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Abstract

Traditional computer vision models are trained to pre-

dict a fixed set of predefined categories. Recently, natural

language has been shown to be a broader and richer source

of supervision that provides finer descriptions to visual con-

cepts than supervised ”gold” labels. Previous works, such

as CLIP, use a simple pretraining task of predicting the pair-

ings between images and text captions. CLIP, however, is

data hungry and requires more than 400M image text pairs

for training. We propose a data-efficient contrastive dis-

tillation method that uses soft labels to learn from noisy

image-text pairs. Our model transfers knowledge from pre-

trained image and sentence encoders and achieves strong

performance with only 3M image text pairs, 133x smaller

than CLIP. Our method exceeds the previous SoTA of gen-

eral zero-shot learning on ImageNet 21k+1k by 73% rela-

tively with a ResNet50 image encoder and DeCLUTR text

encoder. We also beat CLIP by 10.5% relatively on zero-

shot evaluation on Google Open Images (19,958 classes).

1. Introduction

In real-world image recognition tasks, input images

can come from a broad range of distributions, spanning

tens of thousands of object categories unknown during

training. It is thus important for computer vision models to

generalize to a large number of visual concepts that may

or may not be present in the training data. This problem

is called zero-shot learning (ZSL), which aims to transfer

knowledge from some known classes with training data to

a much larger number of unfamiliar classes. In this paper,

we focus on the general zero-shot learning scenario where,

at test time, the labels can be either seen or unseen classes.

Traditional ZSL methods mainly follow three paradigms.

The first paradigm uses pretrained word embedding vec-

tors to represent different categories and implicitly model

their relationships. DeViSE[12] projects image features

from a pretrained CNN and label’s word embeddings into a

common embedding space. ConSE[29] proposes a convex

Figure 1. Caption and image pairings are noisy. Images may con-

tain objects not mentioned in the caption, and captions have words

not related to the image (colored red). There is a many-to-many

relationship between a batch of images and captions, which is bet-

ter modeled by soft probabilities than hard labels. Self-distillation

with soft labels mitigates this noise, and enables us to achieve good

performance with high data efficiency.

combination of the top k most likely image embeddings.

The second explicitly models class relationships as a graph,

and use a graph convolutional network (GCN), or a pre-

defined class hierarchy, such as WordNet[11], to learn the

knowledge propagation between classes. GCNZ[40] and

DGPZ[22] use a GCN to propagate knowledge into clas-

sifiers of unseen classes, while using CNN and word em-

beddings to encode image and label features. HZSL[25]

projects image and text embeddings into a hyperbolic

space that groups together child and parent classes in the

WordNet[11] class hierarchy. Lastly, [34, 2, 1] rely on

human-labeled attributes to model semantics of classes.

These works, however, have several drawbacks. First,

they focus on finding a better mapping between image fea-

tures extracted from pretrined CNNs and pretrained word

embeddings such as GloVe[31]. The image and text embed-

dings are not trained end-to-end jointly, limiting the gener-

alization power and the quality of feature representations.



Second, predefined class hierarchies, such as WordNet[11],

model categories in a tree structure, which fails to cap-

ture the complicated inter-class relationships present in real-

world objects. Third, reliance on class hierarchies also lim-

its the scope of classifiable objects to those present in the

hierarchy. Fourth, methods that depend on attributes cannot

generalize to categories that do not have known attributes.

In recent years, natural language has become a powerful

source of supervision for image representation learning.

[28] shows that pretraining by predicting hashtags on

Instagram improves performance on ImageNet by over

5%. [8, 35, 44] all demonstrate the effectiveness of

transformer-based language modeling in learning image

representation from text. CLIP[32] and ALIGN[21] apply

natural language supervision to the domain of ZSL. CLIP

collects an enormous dataset with over 400M image caption

pairs from the Internet, and trains an image encoder and a

text encoder jointly with a contrastive loss to maximize the

cosine similarity of corresponding image text embeddings

and minimize those of others. CLIP demonstrates good

zero-shot classification results on 27 downstream image

classification datasets. However, neither CLIP nor ALIGN

has published their image-caption datasets. It’s also an

expensive and daunting task to collect, maintain and train

vision models on datasets of that size.

We propose a data-efficient ZSL training pipeline that

enables any pretrained image encoders to generalize to un-

seen classes. We initialize our model with an image encoder

pretrained on ImageNet[7] 1k and a pretrained universal

sentence encoder. We train our models on the public Con-

ceptual Captions[36] dataset, which contains 3M loosely

correlated image caption pairs. As seen in figure 1, there

is considerable noise in the image-text pairings collected

from the Internet. CLIP uses hard labels in the contrastive

loss and account for the noise with a lot of data. Instead, we

propose to use a hybrid of hard contrastive and soft distilla-

tion losses. We distill the model from its running Exponen-

tial Moving Average(EMA) with soft labels, as a method of

denoising. Learning from soft labels enables better mod-

elling of the rich correlations between vision and language

and effectively account for cases where one caption matches

objects in multiple images and vice versa. EMA is used as

a continuous version of repeated self-distillation [18, 3].

With a ResNet50[17] image encoder and DeCLUTR[13]

text encoder, we outperform the current SoTA of general

ZSL on ImageNet 21k+1k by 73% relatively. In addition,

we recognize issues with ImageNet21k and the 27 datasets

used by CLIP[32] for ZSL evaluation in section 3.2.2. To

bypass these problems, we propose using Google Open

Images[24], which contains 19,958 categories, as a bench-

mark for zero-shot knowledge transfer to common visual

concepts. Our model also exceeds CLIP on GOI by 10.5%

relatively, while using a >100x smaller dataset.

2. Methods

Our model has a two-tower structure with an image en-

coder and a sentence encoder that outputs fixed-sized em-

beddings for a batch of corresponding images and captions.

Different from pervious ZSL works, our model assumes no

class hierarchy. This makes our method more general, and

easily extensible to datasets like Google Open Images[24].

2.1. Visual and Language Pretraining

Pretraining has become a crucial procedure in many

NLP tasks[9, 5, 26]. Likewise, BiT[23] and ViT[10]

has shown that transfer of pretrained visual represen-

tations leads to significant performance gains. There-

fore, we initialize our model with an image encoder pre-

trained on ImageNet[7] 1k and a pretrained universal

sentence encoder, such as Sentence Transformers[33] or

DeCLUTR[13]. Sentence Transformers are pretrained on

SNLI[4] and MultiNLI[41], whereas DeCLUTR is pre-

trained on the OpenWebText Corpus[14] or the Semantic

Scholar Open Research Corpus[27].

2.2. Contrastive Learning

The contrastive learning[15] objective has been widely

used in NLP and is at the core of several unsupervised[20,

43, 19] and self-supervised learning works[16, 6]. Similar

to CLIP[32], we also use the contrastive loss, which mea-

sures the similarities of sample pairs in an embedding space.

Specifically, we use the InfoNCE[39] loss where similarity

is measured by dot product. Take a batch of N image and

text pairs, the image and text encoders are joinly trained to

maximize the cosine similarity of the N positive image and

text pairings while minimizing the cosine similarity of the

other N2−N negative image text pairings. In a batch of N
image text pairs, let zIi be the embedding of the ith image,

and zTj that of the jth text. The probability of the ith image

matching the jth text is:

P (zIi , z
T
j ; τ) =

exp(zIi · zTj /τ)∑N

k=0
exp(zIi · zTk /τ)

(1)

The InfoNCE loss for images is defined as:

LI = −
1

N

N∑

i=0

logP (zIi , z
T
i ; τ) (2)

We define the probability in (1) similarly for texts, and com-

pute the InfoNCE loss symmetrically to get LT . The con-

trastive loss function thus becomes:

LInfoNCE =
1

2
(LI + LT ) (3)



Dataset Size Model Image Encoder Text Encoder Params
Flat Hit@k(%)

1 2 5 10

CLIP 400M CLIP ResNet50* Bert Base* 102M 26.5 38.3 54.0 64.3

CLIP 400M CLIP ViT-B/32* Bert Base* 151M 27.5 39.5 55.3 65.4

CC 3M C FBNet C DeCLUTR Sci Base 114M 20.8 31.5 47.7 60.0

CC 3M C EfficientNet B0 DeCLUTR Sci Base 114M 23.3 34.8 51.4 63.5

CC 3M C ResNet50 Sentence Bert Base 134M 22.5 33.1 47.8 58.2

CC 3M C ResNet50 Bert Base 134M 24.6 35.4 50.0 60.2

CC 3M C ResNet50 DeCLUTR Sci Base 135M 28.2 40.6 57.6 68.7

CC 3M C+D ResNet50 DeCLUTR Sci Base 135M 29.3 42.0 58.6 69.4

Table 1. Flat hit @k on Google Open Images. In the Model column, C means trained using contrastive loss only, and C+D means trained

with contrastive and distillation loss jointly. * means that the model is a modified version.

2.3. EMA Self­Distillation

Image-text pairs collected from the Internet are usually

only weakly correlated and noise is abundant. Often, im-

ages contain objects not mentioned in their captions, and

captions contain words unrelated to their images. It’s also

common for one caption to match objects in multiple im-

ages in a single batch. Hence, it’s not ideal to use hard la-

bels as the only learning objective. We keep an Exponential

Moving Average(EMA) of our model during training and

use it as a continuously evolving teacher for self-distillation.

We use a KL divergence loss to match the outputs of our

model and its EMA teacher. According to equation (1), de-

fine P I
M and P I

EMA as the probability distribution of images

over texts in a batch, for our model and its EMA teacher, re-

spectively. Symmetrically, define PT
M and PT

EMA.

LKL =
1

2
[KL(P I

M , P I
EMA) + KL(PT

M , PT
EMA)] (4)

The final loss we use is:

L = LInfoNCE + αLKL (5)

where α is set to 1.0 in our experiments.

3. Experiments

3.1. Training

We apply a training schedule similar to the finetuning

step of BiT[23]. We use SGD with an initial learning rate

of 3e-3, a cosine annealing lr scheduler, momentum 0.9,

and no weight decay. Input images are resized to 256x256

and random cropped to 224x224. We train the model on

4 GPUs using Pytorch[30] Distributed Data Parallel with a

batch size of 128 per GPU for 30 epochs. While CLIP[32]

computes the contrastive loss using only the batch on each

GPU, we find that it’s important to all gather logits from the

other GPUs and use them as negative samples.

3.2. Evaluation

During evaluation,we use a prompt template of “a photo

of {label}” to augment the text labels of the target cate-

gories. We then compute the text embeddings of test cat-

egories with the trained text encoder, and fit a KNN using

the embeddings. Given an image, we find the top k nearest

neighors of its embedding based on cosine similarity.

3.2.1 Evaluation Metric

The main metric we use for evaluating performance of ZSL

is flat hit@k. Flat hit@k is the percentage of test images

such that the top k predictions the model returns overlaps

with any of the true labels. In ImageNet[7], each im-

age is only labeled with one synset, but in Google Open

Images[24], each image is labeled with multiple classes.

The formal definition of flat hit@k is:

flat hit@k =
1

N

N∑

i=1

✶{{F (xi)}K ∩ Li 6= ∅} (6)

where {F (xi)}K is the top k predictions for the ith image

and Li is the set of true labels.

3.2.2 Evaluation Dataset

We measure the ZSL performance mainly on Google Open

Images [24]. And for backward compatibility to compare

with prior work, we also report the results on ImageNet

21K+1K benchmark. We do not report results on the 27

datasets benchmark used by CLIP[32]. We discuss our con-

siderations below.

ImageNet 21K+1K: Despite its popularity, there

are four main problems of using ImageNet[7] for ZSL

evaluation. First, based on the WordNet[11] structure,

ImageNet has many repeated or trivially different classes.

For example, ”sunglass” and ”sunglasses” are two different

classes. Out of 22843 synsets, 1128 of them have names

identical to at least another synset. Second, ImageNet

labels don’t distinguish words with multiple meanings. For

example, the word ”crane” can mean either a type of bird

or machine. Both classes are in ImageNet but have the

same label. This happens for many words such as ”ball”.

Third, each image in ImageNet is only labeled with exactly



Dataset Size Model Image Encoder Text Encoder
Flat Hit@k(%)

1 2 5 10

ImageNet1k 1.2M DeViSE ResNet50 skip-gram 0.3 0.9 2.2 3.6

ImageNet1k 1.2M ConSE ResNet50 skip-gram 0.1 1.5 3.5 4.9

ImageNet1k 1.2M GCNZ ResNet50 GloVe 1.0 2.3 5.3 8.1

ImageNet1k 1.2M HZSL ResNet50 GloVe* 2.2 4.6 9.2 12.7

CC 3M C FBNet C[42] DeCLUTR Sci Base 2.7 4.0 7.5 11.1

CC 3M C EfficientNet B0[37] DeCLUTR Sci Base 3.0 4.6 8.4 12.2

CC 3M C ResNet50 Bert Base 3.2 5.7 10.5 15.3

CC 3M C ResNet50 Sentence Bert Base 3.6 5.4 10.1 14.7

CC 3M C ResNet50 DeCLUTR Sci Base 3.8 5.5 9.8 13.9

CC 3M C+D ResNet50 DeCLUTR Sci Base 3.7 5.4 9.5 13.6

CC 3M C ViT-Deit-B/16[38] DeCLUTR Sci Base 4.0 6.0 10.9 15.5

CLIP 400M CLIP ResNet50* Bert Base* 13.5 19.7 30.5 39.4

CLIP 400M CLIP ViT-B/32* Bert Base* 15.3 22.2 33.9 43.3

Table 2. Flat hit @k on ImageNet 21k+1k.

one class. When there are 2 or more visual concepts in

the image, the model is forced to guess which object to

classify. Fourth, ImageNet lacks the interactions between

different visual concepts. About 90% of the images in

ImageNet have only 1 distinct class, and almost no images

have more than 4 distinct classes.

Google Open Image: Compared to ImageNet, Google

Open Images[24] also contains a wide range of concepts,

and it fixes all four problems outlined above. There are

no repeated labels for different classes in GOI. Words with

multiple meanings are also differentiated. For example,

”crane” is labeled with “Crane (Machine)” and “Crane

(Bird)”. More importantly, GOI labels each image with

multiple classes, largely eliminating false negatives. In ad-

dition, GOI contains much more interactions between dis-

tinct classes per image, where more than 60% of images

have 2 or more distinct classes. Inter-class interactions are

especially useful in zero-shot learning, when we aim to

transfer knowledge from seen to unseen classes.

CLIP benchmark with 27 datasets: CLIP[32] evalu-

ates their model on 27 image classification datasets. How-

ever, many of these datasets are domain specific, such as

Stanford Cars and FGVC Aircraft, which have specific

models of cars or planes as categories. This makes eval-

uation on them a test of knowledge memorization, rather

than generalization. Similar to ImageNet, very few of these

datasets contain multiple distinct classes in the same im-

age, reflecting a lack of visual richness. Lastly, with only

3896 total categories, the 27 datasets altogether don’t cover

nearly as many common visual concepts as GOI.

3.3. Results on Google Open Images

We evaluate the models on the test set of Google Open

Images V6[24], with 125,436 images. Traditional ZSL

baselines aren’t evaluated on GOI due to the lack of a class

structure. In table 1, we compare the flat hit@k of our

models with pretrained CLIP[32]. Our ResNet50 and De-

CLUTR Sci Base model trained with the joint contrastive

and distillation loss exceeds CLIP ResNet50 and Bert[9]

by 10.5% relatively in FH@k=1, while being > 100x more

data efficient.

3.4. Results on ImageNet 21k+1k

In this section, we present flat hit@k results on zero-

shot transfer to the ImageNet 21k+1k[7] dataset, which

contains 21841 classes in total. The image encoders are

initialized with weights pretrained on ImageNet 1k. Sen-

tence Bert[33] is pretrained on SNLI[4] and MultiNLI[41],

while Declutr Sci Base[13] is pretrained on the S2ORC[27].

Many traditional ZSL methods rely on a predefined

class hierarchy for explicit knowledge propagation. Ima-

geNet, whose classes are a subset of WordNet, becomes the

ideal benchmark for these works. With 400M image text

pairs, CLIP[32] vastly outperforms previous methods. Our

method uses Conceptual Captions[36] 3M, which is on the

same order of magnitude as ImageNet 1k, and outperforms

the previous SoTA, HZSL[25], by 73% relatively. In table

2.3, we demonstrate good performance on a variety of im-

age and sentence encoder architectures. The gap between

our method and CLIP may be caused by the fact that Ima-

geNet classes contain many uncommon words, such as sci-

entific names of animals or medical terms. CLIP’s dataset is

much larger and thus covers much more uncommon words.

EMA distillation also slightly decreases the performance

compared to using only contrastive loss. We hypothesize

that this is because ImageNet only has one ”gold” label per

image during evaluation. However, EMA distillation en-

courages the model to output a softer probability output for

multiple classes, which can be present but just not labeled.
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