Datasets:
Upload create_data_retrieval.py
Browse files- create_data_retrieval.py +182 -0
create_data_retrieval.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import Counter
|
| 2 |
+
import json
|
| 3 |
+
import re
|
| 4 |
+
|
| 5 |
+
import datasets
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from huggingface_hub import create_repo, upload_file, hf_hub_download
|
| 8 |
+
from huggingface_hub.utils._errors import HfHubHTTPError
|
| 9 |
+
|
| 10 |
+
########################
|
| 11 |
+
# Cleanup queries data #
|
| 12 |
+
########################
|
| 13 |
+
|
| 14 |
+
# load dataset
|
| 15 |
+
dl_path = hf_hub_download(
|
| 16 |
+
repo_id="antoinelb7/alloprof",
|
| 17 |
+
filename="data/alloprof.csv",
|
| 18 |
+
repo_type="dataset",
|
| 19 |
+
revision="0faa90fee1ad1a6e3e461d7be49abf71488e6687"
|
| 20 |
+
)
|
| 21 |
+
alloprof_queries = pd.read_csv(dl_path)
|
| 22 |
+
|
| 23 |
+
# remove non-queries
|
| 24 |
+
alloprof_queries = alloprof_queries[alloprof_queries["is_query"]]
|
| 25 |
+
|
| 26 |
+
# remove nans in text
|
| 27 |
+
alloprof_queries = alloprof_queries[~alloprof_queries["text"].isna()]
|
| 28 |
+
|
| 29 |
+
# most data flagged as language "en" are actually french. We je remove english ones
|
| 30 |
+
# by matching specifig words
|
| 31 |
+
alloprof_queries = alloprof_queries[
|
| 32 |
+
~(
|
| 33 |
+
(alloprof_queries["text"].str.lower().str.startswith("hi"))
|
| 34 |
+
| (alloprof_queries["text"].str.lower().str.startswith("hello"))
|
| 35 |
+
| (alloprof_queries["text"].str.lower().str.startswith("how"))
|
| 36 |
+
| (alloprof_queries["text"].str.lower().str.startswith("i "))
|
| 37 |
+
)
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
# only keep queries with french relevant documents
|
| 41 |
+
alloprof_queries = alloprof_queries[
|
| 42 |
+
(~alloprof_queries["relevant"].isna()) & (alloprof_queries["relevant"].str.endswith("-fr"))
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
# remove queries with url in text because question relies on picture
|
| 46 |
+
alloprof_queries = alloprof_queries[~alloprof_queries["text"].str.contains("https://www.alloprof.qc.ca")]
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# split multiple relevant docs and remove -fr suffix on id
|
| 50 |
+
def parse_relevant_ids(row):
|
| 51 |
+
row = row.split(";")
|
| 52 |
+
row = [r[:-3] for r in row if r.endswith("-fr")]
|
| 53 |
+
return row
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
alloprof_queries["relevant"] = alloprof_queries["relevant"].apply(parse_relevant_ids)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Parse the answer
|
| 60 |
+
def parse_answer(row):
|
| 61 |
+
try:
|
| 62 |
+
row = json.loads(row)
|
| 63 |
+
text = []
|
| 64 |
+
for i in row:
|
| 65 |
+
if type(i["insert"]) is not dict:
|
| 66 |
+
text.append(i["insert"])
|
| 67 |
+
text = "".join(text)
|
| 68 |
+
except:
|
| 69 |
+
text = row
|
| 70 |
+
return text.replace(" ", " ").replace("\u200b", "").replace("\xa0", "")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
alloprof_queries["answer"] = alloprof_queries["answer"].apply(parse_answer)
|
| 74 |
+
|
| 75 |
+
# only keep useful columns
|
| 76 |
+
alloprof_queries = alloprof_queries[["id", "text", "answer", "relevant", "subject"]]
|
| 77 |
+
|
| 78 |
+
# remove duplicate queries (same text)
|
| 79 |
+
alloprof_queries = alloprof_queries.drop_duplicates(subset=["text"], keep="first")
|
| 80 |
+
|
| 81 |
+
##########################
|
| 82 |
+
# Cleanup documents data #
|
| 83 |
+
##########################
|
| 84 |
+
|
| 85 |
+
# load dataset
|
| 86 |
+
dl_path = hf_hub_download(
|
| 87 |
+
repo_id="antoinelb7/alloprof",
|
| 88 |
+
filename="data/pages/page-content-fr.json",
|
| 89 |
+
repo_type="dataset",
|
| 90 |
+
revision="0faa90fee1ad1a6e3e461d7be49abf71488e6687"
|
| 91 |
+
)
|
| 92 |
+
alloprof_docs = pd.read_json(dl_path)
|
| 93 |
+
|
| 94 |
+
# Remove Nans in data
|
| 95 |
+
alloprof_docs = alloprof_docs[~alloprof_docs["data"].isna()]
|
| 96 |
+
|
| 97 |
+
# parse dataset
|
| 98 |
+
def parse_row(row):
|
| 99 |
+
return [row["file"]["uuid"], row["file"]["title"], row["file"]["topic"]]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_text(row):
|
| 103 |
+
text = []
|
| 104 |
+
for s in row["file"]["sections"]:
|
| 105 |
+
for m in s["modules"]:
|
| 106 |
+
if m["type"] == "blocSpecial":
|
| 107 |
+
if m["subtype"] in ["definition", "exemple"]:
|
| 108 |
+
for sm in m["submodules"]:
|
| 109 |
+
if sm["type"] == "text":
|
| 110 |
+
text.append(sm["text"])
|
| 111 |
+
elif m["type"] == "text":
|
| 112 |
+
text.append(m["text"])
|
| 113 |
+
text = " ".join(text)
|
| 114 |
+
text = re.sub("<[^<]+?>", "", text)
|
| 115 |
+
text = text.replace(" ", " ").replace("\u200b", "")
|
| 116 |
+
text = re.sub("\s{2,}", " ", text)
|
| 117 |
+
|
| 118 |
+
return text
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
parsed_df = alloprof_docs["data"].apply(parse_row)
|
| 122 |
+
alloprof_docs[["uuid", "title", "topic"]] = parsed_df.tolist()
|
| 123 |
+
alloprof_docs["text"] = alloprof_docs["data"].apply(get_text)
|
| 124 |
+
|
| 125 |
+
# remove unnecessary columns
|
| 126 |
+
alloprof_docs = alloprof_docs[["uuid", "title", "topic", "text"]]
|
| 127 |
+
|
| 128 |
+
################
|
| 129 |
+
# Post Process #
|
| 130 |
+
################
|
| 131 |
+
|
| 132 |
+
# check that all relevant docs mentioned in queries are in docs dataset
|
| 133 |
+
relevants = alloprof_queries["relevant"].tolist()
|
| 134 |
+
relevants = {i for j in relevants for i in j} # flatten list and get uniques
|
| 135 |
+
assert relevants.issubset(
|
| 136 |
+
alloprof_docs["uuid"].tolist()
|
| 137 |
+
), "Some relevant document of queries are not present in the corpus"
|
| 138 |
+
|
| 139 |
+
# convert to Dataset
|
| 140 |
+
alloprof_queries = datasets.Dataset.from_pandas(alloprof_queries)
|
| 141 |
+
alloprof_docs = datasets.Dataset.from_pandas(alloprof_docs)
|
| 142 |
+
|
| 143 |
+
# identify duplicate documents
|
| 144 |
+
# (duplicates are actually error documents,
|
| 145 |
+
# such as "fiche en construction", " ", ...
|
| 146 |
+
duplicate_docs = Counter(alloprof_docs["text"])
|
| 147 |
+
duplicate_docs = {k:v for k,v in duplicate_docs.items() if v > 1}
|
| 148 |
+
|
| 149 |
+
# for each text that is in duplicate...
|
| 150 |
+
for dup_text in duplicate_docs:
|
| 151 |
+
# ...get the ids of docs that have that text
|
| 152 |
+
duplicate_ids = [d["uuid"] for d in alloprof_docs if d["text"] == dup_text]
|
| 153 |
+
# ...delete all the documents that have these ids from the corpus dataset
|
| 154 |
+
alloprof_docs = alloprof_docs.filter(lambda x: x["uuid"] not in duplicate_ids)
|
| 155 |
+
# ...delete them from the relevant documents in queries
|
| 156 |
+
alloprof_queries = alloprof_queries.map(lambda x: {"relevant": [i for i in x["relevant"] if i not in duplicate_ids]})
|
| 157 |
+
|
| 158 |
+
# remove the queries that have no remaining relevant documents
|
| 159 |
+
alloprof_queries = alloprof_queries.filter(lambda x: len(x["relevant"]) > 0)
|
| 160 |
+
|
| 161 |
+
# split queries into train-test
|
| 162 |
+
alloprof_queries = alloprof_queries.train_test_split(test_size=.2)
|
| 163 |
+
|
| 164 |
+
####################
|
| 165 |
+
# Upload to HF Hub #
|
| 166 |
+
####################
|
| 167 |
+
|
| 168 |
+
# create HF repo
|
| 169 |
+
repo_id = "lyon-nlp/alloprof"
|
| 170 |
+
try:
|
| 171 |
+
create_repo(repo_id, repo_type="dataset")
|
| 172 |
+
except HfHubHTTPError as e:
|
| 173 |
+
print("HF repo already exist")
|
| 174 |
+
|
| 175 |
+
# save datasets as json
|
| 176 |
+
alloprof_queries["train"].to_pandas().to_json("queries-train.json", orient="records")
|
| 177 |
+
alloprof_queries["test"].to_pandas().to_json("queries-test.json", orient="records")
|
| 178 |
+
alloprof_docs.to_pandas().to_json("documents.json", orient="records")
|
| 179 |
+
|
| 180 |
+
upload_file(path_or_fileobj="queries-train.json", path_in_repo="queries-train.json", repo_id=repo_id, repo_type="dataset")
|
| 181 |
+
upload_file(path_or_fileobj="queries-test.json", path_in_repo="queries-test.json", repo_id=repo_id, repo_type="dataset")
|
| 182 |
+
upload_file(path_or_fileobj="documents.json", path_in_repo="documents.json", repo_id=repo_id, repo_type="dataset")
|