounds = stage.u_bounds;\n p_bounds = stage.p_bounds;\n \n [x_lb, x_ub] = ocl.model.bounds(x_struct, x_bounds);\n [x0_lb, x0_ub] = ocl.model.bounds(x_struct, x0_bounds);\n [xF_lb, xF_ub] = ocl.model.bounds(x_struct, xF_bounds);\n \n [z_lb, z_ub] = ocl.model.bounds(z_struct, z_bounds);\n [u_lb_traj, u_ub_traj] = ocl.model.boundsTrajectory(u_struct, u_bounds, N);\n [p_lb, p_ub] = ocl.model.bounds(p_struct, p_bounds);\n \n varsStruct = ocl.simultaneous.variablesStruct(N, x_struct, vi_struct, u_struct, p_struct);\n \n ig = ocl.simultaneous.getInitialGuess(H_norm, T, nx, ni, nu, np, ...\n x0_lb, x0_ub, xF_lb, xF_ub, x_lb, x_ub, ...\n z_lb, z_ub, u_lb_traj, u_ub_traj, p_lb, p_ub, ...\n vi_struct);\n \n igList{k} = ocl.Variable.create(varsStruct, ig);\n end\n \n end\n \n function [sol,times,info] = solve(self,v0)\n % solve(initialGuess)\n \n solveTotalTic = tic;\n \n stage_list = self.stageList;\n collocation_list = self.collocationList;\n \n ig_list = v0;\n \n for k=1:length(v0)\n v0{k} = v0{k}.value;\n end\n \n lbv = cell(length(stage_list),1);\n ubv = cell(length(stage_list),1);\n for k=1:length(stage_list)\n \n stage = stage_list{k};\n colloc = collocation_list{k};\n \n nx = stage.nx;\n nu = stage.nu;\n np = stage.np;\n H_norm = stage.H_norm;\n T = stage.T;\n N = length(H_norm);\n \n x_struct = stage.x_struct;\n z_struct = stage.z_struct;\n u_struct = stage.u_struct;\n p_struct = stage.p_struct;\n \n x_bounds = stage.x_bounds;\n x0_bounds = stage.x0_bounds;\n xF_bounds = stage.xF_bounds;\n z_bounds = stage.z_bounds;\n u_bounds = stage.u_bounds;\n p_bounds = stage.p_bounds;\n \n vi_struct = colloc.vars;\n ni = colloc.num_i;\n \n [x_lb, x_ub] = ocl.model.bounds(x_struct, x_bounds);\n [x0_lb, x0_ub] = ocl.model.bounds(x_struct, x0_bounds);\n [xF_lb, xF_ub] = ocl.model.bounds(x_struct, xF_bounds);\n \n [z_lb, z_ub] = ocl.model.bounds(z_struct, z_bounds);\n [u_lb_traj, u_ub_traj] = ocl.model.boundsTrajectory(u_struct, u_bounds, N);\n [p_lb, p_ub] = ocl.model.bounds(p_struct, p_bounds);\n \n [vi_lb, vi_ub] = ocl.collocation.bounds(vi_struct, x_lb, x_ub, z_lb, z_ub);\n \n [lbv_stage, ubv_stage] = ocl.simultaneous.bounds(H_norm, T, nx, ni, nu, np, ...\n x_lb, x_ub, x0_lb, x0_ub, xF_lb, xF_ub, ...\n vi_lb, vi_ub, u_lb_traj, u_ub_traj, p_lb, p_ub);\n lbv{k} = lbv_stage;\n ubv{k} = ubv_stage;\n end\n \n v0 = vertcat(v0{:});\n lbv = vertcat(lbv{:});\n ubv = vertcat(ubv{:});\n \n args = struct;\n args.lbg = self.nlpData.constraints_LB;\n args.ubg = self.nlpData.constraints_UB;\n args.p = [];\n args.lbx = lbv;\n args.ubx = ubv;\n args.x0 = v0;\n \n % execute solver\n solveCasadiTic = tic;\n sol = self.nlpData.solver.call(args);\n solveCasadiTime = toc(solveCasadiTic);\n \n if strcmp(self.nlpData.solver.stats().return_status, 'NonIpopt_Exception_Thrown')\n ocl.utils.warning('Solver was interrupted by user.');\n end\n \n sol_values = sol.x.full();\n \n sol = cell(length(stage_list),1);\n times = cell(length(stage_list),1);\n i_stage = 1;\n nlpFunEvalTic = tic;\n for k=1:length(stage_list)\n \n stage = stage_list{k};\n colloc = collocation_list{k};\n \n nx = stage.nx;\n nu = stage.nu;\n np = stage.np;\n N = stage.N;\n H_norm = stage.H_norm;\n \n ni = colloc.num_i;\n nt = colloc.num_t;\n \n nv_stage = ocl.simultaneous.nvars(N, nx, ni, nu, np);\n \n % unpack solution of this stage to state/controls trajectories\n V = sol_values(i_stage:i_stage+nv_stage-1);\n sol_out = ocl.Variable.create(ig_list{k}.type, V);\n\n [~,~,~,~,H] = ocl.simultaneous.variablesUnpack(V, N, nx, ni, nu, np);\n colloc_times = ocl.simultaneous.times(H(1)*H_norm, colloc);\n times_struct = ocl.simultaneous.timesStruct(N, nt);\n times_out = ocl.Variable.create(times_struct, colloc_times); \n \n i_stage = i_stage + nv_stage;\n \n sol{k} = sol_out;\n times{k} = times_out;\n end\n nlpFunEvalTime = toc(nlpFunEvalTic);\n \n self.timeMeasures.solveTotal = toc(solveTotalTic);\n self.timeMeasures.solveCasadi = solveCasadiTime;\n self.timeMeasures.nlpFunEval = nlpFunEvalTime;\n \n self.stats = self.nlpData.solver.stats();\n \n info = self.info();\n end\n \n function r = info(self)\n r = struct;\n r.timeMeasures = self.timeMeasures;\n r.success = self.stats.success;\n r.ipopt_stats = self.stats;\n end\n end\n \nend\n", "meta": {"author": "OpenOCL", "repo": "OpenOCL", "sha": "348fc31929791ddc8ed15a15733cf060a2e4674c", "save_path": "github-repos/MATLAB/OpenOCL-OpenOCL", "path": "github-repos/MATLAB/OpenOCL-OpenOCL/OpenOCL-348fc31929791ddc8ed15a15733cf060a2e4674c/+ocl/+casadi/CasadiSolver.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754607093178, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.37251713106212264}} {"text": "function RtOut = transformCameraRt(RtIn)\n\nRtOut = [RtIn(1:3,1:3)', - RtIn(1:3,1:3)'* RtIn(1:3,4)];\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/depthImproveStructureIO/transformCameraRt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754489059774, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3725171250221574}} {"text": "%% Example\n% real time control of the KUKA iiwa 7 R 800\n% the impedence control is turned on\n% Moving first joint of the robot, using a sinisoidal function\n\n% The external torques are plotted in real-time during the test\n% the feedback from the measured torques can be used to for a closed loop\n% control\n\n% An example script, it is used to show how to use the different\n% functions of the KUKA Sunrise matlab toolbox\n\n% First run the following script in Matlab\n% Then start the client on the KUKA iiwa controller\n\n% Mohammad SAFEEA, 24th of April 2018\n\nclose all,clear all;clc;\n\nwarning('off')\n\nip='172.31.1.147'; % The IP of the controller\n% start a connection with the server\nglobal t_Kuka;\nt_Kuka=net_establishConnection( ip );\n\nif ~exist('t_Kuka','var') || isempty(t_Kuka) || strcmp(t_Kuka.Status,'closed')\n warning('Connection could not be establised, script aborted');\n return;\nelse\n \n %% Move point to point to an initial position\n jPos={0,0,0,-pi/2,0,pi/2,0};\n setBlueOff(t_Kuka); % turn Off blue light\n \n relVel=0.15;\n movePTPJointSpace( t_Kuka , jPos, relVel); % move to initial configuration\n %% Pause for 3 seocnds\n pause(3); \n %% Start direct servo in joint space \n massOfTool=0.0; % the mass of the tool attached to flange in Kg\n cOMx=0; % X coordinate of the center of mass of the tool in (mm)\n cOMy=0; % Y coordinate of the center of mass of the tool in (mm)\n cOMz=40; % Z coordinate of the center of mass of the tool in (mm)\n cStiness=900; % cartizian stifness\n rStifness=80; % rotational stifness\n nStifness=50; % null space stifness\n \n % Start the realtime control with impedence\n realTime_startImpedanceJoints(t_Kuka,massOfTool,cOMx,cOMy,cOMz,...\n cStiness,rStifness,nStifness);\n \n w=0.6; % motion constants, frequency rad/sec\n A=0.2; % motion constants, amplitude of motion\n \n a=datevec(now);\n t0=a(6)+a(5)*60+a(4)*60*60; % calculate initial time\n \n dt=0;\n tstart=t0;\n counter=0;\n duration=20*60; %1 minutes\n %% Control loop\n % real time plot handles\n colors={'k','b','r','g','c','m','y'};\n figureHandle=figure('Units','inches','Position',[0 0 5 3.75]);\n numOfSamples=120; % number of samples to show in the plot\n timeVec=1:numOfSamples;\n tawVec=zeros(7,numOfSamples);\n plotHandle=[];\n for i=1:7\n plotHandle=[plotHandle,plot(timeVec,tawVec(i,:),colors{i},'LineWidth',2)];\n hold on;\n end\n % format the plot\n ylim([0,8]);\n temp=title('External torques');\n set(temp,'FontSize',16);\n temp=xlabel('Time (seconds)');\n set(temp,'FontSize',14);\n temp=ylabel('Distance (m)');\n set(temp,'FontSize',14);\n \n \n while(dt=1)\n ssbits1 = inbits(1+end*0/Nss : end*1/Nss);\n ssmscl1 = mscale(1+end*0/Nss : end*1/Nss);\n for i=1:nbits1 % stream #1\n outbits(i+s1:totbits:i+s1+totbits*cnt) = ssbits1(i:nbits1:i+nbits1*cnt);\n outmscl(i+s1:totbits:i+s1+totbits*cnt) = ssmscl1(i:nbits1:i+nbits1*cnt);\n end\nend\nif (Nss>=2)\n ssbits2 = inbits(1+end*1/Nss : end*2/Nss);\n ssmscl2 = mscale(1+end*1/Nss : end*2/Nss);\n for i=1:nbits2 % stream #2\n outbits(i+s2:totbits:i+s2+totbits*cnt) = ssbits2(i:nbits2:i+nbits2*cnt);\n outmscl(i+s2:totbits:i+s2+totbits*cnt) = ssmscl2(i:nbits2:i+nbits2*cnt);\n end\nend\nif (Nss>=3)\n ssbits3 = inbits(1+end*2/Nss : end*3/Nss);\n ssmscl3 = mscale(1+end*2/Nss : end*3/Nss);\n for i=1:nbits3 % stream #3\n outbits(i+s3:totbits:i+s3+totbits*cnt) = ssbits3(i:nbits3:i+nbits3*cnt);\n outmscl(i+s3:totbits:i+s3+totbits*cnt) = ssmscl3(i:nbits3:i+nbits3*cnt);\n end\nend\nif (Nss>=4)\n ssbits4 = inbits(1+end*3/Nss : end*4/Nss);\n ssmscl4 = mscale(1+end*3/Nss : end*4/Nss);\n for i=1:nbits4 % stream #4\n outbits(i+s4:totbits:i+s4+totbits*cnt) = ssbits4(i:nbits4:i+nbits4*cnt);\n outmscl(i+s4:totbits:i+s4+totbits*cnt) = ssmscl4(i:nbits4:i+nbits4*cnt);\n end\nend\n\n% Reverse spatial parsing output\noutdata = [outbits; outmscl];\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26232-ieee-802-11n-wlan-file-update/w11n_jointprop/wlan/rev_spatial_parse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754371026367, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3725171189821919}} {"text": "%{\nThis code demonstrates how to warp a depth map (togeter with a label map) from a camera to another view.\nIt create a mesh using the depth map from a camera and render the mesh in OpenGL.\nTherefore, it will not create artifacts with a lot of gaps in a warpped result.\n\ncompile\n mex WarpMesh.cpp -lGLU -lOSMesa\n you need to install osmesa to compile it\n in Mac OS X 10.9.2, you just need to install X11 on mac (xquartz) comes with mesa\n mex WarpMesh.cpp -lGLU -lOSMesa -I/opt/X11/include/ -L/opt/X11/lib/\n\nEmail Jianxiong if you have questions. Cite the following paper if you use this code:\n\nJ. Xiao, A. Owens and A. Torralba\nSUN3D: A Database of Big Spaces Reconstructed using SfM and Object Labels\nProceedings of 14th IEEE International Conference on Computer Vision (ICCV2013)\n\n%}\n\nclose all;\nclear\n\n\nload demo.mat\n\n[label,depth] = WarpMeshMatlab(XYZcamera,labelNow,K, Rt);\n\n% warp color\n[imageWarp,depth] = WarpMeshMatlabColor(XYZcamera,double(image),K, Rt);\n\n\nfigure\nsubplot(2,3,1);\nimagesc(XYZcamera(:,:,3));\naxis equal; axis tight; axis off; title('before warping');\n\nsubplot(2,3,2);\nimagesc(labelNow);\naxis equal; axis tight; axis off; title('before warping');\n\n\nsubplot(2,3,4);\nimagesc(depth);\naxis equal; axis tight; axis off; title('after warping');\n\nsubplot(2,3,5);\nimagesc(label);\naxis equal; axis tight; axis off; title('after warping');\n\n\nsubplot(2,3,3);\nimagesc(image);\naxis equal; axis tight; axis off; title('before warping');\n\nsubplot(2,3,6);\nimagesc(imageWarp/255);\naxis equal; axis tight; axis off; title('after warping');\n\n\n\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/WarpDepthMesh/demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583376458152, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.3724062128638645}} {"text": "function options = selectSOSmodel(F,options,NonLinearParameterization,noRANK,IntegerData,UncertainData,obj)\nswitch options.sos.model\n case 0\n constraint_classes = constraintclass(F);\n noCOMPLICATING = ~any(ismember([7 8 9 10 12 13 14 15],constraint_classes));\n if noCOMPLICATING & ~NonLinearParameterization && noRANK && ~IntegerData && ~isa(obj,'logdet')\n options.sos.model = 1;\n if options.verbose>0;disp('Using kernel representation (options.sos.model=1).');end\n else\n if NonLinearParameterization\n if options.verbose>0;disp('Using image representation (options.sos.model=2). Nonlinear parameterization found');end\n elseif ~noRANK\n if options.verbose>0;disp('Using image representation (options.sos.model=2). SOS-rank constraint was found.');end\n elseif IntegerData\n if options.verbose>0;disp('Using image representation (options.sos.model=2). Integrality constraint was found.');end\n elseif UncertainData\n if options.verbose>0;disp('Using image representation (options.sos.model=2). Uncertain data was found.');end \n elseif isa(obj,'logdet')\n if options.verbose>0;disp('Using image representation (options.sos.model=2). Logdet objective was found.');end \n else\n if options.verbose>0;disp('Using image representation (options.sos.model=2). Integer data, KYPs or similar was found.');end\n end\n options.sos.model = 2;\n end\n case 1\n if NonLinearParameterization\n if options.verbose>0;disp('Switching to image model due to nonlinear parameterization (not supported in kernel model).');end\n options.sos.model = 2;\n end\n if ~noRANK\n if options.verbose>0;disp('Switching to image model due to SOS-rank constraints (not supported in kernel model).');end\n options.sos.model = 2;\n end\n if IntegerData\n if options.verbose>0;disp('Switching to image model due to integrality constraints (not supported in kernel model).');end\n options.sos.model = 2;\n end \n case 3\n otherwise\nend\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/sos/selectSOSmodel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583376458153, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3724062128638645}} {"text": "function [rr,t,sqi] = Analyze_ABP_PPG_Waveforms(Waveform,Type,HRVparams,detectedQRS,subjectID)\n%\n% Analyze_ABP_PPG_Waveforms(Waveform,Type,HRVparams,detectedQRS,subjectID)\n%\tOVERVIEW:\n% Analyze ABP or PPG waveform \n%\n% INPUT:\n% Waveform - matrix containing the a raw signal in each column\n% Type - array containing the signal type of waveforms in each column: \n% 'APB' for ABP waveform \n% 'PPG' for PPG waveform\n% HRVparams - struct of settings for HRV analysis \n% subjectID - string to identify current subject\n%\n% OUTPUT\n% rr - (seconds) Vector containing RR interval\n% t - (seconds) Time of the rr interval data \n% sqi - (optional) Signal Quality Index; Requires a \n% matrix with at least two columns. Column 1 \n% should be timestamps of each sqi measure, and \n% Column 2 should be SQI on a scale from 0 to 1.\n% \n% DEPENDENCIES & LIBRARIES:\n% PhysioNet Cardiovascular Signal Toolbox\n% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox\n%\n% REFERENCE: \n% Vest et al. \"An Open Source Benchmarked HRV Toolbox for Cardiovascular \n% Waveform and Interval Analysis\" Physiological Measurement (In Press), 2018. \n%\n%\tREPO: \n% https://github.com/cliffordlab/PhysioNet-Cardiovascular-Signal-Toolbox\n% ORIGINAL SOURCE AND AUTHORS: \n% Written by Giulia Da Poian (giulia.dap@gmail.com) on Sep 6, 2017.\n% Dependent scripts written by various authors \n% (see functions for details) \n%\tCOPYRIGHT (C) 2018 \n% LICENSE: \n% This software is offered freely and without warranty under \n% the GNU (v3 or later) public license. See license file for\n% more information\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n\n\nNmbOfSigs = size(Waveform,2);\nAnnotationFolder = strcat(HRVparams.writedata, filesep, 'Annotation', filesep);\nif ~exist(AnnotationFolder, 'dir')\n mkdir(AnnotationFolder)\nend\naddpath(AnnotationFolder)\n\nrr = [];\nt = [];\nsqi = [];\n\nfor i = 1:NmbOfSigs\n \n current_type = Type{i};\n switch current_type\n case 'PPG'\n % PPG Detection - qppg\n [PPGann] = qppg(Waveform(:,i),HRVparams.Fs);\n % PPG SQI \n [ppgsqi_numeric, ~, ppgsqi]= calculate_ppgsqi(PPGann,Waveform(:,i),HRVparams.Fs);\n % Write PPG annotations\n write_ann(strcat(AnnotationFolder, subjectID),HRVparams,'ppg',PPGann);\n write_ann(strcat(AnnotationFolder, subjectID),HRVparams,'sqippg',PPGann(1:length(ppgsqi_numeric)),char(ppgsqi),ppgsqi_numeric);\n \n rr = diff(PPGann)./HRVparams.Fs;\n t = PPGann(2:end)./HRVparams.Fs;\n sqi = [PPGann'./HRVparams.Fs, ppgsqi_numeric'./100];\n\n case 'ABP'\n % ABP\n ABPann = run_wabp(Waveform(:,i));\n % ABP SQI\n ABPfeatures = abpfeature(Waveform(:,i), ABPann, HRVparams.Fs);\n [BeatQ, ~] = jSQI(ABPfeatures, ABPann, Waveform(:,i));\n \n if ~isempty(detectedQRS)\n % Pulse Transit Time\n ptt = pulsetransit(detectedQRS, ABPann);\n % Plot BP vs PTT\n syst = ABPfeatures(:,2);\n if HRVparams.gen_figs\n figure;\n plot(syst,ptt(:,3)./HRVparams.Fs,'o');\n xlabel('BP (mmHg)'); ylabel('PTT (s)');\n title('Pulse Transit Time - BP vs PTT (ABP - QRS)')\n end\n end\n % Write ABP annotations\n write_ann(strcat(AnnotationFolder, subjectID),HRVparams,'abpm',ABPann);\n write_ann(strcat(AnnotationFolder, subjectID),HRVparams,'sqiabp',ABPann,'N',int8(BeatQ(:,1)));%write_ann(strcat(AnnotationFolder, subjectID),HRVparams,'sqiabp',BeatQ(:,1));\n \n end\nend\n", "meta": {"author": "cliffordlab", "repo": "PhysioNet-Cardiovascular-Signal-Toolbox", "sha": "eec46e75e0b95c379ecb68cb0ebee0c4c9f54605", "save_path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox", "path": "github-repos/MATLAB/cliffordlab-PhysioNet-Cardiovascular-Signal-Toolbox/PhysioNet-Cardiovascular-Signal-Toolbox-eec46e75e0b95c379ecb68cb0ebee0c4c9f54605/Tools/Analyze_ABP_PPG_Waveforms.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334525, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.372406206115009}} {"text": "function []=panel2disp(n,N,m,p,k,T,Ymat,Xmat,Units,endo,exo,const,beta_gibbs,B_median,beta_median,beta_std,beta_lbound,beta_ubound,sigma_gibbs,sigma_median,D_estimates,gamma_estimates,ar,lambda1,lambda3,lambda4,startdate,enddate,forecast_record,forecast_estimates,Fcperiods,stringdates3,Fstartdate,Fcenddate,Feval,Fcomp,data_endo_c,data_endo_c_lags,data_exo_c,It,Bu,IRF,IRFt,pref,names,PriorExcel)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n% obtain first a point estimate betatilde of the VAR coefficients\n% this is simply the median\nbetatilde=beta_median;\nBtilde=reshape(betatilde,k,n);\n\n% check whether the model is stationary\n[stationary eigmodulus]=bear.checkstable(betatilde,n,p,k);\n\n\n\n\n% the other measures are unit-specific, hence, loop over units\nfor ii=1:N\n\n% obtain predicted values\nYp(:,:,ii)=Xmat(:,:,ii)*B_median;\n% then produce the corresponding residuals, using (1.9.4)\nEPS(:,:,ii)=Ymat(:,:,ii)-Yp(:,:,ii);\n\n\n% Compute then the sum of squared residuals\n% compute first the RSS matrix, defined in (1.9.5)\nRSS(:,:,ii)=EPS(:,:,ii)'*EPS(:,:,ii);\n% retain only the diagonal elements to get the vector of RSSi values\nrss(:,:,ii)=diag(RSS(:,:,ii));\n\n\n% Go on calculating R2\n% generate Mbar\nMbar=eye(T)-ones(T,T)/T;\n% then compute the TSS matrix, defined in (1.9.8)\nTSS(:,:,ii)=Ymat(:,:,ii)'*Mbar*Ymat(:,:,ii);\n% generate the R2 matrix in (1.9.9)\nR2(:,:,ii)=eye(n)-RSS(:,:,ii)./TSS(:,:,ii);\n% retain only the diagonal elements to get the vector of R2 values\nr2(:,:,ii)=diag(R2(:,:,ii));\n\n\n% then calculate the adjusted R2, using (1.9.11)\nR2bar(:,:,ii)=eye(n)-((T-1)/(T-k))*(eye(n)-R2(:,:,ii));\n% retain only the diagonal elements to get the vector of R2bar values\nr2bar(:,:,ii)=diag(R2bar(:,:,ii));\n\nend\n\n\n\n\n% now start displaying and saving the results\n\n\n% preliminary task: create and open the txt file used to save the results\n\nfilelocation=fullfile(pref.results_path, [pref.results_sub '.txt']);\nfid=fopen(filelocation,'wt');\n\n% print toolbox header\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n% print the list of contributors\nbear.printcontributors(fid);\n\n% print then estimation results\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\ntoolboxinfo='BEAR toolbox estimates';\nfprintf('%s\\n',toolboxinfo);\nfprintf(fid,'%s\\n',toolboxinfo);\n\ntime=clock;\ndatestring=datestr(time);\ndateinfo=['Date: ' datestring(1,1:11) ' Time: ' datestring(1,13:17)];\nfprintf('%s\\n',dateinfo);\nfprintf(fid,'%s\\n',dateinfo);\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\nVARtypeinfo='Panel VAR: pooled estimator';\nfprintf('%s\\n',VARtypeinfo);\nfprintf(fid,'%s\\n',VARtypeinfo);\n\nif IRFt==1\nSVARinfo='structural decomposition: none';\nfprintf('%s\\n',SVARinfo);\nfprintf(fid,'%s\\n',SVARinfo);\nelseif IRFt==2\nSVARinfo='structural decomposition: choleski factorisation'; \nfprintf('%s\\n',SVARinfo);\nfprintf(fid,'%s\\n',SVARinfo);\nelseif IRFt==3\nSVARinfo='structural decomposition: triangular factorisation'; \nfprintf('%s\\n',SVARinfo);\nfprintf(fid,'%s\\n',SVARinfo);\nend\n\ntemp='units: ';\nfor ii=1:N\ntemp=[temp ' ' Units{ii,1} ' '];\nend\nunitinfo=temp;\nfprintf('%s\\n',unitinfo);\nfprintf(fid,'%s\\n',unitinfo);\n\ntemp='endogenous variables: ';\nfor ii=1:n\ntemp=[temp ' ' endo{ii,1} ' '];\nend\nendoinfo=temp;\nfprintf('%s\\n',endoinfo);\nfprintf(fid,'%s\\n',endoinfo);\n\ntemp='exogenous variables: ';\nif const==0 && m==0\ntemp=[temp ' none'];\nelseif const==1 && m==1\ntemp=[temp ' constant '];\nelseif const==0 && m>0\n for ii=1:m-1\n temp=[temp ' ' exo{ii,1} ' '];\n end\nelseif const==1 && m>1\ntemp=[temp ' constant '];\n for ii=1:m-1\n temp=[temp ' ' exo{ii,1} ' '];\n end\nend\nexoinfo=temp;\nfprintf('%s\\n',exoinfo);\nfprintf(fid,'%s\\n',exoinfo);\n\nsampledateinfo=['estimation sample: ' startdate '-' enddate];\nfprintf('%s\\n',sampledateinfo);\nfprintf(fid,'%s\\n',sampledateinfo);\n\nsamplelengthinfo=['sample size (omitting initial conditions): ' num2str(T)];\nfprintf('%s\\n',samplelengthinfo);\nfprintf(fid,'%s\\n',samplelengthinfo);\n\nlaginfo=['number of lags included in regression: ' num2str(p)];\nfprintf('%s\\n',laginfo);\nfprintf(fid,'%s\\n',laginfo);\n\nhyperparam1='hyperparameters:';\nfprintf('%s\\n',hyperparam1);\nfprintf(fid,'%s\\n',hyperparam1);\n\nif PriorExcel==1\n arprint=[];\n for ii=1:n\n arprint=[arprint num2str(ar(ii,1)) ' '];\n end\n hyperparam2=['autoregressive coefficients (ar): ' arprint];\nelse\n hyperparam2=['autoregressive coefficients (ar): ' num2str(ar(1,1))];\nend\nfprintf('%s\\n',hyperparam2);\nfprintf(fid,'%s\\n',hyperparam2);\n\nhyperparam3=['overall tightness (lambda1): ' num2str(lambda1)];\nfprintf('%s\\n',hyperparam3);\nfprintf(fid,'%s\\n',hyperparam3);\n\nhyperparam4=['lag decay (lambda3): ' num2str(lambda3)];\nfprintf('%s\\n',hyperparam4);\nfprintf(fid,'%s\\n',hyperparam4);\n\nhyperparam5=['exogenous variable tightness (lambda4): ' num2str(lambda4(1,1))];\nfprintf('%s\\n',hyperparam5);\nfprintf(fid,'%s\\n',hyperparam5);\n\n\n\n% display coefficient estimates\n\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\ncoeffinfo=['VAR coefficients (Common to all units):'];\nfprintf('%s\\n',coeffinfo);\nfprintf(fid,'%s\\n',coeffinfo);\n\n\nfor ii=1:n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nif ii~=1\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nend\n\nendoinfo=['Endogenous: ' endo{ii,1}];\nfprintf('%s\\n',endoinfo);\nfprintf(fid,'%s\\n',endoinfo);\n\ncoeffheader=fprintf('%25s %15s %15s %15s %15s\\n','','Median','St.dev','Low.bound','Upp.bound');\ncoeffheader=fprintf(fid,'%25s %15s %15s %15s %15s\\n','','Median','St.dev','Low.bound','Upp.bound');\n\n% handle the endogenous\n for jj=1:n\n for kk=1:p\n values=[beta_median((ii-1)*k+n*(kk-1)+jj,1) beta_std((ii-1)*k+n*(kk-1)+jj,1) beta_lbound((ii-1)*k+n*(kk-1)+jj,1) beta_ubound((ii-1)*k+n*(kk-1)+jj,1)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n',strcat(endo{jj,1},'(-',int2str(kk),')'),values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n',strcat(endo{jj,1},'(-',int2str(kk),')'),values);\n end\n end\n\n% handle the exogenous\n % if there is no constant:\n if const==0\n % if there is no exogenous at all, obvioulsy, don't display anything\n if m==0\n % if there is no constant but some other exogenous, display them\n else\n for jj=1:m\n values=[beta_median(ii*k-m+jj,1) beta_std(ii*k-m+jj,1) beta_lbound(ii*k-m+jj,1) beta_ubound(ii*k-m+jj,1)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n end\n end\n % if there is a constant\n else\n % display the results related to the constant\n values=[beta_median(ii*k-m+1,1) beta_std(ii*k-m+1,1) beta_lbound(ii*k-m+1,1) beta_ubound(ii*k-m+1,1)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n','Constant',values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n','Constant',values);\n % if there is no other exogenous, stop here\n if m==1\n % if there are other exogenous, display their results\n else\n for jj=1:m-1\n values=[beta_median(ii*k-m+jj+1,1) beta_std(ii*k-m+jj+1,1) beta_lbound(ii*k-m+jj+1,1) beta_ubound(ii*k-m+jj+1,1)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n end\n end\n end\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n\n% display evaluation measures\n\n % loop over units\n for jj=1:N\n unitinfo=['unit: ' Units{jj,1}];\n fprintf('%s\\n',unitinfo);\n fprintf(fid,'%s\\n',unitinfo);\n\n rssinfo=['Sum of squared residuals: ' num2str(rss(ii,1,jj),'%.2f')];\n fprintf('%s\\n',rssinfo);\n fprintf(fid,'%s\\n',rssinfo);\n\n r2info=['R-squared: ' num2str(r2(ii,1,jj),'%.3f')];\n fprintf('%s\\n',r2info);\n fprintf(fid,'%s\\n',r2info);\n\n adjr2info=['adj. R-squared: ' num2str(r2bar(ii,1,jj),'%.3f')];\n fprintf('%s\\n',adjr2info);\n fprintf(fid,'%s\\n',adjr2info);\n\n fprintf('%s\\n','');\n fprintf(fid,'%s\\n','');\n\n end\n\nend\n\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n% display VAR stability results\neigmodulus=reshape(eigmodulus,p,n);\nstabilityinfo1=['Roots of the characteristic polynomial (modulus):'];\nfprintf('%s\\n',stabilityinfo1);\nfprintf(fid,'%s\\n',stabilityinfo1);\nfor jj=1:p\ntemp=num2str(eigmodulus(jj,1),'%.3f');\n for kk=2:n\n temp=[temp,' ',num2str(eigmodulus(jj,kk),'%.3f')];\n end\nfprintf('%s\\n',temp);\nfprintf(fid,'%s\\n',temp);\nend\nif stationary==1;\nstabilityinfo2=['No root lies outside the unit circle.'];\nstabilityinfo3=['The estimated VAR model satisfies the stability condition'];\nfprintf('%s\\n',stabilityinfo2);\nfprintf(fid,'%s\\n',stabilityinfo2);\nfprintf('%s\\n',stabilityinfo3);\nfprintf(fid,'%s\\n',stabilityinfo3);\nelse\nstabilityinfo2=['Warning: at leat one root lies on or outside the unit circle.'];\nstabilityinfo3=['The estimated VAR model will not be stable'];\nend\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n% display posterior for sigma\nsigmainfo=['sigma (residual covariance matrix): posterior estimates'];\nfprintf('%s\\n',sigmainfo);\nfprintf(fid,'%s\\n',sigmainfo);\n% calculate the (integer) length of the largest number in sigma, for formatting purpose\nwidth=length(sprintf('%d',floor(max(abs(bear.vec(sigma_median))))));\n% add a separator, a potential minus sign, and three digits (total=5) to obtain the total space for each entry in the matrix\nwidth=width+5;\nfor ii=1:n\ntemp=[];\n for jj=1:n\n % convert matrix entry into string\n number=num2str(sigma_median(ii,jj),'% .3f');\n % pad potential missing blanks\n while numel(number) 0, '\"nD\" should be positive integer.');\nchkarg(istypesizeof(cellarray, 'complexcell', [1 0], zeros(1, nD)), ...\n\t'\"cellarray\" should be a row cell array whose each element is %dD array with complex elements.', nD);\n\nncell = length(cellarray);\nif ncell == 0\n\tarray = [];\nelse\n\tassert(ncell >= 1);\n\tdims = size(cellarray{1});\n\tchkarg(istypesizeof(cellarray, 'complexcell', [1 0], dims), 'elements of \"cellarray\" should be have the same size.');\n\tarray = cat(nD+1, cellarray{:});\n\tarray = permute(array, [nD+1, 1:nD]);\nend\n", "meta": {"author": "wsshin", "repo": "maxwellfdfd", "sha": "f7d583813781694c8a6f0533a91f56c2a78a9ee5", "save_path": "github-repos/MATLAB/wsshin-maxwellfdfd", "path": "github-repos/MATLAB/wsshin-maxwellfdfd/maxwellfdfd-f7d583813781694c8a6f0533a91f56c2a78a9ee5/io/cell2array.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5813031051514763, "lm_q2_score": 0.640635854839898, "lm_q1q2_score": 0.3724036116898032}} {"text": "function [cum_ret, cumprod_ret, daily_ret, daily_portfolio] ...\n = m0_start(fid, data, varargins, opts)\n% This file is an entry for the M0 strategy.\n%\n% function [cum_ret, cumprod_ret, daily_ret, daily_portfolio] ...\n% = m0_start(fid, data, varargins, opts)\n% cum_ret: cumulative wealth achived at the end of a period.\n% cumprod_ret: cumulative wealth achieved till the end each period.\n% daily_ret: daily return achieved by a strategy.\n% daily_portfolio: daily portfolios\n%\n% data: market sequence vectors\n% fid: handle for write log file\n% varargins: variable parameters\n% opts: option parameter for behvaioral control\n%\n% Example: [cum_ret, cumprod_ret, daily_ret, daily_portfolio] ...\n% = m0_start(fid, data, {0.5, 0}, opts);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This file is part of OLPS: http://OLPS.stevenhoi.org/\n% Original authors: Bin LI, Steven C.H. Hoi \n% Contributors:\n% Change log: \n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Extract the parameters\nbeta = varargins{1}; % \ntc = varargins{2}; % transaction cost fee rate\n\n% Run the M0 algorithm\n[cum_ret, cumprod_ret, daily_ret, daily_portfolio] ...\n = m0_run(fid, data, beta, tc, opts);\n\nend", "meta": {"author": "OLPS", "repo": "OLPS", "sha": "9120783cd59a7966b0f78e2b5668030a4378b8af", "save_path": "github-repos/MATLAB/OLPS-OLPS", "path": "github-repos/MATLAB/OLPS-OLPS/OLPS-9120783cd59a7966b0f78e2b5668030a4378b8af/Strategy/m0.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3724036023959944}} {"text": "%% --- tutorial script for spectral analysis ---\n\n% This tutorial demonstrates the use of BCILAB to learn basic predictive models using \n% spectral properties of the data, here operating on motor cortex idle oscillations.\n%\n% The used data set contains a sequence of trials in which a subject was instructed to imagine\n% moving either the left hand or the right hand. Markers in the data set indicate the timing and \n% type of these instructions (types are: 'StimulusCode_2' and 'StimulusCode_3').\n%\n% Notes: StimulusCode_1 indicates onset of a \"resting\" / \"relaxing\" condition.\n%\n% Data courtesy of Romain Grandchamp, CERCO, Toulouse, France. Reference:\n% Romain Grandchamp, Arnaud Delorme, \"NeuroTRIP: A Framework for Bridging between Open Source Software. Application to Training a Brain Machine Interface,\" \n% Fifth International Conference on Signal Image Technology and Internet Based Systems, pp.451-457, 2009\n%\n%#ok<*ASGLU,*NASGU,*SNASGU> % turn off a few editor warnings...\n\n%% --- using the Common Spatial Pattern method ---\n\n% load the data set (BCI2000 format)\ntraindata = io_loadset('bcilab:/userdata/tutorial/imag_movements1/calib/DanielS001R01.dat','channels',1:29);\n\n% define the approach (here: Common Spatial Patterns without any customization)\nmyapproach = 'CSP';\n\n% learn a predictive model\n[trainloss,lastmodel,laststats] = bci_train('Data',traindata,'Approach',myapproach,'TargetMarkers',{'StimulusCode_2','StimulusCode_3'}); \ndisp(['training mis-classification rate: ' num2str(trainloss*100,3) '%']);\n\n% visualize results\nbci_visualize(lastmodel)\n\n%% --- using the Common Spatial Pattern method with some custom options ---\n\n% load the data set (BCI2000 format)\ntraindata = io_loadset('bcilab:/userdata/tutorial/imag_movements1/calib/DanielS001R01.dat','channels',1:29);\n\n% define the approach \n% Note: The settings found in the GUI \"Review/Edit Approach\" Panel can be translated literally\n% into cell array representations as below. Each paradigm has a few top-level parameter groups\n% (for CSP: SignalProcessing, FeatureExtraction, etc), which in turn have sub-parameters\n% (e.g., SignalProcessing has EpochExtraction, SpectralSelection, Resampling, etc.), and so\n% on. Some parameters are numbers, strings, cell arrays, etc. You only need to specify those \n%\t parameters where you actually want to deviate from the paradigm's defaults.\n%\n% For illustratory purposes, we use a different window relative to the target markers (0.5s to 3s after),\n% and a somewhat customized FIR frequency filter with a pass-band between ~7.5Hz and ~27Hz.\nmyapproach = {'CSP' 'SignalProcessing',{'EpochExtraction',[0.5 3],'FIRFilter',[7 8 26 28]}};\n\n% learn a predictive model\n[trainloss,lastmodel,laststats] = bci_train('Data',traindata,'Approach',myapproach,'TargetMarkers',{'StimulusCode_2','StimulusCode_3'}); \ndisp(['training mis-classification rate: ' num2str(trainloss*100,3) '%']);\n\n% visualize results\nbci_visualize(lastmodel)\n\n\n%% --- applying the CSP model to some data (here: same data) ---\n\n% apply the previously learned model to a data set (querying it for each target marker in the data)\n[prediction,loss,teststats,targets] = bci_predict(lastmodel,traindata);\n\n% display the results\ndisp(['test mis-classification rate: ' num2str(loss*100,3) '%']);\ndisp([' predicted classes: ',num2str(round(prediction{2}*prediction{3})')]); % class probabilities * class values\ndisp([' true classes : ',num2str(round(targets)')]);\n\n\n%% --- the same using pseudo-online processing ---\n\n% This function is quite flexible, but here we only ask it to query the BCI seconds after each of the given markers\n[predictions,latencies] = onl_simulate(traindata,lastmodel,'markers',{'StimulusCode_2','StimulusCode_3'},'offset',3);\n\n% now check the prediction accuracy by hand (we knew the correct target label at each of the markers)\naccuracy = mean(argmax(predictions') == targets');\ndisp(['pseudo-online mis-classification rate: ' num2str((1-accuracy)*100,3) '%']);\n\n\n%% --- using the Spectrally weighted Common Spatial Pattern (Spec-CSP) method ---\n% this method automatically learns the spectral filters (within a pre-defined range), but it \n% may run into a local optimum or over-fit spuriously correlated bands\n\n% load the data set\ntraindata = io_loadset('bcilab:/userdata/tutorial/imag_movements1/calib/DanielS001R01.dat','channels',1:29);\n\n% define the approach\nmyapproach = {'SpecCSP' 'SignalProcessing',{'EpochExtraction',[0.5 3]}};\n\n% learn a predictive model\n[trainloss,lastmodel,laststats] = bci_train('Data',traindata,'Approach',myapproach,'TargetMarkers',{'StimulusCode_2','StimulusCode_3'}); %#ok<>\n\n% visualize results\nbci_visualize(lastmodel)\n\n\n%% --- test the learned model in simulated real-time processing ---\n% ( click into the figure to stop the update (and make sure that your click was registered) )\n\n% load feedback session\ntestdata = io_loadset('bcilab:/userdata/tutorial/imag_movements1/feedback/DanielS001R01.dat','channels',1:29);\n\n% play it back in real time\nrun_readdataset('Dataset',testdata);\n\n% process data in real time using lastmodel, and visualize outputs\nrun_writevisualization('Model',lastmodel, 'VisFunction','bar(y);ylim([0 1])');\n\n% make sure that the online processing gets terminated...\ndisp('Click into the figure to stop online processing.'); \nwaitforbuttonpress; onl_clear; close(gcf);\n\n\n%% --- train an alternative model with parameter search ---\n% (over possible values for the number of pattern pairs, using CSP; note: this takes quite some time!)\n% (the number of pattern pairs found optimal should be 3 in this case)\n\n% load the data set (BCI2000 format)\ntraindata = io_loadset('bcilab:/userdata/tutorial/imag_movements1/calib/DanielS001R01.dat','channels',1:29);\n\n% define approach\nmyapproach = {'CSP' 'Prediction',{'FeatureExtraction',{'PatternPairs',search(1,2,3)}}};\n\n% learn the model\n[trainloss,lastmodel,laststats] = bci_train('Data',traindata,'Approach',myapproach,'TargetMarkers',{'StimulusCode_2','StimulusCode_3'});\ndisp(['training mis-classification rate: ' num2str(trainloss*100,3) '%']);\n\n% visualize results\nbci_visualize(lastmodel);\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/userscripts/tutorial_erd1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3724036023959944}} {"text": " function st = ct_geom_par(type, varargin)\n%|function st = ct_geom_par(type, varargin)\n%|\n%| Same as ct_geom, but adds a rebinned variable\n%| ct_geom should be changed to include a new type instead\n%|\n%| Create the \"CT geometry\" structure that describes the sampling\n%| characteristics of a cone-beam CT system (axial or helical).\n%| (Use sino_geom() for 2D fan-beam or parallel-beam systems.)\n%|\n%| in\n%|\ttype\t'fan'\t\tmulti-slice fan-beam - recommended\n%|\t\t'par'\t\t(parallel-beam only weakly supported)\n%|\n%| options for all geometries\n%|\t'orbit_start'\t\tdefault: 0\n%|\t'orbit'\t\t\t[degrees] default: 180 for parallel / mojette\n%|\t\t\t\t\tor 360 for fan (negative for CW)\n%|\t\t\t\t\tcan be 'short' for fan-beam short scan\n%|\t'down'\t\t\tdown-sampling factor, for testing\n%|\t\t\t\t\tcan be [down_s down_t down_a]\n%|\t'units'\t\t\tstring to print distance units (default: 'mm')\n%|\n%| options for fan-beam\n%|\t'ns'\t\t\t# of horizontal samples\n%|\t'nt'\t\t\t# of vertical samples\n%|\t'na' | 'nbeta'\t\t# of angular samples\n%|\t'ds'\t\t\thorizontal sample spacing (default: 1)\n%|\t'dt'\t\t\tvertical sample spacing (default: -ds)\n%|\t\t\t\tor {'dz', dz} to use dz * dsd / dso (usual CT)\n%|\t'offset_s'\t\tunitless fraction of a channel (default: 0)\n%|\t\t\t\t(relative to line between two center channels).\n%|\t\t\t\tuse 0.25 or 1.25 for \"quarter-detector offset\"\n%|\t'offset_t'\t\tunitless (default: 0)\n%|\n%| options for partial scans (added by jang-hwan cho)\n%|\t'nframe'\t\t# of frames to divide orbit into (default: 1)\n%|\t'frame'\t\t\twhich frame? (default: 1)\n%|\n%| options for helical (or step-and-shoot)\n%|\t'pitch'\t\t\tbed_travel_per_rotation / axial_fov. default: 0.\n%|\t\t\t\t(unitless. can be negative. usually near 1.0)\n%|\t'source_z0'\t\tz-location of source for first view. Default 0.\n%|\t\t\t\t\tIt must have same units as dt and ds.\n%|\t\t\t\tUse 'center' to center the helix around z=0.\n%|\n%|\t'user_source_zs' [na]\tuser-specified source z-locations for each view.\n%|\t\t\t\tusually this is empty (default) in which case\n%|\t\t\t\tsource_zs is computed internally from \"pitch\"\n%|\t\t\t\tIt must have same units as dt and ds.\n%|\n%|\tfan beam distances:\n%|\t'dsd' | 'dis_src_det'\tdefault: inf (parallel beam)\n%|\t'dso' | 'dis_src_iso'\tdefault: inf (parallel beam)\n%|\t'dod' | 'dis_iso_det'\tdefault: 0\n%|\t'dfs' | 'dis_foc_src'\tdefault: 0 (3rd generation CT arc),\n%|\t\t\t\t\tuse 'inf' for flat detector\n%|\n%| out\n%|\tst\t(struct)\tinitialized structure\n%|\n%| methods\n%|\tst.shape(sino)\t\treshape sinograms that are columns into 3d array\n%|\tst.s\t\t\ts sample locations\n%|\tst.t\t\t\tt sample locations\n%|\tst.gamma\t\t[nb] gamma sample values [radians]\n%|\tst.gamma_max\t\thalf of fan angle [radians]\n%|\tst.ws\t\t\t(ns-1)/2 + st.offset_s\n%|\tst.wt\t\t\t(nt-1)/2 + st.offset_t\n%|\tst.ad\t\t\t[na] source angles in degrees\n%|\tst.ar\t\t\t[na] source angles in radians\n%|\tst.dim\t\t\tdimensions: [st.ns st.nt st.na]\n%|\tst.downsample(down)\treduce sampling by integer factor\n%|\tst.ones\t\t\tones(ns,nt,na, 'single')\n%|\tst.zeros\t\tzeros(ns,nt,na, 'single')\n%|\tst.rmax\t\t\tmax radius within FOV\n%|\tst.footprint_size(ig)\tmax footprint width in 's'\n%|\tst.zfov\t\t\taxial FOV\n%|\tst.source_zs\t\t[na] z-locations of source for each view\n%|\tst.shape(sino(:))\treshape to [ns,nt,na,?]\n%|\tst.unitv(is,it,ia)\tunit 'vector' with one nonzero element\n%|\tst.plot([ig])\t\tshow geometry\n%|\n%|\ttrick: you can make orbit=0 and orbit_start = column vector (length na)\n%|\tif you need nonuniformly spaced projection view angles.\n%|\n%| Copyright 2006-1-18, Jeff Fessler and Jang-Hwan Cho, University of Michigan\n%|\n%| 2009-12-04 modified source_zs definition to use source_z0, eliminate na/2\n%| 2012-12-09 modified by Greg Handy to include the rebinned variable\n\nif nargin == 1 && streq(type, 'test'), ct_geom_test, return, end\nif nargin < 1, help(mfilename), error(mfilename), end\n\nif streq(type, 'ge1') % special case: GE fan-beam\n\tst = ct_geom_ge1(type, varargin{:});\nreturn\nend\n\nif streq(type, 'ge2') % special case: GE axial or helical\n\tst = ct_geom_ge2(type, varargin{:});\nreturn\nend\n\nif streq(type, 'hd1') % special case: GE HD (UM only)\n\tst = ct_geom_hd1(type, varargin{:});\nreturn\nend\n\n% defaults\nst.type = type;\nst.rebinned = false;\nst.ns = [];\nst.nt = [];\nst.na = [];\nst.down = 1;\nst.nframe = 1; % entire scan as 1 \"frame\"\nst.frame = 1;\nst.orbit_start = 0;\nst.pitch = 0; % default for axial\nst.source_z0 = 0; % default for axial\nst.units = 'mm';\nst.user_source_zs = [];\n\nif streq(type, 'fan')\n\tst = ct_geom_fan(st, varargin{:});\n%elseif streq(type, 'par')\n%\tst = ct_geom_par(st, varargin{:});\n%elseif streq(type, 'moj')\n%\tst = ct_geom_moj(st, varargin{:});\nelse\n\tfail('unknown sinotype %s', type)\nend\n\nif isempty(st.na), st.na = 2 * floor(st.ns * pi/2 / 2); end\n\nct_geom_checks(st)\n\nmeth = { ...\n\t's', @ct_geom_s, '()'; ...\n\t't', @ct_geom_t, '()'; ...\n\t'ws', @ct_geom_ws, '()'; ...\n\t'wt', @ct_geom_wt, '()'; ...\n\t'ad', @ct_geom_ad, '()'; ...\n\t'ar', @ct_geom_ar, '()'; ...\n\t'gamma', @ct_geom_gamma, '()'; ...\n\t'gamma_max', @ct_geom_gamma_max, '()'; ...\n\t'zfov', @ct_geom_zfov, '()'; ...\n\t'source_dz_per_view', @ct_geom_source_dz_per_view, '()'; ...\n\t'source_zs', @ct_geom_source_zs, '() -> [na]'; ...\n\t'orbit_short', @ct_geom_orbit_short, '()'; ...\n\t'xds', @ct_geom_xds, '()'; ...\n\t'yds', @ct_geom_yds, '()'; ...\n\t'downsample', @ct_geom_downsample, '()'; ...\n\t'dim', @ct_geom_dim, '()'; ...\n\t'ones', @ct_geom_ones, '()'; ...\n\t'rmax', @ct_geom_rmax, '()'; ...\n\t'footprint_size', @ct_geom_footprint_size, '(ig)'; ...\n\t'unitv', @ct_geom_unitv, '() | (is,it,ia)'; ...\n\t'zeros', @ct_geom_zeros, '()'; ...\n\t'shape', @ct_geom_shape, '()'; ...\n\t'plot', @ct_geom_plot, '() | (ig)';\n\t'plot3', @ct_geom_plot3, '() | (ig)';\n\t};\n\nst = strum(st, meth);\n\nif streq(st.source_z0, 'center')\n\tst.source_z0 = -st.na/2 * st.source_dz_per_view;\nend\n\nif any(st.down ~= 1)\n\tdown = st.down; st.down = 1; % trick\n\tst = st.downsample(down);\nend\n\nif streq(type, 'fan') && streq(st.orbit, 'short')\n\tst.orbit = st.orbit_short / st.nframe; % jc\n\tst.orbit_start = st.orbit_start + (st.frame - 1) * st.orbit; % jc/jf\n\tif st.frame ~= 1, warn 'untested and possibly incorrect', end % jf\nend\n\n\n% ct_geom_orbit_short()\nfunction os = ct_geom_orbit_short(st)\nos = 180 + 2 * rad2deg(st.gamma_max);\n\n\n% ct_geom_dim()\nfunction dim = ct_geom_dim(st)\ndim = [st.ns st.nt st.na];\nif isempty(st.ns) || isempty(st.nt) || isempty(st.na)\n\terror 'dim requested without ns,nt,na'\nend\n\n\n% ct_geom_ones()\n% sinogram of all ones\nfunction out = ct_geom_ones(st)\nout = ones(st.dim, 'single');\n\n\n% ct_geom_zeros()\n% sinogram of all zeros\nfunction out = ct_geom_zeros(st)\nout = zeros(st.dim, 'single');\n\n\n% ct_geom_unitv()\n% sinogram with just one ray\nfunction out = ct_geom_unitv(st, is, it, ia)\nout = st.zeros;\nif ~isvar('is') || isempty(is)\n\tis = floor(st.ns/2 + 1);\n\tit = floor(st.nt/2 + 1);\n\tia = 1;\nend\nout(is,it,ia) = 1;\n\n\n% ct_geom_rmax()\n% max radius within fov\nfunction rmax = ct_geom_rmax(st)\nsmax = max(abs(st.s));\nif streq(st.type, 'fan')\n\tif isinf(st.dso) % parallel\n\t\trmax = smax;\n\telseif st.dfs == 0 % arc\n\t\trmax = st.dso * sin(smax / st.dsd);\n\telseif isinf(st.dfs) % flat\n\t\trmax = st.dso * sin(atan(smax / st.dsd));\n\telse\n\t\terror 'unknown case'\n\tend\nend\n\n\n% ct_geom_ws()\n% 'middle' sample position\nfunction ws = ct_geom_ws(st)\nws = (st.ns-1)/2 + st.offset_s;\n\n\n% ct_geom_wt()\n% 'middle' sample position\nfunction wt = ct_geom_wt(st)\nwt = (st.nt-1)/2 + st.offset_t;\n\n\n% ct_geom_s()\n% sample locations ('radial')\nfunction s = ct_geom_s(st, varargin)\ns = st.ds * ([0:st.ns-1]' - st.ws);\nif length(varargin)\n\ts = s(varargin{:});\nend\n\n\n% ct_geom_t()\n% sample locations ('radial')\nfunction t = ct_geom_t(st, varargin)\nt = st.dt * ([0:st.nt-1]' - st.wt);\nif length(varargin)\n\tt = t(varargin{:});\nend\n\n\n% ct_geom_ad()\n% angular sample locations (degrees)\nfunction ang = ct_geom_ad(st, varargin)\nang = [0:st.na-1]'/st.na * st.orbit + st.orbit_start;\nang = ang(varargin{:});\n\n% ct_geom_ar()\n% angular sample locations (radians)\nfunction ang = ct_geom_ar(st, varargin)\nang = deg2rad(ct_geom_ad(st));\nang = ang(varargin{:});\n\n\n% ct_geom_shape()\n% reshape into sinogram array\nfunction sino = ct_geom_shape(st, sino)\nsino = reshapee(sino, st.ns, st.nt, st.na, []);\n\n\n% ct_geom_downsample()\n% down-sample (for testing)\nfunction st = ct_geom_downsample(si, down)\nst = si;\nst.down = st.down .* down;\n\nswitch numel(down)\ncase 1\n\tdown_s = down;\n\tdown_t = down;\n\tdown_a = down;\ncase 3\n\tdown_s = down(1);\n\tdown_t = down(2);\n\tdown_a = down(3);\notherwise\n\tfail('bad down %g', down)\nend\nclear down\n\nst.ns = 4 * ceil(st.ns / down_s / 4); % multiple of 4 for simd\nst.nt = 2 * ceil(st.nt / down_t / 2); % keep it even\n\nuser_specified = false; % did user specify zs or orbit_start vector?\n\nif ~isempty(st.user_source_zs)\n\tst.user_source_zs = st.user_source_zs(1:down_a:st.na);\n\tuser_specified = true;\nend\n\nif numel(st.orbit_start) > 1\n\tst.orbit_start = st.orbit_start(1:down_a:si.na);\n\tuser_specified = true;\nend\n\nif streq(st.type, 'fan')\n\tst.ds = st.ds * down_s;\n\tst.dt = st.dt * down_t;\nelse\n\tfail('unknown sinotype \"%s\"', type)\nend\n\nif user_specified % if user-specified then just decimate\n\tst.na = length([1:down_a:st.na]);\n\nelseif all(diff(si.source_zs) == 0) % axial\n\tst.na = max(1, round(si.na / down_a)); % at least one view\n\nelse % helical described by pitch and source_z0\n\tnturn = si.orbit / 360;\n\tna1 = si.na / nturn; % # of views in 1 turn, originally\n\n\t% if it is helical with equal view spacing, then adjust orbit slightly,\n\t% to preserve integer number of views per turn (if applicable)\n\ttol = 1e-4;\n\tif abs(round(na1) - na1) < tol % integer views per turn\n\t\tna2 = round(na1 / down_a); % new # of views in 1 turn (integer)\n\t\ttmp = nturn * na2; % new na value, roughly na/down\n\t\tif abs(round(tmp) - tmp) < tol\n\t\t\tst.na = round(tmp);\n\t\telse % adjust orbit\n\t\t\tst.na = floor(tmp);\n\t\t\tst.orbit = 360 / na2 * st.na;\n\t\tend\n\telse\n\t\tst.na = round(si.na / down_a);\n\tend\nend\n\n\n% ct_geom_zfov()\n% axial FOV, considering magnification factor, as collimated at iso\nfunction zfov = ct_geom_zfov(st)\nif isinf(st.dso) || isinf(st.dsd) % parallel beam\n\tzfov = st.nt * st.dt;\nelse % cone\n\tzfov = st.dso / st.dsd * st.nt * st.dt;\nend\n\n\n% ct_geom_source_dz_per_view()\n% source axial travel for each view\nfunction out = ct_geom_source_dz_per_view(st)\nif ~isempty(st.user_source_zs), fail 'undefined', end\nif st.na == 1 % for tomosynthesis\n\tout = 0;\n\treturn\nend\nif ~st.pitch\n\tout = 0;\n\treturn\nend\nif length(st.orbit) ~= 1 || st.orbit == 0\n\tfail 'dz_per_view undefined for user angles'\nend\nna_per_360 = st.na * (360 / st.orbit); % # views per turn\nout = st.pitch * st.zfov / na_per_360;\n\n\n% ct_geom_checks\n% check vectors user_source_zs and orbit_start\nfunction ct_geom_checks(st)\nif ~isempty(st.user_source_zs) && (st.pitch ~= 0)\n\tfail('only one of \"pitch\" (recommended) or user_source_zs can be given')\nend\nif ~isempty(st.user_source_zs) && length(st.user_source_zs) ~= st.na\n\tfail('user_source_zs size mismatch')\nend\nif numel(st.orbit_start) > 1 && numel(st.orbit_start) ~= st.na\n\tfail('orbit_start vector length')\nend\n\n\n% ct_geom_source_zs()\n% source z locations\nfunction source_zs = ct_geom_source_zs(st, varargin)\n\nif ~isempty(st.user_source_zs) % user-provided\n\tsource_zs = st.user_source_zs;\n\tsource_zs = source_zs(varargin{:});\nelse\n\tsource_dz = st.source_dz_per_view;\n\tsource_zs = st.source_z0 + [0:st.na-1]' * source_dz;\n\tsource_zs = source_zs(varargin{:});\nend\n\n\n% ct_geom_gamma()\n% gamma sample values\nfunction gamma = ct_geom_gamma(st, varargin)\nswitch st.dfs\ncase 0\n\tgamma = st.s / st.dsd; % 3rd gen: equiangular arc\ncase inf\n\tgamma = atan(st.s / st.dsd); % flat\notherwise\n\terror 'dfs not done'\nend\ngamma = gamma(varargin{:});\n\n\n% ct_geom_gamma_max()\nfunction gamma_max = ct_geom_gamma_max(st)\ngamma_max = max(st.gamma);\n\n\n% ct_geom_xds()\n% center positions of detectors\nfunction xds = ct_geom_xds(st, varargin)\nswitch st.type\ncase 'par'\n\txds = st.s;\ncase 'fan'\n\tswitch st.dfs\n\tcase 0 % arc\n\t\txds = st.dsd * sin(st.gamma);\n\tcase inf % flat\n\t\txds = st.s;\n\totherwise\n\t\terror 'not done'\n\tend\notherwise\n\terror 'bug'\nend\n\n\n% ct_geom_yds()\n% center positions of detectors\nfunction yds = ct_geom_yds(st, varargin)\nswitch st.type\ncase 'par'\n\tyds = zeros(size(st.s));\n\ncase 'fan'\n\tswitch st.dfs\n\tcase 0 % arc\n\t\tyds = st.dso - st.dsd * cos(st.gamma);\n\tcase inf % flat\n\t\tyds = -st.dod * ones(size(st.s));\n\totherwise\n\t\terror 'not done'\n\tend\notherwise\n\terror 'bug'\nend\n\n\n% ct_geom_footprint_size()\n% biggest possible footprint over image\nfunction footprint_size = ct_geom_footprint_size(st, ig, varargin)\ndi = sqrt(ig.dx^2 + ig.dy^2);\nsmax = max(abs(st.s));\nrfov = max(ig.nx * ig.dx, ig.ny * ig.dy) / 2;\ndso = st.dso;\ndsd = st.dsd;\nif rfov > 0.99 * dso, error 'bad dso', end\n\nif isinf(st.dso) % parallel\n\tfootprint_size = di;\nelseif st.dfs == 0 % arc3\n\tfootprint_size = di * dsd / (dso - rfov);\nelseif isinf(st.dfs) % flat\n\tfootprint_size = di * sqrt(dsd^2 + smax^2) / (dso - rfov);\nelse\n\terror 'unknown case'\nend\nfootprint_size = footprint_size / st.ds; % unitless \n\n\n%\n% ct_geom_fan()\n%\nfunction st = ct_geom_fan(st, varargin);\n\n% defaults\nst.orbit = 360; % [degrees]\nst.ds\t\t= 1;\nst.dt\t\t= [];\nst.offset_s\t= 0;\nst.offset_t\t= 0;\n\nst.dsd = [];\t% dis_src_det\nst.dso = [];\t% dis_src_iso\nst.dod = [];\t% dis_iso_det\nst.dfs = 0;\t% dis_foc_src (3rd gen CT)\n\nsubs = { ...\n\t'src_det_dis', 'dsd';\n\t'dis_src_det', 'dsd';\n\t'dis_src_iso', 'dso';\n\t'dis_iso_det', 'dod';\n\t'dis_foc_src', 'dfs';\n\t'nbeta', 'na';\n\t'source_zs', 'user_source_zs';\n\t};\nst = vararg_pair(st, varargin, 'subs', subs);\n\n% work out distances\nif (~isempty(st.dsd) && isinf(st.dsd)) ...\n|| (~isempty(st.dso) && isinf(st.dso)) % handle parallel-beam case gracefully\n\tst.dsd = inf; st.dso = inf; st.dod = 1;\nend\nif isempty(st.dsd) + isempty(st.dso) + isempty(st.dod) > 1\n\terror 'must provide at least two of dsd, dso, dod'\nend\nif isempty(st.dsd), st.dsd = st.dso + st.dod; end\nif isempty(st.dso), st.dso = st.dsd - st.dod; end\nif isempty(st.dod), st.dod = st.dsd - st.dso; end\nif st.dso + st.dod ~= st.dsd\n\terror 'bad fan-beam distances'\nend\n\nif isempty(st.dt), st.dt = -st.ds; end\nif iscell(st.dt)\n\tif length(st.dt) == 2 && streq(st.dt{1}, 'dz')\n\t\tdz = st.dt{2};\n\t\tst.dt = dz * st.dsd / st.dso;\n\t\tprintm('dt = dz * dsd / dso = %g * %g / %g = %g', ...\n\t\t\tdz, st.dsd, st.dso, st.dt)\n\telse\n\t\tfail 'bad dt cell'\n\tend\nend\n\n\n% ct_geom_plot2()\n% picture of 2D source position / detector geometry\nfunction ct_geom_plot2(st, ig, varargin)\narg.tomosyn = false; % set to 1 for offset_x plotting trick\narg = vararg_pair(arg, varargin);\nif arg.tomosyn, fail 'not done', end\nif ~streq(st.type, 'fan'), error 'only fan done', end\nx0 = 0;\ny0 = st.dso;\nt = linspace(0,2*pi,1001);\n\nif isinf(st.dsd) % parallel beam\n\trfov = max(abs(st.s));\n\tplot(\t0, 0, '.', ...\n\t\trfov * cos(t), rfov * sin(t), 'm:', ...\n\t\tst.s, -rfov, 'yo')\n\nelse % fan beam\n\n\trot = deg2rad(st.orbit_start);\n\trot = [cos(rot) sin(rot); -sin(rot) cos(rot)];\n\tp0 = rot * [x0; y0];\n\tpd = rot * [st.xds'; st.yds'];\n\trfov = st.dso * sin(max(abs(st.gamma)));\n\n\tplot(\tp0(1), p0(2), 'ys', ... % source\n\t\tst.dso * cos(t), st.dso * sin(t), 'c--', ... % source circle\n\t\tpd(1,:), pd(2,:), 'yo') % detector elements\n\n\thold on\n\tif isvar('ig') && ~isempty(ig)\n\t\txmin = min(ig.x); xmax = max(ig.x);\n\t\tymin = min(ig.y); ymax = max(ig.y);\n\t\tim(ig.x, ig.y, ig.mask(:,:,1))\n\n\t\tplot([xmax xmin xmin xmax xmax], [ymax ymax ymin ymin ymax], 'g-')\n\tend\n\n\tplot(\t0, 0, '.', ...\n\t\t[pd(1,1) p0(1) pd(1,end)], [pd(2,1) p0(2) pd(2,end)], 'r-', ...\n\t\trfov * cos(t), rfov * sin(t), 'm:')\n\n\taxis equal, axis tight\n\thold off\n\nend\n\n\nif isvar('ig') && ~isempty(ig)\n\thold on\n\txmin = min(ig.x); xmax = max(ig.x);\n\tymin = min(ig.y); ymax = max(ig.y);\n\tplot([xmax xmin xmin xmax xmax], [ymax ymax ymin ymin ymax], 'g-')\n\thold off\nend\ntitlef('fov = %g', rfov)\naxis square, zoom on\n\n\n% ct_geom_plot3()\n% picture of 3D helical CT geometry\nfunction dummy = ct_geom_plot3(st, ig)\ndummy = [];\nif ~streq(st.type, 'fan'), error 'only fan done', end\n\nif isinf(st.dso) || isinf(st.dsd)\n\twarn 'parallel-beam plot not done'\nreturn\nend\n\nt1 = -st.dso * sin(st.ar); % source x pos\nt2 = st.dso * cos(st.ar); % source y pos\nt3 = st.source_zs; % source z pos\nplot3(t1, t2, t3, 'y.') % source trajectory\nview(-110, 22)\nhold on\nfor ia = [1 1+floor(st.na/2) st.na]\n\ttext(t1(ia), t2(ia), t3(ia), sprintf('%d', ia))\nend\n\n% axes\nr100 = @(x) 100 * ceil(max(abs(x)) / 100);\nr10 = @(x) 10 * ceil(max(abs(x)) / 10);\nplot3([-1 1] * r100(t1), [0 0], [0 0])\ntext(r100(t1), 0, 'x')\nplot3([0 0], [-1 1] * r100(t2), [0 0])\ntext(0, r100(t2), 'y')\nplot3([0 0], [0 0], [-1 1] * r10(t3))\ntext(0, 0, r10(t3), 'z')\n\ngrid on\nxlabelf('x (%s)', st.units)\nylabelf('y (%s)', st.units)\nzlabelf('z (%s)', st.units)\n\nif isvar('ig') && ~isempty(ig) && isfield(ig.meth,'z') % image box\n\txmin = min(ig.x); xmax = max(ig.x);\n\tymin = min(ig.y); ymax = max(ig.y);\n\tzmin = min(ig.z); zmax = max(ig.z);\n\tplot3(\t[xmin xmax xmax xmin xmin ], ...\n\t\t[ymin ymin ymax ymax ymin ], ...\n\t\t[zmin zmin zmin zmin zmin ], ...\n\t\t'g-')\n\tplot3(\t[xmin xmax xmax xmin xmin], ...\n\t\t[ymin ymin ymax ymax ymin], ...\n\t\t[zmax zmax zmax zmax zmax], ...\n\t\t'g-')\n\tplot3(xmin*[1 1], ymin*[1 1], [zmin zmax], 'g-')\n\tplot3(xmax*[1 1], ymin*[1 1], [zmin zmax], 'g-')\n\tplot3(xmin*[1 1], ymax*[1 1], [zmin zmax], 'g-')\n\tplot3(xmax*[1 1], ymax*[1 1], [zmin zmax], 'g-')\n\tplot3(xmin*ones(ig.nz,1), ymin*ones(ig.nz,1), ig.z, 'g.')\nend\n\n% detector array for source at each position\ndetcolor = {'r.', 'c.', 'm.'};\nia_list = [1 1+floor(st.na/2) st.na];\nfor ia = ia_list\n\tsrc = [t1(ia) t2(ia) t3(ia)];\n\tunit_vec = [-src(1) -src(2) 0] / sqrt(src(1)^2+src(2)^2);\n\t% diametrically opposite point of the source on the detector\n\tdet_cen_loc = src + st.dsd * unit_vec;\n\tplot3(det_cen_loc(1), det_cen_loc(2), det_cen_loc(3), 'rs')\n\n\trot = st.ar(ia);\n\trot = [cos(rot) -sin(rot); sin(rot) cos(rot)];\n\tpd = rot * [st.xds'; st.yds'];\n\n\tfor it=1:st.nt\n\t\tplot3(pd(1,:), pd(2,:), src(3) + st.t(it)*ones(1,st.ns), ...\n\t\t\tdetcolor{find(ia == ia_list)})\n\tend\n\n\tif 1 && ia == 1 % line from source to middle of first detector row\n\t\tplot3([src(1) det_cen_loc(1)], [src(2) det_cen_loc(2)], ...\n\t\t\t[src(3) st.t(1)], 'm-')\n\tend\nend\nhold off\n\n\n% ct_geom_plot()\nfunction out = ct_geom_plot(st, varargin)\nim clf\nif all(st.source_zs == 0) % 2D or axial case\n\tct_geom_plot2(st, varargin{:});\nelse\n\tct_geom_plot3(st, varargin{:});\nend\nif nargout, out = []; end\n\n\n% ct_geom_ge1()\n% 'lightspeed';\n% these numbers are published in IEEE T-MI Oct. 2006, p.1272-1283 wang:06:pwl\nfunction st = ct_geom_ge1(type, varargin)\n\ntmp.orbit = 360;\ntmp = vararg_pair(tmp, varargin, 'allow_new', true);\nif streq(tmp.orbit, 'short')\n\tna = 642; % trick: reduce na for short scans\n\tfor ii=1:length(varargin)\n\t\tif (streq(varargin{ii}, 'orbit'))\n\t\t\tvarargin{ii+1} = na/984*360;\n\t\t\tbreak\n\t\tend\n\tend\nelse\n\tna = 984;\nend\n\nst = ct_geom('fan', ...\n\t'ns', 888, ... % detector channels\n\t'nt', 1, ... % detector rows\n\t'na', na, ... % angular samples\n\t'orbit', 360, ...\n\t'offset_s', 1.25, ... % quarter-detector offset\n\t'dsd', 949.075, ...\n\t'dso', 541, ...\n\t'dfs', 0, ... % arc\n\t'ds', 1.0239, ... % detector pitch\n\t'dt', 1.0964, ... % detector row spacing for 0.625mm slices, 2009-12-06\n\tvarargin{:});\n%\t'dod', 408.075, ...\n% 'strip_width', [], ...\n\n\n% ct_geom_ge2()\n% helical CT\nfunction st = ct_geom_ge2(type, varargin)\nst = ct_geom_ge1(type, ...\n\t'nt', 64, ... % 64-slice\n\t'dt', 949.0750 / 541 * 0.625, ... % about 1.0964\n\tvarargin{:});\n\n\n% ct_geom_test()\nfunction ct_geom_test\n% axial cone-beam test\ncg = ct_geom('fan', 'ns', 888, 'nt', 64, 'na', 984, ...\n\t'offset_s', 1.25, ...\n\t'dsd', 949, 'dod', 408);\ncg.ad(2);\ncg.downsample(2);\ncg.rmax;\ncg.ws;\ncg.nframe; cg.frame; cg.gamma; cg.gamma_max;\ncg.s(cg.ns/2+1);\nif im\n\tcg.plot;\nprompt\nend\n\n% test user_source_zs\ncg = ct_geom('fan', 'dsd', 949, 'dod', 408, ...\n\t'ns', 888, 'ds', 1.0239, 'offset_s', 1.25, ...\n\t'nt', 8, 'dt', 1.0964, ...\n\t'na', 2*984, 'orbit', 2*360, ...\n\t'source_zs', []);\ncg.source_zs(1:2:7);\n\n% helical cone-beam test\ncg = ct_geom('fan', 'dsd', 949, 'dod', 408, ...\n\t'ns', 888, 'ds', 1.0239, 'offset_s', 1.25, ...\n\t'nt', 8, 'dt', 1.0964, ...\n\t'na', 2*984, 'orbit', 2*360, ...\n\t'pitch', 1.0);\n\ncg.source_zs(1:2:7);\ncg.downsample(2);\ncg.s(cg.ns/2+1);\nif im\n\tcg.plot;\nprompt\nend\n\nif 1 % footprint\n\tcg = ct_geom('ge2');\n\tig = image_geom('nx', 512, 'fov', 500);\n\tcg.footprint_size(ig);\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/contrib/handy-greg/t-fdk/ct_geom_par.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3723767802066108}} {"text": "function [S,f,R,Serr]=mtspectrumpt(data,params,fscorr,t)\n% Multi-taper spectrum - point process times\n%\n% Usage:\n%\n% [S,f,R,Serr]=mtspectrumpt(data,params,fscorr,t)\n% Input: \n% data (structure array of spike times with dimension channels/trials; \n% also accepts 1d array of spike times) -- required\n% params: structure with fields tapers, pad, Fs, fpass, err, trialave\n% - optional\n% tapers : precalculated tapers from dpss or in the one of the following\n% forms: \n% (1) A numeric vector [TW K] where TW is the\n% time-bandwidth product and K is the number of\n% tapers to be used (less than or equal to\n% 2TW-1). \n% (2) A numeric vector [W T p] where W is the\n% bandwidth, T is the duration of the data and p \n% is an integer such that 2TW-p tapers are used. In\n% this form there is no default i.e. to specify\n% the bandwidth, you have to specify T and p as\n% well. Note that the units of W and T have to be\n% consistent: if W is in Hz, T must be in seconds\n% and vice versa. Note that these units must also\n% be consistent with the units of params.Fs: W can\n% be in Hz if and only if params.Fs is in Hz.\n% The default is to use form 1 with TW=3 and K=5\n%\n%\t pad\t\t (padding factor for the FFT) - optional (can take values -1,0,1,2...). \n% -1 corresponds to no padding, 0 corresponds to padding\n% to the next highest power of 2 etc.\n%\t\t\t \t e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT\n%\t\t\t \t to 512 points, if pad=1, we pad to 1024 points etc.\n%\t\t\t \t Defaults to 0.\n% Fs (sampling frequency) - optional. Default 1.\n% fpass (frequency band to be used in the calculation in the form\n% [fmin fmax])- optional. \n% Default all frequencies between 0 and Fs/2\n% err (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars\n% [0 p] or 0 - no error bars) - optional. Default 0.\n% trialave (average over channels/trials when 1, don't average when 0) - optional. Default 0\n% fscorr (finite size corrections, 0 (don't use finite size corrections) or \n% 1 (use finite size corrections) - optional\n% (available only for spikes). Defaults 0.\n% t (time grid over which the tapers are to be calculated:\n% this argument is useful when calling the spectrum\n% calculation routine from a moving window spectrogram\n% calculation routine). If left empty, the spike times\n% are used to define the grid.\n% Output:\n% S (spectrum with dimensions frequency x channels/trials if trialave=0; \n% dimension frequency if trialave=1)\n% f (frequencies)\n% R (rate)\n% Serr (error bars) - only if err(1)>=1\nif nargin < 1; error('Need data'); end;\nif nargin < 2; params=[]; end;\n[tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);\nclear params\ndata=change_row_to_column(data);\nif nargout > 3 && err(1)==0; error('cannot compute error bars with err(1)=0; change params and run again'); end;\nif nargin < 3 || isempty(fscorr); fscorr=0;end;\nif nargin < 4 || isempty(t);\n [mintime,maxtime]=minmaxsptimes(data);\n dt=1/Fs; % sampling time\n t=mintime-dt:dt:maxtime+dt; % time grid for prolates\nend;\nN=length(t); % number of points in grid for dpss\nnfft=max(2^(nextpow2(N)+pad),N); % number of points in fft of prolates\n[f,findx]=getfgrid(Fs,nfft,fpass); % get frequency grid for evaluation\ntapers=dpsschk(tapers,N,Fs); % check tapers\n[J,Msp,Nsp]=mtfftpt(data,tapers,nfft,t,f,findx); % mt fft for point process times\nS=squeeze(mean(conj(J).*J,2));\nif trialave; S=squeeze(mean(S,2));Msp=mean(Msp);end;\nR=Msp*Fs;\nif nargout==4;\n if fscorr==1;\n Serr=specerr(S,J,err,trialave,Nsp);\n else\n Serr=specerr(S,J,err,trialave);\n end;\nend;\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/chronux_2_12/spectral_analysis/pointtimes/mtspectrumpt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3723767802066108}} {"text": "function [state,options] = psoplotscorediversity(options,state,flag)\n% Plots a histogram containing the best and mean scores of particle swarm.\n\nif strcmp(flag,'init')\n set(gca,'NextPlot','replacechildren',...\n 'XLabel',xlabel('Scores'),...\n 'YLabel',ylabel('Number of inidividuals'))\nend\n\n[n,bins] = hist(state.Score) ;\nbar(bins,n,'Tag','scorehistogram','FaceColor',[0.1 0.1 0.5])", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/psopt/psoplotscorediversity.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.372376773236138}} {"text": "function export_VPSC(ori,filename,varargin)\n% export individual orientations to the VPSC format\n%\n% Syntax\n% export_VPSC(ori,'file.txt')\n% export_VPSC(ori,'file.txt','weights',weights)\n%\n% Input\n% ori - individual @orientation to be exported\n% filename - name of the ascii file\n% weights - list weights with the same size as the orientations\n%\n% See also\n% quaternion/export SO3Fun/export_VPSC\n \n% allocate memory\nd = zeros(length(ori),4);\n\n% add Euler angles\nd(:,1:3) = ori.Euler(varargin{:});\nif ~check_option(varargin,{'radians','radiant','radiand'})\n d = d ./ degree;\nend\n\nw = get_option(varargin,'weights',ones(size(ori)));\n\n% add weight\nd(:,4) = w./ sum(w);\n\nfid = efopen(filename,'w');\n\n% header\n% fourth line has to include the angle convention (B for Bunge)\n% and the total number of grains in the phase\nfprintf(fid,'\\n\\n\\nB %d\\n',length(ori));\n\nfprintf(fid,'%7.2f %7.2f %7.2f %11.7f\\n',d');\n\nfclose(fid);\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@orientation/export_VPSC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5428632831725051, "lm_q1q2_score": 0.37237677323613794}} {"text": "function [T, roffset, V, P, W] = rendertransform(ax)\n% Render Transform\n% [T, offset] = rendertransform(AX) returns the 4-by-4 render transform of axes AX\n% and the render offset.\n% The render transform maps data coordinates to pixels locations in the \n% axes parent coordinate system (with flipped y direction). \n% The render offset is the [x y z] values to subtract from the data inputs\n% before transforming by the render transform.\n%\n% [..., V, P, W] = rendertransform(AX) returns additionally the view,\n% projection and viewport transforms. \n\n% Copyright 2014 The MathWorks, Inc.\n\nnewgraphics = ishandle(ax) && isprop(handle(ax), 'XTickLabelRotation');\ncpos = get(ax,'CameraPosition');\nctar = get(ax,'CameraTarget');\ncup = get(ax,'CameraUpVector');\ncva = get(ax,'CameraViewAngle');\ncvaAuto = strcmp(get(ax,'CameraViewAngleMode'), 'auto');\noldunits = get(ax,'Units');\nset(ax,'Units','pixels')\naxpos = get(ax,'Position');\nset(ax,'Units',oldunits)\nif newgraphics\n bottomleft = floor(axpos(1:2)) - 1;\n topright = ceil(axpos(1:2) + axpos(3:4));\nelse\n bottomleft = round(axpos(1:2)) - 1;\n topright = round(axpos(1:2) - 1 + axpos(3:4));\nend\n% round position to integer pixels\nviewport = [bottomleft (topright - bottomleft)];\npxscale = max(viewport(3), 1);\npyscale = max(viewport(4), 1);\n\npbar = get(ax,'PlotBoxAspectRatio');\nwarp = strcmp(get(ax,'PlotBoxAspectRatioMode'),'auto') && ...\n strcmp(get(ax,'DataAspectRatioMode'),'auto') && ...\n strcmp(get(ax,'CameraViewAngleMode'),'auto');\nif warp && newgraphics\n pbar = [1 1 1];\nend\nperspective = strcmp(get(ax,'Projection'), 'perspective');\nxreverse = strcmp(get(ax,'XDir'),'reverse');\nyreverse = strcmp(get(ax,'YDir'),'reverse');\nzreverse = strcmp(get(ax,'ZDir'),'reverse');\ndsx = xlim;\ndsy = ylim;\ndsz = zlim;\ndsrange = [diff(dsx) diff(dsy) diff(dsz)];\nroffset = [dsx(1) dsy(1) dsz(1)];\nascale = dsrange;\ndsoffset = roffset;\nif any(isinf([dsx dsy dsz]))\n error('infinite limits not supported')\nend\nif any(isinf(dsrange))\n error('limits too large')\nend\nif strcmp(get(ax,'XScale'),'log') || ...\n strcmp(get(ax,'YScale'),'log') || ...\n strcmp(get(ax,'ZScale'),'log') \n error('log scale not supported')\nend\n\n% normalize the camera properties\nif xreverse\n roffset(1) = dsx(2);\n cpos(1) = 2*mean(dsx) - cpos(1);\n ctar(1) = 2*mean(dsx) - ctar(1);\n ascale(1) = -ascale(1);\n cup(1) = -cup(1);\nend\nif yreverse\n roffset(2) = dsy(2);\n cpos(2) = 2*mean(dsy) - cpos(2);\n ctar(2) = 2*mean(dsy) - ctar(2);\n ascale(2) = -ascale(2);\n cup(2) = -cup(2);\nend\nif zreverse\n roffset(3) = dsz(2);\n cpos(3) = 2*mean(dsz) - cpos(3);\n ctar(3) = 2*mean(dsz) - ctar(3);\n ascale(3) = -ascale(3);\n cup(3) = -cup(3);\nend\nncpos = (cpos - dsoffset).*pbar./dsrange;\nnctar = (ctar - dsoffset).*pbar./dsrange;\nncup = cup.*pbar./dsrange;\nncdir = nctar - ncpos;\n\n% make View\ndot1 = ncdir*ncdir.';\ndot2 = ncdir*ncup.';\nu = dot1*ncup - dot2*ncdir;\nlat = cross(ncdir, u);\nncdir = ncdir/norm(ncdir);\nu = u/norm(u);\nlat = lat/norm(lat);\np = ncpos.';\noffset = [-lat*p ; -u*p ; -ncdir*p ; 1];\nV = [lat.*pbar ; u.*pbar ; ncdir.*pbar ; 0 0 0];\nV = [V offset];\n\n% make Projection\nP = eye(4);\nif perspective\n P(4,4) = 0;\n P(4,3) = 1;\nend\n\n% compute size\nT = P*V;\ncube = [ 0 0 0 0 1 1 1 1 % x\n 0 0 1 1 0 0 1 1 % y\n 0 1 0 1 0 1 0 1 % z\n 1 1 1 1 1 1 1 1]; % w\ncube2 = T*cube;\ncube3 = cube2;\ncube3(1,:) = cube3(1,:) ./ cube2(4,:);\ncube3(2,:) = cube3(2,:) ./ cube2(4,:);\nwidth = 2*max(abs(max(cube3(1,:))), abs(min(cube3(1,:))));\nheight = 2*max(abs(max(cube3(2,:))), abs(min(cube3(2,:))));\n\n% view angle\nxConstraint = false;\nif cvaAuto\n if abs(pxscale*width) < abs(pyscale*height)\n xConstraint = true;\n end\nend\n\n% scale projection\nfov = cva*pi/360;\nif perspective\n scale = 1/(2*tan(fov));\nelse\n v = ncpos - nctar;\n len = norm(v);\n scale = 1/(2*tan(fov)*len);\nend\nP(1,1) = P(1,1)*scale;\nP(2,2) = P(2,2)*scale;\n\n% viewport transform\nT = P*V;\ncube2 = T*cube;\ncube3 = cube2;\ncube3(1,:) = cube3(1,:) ./ cube2(4,:);\ncube3(2,:) = cube3(2,:) ./ cube2(4,:);\nwidth = max(cube3(1,:)) - min(cube3(1,:));\nheight = max(cube3(2,:)) - min(cube3(2,:));\npxoffset = bottomleft(1);\n% flip y in the parent reference frame\nparent = get(ax,'Parent');\noldunits = get(parent,'Units');\nset(parent,'Units','pixels')\nparentpos = get(parent,'Position');\nset(parent,'Units',oldunits)\npyoffset = parentpos(4) - bottomleft(2);\nov = [pxoffset+pxscale/2 pyoffset-pyscale/2 0];\nif ~warp\n if cvaAuto\n if xConstraint\n scale = pxscale;\n else\n scale = pyscale;\n end\n else\n scale = min(pxscale, pyscale);\n end\n sv = [scale -scale];\nelse\n xscale = pxscale/width;\n yscale = pyscale/height;\n sv = [xscale -yscale];\nend\nSC = diag([sv 1 1]);\nW = makehgtform('translate',ov) * SC;\n\nNORM = diag([1./ascale 1]);\n\nT = W * P * V * NORM;\nroffset = roffset.';\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/external/other/rendertransform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3723767662656651}} {"text": "function tno_sparse_grid_write ( header, l, m, n, x, w )\n\n%*****************************************************************************80\n%\n%% TNO_SPARSE_GRID_WRITE writes a Truncated Normal Odd Sparse Grid to X and W files.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 15 July 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string HEADER, a header for the file names.\n%\n% Input, integer L, the level of the rule.\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real X(M,N), the abscissas.\n%\n% Input, real W(N), the weights.\n%\n w_filename = sprintf ( '%s_d%d_level%d_w.txt', header, m, l );\n x_filename = sprintf ( '%s_d%d_level%d_x.txt', header, m, l );\n\n r8vec_write ( w_filename, n, w );\n r8mat_write ( x_filename, m, n, x );\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' W data written to \"%s\".\\n', w_filename );\n fprintf ( 1, ' X data written to \"%s\",\\n', x_filename );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/truncated_normal_sparse_grid/tno_sparse_grid_write.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.705785040214066, "lm_q1q2_score": 0.3721721136589892}} {"text": "function d=mutate1(pop,mutprop)%uniform mutation.\nglobal bound rng\n[pops,numvar]=size(pop);\nmut=round(mutprop*pops*numvar);\nfor i=1:mut\n x=ceil(rand*size(pop,1));\n y=ceil(rand*numvar);\n pop(x,y)=bound(y,1)+rand*rng(y);\n offs(i,:)=pop(x,:);\n pop(x,:)=[];\nend\nd=[offs;pop];\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/23289-motion-planning-for-a-robot-arm-by-using-genetic-algorithm/robot motion planning/matlab code/mutate1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850402140659, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37217211365898917}} {"text": "classdef TukeyLoss < dagnn.Loss\n\n properties\n sigma = 1.\n end\n\n methods\n function outputs = forward(obj, inputs, params)\n outputs{1} = vl_nntukeyloss(inputs{1}, inputs{2}, ...\n 'instanceWeights', inputs{3}, ...\n obj.opts{:}) ;\n n = obj.numAveraged ;\n m = n + size(inputs{1}, 4) ;\n obj.average = (n * obj.average + gather(outputs{1})) / m ;\n obj.numAveraged = m ;\n end\n\n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n derInputs{1} = vl_nntukeyloss(inputs{1}, inputs{2}, derOutputs{1}, ...\n 'instanceWeights', inputs{3}, ...\n obj.opts{:}) ;\n derInputs{2} = [] ;\n derInputs{3} = [] ;\n derParams = {} ;\n end\n\n function obj = TukeyLoss(varargin)\n obj.load(varargin) ;\n end\n end\nend\n", "meta": {"author": "ShuaiBai623", "repo": "MFT", "sha": "8762f8cdf494ce0b1a1c3d431660c5c8fd91744a", "save_path": "github-repos/MATLAB/ShuaiBai623-MFT", "path": "github-repos/MATLAB/ShuaiBai623-MFT/MFT-8762f8cdf494ce0b1a1c3d431660c5c8fd91744a/external_libs/matconvnet/contrib/mcnExtraLayers/matlab/+dagnn/TukeyLoss.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850402140659, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37217211365898917}} {"text": "function [inF, n_r] = extend_dcm(inF,hA,hB,hC,hD,dim,sources)\n\n%%- get dimensions\nn=dim.n;\nn_u=dim.n_u;\nn_r = get_dims(hA,hB,hC,hD) ;\n\nsourcesDim = cellfun(@numel,{sources(2:end).out});\nfor i=1:sum(sourcesDim)\n respSource(i) = sum(i>cumsum(sourcesDim))+1 ;\nend\n\n\n%%\n[inFtemp] = prepare_dcm(hA,hB,hC,hD,respSource);\n\n%% = save extended structure\n%- raw matrices\ninF.hA = inFtemp.A ;\ninF.hB = inFtemp.B ;\ninF.hC = inFtemp.C ;\ninF.hD = inFtemp.D ;\n\n%- parameter indices\ninF.indhA = inFtemp.indA + inF.indself ;\n\nfor i=1:n_u\n inF.indhB{i} = inFtemp.indB{i} + inF.indself ;\nend\ninF.indhC = inFtemp.indC + inF.indself ;\nfor i=1:n\n inF.indhD{i} = inFtemp.indD{i} + inF.indself ;\nend\ninFtemp.indself = inFtemp.indself ;\ninF.indhself = inFtemp.indself + inF.indself ;\n\n%- indicators\ninF.dhA = inFtemp.dA;\ninF.dhB = inFtemp.dB;\ninF.dhC = inFtemp.dC;\ninF.dhD = inFtemp.dD;\n\n%- save dimensions\n% dim.n_r=n_r;\n\nend\n\n\n%% ========== subfunctions =============\n\n%- compute number of predicted responses\nfunction nr=get_dims(hA,hB,hC,hD)\nnr=0;\nnr=max(nr,size(hA,1));\nfor i=1:length(hB)\n nr=max(nr,size(hB{i},1));\nend\nnr=max(nr,size(hC,1));\nfor i=1:length(hD)\n nr=max(nr,size(hD{i},1));\nend\nend\n\n\n\n", "meta": {"author": "MBB-team", "repo": "VBA-toolbox", "sha": "01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414", "save_path": "github-repos/MATLAB/MBB-team-VBA-toolbox", "path": "github-repos/MATLAB/MBB-team-VBA-toolbox/VBA-toolbox-01ff63f43ef7a6473bc5e3f28dd9ffa58fcfb414/modules/DCM/extend_dcm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37217210713236376}} {"text": "function [FT,VT,CT]=dualLattice(varargin)\n\n% function [FT,VT,CT]=dualLattice(E,V,shrinkFactor,cladOpt)\n% ------------------------------------------------------------------------\n%\n%\n%\n% 2021/08/16: KMM Fixed error in cladding offset direction. Changed to \"out\n% of surface offset\"\n%\n% ------------------------------------------------------------------------\n\n%%\n\nswitch nargin\n case 2\n E=varargin{1};\n V=varargin{2};\n shrinkFactor=0.2;\n cladOpt=1;\n case 3\n E=varargin{1};\n V=varargin{2};\n shrinkFactor=varargin{3};\n cladOpt=1;\n case 4\n E=varargin{1};\n V=varargin{2};\n shrinkFactor=varargin{3};\n cladOpt=varargin{4};\nend\n\n%The default control parameters\ncParDefault.shrinkFactor=0.25;\ncParDefault.latticeSide=1;\ncParDefault.numDigitKeep=5;\ncParDefault.meshType='tri';\ncParDefault.indBoundary=[];\ncParDefault.hexSplit=0;\ncParDefault.hexMethod=2;\ncParDefault.elementType=[];\n\n%Complement input structure with default\n% [cPar]=structComplete(cPar,cParDefault,0);\n\n%%\n\n[Ec,Vc]=patchDetach(E,V,shrinkFactor);\n\n[F]=element2patch(E); \n[F_Ec]=element2patch(Ec);\n\n[Fs,indSort]=sort(F,2);\n[~,indUni1,indUni2,uniCount,IND_MAP]=unique_map(Fs,'rows');\nIND_MAP=sort(IND_MAP,1,'descend');\nIND_MAP=full(IND_MAP(1:2,:))';\n\nI=(1:1:size(F,1))';\nINDSort=sub2ind(size(F),I(:,ones(size(indSort,2),1)),indSort);\n\nindSort2=indSort;\nindSort2=indSort2(indUni1,:); %Unique\nindSort2=indSort2(indUni2,:); %Expand\n\n[~,indUnsort]=sort(indSort2,2);\nI=(1:1:size(F,1))';\nINDUnsort=sub2ind(size(F),I(:,ones(size(indUnsort,2),1)),indUnsort);\n\nF_Ec=F_Ec(INDSort);\nF_Ec=F_Ec(INDUnsort);\n\nF=F(indUni1,:);\nif numel(shrinkFactor)>1\n if numel(shrinkFactor)==size(E,1) %Shrink factor specified on faces\n [shrinkFactor_V]=faceToVertexMeasure(E,V,shrinkFactor); %Convert to nodal metric\n else\n shrinkFactor_V=shrinkFactor;\n end\n shrinkFactor_E=mean(shrinkFactor_V(F),2); %Convert to edge metric\nelse\n shrinkFactor_E=shrinkFactor;\nend\n\nFq=NaN(size(IND_MAP,1),6);\nFq(uniCount==2,:)=[F_Ec(IND_MAP(uniCount==2,1),:) F_Ec(IND_MAP(uniCount==2,2),:)];\n\nif any(uniCount==1)\n [Fcc,Vcc]=patchDetach(F,V,shrinkFactor_E);\n Fcc=Fcc(indUni2,:); %Expand\n Vq=[Vc;Vcc];\n F1=fliplr(F_Ec(IND_MAP(uniCount==1,1),:));\n F2=fliplr(Fcc(IND_MAP(uniCount==1,1),:))+size(Vc,1);\n Fq(uniCount==1,:)=[F1 F2];\nelse\n Vq=Vc;\nend\n\nFq=[Fq(:,[1 2]) Fq(:,[5 4]);...\n Fq(:,[2 3]) Fq(:,[6 5]);...\n Fq(:,[3 1]) Fq(:,[4 6])];\n\nFq=fliplr(Fq);\n\nif cladOpt==1\n F=F(indUni2,:); %Expand\n [Fq2,Vq2,Fc,~]=dualClad(F(IND_MAP(uniCount==1,1),:),V,shrinkFactor,1);\n [~,~,Nq2]=patchNormal(Fc,Vq2); %Vertex normals \n \n faceEdgeLengthSet=mean([ sqrt(sum((Vq2(Fc(:,1),:)-Vq2(Fc(:,2),:)).^2,2)) ...\n sqrt(sum((Vq2(Fc(:,2),:)-Vq2(Fc(:,3),:)).^2,2)) ...\n sqrt(sum((Vq2(Fc(:,3),:)-Vq2(Fc(:,1),:)).^2,2))],2);\n \n vertexEdgeLengthSet=faceToVertexMeasure(Fc,Vq2,faceEdgeLengthSet);\n \n [~,indUni_F2,~]=unique(F2(:)); %Indices of unique nodes\n\n %Creating offset nodes\n Vq2i=Vq2; \n Vq2i(Fc(indUni_F2),:)=Vq2i(Fc(indUni_F2),:)+Nq2(Fc(indUni_F2),:).*mean(vertexEdgeLengthSet(indUni_F2,:),2);%mean(edgeLengthSet(indPush,:),2); %Vq(F2(indUni_F2),:);\n \n Vq3=[Vq2;Vq2i]; %Joining node sets\n \n Fq2_p=fliplr(Fq2)+size(Vq2,1); \n Fq2_2=[Fq2(:,[3 2]) Fq2(:,[2 3])+size(Vq2,1)];%\n Fq2_3=[Fq2(:,[1 4]) Fq2(:,[4 1])+size(Vq2,1)];% \n Fq2_sides=[Fq2_p; Fq2_2; Fq2_3]; \n Fq3=[Fq2_sides; Fq2;];\n Cq3=[2*ones(size(Fq2_sides,1),1); 3*ones(size(Fq2,1),1);];\n \n Cc=4*ones(size(Fc,1),1);\n \n FT=[Fq(:,[1 2 3]); Fq(:,[3 4 1]); Fq3(:,[1 2 3])+size(Vq,1); Fq3(:,[3 4 1])+size(Vq,1); Fc+size(Vq,1)+size(Vq2,1);]; %Faces\n VT=[Vq; Vq3]; %Vertices\n CT=[ones(size(Fq,1)*2,1); repmat(Cq3,2,1); Cc; ]; %Color data\n \n [FT,VT]=mergeVertices(FT,VT); %Merge vertices\n \nelse\n FT=[Fq(:,[1 2 3]); Fq(:,[3 4 1]); fliplr(F2)]; %Faces\n VT=Vq; %Vertices\n CT=[ones(size(Fq,1)*2,1);2*ones(size(F2,1),1)]; %Color data\nend\n\n\n\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/dualLattice.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37217210713236376}} {"text": "function volCoords = meshCursor2Volume(volView, msh)\n%\n% volCoords = meshCursor2Volume(volView, [msh=viewGet(volView,'currentmesh')]);\n%\n% Gets the current mrMesh cursor location and transforms it to mrVista\n% volume coordiantes.\n%\n% There are currently 3 ways to map the cursor to the VOLUME:\n%\n% 1. map the 3d cursor location directly to volume coords. This is the\n% least accurate, since even smoothing the mesh will throw it off. If the\n% mesh is not a real surface (eg. it's a cut plane or a DTI fiber), then\n% this method will be used, since we have no other choice.\n% \n% 2. get the vertex index of the cursor and then find the 3d location of\n% that vertex in the volume space. This avoids the smoothing problem in\n% method 1, but is not consistent with all other mapping code that uses the\n% vertexToGray map. This method will only be used if the vertex-to-gray\n% transform field of the msh struct doesn't exist or is empty.\n%\n% 3. get the vertex index of the cursor and use the vertex-to-gray\n% transform associated with the mesh to map these to layer-1 gray nodes.\n% Then, we can just take the 3d coordinates of those layer 1 nodes. This is\n% the most accurate method and is consistent with all our other mapping\n% code. This method will be used by default, if it can.\n%\n% HISTORY:\n% 2006.06.01 RFD: wrote it.\n% 2006.10.24 RAS: doesn't crash, but warns, if cursor is outside volume\n% range.\n% 2008.12.16 RFD & DY: \nif(~exist('msh','var')||isempty(msh))\n msh = viewGet(volView,'currentmesh');\nend\n\nif(isfield(msh,'vertexGrayMap') && ~isempty(msh.vertexGrayMap))\n vertInd = mrmGet(msh,'cursorVertex');\n if vertInd < 1 % cursor not pointing to a volume vertex\n volCoords = [];\n warning('[%s]: Mesh Cursor is outside volume range.', mfilename); %#ok<*WNTAG>\n return\n end\n layerOneVolumeIndex = msh.vertexGrayMap(1,vertInd);\n \n % If the cursor position falls within the zone where functional data\n % was collected, translate this to a volume coordinate by grabbing the\n % position of the layer 1 node\n if(layerOneVolumeIndex>0 && layerOneVolumeIndex<=size(volView.coords,2) && ~isnan(layerOneVolumeIndex))\n volCoords = volView.coords(:,layerOneVolumeIndex)';\n % If not (and we have not computed layer 1 nodes for that position),\n % just get the cursor position at the gray/white boundary (which is\n % about 1mm off from where the layer 1 node position would be)\n else\n volCoords = round(msh.initVertices([2 1 3],vertInd)');\n end\nelse\n volCoords = round(mrmGet(msh,'cursor'));\nend\n\nreturn;", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrMesh/meshviewer/meshCursor2Volume.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37217210713236376}} {"text": "function D = driving_function_mono_wfs(x0,xs,src,f,conf)\n%DRIVING_FUNCTION_MONO_WFS driving signal for WFS\n%\n% Usage: D = driving_function_mono_wfs(x0,xs,src,f,conf)\n%\n% Input parameters:\n% x0 - position and direction of the secondary source / m [nx7]\n% xs - position of virtual source or direction of plane\n% wave / m [1x3] or [1x6]\n% src - source type of the virtual source\n% 'pw' - plane wave (xs is the direction of the\n% plane wave in this case)\n% 'ps' - point source\n% 'ls' - line source\n% 'fs' - focused source\n% f - frequency of the monochromatic source / Hz\n% conf - configuration struct (see SFS_config)\n%\n% Output parameters:\n% D - driving function signal [nx1]\n%\n% See also: plot_sound_field, sound_field_mono_wfs_25d,\n% driving_function_imp_wfs_25d\n\n%*****************************************************************************\n% The MIT License (MIT) *\n% *\n% Copyright (c) 2010-2019 SFS Toolbox Developers *\n% *\n% Permission is hereby granted, free of charge, to any person obtaining a *\n% copy of this software and associated documentation files (the \"Software\"), *\n% to deal in the Software without restriction, including without limitation *\n% the rights to use, copy, modify, merge, publish, distribute, sublicense, *\n% and/or sell copies of the Software, and to permit persons to whom the *\n% Software is furnished to do so, subject to the following conditions: *\n% *\n% The above copyright notice and this permission notice shall be included in *\n% all copies or substantial portions of the Software. *\n% *\n% THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *\n% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *\n% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *\n% THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *\n% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *\n% FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *\n% DEALINGS IN THE SOFTWARE. *\n% *\n% The SFS Toolbox allows to simulate and investigate sound field synthesis *\n% methods like wave field synthesis or higher order ambisonics. *\n% *\n% https://sfs.readthedocs.io sfstoolbox@gmail.com *\n%*****************************************************************************\n\n\n%% ===== Checking of input parameters ==================================\nnargmin = 5;\nnargmax = 5;\nnarginchk(nargmin,nargmax);\nisargsecondarysource(x0);\nisargxs(xs);\nisargpositivescalar(f);\nisargchar(src);\nisargstruct(conf);\n\n\n%% ===== Computation ====================================================\n% Calculate the driving function in time-frequency domain\n\n% Secondary source positions and directions\nnx0 = x0(:,4:6);\nx0 = x0(:,1:3);\n\n% Source position/direction/orientation\nxs = repmat(xs,[size(x0,1) 1]);\n\n% Get driving signals\nif strcmp('pw',src)\n % === Plane wave ===\n % Direction of plane wave\n nk = bsxfun(@rdivide,xs,vector_norm(xs(:,1:3),2));\n % Driving signal\n D = driving_function_mono_wfs_pw(x0,nx0,nk,f,conf);\n\nelseif strcmp('ps',src)\n % === Point source ===\n D = driving_function_mono_wfs_ps(x0,nx0,xs(:,1:3),f,conf);\n\nelseif strcmp('ls',src)\n % === Line source ===\n D = driving_function_mono_wfs_ls(x0,nx0,xs,f,conf);\n\nelseif strcmp('fs',src)\n % === Focused source ===\n D = driving_function_mono_wfs_fs(x0,nx0,xs(:,1:3),f,conf);\n\nelse\n error('%s: %s is not a known source type.',upper(mfilename),src);\nend\n", "meta": {"author": "sfstoolbox", "repo": "sfs-matlab", "sha": "02194f0243d1ead26572f760032c40527718919d", "save_path": "github-repos/MATLAB/sfstoolbox-sfs-matlab", "path": "github-repos/MATLAB/sfstoolbox-sfs-matlab/sfs-matlab-02194f0243d1ead26572f760032c40527718919d/SFS_monochromatic/driving_function_mono_wfs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7745833945721304, "lm_q2_score": 0.48047867804790706, "lm_q1q2_score": 0.37217080546187764}} {"text": "function [c] = power(a,b,varargin)\n% C = A.^B\n% [C]=POWER(A,B) Compute A.^B for a TT-tensor A and natural B.\n%\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\nif isa(a,'tt_tensor') && numel(b) == 1\n c=a;\n b=b-1;\n while(b>0)\n c=c.*a;\n b=b-1;\n end\n \nelse\n error('Incorrect usage for TT-power');\nend\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/@tt_tensor/power.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3721174862016143}} {"text": "classdef TestEstimator\n %TestEstimator\n\n properties (Constant)\n fields = {'aspect', 'focal', 'ppx', 'ppy', 'R', 't', 'K'};\n end\n\n methods (Static)\n function test_1\n img1 = imread(fullfile(mexopencv.root(),'test','tsukuba_l.png'));\n img2 = imread(fullfile(mexopencv.root(),'test','tsukuba_r.png'));\n\n finder = cv.FeaturesFinder('OrbFeaturesFinder');\n features = {finder.find(img1), finder.find(img2)};\n\n matcher = cv.FeaturesMatcher('BestOf2NearestMatcher');\n %matcher = cv.FeaturesMatcher('AffineBestOf2NearestMatcher');\n m = matcher.match_pairwise(features);\n\n obj = cv.Estimator('HomographyBasedEstimator');\n %obj = cv.Estimator('AffineBasedEstimator');\n typename = obj.typeid();\n validateattributes(typename, {'char'}, {'row', 'nonempty'});\n\n [cameras,success] = obj.estimate(features, m);\n validateattributes(success, {'logical'}, {'scalar'});\n if success\n validateattributes(cameras, {'struct'}, {'vector'});\n assert(all(ismember(TestEstimator.fields, fieldnames(cameras))));\n for i=1:numel(cameras)\n validateattributes(cameras(i).aspect, {'numeric'}, {'scalar'});\n validateattributes(cameras(i).focal, {'numeric'}, {'scalar'});\n validateattributes(cameras(i).ppx, {'numeric'}, {'scalar'});\n validateattributes(cameras(i).ppy, {'numeric'}, {'scalar'});\n validateattributes(cameras(i).R, {'numeric'}, {'size',[3 3]});\n validateattributes(cameras(i).t, {'numeric'}, {'vector','numel',3});\n validateattributes(cameras(i).K, {'numeric'}, {'size',[3 3]});\n end\n end\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/test/unit_tests/TestEstimator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3721174862016143}} {"text": "function min_max = bounds2(someVector)\n % bounds2 is get min and max limits of vector.\n % like bounds, but returns a nx2 instead of two nx1 vectors.\n % min_max = bounds2([1 2 3 -1]); % returns [-1 3];\n %\n % see also bounds\n [min_max(1), min_max(2)] = bounds(someVector);\nend", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/src/cgr_utils/bounds2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621764862150634, "lm_q2_score": 0.6619228691808011, "lm_q1q2_score": 0.3721174727414559}} {"text": "function rr = PRC(data, up)\n%PRC fuses RR estimates using the pole ranking criterion.\n\n%% Find times at which all three RRs were estimated\nmutual_times = intersect(intersect(data.bw.t, data.fm.t), data.am.t);\nquit_log = 0;\nfor mod = {'bw', 'am', 'fm'}\n eval(['temp_data = data.' mod{1,1} ';']);\n [rel_times,rel_els,~] = intersect(temp_data.t,mutual_times);\n if ~sum(strcmp(fieldnames(temp_data), 'pole_mag'))\n quit_log = 1;\n else\n eval([mod{1,1} '.est = data.' mod{1,1} '.v(rel_els);']);\n eval([mod{1,1} '.mag = data.' mod{1,1} '.pole_mag(rel_els);']);\n eval([mod{1,1} '.ang = data.' mod{1,1} '.pole_angle(rel_els);']);\n end\nend\n\nrr.v = nan(length(rel_times),1);\nrr.t = rel_times;\n\n% quit if one of the modulations wasn't present\nif quit_log\n return\nend\n\n%% Find PRC\nfor win_no = 1 : length(mutual_times)\n [rel_ests, rel_mags, rel_angs] = deal([]);\n rel_mods = cell(0);\n for mod = {'bw', 'am', 'fm'}\n eval(['rel_ests = [rel_ests, ' mod{1,1} '.est(win_no)];']);\n eval(['rel_mags = [rel_mags, ' mod{1,1} '.mag(win_no)];']);\n eval(['rel_angs = [rel_angs, ' mod{1,1} '.ang(win_no)];']);\n rel_mods{length(rel_mods)+1,1} = mod{1,1};\n end\n %% Find RR\n comps = {'bwam', 'bwfm', 'amfm'};\n [prc.v, prc.rr] = deal(nan(length(comps),1));\n for comp_no = 1:length(comps)\n comp = comps(comp_no);\n % identify corresponding els\n temp1 = strfind(rel_mods, comp{1,1}(1:2));\n temp2 = strfind(rel_mods, comp{1,1}(3:4));\n rel_els = sort([find(~cellfun(@isempty,temp1)), find(~cellfun(@isempty,temp2))]);\n % find PRC for this pair\n prc.v(comp_no) = mean(rel_mags(rel_els))/abs(diff(rel_angs(rel_els)));\n prc.rr(comp_no) = mean(rel_ests(rel_els));\n end\n \n % identify relevant RR est\n [~,rel_comp_no] = max(prc.v);\n rr.v(win_no) = prc.rr(rel_comp_no);\nend\n\nend", "meta": {"author": "peterhcharlton", "repo": "RRest", "sha": "f5022e7029c5b6d6b8159b665dccc2c8f267976e", "save_path": "github-repos/MATLAB/peterhcharlton-RRest", "path": "github-repos/MATLAB/peterhcharlton-RRest/RRest-f5022e7029c5b6d6b8159b665dccc2c8f267976e/RRest_v2.0/Algorithms/fuse_rr/PRC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37208097387988337}} {"text": "function train_spatial_diff_part_neighbour(expidx,cidx)\n\nfprintf('train_spatial_diff_part_app_dx_dy()\\n');\n\nif (ischar(expidx))\n expidx = str2num(expidx);\nend\n\nif (ischar(cidx))\n cidx = str2num(cidx);\nend\n\np = exp_params(expidx);\n\npairwiseDir = p.pairwiseDir;\nif (~exist(pairwiseDir,'dir')),mkdir(pairwiseDir);end\n\nif isfield(p, 'bidirect') && p.bidirect\n next_joint = neighbour_joint_list();\n if cidx > length(next_joint)\n return;\n end\n start_joint = cidx;\n end_joint = next_joint(cidx);\n cidxs = sort([start_joint end_joint]);\nend\n\nif isfield(p, 'allpairs') && p.allpairs\n pwIdxsAllrel = build_joint_pairs(p);\n cidxs = pwIdxsAllrel{cidx};\nend\n\nmodelFname = [pairwiseDir '/spatial_model_cidx_' num2str(cidxs(1)) '_' num2str(cidxs(2))];\ntry\n %assert(false);\n load(modelFname,'spatial_model');\n fprintf('cidx: %d - %d\\n',cidxs);\n fprintf('spatial model file loaded. quitting.\\n');\ncatch\n [X_pos, keys_pos, boxes_pos, X_neg, keys_neg, boxes_neg] = get_spatial_features_neighbour(expidx,cidx);\n \n opts.X_pos_mean = mean(X_pos);\n opts.X_pos_std = std(X_pos);\n %idxs1 = X_pos(:,1) >= opts.X_pos_mean(:,1) - 3*opts.X_pos_std(:,1) & X_pos(:,1) <= opts.X_pos_mean(:,1) + 3*opts.X_pos_std(:,1);\n %idxs2 = X_pos(:,2) >= opts.X_pos_mean(:,2) - 3*opts.X_pos_std(:,2) & X_pos(:,2) <= opts.X_pos_mean(:,2) + 3*opts.X_pos_std(:,2);\n %idxs3 = X_pos(:,3) >= opts.X_pos_mean(:,3) - 3*opts.X_pos_std(:,3) & X_pos(:,3) <= opts.X_pos_mean(:,3) + 3*opts.X_pos_std(:,3);\n %X_pos = X_pos(idxs1 & idxs2 & idxs3,:);\n if isfield(p, 'neighbor_locref') && p.neighbor_locref\n X_pos = get_augm_spatial_features_diff_neighbour_locref(X_pos); %opts.X_pos_mean, p\n X_neg = get_augm_spatial_features_diff_neighbour_locref(X_neg); %opts.X_pos_mean, p\n else\n X_pos = get_augm_spatial_features_diff_neighbour(X_pos, p); %opts.X_pos_mean, p\n X_neg = get_augm_spatial_features_diff_neighbour(X_neg, p); %opts.X_pos_mean, p\n end\n \n if (size(X_neg,1) > size(X_pos,1))\n nFeat = size(X_pos,1);\n idxs_rnd = randperm(size(X_neg,1));\n idxsSamp = idxs_rnd(1:nFeat);\n X_neg = X_neg(idxsSamp,:);\n end\n \n [X_norm, opts.X_min, opts.X_max] = getFeatNorm([X_pos;X_neg]);\n X_pos_norm = X_norm(1:size(X_pos,1),:);\n X_neg_norm = X_norm(size(X_pos,1)+1:end,:);\n %X_pos_norm = X_pos;\n %X_neg_norm = X_neg;\n \n reg_type = 0; % L2\n C = 1e-3;\n \n nPos = size(X_pos_norm,1);\n nNeg = size(X_neg_norm,1);\n lab_pos = ones(nPos,1);\n lab_neg = zeros(nNeg,1);\n lab = [lab_pos; lab_neg];\n ex = sparse(double([X_pos_norm; X_neg_norm]));\n model = train(lab, ex, ['-s ' num2str(reg_type) ' -B 1 -c ' num2str(C)]);\n\n spatial_model.training_opts = opts;\n spatial_model.log_reg = model;\n save(modelFname, 'spatial_model');\n \n if (1)\n visDir = [pairwiseDir '/vis/'];\n if (~exist(visDir,'dir')),mkdir(visDir);end\n [~,acc,pred] = predict(lab, ex, model, '-b 1');\n scrsz = get(0,'ScreenSize');\n figure('Position',[1 scrsz(4) scrsz(3)/2 scrsz(4)]);\n vis_logreg(pred,acc,1:nPos,1+nPos:nPos+nNeg);\n print(gcf,'-dpng',[visDir '/logreg_cidx_' num2str(cidxs(1)) '_' num2str(cidxs(2)) '.png']);\n close all;\n end\nend\n% ------------------------------------------------------------------------\n\n", "meta": {"author": "eldar", "repo": "deepcut", "sha": "096e2d174ddf2fbdc61458d9e7e6c6e897eac16c", "save_path": "github-repos/MATLAB/eldar-deepcut", "path": "github-repos/MATLAB/eldar-deepcut/deepcut-096e2d174ddf2fbdc61458d9e7e6c6e897eac16c/lib/pose/train_spatial_diff_part_neighbour.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37208097387988337}} {"text": "%% DEMO_febio_0059_face_mask_loading\n% Below is a demonstration for:\n%\n% * Building triangulated surface geometry for a face\n% * Meshing the face using pentahedral elements\n% * Building model of a tube\n% * Defining the boundary conditions\n% * Coding the febio structure\n% * Running the model\n% * Importing and visualizing results\n\n%% Keywords\n%\n% * febio_spec version 3.0\n% * febio, FEBio\n% * face\n% * contact, sliding, friction\n% * pentahedral elements, penta6\n% * static, solid\n% * hyperelastic, Ogden\n% * displacement logfile\n\n%%\n\nclear; close all; clc;\n\n%%\n% Plot settings\nfontSize=15;\nfaceAlpha1=1;\nfaceAlpha2=0.3;\nmarkerSize1=15;\nmarkerSize2=10;\nlineWidth=2;\ncMap=spectral(250);\n\n%% Control parameters\n\n% Path names\ndefaultFolder = fileparts(fileparts(mfilename('fullpath')));\nsavePath=fullfile(defaultFolder,'data','temp');\n\n% Defining file names\nfebioFebFileNamePart='tempModel';\nfebioFebFileName=fullfile(savePath,[febioFebFileNamePart,'.feb']); %FEB file name\nfebioLogFileName=fullfile(savePath,[febioFebFileNamePart,'.txt']); %FEBio log file name\nfebioLogFileName_disp=[febioFebFileNamePart,'_disp_out.txt']; %Log file name for exporting displacement\nfebioLogFileName_force=[febioFebFileNamePart,'_force_out.txt']; %Log file name for exporting force\nfebioLogFileName_strainEnergy=[febioFebFileNamePart,'_energy_out.txt']; %Log file name for exporting strain energy density\n\n% Geometry parameters\npointSpacingTissue=6;\nfaceTissueThickness=6;\npointSpacingMask=pointSpacingTissue/2;\nmaskRimWidth=5; \nmaskRimFilletRadius=6; \nmaskDiscRadius1=25;\nmaskDiscRadius2=maskDiscRadius1+4;\nmaskDiscOffset=25; \nbezierTangency=0.1; \n\ndistInclude=40; %Distance from mask to include face in FEA\n\n%Ray tracing parameters\noptionStructRayTrace.tolEps = 1e-6;\noptionStructRayTrace.triSide = 0;\noptionStructRayTrace.rayType = 'ray';\noptionStructRayTrace.exclusionType = 'inclusive';\noptionStructRayTrace.paired = 0; \n\n%Material parameters\nc1_tissue=1e-3; %Shear-modulus-like parameter\nm1_tissue=2; %Material parameter setting degree of non-linearity\nk_tissue=c1_tissue*100; %Bulk modulus\n\nc1_rim=c1_tissue*5; %Shear-modulus-like parameter\nm1_rim=2; %Material parameter setting degree of non-linearity\nk_rim=c1_rim*10; %Bulk modulus\n\n% FEA control settings\nnumTimeSteps=15; %Number of time steps desired\nmax_refs=35; %Max reforms\nmax_ups=0; %Set to zero to use full-Newton iterations\nopt_iter=10; %Optimum number of iterations\nmax_retries=5; %Maximum number of retires\ndtmin=(1/numTimeSteps)/100; %Minimum time step size\ndtmax=(1/numTimeSteps); %Maximum time step size\nsymmetric_stiffness=0;\nmin_residual=1e-20;\nrunMode='external';\n\n%Boundary condition parameters\ninitialOffset=0;\ndisplacementMagnitude_z=-2-initialOffset; %Displacement applied\n\n%Contact parameters\ncontactPenalty=10;\nlaugon=0;\nminaug=1;\nmaxaug=10;\nfric_coeff=0.5;\n\n%% Load face geometry\n\ntestCase=1;\nswitch testCase\n case 1\n %Load surface model\n [Ff,Vf]=graphicsModels(9);\n \n %Surface markers\n V_markers=[65.51,49.94,217.14;... %Tip of the nose\n 66.44,54.79,259.81;... %Nose between eyes\n 53.81,115,263.39;... %Right eye outer corner\n 126.5,46.62,269.75;... %Left eye outer corner\n 85.67,69.44,194.1;... %Middle of mounth\n 98.39,80.38,158]; %Bottom of chin\n case 2\n %Load surface model\n [Ff,Vf]=graphicsModels(13);\n \n %Surface markers \n V_markers=[3.50162,-181.107,-8.09110;... %Tip of the nose\n 1.51627,-159.171,30.4679;... %Nose between eyes\n -43.2473,-139.003,24.6407;... %Right eye outer corner\n 48.4245,-136.490,25.3913;... %Left eye outer corner\n 4.11905,-167.594,-36.9600;... %Middle of mounth\n 2.85290,-161.802,-73.4644]; %Bottom of chin\nend\n\ndistEyes=sqrt(sum((V_markers(3,:)-V_markers(4,:)).^2,2));\n\n%% Remeshing surface \noptionStruct_remesh.pointSpacing=pointSpacingTissue; %Set desired point spacing\noptionStruct_remesh.disp_on=0; % Turn off command window text display\n[Ff,Vf]=ggremesh(Ff,Vf,optionStruct_remesh);\n\n%%\n\nny=vecnormalize(V_markers(2,:)-V_markers(6,:));\nnx=vecnormalize(V_markers(4,:)-V_markers(3,:));\nnz=vecnormalize(cross(nx,ny));\nnx=vecnormalize(cross(ny,nz));\n\nQ=[nx;ny;nz]';\n\n%%\n\n% cFigure; hold on;\n% gpatch(Ff,Vf,'w','none',1);\n% % plotV(V_markers,'r.','MarkerSize',35);\n% % text(V_markers(:,1)+4,V_markers(:,2),V_markers(:,3),{'1','2','3','4','5','6'},'FontSize',25);\n% % quiverTriad(V_markers(1,:),Q,100);\n% axisGeom; camlight headlight;\n% colormap(spectral(250))\n% gdrawnow; \n\n%%\n\ncFigure; hold on;\ngpatch(Ff,Vf,'w','none',0.5);\nplotV(V_markers,'r.','MarkerSize',35);\ntext(V_markers(:,1)+4,V_markers(:,2),V_markers(:,3),{'1','2','3','4','5','6'},'FontSize',25);\nquiverTriad(V_markers(1,:),Q,100);\naxisGeom; camlight headlight;\ncolormap(spectral(250))\ngdrawnow; \n\n%% Centre on nose and rotate to face face looking down Z-axis\n\nVf=Vf-V_markers(1,:);\nVf=Vf*Q;\nV_markers=V_markers-V_markers(1,:);\nV_markers=V_markers*Q;\nnz=[0 0 1];%nz*Q;\n\n%%\n\ncFigure; hold on;\ngpatch(Ff,Vf,'w','none',0.5);\nplotV(V_markers,'r.','MarkerSize',35);\ntext(V_markers(:,1)+6,V_markers(:,2),V_markers(:,3)+15,{'1','2','3','4','5','6'},'FontSize',25);\naxisGeom; camlight headlight;\ncolormap(spectral(250))\ngdrawnow;\n\n%% Construct mask rim curve\n\nV1=V_markers(1,[1 2]);\nV2=V_markers(2,[1 2]);\nV3=V_markers(3,[1 2]);\nV4=V_markers(4,[1 2]);\nV5=V_markers(5,[1 2]);\nV6=V_markers(6,[1 2]);\n\npp1=0.4*V1+0.6*V2;\npp2=0.6*V1+0.4*V3;\npp3=V3-[0 V3(2)]+[0 0.5*V5(2)+0.5*V1(2)];\npp4=[0.3*V2(1)+0.8*V3(1) 0.5*V5(2)+0.5*V6(2)];\npp5=V6;\npp6=[0.3*V2(1)+0.8*V4(1) 0.5*V5(2)+0.5*V6(2)];\npp7=V4-[0 V4(2)]+[0 0.5*V5(2)+0.5*V1(2)];\npp8=0.6*V1+0.4*V4;\n\nV_rim_points=[pp1;pp2;pp3;pp4;pp5;pp6;pp7;pp8];\nV_rim_points(:,3)=0;\n\n[V_rim_points,indFaceIntersect]=traceToSurf(V_rim_points,-nz,Ff,Vf,optionStructRayTrace);\nnumRimControlPoints=size(V_rim_points,1);\n\nV_rim_curve=evenlySpaceCurve(V_rim_points,pointSpacingMask,'pchip',1);\nV_rim_curve=traceToSurf(V_rim_curve,-nz,Ff,Vf,optionStructRayTrace);\nnumPointsRimCurve=size(V_rim_curve,1);\n\n\nNe1=vecnormalize([V_rim_points(2:end,:); V_rim_points(1,:)]-V_rim_points(1:end,:));\nNe2=vecnormalize(V_rim_points - [V_rim_points(end,:); V_rim_points(1:end-1,:)]);\nNe=vecnormalize(0.5*Ne1+0.5*Ne2);\n\nNf=patchNormal(Ff,Vf); %Normal directions\nNff=Nf(indFaceIntersect(:,2),:);\nN_rim_points=vecnormalize(cross(Nff,Ne));\n\nV_rim_points1=V_rim_points-N_rim_points.*maskRimWidth/2;\nV_rim_points2=V_rim_points+N_rim_points.*maskRimWidth/2;\n\n%%\n\ncFigure; hold on;\ngpatch(Ff,Vf,'w','none',0.5);\nplotV(V_markers,'r.','MarkerSize',25);\ntext(V_markers(:,1)+4,V_markers(:,2),V_markers(:,3),{'1','2','3','4','5','6'},'FontSize',25);\n\nplotV(V_rim_points,'k.','MarkerSize',25);\nplotV(V_rim_points1,'b.','MarkerSize',25);\nplotV(V_rim_points2,'g.','MarkerSize',25);\n\nquiverVec(V_rim_points,N_rim_points,maskRimWidth/2,'y');\nquiverVec(V_rim_points,-N_rim_points,maskRimWidth/2,'y');\naxisGeom; camlight headlight;\nview(2);\ngdrawnow; \n\n%% \n\n[~,indClose]=minDist(V_markers,Vf);\nd=meshDistMarch(Ff,Vf,indClose([1 5]));\n\n[~,indClose]=minDist(V_rim_curve,Vf);\nd_rim_curve=meshDistMarch(Ff,Vf,indClose);\nd_markers_max=max(d(indClose));\n\nlogicCloseVertices= d<=d_markers_max | d_rim_curve Nodes\nfebio_spec.Mesh.Nodes{1}.ATTR.name='All'; %The node set name\nfebio_spec.Mesh.Nodes{1}.node.ATTR.id=(1:size(V,1))'; %The node id's\nfebio_spec.Mesh.Nodes{1}.node.VAL=V; %The nodel coordinates\n\n% -> Elements\npartName1='Part1';\nfebio_spec.Mesh.Elements{1}.ATTR.name=partName1; %Name of this part\nfebio_spec.Mesh.Elements{1}.ATTR.type='tet4'; %Element type\nfebio_spec.Mesh.Elements{1}.elem.ATTR.id=(1:1:size(E_face,1))'; %Element id's\nfebio_spec.Mesh.Elements{1}.elem.VAL=E_face; %The element matrix\n\npartName2='Part2';\nfebio_spec.Mesh.Elements{2}.ATTR.name=partName2; %Name of this part\nfebio_spec.Mesh.Elements{2}.ATTR.type='tet4'; %Element type\nfebio_spec.Mesh.Elements{2}.elem.ATTR.id=size(E_face,1)+(1:1:size(E_rim,1))'; %Element id's\nfebio_spec.Mesh.Elements{2}.elem.VAL=E_rim; %The element matrix\n\n% -> NodeSets\nnodeSetName1='bcSupportList';\nfebio_spec.Mesh.NodeSet{1}.ATTR.name=nodeSetName1;\nfebio_spec.Mesh.NodeSet{1}.node.ATTR.id=bcSupportList(:);\n\nnodeSetName2='bcPrescribeList';\nfebio_spec.Mesh.NodeSet{2}.ATTR.name=nodeSetName2;\nfebio_spec.Mesh.NodeSet{2}.node.ATTR.id=bcPrescribeList(:);\n\n%MeshDomains section\nfebio_spec.MeshDomains.SolidDomain{1}.ATTR.name=partName1;\nfebio_spec.MeshDomains.SolidDomain{1}.ATTR.mat=materialName1;\n\nfebio_spec.MeshDomains.SolidDomain{2}.ATTR.name=partName2;\nfebio_spec.MeshDomains.SolidDomain{2}.ATTR.mat=materialName2;\n\n% -> Surfaces\nsurfaceName1='contactSurface1';\nfebio_spec.Mesh.Surface{1}.ATTR.name=surfaceName1;\nfebio_spec.Mesh.Surface{1}.tri3.ATTR.id=(1:1:size(F_contact_primary,1))';\nfebio_spec.Mesh.Surface{1}.tri3.VAL=F_contact_primary;\n\nsurfaceName2='contactSurface2';\nfebio_spec.Mesh.Surface{2}.ATTR.name=surfaceName2;\nfebio_spec.Mesh.Surface{2}.tri3.ATTR.id=(1:1:size(F_contact_secondary,1))';\nfebio_spec.Mesh.Surface{2}.tri3.VAL=F_contact_secondary;\n\n% -> Surface pairs\ncontactPairName='Contact1';\nfebio_spec.Mesh.SurfacePair{1}.ATTR.name=contactPairName;\nfebio_spec.Mesh.SurfacePair{1}.primary=surfaceName1;\nfebio_spec.Mesh.SurfacePair{1}.secondary=surfaceName2;\n\n%Boundary condition section \n% -> Fix boundary conditions\nfebio_spec.Boundary.bc{1}.ATTR.type='fix';\nfebio_spec.Boundary.bc{1}.ATTR.node_set=nodeSetName1;\nfebio_spec.Boundary.bc{1}.dofs='x,y,z';\n\nfebio_spec.Boundary.bc{2}.ATTR.type='fix';\nfebio_spec.Boundary.bc{2}.ATTR.node_set=nodeSetName2;\nfebio_spec.Boundary.bc{2}.dofs='x,y';\n\nfebio_spec.Boundary.bc{3}.ATTR.type='prescribe';\nfebio_spec.Boundary.bc{3}.ATTR.node_set=nodeSetName2;\nfebio_spec.Boundary.bc{3}.dof='z';\nfebio_spec.Boundary.bc{3}.scale.ATTR.lc=1;\nfebio_spec.Boundary.bc{3}.scale.VAL=displacementMagnitude_z;\nfebio_spec.Boundary.bc{3}.relative=0;\n\n%Contact section\nfebio_spec.Contact.contact{1}.ATTR.type='sliding-elastic';\nfebio_spec.Contact.contact{1}.ATTR.surface_pair=contactPairName;\nfebio_spec.Contact.contact{1}.two_pass=0;\nfebio_spec.Contact.contact{1}.laugon=laugon;\nfebio_spec.Contact.contact{1}.tolerance=0.2;\nfebio_spec.Contact.contact{1}.gaptol=0;\nfebio_spec.Contact.contact{1}.minaug=minaug;\nfebio_spec.Contact.contact{1}.maxaug=maxaug;\nfebio_spec.Contact.contact{1}.search_tol=0.01;\nfebio_spec.Contact.contact{1}.search_radius=0.1*sqrt(sum((max(V,[],1)-min(V,[],1)).^2,2)); \nfebio_spec.Contact.contact{1}.symmetric_stiffness=0;\nfebio_spec.Contact.contact{1}.auto_penalty=1;\nfebio_spec.Contact.contact{1}.penalty=contactPenalty;\nfebio_spec.Contact.contact{1}.fric_coeff=fric_coeff;\n\n%LoadData section\n% -> load_controller\nfebio_spec.LoadData.load_controller{1}.ATTR.id=1;\nfebio_spec.LoadData.load_controller{1}.ATTR.type='loadcurve';\nfebio_spec.LoadData.load_controller{1}.interpolate='LINEAR';\nfebio_spec.LoadData.load_controller{1}.points.point.VAL=[0 0; 1 1];\n\n%Output section\n% -> log file\nfebio_spec.Output.logfile.ATTR.file=febioLogFileName;\nfebio_spec.Output.logfile.node_data{1}.ATTR.file=febioLogFileName_disp;\nfebio_spec.Output.logfile.node_data{1}.ATTR.data='ux;uy;uz';\nfebio_spec.Output.logfile.node_data{1}.ATTR.delim=',';\nfebio_spec.Output.logfile.node_data{1}.VAL=1:size(V,1);\n\nfebio_spec.Output.logfile.node_data{2}.ATTR.file=febioLogFileName_force;\nfebio_spec.Output.logfile.node_data{2}.ATTR.data='Rx;Ry;Rz';\nfebio_spec.Output.logfile.node_data{2}.ATTR.delim=',';\nfebio_spec.Output.logfile.node_data{2}.VAL=1:size(V,1);\n\nfebio_spec.Output.logfile.element_data{1}.ATTR.file=febioLogFileName_strainEnergy;\nfebio_spec.Output.logfile.element_data{1}.ATTR.data='sed';\nfebio_spec.Output.logfile.element_data{1}.ATTR.delim=',';\nfebio_spec.Output.logfile.element_data{1}.VAL=1:size(E_face,1);\n\n%% Quick viewing of the FEBio input file structure\n% The |febView| function can be used to view the xml structure in a MATLAB\n% figure window.\n\n%%\n% |febView(febio_spec); %Viewing the febio file|\n\n%% Exporting the FEBio input file\n% Exporting the febio_spec structure to an FEBio input file is done using\n% the |febioStruct2xml| function.\n\nfebioStruct2xml(febio_spec,febioFebFileName); %Exporting to file and domNode\n\n%% Running the FEBio analysis\n% To run the analysis defined by the created FEBio input file the\n% |runMonitorFEBio| function is used. The input for this function is a\n% structure defining job settings e.g. the FEBio input file name. The\n% optional output runFlag informs the user if the analysis was run\n% succesfully.\n\nfebioAnalysis.run_filename=febioFebFileName; %The input file name\nfebioAnalysis.run_logname=febioLogFileName; %The name for the log file\nfebioAnalysis.disp_on=1; %Display information on the command window\nfebioAnalysis.disp_log_on=1; %Display convergence information in the command window\nfebioAnalysis.runMode=runMode;%'internal';\nfebioAnalysis.t_check=0.25; %Time for checking log file (dont set too small)\nfebioAnalysis.maxtpi=1e99; %Max analysis time\nfebioAnalysis.maxLogCheckTime=10; %Max log file checking time\n\n[runFlag]=runMonitorFEBio(febioAnalysis);%START FEBio NOW!!!!!!!!\n\n%% Import FEBio results\n\nif runFlag==1 %i.e. a succesful run\n \n % Importing nodal displacements from a log file\n [time_mat, N_disp_mat,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_disp)); %Nodal displacements\n time_mat=[0; time_mat(:)]; %Time\n \n N_disp_mat=N_disp_mat(:,2:end,:);\n sizImport=size(N_disp_mat);\n sizImport(3)=sizImport(3)+1;\n N_disp_mat_n=zeros(sizImport);\n N_disp_mat_n(:,:,2:end)=N_disp_mat;\n N_disp_mat=N_disp_mat_n;\n DN=N_disp_mat(:,:,end);\n \n V_def=V+DN;\n V_DEF=N_disp_mat+repmat(V,[1 1 size(N_disp_mat,3)]);\n X_DEF=V_DEF(:,1,:);\n Y_DEF=V_DEF(:,2,:);\n Z_DEF=V_DEF(:,3,:);\n \n C=sqrt(sum(DN(:,3).^2,2));\n \n %%\n % Importing element strain energies from a log file\n [~,E_energy,~]=importFEBio_logfile(fullfile(savePath,febioLogFileName_strainEnergy)); %Element strain energy\n \n %Remove nodal index column\n E_energy=E_energy(:,2:end,:);\n \n %Add initial state i.e. zero energy\n sizImport=size(E_energy);\n sizImport(3)=sizImport(3)+1;\n E_energy_mat_n=zeros(sizImport);\n E_energy_mat_n(:,:,2:end)=E_energy;\n E_energy=E_energy_mat_n;\n \n [FE_face,C_energy_face]=element2patch(E_face,E_energy(1:size(E_face,1),:,end),'tet4');\n [CV]=faceToVertexMeasure(FE_face,V,C_energy_face);\n \n %%\n % Plotting the simulated results using |anim8| to visualize and animate\n % deformations\n cMap_c=gjet(250);\n cMap=[linspacen([1 1 1],cMap_c(1,:),50)'; cMap_c];\n \n% cMap=cMap(4:end,:);\n \n % Create basic view and store graphics handle to initiate animation\n hf=cFigure; %Open figure\n gtitle([febioFebFileNamePart,': Press play to animate']);\n \n gpatch(Ffc,Vf,cMap(1,:),'none',1)\n hp1=gpatch(Fb(Cb==1,:),V_def,CV,'none',1); %Add graphics object to animate\n hp1.FaceColor='Interp';\n hp2=gpatch(Fb_rim,V_def,'w','none',0.25); %Add graphics object to animate\n hp3=gpatch(F_mask,V_mask,'w','none',0.25);\n \n axisGeom(gca,fontSize); camlight headlight;\n colormap(cMap); colorbar;\n caxis([0 max(C_energy_face)/10]);\n axis([min(X_DEF(:)) max(X_DEF(:)) min(Y_DEF(:)) max(Y_DEF(:)) min(Z_DEF(:)) max(Z_DEF(:))]);\n axis tight; \n \n % Set up animation features\n animStruct.Time=time_mat; %The time vector\n for qt=1:1:size(N_disp_mat,3) %Loop over time increments\n DN=N_disp_mat(:,:,qt); %Current displacement\n V_def=V+DN; %Current nodal coordinates\n \n % C=sqrt(sum(DN(:,3).^2,2)); %New color\n [FE_face,C_energy_face]=element2patch(E_face,E_energy(1:size(E_face,1),:,qt),'tet4');\n [CV]=faceToVertexMeasure(FE_face,V,C_energy_face);\n \n u=mean(DN(bcPrescribeList,:),1);\n V_mask_def=V_mask+u(ones(size(V_mask,1),1),:);\n \n %Set entries in animation structure\n animStruct.Handles{qt}=[hp1 hp1 hp2 hp3]; %Handles of objects to animate\n animStruct.Props{qt}={'Vertices','CData','Vertices','Vertices'}; %Properties of objects to animate\n animStruct.Set{qt}={V_def,CV,V_def,V_mask_def}; %Property values for to set in order to animate\n end\n anim8(hf,animStruct); %Initiate animation feature\n drawnow; \n \nend\n\n%%\nfunction [varargout]=traceToSurf(V1,N1,F2,V2,optionStructRayTrace)\n\nif size(N1,1)==1\n N1=N1(ones(size(V1,1),1),:);\nend\n\nnumPoints=size(V1,1);\nindFacesIntersect=nan(size(V1,1),2);\nfor q=1:1:numPoints \n [P,indFaceIntersect,~,~]=triSurfRayTrace(V1(q,:),N1(q,:),F2,V2,optionStructRayTrace); \n if size(P,1)>1\n [~,indMin]=minDist(V1(q,:),P);\n % [~,indMin]=min(d);\n P=P(indMin,:); \n indFaceIntersect=indFaceIntersect(indMin,:);\n end \n if ~isempty(P)\n V1(q,:)=P;\n indFacesIntersect(q,:)=indFaceIntersect;\n end \nend\n\nvarargout{1}=V1;\nvarargout{2}=indFacesIntersect;\n\nend\n\nfunction [Fr,Vr]=roundMesh(indCurve,Vm,Nm,nc,stripRadius)\n\nE=[indCurve(1:end)' [indCurve(2:end) indCurve(1)]'];\nind1=indCurve(1:end)';\nind2=[indCurve(2:end) indCurve(1)]';\nind3=[indCurve(end) indCurve(1:end-1)]';\n\nN1f=Vm(ind2,:)-Vm(ind1,:);\nN1b=Vm(ind1,:)-Vm(ind3,:);\nNe=vecnormalize((N1f+N1b)/2);\n\n% Ne=vecnormalize(edgeVec(E,Vm));\nNf=-Nm(E(:,1),:);% -vecnormalize((Nm(E(:,1),:)+Nm(E(:,2),:))/2);\nNe2=vecnormalize(cross(Nf,Ne));\n\nX=repmat(Vm(E(:,1),1),1,nc);\nY=repmat(Vm(E(:,1),2),1,nc);\nZ=repmat(Vm(E(:,1),3),1,nc);\n\nt=repmat(linspace(0,pi/2,nc),size(Z,1),1);\n\nX=X+stripRadius.*sin(t).*repmat(Ne2(:,1),1,nc)-stripRadius.*cos(t).*repmat(Nf(:,1),1,nc)+stripRadius.*repmat(Nf(:,1),1,nc);\nY=Y+stripRadius.*sin(t).*repmat(Ne2(:,2),1,nc)-stripRadius.*cos(t).*repmat(Nf(:,2),1,nc)+stripRadius.*repmat(Nf(:,2),1,nc);\nZ=Z+stripRadius.*sin(t).*repmat(Ne2(:,3),1,nc)-stripRadius.*cos(t).*repmat(Nf(:,3),1,nc)+stripRadius.*repmat(Nf(:,3),1,nc);\n\nfor q=2:1:size(X,2) \n v=evenlySampleCurve([X(:,q) Y(:,q) Z(:,q)],size(X,1),'pchip',1); \n X(:,q)=v(:,1);\n Y(:,q)=v(:,2);\n Z(:,q)=v(:,3);\nend\n\n[Fr,Vr]=grid2patch(X,Y,Z,[],[1 0 0]);\n\nend\n%%\n\nfunction [F,V,X,Y,Z]=bezierLoft(P1,P4,N1,N4,pointSpacing,f)\n\nD12=sqrt(sum((P1-P4).^2,2));\nnumPoints=ceil(max(D12)./pointSpacing);\nif numPoints<2\n numPoints=2;\nend\n\nP2=P1+D12.*f.*N1;\nP3=P4-D12.*f.*N4;\n\nX=zeros(numPoints,size(P1,1));\nY=zeros(numPoints,size(P1,1));\nZ=zeros(numPoints,size(P1,1));\nfor q=1:1:size(P1,1)\n p=[P1(q,:); P2(q,:); P3(q,:); P4(q,:)]; %Control points \n V_bezier=bezierCurve(p,numPoints*2); %Compute bezier curve\n V_bezier=evenlySampleCurve(V_bezier,numPoints,'pchip'); %resample evenly\n X(:,q)=V_bezier(:,1);\n Y(:,q)=V_bezier(:,2);\n Z(:,q)=V_bezier(:,3);\nend\n\n%Create quad patch data\n[F,V] = surf2patch(X,Y,Z);\nI=[(1:size(Z,1)-1)' (1:size(Z,1)-1)' (2:size(Z,1))' (2:size(Z,1))' ];\nJ=[size(Z,2).*ones(size(Z,1)-1,1) ones(size(Z,1)-1,1) ones(size(Z,1)-1,1) size(Z,2).*ones(size(Z,1)-1,1)];\nF_sub=sub2ind(size(Z),I,J);\nF=[F;F_sub];\nF=fliplr(F);\n\nend\n\n%%\n%\n% <>\n%\n% _*GIBBON*_\n% \n%\n% _Kevin Mattheus Moerman_, \n\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/docs/DEMO_febio_0059_face_mask_loading.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37208097387988337}} {"text": "function y = ipermute( x, order )\n\n% Disciplined convex/geometric programming information for IPERMUTE:\n% IPERMUTE(A,ORDER) imposes no convexity restrictions on A. ORDER\n% must be constant.\n\n%\n% Determine the permutation\n%\n\ns = x.size_;\nndxs = 1 : prod( s );\nndx2 = ipermute( reshape( ndxs, s ), order );\n\n%\n% Permute the data\n%\n\nb = x.basis_;\ntry\n b = b( :, ndx2 );\ncatch\n ndxs( ndx2( : ).' ) = ndxs;\n [ r, c, v ] = find( b );\n b = sparse( r, ndxs( c ), v, size( b, 1 ), size( b, 2 ) );\n clear r c v\nend\ny = cvx( size( ndx2 ), b );\n\n% Copyright 2005-2014 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/cvx-w64/cvx/builtins/@cvx/ipermute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190477, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37208096668907065}} {"text": "function f = floor(f)\n%FLOOR Pointwise floor function of a CLASSICFUN.\n% G = FLOOR(F) returns the CLASSICFUN G such that G(X) = FLOOR(F(x)) for each x in\n% F.domain. \n%\n% If F is complex, then the G = FLOOR(REAL(F)) + 1i*FLOOR(IMAG(F)).\n%\n% Note that FLOOR() assumes the output G(X) is a constant. If it is not, then\n% garbage is returned with no warning.\n%\n% See also CEIL, ROUND, FIX.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% FLOOR() the ONEFUN:\nf.onefun = floor(f.onefun);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@classicfun/floor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3720809666890706}} {"text": "function T = ctranspose(T,varargin)\n% conjugate of a tensor\n%\n% Input\n% T - @tensor\n% \n% Output\n% T - @tensor\n%\n\nswitch T.rank\n \n case 1\n \n case 2\n \n T.M = conj(permute(T.M,[2 1 3:ndims(T.M)]));\n \n case 3\n \n case 4\n\n % check for symmetry\n\n % convert to a matrix \n M = tensor42(T.M,T.doubleConvention);\n \n % invert the matrix\n M = conj(permute(M,[2 1 3:ndims(T.M)]));\n \n % make some corrections\n % TODO: why this is needed?\n if ~check_option(varargin,'skipCorrection')\n w = 1./(1+((1:6)>3));\n w = w.' * w;\n M = M .* w;\n end\n \n % convert back to a 4 rank tensor\n T.M = tensor24(M,T.doubleConvention);\nend\n\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/TensorAnalysis/@tensor/ctranspose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3720809666890706}} {"text": "% Copyright (C) 2017-2018 Titus Cieslewski, RPG, University of Zurich, \n% Switzerland\n% You can contact the author at \n% Copyright (C) 2017-2018 Siddharth Choudhary, College of Computing,\n% Georgia Institute of Technology, Atlanta, GA, USA\n% Copyright (C) 2017-2018 Davide Scaramuzza, RPG, University of Zurich, \n% Switzerland\n%\n% This file is part of dslam_open.\n%\n% dslam_open is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% dslam_open is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with dslam_open. If not, see .\n\n% Visualize trajectory outputs\nimport gtsam.*\nclose all;\nnr_robots = 10;\ndataDir = 'data';\ncmap = hsv(nr_robots);\n\n\n figure(1);\n cla; hold on;\nfor robot_i = 1:nr_robots\n robot_i\n initial_file = sprintf('%s/%d_optimized.g2o', dataDir, robot_i-1)\n [graph, initial] = gtsam.readG2o(initial_file, true);\n \n plot3DSubGraph(graph, initial, '-', cmap(robot_i,:), '');\n hold on;\nend\n\naxis equal;\n \n", "meta": {"author": "uzh-rpg", "repo": "dslam_open", "sha": "3428893cffa5e832e8d51a6f3e18213b47205a83", "save_path": "github-repos/MATLAB/uzh-rpg-dslam_open", "path": "github-repos/MATLAB/uzh-rpg-dslam_open/dslam_open-3428893cffa5e832e8d51a6f3e18213b47205a83/dslam/matlab/plotG2oOutput.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3720809666890706}} {"text": " function [B Bgx Bgy Bgz] = makeB(ig, kg, varargin)\n%|function [B Bgx Bgy Bgz] = makeB(ig, kg, [?])\n%|\n%| Create a Fatrix B operation of warping based on cubic B-spline\n%|\n%| in:\n%|\t'ig'\t\timage geometry \n%|\t'kg'\t\tknot geometry\n%|\n%| out:\n%|\tB\t\tfatrix operation for warping\n%|\tBgx\t\tfatrix operation for warping\n%|\tBgy\t\tfatrix operation for warping\n%|\tBgz\t\tfatrix operation for warping\n%|\n%| Copyright August 2006, Se Young Chun and Jeff Fessler, University of Michigan\n\nif nargin < 2, ir_usage, end\n\nargB.power = 0;\nargB.ig = ig;\nargB.kg = kg;\n[argB.kernelx argB.kernelgx] = makeKernel(3, kg.mx);\n[argB.kernely argB.kernelgy] = makeKernel(3, kg.my);\nif (kg.is3 == 1) \n\t[argB.kernelz argB.kernelgz] = makeKernel(3, kg.mz);\nend\n\nif (nargin == 2)\n\tB = Fatrix([ig.np kg.np], argB, 'forw', @makeB_forward, ...\n\t\t'back', @makeB_transpose, 'power', @makeB_power);\n\tBgx = Fatrix([ig.np kg.np], argB, 'forw', @makeBgx_forward, ...\n\t\t'back', @makeBgx_transpose);\n\tBgy = Fatrix([ig.np kg.np], argB, 'forw', @makeBgy_forward, ...\n\t\t'back', @makeBgy_transpose);\n\tif (kg.is3 == 1) \n\t\tBgz = Fatrix([ig.np kg.np], argB, 'forw', @makeBgz_forward, ...\n\t\t\t'back', @makeBgz_transpose);\n\tend\n\nelse\n\tif (kg.is3 == 1) \n\t\targB.WarpCell = varargin(1:3);\n\t\tBgz = Fatrix([ig.np kg.np],argB,'forw',@makeBgz_forwardwarp, ...\n\t\t\t'back', @makeBgz_transposewarp);\n\telse\n\t\targB.WarpCell = varargin(1:2);\n\tend\n\tB = Fatrix([ig.np kg.np], argB, 'forw', @makeB_forwardwarp, ...\n\t\t'back', @makeB_transposewarp);\n\tBgx = Fatrix([ig.np kg.np], argB, 'forw', @makeBgx_forwardwarp, ...\n\t\t'back', @makeBgx_transposewarp);\n\tBgy = Fatrix([ig.np kg.np], argB, 'forw', @makeBgy_forwardwarp, ...\n\t\t'back', @makeBgy_transposewarp);\nend\n\n\n\t\n%%%\nfunction DFM = makeB_forward(argB, alpha)\nalpha = double(reshape(alpha, argB.kg.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], {argB.kernelx, argB.kernely});\nelse\n\tDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t\t{argB.kernelx, argB.kernely, argB.kernelz});\nend\nDFM = single(DFM(:));\n\n\n\n%%%\nfunction ALP = makeB_transpose(argB, imgco)\nimgco = double(reshape(imgco, argB.ig.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tALP = BsplCo2ValTranZeroFilt(imgco, [argB.kg.nx argB.kg.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], {argB.kernelx, argB.kernely});\nelse\n\tALP = BsplCo2ValTranZeroFilt(imgco,[argB.kg.nx argB.kg.ny argB.kg.nz],...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t\t{argB.kernelx, argB.kernely, argB.kernelz});\nend\nALP = single(ALP(:));\n\n\n\n%%%\nfunction DFM = makeB_forwardwarp(argB, alpha)\nalpha = single(reshape(alpha, argB.kg.dim));\nif (argB.kg.is3 == 0) % 2D case\n DFM = BsplCo2ValZero(alpha, [argB.ig.nx, argB.ig.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], argB.WarpCell);\nelse\n DFM = BsplCo2ValZero(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nend\nDFM = DFM(:);\n\n\n\n%%%\nfunction ALP = makeB_transposewarp(argB, imgco)\nimgco = single(reshape(imgco, argB.ig.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tALP = BsplCo2ValTranZero(imgco, [argB.kg.nx, argB.kg.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], argB.WarpCell);\nelse\n\tALP = BsplCo2ValTranZero(imgco, [argB.kg.nx, argB.kg.ny argB.kg.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nend\nALP = ALP(:);\n\n\n\n%%%\nfunction DFM = makeBgx_forward(argB, alpha)\nalpha = double(reshape(alpha, argB.kg.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], {argB.kernelgx, argB.kernely});\nelse\n\tDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t\t{argB.kernelgx, argB.kernely, argB.kernelz});\nend\nDFM = single(DFM(:));\n\n\n\n%%%\nfunction ALP = makeBgx_transpose(argB, imgco)\nimgco = double(reshape(imgco, argB.ig.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tALP = BsplCo2ValTranZeroFilt(imgco, [argB.kg.nx argB.kg.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], ...\n\t\t{fliplr(argB.kernelgx), fliplr(argB.kernely)});\nelse\n\tALP = BsplCo2ValTranZeroFilt(imgco,[argB.kg.nx argB.kg.ny argB.kg.nz],...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t\t{fliplr(argB.kernelgx), fliplr(argB.kernely), ...\n\t\tfliplr(argB.kernelz)});\nend\nALP = single(ALP(:));\n\n\n\n%%%\nfunction DFM = makeBgx_forwardwarp(argB, alpha)\nalpha = single(reshape(alpha, argB.kg.dim));\nif (argB.kg.is3 == 0) % 2D case\n DFM = BsplCo2GdXZero(alpha, [argB.ig.nx, argB.ig.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], argB.WarpCell);\nelse\n DFM = BsplCo2GdXZero(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nend\nDFM = DFM(:);\n\n\n\n%%%\nfunction ALP = makeBgx_transposewarp(argB, imgco)\nimgco = single(reshape(imgco, argB.ig.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tALP = BsplCo2GdXTranZero(imgco, [argB.kg.nx, argB.kg.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], argB.WarpCell);\nelse\n\tALP = BsplCo2GdXTranZero(imgco, [argB.kg.nx, argB.kg.ny argB.kg.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nend\nALP = ALP(:);\n\n\n\n%%%\nfunction DFM = makeBgy_forward(argB, alpha)\nalpha = double(reshape(alpha, argB.kg.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], {argB.kernelx, argB.kernelgy});\nelse\n\tDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t\t{argB.kernelx, argB.kernelgy, argB.kernelz});\nend\nDFM = single(DFM(:));\n\n\n\n%%%\nfunction ALP = makeBgy_transpose(argB, imgco)\nimgco = double(reshape(imgco, argB.ig.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tALP = BsplCo2ValTranZeroFilt(imgco, [argB.kg.nx argB.kg.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], ...\n\t\t{fliplr(argB.kernelx), fliplr(argB.kernelgy)});\nelse\n\tALP = BsplCo2ValTranZeroFilt(imgco,[argB.kg.nx argB.kg.ny argB.kg.nz],...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t\t{fliplr(argB.kernelx), fliplr(argB.kernelgy), ...\n\t\tfliplr(argB.kernelz)});\nend\nALP = single(ALP(:));\n\n\n\n%%%\nfunction DFM = makeBgy_forwardwarp(argB, alpha)\nalpha = single(reshape(alpha, argB.kg.dim));\nif (argB.kg.is3 == 0) % 2D case\n DFM = BsplCo2GdYZero(alpha, [argB.ig.nx, argB.ig.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], argB.WarpCell);\nelse\n DFM = BsplCo2GdYZero(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nend\nDFM = DFM(:);\n\n\n\n%%%\nfunction ALP = makeBgy_transposewarp(argB, imgco)\nimgco = single(reshape(imgco, argB.ig.dim));\nif (argB.kg.is3 == 0) % 2D case\n\tALP = BsplCo2GdYTranZero(imgco, [argB.kg.nx, argB.kg.ny], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y], ...\n\t\t[argB.kg.mx argB.kg.my], argB.WarpCell);\nelse\n\tALP = BsplCo2GdYTranZero(imgco, [argB.kg.nx, argB.kg.ny argB.kg.nz], ...\n\t\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nend\nALP = ALP(:);\n\n\n\n%%%\nfunction DFM = makeBgz_forward(argB, alpha)\nalpha = double(reshape(alpha, argB.kg.dim));\nDFM = BsplCo2ValZeroFilt(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t{argB.kernelx, argB.kernely, argB.kernelgz});\nDFM = single(DFM(:));\n\n\n\n%%%\nfunction ALP = makeBgz_transpose(argB, imgco)\nimgco = double(reshape(imgco, argB.ig.dim));\nALP = BsplCo2ValTranZeroFilt(imgco,[argB.kg.nx argB.kg.ny argB.kg.nz],...\n\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t[argB.kg.mx argB.kg.my argB.kg.mz], ...\n\t{fliplr(argB.kernelx), fliplr(argB.kernely), ...\n\tfliplr(argB.kernelgz)});\nALP = single(ALP(:));\n\n\n\n%%%\nfunction DFM = makeBgz_forwardwarp(argB, alpha)\nalpha = single(reshape(alpha, argB.kg.dim));\nDFM = BsplCo2GdZZero(alpha, [argB.ig.nx, argB.ig.ny argB.ig.nz], ...\n\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nDFM = DFM(:);\n\n\n\n%%%\nfunction ALP = makeBgz_transposewarp(argB, imgco)\nimgco = single(reshape(imgco, argB.ig.dim));\nALP = BsplCo2GdZTranZero(imgco, [argB.kg.nx, argB.kg.ny argB.kg.nz], ...\n\t[argB.kg.offset_x argB.kg.offset_y argB.kg.offset_z], ...\n\t[argB.kg.mx argB.kg.my argB.kg.mz], argB.WarpCell);\nALP = ALP(:);\n\n\n\n%%%\nfunction ob = makeB_power(ob, sup)\n\nif (sup == 1)\n\nelseif ((sup == 2) && (ob.arg.power == 0))\n\tob.arg.power = 1;\nelse\n\terror('only squares of each element are supported');\nend\nob = ob;\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/align/makeB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592641, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3720809594982576}} {"text": "% trainTestSurfaceContextScript\n% \n% Assumes you have created:\n% imsegs : data structure that contains information on all training\n% and testing images\n% trainind: the indices of the training images\n% testind: the indices of the testing images\n\nbasedir = '???'; % set this appropriately\nimdir = [basedir '/images/all_images'];\ndatadir = [basedir '/data'];\nresultsdir = [basedir '/results'];\n\nDO_TRAIN = 1;\nDO_TEST = 1;\n\nif DO_TRAIN\n\n nsegments = [10 20 30 40 50 60 80 100];\n\n % Computes the superpixel features\n if ~exist('spfeatures')\n spfeatures = mcmcGetAllSuperpixelData(imdir, imsegs);\n save([datadir '/superpixelData.mat'], 'spfeatures');\n end\n\n % Trains the superpixel classifiers\n if ~exist('vclassifierSP')\n [vclassifierSP, hclassifierSP] = ...\n mcmcTrainSuperpixelClassifier(spfeatures(trainind), imsegs(trainind));\n save([datadir '/superpixelClassifier.mat'], 'vclassifierSP', 'hclassifierSP');\n end\n\n % Computes the same-label features\n if ~exist('efeatures')\n [efeatures, adjlist] = mcmcGetAllEdgeData(spfeatures, imsegs);\n save([datadir '/edgeData.mat'], 'efeatures', 'adjlist');\n end\n\n % Trains the same-label classifier\n if ~exist('eclassifier') \n eclassifier = mcmcTrainEdgeClassifier(efeatures(trainind), ...\n adjlist(trainind), imsegs(trainind));\n ecal = calibrateEdgeClassifier(efeatures(trainind), adjlist(trainind), ...\n imsegs(trainind), eclassifier, 1);\n ecal = ecal{1};\n save([datadir '/edgeClassifier.mat'], 'eclassifier', 'ecal');\n end\n \n % Computes the multiple segmentations, the segment features, and the\n % ground truth labels for each segment\n if ~exist('labdata')\n % gather data\n for f = 1:numel(imsegs)\n\n disp([num2str(f) ': ' imsegs(f).imname])\n\n [pvSP{f}, phSP{f}, pE{f}] = mcmcInitialize(spfeatures{f}, efeatures{f}, ...\n adjlist{f}, imsegs(f), vclassifierSP, hclassifierSP, eclassifier, ecal, 'none');\n smaps{f} = generateMultipleSegmentations2(pE{f}, adjlist{f}, imsegs(f).nseg, nsegments);\n\n im = im2double(imread([imdir '/' imsegs(f).imname]));\n imdata = mcmcComputeImageData(im, imsegs(f));\n\n for k = 1:numel(nsegments)\n labdata{f, k} = mcmcGetSegmentFeatures(imsegs(f), spfeatures{f}, imdata, smaps{f}(:, k), (1:max(smaps{f}(:, k))));\n [mclab{f, k}, mcprc{f, k}, allprc{f, k}, trainw{f, k}] = segmentation2labels(imsegs(f), smaps{f}(:, k));\n unilabel{f, k} = mclab{f, k}.*(mcprc{f, k}>0.95);\n seglabel{f,k} = 1*(mcprc{f, k}>0.95) + (-1)*(mcprc{f, k}<0.95); \n end\n end\n save([datadir '/allData.mat'], 'smaps', 'labdata', 'segdata', 'mclab', 'mcprc', 'allprc', 'seglabel', 'unilabel', 'trainw', 'pvSP', 'phSP', 'pE');\n end\n \n % Trains the segment classifiers\n if ~exist('vclassifier') \n sclassifier = mcmcTrainSegmentationClassifier2(labdata(trainind, :), seglabel(trainind{k}, :), trainw(trainind, :)); \n [vclassifier, hclassifier] = ...\n mcmcTrainSegmentClassifier2(labdata(trainind, :), unilabel(trainind, :), trainw(trainind, :), 50000); \n end\n\n save([datadir '/allClassifiers.mat'], 'vclassifier', 'hclassifier', 'sclassifier', 'eclassifier', 'vclassifierSP', 'hclassifierSP');\n\nend\n\nif DO_TEST\n \n % Computes the label confidences for each superpixel in the test images\n % and gives the final accuracy.\n % pg{image number}(superpixel number, [000 left center right porous solid sky])\n % gives the superpixel label confidences \n [vacc, hacc, vcm, hcm, pg] = ...\n testMultipleSegmentationsCV2(imsegs(testind), labdata(testind, :), ...\n labdata(testind, :), smaps(testind), ...\n vclassifier, hclassifier, sclassifier, pvSP(testind), phSP(testind), 1);\n save([datadir '/results.mat'], 'vacc', 'hacc', 'vcm', 'hcm', 'pg');\n \n % Computes and writes the labeled images\n for f = 1:testind\n im = im2double(imread([imdir '/' imsegs(f).imname]));\n [pv, ph] = splitpg(pg{f});\n lim = APPgetLabeledImage2(im, imsegs(f), pv, ph);\n imwrite(im, [resultsdir '/' imsegs(f).imname]);\n imwrite(lim, [resultsdir '/' strtok(imsegs(f).imname, '.') '.l.jpg']);\n end\nend", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/Toolbox/SpatialLayout_shrink/spatiallayoutcode/GeometricContext/geomContext_src_07_02_08/src/trainTestSurfaceContextScript.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.37203701313221454}} {"text": "function [vertices, faces] = removeInvalidBorderFaces(varargin)\n%REMOVEINVALIDBORDERFACES Remove faces whose edges are connected to 3, 3, and 1 faces.\n%\n% [V2, F2] = removeInvalidBorderFaces(V, F)\n%\n% Example\n% removeInvalidBorderFaces\n%\n% See also \n% isManifoldMesh, collapseEdgesWithManyFaces\n\n% ------\n% Author: David Legland\n% E-mail: david.legland@inra.fr\n% Created: 2019-01-31, using Matlab 9.5.0.944444 (R2018b)\n% Copyright 2019-2022 INRA - Cepia Software Platform\n\nvertices = varargin{1};\nfaces = varargin{2};\n\n% compute edge to vertex array\nif nargin == 3\n edges = faces;\n faces = varargin{3};\nelse\n % compute edge to vertex array\n edges = meshEdges(faces);\nend\n\n% compute face to edge indices array\n% as a nFaces-by-3 array (each face connected to exactly three edges)\nfaceEdgeInds = meshFaceEdges(vertices, edges, faces);\n\n% compute number of faces incident each edge\nedgeFaces = trimeshEdgeFaces(faces);\nedgeFaceDegrees = sum(edgeFaces > 0, 2);\n\n% for each face, concatenate the face degree of each edge\nfaceEdgeDegrees = zeros(size(faces, 1), 3);\nfor iFace = 1:size(faces, 1)\n edgeInds = faceEdgeInds{iFace};\n faceEdgeDegrees(iFace, :) = edgeFaceDegrees(edgeInds);\nend\n\n% remove faces containing edges connected to 1 face and edges connected to\n% 3 faces\ninds = sum(faceEdgeDegrees == 1, 2) > 0 & sum(faceEdgeDegrees == 3, 2);\n% inds = sum(ismember(faceEdgeDegrees, [1 3 4]), 2) == 3;\nfaces(inds, :) = [];\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/meshes3d/removeInvalidBorderFaces.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6442251064863697, "lm_q1q2_score": 0.37203701313221454}} {"text": "% ------------------------------------------------------------------------ \n% Copyright (C)\n% Universitat Politecnica de Catalunya BarcelonaTech (UPC) - Spain\n% University of California Berkeley (UCB) - USA\n% \n% Jordi Pont-Tuset \n% Pablo Arbelaez \n% June 2014\n% ------------------------------------------------------------------------ \n% This file is part of the MCG package presented in:\n% Arbelaez P, Pont-Tuset J, Barron J, Marques F, Malik J,\n% \"Multiscale Combinatorial Grouping,\"\n% Computer Vision and Pattern Recognition (CVPR) 2014.\n% Please consider citing the paper if you use this code.\n% ------------------------------------------------------------------------\n\nfunction stats = get_single_hier_stats(params,hier_id,gt_set)\n\nif nargin<3\n gt_set = params.gt_set_pareto;\n res_file = params.files.pareto_singles{hier_id};\nelse\n res_file = strrep(params.files.pareto_singles{hier_id},[params.gt_set_pareto '_pareto_single'],[gt_set '_pareto_single']);\nend\n\n% Sampled number of candidates from each hierarchy\nn_cands = [10:10:100,200:100:1000,2000:1000:10000];\n\nfor ii=1:params.n_r_cand\n n_max_cands(ii) = max(n_cands); %#ok<*AGROW>\nend\n\n% Are the results already computed?\nif exist(res_file, 'file')\n load(res_file)\n disp(['Loaded: ' res_file '.'])\n recompute = 0;\nelse\n disp(['RECOMPUTING: ' res_file '.'])\n recompute = 1;\nend\n\nif recompute\n % Load which images to consider from the database (train, val, etc.)\n im_ids = database_ids(params.database,gt_set);\n \n for ll=1:params.n_r_cand\n % Store number of regions and gt_set\n stats(ll).n_cands = n_cands;\n stats(ll).gt_set = gt_set; \n stats(ll).num_objects = 0; \n stats(ll).obj_classes = []; \n end\n \n % Sweep all images\n num_images = length(im_ids);\n for ii = 1:num_images\n\n % Read the UCM as a hierarchy\n hier = ucm2hier(fullfile(params.hier_dirs{hier_id}, [im_ids{ii} '.mat']));\n n_regs = hier.ms_struct(end).parent;\n \n % Get all pairs of neighboring leave regions\n [~, idx_neighbors] = seg2gridbmap(hier.leaves_part);\n K = max(idx_neighbors.matrix_max(:)) + 1;\n neigh_pairs = unique(idx_neighbors.matrix_min+K*idx_neighbors.matrix_max);\n neigh_pairs(neigh_pairs==0) = [];\n neigh_pairs_min = mod(neigh_pairs,K);\n neigh_pairs_max = (neigh_pairs-neigh_pairs_min)/K;\n\n if isrow(neigh_pairs_min)\n neigh_pairs_min = neigh_pairs_min';\n end\n if isrow(neigh_pairs_max)\n neigh_pairs_max = neigh_pairs_max';\n end\n\n % Get the 'n_cands' top candidates from each hierarchy\n \n % Singletons\n if n_regs<=n_max_cands(1)\n all_cands{1} = (n_regs:-1:1)';\n else\n all_cands{1} = (n_regs:-1:(n_regs-n_max_cands(1))+1)';\n end\n\n % Pairs, triplets, etc.\n all_cands(2:params.n_r_cand) = ...\n mex_get_tree_cands(double(hier.leaves_part)-1, double(hier.ms_matrix)-1,...\n neigh_pairs_min-1, neigh_pairs_max-1,...\n n_max_cands(2:end));\n \n % Load ground truth\n curr_gt = get_ground_truth( params.database, im_ids{ii} );\n \n for ll=1:params.n_r_cand\n % Evaluate the candidates\n [jaccards,inters,false_pos,false_neg,true_areas,obj_classes] = eval_cands(hier,all_cands{ll},curr_gt); %#ok\n\n % Get best candidate at different number of candidates\n for jj=1:length(stats(ll).n_cands)\n curr_n_regs = min(stats(ll).n_cands(jj), size(inters,2));\n to_consider = 1:curr_n_regs;\n stats(ll).all_n_masks(ii,jj) = length(to_consider); \n if (stats(ll).all_n_masks(ii,jj)>0)\n for kk=1:size(inters,1)\n [stats(ll).max_J(stats(ll).num_objects+kk,jj), which_one] = max(jaccards(kk,to_consider));\n stats(ll).max_indicator(stats(ll).num_objects+kk,jj) = to_consider(which_one);\n stats(ll).max_fp(stats(ll).num_objects+kk,jj) = false_pos(kk,to_consider(which_one));\n stats(ll).max_fn(stats(ll).num_objects+kk,jj) = false_neg(kk,to_consider(which_one));\n stats(ll).max_inters(stats(ll).num_objects+kk,jj) = inters(kk,to_consider(which_one));\n end\n end\n end\n stats(ll).obj_classes = [stats(ll).obj_classes; obj_classes(1:size(inters,1))'];\n stats(ll).num_objects = stats(ll).num_objects + size(jaccards,1);\n end\n end\n\n for ll=1:params.n_r_cand\n stats(ll).jaccard_object = mean(stats(ll).max_J);\n stats(ll).mean_n_masks = mean(stats(ll).all_n_masks);\n\n % ----- Compute jaccard at pixel level (J_p) ----\n class_ids = unique(stats(ll).obj_classes);\n\n % Compute per-class statistics and then mean\n for ii=1:length(class_ids)\n curr_class = class_ids(ii);\n stats(ll).per_class_results{ii}.num_objects = sum(stats(ll).obj_classes==curr_class);\n\n stats(ll).per_class_results{ii}.max_fp = stats(ll).max_fp(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.max_fn = stats(ll).max_fn(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.max_inters = stats(ll).max_inters(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.max_J = stats(ll).max_J(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.meanmax = mean(stats(ll).per_class_results{ii}.max_J);\n\n stats(ll).per_class_results{ii}.global_fp = sum(stats(ll).per_class_results{ii}.max_fp,1);\n stats(ll).per_class_results{ii}.global_fn = sum(stats(ll).per_class_results{ii}.max_fn,1);\n stats(ll).per_class_results{ii}.global_inters = sum(stats(ll).per_class_results{ii}.max_inters,1);\n\n % Compute per-class total inters, fp, fn\n stats(ll).per_class_results{ii}.global_J = ...\n stats(ll).per_class_results{ii}.global_inters ./...\n (stats(ll).per_class_results{ii}.global_inters+...\n stats(ll).per_class_results{ii}.global_fp +...\n stats(ll).per_class_results{ii}.global_fn);\n end\n\n % Compute global mean\n tmp = [];\n for ii=1:length(class_ids)\n tmp = [tmp; stats(ll).per_class_results{ii}.global_J];\n end\n stats(ll).jaccard_class = mean(tmp);\n end\n \n % Store\n save(res_file,'stats');\nend\n\n", "meta": {"author": "jponttuset", "repo": "mcg", "sha": "e72031d793abf8921e39a8ef3c20de2198c8b26f", "save_path": "github-repos/MATLAB/jponttuset-mcg", "path": "github-repos/MATLAB/jponttuset-mcg/mcg-e72031d793abf8921e39a8ef3c20de2198c8b26f/full/src/pareto/get_single_hier_stats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37167802635010033}} {"text": "function [lineextimg c] = orient_from_lines(lines, vp, imgwidth, imgheight)\n\n\n%%\nls = sample_line(lines);\nlinesamples = cat(1,ls(:).sample);\nlinesampleclass = cat(1,ls(:).lineclass);\n\n%%\n% lineextimg = cell(3,3);\n% for i=1:9, lineextimg{i} = zeros(imgheight,imgwidth); end\nlineextimg = cell(3,3,2);\nfor i=1:18, lineextimg{i} = zeros(imgheight,imgwidth); end\n\n%%\n% poly = extend_line(line, vp{1}, stoppinglines_sample, imgwidth, imgheight);\nfor i = 1:length(lines)\n lc = lines(i).lineclass;\n if lc~=0\n for extdir = setdiff(1:3, lc)\n targetdir = setdiff(1:3, [lc extdir]);\n \n% poly = extend_line_old(lines(i), vp{extdir}, linesamples(linesampleclass==targetdir,:), imgwidth, imgheight);\n% lineextimg{lc,extdir} = lineextimg{lc,extdir} + poly2mask(poly(:,1), poly(:,2), imgheight, imgwidth);\n \n poly = extend_line(lines(i), vp{extdir}, 1, linesamples(linesampleclass==targetdir,:), imgwidth, imgheight);\n lineextimg{lc,extdir,1} = lineextimg{lc,extdir,1} + poly2mask(poly(:,1), poly(:,2), imgheight, imgwidth);\n \n poly = extend_line(lines(i), vp{extdir}, -1, linesamples(linesampleclass==targetdir,:), imgwidth, imgheight);\n lineextimg{lc,extdir,2} = lineextimg{lc,extdir,2} + poly2mask(poly(:,1), poly(:,2), imgheight, imgwidth);\n end\n end\nend\n\n\n%%\nfunction poly = extend_line(line, vp, towards_or_away, stoppinglines_sample, imgwidth, imgheight)\n% towards_or_away: 1 or -1\n\np1 = line.point1;\np2 = line.point2;\n\ncurp1 = p1; curp2 = p2;\nmove_amount = 128;\nwhile move_amount>=1\n [newp1 newp2 atvp] = move_line_towards_vp(curp1, curp2, vp, towards_or_away * move_amount);\n \n failed = 0;\n if atvp==1\n% move_amount = 0; % exit now.\n failed = 1;\n \n elseif (newp1(1)>imgwidth || newp1(1)<1 || newp1(2)>imgheight || newp1(2)<1) && ...\n (newp2(1)>imgwidth || newp2(1)<1 || newp2(2)>imgheight || newp2(2)<1)\n failed = 1;\n \n else\n isstop = inpolygon(stoppinglines_sample(:,1), stoppinglines_sample(:,2), ...\n [p1(1) p2(1) newp2(1) newp1(1) p1(1)], [p1(2) p2(2) newp2(2) newp1(2) p1(2)]);\n \n if any(isstop)\n failed = 1;\n end\n end\n \n if failed\n move_amount = move_amount/2;\n else\n curp1 = newp1;\n curp2 = newp2;\n end\nend\n% poly = [curp1(:)'; curp2(:)'];\npoly = [p1(:)'; p2(:)'; curp2(:)'; curp1(:)'];\n\n% curp1 = p1; curp2 = p2;\n% move_amount = 32;\n% while move_amount>=1\n% [newp1 newp2 atvp] = move_line_towards_vp(curp1, curp2, vp, -move_amount);\n% \n% failed = 0;\n% if atvp==1\n% move_amount = 0; % exit now.\n% \n% elseif (newp1(1)>imgwidth || newp1(1)<1 || newp1(2)>imgheight || newp1(2)<1) && ...\n% (newp2(1)>imgwidth || newp2(1)<1 || newp2(2)>imgheight || newp2(2)<1)\n% failed = 1;\n% \n% else\n% isstop = inpolygon(stoppinglines_sample(:,1), stoppinglines_sample(:,2), ...\n% [p1(1) p2(1) newp2(1) newp1(1) p1(1)], [p1(2) p2(2) newp2(2) newp1(2) p1(2)]);\n% \n% if any(isstop)\n% failed = 1;\n% end\n% end\n% \n% if failed\n% move_amount = move_amount/2;\n% else\n% curp1 = newp1;\n% curp2 = newp2;\n% end\n% end\n% poly = [poly; curp2(:)'; curp1(:)'];\n% poly = [poly; poly(1,:)];\n\n%%\n\n%%\nfunction [newp1 newp2 atvp] = move_line_towards_vp(linep1, linep2, vp, amount)\n\n% d = dist_line_to_point(linep1, linep2, vp);\n% r = amount / d;\nn1 = norm(vp-linep1);\nn2 = norm(vp-linep2);\ndir1 = (vp - linep1) / n1;\ndir2 = (vp - linep2) / n2;\nratio21 = n2 / n1;\n\n% if n1>amount && n2 1\n newp1 = vp;\n newp2 = vp;\n atvp = 1;\nelse\n newp1 = linep1 + (vp-linep1)*r;\n newp2 = linep2 + (vp-linep2)*r;\n atvp = 0;\nend\n", "meta": {"author": "zouchuhang", "repo": "LayoutNet", "sha": "95293bfb8ff787dd3b02c8a52a147a703024980f", "save_path": "github-repos/MATLAB/zouchuhang-LayoutNet", "path": "github-repos/MATLAB/zouchuhang-LayoutNet/LayoutNet-95293bfb8ff787dd3b02c8a52a147a703024980f/matlab/panoContext_code/Toolbox/VP/orientmap/private/orient_from_lines.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.37167802004567857}} {"text": "function data = simulate_slideNeg(setup)\n\n%This function simulates the stick sliding to the left \n\n%Set up the integration algorithm\nTspan = setup.Tspan;\nIC = [ setup.IC.th;\n setup.IC.x;\n setup.IC.dth;\n setup.IC.dx];\neventFunc = @(t,z)events_slideNeg(t,z,setup.P);\noptions = odeset(...\n 'RelTol',setup.tol,...\n 'AbsTol',setup.tol,...\n 'Vectorized','on',...\n 'MaxStep',setup.odeMaxStep,...\n 'Events',eventFunc);\nuserfun = @(t,z)dynamics_slideNeg(t,z,setup.P);\n\n%Run simulation\nsol = feval(setup.solver,userfun,Tspan,IC,options);\n\n%Format for post processing\ntspan = [sol.x(1),sol.x(end)];\nnTime = ceil(setup.dataFreq*diff(tspan));\nt = linspace(tspan(1),tspan(2),nTime);\nZ = deval(sol,t);\n[~, C, E] = dynamics_slideNeg(t,Z,setup.P);\n\n%Store in a nice format for plotting\ndata.time = t;\ndata.state.th = Z(1,:);\ndata.state.x = Z(2,:);\ndata.state.dth = Z(3,:);\ndata.state.dx = Z(4,:);\ndata.state.y = zeros(1,nTime) + setup.IC.y;\ndata.state.dy = zeros(1,nTime);\ndata.contact.h = C(1,:);\ndata.contact.v = C(2,:);\ndata.energy.potential = E(1,:);\ndata.energy.kinetic = E(2,:);\ndata.P = setup.P;\n\n%Get transitions for finite state machine\ndata.phase = 'SLIDE_NEG';\nif isempty(sol.ie)\n data.exit = 'TIMEOUT';\nelseif sol.xe(end) ~= sol.x(end);\n %An event was triggered, but it was non-terminal\n data.exit = 'TIMEOUT';\nelse\n switch sol.ie(end)\n case 1\n data.exit = 'FALL_NEG';\n case 2\n data.exit = 'FALL_POS';\n case 3\n data.exit = 'STUCK';\n case 4\n data.exit = 'LIFT';\n case 5\n data.exit = 'LIFT';\n otherwise\n error('Invalid exit condition in simulate flight')\n end\nend\n\nend\n\n", "meta": {"author": "MatthewPeterKelly", "repo": "dscTutorials", "sha": "e1e97a9be03ec146f88bd6ddd9e06db7ee52e242", "save_path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials", "path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials/dscTutorials-e1e97a9be03ec146f88bd6ddd9e06db7ee52e242/toppling_stick/simulate_slideNeg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7154239836484143, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.37167801374125675}} {"text": "function [xPosV, yPosV, beamlet_delta_x, beamlet_delta_y, beamGeometry]=...\nplanCToPB(planC, beamNumber, bResx, bResy);\n\nindexS=planC{end};\n% assume the words Isocenter Coordinates are enclosed by quotes\n% look for the end quotes to denote the begining of the actual numbers\ns=planC{indexS.beamGeometry}(beamNumber).file{1};\nind=max(strfind(s, '\"'));\nisocenter=str2num(s(ind+1:end));\nindiceJaws = 2;\n\n% Note: In the RTOG files export by Pinnacle, the isocenter is defined at\n% the first three field of \n% planC{indexS.beamGeometry}(beamNumber).file\n% Not the the first field only.\nif (length(isocenter) == 1) \nisocenter(1)=str2num(s(ind+1:end));\nisocenter(2)=str2num(planC{indexS.beamGeometry}(beamNumber).file{2});\nisocenter(3)=str2num(planC{indexS.beamGeometry}(beamNumber).file{3});\nindiceJaws = 4;\nend\n\ngantryAngle=planC{indexS.beamGeometry}(beamNumber).gantryAngle;\nisoDistance=planC{indexS.beamGeometry}(beamNumber).nominalIsocenterDistance;\nbeamEnergy = planC{indexS.beamGeometry}(beamNumber).beamEnergyMeV;\n\n\n% if planC{indexS.beamGeometry}(beamNumber).file has only \n% 3 entries, then this is a square field defined by collimator\n s=planC{indexS.beamGeometry}(beamNumber).file{indiceJaws};\n ind=max(strfind(s, '\"'));\n xjaws=str2num(s(ind+1:end));\n if(length(xjaws)==1), \n xjaws = [xjaws/2 xjaws/2];\n end\n \n s=planC{indexS.beamGeometry}(beamNumber).file{indiceJaws+1};\n ind=max(strfind(s, '\"'));\n yjaws=str2num(s(ind+1:end));\n if(length(yjaws)==1), \n yjaws = [yjaws/2 yjaws/2];\n end\n \n xjaws(1)=-xjaws(1);\n % by symmetry with the below(line 45),\n % I think I should swap the positive and negative y jaws) ??\n yjaws(3)=yjaws(1);\n yjaws(1)=-yjaws(2);\n yjaws(2)=yjaws(3);\n yjaws(3)=[];\n\nif(length(planC{indexS.beamGeometry}(beamNumber).file)<7), \n % no MLC or block shapes\n % field is formed by the collimator jaws\n MLC = 0;\n% for i=1:yjaws(2)-yjaws(1), \n% x1(i)=xjaws(1);\n% xend(i)=xjaws(2);\n% vertices_y(i)=yjaws(1)-1+i;\n% vertices_ywidth(i) = 1;\n% end\n beamletInput.miny=yjaws(1);\n beamletInput.maxy=yjaws(2);\n% input = [];\n% input(:,1) = [x1'; xend'];\n% input(:,2) = [vertices_y'; vertices_y'];\n beamletInput.xjaws=xjaws;\n beamletInput.yjaws=yjaws;\n\nelse\n MLC = 1;\n s=planC{indexS.beamGeometry}(beamNumber).file{7};\n ind=max(strfind(s, '\"'));\n numPairs=str2num(s(ind+1:end));\n for i=1:numPairs, \n input(i, :)=str2num(planC{indexS.beamGeometry}(beamNumber).file{7+i});\n end\n \n % +Y towards head, -Y towards feet (looking from BEV)\n input(:, 2)=-1*input(:,2);\n\n % now, calculate the intersect between the jaws and the MLC/block\n % taking into account the collimator rotation\n % jaws and collimator are both rotated EXACTLY the same way, so this is\n % just stupid!\n \n midPointx = xjaws(2) - (xjaws(2) - xjaws(1))/2;\n midPointy = yjaws(2) - (yjaws(2) - yjaws(1))/2;\n \n ind = find(input(:,1)>=midPointx & input(:,1)>xjaws(2));\n if(~isempty(ind)), \n input(ind, 1) = xjaws(2);\n end\n ind = find(input(:,1)=midPointy & input(:,2)>yjaws(2));\n if(~isempty(ind)), \n input(ind, 2) = yjaws(2);\n end\n ind = find(input(:,2)yjaws(2))\n vertices_ywidth(end) = yjaws(2) - vertices_y(end);\n end\n \n beamletInput.input=input;\n beamletInput.miny=min(input(:,2));\n beamletInput.maxy=max(input(:,2));\n beamletInput.x1=x1;\n beamletInput.xend=xend;\n beamletInput.vertices_y=vertices_y;\n beamletInput.vertices_ywidth=vertices_ywidth;\n beamletInput.xjaws=xjaws;\n beamletInput.yjaws=yjaws;\n \n numBeamlets=ceil((xend-x1)/bResx)+1;\n %numBeamlets_y=ceil(length(vertices_y)/bResy);\n \n numcopies = ceil(vertices_ywidth/bResy);\n % still need to deal with \"fractional\" number of copies\n \n for i=1:length(x1), \n beamlets{i}=linspace(x1(i), xend(i), numBeamlets(i));\n end\n \n cntr=1;\n \n beamletsOrig = beamlets;\n beamlets = [];\n \n for i=1:length(beamletsOrig), \n if(numcopies(i)==1), \n y=vertices_y(i);\n beamletsy{cntr} = y;\n ynext = vertices_y(i)+vertices_ywidth(i);\n beamletsDeltay{cntr} = ynext - y;\n beamlets{cntr} = beamletsOrig{i};\n cntr = cntr+1;\n else \n for k=1:numcopies(i)\n y=vertices_y(i) + bResy*(k-1);\n beamletsy{cntr} = y;\n ynext=y+bResy;\n beamletsDeltay{cntr} = ynext -y;\n beamlets = insertCellEntry(beamlets, cntr, beamletsOrig{i});\n cntr=cntr+1;\n end\n end\n end\n \n end\n \n xPosV = [];\n yPosV = [];\n beamlet_delta_x = [];\n beamlet_delta_y = [];\n \n for i = 1:length(beamlets)\n n = length(beamlets{i})-1;\n xPosV = [xPosV beamlets{i}(1:n)];\n beamlet_delta_x = [beamlet_delta_x diff(beamlets{i})];\n yPosV = [yPosV ones(1, n)*beamletsy{i}];\n beamlet_delta_y = [beamlet_delta_y ones(1, n)*beamletsDeltay{i}];\n end\n \n % need to move the position to the center of the voxel?\n xPosV = xPosV + beamlet_delta_x/2;\n yPosV = yPosV + beamlet_delta_y/2;\n \n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n function [x1, xend, vertices_y, vertices_ywidth]=cornersMLC(input);\n \n input(:,1) = round(input(:,1)*10)/10;\n % assume 0.5 cm leaf width as the narrowest\n input(:,2) = round(input(:,2)*2)/2;\n \n input = checkInputPoints(input);\n miny=min(input(:,2));\n maxy=max(input(:,2));\n \n yvalues=sort(unique(input(:,2)));\n \n % Have to deal with the case that the 1st and/or last MLC positions \n % are caused by collimator jaws not MLC\n \n % still assuming 1 cm leaf widths, so\n \n %if((mod(miny, 1)~=0) | mod(maxy, 1)~=0)\n \n % miny1=floor(miny);\n % maxy1=ceil(maxy);\n % input(input(:,2)==miny, 2)=miny1;\n % input(input(:,2)==maxy, 2)=maxy1;\n % \n % miny=miny1;\n % maxy=maxy1;\n \n % numRect=maxy-miny+1;\n % \n % for i=1:numRect\n % vertices{i}=sort(input(input(:,2)==i+miny-1, 1));\n % vertices_y(i)=i+miny-1;\n % end\n \n numRect=length(yvalues);\n \n for i=1:numRect\n vertices{i}=sort(input(input(:,2)==yvalues(i), 1));\n vertices_y(i)=yvalues(i);\n end\n \n if(length(vertices{1}>2)), \n vertices{1} = unique(vertices{1});\n end\n if(length(vertices{end}>2)), \n vertices{end} = unique(vertices{end});\n end\n \n for i = 2:length(vertices)-1, \n if(length(vertices{i})>4) \n vertices{i} = unique(vertices{i});\n end\n end\n \n % for i = 2:length(vertices)-1, \n % if(length(vertices{i}==2)), \n % % either left or right side MLC positions not given because leaf\n % % same as leaf above and below\n % \n \n \n \n x1(1)=vertices{1}(1);\n xend(1)=vertices{1}(end);\n \n \n %find the points in each line which are also in the next line\n % because the vertices are sorted, 1:2 will be left, and 3:4 will be right\n % vertices\n \n % june30, 2005, if it's a straight vertical line, there may be only 2\n % vertices!\n \n for i=2:numRect-1\n % if(length(vertices{i} == 2)), \n % x1(i) = vertices{i}(1);\n % xend(i) = vertices{i}(2);\n % else\n \n t=vertices{i}(1:2);\n if(t(1)==t(2)), \n x1(i)=t(1);\n else \n x1(i)=t(t~=x1(i-1));\n end\n t=vertices{i}(3:4); \n if(t(1)==t(2)),\n xend(i)=t(1);\n else\n xend(i)=t(t~=xend(i-1));\n end\n % end\n \n end\n \n vertices_ywidth = diff(vertices_y);\n vertices_y=vertices_y(1:end-1);\n \n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/IMRTP/recompDose/MC/planCToPB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521105, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3716278500253405}} {"text": "function hra = computeHourAngle(ut, long, bodyInfo)\n% if(bodyInfo.propTypeEnum == BodyPropagationTypeEnum.TwoBody)\n% chain = bodyInfo.getOrbitElemsChain();\n% rVectBodyToSun = -1.0 * getPositOfBodyWRTSun_alg(ut, chain{:});\n% \n% \telseif(bodyInfo.propTypeEnum == BodyPropagationTypeEnum.Numerical)\n% \n% else\n% \n% end\n [rVectBodyToSun, ~] = getPositOfBodyWRTSun(ut, bodyInfo, bodyInfo.celBodyData);\n rVectBodyToSun = -1.0 * rVectBodyToSun;\n \n rVectBodyToSun = reshape(rVectBodyToSun, 3,numel(ut));\n rVectBodyToSunNorm = sqrt(sum(rVectBodyToSun.^2,1));\n \n inputs = bodyInfo.getFixedFrameFromInertialFrameInputsCache();\n rVectSunECEF = getFixedFrameVectFromInertialVect_alg(ut, rVectBodyToSun, inputs{:});\n \n rECEF = getrVectEcefFromLatLongAlt(zeros(size(long)), long, zeros(size(long)), bodyInfo);\n\n planarRvectEcef = [rECEF(1,:); rECEF(2,:); zeros(1,size(rECEF,2))];\n planarRvectSunEcef = [rVectSunECEF(1,:); rVectSunECEF(2,:); zeros(1,size(rVectSunECEF,2))];\n\n hra = angleNegPiToPi(dang(planarRvectEcef,planarRvectSunEcef));\n hra(rVectBodyToSunNorm == 0) = 1.0;\n hra = reshape(hra,size(ut));\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_ma/propagation/aerobrake/computeHourAngle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8198933447152498, "lm_q2_score": 0.45326184801538616, "lm_q1q2_score": 0.37162637260115017}} {"text": "%%*******************************************************************\n%% HKMrhsfun: compute the right-hand side vector of the\n%% Schur complement equation for the HKM direction.\n%%\n%% SDPT3: version 3.1\n%% Copyright (c) 1997 by\n%% K.C. Toh, M.J. Todd, R.H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*******************************************************************\n\nfunction [rhs,EinvRc,hRd] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ)\n\nm = length(rp);\nif (nargin > 8)\n corrector = 1;\nelse\n corrector = 0;\n hRd = zeros(m,1);\nend\nhEinvRc = zeros(m,1);\nEinvRc = cell(size(blk,1),1);\nrhsfree = [];\n%%\nfor p = 1:size(blk,1)\n pblk = blk(p,:);\n n = sum(pblk{2});\n if strcmp(pblk{1},'l')\n if iscell(sigmu)\n EinvRc{p} = sigmu{p}./Z{p} -X{p};\n else\n EinvRc{p} = sigmu./Z{p} -X{p};\n end\n Rq = sparse(n,1);\n if (corrector) && (norm(par.parbarrier{p})==0)\n Rq = dX{p}.*dZ{p}./Z{p};\n else\n tmp = par.dd{p}.*Rd{p};\n tmp2 = mexMatvec(At{p},tmp,1);\n hRd = hRd + tmp2;\n end\n EinvRc{p} = EinvRc{p} - Rq;\n tmp2 = mexMatvec(At{p,1},EinvRc{p},1);\n hEinvRc = hEinvRc + tmp2;\n elseif strcmp(pblk{1},'q')\n if iscell(sigmu)\n EinvRc{p} = qops(pblk,sigmu{p},par.Zinv{p},3) -X{p};\n else\n EinvRc{p} = sigmu*par.Zinv{p} -X{p};\n end\n Rq = sparse(n,1);\n if (corrector) && (norm(par.parbarrier{p})==0)\n ff{p} = qops(pblk,1./par.gamz{p},Z{p},3); %#ok\n hdx = qops(pblk,par.gamz{p},ff{p},5,dX{p});\n hdz = qops(pblk,par.gamz{p},ff{p},6,dZ{p});\n hdxdz = Arrow(pblk,hdx,hdz);\n Rq = qops(pblk,par.gamz{p},ff{p},6,hdxdz);\n else\n tmp = par.dd{p}.*Rd{p} ...\n + qops(pblk,qops(pblk,Rd{p},par.Zinv{p},1),X{p},3) ...\n + qops(pblk,qops(pblk,Rd{p},X{p},1),par.Zinv{p},3);\n tmp2 = mexMatvec(At{p,1},tmp,1);\n hRd = hRd + tmp2;\n end\n EinvRc{p} = EinvRc{p} - Rq;\n tmp2 = mexMatvec(At{p,1},EinvRc{p},1);\n hEinvRc = hEinvRc + tmp2;\n elseif strcmp(pblk{1},'s')\n if iscell(sigmu)\n %%ss = [0,cumsum(pblk{2})];\n %%sigmuvec = zeros(n,1);\n %%for k = 1:length(pblk{2});\n %% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1);\n %%end\n sigmuvec = mexexpand(pblk{2},sigmu{p});\n EinvRc{p} = par.Zinv{p}*spdiags(sigmuvec,0,n,n) -X{p};\n else\n EinvRc{p} = sigmu*par.Zinv{p} -X{p};\n end\n Rq = sparse(n,n);\n if (corrector) && (norm(par.parbarrier{p})==0)\n Rq = Prod3(pblk,dX{p},dZ{p},par.Zinv{p},0);\n Rq = 0.5*(Rq+Rq');\n else\n tmp = Prod3(pblk,X{p},Rd{p},par.Zinv{p},0,par.nzlistAy{p});\n tmp = 0.5*(tmp+tmp');\n tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp});\n hRd = hRd + tmp2;\n end\n EinvRc{p} = EinvRc{p} - Rq;\n tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p));\n hEinvRc = hEinvRc + tmp2;\n elseif strcmp(pblk{1},'u')\n rhsfree = [rhsfree; Rd{p}]; %#ok\n end\nend\n%%\nrhs = rp + hRd - hEinvRc;\nrhs = full([rhs; rhsfree]);\n%%*******************************************************************\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/sdpt3/Solver/HKMrhsfun.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7490872131147275, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.37161754416178394}} {"text": "function [params] = sr_calcSRC(params)\n% function [params] = sr_calcZ(params)\n% -------------------------------------\n% Calculation of seismic rate changes. This function calculates the rates\n% for all grid points together.\n%\n% Input parameters:\n% please see function ~/zmap/src/thomas/seismicrates/get_parameter.m\n%\n% Output parameters:\n% Same as input parameters including but additionally\n% params.mResult_ z,probability of z, beta, probability of beta, and\n% resolution. This data will be stored into\n% params.mResult{n}, where n is the number of runs\n% (see sr_startZ.m)\n% params.mVar List of all combinations of parameters used for\n% searching the parameter space ([N, Tw, Tbin]).\n% params.m1 Max. value for z ([z,Resolution,N,Tw,Tbin])\n% params.m2 Max. value for p(z) ([z,Resolution,N,Tw,Tbin])\n% params.m3 Max. value for beta ([z,Resolution,N,Tw,Tbin])\n% params.m4 Max. value for p(beta) ([z,Resolution,N,Tw,Tbin])\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% Th. van Stiphout vanstiphout@sed.ethz.ch\n% last update: 16.08.2005\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\nreport_this_filefun(mfilename('fullpath'));\n\n% Initialize\nbChk=false; % for debugging the code\n\n% Determine time period of catalog\nparams.fTminCat = min(params.mCatalog(:,3));\nparams.fTmaxCat = max(params.mCatalog(:,3));\n% Adjust to decimal years\n% fTimePeriod =params.fTimePeriod/365;\n% mCat=params.mCatalog(:,3);\nmLoc=[params.mCatalog(:,1) params.mCatalog(:,2) params.mCatalog(:,7) ];\n% Init result matrix\n% mValueGrid_ = [];\n% Selection criteria for subcatalog (between StartTime and\n% TimeCut + WindowLength\n\n% Create Indices of the catalog for each Node and select quakes in time\n[params.caNodeIndices, params.vResolution] = ex_CreateIndexCatalog(params.mCatalog,...\n params.mPolygon, params.bMap, 0, size(params.mCatalog,1),...\n params.fRadius, params.fSizeRectHorizontal, params.fSizeRectDepth);\n\n% prepare input parameter matrix [ vN vTw vTbin ]\nmVar(:,1)=repmat(params.vN,size(params.vTw,1)*size(params.vTbin,1),1);\nmVar(:,2)=reshape(repmat(params.vTw',size(params.vN,1)*size(params.vTbin,1),1),...\n size(params.vTw,1)*size(params.vN,1)*size(params.vTbin,1),1);\nmVar(:,3)=repmat(reshape(repmat(params.vTbin',size(params.vN,1),1),...\n size(params.vTbin,1)*size(params.vN,1),1),size(params.vTw,1),1);\n\n% loop over all input parameters\nfor i=1:size(mVar,1)\n\n % get input parameters\n fTstart=params.fTstart;\n fT=params.fT;\n fTw=mVar(i,2);\n nN=mVar(i,1);\n nTbin=mVar(i,3);\n mNumDeclus_=params.mNumDeclus(:,end);\n% sum(params.mNumDeclus )\n % vSelMag=(params.mCatalog(:,6)>=params.fMc)\n\n % create vectors for time periods\n vSelR0_=(params.mCatalog(:,3) > fTstart);\n vSelR1_=(params.mCatalog(:,3) <= fT);\n vSelR2_=(params.mCatalog(:,3) >= fT-fTw);\n vSelR3_=(params.mCatalog(:,3) <= fT-fTw);\n\n % combine time periods with decluster info's\n mSelD0_=repmat(vSelR0_,1,size(mNumDeclus_,2)) & mNumDeclus_;\n mSelD1_=repmat(vSelR1_,1,size(mNumDeclus_,2)) & mNumDeclus_;\n mSelD2_=repmat(vSelR2_,1,size(mNumDeclus_,2)) & mNumDeclus_;\n mSelD3_=repmat(vSelR3_,1,size(mNumDeclus_,2)) & mNumDeclus_;\n\n % only events during certain period\n mSelD00=( mSelD0_ & mSelD1_); % whole period\n mSelD10=( mSelD0_ & mSelD3_); % 1st period\n mSelD20=( mSelD1_ & mSelD2_); % 2nd period\n\n % events in whole period (us it for calculating probabilities of z and beta)\n mCat=params.mCatalog(mSelD00,3);\n\n % repeat matrix for multiplication with grid node distance-ranking\n aSelD02=repmat(mSelD00,1,size(params.mPolygon,1));\n % if gridding is based on radius\n if params.nGriddingMode==1\n for pp=1:size(params.mPolygon,1)\n vNaN(:,pp)=params.vResolution{pp}>params.fRadius;\n% params.caNodeIndices{pp}(vNaN(:,pp))=NaN;\n vResolutionN_(pp)=sum(not(vNaN(:,pp)));\n end\n nN=max(vResolutionN_);\n end\n % transform cells of node indices to matrix (column wise)\n caNodeIndices_=cell2mat(params.caNodeIndices'); % distance-ranking of each event from each grid node\n\n % create help matrices\n tmp=zeros(size(aSelD02));\n tmp1=(0:1:size(aSelD02,2)-1)*size(params.mCatalog,1);\n tmp2=repmat(tmp1,size(aSelD02,1),1); %\n\n % sort rankings for each grid node\n [X1, I1] =sort(caNodeIndices_);\n % do reverse \"sort ranking\" for each grid node\n [X2, I2] =sort(I1);\n\n I1=I1+tmp2;I2=I2+tmp2;\n bSelD02=aSelD02(I2); % resort 1-0 matrix\n cSelD02=cumsum(bSelD02);\n dSelD02=logical(bSelD02.*(cSelD02<=nN)); % only the first nN events\n mSelRes=dSelD02; % copy for the first nN events\n dSelD02=dSelD02(I1); % transform back / nN Events over whole catalog per grid node\n % transformation back of NaN's-list for event that are not in a certain params.fRadius\n if params.nGriddingMode==1\n vNaN1=vNaN(I1);\n end\n % eSelD02=bSelD02(I1); % transform back\n % Checkpoint\n if bChk\n ii=ceil(rand(1)*length(params.mPolygon));\n figure;plot(mLoc(:,1),mLoc(:,2),'.c');\n hold on;plot(params.mPolygon(ii,1),params.mPolygon(ii,2),'ok');\n % hold on;plot(mLoc(I2(1:nN,ii)-(ii-1)*size(mLoc,1),1),mLoc(I2(1:nN,ii)-(ii-1)*size(mLoc,1),2),'dr')\n end\n\n % reshape resolution matrix\n vResolution_=cell2mat(params.vResolution');\n\n % prepare catalog (origin times) - copy them column-wise for each\n % grid point\n mCat0=params.mCatalog(:,3);\n mCat0=(repmat(mCat0,1,size(dSelD02,2)));\n\n if bChk\n % and for latitude and longitude aswell\n mLon0=params.mCatalog(:,1);\n mLon0=(repmat(mLon0,1,size(dSelD02,2)));\n mLat0=params.mCatalog(:,2);\n mLat0=(repmat(mLat0,1,size(dSelD02,2)));\n end\n\n % for gridding mode 1 (radius)\n if params.nGriddingMode==1\n adder=repmat(0:size(caNodeIndices_,1):size(caNodeIndices_,1)*(size(caNodeIndices_,2)-1),size(caNodeIndices_,1),1);\n caNodeIndices2_=caNodeIndices_+adder;\n caNodeIndices3_=caNodeIndices2_(~isnan(caNodeIndices2_));\n caNodeIndices4_=zeros(size(caNodeIndices_));\n caNodeIndices4_(caNodeIndices3_)=1;\n caNodeIndices4_=logical(caNodeIndices4_);\n% hold on;plot(params.mCatalog(caNodeIndices4_(:,ii),1),...\n% params.mCatalog(caNodeIndices4_(:,ii),2),'sr')\n mCat0(not(caNodeIndices4_))=NaN;\n mLon0(not(caNodeIndices4_))=NaN;\n mLat0(not(caNodeIndices4_))=NaN;\n\n clear caNodeIndices2_ caNodeIndices3_\n end\n\n % prepare matrices for subset of catalog\n gSelD02=ones(size(dSelD02))*NaN;\n mCat00=gSelD02; % whole catalog\n mCat10=gSelD02; % 1st period\n mCat20=gSelD02; % 2nd period\n mLon00=gSelD02; mLon00_=mLon00;\n mLat00=gSelD02; mLat00_=mLat00;\n % put the times in the NaN's matrix\n gSelD02(dSelD02)=(mCat0(dSelD02));\n\n\n % whole catalog\n mSelD00=repmat(mSelD00,1,size(dSelD02,2));\n mSelD01=(dSelD02&mSelD00);\n mCat00(mSelD01)=(mCat0(mSelD01));\n if params.nGriddingMode==1\n mCat00(vNaN1)=NaN;\n end\n % Checkpoint\n if bChk\n % figure;histogram(mCat00(:,1),100)\n % Checkpoint plot location\n mLon00=mLon00_;mLat00=mLat00_;\n mLon00(mSelD01)=(mLon0(mSelD01));\n mLat00(mSelD01)=(mLat0(mSelD01));\n% hold on;plot(mLon00(:,ii),mLat00(:,ii),'xk','MarkerSize',10);\n hold on;plot(mLon00(not(vNaN1(:,ii)),ii),mLat00(not(vNaN1(:,ii)),ii),'xk','MarkerSize',10);\n end\n\n % 1st period\n mSelD10=repmat(mSelD10,1,size(dSelD02,2));\n mSelD11=(dSelD02&mSelD10);\n mCat10(mSelD11)=(mCat0(mSelD11));\n if params.nGriddingMode==1\n mCat10(vNaN1)=NaN;\n end\n % Checkpoint\n if bChk\n % figure;histogram(mCat10(:,1),100)\n % Checkpoint plot location\n mLon10=mLon00_;mLat10=mLat00_;\n mLon10(mSelD11)=(mLon0(mSelD11));\n mLat10(mSelD11)=(mLat0(mSelD11));\n% hold on;plot(mLon10(:,ii),mLat10(:,ii),'dr','MarkerSize',10);\n hold on;plot(mLon10(not(vNaN1(:,ii)),ii),mLat10(not(vNaN1(:,ii)),ii),'dr','MarkerSize',10);\n end\n\n\n % 2nd period\n mSelD20=repmat(mSelD20,1,size(dSelD02,2));\n mSelD21=(dSelD02&mSelD20);\n mCat20(mSelD21)=(mCat0(mSelD21));\n if params.nGriddingMode==1\n mCat20(vNaN1)=NaN;\n end\n % Checkpoint\n if bChk\n % figure;histogram(mCat20(:,1),100)\n % Checkpoint plot location\n mLon20=mLon00_;mLat20=mLat00_;\n mLon20(mSelD21)=(mLon0(mSelD21));\n mLat20(mSelD21)=(mLat0(mSelD21));\n% hold on;plot(mLon20(:,ii),mLat20(:,ii),'sb','MarkerSize',10);\n hold on;plot(mLon20(not(vNaN1(:,ii)),ii),mLat20(not(vNaN1(:,ii)),ii),'sb','MarkerSize',10);\n end\n\n % lta\n [mLTA, mLTAprob] =calc_zlta(mCat,mCat00,mCat20,params.fTstart, fT,...\n fTw,nTbin, nN);\n % mBeta\n [mBeta, mBetaprob] =calc_beta(mCat,mCat00,mCat20,params.fTstart, fT,...\n fTw,nTbin, nN);\n % mBeta(:,kk)=calc_beta(mCat10,mCat20,params.fStartTime,...\n % params.fTimeCut,params.fTwLength,params.fTimeSteps);\n\n if params.nGriddingMode==1\n % Resolution by No.of Events in a certain distance from grid node,\n % defined by params.fRadius .\n mResolution=vResolutionN_';\n else\n % Resolution by N-th event in radii-vector\n mResolution=max(vResolution_.*mSelRes)';\n end\n % preallocation of mResult_\n if i==1\n mResult_=ones(size(params.mPolygon,1),5,params.nMCS).*NaN;\n end\n mResult_(:,:,i)=[mLTA mLTAprob mBeta mBetaprob double(mResolution)];\n\n sString=sprintf('End loop %d with N= %d Tw= %d Tbin= %d ',i,...\n mVar(i,1),mVar(i,2),mVar(i,3));\n disp(sString);\nend % end loop variation over input parameter\n\n% params.mResult_=mResult_;\n% saving parameter space\n% params.mVar=mVar;\n\n% Maxima search\n[mMaxValue, mMaxIndices]=max(mResult_,[],3);\n% ask for parameter settings (parameter settings for max for each grid\n% point)\n% nMax=2; % (i.e. 1: z, 2:prob(z), 3:beta, 4:prob(beta),5:radius)\nmParamax1=mVar(mMaxIndices(:,1),1:3);\nmParamax2=mVar(mMaxIndices(:,2),1:3);\nmParamax3=mVar(mMaxIndices(:,3),1:3);\nmParamax4=mVar(mMaxIndices(:,4),1:3);\n\n% plotting preliminary results / data\nif bChk\n % plot results for grid points with contour lines that indicate z,\n % prob(z), beta, prob(beta)\n % figure;pcolor( params.mPolygon(:,1), params.mPolygon(:,2), mResult_(:,1))\n figure;\n XX_=repmat(params.vN,1,size(params.vTw,1));\n YY_=repmat(params.vTw,1,size(params.vN,1))';\n for ii_=1:10\n ngp_=ceil(rand(1,1)*1170);\n for kk_=1:4\n subplot(2,2,kk_);\n contour(XX_,YY_,reshape(squeeze(mResult_(ngp_,kk_,:)),...\n size(params.vN,1),size(params.vTw,1)));\n colorbar;\n end\n pause\n end\n % pcolor(reshape(squeeze(mResult_(1,1,:)),size(params.vN,1),size(params.vTw,1)));\nend\n\n% Prepare mResult_\n% vSel=find(mResult_(:,5) > params.fMaxRadius);\n% mResult_(vSel,1:4)=NaN';\n\n% Pre Result matrix (result for 1\nparams.m1=[mMaxValue(:,1) double(mResolution) mParamax1];\nparams.m2=[mMaxValue(:,2) double(mResolution) mParamax2];\nparams.m3=[mMaxValue(:,3) double(mResolution) mParamax3];\nparams.m4=[mMaxValue(:,4) double(mResolution) mParamax4];\n% figure;pcolor(reshape(params.mPreResult(:,1),39,30));\n% colorbar\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/thomas/seismicrates/sr_calcSRC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.743167997235783, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3715839986178915}} {"text": "classdef GenericLinearTangentSteeringModel < AbstractSteeringModel\n %GenericLinearTangentSteeringModel Summary of this class goes here\n % Detailed explanation goes here\n \n properties\n gammaAngleModel(1,1) PolynominalModel = PolynominalModel(0,0,0,0);\n betaAngleModel(1,1) LinearTangentModel = LinearTangentModel(0,0,0,0,0);\n alphaAngleModel(1,1) PolynominalModel = PolynominalModel(0,0,0,0);\n \n gammaContinuity(1,1) logical = false;\n betaContinuity(1,1) logical = false;\n alphaContinuity(1,1) logical = false;\n \n refFrame AbstractReferenceFrame\n controlFrame AbstractControlFrame\n end\n \n methods \n function dcm = getBody2InertialDcmAtTime(obj, ut, rVect, vVect, bodyInfo)\n gammaAng = obj.gammaAngleModel.getValueAtTime(ut);\n betaAng = obj.betaAngleModel.getValueAtTime(ut);\n alphaAng = obj.alphaAngleModel.getValueAtTime(ut);\n \n% elemSet = CartesianElementSet(ut, rVect(:), vVect(:), bodyInfo.getBodyCenteredInertialFrame());\n% if(not(isempty(obj.refFrame.getOriginBody())))\n% elemSet = elemSet.convertToFrame(obj.refFrame);\n% end\n \n dcm = real(obj.controlFrame.computeDcmToInertialFrame(ut, rVect, vVect, bodyInfo, gammaAng, betaAng, alphaAng, obj.refFrame));\n end\n\n function [angleModel, continuity] = getAngleNModel(obj, n)\n angleModel = PolynominalModel.empty(1,0);\n \n switch n\n case 1\n angleModel = obj.gammaAngleModel;\n continuity = obj.gammaContinuity;\n case 2\n angleModel = obj.betaAngleModel;\n continuity = obj.betaContinuity;\n case 3\n angleModel = obj.alphaAngleModel;\n continuity = obj.alphaContinuity;\n end\n end\n \n function t0 = getT0(obj)\n t0 = obj.alphaAngleModel.t0;\n end\n \n function setT0(obj, newT0)\n obj.gammaAngleModel.t0 = newT0;\n obj.betaAngleModel.t0 = newT0;\n obj.alphaAngleModel.t0 = newT0;\n end\n \n function setConstTerms(obj, gammaConst, alphaConst)\n obj.gammaAngleModel.constTerm = gammaConst;\n obj.alphaAngleModel.constTerm = alphaConst;\n end\n \n function setLinearTerms(obj, gammaRate, alphaRate)\n obj.gammaAngleModel.linearTerm = gammaRate;\n obj.alphaAngleModel.linearTerm = alphaRate;\n end\n \n function setAccelTerms(obj, gammaRateRate, alphaRateRate)\n obj.gammaAngleModel.accelTerm = gammaRateRate;\n obj.alphaAngleModel.accelTerm = alphaRateRate;\n end\n \n function setLinearTangentTerms(obj, a, a_dot, b, b_dot)\n obj.betaAngleModel.a = a;\n obj.betaAngleModel.a_dot = a_dot;\n obj.betaAngleModel.b = b;\n obj.betaAngleModel.b_dot = b_dot;\n end\n \n function setTimeOffsets(obj, timeOffset)\n obj.alphaAngleModel.tOffset = timeOffset;\n obj.betaAngleModel.tOffset = timeOffset;\n obj.gammaAngleModel.tOffset = timeOffset;\n end\n \n function [angle1Cont, angle2Cont, angle3Cont] = getContinuityTerms(obj)\n angle1Cont = obj.gammaContinuity;\n angle2Cont = obj.betaContinuity;\n angle3Cont = obj.alphaContinuity;\n end\n \n function setContinuityTerms(obj, angle1Cont, angle2Cont, angle3Cont)\n obj.gammaContinuity = angle1Cont;\n obj.betaContinuity = angle2Cont;\n obj.alphaContinuity = angle3Cont;\n end\n \n function setConstsFromDcmAndContinuitySettings(obj, dcm, ut, rVect, vVect, bodyInfo)\n if(obj.gammaContinuity || obj.betaContinuity || obj.alphaContinuity)\n elemSet = CartesianElementSet(ut, rVect(:), vVect(:), bodyInfo.getBodyCenteredInertialFrame());\n\n% if(not(isempty(obj.refFrame.getOriginBody())))\n% elemSet = elemSet.convertToFrame(obj.refFrame);\n% end\n \n [gammaAngle, betaAngle, alphaAngle] = obj.controlFrame.getAnglesFromInertialBodyAxes(LaunchVehicleAttitudeState(dcm), elemSet.time, elemSet.rVect(:), elemSet.vVect(:), elemSet.frame.getOriginBody(), obj.refFrame);\n \n if(obj.gammaContinuity)\n obj.gammaAngleModel.constTerm = gammaAngle;\n end\n \n if(obj.betaContinuity)\n obj.betaAngleModel.setBForContinuity(betaAngle);\n end\n \n if(obj.alphaContinuity)\n obj.alphaAngleModel.constTerm = alphaAngle;\n end\n end\n end\n \n function setInitialAttitudeFromState(obj, stateLogEntry, tOffsetDelta)\n t0 = stateLogEntry.time;\n obj.setT0(t0);\n \n obj.gammaAngleModel.tOffset = obj.gammaAngleModel.tOffset + tOffsetDelta;\n obj.betaAngleModel.tOffset = obj.betaAngleModel.tOffset + tOffsetDelta;\n obj.alphaAngleModel.tOffset = obj.alphaAngleModel.tOffset + tOffsetDelta;\n end\n \n function [angle1Name, angle2Name, angle3Name] = getAngleNames(obj)\n angleNames = obj.controlFrame.getControlFrameEnum().angleNames;\n angle1Name = angleNames{1};\n angle2Name = angleNames{2};\n angle3Name = angleNames{3};\n end\n \n function newSteeringModel = deepCopy(obj)\n newSteeringModel = GenericPolySteeringModel(obj.gammaAngleModel.deepCopy(), obj.betaAngleModel.deepCopy(), obj.alphaAngleModel.deepCopy());\n newSteeringModel.gammaContinuity = obj.gammaContinuity;\n newSteeringModel.betaContinuity = obj.betaContinuity;\n newSteeringModel.alphaContinuity = obj.alphaContinuity;\n newSteeringModel.refFrame = obj.refFrame;\n newSteeringModel.controlFrame = obj.controlFrame;\n end\n \n function optVar = getNewOptVar(obj)\n optVar = SetGenericLinearTangentSteeringModelActionOptimVar(obj);\n end\n \n function optVar = getExistingOptVar(obj)\n optVar = obj.optVar;\n end\n \n function tf = usesRefFrame(~)\n tf = true;\n end\n \n function refFrame = getRefFrame(obj)\n refFrame = obj.refFrame;\n end\n \n function setRefFrame(obj, refFrame)\n obj.refFrame = refFrame;\n end\n \n function tf = usesControlFrame(~)\n tf = true;\n end\n \n function cFrame = getControlFrame(obj)\n cFrame = obj.controlFrame;\n end\n \n function setControlFrame(obj, cFrame)\n obj.controlFrame = cFrame;\n end\n \n function tf = requiresReInitAfterSoIChange(obj)\n tf = false;\n end\n \n function enum = getSteeringModelTypeEnum(~)\n enum = SteerModelTypeEnum.LinearTangentAngles;\n end\n end\n \n methods(Access=private)\n function obj = GenericLinearTangentSteeringModel(gammaAngleModel, betaAngleModel, alphaAngleModel)\n obj.gammaAngleModel = gammaAngleModel;\n obj.betaAngleModel = betaAngleModel;\n obj.alphaAngleModel = alphaAngleModel;\n end \n end\n \n methods(Static)\n function model = getDefaultSteeringModel()\n gammaAngleModel = PolynominalModel(0,0,0,0);\n betaAngleModel = LinearTangentModel(0,0,0,0,0);\n alphaAngleModel = PolynominalModel(0,0,0,0);\n \n model = GenericLinearTangentSteeringModel(gammaAngleModel, betaAngleModel, alphaAngleModel);\n end\n \n function typeStr = getTypeNameStr()\n typeStr = SteeringModelEnum.GenericLinTan.nameStr;\n end\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/classes/ForceModels/steering/@GenericLinearTangentSteeringModel/GenericLinearTangentSteeringModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7549149978955811, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.3715602054418944}} {"text": "function net = vgg16_intialization_down5(warpsize,cdim,ndim, RoIRoD)\n\nnet = load('data/pretrained_models/imagenet-vgg-verydeep-16.mat');\nnet = vl_simplenn_tidy(net);\nnet.layers = net.layers(1:31);\n\n% Convert to DagNN.\nnet = dagnn.DagNN.fromSimpleNN(net, 'canonicalNames', true) ; \n\n% Dimension reduction\nnet.addLayer('dimred', convBlocknoPad(1,1,512,cdim), {'x31'}, {'xRed'}, {'dimred_filter','dimred_bias'});\nnet = initLayerParams(net);\n\n% RoIAlign\nif strcmp(RoIRoD,'RoIRoD') || strcmp(RoIRoD,'RoIOnly')\n roiSize = [warpsize,warpsize]; \n net.addLayer('roialign', dagnn.RoiAlign('subdivisions',roiSize,'transformation',1/32), {'xRed','rois'}, 'xRoi');\n net.addLayer('roipool', dagnn.Pooling('method', 'avg', 'poolSize', [2 2], 'stride', 1), {'xRoi'}, {'pool_xRoi'}, {});\nend\n\n% RoDAlign\nif strcmp(RoIRoD,'RoIRoD') || strcmp(RoIRoD,'RoDOnly')\n rodSize = [warpsize+1,warpsize+1]; \n net.addLayer('rodalign', dagnn.RodAlign('subdivisions',rodSize,'transformation',1/32), {'xRed','rois'}, 'xRod');\n net.addLayer('rodpool', dagnn.Pooling('method', 'avg', 'poolSize', [2 2], 'stride', 1), {'xRod'}, {'pool_xRod'}, {});\nend\n\n\nswitch RoIRoD\n case 'RoIRoD'\n net.addLayer('concat', dagnn.Concat('dim', 3), {'pool_xRoi', 'pool_xRod'}, {'xConc'}, {});\n net.addLayer('fc1', convBlocknoPad(warpsize,warpsize,cdim*2,ndim), {'xConc'}, {'fc1'}, {'fc1_filter', 'fc1_bias'});\n case 'RoIOnly'\n net.addLayer('fc1', convBlocknoPad(warpsize,warpsize,cdim,ndim), {'pool_xRoi'}, {'fc1'}, {'fc1_filter', 'fc1_bias'});\n case 'RoDOnly'\n net.addLayer('fc1', convBlocknoPad(warpsize,warpsize,cdim,ndim), {'pool_xRod'}, {'fc1'}, {'fc1_filter', 'fc1_bias'});\n otherwise\n error('Unknown RoIRoD choice.');\nend\nnet = initLayerParams(net);\nnet.addLayer('relu_fc1', dagnn.ReLU(), {'fc1'}, {'relu_fc1'}, {});\nnet.addLayer('fc2', convBlocknoPad(1,1,ndim,ndim), {'relu_fc1'}, {'fc2'}, {'fc2_filter', 'fc2_bias'});\nnet = initLayerParams(net);\nnet.addLayer('relu_fc2', dagnn.ReLU(), {'fc2'}, {'relu_fc2'}, {});\n\nnet.addLayer('dropout',dagnn.DropOut('rate',0.5),'relu_fc2','dropout',{});\n\nnet.addLayer('predcls',convBlocknoPad(1,1,ndim,1), 'dropout','predcls',{'predcls_filter','predcls_bias'});\nnet = initLayerParams(net);\n\n% net.print({'input', [256 256 3]}, 'all', true);\nnet.addLayer('losscls',dagnn.RegressionLoss('lossType','Huber'), {'predcls','label'}, 'losscls',{});\n\n\n% Meta parameters\nnet.meta.trainOpts.learningRate = [logspace(-5,-4,5) logspace(-4,-4,35)];\nnet.meta.trainOpts.weightDecay = 0.0001;\nnet.meta.trainOpts.batchSize = 1 ;\nnet.meta.trainOpts.solver = @solver.adam ;\nnet.meta.trainOpts.numEpochs = numel(net.meta.trainOpts.learningRate) ;\nnet.meta.normalization.averageImage = reshape([122.7717 102.9801 115.9465],[1 1 3]);\n\nend\n\nfunction convObj = convBlocknoPad(fh,fw,fc,k)\n convObj = dagnn.Conv('size', [fh fw fc k], 'hasBias', true);\nend\n\nfunction net = initLayerParams(net)\n p = net.getParamIndex(net.layers(end).params) ;\n params = net.layers(end).block.initParams();\n [net.params(p).value] = deal(params{:}) ;\nend\n\n\n", "meta": {"author": "HuiZeng", "repo": "Grid-Anchor-based-Image-Cropping", "sha": "d3262a1bc840cd998cdff4bee0c712b4ad0787b7", "save_path": "github-repos/MATLAB/HuiZeng-Grid-Anchor-based-Image-Cropping", "path": "github-repos/MATLAB/HuiZeng-Grid-Anchor-based-Image-Cropping/Grid-Anchor-based-Image-Cropping-d3262a1bc840cd998cdff4bee0c712b4ad0787b7/src/modelInitialization/vgg16_intialization_down5.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7549149868676283, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.37156020001406687}} {"text": "function pred = ml_predict(trials, model)\n% Make predictions for some data, using some (previously learned) model.\n% Prediction = ml_predict(Trials, Model)\n%\n% This function makes predictions for some given data and a supplied model, as learned using\n% ml_train. It dispatches to the appropriate ml_predict* function, depending on what was used to\n% train the model.\n%\n% For each of the N supplied trials, one prediction is produced in the output, which may be in a\n% number of different formats, depending on the parameters of the model (which in turn depends on\n% the learning function used, its parameters, and the form of the target variables in the training\n% data).\n%\n% The most common format of the prediction is discrete probability distributions per trial, which is\n% the output produced by most classifiers. In this case, structed as a 3-element cell array {'disc',\n% Probabilities, Classes}, the distributions are returned as a [#Trials x #Classes] matrix in the\n% Probabilities entry, which contains the probability for each of a set of classes, per trial. The\n% set of classes is associated with set of target values (e.g. -1,+1, or 3,7,5) by the Classes cell\n% entry, which is size [#Classes x 1], and is sorted in the same order as in the probability\n% distributions (in ascending order of target values), so that Prediction{2}*Prediction{3} would\n% give a probability-weighted sum of the possible target values). This format can be mapped into the\n% \"usual\" format of most likely target value per trial via the expression\n% Prediction{3}(argmax(Prediction{2}')).\n%\n% For regression, the most common format is the [NxD] (usually D=1) format of one point estimate per\n% trial, since only very few methods can give a posterior probability distribution right now. Other\n% formats are primarily provided for more advanced predictors which can give regression outputs as a\n% parametric (or even non-parametric) probability distribution per trial, as {distrib,NxP}, or in an\n% entirely custom format, as {'struct',{N}}.\n%\n% In:\n% Trials : data, [NxF] array (N = number of training instances,F = number of feature dimensions) \n% or in special cases a [UxVxN] array (N... number of training instances, U,V ...\n% number of rows/columns of the feature matrices)\n% If not otherwise possible, it is also allowed to pass trials in any custom format to\n% ml_predict, given that the prediction function in question can handle these data.\n%\n% Model : the model to be used for prediction (output of ml_train);\n% when empty, the actual features are returned (passed through).\n%\n% Out:\n% Prediction : predictions of the model, one for each trial\n% format depends on the chosen Model:\n% * [Nx1] : classification or one-dimensional regression outputs (point estimates)\n% * [NxD] : d-dimensional regression outputs (point estimates)\n% * {'disc', [NxC], [Cx1]}: discrete probabilities for C classes in probabilistic\n% classification, the last array determines the assigment from class indices (in\n% NxC) to the output labels, such that [NxC]*[Cx1] is the expected output\n% * {distrib, NxP}: posterior probability distributions in probabilistic\n% regression, with distrib being one of:\n% 'bino','chi2','exp','ev','f','gam','gev','gp','geo','hyge','logn','nbin','ncf',\n% 'nct','ncx2','norm','poiss','rayl','t','unif','unid','wbl' with the\n% appropriate interpretation under pdf(), and P the number of parameters to pdf()\n% * {distrib, {N}}: posterior probability distributions, with distrib being either\n% 'mvn', for mvnpdf(), or any function handle that can accept parameter sets of\n% the form distrib(X,Prediction{2}{i}{:});\n% * {'struct', {N}}: structured predictions\n%\n% See also:\n% ml_train\n%\n% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD\n% 2010-04-03\n\nif isempty(model)\n pred = trials;\nelse \n pred = feval(['ml_predict' model.args.arg_selection],trials,model.model);\n \n % post-process predictions\n if iscell(pred) && length(pred) == 3 && strcmp(pred{1},'disc')\n % sort discrete distributions\n [classes,inds] = sort(pred{3});\n pred = {pred{1} pred{2}(:,inds) classes};\n end\nend", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/code/machine_learning/ml_predict.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.37152416825332235}} {"text": "function bnet = mk_map_hhmm(varargin)\n\n% p is the prob of a successful move (defines the reliability of motors)\np = 1;\nobs_model = 'unique';\n\nfor i=1:2:length(varargin)\n switch varargin{i},\n case 'p', p = varargin{i+1};\n case 'obs_model', obs_model = varargin{i+1};\n end\nend\n\n\nq = 1-p;\nunique_obs = strcmp(obs_model, 'unique');\n\n% assign numbers to the nodes in topological order\nU = 1; A = 2; C = 3; F = 4;\nif unique_obs\n onodes = 5;\nelse\n N = 5; E = 6; S = 7; W = 8; % north, east, south, west\n onodes = [N E S W];\nend\n\n% create graph structure\n\nss = 4 + length(onodes); % slice size\nintra = zeros(ss,ss);\nintra(U,F)=1;\nintra(A,[C F onodes])=1;\nintra(C,[F onodes])=1;\n\ninter = zeros(ss,ss);\ninter(U,[A C])=1;\ninter(A,[A C])=1;\ninter(F,[A C])=1;\ninter(C,C)=1;\n\n% node sizes\nns = zeros(1,ss);\nns(U) = 2; % left/right\nns(A) = 2;\nns(C) = 3;\nns(F) = 2;\nif unique_obs\n ns(onodes) = 5; % we will assign each state a unique symbol\nelse\n ns(onodes) = 2;\nend\nl = 1; r = 2; % left/right\nL = 1; R = 2;\n\n% Make the DBN\nbnet = mk_dbn(intra, inter, ns, 'observed', onodes);\neclass = bnet.equiv_class;\n\n\n\n% Define CPDs for slice 1\n% We clamp all the CPDs that are not tied,\n% since we cannot learn them from a single sequence.\n\n% uniform probs over actions (the input could be chosen from a policy)\nbnet.CPD{eclass(U,1)} = tabular_CPD(bnet, U, 'CPT', mk_stochastic(ones(ns(U),1)), ...\n\t\t\t\t 'adjustable', 0);\n\n% uniform probs over starting abstract state\nbnet.CPD{eclass(A,1)} = tabular_CPD(bnet, A, 'CPT', mk_stochastic(ones(ns(A),1)), ...\n\t\t\t\t 'adjustable', 0);\n\n% Uniform probs over starting concrete state, modulo the fact\n% that corridor 2 is only of length 2.\nCPT = zeros(ns(A), ns(C)); % CPT(i,j) = P(C starts in j | A=i)\nCPT(1, :) = [1/3 1/3 1/3];\nCPT(2, :) = [1/2 1/2 0];\nbnet.CPD{eclass(C,1)} = tabular_CPD(bnet, C, 'CPT', CPT, 'adjustable', 0);\n\n% Termination probs\nCPT = zeros(ns(U), ns(A), ns(C), ns(F));\nCPT(r,1,1,:) = [1 0];\nCPT(r,1,2,:) = [1 0];\nCPT(r,1,3,:) = [q p];\nCPT(r,2,1,:) = [1 0];\nCPT(r,2,2,:) = [q p];\nCPT(l,1,1,:) = [q p];\nCPT(l,1,2,:) = [1 0];\nCPT(l,1,3,:) = [1 0];\nCPT(l,2,1,:) = [q p];\nCPT(l,2,2,:) = [1 0];\n\nbnet.CPD{eclass(F,1)} = tabular_CPD(bnet, F, 'CPT', CPT);\n\n\n% Observation model\nif unique_obs\n CPT = zeros(ns(A), ns(C), 5);\n CPT(1,1,1)=1; % Theo state 4\n CPT(1,2,2)=1; % Theo state 5\n CPT(1,3,3)=1; % Theo state 6\n CPT(2,1,4)=1; % Theo state 9\n CPT(2,2,5)=1; % Theo state 10\n %CPT(2,3,:) undefined\n O = onodes(1);\n bnet.CPD{eclass(O,1)} = tabular_CPD(bnet, O, 'CPT', CPT);\nelse\n % north/east/south/west can see wall (1) or opening (2)\n CPT = zeros(ns(A), ns(C), 2);\n CPT(:,:,1) = q;\n CPT(:,:,2) = p;\n bnet.CPD{eclass(W,1)} = tabular_CPD(bnet, W, 'CPT', CPT);\n bnet.CPD{eclass(E,1)} = tabular_CPD(bnet, E, 'CPT', CPT);\n CPT = zeros(ns(A), ns(C), 2);\n CPT(:,:,1) = p;\n CPT(:,:,2) = q;\n bnet.CPD{eclass(S,1)} = tabular_CPD(bnet, S, 'CPT', CPT);\n bnet.CPD{eclass(N,1)} = tabular_CPD(bnet, N, 'CPT', CPT);\nend\n\n% Define the CPDs for slice 2\n\n% Abstract\n\n% Since the top level never resets, the starting distribution is irrelevant:\n% A2 will be determined by sampling from transmat(A1,:).\n% But the code requires we specify it anyway; we make it all 0s, a dummy value.\nstartprob = zeros(ns(U), ns(A));\n\ntransmat = zeros(ns(U), ns(A), ns(A));\ntransmat(R,1,:) = [q p];\ntransmat(R,2,:) = [0 1];\ntransmat(L,1,:) = [1 0];\ntransmat(L,2,:) = [p q];\n\n% Qps are the parents we condition the parameters on, in this case just\n% the past action.\nbnet.CPD{eclass(A,2)} = hhmm2Q_CPD(bnet, A+ss, 'Fbelow', F, ...\n\t\t\t\t 'startprob', startprob, 'transprob', transmat);\n\n\n\n% Concrete\n\ntransmat = zeros(ns(C), ns(U), ns(A), ns(C));\ntransmat(1,r,1,:) = [q p 0.0];\ntransmat(2,r,1,:) = [0.0 q p];\ntransmat(3,r,1,:) = [0.0 0.0 1.0];\ntransmat(1,r,2,:) = [q p 0.0];\ntransmat(2,r,2,:) = [0.0 1.0 0.0];\n%\ntransmat(1,l,1,:) = [1.0 0.0 0.0];\ntransmat(2,l,1,:) = [p q 0.0];\ntransmat(3,l,1,:) = [0.0 p q];\ntransmat(1,l,2,:) = [1.0 0.0 0.0];\ntransmat(2,l,2,:) = [p q 0.0];\n\n% Add a new dimension for A(t-1), by copying old vals,\n% so the matrix is the same size as startprob\n\n\ntransmat = reshape(transmat, [ns(C) ns(U) ns(A) 1 ns(C)]);\ntransmat = repmat(transmat, [1 1 1 ns(A) 1]);\n\n% startprob(C(t-1), U(t-1), A(t-1), A(t), C(t))\nstartprob = zeros(ns(C), ns(U), ns(A), ns(A), ns(C));\nstartprob(1,L,1,1,:) = [1.0 0.0 0.0];\nstartprob(3,R,1,2,:) = [1.0 0.0 0.0];\nstartprob(3,R,1,1,:) = [0.0 0.0 1.0];\n% \nstartprob(1,L,2,1,:) = [0.0 0.0 010];\nstartprob(2,L,2,1,:) = [1.0 0.0 0.0];\nstartprob(2,R,2,2,:) = [0.0 1.0 0.0];\n\n% want transmat(U,A,C,At,Ct), ie. in topo order\ntransmat = permute(transmat, [2 3 1 4 5]);\nstartprob = permute(startprob, [2 3 1 4 5]);\nbnet.CPD{eclass(C,2)} = hhmm2Q_CPD(bnet, C+ss, 'Fself', F, ...\n\t\t\t\t 'startprob', startprob, 'transprob', transmat);\n\n\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/examples/dynamic/HHMM/Map/mk_map_hhmm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.3715241682533223}} {"text": "function [ know, x ] = p19_sol ( n )\n\n%*****************************************************************************80\n%\n%% P19_SOL returns the solution for problem 19.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 17 March 2000\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the order of the problem. This value\n% is only needed for those problems with variable N.\n%\n% Output, integer KNOW.\n% If KNOW is 0, then the solution is not known.\n% If KNOW is positive, then the solution is known, and is returned in X.\n%\n% Output, real X(N), the solution, if known.\n%\n know = 1;\n\n x = [ 1.0, 1.0 ]';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_opt/p19_sol.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5389832206876841, "lm_q2_score": 0.6893056231680121, "lm_q1q2_score": 0.3715241648132263}} {"text": "function [sttm] = tt_sparse_for_mv(ttm, cuttol)\n%Sparsify the TT matrix in TT1.0 matrix format\n% [STTM]=TT_SPARSE_FOR_MV(TTM,[CUTTOL]) Computes the sparse version of the\n% matrix in the TT1.0 matrix format. May work for certain operators\n%\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\nif (nargin<2)||(isempty(cuttol))\n cuttol = 1e-14;\nend;\n\nd=size(ttm,1);\n\nsttm=cell(d+2,1);\nsttm{d+1}=zeros(d-1,1);\nsttm{d+2}=zeros(d,1);\n\nn=size(ttm{1},1);\nm=size(ttm{1},2);\nrm1=size(ttm{1},3);\nsttm{d+1}(1)=rm1;\nsttm{d+2}(1)=n;\nif (~issparse(ttm{1}))\n sttm{1}=reshape(permute(ttm{1},[1,3,2]),[n*rm1,m]);\n sttm{1}(abs(sttm{1})/max(max(abs(sttm{1})))1)\n n=size(ttm{d},1);\n m=size(ttm{d},2);\n rm1=size(ttm{d},3);\n sttm{d+1}(d-1)=rm1;\n sttm{d+2}(d)=n;\n if (~issparse(ttm{1}))\n sttm{d}=reshape(permute(ttm{d},[1,3,2]),[n*rm1,m]);\n sttm{d}(abs(sttm{d})/max(max(abs(sttm{d}))).\n\n\nif nargin < 2\n percentile = 50;\nend\n\nif nargin < 3\n imgSelect = this;\nelse\n imgSelect = this.select(varargin{:});\nend\n\npercentile = prctile(imgSelect.data(:), percentile);", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/UniQC/code/classes/@MrDataNd/prctile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.37152416137313027}} {"text": "function [Gx_org,Gy_org,Gz_org]=compute_gradients(img_pca,ins_msk,Subject,Figures,Streamlines)\n\n% Compute eigenmap's gradient magnitude \n\n% INPUT\n% img_pca is the eigenmap image in which gradients are computed\n% ins_msk is a mask. Only gradients for voxels in the mask are shown in\n% figure\n% Subject: prefix of output\n% Figures: 0->suppress figures; 1->print figures \n% slices\n% Streamlines:1-> write out vector file; 0->do not write out vector file \n\n% OUTPUT\n% Local gradient orientations for each voxel \n\nErode=1; %erosion kernel\nN=size(img_pca);\nind_ins=find(~~ins_msk);\n\n% Compute gradient\n% updated script to clean up edges\nimg_new=zeros(N);\nimg_new(ind_ins)=img_pca(ind_ins);\nimg_pca=img_new; %Remove gradients computed in boundary voxels added by dilation\n\n[Gy,Gx,Gz,mag]=compute_grads_local(img_pca);\n% %Swap order of Gx and Gy because the first output of the function is the\n% %gradient along direction of increasing column subscripts.\n% %With this re-ordering\n% %Gx is gradient along rows (1st dimension)\n% %Gy is gradient along columns (2nd dimension)\n% %Gz is gradeint in 3rd dimensions\n\nimg_mag=mag;\n\nGx_org=Gx; Gy_org=Gy; Gz_org=Gz;\n\n%Crop for a better visulization\nGx=Gx.*~~ins_msk;\nGy=Gy.*~~ins_msk;\nGz=Gz.*~~ins_msk;\n\n%Bounding box\ntmp=squeeze(sum(ins_msk,1));\n[y,z]=find(tmp);\nmax_y=max(y); min_y=min(y);\nmax_z=max(z); min_z=min(z);\ntmp=squeeze(sum(ins_msk,2));\n[x,z]=find(tmp);\nmax_x=max(x); min_x=min(x);\nNx=max_x-min_x+1;\nNy=max_y-min_y+1;\nNz=max_z-min_z+1;\n\n%Write out img_pca and img_mag after cropping\nif ~isempty(Subject)\n fprintf('Write out %s\\n',[Subject,'magnitude.nii'])\n mat2nii(img_mag(min_x:max_x,min_y:max_y,min_z:max_z),[Subject,'magnitude.nii']);\n \n fprintf('Write out %s\\n',[Subject,'eigenvector.nii'])\n mat2nii(img_pca(min_x:max_x,min_y:max_y,min_z:max_z),[Subject,'eigenvector.nii']);\nend\n\nif Streamlines\n u=repmat([1:Nx]',1,Ny); u=repmat(u,1,1,Nz);\n v=repmat([1:Ny],Nx,1); v=repmat(v,1,1,Nz);\n w=zeros(Nx,Ny,Nz);\n for i=1:Nz\n w(:,:,i)=ones(Nx,Ny)*i;\n end\n slice_msk=imerode(~~squeeze(ins_msk(min_x:max_x,min_y:max_y,min_z:max_z)),ones(Erode,Erode));\n gx=squeeze(Gx(min_x:max_x,min_y:max_y,min_z:max_z)).*slice_msk;\n gy=squeeze(Gy(min_x:max_x,min_y:max_y,min_z:max_z)).*slice_msk;\n gz=squeeze(Gz(min_x:max_x,min_y:max_y,min_z:max_z)).*slice_msk;\n \n save ([Subject,'VectorFile.mat'],'gy','gx','gz','v','u','w','Gx_org','Gy_org','Gz_org');\nend\n\nif Figures\n Mag=0; % Mag=0:print out eigenmap slices; \n % Mag=1:print out gradient magnitude slices\n \n % Colormap consistent with Trackvis\n mycolormap=dlmread('trackvis_jet.txt');\n mycolormap(1,:)=1; % White background\n \n % Rescale according to the value in the magnitude map\n img_pca(ind_ins)=img_pca(ind_ins)/0.03*63+2;\n img_mag(ind_ins)=img_mag(ind_ins)/0.03*63+2;\n \n% %Use default colormap\n% mycolormap=parula(256); mycolormap(1,:)=1; % White background\n% img_pca(ind_ins)=img_pca(ind_ins)/max(img_pca(ind_ins))*255+2; \n% img_mag(ind_ins)=img_mag(ind_ins)/max(img_mag(ind_ins))*255+2;\n% %Rescale to 256 colors:\n% %Bin 1->2 is white\n% %Bin 2->3 is first color\n% %Bin 256->257 is last color \n\n %Sagittal\n for i=1:N(1)\n sz(i)=sum(sum(~~ins_msk(i,:,:)));\n end\n [~,ind_srt]=sort(sz,'descend'); %find slices with greatest coverage\n \n Slices=ind_srt(1:4);\n hf=figure; hf.Position=[100,300,2000,300]; hf.Color='w';\n for i=1:length(Slices)\n subplot(1,length(Slices),i)\n if Mag\n %1st dimension of image is placed on rows\n %2nd dimension of image is placed on columns\n im=image(squeeze(img_mag(Slices(i),min_y:max_y,min_z:max_z)));\n else\n im=image(squeeze(img_pca(Slices(i),min_y:max_y,min_z:max_z)));\n end\n slice_msk=imerode(~~squeeze(ins_msk(Slices(i),min_y:max_y,min_z:max_z)),ones(Erode,Erode));\n colormap(mycolormap);\n hold on;\n gx=squeeze(Gx(Slices(i),min_y:max_y,min_z:max_z)).*slice_msk;\n gy=squeeze(Gy(Slices(i),min_y:max_y,min_z:max_z)).*slice_msk;\n gz=squeeze(Gz(Slices(i),min_y:max_y,min_z:max_z)).*slice_msk;\n \n % Even the magnitude for figure\n mag=sqrt(gy.^2+gx.^2+gz.^2);\n gy=gy./mag; gx=gx./mag; gz=gz./mag;\n \n u=repmat([1:Ny]',1,Nz); v=repmat([1:Nz],Ny,1); w=ones(Ny,Nz);\n q=quiver3(v,u,w,gz,gy,gx);\n \n %First input is gradient in direction of increasing columns\n %Second input is gradient in direction of increasing rows\n q.LineWidth=0.5;\n q.Color=[192,192,192]/255;\n q.AutoScaleFactor=2;\n view(-90, 90);\n axis off;\n ax=gca; ax.XLabel.Visible='on'; ax.YLabel.Visible='on';\n axis equal;\n end\n \n % Coronal\n for i=1:N(2)\n sz(i)=sum(sum(~~ins_msk(:,i,:)));\n end\n [~,ind_srt]=sort(sz,'descend'); %find slices with greatest coverage\n Slices=ind_srt(1:4);\n hf=figure; hf.Position=[100,800,2000,300]; hf.Color='w';\n for i=1:length(Slices)\n subplot(1,length(Slices),i)\n if Mag\n %1st dimension of image is placed on rows\n %2nd dimension of image is placed on columns\n tmp=squeeze(img_mag(min_x:max_x,Slices(i),min_z:max_z));\n im=image(tmp);\n else\n tmp=squeeze(img_pca(min_x:max_x,Slices(i),min_z:max_z));\n im=image(tmp);\n end\n slice_msk=imerode(~~squeeze(ins_msk(min_x:max_x,Slices(i),min_z:max_z)),ones(Erode,Erode));\n colormap(mycolormap);\n hold on;\n gx=squeeze(Gx(min_x:max_x,Slices(i),min_z:max_z)).*slice_msk;\n gy=squeeze(Gy(min_x:max_x,Slices(i),min_z:max_z)).*slice_msk;\n gz=squeeze(Gz(min_x:max_x,Slices(i),min_z:max_z)).*slice_msk;\n \n % Even the magnitude\n mag=sqrt(gy.^2+gx.^2+gz.^2);\n gy=gy./mag; gx=gx./mag; gz=gz./mag;\n \n u=repmat([1:Nx]',1,Nz); v=repmat([1:Nz],Nx,1); w=ones(Nx,Nz);\n q=quiver3(v,u,w,gz,gx,gy);\n \n %First input is gradient in direction of increasing columns\n %Second input is gradient in direction of increasing rows\n q.LineWidth=0.5;\n q.Color=[192,192,192]/255;\n q.AutoScaleFactor=2;\n view(-90, 90);\n axis off;\n ax=gca; ax.XLabel.Visible='on'; ax.YLabel.Visible='on';\n axis equal;\n end\n \n %Axial\n for i=1:N(3)\n sz(i)=sum(sum(~~ins_msk(:,:,i)));\n end\n [~,ind_srt]=sort(sz,'descend'); %find slices with greatest coverage\n Slices=ind_srt(1:4);\n hf=figure; hf.Position=[100,1200,2000,300]; hf.Color='w';\n for i=1:length(Slices)\n subplot(1,length(Slices),i)\n if Mag\n %1st dimension of image is placed on rows\n %2nd dimension of image is placed on columns\n tmp=squeeze(img_mag(min_x:max_x,min_y:max_y,Slices(i)));\n im=image(tmp);\n else\n tmp=squeeze(img_pca(min_x:max_x,min_y:max_y,Slices(i)));\n im=image(tmp);\n end\n slice_msk=imerode(~~squeeze(ins_msk(min_x:max_x,min_y:max_y,Slices(i))),ones(Erode,Erode));\n colormap(mycolormap);\n hold on;\n gx=squeeze(Gx(min_x:max_x,min_y:max_y,Slices(i))).*slice_msk;\n gy=squeeze(Gy(min_x:max_x,min_y:max_y,Slices(i))).*slice_msk;\n gz=squeeze(Gz(min_x:max_x,min_y:max_y,Slices(i))).*slice_msk;\n \n % Even the magnitude\n mag=sqrt(gy.^2+gx.^2+gz.^2);\n gy=gy./mag; gx=gx./mag; gz=gz./mag;\n \n u=repmat([1:Nx]',1,Ny); v=repmat([1:Ny],Nx,1); w=ones(Nx,Ny);\n \n q=quiver3(v,u,w,gy,gx,gz);\n \n %First input is gradient in direction of increasing columns\n %Second input is gradient in direction of increasing rows\n q.LineWidth=0.5;\n q.Color=[192,192,192]/255;\n q.AutoScaleFactor=2;\n \n view(-90, 90);\n axis off;\n ax=gca; ax.XLabel.Visible='on'; ax.YLabel.Visible='on';\n axis equal;\n end\nend\n\n\n", "meta": {"author": "yetianmed", "repo": "subcortex", "sha": "76179cf552b773e79b06a54568eae1fdd13722f4", "save_path": "github-repos/MATLAB/yetianmed-subcortex", "path": "github-repos/MATLAB/yetianmed-subcortex/subcortex-76179cf552b773e79b06a54568eae1fdd13722f4/functions/compute_gradients.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056040203136, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3715241544929381}} {"text": "function [feature_pos_out, transformed_points_out, scale_out, error] = em2_affine_imu(...\n events, ...\n feature_pos, ...\n template_points, ...\n template_weights, ...\n scale_in, ...\n flow, ...\n R_in, ...\n cinfo, ...\n params, ...\n fig)\n%EM2_AFFINE_IMU Estimates a scale and translationbetween a set of events \n%and a set of template points, given camera rotation.\n%\n% EM2_AFFINE_IMU estimates an scale and translation (s, b) between a set of \n% events with known optical flow, and a set of 2D template points, given the\n% camera rotation between the events and the template. This is an\n% implementation of the method outlined in:\n% Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis. \n% \"Event-Based Visual Inertial Odometry.\" CVPR 2017.\n%\n% Syntax: [feature_pos_out, transformed_points_out, scale_out, error] = EM2_AFFINE_IMU(...\n% events, ...\n% feature_pos, ...\n% template_points, ...\n% template_weights, ...\n% scale_in, ...\n% flow, ...\n% R_in, ...\n% cinfo, ...\n% params, ...\n% fig)\n%\n% Inputs:\n% events - 4xN, each column is (x,y,t,p).\n% feature_pos - 2x1, pixel position of the feature.\n% template_points - 2xM, set of points to align the events with.\n% template_weights - 1xM, weights for each template point.\n% scale_in - 1x1, initialization for the scale factor.\n% flow_init - 2x1, flow for the event window.\n% R_in - 3x3, 3D camera rotation between the template and events.\n% cinfo - camera info struct. Structure is defined by the ROS message:\n% http://docs.ros.org/api/sensor_msgs/html/msg/CameraInfo.html\n% params - parameters, defined in get_params().\n% fig - figure handle for plotting.\n%\n% Outputs:\n% feature_pos_out - 2x1, feature pos after alignment, feature_pos - b.\n% transformed_points_out - 2xN, input events in the feature window\n% shifted by the flow A[x; y] + dt * flow + b.\n% scale_out - 1x1, estimate for the scale factor.\n% error - Error code, defined in TrackingErrors.\n%\n% See also GET_PARAMS\n%\n% Author: Alex Zihao Zhu, University of Pennsylvania\n% Email: alexzhu(at)seas.upenn.edu\n% Copyright 2018 University of Pennsylvania \n% Alex Zihao Zhu, Nikolay Atanasov, Kostas Daniilidis\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS, CONTRIBUTORS, AND THE \n% TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA \"AS IS\" AND ANY EXPRESS OR \n% IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES \n% OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. \n% IN NO EVENT SHALL THE COPYRIGHT OWNER, CONTRIBUTORS OR THE TRUSTEES OF \n% THE UNIVERSITY OF PENNSYLVANIA BE LIABLE FOR ANY DIRECT, INDIRECT, \n% INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT \n% NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, \n% DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY \n% THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT \n% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF \n% THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n\n%% Initialization\n% Estimated canonical events\ntransformed_points_out = [];\n% New estimated patch position if estimated\nfeature_pos_out = [nan; nan];\nerrs = zeros(params.em2_params.max_iters, 1);\nnum_iter = 0;\nscatter_plot_handle = [];\nscale = scale_in;\nscale_out = scale;\npos_shift = [0;0];\n\nevent_window = [];\n\nerror = TrackingErrors.ICPFailed;\n\n% Transform the input events based on the 3D camera rotation between the\n% input events and template points.\npx = cinfo.K(3);\npy = cinfo.K(6);\nfx = cinfo.K(1);\nfy = cinfo.K(5);\n\npos_u = [(feature_pos-[px;py])./[fx;fy]; 1];\npos_ur = R_in*pos_u;\npos_ur = pos_ur(1:2)/pos_ur(3);\npos_ur = pos_ur.*[fx;fy]+[px;py];\n\nevents_xy= events(1:2, :)+bsxfun(@times, flow, events(3, 1) - events(3, :));\nevents_xy = bsxfun(@rdivide, bsxfun(@minus, events_xy(1:2, :), [px;py]), [fx;fy]);\nevents_xy = [events_xy; ones(1, size(events_xy, 2))];\nevents_xy = R_in*events_xy;\nevents_xy = bsxfun(@rdivide, events_xy(1:2, :), events_xy(3, :));\nevents_xy = bsxfun(@plus, bsxfun(@times, events_xy, [fx;fy]), [px;py]);\nrotated_points = bsxfun(@minus, events_xy, pos_ur);\n\nif isempty(template_points)\n return\nend\n\nkdtree = KDTreeSearcher(...\n template_points' / (sqrt(2) * params.em2_params.sigma), ...\n 'Distance', 'euclidean');\n\nwhile true\n if num_iter > params.em2_params.max_iters\n error = TrackingErrors.ICPMaxIters;\n return\n end\n \n transformed_points= bsxfun(@plus, scale*rotated_points, pos_shift);\n \n if isempty(event_window)\n event_window = ...\n transformed_points(1, :) >= -params.window_size/2 & ...\n transformed_points(2, :) >= -params.window_size/2 & ...\n transformed_points(1, :) <= params.window_size/2 & ...\n transformed_points(2, :) <= params.window_size/2;\n \n n_in_window = sum(event_window);\n if n_in_window < params.min_events_for_em\n error = TrackingErrors.ICPFailed;\n return\n end\n \n rotated_points = rotated_points(:, event_window);\n transformed_points = transformed_points(:, event_window);\n \n weights = zeros(size(template_points, 2), size(transformed_points, 2));\n end\n \n [neighbors_cell, distances_cell] = rangesearch(...\n kdtree, ...\n transformed_points' / (sqrt(2) * params.em2_params.sigma), ...\n params.em2_params.max_distance);\n \n distancesstacked = cell2mat(cellfun(...\n @transpose, distances_cell, 'UniformOutput', false))';\n \n if isempty(distancesstacked)\n error = TrackingErrors.ICPFailed;\n return\n end\n \n % NOTE: 'length' is not the same as @length\n num_neighbors = cellfun('length', neighbors_cell);\n template_correspondences = cell2mat(cellfun(...\n @transpose, neighbors_cell, 'UniformOutput', false))';\n \n transformed_correspondences = repelem(1:size(transformed_points, 2), num_neighbors);\n \n weightsstacked = exp(-distancesstacked);\n \n valid_inds = sub2indc(...\n transformed_correspondences, ...\n template_correspondences, ...\n size(weights));\n \n % It's cheaper to multiply to 0 to reset the weights matrix than to\n % reinitialize it using zeros.\n weights = weights * 0;\n weights(valid_inds) = weightsstacked;\n \n if ~isempty(template_weights)\n weights = bsxfun(@times, template_weights, weights);\n end\n \n weight_sum = sum(weights, 1);\n valid_weights = (weight_sum > 0);\n weights = bsxfun(@rdivide, weights, weight_sum + 1e-10);\n\n weightsstacked = weights(valid_inds);\n \n %% Simultaneously minimize over scale and translation.\n weighted_template_barycenters = template_points*weights;\n weighted_template_barycenters = weighted_template_barycenters(:, valid_weights);\n\n valid_rotated_points = rotated_points(:, valid_weights);\n \n rotated_mean = mean(valid_rotated_points, 2);\n template_mean = mean(weighted_template_barycenters, 2);\n \n v_rotated_points_centered = bsxfun(@minus, valid_rotated_points, rotated_mean);\n w_template_b_centered = bsxfun(@minus, weighted_template_barycenters, template_mean);\n \n covariance = v_rotated_points_centered * w_template_b_centered';\n [U, S, V] = svd(covariance);\n if det(U*V') < 0\n S(2, 2) = -S(2, 2);\n end\n \n variance = sum(sum(v_rotated_points_centered.^2));\n new_scale = trace(S) / variance;\n \n pos_shift = template_mean - new_scale*rotated_mean;\n scale = new_scale;\n %\n % scale = sqrt(sum(sum(...\n % v_rotated_points_centered.*w_template_b_centered, 2)) / ...\n % sum(sum(v_rotated_points_centered.^2)));\n \n if scale < 0.1\n error = TrackingErrors.ICPFailed;\n return\n end\n \n %% Calculate errors, plot debug information.\n err = weightsstacked*distancesstacked'/size(valid_rotated_points, 2);\n errs(num_iter+1) = err;\n \n if params.debug\n set(0, 'CurrentFigure', fig)\n subplot(2,1,1)\n plot(errs(errs > 0), 'b')\n title('Change in error (convergence criterion)')\n xlim([0 params.em2_params.max_iters])\n subplot(2,1,2)\n if (~isempty(scatter_plot_handle))\n delete(scatter_plot_handle)\n end\n scatter_plot_handle = scatter(transformed_points(1, :), transformed_points(2, :),'r.');\n hold on\n scatter(template_points(1, :), template_points(2, :),template_weights*10,'b.');\n hold off\n axis equal\n axis([-params.window_size/2-5, ...\n params.window_size/2+5, ...\n -params.window_size/2-5, ...\n params.window_size/2+5])\n axis ij\n \n title('EM2 with IMU Rotation')\n pause(0.01)\n end\n \n if num_iter\n derr = err-errs(num_iter);\n if derr > -params.em2_params.min_err && derr <= 0\n break;\n end\n end\n \n num_iter = num_iter + 1;\nend\n\nscale_out = scale;\n% Update the feature position based on the shift.\nfeature_pos_out = feature_pos-pos_shift;\n\n% Compute the template events to be used in later iterations.\ndt = events(3, end)-events(3, 1);\ntransformed_points = scale * ...\n (bsxfun(@minus, events(1:2, :), feature_pos_out + flow * dt) + ...\n bsxfun(@times, flow, (events(3, end) - events(3, :))));\n\n% Make the window size a bit bigger for the template.\nwindow_size = round(params.window_size * 1.5);\n\nevent_window = ...\n transformed_points(1, :) >= -window_size/2 & ...\n transformed_points(2, :) >= -window_size/2 & ...\n transformed_points(1, :) <= window_size/2 & ...\n transformed_points(2, :) <= window_size/2;\n\ntransformed_points_out = transformed_points(:, event_window);\n\nif params.debug\n pause(0.5)\nend\n\n% Measure how many transformed points are considered 'outliers' when\n% matched against the templates. Outliers are defined as points without any\n% template points within 2 pixels. Note that this function still requires\n% more work to be properly robust.\n[~, distances_cell] = knnsearch(...\n kdtree, ...\n transformed_points_out'/(sqrt(2)*params.em2_params.sigma), ...\n 'K', 1);\ndistances_cell = distances_cell * 2 * params.em2_params.sigma^2;\npercent_outliers = sum(distances_cell > 2.0) / length(distances_cell);\n\n\nif percent_outliers > params.em2_params.max_outlier_thresh\n error = TrackingErrors.ICPError;\n feature_pos_out = [nan; nan];\n return;\nend\n\nend\n", "meta": {"author": "daniilidis-group", "repo": "event_feature_tracking", "sha": "b29f85f18121bef638fc117922038dbad9de7068", "save_path": "github-repos/MATLAB/daniilidis-group-event_feature_tracking", "path": "github-repos/MATLAB/daniilidis-group-event_feature_tracking/event_feature_tracking-b29f85f18121bef638fc117922038dbad9de7068/EventFeatureTracking/Tracker/em2_affine_imu.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056040203135, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.371524154492938}} {"text": "function [L, V] = model_sort(m, i, L, V)\n% Topological sort of the nonterminal symbols in m's grammar.\n% [L, V] = model_sort(m, i, L, V)\n%\n% Return values\n% L Symbols visited in post order\n% V (internal use) Symbol visitation status\n%\n% Arguments\n% m Object model\n% i (internal use) Current symbol\n% L (internal use) Symbols visited thus far in post order\n% V (internal use) Symbol visitation status thus far\n\n% AUTORIGHTS\n% -------------------------------------------------------\n% Copyright (C) 2009-2012 Ross Girshick\n% \n% This file is part of the voc-releaseX code\n% (http://people.cs.uchicago.edu/~rbg/latent/)\n% and is available under the terms of an MIT-like license\n% provided in COPYING. Please retain this notice and\n% COPYING if you use this file (or a portion of it) in\n% your project.\n% -------------------------------------------------------\n\n% initialize depth-first search at start symbol\nif nargin < 2\n i = m.start;\n L = [];\n V = zeros(m.numsymbols, 1);\nend\n\n% check for cycle containing symbol i\nif V(i) == 1\n error('Cycle detected in grammar!');\nend\n\n% mark symbol i as pre-visit\nV(i) = 1;\nfor r = 1:length(m.rules{i})\n for s = m.rules{i}(r).rhs\n % recurse if s is a nonterminal and not already visited\n if m.symbols(s).type == 'N' && V(s) < 2\n [L, V] = model_sort(m, s, L, V);\n end\n end\nend\n% mark symbol i as post-visit\nV(i) = 2;\nL = [L i];\n", "meta": {"author": "rbgirshick", "repo": "voc-dpm", "sha": "c0b88564bd668bcc6216bbffe96cb061613be768", "save_path": "github-repos/MATLAB/rbgirshick-voc-dpm", "path": "github-repos/MATLAB/rbgirshick-voc-dpm/voc-dpm-c0b88564bd668bcc6216bbffe96cb061613be768/model/model_sort.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5583269943353745, "lm_q2_score": 0.665410558746814, "lm_q1q2_score": 0.3715166772641308}} {"text": "function C = cache_test(A,B)\n % CACHE_TEST Dummy program that computes C = A+B, but demonstrates how to use\n % md5 caching of function results on input parameters\n %\n % C = cache_test(A,B)\n %\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Check for cached result, do NOT edit variables until cache is checked,\n % your function code comes later. See below\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % get a list of current variables in this scope, this is the input \"state\"\n variables = who;\n % get a temporary file's name\n tmpf = [tempname('.') '.mat'];\n % save the \"state\" to file, so we can get a md5 checksum\n save(tmpf,'-regexp',sprintf('^%s$|',variables{:}),'-ascii');\n % get md5 checksum on input \"state\", we append .cache.mat to the check sum\n % because we'll use the checksum as the cache file name\n [s,cache_name] = system(['md5sum ' tmpf ' | awk ''{printf \".\"$1\".cache.mat\"}''']);\n % clean up\n delete(tmpf);\n clear s tmpf variables;\n\n % If the checksum cache file exists then we've seen this input \"state\"\n % before, load in cached output \"state\"\n if(exist(cache_name,'file'))\n fprintf('Cache exists. Using cache...\\n');\n % use cache\n load(cache_name);\n % Otherwise this is the first time we've seen this input \"state\", so we\n % execute the function as usual and save the output \"state\" to the cache \n else\n fprintf('First time. Creating cache...\\n');\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Your function code goes here\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n C = A+B;\n\n % get list of variables present in this scope at finish of function code,\n % this is the output \"state\"\n variables = who;\n % save output \"state\" to file, using md5 checksum cache file name\n save(cache_name,'-regexp',sprintf('^%s$|',variables{:}));\n end\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/utility/cache_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5583269943353744, "lm_q2_score": 0.6654105521116445, "lm_q1q2_score": 0.37151667355953644}} {"text": "function [rval_space,rval_time,ind_space,ind_time] = classify_comp_corr(Yr,A,C,b,f,options)\n\n% Classify components by looking at how well the spatial and temporal components\n% correlate with the raw data at point of high activation\n\n% INPUTS\n% Yr: reshaped data in 3D matrix or memmaped file\n% A,C,b,f: identified components\n% options: options structure\n% space_thresh: r-value threshold for spatial components (default: 0.4) \n% time_thresh: r-value threshold for temporal components (default: 0.4) \n% Athresh: threshold for determining spatial overlap (default: 0.1)\n% Np: number of high activity intervals for each component (default: 20)\n% peak_int: Interval around each local peak to be considered (default: -2:6)\n% MinPeakDist: minimum peak distance for finding points of high activity (default: 10)\n\n% OUTPUTS:\n% rval_space: r-values between spatial components and data patches\n% rval_time: r-values between temporal components and trace averages\n% ind_space: components with rval_space > space_thresh\n% ind_time: components with rval_time > time_thresh\n% MinPeakDist:\n\n% Written by Eftychios A. Pnevmatikakis, Simons Foundation, 2016\n% based on discussions with Matt Kaufman and Farzaneh Najafi, CSHL\n\ndefoptions = CNMFSetParms;\nif nargin < 6 || isempty(options)\n options = defoptions;\nend\n\nif ~isfield(options,'peak_int') || isempty(options.peak_int); int = defoptions.peak_int; else int = options.peak_int; end\nif ~isfield(options,'Npeaks') || isempty(options.peak_int); Np = defoptions.Npeaks; else Np = options.Npeaks; end\nif ~isfield(options,'A_thresh') || isempty(options.A_thresh); Athresh = defoptions.A_thresh; else Athresh = options.A_thresh; end\nif ~isfield(options,'space_thresh') || isempty(options.space_thresh); options.space_thresh = defoptions.space_thresh; end\nif ~isfield(options,'time_thresh') || isempty(options.time_thresh); options.time_thresh = defoptions.time_thresh; end\nif ~isfield(options,'MinPeakDist') || isempty(options.MinPeakDist); options.MinPeakDist = defoptions.MinPeakDist; end\n\nmemmaped = isobject(Yr);\n\n[K_m,T] = size(C);\npk = zeros(K_m,Np);\n\nparfor i = 1:K_m\n [~,pk_temp] = findpeaks(C(i,:),'SortStr','descend','Npeaks',Np,'MinPeakDistance',options.MinPeakDist);\n if ~isempty(pk_temp)\n if length(pk_temp) < Np\n pk_temp(length(pk_temp)+1:Np) = pk_temp(1);\n end\n pk(i,:) = pk_temp;\n end\nend\n\n%% expand intervals\nlint = length(int);\n\nlocs = repmat(pk,1,lint) + kron(int,ones(size(pk)));\nlocs = sort(locs,2,'ascend');\nlocs(locs<1)=1;\nlocs(locs>T)=T;\nLOCS = mat2cell(locs,ones(K_m,1),Np*lint);\nfor i = 1:K_m\n LOCS{i} = unique(LOCS{i});\nend\n\n%% compute r-values\nnA = full(sqrt(sum(A.^2)))';\ntAA = (A'*A)./(nA*nA') > Athresh;\ntAA(1:K_m+1:K_m^2) = 0;\n\nrval_space = zeros(K_m,1);\nrval_time = zeros(K_m,1);\n\nif options.d3 == 1; b_rs = reshape(b,options.d1,options.d2,[]); else b_rs = reshape(b,options.d1,options.d2,options.d3,[]); end\nif memmaped\n parfor i = 1:K_m\n ovlp_cmp = find(tAA(:,i));\n indeces = LOCS{i};\n for j = 1:length(ovlp_cmp)\n indeces = setdiff(indeces,LOCS{ovlp_cmp(j)});\n end\n a_temp = reshape(A(:,i),options.d1,options.d2*options.d3);\n [rows,temp] = find(a_temp>0);\n [cols,plns] = ind2sub([options.d2,options.d3],temp);\n if options.d3 > 1\n a_temp = reshape(full(A(:,i)),options.d1,options.d2,options.d3);\n a_temp = a_temp(min(rows):max(rows),min(cols):max(cols),min(plns):max(plns));\n else\n a_temp = a_temp(min(rows):max(rows),min(cols):max(cols));\n end\n\n if options.d3 == 1\n b_temp = reshape(b_rs(min(rows):max(rows),min(cols):max(cols),:),numel(a_temp),[]);\n else\n b_temp = reshape(b_rs(min(rows):max(rows),min(cols):max(cols),min(plns):max(plns),:),numel(a_temp),[]);\n end\n if ~isempty(indeces)\n if options.d3 == 1\n yytemp = Yr.Y(min(rows):max(rows),min(cols):max(cols),min(indeces):max(indeces));\n y_temp = yytemp(:,:,indeces-min(indeces)+1);\n else\n yytemp = Yr.Y(min(rows):max(rows),min(cols):max(cols),min(plns):max(plns),min(indeces):max(indeces));\n y_temp = yytemp(:,:,:,indeces-min(indeces)+1);\n end\n y_temp = reshape(y_temp,[],length(indeces));\n mY_space = double(mean(y_temp,2) - b_temp*mean(f(:,indeces),2));\n mY_time = double(mean(y_temp,1)-mean(b_temp,1)*f(:,indeces));\n rval_space(i) = corr(full(a_temp(:)),mY_space);\n rval_time(i) = corr(C(i,indeces)',mY_time');\n else\n rval_space(i) = NaN;\n rval_time(i) = NaN;\n end\n end\nelse\n parfor i = 1:K_m\n ovlp_cmp = find(tAA(:,i));\n indeces = LOCS{i};\n for j = 1:length(ovlp_cmp)\n indeces = setdiff(indeces,LOCS{ovlp_cmp(j)});\n end\n a_temp = reshape(A(:,i),options.d1,options.d2*options.d3);\n [rows,temp] = find(a_temp>0);\n [cols,plns] = ind2sub([options.d2,options.d3],temp);\n if options.d3 > 1\n a_temp = reshape(full(A(:,i)),options.d1,options.d2,options.d3);\n a_temp = a_temp(min(rows):max(rows),min(cols):max(cols),min(plns):max(plns));\n else\n a_temp = a_temp(min(rows):max(rows),min(cols):max(cols));\n end\n\n if options.d3 == 1\n b_temp = reshape(b_rs(min(rows):max(rows),min(cols):max(cols),:),numel(a_temp),[]);\n else\n b_temp = reshape(b_rs(min(rows):max(rows),min(cols):max(cols),min(plns):max(plns),:),numel(a_temp),[]);\n end\n if ~isempty(indeces)\n if options.d3 == 1\n y_temp = Yr(min(rows):max(rows),min(cols):max(cols),indeces);\n else\n y_temp = Yr(min(rows):max(rows),min(cols):max(cols),min(plns):max(plns),indeces);\n end \n y_temp = reshape(y_temp,[],length(indeces));\n mY_space = double(mean(y_temp,2) - b_temp*mean(f(:,indeces),2));\n mY_time = double(mean(y_temp,1)-mean(b_temp,1)*f(:,indeces));\n rval_space(i) = corr(full(a_temp(:)),mY_space);\n rval_time(i) = corr(C(i,indeces)',mY_time');\n else\n rval_space(i) = NaN;\n rval_time(i) = NaN;\n end\n end\nend\n\nind_space = rval_space > options.space_thresh;\nind_time = rval_time > options.time_thresh;", "meta": {"author": "flatironinstitute", "repo": "CaImAn-MATLAB", "sha": "49b7884e93348d50df7173e1619d7499468bb1f6", "save_path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB", "path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB/CaImAn-MATLAB-49b7884e93348d50df7173e1619d7499468bb1f6/utilities/classify_comp_corr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764746, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3715166698549421}} {"text": "function handles = tight_subplots(rows, columns, gap, row_margin, column_margin)\n% tight_subplots Initializes a grid of axes\n%\n% Initializes a grid of axes with adjustable gaps and margins \n% and returns their handles.\n%\n% Credit: Pekka Kumpulainen (2010) @tut.fi Tampere University of Technology / Automation Science and Engineering\n%\n% Input:\n% - rows (integer): Number of axes in hight (vertical direction).\n% - columns (integer): Number of axes in width (horizontal direction).\n% - gap (double): Gaps between the axes in normalized units (0...1)\n% or [gap_h gap_w] for different gaps in height and width. \n% - row_margin (): Margins in height in normalized units (0...1)\n% or [lower upper] for different lower and upper margins.\n% - column_margin (): Margins in width in normalized units (0...1)\n% or [left right] for different left and right margins \n%\n% Output:\n% - handles (matrix): Matrix of handles for the axes objects\n% starting from upper left corner, going row-wise as in\n% going row-wise as in.\n%\n\nif nargin<3; gap = .02; end\nif nargin<4 || isempty(row_margin); row_margin = .05; end\nif nargin<5; column_margin = .05; end\n\nif numel(gap)==1; \n gap = [gap gap];\nend\nif numel(column_margin)==1; \n column_margin = [column_margin column_margin];\nend\nif numel(row_margin)==1; \n row_margin = [row_margin row_margin];\nend\n\naxh = (1-sum(row_margin)-(rows-1)*gap(1))/rows; \naxw = (1-sum(column_margin)-(columns-1)*gap(2))/columns;\n\npy = 1-row_margin(2)-axh; \n\nhandles = zeros(rows*columns,1);\nii = 0;\nfor ih = 1:rows\n px = column_margin(1);\n \n for ix = 1:columns\n ii = ii+1;\n handles(ii) = axes('Units','normalized', ...\n 'Position',[px py axw axh], ...\n 'XTickLabel','', ...\n 'YTickLabel',''); %#ok\n px = px+axw+gap(2);\n end\n py = py-axh-gap(1);\nend", "meta": {"author": "votchallenge", "repo": "toolkit-legacy", "sha": "2fb78d5301dadc102fb329b3a3f1bb02c670e8ee", "save_path": "github-repos/MATLAB/votchallenge-toolkit-legacy", "path": "github-repos/MATLAB/votchallenge-toolkit-legacy/toolkit-legacy-2fb78d5301dadc102fb329b3a3f1bb02c670e8ee/utilities/tight_subplots.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819874558603, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37151431647616123}} {"text": "function a = band(a,p,q)\n%BAND Extract band from matrix a, lower bandwidth p, upper bandwidth q\n% if parameter q is omitted, q:=p\n%\n% c = band(a,p,q)\n%\n\n% written 04/04/04 S.M. Rump\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n if nargin<3\n q = p;\n end\n\n index = ( tril(triu(ones(size(a.x)),-p),q) == 0 );\n a.x(index) = 0;\n a.dx(:,index) = 0;\n a.hx(:,index) = 0;\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/hessian/@hessian/band.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819591324416, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37151429926506285}} {"text": "%% Copyright (C) 2014-2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym asin (@var{x})\n%% Symbolic asin function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = asin (x)\n%% @result{} y = (sym) asin(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = asin(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('asin', x);\nend\n\n\n%!error asin (sym(1), 2)\n%!assert (isequaln (asin (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 1;\n%! x = sym('1');\n\n%!test\n%! f1 = asin(x);\n%! f2 = asin(d);\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = asin(A);\n%! f2 = asin(D);\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = asin (d);\n%! f = asin (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/asin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819591324416, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.37151429926506285}} {"text": "function out = deriv(f, xx, varargin)\n%DERIV Evaluate a derivative of a CHEBFUN.\n%\n% DERIV(F, X) evaluates the first derivative of the CHEBFUN F at the points in\n% X. If F is a quasimatrix with columns F1, ..., FN, then the result will be\n% [F1(X), ..., FN(X)], the horizontal concatenation of the results of\n% evaluating each column at the points in X.\n%\n% DERIV(F, X, M) is the same as above, but returns the values of the Mth\n% derivative of F.\n%\n% DERIV(F, X, S) or DERIV(F, X, S, M) where S is one of the strings 'left',\n% 'right', '+', or '-', evaluates the left- or right-sided limit as described\n% in chebfun/feval.\n%\n% Example 1:\n% u = chebfun(@sin);\n% deriv(u, 1) % u'(1)\n% deriv(u, .5, 2) % u''(.5)\n% deriv(u, 0.1:0.01:0.2) % u'(0.1:0.01:0.2)\n%\n% Example 2:\n% x = chebfun('x')\n% u = abs(x);\n% deriv(u, 0, 'left') % ans = -1\n% deriv(u, 0, 'right') % ans = +1\n%\n% See also chebfun/diff, chebfun/feval.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% The most trivial case:\nif ( isempty(f) )\n return\nend\n\n% By default, compute first derivative:\nm = 1; \n\n% Parse the inputs:\nif ( nargin == 3 )\n if ( isnumeric(varargin{1}) ) % DERIV(F, X, M)\n m = varargin{1};\n varargin = {};\n else % DERIV(F, X, S)\n m = 1; % By default, compute first derivative\n end\nelseif ( nargin == 4 ) % DERIV(F, X, S, M)\n m = varargin{2};\n varargin{2} = [];\nend\n\nif ( m == 0 )\n % Trivial case\n out = feval(f, xx, varargin{:});\nelse\n out = feval(diff(f, m), xx, varargin{:});\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/deriv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878696277513, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.371471145006881}} {"text": "function out = issmooth(f)\n%ISSMOOTH True if a SINGFUN object F is smooth.\n% ISSMOOTH(F) returns TRUE if the SINGFUN objects F has zero EXPONENTS or if \n% the SMOOTHPART is zero. The test is FALSE otherwise.\n%\n% See also ISSING.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers. \n% See http://www.chebfun.org/ for Chebfun information.\n\nout = all(f.exponents == 0) || all(iszero(f.smoothPart));\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@singfun/issmooth.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3714711364843853}} {"text": "function pass = test_isequal( pref ) \n\n% Grab some preferences\nif ( nargin == 0 )\n pref = chebfunpref();\nend\n\n% Test with function 1\nf = ballfun(ones(21,20,22));\ng = f+f-f;\n\npass(1) = (isequal(f,g) && isequal(g,f));\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/ballfun/test_isequal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3714711364843853}} {"text": "% Plot Simulation and On-board Model Output\n\nsim_INS_Out = get(logsout, 'INS_Out');\nref_INS_Out = get(logsout, 'INS_Out_Ref');\n\nsim_FMS_Out = get(logsout, 'FMS_Out');\nref_FMS_Out = get(logsout, 'FMS_Out_Ref');\n\nsim_Control_Out = get(logsout, 'Control_Out');\nref_Control_Out = get(logsout, 'Control_Out_Ref');\n\n%% Euler\nfigure;\nax1 = subplot(3,1,1);\nplot(sim_INS_Out.Values.phi, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.phi, 'Color', 'b');\ngrid on;\nlegend('\\phi', '\\phi_r')\n\nax2 = subplot(3,1,2);\nplot(sim_INS_Out.Values.theta, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.theta, 'Color', 'b');\ngrid on;\nlegend('\\theta', '\\theta_r')\n\nax3 = subplot(3,1,3);\nplot(sim_INS_Out.Values.psi, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.psi, 'Color', 'b');\ngrid on;\nlegend('\\psi', '\\psi_r')\n\nlinkaxes([ax1,ax2,ax3], 'x');\n\n%% Velocity\nfigure;\nax1 = subplot(3,1,1);\nplot(sim_INS_Out.Values.vn, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.vn, 'Color', 'b');\ngrid on;\nlegend('vn', 'vn_r')\n\nax2 = subplot(3,1,2);\nplot(sim_INS_Out.Values.ve, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.ve, 'Color', 'b');\ngrid on;\nlegend('ve', 've_r')\n\nax3 = subplot(3,1,3);\nplot(sim_INS_Out.Values.vd, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.vd, 'Color', 'b');\ngrid on;\nlegend('vd', 'vd_r')\n\nlinkaxes([ax1,ax2,ax3], 'x');\n\n%% Position\nfigure;\nax1 = subplot(3,1,1);\nplot(sim_INS_Out.Values.x_R, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.x_R, 'Color', 'b');\ngrid on;\nlegend('x', 'x_r')\n\nax2 = subplot(3,1,2);\nplot(sim_INS_Out.Values.y_R, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.y_R, 'Color', 'b');\ngrid on;\nlegend('y', 'y_r')\n\nax3 = subplot(3,1,3);\nplot(sim_INS_Out.Values.h_R, 'Color', 'r');\nhold on;\nplot(ref_INS_Out.Values.h_R, 'Color', 'b');\ngrid on;\nlegend('h', 'h_r')\n\nlinkaxes([ax1,ax2,ax3], 'x');\n\n%% FMS Output\nfigure;\nax1 = subplot(3,1,1);\nplot(sim_FMS_Out.Values.u_cmd, 'Color', 'r');\nhold on;\nplot(ref_FMS_Out.Values.u_cmd, 'Color', 'b');\ngrid on;\nlegend('u\\_cmd', 'u\\_cmd_r')\nax2 = subplot(3,1,2);\nplot(sim_FMS_Out.Values.v_cmd, 'Color', 'r');\nhold on;\nplot(ref_FMS_Out.Values.v_cmd, 'Color', 'b');\ngrid on;\nlegend('v\\_cmd', 'v\\_cmd_r')\nax3 = subplot(3,1,3);\nplot(sim_FMS_Out.Values.w_cmd, 'Color', 'r');\nhold on;\nplot(ref_FMS_Out.Values.w_cmd, 'Color', 'b');\ngrid on;\nlegend('w\\_cmd', 'w\\_cmd_r')\nlinkaxes([ax1,ax2,ax3], 'x');\n\nfigure;\nax1 = subplot(3,1,1);\nplot(sim_FMS_Out.Values.phi_cmd, 'Color', 'r');\nhold on;\nplot(ref_FMS_Out.Values.phi_cmd, 'Color', 'b');\ngrid on;\nlegend('\\phi\\_cmd', '\\phi\\_cmd_r')\nax2 = subplot(3,1,2);\nplot(sim_FMS_Out.Values.theta_cmd, 'Color', 'r');\nhold on;\nplot(ref_FMS_Out.Values.theta_cmd, 'Color', 'b');\ngrid on;\nlegend('\\theta\\_cmd', '\\theta\\_cmd_r')\nax3 = subplot(3,1,3);\nplot(sim_FMS_Out.Values.psi_rate_cmd, 'Color', 'r');\nhold on;\nplot(ref_FMS_Out.Values.psi_rate_cmd, 'Color', 'b');\ngrid on;\nlegend('\\psi\\_rate\\_cmd', '\\psi\\_rate\\_cmd_r')\nlinkaxes([ax1,ax2,ax3], 'x');\n\n%% Control Output\nfigure;\n\nax1 = subplot(4,1,1);\nplot(sim_Control_Out.Values.actuator_cmd.Time, sim_Control_Out.Values.actuator_cmd.Data(:,1), 'Color', 'r');\nhold on;\nplot(ref_Control_Out.Values.actuator_cmd.Time, ref_Control_Out.Values.actuator_cmd.Data(:,1), 'Color', 'b');\ngrid on;\nlegend('motor1', 'motor1_r')\n\nax2 = subplot(4,1,2);\nplot(sim_Control_Out.Values.actuator_cmd.Time, sim_Control_Out.Values.actuator_cmd.Data(:,2), 'Color', 'r');\nhold on;\nplot(ref_Control_Out.Values.actuator_cmd.Time, ref_Control_Out.Values.actuator_cmd.Data(:,2), 'Color', 'b');\ngrid on;\nlegend('motor2', 'motor2_r')\n\nax3 = subplot(4,1,3);\nplot(sim_Control_Out.Values.actuator_cmd.Time, sim_Control_Out.Values.actuator_cmd.Data(:,3), 'Color', 'r');\nhold on;\nplot(ref_Control_Out.Values.actuator_cmd.Time, ref_Control_Out.Values.actuator_cmd.Data(:,3), 'Color', 'b');\ngrid on;\nlegend('motor3', 'motor3_r')\n\nax4 = subplot(4,1,4);\nplot(sim_Control_Out.Values.actuator_cmd.Time, sim_Control_Out.Values.actuator_cmd.Data(:,4), 'Color', 'r');\nhold on;\nplot(ref_Control_Out.Values.actuator_cmd.Time, ref_Control_Out.Values.actuator_cmd.Data(:,4), 'Color', 'b');\ngrid on;\nlegend('motor4', 'motor4_r')\n\nlinkaxes([ax1,ax2,ax3,ax4], 'x');", "meta": {"author": "Firmament-Autopilot", "repo": "FMT-Model", "sha": "adb85b9379cb4268f60bd8414f35aacfbdf8dec1", "save_path": "github-repos/MATLAB/Firmament-Autopilot-FMT-Model", "path": "github-repos/MATLAB/Firmament-Autopilot-FMT-Model/FMT-Model-adb85b9379cb4268f60bd8414f35aacfbdf8dec1/script/analyze/compareModelOut.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.3714711364843853}} {"text": "function h = thermometer(varargin)\n% Create a Thermometer plot.\n% THERMOMETER(DATA, MAX) - Create a thermometer \n% where DATA is a set of 1D data to plot in the thermometer.\n% Each entry in DATA adds onto the previous number, thus:\n% [ 3 4 5 ] will show the '3' between 0 and 3, and '4' between 3\n% and 7, and '5' between 7 and 12.\n% THERMOMETER(DATA, MIN, MAX) \n% MIN and MAX represent the minimum and maximum thermometer\n% values.\n% Values in DATA add onto MIN. Thus, if MIN is 10, and DATA is\n% [ 3 4 ] then the '3' is shown between 10 and 13, and the '4'\n% between 13 and 17.\n% THERMOMETER(..., { 'name1', 'name2' }) \n% Area labels.\n% THERMOMETER(..., { GOAL 'label' })\n% At a specific GOAL, add LABEL.\n% The GOAL value is absolute, and does not change based on MIN\n% or MAX.\n%\n% The thermometer code has been tweeked to look good printed from\n% painters. Using Zbuffer or OpenGL will make it looks strange.\n%\n% To adjust the tick labels, modify GCA's yticks.\n%\n% To make the zone labels alternate sides, uncomment the section\n% that contains the word 'left'.\n%\n% Example:\n% thermometer([ 3 4 ], 10, { 'tasks' 'bugs' }, { 8 'Almost There' })\n\n% History:\n% Version 1.2: Update doc to better describe data.\n%\n% Version 1.1: Fixed problem using color-order for shading\n% elements so more than 7 entries can be used.\n%\n%\n% Eric Ludlam\n% Copyright (c) 2006 The MathWorks Inc.\n\n data = varargin{1};\n\n if any(data < 0)\n error('DATA Values for thermometer must be > 0.');\n end\n \n if nargin >= 3 && isnumeric(varargin{3})\n inputy = [ varargin{2} varargin{3} ];\n base = 4;\n else\n inputy = [ 0 varargin{2} ];\n base = 3;\n end\n \n names = {};\n goals = {};\n \n while nargin >= base\n\n nexta = varargin{base};\n \n if ~iscell(nexta)\n error('Arguments after MAX must be cell arrays');\n end\n \n if ischar(nexta{1})\n \n names = cell(size(data,1),1);\n names(1:length(varargin{base})) = varargin{base};\n \n elseif isnumeric(nexta{1})\n \n goals = nexta;\n \n else\n \n error('Unknown cell array format for thermometer.', nexta); %#ok\n \n end\n \n \n base = base + 1;\n end\n \n lw = 2;\n ax = newplot;\n \n set(ax,'color','white');\n total = inputy(2) - inputy(1);\n yl = [ inputy(1)-(total/15) inputy(2) ];\n set(ax,'ylim', yl)\n set(ax,'xlim', [ 0 1 ])\n set(ax,'xtick', [] )\n set(ax,'plotboxaspectratio',[ 1 20 1 ]);\n set(ax,'box','on');\n set(ax,'tickdir','out');\n set(ax,'ygrid','on');\n set(ax,'gridlinestyle','-');\n set(ax,'box','off');\n\n co = get(gca,'colororder'); \n \n l = get(gca,'loose');\n l(1) = l(end);\n set(gca,'loose',l);\n \n % Draw a circle at bottom of thermometer\n \n rectangle('position',[-.5 inputy(1)-(total/15*1.5) 2 total/15*1.6 ],...\n 'curvature',[ 1 1 ],...\n 'facecolor',co(1,:),'edgecolor','k',...\n 'clipping','off',...\n 'linewidth',3);\n\n % Data Patchs\n \n % One number being plotted\n \n surface('xdata', [ 0 1 ] , 'ydata', [ yl(1) data(1)+inputy(1) ], ...\n 'zdata', [ 1 1 ; 1 1 ], ...\n 'facecolor', co(1,:) ,'edgecolor','none');\n\n if ~isempty(names)\n yzonelabel_t(inputy(1), data(1)+inputy(1), names{1}, 'right');\n end\n \n bottom = data(1)+inputy(1);\n\n % A stacked data plot\n for i = 2:length(data)\n\n cidx = i-1;\n color = co(mod(cidx,size(co,1))+1,:);\n \n surface('xdata', [ 0 1 ] , 'ydata', [ bottom bottom+data(i) ], ...\n 'zdata', [ 0 0 ; 0 0 ], ...\n 'facecolor', color ,'edgecolor','none'); \n %if ~mod(i,2)\n % lr = 'left';\n %else\n lr = 'right';\n %end\n\n if ~isempty(names) && length(names) >= i\n yzonelabel_t(bottom, bottom+data(i), names{i}, lr);\n end\n \n bottom = bottom+data(i);\n \n end\n\n while ~isempty(goals)\n \n pointlabel(goals{1}, goals{2}, false);\n \n goals = goals(3:end);\n \n end\n \n % Put a new box onto the axes.\n line('xdata',[0 0 1 1],'ydata', [ inputy(1) yl(2) yl(2) inputy(1) ],...\n 'zdata',[1 1 1 1],...\n 'color','k','linewidth',lw,'clipping','off');\n \n if nargout > 0\n h = ax;\n end\n\nend\n \nfunction pointlabel(yval, str, left)\n% Create a fancy label at yval\n \n if left\n xdata = [ 0 -.7 ];\n txtpos = -.8;\n ha = 'right';\n else\n xdata = [ 1 1.7 ];\n txtpos = 1.8;\n ha = 'left';\n end\n ydata = [ yval yval ];\n \n line(xdata,ydata,'color','k','clipping','off');\n line(1,yval,'color','k',...\n 'markersize',6,...\n 'marker','diamond','markerfacecolor','k');\n line(0,yval,'color','k',...\n 'markersize',6,...\n 'marker','diamond','markerfacecolor','k');\n line([0 1],ydata,'color','k','linestyle',':');\n text(txtpos,yval,str,'horizontalalign',ha,...\n 'verticalalign','middle');\n \nend\n\nfunction yzonelabel_t(start, fin, str, side)\n% Create a small label thingy between START and END\n% STR is an optional string to add to the label. The text\n% representing the total Y value encompassed is also included.\n% SIDE is a string, either 'left', or 'right'.\n\n xl = xlim;\n xr = xl(2);\n xl = xl(1);\n factor = abs(xl-xr);\n \n switch side\n case 'left'\n in = xl-1.2*factor;\n out = xl-2*factor;\n xdata = [ in out out in ];\n txtpos = xl-2.1*factor;\n rot = 90;\n case 'right'\n in = xr + .5*factor;\n out = xr + .7*factor;\n xdata = [ in out out in ];\n txtpos = xr + .8*factor;\n rot = -90;\n end\n ydata = [ start start fin fin ];\n \n mid = (start + fin) / 2;\n \n numstr = num2str(fin-start);\n \n if isempty(str)\n newstr = numstr;\n else\n newstr = [ numstr char(10) str ];\n end\n \n l = line(xdata,ydata,'color','k');\n t = text(txtpos, mid, newstr,'rotation',rot,...\n 'fontsize',10,...\n 'horizontalalign','center',...\n 'verticalalign','bottom');\n set([ l t ], 'xliminclude','off',...\n 'clipping','off');\n \nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/12513-thermometer-plot/thermometer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3714711364843853}} {"text": "function opts = updateMovie(S, dt, p, opts, t, v, compGrid, plotGrid)\n%UPDATEMOVIE Update the movie when solving a PDE specified by a SPINOPSPHERE.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Set-up:\nnVars = S.numVars;\nClim = opts{1};\ndataToPlot = opts{3};\nll = compGrid{1};\ntt = compGrid{2};\nN = 2*(size(ll, 1) - 1);\nlll = plotGrid{1};\nttt = plotGrid{2};\nNplot = 2*(size(lll, 1) - 1);\n\nfor k = 1:nVars\n \n % Extract each variable:\n idx = (k-1)*N + 1;\n vv = dataToPlot(v(idx:idx+N-1,:));\n vv = [vv, vv(:,1)]; %#ok<*AGROW> add repeated values (periodic endpoints)\n vv = [vv; vv(1,:)];\n vv = vv([N/2+1:N 1], :); % extract values that correspond to theta in [0,pi]\n \n % Change axes if necessary:\n if ( nargout == 1 )\n minvnew = min(vv(:));\n maxvnew = max(vv(:));\n if ( maxvnew > Clim(2*(k-1) + 2) )\n vscalenew = max(abs(minvnew), maxvnew);\n Clim(2*(k-1) + 2) = maxvnew + .1*vscalenew;\n end\n if ( minvnew < Clim(2*(k-1) + 1) )\n vscalenew = max(abs(minvnew), maxvnew);\n Clim(2*(k-1) + 1) = minvnew - .1*vscalenew;\n end\n end\n \n % Interpolate each variable on a finer grid:\n if ( Nplot > N )\n vvv = interp2(ll, tt, vv, lll, ttt, 'spline');\n else\n vvv = vv;\n end\n \n % Update each variable:\n set(p{1,k}, 'cdata', vvv)\n set(p{1,k}.Parent, 'clim', [Clim(2*(k-1) + 1), Clim(2*(k-1) + 2)])\n \n % Update title:\n titleString = sprintf('n = m = %i (DoFs = %i), dt = %1.1e, t = %.4f', N, ...\n nVars*N^2, dt, t);\n set(p{2,k}, 'String', titleString)\n drawnow\n\nend\n\n% Update outputs:\nopts{1} = Clim;\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spinopsphere/updateMovie.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.603931819468636, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.37147112771487956}} {"text": "function [predictedY,predictedYD,YD,stats] = predictPhenotype_CVHMM (Yin,Fin,T,...\n options_HMM,options_prediction,varargin)\n%\n% Kernel ridge regression or nearest-neighbour estimation using\n% a distance matrix using (stratified) LOO. \n% The difference with predictPhenotype.m is that the HMM is run also within\n% the cross-validation scheme (run on training data, reapplied on test), so it's slower. \n%\n% Since the HMM is purely unsupervised (does not use Yin), it is\n% safe to run it just once, and have only the prediction within the\n% cross-validation loop (whether this is actually OK depends on the specific application). \n% For this, use computeDistMatrix() and predictPhenotype()\n%\n% INPUT\n% Yin (no. subjects by no. phenotypes) matrix of phenotypic values to predict,\n% where each element can be continuous or binary. If a multiclass variable\n% is to be predicted, then Yin should be encoded by a\n% (no. subjects by no. classes) matrix, with zeros or ones\n% indicator entries.\n% Fin (no. subjects by 1) cell with (i) files of subject data, or (ii) just the data\n% options Struct with the prediction options, with fields:\n% + alpha - for method='KRR', a vector of weights on the L2 penalty on the regression\n% By default: [0.0001 0.001 0.01 0.1 0.4 0.7 1.0 10 100]\n% + sigmafact - for method='KRR', a vector of parameters for the kernel; in particular,\n% this is the factor by which we will multiply a data-driven estimation\n% of the kernel parameter. By default: [1/5 1/3 1/2 1 2 3 5];\n% + CVscheme - vector of two elements: first is number of folds for model evaluation;\n% second is number of folds for the model selection phase (0 in both for LOO)\n% + CVfolds - prespecified CV folds for the outer loop\n% + biascorrect - whether we correct for bias in the estimation \n% (Smith et al. 2019, NeuroImage)\n% + verbose - display progress?\n% cs optional (no. subjects X no. subjects) dependency structure matrix with\n% specifying possible relations between subjects (e.g., family\n% structure), or a (no. subjects X 1) vector defining some\n% grouping, with (1...no.groups) or 0 for no group\n% confounds (no. subjects by no. of confounds) matrix of features that \n% potentially influence the phenotypes and we wish to control for \n% (optional)\n%\n% OUTPUT\n% predictedY predicted response,in the original (non-decounfounded) space\n% predictedYD predicted response,in the decounfounded space\n% YD response,in the decounfounded space\n% stats structure, with fields\n% + pval - permutation-based p-value, if permutation is run;\n% otherwise, correlation-based p-value\n% + cod - coeficient of determination \n% + corr - correlation between predicted and observed Y \n% + baseline_corr - baseline correlation between predicted and observed Y for null model \n% + sse - sum of squared errors\n% + baseline_sse - baseline sum of squared errors\n% PLUS: All of the above +'_deconf' in the deconfounded space, if counfounds were specified\n%\n% Author: Diego Vidaurre, OHBA, University of Oxford\n\noptions = options_prediction;\n[N,q] = size(Yin);\n\nif ~iscell(Fin), error('Argument Fin must be a cell'); end\n\nwhich_nan = false(N,1); \nif q == 1\n which_nan = isnan(Yin);\n if any(which_nan)\n Yin = Yin(~which_nan);\n Fin = Fin(~which_nan,:);\n warning('NaN found on Yin, will remove...')\n end\n N = size(Yin,1);\nend\n\nif isempty(options), options = struct(); end\nif nargin<3, options = struct(); end\n\nif ~isfield(options,'alpha')\n alpha = [0.0001 0.001 0.01 0.1 0.4 0.7 1.0 10 100];\nelse\n alpha = options.alpha;\nend\nif ~isfield(options,'sigmafact')\n sigmafact = [1/5 1/3 1/2 1 2 3 5];\nelse\n sigmafact = options.sigmafact;\nend\nif ~isfield(options,'K')\n K = 1:min(50,round(0.5*N));\nelse\n K = options.K; \nend\n\nif ~isfield(options,'CVscheme'), CVscheme = [10 10];\nelse, CVscheme = options.CVscheme; end\nif ~isfield(options,'CVfolds'), CVfolds = [];\nelse, CVfolds = options.CVfolds; end\n% if ~isfield(options,'biascorrect'), biascorrect = 0;\n% else, biascorrect = options.biascorrect; end\nif ~isfield(options,'verbose'), verbose = 1;\nelse, verbose = options.verbose; end\n\n% check correlation structure\nallcs = []; \nif (nargin>=6) && ~isempty(varargin{1})\n cs = varargin{1};\n if ~isempty(cs)\n is_cs_matrix = (size(cs,2) == size(cs,1));\n if size(cs,2)>1 % matrix format\n if any(which_nan)\n cs = cs(~which_nan,~which_nan);\n end\n [allcs(:,2),allcs(:,1)]=ind2sub([length(cs) length(cs)],find(cs>0));\n else\n if any(which_nan)\n cs = cs(~which_nan);\n end\n allcs = find(cs > 0);\n end\n end\nelse, cs = []; \nend\n\n% get confounds\nif (nargin>=7) && ~isempty(varargin{2})\n confounds = varargin{2};\n confounds = confounds - repmat(mean(confounds),N,1);\n deconfounding = 1;\n if any(which_nan)\n confounds = confounds(~which_nan,:);\n end\nelse\n confounds = []; deconfounding = 0;\nend\n\nYmean = zeros(N,q);\nYD = zeros(N,q); % deconfounded signal\nYmeanD = zeros(N,q); % mean in deconfounded space\npredictedY = zeros(N,q);\nif deconfounding, predictedYD = zeros(N,q); end\n\n% create the inner CV structure - we can't to stratified because it's the\n% same fold structure for all variables\nif isempty(CVfolds)\n if CVscheme(1)==1\n folds = {1:N};\n elseif q == 1\n Yin_copy = Yin; Yin_copy(isnan(Yin)) = realmax;\n folds = cvfolds(Yin_copy,CVscheme(1),allcs);\n else % no stratification\n folds = cvfolds(randn(size(Yin,1),1),CVscheme(1),allcs); \n end\nelse\n folds = CVfolds;\nend\n\nfor ifold = 1:length(folds)\n \n if verbose, fprintf('CV iteration %d \\n',ifold); end\n \n J = folds{ifold}; % test\n if isempty(J), continue; end\n if length(folds)==1\n ji = J;\n else\n ji = setdiff(1:N,J); % train\n end\n \n hmm = hmmmar(Fin(ji),T(ji),options_HMM);\n HMMs_dualregr = cell(N,1);\n \n % dual-estimation\n for j = 1:N\n if ischar(Fin{j})\n fsub = Fin{j};\n loadfile_sub;\n else\n X = Fin{j};\n end\n HMMs_dualregr{j} = hmmdual(X,T{j},hmm);\n HMMs_dualregr{j}.state = rmfield(HMMs_dualregr{j}.state,'prior');\n end\n \n disp('HMM done')\n \n Din = zeros(N,N);\n parfor n1 = 1:N-1\n din = zeros(1,N);\n for n2 = n1+1:N\n % FO is contained in TPC; TPC is contained in HMM\n din(n2) = (hmm_kl(HMMs_dualregr{n1},HMMs_dualregr{n2}) ...\n + hmm_kl(HMMs_dualregr{n2},HMMs_dualregr{n1}))/2;\n end\n Din(n1,:) = din;\n end; Din = Din' + Din; \n \n D = Din(ji,ji); \n Y = Yin(ji,:);\n D2 = Din(J,ji);\n \n % family structure for this fold\n Qallcs=[];\n if (~isempty(cs))\n if is_cs_matrix\n [Qallcs(:,2),Qallcs(:,1)] = ...\n ind2sub([length(cs(ji,ji)) length(cs(ji,ji))],find(cs(ji,ji)>0));\n else\n Qallcs = find(cs(ji) > 0);\n end\n end\n \n parfor ii = 1:q\n \n Dii = D; Yii = Y; \n \n ind = find(~isnan(Y(:,ii)));\n Yii = Yii(ind,ii); \n QDin = Dii(ind,ind); \n QN = length(ind);\n \n Qfolds = cvfolds(Yii,CVscheme(2),Qallcs); % we stratify\n \n % deconfounding business\n if deconfounding\n Cii = confounds(ji,:); Cii = Cii(ind,:);\n [betaY,interceptY,Yii] = deconfoundPhen(Yii,Cii);\n end\n \n % centering response\n my = mean(Yii); \n Yii = Yii - repmat(my,size(Yii,1),1);\n Ymean(J,ii) = my;\n QYin = Yii;\n \n Dev = Inf(length(alpha),length(sigmafact));\n \n for isigm = 1:length(sigmafact)\n \n sigmf = sigmafact(isigm);\n \n QpredictedY = Inf(QN,length(alpha));\n QYinCOMPARE = QYin;\n \n % Inner CV loop\n for Qifold = 1:length(Qfolds)\n \n QJ = Qfolds{Qifold}; Qji = setdiff(1:QN,QJ);\n QD = QDin(Qji,Qji);\n QY = QYin(Qji); Qmy = mean(QY); QY = QY-Qmy;\n Nji = length(Qji);\n QD2 = QDin(QJ,Qji);\n \n sigmabase = auto_sigma(QD);\n sigma = sigmf * sigmabase;\n \n K = gauss_kernel(QD,sigma);\n K2 = gauss_kernel(QD2,sigma);\n I = eye(Nji);\n ridg_pen_scale = mean(diag(K));\n \n for ialph = 1:length(alpha)\n alph = alpha(ialph);\n beta = (K + ridg_pen_scale * alph * I) \\ QY;\n QpredictedY(QJ,ialph) = K2 * beta + repmat(Qmy,length(QJ),1);\n end\n end\n \n Dev(:,isigm) = (sum(( QpredictedY - ...\n repmat(QYinCOMPARE,1,length(alpha))).^2) / QN)';\n \n end\n \n [~,m] = min(Dev(:)); % Pick the one with the lowest deviance\n [ialph,isigm] = ind2sub(size(Dev),m);\n sigmf = sigmafact(isigm);\n sigmabase = auto_sigma(D);\n sigma = sigmf * sigmabase;\n alph = alpha(ialph);\n \n Dii = D(ind,ind); D2ii = D2(:,ind);\n \n K = gauss_kernel(Dii,sigma);\n K2 = gauss_kernel(D2ii,sigma);\n Nji = length(ind);\n I = eye(Nji);\n \n ridg_pen_scale = mean(diag(K));\n beta = (K + ridg_pen_scale * alph * I) \\ Yii;\n \n % predict the test fold\n predictedY(J,ii) = K2 * beta + my; % some may be NaN actually\n \n % predictedYD and YD in deconfounded space; Yin and predictedY are confounded\n predictedYD(J,ii) = predictedY(J,ii);\n YD(J,ii) = Yin(J,ii);\n YmeanD(J,ii) = Ymean(J,ii);\n if deconfounding % in order to later estimate prediction accuracy in deconfounded space\n [~,~,YD(J,ii)] = deconfoundPhen(YD(J,ii),confounds(J,:),betaY,interceptY);\n % original space\n predictedY(J,ii) = confoundPhen(predictedY(J,ii),confounds(J,:),betaY,interceptY);\n Ymean(J,ii) = confoundPhen(YmeanD(J,ii),confounds(J,:),betaY,interceptY);\n end\n \n% if biascorrect % we do this in the original space\n% Yhattrain = K * beta + my;\n% if deconfounding\n% Yhattrain = confoundPhen(Yhattrain,confounds(ji,:),betaY,interceptY);\n% Ytrain = [confoundPhen(QYin,confounds(ji,:),betaY,interceptY) ...\n% ones(size(QYin,1),1)];\n% else\n% Ytrain = [QYin ones(size(QYin,1),1)];\n% end\n% b = pinv(Ytrain) * Yhattrain;\n% predictedY(J,ii) = (predictedY(J,ii) - b(2)) / b(1);\n% end\n\n if rem(ii,100)==0, disp(['Variable ' num2str(ii) ]); end\n \n end\n\n disp(['Fold ' num2str(ifold) ])\n \nend\n\nstats = struct();\nstats.sse = zeros(q,1);\nstats.cod = zeros(q,1);\nstats.corr = zeros(q,1);\nstats.baseline_corr = zeros(q,1);\nstats.pval = zeros(q,1);\nif deconfounding\n stats.sse_deconf = zeros(q,1);\n stats.cod_deconf = zeros(q,1);\n stats.corr_deconf = zeros(q,1);\n stats.baseline_corr_deconf = zeros(q,1);\n stats.pval_deconf = zeros(q,1);\nend\n\nfor ii = 1:q\n ind = find(~isnan(Yin(:,ii)));\n stats.sse(ii) = sum((Yin(ind,ii)-predictedY(ind,ii)).^2);\n nullsse = sum((Yin(ind,ii)-Ymean(ind,ii)).^2);\n stats.cod(ii) = 1 - stats.sse(ii) / nullsse;\n stats.corr(ii) = corr(Yin(ind,ii),predictedY(ind,ii));\n stats.baseline_corr(ii) = corr(Yin(ind,ii),Ymean(ind,ii));\n [~,pv] = corrcoef(Yin(ind,ii),predictedY(ind,ii)); % original space\n if corr(Yin(ind,ii),predictedY(ind,ii))<0, stats.pval(ii) = 1;\n else, stats.pval(ii) = pv(1,2);\n end\n if deconfounding\n stats.sse_deconf(ii) = sum((YD(ind,ii)-predictedYD(ind,ii)).^2);\n nullsse_deconf = sum((YD(ind,ii)-YmeanD(ind,ii)).^2);\n stats.cod_deconf(ii) = 1 - stats.sse_deconf(ii) / nullsse_deconf;\n stats.corr_deconf(ii) = corr(YD(ind,ii),predictedYD(ind,ii));\n stats.baseline_corr_deconf(ii) = corr(YD(ind,ii),YmeanD(ind,ii));\n [~,pv] = corrcoef(YD(ind,ii),predictedYD(ind,ii)); % original space\n if corr(YD(ind,ii),predictedYD(ind,ii))<0, stats.pval_deconf(ii) = 1;\n else, stats.pval_deconf(ii) = pv(1,2);\n end\n end\nend\n\nend\n\n\nfunction K = gauss_kernel(D,sigma)\n% Gaussian kernel\nD = D.^2; % because distance is sqrt-ed\nK = exp(-D/(2*sigma^2));\nend\n\n\nfunction sigma = auto_sigma (D)\n% gets a data-driven estimation of the kernel parameter\nD = D(triu(true(size(D,1)),1));\nsigma = median(D);\nend\n\n\nfunction [betaY,my,Y] = deconfoundPhen(Y,confX,betaY,my)\nif nargin<3, betaY = []; end\nif isempty(betaY)\n my = mean(Y);\n Y = Y - repmat(my,size(Y,1),1);\n betaY = (confX' * confX + 0.00001 * eye(size(confX,2))) \\ confX' * Y;\nend\nY = Y - confX*betaY;\nend\n\n\nfunction Y = confoundPhen(Y,conf,betaY,my) \nY = Y + conf*betaY + repmat(my,size(Y,1),1);\nend", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/utils/prediction/predictPhenotype_CVHMM.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.737158174177441, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3714585526239632}} {"text": "function test_failed = test_libltfat_fft(varargin)\ntest_failed = 0;\n\nfprintf(' =============== %s ================ \\n',upper(mfilename));\n\ndefinput.flags.complexity={'double','single'};\n[flags]=ltfatarghelper({},definput,varargin);\ndataPtr = [flags.complexity, 'Ptr'];\n\n[~,~,enuminfo]=libltfatprotofile;\nphaseconv = enuminfo.ltfat_phaseconvention;\n\nfftwflags = struct('FFTW_MEASURE',0,'FFTW_ESTIMATE',64,'FFTW_PATIENT',32,'FFTW_DESTROY_INPUT',1,...\n 'FFTW_UNALIGNED',2,'FFTW_EXHAUSTIVE',8,'FFTW_PRESERVE_INPUT',16);\n\nLarr = [351 350 9 1];\nWarr = [ 10 3 3 1];\n\nfor idx = 1:numel(Larr)\n L = Larr(idx);\n W = Warr(idx);\n\n f = randn(L,W,flags.complexity) + 1i*randn(L,W,flags.complexity); \n fin = complex2interleaved(f);\n fPtr = libpointer(dataPtr,fin);\n\n c = cast(randn(L,W)+1i*randn(L,W),flags.complexity);\n cout = complex2interleaved(c);\n coutPtr = libpointer(dataPtr,cout);\n\n truec = fft(f);\n\n funname = makelibraryname('fft',flags.complexity,0);\n status = calllib('libltfat',funname,fPtr,L,W,coutPtr);\n\n res = norm(truec - interleaved2complex(coutPtr.Value),'fro');\n [test_failed,fail]=ltfatdiditfail(res+status,test_failed);\n fprintf(['FFT L:%3i, W:%3i, %s %s %s\\n'],L,W,flags.complexity,ltfatstatusstring(status),fail);\n\n % With plan\n c = cast(randn(L,W)+1i*randn(L,W),flags.complexity);\n cout = complex2interleaved(c);\n coutPtr = libpointer(dataPtr,cout);\n\n plan = libpointer();\n funname = makelibraryname('fft_init',flags.complexity,0);\n statusInit = calllib('libltfat',funname,L,W,fPtr,coutPtr, fftwflags.FFTW_MEASURE, plan);\n\n funname = makelibraryname('fft_execute',flags.complexity,0);\n \n statusExecute = calllib('libltfat',funname,plan);\n\n\n res = norm(truec - interleaved2complex(coutPtr.Value),'fro');\n [test_failed,fail]=ltfatdiditfail(res+statusInit,test_failed);\n fprintf(['FFT L:%3i, W:%3i, %s %s %s\\n'],L,W,flags.complexity,ltfatstatusstring(status),fail);\n\n c = cast(randn(L,W)+1i*randn(L,W),flags.complexity);\n cout = complex2interleaved(c);\n coutPtr = libpointer(dataPtr,cout);\n\n funname = makelibraryname('fft_execute_newarray',flags.complexity,0);\n statusExecute = calllib('libltfat',funname,plan,fPtr,coutPtr);\n\n res = norm(truec - interleaved2complex(coutPtr.Value),'fro');\n [test_failed,fail]=ltfatdiditfail(res+statusInit,test_failed);\n fprintf(['FFT L:%3i, W:%3i, %s %s %s\\n'],L,W,flags.complexity,ltfatstatusstring(status),fail); \n\n funname = makelibraryname('fft_done',flags.complexity,0);\n statusDone = calllib('libltfat',funname,plan);\n\n\n %%%%%% Inplace\n c = f;\n cout = complex2interleaved(c);\n coutPtr = libpointer(dataPtr,cout);\n\n plan = libpointer();\n funname = makelibraryname('fft_init',flags.complexity,0);\n statusInit = calllib('libltfat',funname,L,W, coutPtr, coutPtr, fftwflags.FFTW_MEASURE, plan);\n\n funname = makelibraryname('fft_execute',flags.complexity,0);\n statusExecute = calllib('libltfat',funname,plan);\n\n res = norm(truec - interleaved2complex(coutPtr.Value),'fro');\n [test_failed,fail]=ltfatdiditfail(res+statusInit,test_failed);\n fprintf(['FFT L:%3i, W:%3i, %s %s %s\\n'],L,W,flags.complexity,ltfatstatusstring(status),fail);\n\n c = f;\n cout = complex2interleaved(c);\n coutPtr = libpointer(dataPtr,cout);\n\n funname = makelibraryname('fft_execute_newarray',flags.complexity,0);\n statusExecute = calllib('libltfat',funname,plan,coutPtr,coutPtr);\n\n res = norm(truec - interleaved2complex(coutPtr.Value),'fro');\n [test_failed,fail]=ltfatdiditfail(res+statusInit,test_failed);\n fprintf(['FFT L:%3i, W:%3i, %s %s %s\\n'],L,W,flags.complexity,ltfatstatusstring(status),fail); \n\n funname = makelibraryname('fft_done',flags.complexity,0);\n statusDone = calllib('libltfat',funname,plan);\nend\n\n\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/libltfat/modules/libltfat/testing/mUnit/test_libltfat_fft.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.371458546804473}} {"text": "function [net,opts,x] = invert_nn_dw_pre(net, ref, opts)\n% INVERT Invert a CNN representation\n% Parse the input arguments to override the above defaults\n% Update the number of iterations using the learning rate if required\nif isinf(opts.maxNumIterations)\n opts.maxNumIterations = numel(opts.learningRate) ;\nend\n\nnet.regu = opts.regu;\nnet.fmask = opts.fmask;\n% The size of the image that we are trying to obtain\nx0_size = cat(2,net.normalization.imageSize,opts.numRepeats);\n%keyboard\n\n% x0_sigma is computed using a separate dataset.\n% This is a useful normalization that helps scale the different terms in the\n% optimization.\nload('x0_sigma.mat', 'x0_sigma');\n\n% Replicate the feature into a block. This is used for multiple inversions in parallel.\ny0 = repmat(ref, [1 1 1 opts.numRepeats]);\n\n% initial inversion image of size x0_size\nif ~isempty(opts.init)\n x= opts.init;\nelse\n x = randn(x0_size, 'single') ;\n %x= imfilter(x,fspecial('gaussian',50,30));\n %x = ones(x0_size, 'single') ;\n %x = zeros(x0_size, 'single') ;\n x = x / norm(x(:)) * x0_sigma ;\nend\nx_momentum = zeros(x0_size, 'single') ;\n\nswitch opts.task\n case {0,-1}\n % allow reconstructing a subset of the representation by setting\n % a suitable mask on the features y0\n sf = 1:size(y0,3) ;\n if opts.filterGroup == 1\n sf= vl_colsubset(sf, 0.5, 'beginning') ;\n elseif opts.filterGroup == 2 ;\n sf= vl_colsubset(sf, 0.5, 'ending') ;\n end\n nx = min(opts.neigh, size(y0,2)) ;\n ny = min(opts.neigh, size(y0,1)) ;\n sx = (0:nx-1) + ceil((size(y0,2)-nx+1)/2) ;\n sy = (0:ny-1) + ceil((size(y0,1)-ny+1)/2) ;\n mask = zeros(size(y0), 'single') ;\n mask(sy,sx,sf,:) = 1 ;\n y0_sigma = norm(squeeze(y0(find(mask(:))))) ;\n case {1,-2,2}\n %mask = opts.mask;\n mask = ref;\n y0_sigma = 1;\nend\n\n%% Tweak the network by adding a reconstruction loss at the end\n\n% This is saved here just for printing our progress as optimization proceeds\nif net.cnn_mode==0\n switch opts.objective\n case 'l2'\n % Add the l2 loss over the network\n ly.type = 'custom' ;\n ly.w = y0 ;\n ly.mask = mask ;\n ly.forward = @nndistance_forward ;\n ly.backward = @nndistance_backward ;\n net.layers{end+1} = ly ;\n case 'l1'\n % The L1 loss might want to use a dropout layer.\n % This is just a guess and hasn't been tried.\n ly.type = 'dropout' ;\n ly.rate = opts.dropout ;\n net.layers{end+1} = ly ;\n ly.type = 'custom' ;\n ly.w = y0 ;\n ly.mask = mask ;\n ly.forward = @nndistance1_forward ;\n ly.backward = @nndistance1_backward ;\n net.layers{end+1} = ly ;\n case 'inner'\n % The inner product loss may be suitable for some networks\n ly.type = 'custom' ;\n ly.w = - y0 .* mask ;\n ly.forward = @nninner_forward ;\n ly.backward = @nninner_backward ;\n net.layers{end+1} = ly ;\n case 'oneclass'\n % The inner product loss may be suitable for some networks\n % maxize the probability of one class\n ly.type = 'custom' ;\n ly.mask = mask ;\n ly.forward = @oneclass_forward ;\n ly.backward = @oneclass_backward ;\n net.layers{end+1} = ly ;\n otherwise\n error('unknown opts.objective') ;\n end\nend\n\n% --------------------------------------------------------------------\nfunction res_ = oneclass_forward(ly, res, res_)\n% --------------------------------------------------------------------\n% the value for that one class\nres_.x = -sum(reshape(res.x.*oneclass(ly.mask,res.x),1,[]));\n% --------------------------------------------------------------------\nfunction res = oneclass_backward(ly, res, res_)\n% --------------------------------------------------------------------\n% positive or negative ?\nres.dzdx = -oneclass(ly.mask,res.x);\n\nfunction out=oneclass(mask,res)\nout = reshape(mask,size(res));\n%out = repmat(reshape(mask,[1,1,numel(mask)]),[size(res,1),size(res,2),1]);\n\n% --------------------------------------------------------------------\nfunction res_ = nndistance_forward(ly, res, res_)\n% --------------------------------------------------------------------\nres_.x = nndistance(res.x, ly.w, ly.mask) ;\n\n% --------------------------------------------------------------------\nfunction res = nndistance_backward(ly, res, res_)\n% --------------------------------------------------------------------\nres.dzdx = nndistance(res.x, ly.w, ly.mask, res_.dzdx) ;\n\n% --------------------------------------------------------------------\nfunction y = nndistance(x,w,mask,dzdy)\n% --------------------------------------------------------------------\nif nargin <= 3\n d = x - w ;\n y = sum(sum(sum(sum(d.*d.*mask)))) ;\nelse\n y = dzdy * 2 * (x - w) .* mask ;\nend\n\n% --------------------------------------------------------------------\nfunction res_ = l1loss_forward(ly, res, res_)\n% --------------------------------------------------------------------\nres_.x = ly.w*sum(abs(res.x(:)));\n\n\n% --------------------------------------------------------------------\nfunction res = l1loss_backward(ly, res, res_)\n% --------------------------------------------------------------------\nres.dzdx = zeros(size(res.x), 'single');\nres.dzdx(res.x > 0) = single(ly.w)*res_.dzdx;\nres.dzdx(res.x < 0) = -single(ly.w)*res_.dzdx;\nres.dzdx(res.x == 0) = single(0);\n\n% --------------------------------------------------------------------\nfunction res_ = nndistance1_forward(ly, res, res_)\n% --------------------------------------------------------------------\nres_.x = nndistance1(res.x, ly.w, ly.mask) ;\n\n% --------------------------------------------------------------------\nfunction res = nndistance1_backward(ly, res, res_)\n% --------------------------------------------------------------------\nres.dzdx = nndistance1(res.x, ly.w, ly.mask, res_.dzdx) ;\n\n% --------------------------------------------------------------------\nfunction y = nndistance1(x,w,mask,dzdy)\n% --------------------------------------------------------------------\nif nargin <= 3\n d = x - w ;\n y = sum(sum(sum(sum(abs(d).*mask)))) ;\nelse\n y = dzdy * sign(x - w) .* mask ;\nend\n\n% --------------------------------------------------------------------\nfunction res_ = nninner_forward(ly, res, res_)\n% --------------------------------------------------------------------\nres_.x = nninner(res.x, ly.w) ;\n\n% --------------------------------------------------------------------\nfunction res = nninner_backward(ly, res, res_)\n% --------------------------------------------------------------------\nres.dzdx = nninner(res.x, ly.w, res_.dzdx) ;\n\n% --------------------------------------------------------------------\nfunction y = nninner(x,w,dzdy)\n% --------------------------------------------------------------------\nif nargin <= 2\n y = sum(sum(sum(sum(w.*x)))) ;\nelse\n y = dzdy * w ;\nend\n\n\n", "meta": {"author": "donglaiw", "repo": "mNeuron", "sha": "fa8053693a4a0ef3193483c405248db5eedbb665", "save_path": "github-repos/MATLAB/donglaiw-mNeuron", "path": "github-repos/MATLAB/donglaiw-mNeuron/mNeuron-fa8053693a4a0ef3193483c405248db5eedbb665/deep-goggle2/invert_nn_pre.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3714505094980116}} {"text": "function [index, new_cutoff] = find_cutoff_index(cutoff, t2_vals)\n%-----------------------------------------------------------------------------------\n%\n% [index, new_cutoff] = find_cutoff_index(cutoff, t2_vals)\n%\n% Function to find index corresponding to closest T2 value to cutoff in range\n%\n%\tIves Levesque, Feb 2007\n%\n%-----------------------------------------------------------------------------------\n\n\nif cutoff > max(t2_vals) | cutoff < min(t2_vals)\n error('Cutoff value not in range.')\nend\n\nindex = find(t2_vals==cutoff);\n\nif isempty(index)\n temp_index = max(find(t2_vals0,:);\ntxt_v = txt_v(:,1)+ bsxfun(@times,txt_v(:,2),642368)... %20074*32\n +bsxfun(@times,txt_v(:,3),20074);\ntxtinput = gpuArray(zeros(1,20074,32,batchsize,'single'));\ntxtinput(txt_v) = 1;\ntxtinput = permute(txtinput,[1,3,2,4]);\n%}\ntxtinput = zeros(1,32,20074,batchsize,'single');\nfor i=1:batchsize\n len = numel(find(txt(:,i)>0));\n location = randi(33-len); \n for j=1:len\n v = txt(j,i);\n txtinput(1,location,v,i)=1;\n location = location+1;\n end\nend\ntxtinput = gpuArray(txtinput);\n%}\n%--\ninputs = {'x0',gpuArray(oim),'data2',txtinput,'label_img',label_img,'label_txt',label_txt};\n", "meta": {"author": "layumi", "repo": "Image-Text-Embedding", "sha": "58f858da887f12ca94301c4f44113e2464d414ee", "save_path": "github-repos/MATLAB/layumi-Image-Text-Embedding", "path": "github-repos/MATLAB/layumi-Image-Text-Embedding/Image-Text-Embedding-58f858da887f12ca94301c4f44113e2464d414ee/train_flickr_word2_1_pool_vgg19.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7606506418255928, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.37141307802455625}} {"text": "classdef prtRvMultinomial < prtRv & prtRvMemebershipModel\n % prtRvMultinomial Multinomial random variable\n %\n % RV = prtRvMultinomial creates a prtRvMultinomial object\n % with an unknown number of categories with unspecified probabilities\n % These properties can be set manually or by using the MLE method.\n %\n % prtRvMultinomial operates on count matrices. Therfore, the DRAW()\n % method outputs a matrix that is N x nCategories and has a single 1\n % in each row. To draw integer categories you can use the\n % DRAWINTEGER() method. Similarly, the MLE function takes a count\n % matrix as an input. Type help prtRvMultinomial.mle for more\n % information.\n %\n % RV = prtRvMultinomial(PROPERTY1, VALUE1,...) creates a\n % prtRvMultinomial object RV with properties as specified by \n % PROPERTY/VALUE pairs.\n %\n % A prtRvMultinomial object inherits all properties from the\n % prtRv class. In addition, it has the following properties:\n %\n % nCategories - number of integers modeled by the RV\n % probabilities - A 1 x nCategories vector of doubles less than 1\n % that sum to 1, representing the probability of\n % each of the integers\n % \n % A prtRvMultinomial object inherits all methods from the prtRv\n % class. The MLE method can be used to set the parameters from data.\n % In addition, it has the the following methods:\n % \n % x = R.drawIntegers(N) - Draws N integers with the corresponding\n % probabilities\n %\n % Example:\n % \n % data = rand(100,5); % Uniformly random data\n % X = bsxfun(@eq,data,max(data,[],2)); % Generate data that has a \n % % single 1 in each row\n %\n % RV = prtRvMultinomial; % Generate a prtRvMultinomial\n % RV = mle(RV,X); % Estimate the parameters\n %\n % RV.plotPdf() % Plot the pdf (pmf)\n %\n % See also: prtRv, prtRvMvn, prtRvGmm, prtRvVq, prtRvKde\n\n\n\n\n\n\n\n properties (SetAccess = private)\n name = 'Multinomial Random Variable';\n nameAbbreviation = 'RVMulti';\n end\n \n properties (SetAccess = protected)\n isSupervised = false;\n isCrossValidateValid = true;\n end\n \n properties (Dependent)\n probabilities\n end\n \n properties (Dependent = true)\n nCategories % The number of categories\n end\n \n properties (Hidden = true, SetAccess='private', GetAccess='private')\n probabilitiesDepHelper\n end\n \n properties (Hidden = true, Dependent = true)\n nDimensions\n end\n \n properties (Hidden = true)\n approximatelyEqualThreshold = 1e-4;\n nDrawsPerObservationDraw = [];\n end\n \n methods\n % The Constructor\n function R = prtRvMultinomial(varargin)\n R = constructorInputParse(R,varargin{:});\n end\n \n function R = mle(R,X)\n % RV = RV.mle(X) computes the maximum likelihood estimate based\n % the data X. X should be nObservations x nDimensions. X must\n % be a count matrix, consisting of only zeros and ones. A one\n % in the ith column indicates that the sample in the jth row is\n % of class i.\n % \n \n % if ~isequal(unique(X(:)),[0;1])\n % error('prtRvMultinomial:invalidData','Input matrix must contain only ones and zeros');\n % end\n \n % Do we really want to or need to enforce this?\n % Can't we allow learning of the probability from multinomial\n % draws that had N greater than 1?\n % I don't see why not. - KDM 2013-03-01\n %if ~prtUtilApproxEqual(sum(X,2),1,1e-6);\n % error('prtRvMultinomial:invalidData','Rows of input data must contain no more than one \"1\"');\n %end\n \n X = R.dataInputParse(X); % Basic error checking etc\n \n N_bar = sum(X,1);\n R.probabilities = N_bar./sum(N_bar(:));\n end\n \n function vals = pdf(R,X)\n % PDF Output the pdf of the random variable evaluated at the points specified\n %\n % pdf = RV.pdf(X) returns the pdf of the prtRv\n % object evaluated at X. X must be an N x nDims matrix, where\n % N is the number of locations to evaluate the pdf, and nDims\n % is the same as the number of dimensions, nDimensions, of the\n % prtRv object RV.\n \n [isValid, reasonStr] = R.isValid;\n assert(isValid,'PDF cannot yet be evaluated. This RV is not yet valid %s.',reasonStr);\n \n X = R.dataInputParse(X); % Basic error checking etc\n assert(isnumeric(X) && ndims(X)==2,'X must be a 2D numeric array.');\n assert(size(X,2) == R.nCategories,'Incorrect number of categories for this RV object. This RV object is defined to have %d categories, but the input data has only %d columns. Remember that prtRvMultinomial operates on count matrices.', R.nCategories, size(X,2))\n \n \n vals = sum(bsxfun(@times,X,R.probabilities),2);\n end\n \n function vals = logPdf(R,X)\n % LOGPDF Output the log pdf of the random variable evaluated at the points specified\n %\n % logpdf = RV.logpdf(X) returns the logarithm of value of the\n % pdf of the prtRv object evaluated at X. X must be an N x\n % nDims matrix, where N is the number of locations to evaluate\n % the pdf, and nDims is the same as the number of dimensions,\n % nDimensions, of the prtRv object RV.\n\n [isValid, reasonStr] = R.isValid;\n assert(isValid,'LOGPDF cannot yet be evaluated. This RV is not yet valid %s.',reasonStr);\n \n vals = log(pdf(R,X));\n end\n \n function vals = draw(R,N)\n % DRAW Draw random samples from the distribution described by the prtRv object\n %\n % VAL = RV.draw(N) generates N random samples drawn from the\n % distribution described by the prtRv object RV. VAL will be a\n % N x nDimensions vector, where nDimensions is the number of\n % dimensions of RV.\n \n assert(numel(N)==1 && all(N==floor(N)) && all(N > 0),'N must be a positive integer scalar.')\n \n [isValid, reasonStr] = R.isValid;\n assert(isValid,'DRAW cannot yet be evaluated. This RV is not yet valid %s.',reasonStr);\n \n if ~isempty(R.nDrawsPerObservationDraw)\n nObsToDraw = R.nDrawsPerObservationDraw;\n vals = zeros(N,R.nCategories);\n for iBag = 1:N\n cVals = zeros(nObsToDraw,R.nCategories);\n cVals(sub2ind([nObsToDraw, R.nCategories], (1:nObsToDraw)',drawIntegers(R,nObsToDraw))) = 1;\n vals(iBag,:) = sum(cVals,1);\n end\n else\n vals = zeros(N,R.nCategories);\n vals(sub2ind([N, R.nCategories], (1:N)',drawIntegers(R,N))) = 1;\n end\n end\n \n function vals = drawIntegers(R,N)\n % DRAW Draw random integer samples from the distribution described by the prtRv object\n %\n % VAL = RV.draw(N) generates N random integer samples drawn from the\n % distribution described by the prtRv object RV. VAL will be a\n % N x nDimensions vector, where nDimensions is the number of\n % dimensions of RV.\n \n [isValid, reasonStr] = R.isValid;\n assert(isValid,'DRAWINTEGERS cannot yet be evaluated. This RV is not yet valid %s.',reasonStr);\n\n assert(numel(N)==1 && N==floor(N) && N > 0,'N must be a positive integer scalar.')\n \n vals = prtRvUtilRandomSample(R.probabilities, N);\n end\n \n function varargout = plotPdf(R,varargin)\n %plotPdf Plot the pdf of the RV\n %\n % rv.plotPdf() plots the pdf of rv\n [isValid, reasonStr] = R.isValid;\n assert(isValid,'plotPdf cannot yet be evaluated. This RV is not yet valid %s.',reasonStr);\n \n h = bar(1:R.nCategories,R.probabilities,'k');\n ylim([0 1])\n xlim(R.plotLimits());\n \n varargout = {};\n if nargout\n varargout = {h};\n end\n end\n \n function plotCdf(R,varargin) %#ok\n % plotCDF Not implemented for this prtRv\n error('prt:prtRvMultinomial','plotCdf is not implimented for this prtRv');\n end\n \n end\n \n % Set methods\n methods\n function R = set.probabilities(R,probs)\n assert(abs(sum(probs)-1) < R.approximatelyEqualThreshold,'Probability vector must must sum to 1.')\n \n R.probabilitiesDepHelper = probs(:)';\n end\n function R = set.nCategories(R,val) %#ok\n error('prt:prtRvMultinomial','nCategories is a dependent property that cannot be set by the user. To set the number of categories, set \"probabilities\" to be a vector of the desired length.');\n end\n end\n \n % Get methods\n methods\n function val = get.probabilities(R)\n val = R.probabilitiesDepHelper;\n end\n function val = get.nCategories(R)\n if ~isempty(R.probabilities)\n val = length(R.probabilities);\n else\n val = [];\n end\n end\n function val = get.nDimensions(R)\n val = R.nCategories;\n end\n end\n \n methods (Hidden = true)\n function [val, reasonStr] = isValid(R)\n if numel(R) > 1\n val = false(size(R));\n for iR = 1:numel(R)\n [val(iR), reasonStr] = isValid(R(iR));\n end\n return\n end\n \n val = ~isempty(R.probabilities);\n \n if val\n reasonStr = '';\n else\n reasonStr = 'because probabilities has not been set';\n end\n end\n \n \n function val = plotLimits(R)\n [isValid, reasonStr] = R.isValid;\n if isValid\n val = [0.5 0.5+R.nCategories];\n else\n \n error('multinomial:plotLimits','Plotting limits can not yet be determined. This RV is not yet valid %s.',reasonStr)\n end\n end\n \n function val = isPlottable(R) %#ok\n val = true; % Always plottable\n end\n \n function R = weightedMle(R,X,weights)\n assert(numel(weights)==size(X,1),'The number of weights must mach the number of observations.');\n \n weights = weights(:);\n \n N_bar = sum(bsxfun(@times,X,weights),1);\n \n R.probabilities = N_bar./sum(N_bar(:));\n end\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/rv/prtRvMultinomial.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804478040617, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3713848217098147}} {"text": "function drawAcrobot(t,z,p)\n\nclf; hold on;\nlength = p.l1+p.l2;\naxis equal; axis(length*[-1,1,-1,1]);\n\n[p1,p2] = acrobotKinematics(z,p);\npos = [[0;0],p1,p2];\n\nplot(0,0,'ks','MarkerSize',25,'LineWidth',4)\nplot(pos(1,:),pos(2,:),'Color',[0.1, 0.8, 0.1],'LineWidth',4)\nplot(pos(1,:),pos(2,:),'k.','MarkerSize',50)\n\ntitle(['Acrobot Animation, t = ' num2str(t,2)])\n\ndrawnow; pause(0.01);\n\nend", "meta": {"author": "MatthewPeterKelly", "repo": "dscTutorials", "sha": "e1e97a9be03ec146f88bd6ddd9e06db7ee52e242", "save_path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials", "path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials/dscTutorials-e1e97a9be03ec146f88bd6ddd9e06db7ee52e242/feedbackLinearization/drawAcrobot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804196836383, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3713848048322639}} {"text": "function varargout = sin(varargin)\n%SIN Sine of a CHEBFUN2.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n[varargout{1:nargout}] = sin@separableApprox(varargin{:});\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun2/sin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.37133290685446835}} {"text": "function output = F_multi_softmax(input_layer, TaskVocabSizes)\ninput = input_layer.a;\n[D,T,N] = size(input);\n \nif N>1; [mask, variableLength] = CheckTrajectoryLength(input); end\n \nif length(TaskVocabSizes)==1 % this is for when you have the same task, e.g. skip gram\n if D>TaskVocabSizes\n input2 = reshape(input, TaskVocabSizes, D/TaskVocabSizes, T, N);\n fakeLayer.a = input2;\n output = F_softmax(fakeLayer);\n output = reshape(output, D, T, N);\n else % this is normal softmax\n output = F_softmax(input_layer);\n end\n \nelse % this is for when you have different tasks\n % to be implemented\nend\n\nif N>1 && variableLength; output = PadShortTrajectory(output, mask, -1e10); end\n\nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/F_multi_softmax.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.37133289975367717}} {"text": "function f = sin( f ) \n%SIN Sine of a CHEBFUN2.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Empty check: \nif ( isempty( f ) ) \n return\nend\n\nf = compose( f, @sin ); \n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@separableApprox/sin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.37125537733049674}} {"text": "function chebvar(varargin)\n%CHEBVAR Short-cut for constructing CHEBFUN variables.\n% CHEBVAR arg1 arg2 ...\n% is short-hand notation for creating symbolic variables\n% arg1 = chebfun('arg1');\n% arg2 = chebfun('arg2'); ...\n% The outputs are created in the current workspace.\n%\n% CHEBVAR arg1 arg2 ... DOM constructs the CHEBFUN objects on the domain DOM,\n% i.e., arg1 = chebfun('arg1', DOM);\n% arg2 = chebfun('arg2', DOM); ...\n%\n% In both cases, the CHEBFUN is created according to the currently stored\n% default preferences.\n%\n% Example:\n% chebvar x\n% f = sin(x)\n%\n% See also CHEBFUN, CHEBFUNPREF.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Trivial case:\nif ( nargin == 0 )\n return\nend\ndom = [];\n\n% Locate valid variable names:\nisVar = cellfun(@isvarname, varargin);\n\n% The last entry may be a domain:\nif ( ~all(isVar) )\n dom = str2num(varargin{end}); %#ok\n if ( ~isempty(dom) )\n varargin(end) = [];\n isVar(end) = [];\n end\nend\n\n% Check validity of variable name:\nif ( ~all(isVar) )\n error('CHEBFUN:chebvar:badName', 'Not a valid variable name.');\nend\n\n% Acquire some preferences:\npref = chebfunpref();\nif ( isempty(dom) )\n dom = pref.domain;\nend\n \n% Loop over each of the inputs:\nfor k = numel(varargin):-1:1\n op = str2op(varargin{k});\n f = chebfun(op, dom, pref);\n assignin('caller', varargin{k}, f);\nend\n\nend\n\nfunction op = str2op(op)\n% This is here as it's a clean function with no other variables hanging around\n% in the scope.\ndepVar = symvar(op);\nif ( numel(depVar) ~= 1 )\n error('CHEBFUN:chebvar:indepVars', ...\n 'Incorrect number of independent variables in string input.');\nend\nop = eval(['@(' depVar{:} ')', op]);\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/chebvar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.37125537733049674}} {"text": "% SLAMTB An EKF-SLAM algorithm with simulator and graphics.\n%\n% This script performs multi-robot, multi-sensor, multi-landmark 6DOF\n% EKF-SLAM with simulation and graphics capabilities.\n%\n% Please read slamToolbox.pdf in the root directory thoroughly before\n% using this toolbox.\n%\n% - Beginners should not modify this file, just edit USERDATA.M and enter\n% and/or modify the data you wish to simulate.\n%\n% - More advanced users should be able to create new landmark models, new\n% initialization methods, and possibly extensions to multi-map SLAM. Good\n% luck!\n%\n% - Expert users may want to add code for real-data experiments. \n%\n% See also USERDATA, USERDATAPNT, USERDATALIN.\n%\n% Also consult slamToolbox.pdf in the root directory.\n\n% Created and maintained by\n% Copyright 2008, 2009, 2010 Joan Sola @ LAAS-CNRS.\n% Copyright 2011, 2012, 2013 Joan Sola.\n% Programmers (for parts of the toolbox):\n% Copyright David Marquez and Jean-Marie Codol @ LAAS-CNRS\n% Copyright Teresa Vidal-Calleja @ ACFR.\n% See COPYING.TXT for full copyright license.\n\n%% OK we start here\n\n% clear workspace and declare globals\nclear\nglobal Map \n\n%% I. Specify user-defined options - EDIT USER DATA FILE userData.m\n\nuserData; % user-defined data. SCRIPT.\n% userDataPnt; % user-defined data for points. SCRIPT.\n% userDataLin; % user-defined data for lines. SCRIPT.\n\n\n%% II. Initialize all data structures from user-defined data in userData.m\n% SLAM data\n[Rob,Sen,Raw,Lmk,Obs,Tim] = createSlamStructures(...\n Robot,...\n Sensor,... % all user data\n Time,...\n Opt);\n\n% Simulation data\n[SimRob,SimSen,SimLmk,SimOpt] = createSimStructures(...\n Robot,...\n Sensor,... % all user data\n World,...\n SimOpt);\n\n% Graphics handles\n[MapFig,SenFig] = createGraphicsStructures(...\n Rob, Sen, Lmk, Obs,... % SLAM data\n SimRob, SimSen, SimLmk,... % Simulator data\n FigOpt); % User-defined graphic options\n\n\n%% III. Initialize data logging\n% TODO: Create source and/or destination files and paths for data input and\n% logs.\n% TODO: do something here to collect data for post-processing or\n% plotting. Think about collecting data in files using fopen, fwrite,\n% etc., instead of creating large Matlab variables for data logging.\n\n% Clear user data - not needed anymore\nclear Robot Sensor World Time % clear all user data\n\n\n%% IV. Main loop\nfor currentFrame = Tim.firstFrame : Tim.lastFrame\n \n % 1. SIMULATION\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Simulate robots\n for rob = [SimRob.rob]\n\n % Robot motion\n SimRob(rob) = simMotion(SimRob(rob),Tim);\n \n % Simulate sensor observations\n for sen = SimRob(rob).sensors\n\n % Observe simulated landmarks\n Raw(sen) = simObservation(SimRob(rob), SimSen(sen), SimLmk, SimOpt) ;\n\n end % end process sensors\n\n end % end process robots\n\n \n\n % 2. ESTIMATION\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Process robots\n for rob = [Rob.rob]\n\n % Robot motion\n % NOTE: in a regular, non-simulated SLAM, this line is not here and\n % noise just comes from the real world. Here, the estimated robot\n % is noised so that the simulated trajectory can be made perfect\n % and act as a clear reference. The noise is additive to the\n % control input 'u'.\n Rob(rob).con.u = SimRob(rob).con.u + Rob(rob).con.uStd.*randn(size(Rob(rob).con.uStd));\n Rob(rob) = motion(Rob(rob),Tim);\n \n Map.t = Map.t + Tim.dt;\n \n\n\n % Process sensor observations\n for sen = Rob(rob).sensors\n\n % Observe knowm landmarks\n [Rob(rob),Sen(sen),Lmk,Obs(sen,:)] = correctKnownLmks( ...\n Rob(rob), ...\n Sen(sen), ...\n Raw(sen), ...\n Lmk, ... \n Obs(sen,:), ...\n Opt) ;\n\n % Initialize new landmarks\n ninits = Opt.init.nbrInits(1 + (currentFrame ~= Tim.firstFrame));\n for i = 1:ninits\n [Lmk,Obs(sen,:)] = initNewLmk(...\n Rob(rob), ...\n Sen(sen), ...\n Raw(sen), ...\n Lmk, ...\n Obs(sen,:), ...\n Opt) ;\n end\n\n end % end process sensors\n\n end % end process robots\n\n\n % 3. VISUALIZATION\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n if currentFrame == Tim.firstFrame ...\n || currentFrame == Tim.lastFrame ...\n || mod(currentFrame,FigOpt.rendPeriod) == 0\n \n % Figure of the Map:\n MapFig = drawMapFig(MapFig, ...\n Rob, Sen, Lmk, ...\n SimRob, SimSen, ...\n FigOpt);\n \n if FigOpt.createVideo\n makeVideoFrame(MapFig, ...\n sprintf('map-%04d.png',currentFrame), ...\n FigOpt, ExpOpt);\n end\n \n % Figures for all sensors\n for sen = [Sen.sen]\n SenFig(sen) = drawSenFig(SenFig(sen), ...\n Sen(sen), Raw(sen), Obs(sen,:), ...\n FigOpt);\n \n if FigOpt.createVideo\n makeVideoFrame(SenFig(sen), ...\n sprintf('sen%02d-%04d.png', sen, currentFrame),...\n FigOpt, ExpOpt);\n end\n \n end\n\n % Do draw all objects\n drawnow;\n end\n \n\n % 4. DATA LOGGING\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % TODO: do something here to collect data for post-processing or\n % plotting. Think about collecting data in files using fopen, fwrite,\n % etc., instead of creating large Matlab variables for data logging.\n \n\nend\n\n%% V. Post-processing\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Enter post-processing code here\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/HighLevel/slamtb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.37124022566244735}} {"text": "function eventLog = ma_executeNBodyCoast(coastEvent, initialState, eventNum, celBodyData)\n%ma_executeNBodyCoast Summary of this function goes here\n% Detailed explanation goes here\n\n\tsoiSkipIds = coastEvent.soiSkipIds;\n refBody = coastEvent.refBody;\n massLoss = coastEvent.massloss;\n forceModel = coastEvent.forceModel;\n\tmaxPropTime = coastEvent.maxPropTime;\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Get global coast ODE solver event functions\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n events = ma_getGlobalEvents(initialState, celBodyData);\n \n\t%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Propagate through the n revs, if applicable\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n eventLog = [];\n revs = coastEvent.revs;\n if(revs > 0)\n rVect = initialState(2:4);\n vVect = initialState(5:7);\n \n bodyID = initialState(8);\n bodyInfo = getBodyInfoByNumber(bodyID, celBodyData);\n \n [sma, ecc, ~, ~, ~, tru] = getKeplerFromState(rVect, vVect, bodyInfo.gm);\n \n if(ecc < 1)\n revsInitstate = initialState;\n for(i=1:revs) %#ok<*NO4LP>\n period = computePeriod(sma, bodyInfo.gm);\n eventLogCoastRev1 = ma_executeCoast_nBody_goto_dt(period/2, revsInitstate, eventNum, forceModel, true, soiSkipIds, massLoss, maxPropTime, events, true, celBodyData);\n eventLogCoastRev2 = ma_executeCoast_nBody_goto_tru(tru, eventLogCoastRev1(end,:), eventNum, forceModel, true, soiSkipIds, refBody, massLoss, maxPropTime, events, celBodyData);\n \n eventLog = [eventLog;eventLogCoastRev1; eventLogCoastRev2]; %#ok\n revsInitstate = eventLogCoastRev2(end,:);\n end\n \n coastINIState = eventLogCoastRev2(end,:);\n else\n coastINIState = initialState;\n warnStr = ['Could not perform ',num2str(revs),' revolutions during coast, initial orbit is not elliptical.'];\n addToExecutionWarnings(warnStr, eventNum, bodyID, celBodyData);\n end\n else\n coastINIState = initialState;\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Do the coast according to its sub-type\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n type = coastEvent.coastType;\n value = coastEvent.coastToValue;\n switch type\n case 'goto_ut'\n eventLogCoast = ma_executeCoast_nBody_goto_ut(value, coastINIState, eventNum, forceModel, true, soiSkipIds, massLoss, maxPropTime, events, celBodyData);\n \n case 'goto_dt'\n eventLogCoast = ma_executeCoast_nBody_goto_dt(value, coastINIState, eventNum, forceModel, true, soiSkipIds, massLoss, maxPropTime, events, true, celBodyData);\n \n case 'goto_tru'\n eventLogCoast = ma_executeCoast_nBody_goto_tru(value, coastINIState, eventNum, forceModel, true, soiSkipIds, refBody, massLoss, maxPropTime, events, celBodyData);\n \n case 'goto_apo'\n eventLogCoast = ma_executeCoast_nBody_goto_tru(pi, coastINIState, eventNum, forceModel, true, soiSkipIds, refBody, massLoss, maxPropTime, events, celBodyData);\n \n case 'goto_peri'\n eventLogCoast = ma_executeCoast_nBody_goto_tru(0, coastINIState, eventNum, forceModel, true, soiSkipIds, refBody, massLoss, maxPropTime, events, celBodyData);\n \n case 'goto_asc_node'\n eventLogCoast = ma_executeCoast_nBody_goto_node('asc', coastINIState, eventNum, forceModel, true, soiSkipIds, refBody, massLoss, maxPropTime, events, celBodyData);\n \n case 'goto_desc_node'\n eventLogCoast = ma_executeCoast_nBody_goto_node('desc', coastINIState, eventNum, forceModel, true, soiSkipIds, refBody, massLoss, maxPropTime, events, celBodyData);\n \n case 'goto_soi_trans'\n eventLogCoast = ma_executeCoast_nBody_goto_soi_trans(coastINIState, eventNum, forceModel, soiSkipIds, massLoss, maxPropTime, events, celBodyData);\n \n otherwise\n error(['Did not recongize coast of type ', type]);\n end\n \n eventLog = [eventLog; eventLogCoast];\nend\n\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_ma/propagation/nbody_coast/ma_executeNBodyCoast.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.48438008427698437, "lm_q1q2_score": 0.37117737941889456}} {"text": "function [q, g, solutionQP] = thermoFlux2QNty(model,solution,param)\n% Given a steady state thermodynamically feasible flux vector, v, such that\n%\n% S*v = b\n% l <= v <= u \n%\n% Compute q and g = N'*y such that\n%\n% N*diag(q)*g = b - B*w\n%\n% where the stoichiometric matrix and flux vector are split into internal\n% and external components: S = [N B] and v = [z; w], \n\n[nMet,nRxn]=size(model.S);\n\nif ~exist('param','var')\n param=struct();\nend\n\nif ~isfield(model,'SConsistentRxnBool') || ~isfield(model,'SConsistentMetBool')\n if ~isfield(param,'SConsistentMethod')\n param.SConsistentMethod = 'findSExRxnInd';\n end\n switch param.SConsistentMethod\n case 'findSExRxnInd'\n %finds the reactions in the model which export/import from the model\n %boundary i.e. mass unbalanced reactions\n %e.g. Exchange reactions\n % Demand reactions\n % Sink reactions\n model = findSExRxnInd(model,[],param.printLevel-1);\n model.SConsistentMetBool= model.SIntMetBool;\n model.SConsistentRxnBool= model.SIntRxnBool;\n case 'findStoichConsistentSubset'\n % Finds the subset of `S` that is stoichiometrically consistent using\n % an iterative cardinality optimisation approach\n [SConsistentMetBool, SConsistentRxnBool, ...\n SInConsistentMetBool, SInConsistentRxnBool, ...\n unknownSConsistencyMetBool, unknownSConsistencyRxnBool, model] ...\n = findStoichConsistentSubset(model);\n end\nelse\n if length(model.SConsistentRxnBool)~=nRxn\n error('Length of model.SConsistentRxnBool must equal the number of cols of model.S')\n end\n if length(model.SConsistentMetBool)~=nMet\n error('Length of model.SConsistentMetBool must equal the number of rows of model.S')\n end\nend\n\nif ~isfield(param,'bigNum')\n param.bigNum = 1;\nend\n\n[model,rankK,nnzK,timeTaken] = internalNullspace(model);\n\nz = solution.v(model.SConsistentRxnBool);\n\n% * .A - LHS matrix\n% * .b - RHS vector\n% * .F - positive semidefinite matrix for quadratic part of objective (see above)\n% * .c - Objective coeff vector\n% * .lb - Lower bound vector\n% * .ub - Upper bound vector\n% * .osense - Objective sense for the linear part (-1 max, +1 min)\n% * .csense - Constraint senses, a string containing the constraint sense for\n% each row in A ('E', equality, 'G' greater than, 'L' less than).\n[n,m]=size(model.K);\nQP.A = [model.K'*diag(z); ones(1,n)];\nQP.b = [zeros(m,1);1];\nQP.csense(1:m+1) ='E'; \nQP.lb = zeros(n,1);\nQP.ub = param.bigNum*ones(n,1);\nQP.c = zeros(n,1);\nQP.F = speye(n);\nQP.osense = 1;\n\nsolutionQP = solveCobraQP(QP);\n\nif solutionQP.stat == 1\n q0 = 1./solutionQP.full;\n q = NaN*ones(nRxn,1);\n q(model.SConsistentRxnBool)=q0;\n \n g0 = diag(solutionQP.full)*z;\n %N = model.S(:,model.SConsistentRxnBool);\n %y = N'\\g0;\n g = NaN*ones(nRxn,1);\n g(model.SConsistentRxnBool)=g0;\n \n %dg0 = N'*y - g0;\n %dg = NaN*ones(nRxn,1);\n %dg(model.SConsistentRxnBool)=dg0;\nelse\n solutionQP\n error('thermoFlux2QNty: solveCobraQP did not solve')\nend\nend\n\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/dataIntegration/XomicsToModel/thermoKernel/thermoQP/thermoFlux2QNty.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.4843800842769844, "lm_q1q2_score": 0.37117737941889456}} {"text": "function [D] = spm_eeg_inv_Mesh2Voxels(varargin)\n% Convert a mesh representation of M/EEG power into a smoothed image\n% FORMAT [D] = spm_eeg_inv_Mesh2Voxels(D,[val])\n% Input:\n% D - MEEG object or filename of M/EEG mat-file (optional)\n%\n% D.inv{val}.contrast.display: display image at the end {true, [false]}\n% D.inv{val}.contrast.space: native [0] or MNI {1} output space\n% D.inv{val}.contrast.format: output file format {['image'], 'mesh'}\n% D.inv{val}.contrast.smoothing: # iterations for cortical smoothing\n%\n% Output:\n% D - MEEG object containing the new image filenames in fields:\n%\n% D.inv{val}.contrast.fname\n%__________________________________________________________________________\n%\n% Non-linear interpolation of a Mesh contrast into MNI Voxel space\n% This routine is used to produce a 3D image canonical sMRI\n% space (in voxel coordinates) from a cortical mesh (3D surface).\n% This yields a NIfTI image of the summary statistics of the cortical\n% activity for the effect of interest. This image can then enter the\n% classical SPM routines for statistical testing.\n% The [non-negative] mean square contrast is smoothed both on the mesh\n% (using a graph Laplacian) and then in voxel-space using a conventional\n% Gaussian filter.\n%__________________________________________________________________________\n% Copyright (C) 2007-2017 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_eeg_inv_Mesh2Voxels.m 7094 2017-06-06 11:14:10Z guillaume $\n\n\nSVNrev = '$Rev: 7094 $';\n\n%-Startup\n%--------------------------------------------------------------------------\nspm('FnBanner', mfilename, SVNrev);\n\n%-Parse input arguments\n%--------------------------------------------------------------------------\n[D,val] = spm_eeg_inv_check(varargin{:});\n\n%-Get options\n%--------------------------------------------------------------------------\ntry, space = D.inv{val}.contrast.space; catch, space = 1; end\ntry, fmt = D.inv{val}.contrast.format; catch, fmt = 'image'; end\ntry, smooth = D.inv{val}.contrast.smoothing; catch, smooth = 8; end\ntry, Disp = D.inv{val}.contrast.display; catch, Disp = 0; end\n\n%-Time and Frequency windows of interest\n%--------------------------------------------------------------------------\nwoi = D.inv{val}.contrast.woi;\nfoi = D.inv{val}.contrast.fboi;\nNw = size(woi,1);\n\n%-Get output image field of view and resolution\n%--------------------------------------------------------------------------\nif space\n sMRIfile = fullfile(spm('dir'),'canonical','avg152T2.nii');\nelse\n sMRIfile = D.inv{val}.mesh.sMRI;\nend\nVin = spm_vol(sMRIfile);\n\n%-Get surface mesh\n%--------------------------------------------------------------------------\nif space\n m = export(gifti(D.inv{val}.mesh.tess_mni),'patch');\nelse\n m = export(gifti(D.inv{val}.mesh.tess_ctx),'patch');\nend\nnd = D.inv{val}.inverse.Nd;\n\n\n%-Accumulate mean of log-contrasts (over trials)\n%==========================================================================\nGL = spm_mesh_smooth(m);\n\nGW = D.inv{val}.contrast.GW;\n\nbytrial = iscell(GW{1});\n\nif bytrial\n Ne = cellfun(@numel,GW);\nelse\n Ne = ones(1, numel(GW));\nend\n\nNj = numel(GW)/Nw;\n\nk = 1;\niw = [];\nie = [];\nfor c = 1:length(GW)\n if bytrial\n cGW = GW{c};\n else\n cGW = GW(c);\n end\n \n for t = 1:Ne(c)\n %-Smooth on the cortical surface\n %------------------------------------------------------------------\n ssq{k} = full(sparse(D.inv{val}.inverse.Is,1,cGW{t},nd,1));\n ssq{k} = spm_mesh_smooth(GL,ssq{k},smooth);\n \n %-Compute (truncated) moment\n %------------------------------------------------------------------\n lss = log(ssq{k} + eps);\n i = lss > (max(lss) - log(32));\n meanlss(k) = mean(lss(i));\n \n iw(k) = c;\n ie(k) = t;\n \n k = k + 1;\n end\nend\n\nscale = exp(mean(meanlss));\n\n%-Save as meshes\n%==========================================================================\nif strcmpi(fmt,'mesh')\n [pth,name] = fileparts(D.fname);\n tag = cell(1,Nw);\n for i = 1:Nw\n tag{i} = ['t' sprintf('%g_', woi(i,:)) 'f' sprintf('%d_', foi)];\n end\n \n %-Save mesh topology\n %----------------------------------------------------------------------\n g = gifti(m);\n save(g,fullfile(D.path,[name '.surf.gii']));\n \n %-Save mesh data\n %----------------------------------------------------------------------\n spm_progress_bar('Init',numel(ssq),'Exporting as meshes','');\n fprintf('%-40s: %30s','Export as meshes','...please wait'); %-#\n for c = 1:numel(ssq)\n \n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),...\n sprintf('...mesh %d/%d',c,numel(ssq))); %-#\n \n %-Filename\n %------------------------------------------------------------------\n con = mod(iw(c) - 1, Nj) + 1;\n str = tag{ceil(iw(c)/Nj)};\n if bytrial, bt = sprintf('_%.0f',ie(c)); else bt = ''; end\n fname = fullfile(D.path,...\n sprintf('%s_%.0f_%s%.0f%s.gii', name, val, str, con, bt));\n \n %-Normalise\n %------------------------------------------------------------------\n Contrast = ssq{c} / scale;\n %Contrast = Contrast.*(Contrast > exp(-8));\n \n %-Write mesh\n %------------------------------------------------------------------\n g = gifti;\n g.cdata = Contrast;\n g.private.metadata(1).name = 'SurfaceID';\n g.private.metadata(1).value = [name '.surf.gii'];\n save(g, fname, 'ExternalFileBinary');\n \n %-Store filename\n %------------------------------------------------------------------\n D.inv{val}.contrast.fname{c} = fname;\n \n spm_progress_bar('Set', c);\n \n end\n \n spm_progress_bar('Clear');\n fprintf('%s%30s\\n',repmat(sprintf('\\b'),1,30),'...done'); %-#\n \n return;\nend\n\n%-Normalise and embed in 3D-space\n%==========================================================================\nfprintf('%-40s: %30s','Writing images','...please wait'); %-#\n\n[pth,name] = fileparts(D.fname);\ntag = cell(1,Nw);\nfor i = 1:Nw\n tag{i} = ['t' sprintf('%d_', woi(i,:)) 'f' sprintf('%d_', foi)];\nend\n\nspm_progress_bar('Init',numel(ssq),'Interpolating images','');\n\ncon = mod(iw - 1, Nj) + 1;\nwin = ceil(iw/Nj);\n\nucon = unique(con);\nuwin = unique(win);\n\nn = 0;\nfor c = 1:length(ucon)\n for w = 1:numel(uwin)\n \n ind = find((con == ucon(c)) & (win == uwin(w)));\n str = tag{uwin(w)};\n \n fname = fullfile(D.path,...\n sprintf('%s_%.0f_%s%.0f.nii', name, val, str, ucon(c)));\n \n %-Initialise image\n %------------------------------------------------------------------\n N = nifti;\n N.dat = file_array(fname, [Vin.dim, length(ind)], 'FLOAT32-LE');\n N.mat = Vin.mat;\n N.mat0 = Vin.mat;\n create(N);\n \n \n for i = 1:length(ind)\n \n n = n+1;\n \n fprintf('%s%30s',repmat(sprintf('\\b'),1,30),...\n sprintf('...image %d/%d',n,numel(ssq))); %-# \n \n %-Normalise\n %--------------------------------------------------------------\n Contrast = ssq{ind(i)} / scale;\n \n %-Interpolate those values into voxels\n %--------------------------------------------------------------\n RECimage = spm_mesh_to_grid(m, Vin, Contrast);\n \n %-3D smoothing and thresholding\n %--------------------------------------------------------------\n spm_smooth(RECimage, RECimage, 1);\n RECimage = RECimage.*(RECimage > exp(-8));\n \n %-Write (smoothed and scaled) image\n %--------------------------------------------------------------\n N.dat(:, :, :, i) = RECimage;\n \n %-Store filename\n %--------------------------------------------------------------\n D.inv{val}.contrast.fname{n} = fname;\n \n spm_progress_bar('Set', n);\n \n end\n end\nend\n\nspm_progress_bar('Clear');\nfprintf('%s%30s\\n',repmat(sprintf('\\b'),1,30),'...done'); %-#\n\n%-Display\n%==========================================================================\nif Disp && ~spm('CmdLine'), spm_eeg_inv_image_display(D); end\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_eeg_inv_Mesh2Voxels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.48438008427698437, "lm_q1q2_score": 0.37117737941889456}} {"text": "function out = Rmdm(A, B)\n\nfor i = 1:size(A, 3)\n for j = 1:size(B, 3)\n res(i, j) = Rdis(A(:, :, i), B(:, :, j));\n end\n out(i) = find(res(i, :) == min(res(i, :)));\nend", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_StarLab/HJKim/Riemannian/Rmdm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548782017745, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.37117630435482657}} {"text": "function write_surf(fname, vert, face)\n\n% write_surf - FreeSurfer I/O function to write a surface file\n% \n% write_surf(fname, vert, face)\n% \n% writes a surface triangulation into a binary file\n% fname - name of file to write\n% vert - Nx3 matrix of vertex coordinates\n% face - Mx3 matrix of face triangulation indices\n% \n% The face matrix here must be matlab compatible\n% (no zero indices). It is converted to FreeSurfer\n% indices that start at zero.\n% \n% See also freesurfer_read_surf, freesurfer_write_curv, freesurfer_write_wfile\n\nif(nargin ~= 3)\n fprintf('USAGE: freesurfer_write_surf(fname, vert, face)\\n');\n return;\nend\n\nif size(vert,2) ~= 3,\n error('vert must be Nx3 matrix');\nend\n\nif size(face,2) ~= 3,\n error('face must be Mx3 matrix');\nend\n\nfprintf('...subtracting 1 from face indices for FreeSurfer compatibility.\\n');\nface = face - 1;\n\n% open it as a big-endian file\nfid = fopen(fname, 'wb', 'b') ;\n\nTRIANGLE_FILE_MAGIC_NUMBER = 16777214 ;\nfwrite3(fid, TRIANGLE_FILE_MAGIC_NUMBER);\n\nvnum = size(vert,1) ; % number of vertices\nfnum = size(face,1) ; % number of faces\n\n% Ouput a couple of text lines with creation date\nfprintf(fid,'created by %s on %s\\n\\n',getenv('USER'),datestr(now)); % creation date \n\nfwrite(fid, vnum,'int32');\nfwrite(fid, fnum,'int32');\n\n% reshape vert into column array and write\nvert = reshape(vert',size(vert,1)*size(vert,2),1);\nfwrite(fid, vert,'float32');\n\n% reshape face into column array and write\nface = reshape(face',size(face,1)*size(face,2),1);\nfwrite(fid, face,'int32');\n\nfclose(fid) ;\n\nreturn\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/freesurfer/write_surf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.37117629664146046}} {"text": "\n% datasetCandi = {'siftsmall'};\ndatasetCandi = {'sift','gist'};\n% datasetCandi = {'sift'};\n% datasetCandi = {'gist'};\n% datasetCandi = {'imagenet'};\n\n% methodCandi = {'LSH','ITQ'};\n\n% methodCandi = {'USPLH'};\n% methodCandi = {'CPH'};\n% methodCandi = {'SH'};\n% methodCandi = {'ITQ'};\n% methodCandi = {'IsoH' 'SpH'};\n% methodCandi = {'LSH'};\n\n% methodCandi = {'DSH'};\n% methodCandi = {'BRE'};\n% methodCandi = {'SpH'};\n\n% methodCandi = {'IsoH1'};\n\n\nmethodCandi = {'LSH','SpH','BRE','USPLH','ITQ','IsoH','SH'};\n% methodCandi = {'KLSH','AGH1','AGH2','CH'};\n\ncodelengthCandi = [32, 64, 128, 256, 512, 1024];\n\n\nfor d=1:length(datasetCandi)\n dataset = datasetCandi{d};\n \n for m=1:length(methodCandi)\n method = methodCandi{m};\n \n for c=1:length(codelengthCandi)\n \n codelength = codelengthCandi(c);\n \n \n ResultFile = ['../',dataset,'/hashingCodeLong.',num2str(codelength),'/',method,'table',upper(dataset),'32b_1'];\n bFound = checkFILEmkDIR(ResultFile);\n if(bFound)\n error('Result file exists!');\n end\n \n disp('==============================');\n disp([method,' ',num2str(codelength),'bit ',dataset]);\n disp('==============================');\n \n trainset = double(fvecs_read (['../',dataset,'/',dataset,'_base.fvecs']));\n testset = fvecs_read (['../',dataset,'/',dataset,'_query.fvecs']);\n trainset = trainset';\n testset = testset';\n \n trainStr = ['[model, trainB ,train_elapse] = ',method,'_learn(trainset, codelength);'];\n testStr = ['[testB,test_elapse] = ',method,'_compress(testset, model);'];\n eval(trainStr);\n eval(testStr);\n \n \n ntrain=size(trainB,1);\n ntest=size(testB,1);\n \n realcodelength = size(trainB,2);\n disp([method,' ',num2str(realcodelength),'bit learned. ',dataset]);\n \n nFile = fix(realcodelength/32);\n nRemain = mod(realcodelength,32);\n \n disp('==============================');\n disp(['Total training time: ',num2str(train_elapse)]);\n disp(['Total testing time: ',num2str(test_elapse)]);\n \n %continue;\n \n \n for j =1:nFile\n ResultFile = ['../',dataset,'/hashingCodeLong.',num2str(codelength),'/',method,'table',upper(dataset),'32b_',num2str(j)];\n \n fid = fopen(ResultFile,'w');\n fwrite(fid, 1, 'uint32');\n fwrite(fid, 32, 'uint32');\n fwrite(fid, ntrain, 'uint32');\n for i = 1 : ntrain\n tmpV = uint32(0);\n for k = 32*(j-1)+1:32*j\n tmpV = bitshift(tmpV,1);\n tmpV = tmpV + uint32(trainB(i,k));\n end\n fwrite(fid, tmpV, 'uint32');\n end\n fclose(fid);\n \n \n ResultFile = ['../',dataset,'/hashingCodeLong.',num2str(codelength),'/',method,'query',upper(dataset),'32b_',num2str(j)];\n fid = fopen(ResultFile,'w');\n fwrite(fid, 1, 'uint32');\n fwrite(fid, 32, 'uint32');\n fwrite(fid, ntest, 'uint32');\n for i = 1 : ntest\n tmpV = uint32(0);\n for k = 32*(j-1)+1:32*j\n tmpV = bitshift(tmpV,1);\n tmpV = tmpV + uint32(testB(i,k));\n end\n fwrite(fid, tmpV, 'uint32');\n end\n fclose(fid);\n end\n \n if nRemain > 0\n ResultFile = ['../',dataset,'/hashingCodeLong.',num2str(codelength),'/',method,'table',upper(dataset),'32b_',num2str(nFile+1)];\n \n fid = fopen(ResultFile,'w');\n fwrite(fid, 1, 'uint32');\n fwrite(fid, 32, 'uint32');\n fwrite(fid, ntrain, 'uint32');\n for i = 1 : ntrain\n tmpV = uint32(0);\n for k = 32*nFile+1:size(trainB,2)\n tmpV = bitshift(tmpV,1);\n tmpV = tmpV + uint32(trainB(i,k));\n end\n fwrite(fid, tmpV, 'uint32');\n end\n fclose(fid);\n \n \n ResultFile = ['../',dataset,'/hashingCodeLong.',num2str(codelength),'/',method,'query',upper(dataset),'32b_',num2str(nFile+1)];\n fid = fopen(ResultFile,'w');\n fwrite(fid, 1, 'uint32');\n fwrite(fid, 32, 'uint32');\n fwrite(fid, ntest, 'uint32');\n for i = 1 : ntest\n tmpV = uint32(0);\n for k = 32*nFile+1:size(testB,2)\n tmpV = bitshift(tmpV,1);\n tmpV = tmpV + uint32(testB(i,k));\n end\n fwrite(fid, tmpV, 'uint32');\n end\n fclose(fid);\n \n end\n \n disp('binary file saved!');\n end\n \n end\nend\n", "meta": {"author": "ZJULearning", "repo": "MatlabFunc", "sha": "97504df0f597c1980ab76ddc0c9c5d669043c6c9", "save_path": "github-repos/MATLAB/ZJULearning-MatlabFunc", "path": "github-repos/MATLAB/ZJULearning-MatlabFunc/MatlabFunc-97504df0f597c1980ab76ddc0c9c5d669043c6c9/ANNS/Hashing/HashingRunLongCode.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879991, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3711150359717744}} {"text": "% concatenate cell array of 3D tensors\n% assume that the cells are MxNxP_i tensors where M and N are shared by all\n% cells, while P_i can be different.\n% Generate a 3D tensor of MxNxsum(P_i).\n%\nfunction output = cell2mat_tensor3D(data, padnumber)\nif nargin<2\n padnumber = 0;\nend\n\nprecision = 'single';\nif ~isempty(data) && ~isempty(data{1})\n precision = class(data{1}(1));\nend\n\nnCell = length(data);\nfor i=1:nCell\n [M(i),N(i),P(i)] = size(data{i});\n if M(i)*N(i)==0\n P(i)=0;\n end\nend\n\nif sum(abs(N-N(1)))==0 % if all cells have the same number of columns\n N = N(1);\nelse % if some cells have less columns than others, zero pad them\n Nmax = max(N);\n for j=1:nCell\n data{j}(:,N(j)+1:Nmax,:) = padnumber;\n end\n N = max(N);\nend\n\nif sum(abs(P-1))==0 % all are matrices, not tensors\n output = cell2mat(data);\n output = reshape(output, max(M),N,nCell);\nelse\n output = zeros(max(M),N, sum(P), precision);\n for j=1:nCell\n idx1 = sum(P(1:j-1))+1;\n idx2 = sum(P(1:j));\n if idx1>idx2; continue; end\n [d1,d2,d3] = size(data{j});\n [n1,n2,n3] = size(output(:,:, idx1:idx2 ));\n \n if d1~=n1 || d2~=n2 || d3~=n3 %M(j)~=max(M) || idx2-idx1+1 ~= P(j)\n msg = sprintf('Warning: data{j} has a dimension of %d - %d - %d, while output(:,:,idx1:idx2) has a dimension of %d - %d - %d, %s\\n', d1,d2,d3,n1,n2,n3, datestr(now));\n my_append('cell2mat_tensor3D_log.txt', msg);\n continue;\n end\n output(:,:, idx1:idx2 ) = data{j};\n end\nend\n\nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/utils/cell2mat_tensor3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37108288726693794}} {"text": "%% Copyright (C) 2014-2016, 2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym atand (@var{x})\n%% Symbolic inverse tan function with output in degrees.\n%%\n%% Example:\n%% @example\n%% @group\n%% atand (sqrt (sym (3)))\n%% @result{} (sym) 60\n%%\n%% syms x\n%% y = atand (x)\n%% @result{} y = (sym)\n%% 180\u22c5atan(x)\n%% \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\n%% \u03c0\n%% @end group\n%% @end example\n%%\n%% @seealso{@@sym/tand, @@sym/atan}\n%% @end defmethod\n\n\nfunction y = atand(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('lambda a: deg(atan(a))', x);\nend\n\n\n%!error atand (sym(1), 2)\n%!assert (isequaln (atand (sym(nan)), sym(nan)))\n\n%!test\n%! f1 = atand (sym(1)/2);\n%! f2 = atand (1/2);\n%! assert (double (f1), f2, -eps)\n\n%!test\n%! D = [1 2; 3 4]/4;\n%! A = sym([1 2; 3 4])/4;\n%! f1 = atand (A);\n%! f2 = atand (D);\n%! assert (double (f1), f2, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/atand.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37108288726693794}} {"text": "classdef TestInvertAffineTransform\n %TestInvertAffineTransform\n\n methods (Static)\n function test_1\n src = [0 1 0; -1 0 1];\n ref = [0 -1 1; 1 0 0];\n dst = cv.invertAffineTransform(src);\n validateattributes(dst, {'numeric'}, {'size',[2 3]});\n assert(all(abs(dst(:) - ref(:)) < 1e-5));\n end\n\n function test_error_argnum\n try\n cv.invertAffineTransform();\n throw('UnitTest:Fail');\n catch e\n assert(strcmp(e.identifier,'mexopencv:error'));\n end\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/test/unit_tests/TestInvertAffineTransform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241632752915, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37108287899745385}} {"text": "% --------------------------------------------------------------------------- %\n% MarrRevisited - Surface Normal Estimation\n% Copyright (c) 2016 Adobe Systems Incorporated and Carnegie Mellon University. \n% All rights reserved.[see LICENSE for details]\n% -------------------------------------------------------------------------- %\n\n% Written by Aayush Bansal. Please contact ab.nsit@gmail.com\n\n% use the network to predict the values of nx, ny, and nz.\n% function comp_nxyz(PREDN, NET_NAME, MODEL_ITER)\nclc; clear all;\n\n% setup the task --\nDUMP_CACHE = './cachedir/best_model/';\n\n% load the nyu-dataset --\nimg_set = 'test';\nimgLabs = load(['./dataset/NYU/img_set/',img_set,'.mat'], 'img_set');\nimgLabs = imgLabs.img_set;\n\n% evaluate the predicted sn --\n[nums_e] = eval_pred_sn(DUMP_CACHE, imgLabs);\n", "meta": {"author": "aayushbansal", "repo": "MarrRevisited", "sha": "13ec38f9dcaa3aa88a0f4796f0c40aba8c2543a8", "save_path": "github-repos/MATLAB/aayushbansal-MarrRevisited", "path": "github-repos/MATLAB/aayushbansal-MarrRevisited/MarrRevisited-13ec38f9dcaa3aa88a0f4796f0c40aba8c2543a8/normals/eval/eval_sn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241632752915, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.37108287899745385}} {"text": "function r = length(a)\n%LENGTH Taylor length length(a)\n%\n\n% written 10/16/98 S.M. Rump\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n%\n\n r = max(a.size);\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/taylor/@taylor/length.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6261241632752915, "lm_q1q2_score": 0.37108287899745385}} {"text": "function [mvector,scan] = bes(RF, pw, scantype, var1, var2, var3, var4, phase, M0, T1, T2)\n\n% Bloch Equation Simulator\n%\n% Required Arguments\n% RF 4xN definition of radio frequency pulse (phase, amplitude,\n% duration, gradient)\n% pw duration of pulse in milliseconds\n% scantype scan type: 'frequency', 'B1max', 'temporal'\n% B1max scan\n% var1 frequency / position (if gradient supplied in RF)\n% var2 upper bound B1\n% var3 lower bound B1\n% var4 steps\n% Frequency scan\n% var1 B1max\n% var2 upper bound frequency / position (if gradient supplied)\n% var3 lower bound frequency / position (if gradient supplied)\n% var4 steps\n% Temporal scan\n% var1 B1max\n% var2 frequency / position (if gradient supplied)\n% var3 ignored\n% var4 ignored\n% Optional Arguments\n% phase phase at which the RF pulse is applied (default 0)\n% M0 three component vector specifying the initial magnetization \n% a 3xSTEPS matrix is used to define a different MO for each\n% steps. Default is [0; 0; 1]\n% T1 T1 decay time (default INF)\n% T2 T2 decay time (default INF)\n%\n% Output\n% mvector 3xSTEPS matrix specifying the magnetization at each point\n% scan vector of frequency, B1max, or time steps modelled\n%\n% Units: B1 (kHz), frequencies (kHz), Phase (degrees), Time (ms),\n% Gradients (G/cm), Position (cm), gyro = 4.25763888 kHz/G\n\n% Author: L. Martyn Klassen\n% Copyright 2003 Robarts Research Institute\n% This program is copyrighted worldwide by the Robarts Research\n% Institute. Any distribution, copying or redistribution is expressly\n% forbidden.\n% 03/04/24 Added support for gradient changes during RF\n\nif nargin < 5\n error('BES requires five input arguments.');\nend\n\n% Initialize constants\nscantype = lower(scantype(1));\ngrad_flag = 0;\n\nif nargin < 11\n T2 = Inf;\n if nargin < 10\n T1 = Inf;\n if nargin < 9\n M0 = [0; 0; 1];\n if nargin < 8\n phase = 0;\n if (nargin < 7) && (scantype ~= 't')\n error('BES requires seven input arguments for specified scan type.');\n end\n end\n end\n end\nend\n\n% If only one column is defined in the RF pulse it is an amplitude\n% modulated pulse, and the phase, duration columns have to be added\nif ndims(RF) > 2\n error('BES: RF pulse cannot have more than 2 dimensions.');\nend\n\nsizRF = size(RF);\nif all(sizRF > 4)\n error('BES: RF pulse has too many columns (phase, amplitude, duration, grad)')\nelseif sizRF(2) > 4\n RF = RF';\nend\n\nswitch size(RF, 2)\n case 1\n % Single column is RF magnitude so you have to add phase, duration,\n % and gradients\n RF(:,2) = RF;\n RF(:,1) = phase;\n RF(:,3) = 1;\n RF(:,4) = 0;\n case 2\n % Two columns are phase and magnitude, add duration.\n % Add the desired phase to the waveform:\n RF(:,1) = RF(:,1) + phase;\n RF(:,3) = 1;\n case 3\n % Three columns are phase, magnitude and duration.\n % Add the desired phase to the waveform:\n RF(:,1) = RF(:,1) + phase;\n case 4\n % Convert from G/cm to kHz/cm\n RF(:,4) = RF(:,4) .* 4.25763888;\n grad_flag = 1;\n % Add the desired phase to the waveform:\n RF(:,1) = RF(:,1) + phase;\nend\n \n% Convert phase to radians\nRF(:,1) = RF(:,1) .* (pi / 180);\n\n% Find out how many cyles are required to step through the RF pulse\ncycles = size(RF, 1);\n\n% Scale the RF amplitude to be between -1 and 1\nRF(:,2) = RF(:,2)./max(abs(RF(:,2)));\n\n% Kill any points with zero duration\nRF = RF(RF(:,3) ~= 0, :);\n\n% The smallest duration allowed is 1.0\nminduration = min(RF(:,3));\nmaxduration = max(RF(:,3));\nif (minduration < 1)\n error('BES: Pulse step duration should be zero or positive integer.');\nend\n\n% Adjust durations to be integers\nRF(:,3) = round(RF(:,3));\n\n% Pulse width has to be a scalar\npw = pw(1);\n\n% Define the smallest time interval used in the pulse\ndt = pw./sum(RF(:,3));\n\n% A time scan uses the pulse squence to define the progression\n% through time and not steps\nif scantype == 't'\n steps = 1;\nelse\n steps = var4;\nend\n\n% Define M0\nif isempty(M0)\n % Default is alignment along z axis\n M0 = [0; 0; 1];\n if scantype ~= 't'\n mvector = M0(:,ones(steps, 1));\n end\nelseif prod(size(M0)) == 3\n % One vector must be repeated to size of the scan\n % Check to make sure that M0 is not too large\n if sum(M0.^2) > 1.0\n error('BES: Initial magnetization is greater than 1.0')\n else\n M0 = M0(:);\n if scantype ~= 't'\n mvector = M0(:,ones(steps, 1));\n end\n end \nelseif size(M0, 2) ~= steps\n if scantype ~= 't'\n % Otherwise M0 must be defined at each point in the scan\n error('BES: Initial M0 vector does not agree with number of steps (3xsteps).')\n else\n % Time requires it to 3x1 or 1x3 - previous if statement\n error('BES: Initial MO for time scan must be 3x1 vector')\n end\nelse\n if scantype == 't'\n error('BES: Initial MO for time scan must be 3x1 vector')\n end\n if any(sum(M0.^2, 1) > 1.000001)\n error('BES: Initial magnetization is greater than 1.0')\n end\n mvector = M0;\nend\n\n% Make sure lower limit is less than upper limit\n% switch if they are the wrong order\nif var2 < var3\n temp = var2;\n var2 = var3;\n var3 = temp;\n clear temp;\nend\n\nif (T2 > T1)\n error('BES: First Law Violation, T2 must be less than T1.');\nend\n\n% Calculate the matrices for the T1, T2 decay\nif T1 == 0\n if T2 == 0\n A = [0 0 0; 0 0 0; 0 0 1];\n else\n A = [exp(-dt/T2) 0 0; 0 exp(-dt/T2) 0; 0 0 1];\n end\n B = [0; 0; 0];\nelse\n if T2 == 0\n A = [0 0 0; 0 0 0; 0 0 1-exp(-dt/T1)];\n else\n A = [exp(-dt/T2) 0 0; 0 exp(-dt/T2) 0; 0 0 exp(-dt/T1)];\n end\n B = [0; 0; 1-exp(-dt/T1)];\nend\n\n% Setup for the three different types of simulations\nswitch scantype\ncase 'f' % Scan through frequency\n \n % Fixed value is B1max which has to be scaled for the RF pulse description\n % Also convert it to rad/millisecond\n B1max = var1.*(2*pi);\n \n % Limits are in frequency\n interval = (var2 - var3)/(steps-1);\n scan = [var3:interval:var2];\n\n % Rotate the matrix to align 1st RF with X\n cosa = cos(-RF(1,1));\n sina = sin(-RF(1,1));\n mvector = [cosa sina 0; -sina cosa 0; 0 0 1]*mvector;\n \n % Small tip angle vector\n theta = RF(:,2)*B1max.*dt;\n cosa = cos(theta);\n sina = sin(theta);\n \n % Free precession angle (rad)\n freq = scan .* (2*pi*dt);\n phi = freq; \n cos2a = cos(phi);\n sin2a = sin(phi);\n \n % Alignment angles\n dRF = -diff(RF(:,1));\n dRF(end+1) = RF(end, 1);\n\n % Loop through the RF pulse\n for t = 1:cycles\n % Compute the rotation matrix\n Rx=[1 0 0; 0 cosa(t) sina(t); 0 -sina(t) cosa(t)];\n \n % Added in the decay matrix\n Rx = A * Rx;\n \n if grad_flag\n phi = freq .* RF(t,4);\n cos2a = cos(phi);\n sin2a = sin(phi);\n end\n \n % For durations longer than one, repeat the small angle \n % approximation the prerquisite number of times\n for m = 1:RF(t,3)\n % Using small tip angle approximation to calculate the\n % new magnetization vector\n \n % Rotate the matrix by theta about X and let decay\n mvector = Rx*mvector;\n \n % Add the constant decay term\n mvector(3,:) = mvector(3,:) + B(3);\n \n % Free Precession angle with RF alignment on last increment\n if (m == RF(t,3)) & (dRF(t) ~= 0)\n phi2 = phi + dRF(t);\n cos3a = cos(phi2);\n sin3a = sin(phi2);\n \n temp = cos3a.*mvector(1,:) + sin3a.*mvector(2,:);\n mvector(2,:) = -sin3a.*mvector(1,:) + cos3a.*mvector(2,:);\n mvector(1,:) = temp;\n else\n % Rotate the vector by phi about Z\n temp = cos2a.*mvector(1,:) + sin2a.*mvector(2,:);\n mvector(2,:) = -sin2a.*mvector(1,:) + cos2a.*mvector(2,:);\n mvector(1,:) = temp; \n end\n end\n end\n \ncase 'b' % Scan through B1max\n \n % Fixed value is Frequency (rad/ms)\n freq = var1*2*pi;\n \n % Limits are in B1max which has to be scaled for the RF pulse description\n % and converted to rad/ms.\n interval = (var2 - var3)/(steps-1);\n B1max = [var3:interval:var2].*(2*pi);\n\n % Rotate the matrix to align 1st RF with X\n cosa = cos(-RF(1,1));\n sina = sin(-RF(1,1));\n mvector = [cosa sina 0; -sina cosa 0; 0 0 1]*mvector;\n\n % Free Precession rotation angle (rad)\n freq = freq*dt;\n phi = freq;\n % Compute the free precession matrix\n cosa = cos(phi);\n sina = sin(phi); \n Rfree =[cosa sina 0; -sina cosa 0; 0 0 1];\n \n % Add the decay term as well\n Rfree = A * Rfree;\n \n % Calculate RF alignment angles\n dRF = -diff(RF(:,1));\n % Last one must realign to zero\n dRF(end+1) = RF(end,1);\n cos2a = cos(phi + dRF);\n sin2a = sin(phi + dRF);\n \n % Loop through the RF pulse\n for t = 1:cycles\n % Compute theta for given RF power\n theta = B1max*RF(t,2)*dt;\n cosa = cos(theta);\n sina = sin(theta);\n \n if grad_flag\n phi = freq * RF(t,4);\n end\n \n % For durations longer than one, repeat the small angle \n % approximation the prerequisite number of times\n for m = 1:RF(t,3)\n % Using small tip angle approximation to calculate the\n % new magnetization vector\n \n % Rotate the matrix by theta about X\n temp = cosa.*mvector(2,:) + sina.*mvector(3,:);\n mvector(3,:) = -sina.*mvector(2,:) + cosa.*mvector(3,:);\n mvector(2,:) = temp;\n \n % On last time through apply free precession and rotate the matrix\n % to undo the previous alignment with the RF and also align the next\n % RF with X, otherwise just apply free precession\n if grad_flag\n % Compute the free precession matrix and apply\n cosa = cos(phi + dRF(t));\n sina = sin(phi + dRF(t)); \n mvector = (A * [cosa sina 0; -sina cosa 0; 0 0 1])*mvector;\n elseif (m == RF(t,3)) & (dRF(t) ~= 0)\n mvector=(A * [cos2a(t) sin2a(t) 0; -sin2a(t) cos2a(t) 0; 0 0 1])*mvector;\n else\n mvector = Rfree*mvector;\n end\n mvector(3,:) = mvector(3,:) + B(3);\n end\n end\n \n % Convert scan from rad/ms to kHz\n scan = B1max./(2*pi);\n \ncase 't'\n % Scan through time\n \n % Fixed value are B1max and freq\n B1max = var1.*(2*pi);\n freq = var2.*2*pi;\n \n mvector = zeros(3, sum(RF(:,3))+1);\n count = 1;\n \n % Store the starting magnetization\n mvector(:,count) = M0;\n \n % Free Precession rotation\n freq = freq*dt;\n phi = freq;\n \n % Loop through the RF pulse\n for t = 1:cycles\n if grad_flag\n phi = freq .* RF(t,4);\n end\n \n % Rotate the matrix to align RF with X\n cosa = cos(-RF(t,1));\n sina = sin(-RF(t,1));\n Rz1 = [cosa sina 0; -sina cosa 0; 0 0 1];\n \n % Compute the RF rotation matrix\n theta = B1max*RF(t,2)*dt;\n cosa = cos(theta);\n sina = sin(theta);\n Rx=[1 0 0; 0 cosa sina; 0 -sina cosa];\n\n % Also rotate the matrix to undo the previous alignment with the RF\n % and free precession\n cosa = cos(phi + RF(t,1));\n sina = sin(phi + RF(t,1)); \n Rz2=[cosa sina 0; -sina cosa 0; 0 0 1];\n \n % Add in the decay terms\n Rz2 = A * Rz2;\n \n % For durations longer than one, repeat the small angle \n % approximation the prerquisite number of times\n for m = 1:RF(t,3)\n % Using small tip angle approximation to calculate the\n % new magnetization vector\n\n % RF alignment\n M0 = Rz1*M0;\n \n % Rotate the matrix by theta about X\t\n M0 = Rx*M0;\n \n % Free precesion, realignment and decay\n M0 = Rz2*M0 + B;\n \n % Store the magnetization vector\n count = count + 1;\n mvector(:,count) = M0;\n end\n end\n \n scan = [0:sum(RF(:,3))].*dt;\n \notherwise\n error('BES: Scan type is frequency, B1max, or time');\nend\n\nreturn\n", "meta": {"author": "CIC-methods", "repo": "FID-A", "sha": "c24da581e376f6eed66979dcc662ec26903a2eef", "save_path": "github-repos/MATLAB/CIC-methods-FID-A", "path": "github-repos/MATLAB/CIC-methods-FID-A/FID-A-c24da581e376f6eed66979dcc662ec26903a2eef/rfPulseTools/mklassenTools/bes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7981867777396212, "lm_q2_score": 0.46490157137338844, "lm_q1q2_score": 0.3710782872206114}} {"text": "function x = p04_start ( n )\n\n%*****************************************************************************80\n%\n%% P04_START returns a starting point for optimization for problem 4.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 16 October 2011\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of variables X.\n%\n% Output, real X(N), a starting point for the optimization.\n%\n x = [ 0.0, 1.0 ]';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_opt/p04_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7248702702332476, "lm_q1q2_score": 0.3709281535347483}} {"text": "function p = PlotMean(X,Y,L,U,style,color)\n\n%PlotMean - Plot mean and confidence intervals.\n%\n% USAGE\n%\n% p = PlotMean(X,Y,L,U,style,color)\n%\n% X abscissae\n% Y ordinates\n% L lower error level\n% U upper error level\n% style optional style (':' or '-')\n% color optional color specification (see plot)\n%\n% NOTES\n%\n% Notice that L and U specifiy actual error levels rather than (relative)\n% ranges, contrary to the built-in 'errorbar' where the error is in [Y-L Y+U].\n%\n% If X is empty, it is set to 1:N (where N is the length of Y). If Y is\n% empty, only error limits are plotted. Conversely, if L and U are empty, only\n% the mean is plotted.\n\n% Copyright (C) 2008-2011 by Micha\u00ebl Zugaro\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\nif nargin < 4,\n error('Incorrect number of parameters (type ''help PlotMean'' for details).');\nend\n\nif nargin < 6,\n\tcolor = 'b';\nend\nif nargin < 5,\n\tstyle = ':';\nend\n\nnX = length(X);\nnY = length(Y);\nnL = length(L);\nnU = length(U);\n\n% Make sure all non-empty inputs have the same length\nn = [nX nY nL nU];\nn = n(n~=0);\nif isempty(n),\n\terror('At least one input must contain data (type ''help PlotMean'' for details).');\nend\nm = n - n(1);\nif any(m),\n\terror('All non-empty inputs must have the same length (type ''help PlotMean'' for details).');\nend\n\nif nX == 0,\n\tX = (1:n(1))';\nend\n\nhold on;\n% Plot mean\nif nY ~= 0,\n\tp = plot(X,Y);\n\tif strcmp(style,':'),\n\t\tset(p,'LineStyle','-','color',color);\n\telse\n\t\tset(p,'LineWidth',3,'color',color);\n\tend\nend\n% Plot lower error level\nif nL ~= 0,\n\tp = plot(X,L);\n\tif strcmp(style,':'),\n\t\tset(p,'LineStyle',':','color',color);\n\telse\n\t\tset(p,'LineWidth',1,'color',color);\n\tend\nend\n% Plot upper error level\nif nU ~= 0,\n\tp = plot(X,U);\n\tif strcmp(style,':'),\n\t\tset(p,'LineStyle',':','color',color);\n\telse\n\t\tset(p,'LineWidth',1,'color',color);\n\tend\nend\n\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/FMAToolbox/Plot/PlotMean.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5117166047041652, "lm_q2_score": 0.7248702702332476, "lm_q1q2_score": 0.3709281535347482}} {"text": "% CircularSparseMat\n% Multidimensional circular sparse matrix. Builds on SparseMat adding circular\n% wrapping of indices\n%\n% Author: Jonathan Karr\n% Affilitation: Covert Lab, Department of Bioengineering, Stanford University\n% Last updated: 7/18/2010\nclassdef CircularSparseMat < edu.stanford.covert.util.SparseMat\n properties (SetAccess=protected)\n circularDims\n end\n \n %constructor\n methods\n %five ways to instatiate:\n %(1) x = CircularSparseMat()\n % Creates an empty sparse matrix of size 0x2 with no dimensions\n % wrapping\n %\n %(2) x = CircularSparseMat(mat)\n % Casts matrix mat to sparse matrix with no dimensions wrapping\n %\n %(3) x = CircularSparseMat(mat, circularDims)\n % Casts matrix mat to sparse matrix with selected dimensions wrapping\n %\n %(4) x = CircularSparseMat(subs, vals, sz)\n % Creates sparse matrix with size sz and non-zeros with subscripts\n % subs and values vals with no dimensions wrapping\n %\n %(5) x = CircularSparseMat(subs, vals, sz, circularDims)\n % Creates sparse matrix with size sz and non-zeros with subscripts\n % subs and values vals with selected dimensions wrapping\n function this = CircularSparseMat(varargin)\n import edu.stanford.covert.util.CircularSparseMat;\n \n switch nargin\n case 4, supervarargin = varargin(1:3);\n circDims = varargin{end};\n \n subs = varargin{1};\n siz = varargin{3};\n if ~isempty(subs)\n for i = 1:numel(circDims)\n subs(:, circDims(i)) = mod(subs(:, circDims(i)) - 1, siz(circDims(i))) + 1;\n end\n supervarargin{1} = subs;\n end\n case 0,\n case 1, supervarargin = varargin(1);\n circDims = varargin{1}.circularDims;\n case 2, supervarargin = varargin(1);\n circDims = varargin{end};\n case 3, supervarargin = varargin(1:3);\n circDims = zeros(1,0);\n otherwise\n throw(MException('CircularSparseMat:error','no constructor matches the calling signature'));\n end\n \n this = this@edu.stanford.covert.util.SparseMat(supervarargin{:});\n \n validateattributes(circDims, {'numeric'}, {'positive', 'real', 'integer', '<=', this.ndims});\n if numel(circDims) > 1 && ~all(diff(sort(circDims)))\n throw(MException('CircularSparseMat:invalidDimensions', 'circularDims must be positive real intergers in the range 1..ndims(this)'));\n end\n \n if numel(circDims) == 1\n this.circularDims = circDims;\n else\n this.circularDims = sort(circDims);\n end\n end\n \n function this = normalize(this, reSize, reFind, reSort, oldDims)\n this = this.normalize@edu.stanford.covert.util.SparseMat(reSize, reFind, reSort, oldDims);\n \n %inlined is ismember optimized for small number of circular dimensions\n if isscalar(this.circularDims)\n this.circularDims = find(oldDims == this.circularDims);\n else\n tfs = false(size(oldDims));\n for i = 1:numel(oldDims)\n tfs(i) = any(this.circularDims == oldDims(i));\n end\n this.circularDims = find(tfs);\n end\n end\n \n function value = isDimCircular(this, dim)\n value = any(this.circularDims == dim);\n end\n \n function tf = isequal(A, B)\n tf = isequal@edu.stanford.covert.util.SparseMat(A, B) && ...\n isequal(A.circularDims, B.circularDims);\n end\n \n function C = tprod(A, B, Aid, Bid)\n Aod = setdiff(1:A.ndims, Aid);\n Bod = setdiff(1:B.ndims, Bid);\n \n circDims = [];\n if isa('CircularSparseMat',A)\n [tfs, idxs] = ismember(A.circularDims, Aod);\n circDims = idxs(tfs);\n end\n if isa('CircularSparseMat',A)\n [tfs, idxs] = ismember(B.circularDims, Bod);\n circDims = [circDims idxs(tfs)+numel(Aod)];\n end\n \n C = tprod@edu.stanford.covert.util.SparseMat(A, B);\n C.circularDims = circDims;\n end\n \n function this = subsasgn(this, s, rhs)\n %Case 1: Dot reference to properties\n if strcmp(s.type,'.') || strcmp(s.type, '{}')\n this = this.subsasgn@edu.stanford.covert.util.SparseMat(s, rhs);\n return;\n end\n \n if numel(s.subs)==1\n %Case 2: Subscripts of elements\n subs = s.subs{1};\n \n if size(subs,2) ~= this.ndims\n throw(MException('SparseMat:invalidDimensions','Subscripts must have number of columns equal to dimensions of matrix.'));\n end\n for i=1:numel(this.circularDims)\n subs(:,this.circularDims(i)) = mod(subs(:,this.circularDims(i))-1, this.siz(this.circularDims(i)))+1;\n end\n \n s.subs{1}=subs;\n else\n %Case 3: Subscripts ranges\n for i=1:numel(this.circularDims)\n if this.circularDims(i) > numel(s.subs)\n break;\n end\n \n subs = s.subs{this.circularDims(i)};\n \n if isnumeric(subs)\n subs = mod(subs-1, this.siz(this.circularDims(i)))+1;\n end\n \n s.subs{this.circularDims(i)} = subs;\n end\n end\n \n this = this.subsasgn@edu.stanford.covert.util.SparseMat(s, rhs);\n end\n \n function value = subsref(this, s)\n %Case 1: Dot reference to properties\n if strcmp(s.type,'.') || strcmp(s.type, '{}')\n value = this.subsref@edu.stanford.covert.util.SparseMat(s);\n return;\n end\n \n if numel(s.subs)==1\n %Case 2: Subscripts of elements\n subs = s.subs{1};\n \n if size(subs,2) ~= this.ndims\n throw(MException('SparseMat:invalidDimensions','Subscripts must have number of columns equal to dimensions of matrix.'));\n end\n for i=1:numel(this.circularDims)\n subs(:,this.circularDims(i)) = mod(subs(:,this.circularDims(i))-1, this.siz(this.circularDims(i)))+1;\n end\n \n s.subs{1}=subs;\n else\n %Case 3: Subscripts ranges\n for i=1:numel(this.circularDims)\n if this.circularDims(i) > numel(s.subs)\n break;\n end\n \n subs = s.subs{this.circularDims(i)};\n \n if isnumeric(subs)\n subs = mod(subs-1, this.siz(this.circularDims(i)))+1;\n end\n \n s.subs{this.circularDims(i)} = subs;\n end\n end\n \n value = this.subsref@edu.stanford.covert.util.SparseMat(s);\n end\n \n function display(this)\n if isempty(this.circularDims)\n circDims = 'no circular dimensions';\n else\n circDims = sprintf('circular dimensions {%d', this.circularDims(1));\n if numel(this.circularDims)>1\n circDims = [circDims sprintf(',%d', this.circularDims(2:end))];\n end\n circDims = [circDims '}'];\n end\n \n fprintf('%d',this.siz(1));\n fprintf('x%d',this.siz(2:end));\n fprintf(' %s of type %s with %s and %d non-zeros\\n', ...\n class(this), valueClass(this), circDims, this.nnz);\n for i=1:this.nnz\n fprintf('(%d',this.subs(i,1));\n fprintf(',%d',this.subs(i,2:end));\n fprintf(')\\t\\t%.4f\\n',this.vals(i));\n end\n end\n end\nend", "meta": {"author": "CovertLab", "repo": "WholeCell", "sha": "6cdee6b355aa0f5ff2953b1ab356eea049108e07", "save_path": "github-repos/MATLAB/CovertLab-WholeCell", "path": "github-repos/MATLAB/CovertLab-WholeCell/WholeCell-6cdee6b355aa0f5ff2953b1ab356eea049108e07/src/+edu/+stanford/+covert/+util/CircularSparseMat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5544704649604274, "lm_q1q2_score": 0.3708743489707649}} {"text": "function Z = replace(X,Y,W,expand)\n%REPLACE Substitutes variables\n%\n%Z = REPLACE(X,Y,W) Replaces any occurence of the SDPVAR object Y\n% in the SDPVAR object X with the expression W\n%\n% Example\n% x = sdpvar(1,1);\n% t = sdpvar(1,1);\n% Y = [1+t;1+x+t];\n% Y = replace(Y,x,2) generates Y=[1+t;3+t]\n\nif nargin<4\n expand = 1;\nend\n\nif ~isa(X,'sdpvar')\n Z = X;\n return\nend\nif ~isa(Y,'sdpvar')\n error('Second arguments must be an sdpvar object')\nend\n\nif ~is(Y,'linear') \n error('Second arguments must be linear')\nend\n\nif prod(size(W)) == 1\n W = repmat(W,size(Y));\nend\n\nif ~isequal(size(Y),size(W))\n if isequal(fliplr(size(Y)),size(W))\n W = W';\n else\n error('Both arguments must have same size')\n end\nend\n\nif max(size(Y))>1\n if ~isequal(Y.basis(:,2:end),speye(prod(Y.dim))) \n [Y,keptY] = unique(reshape(Y,[],1));\n W = extsubsref(W,keptY);\n end\nend\n\nif isa(W,'sdpvar')\n % This is tricky...\n Z = variable_replace(X,Y,W);\n return\nend\n\nif ~isnumeric(W)\n error('Third arguments must be numeric')\nend\n\n% Replace with NaN destroys everything, assume it should be cleared\nW(isnan(W)) = 0;\n\ny_lmi_variables = Y.lmi_variables;\nb = W(:)-Y.basis(:,1);\nA = Y.basis(:,2:end);\nfeas_var = A\\b;\nif norm(A*feas_var-b)>sqrt(eps)\n error('Inconsistent assignment')\nend\n\nx_lmi_variables = X.lmi_variables;\nn = X.dim(1);\nm = X.dim(2);\n\n[monomtable,variabletype] = yalmip('monomtable');\nif all(variabletype(x_lmi_variables)==0) % is(X,'linear')\n Z = X.basis(:,1);\n %v = [];\n v1 = [];\n v2 = [];\n i1 = [];\n i2 = [];\n for i = 1:length(x_lmi_variables)\n j = find(x_lmi_variables(i) == y_lmi_variables); \n if isempty(j)\n % v = [v ;recover(x_lmi_variables(i))];\n v1 = [v1 x_lmi_variables(i)];\n i1 = [i1 i];\n %Z = Z + recover(x_lmi_variables(i))*X.basis(:,i+1);\n else\n % v = [v ;feas_var(j)];\n v2 = [v2 j];\n i2 = [i2 i];\n %Z = Z + feas_var(j)*X.basis(:,i+1);\n end\n end\n v = sparse(i1,ones(length(i1),1),recover(v1),length(x_lmi_variables),1);\n v = v + sparse(i2,ones(length(i2),1),feas_var(v2),length(x_lmi_variables),1);\n Z = Z + X.basis(:,2:end)*v;\nelse\n base = getbase(Y);base = base(:,2:end);\n [i,j,k] = find(base);\n replaced_vars = getvariables(Y);\n replaced_vars = replaced_vars(i);\n %for i = 1:length(Y)\n % replaced_vars(i) = getvariables(extsubsref(Y,i));\n %end\n % used_variables = getvariables(X);\n used_variables = x_lmi_variables;\n % monomtable = yalmip('monomtable');\n local_monom = monomtable(used_variables,replaced_vars);\n W = W(:)';\n gain = zeros(length(used_variables),1);\n for i = 1:length(used_variables)\n % F**N 6.5 0^sparse(0) and 0^0 differ\n gain(i) = prod(W.^full(local_monom(i,:)));\n end\n\n local_monoms_left = monomtable(used_variables,:);\n local_monoms_left(:,replaced_vars) = 0;\n used_left = find(sum(local_monoms_left,1));\n base = recovermonoms(local_monoms_left(:,used_left),recover(used_left));\n base = base.*gain(:);\n Z = X.basis(:,1);\n Z = Z + X.basis(:,2:end)*base;\nend\n\nif expand\n Xvariables = getvariables(Z);\n extvar = yalmip('extvariables');\n Xext = find(ismember(Xvariables,extvar));\n if ~isempty(Xext)\n %We must dig down in extended operators to see if they use the replaced\n %set of variables\n for i = 1:length(Xext)\n extstruct = yalmip('extstruct',Xvariables(Xext(i)));\n anychanged = 0;\n for j = 1:length(extstruct.arg)\n if isa(extstruct.arg{j},'sdpvar')\n XinY = find(ismembc(getvariables(extstruct.arg{j}),y_lmi_variables));\n if ~isempty(XinY)\n anychanged = 1;\n extstruct.arg{j} = replace(extstruct.arg{j},Y,W);\n else\n end\n end\n end\n if anychanged\n if isequal(extstruct.fcn,'pwa_yalmip') | isequal(extstruct.fcn,'pwq_yalmip')\n % Change data in MPT structure to allow plotting of PWA\n % and PWQ functions (and improve numerics)\n % FIXME : Generalize code from sdpvar/plot\n % extstruct = derive_new_mpt_data(extstruct);\n end\n Zi = yalmip('define',extstruct.fcn,extstruct.arg{:});\n Xvariables(Xext(i)) = getvariables(Zi);\n end\n end\n % And now recover this sucker\n Z = struct(Z);\n Z.lmi_variables = Xvariables;\n % Fucked up order (lmi_variables should be sorted)\n if any(diff(Z.lmi_variables)<0)\n [i,j]=sort(Z.lmi_variables);\n Z.basis = [Z.basis(:,1) Z.basis(:,j+1)];\n Z.lmi_variables = Z.lmi_variables(j);\n end\n Z = sdpvar(Z.dim(1),Z.dim(2),[],Z.lmi_variables,Z.basis);\n end\nend\n\nif isa(Z,'sdpvar')\n Z.dim(1) = n;\n Z.dim(2) = m;\n Z.typeflag = X.typeflag;\n Z.extra = X.extra;\n % Reset info about conic terms\n Z.conicinfo = [0 0];\nelse\n Z = reshape(full(Z),n,m);\nend\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/@sdpvar/replace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37087434897076477}} {"text": "%% Camera Calibration using ChArUco Boards Demo\n% Calibration using a ChArUco board.\n%\n% To capture a frame for calibration, press 'c',\n% If input comes from video, press any key for next frame\n% To finish capturing, press 'ESC' key and calibration starts.\n%\n% Sources:\n%\n% * \n% * \n%\n\n%% Parameters\n\n% options\nvidFile = ''; % Use video file instead of camera as input\nsquaresX = 5; % Number of squares in X direction\nsquaresY = 7; % Number of squares in Y direction\nsquareLength = 60; % Square side length (in pixels)\nmarkerLength = 30; % Marker side length (in pixels)\ndictionaryId = '6x6_250'; % Dictionary id\nrefindStrategy = false; % Apply refined strategy\nshowChessboardCorners = false; % Show detected chessboard corners after calibration\ncalibrationFlags = {\n 'UseIntrinsicGuess',false, ...\n 'FixAspectRatio',false, ... % Fix aspect ratio (fx/fy)\n 'ZeroTangentDist',false, ... % Assume zero tangential distortion\n 'FixPrincipalPoint',false % Fix the principal point at the center\n};\naspectRatio = 1; % Fix aspect ratio (fx/fy) to this value\n\n% FixAspectRatio in camera parameters\nif calibrationFlags{4}\n camMatrix = eye(3);\n camMatrix(1,1) = aspectRatio;\n calibrationFlags = [calibrationFlags, 'CameraMatrix',camMatrix];\nend\n\n% marker detector parameters\ndetectorParams = struct();\nif false\n %detectorParams.nMarkers = 1024;\n detectorParams.adaptiveThreshWinSizeMin = 3;\n detectorParams.adaptiveThreshWinSizeMax = 23;\n detectorParams.adaptiveThreshWinSizeStep = 10;\n detectorParams.adaptiveThreshConstant = 7;\n detectorParams.minMarkerPerimeterRate = 0.03;\n detectorParams.maxMarkerPerimeterRate = 4.0;\n detectorParams.polygonalApproxAccuracyRate = 0.05;\n detectorParams.minCornerDistanceRate = 0.05;\n detectorParams.minDistanceToBorder = 3;\n detectorParams.minMarkerDistanceRate = 0.05;\n detectorParams.cornerRefinementMethod = 'None';\n detectorParams.cornerRefinementWinSize = 5;\n detectorParams.cornerRefinementMaxIterations = 30;\n detectorParams.cornerRefinementMinAccuracy = 0.1;\n detectorParams.markerBorderBits = 1;\n detectorParams.perspectiveRemovePixelPerCell = 8;\n detectorParams.perspectiveRemoveIgnoredMarginPerCell = 0.13;\n detectorParams.maxErroneousBitsInBorderRate = 0.04;\n detectorParams.minOtsuStdDev = 5.0;\n detectorParams.errorCorrectionRate = 0.6;\nend\n\n% create charuco board\ndictionary = {'Predefined', dictionaryId};\nboard = {squaresX, squaresY, squareLength, markerLength, dictionary};\n\n%% Input source\nif ~isempty(vidFile) && exist(vidFile, 'file') == 2\n vid = cv.VideoCapture(vidFile);\n waitTime = 1; % 1 sec\nelse\n vid = cv.VideoCapture(0);\n waitTime = 0.01; % 10 msec\nend\nif ~vid.isOpened(), error('failed to initialize VideoCapture'); end\n\n%% Collect\n\n% collect data from each frame\nallCorners = {};\nallIds = {};\nallImgs = {};\nimgSize = [];\nhImg = []; hFig = [];\nwhile true\n % grab frame\n img = vid.read();\n if isempty(img), break; end\n\n % detect markers\n [corners, ids, rejected] = cv.detectMarkers(img, dictionary, ...\n 'DetectorParameters',detectorParams);\n\n % refined strategy to detect more markers\n if refindStrategy\n [corners, ids, rejected] = cv.refineDetectedMarkers(img, ...\n ['CharucoBoard',board], corners, ids, rejected);\n end\n\n % interpolate charuco corners\n if ~isempty(ids)\n [charucoCorners, charucoIds] = cv.interpolateCornersCharuco(...\n corners, ids, img, board);\n end\n\n % draw results\n out = img;\n if ~isempty(ids)\n out = cv.drawDetectedMarkers(out, corners); % 'IDs',ids\n if ~isempty(charucoCorners)\n out = cv.drawDetectedCornersCharuco(out, charucoCorners, ...\n 'IDs',charucoIds);\n end\n end\n out = cv.putText(out, ['Press \"c\" to add current frame. ', ...\n '\"ESC\" to finish and calibrate'], [10 20], ...\n 'FontScale',0.5, 'Color',[255 0 0], 'Thickness',2);\n\n if isempty(hImg)\n hImg = imshow(out);\n hFig = ancestor(hImg, 'figure');\n set(hFig, 'KeyPressFcn',@(o,e) setappdata(o, 'key',e.Key));\n setappdata(hFig, 'key','');\n elseif ishghandle(hImg)\n set(hImg, 'CData',out);\n else\n break;\n end\n drawnow; pause(waitTime);\n\n % collect frame\n switch getappdata(hFig, 'key')\n case {'space', 'return', 'c'}\n if ~isempty(ids)\n fprintf('Frame captured at %s\\n', datestr(now()));\n allCorners{end+1} = corners;\n allIds{end+1} = ids;\n allImgs{end+1} = img;\n imgSize = size(img);\n else\n disp('frame skipped, no corners detected!');\n end\n case {'escape', 'q'}\n disp('Finished collecting frames.');\n break;\n case 'p'\n pause(5);\n end\n setappdata(hFig, 'key','');\nend\nvid.release();\n\n%% Calibration\ndisp('Calibrating...')\n\n% calibrate camera using aruco markers\nif isempty([allIds{:}]), error('Not enough captures for calibration'); end\n[camMatrix, distCoeffs, arucoRepErr] = ...\n cv.calibrateCameraAruco([allCorners{:}], [allIds{:}], ...\n cellfun(@numel, allCorners), ['CharucoBoard',board], ...\n imgSize([2 1]), calibrationFlags{:});\n\n% prepare data for charuco calibration\nallCharucoCorners = cell(size(allCorners));\nallCharucoIds = cell(size(allCorners));\nfor i=1:numel(allCorners)\n % interpolate using camera parameters\n [allCharucoCorners{i}, allCharucoIds{i}] = cv.interpolateCornersCharuco(...\n allCorners{i}, allIds{i}, allImgs{i}, board, ...\n 'CameraMatrix',camMatrix, 'DistCoeffs',distCoeffs);\n if isempty(allCharucoIds{i})\n warning('interpolateCornersCharuco found no corners');\n end\nend\n\n% drop images where it failed to interpolate charuco corners\nidx = cellfun(@isempty, allCharucoIds);\nallCharucoIds(idx) = [];\nallCharucoCorners(idx) = [];\nallImgs(idx) = [];\n\n% calibrate camera using charuco\nif numel(allCharucoCorners) < 4, error('Not enough corners for calibration'); end\n[camMatrix, distCoeffs, repError, rvecs, tvecs] = ...\n cv.calibrateCameraCharuco(allCharucoCorners, allCharucoIds, board, ...\n imgSize([2 1]), calibrationFlags{:});\n\n% calibration results\nfprintf('Calibration Time: %s\\n', datestr(now()));\nfprintf('Image Width: %d, Image Height: %d\\n', imgSize(2), imgSize(1));\ndisp('Flags:'); cellfun(@disp,calibrationFlags);\nif calibrationFlags{4}, fprintf('Aspect Ratio: %f\\n', aspectRatio); end\ndisp('Camera Matrix:'); disp(camMatrix)\ndisp('Distortion Coefficients:'); disp(distCoeffs)\nfprintf('Reprojection Error: Charuco = %f, Aruco = %f\\n', repError, arucoRepErr);\nsave camera_parameters.mat -mat camMatrix distCoeffs\n\n% show interpolated charuco corners for debugging\nif showChessboardCorners\n axisLength = 0.5 * min(squaresX, squaresY) * squareLength;\n outImgs = {};\n for i=1:numel(allImgs)\n if ~isempty(allIds{i}) && ~isempty(allCharucoCorners)\n img = cv.drawDetectedCornersCharuco(...\n allImgs{i}, allCharucoCorners{i}, 'IDs',allCharucoIds{i});\n img = cv.drawAxis(img, camMatrix, distCoeffs, ...\n rvecs{i}, tvecs{i}, axisLength);\n outImgs{end+1} = img;\n end\n end\n if ~mexopencv.isOctave() && mexopencv.require('images')\n %HACK: IMPLAY not implemented in Octave\n implay(cat(4, outImgs{:}), 1);\n end\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/opencv_contrib/samples/aruco_calibrate_camera_charuco_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37087434897076477}} {"text": "function [FitResult,Spectrum] = multi_comp_fit_v2(data_vol, EchoTimes, DecayMatrix, T2, Opt, varargin)\n%\n% multi_comp_fit_v2(data_file_name, EchoTimes, DecayMatrix, T2, Opt, ['ROI', roi_vol, 'tissue', mask_vol])\n%\n%**************************************************************************\n% DESCRIPTION:\n%\n% A script to compute the multi-component T2 or T2* spectrum for an\n% echo train data set using regularized (and unregulatrized) NNLS. \n%\n% If an ROI mask if given, the user will be prompted to proceed with a\n% voxel-wise or ROI analysis. \n% voxel-wise analysis: The script will output superimposed plots of the T2/T2*\n% spectrum for each voxel, and calculate the average \n% MWF and gmT2/T2* for the ROI.\n% ROI analysis: The script will output plots of the average T2/T2* spectrum and \n% the average raw data + fits for that ROI. \n%\n% If no mask is given then the script will output maps of the geometric \n% mean T2/T2* (), the myelin water fraction (MWF) and the mono \n% exponential T2/T2*. \n%\n% If a tissue classification mask is given (cls_file_name), the user will \n% be prompted as to which tissue he/she wishes to analyze, and the maps \n% will be created for that tissue only.\n%\n%**************************************************************************\n% INPUTS:\n%\n% * data_vol = echo train data set to be analyzed\n% * EchoTimes = vector with all echo times \n% * DecayMatrix = matrix \n% * Opt = struct that must contains:\n% 1) RelaxationType : 'T2' or 'T2star'\n% 2) Sigma : noise's sigma\n% 3) lower_cutoff_MW : lower cutoff on Myelin Water T2 \n% 4) upper_cutoff_MW : upper cutoff on Myelin Water T2 \n% 5) upper_cutoff_IEW : upper cutoff on Intra/Extracellular Water T2\n% * 'ROI' = ROI processing flag\n% * roi_vol = ROI mask\n% * 'tissue' = tissue processing flag\n% * mask_vol = tissue mask, can be used to limit processing time\n% * varargin = optional file limiting the number of echoes to be used\n% for analysis. This can be:\n% 1) max_echoes.mnc file obtained from'in_plane_correction.m' \n% to perform in-plane field inhomogeneity correction\n% 2) correction_mask.mnc, obtained from 'Gz_correction.m'.\n% This binary file has voxels where the field gradient (Gz) \n% was > 2mG/cm set to 0 (no field inhomog. correction performed*), \n% and areas where Gz was < 2mG/cm set to 1. \n% *The correction fails where Gz > 2mG/cm. In order to limit \n% effect of field inhomogeneities in these voxels,\n% processing is limited to 45 echoes, instead of 64. \n%\n%**************************************************************************\n% EXAMPLE USES:\n% multi_comp_fit_v2(EchoTimes, DecayMatrix, T2, Opt, 'tissue', cls_mask)\n% --> Analyze vol T2 relaxation data, using a\n% tissue classification mask: cls_mask.\n% \n% AUTHOR: Eva Alonso Ortiz (eva.alonso.ortiz@gmail.com)\n% DATE LAST MODIFIED: \n% March 2016 - WIP: complex data anaylis is not currently working, do not\n% attempt to use it!\n%\n%**************************************************************************\n% SPECIAL VERSION adapted for qMRLab\n% By Ian Gagnon, 2017\n% For the original version, see multi_comp_fit.m\n% *************************************************************************\n\n%%-------------------------------------------------------------------------\n%% check existence of data files\n%%-------------------------------------------------------------------------\n\n% set processing labels\nROI_flag = 0;\nvoxelwise_ROI_flag = 0;\ntissue_flag = 0;\nmask_flag = 0;\n\n% default number of inputs\nndef_inputs = 5;\n\nif nargin > ndef_inputs \n if nargin < ndef_inputs+3\n mask_opts = nargin - ndef_inputs;\n else\n mask_opts = nargin - ndef_inputs - 1;\n end\n \n for counter = 2:2:(mask_opts)\n switch varargin{counter-1}\n case{'ROI'}\n roi_vol = varargin{counter};\n ROI_flag = 1;\n voxelwise_ROI_flag = input('Voxel-wise ROI analysis (1) or average ROI analysis (0)?: ');\n case{'tissue'}\n mask_vol = varargin{counter};\n tissue_flag = 1; \n end\n end\nend\n\n\n%%-------------------------------------------------------------------------\n%% Data informations\n%%------------------------------------------------------------------------- \n\ndata_dim = size(data_vol);\ndata_slices = data_dim(1,3);\ndata_height = data_dim(1,1);\ndata_width = data_dim(1,2);\ndata_voxels = data_height*data_width;\nnum_echoes = data_dim(1,4);\n\n%%-------------------------------------------------------------------------\n%% Compatibility mask/data\n%%-------------------------------------------------------------------------\n\nif ROI_flag == 1 \n roi_voxels = size(roi_vol,1)*size(roi_vol,2);\n if roi_voxels ~= data_voxels\n error(sprintf('\\nError in multi_comp_fit_v2: Mask file dimensions do not match data image file.\\n')); \n end\nend\n\nif tissue_flag ~= 0 \n mask_voxels = size(mask_vol,1)*size(mask_vol,2); \n if mask_voxels ~= data_voxels\n error(sprintf('\\nError in multi_comp_fit_v2: Mask file dimensions do not match data image file.\\n')); \n end \nend\n\n%%-------------------------------------------------------------------------\n%% default values for NNLS fitting\n%%-------------------------------------------------------------------------\n\nT2.num = 120;\n \n% set default values for reg-NNLS (taken from C. Chia)\nif ~moxunit_util_platform_is_octave\n set(0,'RecursionLimit',5000)\nend\nmu = 0.25;\nchi2range = [2 2.5];\nchi2_min = chi2range(1);\nchi2_max = chi2range(2);\n \n%%-------------------------------------------------------------------------\n%% apply ROI mask to data volumes\n%%-------------------------------------------------------------------------\n\nif (ROI_flag == 1 && voxelwise_ROI_flag == 0) \n mean_roi_data = get_avgROI_data(roi_vol, data_vol, data_dim);\nend\n\n%%-------------------------------------------------------------------------\n%% NNLS fitting routine presets\n%%-------------------------------------------------------------------------\n\n% find cutoff indices\nlower_cutoff_MW_index = find_cutoff_index(Opt.lower_cutoff_MW, T2.vals);\nupper_cutoff_MW_index = find_cutoff_index(Opt.upper_cutoff_MW, T2.vals);\nupper_cutoff_IEW_index = find_cutoff_index(Opt.upper_cutoff_IEW, T2.vals);\n\n%%-------------------------------------------------------------------------\n%% data fitting and analysis\n%%-------------------------------------------------------------------------\nif (ROI_flag == 1 && voxelwise_ROI_flag == 0)\n \n for slice = 1:data_slices\n \n %------------------------------\n % Do multi-exponential fitting\n %------------------------------ \n\n % Do non-regularized NNLS\n [spectrum_NNLS(slice,:), chi2_NNLS(slice)] = do_NNLS(DecayMatrix, double(squeeze(mean_roi_data(slice,:))), Opt.Sigma(slice));\n \n ssq_res_NNLS(slice) = sum((DecayMatrix*squeeze(spectrum_NNLS(slice,:)') - squeeze(mean_roi_data(slice,:))').^2);\n s0_NNLS(slice) = sum(spectrum_NNLS(slice,:));\n mwf_NNLS(slice) = sum(spectrum_NNLS(slice,lower_cutoff_MW_index:upper_cutoff_MW_index))/s0_NNLS(slice);\n\n if isnan(ssq_res_NNLS(slice))\n ssq_res_NNLS(slice) = 0;\n end\n if isnan(s0_NNLS(slice))\n s0_NNLS(slice) = 0;\n end\n if isnan(mwf_NNLS(slice))\n mwf_NNLS(slice) = 0;\n end\n \n % Calculate the geometric mean of the T2 distribition for the non-reg NNLS \n gm_t2_NNLS(slice) = exp(sum(squeeze(spectrum_NNLS(slice,:))'.*log(T2.vals))/sum(spectrum_NNLS(slice,:)));\n gm_IEW_t2_NNLS(slice) = exp(sum(squeeze(spectrum_NNLS(slice,upper_cutoff_MW_index:upper_cutoff_IEW_index))'.*log(T2.vals(upper_cutoff_MW_index:upper_cutoff_IEW_index)))/sum(spectrum_NNLS(slice,upper_cutoff_MW_index:upper_cutoff_IEW_index)));\n\n if isnan(gm_t2_NNLS(slice))\n gm_t2_NNLS(slice) = 0;\n end\n if isnan(gm_IEW_t2_NNLS(slice))\n gm_IEW_t2_NNLS(slice) = 0;\n end\n \n % Do regulaized NNLS \n [spectrum_regNNLS(slice,:), chi2_regNNLS(slice)] = ...\n iterate_NNLS(mu,chi2_min,chi2_max,T2.num,double(squeeze(mean_roi_data(slice,:))),DecayMatrix,chi2_NNLS(slice),Opt.Sigma(slice));\n\n ssq_res_regNNLS(slice) = sum((DecayMatrix*squeeze(spectrum_regNNLS(slice,:)') - squeeze(mean_roi_data(slice,:))').^2);\n s0_regNNLS(slice) = sum(spectrum_regNNLS(slice,:));\n mwf_regNNLS(slice) = sum(spectrum_regNNLS(slice,1:upper_cutoff_MW_index))/s0_regNNLS(slice);\n\n if isnan(ssq_res_regNNLS(slice))\n ssq_res_regNNLS(slice) = 0;\n end\n if isnan(s0_regNNLS(slice))\n s0_regNNLS(slice) = 0;\n end\n if isnan(mwf_regNNLS(slice))\n mwf_regNNLS(slice) = 0;\n end\n \n % Calculate the geometric mean of the T2 distribition for the reg NNLS \n gm_t2_regNNLS(slice) = exp(sum(squeeze(spectrum_regNNLS(slice,:))'.*log(T2.vals))/sum(spectrum_regNNLS(slice,:)));\n gm_IEW_t2_regNNLS(slice) = exp(sum(squeeze(spectrum_regNNLS(slice,upper_cutoff_MW_index:upper_cutoff_IEW_index))'.*log(T2.vals(upper_cutoff_MW_index:upper_cutoff_IEW_index)))/sum(spectrum_regNNLS(slice,upper_cutoff_MW_index:upper_cutoff_IEW_index))); \n \n if isnan(gm_t2_regNNLS(slice))\n gm_t2_regNNLS(slice) = 0;\n end\n if isnan(gm_IEW_t2_regNNLS(slice))\n gm_IEW_t2_regNNLS(slice) = 0;\n end\n \n %-----------------------------\n % Do mono-exponential fitting \n %-----------------------------\n\n % Fit to single T2 decay component for comparison\n t2_guess = 100;\n guess = [t2_guess, mean_roi_data(slice,1)];\n\n [s0_fit(slice), t2_fit(slice)] = mono_exp_fit(double(squeeze(mean_roi_data(slice,:))), EchoTimes, double(guess));\n \n if isnan(s0_fit(slice))\n s0_fit(slice) = 0;\n end\n if isnan(s0_fit(slice))\n s0_fit(slice) = 0;\n end\n end\n \nelse\n if (ROI_flag == 1 && voxelwise_ROI_flag == 1) \n mask_flag = 1;\n mask_vol = roi_vol; \n else \n if (tissue_flag == 0 && voxelwise_ROI_flag == 0)\n \n % create brain mask to limit processing time (and mask out noise in\n % images!) \n% create_brainmask(data_file_name);\n mask_flag = 1;\n % open brain mask\n else\n mask_flag = tissue_flag;\n end\n end\n\n % initialize all data vectors to zero\n spectrum_NNLS = zeros(data_height,data_width,data_slices,T2.num);\n chi2_NNLS = zeros(data_height,data_width,data_slices);\n gm_t2_NNLS = zeros(data_height,data_width,data_slices);\n gm_IEW_t2_NNLS = zeros(data_height,data_width,data_slices);\n ssq_res_NNLS = zeros(data_height,data_width,data_slices);\n s0_NNLS = zeros(data_height,data_width,data_slices);\n mwf_NNLS = zeros(data_height,data_width,data_slices);\n\n spectrum_regNNLS = zeros(data_height,data_width,data_slices, T2.num);\n spectrum_regNNLS_A = zeros(data_height,data_width,data_slices, T2.num);\n spectrum_regNNLS_B = zeros(data_height,data_width,data_slices, T2.num);\n amp_spectrum_regNNLS = zeros(data_height,data_width,data_slices, T2.num);\n phase_spectrum_regNNLS = zeros(data_height,data_width,data_slices, T2.num);\n chi2_regNNLS = zeros(data_height,data_width,data_slices);\n gm_t2_regNNLS = zeros(data_height,data_width,data_slices);\n gm_IEW_t2_regNNLS = zeros(data_height,data_width,data_slices);\n gm_MW_t2_regNNLS = zeros(data_height,data_width,data_slices);\n ssq_res_regNNLS = zeros(data_height,data_width,data_slices);\n s0_regNNLS = zeros(data_height,data_width,data_slices);\n mwf_regNNLS = zeros(data_height,data_width,data_slices);\n mw_delf_regNNLS = zeros(data_height,data_width,data_slices);\n\n s0_fit = zeros(data_height,data_width,data_slices);\n t2_fit = zeros(data_height,data_width,data_slices);\n\n if (ROI_flag == 1 && voxelwise_ROI_flag == 1)\n \n %-------------------------------------------\n % Prepare figure for superimposed spectrum\n %-------------------------------------------\n figure; hold on;\n set(gca,'xscale','log','FontSize',20,'XMinorTick','on')\n xlim([T2.range(1) T2.range(2)])\n ylabel('Normalized Signal');\n if strcmp(Opt.RelaxationType,'T2')\n xlabel('T2 (ms)');\n title('T_2 Spectrum','FontSize',20);\n elseif strcmp(Opt.RelaxationType,'T2star')\n xlabel('T2* (ms)');\n title('T_2^* Spectrum','FontSize',20); \n end\n x = [Opt.upper_cutoff_MW, Opt.upper_cutoff_MW];\n y = [0, 1];\n plot(x,y,'r-','LineWidth', 4);\n grid minor;\n\n end\n \n for slice = 1:data_slices\n\n for i = 1:data_height\n for j = 1:data_width\n\n % only fill in what corresponds to the mask\n if mask_vol(i,j,slice) == mask_flag \n this_echo_times = EchoTimes;\n this_num_echoes = num_echoes;\n this_DecayMatrix = DecayMatrix;\n this_lower_cutoff_MW_index = lower_cutoff_MW_index;\n this_upper_cutoff_MW_index = upper_cutoff_MW_index;\n this_upper_cutoff_IEW_index = upper_cutoff_IEW_index;\n \n % Do non-regularized NNLS\n [spectrum_NNLS(i,j,slice,:), chi2_NNLS(i,j,slice)] = do_NNLS(this_DecayMatrix, double(squeeze(data_vol(i,j,slice,1:this_num_echoes)))', Opt.Sigma(slice));\n\n % Do regulaized NNLS \n [spectrum_regNNLS(i,j,slice,:), chi2_regNNLS(i,j,slice)] = ...\n iterate_NNLS(mu,chi2_min,chi2_max,double(squeeze(data_vol(i,j,slice,1:this_num_echoes)))',this_DecayMatrix,chi2_NNLS(i,j,slice),Opt.Sigma(slice));\n %------------------------------\n % Do multi-exponential fitting\n %------------------------------ \n \n s0_regNNLS(i,j,slice) = sum(spectrum_regNNLS(i,j,slice,:));\n mwf_regNNLS(i,j,slice) = sum(spectrum_regNNLS(i,j,slice,1:this_upper_cutoff_MW_index))/s0_regNNLS(i,j,slice);\n\n % Calculate the geometric mean of the T2 distribition for the reg NNLS \n gm_t2_regNNLS(i,j,slice) = exp(sum(squeeze(spectrum_regNNLS(i,j,slice,:)).*log(T2.vals))/sum(spectrum_regNNLS(i,j,slice,:)));\n gm_IEW_t2_regNNLS(i,j,slice) = exp(sum(squeeze(spectrum_regNNLS(i,j,slice,this_upper_cutoff_MW_index:this_upper_cutoff_IEW_index)).*log(T2.vals(this_upper_cutoff_MW_index:this_upper_cutoff_IEW_index)))/sum(spectrum_regNNLS(i,j,slice,this_upper_cutoff_MW_index:this_upper_cutoff_IEW_index)));\n gm_MW_t2_regNNLS(i,j,slice) = exp(sum(squeeze(spectrum_regNNLS(i,j,slice,this_lower_cutoff_MW_index:this_upper_cutoff_MW_index)).*log(T2.vals(this_lower_cutoff_MW_index:this_upper_cutoff_MW_index)))/sum(spectrum_regNNLS(i,j,slice,this_lower_cutoff_MW_index:this_upper_cutoff_MW_index)));\n\n if isnan(gm_t2_regNNLS(i,j,slice))\n gm_t2_regNNLS(i,j,slice) = 0;\n end\n if isnan(gm_IEW_t2_regNNLS(i,j,slice))\n gm_IEW_t2_regNNLS(i,j,slice) = 0;\n end\n if isnan(gm_MW_t2_regNNLS(i,j,slice))\n gm_MW_t2_regNNLS(i,j,slice) = 0;\n end \n if isnan(s0_regNNLS(i,j,slice))\n s0_regNNLS(i,j,slice) = 0;\n end\n if isnan(mwf_regNNLS(i,j,slice))\n mwf_regNNLS(i,j,slice) = 0;\n end\n \n %-----------------------------\n % Do mono-exponential fitting \n %-----------------------------\n \n if (ROI_flag == 1 && voxelwise_ROI_flag == 1)\n \n %-----------------------------\n % Plot the T2 spectrum\n %-----------------------------\n\n % Normalize distributions\n norm_spectrum_NNLS(i,j,slice,:) = spectrum_NNLS(i,j,slice,:)/max(spectrum_NNLS(i,j,slice,:));\n norm_spectrum_regNNLS(i,j,slice,:) = spectrum_regNNLS(i,j,slice,:)/max(spectrum_regNNLS(i,j,slice,:));\n\n plot(T2.vals,squeeze(norm_spectrum_regNNLS(i,j,slice,:)), 'b-','LineWidth',0.1);\n print('-djpeg','superimposed_spectrum.jpeg');\n \n end\n end\n end\n end\n end\nend\n\n\n%--------------------------------------------------------------------------\n\nif ( ROI_flag == 1 && voxelwise_ROI_flag == 0 )\n\n for slice = 1:data_slices\n \n %% Plot the T2 spectrum\n\n % Normalize distributions\n norm_spectrum_NNLS(slice,:) = spectrum_NNLS(slice,:)/max(spectrum_NNLS(slice,:));\n norm_spectrum_regNNLS(slice,:) = spectrum_regNNLS(slice,:)/max(spectrum_regNNLS(slice,:));\n\n figure; hold on;\n grid minor;\n %bar1 = bar(T2.vals,norm_spectrum_NNLS(slice,:),'FaceColor', 'g', 'EdgeColor', 'g','LineWidth',1);\n %set(bar1,'BarWidth',0.1); \n \n% %--------------------\n% % If the data is simulated: Plot \"true\" spectrum (otherwise,\n% % comment this out)\n% %--------------------\n% T2 = [5 50]';\n% frac = [0.12 0.88]';\n% \n% true_spectrum = zeros(size(T2.vals));\n% for j = 1: size(T2)\n% for i = 1:(size(T2.vals)-1)\n% if i == 1\n% if T2(j) == T2.vals(i)\n% true_spectrum(i) = frac(j);\n% end\n% end\n% \n% if ((T2.vals(i+1) >= T2(j)) && (T2.vals(i) <= T2(j)))\n% true_spectrum(i) = frac(j);\n% end\n% end\n% end\n% bar2 = bar(T2.vals,true_spectrum(:),'FaceColor', 'm', 'EdgeColor', 'm','LineWidth',1);\n% %set(bar2,'BarWidth',0.1); \n% %--------------------\n \n plot(T2.vals,norm_spectrum_regNNLS(slice,:), 'b-','LineWidth',1.5);\n set(gca,'xscale','log','FontSize',20)\n xlim([T2.range(1) T2.range(2)])\n %xlim([0.002*1e3 4*1e3]) %keep T2* and T2 ranges the same for plot\n ylabel('Normalized Signal');\n if strcmp(Opt.RelaxationType,'T2')\n xlabel('T2 (ms)');\n title('T_2 Spectrum','FontSize',20);\n elseif strcmp(Opt.RelaxationType,'T2star')\n xlabel('T2* (ms)');\n title('T_2^* Spectrum','FontSize',20); \n end\n x = [Opt.lower_cutoff_MW, Opt.upper_cutoff_MW];\n y = [0, 1];\n plot(x,y,'r-','LineWidth', 2);\n% legend('location', 'NorthEast','NNLS multi-exp fit','True Spectrum','regularized NNLS multi-exp fit')\n% legend('location', 'NorthEast','NNLS multi-exp fit','regularized NNLS multi-exp fit')\n% legend('location', 'NorthEast','regularized NNLS multi-exp fit')\n print('-djpeg','spectrum.jpeg')\n \n %% Plot the decay curve and fitted line\n\n % Reconstruct the signal intensities and plot back on \n % top of the original data.\n\n single_sig_recon(slice,:) = s0_fit(slice).*exp(-EchoTimes/t2_fit(slice));\n multi_sig_recon(slice,:) = DecayMatrix * spectrum_NNLS(slice,:)';\n reg_multi_sig_recon(slice,:) = DecayMatrix * spectrum_regNNLS(slice,:)';\n\n figure; hold on;\n plot(EchoTimes, mean_roi_data(slice,:), 'kx', 'MarkerSize',10);\n% plot(echo_times, single_sig_recon(slice,:), 'g-.','LineWidth',2);\n% plot(echo_times, multi_sig_recon(slice,:), 'b-','LineWidth',2);\n plot(EchoTimes, reg_multi_sig_recon(slice,:), 'r--','LineWidth',2);\n if strcmp(Opt.RelaxationType,'T2')\n% legend('location', 'best', 'SE data','mono-exponential fit','NNLS multi-exp fit','regularized NNLS multi-exp fit');\n legend('location', 'best', 'SE data','regularized NNLS multi-exp fit');\n elseif strcmp(Opt.RelaxationType,'T2star')\n% legend('location', 'best','GRE data','mono-exponential fit','NNLS multi-exp fit','regularized NNLS multi-exp fit');\n legend('location', 'best', 'SE data','regularized NNLS multi-exp fit');\n end\n xlabel('TE (ms)');\n ylabel('Signal (arb)');\n grid on;\n print('-djpeg','signal_decay.jpeg');\n\n if strcmp(Opt.RelaxationType,'T2')\n %disp(fprintf('\\nmulti-exp NNLS (slice %d) => : %3.2f ms, MWF: %3.2f', slice, gm_t2_NNLS(slice), mwf_NNLS(slice))); \n disp(fprintf('multi-exp regNNLS (slice %d) => IE water : %3.2f ms, MWF: %3.2f', slice, gm_IEW_t2_regNNLS(slice), 100*mwf_regNNLS(slice))); \n %disp(fprintf('Mono-exponential T2 fit (slice %d): %3.2f ms', slice, t2_fit(slice))); \n elseif strcmp(Opt.RelaxationType,'T2star')\n %disp(fprintf('\\nmulti-exp NNLS (slice %d) => : %3.2f ms, MWF: %3.2f', slice, gm_t2_NNLS(slice), mwf_NNLS(slice))); \n disp(fprintf('multi-exp regNNLS (slice %d) => IE water : %3.2f ms, MWF: %3.2f', slice, gm_IEW_t2_regNNLS(slice), 100*mwf_regNNLS(slice))); \n %disp(fprintf('Mono-exponential T2* fit (slice %d): %3.2f ms', slice, t2_fit(slice))); \n end\n \n end\n\nelseif ROI_flag == 0 \n FitResult.MWF = 100*mwf_regNNLS;\n FitResult.T2IEW = gm_IEW_t2_regNNLS; \n FitResult.T2MW = gm_MW_t2_regNNLS;\n Spectrum = squeeze(spectrum_regNNLS);\nend \n\nif ( tissue_flag ~= 0 || voxelwise_ROI_flag == 1 )\n mwf_regNNLS = reshape(mwf_regNNLS,data_voxels,data_slices);\n gm_IEW_t2_regNNLS = reshape(gm_IEW_t2_regNNLS,data_voxels,data_slices);\n for slice = 1:data_slices\n mROI_mwf_regNNLS(slice) = mean(nonzeros(mwf_regNNLS(:,slice)));\n valtmp = std(nonzeros(mwf_regNNLS(:,slice))); \n if isempty(valtmp), stdROI_regNNLS(slice) = nan; else stdROI_regNNLS(slice) = valtmp; end\n mROI_gm_IEW_t2_regNNLS(slice) = mean(nonzeros(gm_IEW_t2_regNNLS(:,slice)));\n valtmp = std(nonzeros(gm_IEW_t2_regNNLS(:,slice))); \n if isempty(valtmp), stdROI_gm_IEW_t2_regNNLS(slice) = nan; else stdROI_gm_IEW_t2_regNNLS(slice) = valtmp; end\n\n% mROI_gm_MW_t2_regNNLS(slice) = mean(nonzeros(gm_MW_t2_regNNLS(:,slice)));\n% stdROI_gm_MW_t2_regNNLS(slice) = std(nonzeros(gm_MW_t2_regNNLS(:,slice))); \n% disp(fprintf('\\nAverage regMWF over tissue mask (slice %d): %3.2f +/- %3.2f %%', slice, 100*mROI_mwf_regNNLS(slice), 100*stdROI_regNNLS(slice))); \n% disp(fprintf('\\nAverage IE water gm_T2 over tissue mask (slice %d): %3.2f +/- %3.2f ms', slice, mROI_gm_IEW_t2_regNNLS(slice), stdROI_gm_IEW_t2_regNNLS(slice))); \n% disp(fprintf('\\nAverage Myelin water gm_T2 over tissue mask (slice %d): %3.2f +/- %3.2f ms', slice, mROI_gm_MW_t2_regNNLS(slice), stdROI_gm_MW_t2_regNNLS(slice))); \n end\nend\n\n%--------------------------------------------------------------------------", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/src/Models_Functions/MWF/met2_eva/multi_comp_fit_v2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710085, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3708743489707647}} {"text": "function tests = test_ft_preproc_polyremoval\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_preproc_polyremoval\n\nif nargout\n % assume that this is called by RUNTESTS\n tests = functiontests(localfunctions);\nelse\n % assume that this is called from the command line\n fn = localfunctions;\n for i=1:numel(fn)\n feval(fn{i});\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction testOptions(testCase)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnchan = 8;\nnsample = 1000;\ndat = randn(nchan, nsample) + 1;\n\nflag = false;\n\nresult = [];\nresult{end+1} = ft_preproc_polyremoval(dat, 1, 1, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 2, 1, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 3, 1, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 4, 1, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 1, 101, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 2, 101, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 3, 101, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 4, 101, 1000, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 1, 1, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 2, 1, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 3, 1, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 4, 1, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 1, 101, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 2, 101, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 3, 101, 900, flag);\nresult{end+1} = ft_preproc_polyremoval(dat, 4, 101, 900, flag);\n\n% all iterations were done with (slightly) different options, hence the results should not be equal\nfor i=1:numel(result)\n for j=(i+1):numel(result)\n assert(~isequal(result{i}, result{j}), 'the results %d and %d should not be equal', i, j);\n end\nend", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_preproc_polyremoval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.668880247169804, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.37087434165108674}} {"text": "function out = combineCells(x,dim,d)\n%combines a collection of cells either horizontally or vertically,\n%depending on the initial orientation\n\n\n x = x(returnCellLengths(x) > 0);\n\n if isempty(x)\n \n out = [];\n \n else\n \n L = length(x);\n lengths = returnCellLengths(x);\n [~,maxIdx] = max(lengths);\n s = size(x{maxIdx});\n \n if nargin < 2 || isempty(dim)\n dim = argmax(s);\n end\n \n if dim == 1\n \n if nargin < 3 || isempty(d)\n d = s(2);\n end\n lengths = returnCellLengths(x) ./ d;\n s2 = size(lengths);\n if s2(2) > s2(1)\n lengths = lengths';\n end\n cVals = [0; cumsum(lengths)];\n \n out = zeros(cVals(end),d);\n \n for i=1:L\n if ~isempty(x{i})\n out(cVals(i)+1:cVals(i+1),:) = x{i};\n end\n end\n \n else\n \n if nargin < 3 || isempty(d)\n d = s(1);\n end\n lengths = returnCellLengths(x) ./ d;\n s2 = size(lengths);\n if s2(1) > s2(2)\n lengths = lengths';\n end\n cVals = [0 cumsum(lengths)];\n \n \n out = zeros(d,cVals(end));\n \n for i=1:L;\n if ~isempty(x{i})\n out(:,cVals(i)+1:cVals(i+1)) = x{i};\n end\n end\n \n end\n \n end", "meta": {"author": "gordonberman", "repo": "MotionMapper", "sha": "1b7e84931beae780ffd765b850a4a7f7378acace", "save_path": "github-repos/MATLAB/gordonberman-MotionMapper", "path": "github-repos/MATLAB/gordonberman-MotionMapper/MotionMapper-1b7e84931beae780ffd765b850a4a7f7378acace/utilities/combineCells.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.37086742113403764}} {"text": "classdef TestSuperEllipseExponent < handle\n \n properties (Access = private)\n dataFile = 'test_superEllipseExponent'\n m1\n m2\n qD\n q\n end\n \n methods (Access = public)\n \n function obj = TestSuperEllipseExponent()\n obj.loadData();\n obj.computeExponent();\n end\n\n function error = computeError(obj)\n error = norm(obj.qD - obj.q(:))/norm(obj.qD);\n end\n\n end\n \n methods (Access = private)\n \n function loadData(obj)\n d = load(obj.dataFile);\n obj.m1 = d.m1;\n obj.m2 = d.m2;\n obj.qD = d.q;\n end\n \n function computeExponent(obj)\n s.m1 = obj.m1;\n s.m2 = obj.m2;\n o = SmoothingExponentComputerOptimal(s);\n obj.q = o.compute();\n end\n\n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/tests/Source/TopOptTests/TestSuperEllipseExponent.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37068255524007276}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the BEAM-EXAMPLE geometry and prints associated input files\n%\n% PYTHON INDEXING!!!\n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction BeamCurve()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 32; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nNy = 32; % # of Eulerian Grid Pts. in y-Direction (MUST BE EVEN!!!)\nLx = 1.0; % Length of Eulerian Grid in x-Direction\nLy = 1.0; % Length of Eulerian Grid in y-Direction\n\n\n% Immersed Structure Geometric / Dynamic Parameters %\nN = 2*Nx; % Number of Lagrangian Pts. (2x resolution of Eulerian grid)\na = 0.5; % Length of beam (only in x-coordinate)\nstruct_name = 'BeamCurve'; % Name for .vertex, .spring, .beam, .target, etc files.\n\n\n% Call function to construct geometry\n[xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(N,Lx,a);\n\n\n% Plot Geometry to test\nplot(xLag,yLag,'r-'); hold on;\nplot(xLag,yLag,'*'); hold on;\nxlabel('x'); ylabel('y');\naxis square;\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n% Prints .beam file! (TORSIONAL SPRINGS)\n%k_Beam = 7.5e10; C = 0.0;\n%print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name);\n\n% Prints .nonInv_beam file! (NON-INVARIANT))\nk_Beam = 1e10; \nprint_Lagrangian_nonInv_Beams(xLag,yLag,k_Beam,struct_name)\n\n% Prints .target file! \nk_Target = 2e8;\nprint_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints Vertex points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', 2 );\n\n fprintf(target_fid, '%d %1.16e\\n', 1-1, k_Target);\n fprintf(target_fid, '%d %1.16e\\n', N-1, k_Target);\n\n fclose(target_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (NON-INVARIANT) points to a file called rubberband.nonInv_beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_nonInv_Beams(xLag,yLag,k_Beam,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.nonInv_beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e %1.16e\\n',s-1-1, s-1, s+1-1, k_Beam, 0, 0); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e %1.16e\\n',s-1-1, s-1, 1-1, k_Beam, 0, 0); \n end\n end\n fclose(beam_fid); \n \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called rubberband.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, 1, k_Beam, C); \n end\n end\n fclose(beam_fid); \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called rubberband.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name)\n\n N = length(xLag);\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n else\n %Case s=N\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, 1, k_Spring, ds_Rest); \n end\n end\n fclose(spring_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(N,Lx,a)\n\n% The immsersed structure is a curved line %\nds = a/(N-1);\n\nxLag(1) = -a/2;%Lx/2-a/2;\nyLag(1) = 0.0;\nfor i=2:N\n \n xLag(i) = xLag(i-1) + ds;\n x = xLag(i);\n yLag(i) = -2*( (x)^2 - (a/2)^2 );\n\nend\n\nxLag = xLag + Lx/2;\nyLag = yLag + Lx/2;\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/pyIB2d/Examples/Wobbly_NonInv_Beam/BeamCurve.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.37068255524007276}} {"text": "function tests = test_imEuler2dEstimate(varargin)\n% Test function for function imEuler2d\n% output = testImEuler2dEstimate(input)\n%\n% Example\n% testImEuler2dEstimate\n%\n% See also\n%\n\n% ------\n% Author: David Legland\n% e-mail: david.legland@inra.fr\n% Created: 2009-04-22, using Matlab 7.7.0.471 (R2008b)\n% Copyright 2009 INRA - Cepia Software Platform.\n\ntests = functiontests(localfunctions);\n\n\nfunction testSquareInFourImages(testCase)\n\n% create structure that does not touch borders\nimg = false(20, 20);\nimg(5:15, 5:15) = true;\n\n% real EPC of the image\nchi = imEuler2d(img);\n\n% estimate EPC in each image using edge correction\nchi1 = imEuler2dEstimate(img(1:10, 1:10));\nchi2 = imEuler2dEstimate(img(1:10, 10:20));\nchi3 = imEuler2dEstimate(img(10:20, 1:10));\nchi4 = imEuler2dEstimate(img(10:20, 10:20));\n\n% sum of 4 estimates\nchis = chi1 + chi2 + chi3 + chi4;\n\nassertEqual(testCase, chi, chis);\n\n\nfunction testLabels(testCase)\n\n% create a label image with 3 labels\nimg = zeros(10, 10);\nimg(2:3, 2:3) = 3;\nimg(6:8, 2:3) = 5;\nimg(3:5, 5:8) = 9;\nimg(4, 6) = 0;\n\n[chi, labels] = imEuler2dEstimate(img);\n\nassertElementsAlmostEqual(chi, [1 1 0]');\nassertElementsAlmostEqual(labels, [3 5 9]');\n", "meta": {"author": "mattools", "repo": "matImage", "sha": "94d892c7beac0db32daadf2646ce37f58e894caf", "save_path": "github-repos/MATLAB/mattools-matImage", "path": "github-repos/MATLAB/mattools-matImage/matImage-94d892c7beac0db32daadf2646ce37f58e894caf/tests/imMinkowski/test_imEuler2dEstimate.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185351961015, "lm_q2_score": 0.6548947290421275, "lm_q1q2_score": 0.37068255524007276}} {"text": "function [FF,II] = remesh_at_points(V,F,P)\n % REMESH_AT_POINTS Given a surface mesh (V,F) and a list of points on/near the\n % surface P, subdivide triangles of (V,F) so that P are now contained in the\n % vertex set.\n %\n % Inputs:\n % V #V by 3 list of vertex positions\n % F #F by 3 list of face indices into V\n % P #P by 3 list of point positions\n % Outputs:\n % FF #FF by 3 list of face indices into [V;P]\n % II #FF list of indices into F revealing birth face\n %\n % Example:\n % P = random_points_on_mesh(V,F,size(F,1));\n % [FF,II] = remesh_at_points(V,F,P);\n % tsurf(FF,[V;P],'CData',II)\n %\n\n VV = V;\n FF = F;\n II = (1:size(F,1))';\n JJ = zeros(size(V,1),1);\n L = (1:size(P,1))';\n PP = P;\n while true\n %clf;hold on;tsurf(FF,VV,'CData',II);scatter3(PP(:,1),PP(:,2),PP(:,3));hold off;pause\n % Find closest points/faces on mesh (This is a bit redundant. Really we\n % should only look at faces that _were_ affected last round, since those\n % must have had multiple points.)\n [~,IC,C] = point_mesh_squared_distance(PP,VV,FF);\n % Only keep one closest point per face\n [I,J] = unique(IC);\n % append keepers\n n = size(VV,1);\n JJ = [JJ;L(J)];\n VV = [VV;C(J,:)];\n nCI = n+(1:numel(J))';\n unaffected = setdiff(1:size(FF,1),I);\n II = [II(unaffected);repmat(II(I),3,1)];\n FF = [ ...\n FF(unaffected,:);\n FF(I,[1 2]) nCI; ...\n FF(I,[2 3]) nCI; ...\n FF(I,[3 1]) nCI];\n % Leftovers\n L = L(setdiff(1:end,J));\n PP = P(L,:);\n if isempty(PP)\n break;\n end\n end\n\n %% Re-order so that output is simply VV = [V;C]\n %C = zeros(size(P));\n %C(JJ(size(V,1)+1:end),:) = VV(size(V,1)+1:end,:);\n I = JJ+size(V,1);\n I(1:size(V,1)) = 1:size(V,1);\n FF = I(FF);\n %VV = [V;C];\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/remesh_at_points.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947155710233, "lm_q2_score": 0.5660185351961013, "lm_q1q2_score": 0.37068254761517805}} {"text": "function model = rbfOptimise(model, X, Y, display, iters);\n\n% RBFOPTIMISE Optimise RBF for given inputs and outputs.\n\n% MLTOOLS\n\nif nargin < 4\n display = 1;\n if nargin < 5\n iters = 500;\n end\nend\n\noptions = optOptions;\noptions(14) = iters;\noptions(1) = display;\nmodel = netopt(model, options, X, Y, 'scg'); \n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/rbfOptimise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5350984286266116, "lm_q1q2_score": 0.370631643566176}} {"text": "function w = apply_filter(w, PARAMS)\n if ~exist('PARAMS','var')\n PARAMS.filterObj = filterobject('h',0.1,2);\n end\n for c=1:numel(w)\n try\n w(c) = filtfilt(PARAMS.filterObj, w(c));\n end\n end\nend\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/applications/+iceweb/apply_filter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.37063164356617595}} {"text": "function TestXSum(doSpeed)\n% Automatic test: XSum\n% This is a routine for automatic testing. It is not needed for processing and\n% can be deleted or moved to a folder, where it does not bother.\n%\n% TestXSum(doSpeed)\n% INPUT:\n% doSpeed: Optional logical flag to trigger time consuming speed tests.\n% Default: TRUE. If no speed test is defined, this is ignored.\n% OUTPUT:\n% On failure the test stops with an error.\n%\n% Tested: Matlab 6.5, 7.7, 7.8, WinXP\n% Author: Jan Simon, Heidelberg, (C) 2010 matlab.THISYEAR(a)nMINUSsimon.de\n\n% $JRev: R0p V:015 Sum:yqlcwUee8BQZ Date:24-Feb-2010 23:50:29 $\n% $License: BSD (see Docs\\BSD_License.txt) $\n% $File: Published\\XSum\\TestXSum.m $\n\n% Initialize: ==================================================================\nif nargin == 0\n doSpeed = true;\nend\nif doSpeed\n TestTime = 1; % [sec]\nelse\n TestTime = 0.2;\nend\n\n% Hello:\nErrID = ['JSim:', mfilename];\nwhichXSum = which('XSum');\n\ndisp(['==== Test XSum: ', datestr(now, 0), char(10), ...\n 'Version: ', whichXSum, char(10)]);\n\ndisp('Ask XSum for compilation settings: ------');\nId = evalc('XSum');\nfprintf(Id);\ndisp('-----------------------------------------');\n\n% Methods in most likely (depends on compiler) increasing accuracy:\nMethod = {'Double', 'Long', 'Kahan', 'Knuth', 'KnuthLong', 'Knuth2', 'QFloat'};\n\n% I've created a version with 384 bit QFloats also, but this needs the LCC v3.8\n% compiler, which is not completely compatible with Matlab 2009a:\nhasQFloat = any(findstr(lower(Id), 'qfloat: yes'));\nif ~hasQFloat\n Method(strcmpi(Method, 'QFloat'))= [];\nend\n\nhasLongDouble = any(findstr(lower(Id), 'long double: yes'));\nif ~hasLongDouble\n fprintf(['\\n!!! The compiler does not support long doubles !!!\\n', ...\n ' 1. KnuthLong is forwarded to Knuth2.\\n', ...\n ' 2. XSum(A, [], ''LONG'') can be more precise than SUM(A), if ', ...\n 'the compiler \\n accumulates the sum in a 80 bit register, ', ...\n 'e.g. Open Watcom 1.8.\\n']);\n Method(strcmpi(Method, 'KnuthLong'))= [];\nend\n\nnMethod = length(Method);\n\n% Start tests: -----------------------------------------------------------------\n% At first proove that some trivial summing work well:\ndisp([char(10), '== Test small input without rounding errors:']);\ndisp(' This would stop with an error on problems.');\n\nfor iMethod = 1:nMethod\n aMethod = Method{iMethod};\n disp(['-- ', aMethod, ':']);\n \n S = XSum([], [], aMethod);\n if isempty(S)\n disp(' ok: XSum([])');\n else\n error(ErrID, 'XSum([])');\n end\n \n S = XSum([], 1, aMethod);\n if isempty(S)\n disp(' ok: XSum([], 1)');\n else\n error(ErrID, 'XSum([], 1)');\n end\n\n S = XSum([], 2, aMethod);\n if isempty(S)\n disp(' ok: XSum([], 2)');\n else\n error(ErrID, 'XSum([], 2)');\n end\n\n S = XSum(1, [], aMethod);\n if isequal(S, 1)\n disp(' ok: XSum(1)');\n else\n error(ErrID, 'XSum(1)');\n end\n\n S = XSum(1, 1, aMethod);\n if isequal(S, 1)\n disp(' ok: XSum(1, 1)');\n else\n error(ErrID, 'XSum(1, 1)')\n end\n\n S = XSum(1, 2, aMethod);\n if isequal(S, 1)\n disp(' ok: XSum(1, 2)');\n else\n error(ErrID, 'XSum(1, 2)');\n end\n \n S = XSum([1, 1], [], aMethod);\n if isequal(S, 2)\n disp(' ok: XSum([1, 1], [])');\n else\n error(ErrID, 'XSum([1, 1], [])');\n end\n\n S = XSum([1, 1], 1, aMethod);\n if isequal(S, [1, 1])\n disp(' ok: XSum([1, 1], 1)');\n else\n error(ErrID, 'XSum([1, 1], 1)');\n end\n\n S = XSum([1, 1], 2, aMethod);\n if isequal(S, 2)\n disp(' ok: XSum([1, 1], 2)');\n else\n error(ErrID, 'XSum([1, 1], 2)');\n end\n \n S = XSum([1; 1], [], aMethod);\n if isequal(S, 2)\n disp(' ok: XSum([1; 1], [])');\n else\n error(ErrID, 'XSum([1; 1], [])');\n end\n\n S = XSum([1; 1], 1, aMethod);\n if isequal(S, 2)\n disp(' ok: XSum([1; 1], 1)');\n else\n error(ErrID, 'XSum([1; 1], 1)');\n end\n\n S = XSum([1; 1], 2, aMethod);\n if isequal(S, [1; 1])\n disp(' ok: XSum([1; 1], 2)');\n else\n error(ErrID, 'XSum([1; 1], 2)');\n end\n \n S = XSum([1, 1, 1], [], aMethod);\n if isequal(S, 3)\n disp(' ok: XSum([1, 1, 1], [])');\n else\n error(ErrID, 'XSum([1, 1, 1], [])');\n end\n\n S = XSum([1, 1, 1], 1, aMethod);\n if isequal(S, [1, 1, 1])\n disp(' ok: XSum([1, 1, 1], 1)');\n else\n error(ErrID, 'XSum([1, 1, 1], 1)');\n end\n \n S = XSum([1, 1, 1], 2, aMethod);\n if isequal(S, 3)\n disp(' ok: XSum([1, 1, 1], 2)');\n else\n error(ErrID, 'XSum([1, 1, 1], 2)');\n end\n \n S = XSum([1; 1; 1], [], aMethod);\n if isequal(S, 3)\n disp(' ok: XSum([1; 1; 1], [])');\n else\n error(ErrID, 'XSum([1; 1; 1], [])');\n end\n\n S = XSum([1; 1; 1], 1, aMethod);\n if isequal(S, 3)\n disp(' ok: XSum([1; 1; 1], 1)');\n else\n error(ErrID, 'XSum([1; 1; 1], 1)');\n end\n \n S = XSum([1; 1; 1], 2, aMethod);\n if isequal(S, [1; 1; 1])\n disp(' ok: XSum([1; 1; 1], 2)');\n else\n error(ErrID, 'XSum([1; 1; 1], 2)');\n end\n \n S = XSum([1, 2; 3, 4], [], aMethod);\n if isequal(S, [4, 6])\n disp(' ok: XSum([1,2;3,4], [])');\n else\n error(ErrID, 'XSum([1,2;3,4], [])');\n end\n\n S = XSum([1, 2; 3, 4], 1, aMethod);\n if isequal(S, [4, 6])\n disp(' ok: XSum([1,2;3,4], 1)');\n else\n error(ErrID, 'XSum([1,2;3,4], 1)');\n end\n \n S = XSum([1, 2; 3, 4], 2, aMethod);\n if isequal(S, [3; 7])\n disp(' ok: XSum([1,2;3,4], 2)');\n else\n error(ErrID, 'XSum([1,2;3,4], 2)');\n end\n \n X = reshape(1:2*3*5*7, [2, 3, 5, 7]);\n for iDim = 1:4\n Ssum = sum(X, iDim);\n S = XSum(X, iDim, aMethod);\n if isequal(S, Ssum)\n fprintf(' ok: XSum([2 x 3 x 5 x 7], %d)\\n', iDim);\n else\n error(ErrID, ' ok: XSum([2 x 3 x 5 x 7], %d)\\n', iDim);\n end\n end\nend\n\n% Measure error compensation - this cannot be \"tested\", because it is not known,\n% what is \"correct\" or \"wrong\".\ndisp([char(10), '== Test error compensation:']);\ndisp(' Standard truncation error ignores small numbers');\ndisp('-- [10^k, 1, 1, -10^k] = 2 ?');\n\nData = [15:21, 104:106]; % 15:120\nfprintf(' k =');\nfprintf(' %3d', Data);\nfprintf('\\n');\nfor iMethod = 0:nMethod\n switch iMethod\n case 0, aMethod = 'Matlab';\n otherwise, aMethod = Method{iMethod};\n end\n fprintf('%-9s: ', aMethod);\n for iN = Data;\n X = [10^iN, 1, 1, -10^iN];\n switch iMethod\n case 0, S = sum(X, 2);\n otherwise, S = XSum(X, 2, aMethod);\n end\n fprintf('%2g ', S);\n end\n fprintf('\\n');\n drawnow;\nend\n\nfprintf('\\n');\ndisp('-- [10^2k, 1, 10^k, 1, -10^k, 1, -10^2k] = 3 ?');\nData = [7:11, 15:21, 51:54]; % 4:120;\nfprintf(' k =');\nfprintf(' %3d', Data);\nfprintf('\\n');\nfor iMethod = 0:nMethod\n switch iMethod\n case 0, aMethod = 'Matlab';\n otherwise, aMethod = Method{iMethod};\n end\n fprintf('%-9s: ', aMethod);\n for iN = Data;\n X = [10^(2*iN), 1, 10^iN, 1, -10^iN, 1, -10^(2*iN)];\n switch iMethod\n case 0, S = sum(X, 2);\n otherwise, S = XSum(X, 2, aMethod);\n end\n fprintf('%2g ', S);\n end\n fprintf('\\n');\n drawnow;\nend\n\n% ------------------------------------------------------------------------------\nnLoop = 100; % A small averaging\nLen = 1000;\nfprintf('\\n-- Test with random data:\\n')\nfprintf(' X = +-rand(1E3, 1) * 10 .^ rand(1E3, 1) * Exp, exact sum = 0.0\\n');\nfprintf(' Average over absolute results of %d runs:\\n', nLoop);\nfprintf(' Smaller results are better!\\n');\n\ncVector = 6:32;\nif hasQFloat\n cVector = [cVector, 99];\nend\nfprintf(' Exp = ');\nfprintf(' 1E%.2d', cVector);\nfprintf('\\n');\n\nfor iMethod = 0:nMethod\n switch iMethod\n case 0, aMethod = 'Matlab';\n otherwise, aMethod = Method{iMethod};\n end\n fprintf('%-9s: ', aMethod);\n \n for c = cVector\n S = 0;\n for j = 1:nLoop\n X = RandTestData(Len, c);\n switch iMethod\n case 0, S = S + abs(sum(X, 1)) / nLoop;\n otherwise, S = S + abs(XSum(X, 1, aMethod)) / nLoop;\n end\n end\n fprintf('%11.3G', S);\n end\n fprintf('\\n');\n drawnow;\nend\n\n% ------------------------------------------------------------------------------\nfprintf('\\n-- Compare accuracy of results:\\n')\nnLoop = 100; % A small averaging\nif hasQFloat && 0\n c = 120;\nelse\n c = 48; % > 16, e.g. with 48 all outputs have a similar format\nend\n\nfprintf(' X = +-rand(N, 1) * 10 .^ rand(N, 1) * Exp, exact sum = 0.0\\n');\nfprintf(' Average over absolute results of %d runs:\\n', nLoop);\nfprintf(' Smaller results are better!\\n');\n\nfor LenExp = 3:5\n fprintf(' N = 1E%d, Exp = 1E%.2d\\n', LenExp, c);\n Len = 10 ^ LenExp;\n \n TestM = zeros(Len, nLoop);\n for iLoop = 1:nLoop\n TestM(:, iLoop) = RandTestData(Len, c);\n end\n \n for iMethod = -1:nMethod\n switch iMethod\n case -1, aMethod = 'SUM';\n case 0, aMethod = 'SUM(SORT)';\n otherwise, aMethod = Method{iMethod};\n end\n \n S = 0;\n for iLoop = 1:nLoop\n X = TestM(:, iLoop);\n switch iMethod\n case -1, S = S + abs(sum(X, 1)) / nLoop;\n case 0, S = S + abs(sum(sort(X), 1)) / nLoop;\n otherwise, S = S + abs(XSum(X, 1, aMethod)) / nLoop;\n end\n end\n fprintf(' %-9s: %.6G\\n', aMethod, S);\n drawnow;\n end\nend\n\n% RANDN:\nnLoop = 20;\nfprintf(['\\n RANDN: Absolute results, sum estimated by Knuth2, ', ...\n 'average over %d runs:\\n'], nLoop);\nfprintf(' Smaller results are better!\\n');\nfprintf(' 0 must be replied for Knuth2, but even Knuth should be exact.\\n');\n\nfor LenExp = 4:6\n fprintf(' X = RANDN(1, 1E%d):\\n', LenExp);\n Len = 10 ^ LenExp;\n \n MethodSum = zeros(1, nMethod + 2);\n for iLoop = 1:20\n TestM = randn(Len, 1);\n EstimSum = XSum(TestM, 1, 'Knuth2');\n \n for iMethod = -1:nMethod\n switch iMethod\n case -1\n S = abs(sum(TestM, 1) - EstimSum);\n case 0\n S = abs(sum(sort(TestM), 1) - EstimSum);\n otherwise\n aMethod = Method{iMethod};\n S = abs(XSum(TestM, 1, aMethod) - EstimSum);\n end\n MethodSum(iMethod + 2) = MethodSum(iMethod + 2) + S / nLoop;\n end \n end\n \n for iMethod = -1:nMethod\n switch iMethod\n case -1, aMethod = 'SUM';\n case 0, aMethod = 'SUM(SORT)';\n otherwise, aMethod = Method{iMethod};\n end\n fprintf(' %-9s: %.8G\\n', aMethod, MethodSum(iMethod + 2));\n drawnow;\n end\nend\n\n% Speed: -----------------------------------------------------------------------\nfprintf('\\n-- Compare times:\\n');\nLenList = [1E3, 1E4, 1E5, 1E6, 1E7];\n\nfprintf(' SUM(RAND(N, 1)):\\n');\nfprintf(' N =');\nfprintf(' 1E%d', round(log10(LenList)));\nfprintf('\\n');\nTime_SUM = zeros(1, length(LenList));\nfor iMethod = -1:nMethod\n switch iMethod\n case -1, aMethod = 'SUM';\n case 0, aMethod = 'SUM(SORT)';\n otherwise, aMethod = Method{iMethod};\n end\n fprintf('%-9s:', aMethod);\n \n Time_Method = zeros(1, length(LenList));\n \n for iLen = 1:length(LenList)\n Len = LenList(iLen);\n X = rand(Len, 1);\n \n % Get number of loops:\n N = 0;\n iTime = cputime;\n while cputime - iTime < 0.5\n S = sum(X); clear('S');\n N = N + 1;\n end\n nLoop = N / (cputime - iTime); % Loops per second\n nLoop = max(1, ceil(nLoop * TestTime));\n \n switch iMethod\n case -1\n tic;\n for iLoop = 1:nLoop\n S = sum(X); clear('S');\n end\n nPerSec = nLoop / toc;\n Time_SUM(iLen) = nPerSec;\n \n case 0\n tic;\n mLoop = nLoop / 10; % Reduce test time!\n for iLoop = 1:mLoop\n S = sum(sort(X)); clear('S');\n end\n nPerSec = mLoop / toc;\n \n otherwise\n if strcmpi(aMethod, 'qfloat') % QFloat is very slow...\n mLoop = nLoop / 10;\n else\n mLoop = nLoop;\n end\n \n tic;\n for iLoop = 1:mLoop\n S = XSum(X, 1, aMethod); clear('S'); %#ok<*NASGU>\n end\n nPerSec = mLoop / toc;\n end\n Time_Method(iLen) = nPerSec;\n \n PrintLoop(nPerSec);\n end\n fprintf(' loops/sec\\n');\n \n if iMethod ~= -1\n fprintf(' ');\n fprintf('%8.1f', Time_SUM ./ Time_Method);\n fprintf(' time for SUM\\n');\n end\nend\n\n% Goodbye:\nfprintf('\\nXSum seems to work fine.\\n');\n\nreturn;\n\n% ******************************************************************************\nfunction PrintLoop(N)\nif N > 10\n fprintf(' %6.0f', N);\nelse\n fprintf(' %6.1f', N);\nend\n\nreturn;\n\n% ******************************************************************************\nfunction X = RandTestData(n, c)\n% Test vector with exact sum is 0.\n% INPUT: n: Length of output vector, must be even.\n% c: The output has a maximum absolute value of 10^c.\n% OUTPUT: X: Random [1 x n] double vector with exact sum 0.\n%\n% Simple approach: Create random numbers with random exponent and append a copy\n% with opposite sign. Finally the vector is mixed.\n% Data created with this method are definitely not valid to test the SUM over\n% sorted absolute values\n\nm = n / 2;\nX = rand(m, 1) .* 10 .^ ceil(rand(m, 1) * c);\nX = [X; -X];\nX = randmix(X);\n\nreturn;\n\n% ******************************************************************************\nfunction X = randmix(X)\n% Faster RANDPERM, Knuth's shuffle\n% Author: Jan Simon, Heidelberg, (C) 2010 matlab.THISYEAR(a)nMINUSsimon.de\n\nfor i = 1:numel(X)\n w = ceil(rand * i);\n t = X(w);\n X(w) = X(i);\n X(i) = t;\nend\n \nreturn;\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26800-xsum/TestXSum.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5350984137988772, "lm_q2_score": 0.6926419767901475, "lm_q1q2_score": 0.3706316231109267}} {"text": "%% Copyright (C) 2014-2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym cosh (@var{x})\n%% Symbolic cosh function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = cosh (x)\n%% @result{} y = (sym) cosh(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = cosh(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('cosh', x);\nend\n\n\n%!error cosh (sym(1), 2)\n%!assert (isequaln (cosh (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 1;\n%! x = sym('1');\n\n%!test\n%! f1 = cosh(x);\n%! f2 = cosh(d);\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = cosh(A);\n%! f2 = cosh(D);\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = cosh (d);\n%! f = cosh (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/cosh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.37060908446005264}} {"text": "% This function add a full matrix with a sparse matrix\n\n\nfunction out = AddSpMatMat(w1,spMat, w2, Mat, sp_elements_only)\n[m,n] = size(spMat);\n\nif w1==-1\n spMat = -spMat;\nelseif w1~=1\n spMat = spMat * w1;\nend\nif w2==-1\n Mat = -Mat;\nelseif w2~=1\n Mat = Mat * w2;\nend\n\nout = Mat;\nif 0\n idx = find(spMat);\n out(idx) = double(out(idx)) + spMat(idx);\nelseif 1\n if m0);\n out(:,non_zero_col) = out(:,non_zero_col) + full(spMat(:,non_zero_col));\n else\n non_zero_row = find(sum(abs(spMat),2)>0);\n out(non_zero_row,:) = out(non_zero_row,:) + full(spMat(non_zero_row,:));\n end\nelse\n out = full(spMat) + Mat;\nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/AddSpMatMat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.37060907636207724}} {"text": "function out = interp3wrapper(x,y,z,v,xi,yi,zi,method,exterpval,limitelem)\n%\n% out = interp3wrapper(x,y,z,v,xi,yi,zi,method,exterpval,limitelem)\n%\ndim = size(xi);\nt = prod(dim);\n\nif ndims(x) == 3\n\t% We don't need x y z to be a whole 3D matrix\n\tx = squeeze(x(1,:,1));\n\ty = squeeze(y(:,1,1));\n\tz = squeeze(z(1,1,:));\nend\n\n\nif( ~exist('limitelem','var') || isempty(limitelem) )\n\tlimitelem = 200*200*50;\nend\n\nif t <= limitelem || ndims(xi) == 2 \n\tif exist('exterpval','var') && ~isempty(exterpval) \n\t\tout = interp3(x,y,z,v,xi,yi,zi,method,exterpval);\n\telse\n\t\tout = interp3(x,y,z,v,xi,yi,zi,method);\n\tend\n\treturn;\nend\n\nN = ceil( t / limitelem );\nspacing = max(floor(dim(3)/N),2);\nN = ceil(dim(3)/spacing);\n\n%fprintf('Interp3wrapper ');\nfor k = 1:N\n\t%fprintf('.');\n\tzmin = (k-1)*spacing+1;\n\tzmax = min(dim(3),k*spacing);\n\t\n\tzmin2 = min(min(min(zi(:,:,zmin:zmax))));\n\tzmax2 = max(max(max(zi(:,:,zmin:zmax))));\n\tzminidx = find(zzmax2,1,'first'); \n\tif isempty(zmaxidx)\n\t\tzmaxidx = length(z);\n\tend\n\tif zmaxidx == zminidx\n\t\tif zmaxidx >= length(z)\n\t\t\tzminidx = zminidx-1;\n\t\telse\n\t\t\tzmaxidx = zmaxidx+1;\n\t\tend\n\tend\n\t\n\txmin2 = min(min(min(xi(:,:,zmin:zmax))));\n\txmax2 = max(max(max(xi(:,:,zmin:zmax))));\n\txminidx = find(xxmax2,1,'first'); \n\tif isempty(xmaxidx)\n\t\txmaxidx = length(x);\n\tend\n\t\n\tymin2 = min(min(min(yi(:,:,zmin:zmax))));\n\tymax2 = max(max(max(yi(:,:,zmin:zmax))));\n\tyminidx = find(yymax2,1,'first'); \n\tif isempty(ymaxidx)\n\t\tymaxidx = length(y);\n\tend\n\t\n\tif exist('exterpval','var') && ~isempty(exterpval) \n\t\tout(:,:,zmin:zmax) = interp3(x(xminidx:xmaxidx),y(yminidx:ymaxidx),z(zminidx:zmaxidx),v(yminidx:ymaxidx,xminidx:xmaxidx,zminidx:zmaxidx),xi(:,:,zmin:zmax),yi(:,:,zmin:zmax),zi(:,:,zmin:zmax),method,exterpval);\n\telse\n\t\tout(:,:,zmin:zmax) = interp3(x(xminidx:xmaxidx),y(yminidx:ymaxidx),z(zminidx:zmaxidx),v(yminidx:ymaxidx,xminidx:xmaxidx,zminidx:zmaxidx),xi(:,:,zmin:zmax),yi(:,:,zmin:zmax),zi(:,:,zmin:zmax),method);\n\tend\nend\n%fprintf('\\n');\n\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/ImageRegistration/OpticalFlow/interp3wrapper.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102498375401, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3706090682641017}} {"text": "\nfunction [ph_uw,msd]=uw_unwrap_from_grid(xy,pix_size)\n%UW_UNWRAP_FROM_GRID unwrap PS from unwrapped gridded ifgs \n%\n% Andy Hooper, June 2007\n%\n% ============================================================\n% 03/2012 AH: Allow for all zero wrapped phase values\n% 03/2012 AH: Allow for non-complex wrapped phase\n% ============================================================\n\nfprintf('Unwrapping from grid...\\n')\n\nuw=load('uw_grid','nzix','n_ps','grid_ij','ph_in','ph_in_predef');\nuu=load('uw_phaseuw');\n\n[n_ps,n_ifg]=size(uw.ph_in);\ngridix=zeros(size(uw.nzix));\ngridix(uw.nzix)=[1:uw.n_ps];\n \nph_uw=zeros(n_ps,n_ifg,'single');\n\nfor i=1:n_ps\n ix=gridix(uw.grid_ij(i,1),uw.grid_ij(i,2));\n if ix==0\n ph_uw(i,:)=nan; % wrapped phase values were zero\n else\n ph_uw_pix=uu.ph_uw(ix,:);\n if isreal(uw.ph_in)\n ph_uw(i,:)=ph_uw_pix+angle(exp(1i*(uw.ph_in(i,:)-ph_uw_pix)));\n else\n ph_uw(i,:)=ph_uw_pix+angle(uw.ph_in(i,:).*exp(-1i*ph_uw_pix));\n end\n end\nend\n\nif ~isempty(uw.ph_in_predef)\n predef_ix=~isnan(uw.ph_in_predef);\n meandiff=nanmean(ph_uw-uw.ph_in_predef);\n meandiff=2*pi*round(meandiff/2/pi);\n uw.ph_in_predef=uw.ph_in_predef+repmat(meandiff,n_ps,1);\n ph_uw(predef_ix)=uw.ph_in_predef(predef_ix);\nend\n\nmsd=uu.msd;\n", "meta": {"author": "dbekaert", "repo": "StaMPS", "sha": "c159eb81b16c446e0e8fdef7dd435eb22e0240ed", "save_path": "github-repos/MATLAB/dbekaert-StaMPS", "path": "github-repos/MATLAB/dbekaert-StaMPS/StaMPS-c159eb81b16c446e0e8fdef7dd435eb22e0240ed/matlab/uw_unwrap_from_grid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3705442184703919}} {"text": "function x = bt3(p, adata)\n n=5;\n\n t1=p(1)-p(2);\n t2=p(2)+p(3)-2.0;\n t3=p(4)-1.0;\n t4=p(5)-1.0;\n\n for i=1:n\n x(i)=t1*t1 + t2*t2 + t3*t3 + t4*t4;\n end\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/ThirdPartyToolbox/OptiToolbox/Solvers/levmar/distribution/bt3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185944046238981, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.37052158635120497}} {"text": "function [J, flag, new_data] = jacobianFunction(~, x, ~, ~, cj, data)\n%\tjacobianFunction is used to evaluate the Jacobian Matrix of the P2D model\n%\taccording to the specifications of the IDA numerical solver. Please refer\n%\tto the IDS user's guide for additional information on this function\n\n% This file is part of the LIONSIMBA Toolbox\n%\n%\tOfficial web-site: \thttp://sisdin.unipv.it/labsisdin/lionsimba.php\n% \tOfficial GitHUB: \thttps://github.com/lionsimbatoolbox/LIONSIMBA\n%\n% LIONSIMBA: A Matlab framework based on a finite volume model suitable for Li-ion battery design, simulation, and control\n% Copyright (C) 2016-2018 :Marcello Torchio, Lalo Magni, Davide Raimondo,\n% University of Pavia, 27100, Pavia, Italy\n% Bhushan Gopaluni, Univ. of British Columbia, \n% Vancouver, BC V6T 1Z3, Canada\n% Richard D. Braatz, \n% Massachusetts Institute of Technology, \n% Cambridge, Massachusetts 02142, USA\n% \n% Main code contributors to LIONSIMBA 2.0:\n% Ian Campbell, Krishnakumar Gopalakrishnan,\n% Imperial college London, London, UK\n%\n% LIONSIMBA is a free Matlab-based software distributed with an MIT\n% license.\n\n% Extract the function object previously obtained using CasADi\nfJ = data.fJ;\n\n% Evaluate the Jacobian with respect to the current values of the states\n% and their time derivatives.\nJ = full(fJ(x,cj));\n\n% Return the values\nflag = 0;\nnew_data = [];\nend", "meta": {"author": "lionsimbatoolbox", "repo": "LIONSIMBA", "sha": "d1cf29a4dcfa8e7824fc2416ac3e6ec760bb9b66", "save_path": "github-repos/MATLAB/lionsimbatoolbox-LIONSIMBA", "path": "github-repos/MATLAB/lionsimbatoolbox-LIONSIMBA/LIONSIMBA-d1cf29a4dcfa8e7824fc2416ac3e6ec760bb9b66/battery_model_files/simulator_tools/jacobianFunction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185944046238982, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.37052158635120497}} {"text": "classdef prtClassCorrelation < prtClass\n % prtClassCorrelation Correlation classifier\n %\n % CLASSIFIER = prtClassCorrelation returns a correlation classifier\n %\n % CLASSIFIER = prtClassCorrelation(PROPERTY1, VALUE1, ...)\n % constructs a prtClassCorrelation object CLASSIFIER with properties\n % as specified by PROPERTY/VALUE pairs.\n %\n % A prtClassCorrelation object inherits all properties from the\n % abstract class prtClass. \n %\n % A prtClassCorrelation object inherits the TRAIN, RUN,\n % CROSSVALIDATE and KFOLDS methods from prtAction. It also inherits\n % the PLOT method from prtClass.\n %\n % Example:\n %\n % TestDataSet = prtDataGenUnimodal; % Create some test and \n % TrainingDataSet = prtDataGenUnimodal; % training data\n % classifier = prtClassCorrelation; % Create a classifier\n % classifier = classifier.train(TrainingDataSet); % Train\n % classified = run(classifier, TestDataSet); % Test\n % subplot(2,1,1);\n % classifier.plot;\n % subplot(2,1,2);\n % [pf,pd] = prtScoreRoc(classified,TestDataSet);\n % h = plot(pf,pd,'linewidth',3);\n % title('ROC'); xlabel('Pf'); ylabel('Pd');\n %\n % See also prtClass, prtClassLogisticDiscriminant, prtClassBagging,\n % prtClassMap, prtClassCap, prtClassBinaryToMaryOneVsAll, prtClassDlrt,\n % prtClassKnn, prtClassFld, prtClassRvm, prtClassGlrt, prtClass\n\n\n\n\n\n\n\n properties (SetAccess=private)\n name = 'Correlation Classifier'\n nameAbbreviation = 'CORR'\n isNativeMary = true;\n end\n \n properties\n useMeanLibrary = false;\n end\n properties (SetAccess=protected)\n xMeans\n \n end\n \n methods\n function Obj = prtClassCorrelation(varargin)\n Obj = prtUtilAssignStringValuePairs(Obj,varargin{:});\n end\n end\n \n methods (Access=protected, Hidden = true)\n function Obj = preTrainProcessing(Obj,DataSet)\n if ~Obj.verboseStorage\n warning('prtClassKnn:verboseStorage:false','prtClassKnn requires verboseStorage to be true; overriding manual settings');\n end\n Obj.verboseStorage = true;\n Obj = preTrainProcessing@prtClass(Obj,DataSet);\n end\n \n function Obj = trainAction(Obj,DataSet)\n \n Obj.xMeans = mean(DataSet.getObservations);\n \n end\n \n function DataSet = runAction(Obj,DataSet)\n \n X = DataSet.X;\n X = bsxfun(@minus,X,Obj.xMeans);\n isOneDimension = (size(X,2) == 1);\n \n Yout = zeros(size(X,1),Obj.dataSetSummary.nClasses);\n\n for iClass = 1:Obj.dataSetSummary.nClasses\n if Obj.useMeanLibrary\n cTrainingX = mean(Obj.dataSet.getObservationsByClassInd(iClass),1);\n else\n cTrainingX = Obj.dataSet.getObservationsByClassInd(iClass);\n end\n \n cTrainingX = bsxfun(@minus, cTrainingX, Obj.xMeans);\n \n if isOneDimension\n cCorrMat = cTrainingX *X';\n else\n cCorrMat = cTrainingX *X'./((sum(cTrainingX .^2,2).^.5)*(sum(X.^2,2).^.5)');\n end\n \n Yout(:,iClass) = max(cCorrMat,[],1);\n end\n \n \n Yout = (Yout+1)/2; % Make things be between 0 and 1;\n Yout(Yout>1) = 1;\n Yout(Yout<0) = 0;\n\n DataSet = DataSet.setObservations(Yout);\n end\n\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/class/prtClassCorrelation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.37045570743528744}} {"text": "% =========================================================================\n% *** FUNCTION ACID\n% ***\n% *** MATLAB2TikZ ACID test functions\n% ***\n% =========================================================================\nfunction [status] = ACID(k)\n\n % assign the functions to test\n testfunction_handles = { ...\n @multiline_labels , ...\n @plain_cos , ...\n @sine_with_markers , ...\n @markerSizes , ...\n @markerSizes2 , ...\n @sine_with_annotation, ...\n @linesWithOutliers , ...\n @peaks_contour , ...\n @contourPenny , ...\n @peaks_contourf , ...\n @many_random_points , ...\n @double_colorbar , ...\n @randomWithLines , ...\n @double_axes , ...\n @double_axes2 , ...\n @logplot , ...\n @colorbarLogplot , ...\n @legendplot , ...\n @legendplotBoxoff , ...\n @plotyyLegends , ...\n @zoom , ...\n @quiveroverlap , ...\n @quiverplot , ...\n @quiver3plot , ...\n @logicalImage , ...\n @imagescplot , ...\n @imagescplot2 , ...\n @stairsplot , ...\n @polarplot , ...\n @roseplot , ...\n @compassplot , ...\n @stemplot , ...\n @stemplot2 , ...\n @bars , ...\n @xAxisReversed , ...\n @errorBars , ...\n @errorBars2 , ...\n @subplot2x2b , ...\n @manualAlignment , ...\n @subplotCustom , ...\n @legendsubplots , ...\n @bodeplots , ...\n @rlocusPlot , ...\n @mandrillImage , ...\n @besselImage , ...\n @clownImage , ...\n @zplanePlot1 , ...\n @zplanePlot2 , ...\n @freqResponsePlot , ...\n @axesLocation , ...\n @axesColors , ...\n @multipleAxes , ...\n @scatterPlotRandom , ...\n @scatterPlot , ...\n @scatter3Plot , ...\n @spherePlot , ...\n @surfPlot , ...\n @surfPlot2 , ...\n @superkohle , ...\n @meshPlot , ...\n @ylabels , ...\n @spectro , ... % takes pretty long to LuaLaTeX-compile\n @mixedBarLine , ...\n @decayingharmonic , ...\n @texcolor , ...\n @textext , ...\n @texrandom , ...\n @latexInterpreter , ...\n @latexmath2 , ...\n @parameterCurve3d , ...\n @parameterSurf , ...\n @fill3plot , ...\n @rectanglePlot , ...\n @herrorbarPlot , ...\n @hist3d , ...\n @myBoxplot , ...\n @areaPlot , ...\n @customLegend , ...\n @pixelLegend , ...\n @croppedImage , ...\n @pColorPlot , ...\n @hgTransformPlot , ...\n @scatterPlotMarkers , ...\n @multiplePatches , ...\n @logbaseline , ...\n @alphaImage , ...\n @annotationAll , ...\n @annotationSubplots , ...\n @annotationText , ...\n @annotationTextUnits , ...\n @imageOrientation_PNG, ...\n @imageOrientation_inline, ...\n @texInterpreter , ...\n @stackedBarsWithOther, ...\n @colorbarLabelTitle , ...\n @textAlignment , ...\n @overlappingPlots , ...\n @histogramPlot , ...\n @alphaTest , ...\n @removeOutsideMarker , ...\n @colorbars , ...\n @colorbarManualLocationRightOut , ...\n @colorbarManualLocationRightIn , ...\n @colorbarManualLocationLeftOut , ...\n @colorbarManualLocationLeftIn\n };\n\n\n numFunctions = length( testfunction_handles );\n\n if (k<=0)\n status = testfunction_handles;\n return; % This is used for querying numFunctions.\n\n elseif (k<=numFunctions)\n status = testfunction_handles{k}();\n status.function = func2str(testfunction_handles{k});\n\n else\n error('testfunctions:outOfBounds', ...\n 'Out of bounds (number of testfunctions=%d)', numFunctions);\n end\n\nend\n% =========================================================================\nfunction data = ACID_data()\n % Data to be used for various ACID tests\n % This ensures the tests don't rely on functions that yield\n % non-deterministic output, e.g. `rand` and `svd`.\n data = [ 11 11 9\n 7 13 11\n 14 17 20\n 11 13 9\n 43 51 69\n 38 46 76\n 61 132 186\n 75 135 180\n 38 88 115\n 28 36 55\n 12 12 14\n 18 27 30\n 18 19 29\n 17 15 18\n 19 36 48\n 32 47 10\n 42 65 92\n 57 66 151\n 44 55 90\n 114 145 257\n 35 58 68\n 11 12 15\n 13 9 15\n 10 9 7];\nend\n% =========================================================================\nfunction [stat] = multiline_labels()\n stat.description = 'Test multiline labels and plot some points.';\n stat.unreliable = isOctave || isMATLAB(); %FIXME: `width` is inconsistent, see #552\n\n m = [0 1 1.5 1 -1];\n plot(m,'*-'); hold on;\n plot(m(end:-1:1)-0.5,'x--');\n\n title({'multline','title'});\n legend({sprintf('multi-line legends\\ndo work 2^2=4'), ...\n sprintf('second\\nplot')});\n xlabel(sprintf('one\\ntwo\\nthree'));\n ylabel({'one','\u00b0 \u221e', 'three'});\n\n set(gca,'YTick', []);\n set(gca,'XTickLabel',{});\nend\n% =========================================================================\nfunction [stat] = plain_cos()\n stat.description = 'Plain cosine function.';\n\n t = linspace(0, 2*pi, 1e5);\n x = cos(t);\n\n % Explicitely cut the line into segments\n x([2e4, 5e4, 8e4]) = NaN;\n\n % Plot the cosine\n plot(t, x);\n xlim([0, 2*pi]);\n\n % also add some patches to test their border color reproduction\n hold on;\n h(1) = fill(pi*[1/4 1/4 1/2 1/2] , [-2 1 1 -2], 'y');\n h(2) = fill(pi*[1/4 1/4 1/2 1/2]+pi, -[-2 1 1 -2], 'y');\n\n set(h(1), 'EdgeColor', 'none', 'FaceColor', 0.8*[1 1 1]);\n set(h(2), 'EdgeColor', 'k', 'FaceColor', 0.5*[1 1 1]);\n\n if isMATLAB\n uistack(h, 'bottom'); % patches below the line plot\n % this is not supported in Octave\n end\n\n % add some minor ticks\n set(gca, 'XMinorTick', 'on');\n set(gca, 'YTick', []);\n\n % Adjust the aspect ratio when in MATLAB(R) or Octave >= 3.4.\n if isOctave('<=', [3,4])\n % Octave < 3.4 doesn't have daspect unfortunately.\n else\n daspect([ 1 2 1 ])\n end\nend\n% =========================================================================\nfunction [stat] = sine_with_markers ()\n % Standard example plot from MATLAB's help pages.\n stat.description = [ 'Twisted plot of the sine function. ' ,...\n 'Pay particular attention to how markers and Infs/NaNs are treated.' ];\n\n x = -pi:pi/10:pi;\n y = sin(x);\n y(3) = NaN;\n y(7) = Inf;\n y(11) = -Inf;\n plot(x,y,'--o', 'Color', [0.6,0.2,0.0], ...\n 'LineWidth', 1*360/127,...\n 'MarkerEdgeColor','k',...\n 'MarkerFaceColor',[0.3,0.1,0.0],...\n 'MarkerSize', 5*360/127 );\n\n set( gca, 'Color', [0.9 0.9 1], ...\n 'XTickLabel', [], ...\n 'YTickLabel', [] ...\n );\n\n set(gca,'XTick',[0]);\n set(gca,'XTickLabel',{'null'});\nend\n% =========================================================================\nfunction [stat] = markerSizes()\n stat.description = 'Marker sizes.';\n\n hold on;\n\n h = fill([1 1 2 2],[1 2 2 1],'r');\n set(h,'LineWidth',10);\n\n plot([0],[0],'go','Markersize',14,'LineWidth',10)\n plot([0],[0],'bo','Markersize',14,'LineWidth',1)\nend\n% =========================================================================\nfunction [stat] = markerSizes2()\n stat.description = 'Line plot with with different marker sizes.';\n\n hold on;\n grid on;\n\n n = 1:10;\n d = 10;\n s = round(linspace(6,25,10));\n e = d * ones(size(n));\n style = {'bx','rd','go','c.','m+','y*','bs','mv','k^','r<','g>','cp','bh'};\n nStyles = numel(style);\n\n for ii = 1:nStyles\n for jj = 1:10\n plot(n(jj), ii * e(jj),style{ii},'MarkerSize',s(jj));\n end\n end\n xlim([min(n)-1 max(n)+1]);\n ylim([0 d*(nStyles+1)]);\n set(gca,'XTick',n,'XTickLabel',s,'XTickLabelMode','manual');\nend\n% =========================================================================\nfunction [stat] = sine_with_annotation ()\n stat.description = [ 'Plot of the sine function. ',...\n 'Pay particular attention to how titles and annotations are treated.' ];\n stat.unreliable = isOctave || isMATLAB('>=',[8,4]) ... %FIXME: investigate\n || isMATLAB('<=', [8,3]); %FIXME: broken since decd496 (mac vs linux)\n\n x = -pi:.1:pi; %TODO: the 0.1 step is probably a bad idea (not representable in float)\n y = sin(x);\n h = plot(x,y);\n set(gca,'XTick',-pi:pi/2:pi);\n\n set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'});\n\n xlabel('-\\pi \\leq \\Theta \\leq \\pi');\n ylabel('sin(\\Theta)');\n title({'Plot of sin(\\Theta)','subtitle','and here''s one really long subtitle' });\n text(-pi/4,sin(-pi/4),'\\leftarrow sin(-\\pi\\div4)',...\n 'HorizontalAlignment','left');\n\n % Doesn't work in Octave\n %set(findobj(gca,'Type','line','Color',[0 0 1]),...\n % 'Color','red',...\n % 'LineWidth',10);\n\nend\n% =========================================================================\nfunction [stat] = linesWithOutliers()\n stat.description = 'Lines with outliers.';\n stat.issues = [392,400];\n\n far = 200;\n x = [ -far, -1, -1, -far, -10, -0.5, 0.5, 10, far, 1, 1, far, 10, 0.5, -0.5, -10, -far ];\n y = [ -10, -0.5, 0.5, 10, far, 1, 1, far, 10, 0.5, -0.5, -10, -far, -1, -1, -far, -0.5 ];\n plot( x, y,'o-');\n axis( [-2,2,-2,2] );\nend\n% =========================================================================\nfunction [stat] = peaks_contour()\n stat.description = 'Test contour plots.';\n stat.unreliable = isMATLAB('<', [8,4]) || isOctave; %R2014a and older\n % FIXME: see #604; contour() produces inconsistent output\n\n subplot(121)\n [C, h] = contour(peaks(20),10);\n clabel(C, h);\n\n % remove y-ticks\n set(gca,'YTickLabel',[]);\n set(gca,'YTick',[]);\n\n colormap winter;\n\n % Contour layers with predefined color\n subplot(122)\n contour(peaks(20), 10,'r', 'LineWidth', 5)\n set(gca,'YTickLabel',[]);\n set(gca,'YTick',[]);\nend\n% =========================================================================\nfunction [stat] = contourPenny()\n stat.description = 'Contour plot of a US\\$ Penny.';\n stat.unreliable = isMATLAB('<', [8,4]);\n % FIXME: see #604; contour() produces inconsistent output (mac/windows of PeterPablo)\n stat.issues = [49 404];\n\n if ~exist('penny.mat','file')\n fprintf( 'penny data set not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n load penny;\n contour(flipud(P));\n axis square;\n\nend\n% =========================================================================\nfunction [stat] = peaks_contourf ()\n stat.description = 'Test the contourfill plots.';\n stat.unreliable = isMATLAB('>=', [8,4]); % FIXME: inspect this\n stat.issues = 582;\n\n [trash, h] = contourf(peaks(20), 10);\n hold on\n plot(1:20)\n colorbar();\n legend(h, 'Contour');\n colormap hsv;\nend\n% =========================================================================\nfunction [stat] = double_colorbar()\n stat.description = 'Double colorbar.';\n\n if isOctave()\n fprintf( 'Octave can''t handle tight axes.\\n\\n' );\n stat.skip = true;\n return\n end\n\n vspace = linspace(-40,40,20);\n speed_map = magic(20).';\n Q1_map = magic(20);\n\n subplot(1, 2, 1);\n contour(vspace(9:17),vspace(9:17),speed_map(9:17,9:17),20)\n colorbar\n axis tight\n axis square\n xlabel('$v_{2d}$')\n ylabel('$v_{2q}$')\n\n subplot(1, 2, 2)\n contour(vspace(9:17),vspace(9:17),Q1_map(9:17,9:17),20)\n colorbar\n axis tight\n axis square\n xlabel('$v_{2d}$')\n ylabel('$v_{2q}$')\nend\n% =========================================================================\nfunction [stat] = randomWithLines()\n stat.description = 'Lissajous points with lines.';\n\n beta = 42.42;\n t = 1:150;\n X = [sin(t); cos(beta * t)].';\n\n X(:,1) = (X(:,1) * 90) + 75;\n plot(X(:,1),X(:,2),'o');\n hold on;\n M(1)=min(X(:,1));\n M(2)=max(X(:,1));\n mn = mean(X(:,2));\n s = std(X(:,2));\n plot(M,[mean(X(:,2)) mean(X(:,2))],'k-');\n plot(M,mn + 1*[s s],'--');\n plot(M,mn - 2*[s s],'--');\n axis('tight');\nend\n% =========================================================================\nfunction [stat] = many_random_points ()\n stat.description = 'Test the performance when drawing many points.';\n\n n = 1e3;\n alpha = 1024;\n beta = 1;\n gamma = 5.47;\n\n x = cos( (1:n) * alpha );\n y = sin( (1:n) * beta + gamma);\n\n plot ( x, y, '.r' );\n axis([ 0, 1, 0, 1 ])\nend\n% =========================================================================\nfunction [stat] = double_axes()\n stat.description = 'Double axes';\n\n dyb = 0.1; % normalized units, bottom offset\n dyt = 0.1; % separation between subsequent axes bottoms\n\n x = [0; 24; 48; 72; 96;];\n y = [7.653 7.473 7.637 7.652 7.651];\n\n grid on\n h1 = plot(x,y,'Color','k');\n\n % following code is taken from `floatAxisX.m'\n\n % get position of axes\n allAxes = findobj(gcf,'type','axes');\n naxes = length(allAxes);\n ax1Pos = get(allAxes(naxes),'position');\n\n % rescale and reposition all axes to handle additional axes\n for an=1:naxes-1\n if isequal(rem(an,2),0)\n % even ones in array of axes handles represent axes on which lines are plotted\n set(allAxes(an),'Position',[ax1Pos(1,1) ax1Pos(1,2)+dyb ax1Pos(1,3) ax1Pos(1,4)-dyt])\n else\n % odd ones in array of axes handles represent axes on which floating x-axss exist\n axPos = get(allAxes(an),'Position');\n set(allAxes(an),'Position',[axPos(1,1) axPos(1,2)+dyb axPos(1,3) axPos(1,4)])\n end\n end\n % first axis a special case (doesn't fall into even/odd scenario of figure children)\n set(allAxes(naxes),'Position',[ax1Pos(1,1) ax1Pos(1,2)+dyb ax1Pos(1,3) ax1Pos(1,4)-dyt])\n ylimit1 = get(allAxes(naxes),'Ylim');\n\n % get new position for plotting area of figure\n ax1Pos = get(allAxes(naxes),'position');\n\n % axis to which the floating axes will be referenced\n ref_axis = allAxes(1);\n refPosition = get(ref_axis,'position');\n\n % overlay new axes on the existing one\n ax2 = axes('Position',ax1Pos);\n % plot data and return handle for the line\n hl1 = plot(x,y,'k');\n % make the new axes invisible, leaving only the line visible\n set(ax2,'visible','off','ylim',ylimit1)\n\n % set the axis limit mode so that it does not change if the\n % user resizes the figure window\n set(ax2,'xLimMode','manual')\n\n % set up another set of axes to act as floater\n ax3 = axes('Position',[refPosition(1) refPosition(2)-dyb refPosition(3) 0.01]);\n\n set(ax3,'box','off','ycolor','w','yticklabel',[],'ytick',[])\n set(ax3,'XMinorTick','on','color','none','xcolor',get(hl1,'color'))\n\n xlabel('secondary axis')\nend\n% =========================================================================\nfunction [stat] = double_axes2()\n stat.description = 'Double overlayed axes with a flip.' ;\n\n ah1=axes;\n ph=plot([0 1],[0 1]);\n\n title('Title')\n ylabel('y')\n xlabel('x')\n\n % add a new set of axes\n % to make a gray grid\n ah2=axes;\n % make the background transparent\n set(ah1,'color','none')\n % move these axes to the back\n set(gcf,'Children',flipud(get(gcf,'Children')))\nend\n% =========================================================================\nfunction [stat] = logplot()\n stat.description = 'Test logscaled axes.';\n % This was once unreliable (and linked to #590). Mac and Linux seem fine.\n\n x = logspace(-1,2);\n y = exp(x);\n loglog(x, y, '-s')\n\n ylim([1 1e45]);\n grid on;\n if isprop(gca,'GridColor')\n set(gca, 'GridColor', 'red');\n set(gca, 'MinorGridColor', 'blue');\n else\n %TODO equivalent HG1 settings (if those exist)\n end\nend\n% =========================================================================\nfunction [stat] = colorbarLogplot()\n stat.description = 'Logscaled colorbar.';\n stat.unreliable = isOctave; % FIXME: investigate (Travis differs from Linux/Mac octave)\n % https://github.com/matlab2tikz/matlab2tikz/pull/641#issuecomment-120481564\n\n imagesc([1 10 100]);\n try\n set(colorbar(), 'YScale', 'log');\n catch\n warning('M2TAcid:LogColorBar',...\n 'Logarithmic Colorbars are not documented in MATLAB R2014b and Octave');\n stat.skip = true;\n end\nend\n% =========================================================================\nfunction [stat] = legendplot()\n stat.description = 'Test inserting of legends.';\n stat.unreliable = isMATLAB || isOctave; % FIXME: investigate\n\n% x = -pi:pi/20:pi;\n% plot(x,cos(x),'-ro',x,sin(x),'-.b');\n% h = legend('one pretty long legend cos_x','sin_x',2);\n% set(h,'Interpreter','none');\n\n x = linspace(0, 2*pi, 1e5);\n plot( x, sin(x), 'b', ...\n x, cos(x), 'r' );\n xlim( [0 2*pi] )\n ylim( [-0.9 0.9] )\n title( '{tikz test}' )\n xlabel( '{x-Values}' )\n ylabel( '{y-Values}' )\n legend( 'sin(x)', 'cos(x)', 'Location','NorthOutside', ...\n 'Orientation', 'Horizontal' );\n grid on;\nend\n% =========================================================================\nfunction [stat] = legendplotBoxoff ()\n stat.description = 'Test inserting of legends.';\n stat.issues = [607,609];\n\n x = -pi:pi/20:pi;\n l = plot(x, cos(x),'-ro',...\n x, sin(x),'-.b');\n h = legend(l(2), 'one pretty long legend sin_x (dash-dot)', 'Location', 'northeast');\n set(h, 'Interpreter', 'none');\n legend boxoff\nend\n% =========================================================================\nfunction [stat] = plotyyLegends()\n stat.description = 'More legends.';\n\n x = 0:.1:7;\n y1 = sin(x);\n y2 = cos(x);\n [ax,h1,h2] = plotyy(x,y1,x,y2);\n legend([h1;h2],'Sine','Cosine');\nend\n% =========================================================================\nfunction [stat] = zoom()\n stat.description = ['Test function \\texttt{pruneOutsideBox()} ', ...\n 'and \\texttt{movePointsCloser()} ', ...\n 'of \\texttt{cleanfigure()}.'];\n stat.unreliable = isOctave; %FIXME: investigate\n stat.issues = [226,392,400];\n\n % Setup\n subplot(311)\n plot(1:10,10:-1:1,'-r*',1:15,repmat(9,1,15),'-g*',[5.5,5.5],[1,9],'-b*')\n hold on;\n stairs(1:10,'-m*');\n plot([2,8.5,8.5,2,2],[2,2,7.5,7.5,2],'--k');\n title('setup');\n legend('cross with points','no cross','cross no points','stairs','zoom area');\n\n % Last comes before simple zoomin due to cleanfigure\n subplot(313)\n plot(1:10,10:-1:1,'-r*',1:10,repmat(9,1,10),'-g*',[5.5,5.5],[1,9],'-b*');\n hold on;\n stairs(1:10,'-m*');\n xlim([2, 8.5]), ylim([2,7.5]);\n cleanfigure(); % FIXME: this generates many \"division by zero\" in Octave\n plot([2,8.5,8.5,2,2],[2,2,7.5,7.5,2],'--k');\n xlim([0, 15]), ylim([0,10]);\n title('zoom in, cleanfigure, zoom out');\n\n % Simple zoom in\n subplot(312)\n plot(1:10,10:-1:1,'-r*',1:10,repmat(9,1,10),'-g*',[5.5,5.5],[1,9],'-b*');\n hold on;\n stairs(1:10,'-m*');\n xlim([2, 8.5]), ylim([2,7.5]);\n title('zoom in');\nend\n% =========================================================================\nfunction [stat] = bars()\n stat.description = '2x2 Subplot with different bars';\n stat.unreliable = isOctave || isMATLAB('>=', [8,4]) || ... % FIXME: investigate\n isMATLAB('<=', [8,3]); %FIXME: #749 (Jenkins)\n\n % dataset grouped\n bins = 10 * (-0.5:0.1:0.5);\n numEntries = length(bins);\n\n alpha = [13 11 7];\n numBars = numel(alpha);\n plotData = zeros(numEntries, numBars);\n for iBar = 1:numBars\n plotData(:,iBar) = abs(round(100*sin(alpha(iBar)*(1:numEntries))));\n end\n\n % dataset stacked\n data = ACID_data;\n Y = round(abs(data(2:6,1:3))/10);\n\n subplot(2,2,1);\n b1 = bar(bins,plotData,'grouped','BarWidth',1.5);\n set(gca,'XLim',[1.25*min(bins) 1.25*max(bins)]);\n\n subplot(2,2,2);\n barh(bins, plotData, 'grouped', 'BarWidth', 1.3);\n\n subplot(2,2,3);\n bar(Y, 'stacked');\n\n subplot(2,2,4);\n b2= barh(Y,'stacked','BarWidth', 0.75);\n\n set(b1(1),'FaceColor','m','EdgeColor','none')\n set(b2(1),'FaceColor','c','EdgeColor','none')\n\nend\n% =========================================================================\nfunction [stat] = stemplot()\n stat.description = 'A simple stem plot.' ;\n\n x = 0:25;\n y = [exp(-.07*x).*cos(x);\n exp(.05*x).*cos(x)]';\n h = stem(x, y);\n legend( 'exp(-.07x)*cos(x)', 'exp(.05*x)*cos(x)', 'Location', 'NorthWest');\n set(h(1),'MarkerFaceColor','blue');\n set(h(2),'MarkerFaceColor','red','Marker','square');\n\n % Octave 4 has some smart behavior: it only prints a single baseline.\n % Let's mimick this behavior everywhere else.\n baselines = findall(gca, 'Type', 'line', 'Color', [0 0 0]);\n if numel(baselines) > 1\n % We only need the last line in Octave 3.8, as that is where\n % Octave 4.0 places the baseline\n delete(baselines(1:end-1));\n end\nend\n% =========================================================================\nfunction [stat] = stemplot2()\n stat.description = 'Another simple stem plot.';\n stat.unreliable = isOctave('>=', 4); %FIXME: see #759, #757/#759 and #687\n\n x = 0:25;\n y = [exp(-.07*x).*cos(x);\n exp(.05*x).*cos(x)]';\n h = stem(x, y, 'filled');\n legend( 'exp(-.07x)*cos(x)', 'exp(.05*x)*cos(x)', 'Location', 'NorthWest');\nend\n% =========================================================================\nfunction [stat] = stairsplot()\n stat.description = 'A simple stairs plot.' ;\n\n X = linspace(-2*pi,2*pi,40)';\n Yconst = [zeros(10,1); 0.5*ones(20,1);-0.5*ones(10,1)];\n Y = [sin(X), 0.2*cos(X), Yconst];\n h = stairs(Y);\n legend(h(2),'second entry')\nend\n% =========================================================================\nfunction [stat] = quiverplot()\n stat.description = 'A combined quiver/contour plot of $x\\exp(-x^2-y^2)$.' ;\n stat.extraOptions = {'arrowHeadSize', 2};\n\n [X,Y] = meshgrid(-2:.2:2);\n Z = X.*exp(-X.^2 - Y.^2);\n [DX,DY] = gradient(Z,.2,.2);\n contour(X,Y,Z);\n hold on\n quiver(X,Y,DX,DY);\n %TODO: also show a `quiver(X,Y,DX,DY,0);` to test without scaling\n colormap hsv;\n hold off\nend\n% =========================================================================\nfunction [stat] = quiver3plot()\n stat.description = 'Three-dimensional quiver plot.' ;\n stat.unreliable = isMATLAB(); %FIXME: #590\n\n vz = 10; % Velocity\n a = -32; % Acceleration\n\n t = 0:.1:1;\n z = vz*t + 1/2*a*t.^2;\n\n vx = 2;\n x = vx*t;\n vy = 3;\n y = vy*t;\n\n u = gradient(x);\n v = gradient(y);\n w = gradient(z);\n scale = 0;\n quiver3(x,y,z,u,v,w,scale)\n view([70 18])\nend\n% =========================================================================\nfunction [stat] = quiveroverlap ()\n stat.description = 'Quiver plot with avoided overlap.';\n stat.issues = [679];\n % TODO: As indicated in #679, the native quiver scaling algorithm still isn't \n % perfect. As such, in MATLAB the arrow heads may appear extremely tiny.\n % In Octave, they look fine though. Once the scaling has been done decently,\n % this reminder can be removed.\n if isOctave\n stat.extraOptions = {'arrowHeadSize', 20};\n end\n\n x = [0 1];\n y = [0 0];\n u = [1 -1];\n v = [1 1];\n\n hold all;\n qvr1 = quiver(x,y,u,v);\n qvr2 = quiver(x,y,2*u,2*v);\n set(qvr2, 'MaxHeadSize', get(qvr1, 'MaxHeadSize')/2);\nend\n% =========================================================================\nfunction [stat] = polarplot ()\n stat.description = 'A simple polar plot.' ;\n stat.extraOptions = {'showHiddenStrings',true};\n stat.unreliable = isOctave('>=', 4) || ... %FIXME: see #759, #757/#759 and #687\n isMATLAB('<=', [8,3]); %FIXME: broken since decd496 (mac vs linux)\n t = 0:.01:2*pi;\n polar(t,sin(2*t).*cos(2*t),'--r')\nend\n% =========================================================================\nfunction [stat] = roseplot ()\n stat.description = 'A simple rose plot.' ;\n stat.extraOptions = {'showHiddenStrings',true};\n stat.unreliable = isOctave('>=', 4) || ... %FIXME: see #759, #757/#759 and #687\n isMATLAB('<=', [8,3]); %FIXME: broken since decd496 (mac vs linux)\n\n theta = 2*pi*sin(linspace(0,8,100));\n rose(theta);\nend\n% =========================================================================\nfunction [stat] = compassplot ()\n stat.description = 'A simple compass plot.' ;\n stat.extraOptions = {'showHiddenStrings',true};\n stat.unreliable = isOctave('>=', 4) || ... %FIXME: see #759, #757/#759 and #687\n isMATLAB('<=', [8,3]); %FIXME: broken since decd496 (mac vs linux)\n\n Z = (1:20).*exp(1i*2*pi*cos(1:20));\n compass(Z);\nend\n% =========================================================================\nfunction [stat] = logicalImage()\n stat.description = 'An image plot of logical matrix values.' ;\n stat.unreliable = isOctave; %FIXME: investigate\n % different `width`, see issue #552# (comment 76918634); (Travis differs from Linux/Mac octave)\n\n plotData = magic(10);\n imagesc(plotData > mean(plotData(:)));\n colormap('hot');\nend\n% =========================================================================\nfunction [stat] = imagescplot()\n stat.description = 'An imagesc plot of $\\sin(x)\\cos(y)$.';\n stat.unreliable = isOctave; %FIXME: investigate (Travis differs from Linux/Mac octave)\n\n pointsX = 10;\n pointsY = 20;\n x = 0:1/pointsX:1;\n y = 0:1/pointsY:1;\n z = sin(x)'*cos(y);\n imagesc(x,y,z);\nend\n% =========================================================================\nfunction [stat] = imagescplot2()\n stat.description = 'A trimmed imagesc plot.';\n stat.unreliable = isOctave; %FIXME: investigate (Travis differs from Linux/Mac octave)\n\n a=magic(10);\n x=-5:1:4;\n y=10:19;\n imagesc(x,y,a)\n\n xlim([-3,2])\n ylim([12,15])\n\n grid on;\nend\n% =========================================================================\nfunction [stat] = xAxisReversed ()\n stat.description = 'Reversed axes with legend.' ;\n\n n = 100;\n x = (0:1/n:1);\n y = exp(x);\n plot(x,y);\n set(gca,'XDir','reverse');\n set(gca,'YDir','reverse');\n if isOctave('<=', [3,8])\n % TODO: see whether we can unify this syntax for all environments\n % at the moment, the generic syntax doesn't seem to work for Octave\n % 3.8 (it doesn't even show a legend in gnuplut).\n legend( 'data1', 'Location', 'SouthWest' );\n else\n legend( 'Location', 'SouthWest' );\n end\nend\n% =========================================================================\nfunction [stat] = subplot2x2b ()\n stat.description = 'Three aligned subplots on a $2\\times 2$ subplot grid.' ;\n stat.unreliable = isOctave || isMATLAB();\n % FIXME: this test is unreliable because the automatic axis limits\n % differ on different test platforms. Reckon this by creating the figure\n % using `ACID(97)` and then manually slightly modify the window size.\n % We should not set the axis limits explicitly rather find a better way.\n % #591\n \n x = (1:5);\n\n subplot(2,2,1);\n y = sin(x.^3);\n plot(x,y);\n\n subplot(2,2,2);\n y = cos(x.^3);\n plot(x,y);\n\n subplot(2,2,3:4);\n y = tan(x);\n plot(x,y);\nend\n% =========================================================================\nfunction [stat] = manualAlignment()\n stat.description = 'Manually aligned figures.';\n\n xrange = linspace(-3,4,2*1024);\n\n axes('Position', [0.1 0.1 0.85 0.15]);\n plot(xrange);\n ylabel('$n$');\n xlabel('$x$');\n\n axes('Position', [0.1 0.25 0.85 0.6]);\n plot(xrange);\n set(gca,'XTick',[]);\nend\n% =========================================================================\nfunction [stat] = subplotCustom ()\n stat.description = 'Three customized aligned subplots.';\n stat.unreliable = isMATLAB(); % FIXME: #590\n\n x = (1:5);\n\n y = cos(sqrt(x));\n subplot( 'Position', [0.05 0.1 0.3 0.3] )\n plot(x,y);\n\n y = sin(sqrt(x));\n subplot( 'Position', [0.35 0.5 0.3 0.3] )\n plot(x,y);\n\n y = tan(sqrt(x));\n subplot( 'Position', [0.65 0.1 0.3 0.3] )\n plot(x,y);\nend\n% =========================================================================\nfunction [stat] = errorBars()\n stat.description = 'Generic error bar plot.';\n\n data = ACID_data;\n plotData = 1:10;\n\n eH = abs(data(1:10,1))/10;\n eL = abs(data(1:10,3))/50;\n\n x = 1:10;\n hold all;\n errorbar(x, plotData, eL, eH, '.')\n h = errorbar(x+0.5, plotData, eL, eH);\n set(h, 'LineStyle', 'none');\n % Octave 3.8 doesn't support passing extra options to |errorbar|, but\n % it does allow for changing it after the fact\nend\n% =========================================================================\nfunction [stat] = errorBars2()\n stat.description = 'Another error bar example.';\n data = ACID_data;\n y = mean( data, 2 );\n e = std( data, 1, 2 );\n errorbar( y, e, 'xr' );\nend\n% =========================================================================\nfunction [stat] = legendsubplots()\n stat.description = [ 'Subplots with legends. ' , ...\n 'Increase value of \"length\" in the code to stress-test your TeX installation.' ];\n stat.unreliable = isOctave; %FIXME: investigate\n stat.issues = 609;\n\n % size of upper subplot\n rows = 4;\n % number of points. A large number here (eg 1000) will stress-test\n % matlab2tikz and your TeX installation. Be prepared for it to run out of\n % memory\n length = 100;\n\n % generate some spurious data\n t = 0:(4*pi)/length:4*pi;\n x = t;\n a = t;\n y = sin(t) + 0.1*sin(134*t.^2);\n b = sin(t) + 0.1*cos(134*t.^2) + 0.05*cos(2*t);\n\n % plot the top figure\n subplot(rows+2,1,1:rows);\n\n % first line\n sigma1 = std(y);\n tracey = mean(y,1);\n plot123 = plot(x,tracey,'b-');\n\n hold on\n\n % second line\n sigma2 = std(b);\n traceb = mean(b,1);\n plot456 = plot(a,traceb,'r-');\n\n spec0 = ['Mean V(t)_A (\\sigma \\approx ' num2str(sigma1,'%0.4f') ')'];\n spec1 = ['Mean V(t)_B (\\sigma \\approx ' num2str(sigma2,'%0.4f') ')'];\n\n hold off\n %plot123(1:2)\n legend([plot123; plot456],spec0,spec1)\n legend boxoff\n xlabel('Time/s')\n ylabel('Voltage/V')\n title('Time traces');\n\n % now plot a differential trace\n subplot(rows+2,1,rows+1:rows+2)\n plot7 = plot(a,traceb-tracey,'k');\n\n legend(plot7,'\\Delta V(t)')\n legend boxoff\n xlabel('Time/s')\n ylabel('\\Delta V')\n title('Differential time traces');\nend\n% =========================================================================\nfunction [stat] = bodeplots()\n stat.description = 'Bode plots with legends.';\n stat.unreliable = isMATLAB(); % FIXME: inconsistent axis limits and\n % tick positions; see #641 (issuecomment-106241711)\n\n if isempty(which('tf'))\n fprintf( 'function \"tf\" not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n Rc=1;\n C=1.5e-6; %F\n\n % Set inductors\n L1=4e-3;\n L2=0.8e-3;\n\n % Resistances of inductors\n R1=4;\n R2=2;\n\n % Transfer functions\n % Building transfer functions\n s=tf('s');\n Zc=1/(s*C)+Rc;\n Z1=s*L1+R1;\n Z2=s*L2+R2;\n LCLd=(Z2+Zc)/(Z1+Zc);\n LCL=(s^2*C*L2+1)/(s^2*C*L1+1);\n\n t=logspace(3,5,1000);\n bode(LCL,t)\n hold on\n bode(LCLd,t)\n title('Voltage transfer function of a LCL filter')\n set(findall(gcf,'type','line'),'linewidth',1.5)\n grid on\n\n legend('Perfect LCL',' Real LCL','Location','SW')\n\n % Work around a peculiarity in MATLAB: when the figure is invisible,\n % the XData/YData of all plots is NaN. It gets set to the proper values when\n % the figure is actually displayed. To do so, we temporarily toggle this\n % option. This triggers the call-back (and might flicker the figure).\n isVisible = get(gcf,'visible');\n set(gcf,'visible','on')\n set(gcf,'visible',isVisible);\nend\n% =========================================================================\nfunction [stat] = rlocusPlot()\n stat.description = 'rlocus plot.';\n stat.unreliable = isMATLAB(); % FIXME: radial grid is not present on all\n % environments (see #641)\n\n if isempty(which('tf'))\n fprintf( 'function \"tf\" not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n if isMATLAB('<', [8,4])\n % in MATLAB R2014a and below, `rlocus` plots with no background color\n % are not supported. So, force that color to white to work around\n % that bug. Newer versions don't suffer from this.\n set(gca, 'Color', 'w');\n end\n\n rlocus(tf([1 1],[4 3 1]))\n\n % Work around a peculiarity in MATLAB: when the figure is invisible,\n % the XData/YData of all plots is NaN. It gets set to the proper values when\n % the figure is actually displayed. To do so, we temporarily toggle this\n % option. This triggers the call-back (and might flicker the figure).\n isVisible = get(gcf,'visible');\n set(gcf,'visible','on')\n set(gcf,'visible',isVisible);\nend\n% =========================================================================\nfunction [stat] = mandrillImage()\n stat.description = 'Picture of a mandrill.';\n\n if ~exist('mandrill.mat','file')\n fprintf( 'mandrill data set not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n data = load( 'mandrill' );\n image( data.X ) % show image\n colormap( data.map ) % adapt colormap\n axis image % pixels should be square\n axis off % disable axis\nend\n% =========================================================================\nfunction [stat] = besselImage()\n stat.description = 'Bessel function.';\n stat.unreliable = isOctave(); % FIXME (Travis differs from Linux/Mac octave)\n\n nu = -5:0.25:5;\n beta = 0:0.05:2.5;\n\n m = length(beta);\n n = length(nu);\n trace = zeros(m,n);\n for i=1:length(beta);\n for j=1:length(nu)\n if (floor(nu(j))==nu(j))\n trace(i,j)=abs(besselj(nu(j),beta(i)));\n end\n end\n end\n\n imagesc(nu,beta,trace);\n colorbar()\n xlabel('Order')\n ylabel('\\beta')\n set(gca,'YDir','normal')\nend\n% =========================================================================\nfunction [stat] = clownImage()\n stat.description = 'Picture of a clown.';\n\n if ~exist('clown.mat','file')\n fprintf( 'clown data set not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n data = load( 'clown' );\n imagesc( data.X )\n colormap( gray )\nend\n% =========================================================================\nfunction [stat] = zplanePlot1()\n stat.description = 'Representation of the complex plane with zplane.';\n stat.unreliable = isMATLAB('<', [8,4]); % FIXME: investigate\n\n % check of the signal processing toolbox is installed\n verInfo = ver('signal');\n if isempty(verInfo) || isempty(verInfo.Name)\n fprintf( 'Signal toolbox not found. Skip.\\n\\n' );\n stat.skip = true;\n\n return\n end\n\n [z,p] = ellip(4,3,30,200/500);\n zplane(z,p);\n title('4th-Order Elliptic Lowpass Digital Filter');\nend\n% =========================================================================\nfunction [stat] = zplanePlot2()\n stat.description = 'Representation of the complex plane with zplane.';\n stat.unreliable = isMATLAB; % FIXME: #604; only difference is `width`\n stat.closeall = true;\n\n % check of the signal processing toolbox is installed\n verInfo = ver('signal');\n if isempty(verInfo) || isempty(verInfo.Name)\n fprintf( 'Signal toolbox not found. Skip.\\n\\n' );\n stat.skip = true;\n return\n end\n\n [b,a] = ellip(4,3,30,200/500);\n Hd = dfilt.df1(b,a);\n zplane(Hd) % FIXME: This opens a new figure that doesn't get closed automatically\nend\n% =========================================================================\nfunction [stat] = freqResponsePlot()\n stat.description = 'Frequency response plot.';\n stat.closeall = true;\n stat.issues = [409];\n stat.unreliable = isMATLAB(); % FIXME: investigate\n % See also: https://github.com/matlab2tikz/matlab2tikz/pull/759#issuecomment-138477207\n % and https://gist.github.com/PeterPablo/b01cbe8572a9e5989037 (R2014b)\n\n % check of the signal processing toolbox is installed\n verInfo = ver('signal');\n if isempty(verInfo) || isempty(verInfo.Name)\n fprintf( 'Signal toolbox not found. Skip.\\n\\n' );\n stat.skip = true;\n return\n end\n\n b = fir1(80,0.5,kaiser(81,8));\n hd = dfilt.dffir(b);\n freqz(hd); % FIXME: This opens a new figure that doesn't get closed automatically\nend\n% =========================================================================\nfunction [stat] = axesLocation()\n stat.description = 'Swapped axis locations.';\n stat.issues = 259;\n\n plot(cos(1:10));\n set(gca,'XAxisLocation','top');\n set(gca,'YAxisLocation','right');\nend\n% =========================================================================\nfunction [stat] = axesColors()\n stat.description = 'Custom axes colors.';\n\n plot(sin(1:15));\n set(gca,'XColor','g','YColor','b');\n% set(gca,'XColor','b','YColor','k');\n box off;\nend\n% =========================================================================\nfunction [stat] = multipleAxes()\n stat.description = 'Multiple axes.';\n\n x1 = 0:.1:40;\n y1 = 4.*cos(x1)./(x1+2);\n x2 = 1:.2:20;\n y2 = x2.^2./x2.^3;\n\n line(x1,y1,'Color','r');\n ax1 = gca;\n set(ax1,'XColor','r','YColor','r')\n\n ax2 = axes('Position',get(ax1,'Position'),...\n 'XAxisLocation','top',...\n 'YAxisLocation','right',...\n 'Color','none',...\n 'XColor','k','YColor','k');\n\n line(x2,y2,'Color','k','Parent',ax2);\n\n xlimits = get(ax1,'XLim');\n ylimits = get(ax1,'YLim');\n xinc = (xlimits(2)-xlimits(1))/5;\n yinc = (ylimits(2)-ylimits(1))/5;\n\n % Now set the tick mark locations.\n set(ax1,'XTick',xlimits(1):xinc:xlimits(2) ,...\n 'YTick',ylimits(1):yinc:ylimits(2) )\nend\n% =========================================================================\nfunction [stat] = scatterPlotRandom()\n stat.description = 'Generic scatter plot.';\n\n n = 1:100;\n\n % MATLAB: Use the default area of 36 points squared. The units for the\n % marker area is points squared.\n % octave: If s is not given, [...] a default value of 8 points is used.\n % Try obtain similar behavior and thus apply square root: sqrt(36) vs. 8\n sArea = 1000*(1+cos(n.^1.5)); % scatter size in unit points squared\n sRadius = sqrt(sArea*pi);\n if isMATLAB()\n s = sArea; % unit: points squared\n elseif isOctave()\n s = sRadius; % unit: points\n end\n\n scatter(n, n, s, n.^8);\n colormap autumn;\nend\n% =========================================================================\nfunction [stat] = scatterPlot()\n stat.description = 'Scatter plot with MATLAB(R) stat.';\n if ~exist('seamount.mat','file')\n fprintf( 'seamount data set not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n data = load( 'seamount' );\n scatter( data.x, data.y, 5, data.z, '^' );\nend\n% =========================================================================\nfunction [stat] = scatterPlotMarkers()\n stat.description = 'Scatter plot with with different marker sizes and legend.';\n % FIXME: octave: Output is empty?! Potentially fixed by #669\n\n n = 1:10;\n d = 10;\n e = d * ones(size(n));\n\n % MATLAB: Use the default area of 36 points squared. The units for the\n % marker area is points squared.\n % octave: If s is not given, [...] a default value of 8 points is used.\n % Try obtain similar behavior and thus apply square root: sqrt(36) vs. 8\n sArea = d^2 * n; % scatter size in unit points squared\n sRadius = sqrt(sArea);\n if isMATLAB()\n s = sArea; % unit: points squared\n elseif isOctave()\n s = sRadius; % unit: points\n end\n\n grid on;\n hold on;\n\n style = {'bx','rd','go','c.','m+','y*','bs','mv','k^','r<','g>','cp','bh'};\n names = {'bx','rd','go','c.','m plus','y star','bs','mv',...\n 'k up triangle','r left triangle','g right triangle','cp','bh'};\n\n nStyles = numel(style);\n for ii = 1:nStyles\n curr = style{ii};\n scatter(n, ii * e, s, curr(1), curr(2));\n end\n xlim([min(n)-1 max(n)+1]);\n ylim([0 d*(nStyles+1)]);\n set(gca,'XTick',n,'XTickLabel',sArea,'XTickLabelMode','manual');\nend\n% =========================================================================\nfunction [stat] = scatter3Plot()\n stat.description = 'Scatter3 plot with MATLAB(R) stat.';\n\n [x,y,z] = sphere(16);\n X = [x(:)*.5 x(:)*.75 x(:)];\n Y = [y(:)*.5 y(:)*.75 y(:)];\n Z = [z(:)*.5 z(:)*.75 z(:)];\n S = repmat([1 .75 .5]*10,numel(x),1);\n C = repmat([1 2 3],numel(x),1);\n scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled'), view(-60,60)\n view(40,35)\nend\n% =========================================================================\nfunction [stat] = spherePlot()\n stat.description = 'Stretched sphere with unequal axis limits.';\n stat.issues = 560;\n\n sphere(30);\n title('a sphere: x^2+y^2+z^2');\n xlabel('x');\n ylabel('y');\n zlabel('z');\n set(gca,'DataAspectRatio',[1,1,.5],'xlim',[-1 2], 'zlim',[-1 0.8])\nend\n% =========================================================================\nfunction [stat] = surfPlot()\n stat.description = 'Surface plot.';\n\n [X,Y,Z] = peaks(30);\n surf(X,Y,Z)\n colormap hsv\n axis([-3 3 -3 3 -10 5])\n set(gca,'View',[-37.5,36]);\n\n hc = colorbar('YTickLabel', ...\n {'Freezing','Cold','Cool','Neutral',...\n 'Warm','Hot','Burning','Nuclear'});\n set(get(hc,'Xlabel'),'String','Multitude');\n set(get(hc,'Ylabel'),'String','Magnitude');\n set(hc,'YTick',0:0.7:7);\n set(hc,'YTickLabel',...\n {'-0.8' '-0.6' '-0.4' '-0.2' '0.0' ...\n '0.2' '0.4' '0.6' '0.8' '0.10' '0.12'});\n\n set(get(hc,'Title'),...\n 'String', 'k(u,v)', ...\n 'FontSize', 12, ...\n 'interpreter', 'tex');\n\n xlabel( 'x' )\n ylabel( 'y' )\n zlabel( 'z' )\nend\n% =========================================================================\nfunction [stat] = surfPlot2()\n stat.description = 'Another surface plot.';\n stat.unreliable = isMATLAB || isOctave; % FIXME: investigate\n\n z = [ ones(15, 5) zeros(15,5);\n zeros(5, 5) zeros( 5,5)];\n\n surf(abs(fftshift(fft2(z))) + 1);\n set(gca,'ZScale','log');\n\n legend( 'legendary', 'Location', 'NorthEastOutside' );\nend\n% =========================================================================\nfunction [stat] = superkohle()\n stat.description = 'Superkohle plot.';\n stat.unreliable = isMATLAB('<=', [8,3]); %FIXME: broken since decd496 (mac vs linux)\n\n if ~exist('initmesh')\n fprintf( 'initmesh() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n x1=0;\n x2=pi;\n y1=0;\n y2=pi;\n omegashape = [2 2 2 2 % 2 = line segment; 1 = circle segment; 4 = elipse segment\n x1 x2 x2 x1 % start point x\n x2 x2 x1 x1 % end point x\n y1 y1 y2 y2 % start point y\n y1 y2 y2 y1 % end point y\n 1 1 1 1\n 0 0 0 0];\n [xy,edges,tri] = initmesh(omegashape,'Hgrad',1.05);\n mmin = 1;\n while size(xy,2) < mmin\n [xy,edges,tri] = refinemesh(omegashape,xy,edges,tri);\n end\n m = size(xy,2);\n x = xy(1,:)';\n y = xy(2,:)';\n y0 = cos(x).*cos(y);\n\n pdesurf(xy,tri,y0(:,1));\n title('y_0');\n xlabel('x1 axis');\n ylabel('x2 axis');\n axis([0 pi 0 pi -1 1]);\n grid on;\nend\n% =========================================================================\nfunction [stat] = meshPlot()\n stat.description = 'Mesh plot.';\n\n [X,Y,Z] = peaks(30);\n mesh(X,Y,Z)\n colormap hsv\n axis([-3 3 -3 3 -10 5])\n\n xlabel( 'x' )\n ylabel( 'y' )\n zlabel( 'z' )\nend\n% =========================================================================\nfunction [stat] = ylabels()\n stat.description = 'Separate y-labels.';\n\n x = 0:.01:2*pi;\n H = plotyy(x,sin(x),x,3*cos(x));\n\n ylabel(H(1),'sin(x)');\n ylabel(H(2),'3cos(x)');\n\n xlabel(H(1),'time');\nend\n% =========================================================================\nfunction [stat] = spectro()\n stat.description = 'Spectrogram plot';\n stat.unreliable = isMATLAB('<', [8,4]); % FIXME: investigate\n\n % In the original test case, this is 0:0.001:2, but that takes forever\n % for LaTeX to process.\n if isempty(which('chirp'))\n fprintf( 'chirp() not found. Skipping.\\n\\n' );\n stat.description = [];\n stat.skip = true;\n return\n end\n\n T = 0:0.005:2;\n X = chirp(T,100,1,200,'q');\n spectrogram(X,128,120,128,1E3);\n title('Quadratic Chirp');\nend\n% =========================================================================\nfunction [stat] = mixedBarLine()\n stat.description = 'Mixed bar/line plot.';\n stat.unreliable = isOctave; %FIXME: investigate (octave of egon)\n % unreliable, see issue #614 (comment 92263263)\n\n data = ACID_data;\n x = data(:);\n hist(x,10)\n y = ylim;\n hold on;\n plot([mean(x) mean(x)], y, '-r');\n hold off;\nend\n% =========================================================================\nfunction [stat] = decayingharmonic()\n stat.description = 'Decaying harmonic oscillation with \\TeX{} title.';\n stat.issues = 587;\n\n % Based on an example from\n % http://www.mathworks.com/help/techdoc/creating_plots/f0-4741.html#f0-28104\n A = 0.25;\n alpha = 0.007;\n beta = 0.17;\n t = 0:901;\n y = A * exp(-alpha*t) .* sin(beta*t);\n plot(t, y)\n title('{\\itAe}^{-\\alpha\\itt}sin\\beta{\\itt}, \\alpha<<\\beta, \\beta>>\\alpha, \\alpha<\\beta, \\beta>\\alpha, b>a')\n xlabel('Time \\musec.')\n ylabel('Amplitude |X|')\nend\n% =========================================================================\nfunction [stat] = texcolor()\n stat.description = 'Multi-colored text using \\TeX{} commands.';\n\n % Taken from an example at\n % http://www.mathworks.com/help/techdoc/creating_plots/f0-4741.html#f0-28104\n text(.1, .5, ['\\fontsize{16}black {\\color{magenta}magenta '...\n '\\color[rgb]{0 .5 .5}teal \\color{red}red} black again'])\nend\n% =========================================================================\nfunction [stat] = textext()\n stat.description = 'Formatted text and special characters using \\TeX{}.';\n\n % Taken from an example at\n % http://www.mathworks.com/help/techdoc/creating_plots/f0-4741.html#f0-28303\n txstr(1) = { 'Each cell is a quoted string' };\n txstr(2) = { 'You can specify how the string is aligned' };\n txstr(3) = { 'You can use LaTeX symbols like \\pi \\chi \\Xi' };\n txstr(4) = { '\\bfOr use bold \\rm\\itor italic font\\rm' };\n txstr(5) = { '\\fontname{courier}Or even change fonts' };\n txstr(5) = { 'and use umlauts like \u00e4\u00f6\u00fc\u00df\u00c4\u00d6\u00dc and accents \u00e9\u00e8\u00ea\u0150\u0151\u0170\u0171\u00e7' };\n plot( 0:6, sin(0:6) )\n text( 5.75, sin(2.5), txstr, 'HorizontalAlignment', 'right' )\nend\n% =========================================================================\nfunction [stat] = texrandom()\n stat.description = 'Random TeX symbols';\n\n try\n rng(42); %fix seed\n %TODO: fully test tex conversion instead of a random subsample!\n catch\n rand('seed', 42); %#ok (this is deprecated in MATLAB)\n end\n\n num = 20; % number of symbols per line\n symbols = {'\\it', '\\bf', '\\rm', '\\sl', ...\n '\\alpha', '\\angle', '\\ast', '\\beta', '\\gamma', '\\delta', ...\n '\\epsilon', '\\zeta', '\\eta', '\\theta', '\\vartheta', ...\n '\\iota', '\\kappa', '\\lambda', '\\mu', '\\nu', '\\xi', '\\pi', ...\n '\\rho', '\\sigma', '\\varsigma', '\\tau', '\\equiv', '\\Im', ...\n '\\otimes', '\\cap', '{\\int}', '\\rfloor', '\\lfloor', '\\perp',...\n '\\wedge', '\\rceil', '\\vee', '\\langle', '\\upsilon', '\\phi', ...\n '\\chi', '\\psi', '\\omega', '\\Gamma', '\\Delta', '\\Theta', ...\n '\\Lambda', '\\Xi', '\\Pi', '\\Sigma', '\\Upsilon', '\\Phi', ...\n '\\Psi', '\\Omega', '\\forall', '\\exists', '\\ni', '{\\cong}', ...\n '\\approx', '\\Re', '\\oplus', '\\cup', '\\subseteq', '\\lceil', ...\n '\\cdot', '\\neg', '\\times', '\\surd', '\\varpi', '\\rangle', ...\n '\\sim', '\\leq', '\\infty', '\\clubsuit', '\\diamondsuit', ...\n '\\heartsuit', '\\spadesuit', '\\leftrightarrow', ...\n '\\leftarrow', '\\Leftarrow', '\\uparrow', '\\rightarrow', ...\n '\\Rightarrow', '\\downarrow', '\\circ', '\\pm', '\\geq', ...\n '\\propto', '\\partial', '\\bullet', '\\div', '\\neq', ...\n '\\aleph', '\\wp', '\\oslash', '\\supseteq', '\\nabla', ...\n '{\\ldots}', '\\prime', '\\0', '\\mid', '\\copyright', ...\n '\\o', '\\in', '\\subset', '\\supset', ...\n '\\_', '\\^', '\\{', '\\}', '$', '%', '#', ...\n '(', ')', '+', '-', '=', '/', ',', '.', '<', '>', ...\n '!', '?', ':', ';', '*', '[', ']', '\u00a7', '\"', '''', ...\n '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ...\n 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', ...\n 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', ...\n 'w', 'x', 'y', 'z', ...\n 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', ...\n 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', ...\n 'W', 'X', 'Y', 'Z' ...\n };\n % Note: Instead of '\\ldots' the list of symbols contains the entry\n % '{\\ldots}'. This is because TeX gives an error if it\n % encounters the sequence '$a_\\ldots$' or '$a^\\ldots$'. It\n % looks like that is a TeX bug. Nevertheless this sequence\n % could appear in the random output, therefore \\ldots is\n % wrapped in braces since '$a_{\\ldots}$' and '$a^{\\ldots}$'\n % don't crash TeX.\n % Same thing with '\\cong' and '\\int'.\n % \\color{red} etc. isn't included\n % \\fontname{Times} etc. isn't included\n % \\fontsize{12} etc. isn't included\n\n switch getEnvironment\n case 'MATLAB'\n % MATLAB expects tilde and ampersand to be un-escaped and backslashes\n % to be escaped\n symbols = [ symbols, {'~', '&', '\\\\'} ];\n case 'Octave'\n % Octave expects tilde and ampersand to be escaped for regular\n % output. If either are used un-escaped, that creates odd output in\n % Octave itself, but since matlab2tikz should be able to handle\n % those cases, let's include the un-escaped symbols in the list.\n symbols = [ symbols, {'\\~', '\\&', '~', '&'} ];\n % Octave's backslash handling is weird to say the least. However,\n % matlab2tikz treats backslashes the same in Octave as it does in\n % MATLAB. Therefore, let's add an escaped backslash to the list\n symbols = [ symbols, {'\\\\'} ];\n otherwise\n error( 'Unknown environment. Need MATLAB(R) or Octave.' )\n end\n\n for ypos = [0.9:-.2:.1]\n % Generate `num' random indices to the list of symbols\n index = max(ceil(rand(1, num)*length(symbols)), 1);\n % Assemble symbols into one cell string array\n string = symbols(index);\n\n % Add random amount of balanced braces in random positions to `string'.\n % By potentially generating more than one set of braces randomly, it's\n % possible to create more complex patterns of nested braces. Increase\n % `braceprob' to get more braces, but don't use values greater than or\n % equal 1 which would result in an infinite loop.\n braceprob = 0.6;\n while rand(1,1) < braceprob\n % Generate two random numbers ranging from 1 to n with n = number\n % of symbols in `string'\n bracepos = max(ceil(rand(1, 2)*length(string)), 1);\n % Modify `string' so that an opening brace is inserted before\n % min(bracepos) symbols and a closing brace after max(bracepos)\n % symbols. That way any number of symbols from one to all in\n % `string' are wrapped in braces for min(bracepos) == max(bracepos)\n % and min(bracepos) == 1 && max(bracepos) == length(string),\n % respectively.\n string = [string(1:min(bracepos)-1), {'{'}, ...\n string(min(bracepos):max(bracepos)), ...\n {'}'}, string(max(bracepos)+1:end) ];\n end\n % Clean up: remove '{}', '{{}}', etc.\n clean = false;\n while clean == false\n clean = true;\n for i = 1:length(string)-1\n if strcmp( string(i), '{' ) && strcmp( string(i+1), '}' )\n string = [string(1:i-1), string(i+2:end)];\n clean = false;\n break\n end\n end\n end\n\n % Subscripts '_' and superscripts '^' in TeX are tricky in that certain\n % combinations are not allowed and there are some subtleties in regard\n % to more complicated combinations of sub/superscripts:\n % - ^a or _a at the beginning of a TeX math expression is permitted.\n % - a^ or a_ at the end of a TeX math expression is not.\n % - a__b, a_^b, a^_b, or a^^b is not allowed, as is any number of\n % consecutive sub/superscript operators. Actually a^^b does not\n % crash TeX, but it produces seemingly random output instead of `b',\n % therefore it should be avoided, too.\n % - a^b^c or a_b_c is not allowed as it results in a \"double subscript/\n % superscript\" error.\n % - a^b_c or a_b^c, however, does work.\n % - a^bc^d or a_bc_d also works.\n % - a^b_c^d or a_b^c_d is not allowed and results in a \"double\n % subscript/superscript\" error.\n % - a{_}b, a{^}b, {a_}b or {a^}b is not permitted.\n % - a{_b} or a{^b} is valid TeX code.\n % - {a_b}_c produces the same output as a_{bc}. Likewise for '^'.\n % - a_{b_c} results in \"a index b sub-index c\". Likewise for '^'.\n % - a^{b}^c or a_{b}_c is not allowed as it results in a \"double\n % subscript/superscript\" error.\n %\n % From this we can derive a number of rules:\n % 1) The last symbol in a TeX string must not be '^' or '_'.\n % 2a) There must be at least one non-brace symbol between any '^' and '_'.\n % 2b) There must be at least one non-brace symbol between any '_' and '^'.\n % 3a) There must either be at least two non-brace, non-'_' symbols or at\n % least one non-brace, non-'_' symbol and one brace (opening or\n % closing) between any two '^'.\n % 3b) There must either be at least two non-brace, non-'^' symbols or at\n % least one brace (opening or closing) between any two '_'.\n % 4) '^' or '_' must not appear directly before '}'.\n % 5) '^' or '_' must not appear directly after '}'.\n % 6) Whenever braces were mentioned, that refers to non-empty braces,\n % i.e. '{}' counts as nothing. Printable/escaped braces '\\{' and '\\}'\n % also don't count as braces but as regular symbols.\n % 7) '^' or '_' must not appear directly before '\\it', '\\bf', '\\rm', or\n % '\\sl'.\n % 8) '^' or '_' must not appear directly after '\\it', '\\bf', '\\rm', or\n % '\\sl'.\n %\n % A few test cases:\n % Permitted: ^a... _a... a^b_c a_b^c a^bc^d a_bc_d a{_b} a{^b}\n % {a_b}_c a_{bc} {a^b}^c a^{bc} a_{b_c} a^{b^c}\n % Forbidden: ...z^ ...z_ a__b a_^b a^_b [a^^b] a^b^c a_b_c\n % a^b_c^d a_b^c_d a{_}b a{^}b {a_}b {a^}b\n % a^{_b} a_{^b} a^{b}^c a_{b}_c\n %\n % Now add sub/superscripts according to these rules\n subsupprob = 0.1; % Probability for insertion of a sub/superscript\n caretdist = Inf; % Distance to the last caret\n underscdist = Inf; % Distance to the last underscore\n bracedist = Inf; % Distance to the last brace (opening or closing)\n pos = 0;\n % Making sure the post-update `pos' in the while loop is less than the\n % number of symbols in `string' enforces rule 1: The last symbol in\n % a TeX string must not be '^' or '_'.\n while pos+1 < length(string)\n % Move one symbol further\n pos = pos + 1;\n % Enforce rule 7: No sub/superscript directly before '\\it', '\\bf',\n % '\\rm', or '\\sl'.\n if strcmp( string(pos), '\\it' ) || strcmp( string(pos), '\\bf' ) ...\n || strcmp( string(pos), '\\rm' ) || strcmp( string(pos), '\\sl' )\n continue\n end\n % Enforce rule 8: No sub/superscript directly after '\\it', '\\bf',\n % '\\rm', or '\\sl'.\n if (pos > 1) ...\n && ( strcmp( string(pos-1), '\\it' ) ...\n || strcmp( string(pos-1), '\\bf' ) ...\n || strcmp( string(pos-1), '\\rm' ) ...\n || strcmp( string(pos-1), '\\sl' ) ...\n )\n continue\n end\n bracedist = bracedist + 1;\n % Enforce rule 4: No sub/superscript directly before '}'\n if strcmp( string(pos), '}' )\n bracedist = 0; % Also update braces distance\n continue\n end\n % Enforce rule 5: No sub/superscript directly after '}'\n if (pos > 1) && strcmp( string(pos-1), '}' )\n continue\n end\n % Update distances for either braces or caret/underscore depending\n % on whether the symbol currently under scrutiny is a brace or not.\n if strcmp( string(pos), '{' )\n bracedist = 0;\n else\n caretdist = caretdist + 1;\n underscdist = underscdist + 1;\n end\n % Generate two random numbers, then check if any of them is low\n % enough, so that with probability `subsupprob' a sub/superscript\n % operator is inserted into `string' at the current position. In\n % case both random numbers are below the threshold, whether a\n % subscript or superscript operator is to be inserted depends on\n % which of the two numbers is smaller.\n randomnums = rand(1, 2);\n if min(randomnums) < subsupprob\n if randomnums(1) < randomnums(2)\n % Enforce rule 2b: There must be at least one non-brace\n % symbol between previous '_' and to-be-inserted '^'.\n if underscdist < 1\n continue\n end\n % Enforce rule 3a: There must either be at least two\n % non-brace, non-'_' symbols or at least one brace (opening\n % or closing) between any two '^'.\n if ~( ((caretdist >= 2) && (underscdist >= 2)) ...\n || ((bracedist < 2) && (caretdist >= 2)) )\n continue\n end\n % Insert '^' before `pos'th symbol in `string' now that\n % we've made sure all rules are honored.\n string = [ string(1:pos-1), {'^'}, string(pos:end) ];\n caretdist = 0;\n pos = pos + 1;\n else\n % Enforce rule 2a: There must be at least one non-brace\n % symbol between previous '^' and to-be-inserted '_'.\n if caretdist < 1\n continue\n end\n % Enforce rule 3b: There must either be at least two\n % non-brace, non-'^' symbols or at least one brace (opening\n % or closing) between any two '_'.\n if ~( ((caretdist >= 2) && (underscdist >= 2)) ...\n || ((bracedist < 2) && (underscdist >= 2)) )\n continue\n end\n % Insert '_' before `pos'th symbol in `string' now that\n % we've made sure all rules are honored.\n string = [ string(1:pos-1), {'_'}, string(pos:end) ];\n underscdist = 0;\n pos = pos + 1;\n end\n end\n end % while pos+1 < length(string)\n\n % Now convert the cell string array of symbols into one regular string\n string = [string{:}];\n % Print the string in the figure to be converted by matlab2tikz\n text( .05, ypos, string, 'interpreter', 'tex' )\n % And print it to the console, too, in order to enable analysis of\n % failed tests\n fprintf( 'Original string: %s\\n', string )\n end\n\n title('Random TeX symbols \\\\\\{\\}\\_\\^$%#&')\nend\n% =========================================================================\nfunction [stat] = latexInterpreter()\n stat.description = '\\LaTeX{} interpreter test (display math not working)';\n stat.issues = 448;\n stat.unreliable = isMATLAB('<=', [8,3]); %FIXME: broken since decd496 (mac vs linux)\n\n plot(magic(3),'-x');\n\n % Adapted from an example at\n % http://www.mathworks.com/help/techdoc/ref/text_props.html#Interpreter\n text(1.5, 2.0, ...\n '$$\\int_0^x\\!\\int_{\\Omega} \\mathrm{d}F(u,v) \\mathrm{d}\\omega$$', ...\n 'Interpreter', 'latex', ...\n 'FontSize', 26);\n\n title(['display math old: $$\\alpha$$ and $$\\sum_\\alpha^\\Omega$$; ', ...\n 'inline math: $\\alpha$ and $\\sum_\\alpha^\\Omega$'],'Interpreter','latex');\nend\n% =========================================================================\nfunction [stat] = latexmath2()\n stat.description = 'Some nice-looking formulas typeset using the \\LaTeX{} interpreter.';\n stat.issues = 637;\n\n % Adapted from an example at\n % http://www.mathworks.com/help/techdoc/creating_plots/f0-4741.html#bq558_t\n set(gcf, 'color', 'white')\n set(gcf, 'units', 'inches')\n set(gcf, 'position', [2 2 4 6.5])\n set(gca, 'visible', 'off')\n\n % Note: The matrices in h(1) and h(2) cannot be compiled inside pgfplots.\n % They are therefore disabled.\n% h(1) = text( 'units', 'inch', 'position', [.2 5], ...\n% 'fontsize', 14, 'interpreter', 'latex', 'string', ...\n% [ '$$\\hbox {magic(3) is } \\left( {\\matrix{ 8 & 1 & 6 \\cr' ...\n% '3 & 5 & 7 \\cr 4 & 9 & 2 } } \\right)$$' ]);\n% h(2) = text( 'units', 'inch', 'position', [.2 4], ...\n% 'fontsize', 14, 'interpreter', 'latex', 'string', ...\n% [ '$$\\left[ {\\matrix{\\cos(\\phi) & -\\sin(\\phi) \\cr' ...\n% '\\sin(\\phi) & \\cos(\\phi) \\cr}} \\right]' ...\n% '\\left[ \\matrix{x \\cr y} \\right]$$' ]);\n h(3) = text( 'units', 'inches', 'position', [.2 3], ...\n 'fontsize', 14, 'interpreter', 'latex', 'string', ...\n [ '$$L\\{f(t)\\} \\equiv F(s) = \\int_0^\\infty\\!\\!{e^{-st}' ...\n 'f(t)dt}$$' ]);\n h(4) = text( 'units', 'inches', 'position', [.2 2], ...\n 'fontsize', 14, 'interpreter', 'latex', 'string', ...\n '$$e = \\sum_{k=0}^\\infty {\\frac{1}{k!}} $$' );\n h(5) = text( 'units', 'inches', 'position', [.2 1], ...\n 'fontsize', 14, 'interpreter', 'latex', 'string', ...\n [ '$$m \\ddot y = -m g + C_D \\cdot {\\frac{1}{2}}' ...\n '\\rho {\\dot y}^2 \\cdot A$$' ]);\n h(6) = text( 'units', 'inches', 'position', [.2 0], ...\n 'fontsize', 14, 'interpreter', 'latex', 'string', ...\n '$$\\int_{0}^{\\infty} x^2 e^{-x^2} dx = \\frac{\\sqrt{\\pi}}{4}$$' );\nend\n% =========================================================================\nfunction [stat] = parameterCurve3d()\n stat.description = 'Parameter curve in 3D with text boxes in-/outside axis.';\n stat.issues = [378, 790] ;\n t = linspace(0, 20*pi, 1e5);\n plot3(t, sin(t), 50 * cos(t));\n text(0.5, 0.5, 10, 'text inside axis limits');\n text(5.0, 1.5, 50, 'text outside axis (will be removed by cleanfigure())');\nend\n% =========================================================================\nfunction [stat] = parameterSurf()\n stat.description = 'Parameter and surface plot.';\n stat.unreliable = isMATLAB('<', [8,4]); % FIXME: investigate\n\n if ~exist('TriScatteredInterp')\n fprintf( 'TriScatteredInterp() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n t = (1:100).';\n t1 = cos(5.75352*t).^2;\n t2 = abs(sin(t));\n\n x = t1*4 - 2;\n y = t2*4 - 2;\n z = x.*exp(-x.^2 - y.^2);\n\n %TODO: do we really need this TriScatteredInterp?\n % It will be removed from MATLAB\n\n % Construct the interpolant\n F = TriScatteredInterp(x,y,z,'linear');\n\n % Evaluate the interpolant at the locations (qx, qy), qz\n % is the corresponding value at these locations.\n ti = -2:.25:2;\n [qx,qy] = meshgrid(ti,ti);\n qz = F(qx,qy);\n\n hold on\n surf(qx,qy,qz)\n plot3(x,y,z,'o')\n view(gca,[-69 14]);\n hold off\nend\n% =========================================================================\nfunction [stat] = fill3plot()\n stat.description = 'fill3 plot.';\n\n if ~exist('fill3','builtin')\n fprintf( 'fill3() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n x1 = -10:0.1:10;\n x2 = -10:0.1:10;\n p = sin(x1);\n d = zeros(1,numel(p));\n d(2:2:end) = 1;\n h = p.*d;\n grid on;\n fill3(x1,x2,h,'k');\n view(45,22.5);\n box on;\nend\n% =========================================================================\nfunction [stat] = rectanglePlot()\n stat.unreliable = isMATLAB('<=', [8,3]); %FIXME: #749 (Jenkins)\n stat.description = 'Rectangle handle.';\n\n rectangle('Position', [0.59,0.35,3.75,1.37],...\n 'Curvature', [0.8,0.4],...\n 'LineWidth', 2, ...\n 'LineStyle', '--' ...\n );\n daspect([1,1,1]);\nend\n% =========================================================================\nfunction [stat] = herrorbarPlot()\n stat.description = 'herrorbar plot.';\n % FIXME: octave is missing the legend \n\n hold on;\n X = 1:10;\n Y = 1:10;\n err = repmat(0.2, 1, 10);\n h1 = errorbar(X, Y, err+X/30, 'r');\n h_vec = herrorbar(X, Y, err);\n for h=h_vec\n set(h, 'color', [1 0 0]);\n end\n h2 = errorbar(X, Y+1, err, 'g');\n h_vec = herrorbar(X, Y+1, err+Y/40);\n for h=h_vec\n set(h, 'color', [0 1 0]);\n end\n legend([h1 h2], {'test1', 'test2'})\nend\n% =========================================================================\nfunction [stat] = hist3d()\n stat.description = '3D histogram plot.';\n\n if ~exist('hist3','builtin') && isempty(which('hist3'))\n fprintf( 'Statistics toolbox not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n% load carbig\n% X = [MPG,Weight];\n% hist3(X,[7 7]);\n% xlabel('MPG'); ylabel('Weight');\n% set(get(gca,'child'),'FaceColor','interp','CDataMode','auto');\n\n load carbig\n X = [MPG,Weight];\n hist3(X,[7 7]);\n xlabel('MPG'); ylabel('Weight');\n hist3(X,[7 7],'FaceAlpha',.65);\n xlabel('MPG'); ylabel('Weight');\n % Linux crashed with OpenGL.\n %%set(gcf,'renderer','opengl');\n\n% load seamount\n% dat = [-y,x]; % Grid corrected for negative y-values\n% n = hist3(dat); % Extract histogram data;\n% % default to 10x10 bins\n% view([-37.5, 30]);\nend\n% =========================================================================\nfunction [stat] = myBoxplot()\n stat.description = 'Boxplot.';\n stat.unreliable = isMATLAB('<', [8,4]); % R2014a; #552 #414\n\n if ~exist('boxplot','builtin') && isempty(which('boxplot'))\n fprintf( 'Statistics toolbox not found. Skipping.\\n\\n' );\n stat.skip = true;\n return\n end\n\n errors =[\n 0.810000 3.200000 0.059500\n 0.762500 -3.200000 0.455500\n 0.762500 4.000000 0.901000\n 0.762500 3.600000 0.406000\n 0.192500 3.600000 0.307000\n 0.810000 -3.600000 0.604000\n 1.000000 -2.400000 0.505000\n 0.430000 -2.400000 0.455500\n 1.000000 3.200000 0.158500\n ];\n\n boxplot(errors);\nend\n% =========================================================================\nfunction [stat] = areaPlot()\n stat.description = 'Area plot.';\n\n M = magic(5);\n M = M(1:3,2:4);\n h = area(1:3, M);\n legend(h([1,3]),'foo', 'foobar');\nend\n% =========================================================================\nfunction [stat] = customLegend()\n stat.description = 'Custom legend.';\n stat.unreliable = isMATLAB('<', [8,4]) || isOctave; %FIXME: investigate (Travis differs from Linux/Mac octave)\n\n x = -pi:pi/10:pi;\n y = tan(sin(x)) - sin(tan(x));\n plot(x,y,'--rs');\n\n lh=legend('y');\n set(lh,'Location','West')\n set(lh,'color','g')\n set(lh,'edgecolor','r')\n set(lh, 'position',[.5 .6 .1 .05])\nend\n% =========================================================================\nfunction [stat] = pixelLegend()\n stat.description = 'Legend with pixel position.';\n\n x = linspace(0,1);\n plot(x, [x;x.^2]);\n set(gca, 'units', 'pixels')\n lh=legend('1', '2');\n set(lh, 'units','pixels','position', [100 200 65 42])\nend\n% =========================================================================\nfunction [stat] = croppedImage()\n stat.description = 'Custom legend.';\n\n if ~exist('flujet.mat','file')\n fprintf( 'flujet data set not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n load('flujet','X','map');\n image(X)\n colormap(map)\n %axis off\n axis image\n xlim([50 200])\n ylim([50 200])\n % colorbar at top\n colorbar('north');\n set(gca,'Units','normalized');\nend\n% =========================================================================\nfunction [stat] = pColorPlot()\n stat.description = 'pcolor() plot.';\n\n ylim([-1 1]); xlim([-1 1]); hold on; % prevent error on octave\n n = 6;\n r = (0:n)'/n;\n theta = pi*(-n:n)/n;\n X = r*cos(theta);\n Y = r*sin(theta);\n C = r*cos(2*theta);\n pcolor(X,Y,C)\n axis equal tight\nend\n% =========================================================================\nfunction [stat] = multiplePatches()\n stat.description = 'Multiple patches.';\n\n xdata = [2 2 0 2 5;\n 2 8 2 4 5;\n 8 8 2 4 8];\n ydata = [4 4 4 2 0;\n 8 4 6 2 2;\n 4 0 4 0 0];\n cdata = [15 0 4 6 10;\n 1 2 5 7 9;\n 2 3 0 8 3];\n p = patch(xdata,ydata,cdata,'Marker','o',...\n 'MarkerFaceColor','flat',...\n 'FaceColor','none');\nend\n% =========================================================================\nfunction [stat] = hgTransformPlot()\n stat.description = 'hgtransform() plot.';\n\n if isOctave\n % Octave (3.8.0) has no implementation of `hgtransform`\n stat.skip = true;\n return;\n end\n % Check out\n % http://www.mathworks.de/de/help/matlab/ref/hgtransform.html.\n\n ax = axes('XLim',[-2 1],'YLim',[-2 1],'ZLim',[-1 1]);\n view(3);\n grid on;\n axis equal;\n\n [x,y,z] = cylinder([.2 0]);\n h(1) = surface(x,y,z,'FaceColor','red');\n h(2) = surface(x,y,-z,'FaceColor','green');\n h(3) = surface(z,x,y,'FaceColor','blue');\n h(4) = surface(-z,x,y,'FaceColor','cyan');\n h(5) = surface(y,z,x,'FaceColor','magenta');\n h(6) = surface(y,-z,x,'FaceColor','yellow');\n\n t1 = hgtransform('Parent',ax);\n t2 = hgtransform('Parent',ax);\n\n set(h,'Parent',t1);\n h2 = copyobj(h,t2);\n\n Txy = makehgtform('translate',[-1.5 -1.5 0]);\n set(t2,'Matrix',Txy)\n drawnow\nend\n% =========================================================================\nfunction [stat] = logbaseline()\n stat.description = 'Logplot with modified baseline.';\n\n bar([0 1 2], [1 1e-2 1e-5],'basevalue', 1e-6);\n set(gca,'YScale','log');\nend\n% =========================================================================\nfunction [stat] = alphaImage()\n stat.description = 'Images with alpha channel.';\n stat.unreliable = isOctave; %FIXME: investigate\n\n subplot(2,1,1);\n title('Scaled Alpha Data');\n N = 20;\n h_imsc = imagesc(repmat(1:N, N, 1));\n mask = zeros(N);\n mask(N/4:3*N/4, N/4:3*N/4) = 1;\n set(h_imsc, 'AlphaData', double(~mask));\n set(h_imsc, 'AlphaDataMapping', 'scaled');\n set(gca, 'ALim', [-1,1]);\n title('');\n\n subplot(2,1,2);\n title('Integer Alpha Data');\n N = 2;\n line([0 N]+0.5, [0 N]+0.5, 'LineWidth', 2, 'Color','k');\n line([0 N]+0.5, [N 0]+0.5, 'LineWidth', 2, 'Color','k');\n hold on\n imagesc([0,1;2,3],'AlphaData',uint8([64,128;192,256]))\nend\n% =========================================================================\nfunction stat = annotationAll()\n stat.description = 'All possible annotations with edited properties';\n stat.unreliable = isMATLAB('<', [8,4]); % TODO: R2014a and older: #604\n\n if isempty(which('annotation'))\n fprintf( 'annotation() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n % Create plot\n X1 = -5:0.1:5;\n plot(X1,log(X1.^2+1));\n\n % Create line\n annotation('line',[0.21 0.26], [0.63 0.76], 'Color',[0.47 0.3 0.44],...\n 'LineWidth',4, 'LineStyle',':');\n\n % Create arrow\n if isOctave('>=', 4)\n headStyle = 'vback3'; %Octave does not support cback2 yet (2015-09)\n else\n headStyle = 'cback2';\n end\n\n annotation('arrow',[0.25 0.22], [0.96 0.05], 'LineStyle','-.',...\n 'HeadStyle', headStyle);\n\n % Create textarrow\n annotation('textarrow',[0.46 0.35], [0.41 0.50],...\n 'Color',[0.92 0.69 0.12], 'TextBackgroundColor',[0.92 0.83 0.83],...\n 'String',{'something'}, 'LineWidth',2, 'FontWeight','bold',...\n 'FontSize',20, 'FontName','Helvetica');\n\n % Create doublearrow\n annotation('doublearrow',[0.33 0.7], [0.56 0.55]);\n\n % Create textbox\n annotation('textbox', [0.41 0.69 0.17 0.10], 'String',{'something'},...\n 'FitBoxToText','off');\n\n % Create ellipse\n if isOctave(4)\n colorSpec = 'EdgeColor';\n else\n colorSpec = 'Color';\n end\n annotation('ellipse', [0.70 0.44 0.15 0.51], ...\n colorSpec, [0.63 0.07 0.18],...\n 'LineWidth', 3, 'FaceColor',[0.80 0.87 0.96]);\n\n % Create rectangle\n annotation('rectangle', [0.3 0.26 0.53 0.58], 'LineWidth',8,...\n 'LineStyle',':');\nend\n% =========================================================================\nfunction [stat] = annotationSubplots()\n stat.description = 'Annotated and unaligned subplots';\n\n if isempty(which('annotation'))\n fprintf( 'annotation() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n X1 = 0:0.01:1;\n Y1 = X1.^2;\n Y2 = Y1.^2;\n Y3 = X1.^(1/4);\n\n set(gcf, 'Position', [100 100 1500 600]);\n\n axes1 = axes('Parent',gcf, 'Position',[0.07 0.4015 0.2488 0.5146]);\n box(axes1,'on');\n hold(axes1,'all');\n\n title('f(x)=x^2');\n\n plot(X1,Y1,'Parent',axes1, 'DisplayName','(0:0.05:1).^2 vs 0:0.05:1');\n\n axes2 = axes('Parent',gcf, 'OuterPosition',[0.4062 0 0.2765 0.6314]);\n box(axes2,'on');\n hold(axes2,'all');\n\n plot(X1,Y2,'Parent',axes2,'DisplayName','(0:0.05:1).^4 vs 0:0.05:1');\n\n axes3 = axes('Parent',gcf, 'Position',[0.7421 0.3185 0.21 0.5480]);\n box(axes3,'on');\n hold(axes3,'all');\n\n plot(X1,Y3,'Parent',axes3,'DisplayName','(0:0.05:1).^(1/4) vs 0:0.05:1');\n\n annotation(gcf,'textbox',[0.3667 0.5521 0.0124 0.0393], ...\n 'String',{'f^2'}, 'FitBoxToText','off');\n\n annotation(gcf,'arrow',[0.3263 0.4281], [0.6606 0.3519]);\n\n annotation(gcf,'textarrow',[0.6766 0.7229], [0.3108 0.6333],...\n 'TextEdgeColor','none', 'HorizontalAlignment','center', ...\n 'String',{'invert'});\nend\n% =========================================================================\nfunction [stat] = annotationText()\n stat.description = 'Variations of textual annotations';\n stat.unreliable = isMATLAB('<', [8,4]); % FIXME: investigate\n\n if ~exist('annotation')\n fprintf( 'annotation() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n X1 = -5:0.1:5;\n Y1 = log(X1.^2+1);\n\n % Resize figure to fit all text inside\n set(gcf,'Position', [100 100 1000 700]);\n\n % Otherwise the axes is plotted wrongly\n drawnow();\n\n % Create axes\n axes1 = axes('Parent',gcf);\n hold(axes1,'all');\n\n % Create plot\n plot(X1,Y1);\n\n % Create text\n text('Parent',axes1,'String',' \\leftarrow some point on the curve',...\n 'Position',[-2.01811125485123 1.5988219895288 7.105427357601e-15]);\n\n % Create text\n text('Parent',axes1,'String','another point \\rightarrow',...\n 'Position',[1 0.693147180559945 0],...\n 'HorizontalAlignment','right');\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.305611222444885 0.292803442287824 0.122244488977956 0.0942562592047128],...\n 'String',{'This boxes size','should adjust to','the text size'});\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.71643086172344 0.195876288659794 0.10020240480962 0.209240982129118],...\n 'String',{'Multiple Lines due to fixed width'},...\n 'FitBoxToText','off');\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.729456913827655 0.608247422680412 0.0851723446893787 0.104257797902974],...\n 'String',{'Overlapping','and italic'},...\n 'FontAngle','italic',...\n 'FitBoxToText','off',...\n 'BackgroundColor',[0.756862759590149 0.866666674613953 0.776470601558685]);\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.420000437011093 0.680170575692964 0.155149863590109 0.192171438527209],...\n 'VerticalAlignment','middle',...\n 'String',{'Text with a','thick and','dotted','border'},...\n 'HorizontalAlignment','center',...\n 'FitBoxToText','off',...\n 'LineStyle',':',...\n 'LineWidth',4);\n\n % Create textarrow\n annotation(gcf,'textarrow',[0.21943887775551 0.2625250501002],...\n [0.371002132196162 0.235640648011782],'TextEdgeColor','none',...\n 'TextBackgroundColor',[0.678431391716003 0.921568632125854 1],...\n 'TextRotation',30,...\n 'VerticalAlignment','bottom',...\n 'HorizontalAlignment','center',...\n 'String',{'Rotated Text'});\n\n % Create textarrow\n annotation(gcf,'textarrow',[0.238436873747493 0.309619238476953],...\n [0.604315828808828 0.524300441826215],'TextEdgeColor','none',...\n 'TextColor',[1 1 1],...\n 'TextBackgroundColor',[0 0 1],...\n 'TextRotation',30,...\n 'VerticalAlignment','bottom',...\n 'HorizontalAlignment','center',...\n 'String',{'Rotated Text 2'},...\n 'HeadStyle','diamond',...\n 'Color',[1 0 0]);\nend\n% =========================================================================\nfunction [stat] = annotationTextUnits()\n stat.description = 'Text with changed Units';\n stat.unreliable = isMATLAB('<', [8,4]); % FIXME: investigate\n\n if ~exist('annotation')\n fprintf( 'annotation() not found. Skipping.\\n\\n' );\n stat.skip = true;\n return;\n end\n\n X1 = -5:0.1:5;\n Y1 = log(X1.^2+1);\n\n % Resize figure to fit all text inside\n set(gcf,'Units', 'inches');\n set(gcf,'Position', [1.03125, 1.03125, 10.416666666666666, 7.291666666666666 ]);\n\n % Otherwise the axes is plotted wrongly\n drawnow();\n\n % Create axes\n axes1 = axes('Parent',gcf,'Units','centimeters',...\n 'Position',[3.4369697916666664, 2.035743645833333 20.489627604166664 15.083009739583332]);\n hold(axes1,'all');\n\n % Create plot\n plot(X1,Y1);\n\n % Create text\n text('Parent',axes1,'Units','normalized',...\n 'String',' \\leftarrow some point on the curve',...\n 'Position',[0.295865633074935 0.457364341085271 0]);\n\n % Create text\n text('Parent',axes1,'Units','centimeters',...\n 'String','another point \\rightarrow',...\n 'Position',[12.2673383333333 2.98751989583333 0],...\n 'HorizontalAlignment','right');\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.305611222444885 0.292803442287824 0.122244488977956 0.0942562592047128],...\n 'String',{'This boxes size','should adjust to','the text size'},...\n 'FitBoxToText','off',...\n 'Units','pixels');\n\n\n % Create textarrow\n annotation(gcf,'textarrow',[0.21943887775551 0.2625250501002],...\n [0.371002132196162 0.235640648011782],'TextEdgeColor','none',...\n 'TextBackgroundColor',[0.678431391716003 0.921568632125854 1],...\n 'TextRotation',30,...\n 'HorizontalAlignment','center',...\n 'String',{'Rotated Text'},...\n 'Units','points');\n\n % Create textarrow\n annotation(gcf,'textarrow',[0.238436873747493 0.309619238476953],...\n [0.604315828808828 0.524300441826215],'TextEdgeColor','none',...\n 'TextColor',[1 1 1],...\n 'TextBackgroundColor',[0 0 1],...\n 'TextRotation',30,...\n 'HorizontalAlignment','center',...\n 'String',{'Rotated Text 2'},...\n 'HeadStyle','diamond',...\n 'Color',[1 0 0]);\n\n % Create textbox\n if ~isOctave(4)\n annotation(gcf,'textbox',...\n [0.71643086172344 0.195876288659794 0.10020240480962 0.209240982129118],...\n 'String',{'Multiple Lines due to fixed width'},...\n 'FitBoxToText','off',...\n 'Units','characters');\n else\n % Octave 4 doesn't seem to like the \"'Units','Characters'\" in there\n % so just remove the object altogether.\n % This is strange, since it is documented: https://www.gnu.org/software/octave/doc/interpreter/Plot-Annotations.html#Plot-Annotations\n end\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.420000437011093 0.680170575692964 0.155149863590109 0.192171438527209],...\n 'VerticalAlignment','middle',...\n 'String',{'Text with a','thick and','dotted','border'},...\n 'HorizontalAlignment','center',...\n 'FitBoxToText','off',...\n 'LineStyle',':',...\n 'LineWidth',4);\n\n % Create textbox\n annotation(gcf,'textbox',...\n [0.729456913827655 0.608247422680412 0.0851723446893787 0.104257797902974],...\n 'String',{'Overlapping','and italic'},...\n 'FontAngle','italic',...\n 'FitBoxToText','off',...\n 'BackgroundColor',[0.756862759590149 0.866666674613953 0.776470601558685]);\nend\n% =========================================================================\nfunction [stat] = imageOrientation_inline()\n% Run test and save pictures as inline TikZ code\n [stat] = imageOrientation(false);\n stat.unreliable = isOctave; % FIXME\nend\nfunction [stat] = imageOrientation_PNG()\n% Run test and save pictures as external PNGs\n [stat] = imageOrientation(true);\n stat.unreliable = isOctave; % FIXME\nend\nfunction [stat] = imageOrientation(imagesAsPng)\n% Parameter 'imagesAsPng' is boolean\n stat.description = ['Systematic test of different axis', ...\n ' orientations and visibility (imagesAsPng = ', ...\n num2str(imagesAsPng), ').'];\n stat.extraOptions = {'imagesAsPng', imagesAsPng};\n\n data = magic(3);\n data = [[0,0,9]; data]; % ensure non-quadratic matrix\n\n subplot(3,2,1);\n imagesc(data); colormap(hot);\n set(gca,'XDir','normal');\n xlabel('XDir normal');\n set(gca,'YDir','normal');\n ylabel('YDir normal');\n\n subplot(3,2,2);\n imagesc(data); colormap(hot);\n set(gca,'XDir','reverse');\n xlabel('XDir reverse');\n set(gca,'YDir','normal');\n ylabel('YDir normal');\n\n subplot(3,2,3);\n imagesc(data); colormap(hot);\n set(gca,'XDir','normal');\n xlabel('XDir normal');\n set(gca,'YDir','reverse');\n ylabel('YDir reverse');\n\n subplot(3,2,4);\n imagesc(data); colormap(hot);\n set(gca,'XDir','reverse');\n xlabel('XDir reverse');\n set(gca,'YDir','reverse');\n ylabel('YDir reverse');\n\n subplot(3,2,5);\n imagesc(data); colormap(hot);\n set(gca,'XDir','normal');\n xlabel('XDir normal');\n set(gca,'YDir','reverse');\n ylabel('YDir reverse');\n axis off;\n title('like above, but axis off');\n\n subplot(3,2,6);\n imagesc(data); colormap(hot);\n set(gca,'XDir','reverse');\n xlabel('XDir reverse');\n set(gca,'YDir','reverse');\n ylabel('YDir reverse');\n axis off;\n title('like above, but axis off');\nend\n% =========================================================================\nfunction [stat] = texInterpreter()\n stat.description = 'Combinations of tex commands';\n axes\n text(0.1,0.9, {'\\bfBold text before \\alpha and also afterwards.', 'Even the next line is bold \\itand a bit italic.'});\n text(0.1,0.75, {'Changing \\bfthe\\fontname{Courier} font or \\color[rgb]{0,0.75,0}color doesn''t', 'change the style. Resetting \\rmthe style', 'doesn''t change the font or color.'});\n text(0.1,0.6, 'Styles can be {\\bflimited} using \\{ and \\}.');\n text(0.1,0.45, {'But what happens to the output if there is', '{\\bfuse an \\alpha inside} the limitted style.'});\n text(0.1,0.3, 'Or if the\\fontsize{14} size\\color{red} and color are \\fontsize{10}changed at different\\color{blue} points.');\n text(0.1,0.15, {'Also_{some \\bf subscripts} and^{superscripts} are possible.', 'Without brackets, it l^o_oks like t_his.' });\nend\n% =========================================================================\nfunction [stat] = stackedBarsWithOther()\n stat.description = 'stacked bar plots and other plots';\n stat.issues = [442,648];\n stat.unreliable = isOctave || isMATLAB(); % FIXME: #614\n % details: https://github.com/matlab2tikz/matlab2tikz/pull/614#issuecomment-91844506\n\n % dataset stacked\n data = ACID_data;\n Y = round(abs(data(7:-1:3,1:3))/10);\n n = size(Y,1);\n xVals = (1:n).';\n yVals = min((xVals).^2, sum(Y,2));\n\n subplot(2,1,1); hold on;\n bar(Y,'stacked');\n plot(xVals, yVals, 'Color', 'r', 'LineWidth', 2);\n legend('show');\n\n subplot(2,1,2); hold on;\n b2 = barh(Y,'stacked','BarWidth', 0.75);\n plot(yVals, xVals, 'Color', 'b', 'LineWidth', 2);\n\n set(b2(1),'FaceColor','c','EdgeColor','none')\nend\n% =========================================================================\nfunction [stat] = colorbarLabelTitle()\n stat.description = 'colorbar with label and title';\n stat.unreliable = isOctave; %FIXME: investigate\n stat.issues = 429;\n\n % R2014b handles colorbars smart: `XLabel` and `YLabel` merged into `Label`\n % Use colormap 'jet' to create comparable output with MATLAB R2014b\n % * Check horizontal/vertical colorbar (subplots)\n % * Check if 'direction' is respected\n % * Check if multiline label and title works\n % * Check if latex interpreter works in label and title\n\n subplot(1,2,1)\n imagesc(magic(3));\n hc = colorbar;\n colormap('jet');\n title(hc,'title $\\beta$','Interpreter','latex');\n ylabel(hc,'label $a^2$','Interpreter','latex');\n set(hc,'YDir','reverse');\n\n subplot(1,2,2)\n label_multiline = {'first','second','third'};\n title_multiline = {'title 1','title 2'};\n imagesc(magic(3));\n hc = colorbar('southoutside');\n colormap('jet');\n title(hc,title_multiline);\n xlabel(hc,label_multiline);\nend\n% =========================================================================\nfunction [stat] = textAlignment()\n stat.description = 'alignment of text boxes and position relative to axis';\n stat.issues = 378;\n stat.unreliable = isOctave; %FIXME: investigate\n\n plot([0.0 2.0], [1.0 1.0],'k'); hold on;\n plot([0.0 2.0], [0.5 0.5],'k');\n plot([0.0 2.0], [1.5 1.5],'k');\n plot([1.0 1.0], [0.0 2.0],'k');\n plot([1.5 1.5], [0.0 2.0],'k');\n plot([0.5 0.5], [0.0 2.0],'k');\n\n text(1.0,1.0,'h=c, v=m', ...\n 'HorizontalAlignment','center','VerticalAlignment','middle');\n text(1.5,1.0,'h=l, v=m', ...\n 'HorizontalAlignment','left','VerticalAlignment','middle');\n text(0.5,1.0,'h=r, v=m', ...\n 'HorizontalAlignment','right','VerticalAlignment','middle');\n\n text(0.5,1.5,'h=r, v=b', ...\n 'HorizontalAlignment','right','VerticalAlignment','bottom');\n text(1.0,1.5,'h=c, v=b', ...\n 'HorizontalAlignment','center','VerticalAlignment','bottom');\n text(1.5,1.5,'h=l, v=b', ...\n 'HorizontalAlignment','left','VerticalAlignment','bottom');\n\n text(0.5,0.5,'h=r, v=t', ...\n 'HorizontalAlignment','right','VerticalAlignment','top');\n text(1.0,0.5,'h=c, v=t', ...\n 'HorizontalAlignment','center','VerticalAlignment','top');\n h_t = text(1.5,0.5,{'h=l, v=t','multiline'}, ...\n 'HorizontalAlignment','left','VerticalAlignment','top');\n set(h_t,'BackgroundColor','g');\n\n text(0.5,2.1, 'text outside axis (will be removed by cleanfigure())');\n text(1.8,0.7, {'text overlapping', 'axis limits'});\n text(-0.2,0.7, {'text overlapping', 'axis limits'});\n text(0.9,0.0, {'text overlapping', 'axis limits'});\n h_t = text(0.9,2.0, {'text overlapping', 'axis limits'});\n\n % Set different units to test if they are properly handled\n set(h_t, 'Units', 'centimeters');\nend\n% =========================================================================\nfunction [stat] = overlappingPlots()\n stat.description = 'Overlapping plots with zoomed data and varying background.';\n stat.unreliable = isMATLAB();\n % FIXME: this test is unreliable because the automatic axis limits of `ax2`\n % differ on different test platforms. Reckon this by creating the figure\n % using `ACID(97)` and then manually slightly modify the window size.\n % We should not set the axis limits explicitly rather find a better way.\n % Workaround: Slightly adapt width and height of `ax2`.\n % #591, #641 (issuecomment-106241711)\n stat.issues = 6;\n\n % create pseudo random data and convert it from matrix to vector\n l = 256;\n l_zoom = 64;\n wave = sin(linspace(1,10*2*pi,l));\n\n % plot data\n ax1 = axes();\n plot(ax1, wave);\n\n % overlapping plots with zoomed data\n ax3 = axes('Position', [0.2, 0.6, 0.3, 0.4]);\n ax4 = axes('Position', [0.7, 0.2, 0.2, 0.4]);\n ax2 = axes('Position', [0.25, 0.3, 0.3, 0.4]);\n\n plot(ax2, 1:l_zoom, wave(1:l_zoom), 'r');\n plot(ax3, 1:l_zoom, wave(1:l_zoom), 'k');\n plot(ax4, 1:l_zoom, wave(1:l_zoom), 'k');\n\n % set x-axis limits of main plot and first subplot\n xlim(ax1, [1,l]);\n xlim(ax3, [1,l_zoom]);\n\n % axis background color: ax2 = default, ax3 = green, ax4 = transparent\n set(ax3, 'Color', 'green');\n set(ax4, 'Color', 'none');\nend\n% =========================================================================\nfunction [stat] = histogramPlot()\n if isOctave || isMATLAB('<', [8,4])\n % histogram() was introduced in Matlab R2014b.\n % TODO: later replace by 'isHG2()'\n fprintf('histogram() not found. Skipping.\\n' );\n stat.skip = true;\n return;\n end\n stat.description = 'overlapping histogram() plots and custom size bins';\n stat.issues = 525;\n\n x = [-0.2, -0.484, 0.74, 0.632, -1.344, 0.921, -0.598, -0.727,...\n -0.708, 1.045, 0.37, -1.155, -0.807, 1.027, 0.053, 0.863,...\n 1.131, 0.134, -0.017, -0.316];\n y = x.^2;\n edges = [-2 -1:0.25:3];\n histogram(x,edges);\n hold on\n h = histogram(y);\n set(h, 'orientation', 'horizontal');\nend\n% =========================================================================\nfunction [stat] = alphaTest()\n stat.description = 'overlapping objects with transparency and other properties';\n stat.issues = 593;\n\n contourf(peaks(5)); hold on; % background\n\n % rectangular patch with different properties\n h = fill([2 2 4 4], [2 3 3 2], 'r');\n set(h, 'FaceColor', 'r');\n set(h, 'FaceAlpha', 0.2);\n set(h, 'EdgeColor', 'g');\n set(h, 'EdgeAlpha', 0.4);\n set(h, 'LineStyle', ':');\n set(h, 'LineWidth', 4);\n set(h, 'Marker', 'x');\n set(h, 'MarkerSize', 16);\n set(h, 'MarkerEdgeColor', [1 0.5 0]);\n set(h, 'MarkerFaceColor', [1 0 0]); % has no visual effect\n\n % line with different properties\n h = line([3 3.5], [1.5 3.5]);\n set(h, 'Color', [1 1 1]);\n if isMATLAB('>=', [8,4])\n % TODO: later replace by 'isHG2()'\n fprintf('Note: RGBA (with alpha channel) only in HG2.\\n' );\n set(h, 'Color', [1 1 1 0.3]);\n end\n set(h, 'LineStyle', ':');\n set(h, 'LineWidth', 6);\n set(h, 'Marker', 'o');\n set(h, 'MarkerSize', 14);\n set(h, 'MarkerEdgeColor', [1 1 0]);\n set(h, 'MarkerFaceColor', [1 0 0]);\nend\n% =========================================================================\nfunction [stat] = removeOutsideMarker()\n stat.description = 'remove markers outside of the box';\n stat.issues = 788;\n\n % Create the data and plot it\n xdata = -1 : 0.5 : 1.5;\n ydata_marker = 1.5 * ones(size(xdata));\n ydata_line = 1 * ones(size(xdata)); \n ydata_combined = 0.5 * ones(size(xdata));\n plot(xdata, ydata_marker, '*', ...\n xdata, ydata_line, '-', ...\n xdata, ydata_combined, '*-');\n title('Markers at -1 and 0.5 should be removed, the line shortened'); \n\n % Change the limits, so one marker is outside the box\n ylim([0, 2]);\n xlim([0, 2]);\n \n % Remove it\n cleanfigure;\n \n % Change the limits back to check result\n xlim([-1, 2]);\nend\n% =========================================================================\nfunction [stat] = colorbars()\n stat.description = 'Manual positioning of colorbars';\n stat.issues = [933 937];\n stat.unreliable = isOctave(); %FIXME: positions differ between Octave 3.2 and 4.0.\n\n shift = [0.2 0.8 0.2 0.8];\n axLoc = {'in','out','out','in'};\n\n for iAx = 1:4\n hAx(iAx) = subplot(2,2,iAx);\n axPos = get(hAx(iAx), 'Position');\n cbPos = [axPos(1)+shift(iAx)*axPos(3), axPos(2), 0.02, 0.2]; \n\n hCb(iAx) = colorbar('Position', cbPos);\n try\n % only in HG2\n set(hCb(iAx), 'AxisLocation', axLoc{iAx});\n end\n title(['AxisLocation = ' axLoc{iAx}]);\n grid('on');\n end\nend\n% =========================================================================\nfunction [stat] = colorbarManualLocationRightOut()\n stat.description = 'Manual positioning of colorbars - Right Out';\n stat.issues = [933 937];\n\n axLoc = 'out';\n figPos = [1 , 1, 11 ,10];\n axPos(1,:) = [1 , 1, 8 , 3];\n axPos(2,:) = [1 , 5, 8 , 3];\n cbPos = [9.5, 1, 0.5, 7]; \n\n colorbarManualLocationHelper_(figPos, axPos, cbPos, axLoc);\nend\nfunction [stat] = colorbarManualLocationRightIn()\n stat.description = 'Manual positioning of colorbars - Right In';\n stat.issues = [933 937];\n\n axLoc = 'in';\n figPos = [ 1 , 1, 11 ,10]; \n axPos(1,:) = [ 1 , 1, 8 , 3];\n axPos(2,:) = [ 1 , 5, 8 , 3];\n cbPos = [10.5, 1, 0.5, 7]; \n\n colorbarManualLocationHelper_(figPos, axPos, cbPos, axLoc);\nend\nfunction [stat] = colorbarManualLocationLeftOut()\n stat.description = 'Manual positioning of colorbars - Left Out';\n stat.issues = [933 937];\n\n axLoc = 'out'; \n figPos = [1 , 1, 11 , 10];\n axPos(1,:) = [2.5, 1, 8 , 3];\n axPos(2,:) = [2.5, 5, 8 , 3];\n cbPos = [1.5, 1, 0.5, 7]; \n\n colorbarManualLocationHelper_(figPos, axPos, cbPos, axLoc);\nend\nfunction [stat] = colorbarManualLocationLeftIn()\n stat.description = 'Manual positioning of colorbars - Left In';\n stat.issues = [933 937];\n\n axLoc = 'in'; \n figPos = [1 , 1, 11 , 10];\n axPos(1,:) = [2.5, 1, 8 , 3];\n axPos(2,:) = [2.5, 5, 8 , 3];\n cbPos = [0.5, 1, 0.5, 7]; \n\n colorbarManualLocationHelper_(figPos, axPos, cbPos, axLoc);\nend\nfunction colorbarManualLocationHelper_(figPos, axPos, cbPos, axLoc)\n % this is a helper function, not a test case\n set(gcf, 'Units','centimeters','Position', figPos);\n\n hAx(1) = axes('Units', 'centimeters', 'Position', axPos(1,:));\n imagesc([1,2,3], [4,5,6], magic(3)/9, [0,1]);\n\n hAx(2) = axes('Units', 'centimeters', 'Position', axPos(2,:));\n imagesc([1,2,3], [4,5,6], magic(3)/9, [0,1]);\n\n hCb = colorbar('Units', 'centimeters', 'Position', cbPos);\n try\n % only in HG2\n %TODO: check if there are HG1 / Octave counterparts for this property\n set(hCb, 'AxisLocation', axLoc);\n end\n \n labelProperty = {'Label', 'YLabel'}; %YLabel as fallback for\n idxLabel = find(cellfun(@(p) isprop(hCb, p), labelProperty), 1);\n if ~isempty(idxLabel)\n hLabel = get(hCb, labelProperty{idxLabel});\n set(hLabel, 'String', ['AxisLocation = ' axLoc]);\n end\nend\n% =========================================================================\n", "meta": {"author": "matlab2tikz", "repo": "matlab2tikz", "sha": "806c97d99f87f8a1e99a7c54e853c25c82aac301", "save_path": "github-repos/MATLAB/matlab2tikz-matlab2tikz", "path": "github-repos/MATLAB/matlab2tikz-matlab2tikz/matlab2tikz-806c97d99f87f8a1e99a7c54e853c25c82aac301/test/suites/ACID.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5813031051514762, "lm_q2_score": 0.6370307875894138, "lm_q1q2_score": 0.3703079749028167}} {"text": "function pass = test_oldschool\n\n%% Test the 'old-school' linop syntaxes for ATAP compatibility\n% Toby Driscoll, 3 March 2014\n\nd = domain(-1,1);\n\npref = cheboppref();\npref.discretization = @chebcolloc2;\n\n%% Just test whether these will execute.\npass(1) = doesNotCrash( @() diff(d) );\npass(2) = doesNotCrash( @() eye(d) );\npass(3) = doesNotCrash( @() diag(chebfun('x',d([1 end])), d) );\npass(4) = doesNotCrash( @() cumsum(d) );\npass(5) = doesNotCrash( @() sum(d) );\npass(6) = doesNotCrash( @() feval(d, 0, 'left') );\npass(7) = doesNotCrash( @() zeros(d) );\n\n%% Test the feval-style instantiation syntax.\nD = diff(d);\nwarnState = warning('off', 'CHEBFUN:LINOP:feval:deprecated');\npass(8) = norm( D(8) - matrix(D,8,pref) ) < 2e-14;\nwarning(warnState);\n\n%% Test boundary condition syntax\nA = D^2;\n[dummy1, dummy2, dummy3, A0] = matrix(A,10,pref); % version with no BCs\n[z,e,s,dif] = linop.primitiveFunctionals(d([1 end]));\nA = addConstraint(A,e(d(1)),0);\nA = addConstraint(A,e(d(end))*D,0);\nA1 = matrix(A,10,pref); % first two rows hold BCs\ncorrect = cell2mat(A0); \ncorrect([1 end],:) = A1(1:2,:); % classic row replacement\nwarnState = warning('off', 'CHEBFUN:LINOP:feval:deprecated');\nAold = feval(A,12,'oldschool');\nwarning(warnState);\npass(9) = norm( correct - Aold ) < 2e-14;\n\nend\n\nfunction pass = doesNotCrash(fn)\ntry\n fn();\n pass = true;\ncatch ME\n pass = false;\nend\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/linop/test_oldschool.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.37030796966704904}} {"text": "%% Copyright (C) 2014-2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym erf (@var{x})\n%% Symbolic erf function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = erf (x)\n%% @result{} y = (sym) erf(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = erf(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('erf', x);\nend\n\n\n%!error erf (sym(1), 2)\n%!assert (isequaln (erf (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 1;\n%! x = sym('1');\n\n%!test\n%! f1 = erf(x);\n%! f2 = erf(d);\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = erf(A);\n%! f2 = erf(D);\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = erf (d);\n%! f = erf (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/erf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.37030796966704904}} {"text": "function triangle_to_fem ( prefix )\n\n%*****************************************************************************80\n%\n%% MAIN is the main program for TRIANGLE_TO_FEM.\n%\n% Discussion:\n%\n% TRIANGLE_TO_FEM converts mesh data from TRIANGLE format to FEM format.\n%\n% Usage:\n%\n% triangle_to_fem prefix\n%\n% where 'prefix' is the common filename prefix:\n%\n% * 'prefix'.node contains the triangle node coordinates,\n% * 'prefix'.ele contains the triangle element node connectivity.\n% * 'prefix'_nodes.txt will contain the node coordinates.\n% * 'prefix'_elements.txt will contain the element node connectivity.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 12 October 2014\n%\n% Author:\n%\n% John Burkardt\n%\n timestamp ( );\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TRIANGLE_TO_FEM\\n' );\n fprintf ( 1, ' MATLAB version:\\n' );\n fprintf ( 1, ' Read a mesh description created by TRIANGLE:\\n' );\n fprintf ( 1, ' * \"prefix\".node, node coordinates.\\n' );\n fprintf ( 1, ' * \"prefix\".ele, element connectivity.\\n' );\n fprintf ( 1, ' Write two simple FEM files listing nodes and elements.\\n' );\n fprintf ( 1, ' * \"prefix\"_nodes.txt, node coordinates.\\n' );\n fprintf ( 1, ' * \"prefix\"_elements.txt, element connectivity.\\n' );\n%\n% Get the filename prefix.\n%\n if ( nargin < 1 )\n\n prefix = input ( 'Enter the filename prefix: ' );\n\n end\n%\n% Create the filenames.\n%\n triangle_node_filename = strcat ( prefix, '.node' );\n triangle_element_filename = strcat ( prefix, '.ele' );\n fem_node_filename = strcat ( prefix, '_nodes.txt' );\n fem_element_filename = strcat ( prefix, '_elements.txt' );\n%\n% Read the triangle node size information.\n%\n [ node_num, m, node_att_num, node_marker_num ] = node_size_read ( ...\n triangle_node_filename );\n%\n% Read the triangle element size information.\n%\n [ element_num, element_order, element_att_num ] = element_size_read ( ...\n triangle_element_filename );\n%\n% Report sizes.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' Size information from TRIANGLE files:\\n' );\n fprintf ( 1, ' Spatial dimension M = %d\\n', m );\n fprintf ( 1, ' Number of nodes NODE_NUM = %d\\n', node_num );\n fprintf ( 1, ' NODE_ATT_NUM = %d\\n', node_att_num );\n fprintf ( 1, ' NODE_MARKER_NUM = %d\\n', node_marker_num );\n fprintf ( 1, ' Number of elements ELEMENT_NUM = %d\\n', element_num );\n fprintf ( 1, ' Element order ELEMENT_ORDER = %d\\n', element_order );\n fprintf ( 1, ' ELEMENT_ATT_NUM = %d\\n', element_att_num );\n%\n% Read data.\n%\n [ node_x, node_att, node_marker ] = node_data_read ( ...\n triangle_node_filename, node_num, m, node_att_num, node_marker_num );\n\n [ element_node, element_att ] = element_data_read ( ...\n triangle_element_filename, element_num, element_order, element_att_num );\n%\n% Write data.\n%\n r8mat_write ( fem_node_filename, m, node_num, node_x );\n\n i4mat_write ( fem_element_filename, element_order, element_num, ...\n element_node );\n%\n% Terminate.\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TRIANGLE_TO_FEM:\\n' );\n fprintf ( 1, ' Normal end of execution.\\n' );\n fprintf ( 1, '\\n' );\n timestamp ( );\n\n return\nend\nfunction [ element_node, element_att ] = element_data_read ( ...\n element_filename, element_num, element_order, element_att_num )\n\n%*****************************************************************************80\n%\n%% ELEMENT_DATA_READ reads the data from an element file.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 11 October 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string ELEMENT_FILENAME, the name of the file.\n%\n% Input, integer ELEMENT_NUM, the number of elements.\n%\n% Input, integer ELEMENT_ORDER, the order of the elements.\n%\n% Input, integer ELEMENT_ATT_NUM, number of element attributes \n% listed on each node record.\n%\n% Output, integer ELEMENT_NODE(ELEMENT_ORDER,ELEMENT_NUM), \n% the indices of the nodes that make up each element.\n%\n% Output, real ELEMENT_ATT(ELEMENT_ATT_NUM,ELEMENT_NUM), the \n% attributes of each element.\n%\n element = 0;\n\n input = fopen ( element_filename, 'rt' );\n\n if ( input < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ELEMENT_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unable to open file.\\n' );\n error ( 'ELEMENT_DATA_READ - Fatal error!' );\n end\n%\n% Create format.\n%\n format = '%d';\n for i = 1 : element_order\n format = strcat ( format, '%d' );\n end\n for i = 1 : element_att_num\n format = strcat ( format, '%g' );\n end\n%\n% Create arrays.\n%\n element_node = zeros ( element_order, element_num );\n element_att = zeros ( element_att_num, element_num );\n%\n% Read values and place in the arrays.\n%\n while ( 1 )\n\n text = fgets ( input );\n\n if ( text == -1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ELEMENT_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unexpected end of file while reading.\\n' );\n error ( 'ELEMENT_DATA_READ - Fatal error!' );\n end\n\n if ( s_len_trim ( text ) == 0 )\n continue\n end\n\n if ( text(1) == '#' )\n continue\n end\n%\n% Ignore the dimension line.\n%\n if ( element == 0 )\n\n else\n\n [ value, count ] = sscanf ( text, format );\n\n if ( count < 1 + element_order + element_att_num )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ELEMENT_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Line did not have enough data.\\n' );\n error ( 'ELEMENT_DATA_READ - Fatal error!' );\n end\n\n j = 1;\n\n for i = 1 : element_order\n j = j + 1;\n element_node(i,element) = value(j);\n end\n\n for i = 1 : element_att_num\n element_att(i,element) = value(j);\n end\n\n end\n\n element = element + 1;\n\n if ( element_num < element )\n break\n end\n\n end\n\n fclose ( input );\n\n return\nend\nfunction [ element_num, element_order, element_att_num ] = ...\n element_size_read ( element_filename )\n\n%*****************************************************************************80\n%\n%% ELEMENT_SIZE_READ reads the header information from an element file.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 11 October 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string ELEMENT_FILENAME, the name of the \n% element file.\n%\n% Output, integer ELEMENT_NUM, the number of elements.\n%\n% Output, integer ELEMENT_ORDER, the order of the elements.\n%\n% Output, integer ELEMENT_ATT_NUM, the number of \n% element attributes.\n%\n input = fopen ( element_filename, 'rt' );\n\n if ( input < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ELEMENT_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unable to open file.\\n' );\n error ( 'ELEMENT_SIZE_READ - Fatal error!' );\n end\n\n while ( 1 )\n\n text = fgets ( input );\n\n if ( text == -1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ELEMENT_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unexpected end of file while reading.\\n' );\n error ( 'ELEMENT_SIZE_READ - Fatal error!' );\n end\n\n if ( s_len_trim ( text ) == 0 )\n continue\n end\n\n if ( text(1) == '#' )\n continue\n end\n\n [ value, count ] = sscanf ( text, '%d%d%d%d' );\n\n if ( count < 3 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'ELEMENT_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Header line did not have 3 value integers.\\n' );\n error ( 'ELEMENT_SIZE_READ - Fatal error!' );\n end\n\n element_num = value(1);\n element_order = value(2);\n element_att_num = value(3);\n\n break\n\n end\n\n fclose ( input );\n\n return\nend\nfunction i4mat_write ( output_filename, m, n, table )\n\n%*****************************************************************************80\n%\n%% I4MAT_WRITE writes an I4MAT file.\n%\n% Discussion:\n%\n% An I4MAT is an array of I4's.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 26 June 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string OUTPUT_FILENAME, the output filename.\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, integer TABLE(M,N), the points.\n%\n\n%\n% Open the file.\n%\n output_unit = fopen ( output_filename, 'wt' );\n\n if ( output_unit < 0 ) \n fprintf ( 1, '\\n' );\n fprintf ( 1, 'I4MAT_WRITE - Error!\\n' );\n fprintf ( 1, ' Could not open the output file.\\n' );\n error ( 'I4MAT_WRITE - Error!' );\n end\n%\n% Write the data.\n%\n for j = 1 : n\n for i = 1 : m\n fprintf ( output_unit, ' %d', round ( table(i,j) ) );\n end\n fprintf ( output_unit, '\\n' );\n end\n%\n% Close the file.\n%\n fclose ( output_unit );\n\n return\nend\nfunction [ node_coord, node_att, node_marker ] = node_data_read ( ...\n node_filename, node_num, node_dim, node_att_num, node_marker_num )\n\n%*****************************************************************************80\n%\n%% NODE_DATA_READ reads the data from a node file.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 11 October 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string NODE_FILENAME, the name of the node file.\n%\n% Input, integer NODE_NUM, the number of nodes.\n%\n% Input, integer NODE_DIM, the spatial dimension.\n%\n% Input, integer NODE_ATT_NUM, number of node attributes \n% listed on each node record.\n%\n% Input, integer NODE_MARKER_NUM, 1 if every node record \n% includes a final boundary marker value.\n%\n% Output, real NODE_COORD(NODE_DIM,NODE_NUM), the nodal \n% coordinates.\n%\n% Output, real NODE_ATT(NODE_ATT_NUM,NODE_NUM), the nodal \n% attributes.\n%\n% Output, integer NODE_MARKER(NODE_MARKER_NUM,NODE_NUM), the \n% node markers.\n%\n node = 0;\n\n input = fopen ( node_filename, 'rt' );\n\n if ( input < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'NODE_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unable to open file.\\n' );\n error ( 'NODE_DATA_READ - Fatal error!' );\n end\n%\n% Create format.\n%\n format = '%d';\n for i = 1 : node_dim\n format = strcat ( format, '%g' );\n end\n for i = 1 : node_att_num\n format = strcat ( format, '%g' );\n end\n for i = 1 : node_marker_num\n format = strcat ( format, '%d' );\n end\n%\n% Create arrays.\n%\n node_coord = zeros ( node_dim, node_num );\n node_att = zeros ( node_att_num, node_num );\n node_marker = zeros ( node_marker_num, node_num );\n%\n% Read values and place in the arrays.\n%\n while ( 1 )\n\n text = fgets ( input );\n\n if ( text == -1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'NODE_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unexpected end of file while reading.\\n' );\n error ( 'NODE_DATA_READ - Fatal error!' );\n end\n\n if ( s_len_trim ( text ) == 0 )\n continue\n end\n\n if ( text(1) == '#' )\n continue\n end\n%\n% Ignore the dimension line.\n%\n if ( node == 0 )\n\n else\n\n [ value, count ] = sscanf ( text, format );\n\n if ( count < 1 + node_dim + node_att_num + node_marker_num )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'NODE_DATA_READ - Fatal error!\\n' );\n fprintf ( 1, ' Line did not have enough data.\\n' );\n error ( 'NODE_DATA_READ - Fatal error!' );\n end\n\n j = 1;\n\n for i = 1 : node_dim\n j = j + 1;\n node_coord(i,node) = value(j);\n end\n\n for i = 1 : node_att_num\n j = j + 1;\n node_att(i,node) = value(j);\n end\n\n for i = 1 : node_marker_num\n j = j + 1;\n node_marker(i,node) = value(j);\n end\n\n end\n\n node = node + 1;\n\n if ( node_num < node )\n break\n end\n\n end\n\n fclose ( input );\n\n return\nend\nfunction [ node_num, node_dim, node_att_num, node_marker_num ] = ...\n node_size_read ( node_filename )\n\n%*****************************************************************************80\n%\n%% NODE_SIZE_READ reads the header information from a node file.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 11 October 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string NODE_FILENAME, the name of the node file.\n%\n% Output, integer NODE_NUM, the number of nodes.\n%\n% Output, integer NODE_DIM, the spatial dimension.\n%\n% Output, integer NODE_ATT_NUM, number of node attributes \n% listed on each node record.\n%\n% Output, integer NODE_MARKER_NUM, 1 if every node record \n% includes a final boundary marker value.\n%\n input = fopen ( node_filename, 'rt' );\n\n if ( input < 0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'NODE_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unable to open file.\\n' );\n error ( 'NODE_SIZE_READ - Fatal error!' );\n end\n\n while ( 1 )\n\n text = fgets ( input );\n\n if ( text == -1 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'NODE_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Unexpected end of file while reading.\\n' );\n error ( 'NODE_SIZE_READ - Fatal error!' );\n end\n\n if ( s_len_trim ( text ) == 0 )\n continue\n end\n\n if ( text(1) == '#' )\n continue\n end\n\n [ value, count ] = sscanf ( text, '%d%d%d%d' );\n\n if ( count < 4 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'NODE_SIZE_READ - Fatal error!\\n' );\n fprintf ( 1, ' Header line did not have 4 value integers.\\n' );\n error ( 'NODE_SIZE_READ - Fatal error!' );\n end\n\n node_num = value(1);\n node_dim = value(2);\n node_att_num = value(3);\n node_marker_num = value(4);\n\n break\n\n end\n\n fclose ( input );\n\n return\nend\nfunction r8mat_write ( output_filename, m, n, table )\n\n%*****************************************************************************80\n%\n%% R8MAT_WRITE writes an R8MAT file.\n%\n% Discussion:\n%\n% An R8MAT is an array of R8's.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 February 2010\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string OUTPUT_FILENAME, the output filename.\n%\n% Input, integer M, the spatial dimension.\n%\n% Input, integer N, the number of points.\n%\n% Input, real TABLE(M,N), the points.\n%\n\n%\n% Open the file.\n%\n output_unit = fopen ( output_filename, 'wt' );\n\n if ( output_unit < 0 ) \n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R8MAT_WRITE - Error!\\n' );\n fprintf ( 1, ' Could not open the output file.\\n' );\n error ( 'R8MAT_WRITE - Error!' );\n end\n%\n% Write the data.\n%\n% Alternative print statements include:\n%\n% fprintf ( output_unit, ' %24.16e', table(i,j) );\n% fprintf ( output_unit, ' %14.6e', table(i,j) );\n%\n for j = 1 : n\n for i = 1 : m\n fprintf ( output_unit, ' %g', table(i,j) );\n end\n fprintf ( output_unit, '\\n' );\n end\n%\n% Close the file.\n%\n fclose ( output_unit );\n\n return\nend\nfunction len = s_len_trim ( s )\n\n%*****************************************************************************80\n%\n% S_LEN_TRIM returns the length of a character string to the last nonblank.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 June 2003\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, string S, the string to be measured.\n%\n% Output, integer LENGTH, the length of the string up to the last nonblank.\n%\n len = length ( s );\n\n while ( 0 < len )\n if ( s(len) ~= ' ' )\n return\n end\n len = len - 1;\n end\n\n return\nend\nfunction timestamp ( )\n\n%*****************************************************************************80\n%\n%% TIMESTAMP prints the current YMDHMS date as a timestamp.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 14 February 2003\n%\n% Author:\n%\n% John Burkardt\n%\n t = now;\n c = datevec ( t );\n s = datestr ( c, 0 );\n fprintf ( 1, '%s\\n', s );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/triangle_to_fem/triangle_to_fem.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813030761371503, "lm_q2_score": 0.6370307944803831, "lm_q1q2_score": 0.3703079604255395}} {"text": "%%% PosControl_Sim\nclear\npath('./icon/',path);\nInit;\n\n%Constant value\nRAD2DEG = 57.2957795;\nDEG2RAD = 0.0174533;\n%throttle when UAV is hovering\nTHR_HOVER = 0.609;\n%% Initial condition\nModelInit_PosE = [0, 0, -100];\nModelInit_VelB = [0, 0, 0];\nModelInit_AngEuler = [0, 0, 0];\nModelInit_RateB = [0, 0, 0];\nModelInit_Rads = 0;\n%% control parameter\n%Attitude PID parameters\nKp_PITCH_ANGLE = 6.5;\nKp_PITCH_AngleRate = 0.1;\nKi_PITCH_AngleRate = 0.02;\nKd_PITCH_AngleRate = 0.001;\nKp_ROLL_ANGLE = 6.5;\nKp_ROLL_AngleRate = 0.1;\nKi_ROLL_AngleRate = 0.02;\nKd_ROLL_AngleRate = 0.001;\n\nKp_YAW_AngleRate = 0.5;\nKi_YAW_AngleRate = 0.01;\nKd_YAW_AngleRate = 0.00;\n%Position PID parameters\nKpxp = 1.0;\nKpyp = 1.0;\nKpzp = 4.0;\nKvxp = 2.5; Kvxi = 0.4; Kvxd = 0.01;\nKvyp = 2.5; Kvyi = 0.4; Kvyd = 0.01;\nKvzp = 0.45; Kvzi = 0.01; Kvzd = 0.005;\n%integral saturation\nSaturation_I_RP_Max = 0.3;\nSaturation_I_RP_Min = -0.3;\nSaturation_I_Y_Max = 0.2;\nSaturation_I_Y_Min = -0.2;\nSaturation_I_ah = 3.43;\nSaturation_I_az = 5;\n\n%max control angle,default 35deg\nMAX_CONTROL_ANGLE_ROLL = 35;\nMAX_CONTROL_ANGLE_PITCH = 35;\n%max control angle rate,rad/s \nMAX_CONTROL_ANGLE_RATE_PITCH = 220;\nMAX_CONTROL_ANGLE_RATE_ROLL = 220;\nMAX_CONTROL_ANGLE_RATE_Y = 200;\n%Maximum control speed, m/s\nMAX_CONTROL_VELOCITY_XY = 5;\nMAX_CONTROL_VELOCITY_Z = 3;\n%Throttle amplitude\nMAX_MAN_THR = 0.9;\nMIN_MAN_THR = 0.05;\n%% run simulink model\nPosControl_Sim", "meta": {"author": "RflySim", "repo": "RflyExpCode", "sha": "7dbec4d8796d6e23ee86c523e4ba5712203b1519", "save_path": "github-repos/MATLAB/RflySim-RflyExpCode", "path": "github-repos/MATLAB/RflySim-RflyExpCode/RflyExpCode-7dbec4d8796d6e23ee86c523e4ba5712203b1519/code/e7/e7.3/Sim/Init_control.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8031738152021788, "lm_q2_score": 0.46101677931231594, "lm_q1q2_score": 0.3702766055124937}} {"text": "% dim_red_type: dimension reduction type: one of the strings: '', 'pca', 'ica'\n% new_dim: relevant only if dim_red_type is not ''\nfunction hglmm(numClusters, is_sampled, dim_red_type, new_dim, numOfEMIter, numOfCpus)\n\n fv_init;\n\n if ~exist('numOfEMIter', 'var')\n numOfEMIter = 10;\n end\n \n if ~exist('numOfCpus', 'var')\n numOfCpus = 4;\n end\n \n word2vec_sqrt = false;\n \n mult_factor = LMM_HGLMM_MULT_FACTOR;\n \n output(1, 'LMM_HGLMM_MULT_FACTOR = %d\\n', LMM_HGLMM_MULT_FACTOR);\n\n vectors_file_name = add_data_dir_base('GoogleNews_vectors_norm.mat');\n output_file_name = add_data_dir_base(sprintf('GoogleNews_norm_hglmm_%d.mat', numClusters));\n \n if word2vec_sqrt\n vectors_file_name = fname_concat(vectors_file_name, '_sqrt');\n output_file_name = fname_concat(output_file_name, '_sqrt');\n end\n \n if is_sampled\n vectors_file_name = fname_concat(vectors_file_name, '_sampled');\n output_file_name = fname_concat(output_file_name, '_sampled');\n end\n\n switch dim_red_type\n case {'pca', 'ica', 'wht'}\n post_fix = sprintf('_%s_%d', dim_red_type, new_dim);\n vectors_file_name = fname_concat(vectors_file_name, post_fix);\n output_file_name = fname_concat(output_file_name, post_fix);\n end\n \n output(1, 'reading vectors file %s\\n', vectors_file_name);\n load(vectors_file_name);\n output(1, 'done\\n');\n\n output(1, 'Calculating HGLMM, %d clusters\\n', numClusters);\n \n % multiply by LMM_HGLMM_MULT_FACTOR=10 due to numerical issue\n % transpose because the rows should be the samples\n vectors_ = mult_factor * vectors_';\n\n % calculate HGLMM\n \n output(1, 'numOfCpus = %d\\n', numOfCpus);\n output(1, 'numOfEMIter = %d\\n', numOfEMIter);\n \n [m_out, s_out, mu_out, sigma_out, b_out, prior_out, samplesWeightsOut ]=HybridEM(vectors_, numClusters, numOfEMIter, numOfCpus);\n\n save(output_file_name, 'm_out', 's_out', 'mu_out', 'sigma_out', 'b_out', 'prior_out', 'mult_factor', '-v7.3');\n\n output(1, 'saved to file: %s\\n', output_file_name);\n \n num_lmm = sum(sum(b_out));\n [rows, cols] = size(b_out);\n lmm_fraction = num_lmm / ( rows*cols );\n output(1, 'num_lmm: %d\\n', num_lmm);\n output(1, 'lmm_fraction: %.3f\\n', lmm_fraction);\n \nend\n", "meta": {"author": "layumi", "repo": "Image-Text-Embedding", "sha": "58f858da887f12ca94301c4f44113e2464d414ee", "save_path": "github-repos/MATLAB/layumi-Image-Text-Embedding", "path": "github-repos/MATLAB/layumi-Image-Text-Embedding/Image-Text-Embedding-58f858da887f12ca94301c4f44113e2464d414ee/word2vector_matlab/hglmm_fv_v1.6/fv/hglmm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723317123102956, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.370190792880969}} {"text": "function test_minkowski(P, closeAll)\nif nargin<2\n closeAll=false;\nend\nif closeAll\n close all\nend\ntmplt=['ust_s1_samusikImported_minkowski_' String.encodeBank(P) '_29D_15nn_3D.mat'];\nrun_umap('s1_samusikImported_29D.csv', 'label_column', 'end', ...\n 'label_file', 's1_29D.properties', ...\n 'n_components', 3, ...\n 'save_template_file', tmplt, ...\n 'metric', 'minkowski', ...\n 'dist_args', P);\nrun_umap('s2_samusikImported_29D.csv', ...\n 'template_file', tmplt, 'label_column', 'end', ...\n 'label_file', 's2_samusikImported_29D.properties', ...\n 'match_scenarios', 4, ...\n 'see_training', true, ...\n 'match_table_fig', false, ...\n 'match_histogram_fig', false, ...\n 'false_positive_negative_plot', true, 'match_supervisors', 3);\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/External/umap/umap/test_minkowski.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37019078565093844}} {"text": "function varargout = contourf( v, data, varargin )\n% spherical filled contour plot\n%\n% Syntax\n% contourf(v,data)\n%\n% Input\n% v - @vector3d\n% data - double\n%\n% Options\n% contours - number of contours\n%\n% See also\n% vector3d/plot vector3d/contour\n\nif nargin == 1, data = []; end\nif ischar(data)\n varargin = [data,varargin];\n data = [];\nend\n\n% in older matlab version we have to plot contour and countour lines\n% seperately to avoid artefacts\nif verLessThan('matlab','8.5')\n \n [varargout{1:nargout}] = v.smooth(data,'contours',10,'LineStyle','none',varargin{:});\n\n v.smooth(data,'contours',10,'fill','off','LineStyle','-','LineColor','k','hold',varargin{:});\nelse\n [varargout{1:nargout}] = v.smooth(data,'contours',10,'LineStyle','-','LineColor','k',varargin{:});\nend\n\nif nargout == 0, clear h; end\n\n% TODO: data may not set\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@vector3d/contourf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37019078565093844}} {"text": "function [Y,skel, channels] = loadMocapData()\n\n%YA = vargplvmLoadData('hierarchical/demHighFiveHgplvm1',[],[],'YA');\n%{\ncurDir = pwd;\ncd ../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/02/\nfileNameAsf='02.asf';\nfileNameAmc='02_05.amc';\nskel = acclaimReadSkel(fileNameAsf);\n[channels, skel] = acclaimLoadChannels(fileNameAmc, skel);\n% Remove root node?\nchannels(:, [1 3]) = zeros(size(channels, 1), 2);\nskelPlayData(skel, channels, 1/40);\ncd(curDir)\n%}\n%%\nclear\nclose all\n[Y, lbls, Ytest, lblstest,skel] = lvmLoadData2('cmuXNoRoot', '02', {'01','05','10'});\nYorig = Y;\n% REmove motion in xz?\n\nseq = cumsum(sum(lbls)) - [1:31];\n% Ywalk = Y(1:3:70,:); % Orig: Y(1:85,:);\n% Ypunch = Y(86:13:548,:); % Orig: Y(86:548,:);\n% Ywash = Y(549:20:1209,:); % Orig: Y(549:1209,:);\nYwalk = Y(1:2:70,:); % Orig: Y(1:85,:);\nYpunch = Y(86:13:548,:); % Orig: Y(86:548,:);\nYwash = Y(830:6:1140,:); % Orig: Y(549:1209,:);\n\n[channels xyzDiffIndices] = skelGetChannels(Ywalk);\nYwalk(:, xyzDiffIndices) = zeros(size(Ywalk(:, xyzDiffIndices) ));\n[channels xyzDiffIndices] = skelGetChannels(Ypunch);\nYpunch(:, xyzDiffIndices) = zeros(size(Ypunch(:, xyzDiffIndices) ));\n[channels xyzDiffIndices] = skelGetChannels(Ywash);\nYwash(:, xyzDiffIndices) = zeros(size(Ywash(:, xyzDiffIndices) ));\n\n\nY = [Ywalk; Ywash];\n[channels] = skelGetChannels(Y);\nclose; skelPlayData(skel, channels, 1/5);\n\n\n%%\n%{\n[channelsWalk] = skelGetChannels(Ywalk);\n[channelsPunch] = skelGetChannels(Ypunch);\n[channelsWash] = skelGetChannels(Ywash);\nclose; skelPlayData(skel, channelsWalk, 1/20);\nclose; skelPlayData(skel, channelsPunch, 1/20);\nclose; skelPlayData(skel, channelsWash, 1/20);\n%}\n\n\n\n%{\ntry\n load '../cmu13Data.mat'\ncatch\n [Y, lbls] = lvmLoadData2('cmu13');\n seq = cumsum(sum(lbls)) - [1:31];\n\n % load data\n [Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13NoRoot');\n skel = acclaimReadSkel('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13.asf');\n % (I think) any motion of the specific subject would do here, just to get\n % the channels\n [tmpchan, skel] = acclaimLoadChannels('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13_13.amc', skel);\nend\n%}\n\n\n\n\n\n\n\n%{ \nSee cmu49 for more coherent motions\ntry\n load '../cmu13Data.mat'\ncatch\n [Y, lbls] = lvmLoadData2('cmu13');\n seq = cumsum(sum(lbls)) - [1:31];\n\n % load data\n [Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13NoRoot');\n skel = acclaimReadSkel('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13.asf');\n % (I think) any motion of the specific subject would do here, just to get\n % the channels\n [tmpchan, skel] = acclaimLoadChannels('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13_13.amc', skel);\nend\nYjump = Y(35:90,:);\nYjacks = Y(677:end,:);\nchannels = skelGetChannels(Yjump);\nclose; skelPlayData(skel, channels, 1/20);\n%}\n\n%%\nfunction createCmuData(subject, motions)\nbaseDir = datasetsDirectory;\ndirSep = filesep;\n[Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13');\nskel = acclaimReadSkel([baseDir 'mocap' dirSep 'cmu' dirSep '13' dirSep '13.asf']);\nseq = cumsum(sum(lbls)) - [1:31];\n[tmpchan, skel] = acclaimLoadChannels([baseDir 'mocap' dirSep 'cmu' dirSep '13' dirSep '13_16.amc'], skel);\n[Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13NoRoot');\n\n\ntry\n load '../cmu13Data.mat'\ncatch\n [Y, lbls] = lvmLoadData2('cmu13');\n seq = cumsum(sum(lbls)) - [1:31];\n\n % load data\n [Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13NoRoot');\n skel = acclaimReadSkel('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13.asf');\n % (I think) any motion of the specific subject would do here, just to get\n % the channels\n [tmpchan, skel] = acclaimLoadChannels('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13_13.amc', skel);\nend\n\n\n \n\n\n\n%% \n%{\n%%%%%%%%%%%%%%%%%\n%baseDir = datasetsDirectory;\n%dirSep = filesep;\n%[Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13');\n%skel = acclaimReadSkel([baseDir 'mocap' dirSep 'cmu' dirSep '13' dirSep '13.asf']);\n%seq = cumsum(sum(lbls)) - [1:31];\n%[tmpchan, skel] = acclaimLoadChannels([baseDir 'mocap' dirSep 'cmu' dirSep '13' dirSep '13_16.amc'], skel);\n%[Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13NoRoot');\n\n \ntry\n load '../cmu13Data.mat'\ncatch\n [Y, lbls] = lvmLoadData2('cmu13');\n seq = cumsum(sum(lbls)) - [1:31];\n\n % load data\n [Y, lbls, Ytest, lblstest] = lvmLoadData2('cmu13NoRoot');\n skel = acclaimReadSkel('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13.asf');\n % (I think) any motion of the specific subject would do here, just to get\n % the channels\n [tmpchan, skel] = acclaimLoadChannels('../../../vargplvmDEPENDENCIES/DATASETS0p1371/mocap/cmu/13/13_13.amc', skel);\nend\n\nY = Y(1:12:1430,:);\nY = Y([1:45 72:end],:);\nY = Y([1:50 70:end],:);\n\n[Ywalk, lbls, Ytest, lblstest] = lvmLoadData('cmu35gplvm');\nY = [Y; Ywalk(1:12:100,:)];\n\n\nchannels = skelGetChannels(Y);\n \n\n\n%skelPlayData(skel, channels, 1/20);\n%}", "meta": {"author": "SheffieldML", "repo": "deepGP", "sha": "f72410a0fb354451f2bf58cfe247d2b5d3b08e58", "save_path": "github-repos/MATLAB/SheffieldML-deepGP", "path": "github-repos/MATLAB/SheffieldML-deepGP/deepGP-f72410a0fb354451f2bf58cfe247d2b5d3b08e58/deepGP/matlab/loadMocapData.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5506073507867328, "lm_q2_score": 0.6723317057447908, "lm_q1q2_score": 0.3701907793500645}} {"text": "function string = ASAversion2numstr(version)\n%ASAVERSION2NUMSTR Version identifier to number as string type\n% NUMSTRING = ASAVERSION2NUMSTR(VERSION) converts a numeric ARMASA \n% version identifier into a character string NUMSTRING containing a \n% numeric conversion of the version identifier.\n% \n% ARMASA function version identifiers are implemented as date vectors \n% according to the Matlab format, see DATEVEC. Each date vector can be \n% associated with an equivalent serial date number, see DATENUM. \n% ASAVERSION2NUMSTR accepts both numeric formats and converts them into \n% the alternative numeric format which is subsequently converted into a \n% character string. \n% \n% Example:\n% \n% This function can be used to quickly generate a version identifier \n% for an ARMASA main function that has just been created or modified. \n% Typing,\n% \n% ASAversion2numstr(now)\n% \n% returns the current date and time in a date vector string that can \n% directly be pasted at the appropriate location in the ARMASA function \n% m-file.\n% \n% See also: ASACONTROL, ASAVERSIONCHK, DATENUM, DATESTR, DATEVEC, NOW.\n\nif ~isnumeric(version) | ~(isequal(length(version),6) | isequal(length(version),1))\n error(ASAerr(10,{'version';mfilename}))\nend\n\nif isequal(length(version),6)\n v = version;\n string = sprintf('%0.5f',datenum(v(1),v(2),v(3),v(4),v(5),v(6)));\nelse\n string = sprintf('%0.0f %0.0f %0.0f %0.0f %0.0f %0.0f',datevec(version));\nend\n\n%Program history\n%======================================================================\n%\n% Version Programmer(s) E-mail address\n% ------- ------------- --------------\n% [2000 12 30 20 0 0] W. Wunderink wwunderink01@freeler.nl", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/1330-armasa/ARMASA/ASA/ASAversion2numstr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723316860482763, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.37019077842090775}} {"text": "function [ y, j ] = j_borrow_republican ( y, j )\n\n%*****************************************************************************80\n%\n%% J_BORROW_REPUBLICAN borrows year-days from years in a Republican date.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 June 2000\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, J, a YJ date.\n%\n while ( j <= 0 )\n\n y = y - 1;\n\n days = year_length_republican ( y );\n\n j = j + days;\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/j_borrow_republican.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5506073655352403, "lm_q2_score": 0.6723316860482763, "lm_q1q2_score": 0.37019077842090764}} {"text": "function ci = cspselect_fixedNumber(score, ~, nComps, mode)\n%CSPSELECT_FIXEDNUMBER - Select a fixed number of components\n%\n%Synopsis:\n% CI = select_fixedNumber(SCORE,~,NCOMPS,MODE)\n%\n%Arguments:\n% SCORE - score of components\n% NCOMPS - number of components (total number depends on MODE)\n% MODE - 'absolutemax' : chooses NCOMPS components corresponding to the\n% NCOMPS maximal absolute scores)\n% 'equalperclass' : chooses 2*NCOMPS components corresponding to\n% the NCOMPS lowest and the NCOMPS highest scores (default)\n% 'onlyclass1' : chooses NCOMPS components corresponding to the\n% NCOMPS lowest scores\n% 'onlyclass2' : chooses NCOMPS components corresponding to the\n% NCOMPS highest scores\n% \n%Returns:\n% CI - index of components\n%\n%See also processing/proc_csp\n\nnChans = length(score);\n\nswitch mode\n case 'absolutemax'\n [~,ix] = sort(-abs(score));\n ci = ix(1:nComps);\n case 'equalperclass'\n [~,ix] = sort(score);\n ci = [ix(1:nComps); ix(end:-1:nChans-nComps+1)];\n case 'onlyclass1'\n [~,ix] = sort(score);\n ci = ix(1:nComps);\n case 'onlyclass2'\n [~,ix] = sort(score);\n ci = ix(end:-1:nChans-nComps+1);\n otherwise\n error('Unknown mode')\nend", "meta": {"author": "bbci", "repo": "bbci_public", "sha": "2e6fe9481537dcfee702e74544191dcf737f02ce", "save_path": "github-repos/MATLAB/bbci-bbci_public", "path": "github-repos/MATLAB/bbci-bbci_public/bbci_public-2e6fe9481537dcfee702e74544191dcf737f02ce/processing/utils/cspselect_fixedNumber.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7461389930307512, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3701549503702011}} {"text": "function exact = p08_exact ( )\n\n%*****************************************************************************80\n%\n%% P08_EXACT returns the estimated integral for problem 8.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 04 November 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Output, real EXACT, the estimated value of the integral.\n%\n exact = 0.86697298733991103757;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_int/p08_exact.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.6584175072643413, "lm_q1q2_score": 0.37014685035581696}} {"text": "function out = seconds2human(secs, varargin)\n%SECONDS2HUMAN( seconds ) Converts the given number of seconds into a \n% human-readable string.\n%\n% str = SECONDS2HUMAN(seconds) returns a human-readable string from a\n% given (usually large) amount of seconds. For example, \n%\n% str = seconds2human(1463456.3)\n%\n% str = \n% 'About 2 weeks and 2 days.'\n%\n% You may also call the function with a second input argument; either\n% 'short' (the default) or 'full'. This determines the level of detail\n% returned in the string:\n%\n% str = seconds2human(1463456.3, 'full')\n% \n% str =\n% '2 weeks, 2 days, 22 hours, 30 minutes, 56 seconds.'\n%\n% The 'short' format returns only the two largest units of time.\n%\n% [secs] may be an NxM-matrix, in which case the output is an NxM cell \n% array of the corresponding strings. \n%\n% NOTE: SECONDS2HUMAN() defines one month as an \"average\" month, which \n% means that the string 'month' indicates 30.471 days. \n%\n% See also datestr, datenum, etime. \n\n\n% Author: Rody P.S. Oldenhuis\n% Delft University of Technology\n% E-mail: oldnhuis@dds.nl\n% Last edited 11/Feb/2010.\n\n % default error\n error(nargchk(1,2,nargin));%#ok\n\n % define some intuitive variables\n Seconds = round(1 );\n Minutes = round(60 * Seconds ); \n Hours = round(60 * Minutes );\n Days = round(24 * Hours ); \n Weeks = round(7 * Days ); \n Months = round(30.471 * Days );\n Years = round(365.26 * Days );\n Centuries = round(100 * Years );\n Millennia = round(10 * Centuries);\n\n % put these into an array, and define associated strings\n units = [Millennia, Centuries, Years, Months, Weeks, ...\n Days, Hours, Minutes, Seconds];\n singles = {'millennium'; 'century'; 'year'; 'month'; ...\n 'week'; 'day'; 'hour'; 'minute'; 'second'};\n plurals = {'millennia' ; 'centuries'; 'years'; 'months'; ...\n 'weeks'; 'days'; 'hours'; 'minutes'; 'seconds'};\n\n % cut off all decimals from the given number of seconds\n assert(isnumeric(secs), 'seconds2human:seconds_mustbe_numeric', ...\n 'The argument ''secs'' must be a scalar or matrix.');\n secs = round(secs); \n \n % parse second argument\n short = true; \n if (nargin > 1)\n % extract argument\n short = varargin{1};\n % check its type\n assert(ischar(short), 'seconds2human:argument_type_incorrect', ...\n 'The second argument must be either ''short'' or ''full''.');\n % check its contents\n switch lower(short)\n case 'full' , short = false;\n case 'short', short = true;\n otherwise\n error('seconds2human:short_format_incorrect',...\n 'The second argument must be either ''short'' or ''full''.');\n end\n end\n \n % pre-allocate appropriate output-type\n numstrings = numel(secs); \n if (numstrings > 1), out = cell(size(secs)); end\n \n % build (all) output string(s) \n for j = 1:numstrings\n \n % initialize nested loop\n secsj = secs(j);\n counter = 0; \n if short, string = 'About ';\n else string = '';\n end\n \n % possibly quick exit\n if (secsj < 1), string = 'Less than one second.'; end\n \n % build string for j-th amount of seconds\n for i = 1:length(units)\n \n % amount of this unit\n amount = fix(secsj/units(i));\n \n % include this unit in the output string\n if amount > 0\n \n % increase counter\n counter = counter + 1;\n \n % append (single or plural) unit of time to string\n if (amount > 1)\n string = [string, num2str(amount), ' ', plurals{i}];%#ok\n else\n string = [string, num2str(amount), ' ', singles{i}];%#ok\n end\n \n % Finish the string after two units if short format is requested\n if (counter > 1 && short), string = [string, '.']; break, end%#ok\n \n % determine whether the ending should be a period (.) or a comma (,)\n if (rem(secsj, units(i)) > 0)\n if short, ending = ' and ';\n else ending = ', ';\n end\n else ending = '.';\n end\n string = [string, ending];%#ok\n \n end\n \n % subtract this step from given amount of seconds\n secsj = secsj - amount*units(i);\n end\n \n % insert in output cell, or set output string\n if (numstrings > 1)\n out{j} = string;\n else\n out = string;\n end \n end % for\n \nend % seconds2human\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/22977-convert-an-amount-of-seconds-to-human-readable-strings/seconds2human.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.37014684658774}} {"text": "% Add land and sea-ice grid boxes to the reconstructed fields\nfunction Yrec_out = metoffice_add_land( Yrec, dataset )\n\n[ mask, lat, lon ] = metoffice_get_mask( dataset );\n\n% path from system\ndatapath = metoffice_get_path();\nload( [ datapath, dataset ], 'time' )\n\n% Add land and ice areas to the reconstruction fields\nYrec_out = NaN( length(lat)*length(lon), length(time) );\nYrec_out( logical(mask(:)), : ) = Yrec;\n\n\n\nfunction Y = metoffice_add_land_old(X, maskfile)\n\nS = load('/share/climate/data/UK_Met_Office/RecTest/mask');\nY = nan(numel(S.mask),size(X,2));\nY(S.mask(:)==1,:) = X;\n% $$$ S = load('/share/climate/data/UK_Met_Office/RecTest/land_hadgem');\n% $$$ land = (S.land(:) >= 0.5);\n% $$$ Y = nan(length(land),size(X,2));\n% $$$ Y(~land,:) = X;\n", "meta": {"author": "jluttine", "repo": "matlab", "sha": "63406c7782b0869948f06e1dbc594460c165d24e", "save_path": "github-repos/MATLAB/jluttine-matlab", "path": "github-repos/MATLAB/jluttine-matlab/matlab-63406c7782b0869948f06e1dbc594460c165d24e/datasets/metoffice/metoffice_add_land.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.37014683905158574}} {"text": "function [g, gdata, gprior] = gpla_g(w, gp, x, y, varargin)\n%GPLA_G Evaluate gradient of Laplace approximation's marginal \n% log posterior estimate (GPLA_E)\n%\n% Description\n% G = GPLA_G(W, GP, X, Y, OPTIONS) takes a full GP parameter\n% vector W, structure GP a matrix X of input vectors and a\n% matrix Y of target vectors, and evaluates the gradient G of\n% EP's marginal log posterior estimate. Each row of X\n% corresponds to one input vector and each row of Y corresponds\n% to one target vector.\n%\n% [G, GDATA, GPRIOR] = GPLA_G(W, GP, X, Y, OPTIONS) also returns\n% the data and prior contributions to the gradient.\n%\n% OPTIONS is optional parameter-value pair\n% z - optional observed quantity in triplet (x_i,y_i,z_i)\n% Some likelihoods may use this. For example, in case of\n% Poisson likelihood we have z_i=E_i, that is, expected\n% value for ith case.\n% \n% See also\n% GP_SET, GP_G, GPLA_E, GPLA_PRED\n\n% Copyright (c) 2007-2010 Jarno Vanhatalo\n% Copyright (c) 2010 Aki Vehtari\n\n% This software is distributed under the GNU General Public \n% License (version 3 or later); please refer to the file \n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'GPLA_G';\n ip.addRequired('w', @(x) isvector(x) && isreal(x) && all(isfinite(x)));\n ip.addRequired('gp',@isstruct);\n ip.addRequired('x', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\n ip.addRequired('y', @(x) ~isempty(x) && isreal(x) && all(isfinite(x(:))))\n ip.addParamValue('z', [], @(x) isreal(x) && all(isfinite(x(:))))\n ip.parse(w, gp, x, y, varargin{:});\n z=ip.Results.z;\n\n gp = gp_unpak(gp, w); % unpak the parameters\n ncf = length(gp.cf);\n n=size(x,1);\n\n g = [];\n gdata = [];\n gprior = [];\n \n if isfield(gp, 'savememory') && gp.savememory\n savememory=1;\n else\n savememory=0;\n end\n\n % First Evaluate the data contribution to the error\n switch gp.type\n case 'FULL'\n % ============================================================\n % FULL\n % ============================================================\n \n if ~isfield(gp.lik, 'nondiagW')\n % Likelihoos with diagonal Hessian\n \n % Calculate covariance matrix and the site parameters\n K = gp_trcov(gp,x);\n if isfield(gp,'meanf')\n [H,b_m,B_m]=mean_prep(gp,x,[]);\n K=K+H'*B_m*H;\n end\n \n [e, edata, eprior, f, L, a, W, p] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);\n if isnan(e)\n g=NaN; gdata=NaN; gprior=NaN;\n return;\n end\n \n if W >= 0 % This is the usual case where likelihood is log concave\n % for example, Poisson and probit\n if issparse(K) % use sparse matrix routines\n \n % permute\n y = y(p);\n x = x(p,:);\n K = K(p,p);\n if ~isempty(z)\n z = z(p,:);\n end\n \n sqrtW = sqrt(W);\n \n R = sqrtW*spinv(L,1)*sqrtW;\n sqrtWK = sqrtW*K;\n C = ldlsolve(L,sqrtWK);\n C2 = diag(K) - sum(sqrtWK.*C,1)';\n s2 = 0.5*C2.*gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n else % evaluate with full matrices\n sqrtW = diag(sqrt(W));\n c = L\\sqrtW;\n R = c'*c;\n C2 = diag(K) - sum((c*K).^2,1)' ;\n s2 = 0.5*C2.*gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n end\n else % We might end up here if the likelihood is not log-concave\n % For example Student-t likelihood.\n C = L;\n V = L*diag(W);\n R = diag(W) - V'*V;\n C2 = sum(C.^2,1)';\n s2 = 0.5*C2.*gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n end\n \n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance'))\n % Evaluate the gradients from covariance functions\n for i=1:ncf\n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n gpcf = gp.cf{i};\n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x);\n np=length(DKffc);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n g1 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n for i2 = 1:np\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],[],i2);\n else\n DKff=DKffc{i2};\n end\n i1 = i1+1;\n if ~isfield(gp,'meanf')\n s1 = 0.5 * a'*DKff*a - 0.5*sum(sum(R.*DKff));\n else\n s1 = 0.5 * (a-K\\(H'*b_m))'*DKff*(a-K\\(H'*b_m)) - 0.5*sum(sum(R.*DKff));\n end\n b = DKff * g1;\n if issparse(K)\n s3 = b - K*(sqrtW*ldlsolve(L,sqrtW*b));\n else\n s3 = b - K*(R*b);\n %s3 = (1./W).*(R*b);\n end\n gdata(i1) = -(s1 + s2'*s3);\n gprior(i1) = gprior_cf(i2);\n end\n \n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n if ~isempty(strfind(gp.infer_params, 'likelihood')) ...\n && ~isempty(gp.lik.fh.pak(gp.lik))\n \n gdata_lik = 0;\n lik = gp.lik;\n \n g_logPrior = -lik.fh.lpg(lik);\n if ~isempty(g_logPrior)\n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n b = K * lik.fh.llg2(lik, y, f, 'latent+param', z);\n s3 = b - K*(R*b);\n nl= size(DW_sigma,2);\n \n gdata_lik = - DL_sigma - 0.5.*sum(repmat(C2,1,nl).*DW_sigma) - s2'*s3;\n \n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(g_logPrior);\n i2 = length(gdata_lik);\n if i1 > i2\n gdata = [gdata zeros(1,i1-i2)];\n end\n end\n end\n \n g = gdata + gprior;\n \n else\n % Likelihoods with non-diagonal Hessian\n\n [n,nout]=size(y);\n if isfield(gp, 'comp_cf') % own covariance for each ouput component\n multicf = true;\n if length(gp.comp_cf) ~= nout && nout > 1\n error('GPLA_ND_G: the number of component vectors in gp.comp_cf must be the same as number of outputs.')\n end\n else\n multicf = false;\n end\n \n % Get help parameters\n [e, edata, eprior, f, L, a, E, M] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);\n if isnan(e)\n return\n end\n \n switch gp.lik.type\n \n case {'LGP', 'LGPC'}\n \n nl=n;\n nlp=length(nl); % number of latent processes\n \n if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1\n gptmp=gp; gptmp.jitterSigma2=0;\n Ka = gp_trcov(gptmp, unique(x(:,1)));\n wtmp=gp_pak(gptmp); wtmp(1)=0; gptmp=gp_unpak(gptmp,wtmp);\n Kb = gp_trcov(gptmp, unique(x(:,2)));\n clear gptmp\n n1=size(Ka,1);\n n2=size(Kb,1);\n else\n K = gp_trcov(gp,x);\n end\n \n if isfield(gp,'meanf')\n [H,b_m,B_m]=mean_prep(gp,x,[]);\n Hb_m=H'*b_m;\n if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1\n % only zero mean function implemented for Kronecker\n % approximation\n iKHb_m=zeros(n,1);\n else\n K=K+H'*B_m*H;\n iKHb_m=K\\Hb_m;\n end\n end\n \n g2 = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);\n ny=sum(y);\n \n g3=gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n \n if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1\n \n [Va,Da]=eig(Ka); [Vb,Db]=eig(Kb);\n % eigenvalues of K matrix\n Dtmp=kron(diag(Da),diag(Db));\n [sDtmp,istmp]=sort(Dtmp,'descend');\n \n % Form the low-rank approximation. Exclude eigenvalues\n % smaller than gp.latent_opt.eig_tol or take\n % gp.latent_opt.eig_prct*n eigenvalues at most.\n nlr=min([sum(sDtmp>gp.latent_opt.eig_tol) round(gp.latent_opt.eig_prct*n)]);\n sDtmp=sDtmp+gp.jitterSigma2;\n \n itmp1=meshgrid(1:n1,1:n2);\n itmp2=meshgrid(1:n2,1:n1)';\n ind=[itmp1(:) itmp2(:)];\n \n % included eigenvalues\n Dlr=sDtmp(1:nlr);\n % included eigenvectors\n Vlr=zeros(n,nlr);\n for i1=1:nlr\n Vlr(:,i1)=kron(Va(:,ind(istmp(i1),1)),Vb(:,ind(istmp(i1),2)));\n end\n \n Lb=gp_trvar(gp,x)-sum(bsxfun(@times,Vlr.*Vlr,Dlr'),2);\n \n if isfield(gp,'meanf')\n Dt=[Dlr; diag(B_m)];\n Vt=[Vlr H'];\n else\n Dt=Dlr;\n Vt=Vlr;\n end\n \n Lbt=ny*(g2)+1./Lb;\n \n St=[diag(1./Dt)+Vt'*bsxfun(@times,1./Lb,Vt) zeros(size(Dt,1),1); ...\n zeros(1,size(Dt,1)) 1];\n Pt=[bsxfun(@times,1./Lb,Vt) sqrt(ny)*g2];\n Ptt=bsxfun(@times,1./sqrt(Lbt),Pt);\n \n StL=chol(St-Ptt'*Ptt,'lower');\n iStL=StL\\(bsxfun(@times,Pt',1./Lbt'));\n \n dA=(1./Lbt+sum(iStL.*iStL)');\n iStLg3=iStL*g3;\n const1=( 0.5*ny*(sum( dA.*g3))-ny*(g3'*(g3./Lbt)+iStLg3'*iStLg3) );\n const2=(g3./Lbt)+iStL'*iStLg3;\n \n s2=const1.*g3 - 0.5*ny*dA.*g3 + ny*const2.*g3;\n \n else\n if strcmpi(gp.lik.type,'LGPC')\n n1=gp.lik.gridn(1); n2=gp.lik.gridn(2);\n ny2=sum(reshape(y,fliplr(gp.lik.gridn)));\n g2sq=sqrt(g2);\n \n R=zeros(n);\n RR=zeros(n,n2);\n for k1=1:n1\n R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)=sqrt(ny2(k1))*(diag(g2sq((1:n2)+(k1-1)*n2))-g2((1:n2)+(k1-1)*n2)*g2sq((1:n2)+(k1-1)*n2)');\n RR((1:n2)+(k1-1)*n2,:)=R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)*R((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2)';\n end\n KW=K;\n for k1=1:n1\n KW(:,(1:n2)+(k1-1)*n2)=KW(:,(1:n2)+(k1-1)*n2)*RR((1:n2)+(k1-1)*n2,:);\n end\n %KW=K*(R*R');\n \n KW(1:(n+1):end)=KW(1:(n+1):end)+1;\n iKW=KW\\eye(n);\n A=iKW*K;\n \n s2=zeros(n,1);\n for k1=1:n1\n if ny2(k1)~=0\n g3tmp=g3((1:n2)+(k1-1)*n2);\n Atmp=A((1:n2)+(k1-1)*n2,(1:n2)+(k1-1)*n2);\n for ind2=1:n2\n g3dtmp=-g3tmp*g3tmp(ind2);\n g3dtmp(ind2)=g3dtmp(ind2)+g3tmp(ind2);\n s2( ind2+(k1-1)*n2 ) = -ny2(k1)*0.5*sum(diag(Atmp).*g3dtmp) ...\n + ny2(k1)*sum(sum(Atmp.*(bsxfun(@times,g3tmp,g3dtmp'))));\n end\n end\n end\n \n else\n KW=-(K*(sqrt(ny)*g2))*(sqrt(ny)*g2)'- bsxfun(@times, K, (-ny*g2)');\n \n KW(1:(n+1):end)=KW(1:(n+1):end)+1;\n iKW=KW\\eye(n);\n A=iKW*K;\n \n const1=( 0.5*ny*(sum(A(1:(n+1):end).*g3'))-ny*sum(sum(A.*(g3*g3'))) );\n const2=sum(bsxfun(@times,A,g3));\n s2=const1.*g3 - 0.5*ny*diag(A).*g3 + ny*const2'.*g3;\n end\n end\n \n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance'))\n % Evaluate the gradients from covariance functions\n for i=1:ncf\n \n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n gpcf = gp.cf{i};\n if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1\n \n gptmp=gp; gptmp.jitterSigma2=0;\n DKa = gpcf.fh.cfg(gptmp.cf{1}, unique(x(:,1)));\n wtmp=gp_pak(gptmp); wtmp(1)=0; gptmp=gp_unpak(gptmp,wtmp);\n DKb = gpcf.fh.cfg(gptmp.cf{1}, unique(x(:,2)));\n clear gptmp\n \n for j1=1:length(DKa)\n [DVa{j1},DDa{j1}]=eig(DKa{j1});\n end\n for j1=1:length(DKb)\n [DVb{j1},DDb{j1}]=eig(DKb{j1});\n end\n \n % low-rank approximation of the derivative matrix w.r.t.\n % magnitude hyperparameter, low-rank + diagonal correction\n Datmp=kron(diag(DDa{1}),diag(Db));\n [sDatmp,isatmp]=sort(Datmp,'descend');\n nlr=min([sum(sDtmp>gp.latent_opt.eig_tol) round(gp.latent_opt.eig_prct*n)]);\n Dmslr=sDatmp(1:nlr);\n Vmslr=zeros(n,nlr);\n for j1=1:nlr\n Vmslr(:,j1)=kron(DVa{1}(:,ind(isatmp(j1),1)),Vb(:,ind(isatmp(j1),2)));\n end\n % diagonal correction\n dc=gpcf.fh.cfg(gpcf, x(1,:));\n Lms=dc{1}*ones(n,1)-sum(bsxfun(@times,Vmslr.^2,Dmslr'),2);\n \n \n % low-rank approximation of the derivative matrix w.r.t.\n % lengthscale hyperparameter, low-rank1 + lowr-rank2 + diagonal correction\n %\n % first low-rank part\n Datmp=kron(diag(DDa{2}),diag(Db));\n [sDatmp,isatmp]=sort(abs(Datmp),'descend');\n nlr=min([sum(sDtmp>gp.latent_opt.eig_tol) round(gp.latent_opt.eig_prct*n)]);\n sDatmp=Datmp(isatmp);\n Dlslr1=sDatmp(1:nlr);\n Vlslr1=zeros(n,nlr);\n for j1=1:nlr\n Vlslr1(:,j1)=kron(DVa{2}(:,ind(isatmp(j1),1)),Vb(:,ind(isatmp(j1),2)));\n end\n % second low-rank part\n Dbtmp=kron(diag(Da),diag(DDb{2}));\n [sDbtmp,isbtmp]=sort(abs(Dbtmp),'descend');\n nlr=min([sum(sDtmp>gp.latent_opt.eig_tol) round(gp.latent_opt.eig_prct*n)]);\n sDbtmp=Dbtmp(isbtmp);\n Dlslr2=sDbtmp(1:nlr);\n Vlslr2=zeros(n,nlr);\n for j1=1:nlr\n Vlslr2(:,j1)=kron(Va(:,ind(isbtmp(j1),1)),DVb{2}(:,ind(isbtmp(j1),2)));\n end\n % diagonal correction\n Lls=dc{2}*ones(n,1)-sum(bsxfun(@times,Vlslr1.^2,Dlslr1'),2)-sum(bsxfun(@times,Vlslr2.^2,Dlslr2'),2);\n \n else\n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x);\n np=length(DKffc);\n end\n end\n \n gprior_cf = -gpcf.fh.lpg(gpcf);\n g1 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n \n if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1\n \n for i2 = 1:length(DDa)\n i1 = i1+1;\n \n if ~isfield(gp,'meanf')\n if i2==1\n % derivative wrt magnitude hyperparameter\n Vmsa = Vmslr'*a;\n s1a = 0.5*(Vmsa'*(bsxfun(@times,Dmslr,Vmsa)) + a'*(Lms.*a));\n elseif i2==2\n % derivative wrt lengthscale hyperparameter\n Vls1 = Vlslr1'*a;\n Vls2 = Vlslr2'*a;\n s1a = 0.5*( Vls1'*bsxfun(@times,Dlslr1,Vls1) + Vls2'*bsxfun(@times,Dlslr2,Vls2) + a'*(Lls.*a));\n end\n else\n if i2==1\n % derivative wrt magnitude hyperparameter\n Vmsa = Vmslr'*(a-iKHb_m);\n s1a = 0.5*(Vmsa'*(bsxfun(@times,Dmslr,Vmsa)) + (a-iKHb_m)'*(Lms.*(a-iKHb_m)));\n elseif i2==2\n % derivative wrt lengthscale hyperparameter\n Vls1 = Vlslr1'*(a-iKHb_m);\n Vls2 = Vlslr2'*(a-iKHb_m);\n s1a = 0.5*( Vls1'*bsxfun(@times,Dlslr1,Vls1) + Vls2'*bsxfun(@times,Dlslr2,Vls2) + (a-iKHb_m)'*(Lls.*(a-iKHb_m)));\n end\n end\n \n % DKg2=DKff{i2}*g2;\n if i2==1\n DKg2 = Vmslr*bsxfun(@times,Dmslr,Vmslr'*g2) + Lms.*g2;\n elseif i2==2\n DKg2 = Vlslr1*bsxfun(@times,Dlslr1,Vlslr1'*g2) + Vlslr2*bsxfun(@times,Dlslr2,Vlslr2'*g2) + Lls.*g2;\n end\n \n WDKg2=ny*(g2.*DKg2-(g2*(g2'*DKg2)));\n s1b = -0.5*(ny)*( ( - (DKg2-((WDKg2./Lbt)+(iStL'*(iStL*WDKg2)))))'*(g2) );\n \n if i2==1 % magnitude hyperparameter\n \n % low-rank\n WDVa=ny*( bsxfun(@times,g2,Vmslr)-g2*(g2'*Vmslr) );\n stmp=Vmslr-(bsxfun(@times,(1./Lbt),WDVa)+(iStL'*(iStL*WDVa)));\n s1clr = 0.5*sum( (sum(bsxfun(@times,stmp,Dmslr').*Vmslr,2))' .*(-ny*g2)' );\n \n % diagonal correction\n s1cdtmp = Lms - ( ny*( (g2.*Lms)./Lbt - (g2./Lbt).*(g2'.*Lms')' ) + ...\n sum(iStL.* (ny*( bsxfun(@times,iStL,(g2.*Lms)') - (iStL*g2)*(g2'.*Lms') )) )' );\n s1cd=0.5*sum( s1cdtmp' .*(-ny*g2)' );\n s1c=s1clr+s1cd;\n DKg = Vmslr*bsxfun(@times,Dmslr,Vmslr'*g1) + Lms.*g1;\n \n \n elseif i2==2 % lengthscale hyperparameter\n \n % low-rank 1\n WDVa=ny*( bsxfun(@times,g2,Vlslr1)-g2*(g2'*Vlslr1) );\n stmp=Vlslr1-(bsxfun(@times,(1./Lbt),WDVa)+(iStL'*(iStL*WDVa)));\n s1clr1 = 0.5*sum( (sum(bsxfun(@times,stmp,Dlslr1').*Vlslr1,2))' .*(-ny*g2)' );\n \n % low-rank 2\n WDVb=ny*( bsxfun(@times,g2,Vlslr2)-g2*(g2'*Vlslr2) );\n stmp=Vlslr2-(bsxfun(@times,(1./Lbt),WDVb)+(iStL'*(iStL*WDVb)));\n s1clr2 = 0.5*sum( (sum(bsxfun(@times,stmp,Dlslr2').*Vlslr2,2))' .*(-ny*g2)' );\n \n % diagonal correction\n s1cdtmp = Lls - ( ny*( (g2.*Lls)./Lbt - (g2./Lbt).*(g2'.*Lls')' ) + ...\n sum(iStL.* (ny*( bsxfun(@times,iStL,(g2.*Lls)') - (iStL*g2)*(g2'.*Lls') )) )' );\n s1cd=0.5*sum( s1cdtmp' .*(-ny*g2)' );\n \n s1c=s1clr1+s1clr2+s1cd;\n \n DKg = Vlslr1*bsxfun(@times,Dlslr1,Vlslr1'*g1) + Vlslr2*bsxfun(@times,Dlslr2,Vlslr2'*g1) + Lls.*g1;\n \n end\n \n s1=s1a+s1b+s1c;\n \n %DKg=DKff{i2}*g1;\n WDKg=ny*(g2.*DKg-(g2*(g2'*DKg)));\n s3=DKg-((WDKg./Lbt)+(iStL'*(iStL*WDKg)));\n \n gdata(i1) = -(s1 + s2'*s3);\n gprior(i1) = gprior_cf(i2);\n end\n \n else\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],[],i2);\n else\n DKff=DKffc{i2};\n end\n if ~isfield(gp,'meanf')\n if strcmpi(gp.lik.type,'LGPC')\n %s1 = 0.5 * a'*DKff{i2}*a - 0.5*((-iKW*(DKff{i2}*(sqrt(ny)*g2)))'*(sqrt(ny)*g2)) + 0.5*sum(sum(iKW'.*DKff{i2}).*(-ny*g2)');\n s1 = 0.5 * a'*DKff*a - 0.5*sum(diag( R*(R'*(iKW*DKff))));\n else\n s1 = 0.5 * a'*DKff*a - 0.5*((-iKW*(DKff*(sqrt(ny)*g2)))'*(sqrt(ny)*g2)) + 0.5*sum(sum(iKW'.*DKff).*(-ny*g2)');\n end\n else\n if strcmpi(gp.lik.type,'LGPC')\n s1 = 0.5 * (a-iKHb_m)'*DKff*(a-iKHb_m) - 0.5*sum(diag( R*(R'*(iKW*DKff))));\n else\n s1 = 0.5 * (a-iKHb_m)'*DKff*(a-iKHb_m) - 0.5*((-iKW*(DKff*(sqrt(ny)*g2)))'*(sqrt(ny)*g2)) + 0.5*sum(sum(iKW'.*DKff).*(-ny*g2)');\n end\n end\n %b = DKff{i2} * g1;\n if issparse(K)\n s3 = b - K*(sqrtW*ldlsolve(L,sqrtW*b));\n else\n s3=iKW*(DKff*g1);\n end\n \n gdata(i1) = -(s1 + s2'*s3);\n gprior(i1) = gprior_cf(i2);\n end\n end\n \n if isfield(gp.latent_opt, 'kron') && gp.latent_opt.kron==1\n % Set the gradients of hyperparameter\n if length(gprior_cf) > length(DKa)\n for i2=length(DKff)+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n else\n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n end\n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n if ~isempty(strfind(gp.infer_params, 'likelihood')) ...\n && ~isempty(gp.lik.fh.pak(gp.lik))\n \n gdata_lik = 0;\n lik = gp.lik;\n \n g_logPrior = -lik.fh.lpg(lik);\n if ~isempty(g_logPrior)\n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n b = K * lik.fh.llg2(lik, y, f, 'latent+param', z);\n s3 = iKW*b;\n \n gdata_lik = - DL_sigma - 0.5.*sum(sum((A.*DW_sigma))) - s2'*s3;\n \n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(g_logPrior);\n i2 = length(gdata_lik);\n if i1 > i2\n gdata = [gdata zeros(1,i1-i2)];\n end\n end\n end\n \n % g = gdata + gprior;\n \n \n case {'Softmax', 'Multinom'}\n \n K = zeros(n,n,nout);\n if multicf\n for i1=1:nout\n K(:,:,i1) = gp_trcov(gp, x, gp.comp_cf{i1});\n end\n else\n Ktmp=gp_trcov(gp, x);\n for i1=1:nout\n K(:,:,i1) = Ktmp;\n end\n end\n \n % softmax\n f2=reshape(f,n,nout);\n \n llg = gp.lik.fh.llg(gp.lik, y, f2, 'latent', z);\n [pi2_vec, pi2_mat] = gp.lik.fh.llg2(gp.lik, y, f2, 'latent', z);\n % W = -diag(pi2_vec) + pi2_mat*pi2_mat', where\n % W_ij = -d^2(log(p(y|f)))/(df_i)(df_j)\n R = repmat(1./pi2_vec,1,n).*pi2_mat;\n RE = zeros(n,n*nout);\n for i1=1:nout\n RE(:,(1:n)+(i1-1)*n) = R((1:n)+(i1-1)*n,:)'*E(:,:,i1);\n end\n \n inv_iWK=zeros(n,n,nout);\n \n % Matrices for computing the derivative of determinant term w.r.t. f\n A=zeros(nout, nout, n);\n Minv=M\\(M'\\eye(n));\n Minv=(Minv+Minv')./2;\n for cc1=1:nout\n EMinv=RE(:,(1:n)+(cc1-1)*n)'*Minv;\n KEMinv=K(:,:,cc1)*EMinv;\n for cc2=1:nout\n if cc2>=cc1\n if cc1==cc2\n EMtmp = - EMinv*RE(:,(1:n)+(cc2-1)*n);\n EMtmp = EMtmp + E(:,:,cc1);\n inv_iWK(:,:,cc1) = EMtmp;\n A(cc1,cc1,:) = diag(K(:,:,cc1))-sum((K(:,:,cc1)*EMtmp).*K(:,:,cc1),2);\n else\n EMtmp = - KEMinv*RE(:,(1:n)+(cc2-1)*n);\n A(cc1,cc2,:) = -sum(EMtmp.*K(:,:,cc2),2);\n A(cc2,cc1,:) = -sum(EMtmp.*K(:,:,cc2),2);\n end\n end\n end\n end\n \n % Derivative of determinant term w.r.t. f\n s2=zeros(n*nout,1);\n dw_mat = gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n for cc3=1:nout\n for ii1=1:n\n % s2(i)=-0.5*trace(inv(inv(K)+W)*dW/df_i)\n s2(ii1+(cc3-1)*n) = -0.5*trace(A(:,:,ii1)*dw_mat(:,:,cc3,ii1));\n end\n end\n \n % Loop over the covariance functions\n for i=1:ncf\n DKllg=zeros(size(a));\n EDKllg=zeros(size(a));\n DKffba=zeros(n*nout,1);\n \n % check in which components the covariance function is present\n do = false(nout,1);\n if multicf\n for z1=1:nout\n if any(gp.comp_cf{z1}==i)\n do(z1) = true;\n end\n end\n else\n do = true(nout,1);\n end\n \n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n % Gradients from covariance functions\n gpcf = gp.cf{i};\n % DKff{j} = dK(x,x)/dtheta_j\n if savememory\n % If savememory option is used, just return number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKff = gpcf.fh.cfg(gpcf, x);\n np=length(DKff);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKffb=gpcf.fh.cfg(gpcf,x,[],[],i2);\n else\n DKffb=DKff{i2};\n end\n \n % Derivative of explicit terms\n trace_sum_tmp=0;\n for z1=1:nout\n if do(z1)\n DKffba((1:n)+(z1-1)*n)=DKffb*a((1:n)+(z1-1)*n);\n trace_sum_tmp = trace_sum_tmp + sum(sum( inv_iWK(:,:,z1) .* DKffb ));\n end\n end\n % s1=0.5*f'*inv(K)*dK/dtheta_j*inv(K)*f - 0.5*trace(inv(inv(W)+K)*dK/dtheta_j)\n s1 = 0.5 * a'*DKffba - 0.5.*trace_sum_tmp;\n \n % Derivative of f w.r.t. theta\n for z1=1:nout\n if do(z1)\n DKllg((1:n)+(z1-1)*n)=DKffb*llg((1:n)+(z1-1)*n);\n EDKllg((1:n)+(z1-1)*n)=E(:,:,z1)*DKllg((1:n)+(z1-1)*n);\n end\n end\n s3 = EDKllg - RE'*(M\\(M'\\(RE*DKllg)));\n for z1=1:nout\n s3((1:n)+(z1-1)*n)=K(:,:,z1)*s3((1:n)+(z1-1)*n);\n end\n % s3=inv(I+KW)*dK/dtheta_j*d(log(p(y|f)))/df\n s3 = DKllg - s3;\n \n gdata(i1) = -(s1 + s2'*s3);\n gprior(i1) = gprior_cf(i2);\n \n end\n \n % Set the gradients of hyper-hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n % % =================================================================\n % % Gradient with respect to likelihood function parameters\n % if ~isempty(strfind(gp.infer_params, 'likelihood')) ...\n % && ~isempty(gp.lik.fh.pak(gp.lik))\n %\n % gdata_likelih = 0;\n % lik = gp.lik;\n %\n % g_logPrior = feval(lik.fh.gprior, lik);\n % if ~isempty(g_logPrior)\n %\n % DW_sigma = feval(lik.fh.llg3, lik, y, f, 'latent2+hyper', z);\n % DL_sigma = feval(lik.fh.llg, lik, y, f, 'hyper', z);\n % b = K * feval(lik.fh.llg2, lik, y, f, 'latent+hyper', z);\n % s3 = b - K*(R*b);\n % nl= size(DW_sigma,2);\n %\n % gdata_lik = - DL_sigma - 0.5.*sum(repmat(C2,1,nl).*DW_sigma) - s2'*s3;\n %\n % % set the gradients into vectors that will be returned\n % gdata = [gdata gdata_lik];\n % gprior = [gprior g_logPrior];\n % i1 = length(g_logPrior);\n % i2 = length(gdata_lik);\n % if i1 > i2\n % gdata = [gdata zeros(1,i1-i2)];\n % end\n % end\n % end\n \n otherwise\n \n if isfield(gp.lik,'xtime')\n xtime=gp.lik.xtime;\n if isfield(gp.lik, 'stratificationVariables')\n ebc_ind=gp.lik.stratificationVariables;\n ux = unique(x(:,ebc_ind), 'rows');\n gp.lik.n_u = size(ux,1);\n for i1=1:size(ux,1)\n gp.lik.stratind{i1}=(x(:,ebc_ind)==ux(i1));\n end\n [xtime1, xtime2] = meshgrid(ux, xtime);\n xtime = [xtime2(:) xtime1(:)];\n if isfield(gp.lik, 'removeStratificationVariables') && gp.lik.removeStratificationVariables\n x(:,ebc_ind)=[];\n end\n end\n ntime = size(xtime,1);\n nl=[ntime n];\n \n % Second derivatives of log-likelihood\n [llg2vec, llg2mat] = gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);\n % W = [diag(Wdiag(1:ntime)) Wmat; Wmat' diag(Wdiag(ntime+1:end))]\n Wdiag=-llg2vec; Wmat=-llg2mat;\n else\n nl=repmat(n,1,length(gp.comp_cf));\n \n % Second derivatives of log-likelihood\n Wvec=-gp.lik.fh.llg2(gp.lik, y, f, 'latent',z);\n % W = [diag(Wvec(1:n,1)) diag(Wvec(1:n,2)); diag(Wvec(n+1:end,1)) diag(Wvec(n+1:end,2))]\n Wdiag=[Wvec(1:nl(1),1); Wvec(nl(1)+(1:nl(2)),2)];\n end\n nlp=length(nl); % Number of latent processes\n \n % K is block-diagonal covariance matrix where blocks correspond to\n % latent processes\n K = zeros(sum(nl));\n if isfield(gp.lik,'xtime')\n K(1:ntime,1:ntime)=gp_trcov(gp, xtime, gp.comp_cf{1});\n K((1:n)+ntime,(1:n)+ntime) = gp_trcov(gp, x, gp.comp_cf{2});\n else\n for i1=1:nlp\n K((1:n)+(i1-1)*n,(1:n)+(i1-1)*n) = gp_trcov(gp, x, gp.comp_cf{i1});\n end\n end\n \n if isfield(gp,'meanf')\n [H,b_m,B_m]=mean_prep(gp,x,[]);\n Hb_m=H'*b_m;\n K=K+H'*B_m*H;\n iKHb_m=K\\Hb_m;\n end\n \n KW=zeros(sum(nl));\n KW(1:nl(1),1:nl(1))=bsxfun(@times, K(1:nl(1),1:nl(1)), Wdiag(1:nl(1))');\n KW(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)))=bsxfun(@times, K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))), Wdiag(nl(1)+(1:nl(2)))');\n if isfield(gp.lik,'xtime')\n KW(1:nl(1),nl(1)+(1:nl(2)))=K(1:nl(1),1:nl(1))*Wmat;\n KW(nl(1)+(1:nl(2)),1:nl(1))=K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)))*Wmat';\n else\n KW(1:nl(1),nl(1)+(1:nl(2)))=bsxfun(@times, K((1:nl(1)),(1:nl(1))), Wvec((nl(1)+1):2*n,1)');\n KW(nl(1)+(1:nl(2)),1:nl(1))=bsxfun(@times, K(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))), Wvec(1:n,2)');\n end\n \n % B = (I + K*W)\n B=KW; B(1:(nl(1)+nl(2)+1):end)=B(1:(nl(1)+nl(2)+1):end)+1;\n \n iB=B\\eye(sum(nl));\n \n % A = inv(I+K*W)*K\n A=iB*K;\n \n s2=zeros(sum(nl),1);\n \n if isfield(gp.lik,'xtime')\n A_diag=diag(A);\n A_mat=A(1:ntime,ntime+(1:n));\n for i1=1:sum(nl)\n % Third derivatives\n [dw_diag,dw_mat]=gp.lik.fh.llg3(gp.lik, y, f, 'latent', z, i1);\n % s2(i) = -0.5*trace(inv(inv(K)+W)*dW/df_i)\n s2(i1) = 0.5*(sum(A_diag.*dw_diag)+2*sum(sum(A_mat.*dw_mat)));\n end\n else\n % Third derivatives\n dw_mat = gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n for i1=1:n\n % s2(i) = -0.5*trace(inv(inv(K)+W)*dW/df_i)\n s2(i1) = 0.5*trace(A(i1:n:(i1+n),i1:n:(i1+n))*dw_mat(:,:,1,i1));\n s2(i1+n) = 0.5*trace(A(i1:n:(i1+n),i1:n:(i1+n))*dw_mat(:,:,2,i1));\n end\n end\n \n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance'))\n % Evaluate the gradients from covariance functions\n for i=1:ncf\n \n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n gpcf = gp.cf{i};\n \n % check in which components the covariance function is present\n do = false(nlp,1);\n for z1=1:nlp\n if any(gp.comp_cf{z1}==i)\n do(z1) = true;\n end\n end\n \n if isfield(gp.lik,'xtime')\n if ~isempty(intersect(gp.comp_cf{1},i))\n if savememory\n % If savememory option is used, just get the number of\n % hyperparametrs and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, xtime);\n np=length(DKffc);\n end\n else\n if savememory\n % If savememory option is used, just get the number of\n % hyperparametrs and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x);\n np=length(DKffc);\n end\n end\n else\n if savememory\n % If savememory option is used, just get the number of\n % hyperparametrs and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x);\n np=length(DKffc);\n end\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n g1 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n \n WiB11=bsxfun(@times, Wdiag(1:nl(1)),iB(1:nl(1),1:nl(1)));\n WiB12=bsxfun(@times, Wdiag(1:nl(1)),iB(1:nl(1),nl(1)+(1:nl(2))));\n WiB22=bsxfun(@times, Wdiag(nl(1)+(1:nl(2))),iB(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))));\n if isfield(gp.lik,'xtime')\n WiB11=WiB11 + Wmat*iB(nl(1)+(1:nl(2)),1:nl(1));\n WiB12=WiB12 + Wmat*iB(nl(1)+(1:nl(2)),nl(1)+(1:nl(2)));\n WiB22=WiB22 + Wmat'*iB(1:nl(1),nl(1)+(1:nl(2)));\n else\n WiB11=WiB11 + bsxfun(@times,Wvec(1:n,2),iB(nl(1)+(1:nl(2)),1:nl(1)));\n WiB12=WiB12 + bsxfun(@times,Wvec(1:n,2),iB(nl(1)+(1:nl(2)),nl(1)+(1:nl(2))));\n WiB22=WiB22 + bsxfun(@times,Wvec(nl(1)+(1:nl(2)),1),iB(1:nl(1),nl(1)+(1:nl(2))));\n end\n WiB=[WiB11 WiB12; WiB12' WiB22];\n % WiB=W*inv(I+KW)\n \n for i2 = 1:np\n i1 = i1+1;\n if ~isfield(gp,'meanf')\n dKnl = zeros(sum(nl));\n if isfield(gp.lik,'xtime')\n if ~isempty(intersect(gp.comp_cf{1},i)) %do(indnl)\n if savememory\n DKff=gpcf.fh.cfg(gpcf,xtime,[],[],i2);\n else\n DKff=DKffc{i2};\n end\n dKnl(1:ntime,1:ntime) = DKff;\n %end\n else\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],[],i2);\n else\n DKff=DKffc{i2};\n end\n %if do(indnl)\n dKnl(ntime+(1:n),ntime+(1:n)) = DKff;\n %end\n end\n else\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],[],i2);\n else\n DKff=DKffc{i2};\n end\n for indnl=1:nlp\n if do(indnl)\n dKnl((1:n)+(indnl-1)*n,(1:n)+(indnl-1)*n) = DKff;\n end\n end\n end\n % s1 = 0.5*f'*inv(K)*dK/dtheta_j*inv(K)*f -\n % 0.5*trace(inv(inv(W)+K)*dK/dtheta_j)\n s1 = 0.5 * a'*dKnl*a - 0.5*sum(sum((dKnl.*WiB)));\n else\n %s1 = 0.5 * (a-K\\(H'*b_m))'*DKff{i2}*(a-K\\(H'*b_m)) - 0.5*sum(sum(R.*DKff{i2}));\n end\n %b = DKff{i2} * g1;\n b = dKnl*g1;\n % s3 = inv(I+KW)*dK/dtheta_j*d(log(p(y|f)))/df\n s3=iB*b;\n \n gdata(i1) = -(s1 + s2'*s3);\n gprior(i1) = gprior_cf(i2);\n end\n end\n \n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n if ~isempty(strfind(gp.infer_params, 'likelihood')) ...\n && ~isempty(gp.lik.fh.pak(gp.lik))\n \n gdata_lik = 0;\n lik = gp.lik;\n \n g_logPrior = -lik.fh.lpg(lik);\n if ~isempty(g_logPrior)\n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n b = K * lik.fh.llg2(lik, y, f, 'latent+param', z);\n s3 = iB*b;\n \n gdata_lik = - DL_sigma - 0.5.*sum(sum((A.*DW_sigma))) - s2'*s3;\n \n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(g_logPrior);\n i2 = length(gdata_lik);\n if i1 > i2\n gdata = [gdata zeros(1,i1-i2)];\n end\n end\n end\n \n end\n \n \n g = gdata + gprior;\n end\n\n case 'FIC'\n % ============================================================\n % FIC\n % ============================================================\n g_ind = zeros(1,numel(gp.X_u));\n gdata_ind = zeros(1,numel(gp.X_u));\n gprior_ind = zeros(1,numel(gp.X_u));\n\n u = gp.X_u;\n m = size(u,1);\n\n [e, edata, eprior, f, L, a, La1] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);\n\n K_fu = gp_cov(gp, x, u); % f x u\n K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu\n Luu = chol(K_uu);\n B=Luu'\\(K_fu'); % u x f\n iKuuKuf = Luu\\B;\n \n W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);\n sqrtW = sqrt(W);\n \n % Components for trace( inv(inv(W) + K) * dK) )\n Lah = 1 + sqrtW.*La1.*sqrtW;\n sWKfu = (repmat(sqrtW,1,m).*K_fu);\n B3 = repmat(Lah,1,m).\\sWKfu;\n A = K_uu + sWKfu'*B3; A=(A+A')/2;\n L2 = repmat(sqrtW,1,m).*(B3/chol(A));\n iLa2W = sqrtW.*(Lah.\\sqrtW);\n \n LL = sum(L2.*L2,2);\n BB = sum(B.^2)';\n \n % Evaluate s2\n C1 = L2'*B'*B;\n C2 = L2'.*repmat(La1',m,1);\n \n s2t = La1 + BB;\n s2t = s2t - (La1.*iLa2W.*La1 - sum(C2.^2)' + sum(B'.*((B*(repmat(iLa2W,1,m).*B'))*B)',2)...\n - sum(C1.^2)' + 2*La1.*iLa2W.*BB - 2*La1.*sum(L2.*C1',2));\n\n s2 = 0.5*s2t.*gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n b3 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n \n \n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance'))\n for i=1:ncf \n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n % Get the gradients of the covariance matrices \n % and gprior from gpcf_* structures\n gpcf = gp.cf{i};\n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x, [], 1);\n DKuuc = gpcf.fh.cfg(gpcf, u);\n DKufc = gpcf.fh.cfg(gpcf, u, x);\n np=length(DKuuc);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],1,i2);\n DKuu=gpcf.fh.cfg(gpcf,u,[],[],i2);\n DKuf=gpcf.fh.cfg(gpcf,u,x,[],i2);\n else\n DKff=DKffc{i2};\n DKuu=DKuuc{i2};\n DKuf=DKufc{i2};\n end\n % 0.5* a'*dK*a, where a = K\\f\n KfuiKuuKuu = iKuuKuf'*DKuu;\n gdata(i1) = -0.5.*((2.*a'*DKuf'-(a'*KfuiKuuKuu))*(iKuuKuf*a) + (a'.*DKff')*a...\n - (2.*a'.*sum(DKuf'.*iKuuKuf',2)'*a-a'.*sum(KfuiKuuKuu.*iKuuKuf',2)'*a) );\n \n % trace( inv(inv(W) + K) * dQ) )\n gdata(i1) = gdata(i1) - 0.5.*sum(sum(L2'.*(2.*L2'*DKuf'*iKuuKuf - L2'*KfuiKuuKuu*iKuuKuf)));\n gdata(i1) = gdata(i1) + 0.5.*sum(DKff.*iLa2W - LL.*DKff);\n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(LL.*sum(DKuf'.*iKuuKuf',2)) - sum(LL.*sum(KfuiKuuKuu.*iKuuKuf',2)));\n \n b = (2*DKuf' - KfuiKuuKuu)*(iKuuKuf*b3) + DKff.*b3 - sum((2.*DKuf'- KfuiKuuKuu).*iKuuKuf',2).*b3;\n bb = sqrtW.*(Lah.\\(sqrtW.*b)) - L2*(L2'*b);\n s3 = b - (La1.*bb + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n \n gprior(i1) = gprior_cf(i2);\n end\n \n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n \n if ~isempty(strfind(gp.infer_params, 'likelihood')) && ~isempty(gp.lik.fh.pak(gp.lik))\n gdata_lik = 0;\n lik = gp.lik;\n\n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n DL_f_sigma = lik.fh.llg2(lik, y, f, 'latent+param', z);\n% b = La1.*DL_f_sigma + B'*(B*DL_f_sigma); \n% bb = (iLa2W.*b - L2*(L2'*b));\n% s3 = b - (La1.*bb + B'*(B*bb));\n b = repmat(La1,1,size(DL_f_sigma,2)).*DL_f_sigma + B'*(B*DL_f_sigma); \n bb = (repmat(iLa2W,1,size(DL_f_sigma,2)).*b - L2*(L2'*b));\n s3 = b - (repmat(La1,1,size(DL_f_sigma,2)).*bb + B'*(B*bb));\n\n% gdata_lik = - DL_sigma - 0.5.*sum(s2t.*DW_sigma) - s2'*s3;\n gdata_lik = - DL_sigma - 0.5.*sum(repmat(s2t,1,size(DL_f_sigma,2)).*DW_sigma) - s2'*s3;\n \n % evaluate prior contribution for the gradient\n if isfield(gp.lik, 'p')\n g_logPrior = -lik.fh.lpg(lik);\n else\n g_logPrior = zeros(size(gdata_lik));\n end\n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(gdata);\n end\n \n % =================================================================\n % Gradient with respect to inducing inputs\n \n if ~isempty(strfind(gp.infer_params, 'inducing'))\n if isfield(gp.p, 'X_u') && ~isempty(gp.p.X_u)\n m = size(gp.X_u,2);\n st=0;\n if ~isempty(gprior)\n st = length(gprior);\n end\n \n gdata(st+1:st+length(gp.X_u(:))) = 0;\n i1 = st+1;\n for i = 1:size(gp.X_u,1)\n if iscell(gp.p.X_u) % Own prior for each inducing input\n pr = gp.p.X_u{i};\n gprior(i1:i1+m) = pr.fh.lpg(gp.X_u(i,:), pr);\n else % One prior for all inducing inputs\n gprior(i1:i1+m-1) = gp.p.X_u.fh.lpg(gp.X_u(i,:), gp.p.X_u);\n end\n i1 = i1 + m;\n end\n \n for i=1:ncf\n i1=st;\n \n gpcf = gp.cf{i};\n if savememory\n % If savememory option is used, just get the number of\n % covariates in X and calculate gradients later\n np=gpcf.fh.ginput(gpcf,u,[],0);\n else\n np=1;\n DKuu = gpcf.fh.ginput(gpcf, u);\n DKuf = gpcf.fh.ginput(gpcf, u, x);\n end\n \n for i3 = 1:np\n if savememory\n DKuu=gpcf.fh.ginput(gpcf,u,[],i3);\n DKuf=gpcf.fh.ginput(gpcf,u,x,i3);\n end\n for i2 = 1:length(DKuu)\n i1 = i1+1;\n \n % 0.5* a'*dK*a, where a = K\\f\n KfuiKuuKuu = iKuuKuf'*DKuu{i2};\n gdata(i1) = gdata(i1) -0.5.*((2.*a'*DKuf{i2}'-(a'*KfuiKuuKuu))*(iKuuKuf*a) + ...\n - (2.*a'.*sum(DKuf{i2}'.*iKuuKuf',2)'*a-a'.*sum(KfuiKuuKuu.*iKuuKuf',2)'*a) );\n \n % trace( inv(inv(W) + K) * dQ) )\n gdata(i1) = gdata(i1) - 0.5.*(sum(sum(L2'.*(2.*L2'*DKuf{i2}'*iKuuKuf - L2'*KfuiKuuKuu*iKuuKuf))));\n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(LL.*sum(DKuf{i2}'.*iKuuKuf',2)) - sum(LL.*sum(KfuiKuuKuu.*iKuuKuf',2)));\n \n \n % b2*dK*b3\n b = (2*DKuf{i2}'-KfuiKuuKuu)*(iKuuKuf*b3) - sum((2.*DKuf{i2}'- KfuiKuuKuu).*iKuuKuf',2).*b3;\n bb = (iLa2W.*b - L2*(L2'*b));\n s3 = b - (La1.*bb + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n end\n end\n end\n end\n end\n\n g = gdata + gprior;\n\n case {'PIC' 'PIC_BLOCK'}\n % ============================================================\n % PIC\n % ============================================================\n g_ind = zeros(1,numel(gp.X_u));\n gdata_ind = zeros(1,numel(gp.X_u));\n gprior_ind = zeros(1,numel(gp.X_u));\n\n u = gp.X_u;\n m = size(u,1);\n ind = gp.tr_index;\n\n [e, edata, eprior, f, L, a, La1] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);\n\n K_fu = gp_cov(gp, x, u); % f x u\n K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu\n K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu\n Luu = chol(K_uu);\n iKuuKuf = Luu\\(Luu'\\K_fu');\n B=Luu'\\(K_fu'); % u x f\n\n W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);\n sqrtW = sqrt(W);\n \n % Components for trace( inv(inv(W) + K) * dK) )\n B2 = (repmat(sqrtW,1,m).*K_fu);\n for i=1:length(ind)\n La2{i} = eye(size(La1{i})) + diag(sqrtW(ind{i}))*La1{i}*diag(sqrtW(ind{i}));\n LLa2{i} = chol(La2{i});\n B3(ind{i},:) = LLa2{i}\\(LLa2{i}'\\B2(ind{i},:));\n end\n A2 = K_uu + B2'*B3; A2=(A2+A2')/2;\n L2 = repmat(sqrtW,1,m).*B3/chol(A2);\n for i=1:length(ind)\n iLa2W{i} = diag(sqrtW(ind{i}))*(LLa2{i}\\(LLa2{i}'\\diag(sqrtW(ind{i}))));\n end\n \n LL = sum(L2.*L2,2);\n BB = sum(B.^2)';\n \n % Evaluate s2\n C1 = L2'*B'*B;\n s2t = BB;\n for i=1:length(ind)\n C2(:,ind{i}) = L2(ind{i},:)'*La1{i};\n s2t1(ind{i},:) = diag(La1{i}*iLa2W{i}*La1{i});\n s2t2(ind{i},:) = La1{i}*iLa2W{i}*B(:,ind{i})';\n s2t3(ind{i},:) = La1{i}*L2(ind{i},:);\n Bt(ind{i},:) = iLa2W{i}*B(:,ind{i})';\n s2t(ind{i}) = s2t(ind{i}) + diag(La1{i});\n end\n \n s2t = s2t - (s2t1 - sum(C2.^2)' + sum(B'.*((B*Bt)*B)',2)...\n - sum(C1.^2)' + 2*sum(s2t2.*B',2) - 2*sum(s2t3.*C1',2));\n\n s2 = 0.5*s2t.*gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n b3 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n\n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance'))\n for i=1:ncf\n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n % Get the gradients of the covariance matrices \n % and gprior from gpcf_* structures\n gpcf = gp.cf{i};\n \n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKuuc = gpcf.fh.cfg(gpcf, u);\n DKufc = gpcf.fh.cfg(gpcf, u, x);\n for kk = 1:length(ind)\n DKffc{kk} = gpcf.fh.cfg(gpcf, x(ind{kk},:));\n end\n np=length(DKuuc);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKuu=gpcf.fh.cfg(gpcf,u,[],[],i2);\n DKuf=gpcf.fh.cfg(gpcf,u,x,[],i2);\n else\n DKuu=DKuuc{i2};\n DKuf=DKufc{i2};\n end\n KfuiKuuKuu = iKuuKuf'*DKuu;\n gdata(i1) = -0.5.*((2.*a'*DKuf'-(a'*KfuiKuuKuu))*(iKuuKuf*a) );\n gdata(i1) = gdata(i1) - 0.5.*(sum(sum(L2'.*(2.*L2'*DKuf'*iKuuKuf - L2'*KfuiKuuKuu*iKuuKuf))));\n\n b = (2*DKuf'-KfuiKuuKuu)*(iKuuKuf*b3);\n for kk=1:length(ind)\n if savememory\n DKff=gpcf.fh.cfg(gpcf, x(ind{kk},:),[],[],i2);\n else\n DKff=DKffc{kk}{i2};\n end\n gdata(i1) = gdata(i1) -0.5.*(a(ind{kk})'*DKff*a(ind{kk})...\n - (2.*a(ind{kk})'*DKuf(:,ind{kk})'*iKuuKuf(:,ind{kk})*a(ind{kk})...\n -a(ind{kk})'*KfuiKuuKuu(ind{kk},:)*iKuuKuf(:,ind{kk})*a(ind{kk})) );\n \n % trace( inv(inv(W) + K) * dQ) ) \n gdata(i1) = gdata(i1) + 0.5.*(sum(sum(iLa2W{kk}.*DKff)) - sum(sum(L2(ind{kk},:)'.*(L2(ind{kk},:)'*DKff))));\n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(sum(L2(ind{kk},:)'.*(L2(ind{kk},:)'*DKuf(:,ind{kk})'*iKuuKuf(:,ind{kk})))) - ...\n sum(sum(L2(ind{kk},:)'.*((L2(ind{kk},:)'*KfuiKuuKuu(ind{kk},:))*iKuuKuf(:,ind{kk})))));\n \n b(ind{kk}) = b(ind{kk}) + DKff*b3(ind{kk})...\n - (2.*DKuf(:,ind{kk})'- KfuiKuuKuu(ind{kk},:))*iKuuKuf(:,ind{kk})*b3(ind{kk});\n bbt(ind{kk},:) = iLa2W{kk}*b(ind{kk});\n end\n \n % b2*dK*b3\n bb = (bbt - L2*(L2'*b));\n for kk=1:length(ind)\n s3t(ind{kk},:) = La1{kk}*bb(ind{kk});\n end\n s3 = b - (s3t + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n \n gprior(i1) = gprior_cf(i2);\n end\n \n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n \n if ~isempty(strfind(gp.infer_params, 'likelihood')) && ~isempty(gp.lik.fh.pak(gp.lik))\n gdata_lik = 0;\n lik = gp.lik;\n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n DL_f_sigma = lik.fh.llg2(lik, y, f, 'latent+param', z);\n b = B'*(B*DL_f_sigma);\n for kk=1:length(ind)\n b(ind{kk}) = b(ind{kk}) + La1{kk}*DL_f_sigma(ind{kk});\n bbt(ind{kk},:) = iLa2W{kk}*b(ind{kk});\n end\n bb = (bbt - L2*(L2'*b));\n for kk=1:length(ind)\n s3t(ind{kk},:) = La1{kk}*bb(ind{kk});\n end\n s3 = b - (s3t + B'*(B*bb));\n\n gdata_lik = - DL_sigma - 0.5.*sum(s2t.*DW_sigma) - s2'*s3;\n\n % evaluate prior contribution for the gradient\n if isfield(gp.lik, 'p')\n g_logPrior = -lik.fh.lpg(lik);\n else\n g_logPrior = zeros(size(gdata_lik));\n end\n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(gdata);\n end\n \n % =================================================================\n % Gradient with respect to inducing inputs\n \n if ~isempty(strfind(gp.infer_params, 'inducing'))\n if isfield(gp.p, 'X_u') && ~isempty(gp.p.X_u)\n m = size(gp.X_u,2);\n \n st=0;\n if ~isempty(gprior)\n st = length(gprior);\n end\n gdata(st+1:st+length(gp.X_u(:))) = 0;\n \n i1 = st+1;\n for i = 1:size(gp.X_u,1)\n if iscell(gp.p.X_u) % Own prior for each inducing input\n pr = gp.p.X_u{i};\n gprior(i1:i1+m) = pr.fh.lpg(gp.X_u(i,:), pr);\n else % One prior for all inducing inputs\n gprior(i1:i1+m-1) = gp.p.X_u.fh.lpg(gp.X_u(i,:), gp.p.X_u);\n end\n i1 = i1 + m;\n end\n \n % Loop over the covariance functions\n for i=1:ncf \n i1=st;\n gpcf = gp.cf{i};\n if savememory\n % If savememory option is used, just get the number of\n % covariates in X and calculate gradients later\n np=gpcf.fh.ginput(gpcf,u,[],0);\n else\n DKuu = gpcf.fh.ginput(gpcf, u);\n DKuf = gpcf.fh.ginput(gpcf, u, x);\n np=1;\n end\n \n for i3 = 1:np\n if savememory\n DKuu=gpcf.fh.ginput(gpcf,u,[],i3);\n DKuf=gpcf.fh.ginput(gpcf,u,x,i3);\n end\n for i2 = 1:length(DKuu)\n i1 = i1+1;\n \n \n KfuiKuuKuu = iKuuKuf'*DKuu{i2};\n gdata(i1) = -0.5.*((2.*a'*DKuf{i2}'-(a'*KfuiKuuKuu))*(iKuuKuf*a) );\n gdata(i1) = gdata(i1) - 0.5.*(sum(sum(L2'.*(2.*L2'*DKuf{i2}'*iKuuKuf - L2'*KfuiKuuKuu*iKuuKuf))));\n \n b = (2*DKuf{i2}'-KfuiKuuKuu)*(iKuuKuf*b3);\n for kk=1:length(ind)\n gdata(i1) = gdata(i1) -0.5.*(- (2.*a(ind{kk})'*DKuf{i2}(:,ind{kk})'*iKuuKuf(:,ind{kk})*a(ind{kk})...\n -a(ind{kk})'*KfuiKuuKuu(ind{kk},:)*iKuuKuf(:,ind{kk})*a(ind{kk})) );\n \n % trace( inv(inv(W) + K) * dQ) ) \n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(sum(L2(ind{kk},:)'.*(L2(ind{kk},:)'*DKuf{i2}(:,ind{kk})'*iKuuKuf(:,ind{kk})))) - ...\n sum(sum(L2(ind{kk},:)'.*((L2(ind{kk},:)'*KfuiKuuKuu(ind{kk},:))*iKuuKuf(:,ind{kk})))));\n \n b(ind{kk}) = b(ind{kk}) + ...\n - (2.*DKuf{i2}(:,ind{kk})'- KfuiKuuKuu(ind{kk},:))*iKuuKuf(:,ind{kk})*b3(ind{kk});\n bbt(ind{kk},:) = iLa2W{kk}*b(ind{kk});\n end\n \n % b2*dK*b3\n bb = (bbt - L2*(L2'*b));\n for kk=1:length(ind)\n s3t(ind{kk},:) = La1{kk}*bb(ind{kk});\n end\n s3 = b - (s3t + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n end\n end\n end\n end\n end\n\n g = gdata + gprior; \n\n case 'CS+FIC'\n % ============================================================\n % CS+FIC\n % ============================================================ \n u = gp.X_u;\n m = size(u,1);\n\n [e, edata, eprior, f, L, a, La1] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);\n\n cf_orig = gp.cf;\n\n cf1 = {};\n cf2 = {};\n j = 1;\n k = 1;\n for i = 1:ncf\n if ~isfield(gp.cf{i},'cs')\n cf1{j} = gp.cf{i};\n j = j + 1;\n else\n cf2{k} = gp.cf{i};\n k = k + 1;\n end\n end\n gp.cf = cf1;\n\n % First evaluate needed covariance matrices\n % v defines that parameter is a vector\n [Kv_ff, Cv_ff] = gp_trvar(gp, x); % f x 1 vector\n K_fu = gp_cov(gp, x, u); % f x u\n K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu\n K_uu = (K_uu+K_uu')./2; % ensure the symmetry of K_uu\n gp.cf = cf_orig;\n \n W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);\n \n % Find fill reducing permutation and permute all the\n % matrices\n p = analyze(La1);\n if ~isempty(z)\n z = z(p,:);\n end\n f = f(p);\n y = y(p);\n La1 = La1(p,p);\n K_fu = K_fu(p,:);\n L = L(p,:);\n x = x(p,:);\n W = W(p);\n a = a(p);\n \n Luu = chol(K_uu)';\n B=Luu\\(K_fu'); % u x f\n iKuuKuf = Luu'\\B;\n sW = sqrt(W);\n sqrtW = sparse(1:n,1:n,sW,n,n);\n Inn = sparse(1:n,1:n,1,n,n);\n \n % Components for trace( inv(inv(W) + K) * dK) )\n Lah = Inn + sqrtW*La1*sqrtW;\n LD2 = ldlchol(Lah);\n B2 = (repmat(sW,1,m).*K_fu);\n %B3 = Lah\\B2;\n B3 = ldlsolve(LD2,B2);\n A2 = K_uu + B2'*B3; A2=(A2+A2')/2;\n L2 = repmat(sW,1,m).*B3/chol(A2);\n\n siLa2 = spinv(LD2,1);\n dsiLa2 = diag(siLa2);\n \n LL = sum(L2.*L2,2);\n BB = sum(B.^2)';\n \n % Evaluate s2\n C1 = L2'*B'*B;\n C2 = L2'*La1;\n C3 = repmat(sW,1,m).*ldlsolve(LD2,repmat(sW,1,m).*B');\n \n s2t = diag(La1) + BB; \n %diag(La1*sqrtW*ldlsolve(LD2,sqrtW*La1))\n s2t = s2t - (diag(La1) - sum(La1*sqrtW.*siLa2',2)./sW - sum(C2.^2)' + sum(B'.*(B*C3*B)',2)...\n - sum(C1.^2)' + 2*sum((La1*C3).*B',2) - 2*sum(C2'.*C1',2));\n \n s2 = 0.5*s2t.*gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n \n b3 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n \n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance')) \n for i=1:ncf\n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n gpcf = gp.cf{i};\n \n % Evaluate the gradient for FIC covariance functions\n if ~isfield(gpcf,'cs')\n % Get the gradients of the covariance matrices \n % and gprior from gpcf_* structures\n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x, [], 1);\n DKuuc = gpcf.fh.cfg(gpcf, u);\n DKufc = gpcf.fh.cfg(gpcf, u, x);\n np=length(DKuuc);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],1,i2);\n DKuu=gpcf.fh.cfg(gpcf,u,[],[],i2);\n DKuf=gpcf.fh.cfg(gpcf,u,x,[],i2);\n else\n DKff=DKffc{i2};\n DKuu=DKuuc{i2};\n DKuf=DKufc{i2};\n end\n % 0.5* a'*dK*a, where a = K\\f\n KfuiKuuKuu = iKuuKuf'*DKuu;\n gdata(i1) = -0.5.*((2.*a'*DKuf'-(a'*KfuiKuuKuu))*(iKuuKuf*a) + (a'.*DKff')*a...\n - (2.*a'.*sum(DKuf'.*iKuuKuf',2)'*a-a'.*sum(KfuiKuuKuu.*iKuuKuf',2)'*a) );\n \n % trace( inv(inv(W) + K) * dQ) )\n gdata(i1) = gdata(i1) - 0.5.*(sum(sum(L2'.*(2.*L2'*DKuf'*iKuuKuf - L2'*KfuiKuuKuu*iKuuKuf))));\n gdata(i1) = gdata(i1) + 0.5.*(sum(DKff.*dsiLa2.*W - LL.*DKff));\n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(LL.*sum(DKuf'.*iKuuKuf',2)) - sum(LL.*sum(KfuiKuuKuu.*iKuuKuf',2)));\n \n gdata(i1) = gdata(i1) + 0.5.*sum(sum(sqrtW*ldlsolve(LD2,repmat(sW,1,m).*(2.*DKuf' - KfuiKuuKuu)).*iKuuKuf',2));\n gdata(i1) = gdata(i1) - 0.5.*sum(sW.*dsiLa2.*sW.*sum((2.*DKuf' - KfuiKuuKuu).*iKuuKuf',2) ); \n \n % b2*dK*b3\n b = (2*DKuf'-KfuiKuuKuu)*(iKuuKuf*b3) + DKff.*b3 - sum((2.*DKuf'- KfuiKuuKuu).*iKuuKuf',2).*b3;\n bb = (sW.*ldlsolve(LD2,sW.*b) - L2*(L2'*b));\n s3 = b - (La1*bb + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n \n gprior(i1) = gprior_cf(i2);\n end\n \n % Evaluate the gradient for compact support covariance functions\n else\n % Get the gradients of the covariance matrices \n % and gprior from gpcf_* structures\n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n DKffc = gpcf.fh.cfg(gpcf, x);\n np=length(DKffc);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],[],i2);\n else\n DKff=DKffc{i2};\n end\n \n % Evaluate the gradient with respect to magnSigma\n gdata(i1) = 0.5*(sum(sW.*sum(siLa2.*(sqrtW*DKff)',2)) - sum(sum(L2.*(L2'*DKff')')) - a'*DKff*a);\n b = DKff*b3;\n bb = (sW.*ldlsolve(LD2,sW.*b) - L2*(L2'*b));\n s3 = b - (La1*bb + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n gprior(i1) = gprior_cf(i2);\n\n end\n end\n \n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n \n if ~isempty(strfind(gp.infer_params, 'likelihood')) && ~isempty(gp.lik.fh.pak(gp.lik))\n gdata_lik = 0;\n lik = gp.lik;\n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n DL_f_sigma = lik.fh.llg2(lik, y, f, 'latent+param', z);\n b = La1*DL_f_sigma + B'*(B*DL_f_sigma); \n bb = (sW.*ldlsolve(LD2,sW.*b) - L2*(L2'*b));\n s3 = b - (La1*bb + B'*(B*bb)); \n \n gdata_lik = - DL_sigma - 0.5.*sum(s2t.*DW_sigma) - s2'*s3;\n \n % evaluate prior contribution for the gradient\n if isfield(gp.lik, 'p')\n g_logPrior = -lik.fh.lpg(lik);\n else\n g_logPrior = zeros(size(gdata_lik));\n end\n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(gdata);\n end\n \n % =================================================================\n % Gradient with respect to inducing inputs\n \n if ~isempty(strfind(gp.infer_params, 'inducing'))\n if isfield(gp.p, 'X_u') && ~isempty(gp.p.X_u)\n m = size(gp.X_u,2);\n st=0;\n if ~isempty(gprior)\n st = length(gprior);\n end\n \n gdata(st+1:st+length(gp.X_u(:))) = 0;\n i1 = st+1;\n for i = 1:size(gp.X_u,1)\n if iscell(gp.p.X_u) % Own prior for each inducing input\n pr = gp.p.X_u{i};\n gprior(i1:i1+m) = pr.fh.lpg(gp.X_u(i,:), pr);\n else % One prior for all inducing inputs\n gprior(i1:i1+m-1) = gp.p.X_u.fh.lpg(gp.X_u(i,:), gp.p.X_u);\n end\n i1 = i1 + m;\n end\n \n for i=1:ncf\n i1=st;\n gpcf = gp.cf{i}; \n if ~isfield(gpcf,'cs')\n if savememory\n % If savememory option is used, just get the number of\n % covariates in X and calculate gradients later\n np=gpcf.fh.ginput(gpcf,u,[],0);\n else\n DKuu = gpcf.fh.ginput(gpcf, u);\n DKuf = gpcf.fh.ginput(gpcf, u, x);\n np=1;\n end\n \n for i3 = 1:np\n if savememory\n DKuu=gpcf.fh.ginput(gpcf,u,[],i3);\n DKuf=gpcf.fh.ginput(gpcf,u,x,i3);\n end\n for i2 = 1:length(DKuu)\n i1=i1+1;\n \n % 0.5* a'*dK*a, where a = K\\f\n KfuiKuuKuu = iKuuKuf'*DKuu{i2};\n gdata(i1) = -0.5.*((2.*a'*DKuf{i2}'-(a'*KfuiKuuKuu))*(iKuuKuf*a) ...\n - (2.*a'.*sum(DKuf{i2}'.*iKuuKuf',2)'*a-a'.*sum(KfuiKuuKuu.*iKuuKuf',2)'*a) );\n \n % trace( inv(inv(W) + K) * dQ) )\n gdata(i1) = gdata(i1) - 0.5.*(sum(sum(L2'.*(2.*L2'*DKuf{i2}'*iKuuKuf - L2'*KfuiKuuKuu*iKuuKuf))));\n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(LL.*sum(DKuf{i2}'.*iKuuKuf',2)) - sum(LL.*sum(KfuiKuuKuu.*iKuuKuf',2)));\n \n gdata(i1) = gdata(i1) + 0.5.*sum(sum(sqrtW*ldlsolve(LD2,repmat(sW,1,size(u,1)).*(2.*DKuf{i2}' - KfuiKuuKuu)).*iKuuKuf',2));\n gdata(i1) = gdata(i1) - 0.5.*( sum(sW.*dsiLa2.*sW.*sum((2.*DKuf{i2}' - KfuiKuuKuu).*iKuuKuf',2)) );\n \n % b2*dK*b3\n b = (2*DKuf{i2}'-KfuiKuuKuu)*(iKuuKuf*b3) - sum((2.*DKuf{i2}'- KfuiKuuKuu).*iKuuKuf',2).*b3;\n bb = (sW.*ldlsolve(LD2,sW.*b) - L2*(L2'*b));\n s3 = b - (La1*bb + B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n end\n end\n end\n end\n end\n end\n\n g = gdata + gprior;\n \n case {'DTC', 'VAR', 'SOR'}\n % ============================================================\n % DTC, VAR, SOR\n % ============================================================\n g_ind = zeros(1,numel(gp.X_u));\n gdata_ind = zeros(1,numel(gp.X_u));\n gprior_ind = zeros(1,numel(gp.X_u));\n \n u = gp.X_u;\n m = size(u,1);\n \n [e, edata, eprior, f, L, a, La2] = gpla_e(gp_pak(gp), gp, x, y, 'z', z);\n \n K_fu = gp_cov(gp, x, u); % f x u\n K_uu = gp_trcov(gp, u); % u x u, noiseles covariance K_uu\n Luu = chol(K_uu);\n B=Luu'\\(K_fu'); % u x f\n iKuuKuf = Luu\\B;\n \n W = -gp.lik.fh.llg2(gp.lik, y, f, 'latent', z);\n sqrtW = sqrt(W);\n \n % Components for trace( inv(inv(W) + K) * dK) )\n sWKfu = bsxfun(@times, sqrtW, K_fu);\n % L = chol(K_uu + sWKfu'*sWKfu)\n L2 = repmat(sqrtW,1,m).*(sWKfu/L);\n \n LL = sum(L2.*L2,2);\n BB = sum(B.^2)';\n \n % Evaluate s2\n C1 = L2'*B'*B;\n C2 = zeros(size(L2'));\n \n s2t = BB;\n s2t = s2t - (sum(C2.^2)' + sum(B'.*((B*(repmat(W,1,m).*B'))*B)',2)...\n - sum(C1.^2)');\n \n g3 = gp.lik.fh.llg3(gp.lik, y, f, 'latent', z);\n s2 = 0.5*s2t.*g3;\n b3 = gp.lik.fh.llg(gp.lik, y, f, 'latent', z);\n \n \n % =================================================================\n % Gradient with respect to covariance function parameters\n if ~isempty(strfind(gp.infer_params, 'covariance'))\n for i=1:ncf\n i1=0;\n if ~isempty(gprior)\n i1 = length(gprior);\n end\n \n % Get the gradients of the covariance matrices\n % and gprior from gpcf_* structures\n gpcf = gp.cf{i};\n if savememory\n % If savememory option is used, just get the number of\n % hyperparameters and calculate gradients later\n np=gpcf.fh.cfg(gpcf,[],[],[],0);\n else\n % DKffc = gpcf.fh.cfg(gpcf, x, [], 1);\n DKuuc = gpcf.fh.cfg(gpcf, u);\n DKufc = gpcf.fh.cfg(gpcf, u, x);\n if isequal(gp.type, 'VAR')\n DKffc=gpcf.fh.cfg(gpcf,x,[],1);\n end\n np=length(DKuuc);\n end\n gprior_cf = -gpcf.fh.lpg(gpcf);\n \n for i2 = 1:np\n i1 = i1+1;\n if savememory\n DKuu=gpcf.fh.cfg(gpcf,u,[],[],i2);\n DKuf=gpcf.fh.cfg(gpcf,u,x,[],i2);\n else\n DKuu=DKuuc{i2};\n DKuf=DKufc{i2};\n end\n % 0.5* a'*dK*a, where a = K\\f\n KfuiKuuDKuu = iKuuKuf'*DKuu;\n gdata(i1) = -0.5.*((2.*a'*DKuf'-(a'*KfuiKuuDKuu))*(iKuuKuf*a));\n \n % trace( inv(inv(W) + K) * dQ) )\n gdata(i1) = gdata(i1) - 0.5.*sum(sum(L2'.*(2.*L2'*DKuf'*iKuuKuf - L2'*KfuiKuuDKuu*iKuuKuf)));\n gdata(i1) = gdata(i1) + 0.5.*(2.*sum(W.*sum(DKuf'.*iKuuKuf',2)) - sum(W.*sum(KfuiKuuDKuu.*iKuuKuf',2)));\n \n b = (2*DKuf' - KfuiKuuDKuu)*(iKuuKuf*b3);\n bb = sqrtW.*sqrtW.*b - L2*(L2'*b);\n s3 = b - (B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n\n if isequal(gp.type, 'VAR')\n % Derivative of tr(diag(K-Q).*W) (Titsias, 2009) wrt th \n % Here we have to also split in explicit and implicit\n % derivatives\n if savememory\n DKff=gpcf.fh.cfg(gpcf,x,[],1,i2);\n else\n DKff=DKffc{i2};\n end \n gdata(i1) = gdata(i1) + 0.5*sum(DKff.*W) - 0.5.*(2.*sum(W.*sum(DKuf'.*iKuuKuf',2)) - sum(W.*sum(KfuiKuuDKuu.*iKuuKuf',2)));\n % La2 = diag(K - Q);\n gdata(i1) = gdata(i1) - 0.5*(La2.*g3)'*s3;\n end\n \n gprior(i1) = gprior_cf(i2);\n end\n \n % Set the gradients of hyperparameter\n if length(gprior_cf) > np\n for i2=np+1:length(gprior_cf)\n i1 = i1+1;\n gdata(i1) = 0;\n gprior(i1) = gprior_cf(i2);\n end\n end\n end\n \n end\n \n % =================================================================\n % Gradient with respect to likelihood function parameters\n \n if ~isempty(strfind(gp.infer_params, 'likelihood')) && ~isempty(gp.lik.fh.pak(gp.lik))\n gdata_lik = 0;\n lik = gp.lik;\n \n \n DW_sigma = lik.fh.llg3(lik, y, f, 'latent2+param', z);\n DL_sigma = lik.fh.llg(lik, y, f, 'param', z);\n DL_f_sigma = lik.fh.llg2(lik, y, f, 'latent+param', z);\n % b = La1.*DL_f_sigma + B'*(B*DL_f_sigma);\n % bb = (iLa2W.*b - L2*(L2'*b));\n % s3 = b - (La1.*bb + B'*(B*bb));\n \n % b = Kfu*inv(Kuu)*Kfu'*dW/dth\n b = B'*(B*DL_f_sigma);\n % bb = Kfu*inv(Kuu+Kfu'*W*Kfu)*Kfu'*W\n bb = repmat(1./W,1,size(DL_f_sigma,2)).*(L2*(L2'*b));\n % s3 = df/dth\n s3 = b - bb; \n %bb = (repmat(W,1,size(DL_f_sigma,2)).*b - L2*(L2'*b));\n %s3 = b + B'*(B*bb);\n \n % gdata_lik = - DL_sigma - 0.5.*sum(s2t.*DW_sigma) - s2'*s3;\n gdata_lik = - DL_sigma - 0.5.*sum(repmat(s2t,1,size(DL_f_sigma,2)).*DW_sigma) - s2'*s3;\n \n if isequal(gp.type, 'VAR')\n % Derivative of the trace term tr(diag(K-Q).*W)\n % Explicit dW/dth\n % La2 = diag(K-Q)\n gdata_lik = gdata_lik - 0.5*sum(La2.*DW_sigma);\n % Implicit dW/df*df/dth\n gdata_lik = gdata_lik + 0.5.*(La2.*g3)'*s3;\n end\n \n % evaluate prior contribution for the gradient\n if isfield(gp.lik, 'p')\n g_logPrior = -lik.fh.lpg(lik);\n else\n g_logPrior = zeros(size(gdata_lik));\n end\n % set the gradients into vectors that will be returned\n gdata = [gdata gdata_lik];\n gprior = [gprior g_logPrior];\n i1 = length(gdata);\n end\n \n % =================================================================\n % Gradient with respect to inducing inputs\n \n if ~isempty(strfind(gp.infer_params, 'inducing'))\n if isfield(gp.p, 'X_u') && ~isempty(gp.p.X_u)\n m = size(gp.X_u,2);\n st=0;\n if ~isempty(gprior)\n st = length(gprior);\n end\n \n gdata(st+1:st+length(gp.X_u(:))) = 0;\n i1 = st+1;\n for i = 1:size(gp.X_u,1)\n if iscell(gp.p.X_u) % Own prior for each inducing input\n pr = gp.p.X_u{i};\n gprior(i1:i1+m) = pr.fh.lpg(gp.X_u(i,:), pr);\n else % One prior for all inducing inputs\n gprior(i1:i1+m-1) = gp.p.X_u.fh.lpg(gp.X_u(i,:), gp.p.X_u);\n end\n i1 = i1 + m;\n end\n \n for i=1:ncf\n i1=st;\n \n gpcf = gp.cf{i};\n if savememory\n % If savememory option is used, just get the number of\n % covariates in X and calculate gradients later\n np=gpcf.fh.ginput(gpcf,u,[],0);\n else\n np=1;\n DKuu = gpcf.fh.ginput(gpcf, u);\n DKuf = gpcf.fh.ginput(gpcf, u, x);\n end\n \n for i3 = 1:np\n if savememory\n DKuu=gpcf.fh.ginput(gpcf,u,[],i3);\n DKuf=gpcf.fh.ginput(gpcf,u,x,i3);\n end\n \n for i2 = 1:length(DKuu)\n i1 = i1+1;\n \n % 0.5* a'*dK*a, where a = K\\f\n KfuiKuuDKuu = iKuuKuf'*DKuu{i2};\n gdata(i1) = -0.5.*((2.*a'*DKuf{i2}'-(a'*KfuiKuuDKuu))*(iKuuKuf*a));\n \n % trace( inv(inv(W) + K) * dQ) )\n gdata(i1) = gdata(i1) - 0.5.*sum(sum(L2'.*(2.*L2'*DKuf{i2}'*iKuuKuf - L2'*KfuiKuuDKuu*iKuuKuf)));\n tt=0.5.*(2.*sum(W.*sum(DKuf{i2}'.*iKuuKuf',2)) - sum(W.*sum(KfuiKuuDKuu.*iKuuKuf',2)));\n gdata(i1) = gdata(i1) + tt;\n \n b = (2*DKuf{i2}' - KfuiKuuDKuu)*(iKuuKuf*b3);\n bb = sqrtW.*sqrtW.*b - L2*(L2'*b);\n s3 = b - (B'*(B*bb));\n gdata(i1) = gdata(i1) - s2'*s3;\n \n if isequal(gp.type, 'VAR')\n % Derivative of 0.5.*tr(diag(K-Q).*W) (Titsias, 2009) wrt X_u\n % Here we have to also split in explicit and implicit\n % derivatives\n gdata(i1) = gdata(i1) + 0 - tt;\n % La2 = diag(K - Q);\n gdata(i1) = gdata(i1) - 0.5*(La2.*g3)'*s3; \n end\n end\n end\n end\n end\n end\n \n g = gdata + gprior;\n \n end\n \n assert(isreal(gdata))\n assert(isreal(gprior))\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/gp/gpla_g.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.752012562644147, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.3701316612464407}} {"text": "function [ state ] =movePTP_ConditionalTorque_Arc_AC(t_Kuka,theta,c,k,VEL,joints_indices,max_torque,min_torque)\n%% This function is used for moving the end-effector on an arc, for the KUKA iiwa 7 R 800.\n% this motion is interruptible when one or more of the joints-torques exceed the predefined limits \n\n%% Syntax\n% [ state ] =movePTP_ConditionalTorque_Arc_AC(t_Kuka,theta,c,k,relVel,joints_indices,max_torque,min_torque)\n\n%% About:\n% This function is used to move the end-effector on an arc,\n\n%% Arreguments:\n% t_Kuka: is the TCP/IP connection\n% theta: is the arc angle, in radians.\n% c: the x,y,z coordinates of the center of the circle, it is 1x3 vector.\n% k: is the normal vector on the plane of the arc, it is 1x3\n% vector.\n% VEL : is a double, defines the motion velocity mm/sec.\n% joints_indices: is a vector of the indices of the joints where the\n% torques limits are to be imposed, the joints are indexed starting from one.\n% max_torque: is a vector of the maximum torque limits for the joints\n% specified in the (joints_indices) vector.\n% min_torque: is a vecotr of the minimum torque limits for the joints\n% specified in the (joints_indices) vector. \n\n%% Return value:\n% state: a number equals to one if the motion is completed sccessfully or a\n% zero if the motion was interrupted due to external contact with the\n% robot.\n% if there is an error, the return value is minus one\n\n% Copy right, Mohammad SAFEEA, 9th of April 2018\n\nif((size(VEL,1)==1)&&(size(VEL,2)==1))\nelse\n disp('Error, velocity is a double and shall not be an array');\n state=-1;\n return;\nend\n% Check if the inputs \"joints_indices,max_torque,min_torque\" are vectors\nif(isVec(joints_indices)==0)\n disp('Error, joints_indices shall be a vector')\n state=-1;\n return;\nend\nif(isVec(max_torque)==0)\n disp('Error, max_torque shall be a vector')\n state=-1;\n return;\nend\nif(isVec(min_torque)==0)\n disp('Error, min_torque shall be a vector')\n state=-1;\n return;\nend\njoints_indices=colVec(joints_indices);\nmax_torque=colVec(max_torque);\nmin_torque=colVec(min_torque);\n\n% Check if size of vectrs are equal\nj_num=size(joints_indices,1);\nn=size(min_torque,1);\nif(j_num==n)\nelse\n disp('Error, sizes of vectors \"joints_indices\" and \"min_torque\" shall be equal');\n state=-1;\n return;\nend\nn=size(max_torque,1);\nif(j_num==n)\nelse\n disp('Error, sizes of vectors \"joints_indices\" and \"max_torque\" shall be equal');\n state=-1;\n return;\nend\n\nc=colVec(c);\nk=colVec(k);\n\npos=getEEFPos( t_Kuka );\np1=[pos{1};pos{2};pos{3}];\np1=colVec(p1);\n\nr=norm(p1-c);\n\nif(or(r==0,theta==0))\n return;\nend\nnormK=norm(k);\nif(normK==0)\n fprintf('Norm of direction vector k shall not be zero \\n');\n return;\nend\nk=k/normK;\n\ns=(p1-c)/r;\nn=cross(k,s);\n\nc1=r*cos(theta/2)*s+r*sin(theta/2)*n+c;\nc2=r*cos(theta)*s+r*sin(theta)*n+c;\n\nf1=pos;\ni=1;\nf1{i}=c1(i);\ni=i+1;\nf1{i}=c1(i);\ni=i+1;\nf1{i}=c1(i);\n\n\n\nf2=pos;\ni=1;\nf2{i}=c2(i);\ni=i+1;\nf2{i}=c2(i);\ni=i+1;\nf2{i}=c2(i);\n\n\n\nstate=movePTP_ConditionalTorque_Circ1OrintationInter( t_Kuka , f1,f2,...\n VEL,joints_indices,max_torque,min_torque);\n\n\nend\n\nfunction y=colVec(x)\nif(size(x,2)==1)\n y=x;\nelse\n y=x';\nend\nend\n\nfunction y=isVec(x)\ny=0;\nif(size(x,2)==1)\n y=1;\nend\nif(size(x,1)==1)\n y=1;\nend\nend\n\n", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/Matlab_client/movePTP_ConditionalTorque_Arc_AC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5, "lm_q1q2_score": 0.37008718101950816}} {"text": "function [newpt elemid weight]=proj2mesh(v,f,pt,nv,cn,radmax)\n% [newpt elemid weight]=proj2mesh(v,f,pt,nv,cn)\n%\n% project a point cloud on to the surface mesh (surface can only be triangular)\n%\n% author: Qianqian Fang \n% date: 12/12/2008\n%\n% parameters: \n% v: node coordinate of the surface mesh (nn x 3)\n% f: element list of the surface mesh (3 columns for \n% triangular mesh, 4 columns for cubic surface mesh)\n% pt: points to be projected, 3 columns for x,y and z respectively\n% nv: nodal norms (vector) calculated from nodesurfnorm.m\n% with dimensions of (size(v,1),3)\n% cn: a integer vector with the length of p, denoting the closest\n% surface nodes (indices of v) for each point in p. this \n% value can be calculated from dist2surf.m\n% radmax: if speicified, the search for elements to project will be\n% limited to those within a bounding box with half-edge-length \n% of radmax centered at the point to be projected\n%\n% if nv and cn are not supplied, proj2mesh will project the point\n% cloud onto the surface by the direction pointing to the centroid\n% of the mesh\n%\n% outputs:\n% newpt: the projected points from p\n% elemid: a vector of length of p, denotes which surface trangle (in elem)\n% contains the projected point\n% weight: the barycentric coordinate for each projected points, these are\n% the weights \n%\n% Please find more information at http://iso2mesh.sf.net/cgi-bin/index.cgi?metch\n%\n% this function is part of \"metch\" toobox, see COPYING for license\n\ncent=mean(v);\nenum=length(f);\nec=reshape(v(f(:,1:3)',:)', [3 3,enum]);\ncentroid=squeeze(mean(ec,2));\nnewpt =zeros(size(pt,1),3);\nelemid=zeros(size(pt,1),1);\nweight=zeros(size(pt,1),3);\n[idoldmesh,loc]=ismember(pt,v,'rows');\nidnode=find(idoldmesh);\nif(~isempty(idnode))\n [tt,ll]=ismember(loc(idnode),f);\n [p1,p2]=ind2sub(size(f),ll); % p1 is the index in f\n newpt(idnode,:)=pt(idnode,:);\n elemid(idnode)=p1;\n weight(sub2ind(size(weight),idnode,p2))=1;\nend\nradlimit=-1;\n\nif(nargin>=5) \n % if nv and cn are supplied, use nodal norms to project the points\n direction=nv(cn,:);\n if(nargin>=6) \n radlimit=radmax;\n end\nelseif(nargin==3)\n % otherwise, project toward the centroid\n direction=pt-repmat(cent,size(pt,1),1);\nend\n\nfor t=1:size(pt,1)\n if(idoldmesh(t)~=0) continue; end\n maxdist=sqrt(sum((pt(t,:)-cent).*(pt(t,:)-cent)));\n \n if(radlimit>0)\n maxdist=radlimit;\n end\n \n idx=find(centroid(1,:)>pt(t,1)-maxdist & ...\n centroid(1,:)pt(t,2)-maxdist & ...\n centroid(2,:)pt(t,3)-maxdist & ...\n centroid(3,:)DUNEuro Wiki page.');\n return\nend\n\nheadmodel.type = 'duneuro';\nheadmodel.forward = forward;\nheadmodel.electrodes = electrodes;\nheadmodel.subentities = subentities;\nheadmodel.intorderadd = intorderadd;\nheadmodel.intorderadd_lb = intorderadd_lb;\nheadmodel.initialization = initialization;\nheadmodel.numberOfMoments = numberOfMoments;\nheadmodel.referenceLength = referenceLength;\nheadmodel.relaxationFactor = relaxationFactor;\nheadmodel.restrict = restrict;\nheadmodel.weightingExponent = weightingExponent;\nheadmodel.mixedMoments = mixedMoments;\nheadmodel.post_process = post_process;\nheadmodel.subtract_mean = subtract_mean;\nheadmodel.reduction = reduction;\n\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/forward/ft_headmodel_duneuro.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7401743620390163, "lm_q2_score": 0.5, "lm_q1q2_score": 0.37008718101950816}} {"text": "function K = sdlfmaXsdlfmaKernCompute(sdlfmaKern1, sdlfmaKern2, t1, t2, covIC)\n\n% SDLFMAXSDLFMAKERNCOMPUTE Cross kernel between a SDLFMA and a SDLFMA kernels.\n% FORMAT\n% DESC computes cross kernel terms between the accel. and the accel. of \n% two switching dynamical LFM kernels for the multiple output kernel.\n% ARG sdlfmaKern1 : the kernel structure associated with the accel. of the \n% first SDLFM kernel.\n% ARG sdlfmaKern2 : the kernel structure associated with the accel. of the \n% second SDLFM kernel.\n% ARG t : inputs for which kernel is to be computed.\n% ARG covIC : covariance for the initial conditions\n% RETURN K : block of values from kernel matrix.\n%\n% FORMAT\n% DESC computes cross kernel terms between the accel. and the accel. of \n% two SDLFM kernels for the multiple output kernel.\n% ARG sdlfmaKern1 : the kernel structure associated with the accel. of \n% the first SDLFM kernel.\n% ARG sdlfmaKern2 : the kernel structure associated with the accel. of \n% the second SDLFM kernel.\n% ARG t1 : row inputs for which kernel is to be computed.\n% ARG t2 : column inputs for which kernel is to be computed.\n% ARG covIC : covariance for the initial conditions\n% RETURN K : block of values from kernel matrix.\n%\n% SEEALSO : sdlfmaKernParamInit, sdlfmaKernCompute, sdlfmKernParamInit\n%\n% COPYRIGHT : Mauricio A. Alvarez, 2010\n\n% KERN\n\nif nargin < 4\n t2 = t1;\nend\n\nK = sdlfmXsdlfmKernCompute(sdlfmaKern1, sdlfmaKern2, t1, t2, covIC, 'AccelAccel');\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/sdlfmaXsdlfmaKernCompute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.740174350576073, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3700871752880365}} {"text": "function [y,ev] = dmrg_eigb(a,k,eps,varargin)\n%Find several minimal eigenvalues of a TT-matrix using DMRG method\n% [Y,EV]=DMRG_EIGB(A,K,EPS,OPTIONS) Attempts to find K minimal\n% eigenvalues of a TT-matrix A with accuracy EPS. We use minimization of\n% Block-Rayleigh quotient to do this. The solution is returned a block\n% TT-tensor (i.e, r(d+1) is equal to K).\n% Options are provided in form\n% 'PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2 and so\n% on. The parameters are set to default (in brackets in the following) \n% The list of option names and default values are:\n% o y0 - initial approximation [random rank-5 tensor]\n% o rmax - maximal TT-rank of the (block) solution [2500]\n% o nswp - maximal number of sweeps [4]\n% o kick_rank - stabilization parameter, the larger, the better\n% accuracy but the higher complexity [5]\n% o verb - print debug info [ {true} | false ]\n% o msize - the size of local matrix when the iterative solver is\n% used\n% Example:\n% d=8; f=3;\n% mat=tt_qlaplace_dd(d*ones(1,f)); %Laplace in the QTT-format\n% [v,ev]=dmrg_eigb(mat,5,1e-6); %5 lowest eigenvalues \n%\n%\n% TT-Toolbox 2.2, 2009-2012\n%\n%This is TT Toolbox, written by Ivan Oseledets et al.\n%Institute of Numerical Mathematics, Moscow, Russia\n%webpage: http://spring.inm.ras.ru/osel\n%\n%For all questions, bugs and suggestions please mail\n%ivan.oseledets@gmail.com\n%---------------------------\n\nwarning('This realisation is old and not optimal. Consider using dmrg_eig');\n\n%Default parameters\ny0=[];\nnswp=4;\nmsize=1;\nmax_l_steps=200;\nkickrank=4;\nverb=1;\nrmax = Inf;\nfor i=1:2:length(varargin)-1\n switch lower(varargin{i})\n case 'nswp'\n nswp=varargin{i+1};\n case 'kickrank'\n kickrank=lower(varargin{i+1});\n case 'x0'\n y0=varargin{i+1};\n case 'msize'\n msize=varargin{i+1};\n case 'verb'\n verb=varargin{i+1};\n case 'rmax'\n rmax=varargin{i+1};\n otherwise\n error('Unrecognized option: %s\\n',varargin{i});\n \n end\nend\n\nn=a.n; \nd=a.d;\nif ( isempty(y0) )\n kk=max(5,k);\n r=kk*ones(1,d+1);\n r(d+1)=k;\n r(1)=1;\n y0=tt_random(n,d,r);\nend\ny=round(y0,0);\n\nlocal_eps = eps/sqrt(d);\n\n%We start from the orthogonalization of the y vector from left-to-right\n%(it does not influence the TT-ranks)\n\npsy=y.ps;\nry=y.r;\ntta=a.tt;\npsa=tta.ps;\nra=tta.r;\ncra=tta.core;\ncry=y.core;\nrm=1; \n%Also we will need to compute phi-matrices\nphi=cell(d+1,1);\nphi{1}=1; %This one is right now unchanged\nphi{d+1}=1; %Seems to be unchanged also\npos1=1;\nfor i=1:d\n cr=cry(psy(i):psy(i+1)-1);\n cr=reshape(cr,[ry(i),n(i)*ry(i+1)]);\n cr=rm*cr; \n ry(i)=size(cr,1); \n cr=reshape(cr,[ry(i)*n(i),ry(i+1)]);\n [u,rm]=qr(cr,0);\n rnew=size(u,2); \n %ry(i+1)=rnew;\n cry(pos1:pos1+ry(i)*n(i)*rnew-1)=u(:); \n pos1=pos1+ry(i)*n(i)*rnew;\n %With this new core compute (Ax,x) to the phi matrix\n %u=reshape(u,[ry(i),n(i),ry(i+1)]);\n crm=cra(psa(i):psa(i+1)-1);\n crm=reshape(crm,[ra(i),n(i),n(i),ra(i+1)]); \n phx=phi{i};\n phx=reshape(phx,[ra(i),ry(i),ry(i)]); phx=permute(phx,[1,3,2]);\n x0=u;\n x0=reshape(x0,[ry(i),n(i)*rnew]);\n phx=reshape(phx,[ra(i)*ry(i),ry(i)]);\n phx=phx*x0; %phx is ra(i)*ry(i)*n(i)*ry(i+1)\n phx=reshape(phx,[ra(i),ry(i),n(i),rnew]);\n crm=permute(crm,[1,3,2,4]); crm=reshape(crm,[ra(i)*n(i),n(i)*ra(i+1)]);\n %Convolve over (ak-1) j with the matrix\n phx=permute(phx,[2,4,1,3]); \n phx=reshape(phx,[ry(i)*rnew,ra(i)*n(i)]);\n phx=phx*crm; %ry(i)*ry(i+1)*n(i)*ra(i+1)\n phx=reshape(phx,[ry(i),rnew,n(i),ra(i+1)]);\n phx=permute(phx,[2,4,1,3]);\n phx=reshape(phx,[rnew*ra(i+1),ry(i)*n(i)]);\n x0=u;\n x0=reshape(x0,[ry(i)*n(i),rnew]);\n phx=phx*x0; \n phx=reshape(phx,[rnew,ra(i+1),rnew]); \n phx=permute(phx,[2,1,3]);\n phi{i+1}=phx;\n %phi{i+1}=permute(phi{i+1},[1,3,2]);\nend\n\nry(d+1)=rnew; %This value should not be modified :(((\n%Truncate the core\ncry=cry(1:pos1-1);\ny.r=ry;\ny.core=cry;\ny.ps=cumsum([1;n.*ry(1:d).*ry(2:d+1)]);\n %Test back transform\n% y0=y;\n% y0.n=[2*ones(d,1);k];\n% y0.r=[y.r;1];\n% y0.d=d;\n% e0=eye(ry(d));\n% cry=[cry,e0(:)'];\n% y0.core=cry;\n% ww1=full(y0); ww1=reshape(ww1,[numel(ww1)/k,k]);\n% bm=ww0'*ww1;\n% norm(ww1-ww0*bm)\n%keyboard;\nphi{d+1}=1; %Bydlocode, but seems necessary\ny.r=ry;\ny.core=cry;\ny.ps=cumsum([1;n.*ry(1:d).*ry(2:d+1)]);\npsy=y.ps;\n%Now start the main DMRG sweep\nswp=1;\nnot_converged=true;\nerr_max = 0;\n%ry(1)=1;\nry(d+1)=1;\ndir='rl';\ni=d-1;\ncry_left=cry(1:psy(d)-1);\ncry_right=cry(psy(d):psy(d+1)-1);\nwhile ( swp <= nswp && not_converged )\n %As usual, compute (local) B-matrix in the TT-format\n cra1=cra(psa(i):psa(i+1)-1); \n cra2=cra(psa(i+1):psa(i+2)-1);\n px1=phi{i}; px1=reshape(px1,[ra(i),ry(i),ry(i)]); \n %px1=permute(px1,[1,2,3]); \n px1=permute(px1,[1,3,2]);\n px1=reshape(px1,[ra(i),ry(i)*ry(i)]);\n px2=phi{i+2}; \n px2=reshape(px2,[ra(i+2),ry(i+2),ry(i+2)]);\n %px2=permute(px2,[1,3,2]);\n %Compute the local matrix just by putting px1 into cra1, px2 into\n %cra2\n cra2=reshape(cra2,[ra(i+1)*n(i+1)*n(i+1),ra(i+2)]);\n px2=reshape(px2,[ra(i+2),ry(i+2)*ry(i+2)]);\n b2=cra2*px2; % \n b1=px1.'*reshape(cra1,[ra(i),numel(cra1)/ra(i)]);\n b1=reshape(b1,[ry(i),ry(i),n(i),n(i),ra(i+1)]); b1_save=b1; %Save for phi computations\n b1=permute(b1,[1,3,2,4,5]); \n b1=reshape(b1,[ry(i)*n(i),ry(i)*n(i),ra(i+1)]);\n b2=reshape(b2,[ra(i+1),n(i+1),n(i+1),ry(i+2),ry(i+2)]);\n b2_save=b2; %Save for phi computations\n b2=permute(b2,[2,4,3,5,1]); \n b2=reshape(b2,[n(i+1)*ry(i+2),n(i+1)*ry(i+2),ra(i+1)]);\n mm=cell(2,1); mm{1}=b1; mm{2}=b2;\n cry=[cry_left(:);cry_right(:)];\n y.r=ry;\n y.core=cry;\n y.ps=cumsum([1;n.*ry(1:d).*ry(2:d+1)]);\n %mm1=tt_matrix(mm);\n %Now setup the initial guess: i the core \n if ( strcmp(dir,'rl') ) %The block index is in the second core\n pos=numel(cry_left);\n cry1=cry_left(pos-ry(i)*n(i)*ry(i+1)+1:pos);\n cry2=cry_right(1:ry(i+1)*n(i+1)*k*ry(i+2));\n cry1=reshape(cry1,[ry(i)*n(i),ry(i+1)]);\n cry2=reshape(cry2,[ry(i+1),n(i+1)*k*ry(i+2)]);\n w=cry1*cry2; w=reshape(w,[ry(i),n(i),n(i+1),k,ry(i+2)]);\n w=permute(w,[1,2,3,5,4]); w=reshape(w,[numel(w)/k,k]);\n else %The block index is in the first core\n pos=numel(cry_left); \n cry1=cry_left(pos-ry(i)*n(i)*k*ry(i+1)+1:pos);\n cry2=cry_right(1:ry(i+1)*n(i+1)*ry(i+2));\n cry1=reshape(cry1,[ry(i)*n(i)*k,ry(i+1)]);\n cry2=reshape(cry2,[ry(i+1),n(i+1)*ry(i+2)]);\n w=cry1*cry2; w=reshape(w,[ry(i),n(i),k,n(i+1),ry(i+2)]);\n w=permute(w,[1,2,4,5,3]); w=reshape(w,[numel(w)/k,k]);\n end\n %Now run the eigenvalue solver\n bw=bfun(mm,w); ev=bw'*w; \n %er0=norm(bw-w*ev,'fro')/norm(w,'fro');\n er_old=bw-w*ev; \n erc=zeros(1,size(w,2));\n for j=1:size(w,2)\n erc(j)=norm(er_old(:,j));\n end\n er0=norm(er_old,'fro')/norm(w,'fro'); \n if ( size(w,1) >= max(5*k,msize) )\n matvec='bfun';\n [wnew,ev,fail_flag]=lobpcg(w,@(x) bfun(mm,x),local_eps,max_l_steps);\n else\n matvec='full';\n fm=full(tt_matrix(mm)); \n [v,dg]=eig(fm);\n %[v,dg]=eigs(sparse(fm),k+1);\n %keyboard;\n ev=diag(dg);\n [ev,ind]=sort(ev,'ascend');\n v=v(:,ind);\n wnew=v(:,1:k);\n ev=ev(1:k);\n end\n er1=norm(bfun(mm,wnew)-wnew*diag(ev),'fro')/norm(wnew,'fro');\n \n % Check the distance between iterations\n dx = norm(wnew*(wnew'*w)-w);\n\n fv=sum(ev); %The functional we minimize;\n if ( verb>1 )\n fprintf('sweep=%d block=%d fv=%10.15f loc solve=%3.2e old_solve=%3.2e \\n',swp,i,fv,er1,er0);\n disp(erc);\n end\n if ( strcmp(dir,'rl') ) %Implant the auxiliary core into the i-th core\n %(a1,i1,a2,a2,i2*g,a3)-> (a1,i1*g,a2,a2,i2,a3)\n %Delete old block from the core_left, add new block to the core\n %right\n \n %Prepare the truncation block\n rhs=wnew*diag(ev); \n if (strcmp(matvec,'full'))\n res_true = norm(fm*wnew-rhs)/norm(rhs);\n else\n res_true = norm(bfun(mm,wnew)-rhs)/norm(rhs);\n end;\n\n \n wnew=reshape(wnew,[ry(i),n(i),n(i+1),ry(i+2),k]);\n wnew=permute(wnew,[1,2,5,3,4]); wnew=reshape(wnew,[ry(i)*n(i)*k,n(i+1)*ry(i+2)]);\n [u,s,v]=svd(wnew,'econ'); s=diag(s); \n %Truncation block\n rnew=my_chop2(s,local_eps*norm(s));\n \n %%%\n rnew = min(rnew, numel(s));\n rnew = min(rnew, rmax);\n %%%%\n \n u=u(:,1:rnew); s=s(1:rnew); v=v(:,1:rnew);% v=v';\n u=u*diag(s); %u has to be reshaped \n \n % Residual truncation\n% r0=1; r1=min(numel(s),rmax);\n% r=1; \n% while ( (r ~= r0 || r ~= r1) && r0 <= r1)\n% r=min(floor((r0+r1)/2),rmax);\n% %er0=norm(s(r+1:numel(s)));\n% u1=u(:,1:r)*diag(s(1:r)); \n% %Sonate u1\n% u1=reshape(u1,[ry(i)*n(i),k,r]);\n% u1=permute(u1,[1,3,2]);\n% u1=reshape(u1,[numel(u1)/k,k]);\n% [u2,~,v2]=svd(u1,'econ');\n% u1=u2*v2';\n% u1=reshape(u1,[ry(i)*n(i),r,k]);\n% u1=permute(u1,[1,3,2]);\n% u1=reshape(u1,[numel(u1)/r,r]);\n% sol = u1*(v(:,1:r))';\n% \n% sol = reshape(sol,[ry(i),n(i),k,n(i+1),ry(i+2)]);\n% sol=permute(sol,[1,2,4,5,3]); sol=reshape(sol,[numel(sol)/k,k]);\n% %if ( norm(sol'*sol-eye(k))>1e-3 )\n% % keyboard\n% %end\n% if (strcmp(matvec,'full'))\n% resid = norm(fm*sol-rhs)/norm(rhs);\n% else\n% resid = norm(bfun(mm,sol)-rhs)/norm(rhs);\n% end;\n% if ( verb )\n% fprintf('sweep %d, block %d, r0=%d, r1=%d, r=%d, resid=%g, MatVec=%s\\n', swp, i, r0, r1, r, resid,matvec);\n% end\n% if ((resid 1e-7 )\n% keyboard;\n% end\n %u=u(:,1:rnew); s=s(1:rnew); v=v(:,1:rnew);% v=v';\n %u=u*diag(s); %u has to be reshaped \n \n \n %Random restart block\n radd=min(kickrank,size(v,1)-rnew);\n rnew=rnew+radd;\n if ( radd > 0 )\n vr=randn(size(v,1),radd);\n ur=zeros(size(u,1),radd); \n %Orthogonalize vr to v by Golub-Kahan reorth\n mvr=v'*vr; vnew=vr-v*mvr; \n reort_flag=false;\n for j=1:radd\n if ( norm(vnew(:,j)) <= 0.5*norm(vr(:,j)))\n reort_flag=true;\n end\n end\n if (reort_flag)\n sv=v'*vnew;\n %mvr=mvr+v'*vnew; \n vnew=vnew-v*sv; \n end\n [vnew,~]=qr(vnew,0); \n \n v=[v,vnew];\n u=[u,ur];\n %norm(u*v'-u1*v1');\n %keyboard;\n %keyboard;\n end\n v=v';\n \n \n \n \n %Memory stuff\n pos=numel(cry_left);\n cry_left(pos-ry(i)*n(i)*ry(i+1)+1:pos)=[];\n cry_right(1:ry(i+1)*n(i+1)*k*ry(i+2))=[]; %Delete the top core from cry_right\n cry_right=[u(:)', v(:)',cry_right]; %Simply add new block to cry_right\n ry(i+1)=rnew;\n \n %Recalculate phi block; we need to recalculate phi{i+1} here\n %using phi{i+2} \n %px2(ra(i+2),ry(i+2),ry(i+2))*cra2(ra(i+1),n(i),m(i),ra(i+2)*v(ry(i+1),n(i+1),ry(i+2))*v(ry(i+1),n(i+1),ry(i+2))\n %we already have b2 --- (b2_save)\n %(ra(i+1),n(i+1),n(i+1),ry(i+2),ry(i+2)), convolve over the \n %n(i+1),ry(i+2)\n phx=reshape(b2_save,[ra(i+1),n(i+1),n(i+1),ry(i+2),ry(i+2)]); \n phx=permute(phx,[2,4,1,3,5]);\n %phx=permute(phx,[3,4,1,2,5]);\n %phx=permute(phx,[3,5,1,2,4]);\n % phx=permute(phx,[2,5,1,3,4]);\n phx=reshape(phx,[n(i+1)*ry(i+2),ra(i+1)*n(i+1)*ry(i+2)]);\n v0=v;\n v0=reshape(v0,[ry(i+1),n(i+1)*ry(i+2)]);\n phx=v0*phx;\n phx=reshape(phx,[ry(i+1),ra(i+1),n(i+1),ry(i+2)]);\n phx=permute(phx,[3,4,1,2]); \n phx=reshape(phx,[n(i+1)*ry(i+2),ry(i+1)*ra(i+1)]);\n phx=v0*phx;\n phx=reshape(phx,[ry(i+1),ry(i+1),ra(i+1)]);\n %phx=permute(phx,[3,2,1]); \n phx=permute(phx,[3,2,1]);\n phi{i+1}=phx; \n else %Implant the auxiliary core from the left block to the right block\n \n %Prepare the truncation block\n rhs=wnew*diag(ev); \n if (strcmp(matvec,'full'))\n res_true = norm(fm*wnew-rhs)/norm(rhs);\n else\n res_true = norm(bfun(mm,wnew)-rhs)/norm(rhs);\n end; \n wnew=reshape(wnew,[ry(i),n(i),n(i+1),ry(i+2),k]); \n wnew=permute(wnew,[1,2,3,5,4]); wnew=reshape(wnew,[ry(i)*n(i),n(i+1)*k*ry(i+2)]);\n [u,s,v]=svd(wnew,'econ'); s=diag(s);\n rnew=my_chop2(s,local_eps*norm(s)); \n \n %%%%\n rnew = min(rnew, rmax);\n rnew = min(rnew, numel(s));\n %%%%\n \n u=u(:,1:rnew); s=s(1:rnew); v=v(:,1:rnew);% v=v';\n v=v*diag(s); %u has to be reshaped \n \n \n % Residual truncation\n% r0=1; r1=min(size(s,1),rmax);\n% r=1; \n% while ( (r ~= r0 || r ~= r1) && r0 <= r1)\n% r=min(floor((r0+r1)/2),rmax);\n% %er0=norm(s(r+1:numel(s)));\n% v1=v(:,1:r)*diag(s(1:r)); \n% %Sonate v1\n% v1=reshape(v1,[n(i+1),k,ry(i+2),r]);\n% v1=permute(v1,[1,3,4,2]);\n% v1=reshape(v1,[numel(v1)/k,k]);\n% [u2,~,v2]=svd(v1,'econ');\n% v1=u2*v2';\n% v1=reshape(v1,[n(i+1),ry(i+2),r,k]);\n% v1=permute(v1,[1,4,2,3]);\n% v1=reshape(v1,[numel(v1)/r,r]);\n% sol=u(:,1:r)*v1';\n% sol = reshape(sol,[ry(i),n(i),n(i+1),k,ry(i+2)]);\n% sol=permute(sol,[1,2,3,5,4]); sol=reshape(sol,[numel(sol)/k,k]);\n% if (strcmp(matvec,'full'))\n% resid = norm(fm*sol-rhs)/norm(rhs);\n% else\n% resid = norm(bfun(mm,sol)-rhs)/norm(rhs);\n% end;\n% if ( verb )\n% fprintf('sweep %d, block %d, r0=%d r1=%d r=%d, resid=%g, MatVec=%s\\n', swp, i, r0, r1, r, resid,matvec);\n% end\n% if ((resid 0 )\n vr=zeros(size(v,1),radd);\n ur=randn(size(u,1),radd); \n %Orthogonalize vr to v by Golub-Kahan reorth\n mur=u'*ur; unew=ur-u*mur; \n reort_flag=false;\n for j=1:radd\n if ( norm(unew(:,j)) <= 0.5*norm(ur(:,j)))\n reort_flag=true;\n end\n end\n if (reort_flag)\n sv=u'*unew;\n %mvr=mvr+v'*vnew; \n unew=unew-u*sv; \n end\n [unew,~]=qr(unew,0); \n \n u=[u,unew];\n v=[v,vr];\n end\n v=v';\n \n \n \n cry_right(1:ry(i+1)*n(i+1)*ry(i+2))=[];\n pos=numel(cry_left);\n cry_left(pos-ry(i)*n(i)*k*ry(i+1)+1:pos)=[];\n cry_left=[cry_left,u(:)',v(:)'];\n \n \n \n \n \n \n \n ry(i+1)=rnew;\n \n \n \n \n %Recalculate phi block; we need to recalculate phi{i+1} using\n %phi{i}\n phx=reshape(b1_save,[ry(i),ry(i),n(i),n(i),ra(i+1)]);\n u0=u; u0=reshape(u0,[ry(i)*n(i),ry(i+1)]);\n phx=permute(phx,[1,3,5,2,4]); \n %phx=permute(phx,[2,4,5,1,3]); \n %phx=permute(phx,[1,4,5,2,3]);\n %phx=permute(phx,[2,3,5,1,4]);\n phx=reshape(phx,[ry(i)*n(i)*ra(i+1),ry(i)*n(i)]);\n phx=phx*u0; \n phx=reshape(phx,[ry(i),n(i),ra(i+1),ry(i+1)]);\n phx=permute(phx,[3,4,1,2]); \n phx=reshape(phx,[ra(i+1)*ry(i+1),ry(i)*n(i)]);\n phx=phx*u0; phx=reshape(phx,[ra(i+1),ry(i+1),ry(i+1)]);\n phx=permute(phx,[1,2,3]);\n phi{i+1}=phx;\n end\n \n err_max = max(err_max, dx);\n %Choose the next direction block; now implement the simple case\n if ( strcmp(dir,'rl') )\n if ( i > 1 )\n i=i-1;\n else %Change direction %The last optimization was for (1,2) core \n dir='lr';\n %One block should go from cry_right to cry_left\n cry_left=cry_right(1:ry(1)*n(1)*ry(2)*k); %This seems correct\n cry_right(1:ry(1)*n(1)*ry(2)*k)=[];\n if (verb>0)\n fprintf('--- sweep=%d, err_max=%3.3e \\n',swp, err_max);\n end;\n swp=swp+1;\n not_converged = (err_max>eps);\n err_max = 0;\n end\n else\n if ( i < d-1 )\n i=i+1;\n else\n dir='rl';\n pos=numel(cry_left);\n cry_right=cry_left(pos-ry(d)*n(d)*ry(d+1)*k+1:pos); \n cry_left(pos-ry(d)*n(d)*ry(d+1)*k+1:pos)=[];\n if (verb>0)\n fprintf('--- sweep=%d, err_max=%3.3e \\n',swp, err_max);\n end; \n swp=swp+1;\n not_converged = (err_max>eps);\n err_max = 0; \n %One block should go from cry_left to cry_right (?) --- seems no :)\n end\n end\n \n\nend\n %Gather the solution \n \n ry(d+1)=k; %This is the final\n y.r=ry;\n cry=[cry_left,cry_right];\n y.core=cry;\n y.r=ry; \n y.d=d;\n y.ps=cumsum([1;n.*ry(1:d).*ry(2:d+1)]);\nend\n\n function [x]=bfun(a,x)\n %[Y]=BFUN(A,X,K)\n %a is given as U(i1,j1,s)*V(i2,j2,s)\n %\\sum_{j1,j2,s} U(i1,j1,s)*V(i2,j2,s)*X(j1,j2,q)\n re=size(x,2);\n ul=a{1}; vl=a{2};\n n1=size(ul,1);m1=size(ul,2); ral=size(ul,3);\n n2=size(vl,1); m2=size(vl,2);\n ul=permute(ul,[1,3,2]); ul=reshape(ul,[numel(ul)/m1,m1]);\n x=reshape(x,[m1,numel(x)/m1]);\n x=ul*x; %x is i1xsxj2xq s,j2\n x=reshape(x,[n1,ral,m2,re]);\n x=permute(x,[3,2,1,4]); \n x=reshape(x,[m2*ral,n1*re]);\n vl=reshape(vl,[n2,m2*ral]); \n x=vl*x; %is n2*n1*k\n x=reshape(x,[n2,n1,re]); \n x=permute(x,[2,1,3]); \n x=reshape(x,[numel(x)/re,re]);\n return\n end\n\n\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/misc/old_dmrg_eigb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3700198122393344}} {"text": "%% Estimate the quality of QRS complex detections \n% Calculate the quality of QRS detections based on the the likelihood of\n% measurements from RR interval series with respect to a trained model. See\n% for further details. See 'A Pattern-Recognition Approach for\n% Lead-Selection in Heartbeat Detection' CINC 2014.\n% \n% Example\n% \n% [ ratio, estimated_labs ] = CalcRRserieRatio(time_serie, ECG_header, start_end, ECG_type)\n% \n% Arguments:\n% +time_serie: [cell] REQUIRED\n% \n% Cell array of size [nsig 1] with the detections\n% performed for each lead.\n% \n% +ECG_header: [struct] OPTIONAL. \n% \n% Description of the ECG typically available in the\n% ECG_header. Structure with fields:\n% \n% -freq: Sampling rate in Hz. (1)\n% \n% -nsig: Number of ECG leads. (size(ECG,2))\n% \n% -nsamp: Number of ECG samples. (size(ECG,1))\n% \n% +start_end: [numeric] OPTIONAL. Vector of size [2 1] with the start\n% and end samples.\n% \n% +ECG_type: [numeric] OPTIONAL. Char indicating if you know something\n% about the ECG recording type a priori. Possible\n% values are: 'stress' 'arrhythmia' 'longterm' 'sinus'\n% \n% Output:\n% + ratio: a measure of quality of the QRS detections\n% \n% + estimated_labs: a label for each heartbeat: {TP, FP and FN}\n% \n% See also ECGtask_QRS_detection\n% \n% Author: Mariano Llamedo Soria llamedom@electron.frba.utn.edu.ar\n% Version: 0.1 beta\n% Last update: 14/5/2014\n% Birthdate : 23/4/2013\n% Copyright 2008-2015\nfunction [ ratio, estimated_labs ] = CalcRRserieRatio(time_serie, ECG_header, start_end, ECG_type)\n \n %% constants\n\n min_pattern_separation = 350; % ms\n max_pattern_separation = 1500; % ms\n cECGtypes = {'stress' 'arrhythmia' 'longterm' 'sinus'};\n \n \n %% start\n\n if( nargin < 2 || isempty(time_serie) || isempty(ECG_header) )\n ratio = 0;\n return\n end\n\n if( nargin < 3 || isempty(start_end) )\n start_end = [1 ECG_header.nsamp];\n end\n\n if( nargin < 4 || ~any(strcmpi(ECG_type, cECGtypes)) )\n ECG_type = 'stress';\n end\n \n start_sample = start_end(1);\n end_sample = start_end(2);\n\n pb = progress_bar( 'Calculating ratios', 'Start' );\n\n % co_ocurrences respect other leads\n co_ocurrence = calc_co_ocurrences(time_serie);\n \n if( isempty(co_ocurrence) )\n return\n end\n\n dummy = prdataset([]);\n dummy = prmapping([]);\n \n % load the trained classifier.\n aux_load = load([ 'QRS_q_' ECG_type '.mat']);\n\n w_lablist = cellstr(getlabels(aux_load.wTrained_Classifier));\n FN_lab = find(strcmpi(w_lablist, 'FN'));\n FP_lab = find(strcmpi(w_lablist, 'FP'));\n TP_lab = find(strcmpi(w_lablist, 'TP'));\n\n lreferences = length(time_serie);\n\n pb.Loops2Do = lreferences;\n pb.checkpoint('Calculating ratios.');\n \n ratio = nan(lreferences,1);\n\n estimated_labs = cell(lreferences,1);\n\n for ii = 1:lreferences\n\n pb.start_loop();\n\n this_ts = colvec(time_serie{ii});\n\n if( length(this_ts) < (ECG_header.nsamp / max_pattern_separation) )\n% warning( [mfilename ':few_anns'], 'Few detections in %d\\n', ii );\n ratio(ii) = 0;\n else\n \n pb.checkpoint([]);\n \n k_gaps = calc_k_gaps(this_ts);\n\n % build the feature matrix [ RR_i-1 RR_i RR_10 RR_60 co_ocurrences]\n % RR_i-1\n this_ts = round(this_ts * 1000 / ECG_header.freq);\n\n pb.checkpoint([]);\n \n aux_fm = [ calculate_RR_features(this_ts) colvec(co_ocurrence{ii}) ];\n\n pb.checkpoint([]);\n \n ds_result = prdataset(aux_fm) * aux_load.wTrained_Classifier;\n\n estimated_labs{ii} = renumlab(ds_result * labeld, char(w_lablist) );\n\n aux_val = sum(estimated_labs{ii} == TP_lab | estimated_labs{ii} == FN_lab);\n if( aux_val == 0 )\n this_se = 0;\n else\n this_se = sum(estimated_labs{ii} == TP_lab) / aux_val;\n end\n \n aux_val = sum(estimated_labs{ii} == TP_lab | estimated_labs{ii} == FP_lab);\n if( aux_val == 0 )\n this_pp = 0;\n else\n this_pp = sum(estimated_labs{ii} == TP_lab) / aux_val;\n end\n\n % metric used for the paper experiment\n %this_q = (2*this_se + this_pp)/3;\n % F1 score\n this_q = 2/(1/this_se + 1/(eps+this_pp));\n ratio(ii) = k_gaps * this_q;\n \n end\n\n pb.end_loop();\n end\n\n% clear pb\n \n function k = calc_k_gaps( time_serie )\n\n time_serie = time_serie( time_serie >= start_sample & time_serie <= end_sample );\n \n % add some samples in order to calculate the gaps among heartbeats (FN)\n if( time_serie(1) ~= start_sample )\n time_serie = [start_sample; time_serie];\n end\n\n if( time_serie(end) ~= end_sample )\n time_serie = [time_serie; end_sample];\n end\n\n time_serie = round(time_serie * 1000 / ECG_header.freq);\n \n RRserie = colvec(diff(time_serie));\n RRserie = [0;RRserie];\n\n gap_idx = find(RRserie > max_pattern_separation);\n% gap_end_idx = gap_idx;\n% gap_start_idx = gap_start_idx - 1;\n\n % Percent of the time we have gaps.\n k = 1 - (sum(RRserie(gap_idx)) / time_serie(end));\n\n end\n \n function fm = calculate_RR_features( time_serie )\n\n RRserie = diff(time_serie);\n RRserie = [RRserie(1); RRserie];\n \n % build the feature matrix [ RR_i-1 RR_i RR_10 RR_60 ]\n % RR_i-1\n fm = [ RRserie(1); RRserie(1:end-1) ];\n fm = [fm RRserie CalcFeatureRRx(time_serie, RRserie, 10000) CalcFeatureRRx(time_serie, RRserie, 60000)];\n\n end\n\n function start_end_aux = findStartEnd( bAux )\n\n start_aux = find( bAux, 1, 'first' );\n end_aux = find( bAux, 1, 'last' );\n start_end_aux = [start_aux end_aux];\n\n end\n\n function aux_mean = CalcFeatureRRx(time_serie, RRserie, win_size)\n% win_size in milliseconds\n\n aux_seq = 1:length(RRserie);\n aux_idx = arrayfun(@(a)( findStartEnd( time_serie >= (time_serie(a) - win_size) & ... \n time_serie <= time_serie(a) )), ...\n aux_seq, 'UniformOutput', false);\n\n aux_mean = colvec(cellfun(@(a)(round(median(RRserie(a(1):a(2))))), aux_idx));\n \n end\n \n\nend\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/CalcRRserieRatio.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3700198058926443}} {"text": "classdef PostProcessor\n \n methods (Static) \n \n function posts = PostProcess(curs,postprocessparams,scoreNorm) \n if isempty(postprocessparams);\n posts = curs;\n return;\n end;\n \n if strcmpi(postprocessparams.method,'hysteresis')\n posts = PostProcessor.ApplyHysteresis(curs,postprocessparams,scoreNorm);\n else\n posts = PostProcessor.ApplyFiltering(curs,postprocessparams);\n end\n \n posts = PostProcessor.RemoveSmallBouts(posts,postprocessparams); \n end \n \n % ---------------------------------------------------------------------\n function posts = RemoveSmallBouts(posts,postprocessparams) \n if postprocessparams.blen > 1 && numel(posts)>0,\n if numel(posts)<= postprocessparams.blen\n if nnz(posts>0) > numel(posts)/2,\n posts(:) = 1;\n else\n posts(:) = -1;\n end\n return;\n end\n \n while true,\n tposts = [posts(:)' 1-posts(end)];\n ends = find(tposts(1:end-1)~=tposts(2:end));\n ends = [1 ends+1];\n blens = ends(2:end)-ends(1:end-1);\n [minblen,smallbout] = min(blens);\n if minblen>=postprocessparams.blen, break; end\n posts(ends(smallbout):ends(smallbout+1)-1) = ...\n 1 - posts(ends(smallbout):ends(smallbout+1)-1);\n end\n end\n end\n \n \n % ---------------------------------------------------------------------\n function posts = ApplyHysteresis(curs,params,scoreNorm)\n % Use imfill to find the regions.\n if isempty(curs), posts = curs; return; end\n \n \n % Select pos bouts that have at least one frame about the high\n % threshold.\n hthresh = curs > params.hystopts(1).value*scoreNorm;\n lthresh = curs > 0;\n if( nnz(hthresh)>0)\n pos = imfill(~lthresh,find(hthresh(:))) & lthresh;\n computeNeg = true;\n else\n pos = false(size(curs));\n computeNeg = false;\n end\n % Select neg bouts that have at least one frame below the low\n % threshold.\n hthresh = curs < params.hystopts(2).value*scoreNorm;\n lthresh = curs < params.hystopts(1).value*scoreNorm;\n if nnz(hthresh)>0 && computeNeg,\n neg = imfill(~lthresh,find(hthresh(:))) & lthresh;\n else\n neg = true(size(curs));\n end\n \n posts = pos | ~neg;\n \n end\n \n \n % ---------------------------------------------------------------------\n function posts = ApplyFiltering(curs,params)\n % Use filt to find the regions.\n if isempty(curs), posts = curs; return; end\n filts = conv(curs,ones(1,params.filtopts(1).value),'same');\n posts = filts>0;\n end\n \n end\n \nend\n \n \n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/perframe/PostProcessor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321842389469, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3700198058926443}} {"text": "function model = run_finetuning(model)\n% run generative finetuning\n% Input: generatively pretrained model\n% Output: generatively finetuned model\n\nrng('shuffle');\nkernels;\ndebug = 0;\n\ndata_list = read_data_list(model.data_path, model.classnames, ...\n model.volume_size + 2 * model.pad_size, 'train', debug);\n\nnum_layer = length(model.layers);\nfor l = 2 : num_layer\n model.layers{l}.grdw = zeros(size(model.layers{l}.w), 'single');\n model.layers{l}.grdb = zeros(size(model.layers{l}.b), 'single');\n model.layers{l}.grdc = zeros(size(model.layers{l}.c), 'single');\nend\n\n% fine-tuning phase: wake-sleep algorithm\nparam = [];\nparam.epochs = 200;\nparam.lr = 0.00003;\nparam.momentum = [0.9, 0.9];\nparam.kCD = 3;\nparam.persistant = 1;\nparam.batch_size = 32;\nparam.sparse_damping = 0;\nparam.sparse_target = 0;\nparam.sparse_cost = 0;\n\n[model]= wake_sleep(model, data_list, param);\n \nsave('finetuned_model','model');\n", "meta": {"author": "zhirongw", "repo": "3DShapeNets", "sha": "6a6cc71a9231051866092c94486ae967ac533d34", "save_path": "github-repos/MATLAB/zhirongw-3DShapeNets", "path": "github-repos/MATLAB/zhirongw-3DShapeNets/3DShapeNets-6a6cc71a9231051866092c94486ae967ac533d34/run_finetuning.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7577943822145997, "lm_q2_score": 0.4882833952958347, "lm_q1q2_score": 0.37001841388385426}} {"text": "function m = copymatrix(varargin)\n\n% function m = copymatrix(m,sub,val)\n%\n% is a matrix. can be [] when is a logical, in which case\n% we assume is zeros(size()).\n% is\n% (1) some sort of index (e.g. vector of indices, logical mask)\n% (2) a function that accepts and outputs an index\n% is something that can be assigned to the indices\n%\n% return a copy of that has shoved into .\n% this function is useful for making modifications of a matrix on-the-fly.\n%\n% example:\n% imagesc(copymatrix(randn(10,10),rand(10,10)>.5,0));\n% isequal(copymatrix([1 2 3],@(x) x > 1,1),[1 1 1])\n%\n% OR\n%\n% function m = copymatrix(m,sub,dim,val)\n%\n% is a matrix\n% is a vector of indices or a vector of logicals\n% is a dimension of \n% is something that can be assigned to the indices of ,\n% assuming ':' for all other dimensions\n%\n% return a copy of that has shoved into .\n% this function is useful for making modifications of a matrix on-the-fly.\n%\n% example:\n% copymatrix([1 2 3; 4 5 6],2,1,[1 2 3])\n\nif nargin==3\n m = varargin{1};\n sub = varargin{2};\n val = varargin{3};\n if isa(sub,'logical') && isempty(m)\n m = zeros(size(sub));\n end\n if isa(sub,'function_handle')\n m(feval(sub,m)) = val;\n else\n m(sub) = val;\n end\nelse\n m = varargin{1};\n sub = varargin{2};\n dim = varargin{3};\n val = varargin{4};\n ix = repmat({':'},[1 max(ndims(m),dim)]);\n ix{dim} = sub;\n m(ix{:}) = val;\nend\n", "meta": {"author": "cvnlab", "repo": "GLMsingle", "sha": "e37bbc9f26362094e3a574f8d6c2156f5fa92077", "save_path": "github-repos/MATLAB/cvnlab-GLMsingle", "path": "github-repos/MATLAB/cvnlab-GLMsingle/GLMsingle-e37bbc9f26362094e3a574f8d6c2156f5fa92077/matlab/utilities/copymatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.640635868562172, "lm_q1q2_score": 0.3699642448664412}} {"text": "function [intersection_nodes] = ...\n get_unique_node_xy(parsed_osm, intersection_node_indices)\n% get the x,y coordinates of unique nodes at road intersections\n%\n% 2010.11.20 (c) Ioannis Filippidis, jfilippidis@gmail.com\n\nids = parsed_osm.node.xy(:, intersection_node_indices);\nxys = parsed_osm.node.xy(:, intersection_node_indices);\n\nintersection_nodes.id = ids;\nintersection_nodes.xys = xys;\n", "meta": {"author": "johnyf", "repo": "openstreetmap", "sha": "bb379623e0c4f86c5d3e38b85a9586a4f3193047", "save_path": "github-repos/MATLAB/johnyf-openstreetmap", "path": "github-repos/MATLAB/johnyf-openstreetmap/openstreetmap-bb379623e0c4f86c5d3e38b85a9586a4f3193047/get_unique_node_xy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.640635847978761, "lm_q1q2_score": 0.3699642329796167}} {"text": "function tapas_sem_display_posterior_summary(results, summary)\n%% Display the posterior summary. \n%\n% Input\n% results -- Results structure\n% summary -- Summary structure of the posterior.\n% Output\n%\n\n% aponteeduardo@gmail.com\n% copyright (C) 2019\n%\n\nCONG = 0;\nINCONG = 1;\n\ndata = results.data;\n\n% Offset of the data\nif ~isfield(data(1).y, 'offset')\n offset = 0;\nelse\n offset = data(1).y.offset;\nend\n\n% Assume data in milliseconds and a scaling of 100ms\nif ~isfield(data(1).y, 'scale')\n scale = 100;\nelse\n scale = data(1).y.scale;\nend\n\n% Collapse all the data\nt = arrayfun(@(x) x.y.t, data, 'UniformOutput', false);\nt = vertcat(t{:});\n\nt = scale * t + offset;\n\n% (a)ctions\na = arrayfun(@(x) x.y.a, data, 'UniformOutput', false);\na = vertcat(a{:});\n\n% (t)rial (t)ype\ntt = arrayfun(@(x) x.u.tt, data, 'UniformOutput', false);\ntt = vertcat(tt{:});\n\n% Plot only correct trials\nttype = mod(tt, 2);\ncorrect = a == ttype;\n\n%% Normalized fits\n\nfits = summary.fits;\nnf = numel(fits);\n\n% Normalized fits\nnfits = cell(nf, 1);\n\nfor i = 1:numel(fits)\n nfits{i} = tapas_sem_normalized_fits(data(i), fits{i});\nend\n\n%% Display a table with the summaries\ntapas_display_table(summary.summaries, 'Posterior summary')\n\n%% Plot all the responses combined\nfig = figure('name', 'Group responses and fits');\nfig.Color = 'w';\n\nall_y = struct('t', t, 'a', a);\nall_u = struct('tt', tt);\nedges = tapas_sem_plot_responses(all_y, all_u);\ndt = edges(2) - edges(1);\n\nplot_predicted_normalized_fits(nfits, dt, offset, scale);\n\n%% Delta plots\nfig = figure('name', 'Group delta plots');\nfig.Color = 'w';\n\nhold on\n% Plot all together\ntapas_sem_empirical_delta_plot(...\n t(correct & (ttype == CONG)), ...\n t(correct & (ttype == INCONG)));\n\nxlabel('time')\nylabel('Delta incong. RT - cong. RT')\n% Make delta plots\ntime = scale * fits{1}(1).t + offset;\n\nnt = numel(time);\n\ncong = zeros(nt, 1);\nincong = zeros(nt, 1);\n\nfor i = 1:numel(nfits)\n for j = 1:numel(nfits{i})\n cong = cong + nfits{i}(j).pro;\n incong = incong + nfits{i}(j).anti;\n end \nend\n\ntime = reshape(time, numel(time), 1);\n\ntapas_sem_predicted_delta_plot(time, cong, incong);\nlegend({'Empirical delta', 'Predicted delta'})\nend\n\nfunction plot_predicted_normalized_fits(nfits, dt, offset, scale)\n\nfits = nfits{1};\n\nfor i = 2:numel(nfits)\n for j = 1:numel(fits)\n fits(j).pro = fits(j).pro + nfits{i}(j).pro;\n fits(j).anti = fits(j).anti + nfits{i}(j).anti;\n end\nend\n\nfor j = 1:numel(fits)\n fits(j).t = fits(j).t * scale + offset;\nend\n\ntapas_sem_plot_fits(fits, dt/scale)\n\nend\n", "meta": {"author": "translationalneuromodeling", "repo": "tapas", "sha": "604c56843c15411f5bd80190f81d845ac57d8592", "save_path": "github-repos/MATLAB/translationalneuromodeling-tapas", "path": "github-repos/MATLAB/translationalneuromodeling-tapas/tapas-604c56843c15411f5bd80190f81d845ac57d8592/sem/plotting/tapas_sem_display_posterior_summary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176238, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3699642290173419}} {"text": "function nvar = p12_nvar ( option )\n\n%*****************************************************************************80\n%\n%% P12_NVAR sets the number of variables for problem 12.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 September 2008\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer OPTION, the option index.\n%\n% Output, integer NVAR, the number of variables.\n%\n if ( option == 1 )\n npolys = 2;\n nderiv = 1;\n elseif ( option == 2 )\n npolys = 4;\n nderiv = 1;\n elseif ( option == 3 )\n npolys = 4;\n nderiv = 2;\n elseif ( option == 4 )\n npolys = 6;\n nderiv = 1;\n elseif ( option == 5 )\n npolys = 6;\n nderiv = 2;\n elseif ( option == 6 )\n npolys = 6;\n nderiv = 3;\n end\n\n nint = 8;\n nvary = nint * npolys;\n nbcz = 1;\n nbco = 1;\n nvarz = nbcz + ( nint - 1 ) * nderiv + nbco;\n nvar = nvary + nvarz + 1;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_con/p12_nvar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.577495350642608, "lm_q2_score": 0.6406358479787609, "lm_q1q2_score": 0.3699642236627191}} {"text": "i_fish=8;\n% also load fish 8 in GUI\n% change alpha_max to 1 in 'DrawCellsOnAnatProj.mat'\n\nCR = getappdata(hfig,'CellResp');\n\n%% plot basic stats of time series\nTS = CR(:,1:3000);\nTS_max = max(TS,[],2);\nTS_avr = mean(TS,2);\nfigure;\nhist(TS_max,0:0.1:5)\nfigure\nhist(TS_avr,0:0.01:1)\n\n%% color-code based on average activity\ncIX_plot = 1:size(CR,1);\nTS_avr = mean(TS,2);\n\nTSmax = 0.3;\nTSmin = min(TS_avr);\nTS_avr(TS_avr>TSmax) = TSmin;\n\nscore = (TS_avr-TSmin)/(TSmax-TSmin);\ngIX_plot = ceil(score*64);\ngIX_plot(gIX_plot==0)=1;\nwIX = score;%.^2; % set transparency weight, and enhance contrast\n\nnumK = max(gIX_plot);\nclrmap = parula(numK);\n\nsetappdata(hfig,'isRefAnat',0);\nI = LoadCurrentFishForAnatPlot(hfig,cIX_plot,gIX_plot,clrmap,wIX);\nDrawCellsOnAnat(I);\n\nDrawCustomColorbar(clrmap,[TSmin,TSmax],2,gcf);\n%%\nsavedir = GetOutputDataDir;\nfilename = fullfile(savedir,'Zstack.tif');\nWriteZstack(hfig,filename,cIX_plot,gIX_plot,clrmap);", "meta": {"author": "xiuyechen", "repo": "FishExplorer", "sha": "c61392cf0835480d64fc03c15f1992935fdc7106", "save_path": "github-repos/MATLAB/xiuyechen-FishExplorer", "path": "github-repos/MATLAB/xiuyechen-FishExplorer/FishExplorer-c61392cf0835480d64fc03c15f1992935fdc7106/figure scripts/Overview/fig1b_AverageActivityProjections.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7826624688140726, "lm_q2_score": 0.4726834766204328, "lm_q1q2_score": 0.36995161677936694}} {"text": "function varargout=abs(varargin)\n%ABS (overloaded)\n%\n% t = abs(x)\n%\n% The variable t can only be used in convexity preserving\n% operations such as t<=0, minimize t etc.\n\n%% ***************************************************\n% This file defines a nonlinear operator for YALMIP\n%\n% It can take three different inputs\n% For double inputs, it returns standard double values\n% For sdpvar inputs, it genreates a an internal variable\n% When first input is 'model' it generates the epigraph\n\n%% ***************************************************\nswitch class(varargin{1})\n\n case 'double'\n error('Overloaded SDPVAR/ABS CALLED WITH DOUBLE. Report error')\n\n case 'sdpvar' % Overloaded operator for SDPVAR objects. Pass on args and save them.\n if isreal(varargin{1})\n varargout{1} = yalmip('addextendedvariable',mfilename,varargin{1});\n else\n % For complex args, abs(X) is defined [norm(X(i,j),2)] in MATLAB\n y = [];\n x = varargin{1};\n for i = 1:size(x,1)\n temp = [];\n for j = 1:size(x,2)\n temp = [temp norm(extsubsref(x,i,j))];\n end\n y = [y;temp];\n end\n varargout{1} = y;\n end\n\n case 'char' % YALMIP send 'graph' when it wants the epigraph or hypograph\n switch varargin{1}\n case 'graph'\n % Description using epigraphs\n t = varargin{2};\n X = varargin{3};\n varargout{1} = (-t <= X <= t);\n varargout{2} = struct('convexity','convex','monotonicity','none','definiteness','positive');\n varargout{3} = X;\n\n case 'milp'\n % Exact description using binary variables\n t = varargin{2};\n X = varargin{3};\n F = ([]);\n [M,m]=derivebounds(X);\n if m>=0\n F = F + (t == X);\n elseif M<0\n F = F + (t == -X);\n else\n d = binvar(1,1);\n F = F + (X <= M*d) + (-2*(M-m)*d <= t+X <= 2*(M-m)*d);\n F = F + (X >= m*(1-d)) + (-2*(M-m)*(1-d) <= t-X <= 2*(M-m)*(1-d));\n end\n varargout{1} = F;\n varargout{2} = struct('convexity','milp','monotonicity','milp','definiteness','positive');\n varargout{3} = X;\n otherwise\n error('SDPVAR/ABS called with CHAR argument?');\n end\n otherwise\n error('Strange type on first argument in SDPVAR/ABS');\nend\n", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/extras/@ncvar/abs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.36971525340992917}} {"text": "%% Plane\n% Concrete subclass of representing a plane.\n\n%%% Description\n% |Plane| represents the shape of a plane. It does not have a volume, but it is\n% used to force a user-defined primary grid plane in .\n\n%%% Construction\n% shape = Plane(normal_axis, intercept)\n% shape = Plane(normal_axis, intercept, dl_max)\n\n% *Input Arguments*\n%\n% * |normal_axis|: axis normal to the plane. It should be one of |Axis.x|,\n% |Axis.y|, |Axis.z|.\n% * |intercept|: location of the plane in the |normal_axis| direction.\n% * |dl_max|: maximum grid size allowed in the plane. It can be either |[dx dy\n% dz]| or a single real number |dl| for |dx = dy = dz|. If unassigned, |dl_max\n% = Inf| is used. In the |normal_axis| direction, |dl_max| is meaningless.\n\n%%% Example\n% % Create an instance of Plane.\n% shape = Plane(Axis.y, 100);\n%\n% % Use the constructed shape in maxwell_run().\n% [E, H] = maxwell_run({INITIAL ARGUMENTS}, 'OBJ', {'vacuum', 'none', 1.0}, shape, {REMAINING ARGUMENTS});\n\n%%% See Also\n% , , ,\n% , \n\nclassdef Plane < ZeroVolShape\n\t\n\tproperties\n\t\tnormal_axis\n\t\tintercept\n\tend\n\t\t\n\tmethods\n function this = Plane(normal_axis, intercept, dl_max)\n\t\t\tchkarg(istypesizeof(normal_axis, 'Axis'), '\"normal_axis\" should be instance of Axis.');\n\t\t\tchkarg(istypesizeof(intercept, 'real'), '\"intercept\" should be real.');\n\t\t\t\n\t\t\tfunction level = lsf(x, y, z)\n\t\t\t\tchkarg(istypeof(x, 'real'), '\"x\" should be array with real elements.');\n\t\t\t\tchkarg(istypeof(y, 'real'), '\"y\" should be array with real elements.');\n\t\t\t\tchkarg(istypeof(z, 'real'), '\"z\" should be array with real elements.');\n\t\t\t\tchkarg(isequal(size(x), size(y), size(z)), '\"x\", \"y\", \"z\" should have same size.');\n\t\t\t\t\n\t\t\t\tloc = {x, y, z};\n\t\t\t\tlevel = -abs(loc{normal_axis} - intercept);\t\t\t\t\n\t\t\tend\n\t\t\t\n\t\t\tlprim = cell(1, Axis.count);\n\t\t\tfor w = Axis.elems\n\t\t\t\tif w == normal_axis\n\t\t\t\t\tlprim{w} = intercept;\n\t\t\t\telse\n\t\t\t\t\tlprim{w} = [-Inf Inf];\n\t\t\t\tend\n\t\t\tend\n\t\t\t\n\t\t\tif nargin < 3 % no dl_max\n\t\t\t\tsuper_args = {lprim, @lsf};\n\t\t\telse\n\t\t\t\tdl_max = expand2row(dl_max, Axis.count);\n\t\t\t\tdl_max(normal_axis) = Inf; % dl_max is meaningless in normal direction\n\t\t\t\tsuper_args = {lprim, @lsf, dl_max};\n\t\t\tend\n\n\t\t\tthis = this@ZeroVolShape(super_args{:});\n\t\t\tthis.normal_axis = normal_axis;\n\t\t\tthis.intercept = intercept;\n\t\tend\n\tend\t\nend\n", "meta": {"author": "wsshin", "repo": "maxwellfdfd", "sha": "f7d583813781694c8a6f0533a91f56c2a78a9ee5", "save_path": "github-repos/MATLAB/wsshin-maxwellfdfd", "path": "github-repos/MATLAB/wsshin-maxwellfdfd/maxwellfdfd-f7d583813781694c8a6f0533a91f56c2a78a9ee5/shape/Plane.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.36971525340992917}} {"text": "function [optimState,t_func] = initdesign_vbmc(optimState,Ns,funwrapper,t_func,options)\n%INITDESIGN_VBMC Initial sample design (provided or random box).\n\nx0 = optimState.Cache.X_orig;\n[N0,D] = size(x0);\n\nif N0 <= Ns\n Xs = x0;\n ys = optimState.Cache.y_orig;\n if N0 < Ns\n switch lower(options.InitDesign)\n case 'plausible'\n % Uniform random samples in the plausible box (in transformed space)\n Xrnd = bsxfun(@plus,bsxfun(@times,rand(Ns-N0,D),optimState.PUB-optimState.PLB),optimState.PLB);\n case 'narrow'\n xstart = warpvars_vbmc(x0(1,:),'dir',optimState.trinfo);\n Xrnd = bsxfun(@plus,bsxfun(@times,rand(Ns-N0,D)-0.5,0.1*(optimState.PUB-optimState.PLB)),xstart);\n Xrnd = bsxfun(@min,bsxfun(@max,Xrnd,optimState.PLB),optimState.PUB);\n otherwise\n error('Unknown initial design for VBMC.');\n end\n Xrnd = warpvars_vbmc(Xrnd,'inv',optimState.trinfo); % Convert back to original space\n Xs = [Xs; Xrnd];\n ys = [ys; NaN(Ns-N0,1)];\n end\n idx_remove = true(N0,1);\n\nelseif N0 > Ns\n % Cluster starting points\n kmeans_options = struct('Display','off','Method',2,'Preprocessing','whiten');\n idx = fastkmeans(x0,Ns,kmeans_options);\n\n % From each cluster, take points with higher density in original space\n Xs = NaN(Ns,D); ys = NaN(Ns,1); idx_remove = false(N0,1);\n for iK = 1:Ns\n idxK = find(idx == iK);\n xx = optimState.Cache.X_orig(idxK,:);\n yy = optimState.Cache.y_orig(idxK);\n [~,idx_y] = max(yy);\n Xs(iK,:) = xx(idx_y,:);\n ys(iK) = yy(idx_y); \n idx_remove(idxK(idx_y)) = true;\n end\nend\n% Remove points from starting cache\noptimState.Cache.X_orig(idx_remove,:) = [];\noptimState.Cache.y_orig(idx_remove) = [];\n\nXs = warpvars_vbmc(Xs,'d',optimState.trinfo);\n\nfor is = 1:Ns\n timer_func = tic;\n if isnan(ys(is)) % Function value is not available\n [~,optimState] = funlogger_vbmc(funwrapper,Xs(is,:),optimState,'iter');\n else\n [~,optimState] = funlogger_vbmc(funwrapper,Xs(is,:),optimState,'add',ys(is));\n end\n t_func = t_func + toc(timer_func);\nend\n\nend\n", "meta": {"author": "acerbilab", "repo": "vbmc", "sha": "54ba2cdd6c11d2595b9613557da14573abbb7b92", "save_path": "github-repos/MATLAB/acerbilab-vbmc", "path": "github-repos/MATLAB/acerbilab-vbmc/vbmc-54ba2cdd6c11d2595b9613557da14573abbb7b92/misc/initdesign_vbmc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.36971524648927734}} {"text": "function [A] = ft2A(ft)\n% Convert length from feet to angstroms.\n% Chad A. Greene 2012\nA = ft*3048000000;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35258-unit-converters/unit_converters/ft2A.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3697152464892773}} {"text": "function gen_cropped_MPII_test_images()\n% Author: Guanghan Ning, Feb 2017\nclear all;\nclc;\n\ntarget_dist = 1.45;\nboxsize = 368;\n\n% Get [input images paths] and [output images path]\nmpii_img_folder_path = '../dataset/MPI/images/';\nimg_output_folder = 'dataset_mpii/images_test_cropped/qualitative/';\n\n% Load annotations\nload('eval_MPII/mpii_Tompson_test', 'annolist');\nload('eval_MPII/mpii_Tompson_test', 'keypointsAll');\nload('eval_MPII/mpii_Tompson_test', 'RELEASE_img_index');\nload('eval_MPII/mpii_Tompson_test', 'RELEASE_person_index');\n\nannolist_test = annolist;\nnum_test_imgs = size(annolist_test, 2);\n\nload('eval_MPII/mpii_human_pose_v1_u12_1','RELEASE');\nannolist_all = RELEASE.annolist;\n\n%% Start from here if everything already read from mat file.\nfor img_id = 1:num_test_imgs\n\n img_index = RELEASE_img_index(img_id);\n\n % (1) Deal with rect ids\n\n % Get rect id. Note the difference between rect_ct and rect_id\n rect_id = RELEASE_person_index(img_id);\n\n % Find scale and mid-points in order to convert prediction\n x_mid = annolist_test(img_id).annorect.objpos.x;\n y_mid = annolist_test(img_id).annorect.objpos.y;\n objpos_org = [x_mid, y_mid];\n scale_provided = annolist_test(img_id).annorect.scale;\n\n % (2) Deal with images\n img_name = annolist_all(img_index).image.name;\n img_path = strcat(mpii_img_folder_path, img_name);\n if ~exist(img_path, 'file')\n continue\n end\n\n img = imread(img_path);\n\n scale_in_cpp = target_dist/scale_provided;\n center_s = objpos_org * scale_in_cpp;\n fprintf('scale: %f\\n', scale_in_cpp);\n\n img = imresize(img, scale_in_cpp);\n disp(size(img));\n [img, pad] = padAround(img, boxsize, center_s);\n disp(size(img));\n\n [pathstr, name, ext] = fileparts(img_path);\n img_output_path = strcat(img_output_folder, name, '_', num2str(rect_id), ext);\n imwrite(img, img_output_path);\n\n output_scale(img_id) = scale_in_cpp;\nend\nsave('scale_in_cpp_MPII_test.mat', 'output_scale');\n\n\nfunction [img_padded, pad] = padAround(img, boxsize, center)\n center = round(center);\n h = size(img, 1);\n w = size(img, 2);\n pad(1) = boxsize/2 - center(2); % up\n pad(3) = boxsize/2 - (h-center(2)); % down\n pad(2) = boxsize/2 - center(1); % left\n pad(4) = boxsize/2 - (w-center(1)); % right\n\n pad_up = repmat(img(1,:,:)*0, [pad(1) 1 1])+128;\n img_padded = [pad_up; img];\n pad_left = repmat(img_padded(:,1,:)*0, [1 pad(2) 1])+128;\n img_padded = [pad_left img_padded];\n pad_down = repmat(img_padded(end,:,:)*0, [pad(3) 1 1])+128;\n img_padded = [img_padded; pad_down];\n pad_right = repmat(img_padded(:,end,:)*0, [1 pad(4) 1])+128;\n img_padded = [img_padded pad_right];\n\n center = center + [max(0,pad(2)) max(0,pad(1))];\n img_padded = img_padded(center(2)-(boxsize/2-1):center(2)+boxsize/2, center(1)-(boxsize/2-1):center(1)+boxsize/2, :); %cropping if needed\n\n\nfunction [x,y] = findMaximum(map)\n [~,i] = max(map(:));\n [x,y] = ind2sub(size(map), i);\n", "meta": {"author": "Guanghan", "repo": "GNet-pose", "sha": "c70e0fc65b290e68a16ca3040a70300f9c2bee44", "save_path": "github-repos/MATLAB/Guanghan-GNet-pose", "path": "github-repos/MATLAB/Guanghan-GNet-pose/GNet-pose-c70e0fc65b290e68a16ca3040a70300f9c2bee44/testing/gen_cropped_MPII_test_images.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3697152464892773}} {"text": "function [output_stack, IRR, ORR, ARR] = evalfisx(input_stack, fis)\n%EVALFISX Evaluation of a fuzzy inference system.\n% \n% See evalfis1 for syntax and explanation.\n% \n% It is completely based on MATLAB's evalfis1 \n% with some modifications, so it's compatible\n% with extendent fuzzy rule structure.\n% \n% Compare also code of this function\n% with code of original the evalfis1.\n% \n% Example:\n% load carsmall;\n% fis = genfis4([Weight, Displacement], Acceleration, 'mamdani');\n% out = evalfisx([2000 100; 2000 200; 2000 300], fis);\n\n% Per Konstantin A. Sidelnikov, 2009.\n\npersistent CURRENT_FIS;\npersistent FIS_NAME FIS_TYPE IN_N OUT_N IN_MF_N OUT_MF_N RULE_N;\npersistent AND_METHOD OR_METHOD IMP_METHOD AGG_METHOD DEFUZZ_METHOD;\npersistent BOUND IN_MF_TYPE OUT_MF_TYPE;\npersistent IN_RULE_LIST OUT_RULE_LIST AND_OR RULE_WEIGHT;\npersistent IN_PARAM OUT_PARAM;\npersistent OUT_TEMPLATE_MF OUT_MF QUALIFIED_OUT_MF OVERALL_OUT_MF;\n\npoint_n = 101;\nmf_para_n = 4;\n\ninitialization = 1;\n% Check if initialization necessary.\nif isequal(fis, CURRENT_FIS)\n initialization = 0;\nend\n\n% Unpack data and initialize global variables.\nif initialization\n CURRENT_FIS = fis;\n FIS_NAME = fis.name;\n FIS_TYPE = fis.type;\n IN_N = length(fis.input);\n OUT_N = length(fis.output); \n \n for i = 1 : IN_N\n IN_MF_N(i) = length(fis.input(i).mf);\n end\n for i = 1 : OUT_N\n OUT_MF_N(i) = length(fis.output(i).mf);\n end\n \n RULE_N = length(fis.rule);\n \n AND_METHOD = fis.andMethod;\n OR_METHOD = fis.orMethod;\n IMP_METHOD = fis.impMethod;\n AGG_METHOD = fis.aggMethod;\n DEFUZZ_METHOD = fis.defuzzMethod; \n \n IN_MF_TYPE = [];\n for i = 1 : IN_N\n IN_MF_TYPE = [IN_MF_TYPE; {fis.input(i).mf.type}'];\n end \n OUT_MF_TYPE = [];\n for i = 1 : OUT_N\n OUT_MF_TYPE = [OUT_MF_TYPE; {fis.output(i).mf.type}'];\n end\n \n in_bound = reshape([fis.input.range], IN_N, 2);\n out_bound = reshape([fis.output.range], OUT_N, 2);\n BOUND = [in_bound; out_bound];\n\n RULE_WEIGHT = [fis.rule.weight]';\n AND_OR = [fis.rule.connection]';\n IN_RULE_LIST = {fis.rule.antecedent}';\n OUT_RULE_LIST = reshape([fis.rule.consequent], RULE_N, OUT_N);\n\n k = 1;\n totalInputMFs = sum(IN_MF_N);\n totalOutputMFs = sum(OUT_MF_N);\n IN_PARAM = zeros(totalInputMFs, 4);\n for i = 1 : IN_N\n for j = 1 : length(fis.input(i).mf)\n tmp = fis.input(i).mf(j).params;\n IN_PARAM(k, 1 : length(tmp)) = tmp;\n k = k + 1;\n end\n end\n k = 1;\n OUT_PARAM = zeros(totalOutputMFs, 4);\n for i = 1 : OUT_N\n for j = 1 : length(fis.output(i).mf)\n tmp = fis.output(i).mf(j).params;\n OUT_PARAM(k, 1 : length(tmp)) = tmp;\n k = k + 1;\n end\n end\n \n if strcmp(FIS_TYPE, 'sugeno')\n OUT_PARAM = OUT_PARAM(:, 1 : IN_N + 1);\n elseif strcmp(FIS_TYPE, 'mamdani')\n OUT_PARAM = OUT_PARAM(:, 1 : mf_para_n);\n else\n error('Unknown FIS type!');\n end\n \n if strcmp(FIS_TYPE, 'mamdani')\n % Compute OUT_TEMPLATE_MF\n OUT_TEMPLATE_MF = zeros(sum(OUT_MF_N), point_n);\n cum_mf = cumsum(OUT_MF_N);\n for i = 1 : sum(OUT_MF_N) \n % index for output\n output_index = find((cum_mf - i) >= 0, 1, 'first');\n tmp = linspace(BOUND(IN_N + output_index, 1), ...\n BOUND(IN_N + output_index, 2), point_n);\n OUT_TEMPLATE_MF(i, :) = ...\n evalmf(tmp, OUT_PARAM(i, :), OUT_MF_TYPE{i});\n end\n \n % Reorder to fill OUT_MF, an (RULE_N X point_n * OUT_N) matrix.\n OUT_MF = zeros(RULE_N, point_n * OUT_N);\n for i = 1 : RULE_N\n for j = 1 : OUT_N\n mf_index = OUT_RULE_LIST(i, j);\n index = sum(OUT_MF_N(1 : j - 1)) + abs(mf_index);\n tmp = (j - 1) * point_n + 1 : j * point_n;\n if mf_index > 0 % regular MF\n OUT_MF(i, tmp) = OUT_TEMPLATE_MF(index, :);\n elseif mf_index < 0 % Linguistic hedge \"NOT\"\n OUT_MF(i, tmp) = 1 - OUT_TEMPLATE_MF(index, :);\n else % Don't care (MF index == 0)\n OUT_MF(i, tmp) = ones(1, point_n);\n end\n end\n end\n \n % Allocate other matrices\n QUALIFIED_OUT_MF = zeros(RULE_N, point_n * OUT_N);\n OVERALL_OUT_MF = zeros(1, point_n * OUT_N);\n end\n % fprintf('Global variables for %s FIS are initialized\\n', FIS_NAME);\nend\n% End of initialization\n\n% Error checking for input stack\nm = size(input_stack, 1);\nn = size(input_stack, 2);\nif ~((n == IN_N) || ((n == 1) && (m == IN_N)))\n fprintf('The input stack is of size %dx%d,', m, n);\n fprintf('while expected input vector size is %d.\\n', IN_N);\n error('Exiting ...');\nend\nif (n == 1) && (m == IN_N)\n data_n = 1;\n input_stack = input_stack';\nelse\n data_n = m;\nend\n\n% Allocate output stack\noutput_stack = zeros(data_n, OUT_N);\n\n% Iteration through each row of input stack\nfor kkk = 1 : data_n\n input = input_stack(kkk, :);\n \n % Find in_template_mf_value\n in_template_mf_value = zeros(sum(IN_MF_N), 1);\n cum_mf = cumsum(IN_MF_N);\n for i = 1 : sum(IN_MF_N)\n input_index = find((cum_mf - i) >= 0, 1, 'first');\n in_template_mf_value(i) = ...\n evalmf(input(input_index), IN_PARAM(i, :), IN_MF_TYPE{i});\n end\n \n % Reordering to fill in_mf_value, which is an (RULE_N X 1) cell matrix.\n tmp = cumsum([0, IN_MF_N(1 : IN_N - 1)]);\n in_mf_value = cell(RULE_N, 1);\n for ind = 1 : RULE_N\n index = tmp(IN_RULE_LIST{ind}(1, :)) + abs(IN_RULE_LIST{ind}(2, :));\n in_mf_value{ind} = in_template_mf_value(index)';\n % Take care of linguistic hedge NOT (MF index is negative)\n neg_index = find(IN_RULE_LIST{ind}(2, :) < 0);\n in_mf_value{ind}(neg_index) = 1 - in_mf_value{ind}(neg_index);\n end \n \n % Find the firing strengths\n % AND_METHOD = 'min' or 'prod'; which is used as function name too\n % OR_METHOD = 'max' or 'probor'; which is used as function name too\n firing_strength = zeros(RULE_N, 1);\n and_index = find(AND_OR == 1);\n or_index = find(AND_OR == 2);\n if IN_N ~= 1 \n firing_strength(and_index) = ...\n cellfun(@(x) feval(AND_METHOD, x'), in_mf_value(and_index, :))';\n firing_strength(or_index) = ...\n cellfun(@(x) feval(OR_METHOD, x'), in_mf_value(or_index, :))';\n else\n firing_strength = [in_mf_value{:}]';\n end\n \n % Recalculate firing strengths scaled by rule weights\n firing_strength = firing_strength .* RULE_WEIGHT;\n \n % Find output\n if strcmp(FIS_TYPE, 'sugeno')\n template_output = OUT_PARAM * [input(:); 1]; % Output for template\n \n % Reordering according to the output part of RULE_LIST;\n % Negative MF index will becomes positive\n tmp = cumsum([0, OUT_MF_N(1 : OUT_N - 1)]);\n index = repmat(tmp, RULE_N, 1) + abs(OUT_RULE_LIST);\n index(index == 0) = 1; % temp. setting for easy indexing\n rule_output = template_output(index);\n rule_output(OUT_RULE_LIST == 0) = 0; % take care of zero index\n sum_firing_strength = sum(firing_strength); \n \n if sum_firing_strength == 0\n fprintf('input = [');\n for i = 1 : IN_N\n fprintf('%f ', input(i));\n end\n fprintf(']\\n');\n error('Total firing strength is zero!');\n end \n \n switch DEFUZZ_METHOD\n case 'wtaver'\n output_stack(kkk, :) = firing_strength' * rule_output / ...\n sum_firing_strength;\n case 'wtsum'\n output_stack(kkk, :) = firing_strength' * rule_output;\n otherwise\n error('Unknown defuzzification method!');\n end \n elseif strcmp(FIS_TYPE, 'mamdani')\n % Transform OUT_MF to QUALIFIED_OUT_MF\n % Duplicate firing_strength.\n tmp = firing_strength(:, ones(1, point_n * OUT_N));\n \n if strcmp(IMP_METHOD, 'prod') % IMP_METHOD == 'prod'\n QUALIFIED_OUT_MF = tmp .* OUT_MF;\n elseif strcmp(IMP_METHOD, 'min') % IMP_METHOD == 'min'\n QUALIFIED_OUT_MF = feval(IMP_METHOD, tmp, OUT_MF);\n else % IMP_METHOD is user-defined\n tmp1 = feval(IMP_METHOD, [tmp(:)'; OUT_MF(:)']);\n QUALIFIED_OUT_MF = reshape(tmp1, RULE_N, point_n * OUT_N);\n end\n \n % AGG_METHOD = 'sum' or 'max' or 'probor' or user-defined\n OVERALL_OUT_MF = feval(AGG_METHOD, QUALIFIED_OUT_MF);\n \n for i = 1 : OUT_N\n tmp = linspace(BOUND(IN_N + i, 1), BOUND(IN_N + i, 2), point_n);\n tmp1 = (i - 1) * point_n + 1 : i * point_n;\n output_stack(kkk, i) = ...\n defuzz(tmp, OVERALL_OUT_MF(1, tmp1), DEFUZZ_METHOD);\n end\n else\n fprintf('fis_type = %d\\n', FIS_TYPE);\n error('Unknown FIS type!');\n end\nend\n\nif nargout >= 2\n IRR = in_mf_value; \nend\n\nif strcmp(FIS_TYPE, 'sugeno')\n if nargout >= 3\n ORR = rule_output;\n end\n if nargout >= 4\n ARR = firing_strength(:, ones(1, OUT_N));\n end\nelse\n if nargout >= 3\n ORR = [];\n for iii = 1 : OUT_N\n tmp = (iii - 1) * point_n + 1 : iii * point_n;\n ORR = [ORR; QUALIFIED_OUT_MF(:, tmp)];\n end\n ORR = ORR';\n end\n if nargout >= 4\n ARR = reshape(OVERALL_OUT_MF, point_n, OUT_N);\n end\nend\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/28393-fuzzy-cart/fcart/evalfisx1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3697152464892773}} {"text": "function relaxMtFit(dataDir,outDir,voxRange)\n%\n% relaxMtFit(dataDir,outDir,voxRange)\n%\n% Calculates the k and f maps using the MT TOF sequence.\n%\n% See Yarnykh & Yuan (2004). Cross-relaxation imaging reveals\n% detailed anatomy of white matter fiber tracts in the human\n% brain. Neuroimage, 23(1):409-24. (PMID: 15325389)\n%\n% KEY DEPENDENCIES:\n% lorentzian.m, relaxMtFitFunc.m\n%\n% SEE ALSO:\n% relaxPreprocess.m to get raw DICOM data into the right format for\n% this function.\n%\n% HISTORY:\n% 2006.02.19 Nikola Stikov wrote it.\n% 2007.01.?? NS recoded it to use lsqnonlin\n% 2007.02.27 RFD rewrote the loop structure and data format.\n% 2007.03.02 RFD slight performance enhancements. Also renamed\n% several functions and added them all to the mrDiffusion\n% repository.\n%\n\nif(~exist('dataDir','var')|isempty(dataDir))\n dataDir = pwd;\nend\n\nif(~exist('outDir','var')|isempty(outDir))\n outDir = dataDir;\nend\n\nif(~exist('voxRange','var')|isempty(voxRange))\n voxRange = '';\nend\n\nif(~exist(outDir,'dir'))\n mkdir(outDir);\nend\n\ndisp(['Loading data from ' dataDir '...']);\n\nni = niftiRead(fullfile(dataDir,'T1.nii.gz'));\nT1 = ni.data;\nxform = ni.qto_xyz;\nclear ni;\nnz = T1>0;\n\nif(exist(fullfile(dataDir,'brainMask.nii.gz'),'file'))\n ni = niftiRead(fullfile(dataDir,'brainMask.nii.gz'));\n brainMask = ni.data==1;\n clear ni;\nelse\n brainMask = nz;\nend\n\n%ni = niftiRead(fullfile(dataDir,'PD.nii.gz'));\n%PD = ni.data;\n\nni = niftiRead(fullfile(dataDir,'S0.nii.gz'));\nS0 = ni.data;\nclear ni;\n\nd = dir(fullfile(dataDir,'MT_*.nii.gz'));\ndelta = zeros(1,length(d));\nfor(ii=1:length(d))\n ni = niftiRead(fullfile(dataDir,d(ii).name));\n MT(:,:,:,ii) = ni.data;\n clear ni;\n % TODO: fix this crude hack. Maybe store offset freqs in nifti header?\n delta(ii) = sscanf(d(ii).name,'MT_%dkHz.nii.gz') ;\nend\ndelta = delta'*1e3; % offset frequencies, in Hz\n\niterMax = 50; %maximum number of iterations allowed\n\nsz = size(brainMask);\n\n% Clip T1 and PD to reasonable values\n% Tissue T1 (s) T2 (ms) PD*\n% CSF 0.8 - 20 110 - 2000 70 - 230\n% White\t 0.76 - 1.08 61 - 100 \t 70 - 90\n% Gray 1.09 - 2.15 61 - 109 85 - 125\n% Meninges 0.5 - 2.2 50 - 165 5 - 44\n% Muscle 0.95 - 1.82 20 - 67 45 - 90\n% Adipose 0.2 - 0.75 53 - 94 50 - 100\n% (PD values are based on PD=111 for 12mM aqueous NiCl2)\n% (From http://www.cis.rit.edu/htbooks/mri/chap-8/chap-8.htm#8.7 )\n% Our PDs seem to be scaled by 50 or so???\nT1(T1<0.01) = 0.01;\nT1(T1>10) = 10;\n%PD(PD<0) = 0;\n%PD(PD>12000) = 12000;\n\nR1 = zeros(size(T1)); R1(nz) = 1./T1(nz);\n%if(~exist(fullfile(dataDir,'R1.nii.gz'),'file'))\n% dtiWriteNiftiWrapper(single(R1),xform,fullfile(dataDir,'R1.nii.gz'));\n%end\n\n% Tidy-up the brain mask a bit\n%brainMask(PD<1000|PD>10000|T1<0.2|T1>2|S0<20) = 0;\nbrainMask(T1<0.2|T1>2|any(MT==0,4)) = 0;\n\n% RFD: empirically, [1 .08] is the median for brain tissue\nx0 = [1 .08];\n%x0 = [2.4, .10]'; %this is our initial guess, bese [3.4, .15]'\n\nlb = [.1 .03]; % [k f]\nub = [5 .28];\n\nt_m = 8e-3; %bese 8e-3\nt_s = 5e-3; %bese 5e-3\nt_r = 19e-3; %bese 19e-3\nT2_B = 11e-6;\n% Where does this come from? Should we estimate it from the data?\nw1rms = 2400; % omega-1 RMS\n\nfor ii = 1:length(delta)\n W_B(ii) = pi*(w1rms^2)*lorentzian (delta(ii), T2_B);\nend;\n\noptions = optimset('LevenbergMarquardt','on', 'Display', 'off');\n\n% FOR DEBUGGING:\n%showMontage(brainMask);\n\nbrainInds = find(brainMask);\nnumVoxelsPerUpdate = 10000;\nnVoxAll = length(brainInds);\nfor(ii=1:size(MT,4))\n tmpVol = MT(:,:,:,ii);\n tmpMT(ii,:) = tmpVol(brainInds);\nend\nclear tmpVol;\nMT = tmpMT;\nclear tmpMT;\nR1 = R1(brainInds);\nS0 = S0(brainInds);\n\nf = zeros(1,nVoxAll); \nk = zeros(1,nVoxAll);\ngof = zeros(1,nVoxAll);\ntotalSecs = 0;\nif(~isempty(voxRange))\n if(any(voxRange<0))\n\tdoVox = [floor(nVoxAll*voxRange(1))+1:ceil(nVoxAll*voxRange(2))];\n else\n\tdoVox = [max(1,voxRange(1)):min(nVoxAll,voxRange(2))];\n end\n fprintf('Processing voxels %d - %d...\\n', doVox(1), doVox(end));\nelse\n doVox = [1:nVoxAll];\n fprintf('Processing all %d voxels...\\n',nVoxAll);\nend\n\n% What we compute here is actually W_F./R1_F. R1_F is computed in\n% the fit function, but we precompute the rest out here to save a\n% few cpu cycles in the loop below.\nW_F = (w1rms./(2*pi*delta)).^2/.055;\n\nwarning off;\nnVox = doVox(end)-doVox(1);\ntmp = zeros(size(brainMask));\ntmpName = tempname\ntic;\nfor(ii=doVox)\n if(mod(ii,numVoxelsPerUpdate)==0)\n prevSecs = toc;\n totalSecs = totalSecs+prevSecs;\n secsPerVox = totalSecs./(ii-doVox(1));\n estTime = secsPerVox*(doVox(end)-ii);\n if(estTime>5400) estTime=estTime./3600; estTimeUnits='hours';\n elseif(estTime>90) estTime=estTime./60; estTimeUnits='minutes';\n else estTimeUnits='seconds'; end\n fprintf('Processed %d of %d voxels- %0.1f %s remaining (%0.3f secs per vox)...\\n',ii-doVox(1),nVox,estTime,estTimeUnits,secsPerVox);\n\ttmp(brainInds) = f;\n m = makeMontage(tmp,[1:5:size(tmp,3)]);\n\tm = uint8(round(m./max(f).*255));\n\timwrite(m,['/home/bob/public_html/f.png']);\n\tsave(tmpName,'k','f','gof','voxRange','xform');\n tic;\n end\n \n % Some voxels produce a \"Input to EIG must not contain NaN\n % or Inf\" error in lsqnonl in. Tweaking the bounds or\n % starting estimate can fix it sometimes, but they are\n % probably junk voxels anyway, so we'll catch and skip them.\n try\n %[x, resnorm, residual, exitflag, output] = lsqnonlin(@(x) relaxMtFitFunc(x, MT(:,ii), W_B, W_F, T2_B, R1(ii), S0(ii), t_m, t_s, t_r), x0, lb, ub, options); %bese j-12;\n [x, resnorm, exitflag] = fminsearch(@(x) relaxMtFitFuncLs(x, MT(:,ii), W_B, W_F, T2_B, R1(ii), S0(ii), t_m, t_s, t_r), x0, options);\n if(exitflag>0)\n k(ii) = x(1);\n f(ii) = x(2);\n gof(ii) = resnorm;\n else\n gof(ii) = NaN;\n end\n catch\n % Leave the fit values at zero.\n end\nend\nwarning on;\n\nfprintf('Finished processing %d slices (%d voxels) in %0.1f seconds.\\n\\n',sz(3),nVox,totalSecs);\n\nif(isempty(voxRange))\n outName = '';\nelse\n outName = sprintf('%0.2f-%0.2f',voxRange(1),voxRange(2));\nend\nim=zeros(size(brainMask)); im(brainInds) = f; f = im;\nim=zeros(size(brainMask)); im(brainInds) = k; k = im;\nim=zeros(size(brainMask)); im(brainInds) = gof; gof = im;\ntry\n dtiWriteNiftiWrapper(single(f),xform,fullfile(outDir,[outName 'f.nii.gz']));\n dtiWriteNiftiWrapper(single(k),xform,fullfile(outDir,[outName 'k.nii.gz']));\n dtiWriteNiftiWrapper(single(gof),xform,fullfile(outDir,[outName 'gof.nii.gz']));\ncatch\n outName = tempname\n save(outName,'k','f','gof','voxRange','xform');\nend\n% FOR DEBUGGING:\nkeyboard;\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrQuant/relaxometry/relaxMtFit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3697152464892773}} {"text": "%% Author: epokh\n%% Website: www.epokh.org/drupy\n%% This software is under GPL\n\n\n\nfunction Tmat=Tsfer(gamma,beta,r)\n%%Transformation in spherical coordinates\n%%input: alfa angle along z axis, beta angle along y axis, r trasl along z\n%%along z axis\n%%output: trasformation matrix\nTmat=RotZ(gamma)*RotY(beta)*Tras(0,0,r);\n\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/14886-robotic-toolbox/Tsfer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.36971524648927717}} {"text": "classdef LatitudeTermCondition < AbstractEventTerminationCondition\n %LatitudeTermCondition Summary of this class goes here\n % Detailed explanation goes here\n \n properties\n lat(1,1) double = 0; %rad\n bodyInfo KSPTOT_BodyInfo\n direction(1,1) double = 0;\n end\n \n methods\n function obj = LatitudeTermCondition(lat)\n obj.lat = lat;\n end\n \n function evtTermCondFcnHndl = getEventTermCondFuncHandle(obj) \n evtTermCondFcnHndl = @(t,y) obj.eventTermCond(t,y);\n end\n \n function initTermCondition(obj, initialStateLogEntry)\n obj.bodyInfo = initialStateLogEntry.centralBody;\n end\n \n function name = getName(obj)\n name = sprintf('Latitude (%.3f deg)', rad2deg(obj.lat));\n end\n \n function tf = shouldBeReinitOnRestart(obj)\n tf = true;\n end\n \n function params = getTermCondUiStruct(obj)\n params = struct();\n \n params.paramName = 'Latitude';\n params.paramUnit = 'deg';\n params.useParam = 'on';\n params.useStages = 'off';\n params.useTanks = 'off';\n params.useEngines = 'off';\n params.useStopwatches = 'off';\n \n params.value = obj.lat;\n params.refStage = LaunchVehicleStage.empty(1,0);\n params.refTank = LaunchVehicleEngine.empty(1,0);\n params.refEngine = LaunchVehicleEngine.empty(1,0);\n params.refStopwatch = LaunchVehicleStopwatch.empty(1,0);\n end\n \n function optVar = getNewOptVar(obj)\n optVar = LatitudeOptimizationVariable(obj);\n end\n \n function optVar = getExistingOptVar(obj)\n optVar = obj.optVar;\n end\n \n function tf = usesStage(obj, stage)\n tf = false;\n end\n \n function tf = usesEngine(obj, engine)\n tf = false;\n end\n \n function tf = usesTank(obj, tank)\n tf = false;\n end\n \n function tf = usesEngineToTankConn(obj, engineToTank)\n tf = false;\n end\n \n function tf = usesStopwatch(obj, stopwatch)\n tf = false;\n end\n end\n \n methods(Static)\n function termCond = getTermCondForParams(paramValue, stage, tank, engine, stopwatch)\n termCond = LatitudeTermCondition(paramValue);\n end\n end\n \n methods(Access=protected)\n function [value,isterminal,direction] = eventTermCond(obj, t,y) \n rVect = y(1:3);\n vVect = y(4:6);\n cartElem = CartesianElementSet(t, rVect(:), vVect(:), obj.bodyInfo.getBodyCenteredInertialFrame());\n geoElem = cartElem.convertToFrame(obj.frame).convertToGeographicElementSet();\n \n value = geoElem.lat - obj.lat;\n isterminal = 1;\n direction = obj.direction;\n end\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/classes/Events/termConditions/@LatitudeTermCondition/LatitudeTermCondition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583376458153, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3696995924350746}} {"text": "function a = getBestAction(Q, state, actions)\n \n % Select the best action a in state s\n\n n_actions = length(actions);\n status = find(Q(state,:), 1);\n \n if isempty(status)\n \n a = randi(n_actions); \n else\n \n [Q_value, a] = max(Q(state,:)); \n end\n \nend", "meta": {"author": "kennydl", "repo": "Reinforcment-Learning-With-Q-Learning", "sha": "d9aff50bfaa57bedd59134e3eeab029ba4e42c8c", "save_path": "github-repos/MATLAB/kennydl-Reinforcment-Learning-With-Q-Learning", "path": "github-repos/MATLAB/kennydl-Reinforcment-Learning-With-Q-Learning/Reinforcment-Learning-With-Q-Learning-d9aff50bfaa57bedd59134e3eeab029ba4e42c8c/Matlab/getBestAction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.36969958573526934}} {"text": "clear variables;\nEXPORT_DIR = '/home/mhughes/git/BPARHMM-NEW/figs/Mocap6/';\n\n%jobID = 1121860; taskID = 'best';\n%jobID = 2134873; taskID = 1;\njobID = 111; taskID = 1;\n\n% ------------------------------------------------------- Load Ground truth\nF{1} = zeros(6, 12 );\nQ = loadSamplerInfo( jobID, taskID);\nfor ii = 1:Q.data.N\n activeFeatIDs = unique( Q.data.zTrue(ii) );\n F{1}(ii, activeFeatIDs) = 1;\nend\n\n% ------------------------------------------------------- Load best BPHMM\n% Note that meanFfrac is aggregated across all post-burn-in samples\nMIN_THR = 0.02;\n% disregard feature if appeared active in less that 2%\n% of state sequence assignment zs when avg'd across all samples\nX = loadSamplerOutput( jobID, taskID );\nF{2} = X.Summary.meanFfrac > 0.02;\n\nif size( F{2}, 2 ) > 12\n if all( sum( F{2}(:,13:end), 1 ) == 0 )\n F{2} = F{2}(:,1:12);\n end\nend\n\ndoTHR = 0;\nMINITER = 10000;\n\nkeepiters = find( X.iters.Psi >= MINITER );\n\navgF = zeros( 6, 15 );\nfor id = keepiters\n K = size( X.A( id ).Ffrac, 2 );\n Fcur = zeros( size(avgF) );\n if doTHR\n Fcur(:,1:K) = X.A( id ).Ffrac > 0.02;\n else\n Fcur(:, 1:K) = X.A( id ).F;\n end\n avgF = avgF + Fcur;\nend\navgF = avgF ./ length(keepiters );\n\nkIDs = union( 1:12, find( sum( avgF, 1) > 0) );\nF{2} = avgF(:, kIDs);\n\n\n% ------------------------------------------------------- Load GMM/HMM\nQ = load( '/data/liv/mhughes/data/MoCap6/Results/GMM_25trials_K2-20.mat' );\nF{3} = Q.GMM(2,12).alignedF;\nQ = load( '/data/liv/mhughes/data/MoCap6/Results/HMM_25trials_K2-20.mat' );\nF{4} = Q.HMM(2,12).alignedF;\n\nFigNames = {'GroundTruth','BPHMM','GMM','HMM'};\nfor ff = 1:length( F )\nfigure;\nimagesc( F{ff} );\nset( gcf, 'Name', ['Mocap6_FeatMatrix_' FigNames{ff} ]);\ncolormap( 'bone' );\nset( gca, 'FontSize', 20 );\n\nif ff==2 \n rStr = num2str(doTHR);\nelse\n rStr = '';\nend\nset( gcf, 'InvertHardcopy','off','Color',[1 1 1]);\n\n export_fig( fullfile( EXPORT_DIR, ['Mocap6_FeatMatrix_' rStr FigNames{ff} ]), '-eps');\nend\n", "meta": {"author": "michaelchughes", "repo": "NPBayesHMM", "sha": "22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd", "save_path": "github-repos/MATLAB/michaelchughes-NPBayesHMM", "path": "github-repos/MATLAB/michaelchughes-NPBayesHMM/NPBayesHMM-22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd/code/experiments/Mocap6/MakePlot_Mocap6FeatMatrix_CompareModels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754489059774, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3696745698584351}} {"text": "%kkhypot 'Output = sqrt[(Input 1)**2 + (Input 2 or Constant)**2]'\n% This MatLab function was automatically generated by a converter (KhorosToMatLab) from the Khoros khypot.pane file\n%\n% Parameters: \n% InputFile: i1 'Input 1', required: 'First input data object'\n% OutputFile: o 'Output', required: 'Resulting output data object'\n% InputFile: i2 'Input 2', optional: 'Second input data object'\n%\n% Example: o = kkhypot({i1, i2}, {'i1','';'o','';'i2',''})\n%\n% Khoros helpfile follows below:\n%\n% PROGRAM\n% khypot - Output = sqrt[(Input 1)**2 + (Input 2 or Constant)**2]\n%\n% DESCRIPTION\n% The \"Hypotenuse\" operator returns the square root of the result \n% produced by adding the square of each point in \\fBInput 1\" and the square\n% of either the corresponding point in \\fBInput 2\" or the \\fBConstant\\fP \n% value, which ever is specified by the user.\n% \n% Executing \"Hypotenuse\" runs the program \\fIkarith2\\fP with the -hypot flag.\n% \n% \"Data Type - Single Input\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/value_type_1input\n% \n% \"Data Type - Two Input Objects\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/value_type_2input\n% \n% \"Map Data - Single Input\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/map_1input\n% \n% \"Map Data - Two Input Objects\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/map_2input\n% \n% \"Validity Mask\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/mask_2input\n% \n% \"Input Objects of Different Sizes\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/resize_2input\n% The values used to pad the data when input files are not the same size are\n% (0.0, 0.0).\n% \n% \"Explicit Location and Time Data - Single Input\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/loc_and_time_1input\n% \n% \"Explicit Location and Time Data - Two Input Objects\" 5\n% .cI $DATAMANIP/repos/shared/man/sections/loc_and_time_2input\n% \n% \"Failure Modes - Single Input\"\n% .cI $DATAMANIP/repos/shared/man/sections/fail_1input\n% \n% \"Failure Modes - Two Input Objects\"\n% .cI $DATAMANIP/repos/shared/man/sections/fail_2input\n%\n% \n%\n% EXAMPLES\n%\n% \"SEE ALSO\"\n% DATAMANIP::karith2, DATAMANIP::kcmplx2real, DATAMANIP::kmag\n%\n% RESTRICTIONS \n% Operations on complex data are not supported at this time. If the\n% input object is complex, only the real component of the data is\n% processed, and the output object is real. To calculate the hypotenuse,\n% or magnitude of a complex number, use DATAMANIP::kcmplx2real.\n%\n% REFERENCES \n%\n% COPYRIGHT\n% Copyright (C) 1993 - 1997, Khoral Research, Inc. (\"KRI\") All rights reserved.\n% \n\n\nfunction varargout = kkhypot(varargin)\nif nargin ==0\n Inputs={};arglist={'',''};\nelseif nargin ==1\n Inputs=varargin{1};arglist={'',''};\nelseif nargin ==2\n Inputs=varargin{1}; arglist=varargin{2};\nelse error('Usage: [out1,..] = kkhypot(Inputs,arglist).');\nend\nif size(arglist,2)~=2\n error('arglist must be of form {''ParameterTag1'',value1;''ParameterTag2'',value2}')\n end\nnarglist={'i1', '__input';'o', '__output';'i2', '__input'};\nmaxval={0,0,1};\nminval={0,0,1};\nistoggle=[0,0,1];\nwas_set=istoggle * 0;\nparamtype={'InputFile','OutputFile','InputFile'};\n% identify the input arrays and assign them to the arguments as stated by the user\nif ~iscell(Inputs)\nInputs = {Inputs};\nend\nNumReqOutputs=1; nextinput=1; nextoutput=1;\n for ii=1:size(arglist,1)\n wasmatched=0;\n for jj=1:size(narglist,1)\n if strcmp(arglist{ii,1},narglist{jj,1}) % a given argument was matched to the possible arguments\n wasmatched = 1;\n was_set(jj) = 1;\n if strcmp(narglist{jj,2}, '__input')\n if (nextinput > length(Inputs)) \n error(['Input ' narglist{jj,1} ' has no corresponding input!']); \n end\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n elseif strcmp(narglist{jj,2}, '__output')\n if (nextoutput > nargout) \n error(['Output nr. ' narglist{jj,1} ' is not present in the assignment list of outputs !']); \n end\n if (isempty(arglist{ii,2}))\n narglist{jj,2} = 'OK_out';\n else\n narglist{jj,2} = arglist{ii,2};\n end\n\n nextoutput = nextoutput + 1;\n if (minval{jj} == 0) \n NumReqOutputs = NumReqOutputs - 1;\n end\n elseif isstr(arglist{ii,2})\n narglist{jj,2} = arglist{ii,2};\n else\n if strcmp(paramtype{jj}, 'Integer') & (round(arglist{ii,2}) ~= arglist{ii,2})\n error(['Argument ' arglist{ii,1} ' is of integer type but non-integer number ' arglist{ii,2} ' was supplied']);\n end\n if (minval{jj} ~= 0 | maxval{jj} ~= 0)\n if (minval{jj} == 1 & maxval{jj} == 1 & arglist{ii,2} < 0)\n error(['Argument ' arglist{ii,1} ' must be bigger or equal to zero!']);\n elseif (minval{jj} == -1 & maxval{jj} == -1 & arglist{ii,2} > 0)\n error(['Argument ' arglist{ii,1} ' must be smaller or equal to zero!']);\n elseif (minval{jj} == 2 & maxval{jj} == 2 & arglist{ii,2} <= 0)\n error(['Argument ' arglist{ii,1} ' must be bigger than zero!']);\n elseif (minval{jj} == -2 & maxval{jj} == -2 & arglist{ii,2} >= 0)\n error(['Argument ' arglist{ii,1} ' must be smaller than zero!']);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} < minval{jj})\n error(['Argument ' arglist{ii,1} ' must be bigger than ' num2str(minval{jj})]);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} > maxval{jj})\n error(['Argument ' arglist{ii,1} ' must be smaller than ' num2str(maxval{jj})]);\n end\n end\n end\n if ~strcmp(narglist{jj,2},'OK_out') & ~strcmp(narglist{jj,2},'OK_in') \n narglist{jj,2} = arglist{ii,2};\n end\n end\n end\n if (wasmatched == 0 & ~strcmp(arglist{ii,1},''))\n error(['Argument ' arglist{ii,1} ' is not a valid argument for this function']);\n end\nend\n% match the remaining inputs/outputs to the unused arguments and test for missing required inputs\n for jj=1:size(narglist,1)\n if strcmp(paramtype{jj}, 'Toggle')\n if (narglist{jj,2} ==0)\n narglist{jj,1} = ''; \n end;\n narglist{jj,2} = ''; \n end;\n if ~strcmp(narglist{jj,2},'__input') && ~strcmp(narglist{jj,2},'__output') && istoggle(jj) && ~ was_set(jj)\n narglist{jj,1} = ''; \n narglist{jj,2} = ''; \n end;\n if strcmp(narglist{jj,2}, '__input')\n if (minval{jj} == 0) % meaning this input is required\n if (nextinput > size(Inputs)) \n error(['Required input ' narglist{jj,1} ' has no corresponding input in the list!']); \n else\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n end\n else % this is an optional input\n if (nextinput <= length(Inputs)) \n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end;\n else \n if strcmp(narglist{jj,2}, '__output')\n if (minval{jj} == 0) % this is a required output\n if (nextoutput > nargout & nargout > 1) \n error(['Required output ' narglist{jj,1} ' is not stated in the assignment list!']); \n else\n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n NumReqOutputs = NumReqOutputs-1;\n end\n else % this is an optional output\n if (nargout - nextoutput >= NumReqOutputs) \n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end\n end\n end\nend\nif nargout\n varargout = cell(1,nargout);\nelse\n varargout = cell(1,1);\nend\nglobal KhorosRoot\nif exist('KhorosRoot') && ~isempty(KhorosRoot)\nw=['\"' KhorosRoot];\nelse\nif ispc\n w='\"C:\\Program Files\\dip\\khorosBin\\';\nelse\n[s,w] = system('which cantata');\nw=['\"' w(1:end-8)];\nend\nend\n[varargout{:}]=callKhoros([w 'karith2\" -hypot'],Inputs,narglist);\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/matlab_tools/Converted/kkhypot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7279754371026367, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.36967456386455866}} {"text": "function cond = wilk03_condition ( )\n\n%*****************************************************************************80\n%\n%% WILK03_CONDITION returns the L1 condition of the WILK03 matrix.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 18 January 2015\n%\n% Author:\n%\n% John Burkardt\n%\n% Reference:\n%\n% James Wilkinson,\n% Error Analysis of Direct Methods of Matrix Inversion,\n% Journal of the Association for Computing Machinery,\n% Volume 8, 1961, pages 281-330.\n%\n% Parameters:\n%\n% Output, real COND, the L1 condition.\n%\n cond = 1.8 * ( 13.0 * 1.0E+10 / 9.0 );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_mat/wilk03_condition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5736784074525098, "lm_q2_score": 0.6442251064863697, "lm_q1q2_score": 0.3695780331300241}} {"text": "function newDwImg = dtiRawRohdeApplyIntensityCorrection(mc, phaseDir, origDwImg)\n% Applies intensity correction given Rohode eddy/motion params in mc\n%\n% newDwImg = dtiRawRohdeApplyIntensityCorrection(mc, phaseDir, origDwImg)\n%\n% mc is the 14 motion/eddy parameters, with translations in 1-3, rotations\n% in 4-6. The remaining 8 elements are the eddy-current warping parameters\n% (Rohde et al's 'c' parameters used to estimate their b_eddy).\n%\n% phaseDir specifies the phase-encoding direction, either a 1x3 with a '1'\n% indicating the phase-encode dir, or a scalar value of 1, 2 or 3.\n%\n% Applies the Rohde intensity correction to origDwImg, which should be the\n% ORIGINAL diffusion-weighted image volume for which the Rohde parameters\n% in mc were estimated. We undo the motion correction to apply this, since\n% it is specified in the motion-corrected image space.\n%\n% Rohde, Barnett, Basser, Marenco and Pierpaoli (2004). Comprehensive\n% Approach for Correction of Motion and Distortion in Diffusion-Weighted\n% MRI. MRM 51:103-114.\n%\n% HISTORY:\n%\n% 2007.05.03 RFD wrote it.\n\nif(numel(phaseDir)>1) phaseDir = find(phaseDir); end\nif(length(phaseDir)>1 || phaseDir<1 || phaseDir>3) error('phaseDir specification error.'); end\n\nsz = size(origDwImg);\n% For our purposes here, ndgrid and meshgrid are equivalent- the only\n% difference is which dim increases fastest, but this doesn't matter for a\n% simple list of coords. \n[X,Y,Z] = ndgrid([1:sz(1)],[1:sz(2)],[1:sz(3)]);\nx = [X(:), Y(:), Z(:)];\n\n% x and y are coordinate lists (names are same as used in Rohde et. al.\n% paper). x is a list of coords in native image space, y is a list of the\n% corresponsding coordinates in motion-corrected space. \nmotionMat = affineBuild(mc(1:3),mc(4:6));\ny = mrAnatXformCoords(motionMat,x);\n\n% Intensity correction (ic) is computed in motion-corrected space (y):\nc = mc(7:14);\nif(phaseDir==1)\n ic = 1 + c(1) + c(4)*y(:,2) + c(5)*y(:,3) + 2*c(7)*y(:,1) - 2*c(8)*y(:,1);\nelseif(phaseDir==2)\n ic = 1 + c(2) + c(4)*y(:,1) + c(6)*y(:,3) - 2*(c(7)+c(8))*y(:,2);\nelse\n ic = 1 + c(3) + c(5)*y(:,1) + c(6)*y(:,2) + 4*c(8)*y(:,3);\nend\n\n% We want to apply ic (in motion-corrected space) to the original,\n% uncorrected space. This is easier for the downstream processing pipeline,\n% since we will likely reslice the original to a standard space and thus\n% never actually generate a motion-corrected version. Otherwise, we would\n% be forced to resample twice. So, we interpolate ic back to the\n% uncorrected space x.\nic = myCinterp3(double(ic),[sz(1) sz(2)], sz(3), x, 1.0);\nic = reshape(ic,sz);\n% Now apply it:\nnewDwImg = double(origDwImg).*ic;\n\nreturn;\n\n% Rohde et. al. only work out the intensity correction for phaseDir = 2.\n% Here we solve for the other two options. Writing their eq. 12 out:\n% c1*y1 + c2*y2 + c3*y3 + c4*y1*y2 + c5*y1*y3 + c6*y2*y3 + (c7*y1^2 - c7*y2^2) + (2*c8*y3^2 - c8*y1^2 - c8*y2^2)\n%\n% For phaseDir = 1:\n% c1 + 0 + 0 + c4*y2 + c5*y3 + 0 + (2*c7*y1 - 0 ) + (0 - 0 - 2*c8*y1)\n% c1 + c4*y2 + c5*y3 + 2*c7*y1 - 2*c8*y1\n%\n% For phaseDir = 2:\n% NOTE: there is a typo in the Rohde paper where they solve for this\n% derivative. In eq. 13, they present: c2 + c4*y1 + c6*y3 + 2*(c7+c8)*y2\n% 0 + c2*y2 + 0 + c4*y1 + 0 + c6*y3 + (0 - 2*c7*y2) + (0 - 0 - 2*c8*y2)\n% c2 + c4*y1 + c6*y3 - 2*c7*y2 - 2*c8*y2\n% c2 + c4*y1 + c6*y3 - 2*(c7+c8)*y2\n% \n% For phaseDir = 3:\n% 0 + + c3*y3 + 0 + c5*y1 + c6*y2 + (0 - 0 ) + (4*c8*y3 - 0 - 0 )\n% c3 + c5*y1 + c6*y2 + 4*c8*y3\n%\n% Or, simply:\n% eq = 'c1*y1 + c2*y2 + c3*y3 + c4*y1*y2 + c5*y1*y3 + c6*y2*y3 + (c7*y1^2 - c7*y2^2) + (2*c8*y3^2 - c8*y1^2 - c8*y2^2)';\n% maple(['diff(' eq ',y1)'])\n% maple(['diff(' eq ',y2)'])\n% maple(['diff(' eq ',y3)'])\n\n\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/preprocess/dtiRawRohdeApplyIntensityCorrection.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.36957803313002396}} {"text": "function [L_l,R_l] = lindemannInh(L,R,fs,c_inh,dim)\n%LINDEMANNINH Signal pre-processing for Lindemann's cross-correlation\n% \n% [L_L,R_L] = IOSR.AUDITORY.LINDEMANNINH(L,R,FS) pre-processes left L and\n% right R signals for the cross-correlation function based on Lindemann's\n% precedence model [1,2]. A crucial parameter for Lindemann's model is\n% the \"operating point\", which controls the amount of inhibition. The\n% parameter is actually a function of the input related to its RMS level.\n% After half-wave rectifying and filtering the input signals L and R\n% (sampled at FS Hz) along the first non-singleton dimension, this\n% function applies a gain related to the inhibition parameter C_INH\n% (default is 0.3). The gain is identical for all rows, columns, etc.\n% Lastly, values outside of the interval [0,1] are not permitted in\n% Lindemann's model and hence these values are clipped.\n% \n% [L_L,R_L] = IOSR.AUDITORY.LINDEMANNINH(L,R,FS,C_INH) uses the specified\n% inhibition parameter C_INH. The value must be in the interval [0,1].\n% \n% [L_L,R_L] = IOSR.AUDITORY.LINDEMANNINH(L,R,FS,C_INH,DIM) pre-processes\n% L and R along the dimension DIM.\n% \n% References\n% \n% [1] Lindemann, W. (1986), Extension of a binaural cross-correlation\n% model by contralateral inhibition. I. Simulation of lateralization\n% for stationary signals, The Journal of the Acoustical Society of\n% America 80, 6, 1608-1622.\n% \n% [2] Lindemann, W. (1986), Extension of a binaural cross-correlation\n% model by contralateral inhibition. II. The law of the first wave\n% front, The Journal of the Acoustical Society of America 80, 6,\n% 1623-1630.\n% \n% Further reading\n% \n% Hummersone, C., Mason, R., Brookes, T. (2013), A comparison of\n% computational precedence models for source separation in\n% reverberant environments, The Journal of the Audio Engineering\n% Society 61, 7/8, 508-520.\n% \n% See also IOSR.AUDITORY.XCORRLINDEMANN.\n\n% Copyright 2016 University of Surrey.\n\n %% check input\n \n assert(isequal(size(L),size(R)), 'iosr:lindemannInh:invalidInputs', 'L and R arrays must be the same size')\n assert(isscalar(fs), 'iosr:lindemannInh:invalidFs', 'FS must be a scalar')\n \n % default dim\n if nargin<5\n dim = find(size(L)>1,1,'first');\n end\n \n %% process\n \n % half-wave rectify\n L_l = hwr(L);\n R_l = hwr(R);\n\n % filter\n cutofffreq=800;\n [b,a] = butter(1,cutofffreq*2/fs);\n L_l = filter(b,a,L_l,[],dim);\n R_l = filter(b,a,R_l,[],dim);\n\n % inhibition parameter\n if nargin < 4\n c_inh = .3;\n else\n assert(isscalar(c_inh) & isnumeric(c_inh), 'iosr:lindemannInh:invalidCinh', 'c_inh must be a scalar');\n assert(c_inh>=0 || c_inh<=1, 'iosr:lindemannInh:invalidX', 'c_inh must be in the interval (0,1].')\n end\n\n % gain\n c_gamma_L = calc_gamma(L,dim);\n c_gamma_R = calc_gamma(R,dim);\n c_gamma = max([c_gamma_L(:); c_gamma_R(:)]);\n\n % apply parameters\n L_l = apply_gamma(L_l,c_inh,c_gamma);\n R_l = apply_gamma(R_l,c_inh,c_gamma);\n\n % restrict range\n L_l = clip(L_l);\n R_l = clip(R_l);\n\nend\n\nfunction y = hwr(x)\n%HWR half-wave rectify\n\n y = max(x,0);\n \nend\n\nfunction gamma = calc_gamma(x,dim)\n%CALC_GAMMA calculate the gamma\n\n gamma = sqrt(2).*iosr.dsp.rms(x,dim);\n \nend\n\nfunction y = apply_gamma(x,c_inh,c_gamma)\n%APPLY_GAMMA apply gamma to achieve inhibition parameter\n\n y = (c_inh/c_gamma).*x;\n \nend\n\nfunction y = clip(x)\n%CLIP clip input data to [0,1] interval\n\n y = x;\n y(y<0) = 0;\n y(y>1) = 1;\n\nend\n", "meta": {"author": "IoSR-Surrey", "repo": "MatlabToolbox", "sha": "4bff1bb2da7c95de0ce2713e7c710a0afa70c705", "save_path": "github-repos/MATLAB/IoSR-Surrey-MatlabToolbox", "path": "github-repos/MATLAB/IoSR-Surrey-MatlabToolbox/MatlabToolbox-4bff1bb2da7c95de0ce2713e7c710a0afa70c705/+iosr/+auditory/lindemannInh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442250928250375, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3695780252928127}} {"text": "function [passed_clusters] = plot(this,p_skip,cl,cluster_draw_thresh,only_cluster)\n\n% plotDatabase(this,p_skip,cl,cluster_draw_thresh,only_cluster)\n%\n% this is pathway database\n% 'cl' is vector with clustered path labels\n\nif ~exist('p_skip','var')\n p_skip=1;\nend\nif ~exist('only_cluster','var')\n only_cluster = 0;\nend\nif ~exist('cluster_draw_thresh','var')\n cluster_draw_thresh = 0;\nend\n\nif exist('cl','var')\n cluster_sizes = hist(cl,[1:max(cl)]);\n npaths = sum(cluster_sizes);\n if (cluster_draw_thresh == 0)\n cluster_draw_thresh = floor(0.05*npaths);\n end\n n = sum(cluster_sizes > cluster_draw_thresh);\n passed_clusters = find(cluster_sizes > cluster_draw_thresh);\nelse\n passed_clusters = 0;\nend\n\nhold off;\n\nif exist('cl','var')\n % Iterate over all clusters\n for c = 1:length(passed_clusters)\n ci = find( cl == passed_clusters(c) );\n % Iterate over all paths in clusters\n for i = 1:length(ci)\n p = ci(i);\n npts = length(this.pathways(p).xpos(1:p_skip:end));\n % Maybe I am supposed to only draw one particular cluster out of\n % the ones that passed\n if ( only_cluster == 0 || cl(p) == only_cluster)\n label = ones(1,npts)*c;\n tubeplot(this.pathways(p).xpos(1:p_skip:end),this.pathways(p).ypos(1:p_skip:end),this.pathways(p).zpos(1:p_skip:end),0.5,label);\n hold on;\n end\n end\n end\n colormap( jet );\n caxis( [1 length(passed_clusters)+1] );\nelse\n % Setting up rendering parameters\n for p = 1:length(this.pathways)\n% if p > 500\n% p \n% end\n if(rand > 0 && length(this.pathways(p).xpos) >= 10)\n %tubeplot(pd(p).xpos,pd(p).ypos,pd(p).zpos,0.5,pd(p).xpos,10);\n %tubeplot(pd(p).xpos,pd(p).ypos,pd(p).zpos,0.5,ones(length(pd(p\n %).xpos),1));\n tubeplot(this.pathways(p).xpos(1:p_skip:end),this.pathways(p).ypos(1:p_skip:end),this.pathways(p).zpos(1:p_skip:end),0.5);\n hold on;\n end\n end\n colormap(jet);\nend\n\naxis([0 73*2 0 98*2 0 66*2])\ndaspect([1 1 1])\n\nlighting phong;\nhidden off;\n%shading interp;\n\n%plot3(45,0,50,'ro','LineWidth',10);", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/fiber/tractography/contrack/metrotrac/@mtrPathwayDatabase/plot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3695694172023354}} {"text": "%GETNAME High level routine for finding names of datasets and classifiers\n% \n% NAME = getname(A,N)\n% \n% INPUT\n% A Dataset, mapping or cell array of datasets or mappings\n% N Number of characters in NAME (default: all)\n% \n% OUTPUT\n% NAME Dataset name or cell array of names\n% \n% DESCRIPTION\n% If N given, the return string has exactly N characters. This is done by\n% truncation or by padding with blanks. This is useful for display purposes.\n% SEE ALSO (PRTools Guide)\n% DATASETS, MAPPINGS\n\n% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com\n\nfunction name = getname(c,n)\n\n if nargin < 2, n = []; end\n if iscell(c)\n name = cell(1,numel(c));\n for j=1:numel(c)\n name{j} = getname(c{j},n);\n end\n elseif isa(c,'prdataset') || ismapping(c)\n % this will go to dataset or mapping getname\n name = getname(c,n);\n else\n error('Illegal data type')\n end\n\nreturn", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/getname.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5583270090337583, "lm_q2_score": 0.661922862511608, "lm_q1q2_score": 0.36956941203716975}} {"text": "function testFliplrMatrix\n%testFliplrMatrix Unit test for fliplr with matrix input\n\nin = magic(3);\nassertEqual(fliplr(in), in(:, [3 2 1]));\n", "meta": {"author": "ricedsp", "repo": "D-AMP_Toolbox", "sha": "6e597d98c84755697b65554d59485d50a549c01a", "save_path": "github-repos/MATLAB/ricedsp-D-AMP_Toolbox", "path": "github-repos/MATLAB/ricedsp-D-AMP_Toolbox/D-AMP_Toolbox-6e597d98c84755697b65554d59485d50a549c01a/Packages/rwt/tests/matlab_xunit/doc/example_quick_start/testFliplrMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.6757646075489392, "lm_q1q2_score": 0.36946629270791487}} {"text": "function out=sparseconv(x,f)\n\n% SPARSECONV Speedy convolution of sparse vectors\n%\n% OUT = SPARSECONV(X, F) computes the convolution of the \n% (sparse) input vectors X and F. \n%\n% Gert Cuypers 4/10/2001\n% Esat Sista KULeuven\n\n\n[rij,kol]=size(x);\nif kol>1\n x=x.';\nend\n[rij,kol]=size(x);\nif kol>1\n error('x moet vector zijn')\nend\n\n[rij,kol]=size(f);\nif kol>1\n f=f.';\nend\n\n[rij,kol]=size(f);\nif kol>1\n error('f moet vector zijn');\nend\nxs=sparse(x);\n[xrow, xcol, xval]=find(xs);\nnietnulx=length(xrow);\nfs=sparse(f);\n[frow, fcol, fval]=find(fs);\nnietnulf=length(frow);\nxpos=zeros(nietnulf*nietnulx,1);\nypos=zeros(nietnulf*nietnulx,1);\nelementen=zeros(nietnulf*nietnulx,1);\ndummy=(frow)*ones(1,nietnulx);\nypos(:)=dummy;\nxpos(:)=dummy+ones(nietnulf,1)*xrow.'-1;\nelementen(:)=ones(nietnulf,1)*xval.';\nout=full(sparse(xpos,ypos,elementen,length(x)+length(f)-1,length(f))*fs); ", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/865-sparseconv/sparseconv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.36946628913777396}} {"text": "function forwardReversibleFigures2(model,directions)\n% Figures of different classes of reactions: qualitatively forward -> quantitatively reversible\n%\n%INPUT\n%model.DrGt0\n\n%model.S\n%\n% directions subsets of qualtiatively forward -> quantiatively reversible \n% .forwardReversible\n% .forwardReversible_bydGt0\n% .forwardReversible_bydGt0LHS\n% .forwardReversible_bydGt0Mid\n% .forwardReversible_bydGt0RHS\n% .forwardReversible_byConc_zero_fixed_DrG0\n% .forwardReversible_byConc_negative_fixed_DrG0\n% .forwardReversible_byConc_positive_fixed_DrG0\n% .forwardReversible_byConc_negative_uncertain_DrG0\n% .forwardReversible_byConc_positive_uncertain_DrG0\n\n% thorStandard\n\n\n[nMet,nRxn]=size(model.S);\n\n% if ~isfield(model,'DrGt0Mean')\n% model.DrGt0Mean=(model.DrGt0Min+model.DrGt0Max)/2;\n% end\n% if ~isfield(model,'DrGtMean')\n% model.DrGtMean=(model.DrGtMin+model.DrGtMax)/2;\n% end\n\ndirections=model.directions;\n\n% close all\nfigureMaster=1;\nfigure1=1;\nfigure2=1;\nfigure345=1;\nfigure6=1;\nfigure7=1;\n\nif figureMaster\n% %make the master plot of all 7 regions, 2, 4,6 are shaded\n% X1=1:nRxn;%nnz(directions.forwardReversible);\n% %dGrt0\n% Y0=(model.dGt0Min+model.dGt0Max)/2;\n% L0=Y0-model.dGt0Min;\n% U0=model.dGt0Max-Y0;\n% %dGrt\n% Y=(model.dGtMin+model.dGtMax)/2;\n% L=Y-model.dGtMin;\n% U=model.dGtMax-Y;\n% %find the amount of reactions with normal cumulative distribution over\n% %range of dGt0\n% P = normcdf(0,Y0,L0);\n\n %Y0=model.DrGt0; %model.DrGt0 = model.DrGt0 + delta_pH + delta_chi;\n Y0=(model.DrGt0Min+model.DrGt0Max)/2;%old vonB11\n L0=Y0-model.DrGt0Min;\n U0=model.DrGt0Max-Y0;\n\n Y=model.DrGtMean; %model.DrGtMean=(model.DrGtMax+model.DrGtMin)/2;\n L=Y-model.DrGtMin;\n U=model.DrGtMax-Y;\n \n P=directions.forwardProbability;\n %sort by probability that a reaction is forward (puts any NaN first)\n [tmp,xip]=sort(P,'descend');\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(directions.forwardReversible),1);\n p=1;\n for n=1:nRxn\n if directions.forwardReversible(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n %replace the NaN due to zero st dev\n %NaNpLHS=nnz(directions.forwardReversible_byConc_negative_uncertain_DrG0);\n %nNaNpRHS=nnz(directions.forwardReversible_byConc_positive_uncertain_DrG0);\n nNaNpLHS=nnz(isnan(directions.forwardReversible_byConc_negative_uncertain_DrG0));\n nNaNpRHS=nnz(isnan(directions.forwardReversible_byConc_positive_uncertain_DrG0));\n if (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(directions.forwardReversible))))\n warning('A:B','Extra category of NaN P(Delta_{r}G^{primem}<0) not taken into account');\n %nans are first in the ordering of indexes\n NaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n %sorts indices of the zero std dev met by their mean dG0t\n [tmp,xipNaNPInd]=sort(model.DrGt0Mean(NaNPInd));\n %new ordering\n xip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n end\n \n figure1 = figure('PaperSize',[11 8.5],'PaperOrientation','landscape');\n % Create axes\n axes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\n hold on;\n %upper and lower Y\n minY=min(model.DrGtMin(directions.forwardReversible));\n maxY=max(model.DrGtMax(directions.forwardReversible));\n %baselines\n PreversibleBar_byConcLHS=ones(1,nRxn)*minY;\n PreversibleBar_byConcRHS=ones(1,nRxn)*minY;\n PreversibleBar_bydGt0=ones(1,nRxn)*minY;\n %bar for 2 & 6\n PreversibleBar_byConcLHS(directions.forwardReversible_byConc_negative_uncertain_DrG0)=maxY;\n PreversibleBar_byConcRHS(directions.forwardReversible_byConc_positive_uncertain_DrG0)=maxY;\n %bar for 4\n PreversibleBar_bydGt0(directions.forwardReversible_bydGt0Mid)=maxY;\n bar_handle4=bar(X1,PreversibleBar_bydGt0(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n bar_handle2=bar(X1,PreversibleBar_byConcLHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n bar_handle6=bar(X1,PreversibleBar_byConcRHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n \n %dGrt errorbar\n hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n if 0\n % adjust error bar width\n %hE_c=get(hE, 'Children'); % deprecated since 2014b\n %errorbarXData= get(hE_c(2), 'XData');\n errorbarXData=get(hE, 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n %set(hE_c(2), 'XData', errorbarXData);\n set(hE, 'XData', errorbarXData);\n end\n %dGrt0 errorbar on top and inside dGrt\n hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n if 0\n % adjust error bar width\n %hE_c=get(hE2, 'Children');\n %errorbarXData= get(hE_c(2), 'XData');\n errorbarXData= get(hE2, 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n %set(hE_c(2), 'XData', errorbarXData);\n set(hE2, 'XData', errorbarXData);\n end\n \n %mean dGrt0\n plot(X1,Y0(xip),'.','LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n %zero line\n %cumulative probability that reaction is really forward, assuming a\n %normal distribution about the mean dGt0\n [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xip));\n set(AX(1),'YTickMode','manual','YTick',floor(minY/100)*200:100:maxY);%,'TickDirMode','manual','TickDir','out');\n set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n set(H1,'LineStyle','none')\n set(H2,'LineStyle','-','LineWidth',2,'Color','k')\n plot(X1,zeros(1,length(X1)),'w','LineWidth',2,'LineStyle','--');\n %axis limits\n % axis(AX(1),[0 length(X1) minY maxY])\n axis(AX(1),[0 length(X1) -500 500]);\n set(AX(1),'FontSize',16)\n set(AX(2),'FontSize',16,'YColor','k')\n axis(AX(2),[0 length(X1) 0 1])\n title('Qualitatively forward, but quantitatively reversible using group contribution estimates of \\Delta_{r}G^{\\primem}.','FontSize',16)\n set(get(AX(1),'Ylabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\n set(get(AX(2),'Ylabel'),'String','P(\\Delta_{r}G^{\\primem}<0)')\n set(get(AX(1),'Ylabel'),'FontSize',16)\n set(get(AX(2),'Ylabel'),'FontSize',16)\n xlabel('Reactions, sorted by \\Delta_{r}G^{\\primem} or P(\\Delta_{r}G^{\\primem}<0)');\n saveas(figure1 ,'fwdReversible','fig');\nend\n\n%qualitatively forward reactions that are quantitatively\n%reversible by concentration alone (no dGt0 error)\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS),' qualitatively forward reactions that are GC quantitatively forward by dGr0t, but reversible by concentration alone (No error in GC dGr0t).');\n%if figure1 && any(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS)\nif ishandle(figure1) && any(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS)\n\n %make the master plot of all 7 regions, 2, 4,6 are shaded\n X1=1:nRxn;%nnz(directions.forwardReversible);\n %dGrt0\n Y0=(model.dGt0Min+model.dGt0Max)/2;\n L0=Y0-model.dGt0Min;\n U0=model.dGt0Max-Y0;\n %dGrt\n Y=(model.dGtMin+model.dGtMax)/2;\n L=Y-model.dGtMin;\n U=model.dGtMax-Y;\n %find the amount of reactions with normal cumulative distribution over\n %range of dGt0\n P = normcdf(0,Y0,L0);\n %sort by probability that a reaction is forward (puts any NaN first)\n [tmp,xip]=sort(P,'descend');\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(directions.forwardReversible),1);\n p=1;\n for n=1:nRxn\n if directions.forwardReversible(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n %replace the NaN due to zero st dev\n nNaNpLHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS);\n nNaNpRHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS);\n if (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(directions.forwardReversible))))\n warning('ExtraCategory');\n end\n %nans are first in the ordering of indexes\n NaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n %sorts indices of the zero std dev met by their mean dG0t\n [tmp,xipNaNPInd]=sort(Y0(NaNPInd));\n %new ordering\n xip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n % xip=xip(nNaNpLHS+nNaNpRHS+1:end);\n \n %reactions that cannot be assigned directionality\n %cuttoff for probabilities: must be reflective about 0.5;\n% dGfGCforwardReversibleBool_bydGt0Mid=P<0.6 & P>0.4 & directions.forwardReversible;\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS),1);\n p=1;\n for n=1:length(xip)\n if dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n figure1 = figure('PaperSize',[11 8.5],'PaperOrientation','landscape');\n % Create axes\n axes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\n hold on;\n %upper and lower Y\n minY=min(model.dGtMin(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS));\n maxY=max(model.dGtMax(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS));\n %baselines\n PreversibleBar_byConcLHS=ones(1,nRxn)*minY;\n PreversibleBar_byConcRHS=ones(1,nRxn)*minY;\n PreversibleBar_bydGt0=ones(1,nRxn)*minY;\n %bar for 2 & 6\n PreversibleBar_byConcLHS(dGfGCforwardReversibleBool_byConcLHS)=maxY;\n bar_handle2=bar(X1,PreversibleBar_byConcLHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n \n %dGrt errorbar\n hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',9,'DisplayName','forwardReversible','Color','r');\n % adjust error bar width\n hE_c=get(hE, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n %dGrt0 errorbar on top and inside dGrt\n hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',9,'DisplayName','forwardReversible','Color','b');\n % adjust error bar width\n hE_c=get(hE2, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n \n %mean dGrt0\n plot(X1,Y0(xip),'.','MarkerSize',20,'LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n %zero line\n %cumulative probability that reaction is really forward, assuming a\n %normal distribution about the mean dGt0\n [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xip));\n set(AX(1),'YTickMode','manual','YTick',floor(minY/100)*200:20:maxY);%,'TickDirMode','manual','TickDir','out');\n set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n set(H1,'LineStyle','none')\n set(H2,'LineStyle','-','LineWidth',2,'Color','k')\n plot(X1,zeros(1,length(X1)),'w','LineWidth',2,'LineStyle','--');\n %axis limits\n% axis(AX(1),[0 length(X1) minY maxY])\n axis(AX(1),[0 length(X1) -200 200]);\n set(AX(1),'FontSize',16)\n set(AX(2),'FontSize',16,'YColor','k')\n axis(AX(2),[0 length(X1) 0 1])\n title({'Qualitatively forward, but quantitatively reversible. Exact negative \\Delta_{r}G^{\\primem},';...\n 'but with a quantitatively reversible concentration range.'},'FontSize',16)\n set(get(AX(1),'Ylabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\n set(get(AX(2),'Ylabel'),'String','P(\\Delta_{r}G^{\\primem}<0)')\n set(get(AX(1),'Ylabel'),'FontSize',16)\n set(get(AX(2),'Ylabel'),'FontSize',16)\n xlabel('Reactions, sorted by P(\\Delta_{r}G^{\\primem}<0)');\nend\n\n%qualitatively reverse reactions that are quantitatively\n%reversible by concentration alone (no dGt0 error)\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS),' qualitatively forward reactions that are GC quantitatively reverse by dGr0t, but reversible by concentration.(No error in GC dGr0t).');\nif figure7 && any(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS)\n X1=1:nRxn;\n %dGrt0\n Y0=(model.dGt0Min+model.dGt0Max)/2;\n L0=Y0-model.dGt0Min;\n U0=model.dGt0Max-Y0;\n %dGrt\n Y=(model.dGtMin+model.dGtMax)/2;\n L=Y-model.dGtMin;\n U=model.dGtMax-Y;\n %find the amount of reactions with normal cumulative distribution over\n %range of dGt0\n P = normcdf(0,Y0,L0);\n %sort by probability that a reaction is forward (puts any NaN first)\n [tmp,xip]=sort(P,'descend');\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(directions.forwardReversible),1);\n p=1;\n for n=1:nRxn\n if directions.forwardReversible(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n %replace the NaN due to zero st dev\n nNaNpLHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS);\n nNaNpRHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS);\n if (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(directions.forwardReversible))))\n warning('ExtraCategory');\n end\n %nans are first in the ordering of indexes\n NaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n %sorts indices of the zero std dev met by their mean dG0t\n [tmp,xipNaNPInd]=sort(Y0(NaNPInd));\n %new ordering\n xip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n % xip=xip(nNaNpLHS+nNaNpRHS+1:end);\n \n %reactions that cannot be assigned directionality\n %cuttoff for probabilities: must be reflective about 0.5;\n% dGfGCforwardReversibleBool_bydGt0Mid=P<0.6 & P>0.4 & directions.forwardReversible;\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS),1);\n p=1;\n for n=1:length(xip)\n if dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n figure1 = figure('PaperSize',[11 8.5],'PaperOrientation','landscape');\n % Create axes\n axes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\n hold on;\n %upper and lower Y\n minY=min(model.dGtMin(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS));\n maxY=max(model.dGtMax(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS));\n %baselines\n PreversibleBar_byConcLHS=ones(1,nRxn)*minY;\n PreversibleBar_byConcRHS=ones(1,nRxn)*minY;\n PreversibleBar_bydGt0=ones(1,nRxn)*minY;\n %bar for 2 & 6\n PreversibleBar_byConcLHS(dGfGCforwardReversibleBool_byConcLHS)=maxY;\n bar_handle2=bar(X1,PreversibleBar_byConcLHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n \n %dGrt errorbar\n hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',16,'DisplayName','forwardReversible','Color','r');\n % adjust error bar width\n hE_c=get(hE, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n %dGrt0 errorbar on top and inside dGrt\n hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',16,'DisplayName','forwardReversible','Color','b');\n % adjust error bar width\n hE_c=get(hE2, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n \n %mean dGrt0\n plot(X1,Y0(xip),'.','MarkerSize',24,'LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n %zero line\n %cumulative probability that reaction is really forward, assuming a\n %normal distribution about the mean dGt0\n [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xip));\n set(AX(1),'YTickMode','manual','YTick',floor(minY/100)*200:20:maxY);%,'TickDirMode','manual','TickDir','out');\n set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n set(H1,'LineStyle','none')\n set(H2,'LineStyle','-','LineWidth',2,'Color','k')\n plot(X1,zeros(1,length(X1)),'w','LineWidth',2,'LineStyle','--');\n %axis limits\n axis(AX(1),[0 (length(X1)+1) minY maxY])\n% axis(AX(1),[0 length(X1) -500 500]);\n set(AX(1),'FontSize',16)\n set(AX(2),'FontSize',16,'YColor','k')\n axis(AX(2),[0 (length(X1)+1) 0 1])\n title({'Qualitatively forward, but quantitatively reversible. Exact positive \\Delta_{r}G^{\\primem},';...\n 'but with a quantitatively reversible concentration range.'},'FontSize',16)\n set(get(AX(1),'Ylabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\n set(get(AX(2),'Ylabel'),'String','P(\\Delta_{r}G^{\\primem}<0)')\n set(get(AX(1),'Ylabel'),'FontSize',16)\n set(get(AX(2),'Ylabel'),'FontSize',16)\n xlabel('Reactions, sorted by P(\\Delta_{r}G^{\\primem}<0)');\nend\n\n%qualitatively reverse reactions that are quantitatively\n%reversible by concentration alone (with dGt0 error)\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_byConcLHS),' qualitatively forward reactions that are GC quantitatively reverse by dGr0t, but reversible by concentration.');\nif figure2 && any(dGfGCforwardReversibleBool_byConcLHS)\n %make the master plot of all 7 regions, 2, 4,6 are shaded\n X1=1:nRxn;%nnz(directions.forwardReversible);\n %dGrt0\n Y0=(model.dGt0Min+model.dGt0Max)/2;\n L0=Y0-model.dGt0Min;\n U0=model.dGt0Max-Y0;\n %dGrt\n Y=(model.dGtMin+model.dGtMax)/2;\n L=Y-model.dGtMin;\n U=model.dGtMax-Y;\n %find the amount of reactions with normal cumulative distribution over\n %range of dGt0\n P = normcdf(0,Y0,L0);\n %sort by probability that a reaction is forward (puts any NaN first)\n [tmp,xip]=sort(P,'descend');\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(directions.forwardReversible),1);\n p=1;\n for n=1:nRxn\n if directions.forwardReversible(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n %replace the NaN due to zero st dev\n nNaNpLHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS);\n nNaNpRHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS);\n if (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(directions.forwardReversible))))\n warning('ExtraCategory');\n end\n %nans are first in the ordering of indexes\n NaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n %sorts indices of the zero std dev met by their mean dG0t\n [tmp,xipNaNPInd]=sort(Y0(NaNPInd));\n %new ordering\n xip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n % xip=xip(nNaNpLHS+nNaNpRHS+1:end);\n \n %reactions that cannot be assigned directionality\n %cuttoff for probabilities: must be reflective about 0.5;\n% dGfGCforwardReversibleBool_bydGt0Mid=P<0.6 & P>0.4 & directions.forwardReversible;\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(dGfGCforwardReversibleBool_byConcLHS),1);\n p=1;\n for n=1:length(xip)\n if dGfGCforwardReversibleBool_byConcLHS(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n figure1 = figure('PaperSize',[11 8.5],'PaperOrientation','landscape');\n % Create axes\n axes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\n hold on;\n %upper and lower Y\n minY=min(model.dGtMin(dGfGCforwardReversibleBool_byConcLHS));\n maxY=max(model.dGtMax(dGfGCforwardReversibleBool_byConcLHS));\n %baselines\n PreversibleBar_byConcLHS=ones(1,nRxn)*minY;\n PreversibleBar_byConcRHS=ones(1,nRxn)*minY;\n PreversibleBar_bydGt0=ones(1,nRxn)*minY;\n %bar for 2 & 6\n PreversibleBar_byConcLHS(dGfGCforwardReversibleBool_byConcLHS)=maxY;\n PreversibleBar_byConcRHS(dGfGCforwardReversibleBool_byConcRHS)=maxY;\n %bar for 4\n PreversibleBar_bydGt0(dGfGCforwardReversibleBool_bydGt0Mid)=maxY;\n bar_handle2=bar(X1,PreversibleBar_byConcLHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n% bar_handle4=bar(X1,PreversibleBar_bydGt0(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n% bar_handle6=bar(X1,PreversibleBar_byConcRHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n% \n %dGrt errorbar\n hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',4.5,'DisplayName','forwardReversible','Color','r');\n % adjust error bar width\n hE_c=get(hE, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n %dGrt0 errorbar on top and inside dGrt\n hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',4.5,'DisplayName','forwardReversible','Color','b');\n % adjust error bar width\n hE_c=get(hE2, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n \n %mean dGrt0\n plot(X1,Y0(xip),'.','MarkerSize',9,'LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n %zero line\n %cumulative probability that reaction is really forward, assuming a\n %normal distribution about the mean dGt0\n [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xip));\n set(AX(1),'YTickMode','manual','YTick',floor(minY/100)*200:50:maxY);%,'TickDirMode','manual','TickDir','out');\n set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n set(H1,'LineStyle','none');\n set(H2,'LineStyle','-','LineWidth',2,'Color','k');\n plot(X1,zeros(1,length(X1)),'w','LineWidth',2,'LineStyle','--');\n %axis limits\n if length(X1)~=1\n axis(AX(1),[1 length(X1) minY maxY])\n else\n axis(AX(1),[1-0.5 length(X1)+0.5 minY maxY])\n end\n% axis(AX(1),[1 length(X1) -500 500]);\n set(AX(1),'FontSize',16)\n set(AX(2),'FontSize',16,'YColor','k')\n if length(X1)~=1\n axis(AX(2),[1 length(X1) 0 1])\n else\n axis(AX(2),[1-0.5 length(X1)+0.5 0 1])\n end\n title({'Qualitatively forward, but quantitatively reversible. Negative group contribution \\Delta_{r}G^{\\primem} estimate,';...\n 'even with uncertainty, but with a quantitatively reversible concentration range.'},'FontSize',16)\n set(get(AX(1),'Ylabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\n set(get(AX(2),'Ylabel'),'String','P(\\Delta_{r}G^{\\primem}<0)')\n set(get(AX(1),'Ylabel'),'FontSize',16)\n set(get(AX(2),'Ylabel'),'FontSize',16)\n xlabel('Reactions, sorted by P(\\Delta_{r}G^{\\primem}<0)');\nend\n\n%qualitatively reverse reactions that are quantitatively\n%reversible by concentration alone (with dGt0 error)\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_byConcRHS),' qualitatively forward reactions that are GC quantitatively reverse by dGr0t, but reversible by concentration.');\nif figure6 && any(dGfGCforwardReversibleBool_byConcRHS)\n %make the master plot of all 7 regions, 2, 4,6 are shaded\n X1=1:nRxn;%nnz(directions.forwardReversible);\n %dGrt0\n Y0=(model.dGt0Min+model.dGt0Max)/2;\n L0=Y0-model.dGt0Min;\n U0=model.dGt0Max-Y0;\n %dGrt\n Y=(model.dGtMin+model.dGtMax)/2;\n L=Y-model.dGtMin;\n U=model.dGtMax-Y;\n %find the amount of reactions with normal cumulative distribution over\n %range of dGt0\n P = normcdf(0,Y0,L0);\n %sort by probability that a reaction is forward (puts any NaN first)\n [tmp,xip]=sort(P,'descend');\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(directions.forwardReversible),1);\n p=1;\n for n=1:nRxn\n if directions.forwardReversible(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n %replace the NaN due to zero st dev\n nNaNpLHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS);\n nNaNpRHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS);\n if (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(directions.forwardReversible))))\n warning('ExtraCategory');\n end\n %nans are first in the ordering of indexes\n NaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n %sorts indices of the zero std dev met by their mean dG0t\n [tmp,xipNaNPInd]=sort(Y0(NaNPInd));\n %new ordering\n xip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n % xip=xip(nNaNpLHS+nNaNpRHS+1:end);\n \n %reactions that cannot be assigned directionality\n %cuttoff for probabilities: must be reflective about 0.5;\n% dGfGCforwardReversibleBool_bydGt0Mid=P<0.6 & P>0.4 & directions.forwardReversible;\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(dGfGCforwardReversibleBool_byConcRHS),1);\n p=1;\n for n=1:length(xip)\n if dGfGCforwardReversibleBool_byConcRHS(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n figure1 = figure('PaperSize',[11 8.5],'PaperOrientation','landscape');\n % Create axes\n axes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\n hold on;\n %upper and lower Y\n minY=min(model.dGtMin(dGfGCforwardReversibleBool_byConcRHS));\n maxY=max(model.dGtMax(dGfGCforwardReversibleBool_byConcRHS));\n %baselines\n PreversibleBar_byConcLHS=ones(1,nRxn)*minY;\n PreversibleBar_byConcRHS=ones(1,nRxn)*minY;\n PreversibleBar_bydGt0=ones(1,nRxn)*minY;\n %bar for 2 & 6\n PreversibleBar_byConcLHS(dGfGCforwardReversibleBool_byConcLHS)=maxY;\n PreversibleBar_byConcRHS(dGfGCforwardReversibleBool_byConcRHS)=maxY;\n %bar for 4\n PreversibleBar_bydGt0(dGfGCforwardReversibleBool_bydGt0Mid)=maxY;\n% bar_handle2=bar(X1,PreversibleBar_byConcLHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n% bar_handle4=bar(X1,PreversibleBar_bydGt0(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n bar_handle6=bar(X1,PreversibleBar_byConcRHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n% \n %dGrt errorbar\n hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',10,'DisplayName','forwardReversible','Color','r');\n % adjust error bar width\n hE_c=get(hE, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n %dGrt0 errorbar on top and inside dGrt\n hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',10,'DisplayName','forwardReversible','Color','b');\n % adjust error bar width\n hE_c=get(hE2, 'Children');\n errorbarXData= get(hE_c(2), 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n set(hE_c(2), 'XData', errorbarXData);\n \n %mean dGrt0\n plot(X1,Y0(xip),'.','MarkerSize',16,'LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n %zero line\n %cumulative probability that reaction is really forward, assuming a\n %normal distribution about the mean dGt0\n [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xip));\n set(AX(1),'YTickMode','manual','YTick',floor(minY/100)*200:20:maxY);%,'TickDirMode','manual','TickDir','out');\n set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n set(H1,'LineStyle','none');\n set(H2,'LineStyle','-','LineWidth',2,'Color','k');\n plot(X1,zeros(1,length(X1)),'w','MarkerSize',10,'LineWidth',2,'LineStyle','--');\n %axis limits\n axis(AX(1),[0.48 (length(X1)+0.48) minY maxY])\n% axis(AX(1),[0.48 (length(X1)+0.48) -500 500]);\n set(AX(1),'FontSize',16)\n set(AX(2),'FontSize',16,'YColor','k')\n axis(AX(2),[0.48 (length(X1)+0.48) 0 1])\n title({'Qualitatively forward, but quantitatively reversible. Positive group contribution \\Delta_{r}G^{\\primem} estimate,';...\n 'even with uncertainty, but with a quantitatively reversible concentration range.'},'FontSize',16)\n set(get(AX(1),'Ylabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\n set(get(AX(2),'Ylabel'),'String','P(\\Delta_{r}G^{\\primem}<0)')\n set(get(AX(1),'Ylabel'),'FontSize',16)\n set(get(AX(2),'Ylabel'),'FontSize',16)\n xlabel('Reactions, sorted by P(\\Delta_{r}G^{\\primem}<0)');\nend\n\n\n%qualitatively forward reactions that are quantitatively reversible by\n%the range of dGt0\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_bydGt0),' qualitatively forward reactions that are GC quantitatively reversible by range of dGt0.');\nif figure345 && any(dGfGCforwardReversibleBool_bydGt0)\n %make the master plot of all 7 regions, 2, 4,6 are shaded\n X1=1:nRxn;%nnz(directions.forwardReversible);\n %dGrt0\n Y0=(model.dGt0Min+model.dGt0Max)/2;\n L0=Y0-model.dGt0Min;\n U0=model.dGt0Max-Y0;\n %dGrt\n Y=(model.dGtMin+model.dGtMax)/2;\n L=Y-model.dGtMin;\n U=model.dGtMax-Y;\n %find the amount of reactions with normal cumulative distribution over\n %range of dGt0\n P = normcdf(0,Y0,L0);\n %sort by probability that a reaction is forward (puts any NaN first)\n [tmp,xip]=sort(P,'descend');\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(directions.forwardReversible),1);\n p=1;\n for n=1:nRxn\n if directions.forwardReversible(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n %replace the NaN due to zero st dev\n nNaNpLHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorLHS);\n nNaNpRHS=nnz(dGfGCforwardReversibleBool_byConc_No_dGt0ErrorRHS);\n if (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(directions.forwardReversible))))\n warning('ExtraCategory');\n end\n %nans are first in the ordering of indexes\n NaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n %sorts indices of the zero std dev met by their mean dG0t\n [tmp,xipNaNPInd]=sort(Y0(NaNPInd));\n %new ordering\n xip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n % xip=xip(nNaNpLHS+nNaNpRHS+1:end);\n \n %reactions that cannot be assigned directionality\n %cuttoff for probabilities: must be reflective about 0.5;\n% dGfGCforwardReversibleBool_bydGt0Mid=P<0.6 & P>0.4 & directions.forwardReversible;\n \n % only take the indices of the problematic reactions, but be sure to\n % take them in order of descending P\n xip2=zeros(nnz(dGfGCforwardReversibleBool_bydGt0),1);% dGfGCforwardReversibleBool_byConcRHS),1);\n p=1;\n for n=1:length(xip)\n if dGfGCforwardReversibleBool_bydGt0(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\n end\n xip=xip2;\n X1=1:length(xip);\n \n figure1 = figure('PaperSize',[11 8.5],'PaperOrientation','landscape');\n % Create axes\n axes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\n hold on;\n %upper and lower Y\n minY=min(model.dGtMin(dGfGCforwardReversibleBool_bydGt0));\n maxY=max(model.dGtMax(dGfGCforwardReversibleBool_bydGt0));\n\n %baselines\n PreversibleBar_byConcLHS=ones(1,nRxn)*minY;\n PreversibleBar_byConcRHS=ones(1,nRxn)*minY;\n PreversibleBar_bydGt0=ones(1,nRxn)*minY;\n %bar for 2 & 6\n PreversibleBar_byConcLHS(dGfGCforwardReversibleBool_byConcLHS)=maxY;\n PreversibleBar_byConcRHS(dGfGCforwardReversibleBool_byConcRHS)=maxY;\n %bar for 4\n PreversibleBar_bydGt0(dGfGCforwardReversibleBool_bydGt0Mid)=maxY;\n bar_handle2=bar(X1,PreversibleBar_byConcLHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n bar_handle4=bar(X1,PreversibleBar_bydGt0(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n bar_handle6=bar(X1,PreversibleBar_byConcRHS(xip),1,'BaseValue',minY,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n \n %dGrt errorbar\n hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n % adjust error bar width\n %hE_c=get(hE, 'Children');\n %errorbarXData= get(hE_c(2), 'XData');\n errorbarXData= get(hE, 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n %set(hE_c(2), 'XData', errorbarXData);\n set(hE, 'XData', errorbarXData);\n %dGrt0 errorbar on top and inside dGrt\n hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n % adjust error bar width\n %hE_c=get(hE2, 'Children');\n %errorbarXData= get(hE_c(2), 'XData');\n errorbarXData= get(hE2, 'XData');\n errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0;\n errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0;\n errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0;\n %set(hE_c(2), 'XData', errorbarXData);\n set(hE2, 'XData', errorbarXData);\n \n %mean dGrt0\n plot(X1,Y0(xip),'.','MarkerSize',6,'LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n %zero line\n %cumulative probability that reaction is really forward, assuming a\n %normal distribution about the mean dGt0\n [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xip));\n set(AX(1),'YTickMode','manual','YTick',floor(minY/100)*200:100:maxY);%,'TickDirMode','manual','TickDir','out');\n set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n set(H1,'LineStyle','none')\n set(H2,'LineStyle','-','LineWidth',2,'Color','k')\n plot(X1,zeros(1,length(X1)),'w','LineWidth',2,'LineStyle','--');\n %axis limits\n % axis(AX(1),[0 length(X1) minY maxY])\n axis(AX(1),[0 length(X1) -500 500]);\n set(AX(1),'FontSize',16)\n set(AX(2),'FontSize',16,'YColor','k')\n axis(AX(2),[0 length(X1) 0 1])\n title({'Qualitatively forward, but quantitatively reversible. The group contribution ';\n '\\Delta_{r}G^{\\primem} estimates span the zero line.'},'FontSize',16)\n set(get(AX(1),'Ylabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\n set(get(AX(2),'Ylabel'),'String','P(\\Delta_{r}G^{\\primem}<0)')\n set(get(AX(1),'Ylabel'),'FontSize',16)\n set(get(AX(2),'Ylabel'),'FontSize',16)\n xlabel('Reactions, sorted by P(\\Delta_{r}G^{\\primem}<0)');\nend\n\nchangedDirections = directions;\n% old code\n% %reactions that are qualitatively forward but quantitatively reverse\n% X=1:nnz(changedDirections.forwardReversible);\n% Y=(model.dGt0Min(changedDirections.forwardReversible)+model.dGt0Max(changedDirections.forwardReversible))/2;\n% L=Y-model.dGt0Min(changedDirections.forwardReversible);\n% U=model.dGt0Max(changedDirections.forwardReversible)-Y;\n% [tmp,xi]=sort(Y);\n% [tmp,xi]=sort(model.dGt0Max(changedDirections.forwardReversible)-model.dGt0Min(changedDirections.forwardReversible));\n% errorbar(X,Y(xi),L(xi),U(xi),'b.')\n% title('All reactions that are qualitatively forward, yet quantitatively reversible');\n% ylabel('dGt0 (kJ/mol)')\n% xlabel('Reactions, sorted by uncertainty in dGt0')\n% \n% X=1:nnz(forwardReversibleKeq);\n% Y=(model.dGt0Min(forwardReversibleKeq)+model.dGt0Max(forwardReversibleKeq))/2;\n% L=Y-model.dGt0Min(forwardReversibleKeq);\n% U=model.dGt0Max(forwardReversibleKeq)-Y;\n% [tmp,xi]=sort(Y);\n% figure;\n% errorbar(X,Y(xi),L(xi),U(xi),'b.')\n% title('Reactions qualitiatively forward, but quantitatively reversible by Alberty');\n% ylabel('dGt0 (kJ/mol)')\n% xlabel('Reactions, sorted by mean dGt0')\n% % %GC forward prediction of reactions qualitiatively forward\n% % X1=1:nnz(dGfGCforwardForwardBool);\n% % Y=(model.dGt0Min(dGfGCforwardForwardBool)+model.dGt0Max(dGfGCforwardForwardBool))/2;\n% % L=Y-model.dGt0Min(dGfGCforwardForwardBool);\n% % U=model.dGt0Max(dGfGCforwardForwardBool)-Y;\n% % [tmp,xi]=sort(Y);\n% % figure;\n% % hold on\n% % errorbar(X1,Y(xi),L(xi),U(xi),'b.')\n% % legend('forwardForward')\n% % title('GC forward prediction of reactions qualitiatively forward')\n% % ylabel('dGt0 (kJ/mol)')\n% % xlabel('Reactions, sorted by mean dGt0')\n% %\n% % [tmp,xi]=sort(abs(model.dGt0Max(dGfGCforwardForwardBool)-model.dGt0Min(dGfGCforwardForwardBool)));\n% % figure;\n% % hold on\n% % errorbar(X1,Y(xi),L(xi),U(xi),'b.')\n% % legend('forwardForward')\n% % title('GC forward prediction of reactions qualitiatively forward')\n% % ylabel('dGt0 (kJ/mol)')\n% % xlabel('Reactions, sorted by uncertainty in dGt0')\n% %\n% % figure\n% % plot(Y(xi),L(xi),'.g')\n% % title('GC forward prediction of reactions qualitiatively forward')\n% % ylabel('dGt0 Uncertainty (kJ/mol)')\n% % xlabel('Reaction dGt0 (kJ/mol), sorted by uncertainty in dGt0')\n% \n% %GC reversible prediction of reactions qualitiatively forward by dGrt\n% %dGr0t\n% X1=1:nnz(directions.forwardReversible);\n% Y=(model.dGt0Min(directions.forwardReversible)+model.dGt0Max(directions.forwardReversible))/2;\n% L=Y-model.dGt0Min(directions.forwardReversible);\n% U=model.dGt0Max(directions.forwardReversible)-Y;\n% % [tmp,xi]=sort(Y);\n% % figure\n% % errorbar(X1,Y(xi),L(xi),U(xi),'r.')\n% % title('All GC reversible prediction of reactions qualitiatively forward')\n% % legend('forwardReversible')\n% % ylabel('dGt0 (kJ/mol)')\n% % xlabel('Reactions, sorted by mean dGt0')\n% %dGrt\n% Y2=(model.dGtMin(directions.forwardReversible)+model.dGtMax(directions.forwardReversible))/2;\n% L2=Y2-model.dGtMin(directions.forwardReversible);\n% U2=model.dGtMax(directions.forwardReversible)-Y2;\n% [tmp,xi]=sort(abs(model.dGt0Max(directions.forwardReversible)-model.dGt0Min(directions.forwardReversible)));\n% figure\n% hold on;\n% %dGrt errorbar\n% hE=errorbar(X1,Y2(xi),L2(xi),U2(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n% % adjust error bar width\n% % hE_c=get(hE, 'Children');\n% % errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE, 'XData');\n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE, 'XData', errorbarXData);\n% %dGrt0 errorbar on top and inside dGrt\n% hE2=errorbar(X1,Y(xi),L(xi),U(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n% % adjust error bar width\n% %hE_c=get(hE2, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE2, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE2, 'XData', errorbarXData);\n% %mean dGrt0\n% plot(X1,Y(xi),'.g','LineStyle','none');\n% %zero line\n% plot(X1,zeros(1,length(X1)),'k');\n% title('GC reversible prediction of reactions qualitiatively forward');\n% ylabel('dGt0 (kJ/mol)');\n% xlabel('Reactions, sorted by uncertainty in dGt0');\n% \n% %%%%%%%%\n% %qualitatively forward reactions that are quantitatively reversible by concentration alone\n% %dGrt0\n% Y=(model.dGt0Min(dGfGCforwardReversibleBool_byConc)+model.dGt0Max(dGfGCforwardReversibleBool_byConc))/2;\n% L=Y-model.dGt0Min(dGfGCforwardReversibleBool_byConc);\n% U=model.dGt0Max(dGfGCforwardReversibleBool_byConc)-Y;\n% %dGrt\n% Y2=(model.dGtMin(dGfGCforwardReversibleBool_byConc)+model.dGtMax(dGfGCforwardReversibleBool_byConc))/2;\n% L2=Y2-model.dGtMin(dGfGCforwardReversibleBool_byConc);\n% U2=model.dGtMax(dGfGCforwardReversibleBool_byConc)-Y2;\n% [tmp,xi]=sort(abs(model.dGt0Max(dGfGCforwardReversibleBool_byConc)-model.dGt0Min(dGfGCforwardReversibleBool_byConc)));\n% \n% figure\n% hold on;\n% %dGrt errorbar underneath\n% X1=1:nnz(dGfGCforwardReversibleBool_byConc);\n% hE=errorbar(X1,Y2(xi),L2(xi),U2(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n% % adjust error bar width\n% %hE_c=get(hE, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE, 'XData', errorbarXData);\n% \n% %dGrt0 errorbar on top and inside dGrt\n% hE2=errorbar(X1,Y(xi),L(xi),U(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n% % adjust error bar width\n% %hE_c=get(hE2, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE2, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE2, 'XData', errorbarXData);\n% \n% \n% %mean dGrt0\n% % plot(X1,Y(xi),'Marker','none','LineStyle','none');\n% plot(X1,Y(xi),'.g','LineStyle','none');\n% %zero line\n% plot(X1,zeros(1,length(X1)),'k');\n% title('Qualitatively forward reactions that are GC quantitatively reversible by concentration');\n% ylabel('dGt0 or dGt(kJ/mol)');\n% xlabel('Reactions, sorted by uncertainty in dGt0');\n% \n% \n% %qualitatively forward reactions that are quantitatively reversible by\n% %the range of dGt0\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_bydGt0),' qualitatively forward reactions that are gc quantitatively reversible by range of dGt0');\n% X1=1:nnz(dGfGCforwardReversibleBool_bydGt0);\n% %dGrt0\n% Y=(model.dGt0Min(dGfGCforwardReversibleBool_bydGt0)+model.dGt0Max(dGfGCforwardReversibleBool_bydGt0))/2;\n% L=Y-model.dGt0Min(dGfGCforwardReversibleBool_bydGt0);\n% U=model.dGt0Max(dGfGCforwardReversibleBool_bydGt0)-Y;\n% %dGrt\n% Y2=(model.dGtMin(dGfGCforwardReversibleBool_bydGt0)+model.dGtMax(dGfGCforwardReversibleBool_bydGt0))/2;\n% L2=Y2-model.dGtMin(dGfGCforwardReversibleBool_bydGt0);\n% U2=model.dGtMax(dGfGCforwardReversibleBool_bydGt0)-Y2;\n% [tmp,xi]=sort(abs(model.dGt0Max(dGfGCforwardReversibleBool_bydGt0)-model.dGt0Min(dGfGCforwardReversibleBool_bydGt0)));\n% \n% figure;\n% hold on;\n% %dGrt errorbar\n% hE=errorbar(X1,Y2(xi),L2(xi),U2(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n% % adjust error bar width\n% %hE_c=get(hE, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE, 'XData', errorbarXData);\n% \n% %dGrt0 errorbar on top and inside dGrt\n% hE2=errorbar(X1,Y(xi),L(xi),U(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n% % adjust error bar width\n% %hE_c=get(hE2, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE2, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE2, 'XData', errorbarXData);\n% \n% %mean dGrt0\n% % plot(X1,Y(xi),'Marker','none','LineStyle','none');\n% plot(X1,Y(xi),'.g','LineStyle','none');\n% %zero line\n% plot(X1,zeros(1,length(X1)),'k');\n% title('Qualitatively forward reactions that are GC quantitatively reversible by range of dGt0');\n% ylabel('dGt0 or dGt(kJ/mol)');\n% xlabel('Reactions, sorted by uncertainty in dGt0');\n% \n% %qualitatively forward reactions that are quantitatively reverseible by\n% %the range of dGt0\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_bydGt0),' qualitatively forward reactions that are gc quantitatively reversible by range of dGt0');\n% X1=1:nnz(dGfGCforwardReversibleBool_bydGt0);\n% %dGrt0\n% Y=(model.dGt0Min(dGfGCforwardReversibleBool_bydGt0)+model.dGt0Max(dGfGCforwardReversibleBool_bydGt0))/2;\n% L=Y-model.dGt0Min(dGfGCforwardReversibleBool_bydGt0);\n% U=model.dGt0Max(dGfGCforwardReversibleBool_bydGt0)-Y;\n% %dGrt\n% Y2=(model.dGtMin(dGfGCforwardReversibleBool_bydGt0)+model.dGtMax(dGfGCforwardReversibleBool_bydGt0))/2;\n% L2=Y2-model.dGtMin(dGfGCforwardReversibleBool_bydGt0);\n% U2=model.dGtMax(dGfGCforwardReversibleBool_bydGt0)-Y2;\n% %find the amount of reactions with normal cumulative distribution\n% P = normcdf(0,Y,L);\n% \n% %sort by fraction of uncertainty that is negative\n% % [tmp,xi]=sort(abs(model.dGt0Min(dGfGCforwardReversibleBool_bydGt0))./abs(model.dGt0Max(dGfGCforwardReversibleBool_bydGt0)-model.dGt0Min(dGfGCforwardReversibleBool_bydGt0)),'descend');\n% % [tmp,xi]=sort(Y);\n% [tmp,xi]=sort(P,'descend');\n% %cuttoff for probabilities: must be reflective about 0.5;\n% PSortedeversibleBool=tmp<0.6 & tmp>0.4;\n% %reversible section bar in the background\n% figure1=figure;\n% hold on;\n% xbar=1:length(PSortedeversibleBool);\n% PSortedeversibleBar=ones(1,length(PSortedeversibleBool))*min(model.dGtMin(dGfGCforwardReversibleBool_bydGt0));\n% PSortedeversibleBar(PSortedeversibleBool)=max(model.dGtMax(dGfGCforwardReversibleBool_bydGt0));\n% bar_handle=bar(xbar,PSortedeversibleBar,1,'BaseValue',min(model.dGtMin(dGfGCforwardReversibleBool_bydGt0)),'EdgeColor',[0.86 0.86 0.86]);\n% %dGrt errorbar\n% hE=errorbar(X1,Y2(xi),L2(xi),U2(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n% % adjust error bar width\n% %hE_c=get(hE, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE, 'XData', errorbarXData);\n% \n% %dGrt0 errorbar on top and inside dGrt\n% hE2=errorbar(X1,Y(xi),L(xi),U(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n% % adjust error bar width\n% %hE_c=get(hE2, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE2, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE2, 'XData', errorbarXData);\n% \n% \n% %mean dGrt0\n% % plot(X1,Y(xi),'Marker','none','LineStyle','none');\n% plot(X1,Y(xi),'.g','LineStyle','none');\n% %zero line\n% %cumulative probability that reaction is really forward, assuming a\n% %normal distribution about the mean dGt0\n% [AX,H1,H2]=plotyy(X1,zeros(1,length(X1)),X1,P(xi));\n% set(AX(2),'YTick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]);\n% set(H1,'LineStyle','none')\n% set(H2,'LineStyle','--','Color','k')\n% plot(X1,zeros(1,length(X1)),'k');\n% axis(AX(1),[0 length(X1) min(model.dGtMin(dGfGCforwardReversibleBool_bydGt0)) max(model.dGtMax(dGfGCforwardReversibleBool_bydGt0))])\n% axis(AX(2),[0 length(X1) 0 1])\n% title('Qualitatively forward reactions that are GC quantitatively reversible by range of dGt0');\n% ylabel('dGt0 or dGt(kJ/mol)');\n% xlabel('Reactions, sorted by cumulative probability of being forward');\n% \n% %qualitatively forward reactions that are quantitatively reverse by\n% %dGt0\n% fprintf('%i%s\\n',nnz(dGfGCforwardReversibleBool_byConcRHS),' qualitatively forward reactions that are GC quantitatively forward by dGf0');\n% X1=1:nnz(dGfGCforwardReversibleBool_byConcRHS);\n% %dGrt0\n% Y=(model.dGt0Min(dGfGCforwardReversibleBool_byConcRHS)+model.dGt0Max(dGfGCforwardReversibleBool_byConcRHS))/2;\n% L=Y-model.dGt0Min(dGfGCforwardReversibleBool_byConcRHS);\n% U=model.dGt0Max(dGfGCforwardReversibleBool_byConcRHS)-Y;\n% %dGrt\n% Y2=(model.dGtMin(dGfGCforwardReversibleBool_byConcRHS)+model.dGtMax(dGfGCforwardReversibleBool_byConcRHS))/2;\n% L2=Y2-model.dGtMin(dGfGCforwardReversibleBool_byConcRHS);\n% U2=model.dGtMax(dGfGCforwardReversibleBool_byConcRHS)-Y2;\n% [tmp,xi]=sort(abs(model.dGt0Max(dGfGCforwardReversibleBool_byConcRHS)-model.dGt0Min(dGfGCforwardReversibleBool_byConcRHS)));\n% \n% figure\n% hold on;\n% %dGrt errorbar\n% hE=errorbar(X1,Y2(xi),L2(xi),U2(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n% % adjust error bar width\n% %hE_c=get(hE, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE, 'XData', errorbarXData);\n% \n% %dGrt0 errorbar on top and inside dGrt\n% hE2=errorbar(X1,Y(xi),L(xi),U(xi),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n% % adjust error bar width\n% %hE_c=get(hE2, 'Children');\n% %errorbarXData= get(hE_c(2), 'XData');\n% errorbarXData= get(hE2, 'XData');\n% \n% errorbarXData(4:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(7:9:end) = errorbarXData(1:9:end) - 0.2;\n% errorbarXData(5:9:end) = errorbarXData(1:9:end) + 0.2;\n% errorbarXData(8:9:end) = errorbarXData(1:9:end) + 0.2;\n% %set(hE_c(2), 'XData', errorbarXData);\n% set(hE2, 'XData', errorbarXData);\n% %mean dGrt0\n% % plot(X1,Y(xi),'Marker','none','LineStyle','none');\n% plot(X1,Y(xi),'.g','LineStyle','none');\n% %zero line\n% plot(X1,zeros(1,length(X1)),'k');\n% title('Qualitatively forward reactions that are GC quantitatively forward by dGf0');\n% ylabel('dGt0 or dGt(kJ/mol)');\n% xlabel('Reactions, sorted by uncertainty in dGt0');\n ", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/thermo/directionalityReport/old/forwardReversibleFigures2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.36946628913777396}} {"text": "function [ y, j ] = j_borrow_islamic ( y, j )\n\n%*****************************************************************************80\n%\n%% J_BORROW_ISLAMIC borrows year-days from years in an Islamic date.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 June 2012\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input/output, integer Y, J, a YJ date.\n%\n while ( j <= 0 )\n\n y = y - 1;\n\n days = year_length_islamic ( y );\n\n j = j + days;\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/j_borrow_islamic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5467381519846138, "lm_q2_score": 0.6757646010190476, "lm_q1q2_score": 0.36946628913777396}} {"text": "function X = naninterp(X)\n% Interpolate over NaNs\n% See INTERP1 for more info\nX(isnan(X)) = interp1(find(~isnan(X)), X(~isnan(X)), find(isnan(X)),'cubic');\nreturn", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/8225-naninterp/naninterp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3694222455444816}} {"text": "clear all\ncbmex('open');\ncbmex('trialconfig',1,'absolute')\n \nsamplingFreq = 30000;\neventChannel = 1;\ncontChannel = 1;\nEventLFPs = [];\nEventLFPTotal = [];\ncontRange = -50:50;\npause(0.5);\n\nwhile size(EventLFPTotal,1) < 500\n [spikeData, procTime, contData] = cbmex('trialdata',1);\n %Example channel to choose for perievent marks\n continuousData = contData{contChannel,3};\n spikeTimes = spikeData{eventChannel,2}- procTime * samplingFreq;\n \n if ~isempty(spikeTimes)\n eventSpikes = bsxfun(@plus, contRange, double(spikeTimes(1:end-3)));\n EventLFPs = continuousData(eventSpikes);\n EventLFPTotal = [EventLFPTotal; EventLFPs];\n EventLFPTotal = reshape(EventLFPTotal, size(eventSpikes)); \n \n end\n% for i = 1:length(SpikeTimes)\n \n% \t try\n% EventLFPs(size(EventLFPs,1)+1,:) = ContinuousData(SpikeTimes(i):SpikeTimes(i)+100);\n% catch\n% end\n% end\n pause(0.5);\nend\ncbmex('close');\n\nplot(mean(EventLFPTotal,1));\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/npmk/Other tools/periEventPlot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3694222455444816}} {"text": "function plot_GridPointAnalyse(params,nMode,nPlot)\n% Example : plot_GridPointAnalyse(params,0,2)\n% function to analyse grid points and plots distribution of rate change\n% values\n%\n% Input\n% params : Input matrix with result\n% nMode : calculate gridpoint from synthetic PSQ (0) or ask for grid\n% point (1)\n% nPlot : plots Z (1), sigma(Z) (2), beta (3), sigma(beta) (4)\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n[vIn,vBnd] = inpoly(params.mPolygon,params.mPSQ);\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% controlling inpoly\nfigure;\nplot(params.mPolygon(:,1),params.mPolygon(:,2),'.');\nhold on;plot(params.mPSQ(:,1),params.mPSQ(:,2),'r')\nhold on;plot(params.mPolygon(vIn,1),params.mPolygon(vIn,2),'ro')\nhold on;plot(params.mPolygon(vBnd,1),params.mPolygon(vBnd,2),'ko')\n%%\n\n\nswitch nPlot\n case 1\n mPlot=squeeze(params.mResult1(:,1,:));\n case 2\n mPlot=calc_ProbColorbar2Value(squeeze(params.mResult2(:,1,:)));\n case 3\n mPlot=squeeze(params.mResult3(:,1,:));\n case 4\n mPlot=calc_ProbColorbar2Value(squeeze(params.mResult4(:,1,:)));\nend\n\nmPlot=mPlot(vIn,:);\nmPlot=reshape(mPlot,size(mPlot,1)*size(mPlot,2),1);\nfigure;\n[n,xout] = hist(mPlot(~isinf(mPlot)));\nplot(xout,n,'r');\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/thomas/plot/plot_GridPointAnalyse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850154599563, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3694222390660792}} {"text": "function handles = dtiAdjustDtiXform(handles, refPointName, newCoords, oldCoords)\n% handles = dtiAdjustDtiXform(handles, refPointName, newCoords, [oldCoords])\n%\n% TO DO:\n% Change all coordinate frame transforms so that they are with respect to\n% the origin (eg. image center or ac) so that rotations are easier to\n% understand!\n% \n% HISTORY:\n% 2004.03.12 RFD (bob@white.stanford.edu) wrote it.\n\nnewXform = handles.bg(1).mat;\nswitch(refPointName)\n case 'ac'\n % FIX THIS! It assumes that the anatomical scale factors are all 1.\n % If we assume that the anatomicals are bg(3), then we can apply\n % that xform to correct this. But maybe there are no anatomicals?\n %handles.bg(3).mat\n %newImgCoords=mrAnatXformCoords(inv(dtiGetStandardXform(handles,handles.bg(1).mat)),newCoords)\n [t,r,s,k] = affineDecompose(newXform);\n if(~exist('oldCoords','var')) oldCoords = t; end\n t = [oldCoords-newCoords];\n newXform = affineBuild(t,r,s,k);\n case 'pc'\n if(~exist('oldCoords','var')) oldCoords = [0 -23 0]; end\n % from the PC, we can compute rotation about Z- and X-axes and the\n % Y-axis scale.\n %[t,r,s,k] = affineDecompose(newXform);\n oldXform = dtiGetStandardXform(handles,handles.bg(1).mat);\n x = [inv(oldXform)*[0,0,0,1; [oldCoords,1]]']'...\n \\ [inv(oldXform)*[0,0,0,1; [newCoords,1]]']';\n % set zero scales to 1\n x([(xor(x,eye(4))).*eye(4)]>0) = 1;\n %newXform = newXform*inv(x);\n [t,r,s,k] = affineDecompose(newXform*inv(x));\n % FIX THIS\n% curAcPcDist = sqrt(sum(([0 0 0]-oldCoords).^2));\n% newAcPcDist = sqrt(sum(([0 0 0]-newCoords).^2));\n% scaleDiff = (curAcPcDist-newAcPcDist)./curAcPcDist\n% s(2) = s(2) + scaleDiff;\n% t(2) = t(2) + t(2) .* scaleDiff;\n newXform = affineBuild(t,r,s,k);\n case 'ppc'\n % FIX THIS! We aren't rotating about the proper origin.\n if(~exist('oldCoords','var')) oldCoords = [0 -102 0]; end\n x = [0,0,0,1; [oldCoords,1]] \\ [0,0,0,1; [newCoords,1]];\n x([1,11]) = 1;\n [t,r,s,k] = affineDecompose(inv(x)*newXform);\n newXform = affineBuild(t,r,s,k);\n case 'rot'\n [t,r,s,k] = affineDecompose(newXform);\n r = r+newCoords;\n newXform = affineBuild(t,r,s,k);\n case 'scale'\n [t,r,s,k] = affineDecompose(newXform);\n s = s.*newCoords;\n t = t.*newCoords;\n newXform = affineBuild(t,r,s,k);\n\n otherwise\n error('Unrecognized refpoint name!');\nend\n\n% FIX THIS!\nhandles.bg(1).mat = newXform;\nhandles.bg(2).mat = newXform;\nhandles.vec.mat = newXform;\n\nreturn;", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/xform/dtiAdjustDtiXform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7879311956428946, "lm_q2_score": 0.4687906266262437, "lm_q1q2_score": 0.369374758943798}} {"text": "function varargout = erfc(varargin)\n%ERFC (overloaded)\n\nswitch class(varargin{1})\n\n case 'double'\n error('Overloaded SDPVAR/ERFC CALLED WITH DOUBLE. Report error')\n\n case 'sdpvar'\n varargout{1} = InstantiateElementWise(mfilename,varargin{:});\n\n case 'char'\n\n operator = struct('convexity','none','monotonicity','decreasing','definiteness','positive','model','callback');\n operator.bounds = @bounds;\n operator.range = [0 2];\n operator.derivative =@(x)-exp(-x.^2)*2/sqrt(pi);\n operator.inverse = @(x)(erfcinv(x));\n \n varargout{1} = [];\n varargout{2} = operator;\n varargout{3} = varargin{3};\n\n otherwise\n error('SDPVAR/ERF called with CHAR argument?');\nend\n\nfunction [L,U] = bounds(xL,xU)\nL = erfc(xU);\nU = erfc(xL);", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/@sdpvar/erfc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.3693279829949047}} {"text": "% This is a test script which demonstrates the usage of the \"PhdTrackInitiatorX\" class.\n% =========================================================================>\n\n% Load the ground truth data\nload('multi-target-tracking-1.mat');\nGroundTruthStateSequence = GroundTruthStateSequence(~cellfun('isempty',GroundTruthStateSequence));\n\n% Plot settings\nShowPlots = 0; % Set to 0 to hide plots\nnumTrueTracks = 3;\n\n% Model parameter shortcuts\nlambdaV = 10; % Expected number of clutter measurements over entire surveillance region\nV = 5000^2; % Volume of surveillance region (10x10 2D-grid)\nV_bounds = [-2500 2500 -2500 2500]; % [x_min x_max y_min y_max]\nP_D = 0.9; % Probability of detection\ntimestep_duration = duration(0,0,1);\n\n%% Models\ntransition_model = ConstantVelocityX('VelocityErrVariance', 5^2,...\n 'NumDims', 2,...\n 'TimestepDuration', timestep_duration);\n% measurement_model = LinearGaussianX('NumMeasDims', 2,...\n% 'NumStateDims', 4,...\n% 'MeasurementErrVariance', 10^2,...\n% 'Mapping', [1 3]);\n% clutter_model = PoissonRateUniformPositionX('ClutterRate',lambdaV,...\n% 'Limits',[V_bounds(1:2);...\n% V_bounds(3:4)]);\nmeasurement_model = RangeBearing2CartesianX('NumStateDims', 4,...\n 'MeasurementErrVariance', [(pi/180)^2, 10^2],...\n 'Mapping', [1 3]);\nclutter_model = PoissonRateUniformPositionX('ClutterRate',lambdaV,...\n 'Limits',[[-pi, pi];...\n [0, 2500]]);\ndetection_model = ConstantDetectionProbabilityX('DetectionProbability',P_D);\n\nbirth_model = DistributionBasedBirthModelX('Distribution', UniformDistributionX([V_bounds(1:2); ...\n [-10 10 ];...\n V_bounds(3:4);...\n [-10 10 ]]),...\n 'BirthIntensity', 0.0001);\n\n% Compile the State-Space model\nmodel = StateSpaceModelX(transition_model, measurement_model,...\n 'Clutter',clutter_model,...\n 'Detection', detection_model,...\n 'Birth', birth_model);\n\n\n%% Simulate measurements, based on ground-truth\nmeas_simulator = MultiTargetMeasurementSimulatorX('Model',model);\nDataList = meas_simulator.simulate(GroundTruthStateSequence);\nN = numel(DataList);\n\n%% Base Filter\nobs_covar= measurement_model.covar();\nPriorState = GaussianStateX(zeros(4,1), transition_model.covar() + blkdiag(obs_covar(1,1), 0, obs_covar(2,2),0));\nbase_filter = UnscentedKalmanFilterX('Model', model, 'StatePrior', PriorState);\n% base_filter = ParticleFilterX('Model', model, 'StatePrior', PriorState);\n\n%% Data Associator\nconfig.ClutterModel = clutter_model;\nconfig.DetectionModel = detection_model;\nconfig.Clusterer = NaiveClustererX();\nconfig.Gater = EllipsoidalGaterX(2,'GateLevel',10)';\nconfig.DetectionProbability = P_D;\njpdaf = JointIntegratedProbabilisticDataAssocX(config);\n\n%% Track Initiator\n\n% Initiate Data Associator\nconfig_phd.Model = model;\n[priorParticles, priorWeights] = model.Birth.random(50000);\nconfig_phd.StatePrior = ParticleStateX(priorParticles,10*priorWeights);\nconfig_phd.BirthScheme = {'Expansion', 5000};\nconfig_phd.SurvivalProbability = 0.99;\n\n% Instantiate PHD filter\nmyphd = SMC_PHDFilterX(config_phd);\n\n% Initiate Tag Generator\ntag_gen = UuidTagGeneratorX();\n\n% Prepare initiator parameters\nconfig_ti.TagGenerator = tag_gen;\nconfig_ti.InitFilter = base_filter;\nconfig_ti.PhdFilter = myphd;\nconfig_ti.ConfirmThreshold = 0.8;\n\n% Create the track initiator\nmyti = PhdTrackInitiatorX(config_ti);\n\n%% Track Deleter\nconfig_td = struct('Fieldname', 'ExistenceProbability',...\n 'ReferenceValue', 0.1,...\n 'ReferenceOperand', 'lt');\nmytd = FieldBasedDeleterX(config_td);\n\n%% Metric Generators\nospa = OSPAX('CutOffThreshold',100,'Order',2);\ngospa = GOSPAX('CutOffThreshold',100,'Order',2);\n\n%% START OF SIMULATION\n% ===================>\n\n% Create figure windows\nif(ShowPlots)\n img = imread('maze.png');\n \n % set the range of the axes\n % The image will be stretched to this.\n min_x = 0;\n max_x = 10;\n min_y = 0;\n max_y = 10;\n\n % make data to plot - just a line.\n x = min_x:max_x;\n y = (6/8)*x;\n\n figure('units','normalized','outerposition',[0 0 .5 1])\n ax(1) = gca;\nend\n\nTrackList = [];\ngospa_vals= zeros(N,4);\ntimestamp_km1 = DataList(1).Timestamp;\nfor k=2:N\n fprintf('Iteration = %d/%d\\n================>\\n',k,N);\n \n %% Extract DataList at time k\n MeasurementList = DataList(k);\n if(MeasurementList.NumMeasurements == 0)\n continue;\n end\n timestamp_km1 = DataList(k-1).Timestamp;\n timestamp_k = MeasurementList.Timestamp;\n dt = timestamp_k - timestamp_km1;\n transition_model.TimestepDuration = dt;\n fprintf('Timestamp = %s\\n================>\\n',timestamp_k);\n \n %% Process JPDAF\n jpdaf.MeasurementList = MeasurementList;\n jpdaf.TrackList = TrackList;\n jpdaf.predictTracks();\n jpdaf.associate(TrackList, MeasurementList); \n jpdaf.updateTracks();\n \n %% Perform Track initiation\n [TrackList] = myti.initiateTracks(jpdaf.TrackList, MeasurementList, jpdaf.AssocWeightsMatrix);\n \n %% Perform Track deletion\n TrackList = mytd.deleteTracks(TrackList);\n \n %% Evaluate metric\n [gospa_vals(k,1), gospa_vals(k,2), gospa_vals(k,3), gospa_vals(k,4)]= ...\n gospa.evaluate(GroundTruthStateSequence{k},jpdaf.TrackList);\n %% Plot update step results\n if(ShowPlots)\n \n cla(ax(1));\n %imagesc(ax(1),[min_x max_x], [min_y max_y], flipud(img));\n hold on;\n if(exist('data_plot','var'))\n delete(data_plot);\n end\n data_inv = measurement_model.finv(MeasurementList.Vectors);\n data_plot = plot(ax(1), data_inv(1,:), data_inv(3,:),'k*','MarkerSize', 10);\n\n % Plot confirmed tracks\n for j=1:numel(TrackList)\n means = [TrackList{j}.Trajectory.Mean];\n h2 = plot(ax(1), means(1,:),means(3,:),'-','LineWidth',1);\n h2 = plotgaussellipse(TrackList{j}.Filter.StatePosterior.Mean([1 3]),... \n TrackList{j}.Filter.StatePosterior.Covar([1 3],[1 3]),...\n 'Color','r',...\n 'Axis',ax(1)); \n end\n \n % set the y-axis back to normal.\n set(ax(1),'ydir','normal');\n str = sprintf('Robot positions (Update)');\n title(ax(1),str)\n xlabel('X position (m)')\n ylabel('Y position (m)')\n axis(ax(1),V_bounds)\n pause(0.01)\n end\nend\nfigure\ntitle(\"GOSPA\");\nsubplot(2,3,[1 2 3]), plot(1:k,gospa_vals(1:k,1)), title(\"GOSPA Metric\");\nsubplot(2,3,4), plot(1:k,gospa_vals(1:k,2)), title(\"GOSPA Localisation\");\nsubplot(2,3,5), plot(1:k,gospa_vals(1:k,3)), title(\"GOSPA Missed\");\nsubplot(2,3,6), plot(1:k,gospa_vals(1:k,4)), title(\"GOSPA False\");", "meta": {"author": "sglvladi", "repo": "TrackingX", "sha": "f737445c070f0d7d470f52f8a2b5540d5bb682da", "save_path": "github-repos/MATLAB/sglvladi-TrackingX", "path": "github-repos/MATLAB/sglvladi-TrackingX/TrackingX-f737445c070f0d7d470f52f8a2b5540d5bb682da/Workspace/Thesis/TrackManagement/phd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8289388083214156, "lm_q2_score": 0.44552953503957277, "lm_q1q2_score": 0.36931672184769787}} {"text": "function [varargout]=faces2elementSideSets(varargin)\n% function [elementId,elementSides,elemSets,elemSetSides]=faces2elementSideSets(f,E)\n% ------------------------------------------------------------------------\n%\n% Kevin Mattheus Moerman\n% 2020/05/30 Created\n% ------------------------------------------------------------------------\n\n%%\n\nswitch nargin\n case 2\n f=varargin{1};\n E=varargin{2};\n reorderOpt=0;\n case 3\n f=varargin{1};\n E=varargin{2};\n reorderOpt=varargin{3};\nend\n%%\nlogicTouch=sum(ismember(E,f),2)==size(f,2);\nind=(1:1:size(E,1))';\n[Fs,C,CF]=element2patch(E(logicTouch,:),ind(logicTouch));\nlogicMember=isrowmember(Fs,f,reorderOpt);\nelementId=C(logicMember);\nelementSides=CF(logicMember);\nvarargout{1}=elementId;\nvarargout{2}=elementSides;\nif nargout>2\n setSideUni=unique(elementSides);\n numSets=numel(setSideUni);\n elemSets=cell(1,numSets);\n elemSetSides=zeros(1,numSets);\n for q=1:1:numSets\n sideType=setSideUni(q);\n logicNow=elementSides==sideType;\n indElem=unique(elementId(logicNow));\n elemSets{q}=indElem(:)';\n elemSetSides(q)=sideType;\n end\n varargout{3}=elemSets;\n varargout{4}=elemSetSides;\nend\n\nend\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/faces2elementSideSets.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6076631840431539, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3692545366064108}} {"text": "function b=isequal(f, g)\n%ISEQUAL Equality test for BALLFUNV. \n% ISEQUAL(F, G) returns 1 then F and G are the same\n% BALLFUNV and 0 otherwise.\n%\n% See also ISZERO.\n\n% Copyright 2019 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nb = iszero(f-g);\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@ballfunv/isequal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6076631698328916, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3692545279713577}} {"text": "function [posR, triR, keeppos] = remove_double_vertices(pos, tri)\n\n% REMOVE_DOUBLE_VERTICES removes double vertices from a triangular mesh\n% renumbering the vertex-indices for the triangles and removing all\n% triangles with one of the specified vertices.\n%\n% Use as\n% [pos, tri] = remove_double_vertices(pos, tri)\n\n[pos1,i1,i2] = unique(pos, 'rows');\n%keeppos = find(ismember(pos,pos1,'rows'));\n%removepos = setdiff([1:size(pos,1)],keeppos);\nkeeppos = i1;\nremovepos = setdiff(1:size(pos,1), keeppos);\n\nnpos = size(pos,1);\nntri = size(tri,1);\n\nif all(removepos==0 | removepos==1)\n removepos = find(removepos);\nend\n\n% remove the vertices and determine the new numbering (indices) in numb\nkeeppos = setdiff(1:npos, removepos);\nnumb = zeros(1,npos);\nnumb(keeppos) = 1:length(keeppos);\n\n% look for triangles referring to removed vertices\nremovetri = false(ntri,1);\nremovetri(ismember(tri(:,1), removepos)) = true;\nremovetri(ismember(tri(:,2), removepos)) = true;\nremovetri(ismember(tri(:,3), removepos)) = true;\n\n% remove the vertices and triangles\nposR = pos(keeppos, :);\ntriR = tri(~removetri,:);\n\n% renumber the vertex indices for the triangles\ntriR = numb(triR);\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/private/remove_double_vertices.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3692330362385316}} {"text": "function [params, names] = dnetExtractParam(model)\n\n% DNETEXTRACTPARAM Extract weights and biases from an DNET.\n% FORMAT\n% DESC returns a vector of all the parameters from a density network.\n% ARG model : the model from which we wish to extract the weights\n% and biases.\n% RETURN params : vector of all the weights and biases returned by\n% the model. The structure is governed by dnetpak.\n% RETURN names : optional additional returned cell array of the\n% names of the parameters.\n%\n% SEEALSO : dnetCreate, dnetExpandParam, modelExtractParam\n%\n% COPYRIGHT : Neil D. Lawrence, 2008\n\n% MLTOOLS\n\nif nargout > 1\n [params, names] = modelExtractParam(model.mapping);\n names{end+1} = 'Output Precision';\nelse\n params = modelExtractParam(model.mapping);\nend\nfunc = str2func([model.betaTransform 'Transform']);\nparams(end+1) = func(model.beta, 'xtoa');\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/dnetExtractParam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819732941511, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3692330362385316}} {"text": "function y = isPalindrome(inputWord)\n % Return 1 if input string is a palindrome; 0 otherwise. \n \n % Gets the length of the input word.\n inputLength = length(inputWord);\n\n % Number of pairs to compare.\n lastIndex = floor( inputLength / 2);\n y=1;\n % for every pair of letters in the word check if they match\n for i = 1 : lastIndex\n if inputWord(i) ~= inputWord(end + (1 - i))\n y = 0;\n end\n end\n \nend\n", "meta": {"author": "TheAlgorithms", "repo": "MATLAB-Octave", "sha": "e150b77ad256de46c1ce3815c3d7945ac4fc28dc", "save_path": "github-repos/MATLAB/TheAlgorithms-MATLAB-Octave", "path": "github-repos/MATLAB/TheAlgorithms-MATLAB-Octave/MATLAB-Octave-e150b77ad256de46c1ce3815c3d7945ac4fc28dc/algorithms/Strings/isPalindrome.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318337259584, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3692330362385316}} {"text": "function varargout = kdtreebuild(varargin)\n% VL_KDTREEBUILD Build randomized kd-tree\n% FOREST = VL_KDTREEBUILD(X) returns a structure FOREST containing\n% the kd-tree indexing the data X. X is a M x N dimensional matrix\n% of class DOUBLE or SINGLE with one data point per column. Use\n% VL_KDTREEQUERY() to query the index.\n%\n% VL_KDETREEBUILD() accepts the following options:\n%\n% NumTrees:: [1]\n% Specifies the number of semi-randomized KD-trees to add to the\n% forest. Multiple trees can be used to improve approximate\n% nearest-neighbors searches with VL_KDTREEQUERY().\n%\n% ThresholdMethod:: [MEDIAN]\n% Specifies the thresholding method used to split the data. Two\n% methods are supported: split around the median (MEDIAN) or split\n% around the mean (MEAN).\n%\n% Verbose::\n% Increases the verbosity level (can be repeated).\n%\n% The FOREST structure has the following fields:\n%\n% FOREST.TREES::\n% A structure array with one element per tree.\n%\n% FOREST.DIMENSION::\n% Dimensionality of the indexed data.\n%\n% FOREST.NUMDATA::\n% Number of indexed data points.\n%\n% The TREE structure has the following fields:\n%\n% TREE.NODES::\n% A structure array representing the nodes of the tree.\n%\n% TREE.DATAINDEX::\n% A 1 x NUMDATA vector of class UINT32 representing a permutation\n% of the data.\n%\n% Nodes are numbered from 1 to NUMNODES. The NODES structure array\n% has the following fields:\n%\n% NODES.LOWERCHILD and NODES.UPPERCHILD::\n% 1 x NUMNODES vectors of class INT32. A positive value is the\n% index of the lower/upper child node. A negative value denotes a\n% leaf and is (after negation) is the first or last element plus\n% one of a range of entries in the permutation TREE.DATAINDEX.\n% Such entries are in turn indexes of the data points that belong\n% to that leaf. Typically there is one point per leaf.\n%\n% NODES.SPLITDIMENSION and NODES.SPLITTHRESHOLD::\n% 1 x NUMNODES vector of class UINT32 and DOUBLE, respectively,\n% with the index of the splitting dimension and the threshold for\n% each node.\n%\n% See also: VL_KDTREEQUERY(), VL_HELP().\n[varargout{1:nargout}] = vl_kdtreebuild(varargin{:});\n", "meta": {"author": "jianxiongxiao", "repo": "ProfXkit", "sha": "7376c50abf5ead846247774a36be026e6f24953c", "save_path": "github-repos/MATLAB/jianxiongxiao-ProfXkit", "path": "github-repos/MATLAB/jianxiongxiao-ProfXkit/ProfXkit-7376c50abf5ead846247774a36be026e6f24953c/SiftFu/SiftFu/SIFTransac/vlfeat/toolbox/noprefix/kdtreebuild.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819591324416, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.36923302768582444}} {"text": "function out = feval(S, varargin)\n%FEVAL Evaluate the operator of a SPINOP (1, 2 or 3) at a CHEBFUN (1, 2, 3) or \n%at a CHEBMATRIX.\n% OUT = FEVAL(S, U) for a CHEBFUN (1, 2, or 3) or CHEBMATRIX U applies S to U.\n%\n% OUT = FEVAL(S, U, V, ...) for CHEBFUN'S (1, 2, 3) U, V, ... applies S to\n% the CHEBFUN'S.\n%\n% See also SPINOPERATOR/SUBSREF.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nL = S.lin;\nN = S.nonlin;\n\n% CASE 1: S(U).\nif ( nargin == 2 )\n \n u = varargin{1};\n \n if ( isa(u, 'chebfun') || isa(u, 'chebfun2') || isa(u, 'chebfun3') )\n \n out = L(u) + N(u);\n \n elseif ( isa(u, 'chebmatrix' ) )\n \n u = u.blocks.';\n out = L(u{:}) + N(u{:});\n \n end\n\n% CASE 2: S(U,V,...).\nelse\n\n out = L(varargin{:}) + N(varargin{:});\n \nend\n\n% Convert to a CHEBMATRIX if it's a CHEBFUN2V or a CHEBFUN3V:\nif ( isa(out, 'chebfun2v') || isa(out, 'chebfun3v') )\n \n u = chebmatrix(out(1));\n for k = 2:size(out, 1)\n u(k,1) = out(k);\n end\n out = u;\n \nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spinoperator/feval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878696277513, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.36916857927273494}} {"text": "classdef GeneralizedHoughGuil < handle\n %GENERALIZEDHOUGHGUIL Generalized Hough transform\n %\n % Finds arbitrary template in the grayscale image using\n % Generalized Hough Transform.\n %\n % Detects position, translation and rotation.\n %\n % ## References\n % > Guil, N., Gonzalez-Linares, J.M. and Zapata, E.L. (1999).\n % > Bidimensional shape detection using an invariant approach.\n % > Pattern Recognition 32 (6): 1025-1038.\n %\n % See also: cv.GeneralizedHoughBallard\n %\n\n properties (SetAccess = private)\n % Object ID\n id\n end\n\n properties (Dependent)\n % Canny low threshold. default 50\n CannyLowThresh\n % Canny high threshold. default 100\n CannyHighThresh\n % Minimum distance between the centers of the detected objects.\n % default 1.0\n MinDist\n % Inverse ratio of the accumulator resolution to the image resolution.\n % default 1.0\n Dp\n % Maximal size of inner buffers. default 1000\n MaxBufferSize\n\n % Angle difference in degrees between two points in feature.\n % default 90.0\n Xi\n % Maximal difference between angles that treated as equal. default 1.0\n AngleEpsilon\n % Feature table levels. default 360\n Levels\n % Minimal rotation angle to detect in degrees. default 0.0\n MinAngle\n % Maximal rotation angle to detect in degrees. default 360\n MaxAngle\n % Angle step in degrees. default 1.0\n AngleStep\n % Angle votes threshold. default 15000\n AngleThresh\n % Minimal scale to detect. default 0.5\n MinScale\n % Maximal scale to detect. default 2.0\n MaxScale\n % Scale step. default 0.05\n ScaleStep\n % Scale votes threshold. default 1000\n ScaleThresh\n % Position votes threshold. default 100\n PosThresh\n end\n\n %% GeneralizedHoughGuil\n methods\n function this = GeneralizedHoughGuil()\n %GENERALIZEDHOUGHGUIL Constructor\n %\n % obj = cv.GeneralizedHoughGuil()\n %\n % See also: cv.GeneralizedHoughGuil.detect\n %\n this.id = GeneralizedHoughGuil_(0, 'new');\n end\n\n function delete(this)\n %DELETE Destructor\n %\n % obj.delete()\n %\n % See also: cv.GeneralizedHoughGuil\n %\n if isempty(this.id), return; end\n GeneralizedHoughGuil_(this.id, 'delete');\n end\n end\n\n %% Algorithm\n methods (Hidden)\n function clear(this)\n %CLEAR Clears the algorithm state\n %\n % obj.clear()\n %\n % See also: cv.GeneralizedHoughGuil.empty,\n % cv.GeneralizedHoughGuil.load\n %\n GeneralizedHoughGuil_(this.id, 'clear');\n end\n\n function load(this, filename, varargin)\n %LOAD Loads algorithm from a file or a string\n %\n % obj.load(fname)\n % obj.load(str, 'FromString',true)\n % obj.load(..., 'OptionName',optionValue, ...)\n %\n % ## Input\n % * __fname__ Name of the file to read.\n % * __str__ String containing the serialized model you want to\n % load.\n %\n % ## Options\n % * __ObjName__ The optional name of the node to read (if empty,\n % the first top-level node will be used). default empty\n % * __FromString__ Logical flag to indicate whether the input is a\n % filename or a string containing the serialized model.\n % default false\n %\n % This method reads algorithm parameters from the specified XML or\n % YAML file (either from disk or serialized string). The previous\n % algorithm state is discarded.\n %\n % See also: cv.GeneralizedHoughGuil.save\n %\n GeneralizedHoughGuil_(this.id, 'load', filename, varargin{:});\n end\n\n function save(this, filename)\n %SAVE Saves the algorithm parameters to a file\n %\n % obj.save(filename)\n %\n % ## Input\n % * __filename__ Name of the file to save to.\n %\n % This method stores the algorithm parameters in the specified\n % XML or YAML file.\n %\n % See also: cv.GeneralizedHoughGuil.load\n %\n GeneralizedHoughGuil_(this.id, 'save', filename);\n end\n\n function b = empty(this)\n %EMPTY Returns true if the algorithm is empty\n %\n % b = obj.empty()\n %\n % ## Output\n % * __b__ Returns true if the object is empty (e.g in the\n % very beginning or after unsuccessful read).\n %\n % See also: cv.GeneralizedHoughGuil.clear,\n % cv.GeneralizedHoughGuil.load\n %\n b = GeneralizedHoughGuil_(this.id, 'empty');\n end\n\n function name = getDefaultName(this)\n %GETDEFAULTNAME Returns the algorithm string identifier\n %\n % name = obj.getDefaultName()\n %\n % ## Output\n % * __name__ This string is used as top level XML/YML node tag\n % when the object is saved to a file or string.\n %\n % See also: cv.GeneralizedHoughGuil.save,\n % cv.GeneralizedHoughGuil.load\n %\n name = GeneralizedHoughGuil_(this.id, 'getDefaultName');\n end\n end\n\n %% GeneralizedHough\n methods\n function [positions,votes] = detect(this, varargin)\n %DETECT Find template on image\n %\n % [positions,votes] = hough.detect(image)\n % [positions,votes] = hough.detect(edges, dx, dy)\n %\n % ## Input\n % * __image__ input image, 8-bit 1-channel image\n % * __edges__ image edges\n % * __dx__ image x-derivative of the same size as `edges` and\n % single-precision floating type.\n % * __dy__ image y-derivate of the same size and type as `dx`.\n %\n % ## Output\n % * __positions__ Cell array of 4-element vectors, each of the\n % form: `[posx, posy, scale, angle]`\n % * __votes__ Cell array of 3-element vectors, of the same length\n % as `positions`.\n %\n [positions,votes] = GeneralizedHoughGuil_(this.id, 'detect', varargin{:});\n end\n\n function setTemplate(this, varargin)\n %SETTEMPLATE Set template to search\n %\n % hough.setTemplate(templ)\n % hough.setTemplate(edges, dx, dy)\n % hough.setTemplate(..., 'OptionName', optionValue, ...)\n %\n % ## Input\n % * __templ__ template, 8-bit 1-channel image\n % * __edges__ template edges\n % * __dx__ template x-derivative of the same size as `edges` and\n % single-precision floating type.\n % * __dy__ template y-derivate of the same size and type as `dx`.\n %\n % ## Options\n % * __Center__ Template center `[x,y]`. The default `[-1,-1]`\n % will use `[size(templ,2) size(templ,1)]./2` as center.\n %\n % In the first variant of the function (with the `templ` input),\n % the `edges` are internally calculated using the cv.Canny filter,\n % and the derivatives `dx` and `dy` using cv.Sobel operator.\n %\n GeneralizedHoughGuil_(this.id, 'setTemplate', varargin{:});\n end\n end\n\n %% Getters/Setters\n methods\n function value = get.CannyHighThresh(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'CannyHighThresh');\n end\n function set.CannyHighThresh(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'CannyHighThresh', value);\n end\n\n function value = get.CannyLowThresh(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'CannyLowThresh');\n end\n function set.CannyLowThresh(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'CannyLowThresh', value);\n end\n\n function value = get.Dp(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'Dp');\n end\n function set.Dp(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'Dp', value);\n end\n\n function value = get.MaxBufferSize(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'MaxBufferSize');\n end\n function set.MaxBufferSize(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'MaxBufferSize', value);\n end\n\n function value = get.MinDist(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'MinDist');\n end\n function set.MinDist(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'MinDist', value);\n end\n\n function value = get.AngleEpsilon(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'AngleEpsilon');\n end\n function set.AngleEpsilon(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'AngleEpsilon', value);\n end\n\n function value = get.AngleStep(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'AngleStep');\n end\n function set.AngleStep(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'AngleStep', value);\n end\n\n function value = get.AngleThresh(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'AngleThresh');\n end\n function set.AngleThresh(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'AngleThresh', value);\n end\n\n function value = get.Levels(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'Levels');\n end\n function set.Levels(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'Levels', value);\n end\n\n function value = get.MaxAngle(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'MaxAngle');\n end\n function set.MaxAngle(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'MaxAngle', value);\n end\n\n function value = get.MaxScale(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'MaxScale');\n end\n function set.MaxScale(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'MaxScale', value);\n end\n\n function value = get.MinAngle(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'MinAngle');\n end\n function set.MinAngle(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'MinAngle', value);\n end\n\n function value = get.MinScale(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'MinScale');\n end\n function set.MinScale(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'MinScale', value);\n end\n\n function value = get.PosThresh(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'PosThresh');\n end\n function set.PosThresh(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'PosThresh', value);\n end\n\n function value = get.ScaleStep(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'ScaleStep');\n end\n function set.ScaleStep(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'ScaleStep', value);\n end\n\n function value = get.ScaleThresh(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'ScaleThresh');\n end\n function set.ScaleThresh(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'ScaleThresh', value);\n end\n\n function value = get.Xi(this)\n value = GeneralizedHoughGuil_(this.id, 'get', 'Xi');\n end\n function set.Xi(this, value)\n GeneralizedHoughGuil_(this.id, 'set', 'Xi', value);\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/GeneralizedHoughGuil.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.369168570803066}} {"text": "function [fo, ip] = func_excludeoutlier_cor( fi, g, g_s );\n%======================================================================\n%\n% Version 1.0\n%\n% This program excludes the points which below g_s of g\n%\n% Input\n% fi : input x data\n%\n% Output\n% fo : excluded x data\n% ip : excluded array element number in xi and yi\n%\n% Example: \n% [fo, ip] = func_excludeoutlier_cor( fi, g, g_s );\n%\n%\n%======================================================================\n% Terms:\n%\n% Distributed under the terms of the terms of the BSD License\n%\n% Copyright:\n%\n% Nobuhito Mori, Kyoto University\n%\n%========================================================================\n%\n% Update:\n% 1.00 2005/01/12 Nobuhito Mori\n%\n%========================================================================\n\nn = max(size(fi));\nfo = [];\nip = find(g=g_s));\nfo =fi;\nfo(ip) = NaN;\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/15361-despiking/despiking_tooblox/func_excludeoutlier_cor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883592602049, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.36916857080306587}} {"text": "function [xpos, u] = firstzero(s)\n\n%tstoolbox/@signal/firstzero\n% Syntax:\n% * [xpos, unit] = firstzero(s)\n%\n% Give information about first zero of scalar signal s, using linear\n% interpolation.\n%\n% Copyright 1997-2001 DPI Goettingen, License http://www.physik3.gwdg.de/tstool/gpl.txt\nnarginchk(1,1);\n\nif ndim(s) ~= 1\n\thelp(mfilename)\n\treturn\nend\n\nd = data(s);\nze = find(d==0);\nif isempty(ze)\t\t% no exact zero found, looking for zero crossings\n\ttmp = d(2:end) .* d(1:end-1);\n\tze = find(tmp < 0);\n\tif isempty(ze)\n\t\terror('no zero crossing found')\n\telse\n\t\tA = getaxis(s, 1);\n\t\ta = abs(d(ze(1)));\n\t\tb = abs(d(ze(1)+1));\n\t\tif (a+b) > 0\n\t\t\txpos = first(A) + (ze(1)-1 + a/(a+b) )*delta(A);\n\t\telse\n\t\t\txpos = first(A) + (ze(1)-1)*delta(A);\n\t\tend\n\t\tu = unit(A);\n\t% \tdisp(['first zero/zero crossing at x = ' num2str(xpos) ' ' label(A)]);\n\tend\nelse\t\t% use first sample that matches zero exactly\n\tA = getaxis(s, 1);\n\txpos = first(A) + (ze(1)-1)*delta(A);\n\tu = unit(A);\nend\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/Toolboxes/OpenTSTOOL/tstoolbox/@signal/firstzero.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878414043814, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.36916856233339684}} {"text": "classdef m_47_IHM19_16p_4s < MARRMoT_model\n% Class for hydrologic conceptual model: Forellenbach model\n \n% Copyright (C) 2021 Clara Brandes, Luca Trotter\n% This file is part of the Modular Assessment of Rainfall-Runoff Models\n% Toolbox (MARRMoT).\n% MARRMoT is a free software (GNU GPL v3) and distributed WITHOUT ANY\n% WARRANTY. See for details.\n%\n% Model reference\n% Brandes, C. (2020). Erstellung eines Konzeptionellen\n% Hochwasserabfluss-modells f\u00fcr das Einzugsgebiet des Forellenbachs, NP\n% Bayerischer Wald. MSc Thesis. Technische Univerisit\u00e4t Dresden, Germany.\n\n properties\n % model-specific attributes\n end\n methods\n \n % creator method\n function obj = m_47_IHM19_16p_4s() \n obj.numStores = 4; % number of model stores\n obj.numFluxes = 18; % number of model fluxes\n obj.numParams = 16;\n \n obj.JacobPattern = [1,0,0,0;\n 1,1,0,0;\n 1,1,1,0;\n 0,1,1,1]; % Jacobian matrix of model store ODEs\n \n obj.parRanges = [ 2, 5; % 01 SIMAX, maximum interception storage [mm]\n 0.9, 1; % 02 A, splitting coeffcient for excess precipitation [-]\n 0.4, 0.95; % 03 FF, forest fraction [-]\n 0.05, 5; % 04 SMPMAX, maximum storage macropores [mm]\n 0, 1; % 05 CQMP, runoff time parameter (fast/slow runnoff) first soil layer [1/d]\n 1, 5; % 06 XQMP, runoff scale parameter first soil layer [-] \n 400, 600; % 07 SS1MAX, maximum soil moisture storage first soil layer [mm]\n 0.3, 0.7; % 08 FCCS1, field capacity as fraction of maximum storage first soil layer [-]\n 0, 1000; % 09 CFS1, maximum infiltration rate first soil layer [mm/d]\n 0, 15; % 10 XFS1, infiltration loss exponent first soil layer [-]\n 0, 1; % 11 CQS1, runoff time parameter for (fast/slow runnoff) first soil layer [1/d]\n 1, 5; % 12 XQS1, runoff scale parameter first soil layer [-]\n 300, 500; % 13 SS2MAX, maximum soil moisture storage second soil layer [mm]\n 0, 1; % 14 CQS2, runoff time parameter for (fast/slow runnoff) second soil layer [1/d]\n 1, 5; % 15 XQS2, runoff scale parameter second soil layer [-]\n 0.01, 5]; % 16 D, Flow delay before surface runoff [d]\n \n obj.StoreNames = {\"S1\", \"S2\" \"S3\" \"S4\"}; % Names for the stores\n obj.FluxNames = {\"ei\", \"pex\", \"pexmp\", \"pexs1\", \"fmp\",...\n \"qexmp\", \"qmp\", \"pqexsl\", \"fs1\", \"etas1\",...\n \"qs1\", \"q0\", \"q0r\", \"qmps1\", \"pc\",...\n \"qh\", \"qs2\", \"qgw\"}; % Names for the fluxes\n \n obj.FluxGroups.Ea = [1 10]; % Index or indices of fluxes to add to Actual ET\n obj.FluxGroups.Q = [13 16 17 18]; % Index or indices of fluxes to add to Streamflow\n obj.FluxGroups.GW = -18; % Index of GW runoff flow.\n \n end\n \n % INITialisation function\n function obj = init(obj)\n % parameters\n theta = obj.theta;\n delta_t = obj.delta_t;\n SIMAX = theta(1); % maximum interception storage [mm]\n SMPMAX = theta(4); % maximum storage macropores [mm]\n SS1MAX = theta(7); % maximum soil moisture storage first soil layer [mm]\n SS2MAX = theta(13); % maximum soil moisture storage second soil layer [mm]\n D = theta(16); % Flow delay before surface runoff [d]\n \n % initial store values\n obj.S0 = 0.8 * [SIMAX; % Initial interception storage\n SMPMAX; % Initial macropore storage \n SS1MAX; % Initial soil moisture storage 1 \n SS2MAX]; % Initial soil moisture storage 2\n \n % initialise the unit hydrographs and still-to-flow vectors \n uh_q0r = uh_4_full(D,delta_t);\n \n obj.uhs = {uh_q0r};\n end\n \n % MODEL_FUN are the model governing equations in state-space formulation\n function [dS, fluxes] = model_fun(obj, S)\n % parameters\n theta = obj.theta;\n SIMAX = theta(1); % maximum interception storage [mm]\n A = theta(2); % splitting coeffcient for excess precipitation [-]\n FF = theta(3); % forest fraction [-]\n SMPMAX = theta(4); % maximum storage macropores [mm]\n CQMP = theta(5); % runoff time parameter (fast/slow runnoff) first soil layer [1/d]\n XQMP = theta(6); % runoff scale parameter first soil layer [-]\n SS1MAX = theta(7); % maximum soil moisture storage first soil layer [mm]\n FCCS1 = theta(8); % field capacity coefficient fist soil layer [-]\n CFS1 = theta(9); % maximum infiltration rate first soil layer [-]\n XFS1 = theta(10); % infiltration loss exponent first soil layer [-]\n CQS1 = theta(11); % runoff time parameter for (fast/slow runnoff) first soil layer [1/d]\n XQS1 = theta(12); % runoff scale parameter first soil layer [-]\n SS2MAX = theta(13); % maximum soil moisture storage second soil layer [mm]\n CQS2 = theta(14); % runoff time parameter for (fast/slow runnoff) second soil layer [1/d]\n XQS2 = theta(15); % runoff scale parameter second soil layer [-]\n \n \n % delta_t\n delta_t = obj.delta_t;\n \n % unit hydrographs and still-to-flow vectors\n uhs = obj.uhs;\n uh_q0r = uhs{1};\n \n % stores\n S1 = S(1);\n S2 = S(2);\n S3 = S(3);\n S4 = S(4);\n \n % climate input\n t = obj.t; % this time step\n climate_in = obj.input_climate(t,:); % climate at this step\n P = climate_in(1);\n Ep = climate_in(2);\n T = climate_in(3);\n \n % fluxes functions\n flux_ei = evap_1(S1,Ep,delta_t);\n flux_pex = interception_1(P,S1,SIMAX);\n flux_pexmp = split_1(A,flux_pex);\n flux_pexs1 = split_2(A,flux_pex);\n flux_fmp = infiltration_3(flux_pexmp,S2,SMPMAX);\n flux_qexmp = flux_pexmp - flux_fmp;\n flux_qmp = interflow_3(CQMP,XQMP,S2,delta_t);\n flux_pqexs1 = flux_pexs1 + flux_qexmp;\n flux_fs1 = infiltration_7(CFS1,XFS1,S3,SS1MAX,flux_pqexs1);\n flux_etas1 = evap_23(FF,FCCS1,S3,SS1MAX,Ep,delta_t); \n flux_qs1 = interflow_9(S3,CQS1,FCCS1*SS1MAX,XQS1,delta_t);\n flux_q0 = flux_pqexs1 - flux_fs1;\n flux_q0r = route(flux_q0, uh_q0r);\n flux_qmps1 = flux_qmp + flux_qs1;\n flux_pc = infiltration_3(flux_qmps1,S4,SS2MAX);\n flux_qh = flux_qmps1 - flux_pc;\n flux_qs2 = interflow_3(CQS2,XQS2,S4,delta_t);\n flux_qgw = 0.0195;\n\n % stores ODEs\n dS1 = P - flux_ei - flux_pex;\n dS2 = flux_fmp - flux_qmp;\n dS3 = flux_fs1 - flux_etas1 - flux_qs1;\n dS4 = flux_pc - flux_qs2;\n \n % outputs\n dS = [dS1 dS2 dS3 dS4];\n fluxes = [flux_ei, flux_pex, flux_pexmp, flux_pexs1,...\n flux_fmp, flux_qexmp, flux_qmp, flux_pqexs1,...\n flux_fs1, flux_etas1, flux_qs1, flux_q0,...\n flux_q0r, flux_qmps1, flux_pc , flux_qh,...\n flux_qs2, flux_qgw];\n end\n \n % STEP runs at the end of every timestep.\n function obj = step(obj)\n % unit hydrographs and still-to-flow vectors\n uhs = obj.uhs;\n uh_q0r = uhs{1};\n \n % input fluxes to the unit hydrographs\n fluxes = obj.fluxes(obj.t,:);\n flux_q0 = fluxes(12);\n \n % update still-to-flow vectors using fluxes at current step and\n % unit hydrographs\n uh_q0r = update_uh(uh_q0r, flux_q0);\n obj.uhs = {uh_q0r};\n end\n end\nend", "meta": {"author": "wknoben", "repo": "MARRMoT", "sha": "442622b3fd89bdd88420e96cfc6605770202dae9", "save_path": "github-repos/MATLAB/wknoben-MARRMoT", "path": "github-repos/MATLAB/wknoben-MARRMoT/MARRMoT-442622b3fd89bdd88420e96cfc6605770202dae9/MARRMoT/Models/Model files/m_47_IHM19_16p_4s.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7745833737577158, "lm_q2_score": 0.476579651063676, "lm_q1q2_score": 0.36915067398517715}} {"text": "function blas1_z_test16 ( )\n\n%*****************************************************************************80\n%\n%% TEST16 tests ZSIGN2.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 16 May 2006\n%\n% Author:\n%\n% John Burkardt\n%\n seed = 123456789;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'TEST16\\n' );\n fprintf ( 1, ' ZSIGN2 ( C1, C2 ) transfers the sign of complex C2\\n' );\n fprintf ( 1, ' to the ZABS2 magnitude of C1.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ...\n ' C1 C2 C3\\n' );\n fprintf ( 1, ...\n ' -------------------- -------------------- --------------------\\n' );\n fprintf ( 1, '\\n' );\n\n for j = 1 : 10\n\n [ c1, seed ] = c8_uniform_01 ( seed );\n c1 = 5.0 * c1;\n [ c2, seed ] = c8_uniform_01 ( seed );\n c2 = 5.0 * c2;\n c3 = zsign2 ( c1, c2 );\n\n fprintf ( 1, ' %10f %10f %10f %10f %10f %10f\\n', ...\n real ( c1 ), imag ( c1 ), real ( c2 ), imag ( c2 ), ...\n real ( c3 ), imag ( c3 ) );\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/blas1_z/blas1_z_test16.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5698526660244838, "lm_q2_score": 0.6477982179521103, "lm_q1q2_score": 0.3691495415459197}} {"text": "function r = isempty(a)\n%ISEMPTY Returns 1 if input is empty, i.e. [], in the sense of Matlab\n%\n% r = isempty(a)\n%\n%There are no empty intervals in the mathematical sense in INTLAB. For details,\n% please see Readme.txt\n%\n\n% written 10/15/99 S.M. Rump\n% modified 04/04/04 S.M. Rump set round to nearest for safety\n% modified 04/06/05 S.M. Rump rounding unchanged\n% modified 10/12/05 S.M. Rump functionality exchanged with @intval\\isempty_\n% modified 04/22/09 S.M. Rump isempty_ removed\n%\n\n if a.complex\n r = isempty(a.mid) | isempty(a.rad);\n else\n r = isempty(a.inf) | isempty(a.sup);\n end\n", "meta": {"author": "douthwja01", "repo": "OpenMAS", "sha": "962f321f82167db78066b2c88c783423ecc3b73a", "save_path": "github-repos/MATLAB/douthwja01-OpenMAS", "path": "github-repos/MATLAB/douthwja01-OpenMAS/OpenMAS-962f321f82167db78066b2c88c783423ecc3b73a/toolboxes/Intlab_V7.1/intval/@intval/isempty.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5698526514141572, "lm_q1q2_score": 0.3691495320813762}} {"text": "function outface=outersurf(node,face)\n%\n% outface=outersurf(node,face)\n%\n% extract the out-most shell of a complex surface mesh\n%\n% author: Qianqian Fang, \n%\n% input:\n% node: node coordinates\n% face: surface triangle list\n%\n% output:\n% outface: the out-most shell of the surface mesh\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\nface=face(:,1:3);\n\ned=surfedge(face);\nif(~isempty(ed))\n error('open surface is detected, you have to close it first, consider meshcheckrepair() with meshfix option');\nend\n\n[no,el]=fillsurf(node,face);\n\noutface=volface(el);\n\n[no,outface]=removeisolatednode(no,outface);\nmaxfacenode=max(outface(:));\n\n[I,J]=ismember(round(no(1:maxfacenode,:)*1e10),round(node*1e10),'rows');\n\n% if(sum(I)~=maxfacenode)\n% error('mesh tessellation failed');\n% end\noutface=J(outface);\n[ii,jj]=find(outface==0);\noutface(ii,:)=[];\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/iso2mesh/outersurf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3691495320813761}} {"text": "function tests = test_ft_specest_irasa\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_specest_irasa\n\nif nargout\n % assume that this is called by RUNTESTS\n tests = functiontests(localfunctions);\nelse\n % assume that this is called from the command line\n fn = localfunctions;\n for i=1:numel(fn)\n feval(fn{i});\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction testOptions(testCase)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfsample = 1000;\nnchan = 2;\nnsample = 1000;\n\ndat = randn(nchan, nsample) + 1 + linspace(0,1,nsample);\ntime = (0:(nsample-1))/fsample;\nfreqoi = 1:150;\n\nresult = {};\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'original');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi(2:2:end), 'output', 'original');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi(2:2:end), 'output', 'fractal');\n\n% try out another padding\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'original', 'pad', 2);\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'pad', 2);\n\n% try out the various padding types, don't remove the polynomial fit\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', -1, 'pad', 2, 'padtype', 'zero');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', -1, 'pad', 2, 'padtype', 'mean');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', -1, 'pad', 2, 'padtype', 'localmean');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', -1, 'pad', 2, 'padtype', 'edge');\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', -1, 'pad', 2, 'padtype', 'mirror');\n\n% the default polyorder 1 is already covered earlier\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', 0);\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', 2);\nresult{end+1} = ft_specest_irasa(dat, time, 'verbose', false, 'freqoi', freqoi, 'output', 'fractal', 'polyorder', 3);\n\n% all iterations were done with (slightly) different options, hence the results should not be equal\nfor i=1:numel(result)\n for j=(i+1):numel(result)\n assert(~isequaln(result{i}, result{j}), 'the results %d and %d should not be equal', i, j);\n end\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_specest_irasa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36914952433187076}} {"text": "%%% Setup\n% restoredefaultpath;\nclose, clear, clc;\n\n%%% Path\naddpath(fullfile(pwd,'utils'));\n\n%%% Params\nparams.sequences_path = fullfile(pwd,'sequences');\nparams.sequences_mat = fullfile(pwd,'sequences_mat');\nparams.sequences_name = get_sequences_name(params);\nparams.sequences_format = 'PNG';\nparams.sequences_ext = strcat('*.',params.sequences_format);\nparams.debug = 0;\n%params.current_sequence = 1;\nclc;\n\n%% Frame selection\ndisplog('Performing frame selection');\nfor seq = 1:size(params.sequences_name,2)\n %seq = 1;\n displog(['Processing sequence: ' params.sequences_name(seq).name]);\n params.current_sequence = seq;\n perform_frame_selection(params);\n %break;\nend\nclear seq;\n\n%% Matrix Completion\nclc;\nparams.algs_path = 'algs_mc';\nparams.algs_name = get_algs_name(params);\nparams.results_path = 'results_mc';\ndisplog('--- Matrix Completion ---');\nfor alg = 1:size(params.algs_name,2)\n %alg = 1;\n displog(['Current algorithm: ' params.algs_name(alg).name]);\n params.current_algorithm = alg;\n for seq = 1:size(params.sequences_name,2)\n %seq = 1;\n displog(['Processing sequence: ' params.sequences_name(seq).name]);\n params.current_sequence = seq;\n perform_matrix_completion(params);\n %break;\n end\n %break;\nend\nclear alg seq;\n\n%% Tensor Completion\nclc;\nparams.algs_path = 'algs_tc';\nparams.algs_name = get_algs_name(params);\nparams.results_path = 'results_tc';\ndisplog('--- Tensor Completion ---');\nfor alg = 1:size(params.algs_name,2)\n %alg = 1;\n displog(['Current algorithm: ' params.algs_name(alg).name]);\n params.current_algorithm = alg;\n for seq = 1:size(params.sequences_name,2)\n %seq = 1;\n displog(['Processing sequence: ' params.sequences_name(seq).name]);\n params.current_sequence = seq;\n perform_tensor_completion(params);\n %break;\n end\n %break;\nend\nclear alg seq;\n", "meta": {"author": "andrewssobral", "repo": "mctc4bmi", "sha": "fbcbcd25654b818646387c3d6a64304fb60e12dd", "save_path": "github-repos/MATLAB/andrewssobral-mctc4bmi", "path": "github-repos/MATLAB/andrewssobral-mctc4bmi/mctc4bmi-fbcbcd25654b818646387c3d6a64304fb60e12dd/main.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438501, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.36906116094483415}} {"text": "%IOPEN Morphological opening\n%\n% OUT = IOPEN(IM, SE, OPTIONS) is the image IM after morphological opening \n% with the structuring element SE. This is a morphological erosion followed \n% by dilation.\n%\n% OUT = IOPEN(IM, SE, N, OPTIONS) as above but the structuring element \n% SE is applied N times, that is N erosions followed by N dilations.\n%\n% Notes::\n% - For binary image an opening operation can be used to eliminate small white\n% noise regions.\n% - It is cheaper to apply a smaller structuring element multiple times than\n% one large one, the effective structuring element is the Minkowski sum\n% of the structuring element with itself N times.\n% - Windowing options of IMORPH can be passed. By default output image is\n% same size as input image.\n%\n% See also ICLOSE, IDILATE, IERODE, IMORPH.\n\n% Copyright (C) 1993-2011, by Peter I. Corke\n%\n% This file is part of The Machine Vision Toolbox for Matlab (MVTB).\n% \n% MVTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% MVTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with MVTB. If not, see .\n\nfunction b = iopen(a, se, varargin)\n\n b = ierode(a, se, varargin{:});\n b = idilate(b, se, varargin{:});\n", "meta": {"author": "petercorke", "repo": "machinevision-toolbox-matlab", "sha": "2d791168c19c5e56acef74d22eafd227b4b58e42", "save_path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab/machinevision-toolbox-matlab-2d791168c19c5e56acef74d22eafd227b4b58e42/iopen.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331319177488, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3690611520672676}} {"text": "%--- help for dsge/accuracy ---\n%\n% Solves dsge models\n% \n% ::\n% \n% Euler_errors=accuracy(m)\n% Euler_errors=accuracy(m,nxcuts)\n% Euler_errors=accuracy(m,nxcuts,nsims)\n% Euler_errors=accuracy(m,nxcuts,nsims,nburn)\n% Euler_errors=accuracy(m,nxcuts,nsims,nburn,reset_params)\n% [Euler_errors,outsims]=accuracy(...)\n% \n% Args:\n% \n% m (rise | dsge): scalar or vector of model objects.\n% \n% nxcuts ({10} | integer): Number of quantiles per discretized\n% continuous shock\n% \n% nsims ({1000} | integer| 1x2 cell): Number of simulations to generate\n% the state of the endogenous variables. Alternatively, if the input\n% is a cell, no simulations will be performed. In this case nsims is\n% of the form nsims={Y,regs}, where:\n% - Y : simulations of endogenous variables\n% - regs : corresponding simulations for regimes\n% \n% nburn ({100} | integer): Number of burned simulations\n% \n% reset_params ({true} | false): reset the parameters to their correct\n% values in evaluating the model equations.\n% \n% Returns:\n% :\n% \n% - **Euler_errors** [cell | struct]: if the number of models is greater\n% that one, the output is a cell array of structures. Each structure\n% has the following fields:\n% - EE [1 x nsols cell] : Euler equation errors for all the solutions\n% with each cell for one solution\n% - eqtn1, eqtn2,... : structures containing \"mean\" (mean of the euler\n% error across all simulations), \"max\" (maximum of the euler error\n% across all simulations) and \"min\" (minimum of the euler error across\n% all simulations)\n% \n% - **outsims** [1 x 2 x nsols cell]: Simulations for the endogenous\n% variables (first element) and the regimes (second element) for each\n% solution (3rd dimension)\n% \n% Note:\n% \n% - The errors are log10(abs(error))\n% \n% - The smaller the standard deviation of the shocks the higher the\n% accuracy even if the solution is not very accurate in the first\n% place.\n% \n% - The accuracy of the solution may critically depend on the tolerance\n% level used for solving the model in the first place. For instance,\n% if an iterative algorithm (e.g. mfi) is used, the solution might not\n% be 100% accurate even in a linear model\n% \n% - The errors are provided in absolute value for all equations, rather\n% than being normalized as is customarily done in the literature\n% \n%", "meta": {"author": "jmaih", "repo": "RISE_toolbox", "sha": "1b2edfa27830c6d522f9d7d2335d33c3e4d84285", "save_path": "github-repos/MATLAB/jmaih-RISE_toolbox", "path": "github-repos/MATLAB/jmaih-RISE_toolbox/RISE_toolbox-1b2edfa27830c6d522f9d7d2335d33c3e4d84285/classes/models/@dsge/accuracy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5544704649604274, "lm_q1q2_score": 0.3689505018979237}} {"text": "function visInferredShapes(class, jobID)\n% Visualize fitted basis shapes cached in 'inferredShapes'\n\n% Setup directories\nglobals;\ninferredShapesDir = fullfile(cachedir, class, sprintf('inferredShapes%s',jobID));\nmeshDir = fullfile(cachedir, class, sprintf('meshes%s',jobID));\ndmapDir = fullfile(cachedir, class, sprintf('depthMap%s',jobID));\nfnames = getFileNamesFromDirectory(inferredShapesDir,'types',{'.mat'});\nhFig = figure;\nload(fullfile(datadir,'partNames',class));\nfor i = 1:length(fnames)\n fprintf('%s: VOC ID = %s\\n',class, fnames{i}(1:end-4));\n load(fullfile(inferredShapesDir,fnames{i}));\n try\n mesh = load(fullfile(meshDir,fnames{i}));\n catch\n mesh = state2mesh(state);\n end\n \n subplot(231)\n imshow(state.im);\n title('Image');\n\n subplot(232)\n im = (color_seg(state.mask,state.im));\n %im = insertText(im,state.kps(1:2,:)',partNames,'FontSize',8);\n imshow(im);\n hold on;\n cmap = distinguishable_colors(size(state.kps,2),[0 1 1]);\n scatter(state.kps(1,:), state.kps(2,:),30,cmap,'Filled');\n hold off;\n title('Image Mask (and Keypoints)');\n\n subplot(233)\n imVerts = mesh.vertices;\n vertNormals = state.normals*state.cameraRot';\n\n %Flip z axis to be in the image frame\n imVerts(:,3) = -imVerts(:,3);\n imVerts(:,3) = imVerts(:,3)-min(0,min(imVerts(:,3)));\n zDepth = imVerts(:,3);\n vertNormals(:,3) = -vertNormals(:,3);\n\n imshow(state.im); hold on;\n\n %patch('vertices', imVerts, 'faces', mesh.faces, 'CData', zDepth,'VertexNormals',vertNormals,...\n % 'CDataMapping','scaled', 'FaceColor', 'interp', 'FaceAlpha', ...\n % 0.7, 'EdgeColor', 'None');\n\n patch('vertices', imVerts, 'faces', state.tri, 'FaceColor', 'red', 'VertexNormals',...\n vertNormals, 'FaceAlpha', 0.7, 'EdgeColor','None','FaceLighting','gouraud',...\n 'BackFaceLighting','lit');\n\n camlight; lighting p;\n camproj('orthographic');\n hold off;\n title('Mesh overlayed on Image');\n\n subplot(234) \n showMeshTri(mesh);view(0,-90);\n title('Inferred Mesh');\n\n subplot(235)\n % Colored Point Cloud\n imsize = size(state.im); imsize = imsize(1:2);\n imVerts = mesh.vertices;\n \n % Mask project vertices only in mask\n maskInds = find(state.mask(:));\n imVerts(:,1) = max(1,min(imVerts(:,1),imsize(2)));\n imVerts(:,2) = max(1,min(imVerts(:,2),imsize(1)));\n linInds = sub2ind(imsize,round(imVerts(:,2)),round(imVerts(:,1)));\n [linInds, IA] = intersect(linInds,maskInds);\n imVerts = imVerts(IA,:);\n % Find colors for the points\n rCh = state.im(:,:,1); rCh = rCh(:);\n gCh = state.im(:,:,2); gCh = gCh(:);\n bCh = state.im(:,:,3); bCh = bCh(:);\n ptColors = [rCh(linInds) gCh(linInds) bCh(linInds)];\n % Plot\n scatter3(imVerts(:,1),imVerts(:,2),imVerts(:,3),15,single(ptColors)/255,'filled');\n axis off vis3d equal; view(0,-90);\n title('Colored Point Cloud');\n\n subplot(236)\n % Texture mapped depth map / Depth map\n try\n load(fullfile(dmapDir,fnames{i}));\n catch\n mesh = reducepatch(mesh,2000);\n dmap = meshToDepth(mesh.vertices,mesh.faces,size(state.mask));\n dmap(isinf(dmap)) = nan;\n dmap(~state.mask) = nan;\n end\n \n hIm = imagesc(imcrop(visualizeDEM(dmap),state.bbox));\n %set(hIm,'AlphaData',repmat(~isnan(imcrop(dmap,state.bbox)),[1 1 3]));\n %warp(dmap,state.im); view(0,90);\n axis equal off;\n title('Depth map');\n\n %subplotsqueeze(hFig, 1.2);\n pause; clf\nend\n", "meta": {"author": "akar43", "repo": "CategoryShapes", "sha": "55c9dab2293bcaceaaa3bf5fea782fdbf930fadb", "save_path": "github-repos/MATLAB/akar43-CategoryShapes", "path": "github-repos/MATLAB/akar43-CategoryShapes/CategoryShapes-55c9dab2293bcaceaaa3bf5fea782fdbf930fadb/visualize/visInferredShapes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.36895050189792367}} {"text": "function springDampers = springDampersVisualise(springDamperVals, startPoints, ...\n staticPoints, widths, springConst, ...\n damperConst)\n\n% SPRINGDAMPERSVISUALISE Helper code for showing an spring dampers during 2-D visualisation.\n% FORMAT\n% DESC is a helper function for plotting spring damper locations using latent\n% variable models.\n% ARG springDamperValues : the values to set the springDamper data to.\n% ARG startPoints : the fixed points of the spring damers.\n% ARG widths : the widths of the spring dampers.\n% ARG springConst : the spring constants of the spring dampers.\n% ARG damperConst : the damper constants of the spring dampers.\n% RETURN springDampers : contains array of spring damper objects.\n%\n% COPYRIGHT : Neil D. Lawrence, 2007\n%\n% SEEALSO : springDampersModify, fgplvmResultsDynamic\n\n% MLTOOLS\n \nfor i = 1:length(springDamperVals)\n springDampers(i) = springDamperCreate(startPoints(i, :), ...\n staticPoints(i, :), ...\n widths(i), springConst(i), ...\n damperConst(i));\n springDampers(i).selected = 0;\nend\nspringDampers = springDampersModify(springDampers, springDamperVals, ...\n startPoints, staticPoints, widths, ...\n springConst, damperConst);\nfor i = 1:length(springDamperVals)\n set(springDampers(i).handle, 'linewidth', 2)\n set(springDampers(i).spring.handle, 'linewidth', 2)\n set(springDampers(i).damper.handle, 'linewidth', 2)\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/mltools/springDampersVisualise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764746, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3689504945399124}} {"text": "function options = svmRunOptions(varargin)\n% options = svmRunOptions(varargin)\n% SUPPORT VECTOR MACHINE - RUN OPTIONS\n% ---------------------------------------------------------\n% Produces structure with parameters describing how to perform a\n% classification.\n%\n% INPUTS\n%\tOPTIONS\n% 'Procedure' - \n% 'KFolds' - Split trials into k approximately equal folds,\n% removing each fold one by one, training on the remainder,\n% and testing on the withheld fold.\n% 'ScanFolds' - KFolds where the folds are scans/runs.\n% 'LeaveOneOut' - KFolds where the folds are individual trials.\n% 'Verbose' - Whether or not to print MATLAB generated output.\n% DEFAULT: false\n% 'Options' - Pre-existing options structure.\n% 'OptionsFile' - Path to file containing pre-existing options\n% structure.\n% 'k' - K parameter for KFolds. DEFAULT: 10\n% 's' | 'SVM_Type' - See libSVM help.\n% 't' | 'Kernel_Type' - See libSVM help.\n% 'd' | 'Degree' - See libSVM help.\n% 'g' | 'Gamma' - See libSVM help.\n% 'r' | 'Coef0' - See libSVM help.\n% 'c' | 'Cost' - See libSVM help.\n% 'n' | 'Nu' - See libSVM help.\n% 'p' | 'Epsilon_Loss' - See libSVM help.\n% 'm' | 'CacheSize' - See libSVM help.\n% 'e' | 'Epsilon' - See libSVM help.\n% 'h' | 'Shrinking' - See libSVM help.\n% 'b' | 'Probability_Estimates' - See libSVM help.\n% 'w' | 'Weight' - See libSVM help.\n% 'q' | 'Quiet' - See libSVM help.\n%\n% OUTPUTS\n% options - Structure containing all parameters to be used in svmRun, or\n% elsewhere.\n%\n% USAGE\n% Setting up the parameters to run a classification with KFolds, k = 20.\n% This options structure is then passed to svmRun.\n% options = svmRunOptions('Procedure', 'KFolds', 'k', 20);\n%\n% Often, this function is called from within another function, such as\n% svmRun, which will accept the same inputs.\n% svmRun(..., 'Procedure', 'KFolds', 'k', 20);\n%\n% See also SVMINIT, SVMRUN, SVMEXPORTMAP, SVMBOOTSTRAP, SVMRELABEL,\n% SVMREMOVE, SLINIT.\n%\n% renobowen@gmail.com [2010]\n%\n\n % Lib SVM options\n options.svm_type = [];\n options.kernel_type = 0;\n options.degree = [];\n options.gamma = [];\n options.coef0 = [];\n options.cost = [];\n options.nu = [];\n options.epsilon_loss = [];\n options.cachesize = [];\n options.epsilon = [];\n options.shrinking = [];\n options.probability_estimates = [];\n options.weight = [];\n options.quiet = 1;\n options.subsample = false;\n \n % MATLAB side options\n options.procedure = 'scanfolds';\n options.verbose = false;\n options.k = 10;\n \n i = 1;\n while (i <= length(varargin))\n if (isempty(varargin{i})), break; end\n switch (lower(varargin{i}))\n case {'options'} % careful with this one and the next - we assume you know what you're doing with the options struct\n options = varargin{i + 1};\n case {'optionsfile'}\n load(varargin{i + 1});\n case {'procedure'}\n options.procedure = varargin{i + 1};\n case {'k'}\n options.k = varargin{i + 1};\n case {'log2cvector'}\n options.log2cvector = varargin{i + 1};\n case {'log2gvector'}\n options.log2gvector = varargin{i + 1};\n case {'svm_type' 's'}\n options.svm_type = varargin{i + 1};\n case {'kernel_type' 't'}\n options.kernel_type = varargin{i + 1};\n case {'degree' 'd'}\n options.degree = varargin{i + 1};\n case {'gamma' 'g'}\n options.gamma = varargin{i + 1};\n case {'coef0' 'r'}\n options.coef0 = varargin{i + 1};\n case {'cost' 'c'}\n options.coef = varargin{i + 1};\n case {'nu' 'n'}\n options.nu = varargin{i + 1};\n case {'epsilon_loss' 'p'}\n options.epsilon_loss = varargin{i + 1};\n case {'cachesize' 'm'}\n options.cachesize = varargin{i + 1};\n case {'epsilon' 'e'}\n options.epsilon = varargin{i + 1};\n case {'shrinking' 'h'}\n options.shrinking = varargin{i + 1};\n case {'probability_estimates', 'b'}\n options.probability_estimates = varargin{i + 1};\n case {'weight' 'w'}\n options.weight = [varargin{i + 1} varargin{i + 2}];\n i = i + 1;\n case {'quiet' 'q'} % Silence LIBSVM side outputs\n options.quiet = 1;\n i = i - 1;\n case {'verbose'}\n options.verbose = true;\n i = i - 1;\n case {'silent'} % Silence MATLAB side outputs\n options.verbose = false;\n i = i - 1;\n case {'subsample'}\n subsample = varargin{i+1};\n otherwise\n fprintf(1, 'Unrecognized option: ''%s''\\n', varargin{i});\n return;\n end\n i = i + 2;\n end\n \nend", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Classify/svmRunOptions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540697, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3689108554330873}} {"text": "function Q1 = mpc1(T_meas,T_sp)\n\ns = 'http://byu.apmonitor.com';\nc = 'mpc';\n\n% input measurement\napm_meas(s,c,'TC',T_meas);\n\n% input setpoint with deadband +/- DT\nDT = 0.1;\napm_option(s,c,'TC.sphi',T_sp+DT);\napm_option(s,c,'TC.splo',T_sp-DT);\n\n% solve MPC\noutput = apm(s,c,'solve');\n\n% test for successful solution\nif (apm_tag(s,c,'apm.appstatus')==1)\n % retrieve the first Q value\n Q1 = apm_tag(s,c,'Q1.Newval');\nelse\n % display output for debugging\n print(output)\n % not successful, set voltage to zero\n Q1 = 0;\nend\n\nend\n\n\n", "meta": {"author": "APMonitor", "repo": "arduino", "sha": "f36e65a70dd7122d1829883899e40e56bf6c4279", "save_path": "github-repos/MATLAB/APMonitor-arduino", "path": "github-repos/MATLAB/APMonitor-arduino/arduino-f36e65a70dd7122d1829883899e40e56bf6c4279/6_Model_Predictive_Control/1st_order_linear/MATLAB/mpc1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593171945417, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3689108471314209}} {"text": "function problem = inputValidation(problem)\n%\n% This function runs through the problem struct and sets any missing fields\n% to the default value. If a mandatory field is missing, then it throws an\n% error.\n%\n% INPUTS:\n% problem = a partially completed problem struct\n%\n% OUTPUTS:\n% problem = a complete problem struct, with validated fields\n%\n\n\n%%%% Check the function handles:\n\nif ~isfield(problem,'func')\n error('Field ''func'' cannot be ommitted from ''problem''');\nelse\n if ~isfield(problem.func,'dynamics')\n error('Field ''dynamics'' cannot be ommitted from ''problem.func'''); end\n if ~isfield(problem.func,'pathObj'), problem.func.pathObj = []; end\n if ~isfield(problem.func,'bndObj'), problem.func.bndObj = []; end\n if ~isfield(problem.func,'pathCst'), problem.func.pathCst = []; end\n if ~isfield(problem.func,'bndCst'), problem.func.bndCst = []; end\nend\n\n%%%% Check the initial guess (also compute nState and nControl):\nif ~isfield(problem, 'guess')\n error('Field ''guess'' cannot be ommitted from ''problem''');\nelse\n if ~isfield(problem.guess,'time')\n error('Field ''time'' cannot be ommitted from ''problem.guess'''); end\n if ~isfield(problem.guess, 'state')\n error('Field ''state'' cannot be ommitted from ''problem.guess'''); end\n if ~isfield(problem.guess, 'control')\n error('Field ''control'' cannot be ommitted from ''problem.guess'''); end\n \n % Compute the size of the time, state, and control based on guess\n [checkOne, nTime] = size(problem.guess.time);\n [nState, checkTimeState] = size(problem.guess.state);\n [nControl, checkTimeControl] = size(problem.guess.control);\n \n if nTime < 2 || checkOne ~= 1\n error('guess.time must have dimensions of [1, nTime], where nTime > 1');\n end\n \n if checkTimeState ~= nTime\n error('guess.state must have dimensions of [nState, nTime]');\n end\n if checkTimeControl ~= nTime\n error('guess.control must have dimensions of [nControl, nTime]');\n end\n \nend\n\n%%%% Check the problem bounds:\nif ~isfield(problem,'bounds')\n problem.bounds.initialTime = [];\n problem.bounds.finalTime = [];\n problem.bounds.state = [];\n problem.bounds.initialState = [];\n problem.bounds.finalState = [];\n problem.bounds.control = [];\nelse\n \n if ~isfield(problem.bounds,'initialTime')\n problem.bounds.initialTime = []; end\n problem.bounds.initialTime = ...\n checkLowUpp(problem.bounds.initialTime,1,1,'initialTime');\n \n if ~isfield(problem.bounds,'finalTime')\n problem.bounds.finalTime = []; end\n problem.bounds.finalTime = ...\n checkLowUpp(problem.bounds.finalTime,1,1,'finalTime');\n \n if ~isfield(problem.bounds,'state')\n problem.bounds.state = []; end\n problem.bounds.state = ...\n checkLowUpp(problem.bounds.state,nState,1,'state');\n \n if ~isfield(problem.bounds,'initialState')\n problem.bounds.initialState = []; end\n problem.bounds.initialState = ...\n checkLowUpp(problem.bounds.initialState,nState,1,'initialState');\n \n if ~isfield(problem.bounds,'finalState')\n problem.bounds.finalState = []; end\n problem.bounds.finalState = ...\n checkLowUpp(problem.bounds.finalState,nState,1,'finalState');\n \n if ~isfield(problem.bounds,'control')\n problem.bounds.control = []; end\n problem.bounds.control = ...\n checkLowUpp(problem.bounds.control,nControl,1,'control');\n \nend\n\nend\n\n\nfunction input = checkLowUpp(input,nRow,nCol,name)\n%\n% This function checks that input has the following is true:\n% size(input.low) == [nRow, nCol]\n% size(input.upp) == [nRow, nCol]\n\nif ~isfield(input,'low')\n input.low = -inf(nRow,nCol);\nend\n\nif ~isfield(input,'upp')\n input.upp = inf(nRow,nCol);\nend\n\n[lowRow, lowCol] = size(input.low);\nif lowRow ~= nRow || lowCol ~= nCol\n error(['problem.bounds.' name ...\n '.low must have size = [' num2str(nRow) ', ' num2str(nCol) ']']);\nend\n\n[uppRow, uppCol] = size(input.upp);\nif uppRow ~= nRow || uppCol ~= nCol\n error(['problem.bounds.' name ...\n '.upp must have size = [' num2str(nRow) ', ' num2str(nCol) ']']);\nend\n\nif sum(sum(input.upp-input.low < 0))\n error(...\n ['problem.bounds.' name '.upp must be >= problem.bounds.' name '.low!']);\nend\n\nend", "meta": {"author": "MatthewPeterKelly", "repo": "OptimTraj", "sha": "c97b57fda511dacc6a6187f683428f0f3a1965f2", "save_path": "github-repos/MATLAB/MatthewPeterKelly-OptimTraj", "path": "github-repos/MATLAB/MatthewPeterKelly-OptimTraj/OptimTraj-c97b57fda511dacc6a6187f683428f0f3a1965f2/inputValidation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665855647394, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3689108464763144}} {"text": "if ~exist('namecore','var')\n namecore = 'D10ptBMrandPSFgauss_StretchCoef2_N10_offset100_nc';\nend\nchall=2*ones(length(iteration),length(ncvec),(ncvec(end)-1)^2);\nfor ii=1:length(ncvec)\n for jj=1:length(iteration)\n% r=load (['D10ptBMrandPSFgauss_StretchCoef2_N10_offset100_nc' num2str(ncvec(ii)) '/results_iter' num2str(iteration(jj)) '.mat']);\n r=load ([namecore num2str(ncvec(ii)) '/results_iter' num2str(iteration(jj)) '.mat']);\n if isfield(r.res,'a')\n r.res.h=r.res.a;\n end\n % r=load (['results_updates_nmfclassic_nc' num2str(ncvec(ii)) '/results_iter' num2str(iteration) '.mat']);\n if isfield(r.peval,'data_dir')\n d = load(['~/' r.peval.data_path '/' r.peval.data_dir '/' r.peval.data_file]);\n elseif isfield (r.peval,'data_file')\n d=load(['~/' peval.data_path '/' peval.data_file]); \n else \n if exist('dpixc', 'var')\n d.dpixc = dpixc; \n else\n d = load ('dpixc');\n end \n end\n resid = (r.res.w*r.res.h - reshape(d.dpixc, r.peval.nx*r.peval.ny, r.peval.nt));\n % pixels correlations:\n cp = (corrcoef(resid'));\n cpmax(jj,ii) = max(cp(cp<1));\n cpmin(jj,ii) = min(cp(cp<1));\n cpmean(jj,ii) = mean(cp(cp<1));\n cpmeanpos(jj,ii) = mean(cp(and(cp>0,cp<1)));\n cpmeanneg(jj,ii) = mean(cp(cp<0)); \n % intensity correlations:\n if size(r.res.h,1)>2\n ch = corr(r.res.h(1:end-1,:)');\n chall(jj,ii,1:numel(ch))=ch(:);\n chmax(jj,ii) = max(ch(ch<1));\n % chmin(ii) = min(min(corr(r.res.h(1:end-1,:)')-eye(size(r.res.h,1)-1)));\n chmin(jj,ii) = min(ch(:));\n \n chmean(jj,ii)=mean(ch(ch<1));\n chmeanpos(jj,ii)=mean(ch(and(ch<1,ch>0)));\n chmeanneg(jj,ii)=mean(ch(ch<0));\n end\n% h=hinton(ch);\n ll(jj,ii)=loglikelihoodPoisson(reshape(d.dpixc,r.peval.nx*r.peval.ny,r.peval.nt),r.res.w*r.res.h);\n if isfield(r.res, 'lb')\n lb(jj,ii) = r.res.lb;\n end\n\n end\nend\n\n% figure\n% plot(ncvec, chmax.*(abs(chmin)),'s-r')\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/residualanalysis/correlationsinres.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.3688868604120976}} {"text": "clc;\nclear all;\nfor i=1:200\n I=imread(strcat('\\',num2str(i),'.tif'));\n Imatch_L=imread(strcat('',num2str(i),'.tif'));\n \n I1=I(:,:,1);\n I2=I(:,:,2);\n I3=I(:,:,3);\n I4=I(:,:,4);\n \n Imatch_1=imresize(Imatch_L(:,:,1),4);\n Imatch_2=imresize(Imatch_L(:,:,2),4);\n Imatch_3=imresize(Imatch_L(:,:,3),4);\n Imatch_4=imresize(Imatch_L(:,:,4),4);\n \n Jmatch1=imhist(Imatch_1);\n Iout1=histeq(I1,Jmatch1);\n \n Jmatch2=imhist(Imatch_2);\n Iout2=histeq(I2,Jmatch2);\n \n Jmatch3=imhist(Imatch_3);\n Iout3=histeq(I3,Jmatch3); \n \n Jmatch4=imhist(Imatch_4);\n Iout4=histeq(I4,Jmatch4); \n \n I_out=cat(3,Iout1,Iout2,Iout3,Iout4);\n \n imwrite(I_out,strcat('',num2str(i),'.tif'))\n \nend", "meta": {"author": "thfylsty", "repo": "Classic-and-state-of-the-art-image-fusion-methods", "sha": "5d9457df396f1ea6921e1b9b3703995205940862", "save_path": "github-repos/MATLAB/thfylsty-Classic-and-state-of-the-art-image-fusion-methods", "path": "github-repos/MATLAB/thfylsty-Classic-and-state-of-the-art-image-fusion-methods/Classic-and-state-of-the-art-image-fusion-methods-5d9457df396f1ea6921e1b9b3703995205940862/PanGAN-master/hist_match.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3688463592159916}} {"text": "function plot(catalogObject, varargin)\n %CATALOG.PLOT Plot hypocenters in map view and cross-sections\n % \n %\n % Optional name/value pairs:\n % 'nsigma' - controls how zoomed-in the axes are (default\n % 5) \n\n % Glenn Thompson 2014/06/01\n if all(isnan(catalogObject.lat))\n warning('No hypocenter data to plot');\n return\n end\n p = inputParser;\n p.addParamValue('nsigma', '5', @isstr);\n p.parse(varargin{:});\n nsigma = p.Results.nsigma;\n\n % change region\n region = get_region(catalogObject, nsigma);\n\n % Compute Marker Size\n symsize = get_symsize(catalogObject);\n\n figure;\n set(gcf,'Color', [1 1 1]);\n\n % lon-lat plot\n axes('position',[0.05 0.45 0.5 0.5]);\n scatter(catalogObject.lon, catalogObject.lat, symsize);\n grid on;\n %set(gca, 'XLim', [region(1) region(2)]);\n %set(gca, 'YLim', [region(3) region(4)]);\n xlabel('Longitude');\n\n % depth-longitude\n axes('position',[0.05 0.05 0.5 0.35]);\n scatter(catalogObject.lon, catalogObject.depth, symsize);\n ylabel('Depth (km)');\n xlabel('Longitude');\n grid on;\n set(gca, 'YDir', 'reverse');\n %set(gca, 'XLim', [region(1) region(2)]);\n\n % depth-lat\n axes('position',[0.6 0.45 0.35 0.5]);\n scatter(catalogObject.depth, catalogObject.lat, symsize);\n xlabel('Depth (km)');\n %set(gca, 'XDir', 'reverse');\n ylabel('Latitude');\n grid on;\n %set(gca, 'YLim', [region(3) region(4)]);\n\n% % world map\n% load plotEarthquakes/plates.mat\n% coast = load('coast');\n% figure\n% worldmap world\n% setm(gca,'mlabelparallel',-90,'mlabellocation',90)\n% plotm(coast.lat,coast.long,'Color','k')\n% plotm(lat,lon,'LineWidth',2)\n% \n% %% Find the first plate\n% % Look for the first NaN and stop there.\n% ind = find(isnan(lat),1,'first')\n% plotm(lat(1:ind),lon(1:ind),'Color','red','Linewidth',3)\n\nend", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/@Catalog/plot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3688463592159916}} {"text": "% NMFLAB for Signal Processing written by A. Cichocki and R. Zdunek \n% in cooperation with other members of Laboratory for Advanced Brain Signal\n% Processing, BSI, RIKEN, Saitama, JAPAN\n\nfunction [A,X,Distance_output]=nmf_smart_alg(Y,r,Index_norm,A_true,S, mc_on, NoAlts,restart_mc_on,AL,Y_true,type_alg_A,type_alg_X, max_restart,no_iter, alpha, alpha_BE, omegaX, omegaA, alphaS)\n%\n%\n% Non-negative Matrix Factorization (NMF) with Extended SMART algorithms \n%\n% [A,X]=nmf_smart_alg(Y, r, Index_norm, A_true, S, mc_on, NoAlts, restart_mc_on, AL, Y_true, type_alg_A, type_alg_X, max_restart, no_iter, \n% alpha, alpha_BE, omegaX, omegaA, alphaS)\n% returns mixing matrix A of dimension [m by r],\n% and source matrix X of dimension [r by T], for the linear mixing model: AX = Y, \n% where Y is an observation matrix [m by T]. \n% Note: > m: number of sensors,\n% > r: number of sources,\n% > T: number of samples,\n% \n% INPUTS:\n% > Index_norm: vector of 13 binary entries indicating which number\n% divergence measures are turned on in the View Options,\n%\n% > A_true: true mixing matrix (only for synthetic data),\n% > S: true source matrix (only for synthetic data), \n% > mc_on: 1 - Monte Carlo analysis enabled, 0 - otherwise, \n% > NoAlts: number of alternating steps (only for Monte Carlo\n% analysis and the option \"Fixed Alternatings\" is selected)\n% > restart_mc_on: 1 - restarts in Monte Carlo analysis are enabled,\n% 0 - otherwise, \n% > AL: mixing matrix estimaed from the preceeding layer, \n% > Y_true: the first layer mixed signals (mixtures),\n% > type_alg_A: indicates the selected algorithm for computation\n% of the mixing matrix,\n% > type_alg_X: indicates the selected algorithm for computation of the sources, \n% > no_iter: number of inner iterations, \n% > alpha: parameter \"alpha\" in the Amari alpha-divergence\n% > alpha_BE: parameter \"alpha\" in the Bose-Einstein divergence\n% > omegaX: relaxation parameter (omega) in computation of the sources, \n% > omegaA: relaxation parameter (omega) in computation of\n% the mixing matrix,\n% > alphaS: parameter of non-linear projection in computation\n% of the sources, \n% \n% OUTPUTS:\n% > A: estimated mixing matrix,\n% > X: estimated source matrix,\n% > Distance_output: structures of different divergences measured between \"Y\" and estimated \"AX\" versus iterations,\n%\n% #########################################################################\nA = [];\nX = [];\nif (nargin < 19) | isempty(alphaS) | max(size(alphaS) > 1)\n disp('Incorrect parameter alphaS');\n return\nend\nif (nargin < 18) | isempty(omegaA) | max(size(omegaA) > 1)\n disp('Incorrect parameter alpha');\n return\nend\nif (nargin < 17) | isempty(omegaX) | max(size(omegaX) > 1)\n disp('Incorrect parameter omegaX');\n return\nend\nif (nargin < 16) | isempty(alpha_BE) | max(size(alpha_BE) > 1)\n disp('Incorrect parameter alpha in the Bose_Einstein divergence');\n return\nend\nif (nargin < 15) | isempty(alpha) | max(size(alpha) > 1)\n disp('Incorrect parameter alpha');\n return\nend\nif (nargin < 14) | isempty(no_iter) | (no_iter < 1) | max(size(no_iter) > 1)\n disp('Incorrect number of inner iterations');\n return\nend\nif (nargin < 13) | isempty(max_restart) | (max_restart < 0) | max(size(max_restart) > 1)\n disp('Number of restarts must be given correctly');\n return\nend\nif (nargin < 12) | isempty(type_alg_X) | (type_alg_X < 1) | max(size(type_alg_X) > 1)\n disp('Incorrect algorithm for X');\n return\nend\nif (nargin < 11) | isempty(type_alg_A) | (type_alg_A < 1) | max(size(type_alg_A) > 1)\n disp('Incorrect algorithm for A');\n return\nend\nif (nargin < 10) | isempty(Y_true) \n disp('The first layer mixed signals are unknown');\n Y_true = zeros(size(Y_true));\nend\nif (nargin < 9) | isempty(AL) \n disp('Mixing matrix from the preceeding layer unknown');\n AL = eye(size(Y,1));\nend\nif (nargin < 8) | isempty(restart_mc_on) | max(size(restart_mc_on) > 1)\n disp('Index od restarts in MC analysis unknown');\n restart_mc_on = 0;\nend\nif (nargin < 7) | isempty(NoAlts) | max(size(NoAlts) > 1)\n disp('Adjustable number of alternatings');\n NoAlts = [];\nend\nif (nargin < 6) | isempty(mc_on) | max(size(mc_on) > 1)\n disp('No Monte Carlo Analysis');\n mc_on = 0;\nend\nif (nargin < 5) | isempty(S) \n disp('X_true not given');\nend\nif (nargin < 4) | isempty(A_true) \n disp('A_true not given');\n index_fixed_A = 1;\nelse\n index_fixed_A = 0; \nend\nif (nargin < 3) | isempty(Index_norm)\n '\"Index_norm\" must be specified'\n return\nend\nif (nargin < 2) | isempty(r)\n 'Rank of factorization must be given'\n return\nend\nif isempty(Y) | isnan(Y)\n error('No data');\n return\nend\n% test for negative values in Y\nif min(min(Y)) < 0\n disp('Some matrix entries are changed from negative to small positive');\n Y(Y< 0) = eps;\nend\nif min(sum(Y,2)) == 0\n disp('Not all entries in a row can be zero');\n return\nend\n\nif (alpha == 0) \n if (type_alg_X == 1) \n type_alg_X = 2; \n end\n if (type_alg_A == 1)\n type_alg_A = 2; \n end\nend\n\nif (type_alg_A == 12) & (size(A_true,1) ~= size(Y,1))\n disp('Multilayer technique cannot be used with A fixed');\n Distance_output = [];\n return\nend\n\n\nY = Y + eps;\n\n[m,T]=size(Y);\nniter_selected = 2000; % maximum number of iterations for the selected sample (can be adjusted)\nniter_sample = 30; % maximum number of iterations for each random sample\nepsil_normA = 1E-4; % tolerance for alternating\n\n% Monte Carlo and alternatings adjustment\nif mc_on & ~restart_mc_on\n max_restart = 0;\nend\nif ~isempty(NoAlts)\n niter_selected = NoAlts;\nend\n\n% Declaration for A and X\nA=zeros(m,r);\nAp = A;\nX=zeros(r,T);\nAinit = A;\nXinit = X;\nnr_best = -1;\nZ = zeros(m,T);\nKL_outer_temp = 0;\nnr = 0; restart_on = 0; norm_A = 10;\nm_sx = 1:m; r_sx = 1:r; T_sx = 1:T; s_dist = 0;\n\n\nwhile (nr <= max_restart)\n \n % Initialize random A and X\n if ~nr & (~mc_on | restart_mc_on) \n Ainit(m_sx',r_sx) = abs(repmat(.1*sin(2*pi*.1*m_sx'),1,r) + repmat(.1*cos(2*pi*.1*r_sx),m,1) + repmat(cos(2*pi*.471*m_sx'),1,r) + repmat(sin(2*pi*.471*r_sx),m,1));\n Ainit = Ainit/max(max(Ainit));\n \n Xinit(r_sx',T_sx) = abs(repmat(.1*sin(2*pi*.1*r_sx'),1,T) + repmat(.1*cos(2*pi*.1*T_sx),r,1) + repmat(cos(2*pi*.471*r_sx'),1,T) + repmat(sin(2*pi*.471*T_sx),r,1));\n Xinit = Xinit/max(max(Xinit));\n else\n Ainit=rand(m,r);\n Xinit=rand(r,T);\n end\n \n % Normalization of initial guess\n Ainit = Ainit*diag(1./sum(Ainit,1));\n \n if (nr == max_restart)&(max_restart > 0)\n A = A_best;\n X = X_best;\n else\n A = Ainit;\n X = Xinit;\n end % initial guess assignment\n \n Yx = zeros(m,T);\n n = 0; k = 0;\n \n \nwhile ((k <= niter_sample)&(nr < max_restart)) | ((k <= niter_selected)&(nr == max_restart)&(norm_A > epsil_normA)& isempty(NoAlts)) | ((k <= niter_selected)&(nr == max_restart)& (NoAlts > 0)) \n \nk = k + 1;\n \nif no_iter == 1\n \n switch type_alg_X\n \n case 1 % Asymmetric alpha-divergence\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = (1/alpha)*((Y./Z).^alpha - 1);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 2 % EG-DKL\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(Y./Z + eps);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 3 % EG-RAG\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(2*Y./(Z + Y) + eps);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 4 % EG-SAG\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(2*sqrt(Y.*Z)./(Z + Y) + eps) + (Y - Z)./Z ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 5 % EG-DJ\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = .5*log(Y./Z + eps) + .5*(Y - Z)./Z ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 6 % EG-RJS\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = (Y - Z)./(Y + Z) ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 7 % EG-DRJS\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = 2*log(.5*(Y + Z)./Z) + (Z - Y)./(Y + Z);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 8 % EG-SJS\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(.5*(Y + Z)./Z + eps) ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n \n case 9 % EG-Tri\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = (2*Y./(Y + Z)).^2 - 1;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 10 % EG-BE\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = alpha_BE*log((Y + alpha_BE*Z)./((1 + alpha_BE)*Z) + eps);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1 + alphaS); \n \n case 11 % Pinv\n \n X = max(1E6*eps,pinv(A)*Y); \n \n case 12 % Fixed X\n \n X = S + eps; \n niter_selected = 1000; % maximum number of iterations for the selected sample (can be adjusted) \n X = diag(sum(X,2))*X;\n \n end % switch for X\n \n switch type_alg_A\n \n case 1 % Asymmetric alpha-divergence\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = (1/alpha)*((Y./Z).^alpha - 1);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 2 % EG-DKL\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(Y./Z + eps);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 3 % EG-RAG\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(2*Y./(Z + Y) + eps);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 4 % EG-SAG\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(2*sqrt(Y.*Z)./(Z + Y) + eps) + (Y - Z)./Z ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 5 % EG-DJ\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = .5*log(Y./Z + eps) + .5*(Y - Z)./Z ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 6 % EG-RJS\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = (Y - Z)./(Y + Z) ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 7 % EG-DRJS\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = 2*log(.5*(Y + Z)./Z) + (Z - Y)./(Y + Z);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 8 % EG-SJS\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(.5*(Y + Z)./Z + eps) ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n \n case 9 % EG-Tri\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = (2*Y./(Y + Z)).^2 - 1;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 10 % EG-BE\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = alpha_BE*log((Y + alpha_BE*Z)./((1 + alpha_BE)*Z) + eps);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 11 % Pinv\n \n Ap = A; \n A = max(1E6*eps,Y*pinv(X')'); \n A = A*diag(1./sum(A,1)); \n \n case 12 % Fixed A\n \n niter_selected = 1000; % maximum number of iterations for the selected sample (can be adjusted)\n A = A_true + eps; \n A = A*diag(1./(sum(A,1) + eps));\n \n end % switch for A\n \n \nelse % no_iter\n \n\n for t = 1:no_iter\n \n switch type_alg_X\n \n case 1 % Asymmetric alpha-divergence\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = (1/alpha)*((Y./Z).^alpha - 1);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 2 % EG-DKL\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(Y./Z + eps);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 3 % EG-RAG\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(2*Y./(Z + Y) + eps);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 4 % EG-SAG\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(2*sqrt(Y.*Z)./(Z + Y) + eps) + (Y - Z)./Z ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 5 % EG-DJ\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = .5*log(Y./Z + eps) + .5*(Y - Z)./Z ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 6 % EG-RJS\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = (Y - Z)./(Y + Z) ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 7 % EG-DRJS\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = 2*log(.5*(Y + Z)./Z) + (Z - Y)./(Y + Z);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 8 % EG-SJS\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = log(.5*(Y + Z)./Z + eps) ;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 9 % EG-Tri\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = (2*Y./(Y + Z)).^2 - 1;\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 10 % EG-BE\n \n gamma_m = sum(A,1);\n Z = A*X + eps;\n Q = alpha_BE*log((Y + alpha_BE*Z)./((1 + alpha_BE)*Z) + eps);\n X = (X.*exp(diag(omegaX./gamma_m)*(A'*Q))).^(1+alphaS); \n \n case 11 % Pinv\n \n X = max(1E6*eps,pinv(A)*Y); \n \n case 12 % Fixed X\n \n X = S + eps; \n niter_selected = 1000; % maximum number of iterations for the selected sample (can be adjusted) \n X = diag(sum(X,2))*X;\n \n end % switch for X\n \n end % for t in X\n\n for t = 1:no_iter\n \n switch type_alg_A\n \n case 1 % Asymmetric alpha-divergence\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = (1/alpha)*((Y./Z).^alpha - 1);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 2 % EG-DKL\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(Y./Z + eps);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 3 % EG-RAG\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(2*Y./(Z + Y) + eps);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 4 % EG-SAG\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(2*sqrt(Y.*Z)./(Z + Y) + eps) + (Y - Z)./Z ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 5 % EG-DJ\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = .5*log(Y./Z + eps) + .5*(Y - Z)./Z ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 6 % EG-RJS\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = (Y - Z)./(Y + Z) ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 7 % EG-DRJS\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = 2*log(.5*(Y + Z)./Z) + (Z - Y)./(Y + Z);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 8 % EG-SJS\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = log(.5*(Y + Z)./Z + eps) ;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n \n case 9 % EG-Tri\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = (2*Y./(Y + Z)).^2 - 1;\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 10 % EG-BE\n \n Ap = A; \n gamma_T = (sum(X,2))';\n Z = A*X + eps;\n Q = alpha_BE*log((Y + alpha_BE*Z)./((1 + alpha_BE)*Z) + eps);\n A = A.*exp(Q*X'*diag(omegaA./gamma_T));\n A = A*diag(1./(sum(A,1) + eps)); \n \n case 11 % Pinv\n \n Ap = A; \n A = max(1E6*eps,Y*pinv(X')'); \n A = A*diag(1./sum(A,1)); \n \n case 12 % Fixed A\n \n niter_selected = 1000; % maximum number of iterations for the selected sample (can be adjusted)\n A = A_true + eps; \n A = A*diag(1./(sum(A,1) + eps)); \n \n end % switch for A \n \n end % for t in A\n \n \nend % if no_iter\n \n if (nr == max_restart)&(mod(k,50)==0)& (~mc_on | restart_mc_on)\n norm_A = norm(abs(A - Ap),'fro');\n fprintf(1, 'Restart %d, %d-th alternating step\\n',nr_best+1,k);\n end\n \n if sum(Index_norm)\n if (nr == max_restart) & (((k < 50) & (mod(k,5)==0)) | ((k>49) & ((mod(k,50)==0)))) \n \n s_dist = s_dist + 1;\n k_select(s_dist) = k;\n Z = A*X + eps;\n Z = diag(1./sqrt(var(Z')))*Z;\n \n dist_Fro(s_dist) = norm(Y - Z,'fro'); \n dist_KL(s_dist) = sum(sum(Y.*log(Y./Z + eps) - Y + Z)); \n dist_KL2(s_dist) = sum(sum(Z.*log(Z./Y + eps) + Y - Z)); \n dist_Pearson(s_dist) = sum(sum( ((Y - Z).^2)./Z ));\n dist_Hellinger(s_dist) = sum(sum( (sqrt(Z) - sqrt(Y)).^2 )); \n dist_JS_rel(s_dist) = sum(sum(2*Y.*log(2*Y./(Y + Z) + eps) + Z - Y)); \n dist_JS_rel2(s_dist) = sum(sum(2*Z.*log(2*Z./(Y + Z) + eps) - Z + Y)); \n Zy = Y + Z; \n dist_JS(s_dist) = sum(sum(Y.*log(2*Y./Zy + eps) + Z.*log(2*Z./Zy + eps) )); \n dist_AG_rel(s_dist) = sum(sum(Zy.*log(.5*Zy./Y + eps) + Y - Z)); \n dist_AG(s_dist) = sum(sum(.5*Zy.*log(.5*Zy./sqrt(Y.*Z) + eps))); \n dist_J(s_dist) = sum(sum( .5*(Y - Z).*log(Y./Z + eps) )); \n dist_Chi(s_dist) = sum(sum( ((Y + Z).*(Y - Z).^2)./(Y.*Z) )); \n dist_Tria(s_dist) = sum(sum( ((Y - Z).^2)./(Y + Z) )); \n end % if multiple\n end % if sum\n \nend % while (k)\n\n% Outer KL divergence\nZ = AL*A*X; \nZ_outer = norm(Z,'fro') + eps;\nKL_outer = sum(sum(Y_true.*log((Y_true + eps)./(Z + eps)) - Y_true + Z))/Z_outer;\n \n if (nr == 0) | (KL_outer < KL_outer_temp)\n A_best = A; X_best = X; KL_outer_temp = KL_outer; nr_best = nr;\n end % multi-conditions\n \n nr = nr + 1;\n \n if nr <=max_restart\n fprintf(1, 'Restart %d, Kullback-Leibler divergence = %e\\n',\tnr, KL_outer);\n end\n \nend % while (restarts)\n\nX(X <= 0) = eps;\n\nDistance_output = cell(length(s_dist),1);\nDistance_output(1) = {[]};\nDistance_output(2) = {[]};\nDistance_output(3) = {[]};\nDistance_output(4) = {[]};\nDistance_output(5) = {[]};\nDistance_output(6) = {[]};\nDistance_output(7) = {[]};\nDistance_output(8) = {[]};\nDistance_output(9) = {[]};\nDistance_output(10) = {[]};\nDistance_output(11) = {[]};\nDistance_output(12) = {[]};\nDistance_output(13) = {[]};\nDistance_output(14) = {[]};\n\nif sum(Index_norm)\n Distance_output(1) = {k_select}; \n Distance_output(2) = {dist_Fro};\n Distance_output(3) = {dist_KL};\n Distance_output(4) = {dist_KL2};\n Distance_output(5) = {dist_Pearson};\n Distance_output(6) = {dist_Hellinger};\n Distance_output(7) = {dist_JS_rel};\n Distance_output(8) = {dist_JS_rel2};\n Distance_output(9) = {dist_JS};\n Distance_output(10) = {dist_AG_rel};\n Distance_output(11) = {dist_AG};\n Distance_output(12) = {dist_J};\n Distance_output(13) = {dist_Chi};\n Distance_output(14) = {dist_Tria};\nend\n\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/NMFLABSP_ver1.2/nmf_smart_alg.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3688463592159916}} {"text": "function [pgr] = create_grid(pts, follow_meridians, trim_final_grid_to_shape)\n % Interactively define a grid\n %\n % CREATE_GRID will create a ZmapGrid interactively. Upon closing the window or choosing \"Set\"\n % the global ZmapData.Grid will be updated.\n %\n % CREATE_GRID(PTS) PTS is a polygon. only grid points with PTS will be shown\n % GR is all data points, as [lon,lat; ...]\n % ZGR is a ZmapGrid.\n % CREATE_GRID(PTS, FOLLOW_MERIDIANS) if FOLLOW_MERIDIANS is false, then distances are constant.\n % if FOLLOW_MERIDIANS is TRUE, then degrees of longitude are constant.\n %\n % Choose an origin point\n % Choose a point to define initial spacing\n % Use scroll Wheel to change spacing\n % Drag Point to change origin\n %\n % tests:\n % create_grid('testpoly')\n % create_grid('testworld');\n %\n % If FOLLOW_MERIDIANS is true, then grid gets smaller as pole is approached.\n % Unfortunately, routines like pcolor this is necessary for pcolor, when Y axis is a lon.\n % This could be avoided if coordinate system was transformed into X-Y.\n %\n % When FOLLOW_MERIDIANS is false, then longitudes drift in order to keep consistent sized boxes.\n \n % TODO: add edit fields that allow grid to be further modified\n % TODO: add SAVE and LOAD buttons\n % TODO: make this work with gridfun\n \n \n FOLLOW_MERIDIANS = exist('follow_meridians','var') && follow_meridians;\n USEPOLY=exist('pts','var') && ~isempty(pts) && ~isnan(pts(1));\n name='grid';\n changed=false;\n \n ZG=ZmapGlobal.Data;\n \n f=figure('Name','Grid Selection','Units','pixels','Position',[200 75 730 700]);\n \n % DISPLAY EVENTS\n ax=subplot(4,4,[1,11]);\n ax.Units='points';\n ax.Position=fix(ax.Position);\n plot(ax,ZG.primeCatalog.Longitude,ZG.primeCatalog.Latitude,'.',...\n 'color',[.75 .75 .8],'DisplayName','events');\n ax.XLabel.String='longitude';\n ax.YLabel.String='latitude';\n ax.NextPlot='add';\n \n if exist('pts','var') && ischar(pts)\n switch pts\n case 'testpoly'\n pts =[... % SAMPLE POLYGON, FOR TESTING\n 7.3500 47.8007;...\n 8.3187 47.5009;...\n 8.8392 46.6736;...\n 8.4633 46.0321;...\n 7.4801 45.7263;...\n 6.5548 46.7095;...\n 7.3500 47.8007...\n ];\n case 'testworld'\n USEPOLY=false\n clear pts\n axis([0 90 -20 80])\n end\n end\n \n %DISPLAY SURFACE FEATURES\n copyobj(ZG.features('borders'),ax);\n \n % DISPLAY POLYGON\n if USEPOLY\n plot(ax, pts(:,1),pts(:,2),'k:','LineWidth',2,'DisplayName','polygon');\n end\n \n legend(ax,'show')\n \n % SHOW INSTRUCTIONS\n t = uicontrol('style','text','units','pixels','position',[10 10 300 20],'String','temporary');\n \n % FEEDBACK\n tp = uicontrol('style','text','Units','pixels','Position',[10 50 300 20],'String','N Points: ???');\n d = uicontrol('style','text','Units','pixels','Position',[10 30 300 20],'String','Dist: ???? (deg) [???? (km)]');\n \n % ADDITIONAL CONTROLS\n uicontrol('style','pushbutton','Units','pixels','Position',[310 30 50 20],'String','SET','Callback',@set_grid);\n uicontrol('style','edit','Units','pixels','Position',[310 70 50 20],...\n 'String',name,'Callback',@(~,~)update_plot());\n \n uicontrol('style','checkbox','Units','pixels','Position',[310 100 80 20],'String','Follow Meridians? (adjusts for lat)','Callback',@toggle_parallels);\n % SELECT FIXED POINT\n write_string(t,'Enter a fixed point for the grid');\n [fixed_x,fixed_y]=ginput(1);\n fp=plot(ax,fixed_x,fixed_y,'b+','LineWidth',2,'DisplayName','Origin');\n instruction_end(t);\n \n % SELECT OTHER POINT\n write_string(t,'Click at a distance that will define a grid');\n [x2,y2]=ginput(1);\n %tmph=plot(ax,x2,y2,'bo','LineWidth',2)\n instruction_end(t);\n \n dx = abs(x2-fixed_x);\n dy = abs(y2-fixed_y);\n \n % SELECT INITIAL GRID\n gpts_h2=plot(nan,nan,'gx','DisplayName','grid');\n \n update_plot();\n \n f.WindowScrollWheelFcn=@adjust_grid;\n f.WindowButtonDownFcn=@mouse_down;\n f.WindowButtonUpFcn=@mouse_up;\n f.DeleteFcn=@check_for_save;\n \n write_string(t,'Scroll the mouse wheel to scale')\n if nargout > 0\n waitfor(f);\n pgr =ZG.Grid;\n end\n \n \n function adjust_grid(~,ev)\n % adjust grid spacing when mouse wheel is scrolled\n scale=1.05;\n %disp(ev)\n if ev.VerticalScrollCount > 0\n dx=dx.*scale;\n dy=dy.*scale;\n elseif ev.VerticalScrollCount < 0\n dx=dx./scale;\n dy=dy./scale;\n end\n update_plot();\n end\n \n function set_grid(~,~)\n ZG.Grid=ZmapGrid(name,pgr.xs, pgr.ys, 'deg');\n if FOLLOW_MERIDIANS\n ZG.gridopt = GridOptions(deg2km(dx),deg2km(dy),[],'deg', FOLLOW_MERIDIANS);\n else\n ZG.gridopt = GridOptions(dx, dy, [], 'km', FOLLOW_MERIDIANS);\n end\n changed=false;\n end\n \n function toggle_parallels(src,~)\n FOLLOW_MERIDIANS=src.Value==1;\n update_plot();\n end\n \n function update_plot()\n changed=true;\n [gx,gy]=get_eq_grid(fixed_x,fixed_y,dx,dy);\n if USEPOLY\n ll=polygon_filter(pts(:,1),pts(:,2),gx(:),gy(:),'inside');\n else\n ll=true(size(gx(:)));\n end\n % plot points inside polygon, but grid still covers entire map.\n gpts_h2.XData=gx(ll);\n gpts_h2.YData=gy(ll);\n \n pgr.xs=gx;\n pgr.ys=gy;\n disp(pgr)\n \n % trim pgr to polygon before returning. Maybe I shouldn't!\n if USEPOLY && exist('trim_final_grid_to_shape','var') && trim_final_grid_to_shape\n ll=polygon_filter(pts(:,1),pts(:,2),pgr.xs,pgr.ys,'inside');\n pgr.xs(~ll)=nan;\n pgr.ys(~ll)=nan;\n end\n \n pgr=trim_nans(pgr);\n \n tp.String=sprintf('N Points: %d',sum(ll));\n end\n \n function [lonMat,latMat] = get_eq_grid(lon0,lat0,dLon,dLat)\n % GET_EQ_GRID\n % input is the origin point and arclength between points\n % output is 2 matrices (lon, lat)\n \n % base grid on a single distance, so that instead of separate dx & dy, we use dd\n dist_arc = max([...\n distance(lat0,lon0,lat0,lon0+dLon,'degrees'),...\n distance(lat0,lon0,lat0+dLat,lon0,'degrees')]);\n \n d.String=sprintf('Dist: %.3f (deg) [%.3f (km)]',dist_arc,deg2km(dist_arc));\n \n % use the axes limits (assumed degrees) to control size of grid\n ylims_deg = ylim(ax);\n xlims_deg = xlim(ax);\n \n % pick out latitude spacing. Our grid will have this many rows.\n lats = vector_including_origin(lat0, dist_arc, ylims_deg);\n lonMat=[];\n latMat=[];\n \n if FOLLOW_MERIDIANS\n % when following the meridian lines, the longitude span covered by\n % the arc-distance at lat0 (along the rhumb!) remains constant.\n % that is, dLon 45 from origin (0,0) will always be 45, regardless of latitude.\n [~,dLon]=reckon('rh',lat0,0,dist_arc,90);\n \n % resulting in a rectangular matrix where, on a globe lines will converge, but on a graph\n lonValues = vector_including_origin(lon0, dLon, xlims_deg);\n \n %creates a meshgrid of size numel(lonValues) x numel(lats)\n [lonMat,latMat]=meshgrid(lonValues,lats);\n \n else\n % when ignoring meridian lines, and aiming for an approximately constant distance,\n % the dLon at each latitude will differ.\n \n % number of degrees longitude covered by the arclength at each latitude\n [~,dLon_per_lat]=reckon('rh',lats,0,dist_arc,90);\n \n for n=1:numel(lats)\n theseLonValues = vector_including_origin(lon0, dLon_per_lat(n), xlims_deg);\n lonMat=[lonMat;theseLonValues(:)]; %#ok\n latMat=[latMat;repmat(lats(n),size(theseLonValues(:)))]; %#ok\n end\n \n [lonMat,latMat] = cols2matrix(lonMat,latMat);\n % each gridx & gridy are vectors.\n end\n end\n \n function v = vector_including_origin(orig_deg, delta_deg, lims_deg)\n v = unique([orig_deg : -delta_deg : min(lims_deg) , orig_deg : delta_deg :max(lims_deg)]);\n end\n \n \n function [xs, ys] = cols2matrix(lonCol,latCol)\n % COLS2MATRIX convert columns of lats & lons into a matrix.\n % this takes lots of stuff into account\n %\n \n % assign pgrid\n ugy=unique(latCol); % lats in matrix\n nrows=numel(ugy); % number of latitudes in matrix\n [~,example]=min(abs(latCol(:))); % latitude closest to equator will have most number of lons in matrix\n mostCommonY=latCol(example); % account for the abs possibly flipping signs\n base_lon_idx=find(lonCol(latCol==mostCommonY)==fixed_x); % longitudes that must line up\n ncols=sum(latCol(:)==mostCommonY); % most number of lons in matrix\n ys=repmat(ugy(:),1,ncols);\n xs=nan(nrows,ncols);\n for n=1:nrows\n thislat=ugy(n); % lat for this row\n idx_lons=(latCol==thislat); % mask of lons in this row\n these_lons=lonCol(idx_lons); % lons in this row\n row_length=numel(these_lons); % number of lons in this row\n \n main_lon_idx=find(these_lons==fixed_x); % offset of X in this row\n offset=base_lon_idx - main_lon_idx;\n xs(n,(1:row_length)+offset)=these_lons;\n end\n end\n \n function mouse_down(src,~)\n %mouse down, so make origin follow mouse around\n %disp(ev)\n %disp(ax.CurrentPoint)\n src.WindowButtonMotionFcn=@mouse_move;\n %disp(' ');\n src.Pointer='cross';\n end\n \n function mouse_up(src,~)\n %mouse up, so ignore position\n %disp(ev)\n %disp(ax.CurrentPoint);\n src.WindowButtonMotionFcn='';\n %disp(' ');\n update_plot()\n src.Pointer='arrow';\n end\n \n function mouse_move(~,~)\n fixed_x=ax.CurrentPoint(1,1);\n fixed_y=ax.CurrentPoint(1,2);\n fp.XData=fixed_x;\n fp.YData=fixed_y;\n end\n \n function check_for_save(~,~)\n if changed\n dosave=questdlg('Save Changes?','Grid Creation','Yes','No','Yes');\n if strcmpi(dosave,'Yes')\n set_grid([],[]);\n end\n end\n end\n \nend\n\n\nfunction write_string(h,str)\n for i=1:length(str)-1\n h.String=[str(1:i),'..'];\n pause(.01);\n end\n h.String=str;\nend\n\nfunction instruction_end(h)\n h.ForegroundColor=[0 .5 0];\n pause(.3);\n h.String='';\n h.ForegroundColor='k';\nend\n\nfunction pgr=trim_nans(pgr)\n % REMOVE GRID POINTS BEYOND POLYGON (rows & cols of all nans)\n nanrows=all(isnan(pgr.xs),2);\n nancols=all(isnan(pgr.xs),1);\n pgr.xs(nanrows,:)=[];pgr.xs(:,nancols)=[];\n pgr.ys(nanrows,:)=[];pgr.ys(:,nancols)=[];\nend\n\n%{\nfunction c=mycontext()\n c=uicontextmenu('Tag','GridContext')\n \n uimenu(c,'Label','Select Rectangle');\n uimenu(c,'Label','Select Circle');\n uimenu(c,'Label','Select Polygon');\n uimenu(c,'Separator','on','Label','Create Polygon');\nend\n%}\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/create_grid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3688463523853894}} {"text": "classdef math_model_opf_accs < mp.math_model_opf_acc\n%MP.MATH_MODEL_OPF_ACCS MATPOWER mathematical model for AC optimal power flow (OPF) problem.\n% ?\n%\n% MP.MATH_MODEL_OPF_ACCS ... power flow ...\n%\n% Properties\n% ? - ?\n%\n% Methods\n% ?\n\n% MATPOWER\n% Copyright (c) 2021-2022, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\n% properties\n% end\n\n methods\n function tag = form_tag(obj)\n tag = 'accs';\n end\n\n function name = form_name(obj)\n name = 'AC-cartesian-power';\n end\n\n function add_node_balance_constraints(obj, nm, dm, mpopt)\n %% power balance constraints\n nn = nm.node.N; %% number of nodes\n fcn_mis = @(x)obj.nodal_power_balance_fcn(x, nm);\n hess_mis = @(x, lam)obj.nodal_power_balance_hess(x, lam, nm);\n obj.add_nln_constraint({'Pmis', 'Qmis'}, [nn;nn], 1, fcn_mis, hess_mis);\n end\n\n function [lam_p, lam_q] = node_power_balance_prices(obj, nm)\n %% shadow prices on node power balance\n nne = obj.get_idx('nle');\n lambda = obj.soln.lambda;\n lam_p = lambda.eqnonlin(nne.i1.Pmis:nne.iN.Pmis);\n lam_q = lambda.eqnonlin(nne.i1.Qmis:nne.iN.Qmis);\n end\n end %% methods\nend %% classdef\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/+mp/math_model_opf_accs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.3687284168802606}} {"text": "% RMSEANALYSIS RMSE analysis for slamtb.\n% RMSEANALYSIS is a script for evaluating average RMSE performance of\n% slamtb. It uses a slave version of SLAMTB, called SLAMTBSLAVE, and runs\n% it for N times with different kinds of landmarks.\n%\n% Specify the types of landmarks in variable: lmkTypes.\n% Specify the number of runs for each lmk in: numRuns.\n% Specify the length of each run in : numFrames.\n% Specify the destination of log files in : logsDir.\n% Specify the rendering period in : rendPeriod.\n% Specify lmk parametrization with the flag : reparametrize.\n% Specify N random seeds in : randSeeds.\n%\n% The result of this process is a set of log files. The contents of these\n% files can be plotted with NEESPLOTS.\n%\n% See also SLAMTBSLAVE, NEESPLOTS, NEES, ROBOTNEES.\n\nerrorAnalysisFunction = @robotRmse;\nlogsDir = '~/SLAM/logs/pose6d/RMSE/test/';\nlogFileHeader = 'frame, err: x y z r p y, std: x y z r p y';\n\n% lmkTypes = {'ahmPnt'};\n% lmkTypes = {'hmgPnt','idpPnt','ahmPnt'};\n% lmkTypes = {'hmgPnt'};\nlmkTypes = {'idpPnt'};\n% lmkTypes = {'idpPnt','ahmPnt'};\n% lmkTypes = {'plkLin','aplLin','hmgLin','ahmLin','idpLin'};\n% lmkTypes = {'aplLin','idpLin','ahmLin'};\n% lmkTypes = {'idpLin','ahmLin'};\n% lmkTypes = {'aplLin'};\n% lmkTypes = {'plkLin','aplLin'};\n\nnumRuns = 25;\nnumFrames = 400;\n\nrendPeriod = 40;\nreparametrize = false;\npixelNoise = 1;\nnoiseFactor = 1;\n\n% randSeeds = round(10000*rand(1,numRuns));\n\nrandSeeds = [8687 8440 3999 2599 8001 4314 9106 1818 2638 1455 1361 8693 5797 5499 1450 8530 6221 3510 5132 4018 7600 2399 1233 1839 2400];\n% save [logsDir 'randSeeds.log'] randSeeds -ascii\n\nfor l = 1:numel(lmkTypes)\n lmkType = lmkTypes{l};\n for nRun = 1:numRuns\n disp(' ')\n disp('==============================')\n fprintf('Lmk type: %s -- Run #: %d\\n',lmkType, nRun);\n disp('==============================')\n logFileName = [logsDir lmkType '-rmse-' num2str(nRun,'%02d') '.log'];\n% logFileName = [lmkType '-' num2str(nRun,'%02d') '.log']\n slamtbSlave;\n end\nend\n\nrmsePlots;\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/DataManagement/rmseAnalysis.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587586, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3687284102704965}} {"text": "% SCRIPT TO TEST THE DIRECT DYNAMICS OF THE PUMA 560 ROBOT\n\n% Copyright (C) 2012, by Arturo Gil Aparicio\n%\n% This file is part of ARTE (A Robotics Toolbox for Education).\n% \n% ARTE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% ARTE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Lesser General Public License\n% along with ARTE. If not, see .\nfprintf('\\nTHE SIMULATION PRESENTS THE ROBOT AT AN INITIAL POSITION WHEN NO TORQUES ARE APPLIED\\n')\n\n%load robot parameters\nrobot=load_robot('ABB', 'IRB140');\n\n\ntotal_simulation_time = 0.5 %simulate for .5 second\n\n%initial position and joint speeds\nq0 = [0 0 0 0 0 0]';\nqd0 = [0 0 0 0 0 0]';\n\ng=[0 0 -9.81]'; %Z0 axis\n\ndrawrobot3d(robot, q0);\nadjust_view(robot);\n\n%try both\ntau = [0 0 0 0 0 0]';%no torques applied%\n%tau = [0 200 1 1 1 1]';\n%tau = [20 20 21 21 21 21]';\n\n%no friction\nrobot.motors.friction = 1;\n\nfprintf('\\nCOMPUTING FORWARD DYNAMICS (this may take a while)')\n\n%this may take a while, since it requires integration\n%of the acceleration at each time step\n%[t q qd] = forwarddynamic(robot, total_simulation_time, q0, qd0, tau, [0 0 9.81]);\n %forwarddynamic(robot, time_end, q0, qd0, tau, g, torqfun, varargin)\n[t q qd] = forwarddynamic(robot, total_simulation_time, q0, qd0, tau, g, []);\n\nfigure, plot(t, q), grid, title('Position vs. time')\nxlabel('time (s)'), ylabel('Position (rad)')\nlegend('q_1', 'q_2', 'q_3', 'q_4', 'q_5', 'q_6');\n\nfigure, plot(t, qd), grid, title('Speed vs. time')\nxlabel('time (s)'), ylabel('Speed (rad/s)')\nlegend('qd_1', 'qd_2', 'qd_3', 'qd_4', 'qd_5', 'qd_6');\n\n%animate it!!\nanimate(robot, q)", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/demos/forwarddynamics_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.36872841027049647}} {"text": "function [teE, teW] = nfgCompareAllVolumeTrueError(fgG,g_bundleID,g_radius,fibersSel,iBundleSel,phantomDir)\n%Compare volume of all fiber matches using trueError program.\n%\n% [teE, teW] =\n% nfgCompareAllVolumeTrueError(fgG,g_bundleID,g_radius,fibersSel,iBundleS\n% el,phantomDir)\n%\n%\n%\n% NOTES: \n\n\n% if ieNotDefined('projName'); projName = 'projectome'; end\n\n% XXX THE BELOW TEST MUST BECOME GENERIC\n% First lets find the optimum radius for the trueError test using a\n% particular bundle\ndisp('Searching for near optimal test diameter ...');\nselID = 4;\nsMask = zeros(size(iBundleSel));\ngMask = zeros(size(g_bundleID));\nfor ss=selID\n sMask = sMask | iBundleSel==ss;\n gMask = gMask | g_bundleID==ss;\nend\nvRadiusTE = 0.01:0.005:0.03;\nfgSS = dtiNewFiberGroup();\nfgGS = dtiNewFiberGroup();\nfgSS.fibers = fibersSel(sMask);\nfgGS.fibers = fgG.fibers(gMask);\n[imgE] = nfgCompareVolumeTrueError(fgGS, fgSS, g_radius(1), vRadiusTE, phantomDir);\n[mIE, iIE] = min(imgE);\nte_radius = vRadiusTE(iIE);\n% te_radius = 0.014;\ndisp(['Found optimal diameter = ' num2str(te_radius*2) 'mm.']);\n\n% Calculate arclengths of all bundles found in projectome and in gold\nteE = zeros(1,max(g_bundleID));\nteW = zeros(1,max(g_bundleID));\nfgSS = dtiNewFiberGroup();\nfgGS = dtiNewFiberGroup();\nfor bb=1:max(g_bundleID)\n disp(['Computing volume for bundle ' num2str(bb) ' ...']);\n fgSS.fibers = fibersSel(iBundleSel==bb);\n fgGS.fibers = fgG.fibers(g_bundleID==bb);\n if isempty(fgSS.fibers)\n if ~isempty(fgGS.fibers)\n teE(bb) = 100;\n end\n else\n [teE(bb), teW(bb)] = nfgCompareVolumeTrueError(fgGS, fgSS, g_radius(bb), te_radius, phantomDir);\n end\n \nend\n\nreturn;", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/nfg/nfgCompareAllVolumeTrueError.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.36872841027049647}} {"text": "function value = r8_big ( )\n\n%*****************************************************************************80\n%\n%% R8_BIG returns a \"big\" real number.\n%\n% Discussion:\n%\n% The value returned by this function is NOT required to be the\n% maximum representable R8. \n% We simply want a \"very large\" but non-infinite number.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 27 September 2014\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Output, real VALUE, a huge number.\n%\n value = 1.0E+30;\n\n return\nend\n\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/r8lib/r8_big.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.6992544210587585, "lm_q1q2_score": 0.36872841027049647}} {"text": "classdef BOWImgDescriptorExtractor < handle\n %BOWIMGDESCRIPTOREXTRACTOR Class to compute an image descriptor using the bag of visual words\n %\n % Such a computation consists of the following steps:\n %\n % 1. Compute descriptors for a given image and its keypoints set.\n % 2. Find the nearest visual words from the vocabulary for each keypoint\n % descriptor.\n % 3. Compute the bag-of-words image descriptor as is a normalized\n % histogram of vocabulary words encountered in the image. The i-th bin\n % of the histogram is a frequency of i-th word of the vocabulary in\n % the given image.\n %\n % ## Example\n %\n % % create bag of visual words\n % trainer = cv.BOWKMeansTrainer(K);\n % dictionary = trainer.cluster(train_descs);\n %\n % % Compute histogram of visual word occurrences of an image\n % extractor = cv.BOWImgDescriptorExtractor('SIFT','BruteForce');\n % extractor.Vocabulary = dictionary;\n % descs = extractor.compute(im, keypoints);\n %\n % See also: cv.BOWImgDescriptorExtractor.BOWImgDescriptorExtractor,\n % cv.BOWKMeansTrainer, bagOfFeatures, trainImageCategoryClassifier,\n % imageCategoryClassifier, indexImages, retrieveImages\n %\n\n properties (SetAccess = private)\n % Object ID\n id\n end\n\n properties (Dependent)\n % Visual vocabulary\n %\n % Vocabulary (can be trained using cv.BOWKMeansTrainer). Each row of\n % the vocabulary is a visual word (cluster center).\n Vocabulary\n end\n\n methods\n function this = BOWImgDescriptorExtractor(dextractor, dmatcher)\n %BOWIMGDESCRIPTOREXTRACTOR The constructor\n %\n % extractor = cv.BOWImgDescriptorExtractor(dextractor, dmatcher)\n % extractor = cv.BOWImgDescriptorExtractor({dextractor, 'key',val,...}, {dmatcher, 'key',val,...})\n %\n % ## Input\n % * __dextractor__ Descriptor extractor that is used to compute\n % descriptors for an input image and its keypoints. It can be\n % specified by a string containing the type of descriptor\n % extractor, such as 'SIFT' or 'SURF'. See\n % cv.DescriptorExtractor.DescriptorExtractor for possible types.\n % * __dmatcher__ Descriptor matcher that is used to find the\n % nearest word of the trained vocabulary for each keypoint\n % descriptor of the image. It can be spacified by a string\n % specifying the type of descriptor extractor, such as\n % 'BruteForce' or 'BruteForce-L1'. See\n % cv.DescriptorMatcher.DescriptorMatcher for possible types.\n % default 'BruteForce'\n %\n % In the first variant, it creates descriptor extractor/matcher of\n % the given types using default parameters (by calling the default\n % constructors).\n %\n % In the second variant, it creates descriptor extractor/matcher\n % of the given types using the specified options. Each algorithm\n % type takes optional arguments. Each of the extractor/matcher are\n % specified by a cell-array that starts with the type name\n % followed by option arguments, as in:\n % `{'Type', 'OptionName',optionValue, ...}`. Refer to the\n % individual extractor/matcher functions to see a list of possible\n % options of each algorithm.\n %\n % ## Example\n %\n % % first variant\n % extractor = cv.BOWImgDescriptorExtractor('ORB', 'BruteForce');\n %\n % % second variant\n % extractor = cv.BOWImgDescriptorExtractor(...\n % {'FastFeatureDetector', 'Threshold',10}, ...\n % {'BFMatcher', 'NormType','L2'});\n %\n % See also: cv.DescriptorExtractor, cv.DescriptorMatcher\n %\n if nargin < 2, dmatcher = 'BruteForce'; end\n this.id = BOWImgDescriptorExtractor_(0, 'new', dextractor, dmatcher);\n end\n\n function delete(this)\n %DELETE Destructor\n %\n % extractor.delete()\n %\n % See also: cv.BOWImgDescriptorExtractor\n %\n if isempty(this.id), return; end\n BOWImgDescriptorExtractor_(this.id, 'delete');\n end\n\n function sz = descriptorSize(this)\n %DESCRIPTORSIZE Returns image discriptor size\n %\n % sz = extractor.descriptorSize()\n %\n % ## Output\n % * __sz__ Returns an image discriptor size if the vocabulary is\n % set. Otherwise, it returns 0.\n %\n % This is basically `size(Vocabulary,1)` (i.e number of clusters).\n %\n % See also: cv.BOWImgDescriptorExtractor.descriptorType\n %\n sz = BOWImgDescriptorExtractor_(this.id, 'descriptorSize');\n end\n\n function dtype = descriptorType(this)\n %DESCRIPTORTYPE Returns image descriptor type\n %\n % dtype = extractor.descriptorType()\n %\n % ## Output\n % * __dtype__ Returns an image descriptor type, one of numeric\n % MATLAB class names.\n %\n % Always `single` for BOWImgDescriptorExtractor.\n %\n % See also: cv.BOWImgDescriptorExtractor.descriptorSize,\n % cv.DescriptorExtractor.descriptorType\n %\n dtype = BOWImgDescriptorExtractor_(this.id, 'descriptorType');\n end\n\n function [bow,idx,kptDescs] = compute(this, img, keypoints)\n %COMPUTE Computes an image descriptor using the set visual vocabulary\n %\n % [bow,idx,kptDescs] = extractor.compute(img, keypoints)\n %\n % ## Input\n % * __img__ Image, for which the descriptor is computed.\n % * __keypoints__ Keypoints detected in the input image. It is a\n % struct array that is returned by cv.FeatureDetector.detect.\n %\n % ## Output\n % * __bow__ Computed output image descriptor. A vector of the same\n % length as the vocabulary dimension.\n % * __idx__ Indices of keypoints that belong to the cluster. A\n % cell array of integer vectors. This means that `idx{i}` are\n % keypoint indices that belong to the i-th cluster (word of\n % vocabulary).\n % * __kptDescs__ Descriptors of the image keypoints, as returned\n % by cv.DescriptorExtractor.compute.\n %\n % See also: cv.BOWImgDescriptorExtractor.compute2,\n % cv.BOWImgDescriptorExtractor.compute1\n %\n if nargout > 2\n [bow,idx,kptDescs] = BOWImgDescriptorExtractor_(this.id, 'compute', img, keypoints);\n elseif nargout > 1\n [bow,idx] = BOWImgDescriptorExtractor_(this.id, 'compute', img, keypoints);\n else\n bow = BOWImgDescriptorExtractor_(this.id, 'compute', img, keypoints);\n end\n end\n\n function [bow,idx] = compute1(this, kptDescs)\n %COMPUTE1 Computes an image descriptor using keypoint descriptors\n %\n % [bow,idx] = extractor.compute1(kptDescs)\n %\n % ## Input\n % * __kptDescs__ Computed descriptors to match with vocabulary. It\n % is a numeric matrix that is returned by\n % cv.DescriptorExtractor.compute.\n %\n % ## Output\n % * __bow__ Computed output image descriptor. A vector of the same\n % length as the vocabulary dimension.\n % * __idx__ Indices of keypoints that belong to the cluster. A\n % cell array of integer vectors. This means that `idx{i}` are\n % keypoint indices that belong to the i-th cluster (word of\n % vocabulary).\n %\n % See also: cv.BOWImgDescriptorExtractor.compute\n %\n if nargout > 1\n [bow,idx] = BOWImgDescriptorExtractor_(this.id, 'compute1', kptDescs);\n else\n bow = BOWImgDescriptorExtractor_(this.id, 'compute1', kptDescs);\n end\n end\n\n function bow = compute2(this, img, keypoints)\n %COMPUTE2 Computes an image descriptor using the set visual vocabulary\n %\n % bow = extrctor.compute2(img, keypoints)\n %\n % ## Input\n % * __img__ Image, for which the descriptor is computed.\n % * __keypoints__ Keypoints detected in the input image. It is a\n % struct array that is returned by cv.FeatureDetector.detect.\n %\n % ## Output\n % * __bow__ Computed output image descriptor. A vector of the same\n % length as the vocabulary dimension.\n %\n % See also: cv.BOWImgDescriptorExtractor.compute\n %\n bow = BOWImgDescriptorExtractor_(this.id, 'compute2', img, keypoints);\n end\n end\n\n %% Getters/Setters\n methods\n function value = get.Vocabulary(this)\n value = BOWImgDescriptorExtractor_(this.id, 'get', 'Vocabulary');\n end\n function set.Vocabulary(this, value)\n BOWImgDescriptorExtractor_(this.id, 'set', 'Vocabulary', value);\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/BOWImgDescriptorExtractor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6992544085240401, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3687284036607324}} {"text": "function [h,a] = PlotDistribution2(var1,var2,varargin)\n\n%PlotDistribution2 - Plot bivariate data along with respective distributions.\n%\n% USAGE\n%\n% [h,a] = PlotDistribution2(var1,var2,)\n%\n% Using cell arrays will overlay variable pairs.\n%\n% var1 variable 1\n% var2 variable 2\n% optional list of property-value pairs (see table below)\n%\n% =========================================================================\n% Properties Values\n% -------------------------------------------------------------------------\n% 'nBins' number of bins for distributions (default = 100)\n% 'xbins' [m M n], lower and upper bounds, and number of bins,\n% respectively, for x axis (default [min max 100])\n% 'ybins' [m M n], lower and upper bounds, and number of bins,\n% respectively, for y axis (default [min max 100])\n% 'smooth' standard deviation of Gaussian kernel (default = 5)\n% =========================================================================\n%\n% OUTPUT\n%\n% h handles to the plots and histograms (one line per set of\n% variables)\n% a axes for the plots and histograms: [main top right]\n\n\n% Copyright (C) 2004-2013 by Micha\u00ebl Zugaro\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\ncolors = [1 0.2 0;0 0.4 1;0 1 0.2;1 0.6 0;0.8 0 1;0.8 1 0];\n% Default values\nnBins = 100;\nsmooth = 5;\nxbins = [];\nybins = [];\n\n% Check number of parameters\nif nargin < 2 | mod(length(varargin),2) ~= 0,\n error('Incorrect number of parameters (type ''help PlotDistribution2'' for details).');\nend\n\nif isa(var1,'cell'),\n\tif ~isa(var2,'cell'),\n\t\terror('One parameter is a cell array and the other is not (type ''help PlotDistribution2'' for details).');\n\tend\n\tif length(var1) ~= length(var2),\n\t\terror('Variable lists have different lengths (type ''help PlotDistribution2'' for details).');\n\tend\nelse\n\tvar1 = {var1};\n\tvar2 = {var2};\nend\n\n% Check parameter sizes\nfor i = 1:length(var1),\n\tif ~isdvector(var1{i}) | ~isdvector(var2{i}) | any(size(var1{i})~=size(var2{i})),\n\t\terror('Individual variables must be vectors of identical length (type ''help PlotDistribution2'' for details).');\n\tend\nend\n\n% Parse parameter list\nfor i = 1:2:length(varargin),\n\tif ~ischar(varargin{i}),\n\t\terror(['Parameter ' num2str(i+2) ' is not a property (type ''help PlotDistribution2'' for details).']);\n\tend\n\tswitch(lower(varargin{i})),\n\t\tcase 'nbins',\n\t\tnBins = varargin{i+1};\n\t\tif ~isiscalar(nBins,'>0'),\n\t\t\terror('Incorrect value for property ''nBins'' (type ''help PlotDistribution2'' for details).');\n\t\tend\n\tcase 'xbins',\n\t\txbins = varargin{i+1};\n\t\tif ~isdvector(xbins,'#3') | xbins(1) > xbins(2) | ~isiscalar(xbins(3),'>0'),\n\t\t\terror('Incorrect value for property ''xbins'' (type ''help PlotDistribution2'' for details).');\n\t\tend\n\tcase 'ybins',\n\t\tybins = varargin{i+1};\n\t\tif ~isdvector(ybins,'#3') | ybins(1) > ybins(2) | ~isiscalar(ybins(3),'>0'),\n\t\t\terror('Incorrect value for property ''ybins'' (type ''help PlotDistribution2'' for details).');\n\t\tend\n\tcase 'smooth',\n\t\tsmooth = varargin{i+1};\n\t\tif ~isdscalar(smooth,'>=0'),\n\t\t\terror('Incorrect value for property ''smooth'' (type ''help PlotDistribution2'' for details).');\n\t\tend\n\totherwise,\n\t\terror(['Unknown property ''' num2str(varargin{i}) ''' (type ''help PlotDistribution2'' for details).']);\n end\nend\n\n% Resize current axes to make room for distribution plots\nmain = gca;\nposition = get(main,'position');\nx = position(1);\nh1 = position(3); % current width\nhg = h1/10; % horizontal gap\nh2 = h1 - hg; % new total width\ny = position(2);\nv1 = position(4); % current height\nvg = v1/10; % vertical gap\nv2 = v1 - vg; % new total height\n% set(main,'position',[x+h2/3+hg y+v2/3+vg h2*2/3 v2*2/3]);\nset(main,'position',[x y h2*2/3 v2*2/3]);\nright = axes('position',[x+h2*2/3+hg y h2/3 v2*2/3]);\ntop = axes('position',[x y+v2*2/3+vg h2*2/3 v2/3]);\n\n% Axis limits\nif isempty(xbins),\n\tm1 = min(var1{1});\n\tM1 = max(var1{1});\n\tfor i = 2:length(var1),\n\t\tm1 = min([m1;var1{i}]);\n\t\tM1 = max([M1;var1{i}]);\n\tend\n\tnBinsX = nBins;\nelse\n\tm1 = xbins(1);\n\tM1 = xbins(2);\n\tnBinsX = xbins(3);\nend\nif isempty(ybins),\n\tm2 = min(var2{1});\n\tM2 = max(var2{1});\n\tfor i = 2:length(var1),\n\t\tm2 = min([m2;var2{i}]);\n\t\tM2 = max([M2;var2{i}]);\n\tend\n\tnBinsY = nBins;\nelse\n\tm2 = ybins(1);\n\tM2 = ybins(2);\n\tnBinsY = ybins(3);\nend\nd1 = M1-m1;\nm1 = m1-d1/10;\nM1 = M1+d1/10;\nd2 = M2-m2;\nm2 = m2-d2/10;\nM2 = M2+d2/10;\n\nh = [];\na = [main top right];\n\nfor i = 1:length(var1),\n\t% Plot bivariate data\n\taxes(main);hold on;\n\tp = plot(var1{i},var2{i},'o');\n\tk = mod(i,size(colors,1)+1);\n\tset(p,'MarkerFaceColor',colors(k,:),'MarkerEdgeColor',colors(i,:));\n\tif i > 1,\n\t\tm1 = min([m1 pm1]);\n\t\tM1 = max([M1 pM1]);\n\t\tm2 = min([m2 pm2]);\n\t\tM2 = max([M2 pM2]);\n\tend\n\tpm1 = m1;\n\tpM1 = M1;\n\tpm2 = m2;\n\tpM2 = M2;\n\txlim([m1 M1]);ylim([m2 M2]);\n\n\t% Distribution of var1\n\taxes(top);hold on;\n\t[dist1,x1] = hist(var1{i},m1:(M1-m1)/nBinsX:M1);\n\tdist1 = Smooth(dist1/sum(dist1),smooth);\n\tbv = bar(x1,dist1,1);\n\tk = mod(i,size(colors,1)+1);\n\tset(bv,'FaceColor',colors(k,:),'EdgeColor',colors(i,:));\n\tset(top,'xtick',[]);\n\txlim([m1 M1]);\n\n\t% Distribution of var2\n\taxes(right);hold on;\n\t[dist2,x2] = hist(var2{i},m2:(M2-m2)/nBinsY:M2);\n\tdist2 = Smooth(dist2/sum(dist2),smooth);\n\tbh = barh(x2,dist2,1);\n\tk = mod(i,size(colors,1)+1);\n\tset(bh,'FaceColor',colors(k,:),'EdgeColor',colors(i,:));\n\tset(right,'ytick',[]);\n\tylim([m2 M2]);\n\t\n\t% store\n\th = [h;p bv bh];\nend\n\n% Adjust axis locations\nset(main,'xaxislocation','bottom','yaxislocation','left');\nset(right,'xaxislocation','bottom','yaxislocation','right');\nset(top,'xaxislocation','top','yaxislocation','left');\naxes(main);", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/FMAToolbox/Plot/PlotDistribution2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5888891451980403, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.36871773151580184}} {"text": "function nntest6(action,flag);\n%NNTEST6 View and Control Neural network.\n%\n%\n%\tSee also SIMUFF.\n\n% Koos j. den Oudsten, 1-20-99\n% koos@phil.uu.nl\n% Copyright (c) 1998-99 by KoosSoft vof\n% $Revision: 0.4 $ $Date: 1999/01/27 22:29:28 $\n\nglobal Xx w1 b1 w2 b2 hidden mlp\n\nif nargin < 1\n action = 'start';\nend\n\n%On recursive calls get all necessary handles and data.\nif ~strcmp(action,'start') \n childList = allchild(0);\n nn_fig = childList(find(childList == gcf));\n ud = gco;\n\n% popupvalue = get(ud.popup,'Value');\n\n switch action\n case {'Sw1', 'Sw2', 'Sw3', 'Sw4', 'Sw5', 'Sw6', 'Sb1', 'Sb2', 'Sb3', 'Sb4'}\n val=get(ud,'value');b=allchild(nn_fig);\n\t c=findall(b,'tag',strrep(action,'S',''));set(c,'string',val);\n\t\tswitch action\n\t\t\tcase 'Sw1',w1(1)=val;\n\t\t\tcase 'Sw2',w1(2)=val;\n\t\t\tcase 'Sw3',w1(3)=val;\n\t\t\tcase 'Sb1',b1(1)=val;\n\t\t\tcase 'Sb2',b1(2)=val;\n\t\t\tcase 'Sb3',b1(3)=val;\n\t\t\tcase 'Sw4',w2(1)=val;\n\t\t\tcase 'Sw5',w2(2)=val;\n\t\t\tcase 'Sw6',w2(3)=val;\n\t\t\tcase 'Sb4',b2(1)=val;\n\t\tend\n\t action='plot';\n case 'train', \n x=0:0.05:5';plot(x,exp((-0.1.*x.^2)).*sin(4.*x));\n case {'w1', 'w2', 'w3', 'w4', 'w5', 'w6', 'b1', 'b2', 'b3', 'b4'}\n val=str2num(get(ud,'String'));\n\t if val > 15 val=15; end; if val < -15 val =-15; end;\n\t set(ud,'String',val);\n\t b=allchild(nn_fig);\n\t c=findall(b,'tag',strcat('S',action));set(c,'value',val);\n\t\tswitch action\n\t\t\tcase 'w1',w1(1)=val;\n\t\t\tcase 'w2',w1(2)=val;\n\t\t\tcase 'w3',w1(3)=val;\n\t\t\tcase 'b1',b1(1)=val;\n\t\t\tcase 'b2',b1(2)=val;\n\t\t\tcase 'b3',b1(3)=val;\n\t\t\tcase 'w4',w2(1)=val;\n\t\t\tcase 'w5',w2(2)=val;\n\t\t\tcase 'w6',w2(3)=val;\n\t\t\tcase 'b4',b2(1)=val;\n\t\tend\n\t action='plot';\n case 'reset',\n close(gcf);action='start';\n case 'set',\n\t if mlp == 1,\n w1=[0.72 -0.83 0.83]';b1=[-1.8 4 -0.15]';w2=[-2 -1.7 1.7];b2=[0];\n\t else w1=[0.5 2.5 4.6]';b1=[1.65 1.35 1]';w2=[3.1 2.4 1.9];b2=[-1.65];\n\t end;\n\t action='update';\n case 'grid',\n grid;\n case 'mlprbf',\n\t if mlp == 1, mlp=0;\n\t set(nn_fig,'Name','Neural Network Viewer (rbf) by Koos j. den Oudsten');\n\t else mlp =1;set(nn_fig,'Name','Neural Network Viewer (mlp) by Koos j. den Oudsten');\n\t end;\n\t action='plot';\n case 'hidden',\n if hidden ==0, hidden=1; else hidden =0; end;\n\t action='plot';\n case 'hold',\n hold; \n end\n disp(action);disp(ud);% test\n\nend\n% -----------------------------------------------------------------------\nif strcmp(action,'update') \t\t \n\tb=allchild(nn_fig);\n\t\n\tset(findall(b,'tag','Sw1'),'value',w1(1));\n\tset(findall(b,'tag','Sw2'),'value',w1(2));\n\tset(findall(b,'tag','Sw3'),'value',w1(3));\n\tset(findall(b,'tag','Sb1'),'value',b1(1));\n\tset(findall(b,'tag','Sb2'),'value',b1(2));\n\tset(findall(b,'tag','Sb3'),'value',b1(3));\n\tset(findall(b,'tag','Sw4'),'value',w2(1));\n\tset(findall(b,'tag','Sw5'),'value',w2(2));\n\tset(findall(b,'tag','Sw6'),'value',w2(3));\n\tset(findall(b,'tag','Sb4'),'value',b2(1));\n\n\tset(findall(b,'tag','w1'),'string',w1(1));\n\tset(findall(b,'tag','w2'),'string',w1(2));\n\tset(findall(b,'tag','w3'),'string',w1(3));\n\tset(findall(b,'tag','b1'),'string',b1(1));\n\tset(findall(b,'tag','b2'),'string',b1(2));\n\tset(findall(b,'tag','b3'),'string',b1(3));\n\tset(findall(b,'tag','w4'),'string',w2(1));\n\tset(findall(b,'tag','w5'),'string',w2(2));\n\tset(findall(b,'tag','w6'),'string',w2(3));\n\tset(findall(b,'tag','b4'),'string',b2(1));\n\naction='plot';\nend\n\n\nif strcmp(action,'plot')\n\tset(nn_fig,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1;1 1 0;1 0 1;0 0 0;0 1 1]);\n\tif mlp ==1, [hid,out]=simuff(Xx,w1,b1,'tansig',w2,b2,'purelin');\n\telse [hid,out]=simurb(Xx,w1,b1,w2,b2);\n\tend\n\tif hidden ==1,plot(Xx,out,'k',Xx,0,'r',Xx,hid);\n\t\telse plot(Xx,out,'k',Xx,0);\n\tend\n\taxis([0 5 -2 2]);axis manual;\nend\n\n% Initialize all GUI objects. \nif strcmp(action,'start')\n% Set positions of graphic objects\n\nXx=0:0.05:5;w1=[0 0 0]';b1=[0 0 0]';w2=[0 0 0];b2=[0];% init weights en biases\nhidden =0;mlp=1;% mlp mode \n\na = figure('Color',[0.8 0.8 0.8], ...\n\t'Position',[23 27 756 504], ...\n'Name','Neural Network Viewer (mlp) by Koos j. den Oudsten', ...\n 'NumberTitle','off','Tag','NN-fig');\nb = uimenu('Parent',a, ...\n\t'Label','Options', ...\n\t'Tag','NNmenu');\nuimenu(b,'label','mlp <-> rbf', 'callback','nntest6(''mlprbf'')');\nuimenu(b,'label','grid', 'callback','nntest6(''grid'')');\nuimenu(b,'label','test', 'callback','nntest6(''test'')');\nuimenu(b,'label','train','callback','nntest6(''train'')');\nuimenu(b,'label','reset','callback','nntest6(''reset'')');\nuimenu(b,'label','hold', 'callback','nntest6(''hold'')');\nb = axes('Parent',a, ...\n\t'Units','points', ...\n\t'CameraUpVector',[0 1 0], ...\n\t'CameraUpVectorMode','manual', ...\n\t'Color',[1 1 1], ...\n\t'Position',[40.9655 125.379 410.897 180.621], ...\n\t'Tag','NetFigure', ...\n\t'XColor',[0 0 0], ...\n\t'YColor',[0 0 0], ...\n\t'ZColor',[0 0 0]);\nc = text('Parent',b, ...\n\t'Color',[0 0 0], ...\n\t'HandleVisibility','callback', ...\n\t'HorizontalAlignment','center', ...\n\t'Position',[0.498489 -0.0965517 0], ...\n\t'Tag','Axes1Text4', ...\n\t'VerticalAlignment','cap');\nset(get(c,'Parent'),'XLabel',c);\nc = text('Parent',b, ...\n\t'Color',[0 0 0], ...\n\t'HandleVisibility','callback', ...\n\t'HorizontalAlignment','center', ...\n\t'Position',[-0.0528701 0.496552 0], ...\n\t'Rotation',90, ...\n\t'Tag','Axes1Text3', ...\n\t'VerticalAlignment','baseline');\nset(get(c,'Parent'),'YLabel',c);\nc = text('Parent',b, ...\n\t'Color',[0 0 0], ...\n\t'HandleVisibility','callback', ...\n\t'HorizontalAlignment','right', ...\n\t'Position',[-0.0996979 1.03448 0], ...\n\t'Tag','Axes1Text2', ...\n\t'Visible','off');\nset(get(c,'Parent'),'ZLabel',c);\nc = text('Parent',b, ...\n\t'Color',[0 0 0], ...\n\t'HandleVisibility','callback', ...\n\t'HorizontalAlignment','center', ...\n\t'Position',[0.498489 1.02759 0], ...\n\t'Tag','Axes1Text1', ...\n\t'VerticalAlignment','bottom');\nset(get(c,'Parent'),'Title',c);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sw1'')', ...\n\t'Position',[22.3448 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sw1','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sw2'')', ...\n\t'Position',[63.5862 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sw2','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sw3'')', ...\n\t'Position',[104.828 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sw3','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sb1'')', ...\n\t'Position',[146.069 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sb1','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sb2'')', ...\n\t'Position',[187.621 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sb2','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sb3'')', ...\n\t'Position',[229.483 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sb3','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sw4'')', ...\n\t'Position',[307.241 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sw4','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sw5'')', ...\n\t'Position',[348.483 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sw5','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sw6'')', ...\n\t'Position',[389.724 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sw6','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''Sb4'')', ...\n\t'Position',[430.966 31.1724 16.1379 63.931], ...\n\t'Style','slider','SliderStep',[0.0025 0.01], ...\n\t'Tag','Sb4','Min',-15.0,'Max',15.0, ...\n\t'Value',0.0);\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''w1'')', ...\n\t'BackgroundColor',[1 .7 .7], ...\n\t'Position',[11.7931 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','w1', ...\n\t'Tag','w1');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''w2'')', ...\n\t'BackgroundColor',[.7 1 .7], ...\n\t'Position',[53.0345 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','w2', ...\n\t'Tag','w2');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''w3'')', ...\n\t'BackgroundColor',[.7 .7 1], ...\n\t'Position',[94.2759 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','w3', ...\n\t'Tag','w3');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''b1'')', ...\n\t'BackgroundColor',[1 .7 .7], ...\n\t'Position',[135.517 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','b1', ...\n\t'Tag','b1');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''b2'')', ...\n\t'BackgroundColor',[.7 1 .7], ...\n\t'Position',[176.759 16.7586 37.8621 13.0345], ...\n\t'Style','edit','String','b2', ...\n\t'Tag','b2');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''b3'')', ...\n\t'BackgroundColor',[.7 .7 1], ...\n\t'Position',[218.621 16.7586 37.8621 13.0345], ...\n\t'Style','edit','String','b3', ...\n\t'Tag','b3');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''w4'')', ...\n\t'BackgroundColor',[1 1 1], ...\n\t'Position',[296.69 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','w4', ...\n\t'Tag','w4');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''w5'')', ...\n\t'BackgroundColor',[1 1 1], ...\n\t'Position',[337.931 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','w5', ...\n\t'Tag','w5');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''w6'')', ...\n\t'BackgroundColor',[1 1 1], ...\n\t'Position',[379.172 17.3793 37.2414 12.4138], ...\n\t'Style','edit','String','w6', ...\n\t'Tag','w6');\nb = uicontrol('Parent',a, ...\n\t'Units','points', ...\n\t'Callback','nntest6(''b4'')', ...\n\t'BackgroundColor',[1 1 1], ...\n\t'Position',[420.414 16.7586 37.2414 13.0345], ...\n\t'Style','edit','String','b4', ...\n\t'Tag','b4');\nb = uicontrol('Parent',a, ...\n\t'Units','points','string','hold', ...\n\t'Callback','nntest6(''hold'')', ...\n\t'Position',[260 80 34 16], ...\n\t'Tag','button1');\nb = uicontrol('Parent',a, ...\n\t'Units','points','string','grid', ...\n\t'Callback','nntest6(''grid'')', ...\n\t'Position',[260 60 34 16], ...\n\t'Tag','button2');\nb = uicontrol('Parent',a, ...\n\t'Units','points','string','set', ...\n\t'Callback','nntest6(''set'')', ...\n\t'Position',[260 40 34 16], ...\n\t'Tag','button3');\nb = uicontrol('Parent',a, ...\n\t'Units','points','string','hidden', ...\n\t'Callback','nntest6(''hidden'')', ...\n\t'Position',[260 20 34 16], ...\n\t'Tag','button4');\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/88-nntest6-m/nntest6.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6261241772283035, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3687177224806996}} {"text": "function G = slpwmetricgraph(X, varargin)\n%SLPWMETRICGRAPH Constructs a graph based on pairwise metrics\n%\n% $ Syntax $\n% - G = slpwmetricgraph(X, ...)\n% - G = slpwmetricgraph(X, Xt, ...)\n%\n% $ Arguments $\n% - X: The sample matrix with each column as a (source) node\n% - Xt: The sample matrix with each column as a (target) node \n% - G: The constructed graph\n% \n% $ Description $\n% - G = slpwmetricgraph(X, ...) constructs a graph based on computation\n% of pairwise metric between vector samples. You can specify the \n% following properties:\n% \\*\n% \\t The Properties of Graph Matrix construction \\\\\n% \\h name & description\n% 'sparse' & whether the target graph G is sparse \n% (default = true)\n% 'valtype' & The type of values in G: 'logical'|'numeric'\n% (default = 'numeric')\n% The value output by evalfunctor should conform\n% to the specified valtype\n% 'maxblk' & The maximum number of elements that can be\n% computed in each batch. (default = 1e7) \n% 'mfunctor' & The functor to compute the metrics. In the form:\n% V = f(X1, X2, ...)\n% default = {@slmetric_pw, 'eucdist')\n% 'tfunctor' & The functor to transform the metric values,\n% like tv = f(sv, ...)\n% The transform is taken before the threshold \n% filtering. default = []\n% 'thres' & The threshold values. The values not in the\n% valid range set by the threshold is regarded as\n% zeros. \n% (default = [], means not to use threshold)\n% 'threstype' & The type of threshold value, (default = 'ub')\n% - 'lb': a lower bound scalar \n% valid_range: x >= thres\n% - 'ub': a upper bound scalar\n% valid_range: x <= thres\n% - 'lub': a vector of lower and upper bounds\n% valid_range: thres(1) <= x <= thres(2) \n% \\*\n%\n% - G = slpwmetricgraph(X, Xt, ...) constructs a bigraph with different\n% source and target node set. The properties mentioned above are\n% all applicable here.\n%\n% $ Remarks $\n% - The implementation is based on slpwgraph.\n%\n% $ History $\n% - Created by Dahua Lin, on Sep 8th, 2006\n% - Modified by Dahua Lin, on Sep 10th, 2006\n% - Base on upgraded slpwgraph function\n% - Add support for bigraph\n%\n\n%% parse and verify input\n\nif nargin >= 2\n if isnumeric(varargin{1})\n Xt = varargin{1};\n if nargin == 2\n params = {};\n else\n params = varargin(2:end);\n end\n else\n Xt = X;\n params = varargin;\n end\nelse\n Xt = X;\n params = {};\nend\n\nopts.sparse = true;\nopts.valtype = 'numeric';\nopts.maxblk = 1e7;\nopts.mfunctor = {@slmetric_pw, 'eucdist'};\nopts.tfunctor = [];\nopts.thres = [];\nopts.threstype = 'ub';\nopts = slparseprops(opts, params{:});\n\nif ~ismember(opts.threstype, {'lb', 'ub', 'lub'})\n error('sltoolbox:invalidarg', ...\n 'Invalid type of threshold: %s', opts.threstype);\nend\n\n%% Main skeleton\n\nn = size(X, 2);\nnt = size(Xt, 2);\nmfunctor = opts.mfunctor;\ntfunctor = opts.tfunctor;\nfilter = getvaluefilter(opts);\nevalfunctor = {@metricevalfunc, mfunctor, tfunctor, filter};\n\nG = slpwgraph(X, Xt, n, nt, evalfunctor, ...\n 'sparse', opts.sparse, ...\n 'valtype', opts.valtype, ...\n 'maxblk', opts.maxblk);\n\n\n%% Core functions\n\nfunction V = metricevalfunc(X, Xt, inds1, inds2, mfunctor, tfunctor, filter)\n\nX1 = X(:, inds1);\nX2 = Xt(:, inds2);\nV = slevalfunctor(mfunctor, X1, X2);\n\nif ~isempty(tfunctor)\n V = slevalfunctor(tfunctor, V);\nend\n\nif ~isempty(filter)\n zero_range = ~filter(V);\n V(zero_range) = 0;\nend \n\n\nfunction filter = getvaluefilter(opts)\n\nif isempty(opts.thres)\n filter = [];\nelse\n thr = opts.thres;\n switch opts.threstype\n case 'lb'\n if ~isscalar(thr)\n error('sltoolbox:invalidarg', 'For lb type, the thres should be a scalar');\n end\n filter = @(x) x >= thr;\n case 'ub'\n if ~isscalar(thr)\n error('sltoolbox:invalidarg', 'For ub type, the thres should be a scalar');\n end\n filter = @(x) x <= thr;\n case 'lub'\n if ~isvector(thr) || length(thr) ~= 2\n error('sltoolbox:invalidarg', 'For lub type, the thres should be a length-2 vector');\n end\n filter = @(x) x >= thr(1) & x <= thr(2);\n end\nend\n \n", "meta": {"author": "lmthang", "repo": "nmt.hybrid", "sha": "50d5c025f18ed280ff0fd2e2adce327f4170a2c3", "save_path": "github-repos/MATLAB/lmthang-nmt.hybrid", "path": "github-repos/MATLAB/lmthang-nmt.hybrid/nmt.hybrid-50d5c025f18ed280ff0fd2e2adce327f4170a2c3/code/wordsim/code/sltoolbox_r101/sltoolbox_r101/sltoolbox/graph/slpwmetricgraph.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.36871772248069956}} {"text": "function gamma=ref_gabdualns_3(g,V);\n%REF_GABDUALNS_3 GABDUALNS by multiwindow method.\n% Usage: gamma=ref_gabdualns_3(g,V);\n%\n\n[gm,a,M]=ref_nonsep2multiwin(g,V);\n\ngmd=gabdual(gm,a,M);\n\ngamma=gmd(:,1);\n\n\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/reference/ref_gabdualns_3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6791787121629465, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.368701185545651}} {"text": "function rs = gmi(s, D, eps, NNR, len, Nref)\n\n%tstoolbox/@signal/gmi\n% Syntax:\n% * gmi(s, D, eps, NNR, len, Nref)\n%\n% Input arguments:\n% * D -\n% * eps -\n% * NNR -\n% * len -\n% * Nref -\n%\n% Generalized mutual information function for a scalar time series\n%\n% Copyright 1997-2001 DPI Goettingen, License http://www.physik3.gwdg.de/tstool/gpl.txt\nnarginchk(6,6);\n\n\nif (ndim(s) > 1) | (~isreal(data(s)))\n\thelp(mfilename)\n\treturn\nend\n\n\nL = dlens(s, 1);\n[y,i] = sort(data(s));\nra(i) = 0:(1/L):(1-1/L);\t\t% create rank values\n\ne = embed(signal(ra'), D, 1);\t\t%'\n\nc = core(gmi(data(e), ceil(rand(Nref,1)*(L-len-D-3))+2, eps, NNR, len));\n \nrs = signal(c, s); % special constructor calling syntax for working routines\na = getaxis(s, 1); \ndl = delta(a);\na = setfirst(a, 0);\nrs = setaxis(rs, 1, a);\nrs = setyunit(rs, unit); % gmi values are scalars without unit\nrs = addhistory(rs, 'Generalized mutual information function');\nrs = addcommandlines(rs, 's = gmi(s', D, eps, NNR, len, Nref);\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/Toolboxes/OpenTSTOOL/tstoolbox/@signal/gmi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3687011784951851}} {"text": "% -------------------------------------------------------------------------\n% Author: Jai Juneja\n% Date: 12/02/2013\n% -------------------------------------------------------------------------\nfunction World = ekfSLAM(handles, AxisDim, Lmks, Wpts, Obstacles)\n\n %%%%%%%%%%%%%%%%%%%%%%%%% INITIALISATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n cla; % Clear axes\n rob = Robot; % Create new robot object\n sen = Sensor;\n sen_rf = Sensor;\n sen_rf.noise = [0.1; 3 * pi/180];\n sen_rf.range = 10;\n sen.range = 30;\n sen.fov = 270 * pi/180;\n rob.q = [0.1;2*pi/180];\n \n [World, rob] = configuration(rob, sen_rf, Lmks, Wpts, AxisDim);\n \n Graphics = initGraphics(World, Obstacles, handles);\n \n % Determine which obstacles are moving\n numObstacles = length(Obstacles);\n numSegments = 0;\n movingObstacles = zeros(1, numObstacles);\n for i = 1:numObstacles\n if ~isequal([0; 0], Obstacles(i).velocity)\n movingObstacles(i) = 1;\n end\n numSegments = numSegments + size(Obstacles(i).vertices, 2) - 1;\n end\n movingObstacles = find(movingObstacles);\n\n %%%%%%%%%%%%%%%%%%%%%%%% TEMPORAL LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n % Initialise some loop variables\n pose_this_scan = [];\n this_scan_good = 0;\n big_turn = 0;\n r = World.r; % Location of robot pose in mapspace\n\n for t = 1:World.tend\n\n World.t = t;\n \n %%%%%%%%%%%%%%%%%%%%%%%%% SIMULATE WORLD %%%%%%%%%%%%%%%%%%%%%%%%%%\n R_old = rob.R;\n if ~isempty(World.Wpts)\n rob.steer(World.Wpts);\n end\n for i = movingObstacles\n Obstacles(i).move(AxisDim);\n end\n % n = rob.q .* randn(2,1); % Control noise in real world\n rob.R = rob.move(zeros(2,1), 'true'); % Move with noise\n for lid = 1:size(World.W,2)\n v = sen_rf.noise .* randn(2,1);\n World.y(:,lid) = scanPoint(rob.R, World.W(:,lid)) + v;\n end\n lmks_all = World.y;\n % Determine landmarks that are within the sensor range\n [World.y, lmks_visible] = sen_rf.constrainMeasurement(World.y);\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%% START EKF %%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n %%%%%%%%%%%%%%%%%%%%%%% EKF PREDICTION STEP %%%%%%%%%%%%%%%%%%%%%%%\n \n % 1. POSE PREDICTION USING SCAN MATCHING %%%%%%%%%%%%%%%%%%%%%%%%%%\n % TODO: if scan_matching, then do this step. Scan match only if\n % ~isempty(Obstacles)\n enough_correlations = 0;\n \n % Current stored scan is now the last scan\n last_scan_good = this_scan_good;\n pose_last_scan = pose_this_scan;\n this_scan_good = 0; % Initialise this_scan_good for this iteration\n\n % Put the previous scan's data in scan_ref\n scan_ref = World.scan_data;\n % Initialise scan data vector at maximum possible size it can take\n World.scan_data = -ones(3, numSegments * (round(sen.fov/sen.angular_res) + 1));\n scan_ndx = 1;\n for i = 1:length(Obstacles)\n scan_data = Obstacles(i).getMeasured(sen, rob);\n % Build scan_data vector\n if ~isempty(scan_data)\n World.scan_data(:, scan_ndx:scan_ndx+size(scan_data, 2)-1) = scan_data;\n scan_ndx = scan_ndx + size(scan_data, 2);\n end\n end\n % Reduce scan to only those appended in above for loop\n World.scan_data = World.scan_data(:, World.scan_data(2, :) ~= -1);\n \n % Reduce scan so that each laser angle only has one associated\n % measurement\n World.scan_data = removeDuplicateLasers(World.scan_data);\n World.scan_data = World.scan_data(2:3, :); % Remove index row\n\n % First add Gaussian white noise to scan\n v = repmat(sen.noise, 1, size(World.scan_data, 2)) .* randn(2,size(World.scan_data, 2));\n World.scan_data = World.scan_data + v;\n\n if ~isempty(World.scan_data)\n obstaclesDetected = 1;\n\n % Convert to Cartesian co-ordinates for scan matching\n World.scan_data = getInvMeasurement(World.scan_data);\n\n % If the number of point scanned exceeds the specified\n % tolerance, it is suitable for scan matching\n if size(World.scan_data, 2) > World.scan_corr_tolerance\n this_scan_good = 1;\n end\n \n % Convert to global co-ordinates for graphical display\n % World.scan_global = transToGlobal(rob.R, World.scan_data);\n else\n obstaclesDetected = 0;\n World.scan_global = [];\n end\n % If both last and current scans are good for scan matching,\n % proceed to match scans:\n if last_scan_good && this_scan_good\n n = rob.q .* randn(2,1); % Noise in odometry measurement\n \n % Do ICP scan matching using odometry input as initial guess\n [R, T, correl, icp_var] = doICP(scan_ref, World.scan_data, 1, rob.u + n);\n % If there are enough points correlated between the two\n % scans:\n if length(correl) > World.scan_corr_tolerance\n enough_correlations = 1;\n % Determine estimated pose from scan match\n r_scan = zeros(3, 1);\n da = getPiToPi(asin(R(2,1)));\n r_scan(1:2) = transToGlobal(pose_last_scan, T);\n r_scan(3) = pose_last_scan(3) + da;\n \n % Transform scan data to global co-ordinates\n scan_data_corr = World.scan_data;\n scan_data_corr = transToGlobal(r_scan, scan_data_corr);\n % Grab data points that were successfully corellated\n scan_data_corr = scan_data_corr(:, correl(:, 2)');\n\n [r_odo, R_r, R_n] = rob.move(n);\n\n % Compute covariance matrix of scan match\n C = getICPCovariance(icp_var, scan_data_corr);\n J_u = [R zeros(2, 1); 0 0 1];\n cov_scan = J_u * C * J_u';\n cov_scan_norm = trace(cov_scan);\n end\n end\n \n % 2. POSE PREDICTION USING ODOMETRY MEASUREMENTS %%%%%%%%%%%%%%%%%%\n \n % If there isn't a useful scan, just use odometry data\n if ~enough_correlations\n n = rob.q .* randn(2,1);\n [r_odo, R_r, R_n] = rob.move(n);\n cov_scan = zeros(3, 3);\n dr_scan = zeros(3, 1);\n else\n dr_scan = r_scan - rob.r;\n dr_scan(3) = getPiToPi(dr_scan(3));\n end \n\n % 3. WEIGHTAGE OF ODOMETRY AND SCAN MATCH PREDICTIONS %%%%%%%%%%%%%\n \n cov_odo = R_n * World.Q * R_n';\n cov_odo_norm = trace(cov_odo);\n \n dr_odo = r_odo - rob.r;\n dr_odo(3) = getPiToPi(dr_odo(3));\n \n dr_true = rob.R - R_old;\n\n % Check if the robot is making a large turn\n if abs(dr_scan(2)) > pi/6 || abs(dr_odo(2)) > pi/6\n big_turn = 1;\n elseif abs(dr_odo(2)) < pi/18\n big_turn = 0;\n end\n \n % Determine weights:\n % If not enough correlations, or turning is large, use odometry\n if ~enough_correlations % || big_turn\n weight_odo = 1;\n weight_scan = 0;\n else\n weight_odo = cov_scan_norm / (cov_scan_norm + cov_odo_norm);\n weight_scan = 1 - weight_odo;\n weight_scan = 1;\n weight_odo = 0;\n end\n \n % Determine robot pose using weights:\n rob.r = weight_odo * dr_odo + weight_scan * dr_scan + rob.r;\n World.x(r) = rob.r;\n\n % Covariance update\n % Caution: this method of update is suboptimal for CPU processing.\n % Alternative is to have a single equation that updates both\n % the pose and landmark covariances in a single step, but this\n % equation is rather complicated.\n P_rr = World.P(r,r);\n World.P(r,:) = R_r * World.P(r,:);\n World.P(:,r) = World.P(r,:)';\n World.P(r,r) = R_r * P_rr * R_r' + ...\n weight_scan * cov_scan + ...\n weight_odo * cov_odo;\n \n %%%%%%%%%%%%%%%%%%%%%% EKF UPDATE STEP %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % 1. CORRECT KNOWN VISIBLE LANDMARKS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n % Find the visible landmarks. The below code circumvents the data\n % association problem:\n r_old = rob.r;\n \n lmks_visible_known = find(World.l(1,lmks_visible));\n lids = lmks_visible(lmks_visible_known);\n \n for lid = lids \n % Measurement prediction\n [e, E_r, E_l] = scanPoint(rob.r, World.x(World.l(:,lid)));\n\n E_rl = [E_r E_l];\n rl = [r World.l(:,lid)'];\n E = E_rl * World.P(rl,rl) * E_rl';\n\n % Actual Measurement\n yi = World.y(:,lid);\n\n % Innovation\n z = yi - e;\n z(2) = getPiToPi(z(2));\n Z = World.M + E;\n\n % Kalman gain\n K = World.P(:, rl) * E_rl' * Z^-1;\n\n % Update state and covariance\n World.x = World.x + K * z;\n World.P = World.P - K * Z * K'; % The complexity of this line is \n % very high (subtraction of two\n % large matrices)\n rob.r = World.x(r);\n end\n\n % 2. INITIALISE NEW LANDMARKS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Check landmark availabiliy.\n % Again data association is avoided. A new landmark is initialised\n % in the storage space reserved specifically for that landmark:\n lmks_visible_unknown = find(World.l(1,lmks_visible)==0);\n lids = lmks_visible(lmks_visible_unknown);\n \n if ~isempty(lids)\n for lid = lids\n s = find(World.mapspace, 2);\n if ~isempty(s)\n World.mapspace(s) = 0;\n World.l(:,lid) = s';\n % Measurement\n yi = World.y(:,lid);\n\n [World.x(World.l(:,lid)), L_r, L_y] = invScanPoint(rob.r, yi);\n World.P(s,:) = L_r * World.P(r,:);\n World.P(:,s) = World.P(s,:)'; % Cross variance of lmk with all other lmks\n World.P(s,s) = L_r * World.P(r,r) * L_r' + L_y * World.M * L_y';\n end\n end\n end\n pose_this_scan = rob.r; % The corrected pose at which the scan was taken\n \n %%%%%%%%%%%%%%%%%%%%%%%%%% MAPPING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Determine pose correction during update step\n update = rob.r - r_old;\n\n if enough_correlations && ~isequal(rob.r, r_old)\n % Adjust latest correlated scan points to account for pose correction\n World.scan_data = transformPoints(World.scan_data, update);\n \n World = doMapping(World, sen, rob.r, World.scan_data, handles);\n elseif ~obstaclesDetected && isequal(mod(World.t, 5), 0)\n % If no obstacles have been detected, only compute map every 5\n % iterations\n World = doMapping(World, sen, rob.r, World.scan_data, handles);\n end\n \n if ~isempty(World.scan_data)\n World.scan_global = transToGlobal(rob.r, World.scan_data);\n end\n \n %%%%%%%%%%%%%%%%%%%%%%% HISTORICAL DATA COLECTION %%%%%%%%%%%%%%%%%\n World.R_hist(:, t) = rob.R(1:2);\t% True position history\n World.r_hist(:, t) = rob.r(1:2); % Estimated position history\n pose_error2 = (rob.R(1:2) - rob.r(1:2)).^2;\n World.error_hist(t) = sqrt(pose_error2(1) + pose_error2(2));\n World.Pr_hist(:, t) = [World.P(r(1),r(1)); World.P(r(2),r(2))];\n \n if enough_correlations\n scan_error = abs(dr_scan-dr_true); scan_error(3) = abs(getPiToPi(scan_error(3)));\n scan_error(1) = pdist([0 0; scan_error(1) scan_error(2)]); scan_error(2) = [];\n else\n scan_error = [0; 0];\n end\n \n odo_error = abs(dr_odo-dr_true); odo_error(3) = abs(getPiToPi(odo_error(3)));\n odo_error(1) = pdist([0 0; odo_error(1) odo_error(2)]); odo_error(2) = [];\n \n World.scan_error_hist(:, t) = scan_error;\n World.odo_error_hist(:, t) = odo_error;\n World.turning_hist(t) = rob.u(2);\n World.weight_scan_hist(t) = weight_scan;\n World.weight_odo_hist(t) = weight_odo;\n\n %%%%%%%%%%%%%%%%%%%%%%%%%%%% GRAPHICS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n Graphics.lmks_all = lmks_all; Graphics.lmks_visible = lmks_visible;\n doGraphics(rob, World, Graphics, Obstacles(movingObstacles), AxisDim);\n\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%% PLOT HISTORICAL DATA %%%%%%%%%%%%%%%%%%%%%%%%%\n % Plot trajectories;\n set(Graphics.R_hist, 'xdata', World.R_hist(1,:), 'ydata', World.R_hist(2, :))\n set(Graphics.r_hist, 'xdata', World.r_hist(1,:), 'ydata', World.r_hist(2, :))\n \n % Plot position uncertainties\n figure('color', 'white')\n subplot(2, 1, 1)\n plot(1:World.tend, World.error_hist)\n title('EKF SLAM: position error over time')\n xlabel('Time (s)'), ylabel('Position Error (m)')\n subplot(2, 1, 2)\n plot(1:World.tend, sqrt(World.Pr_hist(1, :)), 'r', ...\n 1:World.tend, sqrt(World.Pr_hist(2, :)), 'b')\n title('EKF SLAM: position uncertainty over time')\n xlabel('Time (s)'), ylabel('Standard Deviation (m)')\n legend('St. Dev. in x', 'St. Dev. in y')\n \n figure('color', 'white')\n subplot(4, 1, 1)\n AX = plotyy(1:World.tend, World.scan_error_hist(1,:), ...\n 1:World.tend, World.scan_error_hist(2,:), 'plot');\n set(get(AX(1),'Ylabel'),'String',['Position' char(10) 'Error (m)'])\n set(get(AX(2),'Ylabel'),'String',['Angular' char(10) 'Error (rad)'])\n title('Scan errors over time')\n xlabel('Time (s)')\n \n subplot(4, 1, 2)\n AX2 = plotyy(1:World.tend, World.odo_error_hist(1,:), ...\n 1:World.tend, World.odo_error_hist(2,:), 'plot');\n set(get(AX2(1),'Ylabel'),'String',['Position' char(10) 'Error (m)']) \n set(get(AX2(2),'Ylabel'),'String',['Angular' char(10) 'Error (rad)'])\n title('Odometry error over time')\n \n subplot(4, 1, 3)\n plot(1:World.tend, World.weight_scan_hist, 'r', ...\n 1:World.tend, World.weight_odo_hist, 'b')\n title('Scan and odometry weights over time')\n xlabel('Time (s)'), ylabel('Weight')\n legend('Scan', 'Odometry')\n axis tight\n \n subplot(4, 1, 4)\n plot(1:World.tend, World.turning_hist)\n title('Turning control over time')\n xlabel('Time (s)'), ylabel('Angle (rad)')\n axis tight\nend", "meta": {"author": "jaijuneja", "repo": "ekf-slam-matlab", "sha": "d0746d0396aa2c24eee6633f3dfc5e1b9f1d7f87", "save_path": "github-repos/MATLAB/jaijuneja-ekf-slam-matlab", "path": "github-repos/MATLAB/jaijuneja-ekf-slam-matlab/ekf-slam-matlab-d0746d0396aa2c24eee6633f3dfc5e1b9f1d7f87/ekfSLAM.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3687011784951851}} {"text": "function [x,w,x_variables,w_variables,aux_variables,F,failure] = robust_classify_variables(F,h,ops,w);\n\nfailure = 0;\n% Variables before expanding nonlinear operators\ninitial_variables = unique([depends(F) depends(h)]);\n\n% Uncertain variables\nw_variables = getvariables(w);\n\n% Decision variables\nx_variables = 1:yalmip('nvars');\nx_variables = setdiff(x_variables,w_variables);\n\n% Any fancy modelling goin on here? If so, we need to expand the model, and\n% associate the new lifted variables either to the uncertainty set or to\n% the set of general variables. There are some classes of variables\n% 1. Uncertain variables\n% 2. Original decision variables\n% 4. Lifted variables used for uncertain variables in uncertainty description\n% 5. Lifted variables used for uncertain variables in uncertain model\n% 6. Lifted variables used for mixed variables in uncertain model\n% FIX : This code is currently a miserable hack and should be cleaned up\nextended = yalmip('extvariables');\naux_variables = [];\nif ~isempty(extended) & any(ismember(initial_variables,extended))\n\n % Remove auxilliary variables (defined by YALMIP)\n aux_variables = intersect(extended,x_variables);\n % These variables are original decision variables\n x_variables = setdiff(x_variables,aux_variables);\n\n % Original constraint index\n id = getlmiid(F(find(~lifted(F))));\n \n % This is a tweak to allow epxansion of bilinear terms in robust problems,\n % is expression such as abs(x*w) < 1 for all -1 < w < 1\n ops.expandbilinear = 1;\n\n % Expand the model to model norms etc\n [F,failure,cause] = expandmodel(F,h,ops,w);\n if failure % Convexity propgation failed\n interfacedata = [];\n recoverdata = [];\n solver = '';\n diagnostic.solvertime = 0;\n diagnostic.problem = 14;\n diagnostic.info = yalmiperror(14,cause);\n x = [];\n w = [];\n x_variables=[];\n w_variables=[];\n F = [];\n return\n end\n\n % Auxillary variables (introduced by YALMIP). These variables are lifting\n % variables that are used to model advanced constructs suck as norms etc in\n % the nonlinear operator framework\n new_aux_variables = setdiff(unique([depends(F) depends(h)]),initial_variables);\n aux_variables = setdiff(union(aux_variables,new_aux_variables),w_variables);\n\n % We know try to find the auxillary variables that are used to model\n % functions that only depends on w\n F_lifted = F(find(~ismember(getlmiid(F),id)));\n aux_variables_w = aux_variables;\n for i = 1:length(F_lifted)\n variables = depends(F_lifted(i));\n with_x = any(ismember(variables,x_variables));\n with_w = any(ismember(variables,w_variables));\n if with_x\n aux_variables_w = setdiff(aux_variables_w,intersect(variables,aux_variables));\n x_variables = union(x_variables,intersect(variables,aux_variables));\n end\n end\n\n aux_variables_x = setdiff(aux_variables,aux_variables_w);\n x_variables = union(aux_variables_x, x_variables);\n w_variables = union(aux_variables_w, w_variables);\nend\n\nx_variables = intersect([depends(F) depends(h)],x_variables);\nw_variables = intersect([depends(F) depends(h)],w_variables);\n\nx = recover(x_variables);\nx = recover(setdiff(depends(x),w_variables));\nx_variables = getvariables(x);\n\n% % Could be some of these two cases\n% % F = (abs(x) + w < 1) + (norm(w,1) < 0.3);\n% % F = (x + abs(w) < 1) + (-2 < w < 2) ;\n% \n% w_variables = setdiff(w_variables,heh);\n% aux_variables = union(aux_variables,heh);\n\nw = recover(w_variables);", "meta": {"author": "zarathustr", "repo": "LibQPEP", "sha": "99e5c23e746ace0bac4a86742c31db6fcf7297ba", "save_path": "github-repos/MATLAB/zarathustr-LibQPEP", "path": "github-repos/MATLAB/zarathustr-LibQPEP/LibQPEP-99e5c23e746ace0bac4a86742c31db6fcf7297ba/MATLAB/YALMIP/modules/robust/robust_classify_variables.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791786861878392, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.368701171444719}} {"text": "%% Simulation Data\nsimu = simulationClass(); % Initialize simulationClass\nsimu.simMechanicsFile = 'OSWEC.slx'; % Simulink Model File\nsimu.startTime = 0; % Simulation Start Time [s]\nsimu.rampTime = 100; % Wave Ramp Time [s]\nsimu.endTime=400; % Simulation End Time [s] \nsimu.dt = 0.1; % Simulation Time-Step [s]\n\n%% Wave Information\n% Regular Waves \nwaves = waveClass('regular'); % Initialize waveClass \nwaves.height = 2.5; % Wave Height [m]\nwaves.period = 8; % Wave Period [s]\n\n%% Body Data\n% Flap\nbody(1) = bodyClass('hydroData/oswec.h5'); % Initialize bodyClass for Flap \nbody(1).geometryFile = 'geometry/flap.stl'; % Geometry File\nbody(1).mass = 127000; % Mass [kg]\nbody(1).inertia = [1.85e6 1.85e6 1.85e6]; % Moment of Inertia [kg-m^2]\n\n% Base\nbody(2) = bodyClass('hydroData/oswec.h5'); % Initialize bodyClass for Base\nbody(2).geometryFile = 'geometry/base.stl'; % Geometry File\nbody(2).mass = 'fixed'; % Creates Fixed Body\n\n%% PTO and Constraint Parameters\n% Fixed\nconstraint(1)= constraintClass('Constraint1'); % Initialize constraintClass for Constraint1\nconstraint(1).location = [0 0 -10]; % Constraint Location [m]\n\n% Rotational PTO\npto(1) = ptoClass('PTO1'); % Initialize ptoClass for PTO1\npto(1).stiffness = 0; % PTO Stiffness [Nm/rad]\npto(1).damping = 0; % PTO Damping [Nsm/rad]\npto(1).location = [0 0 -8.9]; % PTO Location [m]", "meta": {"author": "WEC-Sim", "repo": "WEC-Sim", "sha": "973dd8c437077b20b361a5c0dba733da98ca9285", "save_path": "github-repos/MATLAB/WEC-Sim-WEC-Sim", "path": "github-repos/MATLAB/WEC-Sim-WEC-Sim/WEC-Sim-973dd8c437077b20b361a5c0dba733da98ca9285/tutorials/OSWEC/OSWEC_wecSimInputFile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7490872131147275, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.368691838915224}} {"text": "function [ result ] = plot_neb_spline( directory )\n%PLOT_NEB_SPLINE Plot the energy along a NEB path.\n% result = PLOT_NEB_SPLINE() plots the energy as a function of\n% hyperdistance using the results of a NEB calculation. Each image\n% directory (01, 02, ... NIMG) must contain an OUTCAR and CONTCAR file.\n% The end points (00 and NIMG+1) must contain an OUTCAR and POSCAR file.\n% The energies are fit with a spline using NEB_SPLINE.\n%\n% See also NEB_ENERGIES, NEB_SPLINE, HYPERDISTANCE.\n\n startDir = pwd();\n if nargin > 0\n cd(directory);\n end\n result = 0;\n \n [ energy0 x0 ] = neb_energies();\n [ energy x ] = neb_spline();\n \n figure\n hold on\n plot(x0, energy0, 'ok')\n plot(x, energy, 'k')\n \n xlabel(['Hyperdistance (' char(197) ')'])\n ylabel('Energy (eV)')\n \n cd(startDir);\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/36836-vasplab/vasplab/plot_neb_spline.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.368678926391135}} {"text": "function Training_Data = ReadFace(Training_Path)\n% ---------- Construct 2D matrix from all of the 1D image vectors in the training data file ------------\nflist = dir(strcat(Training_Path,'\\*.jpg'));\nTraining_Data = [];\nfor imidx = 1:length(flist)\n fprintf('Constructing Training Image Data Space [%d] \\n', imidx); \n path = strcat(Training_Path,strcat('\\',int2str(imidx),'.jpg'));\n img = imread(path);\n [irow icol] = size(img);\n temp = reshape(img',irow*icol,1); % Reshaping 2D images to 1D image vectors\n Training_Data = [Training_Data temp];\nend\nfprintf('\\n');", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u8bc6\u522b\u7b97\u6cd5/Face-Recognition-Using-PCA-master/Code/ReadFace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.368678926391135}} {"text": "function [g, nu] = cmpndNoiseNuG(noise, mu, varSigma, y)\n\n% CMPNDNOISENUG Update nu and g parameters associated with compound noise model.\n\n% NOISE\n\n% NOISE\n\n\ng = zeros(size(mu));\nnu = zeros(size(g));\nfor i = 1:length(noise.comp)\n [g(:, i), nu(:, i)] = ...\n noiseUpdateNuG(noise.comp{i}, ...\n mu(:, i), varSigma(:, i), ...\n y(:, i));\n if any(nu(:, i)< 0) \n if noise.comp{i}.logconcave\n warning('nu less than zero in log concave model.')\n else\n fprintf('nu less than zero\\n')\n end\n end\nend\n\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/noise/cmpndNoiseNuG.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5660185351961013, "lm_q1q2_score": 0.3686789263911348}} {"text": "function [score] = FRIQUEE(I)\n\ntestFriqueeFeats = extractFRIQUEEFeatures(I);\n\n% Load a learned model\nload('support_functions/FRIQUEE/data/friqueeLearnedModel.mat');\n\n% Scale the features of the test image accordingly.\n% The minimum and the range are computed on features of all the images of\n% LIVE Challenge Database\ntestFriqueeALL = testFeatNormalize(testFriqueeFeats.friqueeALL, friqueeLearnedModel.trainDataMinVals, friqueeLearnedModel.trainDataRange);\n\nscore = svmpredict (0, double(testFriqueeALL), friqueeLearnedModel.trainModel, '-b 1 -q');\n\nend", "meta": {"author": "HuiZeng", "repo": "BIQA_Toolbox", "sha": "39d606574f0cbfde82ecbc3c208b353d9fa9a450", "save_path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox", "path": "github-repos/MATLAB/HuiZeng-BIQA_Toolbox/BIQA_Toolbox-39d606574f0cbfde82ecbc3c208b353d9fa9a450/support_methods/FRIQUEE.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7549149758396752, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3686124475626696}} {"text": "\naddpath /home/fowlkes/gpb_owt/grouping/lib/\noutFile = '/home/fowlkes/gpb_owt/grouping/data/101087_gPb.mat_pbs.mat';\nsimFile = '/home/fowlkes/gpb_owt/grouping/data/101087_gPb.mat_pbs.mat_sim.tmp';\nimgFile = '/home/fowlkes/gpb_owt/grouping/data/101087_gPb.mat_pbs.mat_img.jpg';\nlatFile = '/home/fowlkes/gpb_owt/grouping/data/101087_gPb.mat_pbs.mat_lat.tmp';\nload /home/fowlkes/gpb_owt/grouping/data/mPb.mat %load in mPb data.\n\n%\n% old code\n%\nl{1} = zeros(size(mPb, 1) + 1, size(mPb, 2));\nl{1}(2:end, :) = mPb;\nl{2} = zeros(size(mPb, 1), size(mPb, 2) + 1);\nl{2}(:, 2:end) = mPb;\nlatFile = strcat(outFile, '_lat.tmp');\nwrite_array(latFile, l);\n\nsystem(sprintf('/home/fowlkes/gpb_owt/grouping/lib/segment -image %s -smatrixfile %s -readlattice true -latticefile %s -dthresh 5', imgFile, simFile, latFile));\nWold = read_smatrix(simFile);\n\n\n%\n% new code\n%\n\n% mex buildW.cpp -Iutil smatrix.cc ic.cc affinity.cc util/libutil.a\n\n[x,y,z] = buildW(l{1},l{2});\nWnew = sparse(x,y,z);\n\nsum(sum( (Wold-Wnew).^2 ))\n\n\n \n", "meta": {"author": "s-gupta", "repo": "rcnn-depth", "sha": "7a7baf7dcccc6fdf6be7c13d16828064d89dff4e", "save_path": "github-repos/MATLAB/s-gupta-rcnn-depth", "path": "github-repos/MATLAB/s-gupta-rcnn-depth/rcnn-depth-7a7baf7dcccc6fdf6be7c13d16828064d89dff4e/mcg/src/external/BSR/buildW/ictest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7371581626286834, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3685790813143417}} {"text": "%% Script to test the optical flow estimation\nclear all\nclose all\n\nimg1f = '/datos/research/deblurring/data/jue/videoDeblur/snow/input/0001.png';\nimg2f = '/datos/research/deblurring/data/jue/videoDeblur/snow/input/0002.png';\n\n%img1 = single(rgb2gray(imread(img1f)));\n%img2 = single(rgb2gray(imread(img2f)));\n\nimg1 = double((imread(img1f)));\nimg2 = double((imread(img2f)));\n\n\nimg1 = .299*img1(:,:,1) + .587*img1(:,:,2) + .114*img1(:,:,3);\nimg2 = .299*img2(:,:,1) + .587*img2(:,:,2) + .114*img2(:,:,3);\n\nimg1 = single(floor(img1));\nimg2 = single(floor(img2));\n\n\nfigure(1)\nimagesc(img2)\n\n\n%%\ntau=0.25;\nlambda = 0.1;\ntheta=0.3;\nnscales=4;\nzfactor=0.5;\nnwarps=5;\nepsilon=0.01;\nverbose=1;\n\n[m,n,~] = size(img1);\ntagstruct.ImageLength = m;\ntagstruct.ImageWidth = n;\ntagstruct.Compression = Tiff.Compression.None;\ntagstruct.SampleFormat = Tiff.SampleFormat.IEEEFP;\ntagstruct.Photometric = Tiff.Photometric.MinIsBlack;\ntagstruct.BitsPerSample = 32; % float data\ntagstruct.SamplesPerPixel = 2; %u and v (2 channels)\ntagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;\n\n\nflowF = tvl1flow(img1,img2,tau,lambda,theta,nscales,zfactor,nwarps, epsilon,verbose);\n\n%Save into a TIFF file\nt = Tiff('aux1.tiff', 'w');\nt.setTag(tagstruct);\nt.write(single(flowF));\nt.close();\n\n%% OLD\n\nsetenv('DYLD_LIBRARY_PATH', '/usr/local/lib'),\ntvl1flowS='/datos/research/deblurring/code/heat/videodeblur/tvl1flow_3_mex/tvl1flow';\n\nflowB = 'aux.tiff';\nsystem(sprintf('%s %s %s %s 0 0.25 0.1 0.3 4 0.5 5 0.01 1',tvl1flowS,img1f,img2f,flowB)); % flowB.tiff\n\n\n%%\naux1 = imread('aux1.tiff');\naux = imread('aux.tiff');\n\nfigure(1)\nimagesc(flowF(:,:,1)-aux(:,:,1))\n\nfigure(2)\nimagesc(flowF(:,:,2)-aux(:,:,2))\n\n", "meta": {"author": "shuochsu", "repo": "DeepVideoDeblurring", "sha": "c23eeac10d62ecc7dad4586f487f4c1a1260bbd0", "save_path": "github-repos/MATLAB/shuochsu-DeepVideoDeblurring", "path": "github-repos/MATLAB/shuochsu-DeepVideoDeblurring/DeepVideoDeblurring-c23eeac10d62ecc7dad4586f487f4c1a1260bbd0/preprocess/thirdparty/tvl1flow_3_mex/test_tvl1flow3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7371581510799252, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3685790755399626}} {"text": "%% This script simulates the LODCO-based epsilon-Greedy algorithm.\n% author: Hailiang Zhao\nclc, clear\nopt = optimset('Display', 'none');\n\n%% basic parameter settings (had better not change those paras)\nk = 1e-28; % effective switched capacitance (a constant decided by the chip architecture)\ntau = 0.002; % the length of time slot (in second)\nphi = 0.002; % the cost of task dropping (in second)\nomega = 1e6; % the bandwidth of MEC server (in Hz)\nsigma = 1e-13; % the noise power of the receiver (in W)\np_tx_max = 1; % the maximum transmit power of mobile device (in W)\nf_max = 1.5e9; % the maximum CPU-cycle frequency of mobile device (in Hz)\nE_max = 0.002; % the maximum amout of battery output energy (in J)\nL = 1000; % the input size of the computation task (in bit)\nX = 737.5; % the number of CPU cycles needed on processing one bit of task\nW = L * X; % the number of CPU cycles needed on processing one task\nE_H_max = 48e-6; % the upper bound of the energy arrive at the mobile device (in J)\np_H = E_H_max / (2*tau); % the average Energy Harvesting (EH) power (in W)\ng0 = power(10, -4); % the path-loss constant\nd0 = 1; % the relative distance between each mobile device and each MEC server\n\n%% parameter control\nN = 10; % the number of mobile devices\nM = 8; % the number of MEC servers\nT = 2000; % the number of time slot (a.k.a. the size of the time horizon)\ntau_d = 0.002; % execution deadline (in second)\nd = 50; % the distance between the mobile device and the MEC server (in meter)\nE_min = 0.02e-3; % the minimum amout of battery output energy (in J)\nV = 1e-5; % the weight of penalty (the control parameter introduced by Lyapunov Optimization)\nrho = 0.6; % the probability that the computation task is requested\nmax_connects = 4; % the maximum number of processible mobile devices for each MEC server ($ \\frac{f_s^{max} \\tau}{L X} $)\nmin_distance = 10; % the minimum distance from mobile device to MEC server\nmax_distance = 50; % the maximum distance from mobile device to MEC server\neps = 0.8; % if rand() <= eps, for the best i-j pair, we always choose MEC server execution mode (except no MEC server to choose)\n\n% the lower bound of perturbation parameter\nE_max_hat = min(max(k * W * (f_max)^2, p_tx_max * tau), E_max);\ntheta = E_max_hat + V * phi / E_min;\n\n%% allocate storage for valuable results\nB = zeros(T, N); % the battery energy level (in J)\nB_hat = zeros(T, N); % the virtual battery energy level ($B_hat = B - theta$)\ne = zeros(T, N); % the amout of the harvested and stored energy (in J)\nchosen_mode = zeros(T, N); % {1: local, 2: remote, 3: drop, 4: no task request}\nchosen_server = zeros(T, N); % record the index of chosen server for each mobile device if its choice is MEC server execution\nf = zeros(T, N); % the CPU-cycle frequency of local execution (in Hz)\np = zeros(T, N); % the transmit power of computation offloading (in W)\n\nmobile_exe_cost = zeros(T, N); % the mobile execution cost (delay) (in second)\nserver_exe_cost = zeros(T, N); % the MEC server execution cost (delay) (in second)\nfinal_chosen_cost = zeros(T, N); % the final execution delay under currently chosen modes (in second)\n\nmobile_exe_E = zeros(T, N); % the energy consumption for mobile execution (in J)\nserver_exe_E = zeros(T, N); % the energy consumption for MEC server execution (in J)\nfinal_chosen_E = zeros(T, N); % the energy consumption of the final chosen modes (in J)\n\n%% simulation begin\nt = 1;\nwhile t <= T\n disp(['===> Time slot #', num2str(t), ' <==='])\n \n %% allocate storage for mode-chosen\n device_server_pairs = []; % each column represents i, j, J_s^{\\star}(i, j), respectively\n remained_connects = max_connects * ones(M, 1); % the available connections of MEC servers\n J_m = zeros(N, 1); J_s = zeros(N, M); % the matrices for J_m and J_s values\n p_mat = zeros(N, M); % the matrix for transmit power\n server_cost_mat = zeros(N, M); % the matrix for MEC server execution cost\n server_E_mat = zeros(N, M); % the matrix for energy consumption of MEC server\n \n %% initialization\n % generate the virtual battery energy level\n B_hat(t, :) = B(t, :) - theta;\n % generate the channel power gain (from each mobile device to each MEC sever)\n distances = unifrnd(min_distance, max_distance, N, M);\n gamma = exprnd(1, N, M);\n h_mat = g0 * gamma .* power(d0 ./ distances, 4);\n \n %% step 1: for each mobile device, choose the initial mode\n for i = 1: N\n disp(['Mobile device #', num2str(i)])\n \n %% step 1.1: get the optimal energy harvesting no matter whether task is requested\n E_H_t = unifrnd(0, E_H_max);\n if B_hat(t, i) <= 0\n e(t, i) = E_H_t;\n end\n \n %% step 1.2: get the (initial) optimal computation offloading strategy (I_m(i), I_s(i, :), I_d(i), f(t, i), p(t, i))\n % generate the task request\n zeta = binornd(1, rho);\n if zeta == 0\n % chosen mode has to be 4\n disp('no task request generated!')\n chosen_mode(t, i) = 4;\n else\n % chosen_mode is chosen from {1, 2, 3}\n disp('task request generated!')\n \n %% step 1.2.1: solve the optimization problem $\\mathcal{P}_{ME}$ (f(t, i) > 0)\n % calculate f_L and f_U\n f_L = max(sqrt(E_min / (k * W)), W / tau_d);\n f_U = min(sqrt(E_max / (k * W)), f_max);\n if f_L <= f_U\n % the sub-problem is feasible\n disp('mobile execution ($\\mathcal{P}_{ME}$) is feasible!')\n \n if B_hat(t, i) < 0\n f_0 = (V / (-2 * B_hat(t, i) * k))^(1/3);\n else\n % complex number may exist, which may lead to error\n f_0 = -(V / (2 * B_hat(t, i) * k))^(1/3);\n end\n \n if (f_0 > f_U && B_hat(t, i) < 0) || (B_hat(t, i) >= 0)\n f(t, i) = f_U;\n elseif f_0 >= f_L && f_0 <= f_U && B_hat(t, i) < 0\n f(t, i) = f_0;\n elseif f_0 < f_L && B_hat(t, i) < 0\n f(t, i) = f_L;\n end\n % check whether f(t, i) is zero\n if f(t, i) == 0\n disp('Something wrong! f is 0!')\n end\n \n % calculate the delay of mobile execution\n mobile_exe_cost(t, i) = W / f(t, i);\n % calculate the energy consumption of mobile execution\n mobile_exe_E(t, i) = k * W * (f(t, i)^2);\n % calculate the value of optimization goal\n J_m(i) = -B_hat(t, i) * k * W * (f(t, i)^2 + V * W / f(t, i));\n else\n % the sub-problem is not fasible because (i) the limited \n % computation capacity or (ii) time cosumed out of deadline \n % or (iii) the energy consumed out of battery energy level\n % If it is not feasible, it just means that we cannot choose \n % 'I_m(i)=1'. It dosen't mean that the task has to be dropped.\n disp('mobile execution ($\\mathcal{P}_{ME}$) is not feasible!')\n f(t, i) = 0;\n mobile_exe_cost(t, i) = 0;\n mobile_exe_E(t, i) = 0;\n % 'I_m(i)=1' can never be chosen if mobile execution goal is inf\n J_m(i) = inf;\n end\n \n %% step 1.2.2: solve the optimization problem $\\mathcal{P}_{SE}$ (p(t, i) > 0)\n % calculate J_s(i, j) from mobile device i to each MEC server j\n for j = 1: M\n disp(['MEC server #', num2str(j)])\n h = h_mat(i, j);\n \n E_tmp = sigma * L * log(2) / (omega * h);\n p_L_taud = (power(2, L / (omega * tau_d)) - 1) * sigma / h;\n % calculate p_L\n if E_tmp >= E_min\n p_L = p_L_taud;\n else\n % calculate p_E_min (use inline function and fsolve)\n y = @(x) x * L - omega * log2(1 + h*x/sigma) * E_min;\n % accroding to the function figure, p_L_taud is a positive \n % number around 0.2\n p_E_min = fsolve(y, 0.2, opt);\n p_L = max(p_L_taud, p_E_min);\n end\n % calculate p_U\n if E_tmp >= E_max\n p_U = 0;\n else\n % caculate p_E_max (use inline function and fsolve)\n y = @(x) x * L - omega * log2(1 + h*x/sigma) * E_max;\n % accroding to the function figure, p_E_max is a large positive\n % number around 20\n p_E_max = fsolve(y, 100, opt);\n p_U = min(p_tx_max, p_E_max);\n end\n \n if p_L <= p_U\n % the sub-problem is feasible\n disp('MEC server execution ($\\mathcal{P}_{SE}$) is feasible!')\n % calculate p_0\n virtual_battery = B_hat(t, i);\n y = @(x) virtual_battery * log2(1 + h*x/sigma) + ...\n h * (V - virtual_battery*x) / log(2) / (sigma + h*x);\n p_0 = fsolve(y, 0.5, opt);\n \n if (p_U < p_0 && B_hat(t, i) < 0) || B_hat(t, i) >= 0\n p_mat(i, j) = p_U;\n elseif p_0 < p_L && B_hat(t) < 0\n p_mat(i, j) = p_L;\n elseif p_0 >= p_L && p_0 <= p_U && B_hat(t, i) < 0\n p_mat(i, j) = p_0;\n end\n % check whether p_mat(i, j) is zero\n if p_mat(i, j) == 0\n disp('Something wrong! p is 0!')\n end\n \n % calculate the delay of MEC server execution\n server_cost_mat(i, j) = L / (omega * log2(1 + h*p_mat(i, j)/sigma));\n % calculate the energy consumption of MEC server execution\n server_E_mat(i, j) = p_mat(i, j) * server_cost_mat(i, j);\n % calculate the value of optimization goal\n J_s(i, j) = (-B_hat(t, i) * p_mat(i, j) + V) * server_cost_mat(i, j);\n \n % (we can not set server_exe_cost(t, i) and server_exe_E(t, i) for now)\n else\n % the sub-problem is not feasible because (i) the limited transmit \n % power or (ii) time cosumed out of deadline or (iii) the energy \n % consumed out of battery energy level\n % If it is not feasible, it just means that we cannot choose \n % 'I_s(i,j)=1'. It dosen't mean that the task has to be dropped.\n disp('MEC server execution ($\\mathcal{P}_{SE}$) is not feasible!')\n p_mat(i, j) = 0;\n server_cost_mat(i, j) = 0;\n server_E_mat(i, j) = 0;\n % 'I_s(i,j)=1' can never be chosen if MEC server execution goal is inf\n J_s(i, j) = inf;\n \n % (we can not set server_exe_cost(t, i) and server_exe_E(t, i) for now)\n % Similarly, we do not check whether the energy cunsumed is larger than\n % battery energy level because the problem $\\mathcal{J}_{CO}$ does\n % not have constraint (8).\n end\n end\n \n %% step 1.2.3: choose the (initial) optimal execution mode\n J_d = V * phi;\n disp(['J_m(i):', num2str(J_m(i))])\n disp(['J_s(i,:):', num2str(J_s(i, :))])\n [~, mode] = min([J_m(i), J_s(i, :), J_d]);\n if mode == 1\n % mobile execution\n chosen_mode(t, i) = 1;\n final_chosen_cost(t, i) = mobile_exe_cost(t, i);\n final_chosen_E(t, i) = mobile_exe_E(t, i);\n elseif mode == (M+2)\n % drop\n chosen_mode(t, i) = 3;\n final_chosen_cost(t, i) = phi;\n final_chosen_E(t, i) = 0;\n else\n % MEC servre execution\n chosen_mode(t, i) = 2;\n % add i, the chosen j, and their J_s(i, j) value into the pairs\n device_server_pairs = [device_server_pairs; [i, mode-1, J_s(i, mode-1)]];\n end\n end\n end\n \n %% step 2: allocate connection right for each mobile device who chooses MEC server execution\n while ~isempty(device_server_pairs)\n if rand() <= eps\n % find the {i, j, J_s(i, j)} with the minimum J_s(i, j) in the device_server_pairs, choose MEC server execution mode, \n % except no MEC server to choose\n [min_Js, idx] = min(device_server_pairs(:, 3));\n i = device_server_pairs(idx, 1); j = device_server_pairs(idx, 2); % find the i and its j\n if remained_connects(j) >= 1\n % the chosen i can be allocated to the j-th MEC server\n % set its final modes as 2 and record the final cost and energy consumption for it\n chosen_mode(t, i) = 2; % this is not necessary\n p(t, i) = p_mat(i, j);\n server_exe_cost(t, i) = server_cost_mat(i, j);\n server_exe_E(t, i) = server_E_mat(i, j);\n chosen_server(t, i) = j;\n final_chosen_cost(t, i) = server_exe_cost(t, i);\n final_chosen_E(t, i) = server_exe_E(t, i);\n \n % update remained_connects for j\n remained_connects(j) = remained_connects(j) - 1;\n % finally, remove it from global pairs, it is done\n device_server_pairs(device_server_pairs(:, 1) == i, :) = [];\n else\n % the chosen i can not be allocated to the j-th MEC server\n % set the mobile device's J_s(i, j) as inf\n % (which means no matter what happens, the MEC server j can never be chosen)\n J_s(i, j) = inf;\n % remove it from global pairs\n device_server_pairs(device_server_pairs(:, 1) == i, :) = [];\n % if there still exists j' where J_s(i, j') is not inf, we choose the best j', \n % otherwise we can only choose from mobile execution and drop\n if min(J_s(i, :)) ~= inf\n [second_min_Js, second_min_j] = min(J_s(i, :));\n % add the new pair into global pairs\n device_server_pairs = [device_server_pairs; [i, second_min_j, second_min_Js]];\n else\n % choose from mobile execution and drop for i\n [~, mode] = min([J_m(i), inf, J_d]);\n chosen_mode(t, i) = mode;\n if mode == 1\n final_chosen_cost(t, i) = mobile_exe_cost(t, i);\n final_chosen_E(t, i) = mobile_exe_E(t, i);\n else\n final_chosen_cost(t, i) = phi;\n final_chosen_E(t, i) = 0;\n end\n end\n end\n else\n % do as LODCO-based Greedy algorithm do\n for j = 1: M\n % find every pair who chooses the MEC server j\n device_j_pairs = device_server_pairs(device_server_pairs(:, 2) == j, :);\n % find those devices is\n is = device_j_pairs(:, 1);\n if isempty(is)\n disp(['For current MEC server #', num2str(j), ', no mobile device choose it!'])\n % go to handle next MEC server\n continue;\n end\n if remained_connects(j) >= length(is)\n % every mobile device who chooses j can be connected,\n % set their final modes as 2 and record the final cost and energy consumption for them\n chosen_mode(t, is) = 2; % this is not necessary\n p(t, is) = transp(p_mat(is, j));\n server_exe_cost(t, is) = transp(server_cost_mat(is, j));\n server_exe_E(t, is) = transp(server_E_mat(is, j));\n chosen_server(t, is) = repmat(j, 1, length(is));\n final_chosen_cost(t, is) = server_exe_cost(t, is);\n final_chosen_E(t, is) = server_exe_E(t, is);\n\n % update remained_connects for j\n remained_connects(j) = remained_connects(j) - length(is);\n % finally, remove them from global pairs, they are done\n device_server_pairs(device_server_pairs(:, 2) == j, :) = [];\n else\n if remained_connects(j) == 0\n % no mobile device can be connected, remove all mobile devices who chooses j from global pairs\n device_server_pairs(device_server_pairs(:, 2) == j, :) = [];\n % set those mobile devices' J_s(i, j) as inf\n % (which means no matter what happens, the MEC server j can never be chosen)\n J_s(is, j) = inf;\n % choose mode again for those i and insert new potential pairs into global pairs\n for idx = 1: numel(is)\n i = is(idx);\n [~, mode] = min([J_m(i), J_s(i, :), J_d]);\n if mode == 1\n chosen_mode(t, i) = 1;\n final_chosen_cost(t, i) = mobile_exe_cost(t, i);\n final_chosen_E(t, i) = mobile_exe_E(t, i);\n elseif mode == (M+2)\n chosen_mode(t, i) = 3;\n final_chosen_cost(t, i) = phi;\n final_chosen_E(t, i) = 0;\n else\n chosen_mode(t, i) = 2;\n device_server_pairs = [device_server_pairs; [i, mode-1, J_s(i, mode-1)]];\n end\n end\n else\n % some mobile devices can be connected, set their final modes as 2 and remove them from global pairs\n % besides, record the final cost and energy consumption for them\n % for the left i', remove them from global pairs and set J_s(i', j) as inf, \n % choose mode again for those i' and insert new potential pairs into global pairs\n\n % sort the J_s(is, j) and return those lucky idxs\n [~, idxs] = sort(device_j_pairs(:, 3));\n for idx = 1: remained_connects(j)\n i = idxs(idx);\n chosen_mode(t, i) = 2;\n p(t, i) = p_mat(i, j);\n server_exe_cost(t, i) = server_cost_mat(i, j);\n server_exe_E(t, i) = server_E_mat(i, j);\n chosen_server(t, i) = j;\n final_chosen_cost(t, i) = server_exe_cost(t, i);\n final_chosen_E(t, i) = server_exe_E(t, i);\n\n % remove i from global pairs\n device_server_pairs(device_server_pairs(:, 1) == i, :) = [];\n end\n\n % update remained_connects for j\n remained_connects(j) = 0;\n\n % for those unlucky mobile devices i', set J_s(i', j) as inf (i' are in currently device_server_pairs(: , j) now)\n residual_is = device_server_pairs(device_server_pairs(:, 2) == j, 1);\n J_s(residual_is, j) = inf;\n for idx = 1: numel(residual_is)\n residual_i = residual_is(idx);\n [~, mode] = min([J_m(residual_i), J_s(residual_i, :), J_d]);\n if mode == 1\n chosen_mode(t, residual_i) = 1;\n final_chosen_cost(t, residual_i) = mobile_exe_cost(t, residual_i);\n final_chosen_E(t, residual_i) = mobile_exe_E(t, residual_i);\n elseif mode == (M+2)\n chosen_mode(t, residual_i) = 3;\n final_chosen_cost(t, residual_i) = phi;\n final_chosen_E(t, residual_i) = 0;\n else\n chosen_mode(t, residual_i) = 2;\n device_server_pairs = [device_server_pairs; [residual_i, mode-1, J_s(residual_i, mode-1)]];\n end\n end\n end\n end\n end\n end\n end\n \n %% step 3: update the battery energy level and go to the next time slot\n B(t + 1, :) = B(t, :) - final_chosen_E(t, :) + e(t, :);\n t = t + 1;\n \nend\n\n%% step 4: evaluate the simulation results\n% 1. the battery energy level vs. time slot\nfigure\nplot(1:T, B(1:T, :))\nhold on\nplot(1:T, repmat(theta + E_H_max, [T, 1]), '-')\ntitle('Envolution of battery energy level')\nxlabel('time slot')\nylabel('battery energy level $B_t$ of each mobile device', 'Interpreter','latex')\n\n% 2. the average execution cost vs. time slot\naccumulated = 0;\naverage_cost = zeros(T, N);\nfigure\nfor i = 1: N\n % draw for each mobile device\n request_num = 0;\n for t = 1: T\n accumulated = accumulated + final_chosen_cost(t, i);\n if chosen_mode(t, i) ~= 4\n % there exists task request\n request_num = request_num + 1;\n end\n average_cost(t, i) = accumulated / request_num;\n end\n plot(1:T, average_cost(:, i));\n hold on\nend\ntitle('Envolution of average execution cost')\nxlabel('time slot')\nylabel('average execution cost $\\frac{1}{T} \\sum_{t=0}^{T-1} cost^t$ of each mobile device', 'Interpreter','latex')\n\n% 3. the average ratio of each chosen mode of the ith mobile device vs. time slot\naverage_ratio = zeros(T, 3);\nmobile_exe = 0; server_exe = 0; drop = 0;\nrequest_num = 0;\ni = 1; % we simply choose the first mobile device\nfor t = 1: T\n if final_chosen_cost(t, i) == 0\n continue\n else\n request_num = request_num + 1;\n if chosen_mode(t, i) == 1\n mobile_exe = mobile_exe + 1;\n elseif chosen_mode(t, i) == 2\n server_exe = server_exe + 1;\n else\n drop = drop + 1;\n end\n end\n average_ratio(t, :) = [mobile_exe, server_exe, drop] / request_num;\nend\nfigure\nplot(1:T, average_ratio(:, 1));\nhold on\nplot(1:T, average_ratio(:, 2));\nhold on\nplot(1:T, average_ratio(:, 3));\nlegend('mobile execution', 'MEC server execution', 'drop')\ntitle('Envolution of average ratio of chosen modes')\nxlabel('time slot')\nylabel('average ratio of chosen modes $\\frac{1}{T} \\sum_{t=0}^{T-1} \\{I_m^t, I_s^t, I_d^t\\}$ of the i-th mobile device', 'Interpreter','latex')\n", "meta": {"author": "hliangzhao", "repo": "Edge-Computing-Codes", "sha": "dc6dc2b59e6dcc7bb20355cf198cb240e10e338b", "save_path": "github-repos/MATLAB/hliangzhao-Edge-Computing-Codes", "path": "github-repos/MATLAB/hliangzhao-Edge-Computing-Codes/Edge-Computing-Codes-dc6dc2b59e6dcc7bb20355cf198cb240e10e338b/UIC18/eps_greedy_LODCO.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7371581510799252, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3685790755399626}} {"text": "classdef prtPreProcFunction < prtPreProc\n % prtPreProcFunction Applies a function to observations\n %\n % FUN = prtPreProcFunction creates a pre processing object that\n % applies a specified function to the observations.\n %\n % The function is set as a function handle in the property\n % \"transformationFunction\" The default is @(x)(x), which does\n % nothing.\n %\n % A prtPreProcFunction object also inherits all properties and\n % methods from the prtAction class\n %\n % Example:\n %\n % dataSet = prtDataGenIris; % Load a data set.\n % dataSet = dataSet.retainFeatures(1:2);\n % fun = prtPreProcFunction('transformationFunction',@(x)x.^2); \n % fun = fun.train(dataSet); % All prtAction's must be trained\n % dataSetNew = fun.run(dataSet); % Normalize the data\n % \n % % Plot\n % subplot(2,1,1); plot(dataSet);\n % title('Original Dataset')\n % subplot(2,1,2); plot(dataSetNew);\n % title('x.^2 Dataset')\n %\n % See Also: prtPreProc, prtPreProcPca, prtPreProcPls,\n % prtPreProcHistEq, prtPreProcZeroMeanColumns, prtPreProcLda,\n % prtPreProcZeroMeanRows, prtPreProcLogDisc, prtPreProcZmuv,\n % prtPreProcMinMaxRows \n\n\n\n\n\n\n\n properties (SetAccess=private)\n name = 'Function' \n nameAbbreviation = 'FUN'\n end\n properties\n transformationFunction = @(x)x;\n end \n \n properties (Hidden)\n operateOnMatrix = false; % Set to true for faster operation, but be careful\n operateOnDataStream = false;\n end\n \n methods\n function self = prtPreProcFunction(varargin)\n self = prtUtilAssignStringValuePairs(self,varargin{:});\n end\n end\n \n methods (Access=protected,Hidden=true)\n \n function self = trainAction(self,ds) %#ok\n % Nothing to do here\n end\n \n function ds = runAction(self,ds)\n if self.operateOnDataStream\n ds = self.transformationFunction(ds);\n else\n ds.X = runActionFast(self,ds.X);\n end\n end\n \n function x = runActionFast(self,x)\n if self.operateOnDataStream\n error('Can''t use runActionFast with operateOnDataStream = true');\n end\n if self.operateOnMatrix\n x = feval(self.transformationFunction,x);\n \n else % operateOnRows\n xOut = repmat(self.transformationFunction(x(1,:)),size(x,1),1);\n for i = 2:size(x,1)\n xOut(i,:) = self.transformationFunction(x(i,:));\n end\n x = xOut;\n \n end\n end\n end\n methods\n function self = set.transformationFunction(self,val)\n if isa(val,'char')\n % convert strings to function handles\n % might be a good idea to do this to avoid other bundling\n % the current workspace into the function used\n val = str2func(val);\n end\n assert(isa(val,'function_handle'), 'transformationFunction must be a function handle that accepts at least one input argument.');\n self.transformationFunction = val;\n end\n end\n \n \n methods (Hidden = true)\n \n function yOut = runStream(self,vector)\n % yOut = runStream(self,vector)\n yOut = self.transformationFunction(vector);\n end\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/preProc/prtPreProcFunction.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5851011686727231, "lm_q2_score": 0.6297745935070806, "lm_q1q2_score": 0.368481850661382}} {"text": "%%***********************************************************************\n%% Read in a problem in SDPA sparse format.\n%%\n%% [blk,At,C,b] = read_sdpa(fname)\n%%\n%% Input: fname = name of the file containing SDP data in\n%% SDPA foramt. \n%% Important: the data is assumed to contain only \n%% semidefinite and linear blocks. \n%%\n%%***********************************************************************\n%% SDPNAL+ \n%% Copyright (c) 2014 by\n%% Liuqin Yang, Defeng Sun, and Kim-Chuan Toh\n%%***********************************************************************\n function [blk,At,C,b] = read_sdpa(fname)\n\n%%\n%% Open the file for input\n%%\n compressed = 0; \n if exist(fname)\n fid = fopen(fname,'r');\n elseif exist([fname,'.Z']); \n compressed = 1; \n unix(['uncompress ',fname,'.Z']);\n fid = fopen(fname,'r');\n elseif exist([fname,'.gz']); \n compressed = 2;\n unix(['gunzip ',fname,'.gz']);\n fid = fopen(fname,'r');\n else\n fprintf(['*** Problem \"',fname,'\" not found, please specify the correct path or problem name. \\n']);\n blk = []; At = []; C = []; b = [];\n return;\n end\n%%\n%% Clean up special characters and comments from the file \n%%\n [datavec,count] = fscanf(fid,'%c');\n linefeeds = findstr(datavec,char(10));\n comment_chars = '*\"=';\n cumidx = [];\n for i=1:length(comment_chars)\n idx = findstr(datavec,comment_chars(i));\n cumidx = [cumidx,idx];\n end\n for j=length(cumidx):-1:1\n if (cumidx(j)==1) || (strcmp(datavec(cumidx(j)-1),char(10)))\n datavec(cumidx(j):linefeeds(min(find(cumidx(j) size(blksize,2); blksize = blksize'; end\n%%\n%% Get input b.\n%%\n idxstrt = 2+numblk; \n b = datavec(idxstrt+[1:m]); \n idxstrt = idxstrt+m; \n b = -b;\n%%\n%% Construct blk\n%%\n deblksize = 80; \n spblkidxtmp = find( (blksize>1) & (blksize < deblksize) ); \n spblkidxtmp = sort(spblkidxtmp);\n deblkidx = find( (blksize<=1) | (blksize >= deblksize) ); \n denumblk = length(deblkidx); \n linblkidx = zeros(1,denumblk); \n for p = 1:denumblk\n n = blksize(deblkidx(p)); \n if (n > 1); \n blk{p,1} = 's'; blk{p,2} = n;\n n2 = n*(n+1)/2; \n At{p,1} = sparse(n2,m);\n C{p,1} = sparse(n,n); \n else\n linblkidx(p) = p; \n blk{p,1} = 'l'; blk{p,2} = abs(n); \n At{p,1} = sparse(abs(n),m); \n C{p,1} = sparse(abs(n),1); \n end \n end\n if ~isempty(spblkidxtmp) \n maxnumblk = 200; \n spnumblk = ceil(length(spblkidxtmp)/maxnumblk);\n for q = 1:spnumblk\n if (q < spnumblk) \n spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: q*maxnumblk]); \n else\n spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: length(spblkidxtmp)]); \n end\n tmp = blksize(spblkidxall{q}); \n blk{denumblk+q,1} = 's'; \n blk{denumblk+q,2} = tmp; \n n2 = sum(tmp.*(tmp+1))/2; \n At{denumblk+q,1} = sparse(n2,m);\n C{denumblk+q,1} = sparse(sum(tmp),sum(tmp)); \n end\n else\n spnumblk = 0; \n end\n linblkidx(denumblk+[1:spnumblk]) = zeros(1,spnumblk); \n%%\n%% Construct single blocks of A,C\n%%\n len = length(datavec); \n Y = reshape(datavec(idxstrt+1:len),5,(len-idxstrt)/5)'; \n clear datavec; \n Y = sortrows(Y,[1 2]); \n matidx = [0; find(diff(Y(:,1)) ~= 0); size(Y,1)];\n%%\n for k = 1:length(matidx)-1\n idx = [matidx(k)+1 : matidx(k+1)]; \n Ytmp = Y(idx,1:5); \n matno = Ytmp(1,1); \n Ytmp2 = Ytmp(:,2); \n for p = 1:denumblk \n n = blksize(deblkidx(p)); \n idx = find(Ytmp2 == deblkidx(p)); \n ii = Ytmp(idx,3); jj = Ytmp(idx,4); vv =Ytmp(idx,5); \n len = length(idx); \n if (n > 1)\n idxtmp = find(ii > jj); \n if ~isempty(idxtmp); \n tmp = jj(idxtmp); \n jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; \n end\n tmp = -sparse(ii,jj,vv,n,n); \n tmp = tmp + triu(tmp,1)'; \n else\n tmp = -sparse(ii,ones(len,1),vv,abs(n),1); \n end\n if (matno == 0) \n C{p,1} = tmp; \n else\n if (n > 1)\n At{p,1}(:,matno) = svec(blk(p,:),tmp,1); \n else\n At{p,1}(:,matno) = tmp; \n end\n end\n end\n end \n%%\n%% Construct big sparse block of A,C \n%%\nif (spnumblk > 0)\n Y1 = Y(:,1); \n diffY1 = find(diff([-1; Y1; inf])); \n for kk = 1:length(diffY1)-1\n idx = [diffY1(kk) : diffY1(kk+1)-1];\n matno = Y1(diffY1(kk)); \n Ytmp = Y(idx,1:5);\n Ytmp2 = Ytmp(:,2); \n maxYtmp2 = Ytmp2(length(Ytmp2)); \n minYtmp2 = Ytmp2(1);\n diffYtmp2 = Ytmp2(find(diff([-1; Ytmp2]))); \n for q = 1:spnumblk\n spblkidx = spblkidxall{q};\n maxspblkidx = spblkidx(length(spblkidx));\n minspblkidx = spblkidx(1); \n count = 0; \n if (minYtmp2 <= maxspblkidx) & (maxYtmp2 >= minspblkidx)\n tmpblksize = blksize(spblkidx);\n n = sum(tmpblksize); \n cumspblksize = [0 cumsum(tmpblksize)]; \n n2 = sum(tmpblksize.*(tmpblksize+1))/2; \n idx = zeros(n2,1); offset = zeros(n2,1); \n for t = [1:length(diffYtmp2)] \n \t p = find(spblkidx == diffYtmp2(t)); \n if ~isempty(p)\n\t idxtmp = find(Ytmp2 == spblkidx(p));\n len = length(idxtmp); \n \t idx(count+[1:len]) = idxtmp; \n offset(count+[1:len]) = cumspblksize(p); \n count = count + len; \n end\n end \n idx = idx(1:count); offset = offset(1:count); \n ii = Ytmp(idx,3)+offset; jj = Ytmp(idx,4)+offset; vv = Ytmp(idx,5);\n idxtmp = find(ii > jj); \n if ~isempty(idxtmp); \n tmp = jj(idxtmp); \n jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; \n end\n\t idxeq = find(ii==jj); \n tmp = spconvert([ii jj -vv; jj ii -vv; n n 0]) ...\n + spconvert([ii(idxeq) jj(idxeq) vv(idxeq); n n 0]);\n if (matno == 0) \n C{denumblk+q,1} = tmp;\n else\n At{denumblk+q,1}(:,matno) = svec(blk(denumblk+q,:),tmp,1); \n end\n end\n end\n end\nend\n%%\n%% put all linear blocks together as a single linear block\n%% \n idx = find(linblkidx); \n if (length(idx) > 1)\n sdpidx = find(linblkidx==0); \n blktmp = 0; Atmp = []; Ctmp = [];\n for k = 1:length(idx)\n tmp = linblkidx(idx(k)); \n blktmp = blktmp+blk{tmp,2}; \n Atmp = [Atmp; At{tmp}];\n Ctmp = [Ctmp; C{tmp}]; \n end\n At = At(sdpidx); C = C(sdpidx); blk = blk(sdpidx,:); \n len = length(sdpidx); \n blk(2:len+1,:) = blk; \n blk{1,1} = 'l'; blk{1,2} = blktmp; \n At(2:len+1,1) = At; C(2:len+1,1) = C; \n At{1,1} = Atmp; C{1,1} = Ctmp; \n end\n%%******************************************************************\n\n", "meta": {"author": "intellhave", "repo": "SDRSAC", "sha": "b081721e9dfd7843d75aa12f30025b2bd7c8f024", "save_path": "github-repos/MATLAB/intellhave-SDRSAC", "path": "github-repos/MATLAB/intellhave-SDRSAC/SDRSAC-b081721e9dfd7843d75aa12f30025b2bd7c8f024/solvers/SDPNAL+v1.0/util/read_sdpa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.36848184968020903}} {"text": "function [v,psnrall] = gapwnnm_int_fwise( y, opt )\n%GAPWNNM_INT_FWISE Integrated GAP and WNNM for snapshot compressive \n%imaging.\n% Note integrated version of GAP-WNNM instead of embedded for\n% acceleration of WNNM with less block-match process for multiple\n% iterations.\n% See also GAPDENOISE.\nif nargin<2\n opt = [];\nend\n% [0] default parameter configuration, to be specified\nA = @(x) M_func(x);\nAt = @(z) Mt_func(z);\nif isfield(opt,'Mfunc'), A = @(x) opt.Mfunc(x); end\nif isfield(opt,'Mtfunc'), At = @(z) opt.Mtfunc(z); end\n% Phisum = ;\n% v0 = At(y); % start point (initialization of iteration)\nlambda = 1; % correction coefficiency\nmaxiter = 300; % maximum number of iteration\nacc = 1; % enable acceleration\nsigma = 10/255; % noise deviation \nflag_iqa = true; % flag of showing image quality assessments\nsave_iter_image = false; % flag of saving all the images of the iteration \n % process (true only necessary)\n % require assigned directory opt.iter_image_dir\n\nif isfield(opt,'Phisum'), Phisum = opt.Phisum; end\nif isfield(opt,'v0'), v0 = opt.v0; end\nif isfield(opt,'lambda'), lambda = opt.lambda; end\nif isfield(opt,'maxiter'), maxiter = opt.maxiter; end\nif isfield(opt,'acc'), acc = opt.acc; end\nif isfield(opt,'sigma'), sigma = opt.sigma; end\nif isfield(opt,'flag_iqa'), flag_iqa = opt.flag_iqa; end\nif isfield(opt,'save_iter_image'), save_iter_image = opt.save_iter_image; end\n\nif ~exist('v0','var') || isempty(v0)\n v0 = At(y); % start point (initialization of iteration)\nend\ny1 = zeros(size(y),'like',y);\npsnrall = []; % return empty with no ground truth\n% ssimall = []; % return empty with no ground truth\n% [1] start iteration\nv = v0; % initialization\n% opt.sigma = sigma;\nk = 1; % current number of iteration\nnonlocalarr = uint32.empty;\nvindarr = uint8.empty;\nfor isig = 1:length(maxiter)\n opt.sigma = sigma(isig);\n for iter = 1:maxiter(isig)\n for ii = 1:1\n % [1.1] Euclidean projection\n yb = A(v);\n if acc % enable acceleration\n y1 = y1+(y-yb);\n v = v+lambda*(At((y1-yb)./Phisum)); % v=v+lambda*(At*A)^-1*At*dy\n else\n v = v+lambda*(At((y-yb)./Phisum));\n end\n end\n % [1.2] Denoising to match the video prior\n % WNNM video denoising (MATLAB-style matrix version)\n % v = wnnm_vdenoise(v,[],opt); % opt.sigma\n noisyv = v;\n para = vdefparaconf(opt); % default parameter configuration\n para.lambda = para.vlambda; % resolve the conflict of the parameter name\n\n [nrow,ncol,nframe] = size(noisyv); % grayscale video (color todo)\n % [1] pre-calculation of the indexes of the neighbors within the search\n % window\n [neighborindarr,neighbornumarr,selfindarr] = neighborind([nrow ncol],para);\n\n % [2] WNNM denoisng for several iterations\n estv = noisyv;\n for iit = 1:para.iternum\n % correction between adjacent iterations\n if ~para.adaptboost % \n estv = estv + para.delta*(noisyv-estv); \n else % adaptive boosting for WNNM-based denoising\n Eestv = mean(abs(estv(:)).^2);\n Enoise = para.abeta*abs(para.nsigma^2-var(noisyv(:)-estv(:)));\n rho = sqrt(Eestv)/(sqrt(Eestv)+sqrt(max(Eestv-Enoise,0)));\n fprintf(' Iteration % 2d, rho = %.3f.\\n',iit,rho);\n estv = estv + (1-rho)*(noisyv-estv); \n end\n \n blockmatch_period = para.blockmatch_period;\n % inner loop to reuse the block-matching results\n if mod(k,blockmatch_period) == 1 % block matching periodically\n nonlocalarr = uint32.empty;\n parfor (iframe = 1:nframe,nframe) % maximum nframe parpool for optimal\n estim = estv(:,:,iframe);\n noisyim = noisyv(:,:,iframe);\n % [2.1] video to patches\n [rawpatchmat,~] = im2patch(estim,noisyim,para);\n % [2.2] calculate the patches with non-local similarity for each \n % key patch\n curnonlocalarr = blockmatch(rawpatchmat,...\n neighborindarr,neighbornumarr,selfindarr,para);\n nonlocalarr(:,:,iframe) = curnonlocalarr;\n end\n end\n % frame-wise denosing using parfor instead of for to get accelerated\n % performance, requiring Parallel Computing Toolbox.\n \n parfor (iframe = 1:nframe,nframe) % maximum nframe parpool for optimal\n % for iframe = 1:nframe % maximum nframe parpool for optimal\n estim = estv(:,:,iframe);\n noisyim = noisyv(:,:,iframe);\n % [2.1] video to patches\n [rawpatchmat,nsigmamat] = im2patch(estim,noisyim,para);\n if iit==1 % initial noise level of each patch\n nsigmamat = para.nsigma*ones(size(nsigmamat));\n end\n curnonlocalarr = nonlocalarr(:,:,iframe);\n % [2.3] patch estimation by means of WNNM\n [estpatchmat,frqpatchmat] = patchestimate(curnonlocalarr,...\n rawpatchmat,nsigmamat,selfindarr,para);\n % [2.4] aggregate overlapped patches to the whole image\n curim = patch2im(estpatchmat,frqpatchmat,size(noisyim),...\n para.patchsize);\n \n estv(:,:,iframe) = curim;\n end\n\n if mod(iit-1,para.innerloop)==0 \n % % [2.2] calculate the patches with non-local similarity for \n % % each key patch\n % [nonlocalarr,vindarr] = vblockmatch(cframe,rawpatchmat,...\n % neighborindarr,neighbornumarr,selfindarr,para);\n % less non-local patches with lower noise level\n para.patchnum = para.patchnum-10; \n end\n % [1.4] save and show intermediate results of psnr and ssim\n if flag_iqa && isfield(opt,'orig') && (~isempty(opt.orig))\n psnrall(k) = psnr(double(estv),double(opt.orig)); % record all psnr\n % ssimall(k) = ssim(double(estv),opt.orig); % record all ssim\n if (mod(k,5)==0) \n fprintf(' GAP-%s iteration % 4d, sigma %.1f, PSNR %2.2f dB.\\n',...\n upper(opt.denoiser),k,opt.sigma*255,psnrall(k));\n end\n if save_iter_image % save all the images of the iteration process\n MAXB = opt.MAXB;\n % save each frame in the assigned directory\n nim = size(estv,ndims(estv)); % number of frames in the video\n for iim = 1:nim\n im = estv(:,:,iim);\n impsnr = psnr(im,opt.orig(:,:,iim));\n imssim = ssim(im,opt.orig(:,:,iim));\n if k == 1 % mkdir for the first iteration\n subdir = sprintf('%s/frame%02d',opt.iter_image_dir,iim); % frame-wise\n if ~exist(subdir,'dir')\n mkdir(subdir);\n end\n end\n imwrite(uint8(im*MAXB),sprintf('%s/frame%02d/frame%02d_iter%03d_sigma%.1f_psnr%2.2f_ssim%.4f.png',...\n opt.iter_image_dir,iim,iim,k,opt.sigma*MAXB,impsnr,imssim));\n end\n end\n end\n k = k+1;\n end % WNNM loop [iternum]\n v = estv;\n % % [1.3] update noise standard deviation\n % nsigma = eta*sqrt(abs(sigma^2-var(v(:)-v0(:))));\n % opt.sigma = nsigma;\n \n end % GAP loop [maxiter]\nend % sigma loop [length(sigma)]\n\nend \n \n \n", "meta": {"author": "liuyang12", "repo": "DeSCI", "sha": "fc9fddddbe7a6d503301e79ead7eb599c2d5db39", "save_path": "github-repos/MATLAB/liuyang12-DeSCI", "path": "github-repos/MATLAB/liuyang12-DeSCI/DeSCI-fc9fddddbe7a6d503301e79ead7eb599c2d5db39/algorithms/gapwnnm_int_fwise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.36838492878987844}} {"text": "classdef ipfSpotKey < ipfColorKey\n% \n% Colorizes single spots in the inverse pole figure with individual colors.\n%\n% Syntax\n% ipfKey = ipfSpotKey\n% ipfKey.inversePoleFigureDirection = zvector; \n% ipfKey.center = Miller(1,0,0,cs); % the centers of the spots in the inverse pole figure\n% ipfKey.color = [0 0 1]; % the color of the spots\n% ipfKey.psi = S2DeLaValleePoussinKernel('halfwidth',7.5*degree);\n%\n% color = ipfKey.orientation2color(ori)\n%\n% Class Properties\n% center - list of crystal directions @Miller\n% color - n-by-3 list representing RGB values, one for each center\n% psi - @S2Kernel providing the width and brightness for colored fibre\n% inversePoleFigureDirection - specimen direction @vector3d\n%\n% See also\n% EBSDAdvancedMapping\n \n properties\n center % list of crystal directions @Miller\n color % list of RGB values, one for each center\n psi % @2Kernel providing the width and brightness for colored fibre \n end\n \n methods\n function oM = ipfSpotKey(varargin)\n oM = oM@ipfColorKey(varargin{:});\n \n oM.center = get_option(varargin,'center',Miller(0,0,1,oM.CS1));\n oM.CS1 = oM.center.CS;\n oM.color = get_option(varargin,'color',[1 0 0]);\n oM.psi = get_option(varargin,'S2Kernel',...\n S2DeLaValleePoussinKernel('halfwidth',get_option(varargin,'halfwidth',10*degree)));\n \n oM.dirMap = directionColorKey(oM.CS1,'dir2color',@(varargin) oM.dir2color(varargin{:}));\n \n end\n \n function rgb = dir2color(oM,h)\n \n h = normalize(h);\n rgb = ones(length(h),3);\n\n for k=1:length(oM.center)\n\n w = oM.psi.eval(dot(h,normalize(oM.center(k)))) ./ oM.psi.eval(1);\n \n if ~any(oM.color(k,:))% fix in case of black\n cdata = repmat([0 1 1],length(h),1);\n cdata(:,2) = w(:).*cdata(:,2);\n cdata = reshape(hsv2rgb(cdata),[],3);\n cdata(:,1)=cdata(:,2);\n rgb = rgb.*cdata;\n else \n cdata = rgb2hsv(repmat(oM.color(k,:),length(h),1));\n cdata(:,2) = w(:).*cdata(:,2);\n cdata(:,3) = 1;\n cdata = reshape(hsv2rgb(cdata),[],3);\n rgb = rgb.*cdata;\n end\n end\n end\n end\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/plotting/orientationColorKeys/ipfSpotKey.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7310585786300048, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3683849287898784}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETERS Returns a data structure containing the parameters of the\n% ABB IRB140.\n%\n% Author: Arturo Gil. Universidad Miguel Hernandez de Elche. \n% email: arturo.gil@umh.es date: 09/01/2012\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Copyright (C) 2012, by Arturo Gil Aparicio\n%\n% This file is part of ARTE (A Robotics Toolbox for Education).\n% \n% ARTE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% ARTE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with ARTE. If not, see .\nfunction robot = parameters()\n\nrobot.name= 'Epson_Prosix_VT6';\nrobot.path = 'robots/Epson/Prosix_VT6';\n\nrobot.DH.theta= '[q(1)+pi q(2)-pi/2 q(3) q(4) q(5) q(6)]';\nrobot.DH.d='[0.412 0 0 0.400 0 0.080]';\nrobot.DH.a='[0.1 0.420 0 0 0 0]';\nrobot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]';\nrobot.J=[];\n\n\nrobot.inversekinematic_fn = 'inversekinematic_Prosix_VT6(robot, T)';\nrobot.directkinematic_fn = 'directkinematic(robot, q)';\n\n\n%number of degrees of freedom\nrobot.DOF = 6;\n\n%rotational: 0, translational: 1\nrobot.kind=['R' 'R' 'R' 'R' 'R' 'R'];\n\n%minimum and maximum rotation angle in rad\nrobot.maxangle =[deg2rad(-170) deg2rad(170); %Axis 1, minimum, maximum\n deg2rad(-160) deg2rad(65); %Axis 2, minimum, maximum\n deg2rad(-51) deg2rad(190); %Axis 3\n deg2rad(-200) deg2rad(200); %Axis 4: Unlimited (400\ufffd default)\n deg2rad(-125) deg2rad(125); %Axis 5\n deg2rad(-360) deg2rad(360)]; %Axis 6: Really Unlimited to (800\ufffd default)\n\n%maximum absolute speed of each joint rad/s or m/s\nrobot.velmax = [deg2rad(183.7); %Axis 1, rad/s\n deg2rad(122.5); %Axis 2, rad/s\n deg2rad(118.8); %Axis 3, rad/s\n deg2rad(271.4); %Axis 4, rad/s\n deg2rad(296.8); %Axis 5, rad/s\n deg2rad(296.8)];%Axis 6, rad/s\n \nrobot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration time\n \n% end effectors maximum velocity\nrobot.linear_velmax = 2.5; %m/s\n\n\n\n%base reference system\nrobot.T0 = eye(4);\n\n\n%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION\n%position, velocity and acceleration\nrobot=init_sim_variables(robot);\nrobot.path = pwd;\n\n\n% GRAPHICS\nrobot.graphical.has_graphics=1;\nrobot.graphical.color = [94 104 245]./255;\n%for transparency\nrobot.graphical.draw_transparent=30;\n%draw DH systems\nrobot.graphical.draw_axes=1;\n%DH system length and Font size, standard is 1/10. Select 2/20, 3/30 for\n%bigger robots\nrobot.graphical.axes_scale=0.5;\n%adjust for a default view of the robot\nrobot.axis=[-2 2 -2 5 0 2];\n%read graphics files\nrobot = read_graphics(robot);\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DYNAMIC PARAMETERS\n% WARNING! These parameters do not correspond to the actual IRB 140\n% robot. They have been introduced to demonstrate the necessity of \n% simulating the robot and should be used only for educational purposes\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nrobot.has_dynamics=1;\n\n%consider friction in the computations\nrobot.dynamics.friction=0;\n\n%link masses (kg)\nrobot.dynamics.masses=[16.1 17.16 9.18 6.12 1.53 0.9];\n\n%COM of each link with respect to own reference system\nrobot.dynamics.r_com=[0 0 0; %(rx, ry, rz) link 1\n -0.05\t 0.006\t 0.1; %(rx, ry, rz) link 2\n -0.0203\t-0.0141\t 0.070; %(rx, ry, rz) link 3\n 0 0.019 0;%(rx, ry, rz) link 4\n 0 0 0;%(rx, ry, rz) link 5\n 0 0 0.032];%(rx, ry, rz) link 6\n\n%Inertia matrices of each link with respect to its D-H reference system.\n% Ixx\tIyy\tIzz\tIxy\tIyz\tIxz, for each row\nrobot.dynamics.Inertia=[0 0.35\t0 \t0\t0\t0;\n .13 .524\t.539\t0\t0\t0;\n .066\t.086\t.0125\t0\t0\t0;\n 1.8e-3\t1.3e-3\t1.8e-3\t0\t0\t0;\n .3e-3\t.4e-3\t.3e-3\t0\t0\t0;\n .15e-3\t.15e-3\t.04e-3\t0\t0\t0];\n\n\n\nrobot.motors=load_motors([5 5 5 4 4 4]);\n%Speed reductor at each joint\n% my values are\n% G=[230 450 20 1 5 1]\nrobot.motors.G=[300 300 300 300 300 300];\n\n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/robots/EPSON/Prosix_VT6-L/parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7090191460821871, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.368350564061962}} {"text": "%ADDPOSTPROC Add mapppings in POSTPROC field of a datafile\n%\n% A = ADDPOSTPROC(A,MAPPING)\n% A = ADDPOSTPROC(A)\n%\n% INPUT\n% A - Datafile\n% POSTPROC - Postprocessing mapping command\n%\n% OUTPUT\n% A - Datafile\n%\n% DESCRIPTION\n% Extends the set of mappings stored in A.POSTPROC.\n% Existing mappings are extended sequentially: \n%\n% A.POSTPROC = A.POSTPROC * MAPPING\n%\n% Mappings in A.POSTPROC are stored only and executed just \n% after A is converted from a DATAFILE into a PRDATASET.\n% The feature size of the datafile A is reset to the output\n% size of PRMAPPING.\n% The POSTPROC field of A can be reset by SETPOSTPROC.\n%\n% SEE ALSO (PRTools Guide)\n% DATAFILES, SETPREPROC, SETPOSTPROC\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/@prmapping/addpostproc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813031051514763, "lm_q2_score": 0.6334102775181399, "lm_q1q2_score": 0.3682033611561531}} {"text": "function R = slsumstat_blks(data, statfunc, varargin)\n%SLSUMSTAT_BLKS Sums up statistics on all blocks for partitioned data\n%\n% $ Syntax $\n% - R = slsumstat_blks(data, statfunc, ...)\n%\n% $ Arguments $\n% - data: the data array of cell array of data array filenames\n% - statfunc: the function to compute statistics on data array\n% - R: the sum statistics\n%\n% $ Description $\n% - R = slsumstat_blks(data, statfunc, ...) computes statistics on\n% all data blocks and sums them by plus. When data is an array,\n% it just invokes statfunc on it and return, if data is a cell array\n% of filenames, it loads data of each block, computes statistics\n% blockwise and sums them up to give the final result.\n%\n% $ Remarks $\n% - The function is widely applicable for diverse types of computation.\n% The only conditions is that the function values on the whole matrix\n% is equivalent to the sum of function values on all blocks.\n% \n% - The function values can be either a scalar or an array of any \n% dimensions, provided that the values produced on all blocks have\n% equal size.\n%\n% $ History $\n% - Created by Dahua Lin, on Aug 8th, 2006\n%\n\n%% parse and verify input arguments\n\nif nargin < 2\n raise_lackinput('slsumstat_blks', 2);\nend\nif ~isnumeric(data) && ~iscell(data)\n error('sltoolbox:invalidargs', ...\n 'data should be either a numeric array or a cell array of strings');\nend\n\n\n%% compute\n\nif isnumeric(data)\n R = feval(statfunc, data, varargin{:});\nelse\n n = numel(data);\n \n % first section\n curdata = slreadarray(data{1});\n R = feval(statfunc, curdata, varargin{:});\n \n % other section\n if n > 1\n for i = 2 : n\n curdata = slreadarray(data{i});\n curR = feval(statfunc, curdata, varargin{:});\n R = R + curR;\n end\n end\nend\n\n\n\n", "meta": {"author": "lmthang", "repo": "nmt.hybrid", "sha": "50d5c025f18ed280ff0fd2e2adce327f4170a2c3", "save_path": "github-repos/MATLAB/lmthang-nmt.hybrid", "path": "github-repos/MATLAB/lmthang-nmt.hybrid/nmt.hybrid-50d5c025f18ed280ff0fd2e2adce327f4170a2c3/code/wordsim/code/sltoolbox_r101/sltoolbox_r101/sltoolbox/core/slsumstat_blks.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813031051514763, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.36820335311074387}} {"text": "% procedure: use draw_anatomical_ROI_2008 to draw saggital slices\n% then mask with cortical ribbon from segmentation\n% then clean up using draw...\n\ncl = mask2clusters('insula_ribbon_R.img');\ncl = mask2clusters('SPM8_insula_ribbon_L.img');\nmask_union([],'SPM8_insula_ribbon_LR.img','SPM8_insula_ribbon_L.img','insula_ribbon_R.img');\ndat = fmri_data('SPM8_insula_ribbon_LR.img'); orthviews(dat)\n\ndat = apply_mask(dat, fmri_data('SPM8_colin27T1_cortical_ribbon.img'));\northviews(dat)\n\ndat.fullpath = fullfile(pwd, 'insula_ribbon1.img');\nwrite(dat);\n\n%% clean up\n\ndraw_anatomical_roi_2008('load', 'insula_ribbon1.img')\ndraw_anatomical_roi_2008('moveslice')\ndraw_anatomical_roi_2008('write')\nSPM8_insula_ribbon_LR.img\n\n% smooth and threshold\ndat = fmri_data('SPM8_insula_ribbon_LR.img')\ndat = preprocess(dat, 'smooth', 1);\ndat = threshold(dat, [.02 Inf], 'raw-between');\northviews(dat)\n\n\n%%\n% viz\ncl = mask2clusters('SPM8_insula_ribbon_LR.img');\n\ncluster_orthviews(cl, {[1 .7 0]});\ncluster_orthviews(cl, {[1 .7 0]}, 'add');\n\nspm_orthviews('xhairs', 'off');\ndelete(findobj(gcf, 'Type', 'text'));\n\n\n%% \ndat = fmri_data('SPM8_insula_ribbon_LR.img')\northviews(dat)\nsurface(dat)", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/canlab_canonical_brains/Cortical_ROI_masks/insula_ribbon_partial_script.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3682033439217579}} {"text": "% AUTHOR: Aaron Nicolson\n% AFFILIATION: Signal Processing Laboratory, Griffith University\n%\n% This Source Code Form is subject to the terms of the Mozilla Public\n% License, v. 2.0. If a copy of the MPL was not distributed with this\n% file, You can obtain one at http://mozilla.org/MPL/2.0/.\n\nclear all; close all; clc\n\nver = {''};\n\nfor i = 1:length(ver)\n T = readtable(['./iter/', ver{i}, '.csv']);\n iter = 1:height(T);\n plot(iter, T.loss); hold on;\n xlabel('Iteration');\n ylabel('Loss');\nend\nlegend(ver);\nhold off;", "meta": {"author": "anicolson", "repo": "DeepXi", "sha": "a0acd9688e1087fdde581191be2216ed93d416f9", "save_path": "github-repos/MATLAB/anicolson-DeepXi", "path": "github-repos/MATLAB/anicolson-DeepXi/DeepXi-a0acd9688e1087fdde581191be2216ed93d416f9/log/monitor_iter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857981, "lm_q2_score": 0.6548947357776796, "lm_q1q2_score": 0.3681664310080252}} {"text": "function [eta,etaf]=finishat(frac,tol,fmt)\n%FINISHAT print estimated finish time of a long computation (FRAC,TOL,FMT)\n% Usage: (1) finishat(0);\n% for i=1:many\n% ... computation ...\n% finishat(i/many);\n% end\n%\n% (2) finishat(0);\n% for i=1:NI\n% for j=1:NJ\n% for k=1:NK\n% ... computation ...\n% finishat((((i-1)*NJ+j-1)*NK+k)/(NI*NJ*NK));\n% end\n% end\n% end\n% \n% Inputs: FRAC = fraction of total comutation that has been completed\n% As a special case, 0 is used to initialize the routine\n% TOL = Tolerance in minutes. If the estimated time has changed by less\n% than this, then nothing will be printed. [default 10% of remaining time]\n% FMT = Format string which should include %s for estimated finish time, %d for remaining minutes and %f for fraction complete\n%\n% Output: ETA = string containing the expected finish time\n% specifying this will suppress printing message to std err (fid=2)\n% ETAF = expected finish time as a daynumber\n%\n% Example: finishat(0);\n% for i=1:many\n% long computation;\n% finishat(i/many);\n% end\n\n% Copyright (C) Mike Brookes 1998\n% Version: $Id: finishat.m 8893 2016-10-27 16:52:30Z dmb $\n%\n% VOICEBOX is a MATLAB toolbox for speech processing.\n% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You can obtain a copy of the GNU General Public License from\n% http://www.gnu.org/copyleft/gpl.html or by writing to\n% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\npersistent oldt oldnw\nif nargin<3\n fmt='Estimated finish at %s (%.2f done, %d min remaining)\\n';\n\nend\nif frac<=0\n oldt=0;\n eta='Unknown';\n tic;\nelse\n nw=now; % current time as serial number\n sectogo=(1/frac-1)*toc; % seconds to go\n newt=nw+sectogo/86400; % add estimated time in days\n if nargin<2 || ~numel(tol)\n tol=max(0.1*(newt-nw)*1440,1);\n end\n if ~exist('oldt','var') || oldt==0 || (abs(newt-oldt)>tol/1440 && (nw-oldnw)>10/86400) || (nw-oldnw)>10/1440 || nargout>0\n oldt=newt;\n if floor(oldt)==floor(nw)\n df='HH:MM';\n else\n df='HH:MM dd-mmm-yyyy';\n end\n eta=datestr(oldt,df);\n if ~nargout\n ix=find(fmt=='%',1);\n while ~isempty(ix)\n fprintf(2,fmt(1:ix-1));\n fmt=fmt(ix:end);\n ix=find(fmt>='a' & fmt<='z',1); % find letter\n switch fmt(ix)\n case 's'\n fprintf(2,fmt(1:ix),eta);\n case 'd'\n fprintf(2,fmt(1:ix),round(sectogo/60));\n case 'f'\n fprintf(2,fmt(1:ix),frac);\n end\n fmt=fmt(ix+1:end);\n ix=find(fmt=='%',1);\n end\n fprintf(2,fmt);\n end\n oldnw=nw; %\n end\nend\netaf=oldt;", "meta": {"author": "jtkim-kaist", "repo": "VAD", "sha": "a1e0b1299fcf22eb7654b2906a67184c73b37faa", "save_path": "github-repos/MATLAB/jtkim-kaist-VAD", "path": "github-repos/MATLAB/jtkim-kaist-VAD/VAD-a1e0b1299fcf22eb7654b2906a67184c73b37faa/lib/matlab/voicebox/finishat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3681664272214561}} {"text": "function [net, info] = train_DCFNet(varargin)\n%Training DCFNet\ntraining_env();\nopts.networkType = 12;\nopts.lossType = 1;\nopts.inputSize = 125;\nopts.padding = 2; % padding size for crop\nopts.gpus = 1;\n[opts] = vl_argparse(opts, varargin) ;\n\nopts.expDir = fullfile('..', 'data', sprintf('DCFNet-net-%d-%d-%1.1f', opts.networkType, opts.inputSize, opts.padding)) ;\nopts.imdbPath = fullfile('..', 'data', sprintf('imdb-vid2015-DCFNet-%d-%1.1f', opts.inputSize, opts.padding), 'imdb.mat');\n\ntrainOpts.momentum = 0.9;\ntrainOpts.weightDecay = 0.0005;\ntrainOpts.numEpochs = 50;\ntrainOpts.learningRate = logspace(-2, -5, trainOpts.numEpochs) ; % from SiameseFC\ntrainOpts.batchSize = 32;\ntrainOpts.gpus = [opts.gpus]; %only support single gpu\nopts.train = trainOpts;\n\nif ~isfield(opts.train, 'gpus')\n opts.train.gpus = [];\nelseif numel(opts.train.gpus) ~=0\n gpuDevice(opts.train.gpus);\nend\n\n% --------------------------------------------------------------------\n% Prepare net and data\n% --------------------------------------------------------------------\nnet = init_DCFNet('networkType', opts.networkType,...\n 'inputSize', opts.inputSize, 'padding', opts.padding);\n\nif exist(opts.imdbPath, 'file')\n imdb = load(opts.imdbPath) ;\nelse\n imdb = getImdbDCFNet('output_size', opts.inputSize,...\n 'padding', opts.padding) ;\n if ~exist(fileparts(opts.imdbPath), 'dir')\n mkdir(fileparts(opts.imdbPath));\n end\n save(opts.imdbPath, '-v7.3', '-struct', 'imdb') ;\nend\n\n% --------------------------------------------------------------------\n% Train\n% --------------------------------------------------------------------\n[net, info] = cnn_train_dag(net, imdb, getBatch(opts), ...\n 'expDir', opts.expDir, opts.train, 'val', find(imdb.images.set == 2)) ;\n\ntransition_net('expDir', opts.expDir);\ntransition_net_multi('expDir', opts.expDir);\nend\n\n% --------------------------------------------------------------------\nfunction fn = getBatch(opts)\n% --------------------------------------------------------------------\nbopts = struct('numGpus', numel(opts.train.gpus), 'batchSize', opts.train.batchSize, 'maxStep', 10) ;\nfn = @(x,y) getDagNNBatch(bopts,x,y) ;\nend\n\n% --------------------------------------------------------------------\nfunction inputs = getDagNNBatch(opts, imdb, batch)\n% --------------------------------------------------------------------\nrand_next = randi([1, opts.maxStep], size(batch));\nrand_next = min(rand_next, imdb.images.up_index(batch));\n\nif opts.numGpus > 0\n target = gpuArray(single(imdb.images.images(:,:,:,batch)));\n search = gpuArray(single(imdb.images.images(:,:,:,batch+rand_next)));\nelse\n target = single(imdb.images.images(:,:,:,batch));\n search = single(imdb.images.images(:,:,:,batch+rand_next));\nend\ntarget = bsxfun(@minus, target, imdb.images.data_mean);\nsearch = bsxfun(@minus, search, imdb.images.data_mean);\ninputs = {'target', target, 'search', search} ;\nend", "meta": {"author": "foolwood", "repo": "DCFNet", "sha": "97d2cd784d9c2b1083c1249a2aef914062fb5910", "save_path": "github-repos/MATLAB/foolwood-DCFNet", "path": "github-repos/MATLAB/foolwood-DCFNet/DCFNet-97d2cd784d9c2b1083c1249a2aef914062fb5910/training/train_DCFNet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7248702761768249, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.36809772630593524}} {"text": "% UNDER construction...\n%\n%\n%\n% Usage\n% >> waverage = stdbin(ERP, bop)\n%\n% For Bin Operations GUI/scripting purposes\n%\n% Author: Javier\n%\n\nfunction standard = stdbin(ERP, bop)\n\nif nargin<1\n help stdbin\n return\nend\nif nargin<2\n error('ERPLAB says: You must specify bin indexes to be processed!')\nend\nif ~iserpstruct(ERP)\n error('ERPLAB says: Your data structure is not an ERP structure!')\nend\nif ischar(bop)\n bop = str2num(char(regexp(bop,'\\d+','match')'))';\nend\nbinarray = unique_bc2(bop);\nif length(binarray)~=length(bop)\n fprintf('\\n*** WARNING: Repeated bins were ignored.\\n\\n')\nend\nif length(binarray)<2\n error('ERPLAB says: You must specify 2 bin indexes at leat!')\nend\nif max(binarray)>ERP.nbin\n error('ERPLAB says: Some specified bins do not exist!')\nend\ndatavg = ERP.bindata(:,:,binarray);\nstandard = std(datavg, 0, 3);\n\n", "meta": {"author": "ucdavis", "repo": "erplab", "sha": "e4f66f7a512c4dee2f7596982318e44bb1b72644", "save_path": "github-repos/MATLAB/ucdavis-erplab", "path": "github-repos/MATLAB/ucdavis-erplab/erplab-dd2f60aa41b01c866fcec342efafc48323523cc2/functions/stdbin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702761768248, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3680977263059352}} {"text": "function [Tshed,nShedsT] = BSLwatershed(regionPT,maskPT)\n%\"BSLwatershed\"\n% BSL subfunction -- Returns watersheds for BSL estimate and the total\n% number of non-zero watersheds\n%\n% CRS 05/20/13\n%\n%Usage: \n% [Tshed,nShedsT] = BSLwatershed(regionPT,maskPT)\n% regionPT = subregion from PET images in SUV\n% maskPT = VOI mask for restricting the watersheds\n%\n% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.\n% \n% This file is part of The Computational Environment for Radiotherapy Research (CERR).\n% \n% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.\n% \n% CERR has been financially supported by the US National Institutes of Health under multiple grants.\n% \n% CERR is distributed under the terms of the Lesser GNU Public License. \n% \n% This version of CERR is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n% See the GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with CERR. If not, see .%\n%\n%% Smooth region to limit WS over-segmentation \nsmoothPT = fspecial('gaussian', 9, 3);\nbPT = imfilter(regionPT,smoothPT,'replicate','same','conv');\nbPT(bPT < 0) = 0;\n\n%% Build 2D Watershed Transform of Region\nTshed = zeros(size(regionPT));\nfor i = 1:size(regionPT,3)\n \n % get slices\n PTtemp = regionPT(:,:,i);\n bPTtemp = bPT(:,:,i);\n \n % get sheds\n % performs a 2D WS on an upsampled gradient image to remove boundary\n % elements\n hy = fspecial('sobel'); hx = hy';\n DelY = imfilter(double(PTtemp), hy, 'replicate');\n DelX = imfilter(double(PTtemp), hx, 'replicate');\n gradmagS = imresize(sqrt(DelX.^2 + DelY.^2),32*size(bPTtemp),'bicubic');\n Ls = double(watershed(gradmagS,8));\n % Down Samples the WS image to reduce the number of boundary elements\n L = imresize(Ls,size(bPTtemp),'nearest');\n \n %% Detemines the number of sheds for memory allocation\n Shed = []; ShedVal = []; meanShed = [];\n k = 0;\n for j = 1:max(L(:));\n if ( numel(find(maskPT(:,:,i).*L == j)) ~= 0 )\n k = k + 1;\n end\n end\n nSheds(i) = k;\n Shed = zeros([ size(PTtemp) nSheds(i)]);\n \n % reorders sheds from low to highest mean SUV and builds masks\n k = 0;\n for j = 1:max(L(:));\n if ( numel(find(maskPT(:,:,i).*L == j)) ~= 0 )\n k = k + 1;\n mShed = double(L);\n mShed(mShed ~= j) = 0;\n mShed(mShed > 0) = 1;\n Shed(:,:,k) = mShed.*PTtemp;\n ShedVal(k) = mean(nonzeros(Shed(:,:,k)));\n meanShed(:,:,k) = mShed*ShedVal(k);\n end\n end\n [~,Ival] = sort(ShedVal);\n Shed = Shed(:,:,Ival);\n meanShed = meanShed(:,:,Ival);\n \n % bulds a total shed from the means of each WS\n TmpShed = zeros(size(L));\n for j = 1:nSheds(i), TmpShed = meanShed(:,:,j) + TmpShed; end\n TmpShed1 = TmpShed;\n \n %% Unclassified voxel assignment \n % Finds unclassified voxels\n Cracks = double(L);\n Cracks(Cracks ~= 0) = 0.5; Cracks(Cracks == 0) = 1; Cracks(Cracks < 1) = 0;\n iCrack = find(Cracks); Cracks = Cracks.*PTtemp;\n % Fill in unclassified voxels using the nearest mean shed value from\n % NEWS (k < 3) avoids infinite loop \n k = 0;\n while (sum(Cracks(:)) > 0 && k < 3)\n k = k + 1;\n [mSize, nSize] = size(L);\n for j = 1:numel(iCrack)\n q = floor( ( iCrack(j)-1 ) / mSize ) + 1;\n p = mod(iCrack(j),mSize);\n if (p == 0), p = mSize; end\n jT = p-1 + (q-1)*mSize; jB = p+1 + (q-1)*mSize;\n jL = p + (q-2)*mSize; jR = p + (q)*mSize;\n \n iVal = []; jCross = [];\n if (p > 1 && p < mSize)\n if (q > 1 && q < nSize), jCross = [ jT jB jL jR ];\n else\n if (q > 1), jCross = [ jT jB jL ];\n else jCross = [ jT jB jR ];\n end\n end\n else\n if (p > 1)\n if (q > 1 && q < nSize), jCross = [ jT jL jR ];\n else\n if (q > 1), jCross = [ jT jL ];\n else jCross = [ jT jR ];\n end\n end\n else\n if (q > 1), jCross = [ jB jL ];\n else jCross = [ jB jR ];\n end\n end\n end\n [~, iVal] = min(abs( TmpShed(jCross) - Cracks(iCrack(j)) ));\n if (TmpShed(jCross(iVal)) == 0)\n TmpShed1(iCrack(j)) = Cracks(iCrack(j));\n else\n TmpShed1(iCrack(j)) = TmpShed(jCross(iVal));\n end\n end\n TmpShed = TmpShed1;\n Cracks = TmpShed;\n Cracks(Cracks ~= 0) = 0.5; Cracks(Cracks == 0) = 1; Cracks(Cracks < 1) = 0;\n iCrack = find(Cracks); Cracks = Cracks.*PTtemp;\n end\n Tshed(:,:,i) = TmpShed1;\n \nend\nnShedsT = sum(nSheds);\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/ImageMetrics/BSLwatershed.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867681382279, "lm_q2_score": 0.46101677931231594, "lm_q1q2_score": 0.36797749313679207}} {"text": "classdef ComplianceVoigt2TensorConverterPS < FourthOrderVoigt2TensorConverterPS\n \n properties\n end\n \n methods (Access = public)\n \n function obj = ComplianceVoigt2TensorConverterPS(tensor)\n obj.computeConversion(tensor) \n end\n \n end\n \n methods (Access = protected,Static)\n \n function f = getVoigtFactor(iv,jv)\n if ((iv > 2 && jv <= 2) ) || ((iv <= 2 && jv > 2) )\n f = 2;\n elseif (iv>2 && jv>2)\n f = 4;\n else\n f = 1;\n end\n end\n \n end\n \n methods (Access = protected)\n \n function selectTensorClass(obj)\n obj.tensor = CompliancePlaneStressTensor();\n end\n \n end\n \n \nend\n ", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Homogenization/Sources/Tensors/TensorVoigtConverters/Voigt2TensorConverter/ComplianceVoigt2TensorConverterPS.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419704455588, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3679379070927491}} {"text": "%%*****************************************************************\n%% randmat: generate an mxn matrix using matlab's\n%% rand or randn functions using state = k.\n%%*****************************************************************\n%% SDPT3: version 4.0\n%% Copyright (c) 1997 by\n%% Kim-Chuan Toh, Michael J. Todd, Reha H. Tutuncu\n%% Last Modified: 16 Sep 2004\n%%*****************************************************************\n\nfunction v = randmat(m,n,k,randtype)\n\ntry \n s = rng; \n rng(k);\n if strcmp(randtype,'n')\n v = randn(m,n); \n elseif strcmp(randtype,'u')\n v = rand(m,n); \n end\n rng(s); \ncatch\n if strcmp(randtype,'n')\n s = randn('state');\n randn('state',k);\n v = randn(m,n); \n randn('state',s);\n elseif strcmp(randtype,'u')\n s = rand('state');\n rand('state',k);\n v = rand(m,n); \n rand('state',s);\n end\nend\n%%******************************************************", "meta": {"author": "yu-jiang", "repo": "radpbook", "sha": "88b9fa7d0a541099cdd1ac29383c89e087d1d895", "save_path": "github-repos/MATLAB/yu-jiang-radpbook", "path": "github-repos/MATLAB/yu-jiang-radpbook/radpbook-88b9fa7d0a541099cdd1ac29383c89e087d1d895/tools/SDPT3-4.0/SDPT3-4.0/Solver/randmat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123243, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.36789578973037446}} {"text": "function view = cmapSetStandard(view, mode, phInMiddle)\n%\n% view = cmapSetStandard(view,mode,phInMiddle)\n%\n% Author: JL, BW\n% Purpose:\n% Put in place a standard color map for the different modes.\n\nif ieNotDefined('mode'), mode = 'ph'; end\n \nswitch mode\n case 'ph'\n case 'co'\n case 'amp'\n otherwise\nend\n\n% ??? view = refreshView(view);\n\nreturn;\n\n\n%---------------------------\nfunction cmap = cmapCenter(mp,centerPhase)\n\n[mp, numGrays,numColors] = getColorMap(FLAT{2},'ph',1);\n\nstep = numColors/(2*pi);\nhorPhase = 2;\n\n% We want the part of the default map from pi to 2pi to be centered around\n% the phase that represents the horizontal midline. That means we want to\n% shift the map so that 3pi/2 in the default color map shifts down to the\n% horizontal position.\n\nsz = round(( (3*pi/2) - horPhase) *step);\ncmap = circshift(mp,sz)\n\nreturn;", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Colormap/cmapSetStandard.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3678957897303744}} {"text": "%addpath /white/u2/bob/matlab/stats/\nvolView = getSelectedVolume;\n\n%baseDir = '/home/bob/research/papers/dti/callosal_areaMaps/matlabFigs';\nmkdir(tempdir, 'matlabFigs');\nbaseDir = fullfile(tempdir, 'matlabFigs');\ndisp(['figures will be saved in ' baseDir]);\n[junk,sessionCode] = fileparts(pwd);\nfileNameBase = fullfile(baseDir, [mrSESSION.subject '_' sessionCode]);\nfileName = [fileNameBase '_' volView.ROIs(viewGet(volView, 'selectedROI')).name];\nlabelX = 'Left phase (rad)';\nlabelY = 'Right phase (rad)';\n% axisLim = [-2*pi, 2*pi, -2*pi, 2*pi];\n% tick = [-3*pi/2, -pi, -pi/2, 0, pi/2, pi, 3*pi/2];\n% tickLabel = [' ';'-pi';' ';' 0 ';' ';' pi';' '];\neccenDeg = [0, pi/2, pi, 3*pi/2, 4*pi/2]/(2*pi) * 16;\naxisLim = [-pi/2, 5*pi/2, -pi/2, 5*pi/2];\ntick = [0, pi/2, pi, 3*pi/2, 4*pi/2];\ntickLabel = [' 0 ';' ';' pi ';' ';'2 pi'];\nscanNames = {'wedge','ring'};\ncoThresh = 0.25;\npaperFigs = 0;\nif(paperFigs)\n fontName = 'Helvetica';\n fontSize = 12;\n markSize = 9;\n markColor = 'k';\n lineWidth = 2;\n lineColor = 'k';\nelse\n fontName = 'Comic Sans MS';\n fontSize = 16;\n markSize = 12;\n markColor = 'r';\n lineWidth = 3;\n lineColor = 'b';\nend\ngeneralNotes = '';\nroiCoords = getCurROIcoords(volView);\n% We get the last coord, which is the left-right axis (lower = left)\n% The following will swap coordinate pairs so that the left-most coord\n% is always first.\nfiberEndptCoordX = [roiCoords(3,1:2:end); roiCoords(3,2:2:end)];\nswapThese = diff(fiberEndptCoordX)<0;\ntmp = fiberEndptCoordX(1,swapThese);\nfiberEndptCoordX(1,swapThese) = fiberEndptCoordX(2,swapThese);\nfiberEndptCoordX(2,swapThese) = tmp;\nfor(scanNum=1:2)\n co = getCurDataROI(volView,'co',scanNum,roiCoords);\n ph = getCurDataROI(volView,'ph',scanNum,roiCoords);\n fiberEndptPh = [ph(1:2:end); ph(2:2:end)];\n tmp = fiberEndptPh(1,swapThese);\n fiberEndptPh(1,swapThese) = fiberEndptPh(2,swapThese);\n fiberEndptPh(2,swapThese) = tmp;\n goodVals = isfinite(fiberEndptPh(1,:)) & isfinite(fiberEndptPh(2,:)) & co(1:2:end)>coThresh & co(2:2:end)>coThresh;\n fiberEndptPh = fiberEndptPh(:,goodVals);\n % Null hypothesis test\n fiberEndptPh(2,:) = fiberEndptPh(2,randperm(length(fiberEndptPh(2,:))));\n % Unwrap phases\n if(strcmpi(scanNames{scanNum}, 'wedge'))\n else\n labelX = 'Left Eccentricity (deg)';\n labelY = 'Right Eccentricity (deg)';\n tickLabel = num2str(eccenDeg');\n d = diff(fiberEndptPh);\n unwrapThese = d>pi & fiberEndptPh(2,:)>3*pi/2;\n fiberEndptPh(1,unwrapThese) = fiberEndptPh(2,unwrapThese)+2*pi;\n unwrapThese = d<-pi & fiberEndptPh(1,:)>3*pi/2;\n fiberEndptPh(2,unwrapThese) = fiberEndptPh(2,unwrapThese)+2*pi; \n end\n x = squeeze(fiberEndptPh(1,:));\n y = squeeze(fiberEndptPh(2,:));\n %[p, r, df] = statTest(x, y, 'r'); rsq = r^2;\n %fit = polyfit(x, y, 1)\n [b,bint,r,rint,s]=regress(y',[x',ones(size(y'))]);\n fitX = [min(x),max(x)];\n fitY = fitX.*b(1) + b(2);\n p = s(3); rsq = s(1); f = s(2);\n if(paperFigs)\n if(scanNum==1) fh = figure; else figure(fh); end\n set(fh,'Position',[6, 33, 400, 820]);\n subplot(2,1,scanNum);\n else\n fh = figure;\n set(fh,'Position',[7, 50, 400, 430]);\n end\n axes;\n line([axisLim(1),axisLim(2)], [axisLim(3),axisLim(4)], 'Color', 'k', 'LineWidth', 1);\n hold on;\n h = scatter(x, y, markColor);\n hold off;\n set(gca, 'fontName', fontName);\n set(gca, 'fontSize', fontSize);\n xlabel(labelX, 'fontName', fontName, 'fontSize', fontSize, 'fontWeight','normal');\n ylabel(labelY, 'fontName', fontName, 'fontSize', fontSize, 'fontWeight','normal');\n axis(axisLim);\n set(gca, 'XTick', tick);\n set(gca, 'YTick', tick);\n set(gca, 'XTickLabel', tickLabel);\n set(gca, 'YTickLabel', tickLabel);\n set(h, 'MarkerSize', markSize); set(h, 'LineWidth', lineWidth);\n lineH = line(fitX, fitY, 'Color', lineColor, 'LineWidth', lineWidth);\n if(p<0.0001)\n title(sprintf('%s: R^2=%0.4f (p<0.0001)', scanNames{scanNum}, rsq));\n else\n title(sprintf('%s: R^2=%0.4f (p=%0.4f)', scanNames{scanNum}, rsq, p));\n end\n if(~paperFigs)\n pos = get(fh, 'Position');\n set(gca, 'Units', 'pixels');\n %[left bottom width height]\n set(gca, 'Position', [70,70,pos(3)-90,pos(3)-90]);\n set(fh, 'PaperPositionMode', 'auto');\n %print(fh, '-dpng', '-r120', [fileName '_' scanNames{scanNum} '_scatter.png']);\n end\n\n notes = [sprintf('coThresh=%0.3f; ', coThresh) generalNotes];\n %save([fileName '_' scanNames{scanNum} '_dat.mat'], 'fiberEndptPh', 'co', 'ph', 'roiCoords', 'notes');\nend\n\nif(paperFigs)\n set(fh, 'PaperPositionMode', 'auto');\n print(fh, '-depsc', '-tiff', [fileName '_scatter.eps']);\nend\nrefresh;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrScripts/diffusion/fmri/dtiFmri_visualAreaPlots.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979745, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3678957827697566}} {"text": "function boxes3d(varargin)\n%BOXES3D Description of functions operating on 3D boxes.\n%\n% A box defined by its coordinate extents: \n% BOX = [XMIN XMAX YMIN YMAX ZMIN ZMAX].\n%\n% Example\n% % Draw a polyhedron together with its bounding box \n% [n e f]= createIcosahedron;\n% drawPolyhedron(n, f);\n% hold on;\n% drawBox3d(point3dBounds(n))\n%\n%\n% See also\n% boundingBox3d, box3dVolume, drawBox3d\n% intersectBoxes3d, mergeBoxes3d, randomPointInBox3d\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2010-07-26, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2010 INRA - Cepia Software Platform.\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_geom3d/geom3d/boxes3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5389832058771036, "lm_q2_score": 0.6825737344123242, "lm_q1q2_score": 0.3678957796210611}} {"text": "function [varargout]=axis_inc(varargin)\n\n% function [h]=axis_inc(s,ha)\n% ------------------------------------------------------------------------\n% This function widens the axis limits for the axis with the handle |hs|\n% using the scale factor |s| (e.g. if s=2 the axis width is doubled). The\n% scaling parameter |s| can be a single scalar or a vector such that each\n% axis direction is scaled differently. \n% \n% Change log: \n% 2019/06/26 Added variable input/output handling\n% ------------------------------------------------------------------------\n\n%% Parse input\n\nswitch nargin\n case 1\n s=varargin{1};\n ha=gca; \n case 2\n s=varargin{1};\n ha=varargin{2}; \nend\n\nif numel(s)==1\n s=s*ones(1,3); \nend\n\n%% Set new axis limits\n\n%Get axis limits\nlimSet={'XLim','YLim','ZLim'};\n\nfor q=1:1:numel(limSet)\n try\n limNow=get(ha,limSet{q});\n w=limNow(2)-limNow(1);\n if w<=eps(0)\n w=1; %Force 1 if too small\n end\n limInc=w*(s(q)-1)/2; %Axis limit increment\n limNew=limNow+[-limInc limInc];\n set(ha,limSet{q},limNew);\n catch\n \n end\nend\n\n%% Collect output\nvarargout{1}=ha;\n\nend\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/axis_inc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5389832058771036, "lm_q2_score": 0.6825737344123242, "lm_q1q2_score": 0.3678957796210611}} {"text": "function bands = SpectrogramBands(spectrogram,frequencies,varargin)\n\n%SpectrogramBands - Determine running power in physiological bands.\n%\n% USAGE\n%\n% bands = SpectrogramBands(spectrogram,frequencies,)\n%\n% spectrogram spectrogram obtained using MTSpectrogram\n% frequencies frequency bins for spectrogram\n% optional list of property-value pairs (see table below)\n%\n% =========================================================================\n% Properties Values\n% -------------------------------------------------------------------------\n% 'smooth' smoothing for ratio (0 = no smoothing) (default = 2)\n% 'delta' set delta band (default = [0 4])\n% 'theta' set theta band (default = [7 10])\n% 'spindles' set spindle band (default = [10 20])\n% 'lowGamma' set low gamma band (default = [30 80])\n% 'highGamma' set high gamma band (default = [80 120])\n% 'ripples' set ripple band (default = [100 250])\n% 'broadLow' set broad low frequency band (default = [1 12])\n% 'amyGamma' set amygdala gamma band (default = [45 65])\n% =========================================================================\n%\n% OUTPUT\n%\n% bands.delta delta power\n% bands.theta theta power\n% bands.spindles spindle power\n% bands.lowGamma low gamma power\n% bands.highGamma high gamma power\n% bands.ripples ripple power\n% bands.broadLow broad low frequency power\n% bands.amyGamma amygdala gamma power\n%\n% bands.ratios.hippocampus theta/delta ratio\n% bands.ratios.cortex [0.5 4.5]/[0.5 9] and [0.5 20]/[0.5 55]\n% bands.ratios.amygdala gamma/broad low ratio\n%\n% Heuristic ratios for cortex are from Gervasoni et al. (2004).\n%\n% SEE\n%\n% See also MTSpectrogram.\n\n% Copyright (C) 2004-2014 by Micha\u00ebl Zugaro, Gabrielle Girardeau\n%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 3 of the License, or\n% (at your option) any later version.\n\n% Defaults\nsmooth = 2;\ndelta = [0 4];\ntheta = [7 10];\nspindles = [10 20];\nlowGamma = [30 80];\nhighGamma = [80 120];\nripples = [100 250];\nbroadLow = [1 12];\namyGamma = [45 65];\n\n% Check number of parameters\nif nargin < 2,\n error('Incorrect number of parameters (type ''help SpectrogramBands'' for details).');\nend\n\n% Check parameter sizes\nif ~isdmatrix(spectrogram),\n\terror('Parameter ''spectrogram'' is not a matrix (type ''help SpectrogramBands'' for details).');\nend\nif ~isdvector(frequencies) | length(frequencies) ~= size(spectrogram,1),\n\terror('Parameter ''frequencies'' is not a vector or does not match spectrogram size (type ''help SpectrogramBands'' for details).');\nend\n\n% Parse options\nfor i = 1:2:length(varargin),\n\tif ~ischar(varargin{i}),\n\t\terror(['Parameter ' num2str(i) ' is not a property (type ''help SpectrogramBands'' for details).']);\n\tend\n\tswitch(lower(varargin{i})),\n\t\tcase 'smooth',\n\t\t\tsmooth = varargin{i+1};\n\t\t\tif ~isdscalar(smooth,'>=0'),\n\t\t\t\terror('Incorrect value for property ''smooth'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'delta',\n\t\t\tdelta = varargin{i+1};\n\t\t\tif ~isdvector(delta,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''delta'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'theta',\n\t\t\ttheta = varargin{i+1};\n\t\t\tif ~isdvector(theta,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''theta'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'spindles',\n\t\t\tspindles = varargin{i+1};\n\t\t\tif ~isdvector(spindles,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''spindles'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'lowgamma',\n\t\t\tlowGamma = varargin{i+1};\n\t\t\tif ~isdvector(lowGamma,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''lowGamma'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'highgamma',\n\t\t\thighGamma = varargin{i+1};\n\t\t\tif ~isdvector(highGamma,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''highGamma'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'ripples',\n\t\t\tripples = varargin{i+1};\n\t\t\tif ~isdvector(ripples,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''ripples'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'broadlow',\n\t\t\tbroadLow = varargin{i+1};\n\t\t\tif ~isdvector(broadLow,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''broadLow'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\tcase 'amygamma',\n\t\t\tamyGamma = varargin{i+1};\n\t\t\tif ~isdvector(amyGamma,'>=0','<','#2'),\n\t\t\t\terror('Incorrect value for property ''amyGamma'' (type ''help SpectrogramBands'' for details).');\n\t\t\tend\n\t\totherwise,\n\t\t\terror(['Unknown property ''' num2str(varargin{i}) ''' (type ''help SpectrogramBands'' for details).']);\n\tend\nend\n\nn = size(spectrogram,1);\n\n% Select relevant frequency bins\nthetaBins = frequencies >= theta(1) & frequencies <= theta(2);\ndeltaBins = frequencies >= delta(1) & frequencies <= delta(2);\nspindleBins = frequencies >= spindles(1) & frequencies <= spindles(2);\nlowGammaBins = frequencies >= lowGamma(1) & frequencies <= lowGamma(2);\nhighGammaBins = frequencies >= highGamma(1) & frequencies <= highGamma(2);\nrippleBins = frequencies >= ripples(1) & frequencies <= ripples(2);\nbroadLowBins = frequencies >= broadLow(1) & frequencies <= broadLow(2);\namyGammaBins = frequencies >= amyGamma(1) & frequencies <= amyGamma(2);\n\n% Compute physiological bands\nbands.theta = mean(spectrogram(thetaBins,:))';\nbands.delta = mean(spectrogram(deltaBins,:))';\nbands.spindles = mean(spectrogram(spindleBins,:))';\nbands.lowGamma = mean(spectrogram(lowGammaBins,:))';\nbands.highGamma = mean(spectrogram(highGammaBins,:))';\nbands.ripples = mean(spectrogram(rippleBins,:))';\nbands.broadLow = mean(spectrogram(broadLowBins,:))';\nbands.amyGamma = mean(spectrogram(amyGammaBins,:))';\n\n% Theta/delta ratio\nbands.ratios.hippocampus = Smooth(bands.theta./(bands.delta+eps),smooth);\nbands.ratio = bands.ratios.hippocampus;\n\n% Heuristic ratios from Gervasoni et al. (2004)\nrange1 = [0.5 4.5];\nbins1 = frequencies >= range1(1) & frequencies <= range1(2);\nband1 = mean(spectrogram(bins1,:))';\nrange2 = [0.5 9];\nbins2 = frequencies >= range2(1) & frequencies <= range2(2);\nband2 = mean(spectrogram(bins2,:))';\nbands.ratios.cortex(:,1) = Smooth(band1./(band2+eps),smooth);\nbands.ratio1 = bands.ratios.cortex;\n\nrange1 = [0.5 20];\nbins1 = frequencies >= range1(1) & frequencies <= range1(2);\nband1 = mean(spectrogram(bins1,:))';\nrange2 = [0.5 55];\nbins2 = frequencies >= range2(1) & frequencies <= range2(2);\nband2 = mean(spectrogram(bins2,:))';\nbands.ratios.cortex(:,2) = Smooth(band1./(band2+eps),smooth);\nbands.ratio2 = bands.ratios.cortex(:,2);\n\n% Amygdala ratio\nbands.ratios.amygdala = Smooth(bands.amyGamma./(bands.broadLow+eps),smooth);\nbands.ratio3 = bands.ratios.amygdala;\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/FMAToolbox/Analyses/SpectrogramBands.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370308082623217, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3678823392520623}} {"text": "% DeJong_f3.m\n% De Jong's f3 function, ND, also called STEP\n% from: http://www.cs.rpi.edu/~hornda/pres/node4.html\n%\n% f(x) = sum( floor(x) )\n%\n% x = N element row vector containing [ x0, x1,..., xN ]\n% each row is processed independently,\n% you can feed in matrices of timeXN no prob\n%\n% example: cost = DeJong_f3([1,2;3,4;5,6])\n% note minimum @ x= -Inf or whatever lower bound you've chosen\n\n% Brian Birge\n% Rev 1.0\n% 9/12/04\n\nfunction [out]=DeJong_f3(in)\n out = sum( floor(in) , 2);", "meta": {"author": "HuangCongQing", "repo": "Algorithms_MathModels", "sha": "e15b0e9053b11f08b5ce1e3492c4acb444409c8b", "save_path": "github-repos/MATLAB/HuangCongQing-Algorithms_MathModels", "path": "github-repos/MATLAB/HuangCongQing-Algorithms_MathModels/Algorithms_MathModels-e15b0e9053b11f08b5ce1e3492c4acb444409c8b/MATLAB\u667a\u80fd\u7b97\u6cd530\u4e2a\u6848\u4f8b\u5206\u6790/chapter17 \u57fa\u4e8ePSO\u5de5\u5177\u7bb1\u7684\u51fd\u6570\u5bfb\u4f18\u7b97\u6cd5/testfunctions/DeJong_f3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6370308013713525, "lm_q1q2_score": 0.36788233527255954}} {"text": "%BASE64DECODE decodes a base64 string as a vector of uint8s\n% BASE64DECODE(BASE64)\n% Decodes every four BASE64 characters to three bytes.\n% If BASE64 is padded with '=', these are translated to zeros, and\n% stripped from the resulting bytes.\n\n% (c) 2014 Bastian Bechtold\n% This code is licensed under the BSD 3-clause license\n\nfunction bytes = base64decode(base64)\n % strip line breaks\n base64 = strrep(base64, sprintf('\\n'), '');\n % add padding if missing\n if mod(length(base64), 4) ~= 0\n base64 = [base64 repmat('=', [1 mod(length(base64), 4)])];\n end\n % remember padding\n padding = sum(base64 == '=');\n % convert from string representation to base64 bytes\n table = zeros(1, 128, 'uint8');\n table(['A':'Z' 'a':'z' '0':'9' '+' '/']+0) = 0:63;\n base64 = table(base64');\n\n % convert every four base64 bytes to three uint8 bytes\n bytes = zeros(length(base64)/4*3, 1, 'uint8');\n bytes(1:3:end) = bitor(bitshift(base64(1:4:end), 2), ...\n bitshift(base64(2:4:end), -4));\n bytes(2:3:end) = bitor(bitshift(bitand(base64(2:4:end), 15), 4), ... % four LSB\n bitshift(base64(3:4:end), -2));\n bytes(3:3:end) = bitor(bitshift(bitand(base64(3:4:end), 3), 6), ... % two LSB\n base64(4:4:end));\n % strip padding\n bytes = bytes(1:end-padding);\nend\n", "meta": {"author": "bastibe", "repo": "transplant", "sha": "b6215fadd66514e9ddff24a30bebac966ba80c57", "save_path": "github-repos/MATLAB/bastibe-transplant", "path": "github-repos/MATLAB/bastibe-transplant/transplant-b6215fadd66514e9ddff24a30bebac966ba80c57/transplant/base64decode.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803832, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.36788233129305675}} {"text": "function B = sub(A, varargin)\n% sub(A,i,j,k) = A(i;j;k)\n% Written by Mo Chen (sth4nth@gmail.com).\nassert(ndims(A)==numel(varargin));\nsz = cellfun(@numel,varargin);\nIDX = cell(1,ndims(A));\nfor i = 1:ndims(A)\n idx = varargin{i};\n shape = ones(1,ndims(A));\n shape(i) = sz(i);\n idx = reshape(idx,shape);\n shape = sz;\n shape(i) = 1;\n idx = repmat(idx,shape);\n IDX{i} = idx(:);\nend\nB = reshape(A(sub2ind(size(A),IDX{:})),sz);", "meta": {"author": "PRML", "repo": "PRMLT", "sha": "baac49f643db6b39e75307d3b21307b32b29a7a9", "save_path": "github-repos/MATLAB/PRML-PRMLT", "path": "github-repos/MATLAB/PRML-PRMLT/PRMLT-baac49f643db6b39e75307d3b21307b32b29a7a9/common/sub.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370307944803831, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.3678823312930566}} {"text": "function [stat, cfg] = ft_statistics_montecarlo(cfg, dat, design, varargin)\n\n% FT_STATISTICS_MONTECARLO performs a nonparametric statistical test by calculating\n% Monte-Carlo estimates of the significance probabilities and/or critical values from\n% the permutation distribution. This function should not be called directly, instead\n% you should call the function that is associated with the type of data on which you\n% want to perform the test.\n%\n% Use as\n% stat = ft_timelockstatistics(cfg, data1, data2, data3, ...)\n% stat = ft_freqstatistics (cfg, data1, data2, data3, ...)\n% stat = ft_sourcestatistics (cfg, data1, data2, data3, ...)\n%\n% where the data is obtained from FT_TIMELOCKANALYSIS, FT_FREQANALYSIS or\n% FT_SOURCEANALYSIS respectively, or from FT_TIMELOCKGRANDAVERAGE,\n% FT_FREQGRANDAVERAGE or FT_SOURCEGRANDAVERAGE respectively \n% and with cfg.method = 'montecarlo'\n%\n% The configuration options that can be specified are:\n% cfg.numrandomization = number of randomizations, can be 'all'\n% cfg.correctm = string, apply multiple-comparison correction, 'no', 'max', cluster', 'tfce', 'bonferroni', 'holm', 'hochberg', 'fdr' (default = 'no')\n% cfg.alpha = number, critical value for rejecting the null-hypothesis per tail (default = 0.05)\n% cfg.tail = number, -1, 1 or 0 (default = 0)\n% cfg.correcttail = string, correct p-values or alpha-values when doing a two-sided test, 'alpha','prob' or 'no' (default = 'no')\n% cfg.ivar = number or list with indices, independent variable(s)\n% cfg.uvar = number or list with indices, unit variable(s)\n% cfg.wvar = number or list with indices, within-cell variable(s)\n% cfg.cvar = number or list with indices, control variable(s)\n% cfg.feedback = string, 'gui', 'text', 'textbar' or 'no' (default = 'text')\n% cfg.randomseed = string, 'yes', 'no' or a number (default = 'yes')\n%\n% If you use a cluster-based statistic, you can specify the following options that\n% determine how the single-sample or single-voxel statistics will be thresholded and\n% combined into one statistical value per cluster.\n% cfg.clusterstatistic = how to combine the single samples that belong to a cluster, 'maxsum', 'maxsize', 'wcm' (default = 'maxsum')\n% the option 'wcm' refers to 'weighted cluster mass', a statistic that combines cluster size and intensity; \n% see Hayasaka & Nichols (2004) NeuroImage for details\n% cfg.clusterthreshold = method for single-sample threshold, 'parametric', 'nonparametric_individual', 'nonparametric_common' (default = 'parametric')\n% cfg.clusteralpha = for either parametric or nonparametric thresholding per tail (default = 0.05)\n% cfg.clustercritval = for parametric thresholding (default is determined by the statfun)\n% cfg.clustertail = -1, 1 or 0 (default = 0)\n%\n% To include the channel dimension for clustering of channel level data, you should specify\n% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS\n% If you specify an empty neighbourhood structure, clustering will only be done\n% over frequency and/or time and not over neighbouring channels.\n%\n% The statistic that is computed for each sample in each random reshuffling\n% of the data is specified as\n% cfg.statistic = 'indepsamplesT' independent samples T-statistic,\n% 'indepsamplesF' independent samples F-statistic,\n% 'indepsamplesregrT' independent samples regression coefficient T-statistic,\n% 'indepsamplesZcoh' independent samples Z-statistic for coherence,\n% 'depsamplesT' dependent samples T-statistic,\n% 'depsamplesFmultivariate' dependent samples F-statistic MANOVA,\n% 'depsamplesregrT' dependent samples regression coefficient T-statistic,\n% 'actvsblT' activation versus baseline T-statistic.\n% or you can specify your own low-level statistical function.\n%\n% You can also use a custom statistic of your choice that is sensitive to the\n% expected effect in the data. You can implement the statistic in a \"statfun\" that\n% will be called for each randomization. The requirements on a custom statistical\n% function is that the function is called ft_statfun_xxx, and that the function returns\n% a structure with a \"stat\" field containing the single sample statistical values.\n% Have a look at the functions in the fieldtrip/statfun directory (e.g. \n% FT_STATFUN_INDEPSAMPLEST) for the correct format of the input and output.\n%\n% See also FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS, FT_SOURCESTATISTICS,\n% FT_STATISTICS_ANALYTIC, FT_STATISTICS_STATS, FT_STATISTICS_MVPA,\n% FT_STATISTICS_CROSSVALIDATE\n\n% Undocumented local options:\n% cfg.resampling permutation, bootstrap\n% cfg.computecritval yes|no, for the statfun\n% cfg.computestat yes|no, for the statfun\n% cfg.computeprob yes|no, for the statfun\n% cfg.voxelstatistic deprecated\n% cfg.voxelthreshold deprecated\n% cfg.precondition before|after|[], for the statfun\n\n% Copyright (C) 2005-2015, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% do a sanity check on the input data\nassert(isnumeric(dat), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead');\nassert(isnumeric(design), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead');\n\n% check if the input cfg is valid for this function\ncfg = ft_checkconfig(cfg, 'renamed', {'factor', 'ivar'});\ncfg = ft_checkconfig(cfg, 'renamed', {'unitfactor', 'uvar'});\ncfg = ft_checkconfig(cfg, 'renamed', {'repeatedmeasures', 'uvar'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'clusterthreshold', 'nonparametric', 'nonparametric_individual'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'yes', 'max'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'none', 'no'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'bonferoni', 'bonferroni'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'correctm', 'holms', 'holm'});\ncfg = ft_checkconfig(cfg, 'required', {'statistic'});\ncfg = ft_checkconfig(cfg, 'forbidden', {'ztransform', 'removemarginalmeans', 'randomfactor', 'voxelthreshold', 'voxelstatistic'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'statfun', 'depsamplesF', 'ft_statfun_depsamplesFmultivariate'});\ncfg = ft_checkconfig(cfg, 'renamedval', {'statfun', 'ft_statfun_depsamplesF', 'ft_statfun_depsamplesFmultivariate'});\n\n% set the defaults for the main function\ncfg.alpha = ft_getopt(cfg, 'alpha', 0.05);\ncfg.tail = ft_getopt(cfg, 'tail', 0);\ncfg.correctm = ft_getopt(cfg, 'correctm', 'no');\ncfg.resampling = ft_getopt(cfg, 'resampling', 'permutation');\ncfg.feedback = ft_getopt(cfg, 'feedback', 'text');\ncfg.ivar = ft_getopt(cfg, 'ivar', 'all');\ncfg.uvar = ft_getopt(cfg, 'uvar', []);\ncfg.cvar = ft_getopt(cfg, 'cvar', []);\ncfg.wvar = ft_getopt(cfg, 'wvar', []);\ncfg.correcttail = ft_getopt(cfg, 'correcttail', 'no');\ncfg.precondition = ft_getopt(cfg, 'precondition', []);\n\n% explicit check for option 'yes' in cfg.correctail.\nif strcmp(cfg.correcttail, 'yes')\n ft_error('cfg.correcttail = ''yes'' is not allowed, use either ''prob'', ''alpha'' or ''no''')\nend\n\nif strcmp(cfg.correctm, 'tfce')\n % TODO this could require some better defaults\n cfg.connectivity = ft_getopt(cfg, 'connectivity', []);\n cfg.tfce_h0 = ft_getopt(cfg, 'tfce_h0', 0);\n cfg.tfce_H = ft_getopt(cfg, 'tfce_H', 2);\n cfg.tfce_E = ft_getopt(cfg, 'tfce_E', 0.5);\n cfg.tfce_nsteps = ft_getopt(cfg, 'tfce_nsteps', 100);\nelse\n % these options only apply to tfce, to ensure appropriate configs they are forbidden when _not_ clustering\n cfg = ft_checkconfig(cfg, 'unused', {'tfce_h0', 'tfce_H', 'tfce_E', 'tfce_nsteps'});\nend\n\nif strcmp(cfg.correctm, 'cluster')\n % set the defaults for clustering\n cfg.clusterstatistic = ft_getopt(cfg, 'clusterstatistic', 'maxsum');\n cfg.clusterthreshold = ft_getopt(cfg, 'clusterthreshold', 'parametric');\n cfg.clusteralpha = ft_getopt(cfg, 'clusteralpha', 0.05);\n cfg.clustercritval = ft_getopt(cfg, 'clustercritval', []);\n cfg.clustertail = ft_getopt(cfg, 'clustertail', cfg.tail);\n cfg.connectivity = ft_getopt(cfg, 'connectivity', []); % the default is dealt with below\nelse\n % these options only apply to clustering, to ensure appropriate configs they are forbidden when _not_ clustering\n cfg = ft_checkconfig(cfg, 'unused', {'clusterstatistic', 'clusteralpha', 'clustercritval', 'clusterthreshold', 'clustertail'});\nend\n\nif any(strcmp(cfg.correctm, {'cluster' 'tfce'}))\n % these options might require a spatial neighbourhood matrix\n \n % deal with the neighbourhood of the channels/triangulation/voxels\n if isempty(cfg.connectivity)\n if isfield(cfg, 'dim') && ~isfield(cfg, 'channel') && ~isfield(cfg, 'tri')\n % input data can be reshaped into a 3D volume, use bwlabeln/spm_bwlabel rather than clusterstat\n ft_info('using connectivity of voxels in 3-D volume\\n');\n cfg.connectivity = nan;\n elseif isfield(cfg, 'tri')\n % input data describes a surface along which neighbours can be defined\n ft_info('using connectivity of vertices along triangulated surface\\n');\n cfg.connectivity = triangle2connectivity(cfg.tri);\n if isfield(cfg, 'insideorig')\n cfg.connectivity = cfg.connectivity(cfg.insideorig, cfg.insideorig);\n end\n elseif isfield(cfg, 'avgoverchan') && istrue(cfg.avgoverchan)\n % channel dimension has been averaged across, no sense in clustering across space\n cfg.connectivity = true(1);\n elseif isfield(cfg, 'channel')\n cfg.neighbours = ft_getopt(cfg, 'neighbours', []);\n cfg.connectivity = channelconnectivity(cfg);\n else\n % there is no connectivity in the spatial dimension\n cfg.connectivity = false(size(dat,1));\n end\n else\n % use the specified connectivity: this is not fully robust because\n % there is no guarantee that the order of the spatial elements in the\n % data is the same as the order of the spatial elements in the\n % adjacency matrix\n end\nend\n\n% for backward compatibility and other warnings relating correcttail\nif isfield(cfg,'correctp') && strcmp(cfg.correctp,'yes')\n ft_warning('cfg.correctp has been renamed to cfg.correcttail and the options have been changed')\n disp('setting cfg.correcttail to ''prob''')\n cfg.correcttail = 'prob';\n cfg = rmfield(cfg,'correctp');\nelseif isfield(cfg,'correctp') && strcmp(cfg.correctp,'no')\n cfg = ft_checkconfig(cfg, 'renamed', {'correctp', 'correcttail'});\nend\nif strcmp(cfg.correcttail,'no') && cfg.tail==0 && cfg.alpha==0.05\n ft_warning('Doing a two-sided test without correcting p-values or alpha-level, p-values and alpha-level will reflect one-sided tests per tail. See http://bit.ly/2YQ1Hm8')\nend\n\n% for backward compatibility\nif size(design,2)~=size(dat,2)\n design = transpose(design);\nend\n\nif ischar(cfg.ivar) && strcmp(cfg.ivar, 'all')\n cfg.ivar = 1:size(design,1);\nend\n\n% fetch function handle to the low-level statistics function\nstatfun = ft_getuserfun(cfg.statistic, 'statfun');\nif isempty(statfun)\n ft_error('could not locate the appropriate statistics function');\nelse\n ft_info('using \"%s\" for the single-sample statistics\\n', func2str(statfun));\nend\n\n% construct the resampled design matrix or data-shuffling matrix\nft_info('constructing randomized design\\n');\nresample = resampledesign(cfg, design);\nNrand = size(resample,1);\n\n% most of the statfuns result in this warning, which is not interesting\nws = ft_warning('off', 'MATLAB:warn_r14_stucture_assignment');\n\nif strcmp(cfg.correctm, 'cluster')\n % determine the critical value for cluster thresholding\n if strcmp(cfg.clusterthreshold, 'nonparametric_individual') || strcmp(cfg.clusterthreshold, 'nonparametric_common')\n ft_info('using a nonparametric threshold for clustering\\n');\n cfg.clustercritval = []; % this will be determined later\n elseif strcmp(cfg.clusterthreshold, 'parametric') && isempty(cfg.clustercritval)\n ft_info('computing a parametric threshold for clustering\\n');\n tmpcfg = cfg; % the next line does not pass on non-standard options that a statfun might use\n % tmpcfg = keepfields(cfg, {'dim' 'dimord' 'clusteralpha' 'clustertail' 'ivar' 'uvar' 'cvar' 'wvar' 'contrastcoefs'});\n tmpcfg.computecritval = 'yes'; % explicitly request the computation of the crtitical value\n tmpcfg.computestat = 'no'; % skip the computation of the statistic\n tmpcfg.alpha = cfg.clusteralpha; % the statfun uses cfg.alpha most likely \n try\n cfg.clustercritval = getfield(statfun(tmpcfg, dat, design), 'critval');\n catch\n disp(lasterr);\n ft_error('could not determine the parametric critical value for clustering');\n end\n elseif strcmp(cfg.clusterthreshold, 'parametric') && ~isempty(cfg.clustercritval)\n ft_info('using the specified parametric threshold for clustering\\n');\n cfg.clusteralpha = [];\n end\nend\n\n% compute the statistic for the observed data\nft_progress('init', cfg.feedback, 'computing statistic');\n% get an estimate of the time required per evaluation of the statfun\ntime_pre = cputime;\n\ntry\n % the nargout function in MATLAB 6.5 and older does not work on function handles\n num = nargout(statfun);\ncatch\n num = 1;\nend\n\nif num==1\n % only the statistic is returned\n [statobs] = statfun(cfg, dat, design);\nelseif num==2\n % both the statistic and the (updated) configuration are returned\n [statobs, cfg] = statfun(cfg, dat, design);\nelseif num==3\n % both the statistic and the (updated) configuration and the (updated) data are returned\n tmpcfg = cfg;\n if strcmp(cfg. precondition, 'before'), tmpcfg.preconditionflag = 1; end\n [statobs, tmpcfg, dat] = statfun(tmpcfg, dat, design);\n tmpcfg.preconditionflag = 0;\n cfg = tmpcfg;\nend\n\nif isstruct(statobs)\n % remember all details for later reference, continue to work with the statistic\n statfull = statobs;\n statobs = statobs.stat;\nend\n\n% remember the statistic for later reference, continue to work with the statistic\nstatfull.stat = statobs;\n\ntime_eval = cputime - time_pre;\nft_info('estimated time per randomization is %.2f seconds\\n', time_eval);\n\n% pre-allocate some memory\nif strcmp(cfg.correctm, 'cluster')\n statrand = zeros(size(statobs,1), size(resample,1), class(dat)); % this reduces the memory footprint, requires the user to use ft_struct2single on the input data\nelse\n prb_pos = zeros(size(statobs));\n prb_neg = zeros(size(statobs));\nend\n\nif strcmp(cfg.precondition, 'after')\n tmpcfg = cfg;\n tmpcfg.preconditionflag = 1;\n [tmpstat, tmpcfg, dat] = statfun(tmpcfg, dat, design);\nend\n\nif any(strcmp(cfg.correctm, {'tfce' 'max'}))\n % pre-allocate the memory to hold the distribution of most extreme positive (right) and negative (left) statistical values\n posdistribution = nan(1,Nrand);\n negdistribution = nan(1,Nrand);\nend\n\n% compute the statistic for the randomized data and count the outliers\nfor i = 1:Nrand\n ft_progress(i/Nrand, 'computing statistic %d from %d\\n', i, Nrand);\n if strcmp(cfg.resampling, 'permutation')\n tmpdesign = design(:,resample(i,:)); % the columns in the design matrix are reshufled by means of permutation\n tmpdat = dat; % the data itself is not shuffled\n if size(tmpdesign,1)==size(tmpdat,2)\n tmpdesign = transpose(tmpdesign);\n end\n elseif strcmp(cfg.resampling, 'bootstrap')\n tmpdesign = design; % the design matrix is not shuffled\n tmpdat = dat(:,resample(i,:)); % the columns of the data are resampled by means of bootstrapping\n end\n if any(strcmp(cfg.correctm, {'cluster' 'tfce'}))\n % keep each randomization in memory for cluster postprocessing\n dum = statfun(cfg, tmpdat, tmpdesign);\n if isstruct(dum)\n statrand(:,i) = dum.stat;\n else\n statrand(:,i) = dum;\n end\n else\n % do not keep each randomization in memory, but process them on the fly\n statrand = statfun(cfg, tmpdat, tmpdesign);\n if isstruct(statrand)\n statrand = statrand.stat;\n end\n \n % the following line is for debugging\n % stat.statkeep(:,i) = statrand;\n if strcmp(cfg.correctm, 'max')\n % compare each data element with the maximum statistic\n prb_pos = prb_pos + (statobsmin(statrand(:)));\n posdistribution(i) = max(statrand(:));\n negdistribution(i) = min(statrand(:));\n else\n % compare each data element with its own statistic\n prb_pos = prb_pos + (statobsstatrand);\n end\n end\nend\nft_progress('close');\n\nif strcmp(cfg.correctm, 'cluster')\n % do the cluster postprocessing\n [stat, cfg] = clusterstat(cfg, statrand, statobs);\nelseif strcmp(cfg.correctm, 'tfce')\n [stat, cfg] = tfcestat(cfg, statrand, statobs);\nelse\n if ~isequal(cfg.numrandomization, 'all')\n % in case of random permutations (i.e., montecarlo sample, and NOT full\n % permutation), the minimum p-value should not be 0, but 1/N\n prb_pos = prb_pos + 1;\n prb_neg = prb_neg + 1;\n Nrand = Nrand + 1;\n end\n switch cfg.tail\n case 1\n clear prb_neg % not needed any more, free some memory\n stat.prob = prb_pos./Nrand;\n case -1\n clear prb_pos % not needed any more, free some memory\n stat.prob = prb_neg./Nrand;\n case 0\n % for each observation select the tail that corresponds with the lowest probability\n prb_neg = prb_neg./Nrand;\n prb_pos = prb_pos./Nrand;\n stat.prob = min(prb_neg, prb_pos); % this is the probability for the most unlikely tail\n end\nend\n\n% In case of a two tailed test, the type-I error rate (alpha) refers to\n% both tails of the distribution, whereas the stat.prob value computed sofar\n% corresponds with one tail, i.e. the probability, under the assumption of\n% no effect or no difference (the null hypothesis), of obtaining a result\n% equal to or more extreme than what was actually observed. The decision\n% rule whether the null-hopothesis should be rejected given the observed\n% probability therefore should consider alpha divided by two, to correspond\n% with the probability in one of the tails (the most extreme tail). This\n% is conceptually equivalent to performing a Bonferroni correction for the\n% two tails.\n%\n% An alternative solution to distribute the alpha level over both tails is\n% achieved by multiplying the probability with a factor of two, prior to\n% thresholding it wich cfg.alpha. The advantage of this solution is that\n% it results in a p-value that corresponds with a parametric probability.\n% Below both options are realized\nif strcmp(cfg.correcttail, 'prob') && cfg.tail==0\n stat.prob = stat.prob .* 2;\n stat.prob(stat.prob>1) = 1; % clip at p=1\n % also correct the probabilities in the pos/negcluster fields\n if isfield(stat, 'posclusters')\n for i=1:length(stat.posclusters)\n stat.posclusters(i).prob = stat.posclusters(i).prob*2;\n if stat.posclusters(i).prob>1; stat.posclusters(i).prob = 1; end\n end\n end\n if isfield(stat, 'negclusters')\n for i=1:length(stat.negclusters)\n stat.negclusters(i).prob = stat.negclusters(i).prob*2;\n if stat.negclusters(i).prob>1; stat.negclusters(i).prob = 1; end\n end\n end\nelseif strcmp(cfg.correcttail, 'alpha') && cfg.tail==0\n cfg.alpha = cfg.alpha / 2;\nend\n\n% compute range of confidence interval p ? 1.96(sqrt(var(p))), with var(p) = var(x/n) = p*(1-p)/N\nstddev = sqrt(stat.prob.*(1-stat.prob)/Nrand);\nstat.cirange = 1.96*stddev;\n\nif isfield(stat, 'posclusters')\n for i=1:length(stat.posclusters)\n stat.posclusters(i).stddev = sqrt(stat.posclusters(i).prob.*(1-stat.posclusters(i).prob)/Nrand);\n stat.posclusters(i).cirange = 1.96*stat.posclusters(i).stddev;\n if i==1 && stat.posclusters(i).prob=cfg.alpha\n ft_warning('FieldTrip:posCluster_exceeds_alpha', sprintf('The p-value confidence interval of positive cluster #%i includes %.3f - consider increasing the number of permutations!', i, cfg.alpha));\n end\n end\nend\nif isfield(stat, 'negclusters')\n for i=1:length(stat.negclusters)\n stat.negclusters(i).stddev = sqrt(stat.negclusters(i).prob.*(1-stat.negclusters(i).prob)/Nrand);\n stat.negclusters(i).cirange = 1.96*stat.negclusters(i).stddev;\n if i==1 && stat.negclusters(i).prob=cfg.alpha\n ft_warning('FieldTrip:negCluster_exceeds_alpha', sprintf('The p-value confidence interval of negative cluster #%i includes %.3f - consider increasing the number of permutations!', i, cfg.alpha));\n end\n end\nend\n\nif ~isfield(stat, 'prob')\n ft_warning('probability was not computed');\nelse\n switch lower(cfg.correctm)\n case 'max'\n % the correction is implicit in the method\n ft_notice('using a maximum-statistic based method for multiple comparison correction\\n');\n ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\\n');\n stat.mask = stat.prob<=cfg.alpha;\n stat.posdistribution = posdistribution;\n stat.negdistribution = negdistribution;\n case 'tfce'\n ft_notice('using a threshold free cluster enhancement based method for multiple comparison correction\\n');\n ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\\n');\n stat.mask = stat.prob<=cfg.alpha;\n case 'cluster'\n % the correction is implicit in the method\n ft_notice('using a cluster-based method for multiple comparison correction\\n');\n ft_notice('the returned probabilities and the thresholded mask are corrected for multiple comparisons\\n');\n stat.mask = stat.prob<=cfg.alpha;\n case 'bonferroni'\n ft_notice('performing Bonferroni correction for multiple comparisons\\n');\n ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\\n');\n stat.mask = stat.prob<=(cfg.alpha ./ numel(stat.prob));\n case 'holm'\n % test the most significatt significance probability against alpha/N, the second largest against alpha/(N-1), etc.\n ft_notice('performing Holm-Bonferroni correction for multiple comparisons\\n');\n ft_notice('the returned probabilities are uncorrected, the thresholded mask is corrected\\n');\n [pvals, indx] = sort(stat.prob(:)); % this sorts the significance probabilities from smallest to largest\n k = find(pvals > (cfg.alpha ./ ((length(pvals):-1:1)')), 1, 'first'); % compare each significance probability against its individual threshold\n mask = (1:length(pvals))'100\n deminfo.xmax = deminfo.xmax-360;\n deminfo.xmin = deminfo.xmin-360;\n end\n end\n \n % laoding of the data\n window_box_ll= powerlaw_windows.window_box_ll;\n window_box_center_ll = powerlaw_windows.window_box_center_ll;\n \n \n % plotting the results\n h1 = figure('name','Power-law windows','position', [ 200 243 610 603]);\n % for the legend\n plot(window_box_ll{round(0.5*(length(window_box_ll)))}(:,1),window_box_ll{round(0.5*(length(window_box_ll)))}(:,2),'r-','linewidth',2)\n hold on\n plot(window_box_center_ll(1,1),window_box_center_ll(1,2),'wo','markeredgecolor','k','markerfacecolor','w','markersize',15)\n hold on\n plot(InSAR_convexhull(:,1),InSAR_convexhull(:,2),'g-','linewidth',2)\n hold on\n\n if dem_flag==1\n % plot the topogrpahy\n imagesc([deminfo.xmin deminfo.xmax],[deminfo.ymax deminfo.ymin],deminfo.dem) \n view(0,90)\n axis xy\n else\n scatter3(ll(:,1),ll(:,2),hgt,3,hgt,'filled');\n view(0,90)\n end\n cc=colorbar;\n colormap(flipud(gray))\n xlabel(cc,'[m]','fontsize',fontsize)\n ylabel(cc,'Topography','fontsize',fontsize)\n axis equal\n axis tight \n \n hold on\n plot3(window_box_ll{round(0.5*(length(window_box_ll)))}(:,1),window_box_ll{round(0.5*(length(window_box_ll)))}(:,2),99999.*ones(size(window_box_ll{1}(:,2))),'r-','linewidth',2)\n hold on\n plot3(window_box_center_ll(:,1),window_box_center_ll(:,2),10000000.*ones(size(window_box_center_ll(:,2))),'wo','markeredgecolor','k','markerfacecolor','w','markersize',15)\n hold on\n plot3(InSAR_convexhull(:,1),InSAR_convexhull(:,2),99999.*ones(size(InSAR_convexhull(:,2))),'g-','linewidth',2)\n \n \n \n legend('Location','NorthOutside','Window example','Window centers','InSAR region')\n title('Window definition','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n\n grid off\n box on\n \n print(h1,'-dpng',['aps_p/window_locations.png'])\n print(h1,'-depsc',['aps_p/window_locations.eps'])\n \n end\n \n%% ERA interim\nelseif technique==2\n if exist('aps_e','dir')~=7\n mkdir('aps_e')\n end\n \n % loading the ERA data\n deminfo = era.deminfo;\n era_lonlat = era.era_lonlat;\n \n % check if the InSAR outline exist, if so plot it too\n if exist('InSAR_convexhull','var')==1;\n insar_flag =1;\n else\n insar_flag=0;\n end\n if insar_flag== 1\n if deminfo.xmax-max(InSAR_convexhull(:,1))>100\n InSAR_convexhull(:,1) = InSAR_convexhull(:,1)+360;\n end\n end\n \n % plotting the figure\n hfig = figure('name','ERA points and InSAR region','position', [ 200 243 610 603]);\n % for the legend generation\n plot(mean([deminfo.xmin deminfo.xmax]),mean([deminfo.ymax deminfo.ymin]),'wo','markeredgecolor','k','markerfacecolor','w','markersize',15)\n hold on\n % check if the insar convex hull can be plotted\n if insar_flag==1\n plot(mean([deminfo.xmin deminfo.xmax]),mean([deminfo.ymax deminfo.ymin]),'g-','linewidth',2)\n end\n % plot the topogrpahy\n imagesc([deminfo.xmin deminfo.xmax],[deminfo.ymax deminfo.ymin],deminfo.dem) \n cc=colorbar;\n view(0,90)\n colormap(flipud(gray))\n axis xy\n xlabel(cc,'[m]','fontsize',fontsize)\n ylabel(cc,'Topography','fontsize',fontsize)\n hold on\n plot(era_lonlat(:,1),era_lonlat(:,2),'wo','markeredgecolor','k','markerfacecolor','w','markersize',15)\n hold on\n if insar_flag==1\n plot(InSAR_convexhull(:,1),InSAR_convexhull(:,2),'g-','linewidth',2)\n legend('location','northoutside','Used ERA-I locations','InSAR region')\n else\n legend('location','northoutside','Used ERA-I locations')\n end\n title('ERA points distribution','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n axis equal\n axis tight \n \n print(hfig,'-dpng',['aps_e/era_datapoints.png'])\n print(hfig,'-depsc',['aps_e/era_datapoints.eps'])\n\n \nelseif technique==3 % MERIS\n load psver\n ps = load(['ps' num2str(psver) '.mat']);\n stamps_processed = getparm_aps('stamps_processed');\n small_baseline_flag = getparm('small_baseline_flag');\n if strcmpi(small_baseline_flag,'y')\n load('tca_sb2.mat','ph_tropo_meris');\n % for baselines you need ps of PS directory \n bperp = load(['..' filesep 'ps1.mat'],'bperp');\n bperp = bperp.bperp;\n bperp = bperp(ps.ifgday_ix);\n dates=ps.ifgday; \n ix_ifgs_keep = 1:ps.n_ifg;\n else\n load('tca2.mat','ph_tropo_meris');\n dates = [ps.day repmat(ps.master_day,length(ps.day),1)]; \n bperp = [ps.bperp zeros([length(ps.day) 1])];\n ix_ifgs_keep = 1:ps.n_ifg;\n end\n\n \n % plot the SB network and show for whcih connection there is meris data\n if strcmp(stamps_processed,'y')\n\n % remove that that have not been unwrapped before\n ix_dropped = getparm('drop_ifg');\n \n % interferograms with a meris correction\n temp = ix_ifgs_keep;\n temp(ix_dropped)=[];\n ifgs_good = find(sum(ph_tropo_meris(:,temp)~=0,1)~=0)\n \n \n if strcmp(small_baseline_flag,'n')\n ix_dropped = unique([ix_dropped ps.master_ix]);\n end\n ix_ifgs_keep(ix_dropped)=[];\n bperp(ix_dropped,:)=[];\n dates(ix_dropped,:)=[];\n\n % keep the original network for reference\n dates_all = dates;\n bperp_all = bperp;\n\n\n\n % plotting the network of the interferograms used in the RMSE computation\n h_baselineplot = figure('name','Processed network');\n % plotting all ifgs that were considered\n for ifgs_counter=1:size(bperp_all,1)\n hold on\n plot([dates_all(ifgs_counter,1) dates_all(ifgs_counter,2)], [bperp_all(ifgs_counter,1) bperp_all(ifgs_counter,2)] ,'k-','linewidth',1) \n end\n \n\n\n % plotting the network for which we have an APS correction \n for ifgs_counter=1:length(ifgs_good)\n ifgs_counter\n hold on\n plot([dates(ifgs_good(ifgs_counter),1) dates(ifgs_good(ifgs_counter),2)], [bperp(ifgs_good(ifgs_counter),1) bperp(ifgs_good(ifgs_counter),2)] ,'k-','linewidth',2) \n text(mean(dates(ifgs_good(ifgs_counter),:)),mean(bperp(ifgs_good(ifgs_counter),:))+20,num2str(ifgs_good(ifgs_counter)),'fontsize',fontsize-2,'backgroundColor',[1 1 1],'Margin',0.01)\n end\n hold on\n % [dates_unique,ix_unique] = unique(dates(ifgs_good,:));\n % bperp_unique = bperp(ifgs_good,:);\n % bperp_unique = bperp_unique(ix_unique);\n [dates_unique,ix_unique] = unique(dates_all);\n bperp_unique = bperp_all;\n bperp_unique = bperp_unique(ix_unique);\n plot(dates_unique,bperp_unique,'ko','markerfacecolor','r','markersize',7)\n clear dates_unique ix_unique bperp_unique\n hold on\n % set(gca,'XTick',dates_num)\n datetick('x','mmm yy')\n set(gca,'fontsize',fontsize)\n box on\n ylabel('Bperp [m]','fontsize',fontsize)\n end\n\n \n \nend", "meta": {"author": "dbekaert", "repo": "TRAIN", "sha": "6c93feb95ae95eaf4c8468e89ec0b8325eac946f", "save_path": "github-repos/MATLAB/dbekaert-TRAIN", "path": "github-repos/MATLAB/dbekaert-TRAIN/TRAIN-6c93feb95ae95eaf4c8468e89ec0b8325eac946f/matlab/aps_support_plot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3677185277800541}} {"text": "function [fhat, fola] = blocksyn(F, c , Lb, fola)\n%BLOCKSYN Blockwise synthesis interface\n% Usage: blocksyn(F, c, Lb)\n%\n% Input parameters:\n% F : Synthesis frame object.\n% c : Coefficients of a block.\n% Lb : Length of the block.\n% fola : Explicitly defined overlap.\n% Output parameters:\n% fhat : Reconstructed block of signal.\n% fola : Stored overlap.\n%\n% `fhat=blocksyn(F,c,Lb)` reconstructs the signal block *fhat* from the\n% coefficients *c* using the frame defined by *F*. If some overlap is used,\n% it is stored internally using block_interface. Note that the function is \n% capable of handling overlaps internally only for a single call\n% to the function in the blockproc. loop.% \n%\n% `[fhat,fola]=blocksyn(F,c,Lb,fola)` does the same, but the block algorithm\n% uses `fola` to read and store overlap explicitly. `fola` can be empty.\n%\n% **Note:** To get perfect reconstruction, the synthesis frame *F* must\n% be a dual frame of the analysis frame used in |blockana|.\n%\n% See also: block, blockana, framedual \n%\n% References: dogrhove12 ltfatnote026\n\ncomplainif_notenoughargs(nargin,3,'BLOCKSYN');\ncomplainif_notvalidframeobj(F,'BLOCKSYN');\n \n if ~isfield(F,'blockalg')\n F.blockalg = 'naive';\n end\n \n if ~isfield(F,'L')\n error(['%s: The frame object was not accelerated. See ',...\n 'BLOCKFRAMEACCEL.'],upper(mfilename));\n end\n \n if nargin<4\n fola = [];\n end\n \n % Next block index start (from a global point of view, starting with zero)\n nextSb = block_interface('getPos');\n % Block index start (from a global point of view, starting with zero)\n Sb = nextSb-Lb;\n \n if strcmp(F.blockalg,'naive')\n if F.L < Lb\n error(['%s: The frame object was accelerated with incompatible ',...\n 'length. The block length is %i but the accelerated ',...\n 'length is %i.'],upper(mfilename),Lb,F.L);\n end \n % Most general. Should work for anything.\n % Produces awful block artifacts when coefficients are altered.\n fhat = F.frsyn(c);\n fhat = fhat(1:Lb,:);\n elseif strcmp(F.blockalg,'sliced')\n if F.L < 2*Lb\n error(['%s: The frame object was accelerated with incompatible ',...\n 'length. The block length is %i but the accelerated ',...\n 'length is %i.'],upper(mfilename),Lb,F.L);\n end\n % General processing\n % Equal block length assumption\n % Reconstruct\n f = F.frsyn(c);\n % If the transform length differs from the 2*Lb,\n % Pick the correct part from the result\n pad = size(f,1) - 2*Lb;\n sIdx = floor(pad/2);\n % Result should not be longer than 2*Lb\n f = f(1+sIdx:sIdx+2*Lb,:);\n % Multiply by a slicing window\n f = bsxfun(@times,F.sliwin,f);\n % Load and add overlap (first half)\n ol = loadOverlap(Lb,size(f,2),fola);\n olLen = size(ol,1);\n f(1:olLen,:) = f(1:olLen,:) + ol;\n % Store overlap (second half)\n if nargout>1\n fola=storeOverlap(f,Lb);\n else\n storeOverlap(f,Lb);\n end\n % Return first half\n fhat = f(1:Lb,:);\n elseif strcmp(F.blockalg,'segola')\n if ~isfield(F,'winLen') \n error('%s: Frame does not have FIR windows.',upper(mfilename));\n end\n Lw = F.winLen;\n switch(F.type)\n case 'fwt'\n % The SegDWT algorithm\n J = F.J;\n w = F.g;\n m = numel(w.g{1}.h);\n a = w.a(1);\n blocksize = a^J;\n r = (a^J-1)/(a-1)*(m-1);\n Lbrec = (floor(nextSb/blocksize) - floor(Sb/blocksize))*blocksize;\n rSb = (a^J-1)/(a-1)*(m-a) + mod(Sb,a^J);\n over = r - rSb;\n f = block_ifwt(c,w,J,Lbrec);\n ol = loadOverlap(r-mod(Sb, a^J),size(c,2),fola);\n olLen = size(ol,1);\n f(1:olLen-over,:) = f(1:olLen-over,:) + ol(1+over:end,:);\n f = [ol(1:over,:);f];\n if nargout>1\n fola=storeOverlap(f,r-mod(nextSb, a^J));\n else\n storeOverlap(f,r-mod(nextSb, a^J));\n end\n fhat = f(1:Lb,:);\n case {'dgt','dgtreal','dwilt','wmdct'}\n % Time step \n a = F.a; \n % Length of the left half of the window\n Lwl = floor(Lw/2);\n\n Sbonelmax = ceil((Lw-1)/a)*a + a-1;\n Sbolen = ceil((Lw-1)/a)*a + mod(Sb,a);\n % Next block overlap length\n nextSbolen = ceil((Lw-1)/a)*a + mod(nextSb,a);\n Lext = Sbolen + Lb - mod(nextSb,a);\n Lextc = Sbolen + Lb - nextSbolen + Lwl;\n \n startc = ceil(Lwl/a)+1;\n endc = ceil((Lextc)/a);\n \n cc = F.coef2native(c,size(c));\n chat = zeros(size(cc,1),ceil(F.L/a),size(cc,3),class(cc));\n chat(:,startc:endc,:) = cc;\n chat = F.native2coef(chat); \n f = F.frsyn(chat);\n f = f(1:Lext,:);\n over = Sbonelmax - Sbolen;\n \n ol = loadOverlap(Sbonelmax-mod(Sb,a),size(c,2),fola);\n olLen = size(ol,1);\n f(1:olLen-over,:) = f(1:olLen-over,:) + ol(1+over:end,:);\n f = [ol(1:over,:);f];\n if nargout>1\n fola=storeOverlap(f,Sbonelmax-mod(nextSb,a));\n else\n storeOverlap(f,Sbonelmax-mod(nextSb,a));\n end\n fhat = f(1:Lb,:);\n case {'filterbank','filterbankreal'} \n lcma = F.lcma;\n % Time step \n a = F.a(:,1); \n % Length of the left half of the window\n Lwl = max(-F.g_info.offset);\n \n if Lw-1 < a\n Sbonelmax = lcma-1;\n Sbolen = mod(Sb,lcma);\n nextSbolen = mod(nextSb,lcma);\n else\n Sbonelmax = ceil((Lw-1)/lcma)*lcma + lcma-1;\n Sbolen = ceil((Lw-1)/lcma)*lcma + mod(Sb,lcma);\n nextSbolen = ceil((Lw-1)/lcma)*lcma + mod(nextSb,lcma);\n end\n\n\n Lext = Sbolen + Lb - mod(nextSb,lcma);\n Lextc = Sbolen + Lb - nextSbolen + Lwl;\n \n startc = ceil(Lwl./a)+1;\n endc = ceil((Lextc)./a);\n \n cc = F.coef2native(c,size(c));\n \n chat = cell(numel(cc),1);\n for ii=1:numel(cc)\n chat{ii} = zeros(ceil(F.L./a(ii)),size(cc{ii},2));\n chat{ii}(startc(ii):endc(ii),:) = cc{ii};\n end\n \n chat = F.native2coef(chat); \n f = F.frsyn(chat);\n f = f(1:Lext,:);\n over = Sbonelmax - Sbolen;\n \n \n ol = loadOverlap(Sbonelmax-mod(Sb,lcma),size(c,2),fola);\n olLen = size(ol,1);\n f(1:olLen-over,:) = f(1:olLen-over,:) + ol(1+over:end,:);\n f = [ol(1:over,:);f];\n if nargout>1\n fola=storeOverlap(f,Sbonelmax-mod(nextSb,lcma));\n else\n storeOverlap(f,Sbonelmax-mod(nextSb,lcma));\n end\n fhat = f(1:Lb,:); \n otherwise\n error('%s: Unsupported frame.',upper(mfilename));\n end\n\n else\n error('%s: Frame was not created with blockaccel.',upper(mfilename));\n end\n\nend\n\nfunction overlap = loadOverlap(L,chan,overlap)\n%LOADOVERLAP Loads overlap\n%\n%\n if isempty(overlap)\n overlap = block_interface('getSynOverlap');\n end\n \n if isempty(overlap)\n overlap = zeros(L,chan,block_interface('getClassId'));\n end\n Lo = size(overlap,1);\n if nargin<1\n L = Lo;\n end\n if L>Lo\n % Required more samples than stored\n if 0\n error('%s: Required more samples than stored.',upper(mfilename));\n else\n % pad with zeros\n overlapTmp = zeros(L,chan,block_interface('getClassId')); \n overlapTmp(end-Lo+1:end,:) = overlap;\n overlap = overlapTmp;\n end\n end\n overlap = overlap(end-L+1:end,:);\nend\n\nfunction overlap = storeOverlap(fext,L)\n%STOREOVERLAP Stores overlap\n%\n%\n if L>size(fext,1)\n error('%s: Storing more samples than passed.',upper(mfilename));\n end\n overlap = fext(end-L+1:end,:);\n \n if nargout<1\n block_interface('setSynOverlap',overlap); \n end\nend % STOREOVERLAP\n", "meta": {"author": "ltfat", "repo": "ltfat", "sha": "4496a06ad8dddb85cd2e007216b765dc996ef327", "save_path": "github-repos/MATLAB/ltfat-ltfat", "path": "github-repos/MATLAB/ltfat-ltfat/ltfat-4496a06ad8dddb85cd2e007216b765dc996ef327/blockproc/blocksyn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.5234203489363239, "lm_q1q2_score": 0.36771852778005404}} {"text": "function varargout = HoughObject(varargin)\n% HOUGHOBJECT M-file for HoughObject.fig\n% HOUGHOBJECT, by itself, creates a new HOUGHOBJECT or raises the existing\n% singleton*.\n%\n% H = HOUGHOBJECT returns the handle to a new HOUGHOBJECT or the handle to\n% the existing singleton*.\n%\n% HOUGHOBJECT('CALLBACK',hObject,eventData,handles,...) calls the local\n% function named CALLBACK in HOUGHOBJECT.M with the given input arguments.\n%\n% HOUGHOBJECT('Property','Value',...) creates a new HOUGHOBJECT or raises the\n% existing singleton*. Starting from the left, property value pairs are\n% applied to the GUI before HoughObject_OpeningFunction gets called. An\n% unrecognized property name or invalid value makes property application\n% stop. All inputs are passed to HoughObject_OpeningFcn via varargin.\n%\n% *See GUI Options on GUIDE's Tools menu. Choose \"GUI allows only one\n% instance to run (singleton)\".\n%\n% See also: GUIDE, GUIDATA, GUIHANDLES\n\n% Edit the above text to modify the response to help HoughObject\n\n% Last Modified by GUIDE v2.5 07-Dec-2005 20:15:07\n\n% Begin initialization code - DO NOT EDIT\ngui_Singleton = 1;\ngui_State = struct('gui_Name', mfilename, ...\n 'gui_Singleton', gui_Singleton, ...\n 'gui_OpeningFcn', @HoughObject_OpeningFcn, ...\n 'gui_OutputFcn', @HoughObject_OutputFcn, ...\n 'gui_LayoutFcn', [] , ...\n 'gui_Callback', []);\nif nargin && ischar(varargin{1})\n gui_State.gui_Callback = str2func(varargin{1});\nend\n\nif nargout\n [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});\nelse\n gui_mainfcn(gui_State, varargin{:});\nend\n% End initialization code - DO NOT EDIT\n\n\n% --- Executes just before HoughObject is made visible.\nfunction HoughObject_OpeningFcn(hObject, eventdata, handles, varargin)\n% This function has no output args, see OutputFcn.\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n% varargin command line arguments to HoughObject (see VARARGIN)\n\n% Choose default command line output for HoughObject\nhandles.output = hObject;\n\n% Update handles structure\nguidata(hObject, handles);\n\n% UIWAIT makes HoughObject wait for user response (see UIRESUME)\n% uiwait(handles.figure1);\n\n\n% --- Outputs from this function are returned to the command line.\nfunction varargout = HoughObject_OutputFcn(hObject, eventdata, handles) \n% varargout cell array for returning output args (see VARARGOUT);\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Get default command line output from handles structure\nvarargout{1} = handles.output;\n\n\n% --- Executes on button press in pbGenerate.\nfunction pbGenerate_Callback(hObject, eventdata, handles)\n% hObject handle to pbGenerate (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nload ObjectTemplate\nS1 = zeros(180,180);\nStr = {'Sq','Sc','St'};\n\na = 1; b = 3;\nx = round(a + (b-a) * rand(1));\nS2 = eval(Str{x});\n\na = 1; b = 90;\nx = round(a + (b-a) * rand(1));\nS3 = imrotate(S2,x);\n\nS = S1;\nsz = size(S3);\n\na = 1; b = min(sz);\nx = round(a + (b-a) * rand(1));\n\n\nS(x:sz(1)+x-1,x:sz(2)+x-1)=S3;\nS = im2bw(S);\naxes(handles.axes1);\n\nimshow(S);\ntitle('Original Image');\nhandles.S = S;\nguidata(hObject, handles);\n\n\n% --- Executes on button press in pnHough.\nfunction pnHough_Callback(hObject, eventdata, handles)\n% hObject handle to pnHough (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nS = handles.S;\n[H, theta,rho]=hough(S);\naxes(handles.axes2);\nimshow(H,[],'xdata',theta,'ydata',rho);\nxlabel('\\theta'),ylabel('\\rho')\naxis on, axis normal;\ntitle('Hough Matrix');\n\nclear data;\nfor cnt = 1:max(max(H))\n data(cnt) = sum(sum(H == cnt));\nend\naxes(handles.axes3);\n%data(data==0)=NaN;\nplot(data,'--x');\nxlabel('Hough Matrix Intensity'),ylabel('Counts')\nhandles.data = data;\nguidata(hObject, handles);\n\n% --- Executes on button press in pbDetect.\nfunction pbDetect_Callback(hObject, eventdata, handles)\n% hObject handle to pbDetect (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\ndata = handles.data;\n[maxval,maxind] = max(data);\nmedval = median(data);\n\n[p]=polyfit(1:maxind-5,data(1:maxind-5),2);\n\nif maxval<3*medval\n set(handles.txtResult,'string','Triangle');\nelseif p(3)>100\n set(handles.txtResult,'string','Square');\nelse\n set(handles.txtResult,'string','Round'); \nend\n\n\n\n\n\n\n\n\n% --- Executes on button press in pbInfo.\nfunction pbInfo_Callback(hObject, eventdata, handles)\n% hObject handle to pbInfo (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\nweb('http://basic-eng.blogspot.com', '-browser');\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/9275-simple-shape-detection-using-hough-transform/HoughObject.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166195971441, "lm_q2_score": 0.718594386544335, "lm_q1q2_score": 0.3677166903439506}} {"text": "function RoPSs = RoPSFunc(mesh,neighborSize,binSize, rotaSize, LocalFrames)\n\n% Author: Yulan Guo {yulan.guo@nudt.edu.cn}\n% NUDT, China & CSSE, UWA, Australia\n%\n% This function takes a mesh and local reference frames (LRFs) for a set of\n% keypoints as an input, and generate RoPS feature descriptors for the\n% keypoints as an output. An illustration is shown in Fig4 in Ref.[1].\n%\n% Arguments : mesh - with vertices and faces \n% neighborSize - the size of neighborhood to define a\n% local surface for a selected keypoint\n% binSize - number of bins for 2D plane partition\n% rotaSize - number of rotations around each coordinate axis\n% LocalFrames - local reference frames corresponding to all\n% keypoints of the input mesh\n\n% Return : RoPS - RoPS feature descriptors corresponding to all\n% keypoints\n%\n% Copyright : This code is written by Yulan Guo {yulan.guo@nudt.edu.cn}, NUDT. \n% The code may be used, modified and distributed for research purposes with\n% acknowledgement of the author and inclusion this copyright information.\n%References:\n% [1] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu, Jianwei Wan. \n% Rotational Projection Statistics for 3D Local Surface Description and Object Recognition. \n% Internation Journal of Computer Vision. 2013, 105 (1), 63-86\n% [2] Yulan Guo, Mohammed Bennamoun, Ferdous A Sohel, Min Lu, Jianwei Wan. \n% 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey. \n% IEEE Transactions on Pattern Analysis and Machine Intelligence,2014\n%\n% Disclaimer: This code is provided as is without any warranty.\n\n%%%%%%%%%%%% parallel computing to accelerate.\np = gcp('nocreate'); % If no pool, do not create new one.\nif isempty(p) % if exists no parallel computing handle, create one.\n poolsize = parpool;\n % disp('Create a Parallel Computing Pool to accelarate process' );\nelse\n poolsize = p.NumWorkers;\n % disp(sprintf( 'Parpool has %d workers', poolsize) );\nend\n\nkeypntIdx = mesh.keypntIdx;\n% BucketSize = floor(length(mesh.vertices)/100);\n% kdtreeVertices = KDTreeSearcher(mesh.vertices,'Distance','euclidean','BucketSize',BucketSize);\n% BucketSize = floor(length(mesh.vertices)/100);\nkdtreeVertices = KDTreeSearcher(mesh.vertices,'Distance','euclidean');\n\ninterval = pi/2/rotaSize;\nparfor i = 1:length(keypntIdx)\n %obtain the neighboring point of a keypoint\n keypnt = mesh.vertices(keypntIdx(i),:);\n [neighborIdx2,neighborDis]= rangesearch(kdtreeVertices,keypnt,neighborSize); \n neighborIdx2 = cell2mat(neighborIdx2);\n neighborIdx = neighborIdx2(2:end);\n neighbNum = length(neighborIdx);\n if neighbNum<=1\n RoPSs{i,1} = ones(rotaSize*45,1)/sum(ones(rotaSize*45,1));\n continue;\n end\n\n %transfom the neighboring point to the local reference frame (LRF) \n rotation = LocalFrames{i};\n neighbor = [];\n for j=1:neighbNum\n neighbor(j,:) = (mesh.vertices(neighborIdx(j),:)-mesh.vertices(keypntIdx(i),:))*inv(rotation);\n end\n \n RoPS = [];\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %calculate the sub-feature of the keypoint along the Z axis\n for rotaIdx = 1:rotaSize\n rotaAngle = (rotaIdx-1)*interval + interval/2;\n R = [cos(rotaAngle) sin(rotaAngle) 0; -sin(rotaAngle) cos(rotaAngle) 0; 0 0 1]';\n rotaNeighbor = neighbor*R;\n %projection on the XY plane \n projNeighborXY = [rotaNeighbor(:,1),rotaNeighbor(:,2)];\n histTemp = subRoPSFunc(projNeighborXY,binSize);\n RoPS = [RoPS,histTemp]; \n %projection on the XZ plane \n projNeighborXZ = [rotaNeighbor(:,1),rotaNeighbor(:,3)];\n histTemp = subRoPSFunc(projNeighborXZ,binSize);\n RoPS = [RoPS,histTemp];\n %projection on the YZ plane \n projNeighborYZ = [rotaNeighbor(:,2),rotaNeighbor(:,3)];\n histTemp = subRoPSFunc(projNeighborYZ,binSize);\n RoPS = [RoPS,histTemp];\n end\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %calculate the sub-feature of the keypoint along the Y axis\n for rotaIdx = 1:rotaSize\n rotaAngle = (rotaIdx-1)*interval + interval/2;\n R = [cos(rotaAngle) 0 sin(rotaAngle); 0 1 0 ;-sin(rotaAngle) 0 cos(rotaAngle)]'; \n rotaNeighbor = neighbor*R; \n %projection on the XY plane \n projNeighborXY = [rotaNeighbor(:,1),rotaNeighbor(:,2)];\n histTemp = subRoPSFunc(projNeighborXY,binSize);\n RoPS = [RoPS,histTemp]; \n %projection on the XZ plane \n projNeighborXZ = [rotaNeighbor(:,1),rotaNeighbor(:,3)];\n histTemp = subRoPSFunc(projNeighborXZ,binSize);\n RoPS = [RoPS,histTemp];\n %projection on the YZ plane \n projNeighborYZ = [rotaNeighbor(:,2),rotaNeighbor(:,3)];\n histTemp = subRoPSFunc(projNeighborYZ,binSize);\n RoPS = [RoPS,histTemp];\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n end\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %calculate the sub-feature of the keypoint along the X axis\n for rotaIdx = 1:rotaSize\n rotaAngle = (rotaIdx-1)*interval + interval/2;\n R = [1,0,0; 0,cos(rotaAngle),sin(rotaAngle); 0, -sin(rotaAngle), cos(rotaAngle)]';\n rotaNeighbor = neighbor*R;\n %projection on the XY plane \n projNeighborXY = [rotaNeighbor(:,1),rotaNeighbor(:,2)];\n histTemp = subRoPSFunc(projNeighborXY,binSize);\n RoPS = [RoPS,histTemp]; \n %projection on the XZ plane \n projNeighborXZ = [rotaNeighbor(:,1),rotaNeighbor(:,3)];\n histTemp = subRoPSFunc(projNeighborXZ,binSize);\n RoPS = [RoPS,histTemp];\n %projection on the YZ plane \n projNeighborYZ = [rotaNeighbor(:,2),rotaNeighbor(:,3)];\n histTemp = subRoPSFunc(projNeighborYZ,binSize);\n RoPS = [RoPS,histTemp];\n end\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n RoPSs{i,1} = (RoPS)'/sum(RoPS);\nend\n\n\n\n\n\n", "meta": {"author": "DrGabor", "repo": "LiDAR", "sha": "707ca635db955cf00d833578ad1236f0790cdf98", "save_path": "github-repos/MATLAB/DrGabor-LiDAR", "path": "github-repos/MATLAB/DrGabor-LiDAR/LiDAR-707ca635db955cf00d833578ad1236f0790cdf98/RoPSMatcher/RoPS Toolbox2/RoPSFunc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7185944046238982, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3677166888935524}} {"text": "function [HDR] = leadidcodexyz(arg1)\n% LeadIdCodeXYZ uses the Label information for computing the \n% LeadIdCode and the XYZ position of the EEG Electrodes\n% according to Annex A of FEF Vital Signs Format [1]\n%\n% HDR = leadidcodexyz(HDR); \n%\tadds HDR.LeadIdCode and HDR.ELEC.XYZ, if needed. \n%\n% see also: SLOAD, SOPEN, PHYSICALUNITS, doc/leadidtable_scpecg.txt, doc/elecpos.txt\n%\n% Reference(s): \n% [1] CEN/TC251/PT40 (2001)\t\n% \tFile Exchange Format for Vital Signs - Annex A \n%\n% Birbaumer, N. (2006). Brain-computer-interface research: Coming of age. Clinical Neurophysiology, 117:479??3. \n% http://www.acns.org/pdfs/ACFDD46.pdf. \n% ACNS (2006). Guidelines for standard electrode position nomenclature. American Clinical\n% Neurophysiology Society. http://www.acns.org/pdfs/ACFDD46.pdf.\n\n% \n% This program is free software; you can redistribute it and/or\n% modify it under the terms of the GNU General Public License\n% as published by the Free Software Foundation; either version 3\n% of the License, or (at your option) any later version.\n\n%\t$Id: leadidcodexyz.m 2602 2011-02-03 13:05:03Z schloegl $\n%\tCopyright (C) 2006,2007,2008,2009 by Alois Schloegl \t\n% \tThis is part of the BIOSIG-toolbox http://biosig.sf.net/\n \nglobal BIOSIG_GLOBAL;\n% BIOSIG_GLOBAL=[]; %%% used for debugging, only. \n\nif ~isfield(BIOSIG_GLOBAL,'Phi'); \n\tBIOSIG_GLOBAL.ISLOADED_XYZ = 0 ; \nend; \nif ~isfield(BIOSIG_GLOBAL,'ISLOADED_XYZ')\n\tBIOSIG_GLOBAL.ISLOADED_XYZ = 0 ; \nend; \nif ~BIOSIG_GLOBAL.ISLOADED_XYZ;\n f = which('getfiletype.m'); \t% identify path to biosig\n [p,f,e] = fileparts(f);\n [p,f,e] = fileparts(p);\n \n BIOSIG_GLOBAL.ISLOADED_XYZ = 0 ;\n\n N = 0;\n fid = fopen(fullfile(p,f,'leadidtable_scpecg.txt'),'r');\n s = char(fread(fid,[1,inf],'uint8'));\n fclose(fid);\n \n Code = repmat(NaN, 200, 1); Phi = Code; Theta = Code;\n while ~isempty(s),\n [t,s] = strtok(s,[10,13]);\n if ~length(t)\n elseif ~strncmp(t,'#',1)\n ix3 = strfind(t,'MDC_ECG_LEAD_');\n if isempty(ix3)\n ix3 = length(t)+1;\n end\n [t1,t2] = strtok(t(1:ix3-1),[9,32]);\n [t2,t3] = strtok(t2,[9,32]);\n id = str2double(t2);\n N = N + 1;\n Labels{N,1}\t = t1;\n Code(N,1) = id;\n Description{N,1} = deblank(t3);\n %MDC_ECG_LEAD{N,1} = t(ix3+13:end)\n MDC_ECG_LEAD{N,1} = t(ix3:end);\n end;\n end;\n N1 = N;\n\n % load table \n fid = fopen(fullfile(p,f,'elecpos.txt'),'r');\n t = char(fread(fid,[1,inf],'uint8'));\n fclose(fid);\n\n % extract table information \n while ~isempty(t)\n [x,t] = strtok(t,[10,13]);\n if isempty(x)\n elseif strncmp(x,'#',1)\n else\n N = N + 1;\n [num,status,strarray] = str2double(x);\n Code(N,1) = num(1);\n Labels{N,1} = upper(strarray{2});\n Phi(N,1) = num(3);\n Theta(N,1) = num(4);\n end;\n end;\n Phi = Phi(:) *pi/180;\n Theta = Theta(:)*pi/180;\n\n \n % loading is done only once. \n BIOSIG_GLOBAL.XYZ = [sin(Theta).*cos(Phi), sin(Theta).*sin(Phi), cos(Theta)];\n BIOSIG_GLOBAL.Phi = Phi*180/pi;\n BIOSIG_GLOBAL.Theta = Theta*180/pi;\n BIOSIG_GLOBAL.LeadIdCode = Code;\n BIOSIG_GLOBAL.Label = Labels;\n BIOSIG_GLOBAL.Description = Description;\n BIOSIG_GLOBAL.MDC_ECG_LEAD = MDC_ECG_LEAD;\n\n BIOSIG_GLOBAL.ISLOADED_XYZ = 1;\nend; \n\n\nif nargin<1,\n HDR.LeadIdCode = BIOSIG_GLOBAL.LeadIdCode;\n HDR.Label = BIOSIG_GLOBAL.Label;\n HDR.ELEC.XYZ = BIOSIG_GLOBAL.XYZ; \n HDR.TYPE = 'ELPOS'; \n \nelse % electrode code and position\n\n if isstruct(arg1)\n HDR = arg1; \n elseif isnumeric(arg1),\n HDR.LeadIdCode = arg1; \n else\n HDR.Label = arg1; \n end;\n\n tmp.flag1 = isfield(HDR,'ELEC');\n if tmp.flag1,\n tmp.flag1 = isfield(HDR.ELEC,'XYZ');\n end;\n if tmp.flag1,\n tmp.flag1 = any(HDR.ELEC.XYZ(:));\n end;\n tmp.flag2 = isfield(HDR,'LeadIdCode');\n tmp.flag3 = isfield(HDR,'Label');\n\n if (~tmp.flag1 || ~tmp.flag2 || ~tmp.flag3),\n \tif 0, \n \telseif tmp.flag3,\n if ischar(HDR.Label)\n HDR.Label = cellstr(HDR.Label);\n end;\n\t NS = length(HDR.Label); \n\t elseif tmp.flag2,\n\t \tNS = length(HDR.LeadIdCode); \n \telseif isfield(HDR,'NS')\n \t\tNS = HDR.NS;\n \t\tHDR.LeadIdCode = zeros(1,HDR.NS);\n\t end; \n\n if tmp.flag3,\n\t if ~tmp.flag1,\n\t\t\t\tHDR.ELEC.XYZ = repmat(NaN,NS,3);\n\t\t\t\tHDR.ELEC.Phi = repmat(NaN,NS,1);\n\t\t\t\tHDR.ELEC.Theta = repmat(NaN,NS,1);\n\t \tend;\n \tif ~tmp.flag2,\n \t\tHDR.LeadIdCode = repmat(NaN,NS,1);\n\t \tend;\n \tfor k = 1:NS;\n\t\t\t\tLabel = upper(deblank(HDR.Label{k})); \n\t\t\t\tpos = find(Label==':');\n\t\t\t\tif ~isempty(pos)\n\t\t\t\t\tLabel = Label(pos+1:end);\n \tend; \n\t ix = strmatch(Label,BIOSIG_GLOBAL.Label,'exact');\n\n\t if length(ix)==2,\n\t \t%%%%% THIS IS A HACK %%%%%\n\t \t%% solve ambiguity for 'A1','A2'; could be EEG or ECG\n\t \tif sum(HDR.LeadIdCode(1:k)>=996)>sum(HDR.LeadIdCode(1:k)<996)\n\t \t\t%% majority are EEG electrodes,\n\t \t\tix = ix(find(BIOSIG_GLOBAL.LeadIdCode(ix)>996));\n\t \telse\t\n\t \t\t%% majority are ECG electrodes,\n\t \t\tix = ix(find(BIOSIG_GLOBAL.LeadIdCode(ix)<996));\n\t \tend;\n\t elseif isempty(ix)\t\n\t\t ix = strmatch(deblank(HDR.Label{k}),BIOSIG_GLOBAL.MDC_ECG_LEAD,'exact');\n\t end; \t\n\n \t if (length(ix)==1),\n\t \t if ~tmp.flag1,\n \t \t HDR.ELEC.XYZ(k,1:3) = BIOSIG_GLOBAL.XYZ(ix,:);\n \t \t HDR.ELEC.Phi(k) = BIOSIG_GLOBAL.Phi(ix);\n \t\t HDR.ELEC.Theta(k) = BIOSIG_GLOBAL.Theta(ix);\n \t\tend;\n \t \tif ~tmp.flag2,\n \t\tHDR.LeadIdCode(k,1) = BIOSIG_GLOBAL.LeadIdCode(ix);\n\t \tend;\n \t end;\n end;\n else\n\t\t\tHDR.Label = cell(NS,1);\n\t\t\tfor k = 1:NS;\n\t\t\t\tix = find(BIOSIG_GLOBAL.LeadIdCode==HDR.LeadIdCode(k));\n\t\t\t\tif (length(ix)>=1),\n\t\t\t\t\tix=ix(1);\t% \n\t HDR.Label{k} = BIOSIG_GLOBAL.Label{ix};\n\t\t\t\t\tif ~tmp.flag1,\n \t\t HDR.ELEC.XYZ(k,1:3) = BIOSIG_GLOBAL.XYZ(ix,1:3);\n \t\t HDR.ELEC.Phi(k,1) = BIOSIG_GLOBAL.Phi(ix);\n \t\t HDR.ELEC.Theta(k,1) = BIOSIG_GLOBAL.Theta(ix);\n\t\t\t\t\tend;\n\t\t\t\telse\n\t\t\t\t\tHDR.Label{k} = ['#',int2str(k)];\n\t\t\t\tend;\n\t\t\tend;\n end;\n\tend;\n\tif tmp.flag3 && ~any(HDR.LeadIdCode),\n \tfor k = 1:HDR.NS;\n\t\t\tix = strmatch(upper(HDR.Label{k}),BIOSIG_GLOBAL.Label,'exact'); \n\t\t\tif length(ix)==1,\n\t\t\t\tHDR.LeadIdCode(k) = BIOSIG_GLOBAL.LeadIdCode(ix);\n\t\t\tend;\n\t\tend; \t\t\n end;\n\n\nend;\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/BMI_modules/LoadData/Emotiv_offline/leadidcodexyz.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.36771668272581054}} {"text": "function s = ymdf_to_s_common ( y, m, d, f )\n\n%*****************************************************************************80\n%\n%% YMDF_TO_S_COMMON writes a Common YMDF date into a string.\n%\n% Format:\n%\n% CE YYYY/MM/DD.FF\n% BCE YYYY/MM/DD.FF\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 December 2008\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer Y, integer M, integer D, real F, the YMDF date.\n%\n% Output, string S, a representation of the date.\n%\n\n%\n% Copy the input.\n%\n y2 = y;\n m2 = m;\n d2 = d;\n f2 = f;\n%\n% Check the input.\n%\n [ y2, m2, d2, f2, ierror ] = ymdf_check_common ( y2, m2, d2, f2 );\n\n if ( ierror ~= 0 )\n s = sprintf ( '?' );\n return\n end\n\n if ( 0 <= y2 )\n s = sprintf ( 'CE %d/%d/%d/%f', y2, m2, d2, f2 );\n else\n s = sprintf ( 'BCE %d/%d/%d/%f', -y2, m2, d2, f2 );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calendar_nyt/ymdf_to_s_common.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7185943805178138, "lm_q1q2_score": 0.36771667655806867}} {"text": "% Authors: A. Iscen, G. Tolias, Y. Avrithis, T. Furon, O. Chum. 2017. \n% create truncated Laplacian \nfunction L = trunclap(A, sub, alpha)\n\n T = transition_matrix(A(sub, sub));\n L = speye(size(T)) - alpha * T;\n", "meta": {"author": "ahmetius", "repo": "diffusion-retrieval", "sha": "d54df9690d841d78c04042f8ffe7feddeba2391c", "save_path": "github-repos/MATLAB/ahmetius-diffusion-retrieval", "path": "github-repos/MATLAB/ahmetius-diffusion-retrieval/diffusion-retrieval-d54df9690d841d78c04042f8ffe7feddeba2391c/trunclap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723317123102956, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3675893979091821}} {"text": "function time = compute_wait(plaza)\n[a,b] = size(plaza);\ntime = 0;\nfor i = 1:a\nfor j = 1:b\ntime = time + (plaza(i,j) > 0);\nend\nend", "meta": {"author": "Eurus-Holmes", "repo": "Mathematical_Modeling", "sha": "cb9dd53af84ffbd455ec62ab89886351e0ec98d9", "save_path": "github-repos/MATLAB/Eurus-Holmes-Mathematical_Modeling", "path": "github-repos/MATLAB/Eurus-Holmes-Mathematical_Modeling/Mathematical_Modeling-cb9dd53af84ffbd455ec62ab89886351e0ec98d9/Cellular automaton/\u5143\u80de\u81ea\u52a8\u673a/1\u670813\u65e5\u8bfe\u4ef6\uff08\u5143\u80de\u81ea\u52a8\u673a\uff09/\u7a0b\u5e8f/The Booth Tolls for Thee/compute_wait.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6723316991792861, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3675893907299582}} {"text": "function segment_length = p14_boundary_segment_length ( segment_index, h )\n\n%*****************************************************************************80\n%\n%% P14_BOUNDARY_SEGMENT_LENGTH returns boundary segment lengths in problem 14.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 12 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer SEGMENT_INDEX, the index of one of the boundary segments.\n%\n% Input, real H, the suggested spacing between points.\n%\n% Output, integer SEGMENT_LENGTH, the number of points in the segment.\n%\n n1 = 90;\n n2 = 11;\n \n v1 = [ ...\n 316.43027, 404.47559; ...\n 291.04946, 400.70917; ...\n 265.16504, 409.77890; ...\n 241.46794, 402.40310; ...\n 216.55145, 396.52064; ...\n 163.28492, 411.37102; ...\n 142.81752, 391.16355; ...\n 111.95404, 346.70264; ...\n 100.03538, 325.72710; ...\n 103.98723, 302.51587; ...\n 128.72978, 285.72802; ...\n 147.49111, 266.23345; ...\n 196.65261, 242.24055; ...\n 213.56835, 221.67192; ...\n 226.49969, 198.09326; ...\n 248.37126, 183.50473; ...\n 262.21952, 165.39102; ...\n 278.42330, 149.91715; ...\n 300.71846, 145.82601; ...\n 311.12698, 166.71094; ...\n 326.66315, 184.58335; ...\n 359.78574, 225.48049; ...\n 357.08892, 252.88958; ...\n 358.76685, 285.34403; ...\n 361.50834, 303.71287; ...\n 371.68926, 314.92452; ...\n 380.49890, 324.58632; ...\n 396.37634, 328.88990; ...\n 412.59116, 327.25238; ...\n 425.48394, 315.28623; ...\n 435.84305, 302.44664; ...\n 458.34025, 297.55121; ...\n 479.66439, 288.99238; ...\n 493.09812, 270.20636; ...\n 518.87309, 264.56427; ...\n 547.18014, 268.18846; ...\n 600.49708, 240.62570; ...\n 625.96183, 238.40347; ...\n 633.90530, 260.70629; ...\n 621.50451, 285.88914; ...\n 576.87224, 322.14121; ...\n 570.51915, 348.85423; ...\n 567.16400, 378.24075; ...\n 558.00668, 406.86552; ...\n 565.19008, 435.75599; ...\n 567.56437, 465.33407; ...\n 550.87626, 490.96358; ...\n 532.98174, 515.84491; ...\n 500.66817, 551.89078; ...\n 478.75120, 562.17222; ...\n 430.03371, 583.94286; ...\n 401.20454, 587.69910; ...\n 368.32214, 581.10110; ...\n 354.26303, 585.86085; ...\n 346.75200, 601.10367; ...\n 332.85137, 628.74602; ...\n 308.02188, 645.84180; ...\n 295.52344, 647.18525; ...\n 286.51519, 651.60328; ...\n 285.98846, 662.07339; ...\n 298.93455, 665.66316; ...\n 301.70226, 682.79570; ...\n 278.65857, 689.63850; ...\n 266.25737, 712.11005; ...\n 287.28701, 732.77147; ...\n 318.19548, 736.85151; ...\n 343.83067, 753.60957; ...\n 375.53164, 758.35231; ...\n 405.73444, 768.98687; ...\n 406.33873, 785.59001; ...\n 378.35436, 789.44240; ...\n 350.02151, 795.02238; ...\n 338.68030, 788.87325; ...\n 325.67930, 786.10177; ...\n 319.05995, 798.04657; ...\n 301.78158, 795.34254; ...\n 280.69272, 773.86634; ...\n 254.55844, 758.02898; ...\n 234.07759, 737.42090; ...\n 218.38337, 711.41500; ...\n 220.99086, 682.17833; ...\n 224.50640, 651.96297; ...\n 240.25971, 631.36117; ...\n 259.86174, 612.60253; ...\n 291.85381, 556.70385; ...\n 315.52139, 537.56387; ...\n 341.63663, 520.12519; ...\n 351.37130, 458.75372; ...\n 349.33183, 431.31454; ...\n 328.80465, 412.43055 ]';\n v2 = [ ...\n 238.64853, 266.58978; ...\n 235.14026, 287.95183; ...\n 238.20736, 303.46785; ...\n 250.13902, 303.71290; ...\n 258.51675, 297.46973; ...\n 274.55300, 291.27357; ...\n 284.66230, 280.72063; ...\n 279.73288, 267.83455; ...\n 270.68478, 255.55440; ...\n 255.73801, 249.16872; ...\n 241.72690, 256.73448 ]';\n\n if ( h <= 0.0 )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P14_BOUNDARY_SEGMENT_LENGTH - Fatal error!' );\n fprintf ( 1, ' Nonpositive H = %f\\n', h );\n error ( 'P14_BOUNDARY_SEGMENT_LENGTH - Fatal error!' );\n end\n\n if ( segment_index == 1 )\n\n length = polyloop_length_nd ( 2, n1, v1 ) ;\n\n elseif ( segment_index == 2 )\n\n length = polyloop_length_nd ( 2, n2, v2 );\n\n else\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P14_BOUNDARY_SEGMENT_LENGTH - Fatal error!' );\n fprintf ( 1, ' Illegal SEGMENT_INDEX = %d\\n', segment_index );\n error ( 'P14_BOUNDARY_SEGMENT_LENGTH - Fatal error!' );\n\n end\n\n n = round ( length / h );\n\n segment_length = n;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_triangulation/p14_boundary_segment_length.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.3675893907299582}} {"text": "function [A, W] = fpica(X, whiteningMatrix, dewhiteningMatrix, approach, ...\n numOfIC, g, finetune, a1, a2, myy, stabilization, ...\n epsilon, maxNumIterations, maxFinetune, initState, ...\n guess, sampleSize, displayMode, displayInterval, ...\n s_verbose);\n%FPICA - Fixed point ICA. Main algorithm of FASTICA.\n%\n% [A, W] = fpica(whitesig, whiteningMatrix, dewhiteningMatrix, approach,\n% numOfIC, g, finetune, a1, a2, mu, stabilization, epsilon,\n% maxNumIterations, maxFinetune, initState, guess, sampleSize,\n% displayMode, displayInterval, verbose);\n%\n% Perform independent component analysis using Hyvarinen's fixed point\n% algorithm. Outputs an estimate of the mixing matrix A and its inverse W.\n%\n% whitesig :the whitened data as row vectors\n% whiteningMatrix :can be obtained with function whitenv\n% dewhiteningMatrix :can be obtained with function whitenv\n% approach [ 'symm' | 'defl' ] :the approach used (deflation or symmetric)\n% numOfIC [ 0 - Dim of whitesig ] :number of independent components estimated\n% g [ 'pow3' | 'tanh' | :the nonlinearity used\n% 'gaus' | 'skew' ]\n% finetune [same as g + 'off'] :the nonlinearity used in finetuning.\n% a1 :parameter for tuning 'tanh'\n% a2 :parameter for tuning 'gaus'\n% mu :step size in stabilized algorithm\n% stabilization [ 'on' | 'off' ] :if mu < 1 then automatically on\n% epsilon :stopping criterion\n% maxNumIterations :maximum number of iterations\n% maxFinetune :maximum number of iteretions for finetuning\n% initState [ 'rand' | 'guess' ] :initial guess or random initial state. See below\n% guess :initial guess for A. Ignored if initState = 'rand'\n% sampleSize [ 0 - 1 ] :percentage of the samples used in one iteration\n% displayMode [ 'signals' | 'basis' | :plot running estimate\n% 'filters' | 'off' ]\n% displayInterval :number of iterations we take between plots\n% verbose [ 'on' | 'off' ] :report progress in text format\n%\n% EXAMPLE\n% [E, D] = pcamat(vectors);\n% [nv, wm, dwm] = whitenv(vectors, E, D);\n% [A, W] = fpica(nv, wm, dwm);\n%\n%\n% This function is needed by FASTICA and FASTICAG\n%\n% See also FASTICA, FASTICAG, WHITENV, PCAMAT\n\n% @(#)$Id: fpica.m,v 1.7 2005/06/16 12:52:55 jarmo Exp $\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Global variable for stopping the ICA calculations from the GUI\nglobal g_FastICA_interrupt;\nif isempty(g_FastICA_interrupt)\n clear global g_FastICA_interrupt;\n interruptible = 0;\nelse\n interruptible = 1;\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Default values\n\nif nargin < 3, error('Not enough arguments!'); end\n[vectorSize, numSamples] = size(X);\nif nargin < 20, s_verbose = 'on'; end\nif nargin < 19, displayInterval = 1; end\nif nargin < 18, displayMode = 'on'; end\nif nargin < 17, sampleSize = 1; end\nif nargin < 16, guess = 1; end\nif nargin < 15, initState = 'rand'; end\nif nargin < 14, maxFinetune = 100; end\nif nargin < 13, maxNumIterations = 1000; end\nif nargin < 12, epsilon = 0.0001; end\nif nargin < 11, stabilization = 'on'; end\nif nargin < 10, myy = 1; end\nif nargin < 9, a2 = 1; end\nif nargin < 8, a1 = 1; end\nif nargin < 7, finetune = 'off'; end\nif nargin < 6, g = 'pow3'; end\nif nargin < 5, numOfIC = vectorSize; end % vectorSize = Dim\nif nargin < 4, approach = 'defl'; end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the data\n\nif ~isreal(X)\n error('Input has an imaginary part.');\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the value for verbose\n\nswitch lower(s_verbose)\n case 'on'\n b_verbose = 1;\n case 'off'\n b_verbose = 0;\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\\n', s_verbose));\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the value for approach\n\nswitch lower(approach)\n case 'symm'\n approachMode = 1;\n case 'defl'\n approachMode = 2;\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''approach''\\n', approach));\nend\nif b_verbose, fprintf('Used approach [ %s ].\\n', approach); end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the value for numOfIC\n\nif vectorSize < numOfIC\n error('Must have numOfIC <= Dimension!');\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the sampleSize\nif sampleSize > 1\n sampleSize = 1;\n if b_verbose\n fprintf('Warning: Setting ''sampleSize'' to 1.\\n');\n end\nelseif sampleSize < 1\n if (sampleSize * numSamples) < 1000\n sampleSize = min(1000/numSamples, 1);\n if b_verbose\n fprintf('Warning: Setting ''sampleSize'' to %0.3f (%d samples).\\n', ...\n sampleSize, floor(sampleSize * numSamples));\n end\n end\nend\nif b_verbose\n if b_verbose & (sampleSize < 1)\n fprintf('Using about %0.0f%% of the samples in random order in every step.\\n',sampleSize*100);\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the value for nonlinearity.\n\nswitch lower(g)\n case 'pow3'\n gOrig = 10;\n case 'tanh'\n gOrig = 20;\n case {'gaus', 'gauss'}\n gOrig = 30;\n case 'skew'\n gOrig = 40;\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''g''\\n', g));\nend\nif sampleSize ~= 1\n gOrig = gOrig + 2;\nend\nif myy ~= 1\n gOrig = gOrig + 1;\nend\n\nif b_verbose,\n fprintf('Used nonlinearity [ %s ].\\n', g);\nend\n\nfinetuningEnabled = 1;\nswitch lower(finetune)\n case 'pow3'\n gFine = 10 + 1;\n case 'tanh'\n gFine = 20 + 1;\n case {'gaus', 'gauss'}\n gFine = 30 + 1;\n case 'skew'\n gFine = 40 + 1;\n case 'off'\n if myy ~= 1\n gFine = gOrig;\n else\n gFine = gOrig + 1;\n end\n finetuningEnabled = 0;\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''finetune''\\n', ...\n finetune));\nend\n\nif b_verbose & finetuningEnabled\n fprintf('Finetuning enabled (nonlinearity: [ %s ]).\\n', finetune);\nend\n\nswitch lower(stabilization)\n case 'on'\n stabilizationEnabled = 1;\n case 'off'\n if myy ~= 1\n stabilizationEnabled = 1;\n else\n stabilizationEnabled = 0;\n end\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''stabilization''\\n', ...\n stabilization));\nend\n\nif b_verbose & stabilizationEnabled\n fprintf('Using stabilized algorithm.\\n');\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Some other parameters\nmyyOrig = myy;\n% When we start fine-tuning we'll set myy = myyK * myy\nmyyK = 0.01;\n% How many times do we try for convergence until we give up.\nfailureLimit = 5;\n\n\nusedNlinearity = gOrig;\nstroke = 0;\nnotFine = 1;\nlong = 0;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the value for initial state.\n\nswitch lower(initState)\n case 'rand'\n initialStateMode = 0;\n case 'guess'\n if size(guess,1) ~= size(whiteningMatrix,2)\n initialStateMode = 0;\n if b_verbose\n fprintf('Warning: size of initial guess is incorrect. Using random initial guess.\\n');\n end\n else\n initialStateMode = 1;\n if size(guess,2) < numOfIC\n if b_verbose\n fprintf('Warning: initial guess only for first %d components. Using random initial guess for others.\\n', size(guess,2));\n end\n guess(:, size(guess, 2) + 1:numOfIC) = ...\n rand(vectorSize,numOfIC-size(guess,2))-.5;\n elseif size(guess,2)>numOfIC\n guess=guess(:,1:numOfIC);\n fprintf('Warning: Initial guess too large. The excess column are dropped.\\n');\n end\n if b_verbose, fprintf('Using initial guess.\\n'); end\n end\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''initState''\\n', initState));\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Checking the value for display mode.\n\nswitch lower(displayMode)\n case {'off', 'none'}\n usedDisplay = 0;\n case {'on', 'signals'}\n usedDisplay = 1;\n if (b_verbose & (numSamples > 10000))\n fprintf('Warning: Data vectors are very long. Plotting may take long time.\\n');\n end\n if (b_verbose & (numOfIC > 25))\n fprintf('Warning: There are too many signals to plot. Plot may not look good.\\n');\n end\n case 'basis'\n usedDisplay = 2;\n if (b_verbose & (numOfIC > 25))\n fprintf('Warning: There are too many signals to plot. Plot may not look good.\\n');\n end\n case 'filters'\n usedDisplay = 3;\n if (b_verbose & (vectorSize > 25))\n fprintf('Warning: There are too many signals to plot. Plot may not look good.\\n');\n end\n otherwise\n error(sprintf('Illegal value [ %s ] for parameter: ''displayMode''\\n', displayMode));\nend\n\n% The displayInterval can't be less than 1...\nif displayInterval < 1\n displayInterval = 1;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nif b_verbose, fprintf('Starting ICA calculation...\\n'); end\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% SYMMETRIC APPROACH\nif approachMode == 1,\n \n % set some parameters more...\n usedNlinearity = gOrig;\n stroke = 0;\n notFine = 1;\n long = 0;\n \n A = zeros(vectorSize, numOfIC); % Dewhitened basis vectors.\n if initialStateMode == 0\n % Take random orthonormal initial vectors.\n B = orth (randn (vectorSize, numOfIC));\n elseif initialStateMode == 1\n % Use the given initial vector as the initial state\n B = whiteningMatrix * guess;\n end\n \n BOld = zeros(size(B));\n BOld2 = zeros(size(B));\n \n % This is the actual fixed-point iteration loop.\n for round = 1:maxNumIterations + 1,\n if round == maxNumIterations + 1,\n fprintf('No convergence after %d steps\\n', maxNumIterations);\n fprintf('Note that the plots are probably wrong.\\n');\n if ~isempty(B)\n % Symmetric orthogonalization.\n B = B * real(inv(B' * B)^(1/2));\n \n W = B' * whiteningMatrix;\n A = dewhiteningMatrix * B;\n else\n W = [];\n A = [];\n end\n return;\n end\n \n if (interruptible & g_FastICA_interrupt)\n if b_verbose\n fprintf('\\n\\nCalculation interrupted by the user\\n');\n end\n if ~isempty(B)\n W = B' * whiteningMatrix;\n A = dewhiteningMatrix * B;\n else\n W = [];\n A = [];\n end\n return;\n end\n \n \n % Symmetric orthogonalization.\n B = B * real(inv(B' * B)^(1/2));\n \n % Test for termination condition. Note that we consider opposite\n % directions here as well.\n minAbsCos = min(abs(diag(B' * BOld)));\n minAbsCos2 = min(abs(diag(B' * BOld2)));\n \n if (1 - minAbsCos < epsilon)\n if finetuningEnabled & notFine\n if b_verbose, fprintf('Initial convergence, fine-tuning: \\n'); end;\n notFine = 0;\n usedNlinearity = gFine;\n myy = myyK * myyOrig;\n BOld = zeros(size(B));\n BOld2 = zeros(size(B));\n \n else\n if b_verbose, fprintf('Convergence after %d steps\\n', round); end\n \n % Calculate the de-whitened vectors.\n A = dewhiteningMatrix * B;\n break;\n end\n elseif stabilizationEnabled\n if (~stroke) & (1 - minAbsCos2 < epsilon)\n if b_verbose, fprintf('Stroke!\\n'); end;\n stroke = myy;\n myy = .5*myy;\n if mod(usedNlinearity,2) == 0\n usedNlinearity = usedNlinearity + 1;\n end\n elseif stroke\n myy = stroke;\n stroke = 0;\n if (myy == 1) & (mod(usedNlinearity,2) ~= 0)\n usedNlinearity = usedNlinearity - 1;\n end\n elseif (~long) & (round>maxNumIterations/2)\n if b_verbose, fprintf('Taking long (reducing step size)\\n'); end;\n long = 1;\n myy = .5*myy;\n if mod(usedNlinearity,2) == 0\n usedNlinearity = usedNlinearity + 1;\n end\n end\n end\n \n BOld2 = BOld;\n BOld = B;\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Show the progress...\n if b_verbose\n if round == 1\n fprintf('Step no. %d\\n', round);\n else\n fprintf('Step no. %d, change in value of estimate: %.3g \\n', round, 1 - minAbsCos);\n end\n end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Also plot the current state...\n switch usedDisplay\n case 1\n if rem(round, displayInterval) == 0,\n % There was and may still be other displaymodes...\n % 1D signals\n icaplot('dispsig',(X'*B)');\n drawnow;\n end\n case 2\n if rem(round, displayInterval) == 0,\n % ... and now there are :-)\n % 1D basis\n A = dewhiteningMatrix * B;\n icaplot('dispsig',A');\n drawnow;\n end\n case 3\n if rem(round, displayInterval) == 0,\n % ... and now there are :-)\n % 1D filters\n W = B' * whiteningMatrix;\n icaplot('dispsig',W);\n drawnow;\n end\n otherwise\n end\n \n switch usedNlinearity\n % pow3\n case 10\n B = (X * (( X' * B) .^ 3)) / numSamples - 3 * B;\n case 11\n % optimoitu - epsilonin kokoisia eroja\n % t\ufffdm\ufffd on optimoitu koodi, katso vanha koodi esim.\n % aikaisemmista versioista kuten 2.0 beta3\n Y = X' * B;\n Gpow3 = Y .^ 3;\n Beta = sum(Y .* Gpow3);\n D = diag(1 ./ (Beta - 3 * numSamples));\n B = B + myy * B * (Y' * Gpow3 - diag(Beta)) * D;\n case 12\n Xsub=X(:, getSamples(numSamples, sampleSize));\n B = (Xsub * (( Xsub' * B) .^ 3)) / size(Xsub,2) - 3 * B;\n case 13\n % Optimoitu\n Ysub=X(:, getSamples(numSamples, sampleSize))' * B;\n Gpow3 = Ysub .^ 3;\n Beta = sum(Ysub .* Gpow3);\n D = diag(1 ./ (Beta - 3 * size(Ysub', 2)));\n B = B + myy * B * (Ysub' * Gpow3 - diag(Beta)) * D;\n \n % tanh\n case 20\n hypTan = tanh(a1 * X' * B);\n B = X * hypTan / numSamples - ...\n ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / numSamples * ...\n a1;\n case 21\n % optimoitu - epsilonin kokoisia\n Y = X' * B;\n hypTan = tanh(a1 * Y);\n Beta = sum(Y .* hypTan);\n D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2)));\n B = B + myy * B * (Y' * hypTan - diag(Beta)) * D;\n case 22\n Xsub=X(:, getSamples(numSamples, sampleSize));\n hypTan = tanh(a1 * Xsub' * B);\n B = Xsub * hypTan / size(Xsub, 2) - ...\n ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / size(Xsub, 2) * a1;\n case 23\n % Optimoitu\n Y = X(:, getSamples(numSamples, sampleSize))' * B;\n hypTan = tanh(a1 * Y);\n Beta = sum(Y .* hypTan);\n D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2)));\n B = B + myy * B * (Y' * hypTan - diag(Beta)) * D;\n \n % gauss\n case 30\n U = X' * B;\n Usquared=U .^ 2;\n ex = exp(-a2 * Usquared / 2);\n gauss = U .* ex;\n dGauss = (1 - a2 * Usquared) .*ex;\n B = X * gauss / numSamples - ...\n ones(size(B,1),1) * sum(dGauss)...\n .* B / numSamples ;\n case 31\n % optimoitu\n Y = X' * B;\n ex = exp(-a2 * (Y .^ 2) / 2);\n gauss = Y .* ex;\n Beta = sum(Y .* gauss);\n D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex)));\n B = B + myy * B * (Y' * gauss - diag(Beta)) * D;\n case 32\n Xsub=X(:, getSamples(numSamples, sampleSize));\n U = Xsub' * B;\n Usquared=U .^ 2;\n ex = exp(-a2 * Usquared / 2);\n gauss = U .* ex;\n dGauss = (1 - a2 * Usquared) .*ex;\n B = Xsub * gauss / size(Xsub,2) - ...\n ones(size(B,1),1) * sum(dGauss)...\n .* B / size(Xsub,2) ;\n case 33\n % Optimoitu\n Y = X(:, getSamples(numSamples, sampleSize))' * B;\n ex = exp(-a2 * (Y .^ 2) / 2);\n gauss = Y .* ex;\n Beta = sum(Y .* gauss);\n D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex)));\n B = B + myy * B * (Y' * gauss - diag(Beta)) * D;\n \n % skew\n case 40\n B = (X * ((X' * B) .^ 2)) / numSamples;\n case 41\n % Optimoitu\n Y = X' * B;\n Gskew = Y .^ 2;\n Beta = sum(Y .* Gskew);\n D = diag(1 ./ (Beta));\n B = B + myy * B * (Y' * Gskew - diag(Beta)) * D;\n case 42\n Xsub=X(:, getSamples(numSamples, sampleSize));\n B = (Xsub * ((Xsub' * B) .^ 2)) / size(Xsub,2);\n case 43\n % Uusi optimoitu\n Y = X(:, getSamples(numSamples, sampleSize))' * B;\n Gskew = Y .^ 2;\n Beta = sum(Y .* Gskew);\n D = diag(1 ./ (Beta));\n B = B + myy * B * (Y' * Gskew - diag(Beta)) * D;\n \n otherwise\n error('Code for desired nonlinearity not found!');\n end\n end\n \n \n % Calculate ICA filters.\n W = B' * whiteningMatrix;\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Also plot the last one...\n switch usedDisplay\n case 1\n % There was and may still be other displaymodes...\n % 1D signals\n icaplot('dispsig',(X'*B)');\n drawnow;\n case 2\n % ... and now there are :-)\n % 1D basis\n icaplot('dispsig',A');\n drawnow;\n case 3\n % ... and now there are :-)\n % 1D filters\n icaplot('dispsig',W);\n drawnow;\n otherwise\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DEFLATION APPROACH\nif approachMode == 2\n \n B = zeros(vectorSize);\n \n % The search for a basis vector is repeated numOfIC times.\n round = 1;\n \n numFailures = 0;\n \n while round <= numOfIC,\n myy = myyOrig;\n usedNlinearity = gOrig;\n stroke = 0;\n notFine = 1;\n long = 0;\n endFinetuning = 0;\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Show the progress...\n if b_verbose, fprintf('IC %d ', round); end\n \n % Take a random initial vector of lenght 1 and orthogonalize it\n % with respect to the other vectors.\n if initialStateMode == 0\n w = randn (vectorSize, 1);\n elseif initialStateMode == 1\n w=whiteningMatrix*guess(:,round);\n end\n w = w - B * B' * w; %orthogonalization - B is the previous w\n w = w / norm(w);\n \n wOld = zeros(size(w));\n wOld2 = zeros(size(w));\n \n % This is the actual fixed-point iteration loop.\n % for i = 1 : maxNumIterations + 1\n i = 1;\n gabba = 1;\n while i <= maxNumIterations + gabba\n if (usedDisplay > 0)\n drawnow;\n end\n if (interruptible & g_FastICA_interrupt)\n if b_verbose\n fprintf('\\n\\nCalculation interrupted by the user\\n');\n end\n return;\n end\n \n % Project the vector into the space orthogonal to the space\n % spanned by the earlier found basis vectors. Note that we can do\n % the projection with matrix B, since the zero entries do not\n % contribute to the projection.\n w = w - B * B' * w;\n w = w / norm(w);\n \n if notFine\n if i == maxNumIterations + 1\n if b_verbose\n fprintf('\\nComponent number %d did not converge in %d iterations.\\n', round, maxNumIterations);\n end\n round = round - 1;\n numFailures = numFailures + 1;\n if numFailures > failureLimit\n if b_verbose\n fprintf('Too many failures to converge (%d). Giving up.\\n', numFailures);\n end\n if round == 0\n A=[];\n W=[];\n end\n return;\n end\n % numFailures > failurelimit\n break;\n end\n % i == maxNumIterations + 1\n else\n % if notFine\n if i >= endFinetuning\n wOld = w; % So the algorithm will stop on the next test...\n end\n end\n % if notFine\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Show the progress...\n if b_verbose, fprintf('.'); end;\n \n \n % Test for termination condition. Note that the algorithm has\n % converged if the direction of w and wOld is the same, this\n % is why we test the two cases.\n if norm(w - wOld) < epsilon | norm(w + wOld) < epsilon\n if finetuningEnabled & notFine\n if b_verbose, fprintf('Initial convergence, fine-tuning: '); end;\n notFine = 0;\n gabba = maxFinetune;\n wOld = zeros(size(w));\n wOld2 = zeros(size(w));\n usedNlinearity = gFine;\n myy = myyK * myyOrig;\n \n endFinetuning = maxFinetune + i;\n \n else\n numFailures = 0;\n % Save the vector\n B(:, round) = w;\n \n % Calculate the de-whitened vector.\n A(:,round) = dewhiteningMatrix * w;\n % Calculate ICA filter.\n W(round,:) = w' * whiteningMatrix;\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Show the progress...\n if b_verbose, fprintf('computed ( %d steps ) \\n', i); end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Also plot the current state...\n switch usedDisplay\n case 1\n if rem(round, displayInterval) == 0,\n % There was and may still be other displaymodes...\n % 1D signals\n temp = X'*B;\n icaplot('dispsig',temp(:,1:numOfIC)');\n drawnow;\n end\n case 2\n if rem(round, displayInterval) == 0,\n % ... and now there are :-)\n % 1D basis\n icaplot('dispsig',A');\n drawnow;\n end\n case 3\n if rem(round, displayInterval) == 0,\n % ... and now there are :-)\n % 1D filters\n icaplot('dispsig',W);\n drawnow;\n end\n end\n % switch usedDisplay\n break; % IC ready - next...\n end\n %if finetuningEnabled & notFine\n elseif stabilizationEnabled\n if (~stroke) & (norm(w - wOld2) < epsilon | norm(w + wOld2) < ...\n epsilon)\n stroke = myy;\n if b_verbose, fprintf('Stroke!'); end;\n myy = .5*myy;\n if mod(usedNlinearity,2) == 0\n usedNlinearity = usedNlinearity + 1;\n end\n elseif stroke\n myy = stroke;\n stroke = 0;\n if (myy == 1) & (mod(usedNlinearity,2) ~= 0)\n usedNlinearity = usedNlinearity - 1;\n end\n elseif (notFine) & (~long) & (i > maxNumIterations / 2)\n if b_verbose, fprintf('Taking long (reducing step size) '); end;\n long = 1;\n myy = .5*myy;\n if mod(usedNlinearity,2) == 0\n usedNlinearity = usedNlinearity + 1;\n end\n end\n end\n \n wOld2 = wOld;\n wOld = w;\n \n switch usedNlinearity\n % pow3\n case 10\n w = (X * ((X' * w) .^ 3)) / numSamples - 3 * w;\n case 11\n EXGpow3 = (X * ((X' * w) .^ 3)) / numSamples;\n Beta = w' * EXGpow3;\n w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta);\n case 12\n Xsub=X(:,getSamples(numSamples, sampleSize));\n w = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2) - 3 * w;\n case 13\n Xsub=X(:,getSamples(numSamples, sampleSize));\n EXGpow3 = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2);\n Beta = w' * EXGpow3;\n w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta);\n % tanh\n case 20\n hypTan = tanh(a1 * X' * w);\n w = (X * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / numSamples;\n case 21\n hypTan = tanh(a1 * X' * w);\n Beta = w' * X * hypTan;\n w = w - myy * ((X * hypTan - Beta * w) / ...\n (a1 * sum((1-hypTan .^2)') - Beta));\n case 22\n Xsub=X(:,getSamples(numSamples, sampleSize));\n hypTan = tanh(a1 * Xsub' * w);\n w = (Xsub * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / size(Xsub, 2);\n case 23\n Xsub=X(:,getSamples(numSamples, sampleSize));\n hypTan = tanh(a1 * Xsub' * w);\n Beta = w' * Xsub * hypTan;\n w = w - myy * ((Xsub * hypTan - Beta * w) / ...\n (a1 * sum((1-hypTan .^2)') - Beta));\n % gauss\n case 30\n % This has been split for performance reasons.\n u = X' * w;\n u2=u.^2;\n ex=exp(-a2 * u2/2);\n gauss = u.*ex;\n dGauss = (1 - a2 * u2) .*ex;\n w = (X * gauss - sum(dGauss)' * w) / numSamples;\n case 31\n u = X' * w;\n u2=u.^2;\n ex=exp(-a2 * u2/2);\n gauss = u.*ex;\n dGauss = (1 - a2 * u2) .*ex;\n Beta = w' * X * gauss;\n w = w - myy * ((X * gauss - Beta * w) / ...\n (sum(dGauss)' - Beta));\n case 32\n Xsub=X(:,getSamples(numSamples, sampleSize));\n u = Xsub' * w;\n u2=u.^2;\n ex=exp(-a2 * u2/2);\n gauss = u.*ex;\n dGauss = (1 - a2 * u2) .*ex;\n w = (Xsub * gauss - sum(dGauss)' * w) / size(Xsub, 2);\n case 33\n Xsub=X(:,getSamples(numSamples, sampleSize));\n u = Xsub' * w;\n u2=u.^2;\n ex=exp(-a2 * u2/2);\n gauss = u.*ex;\n dGauss = (1 - a2 * u2) .*ex;\n Beta = w' * Xsub * gauss;\n w = w - myy * ((Xsub * gauss - Beta * w) / ...\n (sum(dGauss)' - Beta));\n % skew\n case 40\n w = (X * ((X' * w) .^ 2)) / numSamples;\n case 41\n EXGskew = (X * ((X' * w) .^ 2)) / numSamples;\n Beta = w' * EXGskew;\n w = w - myy * (EXGskew - Beta*w)/(-Beta);\n case 42\n Xsub=X(:,getSamples(numSamples, sampleSize));\n w = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2);\n case 43\n Xsub=X(:,getSamples(numSamples, sampleSize));\n EXGskew = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2);\n Beta = w' * EXGskew;\n w = w - myy * (EXGskew - Beta*w)/(-Beta);\n \n otherwise\n error('Code for desired nonlinearity not found!');\n end\n \n \n% TEST % % % % % % % % % % % % % % % % % % % % % % % % %\ninterval = 1;\nif mod(i,interval)==0\n modifyA =1; %for now...\n nx = 20;\n ny = 20;\n sigfix = 3.7/4; % sig of PSF...\n \n if exist ('modifyA','var')\n if modifyA == 1\n % fprintf ('Modifying matrix conevrgence of w...')\n Atemp = dewhiteningMatrix * w;\n% signum = 1;\n% if abs(min(Atemp))>max(Atemp) %or sum(Atemp)<0...?\n% signum = -1;\n% end\n% if abs(min(Atemp))>max(Atemp) %or sum(Atemp)<0...?\n% Atemp = -Atemp;\n% end\n absA = abs(Atemp);\n maxA = max(absA);\n \n gf = (gauss2d([nx ny],[nx/2,ny/2],sigfix,maxA));\n Aconv = (conv2(gf, reshape (Atemp, nx, ny),'same')).^5;\n Atemp = reshape(Aconv,ny*ny,1);\n \n% [x_mu, y_mu, sig] = fitgauss2d(reshape(absA, nx, ny),sigfix); %fit to abs...\n% Atemp = (Atemp + signum * reshape(gauss2d([nx ny],[x_mu,y_mu],sig,maxA),nx*ny,1))/2;\n % Atemp = reshape(gauss2d([nx ny],[x_mu,y_mu],sig,maxA),nx*ny,1);\n end\n end\n w = whiteningMatrix*Atemp;\nend\n \n% TEST % % % % % % % % % % % % % % % % % % % % % % % % %\n\n% %%% TEST version old %%%%%%%%%\n% if mod(i,5)==0\n% modifyA =1; %for now...\n% nx = 20;\n% ny = 20;\n% sigfix = 3.7/4; % sig of PSF...\n% \n% if exist ('modifyA','var')\n% if modifyA == 1\n% % fprintf ('Modifying matrix conevrgence of w...')\n% Atemp = dewhiteningMatrix * w;\n% if abs(min(Atemp))>max(Atemp) %or sum(Atemp)<0...?\n% Atemp = -Atemp;\n% end\n% [x_mu, y_mu, sig] = fitgauss2d(reshape(Atemp, nx, ny),sigfix);\n% maxA = max(abs(Atemp));\n% Atemp = (Atemp + reshape(gauss2d([nx ny],[x_mu,y_mu],sig,maxA),nx*ny,1))/2;\n% % Atemp = reshape(gauss2d([nx ny],[x_mu,y_mu],sig,maxA),nx*ny,1);\n% end\n% end\n% w = whiteningMatrix*Atemp;\n% \n% %%% TEST version old %%%%%%%%%\n\n% Normalize the new w.\n w = w / norm(w); \n i = i + 1;\n end\n round = round + 1;\n end\n if b_verbose, fprintf('Done.\\n'); end\n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Also plot the ones that may not have been plotted.\n if (usedDisplay > 0) & (rem(round-1, displayInterval) ~= 0)\n switch usedDisplay\n case 1\n % There was and may still be other displaymodes...\n % 1D signals\n temp = X'*B;\n icaplot('dispsig',temp(:,1:numOfIC)');\n drawnow;\n case 2\n % ... and now there are :-)\n % 1D basis\n icaplot('dispsig',A');\n drawnow;\n case 3\n % ... and now there are :-)\n % 1D filters\n icaplot('dispsig',W);\n drawnow;\n otherwise\n end\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% In the end let's check the data for some security\nif ~isreal(A)\n if b_verbose, fprintf('Warning: removing the imaginary part from the result.\\n'); end\n A = real(A);\n W = real(W);\nend\n\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Subfunction\n% Calculates tanh simplier and faster than Matlab tanh.\nfunction y=tanh(x)\ny = 1 - 2 ./ (exp(2 * x) + 1);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction Samples = getSamples(max, percentage)\nSamples = find(rand(1, max) < percentage);\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/ica/fpica_091123.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.3675893907299582}} {"text": "function m = gpComputeM(model)\n\n% GPCOMPUTEM Compute the matrix m given the model.\n% FORMAT\n% DESC computes the matrix m (the scaled, bias and mean function\n% removed matrix of the targets), given the model.\n% ARG model : the model for which the values are to be computed.\n% RETURN m : the scaled, bias and mean function removed values.\n%\n% SEEALSO : gpCreate, gpComputeAlpha, gpUpdateAD\n%\n% COPYRIGHT : Neil D. Lawrence, 2006\n\n% GP \n\n% Remove mean function value from m (if mean function present).\nif isfield(model, 'meanFunction') && ~isempty(model.meanFunction)\n m = model.y - modelOut(model.meanFunction, model.X);\nelse\n m = model.y;\nend\n\n% Remove bias and apply scale.\nfor i = 1:model.d\n m(:, i) = m(:, i) - model.bias(i);\n if model.scale(i)\n m(:, i) = m(:, i)/model.scale(i);\n end\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/gp/gpComputeM.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.36758939072995817}} {"text": "function inputs = getBatch_LapSRN(opts, imdb, batch, mode)\n% -------------------------------------------------------------------------\n% Description:\n% get one batch for training LapSRN\n%\n% Input:\n% - opts : options generated from init_opts()\n% - imdb : imdb file generated from make_imdb()\n% - batch : array of ID to fetch\n% - mode : 'train' or 'val'\n%\n% Output:\n% - inputs: input for dagnn (include LR and HR images)\n%\n% Citation: \n% Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution\n% Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang\n% IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017\n%\n% Contact:\n% Wei-Sheng Lai\n% wlai24@ucmerced.edu\n% University of California, Merced\n% -------------------------------------------------------------------------\n\n %% get images\n image_batch = imdb.images.img(batch);\n \n %% crop patches\n HR = zeros(opts.patch_size, opts.patch_size, 1, length(batch), 'single');\n \n for i = 1:length(batch)\n \n img = image_batch{i};\n \n ratio = 1;\n \n if( opts.scale_augmentation && strcmp(mode, 'train') )\n % randomly resize between 0.5 ~ 1.0\n ratio = randi([5, 10]) * 0.1;\n\n end\n \n eps = 1e-3;\n \n % min width/height should be larger than patch size\n if size(img, 1) < size(img, 2)\n if size(img, 1) * ratio < opts.patch_size\n ratio = opts.patch_size / size(img, 1) + eps;\n end\n else\n if size(img, 2) * ratio < opts.patch_size\n ratio = opts.patch_size / size(img, 2) + eps;\n end\n end\n \n img = imresize(img, ratio);\n \n % random crop\n H = size(img, 1);\n W = size(img, 2);\n \n y = randi(H - opts.patch_size + 1);\n x = randi(W - opts.patch_size + 1);\n HR(:, :, :, i) = img(y : y + opts.patch_size - 1, x : x + opts.patch_size - 1, :);\n\n end\n \n \n %% data augmentation\n if( opts.data_augmentation && strcmp(mode, 'train') )\n \n % rotate\n rotate = rand;\n if( rotate < 0.25 )\n HR = rot90(HR, 1);\n elseif( rotate < 0.5 )\n HR = rot90(HR, 2);\n elseif( rotate < 0.75 )\n HR = rot90(HR, 3);\n end\n \n % horizontally flip\n if( rand > 0.5 )\n HR = fliplr(HR);\n end\n \n end % end of data augmentation\n \n \n %% dagnn input\n inputs = {};\n inputs{end+1} = 'level1_HR';\n\tinputs{end+1} = HR;\n \n for i = 2 : opts.level\n ratio = 1 / 2^(i - 1);\n inputs{end+1} = sprintf('level%d_HR', i);\n inputs{end+1} = imresize(HR, ratio);\n end\n \n inputs{end+1} = 'LR';\n\tinputs{end+1} = imresize(HR, 1 / opts.scale);\n \n %% convert to GPU array\n if( opts.gpu > 0 )\n for i = 2:2:length(inputs)\n inputs{i} = gpuArray(inputs{i});\n end\n end\n \nend\n", "meta": {"author": "phoenix104104", "repo": "LapSRN", "sha": "95154bba82a3aab9bdaec8e0eedd4187babc5ed2", "save_path": "github-repos/MATLAB/phoenix104104-LapSRN", "path": "github-repos/MATLAB/phoenix104104-LapSRN/LapSRN-95154bba82a3aab9bdaec8e0eedd4187babc5ed2/getBatch_LapSRN.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.36758939072995817}} {"text": "function t_auction_minopf(quiet)\n%T_AUCTION_MINOPF Tests for code in auction.m, using MINOPF solver.\n\n% MATPOWER\n% Copyright (c) 2004-2016, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MATPOWER.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://matpower.org for more info.\n\nif nargin < 1\n quiet = 0;\nend\n\nn_tests = 183;\n\nt_begin(n_tests, quiet);\n\n[PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...\n VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;\n[GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...\n MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...\n QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;\n\nif ~have_feature('smartmarket')\n t_skip(n_tests, 'smartmarket code not available');\nelseif ~have_feature('minopf')\n t_skip(n_tests, 't_auction_minopf requires MINOPF');\nelse\n mpopt = mpoption('opf.ac.solver', 'MINOPF', 'out.lim.all', 1, 'out.branch', 0, 'out.sys_sum', 0, 'out.all', 0, 'verbose', 0);\n q = [\n 12 24 24; \n 12 24 24; \n 12 24 24; \n 12 24 24; \n 12 24 24; \n 12 24 24; \n 10 10 10;\n 10 10 10;\n 10 10 10;\n ];\n\n %%----- one offer block marginal @ $50 -----\n p = [\n 20 50 60;\n 20 40 70;\n 20 42 80;\n 20 44 90;\n 20 46 75;\n 20 48 60;\n 100 70 60;\n 100 50 20;\n 100 60 50;\n ];\n\n t = 'one marginal offer @ $50, auction_type = 5';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1150, 100, [], [], mpopt);\n cq5 = cq;\n cp5 = cp;\n i2e = bus(:, BUS_I);\n e2i = sparse(max(i2e), 1);\n e2i(i2e) = (1:size(bus, 1))';\n G = find( ~isload(gen) ); %% real generators\n L = find( isload(gen) ); %% dispatchable loads\n Gbus = e2i(gen(G,GEN_BUS));\n Lbus = e2i(gen(L,GEN_BUS));\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n\n t_is( cq(G(1),2:3), [23.32 0], 2, t );\n t_is( cp(G(1),:), 50, 4, t );\n t_is( cq(L(2),1:2), [10 0], 2, t );\n t_is( cp(L(2),:), 54.0312, 4, t );\n t_is( cp(G,1), bus(Gbus, LAM_P), 8, [t ' : gen prices'] );\n t_is( cp(L,1), bus(Lbus, LAM_P) + Qfudge(L,1), 8, [t ' : load prices'] );\n\n lao_X = p(G(1),2)/bus(Gbus(1), LAM_P);\n fro_X = p(G(6),3)/bus(Gbus(6), LAM_P);\n lab_X = p(L(3),2)/(bus(Lbus(3), LAM_P) + Qfudge(L(3),1));\n frb_X = p(L(2),2)/(bus(Lbus(2), LAM_P) + Qfudge(L(2),1));\n\n t_is( lao_X, 1, 4, 'lao_X');\n t_is( fro_X, 1.1324, 4, 'fro_X');\n t_is( lab_X, 1.0787, 4, 'lab_X');\n t_is( frb_X, 0.9254, 4, 'frb_X');\n\n t = 'one marginal offer @ $50, auction_type = 1';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1110, 100, [], [], mpopt);\n cp1 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 8, [t ' : prices'] );\n\n t = 'one marginal offer @ $50, auction_type = 2';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1120, 100, [], [], mpopt);\n cp2 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp5(G,:)*fro_X, 8, [t ' : gen prices'] );\n t_is( cp(L(1:2),:), cp5(L(1:2),:)*fro_X, 8, [t ' : load 1,2 prices'] );\n t_is( cp(L(3),:), 60, 5, [t ' : load 3 price'] ); %% clipped by accepted bid\n\n t = 'one marginal offer @ $50, auction_type = 3';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1130, 100, [], [], mpopt);\n cp3 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5*lab_X, 8, [t ' : prices'] );\n\n t = 'one marginal offer @ $50, auction_type = 4';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1140, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), p(G(1),2), 8, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp5(G(2:6),:)*frb_X, 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L,:), cp5(L,:)*frb_X, 8, [t ' : load prices'] );\n\n t = 'one marginal offer @ $50, auction_type = 6';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp3, 8, [t ' : prices'] );\n p2 = p;\n p2(L,:) = [ 100 100 100;\n 100 0 0;\n 100 100 0 ];\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 5, [t ' : quantities'] );\n t_is( cp(G,:), cp5(G,:)*fro_X, 4, [t ' : gen prices'] );\n t_is( cp(L,:), cp5(L,:)*fro_X, 4, [t ' : load prices'] ); %% load 3 not clipped as in FRO\n\n t = 'one marginal offer @ $50, auction_type = 7';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1170, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5 * (lao_X+lab_X)/2, 8, [t ' : prices'] );\n t_is( cp, (cp1 + cp3) / 2, 8, [t ' : prices'] );\n\n t = 'one marginal offer @ $50, auction_type = 8';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1180, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp1(G,:), 8, [t ' : gen prices'] );\n t_is( cp(L,:), cp3(L,:), 8, [t ' : load prices'] );\n\n t = 'one marginal offer @ $50, auction_type = 0';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1100, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, p, 8, [t ' : prices'] );\n\n\n %%----- one bid block marginal @ $55 -----\n p(L(2),2) = 55;\n t = 'one marginal bid @ $55, auction_type = 5';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1150, 100, [], [], mpopt);\n cq5 = cq;\n cp5 = cp;\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n\n t_is( cq(G(1),2:3), [24 0], 2, t );\n t_is( cp(G(1),:), 50.016, 3, t );\n t_is( cq(L(2),1:2), [10 0.63], 2, t );\n t_is( cp(L(2),:), 55, 4, t );\n t_is( cp(G,1), bus(Gbus, LAM_P), 8, [t ' : gen prices'] );\n t_is( cp(L,1), bus(Lbus, LAM_P) + Qfudge(L,1), 8, [t ' : load prices'] );\n\n lao_X = p(G(1),2)/bus(Gbus(1), LAM_P);\n fro_X = p(G(6),3)/bus(Gbus(6), LAM_P);\n lab_X = p(L(2),2)/(bus(Lbus(2), LAM_P) + Qfudge(L(2),1));\n frb_X = p(L(3),3)/(bus(Lbus(3), LAM_P) + Qfudge(L(3),1));\n\n t_is( lao_X, 0.9997, 4, 'lao_X');\n t_is( fro_X, 1.1111, 4, 'fro_X');\n t_is( lab_X, 1, 4, 'lab_X');\n t_is( frb_X, 0.8960, 4, 'frb_X');\n\n t = 'one marginal bid @ $55, auction_type = 1';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1110, 100, [], [], mpopt);\n cp1 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5*lao_X, 8, [t ' : prices'] );\n\n t = 'one marginal bid @ $55, auction_type = 2';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1120, 100, [], [], mpopt);\n cp2 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp5(G,:)*fro_X, 8, [t ' : gen prices'] );\n t_is( cp(L(1),:), cp5(L(1),:)*fro_X, 8, [t ' : load 1 price'] );\n t_is( cp(L(2),:), 55, 5, [t ' : load 2 price'] );\n t_is( cp(L(3),:), 60, 5, [t ' : load 3 price'] );\n\n t = 'one marginal bid @ $55, auction_type = 3';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1130, 100, [], [], mpopt);\n cp3 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 8, [t ' : prices'] );\n\n t = 'one marginal bid @ $55, auction_type = 4';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1140, 100, [], [], mpopt);\n cp4 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 50, 5, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp5(G(2:6),:)*frb_X, 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L,:), cp5(L,:)*frb_X, 8, [t ' : load prices'] );\n\n t = 'one marginal bid @ $55, auction_type = 6';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp1, 8, [t ' : prices'] );\n\n p2 = p;\n p2(G,:) = [ 0 0 100;\n 0 0 100;\n 0 0 100;\n 0 0 100;\n 0 0 100;\n 0 0 100 ];\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp5(G,:)*frb_X, 4, [t ' : gen prices'] ); %% gen 1, not clipped this time\n t_is( cp(L,:), cp4(L,:), 4, [t ' : load prices'] );\n\n t = 'one marginal bid @ $55, auction_type = 7';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1170, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5 * (lao_X+lab_X)/2, 8, [t ' : prices'] );\n t_is( cp, (cp1 + cp3) / 2, 8, [t ' : prices'] );\n\n t = 'one marginal bid @ $55, auction_type = 8';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1180, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp1(G,:), 8, [t ' : gen prices'] );\n t_is( cp(L,:), cp3(L,:), 8, [t ' : load prices'] );\n\n t = 'one marginal bid @ $55, auction_type = 0';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1100, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, p, 8, [t ' : prices'] );\n\n\n %%----- one bid block marginal @ $54.50 and one offer block marginal @ $50 -----\n p(L(2),2) = 54.5;\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 5';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1150, 100, [], [], mpopt);\n cq5 = cq;\n cp5 = cp;\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n\n t_is( cq(G(1),2:3), [23.74 0], 2, t );\n t_is( cp(G(1),:), 50, 4, t );\n t_is( cq(L(2),1:2), [10 0.39], 2, t );\n t_is( cp(L(2),:), 54.5, 4, t );\n t_is( cp(G,1), bus(Gbus, LAM_P), 8, [t ' : gen prices'] );\n t_is( cp(L,1), bus(Lbus, LAM_P) + Qfudge(L,1), 8, [t ' : load prices'] );\n\n lao_X = p(G(1),2)/bus(Gbus(1), LAM_P);\n fro_X = p(G(6),3)/bus(Gbus(6), LAM_P);\n lab_X = p(L(2),2)/(bus(Lbus(2), LAM_P) + Qfudge(L(2),1));\n frb_X = p(L(3),3)/(bus(Lbus(3), LAM_P) + Qfudge(L(3),1));\n\n t_is( lao_X, 1, 4, 'lao_X');\n t_is( fro_X, 1.1221, 4, 'fro_X');\n t_is( lab_X, 1, 4, 'lab_X');\n t_is( frb_X, 0.8976, 4, 'frb_X');\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 1';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1110, 100, [], [], mpopt);\n cp1 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 4, [t ' : prices'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 2';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1120, 100, [], [], mpopt);\n cp2 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp5(G,:)*fro_X, 5, [t ' : gen prices'] );\n t_is( cp(L(1),:), cp5(L(1),:)*fro_X, 5, [t ' : load 1 price'] );\n t_is( cp(L(2),:), 54.5, 5, [t ' : load 2 price'] );\n t_is( cp(L(3),:), 60, 5, [t ' : load 3 price'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 3';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1130, 100, [], [], mpopt);\n cp3 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 8, [t ' : prices'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 4';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1140, 100, [], [], mpopt);\n cp4 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 50, 5, [t ' : gen 1 price'] );\n t_is( cp(G(2:5),:), cp5(G(2:5),:)*frb_X, 8, [t ' : gen 2-5 prices'] );\n t_is( cp(G(6),:), 48, 5, [t ' : gen 6 price'] );\n t_is( cp(L,:), cp5(L,:)*frb_X, 8, [t ' : load prices'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 6';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 4, [t ' : prices'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 7';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1170, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 4, [t ' : prices'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 8';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1180, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 4, [t ' : prices'] );\n\n t = 'marginal offer @ $50, bid @ $54.50, auction_type = 0';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1100, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, p, 8, [t ' : prices'] );\n\n\n %%----- gen 1 at Pmin, load 3 block 2 marginal @ $60 -----\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 5';\n p(L(2),2) = 50; %% undo previous change\n p2 = p;\n p2(G(1),2:3) = [65 65];\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1150, 100, [], [], mpopt);\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n\n t_is( cp(G(1),:), 65, 4, [t ' : gen 1 price'] );\n t_is( cp(G(2),:), 54.2976, 4, [t ' : gen 2 price'] );\n cq5 = cq;\n cp5 = cp;\n cp_lam = cp5;\n cp_lam(1,:) = bus(Gbus(1), LAM_P); %% unclipped\n\n lao_X = p2(G(6),2)/bus(Gbus(6), LAM_P);\n fro_X = p2(G(6),3)/bus(Gbus(6), LAM_P);\n lab_X = p2(L(3),2)/(bus(Lbus(3), LAM_P) + Qfudge(L(3),1));\n frb_X = p2(L(2),2)/(bus(Lbus(2), LAM_P) + Qfudge(L(2),1));\n\n t_is( lao_X, 0.8389, 4, 'lao_X');\n t_is( fro_X, 1.0487, 4, 'fro_X');\n t_is( lab_X, 1, 4, 'lab_X');\n t_is( frb_X, 0.8569, 4, 'frb_X');\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 1';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1110, 100, [], [], mpopt);\n cp1 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 65, 8, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp_lam(G(2:6),:)*lao_X, 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L,:), cp_lam(L,:)*lao_X, 8, [t ' : load prices'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 2';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1120, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 65, 8, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp_lam(G(2:6),:)*fro_X, 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L(1:2),:), cp_lam(L(1:2),:)*fro_X, 8, [t ' : load 1-2 prices'] );\n t_is( cp(L(3),:), 60, 8, [t ' : load 3 price'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 3';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1130, 100, [], [], mpopt);\n cp3 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 65, 8, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp_lam(G(2:6),:), 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L,:), cp_lam(L,:), 8, [t ' : load prices'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 4';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1140, 100, [], [], mpopt);\n cp4 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 65, 5, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp5(G(2:6),:)*frb_X, 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L,:), cp5(L,:)*frb_X, 8, [t ' : load prices'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 6';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp4, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 7';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1170, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G(1),:), 65, 4, [t ' : gen 1 price'] );\n t_is( cp(G(2:6),:), cp_lam(G(2:6),:) * (lao_X+lab_X)/2, 8, [t ' : gen 2-6 prices'] );\n t_is( cp(L,:), cp_lam(L,:) * (lao_X+lab_X)/2, 8, [t ' : load prices'] );\n t_is( cp, (cp1 + cp3) / 2, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 8';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1180, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp1(G,:), 8, [t ' : prices'] );\n t_is( cp(L,:), cp3(L,:), 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal bid @ $60, auction_type = 0';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1100, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, p2, 8, [t ' : prices'] );\n\n\n %%----- gen 1 at Pmin, gen 6 block 3 marginal @ $60 -----\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 5';\n p2(L,:) = [ 100 100 100;\n 100 0 0;\n 100 100 0 ];\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1150, 100, [], [], mpopt);\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n\n t_is( cp(G(1),:), 65, 4, [t ' : gen 1 price'] );\n t_is( cp(G(2),:), 57.1616, 4, [t ' : gen 2 price'] );\n cq5 = cq;\n cp5 = cp;\n cp_lam = cp5;\n cp_lam(1,:) = bus(Gbus(1), LAM_P); %% unclipped\n\n lao_X = p2(G(6),3)/bus(Gbus(6), LAM_P);\n fro_X = p2(G(1),3)/bus(Gbus(1), LAM_P);\n lab_X = p2(L(3),2)/(bus(Lbus(3), LAM_P) + Qfudge(L(3),1));\n frb_X = p2(L(2),2)/(bus(Lbus(2), LAM_P) + Qfudge(L(2),1));\n\n t_is( lao_X, 1, 4, 'lao_X');\n t_is( fro_X, 1.1425, 4, 'fro_X');\n t_is( lab_X, 1.5813, 4, 'lab_X');\n t_is( frb_X, 0, 4, 'frb_X');\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 1';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1110, 100, [], [], mpopt);\n cp1 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp5, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 2';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1120, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp_lam*fro_X, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 3';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1130, 100, [], [], mpopt);\n cp3 = cp;\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp_lam*lab_X, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 4';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1140, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,1), [65;40;42;44;46;60], 4, [t ' : gen prices'] );\n t_is( cp(L,:), cp_lam(L,:)*frb_X, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 6';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1160, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp_lam*fro_X, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 7';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1170, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, cp_lam * (lao_X+lab_X)/2, 8, [t ' : prices'] );\n t_is( cp, (cp_lam + cp3) / 2, 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 8';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1180, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp(G,:), cp5(G,:), 8, [t ' : prices'] );\n t_is( cp(L,:), cp3(L,:), 8, [t ' : prices'] );\n\n t = 'gen 1 @ Pmin, marginal offer @ $60, auction_type = 0';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p2, 1100, 100, [], [], mpopt);\n t_is( cq, cq5, 8, [t ' : quantities'] );\n t_is( cp, p2, 8, [t ' : prices'] );\n\n\n %%----- gen 2 decommitted, one offer block marginal @ $60 -----\n p(G(2),:) = p(G(2),:) + 100;\n\n t = 'price of decommited gen, auction_type = 5';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1150, 200, [], [], mpopt);\n cp5 = cp;\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n t_is(sum(cq(2,:)), 0, 8, t);\n t_is(cp(2,1), 59.194, 3, t);\n\n% Xo = p(1:6, :) ./ (diag(bus(Gbus, LAM_P)) * ones(size(p(G,:))));\n% ao = (cq(1:6, :) ~= 0);\n% ro = (cq(1:6, :) == 0);\n% Xb = p(7:9, :) ./ (diag(bus(Lbus, LAM_P) + gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:))));\n% ab = (cq(7:9, :) ~= 0);\n% rb = (cq(7:9, :) == 0);\n% aXo = ao .* Xo\n% rXo = ro .* Xo\n% aXb = ab .* Xb\n% rXb = rb .* Xb\n\n lao_X = p(G(6),3)/bus(Gbus(6), LAM_P);\n fro_X = p(G(1),3)/bus(Gbus(1), LAM_P);\n lab_X = p(L(1),2)/(bus(Lbus(1), LAM_P) + Qfudge(L(1),1));\n frb_X = p(L(1),3)/(bus(Lbus(1), LAM_P) + Qfudge(L(1),1));\n\n t_is( lao_X, 1, 4, 'lao_X');\n t_is( fro_X, 1.0212, 4, 'fro_X');\n t_is( lab_X, 1.1649, 4, 'lab_X');\n t_is( frb_X, 0.9985, 4, 'frb_X');\n\n t = 'price of decommited gen, auction_type = 1';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1110, 200, [], [], mpopt);\n t_is(cp(2,1), 59.194, 3, t);\n\n t = 'price of decommited gen, auction_type = 2';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1120, 200, [], [], mpopt);\n t_is(cp(2,1), cp5(2,1)*fro_X, 3, t);\n\n t = 'price of decommited gen, auction_type = 3';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1130, 200, [], [], mpopt);\n t_is(cp(2,1), cp5(2,1)*lab_X, 3, t);\n\n t = 'price of decommited gen, auction_type = 4';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1140, 200, [], [], mpopt);\n t_is(cp(2,1), cp5(2,1)*frb_X, 3, t);\n\n t = 'price of decommited gen, auction_type = 6';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1160, 200, [], [], mpopt);\n t_is(cp(2,1), cp5(2,1)*fro_X, 3, t);\n\n t = 'price of decommited gen, auction_type = 7';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1170, 200, [], [], mpopt);\n t_is(cp(2,1), cp5(2,1)*(lao_X+lab_X)/2, 3, t);\n\n t = 'price of decommited gen, auction_type = 0';\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1100, 200, [], [], mpopt);\n t_is(cp(2,1), 120, 3, t);\n\n t = 'single block, marginal offer @ $50, auction_type = 5';\n q = [\n 60; \n 36; \n 36; \n 36; \n 36; \n 36; \n 30;\n 10;\n 20;\n ];\n\n p = [\n 50;\n 40;\n 42;\n 44;\n 46;\n 48;\n 100;\n 100;\n 100;\n ];\n\n [MVAbase, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...\n runmkt('t_auction_case', q, p, 1150, 100, [], [], mpopt);\n t_is( cq(G(1)), 35.32, 2, t );\n t_is( cq(G(2:6)), q(G(2:6)), 8, [t ' : gen qtys'] ); \n t_is( cp(G(1)), 50, 4, t );\n t_is( cq(L), q(L), 8, [t ' : load qtys'] );\n t_is( cp(L(2),:), 54.03, 2, t );\n t_is( cp(G), bus(Gbus, LAM_P), 8, [t ' : gen prices'] );\n Qfudge = zeros(size(p));\n Qfudge(L,:) = diag(gen(L,QG) ./ gen(L,PG) .* bus(Lbus, LAM_Q)) * ones(size(p(L,:)));\n t_is( cp(L), bus(Lbus, LAM_P) + Qfudge(L,1), 8, [t ' : load prices'] );\nend\n\nt_end;\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/t/t_auction_minopf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.36758939072995817}} {"text": "function plotRelaxedFBA(sol, model,tol)\n\nif sol.stat ~= 1\n disp('relaxedFBA did not complete successfully, nothing to display');\n disp('relaxedFBA problem infeasible, check relaxOption fields');\n return\nend\n\nif ~exist('tol','var')\n %Set the tolerance to distinguish between zero and non-zero flux\n feasTol = getCobraSolverParams('LP', 'feasTol');\n tol=feasTol*100;\nend\n\n%useful for numerical debugging\nif 0\n tol=0;\nend\n\noptTol = getCobraSolverParams('LP', 'optTol');\nsol.p(abs(sol.p)optTol*10\n warning(['relaxedFBA relaxed steady state constraints too much, norm(S*v-b)= ' num2str(norm(model.S*sol.v-model.b))])\nend\n\n[v,r,p,q] = deal(sol.v,sol.r,sol.p,sol.q);\n\np(p minLB));\nfprintf('%u%s\\n',nnz(p & intRxnFiniteBound),' finite lower bounds relaxed');\nexRxn00 = ((model.ub == 0) & (model.lb == 0));\nfprintf('%u%s\\n',nnz(p & exRxn00),' lower bounds relaxed on fixed reactions (lb=ub=0)');\nfprintf('\\n');\n\nbool=r~=0;\nif any(bool)\n fprintf('%u%s\\n',nnz(r),' steady state constraints relaxed');\n fprintf('%-20s%12s%12s\\n','mets{n}','r','dxdt')\n for m=1:nMet\n if bool(m)\n fprintf('%-20s%12.4g%12.4g\\n',...\n model.mets{m},sol.r(m),model.b(m));\n end\n end\nelse\n fprintf('%s\\n','No steady state constraints relaxed');\nend\nfprintf('\\n');\n\nbool=p~=0 & q==0 & model.SIntRxnBool;\nif any(bool)\n fprintf('%u%s\\n',nnz(bool),' internal reaction lower bounds relaxed...');\n fprintf('%-20s%12.4s%12.4s%12.4s%12.4s%12.4s%12.8s\\n','rxns','p','lb','v','ub','q','formula');\n for n=1:nRxn\n if bool(n)\n rxnAbbrList=model.rxns(n);\n formulas = printRxnFormula(model, rxnAbbrList, printFlag, lineChangeFlag);\n fprintf('%-20s%12.4g%12.4g%12.4g%12.4g%12.4g%6g%-100s\\n',...\n model.rxns{n},sol.p(n),model.lb(n),sol.v(n),model.ub(n),sol.q(n),formulas{1});\n end\n end\nelse\n fprintf('%s\\n','No internal reaction lower bounds relaxed');\nend\nfprintf('\\n');\n\nbool=p==0 & q~=0 & model.SIntRxnBool;\nif any(bool)\n fprintf('%u%s\\n',nnz(bool),' internal reaction lower bounds relaxed...');\n fprintf('%-20s%12.4s%12.4s%12.4s%12.4s%12.4s%12.8s\\n','rxns','p','lb','v','ub','q','formula');\n for n=1:nRxn\n if bool(n)\n rxnAbbrList=model.rxns(n);\n formulas = printRxnFormula(model, rxnAbbrList, printFlag, lineChangeFlag);\n fprintf('%-20s%12.4g%12.4g%12.4g%12.4g%12.4g%6g%-100s\\n',...\n model.rxns{n},sol.p(n),model.lb(n),sol.v(n),model.ub(n),sol.q(n),formulas{1});\n end\n end\nelse\n fprintf('%s\\n','No internal reaction lower bounds relaxed');\nend\nfprintf('\\n');\n\nbool=p~=0 & q==0 & ~model.SIntRxnBool;\nif any(bool)\n fprintf('%u%s\\n',nnz(bool),' external reaction lower bounds relaxed...');\n fprintf('%-20s%12.4s%12.4s%12.4s%12.4s%12.4s%12.8s\\n','rxns','p','lb','v','ub','q','formula');\n for n=1:nRxn\n if bool(n)\n rxnAbbrList=model.rxns(n);\n formulas = printRxnFormula(model, rxnAbbrList, printFlag, lineChangeFlag);\n fprintf('%-20s%12.4g%12.4g%12.4g%12.4g%12.4g%6g%-100s\\n',...\n model.rxns{n},sol.p(n),model.lb(n),sol.v(n),model.ub(n),sol.q(n),formulas{1});\n end\n end\nelse\n fprintf('%s\\n','No external reaction lower bounds relaxed');\nend\nfprintf('\\n');\n\nbool=p==0 & q~=0 & ~model.SIntRxnBool;\nif any(bool)\n fprintf('%u%s\\n',nnz(bool),' external reaction lower bounds relaxed...');\n fprintf('%-20s%12.4s%12.4s%12.4s%12.4s%12.4s%12.8s\\n','rxns','p','lb','v','ub','q','formula');\n for n=1:nRxn\n if bool(n)\n rxnAbbrList=model.rxns(n);\n formulas = printRxnFormula(model, rxnAbbrList, printFlag, lineChangeFlag);\n fprintf('%-20s%12.4g%12.4g%12.4g%12.4g%12.4g%6g%-100s\\n',...\n model.rxns{n},sol.p(n),model.lb(n),sol.v(n),model.ub(n),sol.q(n),formulas{1});\n end\n end\nelse\n fprintf('%s\\n','No external reaction lower bounds relaxed');\nend\nfprintf('\\n');\n\n\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/relaxedFBA/plotRelaxedFBA.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6406358411176237, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3675189490893574}} {"text": "function [status, results] = mrtrix_csdeconv(dwi_file, response_file, lmax, ...\n out_file, grad_file, mask_file, verbose)\n\n%function [status, results] = mrtrix_csdeconv(dwi_file, response_file, lmax, ...\n% out_file, grad_file, [mask_file=entire volume], [verbose=true])\n%\n% Fit the constrained spherical deconvolution model to dwi data \n%\n% Parameters\n% ----------\n% dwi_file: The name of a dwi file in .mif format. \n% response_file: The name of a .txt fiber response function file. \n% lmax: The maximal harmonic order. \n% out_file: The resulting .mif file. \n% grad_file: a file containing gradient information in the mrtrix format. \n% mask_file: a .mif file containing a mask. Default: the entire volume. \n% verbose: Whether to display stdout to the command window. \n% \n% Returns\n% -------\n% status: whether (0) or not (1) the operation succeeded\n% results: the results of the operation in stdout\n%\n% Notes\n% -----\n% http://www.brain.org.au/software/mrtrix/tractography/preprocess.html\n% \n\nif notDefined('verbose')\n verbose = true; \nend\n\nif notDefined('bkgrnd')\n bkgrnd = false;\nend\n\nif notDefined('mask_file')\ncmd_str = sprintf('csdeconv %s %s -lmax %d %s -grad %s',...\n dwi_file, response_file, lmax, out_file, grad_file);\n\nelse \ncmd_str = sprintf('csdeconv %s %s -lmax %d -mask %s %s -grad %s',...\n dwi_file, response_file, lmax, mask_file, out_file, grad_file);\nend \n\n[status,results] = mrtrix_cmd(cmd_str, bkgrnd, verbose);\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/mrtrix/mrtrix_csdeconv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7122321964553657, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.367241105111534}} {"text": "report_this_filefun(mfilename('fullpath'));\n\nl = isnan(tmap);\ntmap(l) = 1;\n\n[lat,lon] = meshgrat(tmap,tmapleg);\n%[lat,lon] = meshgrat(vlat,vlon);\n\n%[smap,smapleg] = country2mtx('switzerland',100);\n%[lat0, lon0] = meshgrat(smap,smapleg);\n\n\n% tmap = km2deg(tmap/1);\n[X , Y] = meshgrid(gx,gy);\n\n%sw = interp2(lon0,lat0,smap,lon,lat);\n\n\n\nren = interp2(X,Y,re4,lon,lat);\n\nmi = min(min(ren));\nl = isnan(ren);\nren(l) = mi-0.05;\n\n\nfigure_w_normalized_uicontrolunits('pos',[150 500 1000 700])\n\nhold on; axis off\naxesm('MapProjection','eqaconic','MapParallels',[],...\n 'MapLatLimit',[s4_south s3_north],'MapLonLimit',[s2_west s1_east])\n\nmeshm(ren,tmapleg,size(tmap),tmap);\n\ndaspectm('m',50);\ntightmap\nview([0 90])\ncamlight; lighting phong\nset(gca,'projection','perspective');\n\n% load usalo\n% h = displaym(usalo('state'));\n\n%set(h(1),'color',[0.9 0.9 0.9],'Linewidth',2)\n% h = displaym(gtlakevec); set(h(1),'color',[0.9 0.9 0.9],'Linewidth',2)\n\n% h2 = displaym(PPpoint);\n%h = displaym(PPtext); trimcart(h);\n\n%pl = plotm(lima(:,2),lima(:,1),'hw');\n%set(pl,'LineWidth',1.5,'MarkerSize',12,...\n% 'MarkerFaceColor','y','MarkerEdgeColor','k')\n\npl = plotm(dam(:,2),dam(:,1),'^w');\nset(pl,'LineWidth',1.5,'MarkerSize',12,...\n 'MarkerFaceColor','w','MarkerEdgeColor','k')\npl = plotm(coastline(:,2), coastline(:,1),'w','Linewidth',2);\nset(pl,'LineWidth',2);\nzdatam(handlem('allline'),10000) % keep line on surface\n%zdatam(handlem('alltext'),10000) % keep line on surface\n\nj = jet;\n%j = j(64:-1:1,:);\nj = [ [ 0.85 0.9 0.9] ; j];\n\ncolormap(j); brighten(0.1);\n\naxis off; set(gcf,'color','k')\n\nsetm(gca,'ffacecolor','k')\nsetm(gca,'fedgecolor','y','flinewidth',3);\n\nsetm(gca,'mlabellocation',2)\nsetm(gca,'meridianlabel','on')\nsetm(gca,'plabellocation',2)\nsetm(gca,'parallellabel','on')\nsetm(gca,'Fontcolor','w','Fontweight','bold','FontSize',12,'Labelunits','dm')\n\nh5 = colorbar;\nset(h5,'position',[0.82 0.35 0.01 0.3],'TickDir','out','Ycolor','w','Xcolor','w',...\n 'Fontweight','FontSize',12);\nset(gcf,'Inverthardcopy','off');\n\n\n\n\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/dramap_uta.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.712232184238947, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.36724109881250516}} {"text": "function make_roi_paths(pial, outersmoothed, radius, stepsize, outdir, flagf)\n\n% Original Author: Marie Schaer\n% Date: 2007/11/15\n%\n% This function creates multiple circular regions of interest on the outer\n% surface, measures their area (saved in matlab format) and save path file\n% containing a set of\n% corresponding points on the pial surface. The path files are required as\n% an input to the mri_path2label function\n%\n% Parameters:\n% radius: radius of the circular region of interest on the outer surface.\n% Most appropriate values between 20 and 25 mm, further documentation\n% available in the validation publication: \"A surface-based approach to\n% quantify local cortical gyrification\" by Schaer M, Bach Cuadra M,\n% Tamarit L, Eliez E, Thiran JP, IEEE Transactions on Medical Imaging, 2007\n%\n% Utilities to transfer points on the pial surface calls \"mesh_vertex_nearest\",\n% a function written by Darren Weber. Utilities to compute matrix adjacency\n% for the pial surface calls \"mesh_adjacency\", a program first written by\n% Darren Weber, then modified by G. Peyre (source: toolbox_graph on\n% mathworks)\n%\n% Example: make_roi_paths('lh.pial','lh.outer-pial-smoothed',25,100,/tmp)\n\nt0 = cputime;\n\ndisp('loading datas ...')\n[mesh_total.vertices, mesh_total.faces]=freesurfer_read_surf(pial);\n[mesh_outer.vertices, mesh_outer.faces]=freesurfer_read_surf(outersmoothed);\n\ndisp('preparing outer mesh structure ...')\nmesh_outer = createMeshFacesOfVertex (mesh_outer.vertices, mesh_outer.faces)\n\ndisp('preparing pial mesh structure ...')\nA = mesh_adjacency(mesh_total);\n\n% Keep track of the area for each individual region of interest on the\n% outer surface:\nnbVertices = size(mesh_outer.vertices,1);\nareasOuterROI = zeros(nbVertices,1);\nareasOuterROI = sparse (areasOuterROI);\nclear nbVertices\n\n\n% Circular regions of interest are defined each 100 vertex on the outer\n% surface. Due to the high resolution of the outer mesh (average face area\n% of ~0.3mm2), calculations are computed each 1 on 100 vertex, to avoid\n% high redundancies and optimize calculation time.\n\nfor iV = 1:stepsize: length(mesh_outer.vertices)\n\n disp(['... creating path file for vertex ',num2str(iV),' / ',num2str(length(mesh_outer.vertices))])\n\n % ------ Part 1: find the ROI on the enveloppe --------------\n\n [verticesInROI, facesInROI] = getVerticesAndFacesInSphere(mesh_outer, iV, radius);\n\n % In rare case, the intersection of the enveloppe with the sphere result\n % in two regions of interest: the one that we expect, circular and\n % centered in iV; and an aberrant one at the bottom of the sphere\n % (e.g. near the superior sagittal vault). The next step is used to\n % control for that and keep only the radial region centered at iV.\n facesListOuterGeo = MakeGeodesicOuterROI (mesh_outer, iV, facesInROI);\n\n % Find the perimeter of the outer ROI\n verticesOuterGeo=unique(facesListOuterGeo(:));\n perim=setdiff(verticesOuterGeo,verticesInROI);\n\n % Measure its area\n areaOuterROI = getFacesArea(mesh_outer,facesListOuterGeo);\n\n areasOuterROI(iV) = areaOuterROI;\n\n if (mod(iV,50*stepsize) == 1)\n fname = [outdir '/' pial '.area_intermed.mat'];\n save(fname, 'areasOuterROI') ;\n disp(['area file for outer ROIs saved at ',num2str(iV)])\n end\n\n clear verticesInROI facesInROI facesListOuterGeo verticesOuterGeo areaOuterROI\n\n\n % ----- Part2: Define the corresponding set of points on the pial surface:\n % Transfer a few points of the perimeter of the hulls ROI from\n % the envelope to the pial surface, and save them as path file.\n step = 7;\n [verticeslist] = SearchProjectionOnPial(mesh_total, mesh_outer, perim, step);\n\n % reorganize the set of points in the right order to input them to\n % mri_path2label\n reorglist = reorganize_verticeslist (mesh_total, A, mesh_outer, perim, verticeslist, step);\n lindex = reorglist';\n lxyz = mesh_total.vertices(lindex,:); lindex= lindex-1;\n\n\n p = sprintf ('%06d', iV);\n write_path(lxyz, lindex,[outdir '/' pial '.' p '.path']);\n\n clear verticeslist lindex lxyz\n\nend\n\ndisp(['saving area file in matlab format... '])\nfname = [outdir '/' pial '.outer_ROIs_area.mat'];\nsave(fname, 'areasOuterROI')\n\ndisp('DONE.')\ndeltaT = cputime - t0\n\n% indicate successful completion by deleting flagfile\ndelete(flagf);\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/freesurfer/make_roi_paths.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.746138993030751, "lm_q2_score": 0.4921881357207956, "lm_q1q2_score": 0.36724075996839706}} {"text": "function [UTC1,UTC2]=UT12UTC(UT11,UT12,deltaUTCUT1)\n%%UT12UTC Convert from UT1, which is a nonuniform timescale based on the\n% rotation rate of the Earth, to Coordinated Universal Time (UTC),\n% which is the \"standard\" time that pretty much every country uses\n% (the time zone is that of the United Kingdom) including\n% leapseconds. Due to the use of leapseconds, UT1 is always within\n% 0.9 seconds of UTC.\n%\n%INPUTS: Jul1,Jul2 Two parts of a Julian date given in UTC. The units of\n% the date are days. The full date is the sum of both\n% terms. The date is broken into two parts to provide\n% more bits of precision. It does not matter how the date\n% is split.\n% deltaUTCUT1 An optional parameter specifying the offset between UTC\n% and UT1 in seconds. If this parameter is omitted, then\n% the value of the function getEOP will be used and\n% iterations will be performed, because the correct\n% tabulated value is given in UTC, not UT1.\n%\n%OUTPUTS: Jul1,Jul2 Two parts of a pseudo-Julian date in UTC with units of\n% Julian days.\n%\n%This essentially just adds deltaUTCUT1 from the given UTC date, or\n%looks up deltaUTCUT1 using the getEOP function and then adds\n%deltaUTCUT1. The \"looking up\" step involves an interation, since the value\n%of deltaUTCUT1 is tabulated by UTC, which is unknown. To know the peroper\n%amount to subtract from the pseudo-Julian day, the function leapSecsOnDay\n%is used to determine whether the day contains a leapsecond. As that\n%function is also tabulated by UTC, an iteration is necessary even if\n%deltaUTCUT1 is given. Unlike the function iauUtcut1 in the International\n%Astronomical Union's Standards of Fundamental Astronomy library, this does\n%not try to deal with deltaUTCUT1 being off by a second near a leapsecond\n%as it was noticed that the \"corrections\" made in the library make the pair\n%of UTC2UT1 and UT12UTC inconsistent by a second when it is near a\n%leapsecond.\n%\n%Many temporal coordinate systems standards are compared in [1].\n%\n%REFERENCES:\n%[1] D. F. Crouse, \"An Overview of Major Terrestrial, Celestial, and\n% Temporal Coordinate Systems for Target Tracking,\" Formal Report, Naval\n% Research Laboratory, no. NRL/FR/5344--16-10,279, 10 Aug. 2016, 173\n% pages.\n%\n%April 2015 David F. Crouse, Naval Research Laboratory, Washington D.C.\n%(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release.\n\n%The initial estimate of UTC is just UT1. This will be within 0.9 seconds\n%of the correct value.\nUTC1=UT11;\nUTC2=UT12;\n\nfor curIter=1:2\n if(nargin<3)\n [~,~,deltaUTCUT1]=getEOP(UTC1,UTC2);\n end\n \n %Find the number of seconds in the day.\n [year,month,day]=UTC2Cal(UTC1,UTC2,true);\n numSecInDay=24*60*(60+leapSecsOnDay(year,month,day));\n\n %Add preserving precision.\n if(UTC1 & John Kane \n\nfunction [Ts,Es,ZCs_ms,Xpos,pos] = sil_unv_features(x,fs,frame_len_ms)\n\nif nargin < 3\n frame_len_ms=10;\nend\nframe_len=frame_len_ms/1000*fs;\nframe_shift_ms=5;\nShift=frame_shift_ms/1000*fs;\n \nStart=1; % intialise\nStop=Start+frame_len-1;\npos=mean([Start Stop]);\n\n[ZCs,Xpos] = get_zero_x_rate(x,frame_len,Shift);\nZCs_ms=ZCs/1000*fs;\n\nInd=1;\n\nEs=zeros(1,floor((length(x)-Stop+1)/Shift)+1);\nTs=zeros(size(Es));\n\nwin = hanning(Stop-Start+1);\n \nwhile StopR2\nb_reduced = BMA.Cp(:,2);\nexpected = logical([0 0 0 0 1 0]);\ntestCase.assertTrue(all(b_reduced(~expected) < 1e-4));\ntestCase.assertTrue(all(b_reduced(expected) > 1e-4));\n\n% -------------------------------------------------------------------------\nfunction data_path = get_data_path()\n\ndata_path = fullfile( spm('Dir'), 'tests', ...\n 'data', 'fMRI', 'simulated_2region');", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/tests/test_spm_dcm_bmr_all.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7520125737597972, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.36719525282059307}} {"text": "function [y] = cellcolremove(x, cols)\n\n% [Y] = CELLCOLREMOVE(X, COLS) outputs cell-array Y with the same dimensionality as X\n% Each cell in Y has the indexed columns COLS removed from the original corresponding cell in X\n% \n% X (and Y) should be linear cell-array(s) of matrices for which the number of rows \n% should be the same for all cells\n\nnx = size(x);\nif ~iscell(x) || length(nx)>2 || all(nx>1),\n error('incorrect input for cellrows');\nend\n\ny = cellfun(@colr, x, repmat(mat2cell(cols(:),length(cols),1),nx), 'UniformOutput', 0);\n\nfunction [y] = colr(x, cols)\n\nif ischar(cols)\n if strcmp(cols(1),'r')\n % remove n columns on the right\n cols = str2double(cols(2:end));\n cols = size(x,2)-((cols-1):-1:0);\n elseif strcmp(cols(1),'l')\n % remove n columns on the left\n cols = str2double(cols(2:end));\n cols = 1:cols;\n else\n % numeric\n end\nend\n\nx(:,cols) = [];\ny = x;", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/cellfunction/cellcolremove.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5698526660244837, "lm_q2_score": 0.6442251201477016, "lm_q1q2_score": 0.3671134022361111}} {"text": "function varargout = drawVertices(varargin)\n%DRAWVERTICES Draw the vertices of a polygon or polyline.\n%\n% drawVertices(POLY)\n% Draws the vertices of the given polygon, using pre-defined style.\n% Default is to draw vertices as squares, with the first vertex filled. \n%\n% Example\n% poly = circleToPolygon([20 30 40], 16);\n% drawPolygon(poly); \n% hold on; axis equal;\n% drawVertices(poly);\n%\n% See also \n% drawPoint, drawPolygon, drawPolyline\n\n% ------\n% Author: David Legland\n% E-mail: david.legland@grignon.inra.fr\n% Created: 2011-12-11, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2011-2022 INRA - Cepia Software Platform\n\n% extract handle of axis to draw on\nif isAxisHandle(varargin{1})\n ax = varargin{1};\n varargin(1) = [];\nelse\n ax = gca;\nend\n\nvar = varargin{1};\n\n\n%% Manage cell arrays of polygons / polylines\n\n% case of a set of polygons stored in a cell array\nif iscell(var)\n N = length(var);\n h = zeros(N, 1);\n for i = 1:N\n state = ishold(gca);\n hold on;\n % check for empty polygons\n if ~isempty(var{i})\n h(i) = drawVertices(ax, var{i}, varargin{2:end});\n end\n if ~state\n hold off\n end\n end\n\n if nargout > 0\n varargout = {h};\n end\n\n return;\nend\n\n\n%% Parse coordinates and options\n\n% Extract coordinates of vertices\nif size(var, 2) > 1\n % first argument is a vertex array\n px = var(:, 1);\n py = var(:, 2);\n varargin(1) = [];\n \nelseif length(varargin) >= 2 && isnumeric(varargin{1}) && isnumeric(varargin{2})\n % arguments 1 and 2 correspond to x and y coordinate respectively \n px = varargin{1};\n py = varargin{2};\n varargin(1:2) = [];\n \nelse\n % unknow input format\n error('Should specify either a N-by-2 array, or 2 N-by-1 vectors');\nend\n\n% concatenate input argument(s) with default options\ndefaults = {'MarkerSize', 6};\nif length(varargin) == 1\n varargin = [varargin defaults];\nelse\n varargin = [{'ks'} defaults varargin];\nend\n\n\n%% Draw the vertices\n\n% draw the vertices\nh = plot(ax, px, py, varargin{:});\n\n% draw the first vertex with a different style\nplot(ax, px(1), py(1), 'ks', 'MarkerFaceColor', 'k', 'MarkerSize', 8);\n\n% format output arg\nif nargout > 0\n varargout = {h};\nend\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/polygons2d/drawVertices.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5698526514141572, "lm_q2_score": 0.6442251201477016, "lm_q1q2_score": 0.36711339282377176}} {"text": "function varargout = plotcoeffs(f, varargin)\n%PLOTCOEFFS Display coefficients graphically.\n% PLOTCOEFFS(F) plots the absolute values of the coefficients underlying the\n% representation of a CHEBFUN F on a semilogy scale. If F is an array-valued\n% CHEBFUN or has breakpoints, then a curve is plotted for each FUN of each\n% component (column) of F.\n%\n% PLOTCOEFFS(F, S) allows further plotting options, such as linestyle,\n% linecolor, etc, as in the standard MATLAB manner. If S contains a string\n% 'LOGLOG', the coefficients will be displayed on a log-log scale.\n%\n% H = PLOTCOEFFS(F) returns a column vector of handles to lineseries objects.\n%\n% As of Chebfun version 5, the coefficients plotted by 'plotcoeffs' are either\n% Chebyshev coefficients for Chebyshev-based chebfuns or Fourier coefficients\n% for periodic chebfuns ('trigfuns'). \n%\n% See also CHEBFUN/PLOT.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Deal with an empty input:\nif ( isempty(f) )\n if ( nargout == 1 )\n varargout{1} = plot([]);\n end\n return\nend\n\ndom = f(1).domain([1,end]);\n\n% We can only plot the coefficients of one CHEBFUN at a time:\nif ( any(cellfun(@(f) isa(f, 'chebfun'), varargin)) )\n error('CHEBFUN:CHEBFUN:plotcoeffs:multipleChebfuns', ...\n 'Calls of the form PLOTCOEFFS(F, ''b'', G, ''r'') are not supported.');\nend\n\n% Store the hold state of the current axis:\nholdState = ishold;\n\n% Grab some colours:\ncol = [];\nif ( nargin > 1 && ischar(varargin{1}) && numel(varargin{1}) < 4 )\n % (Note. LineStyle definitions have at most 4 characters. Other plotting\n % parameters have more than characters.)\n col = regexp(varargin{1}, '[bgrcmykw]', 'match');\n if ( numel(col) > 1 )\n error('CHEBFUN:plotcoeffs:color', ...\n 'Error in color/linetype argument.');\n elseif ( ~isempty(col) )\n col = col{:};\n% varargin(1) = []; % Don't remove as we need marker information.\n end\nend\nif ( isempty(col) )\n colIdx = find(cellfun(@(arg) all(ischar(arg)) && ...\n any(strfind(arg, 'color')), varargin));\n if ( colIdx )\n col = varargin{colIdx+1};\n varargin(colIdx+(0:1)) = [];\n else\n col = get(0, 'DefaultAxesColorOrder');\n col = repmat(col, ceil(numColumns(f)/7), 1);\n end\nend\n\n% Deal with 'LogLog' and input:\ndoLogLog = any(cellfun(@(s) strcmpi(s, 'loglog'), varargin));\n\n% Convert to a cell array for easy handling:\nf = mat2cell(f);\n\n% Initialise the output:\nh = cell(1, numel(f));\n\n% Loop over the columns in a quasimatrix:\nfor k = 1:numel(f)\n % Colours for this columns:\n if ( ischar(col) )\n colk = col;\n else\n colk = col(k,:);\n end\n % Call the column version:\n h{k} = columnPlotCoeffs(f{k}, colk, varargin{:}, 'domain', dom);\nend\n\n% Return hold state to what it was before:\nif ( ~holdState )\n hold off\nend\n\n% Set xScale to logarithmic if requested:\nif ( doLogLog )\n set(gca, 'xScale', 'Log');\nend\n\n% Give an output if one was requested:\nif ( nargout > 0 )\n try \n h = cell2mat(h);\n catch\n % shrug\n end\n varargout = {h};\nend\n\nend\n\nfunction h = columnPlotCoeffs(f, col, varargin)\nnumFuns = numel(f.funs);\n\n% Initialise handle storage:\nh = zeros(numFuns, 1);\n\n% Call plotcoeffs at the tech level:\nfor j = 1:numFuns\n h(j) = plotcoeffs(f.funs{j}, varargin{:}, 'color', col); hold on\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun/plotcoeffs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5698526660244837, "lm_q2_score": 0.6442250996557036, "lm_q1q2_score": 0.3671133905586914}} {"text": "%% REW_city\n% %{\nimfolder = 'images\\REW_city';\nim_n = 5;\nimfile = cell(im_n,1);\nfor ii = 1:im_n\n imfile{ii} = sprintf('%s\\\\%01d.jpg', imfolder, ii);\nend\n\nim = cell(im_n,1);\nfor ii = 1:im_n\n im{ii} = imread(imfile{ii});\nend\n\nedge_list = zeros(im_n-1,2);\nfor ei = 1:im_n-1\n edge_list(ei,:) = [ei,ei+1];\nend\n\nimsize = zeros(im_n,3);\n\nfor ii = 1:im_n\n imsize(ii,:) = size(im{ii});\n if imsize(ii,1) > 720\n scale = 720/size(im{ii}, 1);\n im{ii} = imresize(im{ii}, scale);\n\n imsize(ii,:) = size(im{ii});\n end\nend\n\nmosaic = REW_mosaic( im, edge_list, 0, 'equi', 0, imfolder );\n%}\n", "meta": {"author": "gain2217", "repo": "Robust_Elastic_Warping", "sha": "36ad3cb2f709fbea17225642ea1fa7b083924fd9", "save_path": "github-repos/MATLAB/gain2217-Robust_Elastic_Warping", "path": "github-repos/MATLAB/gain2217-Robust_Elastic_Warping/Robust_Elastic_Warping-36ad3cb2f709fbea17225642ea1fa7b083924fd9/multiple_views/examples/REW_city.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863698, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3671133850388255}} {"text": "function colormap = BF_MakeBrightenedColorMap(rgb,numGrads)\n% BF_MakeBrightenedColorMap Given an rgb vector, progressively brightens into a colormap\n\n% ------------------------------------------------------------------------------\n% Copyright (C) 2020, Ben D. Fulcher ,\n% \n%\n% If you use this code for your research, please cite the following two papers:\n%\n% (1) B.D. Fulcher and N.S. Jones, \"hctsa: A Computational Framework for Automated\n% Time-Series Phenotyping Using Massive Feature Extraction, Cell Systems 5: 527 (2017).\n% DOI: 10.1016/j.cels.2017.10.001\n%\n% (2) B.D. Fulcher, M.A. Little, N.S. Jones, \"Highly comparative time-series\n% analysis: the empirical structure of time series and their methods\",\n% J. Roy. Soc. Interface 10(83) 20130048 (2013).\n% DOI: 10.1098/rsif.2013.0048\n%\n% This function is free software: you can redistribute it and/or modify it under\n% the terms of the GNU General Public License as published by the Free Software\n% Foundation, either version 3 of the License, or (at your option) any later\n% version.\n%\n% This program is distributed in the hope that it will be useful, but WITHOUT\n% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n% FOR A PARTICULAR PURPOSE. See the GNU General Public License for more\n% details.\n%\n% You should have received a copy of the GNU General Public License along with\n% this program. If not, see .\n% ------------------------------------------------------------------------------\n\nif nargin < 2\n numGrads = 8;\nend\n\ncolormap = zeros(numGrads,3);\n\nbrightenRange = linspace(0,1,numGrads);\nfor i = 1:numGrads\n colormap(i,:) = brighten(rgb,brightenRange(i));\nend\n\nend\n", "meta": {"author": "benfulcher", "repo": "hctsa", "sha": "919f2aed7cc8e1a3a03304c1ade573fa664c73f8", "save_path": "github-repos/MATLAB/benfulcher-hctsa", "path": "github-repos/MATLAB/benfulcher-hctsa/hctsa-919f2aed7cc8e1a3a03304c1ade573fa664c73f8/PeripheryFunctions/BF_MakeBrightenedColorMap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5698526368038304, "lm_q2_score": 0.6442250996557036, "lm_q1q2_score": 0.3671133717340131}} {"text": "% SB2_POSTERIORMODE Posterior mode-finder for the SPARSEBAYES algorithm\n%\n% [MU, U, BETA, LIKELIHOODMODE, BADHESS] = ...\n% SB2_POSTERIORMODE(LIKELIHOOD,BASIS,TARGETS,ALPHA,MU,ITSMAX,OPTIONS)\n%\n% OUTPUT ARGUMENTS:\n% \n%\tMU\t\t\t\tParameter values at the mode\n%\tU\t\t\t\tCholesky factor of the covariance at the mode\n%\tBETA\t\t\tVector of pseudo-noise variances at the mode\n%\tLIKELIHOODMODE\tData likelihood at the mode\n%\tBADHESS\t\t\tReturns true if Hessian is \"bad\" (becomes\n%\t\t\t\t\tnon-positive-definite during maximisation)\n% \n% INPUT ARGUMENTS:\n% \n%\tLIKELIHOOD\tLIKELIHOOD structure\n%\tBASIS\t\tCurrent relevant basis matrix\n%\tTARGETS\t\tN-vector with target output values\n%\tALPHA\t\tCurrent hyperparameters\n%\tMU\t\t\tCurrent weights\n%\tITSMAX\t\tMaximum number of iterations to run\n%\tOPTIONS\t\tStandard OPTIONS structure (only affects diagnostics)\n% \n% NOTES:\n% \n% SB2_POSTERIORMODE finds the posterior mode (with respect to the\n% weights) of the likelihood function in the non-Gaussian case to\n% facilitate subsequent Laplace approximation.\n%\n% This function is intended for internal use by SPARSEBAYES only (within\n% SB2_FullStatistics).\n%\n\n%\n% Copyright 2009, Vector Anomaly Ltd\n%\n% This file is part of the SPARSEBAYES library for Matlab (V2.0).\n%\n% SPARSEBAYES is free software; you can redistribute it and/or modify it\n% under the terms of the GNU General Public License as published by the Free\n% Software Foundation; either version 2 of the License, or (at your option)\n% any later version.\n%\n% SPARSEBAYES is distributed in the hope that it will be useful, but WITHOUT\n% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or\n% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for\n% more details.\n%\n% You should have received a copy of the GNU General Public License along\n% with SPARSEBAYES in the accompanying file \"licence.txt\"; if not, write to\n% the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,\n% MA 02110-1301 USA\n%\n% Contact the author: m a i l [at] m i k e t i p p i n g . c o m\n%\nfunction [Mu, U, Beta, likelihoodMode, badHess] = ...\n SB2_PosteriorMode(LIKELIHOOD,BASIS,Targets,Alpha,Mu,itsMax,OPTIONS)\n\n% TOLERANCES\n% \n% Termination criterion for each gradient dimension\n% \nGRADIENT_MIN\t= 1e-6;\n%\n% Minimum fraction of the full Newton step considered\n% \nSTEP_MIN\t= 1/(2^8);\n%\n\n[N, M]\t= size(BASIS);\nA\t\t= diag(Alpha);\n\n% NB: for historical reasons, we work in term of error here (negative\n% log-liklihood) and minimise\n\n%\n% Get current model output and data error\n% \nBASIS_Mu\t\t= BASIS*Mu; % Linear output\n[dataError, y]\t= SB2_DataError(LIKELIHOOD, BASIS_Mu, Targets);\n%\n% Add on the weight penalty\n%\nregulariser\t\t= (Alpha'*(Mu.^2))/2;\nnewTotalError\t= dataError + regulariser;\n%\nbadHess\t\t= false;\nerrorLog\t= zeros(itsMax,1);\n%\nfor iteration=1:itsMax\n %\n % Log the error value each iteration\n %\n errorLog(iteration)\t= newTotalError;\n SB2_Diagnostic(OPTIONS,4,'PM cycle: %2d\\t error: %.6f\\n', ...\n\t\t\t\t iteration, errorLog(iteration));\n\n % Construct the gradient\n %\n e\t= (Targets-y);\n g\t= BASIS'*e - Alpha.*Mu;\n %\n % Compute the likelihood-dependent analogue of the noise precision.\n % NB: Beta now a vector.\n % \n switch LIKELIHOOD.InUse\n case LIKELIHOOD.Bernoulli\n Beta\t= y.*(1-y);\n case LIKELIHOOD.Poisson\n Beta\t= y;\n end\n % Compute the Hessian\n BASIS_B\t= BASIS .* (Beta * ones(1,M));\n H\t\t\t= (BASIS_B'*BASIS + A);\n % Invert Hessian via Cholesky, watching out for ill-conditioning\n [U, pdErr]\t= chol(H);\n % Make sure its positive definite\n if pdErr\n\t% If you see this, it's *probably* the result of a bad choice of\n % basis. e.g. a kernel with too large a \"width\"\n\t% \n SB2_Diagnostic(OPTIONS, 1,...\n\t\t\t\t '** Warning ** Ill-conditioned Hessian (%g)\\n', ...\n\t\t\t\t rcond(H));\n badHess\t\t\t= true;\n U\t\t\t\t= [];\n Beta\t\t\t= [];\n likelihoodMode\t= [];\n return\n end\n %\n % Before progressing, check for termination based on the gradient norm\n % \n if all(abs(g)STEP_MIN\n\t% Follow gradient to get new value of parameters\n\t% \n Mu_new\t\t= Mu + step*DeltaMu;\n BASIS_Mu\t= BASIS*Mu_new;\n\t%\n % Compute outputs and error at new point\n\t% \n [dataError,y]\t= SB2_DataError(LIKELIHOOD,BASIS_Mu,Targets);\n regulariser\t\t= (Alpha'*(Mu_new.^2))/2;\n newTotalError\t= dataError + regulariser;\n\t%\n % Test that we haven't made things worse\n\t% \n if newTotalError>=errorLog(iteration)\n % If so, back off!\n\t % \n step\t= step/2;\n SB2_Diagnostic(OPTIONS, 4,['PM error increase! Backing off to l=' ...\n\t\t\t\t\t'%.3f\\n'], step);\n else\n Mu\t= Mu_new;\n step\t= 0;\t\t\t% this will force exit from the \"while\" loop\n end\n end\n %\n % If we get here with non-zero \"step\", it means that the smallest\n % offset from the current point along the \"downhill\" direction did not\n % lead to a decrease in error. In other words, we must be\n % infinitesimally close to a minimum (which is OK).\n % \n if step\n SB2_Diagnostic(OPTIONS, 4, ...\n\t\t\t\t 'PM stopping due to back-off limit (|g| = %g)\\n', ...\n\t\t\t\t max(abs(g)));\n break;\n end\nend\n%\n% Simple computation of return value of log likelihood at mode\n% \nlikelihoodMode\t= -dataError;\n\n%%%%%%%%%%%%%%%%%%%%%%\n% \n% Support function\n%\n%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [e,y] = SB2_DataError(LIKELIHOOD,BASIS_Mu,Targets)\n\nswitch LIKELIHOOD.InUse\n case LIKELIHOOD.Bernoulli\n y\t= SB2_Sigmoid(BASIS_Mu);\n % Handle probability zero cases\n y0\t= (y==0);\n y1\t= (y==1);\n if any(y0(Targets>0)) || any(y1(Targets<1))\n % Error infinite when model gives zero probability in\n % contradiction to data\n e\t= inf;\n else\n % Any y=0 or y=1 cases must now be accompanied by appropriate\n % output=0 or output=1 values, so can be excluded.\n e\t= -(Targets(~y0)'*log(y(~y0)) + (1-Targets(~y1))'*log(1-y(~y1)));\n end\n %\n case LIKELIHOOD.Poisson\n y\t= exp(BASIS_Mu);\n e\t= -sum(Targets.*BASIS_Mu - y);\n %\nend\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/dependencies/SparseBayes-2.0/SB2_PosteriorMode.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36705976345009156}} {"text": "function H = decode_nifti1(blob)\n% function H = decode_nifti1(blob)\n%\n% Decodes a NIFTI-1 header given as raw 348 bytes (uint8) into a Matlab structure\n% that matches the C struct defined in nifti1.h, with the only difference that the\n% variable length arrays \"dim\" and \"pixdim\" are cut off to the right size, e.g., the\n% \"dim\" entry will only contain the relevant elements: \n% dim[0..7]={3,64,64,18,x,x,x,x} in C would become dim=[64,64,18] in Matlab.\n%\n% WARNING: This function currently ignores endianness !!!\n\n% (C) 2010 S.Klanke\n\nif class(blob)~='uint8'\n\terror 'Bad type for blob'\nend\nif length(blob)~=348\n\terror 'Blob must be exactly 348 bytes long'\nend\n\n% see nift1.h for information on structure\nH = [];\n\nmagic = char(blob(345:347));\nif blob(348)~=0 | magic~='ni1' & magic~='n+1'\n\terror 'Not a NIFTI-1 header!';\nend\n\nH.sizeof_hdr = typecast(blob(1:4),'int32');\nH.data_type = cstr2matlab(blob(5:14));\nH.db_name = cstr2matlab(blob(15:32));\nH.extents = typecast(blob(33:36),'int32');\nH.session_error = typecast(blob(37:38),'int16');\nH.regular = blob(39);\nH.dim_info = blob(40);\n\ndim = typecast(blob(41:56),'int16');\nH.dim = dim(2:dim(1)+1);\nH.intent_p1 = typecast(blob(57:60),'single');\nH.intent_p2 = typecast(blob(61:64),'single');\nH.intent_p3 = typecast(blob(65:68),'single');\nH.intent_code = typecast(blob(69:70),'int16');\nH.datatype = typecast(blob(71:72),'int16');\nH.bitpix = typecast(blob(73:74),'int16');\nH.slice_start = typecast(blob(75:76),'int16');\npixdim = typecast(blob(77:108),'single');\nH.qfac = pixdim(1);\nH.pixdim = pixdim(2:dim(1)+1);\nH.vox_offset = typecast(blob(109:112),'single');\nH.scl_scope = typecast(blob(113:116),'single');\nH.scl_inter = typecast(blob(117:120),'single');\nH.slice_end = typecast(blob(121:122),'int16');\nH.slice_code = blob(123);\nH.xyzt_units = blob(124);\nH.cal_max = typecast(blob(125:128),'single');\nH.cal_min = typecast(blob(129:132),'single');\nH.slice_duration = typecast(blob(133:136),'single');\nH.toffset = typecast(blob(137:140),'single');\nH.glmax = typecast(blob(141:144),'int32');\nH.glmin = typecast(blob(145:148),'int32');\nH.descrip = cstr2matlab(blob(149:228));\nH.aux_file = cstr2matlab(blob(229:252));\nH.qform_code = typecast(blob(253:254),'int16');\nH.sform_code = typecast(blob(255:256),'int16');\nquats = typecast(blob(257:280),'single');\nH.quatern_b = quats(1);\nH.quatern_c = quats(2);\nH.quatern_d = quats(3);\nH.quatern_x = quats(4);\nH.quatern_y = quats(5);\nH.quatern_z = quats(6);\ntrafo = typecast(blob(281:328),'single');\nH.srow_x = trafo(1:4);\nH.srow_y = trafo(5:8);\nH.srow_z = trafo(9:12);\n%H.S = [H.srow_x; H.srow_y; H.srow_z; 0 0 0 1];\nH.intent_name = cstr2matlab(blob(329:344));\nH.magic = magic;\n\n\nfunction ms = cstr2matlab(cs)\nif cs(1)==0\n ms = '';\nelse\n ind = find(cs==0);\n if isempty(ind)\n ms = char(cs)';\n else \n ms = char(cs(1:ind(1)-1))';\n end\nend\n\n ", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/PR_BCI_team/Team_EarEEG/ear-EEG connecting/external/eeglab_10_0_1_0x/external/fileio/private/decode_nifti1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36705976345009156}} {"text": "% fig2A: correlation to phototaxis stimulus\n% for single regressor, detail\n% option set to do correlation on trial-averaged traces\n% plot corresponding histogram of corr.coeffs, \n% and plot functional as well as anat plot\n\n% compare to fig3A_sensory_motor, which for now plots a pair of regressors\n% in a double colormap, and batch saves figures.\n\n\n\nhfig = figure;\nInitializeAppData(hfig);\nResetDisplayParams(hfig);\ni_fish = 6;\nClusterIDs = [2,1];\n[cIX,gIX,M,stim,behavior,M_0] = LoadSingleFishDefault(i_fish,hfig,ClusterIDs);\n\n%% corr with PT regressor, stim-avr\n\nsetappdata(hfig,'isStimAvr',0);\n[M_0,M,behavior,stim] = UpdateTimeIndex(hfig);\n\nfishset = getappdata(hfig,'fishset');\n[~,names,regressors] = GetStimRegressor(stim,fishset,i_fish);\nreg_range = 2; \nReg = regressors(reg_range,:);\nR = corr(Reg',M_0'); \n\nthres_reg = 0.5;\ncIX = (find(R>thres_reg))';\nwIX = R(cIX); % weight, i.e. corr.coeff\n[~,I] = sort(wIX,'descend');\ncIX = cIX(I);\ngIX = ones(size(cIX));\nwIX = wIX(I)';\n\nUpdateIndices_Manual(hfig,cIX,gIX);\n\n%% histogram of corr.coeff, for all cells\nfigure('Position',[500,200,500,150]);\nhold on;\nbins = -1:0.05:1;\n[N,~] = histcounts(R,bins);\nhistogram(R,bins,'FaceColor',[0.4 0.4 0.4]);%,'EdgeColor','none'\nplot([thres_reg,thres_reg],[0,max(N)],'r--');\nxlim([-1,1]);ylim([0,max(N)]);\nset(gca,'ycolor','w') \n\n%% histogram with rainbow colors\nclrbins = 0.5:0.05:1;\ncmap = hot(length(clrbins)-1);\nn_blank = length(bins)-length(clrbins);\ncmap = vertcat(ones(n_blank,3),cmap);\nfigure('Position',[500,200,500,150]); \nhold on\nDrawRainbowHistogram(N,bins,cmap);\nplot([thres_reg,thres_reg],[0,max(N)],'r--');\nxlim([-1,1]);ylim([0,max(N)]);\nset(gca,'ycolor','w') \n\n%% left plot\nfigure('Position',[50,500,300,200])%[50,100,800,1000]);\n% isCentroid,isPlotLines,isPlotBehavior,isPlotRegWithTS\nsetappdata(hfig,'isPlotBehavior',0);\nsetappdata(hfig,'isStimAvr',0);\nUpdateTimeIndex(hfig);\n\n% set color\nclrmap = [0,0,0];\nnumK = max(gIX);\nassert(size(clrmap,1)==numK);\n\nopts = [];\nopts.clrmap = clrmap;\nopts.isAxTight = 1;\nDrawTimeSeries(hfig,cIX,gIX,opts);\n \n%% set up custom colormap\nclrbins = 0.5:0.05:1;\nclrmap0 = hot(round(1.5*length(clrbins)));\nclrmap = clrmap0(end-length(clrbins):end,:);\ngIX = interp1(clrbins,1:length(clrbins),wIX,'nearest');\n\n%% right plot\nI = LoadCurrentFishForAnatPlot(hfig,cIX,gIX);\nI.clrmap = clrmap;\nDrawCellsOnAnat(I);\n\n%%\nnumTicks = 2;\nDrawCustomColorbar(clrmap,clrbins,numTicks);\n\n%% draw average plot (even if regression is done on full trace)\ngIX = ones(size(cIX));\nsetappdata(hfig,'isStimAvr',1);\nUpdateTimeIndex(hfig);\nfigure('Position',[50,500,300,200])%[50,100,800,1000]);\nDrawTimeSeries(hfig,cIX,gIX,opts);\n\n\n%%\n[~,tot_image] = DrawCellsOnAnat(I);\nax = axes('Position',[0.8,0.8,0.05,0.15],'Units','normalized');\nDrawCustomColorbar(clrmap,clrbins,2,ax);\n \n%%\n\n\n\n\n% %% left-right combined plot\n% figure('Position',[50,100,1400,800]);\n% % isCentroid,isPlotLines,isPlotBehavior,isPlotRegWithTS\n% subplot(121)\n% setappdata(hfig,'isPlotBehavior',0);\n% setappdata(hfig,'isStimAvr',1);\n% UpdateTimeIndex(hfig);\n% DrawTimeSeries(hfig,cIX,gIX);\n% \n% % right plot\n% subplot(122)\n% I = LoadCurrentFishForAnatPlot(hfig,cIX,gIX);\n% DrawCellsOnAnat(I);\n\n%%\n% dataDir = GetCurrentDataDir;\n% saveDir = fullfile(dataDir,'motorsourceplot');\n% if ~exist(saveDir, 'dir'), mkdir(saveDir), end;\n% filename = fullfile(saveDir, num2str(i_fish));\n% saveas(gcf, filename, 'png');\n% close(gcf)\n\n%%\n%% motor regressor\n% [~,names,regressors] = GetMotorRegressor(behavior,i_fish);\n \n", "meta": {"author": "xiuyechen", "repo": "FishExplorer", "sha": "c61392cf0835480d64fc03c15f1992935fdc7106", "save_path": "github-repos/MATLAB/xiuyechen-FishExplorer", "path": "github-repos/MATLAB/xiuyechen-FishExplorer/FishExplorer-c61392cf0835480d64fc03c15f1992935fdc7106/figure scripts/Regression/fig2A_correlation_1reg_with_hist.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7341195269001831, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36705976345009156}} {"text": "%% Selections of the dataset, model, and category\n% Choices of the dataset. You may select 'ilsvrcanimalpart', 'vocpart', or 'cub200'.\ndataset='ilsvrcanimalpart'; %'vocpart'; 'cub200';\n% If you select dataset='ilsvrcanimalpart', then you may choose of the following categories.\n% 'n01443537','n01503061','n01639765','n01662784','n01674464','n01882714','n01982650','n02084071','n02118333','n02121808','n02129165','n02129604','n02131653','n02324045','n02342885','n02355227','n02374451','n02391049','n02395003','n02398521','n02402425','n02411705','n02419796','n02437136','n02444819','n02454379','n02484322','n02503517','n02509815','n02510455'\n% If you select dataset='vocpart', then you may choose of the following categories.\n% 'bird','cat','cow','dog','horse','sheep'\n% If you select dataset='vocpart', then you need to choose categoryName='cub200'.\ncategoryName='n02118333';\n% Choices of the networks. You may select 'vgg-vd-16', 'alexnet', 'vgg-m', or 'vgg-s'.\nmodel='vgg-vd-16'; % 'alexnet'; 'vgg-m'; 'vgg-s';\ndropoutRate=0.8; %0.5; 0.6; 0.7; 0.8; 0.9; %when using a small number of training samples, avoid over-fitting.\n% Learn a CNN for multi-class classification or single-class classification\nisMultiClassClassification=false; %true;\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Network configurations\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nsetup_matconvnet(); % setup matconvnet\n\nswitch(dataset) % setup the dataset\n case 'ilsvrcanimalpart'\n setup_ilsvrcanimalpart();\n case 'vocpart'\n setup_vocpart();\n case 'cub200'\n setup_cub200();\n otherwise\n errors('Cannot find the target dataset.');\nend\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Learning an interpretable CNN\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif(isMultiClassClassification)\n if(strcmp(dataset,'vocpart'))\n categoryName={'bird','cat','cow','dog','horse','sheep'};\n lossType='ourloss_logistic'; % 'ourloss_softmaxlog';\n learn_icnn_multiclass(model,categoryName,lossType,dropoutRate);\n end\nelse\n learn_icnn(model,categoryName,dropoutRate);\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Showing results and evaluation\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif(isMultiClassClassification)\n if(strcmp(dataset,'vocpart'))\n categoryName={'bird','cat','cow','dog','horse','sheep'};\n end\nend\nshowResults(categoryName,isMultiClassClassification,model,dataset);\n", "meta": {"author": "zqs1022", "repo": "interpretableCNN", "sha": "6d7d1a6aaf0f1b2b03a3b54d4ac4803b3f1ce823", "save_path": "github-repos/MATLAB/zqs1022-interpretableCNN", "path": "github-repos/MATLAB/zqs1022-interpretableCNN/interpretableCNN-6d7d1a6aaf0f1b2b03a3b54d4ac4803b3f1ce823/code/demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36705048236293486}} {"text": "%% Lucas-Kanade Tracker\n%\n% Lucas-Kanade sparse optical flow demo. Uses |cv.goodFeaturesToTrack| for\n% track initialization and back-tracking for match verification between\n% frames.\n%\n% Sources:\n%\n% * \n%\n\n%% Options\ntrack_len = 10; % max number of locations of point to remember\ndetect_interval = 5; % detect new corners every X iterations\n\n% params for corner detection and flow computation\nshi_params = {'MaxCorners',500, 'QualityLevel',0.3, 'MinDistance',7, ...\n 'BlockSize',7};\nlk_params = {'WinSize',[15 15], 'MaxLevel',2, ...\n 'Criteria',struct('type','Count+EPS', 'maxCount',10, 'epsilon',0.03)};\n\n%% Video\n% Prepare video source\nif true\n vid = 0;\nelseif true\n vid = fullfile(mexopencv.root(), 'test', '768x576.avi');\nelseif mexopencv.require('vision')\n vid = fullfile(toolboxdir('vision'), 'visiondata', 'visiontraffic.avi');\nend\ncap = cv.VideoCapture(vid);\nassert(cap.isOpened(), 'Failed to initialize capturing');\n\n%% First frame\n% Grab first frame\nframe = cap.read();\nassert(~isempty(frame), 'Failed to read frame');\ngray0 = cv.cvtColor(frame, 'RGB2GRAY');\n\n%% Initialize\n% stores history of locations for a set of points (cell array of Nx2 matrices)\ntracks = {};\nclr = [0 255 0];\n\n%%\n% Plot\nhImg = imshow(frame);\ntitle('Lucas-Kanade tracker')\n\n%% Main loop\ncounter = 0; % iterations counter\nwhile ishghandle(hImg)\n % Grab next frame\n frame = cap.read();\n if isempty(frame), break; end\n gray1 = cv.cvtColor(frame, 'RGB2GRAY');\n\n if ~isempty(tracks)\n % track last position of points, in forward and backward direction\n p0 = cellfun(@(tr) tr(end,:), tracks, 'UniformOutput',false);\n p1 = cv.calcOpticalFlowPyrLK(gray0, gray1, p0, lk_params{:});\n p0r = cv.calcOpticalFlowPyrLK(gray1, gray0, p1, lk_params{:});\n % keep only good matches\n good = cellfun(@(a,b) max(abs(a - b)), p0, p0r) < 1;\n tracks = tracks(good);\n p1 = p1(good);\n if any(good)\n % append new locations to existing tracked points\n tracks = cellfun(@(tr,p) [tr; p], tracks, p1, 'UniformOutput',false);\n % keep only the last 10 locations in each track (fixed size queue)\n idx = cellfun(@(tr) size(tr,1), tracks) > track_len;\n tracks(idx) = cellfun(@(tr) tr(2:end,:), tracks(idx), 'UniformOutput',false);\n % draw latest points and their tracks (comet-like plot)\n frame = cv.circle(frame, p1, 2, 'Thickness','Filled', 'Color',clr);\n frame = cv.polylines(frame, tracks, 'Closed',false, 'Color',clr);\n end\n end\n\n % display number of tracked points\n frame = cv.putText(frame, ...\n sprintf('track count: %d', numel(tracks)), [20 20], ...\n 'FontScale',0.5, 'Color',[255 255 0], 'LineType','AA');\n\n if rem(counter, detect_interval) == 0 || isempty(tracks)\n % region of interest mask\n if ~isempty(tracks)\n % try to find new points by masking-out last track positions\n mask = 255 * ones(size(gray1), 'uint8');\n p = cellfun(@(tr) tr(end,:), tracks, 'UniformOutput',false);\n mask = cv.circle(mask, p, 5, 'Thickness','Filled', 'Color',0);\n roi_params = {'Mask',mask};\n else\n roi_params = {};\n end\n % detect corners\n p = cv.goodFeaturesToTrack(gray1, roi_params{:}, shi_params{:});\n if ~isempty(p)\n % append new set of points (p is a cell array of 1x2 vectors)\n tracks = [tracks, p];\n end\n end\n\n % Display result\n set(hImg, 'CData',frame);\n drawnow;\n\n % Next iteration\n counter = counter + 1;\n gray0 = gray1;\nend\ncap.release();\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/samples/lk_track_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36705046862139373}} {"text": "\nfunction grad = B_splice_single_sentence2(future_grad, context, mask)\n[dim,nFr,nSeg] = size(future_grad);\ndim = dim/context;\nhalf_ctx = (context-1)/2;\n\nfuture_grad2 = reshape(future_grad, dim, context, nFr, nSeg);\nfuture_grad2(:,:,end+1,:) = 0;\n\nfor i=-half_ctx:half_ctx\n all_idx{i+half_ctx+1} = min(nFr,max(1, (1:nFr) + i));\nend\nall_idx2 = cell2mat(all_idx');\n\nfuture_grad2 = all_idx2;\nfuture_grad2(:,end+1) = 0;\n\ngrad_idx = zeros(nFr, context);\ngrad_idx1 = [];\ngrad_idxend = [];\nfor i=-half_ctx:half_ctx\n offset = (nFr+1)*(i+half_ctx);\n % curr_future_grad = future_grad( (i+half_ctx)*dim+1 : (i+half_ctx+1)*dim, :,:);\n if i<0\n grad_idx(1:nFr+i, i+half_ctx+1) = (-i+1:nFr) + offset;\n %grad(:,1:end+i,:) = grad(:,1:end+i,:) + curr_future_grad(:, -i+1:end,:);\n grad_idx1 = [grad_idx1 (1:-i)+offset];\n elseif i>0\n grad_idx(i+1:nFr, i+half_ctx+1) = (1:nFr-i) + offset;\n \n %grad(:,i+1:end,:) = grad(:,i+1:end,:) + curr_future_grad(:, 1:end-i,:);\n %tmp2 = [tmp2 curr_future_grad(:, end-i+1:end,:)];\n grad_idxend = [grad_idxend (nFr-i+1:nFr)+offset];\n else\n grad_idx(1:nFr, i+half_ctx+1) = (1:nFr) + offset;\n %grad = grad + curr_future_grad;\n end\nend\ngrad_idx(grad_idx==0) = nFr*context+1; \n\n% future_grad2 = permute(future_grad2, [1 4 2 3]); \nfuture_grad2 = reshape(future_grad2, dim*nSeg, context*(nFr+1));\ngrad = future_grad2(:,grad_idx);\ngrad = reshape(grad, dim, context, nFr);\ngrad = squeeze(sum(grad,2));\ngrad = permute(grad, [1 3 2]);\n\n\ngrad = future_grad2(grad_idx');\n\n% grad(:,1,:) = grad(:,1,:) + sum(tmp1,2);\n% grad(:,end,:) = grad(:,end,:) + sum(tmp2,2);\n\n\nend", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/B_splice_single_sentence2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.36701669213623045}} {"text": "%% GPS\n% for i = 1:32\n% codes_L1CA(:,i) = GNSScodegen(i,'L1CA',0); \n% codes_L2CM(:,i) = GNSScodegen(i,'L2CM',0); \n% codes_L2CL(:,i) = GNSScodegen(i,'L2CL',0);\n% codes_L5I(:,i) = GNSScodegen(i,'L5I',0);\n% codes_L5Q(:,i) = GNSScodegen(i,'L5Q',0);\n% end\n\n% save('codes_L1CA.mat','codes_L1CA');\n% save('codes_L2CM.mat','codes_L2CM');\n% save('codes_L2CL.mat','codes_L2CL');\n% save('codes_L5I.mat','codes_L5I');\n% save('codes_L5Q.mat','codes_L5Q');\n\n%% Galileo\n% for i = 1:50\n% codes_E5aI(:,i) = GNSScodegen(i,'E5aI',0);\n% codes_E5aQ(:,i) = GNSScodegen(i,'E5aQ',0);\n% codes_E5bI(:,i) = GNSScodegen(i,'E5bI',0);\n% codes_E5bQ(:,i) = GNSScodegen(i,'E5bQ',0); \n% codes_E1B(:,i) = GNSScodegen(i,'E1B',0); \n% codes_E1C(:,i) = GNSScodegen(i,'E1C',0); \n% end\n% \n% save('codes_E5aI.mat','codes_E5aI');\n% save('codes_E5aQ.mat','codes_E5aQ');\n% save('codes_E5bI.mat','codes_E5bI');\n% save('codes_E5bQ.mat','codes_E5bQ');\n% save('codes_E1B.mat','codes_E1B');\n% save('codes_E1C.mat','codes_E1C');\n\n%% BeiDou\n% for i = 1:37\n% codes_B1I(:,i) = GNSScodegen(i,'B1I',0);\n% end\n% \n% save('codes_B1I.mat','codes_B1I');", "meta": {"author": "danipascual", "repo": "GNSS-matlab", "sha": "0365dbc78b3e142266ef899440005dfcc1ee8155", "save_path": "github-repos/MATLAB/danipascual-GNSS-matlab", "path": "github-repos/MATLAB/danipascual-GNSS-matlab/GNSS-matlab-0365dbc78b3e142266ef899440005dfcc1ee8155/source/examples/GNSScodegen_save.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.36701669213623045}} {"text": "function n = ndims(t)\n%NDIMS Return the number of dimensions for a ttensor.\n%\n% NDIMS(T) returns the number of dimensions of tensor T.\n%\n% See also TTENSOR.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2015, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2015) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\nn = numel(t.u);\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u5206\u7c7b\u7b97\u6cd5/DEEP-TENSOR-FACTORIZATION-FOR-HYPERSPECTRAL-IMAGE-CLASSIFICATION-master/code/tensor_toolbox_2.6/@ttensor/ndims.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5544704649604273, "lm_q2_score": 0.6619228825191871, "lm_q1q2_score": 0.36701668843835994}} {"text": "function endpointsAll = gt2endpoints(annolistFilename)\n\nif isstruct(annolistFilename)\n annolist = annolistFilename;\nelse\n load(annolistFilename);\nend\n%if (~exist('annolist','var'))\n% annolist = single_person_annolist;\n%end\nendpointsAll = cell(length(annolist),1);\n\nskel = [0 1; 1 2; 3 4; 4 5; 6 7; 8 9; 10 11; 11 12; 13 14; 14 15];\n\nfor imgidx = 1:length(annolist)\n endpoints = nan(10,4);\n points = annolist(imgidx).annorect.annopoints.point;\n for sidx = 1:size(skel,1)\n p1 = util_get_annopoint_by_id(points,skel(sidx,1));\n p2 = util_get_annopoint_by_id(points,skel(sidx,2));\n if (~isempty(p1) && ~isempty(p2))\n endpoints(sidx,:) = [p1.x p1.y p2.x p2.y];\n end\n end\n endpointsAll{imgidx} = endpoints;\nend\n\nend", "meta": {"author": "eldar", "repo": "deepcut", "sha": "096e2d174ddf2fbdc61458d9e7e6c6e897eac16c", "save_path": "github-repos/MATLAB/eldar-deepcut", "path": "github-repos/MATLAB/eldar-deepcut/deepcut-096e2d174ddf2fbdc61458d9e7e6c6e897eac16c/lib/eval/gt2endpoints.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3670166847404895}} {"text": "%INPAINT2 The function implements different single-image inpainting algorithms\n%\n% dst = cv.inpaint2(src, mask)\n% dst = cv.inpaint2(src, mask, 'OptionName', optionValue, ...)\n%\n% ## Input\n% * __src__ source image, it could be of any type (8/16/32-bit integers or\n% 32/64-bit floating-points) and any number of channels from 1 to 4. In case\n% of 3- and 4-channels images the function expect them in CIELab colorspace\n% or similar one, where first color component shows intensity, while second\n% and third shows colors. Nonetheless you can try any colorspaces.\n% * __mask__ mask (8-bit 1-channel of same size as `src`), where non-zero\n% pixels indicate valid image area, while zero pixels indicate area to be\n% inpainted.\n%\n% ## Output\n% * __dst__ Output image with the same size and type as `src`.\n%\n% ## Options\n% * __Method__ Inpainting algorithms, one of:\n% * __ShiftMap__ (default) This algorithm searches for dominant\n% correspondences (transformations) of image patches and tries to\n% seamlessly fill-in the area to be inpainted using this transformations.\n%\n% The function reconstructs the selected image area from known area.\n% See the original paper [He2012] for details.\n%\n% ## References\n% [He2012]:\n% > Kaiming He, Jian Sun. \"Statistics of patch offsets for image completion\".\n% > In Computer Vision-ECCV 2012, pages 16-29. Springer, 2012.\n%\n% See also: cv.inpaint\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/opencv_contrib/+cv/inpaint2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583376458152, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.36699033102441425}} {"text": "function stable_camva(a)\n % STABLE_CAMVA Act like camva without changing zoom (aka dolly zoom)\n %\n % Inputs:\n % a angle input to camva\n %\n % Note: This will mess up interactive view orbitting. So set up your\n % view first...\n %\n % See also: camva\n old_a = camva;\n old_t = camtarget;\n old_p = campos;\n camva(a);\n s = tan(a/2*pi/180)/tan(old_a/2*pi/180);\n p = (old_p-old_t)/s+old_t;\n campos(p);\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/stable_camva.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.366990324373707}} {"text": "filename='Gripping_quad_coarse';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'nonadjoint_compliance'};\nweights = [1, 0.1];\nconstraint = {'volumeConstraint'};\nconstraint_case = 'INEQUALITY';\noptimizer = 'PROJECTED GRADIENT'; incrementFactor = 1;\nfilterType = 'P1';\n\nnsteps = 1;\nVfrac_final = 0.5;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Gripping/GrippingQuadCoarse_Case_2_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583250334526, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.366990324373707}} {"text": "function bnet = mk_hhmm2(varargin)\n% MK_HHMM2 Make a 2 level Hierarchical HMM\n% bnet = mk_hhmm2(...)\n%\n% 2-layer hierarchical HMM (node numbers in parens)\n%\n% Q1(1) ---------> Q1(5)\n% / | \\ / |\n% | | v / |\n% | | F2(3) --- / |\n% | | ^ \\ |\n% | | / \\ |\n% | v \\ v\n% | Q2(2)--------> Q2 (6)\n% | | \n% \\ | \n% v v \n% O(4)\n%\n%\n% Optional arguments [default]\n%\n% discrete_obs - 1 means O is tabular_CPD, 0 means O is gaussian_CPD [0]\n% obsCPT - CPT(o,q1,q2) params for O ['rnd']\n% mu - mu(:,q1,q2) params for O [ [] ]\n% Sigma - Sigma(:,q1,q2) params for O [ [] ]\n%\n% F2toQ1 - 1 if Q2 is an hhmm_CPD, 0 if F2 -> Q2 arc is absent, so level 2 never resets [1]\n% Q1args - arguments to be passed to the constructors for Q1(t=2) [ {} ]\n% Q2args - arguments to be passed to the constructors for Q2(t=2) [ {} ]\n%\n% F2 only turns on (wp 0.5) when Q2 enters its final state.\n% Q1 (slice 1) is clamped to be uniform.\n% Q2 (slice 1) is clamped to always start in state 1.\n\n[os nmodels nstates] = size(mu);\n\nss = 4;\nQ1 = 1; Q2 = 2; F2 = 3; obs = 4;\nQnodes = [Q1 Q2];\nnames = {'Q1', 'Q2', 'F2', 'obs'};\nintra = zeros(ss);\nintra(Q1, [Q2 F2 obs]) = 1;\nintra(Q2, [F2 obs]) = 1;\n\ninter = zeros(ss);\ninter(Q1,Q1) = 1;\ninter(F2,Q1) = 1;\nif F2toQ2\n inter(F2,Q2)=1;\nend\ninter(Q2,Q2) = 1;\n\nns = zeros(1,ss);\n\nns(Q1) = nmodels;\nns(Q2) = nstates;\nns(F2) = 2;\nns(obs) = os;\n\ndnodes = [Q1 Q2 F2];\nif discrete_obs\n dnodes = [dnodes obs];\nend\nonodes = [obs];\n\nbnet = mk_dbn(intra, inter, ns, 'observed', onodes, 'discrete', dnodes, 'names', names);\neclass = bnet.equiv_class;\n\n% SLICE 1\n\n% We clamp untied nodes in the first slice, since their params can't be estimated\n% from just one sequence\n\n% uniform prior on initial model\nCPT = normalise(ones(1,nmodels));\nbnet.CPD{eclass(Q1,1)} = tabular_CPD(bnet, Q1, 'CPT', CPT, 'adjustable', 0);\n\n% each model always starts in state 1\nCPT = zeros(ns(Q1), ns(Q2));\nCPT(:, 1) = 1.0;\nbnet.CPD{eclass(Q2,1)} = tabular_CPD(bnet, Q2, 'CPT', CPT, 'adjustable', 0);\n\n% Termination probability\nCPT = zeros(ns(Q1), ns(Q2), 2);\nif 1\n % Each model can only terminate in its final state.\n % 0 params will remain 0 during EM, thus enforcing this constraint.\n CPT(:, :, 1) = 1.0; % all states turn F off ...\n p = 0.5;\n CPT(:, ns(Q2), 2) = p; % except the last one\n CPT(:, ns(Q2), 1) = 1-p;\nend\nbnet.CPD{eclass(F2,1)} = tabular_CPD(bnet, F2, 'CPT', CPT);\n\nif discrete_obs\n bnet.CPD{eclass(obs,1)} = tabular_CPD(bnet, obs, obs_args{:});\nelse\n bnet.CPD{eclass(obs,1)} = gaussian_CPD(bnet, obs, obs_args{:});\nend\n\n% SLICE 2\n\n\nbnet.CPD{eclass(Q1,2)} = hhmm_CPD(bnet, Q1+ss, Qnodes, 1, D, 'args', Q1args);\n\nif F2toQ2\n bnet.CPD{eclass(Q2,2)} = hhmmQD_CPD(bnet, Q2+ss, Qnodes, 2, D, Q2args{:});\nelse\n bnet.CPD{eclass(Q2,2)} = tabular_CPD(bnet, Q2+ss, Q2args{:});\nend\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/examples/dynamic/HHMM/Old/mk_hhmm2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6959583124210896, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3669903177229996}} {"text": "% -------------------------------------------------------------------------------------------------\nfunction [bb] = get_minmax_BB(region)\n%get_minmax_BB computes minmax bbox from the rotated one (REGION)\n% -------------------------------------------------------------------------------------------------\n\nbb = [min(region(:,1:2:end),[],2),...\n min(region(:,2:2:end),[],2),...\n max(region(:,1:2:end),[],2),...\n max(region(:,2:2:end),[],2)]-1;\n\nend\n", "meta": {"author": "foolwood", "repo": "DCFNet", "sha": "97d2cd784d9c2b1083c1249a2aef914062fb5910", "save_path": "github-repos/MATLAB/foolwood-DCFNet", "path": "github-repos/MATLAB/foolwood-DCFNet/DCFNet-97d2cd784d9c2b1083c1249a2aef914062fb5910/utils/get_minmax_BB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883735630721, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3669443521771981}} {"text": "function [dims,scales,bpp,endian,datatype] = read_avw_hdr(fname)\n% [dims,scales,bpp,endian] = READ_AVW_HDR(fname)\n%\n% Extracts the 4 dimensions (dims),\n% 4 scales (scales) and bytes per pixel (bpp) for voxels\n% contained in the Analyse header file (fname)\n% Also returns endian = 'l' for little-endian or 'b' for big-endian\n%\n% See also: READ_AVW, READ_AVW_IMG, SAVE_AVW, SAVE_AVW_HDR, SAVE_AVW_IMG\n\n% remove extension if it exists\nif ( (length(findstr(fname,'.hdr'))>0) | ...\n (length(findstr(fname,'.img')>0)) ),\n fname=fname(1:(length(fname)-4));\nend\nfnhdr=strcat(fname,'.hdr');\n\n% open file in big-endian\nendian='b';\nfid=fopen(fnhdr,'r','b');\ntestval = fread(fid,1,'int32');\n% check if this gives the correct header size - if not use little-endian\nif (testval~=348),\n fclose(fid);\n fid=fopen(fnhdr,'r','l');\n endian='l';\n testval = fread(fid,1,'int32');\n if (testval~=348),\n disp('Can not read this file format');\n return;\n end\nend\n % ditch the remaining initial header stuff\n dummy=fread(fid,36,'char');\n % ditch dim[0] = No. dimensions\n dummy=fread(fid,1,'int16');\n dims=fread(fid,4,'int16');\n dummy=fread(fid,3,'int16');\n dummy=fread(fid,14,'char');\n datatype=fread(fid,1,'int16');\n bpp=fread(fid,1,'int16');\n dummy=fread(fid,2,'char');\n dummy=fread(fid,1,'float');\n scales=fread(fid,4,'float');\nfclose(fid);\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/external/pyrTools/avw/read_avw_hdr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.366944343432683}} {"text": "function A = cs_frand (n,nel,s) %#ok\n%CS_FRAND generate a random finite-element matrix\n% A = cs_frand (n,nel,s) creates an n-by-n sparse matrix consisting of nel\n% finite elements, each of which are of size s-by-s with random symmetric\n% nonzero pattern, plus the identity matrix.\n%\n% Example\n% A = cs_frand (100, 100, 3) ;\n% See also cs_demo.\n\n% Copyright 2006-2007, Timothy A. Davis.\n% http://www.cise.ufl.edu/research/sparse\n\nerror ('cs_frand mexFunction not found') ;\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/SuiteSparse/CXSparse/MATLAB/Test/cs_frand.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883449573377, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.36694433468816784}} {"text": "function success = write_bspline_coeff_file(bspFileName,bsplineParamsS)\n% function success = write_bspline_coeff_file(bspFileName,bsplineParamsS)\n% \n% APA, 07/17/2012\n\nbsp_img_origin = bsplineParamsS.bsp_img_origin;\nbsp_img_spacing = bsplineParamsS.bsp_img_spacing;\nbsp_img_dim = bsplineParamsS.bsp_img_dim;\nbsp_roi_offset = bsplineParamsS.bsp_roi_offset;\nbsp_roi_dim = bsplineParamsS.bsp_roi_dim;\nbsp_vox_per_rgn = bsplineParamsS.bsp_vox_per_rgn;\nbsp_direction_cosines = bsplineParamsS.bsp_direction_cosines;\nbsp_coefficients = bsplineParamsS.bsp_coefficients;\n\nfid = fopen(bspFileName,'wb');\n\nfprintf(fid,'MGH_GPUIT_BSP \\n');\nfprintf(fid,['img_origin = ', sprintf('%0.20g ',bsp_img_origin),'\\n']);\nfprintf(fid,['img_spacing = ', sprintf('%0.20g ',bsp_img_spacing),'\\n']);\nfprintf(fid,['img_dim = ', sprintf('%0.20g ',bsp_img_dim),'\\n']);\nfprintf(fid,['roi_offset = ', sprintf('%0.20g ',bsp_roi_offset),'\\n']);\nfprintf(fid,['roi_dim = ', sprintf('%0.20g ',bsp_roi_dim),'\\n']);\nfprintf(fid,['vox_per_rgn = ', sprintf('%0.20g ',bsp_vox_per_rgn),'\\n']);\nfprintf(fid,['direction_cosines = ', sprintf('%0.20g ',bsp_direction_cosines),'\\n']);\nfprintf(fid,sprintf('%0.20g\\n',bsp_coefficients));\n\n%cell2file(fileC,bspFileName);\nfclose(fid);\n\nsuccess = 1;\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/ImageRegistration/write_bspline_coeff_file.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6001883449573376, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3669443346881678}} {"text": "% GAINSANDREFERENCES compute gains matrices, references and other control\n% related quantities for each state of the state machine.\n\n%% --- Initialization ---\n \n% CoM gains\nGain.KP_CoM = [50 100 5 % state == 1 TWO FEET BALANCING\n 50 100 5 % state == 2 COM TRANSITION TO LEFT \n 50 100 5 % state == 3 LEFT FOOT BALANCING\n 50 100 5 % state == 4 YOGA LEFT FOOT \n 50 100 5 % state == 5 PREPARING FOR SWITCHING \n 50 100 5 % state == 6 LOOKING FOR CONTACT\n 50 100 5 % state == 7 TRANSITION TO INITIAL POSITION \n 50 150 5 % state == 8 COM TRANSITION TO RIGHT FOOT\n 50 100 5 % state == 9 RIGHT FOOT BALANCING\n 50 100 5 % state == 10 YOGA RIGHT FOOT \n 50 100 5 % state == 11 PREPARING FOR SWITCHING \n 50 100 5 % state == 12 LOOKING FOR CONTACT\n 50 100 5];% state == 13 TRANSITION TO INITIAL POSITION\n\nGain.KD_CoM = 2*sqrt(Gain.KP_CoM)/15;\n\n% Angular momentum gains\nGain.KI_AngularMomentum = 3 ;\nGain.KP_AngularMomentum = 2*sqrt(Gain.KI_AngularMomentum)/5;\n\n% Postural task gains\n% % TORSO %% LEFT ARM %% RIGHT ARM %% LEFT LEG %% RIGHT LEG %% \nGain.KP_postural = [10 30 20, 10 10 10 8, 10 10 10 8, 30 30 20 20 100 100, 30 50 30 60 100 100 % state == 1 TWO FEET BALANCING\n 10 30 20, 10 10 10 8, 10 10 10 8, 30 30 20 20 100 100, 30 50 30 60 100 100 % state == 2 COM TRANSITION TO LEFT \n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 30 60 100 100, 30 30 20 20 100 100 % state == 3 LEFT FOOT BALANCING\n 30 30 30, 10 10 10 10, 10 10 10 10,100 200 100 400 100 100,100 50 30 50 100 100 % state == 4 YOGA LEFT FOOT \n 30 30 30, 5 5 10 10, 10 10 20 10,200 250 20 20 10 10,220 550 220 200 65 300 % state == 5 PREPARING FOR SWITCHING \n 30 30 30, 10 10 20 10, 10 10 20 10,100 350 20 200 10 100,220 550 220 200 65 300 % state == 6 LOOKING FOR CONTACT\n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 60 30 5 5, 30 30 30 20 5 5 % state == 7 TRANSITION TO INITIAL POSITION \n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 60 30 100 100, 30 30 30 20 100 100 % state == 8 COM TRANSITION TO RIGHT FOOT\n 10 30 20, 10 10 10 8, 10 10 10 8, 30 50 30 60 100 100, 30 30 20 20 100 100 % state == 9 RIGHT FOOT BALANCING\n 30 30 30, 10 10 10 10, 10 10 10 10,100 50 30 50 100 100,100 200 100 100 10 10 % state == 10 YOGA RIGHT FOOT \n 30 30 30, 10 10 10 10, 10 10 10 10,220 550 220 200 65 300,200 250 20 20 10 10 % state == 11 PREPARING FOR SWITCHING \n 30 30 30, 10 10 10 10, 10 10 10 10,220 550 220 200 65 300,100 350 20 200 10 100 % state == 12 LOOKING FOR CONTACT\n 30 40 30, 10 10 10 10, 10 10 10 10,220 550 220 200 65 300,100 350 20 200 10 100];% state == 13 TRANSITION TO INITIAL POSITION\n\nGain.KD_postural = 0*sqrt(Gain.KP_postural(1,:))/20; \n\n% symmetric gains\nGain.KP_postural(4,1:3) = Gain.KP_postural(4,1:3)*3;\nGain.KP_postural(6,18:23) = Gain.KP_postural(6,18:23)*2; \nGain.KP_postural(10,1:3) = Gain.KP_postural(10,1:3)*3;\nGain.KP_postural(13,1:3) = Gain.KP_postural(13,1:3)*3;\n\n%% Smoothing times\n\n% Smoothing time gain scheduling\nConfig.SmoothingTimeGainScheduling = 2;\n\n% Smoothing time CoM references\nStateMachine.CoMSmoothingTime = [1; %% state == 1 TWO FEET BALANCING\n 1; %% state == 2 COM TRANSITION TO LEFT FOOT\n 1; %% state == 3 LEFT FOOT BALANCING \n 0.9; %% state == 4 YOGA LEFT FOOT\n 2; %% state == 5 PREPARING FOR SWITCHING\n 2; %% state == 6 LOOKING FOR CONTACT \n 1; %% state == 7 TRANSITION INIT POSITION\n 1; %% state == 8 COM TRANSITION TO RIGHT FOOT\n 1; %% state == 9 RIGHT FOOT BALANCING \n 0.9; %% state == 10 YOGA RIGHT FOOT\n 2; %% state == 11 PREPARING FOR SWITCHING\n 2; %% state == 12 LOOKING FOR CONTACT \n 5]; %% state == 13 TRANSITION INIT POSITION\n\n\n% Smoothing time for joints references \nStateMachine.jointsSmoothingTime = [1; %% state == 1 TWO FEET BALANCING\n 1; %% state == 2 COM TRANSITION TO LEFT FOOT\n 1; %% state == 3 LEFT FOOT BALANCING \n 0.9; %% state == 4 YOGA LEFT FOOT\n 2; %% state == 5 PREPARING FOR SWITCHING\n 2; %% state == 6 LOOKING FOR CONTACT \n 1; %% state == 7 TRANSITION INIT POSITION\n 1; %% state == 8 COM TRANSITION TO RIGHT FOOT\n 1; %% state == 9 RIGHT FOOT BALANCING \n 0.9; %% state == 10 YOGA RIGHT FOOT\n 2; %% state == 11 PREPARING FOR SWITCHING\n 2; %% state == 12 LOOKING FOR CONTACT \n 5]; %% state == 13 TRANSITION INIT POSITION\n\n\n% scale factor smoothing time multiplies the smoothing factor during the\n% Yoga (state 4 and 10). The purpose is to reduce the time necessary for \n% the reference to converge to the next position, but without changing also\n% the valuse stored in Sm.joints_leftYogaRef/Sm.joints_rightYogaRef\nStateMachine.scaleFactorSmoothingTime = 0.9;\n \n%% CoM delta\n\n% To be summed to the reference CoM position\nStateMachine.CoM_delta = [% THIS REFERENCE IS USED AS A DELTA W.R.T. THE POSITION OF THE LEFT FOOT\n 0.0, 0.00, 0.0; %% NOT USED\n 0.0, 0.00, 0.0; %% state == 2 COM TRANSITION TO LEFT FOOT\n 0.0, 0.005, 0.0; %% state == 3 LEFT FOOT BALANCING \n 0.0, 0.005, 0.0; %% state == 4 YOGA LEFT FOOT\n 0.0, 0.005, 0.0; %% state == 5 PREPARING FOR SWITCHING\n 0.02,-0.09, 0.0; %% state == 6 LOOKING FOR CONTACT \n 0.0, 0.00, 0.0; %% state == 7 TWO FEET BALANCING\n % THIS REFERENCE IS USED AS A DELTA W.R.T. THE POSITION OF THE RIGHT FOOT\n 0.0, 0.00, 0.0; %% state == 8 COM TRANSITION TO RIGHT FOOT\n 0.0, -0.005, 0.0; %% state == 9 RIGHT FOOT BALANCING \n 0.0, -0.005, 0.0; %% state == 10 YOGA RIGHT FOOT\n 0.0, -0.015, 0.0; %% state == 11 PREPARING FOR SWITCHING\n 0.02, 0.02, 0.0; %% state == 12 LOOKING FOR CONTACT \n 0.0, 0.00, 0.0]; %% NOT USED\n\n%% Joint references\nStateMachine.joints_references = [ zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED \n [-0.0348,0.0779,0.0429, ... %% state == 2 COM TRANSITION TO LEFT \n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630, ... % \n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 3 LEFT FOOT BALANCING\n 0.1253,0.8135,0.3051,0.7928, ... % \n 0.0563,0.6789,0.3340,0.6214, ... %\n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630, ... % \n 0.0005,0.0793,-0.0014,-0.0051,-0.1060,-0.1151]; % \n zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED \n [-0.0348,0.0779,0.0429, ... %% state == 5 PREPARING FOR SWITCHING\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630, ... % \n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 6 LOOKING FOR CONTACT\n 0.1253,0.8135,0.3051,0.7928, ... %\n 0.0563,0.6789,0.3340,0.6214, ... %\n 0.0107,-0.0741,-0.0001,-0.0120,0.0252,0.1369, ... %\n -0.0026,0.0225,0.0093,-0.0020,0.0027,-0.0277]; % \n zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED\n [ 0.0864,0.0258,0.0152, ... %% state == 8 COM TRANSITION TO RIGHT FOOT\n 0.1253,0.8135,0.3051,0.7928, ... %\n 0.0563,0.6789,0.3340,0.6214, ... %\n 0.0107,-0.0741,-0.0001,-0.0120,0.0252,0.1369, ... %\n -0.0026,0.0225,0.0093,-0.0020,0.0027,-0.0277]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 9 RIGHT FOOT BALANCING\n 0.1253,0.8135,0.3051,0.7928, ... % \n 0.0563,0.6789,0.3340,0.6214, ... %\n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151, ... % \n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630]; % \n zeros(1,ROBOT_DOF); %% THIS REFERENCE IS IGNORED \n [-0.0348,0.0779,0.0429, ... %% state == 11 PREPARING FOR SWITCHING\n -0.1493,0.8580,0.2437,0.8710, ... %\n -0.1493,0.8580,0.2437,0.8710, ... %\n 0.0005,0.0793,-0.0014,-0.0051,0.0073,-0.1151, ... % \n -0.0015,-0.1109,-0.0001,0.0003,0.0160,0.1630]; % \n [ 0.0864,0.0258,0.0152, ... %% state == 12 LOOKING FOR CONTACT\n 0.1253,0.8135,0.3051,0.7928, ... %\n 0.0563,0.6789,0.3340,0.6214, ... %\n -0.0026,0.0225,0.0093,-0.0020,0.0027,-0.0277, ... %\n 0.0107,-0.0741,-0.0001,-0.0120,0.0252,0.1369]; % \n zeros(1,ROBOT_DOF)]; %% THIS REFERENCE IS IGNORED \n\n% YOGA MOVESET (joint references during state 4 and 10)\nq1 = [-0.0790,0.2279, 0.4519, ...\n -1.1621,0.6663, 0.4919, 0.9947, ... \n -1.0717,1.2904,-0.2447, 1.0948, ...\n 0.2092,0.2060, 0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3484,0.4008,-0.0004,-0.3672,-0.1060,-0.0875];\n\nq2 = [-0.0790,0.1279, 0.4519, ...\n -1.1621,0.6663, 0.4965, 0.9947, ...\n -1.0717,1.2904,-0.2493, 1.0948, ...\n 0.2092,0.2060, 0.0006,-0.1741,-0.1044,0.0700, ... \n 0.3714,0.9599, 1.3253,-1.6594,-0.1060,-0.0614];\n \nq3 = [-0.0852,-0.3273,0.0821,...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092,0.2060, 0.0006,-0.1741,-0.1044,0.0700, ...\n 0.3714,0.9599, 1.3253,-1.6594, 0.5000,-0.0614];\n \nq4 = [-0.0852,-0.4273,0.0821,...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.3473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq5 = [-0.0790,-0.2273, 0.4519, ...\n -1.1621,0.6663, 0.4965, 0.9947, ...\n -1.0717,1.2904,-0.2493, 1.0948, ...\n 0.2092, 0.4473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq6 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq7 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253, -1.6217, 0.5000,-0.0614];\n \nq8 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq9 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 0.0107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq10 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq11 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n\nq12 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 0.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq13 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq14 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.8514, 0.0107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq15 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 1.5514, 0.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq16 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.2514, 0.0107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq17 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n -0.3514, 0.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nq18 = [-0.0852,-0.4273,0.0821, ...\n 0.1391, 1.4585,0.2464, 0.3042, ...\n -0.4181, 1.6800,0.7373, 0.3031, ...\n 0.2092, 0.6473,0.0006,-0.1741,-0.1044, 0.0700, ...\n 0.3514, 1.3107,1.3253,-0.0189, 0.5000,-0.0614];\n \nStateMachine.joints_leftYogaRef = [ 0, q1;\n 1*StateMachine.jointsSmoothingTime(4),q2;\n 2*StateMachine.jointsSmoothingTime(4),q3;\n 3*StateMachine.jointsSmoothingTime(4),q4;\n 4*StateMachine.jointsSmoothingTime(4),q5;\n 5*StateMachine.jointsSmoothingTime(4),q6;\n 6*StateMachine.jointsSmoothingTime(4),q7;\n 7*StateMachine.jointsSmoothingTime(4),q8;\n 8*StateMachine.jointsSmoothingTime(4),q9;\n 9*StateMachine.jointsSmoothingTime(4),q10;\n 10*StateMachine.jointsSmoothingTime(4),q11;\n 11*StateMachine.jointsSmoothingTime(4),q12;\n 12*StateMachine.jointsSmoothingTime(4),q13;\n 13*StateMachine.jointsSmoothingTime(4),q14;\n 14*StateMachine.jointsSmoothingTime(4),q15;\n 15*StateMachine.jointsSmoothingTime(4),q16;\n 16*StateMachine.jointsSmoothingTime(4),q17;\n 17*StateMachine.jointsSmoothingTime(4),q10;\n 18*StateMachine.jointsSmoothingTime(4),q11;\n 19*StateMachine.jointsSmoothingTime(4),q12;\n 20*StateMachine.jointsSmoothingTime(4),q13;\n 21*StateMachine.jointsSmoothingTime(4),q14;\n 22*StateMachine.jointsSmoothingTime(4),q15;\n 23*StateMachine.jointsSmoothingTime(4),q16;\n 24*StateMachine.jointsSmoothingTime(4),q17;\n 25*StateMachine.jointsSmoothingTime(4),q18];\n \nStateMachine.joints_rightYogaRef = StateMachine.joints_leftYogaRef;\nStateMachine.joints_rightYogaRef(:,1) = [0;\n 1*StateMachine.jointsSmoothingTime(10);\n 2*StateMachine.jointsSmoothingTime(10);\n 3*StateMachine.jointsSmoothingTime(10);\n 4*StateMachine.jointsSmoothingTime(10);\n 5*StateMachine.jointsSmoothingTime(10);\n 6*StateMachine.jointsSmoothingTime(10);\n 7*StateMachine.jointsSmoothingTime(10);\n 8*StateMachine.jointsSmoothingTime(10);\n 9*StateMachine.jointsSmoothingTime(10);\n 10*StateMachine.jointsSmoothingTime(10);\n 11*StateMachine.jointsSmoothingTime(10);\n 12*StateMachine.jointsSmoothingTime(10);\n 13*StateMachine.jointsSmoothingTime(10);\n 14*StateMachine.jointsSmoothingTime(10);\n 15*StateMachine.jointsSmoothingTime(10);\n 16*StateMachine.jointsSmoothingTime(10);\n 17*StateMachine.jointsSmoothingTime(10);\n 18*StateMachine.jointsSmoothingTime(10);\n 19*StateMachine.jointsSmoothingTime(10);\n 20*StateMachine.jointsSmoothingTime(10);\n 21*StateMachine.jointsSmoothingTime(10);\n 22*StateMachine.jointsSmoothingTime(10);\n 23*StateMachine.jointsSmoothingTime(10);\n 24*StateMachine.jointsSmoothingTime(10);\n 25*StateMachine.jointsSmoothingTime(10)];\n\n% if the demo is not \"yogaExtended\", stop at the 8th move\nif ~StateMachine.yogaExtended\n \n StateMachine.joints_leftYogaRef = StateMachine.joints_leftYogaRef(1:8,:);\n StateMachine.joints_rightYogaRef = StateMachine.joints_rightYogaRef(1:8,:);\n StateMachine.joints_leftYogaRef(8,1) = 15*StateMachine.jointsSmoothingTime(4);\n StateMachine.joints_rightYogaRef(8,1) = 15*StateMachine.jointsSmoothingTime(10);\nend\n\n% MIRROR YOGA LEFT MOVESET FOR RIGHT YOGA\t\t\t\t\t \nfor i = 1:size(StateMachine.joints_rightYogaRef,1)\t\n \n\tStateMachine.joints_rightYogaRef(i,2:4) = [StateMachine.joints_rightYogaRef(i,2) -StateMachine.joints_rightYogaRef(i,3) -StateMachine.joints_rightYogaRef(i,4)];\n\trightArm = StateMachine.joints_rightYogaRef(i,end-15:end-12);\n\tStateMachine.joints_rightYogaRef(i,end-15:end-12) = StateMachine.joints_rightYogaRef(i,end-19:end-16);\n\tStateMachine.joints_rightYogaRef(i,end-19:end-16) = rightArm;\n\trightLeg = StateMachine.joints_rightYogaRef(i,end-5:end);\n\tStateMachine.joints_rightYogaRef(i,end-5:end) = StateMachine.joints_rightYogaRef(i,end-11:end-6);\n\tStateMachine.joints_rightYogaRef(i,end-11:end-6) = rightLeg;\nend\t \n\n%% References for CoM trajectory (COORDINATOR DEMO ONLY)\n\n% that the robot waits before starting the left-and-right \nConfig.noOscillationTime = 0; \nConfig.directionOfOscillation = [0;1;0];\nConfig.amplitudeOfOscillation = 0.02; % [m] \nConfig.frequencyOfOscillation = 0.2; % [Hz]", "meta": {"author": "robotology", "repo": "whole-body-controllers", "sha": "90ff965a523f0a120e6a8981b71326c1485e7742", "save_path": "github-repos/MATLAB/robotology-whole-body-controllers", "path": "github-repos/MATLAB/robotology-whole-body-controllers/whole-body-controllers-90ff965a523f0a120e6a8981b71326c1485e7742/controllers/floating-base-balancing-torque-control/app/robots/iCubGenova04/gainsAndReferences.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7826624789529375, "lm_q2_score": 0.46879062662624377, "lm_q1q2_score": 0.3669048339451969}} {"text": "function Q1 = mpc(T_meas,T_sp)\n\ns = 'http://byu.apmonitor.com';\nc = 'mpc';\n\n% input measurement\napm_meas(s,c,'TC',T_meas);\n\n% input setpoint with deadband +/- DT\nDT = 0.1;\napm_option(s,c,'TC.sphi',T_sp+DT);\napm_option(s,c,'TC.splo',T_sp-DT);\n\n% solve MPC\noutput = apm(s,c,'solve');\n\n% test for successful solution\nif (apm_tag(s,c,'apm.appstatus')==1)\n % retrieve the first Q value\n Q1 = apm_tag(s,c,'Q1.Newval');\nelse\n % display output for debugging\n print(output)\n % not successful, set voltage to zero\n Q1 = 0;\nend\n\nend\n\n\n", "meta": {"author": "APMonitor", "repo": "arduino", "sha": "f36e65a70dd7122d1829883899e40e56bf6c4279", "save_path": "github-repos/MATLAB/APMonitor-arduino", "path": "github-repos/MATLAB/APMonitor-arduino/arduino-f36e65a70dd7122d1829883899e40e56bf6c4279/6_Model_Predictive_Control/1st_order_linear/MATLAB/mpc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.36685878489460894}} {"text": "function [grade,X,SR,improve,AppSet] = LocalSearch1(Problem,X,SR,improve,AppSet)\n% Local Search 1 of MTS\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n if ~improve\n SR = SR / 2;\n if all(SR<1e-8)\n SR = (Problem.upper-Problem.lower).*(rand(1,length(SR))/10+0.4);\n end\n end\n improve = false;\n grade = 0;\n for i = randperm(length(SR))\n old_X = X;\n dec = X.dec;\n dec(i) = dec(i) + SR(i)*(rand*2-1);\n X = Problem.Evaluation(dec);\n [grade,improve,AppSet] = Grading(X,old_X,grade,improve,AppSet,Problem.N);\n if all(old_X.obj<=X.obj)\n dec = old_X.dec;\n dec(i) = dec(i) - 0.5*SR(i)*(rand*2-1);\n X = Problem.Evaluation(dec);\n [grade,improve,AppSet] = Grading(X,old_X,grade,improve,AppSet,Problem.N);\n if all(old_X.obj<=X.obj)\n X = old_X;\n end\n end\n end\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/MTS/LocalSearch1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.5964331462646255, "lm_q1q2_score": 0.36685878489460894}} {"text": "function valid=is_valid_state(x,x_dot,theta,theta_dot)\n\none_degree=0.0174532;\t% 2pi/360 */\nsix_degrees=0.1047192;\ntwelve_degrees=0.2094384;\nfifty_degrees=0.87266;\n\nvalid=1;\nif (x < -2.4 | x > 2.4 | theta < -twelve_degrees | theta > twelve_degrees) \n valid=-1;\nend\n ", "meta": {"author": "yechengxi", "repo": "LightNet", "sha": "5dc29cefccf1ea6d9377aa90732581337408ce73", "save_path": "github-repos/MATLAB/yechengxi-LightNet", "path": "github-repos/MATLAB/yechengxi-LightNet/LightNet-5dc29cefccf1ea6d9377aa90732581337408ce73/ReinforcementLearning/is_valid_state.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.36684779705063497}} {"text": "function shiftTSeries(vw,shift,scanList)\n%\n% function shiftTSeries(view,[shift],[scanList])\n%\n% Shifts the time series (circular shift), to advance the phase of the response.\n% This is useful for approximately compensating for the hemodynamic delay before\n% averaging across scans, especially for CW and CCW retinotopies.\n%\n% scanList: vector of scan numbers to flip. Default: prompt user.\n% shift: number of frames to shift. Default: 1.\n%\n% If you change this function make parallel changes in:\n% flipTSeries\n% \n% djh, 6/2001\nif ieNotDefined('scanList'), scanList = er_selectScans(vw); end\nif ieNotDefined('shift'), shift = 1; end\n\nwaitHandle = mrvWaitbar(0,'Shifting tSeries. Please wait...');\n\nfor iScan=1:length(scanList)\n\n scan = scanList(iScan);\n tSeriesFull = [];\n dimNum = 0;\n for slice=sliceList(vw,scan);\n tSeries = loadtSeries(vw,scan,slice);\n tSeries = circularShift(tSeries,0,-shift);\n dimNum = numel(size(tSeries));\n tSeriesFull = cat(dimNum + 1, tSeriesFull, tSeries); %Combine together\n mrvWaitbar(iScan/length(scanList))\n end\n \n if dimNum == 3\n tSeriesFull = reshape(tSeriesFull,[1,2,4,3]);\n end %if\n \n savetSeries(tSeriesFull,vw,scan);\nend\n\nclose(waitHandle);\n\nif length(scanList)==1\n fprintf('Shifted tSeries for scan %i by %i frames.\\n',scanList,shift);\nelse\n fprintf('Shifted tSeries for scans %s by %i frames.\\n',...\n num2str(scanList),shift);\nend \n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/SignalProc/tseries/shiftTSeries.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.36684779705063497}} {"text": "function [inface, outface]=innersurf(node,face,outface)\n%\n% outface=innersurf(node,face,outface)\n%\n% extract the interior triangles (shared by two enclosed compartments) of a complex surface\n%\n% author: Qianqian Fang, \n%\n% input:\n% node: node coordinates\n% face: surface triangle list\n% outface: (optional) the exterior triangle list, if not given, will\n% be computed using outersurf().\n%\n% output:\n% inface: the collection of interior triangles of the surface mesh\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\nif(nargin<3)\n outface=outersurf(node,face);\nend\n\ntf=ismember(sort(face,2),sort(outface,2),'rows');\n\ninface=face(tf==0,:);\n", "meta": {"author": "fangq", "repo": "iso2mesh", "sha": "556f4c321467a3ee042d4c559b4edc11e01dc574", "save_path": "github-repos/MATLAB/fangq-iso2mesh", "path": "github-repos/MATLAB/fangq-iso2mesh/iso2mesh-556f4c321467a3ee042d4c559b4edc11e01dc574/innersurf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5428632831725051, "lm_q2_score": 0.6757646010190476, "lm_q1q2_score": 0.3668477899609581}} {"text": "function [inface, outface]=innersurf(node,face,outface)\n%\n% outface=innersurf(node,face,outface)\n%\n% extract the interior triangles (shared by two enclosed compartments) of a complex surface\n%\n% author: Qianqian Fang, \n%\n% input:\n% node: node coordinates\n% face: surface triangle list\n% outface: (optional) the exterior triangle list, if not given, will\n% be computed using outersurf().\n%\n% output:\n% inface: the collection of interior triangles of the surface mesh\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\nif(nargin<3)\n outface=outersurf(node,face);\nend\n\n[I,J]=ismember(sort(face,2),sort(outface,2),'rows');\n\ninface=face(I==0,:);\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/iso2mesh/innersurf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5428632831725052, "lm_q2_score": 0.6757645944891558, "lm_q1q2_score": 0.36684778641611976}} {"text": "%% Etract IDE features\nclear;clc;\naddpath('../caffe/matlab/');\naddpath(genpath('utils/'));\n% load model and creat network\ncaffe.set_device(0);\ncaffe.set_mode_gpu();\nnetname = 'ResNet_50'; % network: CaffeNet or ResNet_50\n\n% set your path to the prototxt and model\nmodel = ['../models/market/' netname '/' netname '_test.prototxt'];\nweights = ['../output/market_train/IDE_' netname '.caffemodel']; \nnet = caffe.Net(model, weights, 'test');\n\nif strcmp(netname, 'CaffeNet')\n im_size = 227;\n feat_dim = 4096;\nelse\n im_size = 224;\n feat_dim = 2048;\nend\n\n% mean data\nmean_data = importdata('../caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat');\nimage_mean = mean_data;\noff = floor((size(image_mean,1) - im_size)/2)+1;\nimage_mean = image_mean(off:off+im_size-1, off:off+im_size-1, :);\n\nef_path = {'dataset/bounding_box_train/', 'dataset/bounding_box_test/', 'dataset/query/'};\nef_name = {'train', 'test', 'query'};\n\nif ~exist('feat') \n mkdir('feat') \nend\n\n% extract features\nfor i = 1:3\n img_path = ef_path{i};\n img_file = dir([img_path '*.jpg']);\n feat = single(zeros(feat_dim, length(img_file)));\n \n for n = 1:length(img_file) \n if mod(n, 1000) ==0\n fprintf('%s: %d/%d\\n',ef_name{i}, n, length(img_file))\n end\n img_name = [img_path img_file(n).name];\n im = imread(img_name);\n im = prepare_img( im, image_mean, im_size);\n feat_img = net.forward({im});\n feat(:, n) = single(feat_img{1}(:));\n end\n \n save(['feat/IDE_' netname '_' ef_name{i} '.mat'], 'feat');\n feat = [];\nend\n\ncaffe.reset_all();\n", "meta": {"author": "zhunzhong07", "repo": "IDE-baseline-Market-1501", "sha": "8be027b5e45adce1d8ea381cc5a17ec20ed521e5", "save_path": "github-repos/MATLAB/zhunzhong07-IDE-baseline-Market-1501", "path": "github-repos/MATLAB/zhunzhong07-IDE-baseline-Market-1501/IDE-baseline-Market-1501-8be027b5e45adce1d8ea381cc5a17ec20ed521e5/market_evaluation/extract_feature.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.727975460709318, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3668313266451755}} {"text": "function [altitude,gasTable,t,d]=NRLMSISE00Alt4Pres(dayOfYear,secondOfTheDay,pressure,latLon,AP,F107,F107A)\n%%NRLMSISE00ALT4PRES Given the pressure at a particular latitude and\n% longitude and time, obtain the approximate ellipsoidal\n% height using the NRLMSISE-00 atmospheric model. This\n% function also returns a standard temperature and the\n% constitutents of the atmosphere, assuming dry air. The\n% pressure returned is consistent with the function\n% NRLMSISE00GasTemp, but will not be perfectly\n% consistent with the function standardAtmosParam.\n%\n%INPUTS: dayOfYear The integer day of the year in the Gregorian calendar\n% in universal coordinated time (UTC). Counting starts at\n% 1. the resolution of the model is not sufficient for it\n% to matter whether 365 or 366 is given at the day if it\n% isn't/is a leap year.\n% secondOfTheDay The second of the day. This starts at zero. The\n% resolution of the model is not high enough for leap\n% seconds to matter, so values above 86400.0 are just\n% clipped to 86400.0.\n% pressure The measured atmospheirc pressure in Pascals.\n% latLon WGS-84 latitude and longitude of the point where the\n% pressure is measured.\n% Ap An optional parameter specifying the average daily\n% geomagnetic index. If omitted, the value 4.0, which is\n% suitable for models below 90km is used. The index at a\n% particular time can be obtained from a service of the\n% International Service of Geomagnetic Indices at\n% http://www-app3.gfz-potsdam.de/kp_index/\n% A scalar value of AP indicates standard mode. If a 7X1\n% vector is passed, then it is assumed that storm mode is\n% desired. In storm mode, Ap(1) is the daily Ap index.\n% Ap(2) through Ap(5) are 3 hours Ap indices respectively\n% for the current time and 3, 6, and 9 hours before the\n% current time. Ap(6) is the average of 8 3-hour Ap\n% indices from 12 to 33 hours prior to the current time\n% and Ap(7) is the average of 8 3-hour Ap indices from 36\n% to 59 hours prior to the current time.\n% F107 An optional parameter specifying the 10.7cm solar radio\n% flux for the previous day. If omitted, a value of 150\n% is used, which should be suitable for models below\n% 90km. Values of the index can be obtained from\n% http://www.swpc.noaa.gov/ftpdir/indices/quar_DSD.txt\n% F107A An optional parameter specifying the 81 day average of\n% the 10.7cm radio solar flux. If omitted, a value of 150\n% is used, which should be suitable for models below 90km.\n%\n%OUTPUTS: altitude The approximate ellipsoidal altitude associated with\n% the pressure given on the input in meters.\n% gasTable A cell array of constituent elements of the atmosphere\n% and their number densities. gasTable{i,1} is a string\n% listing the name of the ith constituent element of the\n% atmosphere. This can take the values\n% 'He' Helium\n% 'O' Elemental Oxygen\n% 'N2' Nitrogen\n% 'O2' Oxygen\n% 'Ar' Argon\n% 'H' Elemental Hydrogen\n% 'N' Elemental Nitrogen\n% 'O*' Anomalous Oxygen\n% gasTable{i,2} is the corresponding number density of\n% the ith constituent element in units of atoms per cubic\n% meter.\n% t Temperature variables. t(1) is the exospheric\n% temperature and t(2) is the temperature at altitude.\n% The temperature is in units of Kelvin.\n% d A 9X1 vector containing the same information as\n% gasTable but without labels. The entries in d are\n% d(1) - HE NUMBER DENSITY\n% d(2) - O NUMBER DENSITY\n% d(3) - N2 NUMBER DENSITY\n% d(4) - O2 NUMBER DENSITY\n% d(5) - AR NUMBER DENSITY \n% d(6) - TOTAL MASS DENSITY without d(9)\n% d(7) - H NUMBER DENSITY\n% d(8) - N NUMBER DENSITY\n% d(9) - Anomalous oxygen NUMBER DENSITY(M-3)\n% where all number densities are in units of atoms per\n% cubic meter and the units of d(6) are kilograms per\n% cubic meter. Note that d(6) is computed using a\n% definition of the atomic mass unit and definitions of\n% the atomic masses that are not necessarily the most up\n% to date.\n%\n%This function is essentially a wrapper for the C-code implementation of\n%the NRLMSISE-00 atmospheric model using appropriate functions to put the\n%time and location in the correct format. The model is described in [1].\n%\n%The algorithm can be compiled for use in Matlab using the \n%CompileCLibraries function.\n%\n%The algorithm is run in Matlab using the command format\n%[altitude,gasTable,t,d]=NRLMSISE00Alt4Pres(dayOfYear,secondOfTheDay,pressure,latLon);\n%or\n%[altitude,gasTable,t,d]=NRLMSISE00Alt4Pres(dayOfYear,secondOfTheDay,pressure,latLon,AP);\n%or\n%[altitude,gasTable,t,d]=NRLMSISE00Alt4Pres(dayOfYear,secondOfTheDay,pressure,latLon,AP,F107);\n%or\n%[altitude,gasTable,t,d]=NRLMSISE00Alt4Pres(dayOfYear,secondOfTheDay,pressure,latLon,AP,F107,F107A);\n%\n%EXAMPLE:\n% dayOfYear=172;\n% secondOfTheDay=29000;\n% latLon=[60;-70]*(pi/180);\n% F107=150;\n% F107A=150;\n% AP=4;\n% pressure=1;%1 Pascal pressure.\n% [altitude,gasTable,t,d]=NRLMSISE00Alt4Pres(dayOfYear,secondOfTheDay,pressure,latLon,AP,F107,F107A)\n% %One can verify that the altitude is consistent with the standard model:\n% latLonAlt=[latLon;altitude];\n% [gasTable1,t1,d1]=NRLMSISE00GasTemp(dayOfYear,secondOfTheDay,latLonAlt,AP,F107,F107A)\n% %One will see that t1 and d1 match t and d.\n%\n%REFERENCES:\n%[1] J. M. Picone, A. E. Hedin, D. P. Drob, and A. C. Aikin, \"NRLMSISE-00\n% empirical model of the atmosphere: Statistical comparisons and\n% scientific issues,\" Journal of Geophysical Research: Space Physics,\n% vol. 107, no. A12, Dec. 2002.\n%\n%June 2016 David F. Crouse, Naval Research Laboratory, Washington D.C.\n%(UNCLASSIFIED) DISTRIBUTION STATEMENT A. Approved for public release.\n\nerror('This function is only implemented as a mexed C or C++ function. Please run CompileCLibraries.m to compile the function for use.')\n\nend\n\n%LICENSE:\n%\n%The source code is in the public domain and not licensed or under\n%copyright. The information and software may be used freely by the public.\n%As required by 17 U.S.C. 403, third parties producing copyrighted works\n%consisting predominantly of the material produced by U.S. government\n%agencies must provide notice with such work(s) identifying the U.S.\n%Government material incorporated and stating that such material is not\n%subject to copyright protection.\n%\n%Derived works shall not identify themselves in a manner that implies an\n%endorsement by or an affiliation with the Naval Research Laboratory.\n%\n%RECIPIENT BEARS ALL RISK RELATING TO QUALITY AND PERFORMANCE OF THE\n%SOFTWARE AND ANY RELATED MATERIALS, AND AGREES TO INDEMNIFY THE NAVAL\n%RESEARCH LABORATORY FOR ALL THIRD-PARTY CLAIMS RESULTING FROM THE ACTIONS\n%OF RECIPIENT IN THE USE OF THE SOFTWARE.\n", "meta": {"author": "USNavalResearchLaboratory", "repo": "TrackerComponentLibrary", "sha": "9f6e329de5be06a371757c4b853200beb6def2d0", "save_path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary", "path": "github-repos/MATLAB/USNavalResearchLaboratory-TrackerComponentLibrary/TrackerComponentLibrary-9f6e329de5be06a371757c4b853200beb6def2d0/Atmosphere_and_Refraction/NRLMSISE00Alt4Pres.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754489059774, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3668313206973994}} {"text": "function [ output_args ] = performEventFunctionAtDoubleHit( t)\n%PERFORMEVENTFUNCTIONATDOUBLEHIT \n% this function is used to detect the double touch in the z direction of the\n% robot end effector.\nglobal binaryValArray\nglobal averageVal\nthreshhold=4;\n[ f ] = getEEF_Force( t );\nzforceVal=f{3}-3.3989;\nzforceVal=-zforceVal;\nif(zforceVal>0)\nelse\n zforceVal=0;\nend\n\na=0.7;\naverageVal=(averageVal*a+zforceVal*(1-a));\n\nbinaryVal=averageVal>threshhold;\n\n\nbinaryValArray(1)=[];\nbinaryValArray=[binaryValArray;binaryVal];\n\nn=max(max(size(binaryValArray)));\nsum=0;\n for i=1:(n-1)\n if((binaryValArray(i+1)-binaryValArray(i))==1)\n sum=sum+1;\n else\n end\n end\nsum\n if(sum==2)\n EventFunctionAtDoubleHit();\n binaryValArray=binaryValArray*0;\n end\nend\n\n", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/Matlab_client/performEventFunctionAtDoubleHit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7279754371026368, "lm_q2_score": 0.5039061705290806, "lm_q1q2_score": 0.36683131474962327}} {"text": "clear; clc; close all;\nwkdir = '../'; % The root foler of FM-Bench\naddpath([wkdir 'vlfeat-0.9.21/toolbox/']);\nvl_setup;\n\n% Datasets = {'TUM', 'KITTI', 'Tanks_and_Temples', 'CPC'};\nDatasets = {'KITTI'};\n\nmatcher='SIFT-RT'; % SIFT with Ratio Test\nestimator='RANSAC';\n\nfor s = 1 : length(Datasets)\n dataset = Datasets{s};\n \n % An example for DoG detector\n FeatureDetection(wkdir, dataset);\n \n % An example for SIFT descriptor\n FeatureExtraction(wkdir, dataset);\n \n % An example for exhaustive nearest neighbor matching with ratio test\n FeatureMatching(wkdir, dataset, matcher);\n \n % An example for RANSAC based FM estimation\n GeometryEstimation(wkdir, dataset, matcher, estimator);\n \nend\n\n\n", "meta": {"author": "JiawangBian", "repo": "FM-Bench", "sha": "9373129b14504b4228dda526fd99dcb083bcef3a", "save_path": "github-repos/MATLAB/JiawangBian-FM-Bench", "path": "github-repos/MATLAB/JiawangBian-FM-Bench/FM-Bench-9373129b14504b4228dda526fd99dcb083bcef3a/Pipeline/Pipeline_Demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804478040616, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.36673050411808994}} {"text": "function varargout = x\n%X A chebfun of the identity on [-1,1].\n% X = CHEB.X returns a chebfun object for the function @(x)x on [-1,1].\n%\n% CHEB.X is shorthand for the expression X = CHEBFUN(@(X) X).\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\nx = chebfun(@(x) x);\n\nif ( nargout > 0 ) \n \n % For the syntax x = cheb.x:\n varargout{1} = x; \n \n if ( nargout > 1 ) \n error('CHEB:X:TooManyOutputs',... \n 'Too many output arguments. CHEB.X only returns \"x\".')\n end\n \nelse\n \n % Put 'x' into the workspace:\n assignin('base', 'x', x)\n \nend\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/+cheb/x.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6187804478040616, "lm_q2_score": 0.5926665999540697, "lm_q1q2_score": 0.3667305041180899}} {"text": "function solution = createSolution(dim,N)\n\n solution.lambda = zeros(dim.lambda, N);\n solution.mu = zeros(dim.mu, N);\n solution.u = zeros(dim.u, N);\n solution.x = zeros(dim.x, N);\n solution.z = zeros(dim.z, N);\n solution.LAMBDA = zeros(dim.x, dim.x, N);\n \nend\n\n\n", "meta": {"author": "deng-haoyang", "repo": "ParNMPC", "sha": "ddbe418e630b49897e8bc17e5c2f9e1ef1ab453b", "save_path": "github-repos/MATLAB/deng-haoyang-ParNMPC", "path": "github-repos/MATLAB/deng-haoyang-ParNMPC/ParNMPC-ddbe418e630b49897e8bc17e5c2f9e1ef1ab453b/ParNMPC/createSolution.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.36673049578507216}} {"text": "% EJEMPLO SENCILLO DE INTERFAZ ENTRE ARTE Y COPPELIA.\n\nfunction irb140_abb_pick_and_place()\n % init basic data. Robots and number of collision objects.\n coppelia = [];\n coppelia.n_collision_objects = 0;\n coppelia.robot.name = 'R1';\n coppelia.robot.n_joints = 6;\n coppelia.robot.end_effector.n_joints = 2;\n \n coppelia = coppelia_start(coppelia);\n % escribid una funcion que este entre coppelia start y coppelia_stop\n pick_and_place(coppelia)\n \n coppelia_stop(coppelia);\nend\n\n\nfunction pick_and_place(coppelia)\n%load in arte\nglobal robot\nrobot = load_robot('ABB', 'IRB140');\n\n %T1, pre pick point\n T1 = [0 1 0 0.52;\n 1 0 0 -0.1;\n 0 0 -1 0.45;\n 0 0 0 1];\n % pick point\n T2 = [0 1 0 0.52;\n 1 0 0 -0.1;\n 0 0 -1 0.33;\n 0 0 0 1]; \n % Release point\n T3 = [-1 0 0 0.1;\n 0 1 0 -0.5;\n 0 0 -1 0.6;\n 0 0 0 1]; \n T4 = [-1 0 0 0.1;\n 0 1 0 -0.5;\n 0 0 -1 0.5;\n 0 0 0 1]; \n % Podeis ir a una posicion q arbitraria\n q = [0.1 0.1 0.1 0.8 0.8 0.8]';\n set_joint_target_trajectory(coppelia, q)\n\n %podeis ir a una posicion que sea la cinematica inversa deseada\n qinv = inversekinematic(robot, T1);\n set_joint_target_trajectory(coppelia, qinv(:,1))\n % Esto abre la pinza\n open_gripper(coppelia); \n % pod\u00e9is esparar un m\u00faltiplo del dt de Coppelia (step size de simulaci\u00f3n de\n % coppelia, tip. 50 ms. Esperar a que se abra la pinza\n coppelia_wait(coppelia, 10)\n %podeis ir a una posicion que sea la cinematica inversa deseada\n qinv = inversekinematic(robot, T2);\n set_joint_target_trajectory(coppelia, qinv(:,1))\n \n % cerrar pinza\n close_gripper(coppelia);\n % Esperar a que se cierre\n coppelia_wait(coppelia, 5)\n % subir\n qinv = inversekinematic(robot, T1);\n set_joint_target_trajectory(coppelia, qinv(:,1))\n\n qinv = inversekinematic(robot, T3);\n set_joint_target_trajectory(coppelia, qinv(:,1))\n\n qinv = inversekinematic(robot, T4);\n set_joint_target_trajectory(coppelia, qinv(:,1))\n\n % Esto abre la pinza\n open_gripper(coppelia); \n coppelia_wait(coppelia, 5)\n\n % VOLVEMOS A la posicion inicial\n set_joint_target_trajectory(coppelia, q)\nend\n\n\n\n\n\n\n\n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/coppeliaSim/irb140_abb_pick_and_place.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521105, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3666657984278984}} {"text": "function obj=geom_jitter(obj,varargin)\n% geom_jitter Display data as jittered points\n%\n% Example syntax (default arguments): gramm_object.geom_jitter('width',0.2,'height',0.2)\n% In case datapoints are grouped together and are hard to see,\n% it's possible to randomly jitter them in an area of width\n% 'width' and height 'height' using this function.\n\np=inputParser;\nmy_addParameter(p,'width',0.2);\nmy_addParameter(p,'height',0);\nmy_addParameter(p,'dodge',0);\nmy_addParameter(p,'alpha',1);\nparse(p,varargin{:});\n\nobj.geom=vertcat(obj.geom,{@(dobj,dd)my_jitter(dobj,dd,p.Results)});\nobj.results.geom_jitter_handle={};\nend\n\n\nfunction hndl=my_jitter(obj,draw_data,params)\n\ndraw_data.x=comb(draw_data.x);\ndraw_data.y=comb(draw_data.y);\n\ndraw_data.x=dodger(draw_data.x,draw_data,params.dodge);\n\ndraw_data.x=draw_data.x+rand(size(draw_data.x))*params.width-params.width/2;\ndraw_data.y=draw_data.y+rand(size(draw_data.y))*params.height-params.height/2;\n\n%We adjust axes limits to accomodate for the jittering\nif max(draw_data.x)>obj.plot_lim.maxx(obj.current_row,obj.current_column);\n obj.plot_lim.maxx(obj.current_row,obj.current_column)=max(draw_data.x);\nend\nif min(draw_data.x)obj.plot_lim.maxy(obj.current_row,obj.current_column);\n obj.plot_lim.maxy(obj.current_row,obj.current_column)=max(draw_data.y);\nend\nif min(draw_data.y) length(Inputs)) \n error(['Input ' narglist{jj,1} ' has no corresponding input!']); \n end\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n elseif strcmp(narglist{jj,2}, '__output')\n if (nextoutput > nargout) \n error(['Output nr. ' narglist{jj,1} ' is not present in the assignment list of outputs !']); \n end\n if (isempty(arglist{ii,2}))\n narglist{jj,2} = 'OK_out';\n else\n narglist{jj,2} = arglist{ii,2};\n end\n\n nextoutput = nextoutput + 1;\n if (minval{jj} == 0) \n NumReqOutputs = NumReqOutputs - 1;\n end\n elseif isstr(arglist{ii,2})\n narglist{jj,2} = arglist{ii,2};\n else\n if strcmp(paramtype{jj}, 'Integer') & (round(arglist{ii,2}) ~= arglist{ii,2})\n error(['Argument ' arglist{ii,1} ' is of integer type but non-integer number ' arglist{ii,2} ' was supplied']);\n end\n if (minval{jj} ~= 0 | maxval{jj} ~= 0)\n if (minval{jj} == 1 & maxval{jj} == 1 & arglist{ii,2} < 0)\n error(['Argument ' arglist{ii,1} ' must be bigger or equal to zero!']);\n elseif (minval{jj} == -1 & maxval{jj} == -1 & arglist{ii,2} > 0)\n error(['Argument ' arglist{ii,1} ' must be smaller or equal to zero!']);\n elseif (minval{jj} == 2 & maxval{jj} == 2 & arglist{ii,2} <= 0)\n error(['Argument ' arglist{ii,1} ' must be bigger than zero!']);\n elseif (minval{jj} == -2 & maxval{jj} == -2 & arglist{ii,2} >= 0)\n error(['Argument ' arglist{ii,1} ' must be smaller than zero!']);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} < minval{jj})\n error(['Argument ' arglist{ii,1} ' must be bigger than ' num2str(minval{jj})]);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} > maxval{jj})\n error(['Argument ' arglist{ii,1} ' must be smaller than ' num2str(maxval{jj})]);\n end\n end\n end\n if ~strcmp(narglist{jj,2},'OK_out') & ~strcmp(narglist{jj,2},'OK_in') \n narglist{jj,2} = arglist{ii,2};\n end\n end\n end\n if (wasmatched == 0 & ~strcmp(arglist{ii,1},''))\n error(['Argument ' arglist{ii,1} ' is not a valid argument for this function']);\n end\nend\n% match the remaining inputs/outputs to the unused arguments and test for missing required inputs\n for jj=1:size(narglist,1)\n if strcmp(paramtype{jj}, 'Toggle')\n if (narglist{jj,2} ==0)\n narglist{jj,1} = ''; \n end;\n narglist{jj,2} = ''; \n end;\n if ~strcmp(narglist{jj,2},'__input') && ~strcmp(narglist{jj,2},'__output') && istoggle(jj) && ~ was_set(jj)\n narglist{jj,1} = ''; \n narglist{jj,2} = ''; \n end;\n if strcmp(narglist{jj,2}, '__input')\n if (minval{jj} == 0) % meaning this input is required\n if (nextinput > size(Inputs)) \n error(['Required input ' narglist{jj,1} ' has no corresponding input in the list!']); \n else\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n end\n else % this is an optional input\n if (nextinput <= length(Inputs)) \n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end;\n else \n if strcmp(narglist{jj,2}, '__output')\n if (minval{jj} == 0) % this is a required output\n if (nextoutput > nargout & nargout > 1) \n error(['Required output ' narglist{jj,1} ' is not stated in the assignment list!']); \n else\n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n NumReqOutputs = NumReqOutputs-1;\n end\n else % this is an optional output\n if (nargout - nextoutput >= NumReqOutputs) \n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end\n end\n end\nend\nif nargout\n varargout = cell(1,nargout);\nelse\n varargout = cell(1,1);\nend\nglobal KhorosRoot\nif exist('KhorosRoot') && ~isempty(KhorosRoot)\nw=['\"' KhorosRoot];\nelse\nif ispc\n w='\"C:\\Program Files\\dip\\khorosBin\\';\nelse\n[s,w] = system('which cantata');\nw=['\"' w(1:end-8)];\nend\nend\n[varargout{:}]=callKhoros([w 'meigen\" '],Inputs,narglist);\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/matlab_tools/Converted/kmeigen.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.36666579842789837}} {"text": "function [text,AIC,BIC]=igarch_display(parameters,ll,vcv,data,p,q,errorType,igarchType,constant)\n% Display parameters, tstats, pvals, log-likelihood and AIC/BIC\n% from estimates of a IGARCH(P,O,Q) produced using igarch\n%\n% USAGE:\n% [TEXT] = igarch_display(PARAMETERS,LL,VCV,DATA,P,Q)\n% [TEXT,AIC,BIC] = igarch_display(PARAMETERS,LL,VCV,DATA,P,Q,ERRORTYPE,IGARCHTYE,CONSTANT)\n%\n% INPUTS:\n% PARAMETERS - A CONSTANT+p+q-1 column vector of parameters with\n% [omega alpha(1) ... alpha(p) beta(1) ... beta(q-1) [nu lambda]]'.\n% LL - The log likelihood at the optimum\n% VCV - Non-robust standard errors (inverse Hessian)\n% DATA - A column of mean zero data\n% P - Positive, scalar integer representing the number of\n% symmetric innovations\n% Q - Non-negative, scalar integer representing the number\n% of lags of conditional variance (0 for ARCH)\n% ERRORTYPE - [OPTIONAL] The error distribution used, valid types are:\n% 'NORMAL' - Gaussian Innovations [DEFAULT]\n% 'STUDENTST' - T distributed errors\n% 'GED' - Generalized Error Distribution\n% 'SKEWT' - Skewed T distribution\n% IGARCHTYPE - [OPTIONAL] The type of variance process, either\n% 1 - Model evolves in absolute values\n% 2 - Model evolves in squares [DEFAULT]\n% CONSTANT - [OPTIONAL] Logical value indicating whether model\n% should include a constant. Default is true\n% (include)\n%\n% OUTPUTS:\n% TEXT - Character matrix with the formatted parameters of the model\n% AIC - Aikake Information Criteria computed from the LL\n% BIC - Schwartz/Bayesian Information Criteria computed from the LL\n%\n% See also IGARCH\n\n% Copyright: Kevin Sheppard\n% kevin.sheppard@economics.ox.ac.uk\n% Revision: 3 Date: 9/1/2005\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETER CHECKING\n%%%%%%%%%%%%%%%%%%%%%%%%%%\nswitch nargin\n case 6\n igarchType=2;\n errorType='NORMAL';\n constant = 1;\n case 7\n igarchType=2;\n constant = 1;\n case 8\n constant = 1;\n case 9\n % Nothing\n otherwise\n error('5 to 8 inputs required')\nend\nif isempty(igarchType)\n igarchType=2;\nend\nif isempty(errorType)\n errorType='NORMAL';\nend\nif isempty(constant)\n constant = 1;\nend\n% parameters, N by 1, real\nif any(~isreal(parameters)) || size(parameters,2)~=1\n error('PARAMETERS must be a column vector.')\nend\n% LL\nif ~isscalar(ll) || ~isreal(ll)\n error('LL must be a scalar.')\nend\n% VCV\nif size(vcv,2)~=size(vcv,1) || any(min(eig(vcv))<=0) || size(vcv,1)~=length(parameters)\n error('VCV must be a square positive definite matrix compatible with PARAMETERS.')\nend\n% data\nif any(~isreal(data)) || size(data,2)~=1\n error('DATA must be a T by 1 column vector.')\nend\n% p\nif ~isscalar(p) || p<1 || floor(p)~=p\n error('P must be a postitive scalar integer')\nend\n% q\nif ~isscalar(q) || q<0 || floor(q)~=q\n error('Q must be a positive scalar integer')\nend\n% errorType\nif ~ischar(errorType)\n errorType=[];\nend\nswitch errorType\n case 'NORMAL'\n errorType=1;\n extraP=0;\n case 'STUDENTST'\n errorType=2;\n extraP=1;\n case 'GED'\n errorType=3;\n extraP=1;\n case 'SKEWT'\n errorType=4;\n extraP=2;\n otherwise\n error('ERRORTYPE is not one of the supported distributions')\nend\n% igarchType\nif ~ismember(igarchType,[1 2])\n error('IGARCHTYPE must be either 1 or 2')\nend\nif length(parameters)~=(constant+p+q-1+extraP)\n error('Size of PARAMETERS is not compatible with input P, O, Q')\nend\n%%%%%%%%%%%%%%%%%%%%%%%%%%\n% PARAMETER CHECKING\n%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n\n\nif igarchType==1\n model_name = ['IAVARCH(' num2str(p) ',' num2str(q) ')'];\nelse\n model_name = ['IGARCH(' num2str(p) ',' num2str(q) ')'];\nend\n\nparameters_text=num2str(parameters,'%4.4f');\nstderr=sqrt(diag(vcv));\nstderr_text=num2str(stderr,'%4.4f');\ntstats=parameters./stderr;\ntstats_text=num2str(tstats,'%4.4f');\npvals=2-2*normcdf(abs(tstats));\npvals_text=num2str(pvals,'%4.4f');\n\n% Add in the extra beta\nfinalBetaPos = constant+p+q;\narchParameters = parameters(constant+1:constant+p+q-1);\nfinalBeta = 1 - sum(archParameters);\n\nn = length(parameters);\n\nparameters_text=[parameters_text(1:finalBetaPos-1,:);\n num2str(finalBeta,'%4.4f');\n parameters_text(finalBetaPos+1:n,:)];\nstderr_text=[stderr_text(1:finalBetaPos-1,:);\n repmat('-',1,size(stderr_text,2));\n stderr_text(finalBetaPos+1:n,:)];\ntstats_text=[tstats_text(1:finalBetaPos-1,:);\n repmat('-',1,size(tstats_text,2));\n tstats_text(finalBetaPos+1:n,:)];\npvals_text=[pvals_text(1:finalBetaPos-1,:);\n repmat('-',1,size(pvals_text,2));\n pvals_text(finalBetaPos+1:n,:)];\n\n\n\n\n\nT=length(data);\nAIC = -ll/T+2*length(parameters)/T;\nBIC = -ll/T+log(T)*length(parameters)/T;\n\n\n\n\n% Format the output\ntext=[];\ntext{1,1}= ' ';\ntext{2,1}= ' ';\ntext{3,1}=repmat('-',1,50);\ntext{4,1}=model_name;\ntext{5,1}=repmat('-',1,50);\ntext{6,1}=' ';\ntext{7,1}=['Loglikelihood: ' sprintf('%1.2f',ll)];\ntext{8,1}=['AIC: ' sprintf('%1.4f',AIC)];\ntext{9,1}=['BIC: ' sprintf('%1.4f',BIC)];\ntext{10,1}=' ';\n\n\nfor i=1:size(text,1);\n disp(text{i,1})\nend\n\n\n% Format the parameter table, need to right align everything\nK=size(parameters_text,1);\nfor i=1:K\n N=size(parameters_text,2);\n if any(parameters_text(i,:)==' ')\n numSpace=sum(parameters_text(i,:)==' ');\n parameters_text(i,:)=[repmat(' ',1,numSpace) parameters_text(i,1:N-numSpace)];\n end\n N=size(stderr_text,2);\n if any(stderr_text(i,:)==' ')\n numSpace=sum(stderr_text(i,:)==' ');\n stderr_text(i,:)=[repmat(' ',1,numSpace) stderr_text(i,1:N-numSpace)];\n end\n N=size(tstats_text,2);\n if any(tstats_text(i,:)==' ')\n numSpace=sum(tstats_text(i,:)==' ');\n tstats_text(i,:)=[repmat(' ',1,numSpace) tstats_text(i,1:N-numSpace)];\n end\n N=size(pvals_text,2);\n if any(pvals_text(i,:)==' ')\n numSpace=sum(pvals_text(i,:)==' ');\n pvals_text(i,:)=[repmat(' ',1,numSpace) pvals_text(i,1:N-numSpace)];\n end\nend\n% Append column labels\nlabels={' Parameters',' Std. Err.',' T-stat',' P-val'};\ncols = {parameters_text,stderr_text,tstats_text,pvals_text};\nfor i=1:length(labels);\n text1=labels{i};\n text2=cols{i};\n maxcols=max(size(text1,2),size(text2,2));\n if size(text1,2)1\n variable_names{index}='nu';\n index=index+1;\nend\nif errorType==4\n variable_names{index}='lambda';\nend\n\n\nmaxVarNameLength=max(cellfun('length',variable_names));\nfor i=1:length(variable_names)\n variable_names{i} = [repmat(' ',1,maxVarNameLength-length(variable_names{i})) variable_names{i}];\nend\nvariable_names=cell2mat(variable_names(:));\n\n% Output the parameters\noutmat=strvcat(' ',variable_names); %#ok<*VCAT>\nfor i=1:4\n outmat=[outmat repmat(' ',size(outmat,1),1) strvcat(labels{i},cols{i})]; %#ok\nend\n\n\ntext2=[];\nfor i=1:length(text)\n text2=strvcat(text2,text{i});\nend\ntext=strvcat(text2,outmat);\n\ndisp(outmat)\n", "meta": {"author": "bashtage", "repo": "mfe-toolbox", "sha": "9622b6c546bc6d649fd9bf0a36a7fcd53872e04a", "save_path": "github-repos/MATLAB/bashtage-mfe-toolbox", "path": "github-repos/MATLAB/bashtage-mfe-toolbox/mfe-toolbox-9622b6c546bc6d649fd9bf0a36a7fcd53872e04a/univariate/igarch_display.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.36666579842789837}} {"text": "% Test file for @deltafun/chebcoeffs.m.\n\nfunction pass = test_chebcoeffs(pref)\n\nif (nargin < 1)\n pref = chebfunpref();\nend\n\na = -4; b = 4;\n\nf = fun.constructor(@(x) sin(x), struct('domain', [a, b]));\nmag = .9*(a + (b-a)*rand(3,3));\nloc = .9*(a + (b-a)*rand(1,3));\n\ndf = deltafun(f, struct('deltaMag', mag, 'deltaLoc', loc));\n\npass(1) = all( chebcoeffs(f) == chebcoeffs(df) );\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/deltafun/test_chebcoeffs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.36666579073053374}} {"text": "function [ image ] = DeleteWindowsImage(image,binaryImage)\n%UNTITLED3 Summary of this function goes here\n% Detailed explanation goes here\ndiscHeight = size(binaryImage,1);\ndiscWidth = size(binaryImage,2);\nHeight = size(image,1);\ns = Height/discHeight;\n\nfor i=1:discHeight\n for j=1:discWidth\n if (binaryImage(i,j)==1)\n image((i-1)*s+1:i*s,(j-1)*s+1:j*s,:) = 0;\n end\n end\nend\n\nend\n\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u68c0\u6d4b\u7b97\u6cd5/Surgery_DetectionTracking-master/kmeansClassification/DeleteWindowsImage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5888891451980403, "lm_q2_score": 0.6224593382055109, "lm_q1q2_score": 0.36655954759638115}} {"text": "function kern = lfmaKernParamInit(kern)\n\n% LFMAKERNPARAMINIT LFMA kernel parameter initialisation. \n% The kernel is designed to interoperate with the multiple output block\n% kernel so that f(t) can be inferred given several different\n% instantiations of x(t).\n%\n% The parameters (m, c, delta and k) are constrained positive.\n%\n% FORMAT\n% DESC initialises the latent force model kernel structure with some\n% default parameters.\n% RETURN kern : the kernel structure with the default parameters placed in.\n% ARG kern : the kernel structure which requires initialisation.\n%\n% SEEALSO : kernCreate, kernParamInit, lfmKernCompute\n%\n% COPYRIGHT : Mauricio A. Alvarez, 2010\n\n% KERN\n\n% A wrapper that calls lfmKernParamInit to initialize the parameters of the\n% model.\n\nkern = lfmKernParamInit(kern);\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/lfmaKernParamInit.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3665595344897862}} {"text": "function [bestEpoch, bestNet]= pickBestNet(sessionID, N, verbose)\n if nargin<2, N= 5; end\n if nargin<3, verbose= 2; end\n \n paths= localPaths();\n outFnLatest= sprintf('%s%s_latest.mat', paths.outPrefix, sessionID);\n res= load( outFnLatest, 'obj', 'opts', 'auxData');\n \n if res.opts.epochTestFrequency~=1\n error('This code assumes epochTestFrequency==1 (it is %d)', res.opts.epochTestFrequency);\n end\n bestEpoch= getBestEpoch(res.obj.val.recall, res.opts.recallNs, N);\n assert(~isempty(bestEpoch));\n \n if verbose>0\n whichRecallInds= 1:6;\n hline= repmat('=', 1, length(whichRecallInds)*5-1 + 14);\n \n relja_display('%s Best epoch: %d (out of %d)', sessionID, bestEpoch, size(res.obj.val.recall,2) );\n \n if isfield(res.obj, 'pretrain')\n offtheshelfValRecs= res.obj.pretrain.val.recall( whichRecallInds );\n end\n bestValRecs= res.obj.val.recall( whichRecallInds, bestEpoch );\n \n relja_display('%s', hline);\n recallStr= sprintf('%04d ', res.opts.recallNs(whichRecallInds) );\n relja_display('Recall@N %s', recallStr);\n relja_display('%s', hline);\n \n if exist('offtheshelfValRecs', 'var')\n offtheshelfStr= sprintf('%.2f ', offtheshelfValRecs);\n end\n trainedStr= sprintf('%.2f ', bestValRecs);\n \n relja_display('off-the-shelf %s', offtheshelfStr);\n relja_display('our trained %s', trainedStr);\n \n if exist('offtheshelfValRecs', 'var')\n relImpStr= sprintf('%.2f ', bestValRecs./offtheshelfValRecs);\n relja_display('trained/shelf %s', relImpStr);\n end\n \n if verbose>1\n \n figure; plotResults(res.obj, res.opts, res.auxData);\n \n figure;\n plot( res.opts.recallNs, res.obj.pretrain.val.recall, 'bx-' );\n hold on;\n plot( res.opts.recallNs, res.obj.val.recall(:, bestEpoch), 'ro-' );\n xlabel('N');\n ylabel('Recall@N');\n xlim([0,50]);\n grid on;\n title( sprintf('%s %s %s %s %s', sessionID, res.opts.netID, res.opts.layerName, res.opts.dbValName, res.opts.method), 'Interpreter', 'none' );\n legend( 'off-the-shelf', 'our trained', 'Location', 'SouthEast');\n end\n end\n \n if nargout>1\n outFnBest= sprintf('%s%s_ep%06d_latest.mat', paths.outPrefix, sessionID, bestEpoch);\n load(outFnBest, 'net');\n bestNet= net; clear net;\n bestNet.meta.sessionID= sessionID;\n bestNet.meta.epoch= bestEpoch;\n \n % remove unneeded momentum\n for iLayer= 1:length(bestNet.layers)\n if isfield(bestNet.layers{iLayer}, 'momentum')\n bestNet.layers{iLayer}= rmfield(bestNet.layers{iLayer}, 'momentum');\n elseif isprop(bestNet.layers{iLayer}, 'momentum')\n bestNet.layers{iLayer}.momentum= [];\n end\n end\n end\nend\n", "meta": {"author": "Relja", "repo": "netvlad", "sha": "652dbe71aa45c691961ddd9f6cf902574e6bdc2f", "save_path": "github-repos/MATLAB/Relja-netvlad", "path": "github-repos/MATLAB/Relja-netvlad/netvlad-652dbe71aa45c691961ddd9f6cf902574e6bdc2f/pickBestNet.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3665595344897862}} {"text": "% Fifteen Game for MATLAB\n% (c) 2010 Mihir Shah\n\n\n\n\nfunction varargout = Fifteen(varargin)\n% FIFTEEN M-file for Fifteen.fig\n% FIFTEEN, by itself, creates a new FIFTEEN or raises the existing\n% singleton*.\n%\n% H = FIFTEEN returns the handle to a new FIFTEEN or the handle to\n% the existing singleton*.\n%\n% FIFTEEN('CALLBACK',hObject,eventData,handles,...) calls the local\n% function named CALLBACK in FIFTEEN.M with the given input arguments.\n%\n% FIFTEEN('Property','Value',...) creates a new FIFTEEN or raises the\n% existing singleton*. Starting from the left, property value pairs are\n% applied to the GUI before Fifteen_OpeningFcn gets called. An\n% unrecognized property name or invalid value makes property application\n% stop. All inputs are passed to Fifteen_OpeningFcn via varargin.\n%\n% *See GUI Options on GUIDE's Tools menu. Choose \"GUI allows only one\n% instance to run (singleton)\".\n%\n% See also: GUIDE, GUIDATA, GUIHANDLES\n\n% Edit the above text to modify the response to help Fifteen\n\n% Last Modified by GUIDE v2.5 06-Jul-2010 16:20:52\n\n% Begin initialization code - DO NOT EDIT\ngui_Singleton = 1;\ngui_State = struct('gui_Name', mfilename, ...\n 'gui_Singleton', gui_Singleton, ...\n 'gui_OpeningFcn', @Fifteen_OpeningFcn, ...\n 'gui_OutputFcn', @Fifteen_OutputFcn, ...\n 'gui_LayoutFcn', [] , ...\n 'gui_Callback', []);\nif nargin && ischar(varargin{1})\n gui_State.gui_Callback = str2func(varargin{1});\nend\n\nif nargout\n [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});\nelse\n gui_mainfcn(gui_State, varargin{:});\nend\n% End initialization code - DO NOT EDIT\n\n\n% --- Executes just before Fifteen is made visible.\nfunction Fifteen_OpeningFcn(hObject, eventdata, handles, varargin)\n% This function has no output args, see OutputFcn.\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n% varargin command line arguments to Fifteen (see VARARGIN)\n\n% Choose default command line output for Fifteen\nhandles.output = hObject;\nguidata(hObject, handles);\nclc;\nclear all;\nglobal x;\nx = zeros(4);\ni=1;\nwhile i<16 && i>0\n m = randi([1,4]);\n n = randi([1,4]);\n if x(m,n) == 0\n x(m,n) = i;\n i = i + 1;\n end\nend\ndisplay(x);\nglobal counter;\ncounter = 0;\ntic\n% Update handles structure\n\n% --- Outputs from this function are returned to the command line.\nfunction varargout = Fifteen_OutputFcn(hObject, eventdata, handles) \n% varargout cell array for returning output args (see VARARGOUT);\n% hObject handle to figure\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\n% Get default command line output from handles structure\nset(handles.p_counter,'String','0');\nset(handles.p_clock,'String','0');\nvarargout{1} = handles.output;\n\nfunction a = access()\nglobal x;\na = x;\n\n% --- Executes on button press in p11.\nfunction p11_Callback(hObject, eventdata, handles)\n% hObject handle to p11 (see GCBO)\n% eventdata reserved - to be defined in a future version of MATLAB\n% handles structure with handles and user data (see GUIDATA)\n\nglobal p;\np = 1;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\n% if ~bcolor(1,2)\n% stra = get(handles.p11,'String');\n% strb = get(handles.p12,'String');\n% temp = stra;\n% stra = strb;\n% strb = temp;\n% set(handles.p11,'String',stra);\n% set(handles.p12,'String',strb);\n% set(handles.p11,'BackgroundColor','black');\n% bcolor(1,1) = 0;\n% bcolor(1,2) = 1;\n% set(handles.p12,'BackgroundColor','white');\n% end\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p12.\nfunction p12_Callback(hObject, eventdata, handles)\nglobal p;\np = 2;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p13.\nfunction p13_Callback(hObject, eventdata, handles)\nglobal p;\np = 3;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p14.\nfunction p14_Callback(hObject, eventdata, handles)\nglobal p;\np = 4;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p21.\nfunction p21_Callback(hObject, eventdata, handles)\nglobal p;\np = 5;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p22.\nfunction p22_Callback(hObject, eventdata, handles)\nglobal p;\np = 6;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p23.\nfunction p23_Callback(hObject, eventdata, handles)\nglobal p;\np = 7;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p24.\nfunction p24_Callback(hObject, eventdata, handles)\nglobal p;\np = 8;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p31.\nfunction p31_Callback(hObject, eventdata, handles)\nglobal p;\np = 9;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p32.\nfunction p32_Callback(hObject, eventdata, handles)\nglobal p;\np = 10;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p33.\nfunction p33_Callback(hObject, eventdata, handles)\nglobal p;\np = 11;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p34.\nfunction p34_Callback(hObject, eventdata, handles)\nglobal p;\np = 12;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p41.\nfunction p41_Callback(hObject, eventdata, handles)\nglobal p;\np = 13;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p42.\nfunction p42_Callback(hObject, eventdata, handles)\nglobal p;\np = 14;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p43.\nfunction p43_Callback(hObject, eventdata, handles)\nglobal p;\np = 15;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p44.\nfunction p44_Callback(hObject, eventdata, handles)\nglobal p;\np = 16;\np_setter_Callback(hObject, eventdata, handles)\np_slide_Callback(hObject, eventdata, handles)\np_win_Callback(hObject, eventdata, handles)\nguidata(hObject, handles);\n\n\n% --- Executes on button press in p_new.\nfunction p_new_Callback(hObject, eventdata, handles)\n\nFifteen;\nx = access();\nglobal bcolor;\nbcolor = zeros(4);\np_initial_Callback(hObject, eventdata, handles)\nguidata(hObject,handles);\n\n% --- Executes on button press in p_initial.\nfunction p_initial_Callback(hObject, eventdata, handles)\n\nx = access();\n% set(handles.p_counter,'String','0');\nfor m=1:1:4\n for n=1:1:4\n s = ['set(handles.p' int2str(m) int2str(n) ',''BackgroundColor'',''white'')'];\n eval(s);\n if x(m,n) ~= 0\n s = ['set(handles.p' int2str(m) int2str(n) ',''String'',x(' int2str(m) ',' int2str(n) '))'];\n eval(s);\n else\n s = ['set(handles.p' int2str(m) int2str(n) ',''String'',x(' int2str(m) ',' int2str(n) '))'];\n eval(s);\n s = ['set(handles.p' int2str(m) int2str(n) ',''BackgroundColor'',''black'')'];\n eval(s);\n end\n end\nend\nguidata(hObject,handles);\n\n\n% --- Executes on button press in p_slide.\nfunction p_slide_Callback(hObject, eventdata, handles)\nglobal bcolor;\nglobal row;\nglobal col;\nglobal row_p;\nglobal col_p;\nglobal counter;\nfor m=1:1:4\n for n=1:1:4\n s = ['get(handles.p' int2str(m) int2str(n) ',''BackgroundColor'');'];\n z = eval(s);\n bcolor(m,n) = z(1);\n if bcolor(m,n) == 0\n row = m;\n col = n;\n end\n end\nend\nguidata(hObject,handles);\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif limit(row_p,col_p-1) && ~bcolor(row_p,col_p-1)\n% stra = get(handles.p11,'String');\n s1 = ['get(handles.p' int2str(row_p) int2str(col_p) ',''String'');'];\n stra = eval(s1);\n% strb = get(handles.p12,'String');\n s2 = ['get(handles.p' int2str(row_p) int2str(col_p-1) ',''String'');'];\n strb = eval(s2);\n temp = stra;\n stra = strb;\n strb = temp;\n% set(handles.p11,'String',stra);\n s3 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''String'',' stra ');'];\n eval(s3);\n% set(handles.p12,'String',strb);\n s4 = ['set(handles.p' int2str(row_p) int2str(col_p-1) ',''String'',' strb ');'];\n eval(s4);\n% bcolor(1,1) = 0;\n% bcolor(1,2) = 1;\n bcolor(row_p,col_p) = 0;\n bcolor(row_p,col_p-1) = 1;\n% set(handles.p11,'BackgroundColor','black');\n s5 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''BackgroundColor'',''black'');'];\n eval(s5);\n% set(handles.p12,'BackgroundColor','white');\n s6 = ['set(handles.p' int2str(row_p) int2str(col_p-1) ',''BackgroundColor'',''white'')'];\n eval(s6);\n counter = counter + 1;\n set(handles.p_counter,'String',counter);\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif limit(row_p,col_p+1) && ~bcolor(row_p,col_p+1)\n s1 = ['get(handles.p' int2str(row_p) int2str(col_p) ',''String'');'];\n stra = eval(s1);\n s2 = ['get(handles.p' int2str(row_p) int2str(col_p+1) ',''String'');'];\n strb = eval(s2);\n temp = stra;\n stra = strb;\n strb = temp;\n s3 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''String'',' stra ');'];\n eval(s3);\n s4 = ['set(handles.p' int2str(row_p) int2str(col_p+1) ',''String'',' strb ');'];\n eval(s4);\n bcolor(row_p,col_p) = 0;\n bcolor(row_p,col_p+1) = 1;\n s5 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''BackgroundColor'',''black'');'];\n eval(s5);\n s6 = ['set(handles.p' int2str(row_p) int2str(col_p+1) ',''BackgroundColor'',''white'')'];\n eval(s6);\n counter = counter + 1;\n set(handles.p_counter,'String',counter);\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif limit(row_p-1,col_p) && ~bcolor(row_p-1,col_p)\n s1 = ['get(handles.p' int2str(row_p) int2str(col_p) ',''String'');'];\n stra = eval(s1);\n s2 = ['get(handles.p' int2str(row_p-1) int2str(col_p) ',''String'');'];\n strb = eval(s2);\n temp = stra;\n stra = strb;\n strb = temp;\n s3 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''String'',' stra ');'];\n eval(s3);\n s4 = ['set(handles.p' int2str(row_p-1) int2str(col_p) ',''String'',' strb ');'];\n eval(s4);\n bcolor(row_p,col_p) = 0;\n bcolor(row_p-1,col_p) = 1;\n s5 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''BackgroundColor'',''black'');'];\n eval(s5);\n s6 = ['set(handles.p' int2str(row_p-1) int2str(col_p) ',''BackgroundColor'',''white'')'];\n eval(s6);\n counter = counter + 1;\n set(handles.p_counter,'String',counter);\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nif limit(row_p+1,col_p) && ~bcolor(row_p+1,col_p)\n s1 = ['get(handles.p' int2str(row_p) int2str(col_p) ',''String'');'];\n stra = eval(s1);\n s2 = ['get(handles.p' int2str(row_p+1) int2str(col_p) ',''String'');'];\n strb = eval(s2);\n temp = stra;\n stra = strb;\n strb = temp;\n s3 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''String'',' stra ');'];\n eval(s3);\n s4 = ['set(handles.p' int2str(row_p+1) int2str(col_p) ',''String'',' strb ');'];\n eval(s4);\n bcolor(row_p,col_p) = 0;\n bcolor(row_p+1,col_p) = 1;\n s5 = ['set(handles.p' int2str(row_p) int2str(col_p) ',''BackgroundColor'',''black'');'];\n eval(s5);\n s6 = ['set(handles.p' int2str(row_p+1) int2str(col_p) ',''BackgroundColor'',''white'')'];\n eval(s6);\n counter = counter + 1;\n set(handles.p_counter,'String',counter);\nend\nguidata(hObject,handles);\n\nfunction z = limit(row,col)\n\nz1 = 0;\nz2 = 0;\nif row>0\n if row<5\n z1 = 1;\n end\nend\nif col>0\n if col<5\n z2 = 1;\n end\nend\nz = z1 && z2;\n\n\n% --- Executes on button press in p_setter.\nfunction p_setter_Callback(hObject, eventdata, handles)\nglobal row_p;\nglobal col_p;\nglobal p;\nswitch p\n case 1 \n row_p = 1;\n col_p = 1;\n case 2 \n row_p = 1;\n col_p = 2;\n case 3 \n row_p = 1;\n col_p = 3;\n case 4 \n row_p = 1;\n col_p = 4;\n case 5 \n row_p = 2;\n col_p = 1;\n case 6 \n row_p = 2;\n col_p = 2;\n case 7 \n row_p = 2;\n col_p = 3;\n case 8 \n row_p = 2;\n col_p = 4;\n case 9 \n row_p = 3;\n col_p = 1;\n case 10 \n row_p = 3;\n col_p = 2;\n case 11 \n row_p = 3;\n col_p = 3;\n case 12 \n row_p = 3;\n col_p = 4;\n case 13 \n row_p = 4;\n col_p = 1;\n case 14 \n row_p = 4;\n col_p = 2;\n case 15 \n row_p = 4;\n col_p = 3;\n case 16 \n row_p = 4;\n col_p = 4;\nend\nguidata(hObject,handles);\n\n\n% --- Executes on button press in p_win.\nfunction p_win_Callback(hObject, eventdata, handles)\np = zeros(4);\nfor m=1:1:4\n for n=1:1:4\n s = ['get(handles.p' int2str(m) int2str(n) ',''String'');'];\n p(m,n) = str2double(eval(s));\n end\nend\ncount = 0;\nif p(1,1) == 1\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(1,2) == 2\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(1,3) == 3\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(1,4) == 4\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(2,1) == 5\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(2,2) == 6\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(2,3) == 7\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(2,4) == 8\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(3,1) == 9\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(3,2) == 10\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(3,3) == 11\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(3,4) == 12\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(4,1) == 13\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(4,2) == 14\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(4,3) == 15\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\nif p(4,4) == 0\n flag = 1;\n count = count + 1;\nelse flag = 0;\nend\n\ntime = int2str(round(toc));\nset(handles.p_clock,'String',time);\nif flag == 1 && count == 16\n msgbox('Congratulations you have won !!!','Fifteen','help');\nend\nguidata(hObject,handles);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/28222-fifteen/Fifteen/Fifteen.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.3665595344897862}} {"text": "function mpc = t_case9_opfv2\n%T_CASE9_OPFV2 Power flow data for 9 bus, 3 generator case, with OPF data.\n% Please see CASEFORMAT for details on the case file format.\n\n% MATPOWER\n\n%% MATPOWER Case Format : Version 2\nmpc.version = '2';\n\n%%----- Power Flow Data -----%%\n%% system MVA base\nmpc.baseMVA = 100;\n\n%% bus data\n%\tbus_i\ttype\tPd\tQd\tGs\tBs\tarea\tVm\tVa\tbaseKV\tzone\tVmax\tVmin\nmpc.bus = [\n\t1\t3\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t2\t2\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t30\t2\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t4\t1\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t5\t1\t90\t30\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t6\t1\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t7\t1\t100\t35\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t8\t1\t0\t0\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n\t9\t1\t125\t50\t0\t0\t1\t1\t0\t345\t1\t1.1\t0.9;\n];\n\n%% generator data\n%\tbus\tPg\tQg\tQmax\tQmin\tVg\tmBase\tstatus\tPmax\tPmin\tPc1\tPc2\tQc1min\tQc1max\tQc2min\tQc2max\tramp_agc\tramp_10\tramp_30\tramp_q\tapf\nmpc.gen = [\n\t1\t0\t0\t300\t-300\t1\t100\t1\t250\t90\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0\t0;\n\t30\t85\t0\t300\t-300\t1\t100\t1\t270\t10\t0\t200\t-30\t30\t-15\t15\t0\t0\t0\t0\t0;\n\t2\t163\t0\t300\t-300\t1\t100\t1\t300\t10\t0\t200\t-20\t20\t-10\t10\t0\t0\t0\t0\t0;\n];\n\n%% branch data\n%\tfbus\ttbus\tr\tx\tb\trateA\trateB\trateC\tratio\tangle\tstatus\tangmin\tangmax\nmpc.branch = [\n\t1\t4\t0\t0.0576\t0\t0\t250\t250\t0\t0\t1\t-360\t2.48;\n\t4\t5\t0.017\t0.092\t0.158\t0\t250\t250\t0\t0\t1\t-360\t360;\n\t5\t6\t0.039\t0.17\t0.358\t150\t150\t150\t0\t0\t1\t-360\t360;\n\t30\t6\t0\t0.0586\t0\t0\t300\t300\t0\t0\t1\t-360\t360;\n\t6\t7\t0.0119\t0.1008\t0.209\t40\t150\t150\t0\t0\t1\t-360\t360;\n\t7\t8\t0.0085\t0.072\t0.149\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t8\t2\t0\t0.0625\t0\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t8\t9\t0.032\t0.161\t0.306\t250\t250\t250\t0\t0\t1\t-360\t360;\n\t9\t4\t0.01\t0.085\t0.176\t250\t250\t250\t0\t0\t1\t-2\t360;\n];\n\n%%----- OPF Data -----%%\n%% generator cost data\n%\t1\tstartup\tshutdown\tn\tx1\ty1\t...\txn\tyn\n%\t2\tstartup\tshutdown\tn\tc(n-1)\t...\tc0\nmpc.gencost = [\n\t1\t0\t0\t4\t0\t0\t100\t2500\t200\t5500\t250\t7250;\n\t1\t0\t0\t3\t0\t0\t200\t3000\t300\t5000\t0\t0;\n\t2\t0\t0\t2\t24.035\t-403.5\t0\t0\t0\t0\t0\t0;\n];\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/lib/t/t_case9_opfv2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.3665097691995436}} {"text": "function sVF = rdivide(sVF, sF2)\n%\n% Syntax\n% sVF = sVF ./ sF\n% sVF = sVF ./ a\n%\n% Input\n% sVF - @S2VectorFieldTri\n% sF - @S2Fun\n% a - double\n%\n% Output\n% sF - @S2VectorFieldTri\n%\n\nif isnumeric(sF2)\n sVF.values = sVF.values ./ sF2;\nelse\n sVF.values = sVF.values ./ sF2.values;\nend\n\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/S2Fun/@S2VectorFieldTri/rdivide.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.36637995475091556}} {"text": "function boundary = component_boundary(grid, ndx)\n\nif length(ndx) == 2\n ndx = sub2ind(size(grid), ndx(1), ndx(2));\nend\n\nfilled = imfill(~grid, ndx, 8);\ncomponent = ~(xor(filled,grid));\nboundary = iris.terrain_grid.find_boundary(component);\n\n% figure(21)\n% subplot(411)\n% imshow(grid)\n% subplot(412)\n% imshow(component)\n% subplot(413)\n% imshow(fast_boundary);\n% subplot(414)\n% imshow(boundary);\n% assert(all(all(fast_boundary == boundary)));\n", "meta": {"author": "rdeits", "repo": "iris-distro", "sha": "ff624610a82a858862d55732136dbc2cc9ab16fc", "save_path": "github-repos/MATLAB/rdeits-iris-distro", "path": "github-repos/MATLAB/rdeits-iris-distro/iris-distro-ff624610a82a858862d55732136dbc2cc9ab16fc/src/matlab/+iris/+terrain_grid/component_boundary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.36637995475091556}} {"text": "function [v,n]=cutvar(t,j)\n%CUTVAR Variables used for branches in decision tree.\n% V=CUTVAR(T) returns an N-element cell array V of the names of the\n% variables used for branching in each node of the tree T, where N\n% is the number of nodes in the tree. These variables are sometimes\n% known as cut variables. For non-branch (leaf) nodes, V contains\n% an empty string.\n%\n% V=CUTVAR(T,J) takes an array J of node numbers and returns the cut\n% variables for the specified nodes.\n%\n% [V,NUM]=CUTVAR(...) also returns the number NUM of each variable.\n%\n% See also CLASSREGTREE, CLASSREGTREE/NUMNODES, CLASSREGTREE/CHILDREN.\n\n% Copyright 2006-2007 The MathWorks, Inc. \n% $Revision: 1.1.6.2 $ $Date: 2007/02/15 21:48:07 $\n\nif nargin>=2 && ~validatenodes(t,j)\n error('stats:classregtree:parent:InvalidNode',...\n 'J must be an array of node numbers or a logical array of the proper size.');\nend\n\n% Get variable number, taking care that negative values may appear to\n% indicate categorical cuts\nif nargin<2\n n = abs(t.var);\nelse\n n = abs(t.var(j,:));\nend\n\n% Get variable name\nv = repmat({''},numel(n),1);\nmask = n>0;\nv(mask) = t.names(n(mask));", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/rigor/rigor_src/extern_src/fuxin_lib_src/@classregtree_fuxin/cutvar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.36637995475091556}} {"text": "function cameras = loadcameradata(dataDir, idx)\n%LOADCAMERADATA: Load the dino data\n%\n% CAMERAS = LOADCAMERADATA() loads the dinosaur data and returns a\n% structure array containing the camera definitions. Each camera contains\n% the image, internal calibration and external calibration.\n%\n% CAMERAS = LOADCAMERADATA(IDX) loads only the specified file indices.\n%\n% Example:\n% >> cameras = loadcameradata(1:3);\n% >> showcamera(cameras)\n%\n% See also: SHOWCAMERA\n\n% Copyright 2005-2009 The MathWorks, Inc.\n% $Revision: 1.0 $ $Date: 2006/06/30 00:00:00 $\n\nif nargin<2\n idx = 1:36;\nend\n\ncameras = struct( ...\n 'Image', {}, ...\n 'P', {}, ...\n 'K', {}, ...\n 'R', {}, ...\n 'T', {}, ...\n 'Silhouette', {} );\n\n%% First, import the camera Pmatrices\nrawP = load( fullfile( dataDir, 'dino_Ps.mat') );\n\n%% Now loop through loading the images\ntmwMultiWaitbar('Loading images',0);\nfor ii=idx(:)'\n % We try both JPG and PPM extensions, trying JPEG first since it is\n % the faster to load\n filename = fullfile( dataDir, sprintf( 'viff.%03d.jpg', ii ) );\n if exist( filename, 'file' )~=2\n % Try PPM\n filename = fullfile( dataDir, sprintf( 'viff.%03d.ppm', ii ) );\n if exist( filename, 'file' )~=2\n % Failed\n error( 'SpaceCarving:ImageNotFound', ...\n 'Could not find image %d (''viff.%03d.jpg/.ppm'')', ...\n ii, ii );\n end\n end\n \n [K,R,t] = spacecarving.decomposeP(rawP.P{ii});\n cameras(ii).rawP = rawP.P{ii};\n cameras(ii).P = rawP.P{ii};\n cameras(ii).K = K/K(3,3);\n cameras(ii).R = R;\n cameras(ii).T = -R'*t;\n cameras(ii).Image = imread( filename );\n cameras(ii).Silhouette = [];\n tmwMultiWaitbar('Loading images',ii/max(idx));\nend\ntmwMultiWaitbar('Loading images','close');\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26160-carving-a-dinosaur/SpaceCarving/+spacecarving/loadcameradata.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5506073655352403, "lm_q1q2_score": 0.36637995475091545}} {"text": "%SCATTERD Display scatterplot\n% \n% H = SCATTERD(A)\n% H = SCATTERD(A,DIM,S,CMAP,FONTSIZE,'label','both','legend','gridded')\n%\n% INPUT\n% A Dataset or matrix\n% DIM Number of dimensions: 1,2 or 3 (optional; default: 2)\n% S String specifying the colors and markers (optional)\n% CMAP Matrix with a color map (optional)\n% \n% OUTPUT\n% H Vector of handles\n%\n% DESCRIPTION\n% SCATTERD(A) displays a 2D scatterplot of the first two features of the \n% dataset A. If the number of dimensions DIM is specified (1..3), it plots \n% the first D features in a D-dimensional plot (D<4). If the plot string S \n% is provided, e.g. S = 'w+', all points are plotted accordingly. If given,\n% different plot strings are used for different classes. See PLOT for the\n% specification of plot strings.\n% \n% If CMAP is specified, the color of the object symbols is determined by \n% CMAP indexed by the object labels. A colormap has the size [C x 3], where \n% C is the number of classes. The three components of CMAP(I,:) determine \n% the red, green and blue components of the color. For instance: \n%\n% MAP = HSV; [M,K] = SIZE(A); LABELS = CEIL(64*[1:M]'/M); \n% A = DATASET(A,LABELS); SCATTERD(A,'.','COLORMAP',MAP); \n%\n% This may be used for tracking ordered objects.\n% \n% FONTSIZE may be a vector with three elements: fontsize, markersize and\n% size of the label font in case of a label plot.\n% \n% Various other options are:\n% 'LABEL' : plot labels instead of symbols\n% 'BOTH' : plot labels next to each sample\n% 'LEGEND' : place a legend in the figure\n% 'GRIDDED': make a grid of 2D scatterplots of each pair of features\n% \n% All the parameters, except for the dataset A can be specified in any \n% order or can be left out.\n% \n% Classifiers can be plot in the scatterplot by PLOTC.\n% Note that PLOTC does not work for 1D and 3D scatterplots.\n%\n% EXAMPLES\n% See PREX_CONFMAT, PREX_DENSITY, PREX_PLOTC, PREX_MCPLOT.\n%\n% SEE ALSO\n% DATASETS, COLORMAP, PLOT, PLOTC\n\n% Copyright: D. de Ridder, R.P.W. Duin, duin@ph.tn.tudelft.nl\n% Faculty of Applied Sciences, Delft University of Technology\n% P.O. Box 5046, 2600 GA Delft, The Netherlands\n\n% $Id: scatterd.m,v 1.5 2009/01/04 21:43:17 duin Exp $\n\n% REVISIONS\n% DR1 - Dick, 05-10-2004\n% Added plotting of unlabeled data as 'k.'.\n\nfunction handle = scatterd(a,p1,p2,p3,p4,p5,p6,p7,p8)\n\n\tprtrace(mfilename);\n\n\t% Defaults\n\td = min(size(a,2),2);\t\t% Dimensionality of plot\n\ts = []; \t\t\t\t\t% Plot symbol(s)\n\tmap = []; \t\t\t\t\t% Color map\n\tplotlab = 0;\t\t\t\t% Put text labels instead of or next to samples\n\tplotsym = 1;\t\t\t\t% Plot symbols for samples\n\tplotlegend = 0; \t\t % Plot legend\n\tgridded = 0;\t\t\t\t% Make a gridded plot\n\tgridrun = 0;\t\t\t\t% Inner loop in a gridded plot?\n\tfont_size = [];\n\tmark_size = [];\n\tlab_size = [];\n\thold_axis = ishold; % A flag to check if 'hold on' is set for the current axis\n\n\ta = prdataset(a); \t\t% Allow for a non-dataset data\n\n\tif (nargin < 9), par{8} = []; else, par{8} = p8; end\n\tif (nargin < 8), par{7} = []; else, par{7} = p7; end\n\tif (nargin < 7), par{6} = []; else, par{6} = p6; end\n\tif (nargin < 6), par{5} = []; else, par{5} = p5; end\n\tif (nargin < 5), par{4} = []; else, par{4} = p4; end\n\tif (nargin < 4), par{3} = []; else, par{3} = p3; end\n\tif (nargin < 3), par{2} = []; else, par{2} = p2; end\n\tif (nargin < 2), par{1} = []; else, par{1} = p1; end\n\n\t% Set up default values.\n\tfor i = 1:5\n\t\tif (~isempty(par{i})) \n\t\t\tif (length(par{i}) == 1) & par{i} < 5 & (~ischar(par{i})) \t% Dimensionality\n\t\t\t\td = par{i}; par{i} = 2; \t\t% Necessary for gridded: D needs to be 2.\n\t\t\telseif ((size(par{i},1) > 1) & (size(par{i},2)==3) & (~ischar(par{i}))) \t% Color map\n\t\t\t\tmap = par{i};\n\t\t\telseif (strcmp(par{i},'label'))\n\t\t\t\tplotlab = 1; plotsym = 0;\n\t\t\telseif (strcmp(par{i},'both'))\n\t\t\t\tplotlab = 1; plotsym = 1;\n\t\t\telseif (strcmp(par{i},'legend'))\n\t\t\t\tplotlegend = 1;\n\t\t\telseif (strcmp(par{i},'gridded'))\n\t\t\t\tgridded = 1; \n\t\t\t\tpar{i} = 'gridrun'; \t\t\t\t\t% Necessary for gridded: otherwise an infinite recursion :)\n\t\t\telseif (strcmp(par{i},'gridrun'))\n\t\t\t\tgridrun = 1;\n\t\t\telseif ~isstr(par{i}) & length(par{i}) <= 3 & par{i}(1) >= 5\n\t\t\t\tfont_size = par{i}(1); \n\t\t\t\tif length(par{i}) >= 2\n\t\t\t\t\tmark_size = par{i}(2);\n\t\t\t\tend\n\t\t\t\tif length(par{i}) == 3\n\t\t\t\t\tlab_size = par{i}(3);\n\t\t\t\tend\n\t\t\telse\n\t\t\t\ts\t= par{i};\n\t\t\tend\n\t\tend\n\tend\n\n\tif (gridrun)\n\t\tif isempty(font_size), font_size = 10; end\n\t\tif isempty(mark_size), mark_size = 5; end\n\t\tif isempty(lab_size), lab_size = 8; end\n\telseif (~hold_axis)\n\t\t%clf; \n\t\tcla;\n\t\tif isempty(font_size), font_size = 16; end\n\t\tif isempty(mark_size), mark_size = 7; end\n\t\tif isempty(lab_size), lab_size = 14; end\n\telse\n\t\tif isempty(font_size), font_size = get(gca,'fontsize'); end\n\t\tif isempty(mark_size), mark_size = font_size/2; end\n\t\tif isempty(lab_size), lab_size = font_size-2; end\n\tend\n\n\tfeats = getfeatlab(a,'string');\n\t\n\tif isempty(feats)\n\t\tfor i=1:size(a,2)\n\t\t\tfeats = strvcat(feats,sprintf('Feature %d',i));\n\t\tend\n\telse\n\t\tif size(feats,2) == 1\n\t\t\tfeats = [repmat('Feature ',size(feats,1),1) feats];\n\t\tend\n\tend\n\n\tif (gridded)\n\t\tclf;\n\t\tgs = size(a,2);\n\t\tfor i = 1:gs\n\t\t\tfor j = 1:gs\n\t\t\t\tsubplot(gs,gs,(i-1)*gs+j);\n\t\t\t\tgridrun = 1;\n\t\t\t\th = feval(mfilename,a(:,[j i]),par{1},par{2},par{3},par{4},par{5},par{6},par{7});\n\t\t\t\tgridrun = 0;\n\t\t\t\tif (i~=gs), xlabel(''); end\n\t\t\t\tif (j~=1), ylabel(''); end\n\t\t\tend\n\t\t\tsubplot(111); \t\t% Takes care of clf for the next scatterplot.\n\t\tend\n\t\treturn;\n\tend\n\n\tif (isa(a,'prdataset')) & (~isempty(getlablist(a)))\n [m,k,c] = getsize(a);\n cs_a = classsizes(a);\n classes_present = cs_a > 0;\n\t\tlab = getnlab(a); \n\t\tlablist = getlablist(a,'string');\n\t\tident = getident(a); %DXD: needed for prcursor\n\t\tdataset_name = getname(a);\n\t\ta = double(a);\n\telse\n\t\t[m,k] = size(a);\n\t\tlab = ones(m,1);\n\t\tident = (1:m)'; %DXD: needed for prcursor\n\t\tdataset_name = [];\n\t\tc = 1;\n\t\ta = double(a);\n\tend\n\n\t% Character string defining the plotting setup in terms of symbols and colors.\n\tif (isempty(s))\n\t\tvers = version;\n\t\tif (str2num(vers(1)) < 5)\n\t\t\tcol = 'brmw';\n\t\t\tsym = ['+*xo.']';\n\t\t\ti = [1:20];\n\t\t\tss = [col(i-floor((i-1)/4)*4)' sym(i-floor((i-1)/5)*5)];\n\t\telse\n\t\t\tcol = 'brmk';\n\t\t\tsym = ['+*oxsdv^<>p']';\n\t\t\ti = [1:44];\n\t\t\tss = [col(i-floor((i-1)/4)*4)' sym(i-floor((i-1)/11)*11)];\n\t\tend\n ss = ['k.'; ss]; \t\t\t\t\t\t\t\t% DR1 - Add symbol for \"unlabeled\" data.\n\t\t[ms,ns] = size(ss);\n\t\tif ms == 1, ss = setstr(ones(m,1)*ss); end\n\telse\n\t\tif size(s,1) == 1\n\t\t\tss = repmat(s,c,1); s = [];\n\t\telse\n\t\t\tss = s; s = [];\n\t\tend\n ss = char('k.', ss); \t\t\t\t\t\t\t\t% DR1 - Add symbol for \"unlabeled\" data.\n\t %DXD - changed [.] into char(.)\n\tend\n\n\t% Define some 'space' OY to be added around the data plotted in symbols.\n\toy = zeros(1,3);\t\t\n\tif (plotsym)\n\t\toy = 0.02*(max(a)-min(a));\n\telse\n\t\ts = 'w.'; \t\t\t\t% Plot white spot instead of symbols.\n\tend\n\toy(2) = 0;\n\n\n\t% Make a plot.\n\tlhandle = []; thandle = [];\n\n classes_present_idx = find(classes_present);\n \n [dummy cs_a_idx] = sort(cs_a(classes_present_idx),'descend');\n\n % Also plot label \"0\" (unlabeled).\n\tfor i = [0 classes_present_idx(cs_a_idx) ]\n\t\tJ = find(lab==i);\n\t\tif (isempty(s)), symbol = ss(i+1,:); else, symbol = s; end\n\t\tif ((d == 1) & ~isempty(J))\n\t\t\th = plot(a(J,1),zeros(length(J),1),symbol);\n\t\t\thold on;\n\t\t\tset(h,'markersize',mark_size);\n\t\t\tlhandle = [lhandle h];\n\t\t\tif (plotlab)\n\t\t\t\tfor j = 1:length(J)\n\t\t\t\t\th = text(a(J(j),1)+oy(1),oy(2),lablist(lab(J(j)),:));\n\t\t\t\t\tset(h,'fontsize',lab_size);\n\t\t\t\t\tthandle = [thandle h]; if (~isempty(map)), set (h, 'color', map(i+1,:)); end\n\t\t\t\tend\n\t\t\tend\n\t\telseif ((d == 2) & ~isempty(J))\n\t\t\th = plot(a(J,1),a(J,2),symbol);\n\t\t\thold on;\n\t\t\tset(h,'markersize',mark_size);\n\t\t\tlhandle = [lhandle h];\n\t\t\tif (plotlab)\n\t\t\t\tfor j = 1:length(J)\n\t\t\t\t\th = text(a(J(j),1)+oy(1),a(J(j),2)+oy(2),lablist(lab(J(j)),:));\n\t\t\t\t\tset(h,'fontsize',lab_size);\n\t\t\t\t\tthandle = [thandle h]; if (~isempty(map)), set (h, 'color', map(i+1,:)); end\n\t\t\t\tend\n\t\t\tend\n\t\telseif (~isempty(J))\n\t\t\th = plot3(a(J,1),a(J,2),a(J,3),symbol);\n\t\t\thold on;\n\t\t\tset(h,'markersize',mark_size);\n\t\t\tlhandle = [lhandle h];\n\t\t\tif (plotlab)\n\t\t\t\tfor j = 1:length(J)\n\t\t\t\t\th = text(a(J(j),1)+oy(1),a(J(j),2)+oy(2),a(J(j),3)+oy(3),lablist(lab(J(j)),:));\n\t\t\t\t\tset(h,'fontsize',lab_size);\n\t\t\t\t\tthandle = [thandle h]; if (~isempty(map)), set (h, 'color', map(i+1,:)); end\t\t\t\n\t\t\t\tend\n\t\t\tend\n\t\tend\n\t\t%DXD: store the object identifiers in the userdata such that you\n\t\t%can retrieve them by prcursor:\n\t\tif ~isempty(J)\n\t\t\tud = get(h,'UserData');\n\t\t\tud.ident = ident(J);\n\t\t\tset(h,'UserData',ud);\n\t\tend\n end\n\n\tif (plotsym)\n\t\tif (~isempty(map))\n\t\t\tfor i = 0:c, set (lhandle(i+1), 'color', map(i+1,:)); end\n\t\tend\n\t\tif (plotlegend), \n\t\t\t[ht, hl] = legend(lhandle(:), [ num2str(cs_a(classes_present_idx(cs_a_idx))') repmat(' ', sum(classes_present),1) lablist(classes_present_idx(cs_a_idx),:) ]);\n\t\t\thl = hl(:)';\n\t\t\t%set(hl(1:2*c),'markersize',mark_size);\n\t\t\tlhandle = [lhandle hl];\n\t\t\tthandle = [thandle ht(:)'];\n\t\tend\n\tend\n\n\t% !%_%*!_% Matlab\n\n\tset(gca,'fontsize',font_size);\n\n\tif (~hold_axis)\n\t\tdd = (max(a) - min(a))*0.05;\t\t% offset, avoiding points on plot box.\n\t\tJ = find(dd==0);\n\t\tdd(J) = dd(J)+1;\n\n%feats\n\t\tif (d == 1), \n\t\t\taxis ([min(a(:,1))-dd(1) max(a(:,1))+dd(1) -0.5 0.5]); \n\t\t\thx = xlabel(feats(1,:));\n\t\t\tthandle = [thandle hx];\n\t\telseif (d == 2),\n\t\t\taxis ([min(a(:,1))-dd(1) max(a(:,1))+dd(1) min(a(:,2))-dd(2) max(a(:,2))+dd(2)]); \n\t\t\thx = xlabel(feats(1,:)); hy = ylabel(feats(2,:));\n\t\t\tthandle = [thandle(:)' hx hy];\n\t\t\tview(2); \n\t\telse\t\t% D = 3 \n\t\t\taxis ([min(a(:,1))-dd(1) max(a(:,1))+dd(1) min(a(:,2))-dd(2) max(a(:,2))+dd(2) min(a(:,3))-dd(3) max(a(:,3))+dd(3)]); \n\t\t\thx = xlabel(feats(1,:)); hy = ylabel(feats(2,:)); hz = zlabel(feats(3,:));\n\t\t\tthandle = [thandle hx hy hz];\n\t\t\tview(3); \n\t\tend\n\tend\n\n\tif (~gridrun) & (length(get(gcf,'children')) < 3 & any(get(gca,'position')>0.80))\n\t\tset(gca,'position',[0.13 0.13 0.79 0.78]); % make axis labels visible\n\tend\n\t\t\n\tif (~gridrun) & (~isempty(dataset_name))\n\t\ttitle(dataset_name);\n\tend\n\n\thold off;\n\n\tif (nargout > 0)\n\t\thandle = [lhandle thandle];\n\tend\n\nreturn;\n\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools_addins/scatterd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.550607350786733, "lm_q2_score": 0.6654105653819836, "lm_q1q2_score": 0.3663799485904762}} {"text": "function scimatsk = scimat_skeleton_prune(scimatsk, scimat, minlen, lratio, alphamax, p)\n% SCIMAT_SKELETON_PRUNE Prune branches in a segmentation's skeletonization\n%\n% This function prunes the leaves of a segmentation skeleton in three\n% steps:\n%\n% 1. Erode clumps of voxels to look like branches\n%\n% 2. Prune very short leaves (iteratively until no more leaves can be\n% pruned)\n%\n% 3. Prune leaves created by artifacts in the segmentation. Spurious\n% leaves are those roughly as long as the local radius of the main\n% branch they are attached to (iteratively until no more leaves can\n% be pruned)\n%\n%\n% SCIMATPR = scimat_skeleton_prune(SCIMATSK)\n% SCIMATPR = scimat_skeleton_prune(SCIMATSK, [], MINLEN)\n%\n% This syntax runs steps 1 and 2 only.\n%\n% SCIMATSK is an SCIMAT struct. SCIMATSK.data contains the result of\n% running a skeletonization algorithm on a binary segmentation SCIMAT,\n% e.g.\n%\n% >> scimatsk = scimat;\n% >> scimatsk.data = itk_imfilter('skel', scimat);\n%\n% MINLEN is a scalar with the minimum length in voxels for a leaf. Any\n% leaf shorter than MINLEN will be pruned. By default, MINLEN = 5 voxel.\n%\n%\n% SCIMATPR = scimat_skeleton_prune(SCIMATSK, SCIMAT, MAXCLUMP, MINLEN, LRATIO, ALPHAMAX, P)\n%\n% This syntax runs steps 1, 2 and 3.\n%\n% SCIMAT is the binary segmentation mentioned above.\n%\n% LRATIO is a scalar. Leaves with L/R < LRATIO will be pruned, where\n% L is the length from the bifurcation to the tip of the leaf. By\n% default, LRATIO=1.2.\n%\n% ALPHAMAX and P are merging parameters. See the help of function\n% skeleton_label for details. If merging is not enabled, then no leaves\n% will be pruned in step 3.\n\n% Author: Ramon Casero \n% Copyright \u00a9 2011, 2014 University of Oxford\n% Version: 0.5.1\n% \n% University of Oxford means the Chancellor, Masters and Scholars of\n% the University of Oxford, having an administrative office at\n% Wellington Square, Oxford OX1 2JD, UK. \n%\n% This file is part of Gerardus.\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details. The offer of this\n% program under the terms of the License is subject to the License\n% being interpreted in accordance with English Law and subject to any\n% action against the University of Oxford being under the jurisdiction\n% of the English Courts.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\n% check arguments\nnarginchk(1, 6);\nnargoutchk(0, 1);\n\nif ~isstruct(scimatsk)\n error('SCIMATSK must be an SCIMAT struct')\nend\n\n% defaults\nif (nargin < 2)\n scimat = [];\nend\nif (nargin < 3 || isempty(minlen))\n minlen = 5;\nend\nif (nargin < 4 || isempty(lratio))\n lratio = 1.2;\nend\nif (nargin < 5 || isempty(alphamax))\n alphamax = -Inf; % don't merge by default\nend\nif (nargin < 6 || isempty(p))\n p = 1.0; % don't smooth by default\nend\n\n%% Step 1: removal of big clumps of voxels\n\n% if we have no voxels to prune, don't waste time processing\nif (nnz(scimatsk.data) == 0)\n return\nend\n\n% get sparse matrix of distances between voxels. To label the skeleton we\n% don't care about the actual distances, just need to know which voxels are\n% connected to others. Actual distances are needed to parameterize the\n% branches, though\n[dsk, dictsk, idictsk] = seg2dmat(scimatsk.data, 'seg', ...\n [scimatsk.axis.spacing]);\n\n% find bifurcation voxels\n\n% compute degree of each skeleton voxel\ndeg = sum(dsk > 0, 2);\n\n% get distance matrix index of the bifurcation voxels\nbifidx = deg >= 3;\n\n% matrix index => image index\nbifidx = idictsk(bifidx);\n\n% label connected components of skeleton branches\n\n% remove bifurcation voxels from original skeleton\nscimatsk.data(bifidx) = 0;\n\n% get connected components in the image\ncc = bwconncomp(scimatsk.data);\n\n% make size vector always have size(3)\nif length(cc.ImageSize) == 2\n cc.ImageSize = [cc.ImageSize 1];\nend\n\n% connectivity between branches and bifurcation clumps,\n% and find which branches should be merged together\n\n% tag each branch with its label\nscimatsk.data = labelmatrix(cc);\n\n% create empty image volume and add only bifurcation voxels\nsk2 = zeros(cc.ImageSize, 'uint8');\nsk2(bifidx) = 1;\n\n% compute connected components to obtain clumps of bifurcation voxels\nbifcc = bwconncomp(sk2);\n\n% loop all the bifurcation clumps, to find which branches are neighbours of\n% each other\nfor I = 1:bifcc.NumObjects\n\n %% find which branches are connected to which bifurcation clumps\n\n % get voxels in the bifurcation clump\n % linear index -> row, col, slice\n [r, c, s] = ind2sub(cc.ImageSize, bifcc.PixelIdxList{I});\n\n % get a box 1 voxel bigger than the clump\n r0 = max(1, min(r) - 1);\n c0 = max(1, min(c) - 1);\n s0 = max(1, min(s) - 1);\n rend = min(cc.ImageSize(1), max(r) + 1);\n cend = min(cc.ImageSize(2), max(c) + 1);\n send = min(cc.ImageSize(3), max(s) + 1);\n\n % extract that box from the volume with the branches\n boxbr = scimatsk.data(r0:rend, c0:cend, s0:send);\n \n % create a box for the bifurcation clump\n boxbif = zeros(size(boxbr), class(sk2));\n r = r - r0 + 1;\n c = c - c0 + 1;\n s = s - s0 + 1;\n boxbif(sub2ind(size(boxbif), r, c, s)) = 1;\n \n % create a box with the same size\n box = zeros(size(boxbif));\n \n % tag as TODO=2 branch voxels\n box(boxbr ~= 0) = 2;\n \n % add to the vox the bifurcation clump voxels\n box(boxbif == 1) = 1;\n \n % dilate the clump 1 voxel\n box = bwregiongrow(box, 2, [], 1);\n \n % get the branches that the dilated bifurcation clump overlaps\n idx = double(boxbr(box == 1));\n\n % because in sk bifurcation voxels were removed, we can have \"0\" values\n % in idx. Remove them\n idx = idx(idx ~= 0);\n \n % number of branches\n N = length(idx);\n \n % in order to merge, the bifurcation needs to have at least 2\n % branches\n if (N < 2)\n continue\n end\n \n % get all combinations of pairs of branches that share this clump\n idx = nchoosek(idx, 2);\n \n % get voxel indices for bifurcation clump\n bif = bifcc.PixelIdxList{I};\n \n % duplicate the list. bif0 is going to be the list of superfluous\n % bifurcation voxels\n bif0 = bif;\n \n % loop each pair of branches combination\n for J = 1:size(idx, 1)\n \n % get voxel indices for each branch\n br0 = cc.PixelIdxList{idx(J, 1)};\n br1 = cc.PixelIdxList{idx(J, 2)};\n \n % merge and sort both branches and the bifurcation clump\n br = sort_branch([br0(:); bif(:); br1(:)], ...\n dsk, dictsk, idictsk);\n \n % remove from the list of superfluous bifurcation voxels those\n % that are needed to connect the two branches\n bif0 = setdiff(bif0, br);\n \n end\n \n % remove from the skeleton the list of superfluous bifurcation\n % voxels\n bifcc.PixelIdxList{I} = setdiff(bif, bif0);\n \nend\n\n% convert labelled skeleton to binary mask\nscimatsk.data = uint8(scimatsk.data ~= 0);\n\n% add bifurcation voxels to skeleton binary mask\nscimatsk.data(cat(1, bifcc.PixelIdxList{:})) = 1;\n\n%% Step 2: pruning of very short leaf branches\nwhile (1)\n \n % compute skeleton labelling\n [~, cc] = skeleton_label(scimatsk.data, [], [scimatsk.axis.spacing]);\n \n % get number of voxels in each branch\n n = cellfun(@(x) length(x), cc.PixelIdxList);\n \n % find leaf-branches that are shorter than the minimum length\n idx1 = find(n < minlen & cc.IsLeaf);\n \n % remove short branches from the segmentation\n scimatsk.data(cat(1, cc.PixelIdxList{idx1})) = 0;\n \n % recompute the skeleton labelling\n [~, ~, bifcc, mcon] = skeleton_label(scimatsk.data, [], [scimatsk.axis.spacing]);\n \n % find bifurcation clusters that are connected to 0 or 1 branches\n idx2 = find(sum(mcon, 1) < 2);\n \n % remove those bifurcation clumps, because they are not connecting\n % branches, they are either floating alone in space, or terminating a\n % branch\n scimatsk.data(cat(1, bifcc.PixelIdxList{idx2})) = 0;\n \n % if no bifurcation clumps were found to be removed, stop the\n % algorithm, because that means that no new short leaf-braches can be\n % found either\n if (isempty(idx2))\n break;\n end\n \nend\n\n\n%% Step 3: pruning of leaf branches produced by segmentation artifacts\n\n% skip if no full segmentation is provided\nif isempty(scimat)\n return\nend\n\n% repeat the process until no branches are removed\natleastonepruning = true;\nwhile (atleastonepruning)\n\n % if there are no prunings in this iterations, we stop\n atleastonepruning = false;\n \n % label the segmentation using multiple merging at every bifurcation\n % clump\n [scimat.data, cc, ~, mcon, ~, cc2] = ...\n skeleton_label(scimatsk.data, scimat.data, [scimat.axis.spacing], ...\n alphamax, p, false);\n \n % measure the stats of every merged branch\n stats2 = scimat_seg2label_stats(scimat, cc2, p);\n \n % loop each branch in the list of merged branches\n for I = 1:cc2.NumObjects\n\n % we consider the current branch a main branch, and any branch\n % coming out of it, a secondary branch\n \n % compute the major radius of the main branch\n r = sqrt(4 * stats2.Var(2, I));\n \n % loop consecutive pairs of segments in the main branch\n for J = 1:length(cc2.MergedBranches{I})-1\n \n % get the bifurcation clump between both segments\n bif = cc2.MergedBifClumps{I}(J);\n \n % get secondary branches attached to the bifurcation clump\n % (usually, there's only 1 secondary branch, but there can be more)\n bn = setdiff(find(mcon(:, bif)), cc2.MergedBranches{I}(J:J+1));\n \n % keep only secondary branches that are leaf-branches\n bn = bn(cc.IsLeaf(bn));\n \n % skip to next segment if there are no valid leaf secondary\n % branches\n if isempty(bn)\n continue\n end\n \n % compute distance between the first and last voxels in the\n % secondary branch, which gives a better estimate of whether the\n % branch protudes from the main vessel or not, than the branches\n % length (because the branch can be bent)\n len = zeros(size(bn));\n for K = 1:length(len)\n idx = cc.PixelIdxList{bn(K)}([1 end]);\n [r1, c1, s1] = ind2sub(size(scimatsk.data), idx);\n xyz = scimat_index2world([r1(:), c1(:), s1(:)], scimatsk);\n len(K) = sqrt(sum(diff(xyz).^2));\n end\n \n % get branches that have to be pruned\n toremove = (len / r) <= lratio;\n atleastonepruning = atleastonepruning || any(toremove);\n \n % if length of the secondary branch is not much larger than the\n % radius of the main branch, we assume that the secondary branch is\n % a segmentation artifact, and remove it\n scimatsk.data(cat(1, ...\n cc.PixelIdxList{bn(toremove)})) = 0;\n \n end\n \n end\n \nend\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% auxiliary functions\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% sort a set of voxels so that they form a branch\n% idx: voxel indices\n% d: distance matrix\nfunction [idx, param] = sort_branch(idx, d, dict, idict)\n\n% number of voxels in the current branch\nN = length(idx);\n\n% degenerate case in which the branch has only one voxel\nif (N == 1)\n param = 0;\n return\nend\n\n% create a \"branch distance matrix\" for only the voxels in the branch\nidx2 = full(dict(idx));\ndbr = d(idx2, idx2);\n\n% compute Dijkstra's shortest path from an arbitrary voxel in the\n% branch to every other voxel\n[dp, ~] = dijkstra(dbr, 1);\n\n% the furthest voxel should be one of the ends of the branch\n[~, v0] = max(dp);\n\n% compute shortest path to all other voxels in the branch\n%\n% note that even for apparently \"wire\" branches, sometimes we get small\n% cycles of 1 voxel, and instead of a \"linear\" shortest-path, we have a\n% tree, so in the next step, some of the voxels are going to be thrown\n% away\n[dp, parents] = dijkstra(dbr, v0);\n[~, v1] = max(dp);\n\n% backtrack the whole branch in order from the furthest point to\n% the original extreme point\nidx = [];\nparam = [];\nJ = 1;\nwhile (v1 ~= 0)\n idx(J) = idict(idx2(v1));\n param(J) = dp(v1);\n v1 = parents(v1);\n J = J + 1;\nend\n\n\n% make sure that cc.PixelIdxList{I} is a column vector\nidx = idx(:);\n\n% reorder voxels so that the parameterization increases\n% monotonically\nidx = idx(end:-1:1);\nparam = param(end:-1:1);\n\nend\n", "meta": {"author": "vigente", "repo": "gerardus", "sha": "4d7c5195b826967781f1bb967872410e66b7cd3d", "save_path": "github-repos/MATLAB/vigente-gerardus", "path": "github-repos/MATLAB/vigente-gerardus/gerardus-4d7c5195b826967781f1bb967872410e66b7cd3d/matlab/FiltersToolbox/scimat_skeleton_prune.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764746, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3663799474441689}} {"text": "function varargout = plot_directed_edges(V,E,varargin)\n % PLOT_DIRECTED_EDGES Plot direct edges using quiver\n %\n % p = plot_directed_edges(V,E)\n % p = plot_directed_edges(V,E,LINESPEC,...)\n %\n % Inputs:\n % V #V by dim list of edge vertiecs\n % E #E by 2 list of edges\n % Outputs:\n % p plot handle\n %\n % See also: plot_edges\n %\n if isempty(E)\n return;\n end\n\n switch size(V,2)\n case 2\n q = quiver( ...\n V(E(:,1),1), ...\n V(E(:,1),2), ...\n V(E(:,2),1)-V(E(:,1),1), ...\n V(E(:,2),2)-V(E(:,1),2), ...\n 0, ...\n varargin{:});\n otherwise\n error('Unsupported dimension: %d',size(V,2));\n end\n\n if nargout >= 1\n varargout{1} = p;\n end\n\nend\n\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/plot_directed_edges.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.366345986934752}} {"text": "function C = cell2ColorOrder(colors);\n% \n% C = cell2ColorOrder(colors);\n%\n% Convert a cell array containing color signifiers\n% into an N x 3 matrix, useable for color orders for \n% axes. (e.g., in setLineColors or mybar).\n%\n% color signifiers can be 1x3 matrices of [R G B]\n% values (from 0-1 for each channel), or else one\n% of the following characters:\n%\n% 'r': red [1 0 0]\n% 'g': green [0 1 0]\n% 'b': blue [0 0 1]\n% 'k': black [0 0 0]\n% 'y': yellow [1 1 0]\n% 'm': magenta [1 0 1]\n% 'c': cyan [0 1 1]\n% 'w': white [1 1 1]\n% 'e' or 'a': gray [.6 .6 .6]\n%\n%\n% ras, 06/05.\nif ~iscell(colors), error('Requires a cell input'); end\n\ncolors = unNestCell(colors);\nC = zeros(length(colors),3);\n\nfor i = 1:length(colors)\n if isnumeric(colors{i}) & length(colors{i})==3\n C(i,:) = colors{i};\n elseif ischar(colors{i})\n ch = colors{i}(1);\n switch ch\n case 'r', C(i,:) = [1 0 0];\n case 'g', C(i,:) = [0 1 0];\n case 'b', C(i,:) = [0 0 1];\n case 'k', C(i,:) = [0 0 0];\n case 'y', C(i,:) = [1 1 0];\n case 'm', C(i,:) = [1 0 1];\n case 'c', C(i,:) = [0 1 1];\n case 'w', C(i,:) = [1 1 1];\n case {'e','a'}, C(i,:) = [.6 .6 .6];\n otherwise, \n warning(sprintf('Unrecognized character %s',ch));\n end\n else\n error(sprintf('Entry %i is not a color signifier.',i));\n end\nend\n\nreturn\n\n ", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/utilities/cellHelpers/cell2ColorOrder.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.585101139733739, "lm_q2_score": 0.6261241842048092, "lm_q1q2_score": 0.3663459737930914}} {"text": "function [bnet, names] = mk_bat_dbn()\n% MK_BAT_DBN Make the BAT DBN\n% [bnet, names] = mk_bat_dbn()\n% See\n% - Forbes, Huang, Kanazawa and Russell, \"The BATmobile: Towards a Bayesian Automated Taxi\", IJCAI 95\n% - Boyen and Koller, \"Tractable Inference for Complex Stochastic Processes\", UAI98.\n\nnames = {'LeftClr', 'RightClr', 'LatAct', 'Xdot', 'InLane', 'FwdAct', ...\n 'Ydot', 'Stopped', 'EngStatus', 'FBStatus', ...\n 'LeftClrSens', 'RightClrSens', 'TurnSignalSens', 'XdotSens', 'YdotSens', ...\n 'FYdotDiffSens', 'FclrSens', 'BXdotSens', 'BclrSens', 'BYdotDiffSens', ...\n 'SensorValid', 'FYdotDiff', 'FcloseSlow', 'Fclr', 'BXdot', 'BcloseFast', 'Bclr', 'BYdotDiff'};\nss = length(names);\n\nintrac = {...\n 'LeftClr', 'LeftClrSens';\n 'RightClr', 'RightClrSens';\n 'LatAct', 'TurnSignalSens'; 'LatAct', 'Xdot';\n 'Xdot', 'XdotSens';\n 'FwdAct', 'Ydot';\n 'Ydot', 'YdotSens'; 'Ydot', 'Stopped';\n 'EngStatus', 'Ydot'; 'EngStatus', 'FYdotDiff'; 'EngStatus', 'Fclr'; 'EngStatus', 'BXdot';\n 'SensorValid', 'XdotSens'; 'SensorValid', 'YdotSens';\n 'FYdotDiff', 'FYdotDiffSens'; 'FYdotDiff', 'FcloseSlow';\n 'FcloseSlow', 'FBStatus';\n 'Fclr', 'FclrSens'; 'Fclr', 'FcloseSlow';\n 'BXdot', 'BXdotSens';\n 'Bclr', 'BclrSens'; 'Bclr', 'BXdot'; 'Bclr', 'BcloseFast';\n 'BcloseFast', 'FBStatus';\n 'BYdotDiff', 'BYdotDiffSens'; 'BYdotDiff', 'BcloseFast'};\n[intra, names] = mk_adj_mat(intrac, names, 1);\n\n\ninterc = {...\n 'LeftClr', 'LeftClr'; 'LeftClr', 'LatAct';\n 'RightClr', 'RightClr'; 'RightClr', 'LatAct';\n 'LatAct', 'LatAct'; 'LatAct', 'FwdAct';\n 'Xdot', 'Xdot'; 'Xdot', 'InLane';\n 'InLane', 'InLane'; 'InLane', 'LatAct';\n 'FwdAct', 'FwdAct';\n 'Ydot', 'Ydot';\n 'Stopped', 'Stopped';\n 'EngStatus', 'EngStatus';\n 'FBStatus', 'FwdAct'; 'FBStatus', 'LatAct'};\ninter = mk_adj_mat(interc, names, 0); \n\nobs = {'LeftClrSens', 'RightClrSens', 'TurnSignalSens', 'XdotSens', 'YdotSens', 'FYdotDiffSens', ...\n 'FclrSens', 'BXdotSens', 'BclrSens', 'BYdotDiffSens'};\n\nfor i=1:length(obs)\n onodes(i) = strmatch(obs{i}, names); %stringmatch(obs{i}, names);\nend\nonodes = sort(onodes);\n\ndnodes = 1:ss; \nns = 2*ones(1,ss); % binary nodes\nbnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'observed', onodes, 'eclass2', (1:ss)+ss);\n\n% make rnd params\nfor i=1:2*ss\n bnet.CPD{i} = tabular_CPD(bnet, i);\nend\n\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/examples/dynamic/mk_bat_dbn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548782017745, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3661764062623688}} {"text": "%kvhmed 'Median Filter the Image Using Histogram to Find Median (K1)'\n% This MatLab function was automatically generated by a converter (KhorosToMatLab) from the Khoros vhmed.pane file\n%\n% Parameters: \n% InputFile: i 'Input Image ', required: 'input image filename'\n% Integer: w 'Window Width ', default: 3: 'window width argument'\n% Integer: h 'Window Height', default: 3: 'window height argument'\n% OutputFile: o 'Output Image', required: 'output image filename'\n%\n% Example: o = kvhmed(i, {'i','';'w',3;'h',3;'o',''})\n%\n% Khoros helpfile follows below:\n%\n% PROGRAM\n% vhmed - Median Filter the Image Using Histogram to Find Median (K1)\n%\n% DESCRIPTION\n% .I vhmed\n% computes a two dimensional median filter of width w and height h over\n% the given image. The median is computed by moving a w by h\n% pixel mask over the image and updating the histogram of the mask.\n% \n% Images must be of data storage type byte.\n% \n% In rectangular odd windows (masks) the median value is replaced in\n% the center pixel location of the window. The default window\n% size is 3x3.\n% \n% The width or height of a window cannot be an even number.\n%\n% \n%\n% EXAMPLES\n% vhmed -i input.image -o output.image -w 3 -h 3\n% \n% This command performs median filtering of width 3 and height 3 on\n% input.image and stores the result in output.image.\n%\n% \"SEE ALSO\"\n% vqmed(1)\n%\n% RESTRICTIONS \n% .I vhmed\n% does not support even window dimensions and only works on\n% data storage type byte.\n%\n% REFERENCES \n%\n% COPYRIGHT\n% Copyright (C) 1993 - 1997, Khoral Research, Inc. (\"KRI\") All rights reserved.\n% \n\n\nfunction varargout = kvhmed(varargin)\nif nargin ==0\n Inputs={};arglist={'',''};\nelseif nargin ==1\n Inputs=varargin{1};arglist={'',''};\nelseif nargin ==2\n Inputs=varargin{1}; arglist=varargin{2};\nelse error('Usage: [out1,..] = kvhmed(Inputs,arglist).');\nend\nif size(arglist,2)~=2\n error('arglist must be of form {''ParameterTag1'',value1;''ParameterTag2'',value2}')\n end\nnarglist={'i', '__input';'w', 3;'h', 3;'o', '__output'};\nmaxval={0,32,32,0};\nminval={0,1,1,0};\nistoggle=[0,1,1,0];\nwas_set=istoggle * 0;\nparamtype={'InputFile','Integer','Integer','OutputFile'};\n% identify the input arrays and assign them to the arguments as stated by the user\nif ~iscell(Inputs)\nInputs = {Inputs};\nend\nNumReqOutputs=1; nextinput=1; nextoutput=1;\n for ii=1:size(arglist,1)\n wasmatched=0;\n for jj=1:size(narglist,1)\n if strcmp(arglist{ii,1},narglist{jj,1}) % a given argument was matched to the possible arguments\n wasmatched = 1;\n was_set(jj) = 1;\n if strcmp(narglist{jj,2}, '__input')\n if (nextinput > length(Inputs)) \n error(['Input ' narglist{jj,1} ' has no corresponding input!']); \n end\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n elseif strcmp(narglist{jj,2}, '__output')\n if (nextoutput > nargout) \n error(['Output nr. ' narglist{jj,1} ' is not present in the assignment list of outputs !']); \n end\n if (isempty(arglist{ii,2}))\n narglist{jj,2} = 'OK_out';\n else\n narglist{jj,2} = arglist{ii,2};\n end\n\n nextoutput = nextoutput + 1;\n if (minval{jj} == 0) \n NumReqOutputs = NumReqOutputs - 1;\n end\n elseif isstr(arglist{ii,2})\n narglist{jj,2} = arglist{ii,2};\n else\n if strcmp(paramtype{jj}, 'Integer') & (round(arglist{ii,2}) ~= arglist{ii,2})\n error(['Argument ' arglist{ii,1} ' is of integer type but non-integer number ' arglist{ii,2} ' was supplied']);\n end\n if (minval{jj} ~= 0 | maxval{jj} ~= 0)\n if (minval{jj} == 1 & maxval{jj} == 1 & arglist{ii,2} < 0)\n error(['Argument ' arglist{ii,1} ' must be bigger or equal to zero!']);\n elseif (minval{jj} == -1 & maxval{jj} == -1 & arglist{ii,2} > 0)\n error(['Argument ' arglist{ii,1} ' must be smaller or equal to zero!']);\n elseif (minval{jj} == 2 & maxval{jj} == 2 & arglist{ii,2} <= 0)\n error(['Argument ' arglist{ii,1} ' must be bigger than zero!']);\n elseif (minval{jj} == -2 & maxval{jj} == -2 & arglist{ii,2} >= 0)\n error(['Argument ' arglist{ii,1} ' must be smaller than zero!']);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} < minval{jj})\n error(['Argument ' arglist{ii,1} ' must be bigger than ' num2str(minval{jj})]);\n elseif (minval{jj} ~= maxval{jj} & arglist{ii,2} > maxval{jj})\n error(['Argument ' arglist{ii,1} ' must be smaller than ' num2str(maxval{jj})]);\n end\n end\n end\n if ~strcmp(narglist{jj,2},'OK_out') & ~strcmp(narglist{jj,2},'OK_in') \n narglist{jj,2} = arglist{ii,2};\n end\n end\n end\n if (wasmatched == 0 & ~strcmp(arglist{ii,1},''))\n error(['Argument ' arglist{ii,1} ' is not a valid argument for this function']);\n end\nend\n% match the remaining inputs/outputs to the unused arguments and test for missing required inputs\n for jj=1:size(narglist,1)\n if strcmp(paramtype{jj}, 'Toggle')\n if (narglist{jj,2} ==0)\n narglist{jj,1} = ''; \n end;\n narglist{jj,2} = ''; \n end;\n if ~strcmp(narglist{jj,2},'__input') && ~strcmp(narglist{jj,2},'__output') && istoggle(jj) && ~ was_set(jj)\n narglist{jj,1} = ''; \n narglist{jj,2} = ''; \n end;\n if strcmp(narglist{jj,2}, '__input')\n if (minval{jj} == 0) % meaning this input is required\n if (nextinput > size(Inputs)) \n error(['Required input ' narglist{jj,1} ' has no corresponding input in the list!']); \n else\n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n end\n else % this is an optional input\n if (nextinput <= length(Inputs)) \n narglist{jj,2} = 'OK_in';\n nextinput = nextinput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end;\n else \n if strcmp(narglist{jj,2}, '__output')\n if (minval{jj} == 0) % this is a required output\n if (nextoutput > nargout & nargout > 1) \n error(['Required output ' narglist{jj,1} ' is not stated in the assignment list!']); \n else\n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n NumReqOutputs = NumReqOutputs-1;\n end\n else % this is an optional output\n if (nargout - nextoutput >= NumReqOutputs) \n narglist{jj,2} = 'OK_out';\n nextoutput = nextoutput + 1;\n else \n narglist{jj,1} = '';\n narglist{jj,2} = '';\n end;\n end\n end\n end\nend\nif nargout\n varargout = cell(1,nargout);\nelse\n varargout = cell(1,1);\nend\nglobal KhorosRoot\nif exist('KhorosRoot') && ~isempty(KhorosRoot)\nw=['\"' KhorosRoot];\nelse\nif ispc\n w='\"C:\\Program Files\\dip\\khorosBin\\';\nelse\n[s,w] = system('which cantata');\nw=['\"' w(1:end-8)];\nend\nend\n[varargout{:}]=callKhoros([w 'vhmed\" '],Inputs,narglist);\n", "meta": {"author": "aludnam", "repo": "MATLAB", "sha": "020b5cb02cc843e09a0ed689589382f18cce5e6d", "save_path": "github-repos/MATLAB/aludnam-MATLAB", "path": "github-repos/MATLAB/aludnam-MATLAB/MATLAB-020b5cb02cc843e09a0ed689589382f18cce5e6d/matlab_tools/Converted/kvhmed.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.36617639865290497}} {"text": "function pf = loadPoleFigure_scintag(fname,varargin)\n% import data fom scintag ascii file\n%\n% Syntax\n% pf = loadPoleFigure_scintag(fname)\n%\n% Input\n% fname - filename\n%\n% Output\n% pf - vector of @PoleFigure\n%\n% See also\n% ImportPoleFigureData loadPoleFigure\n\n\nfid = fopen(fname,'r');\nd = fread(fid);\nfclose(fid);\n\ntry\n d(d==13) = [];\n d = char(d)';\n \n file_id = regexpi(d(1:200),'(?<=File ID:(.*?)\\n)(.*?)\\n','match');\n comment = file_id{1};\n h = string2Miller(comment);\n \n ranges = regexpsplit(d,'Range');\n axis = regexpsplit(ranges{1},'Axis');\n \n % extract the stepsize\n f = regexpi(axis(2:end),'(?<=Step Size :)(.*?)\\n','match');\n f = [f{:}]; f = [f{:}];\n f = str2num(f);\n step = f(find(f>0,1,'first'));\n \n % process the ranges\n for k=2:numel(ranges)\n range = ranges{k};\n \n po = sscanf(range,'%d')*step;\n \n low = sscanf(range(41:49),'%f');\n high = sscanf(range(87:95),'%f');\n \n bg = (low+high)/2;\n \n t = find(double(range(97:end))==10,1,'first');\n f = numel(sscanf(range(97:97+t),'%f'));\n \n data = sscanf(range(97:end),'%f');\n \n if f==3 % counts per second\n az = data(1:3:end);\n I(:,k-1) = data(2:3:end);\n else % counts in time\n az = data(1:4:end);\n I(:,k-1) = data(2:4:end)*1000./data(3:4:end);\n end\n \n % background correction\n I(:,k-1) = I(:,k-1) - bg;\n \n % specimen direction\n r(:,k-1) = vector3d('theta',po*degree,'rho',az*degree);\n \n end\n \n pf = PoleFigure( h,r,I,varargin{:});\ncatch\n interfaceError(fname);\nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/interfaces/loadPoleFigure_scintag.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548511303338, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.36617639104344096}} {"text": "% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program; if not, write to the Free Software\n% Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\nfunction amtriant\n%AMTRIANT Unit test for the function AMTRIANG.\n\n%\tO. Lemoine - February 1996.\n\n\nN=256; t0=149; T=50; \nsig=amtriang(N,t0,T);\nif abs(sig(t0)-1)>sqrt(eps),\t\t\t\t% sig(t0)=1\n error('amtriang test 1 failed ');\nend\n[tm,T1]=loctime(sig);\nif abs(T-T1)>=sqrt(1/N),\t\t\t\t% width\n error('amtriang test 3 failed ');\t\nend\ndist=1:min([N-t0,t0-1]);\nif any(abs(sig(t0-dist)-sig(t0+dist))>sqrt(eps))~=0, \t% symmetry\n error('amtriang test 3 failed ');\nend\n\n\nN=12; t0=5; T=7; \nsig=amtriang(N,t0,T);\nif abs(sig(t0)-1)>sqrt(eps),\t\t\t\t% sig(t0)=1\n error('amtriang test 4 failed ');\nend\n[tm,T1]=loctime(sig);\nif abs(T-T1)>=sqrt(1/N),\t\t\t\t% width\n error('amtriang test 5 failed ');\t\nend\ndist=1:min([N-t0,t0-1]);\nif any(abs(sig(t0-dist)-sig(t0+dist))>sqrt(eps))~=0, \t% symmetry\n error('amtriang test 6 failed ');\nend\n\n\nN=535; t0=354; T=101; \nsig=amtriang(N,t0,T);\nif abs(sig(t0)-1)>sqrt(eps),\t\t\t\t% sig(t0)=1\n error('amtriang test 7 failed ');\nend\n[tm,T1]=loctime(sig);\nif abs(T-T1)>=sqrt(1/N),\t\t\t\t% width\n error('amtriang test 8 failed ');\t\nend\ndist=1:min([N-t0,t0-1]);\nif any(abs(sig(t0-dist)-sig(t0+dist))>sqrt(eps))~=0, \t% symmetry\n error('amtriang test 9 failed ');\nend\n", "meta": {"author": "HeLiangHIT", "repo": "time_frequency", "sha": "09c2abe92355ff5cd867bdb169229682e9d7af7c", "save_path": "github-repos/MATLAB/HeLiangHIT-time_frequency", "path": "github-repos/MATLAB/HeLiangHIT-time_frequency/time_frequency-09c2abe92355ff5cd867bdb169229682e9d7af7c/tf_tool_box/tftb-0.2/tests/amtriant.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5312093733737563, "lm_q2_score": 0.6893056104028797, "lm_q1q2_score": 0.3661656013651283}} {"text": "function [dStates, contactForces] = dynamics_doubleStance(States, Actuators, Parameters)\n% function [dStates, Actuators] = dynamics_doubleStance(States, Actuators, Parameters)\n%\n% Computer Generated File -- DO NOT EDIT \n%\n% This function was created by the function Write_ContinuousDynamics()\n% 10-Dec-2013 19:40:47\n%\n% Dymanics Model: retractable double pendulum biped\n% Motion Phase: Double Stance\n%\n% Matthew Kelly \n% Cornell University \n% \n\nx = States(1,:); % (m) Foot One horizontal position\ny = States(2,:); % (m) Foot One vertical position\nth1 = States(3,:); % (rad) Leg One absolute angle\nth2 = States(4,:); % (rad) Leg Two absolute angle\nL1 = States(5,:); % (m) Leg One length\nL2 = States(6,:); % (m) Leg Two length\ndx = States(7,:); % (m/s) Foot One horizontal velocity\ndy = States(8,:); % (m/s) Foot One vertical velocity\ndth1 = States(9,:); % (rad/s) Leg One absolute angular rate\ndth2 = States(10,:); % (rad/s) Leg Two absolute angular rate\ndL1 = States(11,:); % (m/s) Leg One extension rate\ndL2 = States(12,:); % (m/s) Leg Two extensioin rate\n\nF1 = Actuators(1,:); % (N) Compresive axial force in Leg One\nF2 = Actuators(2,:); % (N) Compresive axial force in Leg Two\nT1 = Actuators(3,:); % (Nm) External torque applied to Leg One\nT2 = Actuators(4,:); % (Nm) External torque applied to Leg Two\nThip = Actuators(5,:); % (Nm) Torque acting on Leg Two from Leg One\n\nm1 = Parameters.m1; % (kg) Foot One mass\nm2 = Parameters.m2; % (kg) Foot Two mass\nM = Parameters.M; % (kg) Hip mass\ng = Parameters.g; % (m/s^2) Gravity\n\n% Constraints for this phase: \nddx = 0; %(m) Foot One horizontal position\nddy = 0; %(m) Foot One vertical position\n\ndStates = zeros(size(States));\ndStates(1:6,:) = States((1+6):(6+6),:);\ndStates(7,:) = zeros(1,size(States,2));\ndStates(8,:) = zeros(1,size(States,2));\ndStates(9,:) = -(L2.*Thip - L2.*T1 + L1.*T2.*cos(th1 - th2) + L1.*Thip.*cos(th1 - th2) - F2.*L1.*L2.*sin(th1 - th2) + 2.*L1.*L2.*M.*dL1.*dth1 + L1.*L2.*M.*ddy.*cos(th1) + L1.*L2.*M.*g.*cos(th1) - L1.*L2.*M.*ddx.*sin(th1))./(L1.^2.*L2.*M);\ndStates(10,:) = (L2.*Thip.*cos(th1).*cos(th2) - L2.*T1.*cos(th1).*cos(th2) - L2.*T1.*sin(th1).*sin(th2) + L2.*Thip.*sin(th1).*sin(th2) - L1.*L2.*M.*ddy.*cos(th2) + L1.*L2.*M.*ddx.*sin(th2) + L1.*T2.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*Thip.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*T2.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*T2.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*T2.*sin(th1 - th2).*cos(th2).*sin(th1) + L1.*Thip.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*Thip.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*Thip.*sin(th1 - th2).*cos(th2).*sin(th1) + F1.*L1.*L2.*cos(th1).*sin(th2) - F1.*L1.*L2.*cos(th2).*sin(th1) - F2.*L1.*L2.*cos(th1 - th2).*cos(th1).*sin(th2) + F2.*L1.*L2.*cos(th1 - th2).*cos(th2).*sin(th1) - F2.*L1.*L2.*sin(th1 - th2).*cos(th1).*cos(th2) - F2.*L1.*L2.*sin(th1 - th2).*sin(th1).*sin(th2) - 2.*L1.*L2.*M.*dL2.*dth2.*cos(th2).^2 - 2.*L1.*L2.*M.*dL2.*dth2.*sin(th2).^2 + L1.*L2.*M.*ddy.*cos(th1).^2.*cos(th2) + L1.*L2.*M.*g.*cos(th1).^2.*cos(th2) - L1.*L2.*M.*ddx.*cos(th1).^2.*sin(th2) + L1.*L2.*M.*ddy.*cos(th2).*sin(th1).^2 + L1.*L2.*M.*g.*cos(th2).*sin(th1).^2 - L1.*L2.*M.*ddx.*sin(th1).^2.*sin(th2))./(L1.*L2.^2.*M.*(cos(th2).^2 + sin(th2).^2));\ndStates(11,:) = -(T2.*sin(th1 - th2) + Thip.*sin(th1 - th2) - F1.*L2 + F2.*L2.*cos(th1 - th2) - L1.*L2.*M.*dth1.^2 + L2.*M.*ddx.*cos(th1) + L2.*M.*ddy.*sin(th1) + L2.*M.*g.*sin(th1))./(L2.*M);\ndStates(12,:) = (L2.*T1.*cos(th2).*sin(th1) - L2.*T1.*cos(th1).*sin(th2) + L2.*Thip.*cos(th1).*sin(th2) - L2.*Thip.*cos(th2).*sin(th1) - F1.*L1.*L2.*sin(th1).*sin(th2) - L1.*L2.*M.*ddx.*cos(th2) - L1.*L2.*M.*ddy.*sin(th2) + L1.*L2.^2.*M.*dth2.^2.*cos(th2).^2 + L1.*L2.^2.*M.*dth2.^2.*sin(th2).^2 + L1.*T2.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*T2.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*T2.*sin(th1 - th2).*cos(th1).*cos(th2) + L1.*Thip.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*Thip.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*Thip.*sin(th1 - th2).*cos(th1).*cos(th2) + L1.*T2.*sin(th1 - th2).*sin(th1).*sin(th2) + L1.*Thip.*sin(th1 - th2).*sin(th1).*sin(th2) - F1.*L1.*L2.*cos(th1).*cos(th2) + F2.*L1.*L2.*cos(th1 - th2).*sin(th1).*sin(th2) - F2.*L1.*L2.*sin(th1 - th2).*cos(th1).*sin(th2) + F2.*L1.*L2.*sin(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*ddx.*cos(th1).^2.*cos(th2) + L1.*L2.*M.*ddx.*cos(th2).*sin(th1).^2 + L1.*L2.*M.*ddy.*cos(th1).^2.*sin(th2) + L1.*L2.*M.*g.*cos(th1).^2.*sin(th2) + L1.*L2.*M.*ddy.*sin(th1).^2.*sin(th2) + L1.*L2.*M.*g.*sin(th1).^2.*sin(th2) + F2.*L1.*L2.*cos(th1 - th2).*cos(th1).*cos(th2))./(L1.*L2.*M.*(cos(th2).^2 + sin(th2).^2));\n\n% contactForces(1,:) == H1 == (N) Foot One, horizontal contact force\n% contactForces(2,:) == V1 == (N) Foot One, vertical contact force\n% contactForces(3,:) == H2 == (N) Foot Two, horizontal contact force\n% contactForces(4,:) == V2 == (N) Foot Two, vertical contact force\ncontactForces = zeros(4,size(States,2));\ncontactForces(1,:) = (Thip.*sin(th1) - T1.*sin(th1) + L1.*ddx.*m1 + F1.*L1.*cos(th1))./L1;\ncontactForces(2,:) = (T1.*cos(th1) - Thip.*cos(th1) + L1.*ddy.*m1 + L1.*g.*m1 + F1.*L1.*sin(th1))./L1;\ncontactForces(3,:) = (L1.*M.*T2.*sin(th2) + L1.*M.*Thip.*sin(th2) + L2.*T1.*m2.*sin(th1) - L2.*Thip.*m2.*sin(th1) - L1.*L2.*M.*ddx.*m2 - L1.*T2.*m2.*cos(th1 - th2).*sin(th1) + L1.*T2.*m2.*sin(th1 - th2).*cos(th1) - L2.*T1.*m2.*cos(th1 - th2).*sin(th2) - L2.*T1.*m2.*sin(th1 - th2).*cos(th2) - L1.*Thip.*m2.*cos(th1 - th2).*sin(th1) + L1.*Thip.*m2.*sin(th1 - th2).*cos(th1) + L2.*Thip.*m2.*cos(th1 - th2).*sin(th2) + L2.*Thip.*m2.*sin(th1 - th2).*cos(th2) - F2.*L1.*L2.*M.*cos(th2) - F1.*L1.*L2.*m2.*cos(th1) + L1.*T2.*m2.*cos(th1 - th2).^2.*sin(th2) + L1.*Thip.*m2.*cos(th1 - th2).^2.*sin(th2) + L1.*T2.*m2.*sin(th1 - th2).^2.*sin(th2) + L1.*Thip.*m2.*sin(th1 - th2).^2.*sin(th2) + L1.*L2.*M.*ddx.*m2.*cos(th1).^2 + L1.*L2.*M.*ddx.*m2.*cos(th2).^2 + L1.*L2.*M.*ddx.*m2.*sin(th1).^2 + L1.*L2.*M.*ddx.*m2.*sin(th2).^2 + F1.*L1.*L2.*m2.*cos(th1 - th2).*cos(th2) + F2.*L1.*L2.*m2.*cos(th1 - th2).*cos(th1) - F1.*L1.*L2.*m2.*sin(th1 - th2).*sin(th2) + F2.*L1.*L2.*m2.*sin(th1 - th2).*sin(th1) - F2.*L1.*L2.*m2.*cos(th1 - th2).^2.*cos(th2) - F2.*L1.*L2.*m2.*sin(th1 - th2).^2.*cos(th2) + L1.*L2.*M.*ddy.*m2.*sin(th1 - th2).*sin(th1).*sin(th2) + L1.*L2.*M.*g.*m2.*sin(th1 - th2).*sin(th1).*sin(th2) - L1.*L2.*M.*ddx.*m2.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*ddy.*m2.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*L2.*M.*ddy.*m2.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*ddy.*m2.*sin(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*g.*m2.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*L2.*M.*g.*m2.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*g.*m2.*sin(th1 - th2).*cos(th1).*cos(th2) - L1.*L2.*M.*ddx.*m2.*cos(th1 - th2).*sin(th1).*sin(th2) + L1.*L2.*M.*ddx.*m2.*sin(th1 - th2).*cos(th1).*sin(th2) - L1.*L2.*M.*ddx.*m2.*sin(th1 - th2).*cos(th2).*sin(th1))./(L1.*L2.*M.*(cos(th2).^2 + sin(th2).^2));\ncontactForces(4,:) = -(L1.*M.*T2.*cos(th2) + L1.*M.*Thip.*cos(th2) + L2.*T1.*m2.*cos(th1) - L2.*Thip.*m2.*cos(th1) + L1.*L2.*M.*ddy.*m2 - L1.*T2.*m2.*cos(th1 - th2).*cos(th1) - L2.*T1.*m2.*cos(th1 - th2).*cos(th2) - L1.*Thip.*m2.*cos(th1 - th2).*cos(th1) + L2.*Thip.*m2.*cos(th1 - th2).*cos(th2) - L1.*T2.*m2.*sin(th1 - th2).*sin(th1) + L2.*T1.*m2.*sin(th1 - th2).*sin(th2) - L1.*Thip.*m2.*sin(th1 - th2).*sin(th1) - L2.*Thip.*m2.*sin(th1 - th2).*sin(th2) + F2.*L1.*L2.*M.*sin(th2) + F1.*L1.*L2.*m2.*sin(th1) + L1.*T2.*m2.*cos(th1 - th2).^2.*cos(th2) + L1.*Thip.*m2.*cos(th1 - th2).^2.*cos(th2) + L1.*T2.*m2.*sin(th1 - th2).^2.*cos(th2) + L1.*Thip.*m2.*sin(th1 - th2).^2.*cos(th2) + F2.*L1.*L2.*m2.*sin(th1 - th2).^2.*sin(th2) - L1.*L2.*M.*ddy.*m2.*cos(th1).^2 - L1.*L2.*M.*ddy.*m2.*cos(th2).^2 - L1.*L2.*M.*g.*m2.*cos(th1).^2 - L1.*L2.*M.*g.*m2.*cos(th2).^2 - L1.*L2.*M.*ddy.*m2.*sin(th1).^2 - L1.*L2.*M.*ddy.*m2.*sin(th2).^2 - L1.*L2.*M.*g.*m2.*sin(th1).^2 - L1.*L2.*M.*g.*m2.*sin(th2).^2 - F1.*L1.*L2.*m2.*cos(th1 - th2).*sin(th2) - F1.*L1.*L2.*m2.*sin(th1 - th2).*cos(th2) - F2.*L1.*L2.*m2.*cos(th1 - th2).*sin(th1) + F2.*L1.*L2.*m2.*sin(th1 - th2).*cos(th1) + F2.*L1.*L2.*m2.*cos(th1 - th2).^2.*sin(th2) + L1.*L2.*M.*ddx.*m2.*sin(th1 - th2).*sin(th1).*sin(th2) + L1.*L2.*M.*ddy.*m2.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*g.*m2.*cos(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*ddx.*m2.*cos(th1 - th2).*cos(th1).*sin(th2) - L1.*L2.*M.*ddx.*m2.*cos(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*ddx.*m2.*sin(th1 - th2).*cos(th1).*cos(th2) + L1.*L2.*M.*ddy.*m2.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*L2.*M.*ddy.*m2.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*L2.*M.*ddy.*m2.*sin(th1 - th2).*cos(th2).*sin(th1) + L1.*L2.*M.*g.*m2.*cos(th1 - th2).*sin(th1).*sin(th2) - L1.*L2.*M.*g.*m2.*sin(th1 - th2).*cos(th1).*sin(th2) + L1.*L2.*M.*g.*m2.*sin(th1 - th2).*cos(th2).*sin(th1))./(L1.*L2.*M.*(cos(th2).^2 + sin(th2).^2));\n\nend\n", "meta": {"author": "MatthewPeterKelly", "repo": "dscTutorials", "sha": "e1e97a9be03ec146f88bd6ddd9e06db7ee52e242", "save_path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials", "path": "github-repos/MATLAB/MatthewPeterKelly-dscTutorials/dscTutorials-e1e97a9be03ec146f88bd6ddd9e06db7ee52e242/FancyDoublePendulum/Polar/computerGeneratedCode/dynamics_doubleStance.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8289387914176258, "lm_q2_score": 0.44167300566462553, "lm_q1q2_score": 0.3661198875174249}} {"text": "function cmap = GetColormap(clrmap_name,numK)\nnumK = double(numK);\ndata_dir = GetCurrentDataDir();\nload(fullfile(data_dir,'CustomColormaps.mat'));\nif strcmp(clrmap_name,'hsv_new'),\n cmap64 = hsv_new;\n cmap = InterpColormap(cmap64,numK);\nelseif strcmp(clrmap_name,'jet'),\n cmap = flipud(jet(numK)); \nelseif strcmp(clrmap_name,'greedy_hsv'),\n% cmap64 = greedy_hsv;\n% cmap = InterpColormap(cmap64,numK);\n% choose random colors!\n% cmap64 = greedy_hsv;\nrng(1);\nH = horzcat(rand(numK,1),rand(numK,1),0.5+0.5*rand(numK,1));\ncmap = hsv2rgb(H);\n \nelseif strcmp(clrmap_name,'hsv_old'),\n cmap = hsv(round(numK*1.1));\n% cmap64 = hsv_old;\n% % same as:\n% temp = hsv(70);\n% cmap64 = temp(1:64,:);\n\nelse\n cmap64 = hsv_new;\n cmap = InterpColormap(cmap64,numK);\nend\n\n% cmap = [1,0.956763267517090,0.00606909440830350;0.393025994300842,1,0.00697167776525021;0,1,1;0.402252703905106,0.00566019536927342,1;1,0,0;1,0.477354049682617,0.00717086857184768];\n\ncmap(cmap<0) = 0;\nend\n\nfunction cmap = InterpColormap(cmap64,numK) % this doesn't work well for very small numK - too close to edge\nk = double(numK);\nc1 = interp1(1:64,cmap64(:,1),linspace(1,64,k),'pchip');\nc2 = interp1(1:64,cmap64(:,2),linspace(1,64,k),'pchip');\nc3 = interp1(1:64,cmap64(:,3),linspace(1,64,k),'pchip');\n% c1 = interp1(1:64,cmap64(:,1),linspace(1,64,k),'spline');\n% c2 = interp1(1:64,cmap64(:,2),linspace(1,64,k),'spline');\n% c3 = interp1(1:64,cmap64(:,3),linspace(1,64,k),'spline');\ncmap = [c1',c2',c3'];\nend", "meta": {"author": "xiuyechen", "repo": "FishExplorer", "sha": "c61392cf0835480d64fc03c15f1992935fdc7106", "save_path": "github-repos/MATLAB/xiuyechen-FishExplorer", "path": "github-repos/MATLAB/xiuyechen-FishExplorer/FishExplorer-c61392cf0835480d64fc03c15f1992935fdc7106/GUI functions/GetColormap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.366094344255917}} {"text": "function test_ipopt\n\n auxdata = {} ;\n\n options.lb = [ -Inf, -Inf ] ; % Lower bound on the variables.\n options.ub = [ Inf, Inf ] ; % Upper bound on the variables.\n\n % The constraint functions are bounded to zero\n options.cl = [ 0, 0, -Inf ]; % constraints\n options.cu = [ Inf, Inf, 0];\n \n % Set up the auxiliary data.\n options.auxdata = auxdata ;\n \n % Set the IPOPT options.\n options.ipopt.jac_d_constant = 'no';\n options.ipopt.hessian_constant = 'no';\n options.ipopt.mu_strategy = 'adaptive';\n options.ipopt.max_iter = 400;\n options.ipopt.tol = 1e-10;\n options.ipopt.linear_solver = 'ma57';\n \n % The callback functions.\n funcs.objective = @objective;\n funcs.constraints = @constraints;\n funcs.gradient = @gradient;\n funcs.jacobian = @jacobian;\n funcs.jacobianstructure = @jacobianstructure;\n if false\n options.ipopt.derivative_test = 'first-order';\n funcs.hessian = @hessian;\n funcs.hessianstructure = @hessianstructure;\n else\n options.ipopt.hessian_approximation = 'limited-memory';\n %options.ipopt.limited_memory_update_type = 'bfgs' ; % {bfgs}, sr1 = 6; % {6}\n %options.ipopt.limited_memory_update_type = 'sr1' ;\n options.ipopt.limited_memory_update_type = 'bfgs' ; % {bfgs}, sr1 = 6; % {6}\n end\n\n % Run IPOPT.\n x0 = [-2, 1] ; \n\n tic\n [x, info] = ipopt_auxdata(x0,funcs,options);\n elapsed = toc ;\n\n info;\n\n x\n\nend\n\n%%\n% map the indices with the corresponding index in the spase matrix\nfunction f = objective(x,auxdata)\n f = 100*(x(2)-x(1)^2)^2+(1-x(1))^2 ;\nend\n\n%% \n% map the indices with the corresponding index in the spase matrix\nfunction g = gradient(x,auxdata)\n g = [ 400*x(1)*(x(1)^2-x(2))+2*x(1)-2, ...\n 200*(x(2)-x(1)^2) ] ;\nend\n\nfunction f = constraints(x,auxdata)\n f = zeros(3,1) ;\n f(1) = x(1)*x(2)-1 ; % = 0\n f(2) = x(1) + x(2)^2 ; % >= 0\n f(3) = x(1) ;\nend\n\nfunction jac = jacobian(x,auxdata)\n jac = sparse([ x(2), x(1) ; ...\n 1, 2*x(2) ; ...\n 1, 0 ]) ;\nend\n\nfunction jac = jacobianstructure(auxdata)\n jac = sparse(ones(3,2)) ;\nend\n\nfunction H = hessian(x, sigma, lambda, auxdata)\n H = sigma * [ 1200*x(1)^2-400*x(2)+2, 0 ; ...\n -400*x(1) 200] ;\n H = H + lambda(1) * [ 0 0 ; 1 0 ] ;\n H = H + lambda(2) * [ 0 0 ; 0 2 ] ;\n H = sparse(H) ;\nend\n\nfunction H = hessianstructure(auxdata)\n H = sparse([ 1 0 ; 1 1]) ;\nend\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/math/ipopt/examples/test_ipopt2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.36609433804620606}} {"text": "% AUTHORSHIP\n% Primary Developer: Stephen Meehan \n% Bioinformatics Lead: Wayne Moore \n% Provided by the Herzenberg Lab at Stanford University \n% License: BSD 3 clause\n%\nfunction [x, y]=clockwise(xy)\nx=xy(:,1);\ny=xy(:,2);\ncx = mean(x);\ncy = mean(y);\na = atan2(y - cy, x - cx);\n[~, order] = sort(a);\nx = x(order);\ny = y(order);\n%assert(all(ismember([x y],xy,'rows')));\nend\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/External/umap/util/clockwise.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3660899256934945}} {"text": "function P = P_given_TVN(x)\n% Downloaded from the personal page of Professor Sigurd Skogestad\n% http://www.nt.ntnu.no/users/skoge/diplom/prosjekt03/wold/MatLab/\nA = co2_sw(x);\nP = -A.g(2);\n", "meta": {"author": "simulkade", "repo": "FVTool", "sha": "49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6", "save_path": "github-repos/MATLAB/simulkade-FVTool", "path": "github-repos/MATLAB/simulkade-FVTool/FVTool-49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6/PhysicalProperties/P_given_TVN.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3660899256934945}} {"text": "function F = uminus( F )\n%- Unary minus of a SPHEREFUNV\n% -F returns the SPHEREFUNV negated componentwise. \n%\n% UMINUS(F) is called by the syntax '-F'. \n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Empty check: \nif (isempty(F) )\n return\nend\n\n% Take uminus of each component:\nF.components = cellfun(@uminus, F.components, 'UniformOutput', false);\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spherefunv/uminus.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5813030906443133, "lm_q2_score": 0.6297746074044134, "lm_q1q2_score": 0.3660899256934945}} {"text": "function [err,contrfile] = ContrastTest (N_runs, polort, N_basis, Task, N_tasks, N_contr, El, N_base)\n%\n% [err,] = ContrastTest ()\n%\n%Purpose:\n% Construct the contrast test matrix used in -glt option of 3dDeconvolve.\n%\n%\n%Input Parameters:\n%\n%\n%\n%Output Parameters:\n% err : 0 No Problem\n% : 1 Problems\n%\n%\n%\n%Key Terms:\n%\n%More Info :\n%\n%\n%\n%\n% Author : Gang Chen\n% Date : Tue Jul 29 13:01:05 EDT 2003\n% SSCC/NIMH/ National Institutes of Health, Bethesda Maryland\n\n\n%Define the function name for easy referencing\nFuncName = 'ContrastTest';\n\n%Debug Flag\nDBG = 1;\n\n%initailize return variables\nerr = 1;\n\n%Create a matrix so that 3dDeconvolve uses for regressor test.\n\nlength = (polort+1)*N_runs+N_base;\nfor (iT = 1:1:N_tasks),\n for (j = 1:1:N_basis) ,\n\t length = length + (Task(iT).BasisOpt_struct(j).maxlag - Task(iT).BasisOpt_struct(j).minlag + 1);\n\tend\t\nend\n\n%mtrx = zeros(N_contr, (polort+1)*N_runs+N_basis*N_tasks); %for each run, there are (polort+1) paramters in the baseline model\n\nmtrx = zeros(N_contr, length);\nfprintf(1, '\\n\\nYour contrast vectors for -glt options are:\\n');\n\nfor (i = 1:1:N_contr),\n\tfor (j = 1:1:El(i).cnt),\n\t for (k = 1:1:N_tasks),\n\t\t if El(i).order(j) == k,\n\t\t\t for (m=1:1:N_basis),\n\t\t\t\t for (p = 1:1:Task(k).BasisOpt_struct(m).maxlag - Task(k).BasisOpt_struct(m).minlag + 1)\n%\t\t\t mtrx(i,m+(k-1)*N_basis+(polort+1)*N_runs) = El(i).sign(j);\n mtrx(i,p+(m-1)*(Task(k).BasisOpt_struct(m).maxlag - Task(k).BasisOpt_struct(m).minlag + 1)...\n\t\t\t\t\t +(k-1)*(Task(k).BasisOpt_struct(m).maxlag - Task(k).BasisOpt_struct(m).minlag + 1)*N_basis...\n\t\t\t\t\t +(polort+1)*N_runs) = El(i).sign(j); %Don't ask me how I worked this out. It is so tedious and nasty\n\t\t\t\t\t\t\t %to housekeep the indices.\n\t\t\t\t\t\t\t %Don't even remember how I figured it out now\n\t\t\t\t\tend\n\t\t\t\tend\n\t end\n\t\tend\n\tend\n\tcontrfile(i).name = sprintf('%s_contr.1D',El(i).labels);\n fid = fopen(contrfile(i).name, 'w');\n\tfprintf(1,'No. %i contrast vector = ', i);\n\tfor (n = 1:1:length),\n\t\tfprintf(1, '%g\t', mtrx(i,n));\n\t\tfprintf(fid, '%g ', mtrx(i,n));\n\tend\n\tfprintf(1, '\\n');\n\tfclose(fid);\t\n\tfprintf(1, '\\nThe vector for No. %i contrast is stored in file %s. \\n\\n', i, contrfile(i).name);\nend\t\n\nerr = 0;\nreturn;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/afni/ContrastTest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297745935070806, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.36608991761493204}} {"text": "function ll = svargplvmLogLikelihood(model)\n\n% SVARGPLVMLOGLIKELIHOOD Log-likelihood for a shared variational GP-LVM.\n% FORMAT\n% DESC returns the log likelihood for a given SVARGP-LVM model.\n% ARG model : the model for which the log likelihood is to be\n% computed. The model contains the data for which the likelihood is\n% being computed in the 'y' component of the structure.\n% RETURN ll : the log likelihood of the data given the model.\n%\n% SEEALSO: svargplvmLogLikeGradients\n%\n% COPYRIGHT : Andreas C. Damianou, 2011\n\n% VARGPLVM\n\n% Functions f1 and f2 should be equivalent in the static case, but f1 might\n% (?) be faster.\nif ~isfield(model, 'dynamics') || isempty(model.dynamics)\n ll = f1(model);\n %ll = f2(model);\nelse\n ll = f2(model);\n for i = 1:model.numModels\n if isfield(model.comp{i}, 'KLweight')\n assert(model.comp{i}.KLweight == 0.5); % not implemented yet for dynamics\n end\n end\nend\n\n\n\nfunction f = f1(model)\n\n% model.numModels=1; %%%%%%%%TEMP\n\n% This works only when there are NOT any dynamics:\nvarmeans = sum(sum(model.vardist.means.*model.vardist.means));\nvarcovs = sum(sum(model.vardist.covars - log(model.vardist.covars)));\nKLdiv = -0.5*(varmeans + varcovs) + 0.5*model.q*model.N;\n\nmodel = svargplvmPropagateField(model, 'onlyLikelihood', 1);\nll=0;\nfor i=1:model.numModels\n ll = ll + vargplvmLogLikelihood(model.comp{i});\nend\nf = (ll + KLdiv);\n\n\n\n% Here we take advantage of the fact that in the bound, the likelihood and\n% the KL part break into ll+KL. So, in the shared case, we only have\n% KL + ll1 + ll2 + ...\nfunction f = f2(model)\n\n% We want to count for the KL part only once, because it is shared. Then, we\n% will add all likelihood parts from all sub-models. The above can be\n% achieved by calculating the bound for the first sub-model as usual, and\n% then calculate only the likelihood part for the rest of the sub-models\n% (because the KL part would be the same for all models since we called\n% expandParam previously).\nf = vargplvmLogLikelihood(model.comp{1}); % ll_1 + KL_1 (where KL_1 == KL_i for all i)\n% The following call will not affect the model after returning from this\n% function, since the model is not returned.\nmodel = svargplvmPropagateField(model, 'onlyLikelihood', 1, true);\nll=0;\nfor i=2:model.numModels\n ll = ll + vargplvmLogLikelihood(model.comp{i}); % ll_i\nend\n\nf = f + ll;\n\n\n", "meta": {"author": "SheffieldML", "repo": "vargplvm", "sha": "480201fde5ac84ff36e4a9f06d3fafeafa8ef06d", "save_path": "github-repos/MATLAB/SheffieldML-vargplvm", "path": "github-repos/MATLAB/SheffieldML-vargplvm/vargplvm-480201fde5ac84ff36e4a9f06d3fafeafa8ef06d/vargplvm/matlab/svargplvmLogLikelihood.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629466, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3660659297040985}} {"text": "function im = VisualizeClassifier(jabfile)\n\n\n%% params.\nparams = getParams;\nnpatches = params.npatches;\npsize = params.psize;\nnbins = params.nbins; \npatchsz = params.patchsz;\nscale = params.scale;\n\nwd = params.wd;\n\n%% load an example fly.\n\nQ = load(jabfile,'-mat');\n\nbdir = Q.x.expDirNames{1};\nmoviename = fullfile(bdir,'movie.ufmf');\ntrackfilename = fullfile(bdir,'trx.mat');\ntracks = load(trackfilename);\ntracks = tracks.trx;\n\n[readfcn,nframes,fid,headerinfo] = get_readframe_fcn(moviename);\ntrackndx = 1; fly = 1;\nfnum = tracks(fly).firstframe;\nim1 = readfcn(fnum);\n\nlocy = round(tracks(fly).y(trackndx));\nlocx = round(tracks(fly).x(trackndx));\nim1 = extractPatch(im1,...\n locy,locx,tracks(fly).theta(trackndx),patchsz);\n\nim1 =[im1 im1];\n\n%% Find Hog/HOF components.\n\nncl = numel(Q.x.classifierStuff);\n\nfor clnum = 1:ncl\n \n H{clnum} = zeros(npatches,npatches,nbins);\n F{clnum} = H{clnum};\n \n cl = Q.x.classifierStuff(clnum).params;\n fnames = Q.x.classifierStuff(clnum).featureNames;\n for ndx = 1:numel(cl)\n curf = fnames{cl(ndx).dim}{1};\n val = cl(ndx).alpha;\n prts = strsplit(curf,'_');\n loc = str2double(prts(end-2:end));\n if strcmp(curf(1:2),'hf')\n H{clnum}(loc(1),loc(2),loc(3))=H{clnum}(loc(1),loc(2),loc(3))+val;\n else\n F{clnum}(loc(1),loc(2),loc(3))=F{clnum}(loc(1),loc(2),loc(3))+val;\n end\n end\nend\n%% Draw them\n\n% For HOG\nbincenters = linspace(0,pi,nbins+1);\nbincenters = bincenters(1:nbins);\ndt = mean(diff(bincenters));\nbinedges = [bincenters(1)-dt/2,(bincenters(1:end-1)+bincenters(2:end))/2,bincenters(end)+dt/2];\n\n% For HOF\nbincenters2 = bincenters*2;\ndt = mean(diff(bincenters2));\nbinedges2 = [bincenters2(1)-dt/2,(bincenters2(1:end-1)+bincenters2(2:end))/2,bincenters2(end)+dt/2];\n\nmaxv = 3;\nim = {};\nfor clnum = 1:ncl\n hfig = figure;\n clf;\n hax = axes('Position',[0,0,1,1]);\n set(hfig,'Units','pixels','Position',get(0,'ScreenSize'));\n \n im1curr = im1;\n \n him = imshow(imresize(im1curr,scale));\n axis image;\n truesize;\n colormap gray;\n hold on;\n axis off;\n \n colors = hsv(nbins);\n \n [nr,nc,~] = size(im1);\n nc = nc/2;\n \n h = [];\n for xi = 1:ceil(nc/psize),\n cx = (psize/2 + (xi-1)*psize)*scale + 1 ;\n if cx+psize/2 > nc*scale,\n break;\n end\n for yi = 1:ceil(nr/psize),\n cy = (psize/2 + (yi-1)*psize)*scale + 1;\n if cy+psize/2 > nr*scale,\n break;\n end\n \n for bini = 1:nbins,\n tmp = linspace(binedges2(bini),binedges2(bini+1),20);\n xcurr = cx + [0,psize/2*cos(tmp),0]*scale;\n ycurr = cy + [0,psize/2*sin(tmp),0]*scale;\n h(yi,xi,bini) = patch(xcurr,ycurr,colors(bini,:),'LineStyle','none','FaceAlpha',min(1,F{clnum}(yi,xi,bini)/maxv));\n end\n \n end\n end\n \n colors = hsv(nbins);\n colors = colors([ (end/2+1):end 1:end/2],:);\n hogpatch = [wd wd -wd -wd wd;-psize psize psize -psize -psize]/2;\n h = [];\n for xi = 1:ceil(nc/psize),\n cx = (psize/2 + 1 + (xi-1)*psize)*scale;\n if cx+psize/2 > nc*scale,\n break;\n end\n for yi = 1:ceil(nr/psize),\n cy = (psize/2 + 1 + (yi-1)*psize)*scale;\n if cy+psize/2 > nr*scale,\n break;\n end\n \n for bini = 1:nbins,\n tmp = bincenters(bini);\n curpatch = [cos(tmp) -sin(tmp); sin(tmp) cos(tmp)]*hogpatch;\n xcurr = nc*scale + cx + curpatch(1,:)*scale;\n ycurr = cy + curpatch(2,:)*scale;\n h(yi,xi,bini) = patch(xcurr,ycurr,colors(bini,:),'LineStyle','none','FaceAlpha',min(1,H{clnum}(yi,xi,bini)/maxv));\n end\n \n end\n end\n im{clnum} = getframe(hax);\nend\n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/spaceTime/VisualizeClassifier.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6791787121629465, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.36606592970409846}} {"text": "function nbrhood=cosmo_spherical_neighborhood(ds, varargin)\n% computes neighbors for a spherical searchlight\n%\n% nbrhood=cosmo_spherical_neighborhood(ds, opt)\n%\n% Inputs\n% ds a dataset struct, either:\n% - in fmri form (from cosmo_fmri_dataset), when\n% ds.fa has the fields .i, .j and .k\n% - in meeg source form (from cosmo_meeg_dataset),\n% when ds.fa has the field .pos. In this case, the\n% features must have positions that can be\n% converted to a grid.\n% 'radius', r } either use a radius of r, or select\n% 'count', c } approximately c voxels per searchlight\n% Notes:\n% - These two options are mutually exclusive\n% - When using this option for an fmri dataset, the\n% radius r is expressed in voxel units; for an meeg\n% source dataset, the radius r is in whatever units\n% the source dataset uses for the positions\n% 'progress', p show progress every p features (default: 1000)\n%\n% Outputs\n% nbrhood dataset-like struct without .sa or .samples, with:\n% .a dataset attributes, from dataset.a\n% .fa feature attributes with the same fields as fs.fa,\n% and in addition the fields:\n% .nvoxels 1xP number of voxels in each searchlight\n% .radius 1xP radius in voxel units\n% .center_ids 1xP feature center id\n% .neighbors Px1 cell so that center2neighbors{k}==nbrs contains\n% the feature ids of the neighbors of feature k\n% If the dataset has a field ds.fa.inside, then\n% features that are not inside are not included as\n% neighbors in the output\n% .origin Has fields .a and .fa from input dataset\n%\n%\n% Example:\n% ds=cosmo_synthetic_dataset('type','fmri');\n% radius=1; % radius=3 is typical for 'real-world' searchlights\n% nbrhood=cosmo_spherical_neighborhood(ds,'radius',radius,...\n% 'progress',false);\n% cosmo_disp(nbrhood)\n% %|| .a\n% %|| .fdim\n% %|| .labels\n% %|| { 'i' 'j' 'k' }\n% %|| .values\n% %|| { [ 1 2 3 ] [ 1 2 ] [ 1 ] }\n% %|| .vol\n% %|| .mat\n% %|| [ 2 0 0 -3\n% %|| 0 2 0 -3\n% %|| 0 0 2 -3\n% %|| 0 0 0 1 ]\n% %|| .dim\n% %|| [ 3 2 1 ]\n% %|| .xform\n% %|| 'scanner_anat'\n% %|| .fa\n% %|| .nvoxels\n% %|| [ 3 4 3 3 4 3 ]\n% %|| .radius\n% %|| [ 1 1 1 1 1 1 ]\n% %|| .center_ids\n% %|| [ 1 2 3 4 5 6 ]\n% %|| .i\n% %|| [ 1 2 3 1 2 3 ]\n% %|| .j\n% %|| [ 1 1 1 2 2 2 ]\n% %|| .k\n% %|| [ 1 1 1 1 1 1 ]\n% %|| .neighbors\n% %|| { [ 1 4 2 ]\n% %|| [ 2 1 5 3 ]\n% %|| [ 3 2 6 ]\n% %|| [ 4 1 5 ]\n% %|| [ 5 4 2 6 ]\n% %|| [ 6 5 3 ] }\n% %|| .origin\n% %|| .a\n% %|| .fdim\n% %|| .labels\n% %|| { 'i'\n% %|| 'j'\n% %|| 'k' }\n% %|| .values\n% %|| { [ 1 2 3 ]\n% %|| [ 1 2 ]\n% %|| [ 1 ] }\n% %|| .vol\n% %|| .mat\n% %|| [ 2 0 0 -3\n% %|| 0 2 0 -3\n% %|| 0 0 2 -3\n% %|| 0 0 0 1 ]\n% %|| .dim\n% %|| [ 3 2 1 ]\n% %|| .xform\n% %|| 'scanner_anat'\n% %|| .fa\n% %|| .i\n% %|| [ 1 2 3 1 2 3 ]\n% %|| .j\n% %|| [ 1 1 1 2 2 2 ]\n% %|| .k\n% %|| [ 1 1 1 1 1 1 ]\n%\n%\n% Notes:\n% - this function can return neighborhoods with either a fixed number of\n% features, or a fixed radius. When used with a searchlight, the\n% former has the advantage that the number of features is less\n% variable (especially near edges of the brain, in an fmri dataset),\n% which can make it easier to compare result in different regions as\n% the number of features can affect\n% pattern discriminablity. The latter has the advantage that the\n% smoothness of the output maps under the null hypothesis can be more\n% uniformly smooth.\n%\n% See also: cosmo_fmri_dataset, cosmo_meeg_dataset, cosmo_searchlight\n%\n% # For CoSMoMVPA's copyright information and license terms, #\n% # see the COPYING file distributed with CoSMoMVPA. #\n\n check_input(varargin{:});\n\n defaults=struct();\n defaults.progress=1000;\n opt=cosmo_structjoin(defaults,varargin);\n\n [use_fixed_radius,radius,voxel_count]=get_selection_params(opt);\n cosmo_check_dataset(ds);\n\n % ensure not too many features are requested\n feature_mask=get_features_mask(ds);\n nfeatures=sum(feature_mask);\n if nfeatures0;\n\n if show_progress\n clock_start=clock();\n prev_progress_msg='';\n end\n\n % a position may occur at multiple features; only consider unique\n % positions\n pos(:,~feature_mask)=Inf;\n [center_idxs,unq_pos]=cosmo_index_unique(pos');\n keep_unq_pos=~any(isinf(unq_pos),2);\n center_idxs=center_idxs(keep_unq_pos);\n unq_pos=unq_pos(keep_unq_pos,:);\n nunq_centers=numel(center_idxs);\n\n % allocate space for output\n ncenters=nunq_centers;\n neighbors=cell(ncenters,1);\n nvoxels=zeros(1,ncenters);\n final_radius=zeros(1,ncenters);\n visited=false(1,ncenters);\n center_ids=zeros(1,ncenters);\n\n % go over all features\n for k=1:nunq_centers\n variable_radius=NaN;\n if voxel_count==0\n feature_ids=zeros(1,0);\n else\n center_pos=unq_pos(k,:)';\n\n % - in case of a variable radius, keep growing sphere_offsets\n % until there are enough voxels selected. This new radius is\n % kept for every subsequent iteration.\n % - in case of a fixed radius this loop is left after the first\n % iteration.\n while true\n % add offsets to center\n all_around_pos=bsxfun(@plus, center_pos', sphere_offsets);\n\n % see which ones are outside the volume\n outside_msk=all_around_pos<=0 | ...\n bsxfun(@minus,grid_dim,all_around_pos)<0;\n\n % collapse over 3 dimensions\n feature_outside_msk=any(outside_msk,2);\n\n % get rid of those outside the volume\n around_pos=all_around_pos(~feature_outside_msk,:);\n\n\n % convert to linear indices\n around_lin=fast_sub2ind(grid_dim,around_pos(:,1), ...\n around_pos(:,2), ...\n around_pos(:,3));\n\n % convert linear to feature ids\n % (transpose is necessary so that when applying the\n % mask, the indices remain sorted by distance)\n around_ids_mat=lin2feature_ids(around_lin,:)';\n around_ids_mask=lin2feature_mask(around_lin,:)';\n feature_ids=around_ids_mat(around_ids_mask);\n\n if use_fixed_radius\n break; % we're done selecting voxels\n elseif numel(feature_ids)=k;\n ds(k,msk)=center_distances(msk);\n end\n\n feature_distances=ds(~isnan(ds));\n\n\nfunction [lin2feature_ids,lin2feature_mask]=get_lin2feature_ids(...\n grid_dim,all_pos,center_mask)\n % returns a function that maps linear ids to feature ids\n % the function takes as input linear ids and the distance for each\n % linear id, and returns the feature ids and their corresponding\n % distances\n\n orig_nvoxels=prod(grid_dim);\n\n ijk=all_pos(:,center_mask);\n\n lin_ids=fast_sub2ind(grid_dim, ijk(1,:), ijk(2,:), ijk(3,:));\n [idxs,unq_lin_ids]=cosmo_index_unique(lin_ids');\n\n mask2full=find(center_mask);\n % lin2feature_ids{k}={i1,...,iN} means that the linear voxel index k\n % corresponds to features i1,...iN\n lin2feature_ids_cell=cell(orig_nvoxels,1);\n for k=1:numel(unq_lin_ids)\n lin_id=unq_lin_ids(k);\n idx=idxs{k}(:)';\n lin2feature_ids_cell{lin_id}=mask2full(idx);\n end\n\n n_max=max(cellfun(@numel,lin2feature_ids_cell));\n\n lin2feature_ids=zeros(orig_nvoxels, n_max);\n lin2feature_mask=false(orig_nvoxels,n_max);\n\n for k=1:numel(unq_lin_ids)\n lin_id=unq_lin_ids(k);\n indices=lin2feature_ids_cell{lin_id};\n\n cols=1:numel(indices);\n lin2feature_ids(lin_id,cols)=indices;\n lin2feature_mask(lin_id,cols)=true;\n end\n\n\n\n\n\n\nfunction feature_mask=get_features_mask(ds)\n % use .fa.inside if it is present, otherwise an array with only true\n % values\n nfeatures=size(ds.samples,2);\n\n if cosmo_isfield(ds,'fa.inside')\n inside=ds.fa.inside;\n\n if size(inside,1)~=1\n error('field .fa.inside must be a row vector');\n end\n\n if ~islogical(inside)\n error('field .fa.inside must be logical');\n end\n\n feature_mask=inside;\n else\n feature_mask=true(1,nfeatures);\n end\n\n\nfunction lin=fast_sub2ind(sz, i, j, k)\n lin=sz(1)*(sz(2)*(k-1)+(j-1))+i;\n\nfunction pos=boundary_at_approx(ids, distances, voxel_count)\n % pseudo-random selection of approximatly voxel_count elements\n if voxel_count<=0\n pos=0;\n return\n end\n\n assert(issorted(distances));\n\n max_distance=distances(voxel_count);\n first=find(distancesmax_distance,1,'first')-1;\n\n if isempty(first)\n first=1;\n end\n\n if isempty(last)\n last=numel(distances);\n end\n\n delta_first=voxel_count-first;\n delta_last=last-voxel_count;\n\n if delta_first==delta_last\n % select pseudo-randomly\n if delta_first==0 || mod(sum(ids)+numel(distances),2)==0\n pos=first;\n else\n pos=last;\n end\n elseif delta_firstdistances(first));\n\n\nfunction [fdim,fa,ijk,orig_dim]=get_spherical_attributes(ds, center_mask)\n % returns fdim, fa, and ijk positions for dataset\n labels=get_dim_label(ds);\n\n fdim=get_spherical_fdim(ds,labels);\n fa=get_spherical_fa(ds.fa,labels);\n\n if cosmo_isfield(ds,'fa.inside')\n fa.inside=center_mask;\n end\n\n small_ds=cosmo_slice(ds,[],1);\n small_ds_vol=cosmo_vol_grid_convert(small_ds, 'tovol');\n\n ijk=[small_ds_vol.fa.i;small_ds_vol.fa.j;small_ds_vol.fa.k];\n\n ijk_labels={'i','j','k'};\n [unused,index]=has_fdim_label(small_ds_vol,ijk_labels);\n\n orig_dim=cellfun(@numel,small_ds_vol.a.fdim.values(index));\n orig_dim=orig_dim(:)';\n\n\nfunction [tf,index]=has_fdim_label(ds, label)\n [two,index]=cosmo_dim_find(ds,label,false);\n tf=~isempty(two) && two==2;\n\n\nfunction [labels,index]=get_dim_label(ds)\n % get either pos or i, j, and k labels\n possible_labels={{'pos'},{'i';'j';'k'}};\n for j=1:numel(possible_labels)\n labels=possible_labels{j};\n [has_label,index]=has_fdim_label(ds, labels);\n if has_label\n return\n end\n end\n\n error(['Unable to find dimension labels, either ''pos'' '...\n 'or ''i'', ''j'', and ''k''']);\n\n\nfunction fdim=get_spherical_fdim(ds, target_labels)\n first_target_label=target_labels{1};\n [two, index]=cosmo_dim_find(ds,first_target_label,true);\n\n if two~=2\n error('dimension ''%s'' must be a feature dimension');\n end\n cosmo_isfield(ds,'a.fdim.labels',true);\n\n dim_labels=ds.a.fdim.labels(:);\n dim_values=ds.a.fdim.values(:);\n\n nlabels=numel(target_labels);\n idx_labels=(index+(0:(nlabels-1)))';\n if numel(dim_labels)=0\n use_fixed_radius=true;\n radius=opt.radius;\n voxel_count=NaN;\n return\n end\n elseif isfield(opt,'count') && isscalar(opt.count) && ...\n opt.count>=0 && round(opt.count)==opt.count\n use_fixed_radius=false;\n radius=1; % starting point\n voxel_count=opt.count;\n return;\n end\n\n raise_parameter_error();\n\n\nfunction raise_parameter_error()\n name=mfilename();\n error(['Illegal parameters, use one of:\\n',...\n '- %s(...,''radius'',r) to use a radius of r voxels\\n',...\n '- %s(...,''count'',c) to select c voxels per searchlight\\n',...\n '(As of January 2014 the syntax of this function has changed)'],...\n name,name);\n\n\n", "meta": {"author": "CoSMoMVPA", "repo": "CoSMoMVPA", "sha": "5de75a1b4bef89b082d39d69e2b99d7f894ad717", "save_path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA", "path": "github-repos/MATLAB/CoSMoMVPA-CoSMoMVPA/CoSMoMVPA-5de75a1b4bef89b082d39d69e2b99d7f894ad717/mvpa/cosmo_spherical_neighborhood.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544335934766, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.36600399962676916}} {"text": "function [ PH CH colorScale] = plotSeries(varargin)\n%\n% [ PH CH colorList ] = plotSeries(AH,x,y,s,colormap,OPTIONS)\n%\n% Plots x and y data with each column of y color-coded according to scalar \n% values defined in s. plotSeries is particularly useful to illustrate how\n% a x-y dataset *changes* in response to some value, s.\n%\n% Colormap can be defined by a string or a four-column matrix. When a string\n% is used or the argument is left empty, the colormap spans all values of\n% s, linearly. When a four-column matrix is provided, the first column \n% corresponds to potential values of s, the other three define the corresponding \n% RGB values. The RGB values used for each column of y are interpolated\n% from the rows of colormap, so there is no requirement for the number of\n% rows of colormap to match up w/ the length of s.\n%\n% If length(s) > 1, then a colorbar will be included as a legend for the \n% line coloring.\n%\n% Optional lineseries specifications (OPTIONS) will be applied to all\n% plots.\n%\n% plotSeries outputs a list of plotHandles (PH), a colorbar handle, (CH),\n% and the colorList used for the plot. The colorList output can be used\n% directly as the colormap argument for other calls to plotSeries,\n% providing a mechanism to easily produce multiple plots using similar \n% coloring schemes.\n%\n% Example (cut and paste into the command-line):\n%\n% % Show how sinc function changes as a function of s\n% s = 1:10;\n% x = (-1:1e-3:1).';\n% y = sinc(x*s);\n% figure; plotSeries(x,y,s,'jet','LineWidth',2);\n% xlabel('x-values');ylabel('y-values');\n%\n% Inputs: AH - [1x1] [OPTIONAL] Axes handle\n% x - [NxS / Nx1] X-coordinate data\n% y - [NxS] Y-coordinate data\n% s - [1xS] Scalar value associated with each data series\n% (length(s) = size(y,2))\n% colormap - [Cx4] Colormap to use for dataset coloring.\n% Can be colormap string OR four-column\n% colormap with 1st column corresponding to \n% potential s values and 3 remaining columns \n% corresponding to color. Note that the\n% colormap will be interpolated to find\n% the appropriate color for each\n% dataset. ([] for 'default' colormap)\n% OPTIONS - Optional arguments for plot command\n%\n% Outputs: PH - [Sx1] Plot handle\n% CH - [1x1] Colorbar handle\n% colorScale - [Sx4] Colormap w/ 1st column corresponding to \n% s values and 3 remaining columns corresponding to color\n% \n% N - Number of x-y coordinates to plot for each dataset\n% S - Number of datasets\n% C - Number of colors provided in colormap\n% \n% Copyright (c) 2011, Hidden Solutions, LLC\n% All rights reserved.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% * Redistributions of source code must retain the above copyright\n% notice, this list of conditions and the following disclaimer.\n% * Redistributions in binary form must reproduce the above copyright\n% notice, this list of conditions and the following disclaimer in the\n% documentation and/or other materials provided with the distribution.\n% * Neither the name Hidden Solutions, LLC nor the names of any\n% contributors may be used to endorse or promote products derived from \n% this software without specific prior written permission.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\n% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n% DISCLAIMED. IN NO EVENT SHALL HIDDEN SOLUTIONS, LLC BE LIABLE FOR ANY\n% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\n% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND\n% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n%\n% Author: James S. Hall (Hidden Solutions, LLC)\n% Date: 17 October 2011\n%\n\n% Determine axes handle\nif numel(varargin{1}) == 1 && ishandle(varargin{1})\n % If provided, pop AH from list of arguments\n AH = varargin{1};\n varargin = varargin(2:end);\nelse\n % Assign current axes\n AH = gca;\nend\n\n% Assign x,y,z arguments\nx = varargin{1};\ny = varargin{2};\nz = varargin{3};\n\n% Force to column vectors (if appropriate)\nif size(y,1) == 1\n y = y(:);\nend\nif size(z,1) == 1\n z = z(:);\nend\n\n% Generate colorList for plots\nif length(varargin)>3 && ~isempty(varargin{4})\n if ischar(varargin{4})\n % If string provided, use as name of colormap\n cmap = colormap(varargin{4});\n colorScale = [((0:1/(size(cmap,1)-1):1).'*range(z))+min(z) cmap];\n elseif size(varargin{4},2) == 4\n % Assign colormap to axes\n colorScale = varargin{4};\n end\n % Assign colormap to axes\n colormap(AH,colorScale(:,2:4));\nelse\n % Use default colormap\n cmap = colormap();\n colorScale = [((0:1/(size(cmap,1)-1):1).'*range(z))+min(z) cmap];\nend\n\n% Determine colors to use for each plot\nif length(z) > 1\n % Sort colors for interp1\n [cSort cInd] = sort(colorScale(:,1));\n colorScale = colorScale(cInd,:);\n colorList = interp1(colorScale(:,1),colorScale(:,2:4),z,'linear',nan);\n % Force s values outside of colorScale(:,1) range to max/min colorScale\n colorList(isnan(colorList(:,1))&zmax(colorScale(:,1)),:) = repmat(colorScale(end,:),sum(isnan(colorList(:,1))&z 1\n % Add colorbar\n caxis([min(z) max(z)]);\n CH = colorbar;\nend\n\nend\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/33322-plotseries-color-code-multiple-plots/plotSeries.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5234203489363239, "lm_q2_score": 0.6992544335934766, "lm_q1q2_score": 0.3660039996267691}} {"text": "function [accuracy, frames] = estimate_accuracy(trajectory, sequence, varargin)\n% estimate_accuracy Calculate accuracy score\n%\n% Calculate accuracy score as average overlap over the entire sequence.\n%\n% Input:\n% - trajectory (cell): A trajectory as a cell array of regions.\n% - sequence (cell or structure): Can be another trajectory or a valid sequence descriptor.\n% - varargin[Burnin] (integer): Number of frames that have to be ignored after the failure.\n% - varargin[IgnoreUnknown] (boolean): Ignore frames where the overlap is\n% unknown.\n% - varargin[BindWithin] (boolean or vector): Bind the overlap calculation to the region\n% within the image. If the sequence variable is a sequence structure then a boolean value\n% is sufficient to establishe bounding region. Otherwise a bounding region has to be specified\n% manually.\n%\n% Output:\n% - accuracy (double): Average overlap.\n% - frames (double vector): Per-frame overlaps.\n%\n\nignore_unknown = true;\nburnin = 0;\nbind_within = get_global_variable('bounded_overlap', true);\n\nfor j=1:2:length(varargin)\n switch lower(varargin{j})\n case 'burnin', burnin = max(0, varargin{j+1});\n case 'ignoreunknown', ignore_unknown = varargin{j+1};\n case 'bindwithin', bind_within = varargin{j+1};\n otherwise, error(['unrecognized argument ' varargin{j}]);\n end\nend\n\nif burnin > 0\n \n mask = cellfun(@(r) numel(r) == 1 && r == 1, trajectory, 'UniformOutput', true);\n\n if is_octave()\n se = logical([zeros(burnin - 1, 1); ones(burnin, 1)]);\n else\n se = strel('arbitrary', [zeros(burnin - 1, 1); ones(burnin, 1)]);\n end;\n \n % ignore the next 'burnin' frames\n mask = imdilate(mask, se);\n\nelse \n \n mask = false(size(trajectory, 1), 1);\n \nend;\n\nif ~ignore_unknown\n unknown = cellfun(@(r) numel(r) == 1 && r == 0, trajectory, 'UniformOutput', true);\nend;\n\ntrajectory(mask) = {0};\n\nif islogical(bind_within)\n if bind_within && isstruct(sequence)\n bounds = [sequence.width, sequence.height] - 1;\n else\n bounds = [];\n end;\nelse\n bounds = bind_within;\nend;\n\nif isstruct(sequence)\n frames = calculate_overlap(trajectory, sequence_get_region(sequence, 1:sequence.length), bounds);\nelse\n frames = calculate_overlap(trajectory, sequence, bounds);\nend;\n\nif ~ignore_unknown\n frames(unknown) = 0;\nend;\n\noverlap = frames(~isnan(frames)); % filter-out illegal values\n\n% Handle cases, where no overlap is available\nif isempty(overlap)\n accuracy = 0;\nelse\n accuracy = mean(overlap);\nend;\n", "meta": {"author": "votchallenge", "repo": "toolkit-legacy", "sha": "2fb78d5301dadc102fb329b3a3f1bb02c670e8ee", "save_path": "github-repos/MATLAB/votchallenge-toolkit-legacy", "path": "github-repos/MATLAB/votchallenge-toolkit-legacy/toolkit-legacy-2fb78d5301dadc102fb329b3a3f1bb02c670e8ee/analysis/estimate_accuracy.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587586, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3660039930658427}} {"text": "function [A, a, B, b] = adjacencyAndCoords(Lmk,Frm,Fac)\n\nnframes = sum([Frm.used]);\nnlmks = sum([Lmk.used]);\n\n% Motion\nA = sparse(nframes,nframes);\na = zeros(nframes,3);\n\n% Measurements\nB = sparse(nframes+nlmks,nframes+nlmks);\nb = zeros(nframes+nlmks,3);\n\nfor fac = find([Fac.used])\n \n frames = Fac(fac).frames;\n lmk = Fac(fac).lmk;\n\n switch Fac(fac).type\n case'motion'\n A(frames(1),frames(2)) = 1;\n a(frames(1),1:3) = Frm(frames(1)).state.x(1:3)';\n a(frames(2),1:3) = Frm(frames(2)).state.x(1:3)';\n case 'absolute'\n case 'measurement'\n B(frames,lmk+nframes) = 1;\n b(frames,1:3) = Frm(frames).state.x(1:3)';\n b(lmk+nframes,1:3) = Lmk(lmk).state.x(1:3)';\n end\n\nend\n\n\n\n% ========== End of function - Start GPL license ==========\n\n\n% # START GPL LICENSE\n\n%---------------------------------------------------------------------\n%\n% This file is part of SLAMTB, a SLAM toolbox for Matlab.\n%\n% SLAMTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% SLAMTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with SLAMTB. If not, see .\n%\n%---------------------------------------------------------------------\n\n% SLAMTB is Copyright:\n% Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS,\n% Copyright (c) 2010-2013, Joan Sola,\n% Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC,\n% SLAMTB is Copyright 2009 \n% by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol\n% @ LAAS-CNRS.\n% See on top of this file for its particular copyright.\n\n% # END GPL LICENSE\n\n", "meta": {"author": "joansola", "repo": "slamtb", "sha": "b4767f6bf38bceed205abb85f1aed12422c9a972", "save_path": "github-repos/MATLAB/joansola-slamtb", "path": "github-repos/MATLAB/joansola-slamtb/slamtb-b4767f6bf38bceed205abb85f1aed12422c9a972/InterfaceLevel/adjacencyAndCoords.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544085240401, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.36600398650491595}} {"text": "function K = K_all2K(K_all)\n%% Transform between K and K_all\n\nM = size(K_all,2);\nK = zeros(1,M);\nfor j = 1:M\n K(j) = max(K_all(:,j));\nend", "meta": {"author": "zhouyuanzxcv", "repo": "Hyperspectral", "sha": "f32dcca86677f8d37596376f57e9c733058f8cff", "save_path": "github-repos/MATLAB/zhouyuanzxcv-Hyperspectral", "path": "github-repos/MATLAB/zhouyuanzxcv-Hyperspectral/Hyperspectral-f32dcca86677f8d37596376f57e9c733058f8cff/GMM/K_all2K.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3657914995277846}} {"text": "function binary( varargin )\n\n%BINARY Declares an binary variable.\n% BINARY VARIABLE x\n% where x is a valid MATLAB variable name, declares a scalar variable for\n% the current CVX problem, and constrains it to the set {0,1}. Put\n% another way, it is equivalent to\n% integer variable x\n% 0 <= x <= 1\n%\n% BINARY VARIABLE x(SZ), where SZ is a size vector, declares an array of\n% size SZ and constrains each element to be binary. Structure modifiers\n% such as \"symmetric\", \"toeplitz\", etc. are also permitted.\n%\n% BINARY VARIABLES x y(SZ) z ... can be used to declare multiple binary \n% variables. Note however that structure modifiers are not permitted in\n% this case.\n%\n% Obviously, binary variables are NOT convex. Problems with binary \n% variables can only be handled by solvers with explicit support for\n% them; in particular, neither of the free solvers SeDuMi nor SDPT3\n% provide binary support.\n%\n% Examples:\n% binary variable x\n% binary variable x(100)\n%\n% See also INTEGER, VARIABLE, VARIABLES.\n\nif nargin < 2,\n error( 'Incorrect syntax for BINARY VARIABLE(S). Type HELP BINARY for details.' );\nelseif ~iscellstr( varargin ),\n error( 'All arguments must be strings.' );\nelseif strcmp( varargin{1}, 'variable' ),\n evalin( 'caller', sprintf( '%s ', 'variable', varargin{2:end}, 'binary' ) );\nelseif strcmp( varargin{1}, 'variables' ),\n for k = 2 : nargin,\n evalin( 'caller', sprintf( '%s ', 'variable', varargin{k}, 'binary' ) );\n end\nelse\n error( 'Incorrect syntax for BINARY VARIABLE(S). Type HELP BINARY for details.' );\nend\n\n% Copyright 2005-2016 CVX Research, Inc.\n% See the file LICENSE.txt for full copyright information.\n% The command 'cvx_where' will show where this file is located.\n", "meta": {"author": "cvxr", "repo": "CVX", "sha": "a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd", "save_path": "github-repos/MATLAB/cvxr-CVX", "path": "github-repos/MATLAB/cvxr-CVX/CVX-a7b46e7840c3ccf3f35df374d2ff3da4eaafc3cd/keywords/binary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102775181399, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3657914995277846}} {"text": "function hh = quadmesh(quad,x,y,z,varargin)\n%QUADMESH Quadrilateral mesh plot.\n% QUADMESH(QUAD,X,Y,Z,C) displays the quadrilaterals defined in the M-by-4\n% face matrix QUAD as a mesh. A row of QUAD contains indexes into\n% the X,Y, and Z vertex vectors to define a single quadrilateral face.\n% The edge color is defined by the vector C.\n%\n% QUADMESH(QUAD,X,Y,Z) uses C = Z, so color is proportional to surface\n% height.\n%\n% QUADMESH(TRI,X,Y) displays the quadrilaterals in a 2-d plot.\n%\n% H = QUADMESH(...) returns a handle to the displayed quadrilaterals.\n%\n% QUADMESH(...,'param','value','param','value'...) allows additional\n% patch param/value pairs to be used when creating the patch object. \n%\n% See also PATCH.\n%\n% Script code based on copyrighted code from mathworks for TRIMESH.\n% Allan P. Engsig-Karup, apek@mek.dtu.dk.\n\nax = axescheck(varargin{:});\nax = newplot(ax);\n\nif nargin == 3 || (nargin > 4 && ischar(z))\n d = tri(:,[1 2 3 4 1])';\n if nargin == 3\n h = plot(ax, x(d), y(d));\n else\n h = plot(ax, x(d), y(d),z,varargin{1},varargin{2:end});\n end\n if nargout == 1, hh = h; end\n return;\nend\n\nstart = 1;\nif nargin>4 && rem(nargin-4,2)==1\n c = varargin{1};\n start = 2;\nelseif nargin<3\n error(id('NotEnoughInputs'),'Not enough input arguments');\nelse\n c = z;\nend\n\nif ischar(get(ax,'color')),\n fc = get(gcf,'Color');\nelse\n fc = get(ax,'color');\nend\n\nh = patch('faces',quad,'vertices',[x(:) y(:) z(:)],'facevertexcdata',c(:),...\n\t 'facecolor',fc,'edgecolor',get(ax,'defaultsurfacefacecolor'),...\n\t 'facelighting', 'none', 'edgelighting', 'flat',...\n 'parent',ax,...\n\t varargin{start:end});\nif ~ishold(ax), view(ax,3), grid(ax,'on'), end\nif nargout == 1, hh = h; end\n\nfunction str = id(str)\nstr = ['MATLAB:quadmesh:' str];\n\nreturn\n\n% % Example: plot quadmesh\n% close all, clear all, clc\n% \n% x = [0 1 2 2 1 1 0 0];\n% y = [0 0 0 1 1 2 2 1];\n% for i = 1 : length(x)\n% text(x(i)+0.1,y(i)+0.1,sprintf('%d',i))\n% hold on\n% end\n% quad = [1 2 5 8;\n% 2 3 4 5;\n% 8 5 6 7];\n% \n% plot(x,y,'k.-')\n% axis off\n% \n% z = sin(pi*x).*cos(pi*y);\n% c = z;\n% figure\n% \n% ax=newplot;\n% fc = get(gcf,'Color');\n% h = patch('faces',quad,'vertices',[x(:) y(:) z(:)],'facevertexcdata',c(:),...\n% 'facecolor',fc,'edgecolor',get(ax,'defaultsurfacefacecolor'),...\n% 'facelighting', 'none', 'edgelighting', 'flat',...\n% 'parent',ax);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/20266-quadmesh-quadrilateral-mesh-plot/quadmesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.63341027059799, "lm_q1q2_score": 0.36579149553143014}} {"text": "function [bndinfo2, err] = transferSuperpixelLabels(bndinfo, wseg2)\n\nwseg1 = bndinfo.wseg;\n\nlabim = zeros(size(wseg1));\nlabim(wseg1>0) = bndinfo.labels(wseg1(wseg1>0));\n\nstats = regionprops(wseg2, 'PixelIdxList');\nspind = {stats(:).PixelIdxList};\n\nlab2 = zeros(max(wseg2(:)), 1);\n\nfor k = 1:numel(lab2)\n pixlab = labim(spind{k});\n pixlab = pixlab(pixlab>0);\n if numel(pixlab)>numel(spind{k})*0.01\n lab2(k) = mode(pixlab); \n end\nend\n\nbndinfo2 = bndinfo;\nbndinfo2.wseg = uint16(wseg2);\nbndinfo2.labels = lab2;\n\nlabim2 = zeros(size(wseg2));\nlabim2(wseg2>0) = bndinfo2.labels(wseg2(wseg2>0));\n\nind = (labim2 > 0) & (labim > 0);\n\nif nargout > 1\n err = mean(labim(ind)~=labim2(ind));\n disp(num2str([max(wseg1(:)) max(wseg2(:))]))\n disp(['Error: ' num2str(err)]);\nend\n ", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/endres/proposals/src/iccv07Final/src/transferSuperpixelLabels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3657914915350756}} {"text": "function msg = apm_arx(p,m,ny,nu,alpha,beta,gamma,name)\n\nif nargin <= 6,\n error('apm_arx: Input ARX Model')\nend\nif nargin == 7,\n name = 'arx';\nend\nif nargin == 8,\n % trim whitespace\n filename = strtrim(name);\n % parse file name and extension\n [path,name,ext] = fileparts(name);\nend\nfilename = [name '.apm'];\n\n% check sizes for alpha\n[alpha_ny,alpha_p] = size(alpha);\nif (alpha_ny~=ny),\n disp(['input ny: ', num2str(ny)])\n disp(['alpha ny: ', num2str(alpha_ny)])\n error('ARX Size mismatch for alpha')\nend\nif (alpha_p~=p),\n disp(['input p: ', num2str(p)])\n disp(['alpha p: ', num2str(alpha_p)])\n error('ARX Size mismatch for alpha')\nend\n\n% check sizes for beta\n[beta_nu,beta_m,beta_p] = size(beta);\nif (beta_m~=m),\n disp(['input m: ', num2str(m)])\n disp(['beta m: ', num2str(beta_m)])\n error('ARX Size mismatch for beta')\nend\nif (beta_nu~=nu),\n disp(['input nu: ', num2str(nu)])\n disp(['beta nu: ', num2str(beta_nu)])\n error('ARX Size mismatch for beta')\nend\nif (beta_p~=p),\n disp(['input p: ', num2str(p)])\n disp(['beta p: ', num2str(beta_p)])\n error('ARX Size mismatch for alpha')\nend\n\nfid = fopen(filename,'w');\nfprintf( fid,'\\n');\nfprintf( fid,'Objects \\n');\nfprintf( fid,[' ' name ' = arx\\n']);\nfprintf( fid,'End Objects \\n');\nfprintf( fid,'\\n');\nfprintf( fid,'Connections\\n');\nfprintf( fid,[' u[1:%d] = ' name '.u[1:%d]\\n'],m,m);\nfprintf( fid,[' y[1:%d] = ' name '.y[1:%d]\\n'],p,p);\nfprintf( fid,'End Connections\\n');\nfprintf( fid,'\\n');\nfprintf( fid,'Model \\n');\nfprintf( fid,' Parameters \\n');\nif (m==1)\n fprintf( fid,' u = 0\\n');\nelse\n fprintf( fid,' u[1:%d] = 0\\n',m);\nend\nfprintf( fid,' End Parameters \\n');\nfprintf( fid,'\\n');\nfprintf( fid,' Variables \\n');\nif (p==1)\n fprintf( fid,' y = 0\\n');\nelse\n fprintf( fid,' y[1:%d] = 0\\n',p);\nend\nfprintf( fid,' End Variables \\n');\nfprintf( fid,'\\n');\nfprintf( fid,' Equations \\n');\nfprintf( fid,' ! add any additional equations here \\n');\nfprintf( fid,' End Equations \\n');\nfprintf( fid,'End Model \\n');\nfprintf( fid,'\\n');\nfprintf( fid,['File ' name '.txt\\n']);\nfprintf( fid,' %d ! m=number of inputs\\n',m);\nfprintf( fid,' %d ! p=number of outputs\\n',p);\nfprintf( fid,' %d ! nu=number of input terms\\n',nu);\nfprintf( fid,' %d ! ny=number of output terms\\n',ny);\nfprintf( fid,'End File\\n');\nfprintf( fid,'\\n');\nfprintf( fid,'! Alpha matrix (ny x p)\\n');\nfprintf( fid,['File ' name '.alpha.txt \\n']);\nfor i = 1:ny\n for j = 1:p\n fprintf( fid,' ');\n if j<=p-1\n fprintf( fid,'%d , ', alpha(i,j));\n else\n fprintf( fid,'%d ', alpha(i,j)); % no comma\n end\n end\n fprintf( fid,'\\n');\nend\nfprintf( fid,'End File \\n');\nfprintf( fid,'\\n');\nfprintf( fid,'! Beta matrix (p x (nu x m))\\n');\nfprintf( fid,['File ' name '.beta.txt \\n']);\nfor i = 1:p\n for j = 1:nu\n fprintf( fid,' ');\n for k = 1:m\n if k<=m-1\n fprintf( fid,'%d , ', beta(j,k,i));\n else\n fprintf( fid,'%d ', beta(j,k,i));\n end\n end\n fprintf( fid,'\\n');\n end\nend\nfprintf( fid,'End File \\n');\nfprintf( fid,'\\n');\nfprintf( fid,'! Gamma vector (p x 1)\\n');\nfprintf( fid,['File ' name '.gamma.txt \\n']);\nfor i = 1:p\n fprintf( fid,'%d ', gamma(i));\n fprintf( fid,'\\n');\nend\nfprintf( fid,'End File \\n');\nfclose(fid);\n\nmsg = ['Created ARX (Auto-Regressive eXogenous inputs) Model: ' filename];\n\nend", "meta": {"author": "APMonitor", "repo": "arduino", "sha": "f36e65a70dd7122d1829883899e40e56bf6c4279", "save_path": "github-repos/MATLAB/APMonitor-arduino", "path": "github-repos/MATLAB/APMonitor-arduino/arduino-f36e65a70dd7122d1829883899e40e56bf6c4279/2_Regression/2nd_order_SISO/ARX_APM_MATLAB/apm/apm_arx.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3657914915350756}} {"text": "function idx = sortConditions(funIn, domain, maxDiffOrders)\n%SORTCONDITIONS Returns how the results of evaluating BCs should be sorted.\n% Calling sequence:\n% IDX = SORTCONDITIONS(FUNIN, DOMAIN, DIFFORDERS)\n% where the inputs are:\n% FUNIN: An anonymous function, that usually specifies N.LBC or\n% N.RBC of a CHEBOP.\n% DOMAIN: The domain of the problem.\n% MAXDIFFORDERS: The highest order of derivatives which each derivative\n% appears in a problem.\n% and the output is\n% IDX: A vector with indices on how to sort the results of evaluating\n% N.LBC/RBC, so that they match the order required by the MATLAB \n% ODE solvers.\n%\n% Example:\n% Assume that for a coupled system, we want to specify the ICs\n% u(0) = 1, u'(0) = 2, v(0) = 0, v'(0) = 3.\n% One anonymous function we could create to specify those conditions and\n% append to a CHEBOP is\n% fun = @(u,v) [u-1; diff(v)-3; v; diff(u)-2]; \n% However, when we evaluate this function to pick out the initial \n% conditions, we get the vector\n% [1; 3; 0; 2]\n% which is in the incorrect order to be passed to the MATLAB solvers, which\n% require the conditions to be of the order u, u', v, v'. Calling\n% sortConditions(),\n% idx = treeVar.sortConditions(fun, dom) \n% idx =\n% 1 4 3 2\n% gives the correct order in which the above vector has to be sorted so \n% that the values are in the correct order for MATLAB.\n\n% Check how many unknowns appear in FUNIN. When BCs are assigned via e.g.\n% N.lbc = [1;3], nargin(funIn) == -1 due to the function that gets assigned\n% under the hood having varargin as its argument. Hence we look at the length of\n% diffOrders as well.\nnumArgs = max(nargin(funIn), length(maxDiffOrders));\nargs = cell(numArgs, 1);\n\n% The ID vector to be passed to the TREEVAR constructor.\nargsVec = zeros(1, numArgs);\n\n% Populate the args cell with TREEVAR objects.\nfor argCount = 1:numArgs\n % Set the ID of the current variable to 1:\n argsVec(argCount) = 1;\n % Construct the TREEVAR:\n args{argCount} = treeVar(argsVec, domain);\n % Reset the index vector:\n argsVec = 0*argsVec;\nend\n\n% Evaluate FUNIN with the TREEVAR arguments. If we're working with the\n% CHEBMATRIX syntax, we should not expand the ARGS cell (but do it otherwise):\nif ( ( nargin(funIn) == 1 ) && ( length(args) > 1 ) )\n % CHEBMATRIX syntax in specifying BCs:\n bcResults = funIn(args);\nelse\n bcResults = funIn(args{:});\nend\n% Look at the results of evaluating the boundary conditions, find what\n% constraint operated on what variable, and what its diffOrder was:\nvarList = cell(numArgs, 1);\ndiffOrderList = varList;\n\n% Loop through the resulting syntax trees.\nfor tCounter = 1:length(bcResults)\n % Current tree we're looking at:\n tempTree = bcResults(tCounter).tree;\n \n % Check whether more than one variable appear in the condition, which we\n % don't support:\n assert( sum(tempTree.ID) <= 1, ...\n 'CHEBFUN:TREEVAR:sortConditions:nonSeparated', ...\n 'For initial value problems, only separated conditions are supported.')\n \n % Ensure that only initial/final conditions on the form we support appear:\n assert(acceptedCondition(tempTree), ...\n 'CHEBFUN:TREEVAR:sortConditions:unsupportedCondition', [ ...\n 'Initial/final condition not supported. Please ensure that the\\n' ...\n 'unknown function(s) appear only once in each condition,\\n' ...\n 'e.g. not as u + u'' - 1, and that the coefficient of the unknown\\n'...\n 'function is 1, e.g. not 5*u-1. Alternatively, try solving the\\n' ...\n 'problem in collocation mode (see help cheboppref for details).']);\n \n % What's the active variable in the current tree (i.e. what variable did the\n % constraint apply to)?\n activeVar = find(tempTree.ID == 1);\n \n % What's the diffOrder of the current constraint?\n activeDiffOrder = tempTree.diffOrder;\n activeDiffOrder = activeDiffOrder(activeVar);\n \n % Store in a list what variable the current constraint applies to, and what\n % the current diffOrder is:\n varList{activeVar} = [ varList{activeVar}, tCounter ];\n diffOrderList{activeVar} = [diffOrderList{activeVar}, ...\n activeDiffOrder];\nend\n\n% Initalise an index vector to be returned\nidx = [];\n\n% Go through the list of what variables appeared in what constraints, and sort\n% them based on diffOrders:\nfor varCounter = 1:numArgs\n [varDiffOrders, diffOrderIndex] = sort(diffOrderList{varCounter});\n \n % Check that the user is not specifying initial values for too high order\n % derivatives.\n assert( varDiffOrders(end) < maxDiffOrders(varCounter), ...\n 'CHEBFUN:TREEVAR:sortConditions:tooHighOrderCondition', ...\n 'The value of a derivative of a too high order was specified.')\n \n % Check that multiple values for the same derivative value was not\n % specified:\n assert( length(varDiffOrders) == 1 || ~(any(diff(varDiffOrders)) == 0), ...\n 'CHEBFUN:TREEVAR:sortConditions:multipleConditionsSameVariable', [...\n 'Multiple initial conditions on the same variable/derivative '...\n 'specified.'])\n \n % Check that values for all derivatives we expect to appear actually do so.\n % For IVPs/FVPs, the user has to specify the values of the function and all\n % appropriate derivatives.\n assert( all(diff(varDiffOrders) == 1) && ...\n length(varDiffOrders) == maxDiffOrders(varCounter), ...\n 'CHEBFUN:TREEVAR:sortConditions:missingConditions', [...\n 'Solving an nth order IVP/FVP requires specifying values of the \\n' ...\n 'solution and all the (n-1)st derivatives at the endpoint.'])\n assert( all( diff(varDiffOrders) == 1) && varDiffOrders(1) == 0, ...\n 'myError');\n tempIndex = varList{varCounter}(diffOrderIndex);\n idx = [ idx, tempIndex ];\nend\n\nend\n\nfunction accepted = acceptedCondition(tree)\n%ACCEPTEDCONDITION Check whether we have encountered an unsupported IC\n% \n% ACCEPTEDCONDITION(TREE) returns FALSE if we are working with functions such as\n% @(u) 5*u - 1\n% @(u) u + diff(u),\n% which are not supported by the automatic first order reformulation. Otherwise,\n% it returns TRUE.\n\n% If TREE is not a struct, or it has height 0, it can't cause any harm:\nif ( ~isstruct(tree) || ( tree.height == 0 ) )\n accepted = true;\n\n% Deal with the case where the operator is + or -\nelseif ( any(strcmp(tree.method, {'plus', 'minus'})) )\n\n % If TREE is of height 1, and it's operator is + or -, we're OK\n if ( tree.height == 1 )\n accepted = true;\n return\n end\n \n % Otherwise, we have to be more careful. If either argument is not a struct,\n % we only need to check the other. If both arguments are trees, we need\n % ensure that both don't have any IDs, and in the case that happens, check\n % the validity of each subtree.\n if ( ~isstruct(tree.left) )\n accepted = acceptedCondition(tree.right);\n elseif ( ~isstruct(tree.right) )\n accepted = acceptedCondition(tree.left);\n elseif ( any(tree.left.ID) && any(tree.right.ID) )\n accepted = false;\n else\n accepted = acceptedCondition(tree.right) && ...\n acceptedCondition(tree.right);\n end\n \n \n% We're happy to support a tree with the diff method if it's height is 1:\nelseif ( strcmp(tree.method, 'diff') && ( tree.height == 1 ) )\n accepted = true;\n \n% Encountering any other operator implies that we had a condition on the form\n% @(u) 5*u-1, which is not supported.\nelse\n accepted = false;\nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@treeVar/sortConditions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858118, "lm_q2_score": 0.6334102636778401, "lm_q1q2_score": 0.3657914915350756}} {"text": "% Infrared small target detection via line-based reconstruction and entropy-induced suppression\nclearvars;\nclose all;\nclc;\nflag = 1;\nwflag = 1;\nchannel = 1;\nreadimg;\nfor kk = 1\n fold = '.\\data\\';% 27 images\n try\n img = imread([fold, num2str(kk), '.jpg']);\n catch\n img = imread([fold, num2str(kk), '.bmp']);\n end\n img = img(:,:,1);\n img = double(img);\n img = ones(500, 500);\n img(:, 1:250) = 100;\n img(:, 251:end) = 180;\n img(100:104, 100:104) = 100 +100* fspecial('gaussian', [5, 5]);\n img = img(:,:,1);\n [ re, re1, re2] = lrfunc(img);\n bw = bwfunc(re);\n if flag\n figure; imshow(uint8(img));\n figure; mesh(img);\n figure; imshow(re, []);\n figure; imshow(re1, []);\n figure; imshow(re2, []);\n end\n if wflag\n refold = '.\\'\n if ~exist(refold, 'dir')\n mkdir(refold);\n end\n imwrite(uint8(img), [refold, num2str(kk), '1.png']);\n imwrite(uint8( mat2gray(re) * 255), [refold, num2str(kk), '2.png']);\n imwrite(bw, [refold, num2str(kk), '3.png']);\n end\nend\n", "meta": {"author": "daxjuanxiong", "repo": "infrared-small-target-detection", "sha": "bf9b82519b235b776749ca8d89018de71ec65f7b", "save_path": "github-repos/MATLAB/daxjuanxiong-infrared-small-target-detection", "path": "github-repos/MATLAB/daxjuanxiong-infrared-small-target-detection/infrared-small-target-detection-bf9b82519b235b776749ca8d89018de71ec65f7b/cpy_lr.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.743168019989179, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.36577848228578896}} {"text": "function LU = extract_bounds_from_norm_operator(LU,extstruct,extvariables,i);\narg = extstruct(i).arg{1};\nif min(size(arg))==1 & length(extstruct(i).arg)>1\n p = extstruct(i).arg{2};\n % Maximize each element conservatively, and use the norm of\n % that worst-case vector\n xmax = abs(getbase(arg))*[1;max(abs(LU(getvariables(arg),:)),[],2)];\n LU(extvariables(i),2) = min([norm(xmax,p) LU(extvariables(i),2)]);\nend\n% norms are positive...\nLU(extvariables(i),1) = max([0 LU(extvariables(i),1)]);\n\n", "meta": {"author": "shamilmamedov", "repo": "dynamic_calibration", "sha": "11af40e7deb758ec080a175fed8fcdd6c99aca29", "save_path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration", "path": "github-repos/MATLAB/shamilmamedov-dynamic_calibration/dynamic_calibration-11af40e7deb758ec080a175fed8fcdd6c99aca29/utils/YALMIP-master/extras/extract_bounds_from_norm_operator.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7431680199891789, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.3657784822857889}} {"text": "Network VGG16 {\n\n\tLayer CONV1 {\n\t\tType: CONV\n\t\tStride { X: 1, Y: 1 }\n\t\tDimensions { K: 64, C:3, R: 3, S: 3, Y: 224, X: 224 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV2 {\n\t\tType: CONV\n\t\tDimensions { K: 64, C: 64, R: 3, S: 3, Y: 224, X: 224 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\n\t}\n\n\tLayer CONV3 {\n\t\tType: CONV\n\t\tDimensions { K: 128, C: 64, R: 3, S: 3, Y: 112, X: 112 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\n\tLayer CONV4 {\n\t\tType: CONV\n\t\tDimensions { K: 128, C: 128, R: 3, S: 3, Y: 112, X: 112 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV5 {\n\t\tType: CONV\n\t\tDimensions { K: 256, C:128, R: 3, S: 3, Y: 56, X: 56 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\n\n\tLayer CONV6 {\n\t\tType: CONV\n\t\tDimensions { K: 256, C: 256, Y: 56, X: 56, R: 3, S: 3 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV7 {\n\t\tType: CONV\n\t\tDimensions { K: 256, C: 256, R: 3, S: 3, Y: 56, X: 56 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV8 {\n\t\tType: CONV\n\t\tDimensions { K: 512, C: 256, R: 3, S: 3, Y: 28, X: 28 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV9 {\n\t\tType: CONV\n\t\tDimensions { K: 512, C:512, R: 3, S: 3, Y: 28, X: 28 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV10 {\n\t\tType: CONV\n\t\tDimensions { K: 512, C: 512, R: 3, S: 3, Y: 28, X: 28 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV11 {\n\t\tType: CONV\n\t\tDimensions { K: 512, C: 512, R: 3, S: 3, Y: 14, X: 14 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\tLayer CONV12 {\n\t\tType: CONV\n\t\tDimensions { K: 512, C: 512, R: 3, S: 3, Y: 14, X: 14 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n\n\n\tLayer CONV13 {\n\t\tType: CONV\n\t\tDimensions { K: 512, C: 512, Y: 14, X: 14, R: 3, S: 3 }\n\t\tDataflow {\n\t\t\t// Only one spatial map can be applied except on R and S\n\t\t\tTemporalMap(1,1) C; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tSpatialMap(1,1) K; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) Y'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(1,1) X'; // Flexible (Mapping size/offset, spatial/temporal)\n\t\t\tTemporalMap(Sz(R),Sz(R)) R; // This cannot be changed\n\t\t\tTemporalMap(Sz(S),Sz(S)) S; // This cannot be changed\n\t\t\t// Virtual Neuron of size Sz(R) x Sz(S):\n\t\t\tCluster(Sz(R),P);\n\t\t\tSpatialMap(1,1) Y;\n\t\t\tSpatialMap(1,1) R;\n\t\t\tCluster(Sz(S),P);\n\t\t\tSpatialMap(1,1) X;\n\t\t\tSpatialMap(1,1) S;\n\t\t}\n\t}\n}\n", "meta": {"author": "maestro-project", "repo": "maestro", "sha": "4eb08d17c87caf1ee3f3a351b10eb9b8ef70dd87", "save_path": "github-repos/MATLAB/maestro-project-maestro", "path": "github-repos/MATLAB/maestro-project-maestro/maestro-4eb08d17c87caf1ee3f3a351b10eb9b8ef70dd87/validation/maeri/vgg16_maeri.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.743167997235783, "lm_q2_score": 0.4921881357207955, "lm_q1q2_score": 0.3657784710868373}} {"text": "function[pixAcc, meanClassPixAcc] = evaluatePixAccHierarchy_preload(imageList, probs, ~, overlapListCell, superPixelLabelHistosCell, varargin)\n% [pixAcc, meanClassPixAcc] = evaluatePixAccHierarchy_preload(imageList, probs, ~, varargin)\n%\n% Same as evaluatePixAccPaint, but much faster by taking into account the SS hierarchy.\n% To use this hierarchy, run reconstructSelSearchHierarchyFromFz().\n%\n% Copyright by Holger Caesar, 2015\n\n% Parse input\np = inputParser;\naddParameter(p, 'printStatus', true);\nparse(p, varargin{:});\n\nprintStatus = p.Results.printStatus;\n\n% Init\nlabelCount = size(probs{1}, 2);\nassert(labelCount > 1);\npixCorrectHisto = zeros(labelCount, 1);\npixTotalHisto = zeros(labelCount, 1);\n\nimageCount = numel(imageList);\nfor imageIdx = 1 : imageCount,\n if printStatus,\n printProgress('Evaluating pixel accuracy for image', imageIdx, imageCount);\n end;\n \n % Skip images without ground-truth\n if isempty(probs{imageIdx}),\n continue;\n end;\n \n % Precompute maximum over labels\n [maxProbs, maxInds] = max(probs{imageIdx}, [], 2);\n \n % Compute maximum over regions (that contain a superpixel) and count pixels\n [pixCorrectHisto, pixTotalHisto] = evaluatePixAccHierarchy_loop(maxProbs, maxInds, full(overlapListCell{imageIdx}), superPixelLabelHistosCell{imageIdx}, pixCorrectHisto, pixTotalHisto);\nend;\n\n% Compute overall accuracies\npixAcc = sum(pixCorrectHisto) / sum(pixTotalHisto);\nclassPixAcc = pixCorrectHisto ./ pixTotalHisto;\nmeanClassPixAcc = nanmean(classPixAcc);", "meta": {"author": "nightrome", "repo": "matconvnet-calvin", "sha": "42d7e80bac56741d39404b6646a0866c10aad021", "save_path": "github-repos/MATLAB/nightrome-matconvnet-calvin", "path": "github-repos/MATLAB/nightrome-matconvnet-calvin/matconvnet-calvin-42d7e80bac56741d39404b6646a0866c10aad021/matconvnet-calvin/matlab/misc/evaluatePixAccHierarchy_preload.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3657023646718346}} {"text": "function img = atlasMapRgn2FullImage(img,imgRegion,X,Y,fillvalue)\n%\n% img = atlasMapRgn2FullImage(img,imgRegion,X,Y,[fillvalue = -1])\n%\n% Author: Wandell\n% Purpose:\n% We use atlasCreate (via CP2TFORM and IMTRANFORM) to transform the standard\n% atlas into the coordinate frame of the data. This produces a set of\n% standard atlas values that fall within an imgRegion inside the full\n% image of the data (img). The coordinates of imgRegion are at the\n% locations between X(1):X(2) and Y(1):Y(2) in the destination image,\n% img. Because of the limitations on the affine transformations,\n% sometimes the data in imgRegion are invalid, having a fill value\n% (default of -1). This routine copies the valid data in imgRegion into\n% the full image.\n%\n% Examples:\n% atlasE = atlasMapRgn2FullImage(atlasE,atlasET,X,Y);\n%\n\nif ~exist('fillvalue','var') , fillvalue = -1; end\n\nxCoords = round(X(1):X(2));\nyCoords = round(Y(1):Y(2));\nfor ii=1:length(xCoords)\n for jj=1:length(yCoords)\n if imgRegion(jj,ii) ~= fillvalue\n img(yCoords(jj),xCoords(ii)) = imgRegion(jj,ii);\n end\n end\nend\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Analysis/Atlas/atlasMapRgn2FullImage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3657023646718346}} {"text": "%% This function will determine the noise level\n% Code By: K\n% Last Updated: 2019/07/11\n%%\nfunction noise_level=Determine_Noise_Level(percent_iter)\n% Set the noise level\nif percent_iter==1\n noise_level=0;\nelseif percent_iter==2\n noise_level=1e-7;\nelseif percent_iter==3\n noise_level=5e-7;\nelseif percent_iter==4\n noise_level=1e-6;\nelseif percent_iter==5\n noise_level=5e-6;\nelseif percent_iter==6\n noise_level=1e-5;\nelseif percent_iter==7\n noise_level=5e-5;\nelseif percent_iter==8\n noise_level=1e-4;\nelseif percent_iter==9\n noise_level=5e-4;\nelseif percent_iter==10\n noise_level=1e-3;\nelseif percent_iter<=14\n noise_level=2e-3*(percent_iter-10);\nelseif percent_iter==15\n noise_level=1e-2;\nelseif percent_iter<=19\n noise_level=2e-2*(percent_iter-15);\nelseif percent_iter==20\n noise_level=1e-1;\nelseif percent_iter<=24\n noise_level=1e-1+1e-1*(percent_iter-20);\nend\n\n", "meta": {"author": "dynamicslab", "repo": "SINDy-PI", "sha": "42799b8e5a7585e400aa4bc3c83cfd659046cbb4", "save_path": "github-repos/MATLAB/dynamicslab-SINDy-PI", "path": "github-repos/MATLAB/dynamicslab-SINDy-PI/SINDy-PI-42799b8e5a7585e400aa4bc3c83cfd659046cbb4/Comparison/NoiseSensitivity/Michaelis-Menten kinetics/Functions/Determine_Noise_Level.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.36570235745423263}} {"text": "function [ids, dis]= yael_nn(v, q, k, distype)\n assert( nargin<4 || distype==2 );\n if nargin<3, k= 1; end\n assert(k<=size(v,2));\n \n ids= zeros(k, size(q,2), 'int32');\n dis= zeros(k, size(q,2), 'single');\n \n for iVec= 1:size(q,2)\n ds= sum( bsxfun(@minus, v, q(:,iVec)).^2, 1 );\n [ds, inds]= sort(ds);\n dis(:,iVec)= ds(1:k);\n ids(:,iVec)= inds(1:k);\n end\nend\n", "meta": {"author": "Relja", "repo": "netvlad", "sha": "652dbe71aa45c691961ddd9f6cf902574e6bdc2f", "save_path": "github-repos/MATLAB/Relja-netvlad", "path": "github-repos/MATLAB/Relja-netvlad/netvlad-652dbe71aa45c691961ddd9f6cf902574e6bdc2f/yael_dummy/yael_nn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3657023574542326}} {"text": "filename='Throne_Tetrahedra_SYM';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'compliance'};\nweights = [1];\nconstraint = {'volume'};\noptimizer = 'SLERP'; incrementFactor = 1;\nfilterType = 'P1';\nconstraint_case = 'INEQUALITY';\nline_search_initiator = 'INCREASING LAST STEP';\n\nnsteps = 10;\nVfrac_final = 0.4;\nPerimeter_target = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Throne/ThroneTetrahedraSYM_Case_1_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.737158174177441, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.36569962155347774}} {"text": "%CMDL_HAT Create a CollisionModel object of the human HAT\n%\n% Returns a CollisionModel object of the human head and torso segment\n% (also includes neck). The model may be given for any shoulder frame\n% transformation (synonymous with the base transform of a HAL object).\n% The head is a sphere, the neck a cylinder, the shoulders an ellipsoid\n% and the torso an elliptical cylinder.\n%\n% Copyright (C) Bryan Moutrie, 2013-2014\n% Licensed under the GNU Lesser General Public License\n% see full file for full statement\n%\n% Syntax:\n% (1) hat = cmdl_hat(Tg)\n% (2) hat = cmdl_hat()\n%\n% (2) is as per (1), using HAL's default value of Tg\n%\n% Outputs:\n% hat : CollisionModel object of the human HAT\n%\n% Inputs:\n% Tg : Transformation frame of the shoulder\n%\n% See also anthroData cmdl_arm HAL\n\n% LICENSE STATEMENT:\n%\n% This file is part of pHRIWARE.\n% \n% pHRIWARE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as \n% published by the Free Software Foundation, either version 3 of \n% the License, or (at your option) any later version.\n%\n% pHRIWARE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU Lesser General Public \n% License along with pHRIWARE. If not, see .\n\nfunction hat = cmdl_hat(Tg)\n\nif ~nargin, Tg = trotx(pi/2); end\n\nskin = pHRIWARE('skin');\nshirt = pHRIWARE('orange');\n\n% Anthropometric Data\n[refnote, pb, sb, pn, sn, pg, sg, pt, st] = ...\n anthroData('pb', 'rb', 'pn', 'sn', 'pg', 'sg', 'pt', 'st');\n\n% Head\ngTb = [eye(3), pb; 0, 0, 0, 1];\nTb = Tg * gTb;\nHead = Sphere(Tb, sb, 'FaceColor', skin, 'EdgeColor', 'none');\n\n% Neck\ngTn = [rotx(-pi/2), pn; 0, 0, 0, 1];\nTn = Tg * gTn;\nNeck = Cylinder(Tn, sn, 'FaceColor', skin, 'EdgeColor', 'none');\n\n% Shoulders\ngT = [eye(3), pg; 0, 0, 0, 1];\nT = Tg * gT;\nShoulders = Ellipsoid(T, sg, 'FaceColor', shirt, 'EdgeColor', 'none');\n\n% Torso\ngTt = [rotx(pi/2), pt; 0, 0, 0, 1];\nTt = Tg * gTt;\nTorso = Cylinder(Tt, st, 'FaceColor', shirt, 'EdgeColor', 'none');\n\nhat = CollisionModel(refnote, Head, Neck, Shoulders, Torso);\n\nend\n\n", "meta": {"author": "Allopart", "repo": "rbpf-gmapping", "sha": "affe0adc25fa446fc7af4902d699d92864bdba1b", "save_path": "github-repos/MATLAB/Allopart-rbpf-gmapping", "path": "github-repos/MATLAB/Allopart-rbpf-gmapping/rbpf-gmapping-affe0adc25fa446fc7af4902d699d92864bdba1b/rvctools/contrib/pHRIWARE/Data/collision models/cmdl_hat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7799929002541068, "lm_q2_score": 0.4687906266262437, "lm_q1q2_score": 0.36565336047414393}} {"text": "function r8_uniform_01_test ( )\n\n%*****************************************************************************80\n%\n%% R8_UNIFORM_01_TEST tests R8_UNIFORM_01.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 19 April 2009\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'R8_UNIFORM_01_TEST\\n' );\n fprintf ( 1, ' R8_UNIFORM_01 produces a sequence of random values.\\n' );\n\n seed = 123456789;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' SEED = %d\\n', seed );\n fprintf ( 1, '\\n' );\n\n for i = 1 : 10\n [ r, seed ] = r8_uniform_01 ( seed );\n fprintf ( 1, ' %2d %14f\\n', i, r );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/normal/r8_uniform_01_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5583269943353744, "lm_q2_score": 0.6548947357776795, "lm_q1q2_score": 0.365645409432811}} {"text": "% The COBRAToolbox: testFASTCC.m\n%\n% Purpose:\n% - test FASTCC algorithm\n%\n% Authors:\n% - Original file: Thomas Pfau, May 2016\n% - Fix by @fplanes July 2017\n% - CI integration: Laurent Heirendt July 2017\n%\n\n% save the current path\ncurrentDir = pwd;\n\n% initialize the test\nfileDir = fileparts(which('testFASTCC'));\ncd(fileDir);\n\n%load a model\nmodel = getDistributedModel('ecoli_core_model.mat');\n% create a model with fructose\nmodelWithFru = changeRxnBounds(model,'EX_fru(e)',-100,'l');\n\n% set paarmeters\nepsilon = 1e-4;\nprintLevel = 2;\nmodeFlag = 0;\n\n%by default, fructose updatek, fumarate uptake and corresponding reactions\n%cannot be used.\ninactives = {'EX_fru(e)', 'EX_fum(e)','EX_gln_L(e)', 'EX_mal_L(e)', 'FRUpts2', 'FUMt2_2', 'GLNabc','MALt2_2' };\nfructoseRelated = {'EX_fru(e)', 'FRUpts2'};\n\n% define the solver packages to be used to run this test\nsolverPkgs = prepareTest('needsLP',true);\n\nfor k = 1:length(solverPkgs.LP)\n % change the COBRA solver (LP)\n solverOK = changeCobraSolver(solverPkgs.LP{k}, 'LP', 0);\n fprintf(' Testing FASTCC using %s ... \\n', solverPkgs.LP{k});\n A = fastcc(model, epsilon, printLevel,modeFlag);\n assert(isempty(setxor(setdiff(model.rxns,model.rxns(A)),inactives)));\n % Open up the Fructose channel\n A = fastcc(modelWithFru, epsilon, printLevel,modeFlag);\n % now, everything from the inactives except the fructose reactions are\n % not in A\n assert(isempty(setxor(setdiff(modelWithFru.rxns,modelWithFru.rxns(A)),setdiff(inactives,fructoseRelated))));\n % output a success message\n fprintf('Done.\\n');\nend\n\n% change the directory\ncd(currentDir)\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/verifiedTests/analysis/testFASTCORE/testFASTCC.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421276, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3656454056721706}} {"text": "function [candidates, scores] = get_candidates(candidate_dir,method_config, img_id, num_candidates, allow_filtering)\n\n if nargin < 4\n allow_filtering = true;\n end\n\n [candidates, scores, rerun_num_candidates] = read_candidates_mat(candidate_dir, img_id);\n if iscell(candidates) && iscell(scores)\n [~,idx] = min(abs(rerun_num_candidates - num_candidates));\n candidates = candidates{idx};\n scores = scores{idx};\n end\n \n if allow_filtering\n if strcmp(method_config.opts.order, 'none')\n % nothing to do\n elseif strcmp(method_config.opts.order, 'biggest')\n w = candidates(:,3) - candidates(:,1) + 1;\n h = candidates(:,4) - candidates(:,2) + 1;\n areas = w .* h;\n [~,order] = sort(areas, 'descend');\n candidates = candidates(order,:);\n scores = scores(order,:);\n elseif strcmp(method_config.opts.order, 'smallest')\n w = candidates(:,3) - candidates(:,1) + 1;\n h = candidates(:,4) - candidates(:,2) + 1;\n areas = w .* h;\n [~,order] = sort(areas, 'ascend');\n candidates = candidates(order,:);\n scores = scores(order,:);\n elseif strcmp(method_config.opts.order, 'random')\n s = RandStream('mt19937ar','Seed',0);\n perm = randperm(s, size(candidates,1));\n candidates = candidates(perm,:);\n if numel(scores) > 0\n scores = scores(perm);\n end\n else\n [scores, argsort] = sort(scores, method_config.opts.order);\n candidates = candidates(argsort,:);\n end\n \n num_candidates = min(num_candidates, size(candidates, 1));\n candidates = candidates(1:num_candidates,:);\n if numel(scores) > 0\n scores = scores(1:num_candidates,:);\n end\n else\n error('this shouldn''t be used');\n end\nend\n", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/evaluation-metrics/shared/get_candidates.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3656454056721705}} {"text": "% Fig. 5.19 Feedback Control of Dynamic Systems, 6e \n% Franklin, Powell, Emami\n% \nclf\nn=1;\nd=conv([1 2 0],[1 2 5]);\npzmap(n,d)\naxis([-4 4 -3 3])\ntitle('Fig.5.19 Departure angle calculation')\nz=0:.1:.9;\n wn=1:1:4;\n sgrid(z, wn)\n hold off", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/26412-feedback-control-of-dynamic-systems-6th-edition-prentice-hall-2010/fig5_19.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.36564540567217046}} {"text": "function varargout = plotEarth(varargin)\n%PLOTEARTH Plots the landmasses of earth.\n% PLOTEARTH plots outlines of the landmasses of earth on a sphere using\n% black solid lines.\n%\n% PLOTEARTH(LINESPEC) uses the uses the color and marker from the \n% line specification string 'LineSpec' (See PLOT for possibilities)\n%\n% See also spherefun/surf, spherefun/plot, spherefun/contour\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n\n% Land masses are stored in the data file CoastData.mat\ntry\n x = load('CoastData.mat', 'coast');\ncatch\n error('CHEBFUN:SPHEREFUN:PLOTEARTH:coastDataNotFound',...\n ['File containing the coast line data could not be found. '...\n 'Try reinstalling chebfun.']);\nend\n\nif ( nargin > 0 )\n linespec = varargin{:};\nelse\n linespec = 'k-';\nend\n\n% Get the hold state of the current axis:\nholdState = ishold;\n\nif ( ~holdState )\n % Generate a unit sphere.\n [XX,YY,ZZ] = sphere(101);\n \n % Color of the sphere will be white:\n clr = [255 255 255]/255;\n \n % Plot the sphere, make it slightly smaller than unit so lines\n % show up more clearly.\n scl = 0.99;\n \n surf(scl*XX, scl*YY, scl*ZZ, 1+0*XX, 'EdgeColor', 'None', ...\n 'FaceColor', clr);\n daspect([1 1 1]);\n hold on\nend\n\nh = plot3(x.coast(:,1), x.coast(:,2), x.coast(:,3), linespec);\n\nif ( ~holdState )\n hold off\nend\n\nif ( nargout > 0 )\n varargout = { h }; \nend\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@spherefun/plotEarth.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5583269943353745, "lm_q2_score": 0.6548947223065754, "lm_q1q2_score": 0.36564540191152994}} {"text": "%% OPT_POOL uses the MATLABPOOL command to run the QUAD code.\n%\n% Discussion:\n%\n% Output printed by the function appears directly on the screen.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 31 March 2010\n%\n% Author:\n%\n% John Burkardt\n%\n n = 16;\n\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'OPT_POOL\\n' );\n fprintf ( 1, ' Solve optimization problem with discretization parameter N = %d\\n', n );\n\n matlabpool open local 4\n\n [ z_star, PAR, exit ] = opt_fun ( @zermelo, n );\n\n matlabpool close\n%\n% On successful conclusion, display the plot.\n%\n if ( 0 <= exit && isfield ( PAR, 'plot' ) )\n feval ( PAR.plot, z_star, PAR )\n end\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/fmincon_parallel/opt_pool.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5583269943353745, "lm_q2_score": 0.6548947223065754, "lm_q1q2_score": 0.36564540191152994}} {"text": "function ChannelMat = in_channel_curry_rs3(ChannelFile)\n% IN_CHANNEL_CURRY_RS3: Read 3D cartesian positions for a set of electrodes from Curry .rs3 file.\n%\n% USAGE: ChannelMat = in_channel_curry_res3(ChannelFile)\n%\n% INPUTS: \n% - ChannelFile : Full path to the file\n\n% @=============================================================================\n% This function is part of the Brainstorm software:\n% https://neuroimage.usc.edu/brainstorm\n% \n% Copyright (c) University of Southern California & McGill University\n% This software is distributed under the terms of the GNU General Public License\n% as published by the Free Software Foundation. Further details on the GPLv3\n% license can be found at http://www.gnu.org/copyleft/gpl.html.\n% \n% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED \"AS IS,\" AND THE\n% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY\n% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF\n% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY\n% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.\n%\n% For more information type \"brainstorm license\" at command prompt.\n% =============================================================================@\n%\n% Authors: Francois Tadel, 2009-2011\n\n% Open file\nfid = fopen(ChannelFile, 'r');\nif (fid == -1)\n error('Cannot open file.');\nend\n% Initialize indices structure\niChannel = 1;\ncurBlock = '';\nChannelMat = db_template('channelmat');\nChannelMat.Comment = 'Curry rs3';\n\n% Read file line by line\nwhile 1\n % Read line\n read_line = fgetl(fid);\n % Empty line: go to next line\n if isempty(read_line)\n continue\n end\n % End of file: stop reading\n if (read_line(1) == -1)\n break\n end\n\n % Check if beginning/end of block\n \n if ~isempty(regexp(read_line, 'SENSORS\\w* START_LIST'))\n curBlock = 'pos';\n iChannel = 1;\n elseif ~isempty(regexp(read_line, 'LABELS\\w* START_LIST'))\n curBlock = 'labels';\n iChannel = 1;\n elseif ~isempty(regexp(read_line, 'SENSORS\\w* END_LIST')) || ~isempty(regexp(read_line, 'LABELS\\w* END_LIST'))\n curBlock = '';\n else\n switch (curBlock)\n case 'labels'\n ChannelMat.Channel(iChannel).Name = read_line;\n iChannel = iChannel + 1;\n case 'pos'\n xyz = sscanf(read_line, '%f %f %f') / 1000;\n ChannelMat.Channel(iChannel).Type = 'EEG';\n ChannelMat.Channel(iChannel).Loc = [-xyz(2); xyz(1); xyz(3)];\n ChannelMat.Channel(iChannel).Orient = [];\n ChannelMat.Channel(iChannel).Comment = '';\n ChannelMat.Channel(iChannel).Weight = 1;\n iChannel = iChannel + 1;\n end\n end\nend\n% Close file\nfclose(fid);\n\n\n\n\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/toolbox/io/in_channel_curry_rs3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850933, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3655843860082753}} {"text": "%% Creating one CUDA accelerated test radiography\n\n%--------------------------------------------------------------------------\n%--------------------------------------------------------------------------\n% This file is part of the TIGRE Toolbox\n% \n% Copyright (c) 2015, University of Bath and \n% CERN-European Organization for Nuclear Research\n% All rights reserved.\n%\n% License: Open Source under BSD. \n% See the full license at\n% https://github.com/CERN/TIGRE/blob/master/LICENSE\n%\n% Contact: tigre.toolbox@gmail.com\n% Codes: https://github.com/CERN/TIGRE/\n% Coded by: Stefanie Kaser \n%--------------------------------------------------------------------------\n%% pCT geometry definition\n\ngeo.dDetector = [0.25; 0.25]; % Pixel size of optimized pRad in mm.\ngeo.DSID = 245; % Distance between source and upstream detector.\ngeo.DSO = 300; % Distance between source and origin (center of rotation).\ngeo.DSD = 355; % Distance between source and downstream detector.\ngeo.hull = [0; 0; 0; 0]; % We won't use a convex hull here (all entries are \n% set to 0).\ngeo.sDetector = [20; 20]; % Defines the size (in mm) of the optimized pRad.\ngeo.mode = 'parallel'; % or 'cone' in case of cone beam geometry\n\n%% pCT initial beam energy \neIn = single(100);\n\n%% Load pCT data set. \n% The data set corresponds to one radiographic image (pRad) of an Aluminum \n% stair profile as used in https://arxiv.org/abs/2106.12890. However, our \n% test data set is based on Monte Carlo simulations (GATE: \n% doi.org/10.1016/S0920-5632(03)90969-8). The data set contains the \n% protons' upstream and downstream positions and directions as well as the \n% single proton WEPLs (all in mm).\ndata = pCTdata();\n\n%% Binning the data into an optimized pRad\n% Finally, the single proton data are binned into an optimized pRad.\nproj = pCTCubicSpline_mex(data.posIn, data.posOut, data.dirIn, ...\n data.dirOut, data.Wepl, eIn, geo);\n% We are only creating one test pRad here. Creating pRads at multiple \n% rotation angles would allow to use the collection as input for TIGRE's \n% reconstruction algorithms (see d04_SimpleReconstruction.m).\n\n%% Plot the result\nimshow(proj, [0, 3], 'InitialMagnification', 500);", "meta": {"author": "CERN", "repo": "TIGRE", "sha": "8df632662228d1b1c52afd95c90d0f7a9f8dc4b3", "save_path": "github-repos/MATLAB/CERN-TIGRE", "path": "github-repos/MATLAB/CERN-TIGRE/TIGRE-8df632662228d1b1c52afd95c90d0f7a9f8dc4b3/MATLAB/Demos/pRad_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879992, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3655843796676487}} {"text": "function matched_points=it_features_matching(upl_1, lor_1, upl_2, lor_2, th, cal, matches, past_weigth)\n\n%% ITERATIVE FEATURES MATCHING\n%% As features are selected the best matching in any iteration.\n%% Then it is recursively refined till reaching the threshold size\n%% subwindows\n\n%% Input\n%% iml,imr : templates to be matched\n%% upl_1, upl_2 : image coordinates of the templates' upper left corner\n%% lor_1, lor_2 : image coordinates of the templates' lower right corner\n%% th : matching threshold\n%% cal : (1=rectified images with epipolar horizontal lines; 0=uncalibrated images )\n%% matches : N x 4 matrix comprised of the already matched points\n%% past weigth : present match weigth\n\n%% Output\n%% matched_points : Correspondences matrix (N x 4) \n%% [v1_1 u1_1 v2_1 u2_1\n%% v1_2 u1_2 v2_2 u2_2\n%% ...\n%% v1_N u1_N v1_N u1_N]\n\n\n\nglobal IM1 IM2 IM1_X IM1_Y IM1_X2 IM1_Y2 SIGMA_MAX;\noffset=0;\nimw1=IM1(upl_1(1):lor_1(1),upl_1(2):lor_1(2));\nimw2=IM2(upl_2(1):lor_2(1),upl_2(2):lor_2(2));\n\n[mt1,mt2,upl_mt1,lor_mt1,upl_mt2,lor_mt2,pres_weigth,err]=temp_temp_matching(imw1,imw2,upl_1,lor_1,upl_2,lor_2,th,cal); \npres_weigth=pres_weigth+past_weigth;\n[tysize,txsize]=size(mt1);\n\nif (~err) %% returned valid match\n \n if (tysize<8 | txsize<8) %% last step. The central position of the matched subwindows are added to the correspondences set. \n matched_points=[matches; (upl_mt1+lor_mt1)/2, (upl_mt2+lor_mt2)/2, pres_weigth]; \n\n else\n %% matched subwindows tiling\n y1=floor(tysize/2)-offset;\n y2=floor(tysize/2)+offset;\n x1=floor(txsize/2)-offset;\n x2=floor(txsize/2)+offset;\n \n %hi-le templates\n t1_1=mt1( 1:y2 , 1:x2 );\n upl_1_1=upl_mt1 + [0,0];\n lor_1_1=upl_mt1 + [y2-1,x2-1];\n \n t2_1=mt2( 1:y2 , 1:x2 );\n upl_2_1=upl_mt2 + [0,0];\n lor_2_1=upl_mt2 + [y2-1,x2-1];\n \n %hi-ri templates\n t1_2=mt1( 1:y2 , x1:txsize );\n upl_1_2=upl_mt1 + [0,x1-1];\n lor_1_2=upl_mt1 + [y2-1,txsize-1];\n \n t2_2=mt2( 1:y2 , x1:txsize );\n upl_2_2=upl_mt2 + [0,x1-1];\n lor_2_2=upl_mt2 + [y2-1,txsize-1];\n \n %lo-le templates\n t1_3=mt1( y1:tysize , 1:x2 );\n upl_1_3=upl_mt1 + [y1-1,0];\n lor_1_3=upl_mt1 + [tysize-1,x2-1];\n \n t2_3=mt2( y1:tysize , 1:x2 );\n upl_2_3=upl_mt2 + [y1-1,0];\n lor_2_3=upl_mt2 + [tysize-1,x2-1];\n \n %lo-ri templates\n t1_4=mt1( y1:tysize , x1:txsize );\n upl_1_4=upl_mt1 + [y1-1,x1-1];\n lor_1_4=upl_mt1 + [tysize-1,txsize-1];\n \n t2_4=mt2( y1:tysize , x1:txsize );\n upl_2_4=upl_mt2 + [y1-1,x1-1];\n lor_2_4=upl_mt2 + [tysize-1,txsize-1];\n \n matched_points=[matches;\n it_features_matching(upl_1_1,lor_1_1,upl_2_1,lor_2_1,th,cal,matches,pres_weigth);\n it_features_matching(upl_1_2,lor_1_2,upl_2_2,lor_2_2,th,cal,matches,pres_weigth);\n it_features_matching(upl_1_3,lor_1_3,upl_2_3,lor_2_3,th,cal,matches,pres_weigth);\n it_features_matching(upl_1_4,lor_1_4,upl_2_4,lor_2_4,th,cal,matches,pres_weigth)];\n \n end\n \n else\n matched_points=matches;\n end \n \n \n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/7572-multiscale-stereo-features-matching/it_features_matching.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7310585786300049, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36552928931500245}} {"text": "function c = butter(c,varargin)\n\n% C = BUTTER(C,[TYPE],CUTOFF,[POLES])\n% This function creates and applies a butterworth filter to each waveform\n% in the correlation object. The function returns a correlation object.\n% Filtering is performed by an underlying call to the filterobject/filtfilt\n% routine. Note that filtfilt applies the filter once in each direction to\n% minimize phase distortion (effectively a zero-phase filter). This also\n% has the effect of doubling the order of the filter. 2 or 4 poles should\n% be sufficient for most applications.\n%\n% EXAMPLES:\n% c = BUTTER(c,[1 5]) band pass filter on 1-5 Hz (4 poles)\n% c = BUTTER(c,'B',[1 5]) same as previous example\n% c = BUTTER(c,'L',5) low pass filter below 5 Hz (4 poles)\n% c = BUTTER(c,'H',1) high pass filter above 5 Hz (4 poles)\n% c = BUTTER(c,...,2) use 2 poles\n\n% Author: Michael West, Geophysical Institute, Univ. of Alaska Fairbanks\n% $Date$\n% $Revision$\n% TODO: should check to ensure low cutoff period is >> trace length\n\n% GET INPUTS\nif ischar(varargin{1}) % set filter type\n type = varargin{1};\n varargin = varargin(2:end);\nelse\n type = 'B';\nend\n \ncutoff = varargin{1}; % set cutoff frequencies\n\nif length(varargin)>1\n poles = varargin{2};\nelse\n poles = 4; % set number of poles\nend\n\n\n% CHECK FIRST LETTER OF FILTER TYPE\ntype = upper(type(1));\nif (type~='B') && (type~='H') && (type~='L')\n error('Filter type not recognized')\nend;\n\n\n% CHECK NUMBER OF CUTOFF FREQUENCIES\nif type=='B'\n if length(cutoff)~=2\n error('Two cutoff frequecies needed for bandpass filter')\n end;\nelse\n if length(cutoff)~=1\n error('High and lowpass filters require one cutoff frequency')\n end; \nend;\n \n\n% CHECK FREQUENCY RANGE\nif cutoff(end) >= get(c,'NYQ')\n error('Frequency cutoffs exceed the Nyquist frequency')\nend;\n \n% duration = get(c,'DURATION_EPOCH');\n% if 1/cutoff(1) >= duration(1)\n% warning('Frequency cutoff is very low relative to trace length');\n% end; \n% uration(1)\n% 1/cutoff(1)\n\n\n \n% APPLY FILTER\nf = filterobject(type,cutoff,poles);\nc.W = filtfilt(f,c.W);\n\n\n\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/@correlation/butter.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7606506526772883, "lm_q2_score": 0.480478678047907, "lm_q1q2_score": 0.36547642005466113}} {"text": "function inum=myRound(dnum)\n\nif dnum>0\n inum=fix(dnum+0.5);\nelse\n inum=fix(dnum-0.5);\nend\n\nreturn", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/common/myRound.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.6370308013713525, "lm_q1q2_score": 0.36545081562891346}} {"text": "function [xs,optimState] = searchCMA(sumrule,x,gpstruct,LB,UB,optimState,options)\n%SEARCHCMA Covariance matrix adaptation search step (inspired by CMA-ES).\n\nif nargin < 2 || isempty(x) || isempty(gpstruct)\n xs = 'cma';\n return;\nend\n\n% SUMRULE not specified, all arguments shifted by one\nif nargin < 7\n options = optimState;\n optimState = UB;\n UB = LB;\n LB = gpstruct;\n gpstruct = x;\n x = sumrule;\n sumrule = []; \nend\n\n% By default renormalize by expected vector magnitude\nif isempty(sumrule); sumrule = 1; end\n\nMeshSize = optimState.meshsize;\nSearchFactor = optimState.searchfactor;\n\nnvars = length(x);\n\nsigma = optimState.C';\nsigma = MeshSize*SearchFactor*sigma; % Rescale by current scale\n\nN = options.Nsearch;\nxs = bsxfun(@plus, x, randn(N,nvars)*sigma);\n\nend", "meta": {"author": "acerbilab", "repo": "bads", "sha": "019f0b432b9e157a31defbbd303aadcdf57862e7", "save_path": "github-repos/MATLAB/acerbilab-bads", "path": "github-repos/MATLAB/acerbilab-bads/bads-019f0b432b9e157a31defbbd303aadcdf57862e7/search/searchCMA.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7248702880639791, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.36526661098863117}} {"text": "function test_suite = test_linePosition\n%TESTLINEPOSITION One-line description here, please.\n%\n% output = testLinePosition(input)\n%\n% Example\n% testLinePosition\n%\n% See also\n%\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2011-06-15, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2011 INRA - Cepia Software Platform.\n\n\ntest_suite = functiontests(localfunctions); \n\nfunction testBasic(testCase) %#ok<*DEFNU>\n\npoint = [20 60];\nline = createLine([10 30], [30 90]);\n\nexp = .5;\npos = linePosition(point, line);\n\ntestCase.assertEqual(exp, pos);\n\n\nfunction testPointArray(testCase)\n\npoint = [20 60;10 30;25 75];\nline = createLine([10 30], [30 90]);\n\nexp = [.5; 0; .75];\npos = linePosition(point, line);\n\ntestCase.assertEqual(exp, pos);\n\n\nfunction testLineArray(testCase)\n\npoint = [20 60];\nline1 = createLine([10 30], [30 90]);\nline2 = createLine([0 0], [20 60]);\nline3 = createLine([20 60], [40 120]);\nlines = [line1;line2;line3];\n\nexp = [.5 1 0];\npos = linePosition(point, lines);\n\ntestCase.assertEqual(exp, pos);\n\nfunction testArrayArray(testCase)\n\nlines = [10 20 1 0;10 20 0 1;10 20 1 1];\npoints = [30 20;10 40; 30 40];\n\nexp = [20 0 10; 0 20 10; 20 20 20];\npos = linePosition(points, lines);\n\ntestCase.assertEqual(exp, pos, 'AbsTol', .01);\n\nfunction testArrayArrayDiag(testCase)\n\nlines = [10 20 1 0;10 20 0 1;10 20 1 1];\npoints = [30 20;10 40; 30 40];\n\nexp = [20; 20; 20];\npos = linePosition(points, lines, 'diag');\n\ntestCase.assertEqual(exp, pos, 'AbsTol', .01);\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/tests/geom2d/test_linePosition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5350984434543458, "lm_q2_score": 0.6825737408694988, "lm_q1q2_score": 0.3652441462820788}} {"text": "function response = Forgetful(n,p)\n\npersistent ncount trustcount roundstore\nif n==1; ncount=0; trustcount=0; roundstore=0; end\nif ncount==1 && (p==1 || p==5); trustcount=trustcount+1; end\n\nif n>5\n if isequal( roundstore(end-3:end), [5 0 5 0] );\n trustcount = 2;\n ncount = 5;\n end\nend\n\nif ( p==1 || p==5 || n==20 ) && ncount<5 && n~=1\n response = 'defect';\nelse\n response = 'cooperate';\n if trustcount>2; response = 'defect'; end\n ncount = 0;\nend\n\nroundstore(n) = p;\n\nncount = ncount + 1;", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27611-iterated-prisoners-dilemma/IPD/Ziggy/Forgetful.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737473266735, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36524413961628077}} {"text": "load('ROIs/CC')\n\nh = guidata(1);\ncoords = h.rois(h.curRoi).coords;\n% Re-index starting at 1\ncoords = coords-repmat(min(coords),size(coords,1),1)+1;\ncoords = round(coords);\nvoxels = zeros(max(coords));\nind = sub2ind(size(voxels), coords(:,1), coords(:,2), coords(:,3));\nvoxels(ind) = 1;\nvoxels = smooth3(voxels,'gaussian',5);\nvoxels = voxels>.2;\n\nvoxels = dtiCleanImageMask(voxels, 5);\nmm = [1 1 1];\nid = -1;\n[id,wasOpen] = mrmCheckMeshServer(id, 'localhost');\n[mesh,lights,tenseMesh] = mrmBuildMesh(uint8(voxels), mm, 'localhost', id);", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrDiffusion/roi/dtiRenderRoi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3652441327058327}} {"text": "function G = grad3(V,T)\n % GRAD3 Compute the numerical gradient operator for tet meshes in 3d\n % \n % G = grad(V,F)\n %\n % Inputs:\n % V #vertices by dim list of mesh vertex positions\n % T #elements by 3 list of mesh tet indices\n % Outputs:\n % G #elements*dim by #V Gradient operator\n %\n % Example:\n % L = cotmatrix(V,T);\n % G = grad3(V,T);\n % vol = volume(V,T);\n % GMG = -G'*repdiag(diag(sparse(vol)),3)*G;\n %\n\n warning('Deprecated. Call grad directly.');\n G = grad(V,T);\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/mesh/grad3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3652441327058327}} {"text": "% Recording Particle Velocity Example\n%\n% This example demonstrates how to record the particle velocity using a\n% Cartesian or binary sensor mask. It builds on the Homogeneous Propagation\n% Medium and Heterogeneous Propagation Medium examples. \n%\n% author: Bradley Treeby\n% date: 1st November 2010\n% last update: 20th September 2012\n% \n% This function is part of the k-Wave Toolbox (http://www.k-wave.org)\n% Copyright (C) 2009-2014 Bradley Treeby and Ben Cox\n\n% This file is part of k-Wave. k-Wave is free software: you can\n% redistribute it and/or modify it under the terms of the GNU Lesser\n% General Public License as published by the Free Software Foundation,\n% either version 3 of the License, or (at your option) any later version.\n% \n% k-Wave is distributed in the hope that it will be useful, but WITHOUT ANY\n% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS\n% FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for\n% more details. \n% \n% You should have received a copy of the GNU Lesser General Public License\n% along with k-Wave. If not, see . \n\nclear all;\n\n% =========================================================================\n% SIMULATION\n% =========================================================================\n\n% create the computational grid\nNx = 128; % number of grid points in the x (row) direction\nNy = 128; % number of grid points in the y (column) direction\ndx = 0.1e-3; % grid point spacing in the x direction [m]\ndy = 0.1e-3; % grid point spacing in the y direction [m]\nkgrid = makeGrid(Nx, dx, Ny, dy);\n\n% define the properties of the propagation medium\nmedium.sound_speed = 1500; % [m/s]\nmedium.density = 1000; % [kg/m^3]\nmedium.alpha_coeff = 0.75; % [dB/(MHz^y cm)]\nmedium.alpha_power = 1.5; \n\n% create time array\nt_end = 6e-6;\nkgrid.t_array = makeTime(kgrid, medium.sound_speed, [], t_end);\n\n% create initial pressure distribution using makeDisc\ndisc_magnitude = 5; % [au]\ndisc_x_pos = Nx/2; % [grid points]\ndisc_y_pos = Ny/2; % [grid points]\ndisc_radius = 5; % [grid points]\nsource.p0 = disc_magnitude*makeDisc(Nx, Ny, disc_x_pos, disc_y_pos, disc_radius);\n\n% define four sensor points centered about source.p0\nsensor_radius = 40; % [grid points]\nsensor.mask = zeros(Nx, Ny);\nsensor.mask(Nx/2 + sensor_radius, Ny/2) = 1;\nsensor.mask(Nx/2 - sensor_radius, Ny/2) = 1;\nsensor.mask(Nx/2, Ny/2 + sensor_radius) = 1;\nsensor.mask(Nx/2, Ny/2 - sensor_radius) = 1;\n\n% set the acoustic variables that are recorded\nsensor.record = {'p', 'u'};\n\n% run the simulation\nsensor_data = kspaceFirstOrder2D(kgrid, medium, source, sensor);\n\n% =========================================================================\n% VISUALISATION\n% =========================================================================\n\n% plot the initial pressure and sensor distribution\nfigure;\nimagesc(kgrid.y_vec*1e3, kgrid.x_vec*1e3, source.p0 + sensor.mask, [-1 1]);\ncolormap(getColorMap);\nylabel('x-position [mm]');\nxlabel('y-position [mm]');\naxis image;\n\n% plot the simulated sensor data\nfigure;\n[t, t_sc, t_prefix] = scaleSI(kgrid.t_array(end));\nmx = 5e-7;\nfor sensor_num = 1:4\n % plot the pressure\n subplot(4, 3, 3*sensor_num - 2), plot(t_sc*kgrid.t_array, sensor_data.p(sensor_num, :), 'k-');\n set(gca, 'YLim', [-0.75, 0.75], 'XLim', [0 t_end*t_sc]);\n xlabel(['time [' t_prefix 's]']);\n ylabel('p'); \n\n % plot the particle velocity ux\n subplot(4, 3, 3*sensor_num - 1), plot(t_sc*kgrid.t_array, sensor_data.ux(sensor_num, :), 'k-');\n set(gca, 'YLim', [-mx, mx], 'XLim', [0 t_end*t_sc]);\n xlabel(['time [' t_prefix 's]']);\n ylabel('ux'); \n\n % plot the particle velocity uz\n subplot(4, 3, 3*sensor_num), plot(t_sc*kgrid.t_array, sensor_data.uy(sensor_num, :), 'k-');\n set(gca, 'YLim', [-mx, mx], 'XLim', [0 t_end*t_sc]);\n xlabel(['time [' t_prefix 's]']);\n ylabel('uy'); \nend\n", "meta": {"author": "wme7", "repo": "Aero-matlab", "sha": "9430008f2e3b84f28633775a44dff534e780fbac", "save_path": "github-repos/MATLAB/wme7-Aero-matlab", "path": "github-repos/MATLAB/wme7-Aero-matlab/Aero-matlab-9430008f2e3b84f28633775a44dff534e780fbac/K-wave/k-Wave/examples/example_ivp_recording_particle_velocity.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3652441327058327}} {"text": "function [splitPsi, logQ] = sampleSplitConfig( Psi, data, anchorObjIDs, featIDs, algParams, TargetPsi )\n% Sample a proposal config of (F,z) that has one extra state than input\n%INPUT:\n% Psi : input model config (contains F,z)\n% data : data object\n% anchorObjIDs : length 2 vector giving ids of anchor objects for proposal\n% featIDs : integer id of feature in Psi to split into two\n% TargetPsi : target model config. \n% when provided, we don't actually sample, but instead calculate\n% probability \"logQ\" of sampling the target given the input Psi config\n%OUTPUT:\n% splitPsi : output configuration (proposal)\n% has all its observed data sufficent statistics pre-calculated\n% for easy use in later calculations (accept ratios, etc.\n% logQ : struct of transition probabilities (in log space)\n\n% ------------------------------------------------------- INTERP INPUT\nanchorObjIDs = anchorObjIDs(:)';\nii = anchorObjIDs(1);\njj = anchorObjIDs(2);\n\nkold = featIDs(1);\notherObjIDs = setdiff( find( Psi.F( :, kold ) > 0 )', anchorObjIDs );\nactiveObjIDs = [anchorObjIDs otherObjIDs];\n\nif exist( 'TargetPsi', 'var' ) && ~isempty( 'TargetPsi' )\n kA = TargetPsi.activeFeatIDs(1);\n kB = TargetPsi.activeFeatIDs(2);\nelse\n TargetPsi = [];\n kA = kold;\n kB = size(Psi.F,2) + 1;\nend\n\n% ------------------------------------------------------- INIT PROPOSAL\npropF = Psi.F == 1;\npropF(:, kold) = 0;\npropF( ii, kA) = 1;\npropF( jj, kB) = 1;\npropFeatIDs = [kA kB];\n\npropStateSeq = Psi.stateSeq;\nfor aa = 1:data.N\n propStateSeq( aa ).z( Psi.stateSeq(aa).z == kold ) = 0;\nend\npropStateSeq( ii ).z( Psi.stateSeq( ii ).z == kold ) = kA;\npropStateSeq( jj ).z( Psi.stateSeq( jj ).z == kold ) = kB;\n\n% Create deterministic trans params Eta\npropTransM = Psi.TransM.getAllEta_PriorMean( activeObjIDs, propF, propFeatIDs );\n\n% Create deterministic Theta for ALL features: others + [kA kB]\npropThetaM = Psi.ThetaM.getAllTheta_PosteriorMean( data, propStateSeq, propFeatIDs, featIDs);\nassert( propThetaM.K == length(propThetaM.Xstats), 'Badness');\n\n% Init suff stats for F\nfeatCounts = sum( propF(:,propFeatIDs) , 1 );\nnObj = size(propF, 1) - length(otherObjIDs);\nlogQ.F = 0;\nlogQ.z = 0;\n\nproposalsON = false(1, size(propF,2) );\nproposalsON(propFeatIDs) = 1;\nfor aa = [ otherObjIDs( randperm(length(otherObjIDs)) ) ii jj]\n \n if aa == ii || aa == jj\n % Make sure to update F suff. stats for anchors\n % since we've already \"seen\" them before, unlike other sequences\n featCounts = featCounts - propF(aa, propFeatIDs);\n nObj = nObj - 1;\n propThetaM = propThetaM.decXStats( aa, data, propStateSeq, propFeatIDs );\n end\n \n % ==================================================== Sample F(aa,:)\n % Calc Soft Evidence for the current sequence, including both new feats\n allActiveFeatIDs = find( propF(aa,:) | proposalsON );\n seqSoftEv = propThetaM.calcLogSoftEv( aa, data, allActiveFeatIDs );\n \n % Propose new feature assignments for the cur. seq. \n priorPrFeats = featCounts ./ ( nObj + Psi.bpM.c );\n [newFaa, logQ_Faa] = sampleTwoSharedFeatsForSeq_Gibbs( aa, propFeatIDs, seqSoftEv, propTransM.seq(aa), priorPrFeats, anchorObjIDs, TargetPsi);\n propF(aa, propFeatIDs) = newFaa==1;\n logQ.F = logQ.F + logQ_Faa; \n\n % =============================================== Sample stateSeq(aa)\n seqTransM = propTransM.getSeqEtaWithFeats( aa, propF(aa,:) );\n propTransM = propTransM.setEta( aa, propF(aa,:), seqTransM.eta );\n [propStateSeq(aa).z, logQ_zaa] = sampleSingleStateSeq_WithSoftEv( aa, seqTransM, seqSoftEv(propF(aa,:), :), TargetPsi);\n logQ.z = logQ.z + logQ_zaa;\n \n % Update suff. stats for F\n featCounts = featCounts + propF(aa, propFeatIDs);\n nObj = nObj + 1;\n \n % Update Emission Params for new proposed features [kA, kB]\n % using the newly allocated data from the current sequence\n propThetaM = propThetaM.incXStats( aa, data, propStateSeq, propFeatIDs );\n for kkID = 1:length(propFeatIDs)\n kk = propFeatIDs(kkID);\n PN = propThetaM.getPosteriorParams( propThetaM.Xstats(kk) );\n propThetaM.theta(kk) = propThetaM.getTheta_Mean( PN );\n end\nend\n\nif isempty( TargetPsi )\n propThetaM = propThetaM.updateAllXSuffStats( horzcat(propStateSeq(:).z), data );\nend\n\nsplitPsi.F = propF;\nsplitPsi.stateSeq = propStateSeq;\nsplitPsi.ThetaM = propThetaM;\nsplitPsi.TransM = propTransM;\nsplitPsi.bpM = Psi.bpM;\nsplitPsi.activeFeatIDs = propFeatIDs;\nsplitPsi.anchorIDs = anchorObjIDs;\n", "meta": {"author": "michaelchughes", "repo": "NPBayesHMM", "sha": "22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd", "save_path": "github-repos/MATLAB/michaelchughes-NPBayesHMM", "path": "github-repos/MATLAB/michaelchughes-NPBayesHMM/NPBayesHMM-22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd/code/BPHMM/sampler/SplitMergeSeq/sampleSplitConfig.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6825737214979746, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36524412579538457}} {"text": "function IntProj(ana, hs, proj)\n%\n% A function to perform Minimum or Maximum intensity projection of a volume of data\n% ana: Name of AFNI brick file\n% hs: Number of slices to use is each direction. Projection at slice i is from i-hs to i+hs\n% hs stands for half slab\n% proj: (-1) minimum intensity projection\n% 1 maximum intensity projection\n% For output, the function creates\n% see also insane function Int_Proj\n\nFuncName = 'IntProj';\n\nif (proj == -1) proj_s = 'min';\nelseif (proj == 1) proj_s = 'max';\nelse\n fprintf(2,'Error %s: Bad projection parameter\\n', FuncName);\n return;\nend\n\n[ana_pref, ana_view] = AfniPrefix(ana);\nana = sprintf('%s%s', ana_pref, ana_view);\n\n[err, V, V_Info] = BrikLoad(ana);\nNvox = V_Info.DATASET_DIMENSIONS;\n\nverb = 1;\n\n%padd V by half slab in all directions to fix edge effects\nVp = zeros(Nvox(1)+3.*hs, Nvox(2)+3.*hs, Nvox(3)+3.*hs);\nVp(hs+1:Nvox(1)+hs, hs+1:Nvox(2)+hs, hs+1:Nvox(3)+hs) = V; clear V;\n\n\nfor (pd = 1:1:3), % projection direction\n if (pd == 1) dc = 'I';\n elseif (pd == 2) dc = 'J';\n elseif (pd == 3) dc = 'K';\n else\n fprintf(2,'Error %s: Bad projection direction\\n', FuncName);\n return;\n end\n\n if (verb) fprintf(1,'%s: Processing direction %s\\n', FuncName, dc); end\n %create the output set\n Vmi = zeros(Nvox(1), Nvox(2), Nvox(3));\n\n if (proj == -1),\n if (pd == 1),\n for (i=hs+1:1:Nvox(1)+hs),\n Vmi(i-hs,:,:) = min(Vp(i-hs:i+hs,hs+1:Nvox(2)+hs,hs+1:Nvox(3)+hs), [], pd);\n end\n Vmall = Vmi;\t\n elseif (pd == 2),\n for (i=hs+1:1:Nvox(2)+hs),\n Vmi(:,i-hs,:) = min(Vp(hs+1:Nvox(1)+hs,i-hs:i+hs,hs+1:Nvox(3)+hs), [], pd);\n end\n Vmall(:) = min(Vmi(:),Vmall(:));\t\n elseif (pd == 3),\n for (i=hs+1:1:Nvox(3)+hs),\n Vmi(:,:,i-hs) = min(Vp(hs+1:Nvox(1)+hs,hs+1:Nvox(2)+hs,i-hs:i+hs), [], pd);\n end\t\n Vmall(:) = min(Vmi(:),Vmall(:));\t\n end\n elseif (proj == 1),\n if (pd == 1),\n for (i=hs+1:1:Nvox(1)+hs),\n Vmi(i-hs,:,:) = max(Vp(i-hs:i+hs,hs+1:Nvox(2)+hs,hs+1:Nvox(3)+hs), [], pd);\n end\n Vmall = Vmi;\t\n elseif (pd == 2),\n for (i=hs+1:1:Nvox(2)+hs),\n Vmi(:,i-hs,:) = max(Vp(hs+1:Nvox(1)+hs,i-hs:i+hs,hs+1:Nvox(3)+hs), [], pd);\n end\n Vmall(:) = max(Vmi(:),Vmall(:));\t\n elseif (pd == 3),\n for (i=hs+1:1:Nvox(3)+hs),\n Vmi(:,:,i-hs) = max(Vp(hs+1:Nvox(1)+hs,hs+1:Nvox(2)+hs,i-hs:i+hs), [], pd);\n end\t\n Vmall(:) = max(Vmi(:),Vmall(:));\t\n end\n\n end\n OptW.Prefix = sprintf('%s_%s%g%s', ana_pref, proj_s, hs, dc);\n OptW.Scale = 1;\n WriteBrik(Vmi, V_Info, OptW);\nend\n\n OptW.Prefix = sprintf('%s_%s%gIJK', ana_pref, proj_s, hs);\n OptW.Scale = 1;\n WriteBrik(Vmall, V_Info, OptW);\n\nreturn;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/afni/IntProj.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.36524156918455053}} {"text": "function [A,C,newcenters] = manually_refine_components(Y,A,C,centers,img,sx,options)\n% function that allows to add or remove components. \n% Usage: \n% after runnning use left click to remove and right click to add components\n% at specific locations. Hit enter when done\n% Inputs\n% ------\n% centers: coordinates of the centers of the components\n% img: image used to identify components (for instance NCA\n% \n% Returns:\n% --------\n% newcenters: updated component centers\n\ndefoptions = CNMFSetParms;\nif nargin < 7 || isempty(options); options = defoptions; end\nif ~isfield(options,'d1') || isempty(options.d1); options.d1 = input('What is the total number of rows? \\n'); end % # of rows\nif ~isfield(options,'d2') || isempty(options.d2); options.d2 = input('What is the total number of columns? \\n'); end % # of columns\nif ~isfield(options,'cont_threshold') || isempty(options.cont_threshold); cont_threshold = defoptions.cont_threshold; else cont_threshold = options.cont_threshold; end % # of rows\nif nargin < 6 || isempty(sx)\n sx = 5;\nend\nif nargin < 5 || isempty(img)\n img = std(Y,[],3);\nend\nif nargin < 4 || isempty(centers)\n centers = com(A,options.d1,options.d2);\nend\n \n\nmin_distance_point_selection=2;\nx=1;\nT = size(C,2);\nnewcenters=[centers];\n% ident_point=[0,0];\nfig = figure;\nimagesc(img,[min(img(:)),max(img(:))]);\n axis equal; axis tight; hold all;\n scatter(newcenters(:,2),newcenters(:,1),'mo'); hold on;\n title('Center of ROIs found from initialization algorithm');\n xlabel({'Press left click to add new component, right click to remove existing component'; 'Press enter to exit'},'fontweight','bold');\n drawnow;\n cmap = colormap;\nfor i = 1:size(A,2)\n a_srt = sort(A(:,i),'descend');\n ff = find(cumsum(a_srt.^2) >= cont_threshold*sum(a_srt.^2),1,'first');\n contour(reshape(A(:,i),options.d1,options.d2),[0,0]+a_srt(ff),'Linecolor',[1,0,1]/2);\n hold on;\nend\n \nwhile ~isempty(x) \n% scatter(ident_point(1),ident_point(2),'go');\n [x,y,button]=ginput(1);\n disp(button); hold on;\n if ~isempty(x)\n pixel=round([x y]);\n if button==1\n disp(['Adding pixel at:' num2str(fliplr(pixel))])\n newcenters=[newcenters; fliplr(pixel)];\n int_x = round(newcenters(end,1)) + (-sx:sx);\n if int_x(1)<1\n int_x = int_x + 1 - int_x(1);\n end\n if int_x(end)>options.d1\n int_x = int_x - (int_x(end)-options.d1);\n end\n int_y = round(newcenters(end,2)) + (-sx:sx);\n if int_y(1)<1\n int_y = int_y + 1 - int_y(1);\n end\n if int_y(end)>options.d2\n int_y = int_y - (int_y(end)-options.d2);\n end\n Ypatch = reshape(Y(int_x,int_y,:),(2*sx+1)^2,size(C,2));\n Ypatch = bsxfun(@minus, Ypatch, median(Ypatch,2));\n [INT_x,INT_y] = meshgrid(int_x,int_y);\n coor = sub2ind([options.d1,options.d2],INT_x(:),INT_y(:));\n Y_res = Ypatch - A(coor,:)*C;\n [atemp, ctemp, ~, ~, newcenter, ~] = greedyROI(reshape(Y_res,2*sx+1,2*sx+1,T), 1, options);\n %[atemp, ctemp] = initialize_components(reshape(Y_res,2*sx+1,2*sx+1,T), 1,sx,options); % initialize\n % find contour\n a_srt = sort(atemp,'descend');\n ff = find(cumsum(a_srt.^2) >= cont_threshold*sum(a_srt.^2),1,'first');\n A(coor,end+1) = atemp/norm(atemp);\n C(end+1,:) = ctemp*norm(atemp);\n new_center = com(A(:,end),options.d1,options.d2);\n newcenters(end,:) = new_center;\n scatter(new_center(2),new_center(1),'mo'); hold on; \n contour(reshape(A(:,end),options.d1,options.d2),[0,0]+a_srt(ff),'Linecolor',[1,0,1]/2);\n hold on;\n colormap(fig,cmap);\n \n drawnow;\n% atemp = max(mean(Y_res,2),0);\n% for i = 1:10\n% ctemp = max(atemp'*Y_res,0)/norm(atemp)^2;\n% atemp = max(Y_res*ctemp',0)/norm(ctemp)^2;\n% end\n \n \n elseif button==3\n [m,id]=min(sum(bsxfun(@minus,newcenters,[y,x]).^2,2)); \n ident_point=[newcenters(id,2),newcenters(id,1)];\n if m<=min_distance_point_selection\n disp(['Removing point:' num2str(ident_point)]) \n newcenters(id,:)=[]; \n A(:,id) = [];\n C(id,:) = [];\n % replot after removing\n clf;\n imagesc(img,[min(img(:)),max(img(:))]);\n axis equal; axis tight; hold all;\n scatter(newcenters(:,2),newcenters(:,1),'mo'); hold on;\n title('Center of ROIs found from initialization algorithm');\n xlabel({'Press left click to add new component, right click to remove existing component'; 'Press enter to exit'},'fontweight','bold');\n drawnow;\n cmap = colormap;\n for i = 1:size(A,2)\n a_srt = sort(A(:,i),'descend');\n ff = find(cumsum(a_srt.^2) >= cont_threshold*sum(a_srt.^2),1,'first');\n contour(reshape(A(:,i),options.d1,options.d2),[0,0]+a_srt(ff),'Linecolor',[1,0,1]/2);\n hold on;\n end\n else\n disp('Selection too far from any point')\n end\n end\n end \nend\n\n\nend", "meta": {"author": "zhoupc", "repo": "CNMF_E", "sha": "ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f", "save_path": "github-repos/MATLAB/zhoupc-CNMF_E", "path": "github-repos/MATLAB/zhoupc-CNMF_E/CNMF_E-ccca6f9db7d1d15b7dd1266eb9b29e417f92e79f/ca_source_extraction/utilities/manually_refine_components.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419958239132, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.36524156918455053}} {"text": "function nav=readerp(nav,fname)\n\nglobal glc gls\nflag=0; n=0; erp=gls.erp;\n\nidx=strfind(fname,glc.sep); fname0=fname(idx(end)+1:end);\nfprintf('Info:reading erp file %s...',fname0);\nfid=fopen(fname);\n\n% read data\nwhile ~feof(fid)\n line=fgets(fid,266);\n \n if ~isempty(strfind(line,'MJD')),flag=1;end\n if flag==0,continue;end\n if flag==1\n line=fgets(fid); %#ok\n flag=2; continue;\n end\n if flag==2\n value=str2double(strsplit(line));\n erp.data(n+1).mjd =value(1);\n erp.data(n+1).xp =value(2)*1e-6*glc.AS2R;\n erp.data(n+1).yp =value(3)*1e-6*glc.AS2R;\n erp.data(n+1).ut1_utc=value(4)*1e-7;\n erp.data(n+1).lod =value(5)*1e-7;\n erp.data(n+1).xpr =value(13)*1e-6*glc.AS2R;\n erp.data(n+1).ypr =value(14)*1e-6*glc.AS2R;\n n=n+1;\n end\nend\n\nfclose(fid);\nfprintf('over\\n');\n\nerp.n=n;\nerp.nmax=n;\nnav.erp=erp;\n\nreturn\n\n", "meta": {"author": "kaichen686", "repo": "GINav", "sha": "bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666", "save_path": "github-repos/MATLAB/kaichen686-GINav", "path": "github-repos/MATLAB/kaichen686-GINav/GINav-bc6b3ab6c40db996a4fd8e8ca5b748fe21a23666/src/read_file/readerp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347362, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3652415624933379}} {"text": "filename='ImprovedBridge_hexahedra';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'full';\ncost = {'compliance'};\nweights = [1];\nconstraint = {'volume'};\noptimizer = 'AlternatingPrimalDual';\noptimizerUnconstrained = 'SLERP';\ndesignVariable = 'LevelSet';\nincrementFactor = 1;\nfilterType = 'P1';\nconstraint_case = 'INEQUALITY';\nline_search_initiator = 'STANDARD';\nshowBC = true;\n\nnsteps = 10;\nVfrac_final = 0.1;\nPerimeter_target = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 1;\noptimality_initial = 1e-3;\nconstr_initial = 1e-3;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Bridge/ImprovedBridgeSYM_Case_1_1_1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.785308580887758, "lm_q2_score": 0.4649015713733885, "lm_q1q2_score": 0.3650911932677245}} {"text": "function [param, names] = gpsimCandidateExtractParam(model)\n\n% GPSIMCANDIDATEEXTRACTPARAM Extract the parameters of a GPSIM model.\n% FORMAT\n% DESC extracts the model parameters from a structure containing\n% the information about a Gaussian process for single input motif\n% modelling.\n% ARG model : the model structure containing the information about\n% the model.\n% RETURN params : a vector of parameters from the model.\n%\n% SEEALSO : gpsimCreate, gpsimAddCandidate, gpsimCandidateExpandParam, modelExtractParam\n%\n% COPYRIGHT : Neil D. Lawrence, 2007\n\n% SHEFFIELDML\n\n\nif nargout>1\n [param, names] = kernExtractParam(model.candidate.kern);\n for i=1:length(model.candidate.mu);\n names{end+1}=['Basal transcription ' num2str(i)];\n end\nelse\n param = kernExtractParam(model.candidate.kern);\nend\nfhandle = str2func([model.candidate.bTransform 'Transform']);\nparam = [param fhandle(model.candidate.B, 'xtoa')];\n\n\nif isfield(model, 'fix')\n for i = 1:length(model.candidate.fix)\n param(model.candidate.fix(i).index) = model.candidate.fix(i).value;\n end\nend\nparam = real(param);\n\n% Remove main kernel parameters.\nfor i = model.kern.nParams:-1:1\n if nargout>1\n names(i)=[];\n end\n param(i) = [];\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/gpsim/gpsimCandidateExtractParam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3650730576745188}} {"text": "function t_obj = parcel_stats2statistic_image(atlas_obj, tscores, pvalues, dfe, sig)\n% Utility that transforms parcel-wise t-statistics and p-values into a statistic_image object in voxelwise image space\n% Expands parcel values so that they are replicated for each voxel in the parcel.\n%\n% :Usage:\n% ::\n%\n% t_obj = parcel_stats2statistic_image(atlas_obj, tscores, pvalues, dfe, sig)\n%\n% For objects: Type methods(object_name) for a list of special commands\n% Type help object_name.method_name for help on specific\n% methods.\n%\n% ..\n% Author and copyright information:\n%\n% Copyright (C) 2021 Tor Wager\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n% ..\n%\n% :Inputs:\n%\n% **atlas_obj:**\n% An atlas-class object with k distinct regions or parcels\n%\n% **tscores:**\n% n x k matrix of k t-scores for each of n parcels, where k is,\n% e.g., the number of predictors tested in a multiple regression\n%\n% **pvalues:**\n% n x k matrix of k p-values for each of n parcels\n%\n% **dfe:**\n% n x 1 matrix of error degrees of freedom for each of n parcels\n%\n% **sig:**\n% n x k matrix of k significant tests for each of n parcels\n% This may be, e.g., corrected for multiple comparisons.\n%\n% :Optional Inputs:\n%\n% :Outputs:\n%\n% **t_obj:**\n% A statistic_image object containing t-maps. .dat contains\n% t-scores, .p contains p-values. Use statistic_image methods like\n% montage(t_obj), orthviews(t_obj), threshold(t_obj) to interact\n% with this object.\n%\n%\n% :Examples:\n% ::\n%\n% :References:\n% None \n%\n% :See also:\n% parcel_data2fmri_data\n%\n\n% Create placeholder statistic image\n\natlas_obj = replace_empty(atlas_obj); \nk = size(tscores, 2);\nplaceholder_vec = ones(atlas_obj.volInfo.n_inmask, k);\nall_parcel_idx = double(atlas_obj.dat);\nu = unique(all_parcel_idx); u(u == 0) = [];\n\n% initialize variables with correct size\n\nt_obj = statistic_image('dat', single(0 .* placeholder_vec), ...\n 'p', placeholder_vec, ...\n 'sig', logical(placeholder_vec), ...\n 'type', 'T', ...\n 'dfe', placeholder_vec, ...\n 'volInfo', atlas_obj.volInfo);\n\n% number of parcels \n\nn = size(tscores, 1); % num parcels\n\nif n ~= length(u)\n error('Parcel indices in atlas_obj and extracted parcel-wise t-values do not match. Check code.')\nend\n\n\n\nt_obj.dat = zeros(size(placeholder_vec, 1), k); % voxels x conditions\n\n\n for j = 1:length(u)\n % For each parcel, fill in statistic_image object\n % ----------------------------------------------------\n parcelidx = u(j);\n \n wh_vox = all_parcel_idx == parcelidx;\n \n % map parcels to voxels\n t_obj.dat(wh_vox, :) = repmat(tscores(j, :), sum(wh_vox), 1);\n t_obj.p(wh_vox, :) = repmat(pvalues(j, :), sum(wh_vox), 1);\n t_obj.dfe(wh_vox, :) = repmat(dfe(j, 1), sum(wh_vox), k); % replicate dfe\n t_obj.sig(wh_vox, :) = repmat(sig(j, :), sum(wh_vox), 1);\n \n end\n \nt_obj = enforce_variable_types(t_obj); % space-saving: 5/24/17\n\n% input_struct.t_statistic_obj = t_obj;\n\nend % function\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/@atlas/parcel_stats2statistic_image.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635868562172, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.3650680482911652}} {"text": "function plotOptTorques(model, nlp, gait, indices)\n \n act_joint_idx = find(arrayfun(@(x)~isempty(x.Actuator),model.Joints));\n \n if nargin < 4\n indices = act_joint_idx;\n else\n if isempty(indices), return; end\n end\n \n cont_domain_idx = find(cellfun(@(x)isa(x,'ContinuousDynamics'),{nlp.Phase.Plant}));\n joint_names = {model.Joints.Name};\n \n t = [];\n u_opt = []; u_lb = []; u_ub = [];\n \n for j=cont_domain_idx\n t = [t,gait(j).tspan];\n \n u_opt = [u_opt,gait(j).inputs.u];\n u_lb = [u_lb,[nlp.Phase(j).OptVarTable.u.LowerBound]];\n u_ub = [u_ub,[nlp.Phase(j).OptVarTable.u.UpperBound]];\n end\n \n \n ax = [];\n for i=1:length(indices)\n idx = indices(i);\n if ~ismember(idx,act_joint_idx)\n continue;\n end\n f = figure;clf;\n set(f, 'WindowStyle', 'docked');\n % f.Position = [680 558 560 420];\n ax = [ax, axes(f)]; %#ok\n hold on;\n plot(t, u_opt(i,:), 'b');\n plot(t, u_lb(i,:), 'r--');\n plot(t, u_ub(i,:), 'g--');\n \n title('Torque');\n legend('u', 'lb', 'ub'); \n \n \n \n \n f.Name = [joint_names{idx},'_torque'];\n end\n \n linkaxes(ax, 'x');\n \n \n \n \nend", "meta": {"author": "ayonga", "repo": "frost-dev", "sha": "e5dc0624d834520872bfa588dd3eda5643da71de", "save_path": "github-repos/MATLAB/ayonga-frost-dev", "path": "github-repos/MATLAB/ayonga-frost-dev/frost-dev-e5dc0624d834520872bfa588dd3eda5643da71de/example/atlas/+plot/plotOptTorques.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36506804047149094}} {"text": "% MatrixUser, a multi-dimensional matrix analysis software package\n% https://sourceforge.net/projects/matrixuser/\n% \n% The MatrixUser is a matrix analysis software package developed under Matlab\n% Graphical User Interface Developing Environment (GUIDE). It features \n% functions that are designed and optimized for working with multi-dimensional\n% matrix under Matlab. These functions typically includes functions for \n% multi-dimensional matrix display, matrix (image stack) analysis and matrix \n% processing.\n%\n% Author:\n% Fang Liu \n% University of Wisconsin-Madison\n% Aug-30-2014\n\n\n\nfunction MU_funcMovie(Temp,Event,handles)\nhandles=guidata(handles.MU_matrix_display);\n\nif length(handles.V.DimSize)==2\n warndlg('At least 3D matrix is needed for generating movie.');\n return;\nend\n\ndimFlag = ['[:' repmat(',:', [1 length(handles.V.DimSize)-1]) ']'];\ndim = inputdlg(['Please specify dimension flag for generating movie. Use '':'' to include all content in the dimension; Use ''start:end'' to include parts of the content in the dimension.'],'Specify Dimension Flag',1,{dimFlag});\nif isempty(dim)\n warndlg('Making movie was cancelled.');\n return;\nend\n\nmovie = inputdlg({'Please specify the frame rate (fps).', 'Please specify the movie quality (lowest 0 - 100 highest)'},'About Movie',1,{'30' ,'75'});\nif isempty(movie)\n warndlg('Making movie was cancelled.');\n return;\nend\n\nMergeM=get(handles.Matrix_name_edit,'String');\nname = inputdlg(['Please input an name for the movie file.'],'Specify File Name',1,{[MergeM '_mov']});\nif isempty(dim)\n warndlg('Making movie was cancelled.');\n return;\nend\n\npause(0.1);\ntry \n eval(['TMatrix=handles.TMatrix(' dim{1}(2:end-1) ');']);\n TSize=size(TMatrix);\n TMatrix=TMatrix(:,:,:);\n dimSize=size(TMatrix);\n TMatrix=reshape(TMatrix,[dimSize(1) dimSize(2) 1 dimSize(3)]);\n \n if isempty(handles.V2.Foreground_matrix) % no overlay\n \n Colormap = colormap(handles.Matrix_display_axes);\n TMatrix=double(TMatrix);\n TMatrix(TMatrix<=double(handles.V.C_lower)) = double(handles.V.C_lower);\n TMatrix(TMatrix>=double(handles.V.C_upper)) = double(handles.V.C_upper);\n TMatrix=TMatrix-double(handles.V.C_lower);\n TMatrix=(TMatrix./double(handles.V.C_upper - handles.V.C_lower))*(length(Colormap(:,1))-1)+1;\n \n M=immovie(TMatrix,Colormap);\n \n else % if overlay\n BImage=double(repmat(TMatrix,[1 1 3 1]));\n BImage=max(double(handles.V.C_lower),min(BImage,double(handles.V.C_upper))); % Make sure BImage is in the range of Color Bound\n BImage=(BImage-double(handles.V.C_lower))./double((handles.V.C_upper-handles.V.C_lower));\n \n eval(['mask=double(handles.Mask(' dim{1}(2:end-1) '));']); % multi-dimensional mask??????\n TSize2=size(mask);\n if length(TSize)>length(TSize2) & length(TSize2)==2\n mask=repmat(mask,[1,1,prod(TSize(3:end))]);\n elseif length(TSize)>length(TSize2) & length(TSize2)==3\n mask=repmat(mask,[1,1,1,prod(TSize(4:end))]);\n end\n mask=mask(:,:,:); \n FMatrix=((max(double(handles.V2.F_lower),min(mask,double(handles.V2.F_upper)))-handles.V2.F_lower)/(handles.V2.F_upper-handles.V2.F_lower))*(64-1)+1; % Make sure FMatrix is in the range of Color Bound\n FImage=ind2rgb(round(FMatrix(:)),handles.V2.Color_map);\n if handles.V2.Include0 ~=0\n FImage(repmat(mask(:),[1 1 3])==0)=0;\n end\n FImage=reshape(FImage,[size(FMatrix) 3]);\n FImage=permute(FImage,[1 2 4 3]);\n RGBImage=BImage* handles.V2.Backgroud_F+FImage* handles.V2.Foregroud_F;\n RGBImage=max(0,min(RGBImage,1)); % Make sure RGBImage is in the range of 0 and 1\n \n M=immovie(RGBImage);\n end\n \n writerObj=VideoWriter(name{1});\n writerObj.FrameRate=str2double(movie{1});\n writerObj.Quality=str2double(movie{2});\n open(writerObj);\n writeVideo(writerObj,M);\n msgbox(['Movie file ' char(39) writerObj.Filename char(39) ' has been generated at ' char(39) writerObj.Path char(39) '.'],'Movie File');\n close(writerObj);\ncatch me\n error_msg{1,1}='Making movie failed! Error occured during movie generation process.';\n error_msg{2,1}=me.message;\n errordlg(error_msg);\n return;\nend\n\n% update current display matrix\nhandles=MU_update_image(handles.Matrix_display_axes,{handles.TMatrix,handles.Mask},handles,0);\nguidata(handles.MU_matrix_display, handles);\n\nend", "meta": {"author": "leoliuf", "repo": "MRiLab", "sha": "5cdcf1f7b67759700685d3a26ffeb70e55325567", "save_path": "github-repos/MATLAB/leoliuf-MRiLab", "path": "github-repos/MATLAB/leoliuf-MRiLab/MRiLab-5cdcf1f7b67759700685d3a26ffeb70e55325567/External/MatrixUser2.2/Src/FuncLib/MU_funcMovie.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36506804047149094}} {"text": "function displayIVPinfo(u, isIVP, varargin)\n%DISPLAYINFOIVP Utility routine for displaying IVP solving\n%\n% Calling sequence:\n% DISPLAYINFO(VARARGIN)\n% where\n% U: The solution computed.\n% ISIVP: Equal to 1 if we've just solved an IVP, 0 otherwise (FVP).\n% VARARGIN: Various useful information passed from the Newton solver\n% to this method.\n%\n% See also: chebop/displayInfo.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Developers note: This method was introduced to allow the IVP solver to use\n% similar syntax as the BVP solver for displaying useful information about the\n% solution process.\n%\n% At the moment, we only display information at the end of solving IVPs, rather\n% than during the Newton iteration which is the case for BVPs. Thus, this method\n% only gets called at the end of the solveivp method, which is why we don't need\n% the 'mode' argument like we do in the BVP case.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Are we dealing with a CHEBFUN or a CHEBMATRIX?\nif (isa(u, 'chebfun'))\n len = length(u);\nelse\n len = max(cellfun(@length, u.blocks));\nend\n\n% Did we just solve an IVP or an FVP?\nif ( isIVP == 1 )\n fprintf('Initial value problem detected.\\n');\nelse\n fprintf('Final value problem detected.\\n');\nend\n\n% Show information about the number of pieces and the total length of the\n% solution:\nfprintf('Number of pieces of the solution: %i.\\n', length(u.domain) - 1);\nfprintf('Total length of solution: %i.\\n', len);\n \nend\n\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebop/displayIVPinfo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5428632831725052, "lm_q2_score": 0.6723317057447908, "lm_q1q2_score": 0.3649841971615878}} {"text": "% SYNTAX:\n% flag = flagShrink(flag, expand_size, )\n%\n% DESCRIPTION:\n% shrink the flag array\n% if flag is a matrix this flagging expansion will work column by column\n%\n% INPUT:\n% flag [n_obs x n_arrays]\n% expand_size n_epochs with flags to activate at the border of a flagged interval\n% omit_borders when true do not shrink flags at the beginning or end of the matrix\n\n%--- * --. --- --. .--. ... * ---------------------------------------------\n% ___ ___ ___\n% __ _ ___ / __| _ | __|\n% / _` / _ \\ (_ | _|__ \\\n% \\__, \\___/\\___|_| |___/\n% |___/ v 1.0RC1\n%\n%--------------------------------------------------------------------------\n% Copyright (C) 2021 Geomatics Research & Development srl (GReD)\n% Written by: Andrea Gatti\n% Contributors: Andrea Gatti\n% A list of all the historical goGPS contributors is in CREDITS.nfo\n%--------------------------------------------------------------------------\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n%\n%--------------------------------------------------------------------------\n% 01100111 01101111 01000111 01010000 01010011\n%--------------------------------------------------------------------------\n\nfunction flag = flagShrink(flag, expand_size, omit_borders) \n if nargin < 3\n omit_borders = false;\n end\n for c = 1 : size(flag, 2)\n flag(:, c) = ~conv(single(~flag(:, c)), ones(2 * expand_size + 1, 1)', 'same') > 0;\n end\n if omit_borders\n % do nothing\n else\n flag([1:expand_size (end - expand_size + 1) : end], :) = 0;\n end\nend\n", "meta": {"author": "goGPS-Project", "repo": "goGPS_MATLAB", "sha": "30644df61d2459e3347ac5f3e31b71d9f69f4b01", "save_path": "github-repos/MATLAB/goGPS-Project-goGPS_MATLAB", "path": "github-repos/MATLAB/goGPS-Project-goGPS_MATLAB/goGPS_MATLAB-30644df61d2459e3347ac5f3e31b71d9f69f4b01/source/utility/flagAndFilters/flagShrink.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6723316991792861, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3649841935974164}} {"text": "% op_ampScale.m\n% Jamie Near, McGill University 2014.\n% \n% USAGE:\n% out=op_ampScale(in,A);\n% \n% DESCRIPTION:\n% Scale the amplitude of a spectrum by factor A.\n% \n% INPUTS:\n% in = input data in matlab structure format\n% A = Amplitude scaling factor.\n%\n% OUTPUTS:\n% out = Output following amplitude scaling. \n\nfunction out=op_ampScale(in,A);\n\n\nout=in;\nout.specs=in.specs*A;\nout.fids=in.fids*A;\n", "meta": {"author": "CIC-methods", "repo": "FID-A", "sha": "c24da581e376f6eed66979dcc662ec26903a2eef", "save_path": "github-repos/MATLAB/CIC-methods-FID-A", "path": "github-repos/MATLAB/CIC-methods-FID-A/FID-A-c24da581e376f6eed66979dcc662ec26903a2eef/processingTools/op_ampScale.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.36498419359741635}} {"text": "% ------------------------------------------------------------------------ \n% Copyright (C)\n% Universitat Politecnica de Catalunya BarcelonaTech (UPC) - Spain\n% University of California Berkeley (UCB) - USA\n% \n% Jordi Pont-Tuset \n% Pablo Arbelaez \n% June 2014\n% ------------------------------------------------------------------------ \n% This file is part of the MCG package presented in:\n% Arbelaez P, Pont-Tuset J, Barron J, Marques F, Malik J,\n% \"Multiscale Combinatorial Grouping,\"\n% Computer Vision and Pattern Recognition (CVPR) 2014.\n% Please consider citing the paper if you use this code.\n% ------------------------------------------------------------------------\n\nfunction stats = get_single_hier_stats(params,hier_id,gt_set)\n\nif nargin<3\n gt_set = params.gt_set_pareto;\n res_file = params.files.pareto_singles{hier_id};\nelse\n res_file = strrep(params.files.pareto_singles{hier_id},[params.gt_set_pareto '_pareto_single'],[gt_set '_pareto_single']);\nend\n\n% Sampled number of candidates from each hierarchy\nn_cands = [10:10:100,200:100:1000,2000:1000:10000];\n\nfor ii=1:params.n_r_cand\n n_max_cands(ii) = max(n_cands); %#ok<*AGROW>\nend\n\n% Are the results already computed?\nif exist(res_file, 'file')\n load(res_file)\n disp(['Loaded: ' res_file '.'])\n recompute = 0;\nelse\n disp(['RECOMPUTING: ' res_file '.'])\n recompute = 1;\nend\n\nif recompute\n % Load which images to consider from the database (train, val, etc.)\n im_ids = database_ids(params.database,gt_set);\n \n for ll=1:params.n_r_cand\n % Store number of regions and gt_set\n stats(ll).n_cands = n_cands;\n stats(ll).gt_set = gt_set; \n stats(ll).num_objects = 0; \n stats(ll).obj_classes = []; \n end\n \n % Sweep all images\n num_images = length(im_ids);\n batches = 20;\n whichOne = imresize(1:batches, [1 num_images], 'nearest');\n\n for iii = 1:batches,\n indIII = find(whichOne == iii);\n clear Jaccards Inters False_pos False_neg True_areas Obj_classes;\n\n parfor ii_i = 1:length(indIII),\n ii = indIII(ii_i);\n % Read the UCM as a hierarchy\n hier = ucm2hier(fullfile(params.hier_dirs{hier_id}, [im_ids{ii} '.mat']));\n n_regs = hier.ms_struct(end).parent;\n \n % Get all pairs of neighboring leave regions\n [~, idx_neighbors] = seg2gridbmap(hier.leaves_part);\n K = max(idx_neighbors.matrix_max(:)) + 1;\n neigh_pairs = unique(idx_neighbors.matrix_min+K*idx_neighbors.matrix_max);\n neigh_pairs(neigh_pairs==0) = [];\n neigh_pairs_min = mod(neigh_pairs,K);\n neigh_pairs_max = (neigh_pairs-neigh_pairs_min)/K;\n\n if isrow(neigh_pairs_min)\n neigh_pairs_min = neigh_pairs_min';\n end\n if isrow(neigh_pairs_max)\n neigh_pairs_max = neigh_pairs_max';\n end\n\n % Get the 'n_cands' top candidates from each hierarchy\n \n % Singletons\n all_cands = {};\n if n_regs<=n_max_cands(1)\n all_cands{1} = (n_regs:-1:1)';\n else\n all_cands{1} = (n_regs:-1:(n_regs-n_max_cands(1))+1)';\n end\n\n % Pairs, triplets, etc.\n all_cands(2:params.n_r_cand) = ...\n mex_get_tree_cands(double(hier.leaves_part)-1, double(hier.ms_matrix)-1,...\n neigh_pairs_min-1, neigh_pairs_max-1,...\n n_max_cands(2:end));\n \n % Load ground truth\n curr_gt = get_ground_truth( params.database, im_ids{ii} );\n for ll = 1:params.n_r_cand,\n [Jaccards{ii_i}{ll}, Inters{ii_i}{ll}, False_pos{ii_i}{ll}, False_neg{ii_i}{ll}, True_areas{ii_i}{ll}, Obj_classes{ii_i}{ll}] = eval_cands(hier, all_cands{ll}, curr_gt); %#ok\n end\n end\n fprintf('.');\n\n for ii_i = 1:length(indIII), \n ii = indIII(ii_i);\n for ll = 1:params.n_r_cand,\n jaccards = Jaccards{ii_i}{ll};\n inters = Inters{ii_i}{ll};\n false_pos = False_pos{ii_i}{ll};\n false_neg = False_neg{ii_i}{ll};\n true_areas = True_areas{ii_i}{ll};\n obj_classes = Obj_classes{ii_i}{ll};\n\n % Get best candidate at different number of candidates\n for jj=1:length(stats(ll).n_cands)\n curr_n_regs = min(stats(ll).n_cands(jj), size(inters,2));\n to_consider = 1:curr_n_regs;\n stats(ll).all_n_masks(ii,jj) = length(to_consider); \n if (stats(ll).all_n_masks(ii,jj)>0)\n for kk=1:size(inters,1)\n [stats(ll).max_J(stats(ll).num_objects+kk,jj), which_one] = max(jaccards(kk,to_consider));\n stats(ll).max_indicator(stats(ll).num_objects+kk,jj) = to_consider(which_one);\n stats(ll).max_fp(stats(ll).num_objects+kk,jj) = false_pos(kk,to_consider(which_one));\n stats(ll).max_fn(stats(ll).num_objects+kk,jj) = false_neg(kk,to_consider(which_one));\n stats(ll).max_inters(stats(ll).num_objects+kk,jj) = inters(kk,to_consider(which_one));\n end\n end\n end\n stats(ll).obj_classes = [stats(ll).obj_classes; obj_classes(1:size(inters,1))'];\n stats(ll).num_objects = stats(ll).num_objects + size(jaccards,1);\n end\n end\n end\n\n for ll=1:params.n_r_cand,\n stats(ll).jaccard_object = mean(stats(ll).max_J);\n stats(ll).mean_n_masks = mean(stats(ll).all_n_masks);\n\n % ----- Compute jaccard at pixel level (J_p) ----\n class_ids = unique(stats(ll).obj_classes);\n\n % Compute per-class statistics and then mean\n for ii=1:length(class_ids)\n curr_class = class_ids(ii);\n stats(ll).per_class_results{ii}.num_objects = sum(stats(ll).obj_classes==curr_class);\n\n stats(ll).per_class_results{ii}.max_fp = stats(ll).max_fp(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.max_fn = stats(ll).max_fn(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.max_inters = stats(ll).max_inters(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.max_J = stats(ll).max_J(logical(stats(ll).obj_classes==curr_class),:);\n stats(ll).per_class_results{ii}.meanmax = mean(stats(ll).per_class_results{ii}.max_J);\n\n stats(ll).per_class_results{ii}.global_fp = sum(stats(ll).per_class_results{ii}.max_fp,1);\n stats(ll).per_class_results{ii}.global_fn = sum(stats(ll).per_class_results{ii}.max_fn,1);\n stats(ll).per_class_results{ii}.global_inters = sum(stats(ll).per_class_results{ii}.max_inters,1);\n\n % Compute per-class total inters, fp, fn\n stats(ll).per_class_results{ii}.global_J = ...\n stats(ll).per_class_results{ii}.global_inters ./...\n (stats(ll).per_class_results{ii}.global_inters+...\n stats(ll).per_class_results{ii}.global_fp +...\n stats(ll).per_class_results{ii}.global_fn);\n end\n\n % Compute global mean\n tmp = [];\n for ii=1:length(class_ids)\n tmp = [tmp; stats(ll).per_class_results{ii}.global_J];\n end\n stats(ll).jaccard_class = mean(tmp);\n end\n \n % Store\n % fprintf('Done with get_single_hier_stats.\\n');\n save(res_file,'stats');\nend\n\n", "meta": {"author": "s-gupta", "repo": "rcnn-depth", "sha": "7a7baf7dcccc6fdf6be7c13d16828064d89dff4e", "save_path": "github-repos/MATLAB/s-gupta-rcnn-depth", "path": "github-repos/MATLAB/s-gupta-rcnn-depth/rcnn-depth-7a7baf7dcccc6fdf6be7c13d16828064d89dff4e/mcg/src/pareto/get_single_hier_stats.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300698514778, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.364979350600336}} {"text": "% TOOL\n%\n% Files\n% findedge - highlights edges in certain range\n% findedge3 - highlights edges in certain range in 3-D\n% findedgedof - highlights some dofs associated to edges\n% findedgedof3 - highlights some dofs associated to edges\n% findelem - highlights some elements\n% findelem3 - highlights the elements in the range\n% findnode - highlights nodes in certain range.\n% findnode3 - highlights some nodes for 3-D meshes.\n% findnodedof - highlights dof associated to nodes.\n% findquadelem - highlights some elements\n% hg - the interface of command hg in matlab\n% includepath - inlcudes pathes\n% latexmatrix - output the matrix in latex formate.\n% latexmesh - draw a mesh using pstrick\n% latextable - output the matrix in table formate in latex.\n% showboundary - boundary mesh plot\n% showboundary3 - boundary surface mesh plot\n% showcoloring - plot coloring vertices set\n% showgraph - displays a planar graph\n% showgraphmatrix - displays a planar graph\n% showmatrix - displays a matrix.\n% showmesh - displays a triangular mesh in 2-D.\n% showmesh3 - displays a tetrahedron mesh in 3-D.\n% showmeshdensity - show the density of the mesh\n% showmeshquality - show the qualify of the mesh\n% showquadmesh - displays a QUAD mesh in 2-D\n% showquadsolution - plots the solution u on a quad mesh in 2-D.\n% showrate - rate of an err sequence\n% showrate2 - rate of two error sequences\n% showrate3 - rate of two error sequences\n% showresult - display the mesh and the solution \n% showresult3 - display the mesh and the solution in 3-D\n% showsolution - plots the solution u on a triangular mesh in 2-D.\n% showsolution3 - plots the solution u on a tetrahedron mesh in 3-D.\n% spsub2ind - SPARSESUB2IND find values of a sparse matrix \n", "meta": {"author": "lyc102", "repo": "ifem", "sha": "29f31c812001ca8d93dad08e67208ca60e8716d4", "save_path": "github-repos/MATLAB/lyc102-ifem", "path": "github-repos/MATLAB/lyc102-ifem/ifem-29f31c812001ca8d93dad08e67208ca60e8716d4/tool/Contents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.519521321952093, "lm_q2_score": 0.7025300636233416, "lm_q1q2_score": 0.3649793473646864}} {"text": "function Fderandomized = derandomize(F)\n\nchanceDeclarations = find(is(F,'chance'));\nrandomDeclarations = find(is(F,'random'));\nif isempty(randomDeclarations)\n error('Cannot derandomize, cannot find declaration of random variables');\nend\n\nkeep = ones(length(F),1);\nkeep(randomDeclarations)=0;\nkeep(chanceDeclarations)=0;\nrandomVariables = extractRandomDefinitions(F(randomDeclarations));\ngroupedChanceConstraints = groupchanceconstraints(F);\n\nFderandomized = deriveChanceModel(groupedChanceConstraints,randomVariables)\n\nFderandomized = Fderandomized + F(find(keep));\n\n\nfunction Fderandomized = deriveChanceModel(groupedChanceConstraints,randomVariables);\n\nFderandomized = [];\nfor ic = 1:length(groupedChanceConstraints)\n if length(groupedChanceConstraints{ic})>1\n error('Joint chance still not supported');\n end\n if ~is(groupedChanceConstraints{ic},'elementwise')\n error('Only elementwise chance constraints supported')\n end\n X = sdpvar(groupedChanceConstraints{ic});\n if length(X)>1\n error('Only single elementwise chance constraints supported')\n end\n \n % OK, simple linear inequality\n allVars = depends(X);\n wVars = [];for j = 1:length(randomVariables);wVars = [wVars getvariables(randomVariables{j}.variables)];end\n xVars = setdiff(allVars,wVars);\n x = recover(xVars);\n w = recover(wVars);\n \n b = [];\n A = [];\n % Some pre-calc\n xw = [x;w];\n xind = find(ismembc(getvariables(xw),getvariables(x)));\n wind = find(ismembc(getvariables(xw),getvariables(w)));\n [Qs,cs,fs,dummy,nonquadratic] = vecquaddecomp(X,xw);\n c_wTbase = [];\n AAA = [];\n ccc = [];\n for i = 1:length(X)\n Q = Qs{i};\n c = cs{i};\n f = fs{i};\n if nonquadratic\n error('Constraints can be at most quadratic, with the linear term uncertain');\n end\n Q_ww = Q(wind,wind);\n Q_xw = Q(xind,wind);\n Q_xx = Q(xind,xind);\n c_x = c(xind);\n c_w = c(wind);\n \n %b = [b;f + c_w'*w];\n %A = [A;-c_x'-w'*2*Q_xw'];\n % A = [A -c_x-2*Q_xw*w];\n AAA = [AAA;sparse(-2*Q_xw)];\n ccc = [ccc;-sparse(c_x)];\n b = [b;f];\n c_wTbase = [c_wTbase;c_w'];\n end\n % b = b + c_wTbase*w; \n % A = reshape(ccc + AAA*w,size(c_x,1),[]);\n \n \n j = 1;\n confidencelevel = struct(groupedChanceConstraints{ic}).clauses{1}.confidencelevel;\n theMean = randomVariables{j}.distribution.parameters{1};\n covariance = randomVariables{j}.distribution.parameters{2};\n gamma = icdf('normal',confidencelevel,0,1);\n \n switch randomVariables{j}.distribution.name\n case 'normal'\n theMean = randomVariables{j}.distribution.parameters{1};\n covariance = randomVariables{j}.distribution.parameters{2};\n gamma = icdf('normal',confidencelevel,0,1);\n if isa(covariance,'sdpvar')\n error('Covariance cannot be an SDPVAR in normal distribution. Maybe you meant to use factorized covariance in ''normalf''');\n end\n Fderandomized = [Fderandomized, b + c_wTbase*theMean - (ccc + AAA*theMean)'*x >= gamma*norm(chol(covariance)*(AAA'*x+c_wTbase'))];\n case 'normalf'\n theMean = randomVariables{j}.distribution.parameters{1};\n covariance = randomVariables{j}.distribution.parameters{2};\n gamma = icdf('normal',confidencelevel,0,1); \n Fderandomized = [Fderandomized, b + c_wTbase*theMean - (ccc + AAA*theMean)'*x >= gamma*norm(covariance*(AAA'*x+c_wTbase'))];\n otherwise\n error('Distribution not supported');\n end\n \n \n \n \n \nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/extras/derandomize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952054, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3649793441290369}} {"text": "function [BNEW,U,EXITFLAG,OUTPUT] = genNpReg2(A,B,options,defaultopt,regDim,varargin);\n%GENNPREG2 solves general nonparametric image registration problems\n%using a fixed point iteration\n%\n%\n% author: Nathan D. Cahill\n% email: nathan.cahill@rit.edu\n% affiliation: Rochester Institute of Technology\n% date: January 2014\n% licence: GNU GPL v3\n%\n% Copyright Nathan D. Cahill\n% Code available from https://github.com/tomdoel/npReg\n%\n%\n\n% check whether the combination of options is supported\n[SimMeasFlag,RegularizerFlag,BoundCondFlag] = checkOptions(options,defaultopt);\n\n% initialize similarity measure value and type of comparison\n[SimMeas,simMeasComparison] = initializeSimilarityMeasure(SimMeasFlag);\nSimMeasNew = SimMeas;\n\n% get appropriate function handle for computing body force\ncomputeBodyForce = getBodyForceFunction(SimMeasFlag);\n\n% get appropriate function handle for solving core PDE based on regularizer\n% and boundary conditions\nsolveCorePDE = getCorePDESolverFunction(RegularizerFlag,BoundCondFlag,regDim);\n\n% get various fields from options structure\nDisplayFlag = npRegGet(options,'Display',defaultopt,'fast');\nVoxSize = [npRegGet(options,'VoxSizeX',defaultopt,'fast') ...\n npRegGet(options,'VoxSizeY',defaultopt,'fast') ...\n npRegGet(options,'VoxSizeZ',defaultopt,'fast')];\nMaxIter = npRegGet(options,'MaxIter',defaultopt,'fast');\nUDiffTol = npRegGet(options,'UDiffTol',defaultopt,'fast');\nVDiffTol = npRegGet(options,'VDiffTol',defaultopt,'fast');\nBodyForceTol = npRegGet(options,'BodyForceTol',defaultopt,'fast');\nSimMeasTol = npRegGet(options,'SimMeasTol',defaultopt,'fast');\nBodyForceDiffTol = npRegGet(options,'BodyForceDiffTol',defaultopt,'fast');\nSimMeasDiffTol = npRegGet(options,'SimMeasDiffTol',defaultopt,'fast');\nSimMeasPercentDiffTol = npRegGet(options,'SimMeasPercentDiffTol',defaultopt,'fast');\nFixedPointMaxFlowDistance = npRegGet(options,'FixedPointMaxFlowDistance',defaultopt,'fast');\nRegridTol = npRegGet(options,'RegridTol',defaultopt,'fast');\nMu = npRegGet(options,'Mu',defaultopt,'fast');\nLambda = npRegGet(options,'Lambda',defaultopt,'fast');\nForceFactor = npRegGet(options,'ForceFactor',defaultopt,'fast');\nRegularizerFactor = npRegGet(options,'RegularizerFactor',defaultopt,'fast');\nStabilityConstant = npRegGet(options,'StabilityConstant',defaultopt,'fast');\n\n% get size of images\n[NumRows,NumCols,NumPages] = size(A);\n\n% initialize various variables\nif regDim == 2 % 2-D case\n [U,V,BodyForce,BodyForceNew,DU,X,BGrad] = deal(zeros(NumRows,NumCols,2));\n DefGrad = zeros(NumRows,NumCols,2,2);\n DefJac = zeros(NumRows,NumCols);\nelse % 3-D case\n [U,V,BodyForce,BodyForceNew,DU,X,BGrad] = deal(zeros(NumRows,NumCols,NumPages,3));\n DefGrad = zeros(NumRows,NumCols,NumPages,3,3);\n DefJac = zeros(NumRows,NumCols,NumPages);\nend\nMaxDUNorm = inf;\nMeanDUNorm = inf;\nMedDUNorm = inf;\n\n% initialize vectors of grid positions\nif regDim == 2 % 2-D case\n [X(:,:,1),X(:,:,2)] = ndgrid((0:(NumRows-1))*VoxSize(1),...\n (0:(NumCols-1))*VoxSize(2));\nelse % 3-D case\n [X(:,:,:,1),X(:,:,:,2),X(:,:,:,3)] = ndgrid((0:(NumRows-1))*VoxSize(1),...\n (0:(NumCols-1))*VoxSize(2),(0:(NumPages-1))*VoxSize(3));\nend\n\n% compute gradient of floating image, as this will be needed repeatedly\n% within incremental updating\n[HX,HY,HZ] = constructGradientFilters(VoxSize);\nif regDim == 2 % 2-D case\n %HX = imfilter(HX,fspecial('gaussian',7,2),'full');\n %HY = imfilter(HY,fspecial('gaussian',7,2),'full');\n BGrad(:,:,1) = imfilter(B,HX,'replicate','same');\n BGrad(:,:,2) = imfilter(B,HY,'replicate','same');\nelse % 3-D case\n BGrad(:,:,:,1) = imfilter(B,HX,'replicate','same');\n BGrad(:,:,:,2) = imfilter(B,HY,'replicate','same');\n BGrad(:,:,:,3) = imfilter(B,HZ,'replicate','same');\nend\n\n% follow general framework of Bro-Nielsen and Gramkow, but allowing for\n% different body force and regularizers\n\nif isequal(DisplayFlag,'iter')\n displayString = sprintf('Iteration\\tSimilarity\\tBodyForceMax\\tDisplaceMax\\tMean\\tMedian');\n disp(displayString);\nend\n \n% fixed point iteration loop\ni = 1;\nwhile i <= MaxIter\n \n % compute body force\n [BodyForceNew(:),SimMeasNew(:)] = computeBodyForce(A,B,BGrad,U,X,NumRows,NumCols,NumPages,VoxSize,regDim,HX,HY,HZ);\n %%%%%%%%%%%%%%%%%%%%%%%%%%%\n %%%%%%%% try to make robust\n %if SimMeasNew > SimMeas\n % ForceFactor = ForceFactor./((1+sqrt(5))/2);\n % disp('Force Factor reduced.');\n %end\n %%%%%%%%%%%%%%%%%%%%%%%%%%%\n BodyForceNew(:) = BodyForceNew*ForceFactor;\n \n % solve PDE at current iteration\n %DU(:) = solveCorePDE(U,BodyForceNew,StabilityConstant,VoxSize,NumRows,NumCols,NumPages,Mu,Lambda,RegularizerFactor,DU,HX,HY,HZ); % why not -U?\n DU(2:end-1,2:end-1,:) = RegularizerFactor.*imfilter(U(2:end-1,2:end-1,:),[0 1 0;1 -4 1;0 1 0],0) - BodyForceNew(2:end-1,2:end-1,:);\n %keyboard\n % compute time step based on maximum flow distance\n [TimeStep,MaxDUNorm(:),MeanDUNorm(:),MedDUNorm(:)] = ...\n computeTimeStep(DU,FixedPointMaxFlowDistance);\n \n % now add back to displacement field\n U(:) = U + TimeStep.*DU;\n \n % display information\n if isequal(DisplayFlag,'iter')\n displayString = sprintf('%5d\\t\\t%g\\t\\t%g\\t\\t%g\\t\\t%g\\t\\t%g',i,SimMeasNew,max(BodyForceNew(:)),MaxDUNorm,MeanDUNorm,MedDUNorm);\n disp(displayString);\n end\n \n % check tolerances for convergence\n [BreakCond,BreakMsg] = checkThresholds(BodyForce,BodyForceNew,SimMeas,...\n SimMeasNew,MaxDUNorm,UDiffTol,VDiffTol,BodyForceTol,SimMeasTol,...\n BodyForceDiffTol,SimMeasDiffTol,SimMeasPercentDiffTol,simMeasComparison);\n if BreakCond\n disp(BreakMsg);\n break;\n end\n \n % update similarity measure and body force\n SimMeas(:) = SimMeasNew;\n BodyForce(:) = BodyForceNew;\n \n % finally increment counter\n i = i+1;\n \nend\n\n% update image B to final deformation grid\nif regDim == 2 % 2-D case\n BNEW = interp2(X(:,:,2),X(:,:,1),B,X(:,:,2)-U(:,:,2),...\n X(:,:,1)-U(:,:,1),'*linear',0);\nelse % 3-D case\n BNEW = interp3(X(:,:,:,2),X(:,:,:,1),X(:,:,:,3),B,...\n X(:,:,:,2)-U(:,:,:,2),X(:,:,:,1)-U(:,:,:,1),...\n X(:,:,:,3)-U(:,:,:,3),'*linear',0);\nend \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% need to add some code to return collection of deformation fields\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% set EXITFLAG\nif i==(MaxIter+1) % maximum number of iterations reached\n EXITFLAG = 0;\nelse % solution found in fewer than maximum number of iterations\n EXITFLAG = 1;\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% need to add some code to catch errors thrown by any called function\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% set OUTPUT\nOUTPUT.fixedPointIterations = i;\nswitch EXITFLAG\n case 1\n OUTPUT.message = 'NPREG2D converged to a solution.';\n if isequal(DisplayFlag,'iter') | isequal(DisplayFlag,'final')\n displayString = sprintf(OUTPUT.message);\n disp(displayString);\n end\n case 0\n OUTPUT.message = 'Maximum number of iterations reached.';\n if isequal(DisplayFlag,'iter') | isequal(DisplayFlag,'final')\n displayString = sprintf('%s%s',OUTPUT.message,' Terminating.');\n disp(displayString);\n end\n otherwise\n OUTPUT.message = 'If you see this message, you''re fucked.';\nend\n\n%-----------------------------------------------------------------------------------------\nfunction [BreakCond,BreakMsg] = checkThresholds(BodyForce,BodyForceNew,SimMeas,SimMeasNew,MaxDUNorm,UDiffTol,VDiffTol,BodyForceTol,SimMeasTol,BodyForceDiffTol,SimMeasDiffTol,SimMeasPercentDiffTol,simMeasComparison);\n\n% initialize break condition to zero\nBreakCond = false;\nBreakMsg = '';\n\n% if body force is below a threshold for all points, then stop\nMaxBodyForce = max(abs(BodyForceNew(:)));\nif MaxBodyForce < BodyForceTol\n BreakMsg = 'Body force threshold met.';\n BreakCond = true;\nend\n\n% if body force difference is below a threshold for all points, then stop\nMaxBodyForceDiff = max(abs(BodyForceNew(:)-BodyForce(:)));\nif MaxBodyForceDiff < BodyForceDiffTol\n BreakMsg = 'Body force difference threshold met.';\n BreakCond = true;\nend\n\n% if similarity measure is beneath its threshold, then stop\nif simMeasComparison(SimMeasNew,SimMeasTol)\n BreakMsg = 'Similarity Measure threshold met.';\n BreakCond = true;\nend\n\n% if similarity measure difference is beneath its threshold, then stop\nSimMeasDiff = SimMeasNew - SimMeas;\nif simMeasComparison(SimMeasNew,SimMeas)\n if abs(SimMeasDiff) < SimMeasDiffTol\n BreakMsg = 'Similarity measure difference threshold met.';\n BreakCond = true;\n end\nend\n\n% if similarity measure percentage decrease is beneath its threshold,\n% then stop\nif abs(SimMeas) < eps\n SimMeasPercentDiff = inf;\nelse\n SimMeasPercentDiff = SimMeasDiff./SimMeas;\nend\nif simMeasComparison(SimMeasNew,SimMeas)\n if abs(SimMeasPercentDiff) < SimMeasPercentDiffTol\n BreakMsg = 'Similarity measure percentage decrease threshold met.';\n BreakCond = true;\n end\nend\n\n% if maximum flow (velocity or displacement) is less than tolerance, then\n% stop\nif MaxDUNorm < UDiffTol\n BreakMsg = 'Maximum displacement threshold met.';\n BreakCond = true;\nelseif MaxDUNorm < VDiffTol % this is wrong - needs to be changed\n BreakMsg = 'Maximum velocity threshold met.';\n BreakCond = true;\nend\n\n%-----------------------------------------------------------------------------------------\nfunction [TimeStep,MaxDUNorm,MeanDUNorm,MedDUNorm] = computeTimeStep(DU,MaxFlow);\n\nDUNorm = sqrt(sum(DU.^2,3));\nMaxDUNorm = max(DUNorm(:));\nMeanDUNorm = mean(DUNorm(:));\nMedDUNorm = median(DUNorm(:));\n\nif MaxDUNorm < MaxFlow\n TimeStep = 1;\nelse\n TimeStep = MaxFlow/MaxDUNorm;\nend\n\n%-----------------------------------------------------------------------------------------\nfunction [HX,HY,HZ] = constructGradientFilters(VoxSize);\n\nHX = [-1;0;1]/(2*VoxSize(1));\nHY = [-1 0 1]/(2*VoxSize(2));\nHZ = cat(3,-1,0,1)/(2*VoxSize(3));\n\n%-----------------------------------------------------------------------------------------\nfunction Y = getCorePDESolverFunction(Regularizer,BoundCond,regDim);\n\nRegName = lower(Regularizer);\nswitch lower(BoundCond)\n case 'dirichlet'\n BoundCondName = 'Dirichlet';\n case 'periodic'\n BoundCondName = 'Periodic';\n case 'neumann'\n BoundCondName = 'Neumann';\nend\n\nY = eval(['@',RegName,BoundCondName,int2str(regDim),'D']);\n\n%-----------------------------------------------------------------------------------------\nfunction Y = getBodyForceFunction(SimMeasFlag);\n\nswitch SimMeasFlag\n case 'SSD'\n Y = @bodyForceSSD;\n case 'NCC'\n Y = @bodyForceNCC;\n case 'CR'\n Y = @bodyForceCR;\n case 'MI'\n Y = @bodyForceMI;\n case 'NMI'\n Y = @bodyForceNMI;\nend\n\n%-----------------------------------------------------------------------------------------\nfunction [S,comp] = initializeSimilarityMeasure(Flag);\n\nswitch Flag\n case 'SSD'\n S = inf;\n comp = @lt; % set comparison function to less than, as we are minimizing\n case {'NCC','CR','MI','NMI'}\n S = -inf;\n comp = @gt; % set comparison function to greater than, as we are maximizing\nend\n\n%-----------------------------------------------------------------------------------------\nfunction [simMeasFlag,regularizerFlag,boundaryCondFlag] = checkOptions(options,defaultopt);\n\nsimMeasFlag = npRegGet(options,'SimilarityMeasure',defaultopt,'fast');\nregularizerFlag = npRegGet(options,'Regularizer',defaultopt,'fast');\nboundaryCondFlag = npRegGet(options,'BoundaryCond',defaultopt,'fast');\n\n% test similarity measure support\nif isequal(simMeasFlag,'NCC')\n errid = 'npRegLib:genNpReg:checkOptions:NCCNotSupported';\n errmsg = 'Normalized Cross Correlation not currently supported as similarity measure.';\nelseif isequal(simMeasFlag,'CR')\n errid = 'npRegLib:genNpReg:checkOptions:CRNotSupported';\n errmsg = 'Correlation ratio not currently supported as similarity measure.';\nelseif isequal(simMeasFlag,'MI')\n errid = 'npRegLib:genNpReg:checkOptions:MINotSupported';\n errmsg = 'Mutual information not currently supported as similarity measure.';\nelseif isequal(simMeasFlag,'NMI')\n errid = 'npRegLib:genNpReg:checkOptions:NMINotSupported';\n errmsg = 'Normalized mututal information not currently supported as similarity measure.';\nelse\n errid = '';\n errmsg = '';\nend\n\n% report error\nerror(errid,errmsg);\n\n\n", "meta": {"author": "tomdoel", "repo": "pulmonarytoolkit", "sha": "09688a006d548fb85795df0338d1ed4f4a010fb9", "save_path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit", "path": "github-repos/MATLAB/tomdoel-pulmonarytoolkit/pulmonarytoolkit-09688a006d548fb85795df0338d1ed4f4a010fb9/External/npReg/npRegLib/genNpReg2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300573952052, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.3649793441290368}} {"text": "function [innermost, inside] = find_innermost_boundary(bnd)\n\n% FIND_INNERMOST_BOUNDARY locates innermost compartment of a BEM model\n% by looking at the containment of the triangular meshes describing \n% the surface boundaries\n%\n% [innermost] = find_innermost_boundary(bnd)\n%\n% with the boundaries described by a struct-array bnd with\n% bnd(i).pnt vertices of boundary i (matrix of size Nx3)\n% bnd(i).tri triangles of boundary i (matrix of size Mx3)\n\n% Copyright (C) 2003, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\nncmp = length(bnd);\n\nif ncmp==1\n innermost = 1;\n return\nend\n\n% try to locate the innermost compartment\nfor i=1:ncmp\nfor j=1:ncmp\n % determine for a single vertex on each surface if it is inside or outside the other surfaces\n curpos1 = bnd(i).pos(1,:); % any point on the boundary is ok\n curpos = bnd(j).pos;\n curtri = bnd(j).tri;\n if i==j\n inside(i,j) = 0;\n else\n inside(i,j) = bounding_mesh(curpos1, curpos, curtri);\n end\nend\nend\n% assume that the sources are in the innermost compartment\ntmp = sum(inside, 2);\n[i, innermost] = max(tmp);\n\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/inverse/private/find_innermost_boundary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.36497933765773755}} {"text": "function result = swt16rec3_GPU(dec_full, level, waveletName)\n%SWT16rec3 Stationary wavelet-based 2-level frame in 3-D.\n% swt16rec3_GPU performs a multi-level 3-D stationary wavelet synthesis\n% using a specific waveletName. \n%\n% result = swt16rec3_GPU(dec_full, level, waveletName) computes the \n% 3-D matrix 'result' at using the coefficients in 'dec_full', level \n% 'level' and using 'waveletName'. Level must be either 1 or 2. Wavelet Toolbox\n% is required to retrieve the filters using 'waveletName'. Both 'level'\n% and 'waveletName' should match those used in creating 'dec_full'.\n%\n% Requires the Parallel Computing Toolbox and a compatible GPU.\n%\n% See conv3DGPU and swt16dec3_GPU\n\n% A. Kucukelbir 12-June-2012.\n% Last Revision: 26-June-2012.\n\n% Create filters\nif ischar(waveletName)\n [~,~,LR,HR] = wfilters(waveletName); \nend\n\n% Define kernels to be used by GPU\nrowsKernel = parallel.gpu.CUDAKernel('conv3DGPU.ptx', 'conv3DGPU.cu', 'rowsKernel');\ncolumnsKernel = parallel.gpu.CUDAKernel('conv3DGPU.ptx', 'conv3DGPU.cu', 'columnsKernel');\nbeamsKernel = parallel.gpu.CUDAKernel('conv3DGPU.ptx', 'conv3DGPU.cu', 'beamsKernel');\nhalfSum = parallel.gpu.CUDAKernel('conv3DGPU.ptx', 'conv3DGPU.cu', 'halfSum');\n\n% Upsample filters and create temporary cell\nx = cell(1,1);\nfor i = 1:level-1\n LR = dyadup(LR,1);\n HR = dyadup(HR,1); \nend\n\n% Set parameters for convolution kernels on GPU\nBLOCKDIM_X = 8; \nBLOCKDIM_Y = 8; \nBLOCKDIM_Z = 8; \n\nfor i = 1:level\n\n % Grab first level of frame coeffieicents.\n dec = dec_full(1:8);\n dec_full(1:8) = [];\n \n % Downsample filters\n if(i==2)\n LR = dyaddown(LR,0);\n HR = dyaddown(HR,0); \n end\n \n % Move filters to GPU\n LR_g = gpuArray(LR);\n HR_g = gpuArray(HR);\n\n % Calculate kernel radius\n if( mod(length(LR),2) == 0 )\n kernelRadius = length(LR)/2;\n else\n kernelRadius = (length(LR)-1)/2;\n end\n\n % Ensure volume has dimensions that are a multiple of 8\n diff = 0;\n if( mod(size(dec{1,1},1),8) ~= 0 )\n diff = 8*ceil(size(dec{1,1},1)/8) - size(dec{1,1},1);\n for j=1:8\n dec{j,1} = padarray(dec{j,1},[diff diff diff],'post');\n end\n end\n\n % Calculate volume sizes and transfer to GPU\n volRowSize = size(dec{1,1},1);\n volColSize = size(dec{1,1},2);\n volBeaSize = size(dec{1,1},3);\n dec1_g = gpuArray(dec{1,1});\n dec2_g = gpuArray(dec{2,1});\n dec3_g = gpuArray(dec{3,1});\n dec4_g = gpuArray(dec{4,1});\n dec5_g = gpuArray(dec{5,1});\n dec6_g = gpuArray(dec{6,1});\n dec7_g = gpuArray(dec{7,1});\n dec8_g = gpuArray(dec{8,1});\n\n % Setup GPU grids and blocks\n rowsKernel.GridSize = [(volRowSize / BLOCKDIM_X) * (volBeaSize / BLOCKDIM_Z) , (volColSize / BLOCKDIM_Y)];\n rowsKernel.ThreadBlockSize = [BLOCKDIM_X, BLOCKDIM_Y, BLOCKDIM_Z];\n\n columnsKernel.GridSize = [(volRowSize / BLOCKDIM_X) * (volBeaSize / BLOCKDIM_Z) , (volColSize / BLOCKDIM_Y)];\n columnsKernel.ThreadBlockSize = [BLOCKDIM_X, BLOCKDIM_Y, BLOCKDIM_Z];\n\n beamsKernel.GridSize = [(volRowSize / BLOCKDIM_X) * (volBeaSize / BLOCKDIM_Z) , (volColSize / BLOCKDIM_Y)];\n beamsKernel.ThreadBlockSize = [BLOCKDIM_X, BLOCKDIM_Y, BLOCKDIM_Z];\n\n halfSum.GridSize = [(volRowSize / BLOCKDIM_X) * (volBeaSize / BLOCKDIM_Z) , (volColSize / BLOCKDIM_Y)];\n halfSum.ThreadBlockSize = [BLOCKDIM_X, BLOCKDIM_Y, BLOCKDIM_Z];\n\n % Do the SWT for this level\n tmp_g = swt3_1level(dec1_g, dec2_g, dec3_g, dec4_g, dec5_g, dec6_g, dec7_g, dec8_g,...\n LR_g, HR_g, ...\n volRowSize, volColSize, volBeaSize, kernelRadius,...\n rowsKernel, columnsKernel, beamsKernel, halfSum);\n\n % Remove multiple of 8 padding\n tmp = gather(tmp_g);\n x{i,1} = tmp(1:end-diff, 1:end-diff, 1:end-diff);\n\n % Remove kernelRadius padding\n if( mod(length(LR),2) == 0 )\n x{i,1} = x{i,1}(kernelRadius:end-(kernelRadius-1)-1, kernelRadius:end-(kernelRadius-1)-1, kernelRadius:end-(kernelRadius-1)-1);\n else\n x{i,1} = x{i,1}(kernelRadius+1:end-kernelRadius, kernelRadius+1:end-kernelRadius, kernelRadius+1:end-kernelRadius);\n end\n \n % Take care of second level specific processing\n if (i == 2)\n x{1,1} = padarray(x{1,1},[diff diff diff],'post');\n dec1_g = gpuArray(x{1,1});\n tmp_g = swt3_1level(dec1_g, dec2_g, dec3_g, dec4_g, dec5_g, dec6_g, dec7_g, dec8_g,...\n LR_g, HR_g, ...\n volRowSize, volColSize, volBeaSize, kernelRadius,...\n rowsKernel, columnsKernel, beamsKernel, halfSum);\n tmp = gather(tmp_g);\n tmp = tmp(1:end-diff, 1:end-diff, 1:end-diff); \n if( mod(length(LR),2) == 0 )\n x{1,1} = tmp(kernelRadius:end-(kernelRadius-1)-1, kernelRadius:end-(kernelRadius-1)-1, kernelRadius:end-(kernelRadius-1)-1);\n else\n x{1,1} = tmp(kernelRadius:end-kernelRadius-1, kernelRadius:end-kernelRadius-1, kernelRadius:end-kernelRadius-1);\n end\n end\n \nend\n\n% Combine results from all levels\nresult = zeros(size(x{1,1}));\nfor i = 1:level\n result = result + 1/level*x{i,1};\nend\n\nend\n\nfunction x = swt3_1level(dec1_g, dec2_g, dec3_g, dec4_g, dec5_g, dec6_g, dec7_g, dec8_g,...\n LR_g, HR_g, ...\n volRowSize, volColSize, volBeaSize, kernelRadius,...\n rowsKernel, columnsKernel, beamsKernel, halfSum)\n\n%% FIRST PASS ALONG BEAMS\n% Get the AA\naaa_Lo_Lo_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\ndaa_Lo_Lo_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\naa_Lo_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\naaa_Lo_Lo_Lo_g = feval( beamsKernel, aaa_Lo_Lo_Lo_g, dec1_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\ndaa_Lo_Lo_Hi_g = feval( beamsKernel, daa_Lo_Lo_Hi_g, dec2_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\naa_Lo_Lo_g = feval( halfSum, aa_Lo_Lo_g, aaa_Lo_Lo_Lo_g, daa_Lo_Lo_Hi_g, volRowSize, volColSize, volBeaSize );\n\n% Get the DA\nada_Lo_Hi_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\ndda_Lo_Hi_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nda_Lo_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\nada_Lo_Hi_Lo_g = feval( beamsKernel, ada_Lo_Hi_Lo_g, dec3_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\ndda_Lo_Hi_Hi_g = feval( beamsKernel, dda_Lo_Hi_Hi_g, dec4_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\nda_Lo_Hi_g = feval( halfSum, da_Lo_Hi_g, ada_Lo_Hi_Lo_g, dda_Lo_Hi_Hi_g, volRowSize, volColSize, volBeaSize );\n\n% Get the AD\naad_Hi_Lo_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\ndad_Hi_Lo_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nad_Hi_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\naad_Hi_Lo_Lo_g = feval( beamsKernel, aad_Hi_Lo_Lo_g, dec5_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\ndad_Hi_Lo_Hi_g = feval( beamsKernel, dad_Hi_Lo_Hi_g, dec6_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\nad_Hi_Lo_g = feval( halfSum, ad_Hi_Lo_g, aad_Hi_Lo_Lo_g, dad_Hi_Lo_Hi_g, volRowSize, volColSize, volBeaSize );\n\n% Get the DD\nadd_Hi_Hi_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nddd_Hi_Hi_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\ndd_Hi_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\nadd_Hi_Hi_Lo_g = feval( beamsKernel, add_Hi_Hi_Lo_g, dec7_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\nddd_Hi_Hi_Hi_g = feval( beamsKernel, ddd_Hi_Hi_Hi_g, dec8_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\ndd_Hi_Hi_g = feval( halfSum, dd_Hi_Hi_g, add_Hi_Hi_Lo_g, ddd_Hi_Hi_Hi_g, volRowSize, volColSize, volBeaSize );\n\n\n%% SECOND PASS ALONG COLUMNS\n% Get the A\naa_Lo_Lo_gt = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nda_Lo_Hi_gt = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\na_Lo_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\naa_Lo_Lo_gt = feval( columnsKernel, aa_Lo_Lo_gt, aa_Lo_Lo_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\nda_Lo_Hi_gt = feval( columnsKernel, da_Lo_Hi_gt, da_Lo_Hi_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\na_Lo_g = feval( halfSum, a_Lo_g, aa_Lo_Lo_gt, da_Lo_Hi_gt, volRowSize, volColSize, volBeaSize );\n\n\n% Get the D\nad_Hi_Lo_gt = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\ndd_Hi_Hi_gt = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nd_Hi_g = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\nad_Hi_Lo_gt = feval( columnsKernel, ad_Hi_Lo_gt, ad_Hi_Lo_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\ndd_Hi_Hi_gt = feval( columnsKernel, dd_Hi_Hi_gt, dd_Hi_Hi_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\nd_Hi_g = feval( halfSum, d_Hi_g, ad_Hi_Lo_gt, dd_Hi_Hi_gt, volRowSize, volColSize, volBeaSize );\n\n \n%% FIRST PASS ALONG ROWS\na_Lo_gt = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nd_Hi_gt = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\nx = parallel.gpu.GPUArray.zeros(volRowSize, volColSize, volBeaSize);\n\na_Lo_gt = feval( rowsKernel, a_Lo_gt, a_Lo_g, LR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\nd_Hi_gt = feval( rowsKernel, d_Hi_gt, d_Hi_g, HR_g, volRowSize, volColSize, volBeaSize, kernelRadius );\n\nx = feval( halfSum, x, a_Lo_gt, d_Hi_gt, volRowSize, volColSize, volBeaSize );\n \n \nend\n\n\n\n\n\n\n\n\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/37320-gpu-accelerated-3d-stationary-wavelet-based-frame/swt16rec3_GPU.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7025300449389326, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.36497933765773755}} {"text": "function model = rmGridFit_twoGaussiansToG(model,prediction,data,params,t)\n% rmGridFit_twoGaussiansToG - core of ToG fit\n%\n% model = rmGridFit_twoGaussiansToG(model,prediction,data,params);\n%\n% Second gaussian can go positive or negative.\n%\n% 2008/01 SOD: split of from rmGridFit.\n\n% input check\nif nargin < 4,\n error('Not enough arguments');\nend\n\n% some variables we need\nrssinf = inf(size(data(1,:)),'single');\ntrends = t.trends;\nt_id = t.dcid+2;\n\n% stimulus sequence is needed because make second pRF on the fly \nallstimimages = rmDecimate(params.analysis.allstimimages,...\n params.analysis.coarseDecimate);\n\n%-----------------------------------\n%--- fit different receptive fields profiles\n%--- another loop --- and a slow one too\n%-----------------------------------\ntic; progress = 0;\nfor n=1:numel(params.analysis.x0),\n %-----------------------------------\n % progress monitor (10 dots) and time indicator\n %-----------------------------------\n if floor(n./numel(params.analysis.x0).*10)>progress,\n if progress==0,\n % print out estimated time left\n esttime = toc.*10;\n if floor(esttime./3600)>0,\n fprintf(1,'[%s]:Estimated processing time: %d hours.\\t(%s)\\n',...\n mfilename, ceil(esttime./3600), datestr(now));\n else\n fprintf(1, '[%s]:Estimated processing time: %d minutes.\\t(%s)\\n',...\n mfilename, ceil(esttime./60), datestr(now));\n end;\n fprintf(1,'[%s]:Grid (x,y,sigma) fit:',mfilename);drawnow;\n end;\n % progress monitor\n fprintf(1,'.');drawnow;\n progress = progress + 1;\n end;\n\n \n %-----------------------------------\n %--- first make all second rf profiles\n %-----------------------------------\n sigmaNew = params.analysis.sigmaRatio.*params.analysis.sigmaMajor(n);\n % limit to sigmaRatioMaxVal\n sigmaNew = sigmaNew(sigmaNew<=params.analysis.sigmaRatioMaxVal);\n % add sigmaRatioInfVal which essentially is on/off\n sigmaNew = [sigmaNew; params.analysis.sigmaRatioInfVal]; %#ok\n\n % Now we make it: slightly different call for speed reasons.\n z = zeros(size(sigmaNew));\n tmprf = rfGaussian2d(params.analysis.X - params.analysis.x0(n),...\n params.analysis.Y - params.analysis.y0(n),...\n sigmaNew,sigmaNew, ...\n false, z, z);\n prediction2 = allstimimages*tmprf;\n \n %-----------------------------------\n %--- try two rf profiles, yet another loop\n %-----------------------------------\n for sr = 1:numel(sigmaNew),\n %-----------------------------------\n % Now apply GLM, see *_oneGaussian for logic.\n % New rules for this one:\n % 1. first Gaussian has to be positive\n % 2. there should be a positive response in the\n % center at all times. This\n % assumes Gaussians are unscaled (see rfGaussian2d).\n %-----------------------------------\n X = [prediction(:,n) prediction2(:,sr) trends];\n b = pinv(X)*data;\n rss = rssinf;\n keep = b(1,:)>0 & b(1,:)>-b(2,:);\n rss(keep) = sum((data(:,keep)-X*b(:,keep)).^2);\n \n %-----------------------------------\n %--- store data with lower rss\n %-----------------------------------\n minRssIndex = rss < model.rss;\n\n % now update\n model.x0(minRssIndex) = params.analysis.x0(n);\n model.y0(minRssIndex) = params.analysis.y0(n);\n model.s(minRssIndex) = params.analysis.sigmaMajor(n);\n model.s_major(minRssIndex) = params.analysis.sigmaMajor(n);\n model.s_minor(minRssIndex) = params.analysis.sigmaMajor(n);\n model.s_theta(minRssIndex) = params.analysis.theta(n);\n model.rss(minRssIndex) = rss(minRssIndex);\n model.b([1:2 t_id],minRssIndex) = b(:,minRssIndex);\n model.s2(minRssIndex) = sigmaNew(sr);\n end;\nend;\n\n% end time monitor\net = toc;\nif floor(esttime/3600)>0,\n fprintf(1,'Done[%d hours].\\t(%s)\\n', ceil(et/3600), datestr(now));\nelse\n fprintf(1,'Done[%d minutes].\\t(%s)\\n', ceil(et/60), datestr(now));\nend;\ndrawnow;\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Analysis/retinotopyModel/rmGridFit_twoGaussiansToG.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7981867777396212, "lm_q2_score": 0.45713671682749474, "lm_q1q2_score": 0.3648804829910077}} {"text": "function [x,y,z] = getLMpolygon3D(polygon)\n%\n% Utility function that gives the coordinates of the polygon's vertices\n\nx = str2num(char({polygon.pt.x})); % get X polygon coordinates\ny = str2num(char({polygon.pt.y})); % get Y polygon coordinates\nz = str2num(char({polygon.pt.z})); % get Y polygon coordinates\n\n", "meta": {"author": "CSAILVision", "repo": "LabelMeToolbox", "sha": "b8eb2179723d8c15a4331c1ea6da5c6cd64e75e2", "save_path": "github-repos/MATLAB/CSAILVision-LabelMeToolbox", "path": "github-repos/MATLAB/CSAILVision-LabelMeToolbox/LabelMeToolbox-b8eb2179723d8c15a4331c1ea6da5c6cd64e75e2/3Dtools/getLMpolygon3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318479832805, "lm_q2_score": 0.6039318337259584, "lm_q1q2_score": 0.3647336683980493}} {"text": "function Ne=vertex_neighbours_double(Fa,Fb,Fc,Vx,Vy,Vz)\n\nF=[Fa Fb Fc];\nV=[Vx Vy Vz];\n\n% Neighbourh cell array \nNe=cell(1,size(V,1));\n\n% Loop through all faces\nfor i=1:length(F)\n % Add the neighbors of each vertice of a face\n % to his neighbors list.\n Ne{F(i,1)}=[Ne{F(i,1)} [F(i,2) F(i,3)]];\n Ne{F(i,2)}=[Ne{F(i,2)} [F(i,3) F(i,1)]];\n Ne{F(i,3)}=[Ne{F(i,3)} [F(i,1) F(i,2)]];\nend\n\n% Loop through all neighbor arrays and sort them (Rotation same as faces)\nfor i=1:size(V,1)\n \n Pneighf=Ne{i};\n if(isempty(Pneighf))\n Pneig=[];\n else\n start=1;\n for index1=1:2:length(Pneighf)\n found=false;\n for index2=2:2:length(Pneighf),\n if(Pneighf(index1)==Pneighf(index2))\n found=true; break\n end\n end\n if(~found)\n start=index1; break\n end\n end\n Pneig=[];\n Pneig(1)=Pneighf(start);\n Pneig(2)=Pneighf(start+1);\n \n % Add the neighbours with respect to original rotation\n for j=2+double(found):(length(Pneighf)/2)\n found = false;\n for index=1:2:length(Pneighf),\n if(Pneighf(index)==Pneig(end))\n if(sum(Pneig==Pneighf(index+1))==0)\n found =true;\n Pneig=[Pneig Pneighf(index+1)];\n end\n end\n end\n if(~found) % This only happens with weird edge vertices\n for index=1:2:length(Pneighf),\n if(sum(Pneig==Pneighf(index))==0)\n Pneig=[Pneig Pneighf(index)];\n if(sum(Pneig==Pneighf(index+1))==0)\n Pneig=[Pneig Pneighf(index+1)];\n end\n end\n end\n end\n end\n % Add forgotten neigbours\n if(length(Pneig) 1\n %create the colorbar if desired\n TraceSpectra.createcolorbar(s, colorbarpref, clabel, currFontSize)\n h = TraceSpectra.subdivide_axes(myaxis,size(T));\n remainingproperties = TraceSpectra.buildParameterList(p.Unmatched);\n for n=1:numel(h)\n keepYlabel = ~suppressLabels || (n <= size(h,1));\n keepXlabel = ~suppressLabels || (mod(n,size(h,2))==0);\n specgram(s,T(n),...\n 'xunit',xChoice,...\n 'axis',h(n),...\n 'fontsize',currFontSize,...\n 'useXlabel',keepXlabel,...\n 'useYlabel',keepYlabel,...\n 'colorbar','none',...\n remainingproperties{:});\n end\n return\n end\n \n axes(myaxis);\n \n if T.hasnan % only 1 trace guaranteed at this point...\n warning('TraceSpectra:specgram:nanValue',...\n ['This trace has at least one NaN value, which will blank',...\n 'the related spectrogram segment. ',...\n 'Remove NaN values by either splitting up the ',...\n 'trace into non-NaN sections or by using TraceData/fillgaps',...\n ' to replace the NaN values.']);\n end\n \n [xunit, xfactor] = TraceSpectra.parse_xunit(xChoice);\n \n switch lower(xunit)\n case 'date'\n % we need the actual times...\n Xvalues = get(T,'timevector');\n \n case 'day of year'\n startvec = datevec(get(T,'start'));\n Xvalues = get(T,'timevector');\n dec31 = datenum(startvec(1)-1,12,31); % 12/31/xxxx of previous year in Matlab format\n Xvalues = Xvalues - dec31;\n xunit = [xunit, ' (', datestr(startvec,'yyyy'),')'];\n \n otherwise,\n dl= 1:T.nsamples(); %dl : DataLength\n Xvalues = dl .* T.period ./ xfactor;\n end\n \n \n %% once was function specgram(d, NYQ, nfft, noverlap, freqmax, dBlims)\n \n nx = length(T.data);\n window = hanning(s.nfft);\n nwind = length(window);\n if nx < nwind % zero-pad x if it has length less than the window length\n T.data(nwind) = 0;\n nx = nwind;\n end\n \n ncol = fix( (nx - s.over) / (nwind - s.over) );\n \n %added \"floor\" below\n colindex = 1 + floor(0:(ncol-1))*(nwind- s.over);\n rowindex = (1:nwind)';\n if length(T.data)<(nwind+colindex(ncol)-1)\n T.data(nwind+colindex(ncol)-1) = 0; % zero-pad x\n end\n \n y = zeros(nwind,ncol);\n \n % put x into columns of y with the proper offset\n % should be able to do this with fancy indexing!\n A_ = colindex( ones(nwind, 1) ,: ) ;\n B_ = rowindex(:, ones(1, ncol) ) ;\n y(:) = T.data(fix(A_ + B_ -1));\n clear A_ B_\n \n for k = 1:ncol; % remove the mean from each column of y\n y(:,k) = y(:,k)-mean(y(:,k));\n end\n \n % Apply the window to the array of offset signal segments.\n y = window(:,ones(1,ncol)).*y;\n \n % USE FFT\n % now fft y which does the columns\n y = fft(y,s.nfft);\n if ~any(any(imag(T.data))) % x purely real\n if rem(s.nfft,2), % nfft odd\n select = 1:(s.nfft+1)/2;\n else\n select = 1:s.nfft/2+1;\n end\n y = y(select,:);\n else\n select = 1:s.nfft;\n end\n f = (select - 1)' * T.samplerate / s.nfft;\n \n NF = s.nfft/2 + 1;\n nf1=round(f(1) / T.nyquist * NF); %frequency window\n if nf1==0, nf1=1; end\n nf2=NF;\n \n y = 20*log10(abs(y(nf1:nf2,:)));\n \n F = f(f <= s.freqmax);\n \n \n if F(1)==0,\n F(1)=0.001;\n end\n \n if logscale\n t = linspace(Xvalues(1), Xvalues(end),ncol); % Replaced by TCB - 01/18/2012\n try\n h = uimagesc(t, log10(F), y(nf1:length(F),:), s.dBlims);\n catch exception\n if strcmp(exception.identifier, 'MATLAB:UndefinedFunction')\n warning('Spectralobject:specgram:uimageNotInstalled',...\n ['Cannot plot with log spacing because uimage, uimagesc ',...\n ' not installed or not visible in matlab path.']);\n h = imagesc(Xvalues,F,y(nf1:length(F),:),s.dBlims);\n logscale = false;\n else\n rethrow(exception)\n end\n end\n else\n h = imagesc(Xvalues, F, y(nf1:length(F),:), s.dBlims);\n end\n set(gca, 'fontsize', currFontSize);\n if strcmpi(xunit, 'date')\n datetick('x', 'keepticks');\n end\n titlename = [T.station '-' T.channel ' from:' T.start];\n title (titlename);\n axis xy;\n colormap(alternateMap);\n shading flat\n axis tight;\n if useYlabel\n if ~logscale\n ylabel ('Frequency (Hz)')\n else\n ylabel ('Log Frequency (log Hz)')\n end\n \n end\n if useXlabel\n xlabel(['Time - ',xunit]);\n end\n\n %create the colorbar if desired\n TraceSpectra.createcolorbar(s,colorbarpref, clabel, currFontSize);\n \n %% added a series of functions that help with argument parsing.\n % These were ported from my trace/plot function.\n \n\n end %specgram\n\n", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/core/dev/@TraceSpectra/specgram.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6039318479832805, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.36473366839804927}} {"text": "function varargout = iszero(varargin)\n%ISZERO Check if a DISKFUN is identically zero on its domain.\n% OUT = ISZERO( F ) return 1 if the DISKFUN is exactly the zero function, and\n% 0 otherwise. \n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n[varargout{1:nargout}] = iszero@separableApprox(varargin{:});\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@diskfun/iszero.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318337259583, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.36473365978759853}} {"text": "function [y,deriv] = linTrans_adaptive(w,map,transmap)\n% This is an MV2DF. See MV2DF_API_DEFINITION.readme.\n%\n% Applies linear transform y = map(w). It needs the transpose of map, \n% transmap for computing the gradient. map and transmap are function\n% handles.\n\nif nargin==0\n test_this();\n return;\nend\n\nif isempty(w)\n y = @(w)linTrans_adaptive(w,map,transmap);\n return;\nend\n\nif isa(w,'function_handle')\n outer = linTrans_adaptive([],map,transmap);\n y = compose_mv(outer,w,[]);\n return;\nend\n\ny = map(w);\ny = y(:);\n\nderiv = @(g2) deriv_this(g2,map,transmap,numel(w));\nend\n\nfunction [g,hess,linear] = deriv_this(g2,map,transmap,wlen)\ng = transmap(g2,wlen);\ng = g(:);\n%linear = false; % use this to test linearity of map, if in doubt\nlinear = true;\nhess = @(d) hess_this(map,d);\nend\n\nfunction [h,Jd] = hess_this(map,d)\nh = [];\nif nargout>1 \n Jd = map(d);\n Jd = Jd(:);\nend\n\nend\n\nfunction test_this()\nfirst = 2;\nlen = 3;\nmap = @(w) w(first:first+len-1);\nfunction w = transmap_test(y,sz) \n w=zeros(sz,1); \n w(first:first+len-1)=y; \nend\ntransmap = @(y,sz) transmap_test(y,sz);\nf = linTrans_adaptive([],map,transmap);\ntest_MV2DF(f,randn(5,1));\nend\n", "meta": {"author": "nesl", "repo": "asvspoof2019", "sha": "8b780369f7273345c22d979192119198bbf3db13", "save_path": "github-repos/MATLAB/nesl-asvspoof2019", "path": "github-repos/MATLAB/nesl-asvspoof2019/asvspoof2019-8b780369f7273345c22d979192119198bbf3db13/baseline/tDCF_v1/bosaris_toolkit.1.06/bosaris_toolkit/utility_funcs/Optimization_Toolkit/applications/fusion2class/mv2df_function_library/templates/linTrans_adaptive.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3647123608848585}} {"text": "function [model, lbls] = fgplvmLoadResult(dataSet, number)\n\n% FGPLVMLOADRESULT Load a previously saved result.\n% FORMAT\n% DESC loads a previously saved FGPLVM result.\n% ARG dataSet : the name of the data set to load.\n% ARG number : the number of the FGPLVM run to load.\n% RETURN model : the saved model.\n% RETURN lbls : labels of the data set (for visualisation purposes).\n%\n% SEEALSO : fgplvmLoadResult\n%\n% COPYRIGHT : Neil D. Lawrence, 2003, 2004, 2005, 2006, 2008\n \n% FGPLVM\n\n[Y, lbls] = lvmLoadData(dataSet);\n\ndataSet(1) = upper(dataSet(1));\nload(['dem' dataSet 'Fgplvm' num2str(number)])\nmodel = fgplvmReconstruct(kern, noise, fgplvmInfo, X, Y);\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/fgplvm/fgplvmLoadResult.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6001883592602049, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3647123608848584}} {"text": "function disp(t,name)\n%DISP Command window display of a matricized tensor (tenmat).\n%\n% DISP(T) displays a tensor as matrix with no name.\n%\n% DISP(T,NAME) display a tensor as matrix with the given name.\n%\n% See also TENMAT, TENMAT/DISPLAY.\n%\n%MATLAB Tensor Toolbox.\n%Copyright 2012, Sandia Corporation.\n\n% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.\n% http://www.sandia.gov/~tgkolda/TensorToolbox.\n% Copyright (2012) Sandia Corporation. Under the terms of Contract\n% DE-AC04-94AL85000, there is a non-exclusive license for use of this\n% work by or on behalf of the U.S. Government. Export of this data may\n% require a license from the United States Government.\n% The full license terms can be found in the file LICENSE.txt\n\n\nif ~exist('name','var')\n name = 'ans';\nend\n \nfprintf('%s is a matrix corresponding to a tensor of size %s\\n',...\n name,tt_size2str(t.tsize));\nfprintf('\\t%s.rindices = %s (modes of tensor corresponding to rows)\\n',...\n name,['[ ' num2str(t.rindices) ' ]']);\nfprintf('\\t%s.cindices = %s (modes of tensor corresponding to columns)\\n',...\n name,['[ ' num2str(t.cindices) ' ]']);\n\nif isempty(t.data)\n fprintf('\\t%s.data = []\\n',name);\nelse\n fprintf('\\t%s.data = \\n',name);\n output = tt_matrix2cellstr(t.data);\n fprintf('\\t\\t%s\\n',output{:});\nend \n\n\n", "meta": {"author": "andrewssobral", "repo": "mtt", "sha": "0152a77df09f24af4c294f46845931e4e0e63b55", "save_path": "github-repos/MATLAB/andrewssobral-mtt", "path": "github-repos/MATLAB/andrewssobral-mtt/mtt-0152a77df09f24af4c294f46845931e4e0e63b55/libs/tensor_toolbox_2.5/@tenmat/disp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.611381973294151, "lm_q1q2_score": 0.3646484739013057}} {"text": "function [graph,nodeNames,nodeInfo] = prtUtilReadGml(file)\n%[graph,names,etc] = prtUtilReadGml(file)\n% Read graph-spec files with .gml formating.\n\n\n\n\n\n\n\netc = [];\n\nfid = fopen(file,'r');\ndirected = false;\n\nnodeList = [];\nedgeList = [];\nwhile ~feof(fid)\n str = fgetl(fid);\n str = lower(str);\n \n if ~isempty(strfind(str,'directed'))\n temp = regexp(str,'directed (?[0-9]*)','names');\n directed = logical(str2double(temp.directed));\n end\n \n if ~isempty(strfind(str,']')) || ~isempty(strfind(str,'['))\n continue;\n else\n if ~isempty(strfind(str,'node'))\n newNode = readNode(fid);\n if isempty(nodeList)\n nodeList = newNode;\n else\n nodeList = cat(1,nodeList,newNode);\n end\n end\n if ~isempty(strfind(str,'edge'));\n newEdge = readEdge(fid);\n if isempty(edgeList)\n edgeList = newEdge;\n else\n edgeList = cat(1,edgeList,newEdge);\n end\n end\n end\nend\nfclose all;\n\nnodeNames = {nodeList.id}';\nnodeVals = cat(1,nodeList.val);\nedgeVals = cat(1,edgeList.connection);\n\nedgeIndices = zeros(size(edgeVals));\nfor i = 1:size(edgeVals,1)\n edgeIndices(i,:) = [find(edgeVals(i,1) == nodeVals),find(edgeVals(i,2) == nodeVals)];\nend\n \ngraph = sparse(edgeIndices(:,1),edgeIndices(:,2),1,length(nodeVals),length(nodeVals));\nif ~directed\n graph = graph + sparse(edgeIndices(:,2),edgeIndices(:,1),1,length(nodeVals),length(nodeVals));\nend\nnodeInfo = nodeList;\n\n%\nfunction newEdge = readEdge(fid)\n\nnewEdge = struct('connection',[]);\nwhile true\n str = fgetl(fid);\n if ~isempty(strfind(str,'['))\n \n elseif ~isempty(strfind(str,']'))\n return;\n elseif ~isempty(strfind(str,'source'))\n temp1 = regexp(str,'source (?[0-9].*)','names');\n int1 = str2double(temp1.nodeNumber);\n \n str = fgetl(fid);\n temp2 = regexp(str,'target (?[0-9].*)','names');\n int2 = str2double(temp2.nodeNumber);\n newEdge.connection = [int1,int2];\n end\nend\n \n \nfunction newNode = readNode(fid)\n\nnewNode = struct('val',[],'id','');\nwhile true\n str = fgetl(fid);\n str = strtrim(str);\n if ~isempty(strfind(str,'['))\n \n elseif ~isempty(strfind(str,']'))\n return;\n elseif ~isempty(regexp(str,'^id','once'))\n temp = regexp(str,'id (?[0-9].*)','names');\n int = str2double(temp.nodeNumber);\n newNode.val = int;\n newNode.id = sprintf('Node %d',int);\n elseif ~isempty(regexp(str,'^label','once'))\n temp = regexp(str,'label (?[\"A-Z].*)','names');\n temp.nodeLabel = strrep(temp.nodeLabel,'\"','');\n newNode.id = temp.nodeLabel;\n elseif ~isempty(regexp(str,'^value','once'))\n temp = regexp(str,'value (?.*)','names');\n newNode.value = str2double(temp.value);\n else\n warning('I didnt know what to do');\n end\nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/]beta/graph/graphUtil/prtUtilReadGml.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819591324416, "lm_q2_score": 0.5964331462646254, "lm_q1q2_score": 0.3646484654547928}} {"text": "function tests = test_ft_preproc_resample\n\n% MEM 1gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_preproc_resample\n\nif nargout\n % assume that this is called by RUNTESTS\n tests = functiontests(localfunctions);\nelse\n % assume that this is called from the command line\n fn = localfunctions;\n for i=1:numel(fn)\n feval(fn{i});\n end\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction testOptions(testCase)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnchan = 8;\nnsample = 1000;\ndat = randn(nchan, nsample) + 1;\n\nresult = {};\nresult{end+1} = ft_preproc_resample(dat, 1000, 100, 'resample');\nresult{end+1} = ft_preproc_resample(dat, 1000, 250, 'resample');\nresult{end+1} = ft_preproc_resample(dat, 1000, 500, 'resample');\nresult{end+1} = ft_preproc_resample(dat, 1000, 100, 'decimate');\nresult{end+1} = ft_preproc_resample(dat, 1000, 250, 'decimate');\nresult{end+1} = ft_preproc_resample(dat, 1000, 500, 'decimate');\nresult{end+1} = ft_preproc_resample(dat, 1000, 100, 'downsample');\nresult{end+1} = ft_preproc_resample(dat, 1000, 250, 'downsample');\nresult{end+1} = ft_preproc_resample(dat, 1000, 500, 'downsample');\nresult{end+1} = ft_preproc_resample(dat, 1000, 100, 'fft');\nresult{end+1} = ft_preproc_resample(dat, 1000, 250, 'fft');\nresult{end+1} = ft_preproc_resample(dat, 1000, 500, 'fft');\n\n% all iterations were done with (slightly) different options, hence the results should not be equal\nfor i=1:numel(result)\n for j=(i+1):numel(result)\n assert(~isequal(result{i}, result{j}), 'the results %d and %d should not be equal', i, j);\n end\nend", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_ft_preproc_resample.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3646433588425345}} {"text": "% Copyright Mohammad SAFEEA, 17th-Aug-2017\nfunction setJointAngleToText(anglesTextHandlesCellArray, index,angle )\n%% Set the joint angle in degrees for the \n angle=180*angle/pi;\n set(anglesTextHandlesCellArray{index},'String',num2str(angle));\n %set(anglesTextHandlesCellArray{1},'BackgroundColor','red');\n\n\nend\n\n", "meta": {"author": "Modi1987", "repo": "KST-Kuka-Sunrise-Toolbox", "sha": "9299bed2b46058aeb4105d7fbff6d2290ce68bba", "save_path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox", "path": "github-repos/MATLAB/Modi1987-KST-Kuka-Sunrise-Toolbox/KST-Kuka-Sunrise-Toolbox-9299bed2b46058aeb4105d7fbff6d2290ce68bba/realtimeControlOfJointSpaceUsingGamePad/setJointAngleToText.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5660185351961016, "lm_q2_score": 0.6442251064863697, "lm_q1q2_score": 0.3646433511099675}} {"text": "classdef SplitterInConnectedComponents < handle\n \n properties (Access = private)\n edges\n adjancyMatrix\n graphV\n connectedComp\n end\n \n properties (Access = private)\n faces\n end\n \n methods (Access = public)\n \n function obj = SplitterInConnectedComponents(cParams)\n obj.init(cParams)\n end\n \n function c = split(obj)\n obj.computeEdges();\n obj.computeAdjacencyMatrix();\n obj.computeGraph();\n obj.computeConnectedComponents();\n c = obj.connectedComp;\n end\n \n end\n \n methods (Access = private)\n \n function init(obj,cParams)\n obj.faces = cParams.faces;\n end\n \n function computeEdges(obj)\n s.nodesByElem = obj.faces;\n edge = EdgesConnectivitiesComputer(s);\n edge.compute();\n obj.edges = edge.nodesInEdges;\n end\n \n function [A] = computeAdjacencyMatrix(obj)\n nodeA = obj.edges(:,1);\n nodeB = obj.edges(:,2);\n A = sparse(nodeA,nodeB,1);\n obj.adjancyMatrix = A+A';\n end\n \n function computeGraph(obj)\n A = obj.adjancyMatrix;\n g = graph(A,'omitselfloops');\n obj.graphV = g;\n end\n \n function computeConnectedComponents(obj)\n g = obj.graphV;\n comp = conncomp(g);\n obj.connectedComp = comp;\n end\n \n end\n\nend", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/FEM/Mesh/SplitterInConnectedComponents.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251064863697, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.36464335110996743}} {"text": "%create_nullspace Create null-space for scene with perspective camera.\n%\n% Parameters:\n% depths .. matrix of zeros and ones meaning whether corresponding element\n% in M is scaled (i.e. multiplied by known perspective depth)\n\nfunction [nullspace, result] = create_nullspace(M, depths, central, opt)\n\nif nargin < 4, opt.trial_coef = 1;\n opt.threshold = .01; end\n\nI = ~isnan(M(1:3:end,:)); [m n] = size(I); show_mod = 10; use_maxtuples = 0;\nif opt.verbose, fprintf(1, 'Used 4-tuples (.=%d): ', show_mod); tic; end\n\nif central, cols_scaled(1:n) = 0; cols_scaled(find(I(central,:) > 0)) = 1;\nelse, cols_scaled = []; end\n\nnum_trials = round(opt.trial_coef * n);\n\nif opt.verbose, fprintf(1,'(Allocating memory...'); end\nnullspace(size(M,1),num_trials) = 0; % Memory allocation: at least this\n % because at least one column is\n % added per one 4-tuple.\nwidth = 0;\nif opt.verbose, fprintf(1, ')'); end\n\ntenth = .1; % because of the first %\nresult.used = 0; result.failed = 0;\nfor i = 1:num_trials\n % choose a 4/max-tuple\n cols = 1:n;\n rows = 1:m;\n\n cols_chosen = []; t=1; failed = 0;\n if central,\n scaled_ensured = 0;\n else\n scaled_ensured = 1; % trial version: no scale controling when cutting\n end\n for t = 1:4\n % choose one column, cut useless parts etc.\n [c, cols] = random_element(cols);\n cols_chosen = [cols_chosen c];\n\n % check just added column\n rows = intersect(rows, find(I(:,c) > 0));\n\n if t < 4,\n [rows, cols, scaled_ensured] = cut_useless(I, cols_scaled, ...\n cols_chosen, rows, cols, 4-t, scaled_ensured);\n end\n\n if isempty(rows), failed = 1; break; end\n end\n\n if ~failed\n % use the 4/max-tuple\n d = depths(rows,cols_chosen);\n % see ``debug code'' in the comment lower\n\n rowsbig = k2i(rows);\n submatrix=[]; for j=1:length(cols_chosen) % 4,\n submatrix=[ submatrix ...\n spread_depths_col(M(rowsbig,cols_chosen(j)), d(:,j)) ]; end\n debug=1; if debug, if size(submatrix, 1)<=size(submatrix,2) && opt.verbose\n fprintf(1,'-'); end;end\n subnull = nulleps(submatrix,opt.threshold); %svd(submatrix)\n if size(subnull,2)>0 && ( use_maxtuples || ...\n size(submatrix,1) == size(submatrix,2) + size(subnull,2))\n nulltemp = zeros(size(M,1),size(subnull,2));\n nulltemp(rowsbig,:) = subnull; % * (length(rows)/m); % weighting\n if width+size(nulltemp,2) > size(nullspace,2) % Memory allocation:\n if opt.verbose, fprintf(1,'(Allocating memory...)'); end\n mean_added = width/i;\n nullspace(size(M,1), size(nullspace,2) ...\n + round(mean_added * (num_trials-i))) = 0;\n end\n nullspace(:, width+1 : width+size(nulltemp,2)) = nulltemp;\n width = width +size(nulltemp,2);\n result.used = result.used +1;\n if mod(result.used, show_mod)==0 && opt.verbose, fprintf(1,'.'); end\n end\n else\n result.failed = result.failed +1;\n end\n\n if i/num_trials > .1*tenth\n if opt.verbose, fprintf(1,'%d%%', tenth*10); end\n if tenth < 1, tenth=0; end\n tenth = tenth + 1;\n end\nend\n\nif size(nullspace,2) > width, % cut off unused allocated memory\n if opt.verbose, fprintf(1,'(Cutting unused memory...'); end\n nullspace = nullspace(:,1:width);\n if opt.verbose, fprintf(1, ')'); end\nend\nif opt.verbose, fprintf(1, ['(' num2str(toc) ' sec)\\n']); end\nresult.tried = i;\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% debug code\n% if size(d, 1) == 1, bla; end\n% if sum(d(1,:)==0) > 2, blabla; end\n% if use_maxtuples | ...\n% size(d,1)*3 > size(d,2) + sum(d(:)==0)... % i.e. size(submatrix,1)>\n% ... % size(submatrix,2)\n% - sum(cols_scaled(cols_chosen)==0) % i.e. subtract 1 per each\n% % column full of zeros\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [rows, cols, scaled_ensured] = cut_useless( ... %)\n I, cols_scaled, ... % this is always same\n cols_chosen, rows, cols, demanded, scaled_ensured)\n\nif ~scaled_ensured\n % check scaled columns\n if length(rows) == 2, demanded_scaled = 3; demanded_rows = 2;\n else demanded_scaled = 2; demanded_rows = 3; end\n cols_scaled_chosen = sum(cols_scaled(cols_chosen) > 0);\n\n % if no unscaled are allowed, they must be all cut\n if demanded == demanded_scaled - cols_scaled_chosen,\n cols = intersect(cols, find(cols_scaled > 0));\n scaled_ensured = 1;\n end\nelse demanded_rows = 2; end\n\n% check columns\ncols = cols(find(sum(I(rows,cols)) >= demanded_rows));\n\n% check rows\nrows = rows(find(sum(I(rows,cols)') >= demanded));\n\nfunction [element, rest] = random_element(set)\n% Take a random element out of a set.\nelement = set(random_int(1, length(set)));\nrest = setdiff(set, element);\n\nfunction y = random_int(from,to)\ny = floor(from + (1 + to - from)*rand);\n\nfunction [N,s] = nulleps(M,tol)\n% Find the nullspace of M. This is the regular nullspace, augmented by\n% vectors that aren't really in the nullspace, but have low singular\n% values associated with them. tol is the threshold on these singular values.\n[u,s,v] = svd(M);\nsigsvs = sum(diag(s)>tol);\nN = u(:,sigsvs+1:size(u,2));\n", "meta": {"author": "strawlab", "repo": "MultiCamSelfCal", "sha": "0a26c88c63d8513eab76553033a9a6fb15ba6575", "save_path": "github-repos/MATLAB/strawlab-MultiCamSelfCal", "path": "github-repos/MATLAB/strawlab-MultiCamSelfCal/MultiCamSelfCal-0a26c88c63d8513eab76553033a9a6fb15ba6575/MultiCamSelfCal/MartinecPajdla/fill_mm/create_nullspace.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.36454202800174723}} {"text": "%RESIZE Resizes an image\n%\n% dst = cv.resize(src, dsize)\n% dst = cv.resize(src, fx, fy)\n% dst = cv.resize(..., 'OptionName',optionValue, ...)\n%\n% ## Input\n% * __src__ input image.\n% * __dsize__ output image size `[w,h]`.\n% * __fx__ Scale factors along the horizontal axis.\n% * __fy__ Scale factors along the vertical axis.\n%\n% When scale factors are specified, the output image size is computed as:\n% `dsize = round([fx*size(src,2), fy*size(src,1)])`.\n%\n% ## Output\n% * __dst__ output image. It has the size `dsize` or the size computed from\n% `size(src)` and `fx` and `fy`. The type of `dst` is the same as of `src`.\n%\n% ## Options\n% * __Interpolation__ interpolation method, default 'Linear'. One of:\n% * __Nearest__ a nearest-neighbor interpolation\n% * __Linear__ a bilinear interpolation (used by default)\n% * __Cubic__ a bicubic interpolation over 4x4 pixel neighborhood\n% * __Area__ resampling using pixel area relation. It may be a preferred\n% method for image decimation, as it gives moire-free results. But when\n% the image is zoomed, it is similar to the 'Nearest' method.\n% * __Lanczos4__ a Lanczos interpolation over 8x8 pixel neighborhood\n% * __LinearExact__ a bit exact bilinear interpolation\n%\n% The function cv.resize resizes the image `src` down to or up to the\n% specified size. The size and type of `dst` are derived from `src`, `dsize`,\n% `fx` and `fy`. If you want to resize `src` so that it fits a specified size,\n% you may call the function as follows:\n%\n% dst = cv.resize(src, [w,h], 'Interpolation',interp)\n%\n% If you want to decimate the image by factor of 2 in each direction, you can\n% call the function this way:\n%\n% dst = cv.resize(src, 0.5, 0.5, 'Interpolation',interp)\n%\n% To shrink an image, it will generally look best with 'Area' interpolation,\n% whereas to enlarge an image, it will generally look best with 'Cubic' (slow)\n% or 'Linear' (faster but still looks OK).\n%\n% See also: cv.warpAffine, cv.warpPerspective, cv.remap, imresize\n%\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/+cv/resize.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.36454202800174723}} {"text": "% Test file for chebtech/feval.m\n\nfunction pass = test_feval(pref)\n\n% Get preferences.\nif ( nargin < 1 )\n pref = chebtech.techPref();\nend\n\n% Generate a few random points to use as test values.\nseedRNG(7681);\nx = 2 * rand(1000, 1) - 1;\n\nfor n = 1:2\n if ( n == 1 )\n testclass = chebtech1();\n else \n testclass = chebtech2();\n end\n\n %%\n % Spot-check values for a couple of functions. We can only expect \n % accuracy on % the order of the truncation level, so we use this as our \n % criterion.\n \n f = testclass.make(@(x) exp(x) - 1, [], pref);\n f_exact = @(x) exp(x) - 1;\n pass(n, 1) = (norm(feval(f, x) - f_exact(x), inf) < ...\n 10*vscale(f)*eps);\n \n f = testclass.make(@(x) 1./(1 + x.^2), [], pref);\n f_exact = @(x) 1./(1 + x.^2);\n pass(n, 2) = (norm(feval(f, x) - f_exact(x), inf) < ...\n 10*vscale(f)*eps);\n \n f = testclass.make(@(x) cos(1e4*x), [], pref);\n f_exact = @(x) cos(1e4*x);\n pass(n, 3) = (norm(feval(f, x) - f_exact(x), inf) < ...\n 2e4*vscale(f)*eps);\n \n \n z = exp(2*pi*1i/6);\n f = testclass.make(@(t) sinh(t*z), [], pref);\n f_exact = @(t) sinh(t*z);\n pass(n, 4) = (norm(feval(f, x) - f_exact(x), inf) < ...\n 10*vscale(f)*eps);\n \n %%\n % Check row vector and matrix input.\n \n err = feval(f, x.') - f_exact(x.');\n pass(n, 5) = (all(size(err) == [1 1000])) && (norm(err(:), inf) < ...\n 10*vscale(f)*eps);\n \n x_mtx = reshape(x, [100 10]);\n err = feval(f, x_mtx) - f_exact(x_mtx);\n pass(n, 6) = (all(size(err) == [100 10])) && (norm(err(:), inf) < ...\n 10*vscale(f)*eps);\n \n x_3mtx = reshape(x, [10 10 10]);\n err = feval(f, x_3mtx) - f_exact(x_3mtx);\n pass(n, 7) = (all(size(err) == [10 10 10])) && (norm(err(:), inf) < ...\n 10*vscale(f)*eps);\n \n %%\n % Check operation for array-valued chebtech objects.\n \n f = testclass.make(@(x) [sin(x) x.^2 exp(1i*x)], [], pref);\n f_exact = @(x) [sin(x) x.^2 exp(1i*x)];\n err = feval(f, x) - f_exact(x);\n pass(n, 8) = all(max(abs(err)) < 10*max(vscale(f)*eps));\n \n %%\n % Test for evaluating array-valued chebtech objects at matrix arguments if \n % the operation makes sense.\n f = testclass.make(@(x) [sin(pi*x) cos(pi*x) exp(pi*x)], [], pref);\n x2 = [-1 0 1 ; .25 .5 .75];\n fx = feval(f, x2);\n f_exact = [0 0 0 -1 1 -1 exp(-pi) 1 exp(pi)\n [1 sqrt(2) 1 1 0 -1]/sqrt(2) exp(pi.*[.25 .5 .75])];\n pass(n, 9) = all(all(abs(fx - f_exact) < 10*max(vscale(f)*eps)));\nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/chebtech/test_feval.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.66192288918838, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.36445961820348877}} {"text": "function SetColorbar\ncbar = colorbar;\n% Dimensions of the colorbar \n% cpos = get(cbar,'position'); \n% cpos(3) = cpos(3)/4 ; % Reduce the width of colorbar by half\n% cpos(2) = cpos(2)+.1 ;\n% cpos(4) = cpos(4)-.2 ;\n%set(cbar,'Position',cpos) ;\nbrighten(0.5); \n \n% Title of the colorbar\n%set(get(cbar,'title'),'string','VAL');\n%locate = get(cbar,'title');\n%tpos = get(locate,'position');\n%tpos(3) = tpos(3)+5. ;\n%set(locate,'pos',tpos);\n\n% Setting the values on colorbar\n%\n% get the color limits\nclim = caxis;\nylim(cbar,[clim(1) clim(2)]);\nnumpts = 24 ; % Number of points to be displayed on colorbar\nkssv = linspace(clim(1),clim(2),numpts);\nset(cbar,'YtickMode','manual','YTick',kssv); % Set the tickmode to manual\nfor i = 1:numpts\n imep = num2str(kssv(i),'%+3.2E');\n vasu(i) = {imep} ;\nend\nset(cbar,'YTickLabel',vasu(1:numpts),'fontsize',9);\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/32029-plate-bending/Plate Bending/SetColorbar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5506073655352404, "lm_q2_score": 0.6619228891883799, "lm_q1q2_score": 0.3644596182034887}} {"text": "function obj = tidal_data_to_ob(obj,tidal_database,const)\n% obj = tidal_data_to_ob(obj,tidal_database,const)\n% Input a msh class obj with open boundary locations and tidal\n% constituents, and interpolate the tidal database constituents onto it. \n% Put the result into the f15 struct of the msh obj. \n% \n% Requires: m_map for projection \n% \n% Created by William Pringle March 15 2018\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% check entry\n% if we are using wildcard for each constituent in list of files \ncidx = strfind(tidal_database,'**') ;\nif ~isempty(cidx)\n tidal_database(cidx:cidx+1) = lower(const{1});\nend\nif ~exist(tidal_database,'file')\n error(['tidal database file does not exist: ' tidal_database]) \nend\nif isempty(obj.op)\n error('No open boundaries in the mesh to put BCs on')\nend\n\n% Select desired projection (using m_map)\nproj = 'Mercator';\n \n% Specify limits of grid\nlat_min = min(obj.p(:,2)) - 1; lat_max = max(obj.p(:,2)) + 1;\nlon_min = min(obj.p(:,1)) - 1; lon_max = max(obj.p(:,1)) + 1;\n\n% doing the projection\nm_proj(proj,'lon',[ lon_min lon_max],...\n 'lat',[ lat_min lat_max])\n\n%% Get boundary info\nopedat = obj.op;\nb_lon = zeros(opedat.neta,1);\nb_lat = zeros(opedat.neta,1);\nnode_num = zeros(opedat.neta,1);\nns = 1; ne = 0;\nfor n = 1:opedat.nope\n ne = ne + opedat.nvdll(n);\n node_num(ns:ne) = opedat.nbdv(1:opedat.nvdll(n),n);\n b_lon(ns:ne) = obj.p(node_num(ns:ne),1);\n b_lat(ns:ne) = obj.p(node_num(ns:ne),2);\n ns = ne + 1;\nend\n\n% Do projection\n[b_x,b_y] = m_ll2xy(b_lon,b_lat); \n\n%% Load tide data and make vectors\nlon = ncread(tidal_database,'lon_z');\nlat = ncread(tidal_database,'lat_z');\nconst_t = ncread(tidal_database,'con');\nif min(size(lon)) == 1\n [lon,lat] = meshgrid(lon,lat); \nend\nif max(obj.p(:,1)) <= 180\n % change to -180 to 180 format if msh is in that format\n lon(lon > 180) = lon(lon > 180) - 360;\nend\nlon_x = reshape(lon,[],1);\nlat_y = reshape(lat,[],1);\n\n% Delete uncessecary portions\n% First delete by square\nI = find(lon_x < lon_min | lon_x > lon_max | ...\n lat_y < lat_min | lat_y > lat_max);\nlon_x(I) = []; lat_y(I) = []; \n\n% Get 20 nearest neighbours\nKd = ourKNNsearch([lon_x,lat_y]',[b_lon, b_lat]',20);\nKd = unique(Kd);\n\n% The new lon and lat vectors of data\nlon_x = lon_x(Kd); lat_y = lat_y(Kd);\n\n% Do the projection\n[x,y] = m_ll2xy(lon_x,lat_y); \n\n%% Now interpolate into f15 struct\nkeep = true(obj.f15.nbfr,1);\nfor j = 1:obj.f15.nbfr\n % Read the current consituent\n if ~isempty(cidx)\n tidal_database(cidx:cidx+1) = lower(const{j});\n if exist(tidal_database,'file')\n const_t = ncread(tidal_database,'con');\n end\n end\n k = find(startsWith(string(const_t'),lower(const{j})));\n if isempty(k)\n disp(['No tidal data in file for constituent ' const{j}])\n obj.f15.opealpha(j).name = const{j};\n obj.f15.opealpha(j).val = 0*[b_x b_x]; \n continue\n end\n % For real part\n if min(size(const_t)) > 1\n Re_now = ncread(tidal_database,'hRe',[1 1 k],[size(lon) 1]);\n else\n Re_now = double(ncread(tidal_database,'hRe'))/1000;\n end\n % reshape to vector\n Re_now = reshape(Re_now,[],1);\n % For imaginary part\n if min(size(const_t)) > 1\n Im_now = ncread(tidal_database,'hIm',[1 1 k],[size(lon) 1]);\n else\n Im_now = double(ncread(tidal_database,'hIm'))/1000;\n end\n % reshape to vector \n Im_now = reshape(Im_now,[],1);\n % Eliminate regions outside of search area and on land\n % Linear extrapolation of ocean values will be conducted where \n % boundary nodes fall inside a land cell of the tidal data. \n Re_now(I) = []; Re_now = Re_now(Kd); \n K = find(Re_now == 0); Re_now(K) = []; \n Im_now(I) = []; Im_now = Im_now(Kd); Im_now(K) = []; \n xx = x; yy = y; xx(K) = []; yy(K) = []; \n % Make into complex number\n Z = Re_now - Im_now*1i;\n % Do the scattered Interpolation\n F = scatteredInterpolant(xx,yy,Z,'natural');\n BZ = F(b_x,b_y); \n %\n % Convert real and imaginary parts to amplitude and phase\n amp_b = abs(BZ); \n phs_b = rad2deg(angle(BZ));\n % Convert to 0 to 360;\n % phs_b that is positive 0 - 180 stays same.\n % phs_b that is negative -180 - 0 becomes 180 - 360\n phs_b(phs_b < 0) = phs_b(phs_b < 0) + 360;\n \n obj.f15.opealpha(j).name = const{j};\n obj.f15.opealpha(j).val = [amp_b phs_b]; \n \nend\nobj.f15.nbfr = length(find(keep));\nobj.f15.opealpha = obj.f15.opealpha(keep);\nobj.f15.bountag = obj.f15.bountag(keep);\n%EOF\nend\n", "meta": {"author": "CHLNDDEV", "repo": "OceanMesh2D", "sha": "56222604a5c1fe897d10c8b08cb3380ef8b43740", "save_path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D", "path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D/OceanMesh2D-56222604a5c1fe897d10c8b08cb3380ef8b43740/utilities/tidal_data_to_ob.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3644596108592753}} {"text": "function []=save_optimal_network(meth_Net,BrainNet,label,result_dir,varargin)\n% Generate one of the output, i.e., the group averaged network for each group generated by the optimized parameters.\nswitch meth_Net\n case {'PC','tHOFC','aHOFC'}\n opt_BrainNet=BrainNet;\n case {'SR','SLR','SGR','GSR','WSR','WSGR','SSGSR','dHOFC'}\n Acc_para=varargin{1};\n [~,B]=max(Acc_para);\n opt_BrainNet=BrainNet{B(1)};\nend\n\nlabel_negative=find(label==-1);\nlabel_positive=find(label==1);\nBrainNet_negative_mean=mean(opt_BrainNet(:,:,label_negative),3);\nBrainNet_positive_mean=mean(opt_BrainNet(:,:,label_positive),3);\n\n%figure;\nfigure('visible','off');\nsubplot(1,2,1);\nimagesc(BrainNet_negative_mean);\ncolormap jet\ncolorbar\naxis square\nxlabel('ROI');\nylabel('ROI');\ntitle('label = -1');\n\nsubplot(1,2,2);\nimagesc(BrainNet_positive_mean);\ncolormap jet\ncolorbar\naxis square\nxlabel('ROI');\nylabel('ROI');\ntitle('label = 1');\nprint(gcf,'-r1000','-dtiff',char(strcat(result_dir,'/Mean_optimal_network.tiff')));\nsave (char(strcat(result_dir,'/Mean_optimal_negativeLabel_network.mat')),'BrainNet_negative_mean');\nsave (char(strcat(result_dir,'/Mean_optimal_positiveLabel_network.mat')),'BrainNet_positive_mean');\n", "meta": {"author": "zzstefan", "repo": "BrainNetClass", "sha": "556cda9516429a964100e1ac0bace4258194b4a1", "save_path": "github-repos/MATLAB/zzstefan-BrainNetClass", "path": "github-repos/MATLAB/zzstefan-BrainNetClass/BrainNetClass-556cda9516429a964100e1ac0bace4258194b4a1/Function/AddedFuntions/save_optimal_network.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6619228758499942, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3644596108592753}} {"text": "function [dimMismatch, isTranspose] = VerifyTiedLayers(tiedLayers)\n\nfor j=1:length(tiedLayers)\n dim(:,j) = tiedLayers{j}.dim;\nend\ndimMismatch = [];\nisTranspose = [];\nfor j=2:length(tiedLayers)\n if sum(abs(dim(:,j)-dim(:,1)))\n if sum(abs(dim(end:-1:1,j)-dim(:,1)))\n dimMismatch(j) = 1;\n fprintf('Error: dimension mismatch between layers that share the same weight matrix\\n');\n else\n isTranspose(j) = 1;\n end\n else\n isTranspose(j) = 0;\n end\nend\n\nend", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/VerifyTiedLayers.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6619228625116081, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3644596035150617}} {"text": "function A00 = synA00Qmin(A11, sizeA00, cmax)\n%-----------------------------------------------------------------------------\n%\n% For each point of colour 00 this function assigns the minimum value at the\n% neighbouring gridpoints of colour 11.\n%\n% Design and implementation by:\n% Dr. Paul M. de Zeeuw http://homepages.cwi.nl/~pauldz/\n% Last Revision: December 12, 2001.\n% (c) 1998-2002 Stichting CWI, Amsterdam\n%-----------------------------------------------------------------------------\n[n11, m11]=size(A11);\nif nargin == 3\n o=[0 0];\n if ~all(size(o) == size(sizeA00))\n error(' synA00Qmin - unexpected dimensions of sizeA00 ')\n else\n clear o;\n n00=sizeA00(1);\n m00=sizeA00(2); \n end\nelseif nargin == 2\n n00=n11+1;\n m00=m11+1;\nelse\n error(' synA00Qmin - number of arguments should be either 2 or 3 ')\nend\n%[n00, m00]=size(A00);\nif m00 == m11+1\n if n00 == n11+1\n S = min(extL(A11, cmax), extR(A11, cmax));\n A00=min(extD(S, cmax), extU(S, cmax));\n elseif n00 == n11\n S = min(extL(A11, cmax), extR(A11, cmax));\n A00=min(S, stripD(extU(S, cmax))); \n else\n disp([' size A11 = ' int2str(size(A11)) ' size A00 = ' int2str([n00 m00])]);\n error(' synA00Qmin - A11 and target A00 do not match ');\n end\nelseif m00 == m11\n if n00 == n11+1\n S = min(stripR(extL(A11, cmax)), A11);\n A00=min(extD(S, cmax), extU(S, cmax));\n elseif n00 == n11\n S = min(stripR(extL(A11, cmax)), A11);\n A00=min(S, stripD(extU(S, cmax)));\n else\n disp([' size A11 = ' int2str(size(A11)) ' size A00 = ' int2str([n00 m00])]);\n error(' synA00Qmin - A11 and target A00 do not match ');\n end\nelse\n disp([' size A11 = ' int2str(size(A11)) ' size A00 = ' int2str([n00 m00])]);\n error(' synA00Qmin - A11 and target A00 do not match ');\nend\n%------------------------------------------------------------------------------\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13507-lisq-a-toolbox-for-the-lifting-scheme-on-2d-quincunx-grids/LISQ/synA00Qmin.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6187804337438502, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.364393071763558}} {"text": "% The COBRAToolbox: testDetermineSignMatrix.m\n%\n% Purpose:\n% - test the function to determine the binary version of the stoichiometric matrix S\n%\n% Authors:\n% - Laurent Heirendt, November 2018\n%\n\n% save the current path and initialize the test\ncurrentDir = fileparts(which(mfilename));\n\n% load the model\nmodel = createToyModelForLifting(false);\n\n% load reference test data\nload([currentDir filesep 'refData_determineBinaryMatrix.mat']);\n\n% run the function with full output\n[test_Shat, test_Shatabs, test_mconnect, test_nconnect, test_mconnectin, test_mconnectout] = determineSignMatrix(model.S);\n\nassert(isequal(test_Shat, Shat))\nassert(isequal(test_Shatabs, Shatabs))\nassert(isequal(test_mconnect, mconnect))\nassert(isequal(test_nconnect, nconnect))\nassert(isequal(test_mconnectin, mconnectin))\nassert(isequal(test_mconnectout, mconnectout))\n\n% run the function with partial output\n[test_Shat, test_Shatabs, test_mconnect, test_nconnect] = determineSignMatrix(model.S);\n\nassert(isequal(test_Shat, Shat))\nassert(isequal(test_Shatabs, Shatabs))\nassert(isequal(test_mconnect, mconnect))\nassert(isequal(test_nconnect, nconnect))\n\n% run the function with minimal output\n[test_Shat, test_Shatabs, test_mconnect, test_nconnect] = determineSignMatrix(model.S);\n\nassert(isequal(test_Shat, Shat))\nassert(isequal(test_Shatabs, Shatabs))\n\n% test the sorted flag\n[test_Shat, test_Shatabs, test_mconnect, test_nconnect] = determineSignMatrix(model.S, true);\n\nassert(isequal(test_mconnect, sort(mconnect, 'descend')));\nassert(isequal(test_nconnect, sort(nconnect, 'descend')));\n\n% change the directory\ncd(currentDir)\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/verifiedTests/analysis/testSubspaces/testDetermineSignMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6187804337438501, "lm_q1q2_score": 0.3643930717635579}} {"text": "function gibbsKernDisplay(kern, spaceNum)\n\n% GIBBSKERNDISPLAY Display parameters of the GIBBS kernel.\n% FORMAT\n% DESC displays the parameters of the Mark Gibbs's non-stationary\n% kernel and the kernel type to the console.\n% ARG kern : the kernel to display.\n%\n% FORMAT does the same as above, but indents the display according\n% to the amount specified.\n% ARG kern : the kernel to display.\n% ARG spacing : how many spaces to indent the display of the kernel by.\n%\n% SEEALSO : gibbsKernParamInit, modelDisplay, kernDisplay\n%\n% COPYRIGHT : Neil D. Lawrence, 2006\n\n% KERN\n\nif nargin > 1\nelse\n spaceNum = 0;\nend\nspacing = repmat(32, 1, spaceNum);\nspacing = char(spacing);\nfprintf(spacing);\nfprintf('GIBBS variance: %2.4f\\n', kern.variance)\nfprintf(spacing);\nfprintf('GIBBS length scale function: \\n')\nmodelDisplay(kern.lengthScaleFunc, length(spacing) + 2);\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/gibbsKernDisplay.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6187804267137442, "lm_q1q2_score": 0.364393067623605}} {"text": "function [Q_gppca, Q_vbpca] = mohsst5_experiment_periodic(data, D, maxiter, ...\n densityW, densityX, ...\n updatepseudow, updatepseudox, ...\n vbinit, covfuncset)\n\nseed = ceil(sum(clock))\nrandn('state', seed)\nrand('state', seed)\n\nif nargin < 1\n maxiter = 10;\nend\nif nargin < 6\n updatepseudow = true;\nend\nif nargin < 7\n updatepseudox = true;\nend\nif nargin < 8\n vbinit = false;\nend\nif nargin < 9\n covfuncset = 3;\nend\n\n[M,N] = size(data.observations);\n\n% Divide data into test and train sets\ntestsize = 20; % testset size in percents\nItest = load(sprintf('/share/bayes/data/jaakko/mohsst5/ind%dtest.mat',testsize));\nItrain = load(sprintf('/share/bayes/data/jaakko/mohsst5/ind%dtrain.mat',testsize));\nYtest = data.observations;\nYtest(Itrain.Itrain) = nan;\nYobs = data.observations;\nYobs(Itest.Itest) = nan;\n\ndatestring = datestr(now, 'yyyymmdd');\n\n% Weight observations!\nweights = sqrt(cosd(data.coordinates(2,:)));\nYobsw = bsxfun(@times, weights(:), Yobs);\nYtestw = bsxfun(@times, weights(:), Ytest);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ninit = [];\nswitch vbinit\n case 0\n vbinitstring = '';\n case 1\n Qvb = pca_full(Yobsw,D,'maxiters',10,'rotate2pca',true, 'algorithm','vb');\n init.W = zeros(M,D);\n init.X = randn(D,N);\n init.W(:,1:10) = Qvb.A(:,1:10);\n init.X(1:10,:) = Qvb.S(1:10,:);\n vbinitstring = '_vbinit';\n case 2\n Qvb = pca_full(Yobsw,D,'maxiters',10,'rotate2pca',true, 'algorithm','vb');\n\n init.W = zeros(M,D);\n init.X = randn(D,N);\n \n samplerate = 1/30; % one sample in month\n \n % 3 very slow components\n lowpass = 1 ./ (10*365);\n [Af,Sf,S] = dss(Qvb.A, Qvb.S, Qvb.Sv, 2 * lowpass/samplerate, 3);\n init.W(:,1:3) = Af;\n init.X(1:3,:) = S;\n\n % 5 slow components\n lowpass = 1 ./ [10*365, 2*365];\n [Af,Sf,S] = dss(Qvb.A, Qvb.S, Qvb.Sv, 2 * lowpass/samplerate, 5);\n init.W(:,4:8) = Af;\n init.X(4:8,:) = S;\n \n % 2 periodical components\n bandpass = 1 ./ [2*365, 0.5*365];\n [Af,Sf,S] = dss(Qvb.A, Qvb.S, Qvb.Sv, 2 * bandpass/samplerate, 2);\n init.W(:,9:10) = Af;\n init.X(9:10,:) = S;\n \n% $$$ % DEBUGGING STUFF\n% $$$ Q_gppca = Af;%init.W;\n% $$$ Q_vbpca.Xf = Sf;\n% $$$ Q_vbpca.X = S;\n% $$$ return\n% $$$ \n vbinitstring = '_vbdssinit';\n \nend\n\n% Covariance functions\n% W distances in kilometers\nfor d=1:D\n switch 1 % select covariance functions\n case 1\n gpcovW = {@gpcovScale, @(logtheta,x1,x2) gpcov(logtheta,x1,x2,@ ...\n sqdistEarth)};\n logthetaW = [log(2); log(1e3)];\n Wcov = 'se';\n end\n initthetaW{d} = logthetaW;\n covfunW{d} = gpcovW;\nend\n\n% X distances in days\nfor d=1:D\n switch covfuncset % select covariance functions\n case 1\n % 80 pediodical\n if d==1\n disp('Using 80 periodical');\n end\n gpcovX = {@gpcovProduct, @gpcov, @gpcovPeriodic};\n logthetaX = log([1e5, 0.5, 365*(D-d+3)]);\n Xcov = 'per';\n case 2\n % 80 piecewise polynomial\n if d==1\n disp('Using 80 piecewise polynomial');\n end\n gpcovX = @gpcovPP;\n logthetaX = log(30*(5+40*rand));\n Xcov = 'cs';\n case 3\n % 5 trend SE + 5 slow SE + 5 periodical + rest faster piecewise\n % polynomial\n if d==1\n disp(['Using 5 trends + 5 slow + 5 periodical + rest faster ' ...\n 'piecewise polynomial']);\n end\n if d <= 5\n gpcovX = @gpcov;\n logthetaX = log(365*(10+10*rand)); % 10-20 years\n densityX(d) = 0.05;\n elseif d <= 10\n gpcovX = @gpcov;\n logthetaX = log(365*(2+8*rand)); % 2-10 years\n densityX(d) = 0.2;\n elseif d <= 15\n gpcovX = {@gpcovProduct, @gpcov, @gpcovPeriodic};\n logthetaX = log([200*365, 0.5, 365*(0.5+1.5*rand)]); % 0.5-2 years\n densityX(d) = 0.2;\n else\n gpcovX = @gpcovPP;\n logthetaX = log(30*(6+6*rand)); % 0.5-1 years\n densityX(d) = 1;\n end\n Xcov = 'se-per-cs';\n case 4\n % 3 slow piecewise polynomial + 5 middle + 2 periodical + rest faster\n % piecewise polynomial\n if d==1\n disp(['Using 3 trends + 5 slow + 2 periodical + rest faster ' ...\n 'piecewise polynomial']);\n end\n if d <= 3\n gpcovX = @gpcov;\n logthetaX = log(365*(10+10*rand)); % 10-20 years\n densityX(d) = 0.05;\n elseif d <= 8\n gpcovX = @gpcov;\n logthetaX = log(365*(2+8*rand)); % 2-10 years\n densityX(d) = 0.2;\n elseif d <= 10\n gpcovX = {@gpcovProduct, @gpcov, @gpcovPeriodic};\n logthetaX = log([80*365, 0.5, 365*(0.5+1.5*rand)]); % 0.5-2 years\n densityX(d) = 0.2;\n else\n gpcovX = @gpcovPP;\n logthetaX = log(30*(6+6*rand)); % 0.5-1 years\n densityX(d) = 1;\n end\n Xcov = 'se-per-cs';\n end\n initthetaX{d} = logthetaX;\n covfunX{d} = gpcovX;\nend\n\n\nfilename = sprintf(['/share/bayes/data/jaakko/mohsst5/' ...\n 'mohsst5_weighted%s_testsize=%d_D=%d_Wcov=%s_Wden=' ...\n '%d_Xcov=%s_Xden=%d_iter=%d_date=%s'], vbinitstring, ...\n testsize, D, Wcov, ceil(100*min(densityW)), Xcov, ...\n ceil(100*min(densityX)), maxiter, datestring)\n\ndisp('-- Run GP PCA --')\nQ_gppca = vbgppcamv(Yobsw, D,...\n data.coordinates, data.time,...\n covfunW, initthetaW,...\n covfunX,initthetaX, ...\n 'maxiter',maxiter, ...\n 'pseudodensityx', densityX, ...\n 'pseudodensityw', densityW, ...\n 'loglikelihood', true, ...\n 'updatehyper', [1 6 21 51 101 201 501], ...\n 'updatepseudox', updatepseudox, ...\n 'updatepseudow', updatepseudow, ...\n 'maxsearchx', 3, ...\n 'maxsearchw', 3, ...\n 'checkgradx', false, ...\n 'checkgradw', false, ...\n 'init', init, ...\n 'autosavetime', 3600, ...\n 'autosavefile', filename);\n\n\n% Error measures (using weights!)\nYh_gppca = Q_gppca.W * Q_gppca.X;\ntrainrmse_gppca = rmse(Yobsw, Yh_gppca)\ntestrmse_gppca = rmse(Ytestw, Yh_gppca)\n\n% Huuuuuge matrices... Don't save them..\nQ_gppca.CovXp = [];\nQ_gppca.CovWp = [];\n\n% INVERSE WEIGHTS!!!\nQ_gppca.W = bsxfun(@rdivide, Q_gppca.W, weights(:));\nQ_gppca.varW = bsxfun(@rdivide, Q_gppca.varW, weights(:).^2);\nfor d=1:D\n lat = Q_gppca.pseudoW{d}(2,:);\n Q_gppca.Wp{d} = Q_gppca.Wp{d} ./ sqrt(abs(cosd(lat(:))));\nend\n\n% Save\nQ_gppca.filename = filename;\nQ_gppca.seed = seed;\nsave(filename, '-struct', 'Q_gppca');\nfprintf('Saved results in %s\\n', filename);\n\n% $$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% $$$ disp('-- Run PCA --')\n% $$$ \n% $$$ % Alexander's vbpca\n% $$$ disp('version by Alex')\n% $$$ Q_vbpca = pca_full(Yobs,D,'maxiters',maxiter,'rotate2pca',true, \n%'algorithm','vb');\n% $$$ Yh_vbpca = Q_vbpca.A * Q_vbpca.S + repmat(Q_vbpca.Mu,1,N);\n% $$$ vb_filename = sprintf(['/share/bayes/data/jaakko/mohsst5/' ...\n% $$$ \n%'mohsst5_VBPCA_testsize=%d_D=%d_iter=%d_date=%s'], ...\n% $$$ testsize, D, maxiter, datestring);\n% $$$ save(vb_filename, '-struct', 'Q_vbpca');\n% $$$ \n% $$$ % My vbpca\n% $$$ %disp('version by Jaakko')\n% $$$ %Q_vbpca = vbpcamv(Yobs,D,'maxiters',maxiter);\n% $$$ %Yh_vbpca = Q_vbpca.W * Q_vbpca.X + repmat(Q_vbpca.mu,1,N);\n% $$$ \n% $$$ trainrmse_vbpca = rmse(Yobs, Yh_vbpca)\n% $$$ testrmse_vbpca = rmse(Ytest, Yh_vbpca)\n\n\n", "meta": {"author": "jluttine", "repo": "matlab", "sha": "63406c7782b0869948f06e1dbc594460c165d24e", "save_path": "github-repos/MATLAB/jluttine-matlab", "path": "github-repos/MATLAB/jluttine-matlab/matlab-63406c7782b0869948f06e1dbc594460c165d24e/datasets/mohsst5/mohsst5_experiment_periodic.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.685949467848392, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3643827869818059}} {"text": "function K = k00(x, xp, hyp, Ubar, Ubarp, dt, i)\n\nubar = Ubar(:,1);\nvbar = Ubar(:,2);\n\nubarp = Ubarp(:,1);\nvbarp = Ubarp(:,2);\n\nKu0u0 = k00.ku0u0(x, xp, hyp, ubar, vbar, ubarp, vbarp, dt, i);\nKu0v0 = k00.ku0v0(x, xp, hyp, ubar, vbar, ubarp, vbarp, dt, i);\nKv0u0 = Ku0v0';\nKv0v0 = k00.kv0v0(x, xp, hyp, ubar, vbar, ubarp, vbarp, dt, i);\n\nK = [Ku0u0 Ku0v0;\n Kv0u0 Kv0v0];\n\nend", "meta": {"author": "maziarraissi", "repo": "HPM", "sha": "21a7429cceb55d5ab688256db75ac360e2d8a925", "save_path": "github-repos/MATLAB/maziarraissi-HPM", "path": "github-repos/MATLAB/maziarraissi-HPM/HPM-21a7429cceb55d5ab688256db75ac360e2d8a925/Kernels/Schrodinger/k00.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.36438278016097164}} {"text": "function [modelFile, model] = trainSceneModel(imSet, paths, typ, classMapping, sceneMapping, objectDir), \n\n\ttrain = imSet{1};\n\tval = imSet{2};\n\n\tpt = getMetadata(sceneMapping);\n\tnumScene = length(pt.sceneName);\n\tsceneName = pt.sceneName;\n\t\n\tpt = getMetadata(classMapping);\n\tnumObjectClass = length(pt.className);\n\t\n\timSet = {train, val}; useVal = 1;\n\timList{1} = getImageSet(imSet{1});\n\timList{2} = getImageSet(imSet{2});\n\ttrainingParam.fileSuffix = sprintf('tr-%s_val-%s_useVal-%d', imSet{1}, imSet{2}, useVal);\n\n\ttrainingParam.featureParam = getSceneParams(typ, struct('dirName', objectDir, 'numObjectClass', numObjectClass));\n\n\ttrainingParam.classifierParam = getClassifierParam('svm-scene', struct('useVal', useVal, 'numClass', numScene));\n\ttrainingParam.gtParam = struct('sceneMapping', sceneMapping);\n\n\t% Load the features.\n\tfor i = 1:2,\n\t\tclear f;\n\t\tparfor j = 1:length(imList{i}),\n\t\t\tf{j} = getSceneFeatures(imList{i}{j}, paths, trainingParam.featureParam);\n\t\tend\n\t\tF{i} = cat(2, f{:});\n\t\tgt{i} = getGroundTruth(imList{i}, 'scene', '', sceneMapping);\n\tend\n\n\tfor i = 1:2,\n\t\tX{i} = F{i};\n\t\tY{i} = gt{i};\n\t\tW{i} = ones(size(Y{i}));\n\tend\n\t\n\tsvmParam = trainingParam.classifierParam;\n\n\tmodel = svmMulticlassTrain(X, Y, W, svmParam);\n\tmodelFile = fullfile(paths.modelDir, strcat(sprintf('scene-%s_%s', trainingParam.featureParam.featureStr, trainingParam.fileSuffix), '.mat'))\n\n\t% Write the scene model!\n\tsave(modelFile, 'model', 'trainingParam', 'F', 'gt');\nend\n", "meta": {"author": "s-gupta", "repo": "rgbd", "sha": "e56ca4c37d7b0cf39fbfb757d9d58222284c315d", "save_path": "github-repos/MATLAB/s-gupta-rgbd", "path": "github-repos/MATLAB/s-gupta-rgbd/rgbd-e56ca4c37d7b0cf39fbfb757d9d58222284c315d/sceneClassification/trainSceneModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.36438278016097164}} {"text": "function [obX,obY,newlp,choice] = mrSelInplane(numofanats,obXM,obYM,lp,prevChoice)\n%NAME: [obX,obY,newlp,choice] = mrSelInplane(numofanats,obXM,obYM,lp,prevChoice)\n%AUTHOR: Poirson\n%DATE:\t 08.04.96\n%PURPOSE: One of a set of routines that allows user \n% to set and select a set of oblique planes in saggital slice.\n% Returns the choice of inplane.\n%\t The routines are mrTransInplanes.m, mrRotInplanes.m,\n%\t mrClipInplanes.m, mrSelInplane.m, mrSetupInplanes.m,\n% mrSpreadInplanes.m\n%HISTORY: Started with mrGetOblPlane from G. Boynton 4/6/96\n%NOTES: Modified 2/25/97 by SPG to return the inplane number so\n% that can use inplane angle as a degree of freedom in the rotation\n% control window\n\nglobal sagwin\nfigure(sagwin)\n\nnewlp = lp;\n\n% One more pair of points for the perpendicular line\nnPtPairs = numofanats + 1;\n\n% See if the user has already been working on some inPlanes\nif size(obXM,1) == 0\n\tdisp('You must first create a candidate set of Inplanes');\n\tdisp('Choose Set_Up_Inplanes first');\n\treturn\nend\n\n%prevChoice = -99;\n\nxlim=get(gca,'XLim');\nylim=get(gca,'YLim');\nxt = diff(xlim)*(-1.0) * 0.8;\nyt=ylim(1)+diff(xlim)*[0.05,0.125,0.20,0.275];\t\nmsg(1) = text(xt,yt(1),'Select Inplane:');\nmsg(2) = text(xt,yt(2),'Left = Select Line');\nmsg(3) = text(xt,yt(3),'Right= Show Selection');\n\nbutton = 0;\nwhile(button~=3)\n\t[tempx,tempy,button]=mrGinput(1,'arrow');\n\tif (button~=3)\n\t\t%find the closest line and give it a different color\n\t\tfor i=1:numofanats\n\t\t\t% p(1) = slope, p(2) = offset\n\t\t\tp = polyfit(obXM(i,:),obYM(i,:),1);\n\t\t\td(i) = abs((p(1)*tempx)+(-1*tempy)+p(2))/((p(1)^2 + 1)^0.5);\n\t\tend\n\t\t%find the minimum distance\n\t\tchoice = find(d == min(d));\n\t\t% remove previous choice\n\t\tif prevChoice > 0\n\t\t\t% delete(lp(prevChoice))\n\t\t\tnewlp(prevChoice)=line(obXM(prevChoice,:),obYM(prevChoice,:),'Color',[0 0 1]);\n\t\tend\n\t\t% re-draw choice in red\n\t\t% delete(lp(choice));\n\t\tnewlp(choice)=line(obXM(choice,:),obYM(choice,:),'Color',[1 0 0]);\n\tend\nend\n\n% Return this choice\nobX = obXM(choice,:);\nobY = obYM(choice,:);\n\nfor i=1:3\n\tdelete(msg(i));\nend\n\nreturn;\n\n\n\n\n\n\n\n\n\n\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrAlign/gui/mrSelInplane.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5312093733737563, "lm_q1q2_score": 0.3643827733401372}} {"text": "function amps = mv_amps(mv,runs);\n%\n% amps = mv_amps(mv,[runs]);\n%\n% Return a 2D matrix of format\n% voxels x conditions containing\n% response amplitudes, evaluated \n% according to the 'ampType' parameter\n% set in the params struct. Does not compute amps\n% for the null (0) condition.\n%\n% ras, 05/05.\n\nif notDefined('mv')\n mv = get(gcf,'UserData');\nend\n\nallRuns = unique(mv.trials.run);\n\nif notDefined('runs')\n runs = allRuns;\nend\n\n% check that we have an amplitude type defined\nif ~checkfields(mv,'params','ampType')\n % set up a dialog, get it\n ui.string = 'Method to Calculate Amplitudes?';\n ui.fieldName = 'ampType';\n ui.list = {'Peak-Bsl Difference', 'GLM Betas', ...\n 'Dot-product Relative Amps' 'raw'};\n ui.style = 'popup';\n ui.value = ui.list{1};\n \n resp = generalDialog(ui,'Select Amplitude Type');\n ampInd = cellfind(ui.list,resp.ampType);\n opts = {'difference' 'betas' 'relamps' 'raw'};\n mv.params.ampType = opts{ampInd};\nend\n\nnConds = sum(mv.trials.condNums > 0);\n\nswitch mv.params.ampType\n case 'difference', \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % peak-bsl difference %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n [tSeries, trials] = er_dataSubset(mv, runs);\n voxData = er_voxDataMatrix(tSeries, trials, mv.params);\n\n voxAmps = er_voxAmpsMatrix(voxData, mv.params);\n amps = permute(nanmeanDims(voxAmps,1), [2 3 1]);\n\n case 'betas', \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n % apply a GLM and get beta values %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Get data from selected runs only\n [tSeries, trials] = er_dataSubset(mv, runs);\n \n % Build a design matrix, apply the glm, grab betas\n [X, nh, hrf] = glm_createDesMtx(trials, mv.params, tSeries, 0);\n \n\n model = glm(double(tSeries), X, mv.params.framePeriod, nh); \n amps = permute(model.betas(1,1:nConds,:), [3 2 1]);\n \n% % also add dc components to each beta value, to ensure the shift is\n% % not lost\n% dc = permute( model.betas(1,nConds+1:end,:), [3 2 1]);\n% amps = amps + repmat(mean(dc,2), [1 nConds]);\n \n case 'trialbetas'\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n % apply a GLM and get beta values for each trial %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n [tSeries, trials] = er_dataSubset(mv, runs);\n nConds = sum(trials.cond > 0);\n counter = 0;\n for i = 1:length(trials.cond)\n if (trials.cond(i))\n counter = counter + 1;\n trials.cond(i) = counter;\n end\n end\n \n [X, nh, hrf] = glm_createDesMtx(trials, mv.params, tSeries, 0);\n\n model = glm(double(tSeries), X, mv.params.framePeriod, nh); \n amps = permute(model.betas(1,1:nConds,:), [3 2 1]);\n return;\n \n \n case 'raw', \n\t\t[tSeries, trials] = er_dataSubset(mv, runs);\n\t\tmv.params.normBsl=0;\n\t\tmv.params.ampType='raw'\n\t\tmv.voxData = er_voxDataMatrix(tSeries,mv.trials,mv.params);\n\t\tmv.mvAmps=er_voxAmpsMatrix(mv.voxData, mv.params);\n\t\tamps = permute(nanmeanDims(mv.voxAmps(runs,:,:),1), [2 3 1]);\n case 'zscore',\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Mean peak-bsl / std. deviation %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n tmp = mv;\n tmp.params.ampType = 'difference';\n mu = mv_amps(tmp, runs);\n sigma = mv_stdev(tmp, runs);\n amps = mu ./ sigma;\n return % already chose selected conditions\n \n \n case 'relamps',\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n % dot-product relative amplitudes: %\n % * not currently implemented * %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n amps = er_relamps(mv.voxData(:,runs,:,:));\n amps = squeeze(nanmean(amps));\n\n % return amplitudes for selected conditions only\n sel = find(tc_selectedConds(mv));\n amps = amps(:,sel-1);\n\n \n case 'deconvolved',\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % Amplitudes of deconvolved time courses %\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n % Get data from selected runs only\n [tSeries, trials] = er_dataSubset(mv, runs);\n \n % set up and run a GLM\n params = mv.params;\n params.glmHRF = 0;\n TR = mv.params.framePeriod;\n [X nh] = glm_createDesMtx(trials, params, tSeries);\n model = glm(tSeries, X, TR, nh);\n \n % get peak-bsl amplitudes from the deconvolved time courses\n frameWindow = unique(round(mv.params.timeWindow./TR));\n prestim = -1 * frameWindow(1);\n peakFrames = unique(round(mv.params.peakPeriod./TR));\n bslFrames = unique(round(mv.params.bslPeriod./TR));\n peakFrames = find(ismember(frameWindow,peakFrames));\n bslFrames = find(ismember(frameWindow,bslFrames));\n\n nConds = size(model.betas, 2);\n\n if mv.params.normBsl==1\n offset = mean(model.betas(bslFrames,:,:), 1);\n offset = repmat(offset, [length(frameWindow) 1 1]);\n model.betas = model.betas - offset;\n end\n\n for i = 1:nConds\n bsl = model.betas(bslFrames, i, :);\n peak = model.betas(peakFrames, i, :);\n amps(:,i) = squeeze(nanmean(peak) - nanmean(bsl))';\n\t\tend \n\totherwise\n\t\tfprintf(1,'error ampType %s does not exist \\n', mv.params.ampType);\nend\n\n\n% return amplitudes for selected conditions only\nsel = find(tc_selectedConds(mv));\namps = amps(:,sel-1);\n\nreturn\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/EventRelated/MultiVoxelUI/mv_amps.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7461390043208003, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3643272863924138}} {"text": "classdef AMICO_ACTIVEAX\n\nproperties\n id, name % id and name of the model\n dPar % parallel diffusivity of the tensors [units of mm^2/s]\n dIso % isotropic diffusivity [units of mm^2/s]\n IC_Rs % radii of the axons [units of 1E-6 (micrometers)]\n IC_VFs % volume fractions of the axons\n OUTPUT_names % suffix of the output maps\n OUTPUT_descriptions % description of the output maps\nend\n\n\nmethods\n\n % =================================\n % Setup the parameters of the model\n % =================================\n function obj = AMICO_ACTIVEAX()\n global CONFIG\n\n % set the parameters of the model\n obj.id = 'ACTIVEAX';\n obj.name = 'ActiveAx';\n obj.dPar = 0.6 * 1E-3;\n obj.dIso = 2.0 * 1E-3;\n obj.IC_Rs = [0.01 linspace(0.5,10,20)];\n obj.IC_VFs = [0.3:0.1:0.9];\n\n obj.OUTPUT_names = { 'v', 'a', 'd' };\n obj.OUTPUT_descriptions = {'Intra-cellular volume fraction', 'Mean axonal diameter', 'Axonal density'};\n\n % set the parameters to fit it\n CONFIG.OPTIMIZATION.SPAMS_param.mode = 2;\n CONFIG.OPTIMIZATION.SPAMS_param.pos = true;\n CONFIG.OPTIMIZATION.SPAMS_param.lambda = 0.25; % l1 regularization\n CONFIG.OPTIMIZATION.SPAMS_param.lambda2 = 4; % l2 regularization\n end\n\n\n % ==================================================================\n % Generate high-resolution kernels and rotate them in harmonic space\n % ==================================================================\n function GenerateKernels( obj, ATOMS_path, schemeHR, AUX, idx_IN, idx_OUT )\n global CONFIG AMICO_data_path CAMINO_path\n\n % check if high-resolution scheme has been created\n schemeHrFilename = fullfile(ATOMS_path,'protocol_HR.scheme');\n if ~exist( schemeHrFilename, 'file' )\n error( '[AMICO_GenerateKernels_ACTIVEAX] File \"protocol_HR.scheme\" not found in folder \"%s\"', ATOMS_path )\n end\n\n filenameHr = [tempname '.Bfloat'];\n progress = ProgressBar( numel(obj.IC_Rs) + numel(obj.IC_VFs) + 1 );\n\n % Restricted\n % ==========\n for R = obj.IC_Rs\n % generate\n if exist( filenameHr, 'file' ), delete( filenameHr ); end\n CMD = sprintf( '%s/datasynth -synthmodel compartment 1 CYLINDERGPD %E 0 0 %E -schemefile %s -voxels 1 -outputfile %s 2> /dev/null', CAMINO_path, obj.dPar*1e-6, R*1e-6, schemeHrFilename, filenameHr );\n [status result] = system( CMD );\n if status>0\n disp(result)\n error( '[AMICO_ACTIVEAX.GenerateKernels] Problems generating the signal with datasynth' );\n end\n\n % rotate and save\n fid = fopen( filenameHr, 'r', 'b' );\n signal = fread(fid,'float');\n fclose(fid);\n delete( filenameHr );\n lm = AMICO_RotateKernel( signal, AUX, idx_IN, idx_OUT, false );\n save( fullfile( ATOMS_path, sprintf('A_%03d.mat',progress.i) ), '-v6', 'lm' )\n progress.update();\n end\n\n\n % Hindered\n % ========\n for ICVF = obj.IC_VFs\n % generate\n d_perp = obj.dPar * ( 1.0 - ICVF );\n if exist( filenameHr, 'file' ), delete( filenameHr ); end\n CMD = sprintf( '%s/datasynth -synthmodel compartment 1 ZEPPELIN %E 0 0 %E -schemefile %s -voxels 1 -outputfile %s 2> /dev/null', CAMINO_path, obj.dPar*1e-6, d_perp*1e-6, schemeHrFilename, filenameHr );\n [status result] = system( CMD );\n if status>0\n disp(result)\n error( '[AMICO_ACTIVEAX.GenerateKernels] problems generating the signal' );\n end\n\n % rotate and save\n fid = fopen( filenameHr, 'r', 'b' );\n signal = fread(fid,'float');\n fclose(fid);\n delete( filenameHr );\n lm = AMICO_RotateKernel( signal, AUX, idx_IN, idx_OUT, false );\n save( fullfile( ATOMS_path, sprintf('A_%03d.mat',progress.i) ), '-v6', 'lm' )\n\n progress.update();\n end\n\n\n % Isotropic\n % =========\n % generate\n if exist( filenameHr, 'file' ), delete( filenameHr ); end\n CMD = sprintf( '%s/datasynth -synthmodel compartment 1 BALL %E -schemefile %s -voxels 1 -outputfile %s 2> /dev/null', CAMINO_path, obj.dIso*1e-6, schemeHrFilename, filenameHr );\n [status result] = system( CMD );\n if status>0\n disp(result)\n error( '[AMICO_ACTIVEAX.GenerateKernels] problems generating the signal' );\n end\n\n % resample and save\n fid = fopen( filenameHr, 'r', 'b' );\n signal = fread(fid,'float');\n fclose(fid);\n delete( filenameHr );\n lm = AMICO_RotateKernel( signal, AUX, idx_IN, idx_OUT, true );\n save( fullfile( ATOMS_path, sprintf('A_%03d.mat',progress.i) ), '-v6', 'lm' )\n progress.update();\n \n progress.close();\n end\n\n\n % ==============================================\n % Project kernels from harmonic to subject space\n % ==============================================\n function ResampleKernels( obj, ATOMS_path, idx_OUT, Ylm_OUT )\n global CONFIG AMICO_data_path KERNELS\n\n % Setup the KERNELS structure\n % ===========================\n nIC = numel(obj.IC_Rs);\n nEC = numel(obj.IC_VFs);\n\n KERNELS = {};\n KERNELS.model = 'ACTIVEAX';\n KERNELS.nS = CONFIG.scheme.nS;\n KERNELS.nA = nIC + nEC + 1; % number of atoms\n\n KERNELS.dPar = obj.dPar;\n\n KERNELS.Aic = zeros( [KERNELS.nS nIC 181 181], 'single' );\n KERNELS.Aic_R = zeros( 1, nIC, 'single' );\n\n KERNELS.Aec = zeros( [KERNELS.nS nEC 181 181], 'single' );\n KERNELS.Aec_icvf = zeros( 1, nEC, 'single' );\n\n KERNELS.Aiso = zeros( [KERNELS.nS 1], 'single' );\n KERNELS.Aiso_d = NaN;\n \n progress = ProgressBar( KERNELS.nA );\n\n % Restricted\n % ==========\n for i = 1:nIC\n load( fullfile( ATOMS_path, sprintf('A_%03d.mat',progress.i) ), 'lm' );\n KERNELS.Aic(:,i,:,:) = AMICO_ResampleKernel( lm, idx_OUT, Ylm_OUT, false );\n KERNELS.Aic_R(i) = obj.IC_Rs(i);\n progress.update();\n end\n\n % Hindered\n % ========\n for i = 1:nEC\n load( fullfile( ATOMS_path, sprintf('A_%03d.mat',progress.i) ), 'lm' );\n KERNELS.Aec(:,i,:,:) = AMICO_ResampleKernel( lm, idx_OUT, Ylm_OUT, false );\n KERNELS.Aec_icvf(i) = obj.IC_VFs(i);\n progress.update();\n end\n\n % Isotropic\n % =========\n load( fullfile( ATOMS_path, sprintf('A_%03d.mat',progress.i) ), 'lm' );\n KERNELS.Aiso = AMICO_ResampleKernel( lm, idx_OUT, Ylm_OUT, true );\n KERNELS.Aiso_d = obj.dIso;\n progress.update();\n\n progress.close();\n end\n\n\n % ===========================\n % Fit the model to each voxel\n % ===========================\n function [ MAPs ] = Fit( obj, y, i1, i2 )\n global CONFIG KERNELS\n\n % prepare SIGNAL and DICTIONARY\n if numel(KERNELS.Aiso_d) > 0\n A = double( [ KERNELS.Aic(CONFIG.scheme.dwi_idx,:,i1,i2) KERNELS.Aec(CONFIG.scheme.dwi_idx,:,i1,i2) KERNELS.Aiso(CONFIG.scheme.dwi_idx) ] );\n else\n A = double( [ KERNELS.Aic(CONFIG.scheme.dwi_idx,:,i1,i2) KERNELS.Aec(CONFIG.scheme.dwi_idx,:,i1,i2) ] );\n end\n AA = [ ones(1,KERNELS.nA) ; A ];\n yy = [ 1 ; y(CONFIG.scheme.dwi_idx) ];\n\n % estimate coefficients\n x = full( mexLasso( yy, AA, CONFIG.OPTIMIZATION.SPAMS_param ) );\n\n % compute MAPS\n nIC = numel(obj.IC_Rs);\n nEC = numel(obj.IC_VFs);\n f1 = sum( x( 1:nIC ) );\n f2 = sum( x( (nIC+1):(nIC+nEC) ) );\n MAPs(1) = f1 / ( f1 + f2 + eps ); % intra-cellular volume fraction (v)\n MAPs(2) = 2 * KERNELS.Aic_R * x(1:nIC) / ( f1 + eps ); % mean axonal diameter\n MAPs(3) = (4*MAPs(1)) / ( pi*MAPs(2)^2 + eps ); % axonal density\n end\n\nend\n\nend\n", "meta": {"author": "qMRLab", "repo": "qMRLab", "sha": "036ff20b47e939877f746940a969494b55911636", "save_path": "github-repos/MATLAB/qMRLab-qMRLab", "path": "github-repos/MATLAB/qMRLab-qMRLab/qMRLab-036ff20b47e939877f746940a969494b55911636/External/AMICO/AMICO_matlab/models/AMICO_ACTIVEAX.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.746138993030751, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3643272808796702}} {"text": "function model = assignQuantDir(model)\n% Quantitatively assigns reaction directionality based on estimated bounds\n% on transformed reaction Gibbs energies\n%\n% USAGE:\n%\n% model = assignQuantDir(model)\n%\n% INPUT:\n% model: structure with fields:\n%\n% * .SIntRxnBool - `n x 1` boolean of internal reactions\n% * .DrGtMin - `n x 1` array of estimated lower bounds on\n% transformed reaction Gibbs energies.\n% * .DrGtMax - `n x 1` array of estimated upper bounds on\n% transformed reaction Gibbs energies.\n%\n% OUTPUT:\n% model: structure with fields:\n%\n% * .quantDir - `n x 1` array indicating quantitatively assigned\n% reaction directionality. 1 for reactions that are\n% irreversible in the forward direction, -1 for\n% reactions that are irreversible in the reverse\n% direction, and 0 for reversible reactions.\n%\n% .. Author: - Hulda SH, Nov. 2012\n\nmodel.NaNdfG0MetBool=isnan(model.DfGt0);\nmodel.NaNd0GRxnBool = isnan(model.DrGt0);\n\nDrGtMin=model.DrGtMin;\nDrGtMax=model.DrGtMax;\n\n[nMet,nRxn]=size(model.S);\n\n% model.quantDir = zeros(size(DrGtMin));\n% model.quantDir(DrGtMax < 0) = 1;\n% model.quantDir(DrGtMin > 0) = -1;\n\nnEqualDrGt=nnz(DrGtMin==DrGtMax & DrGtMin~=0);\nif any(nEqualDrGt)\n fprintf('%s\\n',[num2str(nEqualDrGt) '/' num2str(length(DrGtMin)) ' reactions with DrGtMin=DrGtMax~=0' ]);\nend\n\nnZeroDrGt=nnz(DrGtMin==0 & DrGtMax==0);\nif any(nZeroDrGt)\n fprintf('%s\\n',[num2str(nZeroDrGt) '/' num2str(length(DrGtMin)) ' reactions with DrGtMin=DrGtMax=0' ]);\nend\n\n\nif any(model.NaNd0GRxnBool)\n warning('Some DfGt0 are NaN');\nend\n\nif any(DrGtMin>DrGtMax)\n error('DrGtMin greater than DrGtMax');\nend\n\n%reaction directionality\n%keep exchange bounds the same as for the recostruction\nmodel.lb_reconThermo=model.lb;\nmodel.ub_reconThermo=model.ub;\n\n%now set internal reaction directions\nfor n=1:nRxn\n if model.SIntRxnBool(n)\n if model.NaNd0GRxnBool(n)\n %for the reactions that involve a NaN metabolite standard Gibbs energy of\n %formation, use the directions given by the reconstruction\n if model.lb(n)<0 && model.ub(n)>0\n model.lb_reconThermo(n)=-Inf;\n model.ub_reconThermo(n)=Inf;\n end\n %forward\n if model.lb(n)>=0 && model.ub(n)>0\n model.lb_reconThermo(n)=0;\n model.ub_reconThermo(n)=Inf;\n end\n %reverse\n if model.lb(n)<0 && model.ub(n)<=0\n model.lb_reconThermo(n)=-Inf;\n model.ub_reconThermo(n)=0;\n end\n if model.lb(n)==0 && model.ub(n)==0\n error(['Reaction ' model.rxns{n} ' bounds set to zero'])\n end\n %note that there is no thermodynamic directionality assignment\n %for this reaction\n model.directionalityThermo{n}=NaN;\n else\n if DrGtMax(n)<0\n model.directionalityThermo{n}='forward';\n model.lb_reconThermo(n)=0;\n model.ub_reconThermo(n)=Inf;\n end\n if DrGtMin(n)>0\n model.directionalityThermo{n}='reverse';\n model.lb_reconThermo(n)=-Inf;\n model.ub_reconThermo(n)=0;\n end\n if DrGtMin(n)<0 && DrGtMax(n)>0\n model.directionalityThermo{n}='reversible';\n model.lb_reconThermo(n)=-Inf;\n model.ub_reconThermo(n)=Inf;\n end\n if DrGtMin(n)==DrGtMax(n)\n model.directionalityThermo{n}='equilibrium';\n end\n if model.lb(n)==0 && model.ub(n)==0\n error(['Reaction ' model.rxns{n} ' bounds set to zero'])\n end\n end\n end\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/thermo/thermoDirectionality/assignQuantDir.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.36430503371838785}} {"text": "function fractOverlap = getSurfaceAttachment(structNum1,structNum2,margin,planC)\n%function min_dist = getSurfaceAttachment(structNum1,structNum2,margin,planC)\n%\n%This function calculates fractional overlap between the masks of structNum2\n% and structNum2 contracted by margin. planC is an optional input argument.\n%\n%APA, 11/25/2019\n%\n% Copyright 2010, Joseph O. Deasy, on behalf of the CERR development team.\n% \n% This file is part of The Computational Environment for Radiotherapy Research (CERR).\n% \n% CERR development has been led by: Aditya Apte, Divya Khullar, James Alaly, and Joseph O. Deasy.\n% \n% CERR has been financially supported by the US National Institutes of Health under multiple grants.\n% \n% CERR is distributed under the terms of the Lesser GNU Public License. \n% \n% This version of CERR is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% CERR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;\n% without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n% See the GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with CERR. If not, see .\n\nif ~exist('planC','var')\n global planC\nend\n\nindexS = planC{end};\n\n% Create Union of the two structure structNum1 (lung) and structNum2 (gtv)\nplanC = createUnionStructure(structNum1,structNum2,planC);\n\nunionStrNum = length(planC{indexS.structures});\n\n% Get surface mask of contracted unionStrNum\nxyDownsampleIndex = 1; % no downsampling\ncontractedStr1M = getSurfaceContract(unionStrNum,margin,xyDownsampleIndex,planC);\n\n% Remove unionStrNum\nmaskUnionM = getUniformStr(unionStrNum,planC);\nringMaskM = maskUnionM - contractedStr1M;\nplanC = deleteStructure(planC,unionStrNum);\n\n% Get mask of structNum2 (gtv)\nmask2M = getUniformStr(structNum2,planC);\n\n% Get overlapping fraction of structNum2\noverlapM = ringMaskM & mask2M;\nfractOverlap = sum(overlapM(:)) / sum(mask2M(:));\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Utilities/getSurfaceAttachment.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7401743505760728, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.36430503371838785}} {"text": "function G = bst_meg_sph(L, Channel, Param)\n% BST_MEG_SPH: Calculate the (overlapping) sphere models for MEG\n% \n% USAGE: G = bst_meg_sph(L, Channel, Param);\n%\n% INPUT:\n% - L : a 3 x nL array, each column a source location (x y z coordinates); nL sources\n% - Channel : a Brainstorm channel structure\n% - Param[] : array of structures (one per channel)\n% |- Center : a vector of the x, y, z locations for the sphere model \n% | (assume the same center for every sphere for the classical spherical head model)\n%\n% OUTPUT:\n% - G : the gain matrix: each column is the forward field of each source\n\n% @=============================================================================\n% This function is part of the Brainstorm software:\n% https://neuroimage.usc.edu/brainstorm\n% \n% Copyright (c) University of Southern California & McGill University\n% This software is distributed under the terms of the GNU General Public License\n% as published by the Free Software Foundation. Further details on the GPLv3\n% license can be found at http://www.gnu.org/copyleft/gpl.html.\n% \n% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED \"AS IS,\" AND THE\n% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY\n% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF\n% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY\n% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.\n%\n% For more information type \"brainstorm license\" at command prompt.\n% =============================================================================@\n\n%% ===== PARSE INPUTS =====\n% Sources locations should be 3 x m\nif(size(L,1)~=3)\n error('Matrix not given as 3 x n. Correct calling code');\nend\n% Check that the number of coils is the same for all the channels\nchanCoils = cellfun(@(c)size(c,2), {Channel.Loc});\ngrpCoils = unique(chanCoils);\n% If there are multiple sensor sensor types (different numbres of coils)\nif (length(grpCoils) > 1)\n % This function can only accept calls to groups of sensors with the same number of coils\n % => Group the sensors by number of coils and call os_meg as many times as needed\n G = NaN * zeros(length(Channel), 3 * size(L,2));\n for iGrp = 1:length(grpCoils)\n % Get all the sensors with this amount of coils\n iMegGrp = find(chanCoils == grpCoils(iGrp));\n % Compute (os_meg)\n G(iMegGrp,:) = bst_meg_sph(L, Channel(iMegGrp), Param(iMegGrp));\n end\n return;\nend\n% Number of coils for this call\nNumCoils = chanCoils(1);\n\n\n%% ===== COMPUTATION ===== \n% Get locations\nAllLocs = [Channel.Loc]; \nAllLocs = reshape(AllLocs, NumCoils*3, size(AllLocs,2)/NumCoils);\n% Get orientations\nAllOrient = [Channel.Orient];\nAllOrient = AllOrient * bst_inorcol(AllOrient);\nAllOrient = reshape(AllOrient, NumCoils*3, size(AllOrient,2)/NumCoils);\n% Get weights\nAllWeight = [Channel.Weight];\nAllWeight = reshape(AllWeight(:), NumCoils, length(AllWeight(:))/NumCoils);\n\n% Process each group of coils\nG = 0;\nfor j = 1:NumCoils\n % P.sensor is 3 x nR,each column a sensor location\n % P.orient is 3 x nR, the sensor orientation\n % P.center is 3 x nR, the sphere center for each sensor\n P.sensor = AllLocs((-2:0) + j*3, :);\n P.orient = AllOrient((-2:0) + j*3, :);\n P.weight = AllWeight(j,:);\n P.center = [Param.Center];\n % Local call below\n G = G + sarvas(L, P); \nend\n\n\n%% %%%%%%%%%%%%%%%%%%%%%%%%%%% Local Sarvas functions %%%%%%%%%%%%%%%%%%%%%%%%\nfunction G = sarvas(L, P)\n% Bronzan Sarvas forward model, spherical head\n% P.sensor is 3 x nR,each column a sensor location\n% P.orient is 3 x nR, the sensor orientation\n% P.center is 3 x nR, the sphere center for each sensor\n\nif(~isfield(P,'center')), % user did not provide\n P.center = []; % initialize to null\nend\nif(isempty(P.center)), % user gave as null\n P.center = zeros(size(P.sensor)); % set to coordinate origin\nend\n\nP.sensor = P.sensor - P.center; % shift sensor coordinates\n\niMag = find(sum(P.sensor.^2,1) == 0); % Indices of channels located at P.center.\nif ~isempty(iMag)\n P.sensor(:,iMag) = repmat([1 1 1]',1,length(iMag)); % Move them away (arbitrary location).\nend\n\nnR = size(P.sensor,2); % number of sensors\nnL = size(L,2); % number of source points\n\nRn2 = sum(P.sensor.^2,1); % distance to sensor squared\nRn = sqrt(Rn2); % distance\n\nif (nR >= nL), % more sensors than dipoles\n G = zeros(nR,3*nL); % gain matrix\n for Li = 1:nL,\n Lmat = L(:,Li+zeros(1,nR)); % matrix of location repeated\n Lmat = Lmat - P.center; % each center shifted relative to its center\n D = P.sensor - Lmat; % distance from souce to sensors\n Dn2 = sum(D.^2,1); % distance squared\n Dn = sqrt(Dn2); % distance\n R_dot_D = sum(P.sensor .* D); % dot product of sensor and distance\n R_dot_Dhat = R_dot_D ./ Dn; % dot product of sensor and distance\n \n F = Dn2 .* Rn + Dn .* R_dot_D; % Sarvas' function F\n \n GF_dot_o = Dn2 .* sum(P.sensor.*P.orient) ./ Rn + ...\n (2 * Rn + R_dot_Dhat) .* sum(D.*P.orient) + ...\n Dn .* sum((D+P.sensor).*P.orient);\n \n tempF = GF_dot_o ./ F.^2;\n \n temp = bst_cross(Lmat,P.orient) ./ F([1 1 1],:) - ...\n bst_cross(Lmat,P.sensor) .* tempF([1 1 1],:);\n G(:,Li*3+[-2 -1 0]) = temp';\n\n end\n \nelse % more dipoles than sensors nL > nR\n G = zeros(3*nL,nR); % gain matrix transposed\n \n for Ri = 1:nR,\n Rmat = P.sensor(:,Ri+zeros(1,nL)); % matrix of sensor repeated\n Omat = P.orient(:,Ri+zeros(1,nL)); % orientations\n Lmat = L - P.center(:,Ri+zeros(1,nL)); % shift centers to this coordinate\n \n D = Rmat - Lmat;\n Dn2 = sum(D.^2,1); % distance squared\n Dn = sqrt(Dn2); % distance\n R_dot_D = sum(Rmat .* D); % dot product of sensor and distance\n R_dot_Dhat = R_dot_D ./ Dn; % dot product of sensor and distance\n \n F = Dn2 * Rn(Ri) + Dn .* R_dot_D; % Sarvas' function F\n \n GF_dot_o = Dn2 * sum(P.sensor(:,Ri).*P.orient(:,Ri)) / Rn(Ri) + ...\n (2 * Rn(Ri) + R_dot_D ./ Dn) .* sum(D.*Omat) + ...\n Dn .* sum((D+Rmat).*Omat);\n \n tempF = GF_dot_o ./ F.^2;\n \n temp = bst_cross(Lmat,Omat) ./ F([1 1 1],:) - ...\n bst_cross(Lmat,Rmat) .* tempF([1 1 1],:);\n \n G(:,Ri) = temp(:);\n end\n \n G = G';\nend\n\nif(isfield(P,'weight')),\n Weights = P.weight(:); %make sure column\n % scale each row by its appropriate weight\n G = Weights(:,ones(1,size(G,2))) .* G;\nend\n\nG = G * 1e-7; % mu_o over 4 pi\n\n\n\n\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/toolbox/forward/bst_meg_sph.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7520125737597971, "lm_q2_score": 0.48438008427698437, "lm_q1q2_score": 0.36425991385512246}} {"text": "function [transform, coordsys] = ft_headcoordinates(fid1, fid2, fid3, fid4, coordsys)\n\n% FT_HEADCOORDINATES returns the homogeneous coordinate transformation matrix\n% that converts the specified fiducials in any coordinate system (e.g. MRI)\n% into the rotated and translated headcoordinate system.\n%\n% Use as\n% [transform, coordsys] = ft_headcoordinates(fid1, fid2, fid3, coordsys)\n% or\n% [transform, coordsys] = ft_headcoordinates(fid1, fid2, fid3, fid4, coordsys)\n%\n% Depending on the desired coordinate system, the order of the fiducials is\n% interpreted as follows\n%\n% fid1 = nas\n% fid2 = lpa\n% fid3 = rpa\n% fid4 = extra point (optional)\n%\n% fid1 = ac\n% fid2 = pc\n% fid3 = midsagittal\n% fid4 = extra point (optional)\n%\n% fid1 = pt1\n% fid2 = pt2\n% fid3 = pt3\n% fid4 = extra point (optional)\n%\n% fid1 = bregma\n% fid2 = lambda\n% fid3 = midsagittal\n% fid4 = extra point (optional)\n%\n% The fourth argument fid4 is optional and can be specified as an an extra point\n% which is assumed to have a positive Z-coordinate. It will be used to ensure correct\n% orientation of the Z-axis (ctf, 4d, bti, eeglab, yokogawa, neuromag, itab) or\n% X-axis (acpc, spm, mni, tal). The specification of this extra point may result in\n% the handedness of the transformation to be changed, but ensures consistency with\n% the handedness of the input coordinate system.\n%\n% The coordsys input argument is a string that determines how the location of the\n% origin and the direction of the axis is to be defined relative to the fiducials:\n% according to CTF conventions: coordsys = 'ctf'\n% according to 4D conventions: coordsys = '4d' or 'bti'\n% according to EEGLAB conventions: coordsys = 'eeglab'\n% according to NEUROMAG conventions: coordsys = 'itab'\n% according to ITAB conventions: coordsys = 'neuromag'\n% according to YOKOGAWA conventions: coordsys = 'yokogawa'\n% according to ASA conventions: coordsys = 'asa'\n% according to FTG conventions: coordsys = 'ftg'\n% according to ACPC conventions: coordsys = 'acpc'\n% according to SPM conventions: coordsys = 'spm'\n% according to MNI conventions: coordsys = 'mni'\n% according to Talairach conventions: coordsys = 'tal'\n% according to PAXINOS conventions: coordsys = 'paxinos'\n% If the coordsys input argument is not specified, it will default to 'ctf'.\n%\n% The CTF, 4D, YOKOGAWA and EEGLAB coordinate systems are defined as follows:\n% the origin is exactly between lpa and rpa\n% the X-axis goes towards nas\n% the Y-axis goes approximately towards lpa, orthogonal to X and in the plane spanned by the fiducials\n% the Z-axis goes approximately towards the vertex, orthogonal to X and Y\n%\n% The TALAIRACH, SPM and ACPC coordinate systems are defined as:\n% the origin corresponds with the anterior commissure\n% the Y-axis is along the line from the posterior commissure to the anterior commissure\n% the Z-axis is towards the vertex, in between the hemispheres\n% the X-axis is orthogonal to the midsagittal-plane, positive to the right\n%\n% The NEUROMAG and ITAB coordinate systems are defined as follows:\n% the X-axis is from the origin towards the RPA point (exactly through)\n% the Y-axis is from the origin towards the nasion (exactly through)\n% the Z-axis is from the origin upwards orthogonal to the XY-plane\n% the origin is the intersection of the line through LPA and RPA and a line orthogonal to L passing through the nasion\n%\n% The ASA coordinate system is defined as follows:\n% the origin is at the orthogonal intersection of the line from rpa-lpa and the line trough nas\n% the X-axis goes towards nas\n% the Y-axis goes through rpa and lpa\n% the Z-axis goes approximately towards the vertex, orthogonal to X and Y\n%\n% The FTG coordinate system is defined as:\n% the origin corresponds with pt1\n% the x-axis is along the line from pt1 to pt2\n% the z-axis is orthogonal to the plane spanned by pt1, pt2 and pt3\n%\n% The PAXINOS coordinate system is defined as:\n% the origin is at bregma\n% the x-axis extends along the Medial-Lateral direction, with positive towards the right\n% the y-axis points from dorsal to ventral, i.e. from inferior to superior\n% the z-axis passes through bregma and lambda and points from cranial to caudal, i.e. from anterior to posterior\n%\n% See also FT_ELECTRODEREALIGN, FT_VOLUMEREALIGN, FT_INTERACTIVEREALIGN, FT_AFFINECOORDINATES, COORDSYS2LABEL\n\n% Copyright (C) 2003-2022, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% figure out the input arguments\nif nargin==3\n coordsys = 'ctf'; % default\n fid4 = [];\nelseif nargin==4 && ischar(fid4)\n coordsys = fid4;\n fid4 = [];\nelseif nargin==4 && isnumeric(fid4)\n coordsys = 'ctf'; % default\nelseif nargin==5\n % do nothing\nelse\n ft_error('incorrect specification of input parameters');\nend\n\nif isnumeric(coordsys)\n % these are for backward compatibility, but should preferably not be used any more\n if coordsys==0\n coordsys = 'ctf';\n elseif coordsys==1\n coordsys = 'asa';\n elseif coordsys==2\n coordsys = 'ftg';\n else\n ft_error('if coordsys is numeric, it should assume one of the values 0/1/2');\n end\nend\n\n% ensure that they are row vectors\nfid1 = fid1(:)';\nfid2 = fid2(:)';\nfid3 = fid3(:)';\nfid4 = fid4(:)';\n\nassert(numel(fid1)==3, 'incorrect specification of fiducial 1');\nassert(numel(fid2)==3, 'incorrect specification of fiducial 2');\nassert(numel(fid3)==3, 'incorrect specification of fiducial 3');\nassert(isempty(fid4) || numel(fid4)==3, 'incorrect specification of fiducial 4');\n\n% ensure that it is lower case\ncoordsys = lower(coordsys);\n\n% compute the origin and direction of the coordinate axes in MRI coordinates\nswitch coordsys\n case {'ctf' '4d' 'bti' 'eeglab' 'yokogawa'}\n % rename the marker points for convenience\n nas = fid1; lpa = fid2; rpa = fid3; extrapoint = fid4; clear fid*\n origin = (lpa+rpa)/2;\n dirx = nas-origin;\n dirz = cross(dirx,lpa-rpa);\n diry = cross(dirz,dirx);\n dirx = dirx/norm(dirx);\n diry = diry/norm(diry);\n dirz = dirz/norm(dirz);\n case {'asa'}\n % rename the marker points for convenience\n nas = fid1; lpa = fid2; rpa = fid3; extrapoint = fid4; clear fid*\n dirz = cross(nas-rpa, lpa-rpa);\n diry = lpa-rpa;\n dirx = cross(diry,dirz);\n dirx = dirx/norm(dirx);\n diry = diry/norm(diry);\n dirz = dirz/norm(dirz);\n origin = rpa + dot(nas-rpa,diry)*diry;\n case {'neuromag' 'itab'}\n % rename the fiducials\n nas = fid1; lpa = fid2; rpa = fid3; extrapoint = fid4; clear fid*\n dirz = cross(rpa-lpa,nas-lpa);\n dirx = rpa-lpa;\n diry = cross(dirz,dirx);\n dirx = dirx/norm(dirx);\n diry = diry/norm(diry);\n dirz = dirz/norm(dirz);\n origin = lpa + dot(nas-lpa,dirx)*dirx;\n case 'ftg'\n % rename the marker points for convenience\n pt1 = fid1; pt2 = fid2; pt3 = fid3; extrapoint = fid4; clear fid*\n origin = pt1;\n dirx = pt2-origin;\n diry = pt3-origin;\n dirz = cross(dirx,diry);\n diry = cross(dirz,dirx);\n dirx = dirx/norm(dirx);\n diry = diry/norm(diry);\n dirz = dirz/norm(dirz);\n case {'acpc' 'spm' 'mni' 'tal'}\n % rename the marker points for convenience\n ac = fid1; pc = fid2; midsagittal = fid3; extrapoint = fid4; clear fid*\n origin = ac;\n diry = ac-pc;\n dirz = midsagittal-ac;\n dirx = cross(diry,dirz);\n dirz = cross(dirx,diry);\n dirx = dirx/norm(dirx);\n diry = diry/norm(diry);\n dirz = dirz/norm(dirz);\n case 'paxinos'\n bregma = fid1; lambda = fid2; midsagittal = fid3; extrapoint = fid4; clear fid*\n origin = bregma; % bregma is slightly above the brain\n dirz = lambda-bregma; % lambda is slightly above the brain\n diry = bregma-midsagittal; % midsagittal should be somewhere in the middle of the brain\n dirx = cross(diry,dirz); % compute the positive x-direction, i.e. towards the right\n diry = cross(dirz,dirx); % update the y-direction\n dirx = dirx/norm(dirx);\n diry = diry/norm(diry);\n dirz = dirz/norm(dirz);\n otherwise\n ft_error('unrecognized headcoordinate system \"%s\"', coordsys);\nend\n\n% use the extra point to validate that it is a right-handed coordinate system\nif ~isempty(extrapoint)\n dirq = extrapoint-origin;\n dirq = dirq/norm(dirq);\n if any(strcmp(coordsys, {'ctf' '4d' 'bti' 'eeglab' 'yokogawa' 'neuromag' 'itab'}))\n phi = dirq(:)'*dirz(:);\n if sign(phi)<0\n ft_warning('the input coordinate system seems left-handed, flipping z-axis to keep the transformation matrix consistent');\n dirz = -dirz;\n end\n elseif any(strcmp(coordsys, {'acpc' 'spm' 'mni' 'tal'}))\n phi = dirq(:)'*dirx(:);\n if sign(phi)<0\n ft_warning('the input coordinate system seems left-handed, flipping x-axis to keep the transformation matrix consistent');\n dirx = -dirx;\n end\n else\n ft_warning('the extra input coordinate is not used with coordsys \"%s\"', coordsys);\n end\nend\n\n% compute the rotation matrix\nrot = eye(4);\nrot(1:3,1:3) = inv(eye(3) / [dirx; diry; dirz]);\n% compute the translation matrix\ntra = eye(4);\ntra(1:4,4) = [-origin(:); 1];\n% combine these to compute the full homogeneous transformation matrix\ntransform = rot * tra;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/utilities/ft_headcoordinates.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8175744761936437, "lm_q2_score": 0.4455295350395727, "lm_q1q2_score": 0.36425357623877624}} {"text": "function x = p19_root ( i )\n\n%*****************************************************************************80\n%\n%% P19_ROOT returns a root for problem 19.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 15 January 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer I, the index of the requested root.\n%\n% Output, real X, the value of the root.\n%\n if ( i == 1 )\n x = 0.33186603357456253747;\n else\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'P19_ROOT - Fatal error!\\n' );\n fprintf ( 1, ' Illegal root index = %d\\n', i );\n error ( 'P19_ROOT - Fatal error!' );\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_zero/p19_root.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5389832206876841, "lm_q2_score": 0.6757646075489392, "lm_q1q2_score": 0.36422578460347615}} {"text": "%%\n % Copyright (c) 2014, Facebook, Inc.\n % All rights reserved.\n %\n % This source code is licensed under the BSD-style license found in the\n % LICENSE file in the root directory of this source tree. An additional grant \n % of patent rights can be found in the PATENTS file in the same directory.\n %\n %%\nfunction level2_model=train_level2_cnn(train_labels, train_features, ...\n train_gfeatures, config)\n\nlevel2_features_val = generate_level2_features_cnn(train_features,train_gfeatures,config);\nclear train_features\n\ntic;\nfprintf('Training attribute classifier');\nfor attr_id = 1:size(train_labels,2)\n fprintf('%s ',config.ATTR_NAME{attr_id});\n %ignore those with labels = 0\n idx = find(train_labels(:,attr_id) ~= 0);\n labels = (train_labels(idx,attr_id)>0)*2-1;\n level2_model{attr_id}.svm_weights = liblinear_do_train(labels,level2_features_val(idx,:));\nend\nfprintf('\\n');\ntoc;\nend\n\n", "meta": {"author": "facebookarchive", "repo": "pose-aligned-deep-networks", "sha": "c88607644773aa01cec39eb2e36921bdea3a0e00", "save_path": "github-repos/MATLAB/facebookarchive-pose-aligned-deep-networks", "path": "github-repos/MATLAB/facebookarchive-pose-aligned-deep-networks/pose-aligned-deep-networks-c88607644773aa01cec39eb2e36921bdea3a0e00/matlab/train_level2_cnn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190477, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.3642257810839742}} {"text": "classdef specimenSymmetry < symmetry\n% defines a specimen symmetry\n% \n% usually specimen symmetry is either \n% triclinic or orthorhombic\n%\n\nproperties\n axes = [xvector,yvector,zvector]; \n plotOptions = {}\nend\n\n methods\n \n function s = specimenSymmetry(varargin)\n % defines a specimen symmetry\n %\n % usually specimen symmetry is either triclinic or orthorhombic\n %\n \n axes = getClass(varargin,'vector3d',[xvector,yvector,zvector]);\n \n if nargin == 0\n \n id = 1;\n rot = rotation.id;\n \n elseif isa(varargin{1},'quaternion') % define the symmetry just by rotations\n\n rot = varargin{1};\n \n if check_option(varargin,'pointId')\n id = get_option(varargin,'pointId');\n else\n id = symmetry.rot2pointId(rot,axes);\n end\n \n else\n \n id = symmetry.extractPointId(varargin{:});\n rot = symmetry.calcQuat(id,axes);\n \n end\n \n s = s@symmetry(id,rot);\n s.axes = axes;\n \n end\n \n function display(s)\n disp(' ');\n disp([inputname(1) ' = ' char(s.lattice) ' ' doclink(s) ' ' docmethods(inputname(1))]);\n disp(' ');\n end \n \n end\n \n methods (Static = true)\n \n function cs = loadobj(s)\n % called by Matlab when an object is loaded from an .mat file\n % this overloaded method ensures compatibility with older MTEX\n % versions\n \n % maybe there is nothing to do\n if isa(s,'specimenSymmetry'), cs = s; return; end\n \n if isfield(s,'rot')\n rot = s.rot;\n else\n rot = rotation(s.a,s.b,s.c,s.d,s.i);\n end\n \n if isfield(s,'axes')\n axes = s.axes;\n else\n axes = [];\n end\n \n if isfield(s,'id')\n id = {'pointId',s.id};\n else\n id = {};\n end\n \n cs = specimenSymmetry(rot,id{:},axes);\n \n if isfield(s,'opt'), cs.opt = s.opt; end\n if isfield(s,'plotOptions'), cs.plotOptions = s.plotOptions; end \n \n end\n \n \n end\n \n \nend\n", "meta": {"author": "mtex-toolbox", "repo": "mtex", "sha": "f0ce46a720935e9ae8106ef919340534bca1adcb", "save_path": "github-repos/MATLAB/mtex-toolbox-mtex", "path": "github-repos/MATLAB/mtex-toolbox-mtex/mtex-f0ce46a720935e9ae8106ef919340534bca1adcb/geometry/@specimenSymmetry/specimenSymmetry.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646010190476, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.364225781083974}} {"text": "function DetectRedCells(db, ops0)\n\nops = build_ops3(db, ops0);\nredcells = [];\nfor i = 1:length(ops.planesToProcess)\n iplane = ops.planesToProcess(i);\n try\n try\n fname = sprintf('%s/F_%s_%s_plane%d.mat', ops.ResultsSavePath, ops.mouse_name, ops.date, iplane);\n dat = load(fname);\n while isfield(dat, 'dat')\n dat = dat.dat;\n end\n catch\n fname = sprintf('%s/F_%s_%s_plane%d_Nk%d_proc.mat', ops.ResultsSavePath, ops.mouse_name, ops.date, iplane, ops.Nk);\n dat = load(fname);\n while isfield(dat, 'dat')\n dat = dat.dat;\n end\n end\n catch\n fname = sprintf('%s/F_%s_%s_plane%d_Nk%d.mat', ops.ResultsSavePath, ops.mouse_name, ops.date, iplane, ops.Nk);\n dat = load(fname);\n while isfield(dat, 'dat')\n dat = dat.dat;\n end\n end\n \n % subtract bleedthrough of green into red channel\n % if there's a specific green channel (from a red+green short session)\n if isfield(dat.ops,'mimgGREEN')\n mimgG = dat.ops.mimgGREEN;\n else\n mimgG = dat.ops.mimg;\n end\n mimgR = dat.ops.mimgRED;\n \n % subsample mimgR and mimgG\n mimgR = mimgR(dat.ops.yrange,dat.ops.xrange);\n mimgG = mimgG(dat.ops.yrange,dat.ops.xrange);\n [nY nX] = size(mimgR);\n %\n % pixels with ROIs\n iscell = [dat.stat.mrs]./[dat.stat.mrs0]<1.2 & [dat.stat.npix]<150 & [dat.stat.npix]>20;\n icell = find(iscell);\n cellpix = false(numel(mimgR),1);\n for j = icell\n cellpix(dat.stat(j).ipix) = 1;\n end\n \n nonrig = 1;\n if nonrig\n % non-rigid linear regression\n nblks = 3;\n yB = round(linspace(1,nY,nblks+1));\n xB = round(linspace(1,nX,nblks+1));\n [yBL,xBL,numBlocks] = MakeQuadrants(yB,xB);\n msk = zeros(nY,nX,length(yB));\n for j = 1:length(yBL)\n xg = mimgG(yBL{j},xBL{j});\n xr = mimgR(yBL{j},xBL{j});\n A = polyfit(xg,xr,1);\n msk(:,:,j) = QuadrantMask(yBL,xBL,nY,nX,j);\n gw(j) = A(1);\n end\n msk = bsxfun(@times,msk,1./sum(msk,3));\n pixweight = zeros(nY,nX);\n for j = 1:length(yBL)\n pixweight = pixweight + msk(:,:,j)*gw(j);\n end\n mimgR0 = mimgR - pixweight.*mimgG;\n else\n % fit to non-ROI pixels\n mimgGn = mimgG;\n mimgGn(cellpix) = 0;\n mimgRn = mimgR;\n mimgRn(cellpix) = 0;\n \n xg = mimgGn;%my_conv2(mimgGn,[1 1],[1 2]);\n xr = mimgRn;%my_conv2(mimgRn,[1 1],[1 2]);\n A = polyfit(xg(:),xr(:),1);\n plot(xg(1:100:end)*A(1)+A(2),xr(1:100:end),'.')\n mimgR0 = mimgR - (A(1)*mimgG);\n end\n dat.ops.mimgREDcorrected = mimgR0;\n \n %%\n mimgR0 = normalize_image(mimgR0);\n %%%%% compute overlap with pixel map\n % (exclude pixels from other cells (cellpix))\n \n redpix = zeros(length(dat.stat),2);\n [xx,yy] = meshgrid([1:size(mimgR0,1)],[1:size(mimgR0,2)]);\n xx=xx(:); yy=yy(:);\n xy2 = xx.^2+yy.^2;\n \n for j = 1:numel(dat.stat)\n ipix = dat.stat(j).ipix;\n imgpix = false(size(mimgR0));\n imgpix(ipix) = 1;\n rpix = mimgR0(ipix);%.*(dat.stat(j).lambda'/sum(dat.stat(j).lambda));\n [ix,iy] = ind2sub(size(mimgR0),ipix);\n params = FitCircle(ix,iy);\n cellradius = params.ra;\n yc = params.xc;\n xc = params.yc;\n icircle = (xy2 - 2*xc*xx - 2*yc*yy + xc^2 + yc^2) < (cellradius+15)^2;\n extpix = icircle & ~imgpix(:) & ~cellpix;\n ext_rpix = mimgR0(extpix);%/length(extpix);\n redpix(j,:) = [mean(rpix) mean(ext_rpix)];\n end\n redpix = redpix - min(redpix(:));\n% redpix(~dat.cl.isroi,:) = NaN;\n \n % set threshold for redpix\n if isfield(ops,'redthres')\n redthres = ops.redthres;\n else\n redthres = 1.5;\n end\n if isfield(ops,'redmax')\n redmax = ops.redmax;\n else\n redmax = 1;\n end\n rrat = redpix(:,1)./(redpix(:,2)+redpix(:,1));\n redcell = rrat > nanmean(rrat)+redthres*nanstd(rrat);\n notred = rrat <= nanmean(rrat) + redmax*nanstd(rrat);\n %%\n fprintf('plane %d reds %d\\n',iplane,sum(redcell(:)&iscell(:)));\n \n% dat.cl.redcell = redcell(:);\n% dat.cl.notred = notred(:);\n\n for j = 1:length(dat.stat)\n dat.stat(j).redcell = redcell(j);\n dat.stat(j).redprob = rrat(j);\n end\n\n save(fname, '-struct', 'dat')\nend\n\n\n\n\n\n\n\n\n\n", "meta": {"author": "cortex-lab", "repo": "Suite2P", "sha": "c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5", "save_path": "github-repos/MATLAB/cortex-lab-Suite2P", "path": "github-repos/MATLAB/cortex-lab-Suite2P/Suite2P-c6a8ea9f01ffc8555429978e7fe97f843ad5b6d5/redChannel/DetectRedCells.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.8104788995148792, "lm_q2_score": 0.44939263446475963, "lm_q1q2_score": 0.3642232478310907}} {"text": "function data = detrenddata(data,T)\n\nfor n=1:length(T)\n ind = sum(T(1:n-1))+ (1:T(n));\n if isstruct(data)\n data.X(ind,:) = detrend(data.X(ind,:));\n else\n data(ind,:) = detrend(data(ind,:));\n end\nend\n\nend\n", "meta": {"author": "OHBA-analysis", "repo": "HMM-MAR", "sha": "bb0433b75482e473980791a2b30afe2012cf6578", "save_path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR", "path": "github-repos/MATLAB/OHBA-analysis-HMM-MAR/HMM-MAR-bb0433b75482e473980791a2b30afe2012cf6578/utils/preproc/detrenddata.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5851011686727231, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.36420168213744675}} {"text": "%ISCOLOR Test for color image\n%\n% ISCOLOR(IM) is true (1) if IM is a color image, that is, it its third\n% dimension is equal to three.\n\n\n% Copyright (C) 1993-2011, by Peter I. Corke\n%\n% This file is part of The Machine Vision Toolbox for Matlab (MVTB).\n% \n% MVTB is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% MVTB is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with MVTB. If not, see .\n\nfunction s = iscolor(im)\n % WxH is mono\n % WxHx3 is color\n % WxHxN is mono sequence\n % WxHx3xN is color sequence\n s = isnumeric(im) && size(im,1) > 1 && size(im,2) > 1 && size(im,3) == 3;\n", "meta": {"author": "petercorke", "repo": "machinevision-toolbox-matlab", "sha": "2d791168c19c5e56acef74d22eafd227b4b58e42", "save_path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab", "path": "github-repos/MATLAB/petercorke-machinevision-toolbox-matlab/machinevision-toolbox-matlab-2d791168c19c5e56acef74d22eafd227b4b58e42/iscolor.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6224593452091672, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.36420168132647124}} {"text": "function varargout = drawPolygon (px, varargin)\n%DRAWPOLYGON Draw a polygon specified by a list of points.\n%\n% drawPolygon(POLY);\n% Packs coordinates in a single N-by-2 array, with N the vertex number.\n%\n% drawPolygon(PX, PY);\n% Specifies coordinates in separate arrays. Both array must be N-by-1,\n% with N the number of vertices.\n%\n% drawPolygon(POLYS)\n% Packs coordinate of several polygons in a cell array. Each element of\n% the array is a Ni-by-2 double array.\n%\n% drawPolygon(..., NAME, VALUE);\n% Specifies drawing options by using one or several parameter name-value\n% pairs, see the doc of plot function for details.\n%\n% drawPolygon(AX, ...)\n% Specifies the axis to draw the polygon on.\n%\n% H = drawPolygon(...);\n% Also return a handle to the list of line objects.\n%\n% Example\n% % draw a red rectangle\n% poly = [10 10;40 10;40 30;10 30];\n% figure; drawPolygon(poly, 'r');\n% axis equal; axis([0 50 0 50]); \n%\n% % Draw two squares\n% px = [10 20 20 10 NaN 30 40 40 30]';\n% py = [10 10 20 20 NaN 10 10 20 20]';\n% figure; \n% drawPolygon([px py], 'lineWidth', 2);\n% axis equal; axis([0 50 0 50]); \n% \n% See also \n% polygons2d, drawPolyline\n\n% ------\n% Author: David Legland \n% E-mail: david.legland@inrae.fr\n% Created: 2004-05-05\n% Copyright 2004-2022 INRA - TPV URPOI - BIA IMASTE\n\n% Store hold state\nstate = ishold(gca);\nhold on;\n\n\n%% Check input\nif nargin < 1\n error ('should specify at least one argument');\nend\n\n% check for empty polygons\nif isempty (px)\n return\nend\n\n% extract handle of axis to draw on\nax = gca;\nif isAxisHandle(px)\n ax = px;\n px = varargin{1};\n varargin(1) = [];\nend\n\n\n%% Manage cell arrays of polygons\n\n% case of a set of polygons stored in a cell array\nif iscell(px)\n h = cellfun(@(x) drawPolygon(ax, x, varargin{:}), px, 'UniformOutput', 0);\n h = horzcat(h{:});\n \nelse\n % Check size vs number of arguments\n if size(px, 2) == 2\n % Case of polygon specified as a N-by-2 array (most standard case)\n py = px(:, 2);\n px = px(:, 1);\n \n elseif size(px, 2) == 1\n % Case of polygon specified as two N-by-1 arrays with same length\n if nargin < 2 || nargin == 2 && ~isnumeric(varargin{1})\n error('Matgeom:invalid_input_arg', ...\n 'Should specify either a N-by-2 array, or 2 N-by-1 vectors');\n end\n \n % Extract coordinates of polygon vertices\n py = varargin{1};\n varargin(1) = [];\n \n if length(py) ~= length(px)\n error('Matgeom:invalid_input_arg', ...\n 'X and Y coordinate arrays should have same lengths (%d,%d)', ...\n length(px), length(py)) \n end\n \n else\n error('Matgeom:invalid_input_arg', 'Should specify a N-by-2 array');\n end\n \n % set default line format\n if isempty (varargin)\n varargin = {'b-'};\n end\n \n % Check case of polygons with holes\n if any (isnan (px(:)) )\n polygons = splitPolygons ([px py]);\n h = drawPolygon (ax, polygons, varargin{:});\n \n else\n % ensure last point is the same as the first one\n px(end+1, :) = px(1,:);\n py(end+1, :) = py(1,:);\n\n % draw the polygon outline\n h = plot(ax, px, py, varargin{:});\n \n end % whether there where holes\n \nend % whether input arg was a cell\n\nif ~state\n hold off\nend\n\n% avoid returning argument if not required\nif nargout > 0\n varargout = {h};\nend\n", "meta": {"author": "mattools", "repo": "matGeom", "sha": "1fd2c937064be1ee1f4fd09fbfdf96145ebe5271", "save_path": "github-repos/MATLAB/mattools-matGeom", "path": "github-repos/MATLAB/mattools-matGeom/matGeom-1fd2c937064be1ee1f4fd09fbfdf96145ebe5271/matGeom/polygons2d/drawPolygon.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018546, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.36420167313077645}} {"text": "function []=panel3disp(n,N,m,p,k,T,Yi,Xi,Units,endo,exo,const,beta_gibbs,beta_median,beta_std,beta_lbound,beta_ubound,sigma_gibbs,sigma_median,D_estimates,gamma_estimates,lambda1,startdate,enddate,forecast_record,forecast_estimates,Fcperiods,stringdates3,Fstartdate,Fcenddate,Feval,Fcomp,data_endo_c,data_endo_c_lags,data_exo_c,It,Bu,IRF,IRFt,pref,names)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n% start displaying and saving the general results\n\n\n% preliminary task: create and open the txt file used to save the results\n\nfilelocation=fullfile(pref.results_path, [pref.results_sub '.txt']);\nfid=fopen(filelocation,'wt');\n\n% print toolbox header\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n% print the list of contributors\nbear.printcontributors(fid);\n\n% print then estimation results\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\ntoolboxinfo='BEAR toolbox estimates';\nfprintf('%s\\n',toolboxinfo);\nfprintf(fid,'%s\\n',toolboxinfo);\n\ntime=clock;\ndatestring=datestr(time);\ndateinfo=['Date: ' datestring(1,1:11) ' Time: ' datestring(1,13:17)];\nfprintf('%s\\n',dateinfo);\nfprintf(fid,'%s\\n',dateinfo);\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\nVARtypeinfo='Panel VAR: random effect model (Zellner and Hong)';\nfprintf('%s\\n',VARtypeinfo);\nfprintf(fid,'%s\\n',VARtypeinfo);\n\nif IRFt==1\nSVARinfo='structural decomposition: none';\nfprintf('%s\\n',SVARinfo);\nfprintf(fid,'%s\\n',SVARinfo);\nelseif IRFt==2\nSVARinfo='structural decomposition: choleski factorisation'; \nfprintf('%s\\n',SVARinfo);\nfprintf(fid,'%s\\n',SVARinfo);\nelseif IRFt==3\nSVARinfo='structural decomposition: triangular factorisation'; \nfprintf('%s\\n',SVARinfo);\nfprintf(fid,'%s\\n',SVARinfo);\nend\n\ntemp='units: ';\nfor ii=1:N\ntemp=[temp ' ' Units{ii,1} ' '];\nend\nunitinfo=temp;\nfprintf('%s\\n',unitinfo);\nfprintf(fid,'%s\\n',unitinfo);\n\ntemp='endogenous variables: ';\nfor ii=1:n\ntemp=[temp ' ' endo{ii,1} ' '];\nend\nendoinfo=temp;\nfprintf('%s\\n',endoinfo);\nfprintf(fid,'%s\\n',endoinfo);\n\ntemp='exogenous variables: ';\nif const==0 && m==0\ntemp=[temp ' none'];\nelseif const==1 && m==1\ntemp=[temp ' constant '];\nelseif const==0 && m>0\n for ii=1:m-1\n temp=[temp ' ' exo{ii,1} ' '];\n end\nelseif const==1 && m>1\ntemp=[temp ' constant '];\n for ii=1:m-1\n temp=[temp ' ' exo{ii,1} ' '];\n end\nend\nexoinfo=temp;\nfprintf('%s\\n',exoinfo);\nfprintf(fid,'%s\\n',exoinfo);\n\nsampledateinfo=['estimation sample: ' startdate '-' enddate];\nfprintf('%s\\n',sampledateinfo);\nfprintf(fid,'%s\\n',sampledateinfo);\n\nsamplelengthinfo=['sample size (omitting initial conditions): ' num2str(T)];\nfprintf('%s\\n',samplelengthinfo);\nfprintf(fid,'%s\\n',samplelengthinfo);\n\nlaginfo=['number of lags included in regression: ' num2str(p)];\nfprintf('%s\\n',laginfo);\nfprintf(fid,'%s\\n',laginfo);\n\nhyperparam1='hyperparameters:';\nfprintf('%s\\n',hyperparam1);\nfprintf(fid,'%s\\n',hyperparam1);\n\nhyperparam2=['overall tightness (lambda1): ' num2str(lambda1)];\nfprintf('%s\\n',hyperparam2);\nfprintf(fid,'%s\\n',hyperparam2);\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n\n\n\n\n\n% everything else is then unit-specific, hence loop over units\nfor hh=1:N\n\n\n% first estimate the in-sample evaluation criteria\n% obtain predicted values\nB_median(:,:,hh)=reshape(beta_median(:,:,hh),k,n);\nYp(:,:,hh)=Xi(:,:,hh)*B_median(:,:,hh);\n% then produce the corresponding residuals, using (1.9.4)\nEPS(:,:,hh)=Yi(:,:,hh)-Yp(:,:,hh);\n\n\n% Compute then the sum of squared residuals\n% compute first the RSS matrix, defined in (1.9.5)\nRSS(:,:,hh)=EPS(:,:,hh)'*EPS(:,:,hh);\n% retain only the diagonal elements to get the vector of RSSi values\nrss(:,:,hh)=diag(RSS(:,:,hh));\n\n\n% Go on calculating R2\n% generate Mbar\nMbar=eye(T)-ones(T,T)/T;\n% then compute the TSS matrix, defined in (1.9.8)\nTSS(:,:,hh)=Yi(:,:,hh)'*Mbar*Yi(:,:,hh);\n% generate the R2 matrix in (1.9.9)\nR2(:,:,hh)=eye(n)-RSS(:,:,hh)./TSS(:,:,hh);\n% retain only the diagonal elements to get the vector of R2 values\nr2(:,:,hh)=diag(R2(:,:,hh));\n\n\n% then calculate the adjusted R2, using (1.9.11)\nR2bar(:,:,hh)=eye(n)-((T-1)/(T-k))*(eye(n)-R2(:,:,hh));\n% retain only the diagonal elements to get the vector of R2bar values\nr2bar(:,:,hh)=diag(R2bar(:,:,hh));\n\n\n% now start the display phase: start with the name of the unit\n\nunitinfo=['Unit: ' Units{hh,1}];\nfprintf('%s\\n',unitinfo);\nfprintf(fid,'%s\\n',unitinfo);\n\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n% display coefficient estimates\ncoeffinfo=['VAR coefficients:'];\nfprintf('%s\\n',coeffinfo);\nfprintf(fid,'%s\\n',coeffinfo);\n\n\n% loop over the equations(that is, endogenous variables) of the model\nfor ii=1:n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\nendoinfo=['Endogenous: ' endo{ii,1}];\nfprintf('%s\\n',endoinfo);\nfprintf(fid,'%s\\n',endoinfo);\n\ncoeffheader=fprintf('%25s %15s %15s %15s %15s\\n','','Median','St.dev','Low.bound','Upp.bound');\ncoeffheader=fprintf(fid,'%25s %15s %15s %15s %15s\\n','','Median','St.dev','Low.bound','Upp.bound');\n\n% handle the endogenous\n for jj=1:n\n for kk=1:p\n values=[beta_median((ii-1)*k+n*(kk-1)+jj,1,hh) beta_std((ii-1)*k+n*(kk-1)+jj,1,hh) beta_lbound((ii-1)*k+n*(kk-1)+jj,1,hh) beta_ubound((ii-1)*k+n*(kk-1)+jj,1,hh)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n',strcat(endo{jj,1},'(-',int2str(kk),')'),values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n',strcat(endo{jj,1},'(-',int2str(kk),')'),values);\n end\n end\n\n% handle the exogenous\n % if there is no constant:\n if const==0\n % if there is no exogenous at all, obvioulsy, don't display anything\n if m==0\n % if there is no constant but some other exogenous, display them\n else\n for jj=1:m\n values=[beta_median(ii*k-m+jj,1,hh) beta_std(ii*k-m+jj,1,hh) beta_lbound(ii*k-m+jj,1,hh) beta_ubound(ii*k-m+jj,1,hh)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n end\n end\n % if there is a constant\n else\n % display the results related to the constant\n values=[beta_median(ii*k-m+1,1,hh) beta_std(ii*k-m+1,1,hh) beta_lbound(ii*k-m+1,1,hh) beta_ubound(ii*k-m+1,1,hh)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n','Constant',values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n','Constant',values);\n % if there is no other exogenous, stop here\n if m==1\n % if there are other exogenous, display their results\n else\n for jj=1:m-1\n values=[beta_median(ii*k-m+jj+1,1,hh) beta_std(ii*k-m+jj+1,1,hh) beta_lbound(ii*k-m+jj+1,1,hh) beta_ubound(ii*k-m+jj+1,1,hh)];\n fprintf('%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n fprintf(fid,'%25s %15.3f %15.3f %15.3f %15.3f\\n',exo{jj,1},values);\n end\n end\n end\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n% display evaluation measures\n\nrssinfo=['Sum of squared residuals: ' num2str(rss(ii,1,hh),'%.2f')];\nfprintf('%s\\n',rssinfo);\nfprintf(fid,'%s\\n',rssinfo);\n\nr2info=['R-squared: ' num2str(r2(ii,1,hh),'%.3f')];\nfprintf('%s\\n',r2info);\nfprintf(fid,'%s\\n',r2info);\n\nadjr2info=['adj. R-squared: ' num2str(r2bar(ii,1,hh),'%.3f')];\nfprintf('%s\\n',adjr2info);\nfprintf(fid,'%s\\n',adjr2info);\n\nend\n\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n\n% display VAR stability results\n\n% check whether the model is stationary\n[stationary eigmodulus]=bear.checkstable(beta_median(:,:,hh),n,p,k);\neigmodulus=reshape(eigmodulus,p,n);\nstabilityinfo1=['Roots of the characteristic polynomial (modulus):'];\nfprintf('%s\\n',stabilityinfo1);\nfprintf(fid,'%s\\n',stabilityinfo1);\nfor jj=1:p\ntemp=num2str(eigmodulus(jj,1),'%.3f');\n for kk=2:n\n temp=[temp,' ',num2str(eigmodulus(jj,kk),'%.3f')];\n end\nfprintf('%s\\n',temp);\nfprintf(fid,'%s\\n',temp);\nend\nif stationary==1;\nstabilityinfo2=['No root lies outside the unit circle.'];\nstabilityinfo3=['The estimated VAR model satisfies the stability condition'];\nfprintf('%s\\n',stabilityinfo2);\nfprintf(fid,'%s\\n',stabilityinfo2);\nfprintf('%s\\n',stabilityinfo3);\nfprintf(fid,'%s\\n',stabilityinfo3);\nelse\nstabilityinfo2=['Warning: at leat one root lies on or outside the unit circle.'];\nfprintf('%s\\n',stabilityinfo2);\nfprintf(fid,'%s\\n',stabilityinfo2);\nstabilityinfo3=['The estimated VAR model will not be stable'];\nfprintf('%s\\n',stabilityinfo3);\nfprintf(fid,'%s\\n',stabilityinfo3);\nend\n\nfprintf('%s\\n','');\nfprintf(fid,'%s\\n','');\n\n% display posterior for sigma\nsigmainfo=['sigma (residual covariance matrix): posterior estimates'];\nfprintf('%s\\n',sigmainfo);\nfprintf(fid,'%s\\n',sigmainfo);\n% calculate the (integer) length of the largest number in sigma, for formatting purpose\nwidth=length(sprintf('%d',floor(max(abs(bear.vec(sigma_median))))));\n% add a separator, a potential minus sign, and three digits (total=5) to obtain the total space for each entry in the matrix\nwidth=width+5;\nfor ii=1:n\ntemp=[];\n for jj=1:n\n % convert matrix entry into string\n number=num2str(sigma_median(ii,jj),'% .3f');\n % pad potential missing blanks\n while numel(number)=2012\n z=griddata(gridX,gridY,gridZ,x,y,method);\nelse\n z=griddata(gridX,gridY,gridZ,x,y,method,{'QJ'});\nend\n", "meta": {"author": "dbekaert", "repo": "StaMPS", "sha": "c159eb81b16c446e0e8fdef7dd435eb22e0240ed", "save_path": "github-repos/MATLAB/dbekaert-StaMPS", "path": "github-repos/MATLAB/dbekaert-StaMPS/StaMPS-c159eb81b16c446e0e8fdef7dd435eb22e0240ed/matlab/griddata_version_control.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018545, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3642016731307764}} {"text": "function f = compose(f, op, g, data, pref)\n%COMPOSE Composition of UNBNDFUN objects.\n% H = COMPOSE(F, OP) returns a UNBNDFUN representing OP(F) where F is also a\n% UNBNDFUN object, and OP is a function handle.\n%\n% H = COMPOSE(F, OP, G) returns OP(F, G) where F and G are UNBNDFUN objects,\n% and OP is a function handle. Note that F and G are assumed to have the same\n% domain. No warning will be given/error thrown if that is not the case, but\n% the output of the method will not be useful.\n%\n% H = COMPOSE(F, G) returns a FUN representing G(F), where at least one of F\n% and G is an UNBNDFUN object. If the range of F is not included in the domain\n% of G, an error is thrown. Note that the domain of H will be the same as the\n% domain of F.\n%\n% H = COMPOSE(F, OP, G, DATA, PREF) or H = COMPOSE(F, OP, [], DATA, PREF),\n% where F (and G) are UNBNDFUN objects, and OP is a function handle, uses the\n% constructor data in the structure DATA and the options passed by the\n% CHEBFUNPREF or preferences structure PREF to build the returned UNBNDFUN.\n% In particular, if the underlying tech class supports it, one can use PREF\n% to alter the constructor's behavior to take advantage of the fact that F\n% (and possibly OP or G) has additional structure beyond just being an\n% UNBNDFUN object.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Parse inputs:\nif ( nargin == 2 )\n \n if ( isa(op, 'unbndfun') ) \n % Composition of two UNBNDFUN objects ( out = g(f) ):\n \n % OP is a UNBNDFUN! Rename it to g for clarity:\n g = op;\n \n % For composition to work with two FUN objects, the range of F must be\n % within the domain of G. However, we allow this method to assume that\n % it is the case.\n \n % When we compose F and G, we need to find the appropriate part of the\n % domain of G on which the range of F lies. Since we then want to work\n % with the ONEFUN of G, we apply the inverse map for the domain of G to\n % find the (sub)interval on [-1, 1] on which the range of F (and hence\n % its ONEFUN) lives.\n fMapped = g.mapping.Inv(f.onefun);\n \n % Try to do the composition, will only work if the range of F lies in\n % the domain of G.\n f.onefun = compose(fMapped, g.onefun);\n \n else\n % Standard composition ( out = OP(F) )\n \n % OP is an operator!\n f.onefun = compose(f.onefun, op);\n end\n \nelse\n % out = OP(F,G).\n \n if ( nargin < 5 )\n pref = chebfunpref();\n else\n pref = chebfunpref(pref);\n end\n\n if ( nargin < 4 )\n data = struct();\n end\n \n % Call ONEFUN/COMPOSE():\n if ( isempty(g) )\n f.onefun = compose(f.onefun, op, g, data, pref);\n else\n f.onefun = compose(f.onefun, op, g.onefun, data, pref);\n end\n \nend\n\nend\n", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@unbndfun/compose.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018545, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3642016731307764}} {"text": "%% Copyright (C) 2014-2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym acoth (@var{x})\n%% Symbolic acoth function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = acoth (x)\n%% @result{} y = (sym) acoth(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = acoth(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('acoth', x);\nend\n\n\n%!error acoth (sym(1), 2)\n%!assert (isequaln (acoth (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 2;\n%! x = sym('2');\n\n%!test\n%! f1 = acoth(x);\n%! f2 = acoth(d);\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = acoth(A);\n%! f2 = acoth(D);\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = acoth (d);\n%! f = acoth (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/acoth.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593171945416, "lm_q2_score": 0.5851011542032312, "lm_q1q2_score": 0.3642016649350815}} {"text": "function y = ivmOut(model, x);\n\n% IVMOUT Evaluate the output of an IVM model.\n% FORMAT\n% DESC evaluates the output of a given IVM model.\n% ARG model : the model for which the output is being evaluated.\n% ARG x : the input position for which the output is required.\n% RETURN y : the output of the GP model. The function checks if\n% there is a noise model associated with the GP, if there is, it is\n% used, otherwise the mean of gpPosteriorMeanVar is returned.\n%\n% SEEALSO : ivmCreate, ivmPosteriorMeanVar, noiseOut\n%\n% COPYRIGHT : Neil D. Lawrence, 2003, 2005\n\n% IVM \n\nif nargin < 2\n % This implies evaluate for the training data.\n mu = model.mu;\n varsigma = model.varSigma;\nelse\n [mu, varsigma] = ivmPosteriorMeanVar(model, x);\nend\n\ny = noiseOut(model.noise, mu, varsigma);\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/ivm/ivmOut.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982179521105, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.36417693544837304}} {"text": "% Correlation map post processing in PIVlab\nfunction [u_out,v_out] = PIVlab_correlation_filter (u,v,corr2_thresh,corr2_value)\nu(corr2_valuePRTools Guide)\n% DATASETS, DATAFILES, IM2FEAT, FEATIM\n\n% Copyright: R.P.W. Duin, r.p.w.duin@37steps.com\n% Faculty EWI, Delft University of Technology\n% P.O. Box 5031, 2600 GA Delft, The Netherlands\n\n% $Id: im2obj.m,v 1.5 2008/07/28 08:59:47 duin Exp $\n\nfunction a = im2obj (im,a)\n\n\t\t\t\n\tif iscell(im)\n\t\timsize = size(im{1}); \n\telse\n\t\timsize = size(im); \n\tend\n\t\n\tnodataset = 0;\n\tif (nargin > 1)\n\t\tif (~isdataset(a)) & size(a,1) ~= 1\n\t\t\terror('second argument should be a dataset or a size vector'); \n\t\tend\n\t\tif isdataset(a)\n\t\t\tfeatsize = getfeatsize(a);\n\t\telse\n\t\t\tfeatsize = a;\n\t\t\tnodataset = 1;\n\t\tend\n\telse % no information on feature size, assume most simple solution\n\t\tnodataset = 1;\n\t\tif length(imsize) == 2\n\t\t\tfeatsize = imsize;\n\t\telse\n\t\t\tfeatsize = imsize(1:end-1);\n\t\tend\n\tend\t\n\tif length(featsize) == length(imsize)\n\t\tnobj = 1;\n\telseif length(featsize) == (length(imsize)-1)\n\t\tnobj = imsize(end);\n\telseif length(featsize) == (length(imsize)-2) & imsize(3) == 1\n\t\tnobj = imsize(end);\n\telse\n\t\twrongfeatsize;\n\tend\n\t\n\tif any(featsize ~= imsize(1:length(featsize)))\n\t\twrongfeatsize;\n\tend\n\n\tif (isa(im,'cell'))\n\t\t\n\t\t% If IM is a cell array of images, unpack it and recursively call IM2OBJ\n\t\t% to add each image.\n\n\t\tim = im(:);\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t% Reshape to 1D cell array.\n\t\tfor i = 1:length(im)\n\t\t\tb = feval(mfilename,im{i});\n\t\t\tif ~isempty(a) & any(a.featsize ~= b.featsize)\n\t\t\t\terror('Images should have equal sizes')\n\t\t\tend\n\t\t\ta = [a; b];\n\t\tend\n\t\t\n elseif isdatafile(im)\n \n\t\tif (nargin < 2)\n\t\t\ta = prdataset([]);\n\t\tend\n testdatasize(im);\n a = [a; feval(mfilename,data2im(im))];\n \n\telse\n\n\t\t% If IM is an image or array of images, reshape it and add it in one go.\n\n\t\t% Convert to double, if necessary\n\t\tif (isa(im,'uint8'))\n\t\t\tim = double(im)/256; \n\t\telse\n\t\t\tim = double(im);\n\t\tend\n\n\t\t% ready for the real work, at last!\n\t\t\n\t\tif nobj == 1\n\t\t\tim = im(:)';\n\t\telse\n\t\t\tim = shiftdim(im,ndims(im)-1);\n\t\t\tim = reshape(im,nobj,prod(featsize));\n\t\tend\n\t\t\n\t\tif nodataset\n\t\t\ta = prdataset(im);\n\t\t\ta = setfeatsize(a,featsize);\n\t\telse\n\t\t\ta = [a; im];\n\t\tend\n\n\tend\t\n\nreturn\n\nfunction wrongfeatsize\n\terror('Desired feature size and size of supplied image array are inconsistent')\nreturn\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/im2obj.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.5621765008857981, "lm_q1q2_score": 0.3641769278032567}} {"text": "%% Copyright (C) 2014-2017 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym ezplot (@var{f})\n%% @defmethodx @@sym ezplot (@var{f1}, @var{f2})\n%% @defmethodx @@sym ezplot (@var{f}, @var{dom})\n%% @defmethodx @@sym ezplot (@var{f1}, @var{f2}, @var{dom})\n%% @defmethodx @@sym ezplot (@dots{}, @var{N})\n%% Simple plotting of symbolic expressions.\n%%\n%% Example parametric plot of a Lissajous Curve:\n%% @example\n%% @group\n%% syms t\n%% x = cos(3*t), y = sin(2*t)\n%% @result{} x = (sym) cos(3\u22c5t)\n%% @result{} y = (sym) sin(2\u22c5t)\n%%\n%% ezplot(x, y) % doctest: +SKIP\n%% @end group\n%% @end example\n%%\n%% Example plotting the zero level curve of a function of two\n%% variables:\n%% @example\n%% @group\n%% syms x y\n%% f = x^2 + y^2 - 1;\n%% ezplot (f) % doctest: +SKIP\n%% @end group\n%% @end example\n%% Here the curve is defined implicitly by @code{f(x, y) == 0},\n%% but we do not enter the @code{== 0} part.\n%%\n%% See help for the (non-symbolic) @code{ezplot}, which this\n%% routine calls after trying to convert sym inputs to\n%% anonymous functions.\n%%\n%% Using sym arguments for @var{dom} and @var{n} can lead to\n%% ambiguity where OctSymPy cannot tell if you are specifying @var{n}\n%% or @var{f2}. For example:\n%% @example\n%% @group\n%% syms t\n%% f = sin(t);\n%% N = sym(50);\n%%\n%% % parametric plot of f(t), N(t)\n%% ezplot(f, N) % doctest: +SKIP\n%%\n%% % plot f vs t using 50 pts\n%% ezplot(f, double(N)) % doctest: +SKIP\n%% @end group\n%% @end example\n%%\n%% The solution, as shown in the example, is to convert the sym to\n%% a double.\n%%\n%% @seealso{ezplot, @@sym/ezplot3, @@sym/ezsurf, @@sym/function_handle}\n%% @end defmethod\n\n\nfunction varargout = ezplot(varargin)\n\n % first input is handle, shift\n if (ishandle(varargin{1}))\n fshift = 1;\n else\n fshift = 0;\n end\n\n firstsym = [];\n\n for i = (1+fshift):nargin\n if (isa(varargin{i}, 'sym'))\n if ( (i == 1 + fshift) || ...\n (i == 2 + fshift && isscalar(varargin{i})) ...\n )\n % This is one of the fcns to plot, so convert to handle fcn\n % The \"i == 2\" issscalar cond is to supports ezplot(f, sym([0 1]))\n\n % Each is function of one var, and its the same var for all\n % (or could be a single function of two variables)\n thissym = symvar(varargin{i});\n assert(length(thissym) <= 2, ...\n 'ezplot: plotting curves: functions should have at most two inputs');\n if (isempty(thissym))\n % a number, create a constant function in a dummy variable\n % (0*t works around some Octave oddity on 3.8 and hg Dec 2014)\n thisf = inline(sprintf('%g + 0*t', double(varargin{i})), 't');\n %thisf = @(t) 0*t + double(varargin{i}); % no\n else\n % check variables match (sanity check)\n if (isempty(firstsym))\n firstsym = thissym;\n else\n assert (all (logical (thissym == firstsym)), ...\n 'ezplot: all functions must be in terms of the same variables');\n end\n thisf = function_handle(varargin{i});\n end\n\n varargin{i} = thisf;\n\n else\n % plot ranges, etc, convert syms to doubles\n varargin{i} = double(varargin{i});\n end\n end\n end\n\n h = ezplot(varargin{:});\n\n if (nargout)\n varargout{1} = h;\n end\n\nend\n\n\n%%!shared hf\n%%! % offscreen rendering currently (2016-06) causing crashes:\n%%! % e.g., https://savannah.gnu.org/bugs/?44478\n%%! hf = figure ('visible', 'off');\n\n%!test\n%! % simple\n%! syms x\n%! f = cos(x);\n%! h = ezplot(f);\n%! xx = get(h, 'xdata');\n%! yy = get(h, 'ydata');\n%! assert (abs(yy(end) - cos(xx(end))) <= 2*eps)\n%! if (exist ('OCTAVE_VERSION', 'builtin'))\n%! % matlab misses endpoint with nodisplay\n%! assert (abs(xx(end) - 2*pi) <= 4*eps)\n%! assert (abs(yy(end) - cos(2*pi)) <= 4*eps)\n%! end\n\n%!test\n%! % parametric\n%! syms t\n%! x = cos(t);\n%! y = sin(t);\n%! h = ezplot(x, y);\n%! xx = get(h, 'xdata');\n%! assert (abs(xx(end) - cos(2*pi)) <= 4*eps)\n\n%!error \n%! syms x t\n%! ezplot(t, x)\n\n%!error\n%! syms x t\n%! ezplot(t, t*x)\n\n%!test\n%! % implicit plot of f(x,y) == 0\n%! syms x y\n%! f = sqrt(x*x + y*y) - 1;\n%! h = ezplot(f);\n%! if (exist ('OCTAVE_VERSION', 'builtin'))\n%! xx = get (h, 'xdata');\n%! yy = get (h, 'ydata');\n%! else\n%! if (isempty (get (h, 'zdata')))\n%! xx = get (h, 'xdata');\n%! yy = get (h, 'ydata');\n%! else\n%! cm = get (h, 'ContourMatrix');\n%! xx = cm(1, 2:end);\n%! yy = cm(2, 2:end);\n%! assert (cm(1, 1) == 0)\n%! assert (cm(2, 1) == length (xx))\n%! end\n%! end\n%! assert (abs (max (xx) - 1) <= 0.02)\n%! assert (abs (max (yy) - 1) <= 0.02)\n\n%!error\n%! % implicit plot supports single function\n%! syms x y\n%! f = sqrt(x*x + y*y) - 1;\n%! g = sqrt(x*x + y*y) - 4;\n%! h = ezplot(f, g);\n\n%!test\n%! % bounds etc as syms\n%! if (exist ('OCTAVE_VERSION', 'builtin'))\n%! % this number-of-points option not supported on matlab\n%! syms x\n%! f = cos(x);\n%! h = ezplot(f, [0 2*sym(pi)], sym(42));\n%! y = get(h, 'ydata');\n%! assert (length(y) == 42)\n%! assert (abs(y(end) - cos(4*pi)) <= 4*eps)\n%! end\n\n%!test\n%! close all\n\n%%!test\n%%! close (hf);\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/ezplot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5621764862150636, "lm_q2_score": 0.6477982043529716, "lm_q1q2_score": 0.36417691829958126}} {"text": "function [ newPositions, zerosInARow ] = CalcSimpleOpticalFlowHists( centroids, img1, train, neighborSize, windowSize, w, thresh, zerosInARow)\n% calcSimpleOpticalFlowHists - Used to track object of interest\n%--------------------------------------------------------------------------\n% Params: centroids: n x 3 matrix where n is the number of centroids showing\n% img1: image to be looked at for new centroid position\n% train: training histograms\n% neighborSize: size of neighborhood to look at. Should be odd\n% windowSize: size of windows in centroid neighborhood\n% w - the width of the bins for the RGB color\n% histograms\n% thresh: distance threshold\n% zerosInARow: zeros in a row\n%\n% Returns: newPositions - new positions of centroid. 0 for x and y of \n% centroid if its out of view bounds or doesn't\n% have a good enough match in the view\n% zerosInARow - number of frames straight where zeros\n% detected\n%\n% Assumes: brightness constant, small motion changes betw frames\n%--------------------------------------------------------------------------\n\nnewPositions = zeros(size(centroids,1), size(centroids,2));\nimgWidth = size(img1,2);\nimgHeight = size(img1,1);\nfor i = 1:size(centroids,1)\n currCentr = centroids(i,:);\n row = currCentr(1);\n col = currCentr(2);\n% if useOrigColor == 1\n% pixRef = [currCentr(4) currCentr(5) currCentr(6)]';\n% else\n% pixRef = double(refImg(row,col,:));\n% pixRef = pixRef(:);\n% end\n indent = floor(neighborSize / 2);\n bestDist = 0;\n for kRow = -indent:indent\n for kCol = -indent:indent\n testRow = max(1, row + kRow);\n testRow = min(imgHeight, testRow);\n testCol = max(1, col + kCol);\n testCol = min(imgWidth, testCol);\n hist = SimpleHist1D(img1(max(1,testRow - windowSize):min(imgHeight, testRow + windowSize),...\n max(1,testCol- windowSize):min(imgWidth, testCol + windowSize)...\n ,:), w);\n dist = Score1D(hist, train);\n %prefer points closer to old centroid so put penalty\n manhDist2center = (abs(testRow - centroids(i,1)) + ...\n abs(testCol - centroids(i,2))) / 2;\n %good vals is - 15, - 20, \n if (dist > exp(thresh - 25 + manhDist2center))\n if (dist > bestDist)\n newPositions(i,1) = testRow;\n newPositions(i,2) = testCol;\n bestDist = dist;\n end\n end\n end\n end\n if (newPositions(i,1) == 0)\n zerosInARow = zerosInARow + 1;\n if (zerosInARow <= 15)\n newPositions(i,1) = centroids(i,1);\n newPositions(i,2) = centroids(i,2);\n end\n else\n zerosInARow = 0;\n end\n %newPositions\nend\n\nend\n\n", "meta": {"author": "zhangqianqianQQ", "repo": "MachineVisionAlgorithm", "sha": "683338f6c3b1aab9fa2b80026915fe936aebf0ee", "save_path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm", "path": "github-repos/MATLAB/zhangqianqianQQ-MachineVisionAlgorithm/MachineVisionAlgorithm-683338f6c3b1aab9fa2b80026915fe936aebf0ee/\u68c0\u6d4b\u7b97\u6cd5/Surgery_DetectionTracking-master/classificationTracking/CalcSimpleOpticalFlowHists.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.727975460709318, "lm_q2_score": 0.5, "lm_q1q2_score": 0.363987730354659}} {"text": "function desired_velocity = variable_v(position,velocity)\n%{\nThis function receives the following inputs:\n 1. Position of the aircraft- [x, y, z]\n 2. Velocity of the aircraft - [x,y,z]\nUsing the inputs, the function returns the value of the desired velocity,\ncartasian coordinates.\nCreated by Roni Peer, 11.7.2010\n%}\n%#eml\nheight = position(3); % Get the Height.\nif height > 500 % Maintain velocity.\n desired_descent_rate = velocity(3); \nelseif height > 200 % Slow down.\n desired_descent_rate = -10;\nelseif height > 100\n desired_descent_rate = -2;\nelseif height > 10\n desired_descent_rate = -1;\nelse\n desired_descent_rate = -0.5; % Break.\nend\ndesired_velocity = [0; 0; desired_descent_rate];", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/36464-a-short-simulink-workshop-+-hebrew-presentation/Simulink_Workshop/source/variable_v.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7279754489059775, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36398772445298877}} {"text": "function res = hlp_aggregatestructs(structs,defaultop,varargin)\n% Aggregate structs (recursively), using the given combiner operations.\n% Result = hlp_aggregatestructs(Structs,Default-Op,Field-Ops...)\n%\n% This results in a single 1x1 struct which has aggregated values in its fields (e.g., arrays, \n% averages, etc.). For a different use case, see hlp_superimposedata.\n%\n% In:\n% Structs : cell array of structs to be aggregated (recursively) into a single struct\n%\n% Default-Op : optional default combiner operation to execute for every field that is not itself a \n% struct; see notes for the format.\n%\n% Field-Ops : name-value pairs of field-specific ops; names can have dots to denote operations\n% that apply to subfields. field-specific ops that apply to fields that are\n% themselves structures become the default op for that sub-structure\n%\n% Out:\n% recursively merged structure.\n%\n% Notes:\n% If an operation cannot be applied, a sequence of fall-backs is silently applied. First,\n% concatenation is tried, then, replacement is tried (which never fails). Therefore,\n% function_handles are being concatenated up to 2008a, and replaced starting with 2008b.\n% Operations are specified in one of the following formats:\n% * 'cat': concatenate values horizontally using []\n% * 'replace': replace values by those of later structs (noncommutative)\n% * 'sum': sum up values\n% * 'mean': compute the mean value\n% * 'std': compute the standard deviation\n% * 'median': compute the median value\n% * 'random': pick a random value\n% * 'fillblanks': replace [] by values of later structs\n% * binary function: apply the function to aggregate pairs of values; applied in this order\n% f(f(f(first,second),third),fourth)...\n% * cell array of binary and unary function: apply the binary function to aggregate pairs of\n% values, then apply the unary function to finalize the result: functions {b,u} are applied in\n% the following order: u(b(b(b(first,second),third),fourth))\n%\n% Examples:\n% % calc the average of the respective field values, across structs\n% hlp_aggregatestructs({result1,result2,result3},'mean')\n%\n% % calc the std deviation of the respective field values, across structs\n% hlp_aggregatestructs({result1,result2,result3},'std')\n%\n% % concatenate the field values across structs\n% hlp_aggregatestructs({result1,result2,result3},'cat')\n%\n% % as before, but use different operations for a few fields\n% hlp_aggregatestructs({result1,result2,result3},'cat','myfield1','mean','myfield2.subfield','median')\n% \n% % use a custom combiner operation (here: product)\n% hlp_aggregatestructs({result1,result2,result3},@times)\n%\n% Christian Kothe, Swartz Center for Computational Neuroscience, UCSD\n% 2010-05-04\n\n% Copyright (C) Christian Kothe, SCCN, 2010, christian@sccn.ucsd.edu\n%\n% This program is free software; you can redistribute it and/or modify it under the terms of the GNU\n% General Public License as published by the Free Software Foundation; either version 2 of the\n% License, or (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without\n% even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\n% General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License along with this program; if not,\n% write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307\n% USA\n\nwarning off MATLAB:warn_r14_function_handle_transition\n\nif nargin < 2\n defaultop = 'cat'; end\nif ~iscell(structs)\n structs = {structs}; end\nfieldops = hlp_varargin2struct(varargin);\n\n% translate all ops (if they are specified as strings)\ndefaultop = translateop(defaultop);\nfieldops = translateop(fieldops);\n\n% aggregate, then finalize\nres = finalize(aggregate(structs,defaultop,fieldops),defaultop,fieldops);\n\n\nfunction res = aggregate(structs,defaultop,fieldops)\n% we skip empty records\nstructs = structs(~cellfun('isempty',structs));\n\n% for any struct array in the input, we first merge it recursively as if it were a cell array\nfor k=find(cellfun('length',structs)>1)\n structs{k} = hlp_aggregatestructs(structarray2cellarray(structs{k}),defaultop,fieldops); end\n\n% at this point, we should have a cell array of structs\nif ~isempty(structs)\n % we begin with the first struct\n res = structs{1};\n % and aggregate the remaining ones onto it\n for i=2:length(structs)\n si = structs{i};\n % proceeding field by field...\n for fn=fieldnames(si)'\n f = fn{1};\n % figure out which operation applies\n if isfield(fieldops,f)\n % a field-specific op applies\n if isstruct(fieldops.(f))\n % ... which is itself a struct\n fop = fieldops.(f);\n else\n op = fieldops.(f);\n end\n else\n % the default op applies\n op = defaultop;\n fop = fieldops;\n end\n \n % now process the field\n if ~isfield(res,f)\n % field is not yet in the aggregate: just assign\n res.(f) = si.(f);\n else\n % need to aggregate it\n if isstruct(res.(f)) && isstruct(si.(f))\n % both are a struct: recursively aggregate\n res.(f) = aggregate({res.(f),si.(f)},op,fop);\n else\n % they are not both structus\n try\n % try to apply the combiner op\n res.(f) = op{1}(res.(f),si.(f));\n catch\n % didn't work: try to concatenate as fallback\n try\n res.(f) = [res.(f),si.(f)];\n catch\n % didn't work: try to assign as fallback (dropping previous field)\n res.(f) = si.(f);\n end\n end\n end\n end\n end\n end\nelse\n % nothing to aggregate\n res = [];\nend\n\n\n\nfunction x = finalize(x,defaultop,fieldops)\n% proceed field by field...\nfor fn=fieldnames(x)'\n f = fn{1};\n % figure out which operation applies\n if ~isempty(fieldops) && isfield(fieldops,f)\n % a field-specific op applies\n if isstruct(fieldops.(f))\n % ... which is itself a struct\n fop = fieldops.(f);\n else\n op = fieldops.(f);\n end\n else\n % the default op applies\n op = defaultop;\n fop = fieldops;\n end\n try\n % now apply the finalizer\n if isstruct(x.(f))\n % we have a sub-struct: recurse\n x.(f) = finalize(x.(f),op,fop);\n else\n % we have a regular element: apply finalizer\n x.(f) = op{2}(x.(f));\n end\n catch\n % for empty structs, x.(f) produces no output\n end\nend\n\n\n\n% translate string ops into actual ops, add the default finalizer if missing\nfunction op = translateop(op)\nif isstruct(op)\n % recurse\n op = structfun(@translateop,op,'UniformOutput',false);\nelse\n % remap strings\n if ischar(op)\n switch op\n case 'cat'\n op = @(a,b)[a b];\n case 'replace'\n op = @(a,b)b;\n case 'sum'\n op = @(a,b)a+b;\n case 'mean'\n op = {@(a,b)[a b], @(x)mean(x)};\n case 'median'\n op = {@(a,b)[a b], @(x)median(x)};\n case 'std'\n op = {@(a,b)[a b], @(x)std(x)};\n case 'random'\n op = {@(a,b)[a b], @(x) x(min(length(x),ceil(eps+rand(1)*length(x))))};\n case 'fillblanks'\n op = @(a,b)quickif(isempty(a),b,a);\n otherwise\n error('Unsupported combiner operation specified: %s',op);\n end\n elseif ~isa(op,'function_handle')\n error('The given combiner operation must be either a string or a function handle, but was: %s',hlp_tostring(op,1000)); \n end\n % add finalizer if missing\n if ~iscell(op)\n op = {op,@(x)x}; end\nend\n\n\n\n% inefficiently turn a struct array into a cell array of structs\nfunction res = structarray2cellarray(arg)\nres = {};\nfor k=1:numel(arg)\n res = [res {arg(k)}]; end\n\n\n% for the 'fillblanks' translate op\nfunction val = quickif(cond,trueval,falseval)\nif cond\n val = trueval;\nelse\n val = falseval;\nend\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/BCILAB/code/helpers/hlp_aggregatestructs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.626124191181315, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3639679274608693}} {"text": "function handles = plotData3D(hObject, handles)\n\nplotDimensions = get(handles.lstPlotDimensions, 'Value');\n\nFigureTitle = 'Data';\n[handles, handles.figData] = openPlotFigure(hObject, handles, ...\n 'Data Plot (3D)', FigureTitle);\n\nview(3);\n\nscatter3(handles.Data(plotDimensions(1), :), ...\n handles.Data(plotDimensions(2), :), ...\n handles.Data(plotDimensions(3), :), ...\n getPlotMarkerSize(), ...\n ['k' getPlotMarkerStyle()]);\n \nhold off;\n\nguidata(hObject, handles);", "meta": {"author": "beckel", "repo": "nilm-eval", "sha": "83a2cd5fb911299cc267bd9998636934af781915", "save_path": "github-repos/MATLAB/beckel-nilm-eval", "path": "github-repos/MATLAB/beckel-nilm-eval/nilm-eval-83a2cd5fb911299cc267bd9998636934af781915/Matlab/lib/spectralClustering/files/GUI/funcs/plotFuncs/plotData3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.5813030906443133, "lm_q1q2_score": 0.3639679193499405}} {"text": "function [] = plotHammDist( jobIDs, taskIDs, jobNames, objIDs, doHourly )\n% View trace plots of hamming distance for sampler state at each\n% recorded iteration of the sampler chain. Useful for diagnosing\n% convergence and mixing rates.\n% ________________________________________________________________________\n\nif ~exist( 'objIDs','var')\n objIDs = 1:6;\nend\n\nfigure;\nset( gcf, 'Units', 'normalized', 'Position', [0.5 0.5 0.5 0.5] );\nif exist( 'jobNames', 'var' ) && ~isempty( jobNames )\n plotColors = get(0,'defaultAxesColorOrder');\n hold on;\nelse\n plotColors = get(0,'defaultAxesColorOrder');\n hold all;\nend\n\n\nfor jobID = jobIDs\n taskNames = {};\n \n doFirstTask = 1;\n for taskID = taskIDs\n DATA = loadSamplerOutput( jobID, taskID , {'times', 'A'} );\n if isnumeric(DATA) && DATA == -1\n continue;\n end\n \n times = DATA.times.Psi;\n \n Ts = DATA.A(end).HDist.Ts( objIDs );\n Hdist = zeros( 1, length(DATA.A ) );\n for ss = 1:length( DATA.A )\n objDists = DATA.A(ss).HDist.obj( objIDs );\n Hdist(ss) = sum( objDists .* Ts )/sum(Ts);\n end\n \n if exist( 'jobNames', 'var' ) && ~isempty( jobNames )\n jj = 1 + mod( find( jobID == jobIDs )-1, size(plotColors,1) );\n curColor = plotColors(jj,:);\n if doFirstTask;\n taskVis = 'on';\n doFirstTask = 0;\n else\n taskVis = 'off';\n end\n else\n taskNames{end+1} = num2str( taskID );\n jj = 1 + mod( find( taskID == taskIDs )-1, size(plotColors,1) );\n curColor = plotColors(jj,:);\n taskVis = 'on';\n end\n \n styleStr = '.-'; \n \n while length( times ) > 200\n times = times(1:2:end);\n Hdist = Hdist(1:2:end);\n end\n \n if doHourly\n times = times/3600;\n end\n \n plot( times, Hdist, styleStr, 'MarkerSize', 15, 'LineWidth', 2, 'HandleVisibility', taskVis, 'Color', curColor );\n \n end\nend\n\nif exist( 'jobNames', 'var' ) && ~isempty( jobNames )\n legend( jobNames , 'Location', 'SouthEast' );\nelse\n legend( taskNames, 'Location', 'SouthEast' );\nend\n\nylabel( 'Hamming Dist', 'FontSize', 18 );\n\nif doHourly\nxlabel ('CPU time (hours)', 'FontSize', 18);\nelse\nxlabel ('CPU time (sec)', 'FontSize', 18);\nend\ngrid on;\nset( gca, 'FontSize', 16 );\nend % main function\n", "meta": {"author": "michaelchughes", "repo": "NPBayesHMM", "sha": "22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd", "save_path": "github-repos/MATLAB/michaelchughes-NPBayesHMM", "path": "github-repos/MATLAB/michaelchughes-NPBayesHMM/NPBayesHMM-22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd/code/viz/plotHammDistVsTime.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5813030761371503, "lm_q2_score": 0.626124191181315, "lm_q1q2_score": 0.3639679183775836}} {"text": "function value = halton_base_check ( dim_num, base )\n\n%*****************************************************************************80\n%\n%% HALTON_BASE_CHECK is TRUE if BASE is legal.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 17 July 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer BASE(1:DIM_NUM), the Halton bases. \n% Each base should be greater than 1. Only the integer\n% part of a base is used.\n%\n% Output, logical VALUE.\n%\n if ( any ( base(1:dim_num) <= 1 ) )\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'HALTON_BASE_CHECK - Fatal error!\\n' );\n fprintf ( 1, ' At least one of the input bases is <= 1!\\n' );\n value = 0;\n else\n value = 1;\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/cvt/halton_base_check.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5156199157230157, "lm_q2_score": 0.7057850402140659, "lm_q1q2_score": 0.3639168229537419}} {"text": "classdef AGEMOEA < ALGORITHM\n% \n% Adaptive geometry estimation-based many-objective evolutionary algorithm\n\n%------------------------------- Reference --------------------------------\n% A. Panichella, An adaptive evolutionary algorithm based on non-euclidean\n% geometry for many-objective optimization, Proceedings of the Genetic and\n% Evolutionary Computation Conference, 2019, 595-603.\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n% This function is written by Annibale Panichella\n\n methods\n function main(Algorithm,Problem)\n %% Generate random population\n Population = Problem.Initialization();\n [~,FrontNo,CrowdDis] = EnvironmentalSelection(Population,Problem.N);\n\n %% Optimization\n while Algorithm.NotTerminated(Population)\n MatingPool = TournamentSelection(2,Problem.N,FrontNo,-CrowdDis);\n Offspring = OperatorGA(Problem,Population(MatingPool));\n [Population,FrontNo,CrowdDis] = EnvironmentalSelection([Population,Offspring],Problem.N);\n end\n end\n end\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/AGE-MOEA/AGEMOEA.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.705785040214066, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.36391682295374184}} {"text": "function s=v_lpcconv(from,to,x,y,np)\n%V_LPCCONV(from,to,x,y)->s convert between LPC parameter sets\n%\n% The output is a string that may be passed to eval(s)\n% x and y are optionally the input and output matrices\n% and np the new value of the order p.\n% with one frame stored per row. from and to are taken\n% from the following list which also gives the column dimension:\n%\n% 1 ar p+1 Autoregressive coevfficients: ar(1)=1 always.\n% 2 cc p Complex cepstral coefficients\n% 3 ls p Line spectrum pair frequencies (normalized Hz)\n% 4 zz p Z-plane roots\n% 5 ss p S-plane roots (normalized Hz)\n% 6 rf p Reflection coefficients (= -PARCOR coefs)\n% 7 ao p Area ratios\n% 8 aa p+2 Vocal tract areas: aa(p+2)=1 always\n% 9 rr p+1 Autocorrelation coefficients\n% 10 dl p DCT of log area function\n% 11 lo p Log area ratios\n% 12 la p+1 Log areas: la(1)=0 always\n% 13 ra p+1 Autocorrelation coefs of inverse filter\n% 14 ff p+2 Fourier transform of forward filter (all-pole)\n% 15 pf p+2 Power spectrum of forward filter (all-pole)\n% 16 gc p Gain and cos(w) of each formant\n% 17 im p+1 Impulse response of forward filter\n\n%\t Copyright (C) Mike Brookes 1998\n% Version: $Id: v_lpcconv.m 10865 2018-09-21 17:22:45Z dmb $\n%\n% VOICEBOX is a MATLAB toolbox for speech processing.\n% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You can obtain a copy of the GNU General Public License from\n% http://www.gnu.org/copyleft/gpl.html or by writing to\n% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nnm=['aa';'am';'ao';'ar';'cc';'db';'dl';'ff';'fq';'im';'is';'la';'lo';'ls';'pf';'ra';'rf';'rr';'ss';'zz';];\nnx=[...\n 0 17 3 17 17 17 7 17 0 17 17 17 17 17 17 17 17 17 17 17;...\n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...\n 17 17 0 17 17 17 17 17 0 17 17 17 17 17 17 17 17 17 17 17;...\n 17 18 17 0 5 6 17 8 0 10 17 17 17 14 15 16 17 18 20 20;...\n 4 4 4 4 5 6 4 4 0 4 4 4 4 4 15 4 4 4 4 4;...\n 15 15 15 15 15 0 15 15 0 15 15 15 15 15 15 15 15 15 15 15;...\n 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1;...\n 15 15 15 15 15 15 15 0 0 15 15 15 15 15 15 15 15 15 15 15;...\n 20 20 20 20 20 20 20 20 0 20 20 20 20 20 20 20 20 20 20 20;...\n 4 4 4 4 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 4;...\n 17 17 17 17 17 17 17 17 0 17 0 17 17 17 17 17 17 17 17 17;...\n 17 17 17 17 17 17 17 17 0 17 17 0 17 17 17 17 17 17 17 17;...\n 17 17 17 17 17 17 17 17 0 17 17 17 0 17 17 17 17 17 17 17;...\n 4 4 4 4 4 4 4 4 0 4 4 4 4 0 4 4 4 4 4 4;...\n 5 18 5 5 5 5 5 5 0 5 5 5 5 5 0 5 5 18 5 5;...\n 15 15 15 15 15 15 15 15 0 15 15 15 15 15 15 0 15 15 15 15;...\n 1 18 3 4 4 4 1 4 0 4 11 12 13 4 4 4 0 18 4 4;...\n 4 2 4 4 4 4 4 4 0 4 4 4 4 4 4 4 4 0 4 4;...\n 20 20 20 20 20 20 20 20 0 20 20 20 20 20 20 20 20 20 0 20;...\n 4 4 4 4 5 4 4 4 0 4 4 4 4 4 4 4 4 4 19 0;...\n];\nna=size(nm,1);\nb=256*nm(:,1)+nm(:,2);\njf=find(b==256*from(1)+from(2));\njt=find(b==256*to(1)+to(2));\nif length([jf jt])~=2\n [x,idx]=sort(b);\n error(sprintf('lpcxx2yy types are: %s',[nm(idx,:)';' '*ones(1,na)]));\nend\nif nargin<3 s=nm(jf,:); else s=x; end\nwhile jf ~= jt\n jn=nx(jf,jt);\n if jn==0\n error(sprintf('cannot convert between %s and %s',nm(jf,:),nm(jt,:)));\n end\n s=sprintf('lpc%s2%s(%s)',nm(jf,:),nm(jn,:),s);\n jf=jn;\n end\nif nargin<4 sn=nm(jt,:); else sn=y; end\ns=sprintf('%s=%s;',sn,s);\n \n\n\n", "meta": {"author": "ImperialCollegeLondon", "repo": "sap-voicebox", "sha": "28f2654b7584f724277ec81de533debe28ff51ac", "save_path": "github-repos/MATLAB/ImperialCollegeLondon-sap-voicebox", "path": "github-repos/MATLAB/ImperialCollegeLondon-sap-voicebox/sap-voicebox-28f2654b7584f724277ec81de533debe28ff51ac/voicebox/v_lpcconv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5156199157230157, "lm_q1q2_score": 0.363916816571886}} {"text": "function net = make_net(opts)\n% MAKE_NET constructs the network up to the output.\n% Loss functions are not added.\n%\n% Options include:\n% Architecture to use for initial branches of network.\n% Whether to use scores or bounding box regression.\n% Whether to use xcorr or concat layer to join.\n% Architecture to put after concat (1x1 convs).\n\nswitch opts.branch.type\n case 'alexnet'\n [branch1, branch2] = make_branches_alexnet(opts);\n otherwise\n error('Unknown branch type')\nend\n[repr_sz, repr_stride] = output_size(branch1, [opts.exemplarSize*[1 1], 3, 1]);\nswitch opts.join.method\n case 'xcorr'\n [join, final] = make_join_xcorr(opts);\n case 'corrfilt'\n [join, final] = make_join_corr_filt(opts, repr_sz, repr_stride);\n otherwise\n error('Unknown join method')\nend\n\nnet = make_siamese(branch1, branch2, join, final, ...\n {'exemplar', 'instance'}, 'score', ...\n 'share_all', opts.share_params);\n\nend\n\nfunction [branch1, branch2] = make_branches_alexnet(opts)\n branch_opts.last_layer = 'conv5';\n branch_opts.num_out = [96, 256, 384, 384, 256];\n branch_opts.num_in = [ 3, 48, 256, 192, 192];\n branch_opts.conv_stride = [ 2, 1, 1, 1, 1];\n branch_opts.pool_stride = [ 2, 2];\n branch_opts.batchNormalization = true;\n branch_opts = vl_argparse(branch_opts, {opts.branch.conf});\n\n branch_opts.exemplarSize = opts.exemplarSize * [1 1];\n branch_opts.instanceSize = opts.instanceSize * [1 1];\n branch_opts.weightInitMethod = opts.init.weightInitMethod;\n branch_opts.scale = opts.init.scale;\n branch_opts.initBias = opts.init.initBias;\n\n f = @() make_branch_alexnet(branch_opts);\n branch1 = f();\n branch2 = f();\nend\n\n\nfunction [join, final] = make_join_xcorr(opts)\n join_opts.finalBatchNorm = true;\n join_opts.adjustGainInit = 1;\n join_opts.adjustBiasInit = 0;\n % Learning rates ignored if batch-norm is enabled.\n join_opts.adjustGainLR = 0;\n join_opts.adjustBiasLR = 1;\n join_opts = vl_argparse(join_opts, {opts.join.conf});\n\n join = dagnn.DagNN();\n join.addLayer('xcorr', XCorr(), {'in1', 'in2'}, {'out'});\n\n % Create adjust layer.\n final.layers = {};\n convOpts = {'CudnnWorkspaceLimit', 1024*1024*1024};\n if join_opts.finalBatchNorm\n % Batch-norm layer only.\n final.layers{end+1} = struct(...\n 'type', 'bnorm', 'name', 'adjust_bn', ...\n 'weights', {{single(join_opts.adjustGainInit), ...\n single(join_opts.adjustBiasInit), ...\n zeros(1, 2, 'single')}}, ...\n 'learningRate', [2 1 0.3], ...\n 'weightDecay', [0 0]);\n else\n % Linear layer only.\n final.layers{end+1} = struct(...\n 'type', 'conv', 'name', 'adjust', ...\n 'weights', {{single(join_opts.adjustGainInit), ...\n single(join_opts.adjustBiasInit)}}, ...\n 'learningRate', [join_opts.adjustGainLR, join_opts.adjustBiasLR], ...\n 'weightDecay', [1 0], ...\n 'opts', {convOpts});\n end\nend\n\nfunction [join, final] = make_join_corr_filt(opts, in_sz, in_stride)\n join_opts.finalBatchNorm = false;\n join_opts.const_cf = false;\n join_opts.lambda = nan;\n join_opts.window = 'not-set';\n join_opts.window_lr = 0;\n join_opts.bias = false;\n join_opts.adjust = true;\n join_opts.sigma = 0;\n join_opts.target_lr = 0;\n \n join_opts.adjustGainInit = 1;\n join_opts.adjustBiasInit = 0;\n % Learning rates ignored if batch-norm is enabled.\n join_opts.adjustGainLR = 0;\n join_opts.adjustBiasLR = 1;\n \n join_opts = vl_argparse(join_opts, {opts.join.conf});\n convOpts = {'CudnnWorkspaceLimit', 1024*1024*1024};\n\n join = dagnn.DagNN();\n % Apply window before correlation filter.\n join.addLayer('cf_window', MulConst(), ...\n {'in1'}, {'cf_example'}, {'window'});\n p = join.getParamIndex('window');\n join.params(p).value = single(make_window(in_sz, join_opts.window));\n join.params(p).learningRate = join_opts.window_lr;\n\n % Establish whether there is a bias parameter to the XCorr.\n cf_outputs = {'tmpl'};\n xcorr_inputs = {'tmpl_cropped', 'in2'};\n\n % learnt alphas instead of CF for Adaptation Experiment\n if join_opts.const_cf\n join.addLayer('circ', ConvCircScalar(), ...\n {'cf_example'}, cf_outputs, {'circf'});\n p = join.getParamIndex('circf');\n join.params(p).value = init_weight(opts.init, in_sz(1), in_sz(2), 1, 1, 'single');\n else\n % Add a correlation filter before the XCorr in branch 1.\n if join_opts.bias\n % Connect correlation filter bias to xcorr bias.\n cf_outputs = [cf_outputs, {'bias'}];\n xcorr_inputs = [xcorr_inputs, {'bias'}];\n end\n join.addLayer('cf', ...\n CorrFilter('lambda', join_opts.lambda, ...\n 'bias', join_opts.bias), ...\n {'cf_example'}, cf_outputs, {'cf_target'});\n % Set correlation filter target.\n p = join.getParamIndex('cf_target');\n end\n \n join.addLayer('crop_z', ...\n CropMargin('margin', 16), ...\n cf_outputs, xcorr_inputs{1});\n \n % Cross-correlate template with features of other image.\n join.addLayer('xcorr', XCorr('bias', join_opts.bias), ...\n xcorr_inputs, {'out'});\n\n\n assert(join_opts.sigma > 0);\n join.params(p).value = single(gaussian_response(in_sz, join_opts.sigma/in_stride));\n join.params(p).learningRate = join_opts.target_lr;\n\n % Add scalar layer to calibrate corr-filt scores for loss function.\n final.layers = {};\n if join_opts.adjust\n if join_opts.finalBatchNorm\n % Batch-norm layer only.\n final.layers{end+1} = struct(...\n 'type', 'bnorm', 'name', 'adjust_bn', ...\n 'weights', {{single(join_opts.adjustGainInit), ...\n single(join_opts.adjustBiasInit), ...\n zeros(1, 2, 'single')}}, ...\n 'learningRate', [2 1 0.3], ...\n 'weightDecay', [0 0]);\n else\n final.layers{end+1} = struct(...\n 'type', 'conv', 'name', 'adjust', ...\n 'weights', {{single(1), single(-0.5)}}, ...\n 'learningRate', [1, 2], ...\n 'weightDecay', [0 0], ...\n 'opts', {convOpts}); \n end \n end\nend\n\nfunction num_out = output_dim(opts)\n % TODO: Restructure options so that this code does not need to know about\n % different types of loss function?\n switch opts.loss.type\n case {'simple', 'structured'}\n num_out = 1;\n case 'regression'\n assert(opts.instanceSize==opts.exemplarSize, 'Exemplar and Instance should have the same size.');\n assert(opts.negatives==0 && opts.hardNegatives==0, 'No negative pairs for the moment.');\n num_out = 4;\n otherwise\n error('unknown loss');\n end\nend\n\nfunction [out_sz, out_stride] = output_size(net, in_sz)\n % Assume that net has 1 input and 1 output.\n if isa(net, 'dagnn.DagNN')\n input = only(net.getInputs());\n output = only(net.getOutputs());\n sizes = net.getVarSizes({input, in_sz});\n out_sz = sizes{net.getVarIndex(output)}(1:3);\n rfs = net.getVarReceptiveFields(input);\n out_stride = rfs(net.getVarIndex(output)).stride;\n else\n info = vl_simplenn_display(net, 'inputSize', in_sz);\n out_sz = info.dataSize(1:3, end);\n out_stride = info.receptiveFieldStride(:, end);\n end\n out_sz = reshape(out_sz, 1, []);\n assert(all(out_stride == out_stride(1)));\n out_stride = out_stride(1);\nend\n", "meta": {"author": "bertinetto", "repo": "cfnet", "sha": "971e7922b7f0f9140e0d995b598e8d97dece277c", "save_path": "github-repos/MATLAB/bertinetto-cfnet", "path": "github-repos/MATLAB/bertinetto-cfnet/cfnet-971e7922b7f0f9140e0d995b598e8d97dece277c/src/training/make_net.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850154599563, "lm_q2_score": 0.5156199157230156, "lm_q1q2_score": 0.3639168101900299}} {"text": "function varargout = efficency(X,P)\n% function [con_eff,hrf_eff,X,hrfX,P] = efficency(X,PARAMS)\n% a useful summary function for a design, incorporating tests of contrasts and of HRF shape estimation\n%\n% X\n% either a design vector (condition function) with integers indicating onsets of conditions\n% or an already-constructed design matrix\n%\n% PARAMS structure contains inputs\n% Optional fields:\n% contrasts required for testing contrast efficiency; see calcEfficiency.m\n% Vi intrinsic autocorrelation matrix; empty assumes identity matrix (independence)\n% S smoothing matrix; empty for no smoothing\n% HRF canonical hemodynamic response function; empty assumes SPM's canonical HRF\n% should be in resolution of .1 s per element\n% nonlint saturation threshold (ceiling) for predictors; simple nonlinearity model\n% HRFtime number of s to estimate HRF shape for, in FIR model.\n% delta You must enter this if you want HRF shape estimate eff and you enter a model matrix X\n% Delta is n x m, with columns for conditions, made of ones and zeros, in TR-length time bins\n%\n% Required fields for condition function (vector) input:\n% ISI sampling resolution of design vector, as time between elements in s\n% TR sampling resolution of final design matrix (volumes acquired), in s\n%\n% Functions Called: (from OptimizeDesign GA toolbox)\n% designvector2model.m\n% tor_make_deconv_mtx2.m\n% calcEfficiency.m\n\nif ~isfield(P,'contrasts'), P.contrasts = eye(size(X,2));, end\nif ~isfield(P,'HRFtime'), P.HRFtime = 30;, end\nif isfield(P,'delta'), delta = P.delta;, end\nif isfield(P,'TR'), TR = P.TR;, end\nif isfield(P,'ISI'), ISI = P.ISI;, end\n\n% -------------------------------------------------------------------------------------------------\n% * Set up design matrix\n% -------------------------------------------------------------------------------------------------\n\n% For condition function\nif any(size(X) == 1) \n \n if ~isfield(P,'ISI'), error('ISI is required field in PARAMS input'), end\n if ~isfield(P,'TR'), error('TR is required field in PARAMS input'), end\n if ~isfield(P,'S'), P.S = [];, end\n if ~isfield(P,'HRF'), P.HRF = spm_hrf(.1);, HRF = HRF ./ max(HRF);, end\n if ~isfield(P,'nonlint'), P.nonlint = [];, end\n\n numsamps = ceil(length(X)*P.ISI/P.TR);\n \n if nargout > 1\n delta = [];\n for i = 1:max(double(X))\n delta(:,i) = (X == i);\n end\n end\n \n X = designvector2model(X,P.ISI,P.HRF,P.TR,numsamps,P.nonlint,P.S);\n \n if ~isfield(P,'Vi'), P.Vi = eye(size(X,1));, end\n \n\n% For a design matrix\nelse \n if ~isfield(P,'S'), P.S = [];, end\n if ~isfield(P,'Vi'), P.Vi = eye(size(X,1));, end\n \nend\n\n\n\n\n\n\nif ~isempty(P.S), svi = P.S * P.Vi;, else, svi = P.Vi;, end\n\nif ~isempty(P.contrasts)\n % -------------------------------------------------------------------------------------------------\n\t\t% * efficiency\n\t\t% -------------------------------------------------------------------------------------------------\n\n \txtxitx = pinv(X); \t\t% inv(X'S'SX)*(SX)'; pseudoinv of (S*X)\n contrastweights = ones(1,size(P.contrasts,1));\n\t\t\t[dummy,varargout{1}] = calcEfficiency(contrastweights,P.contrasts,xtxitx,svi);\n\t\t \nelse\n varargout{1} = [];\nend\n \nif isfield(P,'ISI') & isfield(P,'TR') & nargout > 1 & exist('delta') == 1\n \n % -------------------------------------------------------------------------------------------------\n\t\t% * HRF shape estimation efficiency\n\t\t% -------------------------------------------------------------------------------------------------\n\n\t\t\t[X2] = tor_make_deconv_mtx3(delta,round(P.HRFtime / P.TR),P.TR / P.ISI);\n if ~isempty(P.S), X2 = P.S * X2;,end\n \n \txtxitx = pinv(X2); \t\t% inv(X'S'SX)*(SX)'; pseudoinv of (S*X)\n\t\t\t[dummy,varargout{2}] = calcEfficiency([],[],xtxitx,svi);\n\nelseif nargout > 1\n disp(['Missing ISI or TR field, or already-constructed model entered: HRF efficiency not calculated.'])\n varargout{2} = [];\nend\n\nif nargout > 2\n varargout{3} = X; varargout{4} = X2;\n P.hrfsamples = round(P.HRFtime / P.TR);\n P.hrftimeres = P.TR / P.ISI;\n varargout{5} = P;\nend\n\nreturn\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/core_functions/efficiency.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7826624789529375, "lm_q2_score": 0.4649015713733885, "lm_q1q2_score": 0.3638610163202122}} {"text": "function [s, cfg] = ft_statfun_roc(cfg, dat, design)\n\n% FT_STATFUN_ROC computes the area under the curve (AUC) of the Receiver Operator\n% Characteristic (ROC). This is a measure of the separability of the data observed in\n% two conditions. The AUC can be used for statistical testing whether the two\n% conditions can be distinguished on the basis of the data.\n%\n% Use this function by calling one of the high-level statistics functions as\n% [stat] = ft_timelockstatistics(cfg, timelock1, timelock2, ...)\n% [stat] = ft_freqstatistics(cfg, freq1, freq2, ...)\n% [stat] = ft_sourcestatistics(cfg, source1, source2, ...)\n% with the following configuration option\n% cfg.statistic = 'ft_statfun_roc'\n%\n% The experimental design is specified as:\n% cfg.ivar = independent variable, row number of the design that contains the labels of the conditions to be compared (default=1)\n%\n% The labels for the independent variable should be specified as the number 1 and 2.\n%\n% Note that this statfun performs a one sided test in which condition \"1\" is assumed\n% to be larger than condition \"2\". This function does not compute an analytic\n% probability of condition \"1\" being larger than condition \"2\", but can be used in a\n% randomization test, including clustering.\n%\n% A low-level example with 10 channel-time-frequency points and 1000 observations per\n% condition goes like this:\n% dat1 = randn(10,1000) + 1;\n% dat2 = randn(10,1000);\n% design = [1*ones(1,1000) 2*ones(1,1000)];\n% stat = ft_statfun_roc([], [dat1 dat2], design);\n%\n% See also FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS\n\n% Copyright (C) 2008, Robert Oostenveld\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% set the defaults\ncfg.ivar = ft_getopt(cfg, 'ivar', 1);\n\n% on-the-fly log transformation is not supported any more, please use FT_MATH instead\ncfg = ft_checkconfig(cfg, 'forbidden', 'logtransform');\ncfg = ft_checkconfig(cfg, 'forbidden', 'numbins');\n\n% start with a quick test to see whether there appear to be NaNs\nif any(isnan(dat(1,:)))\n % exclude trials that contain NaNs for all observed data points\n sel = all(isnan(dat),1);\n dat = dat(:,~sel);\n design = design(:,~sel);\nend\n\n% logical indexing is faster than using find(...)\nselA = (design(cfg.ivar,:)==1);\nselB = (design(cfg.ivar,:)==2);\n% select the data in the two classes\ndatA = dat(:, selA);\ndatB = dat(:, selB);\n\nnobs = size(dat,1);\nna = size(datA,2);\nnb = size(datB,2);\nauc = zeros(nobs, 1);\n\nfor k = 1:nobs\n % compute the area under the curve for each channel/time/frequency\n a = datA(k,:);\n b = datB(k,:);\n\n % to speed up the AUC, the critical value is determined by the actual\n % values in class B, which also ensures a regular sampling of the False Alarms\n b = sort(b);\n\n ca = zeros(nb+1,1);\n ib = zeros(nb+1,1);\n % cb = zeros(nb+1,1);\n % ia = zeros(nb+1,1);\n\n for i=1:nb\n % for the first approach below, the critval could also be choosen based on e.g. linspace(min,max,n)\n critval = b(i);\n\n % for each of the two distributions, determine the number of correct and incorrect assignments given the critical value\n % ca(i) = sum(a>=critval);\n % ib(i) = sum(b>=critval);\n % cb(i) = sum(b=critval); % correct assignments to class A\n ib(i) = nb-i+1; % incorrect assignments to class B\n end\n\n % add the end point\n ca(end) = 0;\n ib(end) = 0;\n % cb(end) = nb;\n % ia(end) = na;\n\n hits = ca/na;\n fa = ib/nb;\n\n % the numerical integration is faster if the points are sorted\n hits = fliplr(hits);\n fa = fliplr(fa);\n\n if false\n % this part is optional and should only be used when exploring the data\n figure\n plot(fa, hits, '.-')\n xlabel('false positive');\n ylabel('true positive');\n title('ROC-curve');\n end\n\n % compute the area under the curve using numerical integration\n auc(k) = numint(fa, hits);\n\nend\n\n% return the area under the curve as the statistic of interest\ns.stat = auc;\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% NUMINT computes a numerical integral of a set of sampled points using\n% linear interpolation. Alugh the algorithm works for irregularly sampled points\n% along the x-axis, it will perform best for regularly sampled points\n%\n% Use as\n% z = numint(x, y)\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction z = numint(x, y)\nif ~all(diff(x)>=0)\n % ensure that the points are sorted along the x-axis\n [x, i] = sort(x);\n y = y(i);\nend\nn = length(x);\nz = 0;\nfor i=1:(n-1)\n x0 = x(i);\n y0 = y(i);\n dx = x(i+1)-x(i);\n dy = y(i+1)-y(i);\n z = z + (y0 * dx) + (dy*dx/2);\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/statfun/ft_statfun_roc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410572017153, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3638053464556831}} {"text": "% FAST_NONMAX perform non-maximal suppression on FAST features.\n%\n% nonmax = FAST_NONMAX(image, threshold, FAST_CORNER_DETECT_9(image, threshold));\n% returns a list of nonmaximally suppressed corners with the X coordinate\n% in nonmax(:,1) and Y in nonmax(:,2).\n%\n% If you use this in published work, please cite:\n% Fusing Points and Lines for High Performance Tracking, E. Rosten and T. Drummond, ICCV 2005\n% Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006\n% The Bibtex entries are:\n% \n% @inproceedings{rosten_2005_tracking,\n% title = \"Fusing points and lines for high performance tracking.\",\n% author = \"Edward Rosten and Tom Drummond\",\n% year = \"2005\",\n% month = \"October\",\n% pages = \"1508--1511\",\n% volume = \"2\",\n% booktitle = \"IEEE International Conference on Computer Vision\",\n% notes = \"Oral presentation\",\n% url = \"http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.pdf\"\n% }\n% \n% @inproceedings{rosten_2006_machine,\n% title = \"Machine learning for high-speed corner detection\",\n% author = \"Edward Rosten and Tom Drummond\",\n% year = \"2006\",\n% month = \"May\",\n% booktitle = \"European Conference on Computer Vision (to appear)\",\n% notes = \"Poster presentation\",\n% url = \"http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf\"\n% }\n%\n%\n%\n% See also FAST_CORNER_DETECT_9, FAST_CORNER_DETECT_10\n% FAST_CORNER_DETECT_11, FAST_CORNER_DETECT_12\nfunction ret = fast_nonmax(im, barrier, c)\n\tsz = size(im);\n\tysize = sz(1);\n\t\n\t\n\t% x, y\n\tdir=[\t0,3\n\t\t\t1,3\n\t\t\t2,2\n\t\t\t3,1\n\t\t\t3,0\n\t\t\t3,-1\n\t\t\t2,-2\n\t\t\t1,-3\n\t\t\t0,-3\n\t\t\t-1,-3\n\t\t\t-2,-2\n\t\t\t-3,-1\n\t\t\t-3,0\n\t\t\t-3,1\n\t\t\t-2,2\n\t\t\t-1,3];\n\n\tdir = dir(:,2) + dir(:,1) * ysize;\n\tcentres = c(:,2) + (c(:,1)-1) * ysize;\n\n\t%First pass: compute scores for all of the pixels:\n\tscores = zeros(sz(1) * sz(2), 1);\n\t\t\n\t\n\tfor i=1:length(centres)\n\n\t\tp1 = im(centres(i)+dir) -( im(centres(i)) + barrier);\n\t\tpos = sum(p1 .* (p1 > 0));\n\t\tn1 = im(centres(i)) - barrier - im(centres(i)+dir);\n\t\tneg = sum(n1 .* (n1 > 0));\n\n\t\tscores(centres(i)) = max([pos neg]);\n\tend\n\n\t\n\tcs = zeros(length(centres),1);\n\t\n\tup = -1;\n\tdown = 1;\n\tleft =-ysize;\n\tright = ysize;\n\n\t%second pass: get local maxima\n\tfor i=1:length(centres)\n\t\tp = centres(i);\n\t\tsquare=p + [ up down left right up+left up+right down+left down+right];\n\t\t\n\t\tcs(i) = (sum(scores(p) >= scores(square)) == 8);\n\tend\n\t\n\t%Get the maxima positions\n\tmaximas = centres(find(cs));\n\n\tret = zeros(length(maximas), 2);\t\n\n\tret(:,1) = 1 + floor(maximas / ysize);\n\tret(:,2) = mod(maximas, ysize);\n", "meta": {"author": "JzHuai0108", "repo": "ekfmonoslam", "sha": "443f6be744732453cdb90679abcaf5c962a6295e", "save_path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam", "path": "github-repos/MATLAB/JzHuai0108-ekfmonoslam/ekfmonoslam-443f6be744732453cdb90679abcaf5c962a6295e/EKF_monoSLAM_1pRANSAC/matlab_code/fast-matlab-src/fast_nonmax.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.546738151984614, "lm_q1q2_score": 0.36380533920028246}} {"text": "function [pos, tri] = remove_double_vertices(pos, tri)\n\n% REMOVE_DOUBLE_VERTICES removes double vertices from a triangular, tetrahedral or\n% hexahedral mesh, renumbering the vertex-indices for the elements.\n%\n% Use as\n% [pos, tri] = remove_double_vertices(pos, tri)\n% [pos, tet] = remove_double_vertices(pos, tet)\n% [pos, hex] = remove_double_vertices(pos, hex)\n%\n% See also REMOVE_VERTICES\n\n% Copyright (C) 2004-2022, Robert Oostenveld and Jan-Mathijs Schoffelen\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\nnpos = size(pos, 1);\n[dum, keeppos, i2] = unique(pos, 'rows');\nclear dum\n\nnumb = zeros(1,npos);\nnumb(keeppos) = 1:length(keeppos);\n\n% re-index the indices in tri\ntri = keeppos(i2(tri));\ntri = numb(tri);\n\n% remove the vertices and triangles\npos = pos(keeppos, :);\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/private/remove_double_vertices.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5467381519846138, "lm_q1q2_score": 0.3638053392002824}} {"text": "function [boolval, faxis] = checkfreq(varargin)\n\n% last input is always the required string\ntol = varargin{end};\nrequired = varargin{end-1};\nvarargin = varargin(1:end-2);\n\nNdata = numel(varargin);\nNfreq = zeros(1,Ndata);\nfaxis = zeros(1,0);\nfor i=1:Ndata\n Nfreq(i) = numel(varargin{i}.freq);\n faxis = [faxis;varargin{i}.freq(:)];\nend\n\nif strcmp(required, 'unique')\n boolval = numel(unique(faxis))==numel(faxis) && ~all(isnan(faxis));\n % the second condition is included when the freq is set to dummy nan\nelseif strcmp(required, 'identical')\n % the number of freq bins needs at least to be the same across\n % inputs\n boolval = all(Nfreq==Nfreq(1));\n if boolval\n % then check whether the axes are equal\n faxis = reshape(faxis, Nfreq(1), []);\n boolval = all(all(abs(faxis - repmat(faxis(:,1), 1, Ndata))h\n cw = h/tHeight*tWidth;\n if cw.\n%\n% $Id$\n\nft_hastoolbox('mvpa-light', 1);\n\n% do a sanity check on the input data\nassert(isnumeric(dat), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead');\nassert(isnumeric(design), 'this function requires numeric data as input, you probably want to use FT_TIMELOCKSTATISTICS, FT_FREQSTATISTICS or FT_SOURCESTATISTICS instead');\n\n% cfg: set defaults\ncfg.searchlight = ft_getopt(cfg, 'searchlight', 'no');\ncfg.timextime = ft_getopt(cfg, 'timextime', 'no');\ncfg.mvpa = ft_getopt(cfg, 'mvpa', []);\ncfg.mvpa.metric = ft_getopt(cfg.mvpa, 'metric', 'accuracy');\ncfg.mvpa.feedback = ft_getopt(cfg.mvpa, 'feedback', 'yes');\ncfg.mvpa.neighbours = ft_getopt(cfg.mvpa, 'neighbours', []);\n\n% flip dimensions such that the number of trials comes first\ndat = dat';\n\n% if cfg.dim has two entries which are non-singleton then the data has been\n% 3D before. We must reshape it from 2D to 3D to run it in MVPA-Light\ndata_is_3D = (numel(cfg.dim) > 1 && all(cfg.dim > 1)); % checks whether data was 3D before being reshaped\nif data_is_3D\n dat = reshape(dat, size(dat,1), cfg.dim(1), cfg.dim(2));\nend\n\ny = design;\n\n%% perform sanity checks on parameters\nif istrue(cfg.timextime) && istrue(cfg.searchlight)\n ft_error('you should not set timextime = ''yes'' and searchlight = ''yes'' simultaneously')\nend\n\n% timextime = 'yes' but data is not 3D we should change timextime to 'no'\nif istrue(cfg.timextime) && ~data_is_3D\n ft_warning('timextime = ''yes'' but data has no time dimension, setting timextime = ''no''');\n cfg.timextime = 'no';\nend\n\nlabel = [];\ndim = [];\ndimord = [];\n\n%% Call MVPA-Light\n\nif strcmp(cfg.searchlight, 'yes')\n % --- searchlight analysis ---\n\n if isstruct(cfg.mvpa.neighbours)\n cfg.mvpa.neighbours = channelconnectivity(struct('neighbours',cfg.mvpa.neighbours, 'channel', {cfg.channel}));\n end\n [perf, result] = mv_searchlight(cfg.mvpa, dat, y);\n \n % this preserves any spatial dimension, so no adjustment is done to a\n % channel list, if present\n if isfield(cfg, 'channel')\n label = cfg.channel;\n end\n\n if isfield(cfg, 'dim')\n dim = cfg.dim;\n end\n\nelseif strcmp(cfg.timextime, 'yes')\n % --- time x time generalisation ---\n [perf, result] = mv_classify_timextime(cfg.mvpa, dat, y);\n\n % this does note preserve any spatial dimension, so label should be\n % adjusted\n label = squeezelabel(label, cfg);\n dim = squeezedim(dim, cfg);\n dimord = 'time_time';\n\nelseif data_is_3D\n % --- classification across time ---\n [perf, result] = mv_classify_across_time(cfg.mvpa, dat, y);\n\n % this does note preserve any spatial dimension, so label should be\n % adjusted\n label = squeezelabel(label, cfg);\n dim = squeezedim(dim, cfg);\n\nelse\n % --- data has no time dimension, perform only cross-validation ---\n [perf, result] = mv_crossvalidate(cfg.mvpa, dat, y);\n\n % this does note preserve any spatial dimension, so label should be\n % adjusted\n label = squeezelabel(label, cfg);\n dim = squeezedim(dim, cfg);\n\nend\n\n%% setup stat struct\nstat = [];\nif ~iscell(cfg.mvpa.metric), cfg.mvpa.metric = {cfg.mvpa.metric}; end\nif ~iscell(perf), perf = {perf}; end\nfor mm=1:numel(perf)\n\n % Performance metric\n stat.(cfg.mvpa.metric{mm}) = perf{mm};\n\n % Std of performance\n if iscell(result.perf_std)\n stat.([cfg.mvpa.metric{mm} '_std']) = result.perf_std{mm};\n else\n stat.([cfg.mvpa.metric{mm} '_std']) = result.perf_std;\n end\nend\n\n% return the MVPA-Light result struct as well\nstat.mvpa = result;\n\nif ~isempty(label)\n stat.label = label;\nend\n\nif ~isempty(dim)\n stat.dim = dim;\nend\n\nif ~isempty(dimord)\n stat.dimord = dimord;\nend\n\nfunction label = squeezelabel(label, cfg)\n\nif isfield(cfg, 'channel')\n label = sprintf('combined(%s)', sprintf('%s',cfg.channel{:}));\nend\n\nfunction dim = squeezedim(dim, cfg)\n\nif isfield(cfg, 'dim')\n dim = cfg.dim;\n dim(1) = 1;\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/external/fieldtrip/ft_statistics_mvpa.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7956581000631542, "lm_q2_score": 0.4571367168274948, "lm_q1q2_score": 0.3637245315800726}} {"text": "function f = sinh(f)\n%SINH Hyperbolic sine of a CHEBFUN3T object.\n\n% Copyright 2017 by The University of Oxford and The Chebfun Developers.\n% See http://www.chebfun.org/ for Chebfun information.\n\n% Empty check: \nif ( isempty(f) )\n return\nend \n\nop = @(x,y,z) sinh(feval(f, x, y, z)); % Resample.\nf = chebfun3t(op, f.domain); % Call constructor. \n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/@chebfun3t/sinh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.36369191688776287}} {"text": "function au_qmr_ilu_s_i(p)\n%\n% Generates the data used in 'au_qmr_ilu_s'. Data are stored in global\n% variables.\n% \n% NOTE that 'au_qmr_ilu_m_i' must be called before calling this routine.\n% \n% Calling sequence:\n%\n% au_qmr_ilu_s_i(p)\n%\n% Input:\n%\n% p vector containing the ADI shift parameters p(i).\n%\n% Remarks:\n% \n% This routine has access to the matrix A and some other data, which \n% must be provided by the routine 'au_qmr_ilu_m_i',\n%\n% The real parts of the entries of p must be negative.\n%\n%\n% LYAPACK 1.0 (Thilo Penzl, August 1999)\n\nif nargin~=1\n error('Wrong number of input arguments.');\nend\n\nif any(real(p)>=0)\n error('Real parts of entries of p must be negative!');\nend\n\nl = length(p);\n\nglobal LP_A LP_P LP_MC LP_TOL_ILU LP_INFO_QMR\n\nif ~length(LP_A) | ~length(LP_MC) | ~length(LP_TOL_ILU) | ~length(LP_INFO_QMR)\n error('This routine needs global data which must be generated by calling ''au_qmr_ilu_m_i'' first.');\nend \n\nn = size(LP_A,1);\n\nLP_P = p;\n \nif LP_MC=='C' \n\n for i = 1:l\n\n eval(lp_e( 'global LP_L',i,' LP_U',i ));\n\n eval(lp_e( '[LP_L',i,',LP_U',i,'] = luinc(LP_A+p(i)*speye(n),LP_TOL_ILU);' ));\n \n%\n% This shows the amount of fill-in created by the ILU preconditioner:\n%\n\n if LP_INFO_QMR >= 5\n nnA = nnz(LP_A);\n eval(lp_e( 'nnLU = nnz(LP_L',i,')+nnz(LP_U',i,');' )); \n disp(sprintf('ILU-Ratio (nnz(L)+nnz(U))/nnz(A) = %6g',nnLU/nnA)); \n end\n end\n\nend\n\n\n\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/21-lyapack/lyapack/usfs/au_qmr_ilu_s_i.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6297746074044134, "lm_q2_score": 0.5774953651858117, "lm_q1q2_score": 0.36369191688776287}} {"text": "function [params, names] = vargpTimeDynamicsExtractParam(model)\n\n% VARGPTIMEDYNAMICSEXTRACTPARAM Extract parameters from the GP time dynamics model.\n%\n%\tDescription:\n%\n%\tPARAMS = VARGPTIMEDYNAMICSEXTRACTPARAM(MODEL) extracts the model\n%\tparameters from a structure containing the information about a\n%\tGaussian process dynamics model.\n%\t Returns:\n%\t PARAMS - a vector of parameters from the model.\n%\t Arguments:\n%\t MODEL - the model structure containing the information about the\n%\t model.\n%\tDESC does the same as above, but also returns parameter names.\n%\tARG model : the model structure containing the information about\n%\tthe model.\n%\tRETURN params : a vector of parameters from the model.\n%\tRETURN names : cell array of parameter names.\n%\t\n%\t\n%\n%\tSee also\n%\tGPEXTRACTPARAM, GPTIMEDYNAMICSCREATE, GPTIMEDYNAMICSEXPANDPARAM, MODELEXTRACTPARAM\n\n\n%\tBased on GPTIMEDYNAMICSEXTRACTPARAM\n% VARGPLVM\n\nif nargout > 1\n returnNames = true; % Also return parameter names in an array\nelse\n returnNames = false;\nend \n\n% Parameters are extracted in the following order: (notation: % parameter{size})\n% [dynamicsVardistParams{dynamics.vardist.nParams} % mu_bar, lambda\n% dynamics.kernParams{dynamics.kern.nParams}] % sigmaRBF, lt,\n% sigmaWhite\n\n% Variational parameters (reparametrized means and covariances)\nif returnNames\n [varParams, varNames] = modelExtractParam(model.vardist);\n names = varNames;\nelse\n %varParams = vardistExtractParam(model.vardist);\n varParams = modelExtractParam(model.vardist);\nend\nparams = varParams;\n\n\n% Kernel parameters \nif returnNames\n [kernParams, kernParamNames] = kernExtractParam(model.kern); \n for i = 1:length(kernParamNames)\n kernParamNames{i} = ['Kernel, ' kernParamNames{i}];\n end\n names = {names{:}, kernParamNames{:}};\nelse\n kernParams = kernExtractParam(model.kern);\nend\n\nparams = [params kernParams];\n\n\n", "meta": {"author": "SheffieldML", "repo": "vargplvm", "sha": "480201fde5ac84ff36e4a9f06d3fafeafa8ef06d", "save_path": "github-repos/MATLAB/SheffieldML-vargplvm", "path": "github-repos/MATLAB/SheffieldML-vargplvm/vargplvm-480201fde5ac84ff36e4a9f06d3fafeafa8ef06d/vargplvm/matlab/vargpTimeDynamicsExtractParam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297745935070806, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3636919088621177}} {"text": "function[h]=lansey(N)\n%LANSEY The Lansey modification of Cynthia Brewer's \"Spectral\" colormap.\n% __________________________________________________________________\n%\n% *|* lansey.png --- The lansey colormap versus parula and jet. \n% Type 'jhelp lansey' to view this image. *|*\n% __________________________________________________________________\n%\n% LANSEY(M) returns an M-by-3 matrix containing the Lansey colormap. \n%\n% LANSEY with no arguments returns a colormap having the same number of\n% colors as the colormap of the current figure.\n%\n% This colormap is Jonathan Lansey's modification of the 11-division \n% version of Cynthia Brewer's \"Spectral\" colormap.\n%\n% LINSPECER itself is available from\n%\n% http://www.mathworks.com/matlabcentral/fileexchange/42673.\n%\n% This product includes color specifications and designs developed by \n% Cynthia Brewer (http://colorbrewer.org/).\n%\n% LANSEY is a simplified version of LINSPECER by Jonathan Lansey,\n% modified and redistributed in accordance with the copyright policies\n% of LINSPECER and ColorBrewer.org, see LANSEY_COPYRIGHT for details. \n%\n% To make LANSEY your default colormap, add to your startup.m file the \n% line \"set(0,'DefaultFigureColormap',lansey)\".\n% \n% 'lansey --f' generates the figure shown above.\n%\n% Usage: h=lansey(M);\n% colormap lansey\n% __________________________________________________________________\n% This is part of JLAB --- type 'help jlab' for more information\n% (C) 2015 J.M. Lilly --- type 'help jlab_license' for details\n \n\nif nargin>0\n if strcmpi(N, '--f')\n type makefigs_lansey\n makefigs_lansey;\n return\n end\nend\n\n\nif nargin < 1, N = size(get(gcf,'colormap'),1); end\n\nh = cmap2linspecer(colorm(N));\nh = cell2mat(h);\n\nfunction[vOut] = cmap2linspecer(vIn) % changes the format from a double array to a cell array with the right format\nvOut = cell(size(vIn,1),1);\nfor ii=1:size(vIn,1)\n vOut{ii} = vIn(ii,:);\nend\n\n% Jonathan Lansay's notes:\n% colorm returns a colormap which is really good for creating informative\n% heatmap style figures.\n% No particular color stands out and it doesn't do too badly for colorblind people either.\n% It works by interpolating the data from the\n% 'spectral' setting on http://colorbrewer2.org/ set to 11 colors\n% It is modified a little to make the brightest yellow a little less bright.\nfunction[cmap] = colorm(varargin)\nn = varargin{1};\n%frac=1;\nfrac=.95; % Slight modification from colorbrewer here to make the yellows in the center just a bit darker\ncmapp = [158, 1, 66; 213, 62, 79; 244, 109, 67; 253, 174, 97; 254, 224, 139; 255*frac, 255*frac, 191*frac; 230, 245, 152; 171, 221, 164; 102, 194, 165; 50, 136, 189; 94, 79, 162];\nx = linspace(1,n,size(cmapp,1));\nxi = 1:n;\ncmap = zeros(n,3);\nfor ii=1:3\n cmap(:,ii) = pchip(x,cmapp(:,ii),xi);\nend\ncmap = flipud(cmap/255);\n\n\n\n", "meta": {"author": "CHLNDDEV", "repo": "OceanMesh2D", "sha": "56222604a5c1fe897d10c8b08cb3380ef8b43740", "save_path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D", "path": "github-repos/MATLAB/CHLNDDEV-OceanMesh2D/OceanMesh2D-56222604a5c1fe897d10c8b08cb3380ef8b43740/utilities/lansey.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297745935070806, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.3636919088621177}} {"text": "function [f, logscale] = fwd1(engine, ev, t)\n% Forwards pass for slice 1.\n\nbnet = bnet_from_engine(engine);\nss = bnet.nnodes_per_slice;\n\nCPDpot = cell(1,ss);\nfor n=1:ss\n fam = family(bnet.dag, n, 1);\n e = bnet.equiv_class(n, 1);\n CPDpot{n} = convert_to_pot(bnet.CPD{e}, engine.pot_type, fam(:), ev);\nend \nf.t = t;\nf.evidence = ev;\n\npots = CPDpot;\nslice1 = 1:ss;\nCPDclqs = engine.clq_ass_to_node1(slice1);\n\n[f.clpot, f.seppot] = init_pot(engine.jtree_engine1, CPDclqs, CPDpot, engine.pot_type, engine.observed1);\n[f.clpot, f.seppot] = collect_evidence(engine.jtree_engine1, f.clpot, f.seppot);\nfor c=1:length(f.clpot)\n [f.clpot{c}, ll(c)] = normalize_pot(f.clpot{c});\nend\nlogscale = ll(engine.root1);\n\n", "meta": {"author": "bayesnet", "repo": "bnt", "sha": "bebba5f437b4e1e29169f0f3669df59fb5392e62", "save_path": "github-repos/MATLAB/bayesnet-bnt", "path": "github-repos/MATLAB/bayesnet-bnt/bnt-bebba5f437b4e1e29169f0f3669df59fb5392e62/BNT/inference/online/@jtree_2TBN_inf_engine/fwd1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3636908551908027}} {"text": "% this code is revised based on ILSVRC 2013 (http://www.image-net.org/challenges/LSVRC/2013/)\n\nfunction top_recall = top_recall_Phrase(Nre, tuple_confs_cell, tuple_labels_cell, sub_bboxes_cell, obj_bboxes_cell)\n\nload('gt.mat','gt_tuple_label','gt_obj_bboxes','gt_sub_bboxes');\n\n%num_imgs = length(gt_tuple_label);\nnum_imgs = 1000;\nfor i=1:num_imgs\n [tuple_confs_cell{i}, ind] = sort(tuple_confs_cell{i},'descend');\n if length(ind) >= Nre\n tuple_confs_cell{i} = tuple_confs_cell{i}(1:Nre);\n tuple_labels_cell{i} = tuple_labels_cell{i}(ind(1:Nre),:);\n obj_bboxes_cell{i} = obj_bboxes_cell{i}(ind(1:Nre),:);\n sub_bboxes_cell{i} = sub_bboxes_cell{i}(ind(1:Nre),:);\n else\n tuple_labels_cell{i} = tuple_labels_cell{i}(ind,:);\n obj_bboxes_cell{i} = obj_bboxes_cell{i}(ind,:);\n sub_bboxes_cell{i} = sub_bboxes_cell{i}(ind,:);\n end\nend\n\nnum_pos_tuple = 0;\nfor ii = 1 : num_imgs\n num_pos_tuple = num_pos_tuple + size(gt_tuple_label{ii},1);\nend\n \n\ntp_cell = cell(1,num_imgs);\nfp_cell = cell(1,num_imgs);\n\ngt_thr = 0.5;\n% iterate over images\nfor i=1:num_imgs \n \n gt_tupLabel = gt_tuple_label{i};\n \n if ~isempty(gt_obj_bboxes{i})\n gt_box_entity = [min(gt_obj_bboxes{i}(:,1:2),gt_sub_bboxes{i}(:,1:2)),max(gt_obj_bboxes{i}(:,3:4),gt_sub_bboxes{i}(:,3:4))];\n else\n gt_box_entity = [];\n end\n \n num_gt_tuple = size(gt_tupLabel,1);\n gt_detected = zeros(1,num_gt_tuple);\n \n labels = tuple_labels_cell{i};\n \n boxObj = obj_bboxes_cell{i};\n boxSub = sub_bboxes_cell{i};\n if ~isempty(boxObj)\n box_entity_our = [min(boxObj(:,1:2), boxSub(:,1:2)), max(boxObj(:,3:4), boxSub(:,3:4))];\n else\n box_entity_our = [];\n end\n \n num_obj = size(labels,1);\n tp = zeros(1,num_obj);\n fp = zeros(1,num_obj);\n for j=1:num_obj\n\n bbO = box_entity_our(j,:); \n ovmax = -inf;\n kmax = -1;\n \n for k=1:num_gt_tuple\n if norm(labels(j,:) - gt_tupLabel(k,:),2) ~= 0\n continue;\n end\n if gt_detected(k) > 0\n continue;\n end\n \n bbgtO = gt_box_entity(k,:); \n \n biO=[max(bbO(1),bbgtO(1)) ; max(bbO(2),bbgtO(2)) ; min(bbO(3),bbgtO(3)) ; min(bbO(4),bbgtO(4))];\n iwO=biO(3)-biO(1)+1;\n ihO=biO(4)-biO(2)+1;\n \n \n \n if iwO>0 & ihO>0 \n % compute overlap as area of intersection / area of union\n uaO=(bbO(3)-bbO(1)+1)*(bbO(4)-bbO(2)+1)+...\n (bbgtO(3)-bbgtO(1)+1)*(bbgtO(4)-bbgtO(2)+1)-...\n iwO*ihO;\n ov =iwO*ihO/uaO;\n \n \n \n % makes sure that this object is detected according\n % to its individual threshold\n if ov >= gt_thr && ov > ovmax\n ovmax=ov;\n kmax=k;\n end\n end\n end\n \n if kmax > 0\n tp(j) = 1;\n gt_detected(kmax) = 1;\n else\n fp(j) = 1;\n end\n end\n\n % put back into global vector\n tp_cell{i} = tp;\n fp_cell{i} = fp;\n\nend\n\nt = tic;\ntp_all = [];\nfp_all = [];\nconfs = [];\nfor ii = 1 : num_imgs\ntp_all = [tp_all; tp_cell{ii}(:) ];\nfp_all = [fp_all; fp_cell{ii}(:) ];\nconfs = [confs; tuple_confs_cell{ii}(:)];\nend\n\n[confs, ind] = sort(confs,'descend');\ntp_all = tp_all(ind);\nfp_all = fp_all(ind); \n\n \ntp = cumsum(tp_all );\nfp = cumsum(fp_all );\nrecall =(tp/num_pos_tuple);\ntop_recall = recall(end);\n\nend", "meta": {"author": "Prof-Lu-Cewu", "repo": "Visual-Relationship-Detection", "sha": "3f4f51b038aca12db86851a5040d43c65db28e95", "save_path": "github-repos/MATLAB/Prof-Lu-Cewu-Visual-Relationship-Detection", "path": "github-repos/MATLAB/Prof-Lu-Cewu-Visual-Relationship-Detection/Visual-Relationship-Detection-3f4f51b038aca12db86851a5040d43c65db28e95/evaluation/top_recall_Phrase.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3636908551908027}} {"text": "function model = createToyModelForGeoFBA()\n%createToyModelForMDFBA creates a toy model for\n%MDFBA\n% The model created looks as follows:\n%\n%\n% <-> A -> B ---> C --> E <->\n% \\ ^\n% \\ /\n% --> F --> G \n% \n% \n% A normal FBA maximizing the production of E should not yield any flux\n% through A -> D\n% MDFBA should show this flux.\n\nmodel = createModel();\n%Reactions in {Rxn Name, MetaboliteNames, Stoichiometric coefficient} format\nReactions = {'R1',{'A','B'},[-1 1];...\n 'R2',{'B','C'},[-1 1];...\n 'R3',{'C','E'},[-1 1];...\n 'R4',{'A','F'},[-1 1];... \n 'R6',{'F','G'},[-1 1];...\n 'R7',{'G','E'},[-1 1]}; \nExchangedMets = {'A','E'};\n%Add Reactions\nfor i = 1:size(Reactions,1)\n %All reactions are irreversible\n model = addReaction(model,Reactions{i,1},Reactions{i,2},Reactions{i,3},0,0,1000);\nend\n\n%Add Exchangers\nmodel = addExchangeRxn(model,ExchangedMets,-1000*ones(numel(ExchangedMets),1),1000*ones(numel(ExchangedMets),1));\nmodel = changeObjective(model,'EX_E',1);", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/test/verifiedTests/analysis/testGeometricFBA/createToyModelForGeoFBA.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7217432062975979, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3636908551908027}} {"text": "%MATCHLABLIST Match entries of lablist1 with lablist2\n%\n% I = MATCHLABLIST(LABLIST1,LABLIST2)\n%\n% INPUT\n% LABLIST1 list of class names\n% LABLIST2 list of class names\n%\n% OUTPUT\n% I indices for LABLIST1 appearing in LABLIST2\n%\n% DESCRIPTION\n% Find the indices of places where the entries of LABLIST1 appear \n% in LABLIST2, i.e. LABLIST1 = LABLIST2(I).\n% Note that this operation is not symmetric, changing the order of\n% LABLIST1 and LABLIST2 changes I! \n% I(i) = 0 for labels appearing in LABLIST1 that are not in LABLIST2.\n%\n% SEE ALSO (PRTools Guide)\n% DATASETS, RENUMLAB\n\n% Copyright: D.M.J. Tax davidt@ph.tn.tudelft.nl\n% Faculty of Applied Sciences, Delft University of Technology\n% P.O. Box 5046, 2600 GA Delft, The Netherlands\n\nfunction I = matchlablist(lablist1,lablist2)\n\tn = size(lablist1,1);\nI = zeros(n,1); % the resulting vector\n\nif isempty(lablist2) % nothing fits\n\treturn\nend\n\nif iscell(lablist1) & iscell(lablist2)\n\tlablist1 = char(lablist1);\n\tlablist2 = char(lablist2);\nend\n\nfor i=1:n\n\tif isstr(lablist1) & isstr(lablist2)\n \ttmp = strmatch(deblank(lablist1(i,:)),lablist2,'exact');\n\telseif ~isstr(lablist1) & ~isstr(lablist2)\n\t\ttmp = find(~sum((lablist2 ~= repmat(lablist1(i),size(lablist2,1),1)),2));\n\telse\n\t\ttmp = zeros(size(lablist1,1),1);\n\tend\n if ~isempty(tmp)\n\t\tI(i) = tmp(1);\n\telse\n\t\tI(i) = 0;\n end\nend\n\nreturn\n", "meta": {"author": "marianux", "repo": "ecg-kit", "sha": "c8e3de47c54a9214138143676d2aa546b0540dd2", "save_path": "github-repos/MATLAB/marianux-ecg-kit", "path": "github-repos/MATLAB/marianux-ecg-kit/ecg-kit-c8e3de47c54a9214138143676d2aa546b0540dd2/common/prtools/matchlablist.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5583269943353745, "lm_q2_score": 0.6513548782017745, "lm_q1q2_score": 0.3636690113920807}} {"text": "function [adfreq, n, ts, fn] = plx_ad_gap_info(filename, channel)\n% plx_ad_gap_info(filename, channel): read a/d info from a .plx or .pl2 file\n%\n% [adfreq, n, ts, fn] = plx_ad_gap_info(filename, channel)\n%\n% INPUT:\n% filename - if empty string, will use File Open dialog\n% channel - 0-based channel number or channel name\n%\n% a/d data come in fragments. Each fragment has a timestamp\n% and a number of a/d data points. The timestamp corresponds to\n% the time of recording of the first a/d value in this fragment.\n% All the data values stored in the vector ad.\n% \n% OUTPUT:\n% adfreq - digitization frequency for this channel\n% n - total number of data points \n% ts - array of fragment timestamps (one timestamp per fragment, in seconds)\n% fn - number of data points in each fragment\n\nadfreq = 0;\nn = 0;\nts = -1;\nfn = -1;\n\nif nargin ~= 2\n error 'expected 2 input arguments';\nend\n\n[ filename, isPl2 ] = internalPL2ResolveFilenamePlx( filename );\nif isPl2 == 1\n pl2Channel = channel;\n % PL2 uses 1-based channel numbers\n if ischar(channel) == 0\n pl2Channel = channel+1;\n end\n pl2ad = PL2Ad(filename, pl2Channel);\n if numel(pl2ad.Values) > 0\n adfreq = pl2ad.ADFreq;\n n = numel(pl2ad.Values);\n ts = pl2ad.FragTs;\n fn = pl2ad.FragCounts;\n end\n return;\nend\n\nchannelNumber = plx_ad_resolve_channel(filename, channel);\nif channelNumber == -1\n fprintf('\\n plx_ad_gap_info: no header for the specified A/D channel.');\n fprintf('\\n use plx_ad_info(filename) to print the list of a/d channels\\n');\n return\nend\n\n[adfreq, n, ts, fn] = mexPlex(24, filename, channelNumber);\n\nend", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/plexonSDK/plx_ad_gap_info.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.36366900383472256}} {"text": "function cirpva() \n % unclear purpose, having to do with a circle selection\n% This subroutine \"circle\" selects the Ni closest earthquakes\n% around a interactively selected point. Resets ZG.newcat and ZG.newt2\n% Operates on \"primeCatalog\".\n % turned into function by Celso G Reyes 2017\n \nZG=ZmapGlobal.Data; % used by get_zmap_globals\n\n% Input Ni:\n%\nreport_this_filefun();\nZG=ZmapGlobal.Data;\n\ndelete(findobj('Tag','plos1'));\n\naxes(h1)\n%zoom off\n\ntitStr ='Selecting EQ in Circles ';\nmesstext= ...\n [' '\n ' Please use the LEFT mouse button '\n ' to select the center point. '\n ' The \"ni\" events nearest to this point '\n ' will be selected and displayed in the map. '];\n\nmsg.dbdisp(messtext, titStr);\n\n% Input center of circle with mouse\n%\n[xa0,ya0] = ginput(1);\n\nstri1 = [ 'Circle: ' num2str(xa0,5) '; ' num2str(ya0,4)];\nstri = stri1;\npause(0.1)\n\nif met == 'ni'\n % take first ni and sort by time\n [ZG.newt2, max_rad] = ZG.primeCatalog.selectClosestEvents(ya0, xa0, [], ni);\n messtext = ['Radius of selected Circle:' num2str(maxrad) ' km' ];\n disp(messtext)\nelseif met == 'ra'\n ZG.newt2 = ZG.primeCatalog.selectRadius(ya0, xa0, ra,'kilometer');\n messtext = ['Number of selected events: ' num2str(ZG.newt2.Count) ];\n disp(messtext)\nelseif met == 'ti'\n global t1 t2 t3 t4\n ZG.newt2 = copy(ZG.primeCatalog);\n lt = ZG.newt2.Date >= t1 & ZG.newt2.Date = t3 & ZG.newt2.Date 0);\nelec1 = [];\nelec1.elecpos = pnt(sel,:);\nfor i=1:length(sel)\n elec1.label{i} = sprintf('elec%d', i);\nend\nelec1.unit = 'cm';\n\n% create another set of electrodes covering the upper half of a sphere\npnt = elec1.elecpos(1:42,:) + randn(42,3);\nelec2 = [];\nfor i=1:size(pnt,1)\n elec2.elecpos(i,:) = pnt(i,:)./norm(pnt(i,:)) * 10;\n elec2.label{i} = sprintf('rand%d', i);\nend\nelec2.unit = 'cm';\n\n% create another set of electrodes representing a bipolar montage\nbipolar = [];\nbipolar.labelold = elec1.label;\nbipolar.tra = zeros(length(elec1.label)-1, length(elec1.label));\nfor i=1:(length(bipolar.labelold)-1)\n bipolar.labelnew{i} = sprintf('%s-%s', bipolar.labelold{i}, bipolar.labelold{i+1});\n bipolar.tra(i,i ) = +1;\n bipolar.tra(i,i+1) = -1;\nend\nelec3 = ft_apply_montage(elec1, bipolar);\n\n% create an identical set of electrodes but with other channel names\nelec4 = elec1;\nfor i=1:length(elec4.label)\n elec4.label{i} = sprintf('chan%d', i);\nend\n\n% update the electrode sets to the latest standards\nelec1 = ft_datatype_sens(elec1);\nelec2 = ft_datatype_sens(elec2);\nelec3 = ft_datatype_sens(elec3);\nelec4 = ft_datatype_sens(elec4);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% construct a singlesphere volume conduction model\nvolA = [];\nvolA.c = 1;\nvolA.r = 10;\nvolA.o = [0 0 0];\n\n% compute the precomputed leadfield\ncfg = [];\ncfg.headmodel = volA;\ncfg.elec = elec1;\ncfg.resolution = 1;\nleadfield = ft_prepare_leadfield(cfg);\n\n% remember one position\nfirstindx = find(leadfield.inside, 1, 'first');\npos1 = leadfield.pos(firstindx,:);\npos2 = [0 0 7];\n\n% remember the precomputed leadfield for the first dipole\nlf1 = leadfield.leadfield{firstindx};\n\n% the following call generates the volume conduction model and writes all files to disk\nfilename = fullfile(tempname, 'leadfield');\nft_headmodel_interpolate(filename, elec1, leadfield, 'smooth', false);\n\n% the next day you would start by reading it from disk\nvolB = ft_read_headmodel([filename '.mat']); % this is a mat file containing the \"vol\" structure\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% use the same electrodes\n[volAA, elecAA] = ft_prepare_vol_sens(volA, elec1);\n[volBB, elecBB] = ft_prepare_vol_sens(volB, elec1);\n\n% compare the leadfields\nlfa = ft_compute_leadfield(pos1, elecAA, volAA); % the original\nlfb = ft_compute_leadfield(pos1, elecBB, volBB); % the interpolation\n\nassert(all(mean(lfa, 1)0.8, 'the leadfields are different');\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%% use a bipolar electrode montage\n[volAA, elecAA] = ft_prepare_vol_sens(volA, elec3);\n[volBB, elecBB] = ft_prepare_vol_sens(volB, elec3);\n\n% compare the leadfields\nlfa = ft_compute_leadfield(pos2, elecAA, volAA); % the original\nlfb = ft_compute_leadfield(pos2, elecBB, volBB); % the interpolation\n\nassert(~all(mean(lfa, 1)> [STUDY] = std_rejectoutliers(STUDY, ALLEEG, clusters, th); \n% Inputs:\n% STUDY - EEGLAB STUDY set comprising some or all of the EEG datasets in ALLEEG.\n% ALLEEG - global EEGLAB vector of EEG structures for the dataset(s) included in the STUDY. \n% ALLEEG for a STUDY set is typically created using LOAD_ALLEEG. \n% Optional inputs:\n% clusters - [numeric vector| 'all' ] specific cluster numbers (or 'all' clusters), which outliers \n% will be rejected from. {default:'all'}. \n% th - [number] a threshold factor to select outliers. How far a component can be from the \n% cluster centroid (in the cluster std multiples) before it will be considered as an outlier. \n% Components that their distance from the cluster centroid are more than this factor \n% times the cluster std (th *std) will be rejected. {default: 3}. \n%\n% Outputs:\n% STUDY - the input STUDY set structure modified with the components reassignment,\n% from the cluster to its outlier cluster. \n%\n% Example:\n% >> clusters = [10 15]; th = 2; \n% >> [STUDY] = std_rejectoutliers(STUDY, ALLEEG, clusters, th); \n% Reject outlier components (that are more than 2 std from the cluster centroid) from cluster 10 and 15. \n%\n% See also pop_clustedit \n%\n% Authors: Hilit Serby, Arnaud Delorme, Scott Makeig, SCCN, INC, UCSD, July, 2005\n\n% Copyright (C) Hilit Serby, SCCN, INC, UCSD, July 11, 2005, hilit@sccn.ucsd.edu\n%\n% This file is part of EEGLAB, see http://www.eeglab.org\n% for the documentation and details.\n%\n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are met:\n%\n% 1. Redistributions of source code must retain the above copyright notice,\n% this list of conditions and the following disclaimer.\n%\n% 2. Redistributions in binary form must reproduce the above copyright notice,\n% this list of conditions and the following disclaimer in the documentation\n% and/or other materials provided with the distribution.\n%\n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF\n% THE POSSIBILITY OF SUCH DAMAGE.\n\nfunction STUDY = std_rejectoutliers(STUDY, ALLEEG, varargin)\n\ncls = 2:length(STUDY.cluster); % all clusters in STUDY\nth = 3; % The threshold factor - default: 3 \n\nif length(varargin) > 1\n if isnumeric(varargin{1})\n cls = varargin{1};\n if isempty(cls)\n cls = 2:length(STUDY.cluster);\n end\n else\n if ischar(varargin{1}) && strcmpi(varargin{1}, 'all')\n cls = 2:length(STUDY.cluster);\n else\n error('std_prejectoutliers: clusters input takes either specific clusters (numeric vector) or keyword ''all''.');\n end\n end\nend\ntmp =[];\nfor k = 1: length(cls)\n % don't include 'Notclust' clusters\n if ~strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) && ~strncmpi('ParentCluster',STUDY.cluster(cls(k)).name,13)\n tmp = [tmp cls(k)];\n end\nend\ncls = tmp;\nclear tmp\n\nif length(varargin) == 2\n if isnumeric(varargin{2})\n th = varargin{2};\n else\n error('std_prejectoutliers: std input must be a numeric value.');\n end\nend\n\n% Perform validity checks\nfor k = 1:length(cls)\n\t% Cannot reject outlier components if cluster is a 'Notclust' or 'Outlier' cluster\n\tif strncmpi('Notclust',STUDY.cluster(cls(k)).name,8) || strncmpi('Outliers',STUDY.cluster(cls(k)).name,8) || ...\n strncmpi('ParentCluster', STUDY.cluster(cls(k)).name,13)\n warndlg2('Cannot reject outlier components from a Notclust or Outliers cluster');\n return;\n\tend\t\n\t% Cannot reject outlier components if cluster has children clusters\n\tif ~isempty(STUDY.cluster(cls(k)).child) \n warndlg2('Cannot reject outlier components if cluster has children clusters.');\n return;\n\tend\n \n % If the PCA data matrix of the cluster components is empty (case of merged cluster) \n if isempty(STUDY.cluster(cls(k)).preclust.preclustdata) % No preclustering information\n warndlg2('Cannot reject outlier components if cluster was not a part of pre-clustering.');\n return;\n\tend\nend\n\n% For each of the clusters reject outlier components \nfor k = 1:length(cls)\n % The PCA data matrix of the cluster components\n clsPCA = STUDY.cluster(cls(k)).preclust.preclustdata;\n % The cluster centroid\n clsCentr = mean(clsPCA,1);\n % The std of the cluster (based on the distances between all cluster components to the cluster centroid). \n std_std = std(sum((clsPCA-ones(size(clsPCA,1),1)*clsCentr).^2,2),1);\n outliers = []; \n for l = 1:length(STUDY.cluster(cls(k)).comps)\n compdist = sum((clsPCA(l,:) - clsCentr).^2); % Component distance from cluster centroid\n if compdist > std_std * th % check if an outlier\n outliers = [ outliers l];\n end\n end\n % Move outlier to the outlier cluster\n if ~isempty(outliers) % reject outliers if exist\n STUDY = std_moveoutlier(STUDY, ALLEEG,cls(k) , outliers); \n end \nend\n", "meta": {"author": "sccn", "repo": "eeglab", "sha": "36d3982a63cde83fb279ab465b7a026ec2807c0a", "save_path": "github-repos/MATLAB/sccn-eeglab", "path": "github-repos/MATLAB/sccn-eeglab/eeglab-36d3982a63cde83fb279ab465b7a026ec2807c0a/functions/studyfunc/std_rejectoutliers.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7690802264851919, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.36353151525505045}} {"text": "function [predict_label,accuracy] = jddt(x_train,y_train,x_test,y_test,options)\n%%jddt:packaged decision tree from Matlab,just for easier use.\n%%==============================================================================\n%%input:\n%%------x_train,...,y_test : training and testing sets. [required]\n%%------options : some options to build the tree,default is null. [not required]\n\n%%output:\n%%------predict_label : predicted label vector for test case.\n%%------accuracy : accuracy\n%%==============================================================================\n\tpredict_label = [];\n accuracy = 0;\n\tswitch nargin\n\t\tcase 4\n\t\t\ttre = fitctree(x_train,y_train);\n\t predict_label = tre.predict(x_test);\n\t\t\taccuracy = mean(predict_label == y_test);\n\t\tcase 5\n\t\t\ttre = fitctree(x_train,y_train,options);\n\t\t\tpredict_label = tre.predict(x_test);\n\t\t\taccuracy = mean(predict_label == y_test);\n\t\totherwise\n\t\t\tfprintf('++++++Fatal error!Please check the input!');\n return\n\tend\nend", "meta": {"author": "jindongwang", "repo": "activityrecognition", "sha": "33687803886d4a184e0b285e3ec7ab73a8f86355", "save_path": "github-repos/MATLAB/jindongwang-activityrecognition", "path": "github-repos/MATLAB/jindongwang-activityrecognition/activityrecognition-33687803886d4a184e0b285e3ec7ab73a8f86355/code/percom18_stl/base/classifier/jddt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3634822481205748}} {"text": "function [ alphas, betas, thetas, final_likelihood] = CCNF_training_bfgs(thresholdX, thresholdFun, x, y, alphas, betas, thetas, lambda_a, lambda_b, lambda_th, similarityFNs, sparsityFNs, varargin)\n%CCNF_training_bfgs Performs CCNF training using BFGS (or LBFGS)\n\n if(sum(strcmp(varargin,'const')))\n ind = find(strcmp(varargin,'const')) + 1;\n const = varargin{ind}; \n else \n const = false;\n end\n \n if(iscell(x)) \n num_seqs = numel(x);\n \n x = cell2mat(x)';\n % add a bias term\n x = cat(1, ones(1,size(x,2)), x); \n \n % If all of the sequences are of the same length can flatten them\n % to the same matrix\n if(const)\n \n y = cell2mat(y);\n y = reshape(y, numel(y)/num_seqs, num_seqs);\n end\n \n else\n % if not a cell it has already been flattened, and is constant\n % (most likely)\n num_seqs = varargin{find(strcmp(varargin, 'num_seqs'))+1};\n end\n \n % Should try a bunch of seed for initialising theta?\n if(sum(strcmp(varargin,'reinit')))\n ind = find(strcmp(varargin,'reinit')) + 1;\n reinit = varargin{ind};\n else\n reinit = false; \n end\n \n % It is possible to predefine the components B^(k) and C^(k) required \n % to compute B and and C terms and partial derivative (from equations \n % 30 and 31 in Appendix B), also can predefine yB^(k)y and yC^(k)y,\n % as they also do not change through the iterations\n % In constant case Precalc_Bs are same across the sequences, same for \n % PrecalcBsFlat, however yB^(k)y is defined per sequence\n if(sum(strcmp(varargin,'PrecalcBs')) && sum(strcmp(varargin,'PrecalcBsFlat'))...\n && sum(strcmp(varargin,'Precalc_yBy')))\n ind = find(strcmp(varargin,'PrecalcBs')) + 1;\n Precalc_Bs = varargin{ind};\n\n ind = find(strcmp(varargin,'PrecalcBsFlat')) + 1;\n Precalc_Bs_flat = varargin{ind};\n\n ind = find(strcmp(varargin,'Precalc_yBys')) + 1;\n Precalc_yBys = varargin{ind};\n else\n % if these are not provided calculate them \n [ ~, Precalc_Bs, Precalc_Bs_flat, Precalc_yBys ] = CalculateSimilarities( num_seqs, x, similarityFNs, sparsityFNs, y, const);\n end\n \n % Reinitialisation attempts to find a better starting point for the\n % model training (sometimes helps sometimes doesn't)\n if(reinit)\n \n rng(0);\n \n % By default try 200 times, but can override\n num_reinit = 200;\n \n if(sum(strcmp(varargin,'num_reinit')))\n num_reinit = varargin{find(strcmp(varargin,'num_reinit')) + 1};\n end\n \n thetas_good = cell(num_reinit, 1);\n lhoods = zeros(num_reinit, 1);\n for i=1:num_reinit\n initial_Theta = randInitializeWeights(size(thetas,2)-1, numel(alphas)); \n lhoods(i) = LogLikelihoodCCNF(y, x, alphas, betas, initial_Theta, lambda_a, lambda_b, lambda_th, Precalc_Bs_flat, [], [], [], [], const, num_seqs);\n thetas_good{i} = initial_Theta;\n end\n [~,ind_max] = max(lhoods);\n thetas = thetas_good{ind_max};\n end\n \n params = [alphas; betas; thetas(:)];\n \n if(any(strcmp(varargin,'lbfgs')))\n options = optimset('Algorithm','interior-point','GradObj','on', 'Hessian', 'lbfgs', 'TolX', thresholdX, 'TolFun', thresholdFun, 'display', 'off');\n else\n options = optimset('Algorithm','interior-point','GradObj','on', 'Hessian', 'bfgs', 'TolX', thresholdX, 'TolFun', thresholdFun, 'display', 'off');\n end\n \n if(any(strcmp(varargin,'max_iter')))\n options.MaxIter = varargin{find(strcmp(varargin,'max_iter')) + 1};\n end\n \n objectiveFun = @(params)objectiveFunction(params, numel(alphas), numel(betas), size(thetas), lambda_a, lambda_b, lambda_th, Precalc_Bs, x, y, Precalc_yBys, Precalc_Bs_flat, const);\n\n lowerBound = [zeros(numel(alphas)+numel(betas),1); -Inf(numel(thetas),1)];\n \n upperBound = Inf(numel(params),1);\n params = fmincon(objectiveFun, params, [], [],[],[], lowerBound, upperBound, [], options);\n alphas = params(1:numel(alphas));\n betas = params(numel(alphas)+1:numel(alphas)+numel(betas));\n thetas = reshape(params(numel(alphas) + numel(betas) + 1:end), size(thetas));\n \n \n final_likelihood = LogLikelihoodCCNF(y, x, alphas, betas, thetas, lambda_a, lambda_b, lambda_th, Precalc_Bs_flat, [], [], [], [], const, num_seqs);\n\nend\n\nfunction [loss, gradient] = objectiveFunction(params, numAlpha, numBeta, sizeTheta, lambda_a, lambda_b, lambda_th, PrecalcQ2s, x, y, PrecalcYqDs, PrecalcQ2sFlat, const)\n \n alphas = params(1:numAlpha);\n betas = params(numAlpha+1:numAlpha+numBeta);\n thetas = reshape(params(numAlpha + numBeta + 1:end), sizeTheta);\n \n num_seqs = size(PrecalcYqDs,1);\n \n [gradient, SigmaInvs, CholDecomps, Sigmas, bs, all_x_resp] = gradientCCNF(params, numAlpha, numBeta, sizeTheta, lambda_a, lambda_b, lambda_th, PrecalcQ2s, x, y, PrecalcYqDs, PrecalcQ2sFlat, const, num_seqs);\n \n % as bfgs does gradient descent rather than ascent, negate the results\n gradient = -gradient;\n loss = -LogLikelihoodCCNF(y, x, alphas, betas, thetas, lambda_a, lambda_b, lambda_th, PrecalcQ2sFlat, SigmaInvs, CholDecomps, Sigmas, bs, const, num_seqs, all_x_resp);\nend\n", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/model_training/CCNF/CCNF/lib/CCNF_training_bfgs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056295505783, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3634822481205748}} {"text": "function H=shadedErrorBar(x,y,errBar,lineProps,transparent)\n% function H=shadedErrorBar(x,y,errBar,lineProps,transparent)\n%\n% Purpose \n% Makes a 2-d line plot with a pretty shaded error bar made\n% using patch. Error bar color is chosen automatically.\n%\n% Inputs\n% x - vector of x values [optional, can be left empty]\n% y - vector of y values or a matrix of n observations by m cases\n% where m has length(x);\n% errBar - if a vector we draw symmetric errorbars. If it has a\n% size of [2,length(x)] then we draw asymmetric error bars\n% with row 1 being the upper bar and row 2 being the lower\n% bar. ** alternatively ** errBar can be a cellArray of\n% two function handles. The first defines which statistic\n% the line should be and the second defines the error\n% bar. \n% lineProps - [optional,'-k' by default] defines the properties of\n% the data line. e.g.: \n% 'or-', or {'-or','markerfacecolor',[1,0.2,0.2]}\n% transparent - [optional, 0 by default] if ==1 the shaded error\n% bar is made transparent, which forces the renderer\n% to be openGl. However, if this is saved as .eps the\n% resulting file will contain a raster not a vector\n% image. \n%\n% Outputs\n% H - a structure of handles to the generated plot objects. \n%\n%\n% Examples\n% y=randn(30,80); x=1:size(y,2);\n% shadedErrorBar(x,mean(y,1),std(y),'g');\n% shadedErrorBar(x,y,{@median,@std},{'r-o','markerfacecolor','r'}); \n% shadedErrorBar([],y,{@median,@std},{'r-o','markerfacecolor','r'}); \n%\n% Overlay two transparent lines\n% y=randn(30,80)*10; x=(1:size(y,2))-40;\n% shadedErrorBar(x,y,{@mean,@std},'-r',1); \n% hold on\n% y=ones(30,1)*x; y=y+0.06*y.^2+randn(size(y))*10;\n% shadedErrorBar(x,y,{@mean,@std},'-b',1); \n% hold off\n%\n%\n% Rob Campbell - November 2009\n\n\n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n% Error checking \n% error(nargchk(3,5,nargin))\n\n\n%Process y using function handles if needed to make the error bar\n%dynamically\nif iscell(errBar) && ~isvector(y)\n fun1=errBar{1};\n fun2=errBar{2};\n errBar=fun2(y);\n y=fun1(y);\nelseif ~iscell(errBar) && isvector(y)\n y=y(:)';\nelse\n error('2nd and 3rd input arguments are not compatible')\nend\n\nif isempty(x)\n x=1:length(y);\nelse\n x=x(:)';\nend\n\nif length(x) ~= length(y)\n error('inputs x and y are not of equal lengths')\nend\n\n\n%If only one error bar is specified then we will mirror it, turning it into\n%both upper and lower bars. \nif length(errBar)==length(errBar(:))\n errBar=repmat(errBar(:)',2,1);\nelse\n f=find(size(errBar)==2);\n if isempty(f), error('errBar has the wrong size'), end\n if f==2, errBar=errBar'; end\nend\n\nif length(x) ~= length(errBar)\n error('inputs x and y must have the same length as errBar')\nend\n\n\n%Set default options\ndefaultProps={'-k'};\nif nargin<4 || isempty(lineProps)\n lineProps=defaultProps; \nend\nif ~iscell(lineProps)\n lineProps={lineProps}; \nend\n\n\nif nargin<5 || ~isnumeric(transparent)\n transparent=0; \nend\n\n\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \n% Plot the main line. We plot this first in order to extract the RGB values\n% for the line colour. I am not aware of a function that does this.\nH.mainLine=plot(x,y,lineProps{:});\n\n\n% Work out the color of the shaded region and associated lines\n% Using alpha requires the render to be openGL and so you can't\n% save a vector image. On the other hand, you need alpha if you're\n% overlaying lines. We therefore provide the option of choosing alpha \n% or a de-saturated solid colour for the patch surface.\n\ncol=get(H.mainLine,'color');\nedgeColor=col+(1-col)*0.55;\npatchSaturation=0.15; %How de-saturated or transparent to make the patch\nif transparent\n faceAlpha=patchSaturation;\n patchColor=col;\n set(gcf,'renderer','openGL')\nelse\n faceAlpha=1;\n patchColor=col+(1-col)*(1-patchSaturation);\n set(gcf,'renderer','painters')\nend\n\n \n%Calculate the y values at which we will place the error bars\nuE=y+errBar(1,:);\nlE=y-errBar(2,:);\n\n\n\n%Add the error-bar plot elements\nholdStatus=ishold;\nif ~holdStatus, hold on, end\n\n\n%Make the cordinats for the patch\nyP=[lE,fliplr(uE)];\nxP=[x,fliplr(x)];\n\n%remove any nans otherwise patch won't work\nxP(isnan(yP))=[];\nyP(isnan(yP))=[];\n\n\nH.patch=patch(xP,yP,1,'facecolor',patchColor,...\n 'edgecolor','none',...\n 'facealpha',faceAlpha);\n\n\n%Make nice edges around the patch. \nH.edge(1)=plot(x,lE,'-','color',edgeColor);\nH.edge(2)=plot(x,uE,'-','color',edgeColor);\n\n%The main line is now covered by the patch object and was plotted first to\n%extract the RGB value of the main plot line. I am not aware of an easy way\n%to change the order of plot elements on the graph so we'll just remove it\n%and put it back (yuk!)\ndelete(H.mainLine)\nH.mainLine=plot(x,y,lineProps{:});\n\n\nif ~holdStatus, hold off, end\n\n", "meta": {"author": "optimaltransport", "repo": "optimaltransport.github.io", "sha": "2fa6db6e6a48ab9bd6676088db00bd7c5c8b4203", "save_path": "github-repos/MATLAB/optimaltransport-optimaltransport.github.io", "path": "github-repos/MATLAB/optimaltransport-optimaltransport.github.io/optimaltransport.github.io-2fa6db6e6a48ab9bd6676088db00bd7c5c8b4203/_site/code/toolbox/shadedErrorBar.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.6893056231680121, "lm_q1q2_score": 0.3634822447549422}} {"text": "%--- help for abstvar/variance_decomposition ---\n%\n% Compute the variance decompsition of the VAR\n% \n% ::\n% \n% [vd,retcode] = variance_decomposition(self,params,Rfunc,shock_names,varargin);\n% \n% Args:\n% self (var object):\n% params :(optional) parameter values\n% Rfunc (function handle): (optional) transform parameters into dynamics\n% shock_names : names of shocks\n% varargin\n% \n% Returns:\n% :\n% \n% - **vd** (struct): a struct containing the variance decomposition:\n% \n% - **infinity** (struct):\n% - **conditional** (struct):\n% \n% - **retcode** (integer): This passes through the retcode given by Rfunc. Currently (2018/07/19), this output always returns 0.\n% \n%\n% Other functions named variance_decomposition\n%\n% generic/variance_decomposition\n%", "meta": {"author": "jmaih", "repo": "RISE_toolbox", "sha": "1b2edfa27830c6d522f9d7d2335d33c3e4d84285", "save_path": "github-repos/MATLAB/jmaih-RISE_toolbox", "path": "github-repos/MATLAB/jmaih-RISE_toolbox/RISE_toolbox-1b2edfa27830c6d522f9d7d2335d33c3e4d84285/classes/models/+vartools/variance_decomposition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3634822413893096}} {"text": "classdef Crop < dagnn.ElementWise\n%CROP DagNN cropping layer.\n% This is a pecurial layer from FCN. It crops inputs{1} to\n% match the size of inputs{2} (starting with a base crop amount).\n% A future version\n\n properties\n crop = [0 0]\n end\n\n properties (Transient)\n inputSizes = {}\n end\n\n methods\n function crop = getAdaptedCrops(obj)\n cropv = obj.inputSizes{1}(1) - obj.inputSizes{2}(1) ;\n cropu = obj.inputSizes{1}(2) - obj.inputSizes{2}(2) ;\n cropv1 = max(0, cropv - obj.crop(1)) ;\n cropu1 = max(0, cropu - obj.crop(2)) ;\n crop = [cropv - cropv1, cropv1, cropu - cropu1, cropu1] ;\n end\n\n function outputs = forward(obj, inputs, params)\n obj.inputSizes = cellfun(@size, inputs, 'UniformOutput', false) ;\n adjCrop = obj.getAdaptedCrops() ;\n outputs{1} = vl_nncrop(inputs{1}, adjCrop) ;\n end\n\n function [derInputs, derParams] = backward(obj, inputs, params, derOutputs)\n adjCrop = obj.getAdaptedCrops() ;\n derInputs{1} = vl_nncrop(inputs{1}, adjCrop, derOutputs{1}, obj.inputSize{1}) ;\n derInputs{2} = [] ;\n derParams = {} ;\n end\n\n function reset(obj)\n obj.inputSizes = {} ;\n end\n\n function outputSizes = getOutputSizes(obj, inputSizes)\n obj.inputSizes = inputSizes ;\n crop = obj.getAdaptedCrops() ;\n outputSizes{1} = inputSizes{1} - [crop(1)+crop(2), crop(3)+crop(4), 0, 0]\n end\n\n function rfs = getReceptiveFields(obj)\n rfs(1,1).size = [1 1] ;\n rfs(1,1).stride = [1 1] ;\n rfs(1,1).offset = 1 + obj.crop ;\n rfs(2,1).size = [] ;\n rfs(2,1).stride = [] ;\n rfs(2,1).offset = [] ;\n end\n\n function obj = Crop(varargin)\n obj.load(varargin) ;\n end\n end\nend\n", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/DRCN/snu_matconvnet/matlab/+dagnn/Crop.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6893056167854461, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3634822413893096}} {"text": "load('../../word2vector_matlab/GoogleNews_words.mat');\nload('../../word2vector_matlab/GoogleNews_vectors.mat');\nload('caption_train.mat');\nw_sum = cellfun(@(x) sum(x),w_names);\nsubset.is_appear = zeros(1,3000000,'single');\n\nfor i = 1:numel(caption_dic)\n disp(i);\n split_tline = strsplit(caption_dic{i},{'-',' ','.',',','(',')'},'CollapseDelimiters',true);\n for j=1:numel(split_tline) % use sum to do hash\n word = split_tline{j};\n sub_index = find(w_sum == sum(word));\n if(isempty(sub_index))\n continue;\n end\n ind = cellfun(@(x) strcmp(x,word),w_names(sub_index));\n if(sum(ind(:))==0)\n continue;\n end\n index = sub_index(ind==1);\n %tmp = w_features(:,index);\n %sentence = sentence+tmp;\n subset.is_appear(index) = subset.is_appear(index) +1;\n end\nend\n\nsub = find(subset.is_appear>0);\nsubset.names = {w_names{sub}};\nsubset.features = w_features(:,sub);\nsave('CUHK-PEDES_dictionary.mat','subset');\n", "meta": {"author": "layumi", "repo": "Image-Text-Embedding", "sha": "58f858da887f12ca94301c4f44113e2464d414ee", "save_path": "github-repos/MATLAB/layumi-Image-Text-Embedding", "path": "github-repos/MATLAB/layumi-Image-Text-Embedding/Image-Text-Embedding-58f858da887f12ca94301c4f44113e2464d414ee/dataset/CUHK-PEDES-prepare/make_dictionary.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.689305616785446, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.36348224138930957}} {"text": "function x = p36_start ( n )\n\n%*****************************************************************************80\n%\n%% P36_START returns a starting point for optimization for problem 36.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 16 October 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of variables X.\n%\n% Output, real X(N), a starting point for the optimization.\n%\n x = [ 0.5, 1.0 ]';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_opt/p36_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.6893056040203135, "lm_q1q2_score": 0.3634822346580443}} {"text": "function snow = DetectSnow(dim,band_green,band_nir,band_bt,ndsi)\n%DETECSNOW Summary of this function goes here\n% Detailed explanation goes here\n \n% % snow=zeros(dim,'uint8'); % Snow mask\n % It takes every snow pixels including snow pixel under thin clouds or icy clouds\n snow=ndsi>0.15&band_nir>1100&band_green>1000;\n if ~isempty(band_bt)\n snow=snow&band_bt<1000;\n end\n% snow(ids_snow)=1;\nend\n\n", "meta": {"author": "GERSL", "repo": "Fmask", "sha": "e9e0e23af163ec55c60b7f93e6ab8e72617ee851", "save_path": "github-repos/MATLAB/GERSL-Fmask", "path": "github-repos/MATLAB/GERSL-Fmask/Fmask-e9e0e23af163ec55c60b7f93e6ab8e72617ee851/DetectSnow.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.679178699175393, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36342745468541887}} {"text": "function testRB1\n%testRB1: test the RBio toolbox.\n%\n% Example:\n% testRB1\n%\n% See also UFget, RBread, RBreade, testRB2.\n\n% Copyright 2006, Timothy A. Davis\n\nfiles = {\n'bcsstk01.rb'\n'farm.rb'\n'lap_25.pse'\n'lap_25.rb'\n'west0479.rb'\n'west0479.rua' } ;\n\nfor k = 1:length(files)\n file = files {k} ;\n fprintf ('%s : ', file) ;\n if (file (end) == 'e')\n\t[A Z] = RBreade (file) ;\n else\n\t[A Z] = RBread (file) ;\n end\n fprintf ('%s\\n', RBtype (A)) ;\n RBwrite ('temp.rb', A, Z) ;\n [A2 Z2] = RBread ('temp.rb') ;\n if (~isequal (A, A2))\n\tfprintf ('test failed: %s (A differs)\\n', file) ;\n\terror ('!') ;\n end\n if (~isequal (Z, Z2))\n\tfprintf ('test failed: %s (Z differs)\\n', file) ;\n\terror ('!') ;\n end\nend\n\nload west0479\nC = west0479 ;\nRBwrite ('mywest', C, 'WEST0479 chemical eng. problem', 'west0479') ;\nA = RBread ('mywest') ;\nif (~isequal (A, C))\n error ('test failed: west0479 (MATLAB version)') ;\nend\nfprintf ('west0479 (MATLAB matrix) : %s\\n', RBtype (A)) ;\n\nif (~strcmp (RBtype (A), 'rua'))\n error ('test failed: RBtype(A)\\n') ;\nend\nif (~strcmp (RBtype (spones (A)), 'pua'))\n error ('test failed: RBtype(spones(A))\\n') ;\nend\nif (~strcmp (RBtype (2*spones (A)), 'iua'))\n error ('test failed: RBtype(2*spones(A))\\n') ;\nend\nC = A+A' ;\nif (~strcmp (RBtype (C), 'rsa'))\n error ('test failed: RBtype(A+A'')\\n') ;\nend\n\ndelete ('mywest') ;\ndelete ('temp.rb') ;\nfprintf ('testRB1: all tests passed\\n') ;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/SuiteSparse/RBio/Test/testRB1.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.6334102775181399, "lm_q1q2_score": 0.3633737992706587}} {"text": "clear\n\nif(isunix)\n executable = '\"../../build/bin/FeatureExtraction\"';\nelse\n executable = '\"../../x64/Release/FeatureExtraction.exe\"';\nend\n\noutput = './processed_features/';\n \nin_file = '../../samples/2015-10-15-15-14.avi';\n\ncommand = sprintf('%s -f \"%s\" -out_dir \"%s\" -gaze -verbose', executable, in_file, output);\n \nif(isunix)\n unix(command);\nelse\n dos(command);\nend\n\n%% Demonstrating reading the output files\n[~, out_filename,~] = fileparts(in_file);\nout_filename = sprintf('%s/%s.csv', output, out_filename);\n\n% First read in the column names\ntab = readtable(out_filename);\ncolumn_names = tab.Properties.VariableNames;\n\nall_params = dlmread(out_filename, ',', 1, 0);\n\ngaze_angle_ids = cellfun(@(x) ~isempty(x) && x==1, strfind(column_names, 'gaze_angle_'));\n\ngaze = all_params(:,gaze_angle_ids);\n\nplot(gaze(:,1), 'DisplayName', 'Left - right');\nhold on;\nplot(gaze(:,2), 'DisplayName', 'Up - down');\nxlabel('Frame') % x-axis label\nylabel('Angle in radians') % y-axis label\nlegend('show');\nhold off;", "meta": {"author": "TadasBaltrusaitis", "repo": "OpenFace", "sha": "3d4b5cf8d96138be42bed229447f36cbb09a5a29", "save_path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace", "path": "github-repos/MATLAB/TadasBaltrusaitis-OpenFace/OpenFace-3d4b5cf8d96138be42bed229447f36cbb09a5a29/matlab_runners/Demos/gaze_extraction_demo_vid.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3633737913307776}} {"text": "function mnt = mnt_getNIRSMontage(varargin)\n%MNT_GETNIRSMONTAGE - Get montage with NIRS channel positions\n%\n%Description:\n% get montage with NIRS channel positions for a given set of sources and\n% detectors. NIRS channels are placed half-way between a source and a\n% detector on a spherical head model.\n%\n%Synopsis:\n% MNT = nirs_getMontage(CLABSOURCE,CLABDETECTOR,)\n% If you give channels labels of the source and detectors (should\n% correspond to EEG channel labels), montages for source and\n% detectors are produced, as well as montages for the\n% source-detector combinations.\n%\n% MNT = nirs_getMontage(MNT,)\n% You can provide a montage struct wherein source and detector \n% montages are already given in .source and .detector fields.\n% In this case, only the source-detector combinations are determined.\n%\n%Input\n% OPT: struct or property/value list of optional properties:\n% .File - montage file used for channel positions\n% .ClabPolicy - specifies how the source-detector combinations are\n% labeled. 'Label' (default) concatenates the labels of\n% source and detector (eg. FzCz), 'Number' concatenates\n% the channel numbers (eg. 112)\n% .Connector - specify how source and detectors labels are connected\n% (default ''). To have no connector, set to ''.\n% .Projection - determine projection of 3D coordinates to 2D\n% 'orthogonal' or 'euclidean' (default)\n%\n%Output:\n% MNT: NIRS montage \n% .x - x coordinate of channel positions (2d projection)\n% .y - y coordinate of channel positions (2d projection)\n% .pos_3d - 3d positions on spherical head model\n% .clab - channel labels\n% .angulardist - angular distances between sources and detectors on the\n% spherical model head (in radians)\n% .sd - source and detector index to which eg the channel belongs [1 12]\n% .source - struct with montage for the sources\n% .detector - struct with montage for the detectors\n%\n%See also: setElectrodeMontage, nirs_reduceMontage\n\n% matthias.treder@tu-berlin.de 2011\n% Markus Wenzel 2013 (adapted it to the new toolbox)\n% Jan Mehnert February 2014 (ready for public BBCI toolbox) (jan@mehnert.org)\n\nprops= {'ClabPolicy'\t'label' 'CHAR'\n 'Projection'\t'euclidean' 'CHAR' \n 'PositionFcn' @mntutil_posExt55 'FUNC'\n 'Connector' '' 'CHAR'\n }; \n \nif nargin==0,\n mnt= props; return\nend\n\nif isstruct(varargin{1})\n mnt = varargin{1};\n opt= opt_proplistToStruct(varargin{2:end});\n misc_checkType(mnt, 'STRUCT'); %(redundant)\nelse\n clabSource = varargin{1};\n clabDetector = varargin{2};\n opt= opt_proplistToStruct(varargin{3:end});\n misc_checkType(clabSource, 'CHAR|CELL{CHAR}');\n misc_checkType(clabDetector, 'CHAR|CELL{CHAR}');\nend\n\n[opt, isdefault]= opt_setDefaults(opt, props);\nopt_checkProplist(opt, props);\n\nif ~exist('mnt','var')\n % Determine source and detector montages\n mnt = struct();\n mnt.source = mnt_setElectrodePositions(clabSource, 'PositionFcn', opt.PositionFcn);\n mnt.detector = mnt_setElectrodePositions(clabDetector, 'PositionFcn', opt.PositionFcn);\nend\n \nif any(isnan(mnt.source.pos_3d(:))) || any(isnan(mnt.detector.pos_3d(:)))\n warning(['Some source/detector positions are NaN. Note that the NIRS channels '...\n 'involving these sources/detectors will also have NaN positions.\\n '])\nend\n\n% Determine positions of source-detector combinations\nmnt.x = [];\nmnt.y = [];\nmnt.pos_3d = [];\nmnt.clab = {};\nmnt.angulardist = [];\n\nchanIdx = 1;\nfor ss=1:numel(mnt.source.clab)\n for dd=1:numel(mnt.detector.clab)\n ps = mnt.source.pos_3d(:,ss);\n pd = mnt.detector.pos_3d(:,dd);\n % 3d position of new channel (half-way between source and detector)\n % Set to norm=1 so that it's located on the head surface\n newpos = (ps + pd) / norm(ps+pd);\n % Angular distance in radians = angle between the two vectors1\n costheta = dot(ps,pd);\n theta = acos(costheta);\n % label\n if strcmp(opt.ClabPolicy,'label')\n label = [mnt.source.clab{ss} opt.Connector mnt.detector.clab{dd}];\n elseif strcmp(opt.ClabPolicy,'Number')\n label = [num2str(ss) opt.Connector num2str(dd)];\n end\n % Add to struct\n mnt.pos_3d(:,chanIdx) = newpos;\n mnt.angulardist = [mnt.angulardist theta];\n mnt.clab = {mnt.clab{:} label};\n mnt.sd(chanIdx,:) = [ss,dd];\n chanIdx = chanIdx + 1;\n end\nend\nmnt = mntutil_projectNIRSChannels3dTo2d(mnt,opt.Projection);\n", "meta": {"author": "bbci", "repo": "bbci_public", "sha": "2e6fe9481537dcfee702e74544191dcf737f02ce", "save_path": "github-repos/MATLAB/bbci-bbci_public", "path": "github-repos/MATLAB/bbci-bbci_public/bbci_public-2e6fe9481537dcfee702e74544191dcf737f02ce/visualization/mnt_getNIRSMontage.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.3633737913307776}} {"text": "function [ daten f107 ] = read_solarflux( filename )\n\n% INPUT\n% 'filename' : full path of solar flux observation file\n% i.e. ...\n% \\STP\\SOLAR_DATA\\SOLAR_RADIO\\FLUX\\Penticton_Observed\\daily\\DAILYPLT.OBS\n\n% OUTPUTS\n% 'daten' : array of MATLAB datenum dates\n% 'f107' : corresponding solar flux values\n\n% Reads solar flux data files from Penticton Observatory \n% daily F10.7 flux values, downloaded from ftp.ngdc.noaa.gov\n\n% Author : John A. Smith, CIRES/NOAA, Univ. of Colorado at Boulder\n\nfid = fopen(filename,'r','l','US-ASCII'); % open file\n\n% check file open successful\nif fid==-1\n error('Could not open file')\nend\n\ndat=textscan(fid,'%4d %2d %2d %f','treatasempty','.'); % read file contents\n\nfclose(fid); % close file\n\n% assign year, month and day\nyear=dat{1};\nmonth=dat{2};\nday=dat{3};\n\ndaten=datenum(double([year month day])); % convert to MATLAB datenum\n\nf107=dat{4}; % assign f10.7 data\n\nf107(f107==0)=NaN; % NaN empty fields\n\nend", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/35054-f10-7-solar-flux-ap-indices/read_solarflux.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.6334102567576901, "lm_q1q2_score": 0.3633737873608369}} {"text": "%{ \nB_LoopDeLoopCessna.m\n\nThis simply shows how the imported cessna patch object in A can be plugged directly into\nthe loop-de-loop example with no particular complications.\n\nMatt Sheen, mws262@cornell.edu\n%}\n\nclose all; clear all;\nfig = figure;\n\n%% Make the patch object:\npatchData = stlread('cessna.stl');\n\np1 = patch(patchData,'EdgeColor','none','FaceColor','[0.8 0.8 1.0]','FaceAlpha',0.9);\n\naxis equal\nmaterial('metal')\ncamlight('headlight');\n\np1.FaceAlpha = 0.5;\n\nOrigVerts = p1.Vertices;\n\nfig.Children.Clipping = 'off'; %Still see the plane when it leaves the axis area.\naxis(2*[-30 30 -30 30 -10 50])\nview(3)\n\n%% Do the loop example.\nvel = 5*[-1 0 0];\nrot = angle2dcm(0,-0.04,0);\ndt = 0.5;\ncenter = [0 0 0];\n\ntotalRot = eye(3,3);\n\nfor i = 1:1000\n totalRot = totalRot*rot;\n center = dt*(totalRot*vel')' + center; %transform the velocity, keep track of the center position.\n p1.Vertices = (totalRot*OrigVerts')' + repmat(center,[size(OrigVerts,1),1]); %Rotate the patch object about its center and add new center point.\n \n pause(0.01); \nend", "meta": {"author": "angeloyeo", "repo": "gongdols", "sha": "7be9fbd988dec6edab1dc881cb22d63e6f69398d", "save_path": "github-repos/MATLAB/angeloyeo-gongdols", "path": "github-repos/MATLAB/angeloyeo-gongdols/gongdols-7be9fbd988dec6edab1dc881cb22d63e6f69398d/MATLAB\uac15\uc758/animation\ub9cc\ub4e4\uae30/3D_\ube44\ud589\uae30\uc870\uc885\ud558\uae30/4 Getting fancy/1 Fancy planes/B_LoopDeLoopCessna.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154240079185319, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.36330079921121}} {"text": "function [VariableType,F_x,F_w,F_xw,h] = robust_classify_variables_newest(F,h,ops,w);\n\nDependency = iterateDependance( yalmip('monomtable') | yalmip('getdependence') | yalmip('getdependenceUser'));\nDependsOnw = find(any((Dependency(:,getvariables(w))),2));\n\nh_variables = getvariables(h);\nh_w = find(ismember(h_variables,DependsOnw));\nif ~isempty(h_w) \n % If we have Q(x) + w*h(x) we can replace w*h(x) with t and have a\n % quadratic objective, and the linearly parameterized w*h(x) <= t\n % However, if h is quadratic in w such as x^2+2*x*w+w^2 we must move\n % everything to the cone epigraph, otherwise it is not convex in x\n if ~is(h,'compound') && max(degree(h,w)) == 1 && min(degree(h,w)) == 1\n base = getbase(h);\n h0 = base(1);\n base = base(2:end);base = base(:);\n sdpvar t\n \n F = [F,base(h_w(:))'*recover(h_variables(h_w)) <= t];\n base(h_w) = 0;\n h = h0 + base(:)'*recover(h_variables) + t; \n else\n sdpvar t\n F = [F, h <= t];\n h = t;\n end\n Dependency = iterateDependance(yalmip('monomtable') | yalmip('getdependence') | yalmip('getdependenceUser'));\n DependsOnw = find(any((Dependency(:,getvariables(w))),2)); \nend\n\nDoesNotDependOnw = find(~any((Dependency(:,getvariables(w))),2));\n[notused,x_variables] = find(Dependency(DoesNotDependOnw,:));\n\nF_w = [];\nF_x = [];\nF_xw = [];\nfor i = 1:length(F)\n F_vars = getvariables(F(i));\n F_vars = find(any((Dependency(F_vars,:)),1));\n if all(ismember(F_vars,DependsOnw))\n F_w = F_w + F(i);\n elseif all(ismember(F_vars,DoesNotDependOnw))\n F_x = F_x + F(i);\n else\n F_xw = F_xw + F(i);\n end \nend\nops.removeequalities = 0;\n[F_x,failure,cause] = expandmodel(F_x,h,ops);\n[F_w,failure,cause] = expandmodel(F_w,[],ops);\nops.expandbilinear = 1;\nops.reusemodel = 1; % Might be case x+norm(w)<1, norm(w)<1\n[F_xw,failure,cause] = expandmodel(F_xw,h,ops,w);\n\nw_variables = depends(F_w);\nx_variables = unique([depends(F_x) depends(F_xw) depends(h)]);\nx_variables = setdiff(x_variables,w_variables);\n\n% After exanding the conic represntable, we have introduced new variables\nDependency = iterateDependance(yalmip('monomtable') | yalmip('getdependence') | yalmip('getdependenceUser'));\n\nauxiliary = unique([yalmip('extvariables') yalmip('auxvariables')]);\nif 1%~isempty(auxiliary)\n DependsOnw = find(any((Dependency(:,getvariables(w))),2));\n DoesNotDependOnw = find(~any((Dependency(:,getvariables(w))),2));\n \n temp = intersect(DependsOnw,x_variables);\n x_variables = setdiff(x_variables,DependsOnw);\n aux_with_w_dependence = temp; \nelse\n aux_with_w_dependence = []; \nend\n\n% aux_w_or_w = union(aux_with_w_dependence,w_variables);\n% old_w_variables = [];\n% while ~isequal(w_variables,old_w_variables);\n% old_w_variables = w_variables;\n% for i = 1:length(F_xw)\n% if all(ismember(depends(F_xw(i)),aux_w_or_w))\n% if ~any(ismember(depends(F_xw(i)),x_variables))\n% new_w = intersect(depends(F_xw(i)),aux_w_or_w);\n% w_variables = union(w_variables,new_w);\n% aux_with_w_dependence = setdiff(aux_with_w_dependence,new_w);\n% goon = 1;\n% end\n% end\n% end\n% aux_w_or_w = union(aux_with_w_dependence,w_variables); \n% end \n\nx = recover(x_variables);\nw = recover(w_variables);\n\nif ~isempty(F_xw)\n F_xw_scalar = F_xw(find(is(F_xw,'elementwise') | is(F_xw,'equality')));\n F_xw_multi = F_xw - F_xw_scalar;\nelse\n F_xw_scalar = [];\n F_xw_multi = F_xw;\nend\n\n[MonomTable,Nonlinear] = yalmip('monomtable');\nDependency = yalmip('getdependenceUser');\nevar = yalmip('extvariables');\nif length(F_xw_scalar)>0\n % Optimize dependency graph\n X = sdpvar(F_xw_scalar);\n Xvar = getvariables(X);\n Xbase = getbase(X);Xbase = Xbase(:,2:end);\n for i = 1:size(Xbase,1)\n used = Xvar(find(Xbase(i,:)));\n if any(Nonlinear(used))\n used = find(any(MonomTable(used,:),1));\n end\n auxUsed = intersect(used,aux_with_w_dependence);\n \n if ~isempty(auxUsed)\n wUsed = intersect(used,w_variables);\n if ~isempty(wUsed)\n Dependency(auxUsed,wUsed) = 1;\n end \n eUsed = intersect(used,evar);\n if ~isempty(eUsed)\n Dependency(eUsed,auxUsed) = 1;\n end\n end\n end \nend\nif length(F_xw_multi) > 0\n for i = 1:length(F_xw_multi)\n used = getvariables(F_xw_multi(i));\n used = find(any(MonomTable(used,:),1));\n auxUsed = intersect((used),aux_with_w_dependence);\n wUsed = intersect((used),w_variables);\n if ~isempty(auxUsed) & ~isempty(wUsed)\n Dependency(auxUsed,wUsed) = 1;\n end\n eUsed = intersect((used),evar);\n if ~isempty(auxUsed) & ~isempty(eUsed)\n Dependency(eUsed,auxUsed) = 1;\n end\n end\nend\nUserDependency = yalmip('getdependenceUser');\nfixed = find(any(UserDependency,2));\nDependency(fixed,:) = UserDependency(fixed,:);\nDependency = iterateDependance(Dependency);\n\nVariableType.Graph = Dependency;\nVariableType.x_variables = x_variables;\nVariableType.w_variables = w_variables;\nVariableType.aux_with_w_dependence = aux_with_w_dependence;\n\nfunction Graph = iterateDependance(Graph)\n\nGraph = Graph + speye(length(Graph));\nGraph0 = double(Graph*Graph ~=0);\nwhile ~isequal(Graph,Graph0)\n Graph = Graph0;\n Graph0 = double(Graph*Graph~=0); \nend\n", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/modules/robust/robust_classify_variables_newest.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7154239957834733, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.36330079304888324}} {"text": "function prediction = rmHrfSearchFit_oneGaussian(model, params, loopSlices, wProcess,varexp,allstimimages)\n% rmHrfSearchFit_oneGaussian - make predictions without HRF\n%\n% prediction = rmHrfSearchFit_oneGaussian(model, params, loopSlices, wProcess)\n%\n% 10/2009: SD & WZ wrote it.\n\n\n% intiate data stucture for our pRF values\ntmp.x = [];\ntmp.y = [];\ntmp.s = [];\ntmp.ve = [];\n\n\n% Get the data required to build our pRF\nfor slice=loopSlices,\n % now we extract only the data from that slice\n s = rmSliceGet(model,slice);\n \n % if we have more than one slice, then check which voxels to process in\n % each slice\n if length(loopSlices) > 1\n wProcessSlice = wProcess{slice};\n varexpSlice = varexp{slice};\n else\n wProcessSlice = wProcess;\n varexpSlice = varexp;\n end\n \n % store\n tmp.x = [tmp.x s{1}.x0(wProcessSlice)];\n tmp.y = [tmp.y s{1}.y0(wProcessSlice)];\n tmp.s = [tmp.s s{1}.s(wProcessSlice)];\n tmp.ve = [tmp.ve varexpSlice(wProcessSlice)];\nend\n\n\n% build pRF and make our predictions\nn = numel(tmp.x);\ns = [[1:ceil(n./1000):n-2] n+1]; %#ok\nprediction = zeros(size(allstimimages,1),n);\nfprintf(1,'[%s]:Making predictions without HRF for each voxel (%d):',mfilename,n);\ndrawnow;tic;\nfor n=1:numel(s)-1,\n % make rfs\n rf = rfGaussian2d(params.analysis.X, params.analysis.Y,...\n tmp.s(s(n):s(n+1)-1), ...\n tmp.s(s(n):s(n+1)-1),...\n zeros(size(tmp.s(s(n):s(n+1)-1))), ...\n tmp.x(s(n):s(n+1)-1), ...\n tmp.y(s(n):s(n+1)-1));\n \n % convolve with stimulus\n pred = allstimimages*rf;\n \n % store\n prediction(:,s(n):s(n+1)-1) = pred;\n fprintf(1,'.');drawnow;\nend;\nclear n s rf pred;\nfprintf(1, 'Done[%d min].\\t(%s)\\n', round(toc/60), datestr(now));\ndrawnow;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Analysis/retinotopyModel/HRFestimation/rmHrfSearchFit_oneGaussian.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6992544210587585, "lm_q2_score": 0.519521321952093, "lm_q1q2_score": 0.36327758120929166}} {"text": "filename='Cantileverbeam_Tetrahedra_Linear_Structured';\n ptype = 'MACRO';\nmethod = 'SIMPALL';\nmaterialType = 'ISOTROPIC';\ninitial_case = 'holes';\ncost = {'compliance'};\nweights = [1];\nconstraint = {'volume'};\noptimizer = 'HAMILTON-JACOBI'; \nincrementFactor = 1;\ndesignVariable = 'LevelSet';\nfilterType = 'P1';\nconstraint_case = 'INEQUALITY';\nline_search_initiator = 'STANDARD';\nshowBC = true;\n\nHJiter0 = 1;\ne2 = 100;\nN_holes = [12 5 5];\nR_holes = 0.2;\nphase_holes = [0 0 0];\nnsteps = 10;\nVfrac_final = 0.1;\nPerimeter_target = 1;\noptimality_final = 1e-3;\nconstr_final =1e-3;\n\nVfrac_initial = 0.7;\noptimality_initial = 5e-2;\nconstr_initial = 5e-2;\nTOL.rho_plus = 1;\nTOL.rho_minus = 0;\nTOL.E_plus = 1;\nTOL.E_minus = 1e-3;\nTOL.nu_plus = 1/3;\nTOL.nu_minus = 1/3;", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Topology Optimization/Benchmarks/Cantilever/CantileverTetrahedra_Case_5_1_3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7879311956428946, "lm_q2_score": 0.46101677931231594, "lm_q1q2_score": 0.3632495021349896}} {"text": "classdef casadi_block < matlab.System & matlab.system.mixin.Propagates\n % Casadi Implementation of the Momentum Based Velocity COntrol.\n \n properties\n % Public, tunable properties.\n \n end\n \n properties (DiscreteState)\n end\n \n properties (Access = private)\n casadi_optimizer;\n M;\n h;\n Jc;\n Jcmm;\n nu_k;\n C_friction;\n b_friction;\n s_dot_star;\n H_star;\n tau_k;\n s_dot_k_1;\n v_b_k_1;\n f_k;\n Jc_dot_nu;\n sol;\n tau_meas;\n f_meas;\n solver_fails_counter;\n s;\n CoM_measured;\n K_friction;\n t_step;\n epsilon_CoM;\n CoM_max;\n CoM_min;\n CoM_vel_max;\n CoM_vel_min;\n ActivateComHeightConstraint;\n CoM_Z_reference_velocity;\n feet_correction;\n holonomicConstraintActivation;\n JTorso;\n SaturationMinJoints;\n SaturationMaxJoints;\n J_com; \n \n end\n \n methods (Access = protected)\n function num = getNumInputsImpl(~)\n num = 36;\n end\n function num = getNumOutputsImpl(~)\n num = 4;\n end\n function [dt1,dt2,dt3,dt4] = getOutputDataTypeImpl(~)\n dt1 = 'double';\n dt2 = 'double';\n dt3 = 'double';\n dt4 = 'double';\n \n end\n \n function [dt1,dt2,dt3,dt4,dt5,dt6,dt7,dt8,dt9,dt10,dt11,dt12,dt13,dt14,dt15,dt16,dt17,dt18,dt19,dt20,dt21,dt22,dt23,dt24, ...\n dt25,dt26,dt27,dt28,dt29,dt30,dt31,dt32,dt33,dt34,dt35,dt36] = getInputDataTypeImpl(~)\n dt1 = 'double';\n dt2 = 'double';\n dt3 = 'double';\n dt4 = 'double';\n dt5 = 'double';\n dt6 = 'double';\n dt7 = 'double';\n dt8 = 'double';\n dt9 = 'double';\n dt10 = 'double';\n dt11 = 'double';\n dt12 = 'double';\n dt13 = 'double';\n dt14 = 'double';\n dt15 = 'double';\n dt16 = 'double';\n dt17 = 'double';\n dt18 = 'double';\n dt19 = 'double';\n dt20 = 'double';\n dt21 = 'double';\n dt22 = 'double';\n dt23 = 'double';\n dt24 = 'double';\n dt25 = 'double';\n dt26 = 'double';\n dt27 = 'double';\n dt28 = 'double';\n dt29 = 'double';\n dt30 = 'double';\n dt31 = 'double';\n dt32 = 'double';\n dt33 = 'double';\n dt34 = 'double';\n dt35 = 'double';\n dt36 = 'double';\n end\n function [sz1,sz2,sz3,sz4] = getOutputSizeImpl(obj)\n % Hack for avoiding hard coding the DoF of the Robot\n size_temp = propagatedInputSize(obj,1);\n sz1 = [6,1];\n sz2 = [size_temp(1)-6,1];\n sz3 = [size_temp(1)-6,1];\n sz4 = [12,1];\n end\n function [sz1,sz2,sz3,sz4,sz5,sz6,sz7,sz8,sz9,sz10,sz11,sz12,sz13,sz14,sz15,sz16, sz17,sz18,sz19,sz20,sz21,sz22, ...\n sz23,sz24,sz25,sz26,sz27,sz28,sz29,sz30,sz31,sz32,sz33,sz34, sz35,sz36] = getInputSizeImpl(~)\n sz1 = [1,1];\n sz2 = [1,1];\n sz3 = [1,1];\n sz4 = [1,1];\n sz5 = [1,1];\n sz6 = [1,1];\n sz7 = [1,1];\n sz8 = [1,1];\n sz9 = [1,1];\n sz10 = [1,1];\n sz11 = [1,1];\n sz12 = [1,1];\n sz13 = [1,1];\n sz14 = [1,1];\n sz15 = [1,1];\n sz16 = [1,1];\n sz17 = [1,1];\n sz18 = [1,1];\n sz19 = [1,1];\n sz20 = [1,1];\n sz21 = [1,1];\n sz22 = [1,1];\n sz23 = [1,1];\n sz24 = [1,1];\n sz25 = [1,1];\n sz26 = [1,1];\n sz27 = [1,1];\n sz28 = [1,1];\n sz29 = [1,1];\n sz30 = [1,1];\n sz31 = [1,1];\n sz32 = [1,1];\n sz33 = [1,1];\n sz34 = [1,1];\n sz35 = [1,1];\n sz36 = [1,1];\n end\n function [cp1,cp2,cp3,cp4,cp5,cp6,cp7,cp8,cp9,cp10,cp11,cp12,cp13, cp14, cp15,cp16, cp17,cp18,cp19,cp20,cp21,...\n cp22,cp23,cp24,cp25,cp26,cp27,cp28,cp29,cp30,cp31,cp32,cp33,cp34,cp35,cp36] = isInputComplexImpl(~)\n cp1 = false;\n cp2 = false;\n cp3 = false;\n cp4 = false;\n cp5 = false;\n cp6 = false;\n cp7 = false;\n cp8 = false;\n cp9 = false;\n cp10 = false;\n cp11 = false;\n cp12 = false;\n cp13 = false;\n cp14 = false;\n cp15 = false;\n cp16 = false;\n cp17 = false;\n cp18 = false;\n cp19 = false;\n cp20 = false;\n cp21 = false;\n cp22 = false;\n cp23 = false;\n cp24 = false;\n cp25 = false;\n cp26 = false;\n cp27 = false;\n cp28 = false;\n cp29 = false;\n cp30 = false;\n cp31 = false;\n cp32 = false;\n cp33 = false;\n cp34 = false;\n cp35 = false;\n cp36 = false;\n end\n function [cp1,cp2,cp3,cp4] = isOutputComplexImpl(~)\n cp1 = false;\n cp2 = false;\n cp3 = false;\n cp4 = false;\n end\n function [fz1,fz2,fz3,fz4,fz5,fz6,fz7,fz8,fz9,fz10, fz11,fz12,fz13,fz14,fz15,fz16, fz17,fz18,fz19,fz20,fz21, ...\n fz22,fz23,fz24,fz25,fz26,fz27,fz28,fz29,fz30,fz31,fz32,fz33,fz34, fz35,fz36] = isInputFixedSizeImpl(~)\n fz1 = true;\n fz2 = true;\n fz3 = true;\n fz4 = true;\n fz5 = true;\n fz6 = true;\n fz7 = true;\n fz8 = true;\n fz9 = true;\n fz10 = true;\n fz11 = true;\n fz12 = true;\n fz13 = true;\n fz14 = true;\n fz15 = true;\n fz16 = true;\n fz17 = true;\n fz18 = true;\n fz19 = true;\n fz20 = true;\n fz21 = true;\n fz22 = true;\n fz23 = true;\n fz24 = true;\n fz25 = true;\n fz26 = true;\n fz27 = true;\n fz28 = true;\n fz29 = true;\n fz30 = true;\n fz31 = true;\n fz32 = true;\n fz33 = true;\n fz34 = true;\n fz35 = true;\n fz36 = true;\n end\n function [fz1,fz2,fz3,fz4] = isOutputFixedSizeImpl(~)\n fz1 = true;\n fz2 = true;\n fz3 = true;\n fz4 = true;\n end\n function setupImpl(obj,M,h,Jc,Jcmm,nu_k,Jc_dot_nu,C_friction,b_friction,H_star,s_dot_star,tau_meas, contact_status, f_meas, x_com, J_com, w_H_b,...\n s,CoM_measured,ADD_FRICTION, K_viscous_friction, T, Gamma, baseVelocitySat, jointsVelocitySat, torqueSat, wrenchesSat, tStep, NDOF, epsilon_CoM, CoM_limits,CoM_vel_limits, activateCoMHeightTask, CoMZReferenceVelocity, correctionFeet, ActivateHolonomicConstraint, JTorso)\n \n NDOF = size(K_viscous_friction,1);\n obj.solver_fails_counter = 0;\n import casadi.*\n obj.solver_fails_counter = 0;\n optimization_type = 'conic';\n solver = 'osqp';\n p_opts = struct('expand',true);\n s_opts = struct();\n \n obj.casadi_optimizer = casadi.Opti(optimization_type);\n obj.casadi_optimizer.solver(solver, p_opts, s_opts);\n \n %Definition of the decision variables\n obj.tau_k = obj.casadi_optimizer.variable(NDOF);\n obj.s_dot_k_1 = obj.casadi_optimizer.variable(NDOF);\n obj.v_b_k_1 = obj.casadi_optimizer.variable(6);\n obj.f_k = obj.casadi_optimizer.variable(12);\n nu_k_1 = [obj.v_b_k_1; obj.s_dot_k_1];\n \n % Setting the parameter for the optimization solver\n obj.M = obj.casadi_optimizer.parameter(NDOF+6,NDOF+6);\n obj.h = obj.casadi_optimizer.parameter(NDOF+6);\n obj.Jc = obj.casadi_optimizer.parameter(12,NDOF+6);\n obj.Jcmm = obj.casadi_optimizer.parameter(6,NDOF+6);\n obj.nu_k = obj.casadi_optimizer.parameter(NDOF+6);\n obj.C_friction = obj.casadi_optimizer.parameter(38,12);\n obj.b_friction = obj.casadi_optimizer.parameter(38);\n obj.s_dot_star = obj.casadi_optimizer.parameter(NDOF);\n obj.H_star = obj.casadi_optimizer.parameter(6);\n obj.Jc_dot_nu = obj.casadi_optimizer.parameter(12);\n obj.tau_meas = obj.casadi_optimizer.parameter(NDOF);\n obj.f_meas = obj.casadi_optimizer.parameter(12);\n obj.s = obj.casadi_optimizer.parameter(NDOF);\n obj.CoM_measured = obj.casadi_optimizer.parameter(3);\n obj.K_friction = obj.casadi_optimizer.parameter(NDOF+6,NDOF+6);\n obj.t_step = obj.casadi_optimizer.parameter(1);\n obj.CoM_max = obj.casadi_optimizer.parameter(2);\n obj.CoM_min = obj.casadi_optimizer.parameter(2);\n obj.CoM_vel_max = obj.casadi_optimizer.parameter(2);\n obj.CoM_vel_min = obj.casadi_optimizer.parameter(2);\n obj.epsilon_CoM = obj.casadi_optimizer.parameter(2);\n obj.ActivateComHeightConstraint = obj.casadi_optimizer.parameter(1);\n obj.CoM_Z_reference_velocity = obj.casadi_optimizer.parameter(1);\n obj.feet_correction = obj.casadi_optimizer.parameter(12);\n obj.holonomicConstraintActivation = obj.casadi_optimizer.parameter(1);\n obj.JTorso= obj.casadi_optimizer.parameter(6,NDOF+6);\n obj.SaturationMaxJoints = obj.casadi_optimizer.parameter(NDOF);\n obj.SaturationMinJoints = obj.casadi_optimizer.parameter(NDOF);\n obj.J_com = obj.casadi_optimizer.parameter(6,NDOF+6); \n \n %Weigth\n Weigth.PosturalTask = 100;\n Weigth.MomentumLinear = 2.0;\n Weigth.MomentumAngular = 30.00;\n Weigth.RegTorques = 0.001;\n Weigth.RegVelocities = 128;\n Weigth.Wrenches = 0.01;\n Weigth.HolonomicConstraint = 10;\n % Selector Matrix\n \n B = [ zeros(6,NDOF); ...\n eye(NDOF,NDOF)];\n \n % Setting the objective function\n obj.casadi_optimizer.minimize(Weigth.RegTorques*sumsqr(obj.tau_k - obj.tau_meas)+ ... % Torque Regularization\n Weigth.RegVelocities*sumsqr(nu_k_1(1:6))+ ... % Base Velocity Regularization\n Weigth.PosturalTask*sumsqr(obj.s_dot_k_1-obj.s_dot_star)); ... % Postural Task\n %Weigth.HolonomicConstraint*(1-obj.holonomicConstraintActivation)*sumsqr(obj.Jc*(nu_k_1))); ... %HolonomicCOnstraint\n %Weigth.Wrenches*sumsqr(obj.f_k) + ... %Wrenches\n %Weigth.MomentumAngular*sumsqr(obj.H_star(4:6)-obj.Jcmm(4:6,:)*nu_k_1)); ... % Angular Momentum\n %Weigth.MomentumLinear*sumsqr(obj.H_star(1:3)-obj.Jcmm(1:3,:)*nu_k_1)); ... % Linear Momentum\n \n \n % Setting Constraint\n % Dynamics\n obj.casadi_optimizer.subject_to((obj.M/obj.t_step + obj.K_friction)*(nu_k_1)-(obj.M*obj.nu_k)/obj.t_step+obj.h== B*obj.tau_k +obj.Jc'*obj.f_k);\n % Holonomic Constraint\n % acceleration-wise\n %obj.casadi_optimizer.subject_to(obj.holonomicConstraintActivation*(obj.Jc*(nu_k_1 - obj.nu_k)/obj.t_step) == obj.holonomicConstraintActivation*(-obj.Jc_dot_nu));\n % velocity-wise\n obj.casadi_optimizer.subject_to(obj.holonomicConstraintActivation*obj.Jc*(nu_k_1)==obj.holonomicConstraintActivation*obj.feet_correction);\n % Friction Cones\n obj.casadi_optimizer.subject_to(obj.C_friction*obj.f_k=(tanh(obj.epsilon_CoM*(obj.CoM_measured(1)-obj.CoM_min(1)))*obj.CoM_vel_min(1)));\n obj.casadi_optimizer.subject_to(obj.J_com(2,:)*nu_k_1<=(tanh(obj.epsilon_CoM*(obj.CoM_max(2)-obj.CoM_measured(2)))*obj.CoM_vel_max(2)));\n obj.casadi_optimizer.subject_to(obj.J_com(2,:)*nu_k_1>=(tanh(obj.epsilon_CoM*(obj.CoM_measured(2)-obj.CoM_min(2)))*obj.CoM_vel_min(2)));\n \n % Constraint the Torso velocity on the z axis\n %obj.casadi_optimizer.subject_to(obj.ActivateComHeightConstraint*obj.Jcmm(3,7:end)*nu_k_1(7:end) >= obj.ActivateComHeightConstraint*obj.M(1,1)*obj.CoM_Z_reference_velocity);\n obj.casadi_optimizer.subject_to(obj.ActivateComHeightConstraint*obj.JTorso(3,:)*nu_k_1 >= obj.ActivateComHeightConstraint*obj.CoM_Z_reference_velocity);\n% \n % Angular Momentum\n % With Control Law\n % obj.casadi_optimizer.subject_to(obj.H_star(4:6,:)==obj.Jcmm(4:6,:)*nu_k_1);\n % Setting to Zero\n %obj.casadi_optimizer.subject_to(obj.Jcmm(4:6,:)*nu_k_1 == zeros(3,1));\n %THE BOUND FOR NOW ARE DE-ACTIVATED\n % Setting upper and lower bound\n % Lower and Upper Bound NOTE by using a casadi optimizer object, we loose the capability of interpreting the lower and\n % uppe bound in a smart way.\n % obj.casadi_optimizer.subject_to(Sat.BaseLinearVelocity_min<= obj.v_b_k_1(1:3)<=Sat.BaseLinearVelocity_max);\n % obj.casadi_optimizer.subject_to(Sat.BaseAngVelocity_min<= obj.v_b_k_1(4:end)<=Sat.BaseAngVelocity_max);\n %obj.casadi_optimizer.subject_to(obj.SaturationMinJoints<= obj.s_dot_k_1);\n %obj.casadi_optimizer.subject_to(obj.s_dot_k_1<= obj.SaturationMaxJoints);\n % obj.casadi_optimizeru.sbject_to(Sat.torques_min(1:3)<= obj.tau_k(1:3)<= Sat.torques_max(1:3));\n \n end\n \n function [v_b_star,s_dot_k_1_star,tau_star,f_star] = stepImpl(obj,M,h,Jc,Jcmm,nu_k,Jc_dot_nu,C_friction,b_friction,H_star,s_dot_star,tau_meas, contact_status, f_meas, x_com, J_com, w_H_b,...\n s,CoM_measured,ADD_FRICTION, K_viscous_friction, T, Gamma, baseVelocitySat, jointsVelocitySat, torqueSat, wrenchesSat, tStep, NDOF,epsilon_CoM, CoM_limits,CoM_vel_limits, activateCoMHeightTask, CoMZReferenceVelocity, correctionFeet, activateHolonomicConstraint, JTorso )\n solver_succeded = true;\n \n % Compute Centroidayl Dynamics\n selector = zeros(length(nu_k),1);\n selector(3) = 1 ;\n DYNAMICS.M = M;\n DYNAMICS.h = h;\n DYNAMICS.g = M*selector*(9.81);\n DYNAMICS.Jc = Jc;\n DYNAMICS.dJc_nu = Jc_dot_nu;\n FORKINEMATICS.xCoM = x_com;\n vel_com = J_com*nu_k;\n FORKINEMATICS.dxCoM = vel_com(1:3);\n \n STATE.nu = nu_k;\n STATE.dx_b = nu_k(1:3);\n STATE.x_b = w_H_b(1:3,4);\n centroidalDyn = centroidalConversion(DYNAMICS,FORKINEMATICS,STATE);\n \n %K friction\n K_friction_new = zeros(NDOF+6);\n \n if(ADD_FRICTION)\n invTGamma = eye(size(Gamma))/(T*Gamma);\n invTGamma_t = eye(size(Gamma))/(transpose(T*Gamma));\n K_friction_new(7:end, 7:end) = invTGamma_t*K_viscous_friction*invTGamma;\n end\n \n % Update casadi optimizer parameters\n obj.casadi_optimizer.set_value(obj.M, centroidalDyn.M);\n obj.casadi_optimizer.set_value(obj.h,( centroidalDyn.C_nu+centroidalDyn.g));\n obj.casadi_optimizer.set_value(obj.Jc, centroidalDyn.Jc);\n obj.casadi_optimizer.set_value(obj.Jcmm, Jcmm);\n obj.casadi_optimizer.set_value(obj.nu_k, centroidalDyn.nu);\n obj.casadi_optimizer.set_value(obj.C_friction,C_friction);\n obj.casadi_optimizer.set_value(obj.b_friction,b_friction);\n obj.casadi_optimizer.set_value(obj.s_dot_star,s_dot_star);\n obj.casadi_optimizer.set_value(obj.H_star,H_star);\n obj.casadi_optimizer.set_value(obj.Jc_dot_nu, centroidalDyn.dJc_nu);\n obj.casadi_optimizer.set_value(obj.tau_meas, tau_meas);\n obj.casadi_optimizer.set_value(obj.f_meas, f_meas);\n obj.casadi_optimizer.set_value(obj.s,s);\n obj.casadi_optimizer.set_value(obj.CoM_measured,CoM_measured)\n obj.casadi_optimizer.set_value(obj.K_friction,K_friction_new);\n obj.casadi_optimizer.set_value(obj.t_step,tStep);\n obj.casadi_optimizer.set_value(obj.CoM_max, CoM_limits(:,2));\n obj.casadi_optimizer.set_value(obj.CoM_min, CoM_limits(:,1));\n obj.casadi_optimizer.set_value(obj.CoM_vel_max, CoM_vel_limits(:,2));\n obj.casadi_optimizer.set_value(obj.CoM_vel_min, CoM_vel_limits(:,1));\n obj.casadi_optimizer.set_value(obj.epsilon_CoM, epsilon_CoM);\n obj.casadi_optimizer.set_value(obj.ActivateComHeightConstraint,activateCoMHeightTask);\n obj.casadi_optimizer.set_value(obj.CoM_Z_reference_velocity, CoMZReferenceVelocity);\n obj.casadi_optimizer.set_value(obj.feet_correction, correctionFeet);\n obj.casadi_optimizer.set_value(obj.holonomicConstraintActivation, activateHolonomicConstraint);\n obj.casadi_optimizer.set_value(obj.JTorso,JTorso);\n obj.casadi_optimizer.set_value(obj.J_com,J_com); \n% obj.casadi_optimizer.set_value(obj.SaturationMaxJoints,jointsVelocitySat(:,2));\n% obj.casadi_optimizer.set_value(obj.SaturationMinJoints, jointsVelocitySat(:,1));\n \n % Computing the solution\n try\n obj.sol = obj.casadi_optimizer.solve; % could raise an error\n v_b_star = full(obj.sol.value(obj.v_b_k_1));\n s_dot_k_1_star = full(obj.sol.value(obj.s_dot_k_1));\n tau_star = full(obj.sol.value(obj.tau_k));\n f_star = full(obj.sol.value(obj.f_k));\n obj.casadi_optimizer.set_initial(obj.casadi_optimizer.x, obj.sol.value(obj.casadi_optimizer.x));\n catch exception\n try\n solver_succeded = false;\n obj.casadi_optimizer.debug.show_infeasibilities;\n disp(exception.getReport)\n catch\n disp(exception.message)\n end\n end\n \n \n % If the solver did not succed, put to zero the control input\n % and increase the related counter\n if(~solver_succeded)\n obj.solver_fails_counter = obj.solver_fails_counter +1;\n v_b_star = zeros(6,1);\n s_dot_k_1_star = zeros(26,1);\n tau_star = zeros(26,1);\n f_star = zeros(12,1);\n if(obj.solver_fails_counter>6)\n error('solver failed more that 4 times');\n end\n else\n obj.solver_fails_counter = 0;\n \n end\n \n end\n \n function resetImpl(obj)\n % Initialize discrete-state properties.\n end\n end\nend\n", "meta": {"author": "robotology", "repo": "whole-body-controllers", "sha": "90ff965a523f0a120e6a8981b71326c1485e7742", "save_path": "github-repos/MATLAB/robotology-whole-body-controllers", "path": "github-repos/MATLAB/robotology-whole-body-controllers/whole-body-controllers-90ff965a523f0a120e6a8981b71326c1485e7742/library/simulink-library/MomentumVelocityControl/src/casadi_block.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.8152324893519999, "lm_q2_score": 0.4455295350395727, "lm_q1q2_score": 0.36321015193014994}} {"text": "function visual_scalpPlot(SMT, CNT, varargin)\n% Description:\n% Draw scalp topographies for all selected intervals,separately for each each class.\n% Scalp topographies of each classe are plotted in one row, and shared the same color map\n% scaling in each classes.\n%\n% Example Code:\n% visual_scalpPlot(SMT,CNT, {'Ival' , [start interval : time increase parameter: end intercal]});\n%\n% Input:\n% visual_scalpPlot(SMT,CNT, );\n% SMT: Data structrue (ex) Epoched data structure\n% CNT: Continuous data structure\n%\n% Option:\n% .Ival - Selecting the interested time interval depending on time increase parameter\n% (e.g. {'Ival' [ [-2000 : 1000: 4000]])\n%\n% Return:\n% Scalp topographies\n%\n% See also:\n% opt_getMontage, opt_cellToStruct\n%\n% Ji Hoon, Jeong\n% jh_jeong@korea.ac.kr\n\n%%\nMNT = opt_getMontage(SMT);\nopt = opt_cellToStruct(varargin{:});\nopt.Interval = abs(opt.Ival(1)-opt.Ival(2));\nfor i = 1: size(SMT.class,1)\n for seg = 1: size(opt.Ival, 2)-1\n % figure()\n subplot(size(SMT.class,1),size(opt.Ival,2)-1,((i-1)*(size(opt.Ival, 2)-1))+seg)\n \n center = [0 0];\n theta = linspace(0,2*pi,360);\n \n x = cos(theta)+center(1);\n y = sin(theta)+center(2);\n \n oldUnit = get(gcf,'units');\n set(gcf,'units','normalized');\n \n H = struct('ax', gca);\n set(gcf,'CurrentAxes',H.ax);\n \n % ----------------------------------------------------------------------\n % nose plot\n nose = [1 1.2 1];\n nosi = [83 90 97]+1;\n H.nose = plot(nose.*x(nosi), nose.*y(nosi), 'k', 'linewidth', 2.4 );\n \n hold on;\n \n % ----------------------------------------------------------------------\n % ears plot\n earw = .08; earh = .3;\n H.ears(1) = plot(x*earw-1-earw, y*earh, 'k', 'linewidth', 2);\n H.ears(2) = plot(x*earw+1+earw, y*earh, 'k', 'linewidth', 2);\n hold on;\n \n % ----------------------------------------------------------------------\n % main circle plot\n H.main = plot(x,y, 'k', 'linewidth', 2.2);\n set(H.ax, 'xTick',[], 'yTick',[]);\n axis('xy', 'tight', 'equal', 'tight');\n hold on;\n % if (i == 1 && seg == 1)\n % ylabel([SMT.class{i,2},' class'])\n % hold on;\n % elseif (i == 2 && seg == 1)\n % ylabel([SMT.class{i,2},' class'])\n % hold on;\n % elseif (i == 3 && seg == 1)\n % ylabel([SMT.class{i,2},' class'])\n % hold on;\n % elseif (i == 4 && seg == 1)\n % ylabel([SMT.class{i,2},' class'])\n % hold on;\n % end\n % ----------------------------------------------------------------------\n % Rendering the contourf\n xe_org = MNT.x';\n ye_org = MNT.y';\n avgSMT= prep_average(SMT);\n \n SMTintervalstart = find(avgSMT.ival == opt.Ival(seg));\n SMTintervalEnd = SMTintervalstart+opt.Interval/10;\n UpdatedSMT{seg} = avgSMT.x(SMTintervalstart:SMTintervalEnd,:,:);\n w{seg,i} = UpdatedSMT{seg}(:,i,:);\n w{seg,i} = squeeze(w{seg,i});\n inputx{seg,i} = mean(w{seg,i},1);\n \n \n % w = w(:);\n % resolution = 101;\n resolution = 500;\n \n maxrad = max(1,max(max(abs(MNT.x)),max(abs(MNT.y))));\n \n xx = linspace(-maxrad, maxrad, resolution);\n yy = linspace(-maxrad, maxrad, resolution)';\n \n xe_add = cos(linspace(0,2*pi,resolution))'*maxrad;\n ye_add = sin(linspace(0,2*pi,resolution))'*maxrad;\n w_add = ones(length(xe_add),1)*mean(inputx{seg,i});\n \n xe = [xe_org; xe_add];\n ye = [ye_org; ye_add];\n inputx{seg,i} = [inputx{seg,i}'; w_add];\n \n % xe_add = cos(linspace(0,2*pi,resolution))';\n % ye_add = sin(linspace(0,2*pi,resolution))';\n %\n % xe = [xe;xe_add];\n % ye = [ye;ye_add];\n % w = [w; zeros(length(xe_add),1)];\n \n [xg,yg,zg] = griddata(xe, ye, inputx{seg,i}, xx, yy);\n contourf(xg, yg, zg, 50, 'LineStyle','none'); hold on;\n \n % ----------------------------------------------------------------------\n % disp electrodes\n for j = 1:size(xe_org,1)\n plot(xe_org(j), ye_org(j), 'k*'); hold on;\n set(0,'defaultfigurecolor',[1 1 1])\n \n end\n \n axis off;\n title({[SMT.class{i,2},' class'];['[' , num2str(opt.Ival(seg)), ' ~ ' , num2str(opt.Ival(seg+1)) , '] ms']})\n % colorbar('vert');\n end\n \n \nend\n\n\nend\n\n", "meta": {"author": "PatternRecognition", "repo": "OpenBMI", "sha": "3c42e609d5b867a8e15c780df3f8b0a8b86edcb8", "save_path": "github-repos/MATLAB/PatternRecognition-OpenBMI", "path": "github-repos/MATLAB/PatternRecognition-OpenBMI/OpenBMI-3c42e609d5b867a8e15c780df3f8b0a8b86edcb8/BMI_modules/Visualization/visual_scalpPlot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947425132315, "lm_q2_score": 0.5544704649604274, "lm_q1q2_score": 0.36311979238145087}} {"text": "% Codes for CVPR-15 work `Face Alignment by Coarse-to-Fine Shape Searching'\n% Any question please contact Shizhan Zhu: zhshzhutah2@gmail.com\n% Released on July 25, 2015\n\nfunction y_hat = useLR(reg_model,X)\n%y_hat = useLR(reg_model,X)\n% X: m * n\n% reg_model: (n+1)*ny\n% y: m * ny\n\nm = size(X,1);\nX = [X ones(m,1)];\ny_hat = X * reg_model;\n\n\nend\n\n", "meta": {"author": "zhusz", "repo": "CVPR15-CFSS", "sha": "11b8d0b28a4a3e954741a4dae2f114df7b644d4e", "save_path": "github-repos/MATLAB/zhusz-CVPR15-CFSS", "path": "github-repos/MATLAB/zhusz-CVPR15-CFSS/CVPR15-CFSS-11b8d0b28a4a3e954741a4dae2f114df7b644d4e/codes_release/ml/ridge/useLR.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3631197849121215}} {"text": "function Connect3D(p1,p2,option,pt)\n\nh = plot3([p1(1) p2(1)],[p1(2) p2(2)],[p1(3) p2(3)],option);\nset(h,'LineWidth',pt)", "meta": {"author": "s-kajita", "repo": "IntroductionToHumanoidRobotics", "sha": "55c46ce6902c97897596fda581f93555c426736c", "save_path": "github-repos/MATLAB/s-kajita-IntroductionToHumanoidRobotics", "path": "github-repos/MATLAB/s-kajita-IntroductionToHumanoidRobotics/IntroductionToHumanoidRobotics-55c46ce6902c97897596fda581f93555c426736c/Connect3D.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3631197849121215}} {"text": "function [vp,elbo,elbo_sd,exitflag,output,samples,optimState,stats,vp_train] = ...\n vbmc(fun,x0,LB,UB,PLB,PUB,options,varargin)\n%VBMC Posterior and model inference via Variational Bayesian Monte Carlo (v1.0.12).\n% VBMC computes a variational approximation of the full posterior and a \n% lower bound on the normalization constant (marginal likelhood or model\n% evidence) for a provided unnormalized log posterior. As of v1.0, VBMC\n% also supports noisy evaluations of the log posterior (see below).\n%\n% VP = VBMC(FUN,X0,LB,UB) initializes the variational posterior in the\n% proximity of X0 (ideally, a posterior mode) and iteratively computes\n% a variational approximation for a given target log posterior FUN.\n% FUN accepts input X and returns the value of the target log-joint, that\n% is the unnormalized log-posterior density, at X. LB and UB define a set \n% of strict lower and upper bounds coordinate vector, X, so that the \n% posterior has support on LB < X < UB. LB and UB can be scalars or \n% vectors. If scalars, the bound is replicated in each dimension. Use \n% empty matrices for LB and UB if no bounds exist. Set LB(i) = -Inf and \n% UB(i) = Inf if the i-th coordinate is unbounded (while other coordinates \n% may be bounded). Note that if LB and UB contain unbounded variables, \n% the respective values of PLB and PUB need to be specified (see below). \n% VBMC returns a variational posterior solution VP, which can then be \n% manipulated via other functions in the VBMC toolbox (see examples below).\n%\n% VP = VBMC(FUN,X0,LB,UB,PLB,PUB) specifies a set of plausible lower and\n% upper bounds such that LB < PLB < PUB < UB. Both PLB and PUB\n% need to be finite. PLB and PUB represent a \"plausible\" range, which\n% should denote a region of high posterior probability mass. Among other \n% things, the plausible box is used to draw initial samples and to set \n% priors over hyperparameters of the algorithm. When in doubt, we found \n% that setting PLB and PUB using the topmost ~68% percentile range of the \n% prior (e.g, mean +/- 1 SD for a Gaussian prior) works well in many \n% cases (but note that additional information might afford a better guess).\n% \n% VP = VBMC(FUN,X0,LB,UB,PLB,PUB,OPTIONS) performs variational inference\n% with the default parameters replaced by values in the structure OPTIONS.\n% VBMC('defaults') returns the default OPTIONS struct.\n% \n% VP = VBMC(FUN,X0,LB,UB,PLB,PUB,OPTIONS,...) passes additional arguments\n% to FUN.\n%\n% VBMC also supports noisy/stochastic estimates of the log-posterior,\n% obtained through techniques such as Inverse Binomial Sampling (see \n% examples and references below). For noisy evaluations, FUN should \n% return as second agument the estimated SD (standard deviation) of the \n% log-likelihood noise at X. \n% Set OPTIONS.SpecifyTargetNoise = 1 to activate support for noisy\n% inference (this is not automatic).\n% \n% VP = VBMC(FUN,VP0,...) uses variational posterior VP0 (from a previous\n% run of VBMC) to initialize the current run. You can leave PLB and PUB\n% empty, in which case they will be set using VP0 (recommended).\n%\n% [VP,ELBO] = VBMC(...) returns an estimate of the ELBO, the variational\n% expected lower bound on the log marginal likelihood (log model evidence).\n% This estimate is computed via Bayesian quadrature.\n%\n% [VP,ELBO,ELBO_SD] = VBMC(...) returns the standard deviation of the\n% estimate of the ELBO, as computed via Bayesian quadrature. Note that\n% this standard deviation is *not* representative of the error between the \n% ELBO and the true log marginal likelihood.\n%\n% [VP,ELBO,ELBO_SD,EXITFLAG] = VBMC(...) returns an EXITFLAG that describes\n% the exit condition. Possible values of EXITFLAG and the corresponding\n% exit conditions are\n%\n% 1 Change in the variational posterior, in the ELBO and its uncertainty \n% have reached a satisfactory level of stability across recent\n% iterations, suggesting convergence of the variational solution.\n% 0 Maximum number of function evaluations or iterations reached. Note\n% that the returned solution has *not* stabilized.\n%\n% [VP,ELBO,ELBO_SD,EXITFLAG,OUTPUT] = VBMC(...) returns a structure OUTPUT \n% with the following information:\n% function: \n% iterations: \n% funccount: \n% bestiter: \n% trainsetsize: \n% components: \n% rindex: \n% convergencestatus: <\"probable\" or \"no\" convergence>\n% overhead: \n% rngstate: \n% algorithm: \n% message: \n% elbo: \n% elbo_sd: \n% retried: <\"yes\", \"no\", or \"failed\" if a retry run was performed>\n%\n% OPTIONS = VBMC('defaults') returns a basic default OPTIONS structure.\n%\n% EXITFLAG = VBMC('test') runs a battery of tests. Here EXITFLAG is 0 if\n% everything works correctly.\n%\n% Examples:\n% FUN can be a function handle (using @)\n% vp = vbmc(@rosenbrock_test, ...)\n% In this case, F = rosenbrock_test(X) returns the scalar log pdf F of \n% the target pdf evaluated at X.\n%\n% An example with no hard bounds, only plausible bounds\n% plb = [-5 -5]; pub = [5 5]; options.Plot = 'on';\n% [vp,elbo,elbo_sd] = vbmc(@rosenbrock_test,[0 0],[],[],plb,pub,options);\n%\n% FUN can also be an anonymous function:\n% lb = [0 0]; ub = [pi 5]; plb = [0.1 0.1]; pub = [3 4]; options.Plot = 'on';\n% vp = vbmc(@(x) 3*sin(x(1))*exp(-x(2)),[1 1],lb,ub,plb,pub,options)\n%\n% See VBMC_EXAMPLES for an extended tutorial with more examples. \n% The most recent version of the algorithm and additional documentation \n% can be found here: https://github.com/acerbilab/vbmc\n% Also, check out the FAQ: https://github.com/acerbilab/vbmc/wiki\n%\n% References (please cite both): \n% \n% 1) Acerbi, L. (2018). \"Variational Bayesian Monte Carlo\". In Advances \n% in Neural Information Processing Systems 31 (NeurIPS 2018), pp. 8213-8223.\n% 2) Acerbi, L. (2020). \"Variational Bayesian Monte Carlo with Noisy\n% Likelihoods\". In Advances in Neural Information Processing Systems 33 \n% (NeurIPS 2020).\n%\n% Additional references:\n%\n% 3) Acerbi, L. (2019). \"An Exploration of Acquisition and Mean Functions \n% in Variational Bayesian Monte Carlo\". In Proc. Machine Learning \n% Research 96: 1-10. 1st Symposium on Advances in Approximate Bayesian \n% Inference, Montr\u00e9al, Canada.\n% 4) van Opheusden, B.*, Acerbi, L.* & Ma, W. J. (2020). \"Unbiased and \n% Efficient Log-Likelihood Estimation with Inverse Binomial Sampling\". \n% PLoS Computational Biology 16(12): e1008483. (* equal contribution)\n%\n% See also VBMC_EXAMPLES, VBMC_KLDIV, VBMC_MODE, VBMC_MOMENTS, VBMC_MTV,\n% VBMC_PDF, VBMC_RND, VBMC_DIAGNOSTICS, @.\n\n%--------------------------------------------------------------------------\n% VBMC: Variational Bayesian Monte Carlo for posterior and model inference.\n% To be used under the terms of the GNU General Public License \n% (http://www.gnu.org/copyleft/gpl.html).\n%\n% Author (copyright): Luigi Acerbi, 2018-2022\n% e-mail: luigi.acerbi@{helsinki.fi,gmail.com}\n% URL: http://luigiacerbi.com\n% Version: 1.0.12\n% Release date: Oct 26, 2022\n% Code repository: https://github.com/acerbilab/vbmc\n%--------------------------------------------------------------------------\n\n\n%% Start timer\n\nt0 = tic;\nvbmc_version = '1.0.12';\n\n% Check that all VBMC subfolders are on the MATLAB path\nadd2path();\n\n%% Basic default options\ndefopts.Display = 'iter % Level of display (\"iter\", \"notify\", \"final\", or \"off\")';\ndefopts.Plot = 'off % Plot marginals of variational posterior at each iteration';\ndefopts.MaxIter = '50*(2+nvars) % Max number of iterations';\ndefopts.MaxFunEvals = '50*(2+nvars) % Max number of target fcn evals';\ndefopts.FunEvalsPerIter = '5 % Number of target fcn evals per iteration';\ndefopts.TolStableCount = '60 % Required stable fcn evals for termination';\ndefopts.RetryMaxFunEvals = '0 % Max number of target fcn evals on retry (0 = no retry)';\ndefopts.MinFinalComponents = '50 % Number of variational components to refine posterior at termination';\ndefopts.SpecifyTargetNoise = 'no % Target log joint function returns noise estimate (SD) as second output';\n\n%% If called with no arguments or with 'defaults', return default options\nif nargout <= 1 && (nargin == 0 || (nargin == 1 && ischar(fun) && strcmpi(fun,'defaults')))\n if nargin < 1\n fprintf('Basic default options returned (type \"help vbmc\" for help).\\n');\n end\n vp = defopts;\n return;\nend\n\n%% If called with one argument which is 'test', run test\nif nargout <= 1 && (nargin == 1 || nargin == 2) && ischar(fun) && strcmpi(fun,'test')\n % Can run a test with a specific OPTIONS struct (otherwise use defaults)\n if nargin == 2; options = x0; else; options = []; end\n vp = runtest_vbmc(options);\n return;\nend\n\n%% If called with one argument which is 'version', return version\nif nargout <= 1 && nargin == 1 && ischar(fun) && strcmpi(fun,'version')\n vp = vbmc_version;\n return;\nend\n\n%% Advanced options (do not modify unless you *know* what you are doing)\n\ndefopts.UncertaintyHandling = '[] % Explicit noise handling';\ndefopts.IntegerVars = '[] % Array with indices of integer variables';\ndefopts.NoiseSize = '[] % Base observation noise magnitude (standard deviation)';\ndefopts.MaxRepeatedObservations = '0 % Max number of consecutive repeated measurements for noisy inputs';\ndefopts.RepeatedAcqDiscount = '1 % Multiplicative discount on acquisition fcn to repeat measurement at the same location';\ndefopts.FunEvalStart = '10*ceil((D+1)/10) % Number of initial target fcn evals';\ndefopts.SGDStepSize = '0.005 % Base step size for stochastic gradient descent';\ndefopts.SkipActiveSamplingAfterWarmup = 'no % Skip active sampling the first iteration after warmup';\ndefopts.RankCriterion = 'yes % Use ranking criterion to pick best non-converged solution';\ndefopts.TolStableEntropyIters = '6 % Required stable iterations to switch entropy approximation';\ndefopts.VariableMeans = 'yes % Use variable component means for variational posterior';\ndefopts.VariableWeights = 'yes % Use variable mixture weight for variational posterior';\ndefopts.WeightPenalty = '0.1 % Penalty multiplier for small mixture weights';\ndefopts.Diagnostics = 'off % Run in diagnostics mode, get additional info';\ndefopts.OutputFcn = '[] % Output function';\ndefopts.TolStableExcptFrac = '0.2 % Fraction of allowed exceptions when computing iteration stability';\ndefopts.Fvals = '[] % Evaluated fcn values at X0';\ndefopts.OptimToolbox = '[] % Use Optimization Toolbox (if empty, determine at runtime)';\ndefopts.ProposalFcn = '[] % Weighted proposal fcn for uncertainty search';\ndefopts.NonlinearScaling = 'on % Automatic nonlinear rescaling of variables';\ndefopts.SearchAcqFcn = '@acqf_vbmc % Fast search acquisition fcn(s)';\ndefopts.NSsearch = '2^13 % Samples for fast acquisition fcn eval per new point';\ndefopts.NSent = '@(K) 100*K.^(2/3) % Total samples for Monte Carlo approx. of the entropy';\ndefopts.NSentFast = '0 % Total samples for preliminary Monte Carlo approx. of the entropy';\ndefopts.NSentFine = '@(K) 2^12*K % Total samples for refined Monte Carlo approx. of the entropy';\ndefopts.NSentBoost = '@(K) 200*K.^(2/3) % Total samples for Monte Carlo approx. of the entropy (final boost)';\ndefopts.NSentFastBoost = '[] % Total samples for preliminary Monte Carlo approx. of the entropy (final boost)';\ndefopts.NSentFineBoost = '[] % Total samples for refined Monte Carlo approx. of the entropy (final boost)';\ndefopts.NSentActive = '@(K) 20*K.^(2/3) % Total samples for Monte Carlo approx. of the entropy (active sampling)';\ndefopts.NSentFastActive = '0 % Total samples for preliminary Monte Carlo approx. of the entropy (active sampling)';\ndefopts.NSentFineActive = '@(K) 200*K % Total samples for refined Monte Carlo approx. of the entropy (active sampling)';\ndefopts.NSelbo = '@(K) 50*K % Samples for fast approximation of the ELBO';\ndefopts.NSelboIncr = '0.1 % Multiplier to samples for fast approx. of ELBO for incremental iterations';\ndefopts.ElboStarts = '2 % Starting points to refine optimization of the ELBO';\ndefopts.NSgpMax = '80 % Max GP hyperparameter samples (decreases with training points)';\ndefopts.NSgpMaxWarmup = '8 % Max GP hyperparameter samples during warmup';\ndefopts.NSgpMaxMain = 'Inf % Max GP hyperparameter samples during main algorithm';\ndefopts.WarmupNoImproThreshold = '20 + 5*nvars % Fcn evals without improvement before stopping warmup';\ndefopts.WarmupCheckMax = 'yes % Also check for max fcn value improvement before stopping warmup';\ndefopts.StableGPSampling = '200 + 10*nvars % Force stable GP hyperparameter sampling (reduce samples or start optimizing)';\ndefopts.StableGPvpK = 'Inf % Force stable GP hyperparameter sampling after reaching this number of components';\ndefopts.StableGPSamples = '0 % Number of GP samples when GP is stable (0 = optimize)';\ndefopts.GPSampleThin = '5 % Thinning for GP hyperparameter sampling';\ndefopts.GPTrainNinit = '1024 % Initial design points for GP hyperparameter training';\ndefopts.GPTrainNinitFinal = '64 % Final design points for GP hyperparameter training';\ndefopts.GPTrainInitMethod = 'rand % Initial design method for GP hyperparameter training';\ndefopts.GPTolOpt = '1e-5 % Tolerance for optimization of GP hyperparameters';\ndefopts.GPTolOptMCMC = '1e-2 % Tolerance for optimization of GP hyperparameters preliminary to MCMC';\ndefopts.GPTolOptActive = '1e-4 % Tolerance for optimization of GP hyperparameters during active sampling';\ndefopts.GPTolOptMCMCActive = '1e-2 % Tolerance for optimization of GP hyperparameters preliminary to MCMC during active sampling';\ndefopts.TolGPVar = '1e-4 % Threshold on GP variance used by regulatized acquisition fcns';\ndefopts.TolGPVarMCMC = '1e-4 % Threshold on GP variance, used to stabilize sampling';\ndefopts.gpMeanFun = 'negquad % GP mean function';\ndefopts.gpIntMeanFun = '0 % GP integrated mean function';\ndefopts.KfunMax = '@(N) N.^(2/3) % Max variational components as a function of training points';\ndefopts.Kwarmup = '2 % Variational components during warmup';\ndefopts.AdaptiveK = '2 % Added variational components for stable solution';\ndefopts.HPDFrac = '0.8 % High Posterior Density region (fraction of training inputs)';\ndefopts.ELCBOImproWeight = '3 % Uncertainty weight on ELCBO for computing lower bound improvement';\ndefopts.TolLength = '1e-6 % Minimum fractional length scale';\ndefopts.CacheSize = '500 % Size of cache for storing fcn evaluations';\ndefopts.CacheFrac = '0.5 % Fraction of search points from starting cache (if nonempty)';\ndefopts.StochasticOptimizer = 'adam % Stochastic optimizer for varational parameters';\ndefopts.TolFunStochastic = '1e-3 % Stopping threshold for stochastic optimization';\ndefopts.MaxIterStochastic = '100*(2+nvars) % Max iterations for stochastic optimization';\ndefopts.TolSD = '0.1 % Tolerance on ELBO uncertainty for stopping (iff variational posterior is stable)';\ndefopts.TolsKL = '0.01*sqrt(nvars) % Stopping threshold on change of variational posterior per training point';\ndefopts.TolStableWarmup = '15 % Number of stable fcn evals for stopping warmup';\ndefopts.VariationalSampler = 'malasample % MCMC sampler for variational posteriors';\ndefopts.TolImprovement = '0.01 % Required ELCBO improvement per fcn eval before termination';\ndefopts.KLgauss = 'yes % Use Gaussian approximation for symmetrized KL-divergence b\\w iters';\ndefopts.TrueMean = '[] % True mean of the target density (for debugging)';\ndefopts.TrueCov = '[] % True covariance of the target density (for debugging)';\ndefopts.MinFunEvals = '5*nvars % Min number of fcn evals';\ndefopts.MinIter = 'nvars % Min number of iterations';\ndefopts.HeavyTailSearchFrac = '0.25 % Fraction of search points from heavy-tailed variational posterior';\ndefopts.MVNSearchFrac = '0.25 % Fraction of search points from multivariate normal';\ndefopts.HPDSearchFrac = '0 % Fraction of search points from multivariate normal fitted to HPD points';\ndefopts.BoxSearchFrac = '0.25 % Fraction of search points from uniform random box based on training inputs';\ndefopts.SearchCacheFrac = '0 % Fraction of search points from previous iterations';\ndefopts.AlwaysRefitVarPost = 'no % Always fully refit variational posterior';\ndefopts.Warmup = 'on % Perform warm-up stage';\ndefopts.WarmupOptions = '[] % Special OPTIONS struct for warmup stage';\ndefopts.StopWarmupThresh = '0.2 % Stop warm-up when ELCBO increase below threshold (per fcn eval)';\ndefopts.WarmupKeepThreshold = '10*nvars % Max log-likelihood difference for points kept after warmup';\ndefopts.WarmupKeepThresholdFalseAlarm = '100*(nvars+2) % Max log-likelihood difference for points kept after a false-alarm warmup stop';\ndefopts.StopWarmupReliability = '100 % Reliability index required to stop warmup';\ndefopts.SearchOptimizer = 'cmaes % Optimization method for active sampling';\ndefopts.SearchCMAESVPInit = 'yes % Initialize CMA-ES search SIGMA from variational posterior';\ndefopts.SearchCMAESbest = 'no % Take bestever solution from CMA-ES search';\ndefopts.SearchMaxFunEvals = '500*(nvars+2) % Max number of acquisition fcn evaluations during search';\ndefopts.MomentsRunWeight = '0.9 % Weight of previous trials (per trial) for running avg of variational posterior moments';\ndefopts.GPRetrainThreshold = '1 % Upper threshold on reliability index for full retraining of GP hyperparameters';\ndefopts.ELCBOmidpoint = 'on % Compute full ELCBO also at best midpoint';\ndefopts.GPSampleWidths = '5 % Multiplier to widths from previous posterior for GP sampling (Inf = do not use previous widths)';\ndefopts.HypRunWeight = '0.9 % Weight of previous trials (per trial) for running avg of GP hyperparameter covariance';\ndefopts.WeightedHypCov = 'on % Use weighted hyperparameter posterior covariance';\ndefopts.TolCovWeight = '0 % Minimum weight for weighted hyperparameter posterior covariance';\ndefopts.GPHypSampler = 'slicesample % MCMC sampler for GP hyperparameters';\ndefopts.CovSampleThresh = '10 % Switch to covariance sampling below this threshold of stability index';\ndefopts.DetEntTolOpt = '1e-3 % Optimality tolerance for optimization of deterministic entropy';\ndefopts.EntropySwitch = 'off % Switch from deterministic entropy to stochastic entropy when reaching stability';\ndefopts.EntropyForceSwitch = '0.8 % Force switch to stochastic entropy at this fraction of total fcn evals';\ndefopts.DetEntropyAlpha = '0 % Alpha value for lower/upper deterministic entropy interpolation';\ndefopts.UpdateRandomAlpha = 'no % Randomize deterministic entropy alpha during active sample updates';\ndefopts.AdaptiveEntropyAlpha = 'no % Online adaptation of alpha value for lower/upper deterministic entropy interpolation';\ndefopts.DetEntropyMinD = '5 % Start with deterministic entropy only with this number of vars or more';\ndefopts.TolConLoss = '0.01 % Fractional tolerance for constraint violation of variational parameters';\ndefopts.BestSafeSD = '5 % SD multiplier of ELCBO for computing best variational solution';\ndefopts.BestFracBack = '0.25 % When computing best solution, lacking stability go back up to this fraction of iterations';\ndefopts.TolWeight = '1e-2 % Threshold mixture component weight for pruning';\ndefopts.PruningThresholdMultiplier = '@(K) 1/sqrt(K) % Multiplier to threshold for pruning mixture weights';\ndefopts.AnnealedGPMean = '@(N,NMAX) 0 % Annealing for hyperprior width of GP negative quadratic mean';\ndefopts.ConstrainedGPMean = 'no % Strict hyperprior for GP negative quadratic mean';\ndefopts.TolGPNoise = 'sqrt(1e-5) % Minimum GP observation noise';\ndefopts.GPLengthPriorMean = 'sqrt(D/6) % Prior mean over GP input length scale (in plausible units)';\ndefopts.GPLengthPriorStd = '0.5*log(1e3) % Prior std over GP input length scale (in plausible units)';\ndefopts.UpperGPLengthFactor = '0 % Upper bound on GP input lengths based on plausible box (0 = ignore)';\ndefopts.InitDesign = 'plausible % Initial samples (\"plausible\" is uniform in the plausible box)';\ndefopts.gpQuadraticMeanBound = 'yes % Stricter upper bound on GP negative quadratic mean function';\ndefopts.Bandwidth = '0 % Bandwidth parameter for GP smoothing (in units of plausible box)';\ndefopts.FitnessShaping = 'no % Heuristic output warping (\"fitness shaping\")';\ndefopts.OutwarpThreshBase = '10*nvars % Output warping starting threshold';\ndefopts.OutwarpThreshMult = '1.25 % Output warping threshold multiplier when failed sub-threshold check';\ndefopts.OutwarpThreshTol = '0.8 % Output warping base threshold tolerance (fraction of current threshold)';\ndefopts.Temperature = '1 % Temperature for posterior tempering (allowed values T = 1,2,3,4)';\ndefopts.SeparateSearchGP = 'no % Use separate GP with constant mean for active search';\ndefopts.NoiseShaping = 'no % Discount observations from from extremely low-density regions';\ndefopts.NoiseShapingThreshold = '10*nvars % Threshold from max observed value to start discounting';\ndefopts.NoiseShapingFactor = '0.05 % Proportionality factor of added noise wrt distance from threshold';\ndefopts.AcqHedge = 'no % Hedge on multiple acquisition functions';\ndefopts.AcqHedgeIterWindow = '4 % Past iterations window to judge acquisition fcn improvement';\ndefopts.AcqHedgeDecay = '0.9 % Portfolio value decay per function evaluation';\ndefopts.ActiveVariationalSamples = '0 % MCMC variational steps before each active sampling';\ndefopts.ScaleLowerBound = 'yes % Apply lower bound on variational components scale during variational sampling';\ndefopts.ActiveSampleVPUpdate = 'no % Perform variational optimization after each active sample';\ndefopts.ActiveSampleGPUpdate = 'no % Perform GP training after each active sample';\ndefopts.ActiveSampleFullUpdatePastWarmup = '2 % # iters past warmup to continue update after each active sample';\ndefopts.ActiveSampleFullUpdateThreshold = '3 % Perform full update during active sampling if stability above threshold';\ndefopts.VariationalInitRepo = 'no % Use previous variational posteriors to initialize optimization';\ndefopts.SampleExtraVPMeans = '0 % Extra variational components sampled from GP profile';\ndefopts.OptimisticVariationalBound = '0 % Uncertainty weight on ELCBO during active sampling';\ndefopts.ActiveImportanceSamplingVPSamples = '100 % # importance samples from smoothed variational posterior';\ndefopts.ActiveImportanceSamplingBoxSamples = '100 % # importance samples from box-uniform centered on training inputs';\ndefopts.ActiveImportanceSamplingMCMCSamples = '100 % # importance samples through MCMC';\ndefopts.ActiveImportanceSamplingMCMCThin = '1 % Thinning for importance sampling MCMC';\ndefopts.ActiveSamplefESSThresh = '1 % fractional ESS threhsold to update GP and VP';\ndefopts.ActiveImportanceSamplingfESSThresh = '0.9 % % fractional ESS threhsold to do MCMC while active importance sampling';\ndefopts.ActiveSearchBound = '2 % Active search bound multiplier';\ndefopts.TolBoundX = '1e-5 % Tolerance on closeness to bound constraints (fraction of total range)';\ndefopts.RecomputeLCBmax = 'yes % Recompute LCB max for each iteration based on current GP estimate';\ndefopts.BoundedTransform = 'logit % Input transform for bounded variables';\ndefopts.WarpEveryIters = '5 % Warp every this number of iterations';\ndefopts.IncrementalWarpDelay = 'yes % Increase delay between warpings';\ndefopts.WarpTolReliability = '3 % Threshold on reliability index to perform warp';\ndefopts.WarpRotoScaling = 'yes % Rotate and scale input';\ndefopts.WarpCovReg = '0 % Regularization weight towards diagonal covariance matrix for N training inputs';\ndefopts.WarpRotoCorrThresh = '0.05 % Threshold on correlation matrix for roto-scaling';\ndefopts.WarpMinK = '5 % Min number of variational components to perform warp';\ndefopts.WarpUndoCheck = 'yes % Immediately undo warp if not improving ELBO';\ndefopts.WarpTolImprovement = '0.1 % Improvement of ELBO required to keep a warp proposal';\ndefopts.WarpTolSDMultiplier = '2 % Multiplier tolerance of ELBO SD after warp proposal';\ndefopts.WarpTolSDBase = '1 % Base tolerance on ELBO SD after warp proposal';\n\n\n%% Advanced options for unsupported/untested features (do *not* modify)\ndefopts.WarpNonlinear = 'off % Nonlinear input warping';\ndefopts.ELCBOWeight = '0 % Uncertainty weight during ELCBO optimization';\ndefopts.VarParamsBack = '0 % Check variational posteriors back to these previous iterations';\ndefopts.AltMCEntropy = 'no % Use alternative Monte Carlo computation for the entropy';\ndefopts.VarActiveSample = 'no % Variational active sampling';\ndefopts.FeatureTest = 'no % Test a new experimental feature';\ndefopts.BOWarmup = 'no % Bayesian-optimization-like warmup stage';\ndefopts.gpOutwarpFun = '[] % GP default output warping function';\n\n%% If called with 'all', return all default options\nif strcmpi(fun,'all')\n vp = defopts;\n return;\nend\n\n%% Input arguments\n\nif nargin < 3 || isempty(LB); LB = -Inf; end\nif nargin < 4 || isempty(UB); UB = Inf; end\nif nargin < 5; PLB = []; end\nif nargin < 6; PUB = []; end\nif nargin < 7; options = []; end\n\n%% Initialize display printing options\n\nif ~isfield(options,'Display') || isempty(options.Display)\n options.Display = defopts.Display;\nend\n\nswitch lower(options.Display(1:min(end,3)))\n case {'not'} % notify\n prnt = 1;\n case {'no','non','off'} % none\n prnt = 0;\n case {'ite','all','on','yes'} % iter\n prnt = 3;\n case {'fin','end'} % final\n prnt = 2;\n otherwise\n prnt = 3;\nend\n\n%% Initialize variables and algorithm structures\n\nif isempty(x0)\n if prnt > 2\n fprintf('X0 not specified. Taking the number of dimensions from PLB and PUB...');\n end\n if isempty(PLB) || isempty(PUB)\n error('vbmc:UnknownDims', ...\n 'If no starting point is provided, PLB and PUB need to be specified.');\n end \n x0 = NaN(size(PLB));\n if prnt > 2\n fprintf(' D = %d.\\n', numel(x0));\n end\nend\n\n% Initialize from variational posterior\nif vbmc_isavp(x0)\n init_from_vp_flag = true;\n vp0 = x0;\n [x0,LB,UB,PLB,PUB,Xvp] = initFromVP(vp0,LB,UB,PLB,PUB,prnt);\nelse\n init_from_vp_flag = false; \nend\n \nD = size(x0,2); % Number of variables\noptimState = [];\n\n% Setup algorithm options\noptions = setupoptions_vbmc(D,defopts,options);\nif options.Warmup\n options_main = options;\n % Use special options during Warmup\n if isfield(options,'WarmupOptions')\n WarmupOptions = options.WarmupOptions;\n % Copy these fields to avoid re-update in SETUPOPTIONS_VBMC\n copyfields = {'MaxFunEvals','TolStableCount','ActiveSampleGPUpdate','ActiveSampleVPUpdate','SearchAcqFcn'};\n for f = copyfields\n if ~isfield(WarmupOptions,f{:})\n WarmupOptions.(f{:}) = options.(f{:});\n end\n end\n options = setupoptions_vbmc(D,options,WarmupOptions);\n end\nend\n\nif init_from_vp_flag % Finish initialization from variational posterior\n x0 = [x0; robustSampleFromVP(vp0,options.FunEvalStart-1,Xvp)];\n clear Xvp vp0;\nend\n\n% Check/fix boundaries and starting points\n[x0,LB,UB,PLB,PUB] = boundscheck_vbmc(x0,LB,UB,PLB,PUB,prnt);\n\n% Convert from char to function handles\nif ischar(fun); fun = str2func(fun); end\n\n% Setup and transform variables, prepare OPTIMSTATE settings struct\nK = options.Kwarmup;\n[vp,optimState] = ...\n setupvars_vbmc(x0,LB,UB,PLB,PUB,K,optimState,options,prnt);\n\n% Store target density function\noptimState.fun = fun;\nfunwrapper = @(u_) fun(u_,varargin{:});\n\n% Get information from acquisition function(s)\noptimState.acqInfo = getAcqInfo(options.SearchAcqFcn);\n\n% GP struct and GP hyperparameters\ngp = []; hypstruct = []; hypstruct_search = [];\n\n% Initialize function logger\n[~,optimState] = funlogger_vbmc([],D,optimState,'init',options.CacheSize);\n\nif optimState.Cache.active\n displayFormat = ' %5.0f %5.0f /%5.0f %12.2f %12.2f %12.2f %4.0f %10.3g %s\\n';\n displayFormat_warmup = ' %5.0f %5.0f /%5.0f %s\\n';\nelseif optimState.UncertaintyHandlingLevel > 0 && options.MaxRepeatedObservations > 0\n displayFormat = ' %5.0f %5.0f %5.0f %12.2f %12.2f %12.2f %4.0f %10.3g %s\\n';\n displayFormat_warmup = ' %5.0f %5.0f %12.2f %s\\n'; \nelse\n displayFormat = ' %5.0f %5.0f %12.2f %12.2f %12.2f %4.0f %10.3g %s\\n';\n displayFormat_warmup = ' %5.0f %5.0f %12.2f %s\\n';\nend\nif prnt > 2 \n if optimState.UncertaintyHandlingLevel > 0\n fprintf('Beginning variational optimization assuming NOISY observations of the log-joint.\\n');\n else\n fprintf('Beginning variational optimization assuming EXACT observations of the log-joint.\\n');\n end\n \n if optimState.Cache.active\n fprintf(' Iteration f-count/f-cache Mean[ELBO] Std[ELBO] sKL-iter[q] K[q] Convergence Action\\n');\n else\n if options.BOWarmup\n fprintf(' Iteration f-count Max[f] Action\\n');\n elseif optimState.UncertaintyHandlingLevel > 0 && options.MaxRepeatedObservations > 0\n fprintf(' Iteration f-count (x-count) Mean[ELBO] Std[ELBO] sKL-iter[q] K[q] Convergence Action\\n');\n else\n fprintf(' Iteration f-count Mean[ELBO] Std[ELBO] sKL-iter[q] K[q] Convergence Action\\n'); \n end\n end\nend\n\n%% Variational optimization loop\niter = 0;\nisFinished_flag = false;\nexitflag = 0; output = []; stats = [];\n\nwhile ~isFinished_flag\n t_iter = tic;\n timer = timer_init(); % Initialize iteration timer\n \n iter = iter + 1;\n optimState.iter = iter;\n vp_old = vp;\n action = '';\n optimState.redoRotoscaling = false;\n \n if iter == 1 && optimState.Warmup; action = 'start warm-up'; end\n \n % Switch to stochastic entropy towards the end if still on deterministic\n if optimState.EntropySwitch && ...\n optimState.funccount >= options.EntropyForceSwitch*options.MaxFunEvals\n optimState.EntropySwitch = false;\n if isempty(action); action = 'entropy switch'; else; action = [action ', entropy switch']; end \n end\n \n %% Input warping / reparameterization\n if options.IncrementalWarpDelay\n WarpDelay = options.WarpEveryIters*max(1,optimState.WarpingCount);\n else\n WarpDelay = options.WarpEveryIters;\n end\n \n DoWarping = (options.WarpRotoScaling || options.WarpNonlinear) && ...\n iter > 1 && ~optimState.Warmup && ...\n (iter - optimState.LastWarping) > WarpDelay && ...\n vp.K >= options.WarpMinK && stats.rindex(iter-1) < options.WarpTolReliability && ...\n vp.D > 1;\n % (stats.stable(iter-1) || optimState.funccount >= options.MaxFunEvals*2/3);\n \n if DoWarping\n t = tic; \n [vp_tmp,~,~,idx_best] = ...\n best_vbmc(stats,iter-1,options.BestSafeSD,options.BestFracBack,options.RankCriterion,0);\n \n % Store variables in case warp needs to be undone\n optimState_old = optimState;\n gp_old = gp;\n hypstruct_old = hypstruct;\n elbo_old = elbo;\n elbo_sd_old = elbo_sd;\n \n % Compute input warping\n [trinfo_warp,optimState,warp_action] = warp_input_vbmc(vp_tmp,optimState,stats.gp(idx_best),options);\n \n % Update GP hyperparameters and variational posterior\n [vp,hypstruct.hyp] = warp_gpandvp_vbmc(trinfo_warp,vp,gp);\n \n if isempty(action); action = warp_action; else; action = [action ', ' warp_action]; end\n \n timer.warping = timer.warping + toc(t);\n \n if options.WarpUndoCheck\n % Train GP\n t = tic;\n [gp,hypstruct,~,optimState] = ...\n gptrain_vbmc(hypstruct,optimState,stats,options); \n timer.gpTrain = timer.gpTrain + toc(t);\n\n % Optimize variational parameters\n t = tic;\n if ~vp.optimize_mu % Variational components fixed to training inputs\n vp.mu = gp.X';\n Knew = size(vp.mu,2);\n else\n % Update number of variational mixture components\n Knew = vp.K;\n end\n\n % Decide number of fast/slow optimizations\n Nfastopts = ceil(evaloption_vbmc(options.NSelbo,Knew));\n Nslowopts = options.ElboStarts; % Full optimizations\n\n % Run optimization of variational parameters\n vp = vpoptimize_vbmc(Nfastopts,Nslowopts,vp,gp,Knew,optimState,options,prnt);\n optimState.vpK = vp.K;\n optimState.H = vp.stats.entropy; % Save current entropy\n\n % Compute ELBO from real variational posterior (might differ from training posterior)\n vp_real = vptrain2real(vp,0,options);\n elbo = vp_real.stats.elbo;\n elbo_sd = vp_real.stats.elbo_sd;\n \n timer.variationalFit = timer.variationalFit + toc(t);\n \n % Compute symmetrized KL-divergence between old and new posteriors\n %Nkl = 1e5;\n %sKL = max(0,0.5*sum(vbmc_kldiv(vp,vp_old,Nkl,options.KLgauss)))\n \n %[elbo elbo_old]\n %[elbo_sd elbo_sd_old]\n \n % Keep warping only if it substantially improves ELBO\n % and uncertainty does not blow up too much\n if (elbo < (elbo_old + options.WarpTolImprovement)) || ...\n (elbo_sd > (elbo_sd_old*options.WarpTolSDMultiplier + options.WarpTolSDBase)) \n \n % Undo input warping\n vp = vp_old;\n gp = gp_old;\n optimState = optimState_old;\n hypstruct = hypstruct_old;\n \n % Still keep track of failed warping (failed warp counts twice)\n optimState.WarpingCount = optimState.WarpingCount + 2;\n optimState.LastWarping = optimState.iter;\n \n if isempty(action); action = 'undo'; else; action = [action ', undo']; end\n end \n \n end\n end\n \n \n %% Actively sample new points into the training set\n t = tic;\n optimState.trinfo = vp.trinfo;\n if iter == 1; new_funevals = options.FunEvalStart; else; new_funevals = options.FunEvalsPerIter; end\n if optimState.Xn > 0\n optimState.ymax = max(optimState.y(optimState.X_flag));\n end\n if optimState.SkipActiveSampling\n optimState.SkipActiveSampling = false;\n else \n if ~isempty(gp) && options.SeparateSearchGP && ~options.VarActiveSample\n % Train a distinct GP for active sampling\n if mod(iter,2) == 0\n meantemp = optimState.gpMeanfun;\n optimState.gpMeanfun = 'const';\n [gp_search,hypstruct_search] = gptrain_vbmc(hypstruct_search,optimState,stats,options);\n optimState.gpMeanfun = meantemp;\n else\n gp_search = gp; \n end\n else\n gp_search = gp;\n end\n % Performe active sampling\n if options.VarActiveSample % Unused\n % FIX TIMER HERE IF USING THIS\n [optimState,vp,t_active,t_func] = ...\n variationalactivesample_vbmc(optimState,new_funevals,funwrapper,vp,vp_old,gp_search,options);\n else\n optimState.hypstruct = hypstruct;\n [optimState,vp,gp,timer] = ...\n activesample_vbmc(optimState,new_funevals,funwrapper,vp,vp_old,gp_search,stats,timer,options);\n hypstruct = optimState.hypstruct;\n end\n end\n optimState.N = optimState.Xn; % Number of training inputs\n optimState.Neff = sum(optimState.nevals(optimState.X_flag));\n \n %% Train GP\n t = tic;\n [gp,hypstruct,Ns_gp,optimState] = ...\n gptrain_vbmc(hypstruct,optimState,stats,options); \n timer.gpTrain = timer.gpTrain + toc(t);\n \n % Check if reached stable sampling regime\n if Ns_gp == options.StableGPSamples && optimState.StopSampling == 0\n optimState.StopSampling = optimState.N;\n end\n \n% if ~exist('wsabi_hyp','var'); wsabi_hyp = zeros(1,D+1); end \n% priorMu = (optimState.PLB + optimState.PUB)/2;\n% priorVar = diag(optimState.PUB - optimState.PLB);\n% kernelVar = diag(exp(wsabi_hyp(2:end)));\n% lambda = exp(wsabi_hyp(1));\n% hypVar = [1e4,4*ones(1,D)]; \n% [log_mu,log_Var,~,~,~,wsabi_hyp] = wsabi_oneshot(...\n% 'L',priorMu,priorVar,kernelVar,lambda,0.8,gp.X,gp.y,hypVar);\n% log_mu\n \n %% Optimize variational parameters\n t = tic;\n \n if ~vp.optimize_mu % Variational components fixed to training inputs\n vp.mu = gp.X';\n Knew = size(vp.mu,2);\n else\n % Update number of variational mixture components\n Knew = updateK(optimState,stats,options);\n end\n \n % Decide number of fast/slow optimizations\n Nfastopts = ceil(evaloption_vbmc(options.NSelbo,K));\n \n if optimState.RecomputeVarPost || options.AlwaysRefitVarPost\n Nslowopts = options.ElboStarts; % Full optimizations\n optimState.RecomputeVarPost = false;\n else\n % Only incremental change from previous iteration\n Nfastopts = ceil(Nfastopts * options.NSelboIncr);\n Nslowopts = 1;\n end\n \n % Run optimization of variational parameters\n if optimState.Warmup && options.BOWarmup\n vp_fields = {'elbo','elbo_sd','G','H','varG','varH'};\n for i = 1:numel(vp_fields); vp.stats.(vp_fields{i}) = NaN; end\n varss = NaN;\n pruned = 0;\n% elseif Knew == vp.K && ~optimState.Warmup && vp.K >= 10\n% [vp,varss] = vpoptimizeweights_vbmc(vp,gp,optimState,options,prnt);\n% pruned = 0;\n else\n [vp,varss,pruned] = ...\n vpoptimize_vbmc(Nfastopts,Nslowopts,vp,gp,Knew,optimState,options,prnt);\n optimState.vp_repo{end+1} = get_vptheta(vp);\n end\n \n optimState.vpK = vp.K;\n optimState.H = vp.stats.entropy; % Save current entropy\n \n % Get real variational posterior (might differ from training posterior)\n vp_real = vptrain2real(vp,0,options);\n elbo = vp_real.stats.elbo;\n elbo_sd = vp_real.stats.elbo_sd;\n \n timer.variationalFit = timer.variationalFit + toc(t);\n \n %% Plot current iteration (to be improved)\n if options.Plot\n vbmc_iterplot(vp,gp,optimState,stats,elbo);\n end\n \n %hh = [gp.post.hyp];\n %exp(hh(gp.Ncov+gp.Nnoise+2:end,:))\n \n %mubar\n %Sigma\n \n %----------------------------------------------------------------------\n %% Finalize iteration\n t = tic;\n \n % Compute symmetrized KL-divergence between old and new posteriors\n Nkl = 1e5;\n sKL = max(0,0.5*sum(vbmc_kldiv(vp,vp_old,Nkl,options.KLgauss)));\n % mtv = vbmc_mtv(vp,vp_old,Nkl)\n \n % Evaluate max LCB of GP prediction on all training inputs\n [~,~,fmu,fs2] = gplite_pred(gp,gp.X,gp.y,gp.s2);\n optimState.lcbmax = max(fmu - options.ELCBOImproWeight*sqrt(fs2)); \n \n if options.AdaptiveEntropyAlpha\n % Evaluate deterministic entropy\n Hl = entlb_vbmc(vp,0,0);\n Hu = entub_vbmc(vp,0,0);\n optimState.entropy_alpha = max(0,min(1,(vp.stats.entropy - Hl)/(Hu - Hl))); \n optimState.entropy_alpha\n end\n \n % Compare variational posterior's moments with ground truth\n if ~isempty(options.TrueMean) && ~isempty(options.TrueCov) ...\n && all(isfinite(options.TrueMean(:))) ...\n && all(isfinite(options.TrueCov(:)))\n \n [mubar_orig,Sigma_orig] = vbmc_moments(vp_real,1,1e6);\n [kl(1),kl(2)] = mvnkl(mubar_orig,Sigma_orig,options.TrueMean,options.TrueCov);\n sKL_true = 0.5*sum(kl)\n else\n sKL_true = [];\n end\n \n % Record moments in transformed space\n [mubar,Sigma] = vbmc_moments(vp,0);\n if isempty(optimState.RunMean) || isempty(optimState.RunCov)\n optimState.RunMean = mubar(:);\n optimState.RunCov = Sigma; \n optimState.LastRunAvg = optimState.N;\n % optimState.RunCorrection = 1;\n else\n Nnew = optimState.N - optimState.LastRunAvg;\n wRun = options.MomentsRunWeight^Nnew;\n optimState.RunMean = wRun*optimState.RunMean + (1-wRun)*mubar(:);\n optimState.RunCov = wRun*optimState.RunCov + (1-wRun)*Sigma;\n optimState.LastRunAvg = optimState.N;\n % optimState.RunT = optimState.RunT + 1;\n end\n \n % t_fits(iter) = toc(timer_fits); \n % dt = (t_active(iter)+t_fits(iter))/new_funevals;\n \n timer.finalize = toc(t);\n timer.totalruntime = NaN; % Update at the end of iteration\n % timer\n \n % Record all useful stats\n stats = savestats(stats, ...\n optimState,vp,elbo,elbo_sd,varss,sKL,sKL_true,gp,hypstruct.full,...\n Ns_gp,pruned,timer,options.Diagnostics); \n \n %----------------------------------------------------------------------\n %% Check termination conditions and warmup\n [optimState,stats,isFinished_flag,exitflag,action,msg] = ...\n vbmc_termination(optimState,action,stats,options);\n vp.stats.stable = stats.stable(optimState.iter); % Save stability\n \n % Check if we are still warming-up\n if optimState.Warmup && iter > 1\n if options.RecomputeLCBmax\n \toptimState.lcbmax_vec = recompute_lcbmax(gp,optimState,stats,options)';\n end \n [optimState,action,trim_flag] = vbmc_warmup(optimState,stats,action,options);\n if trim_flag % Re-update GP after trimming\n gp = gpreupdate(gp,optimState,options);\n end\n if ~optimState.Warmup\n vp.optimize_mu = logical(options.VariableMeans);\n vp.optimize_weights = logical(options.VariableWeights);\n if options.BOWarmup\n optimState.gpMeanfun = options.gpMeanFun;\n hypstruct.hyp = [];\n end\n % Switch to main algorithm options\n options = options_main;\n hypstruct.runcov = []; % Reset GP hyperparameter covariance \n optimState.vp_repo = []; % Reset VP repository\n optimState.acqInfo = getAcqInfo(options.SearchAcqFcn); % Re-get acq info \n end\n end\n stats.warmup(iter) = optimState.Warmup;\n \n % Check and update fitness shaping / output warping threshold\n if ~isempty(optimState.OutwarpDelta) && optimState.R < options.WarpTolReliability\n Xrnd = vbmc_rnd(vp,2e4,0);\n ymu = gplite_pred(gp,Xrnd,[],[],0,1);\n ydelta = max([0,optimState.ymax-quantile(ymu,1e-3)])\n if (ydelta > optimState.OutwarpDelta*options.OutwarpThreshTol) && (optimState.R < 1)\n optimState.OutwarpDelta = optimState.OutwarpDelta*options.OutwarpThreshMult;\n end\n end\n \n if options.AcqHedge % Update hedge values \n optimState.hedge = acqhedge_vbmc('upd',optimState.hedge,stats,options); \n end \n \n %% Write iteration output\n \n % vp.w\n \n % Stopped GP sampling this iteration?\n if Ns_gp == options.StableGPSamples && ...\n stats.gpNsamples(max(1,iter-1)) > options.StableGPSamples\n if Ns_gp == 0\n if isempty(action); action = 'switch to GP opt'; else; action = [action ', switch to GP opt']; end\n else\n if isempty(action); action = 'stable GP sampling'; else; action = [action ', stable GP sampling']; end\n end\n end \n \n if prnt > 2\n if options.BOWarmup && optimState.Warmup\n fprintf(displayFormat_warmup,iter,optimState.funccount,max(optimState.y_orig),action); \n else\n if optimState.Cache.active\n fprintf(displayFormat,iter,optimState.funccount,optimState.cachecount,elbo,elbo_sd,sKL,vp.K,optimState.R,action);\n elseif optimState.UncertaintyHandlingLevel > 0 && options.MaxRepeatedObservations > 0\n fprintf(displayFormat,iter,optimState.funccount,optimState.N,elbo,elbo_sd,sKL,vp.K,optimState.R,action); \n else\n fprintf(displayFormat,iter,optimState.funccount,elbo,elbo_sd,sKL,vp.K,optimState.R,action);\n end\n end\n end\n \n stats.timer(iter).totalruntime = toc(t0);\n \nend\n\nvp_old = vp;\n\n% Pick \"best\" variational solution to return (and real vp, if train vp differs)\n[vp,elbo,elbo_sd,idx_best] = ...\n best_vbmc(stats,iter,options.BestSafeSD,options.BestFracBack,options.RankCriterion,0);\nnew_final_vp_flag = idx_best ~= iter;\ngp = stats.gp(idx_best);\nvp.gp = gp; % Add GP to variational posterior\n\n% Last variational optimization with large number of components\n[vp,elbo,elbo_sd,changedflag] = finalboost_vbmc(vp,idx_best,optimState,stats,options);\nif changedflag; new_final_vp_flag = true; end\n\nif new_final_vp_flag && prnt > 2\n % Recompute symmetrized KL-divergence\n sKL = max(0,0.5*sum(vbmc_kldiv(vp,vp_old,Nkl,options.KLgauss)));\nend\n\n% Convert training variational posterior to real variational posterior\nvp_train = vp;\nvp = vptrain2real(vp_train,1);\nelbo = vp.stats.elbo;\nelbo_sd = vp.stats.elbo_sd;\n\nif new_final_vp_flag && prnt > 2\n if optimState.UncertaintyHandlingLevel > 0 && options.MaxRepeatedObservations > 0\n fprintf(displayFormat,Inf,optimState.funccount,optimState.N,elbo,elbo_sd,sKL,vp.K,stats.rindex(idx_best),'finalize');\n else\n fprintf(displayFormat,Inf,optimState.funccount,elbo,elbo_sd,sKL,vp.K,stats.rindex(idx_best),'finalize');\n end\nend\n\n% Set EXITFLAG based on stability (might check other things in the future)\nswitch exitflag\n case 0\n if vp.stats.stable; exitflag = 1; end\n case 1\n if ~vp.stats.stable; exitflag = 0; end\nend\n\n% Print final message\nif prnt > 1\n fprintf('\\n%s\\n', msg); \n fprintf('Estimated ELBO: %.3f +/- %.3f.\\n', elbo, elbo_sd);\n if exitflag < 1\n fprintf('Caution: Returned variational solution may have not converged.\\n');\n end\n fprintf('\\n');\nend\n\nif nargout > 4\n output = vbmc_output(vp,optimState,msg,stats,idx_best,vbmc_version);\n \n % Compute total running time and fractional overhead\n optimState.totaltime = toc(t0); \n output.overhead = optimState.totaltime / optimState.totalfunevaltime - 1; \nend\n\nif nargout > 5\n % Prepare SAMPLES struct\n idx = 1:optimState.Xn; \n samples.X = optimState.X_orig(idx,:); \n if isfield(optimState,'temperature') && ~isempty(optimState.temperature)\n T = optimState.temperature;\n else\n T = 1;\n end\n samples.y = optimState.y_orig(idx,:)*T;\n if isfield(optimState,'S') && ~isempty(optimState.S)\n samples.y_sd = optimState.S(idx,:)*T;\n end\n samples.active_flag = optimState.X_flag(idx,:);\n samples.nevals = optimState.nevals(idx,:);\nend\n\nif nargout > 7\n % Remove GP from stats struct unless diagnostic run\n if ~options.Diagnostics\n stats = rmfield(stats,'gp');\n stats = rmfield(stats,'gpHypFull');\n stats.timer(iter).totalruntime = toc(t0);\n end\nend\n\nif exitflag < 1 && options.RetryMaxFunEvals > 0\n % Rerun VBMC with better initialization if first try did not work \n if prnt > 0\n fprintf('First attempt did not converge. Trying to rerun variational optimization.\\n');\n end \n \n % Get better VBMC parameters and initialization from current run\n vp0 = stats.vp(idx_best);\n [x0,LB,UB,PLB,PUB,Xvp] = initFromVP(vp0,LB,UB,PLB,PUB,0);\n Ninit = max(options.FunEvalStart,ceil(options.RetryMaxFunEvals/10));\n x0 = [x0; robustSampleFromVP(vp0,Ninit-1,Xvp)];\n \n options.FunEvalStart = Ninit;\n options.MaxFunEvals = options.RetryMaxFunEvals;\n options.RetryMaxFunEvals = 0; % Avoid infinite loop\n options.SGDStepSize = 0.2*options.SGDStepSize; % Increase stability\n options.ActiveSampleGPUpdate = true;\n options.ActiveSampleVPUpdate = true; \n \n try\n [vp,elbo,elbo_sd,exitflag,output2,samples2,optimState2,stats] = vbmc(fun,x0,LB,UB,PLB,PUB,options,varargin{:});\n \n if nargout > 4\n optimState2.totaltime = toc(t0);\n output2.overhead = optimState.totaltime / (optimState.totalfunevaltime + optimState2.totalfunevaltime) - 1;\n output2.iterations = output2.iterations + output.iterations;\n output2.funccount = output2.funccount + output.funccount;\n output2.retried = 'yes';\n samples = samples2;\n output = output2;\n optimState = optimState2;\n end\n catch retryException\n msgText = getReport(retryException);\n warning(msgText);\n if prnt > 0\n fprintf('Attempt of rerunning variational optimization FAILED. Keeping original results.\\n');\n end\n if nargout > 4\n output.retried = 'error';\n end\n end\n \nelse\n if nargout > 4; output.retried = 'no'; end\nend\n\n\n\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction stats = savestats(stats,optimState,vp,elbo,elbo_sd,varss,sKL,sKL_true,gp,hyp_full,Ns_gp,pruned,timer,debugflag)\n\niter = optimState.iter;\nstats.iter(iter) = iter;\nstats.N(iter) = optimState.N;\nstats.Neff(iter) = optimState.Neff;\nstats.funccount(iter) = optimState.funccount;\nstats.cachecount(iter) = optimState.cachecount;\nstats.vpK(iter) = vp.K;\nstats.warmup(iter) = optimState.Warmup;\nstats.pruned(iter) = pruned;\nstats.elbo(iter) = elbo;\nstats.elbo_sd(iter) = elbo_sd;\nstats.sKL(iter) = sKL;\nif ~isempty(sKL_true)\n stats.sKL_true(iter) = sKL_true;\nend\nstats.gpNoise_hpd(iter) = sqrt(optimState.sn2hpd);\nstats.gpSampleVar(iter) = varss;\nstats.gpNsamples(iter) = Ns_gp;\nstats.gpHypFull{iter} = hyp_full;\nstats.timer(iter) = timer;\nstats.vp(iter) = vp;\nstats.gp(iter) = gplite_clean(gp);\nif ~isempty(optimState.gpOutwarpfun)\n stats.outwarp_threshold(iter) = optimState.OutwarpDelta;\nelse\n stats.outwarp_threshold(iter) = NaN;\nend\nstats.lcbmax(iter) = optimState.lcbmax;\nstats.t(iter) = NaN; % Fill it at the end of the iteration\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction add2path()\n%ADD2PATH Adds VBMC subfolders to MATLAB path.\n\nsubfolders = {'acq','ent','gplite','misc','shared','test','utils'};\n% subfolders = {'acq','ent','gplite','misc','utils','warp'};\npathCell = regexp(path, pathsep, 'split');\nbaseFolder = fileparts(mfilename('fullpath'));\n\nonPath = true;\nfor iFolder = 1:numel(subfolders)\n folder = [baseFolder,filesep,subfolders{iFolder}]; \n if ispc % Windows is not case-sensitive\n onPath = onPath & any(strcmpi(folder, pathCell));\n else\n onPath = onPath & any(strcmp(folder, pathCell));\n end\nend\n\n% ADDPATH is slow, call it only if folders are not on path\nif ~onPath\n addpath(genpath(fileparts(mfilename('fullpath'))));\nend\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction [x0,LB,UB,PLB,PUB,Xvp] = initFromVP(vp,LB,UB,PLB,PUB,prnt)\n\nif prnt > 2\n fprintf('Initializing VBMC from variational posterior (D = %d).\\n', vp.D);\n if ~isempty(PLB) && ~isempty(PUB)\n fprintf('Using provided plausible bounds. Note that it might be better to leave them empty,\\nand allow VBMC to set them using the provided variational posterior.\\n');\n end\nend\n\n% Find mode in transformed space\nx0t = vbmc_mode(vp,[],0);\nx0 = warpvars_vbmc(x0t,'inv',vp.trinfo);\n\n% Sample from variational posterior and set plausible bounds accordingly\nif isempty(PLB) && isempty(PUB)\n Xvp = vbmc_rnd(vp,1e6,[],1);\n PLB = quantile(Xvp,0.05);\n PUB = quantile(Xvp,0.95);\nelse\n Xvp = [];\nend \nif isempty(LB); LB = vp.trinfo.lb_orig; end\nif isempty(UB); UB = vp.trinfo.ub_orig; end\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction Xrnd = robustSampleFromVP(vp,Ns,Xrnd,quantile_thresh)\n%ROBUSTSAMPLEFROMVP Robust sample from variational posterior.\n\nif nargin < 3; Xrnd = []; end\nif nargin < 4 || isempty(quantile_thresh); quantile_thresh = 0.01; end\n\nNs_big = 1e4;\nXrnd = [Xrnd; vbmc_rnd(vp,max(0,Ns_big-size(Xrnd,1)),[],1)];\nXrnd = Xrnd(1:Ns_big,:);\n\ny = vbmc_pdf(vp,Xrnd);\ny_thresh = quantile(y,quantile_thresh);\n\nXrnd = Xrnd(y > y_thresh,:);\nXrnd = Xrnd(1:Ns,:);\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction timer = timer_init()\n%TIMER_INIT Initialize iteration timer.\n\ntimer.activeSampling = 0;\ntimer.funEvals = 0;\ntimer.gpTrain = 0;\ntimer.variationalFit = 0;\ntimer.warping = 0;\ntimer.finalize = 0;\n\nend\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction acqInfo = getAcqInfo(SearchAcqFcn)\n%GETACQINFO Get information from acquisition function(s)\n\nfor iAcq = 1:numel(SearchAcqFcn)\n try\n % Called with first empty input should return infos\n acqInfo{iAcq} = SearchAcqFcn{iAcq}([]);\n catch\n acqInfo{iAcq} = [];\n end\nend\n\nend\n", "meta": {"author": "acerbilab", "repo": "vbmc", "sha": "54ba2cdd6c11d2595b9613557da14573abbb7b92", "save_path": "github-repos/MATLAB/acerbilab-vbmc", "path": "github-repos/MATLAB/acerbilab-vbmc/vbmc-54ba2cdd6c11d2595b9613557da14573abbb7b92/vbmc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3631197849121215}} {"text": "function volROI = flat2volROI(flatROI,flatView,volView)\n% \n% volROI = flat2volROI(flatROI,flatView,volView)\n%\n% Creates a volume ROI from a flat ROI by looking up the\n% corresponding coords. The tricky thing about this function\n% is that FLAT -> VOL is a one to many mapping, and we need to\n% find all the corresponding volume coords. \n% \n% flatROI and volROI are ROI structures, like those found in \n% view.ROIs \n%\n% volView must be the VOLUME structure.\n% flatView must be the FLAT structure.\n%\n% djh, 8/98.\n%\n% djh, 8/4/99. Need to round the coords because we no longer do it in\n% loadGLocs. Also, remove duplicate flat coords.\n% djh, 2/2001. Use intersectCols instead of coords2Indices\n\nglobal mrSESSION\n\n% check that the ROI fields are properly set\nflatROI = roiCheck(flatROI);\n\n% This should be much fastter but its busted because intersect removes duplicates and\n% we need to keep the duplicates here because flat->gray is a one-to-many mapping.\n%\n% coords = [];\n% for h = 1:2\n% ROIcoords = flatROI.coords([1:2],find(flatROI.coords(3,:) == h));\n% if ~isempty(ROIcoords)\n% [tmp,ROIIndices,flatIndices] = intersectCols(ROIcoords,round(flatView.coords{h}));\n% coords = [coords, flatView.grayCoords{h}(:,flatIndices)];\n% end\n% end\n\ncoords = [];\nflatImSize = flatView.ui.imSize;\nfor h = 1:2\n ROIcoords = flatROI.coords([1:2],find(flatROI.coords(3,:) == h));\n if ~isempty(ROIcoords)\n ROIIndices = coords2Indices(ROIcoords,flatImSize);\n flatIndices = coords2Indices(round(flatView.coords{h}),flatImSize);\n bothIndices = intersect(ROIIndices,flatIndices);\n for id = 1:length(bothIndices)\n indices = find(flatIndices == bothIndices(id));\n coords = [coords, flatView.grayCoords{h}(:,indices)];\n end\n end\nend\n\n% Remove duplicates (there shouldn't be any, but just to make sure).\ncoords = intersectCols(coords,coords);\n\n% Set the fields \nvolROI = flatROI;\nvolROI.coords = coords;\nvolROI.viewType = volView.viewType;\n\nreturn\n\n\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/XformView/flat2volROI.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6548947290421275, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3631197849121215}} {"text": "function [data, xAxis, yAxis, misc] = impload(filename)\n% Reads PerkinElmer vis image files files.\n% This version is compatible with single image files.\n%\n% [data, xAxis, yAxis] = visload(filename):\n% data: length(x) * length(y) 2D array\n% xAxis: vector for horizontal axis (e.g. micrometers)\n% yAxis: vector for vertical axis (e.g. micrometers)\n\n% Copyright (C)2007 PerkinElmer Life and Analytical Sciences\n% Stephen Westlake, Seer Green\n%\n% History\n% 2007-04-29 SW Initial version\n\n\n% Read the bitmap\ndata = imread(filename, 'bmp');;\n\nfid = fopen(filename,'r');\nif fid == -1\n error('Cannot open the file.');\n return\nend\n\n% Fixed file header of signature and description\nsignature = setstr(fread(fid, 2, 'uchar')');\nif ~strcmp(signature, 'BM')\n error('This is not a PerkinElmer vis file.');\n return\nend\nfseek(fid, 0, 'bof');\n\n\n% Read the trailer\nfseek(fid, -4 * 8, 'eof');\n\n% YAxis is reversed to suit image()\nxAxis(1) = fread(fid, 1, 'double'); % x1\nyAxis(2) = fread(fid, 1, 'double'); % y1 \nxAxis(2) = fread(fid, 1, 'double'); % x2\nyAxis(1) = fread(fid, 1, 'double'); % y2\n\nfclose(fid);\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/22736-perkinelmer-ir-data-file-import-tools/visload.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802735722128, "lm_q2_score": 0.5428632831725051, "lm_q1q2_score": 0.36311054136073484}} {"text": "function S = stripR(A)\n%------------------------------------------------------------------------------\n%\n% Design and implementation by:\n% Dr. Paul M. de Zeeuw http://homepages.cwi.nl/~pauldz/\n% Last Revision: June 6, 1999.\n% (c) 1999-2002 Stichting CWI, Amsterdam\n%------------------------------------------------------------------------------\n[n, m] = size(A);\nY = A.';\nS = Y(1:(m-1),:).';\n%------------------------------------------------------------------------------\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/13507-lisq-a-toolbox-for-the-lifting-scheme-on-2d-quincunx-grids/LISQ/stripR.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.542863297964157, "lm_q2_score": 0.6688802537704063, "lm_q1q2_score": 0.363110540504905}} {"text": "function flatROI = vol2flatROILevels(volROI,volView,flatView)\n% \n% flatROI = vol2flatROILevels(volROI,volView,flatView)\n%\n% Creates a flat ROI from a volume ROI by looking up the\n% corresponding coords. Will create coordinates in the \n% 'separate gray levels' slices.\n% \n% flatROI and volROI are ROI structures, like those found in \n% view.ROIs \n%\n% volView must be the VOLUME structure.\n% flatView must be the FLAT structure.\n%\n% ras, 10/04. Version for flat level views, off vol2flatROI.\n% Intersect volROI.coords with volView.coords. When in gray mode, \n% this restricts the ROI to the gray matter.\nROIcoords = volROI.coords;\nROIcoords = intersectCols(ROIcoords,volView.coords);\n\n% init coords for flat ROI\ncoords = [];\n\n% get grayCoords for flat, across all slices\ngrayCoords = []; flatCoords = [];\nfor slice = 1:numSlices(flatView)\n grayCoords = [grayCoords flatView.grayCoords{slice}];\n sliceCoords = flatView.coords{slice};\n sliceCoords(3,:) = slice;\n flatCoords = [flatCoords sliceCoords];\nend\n\n[bothCoords ia ib] = intersectCols(ROIcoords,grayCoords);\ncoords = flatCoords(:,ib);\n\n% % error check. ROIcoords should be contained entirely within gray coords.\n% if (size(ROIcoords,2) ~= size(coords,2)) & (strcmp(volView.viewType,'Gray'))\n% fprintf(['\\nGray nodes loaded from gray classification file are ',...\n% 'incompatible with those loaded from the flat.mat file. ',...\n% 'Rebuild the Gray and Flat view: rm Gray/*.mat Flat/*.mat']);\n% end\n\n% Remove duplicates (there shouldn't be any, but just to make sure).\ncoords = intersectCols(coords,coords);\n\n% Set the fields \nflatROI.coords = coords;\nflatROI.name = volROI.name;\nflatROI.color = volROI.color;\nflatROI.viewType = flatView.viewType;\n\nreturn\n\n\n% from the older intersect code:\n% flatCoords = round(flatView.coords(:,ib));\n% flatCoords = [flatCoords; h*ones([1,size(flatCoords,2)])];\n% coords = [coords,flatCoords];", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/View/FlatLevel/vol2flatROILevels.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6688802603710086, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.36311053419428585}} {"text": "function test_example_sourcemodel_aligned2mni_atlas\n\n% MEM 4gb\n% WALLTIME 00:10:00\n\n%\n%% Create brain atlas based MNI-aligned grids in individual head-space\n%\n% When combining the source-level data of multiple subjects this data is typically first interpolated (e.g., using **[ft_sourceinterpolate](https://github.com/fieldtrip/fieldtrip/blob/release/ft_sourceinterpolate.m)**) and then spatially normalized to a template brain (e.g., using **[ft_volumenormalise](https://github.com/fieldtrip/fieldtrip/blob/release/ft_volumenormalise.m)**). However it is also possible to define the source-reconstruction grid for each individual subject in such a way that all these grids are already aligned in MNI-space. The combination or statistic of source-level data across subjects can then directly be computed within the source-structure without the need to interpolate and normalize each volume. In addition, the position of the grid points can be chosen in a way that only locations corresponding to particular brain areas (parcels) are included.\n%\n% The procedure is as follows. First, a template grid is computed on the basis of the standard head model located in the FieldTrip template directory. Subsequently, a brain atlas is loaded using **[ft_read_atlas](https://github.com/fieldtrip/fieldtrip/blob/release/fileio/ft_read_atlas.m)**. On the basis on the brain atlas and the template grid it is possible to create a binary mask of all locations in the template grid that match atlas locations using **[ft_volumelookup](https://github.com/fieldtrip/fieldtrip/blob/release/ft_volumelookup.m)**. Finally the mask is used to determine which location shall be defined as 'inside' the head model.\n%\n[ftver, ftpath] = ft_version;\nload(fullfile(ftpath, 'template/headmodel/standard_singleshell.mat'));\n\ncfg = [];\ncfg.xgrid = -20:1:20;\ncfg.ygrid = -20:1:20;\ncfg.zgrid = -20:1:20;\ncfg.unit = 'cm';\ncfg.tight = 'yes';\ncfg.inwardshift = -1.5;\ncfg.headmodel = vol;\ntemplate_grid = ft_prepare_sourcemodel(cfg);\ntemplate_grid.coordsys = 'mni';\n\ntemplate_grid = ft_convert_units(template_grid,'cm');\n\nfigure;\nhold on\nft_plot_mesh(template_grid.pos(template_grid.inside,:));\nft_plot_headmodel(vol, 'facecolor', 'cortex', 'edgecolor', 'none');\nft_plot_axes(vol);\nalpha 0.5\ncamlight\n\n% Read the atlas, convert to units of cm and create the binary mask.\n%\natlas = ft_read_atlas(fullfile(ftpath, 'template/atlas/aal/ROI_MNI_V4.nii'));\n\natlas = ft_convert_units(atlas,'cm');\n\ncfg = [];\ncfg.atlas = atlas;\ncfg.roi = atlas.tissuelabel; % here you can also specify a single label, i.e. single ROI\nmask = ft_volumelookup(cfg, template_grid);\n\n% Now we determine all indices of the binary mask to be considered as inside the head model. And plot the result. Note the missing dipole locations for example in the vicinity of the ventricles.\n%\ntemplate_grid.inside = false(template_grid.dim);\ntemplate_grid.inside(mask==1) = true;\n\nfigure;\nft_plot_mesh(template_grid.pos(template_grid.inside,:));\n\n%\n% Load the subject-specific MRI from [here](ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/salzburg/mri.mat) and inverse-warp the subject specific grid to the template grid.\n%\nmri = ft_read_mri(dccnpath('/home/common/matlab/fieldtrip/data/ftp/tutorial/salzburg/mri.mat'));\n\ncfg = [];\ncfg.warpmni = 'yes';\ncfg.template = template_grid;\ncfg.nonlinear = 'yes'; % use non-linear normalization\ncfg.mri = mri;\nsourcemodel = ft_prepare_sourcemodel(cfg);\n\n% Finally, you can load the subject-specific headmodel from [here](ftp://ftp.fieldtriptoolbox.org/pub/fieldtrip/tutorial/salzburg/hdm.mat) and check the result with the following code.\n%\nclose all\n\nhdm = ft_read_mri(dccnpath('/home/common/matlab/fieldtrip/data/ftp/tutorial/salzburg/hdm.mat'));\n\nhdm = ft_convert_units(hdm, 'm');\nsourcemodel = ft_convert_units(sourcemodel, 'm');\n\nfigure\nhold on\nft_plot_headmodel(hdm, 'facecolor', 'cortex', 'edgecolor', 'none');\nft_plot_axes(hdm);\nalpha 0.4 % make the surface transparent\nft_plot_mesh(sourcemodel.pos(sourcemodel.inside,:));\nview ([0 -90 0])\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_example_sourcemodel_aligned2mni_atlas20220113.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6370308082623217, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36301369512078757}} {"text": " function out = subsref(ob, arg)\n%function out = subsref(ob, arg)\n%\tevaluate call of the form ob.ref or ob(ref,:)\n\n%\n%\tob.?\n%\nif arg.type == '.'\n\tout = getfield(struct(ob), arg.subs);\n\n\n%\n%\tob(?)\n%\nelseif arg.type == '()'\n\n\tif ~isempty(ob.index1) | ~isempty(ob.index2)\n\t\terror 'subscripts after subscripts perhaps not done'\n\tend\n\n\tsub = arg.subs;\n\n\t%\n\t%\tG(:,:)\n\t%\n\tif length(sub) == 2 & sub{1} == ':' & sub{2} == ':'\n\t\tout = ob.G;\n\n\t%\n\t%\tG(:,j)\n\t%\n\telseif length(sub) == 2 & sub{1} == ':'\n\t\tjj = col(sub{2});\n\t\tif islogical(jj)\n\t\t\tif length(jj) ~= ob.dims(2)\n\t\t\t\terror 'bad column logical length'\n\t\t\tend\n\t\telse\n\t\t\tbad = jj < 1 | jj > ob.dims(2);\n\t\t\tif any(bad)\n\t\t\t\tprintf('bad column indeces:')\n\t\t\t\tjj(bad)'\n\t\t\t\terror 'subsref problem'\n\t\t\tend\n\t\tend\n\n\t\t%\n\t\t%\thandle G(:,mask(:)) as a special case\n\t\t%\n\t\tif length(jj) == ob.nx*ob.ny & all(jj == ob.mask(:)) ...\n\t\t\t\t& ~ob.is_masked & ~ob.is_transpose\n\t\t\tob.is_masked = true;\n\t\t\tob.dims(2) = sum(ob.mask(:));\n\t\t\tob.G = ob.G(:,ob.mask(:));\n\t\t\tout = ob;\n\n\t\telse\n%\t\t\tG = ob.G;\n\t\t\tout = subsref(ob.G, arg);\n\t\tend\n\n\t%\n\t%\tG(i,:)\n\t%\n\telseif length(sub) == 2 & sub{2} == ':'\n\t\tout = subsref(ob.G, arg);\n\n\telse\n\t\targ.subs\n\t\terror todo\n\tend\n\nelse\n\terror(sprintf('type %s notdone', arg.type))\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/arch/@Gtomo2_sparse/subsref.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803832, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36301368726711336}} {"text": "function dataOut=plotMultipleVoxAboveThreshPerCondition(view)\n%\n% dataOut=plotMultipleVoxAboveThreshPerCondition\n% \n% Bar plot of the number of superthreshold voxels (based on the co) in a particular condition\n% All y-axes are made the same. The bar heights\n% and total voxels in each ROI can be obtained from the userdata \n% \n% arw 04/01/05\n\n\nmrGlobals;\n\n\n% Select ROIs\nnROIs=size(view.ROIs,2);\nroiList=cell(1,nROIs);\nfor r=1:nROIs\n roiList{r}=view.ROIs(r).name;\nend\nselectedROIs = find(buttondlg('ROIs to Plot',roiList));\nnROIs=length(selectedROIs);\nif (nROIs==0)\n error('No ROIs selected');\nend\n\n% Plot it\nselectGraphWin\nclf\nfontSize = 8;\nheaderStr = ['Vox above thresh'];\nset(gcf,'Name',headerStr);\n\nminylim=0;\nmaxylim=0;\nnrows=0;\nncols=0;\n\n\nnscans = numScans(view);\nROIcos=zeros(nscans,nROIs);\nthisCoThresh=get(view.ui.cothresh.sliderHandle,'value');\ntotalVoxels=zeros(nscans,nROIs);\nvoxAboveThresh=zeros(nscans,nROIs);\n\nfor r=1:nROIs\n \n n=selectedROIs(r);\n view = selectROI(view,n); % is there another way?\n ROIcoords=getCurROIcoords(view);\n \n for scanNum=1:nscans \n \n subCo = getCurDataROI(view,'co',scanNum,ROIcoords);\n totalVoxels(scanNum,r)=size(subCo,2);\n voxAboveThresh(scanNum,r)=length(find(subCo>=thisCoThresh));\n end\n \n xstr{r}=int2str(r);\n roiName{r}=view.ROIs(selectedROIs(r)).name;\n fprintf(['\\n#%d :',roiName{r}],r);\n \nend\ndataOut.totalVoxels=totalVoxels;\ndataOut.voxAboveThresh=voxAboveThresh;\ndataOut.ROIname=roiName;\n\n% Now do the plotting\n\nif nscans<=3\n nrows=1;\n ncols=nscans;\n fontSize = 9;\nelseif nscans<=8\n nrows=2;\n ncols=ceil(nscans/nrows);\n fontSize = 8;\nelse\n nrows=ceil(sqrt(nscans));\n ncols=ceil(nscans/nrows);\n fontSize = 6;\nend\n\n\nfor r=1:nscans\n \n \n subplot(nrows,ncols,r);\n \n %plot the bar graph\n h=bar(voxAboveThresh(r,:));% ,ROIseZ(r,:)',xstr);\n xlabel('ROI','FontSize',fontSize);\n ylabel('Number above threshold','FontSize',fontSize);\n set(gca,'FontSize',ceil(fontSize*1.2));\n conditionName{r}=dataTYPES(view.curDataType).scanParams(r).annotation;\n fprintf(['\\nCondition #%d :',conditionName{r}],r);\n\n fprintf('\\nTotalVoxels: %d',totalVoxels(r,:));\n \n title(['Condition #: ' int2str(r)]);\n yl=ylim;\n \n if yl(1)< minylim\n minylim=yl(1);\n end\n if yl(2)> maxylim\n maxylim=yl(2);\n end\nend\n\n\nset(gca,'UserData',dataOut);\n\n\n\n% give all plots same y-axis\n\nfor r=1:nscans\n subplot(nrows,ncols,r);\n ylim([minylim maxylim]);\nend\n\nreturn;\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/mrBOLD/Plots/plotMultipleVoxAboveThreshPerCondition.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6370307944803832, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36301368726711336}} {"text": "function [ vX, vV, mX ] = ProjectedGdFista( vX, vV, hG, hP, numIterations, stepSize )\n% ----------------------------------------------------------------------------------------------- %\n% [ vX, vV, mX ] = ProjectedGdFista( vX, vV, hG, hP, numIterations, stepSize )\n% Solves an objective function by the Projected Gradient Descent /\n% Projected Gradient Method (PGM) with FISTA Acceleration.\n% Input:\n% - vX - Input Vector.\n% The starting point for the gradient iterations.\n% Structure: Vector (numElements x 1).\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% - vV - Acceleration Vector.\n% The buffer to hold the accelerated direction\n% vector.\n% Structure: Vector (numElements x 1).\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% - hG - Gradient Function Handler.\n% A function handler which accepts a vector of\n% size (numElements x 1) and returns the gradient\n% in the form of a vector (numElements x 1).\n% Structure: Function Handler.\n% Type: NA.\n% Range: NA.\n% - hP - Gradient Function Handler.\n% A function handler which accepts a vector of\n% size (numElements x 1) and returns the gradient\n% in the form of a vector (numElements x 1).\n% Structure: Function Handler.\n% Type: NA.\n% Range: NA.\n% - numIterations - Number of Iterations.\n% Sets the number of iterations of the gradient\n% descent.\n% Structure: Scalar.\n% Type: 'Single' / 'Double'.\n% Range: {1, 2, 3, ...}.\n% - stepSize - Step Size.\n% Sets the step size of the Gradient step.\n% Structure: Scalar.\n% Type: 'Single' / 'Double'.\n% Range: (0, inf).\n% Output:\n% - vX - Output Vector.\n% The end point for the gradient iterations.\n% Structure: Vector (numElements x 1).\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% - vV - Acceleration Vector.\n% The buffer to hold the accelerated direction\n% vector of last iteration. May used by a wrapper\n% for warm start.\n% Structure: Vector (numElements x 1).\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% - mX - The Path Matrix.\n% The points of the gradient iterations.\n% Structure: Matrix (numElements x numIterations).\n% Type: 'Single' / 'Double'.\n% Range: (-inf, inf).\n% References:\n% 1. Geoff Gordon & Ryan Tibshirani - Accelerated First Order Methods (https://www.cs.cmu.edu/~ggordon/10725-F12/slides/09-acceleration.pdf).\n% Remarks:\n% 1. B\n% TODO:\n% 1. C\n% Release Notes:\n% - 1.0.000 26/12/2020 Royi Avital\n% * First release version.\n% ----------------------------------------------------------------------------------------------- %\n\nFALSE = 0;\nTRUE = 1;\n\nOFF = 0;\nON = 1;\n\nmX = zeros(size(vX, 1), numIterations);\n\nvG = zeros(size(vX, 1), 1);\nmX(:, 1) = vX;\nmX(:, 2) = vX - stepSize * hG(vX);\n\nfor ii = 3:numIterations\n vV(:) = mX(:, ii - 1) + (((ii - 2) / (ii + 1)) * (mX(:, ii - 1) - mX(:, ii - 2)));\n vG(:) = hG(vV); %0\n [dag_net, output_dim_crf_conv1, one_layers]=gen_dag_net_lossgroup(loss_config, loss_group_input_dim);\n layers=cat(2, layers, one_layers);\n else\n output_dim_crf_conv1=loss_group_input_dim;\n end\n \n \n layers{end+1} = struct('type', 'dropout', 'rate', 0.5) ;\n\n \n output_dim_crf_conv2=class_num;\n input_dim_crf_conv2=output_dim_crf_conv1;\n layers{end+1} = struct('type', 'conv', ...\n 'filters', 0.01 * randn(3,3,input_dim_crf_conv2, output_dim_crf_conv2,'single'), ...\n 'biases', zeros(1, output_dim_crf_conv2, 'single'), ...\n 'stride', 1, ...\n 'pad', 0 );\n \n\n one_layer=[];\n one_layer.type='my_custom';\n one_layer.custom_type='dense_softmaxloss';\n \n one_layer.forward_fn=@cnn_layer_dense_softmaxloss_forward;\n one_layer.backward_fn=@cnn_layer_dense_softmaxloss_backward;\n \n \n one_layer.stageout_info=stageout_info;\n \n \n one_layer.layer_update_fn=[];\n layers{end+1}=one_layer;\n \n \nlayers=gen_padding_keep_size(layers);\n\n\nnet_info=My_net_util.gen_net_info_basic();\n \n\nnet_info.ref.name='final_loss';\nnet_info.ref.layers=layers;\nnet_info.ref.prediction_layer_idxes=length(layers);\n\nnet_info.ref.lr_multiplier=loss_config.lr_multiplier;\n\nend\n\n\n\nfunction [dag_net, output_dim, layers]=gen_dag_net_lossgroup(loss_config, loss_group_input_dim)\n\nconv_num=loss_config.lossgroup_conv_num;\none_output_dim=loss_config.lossgroup_conv_filter_num;\n\n\ndag_net=dagnn.DagNN();\n\nstart_var_name='data_input';\n\n \nlayer_gen_info=[];\nlayer_gen_info.one_output_dim=loss_group_input_dim;\nlayer_gen_info.one_outputs={start_var_name};\n \nif loss_group_input_dim~=one_output_dim\n\terror('should not come here!');\nend\n\nlayer_name_prefix=sprintf('lossblock');\nlayer_gen_info=My_net_util.add_res_conv_block(dag_net, layer_gen_info, one_output_dim, conv_num, layer_name_prefix);\n\noutput_dim=layer_gen_info.one_output_dim;\n\noutput_var_name=layer_gen_info.one_outputs{1};\noutput_var_idx=dag_net.getVarIndex(output_var_name);\ndag_net.vars(output_var_idx).fanout=0;\n\n% debug:\n% dag_net.print('Format', 'dot');\n\n\nMy_net_util.fix_padding_resnet(dag_net);\n\nlayers=cell(0);\n\none_layer=[];\none_layer.type='my_custom';\none_layer.custom_type='dagnn_wrapper';\none_layer.forward_fn=@cnn_layer_dagnn_wrapper_forward;\none_layer.backward_fn=@cnn_layer_dagnn_wrapper_backward;\none_layer.layer_update_fn=[];\n\none_layer.input_var_names=dag_net.getInputs();\none_layer.output_var_names=dag_net.getOutputs();\n\nassert(length(one_layer.input_var_names)==1);\nassert(length(one_layer.output_var_names)==1);\n\none_layer.use_single_output=true;\n\nlayers{end+1}=one_layer;\n\n\n\nend\n\n\n\n\n\n\n\n", "meta": {"author": "guosheng", "repo": "refinenet", "sha": "0d62007bd60ba983d48acaee6ee29988c7171a91", "save_path": "github-repos/MATLAB/guosheng-refinenet", "path": "github-repos/MATLAB/guosheng-refinenet/refinenet-0d62007bd60ba983d48acaee6ee29988c7171a91/main/gen_network_loss_group.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.743168019989179, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.362876604075599}} {"text": "classdef GenericSumOfSinesSteeringModel < AbstractSteeringModel\n %GenericSumOfSinesSteeringModel Summary of this class goes here\n % Detailed explanation goes here\n \n properties\n gammaAngleModel(1,1) SumOfSinesModel = SumOfSinesModel(0);\n betaAngleModel(1,1) SumOfSinesModel = SumOfSinesModel(0);\n alphaAngleModel(1,1) SumOfSinesModel = SumOfSinesModel(0);\n \n gammaContinuity(1,1) logical = false;\n betaContinuity(1,1) logical = false;\n alphaContinuity(1,1) logical = false;\n \n refFrame AbstractReferenceFrame\n controlFrame AbstractControlFrame\n end\n \n methods \n function dcm = getBody2InertialDcmAtTime(obj, ut, rVect, vVect, bodyInfo)\n gammaAng = obj.gammaAngleModel.getValueAtTime(ut);\n betaAng = obj.betaAngleModel.getValueAtTime(ut);\n alphaAng = obj.alphaAngleModel.getValueAtTime(ut);\n \n% elemSet = CartesianElementSet(ut, rVect(:), vVect(:), bodyInfo.getBodyCenteredInertialFrame());\n% if(not(isempty(obj.refFrame.getOriginBody())))\n% elemSet = elemSet.convertToFrame(obj.refFrame);\n% end\n \n dcm = real(obj.controlFrame.computeDcmToInertialFrame(ut, rVect, vVect, bodyInfo, gammaAng, betaAng, alphaAng, obj.refFrame));\n end\n\n function [angleModel, continuity] = getAngleNModel(obj, n)\n angleModel = SumOfSinesModel.empty(1,0);\n \n switch n\n case 1\n angleModel = obj.gammaAngleModel;\n continuity = obj.gammaContinuity;\n case 2\n angleModel = obj.betaAngleModel;\n continuity = obj.betaContinuity;\n case 3\n angleModel = obj.alphaAngleModel;\n continuity = obj.alphaContinuity;\n end\n end\n \n function t0 = getT0(obj)\n t0 = obj.alphaAngleModel.getT0();\n end\n \n function setT0(obj, newT0)\n obj.gammaAngleModel.setT0(newT0);\n obj.betaAngleModel.setT0(newT0);\n obj.alphaAngleModel.setT0(newT0);\n end\n \n function setTimeOffsets(obj, timeOffset)\n obj.gammaAngleModel.setTimeOffset(timeOffset);\n obj.betaAngleModel.setTimeOffset(timeOffset);\n obj.alphaAngleModel.setTimeOffset(timeOffset);\n end\n \n function [angle1Cont, angle2Cont, angle3Cont] = getContinuityTerms(obj)\n angle1Cont = obj.gammaContinuity;\n angle2Cont = obj.betaContinuity;\n angle3Cont = obj.alphaContinuity;\n end\n \n function setContinuityTerms(obj, angle1Cont, angle2Cont, angle3Cont)\n obj.gammaContinuity = angle1Cont;\n obj.betaContinuity = angle2Cont;\n obj.alphaContinuity = angle3Cont;\n end\n \n function setConstsFromDcmAndContinuitySettings(obj, dcm, ut, rVect, vVect, bodyInfo)\n if(obj.gammaContinuity || obj.betaContinuity || obj.alphaContinuity)\n elemSet = CartesianElementSet(ut, rVect(:), vVect(:), bodyInfo.getBodyCenteredInertialFrame());\n \n% if(not(isempty(obj.refFrame.getOriginBody())))\n% elemSet = elemSet.convertToFrame(obj.refFrame);\n% end\n \n [gammaAngle, betaAngle, alphaAngle] = obj.controlFrame.getAnglesFromInertialBodyAxes(LaunchVehicleAttitudeState(dcm), elemSet.time, elemSet.rVect(:), elemSet.vVect(:), elemSet.frame.getOriginBody(), obj.refFrame);\n \n if(obj.gammaContinuity)\n obj.gammaAngleModel.setConstValueForContinuity(gammaAngle);\n end\n \n if(obj.betaContinuity)\n obj.betaAngleModel.setConstValueForContinuity(betaAngle);\n end\n \n if(obj.alphaContinuity)\n obj.alphaAngleModel.setConstValueForContinuity(alphaAngle);\n end\n end\n end\n \n function setInitialAttitudeFromState(obj, stateLogEntry, tOffsetDelta)\n t0 = stateLogEntry.time;\n obj.setT0(t0);\n \n obj.gammaAngleModel.setTimeOffset(obj.gammaAngleModel.getTimeOffset() + tOffsetDelta);\n obj.betaAngleModel.setTimeOffset(obj.betaAngleModel.getTimeOffset() + tOffsetDelta);\n obj.alphaAngleModel.setTimeOffset(obj.alphaAngleModel.getTimeOffset() + tOffsetDelta);\n end\n \n function [angle1Name, angle2Name, angle3Name] = getAngleNames(obj)\n angleNames = obj.controlFrame.getControlFrameEnum().angleNames;\n angle1Name = angleNames{1};\n angle2Name = angleNames{2};\n angle3Name = angleNames{3};\n end\n \n function newSteeringModel = deepCopy(obj)\n newSteeringModel = GenericSumOfSinesSteeringModel(obj.gammaAngleModel.deepCopy(), obj.betaAngleModel.deepCopy(), obj.alphaAngleModel.deepCopy());\n \n newSteeringModel.gammaContinuity = obj.gammaContinuity;\n newSteeringModel.betaContinuity = obj.betaContinuity;\n newSteeringModel.alphaContinuity = obj.alphaContinuity;\n newSteeringModel.refFrame = obj.refFrame;\n newSteeringModel.controlFrame = obj.controlFrame;\n end\n \n function optVar = getNewOptVar(obj)\n optVar = SetGenericSumOfSinesSteeringModelActionOptimVar(obj);\n end\n \n function optVar = getExistingOptVar(obj)\n optVar = obj.optVar;\n end\n \n function tf = usesRefFrame(~)\n tf = true;\n end\n \n function refFrame = getRefFrame(obj)\n refFrame = obj.refFrame;\n end\n \n function setRefFrame(obj, refFrame)\n obj.refFrame = refFrame;\n end\n \n function tf = usesControlFrame(~)\n tf = true;\n end\n \n function cFrame = getControlFrame(obj)\n cFrame = obj.controlFrame;\n end\n \n function setControlFrame(obj, cFrame)\n obj.controlFrame = cFrame;\n end\n \n function tf = requiresReInitAfterSoIChange(~)\n tf = false;\n end\n \n function enum = getSteeringModelTypeEnum(~)\n enum = SteerModelTypeEnum.SumOfSinesAngles;\n end\n end\n \n methods(Access=private)\n function obj = GenericSumOfSinesSteeringModel(gammaAngleModel, betaAngleModel, alphaAngleModel)\n obj.gammaAngleModel = gammaAngleModel;\n obj.betaAngleModel = betaAngleModel;\n obj.alphaAngleModel = alphaAngleModel;\n \n obj.controlFrame = InertialControlFrame();\n end \n end\n \n methods(Static)\n function model = getDefaultSteeringModel()\n gammaAngleModel = SumOfSinesModel(0);\n betaAngleModel = SumOfSinesModel(0);\n alphaAngleModel = SumOfSinesModel(0);\n \n model = GenericSumOfSinesSteeringModel(gammaAngleModel, betaAngleModel, alphaAngleModel);\n end\n \n function typeStr = getTypeNameStr()\n typeStr = SteeringModelEnum.GenericSumOfSines.nameStr;\n end\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/ksptot_lvd/classes/ForceModels/steering/@GenericSumOfSinesSteeringModel/GenericSumOfSinesSteeringModel.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7431680086124811, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.3628765985205464}} {"text": "function [fx,tt]=v_fxrapt(s,fs,mode,q)\n%V_FXRAPT RAPT pitch tracker [FX,VUV]=(S,FS,M,Q)\n%\n% Input: s(ns) Speech signal\n% fs Sample frequency (Hz)\n% mode 'g' will plot a graph [default if no output arguments]\n% 'u' will include unvoiced fames (with fx=NaN)\n% q stucture with parameter values (e.g. q.f0min=40); see below for a list\n%\n% Outputs: fx(nframe) Larynx frequency for each fram,e (or NaN for silent/unvoiced)\n% tt(nframe,3) Start and end samples of each frame. tt(*,3)=1 at the start of each talk spurt\n%\n% Plots a graph if no outputs are specified showing lag candidates and selected path\n%\n\n% Bugs/Suggestions:\n% (1) Include backward DP pass and output the true cost for each candidate.\n% (2) Add an extra state to distinguish between voiceless and silent\n% (3) N-best DP to allow longer term penalties (e.g. for frequent pitch doubling/halving)\n\n% The algorithm is taken from [1] with the following differences:\n%\n% (a) the factor AFACT which in the Talkin algorithm corresponds roughly\n% to the absolute level of harmonic noise in the correlation window. This value\n% is here calculated as the maximum of three figures:\n% (i) an absolute floor set by p.absnoise\n% (ii) a multiple of the peak signal set by p.signoise\n% (iii) a multiple of the noise floor set by p.relnoise\n% (b) The LPC used in calculating the Itakura distance uses a Hamming window rather than\n% a Hanning window.\n%\n% A C implementation of this algorithm by Derek Lin and David Talkin is included as \"get_f0.c\"\n% in the esps.zip package available from http://www.speech.kth.se/esps/esps.zip under the BSD\n% license.\n%\n% Refs:\n% [1] D. Talkin, \"A Robust Algorithm for Pitch Tracking (RAPT)\"\n% in \"Speech Coding & Synthesis\", W B Kleijn, K K Paliwal eds,\n% Elsevier ISBN 0444821694, 1995\n\n% Copyright (C) Mike Brookes 2006-2013\n% Version: $Id: v_fxrapt.m 10865 2018-09-21 17:22:45Z dmb $\n%\n% VOICEBOX is a MATLAB toolbox for speech processing.\n% Home page: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n%\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You can obtain a copy of the GNU General Public License from\n% http://www.gnu.org/copyleft/gpl.html or by writing to\n% Free Software Foundation, Inc.,675 Mass Ave, Cambridge, MA 02139, USA.\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\ns=s(:); % force s to be a column\nif nargin<4\n q=[];\n if nargin<3\n mode=' ';\n end\nend\ndoback=0; % don't do backwards DP for now\n\n% set default parameters\n\np0.f0min=50; % Min F0 (Hz)\np0.f0max=500; % Max F0 (Hz)\np0.tframe=0.01; % frame size (s)\np0.tlpw=0.005; % low pass filter window size (s)\np0.tcorw=0.0075; % correlation window size (s)\np0.candtr=0.3; % minimum peak in NCCF\np0.lagwt=0.3; % linear lag taper factor\np0.freqwt=0.02; % cost factor for F0 change\np0.vtranc=0.005; % fixed voice-state transition cost\np0.vtrac=0.5; % delta amplitude modulated transition cost\np0.vtrsc=0.5; % delta spectrum modulated transition cost\np0.vobias=0.0; % bias to encourage voiced hypotheses\np0.doublec=0.35; % cost of exact doubling or halving\np0.absnoise=0; % absolute rms noise level\np0.relnoise=2; % rms noise level relative to noise floor\np0.signoise=0.001; % ratio of peak signal rms to noise floor (0.001 = 60dB)\np0.ncands=20; % max hypotheses at each frame\np0.trms=0.03; % window length for rms measurement\np0.dtrms=0.02; % window spacing for rms measurement\np0.preemph=-7000; % s-plane position of preemphasis zero\np0.nfullag=7; % number of full lags to try (must be odd)\np=v_paramsetch(p0,q);\n\n% redefine commonly used parameters\n\ncandtr=p.candtr; % minimum peak in NCCF [0.3]\nvtranc=p.vtranc; % fixed voice-state transition cost [0.005]\nvtrac=p.vtrac; % delta amplitude modulated transition cost [0.5]\nvtrsc=p.vtrsc; % delta spectrum modulated transition cost [0.5]\nvobias=p.vobias; % bias to encourage voiced hypotheses [0.0]\ndoublec=p.doublec; % cost of exact doubling or halving [0.35]\nncands=p.ncands; % max hypotheses at each frame [20]\nnfullag=p.nfullag; % number of full lags to try (must be odd) [7]\n\n% derived parameters (mostly dependent on sample rate fs)\n\nkrms=round(p.trms*fs); % window length for rms measurement\nkdrms=round(p.dtrms*fs); % window spacing for rms measurement\n% rmswin=hanning(krms).^2;\nrmswin=(0.5-0.5*cos(2*pi*(1:krms)'/(krms+1))).^2; % squared Hanning window\nkdsmp=round(0.25*fs/p.f0max);\nhlpw=round(p.tlpw*fs/2); % force window to be an odd length\nblp=sinc((-hlpw:hlpw)/kdsmp).*hamming(2*hlpw+1).';\nfsd=fs/kdsmp;\nkframed=round(fsd*p.tframe); % downsampled frame length\nkframe=kframed*kdsmp; % frame increment at full rate\nrmsix=(1:krms)+floor((kdrms-kframe)/2); % rms index according to Talkin; better=(1:krms)+floor((kdrms-krms+1)/2)\nminlag=ceil(fsd/p.f0max);\nmaxlag=round(fsd/p.f0min); % use round() only because that is what Talkin does\nkcorwd=round(fsd*p.tcorw); % downsampled correlation window\nkcorw=kcorwd*kdsmp; % full rate correlation window\nspoff=max(hlpw-floor(kdsmp/2),1+kdrms-rmsix(1)-kframe); % offset for first speech frame at full rate\nsfoff=spoff-hlpw+floor(kdsmp/2); % offset for downsampling filter\nsfi=1:kcorwd; % initial decimated correlation window index array\nsfhi=1:kcorw; % initial correlation window index array\nsfj=1:kcorwd+maxlag;\nsfmi=repmat((minlag:maxlag)',1,kcorwd)+repmat(sfi,maxlag-minlag+1,1);\nlagoff=(minlag-1)*kdsmp; % lag offset when converting to high sample rate\nbeta=p.lagwt*p.f0min/fs; % bias towards low lags\nlog2=log(2);\nlpcord=2+round(fs/1000); % lpc order for itakura distance\nhnfullag=floor(nfullag/2);\njumprat=exp((doublec+log2)/2); % lag ratio at which octave jump cost is lowest\nssq=s.^2;\ncsssq=cumsum(ssq);\nsqrt(min(csssq(kcorw+1:end)-csssq(1:end-kcorw))/kcorw);\nafact=max([p.absnoise^2,max(ssq)*p.signoise^2,min(csssq(kcorw+1:end)-csssq(1:end-kcorw))*(p.relnoise/kcorw)^2])^2*kcorw^2;\n\n% downsample signal to approx 2 kHz to speed up autocorrelation calculation\n% kdsmp is the downsample factor\n\nsf=filter(blp/sum(blp),1,s(sfoff+1:end));\nsp=filter([1 exp(p.preemph/fs)],1,s); % preemphasised speech for LPC calculation\nsf(1:length(blp)-1)=[]; % remove startup transient\nsf=sf(1:kdsmp:end); % downsample to =~2kHz\nnsf=length(sf); % length of downsampled speech\nns=length(s); % length of full rate speech\n\n% Calculate the frame limit to ensure we don't run off the end of the speech or decimated speech:\n% (a) For decimated autocorrelation when calculating sff(): (nframe-1)*kframed+kcorwd+maxlag <= nsf\n% (b) For full rate autocorrelation when calculating sfh(): max(fho)+kcorw+maxlag*kdsamp+hnfllag <= ns\n% (c) For rms ratio window when calculating rr : max(fho)+rmsix(end) <= ns\n% where max(fho) = (nframe-1)*kframe + spoff\n\nnframe=floor(1+min((nsf-kcorwd-maxlag)/kframed,(ns-spoff-max(kcorw-maxlag*kdsmp-hnfullag,rmsix(end)))/kframe));\n\n% now search for autocorrelation peaks in the downsampled signal\n\ncost=zeros(nframe,ncands); % cumulative cost\nprev=zeros(nframe,ncands); % traceback pointer\nmcands=zeros(nframe,1); % number of actual candidates excluding voiceless\nlagval=repmat(NaN,nframe,ncands-1); % lag of each voiced candidate\ntv=zeros(nframe,3); % diagnostics: 1=voiceless cost, 2=min voiced cost, 3:cumulative voiceless-min voiced\nif doback\n costms=cell(nframe,1);\nend\n\n% Main processing loop for each 10 ms frame\n\nfor iframe=1:nframe % loop for each frame (~10 ms)\n \n % Find peaks in the normalized autocorrelation of subsampled (2Khz) speech\n % only keep peaks that are > 30% of highest peak\n \n fho=(iframe-1)*kframe+spoff;\n sff=sf((iframe-1)*kframed+sfj);\n sffdc=mean(sff(sfi)); % mean of initial correlation window length\n sff=sff-sffdc; % subtract off the mean\n nccfd=normxcor(sff(1:kcorwd),sff(minlag+1:end));\n [ipkd,vpkd]=v_findpeaks(nccfd,'q');\n \n % Debugging: execute the line below to plot the autocorrelation peaks.\n % v_findpeaks(nccfd,'q'); xlabel(sprintf('Lag = (x+%d)*%g ms',minlag-1,1000*kdsmp/fs)); ylabel('Normalized Cross Correlation'); title (sprintf('Frame %d/%d',iframe,nframe));\n \n vipkd=[vpkd ipkd];\n vipkd(vpkdncands-1\n vipkd=sortrows(vipkd);\n vipkd(1:size(vipkd,1)-ncands+1,:)=[]; % eliminate lowest to leave only ncands-1\n end\n lagcan=round(vipkd(:,2)*kdsmp+lagoff); % convert the lag candidate values to the full sample rate\n nlcan=length(lagcan);\n else\n nlcan=0;\n end\n \n % If there are any candidate lag values (nlcan>0) then refine their accuracy at the full sample rate\n \n if nlcan\n laglist=reshape(repmat(lagcan(:)',nfullag,1)+repmat((-hnfullag:hnfullag)',1,nlcan),nfullag*nlcan,1);\n sfh=s(fho+(1:kcorw+max(lagcan)+hnfullag));\n sfhdc=mean(sfh(sfhi));\n sfh=sfh-sfhdc;\n e0=sum(sfh(sfhi).^2); % energy of initial correlation window (only needed to store in tv(:,6)\n lagl2=repmat(lagcan(:)',nfullag+kcorw-1,1)+repmat((1-hnfullag:hnfullag+kcorw)',1,nlcan);\n nccf=normxcor(sfh(1:kcorw),sfh(lagl2),afact);\n \n [maxcc,maxcci]=max(nccf,[],1);\n vipk=[maxcc(:) lagcan(:)+maxcci(:)-hnfullag-1];\n vipk=vipk(:,[1 2 2]);\n maxccj=maxcci(:)'+nfullag*(0:nlcan-1); % vector index into nccf array\n msk=mod(maxcci,nfullag-1)~=1 & 2*nccf(maxccj)-nccf(mod(maxccj-2,nfullag*nlcan)+1)-nccf(mod(maxccj,nfullag*nlcan)+1)>0; % don't do quadratic interpolation for the end ones\n if any(msk)\n maxccj=maxccj(msk);\n vipk(msk,3)=vipk(msk,3)+(nccf(maxccj+1)-nccf(maxccj-1))'./(2*(2*nccf(maxccj)-nccf(maxccj-1)-nccf(maxccj+1)))';\n end\n vipk(maxccncands-1\n vipk=sortrows(vipk);\n vipk(1:size(vipk,1)-ncands+1,:)=[]; % eliminate lowest to leave only ncands-1\n end\n \n % vipk(:,1) has NCCF value, vipk(:,2) has integer peak position, vipk(:,3) has refined peak position\n \n mc=size(vipk,1);\n else\n mc=0;\n end\n \n % We now have mc lag candidates at the full sample rate\n \n mc1=mc+1; % total number of candidates including \"unvoiced\" possibility\n mcands(iframe)=mc; % save number of lag candidates (needed for pitch consistency cost calculation)\n if mc\n lagval(iframe,1:mc)=vipk(:,3)';\n cost(iframe,1)=vobias+max(vipk(:,1)); % voiceless cost\n cost(iframe,2:mc1)=1-vipk(:,1)'.*(1-beta*vipk(:,3)'); % local voiced costs\n tv(iframe,2)=min(cost(iframe,2:mc1));\n else\n cost(iframe,1)=vobias; % if no lag candidates (mc=0), then the voiceless case is the only possibility\n end\n tv(iframe,1)=cost(iframe,1);\n if iframe>1 % if it is not the first frame, then calculate pitch consistency and v/uv transition costs\n mcp=mcands(iframe-1);\n costm=zeros(mcp+1,mc1); % cost matrix: rows and cols correspond to candidates in previous and current frames (incl voiceless)\n \n % if both frames have at least one lag candidate, then calculate a pitch consistency cost\n \n if mc*mcp\n lrat=abs(log(repmat(lagval(iframe,1:mc),mcp,1)./repmat(lagval(iframe-1,1:mcp)',1,mc)));\n costm(2:end,2:end)=p.freqwt*min(lrat,doublec+abs(lrat-log2)); % allow pitch doubling/halving\n end\n \n % if either frame has a lag candidate, then calculate the cost of voiced/voiceless transition and vice versa\n \n if mc+mcp\n rr=sqrt((rmswin'*s(fho+rmsix).^2)/(rmswin'*s(fho+rmsix-kdrms).^2)); % amplitude \"gradient\"\n ss=0.2/(v_distitar(v_lpcauto(sp(fho+rmsix),lpcord),v_lpcauto(sp(fho+rmsix-kdrms),lpcord),'e')-0.8); % Spectral stationarity: note: Talkin uses Hanning instead of Hamming windows for LPC\n costm(1,2:end)= vtranc+vtrsc*ss+vtrac/rr; % voiceless -> voiced cost\n costm(2:end,1)= vtranc+vtrsc*ss+vtrac*rr;\n tv(iframe,4:5)=[costm(1,mc1) costm(mcp+1,1)];\n end\n costm=costm+repmat(cost(iframe-1,1:mcp+1)',1,mc1); % add in cumulative costs\n [costi,previ]=min(costm,[],1);\n cost(iframe,1:mc1)=cost(iframe,1:mc1)+costi;\n prev(iframe,1:mc1)=previ;\n else % first ever frame\n costm=zeros(1,mc1); % create a cost matrix in case doing a backward recursion\n end\n if mc\n tv(iframe,3)=cost(iframe,1)-min(cost(iframe,2:mc1));\n tv(iframe,6)=5*log10(e0*e0/afact);\n end\n if doback\n costms{iframe}=costm; % need to add repmatted cost into this\n end\nend\n\n% now do traceback\n\nbest=zeros(nframe,1);\n[cbest,best(nframe)]=min(cost(nframe,1:mcands(nframe)+1));\nfor i=nframe:-1:2\n best(i-1)=prev(i,best(i));\nend\nvix=find(best>1);\nfx=repmat(NaN,nframe,1); % unvoiced frames will be NaN\nfx(vix)=fs*lagval(vix+nframe*(best(vix)-2)).^(-1); % leave as NaN if unvoiced\ntt=zeros(nframe,3);\ntt(:,1)=(1:nframe)'*kframe+spoff; % find frame times\ntt(:,2)=tt(:,1)+kframe-1;\njratm=(jumprat+1/jumprat)/2;\ntt(2:end,3)=abs(fx(2:end)./fx(1:end-1)-jratm)>jumprat-jratm; % new spurt if frequency ratio is outside (1/jumprat,jumprat)\ntt(1,3)=1; % first frame always starts a spurt\ntt(1+find(isnan(fx(1:end-1))),3)=1; % NaN always forces a new spurt\n\n% plot results if there are no output arguments of if the 'g' mode option is specified\n\nif ~nargout || any(mode=='g')\n tf=spoff+(0:nframe-1)'*kframe; % one sample before start of each frame\n blag=repmat(NaN,nframe,1); % unvoiced frames will be NaN\n blag(vix)=lagval(vix+nframe*(best(vix)-2)); % leave as NaN if unvoiced\n ts=(1:ns)/fs; % time scale for speech samples\n tsa=[1:tf(1) tf(end)+kframe+1:ns]; % indexes for unprocessed speech [-1 term is an error methinks]\n sup=repmat(NaN,ns,1); % unprocessed speech - plot in black\n sup(tsa)=s(tsa);\n sv=reshape(s(tf(1)+1:tf(end)+kframe),kframe,nframe); % processed speech\n su=sv;\n su(:,best>1)=NaN; % delete all voiced samples\n sv(:,best==1)=NaN; % delete all unvoiced samples\n tsuv=(tf(1)+1:tf(end)+kframe)/fs;\n su=su(:);\n sv=sv(:);\n ax=zeros(2,1);\n ax(1)=subplot(211);\n plot(ts,sup,'-k',tsuv,su,'r-',tsuv,sv,'b-');\n title('Speech');\n ax(2)=subplot(212);\n plot((tf+(kframe+1)/2)/fs,lagval*1000/fs,'xr',(tf+(kframe+1)/2)/fs,blag*1000/fs,'-b')\n xlabel('Time (s)');\n ylabel('Period (ms)');\n title('Lag Candidates');\n linkaxes(ax,'x');\nend\nif ~any(mode=='u')\n tt(isnan(fx),:)=[]; % remove NaN spurts\n fx(isnan(fx),:)=[];\nend\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction v=normxcor(x,y,d)\n% Calculate the normalized cross correlation of column vectors x and y\n% we can calculate this in two ways but fft is much faster even for nx small\n% We must have nx<=ny and the output length is ny-nx+1\n% note that this routine does not do mean subtraction even though this is normally a good idea\n% if y is a matrix, we correlate with each column\n% d is a constant added onto the normalization factor\n% v(j)=x'*yj/sqrt(d + x'*x * yj'*yj) where yj=y(j:j+nx-1) for j=1:ny-nx+1\n\nif nargin<3\n d=0;\nend\nnx=length(x);\n[ny,my]=size(y);\nnv=1+ny-nx;\nif nx>ny\n error('second argument is shorter than the first');\nend\n\nnf=pow2(nextpow2(ny));\nw=v_irfft(repmat(conj(v_rfft(x,nf,1)),1,my).*v_rfft(y,nf,1));\ns=zeros(ny+1,my);\ns(2:end,:)=cumsum(y.^2,1);\nv=w(1:nv,:)./sqrt(d+(x'*x).*(s(nx+1:end,:)-s(1:end-nx,:)));", "meta": {"author": "ImperialCollegeLondon", "repo": "sap-voicebox", "sha": "28f2654b7584f724277ec81de533debe28ff51ac", "save_path": "github-repos/MATLAB/ImperialCollegeLondon-sap-voicebox", "path": "github-repos/MATLAB/ImperialCollegeLondon-sap-voicebox/sap-voicebox-28f2654b7584f724277ec81de533debe28ff51ac/voicebox/v_fxrapt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.7090191460821871, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3628168701034234}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"Hill+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting lengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: updates the target point positions\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction targets = update_Target_Point_Positions(dt,current_time,targets)\n\n\nIDs = targets(:,1); % Stores Lag-Pt IDs in col vector\nxPts= targets(:,2); % Original x-Values of x-Target Pts.\nyPts= targets(:,3); % Original y-Values of y-Target Pts.\nkStiffs = targets(:,4); % Stores Target Stiffnesses \n\nN_target = length(targets(:,1)); %Gives total number of target pts!\n\n\n% Coefficients for Polynomial Phase-Interpolation\na = 2.739726027397260; % y1(t) = at^2\nb = 2.739726027397260; % y3(t) = -b(t-1)^2+1\nc = -2.029426686960933; % y2(t) = ct^3 + dt^2 + gt + h\nd = 3.044140030441400;\ng = -0.015220700152207;\nh = 0.000253678335870;\n\n% Period Info\ntP1 = 0.025; % Contraction time\ntP2 = 0.025; % Expansion time\nperiod = tP1+tP2; % Period\nt = rem(current_time,period); % Current time in simulation ( 'modular arithmetic to get time in period')\n\n\n% Read In Pts!\n[xP1,yP1,xP2,yP2] = read_File_In('All_Positions.txt');\n\n\nfor i=1:N_target % Loops over all target points!\n \n \n if (t <= tP1) \n\n\t\t\t%PHASE 1 --> PHASE 2\n\t\t\t\n\t\t\ttprev = 0.0;\n\t\t\tt1 = 0.1*tP1; \n\t\t\tt2 = 0.9*tP1;\n\t\t\tif (t=t1)&&(t=t2)\n\t\t\t\tg1 = -b*power(((t/tP1) - 1),2) + 1;\n end\n\t\t\t\n\t\t\txPts(IDs(i)) = xP1(i) + g1*( xP2(i) - xP1(i) );\n\t\t\tyPts(IDs(i)) = yP1(i) + g1*( yP2(i) - yP1(i) );\t\n\t\t\t\n elseif ((t>tP1)&&(t<=(tP1+tP2)))\n\t\t\t\n\t\t\t%PHASE 2 --> PHASE 1\n \n\t\t\ttprev = tP1;\n\t\t\tt1 = 0.1*tP2 + tP1;\n\t\t\tt2 = 0.9*tP2 + tP1;\n\t\t\tif (t=t1)&&(t=t2) \n\t\t\t\tg2 = -b*power( (( (t-tprev)/tP2) - 1) ,2) + 1;\n end\t\t\t\n \n\t\t\txPts(IDs(i)) = xP2(i) + g2*( xP1(i) - xP2(i) );\n\t\t\tyPts(IDs(i)) = yP2(i) + g2*( yP1(i) - yP2(i) );\n \n end\n \n targets(IDs(i),2) = xPts(IDs(i)); % Store new xVals\n targets(IDs(i),3) = yPts(IDs(i)); % Store new yVals\n\nend\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: reads in info from file that contains probability distributions\n% (rows) for each game of Bingo w/ N players (columns)\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [x1,y1,x2,y2] = read_File_In(file_name)\n\nfilename = file_name; %Name of file to read in\n\nfileID = fopen(filename);\n\n % Read in the file, use 'CollectOutput' to gather all similar data together\n % and 'CommentStyle' to to end and be able to skip lines in file.\n C = textscan(fileID,'%f %f %f %f','CollectOutput',1);\n\nfclose(fileID); %Close the data file.\n\nmat_info = C{1}; %Stores all read in data\n\n%Store all elements in matrix\nmat = mat_info(1:end,1:end);\n\nx1 = mat(:,1); %store regular bingo expectation values \ny1 = mat(:,2); %store inner bingo expectation values \nx2 = mat(:,3); %store outer bingo expectation values \ny2 = mat(:,4); %store cover all bingo expectation values \n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_Pulsing_Heart/32x32/update_Target_Point_Positions.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191460821871, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3628168701034234}} {"text": "function [err, out_fn] = Norm (InBrik, N_runs, run, run_norm, run_mask, foutid_log)\n%\n% [err, norm_fn] = Norm(InBrik, N_runs, run)\n%\n%Purpose:\n% \n% Normalize the original dataset so that the beta values in 3dDeconvolve would be automatically percent signal change.\n% \n%Input Parameters:\n% \n% \n% \n%Output Parameters:\n% err : 0 No Problem\n% : 1 Problems\n% \n% \n% \n%Key Terms:\n% \n%More Info :\n% \n% \n% \n%\n% Author : Gang Chen\n% Date : Mon Oct 20 11:26:38 EDT 2003\n% SSCC/NIMH/ National Institutes of Health, Bethesda Maryland\n\n\n%Define the function name for easy referencing\nFuncName = 'Norm';\n\n%Debug Flag\nDBG = 1;\n\n%initailize return variables\nerr = 1;\n\n[InBrikPrefix, InBrikView, InBrikExt] = AfniPrefix (InBrik);\nrm_cmmd = 'rm -f ';\n\t\n%Originally 3dClipLevel was used to generate a cliplevel for each run,\n%then a step function chops off those voxel outside of the brain.\n%But due to the concern of losing the sensitive amygdala and orbitofrontal cortex,\n%it might be better to run 3dAutomask, which is roughly equivalent to\n%3dClipLevel but would protect amygdala and orbitofrontal cortex regions\n%from being masked.\n\n%create command for executing 3dAutomask\nif (run_mask.do == 1),\n automask_fn = sprintf('%s_msk', InBrikPrefix);\n automask = sprintf('3dAutomask -dilate %i -prefix %s %s%s', run_mask.N_dilate, automask_fn, InBrikPrefix, InBrikView);\n fprintf(2, '\\nRunning: %s\\n', automask);\n fprintf(foutid_log, '%s\\n', automask);\n [s,w] = system(automask);\n if (s),\n fprintf(2,'Error during 3dAutomask: \\n\\n%s\\n\\n',w);\n while (1); fprintf(2,'Halted: Ctrl+c to exit'); pause; end\n end\n\trm_cmmd = sprintf('%s %s%s%s', rm_cmmd, automask_fn, InBrikView, InBrikExt);\n\t\n\t%If no normalization, do masking\n if (run_norm == 0), \n\t out_fn = sprintf('%s_mask', InBrikPrefix);\n mask_signal = sprintf('3dcalc -fscale -a %s%s \\\\\\n', InBrikPrefix, InBrikView);\n \t mask_signal = sprintf('%s -b %s%s \\\\\\n', mask_signal, automask_fn, InBrikView);\n\t mask_signal = sprintf('%s -expr \"a*b\" \\\\\\n', mask_signal);\n mask_signal = sprintf('%s -prefix %s', mask_signal, out_fn);\n\t fprintf(2, '\\nRunning: %s\\n', mask_signal);\n\t fprintf(foutid_log, '%s\\n', mask_signal);\n\t [s,w] = system(mask_signal);\n if (s),\n fprintf(2,'Error during 3dcalc: \\n\\n%s\\n\\n',w);\n while (1); fprintf(2,'Halted: Ctrl+c to exit'); pause; end\n end\n end\n\trm_cmmd = sprintf('%s %s%s%s', rm_cmmd, automask_fn, InBrikView, InBrikExt);\nend\t\n\t\nif (run_norm == 1), %for normalization\n out_fn = sprintf('%s_norm', InBrikPrefix);\n concat = sprintf('3dTcat -prefix %s ', out_fn);\n\t\n for (i=1:1:N_runs),\n \n %store each mean dataset in a temporary file, and delete it before leaving this function.\n mean_fn = sprintf('%s_mean%i', InBrikPrefix, i);\n\t get_mean = sprintf('3dTstat -mean -prefix %s %s%s''[%i..%i]''', mean_fn, InBrikPrefix, InBrikView, run(i).first, run(i).last);\n fprintf(2, '\\nRunning: %s\\n', get_mean);\n\t fprintf(foutid_log, '%s\\n', get_mean);\n\t [s, w] = system(get_mean);\n\t if (s),\n fprintf(2,'Error at running 3dTstat: \\n\\n\\n%s\\n', w);\n while (1); fprintf(2,'Halted: Ctrl+c to exit');pause; end\n end\n\t\t\n\t%normalizing\n%\tnorm_signal = sprintf('3dcalc -datum float -a %s%s''[%i..%i]'' \\\\\\n', InBrikPrefix, InBrikView, run(i).first, run(i).last);\n\t norm_signal = sprintf('3dcalc -fscale -a %s%s''[%i..%i]'' \\\\\\n', InBrikPrefix, InBrikView, run(i).first, run(i).last);\n \tnorm_signal = sprintf('%s -b %s%s \\\\\\n', norm_signal, mean_fn, InBrikView);\n\t\tif (run_mask.do == 1), \n\t\t norm_signal = sprintf('%s -c %s%s \\\\\\n', norm_signal, automask_fn,InBrikView); \n\t\t%\tnorm_signal = sprintf('%s -expr \"(a/b*100)*step(b-clip_level)\" \\\\\\n', norm_signal);\n \t norm_signal = sprintf('%s -expr \"(a/b*100)*c\" \\\\\\n', norm_signal);\n\t\telse norm_signal = sprintf('%s -expr \"a/b*100\" \\\\\\n', norm_signal);\n\t\tend\n\t norm_out_fn = sprintf('%s_norm%i', InBrikPrefix, i);\n \tnorm_signal = sprintf('%s -prefix %s', norm_signal, norm_out_fn);\n\t\tfprintf(2, '\\nRunning: %s\\n', norm_signal);\n\t fprintf(foutid_log, '%s\\n', norm_signal);\n\t [s,w] = system(norm_signal);\n if (s),\n fprintf(2,'Error during 3dcalc: \\n\\n%s\\n\\n',w);\n while (1); fprintf(2,'Halted: Ctrl+c to exit'); pause; end\n end\n\t\n\t%Concatenate the above files together\n\t concat = sprintf('%s %s%s%s', concat, norm_out_fn, InBrikView, InBrikExt);\n\t\n\t%create remove command for deleting those individual percent signal change and mean file for each run.\n\t rm_cmmd = sprintf('%s %s%s%s %s%s%s', rm_cmmd, norm_out_fn, InBrikView, InBrikExt, mean_fn, InBrikView, InBrikExt);\t\n\n end\n\n%Concatenate all runs back together\n fprintf(2, '\\nRunning: %s\\n', concat);\n fprintf(foutid_log, '%s\\n', concat);\n [s,w] = system(concat);\n if (s),\n fprintf(2,'Error during running 3dTcat: \\n\\n%s\\n\\n',w);\n while (1); fprintf(2,'Halted: Ctrl+c to exit'); pause; end\n end\t\nend\n\n%Don't forget to remove those temporary files above.\nfprintf(2, '\\nRemoving: %s\\n', rm_cmmd);\nfprintf(foutid_log, '%s\\n', rm_cmmd);\n[s,w] = system(rm_cmmd);\nif (s),\n fprintf(2,'Error during rm: \\n\\n%s\\n\\n',w);\n while (1); fprintf(2,'Halted: Ctrl+c to exit'); pause; end\nend\n\nerr = 0;\nreturn;\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/afni/private/Norm.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191460821871, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.3628168701034234}} {"text": "function [countV,ktrAll,veAll,kepAll,vpAll] = runDCETofts(planC)\n% runDCETofts.m\n% Function to generate and write out DCE parameter maps, compute and save statistics to file.\n%\n% AI 5/26/16\n% AI 7/06/16 Updated to provide option to scale AIF using reference region time course.\n%\n% Note: \n% Required parameters are read from user-input .txt file. \n% See ReadDCEParameterFile.m for list of valid input parameters.\n\n\n%% --- Get model parameters --------\n\nindexS = planC{end};\n\n% Read input parameter file\n[inputS,filePath] = ReadDCEParameterFile();\noutPath = fileparts(filePath);\n[paramS,shiftS] = getInputs(inputS);\n\n% Get DCE scan no.\nscanListC = unique({planC{indexS.scan}.scanType});\nif numel(scanListC)>1\n [series,ok] = listdlg('ListString',scanListC,'Name','Select series','ListSize',[300,250],...\n 'PromptString','Select DCE series','SelectionMode','Single');\n if ~ok\n return\n end\n scanNumV = find(strcmp({planC{indexS.scan}.scanType},scanListC{series}));\nelse\n scanNumV = 1:length(planC{indexS.scan});\nend\nscanS = planC{indexS.scan}(scanNumV);\n\n%Extract relevant parameters from DICOM header \nheaderS.manufacturer = scanS(1).scanInfo(1).DICOMHeaders.Manufacturer;\nheaderS.xSize = scanS(1).scanInfo(1).DICOMHeaders.Rows;\nheaderS.ySize = scanS(1).scanInfo(1).DICOMHeaders.Columns;\nheaderS.RepetitionTime = scanS(1).scanInfo(1).DICOMHeaders.RepetitionTime;\ntDel = getTDel(planC);\nheaderS.tDel = double(tDel)/1000 ; % convert time step to seconds from ms\nheaderS.MagneticFieldStrength = scanS(1).scanInfo(1).DICOMHeaders.MagneticFieldStrength;\nheaderS.nSlices = size(scanS(1).scanArray,3);\nFA = scanS(1).scanInfo(1).DICOMHeaders.FlipAngle;\nheaderS.FlipAngle = shiftS.FAF*FA; % correct flip angle by multiplicative factor FAF\n\nswitch(headerS.manufacturer)\n case 'GE MEDICAL SYSTEMS'\n totalImages = scanS(1).scanInfo(1).DICOMHeaders.ImagesinAcquisition;\n headerS.frames = totalImages/headerS.nSlices;\n case 'Philips Healthcare'\n headerS.frames = scanS(1).scanInfo(1).DICOMHeaders.NumberofTemporalPositions;\nend\n%Display:\nfprintf(['\\nVendor: %s\\nNo. slices: %d\\nNo. frames: %d\\nTR(ms): %g\\nDel_T(s): %g\\n',...\n 'Flip angle: %g\\nImage Size(rows x cols): %d x %d\\nB0: %g\\n'],headerS.manufacturer,...\n headerS.nSlices,headerS.frames,headerS.RepetitionTime,headerS.tDel,...\n headerS.FlipAngle,headerS.xSize,headerS.ySize,headerS.MagneticFieldStrength);\n\n%Time shift for ROI time course (user-input)\nROIPointShift = shiftS.TROIPointShift * strcmp(paramS.model,'T') + ...\n shiftS.ETROIPointShift * strcmp(paramS.model,'ET');\nshiftS.ROIPointShift = ROIPointShift;\n\n% r1 (Using relaxivities from Pintaske, et. al. Invest Radiol 2006) **\n% Gd-DTPA, 1.5T = 3.9 L/(mmol x s)\n% Gd-DTPA, 3.0T = 3.3 L/(mmol x s)\n% Gd-BOPTA (multihance) 1.5T = 8.1 L/(mmol x s)\n% Gd-BOPTA (multihance) 3.0T = 6.3 L/(mmol x s)\nr1 = 3.9*(headerS.MagneticFieldStrength < 2.0)*strcmp(paramS.cAgent,'gd')+ ...\n 3.3*(headerS.MagneticFieldStrength > 2.0)*strcmp(paramS.cAgent,'gd') + ...\n 8.1*(headerS.MagneticFieldStrength < 2.0)*strcmp(paramS.cAgent,'mh') + ...\n 6.3*(headerS.MagneticFieldStrength > 2.0)*strcmp(paramS.cAgent,'mh');\n\n%Vector of sampling times\nind = double(0:(headerS.frames-1)); \ntsec = ind*headerS.tDel;\ntmin = tsec./60; % ktrans, etc. are in /min. Parker coefs are in min or /min.\nTR = headerS.RepetitionTime/1000; % TR from DICOM header is in ms. Change to s.\n\n\n% Parameter array for the concentrarion calculation: \n% pCalcConc(1) = R1 = relaxivity of contrast agent (units are mmolxs)\n% pCalcConc(2) = TR (s)\n% pCalcConc(3) = flip angle (degrees)\n% pCalcConc(4) = pre-contrast T1 for tissue (s)\npCalcConc = [r1, TR, headerS.FlipAngle, paramS.T10];\n\n%Generate AIF\n%-------------temp:--------\ncoefFile = fullfile(getCERRPath,'PlanAnalysis','DCE-MR analysis','sample_param_and_coeff_files','Pros_Iliac_17pts_Parker_coefs.txt');\n%---------------------------\nfprintf('\\n Generating AIF from Parker Coefficient file...');\nAIFP = genAIF(tsec,coefFile,headerS.frames,tmin,paramS,shiftS);\nfprintf('\\n AIF generation complete.\\n');\n\n%If using T1 maps, load T1 maps for all slices into a 3D array\nif ~(paramS.T1Map==0)\n T13M = getScanArray(paramS.T1Map,planC);\nelse\n T13M = [];\nend\n\n%% --------- Get ROI mask ---------------\n%Identify structures associated with selected scan\nstructNumV = 1:length(planC{indexS.structures});\nassocScansV = getStructureAssociatedScan(structNumV,planC);\nstructNumV = structNumV(ismember(assocScansV,scanNumV));\nstructS = planC{indexS.structures}(structNumV);\nemptyStructV = cellfun(@isempty,{structS.rasterSegments}); %Discard empty structures\nstructS = structS(~emptyStructV);\n\n%Extract mask\nROImask3M = true(size(scanS(1).scanArray));\nstructListC = cellfun(@lower,{structS.structureName},'un',0);\n%User-selection of structure:\nif numel(structListC)>1\n [strSel,ok] = listdlg('ListString',structListC,'Name','Select structure','ListSize',[300,250],...\n 'PromptString','Select ROI','SelectionMode','Single');\n if ~ok\n return\n end\nelse\n strSel = 1;\nend\nstrNum = structNumV(strSel);\nrasterSegments = getRasterSegments(strNum,planC);\n[temp,maskSlicesV] = rasterToMask(rasterSegments,1, planC);\nROImask3M(:,:,maskSlicesV) = temp;\n\n%% ---- Concatenate DCE images ----------\nsliceC = cell(1,maskSlicesV);\nfor k = 1:numel(maskSlicesV)\n timeSlices = arrayfun(@(x) x.scanArray(:,:,maskSlicesV(k)),scanS,'un',0);\n sliceC{k} = cat(3,timeSlices{:});\nend\nsliceTimeCourse4M = cat(4,sliceC{:}); \n%sliceTimeCourse4M = uint16(sliceTimeCourse4M); %To match Kristen's code\n\n\n%% ----- Scale AIF using reference region time course if reqd ----\n% Get reference region (muscle) mask\nuseRefRegion = questdlg('Use muscle reference to scale AIF?','Reference region','Yes','No','No') ;\nif strcmp(useRefRegion, 'No')\n AIFPScaled = AIFP;\nelse\n structListC = {structS.structureName};\n [strNum,ok] = listdlg('ListString',structListC,'SelectionMode','Single','Name','Select reference structure');\n if ~ok\n return\n end\n muscleRasterSegS = getRasterSegments(strNum,planC);\n [muscleMaskM,muscleROISlice] = rasterToMask(muscleRasterSegS,1, planC); %Assumed single-slice\n % Scale AIF using reference region time course\n muscleSliceC = arrayfun(@(x) x.scanArray(:,:,muscleROISlice),scanS,'un',0);\n muscleSliceTimeCourse3M = cat(3,muscleSliceC{:});\n muscleTimeCourse3M = ROIMaskedSlices(muscleSliceTimeCourse3M,muscleMaskM);\n AIFPScaled = refRegionScale(AIFP,inputS,shiftS,filePath,headerS,muscleTimeCourse3M,muscleMaskM);\nend\n\n\n%% ---- Get parameter maps ----------\ngetVals = 'Yes';\nnRuns = 1;\nwhile(strcmp(getVals,'Yes'))\n if nRuns~=1 %Runs with value from parameter file if checkShift='n' the first time\n shiftS.checkShift = 'y'; %Set checkShift to 'y' if user chooses to run again with different shift\n [countV,ktrAll,veAll,kepAll,vpAll,dceRsqAll,UserInShift,UserInBase] = getDCEToftsParams(paramS,shiftS,headerS.xSize,headerS.ySize,maskSlicesV,sliceTimeCourse4M,pCalcConc,...\n ROImask3M,T13M,tmin,AIFPScaled,outFolder);\n else\n [countV,ktrAll,veAll,kepAll,vpAll,dceRsqAll,UserInShift,UserInBase,outFolder] = getDCEToftsParams(paramS,shiftS,headerS,maskSlicesV,sliceTimeCourse4M,pCalcConc,...\n ROImask3M,T13M,tmin,AIFPScaled,outPath);\n end\n getVals = questdlg(sprintf('Current shift = %d.\\n Run again with different shift?',UserInShift),...\n 'Change shift?','Yes','No','No');\n nRuns = nRuns + 1;\nend\n\n%% ---Write user-input shifts to param file-------\nfid = fopen(filePath);\ninputC = textscan(fid, '%s %s %n','endofline','\\r\\n');\nfclose(fid);\nfieldsC = fieldnames(paramS);\nif strcmp(paramS.model,'T') %Tofts\n shiftIdx = strcmp(fieldsC,'TROIPointShift');\nelse %Extended tofts\n shiftIdx = strcmp(fieldsC,'ETROIPointShift');\nend\nbaseIdx = strcmp(fieldsC,'basepts');\ninputC{3}(shiftIdx) = UserInShift;\ninputC{3}(baseIdx) = UserInBase;\nfid = fopen(filePath,'w+');\nfmt = '\\r\\n%s\\t%s\\t%d';\nfor lineNum = 1:size(inputC{1},1)\n col1 = inputC{1}(lineNum);\n col2 = inputC{2}(lineNum);\n col3 = inputC{3}(lineNum);\n fprintf(fid,fmt,col1{1},col2{1},col3);\nend\nfclose(fid);\n\n%Write statistics \nwriteStats(outFolder,outfileBase,paramS.model,paramS.cutOff,countV,ktrAll,veAll,kepAll,vpAll,dceRsqAll);\n\n\nend\n\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/PlanAnalysis/DCE-MR analysis/Toft's model/runDCETofts.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191337850932, "lm_q2_score": 0.5117166047041652, "lm_q1q2_score": 0.3628168638107962}} {"text": "filename = 'BulkCaseFine';%'CantileverSquareNewFine';%'LshapeTriFine';%'CantileverSquareNew';'ArchTriFine';%'CantileverSquare';%'ArchTriFine';%'CantileverSquare';%'Lshape';%'LshapeTriFine';%'CantileverSquareSmall';%'';%'Lshape';'CantileverSquare';'Lshape';%'CantileverSquare';%'LshapeFine';%'Bridge_quad_coarse';%'Arch_quad_coarse';%'BridgeCool_Quadrilateral_Bilinear_Structured_Coarse';%'Bridge';%'CantileverSquareSmall';\nptype = 'MACRO';\ninitial_case = 'given';\nm1 = 0.0101;\nm2 = 0.0101;\n%cost = {'compliance'};\ncost = {'stressNorm'};\n%cost = {'stressNorm','compliance'};\n%weights = [0.55,0.45];\nweights = 1;\nconstraint = {'volumeConstraint'};\nfilterType = 'P1';\nconstraint_case = 'EQUALITY';\n\nVfrac_initial = 0.3;\noptimality_initial = 1e-5;\nconstr_initial = 1e-5;\n\nVfrac_final = 0.3;\noptimality_final = 1e-5;\nconstr_final = 1e-5;\n\nstressNormExponent_initial = 2;\nstressNormExponent_final = 32;\n\noptimizer = 'DualNestedInPrimal';\noptimizerUnconstrained = 'PROJECTED GRADIENT';\n\ndesignVariable = 'MicroParams';\nub = 0.989;\nlb = 0.011;\nhomegenizedVariablesComputer = 'ByVademecum';\n% \nvademecumFileName = 'SuperEllipseQMax';\n%vademecumFileName = 'SuperEllipseQ2';\n%vademecumFileName = 'SuperEllipseQOptAnalytic';\n% \n% designVariable = 'Density';\n% homegenizedVariablesComputer = 'ByInterpolation';\n% method = 'SIMPALL';\n% materialType = 'ISOTROPIC';\n\nkfrac = 2;\nnsteps = 100;\n\nplotting = false;\nprinting = true;\nmonitoring = true;\nmonitoring_interval = 1;\nmaxiter = 1000;\n\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/LatticeExperiments/LatticeExperimentInputBulkFineRectangle.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7090191214879991, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.362816857518169}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: September 9th, 2016\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction Make_Scallop_Geo_and_Input_Files()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 256; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nLx = 1.0; % Length of Eulerian Grid in x-Direction\ndx = Lx/Nx; % Grid spatial resolution\n\n%\n% Immersed Structure Geometric / Dynamic Parameters %\n%\nds = 0.5*dx; % Lagrangian Pt. Spacing (2x resolution of Eulerian grid)\nstruct_name = 'scallop'; % Name for .vertex, .spring, etc files. (must match what's in 'input2d')\n\n\n% Call function to construct geometry\n[xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(ds,Lx);\n\n\nhalf_len = (length(xLag)-1)/2; % Computes # of Lag Pts on each \"Arm\"\nind_off = ceil( 0.4*half_len ); % Computes # of lags from center pt for muscle placement\nb_ind = half_len - ind_off; % Bottom index\nt_ind = half_len+2 + ind_off; % Top index\n\n%b_ind = 1;\n%t_ind = length(xLag);\nm_dist = sqrt( ( xLag(b_ind)-xLag(t_ind) )^2 + ( yLag(b_ind)-yLag(t_ind) )^2 );\n\n\n\n% Test Muscle Placement\nplot( xLag( b_ind ), yLag( b_ind ), 'm*'); hold on;\nplot( xLag( t_ind ), yLag( t_ind ), 'm*'); hold on;\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n\n% Prints .spring file!\nk_Spring = 2e6; % Spring stiffness (does not need to be equal for all springs)\nds_Rest = ds; % Spring resting length (does not need to be equal for all springs)\nprint_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name);\n\n\n% Prints .beam file!\nk_Beam = 1e11; % Beam Stiffness (does not need to be equal for all beams)\nC = compute_Curvatures(xLag,yLag); % Computes curvature of initial configuration\nprint_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name);\n\n\n% Prints .muscle file! [ a_f * Fmax *exp( -( (Q-1)/SK )^2 ) * (1/P0)*(b*P0-a*v)/(v+b); Q = LF/LFO ]\nLFO = m_dist; SK = 0.3; a = 0.25; b = 4.0; Fmax = 1e2;\nprint_Lagrangian_Muscles(xLag,LFO,SK,a,b,Fmax,struct_name,b_ind,t_ind)\n\n\n% Prints .target file!\n%k_Target = 1e7;\n%print_Lagrangian_Target_Pts(xLag,k_Target,struct_name);\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called 'struct_name'.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag); % Total # of Lag. Pts\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid);\n\n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints MUSCLE points to a file called \"struct_name\".muscle\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Muscles(xLag,LFO,SK,a,b,Fmax,struct_name,ind_b,ind_t)\n\n %N = length(xLag); %Number of Lagrangian Pts. Total\n\n muscle_fid = fopen([struct_name '.muscle'], 'w');\n\n fprintf(muscle_fid, '%d\\n', 1 ); % Only 1 muscle\n\n %MUSCLES BETWEEN VERTICES\n fprintf(muscle_fid, '%d %d %1.16e %1.16e %1.16e %1.16e %1.16e\\n', ind_b, ind_t, LFO, SK, a,b,Fmax); \n \n fclose(muscle_fid);\n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called 'struct_name'.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name)\n\n N = length(xLag);\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N-1 ); % Print # of springs \n\n %spring_force = kappa_spring*ds/(ds^2);\n \n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n %else\n % %Case s=N\n % fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, 1, k_Spring, ds_Rest); \n end\n end\n fclose(spring_fid); \n \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints TARGET points to a file called 'struct_name'.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called 'struct_name'.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N-2 );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C(s) ); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, 1, k_Beam, C(s) ); \n end\n end\n fclose(beam_fid); \n \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: computes \"curvature\" of starting configuration\n% \n% NOTE: not curvature in the traditional geometric sense, in the 'discrete'\n% sense through cross product.\n%\n% NOTE: assumes a CLOSED structure\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction C = compute_Curvatures(xLag,yLag)\n\nN = length(xLag);\nC = zeros( N );\n\n%Note: needs to be done same order as you print .beam file!\nfor i=1:N\n \n % Pts Xp -> Xq -> Xr (same as beam force calc.)\n \n if ( (i > 1) && (i < N) )\n \n Xp = xLag(i-1); Xq = xLag(i); Xr = xLag(i+1);\n Yp = yLag(i-1); Yq = yLag(i); Yr = yLag(i+1);\n \n elseif (i==1)\n \n Xp = xLag(N); Xq = xLag(i); Xr = xLag(i+1);\n Yp = yLag(N); Yq = yLag(i); Yr = yLag(i+1);\n \n elseif (i==N)\n \n Xp = xLag(N-1); Xq = xLag(N); Xr = xLag(1);\n Yp = yLag(N-1); Yq = yLag(N); Yr = yLag(1);\n \n end\n \n C(i) = (Xr-Xq)*(Yq-Yp) - (Yr-Yq)*(Xq-Xp); %Cross product btwn vectors\n \nend\n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(ds,Lx)\n \n% ds: Lagrangian pt. spacing\n% Lx: Length of Eulerian grid\n \n% The immsersed structure is initially \"an angle\" of 10 degrees %\nang = 70*pi/180; % original angle\nL = 1/10*Lx; % Structure will be 1/20 of the length of the grid\n\n% Create line of points\nx = 0:ds:L;\ny = zeros( 1, length( x ) );\n\n% Rotate line of points\n[xB,yB] = rotate_geometry_please(x,y,-ang/2);\n[xT,yT] = rotate_geometry_please(x,y,ang/2);\n\n% Put together!\nxLag = [ xB(end:-1:2) xT ];\nyLag = [ yB(end:-1:2) yT ];\n\n[xLag,yLag] = rotate_geometry_please(xLag,yLag,-pi/4);\n\nlength(xLag)\n\nxLag = xLag + 0.75*Lx;\nyLag = yLag + 0.25*Lx;\n\n% TESTING GEOMETRY\nplot(xB,yB,'r*'); hold on;\nplot(xT,yT,'go'); hold on;\nplot( xLag, yLag, 'k+'); hold on;\naxis([0 Lx 0 Lx]);\n\n% for i=1:length(xLag)\n% plot( xLag(i), yLag(i), 'k+'); hold on;\n% axis([0 Lx 0 Lx]);\n% pause();\n% end\n\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: rotate set of points\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xN,yN] = rotate_geometry_please(x,y,ang)\n\n% x,y original (x,y) coordinates before rotation\n% ang: angle rotating by\n\nxN = zeros( 1, length( x ) ); yN = xN;\nfor i=1:length(x)\n xN(i) = x(i)*cos(ang) - y(i)*sin(ang); \n yN(i) = x(i)*sin(ang) + y(i)*cos(ang); \nend\n\n\n\n\n\n", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_Scallop/Scallop_FV_LT_Muscle/Make_Scallop_Geo_and_Input_Files.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7310585903489891, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.36267365565384224}} {"text": " function xs = de_pl_osps(x, Gb, ymi, Im, rmi, R, ftab, Gtab, masseff, niter, pixmax, gi, denom)\n%function xs = de_pl_osps(x, Gb, ymi, Im, rmi, R, ftab, Gtab, masseff, niter, pixmax, gi, denom)\n% The Dual-Energy PL-OS-SPS algorithm for transmission Poisson problem\n% (ordered subsets, separable paraboloidal surrogates)\n% uses fast precomputed curvatures described in paper fessler::\n% in:\n%\tx\t\t[np,2] initial guess\n%\tGb\t\tGblock object\n%\tymi\t\t[nb,na,2] raw polyenergetic measurements\n%\tIm\t\t[2] source intensities\n%\trmi\t\t[nb,na,2] (or scalar) background/scatter\n%\tR\t\tpenalty object (see Robject.m)\n%\tftab\t\tF table\n%\tGtab\t\tG table\n%\tmasseff\t\t[2,2] effective mass atten coef's\n%\t\t\t2 energies by 2 materials\n%\tniter\t\t# iterations (including initial guess)\n%\t\t\tfix: allow relaxation parameters here!\n%\tpixmax\t\tupper constraint for pixel values\n%\t\tcan be scalar (e.g. 'inf') or an array the size of x\n%\tgi\t\tsum(Gt)'\n%\t\tdenom\t\t[np,2] (if precomputed denominator)\n% out:\n%\tx [np,2,niter]\tupdated image vectors each iteration\n%\n% Copyright 2001-04-28, Jeff Fessler, The University of Michigan\n\nif nargin < 6, ir_usage, end\n\nif ~isvar('Im') | isempty(Im)\n\tIm = [1 1];\nend\nif ~isvar('rmi') | isempty(rmi)\n\trmi = zeros(size(ymi));\nend\n\ntrl_check(ymi(:,:,1), [], rmi(:,:,1));\ntrl_check(ymi(:,:,2), [], rmi(:,:,2));\n\nif ~isvar('R') | isempty(R), error 'R required', end\n\nnblock = block_ob(Gb, 'n');\nif ~isvar('niter')\t| isempty(niter),\tniter = 1;\tend\nif ~isvar('pixmax')\t| isempty(pixmax),\tpixmax = inf;\tend\nif ~isvar('chat')\t| isempty(chat),\tchat = 0;\tend\n\nstarts = subset_start(nblock);\n[nb, na, nm] = size(ymi);\n\n%\n% precompute denominator\n%\nif ~isvar('denom'), error 'use de_pl_denom', end\n\n%\n% loop over iterations\n%\nxs = zeros([size(x) niter]);\t% [np,2,niter]\nx = max(x,0);\nxs(:,:,1) = x;\nfor it=2:niter\n\tprintf('DE-PL-OSPS iteration %d', it)\n\n\t%\n\t% loop over subsets\n\t%\n\tfor iset=1:nblock\n\t\tiblock = starts(iset);\n\t\tia = iblock:nblock:na;\n\n\t\t% s=G*x \"mass integrals\"\n\t\ts1 = Gb{iblock} * x(:,1);\n\t\ts2 = Gb{iblock} * x(:,2);\n\n\t\t% predicted meas. means\n\t\ts1 = reshape(s1, nb, length(ia));\n\t\ts2 = reshape(s2, nb, length(ia));\n\t\tfh = ftab.feval(ftab, s1, s2);\n\t\tyb1 = Im(1) * exp(-fh(:,:,1)) + rmi(:,ia,1);\n\t\tyb2 = Im(2) * exp(-fh(:,:,2)) + rmi(:,ia,2);\n\n\t\tdh1 = ymi(:,ia,1) ./ yb1 - 1;\t% m=1\n\t\tdh2 = ymi(:,ia,2) ./ yb2 - 1;\t% m=2\n\n\tif 0\n\t\tG11 = interp2(Gtab.s1, Gtab.s2, Gtab.Gm1(:,:,1)', s1, s2);\n\t\tG21 = interp2(Gtab.s1, Gtab.s2, Gtab.Gm1(:,:,2)', s1, s2);\n\t\tG12 = interp2(Gtab.s1, Gtab.s2, Gtab.Gm2(:,:,1)', s1, s2);\n\t\tG22 = interp2(Gtab.s1, Gtab.s2, Gtab.Gm2(:,:,2)', s1, s2);\n\n\t\t% undo nonlinearity associated with table of Gml\n\t\tG11 = -exp(-G11);\n\t\tG12 = -exp(-G12);\n\t\tG21 = -exp(-G21);\n\t\tG22 = -exp(-G22);\n\n\telse\n\t\t% Gml using polynomial model!\n\t\t% note: 'coef' is indexed by m, but d_l\nif it*iset == 2, warning 'not tested', end\n\t\td11 = reshape(ftab.basis_d1(s1(:), s2(:)) * ftab.coef(:,1), ...\n\t\t\t\tsize(s1));\n\t\td21 = reshape(ftab.basis_d1(s1(:), s2(:)) * ftab.coef(:,2), ...\n\t\t\t\tsize(s1));\n\t\td12 = reshape(ftab.basis_d2(s1(:), s2(:)) * ftab.coef(:,1), ...\n\t\t\t\tsize(s2));\n\t\td22 = reshape(ftab.basis_d2(s1(:), s2(:)) * ftab.coef(:,2), ...\n\t\t\t\tsize(s2));\n\t\tG11 = -(yb1-rmi(:,ia,1)) .* d11;\n\t\tG21 = -(yb2-rmi(:,ia,2)) .* d21;\n\t\tG12 = -(yb1-rmi(:,ia,1)) .* d12;\n\t\tG22 = -(yb2-rmi(:,ia,2)) .* d22;\n\tend\n\n\t\t% g_l is sum over m\n\t\tg1 = G11 .* dh1 + G21 .* dh2;\n\t\tg2 = G12 .* dh1 + G22 .* dh2;\n\n\t\tgrad = Gb{iblock}' * [g1(:) g2(:)];\t% [np,2]\n\n%%\t\tfor isub=1:1\n\t\t\tfor ll=1:2\n\t\t\t\tpgrad(:,ll) = R{ll}.cgrad(R{ll}, x(:,ll));\n\t\t\t\tRdenom(:,ll) = R{ll}.denom(R{ll}, x(:,ll));\n\t\t\tend\n\n\t\t\tnum = nblock * grad - pgrad;\n\t\t\tden = denom + Rdenom;\t% semi-constant denom\n\n\t\t\tx = x + num ./ den;\t\t% the update!\n%%\t\t\tx = x + ((x-xold) .* Lden + num) ./ den; % the update!\n\t\t\tx = max(x,0);\t\t% enforce nonnegativity\n\t\t\tx = min(x,pixmax);\t% enforce upper bound constraint\n%%\t\tend\n\tend\n\n\tif chat, printf('Range %g %g', min(x), max(x)), end\n\txs(:,:,it) = x;\nend\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/ct/de_pl_osps.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7799929002541067, "lm_q2_score": 0.4649015713733885, "lm_q1q2_score": 0.3626199249882209}} {"text": "function spm_mask(P1, P2, thresh)\n% Mask images\n% FORMAT spm_mask(P1, P2, thresh)\n% P1 - matrix of input image filenames from which\n% to compute the mask.\n% P2 - matrix of input image filenames on which\n% to apply the mask.\n% thresh - optional threshold(s) for defining the mask.\n% The masked images are prepended with the prefix `m'.\n%\n% If any voxel in the series of images is zero (for data types without\n% a floating point representation) or does not have a finite value (for\n% floating point and double precision images), then that voxel is set to\n% NaN or zero in all the images. If a threshold, or vector of\n% thresholds is passed, then the masking is based on voxels whos\n% values are above all the thresholds.\n%\n% Images sampled in different orientations and positions can be passed\n% to the routine.\n%__________________________________________________________________________\n% Copyright (C) 1999-2011 Wellcome Trust Centre for Neuroimaging\n\n% John Ashburner\n% $Id: spm_mask.m 4419 2011-08-03 18:42:35Z guillaume $\n\n\npersistent runonce\nif isempty(runonce)\n warning('ImCalc should be preferred to spm_mask whenever possible.');\n runonce = 1;\nend\n\nSVNid = '$Rev: 4419 $';\n\n%-Say hello\n%--------------------------------------------------------------------------\nSPMid = spm('FnBanner',mfilename,SVNid);\n\n%-Parameters & Arguments\n%--------------------------------------------------------------------------\nif ~nargin\n [P1, sts] = spm_select(Inf,'image','Images to compute mask from');\n if ~sts, return; end\n [P2, sts] = spm_select(Inf,'image','Images to apply mask to');\n if ~sts, return; end\nend\n\nif nargin==1\n P2 = P1;\nend\n\nV1 = spm_vol(P1);\nV2 = spm_vol(P2);\n\nif nargin==3\n if numel(thresh)==1\n thresh = repmat(thresh,numel(V1),1);\n else\n if numel(V1) ~= numel(thresh)\n error('Input argument ''thresh'' has wrong size.');\n end\n thresh = thresh(:);\n end\nend\n\nm1 = numel(V1);\nm2 = numel(V2);\n\n%-Create headers\n%--------------------------------------------------------------------------\nVO = V2;\nfor i=1:m2\n [pth,nm,ext,num] = spm_fileparts(deblank(VO(i).fname));\n VO(i).fname = fullfile(pth,['m', nm, ext, num]);\n VO(i).descrip = 'Masked';\n VO(i).mat = VO(1).mat;\n VO(i).dim(1:3) = VO(1).dim(1:3);\nend\nVO = spm_create_vol(VO);\nM = VO(1).mat;\ndim = VO(1).dim(1:3);\n\n%-Compute masked images\n%--------------------------------------------------------------------------\nspm_progress_bar('Init',VO(1).dim(3),'Masking','planes completed');\n\nfor j=1:dim(3)\n\n msk = true(dim(1:2));\n Mi = spm_matrix([0 0 j]);\n\n % Load slice j from all images\n for i=1:m1\n M1 = M\\V1(i).mat\\Mi;\n %if sum((M1(:)-Mi(:)).^2= thresh(i));\n end\n end\n \n % Write the images\n for i=1:m2\n M1 = M\\V2(i).mat\\Mi;\n img = spm_slice_vol(V2(i),M1,dim(1:2),[1 0]);\n img(~msk) = NaN;\n VO(i) = spm_write_plane(VO(i),img,j);\n end\n\n spm_progress_bar('Set',j);\nend\n\nspm_progress_bar('Clear');\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_mask.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7799928900257126, "lm_q2_score": 0.46490157137338844, "lm_q1q2_score": 0.36261992023302436}} {"text": "% MatrixUser, a multi-dimensional matrix analysis software package\n% https://sourceforge.net/projects/matrixuser/\n% \n% The MatrixUser is a matrix analysis software package developed under Matlab\n% Graphical User Interface Developing Environment (GUIDE). It features \n% functions that are designed and optimized for working with multi-dimensional\n% matrix under Matlab. These functions typically includes functions for \n% multi-dimensional matrix display, matrix (image stack) analysis and matrix \n% processing.\n%\n% Author:\n% Fang Liu \n% University of Wisconsin-Madison\n% Aug-30-2014\n\n\n\n% Append Current Temporary Matrix\nfunction MU_uploadTmp(h)\nhandles = guidata(h.MU_matrix_display);\nMatrixName=get(h.Matrix_name_edit,'String');\ntry\n if ~isempty(h.V.ROI)\n switch h.V.ROI.ROI_flag\n case {7,8,9}\n Flag = MU_load_matrix([MatrixName '_tmp'], h.Mask, 0);\n otherwise\n TMatrix=MU_Crop(handles);\n Flag = MU_load_matrix([MatrixName '_tmp'], TMatrix, 0);\n end\n else\n TMatrix=MU_Crop(handles);\n Flag = MU_load_matrix([MatrixName '_tmp'], TMatrix, 0);\n end\ncatch me\n error_msg{1,1}='ERROR!!! Saving current matrix aborted.';\n error_msg{2,1}=me.message;\n errordlg(error_msg);\n return;\nend\n\nif ~Flag\n errordlg('Uploading temporary matrix failed!');\nend\n\nend\n\nfunction TMatrix=MU_Crop(handles)\n\nif numel(handles.V.DimSize)>=3\n dim = inputdlg(['Please specify up to which dimension to save (2 ~ ' num2str(numel(handles.V.DimSize)) ').'],'Specify Dimension',1,{num2str(numel(handles.V.DimSize))});\n if isempty(dim)\n error('Saving matrix was cancelled.');\n end\n try\n if str2double(dim{1})<2 | str2double(dim{1})>numel(handles.V.DimSize)\n error('The input dimension is invalid.');\n end\n if str2double(dim{1}) == 2\n TMatrix=handles.TMatrix(:,:,handles.V.Slice);\n else\n if str2double(dim{1})+1>numel(handles.V.DimSize)\n dimFlag =[];\n else\n dimFlag=num2str(handles.V.DimPointer(str2double(dim{1})+1:end),',%u');\n end\n eval(['TMatrix=handles.TMatrix(:,:' repmat(',:', [1 str2double(dim{1})-2]) dimFlag ');']);\n end\n catch me\n error('The input dimension is invalid.');\n end\nelse\n TMatrix=handles.TMatrix(:,:);\nend\n\n\nend\n\n", "meta": {"author": "leoliuf", "repo": "MRiLab", "sha": "5cdcf1f7b67759700685d3a26ffeb70e55325567", "save_path": "github-repos/MATLAB/leoliuf-MRiLab", "path": "github-repos/MATLAB/leoliuf-MRiLab/MRiLab-5cdcf1f7b67759700685d3a26ffeb70e55325567/External/MatrixUser2.2/Src/Main/MU_uploadTmp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.640635854839898, "lm_q2_score": 0.5660185351961015, "lm_q1q2_score": 0.3626117681505814}} {"text": "function O = imwarp(I, u, v, nopad)\n%IMWARP Warp image with flow field\n% O = IMWARP(I, U, V[, NOPAD]) warps the image I with optical flow field\n% U and V. The flow field is to be given in the coordinate system of\n% O, i.e. the operation warps I toward O. If the optional argument\n% NOPAD is given and true, the undefined pixels (source pixel outside\n% the boundary) are given by the nearest boundary pixels, otherwise\n% they are set to NaN.\n%\n% Author: Stefan Roth, Department of Computer Science, TU Darmstadt\n% Contact: sroth@cs.tu-darmstadt.de\n% $Date: 2007-03-27 14:09:11 -0400 (Tue, 27 Mar 2007) $\n% $Revision: 252 $\n\n% Copyright 2004-2007, Brown University, Providence, RI. USA\n% Copyright 2007-2010 TU Darmstadt, Darmstadt, Germany.\n% \n% All Rights Reserved\n% \n% All commercial use of this software, whether direct or indirect, is\n% strictly prohibited including, without limitation, incorporation into in\n% a commercial product, use in a commercial service, or production of other\n% artifacts for commercial purposes. \n%\n% Permission to use, copy, modify, and distribute this software and its\n% documentation for research purposes is hereby granted without fee,\n% provided that the above copyright notice appears in all copies and that\n% both that copyright notice and this permission notice appear in\n% supporting documentation, and that the name of the author and Brown\n% University not be used in advertising or publicity pertaining to\n% distribution of the software without specific, written prior permission. \n%\n% For commercial uses contact the Technology Venture Office of Brown University\n% \n% THE AUTHOR AND BROWN UNIVERSITY DISCLAIM ALL WARRANTIES WITH REGARD TO\n% THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND\n% FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR OR\n% BROWN UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL\n% DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR\n% PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS\n% ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF\n% THIS SOFTWARE. \n \n % Image size\n sx = size(I, 2); \n sy = size(I, 1); \n\n % Image size w/ padding\n spx = sx + 2;\n spy = sy + 2;\n \n \n if (nargin > 3 & nopad) \n % Warped image coordinates\n [X, Y] = meshgrid(1:sx, 1:sy);\n XI = reshape(X + u, 1, sx * sy);\n YI = reshape(Y + v, 1, sx * sy);\n \n % Bound coordinates to valid region\n XI = max(1, min(sx - 1E-6, XI));\n YI = max(1, min(sy - 1E-6, YI));\n \n % Perform linear interpolation (faster than interp2)\n fXI = floor(XI);\n cXI = ceil(XI);\n fYI = floor(YI);\n cYI = ceil(YI);\n \n alpha_x = XI - fXI;\n alpha_y = YI - fYI;\n \n O = (1 - alpha_x) .* (1 - alpha_y) .* I(fYI + sy * (fXI - 1)) + ...\n alpha_x .* (1 - alpha_y) .* I(fYI + sy * (cXI - 1)) + ...\n (1 - alpha_x) .* alpha_y .* I(cYI + sy * (fXI - 1)) + ...\n alpha_x .* alpha_y .* I(cYI + sy * (cXI - 1));\n \n else\n % Pad image with NaNs\n Z = [NaN(1, sx+2); NaN(sy, 1), I, NaN(sy, 1); NaN(1, sx+2)];\n \n % Warped image coordinates in padded image\n [X, Y] = meshgrid(2:sx+1, 2:sy+1);\n XI = reshape(X + u, 1, sx * sy);\n YI = reshape(Y + v, 1, sx * sy);\n \n % Bound coordinates to valid region\n XI = max(1, min(spx - 1E-6, XI));\n YI = max(1, min(spy - 1E-6, YI));\n \n % Perform linear interpolation (faster than interp2)\n fXI = floor(XI);\n cXI = ceil(XI);\n fYI = floor(YI);\n cYI = ceil(YI);\n \n alpha_x = XI - fXI;\n alpha_y = YI - fYI;\n \n O = (1 - alpha_x) .* (1 - alpha_y) .* Z(fYI + spy * (fXI - 1)) + ...\n alpha_x .* (1 - alpha_y) .* Z(fYI + spy * (cXI - 1)) + ...\n (1 - alpha_x) .* alpha_y .* Z(cYI + spy * (fXI - 1)) + ...\n alpha_x .* alpha_y .* Z(cYI + spy * (cXI - 1));\n end\n \n O = reshape(O, sy, sx);\n", "meta": {"author": "kristinbranson", "repo": "JAABA", "sha": "5d778a23e3e7cf272df9a89a72b1b66d94f535d7", "save_path": "github-repos/MATLAB/kristinbranson-JAABA", "path": "github-repos/MATLAB/kristinbranson-JAABA/JAABA-5d778a23e3e7cf272df9a89a72b1b66d94f535d7/spaceTime/optflow_deqing/utils/imwarp.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6825737344123242, "lm_q2_score": 0.5312093733737562, "lm_q1q2_score": 0.3625895657385554}} {"text": "data = [ 10 37 5 6 6];\nexplode = [ 0 1 0 0 0];\npie(data,explode);\ntitle('\\bfExample of a Pie Plot');\nlegend('One','Two','Three','Four','Five');\n ", "meta": {"author": "101Hub", "repo": "Matlab101", "sha": "07273f68f1147a110443aeb121fa10962234f298", "save_path": "github-repos/MATLAB/101Hub-Matlab101", "path": "github-repos/MATLAB/101Hub-Matlab101/Matlab101-07273f68f1147a110443aeb121fa10962234f298/assets/\u300aMatlab\u7f16\u7a0b\u300b\u6e90\u7801/chap6/pie_plot.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.523420348936324, "lm_q2_score": 0.6926419894793246, "lm_q1q2_score": 0.3625429118212178}} {"text": "function nirfastmesh=readnirfast(filestub)\n%\n% nirfastmesh=readnirfast(v,f,filestub)\n%\n% load a group of mesh files saved in the NIRFAST format\n%\n% author: Qianqian Fang, \n%\n% input:\n% filestub: output file stub, output will include multiple files\n% filestub.node: node file\n% filestub.elem: element file to store the surface or tet mesh\n% filestub.param: parameter file\n% filestub.region: node label file\n% filestub.excoef: extinction coeff list\n%\n% output:\n% nirfastmesh.nodes: node list, 3 columns\n% nirfastmesh.elements: element list, 3 or 4 columns integers\n% nirfastmesh.bndvtx: boundary flag for each node, 1: on the boundary\n% nirfastmesh.region: node segmentation labels\n% nirfastmesh.dimension: dimension of the mesh\n% nirfastmesh.excoef: extinction coeff list\n% nirfastmesh.excoefheader: extinction coeff list field names\n% nirfastmesh.type: the header of the .param file\n% nirfastmesh.prop: optical property list (non-standard, need further processing)\n%\n% format definition see http://www.dartmouth.edu/~nir/nirfast/tutorials/NIRFAST-Intro.pdf\n%\n% example:\n% [node,face,elem]=meshabox([0 0 0],[10 10 10],0.3,1);\n% savenirfast(node,elem,'test', [], ones(size(node)), 'user');\n% mymesh=readnirfast('test')\n% plotmesh([mymesh.nodes mymesh.bndvtx], mymesh.elements,'x>5')\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\nfname=[filestub,'.node'];\nif(~exist(fullfile(pwd,fname),'file'))\n error([fname ' could not be found']);\nend\nnirfastmesh.nodes=load(fname);\n\nnirfastmesh.bndvtx=nirfastmesh.nodes(:,1);\nnirfastmesh.nodes(:,1)=[];\n\nfname=[filestub,'.elem'];\nif(~exist(fullfile(pwd,fname),'file'))\n error([fname ' could not be found']);\nend\nnirfastmesh.elements=load(fname);\nnirfastmesh.dimension=size(nirfastmesh.elements,2)-1;\n\nfname=[filestub,'.region'];\nif(exist(fullfile(pwd,fname),'file'))\n nirfastmesh.region=load(fname);\nend\n\nfname=[filestub,'.excoef'];\nfid=fopen(fname,'rt');\nif(fid>=0)\n linenum=0;\n textheader={};\n while(~feof(fid))\n oneline=fgetl(fid);\n linenum=linenum+1;\n [data, count]=sscanf(oneline,'%f');\n if(count>1)\n params=fscanf(fid,repmat('%f ',1,count),inf);\n params=reshape(params,length(params)/count, count);\n params(2:end+1,:)=params;\n params(1,:)=data(:)';\n nirfastmesh.excoef=params;\n nirfastmesh.excoefheader=textheader;\n break;\n else\n textheader{end+1}=oneline;\n end\n end\n fclose(fid);\nend\n\nfname=[filestub,'.param'];\nfid=fopen(fname,'rt');\nif(fid>=0)\n linenum=0;\n params=[];\n while(~feof(fid))\n oneline=fgetl(fid);\n if(linenum==0)\n nirfastmesh.type=oneline;\n end\n linenum=linenum+1;\n [data, count]=sscanf(oneline,'%f');\n if(count>1)\n params=fscanf(fid,repmat('%f ',1,count),inf);\n params=reshape(params,length(params)/count, count);\n params(2:end+1,:)=params;\n params(1,:)=data(:)';\n nirfastmesh.prop=params;\n break;\n end\n end\n fclose(fid);\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/iso2mesh/readnirfast.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6926419831347362, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.3625429085003311}} {"text": "% waveform data parameters\n%clear all\nclose all\n%startup\nmake_figures = true;\n\n% Geographical coordinates\n% coords = ...\n% [28.574013,\t-80.57236;\n% 28.574182,\t-80.57241;\n% 28.573894,\t-80.572352;\n% 28.574004,\t-80.572561];\ncoords = ...\n [28.5740171611,\t-80.5723755;\n 28.5742216111,\t-80.5724168556;\n 28.5738811889,\t-80.572295775;\n 28.5740064361,\t-80.57256045];\n\n \n% SLC40 - SpaceX launch complex\n% source.lat = 28.562106; \n% source.lon = -80.57718;\nsource.lon = -80.57719; %-80.57718;\nsource.lat = 28.56195; %28.562106;\n\neasting = [461.091 473.067 447.133 465.217 465.217 465.217];\nnorthing = [1343.9 1306.23 1320.01 1321.26 1321.26 1321.26];\n% Wind tower data - could read this from Excel instead\n% get Excel file from \nrelativeHumidity = 89.5; % percent from NASA weather tower data\ntemperatureF = 80.65; % 80 Fahrenheit according to weather tower data from NASA\nwind_direction_from = 144; % degrees - this is the direction FROM according to NASA, see Lisa Huddleston email of Oct 10th\nwind_speed_knots = 5.5; % knots\n\n% now call\nrocket_airwave_event_analysis", "meta": {"author": "geoscience-community-codes", "repo": "GISMO", "sha": "a4eafca9d2ac85079253510005ef00aa9998d030", "save_path": "github-repos/MATLAB/geoscience-community-codes-GISMO", "path": "github-repos/MATLAB/geoscience-community-codes-GISMO/GISMO-a4eafca9d2ac85079253510005ef00aa9998d030/applications/rockets/explosion/setup_rocket_event_20160901.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6926419831347361, "lm_q2_score": 0.523420348936324, "lm_q1q2_score": 0.36254290850033105}} {"text": "here=pwd;\ncd /home/bernard/Data/ABC/animals\nattrClasses=dlmread('all-perclass.attributes');\nindices=dlmread('split0.mask');\nclasses=dlmread('all.classid');\ncd (here);\n\ntrainInstancesIndices=find(indices==1);\ntrainInstancesLabels=classes(indices==1);\ntrainClassesIndices=unique(trainInstancesLabels,'stable');\n\nauxLabels=zeros(size(trainInstancesLabels));\nfor i=1:length(unique(trainInstancesLabels))\n c=find(trainInstancesLabels>0, 1);\n class=trainInstancesLabels(c);\n auxLabels(trainInstancesLabels==class)=i;\n trainInstancesLabels(trainInstancesLabels==class)=0;\nend\ntrainInstancesLabels=auxLabels';\n\ntestInstancesIndices=find(indices==0);\ntestInstancesLabels=classes(indices==0);\ntestClassesIndices=unique(testInstancesLabels,'stable');\n\nauxLabels=zeros(size(testInstancesLabels));\nfor i=1:length(unique(testInstancesLabels))\n c=find(testInstancesLabels>0, 1);\n class=testInstancesLabels(c);\n auxLabels(testInstancesLabels==class)=i;\n testInstancesLabels(testInstancesLabels==class)=0;\nend\ntestInstancesLabels=auxLabels';\n\nattrClasses=unique(attrClasses, 'rows', 'stable');\nuniqueClasses=unique(classes, 'stable');\nnewAttrClasses=zeros(size(attrClasses));\nfor i=1:length(uniqueClasses)\n newAttrClasses(uniqueClasses(i),:)=attrClasses(i,:);\nend\nattrClasses=newAttrClasses;\n", "meta": {"author": "bernard24", "repo": "Embarrassingly-simple-ZSL", "sha": "700e92b1f7aebaf5a262c061803a789b082cca97", "save_path": "github-repos/MATLAB/bernard24-Embarrassingly-simple-ZSL", "path": "github-repos/MATLAB/bernard24-Embarrassingly-simple-ZSL/Embarrassingly-simple-ZSL-700e92b1f7aebaf5a262c061803a789b082cca97/stkernelAwA/getClassesAndIndicesRaw.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3625295254065659}} {"text": "function d = size(a,varargin)\n% Method 'size' for file_array objects\n%__________________________________________________________________________\n% Copyright (C) 2005-2017-2012 Wellcome Trust Centre for Neuroimaging\n\n%\n% $Id: size.m 7440 2018-10-10 17:28:26Z john $\n\n\nsa = struct(a);\nnd = 0;\nfor i=1:numel(sa)\n nd = max(nd,numel(sa(i).dim));\n nd = max(nd,max(find(sa(i).pos==1)));\nend\nnd = nd+1;\n\ndim = ones(length(sa),nd);\npos = ones(length(sa),nd);\n\nfor i=1:length(sa)\n sz = sa(i).dim;\n dim(i,1:length(sz)) = sz;\n ps = sa(i).pos;\n pos(i,1:length(ps)) = ps;\nend\n\ntmp = pos==1;\nd = zeros(1,nd);\nfor i=1:nd\n ind = all(tmp(:,[1:(i-1) (i+1):nd]),2);\n d(i) = sum(dim(ind,i));\nend\nlim = max(max(find(d~=1)),2);\nd = d(1:lim);\n\nif nargin > 1\n d_tmp = d;\n d = ones(size(varargin{1}));\n msk = varargin{1}<=length(d_tmp);\n d(msk) = d_tmp(varargin{1}(msk));\nend\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/@file_array/size.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.3625295254065659}} {"text": "%-------------------------------------------------------------------------------------------------------------------%\n%\n% IB2d is an Immersed Boundary Code (IB) for solving fully coupled non-linear \n% \tfluid-structure interaction models. This version of the code is based off of\n%\tPeskin's Immersed Boundary Method Paper in Acta Numerica, 2002.\n%\n% Author: Nicholas A. Battista\n% Email: nick.battista@unc.edu\n% Date Created: May 27th, 2015\n% Institution: UNC-CH\n%\n% This code is capable of creating Lagrangian Structures using:\n% \t1. Springs\n% \t2. Beams (*torsional springs)\n% \t3. Target Points\n%\t4. Muscle-Model (combined Force-Length-Velocity model, \"HIll+(Length-Tension)\")\n%\n% One is able to update those Lagrangian Structure parameters, e.g., spring constants, resting %%\tlengths, etc\n% \n% There are a number of built in Examples, mostly used for teaching purposes. \n% \n% If you would like us %to add a specific muscle model, please let Nick (nick.battista@unc.edu) know.\n%\n%--------------------------------------------------------------------------------------------------------------------%\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the RUBBERBAND-EXAMPLE geometry and prints associated input files\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction Rubberband()\n\n%\n% Grid Parameters (MAKE SURE MATCHES IN input2d !!!)\n%\nNx = 32; % # of Eulerian Grid Pts. in x-Direction (MUST BE EVEN!!!)\nNy = 32; % # of Eulerian Grid Pts. in y-Direction (MUST BE EVEN!!!)\nLx = 1.0; % Length of Eulerian Grid in x-Direction\nLy = 1.0; % Length of Eulerian Grid in y-Direction\n\n\n% Immersed Structure Geometric / Dynamic Parameters %\nN = 2*Nx; % Number of Lagrangian Pts. (2x resolution of Eulerian grid)\na = 0.2; % Length of semi-major axis.\nb = 0.2; % Length of semi-minor axis.\nds_Rest = 0; % Resting length of springs\nstruct_name = 'rubberband'; % Name for .vertex, .spring, etc files.\n\n\n% Call function to construct geometry\n[xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(N,a,b);\n\n\n% Plot Geometry to test\nplot(xLag,yLag,'r-'); hold on;\nplot(xLag,yLag,'*'); hold on;\nxlabel('x'); ylabel('y');\naxis square;\n\n\n% Prints .vertex file!\nprint_Lagrangian_Vertices(xLag,yLag,struct_name);\n\n\n% Prints .spring file!\n%k_Spring = 1e7;\n%print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name);\n\n\n% Prints .beam file!\n%k_Beam = 0.5; C = 0.0;\n%print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name);\n\n\n% Prints .target file!\nk_Target = 1e7;\nprint_Lagrangian_Target_Pts(xLag,k_Target,struct_name);\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints VERTEX points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Vertices(xLag,yLag,struct_name)\n\n N = length(xLag);\n\n vertex_fid = fopen([struct_name '.vertex'], 'w');\n\n fprintf(vertex_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n X_v = xLag(s);\n Y_v = yLag(s);\n fprintf(vertex_fid, '%1.16e %1.16e\\n', X_v, Y_v);\n end\n\n fclose(vertex_fid); \n \n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints Vertex points to a file called rubberband.vertex\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Target_Pts(xLag,k_Target,struct_name)\n\n N = length(xLag);\n\n target_fid = fopen([struct_name '.target'], 'w');\n\n fprintf(target_fid, '%d\\n', N );\n\n %Loops over all Lagrangian Pts.\n for s = 1:N\n fprintf(target_fid, '%d %1.16e\\n', s, k_Target);\n end\n\n fclose(target_fid); \n \n \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints BEAM (Torsional Spring) points to a file called rubberband.beam\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Beams(xLag,yLag,k_Beam,C,struct_name)\n\n % k_Beam: beam stiffness\n % C: beam curvature\n \n N = length(xLag); % NOTE: Total number of beams = Number of Total Lag Pts. - 2\n\n beam_fid = fopen([struct_name '.beam'], 'w');\n\n fprintf(beam_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %BEAMS BETWEEN VERTICES\n for s = 2:N-1\n if s <= N-1 \n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, s+1, k_Beam, C); \n else\n %Case s=N\n fprintf(beam_fid, '%d %d %d %1.16e %1.16e\\n',s-1, s, 1, k_Beam, C); \n end\n end\n fclose(beam_fid); \n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: prints SPRING points to a file called rubberband.spring\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction print_Lagrangian_Springs(xLag,yLag,k_Spring,ds_Rest,struct_name)\n\n N = length(xLag);\n\n spring_fid = fopen([struct_name '.spring'], 'w');\n\n fprintf(spring_fid, '%d\\n', N );\n\n %spring_force = kappa_spring*ds/(ds^2);\n\n %SPRINGS BETWEEN VERTICES\n for s = 1:N\n if s < N \n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, s+1, k_Spring, ds_Rest); \n else\n %Case s=N\n fprintf(spring_fid, '%d %d %1.16e %1.16e\\n', s, 1, k_Spring, ds_Rest); \n end\n end\n fclose(spring_fid); \n \n \n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% FUNCTION: creates the Lagrangian structure geometry\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\nfunction [xLag,yLag] = give_Me_Immsersed_Boundary_Geometry(N,rmin,rmax)\n\n% The immsersed structure is an ellipse %\nt = 2*pi/N;\nfor i=1:N\n \n xLag(i) = 0.25 + rmax * cos( 2*pi/N*(i-1) );\n yLag(i) = 0.25 + rmin * sin( 2*pi/N*(i-1) );\nend", "meta": {"author": "nickabattista", "repo": "IB2d", "sha": "392d99c228cc801ff65766889c72e2e1492fe747", "save_path": "github-repos/MATLAB/nickabattista-IB2d", "path": "github-repos/MATLAB/nickabattista-IB2d/IB2d-392d99c228cc801ff65766889c72e2e1492fe747/matIB2d/Examples/Example_Moving_Rubberband/Rubberband.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417500561683, "lm_q2_score": 0.5506073655352403, "lm_q1q2_score": 0.36252952540656586}} {"text": "function I = mat2cell_ov(X,xx_s,xx_f,yy_s,yy_f,zz_s,zz_f,overlap,sz)\n\n% converts a matrix into a cell array with overlapping elements\n% INPUTS:\n% X: Input matrix\n% grid_size: size of each element without overlap\n% overlap: amount of overlap\n% sz: spatial size of X\n\n% OUTPUT:\n% I: output cell array\n\n% Written by Eftychios A. Pnevmatikakis, Simons Foundation, 2016\n\nI = cell(length(xx_s),length(yy_s),length(zz_s));\nnd = length(sz);\nif nd == 2; sz(3) = 1; end\nfor i = 1:length(xx_s)\n for j = 1:length(yy_s)\n for k = 1:length(zz_s)\n extended_grid = [max(xx_s(i)-overlap(1),1),min(xx_f(i)+overlap(1),sz(1)),max(yy_s(j)-overlap(2),1),min(yy_f(j)+overlap(2),sz(2)),max(zz_s(k)-overlap(3),1),min(zz_f(k)+overlap(3),sz(3))]; \n if nd == 2\n I{i,j} = X(extended_grid(1):extended_grid(2),extended_grid(3):extended_grid(4),:);\n else\n I{i,j,k} = X(extended_grid(1):extended_grid(2),extended_grid(3):extended_grid(4),extended_grid(5):extended_grid(6),:);\n end\n end\n end\nend", "meta": {"author": "flatironinstitute", "repo": "NoRMCorre", "sha": "1b39f82f9673d51cdf9b38d3419b62bf06cf7196", "save_path": "github-repos/MATLAB/flatironinstitute-NoRMCorre", "path": "github-repos/MATLAB/flatironinstitute-NoRMCorre/NoRMCorre-1b39f82f9673d51cdf9b38d3419b62bf06cf7196/mat2cell_ov.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.36252951802549965}} {"text": "% Reg1_test.m\n% test of Reg1 regularization object\n\nif 1 % test single-pixel case\n\tR0 = Reg1(true(1));\n\tx = 7;\n\tjf_equal(0, R0.penal(R0, x))\n\tjf_equal(0, R0.cgrad(R0, x))\n\tjf_equal(0, R0.denom(R0, x))\n\tjf_equal(full(R0.C), nan(0,1))\nend\n\n\nif 1 % test tiny image\n\tR0 = Reg1(true(3,2), 'offsets', '2d:hv');\n\tx = reshape(1:3*2, 3, 2);\n\tR0.penal(R0, x);\n\tR0.cgrad(R0, x);\n\tR0.denom(R0, x);\n\tfull(R0.C);\n\n\ttmp = {true(3,2), 'offsets', '2d:hv'};\n\tif 0\n\t\trng(7)\n\t\ttmp = {tmp{:}, 'user_wt', ones(3,2,2)};\n\tend\n\tR0t = Reg1(tmp{:}, 'type_penal', 'mat', 'type_diff', 'ind');\n\tR0x = Reg1(tmp{:}, 'type_penal', 'mex');\n\tjf_equal( full(R0t.C), full(R0x.C) )\n\tjf_equal( full(R0t.C1), full(R0x.C1) )\n%\tjf_equal( R0t.cgrad(R0t, x), R0x.cgrad(R0x, x) ) % not ?\n%\tfull(R0t.C1)\n%\tfull(R0x.C1)\nend\n\n\nif 1 || ~isvar('Rt'), printm 'Rt'\n\tif 1 % 3d\n\t\tig = image_geom('nx', 512, 'ny', 480, 'nz', 2^5, 'fov', 500, ...\n\t\t\t'down', 2^2);\n\telse % 2d\n\t\tig = image_geom('nx', 512, 'ny', 448, 'fov', 500, 'down', 2^3);\n\tend\n\ttmp = ig.circ(ig.fov/2*1.1) > 0;\n\ttmp([1 end],:,:) = 0; tmp(:, [1 end],:) = 0; % zero border for 3d\n\tig.mask = tmp; clear tmp\n\tkappa = 2 + 1 * cos(2*pi*ig.x/ig.fov) * sin(2*pi*ig.y/ig.fov)';\n%\tkappa = ig.mask;\n\tf.offsets = ''; f.n_offset = 4;\n\tif ig.is3\n\t\tkappa = repmat(ig.mask_or, [1 1 ig.nz]) .* ig.mask;\n\t\tf.offsets = '3d:26';\n\t\tf.n_offset = 13;\n\telse\n\t\tkappa = single(kappa) .* ig.mask;\n\tend\n\n\tif 0\n\t\tprofile on\n\t\tcpu etic\n\t\tpn = jf_protected_names;\n\t\tfor qq=1:29*2\n\t\t\tii = 1:prod(ig.dim);\n%\t\t\t[jx jy jz] = ind2sub(ig.dim, ii);\n\t\t\tjj = pn.ind2sub(ig.dim, ii);\n\t\tend\n\t\tcpu etoc\n\t\tprofile report\n\treturn\n\tend\n\n\tf.l2b = 3;\n%\tf.pot = 'hyper3'; f.delta = 1; f.pot_arg = {f.pot, f.delta};\n%\tf.pot = 'quad'; f.delta = inf; f.pot_arg = {f.pot};\n%\tf.pot = 'qgg2'; f.delta = 2; f.pot_arg = {f.pot, f.delta, 1.2};\n\tf.pot = 'gf1'; f.delta = 2; ...\n\t\ttmp = potential_fun('gf1-fit', nan, {'qgg2', [1 10], 1.2});\n\t\tf.pot_arg = {f.pot, f.delta, tmp};\n\n%\tx = ig.unitv(ig.nx, ig.ny) + ig.unitv(ig.nx/4, 5+0*ig.ny/2);\n\tx = single(ig.mask + ig.circ(ig.fov/4));\n\trng(0)\n\tx = single(rand(ig.dim)) .* ig.mask;\n\tif ig.is3\n\t\tx = x + ig.unitv ...\n\t\t\t+ ig.unitv(3*ig.nx/8, ig.ny/2, 1) ...\n\t\t\t+ ig.unitv(ig.nx/2, 5*ig.ny/8, ig.nz);\n\tend\n\txm = x(ig.mask);\n\n\tfor order = 1:2\n\t\tpr order\n\t\tf.arg1 = {kappa, 'offsets', f.offsets, 'beta', 2^f.l2b, ...\n\t\t\t'edge_type', 'tight', 'order', order};\n\t\tif 0 && order == 1 % test user_wt\n\t\t\trng(7)\n%\t\t\ttmp = ones([ig.dim f.n_offset]);\n%\t\t\ttmp(1:end/4,:,:) = 4;\n\t\t\ttmp = rand([ig.dim f.n_offset]);\n\t\t\tf.arg1 = {f.arg1{:}, 'user_wt', tmp};\n\t\tend\n\t\tf.arg = {f.arg1{:}, 'pot_arg', f.pot_arg};\n\t\tRt = Reg1(f.arg{:}, 'type_penal', 'mat');\n\t\tRx = Reg1(f.arg{:}, 'type_penal', 'mex'); % default control\n%\t\tR1 = Reg1(f.arg{:}, 'type_penal', 'mex', 'control', 1);\n\n\t\tif 0 % test timing of loop control 1 and 2\n\t\t\t% in 3d for order=2 with no user_wt,\n\t\t\t% control=2 is about 5% faster\n\t\t\tg1 = ig.embed(R1.cgrad(R1, xm)); % warm up\n\t\t\tg2 = ig.embed(Rx.cgrad(Rx, xm)); % warm up\n\n\t\t\tcpu etic\n\t\t\tg1 = ig.embed(R1.cgrad(R1, xm));\n\t\t\tcpu etoc 'Rx cgrad control=1 time'\n\n\t\t\tcpu etic\n\t\t\tg2 = ig.embed(Rx.cgrad(Rx, xm));\n\t\t\tcpu etoc 'Rx cgrad control=2 time'\n\t\t\tequivs(g1, g2)\n\t\tcontinue\n\t\tend\n\n\t\tif has_mex_jf\n\t\t\tswitch f.pot\n\t\t\tcase {'qgg2', 'gf1'}\n\t\t\t\ttmp = {f.delta, f.pot_arg{3}};\n\t\t\totherwise\n\t\t\t\ttmp = f.delta;\n\t\t\tend\n\t\t\tRo = Robject(f.arg1{:}, 'type_denom', 'matlab', ...\n\t\t\t\t'potential', f.pot, 'delta', tmp, ...\n\t\t\t\t'distance_power', Rt.distance_power);\n\t\tend\n\n\t\tif 1 && ig.is3 && has_mex_jf\n\t\t\tzxy = @(x) permute(x, [3 1 2]);\n\t\t\txyz = @(x) permute(x, [2 3 1]);\n\t\t\t% convert offsets to zxy!\n\t\t\tf.offsets_zxy = reg_offset_xyz_to_zxy(f.offsets, size(kappa));\n\t\t\tRz = Reg1(zxy(kappa), f.arg{2:end}, ...\n\t\t\t\t'user_wt', [], ...\n\t\t\t\t'offsets', f.offsets_zxy, ...\n\t\t\t\t'offsets_is_zxy', true, ...\n\t\t\t\t'type_penal', 'zxy');\n\t\tend\n\n%\t\tRm = Rmem(kappa, 'pot_arg', f.pot_arg, 'beta', 2^f.l2b, ...\n%\t\t\t'edge_type', 'tight', ...\n%\t\t\t'distance_power', Rg.distance_power, ...\n%\t\t\t'offsets', f.offsets);\n\n\t\tif 1 % check C1 *\n\t\t\tjf_equal(Rt.C1 * x, Rx.C1 * x)\n\t\t\tjf_equal(Rt.C1 * xm, Rx.C1 * xm)\n\t\t\tjf_equal(ig.shape(Rt.C1 * xm), Rt.C1 * x)\n\t\t\tif has_mex_jf\n\t\t\t\tjf_equal(Ro.C1 * x, Rx.C1 * x)\n\t\t\tend\n\t\tend\n\n\t\tif 0 % check C1 (only for tiny cases)\n\t\t\tc1 = Rt.C1; c1 = c1(:,:);\n\t\t\tc2 = Rx.C1; c2 = c1(:,:);\n\t\t\tjf_equal(c1, c2)\n\t\t\tif has_mex_jf\n\t\t\t\tco = Ro.C1; co = co(:,:);\n\t\t\t\tjf_equal(c1, co)\n\t\t\tend\n%\t\t\tclear c1 c2\n\t\tend\n\n\t\tif 1 % check dercurv\n\t\t\t[t.dt t.ct] = feval(Rt.dercurv, Rt, Rt.C1 * x);\n\t\t\t[t.dx t.cx] = feval(Rx.dercurv, Rx, Rx.C1 * x);\n%\t\t\t[t.d1 t.c1] = feval(R1.dercurv, R1, R1.C1 * x);\n\t\t\tjf_equal(t.dt, t.dx)\n\t\t\tjf_equal(t.ct, t.cx)\n%\t\t\tjf_equal(t.dt, t.d1)\n%\t\t\tjf_equal(t.ct, t.c1)\n\n\t\t\t[t.dx t.cx] = feval(Rx.dercurv, Rx, Rx.C1 * xm);\n\t\t\tjf_equal(ig.shape(t.dx), t.dt)\n\t\t\tjf_equal(ig.shape(t.cx), t.ct)\n\n\t\t\tif has_mex_jf\n\t\t\t\t[t.do t.co] = feval(Ro.dercurv, Ro, Ro.C1 * xm);\n\t\t\t\tt.do = ig.shape(t.do);\n\t\t\t\tt.co = ig.shape(t.co);\n\t\t\t\tequivs(t.dt, t.do)\n\t\t\t\t% trick: curv matches *except* at outer edge(s)\n\t\t\t\tequivs(t.ct(2:end-1,2:end-1,:), t.co(2:end-1,2:end-1,:))\n\t\t\tend\n\t\tend\n\n\t\tif 1 && streq(f.pot, 'quad') % check C *\n%\t\t\ttmp = Rt.C * x;\n\t\t\tjf_equal(ig.shape(Rt.C * xm), Rt.C * x)\n\t\tend\n\n\t\tif 1 % check penalty value\n\t\t\ttmp = Rt.penal(Rt, x);\n\t\t\tjf_equal(tmp, Rt.penal(Rt, xm))\n\t\t\tequivs(tmp, Rx.penal(Rx, x))\n%\t\t\tequivs(tmp, R1.penal(R1, x))\n\t\t\tjf_equal(Rx.penal(Rx, x), Rx.penal(Rx, xm))\n\t\t\tif has_mex_jf\n%\t\t\t\tjf_equal(Rt.penal(Rt, xm), Ro.penal(Ro, xm))\n\t\t\t\tequivs(tmp, Ro.penal(Ro, xm), 'thresh', 18e-6)\n\t\t\tend\n\t\tend\n\n\t\tif 1 % check cgrad\n\t\t\tg1 = ig.embed(Rt.cgrad(Rt, xm));\n\t\t\tw1 = ig.embed(Rt.denom(Rt, xm));\n\t\t\tw1s = ig.embed(Rt.denom_sqs1(Rt, xm));\n\t\t\tif 1\n\t\t\t\tcpu etic\n\t\t\t\tg2 = Rt.cgrad(Rt, x);\n\t\t\t\tcpu etoc 'Rt cgrad time'\n\t\t\t\tjf_equal(g1, g2)\n\t\t\tend\n\n\t\t\tif has_mex_jf\n\t\t\t\tgo = ig.embed(Ro.cgrad(Ro, xm));\n\t\t\t\tequivs(g1, go)\n\n\t\t\t\tg3 = ig.embed(Rx.cgrad(Rx, xm));\n\t\t\t\tequivs(g1, g3)\n\n\t\t\t\tif 1 % check mex version w/o mask\n\t\t\t\t\tcpu etic\n\t\t\t\t\tg4 = Rx.cgrad(Rx, x);\n\t\t\t\t\tcpu etoc 'Rx cgrad time'\n\t\t\t\t\tjf_equal(g3, g4)\n\t\t\t\tend\n\n\t\t\t\tif ig.is3 && order == 1\n\t\t\t\t\ttmp = zxy(x);\n\t\t\t\t\t% check zxy version w/o mask\n\t\t\t\t\tcpu etic\n\t\t\t\t\t[g5 w5] = feval(Rz.cgrad_denom, Rz, tmp);\n\t\t\t\t\tcpu etoc 'Rz cgrad/denom time'\n\t\t\t\t\tg5 = xyz(g5);\n\t\t\t\t\tw5 = xyz(w5);\n\t\t\t\t\tif isempty(Rx.user_wt) % trick\n\t\t\t\t\t\tequivs(g1, g5)\n\t\t\t\t\t\tequivs(w1, w5)\n\t\t\t\t\tend\n%\t\t\t\t\tim(w1-w5), return\n\n\t\t\t\t\t% zxy version with mask\n\t\t\t\t\tmask_zxy = zxy(ig.mask);\n\t\t\t\t\t[g5m w5m] = feval(Rz.cgrad_denom, Rz, tmp(mask_zxy));\n\t\t\t\t\tg5m = xyz(embed(g5m, Rz.mask));\n\t\t\t\t\tw5m = xyz(embed(w5m, Rz.mask));\n\t\t\t\t\tjf_equal(g5, g5m)\n\t\t\t\t\tjf_equal(w5, w5m)\n\t\t\t\tend\n\t\t\tend\n\n\t\t\tif 0 % check empirical gradient (slow)\n\t\t\t\tge = ig.embed(Rx.egrad(Rx, xm, 0.001));\n\t\t\t\tmax_percent_diff(ge, g1)\n\t\t\t\tim plc 2 3\n\t\t\t\tim(1, x, 'x'), cbar\n\t\t\t\tim(2, g1, 'g mat'), cbar\n\t\t\t\tim(3, g3, 'g mex'), cbar\n\t\t\t\tim(4, ge, 'g emp'), cbar\n\t\t\t\tim(5, g1-ge, 'mat-emp'), cbar\n\t\t\t\tim(6, g3-ge, 'mex-emp'), cbar\n\t\t\tprompt\n\t\t\tend\n\n%\t\t\tim(g3(:,:,[1 end])-g1(:,:,[1 end]))\n%\t\t\tim clf, im([g1; g3; g1-g3]), cbar\n\n%\t\t\tclear g1 g2 g3 g4\n\t\tend\n\n\t\tif 1 % check denom\n\t\t\tdentf = Rt.denom_sqs1(Rt, x);\n\t\t\tdentm = Rt.denom_sqs1(Rt, xm);\n\t\t\tdentm = ig.embed(dentm);\n\t\t\tequivs(dentf, dentm)\n\n\t\t\tif has_mex_jf\n\t\t\t\tdenxf = Rx.denom_sqs1(Rx, x);\n\t\t\t\tdenxm = Rx.denom_sqs1(Rx, xm);\n\t\t\t\tdenxm = ig.embed(denxm);\n\t\t\t\tequivs(dentf, denxf)\n\t\t\t\tequivs(denxm, denxf)\n%\t\t\t\tim clf, im([denxf; denxm; denxf-denxm]), cbar\n\n%\t\t\t\tdenx1 = R1.denom_sqs1(R1, x);\n%\t\t\t\tequivs(dentf, denx1)\n\n\t\t\t\tdentf = Rt.denom(Rt, x);\n\t\t\t\tdenxf = Rx.denom(Rx, x);\n%\t\t\t\tdenx1 = R1.denom(R1, x);\n\t\t\t\tequivs(dentf, denxf)\n%\t\t\t\tequivs(dentf, denx1)\n\n\t\t\t\tdeno = ig.embed(Ro.denom(Ro, xm));\n\t\t\t\t% trick: denom matches except along outer edges\n\t\t\t\tix = (1+order):(ig.nx-order);\n\t\t\t\tiy = (1+order):(ig.ny-order);\n\t\t\t\tequivs(dentf(ix,iy), deno(ix,iy))\n\n\t\t\t\tif order == 1 && ig.is3 && isempty(Rx.user_wt)\n\t\t\t\t\tequivs(dentf, w5) % check zxy\n\t\t\t\tend\n\t\t\tend\n\t\tend\n\n\t\tif 0 % check diag ?\n\t\t\t%d = Rm.diag(R);\n\t\tend\n\n\t\t% test threads\n\tend\nprompt\nend\n\n\nreturn %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Robject designed to match Rmem'\nif ~isvar('Ro'), printm 'Ro'\n\ttmp = repmat(kappa.^2, [1 1 1 length(Rm.offsets)]);\n\tRo = Robject(ig.mask, 'edge_type', 'leak', 'beta', 2^f.l2b, ...\n\t\t'offsets', Rm.offsets, ...\n\t\t'potential', f.pot, 'delta', f.delta, ...\n\t\t'type_denom', 'matlab', ...\n\t\t'distance_power', 0, 'user_wt', tmp);\n\tclear tmp\nend\n\ncpu etic\ng1 = Rm.cgrad(Rm, x);\ncpu etoc 'Rm cgrad'\ncpu etic\ng2 = Ro.cgrad(Ro, x(ig.mask));\ng2 = embed(g2, ig.mask);\ncpu etoc 'Ro cgrad'\nmax_percent_diff(g1, g2)\nif ~isequal(g1, g2), error 'cgrad mismatch', end, clear g2\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/penalty/Reg1_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.658417487156366, "lm_q2_score": 0.5506073655352404, "lm_q1q2_score": 0.36252951802549965}} {"text": "function [evtonsets,X,bestp,meff,origvec] = ga2(gensize,numgen,conditions,mspec,varargin)\n%[evtonsets,X,bestp,meff,origvec] = ga2(gensize,numgen,conditions,mspec,[nooverlap])\n%\n% everything in conditions should be in number of frames (TRs), not seconds\n% model_setup_ui.m automatically creates the correct format\n%\n% optional last argument is a 1 or 0. 1 Constrains the events so that\n% events of different trials do not overlap.\n%\n% recommended: test conditions setup before running with\n% [X,pv] = construct_model(mspec,conditions,[]);\n% also [X,pv] = paramvec2onsets(mspec,conditions,[]);\n%\n% OR\n%\n% [X,pv] = construct_model(mspec,conditions,[],[1 14]);\n% ...to constrain overlaps among trials to a min of 14 TRs apart,\n% (variable trial onsets will only be properly constrained by the 2nd element).\n% OR add in mspec.toverlap = [1 10], e.g.\n%\n% Tor Wager\n% April 19, 2002\n% Modified April 2, 2003: changed xover, convergence, constrained\n% so that min time between trial onsets is maintained\n% also added non-identity intrinsic autocorrelation\n% and capability for d-optimality\n%\n% Modified May 14, 2003: changed autocorrelation function to colored noise\n%\n% convergence criteria:\n% all efficiency scores are the same, OR no improvement in 100 generations\n%\n% defaults:\n% exponential autocorrelation function based on empirical estimates\n% saturation (clipping) of the predicted response at 2.5 times the original height\n% in order to approximate nonlinear effects\n% A-optimal design efficiency computation\n%\n% Also possible: \n% Combo A-D optimal design, equally weighted\n% for A-optimal design, mspec.dopt = 0; \n% for D-optimality, specify mspec.dopt = 1;\n% But I'm still testing the D-optimality stuff.\n%\n% to see a test of A vs D optimality, try:\n% Vi = eye(mspec.numframes);\n% for i = 1:1000, \n% [X,paramvec] = construct_model(mspec,conditions,[]); \n% a(i) = calcefficiency(ones(1,size(X,2) - 1),[],pinv(X),Vi,0);\n% d(i) = 1 ./ (inv(det(X'*X)) .^ (1./size(X,2)));\n% end\n% d = d - mean(d);\n% figure; plot(a,d,'x'); xlabel('A-efficiency'),ylabel('D-efficiency')\n% a1 = calcefficiency(ones(1,size(X,2) - 1),[],pinv(X),Vi,0);\n% d1 = 1 ./ (inv(det(X'*X)) .^ (1./size(X,2)));\n% hold on;plot(a1,d1,'rs','MarkerFaceColor','r')\n\n\nt0 = clock;\n\n\n% --------------------------------------------------------------------\n%\n% * Setup and defaults\n%\n% --------------------------------------------------------------------\n\nif length(varargin) > 0, nooverlap = varargin{1};,else, nooverlap = 0;,end\n\n\nfor j = 1:gensize, newvec{j} = [];,end\n\n% intrinsic autocorrelation\n% --------------------------------------------------------------------\n%Vi = eye(mspec.numframes); % use this for scanner white noise\n\n% new autocorr, from VNL experiment (n = 10)\n% this is invariant to the TR as well.\nf = inline('5.6034 * exp(-.93 * x)','x');\nt1 = f(1:mspec.TR:10); t1 = t1 ./ t1(1);\n\nVi = getv('make',t1,ceil(mspec.numframes));\n\n% nonlinearity and fitness function\n% --------------------------------------------------------------------\n\n% nonlinear clipping threshold\nsatthresh = 2.5;\n\n% display results vs. random?\nshowres = 1;\n\n% converge if no change in this many generations\ngenconverge = 10;\n\n% optimality - default is A\nif ~isfield(mspec,'dopt'), mspec.dopt = 0;, end\nif mspec.dopt == 2\n disp('Computing both A- and D-optimality'),\nelseif mspec.dopt == 1\n disp('Computing D-optimality'), \nelse\n disp('Computing A-optimality'),\nend\n\nif nooverlap & length(nooverlap) == 1\n % we need a list of all trial onset conditions to make sure we don't create\n % illegal lists in xover\n % older, more cumbersome way based on each condition\n trialonsetinfo = get_tonsetinfo(conditions);\nelseif nooverlap & length(nooverlap) > 1\n % newer way: minimum time constraint between all trial onsets\n trialonsetinfo = nooverlap(2);\nelse\n % no constraints\n trialonsetinfo = -Inf;\nend\n\n\n\n% model seeding - m-sequences, 10 %\n% works for designs with one subpart per trial - don't know about \n% others. will have to insert more paramvec entries\n% --------------------------------------------------------------------\nnmseq = round(gensize ./ 10);\n%[mseqs,newvec(1:nmseq)] = genMseq(mspec.numframes,[],[],nmseq,length(conditions));\n\n[tmp,mseqs] = genMseq(mspec.numframes,[],[],nmseq,length(conditions)); % 10 sequences\n\nfor i = 1:length(mseqs)\n % get paramvec, which constrains length to correct values\n [tmp,pvm] = construct_model(mspec,conditions,mseqs{i});\n newvec{i} = pvm;\nend\n\n% set up contrasts across conditions\n% --------------------------------------------------------------------\n numframes = [];, % ne4eded for ga3power at the end, and for contrasts\n for i = 1:length(conditions),\n for j=1:length(conditions(i).subcond), numframes(end+1) = conditions(i).subcond(j).hrfest;,\n end\n end\n \nif isfield(mspec,'contrasts')\n % executes the code to apply contrast, apply_dx_contrast.m, in\n % construct_model\n disp(['Found contrast to collapse columns: ']), mspec.contrasts\nend\n\nf1 = figure; set(gcf,'Color','w'); hold on; title('Max efficiency'),xlabel('Generation')\n\n\n% matrix of multiplier values for each param in first cell to add noise\ntmp = cat(1,newvec{:}); for i = 1:length(tmp), tmp{i} = diff(tmp{i}); end , tmp = cat(2, tmp{:});\nnoisestd = .2 .* range(tmp);\ndisp(['Noise std if no change is: ' num2str(noisestd)])\n\n \n% --------------------------------------------------------------------\n%\n% * Start generations\n%\n% --------------------------------------------------------------------\n \n \nfor i = 1:numgen\n \n t1 = clock;\n \n for j = 1:gensize\n \n % --------------------------------------------------------------------\n % * make models\n % --------------------------------------------------------------------\n % if empty (1st generation), then it constructs a model.\n [X,paramvec{j}] = construct_model(mspec,conditions,newvec{j},nooverlap);\n X = modelSaturation(X,satthresh);\n \n % tmp for Emily\n %X(:,15*4+1:15*5) = X(:,15*4+1:15*5) + X(:,15*6+1:15*7); X(:,15*6+1:15*7) = [];\n \n XX{j} = X;\n \n if i == i & j == 1\n cweights = ones(1,size(X,2) - 1);\n end\n \n if mspec.dopt == 0\n eff(j) = calcEfficiency(cweights,[],pinv(X),Vi,0);\n elseif mspec.dopt == 1\n eff(j) = det(X'*X) .^ (1./size(X,2)); % 1 ./ (inv(det(X'*X)) .^ (1./size(X,2))); % D-optimality\n elseif mspec.dopt == 2 % for A- D-optimality\n eff2(j) = calcEfficiency(cweights,[],pinv(X),Vi,0);\n eff(j) = det(X'*X) .^ (1./size(X,2)); % D-optimality\n end\n \n end\n \n if mspec.dopt == 2 % for A- D-optimality\n zeff = (eff - mean(eff)) ./ std(eff);\n zeff2 = (eff2 - mean(eff2)) ./ std(eff2);\n zeff = zeff + zeff2;\n meffi = max(zeff);\n meffind = find(zeff == meffi); meffind = meffind(1);\n meff(i) = eff(meffind);\n meff2(i) = eff2(meffind);\n t2 = clock;\n fprintf(1,'Gen %3.0f: D-eff is %3.4f, A-eff is %3.4f, model %3.0f, time = %3.2f, elapsed = %3.0f\\n',i,meff(i),meff2(i),meffind,etime(t2,t1),etime(t2,t0));\n figure(f1); subplot 121; plot(1:i,meff,'r','LineWidth',2); title('D-efficiency')\n subplot 122; plot(1:i,meff2,'b','LineWidth',2); title('A-efficiency')\n drawnow\n \n else\n [meffi, meffind] = max(eff);\n meffind = meffind(1);\n meff(i) = meffi;\n t2 = clock;\n fprintf(1,'Gen %3.0f: best eff is %3.4f, model %3.0f, time = %3.2f, elapsed = %3.0f\\n',i,meffi,meffind,etime(t2,t1),etime(t2,t0));\n figure(f1); plot(1:i,meff,'LineWidth',2); drawnow\n end\n \n % -------------------------------------------------------------------- \n % add noise if no improvement at all\n % rounding and illegal values should be handled by construct_model\n % but need to be integers >= 0 for HRF power below\n % in next iteration\n % -------------------------------------------------------------------- \n if meffind == 1\n\n for j = 1:length(paramvec)\n if j == meffind\n % leave the best one alone!\n else\n for k = 1:length(paramvec{j})\n paramvec{j}{k} = paramvec{j}{k} + round( noisestd .* randn(size(paramvec{j}{k})) );\n\n paramvec{j}{k}(paramvec{j}{k} < 0) = 0;\n end\n end\n end\n\n end\n\n % --------------------------------------------------------------------\n % * save best and crossover\n % -------------------------------------------------------------------- \n bestp = paramvec{meffind};\n \n % test power of bestp\n clear delta\n for reg = 1:length(bestp) \n delta{reg} = zeros(mspec.numframes,1);\n delta{reg}(bestp{reg}+1) = 1;\n delta{reg} = delta{reg}(1:mspec.numframes);\n end\n P = hrf_power(mspec.TR,conditions(1).subcond.hrfest,delta,eye(length(bestp)));\n bestipow(i) = max(P.ipow);\n figure(f1); hold on; plot(bestipow,'r','LineWidth',2),drawnow\n %figure;subplot(1,2,1);imagesc(P.X2); subplot(1,2,2);imagesc(XX{meffind}); colormap gray\n \n \n % --------------------------------------------------------------------\n % * Check for convergence\n % --------------------------------------------------------------------\n if i > genconverge\n last_gens = meff(i-genconverge+1:i);\n unique_in_last_gens = length(unique(last_gens));\n % if the above is one, there has been no change in last n\n % generations\n else\n unique_in_last_gens = Inf;\n end\n\n if (all(eff == median(eff))) || unique_in_last_gens == 1\n isconverged = 1;\n disp(['System converged at generation ' num2str(i)])\n\n break\n end\n \n % save 1st generation in origvec output\n if i == 1, origvec = newvec; end\n \n [newvec] = xover(paramvec,eff,trialonsetinfo);\n %newvec{ceil(rand * length(newvec))} = bestp; % this causes lots of the same list to be inserted randomly\n newvec{1} = bestp;\n \nend\n\n% --------------------------------------------------------------------\n% * End of GA\n% --------------------------------------------------------------------\n \nX = construct_model(mspec,conditions,bestp,nooverlap);\n \n% --------------------------------------------------------------------\n% * Figure of final model matrix\n% --------------------------------------------------------------------\ntry\n figure('Color','w'); imagesc(X); colormap(gray)\n bestcondno = cond(X);\n tmp = corrcoef(X); tmp=tmp(:); tmp(isnan(tmp) | tmp == 1) = []; maxcorr = max(tmp);\n tmp = sprintf('Best model: Cond. # = %3.2f, max pairwise corr = %3.2f',bestcondno,maxcorr);\n title(tmp), \ncatch\n disp('Problem with figures')\nend\n\n% this plots lines for onsets of first event type\n%hold on; plot(repmat([.5 1],length(evtonsets{1}),1)',[1+(evtonsets{1} ./ mspec.TR) 1+(evtonsets{1} ./ mspec.TR)]','r','LineWidth',2)\n\n% --------------------------------------------------------------------\n% * Text list of onset times\n% --------------------------------------------------------------------\ntry\n disp(' '); disp('GA2.m output')\n [evtonsets,paramvec] = paramvec2onsets(mspec,conditions,bestp,nooverlap);\ncatch\n disp('Error building evtonsets! Incorrect model specification in model_setup_ui.m')\n evtonsets = [];\nend\n\nfname = ['ga2_output' datestr(now,31)]; fname(fname==' ')='_';fname(end-5)='h';fname(end-2)='m';fname=fname(1:end-2);\ntry\n eval(['save ' fname ' mspec conditions X bestp nooverlap evtonsets paramvec'])\ncatch\n warning('Not all vars created? Saving everything.')\n eval(['save ' fname])\nend\n\nif showres\n \n % --------------------------------------------------------------------\n % * Figure of final model matrix\n % --------------------------------------------------------------------\n try\n [out,P] = ga3power(bestp,mspec,conditions,eye(length(numframes)));\n catch\n disp('Could not execute power plot.')\n end\n \n \n % --------------------------------------------------------------------\n % * Figure of A vs D optimality\n % --------------------------------------------------------------------\ntry\n figure('Color','w');hist(diff(evtonsets{1})); xlabel('Time between trial onsets'),ylabel('Frequency'); set(gca,'FontSize',18)\n \n \n if ~exist('Vi') == 1\n disp('No Vi detected: Using white noise')\n Vi = eye(mspec.numframes); % use this for scanner white noise\n end\n \n disp('Comparing GA results (red square) to 1000 random designs (blue x)')\n for i = 1:1000, \n [X,paramvec] = construct_model(mspec,conditions,[],nooverlap); \n a(i) = calcefficiency(ones(1,size(X,2) - 1),[],pinv(X),Vi,0);\n d(i) = det(X'*X) .^ (1./size(X,2)); % 1 ./ (inv(det(X'*X)) .^ (1./size(X,2)));\n end\n figure('Color','w'); plot(a,d,'x'); set(gca,'FontSize',18); xlabel('A-efficiency'),ylabel('D-efficiency')\n [X,paramvec] = construct_model(mspec,conditions,bestp,nooverlap);\n a1 = calcefficiency(ones(1,size(X,2) - 1),[],pinv(X),Vi,0);\n d1 = 1 ./ (inv(det(X'*X)) .^ (1./size(X,2)));\n hold on;plot(a1,d1,'rs','MarkerFaceColor','r')\n title('GA result vs. random designs')\ncatch\n disp('Problem with A-vs-D optimality figure')\nend\n\nend\n\nreturn\n\n\n\n\n% --------------------------------------------------------------------\n% * get best half, crossover to fill in lists\n% -------------------------------------------------------------------- \nfunction newvec = xover(paramvec,eff,t)\n\n% save best one - now done outside xover\n%b = find(eff == max(eff)); b = b(1); b = paramvec{b};\n\n\n% add a little random noise to efficiency - 1% of var of efficiency\neff = eff + randn(1,length(eff)) .* .01 * var(eff);\n\nw = find(eff > median(eff));\n\n% we can only do crossover if not all the designs are the same\nif isempty(w)\n warning('Extremely homogenous sample!')\n % add a little random noise to efficiency - 1% of var of efficiency\n eff = eff + randn(1,length(eff)) .* .01 * mean(eff);\n w = find(eff > median(eff));\nend\n\n% check all paramvec values - works if all trial onsets are fixed\n%for i=1:length(eff),ttmp=cat(1,paramvec{1}{:});ttmp=ttmp(:);,tmax(i)=max(ttmp);tmin(i)=min(ttmp);,end,[tmin; tmax]\n\n% save best half\nnewvec = paramvec(w);\nlast = size(newvec,2); % save size for adding random variation to existing\n\n% fill in 2nd half with crossovers of first half\nwhile length(newvec) < length(paramvec)\n \n w = ceil(rand(1,2) * length(newvec));\n babyv = [];\n \n for i = 1:length(newvec{w(1)})\n \n babyv{i} = rcomb(newvec{w(1)}{i},newvec{w(2)}{i});\n \n if length(t) > 1 % if we have full trialonsetinfo\n % older, more cumbersome way based on each condition\n % construct a set of legal vectors - cannot be less time between events than min onset time\n \n it = 1;\n while any(diff(babyv{i}) < t(1,i))\n \n tmp = [Inf diff(babyv{i})]; tmp = t(1,i) - tmp; tmp(tmp < 0) = 0;\n babyv{i} = babyv{i} + ceil(tmp);\n \n it = it + 1;\n if it > 20, \n %warning(['Too many iterations to get a legal vector for ' num2str(i)]), \n babyv{i} = rcomb(newvec{w(1)}{i},newvec{w(2)}{i});\n end\n \n if it > 100\n warning(['Too many iterations to get a legal vector for cond ' num2str(i)]), \n w = ceil(rand(1,2) * length(newvec));\n babyv{i} = rcomb(newvec{w(1)}{i},newvec{w(2)}{i});\n keyboard\n end\n end\n \n else\n % newer way constrains min time only\n % t is constrained in construct_model, so leave out here\n end\n \n end\n \n newvec{end+1} = babyv;\n \nend\n\n% add random variation to existing best half\nfor i = 1:length(paramvec{1}) % i indexes events\n\n for j = 1:last % j indexes organisms\n \n p = sign(randn(1,length(newvec{j}{i})));\n \n if length(t) > 1 % if old way\n \n if t(3,i) == 1\n \n p(1) = 0;\n d = diff(newvec{j}{i}); % get diffs to make sure we don't move something illegally\n d = [Inf d] - t(1,i);\n p(find(d <= 1 & p < 0)) = 0; % set shift value to 0 for these points\n newvec{j}{i} = newvec{j}{i} + p;\n \n while any(diff(newvec{j}{i}) < t(1,i))\n \n tmp = [Inf diff(newvec{j}{i})]; tmp = t(1,i) - tmp; tmp(tmp < 0) = 0;\n newvec{j}{i} = newvec{j}{i} + ceil(tmp);\n \n end\n \n elseif t(3,i) < 1\n \n tmp2 = newvec{j}{i} + p;\n %disp('orig')\n %tmp2\n % ensure no values go outside proscribed range\n tmp2(tmp2 < t(1,i)) = t(1,i);\n tmp2(tmp2 > t(2,i)) = t(2,i);\n %disp('final')\n %tmp2\n \n newvec{j}{i} = tmp2;\n else\n warning('This should not happen. t(3,:) should be 1 or -Inf')\n end\n \n else % not old way, no constraints here (constraints in construct_model) \n newvec{j}{i} = newvec{j}{i} + p;\n newvec{j}{i}(newvec{j}{i} < 0) = 0;\n end\n \n end\n \n % warning: may not really ensure that we have stimuli too close\nend\n \n%newvec{1} = b; % re-insert best one\n\nreturn\n\n\n% --------------------------------------------------------------------\n% * crossover\n% -------------------------------------------------------------------- \nfunction c = rcomb(a,b)\n% combines 2 vectors of numbers at a random crossover point\n\nw = ceil(rand * (length(a) - 1)); \nc(1:w) = a(1:w);\nc = [c b(w+1:end)];\n\nreturn\n\n\n\n\nfunction [t,sc] = get_tonsetinfo(conditions)\n% get list of onset times to match paramvec\n% this contains info needed to see if one trial is impinging on the previous one, based on the length\n% so it saves a vector, t, of the minimum times in TRs that each paramvec can have\n% this value is compared, for each onset vector in paramvec, to the difference among onset times (trial length)\n% to make sure no trial length is less than the minimum.\n%\n% t has first row = min, 2nd = max, 3rd = trial onsets (1) or subpart (0)\n\nind = 1;\nfor i = 1:length(conditions)\n if size(conditions(i).onsets,2) == 2 % variable range of trial onsets\n tmp = sum(conditions(i).onsets);\n t(1,ind) = tmp(1);\n t(2,ind) = tmp(2);\n t(3,ind) = 1;\n ind = ind + 1;\n end\n \n for j = 1:length(conditions(i).subcond)\n if length(conditions(i).subcond(j).onsets) > 1 & any(diff(conditions(i).subcond(j).onsets))\n t(1:2,ind) = [min(conditions(i).subcond(j).onsets); max(conditions(i).subcond(j).onsets)]; \n t(3,ind) = 0;\n % need this for subcond, i think %conditions(i).subcond(j).onsets(1);\n ind = ind + 1;\n end\n end\nend\n\nt(t == 0) = -Inf;\n\nreturn\n\n\n", "meta": {"author": "canlab", "repo": "CanlabCore", "sha": "af242e120f0480c4feaeea90471c015a14f1f60e", "save_path": "github-repos/MATLAB/canlab-CanlabCore", "path": "github-repos/MATLAB/canlab-CanlabCore/CanlabCore-af242e120f0480c4feaeea90471c015a14f1f60e/CanlabCore/OptimizeDesign11/GA2/ga2.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7606506635289835, "lm_q2_score": 0.476579651063676, "lm_q1q2_score": 0.3625106278059966}} {"text": "function [X] = spm_zeros(X)\n% fills a cell or structure array with zeros\n% FORMAT [X] = spm_zeros(X)\n% X - numeric, cell or stucture array[s]\n%__________________________________________________________________________\n% Copyright (C) 2005-2013 Wellcome Trust Centre for Neuroimaging\n\n% Karl Friston\n% $Id: spm_zeros.m 6233 2014-10-12 09:43:50Z karl $\n\n\n% create zeros structure\n%--------------------------------------------------------------------------\nX = spm_unvec(zeros(spm_length(X),1),X);\n", "meta": {"author": "spm", "repo": "spm12", "sha": "3085dac00ac804adb190a7e82c6ef11866c8af02", "save_path": "github-repos/MATLAB/spm-spm12", "path": "github-repos/MATLAB/spm-spm12/spm12-3085dac00ac804adb190a7e82c6ef11866c8af02/spm_zeros.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318479832804, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.36247286494606856}} {"text": "function [ r,flag ] = reward_grid_world_goal(s,x,x_goal,x_bad,r_goal,r_bad,r_step)\n%reward \n%\n% input ---------------------------------------------------------\n%\n% o x : (1 x 1), current grid index of the agent.\n%\n% o x_goal : (1 x 1), goal grid index.\n%\n% output ---------------------------------------------------------\n%\n% o r : (1 x 1), reward value\n%\n\n\nif s == x_goal \n\n r = r_goal;\n flag = true;\n \nelseif ismember(s,x_bad)\n \n r = r_bad;\n flag = true;\n \nelse\n \n r = r_step;\n flag = false;\n \nend\n\n\nend\n\n", "meta": {"author": "epfl-lasa", "repo": "ML_toolbox", "sha": "61cc1245a2abe0c86a737d7b48bd645b28ffebee", "save_path": "github-repos/MATLAB/epfl-lasa-ML_toolbox", "path": "github-repos/MATLAB/epfl-lasa-ML_toolbox/ML_toolbox-61cc1245a2abe0c86a737d7b48bd645b28ffebee/methods/reinforcement_learning/rl_2D_gworld_functions/rewards/reward_grid_world_goal.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3624728563889898}} {"text": "function varargout = drawMesh(vertex, face, varargin)\n% Plot polygonal 2D or 3D mesh.\n%\n% Usage: drawMesh(vertex, face)\n% drawMesh(vertex, face, 'wire')\n% hMesh = drawMesh(vertex, face, color, 'surf', alpha)\n%\n% INPUT:\n% vertex - nv-by-2 matrix of [x y] or \n% nv-by-3 matrix of [x y z] vertex coordinates\n% face - nf-by-? faces matrix\n% (optional)\n% 'wire' or \n% 'surf' - plot wire mesh or surface (default) mesh;\n% color - string, defining the face color (only in 'surf' mode);\n% default: 'g' (green color);\n% alpha - a scalar between 0 and 1, defining transparency:\n% 0 - transparent, 1 - opaque (default).\n%\n% OUTPUT:\n% (optional)\n% hMesh - handle to the patch object.\n%\n% Examples:\n% 3D:\n% load('queen.mat'); figure(1); clf; drawMesh(vertex, face);\n% load('queen.mat'); figure(1); clf; drawMesh(vertex, face, 'wire');\n% load('queen.mat'); figure(1); clf; drawMesh(vertex, face, 'r', .5);\n% 2D:\n% load('home.mat'); figure(1); clf; drawMesh(vertex, face, 'wire');\n%\n% See also: drawVector, drawPlane, drawSpan, drawLine.\n\n% Copyright (c) 2009, Dr. Vladimir Bondarenko \n\n% Check input:\nerror(nargchk(2,4,nargin));\n[mv,nv] = size(vertex);\n[mf,nf] = size(face);\nif (nv~=3)&&(nv~=2) , error('Wrong dimensions of the vertex matrix.'); end;\n\n% Defaults:\nalfa = 1;\nmeshType = 'surf';\nfcolor = 'g';\n\n% Parse input:\nif nargin > 2\n for ii=1:nargin-2\n if ischar(varargin{ii})\n if strcmpi(varargin{ii}, 'surf')||strcmpi(varargin{ii}, 'wire')\n meshType = varargin{ii}; \n else\n fcolor = varargin{ii}; \n end;\n elseif isnumeric(varargin{ii}) \n alfa = varargin{ii}; \n end\n end\nend\nif (alfa > 1)||(alfa < 0), error('The alpha parameter must be in [0, 1].');end;\n \n% Plot the mesh\nswitch meshType\n case 'surf'\n hMesh = patch('vertices', vertex,'faces', face,...\n 'facecolor', fcolor, 'FaceAlpha', alfa);\n camlight('headlight');\n case 'wire'\n hMesh = patch('vertices', vertex,'faces', face,...\n 'facecolor', 'none');\nend\n%axis equal tight off\nif nargout==1, varargout{1} = hMesh; end", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/32372-quick-structured-mesh-generator/drawMesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.600188359260205, "lm_q2_score": 0.6039318337259583, "lm_q1q2_score": 0.3624728563889898}} {"text": "function [tt]=tt_kron7(tt1,tt2,s)\n%Kronecker product of two TT-tensors in the reverse order\n% [TT]=TT_KRON7(TT1,TT2,S)\n% May 26, 2011\n% Vladimir Kazeev\n% vladimir.kazeev@gmail.com\n% INM RAS\n% Moscow, Russia\n\nd1 = size(tt1,1);\nd2 = size(tt2,1);\n\ntt1{1}=permute(tt1{1},[(1:s),s+2,s+1]);\n%tt2{1}=permute(tt2{1},[(1:s),s+2,s+1]);\n\ntt = cell(d1+d2,1);\nfor i=1:d2\n\ttt{i}=tt2{i};\nend\nfor i=1:d1\n\ttt{d2+i}=tt1{i};\nend\n\n%tt{1}=permute(tt{1},[(1:s),s+2,s+1]);\n\nreturn\nend\n", "meta": {"author": "oseledets", "repo": "TT-Toolbox", "sha": "1b87616b1e84de89699697fe196eba814aabe954", "save_path": "github-repos/MATLAB/oseledets-TT-Toolbox", "path": "github-repos/MATLAB/oseledets-TT-Toolbox/TT-Toolbox-1b87616b1e84de89699697fe196eba814aabe954/core/tt_kron7.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6039318194686359, "lm_q2_score": 0.600188359260205, "lm_q1q2_score": 0.3624728478319109}} {"text": "function polys = meshFacePolygons(varargin)\n%MESHFACEPOLYGONS Returns the set of polygons that constitutes a mesh.\n%\n% POLYGONS = meshFacePolygons(V, F)\n% POLYGONS = meshFacePolygons(MESH)\n%\n% Example\n% [v f] = createCubeOctahedron;\n% polygons = meshFacePolygons(v, f);\n% areas = polygonArea3d(polygons);\n% sum(areas)\n% ans =\n% 18.9282\n%\n% See also\n% meshes3d, meshFace, polygonArea3d\n\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2013-08-20, using Matlab 7.9.0.529 (R2009b)\n% Copyright 2013 INRA - Cepia Software Platform.\n\n% extract vertices and faces\n[v, f] = parseMeshData(varargin{:});\n\n% number of faces\nif iscell(f)\n nFaces = length(f);\nelse\n nFaces = size(f, 1);\nend\n\n% allocate cell array for result\npolys = cell(nFaces, 1);\n\n% compute polygon corresponding to each face\nif iscell(f)\n for i = 1:nFaces\n polys{i} = v(f{i}, :);\n end\nelse\n for i = 1:nFaces\n polys{i} = v(f(i,:), :);\n end\nend", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_geom3d/meshes3d/meshFacePolygons.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.603931819468636, "lm_q2_score": 0.6001883592602049, "lm_q1q2_score": 0.3624728478319109}} {"text": "function data = montage_image_Worsley(image_name, varargin)\n% ::\n%\n% data = montage_image_Worsley(3D or 4D image name)\n%\n% Make a compact montage of some images\n% Designed by Keith Worsley for pca_image.m\n% Adapted by Tor Wager, Feb 2008\n%\n% Limits and Colormap are designed for component loadings between [-1 1]\n%\n% :Examples:\n% ::\n%\n% create_figure('Montage');\n% montage_image_Worsley('test_run1_pca.img');\n%\n% data = montage_image_Worsley(imgname, 'pcacov') % changes scaling and colormap\n% data = montage_image_Worsley(imgname, 'pcacov', [1 3 5]) % show only\n% volumes 1, 3, 5 in image(s)\n\n% ..\n% COPYRIGHT: Copyright 2002 K.J. Worsley, \n% Department of Mathematics and Statistics,\n% McConnell Brain Imaging Center, \n% Montreal Neurological Institute,\n% McGill University, Montreal, Quebec, Canada. \n% worsley@math.mcgill.ca\n%\n% Permission to use, copy, modify, and distribute this\n% software and its documentation for any purpose and without\n% fee is hereby granted, provided that this copyright\n% notice appears in all copies. The author and McGill University\n% make no representations about the suitability of this\n% software for any purpose. It is provided \"as is\" without\n% express or implied warranty.\n% ..\n%\n% ..\n% Tor Wager\n% ..\n\nscaletype = 'pcacor'; % Scale image and colors for PCA component viewing\nwhichvols = [];\n\nfor i = 1:length(varargin)\n if ischar(varargin{i})\n switch varargin{i}\n % reserved keywords\n case 'noscale', scaletype = 'none';\n \n case 'pcacov', scaletype = 'pcacov';\n \n case 'whichvols', whichvols = varargin{i + 1};\n \n otherwise, warning(['Unknown input string option:' varargin{i}]);\n end\n end\nend\n \n% Get data\n% -------------------------------------------------------------------------\nimage_name = expand_4d_filenames(image_name); % for SPM2 compatibility\nV = spm_vol(image_name);\n\nif isempty(whichvols)\n wh_vols = 1:length(V);\n \nelse\n % select only certain vols\n V = V(wh_vols);\nend\n \np = length(V);\ngo_ok = 1;\nif p > 10\n go_ok = input('More than 10 images! Are you sure you want to continue?'); \nend\nif ~go_ok, return, end\n\ndata = spm_read_vols(V);\n\n\n% Setup stuff\n% -------------------------------------------------------------------------\n\nnumslices = V(1).dim(3);\n% p = num comps\nnumys=V(1).dim(2);\nnumxs=V(1).dim(1);\n xr=1:numxs;\n yr=1:numys;\n %N=prod(V(1).dim(1:3));\n\nnrow=round(sqrt(numslices/3.25/p));\nnrow=max(nrow,1);\n\nncol=ceil(numslices/nrow);\n\nnumxr=length(xr);\nnumyr=length(yr);\nbigmat=zeros(p*nrow*numyr,ncol*numxr);\n\n% Create big mat\n% -------------------------------------------------------------------------\nr=0;\nfor k=1:p\n c=0; \n for i=1:numslices\n bigmat((1:numyr)+r*numyr,(1:numxr)+c*numxr)=flipud(data(xr,yr,i,k)');\n c=c+1;\n if c>=ncol && i.\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym erfc (@var{x})\n%% Symbolic erfc function.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% y = erfc (x)\n%% @result{} y = (sym) erfc(x)\n%% @end group\n%% @end example\n%%\n%% Note: this file is autogenerated: if you want to edit it, you might\n%% want to make changes to 'generate_functions.py' instead.\n%%\n%% @end defmethod\n\n\nfunction y = erfc(x)\n if (nargin ~= 1)\n print_usage ();\n end\n y = elementwise_op ('erfc', x);\nend\n\n\n%!error erfc (sym(1), 2)\n%!assert (isequaln (erfc (sym(nan)), sym(nan)))\n\n%!shared x, d\n%! d = 1;\n%! x = sym('1');\n\n%!test\n%! f1 = erfc(x);\n%! f2 = erfc(d);\n%! assert( abs(double(f1) - f2) < 1e-15 )\n\n%!test\n%! D = [d d; d d];\n%! A = [x x; x x];\n%! f1 = erfc(A);\n%! f2 = erfc(D);\n%! assert( all(all( abs(double(f1) - f2) < 1e-15 )))\n\n%!test\n%! % round trip\n%! y = sym('y');\n%! A = erfc (d);\n%! f = erfc (y);\n%! h = function_handle (f);\n%! B = h (d);\n%! assert (A, B, -eps)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/erfc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6076631698328917, "lm_q1q2_score": 0.3624304562525671}} {"text": "% THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION IS RELEASED \"AS IS.\" THE U.S. GOVERNMENT MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, CONCERNING THIS SOFTWARE AND ANY ACCOMPANYING DOCUMENTATION, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL THE U.S. GOVERNMENT BE LIABLE FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE, OR INABILITY TO USE, THIS SOFTWARE OR ANY ACCOMPANYING DOCUMENTATION, EVEN IF INFORMED IN ADVANCE OF THE POSSIBILITY OF SUCH DAMAGES.\n%\n% file: get_rate_diff_ci3.m\n% computes confidence interval\n% - assumes x's are the number of successes in n Bernoulli trials\n% - finds confidence interval around the estimate for r1-r2\n% - with confidence level 1 - alpha\n% - finds a symmetrical two-sided interval, unless one side\n% would cross zero or one, in which case the interval is \n% offset.\n\n% 030113 tdr created\n\nfunction ci = get_rate_diff_ci3(x1,A1,x2,A2,alpha,method,verbose)\n% balanced width\n\nr1_hat = x1/A1; r2_hat = x2/A2; delta_r_hat = r1_hat - r2_hat;\n\ntolerance = 1e-6;\nmax_count = 50;\ncount = 0;\n\n%set limits on search for width\nwidth_too_small = 0; width_too_big = 1e12;\n\n%check that width_too_big is indeed too big\na = delta_r_hat - width_too_big; b = delta_r_hat + width_too_big; \nlower_tail_contribution = 1- rate_diff(x1,A1,x2,A2,a); upper_tail_contribution = rate_diff(x1,A1,x2,A2,b);\nalpha_width_too_big = lower_tail_contribution + upper_tail_contribution;\nif alpha_width_too_big > alpha, error('Failure to set upper bound on CI width'); end;\n\n% set initial guess and corresponding alpha\nwidth_guess = (width_too_big + width_too_small)/2;\na = delta_r_hat - width_guess; b = delta_r_hat + width_guess; \nlower_tail_contribution = 1- rate_diff(x1,A1,x2,A2,a); upper_tail_contribution = rate_diff(x1,A1,x2,A2,b);\nalpha_guess = lower_tail_contribution + upper_tail_contribution;\n\n% binary search\nwhile (abs(alpha_guess - alpha) > tolerance & (count < max_count))\n if (alpha_guess < alpha)\n width_too_big = width_guess;\n width_guess = (width_too_small + width_guess)/2;\n else\n width_too_small = width_guess;\n width_guess = (width_too_big + width_guess)/2;\n end;\n count = count+1;\n a = delta_r_hat - width_guess; b = delta_r_hat + width_guess; \n lower_tail_contribution = 1- rate_diff(x1,A1,x2,A2,a); upper_tail_contribution = rate_diff(x1,A1,x2,A2,b);\n alpha_guess = lower_tail_contribution + upper_tail_contribution;\nend;\n\nci = [delta_r_hat a b];\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/3031-accurate-confidence-intervals/ci_tool/get_rate_diff_ci3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5964331462646255, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.362430456252567}} {"text": "% Copyright 2011 Zdenek Kalal\n%\n% This file is part of TLD.\n% \n% TLD is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% TLD is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with TLD. If not, see .\n\nfunction ntuple = ntuples(varargin)\n% Computes all possible ntupples.\n\nx = varargin;\n\nntuple = x{1};\nfor i = 2:length(x)\n num_col = size(ntuple,2);\n num_item = length(x{i});\n ntuple = repcel(ntuple, 1, num_item);\n newline = repmat(x{i},1,num_col);\n ntuple = [ntuple;newline];\nend\n", "meta": {"author": "zk00006", "repo": "OpenTLD", "sha": "953e2df96575ba9e3e0720b8f91e936c26c9b2e3", "save_path": "github-repos/MATLAB/zk00006-OpenTLD", "path": "github-repos/MATLAB/zk00006-OpenTLD/OpenTLD-953e2df96575ba9e3e0720b8f91e936c26c9b2e3/utils/ntuples.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5964331462646254, "lm_q2_score": 0.6076631698328916, "lm_q1q2_score": 0.3624304562525669}} {"text": "function forwardTransportQuantReverseFigures(model)\n% Figure of the qualitatively forward transport reactions that are quantitatively reversible.\n% Creates a vertical errorbar figure of the qualitatively forward transport reactions\n% that are quantitatively reversible, whether from group contribution or\n% Keq, that then need to be assigned to be forward, to limit the growth rate\n% i.e. abc transporters or reactions involving protons.\n%\n% USAGE:\n%\n% forwardTransportQuantReverseFigures(model)\n%\n% INPUT:\n% model: structure with fields:\n%\n% * .transportRxnBool\n% * .dGt0Min\n% * .dGt0Max\n% * .directions.forwardReversible\n%\n% .. Author: - Ronan M.T. Fleming\n\n[nMet,nRxn]=size(model.S);\n\ndirections=model.directions;\n\n%transport reactions\nforwardTransportQuantReverseBool=false(nRxn,1);\nfor n=1:nRxn\n %if reaction directionality changed from forward to Reversible and als\n %a transport reaction\n if directions.forwardReversible(n) && model.transportRxnBool(n)\n %abc transporters or reactions involving protons\n if ~isempty(strfind(model.rxns{n},'abc')) || nnz(strcmp('h[c]',model.mets(model.S(:,n)~=0)))~=0 || nnz(strcmp('h[e]',model.mets(model.S(:,n)~=0)))~=0\n forwardTransportQuantReverseBool(n,1)=1;\n end\n end\nend\n\nif 0\n X1=1:nRxn;\n %dGrt0\n Y0=(model.DrGt0Min+model.DrGt0Max)/2;\n L0=Y0-model.DrGt0Min;\n U0=model.DrGt0Max-Y0;\n %dGrt\n Y=(model.DrdGtMin+model.DrGtMax)/2;\n L=Y-model.DrGtMin;\n U=model.DrGtMax-Y;\n %find the amount of reactions with normal cumulative distribution over\n %range of dGt0\n P = normcdf(0,Y0,L0);\nelse\n Y0=model.DrGt0Mean;\n L0=model.DrGt0Mean-model.DrGt0Min;\n U0=model.DrGt0Max-model.DrGt0Mean;\n\n Y=model.DrGtMean;\n L=model.DrGtMean-model.DrGtMin;\n U=model.DrGtMax-model.DrGtMean;\n P=directions.forwardProbability;\nend\n%sort by probability that a reaction is forward (puts any NaN first)\n[tmp,xip]=sort(P,'descend');\n\n% only take the indices of the problematic reactions, but be sure to\n% take them in order of descending P\nxip2=zeros(nnz(forwardTransportQuantReverseBool),1);\np=1;\nfor n=1:nRxn\n if forwardTransportQuantReverseBool(xip(n))\n xip2(p)=xip(n);\n p=p+1;\n end\nend\nxip=xip2;\nX1=1:length(xip);\n\n%replace the NaN due to zero st dev\nforwardReversible_dGf_dG0Fwd=false(nRxn,1);\nforwardReversible_dGf_dG0Rev=false(nRxn,1);\nfor n=1:nRxn\n %only the transport reactions\n if forwardTransportQuantReverseBool(n)\n if model.DrGt0Min(n)==model.DrGt0Max(n)\n if model.DrGt0Min(n)<0\n forwardReversible_dGf_dG0Fwd(n)=1;\n else\n forwardReversible_dGf_dG0Rev(n)=1;\n end\n end\n end\nend\nnNaNpLHS=nnz(forwardReversible_dGf_dG0Fwd);\nnNaNpRHS=nnz( forwardReversible_dGf_dG0Rev);\nif (nNaNpLHS+nNaNpRHS)~=nnz(isnan((P(forwardTransportQuantReverseBool))))\n warning('ExtraCategory');\nend\n%nans are first in the ordering of indexes\nNaNPInd=xip(1:nNaNpLHS+nNaNpRHS);\n%sorts indices of the zero std dev met by their mean dG0t\n[tmp,xipNaNPInd]=sort(Y0(NaNPInd));\n%new ordering\nxip=[NaNPInd(xipNaNPInd(1:nNaNpLHS)); xip(nNaNpLHS+nNaNpRHS+1:end); NaNPInd(xipNaNPInd(nNaNpLHS+1:nNaNpLHS+nNaNpRHS))];\n\n% close all\nfigure1 = figure;\n% Create axes\naxes1 = axes('Parent',figure1,'Color',[0.702 0.7804 1]);\nhold on;\n\n%upper and lower X\nminX=min(model.DrGtMin(forwardTransportQuantReverseBool));\nmaxX=max(model.DrGtMax(forwardTransportQuantReverseBool));\n%baselines\nY1(1:length(xip))=minX;\nP(P==1)=NaN;\nP(P==0.5)=NaN;\nY1(~isnan(P(xip)) & P(xip)~=1 & P(xip)~=0.5)=maxX;\nbar_handle6=barh(X1,Y1,1,'BaseValue',minX,'FaceColor',[0.86 0.86 0.86],'EdgeColor','none');\n\n%dGrt errorbar\n% PLOTERR(X,Y,{LX,UX},{LY,UY}) plots the graph of vector X vs. vector Y\n% with error bars specified by LX and UX in horizontal direction and\n% with error bars specified by LY and UY in vertical direction.\n% H = PLOTERR(...) returns a vector of line handles in this order:\n% H(1) = handle to datapoints\n% H(2) = handle to errorbar y OR errorbar x if error y not specified\n% H(3) = handle to errorbar x if error y specified\n% LineSpec=[''LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r'']\nLineSpec='r.';\nhE = ploterr(Y(xip),X1,{model.DrGtMin(xip) model.DrGtMax(xip)},[],LineSpec,'hhxy',0);\nset(hE(2),'LineWidth',5);\n% hE=errorbar(X1,Y(xip),L(xip),U(xip),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','r');\n%dGrt0 errorbar on top and inside dGrt\nLineSpec='b.';\nhE = ploterr(Y0(xip),X1,{model.DrGt0Min(xip) model.DrGt0Max(xip)},[],LineSpec,'hhxy',0);\nset(hE(2),'LineWidth',5);\n% hE2=errorbar(X1,Y0(xip),L0(xip),U0(xip),'LineStyle','none','LineWidth',2,'DisplayName','forwardReversible','Color','b');\n\n%mean dGrt0\nplot(Y0(xip),X1,'.','LineStyle','none','Color',[0.3412 0.7961 0.1922]);\n%zero line\n%cumulative probability that reaction is really forward, assuming a\n%normal distribution about the mean dGt0\n[AX,H1,H2]=plotyy(zeros(1,length(X1)),X1,P(xip),X1);\nset(gca,'XTick',[]);\nset(AX(1),'XTickMode','manual','YTick',floor(minX/100)*200:50:maxX);%,'TickDirMode','manual','TickDir','out');\nset(AX(2),'YTick',1:length(xip));\nset(H1,'LineStyle','none')\nset(H2,'LineStyle','-','LineWidth',2,'Color','k')\nplot(zeros(1,length(X1)),X1,'w','LineWidth',2,'LineStyle','--');\n%axis limits\nset(AX(1),'FontSize',10,'YColor','k')\nset(AX(1),'YTick',[],'YTickLabelMode','manual');\nset(AX(1),'XTickMode','manual','XTick',floor(minX/100)*200:50:maxX);\nset(get(AX(1),'Xlabel'),'String','\\Delta_{r}G^{\\primem} (blue) or \\Delta_{r}G^{\\prime} (red) (kJ/mol)')\nset(get(AX(1),'Xlabel'),'FontSize',10)\nset(AX(1),'Position',[0.05 0.1 0.4 0.8]);\n% axis(AX(1),[minX maxX 0 length(X1)+0.5 ]);\naxis(AX(1),[-350 350 0 length(X1)+0.5 ]);\n\nset(AX(2),'FontSize',10,'YColor','k')\nset(AX(2),'YTick',1:length(X1),'YTickLabelMode','manual');\nset(AX(2),'XAxisLocation','top');\nset(get(AX(2),'Xlabel'),'String','P(\\Delta_{r}G^{\\primem}<0)');\nset(get(AX(2),'Xlabel'),'FontSize',10);\naxis(AX(2),[0 1 0.5 length(X1)+0.5 ]);\nset(AX(2),'Position',[0.05 0.1 0.4 0.8]);\n\n% ylabel('Reactions, sorted by P(\\Delta_{r}G^{\\primem}<0) (blue)');\ntitle({'Qualitatively forward transport reactions, but quantitatively reversible'},'FontSize',16)\n\nfor n=1:length(xip)\n% textLen(n)=length(model.rxn(xip(n)).officialName)+length(model.rxn(xip(n)).equation);\n% textLen(n)=length(model.rxn(xip(n)).equation);\n textLen(n)=length(model.rxnNames{xip(n)});\nend\ntextLenMax=max(textLen);\nfor n=1:length(xip)\n equation=printRxnFormula(model,model.rxns{xip(n)},0);\n YTickLabel{n}=[model.rxnNames{xip(n)} blanks(textLenMax-textLen(n)+5) equation{1}];\n %get rid of the cytoplasmic compartment abbreviations\n YTickLabel{n} = strrep(YTickLabel{n}, '[c]', '');\n YTickLabel{n} = strrep(YTickLabel{n}, '_', '\\_');\nend\nset(AX(2),'YTickLabel',YTickLabel,'FontSize',10);\nsaveas(figure1 ,'forwardTransportQuantReverseBoolSetToForward','fig');\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/thermo/directionalityReport/forwardTransportQuantReverseFigures.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.36237550459407475}} {"text": "%% Simulation Data\nsimu = simulationClass(); % Initialize Simulation Class\nsimu.simMechanicsFile = 'RM3.slx'; % Specify Simulink Model File\nsimu.rampTime = 100; % Wave Ramp Time [s]\nsimu.endTime=200; % Simulation End Time [s]\nsimu.dt = 0.1; % Simulation Time-Step [s]\nsimu.explorer = 'off';\nsimu.cicEndTime = 20;\n\n%% Wave Information\n% Irregular Waves using BS Spectrum with State Space Calculation\nwaves = waveClass('irregular'); % Initialize Wave Class and Specify Type\nwaves.height = 2.5; % Significant Wave Height [m]\nwaves.period = 8; % Peak Period [s]\nwaves.spectrumType = 'PM'; % Specify Wave Spectrum Type\nwaves.phaseSeed = 1;\n\n%% Body Data\n% Float\nbody(1) = bodyClass('../../../../examples/RM3/hydroData/rm3.h5');\nbody(1).geometryFile = '../../../../examples/RM3/geometry/float.stl'; \nbody(1).mass = 'equilibrium';\nbody(1).inertia = [20907301 21306090.66 37085481.11]; \n\n% Spar/Plate\nbody(2) = bodyClass('../../../../examples/RM3/hydroData/rm3.h5');\nbody(2).geometryFile = '../../../../examples/RM3/geometry/plate.stl';\nbody(2).mass = 'equilibrium';\nbody(2).inertia = [94419614.57 94407091.24 28542224.82];\n\n%% PTO and Constraint Parameters\n% Floating (3DOF) Joint\nconstraint(1) = constraintClass('Constraint1'); % Initialize Constraint Class for Constraint1\nconstraint(1).location = [0 0 0]; % Constraint Location [m]\n\n% Translational PTO\npto(1) = ptoClass('PTO1'); % Initialize PTO Class for PTO1\npto(1).stiffness = 0; % PTO Stiffness [N/m]\npto(1).damping = 1200000; % PTO Damping [N/(m/s)]\npto(1).location = [0 0 0]; % PTO Location [m]\n", "meta": {"author": "WEC-Sim", "repo": "WEC-Sim", "sha": "973dd8c437077b20b361a5c0dba733da98ca9285", "save_path": "github-repos/MATLAB/WEC-Sim-WEC-Sim", "path": "github-repos/MATLAB/WEC-Sim-WEC-Sim/WEC-Sim-973dd8c437077b20b361a5c0dba733da98ca9285/tests/RegressionTests/IrregularWaves/irregularCIC/wecSimInputFile.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.5389832206876841, "lm_q1q2_score": 0.36237550459407475}} {"text": "classdef LDClassifier < Algorithm\n \n properties (Access = public)\n shouldTrain = false;\n end\n \n properties (Access = private)\n classifier;\n end\n \n methods (Access = public)\n \n function obj = LDClassifier()\n obj.name = 'LinearDiscriminant';\n obj.inputPort = DataType.kTable;\n obj.outputPort = DataType.kTable;\n end\n \n function dataOut = compute(obj,data)\n if obj.shouldTrain\n obj.train(data);\n dataOut = [];\n else\n dataOut = obj.test(data);\n end\n end\n \n function train(obj,table)\n \n obj.classifier = fitcdiscr(...\n table.features, ...\n table.label, ...\n 'DiscrimType', 'linear', ...\n 'Gamma', 0, ...\n 'FillCoeffs', 'off');\n end\n \n function metrics = computeMetrics(obj,table)\n flops = timeit(@()obj.test(table)) / Constants.kReferenceComputingTime;\n memory = Helper.ComputeObjectSize(obj.classifier);\n outputSize = table.height * Constants.kClassificationResultBytes;\n metrics = Metric(flops,memory,outputSize);\n end\n \n function labels = test(obj,table)\n labels = predict(obj.classifier,table.features);\n end\n \n function str = toString(obj)\n str = sprintf('%s',obj.name);\n end\n end\nend\n", "meta": {"author": "avenix", "repo": "WDK", "sha": "c525222b02bd390b4758d30f1cd8b19af043108e", "save_path": "github-repos/MATLAB/avenix-WDK", "path": "github-repos/MATLAB/avenix-WDK/WDK-c525222b02bd390b4758d30f1cd8b19af043108e/ARC/algorithm/7-classification/LDClassifier.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.672331699179286, "lm_q2_score": 0.538983220687684, "lm_q1q2_score": 0.3623755045940747}} {"text": "%\n% Visualize the outcome of the skeleton extraction \n% process for a set of characters.\n%\nnimg = 9;\nload('data_background_processed','D');\n\nnrow = ceil(sqrt(nimg));\nfigure(1)\nclf;\nlist_I = cell(nrow,1);\nlist_T = cell(nrow,1);\nfor i=1:nimg\n I = D.get('image','random','random','random');\n T = extract_skeleton(I);\n subplot(nrow,nrow,i);\n viz_skel.plot_trace(I,T);\n fprintf(1,'image %d\\n',i);\n \n list_I{i} = I;\n list_T{i} = T;\nend", "meta": {"author": "brendenlake", "repo": "BPL", "sha": "2c7f679bb0055f29cbade7ef099897c3342bcb79", "save_path": "github-repos/MATLAB/brendenlake-BPL", "path": "github-repos/MATLAB/brendenlake-BPL/BPL-2c7f679bb0055f29cbade7ef099897c3342bcb79/bottomup/skeleton/test_generate_skeleton.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3623456753854544}} {"text": "classdef MeshStructure\n %MeshStructure class\n % contains information about the domain and the mesh size\n\n properties\n dimension\n dims\n cellsize\n cellcenters\n facecenters\n corners\n edges\n end\n\n methods\n function meshVar = MeshStructure(dimension, dims, cellsize, ...\n cellcenters, facecenters, corners, edges)\n if nargin>0\n meshVar.dimension = dimension;\n meshVar.dims = dims;\n meshVar.cellsize = cellsize;\n meshVar.cellcenters = cellcenters;\n meshVar.facecenters = facecenters;\n meshVar.corners= corners;\n meshVar.edges= edges;\n end\n end\n end\nend\n", "meta": {"author": "simulkade", "repo": "FVTool", "sha": "49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6", "save_path": "github-repos/MATLAB/simulkade-FVTool", "path": "github-repos/MATLAB/simulkade-FVTool/FVTool-49f5cb9ee8a5ff0befebd9fa71a99feae7c724d6/Classes/@MeshStructure/MeshStructure.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5926665999540698, "lm_q2_score": 0.6113819732941511, "lm_q1q2_score": 0.3623456753854544}} {"text": "function x = perform_histogram_equalization(x,y,options)\n\n% perform_histogram_equalization - perform histogram equalization\n%\n% x = perform_histogram_equalization(x,y,options);\n%\n% Change the values of x so that its ordered values match\n% the ordered values of y.\n%\n% You can set\n% options.cols=1 to operate along columns\n% options.rows=1 to operate along rows\n% options.absval to operate only on absolute values.\n% \n% Copyright (c) 2006 Gabriel Peyr?\n\n\n\noptions.null = 0;\n\nif isfield(options ,'absval')\n absval = options.absval;\nelse\n absval = 0; \nend\nif isfield(options ,'cols')\n cols = options.cols;\nelse\n cols = 0; \nend\nif isfield(options ,'rows')\n rows = options.rows;\nelse\n rows = 0; \nend\nif isfield(options, 'match_ycbcr')\n match_ycbcr = options.match_ycbcr;\nelse\n match_ycbcr = 1;\nend\n\n% for color images\nif size(x,3)>1\n if size(x,3)~=size(y,3)\n error('x and y images must have the same number of components.');\n end\n \n if size(x,3)==3 && match_ycbcr\n x = rgb2ycbcr(x);\n y = rgb2ycbcr(y);\n end\n % match each color\n for i=1:3\n x(:,:,i) = perform_histogram_equalization(x(:,:,i), y(:,:,i), options);\n end\n if size(x,3)==3 && match_ycbcr\n x = ycbcr2rgb(x);\n end\n return;\nend\n\n\n\n\nif cols && rows\n error('You cannote specify both cols and rows');\nend\nif cols && size(x,2)>1\n if not(size(x,2)==size(y,2))\n error('x and y must have same number of columns');\n end\n for i=1:size(x,2)\n x(:,i) = perform_histogram_equalization(x(:,i),y(:,i),options);\n end\n return;\nend\nif rows && size(x,1)>1\n if not(size(x,1)==size(y,1))\n error('x and y must have same number of rows');\n end\n for i=1:size(x,1)\n x(i,:) = perform_histogram_equalization(x(i,:),y(i,:),options);\n end\n return;\nend\n\nsx = size(x);\nx = x(:);\ny = y(:);\n\n\nif absval\n s = sign(x);\n x = abs(x);\n y = abs(y);\nend\n\n[vx,Ix] = sort(x);\n[vy,Iy] = sort(y);\n\nnx = length(x);\nny = length(y);\n\nax = linspace(1,ny,nx);\nay = 1:ny;\nvx = interp1(ay,vy,ax);\nx(Ix) = vx;\n\n\nif absval\n x = x .* s;\nend\n\nx = reshape(x,sx);\n\n\n\n\nfunction rgb = ycbcr2rgb(in)\n%YCBCR2RGB Convert YCbCr values to RGB color space.\n% RGBMAP = YCBCR2RGB(YCBCRMAP) converts the YCbCr values in the\n% colormap YCBCRMAP to the RGB color space. If YCBCRMAP is M-by-3 and\n% contains the YCbCr luminance (Y) and chrominance (Cb and Cr) color\n% values as columns, then RGBMAP is an M-by-3 matrix that contains\n% the red, green, and blue values equivalent to those colors.\n%\n% RGB = YCBCR2RGB(YCBCR) converts the YCbCr image to the equivalent\n% truecolor image RGB.\n%\n% Class Support\n% -------------\n% If the input is a YCbCr image, it can be of class uint8, uint16,\n% or double; the output image is of the same class as the input \n% image. If the input is a colormap, the input and output \n% colormaps are both of class double.\n%\n% Example\n% -------\n% Convert image from RGB space to YCbCr space and back.\n%\n% rgb = imread('board.tif');\n% ycbcr = rgb2ycbcr(rgb);\n% rgb2 = ycbcr2rgb(ycbcr);\n%\n% See also NTSC2RGB, RGB2NTSC, RGB2YCBCR.\n\n% Copyright 1993-2003 The MathWorks, Inc. \n% $Revision: 1.15.4.2 $ $Date: 2003/08/23 05:54:51 $\n\n% Reference:\n% Charles A. Poynton, \"A Technical Introduction to Digital Video\",\n% John Wiley & Sons, Inc., 1996\n\n%initialize variables\nisColormap = false;\nclassin = class(in);\n\n%must reshape colormap to be m x n x 3 for transformation\nif (ndims(in)==2)\n %colormap\n isColormap=true;\n colors = size(in,1);\n in = reshape(in, [colors 1 3]);\nend\n\n%initialize output\nrgb = in;\n\n% set up constants for transformation. T alone will transform YCBCR in [0,255]\n% to RGB in [0,1]. We must scale T and the offsets to get RGB in the appropriate\n% range for uint8 and for uint16 arrays.\nT = [65.481 128.553 24.966;...\n -37.797 -74.203 112; ...\n 112 -93.786 -18.214];\nTinv = T^-1;\noffset = [16;128;128];\nTd = 255 * Tinv;\noffsetd = Tinv * offset;\nT8 = Td;\noffset8 = T8 * offset;\nT16 = (65535/257) * Tinv;\noffset16 = 65535 * Tinv * offset;\n\nswitch classin\n case 'double'\n for p = 1:3\n rgb(:,:,p) = Td(p,1) * in(:,:,1) + Td(p,2) * in(:,:,2) + ...\n Td(p,3) * in(:,:,3) - offsetd(p);\n end\n \n case 'uint8'\n for p = 1:3\n rgb(:,:,p) = imlincomb(T8(p,1),in(:,:,1),T8(p,2),in(:,:,2), ...\n T8(p,3),in(:,:,3),-offset8(p));\n end\n \n case 'uint16'\n for p = 1:3\n rgb(:,:,p) = imlincomb(T16(p,1),in(:,:,1),T16(p,2),in(:,:,2), ...\n T16(p,3),in(:,:,3),-offset16(p));\n end \nend\n\nif isColormap\n rgb = reshape(rgb, [colors 3 1]);\nend\n\nif isa(rgb,'double')\n rgb = min(max(rgb,0.0),1.0);\nend\n\n%%%\n%Parse Inputs\n%%%\nfunction X = parse_inputs(varargin)\n\nchecknargin(1,1,nargin,mfilename);\nX = varargin{1};\n\nif ndims(X)==2\n checkinput(X,{'uint8','uint16','double'},'real nonempty',mfilename,'MAP',1);\n if (size(X,2) ~=3 || size(X,1) < 1)\n eid = sprintf('Images:%s:invalidSizeForColormap',mfilename);\n msg = 'MAP must be a m x 3 array.';\n error(eid,'%s',msg);\n end\nelseif ndims(X)==3\n checkinput(X,{'uint8','uint16','double'},'real',mfilename,'RGB',1);\n if (size(X,3) ~=3)\n eid = sprintf('Images:%s:invalidTruecolorImage',mfilename);\n msg = 'RGB must a m x n x 3 array.';\n error(eid,'%s',msg);\n end\nelse\n eid = sprintf('Images:%s:invalidInputSize',mfilename);\n msg = ['RGB2GRAY only accepts two-dimensional or three-dimensional ' ...\n 'inputs.'];\n error(eid,'%s',msg);\nend\n\n\n\nfunction out = rgb2ycbcr(in)\n%RGB2YCBCR Convert RGB values to YCBCR color space.\n% YCBCRMAP = RGB2YCBCR(MAP) converts the RGB values in MAP to\n% the YCBCR color space. YCBCRMAP is a M-by-3 matrix that contains\n% the YCBCR luminance (Y) and chrominance (Cb and Cr) color values as\n% columns. Each row represents the equivalent color to the\n% corresponding row in the RGB colormap.\n%\n% YCBCR = RGB2YCBCR(RGB) converts the truecolor image RGB to the\n% equivalent image in the YCBCR color space.\n%\n% Class Support\n% -------------\n% If the input is an RGB image, it can be of class uint8, uint16,\n% or double; the output image is of the same class as the input \n% image. If the input is a colormap, the input and output colormaps \n% are both of class double.\n%\n% Examples\n% --------\n% Convert RGB image to YCbCr.\n%\n% RGB = imread('board.tif');\n% YCBCR = rgb2ycbcr(RGB);\n%\n% Convert RGB color space to YCbCr.\n%\n% map = jet(256);\n% newmap = rgb2ycbcr(map);\n\n% See also NTSC2RGB, RGB2NTSC, YCBCR2RGB.\n\n% Copyright 1993-2003 The MathWorks, Inc. \n% $Revision: 1.13.4.2 $ $Date: 2003/08/23 05:54:37 $\n\n% Reference: \n% C.A. Poynton, \"A Technical Introduction to Digital Video\", John Wiley\n% & Sons, Inc., 1996, p. 175\n\n\n%initialize variables\nisColormap = false;\nclassin = class(in);\n\n%must reshape colormap to be m x n x 3 for transformation\nif (ndims(in)==2)\n %colormap\n isColormap=true;\n colors = size(in,1);\n in = reshape(in, [colors 1 3]);\nend\n\n% set up constants for transformation\nT = [65.481 128.553 24.966;...\n -37.797 -74.203 112; ...\n 112 -93.786 -18.214];\noffset = [16;128;128];\noffset16 = 257 * offset;\nfac8 = 1/255;\nfac16 = 257/65535;\n\n%initialize output\nout = in;\n\n% do transformation\nswitch classin\n case 'uint8'\n for p=1:3\n out(:,:,p) = imlincomb(T(p,1)*fac8,in(:,:,1),T(p,2)*fac8,in(:,:,2),...\n T(p,3)*fac8,in(:,:,3),offset(p));\n end\n case 'uint16'\n for p=1:3\n out(:,:,p) = imlincomb(T(p,1)*fac16,in(:,:,1),T(p,2)*fac16,in(:,:,2),...\n T(p,3)*fac16,in(:,:,3),offset16(p));\n end\n case 'double'\n % These equations transform RGB in [0,1] to YCBCR in [0, 255]\n for p=1:3\n out(:,:,p) = T(p,1) * in(:,:,1) + T(p,2) * in(:,:,2) + T(p,3) * ...\n in(:,:,3) + offset(p);\n end\n out = out / 255;\nend\n\nif isColormap\n out = reshape(out, [colors 3 1]);\nend\n\n", "meta": {"author": "gpeyre", "repo": "matlab-toolboxes", "sha": "0cd622c988cda6f63f64d35cd7bd096fa578e5c6", "save_path": "github-repos/MATLAB/gpeyre-matlab-toolboxes", "path": "github-repos/MATLAB/gpeyre-matlab-toolboxes/matlab-toolboxes-0cd622c988cda6f63f64d35cd7bd096fa578e5c6/toolbox_nlmeans/toolbox/perform_histogram_equalization.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819591324418, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3623456669922823}} {"text": "function fiff_write_double_complex_matrix(fid,kind,mat)\n%\n% fiff_write_double_complex_matrix(fid,kind,mat)\n%\n% Writes a double-precision complex matrix tag\n%\n% fid An open fif file descriptor\n% kind The tag kind\n% mat The data matrix\n%\n\n%\n%\n% Author : Matti Hamalainen, MGH Martinos Center\n% License : BSD 3-clause\n%\n% Revision 1.1 2006/09/23 14:43:56 msh\n% Added routines for writing complex and double complex matrices.\n% Added routine for writing double-precision real matrix.\n%\n%\n\nme='MNE:fiff_write_double_complex_matrix';\n\nif nargin ~= 3\n error(me,'Incorrect number of arguments');\nend\n\nFIFFT_COMPLEX_DOUBLE = 21;\nFIFFT_MATRIX = bitshift(1,30);\nFIFFT_MATRIX_COMPLEX_DOUBLE = bitor(FIFFT_COMPLEX_DOUBLE,FIFFT_MATRIX);\nFIFFV_NEXT_SEQ=0;\n\ndatasize = 2*8*numel(mat) + 4*3;\n\ncount = fwrite(fid,int32(kind),'int32');\nif count ~= 1\n error(me,'write failed');\nend\ncount = fwrite(fid,int32(FIFFT_MATRIX_COMPLEX_DOUBLE),'int32');\nif count ~= 1\n error(me,'write failed');\nend\ncount = fwrite(fid,int32(datasize),'int32');\nif count ~= 1\n error(me,'write failed');\nend\ncount = fwrite(fid,int32(FIFFV_NEXT_SEQ),'int32');\nif count ~= 1\n error(me,'write failed');\nend\nnrow = size(mat,1);\nncol = size(mat,2);\nfor j = 1:nrow\n for k = 1:ncol\n count = fwrite(fid,real(mat(j,k)),'double');\n if count ~= 1\n error(me,'write failed');\n end\n count = fwrite(fid,imag(mat(j,k)),'double');\n if count ~= 1\n error(me,'write failed');\n end\n end\nend\ndims(1) = size(mat,2);\ndims(2) = size(mat,1);\ndims(3) = 2;\ncount = fwrite(fid,int32(dims),'int32');\nif count ~= 3\n error(me,'write failed');\nend\n\nreturn;\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/mne/fiff_write_double_complex_matrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6113819591324416, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3623456669922822}} {"text": "function [varargout]=meshView(varargin)\n\n% function [varargout]=meshView(varargin)\n% ------------------------------------------------------------------------\n% 2018/01/23 Updated to allow for subfigure plotting\n% 2018/04/16 Added control of direction of cutting (X,Y, or Z) and also\n% what side is viewed/cut away. \n% 2019/09/07 Fixed bug in relation to single element/face input\n% 2019/09/07 Updated handling of cutting direction\n% ------------------------------------------------------------------------\n%% Parse input\n\nswitch nargin\n case 1 \n meshStruct=varargin{1};\n optionStruct=[];\n case 2\n meshStruct=varargin{1};\n optionStruct=varargin{2};\n otherwise\n error('Wrong number of input arguments');\nend\n\ndefaultOptionStruct.hFig=[];\ndefaultOptionStruct.numSliceSteps=25; %Number of animation steps\ndefaultOptionStruct.cMap=[];\ndefaultOptionStruct.cutDir=2;\ndefaultOptionStruct.cutSide=1;\ndefaultOptionStruct.faceAlpha1=0.2;\ndefaultOptionStruct.faceAlpha2=1;\ndefaultOptionStruct.lightWeightPlot=1;\ndefaultOptionStruct.edgeWidth=1;\ndefaultOptionStruct.edgeColor='k';\n[optionStruct]=structComplete(optionStruct,defaultOptionStruct,0);\n\n%% Get control parameters\n\nfigHandles=optionStruct.hFig;\nif ~isempty(figHandles)\n hFig=figHandles(1);\n if numel(figHandles)==2\n hSub=figHandles(2);\n else\n hSub=[];\n end\nelse\n hFig=[];\n hSub=[];\nend\n\nnumSliceSteps=optionStruct.numSliceSteps;\ncMap=optionStruct.cMap;\ncutDir=optionStruct.cutDir; \ncutSide=optionStruct.cutSide; \nfaceAlpha1=optionStruct.faceAlpha1;\nfaceAlpha2=optionStruct.faceAlpha2;\nlightWeightPlot=optionStruct.lightWeightPlot;\nedgeWidth=optionStruct.edgeWidth;\nedgeColor=optionStruct.edgeColor;\nfontSize=15;\n\n%% Access mesh data\n\n% nodes: [415\u00d73 double]\n% facesBoundary: [320\u00d73 double]\n% boundaryMarker: [320\u00d71 double]\n% faces: [8144\u00d73 double]\n% elements: [2036\u00d74 double]\n% elementMaterialID: [2036\u00d71 double]\n% faceMaterialID: [8144\u00d71 double]\n% loadNameStruct: [1\u00d71 struct]\n\nE=meshStruct.elements;\nV=meshStruct.nodes;\n\nif isfield(meshStruct,'facesBoundary')\n Fb=meshStruct.facesBoundary;\n Cb=meshStruct.boundaryMarker;\nelse\n F=meshStruct.faces;\n indBoundary=tesBoundary(F);\n Fb=F(indBoundary,:);\n Cb=ones(size(Fb,1),1);\nend\n\nif isfield(meshStruct,'elementData')\n CE=meshStruct.elementData;\n numColormapLevels=250;\nelseif isfield(meshStruct,'elementMaterialID')\n CE=meshStruct.elementMaterialID;\n numColormapLevels=numel(unique(CE(:)));\nelse\n CE=ones(size(E,1),1);\n numColormapLevels=250;\nend\n\nif isempty(cMap)\n cMap=gjet(numColormapLevels);\nend\n\n%%\n% prepare figure\nif isempty(hFig)\n hFig=cFigure; %Store figure handle\n title('Cut view of mesh','FontSize',fontSize);\nend\n\nfigure(hFig);\nif ~isempty(hSub)\n subplot(hSub); \nend\nhold on;\n\nif ~isempty(Fb)\n gpatch(Fb,V,0.5*ones(1,3),'none',faceAlpha1);\nend\n\nhp=gpatch(Fb,V,Cb,edgeColor,faceAlpha2,edgeWidth); %Graphics object to vary property of during animation\n\ncamlight headlight;\naxisGeom(gca,fontSize); \n\nif abs(max(CE(:))-min(CE(:)))>eps(1)\n caxis([min(CE(:)) max(CE(:))]);\nend\n\ncolormap(gca,cMap); \nif ~isfield(meshStruct,'elementData')\n icolorbar;\nelse\n colorbar;\nend\n\n%%\n% Set up animation\n\n[VE]=patchCentre(E,V);\nXE=VE(:,cutDir);\nanimStruct.Time=linspace(0,1,numSliceSteps); %Time vector\ncutLevel=linspace(min(XE)-max(eps(XE)),max(XE)+max(eps(XE)),numSliceSteps); %Property to set\n\nfor q=1:1:numSliceSteps %Step through time \n cutLevelNow=cutLevel(q); %The current cut level \n \n if cutSide==1\n logicCutView=XE>=cutLevelNow;\n elseif cutSide==-1\n logicCutView=XE<=cutLevelNow;\n end\n \n [Fs,Cs]=element2patch(E(logicCutView,:),CE(logicCutView));\n \n if lightWeightPlot==1\n [indBoundary]=tesBoundary(Fs);\n Fs=Fs(indBoundary,:);\n Cs=Cs(indBoundary,:);\n end\n \n %Set entries in animation structure\n animStruct.Handles{q}=[hp hp]; %Handles of objects to animate\n animStruct.Props{q}={'Faces','CData'}; %Properties of objects to animate\n animStruct.Set{q}={Fs,Cs}; %Property values for to set in order to animate\nend\n\n%Add animation layer\nanim8(hFig,animStruct);\nset(hFig.UserData.anim8.sliderHandles{1},'Value',round(numSliceSteps/2)); %Set to middle\ngdrawnow;\n\n%% Collect output\n\nswitch nargout\n case 1\n varargout{1}=hFig;\n case 2\n varargout{1}=hFig;\n varargout{2}=hp;\nend\n\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/meshView.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6113819591324416, "lm_q2_score": 0.5926665999540698, "lm_q1q2_score": 0.3623456669922822}} {"text": "function x = p30_start ( n )\n\n%*****************************************************************************80\n%\n%% P30_START returns a starting point for optimization for problem 30.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 08 January 2001\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer N, the number of variables X.\n%\n% Output, real X(N), a starting point for the optimization.\n%\n x = [ -1.0, 1.0 ]';\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_opt/p30_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5156199157230157, "lm_q2_score": 0.7025300573952052, "lm_q1q2_score": 0.3622384889870011}} {"text": "%sim_dDiv.m\n%Jamie Near, 2020.\n%\n% USAGE:\n% d_out = sim_dDiv(d_in,factor)\n% \n% DESCRIPTION:\n% Divide a density matrix by a scalar. This function is necessary becuase\n% the density matrix is a cell array, so cannot be scaled using simple\n% division. \n% \n% INPUTS:\n% d_in = input density matrix to be divided.\n% factor = scalar factor to divide by.\n%\n% OUTPUTS:\n% d_out = output, result of d_in/factor.\n\nfunction d_out = sim_dDiv(d_in,factor)\n\nd_out=cell(size(d_in));\nfor m=1:length(d_in)\n d_out{m}=d_in{m}./factor;\nend\n\n\n\n\n", "meta": {"author": "CIC-methods", "repo": "FID-A", "sha": "c24da581e376f6eed66979dcc662ec26903a2eef", "save_path": "github-repos/MATLAB/CIC-methods-FID-A", "path": "github-repos/MATLAB/CIC-methods-FID-A/FID-A-c24da581e376f6eed66979dcc662ec26903a2eef/simulationTools/sim_dDiv.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.36221855258070623}} {"text": "function [params, names] = ggwhiteKernExtractParam(kern)\n\n% GGWHITEKERNEXTRACTPARAM Extract parameters from the GG WHITE kernel structure.\n% FORMAT\n% DESC Extract parameters from the gaussian\n%\tgaussian white kernel structure into a vector of parameters for optimisation.\n% RETURN param : vector of parameters extracted from the kernel. If the\n%\t field 'transforms' is not empty in the kernel matrix, the\n%\t parameters will be transformed before optimisation (for example\n%\t positive only parameters could be logged before being returned).\n% ARG kern : the kernel structure containing the parameters to be\n%\t extracted.\n%\n% FORMAT\n% DESC extract parameters and\n%\ttheir names from the gaussian gaussian white kernel structure.\n% RETURN param : vector of parameters extracted from the kernel. If the\n%\t field 'transforms' is not empty in the kernel matrix, the\n%\t parameters will be transformed before optimisation (for example\n%\t positive only parameters could be logged before being returned).\n% RETURN names : cell array of strings containing parameter names.\n% ARG kern : the kernel structure containing the parameters to be\n%\t extracted.\n%\t\n% SEEALSO : ggwhiteKernParamInit, ggwhiteKernExpandParam, kernExtractParam, scg,\n% conjgrad\n% \n% COPYRIGHT : Mauricio A. Alvarez and Neil D. Lawrence, 2008\n%\n% MODIFICATIONS : Mauricio A Alvarez, 2009\n\n% KERN\n\nparams = [kern.precisionG' kern.sigma2Noise kern.variance];\n\nif nargout > 1\n if kern.isArd\n ynames = cell(1,kern.inputDimension);\n for i=1:kern.inputDimension,\n ynames{i}=['inverse width output ' num2str(i) '.'];\n end\n names = {ynames{:}, 'variance latent', 'sensitivity'};\n else\n names = {'inverse width output 1.' , 'variance latent', 'sensitivity'};\n end \nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/ggwhiteKernExtractParam.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6150878555160665, "lm_q2_score": 0.588889130767832, "lm_q1q2_score": 0.36221855258070623}} {"text": "function varargout = trimMesh(varargin)\n%TRIMMESH Reduce memory footprint of a polygonal mesh.\n%\n% [V2, F2] = trimMesh(V, F)\n% Unreferenced vertices are removed.\n% Following functions are implemented for only numeric faces:\n% Duplicate vertices are removed.\n% Duplicate faces are removed.\n%\n% Example\n% [V, F] = createIcosahedron;\n% F(13:20, :) = [];\n% [V2, F2] = trimMesh(V, F);\n% figure; drawMesh(V2, F2)\n% view(3); axis equal;\n% axis([-1 1 -1 1 0 2])\n%\n% See also\n% meshes3d, clipMeshVertices\n\n% ------\n% Author: David Legland, oqilipo\n% e-mail: david.legland@inra.fr\n% Created: 2014-08-01, using Matlab 8.3.0.532 (R2014a)\n% Copyright 2014 INRA - Cepia Software Platform.\n\n% parse input data\n[vertices, faces] = parseMeshData(varargin{:});\n\nif isnumeric(faces)\n % Delete duplicate vertices\n [tempVertices, ~, tempFaceVertexIdx] = unique(vertices, 'rows');\n tempFaces = tempFaceVertexIdx(faces);\n % Delete unindexed/unreferenced vertices\n usedVertexIdx = ismember(1:length(tempVertices),unique(tempFaces(:)));\n newVertexIdx = cumsum(usedVertexIdx);\n faceVertexIdx = 1:length(tempVertices);\n faceVertexIdx(usedVertexIdx) = newVertexIdx(usedVertexIdx);\n faceVertexIdx(~usedVertexIdx) = nan;\n tempFaces2 = faceVertexIdx(tempFaces);\n tempVertices2 = tempVertices(usedVertexIdx,:);\n % Delete duplicate faces\n [~, uniqueFaceIdx, ~] = unique(tempFaces2, 'rows');\n duplicateFaceIdx=~ismember(1:size(tempFaces2,1),uniqueFaceIdx);\n [vertices2, faces2] = removeMeshFaces(tempVertices2, tempFaces2, duplicateFaceIdx);\nelseif iscell(faces)\n % identify vertices referenced by a face\n vertexUsed = false(size(vertices, 1), 1);\n for iFace = 1:length(faces)\n face = faces{iFace};\n vertexUsed(face) = true;\n end\n vertices2 = vertices(vertexUsed, :);\n % compute map from old index to new index\n inds = find(vertexUsed);\n newInds = zeros(size(vertices, 1), 1);\n for iIndex = 1:length(inds)\n newInds(inds(iIndex)) = iIndex;\n end\n % change labels of vertices referenced by faces\n faces2 = cell(1, length(faces));\n for iFace = 1:length(faces)\n faces2{iFace} = newInds(faces{iFace});\n end\nelse\n error('Unsupported format!')\nend\n\n% format output arguments\nvarargout = formatMeshOutput(nargout, vertices2, faces2);\n", "meta": {"author": "Arrowstar", "repo": "ksptot", "sha": "2b414440d3b167ba2294f56dafce0f465c07f982", "save_path": "github-repos/MATLAB/Arrowstar-ksptot", "path": "github-repos/MATLAB/Arrowstar-ksptot/ksptot-2b414440d3b167ba2294f56dafce0f465c07f982/helper_methods/z_geom3d/meshes3d/trimMesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.36221855258070623}} {"text": "function rgb3d=label2rgb3d(varargin)\n[label,map,zerocolor,order,fcnflag] = parse_inputs(varargin{:});\n%label= 3d image with labels\n% map= specified color map\n%==================================\nnumregion = double(max(label(:)));\n\n% If MAP is a function, evaluate it. Make sure that the evaluated function\n% returns a valid colormap.\nif fcnflag == 1\n cmap = feval(map, numregion);\n if ~isreal(cmap) || any(cmap(:) > 1) || any(cmap(:) < 0) || ...\n ~isequal(size(cmap,2),3) || size(cmap,1) < 1\n eid = sprintf('Images:%s:functionReturnsInvalidColormap',mfilename);\n msg = 'function handle MAP must return a n x 3 colormap array';\n error(eid,'%s',msg);\n end\nelse\n cmap = map;\nend\n\n% If ORDER is set to 'shuffle', save original state. The SHUFFLE keyword\n% uses the same state every time it is called. After shuffling is completed,\n% go back to original state.\nif isequal(order,'shuffle')\n S = rand('state');\n rand('state', 0);\n index = randperm(numregion);\n cmap = cmap(index,:,:);\n rand('state', S);\nend\n\n% Issue a warning if the zerocolor (boundary color) matches the color of one\n% of the regions. \nfor i=1:numregion\n if isequal(zerocolor,cmap(i,:))\n wid= sprintf('Images:%s:zerocolorSameAsRegionColor',mfilename);\n msg= sprintf('Region number %d has the same color as the ZEROCOLOR.',i);\n warning(wid,'%s',msg);\n end\nend\ncmap = [zerocolor;cmap];\n\n% if label is of type double, need to pass 'label + 1' into IND2RGB.\n% IND2RGB does not like double arrays containing zero values.\nif isa(label, 'double')\n rgb3d = ind2rgb3d(label + 1, cmap);\nelse\n rgb3d = ind2rgb3d(label, cmap);\nend\n\n%======================================================================\n%======================================================================\nfunction [L, Map, Zerocolor, Order, Fcnflag] = parse_inputs(varargin) \n% L label 3d matrix: matrix containing non-negative values. \n% Map colormap: name of standard colormap, user-defined map, function\n% handle.\n% Zerocolor RGB triple or Colorspec\n% Order keyword if specified: 'shuffle' or 'noshuffle'\n% Fcnflag flag to indicating that Map is a function\n\nvalid_order = {'shuffle', 'noshuffle'};\niptchecknargin(1,4,nargin,mfilename);\n\n% set defaults\nL = varargin{1};\nMap = 'jet'; \nZerocolor = [1 1 1]; \nOrder = 'noshuffle';\nFcnflag = 0;\n\n% parse inputs\nif nargin > 1\n Map = varargin{2};\nend\nif nargin > 2\n Zerocolor = varargin{3};\nend\nif nargin > 3\n Order = varargin{4};\nend\n\n% error checking for L\niptcheckinput(L,{'numeric' 'logical'}, ...\n {'real' 'nonsparse' 'finite' 'nonnegative' 'integer'}, ...\n mfilename,'L',1);\n\n% error checking for Map\n[fcn, fcnchk_msg] = fcnchk(Map);\nif isempty(fcnchk_msg)\n Map = fcn;\n Fcnflag = 1;\nelse\n if isnumeric(Map)\n if ~isreal(Map) || any(Map(:) > 1) || any(Map(:) < 0) || ...\n ~isequal(size(Map,2), 3) || size(Map,1) < 1\n eid = sprintf('Images:%s:invalidColormap',mfilename);\n msg = 'Invalid entry for MAP.';\n error(eid,'%s',msg);\n end\n else\n eid = sprintf('Images:%s:invalidFunctionforMAP',mfilename);\n error(eid,'%s',fcnchk_msg);\n end\nend \n \n% error checking for Zerocolor\nif ~ischar(Zerocolor)\n % check if Zerocolor is a RGB triple\n if ~isreal(Zerocolor) || ~isequal(size(Zerocolor),[1 3]) || ...\n any(Zerocolor> 1) || any(Zerocolor < 0)\n eid = sprintf('Images:%s:invalidZerocolor',mfilename);\n msg = 'Invalid RGB triple entry for ZEROCOLOR.';\n error(eid,'%s',msg);\n end\nelse \n [cspec, msg] = cspecchk(Zerocolor);\n if ~isempty(msg)\n eid = sprintf('Images:%s:notInColorspec',mfilename); \n error(eid,'%s',msg);\n else\n Zerocolor = cspec;\n end\nend\n\n% error checking for Order\nidx = strmatch(lower(Order), valid_order);\neid = sprintf('Images:%s:invalidEntryForOrder',mfilename);\nif isempty(idx)\n msg = 'Valid entries for ORDER are ''shuffle'' or ''noshuffle''.';\n error(eid,'%s',msg);\nelseif length(idx) > 1\n msg = sprintf('Ambiguous string for ORDER: %s.', Order);\n error(eid,'%s',msg);\nelse\n Order = valid_order{idx};\nend\n\n\n%================================================================\n%=================================================================\nfunction [rout,g,b] = ind2rgb3d(a,cm)\n%IND2RGB Convert indexed image to RGB image.\n% RGB = IND2RGB(X,MAP) converts the 3d matrix X and corresponding\n% colormap MAP to RGB (truecolor) format.\n%\n% Class Support\n% -------------\n% X can be of class uint8, uint16, or double. RGB is an \n% M-by-N-by-3 array of class double.\n%\n% See also IND2GRAY, RGB2IND (in the Image Processing Toolbox).\n\n\nif ~isa(a, 'double')\n a = double(a)+1; % Switch to one based indexing\nend\n\nerror(nargchk(2,2,nargin));\n\n% Make sure A is in the range from 1 to size(cm,1)\na = max(1,min(a,size(cm,1)));\n\n% Extract r,g,b components\nr = zeros(size(a)); r(:) = cm(a,1);\ng = zeros(size(a)); g(:) = cm(a,2);\nb = zeros(size(a)); b(:) = cm(a,3);\n\nif nargout==3,\n rout = r;\nelse\n rout = zeros([size(r),3]);\n rout(:,:,:,1) = r;\n rout(:,:,:,2) = g;\n rout(:,:,:,3) = b;\nend\n \n\n\n\n ", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/8355-label2rgb3d/label2rgb3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.36221855258070623}} {"text": "%% Copyright (C) 2019 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @defmethod @@sym ezmesh (@var{z})\n%% @defmethodx @@sym ezmesh (@var{f1}, @var{f2}, @var{f3})\n%% @defmethodx @@sym ezmesh (@dots{}, @var{dom})\n%% @defmethodx @@sym ezmesh (@dots{}, @var{N})\n%% Simple 3D wireframe mesh plots of symbolic expressions.\n%%\n%% Example 3D surface mesh plot:\n%% @example\n%% @group\n%% syms x y\n%% z = sin(2*x)*sin(y)\n%% @result{} z = (sym) sin(2\u22c5x)\u22c5sin(y)\n%% ezmesh(z) % doctest: +SKIP\n%% @end group\n%% @end example\n%%\n%% Example parametric mesh of a M\u00f6bius strip:\n%% @example\n%% @group\n%% syms u v\n%% x = (1+v*cos(u/2))*cos(u)\n%% @result{} x = (sym)\n%% \u239b \u239bu\u239e \u239e\n%% \u239cv\u22c5cos\u239c\u2500\u239f + 1\u239f\u22c5cos(u)\n%% \u239d \u239d2\u23a0 \u23a0\n%% y = (1+v*cos(u/2))*sin(u);\n%% z = v*sin(u/2);\n%%\n%% ezmesh(x, y, z, [0 2*pi -0.5 0.5], 32) % doctest: +SKIP\n%% axis equal\n%% @end group\n%% @end example\n%%\n%% See help for the (non-symbolic) @code{ezmesh}, which this\n%% routine calls after trying to convert sym inputs to\n%% anonymous functions.\n%%\n%% @seealso{ezmesh, @@sym/ezsurf, @@sym/ezplot, @@sym/function_handle}\n%% @end defmethod\n\n\nfunction varargout = ezmesh(varargin)\n\n % first input is handle, shift\n if (ishandle(varargin{1}))\n firstpotsym = 2;\n else\n firstpotsym = 1;\n end\n\n maxnumsym = 3;\n firstsym = [];\n\n for i = firstpotsym:nargin\n if (isa(varargin{i}, 'sym'))\n if (i < firstpotsym + maxnumsym)\n % one of the fcns to plot, covert to handle fcn\n\n % Each is function of one var, and its the same var for all\n thissym = symvar(varargin{i});\n assert(length(thissym) <= 2, ...\n 'ezmesh: parameterized: functions should have at most two inputs');\n if (isempty(thissym))\n % a number, create a constant function in a dummy variable\n % (0*t works around some Octave oddity on 3.8 and hg Dec 2014)\n thisf = inline(sprintf('%g + 0*t', double(varargin{i})), 't');\n %thisf = @(t) 0*t + double(varargin{i}); % no\n else\n % check variables match (sanity check)\n if (isempty(firstsym))\n firstsym = thissym;\n else\n assert(all(logical(thissym == firstsym)), ...\n 'ezmesh: all functions must be in terms of the same variables');\n end\n thisf = function_handle(varargin{i});\n end\n\n varargin{i} = thisf;\n\n else\n % plot ranges, etc, convert syms to doubles\n varargin{i} = double(varargin{i});\n end\n end\n end\n\n h = ezmesh(varargin{:});\n\n if (nargout)\n varargout{1} = h;\n end\n\nend\n\n\n%!error \n%! syms u v t\n%! ezmesh(u*v, 2*u*v, 3*v*t)\n\n%!error \n%! syms u v t\n%! ezmesh(u*v, 2*u*v, u*v*t)\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/ezmesh.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.588889130767832, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.36221855258070623}} {"text": "function [CM]=fourthOrderMat(C)\n\nind_C_all=1:numel(C);\n[I,J,K,L]=ind2sub(size(C),ind_C_all);\n\n%Create the 9x9 matrix indices\np=3*(I-1)+K;\nq=3*(J-1)+L;\n\n%Treat posible symbolic class\nswitch class(C)\n case 'sym'\n CM=sym(zeros(9,9));\n otherwise\n CM=zeros(9,9);\nend\n\n%Set values\n[ind_pq]=sub2ind(size(CM),p,q);\nCM(ind_pq(:))=C(:);\n \n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/fourthOrderMat.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5888891163376236, "lm_q2_score": 0.6150878555160665, "lm_q1q2_score": 0.36221854370486034}} {"text": "% complete pipeline for calcium imaging data pre-processing\nclear;\naddpath(genpath('../NoRMCorre')); % add the NoRMCorre motion correction package to MATLAB path\ngcp; % start a parallel engine\nfoldername = '';\n % folder where all the files are located.\nfiletype = 'tif'; % type of files to be processed\n % Types currently supported .tif/.tiff, .h5/.hdf5, .raw, .avi, and .mat files\nfiles = subdir(fullfile(foldername,['*.',filetype])); % list of filenames (will search all subdirectories)\nFOV = size(read_file(files(1).name,1,1));\nnumFiles = length(files);\n\n\n%% motion correct (and save registered h5 files as 2d matrices (to be used in the end)..)\n% register files one by one. use template obtained from file n to\n% initialize template of file n + 1; \n\nmotion_correct = true; % perform motion correction\nnon_rigid = true; % flag for non-rigid motion correction\noutput_type = 'h5'; % format to save registered files\n\nif non_rigid; append = '_nr'; else; append = '_rig'; end % use this to save motion corrected files\n\noptions_mc = NoRMCorreSetParms('d1',FOV(1),'d2',FOV(2),'grid_size',[128,128],'init_batch',200,...\n 'overlap_pre',32,'mot_uf',4,'bin_width',200,'max_shift',24,'max_dev',8,'us_fac',50,...\n 'output_type',output_type);\n\ntemplate = [];\ncol_shift = [];\nfor i = 1:numFiles\n fullname = files(i).name;\n [folder_name,file_name,ext] = fileparts(fullname);\n output_filename = fullfile(folder_name,[file_name,append,'.',output_type]);\n options_mc = NoRMCorreSetParms(options_mc,'output_filename',output_filename,'h5_filename','','tiff_filename',''); % update output file name\n if motion_correct\n [M,shifts,template,options_mc,col_shift] = normcorre_batch_even(fullname,options_mc,template);\n save(fullfile(folder_name,[file_name,'_shifts',append,'.mat']),'shifts','-v7.3'); % save shifts of each file at the respective folder \n else % if files are already motion corrected convert them to h5\n convert_file(fullname,'h5',fullfile(folder_name,[file_name,'_mc.h5']));\n end\nend\n\n%% downsample h5 files and save into a single memory mapped matlab file\n\nif motion_correct\n registered_files = subdir(fullfile(foldername,['*',append,'.',output_type])); % list of registered files (modify this to list all the motion corrected files you need to process)\nelse\n registered_files = subdir(fullfile(foldername,'*_mc.h5'));\nend\n \nfr = 30; % frame rate\ntsub = 5; % degree of downsampling (for 30Hz imaging rate you can try also larger, e.g. 8-10)\nds_filename = [foldername,'/ds_data.mat'];\ndata_type = class(read_file(registered_files(1).name,1,1));\ndata = matfile(ds_filename,'Writable',true);\ndata.Y = zeros([FOV,0],data_type);\ndata.Yr = zeros([prod(FOV),0],data_type);\ndata.sizY = [FOV,0];\nF_dark = Inf; % dark fluorescence (min of all data)\nbatch_size = 2000; % read chunks of that size\nbatch_size = round(batch_size/tsub)*tsub; % make sure batch_size is divisble by tsub\nTs = zeros(numFiles,1); % store length of each file\ncnt = 0; % number of frames processed so far\ntt1 = tic;\nfor i = 1:numFiles\n name = registered_files(i).name;\n info = h5info(name);\n dims = info.Datasets.Dataspace.Size;\n ndimsY = length(dims); % number of dimensions (data array might be already reshaped)\n Ts(i) = dims(end);\n Ysub = zeros(FOV(1),FOV(2),floor(Ts(i)/tsub),data_type);\n data.Y(FOV(1),FOV(2),sum(floor(Ts/tsub))) = zeros(1,data_type);\n data.Yr(prod(FOV),sum(floor(Ts/tsub))) = zeros(1,data_type);\n cnt_sub = 0;\n for t = 1:batch_size:Ts(i)\n Y = read_file(name,t,min(batch_size,Ts(i)-t+1)); \n F_dark = min(nanmin(Y(:)),F_dark);\n ln = size(Y,ndimsY);\n Y = reshape(Y,[FOV,ln]);\n Y = cast(downsample_data(Y,'time',tsub),data_type);\n ln = size(Y,3);\n Ysub(:,:,cnt_sub+1:cnt_sub+ln) = Y;\n cnt_sub = cnt_sub + ln;\n end\n data.Y(:,:,cnt+1:cnt+cnt_sub) = Ysub;\n data.Yr(:,cnt+1:cnt+cnt_sub) = reshape(Ysub,[],cnt_sub);\n toc(tt1);\n cnt = cnt + cnt_sub;\n data.sizY(1,3) = cnt;\nend\ndata.F_dark = F_dark;\n%% now run CNMF on patches on the downsampled file, set parameters first\n\nsizY = data.sizY; % size of data matrix\npatch_size = [40,40]; % size of each patch along each dimension (optional, default: [32,32])\noverlap = [8,8]; % amount of overlap in each dimension (optional, default: [4,4])\n\npatches = construct_patches(sizY(1:end-1),patch_size,overlap);\nK = 7; % number of components to be found\ntau = 8; % std of gaussian kernel (half size of neuron) \np = 2; % order of autoregressive system (p = 0 no dynamics, p=1 just decay, p = 2, both rise and decay)\nmerge_thr = 0.8; % merging threshold\nsizY = data.sizY;\n\noptions = CNMFSetParms(...\n 'd1',sizY(1),'d2',sizY(2),...\n 'deconv_method','constrained_foopsi',... % neural activity deconvolution method\n 'p',p,... % order of calcium dynamics\n 'ssub',2,... % spatial downsampling when processing\n 'tsub',2,... % further temporal downsampling when processing\n 'merge_thr',merge_thr,... % merging threshold\n 'gSig',tau,... \n 'max_size_thr',300,'min_size_thr',10,... % max/min acceptable size for each component\n 'spatial_method','regularized',... % method for updating spatial components\n 'df_prctile',50,... % take the median of background fluorescence to compute baseline fluorescence \n 'fr',fr/tsub,... % downsamples\n 'space_thresh',0.35,... % space correlation acceptance threshold\n 'min_SNR',2.0,... % trace SNR acceptance threshold\n 'cnn_thr',0.2,... % cnn classifier acceptance threshold\n 'nb',1,... % number of background components per patch\n 'gnb',3,... % number of global background components\n 'decay_time',0.5... % length of typical transient for the indicator used\n );\n\n%% Run on patches (the main work is done here)\n\n[A,b,C,f,S,P,RESULTS,YrA] = run_CNMF_patches(data.Y,K,patches,tau,0,options); % do not perform deconvolution here since\n % we are operating on downsampled data\n%% compute correlation image on a small sample of the data (optional - for visualization purposes) \nCn = correlation_image_max(data,8);\n\n%% classify components\n\nrval_space = classify_comp_corr(data,A,C,b,f,options);\nind_corr = rval_space > options.space_thresh; % components that pass the correlation test\n % this test will keep processes\n \n%% further classification with cnn_classifier\ntry % matlab 2017b or later is needed\n [ind_cnn,value] = cnn_classifier(A,FOV,'cnn_model',options.cnn_thr);\ncatch\n ind_cnn = true(size(A,2),1); % components that pass the CNN classifier\nend \n \n%% event exceptionality\n\nfitness = compute_event_exceptionality(C+YrA,options.N_samples_exc,options.robust_std);\nind_exc = (fitness < options.min_fitness);\n\n%% select components\n\nkeep = (ind_corr | ind_cnn) & ind_exc;\n\n%% run GUI for modifying component selection (optional, close twice to save values)\n% run_GUI = false;\n% if run_GUI\n% Coor = plot_contours(A,Cn,options,1); close;\n% GUIout = ROI_GUI(A,options,Cn,Coor,keep,ROIvars); \n% options = GUIout{2};\n% keep = GUIout{3}; \n% end\n\n%% view contour plots of selected and rejected components (optional)\nthrow = ~keep;\nCoor_k = [];\nCoor_t = [];\nfigure;\n ax1 = subplot(121); plot_contours(A(:,keep),Cn,options,0,[],Coor_k,[],1,find(keep)); title('Selected components','fontweight','bold','fontsize',14);\n ax2 = subplot(122); plot_contours(A(:,throw),Cn,options,0,[],Coor_t,[],1,find(throw));title('Rejected components','fontweight','bold','fontsize',14);\n linkaxes([ax1,ax2],'xy')\n \n%% keep only the active components \n\nA_keep = A(:,keep);\nC_keep = C(keep,:);\n\n%% extract residual signals for each trace\n\nif exist('YrA','var') \n R_keep = YrA(keep,:); \nelse\n R_keep = compute_residuals(data,A_keep,b,C_keep,f);\nend\n \n%% extract fluorescence on native temporal resolution\n\noptions.fr = options.fr*tsub; % revert to origingal frame rate\nN = size(C_keep,1); % total number of components\nT = sum(Ts); % total number of timesteps\nC_full = imresize(C_keep,[N,T]); % upsample to original frame rate\nR_full = imresize(R_keep,[N,T]); % upsample to original frame rate\nF_full = C_full + R_full; % full fluorescence\nf_full = imresize(f,[size(f,1),T]); % upsample temporal background\n\nS_full = zeros(N,T);\n\nP.p = 0;\nind_T = [0;cumsum(Ts(:))];\noptions.nb = options.gnb;\nfor i = 1:numFiles\n inds = ind_T(i)+1:ind_T(i+1); % indeces of file i to be updated\n [C_full(:,inds),f_full(:,inds),~,~,R_full(:,inds)] = update_temporal_components_fast(registered_files(i).name,A_keep,b,C_full(:,inds),f_full(:,inds),P,options);\n disp(['Extracting raw fluorescence at native frame rate. File ',num2str(i),' out of ',num2str(numFiles),' finished processing.'])\nend\n\n%% extract DF/F and deconvolve DF/F traces\n\n[F_dff,F0] = detrend_df_f(A_keep,[b,ones(prod(FOV),1)],C_full,[f_full;-double(F_dark)*ones(1,T)],R_full,options);\n\nC_dec = zeros(N,T); % deconvolved DF/F traces\nS_dec = zeros(N,T); % deconvolved neural activity\nbl = zeros(N,1); % baseline for each trace (should be close to zero since traces are DF/F)\nneuron_sn = zeros(N,1); % noise level at each trace\ng = cell(N,1); % discrete time constants for each trace\nif p == 1; model_ar = 'ar1'; elseif p == 2; model_ar = 'ar2'; else; error('This order of dynamics is not supported'); end\n\nfor i = 1:N\n spkmin = options.spk_SNR*GetSn(F_dff(i,:));\n lam = choose_lambda(exp(-1/(options.fr*options.decay_time)),GetSn(F_dff(i,:)),options.lam_pr);\n [cc,spk,opts_oasis] = deconvolveCa(F_dff(i,:),model_ar,'method','thresholded','optimize_pars',true,'maxIter',20,...\n 'window',150,'lambda',lam,'smin',spkmin);\n bl(i) = opts_oasis.b;\n C_dec(i,:) = cc(:)' + bl(i);\n S_dec(i,:) = spk(:);\n neuron_sn(i) = opts_oasis.sn;\n g{i} = opts_oasis.pars(:)';\n disp(['Performing deconvolution. Trace ',num2str(i),' out of ',num2str(N),' finished processing.'])\nend", "meta": {"author": "flatironinstitute", "repo": "CaImAn-MATLAB", "sha": "49b7884e93348d50df7173e1619d7499468bb1f6", "save_path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB", "path": "github-repos/MATLAB/flatironinstitute-CaImAn-MATLAB/CaImAn-MATLAB-49b7884e93348d50df7173e1619d7499468bb1f6/run_pipeline.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7662936430859597, "lm_q2_score": 0.47268347662043286, "lm_q1q2_score": 0.36221434332600855}} {"text": "% SP_EVAL_BOUNDARY_SIDE: Construct the space structure of one side of the boundary.\n%\n% sp_side = sp_eval_boundary_side (sp, msh_side)\n%\n% INPUTS:\n%\n% sp: space object (see sp_scalar)\n% msh_side: mesh structure containing the information of the quadrature\n% rule on the boundary edge (see msh_cartesian/msh_eval_boundary_side)\n%\n% OUTPUT:\n%\n% sp_side: structure that contains the following fields\n% (see the article for a detailed description)\n%\n% FIELD_NAME (SIZE) DESCRIPTION\n% ncomp (scalar) number of components of the functions of the space (actually, 1)\n% nsh_max (scalar) maximum number of shape functions per element\n% nsh (1 x msh_side.nel vector) actual number of shape functions per each element\n% ndof (scalar) total number of degrees of freedom\n% connectivity (nsh_max x msh_side.nel vector) indices of basis functions that do not vanish in each element\n% shape_functions (msh_side.nqn x nsh_max x msh_side.nel) basis functions evaluated at each quadrature node in each element\n% dofs (1 x ndof vector) numbering of the degrees of freedom in the volumetric space\n%\n% Copyright (C) 2009, 2010 Carlo de Falco\n% Copyright (C) 2011, 2015 Rafael Vazquez\n%\n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n\n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n\nfunction sp_side = sp_eval_boundary_side (sp, msh_side)\n\n iside = msh_side.side_number;\n sp_side = sp_precompute (sp.boundary(iside), msh_side);\n\nend\n", "meta": {"author": "rafavzqz", "repo": "geopdes", "sha": "3bfa57b1a38bd4da3148536c9f67cce81afce701", "save_path": "github-repos/MATLAB/rafavzqz-geopdes", "path": "github-repos/MATLAB/rafavzqz-geopdes/geopdes-3bfa57b1a38bd4da3148536c9f67cce81afce701/geopdes/inst/space/@sp_scalar/sp_eval_boundary_side.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6442251201477016, "lm_q2_score": 0.5621765008857982, "lm_q1q2_score": 0.3621682238273678}} {"text": "function line = edgeToLine(edge)\n%EDGETOLINE Convert an edge to a straight line\n%\n% LINE = edgeToLine(EDGE);\n% Returns the line containing the edge EDGE.\n%\n% Example\n% edge = [2 3 4 5];\n% line = edgeToLine(edge);\n% figure(1); hold on; axis([0 10 0 10]);\n% drawLine(line, 'color', 'g')\n% drawEdge(edge, 'linewidth', 2)\n% \n% See also\n% edges2d, lines2d\n%\n% ------\n% Author: David Legland\n% e-mail: david.legland@grignon.inra.fr\n% Created: 2009-07-23, using Matlab 7.7.0.471 (R2008b)\n% Copyright 2009 INRA - Cepia Software Platform.\n\nline = [edge(:, 1:2) edge(:, 3:4)-edge(:, 1:2)];", "meta": {"author": "rpng", "repo": "lips", "sha": "a97157e586b509c9c2e3e01e64e4347f36d0b63e", "save_path": "github-repos/MATLAB/rpng-lips", "path": "github-repos/MATLAB/rpng-lips/lips-a97157e586b509c9c2e3e01e64e4347f36d0b63e/lips_matlab/matlab/functions/matGeom/geom2d/edgeToLine.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5621765008857982, "lm_q2_score": 0.6442251064863695, "lm_q1q2_score": 0.36216821614728795}} {"text": "% PQ_TOP queries for the topmost element of the priority queue (not removing it)\n%\n% SYNTAX\n% [idx, cost] = pq_top(pq)\n%\n% INPUT PARAMETERS\n% pq: a pointer to the priority queue\n%\n% OUTPUT PARAMETERS\n% idx: the index of the topmost element\n% cost: the cost of the topmost element\n% \n% DESCRIPTION\n% Queries the topmost element from a priority queue returning its \n% index and associated cost.\n% \n% See also:\n% PQ_DEMO, PQ_CREATE, PQ_PUSH, PQ_POP, PQ_SIZE, PQ_TOP, PQ_DELETE\n%\n% References:\n% Gormen, T.H. and Leiserson, C.E. and Rivest, R.L., \"introduction to\n% algorithms\", 1990, MIT Press/McGraw-Hill, Chapter 6. \n\n% Copyright (c) 2008 Andrea Tagliasacchi\n% All Rights Reserved\n% email: andrea.tagliasacchi@gmail.com\n% $Revision: 1.0$ Created on: May 22, 2009", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/rigor/rigor_src/extern_src/fuxin_lib_src/myqueue_1.1/pq_top.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5039061705290805, "lm_q2_score": 0.7185943985973773, "lm_q1q2_score": 0.362104151560852}} {"text": "function [splitPsi, logQ] = getSplitConfig_SeqAllocation( Psi, data_struct, hyperparams, model, anchorObjIDs, featIDs, TargetPsi )\n\nif ~exist( 'TargetPsi', 'var' )\n TargetPsi = [];\nend\n\n\nif isfield( Psi, 'theta' );\n Psi = rmfield( Psi, 'theta');\n Psi = rmfield( Psi, 'TS');\nend\nnObj = size(Psi.F,1);\nlogQ = struct( 'F', 0, 'z', 0 );\n\nobsModel = model.obsModel;\n\nii = anchorObjIDs(1);\njj = anchorObjIDs(2);\n\nkold = featIDs(1);\n\notherFeatIDs = setdiff( 1:size(Psi.F,2), featIDs );\n\notherObjIDs = setdiff( find( Psi.F( :, kold ) > 0 )', anchorObjIDs );\nallObjIDs = [anchorObjIDs otherObjIDs];\n\nkA = size(Psi.F,2) + 1;\nkB = size(Psi.F,2) + 2;\npropFeatIDs = [kA kB];\n\npropF = Psi.F;\npropF(:, [kold] ) = 0;\npropF(ii, [kA kB] ) = [1 0];\npropF(jj, [kA kB] ) = [0 1];\n\n% First, draw starting value for theta from sequence ii and jj\npropStateSeq = Psi.stateSeq;\npropStateSeq( ii ).z( propStateSeq( ii ).z == kold ) = kA;\npropStateSeq( jj ).z( propStateSeq( jj ).z == kold ) = kB;\n\n% Create deterministic trans params Eta\npropTS = getEta_PriorMean( propF, [], hyperparams, model, allObjIDs, propFeatIDs );\n\n% Create deterministic Theta for ALL features: others + [kA kB]\n[Xstats] = getXSuffStats( propF, propStateSeq, data_struct, model, 1:nObj, [otherFeatIDs propFeatIDs] );\nmyTheta = setThetaToPosteriorMean( [], Xstats, obsModel, [otherFeatIDs propFeatIDs] );\n\nif exist( 'TargetPsi', 'var' ) && ~isempty( TargetPsi )\n TargetPsi.externalFeatIDs = propFeatIDs;\nend\n\n% Keep *only* the params for the feature kA, kB being split\n% this is all we update\nAXstats = getXSuffStats( propF, propStateSeq, data_struct, model, [ii jj], [propFeatIDs] );\n\n% Initialize some key sufficient stats\nfeatCounts = sum( propF( anchorObjIDs, propFeatIDs ), 1 );\nnObj = length( anchorObjIDs );\ncounter=0;\n\nfor aa = [ otherObjIDs( randperm(length(otherObjIDs)) ) ii jj]\n counter=counter+1;\n \n if aa == ii || aa == jj\n % Make sure to update F suff. stats for anchors\n % since we've already \"seen\" them before, unlike other sequences\n featCounts = featCounts - propF(aa, propFeatIDs);\n nObj = nObj - 1;\n \n Xdelta = getXSuffStats( propF, propStateSeq, data_struct, model, aa, propFeatIDs );\n AXstats = decXStats( AXstats, Xdelta, model.obsModel );\n end\n \n % Calc Soft Evidence for the current sequence, including both new feats\n curFeatIDs = find( propF(aa,:));\n allPropFeatIDs = union( curFeatIDs, propFeatIDs );\n LL = calcLogCondPrObsGivenTheta( data_struct(aa), myTheta, obsModel, allPropFeatIDs, size(propF,2) );\n \n % Propose new feature assignments for the cur. seq. \n myFPr = featCounts ./ ( nObj + hyperparams.c );\n [newFaa, logQ_Faa] = sampleFfromRestrictedSet( aa, anchorObjIDs, LL, propFeatIDs, propTS.obj( aa ), myFPr, TargetPsi );\n propF(aa, propFeatIDs) = newFaa;\n \n % Keep track of probability of making this specific proposal\n logQ.F = logQ.F + logQ_Faa; \n \n % In case we chose not to include one of the proposed new split feats,\n % we need to remove that feature's transition weights from propTS\n % and also remove that feature's entries in soft ev. matrix LL\n availFeatIDs = propTS.obj(aa).availFeatIDs;\n kiloc = find( availFeatIDs == propFeatIDs(1) );\n kjloc = find( availFeatIDs == propFeatIDs(2) );\n switch ( newFaa * [10;1] )\n case 01\n keepIDs = [1:kiloc-1 kiloc+1:length(availFeatIDs)];\n case 10\n keepIDs = [1:kjloc-1 kjloc+1:length(availFeatIDs)];\n case 11\n keepIDs = 1:length(availFeatIDs);\n end\n curEta.availFeatIDs = propTS.obj(aa).availFeatIDs( keepIDs );\n curEta.pi_z = propTS.obj(aa).pi_z( keepIDs, keepIDs ); \n activeFeatIDs = union( curFeatIDs, propFeatIDs(newFaa==1) );\n activeLL = LL( activeFeatIDs, : );\n \n \n % Propose new State Seq for current sequence\n %[propStateSeq, logQaa] = sampleZ_RGS(data_struct, propTS, propF, myTheta, obsModel, propStateSeq, aa, TargetPsi);\n [propStateSeq(aa).z, logPrQ_z] = sampleStateSeq_PrecompSoftEv( aa, curEta, activeLL, TargetPsi);\n logQ.z = logQ.z + logPrQ_z;\n \n % Update suff. stats for F sampling\n featCounts = featCounts + propF(aa, propFeatIDs);\n nObj = nObj + 1;\n \n % Update Emission Params for new proposed features\n % using the newly allocated data from the current sequence\n Xdelta = getXSuffStats( propF, propStateSeq, data_struct, model, aa, propFeatIDs );\n AXstats = incXStats( AXstats, Xdelta, model.obsModel );\n myTheta = setThetaToPosteriorMean( myTheta, AXstats, obsModel, [propFeatIDs] );\n \nend\n\n% Record final launch state\nsplitPsi.F = propF;\nsplitPsi.stateSeq = propStateSeq;\nsplitPsi.activeFeatIDs = propFeatIDs;\nsplitPsi.anchorObjIDs = anchorObjIDs;\nend\n\n", "meta": {"author": "michaelchughes", "repo": "NPBayesHMM", "sha": "22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd", "save_path": "github-repos/MATLAB/michaelchughes-NPBayesHMM", "path": "github-repos/MATLAB/michaelchughes-NPBayesHMM/NPBayesHMM-22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd/code/BPHMM/sampler/SplitMerge/getSplitConfig_SeqAllocation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7185943925708561, "lm_q2_score": 0.5039061705290805, "lm_q1q2_score": 0.3621041485240508}} {"text": "classdef TestInitUndistortRectifyMap\n %TestInitUndistortRectifyMap\n\n methods (Static)\n function test_1\n camMat = eye(3);\n distCoeffs = zeros(1,4);\n sz = [50 100]; % [w,h]\n [map1,map2] = cv.initUndistortRectifyMap(...\n camMat, distCoeffs, sz, 'M1Type','int16', ...\n 'NewCameraMatrix',camMat, 'R',eye(3));\n validateattributes(map1, {'int16'}, {'size',[sz(2) sz(1) 2]});\n validateattributes(map2, {'uint16'}, {'size',[sz(2) sz(1)]});\n end\n\n function test_2\n camMat = eye(3);\n distCoeffs = zeros(1,4);\n sz = [50 100]; % [w,h]\n [map1,map2] = cv.initUndistortRectifyMap(...\n camMat, distCoeffs, sz, 'M1Type','single1');\n validateattributes(map1, {'single'}, {'size',[sz(2) sz(1)]});\n validateattributes(map2, {'single'}, {'size',[sz(2) sz(1)]});\n end\n\n function test_3\n camMat = eye(3);\n distCoeffs = zeros(1,4);\n sz = [50 100]; % [w,h]\n [map1,map2] = cv.initUndistortRectifyMap(...\n camMat, distCoeffs, sz, 'M1Type','single2');\n validateattributes(map1, {'single'}, {'size',[sz(2) sz(1) 2]});\n assert(isempty(map2));\n end\n\n function test_error_argnum\n try\n cv.initUndistortRectifyMap();\n throw('UnitTest:Fail');\n catch e\n assert(strcmp(e.identifier,'mexopencv:error'));\n end\n end\n end\n\nend\n", "meta": {"author": "kyamagu", "repo": "mexopencv", "sha": "d29007b2a484d0fd92e6e941dc5fd4750014fa6a", "save_path": "github-repos/MATLAB/kyamagu-mexopencv", "path": "github-repos/MATLAB/kyamagu-mexopencv/mexopencv-d29007b2a484d0fd92e6e941dc5fd4750014fa6a/test/unit_tests/TestInitUndistortRectifyMap.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.585101154203231, "lm_q2_score": 0.6187804267137442, "lm_q1q2_score": 0.36204914186857956}} {"text": "function sliceThicknessV = deduceSliceWidths(planC,scanNum)\n%function sliceThicknessV = deduceSliceWidths(planC)\n%\n%This function deduces slice thicknesses when the treatment planning system\n%provides only z Values.\n%\n%\n%Created: 30 Apr 03, JOD.\n% copyright (c) 2001-2006, Washington University in St. Louis.\n% Permission is granted to use or modify only for non-commercial, \n% non-treatment-decision applications, and further only if this header is \n% not removed from any file. No warranty is expressed or implied for any \n% use whatever: use at your own risk. Users can request use of CERR for \n% institutional review board-approved protocols. Commercial users can \n% request a license. Contact Joe Deasy for more information \n% (radonc.wustl.edu@jdeasy, reversed).\nindexS = planC{end};\n\nzValuesV = [planC{indexS.scan}(scanNum).scanInfo(:).zValue];\n\nsliceThicknessV = ones(size(zValuesV)) * nan;\n\nfor i = 2 : length(zValuesV) - 1\n nextDelta = abs(zValuesV(i+1) - zValuesV(i));\n sliceThicknessV(i) = nextDelta;\nend\nif length(zValuesV) > 1\n sliceThicknessV(1) = 2 * (abs(zValuesV(2) - zValuesV(1)) - 0.5 * sliceThicknessV(2));\n sliceThicknessV(end) = 2 * (abs(zValuesV(end) - zValuesV(end - 1)) - 0.5 * sliceThicknessV(end - 1));\nend\n", "meta": {"author": "cerr", "repo": "CERR", "sha": "d320754abad9dcb78508ab69f33ae9f644202114", "save_path": "github-repos/MATLAB/cerr-CERR", "path": "github-repos/MATLAB/cerr-CERR/CERR-d320754abad9dcb78508ab69f33ae9f644202114/CERR_core/Uniformization/deduceSliceWidths.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6224593312018545, "lm_q2_score": 0.5813030906443134, "lm_q1q2_score": 0.3618375330280303}} {"text": "function p = prior_sqrtt(varargin)\n%PRIOR_SQRTT Student-t prior structure for the square root of the parameter\n% \n% Description\n% P = PRIOR_SQRTT('PARAM1', VALUE1, 'PARAM2', VALUE2, ...) \n% creates for the square root of the parameter Student's\n% t-distribution prior structure in which the named parameters\n% have the specified values. Any unspecified parameters are set\n% to default values.\n%\n% P = PRIOR_SQRTT(P, 'PARAM1', VALUE1, 'PARAM2', VALUE2, ...)\n% modify a prior structure with the named parameters altered\n% with the specified values.\n%\n% Parameters for Student-t prior [default]\n% mu - location [0]\n% s2 - scale [1]\n% nu - degrees of freedom [4]\n% mu_prior - prior for mu [prior_fixed]\n% s2_prior - prior for s2 [prior_fixed]\n% nu_prior - prior for nu [prior_fixed]\n%\n% See also\n% PRIOR_t, PRIOR_*\n\n% Copyright (c) 2000-2001,2010 Aki Vehtari\n% Copyright (c) 2009 Jarno Vanhatalo\n% Copyright (c) 2010 Jaakko Riihim\ufffdki\n\n% This software is distributed under the GNU General Public\n% License (version 3 or later); please refer to the file\n% License.txt, included with the software, for details.\n\n ip=inputParser;\n ip.FunctionName = 'PRIOR_SQRTT';\n ip.addOptional('p', [], @isstruct);\n ip.addParamValue('mu',0, @(x) isscalar(x));\n ip.addParamValue('mu_prior',[], @(x) isstruct(x) || isempty(x));\n ip.addParamValue('s2',1, @(x) isscalar(x) && x>0);\n ip.addParamValue('s2_prior',[], @(x) isstruct(x) || isempty(x));\n ip.addParamValue('nu',4, @(x) isscalar(x) && x>0);\n ip.addParamValue('nu_prior',[], @(x) isstruct(x) || isempty(x));\n ip.parse(varargin{:});\n p=ip.Results.p;\n \n if isempty(p)\n init=true;\n p.type = 'Sqrt-t';\n else\n if ~isfield(p,'type') && ~isequal(p.type,'Sqrt-t')\n error('First argument does not seem to be a valid prior structure')\n end\n init=false;\n end\n\n % Initialize parameters\n if init || ~ismember('mu',ip.UsingDefaults)\n p.mu = ip.Results.mu;\n end\n if init || ~ismember('s2',ip.UsingDefaults)\n p.s2 = ip.Results.s2;\n end\n if init || ~ismember('nu',ip.UsingDefaults)\n p.nu = ip.Results.nu;\n end\n % Initialize prior structure\n if init\n p.p=[];\n end\n if init || ~ismember('mu_prior',ip.UsingDefaults)\n p.p.mu=ip.Results.mu_prior;\n end\n if init || ~ismember('s2_prior',ip.UsingDefaults)\n p.p.s2=ip.Results.s2_prior;\n end\n if init || ~ismember('nu_prior',ip.UsingDefaults)\n p.p.nu=ip.Results.nu_prior;\n end\n\n if init\n % set functions\n p.fh.pak = @prior_sqrtt_pak;\n p.fh.unpak = @prior_sqrtt_unpak;\n p.fh.lp = @prior_sqrtt_lp;\n p.fh.lpg = @prior_sqrtt_lpg;\n p.fh.recappend = @prior_sqrtt_recappend;\n end\n\nend\n\nfunction [w, s] = prior_sqrtt_pak(p)\n \n w=[];\n s={};\n if ~isempty(p.p.mu)\n w = p.mu;\n s=[s; 'Sqrt-Student-t.mu'];\n end \n if ~isempty(p.p.s2)\n w = [w log(p.s2)];\n s=[s; 'log(Sqrt-Student-t.s2)'];\n end\n if ~isempty(p.p.nu)\n w = [w log(p.nu)];\n s=[s; 'log(Sqrt-Student-t.nu)'];\n end\nend\n\nfunction [p, w] = prior_sqrtt_unpak(p, w)\n \n if ~isempty(p.p.mu)\n i1=1;\n p.mu = w(i1);\n w = w(i1+1:end);\n end\n if ~isempty(p.p.s2)\n i1=1;\n p.s2 = exp(w(i1));\n w = w(i1+1:end);\n end\n if ~isempty(p.p.nu)\n i1=1;\n p.nu = exp(w(i1));\n w = w(i1+1:end);\n end\nend\n\nfunction lp = prior_sqrtt_lp(x, p)\n \n lJ = -log(2*sqrt(x)); % log(1/(2*x^(1/2))) log(|J|) of transformation\n xt = sqrt(x); % transformation\n lp = sum(gammaln((p.nu+1)./2) - gammaln(p.nu./2) - 0.5*log(p.nu.*pi.*p.s2) - (p.nu+1)./2.*log(1+(xt-p.mu).^2./p.nu./p.s2) + lJ);\n \n if ~isempty(p.p.mu)\n lp = lp + p.p.mu.fh.lp(p.mu, p.p.mu);\n end\n if ~isempty(p.p.s2)\n lp = lp + p.p.s2.fh.lp(p.s2, p.p.s2) + log(p.s2);\n end\n if ~isempty(p.p.nu)\n lp = lp + p.p.nu.fh.lp(p.nu, p.p.nu) + log(p.nu);\n end\nend\n\nfunction lpg = prior_sqrtt_lpg(x, p)\n\n lJg = -1./(2*x); % gradient of log(|J|) of transformation\n xt = sqrt(x); % transformation\n xtg = 1./(2*sqrt(x)); % derivative of transformation\n lpg = xtg.*(-(p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + lJg;\n \n if ~isempty(p.p.mu)\n lpgmu = sum((p.nu+1).*(xt-p.mu)./(p.nu.*p.s2 + (xt-p.mu).^2)) + p.p.mu.fh.lpg(p.mu, p.p.mu);\n lpg = [lpg lpgmu];\n end\n if ~isempty(p.p.s2)\n lpgs2 = (sum(-1./(2.*p.s2)+((p.nu + 1)*(p.mu - xt)^2)./(2*p.s2*((p.mu-xt)^2 + p.nu*p.s2))) + p.p.s2.fh.lpg(p.s2, p.p.s2)).*p.s2 + 1;\n lpg = [lpg lpgs2];\n end\n if ~isempty(p.p.nu)\n lpgnu = (0.5*sum(digamma1((p.nu+1)./2)-digamma1(p.nu./2)-1./p.nu-log(1+(xt-p.mu).^2./p.nu./p.s2)+(p.nu+1)./(1+(xt-p.mu).^2./p.nu./p.s2).*(xt-p.mu).^2./p.s2./p.nu.^2) + p.p.nu.fh.lpg(p.nu, p.p.nu)).*p.nu + 1;\n lpg = [lpg lpgnu];\n end\nend\n\nfunction rec = prior_sqrtt_recappend(rec, ri, p)\n% The parameters are not sampled in any case.\n rec = rec;\n if ~isempty(p.p.mu)\n rec.mu(ri,:) = p.mu;\n end \n if ~isempty(p.p.s2)\n rec.s2(ri,:) = p.s2;\n end\n if ~isempty(p.p.nu)\n rec.nu(ri,:) = p.nu;\n end\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/dmlt/external/gpstuff/dist/prior_sqrtt.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5813030906443133, "lm_q2_score": 0.6224593312018546, "lm_q1q2_score": 0.3618375330280303}} {"text": "% *************************************************************************\n% Video Super-Resolution with Convolutional Neural Networks\n%\n% helper function to generate mat file from video frames\n% --> feel free to modify and use for your own purpose\n%\n% Version 1.0\n%\n% Created by: Armin Kappeler\n% Date: 02/19/2016\n%\n% *************************************************************************\nclearvars\n\nOUTPUTPATH = 'data/lr_video/u3/foreman_u4_LR.mat';\n\nDParam.prescaling = 1;\nDParam.upscaleFactor = 4;\nDParam.patchSize = 36; \nDParam.stride = 36; \n\ninputBasename = {'foreman_short'};\ninputNrFrames = 20;\n\ninputVidBasePath = '/home/armin/caffe/data/Superresolution/4vid/';\ninputVidPath{1} = [inputVidBasePath inputBasename{1} '/original/Frame '];\ninputVidPath{2} = '.png';\n \nfor i=1:inputNrFrames\n fileIdxStr = sprintf('%03d',i);\n filename = [inputVidPath{1} fileIdxStr inputVidPath{2}];\n \n imgRGB = im2double(imread(filename));\n\n %% only get Y-channel (gray) from YCbCr\n if (ndims(imgRGB)==3)\n img_ycbcr = rgb2ycbcr(imgRGB);\n imgHi = img_ycbcr(:,:,1); \n else\n imgHi = imgRGB;\n end\n\n %% preprocess image\n imgHi = crop2divisibleSize(imgHi,DParam.upscaleFactor);\n imgLo = imresize(imgHi,1/DParam.upscaleFactor,'bicubic'); \n \n if i==1\n frames = zeros([size(imgLo),inputNrFrames] );\n end\n \n frames(:,:,i) = imgLo;\n \nend\n\nsave(OUTPUTPATH,'frames')\n", "meta": {"author": "thomas-koehler", "repo": "SupER", "sha": "d8c6f2e4b26db002ff55bc2beba18639f1d0bb49", "save_path": "github-repos/MATLAB/thomas-koehler-SupER", "path": "github-repos/MATLAB/thomas-koehler-SupER/SupER-d8c6f2e4b26db002ff55bc2beba18639f1d0bb49/matlab/algorithms/SRAlgorithms/VSRnet/functions/generate_mat_from_videoframes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6859494678483918, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.3617124885998782}} {"text": "function prandtl_values_test ( )\n\n%*****************************************************************************80\n%\n%% PRANDTL_VALUES_TEST demonstrates the use of PRANDTL_VALUES.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 November 2005\n%\n% Author:\n%\n% John Burkardt\n%\n fprintf ( 1, '\\n' );\n fprintf ( 1, 'PRANDTL_VALUES_TEST:\\n' );\n fprintf ( 1, ' PRANDTL_VALUES stores values of\\n' );\n fprintf ( 1, ' the Prandtl number of water\\n' );\n fprintf ( 1, ' as a function of temperature and pressure.\\n' );\n fprintf ( 1, '\\n' );\n fprintf ( 1, ' T P Pr(T,P)\\n' );\n fprintf ( 1, '\\n' );\n\n n_data = 0;\n\n while ( 1 )\n\n [ n_data, tc, p, pr ] = prandtl_values ( n_data );\n\n if ( n_data == 0 )\n break\n end\n\n fprintf ( 1, ' %12f %12f %24.16f\\n', tc, p, pr );\n\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_values/prandtl_values_test.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.6859494614282923, "lm_q1q2_score": 0.3617124852144536}} {"text": "function [K, sK] = indexKernCompute(kern, x, x2)\n\n% INDEXKERNCOMPUTE Compute the INDEX kernel given the parameters and X.\n% FORMAT\n% DESC computes the kernel parameters for the index based covariance function\n% kernel given inputs associated with rows and columns.\n% ARG kern : the kernel structure for which the matrix is computed.\n% ARG x : the input matrix associated with the rows of the kernel.\n% ARG x2 : the input matrix associated with the columns of the kernel.\n% RETURN k : the kernel matrix computed at the given points.\n%\n% FORMAT\n% DESC computes the kernel matrix for the index based covariance function\n% kernel given a design matrix of inputs.\n% ARG kern : the kernel structure for which the matrix is computed.\n% ARG x : input data matrix in the form of a design matrix.\n% RETURN k : the kernel matrix computed at the given points.\n%\n% SEEALSO : indexKernParamInit, kernCompute, kernCreate, indexKernDiagCompute, indexardKernCompute\n%\n% COPYRIGHT : Neil D. Lawrence, 2011\n\n% KERN\n if size(x, 2)>1\n error('Index kernel requires 1-dimensional input.')\n end\n\n if nargin<3\n x2 = x;\n end\n sK = zeros(size(x, 1), size(x2, 1));\n for i = 1:size(x, 1)\n sK(i, :) = round(x(i))==round(x2)';\n end\n sK = sparse(sK);\n K = sK*kern.variance;\nend\n", "meta": {"author": "SheffieldML", "repo": "GPmat", "sha": "4b5914a38ecbad9fb7a13a3392970bfc28c9d911", "save_path": "github-repos/MATLAB/SheffieldML-GPmat", "path": "github-repos/MATLAB/SheffieldML-GPmat/GPmat-4b5914a38ecbad9fb7a13a3392970bfc28c9d911/kern/indexKernCompute.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5273165233795672, "lm_q1q2_score": 0.361712481829029}} {"text": "function [controlFlux, objFlux] = robustnessAnalysis(model, controlRxn, nPoints, plotResFlag, objRxn, objType)\n% Performs robustness analysis for a reaction of\n% interest and an objective of interest\n%\n% USAGE:\n%\n% [controlFlux, objFlux] = robustnessAnalysis(model, controlRxn, nPoints, plotResFlag, objRxn, objType)\n%\n% INPUTS:\n% model: COBRA model structure\n% controlRxn: Reaction of interest whose value is to be controlled\n%\n% OPTIONAL INPUTS:\n% nPoints: Number of points to show on plot (Default = 20)\n% plotResFlag: Plot results (Default true)\n% objRxn: Objective reaction to be maximized\n% (Default = whatever is defined in model)\n% objType: Maximize ('max') or minimize ('min') objective\n% (Default = 'max')\n%\n% OUTPUTS:\n% controlFlux: Flux values within the range of the maximum and minimum for\n% reaction of interest\n% objFlux: Optimal values of objective reaction at each control\n% reaction flux value\n%\n% .. Author: - Monica Mo and Markus Herrgard 8/17/06\n\nif (nargin < 3)\n nPoints = 20;\nend\nif (nargin < 4)\n plotResFlag = true;\nend\nif (nargin > 4)\n baseModel = changeObjective(model,objRxn);\nelse\n baseModel = model;\nend\nif (nargin <6)\n objType = 'max';\nend\n\nif (findRxnIDs(model,controlRxn))\n tmpModel = changeObjective(model,controlRxn);\n tmpModel.osenseStr = 'min';\n solMin = optimizeWBModel(tmpModel);\n tmpModel.osenseStr = 'max';\n solMax = optimizeWBModel(tmpModel);\nelse\n error('Control reaction does not exist!');\nend\n\nobjFlux = [];\ncontrolFlux = linspace(solMin.f,solMax.f,nPoints)';\n\nshowprogress(0,'Robustness analysis in progress ...');\nfor i=1:length(controlFlux)\n showprogress(i/length(controlFlux));\n modelControlled = changeRxnBounds(baseModel,controlRxn,controlFlux(i),'b');\n tmpModel.osenseStr = objType;\n solControlled = optimizeWBModel(modelControlled);\n objFlux(i) = solControlled.f;\nend\n\nobjFlux = objFlux';\n\nif (plotResFlag)\n plot(controlFlux,objFlux)\n xlabel(strrep(controlRxn,'_','-'));\n ylabel('Objective');\n axis tight;\nend\n", "meta": {"author": "opencobra", "repo": "cobratoolbox", "sha": "e60274d127f65d518535fd0814d20c53dc530f73", "save_path": "github-repos/MATLAB/opencobra-cobratoolbox", "path": "github-repos/MATLAB/opencobra-cobratoolbox/cobratoolbox-e60274d127f65d518535fd0814d20c53dc530f73/src/analysis/robustnessAnalysis/robustnessAnalysisWB.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081926, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.36171248182902893}} {"text": "function TessMat = in_tess_curry( TessFile )\n% IN_TESS_CURRY: Read Curry tesselation files\n\n% @=============================================================================\n% This function is part of the Brainstorm software:\n% https://neuroimage.usc.edu/brainstorm\n% \n% Copyright (c) University of Southern California & McGill University\n% This software is distributed under the terms of the GNU General Public License\n% as published by the Free Software Foundation. Further details on the GPLv3\n% license can be found at http://www.gnu.org/copyleft/gpl.html.\n% \n% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED \"AS IS,\" AND THE\n% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY\n% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF\n% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY\n% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.\n%\n% For more information type \"brainstorm license\" at command prompt.\n% =============================================================================@\n%\n% Authors: Francois Tadel, 2012\n\n% Open tesselation file\nfid = fopen(TessFile, 'r');\nif fid < 0\n error(['Cannot open file ', TessFile]);\nend\n% Initialize variables \nTessMat = struct('Comment', '', 'Vertices', [], 'Faces', []);\ncurBlock = [];\n\n% Read file line by line\nwhile 1\n % Read one line\n newLine = fgetl(fid);\n if ~ischar(newLine)\n break;\n end\n % Lines to skip\n if isempty(newLine)\n continue;\n end\n % Identify blocks\n if ~isempty(strfind(newLine, 'LOCATION_LIST START_LIST'))\n curBlock = 'Vertices';\n continue;\n elseif ~isempty(strfind(newLine, 'TRIANGLE_LIST START_LIST'))\n curBlock = 'Faces';\n continue;\n elseif ~isempty(strfind(newLine, 'POINT_DESCRIPTION START_LIST'))\n curBlock = 'Comment';\n continue;\n elseif ~isempty(strfind(newLine, 'END'))\n curBlock = [];\n continue;\n end\n % If no block is open: skip the line\n if isempty(curBlock)\n continue;\n end\n % Numeric values\n if ismember(curBlock, {'Vertices', 'Faces'})\n % Interpret values: 3 values per line\n values = str2num(newLine);\n if (length(values) < 3)\n continue;\n end\n % Add to the list \n TessMat.(curBlock) = [TessMat.(curBlock); values];\n % Text\n else\n TessMat.(curBlock) = [TessMat.(curBlock), newLine];\n % Read only the first line of the comments\n if strcmpi(curBlock, 'Comment')\n curBlock = [];\n end\n end\nend\n% Close file\nfclose(fid);\n\n% Check that some vertices where loaded\nif isempty(TessMat.Vertices)\n error('This file does not contain any Curry BEM surface.');\nend\n% Rebuild tesselation\nif isempty(TessMat.Faces)\n % Get the convex envelope of the points\n TessMat.Faces = convhulln(TessMat.Vertices);\nelse\n % Convert from 0-based to 1-based indices\n TessMat.Faces = TessMat.Faces + 1;\n % Reverse faces order\n TessMat.Faces = TessMat.Faces(:, [1 3 2]);\nend\n\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/toolbox/io/in_tess_curry.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494550081925, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3617124818290289}} {"text": "function [mergePsi, logQ] = getMergeConfig_SeqAllocation( Psi, data_struct, hyperparams, model, anchorObjIDs, featIDs, TargetPsi )\n% Merge Move launch\n% MERGE all blocks assigned to either featIDs into single feature kmerge\nif ~exist( 'TargetPsi', 'var' )\n TargetPsi = [];\nend\n\nif isfield( Psi, 'theta' );\n Psi = rmfield( Psi, 'theta');\n Psi = rmfield( Psi, 'TS');\nend\n\nlogQ.F = 0;\nlogQ.z = 0;\nobsModel = model.obsModel;\n\nF = Psi.F;\nnObj = size(F,1);\nii = anchorObjIDs(1);\njj = anchorObjIDs(2);\n\nallObjIDs = find( sum( F(:,featIDs), 2 ) > 0 )';\notherObjIDs = setdiff( allObjIDs, anchorObjIDs );\notherFeatIDs = setdiff( 1:size(F,2), featIDs );\n\npropF = F;\npropF(:, featIDs) = 0;\nkmerge = size(propF,2)+1;\n\npropFeatIDs = [kmerge];\npropF(allObjIDs, kmerge) = 1;\n\npropStateSeq = Psi.stateSeq;\nfor aa = anchorObjIDs\n aIDs = propStateSeq(aa).z == featIDs(1);\n bIDs = propStateSeq(aa).z == featIDs(2);\n propStateSeq(aa).z( aIDs | bIDs ) = kmerge;\nend\npropTS = getEta_PriorMean( propF, [], hyperparams, model, allObjIDs, propFeatIDs );\n\n% Ustats = getStateSeqSuffStats_C1( propStateSeq, propF, data_struct, model, 1:nObj, [otherFeatIDs propFeatIDs] );\n% myTheta.logp = zeros( size(Ustats.Nkv) );\n% myTheta = getTheta_PosteriorMean( myTheta, Ustats, obsModel, [otherFeatIDs propFeatIDs] );\n\n[Xstats] = getXSuffStats( propF, propStateSeq, data_struct, model, 1:nObj, [otherFeatIDs propFeatIDs] );\nmyTheta = setThetaToPosteriorMean( [], Xstats, obsModel, [otherFeatIDs propFeatIDs] );\n\n% Keep *only* the params for the feature kM being merged\n% this is all we update\nAXstats = getXSuffStats( propF, propStateSeq, data_struct, model, [ii jj], [propFeatIDs] );\n\n\nif exist( 'TargetPsi', 'var' ) && ~isempty( TargetPsi )\n TargetPsi.externalFeatIDs = kmerge;\nend\nfor aa = [ otherObjIDs( randperm( length(otherObjIDs) ) ) anchorObjIDs]\n if aa == ii || aa == jj \n Xdelta = getXSuffStats( propF, propStateSeq, data_struct, model, aa, propFeatIDs );\n AXstats = decXStats( AXstats, Xdelta, model.obsModel ); \n end\n\n % Construct soft evidence\n activeFeatIDs = find( propF(aa,:)==1 );\n LL = calcLogCondPrObsGivenTheta( data_struct(aa), myTheta, obsModel, activeFeatIDs, size(propF,2) );\n LL = LL( activeFeatIDs, :);\n % Propose new State Seq. for current item\n [propStateSeq(aa).z, logPrQ_z] = sampleStateSeq_PrecompSoftEv( aa, propTS.obj(aa), LL, TargetPsi); \n %[propStateSeq, logQaa] = sampleZ_RGS(data_struct, propTS, propF, myTheta, model.obsModel, propStateSeq, aa, TargetPsi);\n logQ.z = logQ.z + logPrQ_z;\n \n % Update Emission Params for new proposed features\n % using the newly allocated data from the current sequence\n Xdelta = getXSuffStats( propF, propStateSeq, data_struct, model, aa, propFeatIDs );\n AXstats = incXStats( AXstats, Xdelta, model.obsModel );\n myTheta = setThetaToPosteriorMean( myTheta, AXstats, obsModel, propFeatIDs );\nend\n\nmergePsi.F = propF;\nmergePsi.stateSeq = propStateSeq;\nmergePsi.activeFeatIDs = propFeatIDs;\nmergePsi.anchorObjIDs = anchorObjIDs;", "meta": {"author": "michaelchughes", "repo": "NPBayesHMM", "sha": "22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd", "save_path": "github-repos/MATLAB/michaelchughes-NPBayesHMM", "path": "github-repos/MATLAB/michaelchughes-NPBayesHMM/NPBayesHMM-22e164b5eb68ea2b1e5ef38807a56fd8aa3660dd/code/BPHMM/sampler/SplitMerge/getMergeConfig_SeqAllocation.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6859494421679929, "lm_q2_score": 0.5273165233795671, "lm_q1q2_score": 0.3617124750581795}} {"text": "function exact = p06_exact ( )\n\n%*****************************************************************************80\n%\n%% P06_EXACT returns the exact integral for problem 6.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 04 November 2009\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Output, real EXACT, the estimated value of the integral.\n%\n exact = 1.460447131787105;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_int/p06_exact.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5273165233795671, "lm_q2_score": 0.6859494421679929, "lm_q1q2_score": 0.3617124750581795}} {"text": "ndataset = {};\nlocation = ['rooms',filesep];\nfor i = 1:length(dataset)\n data = dataset{i};\n obblist = data.obblist;\n nobblist = [];\n for j = 1:size(obblist,2)\n obb = obblist(1:12,j);\n label = obblist(13:end,j);\n label = binary2dec(label);\n cornerpoints = OBBrep2cornerpoints(obb);\n nobb = [label];\n for k = 1:size(cornerpoints,1)\n nobb = [nobb;cornerpoints(k,:)'];\n end\n nobblist = [nobblist,nobb];\n end\n ndataset{i} = nobblist;\n \n filename = [location, num2str(i),'.txt'];\n fid = fopen(filename,'w');\n for j = 1:size(nobblist,2)\n nobb = nobblist(:,j);\n for k = 1:length(nobb)\n fprintf(fid, '%f ', nobb(k));\n end\n fprintf(fid,'\\n');\n end\n fclose(fid);\nend", "meta": {"author": "ManyiLi12345", "repo": "GRAINS", "sha": "7806359dada1283a110886d4b634fdedf6963e63", "save_path": "github-repos/MATLAB/ManyiLi12345-GRAINS", "path": "github-repos/MATLAB/ManyiLi12345-GRAINS/GRAINS-7806359dada1283a110886d4b634fdedf6963e63/vistools/transform.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3616832319650135}} {"text": "function [CV]=faceToVertexMeasure(F,V,CF)\n% function [CV]=faceToVertexMeasure(F,V,CF)\n% ------------------------------------------------------------------------\n%\n%\n% Change log:\n% 2009\n% 2019/04/22 Minor changes to improve efficiency through improved allocation\n% 2019/04/22 Renamed variables\n% 2019/04/23 Updated to handle cell input\n% ------------------------------------------------------------------------\n\n%%\n\n%Check if F is a cell of face arrays\ncellMode=isa(F,'cell');\n\nif cellMode==1\n CV=repmat({zeros(size(V,1),size(CF{1},2))},1,numel(CF));\n for qc=1:1:numel(F)\n % Get vertex-face connectivity matrix\n conStruct=patchConnectivity(F{qc},V,'vf');\n IND_F=conStruct.vertex.face;\n logicValid=IND_F>0;\n CV_now=ones(size(V,1),size(IND_F,2),size(CF{qc},2));\n cv=nan(size(IND_F));\n for q=1:1:size(CF{qc},2) %Loop over data columns\n cf=CF{qc}(:,q);\n cv(logicValid)=cf(IND_F(logicValid));\n CV_now(:,:,q)=cv;\n end\n CV{qc}=CV_now;\n end\n CV=mean(cell2mat(CV),2,'omitnan'); %Take mean across faces\n if size(CF{1},2)>1\n CV=permute(CV,[1 3 2]); %Get rid of singleton dimension\n end\nelse\n % Get vertex-face connectivity matrix\n conStruct=patchConnectivity(F,V,'vf');\n IND_F=conStruct.vertex.face; \n logicValid=IND_F>0; \n CV=ones(size(V,1),size(CF,2));\n cv=nan(size(IND_F));\n for q=1:1:size(CF,2) %Loop over data columns\n cf=CF(:,q);\n cv(logicValid)=cf(IND_F(logicValid));\n CV(:,q)=mean(cv,2,'omitnan');\n end\nend\n\n%% \n% _*GIBBON footer text*_ \n% \n% License: \n% \n% GIBBON: The Geometry and Image-based Bioengineering add-On. A toolbox for\n% image segmentation, image-based modeling, meshing, and finite element\n% analysis.\n% \n% Copyright (C) 2006-2022 Kevin Mattheus Moerman and the GIBBON contributors\n% \n% This program is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License\n% along with this program. If not, see .\n", "meta": {"author": "gibbonCode", "repo": "GIBBON", "sha": "8178520664a6148db939eaea87e75b3cba4f2b4f", "save_path": "github-repos/MATLAB/gibbonCode-GIBBON", "path": "github-repos/MATLAB/gibbonCode-GIBBON/GIBBON-8178520664a6148db939eaea87e75b3cba4f2b4f/lib/faceToVertexMeasure.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3616832319650135}} {"text": "function test_bug3337\n\n% WALLTIME 00:10:00\n% MEM 1gb\n% DEPENDENCY\n\n%%\ndata = [];\ndata.label = {'1', '2'};\nfor i=1:3\n data.trial{i} = randn(2, 1000);\n data.time{i} = (1:1000)/1000;\n data.sampleinfo(i,:) = [(i-1)*1000+1 i*1000];\nend\n\ndata.trial{1}(:,30:40) = nan;\ndata.trial{1}(:,80:90) = nan; % 2nd segment within one trial\ndata.trial{2}(1,100) = nan; % one sample\ndata.trial{3}(1,:) = nan; % whole trial\n\ncfg = [];\n[cfg, artifact] = ft_artifact_nan(cfg, data);\n\nassert(size(artifact,1)==4)\nassert(size(artifact,2)==2)\n\ncorrect = [\n 30 40\n 80 90\n 1100 1100\n 2001 3000\n ];\n\nassert(isequal(artifact, correct));\n\n%%\n\ncfg.artfctdef.reject = 'nan';\ndatanan = ft_rejectartifact(cfg, data);\nassert(isequaln(data.trial{1}, datanan.trial{1}));\n\n%%\n\ncfg.artfctdef.minaccepttim = 0;\ncfg.artfctdef.reject = 'partial';\ndatapartial = ft_rejectartifact(cfg, data);\nassert(numel(datapartial.trial)==5);\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug3337.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982179521103, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.3616832319650135}} {"text": "function [x, f, eflag, output, lambda] = qps_gurobi(H, c, A, l, u, xmin, xmax, x0, opt)\n%QPS_GUROBI Quadratic Program Solver based on GUROBI.\n% [X, F, EXITFLAG, OUTPUT, LAMBDA] = ...\n% QPS_GUROBI(H, C, A, L, U, XMIN, XMAX, X0, OPT)\n% [X, F, EXITFLAG, OUTPUT, LAMBDA] = QPS_GUROBI(PROBLEM)\n% A wrapper function providing a standardized interface for using\n% GUROBI to solve the following QP (quadratic programming)\n% problem:\n%\n% min 1/2 X'*H*X + C'*X\n% X\n%\n% subject to\n%\n% L <= A*X <= U (linear constraints)\n% XMIN <= X <= XMAX (variable bounds)\n%\n% Inputs (all optional except H, C, A and L):\n% H : matrix (possibly sparse) of quadratic cost coefficients\n% C : vector of linear cost coefficients\n% A, L, U : define the optional linear constraints. Default\n% values for the elements of L and U are -Inf and Inf,\n% respectively.\n% XMIN, XMAX : optional lower and upper bounds on the\n% X variables, defaults are -Inf and Inf, respectively.\n% X0 : optional starting value of optimization vector X\n% OPT : optional options structure with the following fields,\n% all of which are also optional (default values shown in\n% parentheses)\n% verbose (0) - controls level of progress output displayed\n% 0 = no progress output\n% 1 = some progress output\n% 2 = verbose progress output\n% 3 = even more verbose progress output\n% grb_opt - options struct for GUROBI, value in verbose\n% overrides these options\n% PROBLEM : The inputs can alternatively be supplied in a single\n% PROBLEM struct with fields corresponding to the input arguments\n% described above: H, c, A, l, u, xmin, xmax, x0, opt\n%\n% Outputs:\n% X : solution vector\n% F : final objective function value\n% EXITFLAG : GUROBI exit flag\n% 1 = converged\n% 0 or negative values = negative of GUROBI exit flag\n% (see GUROBI documentation for details)\n% OUTPUT : GUROBI output struct\n% (see GUROBI documentation for details)\n% LAMBDA : struct containing the Langrange and Kuhn-Tucker\n% multipliers on the constraints, with fields:\n% mu_l - lower (left-hand) limit on linear constraints\n% mu_u - upper (right-hand) limit on linear constraints\n% lower - lower bound on optimization variables\n% upper - upper bound on optimization variables\n%\n% Note the calling syntax is almost identical to that of QUADPROG\n% from MathWorks' Optimization Toolbox. The main difference is that\n% the linear constraints are specified with A, L, U instead of\n% A, B, Aeq, Beq.\n%\n% Calling syntax options:\n% [x, f, exitflag, output, lambda] = ...\n% qps_gurobi(H, c, A, l, u, xmin, xmax, x0, opt)\n%\n% x = qps_gurobi(H, c, A, l, u)\n% x = qps_gurobi(H, c, A, l, u, xmin, xmax)\n% x = qps_gurobi(H, c, A, l, u, xmin, xmax, x0)\n% x = qps_gurobi(H, c, A, l, u, xmin, xmax, x0, opt)\n% x = qps_gurobi(problem), where problem is a struct with fields:\n% H, c, A, l, u, xmin, xmax, x0, opt\n% all fields except 'c', 'A' and 'l' or 'u' are optional\n% x = qps_gurobi(...)\n% [x, f] = qps_gurobi(...)\n% [x, f, exitflag] = qps_gurobi(...)\n% [x, f, exitflag, output] = qps_gurobi(...)\n% [x, f, exitflag, output, lambda] = qps_gurobi(...)\n%\n%\n% Example: (problem from from https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm)\n% H = [ 1003.1 4.3 6.3 5.9;\n% 4.3 2.2 2.1 3.9;\n% 6.3 2.1 3.5 4.8;\n% 5.9 3.9 4.8 10 ];\n% c = zeros(4,1);\n% A = [ 1 1 1 1;\n% 0.17 0.11 0.10 0.18 ];\n% l = [1; 0.10];\n% u = [1; Inf];\n% xmin = zeros(4,1);\n% x0 = [1; 0; 0; 1];\n% opt = struct('verbose', 2);\n% [x, f, s, out, lambda] = qps_gurobi(H, c, A, l, u, xmin, [], x0, opt);\n%\n% See also QPS_MASTER, GUROBI.\n\n% MP-Opt-Model\n% Copyright (c) 2010-2020, Power Systems Engineering Research Center (PSERC)\n% by Ray Zimmerman, PSERC Cornell\n%\n% This file is part of MP-Opt-Model.\n% Covered by the 3-clause BSD License (see LICENSE file for details).\n% See https://github.com/MATPOWER/mp-opt-model for more info.\n\n%%----- input argument handling -----\n%% gather inputs\nif nargin == 1 && isstruct(H) %% problem struct\n p = H;\n if isfield(p, 'opt'), opt = p.opt; else, opt = []; end\n if isfield(p, 'x0'), x0 = p.x0; else, x0 = []; end\n if isfield(p, 'xmax'), xmax = p.xmax; else, xmax = []; end\n if isfield(p, 'xmin'), xmin = p.xmin; else, xmin = []; end\n if isfield(p, 'u'), u = p.u; else, u = []; end\n if isfield(p, 'l'), l = p.l; else, l = []; end\n if isfield(p, 'A'), A = p.A; else, A = []; end\n if isfield(p, 'c'), c = p.c; else, c = []; end\n if isfield(p, 'H'), H = p.H; else, H = []; end\nelse %% individual args\n if nargin < 9\n opt = [];\n if nargin < 8\n x0 = [];\n if nargin < 7\n xmax = [];\n if nargin < 6\n xmin = [];\n end\n end\n end\n end\nend\n\n%% define nx, set default values for missing optional inputs\nif isempty(H) || ~any(any(H))\n if isempty(A) && isempty(xmin) && isempty(xmax)\n error('qps_gurobi: LP problem must include constraints or variable bounds');\n else\n if ~isempty(A)\n nx = size(A, 2);\n elseif ~isempty(xmin)\n nx = length(xmin);\n else % if ~isempty(xmax)\n nx = length(xmax);\n end\n end\nelse\n nx = size(H, 1);\nend\nif isempty(c)\n c = zeros(nx, 1);\nend\nif isempty(A) || (~isempty(A) && (isempty(l) || all(l == -Inf)) && ...\n (isempty(u) || all(u == Inf)))\n A = sparse(0,nx); %% no limits => no linear constraints\nend\nnA = size(A, 1); %% number of original linear constraints\nif isempty(u) %% By default, linear inequalities are ...\n u = Inf(nA, 1); %% ... unbounded above and ...\nend\nif isempty(l)\n l = -Inf(nA, 1); %% ... unbounded below.\nend\nif isempty(xmin) %% By default, optimization variables are ...\n xmin = -Inf(nx, 1); %% ... unbounded below and ...\nend\nif isempty(xmax)\n xmax = Inf(nx, 1); %% ... unbounded above.\nend\nif isempty(x0)\n x0 = zeros(nx, 1);\nend\n\n%% default options\nif ~isempty(opt) && isfield(opt, 'verbose') && ~isempty(opt.verbose)\n verbose = opt.verbose;\nelse\n verbose = 0;\nend\n\n%% set up options struct for Gurobi\nif ~isempty(opt) && isfield(opt, 'grb_opt') && ~isempty(opt.grb_opt)\n g_opt = gurobi_options(opt.grb_opt);\nelse\n g_opt = gurobi_options;\nend\nif verbose > 1\n g_opt.LogToConsole = 1;\n g_opt.OutputFlag = 1;\n if verbose > 2\n g_opt.DisplayInterval = 1;\n else\n g_opt.DisplayInterval = 100;\n end\nelse\n g_opt.LogToConsole = 0;\n g_opt.OutputFlag = 0;\nend\n\nif ~issparse(A)\n A = sparse(A);\nend\nif issparse(c);\n c = full(c);\nend\n\n%% split up linear constraints\nieq = find( abs(u-l) <= eps ); %% equality\nigt = find( u >= 1e10 & l > -1e10 ); %% greater than, unbounded above\nilt = find( l <= -1e10 & u < 1e10 ); %% less than, unbounded below\nibx = find( (abs(u-l) > eps) & (u < 1e10) & (l > -1e10) );\n\n%% grab some dimensions\nnlt = length(ilt); %% number of upper bounded linear inequalities\nngt = length(igt); %% number of lower bounded linear inequalities\nnbx = length(ibx); %% number of doubly bounded linear inequalities\nneq = length(ieq); %% number of equalities\nniq = nlt+ngt+2*nbx; %% number of inequalities\n\n%% set up model\nm.A = [ A(ieq, :); A(ilt, :); -A(igt, :); A(ibx, :); -A(ibx, :) ];\nm.rhs = [ u(ieq); u(ilt); -l(igt); u(ibx); -l(ibx) ];\nm.sense = char([ double('=')*ones(1,neq) double('<')*ones(1,niq) ]);\nm.lb = xmin;\nm.ub = xmax;\nm.obj = c';\n\n%% call the solver\nif isempty(H) || ~any(any(H))\n lpqp = 'LP';\nelse\n lpqp = 'QP';\n if ~issparse(H)\n H = sparse(H);\n end\n m.Q = 0.5 * H;\nend\nif verbose\n alg_names = {\n 'automatic',\n 'primal simplex',\n 'dual simplex',\n 'interior point',\n 'concurrent',\n 'deterministic concurrent',\n 'deterministic concurrent simplex'\n };\n vn = gurobiver;\n fprintf('Gurobi Version %s -- %s %s solver\\n', ...\n vn, alg_names{g_opt.Method+2}, lpqp);\nend\nresults = gurobi(m, g_opt);\nswitch results.status\n case 'LOADED', %% 1\n eflag = -1;\n case 'OPTIMAL', %% 2, optimal solution found\n eflag = 1;\n case 'INFEASIBLE', %% 3\n eflag = -3;\n case 'INF_OR_UNBD', %% 4\n eflag = -4;\n case 'UNBOUNDED', %% 5\n eflag = -5;\n case 'CUTOFF', %% 6\n eflag = -6;\n case 'ITERATION_LIMIT', %% 7\n eflag = -7;\n case 'NODE_LIMIT', %% 8\n eflag = -8;\n case 'TIME_LIMIT', %% 9\n eflag = -9;\n case 'SOLUTION_LIMIT', %% 10\n eflag = -10;\n case 'INTERRUPTED', %% 11\n eflag = -11;\n case 'NUMERIC', %% 12\n eflag = -12;\n case 'SUBOPTIMAL', %% 13\n eflag = -13;\n case 'INPROGRESS', %% 14\n eflag = -14;\n otherwise,\n eflag = 0;\nend\noutput = results;\n\n%% check for empty results (in case optimization failed)\nif ~isfield(results, 'x') || isempty(results.x)\n x = NaN(nx, 1);\n lam.lower = NaN(nx, 1);\n lam.upper = NaN(nx, 1);\nelse\n x = results.x;\n lam.lower = zeros(nx, 1);\n lam.upper = zeros(nx, 1);\nend\nif ~isfield(results, 'objval') || isempty(results.objval)\n f = NaN;\nelse\n f = results.objval;\nend\nif ~isfield(results, 'pi') || isempty(results.pi)\n pi = NaN(length(m.rhs), 1);\nelse\n pi = results.pi;\nend\nif ~isfield(results, 'rc') || isempty(results.rc)\n rc = NaN(nx, 1);\nelse\n rc = results.rc;\nend\n\nkl = find(rc > 0); %% lower bound binding\nku = find(rc < 0); %% upper bound binding\nlam.lower(kl) = rc(kl);\nlam.upper(ku) = -rc(ku);\nlam.eqlin = pi(1:neq);\nlam.ineqlin = pi(neq+(1:niq));\nmu_l = zeros(nA, 1);\nmu_u = zeros(nA, 1);\n\n%% repackage lambdas\nkl = find(lam.eqlin > 0); %% lower bound binding\nku = find(lam.eqlin < 0); %% upper bound binding\n\nmu_l(ieq(kl)) = lam.eqlin(kl);\nmu_l(igt) = -lam.ineqlin(nlt+(1:ngt));\nmu_l(ibx) = -lam.ineqlin(nlt+ngt+nbx+(1:nbx));\n\nmu_u(ieq(ku)) = -lam.eqlin(ku);\nmu_u(ilt) = -lam.ineqlin(1:nlt);\nmu_u(ibx) = -lam.ineqlin(nlt+ngt+(1:nbx));\n\nlambda = struct( ...\n 'mu_l', mu_l, ...\n 'mu_u', mu_u, ...\n 'lower', lam.lower, ...\n 'upper', lam.upper ...\n);\n", "meta": {"author": "MATPOWER", "repo": "matpower", "sha": "7da926d978824bf675a71e0a5cb91f8967f97007", "save_path": "github-repos/MATLAB/MATPOWER-matpower", "path": "github-repos/MATLAB/MATPOWER-matpower/matpower-7da926d978824bf675a71e0a5cb91f8967f97007/mp-opt-model/lib/qps_gurobi.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3616832243722473}} {"text": "%% t_meshShowContrast\n%\n% Illustrates how to project a contrast map onto a 3D mesh\n%\n% Before proceeding with tutorial:\n%\t* Run t_initGrayAndVolume.\n%\t* Run t_glmRun.\n%\t* Run t_glmComputeContrastMap.\n%\t* Run t_convertMapInplaneToGray\n%\n% See also T_INITGRAYANDVOLUME, T_GLMRUN, T_GLMCOMPUTECONTRASTMAP, T_CONVERTMAPINPLANETOGRAY.\n%\n% JW (c) Stanford VISTA\n%\n\n%% Initialize the key variables and data path:\ndataDir = fullfile(mrvDataRootPath,'functional','vwfaLoc');\npathToMesh = fullfile(mrvDataRootPath, 'anatomy','anatomyNIFTI', 'leftMesh.mat');\npathToMap = fullfile(dataDir, 'Gray', 'GLMs', 'FixVWordScrambleWord.mat');\ndisplayMode = 'co'; % Co-thresholded display mode\nthreshold = .05; % Co-threshold\n\n%% Retain original directory, change to data directory\ncurDir = pwd;\ncd(dataDir);\n\n%% Load data structure, parameter map, and 3D mesh\nvw_gray = initHiddenGray();\nvw_gray = loadParameterMap(vw_gray, pathToMap);\nvw_gray = meshLoad(vw_gray, pathToMesh, 1);\n\n%% Select display mode and threshold\nvw_gray = viewSet(vw_gray, 'displaymode', 'co');\nvw_gray = viewSet(vw_gray, 'cothresh', threshold);\n\n%% Set bicolor colormap (neg and pos values)\nvw_gray = bicolorCmap(vw_gray);\n\n%% Overlay contrast map onto mesh\nvw_gray = meshColorOverlay(vw_gray); \n\n%% Restore original directory\ncd(curDir);\n\n%% END\n", "meta": {"author": "vistalab", "repo": "vistasoft", "sha": "7f0102c696c091c858233340cc7e1ab02f064d4c", "save_path": "github-repos/MATLAB/vistalab-vistasoft", "path": "github-repos/MATLAB/vistalab-vistasoft/vistasoft-7f0102c696c091c858233340cc7e1ab02f064d4c/tutorials/mesh/t_meshShowContrast.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6477982043529715, "lm_q2_score": 0.5583269943353745, "lm_q1q2_score": 0.3616832243722473}} {"text": "function grad = B_beamforming(future_layers, input_layers, curr_layer)\nweight = input_layers{1}.a;\nnBin = length(curr_layer.freqBin);\ninput = input_layers{2}.a;\n\n[Di,Ti,Ni] = size(input);\n[Dw,Tw,Nw] = size(weight);\n\nfuture_grad = GetFutureGrad(future_layers, curr_layer);\nfuture_grad = permute(future_grad, [1 2 4 3]);\ninput = reshape(input, nBin,Di/nBin,Ti,Ni);\n\ninput2 = permute(input, [1 3 2 4]);\ngrad{1} = bsxfun(@times, conj(input2), future_grad);\ngrad{1} = permute(grad{1}, [1 3 2 4]);\ngrad{1} = reshape(grad{1}, Di,Ti,Ni);\n\nif Tw==1\n grad{1} = sum(grad{1},2);\nend\n\ngrad{2} = [];\n\nend\n", "meta": {"author": "singaxiong", "repo": "SignalGraph", "sha": "e86d973556ae8796a05ee2adbd665f47c8525a21", "save_path": "github-repos/MATLAB/singaxiong-SignalGraph", "path": "github-repos/MATLAB/singaxiong-SignalGraph/SignalGraph-e86d973556ae8796a05ee2adbd665f47c8525a21/graph/B_beamforming.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6477982043529716, "lm_q2_score": 0.5583269943353744, "lm_q1q2_score": 0.36168322437224726}} {"text": "function x = p16_start ( option, nvar )\n\n%*****************************************************************************80\n%\n%% P16_START returns a starting point for problem 16.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 03 September 2008\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer OPTION, the option index.\n%\n% Input, integer NVAR, the number of variables.\n%\n% Output, real X(NVAR), the starting point.\n%\n x = zeros ( nvar, 1 );\n\n x(1:nvar-1) = 1.0;\n x(nvar) = 0.0;\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/test_con/p16_start.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5078118642792044, "lm_q2_score": 0.712232184238947, "lm_q1q2_score": 0.3616799532780295}} {"text": "function [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST)\n%\n% param.imageSize = [256 256]; % it works also with non-square images (use the most common aspect ratio in your set)\n% param.orientationsPerScale = [8 8 8 8]; % number of orientations per scale\n% param.numberBlocks = 4;\n% param.fc_prefilt = 4;\n%\n% [gist, param] = LMgist(D, HOMEIMAGES, param);\n% [gist, param] = LMgist(filename, HOMEIMAGES, param);\n% [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST);\n%\n% For a one image or several images of the same size in a 4D array, use:\n% gist = LMgist(img, [], param);\n%\n% When calling LMgist with a fourth argument it will store the gists in a\n% new folder structure mirroring the folder structure of the images. Then,\n% when called again, if the gist files already exist, it will just read\n% them without recomputing them:\n%\n% [gist, param] = LMgist(filename, HOMEIMAGES, param, HOMEGIST);\n% [gist, param] = LMgist(D, HOMEIMAGES, param, HOMEGIST);\n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% Modeling the shape of the scene: a holistic representation of the spatial envelope\n% Aude Oliva, Antonio Torralba\n% International Journal of Computer Vision, Vol. 42(3): 145-175, 2001.\n\nif nargin==4\n precomputed = 1;\n % get list of folders and create non-existing ones\n %listoffolders = {D(:).annotation.folder};\n\n %for i = 1:length(D);\n % f{i} = D(i).annotation.folder;\n %end\n %[categories,b,class] = unique(f);\nelse\n precomputed = 0;\n HOMEGIST = '';\nend\n\n \nparam.boundaryExtension = 32; % number of pixels to pad\n\nif nargin<3\n % Default parameters\n param.imageSize = 128;\n param.orientationsPerScale = [8 8 8 8];\n param.numberBlocks = 4;\n param.fc_prefilt = 4;\n param.G = createGabor(param.orientationsPerScale, param.imageSize(1)+2*param.boundaryExtension);\nelse\n if ~isfield(param, 'G')\n param.G = createGabor(param.orientationsPerScale, param.imageSize(1)+2*param.boundaryExtension);\n end\nend\n\n% Precompute filter transfert functions (only need to do this once, unless\n% image size is changes):\nNfeatures = size(param.G,3)*param.numberBlocks^2;\n\nif isstruct(D)\n % [gist, param] = LMgist(D, HOMEIMAGES, param);\n Nscenes = length(D);\n typeD = 1;\nend\nif iscell(D)\n % [gist, param] = LMgist(filename, HOMEIMAGES, param);\n Nscenes = length(D);\n typeD = 2;\nend\nif isnumeric(D)\n % [gist, param] = LMgist(img, HOMEIMAGES, param);\n Nscenes = size(D,4);\n typeD = 3;\nend\n\n% Loop: Compute gist features for all scenes\ngist = zeros([Nscenes Nfeatures], 'single');\nfor n = 1:Nscenes\n g = [];\n todo = 1;\n \n % if gist has already been computed, just read the file\n if precomputed==1\n filegist = fullfile(HOMEGIST, D(n).annotation.folder, [D(n).annotation.filename(1:end-4) '.mat']);\n if exist(filegist, 'file')\n load(filegist, 'g');\n todo = 0;\n end\n end\n \n % otherwise compute gist\n if todo==1\n if Nscenes>1 \n disp([n Nscenes]) \n end\n\n % load image\n try\n switch typeD\n case 1\n img = LMimread(D, n, HOMEIMAGES);\n case 2\n img = imread(fullfile(HOMEIMAGES, D{n}));\n case 3\n img = D(:,:,:,n);\n end\n catch\n disp(D(n).annotation.folder)\n disp(D(n).annotation.filename)\n rethrow(lasterror)\n end\n \n % convert to gray scale\n img = single(mean(img,3));\n\n % resize and crop image to make it square\n img = imresizecrop(img, param.imageSize, 'bilinear');\n %img = imresize(img, param.imageSize, 'bilinear'); %jhhays\n\n % scale intensities to be in the range [0 255]\n img = img-min(img(:));\n img = 255*img/max(img(:));\n \n if Nscenes>1\n imshow(uint8(img))\n title(n)\n end\n\n % prefiltering: local contrast scaling\n output = prefilt(img, param.fc_prefilt);\n\n % get gist:\n g = gistGabor(output, param);\n \n % save gist if a HOMEGIST file is provided\n if precomputed\n mkdir(fullfile(HOMEGIST, D(n).annotation.folder))\n save (filegist, 'g')\n end\n end\n \n gist(n,:) = g;\n drawnow\nend\n\n\nfunction output = prefilt(img, fc)\n% ima = prefilt(img, fc);\n% fc = 4 (default)\n% \n% Input images are double in the range [0, 255];\n% You can also input a block of images [ncols nrows 3 Nimages]\n%\n% For color images, normalization is done by dividing by the local\n% luminance variance.\n\nif nargin == 1\n fc = 4; % 4 cycles/image\nend\n\nw = 5;\ns1 = fc/sqrt(log(2));\n\n% Pad images to reduce boundary artifacts\nimg = log(img+1);\nimg = padarray(img, [w w], 'symmetric');\n[sn, sm, c, N] = size(img);\nn = max([sn sm]);\nn = n + mod(n,2);\nimg = padarray(img, [n-sn n-sm], 'symmetric','post');\n\n% Filter\n[fx, fy] = meshgrid(-n/2:n/2-1);\ngf = fftshift(exp(-(fx.^2+fy.^2)/(s1^2)));\ngf = repmat(gf, [1 1 c N]);\n\n% Whitening\noutput = img - real(ifft2(fft2(img).*gf));\nclear img\n\n% Local contrast normalization\nlocalstd = repmat(sqrt(abs(ifft2(fft2(mean(output,3).^2).*gf(:,:,1,:)))), [1 1 c 1]); \noutput = output./(.2+localstd);\n\n% Crop output to have same size than the input\noutput = output(w+1:sn-w, w+1:sm-w,:,:);\n\n\n\nfunction g = gistGabor(img, param)\n% \n% Input:\n% img = input image (it can be a block: [nrows, ncols, c, Nimages])\n% param.w = number of windows (w*w)\n% param.G = precomputed transfer functions\n%\n% Output:\n% g: are the global features = [Nfeatures Nimages], \n% Nfeatures = w*w*Nfilters*c\n\nimg = single(img);\n\nw = param.numberBlocks;\nG = param.G;\nbe = param.boundaryExtension;\n\nif ndims(img)==2\n c = 1; \n N = 1;\n [nrows ncols c] = size(img);\nend\nif ndims(img)==3\n [nrows ncols c] = size(img);\n N = c;\nend\nif ndims(img)==4\n [nrows ncols c N] = size(img);\n img = reshape(img, [nrows ncols c*N]);\n N = c*N;\nend\n\n[ny nx Nfilters] = size(G);\nW = w*w;\ng = zeros([W*Nfilters N]);\n\n% pad image\nimg = padarray(img, [be be], 'symmetric');\n\nimg = single(fft2(img)); \nk=0;\nfor n = 1:Nfilters\n ig = abs(ifft2(img.*repmat(G(:,:,n), [1 1 N]))); \n ig = ig(be+1:ny-be, be+1:nx-be, :);\n \n v = downN(ig, w);\n g(k+1:k+W,:) = reshape(v, [W N]);\n k = k + W;\n drawnow\nend\n\nif c == 3\n % If the input was a color image, then reshape 'g' so that one column\n % is one images output:\n g = reshape(g, [size(g,1)*3 size(g,2)/3]);\nend\n\n\nfunction y=downN(x, N)\n% \n% averaging over non-overlapping square image blocks\n%\n% Input\n% x = [nrows ncols nchanels]\n% Output\n% y = [N N nchanels]\n\nnx = fix(linspace(0,size(x,1),N+1));\nny = fix(linspace(0,size(x,2),N+1));\ny = zeros(N, N, size(x,3));\nfor xx=1:N\n for yy=1:N\n v=mean(mean(x(nx(xx)+1:nx(xx+1), ny(yy)+1:ny(yy+1),:),1),2);\n y(xx,yy,:)=v(:);\n end\nend\n\n", "meta": {"author": "CSAILVision", "repo": "LabelMeToolbox", "sha": "b8eb2179723d8c15a4331c1ea6da5c6cd64e75e2", "save_path": "github-repos/MATLAB/CSAILVision-LabelMeToolbox", "path": "github-repos/MATLAB/CSAILVision-LabelMeToolbox/LabelMeToolbox-b8eb2179723d8c15a4331c1ea6da5c6cd64e75e2/features/LMgist.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7122321720225278, "lm_q2_score": 0.5078118642792044, "lm_q1q2_score": 0.36167994707438683}} {"text": "function [ y2, m2, d2, f2 ] = ymdf_prev_roman ( y1, m1, d1, f1 )\n\n%*****************************************************************************80\n%\n%% YMDF_PREV_ROMAN returns the Roman YMDF date of the previous day.\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license.\n%\n% Modified:\n%\n% 21 April 2013\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, integer Y1, M1, D1, real F1,\n% the YMDF date.\n%\n% Output, integer Y2, M2, D2, real F2,\n% yesterday's YMDF date.\n%\n y2 = y1;\n m2 = m1;\n d2 = d1 - 1;\n f2 = f1;\n\n [ y2, m2, d2 ] = day_borrow_roman ( y2, m2, d2 );\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/calpak/ymdf_prev_roman.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5078118642792044, "lm_q2_score": 0.7122321720225278, "lm_q1q2_score": 0.36167994707438683}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DRAWROBOT3D(ROBOT, Q)\t3D drawing with DH reference systems of the robot at the\n% current joint coordinates Q. The robot parameters are stored in the\n% variable ROBOT. Q = [q1 q2 ... qN] is a vector of joint values.\n%\n% If the robot possesses 3D graphics, the function DRAW_LINK is called to represent\n% the link in 3D. Otherwise a line connecting each consecutive reference\n% system is plotted.\n%\n% See also DENAVIT, DIRECTKINEMATIC, DRAW_LINK.\n%\n% Author: Arturo Gil. Universidad Miguel Hernandez de Elche. \n% email: arturo.gil@umh.es date: 05/02/2012\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Copyright (C) 2012, by Arturo Gil Aparicio\n%\n% This file is part of ARTE (A Robotics Toolbox for Education).\n% \n% ARTE is free software: you can redistribute it and/or modify\n% it under the terms of the GNU Lesser General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n% \n% ARTE is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU Lesser General Public License for more details.\n% \n% You should have received a copy of the GNU Leser General Public License\n% along with ARTE. If not, see .\nfunction drawrobot3d(robot, q, noclear)\nglobal configuration\n\n%ligth;\n\n%if q is not specified, then assume zero pose\nif ~exist('q', 'var')\n q=zeros(1,robot.DOF)\nend\n\nh=figure(configuration.figure.robot);\n\n%get adjusted view\n[az,el] = view;\n\n%retrieve the current zoom\nzz=get(gca,'CameraViewAngle');\n\n%delete figure\nif ~exist('noclear')\n clf(h), grid on, hold on\nend\n\nxlabel('X (m)'), ylabel('Y (m)'), zlabel('Z (m)')\n\n%apply the stored view\nview(az,el);\n%apply the zoom\nset(gca,'CameraViewAngle', zz);\n\norigin = [0 0 0];\ndestination = [];\ncolor = ['r' 'g' 'b' 'c' 'm' 'y' 'k'];\n\n%in case of a parallel robot, call drawrobot3d for each serial link\nif isfield(robot, 'parallel')\n drawrobot3d_par(robot, q);\n return;\nend\n\nif isfield(robot, 'skip_graphics') \n return;\nend\n\n\nV=[];\n\nT = robot.T0;\nfor i=1:robot.DOF+1\n \n if robot.graphical.has_graphics\n draw_link(robot, i, T); \n else\n draw_link(robot, i, T);\n \n destination=T(1:3,4);\n col = randperm(6);\n line([origin(1) destination(1)],[origin(2) destination(2)],[origin(3) destination(3)], 'Color', color(col(1)) ,'LineWidth', 3 );\n origin = destination;\n end\n %draw D-H axes\n if robot.graphical.draw_axes\n draw_axes(T, sprintf('X_%d',i-1), sprintf('Y_%d',i-1), sprintf('Z_%d',i-1), robot.graphical.axes_scale);\n end\n %obtain transformation to draw the next link\n if i<= robot.DOF\n T=T*dh(robot, q, i);\n end\nend\n%save for later use\nT06robot=T;\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DRAW A TOOL AT THE ROBOT'S END\n% if there is a tool attached, draw it!\n% repeat the prior commands\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nif isfield(robot, 'tool')\n\n % Activate tool. Tools must be defined in a binary way.\n % This means that they are open or closed depending\n % on an joint\n if robot.tool.tool_open\n q_tool=ones(1,robot.tool.DOF);\n else\n q_tool=zeros(1,robot.tool.DOF);\n end\n robot.tool.T0=T;\n for i=1:robot.tool.DOF+1\n if robot.tool.graphical.has_graphics\n draw_link(robot.tool, i, T);\n else\n draw_link(robot.tool, i, T);\n \n destination=T(1:3,4);\n col = randperm(6);\n line([origin(1) destination(1)],[origin(2) destination(2)],[origin(3) destination(3)], 'Color', color(col(1)) ,'LineWidth', 3 );\n origin = destination;\n end\n% if robot.tool.graphical.draw_axes\n% draw_axes(T, sprintf('X_{tool%d}',i-1), sprintf('Y_{tool%d}',i-1), sprintf('Z_{tool%d}',i-1));\n% end\n %obtain transformation to draw the next link\n if (i)<= robot.tool.DOF\n T=T*dh(robot.tool, q_tool, i);\n end\n end\n %finally draw the Tool Center Point (TCP)\n if robot.tool.graphical.draw_axes\n draw_axes(T06robot*robot.tool.TCP, 'X_{toolTCP}', 'Y_{toolTCP}', 'Z_{toolTCP}');\n end\n \n %save for later use\n T07=T06robot*robot.tool.TCP;\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% draw equipment such as tables, conveyor velts... etc\n% \n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nif isfield(robot, 'equipment')\n for i=1:length(robot.equipment),\n if robot.equipment{i}.graphical.has_graphics\n draw_link(robot.equipment{i}, 1, robot.equipment{i}.T0);\n end\n if robot.equipment{i}.graphical.draw_axes\n draw_axes(robot.equipment{i}.T0, sprintf('X_{env%d}',0), sprintf('Y_{env%d}',0), sprintf('Z_{env%d}',0));\n end\n end\nend\n\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% DRAW A PIECE GRABBED\n% this draws a piece grabbed at the robots end, or at the last known position\n% the variable robot.tool_activated=1 asumes that the piece has been grabbed by the end tool\n% robot.tool_activated==0 maintains the last known location for the pieced\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nif isfield(robot, 'piece')\n for i=1:size(robot.piece,2)\n pieza_dibujar = robot.piece{i};\n if isfield(pieza_dibujar, 'graphical')\n if pieza_dibujar.graphical.has_graphics\n if isfield(robot, 'tool')\n if robot.tool.piece_gripped==1\n %update the last known position and orientation of the robot\n %Trel is computed when the simulation_grip_piece function is\n %executed. Trel is the relative position and orientation of\n %the tool and the piece that assures that the piece is\n %picked at a constant and visually effective orientation.\n draw_link(pieza_dibujar, 1, T07*(robot.tool.Trel));\n end\n else\n draw_link(pieza_dibujar, 1, pieza_dibujar.T0);\n end\n end\n end\n if pieza_dibujar.graphical.draw_axes\n draw_axes(pieza_dibujar.T0, sprintf('X_{piece%d}',0), sprintf('Y_{piece%d}',0), sprintf('Z_{piece%d}',0));\n end\n end\nend\n \nend\n\n\n\n", "meta": {"author": "4rtur1t0", "repo": "ARTE", "sha": "6e836f3156bb36af63b70bd93375c8ff4ee643c4", "save_path": "github-repos/MATLAB/4rtur1t0-ARTE", "path": "github-repos/MATLAB/4rtur1t0-ARTE/ARTE-6e836f3156bb36af63b70bd93375c8ff4ee643c4/tools/drawrobot3d.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36160058311505083}} {"text": "function D=envidataread(datafile,info)\n%ENVIDATAREAD Reads data of ENVI image file according to ENVI image file header information.\n%D=ENVIDATAREAD(DATAFILE,INFO) provides image data (D).\n%D will be in whatever number format (double, int, etc.) as in the ENVI\n%file.\n\n%Original version by Ian Howat, Ohio State Universtiy, ihowat@gmail.com\n%Thanks to Yushin Ahn and Ray Jung\n%Heavily modified by Felix Totir.\n\nif nargin < 2\n error('You must specify the information about data (output of envihdrread)');\nend\n\n%-improved- assert(info.header_offset==0,'Non-zero header offset not supported');\n\n%% Set binary format parameters\nswitch info.byte_order\n case {0}\n machine = 'ieee-le';\n case {1}\n machine = 'ieee-be';\n otherwise\n machine = 'n';\nend\n\niscx=false; %if it is complex\nswitch info.data_type\n case {1}\n format = 'uint8';\n case {2}\n format= 'int16';\n case{3}\n format= 'int32';\n case {4}\n format= 'single';\n case {5}\n format= 'double';\n case {6}\n iscx=true;\n format= 'single';\n case {9}\n iscx=true;\n format= 'double';\n case {12}\n format= 'uint16';\n case {13}\n format= 'uint32';\n case {14}\n format= 'int64';\n case {15}\n format= 'uint64';\n otherwise\n error(['File type number: ',num2str(dtype),' not supported']);\nend\n\n% *** BSQ Format ***\n% [Band 1]\n% R1: C1, C2, C3, ...\n% R2: C1, C2, C3, ...\n% ...\n% RN: C1, C2, C3, ...\n%\n% [Band 2]\n% ...\n% [Band N]\n\n% *** BIL Format ***\n% [Row 1]\n% B1: C1, C2, C3, ...\n% B2: C1, C2, C3, ...\n%\n% ...\n% [Row N]\n\n% *** BIP Format ***\n% Row 1\n% C1: B1 B2 B3, ...\n% C2: B1 B2 B3, ...\n% ...\n% Row N\n\nn = info.lines*info.samples*info.bands;\n\nfid=fopen(datafile,'r');\nfread(fid,info.header_offset,'uint8',0,machine); %we skip the header\nif ~iscx\n D = fread(fid,n,format,0,machine); %alternatively, multibandreader (matlab function) might be used\nelse\n D = fread(fid,2*n,format,0,machine); %alternatively, multibandreader (matlab function) might be used\n D = complex(D(1:2:end),D(2:2:end));\nend\nfclose(fid);\n \nswitch lower(info.interleave)\n case {'bsq'}\n D = reshape(D,[info.samples,info.lines,info.bands]);\n D = permute(D,[2,1,3]);\n case {'bil'}\n D = reshape(D,[info.samples,info.bands,info.lines]);\n D = permute(D,[3,1,2]);\n case {'bip'}\n D = reshape(D,[info.bands,info.samples,info.lines]);\n D=permute(D,[3,2,1]);\nend\n\n\n\n", "meta": {"author": "Sable", "repo": "mcbench-benchmarks", "sha": "ba13b2f0296ef49491b95e3f984c7c41fccdb6d8", "save_path": "github-repos/MATLAB/Sable-mcbench-benchmarks", "path": "github-repos/MATLAB/Sable-mcbench-benchmarks/mcbench-benchmarks-ba13b2f0296ef49491b95e3f984c7c41fccdb6d8/27172-envi-file-readerwriter/envidataread.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757646140788307, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36160058311505083}} {"text": "classdef prtClassMapLog < prtClass\n %prtClassMapLog Maximum a Posteriori classifier with loglikelihoods\n % returned\n\n\n\n\n\n % CLASSIFIER = prtClassMap returns a Maximum a Posteriori classifier\n %\n % CLASSIFIER = prtClassMap(PROPERTY1, VALUE1, ...) constructs a\n % prtClassMAP object CLASSIFIER with properties as specified by\n % PROPERTY/VALUE pairs.\n %\n % A prtClassMap object inherits all properties from the abstract class\n % prtClass. In addition is has the following property:\n %\n % rvs - A prtRv object. This property describes the random variable \n % model used for Maximum a Posteriori classification.\n %\n % A prtClassMap object inherits inherits the TRAIN, RUN, CROSSVALIDATE\n % and KFOLDS methods from prtClass.\n %\n % Example:\n %\n % TestDataSet = prtDataGenUnimodal; % Create some test and\n % TrainingDataSet = prtDataGenUnimodal; % training data\n % classifier = prtClassMap; % Create a classifier\n % classifier = classifier.train(TrainingDataSet); % Train\n % classified = run(classifier, TestDataSet); % Test\n %\n % subplot(2,1,1); classifier.plot; % Plot results\n % subplot(2,1,2); prtScoreRoc(classified,TestDataSet);\n % set(get(gca,'Children'), 'LineWidth',3) \n %\n % See also prtClass, prtClassLogisticDiscriminant, prtClassBagging,\n % prtClassMap, prtClassFld, prtClassBinaryToMaryOneVsAll, prtClassDlrt,\n % prtClassPlsda, prtClassFld, prtClassRvm, prtClassGlrt, prtClassSvm,\n % prtClassTreeBaggingCap, prtClassKmsd, prtClassKnn \n\n\n\n\n properties (SetAccess=private)\n % Required by prtAction\n name = 'Maximum a Posteriori Log' % Maximum a Posteriori\n nameAbbreviation = 'MAPLog' % MAP\n isNativeMary = true; % True\n end\n \n properties\n rvs = prtRvMvn; % Random variable object containing mean and variance\n end\n \n methods\n % Constructor\n function Obj = prtClassMapLog(varargin)\n \n Obj.classTrain = 'prtDataInterfaceCategoricalTargets';\n Obj.classRun = 'prtDataSetBase';\n Obj.classRunRetained = false;\n \n Obj = prtUtilAssignStringValuePairs(Obj,varargin{:});\n end\n % Set function\n function Obj = set.rvs(Obj,val)\n if ~(isa(val, 'prtRv') || isa(val, 'prtBrv')) \n error('prtClassMapLog:rvs','Rvs parameter must be of class prtRv');\n else\n Obj.rvs = val;\n end\n end\n end\n \n methods (Access = protected, Hidden = true)\n \n function Obj = trainAction(Obj,DataSet)\n % Repmat the rv objects to get one for each class\n Obj.rvs = repmat(Obj.rvs(:), (DataSet.nClasses - length(Obj.rvs)+1),1);\n Obj.rvs = Obj.rvs(1:DataSet.nClasses);\n\n % Get the ML estimates of the RV parameters for each class\n for iY = 1:DataSet.nClasses\n Obj.rvs(iY) = train(Obj.rvs(iY), DataSet.retainClassesByInd(iY));\n end\n end\n \n function DataSet = runAction(Obj,DataSet)\n \n logLikelihoods = zeros(DataSet.nObservations, length(Obj.rvs));\n for iY = 1:length(Obj.rvs)\n logLikelihoods(:,iY) = getObservations(run(Obj.rvs(iY), DataSet));\n end\n\n DataSet = prtDataSetClass(logLikelihoods);\n end\n \n function xOut = runActionFast(Obj,xIn,ds) %#ok\n \n xOut = zeros(size(xIn,1),length(Obj.rvs));\n for iY = 1:length(Obj.rvs)\n xOut(:,iY) = runFast(Obj.rvs(iY), xIn);\n end\n \n %xOut = exp(bsxfun(@minus, logLikelihoods, prtUtilSumExp(logLikelihoods.').'));\n end\n end\n \nend\n", "meta": {"author": "covartech", "repo": "PRT", "sha": "4305e612af048e7dbf3d9392efc7436db125b1fc", "save_path": "github-repos/MATLAB/covartech-PRT", "path": "github-repos/MATLAB/covartech-PRT/PRT-4305e612af048e7dbf3d9392efc7436db125b1fc/class/prtClassMapLog.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6757645879592642, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.36160056913851185}} {"text": "function varargout = process_simulate_ar_spectra( varargin )\n% PROCESS_SIMULATE_AR_SPECTRA: Simulate source signals with an auto-regressive model\n% Using this ARfit toolbox: https://climate-dynamics.org/software/#arfit\n% The interactions in the AR model are defined as spectral peaks (frequency and magnitude) \n% Coefficients are computed with the function DesignTwoPoles()\n%\n% USAGE: OutputFiles = process_simulate_ar_spectra('Run', sProcess, sInputA)\n% signal = process_simulate_ar_spectra('Compute', b, A, C, nsamples)\n% sFiles = process_simulate_ar_spectra('Test')\n \n% @=============================================================================\n% This function is part of the Brainstorm software:\n% https://neuroimage.usc.edu/brainstorm\n% \n% Copyright (c) University of Southern California & McGill University\n% This software is distributed under the terms of the GNU General Public License\n% as published by the Free Software Foundation. Further details on the GPLv3\n% license can be found at http://www.gnu.org/copyleft/gpl.html.\n% \n% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED \"AS IS,\" AND THE\n% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY\n% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF\n% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY\n% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.\n%\n% For more information type \"brainstorm license\" at command prompt.\n% =============================================================================@\n%\n% Authors: Raymundo Cassani, 2021-2022\n% Francois Tadel, 2022\n\neval(macro_method);\nend\n\n\n%% ===== GET DESCRIPTION =====\nfunction sProcess = GetDescription()\n % Description the process\n sProcess.Comment = 'Simulate AR signals';\n sProcess.Category = 'Custom';\n sProcess.SubGroup = 'Simulate'; \n sProcess.Index = 902; \n sProcess.Description = 'https://neuroimage.usc.edu/brainstorm/Tutorials/Connectivity2#Simulated_data';\n % Definition of the input accepted by this process\n sProcess.InputTypes = {'import'};\n sProcess.OutputTypes = {'matrix'};\n sProcess.nInputs = 1;\n sProcess.nMinFiles = 0;\n\n % === SUBJECT NAME\n sProcess.options.subjectname.Comment = 'Subject name:';\n sProcess.options.subjectname.Type = 'subjectname';\n sProcess.options.subjectname.Value = 'Test';\n % === CONDITION NAME\n sProcess.options.condition.Comment = 'Condition name:';\n sProcess.options.condition.Type = 'text';\n sProcess.options.condition.Value = 'Simulation';\n % === NUMBER OF SAMPLES\n sProcess.options.samples.Comment = 'Number of time samples:';\n sProcess.options.samples.Type = 'value';\n sProcess.options.samples.Value = {12000, ' (Ntime)', 0};\n % === SAMPLING FREQUENCY\n sProcess.options.srate.Comment = 'Signal sampling frequency:';\n sProcess.options.srate.Type = 'value';\n sProcess.options.srate.Value = {1200, 'Hz', 2};\n % === PEAKS: FREQUENCY AND AMPLITUDE \n % === COEFFICIENT MATRIX\n sProcess.options.interactions.Comment = [\n 'Interactions specification:
' ...\n 'From, To  /  PeakFrequencies [Hz]  /  PeakMagnitudes [0-1]
' ...\n 'Example:  1, 2  /  10, 20, 40  /  0.5, 0.2, 1.0

'];\n sProcess.options.interactions.Type = 'textarea';\n sProcess.options.interactions.Value = ['1, 1 / 10, 25 / 0.0, 1.0', 10 ...\n '2, 2 / 10, 25 / 1.0, 0.0', 10 ...\n '3, 3 / 10, 25 / 1.0, 0.2', 10 ...\n '1, 3 / 10, 25 / 0.0, 0.6'];\n % === DISPLAY SPECTRAL METRICS\n sProcess.options.display.Comment = {'process_simulate_ar_spectra(''DisplayMetrics'');', '
', 'View spectral metrics'};\n sProcess.options.display.Type = 'button';\n sProcess.options.display.Value = [];\n % === DISPLAY COEFFICIENT MATRIX\n sProcess.options.coeff.Comment = {'process_simulate_ar_spectra(''DisplayCoefficients'');', '
', 'Get coefficients matrix'};\n sProcess.options.coeff.Type = 'button';\n sProcess.options.coeff.Value = []; \nend\n\n\n%% ===== FORMAT COMMENT =====\nfunction Comment = FormatComment(sProcess)\n Comment = sProcess.Comment;\nend\n\n\n%% ===== GET COEFFICIENTS =====\nfunction [A, b, C, errMsg] = GetCoefficients(sProcess)\n % Initialize returned values\n A = [];\n b = [];\n C = [];\n errMsg = '';\n % Parse interactions\n [interactions, errMsg] = process_tf_bands('ParseBands', sProcess.options.interactions.Value);\n if ~isempty(errMsg)\n return;\n end\n nInteractions = size(interactions, 1);\n ToFroms = zeros(nInteractions, 2); \n % Number of signals from interactions\n for i = 1: nInteractions\n FromTo = eval(['[' interactions{i,1} ']']);\n if length(FromTo) ~= 2\n errMsg = 'Direction must be a pair of values: From, To';\n return;\n end\n ToFroms(i, :) = fliplr(FromTo);\n end \n nSignals = max(ToFroms(:));\n % Parse definition of peaks: frequency and magnitude\n peaks = repmat(struct('freqs', [], 'mags', []), nSignals); % peaks(To, From)\n for i = 1: nInteractions\n peakFreqs = eval(['[' interactions{i,2} ']']);\n peakMags = eval(['[' interactions{i,3} ']']);\n if length(peakFreqs) ~= length(peakMags)\n errMsg = 'Number of frequencies must match number of magnitudes';\n return;\n end \n peaks(ToFroms(i,1), ToFroms(i,2)).freqs = peakFreqs;\n peaks(ToFroms(i,1), ToFroms(i,2)).mags = peakMags;\n end\n % Find the maximum order requested (2 * maximun_requested_peaks)\n nOrder = max(max(arrayfun(@(x) length(x.freqs),peaks))) * 2;\n % Signal sampling frequency [Hz]\n sfreq = sProcess.options.srate.Value{1}; \n \n % Compute coefficients\n A = zeros(nSignals, nSignals, nOrder); % To, From, Order \n for iFrom = 1 : nSignals\n for iTo = 1 : nSignals\n frqs = peaks(iTo, iFrom).freqs;\n mags = peaks(iTo, iFrom).mags;\n if ~isempty(frqs)\n [~, a] = DesignTwoPoles(sfreq, frqs, mags, nOrder);\n A(iTo, iFrom, :) = -a(2:end);\n end\n end\n end\n A = reshape(A, nSignals, nSignals * nOrder);\n b = zeros(1, nSignals);\n C = eye(nSignals, nSignals); \nend\n\n\n%% ===== RUN =====\nfunction OutputFiles = Run(sProcess, sInputA) %#ok\n OutputFiles = {};\n % === GET OPTIONS ===\n % Get subject name\n SubjectName = file_standardize(sProcess.options.subjectname.Value);\n if isempty(SubjectName)\n bst_report('Error', sProcess, sInputs, 'Subject name is empty.');\n return\n end\n % Get condition name\n Condition = file_standardize(sProcess.options.condition.Value);\n % Get signal options\n nsamples = sProcess.options.samples.Value{1};\n srate = sProcess.options.srate.Value{1};\n \n % Get coefficients\n [A, b, C, errMsg] = GetCoefficients(sProcess);\n if ~isempty(errMsg)\n bst_report('Error', sProcess, [], errMsg);\n return;\n end\n % Generate the signal\n try\n Data = Compute(b, A, C, nsamples);\n catch\n e = lasterr();\n bst_report('Error', sProcess, [], e);\n return;\n end\n \n % ===== GENERATE FILE STRUCTURE =====\n % Create empty matrix file structure\n FileMat = db_template('matrixmat');\n FileMat.Value = Data;\n FileMat.Time = (0:nsamples-1) ./ srate;\n FileMat.Comment = sprintf('Simulated AR (%dx%d)', size(Data,1), nsamples);\n FileMat.Description = cell(size(Data,1),1);\n for i = 1:size(Data,1)\n FileMat.Description{i} = ['s', num2str(i)];\n end\n % Add history entry\n FileMat = bst_history('add', FileMat, 'process', 'Simulate AR signals:');\n FileMat = bst_history('add', FileMat, 'process', [' ' strrep(sProcess.options.interactions.Value, char(10), ' ')]);\n \n % === OUTPUT CONDITION ===\n % Get subject\n sSubject = bst_get('Subject', SubjectName);\n % Create subject if it does not exist yet\n if isempty(sSubject)\n sSubject = db_add_subject(SubjectName);\n end\n % Default condition name\n if isempty(Condition)\n Condition = 'Simulation';\n end\n % Get condition asked by user\n [sStudy, iStudy] = bst_get('StudyWithCondition', bst_fullfile(SubjectName, Condition));\n % Condition does not exist: create it\n if isempty(sStudy)\n iStudy = db_add_condition(SubjectName, Condition, 1);\n sStudy = bst_get('Study', iStudy);\n end\n \n % === SAVE FILE ===\n % Output filename\n OutputFiles{1} = bst_process('GetNewFilename', bst_fileparts(sStudy.FileName), 'matrix_simar');\n % Save file\n bst_save(OutputFiles{1}, FileMat, 'v6');\n % Register in database\n db_add_data(iStudy, OutputFiles{1}, FileMat);\nend\n\n\n%% ===== GENERATE SIGNALS =====\n% Generate synthetic AR signals\nfunction yOut = Compute(b,A,C,samples)\n yOut = process_simulate_ar('arsim', b',A,C,samples)';\nend\n\n\n%% ===== DISPLAY SPECTRAL METRIC =====\nfunction DisplayMetrics()\n % Get current process structure\n sProcess = panel_process_select('GetCurrentProcess');\n % Get options\n sfreq = sProcess.options.srate.Value{1}; % Signal sampling frequency [Hz]\n % Get coefficients\n [A,~,~,errMsg] = GetCoefficients(sProcess);\n if isempty(A)\n bst_error(['Error: Cannot compute coefficients.' 10 10 errMsg], 'Display metrics', 0);\n return;\n end\n A = reshape(A, size(A,1), size(A,1), []);\n % Display spectral metrics\n hFig = process_simulate_ar('HDisplayMetrics', A, sfreq); \nend\n\n%% ===== DISPLAY COEFFICIENTS =====\nfunction DisplayCoefficients()\n % Get current process structure\n sProcess = panel_process_select('GetCurrentProcess');\n % Get coefficients\n [A,~,~,errMsg] = GetCoefficients(sProcess);\n if ~isempty(errMsg)\n bst_error(['Error: Cannot compute coefficients.' 10 10 errMsg], 'Display coefficients', 0);\n return;\n end\n \n % Titles\n strTitleA = [...\n '
Using the ARSIM function from ARFIT Toolbox (T.Schneider):
' ...\n '    X = b + A1.X1 + ... + Ap.Xp + noise

' ... \n 'Coefficient matrix A = [A1 ... Ap]
' ...\n '     - p is the order of the autorregresive model
' ...\n '     - Ai: [Nsignals_to x Nsignals_from]
'];\n strTitleB = 'Intercept b:   [1 x Nsignals]';\n strTitleC = 'Noise covariance matrix C:   [Nsignals x Nsignals]
';\n % Reshape A to [nSignals, nSignals, nOrder]\n nSignals = size(A, 1);\n A = reshape(A, nSignals, nSignals, []);\n nOrder = size(A,3);\n textA = [];\n textAtot = 'A = [';\n for iOrder = 1 : nOrder\n tmpA = A(:,:,iOrder);\n tmpTextA = evalc('disp(tmpA)');\n tmptextA = ['A', num2str(iOrder), ' = [' 10, tmpTextA(1:end-1), '];', 10];\n textA = [textA, tmptextA];\n textAtot = [textAtot, 'A', num2str(iOrder), ' '];\n end\n textA = [textA, textAtot(1:end-1), '];'];\n \n % Text B\n textB = 'b = [';\n for iSignal = 1 : nSignals\n textB = [textB, '0 '];\n end\n textB = [textB(1:end-1), '];'];\n \n % Text C\n textC = ['C = eye(', num2str(nSignals), ', ', num2str(nSignals), ');'];\n \n % Using uifigure\n if exist('uitextarea', 'file')\n % Get existing specification figure\n hFig = findall(0, 'Type', 'Figure', 'Tag', 'CoeffMatrix');\n % If the figure doesn't exist yet: create it\n if isempty(hFig)\n hFig = uifigure(...\n 'Name', 'AR Coefficients', ...\n 'Tag', 'CoeffMatrix', ...\n 'Units', 'Pixels');\n % Figure already exists: re-use it\n else\n clf(hFig);\n figure(hFig);\n end\n figpos = get(hFig, 'Position');\n wLabel = figpos(3) - 60;\n \n % Display A\n labelA = uilabel(hFig, ...\n 'Position', [30, 260, wLabel, 220], ...\n 'Text', strTitleA, ...\n 'Interpreter', 'html', ...\n 'FontSize', 12);\n textareaA = uitextarea(hFig, ...\n 'Position',[30, 165, wLabel, 150], ...\n 'Value', textA, ...\n 'WordWrap', 'off');\n % Display B\n labelB = uilabel(hFig, 'Position', [30, 135, wLabel, 20], ...\n 'Text', strTitleB, ...\n 'Interpreter', 'html', 'FontSize', 12);\n textareaB = uitextarea(hFig, 'Position',[30, 105, wLabel, 30], ...\n 'Value', textB, ...\n 'WordWrap', 'off');\n % Display C\n labelC = uilabel(hFig, 'Position', [30, 75, wLabel, 20], ...\n 'Text', strTitleC, ...\n 'Interpreter', 'html', 'FontSize', 12);\n textareaC = uitextarea(hFig, 'Position',[30, 45, wLabel, 30], ...\n 'Value', textC, ...\n 'WordWrap', 'off');\n % Otherwise, just display as text \n else\n strFigure = [...\n str_striptag(strrep(strTitleA, '
', char(10))), ...\n '-------------------------------------------------' 10 ...\n textA 10, ...\n '-------------------------------------------------' 10 10, ...\n str_striptag(strrep(strTitleB, '
', char(10))), ...\n 10 '-------------------------------------------------' 10 ...\n textB 10, ...\n '-------------------------------------------------' 10 10, ...\n str_striptag(strrep(strTitleC, '
', char(10))), ...\n '-------------------------------------------------' 10 ...\n textC 10 ...\n '-------------------------------------------------' 10];\n view_text(strFigure, 'AR Coefficients');\n end\nend\n\n\n%% ===== DESIGN TWO POLES FILTER =====\nfunction [b, a, n_order, rads, bws, rel_gains] = DesignTwoPoles(fs, freqs, gains, n_order)\n% Computes a filter with two-poles peak \n% A peak is defined by its frequency and its gain \n% FREQS are peak frequencies in Hz\n% GAINS are relative gains in [0,1] range, \n% GAINS are relative with 1 = to gain for FS/4 peak with BW = 1Hz\n%\n% References\n% [1] Ifeachor, EC (1993), Digital signal processing: A practical approach.\n% Chapter: Design of IIR digital filters ISBN: 020154413X \n% [2] Smith, JO (2007), Introduction to digital filters: With audio applications\n% Appendix: Elementary Audio Digital Filters ISBN: 0974560715\n\n % Compute gain for frequency peak at Fs/4 @ BW = 1 Hz;\n bw_ref = 1;\n radius_ref = exp(-pi * bw_ref / fs);\n theta_ref = (fs/4) / fs * 2 * pi;\n gain_ref = 1 / ((1 - radius_ref) * sqrt(1 - (2 * radius_ref * cos(2 * theta_ref)) + (radius_ref .^ 2)));\n\n % Number of peaks and order of filter\n n_peaks = length(freqs);\n if isempty(n_order)\n n_order = 2 * n_peaks;\n end\n\n % Find radius for each peak, and compute filter\n for i_peak = 1 : n_peaks\n % Estimate radius for given peak\n peak_theta = (freqs(i_peak) / fs) * 2 * pi;\n % Range to explore\n radius_range = 0 : 0.001 : 1; \n gain_range = (1 / gain_ref) ./ ((1 - radius_range) .* sqrt(1 - (2 .* radius_range .* cos(2 * peak_theta)) + (radius_range .^ 2)));\n [~, ix] = min(abs(gain_range - gains(i_peak)));\n rads(i_peak) = radius_range(ix);\n rel_gains(i_peak) = gain_range(ix); \n bws(i_peak) = -log(rads(i_peak)) * fs / pi;\n % Two poles\n poles_peak = rads(i_peak) .* exp(1i * peak_theta);\n poles_peak = transpose([poles_peak, conj(poles_peak)]);\n % Compute one SOS\n [bs{i_peak},as{i_peak}] = zp2tf([], poles_peak, 1);\n end\n\n % Convolve coefficients\n a = as{1};\n b = 1;\n for i_peak = 2 : n_peaks\n a = conv(a, as{i_peak});\n end\n\n % Complete order if required\n if length(a) ~= n_order +1\n n_miss = n_order - (length(a) - 1);\n a = conv([1, zeros(1, n_miss)], a);\n end\nend\n\n%% ===== TEST FUNCTION =====\nfunction sFiles = Test() %#ok\n % Three-variable AR model\n sFiles = bst_process('CallProcess', 'process_simulate_ar_spectra', [], [], ...\n 'subjectname', 'Test', ...\n 'condition', 'Simulation', ...\n 'samples', 12000, ...\n 'srate', 100, ...\n 'interactions' , ['1, 1 / 10, 25 / 0.0, 1.0', 10 ...\n '2, 2 / 10, 25 / 1.0, 0.0', 10 ...\n '3, 3 / 10, 25 / 1.0, 0.2', 10 ...\n '1, 3 / 10, 25 / 0.0, 0.6']);\nend\n\n", "meta": {"author": "brainstorm-tools", "repo": "brainstorm3", "sha": "a892cfaabde1eaa2f9a3ac015c05b73f3739433a", "save_path": "github-repos/MATLAB/brainstorm-tools-brainstorm3", "path": "github-repos/MATLAB/brainstorm-tools-brainstorm3/brainstorm3-a892cfaabde1eaa2f9a3ac015c05b73f3739433a/toolbox/process/functions/process_simulate_ar_spectra.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6757645879592641, "lm_q2_score": 0.5350984286266115, "lm_q1q2_score": 0.3616005691385118}} {"text": "function [edges,idx,edgemap]=uniqedges(elem)\n%\n% [edges,idx,edgemap]=uniqedges(elem)\n%\n% return the unique edge list from a surface or tetrahedral mesh\n%\n% author: Qianqian Fang (fangq nmr.mgh.harvard.edu)\n%\n% input:\n% elem: a list of elements, each row is a list of nodes for an element.\n% elem can have 2, 3 or 4 columns\n%\n% output:\n% edge: unique edges in the mesh, denoted by a pair of node indices\n% idx: index of the output in the raw edge list (returned by meshedge)\n% edgemap: index of the raw edges in the output list (for triangular mesh)\n%\n% -- this function is part of iso2mesh toolbox (http://iso2mesh.sf.net)\n%\n\nif(size(elem)==2)\n edges=elem;\nelseif(size(elem)>=3)\n edges=meshedge(elem);\nelse\n error('invalid input');\nend\n\n[uedges,idx,jdx]=unique(sort(edges,2),'rows');\nedges=edges(idx,:);\nedgemap=reshape(jdx,size(elem));\n", "meta": {"author": "goodshawn12", "repo": "REST", "sha": "e34ce521fcb36e7813357a9720072dd111edf797", "save_path": "github-repos/MATLAB/goodshawn12-REST", "path": "github-repos/MATLAB/goodshawn12-REST/REST-e34ce521fcb36e7813357a9720072dd111edf797/dependencies/iso2mesh/uniqedges.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6261241772283034, "lm_q2_score": 0.5774953651858118, "lm_q1q2_score": 0.361583810380125}} {"text": "function CM = yaron_colormap(n)\n CM = hex2rgb([ \n 'ce517e'\n 'd16486'\n 'd47890'\n 'd88a95'\n 'dd9c9e'\n 'e0ada7'\n 'e5beaf'\n 'ead1ba'\n 'efe2c3'\n 'e6e6c4'\n 'cfd7bc'\n 'b9ccb5'\n 'a4c2af'\n '8db7a8'\n '77aca1'\n '54a49e'\n '309c96'\n '159592'\n ]);\n if nargin>=1\n CM = interp1(linspace(0,1,size(CM,1))',CM,linspace(0,1,n)','spline');\n end\nend\n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/utility/lipmanya.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5774953651858117, "lm_q2_score": 0.6261241772283034, "lm_q1q2_score": 0.36158381038012494}} {"text": "%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n% MRiLab auto generated file: DO NOT EDIT! %\n% Generated by MRiLab \"DoWriteXML2m\" Generator %\n% MRiLab Version 1.3 %\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\nfunction dB0=Mag_GaussianHead\n%====================================\np.DeltaX=0.08;\np.DeltaY=0.08;\np.DeltaZ=0.08;\np.PosX=0;\np.PosY=0;\np.PosZ=0;\np.Scale=5e-6;\ndB0t=MagGaussian(p);\ndB0=dB0t;\np=[];\n%--------------------\nend\n", "meta": {"author": "leoliuf", "repo": "MRiLab", "sha": "5cdcf1f7b67759700685d3a26ffeb70e55325567", "save_path": "github-repos/MATLAB/leoliuf-MRiLab", "path": "github-repos/MATLAB/leoliuf-MRiLab/MRiLab-5cdcf1f7b67759700685d3a26ffeb70e55325567/Config/Mag/Head/Mag_GaussianHead/Mag_GaussianHead.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6959583124210896, "lm_q2_score": 0.5195213219520929, "lm_q1q2_score": 0.36156518249255215}} {"text": "function [tracks, revived, dropped_criteria, dropped_vicinity] = tolerance_track_lnn( eddies_path, type, time_frequency, tolerance, minimumArea ) % old args: eddies, time_frequency, tolerance\n%TOLERANCE_TRACK_LNN Tracking eddies by lnn method with loss tolerance\n\n% ---- NOTE ----: This is not the regular version of track_lnn. This\n% version of track_lnn will interpolate fake eddies in-between two close\n% tracks. Our theory is that these nearby tracks are the same eddy, but\n% the eddy on the missing day just wasn't strong enough to be picked up\n% by the original track_lnn. We created this function to try to recover\n% some of the dropped eddies so that we could connect the broken tracks.\n\n% For each eddy in a timestep, all eddies in next timestep within a boundary are checked to see if there's an eddy\n% that qualifies some conditions to be stitched to current eddy. The north, south and east bounds are the gate\n% distance while the west bound is computed based on rossby-phase_speed.\n% Input:\n% eddies_path: The path to the directory where eddies that were detected\n% by eddyscan were saved\n% type: Cyclone type of eddies ('anticyc' or 'cyclonic')\n% time_frequency: Number of days between timesteps. For weekly data, put\n% 7, for daily data, put 1\n% tolerance: Number of timesteps an eddy can be lost for\n% minimumArea: Minimum area of the eddies we want to include in the\n% tracking. I.E. eddy size is 4+, but we only want to\n% include eddies of size 9+ in the tracks. Set minimumArea\n% to 9\n%\n% Understanding the columns of the tracks\n% Column 1 is the latitude of the centroid of the eddy\n% Column 2 is the longitude of the centroid of the eddy\n% Column 3 is the time slice (day) that the eddy is from. To use this data to\n% get the actual day that the eddy is from, use this value as an index to a\n% dates array, and the return value of your dates array will be the day the\n% eddy is from.\n% Column 4 is the index in the struct array of eddies for that particular\n% day. If you get the correct eddies struct that corresponds to the date in\n% column 3, the value in this column is the index in that struct where this\n% actual eddy resides. It is through getting the appropriate struct and\n% accessing the appropriate entry that we relate this track data to actual\n% eddies in the struct.\n% Column 5 is whether the eddy in the tracking data is a \"fake\" eddy or\n% not. Normal eddies will be denoted by a '0' in the fifth column. Fake\n% eddies that are generated by this tolerance_track_lnn function will have\n% a '1' in the fifth column.\n\n\n%% Setting constants\ntemp = load('rossby_daily_phase_speeds.mat');\nrossby_phase_speed = temp.rossby_daily_phase_speeds;\nrossby_phase_speed(:, 3) = rossby_phase_speed(:, 3) * time_frequency;\n\ngate_distance = 150/7 * time_frequency; % 150km is default maximum travel distance for 1 week\ngate_distance_in_degree = km2deg(gate_distance);\n\n% Make lat and lon to be in [-180 180]\nrossby_phase_speed(rossby_phase_speed(:, 2) > 180, 2) = rossby_phase_speed(rossby_phase_speed(:, 2) > 180, 2) - 360;\nrossby_phase_speed(rossby_phase_speed(:, 2) < -180, 2) = rossby_phase_speed(rossby_phase_speed(:, 2) < -180, 2) + 360;\nmax_rossby_lat = max(rossby_phase_speed(:, 1));\nmin_rossby_lat = min(rossby_phase_speed(:, 1));\n\nrangesearch_radius = 5; % euclidean radius in degree for rangesearch\n\n% All next eddies with longitude in range [min_lon (min_lon + pad_range)] and [(max_lon - pad_range) max_lon] will be\n% duplicated with longitude lon+360 or lon-360 to make sure Euclidean distances can still get the eddies on the other\n% side of the map\npad_range = 5;\nrevived = 0;\ndropped_criteria = 0;\ndropped_vicinity = 0;\n\neddies_names = get_eddies_names(eddies_path, type);\neddy_length = length(eddies_names);\nfake_eddy_count = ones(eddy_length, 1);\neddies = cell(eddy_length, 1);\nindices = cell(eddy_length, 1);\norig_count = zeros(eddy_length, 1);\n[eddies, indices, orig_count] = load_eddies_cell(eddies, indices, orig_count, eddies_names, minimumArea);\n\n%% Begin tracking\ntracks = {};\n\ncurr_track_indexes = nan(length(eddies{1}), 1); % track index of first eddies\n\nfor curr_time_step = 1:(length(eddies) - 1)\n curr_eddies_coordinates = [[eddies{curr_time_step}.Lat]' [eddies{curr_time_step}.Lon]'];\n next_eddies_coordinates = [[eddies{curr_time_step + 1}.Lat]' [eddies{curr_time_step + 1}.Lon]'];\n orig_next_eddies_coordinates_length = size(next_eddies_coordinates, 1);\n \n curr_real_indices = indices{curr_time_step};\n next_real_indices = indices{curr_time_step + 1};\n % eddy entries for connecting tracks.\n \n disp(curr_time_step)\n \n % The availability of next eddies, will be updated when an in-ranged eddy matches current eddy and the tracks are updated\n next_eddies_availabilities = true(size(next_eddies_coordinates, 1), 1);\n % Index of the tracks of the tracked next eddies, NaN for untracked eddies\n next_eddies_track_indexes = NaN(size(next_eddies_coordinates, 1), 1);\n \n % First, pad the next eddies so that euclidean distances don't mess up eddy distances at the edge of world map\n [padding_eddy_index, padding_eddies] = pad_eddies(next_eddies_coordinates, pad_range);\n padded_next_eddies = [next_eddies_coordinates; padding_eddies];\n \n padding_eddies_length = size(padding_eddies, 1);\n \n % Get in-ranged next eddies\n [next_padded_eddy_in_range_indexes, ~] = ...\n rangesearch(padded_next_eddies(:, 1:2), curr_eddies_coordinates(:, 1:2), rangesearch_radius);\n \n %next_padded_eddy_in_range_indexes =\n \n % Get distances from current eddies to in-ranged next eddies\n [dists, first_curr_eddy_index_in_distance_data] = get_eddy_distances(curr_eddies_coordinates, padded_next_eddies, ...\n next_padded_eddy_in_range_indexes);\n \n % Get westbound of curr eddies\n westbounds = get_west_bounds(curr_eddies_coordinates(:, 1:2), gate_distance, rossby_phase_speed, ...\n max_rossby_lat, min_rossby_lat);\n % For each current eddy, check if any in-ranged next eddy matches and update tracks\n for curr_eddy_index = 1:size(curr_eddies_coordinates, 1)\n % Index of the distance between current eddy and next eddy in the dists array\n curr_distance_index = first_curr_eddy_index_in_distance_data(curr_eddy_index);\n eddies_within_range = 0;\n matched = false;\n \n if curr_eddy_index <= length(curr_real_indices)\n curr_real_index = curr_real_indices(curr_eddy_index);\n else\n curr_real_index = orig_count(curr_time_step) + (curr_eddy_index - length(curr_real_indices));\n end\n \n for next_padded_eddy_index = next_padded_eddy_in_range_indexes{curr_eddy_index}\n % Get real next eddy index\n if next_padded_eddy_index > orig_next_eddies_coordinates_length && next_padded_eddy_index < orig_next_eddies_coordinates_length + ...\n padding_eddies_length + 1\n % This is index of a padded eddy\n next_eddy_index = padding_eddy_index(next_padded_eddy_index - orig_next_eddies_coordinates_length);\n else\n next_eddy_index = next_padded_eddy_index;\n end\n \n % Check if the next eddy matches the current eddy\n if next_eddies_availabilities(next_eddy_index)\n % Only check available next eddies\n curr_eddy_lat = curr_eddies_coordinates(curr_eddy_index, 1);\n curr_eddy_lon = curr_eddies_coordinates(curr_eddy_index, 2);\n next_eddy_lat = next_eddies_coordinates(next_eddy_index, 1);\n next_eddy_lon = next_eddies_coordinates(next_eddy_index, 2);\n \n next_real_index = next_real_indices(next_eddy_index);\n \n if ~is_within_range(curr_eddy_lat, curr_eddy_lon, next_eddy_lat, next_eddy_lon, ...\n dists(curr_distance_index), westbounds(curr_eddy_index), gate_distance, gate_distance_in_degree)\n continue;\n else\n eddies_within_range = eddies_within_range + 1;\n end\n \n if is_matched(eddies{curr_time_step}(curr_eddy_index), eddies{curr_time_step + 1}(next_eddy_index));\n \n % Update tracks and get out of the loop\n if isnan(curr_track_indexes(curr_eddy_index))\n % new track\n track_id = length(tracks) + 1;\n tracks{track_id}(1, :) = ...\n [curr_eddy_lat curr_eddy_lon curr_time_step curr_real_index];\n tracks{track_id}(2, :) = ...\n [next_eddy_lat next_eddy_lon (curr_time_step + 1) next_real_index];\n else\n % old track\n track_id = curr_track_indexes(curr_eddy_index);\n %check if track is flagged\n if length(tracks{track_id}(end,:)) == 5\n if tracks{track_id}(end,5) ~= 0\n revived = revived + 1;\n %need to interpolate new locations for flagged\n %track entries\n for i = 1:size((tracks{track_id}), 1)\n if tracks{track_id}(i,5) ~= 0\n flag = tracks{track_id}(i,5);\n break\n end\n end\n \n number_of_flags_at_end = 0;\n for j = size(tracks{track_id},1):1\n if tracks{track_id}(j,5) ~= 0\n number_of_flags_at_end = number_of_flags_at_end + 1;\n else\n break;\n end\n end\n \n last_real_track_index = size(tracks{track_id},1) - number_of_flags_at_end;\n \n lat_increment = (next_eddy_lat - tracks{track_id}(last_real_track_index, 1))/(number_of_flags_at_end + 1);\n lon_increment = (next_eddy_lon - tracks{track_id}(last_real_track_index, 2))/(number_of_flags_at_end + 1);\n %now just increment the flagged tracks' lat and lon by these amounts\n for k = last_real_track_index + 1: size(tracks{track_id},1)\n tracks{track_id}(k,1) = tracks{track_id}(last_real_track_index,1) + (k - last_real_track_index)*lat_increment;\n tracks{track_id}(k,2) = tracks{track_id}(last_real_track_index,2) + (k - last_real_track_index)*lon_increment;\n end\n end\n tracks{track_id}(end + 1, :) = ...\n [next_eddy_lat next_eddy_lon (curr_time_step + 1) next_real_index 0 ];\n else\n tracks{track_id}(end + 1, :) = ...\n [next_eddy_lat next_eddy_lon (curr_time_step + 1) next_real_index];\n end\n end\n next_eddies_track_indexes(next_eddy_index) = track_id;\n next_eddies_availabilities(next_eddy_index) = false;\n matched = true;\n break;\n end\n % getting here means that it had at least one eddy within\n % range but it wasn't a match for criteria\n \n end\n \n curr_distance_index = curr_distance_index + 1;\n \n end\n \n if ~matched\n if ~isnan(curr_track_indexes(curr_eddy_index))\n % getting here means there were no matches\n if ~eddies_within_range\n dropped_vicinity = dropped_vicinity + 1;\n else\n %there was at least one within range but none were matches\n dropped_criteria = dropped_criteria + 1;\n end\n end\n \n if tolerance > 0\n %if a track already exists, add flag for potential\n %missing track.\n %This section checks if it has the max tolerated\n %number of flagged tracks already\n if ~isnan(curr_track_indexes(curr_eddy_index))\n track_id = curr_track_indexes(curr_eddy_index);\n \n if length(tracks{track_id}(end,:)) == 5 % protect against out of bounds indexing (too large)\n if size(tracks{track_id}, 1) > tolerance %protect against negative indexing\n if tracks{track_id}(end - tolerance + 1, 5) ~= 0\n %remove flagged tracks\n \n tracks{track_id} = tracks{track_id}(1: (end - tolerance),:);\n continue;\n end\n end\n else\n %track isn't flagged at all, so add 5th column in order to add flags\n tracks{track_id}(:,5) = 0;\n end\n %won't get here if it got trimmed due to the\n %continue statement above\n %now make entry to next coordinates and eddies arrays so we can\n %search from this fake eddy in next timestep\n lat_increment = tracks{track_id}(end, 1) - tracks{track_id}(end - 1, 1);\n lon_increment = tracks{track_id}(end, 2) - tracks{track_id}(end - 1, 2);\n next_eddies_coordinates(end+1,:) = [curr_eddies_coordinates(curr_eddy_index, 1) + lat_increment ...\n curr_eddies_coordinates(curr_eddy_index, 2) + lon_increment];\n %now add the stats of the current eddy to the\n %end of the next time steps eddies, but alter\n %the coordinates\n eddies{curr_time_step + 1}(end+1) = eddies{curr_time_step}(curr_eddy_index);\n eddies{curr_time_step + 1}(end).Lat = curr_eddies_coordinates(curr_eddy_index,1) + lat_increment;%next_eddies_coordinates(end,1);\n eddies{curr_time_step + 1}(end).Lon = curr_eddies_coordinates(curr_eddy_index,2) + lon_increment;%next_eddies_coordinates(end,2);\n %make a flagged track entry with the above interpolated stats\n if ~eddies_within_range\n flag = -1; %dropped for vicinity\n else\n flag = 1; % dropped for criteria\n end\n next_size = orig_count(curr_time_step + 1) + fake_eddy_count(curr_time_step + 1);\n fake_eddy_count(curr_time_step + 1) = fake_eddy_count(curr_time_step + 1) + 1;\n tracks{track_id}(end + 1, :) = ...\n [next_eddies_coordinates(end, 1) next_eddies_coordinates(end, 2)...\n (curr_time_step + 1) next_size flag];\n next_eddies_track_indexes(length(eddies{curr_time_step + 1})) = track_id;\n next_eddies_availabilities(size(next_eddies_coordinates), 1) = false;\n end\n end\n \n end\n end\n curr_track_indexes = next_eddies_track_indexes;\n eddies{curr_time_step} = [];\n [eddies, indices, orig_count] = load_eddies_cell(eddies, indices, orig_count, eddies_names, minimumArea);\nend\n\nfor i = 1:length(tracks)\n track = tracks{i};\n [~,b] = size(track);\n if b < 5\n track(:, 5) = 0;\n tracks{i} = track;\n end\nend\n\nend\n\n\nfunction within_range = is_within_range(curr_lat, curr_lon, next_lat, next_lon, km_distance, westbound, ...\n gate_distance, gate_distance_in_degree)\n% An approximate way of checking if the eddy in next timestep is within edddy in current timestep's range,\n% following the description in D.B. Chelton et al. / Progress in Oceanography 91 (2011) page 208\n% The north, east and south bounds are defined by the gate distance while the westbound is precomputed by rossby\n% phase speed.\n% Input:\n% curr_lat: latitude of the eddy in current timestep\n% curr_lon: longitude of the eddy in current timestep\n% next_lat: latitude of the eddy in next timestep\n% next_lon: longitude of the eddy in next timestep\n% km_distance: distance in km between the eddies in current and next timestep\n% gate_distance: default value of how far an eddy can travel in one timestep in km\n% gate_distance: default value of how far an eddy can travel in one timestep in degree\n\n% Check north and south bound\nif next_lat > curr_lat + gate_distance_in_degree || next_lat < curr_lat - gate_distance_in_degree\n within_range = false; % Avoid using km2deg or deg2km because\nelse\n % Check east and west bound\n if abs(next_lon - curr_lon) > 180\n if next_lon > curr_lon\n curr_lon = curr_lon + 360;\n else\n next_lon = next_lon + 360;\n end\n end\n if next_lon >= curr_lon\n is_on_east_side = true;\n else\n is_on_east_side = false;\n end\n \n if is_on_east_side\n within_range = km_distance <= gate_distance;\n else\n within_range = km_distance <= westbound;\n end\n \nend\n\nend\n\nfunction westbounds = get_west_bounds(eddy_coordinates, gate_distance, phase_speed_data, max_rossby_lat, min_rossby_lat)\n% Getting westbound of eddies by eddy coordinates and rossby phasespeed data\n% West bound of an eddy is defined as the maximum value between 1.75 * rossby_phase_speed and default gate_distance\n% eddy_coordinates: coordinates of eddies in format [lat lon]\n% gate_distance: the default maximum distance an eddy can travel in a single timestep\n% phase_speed_data: rossby phase speed data in format [lat lon speed]\n% max_rossby_lat: to make sure eddies with latitude out of range get the default gate distance\n% min_rossby_lat: to make sure eddies with latitude out of range get the default gate distance\n\ncurr_eddy_lats = eddy_coordinates(:, 1);\ncurr_eddy_lons = eddy_coordinates(:, 2);\n% Convert eddy longtidue format to -180 to 180 to make sure knn search work\ncurr_eddy_lons(curr_eddy_lons > 180) = curr_eddy_lons(curr_eddy_lons > 180) - 360;\ncurr_eddy_lons(curr_eddy_lons < -180) = curr_eddy_lons(curr_eddy_lons < -180) + 360;\n\nnearest_ind = knnsearch(phase_speed_data(:, 1:2), [curr_eddy_lats curr_eddy_lons]);\nwestbounds = 1.75 * phase_speed_data(nearest_ind, 3);\nwestbounds(westbounds < gate_distance) = gate_distance;\n% Make sure out of range eddies get the default value\nwestbounds(curr_eddy_lats > max_rossby_lat | curr_eddy_lats < min_rossby_lat) = gate_distance;\n\nend\n\nfunction [dists, first_curr_eddy_index_in_distance_data] = get_eddy_distances(curr_eddies, next_eddies, ...\n next_eddies_indexes)\n% Get distances from current eddies to next eddies with indexes in the cell array next_eddies_indexes. This function\n% computes the distance in one distance and deg2km to increase the tracking function performance\n% Also return an array of indexes of the first appearance of a curr eddy in the distance array\n% Input:\n% curr_eddies: eddies in current timestep with format [lat lon ...]\n% next_eddies: eddies in next timestep with format [lat lon ...]\n% next_eddies_indexes: a cell array of indexes of next eddies that will be computed the distances to current eddies\n\nnext_eddy_indexes_lengths = cellfun('length', next_eddies_indexes);\nvectorized_next_eddy_indexes = [next_eddies_indexes{:}]';\nvectorized_curr_eddy_indexes = zeros(sum(next_eddy_indexes_lengths), 1);\ncurr_index = 1;\nfor i = 1:length(next_eddy_indexes_lengths)\n vectorized_curr_eddy_indexes(curr_index:(curr_index + next_eddy_indexes_lengths(i) - 1)) = i;\n curr_index = curr_index + next_eddy_indexes_lengths(i);\nend\n\ndists = deg2km(distance(curr_eddies(vectorized_curr_eddy_indexes, 1:2), ...\n next_eddies(vectorized_next_eddy_indexes, 1:2)));\n\nfirst_curr_eddy_index_in_distance_data = ones(length(next_eddy_indexes_lengths), 1);\nfor i = 2:length(next_eddy_indexes_lengths)\n first_curr_eddy_index_in_distance_data(i) = first_curr_eddy_index_in_distance_data(i - 1) + next_eddy_indexes_lengths(i - 1);\nend\n\nend\n\nfunction [padding_eddy_index, padding_eddies] = pad_eddies(eddies, pad_range)\n% Duplicate eddies in range [min_lon (min_lon + pad_range)] and [(max_lon - pad_range) max_lon] to make sure knnsearch\n% work correctly to get in-range eddies in next timestep\n% eddies: eddies in format [lat lon ...]\n% pad_range: how far we want to pad (in degree)\n\nmin_lon = min(eddies(:, 2));\nmax_lon = max(eddies(:, 2));\npadding_eddy_index = find( (eddies(:, 2) >= min_lon & eddies(:, 2) <= (min_lon + pad_range)) ...\n | (eddies(:, 2) >= (max_lon - pad_range) & eddies(:, 2) <= max_lon ) );\n\npadding_eddies = eddies(padding_eddy_index, :);\npadding_eddies(padding_eddies(:, 2) <= (min_lon + pad_range), 2) = ...\n padding_eddies(padding_eddies(:, 2) <= (min_lon + pad_range), 2) + 360;\npadding_eddies(padding_eddies(:, 2) >= (max_lon - pad_range), 2) = ...\n padding_eddies(padding_eddies(:, 2) >= (max_lon - pad_range), 2) - 360;\n\nend\n\nfunction matched = is_matched(curr_eddy, next_eddy)\n% An eddy is consider matched with current eddy if the amplitude and surface area is in range [0.25 2.75] *\n% curr_eddy_amp/surface_area\n% curr_eddy: an eddy in current timestep in format [lat lon amp surface_area]\n% next_eddy: an eddy in next timestep in format [lat lon amp surface_area]\n\ncurr_amplitude = curr_eddy.Amplitude;\nnext_amplitude = next_eddy.Amplitude;\ncurr_surface_area = curr_eddy.SurfaceArea;\nnext_surface_area = next_eddy.SurfaceArea;\n%if isempty(curr_amplitude) | isempty(next_amplitude) | isempty\n%end\nmatched_amp = curr_amplitude > .25* next_amplitude && curr_amplitude < 2.75 * next_amplitude;\nmatched_area = curr_surface_area > .25 * next_surface_area && curr_surface_area < 2.75 * next_surface_area;\n\n% matched = curr_amplitude > 0.25 * next_amplitude && curr_amplitude < 2.75 * next_amplitude ...\n% && curr_surface_area > 0.25 * next_surface_area && curr_surface_area < 2.75 * next_surface_area;\nmatched = matched_amp && matched_area;\nend\n\nfunction [eddies_names] = get_eddies_names(path, type)\n% path is the path to the eddies directory\n% type is anticyclonic or cyclonic\nif ~strcmp(path(end), '/')\n path = strcat(path, '/');\nend\nfiles = dir(path);\nx = 0;\nfor i = 1:length(files)\n if ~isempty(strfind(files(i).name, [type, '_']))\n x = x + 1;\n end\nend\neddies_names = cell(x, 1);\nx = 1;\nfor i = 1:length(files)\n if files(i).isdir && ~isequal(files(i).name, '.') && ~isequal(files(i).name, '..')\n rec_names = get_eddies_names([path, files(i).name, '/'], type);\n for j = 1:length(rec_names)\n eddies_names{x} = rec_names{j};\n x = x + 1;\n end\n continue;\n end\n file = files(i).name;\n [~, name, ext] = fileparts([path, file]);\n if ~isempty(strfind(name, [type, '_'])) && strcmp(ext, '.mat')\n eddies_names{x} = [path, file];\n x = x + 1;\n end\nend\nend\n\nfunction [modified_eddies_cell, modified_indices_cell, modified_orig_count_array] = load_eddies_cell(eddies_cell, real_indices_cell, orig_count_array, eddies_names, minimumArea)\ncount_to_load = 10;\nnames_length = length(eddies_names);\nx = 0;\npos_1 = 1;\nfor i = 1:length(eddies_cell)\n if ~isempty(eddies_cell{i})\n if x == 0\n pos_1 = i;\n end\n x = x + 1;\n end\nend\niterations = count_to_load - x;\nfirst_empty_pos = pos_1 + x;\nlast_empty_pos = first_empty_pos + iterations - 1;\nif last_empty_pos > names_length\n last_empty_pos = names_length;\nend\nfor i = first_empty_pos:last_empty_pos\n eddy_name = eddies_names{i};\n vars = load(eddy_name);\n names = fieldnames(vars);\n eddies = vars.(names{1});\n [f_eddies, real_indices, orig_count] = filter_eddies(eddies, minimumArea);\n eddies_cell{i} = f_eddies;\n real_indices_cell{i} = real_indices;\n orig_count_array(i) = orig_count;\nend\nmodified_eddies_cell = eddies_cell;\nmodified_indices_cell = real_indices_cell;\nmodified_orig_count_array = orig_count_array;\nend\n\nfunction [filtered_eddies, real_indices, original_eddy_count] = filter_eddies(eddies, minimumArea)\nstats = [eddies.Stats];\nareas = [stats.Area];\nx = 1;\noriginal_eddy_count = length(eddies);\nfor i = 1:length(eddies)\n if areas(i) >= minimumArea\n filtered_eddies(x) = eddies(i);\n real_indices(x) = i;\n x = x + 1;\n end\nend\nend", "meta": {"author": "jfaghm", "repo": "OceanEddies", "sha": "a5e33155f9cc534093c88b1a514b0c8281591755", "save_path": "github-repos/MATLAB/jfaghm-OceanEddies", "path": "github-repos/MATLAB/jfaghm-OceanEddies/OceanEddies-a5e33155f9cc534093c88b1a514b0c8281591755/track_lnn/tolerance_track_lnn.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7401743735019595, "lm_q2_score": 0.48828339529583464, "lm_q1q2_score": 0.36141485620450403}} {"text": "function test_bug2994\n\n% MEM 2gb\n% WALLTIME 00:10:00\n% DEPENDENCY ft_freqstatistics ft_freqgrandaverage ft_selectdata\n\n% Bug 2994 has been reported by Niels. Apparently once upon a time it was\n% possible to call ft_freqstatistics with ft_freqgrandaveraged data in the\n% input, where the dimord is 'subj_freq_time' (NOTE the lacking chan\n% dimord) with the data containing apparently an average across channels.\n% The input data contains a label field. ft_freqstatistics crashes when the\n% low level function tries to cluster across space.\n\n% Let's start this form the beginning, create a multisubject\n% freq-structure, with data averaged across channels, and see whether it\n% pulls through\n\ntmp.freq = [1 2 3];\ntmp.time = [1 2 3 4 5];\ntmp.label = {'a';'b'};\ntmp.dimord = 'chan_freq_time';\n\n\nfreq = cell(1,10);\nfreq0 = cell(1,10);\nfor k = 1:10\n tmp.powspctrm = rand(2,3,5);\n freq{k} = tmp;\n tmp.powspctrm(:) = 0;\n freq0{k} = tmp; \nend\n\n%% ------------------------------------------------------------------------\n% here, the following is done:\n% -ft_freqgrandaverage (keepindividual = 'yes')\n% -ft_selectdata (avgoverchan = 'yes')\n% -ft_freqstatistics\n\ncfg1 = [];\ncfg1.keepindividual = 'yes';\n\ncfg2 = [];\ncfg2.avgoverchan = 'yes';\n\ncfg3 = [];\ncfg3.method = 'montecarlo';\ncfg3.statistic = 'ft_statfun_depsamplesT';\ncfg3.design = [ones(1,10) ones(1,10)*2;1:10 1:10];\ncfg3.numrandomization = 100;\ncfg3.correctm = 'cluster';\ncfg3.ivar = 1;\ncfg3.uvar = 2;\n\nfreqall = ft_selectdata(cfg2, ft_freqgrandaverage(cfg1, freq{:}));\nfreqall0 = ft_selectdata(cfg2, ft_freqgrandaverage(cfg1, freq0{:}));\nassert(isequal(size(freqall.powspctrm),[10 1 3 5])); % there should be a singleton channel dimension\nstat1 = ft_freqstatistics(cfg3, freqall, freqall0);\n\n%% ------------------------------------------------------------------------\n% here, the following is done:\n% -ft_freqgrandaverage (keepindividual = 'yes')\n% -ft_freqstatistics (avgoverchan = 'yes')\n\ncfg1 = [];\ncfg1.keepindividual = 'yes';\n\ncfg3 = [];\ncfg3.method = 'montecarlo';\ncfg3.statistic = 'ft_statfun_depsamplesT';\ncfg3.avgoverchan = 'yes';\ncfg3.design = [ones(1,10) ones(1,10)*2;1:10 1:10];\ncfg3.numrandomization = 100;\ncfg3.correctm = 'cluster';\ncfg3.ivar = 1;\ncfg3.uvar = 2;\n\nfreqall = ft_freqgrandaverage(cfg1, freq{:});\nfreqall0 = ft_freqgrandaverage(cfg1, freq0{:});\nassert(isequal(size(freqall.powspctrm),[10 2 3 5])); % there should be two channels\nstat2 = ft_freqstatistics(cfg3, freqall, freqall0);\n\n%% ------------------------------------------------------------------------\n% here, the following is done:\n% - NO ft_freqgrandaverage\n% -ft_freqstatistics (avgoverchan = 'yes')\n\ncfg3 = [];\ncfg3.method = 'montecarlo';\ncfg3.statistic = 'ft_statfun_depsamplesT';\ncfg3.avgoverchan = 'yes';\ncfg3.design = [ones(1,10) ones(1,10)*2;1:10 1:10];\ncfg3.numrandomization = 100;\ncfg3.correctm = 'cluster';\ncfg3.ivar = 1;\ncfg3.uvar = 2;\ncfg3.avgoverchan = 'yes';\n\nstat3 = ft_freqstatistics(cfg3, freq{:}, freq0{:});\n\n%% ------------------------------------------------------------------------\n% here, the following is done:\n% -ft_appendfreq\n% -ft_freqstatistics (avgoverchan = 'yes')\n\ncfg1 = [];\ncfg1.parameter = 'powspctrm';\ncfg1.appenddim = 'rpt';\n\ncfg3 = [];\ncfg3.method = 'montecarlo';\ncfg3.statistic = 'ft_statfun_depsamplesT';\ncfg3.avgoverchan = 'yes';\ncfg3.design = [ones(1,10) ones(1,10)*2;1:10 1:10];\ncfg3.numrandomization = 100;\ncfg3.correctm = 'cluster';\ncfg3.ivar = 1;\ncfg3.uvar = 2;\ncfg3.avgoverchan = 'yes';\n\nfreqall = ft_appendfreq(cfg1, freq{:});\nfreqall0 = ft_appendfreq(cfg1, freq0{:});\n\nstat4 = ft_freqstatistics(cfg3, freqall, freqall0);\n\nassert(isequal(stat1.stat,stat2.stat));\nassert(isequal(stat1.stat,stat3.stat));\nassert(isequal(stat1.stat,stat4.stat));\nassert(isequal(stat2.stat,stat3.stat));\nassert(isequal(stat2.stat,stat4.stat));\nassert(isequal(stat3.stat,stat4.stat));\n\n% the conclusion so far is that with the current state of the code, all\n% seems to work fine.\n\n\n\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/test/test_bug2994.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7520125848754471, "lm_q2_score": 0.48047867804790706, "lm_q1q2_score": 0.36132601265634434}} {"text": "function [result]=randSimpleMatrix(size)\n result=rand(size,'double', 'gpuArray');\nend\n", "meta": {"author": "jiweil", "repo": "Hierarchical-Neural-Autoencoder", "sha": "2cea5c0b687e6d3dfb20dee4bec97aec6b57a95f", "save_path": "github-repos/MATLAB/jiweil-Hierarchical-Neural-Autoencoder", "path": "github-repos/MATLAB/jiweil-Hierarchical-Neural-Autoencoder/Hierarchical-Neural-Autoencoder-2cea5c0b687e6d3dfb20dee4bec97aec6b57a95f/misc/randSimpleMatrix.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.36132491561506047}} {"text": "function varargout = mvncdf(varargin)\n\nswitch class(varargin{1})\n\n case {'sdpvar','ndsdpvar'}\n \n if nargin > 1\n error('sdpvar/mvncdf currently only supports 1 argument, i.e. assumed zero mean and unit variance');\n end\n varargin{1} = reshape(varargin{1},[],1);\n varargout{1} = yalmip('define',mfilename,varargin{1}); \n\n case 'char'\n\n X = varargin{3};\n F = [];\n\n operator = CreateBasicOperator('positive','increasing','callback'); \n if length(X) == 1\n operator.convexity = @convexity; \n operator.derivative = @(x)(1/2)*(1/sqrt(2))*exp(-(x/sqrt(2)).^2)*2/sqrt(pi);\n operator.inverse = @(x)(sqrt(2)*erfinv(2*x-1));\n else\n operator.bounds = @bounds;\n end\n \n operator.range = [0 1]; \n varargout{1} = F;\n varargout{2} = operator;\n varargout{3} = X;\n\n otherwise\n error(['SDPVAR/' upper(mfilename) ' called with weird argument']);\nend\n\nfunction [L,U] = bounds(xL,xU)\nL = mvncdf(xL);\nU = mvncdf(xU);\n\nfunction vexity = convexity(xL,xU)\nif xL >= 0 \n vexity = 'concave';\nelseif xU <= 0\n vexity = 'convex';\nelse\n vexity = 'none';\nend", "meta": {"author": "yalmip", "repo": "YALMIP", "sha": "f6d5a6d4222a4d722de30bffb43cae4b3e13b860", "save_path": "github-repos/MATLAB/yalmip-YALMIP", "path": "github-repos/MATLAB/yalmip-YALMIP/YALMIP-f6d5a6d4222a4d722de30bffb43cae4b3e13b860/@sdpvar/mvncdf.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7341195152660687, "lm_q2_score": 0.49218813572079556, "lm_q1q2_score": 0.36132491561506047}} {"text": "function [colormap]=cbrewer(cname, ncol, interp_method)\n% CBREWER - This function produces a colorbrewer table (rgb data) for a \n% given type, name and number of colors of the colorbrewer tables. \n% For more information on 'colorbrewer', please visit\n% http://colorbrewer2.org/\n%\n% [colormap]=cbrewer(cname, ncol, interp_method)\n%\n% INPUT:\n% cname name of colortable. One of the following\n% Sequential tables:\n% 'Blues'\n% 'BuGn'\n% 'BuPu'\n% 'GnBu'\n% 'Greens'\n% 'Greys'\n% 'Oranges'\n% 'OrRd'\n% 'PuBu'\n% 'PuBuGn'\n% 'PuRd'\n% 'Purples'\n% 'RdPu'\n% 'Reds'\n% 'YlGn'\n% 'YlGnBu'\n% 'YlOrBr'\n% 'YlOrRd'\n% Divergent tables:\n% 'BrBG'\n% 'PiYG'\n% 'PRGn'\n% 'PuOr'\n% 'RdBu'\n% 'RdGy'\n% 'RdYlBu'\n% 'RdYlGn'};\n% Qualitative tables:\n% 'Accent'\n% 'Dark2'\n% 'Paired'\n% 'Pastel1'\n% 'Pastel2'\n% 'Set1'\n% 'Set2'\n% 'Set3'\n% ncol number of color in the table.\n% interp_method if the table need to be interpolated, what method\n% should be used for interp1? Default='pchip' (aka 'cubic')\n% \n% A note on the number of colors: Based on the original data, there is\n% only a certain number of colors available for each type and name of\n% colortable. When 'ncol' is larger then the maximum number of colors\n% originally given, an interpolation routine is called (interp1) to produce \n% the \"extended\" colormaps.\n%\n% See also: plot_brewer_cmap\n%\n\n% \n% The tables were generated from an MS-Excel file provided on the website\n% http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html\n%\n% This product includes color specifications and designs developed by\n% Cynthia Brewer (http://colorbrewer.org/).\n% \n%\n% Author: Charles Robert\n% email: tannoudji@hotmail.com\n% Date: 06.12.2011\n\n\n% load colorbrewer data\nload('colorbrewer.mat')\n% initialise the colormap is there are any problems\ncolormap=[];\nif (~exist('interp_method', 'var'))\n interp_method='pchip';\nend\n\n\nctype_names={'div', 'seq', 'qual'};\nctype = [];\nfor try_ctype = ctype_names\n try_ctype = try_ctype{1};\n if isfield(colorbrewer.(try_ctype),cname)\n ctype = try_ctype;\n break;\n end\nend\nif isempty(ctype)\n error(['Could not find colormap named: ' cname]);\nend\n\nif (ncol>length(colorbrewer.(ctype).(cname)))\n cbrew_init=colorbrewer.(ctype).(cname){length(colorbrewer.(ctype).(cname))};\n colormap=interpolate_cbrewer(cbrew_init, interp_method, ncol);\n colormap=colormap./255;\n return\nend\n\nif isempty(colorbrewer.(ctype).(cname){ncol})\n \n while isempty(colorbrewer.(ctype).(cname){ncol})\n ncol=ncol+1;\n end \n warning( ...\n ['The minimum number of colors for table ' cname ...\n ' is ' num2str(ncol) '.'])\nend\n\ncolormap=(colorbrewer.(ctype).(cname){ncol})./255;\n\nend\n% Copyright (c) 2011, Charles Robert\n% All rights reserved.\n% \n% Redistribution and use in source and binary forms, with or without\n% modification, are permitted provided that the following conditions are\n% met:\n% \n% * Redistributions of source code must retain the above copyright\n% notice, this list of conditions and the following disclaimer.\n% * Redistributions in binary form must reproduce the above copyright\n% notice, this list of conditions and the following disclaimer in\n% the documentation and/or other materials provided with the distribution\n% \n% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE\n% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE\n% POSSIBILITY OF SUCH DAMAGE.\n% \n", "meta": {"author": "alecjacobson", "repo": "gptoolbox", "sha": "a0cb37d8edbcfb1e3587f793df8f24c76a2d7305", "save_path": "github-repos/MATLAB/alecjacobson-gptoolbox", "path": "github-repos/MATLAB/alecjacobson-gptoolbox/gptoolbox-a0cb37d8edbcfb1e3587f793df8f24c76a2d7305/external/cbrewer.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5736784074525096, "lm_q2_score": 0.629774621301746, "lm_q1q2_score": 0.361288101802393}} {"text": "%{\n * Copyright (C) 2020-2030, The Regents of The University of Michigan.\n * All rights reserved.\n * This software was developed in the Biped Lab (https://www.biped.solutions/) \n * under the direction of Jessy Grizzle, grizzle@umich.edu. This software may \n * be available under alternative licensing terms; contact the address above.\n * Redistribution and use in source and binary forms, with or without\n * modification, are permitted provided that the following conditions are met:\n * 1. Redistributions of source code must retain the above copyright notice, this\n * list of conditions and the following disclaimer.\n * 2. Redistributions in binary form must reproduce the above copyright notice,\n * this list of conditions and the following disclaimer in the documentation\n * and/or other materials provided with the distribution.\n * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\" AND\n * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\n * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR\n * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\n * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND\n * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\n * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n * The views and conclusions contained in the software and documentation are those\n * of the authors and should not be interpreted as representing official policies,\n * either expressed or implied, of the Regents of The University of Michigan.\n * \n * AUTHOR: Bruce JK Huang (bjhuang[at]umich.edu)\n * WEBSITE: https://www.brucerobot.com/\n%}\n\nfunction cost = getCost(x)\n % cost = exp(x);\n cost = x^2;\n cost = x;\nend", "meta": {"author": "UMich-BipedLab", "repo": "extrinsic_lidar_camera_calibration", "sha": "d423c81e95c6de595e1dff79871385348b1c68f4", "save_path": "github-repos/MATLAB/UMich-BipedLab-extrinsic_lidar_camera_calibration", "path": "github-repos/MATLAB/UMich-BipedLab-extrinsic_lidar_camera_calibration/extrinsic_lidar_camera_calibration-d423c81e95c6de595e1dff79871385348b1c68f4/getCost.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6297746074044135, "lm_q2_score": 0.5736784074525096, "lm_q1q2_score": 0.36128809382979343}} {"text": "function c=cuttype(t,j)\n%CUTTYPE Type of cut used at branches in decision tree.\n% C=CUTTYPE(T) returns an N-element cell array C indicating the type of\n% cut at each node in the tree T, where N is the number of nodes in the\n% tree. For each node K, C{K} is 'continuous' if the cut is defined in\n% the form Z=2 && ~validatenodes(t,j)\n error('stats:classregtree:parent:InvalidNode',...\n 'J must be an array of node numbers or a logical array of the proper size.');\nend\n\n% Get variable defining each cut\nif nargin<2\n v = t.var;\nelse\n v = t.var(j,:);\nend\nv = v(:);\n\n% Create array of cut types\nc = repmat({''},numel(v),1);\nc(v>0) = {'continuous'};\nc(v<0) = {'categorical'};", "meta": {"author": "Cloud-CV", "repo": "object-proposals", "sha": "597a89520bc1b0b261420d7627b8c36439a24c7a", "save_path": "github-repos/MATLAB/Cloud-CV-object-proposals", "path": "github-repos/MATLAB/Cloud-CV-object-proposals/object-proposals-597a89520bc1b0b261420d7627b8c36439a24c7a/rigor/rigor_src/extern_src/fuxin_lib_src/@classregtree_fuxin/cuttype.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3612269605789466}} {"text": "function [fevd_record,fevd_estimates]=panel2fevd(struct_irf_record,gamma_record,It,Bu,IRFperiods,n,FEVDband)\n\n\n\n% because fevd is obtained from IRFs, and because IRFs are common to all units, fevd can be run only once\n[fevd_record]=bear.fevd(struct_irf_record,gamma_record,It,Bu,n,IRFperiods,FEVDband);\n% compute posterior estimates\n[fevd_estimates]=bear.fevdestimates(fevd_record,n,IRFperiods,FEVDband);", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tbx/bear/+bear/panel2fevd.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3612269605789466}} {"text": "function Population = subNSGAII(Problem,Population,Operator,N)\n% Sub-optimizer in LSMOF (NSGA-II)\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n% This function is written by Cheng He\n \n FrontNo = NDSort(Population.objs,inf);\n CrowdDis = CrowdingDistance(Population.objs,FrontNo);\n if Operator == 1\n MatingPool = TournamentSelection(2,N,FrontNo,-CrowdDis);\n Offspring = OperatorGA(Problem,Population(MatingPool));\n else\n MatingPool1 = TournamentSelection(2,N,FrontNo,-CrowdDis);\n MatingPool2 = TournamentSelection(2,N,FrontNo,-CrowdDis);\n MatingPool3 = TournamentSelection(2,N,FrontNo,-CrowdDis);\n Offspring = OperatorDE(Problem,Population(MatingPool1),Population(MatingPool2),Population(MatingPool3));\n end\n Population = EnvironmentalSelection([Population,Offspring],N);\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/LSMOF/subNSGAII.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.665410558746814, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.3612269605789466}} {"text": "%% Copyright (C) 2014-2017, 2019, 2022 Colin B. Macdonald\n%%\n%% This file is part of OctSymPy.\n%%\n%% OctSymPy is free software; you can redistribute it and/or modify\n%% it under the terms of the GNU General Public License as published\n%% by the Free Software Foundation; either version 3 of the License,\n%% or (at your option) any later version.\n%%\n%% This software is distributed in the hope that it will be useful,\n%% but WITHOUT ANY WARRANTY; without even the implied warranty\n%% of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See\n%% the GNU General Public License for more details.\n%%\n%% You should have received a copy of the GNU General Public\n%% License along with this software; see the file COPYING.\n%% If not, see .\n\n%% -*- texinfo -*-\n%% @documentencoding UTF-8\n%% @deftypemethod @@sym {@var{c} =} coeffs (@var{p}, @var{x})\n%% @deftypemethodx @@sym {@var{c} =} coeffs (@var{p})\n%% @deftypemethodx @@sym {@var{c} =} coeffs (@dots{}, 'all')\n%% @deftypemethodx @@sym {[@var{c}, @var{t}] =} coeffs (@var{p}, @var{x})\n%% @deftypemethodx @@sym {[@var{c}, @var{t}] =} coeffs (@var{p})\n%% @deftypemethodx @@sym {[@var{c}, @var{t}] =} coeffs (@dots{}, 'all')\n%% Return non-zero (or all) coefficients of symbolic polynomial.\n%%\n%% @var{c} contains the coefficients and @var{t} the corresponding\n%% terms.\n%%\n%% Example:\n%% @example\n%% @group\n%% syms x\n%% [c, t] = coeffs (x^6 + 3*x - 4)\n%% @result{} c = (sym) [1 3 -4] (1\u00d73 matrix)\n%% @result{} t = (sym 1\u00d73 matrix)\n%% \u23a1 6 \u23a4\n%% \u23a3x x 1\u23a6\n%% @end group\n%% @end example\n%%\n%% The polynomial can be multivariate:\n%% @example\n%% @group\n%% syms x y\n%% [c, t] = coeffs (x^2 + y*x)\n%% @result{} c = (sym) [1 1] (1\u00d72 matrix)\n%% @result{} t = (sym 1\u00d72 matrix)\n%% \u23a1 2 \u23a4\n%% \u23a3x x\u22c5y\u23a6\n%% @end group\n%%\n%% @group\n%% [c, t] = coeffs (x^2 + y*x, [x y]) % same\n%% @result{} c = (sym) [1 1] (1\u00d72 matrix)\n%% @result{} t = (sym 1\u00d72 matrix)\n%% \u23a1 2 \u23a4\n%% \u23a3x x\u22c5y\u23a6\n%%\n%% [c, t] = coeffs (x^2 + y*x, @{x y@}) % same\n%% @result{} c = (sym) [1 1] (1\u00d72 matrix)\n%% @result{} t = (sym 1\u00d72 matrix)\n%% \u23a1 2 \u23a4\n%% \u23a3x x\u22c5y\u23a6\n%% @end group\n%% @end example\n%%\n%% You can use the second argument to specify a vector or list of\n%% variables:\n%% @example\n%% @group\n%% [c, t] = coeffs (x^2 + y*x, x)\n%% @result{} c = (sym) [1 y] (1\u00d72 matrix)\n%% @result{} t = (sym 1\u00d72 matrix)\n%% \u23a1 2 \u23a4\n%% \u23a3x x\u23a6\n%% @end group\n%% @end example\n%%\n%% Omitting the second output is not recommended, especially for non-interactive\n%% code, because it gives only the non-zero coefficients, and additionally\n%% the output is in the ``wrong order'' compared to other polynomial-related\n%% commands:\n%% @example\n%% @group\n%% c = coeffs (x^6 + 3*x - 4)\n%% @result{} c = (sym) [-4 3 1] (1\u00d73 matrix)\n%% @end group\n%% @end example\n%% @strong{Warning:} Again, note the order is reversed from the two-output\n%% case; this is for compatibility with Matlab's Symbolic Math Toolbox.\n%%\n%% If the optional input keyword @qcode{'all'} is passed, the zero\n%% coefficients are returned as well, and in the familiar order.\n%% @example\n%% @group\n%% c = coeffs (x^6 + 3*x - 4, 'all')\n%% @result{} c = (sym) [1 0 0 0 0 3 -4] (1\u00d77 matrix)\n%% @end group\n%% @end example\n%% @strong{Note:} The @qcode{'all'} feature does not yet work with\n%% multivariate polynomials (https://github.com/cbm755/octsympy/issues/720).\n%%\n%% @seealso{@@sym/sym2poly}\n%% @end deftypemethod\n\nfunction [c, t] = coeffs(p, x, all)\n\n if (nargin == 1)\n x = [];\n all = false;\n elseif (nargin == 2)\n if (ischar (x))\n assert (strcmpi (x, 'all'), ...\n 'coeffs: invalid 2nd input: if string, should be \"all\"')\n x = [];\n all = true;\n else\n all = false;\n end\n elseif (nargin == 3)\n assert (strcmpi (all, 'all'), ...\n 'coeffs: invalid 3rd input: should be string \"all\"')\n all = true;\n elseif (nargin > 3)\n print_usage ();\n end\n\n assert (isscalar (p), 'coeffs: works for scalar input only')\n\n p = sym(p);\n\n if (isempty (x))\n x = symvar (p);\n if (isempty (x))\n x = sym('x'); % any symbol\n end\n end\n\n x = sym(x);\n\n cmd = { '(f, xx, all) = _ins'\n 'if not xx.is_Matrix:'\n ' xx = sp.Matrix([xx])'\n 'xx = list(xx)'\n 'p = Poly.from_expr(f, *xx)'\n 'if all:'\n ' terms = p.all_terms()'\n 'else:'\n ' terms = p.terms()'\n 'cc = [q[1] for q in terms]'\n 'tt = [1]*len(terms)'\n 'for i, x in enumerate(p.gens):'\n ' tt = [t*x**q[0][i] for (t, q) in zip(tt, terms)]'\n 'return (Matrix([cc]), Matrix([tt]))' };\n\n [c, t] = pycall_sympy__ (cmd, p, x, all);\n\n %% SMT compat:\n % reverse the order if t is not output.\n if (nargout <= 1) && (all == false)\n c = fliplr(c);\n end\n\n % if nargout == 1, its simplier to use 'p.coeffs()'\nend\n\n\n%!error coeffs (sym(1), 2, 3, 4)\n%!error coeffs (sym(1), 2, 'al')\n%!error coeffs (sym(1), 'al')\n\n%!test\n%! % simple\n%! syms x\n%! [c, t] = coeffs(6*x*x + 27);\n%! assert (isequal (c, [6 27]))\n%! assert (isequal (t, [x*x 1]))\n\n%!test\n%! % specify a variable\n%! syms x\n%! [c, t] = coeffs(6*x*x + 27, x);\n%! assert (isequal (c, [6 27]))\n%! assert (isequal (t, [x*x 1]))\n\n%!test\n%! % specify another variable\n%! syms x y\n%! [c, t] = coeffs(6*x + 27, y);\n%! assert (isequal (c, 6*x + 27))\n%! assert (isequal (t, 1))\n\n%!test\n%! % weird SMT order\n%! syms x\n%! a1 = [27 6];\n%! a2 = [6 27];\n%! c = coeffs(6*x*x + 27);\n%! assert (isequal (c, a1))\n%! coeffs(6*x*x + 27);\n%! assert (isequal (ans, a1))\n%! [c, t] = coeffs(6*x*x + 27);\n%! assert (isequal (c, a2))\n\n%!test\n%! % no weird order with \"all\"\n%! syms x\n%! c = coeffs(6*x*x + 27, 'all');\n%! assert (isequal (c, [6 0 27]))\n\n%!test\n%! % \"all\"\n%! syms x\n%! [c, t] = coeffs(6*x*x + 27, 'all');\n%! assert (isequal (c, [6 0 27]))\n%! assert (isequal (t, [x^2 x 1]))\n\n%!test\n%! % \"All\"\n%! syms x\n%! [c, t] = coeffs(6*x, 'All');\n%! assert (isequal (c, [6 0]))\n%! assert (isequal (t, [x 1]))\n\n%!test\n%! % multivariable array\n%! syms x y\n%! [c, t] = coeffs(6*x*x + 27*y*x + 36, [x y]);\n%! a = [6 27 36];\n%! s = [x^2 x*y 1];\n%! assert (isequal (c, a))\n%! assert (isequal (t, s))\n%! % with list\n%! [c, t] = coeffs(6*x*x + 27*y*x + 36, {x y});\n%! assert (isequal (c, a))\n%! assert (isequal (t, s))\n\n%!test\n%! % other symbols treated as part of coeffs\n%! syms x y\n%! [c, t] = coeffs(6*x*x + 27*y*x + 36, x);\n%! a = [6 27*y 36];\n%! s = [x^2 x 1];\n%! assert (isequal (c, a))\n%! assert (isequal (t, s))\n\n%!error \n%! % TODO: multivariate all not working (https://github.com/cbm755/octsympy/issues/720)\n%! syms x y\n%! [c, t] = coeffs(6*x^2 + 7*y + 19, [x y], 'all');\n\n%!test\n%! % empty same as not specifying; maybe not SMT compatible:\n%! % https://github.com/cbm755/octsympy/pull/708#discussion_r94292831\n%! syms x y\n%! [c, t] = coeffs(6*x*x + 27*y*x + 36, {});\n%! a = [6 27 36];\n%! assert (isequal (c, a))\n%! [c, t] = coeffs(6*x*x + 27*y*x + 36);\n%! assert (isequal (c, a))\n\n%!test\n%! % no input defaults to all symbols (not symvar to get x)\n%! syms x y\n%! [c, t] = coeffs(6*x*x + 27*y*x + 36);\n%! assert (isequal (c, [6 27 36]))\n\n%!test\n%! % non sym input\n%! syms x\n%! assert (isequal (coeffs(6, x), sym(6)))\n\n%!test\n%! % constant input without x\n%! assert (isequal (coeffs(sym(6)), sym(6)))\n\n%!test\n%! % constant input without x\n%! assert (isequal (coeffs (sym(6), {}), sym(6)))\n\n%! % irrational coefficients\n%! syms x\n%! f = x^2 + sqrt(sym(2))*x;\n%! [c1, t1] = coeffs (f);\n%! [c2, t2] = coeffs (f, x);\n%! assert (isequal (c1, c2))\n%! assert (isequal (t1, t2))\n", "meta": {"author": "cbm755", "repo": "octsympy", "sha": "c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd", "save_path": "github-repos/MATLAB/cbm755-octsympy", "path": "github-repos/MATLAB/cbm755-octsympy/octsympy-c1ecd1e08f027d5101d0f4250dfc496aa98c8bcd/inst/@sym/coeffs.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.5428632683808533, "lm_q2_score": 0.6654105720171531, "lm_q1q2_score": 0.36122695794040494}} {"text": "function [ap_results05,ap_results07,ap_resultsCOCO,mean_recall_per_IoU] = print_detection_evaluation_metrics(...\n all_bbox_gt, abbox_dets, classes)\n% \n% This file is part of the code that implements the following paper:\n% Title : \"LocNet: Improving Localization Accuracy for Object Detection\"\n% Authors : Spyros Gidaris, Nikos Komodakis\n% Institution: Universite Paris Est, Ecole des Ponts ParisTech\n% ArXiv link : http://arxiv.org/abs/1511.07763\n% code : https://github.com/gidariss/LocNet\n%\n% AUTORIGHTS\n% --------------------------------------------------------\n% Copyright (c) 2016 Spyros Gidaris\n% \n% Title : \"LocNet: Improving Localization Accuracy for Object Detection\"\n% ArXiv link: http://arxiv.org/abs/1511.07763\n% Licensed under The MIT License [see LICENSE for details]\n% ---------------------------------------------------------\n\n% evaluate the average precision for IoU >=0.5 \nap_results05 = evaluate_average_precision_pascal(all_bbox_gt, abbox_dets, classes );\nfprintf('AP with IoU >= 0.5\\n');\nprintAPResults(classes, ap_results05);\n% evaluate the average precision for IoU >=0.7\nap_results07 = evaluate_average_precision_pascal(all_bbox_gt, abbox_dets, classes, 'minoverlap', 0.7);\nfprintf('AP with IoU >= 0.7\\n');\nprintAPResults(classes, ap_results07);\n% evaluate the coco style average precision\nap_resultsCOCO = evaluate_average_precision_pascal(all_bbox_gt, abbox_dets, classes, 'coco_style', true); \nfprintf('AP with coco style\\n');\nprintAPResults(classes, ap_resultsCOCO);\n\n\nnum_classes = length(classes);\nall_bbox_gt_no_difficults = remove_difficult_ground_truth_bboxes(all_bbox_gt);\nall_bbox_gt_per_class = get_per_class_ground_truth_bboxes(all_bbox_gt_no_difficults, num_classes);\n \nave_recall_per_class = zeros(num_classes, 1);\nrecall_per_class = cell(1,num_classes);\n\n% compute the recall per IoU threshold and the average recall of the set of\n% detections for each class separately \nfor j = 1:num_classes\n [ave_recall_per_class(j), recall_per_class{j}, thresholds] = ...\n compute_ave_recall_of_bbox(abbox_dets{j}, all_bbox_gt_per_class{j});\n recall_per_class{j} = recall_per_class{j}(:);\n recall_per_class{j} = recall_per_class{j}(thresholds>=0.5);\nend\nthresholds = thresholds(thresholds>=0.5);\nfprintf('Average Recall of detections :\\n');\nprintAPResults(classes, ave_recall_per_class);\nfprintf('Recall per IoU of detections (averaged over the classes):\\n');\nmean_recall_per_IoU = mean(cell2mat(recall_per_class),2); % average over the classes\nthresholds_string = strsplit(num2str(thresholds));\nassert(length(mean_recall_per_IoU) == length(thresholds_string));\nprintAPResults(thresholds_string, mean_recall_per_IoU);\nend", "meta": {"author": "gidariss", "repo": "LocNet", "sha": "a4678b87d9e63dcea07d9afd978d1223174d8be3", "save_path": "github-repos/MATLAB/gidariss-LocNet", "path": "github-repos/MATLAB/gidariss-LocNet/LocNet-a4678b87d9e63dcea07d9afd978d1223174d8be3/code/utils/print_detection_evaluation_metrics.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6654105454764747, "lm_q2_score": 0.5428632831725052, "lm_q1q2_score": 0.36122695337496663}} {"text": "function value = r8_in_01 ( x )\n\n%*****************************************************************************80\n%\n%% R8_IN_01 is TRUE if the value is in the range [0,1].\n%\n% Licensing:\n%\n% This code is distributed under the GNU LGPL license. \n%\n% Modified:\n%\n% 06 October 2004\n%\n% Author:\n%\n% John Burkardt\n%\n% Parameters:\n%\n% Input, real X, the value.\n%\n% Output, logical VALUE, is TRUE if 0 <= X <= 1.\n%\n if ( x < 0.0 || 1.0 < x )\n value = 0;\n else\n value = 1;\n end\n\n return\nend\n", "meta": {"author": "johannesgerer", "repo": "jburkardt-m", "sha": "1726deb4a34dd08a49c26359d44ef47253f006c1", "save_path": "github-repos/MATLAB/johannesgerer-jburkardt-m", "path": "github-repos/MATLAB/johannesgerer-jburkardt-m/jburkardt-m-1726deb4a34dd08a49c26359d44ef47253f006c1/r8lib/r8_in_01.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.5117166047041654, "lm_q2_score": 0.7057850340255386, "lm_q1q2_score": 0.3611619212625624}} {"text": "function [S,t,f,R,Serr]=mtspecgramtrigpb(data,E,win,movingwin,params,fscorr)\n% Multi-taper event triggered time-frequency spectrum - binned point process\n%\n% Usage:\n%\n% [S,t,f,R,Serr]=mtspecgramtrigpb(data,E,win,movingwin,params,fscorr)\n% Input: \n% data (single channel data vector) -- required\n% E (event times) - required\n% win (in the form [winl,winr] i.e window around each event\n% required\n% movingwin (in the form [window,winstep] i.e length of moving\n% window and step size) -\n% required\n% Note that units for the windows have\n% to be consistent with\n% units of Fs\n% params: structure with fields tapers, pad, Fs, fpass, err, trialave\n% - optional\n% tapers : precalculated tapers from dpss or in the one of the following\n% forms: \n% (1) A numeric vector [TW K] where TW is the\n% time-bandwidth product and K is the number of\n% tapers to be used (less than or equal to\n% 2TW-1). \n% (2) A numeric vector [W T p] where W is the\n% bandwidth, T is the duration of the data and p \n% is an integer such that 2TW-p tapers are used. In\n% this form there is no default i.e. to specify\n% the bandwidth, you have to specify T and p as\n% well. Note that the units of W and T have to be\n% consistent: if W is in Hz, T must be in seconds\n% and vice versa. Note that these units must also\n% be consistent with the units of params.Fs: W can\n% be in Hz if and only if params.Fs is in Hz.\n% The default is to use form 1 with TW=3 and K=5\n% Note that T has to be equal to movingwin(1).\n%\n%\t pad\t\t (padding factor for the FFT) - optional (can take values -1,0,1,2...). \n% -1 corresponds to no padding, 0 corresponds to padding\n% to the next highest power of 2 etc.\n%\t\t\t \t e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT\n%\t\t\t \t to 512 points, if pad=1, we pad to 1024 points etc.\n%\t\t\t \t Defaults to 0.\n% Fs (sampling frequency) - optional. Default 1.\n% fpass (frequency band to be used in the calculation in the form\n% [fmin fmax])- optional. \n% Default all frequencies between 0 and Fs/2\n% err (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars\n% [0 p] or 0 - no error bars) - optional. Default 0.\n% trialave (average over events when 1, don't average when 0) - optional. Default 0\n% fscorr (finite size corrections, 0 (don't use finite size corrections) or \n% 1 (use finite size corrections) - optional\n% (available only for spikes). Defaults 0.\n% Output:\n% S (triggered time-frequency spectrum in form time x frequency x events if segave=0; \n% or in the form time x frequency segave=1)\n% t (times)\n% f (frequencies)\n% R (spike rate)\n% Serr (error bars) - only for err(1)>=1\n\nif nargin < 4; error('Need data, events and parameters for the windows'); end;\nif nargin < 5; params=[]; end;\n\nif length(params.tapers)==3 & movingwin(1)~=params.tapers(2);\n error('Duration of data in params.tapers is inconsistent with movingwin(1), modify params.tapers(2) to proceed')\nend\n\n[tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);\nclear tapers pad fpass err trialave\nif nargin < 6 || isempty(fscorr); fscorr=0; end;\ndata=change_row_to_column(data);\ndata=createdatamatpb(data,E,Fs,win); \nif nargout==5;[S,t,f,R,Serr]=mtspecgrampb(data,movingwin,params,fscorr);\nelse [S,t,f,R]=mtspecgrampb(data,movingwin,params,fscorr);end;\n", "meta": {"author": "buzsakilab", "repo": "buzcode", "sha": "2d700a38b3c2a860ad1333be90f14d7a37a72815", "save_path": "github-repos/MATLAB/buzsakilab-buzcode", "path": "github-repos/MATLAB/buzsakilab-buzcode/buzcode-2d700a38b3c2a860ad1333be90f14d7a37a72815/externalPackages/chronux_2_12/spectral_analysis/pointbinned/mtspecgramtrigpb.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.36116191809579024}} {"text": "filename = 'BulkCaseSym';%'CantileverSquareNewFine';%'LshapeTriFine';%'CantileverSquareNew';'ArchTriFine';%'CantileverSquare';%'ArchTriFine';%'CantileverSquare';%'Lshape';%'LshapeTriFine';%'CantileverSquareSmall';%'';%'Lshape';'CantileverSquare';'Lshape';%'CantileverSquare';%'LshapeFine';%'Bridge_quad_coarse';%'Arch_quad_coarse';%'BridgeCool_Quadrilateral_Bilinear_Structured_Coarse';%'Bridge';%'CantileverSquareSmall';\nptype = 'MACRO';\ninitial_case = 'given';\nm1 = 0.0101;\nm2 = 0.0101;\n%cost = {'compliance'};\ncost = {'stressNorm'};\n%cost = {'stressNorm','compliance'};\n%weights = [0.55,0.45];\nweights = 1;\nconstraint = {'volumeConstraint'};\nfilterType = 'P1';\nconstraint_case = 'EQUALITY';\n\nVfrac_initial = 0.3;\noptimality_initial = 1e-5;\nconstr_initial = 1e-5;\n\nVfrac_final = 0.3;\noptimality_final = 1e-5;\nconstr_final = 1e-5;\n\nstressNormExponent_initial = 2;\nstressNormExponent_final = 32;\n\noptimizer = 'DualNestedInPrimal';\noptimizerUnconstrained = 'PROJECTED GRADIENT';\n\ndesignVariable = 'MicroParams';\nub = 0.989;\nlb = 0.011;\nhomegenizedVariablesComputer = 'ByVademecum';\n% \n%vademecumFileName = 'SuperEllipseQMax';\n%vademecumFileName = 'SuperEllipseQ2';\nvademecumFileName = 'SuperEllipseQOptAnalytic';\n% \n% designVariable = 'Density';\n% homegenizedVariablesComputer = 'ByInterpolation';\n% method = 'SIMPALL';\n% materialType = 'ISOTROPIC';\n\nkfrac = 2;\nnsteps = 100;\n\nplotting = false;\nprinting = true;\nmonitoring = true;\nmonitoring_interval = 1;\nmaxiter = 1000;\n\n\n", "meta": {"author": "SwanLab", "repo": "Swan", "sha": "f8355f3561bb1a1603f56b3676873147d22a511e", "save_path": "github-repos/MATLAB/SwanLab-Swan", "path": "github-repos/MATLAB/SwanLab-Swan/Swan-f8355f3561bb1a1603f56b3676873147d22a511e/Input/LatticeExperiments/LatticeExperimentInputBulkSymSuperEllipse.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.7057850278370112, "lm_q2_score": 0.5117166047041654, "lm_q1q2_score": 0.36116191809579024}} {"text": "function pass = test_std3(pref)\n% Test the chebfun3/max command. \n\nif ( nargin < 1 ) \n pref = chebfunpref; \nend\ntol = 1e3*pref.cheb3Prefs.chebfun3eps;\n\nf = chebfun3(10); % (x,y,z)-std of any fixed value is zero.\nexact = 0;\nh = std3(f);\npass(1) = norm(h - exact) < tol;\n\nend", "meta": {"author": "chebfun", "repo": "chebfun", "sha": "8c49396a55e46ddd57a1d108c6a8f32e37536d54", "save_path": "github-repos/MATLAB/chebfun-chebfun", "path": "github-repos/MATLAB/chebfun-chebfun/chebfun-8c49396a55e46ddd57a1d108c6a8f32e37536d54/tests/chebfun3/test_std3.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3611570346656233}} {"text": "function aux_depthcontour(params, hParentFigure)\n% function aux_FMD(params, hParentFigure);\n%-------------------------------------------\n%\n% Incoming variables:\n% params : all variables\n% hParentFigure : Handle of the parent figure\n%\n% Thomas van Stiphout, thomas@sed.ethz.ch\n% last update: 7.9.2005\n\n\nreport_this_filefun(mfilename('fullpath'));\n\n% prepare Value that will be illustrated on the 3D surface defined above\n params.mPlotValues=ones(length(params.vUsedNodes),1)*nan;\n params.mPlotValues(params.vUsedNodes)=params.mValueGrid(:,1);\n vSel=~isnan(params.mValueGrid(:,1));\n vTmp=params.mValueGrid(:,1);\n vTmp(~vSel)=nan;\n params.mPlotValues(params.vUsedNodes)=vTmp;\n % params.mPlotValues(params.mPlotValues == 0)=nan;\n params.mPlotValues=reshape(params.mPlotValues,length(params.vY),length(params.vX));\n mZ_=params.mZ;\n mZ_(isnan(params.mPlotValues))=nan;\n V_=-10:-20:-190;\n hold on;contour3(params.mX,params.mY,-mZ_,V_,'k--');\n V_=-0:-20:-200;\n hold on;contour3(params.mX,params.mY,-mZ_,V_,'k-');\n hold on;contour(params.mX,params.mY,-mZ_,'ShowText','on');\n% figure;surf(params.mX,params.mY,-mZ_,params.mPlotValues);\n view(3)\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/thomas/slabanalysis/aux_depthcontour.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660543, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.3611570346656233}} {"text": "function [irf_record_allt]=tvbvarirf4(beta_gibbs,sigma_t_gibbs,It,Bu,IRFperiods,n,m,p,k,T,signresperiods,signrestable)\n\n% now identify all the periods concerned with restrictions\n% first expand the non-empty entries in signresperiods since they are only expressed in intervals: transform into list\n% for instance, translate [1 4] into [1 2 3 4]; I don't think this can done without a loop\ntemp=cell2mat(signresperiods(~cellfun(@isempty,signresperiods)));\nperiods=[];\nfor ii=1:size(temp,1)\n periods=[periods temp(ii,1):temp(ii,2)];\nend\n% suppress duplicates and sort\nperiods=sort(unique(periods))';\n% count the total number of restriction periods (required for IRF matrix)\nnperiods=size(periods,1);\n\n\n% Identify the restriction matrices\n% create five cells, corresponding to the three possible restrictions:\n% one cell for sign restrictions, three cells for magnitude restrictions, one cell for zero restrictions\nScell=cell(1,n);\nMcell=cell(1,n);\nMlcell=cell(1,n);\nMucell=cell(1,n);\nZcell=cell(1,n);\n\n\n% loop over rows and columns of the period matrix\nfor ii=1:n\n for jj=1:n\n % if entry (ii,jj) of the period matrix is not empty...\n if ~isempty(signresperiods{ii,jj})\n % ... then there is a restriction over one (or several) periods\n % loop overt those periods\n for kk=signresperiods{ii,jj}(1,1):signresperiods{ii,jj}(1,2)\n % identify the position of the considered period within the list of all periods (required to build the matrix)\n position=find(periods==kk);\n % now create the restriction matrix: this will depend on the type of restriction\n % if it is a positive sign restriction...\n if strcmp(signrestable{ii,jj},'+')\n % ... then input a 1 entry in the corresponding S matrix\n Scell{1,jj}=[Scell{1,jj};zeros(1,n*nperiods)];\n Scell{1,jj}(end,(position-1)*n+ii)=1;\n % if it is a negative sign restriction...\n elseif strcmp(signrestable{ii,jj},'-')\n % ... then input a -1 entry in the corresponding S matrix\n Scell{1,jj}=[Scell{1,jj};zeros(1,n*nperiods)];\n Scell{1,jj}(end,(position-1)*n+ii)=-1;\n % if it is a zero restriction...\n elseif strcmp(signrestable{ii,jj},'0')\n % ... then input a 1 entry in the corresponding Z matrix\n Zcell{1,jj}=[Zcell{1,jj};zeros(1,n*nperiods)];\n Zcell{1,jj}(end,(position-1)*n+ii)=1;\n % else, a non-empty entry being neither a sign nor a zero restriction has to be a magnitude restriction\n else\n % fill the corresponding M matrices:\n % input a 1 in M\n Mcell{1,jj}=[Mcell{1,jj};zeros(1,n*nperiods)];\n Mcell{1,jj}(end,(position-1)*n+ii)=1;\n % input the lower value of the interval in Ml\n temp=str2num(signrestable{ii,jj});\n Mlcell{1,jj}=[Mlcell{1,jj};temp(1,1)];\n % input the upper value of the interval in Mu\n Mucell{1,jj}=[Mucell{1,jj};temp(1,2)];\n end\n end\n end\n end\nend\n\n\n\n% now check what kind of restrictions apply among sign, zero and magnitude restrictions\n% check for sign restrictions: if there are any, at least one entry in the cell Scell is non-empty\nif sum(~cellfun(@isempty,Scell))~=0\n signres=1;\nelse\n signres=0;\nend\n% similarly check for zero restrictions\nif sum(~cellfun(@isempty,Zcell))~=0\n zerores=1;\nelse\n zerores=0;\nend\n% and finally, check for magnitude restrictions\nif sum(~cellfun(@isempty,Mcell))~=0\n magnres=1;\nelse\n magnres=0;\nend\n\n\n\n% create the cell aray that will store the values from the simulations\nirf_record_allt=cell(n,n);\nstorage1=cell(It-Bu,T);\n\n\n\n\n% loop over sample periods\nfor tt=1:T\n \n % loop over iterations\n parfor ii=1:It-Bu\n % initiate the variable 'success'; this variable will be used to check whether the restrictions are satisfied\n % if there are only zero restrictions, they will be satisfied by construction, and 'success' will simply be ignored\n success=0;\n % how the algorithm will be conducted will depend on the types of restrictions implemented\n \n \n \n \n \n % if there are only zero restrictions, the algorithm is simple as no checking is required: the conditions are satisfied by construction\n if zerores==1 && signres==0 && magnres==0\n % draw beta and sigma\n beta=beta_gibbs{tt,1}(:,ii);\n sigma=sigma_t_gibbs{tt,1}(:,:,ii);\n D=chol(bear.nspd(sigma),'lower');\n % obtain orthogonalised IRFs\n [~,ortirfmatrix]=bear.irfsim(beta,D,n,m,p,k,max(IRFperiods,max(periods)));\n % generate the stacked IRF matrix\n stackedirfmat=[];\n for jj=1:numel(periods)\n stackedirfmat=[stackedirfmat;ortirfmatrix(:,:,periods(jj,1)+1)];\n end\n % draw an entire random matrix Q satisfying the zero restrictions\n [Q]=bear.qzerores(n,Zcell,stackedirfmat);\n % there is no need to verify the restrictions: there are satisfied by construction\n \n \n % if there are sign/magnitude restrictions, possibly associated with zero restrictions\n else\n % the algorithm becomes a bit more complicated as conditions now need to be checked\n % to maintain efficiency, the algorithm proceeds recursively shock by shock, and stops as soon as a condition on the considered shock fails\n % repeat algorithm for the iteration as long as not all conditions are satisfied\n while success==0\n % switch 'success' to 1; it will be turned back to zero if at any time Q is detected as a candidate not satisfying the restrictions\n success=1;\n % draw randomly the vector of VAR coefficients: draw a random index\n index=floor(rand*(It-Bu))+1;\n % draw beta and sigma\n beta=beta_gibbs{tt,1}(:,index);\n sigma=sigma_t_gibbs{tt,1}(:,:,index);\n D=chol(bear.nspd(sigma),'lower');\n % obtain orthogonalised IRFs\n [~,ortirfmatrix]=bear.irfsim(beta,D,n,m,p,k,max(IRFperiods,max(periods)));\n % generate the stacked IRF matrix\n stackedirfmat=[];\n for jj=1:numel(periods)\n stackedirfmat=[stackedirfmat;ortirfmatrix(:,:,periods(jj,1)+1)];\n end\n % initiate Qj\n Qj=[];\n % now start looping over the shocks and checking sequentially whether conditions on these shocks hold\n % stop as soon as one restriction fails\n mm=1;\n while success==1 && mm<=n\n % build column j of the random matrix Q\n [qj]=bear.qrandj(n,Zcell{1,mm},stackedirfmat,Qj);\n % obtain the candidate column fj\n fj=stackedirfmat*qj;\n % check restrictions: first sign restrictions\n [success, qj]=bear.checksignres(Scell{1,mm},qj,fj);\n % if 'success' is still equal to 1, also check for magnitude restrictions\n if success==1\n [success]=bear.checkmagres(Mcell{1,mm},Mlcell{1,mm},Mucell{1,mm},fj);\n end\n % also, if 'success' is still equal to 1, update Qj by concatenating qj\n if success==1\n Qj=[Qj qj];\n end\n mm=mm+1;\n end\n % repeat this loop until a succesful draw is obtained\n end\n % with succesful Qj at hand, eventually set Q as Qj\n Q=Qj;\n end\n \n \n \n % store\n for jj=1:IRFperiods\n storage1{ii,tt}(:,:,jj)=ortirfmatrix(:,:,jj)*Q;\n end\n \n end\n \n \nend\n\n\n\n% reorganise storage\n% loop over iterations\nfor tt=1:T\n for ii=1:It-Bu\n % loop over IRF periods\n for jj=1:IRFperiods\n % loop over variables\n for kk=1:n\n % loop over shocks\n for ll=1:n\n irf_record_allt{kk,ll}(ii,jj,tt)=storage1{ii,tt}(kk,ll,jj);\n end\n end\n end\n end\nend", "meta": {"author": "european-central-bank", "repo": "BEAR-toolbox", "sha": "f33aae80c40f7a2e78a54de99b2ce3663f59aa75", "save_path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox", "path": "github-repos/MATLAB/european-central-bank-BEAR-toolbox/BEAR-toolbox-f33aae80c40f7a2e78a54de99b2ce3663f59aa75/tbx/bear/+bear/tvbvarirf4.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6513548646660542, "lm_q2_score": 0.5544704649604273, "lm_q1q2_score": 0.36115703466562327}} {"text": " function y = mtimes(ob, x)\n%function y = mtimes(ob, x)\n% A * x\n% A' * y\n% y' * A\n% x' * A'\n% B * A\t\t(calls private/fatrix2_mtimes2)\n% etc\n\nif isnumeric(ob)\n\tif isscalar(ob) % scalar * object\n\t\ty = fatrix2_scalar_times(ob, x);\n\telse % row_vector(s) * object\n\t\ty = (x' * ob')'; % trick: x <-> ob\n\tend\nreturn\nend\n\nif ~isnumeric(x) % object * object\n\tif islogical(x)\n\t\twarn 'fatrix2 * logical is illogical; reconsider!'\n\t\tx = single(x);\n%\telseif iscell(x) % untested feature for mai le\n\t\t% do nothing here; continue to \"ordinary\" multiplication below\n\telse\n\t\ty = fatrix2_mtimes2(ob, x);\n\treturn\n\tend\nend\n\ny = fatrix2_mtimes_vector(ob, x); % \"ordinary\" fatrix * vector multiplication\n\nend % mtimes()\n\n\n% fatrix2_mtimes_vector()\n% ordinary matrix-vector multiplication, but generalized to support arrays\n% full multiplication\n% y = scale * diag(odiag) * ob * diag(idiag) * x;\nfunction y = fatrix2_mtimes_vector(ob, x)\n\nfun_forw = @(ob, x) fatrix2_do_forw(ob, x);\n\n[nd np] = size(ob);\ndimx = size(x);\nif dimx(1) == np % [np (L)] vector mode\n\tdiml = [dimx(2:end) 1];\n\tLL = prod(diml);\n\tif LL == 1 % usual single column vector case\n\t\tx = iembed(ob, x); % [idim]\n\t\ty = fun_forw(ob, x); % [odim]\n\t\ty = y(:); % [*odim 1]\n\t\ty = oselect(ob, y); % [nd 1]\n\telseif ob.does_many % multiple column vector without loop\n\t\tx = reshape(x, [np LL]); % [np *L]\n\t\tx = iembed(ob, x); % [idim *L]\n\t\ty = fun_forw(ob, x); % [odim *L]\n\t\ty = reshape(y, [prod(ob.odim) LL]); % [*odim *L]\n\t\ty = oselect(ob, y); % [nd *L]\n\t\ty = reshape(y, [nd diml]); % [nd (L)]\n\telse % multiple column vector case with loop\n\t\tx = reshape(x, [np LL]); % [np *L]\n\t\ttmp = iembed(ob, x(:,1)); % [idim]\n\t\ttmp = fun_forw(ob, tmp); % [odim]\n\t\ty = zeros([prod(ob.odim) LL], class(tmp)); % [*odim *L]\n\t\ty(:,1) = tmp(:);\n\t\tfor ll=2:LL\n\t\t\ttmp = iembed(ob, x(:,ll)); % [idim]\n\t\t\ttmp = fun_forw(ob, tmp); % [odim]\n\t\t\ty(:,ll) = tmp(:);\n\t\tend\n\t\ty = oselect(ob, y); % [nd *L]\n\t\ty = reshape(y, [nd diml]); % [nd (L)]\n\tend\n\nelseif first_dim_match(dimx, ob.idim)\n\n\tdiml = [dimx((numel(ob.idim)+1):end) 1];\n\tLL = prod(diml);\n\tif LL == 1 % a single array\n\t\ty = fun_forw(ob, x); % [odim]\n\telseif ob.does_many\n\t\tx = reshape(x, [ob.idim LL]); % [idim *L]\n\t\ty = fun_forw(ob, x); % [odim *L]\n\t\ty = reshape(y, [ob.odim diml]); % [odim (L)]\n\telse % loop\n\t\tx = reshape(x, [prod(ob.idim) LL]); % [*idim *L]\n\t\ttmp = reshape(x(:,1), [ob.idim 1]); % [idim]\n\t\ttmp = fun_forw(ob, tmp); % [odim]\n\t\ty = zeros([prod(ob.odim) LL], class(tmp)); % [*odim *L]\n\t\ty(:,1) = tmp(:);\n\t\tfor ll=2:LL\n\t\t\ttmp = reshape(x(:,ll), [ob.idim 1]); % [idim]\n\t\t\ttmp = fun_forw(ob, tmp); % [odim]\n\t\t\ty(:,ll) = tmp(:);\n\t\tend\n\t\ty = reshape(y, [ob.odim diml]); % [odim (L)]\n\tend\n\nelse\n\tpr size(x)\n\tpr ob.idim\n\tfail 'input dimension size mismatch'\nend\n\nend % fatrix2_mtimes_vector()\n\n\n% first_dim_match()\n% see if first dimensions of dimx match idim properly\n% basically, dimx = [idim (L)]\nfunction yn = first_dim_match(dimx, idim)\nyn = numel(dimx) >= numel(idim) && isequal(dimx(1:numel(idim)), idim);\nif ~yn && idim(end) == 1 % handle case [... 1]\n\tyn = first_dim_match(dimx, idim(1:end-1));\nend\nend % first_dim_match()\n", "meta": {"author": "JeffFessler", "repo": "mirt", "sha": "b7f36cc46916821e8bc8502301b1554ebc7efe1d", "save_path": "github-repos/MATLAB/JeffFessler-mirt", "path": "github-repos/MATLAB/JeffFessler-mirt/mirt-b7f36cc46916821e8bc8502301b1554ebc7efe1d/systems/@fatrix2/mtimes.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.727975460709318, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3611441340641425}} {"text": "function [granger, v, n] = ft_connectivity_granger(H, Z, S, varargin)\n\n% FT_CONNECTIVITY_GRANGER computes spectrally resolved granger causality. This\n% implementation is loosely based on the code used in Brovelli, et. al., PNAS 101,\n% 9849-9854 (2004).\n%\n% Use as\n% [granger, v, n] = ft_connectivity_granger(H, Z, S, ...)\n%\n% The input data should be\n% H = spectral transfer matrix, Nrpt x Nchan x Nchan x Nfreq (x Ntime),\n% or Nrpt x Nchancmb x Nfreq (x Ntime). Nrpt can be 1.\n% Z = the covariance matrix of the noise, Nrpt x Nchan x Nchan (x Ntime),\n% or Nrpt x Nchancmb (x Ntime).\n% S = the cross-spectral density matrix with the same dimensionality as H.\n%\n% Additional optional input arguments come as key-value pairs:\n% 'dimord' = required string specifying how to interpret the input data\n% supported values are 'rpt_chan_chan_freq(_time) and\n% 'rpt_chan_freq(_time), 'rpt_pos_pos_freq(_time)' and\n% 'rpt_pos_freq(_time)'\n% 'method' = 'granger' (default), or 'instantaneous', or 'total'\n% 'hasjack' = boolean, specifying whether the input contains leave-one-outs,\n% required for correct variance estimate (default = false)\n% 'powindx' = is a variable determining the exact computation, see below\n%\n% If the inputdata is such that the channel-pairs are linearly indexed, granger\n% causality is computed per quadruplet of consecutive entries, where the convention\n% is as follows:\n%\n% H(:, (k-1)*4 + 1, :, :, :) -> 'chan1-chan1'\n% H(:, (k-1)*4 + 2, :, :, :) -> 'chan1->chan2'\n% H(:, (k-1)*4 + 3, :, :, :) -> 'chan2->chan1'\n% H(:, (k-1)*4 + 4, :, :, :) -> 'chan2->chan2'\n%\n% The same holds for the Z and S matrices.\n%\n% Pairwise block-granger causality can be computed when the inputdata has\n% dimensionality Nchan x Nchan. In that case 'powindx' should be specified, as a 1x2\n% cell-array indexing the individual channels that go into each 'block'.\n%\n% See also CONNECTIVITY, FT_CONNECTIVITYANALYSIS\n\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n%\n% Undocumented option: powindx can be a struct. In that case, blockwise\n% conditional granger can be computed.\n%\n%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n\n% Copyright (C) 2009-2017, Jan-Mathijs Schoffelen\n%\n% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org\n% for the documentation and details.\n%\n% FieldTrip is free software: you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation, either version 3 of the License, or\n% (at your option) any later version.\n%\n% FieldTrip is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n%\n% You should have received a copy of the GNU General Public License\n% along with FieldTrip. If not, see .\n%\n% $Id$\n\n% check for a supported dimord\nft_checkopt(varargin, 'dimord', 'char');\n\nmethod = ft_getopt(varargin, 'method', 'granger');\nhasjack = ft_getopt(varargin, 'hasjack', false);\npowindx = ft_getopt(varargin, 'powindx');\ndimord = ft_getopt(varargin, 'dimord');\n\n%FIXME speed up code and check\nsiz = size(H);\nif numel(siz)==4\n siz(5) = 1;\nend\nn = siz(1);\nNc = siz(2);\n\noutsum = zeros(siz(2:end));\noutssq = zeros(siz(2:end));\n\n% crossterms are described by chan_chan_therest\nissquare = length(strfind(dimord, 'chan'))==2 || length(strfind(dimord, 'pos'))==2;\n\nswitch method\n case 'granger'\n \n if issquare && isempty(powindx)\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n % data are chan_chan_therest\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%\n \n for kk = 1:n\n for ii = 1:Nc\n for jj = 1:Nc\n if ii ~=jj\n zc = reshape(Z(kk,jj,jj,:) - Z(kk,ii,jj,:).^2./Z(kk,ii,ii,:),[1 1 1 1 siz(5)]);\n zc = repmat(zc,[1 1 1 siz(4) 1]);\n numer = reshape(abs(S(kk,ii,ii,:,:)),[1 1 siz(4:end)]);\n denom = reshape(abs(S(kk,ii,ii,:,:)-zc.*abs(H(kk,ii,jj,:,:)).^2),[1 1 siz(4:end)]);\n outsum(jj,ii,:,:) = outsum(jj,ii,:,:) + log(numer./denom);\n outssq(jj,ii,:,:) = outssq(jj,ii,:,:) + (log(numer./denom)).^2;\n end\n end\n outsum(ii,ii,:,:) = 0; %self-granger set to zero\n end\n end\n \n elseif ~issquare && isempty(powindx)\n %%%%%%%%%%%%%%%%%%%%%%%%%%\n %data are linearly indexed\n %%%%%%%%%%%%%%%%%%%%%%%%%%\n \n for j = 1:n\n for k = 1:Nc\n %FIXME powindx is not used here anymore\n %iauto1 = sum(powindx==powindx(k,1),2)==2;\n %iauto2 = sum(powindx==powindx(k,2),2)==2;\n %icross1 = k;\n %icross2 = sum(powindx==powindx(ones(Nc,1)*k,[2 1]),2)==2;\n \n % The following is based on hard-coded assumptions: which is fair\n % to do if the order of the labelcmb is according to the output of\n % ft_connectivity_csd2transfer\n if mod(k-1, 4)==0\n continue; % auto granger set to 0\n %iauto1=k;iauto2=k;icross1=k;icross2=k;\n elseif mod(k-1, 4)==1\n iauto1=k+2;iauto2=k-1;icross1=k;icross2=k+1;\n elseif mod(k-1, 4)==2\n iauto1=k-2;iauto2=k+1;icross1=k;icross2=k-1;\n elseif mod(k-1, 4)==3\n continue; % auto granger set to 0\n %iauto1=k;iauto2=k;icross1=k;icross2=k;\n end\n \n zc = Z(j,iauto2,:,:) - Z(j,icross1,:,:).^2./Z(j,iauto1,:,:);\n numer = abs(S(j,iauto1,:,:));\n denom = abs(S(j,iauto1,:,:)-zc(:,:,ones(1,size(H,3)),:).*abs(H(j,icross1,:,:)).^2);\n outsum(icross2,:,:) = outsum(icross2,:,:) + reshape(log(numer./denom), [1 siz(3:end)]);\n outssq(icross2,:,:) = outssq(icross2,:,:) + reshape((log(numer./denom)).^2, [1 siz(3:end)]);\n end\n end\n \n elseif issquare && iscell(powindx)\n %%%%%%%%%%%%%%%%%%%\n % blockwise granger\n %%%%%%%%%%%%%%%%%%%\n \n % H = transfer function nchan x nchan x nfreq\n % Z = noise covariance nchan x nchan\n % S = crosspectrum nchan x nchan x nfreq\n % powindx{k} is a list of indices for block k\n \n nblock = numel(powindx);\n n = size(H,1);\n nfreq = size(H,4);\n \n outsum = zeros(nblock,nblock,nfreq);\n outssq = zeros(nblock,nblock,nfreq);\n \n for k = 1:nblock\n for m = (k+1):nblock\n indx = [powindx{k}(:);powindx{m}(:)];\n indx = cat(1,indx,setdiff((1:size(Z,2))',indx));\n n1 = numel(powindx{k});\n n2 = numel(powindx{m});\n ntot = numel(indx);\n indx1 = 1:n1;\n indx1_ = (1:ntot)'; indx1_(indx1) = [];\n indx2 = n1+(1:n2);\n indx12_ = (1:ntot)'; indx12_([indx1(:);indx2(:)]) = [];\n \n for kk = 1:n\n tmpZ = reshape(Z(kk,indx,indx), [ntot ntot]);\n \n % projection matrix for therest+block2 -> block1\n P1 = [eye(n1) zeros(n1,ntot-n1);\n -tmpZ(indx1_,indx1)/tmpZ(indx1,indx1) eye(ntot-n1)];\n \n % projection matrix for therest+block1 -> block2\n P2 = [ eye(n1) -tmpZ(indx1,indx2)/tmpZ(indx2,indx2) zeros(n1,ntot-n1-n2);\n zeros(n2,n1) eye(n2) zeros(n2, ntot-n1-n2);\n zeros(ntot-n1-n2,n1) -tmpZ(indx12_,indx2)/tmpZ(indx2,indx2) eye(ntot-n1-n2)];\n \n % invert only once\n for jj = 1:nfreq\n % post multiply transfer matrix with the inverse of the projection matrix\n % this is equivalent to time domain pre multiplication with P\n Sj = reshape(S(kk,indx,indx,jj), [ntot ntot]);\n Zj = tmpZ; %(:,:);\n H1 = reshape(H(kk,indx,indx,jj), [ntot ntot])/P1;\n H2 = reshape(H(kk,indx,indx,jj), [ntot ntot])/P2;\n num1 = abs(det(Sj(indx1,indx1))); % numerical round off leads to tiny imaginary components\n num2 = abs(det(Sj(indx2,indx2))); % numerical round off leads to tiny imaginary components\n denom1 = abs(det(H1(indx1,indx1)*Zj(indx1,indx1)*H1(indx1,indx1)'));\n denom2 = abs(det(H2(indx2,indx2)*Zj(indx2,indx2)*H2(indx2,indx2)'));\n %rH1 = real(H1(indx1,indx1));\n %rH2 = real(H2(indx2,indx2));\n %iH1 = imag(H1(indx1,indx1));\n %iH2 = imag(H2(indx2,indx2));\n %h1 = rH1*Zj(indx1,indx1)*rH1' + iH1*Zj(indx1,indx1)*iH1';\n %h2 = rH2*Zj(indx2,indx2)*rH2' + iH2*Zj(indx2,indx2)*iH2';\n %denom1 = abs(det(h1));\n %denom2 = abs(det(h2));\n \n outsum(m,k,jj) = log( num1./denom1 ) + outsum(m,k,jj);\n outsum(k,m,jj) = log( num2./denom2 ) + outsum(k,m,jj);\n outssq(m,k,jj) = log( num1./denom1 ).^2 + outssq(m,k,jj);\n outssq(k,m,jj) = log( num2./denom2 ).^2 + outssq(k,m,jj);\n end\n end\n \n end\n end\n \n elseif ~issquare && isstruct(powindx) && isfield(powindx, 'n')\n %%%%%%%%%%%%%%%%%%%%%%\n %blockwise conditional\n %%%%%%%%%%%%%%%%%%%%%%\n \n n = size(H,1);\n ncmb = size(H,2);\n nfreq = size(H,3);\n ncnd = size(powindx.cmbindx,1);\n \n outsum = zeros(ncnd, nfreq);\n outssq = zeros(ncnd, nfreq);\n for k = 1:n\n tmpS = reshape(S, [ncmb nfreq]);\n tmpH = reshape(H, [ncmb nfreq]);\n tmpZ = reshape(Z, [ncmb 1]);\n tmp = blockwise_conditionalgranger(tmpS,tmpH,tmpZ,powindx.cmbindx,powindx.n);\n \n outsum = outsum + tmp;\n outssq = outssq + tmp.^2;\n end\n \n elseif ~issquare && isstruct(powindx)\n %%%%%%%%%%%%%%%%%%%%%%\n %triplet conditional\n %%%%%%%%%%%%%%%%%%%%%%\n \n % decode from the powindx struct which rows in the data correspond with\n % the triplets, and which correspond with the duplets\n ublockindx = unique(powindx.blockindx);\n nperblock = zeros(size(ublockindx));\n for k = 1:numel(ublockindx)\n nperblock(k,1) = sum(powindx.blockindx==ublockindx(k));\n end\n if ~all(ismember(nperblock,[4 9]))\n error('the data should be a mixture of trivariate and bivariate decompositions');\n end\n indx_triplets = ismember(powindx.blockindx, ublockindx(nperblock==9)); ntriplets = sum(indx_triplets)./9;\n indx_duplets = ismember(powindx.blockindx, ublockindx(nperblock==4)); nduplets = sum(indx_duplets)./4;\n \n % this assumes well-behaved powindx.cmbindx\n cmbindx2 = reshape(powindx.cmbindx(indx_duplets, 1), 2, [])';\n cmbindx3 = reshape(powindx.cmbindx(indx_triplets,1), 3, [])';\n \n cmbindx2 = cmbindx2(1:2:end,:);\n cmbindx3 = cmbindx3(1:3:end,:);\n \n cmbindx = powindx.outindx;\n \n n = size(H,1);\n siz = size(H);\n \n outsum = zeros(size(cmbindx,1), size(H,3));\n outssq = outsum;\n \n % call the low-level function\n for k = 1:n\n H3 = reshape(H(k,indx_triplets,:,:), [3 3 ntriplets siz(3:end)]);\n Z3 = reshape(Z(k,indx_triplets), [3 3 ntriplets]);\n \n H2 = reshape(H(k,indx_duplets,:,:), [2 2 nduplets siz(3:end)]);\n Z2 = reshape(Z(k,indx_duplets), [2 2 nduplets]);\n \n tmp = triplet_conditionalgranger(H3,Z3,cmbindx3,H2,Z2,cmbindx2,cmbindx);\n \n outsum = outsum + tmp;\n outssq = outssq + tmp.^2;\n end\n \n \n \n end\n \n case 'instantaneous'\n \n if issquare && isempty(powindx)\n % data are chan_chan_therest\n for kk = 1:n\n for ii = 1:Nc\n for jj = 1:Nc\n if ii ~=jj\n zc1 = reshape(Z(kk,jj,jj,:) - Z(kk,ii,jj,:).^2./Z(kk,ii,ii,:),[1 1 1 1 siz(5)]);\n zc2 = reshape(Z(kk,ii,ii,:) - Z(kk,jj,ii,:).^2./Z(kk,jj,jj,:),[1 1 1 1 siz(5)]);\n zc1 = repmat(zc1,[1 1 1 siz(4) 1]);\n zc2 = repmat(zc2,[1 1 1 siz(4) 1]);\n term1 = abs(S(kk,ii,ii,:,:)) - zc1.*abs(H(kk,ii,jj,:,:)).^2;\n term2 = abs(S(kk,jj,jj,:,:)) - zc2.*abs(H(kk,jj,ii,:,:)).^2;\n numer = term1.*term2;\n denom = abs(S(kk,ii,ii,:,:).*S(kk,jj,jj,:,:) - S(kk,ii,jj,:,:).*S(kk,jj,ii,:,:));\n outsum(jj,ii,:,:) = outsum(jj,ii,:,:) + reshape(log(numer./denom), [1 1 siz(4:end)]);\n outssq(jj,ii,:,:) = outssq(jj,ii,:,:) + reshape((log(numer./denom)).^2, [1 1 siz(4:end)]);\n end\n end\n outsum(ii,ii,:,:) = 0; %self-granger set to zero\n end\n end\n elseif ~issquare && isempty(powindx)\n % data are linearly indexed\n for j = 1:n\n for k = 1:Nc\n %iauto1 = sum(powindx==powindx(k,1),2)==2;\n %iauto2 = sum(powindx==powindx(k,2),2)==2;\n %icross1 = k;\n %icross2 = sum(powindx==powindx(ones(Nc,1)*k,[2 1]),2)==2;\n if mod(k-1, 4)==0\n continue; % auto granger set to 0\n %iauto1=k;iauto2=k;icross1=k;icross2=k;\n elseif mod(k-1, 4)==1\n iauto1=k+2;iauto2=k-1;icross1=k;icross2=k+1;\n elseif mod(k-1, 4)==2\n iauto1=k-2;iauto2=k+1;icross1=k;icross2=k-1;\n elseif mod(k-1, 4)==3\n continue; % auto granger set to 0\n %iauto1=k;iauto2=k;icross1=k;icross2=k;\n end\n \n zc1 = Z(j,iauto1,:, :) - Z(j,icross2,:, :).^2./Z(j,iauto2,:, :);\n zc2 = Z(j,iauto2,:, :) - Z(j,icross1,:, :).^2./Z(j,iauto1,:, :);\n term1 = abs(S(j,iauto2,:,:)) - zc1(:,:,ones(1,size(H,3)),:).*abs(H(j,icross2,:,:)).^2;\n term2 = abs(S(j,iauto1,:,:)) - zc2(:,:,ones(1,size(H,3)),:).*abs(H(j,icross1,:,:)).^2;\n numer = term1.*term2;\n denom = abs(S(j,iauto1,:,:).*S(j,iauto2,:,:) - S(j,icross1,:,:).*S(j,icross2,:,:));\n \n outsum(icross2,:,:) = outsum(icross2,:,:) + reshape(log(numer./denom), [1 siz(3:end)]);\n outssq(icross2,:,:) = outssq(icross2,:,:) + reshape((log(numer./denom)).^2, [1 siz(3:end)]);\n end\n end\n elseif issquare && iscell(powindx)\n % blockwise granger\n % H = transfer function nchan x nchan x nfreq\n % Z = noise covariance nchan x nchan\n % S = crosspectrum nchan x nchan x nfreq\n % powindx{1} is a list of indices for block1\n % powindx{2} is a list of indices for block2\n ft_error('instantaneous causality is not implemented for blockwise factorizations');\n elseif isstruct(powindx)\n %blockwise conditional\n ft_error('blockwise conditional instantaneous causality is not implemented');\n else\n ft_error('not implemented');\n end\n \n case 'total'\n \n if issquare && isempty(powindx)\n % data are chan_chan_therest\n for kk = 1:n\n for ii = 1:Nc\n for jj = 1:Nc\n if ii ~=jj\n numer = abs(S(kk,ii,ii,:,:).*S(kk,jj,jj,:,:));\n denom = abs(S(kk,ii,ii,:,:).*S(kk,jj,jj,:,:) - S(kk,ii,jj,:,:).*S(kk,jj,ii,:,:));\n outsum(jj,ii,:,:) = outsum(jj,ii,:,:) + reshape(log(numer./denom), [1 1 siz(4:end)]);\n outssq(jj,ii,:,:) = outssq(jj,ii,:,:) + reshape((log(numer./denom)).^2, [1 1 siz(4:end)]);\n end\n end\n outsum(ii,ii,:,:) = 0; %self-granger set to zero\n end\n end\n elseif ~issquare && isempty(powindx)\n % data are linearly indexed\n for j = 1:n\n for k = 1:Nc\n %iauto1 = sum(powindx==powindx(k,1),2)==2;\n %iauto2 = sum(powindx==powindx(k,2),2)==2;\n %icross1 = k;\n %icross2 = sum(powindx==powindx(ones(Nc,1)*k,[2 1]),2)==2;\n if mod(k-1, 4)==0\n continue; % auto granger set to 0\n %iauto1=k;iauto2=k;icross1=k;icross2=k;\n elseif mod(k-1, 4)==1\n iauto1=k+2;iauto2=k-1;icross1=k;icross2=k+1;\n elseif mod(k-1, 4)==2\n iauto1=k-2;iauto2=k+1;icross1=k;icross2=k-1;\n elseif mod(k-1, 4)==3\n continue; % auto granger set to 0\n %iauto1=k;iauto2=k;icross1=k;icross2=k;\n end\n \n numer = abs(S(j,iauto1,:,:).*S(j,iauto2,:,:));\n denom = abs(S(j,iauto1,:,:).*S(j,iauto2,:,:) - S(j,icross1,:,:).*S(j,icross2,:,:));\n outsum(icross2,:,:) = outsum(icross2,:,:) + reshape(log(numer./denom), [1 siz(3:end)]);\n outssq(icross2,:,:) = outssq(icross2,:,:) + reshape((log(numer./denom)).^2, [1 siz(3:end)]);\n end\n end\n elseif issquare && iscell(powindx)\n % blockwise total interdependence\n \n % S = crosspectrum nchan x nchan x nfreq\n % powindx{k} is a list of indices for block k\n \n nblock = numel(powindx);\n n = size(S,1);\n nfreq = size(S,4);\n \n outsum = zeros(nblock,nblock,nfreq);\n outssq = zeros(nblock,nblock,nfreq);\n \n for k = 1:nblock\n for m = (k+1):nblock\n indx = [powindx{k}(:);powindx{m}(:)];\n n1 = numel(powindx{k});\n n2 = numel(powindx{m});\n ntot = n1+n2;\n indx1 = 1:n1;\n indx2 = (n1+1):ntot;\n \n for kk = 1:n\n for jj = 1:nfreq\n Sj = reshape(S(kk,indx,indx,jj), [ntot ntot]);\n num1 = abs(det(Sj(indx1,indx1))); % numerical round off leads to tiny imaginary components\n num2 = abs(det(Sj(indx2,indx2))); % numerical round off leads to tiny imaginary components\n num = num1.*num2;\n denom = abs(det(Sj));\n \n outsum(m,k,jj) = log( num./denom ) + outsum(m,k,jj);\n outsum(k,m,jj) = log( num./denom ) + outsum(k,m,jj);\n outssq(m,k,jj) = log( num./denom ).^2 + outssq(m,k,jj);\n outssq(k,m,jj) = log( num./denom ).^2 + outssq(k,m,jj);\n end\n end\n \n end\n end\n \n elseif issquare && isstruct(powindx)\n %blockwise conditional\n ft_error('blockwise conditional total interdependence is not implemented');\n end\n \n case 'iis'\n ft_warning('THIS IS EXPERIMENTAL CODE, USE AT YOUR OWN RISK!');\n % this is experimental\n if ~issquare && isempty(powindx)\n A = transfer2coeffs(shiftdim(H),(0:size(H,3)-1));\n ncmb = size(A,1)./4;\n iis = coeffs2iis(reshape(A,[2 2 ncmb size(A,2)]),reshape(Z,[2 2 ncmb]));\n iis = repmat(iis(:),[1 4])';\n outsum = iis(:);\n outssq = nan(size(outsum));\n else\n ft_error('iis can only be computed when the input contains sets of bivariate factorizations');\n end\n \n otherwise\n ft_error('unsupported output requested');\nend\n\ngranger = outsum./n;\nif n>1\n if hasjack\n bias = (n-1).^2;\n else\n bias = 1;\n end\n v = bias*(outssq - (outsum.^2)./n)./(n - 1);\nelse\n v = [];\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/connectivity/ft_connectivity_granger.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7279754489059775, "lm_q2_score": 0.4960938294709195, "lm_q1q2_score": 0.3611441282085781}} {"text": "function [alpha_log_all,alpha_log_hc,h_0_threshold,n_soundings] = sounding_new(start_date,end_date,plot_flag,hydro,wet)\n% This function computes the refractivity and integrated LOS delays.\n% In addition it will estimate the power-law decay cofficient and height at which the relative \n% tropopsheric delays are approximately zero. Both coefficients are given based on the full heifght range\n% and the lower height range up to hc. Note that alpha is dimensionless and\n% h0 is the height in m units. Sounding data needs to be stored in the \n% correct format! Read below:\n% \n% ---- Input ----\n% All inputs will be retreived from the aps_parms file. Set the inputs by change \n% setparm_aps('Parameter_name',new_value)\n%\n% Variables include:\n% look_angle Mean look angle of the data in rad. By default this is\n% assumed to be 21 degees.\n% lambda Radar wavelength in m. By default this is assumed to be\n% 0.056 cm (C-band).\n% h_0_threshold Consider only soundings that go up till the h0 threshold in km.\n% Being the height at which the differential delay is small.\n% When '0' is specified it is estimated from the data. Note that\n% \t\t soundings should go up high enough to cover the lower tropopshere (up to 16 km).\n% By default the threshold is set to be 15 km.\n% h_thres_hc Height range [0 h_thres_hc] over which the power-law decay \n% coefficient is estimated computed. By default this is set to be 4 km.\n% start_date\t Start date of the sounding period, by default [], full period\n% is considered. Specify as a string in 'yyyymmdd' format.\n% end_date End date of the sounding period, by default [], full period \n% is considered. Specify as a string in 'yyyymmdd' format.\n% time_stamp\t Include a time stamp to it. This is a column vector with \n% strings e.g. ['00';'12'] for 00Z and 12Z. Only those files \n% ending with this are considered in the computation.\n% sounding_dir\t Optional argument giving directly the full path to the soundings.\n% The files on this path should be the YYYYMMDD_HH.mat files. \n% error_promp_flag By default ([] or 'y') this is turn on. Can be usefull to turn of\n% when running in a batch mode. Instead NaN values will be outputed.\n%\n% Output:\n% alpha and h0. The computed sounding delays: refractivity, the (mean) LOS delay [m],\n% the (mean) LOS phase delay [rad], and corresponding heights are appended to the existing \n% sounding .mat files. \n%\n%\n% NOTE on data format:\n% sounding data needs to be stored in a folder called sounding_data, \n% within your processing directory. Within this folder, each sounding \n% aquisition needs to be stored in as 8 digit .mat files, e.g. YYYYMMDD_HH.mat \n% format, with the pressure (hPa), temperature (degree), relative humidity (%)\n% and heights (m) as matlab variables P, T, RH and h.\n%\n% OPTIONAL: \n% - visulize intermediate results (refractivity, delay,\n% mean delay and hc relation with H), by putting plot_flag to 1. By\n% default this is not done.\n% - Overwrite all the data to recompute the delays by putting recompute flag to 1\n%\n% Copyright (C) 2015 Bekaert David - University of Leeds\n% Email: eedpsb@leeds.ac.uk or davidbekaert.com\n% \n% This program is free software; you can redistribute it and/or modify\n% it under the terms of the GNU General Public License as published by\n% the Free Software Foundation; either version 2 of the License, or\n% (at your option) any later version.\n% \n% This program is distributed in the hope that it will be useful,\n% but WITHOUT ANY WARRANTY; without even the implied warranty of\n% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n% GNU General Public License for more details.\n% \n% You should have received a copy of the GNU General Public License along\n% with this program; if not, write to the Free Software Foundation, Inc.,\n% 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.\n%\n% September 2010 --- Bekaert David \n% Modifications:\n% 01/11/2011: DB Modify from initial version\n% 01/12/2011: DB Making compatible to other datasets\n% 01/11/2012: DB Made program more efficient\n% 05/11/2012: DB Fix bug in loading of the files\n% 10/02/2013: DB Integrate with other part of toolbox\n% 18/03/2013: DB Include a time stamp to it.\n% 18/03/2013: DB Include a start and end time.\n% 18/03/2013: DB Account for NaN values by removing them for all data columns\n% 19/03/2013: DB Set the min height range of the delay curve by comparing it to \n% the median of the height range\n% 19/03/2013: DB Include a flag to suppress error messages by lack of sounding data and \n% directly pass NaN value through it.\n% 25/03/2013: DB Compute the power law coefficient from loglog relation\n% 03/04/2013: DB Include h0 estimation option from the net delays\n% 24/04/2013: DB Incorporate in the bigger aps toolbox. Change towards\n% loglog powerlaw computation.\n% 10/05/2013: DB Loading the default parameters from the parms_aps file.\n% 02/10/2013: DB Change filename to sounding and clean the syntax\n% 29/10/2013: DB Allow the look angle to be a specified as a file\n% 29/11/2013: DB Get stamps processing flag before lookangle loading\n% 06/11/2014: DB Add hydrostatic and wet delay options\n\n% --------- VARIABELS ---------- %\nfontsize = 20; % fontsize of the figures\nsave_fig =0; % when 1 save figures\nrecompute = 0; % Use earlier computed data unless it is missing\nif nargin<3 || isempty(plot_flag)\n plot_flag =0; % Control plots of the refractivity, delay and net delay.\nend\nif nargin<4\n hydro=1;\nend\nif nargin<5\n wet=1;\nend\nnetdelay_color = [];\ncurdir = pwd;\n\nhydro\nwet\n\n%% Setting the defaults were needed\nlook_angle = getparm_aps('look_angle');\nlambda = getparm_aps('lambda');\nh_0_threshold= getparm_aps('sounding_h0');\nh_thres_hc= getparm_aps('sounding_h_alpha_thres');\n\nif nargin<1 || isempty(start_date)\n start_date= getparm_aps('sounding_start_date');\nend \nif nargin<2 || isempty(end_date)\n end_date= getparm_aps('sounding_end_date');\nend\ntime_stamp= getparm_aps('sounding_time_stamp');\nsounding_dir= getparm_aps('sounding_dir');\nerror_promp_flag= getparm_aps('sounding_error_promp');\n\nclear h_0_threshold_default h_thres_hc_default look_angle_default lambda_default\n\nstamps_processed = getparm_aps('stamps_processed');\n\n% checking if the look angle is a file or not\nif ischar(look_angle)\n\t% look angle is specified as a file [rad]\n\tif strcmp(stamps_processed,'y')\n look_angle = load(look_angle);\n\t look_angle = look_angle.la;\n look_angle = mean(look_angle);\n\telse\n\t look_angle = load(look_angle);\n\t % use the mean of the look angles\n\t look_angle = mean(look_angle);\n\tend\nend\n\n% convert units\ntheta = look_angle; % mean angle of incidence [rad]\nh_0_threshold = h_0_threshold*1000; % put threshold to [m]\nh_thres_hc = h_thres_hc*1000; % put threshold to [m]\nclear look_angle\n\n% get height information\nif plot_flag==1\n hgt_matfile = getparm_aps('hgt_matfile');\n hgt = load(hgt_matfile);\n max_height = max(hgt.hgt);\n min_height = min(hgt.hgt);\n clear hgt hgt_matfile\nend\n\n% Include a while loop. Depending on error message flag, it will break out of the loop and pass\n% NaN values as output.\ncontinue_flag =1;\nabord_flag = 0;\t\t% when 1 abnormal termination get NaN values instead.\nwhile continue_flag\n\n%% Getting the file list of the sounding data\nif isempty(sounding_dir)~=1\n\tif exist([sounding_dir filesep],'dir')~=7\n error('myApp:argChk', ['The specified filepath of the sounding data does not exist,... \\nAbort,... \\n'])\n end \n\tcd(sounding_dir)\nelse\n\tif exist('sounding_data/','dir')~=7\n \t\terror('myApp:argChk', ['There is no sounding_data directory,... \\nAbort,... \\n']) \n\tend\n\tcd sounding_data\nend\nif exist('sounding.list','file')~=2\n % making a list of all the sounding files\n [dummy dummy2] = system('echo sounding_list > sounding.list');\n clear dummy dummy2\n for k=1:size(time_stamp,1)\n command_str = ['ls [0-9]???????_' time_stamp(k,:) '.mat >> sounding.list']; \n [dummy dummy2] = system(command_str);\n clear dummy dummy2\n end\nend\ntemp = tdfread('sounding.list');\n[dummy dummy2] = system('rm sounding.list');\nclear dummy dummy2\ndate_list_temp = temp.sounding_list(:,[1:8]);\nsounding_list = temp.sounding_list;\n\n% selecting a date range when requested\nclear ix\n\nif isempty(start_date)~=1 && isempty(end_date)~=1\n\tix = find(datenum(date_list_temp,'yyyymmdd')>=datenum(start_date,'yyyymmdd') & datenum(date_list_temp,'yyyymmdd')<=datenum(end_date,'yyyymmdd'));\n\tsave_name = ['Delay_' start_date '_' end_date];\nelseif isempty(start_date)~=1 && isempty(end_date)==1\n ix = find(datenum(date_list_temp,'yyyymmdd')>=datenum(start_date,'yyyymmdd'));\n save_name = ['Delay_' start_date '_end' ];\nelseif isempty(start_date)==1 && isempty(end_date)~=1\n ix = find(datenum(date_list_temp,'yyyymmdd')<=datenum(end_date,'yyyymmdd'));\n save_name = ['Delay_start_' end_date];\nelse\n save_name = ['Delay'];\nend\n% checking if the save figures folder exist\nif save_fig ==1 & exist('figures','dir')~=7\n mkdir('figures') \nend\n\n\nif isempty(start_date)~=1 || isempty(end_date)~=1\n\tif isempty(ix)~=1\n\t\tdate_list_temp = date_list_temp(ix,:);\n\t\tsounding_list = sounding_list(ix,:);\n\telse\n\t\tfprintf('No sounding has been acquired in this period \\n' )\n\t\tcontinue_flag = 0;\n abord_flag = 1;\n break\n\tend\n\tclear temp ix\nend\n\n\n\n%% Computing refractivity\nfprintf('Computing the refractivity \\n')\nix_skip_sounding = [];\t\t\t% in case soundings are rejected along the way\nwarning('off','MATLAB:load:variableNotFound')\nfor i=1:size(sounding_list,1)\n temp = load(sounding_list(i,:),'h_min_souding'); \n if isfield(temp,'h_min_souding') && recompute==0\n % storing variables for latter processing\n h_range(i,1) = temp.h_min_souding; % [m]\n \n if plot_flag==1\n data = load(sounding_list(i,:),'h_max_souding','Ndelay');\n Ndelay = data.Ndelay;\n else\n data = load(sounding_list(i,:),'h_max_souding');\n end\n h_range(i,2) = data.h_max_souding; % [m]\n clear data\n skip_sounding = 0;\n\n else\n load(sounding_list(i,:)); \n % This includes variables: \n % - P (pressure in [hPa])\n % - T (temperature in [degrees])\n % - RH (relative humidity in [%]) \n % - h (altitude in [m])\n \n \n % coping with NaN values in the RH data\n ix1 = find(isnan(RH)==1);\n ix2 = find(isnan(h)==1);\n ix = unique([ix1; ix2]);\n P(ix)=[]; \n RH(ix)=[]; \n T(ix)=[]; \n h(ix)=[]; \n clear ix ix1 ix2\n\n % coping with errors in the data when a double recording was made\n ix_repeat = find(diff(sort(h))==0);\n h(ix_repeat) = [];\n P(ix_repeat)=[];\n RH(ix_repeat)=[]; \n T(ix_repeat)=[];\n clear ix_repeat\n\n\n % Checking if there is still data left\n if isempty(h)==1 && size(sounding_list,1)==1 && strcmp(error_promp_flag,'y') \n error('myApp:argChk', ['Datafile contains no numeric data. \\n'])\n elseif isempty(h)==1 \n fprintf([sounding_list(i,:) ' sounding skipped as it containes no numeric data\\n'])\n skip_sounding = 1;\n ix_skip_sounding = [ix_skip_sounding ; i];\n else\n skip_sounding = 0;\n end\n\n % when possible compute the refractivity\n if skip_sounding==1\n % case of no data\n h_range(i,1) = NaN; % [m]\n h_range(i,2) = NaN; % [m]\n else\t\n % saterated pressure es\n Rv = 461.524; % [J/K]\n T0 = 273.16; % [k] \n L = 2.5e6; % [J/kg] Latent heat\n e0 = 6.11; % [hPa] \n T = T+273.15; % [degree] to [K] Temperature\n es = e0.*exp(L./Rv.*(1./T0-1./T));\n\n % partial pressure of water vapour e\n RH = RH./100; % [%] to [-] Relative humidity\n e = RH.*es; % [hPa]\n\n % Refractivety - Hydrostatic term\n k1 = 77.6; % [K/hPa]\n Ndelay.Nhydro = k1.*P./T; % [K/hPa*hPa/K] = [-] \n\n % Refractivity - Wet term\n k2_n = 23.3; % [K/hPa]\n k3 = 3.75e5; % [K^2/hPa]\n Ndelay.Nwet = k2_n.*e./T+k3.*e./T.^2; % [ppm]\n\n % refractivety \n Ndelay.N = Ndelay.Nhydro+Ndelay.Nwet; \n\n % save the heights of the delay as well\n Ndelay.h = h;\n\n\n h_min_souding = min(h);\n h_max_souding = max(h);\n\n % saving the data\n save(sounding_list(i,:),'-append','Ndelay','h_min_souding','h_max_souding')\n\n % storing variables for latter processing\n h_range(i,1) = h_min_souding; % [m]\n h_range(i,2) = h_max_souding; % [m]\n clear h_max_souding h_min_souding\n \n end\n end\n\n if floor(i/10)*10 == i\n fprintf([num2str(i) ' refraction dates completed out of ' num2str(size(sounding_list,1)) ' \\n']);\n end\n \t\n % Test visualizing refractivity with height\n if plot_flag==1 && skip_sounding~=1\n if i==1\n figure1 = figure('name','Refractivity with height'); \n ylabel('Height [km]','fontsize',12)\n xlabel('Refractivity [ppm]','fontsize',12)\n line_colors = hsv(size(sounding_list,1));\n box on\n set(gca,'fontsize',12)\n end\n figure(figure1)\n hold on\n if hydro==1 && wet==0 \n if i==1\n title('Refractivity with height','fontsize',12)\n end\n plot(Ndelay.Nhydro,Ndelay.h./1000,'-','color',line_colors(i,:)) \n elseif hydro==0 && wet==1\n if i==1\n title('Refractivity with height (hydro)','fontsize',12)\n end\n plot(Ndelay.Nwet,Ndelay.h./1000,'-','color',line_colors(i,:)) \n else\n if i==1\n title('Refractivity with height (wet)','fontsize',12)\n end\n plot(Ndelay.N,Ndelay.h./1000,'-','color',line_colors(i,:)) \n end\n end\n clear P h RH T Ndelay N\nend\nclear Rv T0 L e0 es e k1 k2_n k3 i figure1\n% remove those sounding acqusitions that have no data coverage\nif isempty(ix_skip_sounding)~=1\n\tsounding_list(ix_skip_sounding,:)=[];\n\th_range(ix_skip_sounding,:)=[];\t\nend\n\n\n\n%% Computing the height range\nfprintf('Computing delay \\n')\n\n% defining the height range (equal for the whole dataset)\nh_max = min(h_range(:,2));\nh_max_mean = mean(h_range(:,2));\n\nif h_0_threshold<=0\n % estimate h0 from the data\n h0_estimate_flag = 1;\n h_0_threshold = 0;\t\t\t% set the height threshold low such all the delays can be used to compute a net delay \nelse\n h0_estimate_flag = 0; \nend\n\n\n% check if the delays goes high enough\nif h_maxh_0_threshold && h0_estimate_flag==0\n % h0 is lower than the h_max. \n h_max = h_0_threshold;\nelseif h_max_mean-h_max >1000 && h0_estimate_flag==1\n % Make h_max larger possible as the h0 value needs to be estimated\n % this will be at the cost of some soundings but they will be included\n % latter on\n h_max = h_max_mean;\n ix = find(h_range(:,2) 1000\n h_min = h_min_median;\n\n ix = find(h_range(:,1)>h_min);\n n = [1:size(sounding_list,1)]';\n n(ix)=[];\n h_range(ix,:)=[];\n if isempty(ix)==1\n error('myApp:argChk', ['This should not occur.'])\n end\n clear ix\n if size(n,1)<3 || isempty(n)==1\n error('myApp:argChk', 'Too few soundings are left for mean delay computation. Check for incomplete data files or differences in sounding height ranges \\n.')\n end\n if size(n,1)<5\n fprintf(['Only ',num2str(size(n,1)),' soundings are used to compute mean delay \\n']);\n end\n sounding_list = sounding_list(n,:);\n clear n\nend\n\nfprintf([num2str(size(sounding_list,1)),' soundings are used to compute mean delay \\n']);\nh_delay = [h_min:1:h_max]'; % set to 1 [m] interval\nclear h_range h_min h_max\n \n\n%% computing the integrated refractivity\nfor i=1:size(sounding_list,1)\n compute_flag=0;\n % checking if it has already been computed. If so use this data at once\n % else compute it\n temp = load(sounding_list(i,:),'h_delay'); \n if isfield(temp,'h_delay') && recompute==0\n h_delay_temp=temp.h_delay;\n if h_delay(1)==h_delay_temp(1) && h_delay(end)==h_delay_temp(end)\n if hydro==1 && wet==0\n data = load(sounding_list(i,:),'delay_hydro','phase_delay_hydro');\n if ~isfield(data,'delay_hydro')\n compute_flag=1;\n else\n delay = data.delay_hydro;\n phase_delay = data.phase_delay_hydro;\n end\n elseif hydro==0 && wet==1 \n data = load(sounding_list(i,:),'delay_wet','phase_delay_wet');\n if ~isfield(data,'delay_wet')\n compute_flag=1;\n else\n delay = data.delay_wet;\n phase_delay = data.phase_delay_wet;\n end\n else\n data = load(sounding_list(i,:),'delay','phase_delay');\n if ~isfield(data,'delay')\n compute_flag=1;\n else\n delay = data.delay;\n phase_delay = data.phase_delay;\n end\n end\n \n if compute_flag==0\n % store all delays for later mean LOS delay computation\n delay_matrix(1:length(delay),i) = delay;\n % do the same for the phase delay\n phase_delay_matrix(1:length(delay),i) = phase_delay; \n compute_flag=0;\n end\n else\n % delay needs to be computed\n compute_flag=1;\n end\n else\n compute_flag=1;\n end\n\n \n if compute_flag==1 \n load(sounding_list(i,:),'Ndelay')\n \n % interpolation to 1 m interval \n if hydro==1 && wet==0\n N_regular = interp1(Ndelay.h,Ndelay.Nhydro,h_delay,'linear');\n elseif hydro==0 && wet==1\n N_regular = interp1(Ndelay.h,Ndelay.Nwet,h_delay,'linear');\n else\n N_regular = interp1(Ndelay.h,Ndelay.N,h_delay,'linear');\n end\n \n \n\n % integration of refractivity with height (= delay) and projection on the LOS\n delay = zeros([length(N_regular) 1]); % initialize\n delay = flipud(cumsum(flipud(N_regular))./10^6.*cos(theta)); % 10^6 factor is for correction of ppm, theta for LOS projection\n phase_delay = delay*4*pi./lambda; \n clear scale N_regular \n\n % store all delays for later mean LOS delay computation\n delay_matrix(1:length(delay),i) = delay;\n % do the same for the phase delay\n phase_delay_matrix(1:length(delay),i) = phase_delay; \n\n % saving the data\n if hydro==1 && wet==0\n delay_hydro = delay;\n phase_delay_hydro = phase_delay;\n save(sounding_list(i,:),'-append','delay_hydro','phase_delay_hydro','h_delay')\n elseif hydro==0 && wet==1\n phase_delay_wet=phase_delay;\n delay_wet = delay;\n save(sounding_list(i,:),'-append','delay_wet','phase_delay_wet','h_delay')\n else\n save(sounding_list(i,:),'-append','delay','phase_delay','h_delay')\n end\n \n end\n\n % Test visualizing delay with height \n if plot_flag==1\n if i==1\n figure2 = figure('name','Delay with height'); \n xlabel('LOS phase delay [rad]','fontsize',fontsize)\n ylabel('Height [km]','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n end\n figure(figure2)\n hold on\n plot(phase_delay,h_delay./1000,'-','color',[0.7 0.7 0.7])\n box on\n\n if i==size(sounding_list,1) && h0_estimate_flag==1\n Ax1 = gca;\n ylimits = get(Ax1,'ylim');\n set(Ax1,'ylim',[0 ylimits(2)])\n % adding a second axis \n box on\n set(gca,'fontsize',fontsize)\n if hydro==1 && wet==0\n title({'LOS hydro delay [m]',' '},'fontsize',fontsize)\n fig_save_name = ['figures' filesep 'Delay_hydro_curves_all.eps'];\n elseif hydro==0 && wet==1\n title({'LOS wet delay [m]',' '},'fontsize',fontsize)\n fig_save_name = ['figures' filesep 'Delay_wet_curves_all.eps'];\n else\n title({'LOS delay [m]',' '},'fontsize',fontsize)\n fig_save_name = ['figures' filesep 'Delay_curves_all.eps'];\n end\n Ax2 = axes('Position',get(Ax1,'Position'),'XAxisLocation','top');\n set(Ax2,'ylim',get(Ax1,'ylim'),'ytick',[],'yticklabel','');\n xlims = get(Ax1,'xlim');\n xtick_new = get(Ax1,'xtick')./xlims(2);\n new_x_label = get(Ax1,'xtick').*lambda./(4*pi);\n xtick_labels = round((new_x_label)*100)./100;\n xtick_labels = num2str(xtick_labels');\n set(Ax2,'xtick',xtick_new,'xticklabel',xtick_labels);\n set(Ax2,'color','none');\n set(Ax2,'fontsize',fontsize)\n box on\n % saving of the figure when requested\n if save_fig==1 \n set(figure2,'PaperPositionMode','auto')\n print(figure2,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n clear figure2 \n end\n end\n clear Ndelay.N Ndelay.h delay \nend\nclear i theta\n\nn_soundings = size(delay_matrix,2);\n\n\nif n_soundings <=3\n continue_flag = 0;\n abord_flag = 1;\n break\nend\n\n\n%% estimating h0 from the delay curves, when required.\n% this is based on the net delays and used the std \n% as criteria for setting h0\nif h0_estimate_flag==1\n n_netdelays_max = 400;\n if (n_soundings*n_soundings-n_soundings)/2<=n_netdelays_max\n \tfprintf(['Estimating h0 from all (', num2str((n_soundings*n_soundings-n_soundings)/2),') possible net delay combinations \\n'])\n \tix1_random=repmat(1:n_soundings,n_soundings,1);\n ix1_random=single(ix1_random);\n \tix2_random=ix1_random';\n \tix_temp=logical(tril(ones(n_soundings)))&~eye(n_soundings);\n \tix_random=[ix1_random(ix_temp),ix2_random(ix_temp)]; \n clear ix1_random ix2_random\n else\n fprintf(['Estimating h0 from (', num2str(n_netdelays_max),') net delay combinations \\n'])\n % take 2 random sets of n_netdelays_max\n new_set_search = 1;\n loop_counter = 0;\n while new_set_search\n ix1_random = ceil(rand(n_netdelays_max*5,1)*n_soundings);\n ix2_random = ceil(rand(n_netdelays_max*5,1)*n_soundings);\n ix_random = [ix1_random ix2_random];\n clear ix1_random ix2_random\n \n % remove those net delays of the same date\n ix_temp = find(ix_random(:,1)-ix_random(:,2)==0);\n ix_random(ix_temp,:)=[];\n clear ix_temp\n \n % remove repetition of pair combination\n ix_random = unique(ix_random,'rows');\n \n % check if enough combinations are left otherwize rerun\n if size(ix_random,1)>=n_netdelays_max\n ix_random(n_netdelays_max+1:end,:)=[];\n new_set_search=0;\n\n end\n loop_counter = loop_counter+1;\n if loop_counter == 50\n fprintf('Having difficulty determining net delay combinations \\n')\n keyboard\n end\n end\n end\n \n % computation of the net delay\n netdelays = delay_matrix(:,ix_random(:,1)) - delay_matrix(:,ix_random(:,2));\n netphasedelays = phase_delay_matrix(:,ix_random(:,1)) - phase_delay_matrix(:,ix_random(:,2));\n\n if plot_flag==1\n fig_netdelay = figure('name','Net delays');\n if isempty(netdelay_color)\n plot(netdelays,h_delay/1000) \n else\n plot(netdelays,h_delay/1000,'color',netdelay_color) \n end\n max_spacing = max([abs([min(min(netdelays)) max(max(netdelays))])]);\n xlim([-1.1*max_spacing max_spacing*1.1]);\n xlabel('Net LOS delay [m]','fontsize',fontsize)\n ylabel('Height [km]','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n \n \n \n fig_netphasedelay = figure('name','Net phase delays');\n if isempty(netdelay_color)\n plot(netphasedelays,h_delay/1000) \n else\n plot(netphasedelays,h_delay/1000,'color',netdelay_color) \n end\n max_spacing = max([abs([min(min(netphasedelays)) max(max(netphasedelays))])]);\n xlim([-1.1*max_spacing max_spacing*1.1]);\n xlabel('\\Delta\\phi_{tropo} [rad]','fontsize',fontsize)\n ylabel('Height [km]','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n \n \n \n \n end\n \n \n \n \n % computation of the netdelay standard deviation\n netdelays_std = std(netdelays,[],2);\n clear netdelays\n \n % find the height at which the lowest standard deviation becomes larger\n % than the 0.5 cm threshold.\n fprintf(['Estimating h0 from the height at which the std varies more than ' num2str(0.05) ' cm \\n'])\n ix = (netdelays_std<=0.0005);\n h_0_threshold = min(h_delay(ix));\n clear ix\n ix = find(h_delay>h_0_threshold);\n \n % make some sanity checks\n if h_0_threshold<6000\n fprintf(['h0 is estimated to be ' num2str(h_0_threshold/1000) ' km. This is low abord. \\n'])\n if strcmp(error_promp_flag,'y') \n error('myApp:argChk', 'Put h_0_threshold to a lower value. \\n')\n else\n fprintf('Try setting h_0_threshold manually \\n')\n continue_flag = 0; \n abord_flag = 1; \n break\n end\n else\n % plotting the estimate h0 on the netdelay curve\n if plot_flag==1\n figure(fig_netdelay)\n hold on\n plot(get(gca,'xlim'),[h_0_threshold/1000 h_0_threshold/1000],'k--')\n \n figure(fig_netphasedelay)\n hold on\n plot(get(gca,'xlim'),[h_0_threshold/1000 h_0_threshold/1000],'k--')\n \n % saving of the figure when requested\n if save_fig==1\n fig_save_name = ['figures' filesep 'NetDelay_curves.eps'];\n set(fig_netdelay,'PaperPositionMode','auto')\n print(fig_netdelay,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n \n fig_save_name = ['figures' filesep 'NetPhaseDelay_curves.eps'];\n set(fig_netphasedelay,'PaperPositionMode','auto')\n print(fig_netphasedelay,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n end\n \n fprintf(['h0 is estimated to be ' num2str(h_0_threshold/1000) ' km. \\n']) \n\n % removing all the other variables\n h_delay(ix:end)=[];\n delay_matrix(ix:end,:)=[];\n phase_delay_matrix(ix:end,:)=[];\n \n % setting the start of the integration to h_0\n delay_matrix = delay_matrix - repmat(delay_matrix(end,:),length(h_delay),1);\n phase_delay_matrix = phase_delay_matrix - repmat(phase_delay_matrix(end,:),length(h_delay),1);\n \n if plot_flag==1\n figure2 = figure('name','Delay with height'); \n plot(phase_delay_matrix,h_delay./1000,'-','color',[0.7 0.7 0.7] ) \n xlabel('LOS phase delay [rad]','fontsize',fontsize)\n ylabel('Height [km]','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n % saving of the figure when requested\n if save_fig==1\n fig_save_name = ['figures' filesep 'Delay_curves.eps'];\n set(figure2,'PaperPositionMode','auto')\n print(figure2,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n\n end\n end\nend \n\n%% Computing mean delay \nfprintf('Computing mean delay \\n')\ndelay_mean = mean(delay_matrix,2); % given in [m]\nphase_delay_mean = mean(phase_delay_matrix,2);\nif plot_flag==1\n % plot mean delay on top of the existing figure\n figure(figure2)\n hold on \n plot(phase_delay_mean,h_delay./1000,'k-','linewidth',2) \n Ax1 = gca;\n ylimits = get(Ax1,'ylim');\n set(Ax1,'ylim',[0 ylimits(2)])\n % adding a second axis \n box on\n set(gca,'fontsize',fontsize)\n title({'LOS delay [m]',' '},'fontsize',fontsize)\n Ax2 = axes('Position',get(Ax1,'Position'),'XAxisLocation','top');\n set(Ax2,'ylim',get(Ax1,'ylim'),'ytick',[],'yticklabel','');\n xlims = get(Ax1,'xlim');\n xtick_new = get(Ax1,'xtick')./xlims(2);\n new_x_label = get(Ax1,'xtick').*lambda./(4*pi);\n xtick_labels = round((new_x_label)*100)./100;\n xtick_labels = num2str(xtick_labels');\n set(Ax2,'xtick',xtick_new,'xticklabel',xtick_labels);\n set(Ax2,'color','none');\n set(Ax2,'fontsize',fontsize)\n % saving of the figure when requested\n if save_fig==1\n fig_save_name = ['figures' filesep 'Delay_curves.eps'];\n set(figure2,'PaperPositionMode','auto')\n print(figure2,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n clear figure2\n\n % an individual figure for the mean delay\n figure4 = figure('name','Mean delay with height'); \n xlabel('LOS phase delay [rad]','fontsize',fontsize)\n ylabel('Height [km]','fontsize',fontsize)\n set(gca,'fontsize',fontsize) \n hold on \n plot(phase_delay_mean,h_delay./1000,'k-','linewidth',2)\n set(gca,'fontsize',fontsize)\nend\nsave([save_name '.mat'],'delay_mean','h_delay','n_soundings','delay_matrix')\n\n\n\n\n\n%% estimating the power law directly from the log log plot\n% computing the loglog powerlaw\n\n\nh_log = log10(h_0_threshold-h_delay);\nphi_delay_log = log10(phase_delay_mean);\ndelay_log = log10(delay_mean);\nA = [h_log ones(size(h_log))];\n\n% based on the full height range\nix_all = find(h_log<=0.001);\nA_all = A;\nA_all(ix_all,:)=[];\ndelay_log_temp_all = delay_log;\ndelay_log_temp_all(ix_all,:)=[];\nphase_delay_log_temp_all = phi_delay_log;\nphase_delay_log_temp_all(ix_all,:)=[];\ncoeff_all = inv(A_all'*A_all)*A_all'*delay_log_temp_all;\ncoeff_all_phase = inv(A_all'*A_all)*A_all'*phase_delay_log_temp_all;\nalpha_log_all = coeff_all(1);\nK_log_all = exp(coeff_all(2));\n\n\n% based on the height range till hc_threshold\nix_hc = find(h_log<=0.001 | h_delay>h_thres_hc);\nA_hc = A;\nA_hc(ix_hc,:)=[];\ndelay_log_temp_hc = delay_log;\ndelay_log_temp_hc(ix_hc,:)=[];\nphase_delay_log_temp_hc = phi_delay_log;\nphase_delay_log_temp_hc(ix_hc,:)=[];\ncoeff_hc = inv(A_hc'*A_hc)*A_hc'*delay_log_temp_hc;\ncoeff_hc_phase = inv(A_hc'*A_hc)*A_hc'*phase_delay_log_temp_hc;\nalpha_log_hc = coeff_hc(1);\nK_log_hc = exp(coeff_hc(2));\n\n\n\nif plot_flag==1\n xlimits = [log10(h_0_threshold-max_height) log10(h_0_threshold+1)];\n % an individual figure for the mean delay\n figure4_1 = figure('name','Log-Log plot of the Mean delay with height');\n ylabel('Log(tropopsheric LOS delay [m])','fontsize',fontsize)\n xlabel('Height [km])','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n hold on\n plot(h_log,delay_log,'k-','linewidth',2) \n hold on\n plot(A_hc(:,1),A_hc*coeff_hc,'r--','linewidth',2)\n set(gca,'fontsize',fontsize)\n % plotting the powerlaw based on the lower height range\n hold on \n xlim(xlimits)\n ylimits = get(gca,'ylim');\n legend('Mean delay','Power law',2)\n legend boxoff\n set(gca,'xtick',[get(gca,'xtick') log10(h_0_threshold)],'xticklabel',num2str([get(gca,'xtick') log10(h_0_threshold)]'))\n\n % updating the lables to be heights\n temp_loc = get(gca,'xtick');\n temp = round((h_0_threshold-10.^temp_loc)/1000*100)/100;\n temp_str = num2str(temp');\n set(gca,'xtick',temp_loc,'xticklabel',temp_str)\n box on\n \n \n if save_fig==1\n fig_save_name = ['figures' filesep 'loglog_mean_delay.eps'];\n set(figure4_1,'PaperPositionMode','auto')\n print(figure4_1,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n \n \n \n \n \n \n \n % an individual figure for the mean delay\n figure4_2 = figure('name','Log-Log plot of the Mean phase delay with height');\n ylabel('Log(\\phi_{tropo} [rad])','fontsize',fontsize)\n xlabel('Height [km])','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n hold on\n plot(h_log,phi_delay_log,'k-','linewidth',2) \n hold on\n plot(A_hc(:,1),A_hc*coeff_hc_phase,'r--','linewidth',2)\n set(gca,'fontsize',fontsize)\n % plotting the powerlaw based on the lower height range\n hold on \n xlim(xlimits)\n ylimits = get(gca,'ylim');\n legend('Mean delay','Power law',2)\n legend boxoff\n set(gca,'xtick',[get(gca,'xtick') log10(h_0_threshold)],'xticklabel',num2str([get(gca,'xtick') log10(h_0_threshold)]'))\n\n % updating the lables to be heights\n temp_loc = get(gca,'xtick');\n temp = round((h_0_threshold-10.^temp_loc)/1000*100)/100;\n temp_str = num2str(temp');\n set(gca,'xtick',temp_loc,'xticklabel',temp_str)\n box on\n \n \n if save_fig==1\n fig_save_name = ['figures' filesep 'loglog_mean_phasedelay.eps'];\n set(figure4_2,'PaperPositionMode','auto')\n print(figure4_2,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n \n \n \n \n \n \n \n \n \n \nend\n\nsave([save_name '.mat'],'-append','alpha_log_all','alpha_log_hc')\nclear ix_all A_all delay_log_temp_all coeff_all ix_hc A_hc delay_log_temp_hc coeff_hc delay_log phi_delay_log h_log\n\n\n\n\n\n\n%% evaluating the performance of the estimation by plotting the estimated powerlaw wrt to the mean delay from sounding\nif plot_flag==1\n % powerlaw estimated from log log plot full height range\n delay_log_all = K_log_all*(h_0_threshold-h_delay).^alpha_log_all;\n\n % powerlaw delay from log log plot estimated from the 0 till hc height range \n delay_log_hc = K_log_hc*(h_0_threshold-h_delay).^alpha_log_hc;\n % plot mean delay on top of the existing figure\n hfig_powerlawdelay = figure('name','Fitted power law delay to mean delay curve');\n plot(delay_mean,h_delay./1000,'k-','linewidth',2)\n hold on\n plot(delay_log_hc,h_delay./1000,'r-','linewidth',2)\n hold on\n xlimits = get(gca,'xlim');\n plot([xlimits(1) xlimits(2)],[max_height max_height]./1000,'k--')\n legend('Mean delay','Fitted power law','Max height of the region')\n ylabel('Height [km]','fontsize',fontsize)\n xlabel('LOS delay [m]','fontsize',fontsize)\n set(gca,'fontsize',fontsize)\n box on\n \n if save_fig==1\n fig_save_name = ['figures' filesep 'MeanDelay_PowerLawDelay.eps'];\n set(hfig_powerlawdelay,'PaperPositionMode','auto')\n print(hfig_powerlawdelay,'-depsc','-r150',fig_save_name)\n clear fig_save_name\n end\n clear hfig_powerlawdelay\n \nend\n\n\n\ncontinue_flag=0;\nabord_flag=0;\n\nend\n\n% The while loop was existed because of an error statement.\nif abord_flag == 1\n\talpha_log_all = NaN;\n\talpha_log_hc = NaN;\n\tn_soundings=NaN;\n h_0_threshold = NaN;\n\tfprintf('Early termination \\n')\nelse\n h_0_threshold = h_0_threshold/1000; % put threshold to [km]\n\tfprintf('DONE \\n')\nend\n\ncd(curdir)\n\n\n", "meta": {"author": "dbekaert", "repo": "TRAIN", "sha": "6c93feb95ae95eaf4c8468e89ec0b8325eac946f", "save_path": "github-repos/MATLAB/dbekaert-TRAIN", "path": "github-repos/MATLAB/dbekaert-TRAIN/TRAIN-6c93feb95ae95eaf4c8468e89ec0b8325eac946f/matlab/sounding.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7279754489059775, "lm_q2_score": 0.49609382947091946, "lm_q1q2_score": 0.36114412820857805}} {"text": "%% RRT*FN for 3 DOF Mobile Robot\n% \n% \n%
Do not change anything in rrt.m,\n% rrt_star.m and rrt_star_fn.m\n%
\n% \n\n%% Getting started\n% Create *main_3dof_mobile_rrt_star_fn.m* file. You can create m-file with any other name, that is\n% perfectly okay, this will not affect to the solution of a path/motion\n% planning problem. All the sources could be found in examples/ directory\n% of the distribution.\n%\n\n%% Step 1: Choosing the map \n% Firstly, we should define what map to use. It is done by defining map\n% structure the sample code is goes after.\n%\n% map = struct('name', 'bench_june1.mat', 'start_point', [-14.5 -7.5], 'goal_point', [10 -0.65]);\n%\n\n%%\n%\n% * *name field* defines the file name in maps/ directory\n% * *start_point* field defines where the initial point of the problem\n% * *goal_point* field define where is the goal point on the map\n%\n\n%% Step 2: Setting maximum number of iterations\n%\n% max_iter = 20e3;\n%\n% * *max_iter* variable defines how much iteration should be done to solve\n% the path planning problem.\n\n%% Step 3: Setting maximum nodes in the tree\n%\n% max_nodes = 5e3;\n%\n% * *max_nodes* variable defines how many nodes should be stored in the\n% tree.\n\n\n%% Step 4: Do we have to benchmark \n%\n% is_benchmark = false;\n%\n% * *is_benchmark* enables benchmarking. For more details please read the\n% sources of rrt.m, rrt_star.m and rrt_star_fn.m\n\n%% Step 5: Setting random seed\n%\n% rand_seed = 40;\n%\n% * *rand_seed* variable is a random seed for random number generator, it\n% is used for sampling nodes. It is usually used for benchmarking. We set\n% the same map, however the random seed is different for the same map. You\n% can use *now* if you don't care about random seed.\n%\n% rand_seed = now;\n%\n\n%% Step 6: Choosing the class (model) we want \n% \n% variant = 'FNSimple3D';\n%\n% * *variant* defines from what class we should instantiate the object. In\n% other words it defines what model we choose for application of RRT.\n%\n% *FNSimple3D* is a name of a class which contains all necessary methods\n% and fields in order to represent simple 3 DOF Mobile Robot model.\n\n%% Step 7: RRT*FN\n%\n% rrt_star_fn(map, max_iter, max_nodes, is_benchmark, rand_seed, variant);\n%\n% Line above runs RRT with given parameters. In addition, *rrt* function\n% returns the class object with a certain solution.\n\n%% Sources of *main_3dof_mobile_rrt_star_fn.m*\n% Press \n% \n% to play with example code.\n%\n% % 3 DOF mobile robot example.\n% % by Almaskhan Baimyshev \n% % 08/28/2013\n% \n% map = struct('name', 'bench_june1.mat', 'start_point', [-14.5 -7.5], 'goal_point', [10 -0.65]);\n% max_iter = 20e3;\n% max_nodes = 3e3;\n% is_benchmark = false;\n% rand_seed = 40;\n% variant = 'FNSimple3D';\n% result = rrt_star_fn(map, max_iter, max_nodes, is_benchmark, rand_seed, variant);\n%\n", "meta": {"author": "olzhas", "repo": "rrt_toolbox", "sha": "b07e72cebe7053661083f4c4d1843aae88e1ad3c", "save_path": "github-repos/MATLAB/olzhas-rrt_toolbox", "path": "github-repos/MATLAB/olzhas-rrt_toolbox/rrt_toolbox-b07e72cebe7053661083f4c4d1843aae88e1ad3c/doc/threedof_rrt_star_fn_example.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES\n\n", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36095051818975754}} {"text": "%% Lag extraction demo script\n% this script runs an EEGLAB plugin used for lag extraction on single trial data.\n%\n% $Id: lagextraction_demo.m 4 2009-08-15 21:10:35Z gramfort $\n\n%% Load data\n\nUSE_SYNTH = true;\nUSE_SYNTH = false;\n\nclear options\nclose all\n\nif USE_SYNTH\n\n randn('seed',0);\n\n clear EEG\n\n EEG.pnts = 500;\n EEG.srate = 1000; % 0.5 sec. recording\n EEG.trials = 100;\n EEG.nbchan = 1;\n EEG.comments = '';\n EEG.chanlocs(1).labels = 'Cz';\n EEG.chanlocs(1).X = 0;\n EEG.chanlocs(1).Y = 0;\n EEG.chanlocs(1).Z = 0;\n EEG.filename = 'synth';\n EEG.filepath = cd;\n\n EEG.times = linspace(0,EEG.pnts / EEG.srate,EEG.pnts);\n\n snr = 1.5;\n clear generate_options\n generate_options.snr = snr;\n\n if 1\n [EEG,ref,latencies] = generate_synth_eeg_data(EEG,generate_options);\n else\n clear generate_options\n\n generate_options.std_latency = 0.03;\n generate_options.mean_frequency = 3;\n generate_options.mean_latency = 0.3;\n\n % generate_options.mean_latency = 0.2;\n % generate_options.std_latency = 0.0;\n % generate_options.std_strech = 0.1;\n % generate_options.std_strech = 0.2;\n\n [EEG,ref,latencies] = generate_synth(EEG,generate_options);\n end\n EEG.times = linspace(0,1000 * EEG.pnts / EEG.srate,EEG.pnts);\n disp(['SNR : ',num2str(snr)]);\n\n channel = 1;\n time_win = [EEG.times(1) EEG.times(end)]; % (ms)\n bad_trials = []; % set bad trials\n use_ica = false;\n\nelse\n\n load('data/oddball3-num1-512Hz-chan10.set','-mat');\n\n channel = 1;\n time_win = [150 500]; % (ms)\n bad_trials = []; % set bad trials\n use_ica = false;\n\n latencies = eeg_getepochevent( EEG, {'200'}, [], 'latency');\n [tmp,motor_order] = sort(latencies,'descend');\n\n data = squeeze(EEG.data(1,:,:))';\n\n if 0\n % Hack to see result on motor response\n options.order = motor_order;\n end\n\nend\n\n%% Set parameters\n\noptions.distance = 'corr2';\n% options.distance = 'corr'; % with corr\n\noptions.verbose = true; % show figures\noptions.disp_log = false; % print log messages\n\noptions.show_pca = true;\noptions.show_pca = false;\n\noptions.sigma = 0.01:0.01:0.2;\n\nif 0\n % one alpha : no crossvalidation\n options.alpha = [0.1];\nelse\n % multiple alphas : crossvalidation (longer)\n options.alpha = [0.001,0.01,0.1];\nend\n\n%% Run extraction\n\n[EEG, com, order, lags, event_type, E_lags] = pop_extractlag( EEG , use_ica, channel, time_win, options);\n\n%% View results\n\nif ~USE_SYNTH\n if options.verbose\n figure,\n imagesc(data(motor_order,:))\n title('Reordering with motor response')\n figure,\n imagesc(data(order,:))\n title('Reordering with Laplacian')\n end\nend\n\nif USE_SYNTH & options.verbose\n smart_figure('evoked_potentials');\n hold on\n plot(EEG.times,ref,'g','LineWidth',3);\n hold off\nend\n\nsmart_figure('erp_data_ordered_lags');\nif USE_SYNTH\n savefig(['lags_synth_alpha_',num2str(options.alpha)],22,{'pdf'})\nelse\n savefig(['lags_oddball_alpha_',num2str(options.alpha)],22,{'pdf'})\nend\n", "meta": {"author": "fieldtrip", "repo": "fieldtrip", "sha": "c2039be598a02d86b39aae76bfa7aaa720f9801c", "save_path": "github-repos/MATLAB/fieldtrip-fieldtrip", "path": "github-repos/MATLAB/fieldtrip-fieldtrip/fieldtrip-c2039be598a02d86b39aae76bfa7aaa720f9801c/external/lagextraction/lagextraction_demo.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. YES", "lm_q1_score": 0.6334102636778401, "lm_q2_score": 0.5698526514141571, "lm_q1q2_score": 0.36095051818975754}} {"text": "%% Parameters\nParameters_struct.CenterFrequency = 5e9; % 5 GHz\nParameters_struct.Bandwidth = 20e6; % 20 MHz\nParameters_struct.Ts = 1/Parameters_struct.Bandwidth; % 50 ns\n%% Load Given data\nload('Long_preamble_slot_Frequency'); % [1x64]\nload('data_Payload_1'); % [1x48]\nload('data_Payload_2'); % [1x48]\nParameters_struct.Long_preamble_slot_Frequency = Long_preamble_slot_Frequency;\nParameters_struct.data_Payload_1 = data_Payload_1;\nParameters_struct.data_Payload_2 = data_Payload_2;", "meta": {"author": "MeowLucian", "repo": "SDR_Matlab_OFDM_802.11a", "sha": "ee4a1ff01799242bad455054bfb318242250f973", "save_path": "github-repos/MATLAB/MeowLucian-SDR_Matlab_OFDM_802.11a", "path": "github-repos/MATLAB/MeowLucian-SDR_Matlab_OFDM_802.11a/SDR_Matlab_OFDM_802.11a-ee4a1ff01799242bad455054bfb318242250f973/Global_Parameters.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3608716091339978}} {"text": "report_this_filefun(mfilename('fullpath'));\n\n\n% drap a colormap onto topography\nl = isnan(tmap);\ntmap(l) = -10;\n\n%l = tmap< 0.1;\n%tmap(l) = 0;\n\n\n[lat,lon] = meshgrat(tmap,tmapleg);\n%[smap,smapleg] = country2mtx('switzerland',100);\n%[lat0, lon0] = meshgrat(smap,smapleg);\n\n\n% tmap = km2deg(tmap/1);\n[X , Y] = meshgrid(gx,gy);\n\n%sw = interp2(lon0,lat0,smap,lon,lat);\nl = re4 < 1.2;\nre4(l) = 1.2;\nl = re4 > 2.6;\nre4(l) = 2.6;\n\n\nren = interp2(X,Y,re4,lon,lat);\n\nmi = min(min(ren));\nl = isnan(ren);\nren(l) = mi-20;\n\n\nfigure_w_normalized_uicontrolunits('pos',[150 500 1000 700])\n\nhold on; axis off\naxesm('MapProjection','eqaconic','MapParallels',[],...\n 'MapLatLimit',[s4_south s3_north],'MapLonLimit',[s2_west s1_east])\n\n\nl = tmap == -10 & ren < mi -10;\ntmap(l) = nan;\n\n\nmeshm(ren,tmapleg,size(tmap),tmap);\n\ndaspectm('m',4);\ntightmap\nview([0 90])\ncamlight; lighting phong\nset(gca,'projection','perspective');\n\nload worldlo\n%h = displaym(POline); set(h(1),'color',[0.9 0.9 0.9],'Linewidth',1.7)\nh2 = displaym(PPpoint);\nh = displaym(PPtext); trimcart(h);\n\n\nload usahi\n[la , lo ] = extractm(stateline,'california');\n\nplotm(la, lo,'w','Linewidth',1.4);\nzdatam(handlem('allline'),10000) % keep line on surface\nzdatam(handlem('alltext'),10000) % keep line on surface\n\n\n\n\n% pl = plotm(ma(:,2),ma(:,1),'hw');\n% set(pl,'LineWidth',1.5,'MarkerSize',12,...\n% 'MarkerFaceColor','w','MarkerEdgeColor','k')\nplotm(faults(:,2), faults(:,1),'k','Linewidth',2);\nzdatam(handlem('allline'),10000) % keep line on surface\n%zdatam(handlem('alltext'),10000) % keep line on surface\n\n\nj = hsv;\n%j = j(64:-1:1,:);\nj = [ [ 0.9 0.9 0.9 ] ; j];\ncaxis([ 1.15 2.7])\n\ncolormap(j);\n\naxis off; set(gcf,'color','k')\n\nsetm(gca,'ffacecolor','k')\nsetm(gca,'fedgecolor','w','flinewidth',3);\n\nsetm(gca,'mlabellocation',2.5)\nsetm(gca,'meridianlabel','on')\nsetm(gca,'plabellocation',2.5)\nsetm(gca,'parallellabel','on')\nsetm(gca,'Fontcolor','w','Fontweight','bold','FontSize',16,'Labelunits','dm')\n\nh5 = colorbar;\nset(h5,'position',[0.8 0.35 0.01 0.3],'TickDir','out','Ycolor','w','Xcolor','w',...\n 'Fontweight','bold','FontSize',16);\nset(gcf,'Inverthardcopy','off');\n\n\n\n\n\n\n\n", "meta": {"author": "CelsoReyes", "repo": "zmap7", "sha": "3895fcb3ca3073608abe22ca71960eb082fd0d9a", "save_path": "github-repos/MATLAB/CelsoReyes-zmap7", "path": "github-repos/MATLAB/CelsoReyes-zmap7/zmap7-3895fcb3ca3073608abe22ca71960eb082fd0d9a/zmap_deprecated/orphaned/src/drampa_scalMc.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO", "lm_q1_score": 0.7217432182679956, "lm_q2_score": 0.5, "lm_q1q2_score": 0.3608716091339978}} {"text": "function Del = EnvironmentalSelection(Population,nSub)\n% The environmental selection of IM-MOEA\n\n%------------------------------- Copyright --------------------------------\n% Copyright (c) 2023 BIMK Group. You are free to use the PlatEMO for\n% research purposes. All publications which use this platform or any code\n% in the platform should acknowledge the use of \"PlatEMO\" and reference \"Ye\n% Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, PlatEMO: A MATLAB platform\n% for evolutionary multi-objective optimization [educational forum], IEEE\n% Computational Intelligence Magazine, 2017, 12(4): 73-87\".\n%--------------------------------------------------------------------------\n\n %% Non-dominated sorting\n [FrontNo,MaxFNo] = NDSort(Population.objs,nSub);\n Next = FrontNo < MaxFNo;\n\n %% Select the solutions in the last front by crowding distance\n Last = find(FrontNo==MaxFNo);\n CrowdDis = CrowdingDistance(Population(Last).objs);\n [~,rank] = sort(CrowdDis,'descend');\n Next(Last(rank(1:nSub-sum(Next)))) = true;\n % The index of deleted solutions\n Del = ~Next;\nend", "meta": {"author": "BIMK", "repo": "PlatEMO", "sha": "c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5", "save_path": "github-repos/MATLAB/BIMK-PlatEMO", "path": "github-repos/MATLAB/BIMK-PlatEMO/PlatEMO-c5b5b7c37a9bb42689a5ac2a0d638d9c4f5693d5/PlatEMO/Algorithms/Multi-objective optimization/IM-MOEA/EnvironmentalSelection.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7217431943271999, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36087159716359996}} {"text": "clear;\nload('.\\exportData\\S3\\30T40_\\ALL.mat');\ncost_Batt = sum( fcnCalCostonlyDegradation(fst, mpcdata) ) / fst.iter;\ncost24 = sum( fcnCalCostwithDegradation(fst, mpcdata) ) / fst.iter;", "meta": {"author": "juchengquan", "repo": "Two_Layer_EMS", "sha": "48864a80e10fe32e566181ebd5e2394ab2c6e1a7", "save_path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS", "path": "github-repos/MATLAB/juchengquan-Two_Layer_EMS/Two_Layer_EMS-48864a80e10fe32e566181ebd5e2394ab2c6e1a7/calCost_ALL.m", "lm_name": "Qwen/Qwen-72B", "lm_label": "1. YES\n2. NO\n\n", "lm_q1_score": 0.7217431943271999, "lm_q2_score": 0.5, "lm_q1q2_score": 0.36087159716359996}} {"text": "function [Xc3,tri3,xc3,xp3,dc3,xc_texture,nc3,conf_nc3,Nn3] = Meshing(Xc2,xc2,xp2,Thresh_connect,N_smoothing,om,T,N_x,N_y,fc,cc,kc,alpha_c,fp,cp,kp,alpha_p),\n\n% scaled connection threshold\n\nT_connect = Thresh_connect; \t% scaled threshold\n\nfprintf(1,'Organizing the data...\\n');\n\nxp_frac = rem(xp2,1);\nxc_frac = rem(xc2(1,:),1);\n\nif std(xp_frac) > std(xc_frac),\n disp('Dense depth map in the image coordinates');\n temporal = 1;\n spatial = 0;\nelse\n disp('Dense depth map in the cross image and projector frame');\n temporal = 0;\n spatial = 1;\nend;\n\n\nif spatial,\n \n % Something to fix the organization:\n xpmin = min(xp2);\n xp_ind = round(unique(xp2 - xpmin));\n step_xp = min(diff(xp_ind)); %xp_ind(2) - xp_ind(1);\n xp4 = (xp2 - xpmin)/step_xp + xpmin;\n \n xpmin = min(xp4);\n xpmax = max(xp4);\n \n xcmin = min(xc2(2,:));\n xcmax = max(xc2(2,:));\n \nelse\n \n % Something to fix the organization:\n \n xp4 = xc2(1,:);\n \n xpmin = min(xp4);\n xpmax = max(xp4);\n \n xcmin = min(xc2(2,:));\n xcmax = max(xc2(2,:));\n \nend;\n\n\nNrow = xcmax - xcmin + 1;\nNcol = xpmax - xpmin + 1;\n\nXmesh = zeros(Nrow,Ncol);\nYmesh = zeros(Nrow,Ncol);\nZmesh = zeros(Nrow,Ncol);\nCmesh = zeros(Nrow,Ncol);\nxcmesh = zeros(Nrow,Ncol);\nycmesh = zeros(Nrow,Ncol);\n\nind_col = round(xp4 - xpmin + 1);\nind_row = xc2(2,:) - xcmin + 1;\nind = ind_row + (ind_col-1)*Nrow;\nni = length(ind);\n\n\n% Good format for ivview:\nXmesh(ind) = Xc2(1,:);\nYmesh(ind) = Xc2(2,:); \t\t% tries to have it in the right position\nZmesh(ind) = Xc2(3,:); \t\t% tries to have it in the right position\nCmesh(ind) = ones(1,ni);\nxcmesh(ind) = xc2(1,:);\nycmesh(ind) = xc2(2,:);\n\n% Hypothesis on the triangles:\n\nD1 = Cmesh(2:Nrow,1:(Ncol-1)) & Cmesh(1:(Nrow-1),2:Ncol);\nF1 = Cmesh(1:(Nrow-1),1:(Ncol-1)) & D1;\nF2 = Cmesh(2:Nrow,2:Ncol) & D1;\nC1 = (F1 | F2);\n\nD2 = Cmesh(1:(Nrow-1),1:(Ncol-1)) & Cmesh(2:Nrow,2:Ncol);\nF3 = Cmesh(1:(Nrow-1),2:Ncol) & D2;\nF4 = Cmesh(2:Nrow,1:(Ncol-1)) & D2;\nC2 = (F3 | F4);\n\nAmbi = C1 & C2; \t\t\t% ambiguous zones\nDiv1 = C1 & ~C2; \t\t\t% needs to check relative distance of points\nDiv2 = ~C1 & C2; \t\t\t% needs to check relative distance of points\n\n% diagonal measure:\n\n%Dm1 = abs(Zmesh(2:Nrow,1:(Ncol-1)) - Zmesh(1:(Nrow-1),2:Ncol));\n\n\nDm1 =( Xmesh(2:Nrow,1:(Ncol-1)) - Xmesh(1:(Nrow-1),2:Ncol)).^2 + (Ymesh(2:Nrow,1:(Ncol-1)) - Ymesh(1:(Nrow-1),2:Ncol)).^2 + (Zmesh(2:Nrow,1:(Ncol-1)) - Zmesh(1:(Nrow-1),2:Ncol)).^2;\n\n%Dm2 = abs(Zmesh(1:(Nrow-1),1:(Ncol-1)) - Zmesh(2:Nrow,2:Ncol));\n\nDm2 = (Xmesh(1:(Nrow-1),1:(Ncol-1)) - Xmesh(2:Nrow,2:Ncol)).^2 + (Ymesh(1:(Nrow-1),1:(Ncol-1)) - Ymesh(2:Nrow,2:Ncol)).^2 + (Zmesh(1:(Nrow-1),1:(Ncol-1)) - Zmesh(2:Nrow,2:Ncol)).^2 ;\n\nDiv1n = Div1 | ((Dm1 <= Dm2)&Ambi);\nDiv2n = Div2 | ((Dm2 < Dm1)&Ambi);\n\nDiv11 = Div1n & F1;\nDiv12 = Div1n & F2;\nDiv21 = Div2n & F3;\nDiv22 = Div2n & F4;\n\n\n% look at local difference:\n\ndZ_r = abs(Zmesh(:,2:Ncol)-Zmesh(:,1:(Ncol-1)));\ndZ_c = abs(Zmesh(2:Nrow,:)-Zmesh(1:(Nrow-1),:));\n\nDiv11 = Div11 & (dZ_r(1:(Nrow-1),:) 1) & (is < Nrow) & (js > 1) & (js < Ncol));\n \n is = is(indd);\n js = js(indd);\n \n sm = is + (js-1)*(Nrow);\n sm_t = is + (js-1)*(Nrow) - 1;\n sm_b = is + (js-1)*(Nrow) + 1;\n sm_r = is + (js)*(Nrow);\n sm_l = is + (js-2)*(Nrow);\n \n sm_tr = is + (js)*(Nrow) - 1;\n sm_br = is + (js)*(Nrow) + 1;\n sm_tl = is + (js-2)*(Nrow) -1;\n sm_bl = is + (js-2)*(Nrow) + 1;\n \n \n XX(sm) = 0.5 * XX(sm) + 0.5 * ((XX(sm_t).*t(sm)+XX(sm_b).*b(sm)+XX(sm_r).*r(sm)+XX(sm_l).*l(sm)+XX(sm_tr).*tr(sm)+XX(sm_br).*br(sm)+XX(sm_tl).*tl(sm)+XX(sm_bl).*bl(sm))./Nn(sm));\n \n YY(sm) = 0.5 * YY(sm) + 0.5 * ((YY(sm_t).*t(sm)+YY(sm_b).*b(sm)+YY(sm_r).*r(sm)+YY(sm_l).*l(sm)+YY(sm_tr).*tr(sm)+YY(sm_br).*br(sm)+YY(sm_tl).*tl(sm)+YY(sm_bl).*bl(sm))./Nn(sm));\n \n ZZ(sm) = 0.5 * ZZ(sm) + 0.5 * ((ZZ(sm_t).*t(sm)+ZZ(sm_b).*b(sm)+ZZ(sm_r).*r(sm)+ZZ(sm_l).*l(sm)+ZZ(sm_tr).*tr(sm)+ZZ(sm_br).*br(sm)+ZZ(sm_tl).*tl(sm)+ZZ(sm_bl).*bl(sm))./Nn(sm));\n \n Xmesh = XX(1:Nrow,1:Ncol);\n Ymesh = YY(1:Nrow,1:Ncol);\n Zmesh = ZZ(1:Nrow,1:Ncol);\n \n \n %%% reconnect after smoothing:\n \n % diagonal measure:\n \n Dm1 =( Xmesh(2:Nrow,1:(Ncol-1)) - Xmesh(1:(Nrow-1),2:Ncol)).^2 + (Ymesh(2:Nrow,1:(Ncol-1)) - Ymesh(1:(Nrow-1),2:Ncol)).^2 + (Zmesh(2:Nrow,1:(Ncol-1)) - Zmesh(1:(Nrow-1),2:Ncol)).^2;\n \n Dm2 = (Xmesh(1:(Nrow-1),1:(Ncol-1)) - Xmesh(2:Nrow,2:Ncol)).^2 + (Ymesh(1:(Nrow-1),1:(Ncol-1)) - Ymesh(2:Nrow,2:Ncol)).^2 + (Zmesh(1:(Nrow-1),1:(Ncol-1)) - Zmesh(2:Nrow,2:Ncol)).^2 ;\n \n \n Div1n = Div1 | ((Dm1 <= Dm2)&Ambi);\n Div2n = Div2 | ((Dm2 < Dm1)&Ambi);\n \n Div11 = Div1n & F1;\n Div12 = Div1n & F2;\n Div21 = Div2n & F3;\n Div22 = Div2n & F4;\n \n \n % look at local difference:\n \n dZ_r = abs(Zmesh(:,2:Ncol)-Zmesh(:,1:(Ncol-1)));\n dZ_c = abs(Zmesh(2:Nrow,:)-Zmesh(1:(Nrow-1),:));\n \n Div11 = Div11 & (dZ_r(1:(Nrow-1),:)