
CHECKMATE: BREAKING THE MEMORY WALL
WITH OPTIMAL TENSOR REMATERIALIZATION

Paras Jain * 1 Ajay Jain * 1 Aniruddha Nrusimha 1

Amir Gholami 1 Pieter Abbeel 1 Kurt Keutzer 1 Ion Stoica 1 Joseph E. Gonzalez 1

ABSTRACT
We formalize the problem of trading-off DNN training time and memory requirements as the tensor remateri-
alization optimization problem, a generalization of prior checkpointing strategies. We introduce Checkmate, a
system that solves for optimal rematerialization schedules in reasonable times (under an hour) using off-the-shelf
MILP solvers or near-optimal schedules with an approximation algorithm, then uses these schedules to accelerate
millions of training iterations. Our method scales to complex, realistic architectures and is hardware-aware
through the use of accelerator-specific, profile-based cost models. In addition to reducing training cost, Checkmate
enables real-world networks to be trained with up to 5.1× larger input sizes. Checkmate is an open-source project,
available at https://github.com/parasj/checkmate.

1 INTRODUCTION

Deep learning training workloads demand large amounts
of high bandwidth memory. Researchers are pushing the
memory capacity limits of hardware accelerators such as
GPUs by training neural networks on high-resolution im-
ages (Dong et al., 2016; Kim et al., 2016; Tai et al., 2017),
3D point-clouds (Chen et al., 2017; Yang et al., 2018), and
long natural language sequences (Vaswani et al., 2017; De-
vlin et al., 2018; Child et al., 2019). In these applications,
training memory usage is dominated by the intermediate
activation tensors needed for backpropagation (Figure 3).

The limited availability of high bandwidth on-device mem-
ory creates a memory wall that stifles exploration of novel
architectures. Across applications, authors of state-of-the-
art models cite memory as a limiting factor in deep neural
network (DNN) design (Krizhevsky et al., 2012; He et al.,
2016; Chen et al., 2016a; Gomez et al., 2017; Pohlen et al.,
2017; Child et al., 2019; Liu et al., 2019; Dai et al., 2019).

As there is insufficient RAM to cache all activation tensors
for backpropagation, some select tensors can be discarded
during forward evaluation. When a discarded tensor is nec-
essary as a dependency for gradient calculation, the tensor
can be rematerialized. As illustrated in Figure 1, rematerial-
izing values allows a large DNN to fit within memory at the
expense of additional computation.

*Equal contribution 1Department of EECS, UC Berkeley.
Correspondence to: Paras Jain <parasj@berkeley.edu>.

Proceedings of the 3 rd MLSys Conference, Austin, TX, USA,
2020. Copyright 2020 by the author(s).

Time0

10

20

30

R
A

M
 u

se
d

(G
B

)

Retain all
activations

Rematerialize
activations

Figure 1. This 32-layer deep neural network requires 30GB of
memory during training in order to cache forward pass activations
for the backward pass. Freeing certain activations early and rema-
terializing them later reduces memory requirements by 21GB at
the cost of a modest runtime increase. Rematerialized layers are
denoted as shaded blue regions. We present Checkmate, a system
to rematerialize large neural networks optimally. Checkmate is
hardware-aware, memory-aware and supports arbitrary DAGs.

Griewank & Walther (2000) and Chen et al. (2016b) present
heuristics for rematerialization when the forward pass forms
a linear graph, or path graph. They refer to the problem as
checkpointing. However, their approaches cannot be applied
generally to nonlinear DNN structures such as residual con-
nections, and rely on the strong assumption that all nodes in
the graph have the same cost. Prior work also assumes that
gradients may never be rematerialized. These assumptions
limit the efficiency and generality of prior approaches.

Our work formalizes tensor rematerialization as a con-
strained optimization problem. Using off-the-shelf numeri-
cal solvers, we are able to discover optimal rematerializa-

https://github.com/parasj/checkmate

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

LP construction
and optimization

(minutes)
Rebuild

static graph with
rematerialization

Static reverse
mode auto-

differentiation
User specified
architecture

Training loop
(days)

Hardware
cost model

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Breaking the Memory Wall with Optimal Tensor Rematerialization

tion within the stage. That is, FREEt,i,k = 1 if and only if
vi can be deallocated in stage t after evaluating vk. Pred-
icating on Rt,k in (5) ensures values are onlyfreed once.
To express FREE in our ILP, (5) must be defined arithmeti-
cally with linear constraints. Applying De Morgan’s law
for union and intersection interchange,

FREEt,i,k = ¬

0
BB@¬Rt,k _ St+1,i

_

j2USERS[i]
j>k

Rt,j

1
CCA

=

0
@1�Rt,k + St+1,i +

X

j2USERS[i],j>k

Rt,j = 0

1
A

, (num_hazards(t, i, k) = 0) (6)

where num_hazards(t, i, k) is introduced simply for nota-
tional convenience. Relation (6) is implemented with linear
cast-to-boolean constraints, where  is the maximum value
num_hazards(t, i, k) can assume,

FREEt,i,k 2 {0, 1} (7a)
1� FREEt,i,k  num_hazards(t, i, k) (7b)

(1� FREEt,i,k) � num_hazards(t, i, k) (7c)

The complete memory constrained ILP follows in (8), with
O(|V ||E|) variables and constraints.

arg min
R, S, U, FREE

nX

t=1

tX

i=1

CiRt,i (1a)

subject to (1b), (1c), (1d), (1e),

(2), (3), (7a), (7b), (7c),

Ut,k Mbudget

(8)

4.5 Constraints implied by optimality

Problem 8 can be simplified by removing constraints im-
plied by optimality of a solution. In (2), all values with
St,i = 1 are allocated space, even if they are unused. If
such a value is unused, the checkpoint is spurious and the
solver can set St,i = 0 to reduce memory usage if needed.

Further, FREEt,k,k = 1 only if operation k is spuriously
evaluated with no uses of the result. Hence, the solver can
set Rt,k = 0 to reduce cost. When solving the MILP, we
eliminate |V |2 variables FREEt,k,k, assumed to be 0, by
only summing over i 2 DEPS[k] in (4). Note that the elim-
inated variables can be computed inexpensively from R and
S after solving.

4.6 Generating an execution plan

Given a feasible solution to (8), (R, S, FREE), we generate
a concrete execution plan that evaluates the computation

Algorithm 1 Generate execution plan
Input: graph G = (V, E), feasible (R, S, FREE)
Output: execution plan s1, . . . , sk

Initialize REGS[1 . . . |V |] = �1, r = 0.
for t = 1 to |V | do

for k = 1 to |V | do
if Rt,k then

// Materialize vk

emit %r = allocate vk
emit compute vk, %r
REGS[k] = r
r = r + 1

end if
// Free vk and dependencies
for i 2 DEPS[k] [{k} do

if FREEt,i,k then
emit deallocate %REGS[i]

end if
end for

end for
end for

graph with bounded memory usage. This execution plan,
or schedule, is constructed via a row major scan of the so-
lution matrices, detailed in Algorithm 1.

A concrete execution plan is a program consist-
ing of k statements P = (s1, . . . , sk), where
si 2 {allocate,compute,deallocate}. State-
ment %r = allocate v defines a virtual register for
the result of the operation corresponding to v, used to
track memory usage during execution. Such a register
must be allocated for v before an instance of statement
compute v, %r in the plan, which invokes the opera-
tion and generates an output value which is tracked by the
register %r. Finally, statement deallocate %r deletes
the virtual register, marks the output value for garbage col-
lection, and updates the tracked memory usage.

The execution plan generated by Algorithm 1 is further op-
timized by moving deallocations earlier in the plan if possi-
ble. For example, spurious checkpoints that are unused in a
stage can be deallocated at the start of the stage rather than
during the stage. Note that this code motion is unnecessary
as the solver guarantees that the unoptimized schedule will
not exceed the desired memory budget.

4.7 Generating static computation graph

For implementation, the concrete execution plan can either
be interpreted, or encoded as a static computation graph.
In this work, we generate a static graph G0 = (V 0, E0)
from the plan, which is executed by a numerical machine
learning framework. See Section 6.2 for implementation

Figure 2. Overview of the Checkmate system.

tion strategies for arbitrary deep neural networks in Ten-
sorFlow with non-uniform computation and memory costs.
We demonstrate that optimal rematerialization allows larger
batch sizes and substantially reduced memory usage with
minimal computational overhead across a range of image
classification and semantic segmentation architectures. As a
consequence, our approach allows researchers to easily ex-
plore larger models, at larger batch sizes, on more complex
signals with minimal computation overhead.

In particular, the contributions of this work include:

• a formalization of the rematerialization problem as a
mixed integer linear program with a substantially more
flexible search space than prior work, in Section 4.7.

• a fast approximation algorithm based on two-phase
deterministic LP rounding, in Section 5.

• Checkmate, a system implemented in TensorFlow that
enables training models with up to 5.1× larger input
sizes than prior art at minimal overhead.

2 MOTIVATION

Memory consumption during training consists of (a) inter-
mediate features, or activations, whose size depends on input
dimensions and (b) parameters and their gradients whose
size depends on weight dimensions. Given that inputs are
often several order of magnitude larger than kernels, most
memory is used by features, as demonstrated in Figure 3.

Frameworks such as TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2017; 2019) store all activations
during the forward pass. Gradients are backpropagated from
the loss node, and each activation is freed after its gradient
has been calculated. In Figure 1, we compare this memory
intensive policy and a rematerialization strategy for a real
neural network. Memory usage is significantly reduced
by deallocating some activations in the forward pass and
recomputing them in the backward pass. Our goal is fit an
arbitrary network within our memory budget while incurring
the minimal additional runtime penalty from recomputation.

A
lexN

et,2012

V
G
G
19,2014

Inception
v3,2015

R
esN

et-152,2015

D
enseN

et-201,2016

R
esN

eX
t-101,2016

FC
N
8s,2017

Transform
er,2017

R
oB

E
R
Ta,2018

B
igG

A
N
,2018

0GB

5GB

10GB

15GB

Features Workspace memory
Parameter gradients Parameters

To
ta
lm

em
or
y
co
ns
um

ed

GPU memory limit

Figure 3. Memory consumed by activations far outweigh parame-
ters for popular model architectures. Moreover, advances in GPU
DRAM capacity are quickly utilized by researchers; the dashed
line notes the memory limit of the GPU used to train each model.

Most prior work assumes networks have linear graphs. For
example, Chen et al. (2016b) divides the computation into√
n segments, each with

√
n nodes. Each segment endpoint

is stored during the forward pass. During the backward pass,
segments are recomputed in reverse order at O(n) cost.

Linear graph assumptions limit applicability of prior work.
For example, the popular ResNet50 (He et al., 2016) re-
quires each residual block to be treated as a single node,
leading to inefficient solutions. For other networks with
larger skip connection (e.g., U-Net (Ronneberger et al.,
2015)), the vast majority of the graph is incompatible.

Prior work also assumes all layers are equally expensive to
recompute.In the VGG19 (Simonyan & Zisserman, 2014)
architecture, the largest layer is seven orders of magnitude
more expensive than the smallest layer.

Our work makes few assumptions on neural network graphs.
We explore a solution space that allows for (a) arbitrary
graphs with several inputs and outputs for each node, (b)
variable memory costs across layers and (c) variable com-
putation costs for each layer (such as FLOPs or profiled
runtimes). We constrain solutions to simply be correct (a
node’s dependencies must be materialized before it can be
evaluated) and within the RAM budget (at any point during
execution, resident tensors must fit into RAM).

To find solutions to this generalized problem, we find solu-
tions that minimize the amount of time it takes to perform

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

a single training iteration, subject to the correctness and
memory constraints outlined above. We project schedules
into space and time, allowing us to cast the objective as a
linear expression. This problem can then be solved using
off-the-shelf mixed integer linear program solvers such as
GLPK or COIN-OR Branch-and-Cut (Forrest et al., 2019).
An optimal solution to the MILP will minimize the amount
of additional compute cost within the memory budget.

3 RELATED WORK

We categorize related work as checkpointing, reversible net-
works, distributed computation, and activation compression.

Checkpointing and rematerialization Chen et al. (2016b)
propose a heuristic for checkpointing idealized unit-cost lin-
ear n-layer graphs with O(

√
n) memory usage. Griewank

& Walther (2000) checkpoint similar linear unit-cost graphs
with O(log n) memory usage and prove optimality for lin-
ear chain graphs with unit per-node cost and memory. In
practice, DNN layers vary significantly in memory usage
and computational cost (Sze et al., 2017), so these heuristics
are not optimal in practice. Chen et al. (2016b) also develop
a greedy algorithm that checkpoints layers of a network in
roughly memory equal segments, with a hyperparameter b
for the size of such segments. Still, neither procedure is cost-
aware nor deallocates checkpoints when possible. Gruslys
et al. (2016) develop a dynamic programming algorithm for
checkpoint selection in unrolled recurrent neural network
training, exploiting their linear forward graphs. Feng &
Huang (2018) provide a dynamic program to select check-
points that partition branching networks but ignore layer
costs and memory usage. Siskind & Pearlmutter (2018a) de-
velop a divide-and-conquer strategy in programs. Beaumont
et al. (2019) use dynamic programming for checkpoint se-
lection in a specific architecture with joining sub-networks.

Intermediate value recomputation is also common in reg-
ister allocation. Compiler backends lower an intermediate
representation of code to an architecture-specific executable
binary. During lowering, an abstract static single assign-
ment (SSA) graph of values and operations (Rosen et al.,
1988; Cytron et al., 1991) is concretized by mapping values
to a finite number of registers. If insufficient registers are
available for an SSA form computation graph, values are
spilled to main memory by storing and later loading the
value. Register allocation has been formulated as graph
coloring problem (Chaitin et al., 1981), integer program
(Goodwin & Wilken, 1996; Lozano et al., 2018), and net-
work flow (Koes & Goldstein, 2006).

Register allocators may recompute constants and values
with register-resident dependencies if the cost of doing so
is less than the cost of a spill (Chaitin et al., 1981; Briggs
et al., 1992; Punjani, 2004). While similar to our setup,

register rematerialization is limited to exceptional values
that can be recomputed in a single instruction with depen-
dencies already in registers. For example, memory offset
computations can be cheaply recomputed, and loads of con-
stants can be statically resolved. In contrast, Checkmate can
recompute entire subgraphs of the program’s data-flow.

During the evaluation of a single kernel, GPUs spill per-
thread registers to a thread-local region of global memory
(i.e. local memory) (Micikevicius, 2011; NVIDIA, 2017).
NN training executes DAGs of kernels and stores intermedi-
ate values in shared global memory. This produces a high
range of value sizes, from 4 byte floats to gigabyte tensors,
whereas CPU and GPU registers range from 1 to 64 bytes.
Our problem of interkernel memory scheduling thus differs
in scale from the classical problem of register allocation
within a kernel or program. Rematerialization is more ap-
propriate than copying values out of core as the cost of
spilling values from global GPU memory to main memory
(RAM) is substantial (Micikevicius, 2011; Jain et al., 2018),
though possible (Meng et al., 2017).

Reversible Networks Gomez et al. (2017) propose a re-
versible (approximately invertible) residual DNN architec-
ture, where intermediate temporary values can be recom-
puted from values derived later in the standard forward com-
putation. Reversibility allows forward pass activations to
be recomputed during the backward pass rather than stored,
similar to gradient checkpointing. Bulo et al. (2018) replace
only ReLU and batch normalization layers with invertible
variants, reconstructing their inputs during the backward
pass, reducing memory usage up to 50%. However, this ap-
proach has a limit to memory savings, and does not support
a range of budgets. Reversibility is not yet widely used to
save memory, but is a promising complementary approach.

Distributed computation An orthogonal approach to ad-
dress the limited memory problem is distributed-memory
computations and gradient accumulation. However, model
parallelism requires access to additional expensive com-
pute accelerators, fast networks, and non-trivial partition-
ing of model state to balance communication and compu-
tation (Gholami et al., 2018; Jia et al., 2018b; McCandlish
et al.). Gradient accumulation enables larger batch sizes
by computing the gradients in sub-batches across a mini-
batch. However, gradient accumulation often degrades per-
formance as batch normalization performs poorly on small
minibatch sizes (Wu & He, 2018; Ioffe & Szegedy, 2015).

Activation compression In some DNN applications, it is
possible to process compressed representations with mini-
mal accuracy loss. Gueguen et al. (2018) classify discrete
cosine transforms of JPEG images rather than raw images.
Jain et al. (2018) quantizes activations, cutting memory
usage in half. Compression reduces memory usage by a
constant factor, but reduces accuracy. Our approach is math-

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

METHOD DESCRIPTION GENERAL
GRAPHS

COST
AWARE

MEMORY
AWARE

Checkpoint all (Ideal) No rematerialization. Default in deep learning frameworks.
√

× ×
Griewank et al. logn Griewank & Walther (2000) REVOLVE procedure × × ×
Chen et al.

√
n Chen et al. (2016b) checkpointing heuristic × × ×

Chen et al. greedy Chen et al. (2016b), with search over parameter b × × ∼
AP
√
n Chen et al.

√
n on articulation points + optimal R solve ∼ × ×

AP greedy Chen et al. greedy on articulation points + optimal R solve ∼ × ∼
Linearized

√
n Chen et al.

√
n on topological sort + optimal R solve

√
× ×

Linearized greedy Chen et al. greedy on topological sort + optimal R solve
√

× ∼
Checkmate ILP Our ILP as formulated in Section 4

√ √ √

Checkmate approx. Our LP rounding approximation algorithm (Section 5)
√ √ √

Table 1. Rematerialization baselines and our extensions to make them applicable to non-linear architectures

ematically equivalent and incurs no accuracy penalty.

4 OPTIMAL REMATERIALIZATION

In this section, we develop an optimal solver that schedules
computation and garbage collection during the evaluation
of general data-flow graphs including those used in neu-
ral network training. Our proposed scheduler minimizes
computation or execution time while guaranteeing that the
schedule will not exceed device memory limitations. The
rematerialization problem is formulated as a mixed integer
linear program (MILP) that can be solved with standard
commercial or open-source solvers.

4.1 Problem definition

A computation or data-flow graph G = (V,E) is a directed
acyclic graph with n nodes V = {v1, . . . , vn} that represent
operations yielding values (e.g. tensors). Edges represent
dependencies between operators, such as layer inputs in a
neural network. Nodes are numbered according to a topo-
logical order, such that operation vj may only depend on
the results of operations vi<j .

Each operator’s output takes Mv memory to store and costs
Cv to compute from its inputs. We wish to find the terminal
node vn with peak memory consumption under a memory
budget, Mbudget, and minimum total cost of computation.

4.2 Representing a schedule

We represent a schedule as a series of nodes being saved
or (re)computed. We unroll the execution of the network
into T stages and only allow a node to be computed once
per stage. St,i ∈ {0, 1} indicates that the result of operation
i should be retained in memory at stage t− 1 until stage t.
We also define Rt,i ∈ {0, 1} be a binary variable reflecting
whether operation i is recomputed at time step t.

Our representation generalizes checkpointing (Griewank

& Walther, 2000; Chen et al., 2016b; Gruslys et al., 2016;
Siskind & Pearlmutter, 2018b; Feng & Huang, 2018), as
values can be retained and deallocated many times, but
comes at the cost of O(Tn) decision variables.

To trade-off the number of decision variables and schedule
flexibility, we limit T to T = n. This allows for O(n2)
operations and constant memory in linear graphs.

4.3 Scheduling with ample memory

First, consider neural network evaluation on a processor
with ample memory. Even without a memory constraint,
our solver must ensure that checkpointed and computed op-
erations have dependencies resident in memory. Minimizing
the total cost of computation across stages with dependency
constraints yields objective (1a):

arg min
R,S

n∑

t=1

t∑

i=1

CiRt,i (1a)

subject to

Rt,j ≤ Rt,i + St,i ∀t ∀(vi, vj) ∈ E, (1b)
St,i ≤ Rt−1,i + St−1,i ∀t ≥ 2 ∀i, (1c)∑

i S1,i = 0, (1d)∑
tRt,n ≥ 1, (1e)

Rt,i, St,i ∈ {0, 1} ∀t ∀i (1f)

Constraints ensure feasibility and completion. Constraint
(1b) and (1c) ensure that an operation is computed in stage t
only if all dependencies are available. To cover the edge case
of the first stage, constraint (1d) specifies that no values are
initially in memory. Finally, covering constraint (1e) ensures
that the last node in the topological order is computed at
some point in the schedule so that training progresses.

4.4 Constraining memory utilization

To constrain memory usage, we introduce memory account-
ing variables Ut,k ∈ R+ into the ILP. Let Ut,k denote the

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

{va vb… vc…

Deps[vk]

vk
GC

Deps[vk]

Ut,k Ut,k+1

…

B

vk+1
compute compute

Figure 4. Dependencies of vk can only be garbage collected after it is evaluated. Ut,k measures the memory used after evaluating vk and
before deallocating its dependencies. vb and vc may be deallocated during garbage collection, but va may not due to a forward edge.

memory used just after computing node vk in stage t. Ut,k

is defined recursively in terms of auxiliary binary variables
FREEt,i,k for (vi, vk) ∈ E, which specifies whether node
vi may be deallocated in stage t after evaluating node vk.

We assume that (1) network inputs and parameters are al-
ways resident in memory and (2) enough space is allocated
for gradients of the loss with respect to parameters.1 Pa-
rameter gradients are typically small, the same size as the
parameters themselves. Additionally, at the beginning of
a stage, all checkpointed values are resident in memory.
Hence, we initialize the recurrence,

Ut,0 = Minput + 2Mparam︸ ︷︷ ︸
Constant overhead

+

n∑

i=1

MiSt,i︸ ︷︷ ︸
Checkpoints

(2)

Suppose Ut,k bytes of memory are in use after evaluating
vk. Before evaluating vk+1, vk and dependencies (parents)
of vk may be deallocated if there are no future uses. Then,
an output tensor for the result of vk+1 is allocated, consum-
ing memory Mk+1. The timeline is depicted in Figure 4,
yielding recurrence (3):

Ut,k+1 = Ut,k −mem freedt(vk) +Rt,k+1Mk+1, (3)

where mem freedt(vk) is the amount of memory freed by
deallocating vk and its parents at stage t. Let

DEPS[k] = {i : (vi, vk) ∈ E}, and
USERS[i] = {j : (vi, vj) ∈ E}

denote parents and children of a node, respectively. Then,
in terms of auxiliary variable FREEt,i,k, for (vi, vk) ∈ E,

mem freedt(vk) =
∑

i∈DEPS[k]
∪{k}

Mi ∗ FREEt,i,k, and (4)

FREEt,i,k = Rt,k ∗ (1− St+1,i)︸ ︷︷ ︸
Not checkpoint

∏

j∈USERS[i]
j>k

(1−Rt,j)︸ ︷︷ ︸
Not dep.

(5)

1While gradients can be deleted after updating parameters, we
reserve constant space since many parameter optimizers such as
SGD with momentum maintain gradient statistics.

The second factor in (5) ensures thatMi bytes are freed only
if vi is not checkpointed for the next stage. The final factors
ensure that FREEt,i,k = 0 if any child of vi is computed in
the stage, since then vi needs to be retained for later use.
Multiplying by Rt,k in (5) ensures that values are only freed
at most once per stage according to Theorem 4.1,

Theorem 4.1 (No double deallocation). If (5) holds for all
(vi, vk) ∈ E, then

∑
k∈USERS[i] FREEt,i,k ≤ 1 ∀t, i.

Proof. Assume for the sake of contradiction that ∃k1, k2 ∈
USERS[i] such that FREEt,i,k1 = FREEt,i,k2 = 1. By the
first factor in (5), we must haveRt,k1 = Rt,k2 = 1. Assume
without loss of generality that k2 > k1. By the final factor
in (5), we have FREEt,i,k1

≤ 1 − Rt,k2
= 0, which is a

contradiction.

4.5 Linear reformulation of memory constraint

While the recurrence (2-3) defining U is linear, the right
hand size of (5) is a polynomial. To express FREE in our
ILP, it must be defined via linear constraints. We rely on
Lemma 4.1 and 4.2 to reformulate (5) into a tractable form.

Lemma 4.1 (Linear Reformulation of Binary Polynomial).
If x1, . . . , xn ∈ {0, 1}, then

n∏

i=1

xi =

{
1
∑n

i=1(1− xi) = 0

0 otherwise

Proof. If all x1, . . . , xn = 1, then
∑n

i=1(1 − xi) = 0 and
we have Πn

i=1xi = 1. If otherwise any xj = 0, then we
have Πn

i=1xi = 0, as desired. This can also be seen as an
application of De Morgan’s laws for boolean arithmetic.

Lemma 4.2 (Linear Reformulation of Indicator Constraints).
Given 0 ≤ y ≤ κ where y is integral and κ is a constant
upper bound on y, then

x =

{
1 y = 0

0 otherwise

if and only if x ∈ {0, 1} and (1− x) ≤ y ≤ κ(1− x).

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

Proof. For the forward direction, first note that by con-
struction, x ∈ {0, 1}. If y = 0 and x = 1, then
(1 − x) = 0 ≤ y ≤ 0 = κ(1 − x). Similarly, if y ≥ 1
and x = 0, then 1 ≤ y ≤ κ, which is true since 0 ≤ y ≤ κ
and y is integral. The converse holds similarly.

To reformulate Constraint 5, let num hazards(t, i, k) be the
number of zero factors on the RHS of the constraint. This is
a linear function of the decision variables,

num hazards(t, i, k) = (1−Rt,k)+St+1,i+
∑

j∈USERS[i]
j>k

Rt,j

Applying Lemma 4.1 to the polynomial constraint, we have,

FREEt,i,k =

{
1 num hazards(t, i, k) = 0

0 otherwise
(6)

By Lemma 4.2, if κ is the maximum value that
num hazards(t, i, k) can assume, the following constraints
are equivalent to (6),

FREEt,i,k ∈ {0, 1} (7a)
1− FREEt,i,k ≤ num hazards(t, i, k) (7b)

κ(1− FREEt,i,k) ≥ num hazards(t, i, k) (7c)

4.6 Tractability via frontier-advancing stages

Fixing the execution order of nodes in the graph can im-
prove the running time of the algorithm. In eager-execution
frameworks such as PyTorch, the order is given by user
code and operations are executed serially. Separating order-
ing and allocation is common in compiler design, and both
LLVM (Lattner, 2002) and GCC (Olesen, 2011) have sepa-
rate instruction scheduling and register allocation passes.

Any topological order of the nodes is a possible execution
order. Given a topological order, such as the one intro-
duced in Section 4.1, we partition the schedule into frontier-
advancing stages such that node vi is evaluated for the first
time in stage i. We replace constraints (1d, 1e) that ensure
the last node is computed with stricter constraints (8a-8c),

Ri,i = 1 ∀i (frontier-advancing partitions) (8a)∑
i≥t St,i = 0 (lower tri., no initial checkpoints) (8b)

∑
i>tRt,i = 0 (lower triangular) (8c)

This reduces the feasible set, constraining the search space
and improving running time. For an 8 layer (n = 17)
linear graph neural network with unit Ci,Mi at a memory
budget of 4, Gurobi optimizes the unpartitioned MILP in
9.4 hours and the partitioned MILP in 0.23 seconds to the
same objective. In Appendix A, we analyze the integrality
gap of both forms of the problem to understand the speedup.

4.7 Complete Integer Linear Program formulation

The complete memory constrained MILP follows in (9),
with O(|V ||E|) variables and constraints.

arg min
R,S, U, FREE

n∑

t=1

t∑

i=1

CiRt,i

subject to (1b), (1c), (1f), (2), (3),

(7a), (7b), (7c), (8a), (8b), (8c),
Ut,k ≤Mbudget

(9)

4.8 Constraints implied by optimality

Problem 9 can be simplified by removing constraints im-
plied by optimality of a solution. FREEt,k,k = 1 only if
operation k is spuriously evaluated with no uses of the re-
sult. Hence, the solver can set Rt,k = 0 to reduce cost.
We eliminate |V |2 variables FREEt,k,k, assumed to be 0,
by modifying (4) to only sum over i ∈ DEPS[k]. These
variables can be computed inexpensively after solving.

4.9 Generating an execution plan

Given a feasible solution to (9), (R,S, U, FREE), Algo-
rithm 1 generates an execution plan via a row major scan
of R and S with deallocations determined by FREE. An
execution plan is a program P = (s1, . . . , sk) with k state-
ments. When statement %r = compute v is interpreted,
operation v is evaluated. The symbol %r denotes a vir-
tual register used to track the resulting value. Statement
deallocate %r marks the value tracked by virtual reg-
ister %r for garbage collection.

The execution plan generated by Algorithm 1 is further
optimized by moving deallocations earlier in the plan when
possible. Spurious checkpoints that are unused in a stage can
be deallocated at the start of the stage rather than during the
stage. Still, this code motion is unnecessary for feasibility
as the solver guarantees that the unoptimized schedule will
not exceed the desired memory budget.

The execution plan can either be interpreted during training,
or encoded as a static computation graph. In this work, we
generate a static graph G′ = (V ′, E′) from the plan, which
is executed by a numerical machine learning framework.
See Section 6.2 for implementation details.

4.10 Cost model

To estimate the runtime of a training iteration under a re-
materialization plan, we apply an additive cost model (1a),
incurring cost Ci when node vi is evaluated. Costs are de-
termined prior to MILP construction by profiling network
layers on target hardware with random inputs across a range
of batch sizes and input shapes, and exclude static graph
construction and input generation time. As neural network

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

Algorithm 1 Generate execution plan
Input: graph G = (V,E), feasible (R,S, FREE)
Output: execution plan P = (s1, . . . , sk)
Initialize REGS[1 . . . |V |] = −1, r = 0, P = ().
for t = 1 to |V | do

for k = 1 to |V | do
if Rt,k then

// Materialize vk
add %r = compute vk to P
REGS[k] = r
r = r + 1

end if
// Free vk and dependencies
for i ∈ DEPS[k] ∪ {k} do

if FREEt,i,k then
add deallocate %REGS[i] to P

end if
end for

end for
end for
return P

operations consist of dense numerical kernels such as matrix
multiplication, these runtimes are low variance and largely
independent of the specific input data (Jia et al., 2018a; Si-
vathanu et al., 2019). However, forward pass time per batch
item decreases with increasing batch size due to improved
data parallelism (Canziani et al., 2016), so it is important to
compute costs with appropriate input dimensions.

The memory consumption of each value in the data-flow
graph is computed statically as input and output sizes are
known. Values are dense, multi-dimensional tensors stored
at 4 byte floating point precision. The computed consump-
tion Mi is used to construct memory constraints (2-3).

5 APPROXIMATION

Many of our benchmark problem instances are tractable to
solve using off-the-shelf integer linear program solvers, with
practical solve times ranging from seconds to an hour. ILP
results in this paper are obtained with a 1 hour time limit
on a computer with at least 24 cores. Relative to training
time, e.g. 21 days for the BERT model (Devlin et al., 2018),
solving the ILP adds less than a percent of runtime overhead.

While COTS solvers such as COIN-OR (Forrest et al., 2019)
leverage methods like branch-and-bound to aggressively
prune the decision space, they can take superpolynomial
time in the worst-case and solving ILPs is NP-hard in gen-
eral. In the worst-case, for neural network architectures with
hundreds of layers, it is not feasible to solve the remateri-
alization problem via our ILP. An instance of the VGG16
architecture (Simonyan & Zisserman, 2014) takes seconds

to solve. For DenseNet161 (Huang et al., 2017), no feasible
solution was found within one day.

For many classical NP-hard problems, approximation al-
gorithms give solutions close to optimal with polynomial
runtime. We review a linear program that produces frac-
tional solutions in polynomial time in Section 5.1. Using
the fractional solutions, we present a two-phase rounding
algorithm in Section 5.2 that rounds a subset of the decision
variables, then finds a minimum cost, feasible setting of the
remaining variables to find near-optimal integral solutions.

5.1 Relaxing integrality constraints

By relaxing integrality constraints (1f), the problem be-
comes trivial to solve as it is a linear program over continu-
ous variables. It is well known that an LP is solvable in poly-
nomial time via Karmarkar’s algorithm (Karmarkar, 1984)
or barrier methods (Nesterov & Nemirovskii, 1994). With
relaxation R,S, FREE ∈ [0, 1], the objective (1a) defines a
lower-bound for the cost of the optimal integral solution.

Rounding is a common approach to find approximate inte-
gral solutions given the result of an LP relaxation. For exam-
ple, one can achieve a 3

4 -approximation for MAX SAT (Yan-
nakakis, 1994) via a simple combination of randomized
rounding (Pr

[
xint
i = 1

]
= x∗i) and deterministic rounding

(xint
i = 1 if x∗i ≥ p, where commonly p = 0.5).

We attempt to round the fractional solution R∗, S∗ using
these two strategies, and then apply Algorithm 1 toRint, Sint.
However, direct application of deterministic rounding re-
turns infeasible results: the rounded solution violates con-
straints. Randomized rounding may show more promise as a
single relaxed solution can be used to sample many integral
solutions, some of which are hopefully feasible. Unfortu-
nately, using randomized rounding with the LP relaxation
for VGG16 at a 4× smaller budget than default, we could
not find a single feasible solution out of 50,000 samples.

5.2 A two-phase rounding strategy

To find feasible solutions, we introduce two-phase rounding,
detailed in Algorithm 2. Two-phase rounding is applicable
when a subset of variables can be solved in polynomial time
given the remaining variables. Our approximation algorithm
only rounds the checkpoint matrix S∗. Given S∗, we solve
for the conditionally optimal binary computation matrixRint

by setting as few values to 1 as possible. Algorithm 2 begins
with an all-zero matrix Rint = 0, then iteratively corrects
violated correctness constraints.

Note that during any of the above steps, once we set some
Rint

i,j = 1, the variable is never changed. Algorithm 2 cor-
rects constraints in a particular order so that constraints that
are satisfied will continue to be satisfied as other violated
constraints are corrected. The matrix Rint generated by this

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

Algorithm 2 Two-phase rounding
Input: Fractional checkpoint matrix S∗ from LP
Output: Binary Sint, Rint, FREE
Round S∗ deterministically: Sint

t,i ← 1[S∗t,i > 0.5]

Rint ← In thereby satisfying (8a)
while ∃t ≥ 2, i ∈ [n] such that Sint

t,i > Rint
t−1,i + Sint

t−1,i
i.e. (1c) violated do

Compute vi to materialize checkpoint: Rint
t−1,i ← 1

end while
while ∃t ≥ 1, (i, j) ∈ E such that Rint

t,j > Rint
t,i + Sint

t,i

i.e. (1b) violated do
Compute vi as temporary for dependency: Rint

t,i ← 1
end while
Evaluate FREE by simulating execution
return Sint, Rint, FREE

rounding scheme will be optimal up to the choice of Sint as
every entry in Rint is set to 1 if and only if it is necessary
to satisfy a constraint. In implementation, we detect and
correct violations of (1b) in reverse topological order for
each stage, scanning Rint, Sint matrices from right to left.

5.3 Memory budget feasibility

Since we approximate S by rounding the fractional solu-
tion, Sint, Rint can be infeasible by the budget constraint
Ut,k ≤ Mbudget. While the fractional solution may come
under the budget and two-phase rounding preserves correct-
ness constraints, the rounding procedure makes no attempt
to maintain budget feasibility. Therefore, we leave an al-
lowance on the total memory budget constraint (Ut,k ≤
(1− ε)Mbudget). We empirically find ε = 0.1 to work well.

6 EVALUATION

In this section, we investigate the impact of tensor remate-
rialization on the cost and memory usage of DNN training.
We study the following experimental questions: (1) What
is the trade-off between memory usage and computational
overhead when using rematerialization? (2) Are large in-
puts practical with rematerialization? and (3) How well can
we approximate the optimal rematerialization policy?

We compare our proposed solver against baseline heuristics
on representative image classification and high resolution
semantic segmentation models including VGG16, VGG19,
ResNet50, MobileNet, U-Net and FCN with VGG layers,
and SegNet. As prior work is largely limited to linear graphs,
we propose novel extensions where necessary for compar-
ison. Results show that optimal rematerialization allows
significantly lower computational overhead than baselines
at all memory budgets, and lower memory usage than previ-
ously possible. As a consequence, optimal rematerialization

allows training with larger input sizes than previously possi-
ble, up to 5.1× higher batch sizes on the same accelerator.
Finally, we find that our two-phase rounding approximation
algorithm finds near-optimal solutions in polynomial time.

6.1 Baselines and generalizations

Table 1 summarizes baseline rematerialization strategies.
The nominal evaluation strategy stores all features generated
during the forward pass for use during the backward pass—
this is the default in frameworks such as TensorFlow. Hence,
every layer is computed once. We refer to this baseline as
Checkpoint all, an ideal approach given ample memory.

On the linear graph architectures, such as VGG16 and Mo-
bileNet (v1), we directly apply prior work from Griewank &
Walther (2000) and Chen et al. (2016b), baselines referred
to as Griewank and Walther log n, Chen et al.

√
n and

Chen et al. greedy. To build a tradeoff curve for compu-
tation versus memory budget, we search over the segment
size hyperparameter b in the greedy strategy. However,
these baselines cannot be used for modern architectures
with residual connections. For a fair comparison, we extend
the
√
n and greedy algorithms to apply to general computa-

tion graphs with residual connections or branching structure
(e.g. ResNet50 and U-Net).

Chen et al. (2016b) suggests manually annotating good
checkpointing candidates in a computation graph. For the
first extensions, denoted by AP

√
n and AP greedy, we

automatically identify articulation points, or cut vertices,
vertices that disconnect the forward pass DAG, and use these
as candidates. The heuristics then select a subset of these
candidates, and we work backwards from the checkpoints
to identify which nodes require recomputation.

Still, some networks have few articulation points, including
U-Net. We also extend heuristics by treating the original
graph as a linear network, with nodes connected in topolog-
ical order, again backing out the minimal recomputations
from the selected checkpoints. These extensions are referred
to as Linearized

√
n and Linearized greedy.

Sections B.1 and B.2 provide more details on our gener-
alizations. Note that all proposed generalizations exactly
reproduce the original heuristics on linear networks.

6.2 Evaluation setup

Checkmate is implemented in Tensorflow 2.0 (Abadi et al.,
2016), accepting user-defined models expressed via the high-
level Keras interface. We extract the forward and backward
computation graph, then construct and solve optimization
problem (9) with the Gurobi mathematical programming
library as an integer linear program. Finally, Checkmate
translates solutions into execution plans and constructs a
new static training graph. Together, these components form

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

14 16 18 20

1.0

1.1

1.2

1.3

1.4

1.5

10 20 30 40

1.0

1.1

1.2

1.3

1.4

1.5

10 20 30

1.0

1.1

1.2

1.3

1.4

O
ve
rh
ea
d
(x
)

Budget (GB)

Chen et al.
Chen et al. greedy

Checkmate (proposed)
Checkpoint all (ideal)

VGG16 (256) MobileNet (512) U-Net (32)
224x224 224x224 416x608

Griewank & Walther

**
* **

*

*
** AP adaptation

Linearized
adaptation

Figure 5. Computational overhead versus memory budget for (a) VGG16 image classification NN (Simonyan & Zisserman, 2014), (b)
MobileNet image classification NN, and (c) the U-Net semantic segmentation NN (Ronneberger et al., 2015). Overhead is with respect to
the best possible strategy without a memory restriction based on a profile-based cost model of a single NVIDIA V100 GPU. For U-Net (c),
at the 16 GB V100 memory budget, we achieve a 1.20× speedup over the best baseline—linearized greedy—and a 1.38× speedup over
the next best—linearized

√
n. Takeaway: our model- and hardware-aware solver produces in-budget solutions with the lowest overhead

on linear networks (a-b), and dramatically lowers memory consumption and overhead on complex architectures (c).

the Checkmate system, illustrated in Figure 2.

To accelerate problem construction, decision variables R
and S are expressed as lower triangular matrices, as are
accounting variables U . FREE is represented as a |V | × |E|
matrix. Except for our maximum batch size experiments,
solutions are generated with a user-configurable time limit
of 3600 seconds, though the majority of problems solve
within minutes. Problems with exceptionally large batch
sizes or heavily constrained memory budgets may reach this
time limit while the solver attempts to prove that the prob-
lem is infeasible. The cost of a solution is measured with
a profile-based cost model and compared to the (perhaps
unachievable) cost with no recomputation (Section 4.10).

The feasible set of our optimal ILP formulation is a strict
superset of baseline heuristics. We implement baselines as
a static policy for the decision variable S and then solve
for the lowest-cost recomputation schedule using a similar
procedure to that described in Algorithm 2.

6.3 What is the trade-off between memory usage and
computational overhead?

Figure 5 compares remateralization strategies on VGG-16,
MobileNet, and U-Net. The y-axis shows the computational
overhead of checkpointing in terms of time as compared to
baseline. The time is computed by profiling each individual
layer of the network. The x-axis shows the total memory
budget required to run each model with the specified batch
size, computed for single precision training. Except for the√
n heuristics, each rematerialization algorithm has a knob

to trade-off the amount of recomputation and memory usage,

where a smaller memory budget leads to higher overhead.

Takeaways: For all three DNNs, Checkmate produces
clearly faster execution plans as compared to algorithms
proposed by Chen et al. (2016b) and Griewank & Walther
(2000) – over 1.2× faster than the next best on U-Net at
the NVIDIA V100 memory budget. Our framework allows
training a U-Net at a batch size of 32 images per GPU with
less than 10% higher overhead. This would require 23 GB
of memory without rematerialization, or with the original
baselines without our generalizations.

6.4 Are large inputs practical with rematerialization?

The maximum batch size enabled by different rematerializa-
tion strategies is shown in Figure 6. The y-axis shows the
theoretical maximum batch size we could feasibly train with
bounded compute cost. This is calculated by enforcing that
the total cost must be less than the cost of performing just
one additional forward pass. That is, in Figure 6 the cost is
at most an additional forward pass higher, if the specified
batch size would have fit in GPU memory. We reformu-
late Problem (9) to maximize a batch size variable B ∈ N
subject to modified memory constraints that use B ∗Mi in
place of Mi and subject to an additional cost constraint,

n∑

t=1

t∑

i=1

CiRt,i ≤ 2
∑

vi∈Gfwd

Ci +
∑

vi∈Gbwd

Ci. (10)

The modified integer program has quadratic constraints, and
is difficult to solve. We set a time limit of one day for the
experiment, but Gurobi may be unable to reach optimality
within that limit. Figure 6 then provides a lower bound on

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

16 29 21 16
7

19
8

21
518

51 33

19
7

11
6

45
2

35

51

43

26
6 19

9

64
0

61

60

62

28
9

22
5

11
05

0x

1x

2x

3x

4x

5x

U-Net FCN8 SegNet VGG19 ResNet50 MobileNet

N
or

m
al

iz
ed

 b
at

ch
 s

iz
e

Checkpoint all AP √n Lin. greedy Checkmate (ours)

Figure 6. Maximum batch size possible on a single NVIDIA V100
GPU when using different generalized rematerialization strategies
with at most a single extra forward pass. We enable increasing
batch size by up to 5.1× over the current practice of caching
all activations (on MobileNet), and up to 1.73× over the best
checkpointing scheme (on U-Net).

the maximum batch size that Checkmate can achieve.

For fair comparison on the non-linear graphs used in U-
Net, FCN, and ResNet, we use the AP

√
n and linearized

greedy baseline generalizations described in Section 6.1.
Let Mfixed = 2Mparam, as in (2) and let M@1 be the mem-
ory a baseline strategy uses at batch size 1. The maximum
baseline batch size is estimated with (11), where the mini-
mization is taken with respect to hyperparameters, if any.

maxB =

⌊
16 GB−Mfixed

minM@1 −Mfixed

⌋
(11)

Costs are measured in FLOPs, determined statically. U-
Net, FCN8 and SegNet semantic segmentation networks
use a resolution of 416× 608, and classification networks
ResNet50, VGG19 and MobileNet use resolution 224×224.

Takeaways: We can increase the batch size of U-Net to
61 at a high resolution, an unprecedented result. For many
tasks such as semantic segmentation, where U-Net is com-
monly used, it is not possible to use batch sizes greater than
16, depending on resolution. This is sub-optimal for batch
normalization layers, and being able to increase the batch
size by 3.8× (61 vs 16 for a representative resolution) is
quite significant. Orthogonal approaches to achieve this
include model parallelism and distributed memory batch
normalization which can be significantly more difficult to
implement and have high communication costs. Further-
more, for MobileNet, Checkmate allows a batch size of
1105 which is 1.73× higher than the best baseline solution,
a greedy heuristic, and 5.1× common practice, checkpoint-
ing all activations. The same schedules can also be used to
increase image resolution rather than batch size.

Chen√
n

Chen
greedy

Griewank
log n

Two-phase
LP rounding

MobileNet 1.14× 1.07× 7.07× 1.06×
VGG16 1.28× 1.06× 1.44× 1.01×
VGG19 1.54× 1.39× 1.75× 1.00×

U-Net 1.27× 1.23× - 1.03×
ResNet50 1.20× 1.25× - 1.05×

Table 2. Approximation ratios for baseline heuristics and our LP
rounding strategy. Results are given as the geometric mean
speedup of the optimal ILP across feasible budgets.

6.5 How well can we approximate the optimal
rematerialization policy?

To understand how well our LP rounding strategy (Sec-
tion 5) approximates the ILP, we measure the ratio
COSTapprox/COSTopt, i.e. the speedup of the optimal sched-
ule, in FLOPs. As in Section 6.3, we solve each strategy at a
range of memory budgets, then compute the geometric mean
of the ratio across budgets. The aggregated ratio is used
because some budgets are feasible via the ILP but not via
the approximations. Table 6 shows results. The two-phase
deterministic rounding approach has approximation factors
close to optimal, at most 1.06× for all tested architectures.

7 CONCLUSIONS

One of the main challenges when training large neural net-
works is the limited capacity of high-bandwidth memory
on accelerators such as GPUs and TPUs. This has created
a memory wall that limits the size of the models that can
be trained. The bottleneck for state-of-the-art model de-
velopment is now memory rather than data and compute
availability, and we expect this trend to worsen in the future.

To address this challenge, we proposed a novel rematerial-
ization algorithm which allows large models to be trained
with limited available memory. Our method does not make
the strong assumptions required in prior work, supporting
general non-linear computation graphs such as residual net-
works and capturing the impact of non-uniform memory
usage and computation cost throughout the graph with a
hardware-aware, profile-guided cost model. We presented
an ILP formulation for the problem, implemented the Check-
mate system for optimal rematerialization in TensorFlow,
and tested the proposed system on a range of neural network
models. In evaluation, we find that optimal rematerializa-
tion has minimal computational overhead at a wide range of
memory budgets and showed that Checkmate enables prac-
titioners to train high-resolution models with significantly
larger batch sizes. Finally, a novel two-phase rounding
strategy closely approximates the optimal solver.

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

ACKNOWLEDGEMENTS

We would like to thank Barna Saha and Laurent El Ghaoui
for guidance on approximation, Mong H. Ng for help in
evaluation, and the paper and artifact reviewers for helpful
suggestions. In addition to NSF CISE Expeditions Award
CCF-1730628, this work is supported by gifts from Alibaba,
Amazon Web Services, Ant Financial, CapitalOne, Ericsson,
Facebook, Futurewei, Google, Intel, Microsoft, NVIDIA,
Scotiabank, Splunk and VMware. This work is also sup-
ported by the NSF GRFP under Grant No. DGE-1752814.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mane, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed
Systems. March 2016.

Beaumont, O., Herrmann, J., Pallez, G., and Shilova, A.
Optimal memory-aware backpropagation of deep join
networks. Research Report RR-9273, Inria, May 2019.

Briggs, P., Cooper, K. D., and Torczon, L. Rematerialization.
In Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation,
PLDI ’92, pp. 311–321, New York, NY, USA, 1992.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Bulo, S. R., Porzi, L., and Kontschieder, P. In-place Ac-
tivated BatchNorm for Memory-Optimized Training of
DNNs. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5639–5647. IEEE,
June 2018.

Canziani, A., Paszke, A., and Culurciello, E. An Analysis of
Deep Neural Network Models for Practical Applications.
May 2016. arXiv: 1605.07678.

Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J.,
Hopkins, M. E., and Markstein, P. W. Register allocation
via coloring. Computer Languages, 6(1):47–57, January
1981.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. DeepLab: Semantic Image Segmentation
with Deep Convolutional Nets, Atrous Convolution, and
Fully Connected CRFs. June 2016a. arXiv: 1606.00915.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training Deep
Nets with Sublinear Memory Cost. April 2016b. arXiv:
1604.06174.

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. Multi-view 3D
Object Detection Network for Autonomous Driving. In
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6526–6534. IEEE, 2017.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gener-
ating Long Sequences with Sparse Transformers. April
2019. arXiv: 1904.10509.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N.,
and Zadeck, F. K. Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, Octo-
ber 1991.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context. January 2019.
arXiv: 1901.02860.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding. October 2018. arXiv: 1810.04805.

Dong, C., Loy, C. C., He, K., and Tang, X. Image super-
resolution using deep convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 38(2):295–307, Feb 2016.

Feng, J. and Huang, D. Cutting Down Training Memory by
Re-fowarding. July 2018.

Forrest, J. J., Vigerske, S., Ralphs, T., Santos, H. G., Hafer,
L., Kristjansson, B., Fasano, J., Straver, E., Lubin, M.,
rlougee, jpgoncal1, Gassmann, H. I., and Saltzman, M.
COIN-OR Branch-and-Cut solver, June 2019.

Gholami, A., Azad, A., Jin, P., Keutzer, K., and Buluc, A. In-
tegrated model, batch, and domain parallelism in training
neural networks. In Proceedings of the 30th on Sympo-
sium on Parallelism in Algorithms and Architectures, pp.
77–86. ACM, 2018.

GLPK. GNU Project - Free Software Foundation (FSF).

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. The
Reversible Residual Network: Backpropagation Without
Storing Activations. In Guyon, I., Luxburg, U. V., Ben-
gio, S., Wallach, H., Fergus, R., Vishwanathan, S., and

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 30, pp. 2214–2224. Curran Associates,
Inc., 2017.

Goodwin, D. W. and Wilken, K. D. Optimal and Near-
optimal Global Register Allocation Using 0–1 Integer
Programming. Software: Practice and Experience, 26(8):
929–965, 1996.

Griewank, A. and Walther, A. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or ad-
joint mode of computational differentiation. ACM Trans-
actions on Mathematical Software, 26(1):19–45, March
2000.

Gruslys, A., Munos, R., Danihelka, I., Lanctot, M.,
and Graves, A. Memory-efficient Backpropagation
Through Time. In Proceedings of the 30th International
Conference on Neural Information Processing Systems,
NIPS’16, pp. 4132–4140, USA, June 2016. Curran Asso-
ciates Inc.

Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., and Yosin-
ski, J. Faster Neural Networks Straight from JPEG. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 31, pp. 3933–
3944. Curran Associates, Inc., 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Holder, L. Graph Algorithms: Applications, 2008.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate
Shift. International Conference on Machine Learning,
February 2015.

Jain, A., Phanishayee, A., Mars, J., Tang, L., and Pekhi-
menko, G. Gist: Efficient Data Encoding for Deep Neu-
ral Network Training. In Proceedings of the 45th An-
nual International Symposium on Computer Architecture,
ISCA ’18, pp. 776–789, Piscataway, NJ, USA, 2018.
IEEE Press.

Jia, Z., Lin, S., Qi, C. R., and Aiken, A. Exploring Hidden
Dimensions in Accelerating Convolutional Neural Net-
works. In International Conference on Machine Learning,
pp. 2274–2283, July 2018a.

Jia, Z., Zaharia, M., and Aiken, A. Beyond Data and Model
Parallelism for Deep Neural Networks. SysML Confer-
ence, pp. 13, Feb. 2018b.

Karmarkar, N. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pp. 302–311.
ACM, 1984.

Kim, J., Lee, J. K., and Lee, K. M. Accurate image super-
resolution using very deep convolutional networks. In
2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1646–1654, June 2016. doi:
10.1109/CVPR.2016.182.

Koes, D. R. and Goldstein, S. C. A Global Progressive
Register Allocator. In Proceedings of the 27th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’06, pp. 204–215, New York,
NY, USA, 2006. ACM. event-place: Ottawa, Ontario,
Canada.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
Classification with Deep Convolutional Neural Networks.
In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,
K. Q. (eds.), Advances in Neural Information Process-
ing Systems 25, pp. 1097–1105. Curran Associates, Inc.,
2012.

Lattner, C. LLVM: An Infrastructure for Multi-Stage Op-
timization. Master’s thesis, Computer Science Dept.,
University of Illinois at Urbana-Champaign, Urbana, IL,
December 2002.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. July 2019. arXiv: 1907.11692.

Long, J., Shelhamer, E., and Darrell, T. Fully convolutional
networks for semantic segmentation. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 3431–3440, 2015.

Lozano, R. C., Carlsson, M., Blindell, G. H., and Schulte,
C. Combinatorial Register Allocation and Instruction
Scheduling. April 2018. arXiv: 1804.02452.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An Empirical Model of Large-Batch Training. arXiv:
1812.06162.

Meng, C., Sun, M., Yang, J., Qiu, M., and Gu, Y. Train-
ing Deeper Models by GPU Memory Optimization on
TensorFlow. pp. 8, December 2017.

Micikevicius, P. Local Memory and Register Spilling, 2011.

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

Nakata, I. On Compiling Algorithms for Arithmetic
Expressions. Commun. ACM, 10(8):492–494, August
1967. ISSN 0001-0782. doi: 10.1145/363534.363549.
URL http://doi.acm.org/10.1145/363534.
363549.

Nesterov, Y. and Nemirovskii, A. Interior-point polynomial
algorithms in convex programming, volume 13. Siam,
1994.

NVIDIA. NVIDIA Tesla V100 GPU Architecture,
August 2017. URL https://images.nvidia.
com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf.

Olesen, J. S. Register Allocation in LLVM 3.0, November
2011.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS 2017
Autodiff Workshop, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pohlen, T., Hermans, A., Mathias, M., and Leibe, B. Full-
resolution residual networks for semantic segmentation
in street scenes. In Computer Vision and Pattern Recog-
nition (CVPR), 2017 IEEE Conference on, 2017.

Punjani, M. Register Rematerialization in GCC. In GCC
Developers’ Summit, volume 2004. Citeseer, 2004.

Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In
Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F.
(eds.), Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2015, Lecture Notes in Computer
Science, pp. 234–241. Springer International Publishing,
2015. ISBN 978-3-319-24574-4.

Rosen, B. K., Wegman, M. N., and Zadeck, F. K. Global
Value Numbers and Redundant Computations. In Pro-
ceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’88, pp.
12–27, New York, NY, USA, 1988. ACM.

Sethi, R. Complete Register Allocation Problems. pp. 14,
April 1973.

Simonyan, K. and Zisserman, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. September
2014. arXiv: 1409.1556.

Siskind, J. M. and Pearlmutter, B. A. Divide-and-conquer
checkpointing for arbitrary programs with no user annota-
tion. Optimization Methods and Software, 33(4-6):1288–
1330, 2018a. doi: 10.1080/10556788.2018.1459621.

Siskind, J. M. and Pearlmutter, B. A. Divide-and-Conquer
Checkpointing for Arbitrary Programs with No User An-
notation. Optimization Methods and Software, 33(4-6):
1288–1330, November 2018b.

Sivathanu, M., Chugh, T., Singapuram, S. S., and Zhou, L.
Astra: Exploiting Predictability to Optimize Deep Learn-
ing. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems - ASPLOS ’19, pp.
909–923, Providence, RI, USA, 2019. ACM Press.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed,
S., Anguelov, D., Erhan, D., Vanhoucke, V., and Ra-
binovich, A. Going deeper with convolutions. In
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1–9, June 2015. doi:
10.1109/CVPR.2015.7298594.

Tai, Y., Yang, J., and Liu, X. Image super-resolution via
deep recursive residual network. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pp. 2790–2798, July 2017. doi: 10.1109/CVPR.
2017.298.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is All you Need. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 30, pp. 5998–6008. Curran Associates, Inc., 2017.

Wu, Y. and He, K. Group Normalization. pp. 3–19, 2018.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 1492–1500, 2017.

Yang, B., Liang, M., and Urtasun, R. HDNET: Exploiting
HD Maps for 3D Object Detection. pp. 10, 2018.

Yannakakis, M. On the approximation of maximum satisfia-
bility. Journal of Algorithms, 17(3):475–502, 1994.

http://doi.acm.org/10.1145/363534.363549
http://doi.acm.org/10.1145/363534.363549
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

A INTEGRALITY GAP

To understand why the partitioned variant of the MILP (Sec-
tion 4.2) is faster to solve via branch-and-bound, we can
measure the integrality gap for particular problem instances.
The integrality gap is the maximum ratio between the opti-
mal value of the ILP and its relaxation, defined as follows:

IG = max
I

COSTint

COSTfrac
,

where COSTint and COSTfrac are the optimal value
the ILP and that of its relaxation, respectively. I =
(G,C,M,Mbudget) describes a problem instance. As our
ILP is a minimization problem, COSTint ≥ COSTfrac for
all I , and IG ≥ 1. While it is not possible to measure
the ratio between the ILP and LP solutions for all problem
instances, the ratio for any particular problem instance gives
a lower bound on the integrality gap.

For the 8-layer linear neural network graph discussed in
Section 4.2, frontier-advancement reduces the integrality
gap from 21.56 to 1.18, i.e. the LP relaxation is significantly
tighter. In branch-and-bound algorithms for ILP optimiz-
tion, a subset of feasible solutions can be pruned if the LP
relaxation over the subset yields an objective higher than
the best integer solution found thus far. With a tight LP
relaxation, this condition for pruning is often met, so fewer
solutions need to be enumerated.

B GENERALIZATIONS OF PRIOR WORK

B.1 AP
√
n and AP greedy

We identify Articulation Points (AP) in the undirected form
of the forward pass data-flow graph as candidates for check-
pointing. Articulation points are vertices that increase the
number of connected components (e.g. disconnect) the
graph if removed, and can be identified in time O(V +E)
via a modified DFS traversal (Holder, 2008). An articulation
point va is a good candidate for checkpointing as subsequent
vertices in the topological order have no dependencies on
vertices before va in the order. DNN computation graphs are
connected, so each intermediate tensor can be reconstructed
from a single articulation point earlier in the topological
order, or the input if there is no such AP. APs include the
input and output nodes of residual blocks in ResNet, but not
vertices inside blocks. We apply Chen’s heuristics to check-
point a subset of these candidates, then solve for the optimal
recomputation plan R to restore correctness. Solving for
R ensures that the dependencies of a node are in memory
when it is computed.

We could find R by solving the optimization problem (9)
with additional constraints on S that encode the heuristi-
cally selected checkpoints. However, as S is given, the
optimization is solvable in O(|V ||E|) via a graph traversal

per row of R that fills in entries when a needed value is not
in memory by the same process described in Section 5.2.

B.2 Linearized
√
n and Linearized greedy

The forward graph of the DNN Gfwd = (Vfwd, Efwd) can
be treated as a linear graph Glin = (Vfwd, Elin) with edges
connecting consecutive vertices in a topological order:

Elin = {(v1, v2), (v2, v3), . . . , (vL−1, vL)}
While Glin does not properly encode data dependencies, it
is a linear graph that baselines can analyze. To extend a
baseline, we apply it to Glin, generate checkpoint matrix S
from the resulting checkpoint set, and find the optimal R as
with the AP baselines.

C HARDNESS OF REMATERIALIZATION

Sethi (1973) reduced 3-SAT to a decision problem based on
register allocation in straight line programs, with no recom-
putation permitted. Such programs can be represented by
result-rooted Directed Ayclic Graphs (DAGs), with nodes
corresponding to operations and edges labeled by values.
In Sethi’s graphs, the desired results are the roots of the
DAG. If a program has no common subexpressions, i.e. the
graph forms a tree, optimal allocation is possible via a lin-
ear time tree traversal (Nakata, 1967). However, Sethi’s
reduction shows a register allocation decision problem in
the general case—whether a result-rooted DAG can be com-
puted with fewer than k registers without recomputation—is
NP-complete.

The decision problem characterizes computation of a DAG
as a sequence of four possible moves of stones, or registers,
on the nodes of the graph, analogous to statements discussed
in Section 4.9. The valid moves are to (1) place a register at
a leaf, computing it, or (2) pick up a register from a node.
Also, if there are registers at all children of a node x, then
it is valid to (3) place a register at x, computing it, or (4)
move a stone to x from one of the children of x, computing
x. The register allocation problem reduces to the following
no-overhead rematerialization decision problem (RP-DEC):
Definition C.1. (RP-DEC): Given result-terminated data-
flow DAG G = (V,E) corresponding to a program, with
unit cost to compute each node and unit memory for the
results of each node, does there exist an execution plan that
evaluates the leaf (terminal) node t ∈ V with maximum
memory usage b at cost at most |V |?

RP-DEC is decidable by solving the memory-constrained
form of Problem 1 with sufficient stages, then checking if
the returned execution plan has cost at most |V |. RP-DEC
closely resembles Sethi’s decision problem, differing only
in subtleties. The register allocation DAG is rooted at the
desired result t whereas a data-flow graph terminates at the

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization

Deterministic rounding
ILP

Checkpoint all
Randomized rounding

16

17

18

19

20

15.4 15.6 15.8 15 16

165

170

175

180

185

G
PU

tim
e
(m
s)

VGG16 MobileNet

Activation memory usage (GB)

Figure 7. Comparison of the two-phase LP rounding approxima-
tion with randomized rounding of S∗ and deterministic rounding
of S∗ on different models. We compare memory usage and compu-
tational cost (objective), in milliseconds according to profile-based
cost model. The average of the randomized rounding costs is
shown as a dotted line.

result. Second, register-based computations can be in place,
e.g. a summation a+ b may be written to the same location
as either of the operands. In neural network computation
graphs, we cannot perform all computations in place, so we
did not make this assumption. To reduce Sethi’s decision
problem to RP-DEC, given result-rooted DAG G, construct
result-terminated G′ by reversing all edges. Then, if Sethi’s
instance allows for at most k registers, allow for a memory
budget of b = k + 1 bytes: one byte to temporarily write
outputs of operations that would have been written in place.

Despite hardness of register allocation, Goodwin & Wilken
(1996) observe that a 0-1 integer program for optimal alloca-
tion under an instruction schedule has empirical complexity
O(n2.5), polynomial in the number of constraints. Similarly,
Section 6 shows that the frontier-advancing, constrained op-
timization problem (9) is tractable for many networks.

D COMPARISON OF APPROXIMATIONS

In Section 5, we discussed an approximation strategy based
on rounding the LP relaxation, evaluated with deterministic
rounding in Section 6.5. Figure 7 compares schedules pro-
duced by our proposed two-phase rounding strategy when
the S∗ matrix from the LP relaxation is rounded with a ran-
domized and a deterministic approach. While two-phase
randomized rounding of S∗ offers a range of feasible so-
lutions, two-phase deterministic rounding produces consis-
tently lower cost schedules. While appropriate for VGG16,
for MobileNet, our budget allowance ε = 0.1 is overly
conservative as schedules use less memory than the 16 GB
budget. A search procedure over ε ∈ [0, 1] could be used to
produce more efficient schedules.

E ARTIFACT REPRODUCIBILITY
INSTRUCTIONS

Checkmate is a Python package that computes memory-
efficient schedules for evaluating neural network dataflow
graphs created by the backpropagation algorithm. To save
memory, the package deletes and rematerializes intermedi-
ate values via recomputation. The schedule with minimum
recomputation for a given memory budget is chosen by solv-
ing an integer linear program. Find the software for the
artifact and documentation at https://github.com/
parasj/checkmate/tree/mlsys20_artifact.

E.1 Artifact check-list (meta-information)
• Algorithm: Integer linear programming (Gurobi 9.0)

• Model: Code included in setup and public, including neural
network architectures VGG16, VGG19, U-Net, MobileNet,
SegNet, FCN, ResNet50. Trained weights not required.

• Run-time environment: Ubuntu 18.04.3 LTS

• Hardware: 2x Intel E5-2670 CPUs, 256GB DDR4 RAM

• Execution: Runtime varies, 1m to 24hr

• Metrics: Computational overhead (slowdown based on cost
model), maximum supported batch size

• Output: Plot of memory budget vs overhead. Console output
of maximum supported batch size

• Experiments: Commands provided in README.md for
Gurobi installation and running experiment Python scripts

• How much disk space required?: 1 GB

• Publicly available?: Yes. https://github.com/
parasj/checkmate/tree/mlsys20_artifact.
Archived at https://zenodo.org/badge/
latestdoi/209406827.

• Code licenses: Apache 2.0 licensed

https://github.com/parasj/checkmate/tree/mlsys20_artifact
https://github.com/parasj/checkmate/tree/mlsys20_artifact
https://github.com/parasj/checkmate/tree/mlsys20_artifact
https://github.com/parasj/checkmate/tree/mlsys20_artifact
https://zenodo.org/badge/latestdoi/209406827
https://zenodo.org/badge/latestdoi/209406827

