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Abstract

Bird’s-eye-view (BEV) is a powerful and widely adopted
representation for road scenes that captures surrounding
objects and their spatial locations, along with overall con-
text in the scene. In this work, we focus on bird’s eye
semantic segmentation, a task that predicts pixel-wise se-
mantic segmentation in BEV from side RGB images. This
task is made possible by simulators such as Carla, which
allow for cheap data collection, arbitrary camera place-
ments, and supervision in ways otherwise not possible in
the real world. There are two main challenges to this task:
the view transformation from side view to bird’s eye view,
as well as transfer learning to unseen domains. Existing
work transforms between views through fully connected lay-
ers and transfer learns via GANs. This suffers from a lack
of depth reasoning and performance degradation across do-
mains. Our novel 2-staged perception pipeline explicitly
predicts pixel depths and combines them with pixel seman-
tics in an efficient manner, allowing the model to leverage
depth information to infer objects’ spatial locations in the
BEV. In addition, we transfer learning by abstracting high-
level geometric features and predicting an intermediate rep-
resentation that is common across different domains. We
publish a new dataset called BEVSEG-Carla and show that
our approach improves state-of-the-art by 24% mIoU and
performs well when transferred to a new domain.

1. Introduction
A perception system that reliably recognizes the loca-

tions and types of surrounding objects is a key compo-
nent of autonomous driving systems. Perception is typi-
cally achieved with various sensors, including RGB cam-
eras, thermal cameras, lidar, and radar. While lidar provides
the most accurate depth estimation, the expensive cost hin-
ders its mass deployment. Moreover, it is crucial to have a
backup system in case of any sensor failures for applications
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that strongly emphasizes safety. It is therefore desirable to
have a perception system that builds purely on camera in-
puts. In addition, such a perception system will need to out-
put predictions that are convenient to reason with for sub-
sequent autonomous driving subsystems, such as planning
and prediction modules. Recently, rasterized bird’s-eye-
view (BEV) representations of the world have gained popu-
larity as a representation that captures the environment in a
suitable manner for planning and prediction [2, 26, 5, 4]. A
BEV representation’s grid-structured representation readily
allows for the direct application of convolutional layers and
efficient inference of neural networks.

With these two requirements in mind, the task of image-
based bird’s-eye semantic segmentation is as followed:
given N images capturing the road scene from an AV at
different angle, predict a pixel-wise semantic segmenta-
tion B in the bird’s-eye view. Data collection for this task
is made possible by simulators such as GTA-V [18] and
CARLA [11], which allow for inexpensive data collection
and ground-truth labels otherwise unobtainable in the real
world. A recent work VPN tackles this task by using convo-
lutional neural network (CNN) on side view and later again
on bird’s-eye view, transforming features from side views
to bird’s-eye view by fully connected layers [21]. This ap-
proach, while simple, suffers from lack of depth reasoning
and results in coarse bird’s-eye segmentation. Furthermore,
because ground truths can only be collected in the simula-
tor domain, it is imperative to transfer the model to achieve
good performance in other target domains. In VPN, this
problem is exacerbated by the its end-to-end training. VPN
adapts the model by using a GAN approach but achieves
much worse performance compared to that of the source
domain.

In this work, we present a novel 2-staged perception
pipeline for autonomous driving that leverages depth and
geometric information to improve BEV segmentation. In
stage 1, our pipeline consumes monocular images from var-
ious angles, then use a depth estimation module and a se-
mantic segmentation module to predict a depth and seg-
mentation map for each view. We then combine the two
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Figure 1: Example of RGB, BEV dataset pair.

into a semantic point cloud. In stage 2, a parser network
constructs the bird’s-eye-view segmentation by operating
over the projected semantic point cloud. We address the
lack of depth reasoning by explicitly training a monocu-
lar depth estimator as part of our pipeline and transform-
ing pixels into bird’s-eye view by geometry and pin-hole
camera model. We address the problem of transfer learning
by using an intermediate representation between stages and
abstracting away features that are common across domains.
We train our model with RGB images, segmentation and
depth ground truths in the side view, and BEV ground truth
semantic segmentation collected in the CARLA simulator
[11]. Compared with previous pipeline [21], our pipeline
raises segmentation mIoU from 36.4% to 60.4%. Thanks to
the extra level of intermediate representation, our approach
also achieves better transfer performance between different
CARLA environments.

In summary, our contributions include:

1. We propose a perception pipeline that incorporates
depth information, geometry, and semantics in a novel
way to predict bird’s-eye-view segmentation;

2. We obtain the new state-of-the-art results in bird’s-eye-
view segmentation, outperforming the previous state-
of-the-art by 20− 30% mIoU;

3. We propose an alternate intermediate representation
that is more robust and agnostic to sensor type and en-
vironment, and show that this representation allows for
better transfer learning between different domains; and

4. We release a new CARLA dataset with rich variation
in the weather, landscape, and surrounding vehicle do-
mains for use in studying domain adaptation in au-
tonomous driving settings.

2. Related Works
2.1. Bird’s-Eye View Representations

Predicting the semantic layout of a scene is a well-
studied task in computer vision [12, 13, 31, 35, 14], usu-
ally trained using geometric constraints or full annotations

of the layout (e.g., dense ground truths). While our method,
like Layoutnet [35], constructs a 3D layout of the scene, the
layout (a semantic point cloud) is purely an intermediate
form to reduce computational complexity for the scene se-
mantics. Several works [34, 1, 15] have pushed the bound-
ary for view synthesis, which generates realistic views of a
scene from different view points. Our work is concerned
with generating a semantic representation of the bird’s eye
view. MVP [26] predicts a bird’s eye view by detecting 3D
objects, but it disregard other features such as roads, road
lanes, and buildings. Recently, VPN [21] proposes the task
of bird’s-eye view semantic segmentation, using inputs and
ground truth collected from the CARLA simulator. It gen-
erates the BEV segmentation map in an end-to-end fashion
using a fully connected layer to transform side-view images
to bird’s eye view. This approach, however, fails to lever-
age geometry and depth information. Its end-to-end training
also makes the model less transferable to new domains.

2.2. Image-Derived Depth

Depth information is important in autonomous vehicles
as objects need to be reasoned in the correct locations for
obstacle avoidance. Lidar sensors provide the most accu-
rate measurements in depth, but are expensive and its spar-
sity provides incomplete depth information. 3D object de-
tection from images [7, 32] predict the location and size
of important object such as vehicles, pedestrians, and cy-
clists. MVP [26] extends these 3D object detection mod-
els by mapping these objects in BEV, generate a rasterized
BEV image, and construct a driving policy. While these
object-based depth predictions are light-weight and accu-
rate in predicting objects, they ignore other features such
as road lanes and signs that also important in scene under-
standing. In addition, depth estimation predicts the depth
of every pixel using monocular images, while stereo match-
ing find correspondence between pixels to predict disparity,
which can then be converted into pixel-wise depths. Many
works combine pixel-wise depth maps with semantic fea-
tures by channel-wise concatenation [21, 6, 22]. In contrast,
pseudolidar-based approaches [28, 33, 23, 25] convert depth
maps into the format of point cloud and show that this is a
easier representation for neural network to process. In this
work, not only do we predict a pseudolidar using monoc-
ular depth estimation, we also concatenate each point with
the predicted classes from semantic segmentation to form a
semantic point cloud.

2.3. Transfer Learning

Given the large domain gap between different driving
environments, many different methods were developed to
transfer learning between them. [17, 16, 24, 3, 30] im-
plement domain adaption techniques to mitigate the large
domain gap between synthetic images and real world im-
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Figure 2: The proposed BEV-Seg pipeline.

ages. [19, 29] both augment this using geodesic distances to
match feature distributions. VPN [21] builds on the afore-
mentioned works and bridges the domain gap in the context
of BEV semantic segmentation, using adversarial networks
to match distributions of the source domain and target do-
main. While transferred model achieve qualitatively mean-
ingful results, the outputs are coarser and less accurate.

Instead of using an end-to-end network and then apply-
ing a transfer learning component, some works use a mod-
ular pipeline and train different modules on different do-
mains. [8] trains two neural networks: one that identifies an
object’s position, and another that takes as input the object
pose and outputs actions. To transfer from the simulator to
the real world they train a new object pose network and use
the action network as-is. [9] trains multiple networks of the
same architecture for robots doing different tasks, and trans-
fer learning across task by swapping those trained networks.
[20] is closely related to our conceptualization of a modu-
lar AV pipeline. It uses a binary semantic segmentation of
their frontal view as an intermediate representation; though
this is useful for transfer learning, it falls short in utility for
downstream tasks due to its lack of detailed semantic and
depth information. Similarly, our pipeline uses semantics in
a semantic point cloud, which incorporates both depth and
semantic information. However, our immediate represen-
tation is the projection of semantic point cloud onto a ras-
terized image, thus not only abstracting the semantics but

also the depth information by putting continuously valued
depths into rasterized bins.

3. Methodology
3.1. A Two-Stage Perception Pipeline

Our pipeline consists of two stages, as depicted in Fig-
ure 2. In the first stage, N RGB road scene images are cap-
tured by cameras at different angles and individually pass
through semantic segmentation network S and depth esti-
mation network D. The resulting side semantic segmen-
tations and depth maps are combined and projected into a
semantic point cloud. This point cloud is then projected
downward into an incomplete bird’s-eye view, which is fed
into a parser network [27] to predict the final bird’s-eye seg-
mentation. The rest of this section provides details on the
various components of the pipeline.

Stage 1: RGB to Intermediate Representation Given
N RGB images captured at different angles, we pass each
into a semantic segmentation network and a monocular
depth estimation network. Our semantic segmentation net-
work S takes in side RGB images Il, l ∈ {1, · · · , N} and
produces a segmentation map Sl. Given C output classes
(pedestrian, car, etc.), our segmentation map is represented
as Sl(u, v) = cl,u,v where u, v are the pixel location and
cl,u,v is the predicted class for that image and location. Our
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Figure 3: Qualitative Results on the BEVSEG-Carla dataset.

Model mIoU
VPN RGB 36.4%

VPN RGB-D 37.3%
ours 60.4%

ours - Segmentation Oracle 60.8%
ours - Depth Oracle 66.5%

ours - Depth & Segmentation Oracle 67.3%

Table 1: Segmentation Result on BEVSEG-Carla. Oracle models have ground truth given for specified inputs.

monocular depth estimation network D also takes in side
RGB images Il and produces depth maps Dl(u, v) = dl,u,v
where each pixel location u, v contains a predicted contin-
uous depth value dl,u,v. The semantic segmentation net-
work is supervised by ground truth segmentation labels,
which could be human-annotated or simulator generated.
The depth estimation network is supervised by ground truth
lidar projected onto the image plane.

For each view l, we then create a semantic point-cloud
Pl from its corresponding segmentation map Sl and depth
map Dl. To do this, we first combine Sl and Dl to obtain a
semantic perspective point cloud {(u(i), v(i), d(i), c(i))}Kl

i=1,

where Kl is the number of pixels from view l. Using the
pinhole camera model, we project each perspective point
into 3D camera coordinates by the following equations:

z(i) = d(i),

x(i) =
(u(i) − cU )× z

fU
,

y(i) =
(v(i) − cV )× z

fV
,

where fU , fV are the horizontal and vertical focal
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lengths, and (cU , cV ) is the pixel center of the im-
age. This results in a view specific point cloud Pl =
{(x(i), y(i), z(i), c(i))}Kl

i=1. We then rotate each point cloud
into its respective view in the 3D vehicle coordinates using
rotation matrices. Concatenating all point clouds, we obtain
a final semantic point cloud P = {(x(i), y(i), z(i), c(i))}Ki=1,
where K is the total number of pixels from all views. Fi-
nally, we remove the height dimension y by orthograph-
ically projecting the points downward onto an incom-
plete bird’s-eye segmentation T of size HBEV × WBEV .
For each point (x(i), y(i), z(i), c(i)) we set the pixel value
T (bx(i)c, by(i)c) = c(i). We resolve projection conflicts by
always choosing the point of lower height, since the most
important obstacles for driving are often near the ground.
We assign pixels where there is no corresponding point the
semantic label of void. This is the final intermediate repre-
sentation that bridges stage 1 and stage 2.

Stage 2: Intermediate Representation to Bird’s-Eye Se-
mantic Segmentation We expand the incomplete bird’s-
eye segmentation T into one-hot encoding along the class
c dimension. This results in a tensor L of size H ×W ×
(C + 1), where H,W are the height and width of T , and
C is the number of classes with the additional class of void
class. This is passed into a parser network to predict the full
bird’s-eye semantic segmentation.

Our parser network is another semantic segmentation
network P . The purpose of the parser network is to take
the incomplete bird’s-eye view and ”fill” in the void pix-
els as well as locally ”smooth” already predicted segmenta-
tion locations through convolution operations. Thus we take
our incomplete bird’s-eye view tensor L and pass it through
P to generate our final BEV segmentation map B of size
H ×W . Void is not one of the predicted class as they are
recovered by the parser network.

Advantages of Explicit Depth Reasoning and Using Ge-
ometry to Transform Between Views In our modular ap-
proach, each network can be trained separately and be en-
forced to reason in specific space. The side view segmenta-
tion network is tasked with reasoning with the semantics of
each pixels, while the depth network is tasked with reason-
ing with the locations of each pixel. In the baseline VPN
[21], depth information is reasoned by fully connected lay-
ers and supervised by training signals from the ground truth
bird’s-eye view. In our approach, however, we have a sep-
arate module for depth reasoning and also supervise it with
ground truth depth maps, providing stronger depth training
signals. Our choice of intermediate representation enables
meaningful transformation from side view to BEV. First,
pin-hole camera model alleviates the inherent perspective
warp in image plane by correcting points to their correct
3D locations. Most importantly, by using this geometry,

we bring together objects that are far in the image plane
but close in the 3D space. On an image, background build-
ings are closer to vehicles and thus reasoned closer together,
whereas on BEV, vehicles’ 3D locations are recovered and
are reasoned closer along the road instead.

3.2. Transfer Learning Via a Common Intermediate
Representation

Transfer learning is important to autonomous vehicles
because AV could be deployed in unseen environments, but
it is difficult in the task of bird’s-eye semantic segmentation.
It is much more difficult to collect ground truths for bird’s-
eye semantic segmentation, without which we cannot fine-
tune a model to target domain. Therefore, prior works [21]
employs domain adaptation, but the result is less than ideal.
In our pipeline, we propose transfer learning via modularity
and abstraction. To transfer from the source domain to a
target domain, we

1. Fine-tune the stage 1 models on the target domain
stage 1 data

2. Apply the trained stage 2 model as-is to the projected
point cloud in the target domain

In stage 1, while a domain gap does exist, the inputs and
ground truths (input RGB images, semantic ground truths,
and depth ground truths) can be readily collected and an-
notated in target domain, allowing us to fine-tune. On the
other hand, in stage 2, while the ground truth of bird’s-
eye segmentation is difficult to collect in most domains, the
intermediate common representation of projected semantic
point cloud reduces the domain gap by abstracting geomet-
ric features such as object shapes and road curves, from the
more domain-dependent features such as weather condition,
time of day, and camera settings. Therefore, we can simply
use the same model trained in the source domain. Quali-
tative and quantitative results in section 4 demonstrate that
this simple scheme achieves good transfer learning perfor-
mance.

3.3. Pipeline and Network Configuration

For side-semantic segmentations, we use HRNet [27],
a state-of-the-art convolutional network for semantic seg-
mentation. For monocular depth estimation, we implement
SORD [10] using the same HRNet as the backbone. For
both tasks, we train the same model on all four views. The
resulting semantic point cloud is projected height-wise onto
a 512x512 image. We train a separate HRNet model as our
parser network for the final bird’s-eye segmentation.

4. Experiment Results
We collect a dataset of 14k frames in the CARLA sim-

ulator by driving a vehicle equipped with various sensors
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Model Source Domain Target Domain after Transfer Learning)
VPN [21] 36.4% 27.8%

ours 60.4% 44.5%

Table 2: Results (mIoU) on Transfer Learning from Clear Noon to Wet Sunset

Model Buildings Fences Pedestrians Poles Road Lines Roads Sidewalks Vehicles Walls
VPN [21] 80.2% 11.0% 0.7% 3.83% 5.38% 87.8% 71.7% 53.9% 14.6%

ours 89.9% 62.3% 15.4% 33.1% 48.2% 96.1% 91.0% 88.3% 59.0%

Table 3: Class IoU on Source Domain.

in predefined routes around the designated town. Data col-
lection is as follows: 4 cameras are mounted at the top of
the vehicle, each facing in direction perpendicular to each
other with a 90 degree field of view, so that together the en-
tire surrounding is captured. At all four angles, we capture
RGB road scene images, ground truth semantic segmenta-
tions, and ground truth depth maps, all at the resolution of
1024 × 576. To capture bird’s-eye semantic segmentation,
we place an imaginary camera 200m above the ground fac-
ing down. The segmentation is captured with the field of
view of 8.58 degree and at the resolution of 256×256, cov-
ering an area of 15m × 15m. In 85 episodes, our vehicle
drives around 6 towns in 2 weather conditions: clear noon
and wet sunset. Samples of the dataset are shown in Figure
1. We compare our two-staged pipeline with the baseline
VPN [21], which trains an end-to-end network for bird’s-
eye view segmentation.

Benchmarks on Source Domain In this experiment, the
source domain contains frames with the clear noon weather
condition. We train two versions of VPN, one with only
RGB images as inputs and one with depth maps added. For
our approach, in addition to our model that takes as input
RGB side images, we also train three other variants of our
models with extra inputs: ground truth side segmentations,
ground truth depth maps, and both. Table 1 lists the accu-
racy of the various models in mIoU on the source domain.
We note that for the baseline, after we append a depth chan-
nel, accuracy does not improve much. For our approach,
note that the last model with both ground truth side seg-
mentation and depth maps, operates exclusively in stage 2,
thus removing the error introduced in stage 1 and serving as
an oracle to our approach. Replacing ground truth side seg-
mentation with predicted segmentation, we observe a slight
decrease in accuracy. This can be thought of as an alternate
setting of deploying RGBD sensors. Alternatively, taking
as input predicted depth maps but ground truth side seg-
mentation results in a larger decrease in accuracy to 60.8%,

revealing that accurate depth maps are essential for this ap-
proach. Lastly, our approach replaces both ground truths
with their respective predicted counterparts. We observe an-
other decrease in accuracy to 60.4%, but our approach still
outperforms both the baselines. Qualitatively results are in
Figure 3. We note that overall, our approach generates pre-
dictions that are sharper and finer in detail.

Benchmarks on Target Domain To test transfer learn-
ing, we train on the source domain of clear noon and evalu-
ate on frames in the wet sunset weather condition. Results
are listed in Table 2. For the baseline, we run its GAN-based
domain adaptation and observe a drop in performance. For
our pipeline, we retrain stage 1 models and reuse the stage
2 model and perform well on the target domain.

Predicting Important Classes Table 3 lists the IoU per
class. We note that the baseline is unable to predict many
of the important classes, such as pedestrians and cyclists.
On the other hand, our approach not only recognizes these
important objects, but also recognizes road lanes and stop
signs, which are indispensable for later planning stages. In
general, for smaller and subtler objects, our approach out-
performs the baseline by a large margin.

5. Conclusion

We propose a novel solution to the bird’s-eye view se-
mantic segmentation problem directly from RGB images.
Our two-staged pipeline consists of a side segmentation
module and a side depth estimation module to generate
semantic pseudolidar, a geometric projection of that point
cloud onto a rasterized BEV, and a parser network to recover
the full bird’s-eye semantic segmentation. We demonstrate
that this modular pipeline enables simpler transfer learning
with better accuracy in the target domain. We also provide
a new Bird’s Eye Segmentation Dataset with wider variety
and greater difficulty than previously released datasets.
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Krähenbühl, and Trevor Darrell. Monocular plan
view networks for autonomous driving. arXiv preprint
arXiv:1905.06937, 2019.

[27] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep
high-resolution representation learning for visual recogni-
tion. CoRR, abs/1908.07919, 2019.

[28] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariha-
ran, Mark Campbell, and Kilian Weinberger. Pseudo-lidar
from visual depth estimation: Bridging the gap in 3d object
detection for autonomous driving. In CVPR, 2019.

[29] Yifei Wang, Wen Li, Dengxin Dai, and Luc Van Gool.
Deep domain adaptation by geodesic distance minimization.
CoRR, abs/1707.09842, 2017.

[30] Zuxuan Wu, Xintong Han, Yen-Liang Lin, Mustafa Gökhan
Uzunbas, Tom Goldstein, Ser-Nam Lim, and Larry S. Davis.
DCAN: dual channel-wise alignment networks for unsuper-
vised scene adaptation. CoRR, abs/1804.05827, 2018.

[31] Jiu Xu, Björn Stenger, Tommi Kerola, and Tony Tung.
Pano2cad: Room layout from A single panorama image.
CoRR, abs/1609.09270, 2016.

[32] Jin Hyeok Yoo, Yeocheol Kim, Ji Song Kim, and Jun Won
Choi. 3d-cvf: Generating joint camera and lidar features us-
ing cross-view spatial feature fusion for 3d object detection.
arXiv preprint arXiv:2004.12636, 2020.

7



[33] Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Ge-
off Pleiss, Bharath Hariharan, Mark Campbell, and Kilian Q.
Weinberger. Pseudo-lidar++: Accurate depth for 3d object
detection in autonomous driving, 2019.

[34] Xinge Zhu, Zhichao Yin, Jianping Shi, Hongsheng Li, and
Dahua Lin. Generative adversarial frontal view to bird view
synthesis. CoRR, abs/1808.00327, 2018.

[35] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.
Layoutnet: Reconstructing the 3d room layout from a single
RGB image. CoRR, abs/1803.08999, 2018.

8


	1 . Introduction
	2 . Related Works
	2.1 . Bird's-Eye View Representations
	2.2 . Image-Derived Depth
	2.3 . Transfer Learning

	3 . Methodology
	3.1 . A Two-Stage Perception Pipeline
	3.2 . Transfer Learning Via a Common Intermediate Representation
	3.3 . Pipeline and Network Configuration

	4 . Experiment Results
	5 . Conclusion

