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Abstract

Differentiable Neural Architecture Search (DNAS) has

demonstrated great success in designing state-of-the-art, ef-

ficient neural networks. However, DARTS-based DNAS’s

search space is small when compared to other search

methods’, since all candidate network layers must be ex-

plicitly instantiated in memory. To address this bottle-

neck, we propose a memory and computationally efficient

DNAS variant: DMaskingNAS. This algorithm expands the

search space by up to 1014× over conventional DNAS,

supporting searches over spatial and channel dimensions

that are otherwise prohibitively expensive: input resolu-

tion and number of filters. We propose a masking mech-

anism for feature map reuse, so that memory and com-

putational costs stay nearly constant as the search space

expands. Furthermore, we employ effective shape prop-

agation to maximize per-FLOP or per-parameter accu-

racy. The searched FBNetV2s yield state-of-the-art per-

formance when compared with all previous architectures.

With up to 421× less search cost, DMaskingNAS finds mod-

els with 0.9% higher accuracy, 15% fewer FLOPs than

MobileNetV3-Small; and with similar accuracy but 20%

fewer FLOPs than Efficient-B0. Furthermore, our FBNetV2

outperforms MobileNetV3 by 2.6% in accuracy, with equiv-

alent model size. FBNetV2 models are open-sourced at

https://github.com/facebookresearch/mobile-vision.

1. Introduction

Deep neural networks have led to significant progress

in many research areas and applications, such as computer

vision and autonomous driving. Despite this, designing

an efficient network for resource-constrained settings re-

mains a challenging problem. Initial directions involved
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Figure 1: DNAS: Adding all possible numbers of filters

to DNAS (top-right) increases computational and memory

costs drastically, exacerbating DNAS’s memory bottleneck

on search space size. Pruning: Channel pruning (bottom-

left) is limited to training one architecture at a time. Ours:

With our weight-sharing approximation, DNAS can explore

all possible number of filters simultaneously with negligible

memory and computation overhead. See Fig. 2 for details.

compressing existing networks [7] or building small net-

works [23, 26]. However, the design space can easily

contain more than 1018 candidate architectures [33, 27],

making manual design choices sub-optimal and difficult to

scale. In lieu of manual tuning, recent work uses neural ar-

chitecture search (NAS) to design networks automatically.
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Previous NAS methods utilize reinforcement learning

(RL) techniques or evolutionary algorithms (EAs). How-

ever, both methods are computationally expensive and con-

sume thousands of GPU hours [40, 29]. As a result, recent

NAS literature [33, 20, 24] focuses on differentiable neural

architecture search (DNAS); DNAS searches over a super-

graph that encompasses all candidate architectures, select-

ing a single path as the final neural network. Unlike conven-

tional NAS, DNAS can search large combinatorial spaces in

the time it takes to train a single model [20, 35, 33, 27]. One

class of DNAS methods, based on DARTS [20], suffer from

two significant limitations [5]:

• Memory costs bound the search space. Short of pag-

ing in and out tensors, the supergraph and feature maps

must reside in GPU memory for training, which limits

the search space.

• Cost grows linearly with the number of options per

layer. This means that each new search dimension in-

troduces combinatorially more options and combina-

torial memory and computational costs.

The other class of DNAS methods, not based on DARTS,

suffer from similar issues: For example, ProxylessNAS

tackles the memory constraint by training only one path in

the supergraph each iteration. However, this means Proxy-

lessNAS would take a prohibitively long time to converge

on an order-of-magnitude larger search space. These mem-

ory and computation issues, for all DNAS methods, prevent

us from expanding the search space to explore larger spaces

of configurations. Noting that feature maps typically dom-

inate memory cost [1], we propose a formulation of DNAS

(Fig. 1) called DMaskingNAS (Fig. 2) that increases the

search space size by orders of magnitude. To accomplish

this, we represent multiple channel and input resolution op-

tions in the supergraph with masks, which carry negligible

memory and computational costs. Furthermore, we reuse

feature maps for all options in the supergraph, which en-

ables nearly constant memory cost with increasing search

space sizes. These optimizations yield the following three

contributions:

• A memory and computationally efficient DNAS

that optimizes both macro- (resolution, channels) and

micro- (building blocks) architectures jointly in a

1014× larger search space using differentiable search.

To the best of our knowledge, we are the first to tackle

this problem using a differentiable search framework

supergraph, with substantially less computational cost

and roughly constant memory cost.

• A masking mechanism and effective shape propa-

gation for feature map reuse. This is applied to both

the spatial and channel dimensions in DNAS.

• State-of-the-art results on ImageNet classification.

With only 27 hours on 8 GPUs, our searched compact

models lead to substantial per-parameter, per-FLOP

accuracy improvements. The searched models outper-

form all previous state-of-the-art neural networks, both

manually and automatically designed, small and large.

Table 1: The number of DMaskingNAS design choices

eclipses that of previous search spaces: number of chan-

nels c, kernel size k, number of layers l, bottleneck type b,
input resolution r, and expansion rate e.

NAS algorithm c k l b r e

MnasNet [29] X X X X

ProxylessNAS [2] X X X X

Single-Path NAS [27] X X X

ChamNet [3] X X X X

FBNet [33] X X X X

DMaskingNAS X X X X X X

2. Related Work

Hand-crafted, efficient neural networks see two predom-

inant approaches: (1) compressing existing architectures

and (2) designing compact architectures from scratch.

Network compression includes both architectural and

non-architectural modifications. One non-architectural ap-

proach is low-bit quantization, where weights and activa-

tions alike may be represented with fewer bits. For example,

Wang et al. [31] propose hardware-aware automated quan-

tization, which achieves a 1.4-1.95× latency reduction on

MobileNet [12]. These techniques are orthogonal to and

can be combined with the methods in this paper. Alter-

natively, architectural modifications include network prun-

ing [8, 32, 36], where various heuristics govern layer-wise

or channel-wise pruning. For example, Han et al. [8] show

that magnitude-based pruning can reduce parameter count

by orders of magnitude without accuracy loss, and Ne-

tAdapt [37] utilizes a filter pruning algorithm that achieves a

1.2× speedup for MobileNetV2. However, with heuristics-

based simplifications, pruning methods train potential ar-

chitectures separately, one after another – in some cases,

pruning methods consider only one architecture [22, 10].

Compact architecture design aims to directly construct

efficient networks, rather than trim an expensive one [15,

34]. For example, MobileNet [12] and MobileNetV2 [26]

achieve substantial efficiency improvements by exploiting a

depth-wise convolution and an inverted residual block, re-

spectively. ShuffleNetV2 [23] shrinks the model size uti-

lizing low-cost group convolutions. Tan et al. propose a

compound scaling method, obtaining a family of architec-

tures that achieve state-of-the-art accuracy with an order

of magnitude fewer parameters than previous convolutional
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Figure 2: Channel Masking for channel search: A column vector mask M ∈ R
c is the weighted sum of several masks

mi ∈ R
c, with Gumbel Softmax weights gi. Each mi has ones (white) in the first k entries and zeros (blue) in the next c− k

entries, for some k ∈ Z. Multiplication with this mask speeds up channel search, using a weight-sharing approximation

described in Fig. 3. Resolution Subsampling for input resolution: X is an intermediate output feature map for the network.

A is subsampled from X using nearest neighbors. Values at the blue pixels in column A are assembled to create the smaller

feature map in B. Next, run the operation F . Finally, each value in C is placed back into a larger feature map in D. Note we

put values back (D) into pixels where we pulled values from (A). This process is motivated in Fig. 4.

networks [30]. However, these models rely on finely-tuned,

manual decisions that are bested by automatic design.

Neural architecture search automates the design of

state-of-the-art neural networks. Zoph et al. first proposed

using RL for automated neural network design in [39]. This

and other early NAS approaches are based on RL [39, 29]

and EA [25]. However, both approaches consume substan-

tial computational resources.

Later works utilize various techniques to reduce the com-

putational cost of search. One such technique formulates

the architecture search problem as a path-finding process in

a supergraph [33, 20, 6, 27]. Among them, gradient-based

NAS has emerged as a promising tool. Wu et al. show

that gradient-based, differentiable NAS yields state-of-the-

art compact architectures with 421× less search cost than

RL-based approaches. Another direction is to exploit a per-

formance predictor to guide the search process [3, 19]. Such

approaches explore the search space by trimming progres-

sively and lead to significant reductions in search cost.

Stamoulis et al. [28] introduce weight-sharing to further

reduce the computational cost of search. However, ker-

nel weight-sharing doesn’t address the primary drawback of

DARTS, namely a memory bottleneck yielding small search

space size: Say a “mixed kernel” contains weights shared

between a 3×3 and 5×5. Since it is impossible to extract a

3× 3 convolution’s outputs from a 5× 5’s (and vice versa),

this mixed kernel still convolves 2× and still stores 2 feature

maps for backpropagation. Thus, 2 kernel-weight-sharing

convolutions induce memory and computational costs of 2

vanilla convolutions.

Searching along spatial and channel dimensions has

been studied both with and without NAS. Liu et al [18]

develop a NAS variant that searches over varying strides

for semantic segmentation. However, this method suffers

from increasing memory cost as the number of possible in-

put resolutions grows. As described above, network pruning

suffers from inefficient and sequential exploration of archi-

tectures, one-by-one. Yu et al [38] amend this partially by

creating a batchnorm invariant to the number input chan-

nels; after training the “supergraph” they see competitive

accuracy without further training, for each possible subset

of channels. Yu et al [21] expand on these slimmable net-

works by introducing a test-time greedy channel selection

procedure. However, these methods are orthogonal to and

can be combined with DMaskingNAS, as we train the sam-

pled architecture from scratch. To address these concerns,

our algorithm jointly optimizes over multiple input resolu-

tions and channel options simultaneously, increasing mem-

ory cost only negligibly as the number of options grows.

This allows DMaskingNAS to support orders of magnitude

more possible architectures, under existing memory con-

straints.

3. Method

We propose DMaskingNAS to search over spatial and

channel dimensions, summarized in Fig. 2. The search

space would be computationally prohibitive and ill-formed

without the optimizations described below; our approach

makes it possible to search this expanded search space (Ta-

ble 1) over channels and input resolutions.

3.1. Channel Search

To support searches over varying numbers of channels,

previous DNAS methods simply instantiate a block for ev-
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Figure 3: Channel Search Challenges: Step A: Consider

3 convolutions with varying numbers of filters. Each out-

put (gray) will have varying numbers of channels. Thus,

the outputs cannot be naively summed. Step B: Zero-

padding (blue) outputs allows them to be summed. How-

ever, both FLOP and memory cost increases sub-linearly

with the number of channel options. Step C: This is equiv-

alent to running three convolutions with equal numbers of

filters, multiplied by masks of zeros (blue) and ones (white).

Step D: We approximate using weight sharing – all three

convolutions are represented by one convolution. Step E:

This is equivalent to summing the masks first, before mul-

tiplying by the output. Now, FLOP and memory cost are

effectively constant w.r.t. the number of channel options.

ery channel option in the supergraph. For a convolution

with k filters, this could mean up to k(k + 1)/2 ∼ O(k2)
convolutions. Previous channel pruning methods [21] suf-

fer from a similar drawback: each option must be trained

separately, finding the “optimal” channel count in one shot

or iteratively. Furthermore, even without saturating the

maximum number of possibilities, there are two problems,

the first of which makes this search impossible:

1. Incompatible dimensions: DNAS is divided into sev-

eral “cells”. In each cell, we consider a number of

different block options; the outputs of all options are

combined in a weighted sum. This means that all block

outputs must align dimensions. If each block adopts

convolutions with different number of filters, each out-

put will have a different number of channels. As a re-

sult, DNAS could not perform a weighted sum.

2. Slower training, increased memory cost: Even with

a workaround, with this naı̈ve instantiation, each con-

volution with a different channel option must be run

separately, resulting in a O(k) increase in FLOP cost.

Furthermore, each output feature map must be stored

separately in memory.

To address the aforementioned issues, we handle the in-

compatibility (Fig. 3, Step A): consider a block b with vary-

ing numbers of filters, where bi denotes this block with i
filters. The maximum number of filters is k. The outputs of

all blocks are then zero-padded to have k channels (Fig. 3,

Step B). Given input x, the Gumbel Softmax output is thus

the following, with Gumbel weights gi:

y =

k∑

i=1

giPAD(bi(x), k) (1)

Note that this is equivalent to increasing the number of fil-

ters for all convolutions to k, and masking out the extra

channels (Fig. 3, Step C). ✶i ∈ R
k is a column vector with

i leading 1s and k − i trailing zeros. Note that the search

method is invariant to the ordering of 1s and 0s. Since all

blocks bi have the same number of filters, we can approxi-

mate by sharing weights, so that bi = b (Fig. 3, Step D).

y =
k∑

i=1

gi(b(x) ◦ ✶i) (2)

Finally, with this approximation, we can handle the com-

putational complexity of the naı̈ve channel search approach:

this is equivalent to computing the aggregate mask and run-

ning the block b only once (Fig. 3, Step E).

y = b(x) ◦

k∑

i=1

gi✶i

︸ ︷︷ ︸

M

(3)

This approximation only requires one forward pass and

one feature map, inducing no additional FLOP or memory

costs other than the negligible M term in Eq. 3 (Fig. 2,

Channel Masking). Furthermore, the approximation falls

short of equivalence only because weights are shared, which

is shown to reduce train time and boost accuracy in DNAS

[28]. This allows us to search the number of output chan-

nels for any block, including related architectural decisions

such as the expansion rate in an inverted residual block.

3.2. Input Resolution Search

For spatial dimensions, we search over input resolutions.

As with channels, previous DNAS methods would simply

instantiate each block with every input resolution. This

naı̈ve method’s downfalls are twofold: increased memory

cost and incompatible dimensions. As before, we address

both issues directly by zero-padding the result. However,

there are two caveats:
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1. Pixel misalignment: means padding cannot occur

naı̈vely as before. It would not make sense to zero-

pad the periphery of the image, since the sum in Eq. 1

would result in misaligned pixels (Fig. 4, B). To handle

pixel misalignment, we zero-pad such that zeros are in-

terspersed spatially (Fig. 4, C). This zero-padding pat-

tern is uniform; except for the zeros, this is a nearest

neighbors upsampling. For example, a 2× increase in

size would involve zero-padding every other row and

column. Zero-padding instead of upsampling mini-

mizes “pixel contamination” across input resolutions

(Fig. 5).

2. Receptive field misalignment: Since subsets of

the feature map correspond to different resolutions,

naı̈vely convolving over the full feature map would re-

sult in a reduced receptive field (Fig. 4, D). To handle

receptive field misalignment, we convolve over sub-

sampled input instead. (Fig. 4, E). Using Gumbel Soft-

max, we arrive at “resolution subsampling” in Fig. 2.

NASNet [40] introduces a similar notion of combining

hidden states. These combinations are also used to effi-

ciently explore a combinatorially large search space but are

used to determine – instead of input resolution or channels

– the number of times to repeat a searched cell. With the

above insights, the input resolution search thus incurs con-

stant memory cost, regardless of the number of input res-

olutions. On the other hand, computational cost increases

sub-linearly as the number of resolutions grows.

3.3. Effective Shape Propagation

Note this calculation for effective shape is only used

during training. In our formulation of the weighted sum

Eq. 1, the output y retains the maximum number of chan-

nels. However, there exists a non-integral number of effec-

tive channels: say a 16-channel output has Gumbel weight

gi = 0.8 and a 12-channel output has weight gi = 0.2.

This means the effective number of channels is 0.8 ∗ 16 +
0.2 ∗ 12 = 15.2. These effective channels are necessary for

both FLOP and parameter computation, as assigning higher

weight to more channels should incur a larger cost penalty.

This effective shape is how we realize effective resource

costs introduced in previous works [33, 35]: First, define

the gumbel softmax weights as

gli =
exp[(αl

i + ǫli)/τ ]

Σiexp[(αl
i + ǫli)/τ ]

(4)

with sampling parameter α, Gumbel noise ǫ, temperature

τ . For a convolution with Gumbel Softmax in the lth layer,

we define its effective output shape S̄l
out in Eq. 7 using ef-

fective output channel (C̄l
out, Eq. 5), and effective height,

width (h̄l
out, w̄

l
out, Eq. 6).

C̄l
out = Σig

l
i · C

l
i,out (5)

F

F

=

=

Pixel Misalignment

Receptive Field Misalignment

D

E

B

C

A

Incompatible Dimensions

Figure 4: Spatial Search Challenges: A: Tensors with dif-

ferent spatial dimensions cannot be summed due to incom-

patible dimensions. B: Zero-padding along the periphery

of the smaller feature map makes summing possible. How-

ever, the top-right pixels (blue) are not aligned correctly.

C: Interspersing zero-padding spatially results in a sum that

aligns pixels correctly. Note the top-right pixels of both fea-

ture maps are correctly overlapping in the sum. D: Say F
is a convolution with 3 × 3 kernels. Convolving naı̈vely

with the feature map, containing a subset (gray), results in

reduced receptive field (2 × 2, blue) for the subset. E: To

preserve receptive field for all searched input resolutions,

the input must be subsampled before convolving. Note the

receptive field (blue) is still 3 × 3. Furthermore, note we

can achieve the same effect, without the need to construct a

smaller tensor, with appropriately-strided dilated convolu-

tions; we subsample to avoid modifying the operation F .

h̄l
out = Σig

l
i · h̄

l
in, w̄

l
out = Σig

l
i · w̄

l
in (6)

S̄l
out = (n, C̄l

out, h̄
l
out, w̄

l
out) (7)

with batch size n, effective input width w̄in and height h̄in.

For a convolution layer without a Gumbel Softmax, ef-

fective output shape simplifies to Eq. 8, where effective

channel count is equal to actual channel count. For a depth-

wise convolution, effective output shape simplifies to Eq. 9,
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(full)

4x4
(subsampled)

2x2
(subsampled)

4x4
(combined)

+ =

Figure 5: Minimizing Pixel “Contamination”: On the far

left, we have the original 8×8 feature map. The blue 4×4 is

a feature map subsampled with nearest neighbors and zero-

padded uniformly. The yellow 2×2 is also subsampled and

zero-padded. Summing the 2 × 2 with the 4 × 4 yields the

combined feature map to the far right. Only the green pix-

els in the corners hold values from both feature map sizes;

these green values are “contaminated” by the lower resolu-

tion feature maps.

where effective channel count is simply propagated.

C̄l
out = Cl

out (8)

C̄l
out = C̄l

in (9)

with actual output channel count Cout, effective input chan-

nel count C̄in. Then, we define the cost function for the lth

layer as follow:

costl =

{

k2 · h̄l
out · w̄

l
out · C̄

l
in · C̄l

out / γ if FLOP

k2 · C̄l
in · C̄l

out / γ if param

(10)

with γ convolution groups. The effective input channels for

the (l+ 1)th layer are C̄l+1

in = C̄l
out. The total training loss

consists of (1) cross-entropy loss and (2) total cost, which

is the sum of cost from all layers: costtotal = Σlcostl.

In the forward pass, for all convolutions, we calculate

and return both the output tensor and effective output shape.

Additionally, τ in the Gumbel Softmax Eq. 4 decreases

throughout training, [16], forcing gl to approach a one-hot

distribution. argmaxig
l
i would thus select a path of blocks in

the supergraph; a single channel and expansion rate option

for each block; and a single input resolution for the entire

network. This final architecture is then trained. Note this

final model does not employ masking or require effective

shapes.

4. Experiments

We use DMaskingNAS to search for convolutional net-

work architectures under different objectives. We com-

pare our search space, performance of searched models, and

search cost to previously state-of-the-art networks. Detailed

numerical results are listed in Table 4.

F1

F4

L2

P1  

kernel size 3 kernel size 5 skip

 

 

Figure 6: Searched FBNetV2 architectures, with colors de-

noting different kernel sizes and heights denoting different

expansion rates. The heights are drawn to scale.

4.1. Experimental Setup

We implement DMaskingNAS using PyTorch on 8 Tesla

V100 GPUs with 16GB memory. We use DMaskingNAS to

search for convolutional neural networks on the ImageNet

(ILSVRC 2012) classification dataset [4], a widely-used

NAS evaluation benchmark. We use the same training set-

tings as reported in [33]: we randomly select 10% of classes

from the original 1000 classes and train the supergraph for

90 epochs. In each epoch, we train the network weights

with 80% of training samples using SGD. We then train the

Gumbel Softmax sampling parameter α with the remaining

20% using Adam [17]. We set initial temperature τ to 5.0

and exponentially anneal by e−0.045 ≈ 0.956 every epoch.

4.2. Search Space

Previous cell-level searches produced fragmented, com-

plicated, and latency-unfriendly blocks. Thus, we adopt a

layer-wise search space for known, latency-friendly blocks.

Table 3 describes the micro-architecture search space:

the block structure is inspired by [26, 11] and sequentially

consists of a 1× 1 point-wise convolution, a 3× 3 or 5× 5
depth-wise convolution, and another 1 × 1 point-wise con-

volution. Table 2 describes the macro-architecture. The

search space contains more than 1035 candidate architec-

tures, which is 1014× larger than DNAS’s [33].

4.3. Memory Cost

Our memory optimizations yield a ∼1MB increase in

memory cost for every 2 orders of magnitude the channel

search space grows by; for context, this 1 MB increase is

just 0.1% of the total memory cost during training. This

is due to our feature map reuse as described in Sec. 3.1.

We compare memory costs for DNAS and DMaskingNAS

as the number of channel options increases (Fig. 7, left).

With only 8 channel options for each convolution, DNAS

fails to fit in memory during training, exceeding the 16GB

memory supported by a Tesla V100 GPU. On the other

hand, DMaskingNAS supports 32-option channel search,

for a 3222 ∼ 1033 in search space size (given our 22-layer

search space), at nearly constant memory cost. Here, k-
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Table 2: Macro-architecture for our largest search space,

describing block type b, block expansion rate e, number of

filters f , number of blocks n, stride of first block s. “TBS”

means layer type needs to be searched. Tuples of three val-

ues represent the lowest value, highest, and steps between

options (low, high, steps). The maximum input resolution

for FBNetV2-P models is 288, for FBNetV2-F is 224, and

for FBNetV2-L is 256. See supplementary material for all

search spaces.

Max. Input b e f n s

256
2
× 3 3x3 1 16 1 2

128
2
× 16 TBS 1 (12, 16, 4) 1 1

128
2
× 16 TBS (0.75, 3.25, 0.5) (16, 28, 4) 1 2

64
2
× 28 TBS (0.75, 3.25, 0.5) (16, 28, 4) 2 1

64
2
× 28 TBS (0.75, 3.25, 0.5) (16, 40, 8) 1 2

32
2
× 40 TBS (0.75, 3.25, 0.5) (16, 40, 8) 2 1

32
2
× 40 TBS (0.75, 3.75, 0.5) (48, 96, 8) 1 2

16
2
× 96 TBS (0.75, 3.75, 0.5) (48, 96, 8) 2 1

16
2
× 96 TBS (0.75, 4.5, 0.75) (72, 128, 8) 4 1

16
2
× 128 TBS (0.75, 4.5, 0.75) (112, 216, 8) 1 2

8
2
× 216 TBS (0.75, 4.5, 0.75) (112, 216, 8) 3 1

8
2
× 216 1x1 - 1984 1 1

8
2
× 1984 avgpl - - 1 1

1984 fc - 1000 1 -

Table 3: Micro-architecture search space for block design:

non-linearities, kernel sizes, and Squeeze-and-Excite [13].

block type kernel squeeze-and-excite non-linearity

ir k3 3 N relu

ir k5 5 N relu

ir k3 hs 3 N hswish

ir k5 hs 5 N hswish

ir k3 se 3 Y relu

ir k5 se 5 Y relu

ir k3 se hs 3 Y hswish

ir k5 se hs 5 Y hswish

skip - - -

option channel search means that for each convolution with

c channels, we search over {c/k, 2c/k, ..., c} channels. To

compare larger numbers of channel options, we reduce the

number of blocks options in the search space (Fig. 7, right).

To compute memory cost, we average the maximum mem-

ory allocated during each training step, across 10 epochs.

4.4. Search for ImageNet Models

FLOP-efficient models: We first use DMaskingNAS

to find compact models (Fig. 6) for low computational

budgets, with models ranging from 50 MFLOPs to 300

MFLOPs in Fig. 8. The searched FBNetV2s outperform

all existing networks.
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Figure 7: Memory Cost of DNAS vs. DMaskingNAS

(Left) Conventional DNAS does not fit into memory with

just 8 options per block in channel search. On the other

hand, DMaskingNAS’s memory cost remains roughly con-

stant, even with 32 channel options per block. (Right) We

reduce the number of block options in the search space

to fit conventional DNAS into memory. The memory

cost growth, as the search space increases, is significantly

steeper than that of DMaskingNAS; in fact, DMasking-

NAS’s memory cost is nearly constant.
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Figure 8: ImageNet Accuracy vs. Model FLOPs. We

refer to these FLOP-efficient FBNetV2s as FBNetV2-F{1,

2, 3, 4} from left to right.

Storage-efficient models: Many real world scenarios

face limited on-device storage space. Thus, we next per-

form searches for models minimizing parameter count, in

Fig. 9. With similar or smaller model size (4M parameters),

FBNetV2 achieves 2.6% and 2.9% absolute accuracy gains

over MobileNetV3 [11] and FBNet [33], respectively.

Large models: We finally use DMaskingNAS to explore

larger models for high-end devices. We compare FBNetV2-

Large with networks of 300+ MFLOPs in Fig. 10.

5. Conclusions

We propose a memory-efficient algorithm, drastically

expanding the search space for DNAS by supporting

searches over spatial and channel dimensions. These contri-

butions target the main bottleneck for DNAS – high mem-

ory cost that induces constraints on the search space size –

and yield state-of-the-art performance.
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Model Search FLOPs Top-1

Method Space Cost (GPU hours) Acc (%)

MobileNetV2-0.35× [26] manual - - 59M 60.3

ShuffleNetV2-0.5× [23] manual - - 41M 60.3

MnasNet-0.35× [29] RL stage-wise 91K∗ 63M 64.1

ChamNet-E [3] EA stage-wise 28K† 54M 64.2

FBNet-0.35× [33] gradient layer-wise 0.2K 72M 65.3

MobileNetV3-Small [11] RL/NetAdapt stage-wise >91K‡ 66M 67.4

FBNetV2-F1 (ours) gradient layer-wise 0.2K 56M 68.3

MobileNetV2-1.0× [26] manual - - 300M 72.0

ShuffleNetV2-1.5× [23] manual - - 299M 72.6

DARTS [20] gradient cell 0.3K 595M 73.1

FBNetV2-F3 (ours) gradient layer-wise 0.2K 126M 73.2

ChamNet-B [3] EA stage-wise 28K† 323M 73.8

FBNet-B [33] gradient layer-wise 0.2K 295M 74.1

One-Shot NAS [6] EA layer-wise 0.3K 295M 74.2

ProxylessNAS [2] gradient/RL layer-wise 0.2K 320M 74.6

MobileNetV3-Large [11] RL/NetAdapt stage-wise >91K‡ 219M 75.2

MnasNet-A1 [29] RL stage-wise 91K∗ 312M 75.2

FBNetV2-F4 (ours) gradient layer-wise 0.2K 238M 76.0

ResNet-50 [9] manual - - 4.1B 76.0

DenseNet-169 [14] manual - - 3.5B 76.2

EfficientNet-B0 [30] RL/scaling stage-wise >91K‡ 390M 77.3

FBNetV2-L1 (ours) gradient layer-wise 0.6K 325M 77.2

Table 4: ImageNet classification performance: For baselines, we cite statistics on ImageNet from the original papers. Our results are

bolded. ∗: The search cost is estimated based on the experimental setup in [29]. †: [3] discovers 5 models with the cost of training 240

networks. ‡: The cost estimation is a lower bound. [11] and [30] combines the approach proposed in [29] with [37] and compound scaling.
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Figure 9: ImageNet Accuracy vs. Model Size. We refer to

these as parameter-efficient FBNetV2s as FBNetV2-P{1, 2,

3} from left to right.
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