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Abstract

We present Accel, a novel semantic video segmentation

system that achieves high accuracy at low inference cost

by combining the predictions of two network branches: (1)

a reference branch that extracts high-detail features on a

reference keyframe, and warps these features forward us-

ing frame-to-frame optical flow estimates, and (2) an up-

date branch that computes features of adjustable quality on

the current frame, performing a temporal update at each

video frame. The modularity of the update branch, where

feature subnetworks of varying layer depth can be inserted

(e.g., ResNet-18 to ResNet-101), enables operation over

a new, state-of-the-art accuracy-throughput trade-off spec-

trum. Over this curve, Accel models achieve both higher

accuracy and faster inference times than the closest com-

parable single-frame segmentation networks. In general,

Accel significantly outperforms previous work on efficient

semantic video segmentation, correcting warping-related

error that compounds on datasets with complex dynamics.

Accel is end-to-end trainable and highly modular: the ref-

erence network, the optical flow network, and the update

network can each be selected independently, depending on

application requirements, and then jointly fine-tuned. The

result is a robust, general system for fast, high-accuracy se-

mantic segmentation on video.

1. Introduction

Semantic segmentation is an intensive computer vision

task that involves generating class predictions for each pixel

in an image, where classes range from foreground objects

such as “person” and “vehicle” to background entities such

as “building” and “sky”. When applied to frames in high

resolution video, this task becomes yet more expensive,

as the high spatial dimensionality of the output is further

scaled by the video’s temporal frame rate (e.g., 30 frames

per second). By treating video as a collection of uncor-

related still images, contemporary approaches to seman-
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Figure 1. Accel is a fast, high-accuracy, end-to-end trainable video

recognition system that combines two network branches: 1) a ref-

erence branch that computes a score map on high-detail features

warped from the last visited keyframe, and 2) a cheap update

branch that corrects this prediction based on features of adjustable

quality (e.g., ResNet-18 to -101) computed on the current frame.

tic video segmentation incur this full computational cost,

achieving inference throughput of less than 1.5 frames per

second (fps) on a 30 fps video feed [5, 8, 42]. Moreover, by

ignoring temporal context, frame-by-frame approaches fail

to realize the potential for improved accuracy offered by the

availability of preceding frames in a scene.

Prior work has proposed feature reuse and feature warp-

ing as means to reduce computation on video. In particular,

exploiting the observation that higher-level representations

evolve more slowly than raw pixels in a video [32], these

approaches relegate feature extraction, the most expensive

component of most video recognition architectures [45],

to select keyframes, and project these features forward via

naı̈ve copying or warping based on optical flow. While fea-

ture warping does enable some speedup [45], its efficacy is
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constrained by video dynamics. Fast scene evolution neces-

sitates frequent feature re-computation, and feature warping

in videos with a moving observer (e.g., driving footage),

where the entire scene moves relative to the camera, intro-

duces significant warping error. Warping error compounds

with repeated application of the warping operator.

Our proposed system, Accel (Fig. 1), addresses the chal-

lenges of efficient video segmentation by combining the

predictions of a reference branch, which maintains an incre-

mentally warped representation of the last keyframe, with

the predictions of an update branch, which processes the

current frame, in a convolutional fusion step. Importantly,

this update branch has the ability to serve two purposes: 1)

correction and 2) anchoring. When a cheap, shallow update

network is used (e.g., ResNet-18), the warped keyframe

features form the more accurate input to the fusion oper-

ator, and the update branch corrects warping-related error

with information from the current frame. When an expen-

sive, deep update network is used (e.g., ResNet-101), the

update branch anchors the network on the features of the

current frame, which is the higher accuracy input, while

the reference branch augments the prediction with context

from preceding frames. These two modes of operation rep-

resent two extremes on the highly competitive accuracy-

throughput trade-off curve Accel unlocks.

We evaluate Accel on Cityscapes and CamVid, the

largest available video segmentation datasets [3, 17, 7],

and demonstrate a full range of accuracy-inference speed

modalities. Our reference network, which we operate on

keyframes, is an implementation of the DeepLab segmen-

tation architecture [5] based on ResNet-101. Our chosen

update networks range from the fast ResNet-18 (in Accel-

18) to the accurate ResNet-101 (in Accel-101). On the high

throughput side, the cheapest version of Accel, Accel-18,

is both faster and more accurate than the closest compa-

rable DeepLab model. On the high accuracy side, Accel-

101 is more accurate than the best available single-frame

model, DeepLab-101. As a set, the ensemble of Accel mod-

els achieve significantly higher accuracy than previous work

on the problem at every keyframe interval. Taken togther,

these results form a new state-of-the-art on the task of effi-

cient semantic video segmentation.

2. Related Work

2.1. Image Semantic Segmentation

Semantic video segmentation is a recent offshoot of the

study of semantic image segmentation, a problem of long-

standing interest in computer vision. The classical approach

to image segmentation was to propagate information about

pixel assignments through a graphical model [14, 33, 18],

a costly technique that scaled poorly to complex image

datasets [23]. Most recent research follows the lead of Long

et al. in the use of fully convolutional networks (FCNs) to

segment images [26]. Recent work has augmented the FCN

model with explicit encoder-decoder architectures [2, 25],

dilated convolutions [41, 42], and post-processing CRFs

[4, 5], achieving higher accuracy on larger, more realistic

datasets [3, 10, 7].

2.2. Video Semantic Segmentation

Unlike video object segmentation, where a vast liter-

ature exists on using motion and temporal cues to track

and segment objects across frames [30, 15, 28, 37], the

video semantic segmentation task, which calls for a pixel-

level labeling of the entire frame, is less studied. The

rise of applications in autonomous control and video anal-

ysis, along with increased concern about the acute compu-

tational cost of naı̈ve frame-by-frame approaches, however,

have sparked significant interest in the problem of efficient

video segmentation. Recent papers have proposed selec-

tive re-execution of feature extraction layers [32], optical

flow-based feature warping [45], and LSTM-based, fixed-

budget keyframe selection policies [27] as means to achieve

speedup on video. Of the three, the optical flow-based ap-

proach [45] is the strongest contender, achieving greater

cost savings and higher accuracy than both the first ap-

proach, which naı̈vely copies features, and the third, which

is offline and has yet to demonstrate strong quantitative re-

sults. Despite its relative strength, however, flow-based

warping [45] introduces compounding error in the interme-

diate representation, and fails to incorporate other forms of

temporal change (e.g., new objects, occlusions). As a result,

significant accuracy degradation is observed at moderate to

high keyframe intervals, restricting its achievable speedup.

To address these problems, new work has proposed adap-

tive feature propagation, partial feature updating, and adap-

tive keyframe selection as schemes to optimally schedule

and propagate computation on video [44, 24, 39]. These

techniques have the drawback of complexity, requiring the

network to learn auxiliary representations to decide: (1)

whether to recompute features for a region or frame, and

(2) how to propagate features in a spatially-variant manner.

Moreover, they do not fundamentally address the problem

of mounting warping error, instead optimizing the operation

of [45]. In contrast, in Accel, we resolve the challenges by

proposing a simple network augmentation: a second branch

that cheaply processes each video frame, and corrects accu-

mulated temporal error in the reference representation.

2.3. Network Fusion

Feature and network fusion have been extensively ex-

plored in other contexts. A body of work, beginning with

[34] and extending to [13, 11, 12], studies spatial and tem-

poral two-stream fusion for video action recognition. In the

two-stream model, softmax scores of two network branches,
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one which operates on single RGB frames (spatial stream)

and another on multi-frame optical flow fields (temporal

stream), are fused to discern actions from still video frames.

Variants of this approach have been subsequently applied

to video classification [22, 38] and video object segmenta-

tion [20, 36], among other tasks. Unlike spatio-temporal fu-

sion, which attempts to jointly deduce scene structure from

RGB frames and motion for video-level tasks, the Accel fu-

sion network uses keyframe context and optical flow as a

means to conserve computation and boost accuracy in in-

tensive frame and pixel-level prediction tasks, such as seg-

mentation. In Accel, both branches process representations

of single frames, and motion (optical flow) is used implic-

itly in the model to update a latent reference representation.

Together, these design choices make Accel robust and con-

figurable. The fact that network components are indepen-

dent, with clear interfaces, allows the entire system to be

operated at multiple performance modalities, via choice of

update network (e.g., ResNet-x), motion input (e.g., optical

flow, H.264 block motion [19]), and keyframe interval.

3. Approach

3.1. Problem Statement

Given a video I composed of frames {I1, I2, ...IT },

we wish to compute the segmentation of each frame:

{S1, S2, ...ST }. We have at our disposal a single-frame seg-

mentation network N that can segment any still frame in

the video: N(Ii) = Si. This network is accurate, but slow.

Since N only takes single images as input, it cannot exploit

the temporal continuity of video; the best we can do is to

run N on every frame Ii ∈ I sequentially.

Instead, we would like to develop a video segmentation

network N ′ that takes as input a frame Ii, and potentially

additional context (e.g., nearby frames, features, or seg-

mentations), and renders S′

i. Our goals are two-fold: (1)

{S′

i} should be at least as accurate as {Si}, and (2) run-

ning N ′({Ii}) should be faster than running N({Ii}).

3.2. Operation Model

Our base single-frame semantic segmentation architec-

ture N consists of three functional components: (1) a fea-

ture subnetwork Nfeat that takes as input an RGB image

Ii ∈ R1×3×h×w and returns an intermediate representa-

tion fi ∈ R1×2048× h

16
×

w

16 , (2) a task subnetwork Ntask

that takes as input the intermediate representation fi and re-

turns a semantic segmentation score map si ∈ R1×C×h×w,

where C is the number of labeled classes in the dataset,

and (3) an output block P that converts si to normalized

probabilities pi ∈ [0, 1]1×C×h×w and then segmentations

Si ∈ R1×1×h×w.

This division follows a common pattern in image and

video recognition architectures [45]. The feature network,

Nfeat, is largely identical across different recognition tasks

(object detection, instance segmentation, semantic segmen-

tation), and is obtained by discarding the final k-way clas-

sification layer in a standard image classification network

(e.g., ResNet-101), and decreasing the stride length in the

first block of the conv5 layer from 2 to 1 to obtain higher-

resolution feature maps (spatial dimension h
16 × w

16 instead

of h
32 × w

32 ). The task network, Ntask, for semantic seg-

mentation includes three blocks: (1) a feature projection

block, which consists of a 1 × 1 convolution, plus a non-

linear activation (ReLU), and reduces the feature channel

dimension from 2048 to 1024, (2) a scoring layer, which

consists of a single 1 × 1 convolution, and further reduces

the channel dimension from 1024 to the C semantic classes,

and (3) an upsampling block, which consists of a deconvo-

lutional layer and a cropping layer, and upsamples the pre-

dicted scores from h
16 × w

16 to the spatial dimensionality of

the input image, h× w. Finally, output block P consists of

a softmax layer, followed by an argmax layer.

Exploiting the observation that features can be reused

across frames to reduce computation [32, 45], we now adopt

the following operation model on video. Nfeat, which

is deep and expensive, is executed only on select, desig-

nated keyframes. Keyframes are selected at regular inter-

vals, starting with the first frame in the video. The extracted

keyframe features fi are warped to subsequent frames using

a computed optical flow field, O. Ntask, which is shallow

and cheap, is executed on every frame. Since computing

optical flow O(Ii, Ij) on pairs of frames, and warping fea-

tures with the flow field W (fi, O)) → f̂j , is much cheaper

than computing Nfeat(Ij) [45], this scheme saves signifi-

cant computation on intermediate frames, which form the

vast majority of video frames.

3.3. Accel

In Accel, we introduce a lightweight feature network,

NU
feat, on intermediate frames to update score predictions

based on the warped keyframe features, with information

from the current frame. On keyframes, we execute our

original feature network, now denoted as the reference fea-

ture network, NR
feat. In our system, we use ResNet-101 as

NR
feat, and a range of models, from ResNet-18 to ResNet-

101, as NU
feat, depending on specific accuracy-performance

goals. In this section, we discuss a forward pass through this

new architecture, Accel (see Fig. 2).

On keyframes, denoted by index k, we execute the full

reference network P (NR
task(N

R
feat(Ik))) to yield a segmen-

tation Sk, and save the intermediate output fk = NR
feat(Ik)

as our cached features f c.

On intermediate frames i, we compute scores sRi and sUi
along both a reference branch and an update branch, re-

spectively. On the reference branch, we warp f c from the
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Figure 2. Accel consists of several components: (1) a reference

feature net NR
feat executed on keyframes, (2) an update feature

net NU
feat executed on intermediate frames, (3) an optical flow net

O used for feature warping W , (4) two instantiations of Ntask

(reference and update), (5) a 1× 1 conv network fusion layer, and

(6) a final softmax layer.

previous frame Ii−1 to the current frame Ii, and then ex-

ecute NR
task. As our warping operation W , we spatially

transform our cached features f c with a bilinear interpola-

tion of the optical flow field O(Ii−1, Ii), as in [45]. On the

update branch, we run the full update network NU . Sym-

bolically, the two branches can be represented as:

sRi = NR
task(W (f c, O(Ii−1, Ii))) (1)

sUi = NU
task(N

U
feat(Ii)) (2)

The score maps sRi and sUi represent two views on the

correct class labels for the pixels in the current frame.

These predictions are now merged in a 1 × 1 convolu-

tional fusion step, which we refer to as score fusion (SF).

sRi and sUi are stacked along the channel dimension, yield-

ing an input sstackedi ∈ R1×2C×h×w. Applying a 1 × 1
convolutional layer with dimensions C × 2C × 1 × 1 to

sstackedi yields an output si ∈ R1×C×h×w. Notationally,

si = SF (sstackedi ) = SF ([sRi , s
U
i ]). Finally, applying the

output block P to si yields the segmentation Si of frame Ii.

Note that while the layer definitions of NR
feat and NU

feat

differ in general, NR
task and NU

task are architecturally equiv-

alent, albeit independent instantiations (i.e., they don’t share

weights). This makes Accel highly modular. Since the task

network Ntask has a fixed interface, Accel can accept any

feature network NU
feat that outputs representations fi with

the appropriate dimensionality.

3.4. Training

Accel can be trained end-to-end on sparsely annotated

sequences of video frames. The entire network consists of

the score fusion layer, along with three independently train-

able components, NR, NU , and O, which we now discuss.

For our reference network NR and update network NU ,

we use a high-accuracy variant [8] of the DeepLab architec-

ture [5]. DeepLab is a canonical architecture for semantic

segmentation [8, 2, 25, 41], and a DeepLab implementation

has consistently ranked first on the Pascal VOC segmenta-

tion benchmark [1]. NR
feat and NU

feat are first trained on

ImageNet; NR and NU are then individually fine-tuned on

a semantic segmentation dataset, such as Cityscapes [7]. In

Accel, we fix NR
feat as ResNet-101. We then build an en-

semble of models, based on a range of update feature net-

works NU
feat: ResNet-18, -34, -50, and -101. This forms

a full spectrum of accuracy-throughput modalities, from a

lightweight, competitive Accel based on ResNet-18, to a

slow, extremely accurate Accel based on ResNet-101. For

the third and last independently trainable component, the

optical flow network O, we use the “Simple” architecture

from the FlowNet project [9]. This network is pre-trained

on the synthetic Flying Chairs dataset, and then jointly fine-

tuned on the semantic segmentation task with NR.

To train Accel, we initialize with weights from these

three pre-trained models. In each mini-batch, we select a

frame Ij . When training at keyframe interval n, we se-

lect frame Ij−(n−1) from the associated video snippet, and

mark it as the corresponding keyframe Ik for frame Ij . In

a forward pass, we execute Accel’s reference branch on

frame Ik, and execute the update branch and fusion step on

each subsequent intermediate frame until Ij . A pixel-level,

cross-entropy loss [26] is computed on the predicted seg-

mentation Sj and the ground-truth label for frame Ij . In the

backward pass, gradients are backpropagated through time

through the score fusion operator, the reference and update

branches, and the warping operator, which is parameter-free

but fully differentiable. Note that the purpose of joint train-

ing is to learn weights for the score fusion (SF) operator,

and to optimize other weights (i.e., NR
task and NU

task) for

the end-to-end task.

3.5. Design Choices

Recent work has explored adaptive keyframe scheduling,

where keyframes are selected based on varying video dy-

namics and feature quality [44, 24, 39]. Here both rapid

scene change and declining feature quality can trigger fea-

ture recomputation. We note that keyframe scheduling is

an optimization that is orthogonal to network design, and

therefore entirely compatible with the Accel architecture.

4. Experiments

4.1. Setup

We evaluate Accel on Cityscapes [7] and CamVid [3],

the largest available datasets for complex urban scene un-

derstanding and the standard benchmarks for semantic

video segmentation [5, 8, 42]. Cityscapes consists of 30-
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frame snippets of street scenes from 50 European cities,

recorded at a frame rate of 17 frames per second (fps). Indi-

vidual frames are 2048×1024 pixels in size. The train, vali-

dation, and test sets consist of 2975, 500, and 1525 snippets

each, with ground truth labels provided for the 20th frame in

each snippet in the train and validation set. The Cambridge-

Driving Labeled Video Database (CamVid) consists of over

10 minutes of footage captured at 30 fps. Frames are 960

by 720 pixels in size, and ground-truth labels are provided

for every 30th frame. We use the standard train-test split

of [35], which divides CamVid into three train and two test

sequences, containing 367 and 233 frames, respectively.

To evaluate accuracy, we use the mean intersection-over

union (mIoU) metric, standard for semantic segmentation

[10]. mIoU is defined as the average achieved intersection-

over-union value, or Jaccard index, over all valid semantic

classes in the dataset. To evaluate performance, we report

average inference time in seconds per frame (s/frame) over

the entire dataset. Note that this is the inverse of throughput

(frames per second).

We train Accel as described in Section 3.4 on Cityscapes

and CamVid. We perform 50 epochs of joint training at

a learning rate of 5 · 10−4 in two phases. In phase one, all

weights except SF are frozen. In phase two, after 40 epochs,

all remaining weights are unfrozen. We train a reference

implementation of [45] by jointly fine-tuning the same im-

plementations of NR and O. At inference time, we select an

operational keyframe interval i, and in each snippet, choose

keyframes such that the distance to the labeled frame rotates

uniformly through [0, i− 1]. This sampling procedure sim-

ulates evaluation on a densely labeled video dataset, where
1
i

frames fall at each keyframe offset between 0 and i − 1.

Here we follow the example of previous work [45].

Finally, Accel is implemented in the MXNet frame-

work [6]. All experiments are run on Tesla K80 GPUs, at

keyframe interval 5, unless otherwise stated. Our imple-

mentation of Accel is open-source on GitHub.

4.2. Results

4.2.1 Baselines

To generate our baseline accuracy-throughput curve, we run

single-frame DeepLab [5] models based on ResNet-18, -34,

-50, and -101 on the Cityscapes and CamVid test data. For

both DeepLab and Accel, we use a variant of the ResNet

architecture called Deformable ResNet, which employs de-

formable convolutions in the last ResNet block (conv5) to

achieve significantly higher accuracy at slightly higher in-

ference cost [8]. We refer to DeepLab models based on

ResNet-x as DeepLab-x, and Accel models based on a

ResNet-x update network as Accel-x.
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Figure 3. Accuracy vs. inference time on Cityscapes. Compar-

ing four variants of Accel (A-x) to single-frame DeepLab mod-

els (DL-x) and various other related work (RW). All results at

keyframe interval 5. Data from Table 1.
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Figure 4. Accuracy vs. inference time on CamVid. All results at

keyframe interval 5. Data from Table 2. (CC and DVSN do not

evaluate on CamVid; GRFP does not report timing results.)

4.2.2 Accuracy-throughput

Using Accel, we achieve a new, state-of-the-art accuracy-

throughput trade-off curve for semantic video segmentation

(see Figs. 3, 4).

All Accel models, from Accel-18 to Accel-101, allow

operation at high accuracy: above 72 mIoU on Cityscapes

and above 66 mIoU on CamVid. At the high accuracy

end, Accel-101 is by far the most accurate model, achiev-

ing higher mIoU than the best available DeepLab model,

DeepLab-101. At the high throughput end, Accel-18 is

both faster and more accurate than the closest compara-

ble single-frame model, DeepLab-50. Notably, Accel-18 is

over 40% cheaper than DeepLab-101, at only 2-3% lower

mIoU. As a rule, each Accel-x model is more accurate than

its single-frame counterpart, DeepLab-x, for all x.

Together, the four Accel models form an operational
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Pareto curve that clearly supersedes the Pareto curve de-

fined by the four single-frame DeepLab models (Figs. 3,

4). Accel also visibly outperforms related work, including

Clockwork Convnets [32], Deep Feature Flow [45], Gated

Recurrent Flow Propagation [29], and Dynamic Video Seg-

mentation Network [39] (see Table 1). Though Deep Fea-

ture Flow (DFF) offers a strong accuracy-throughput trade-

off in the low accuracy range, due to its fixed architecture, it

is not a contender in the high accuracy regime. We provide

a more detailed comparison with DFF in the next section.

Table 1. Accuracy and inference times on Cityscapes for four

single-frame DeepLab models (DL-x), four variants of Accel (A-

x), and various related work. Table ordered by accuracy. Each

Accel-x model is more accurate than its single-frame counterpart,

DeepLab-x, for all x. All inference time standard deviations are

less than 0.01. Data plotted in Fig. 3.

Model Acc. (mIoU, %) Time (s/frame)

DL-18 57.7 0.22

DL-34 62.8 0.33

CC (Shel. 2016) 67.7 0.14

DFF (Zhu 2017) 68.7 0.25

GRFP (Nils. 2018) 69.4 0.47

DL-50 70.1 0.51

DVSN (Xu 2018) 70.3 0.12

A-18 72.1 0.44

A-34 72.4 0.53

A-50 74.2 0.67

DL-101 75.2 0.74

A-101 75.5 0.87

Table 2. Accuracy and inference times on CamVid. Table ordered

by accuracy. Data plotted in Fig. 4.

Model Acc. (mIoU, %) Time (s/frame)

DL-18 58.1 0.105

DL-34 60.0 0.123

DL-50 65.5 0.185

DFF (Zhu 2017) 66.0 0.102

A-18 66.7 0.170

A-34 67.0 0.205

A-50 67.7 0.239

DL-101 68.6 0.287

A-101 69.3 0.320

We also briefly survey a range of recent, new single-

frame segmentation networks. These include architectures

2 4 6 8 10
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Figure 5. Accuracy vs. keyframe interval on Cityscapes for op-

tical flow-based warping alone (DFF) and four variants of Accel.

All five schemes use ResNet-101 in N
R.

based on spatial pyramid pooling, such as PSPNet, Net-

Warp, and DenseASPP [43, 16, 40], which achieve high ac-

curacy (up to 80.6% mIoU on Cityscapes test) but at steep

computational cost. One evaluation [16] finds that PSPNet

operates at 3.00 seconds per Cityscapes frame, even barring

any augmentations (e.g., NetWarp) or advanced settings

(e.g., multi-scale ensembling), which is substantially slower

than any DeepLab or Accel variant. Other relevant single-

frame network families include the encoder-decoder archi-

tectures (e.g., U-Net [31]), which optimize for accuracy

on high-resolution biomedical images, and the parameter-

efficient DenseNets (e.g., FC-DenseNet [21]), for which

segmentation inference times have not yet been reported.

4.2.3 Keyframe intervals

In this section, we extend our evaluation to a range of

keyframe intervals from 1 to 10. Keyframe interval 1 cor-

responds to running the reference network NR on every

frame. As a result, Deep Feature Flow (DFF) [45] and the

Accel variants report the same accuracy at this setting (see

Fig. 5). At keyframe intervals above 1, we find that even

the cheapest version of Accel, Accel-18, consistently of-

fers higher accuracy than DFF. In particular, over keyframe

interval 8, a wide accuracy gap emerges, as DFF’s accu-

racy approaches 60 mIoU while all Accel models maintain

roughly between 70 and 75 mIoU (Fig. 5).

This gap is an illustration of the compounding warping

error that builds in DFF, but is corrected in Accel with the

advent of the update branch. The trade-off is that Accel

models are slower on intermediate frames: in addition to the

inference cost of O and NR
task, which is also paid by DFF,

Accel models also incur the cost of NU , which is low when

NU
feat is ResNet-18 and higher when NU

feat is ResNet-101.
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4.2.4 Ablation study

We now present a simple ablation study that isolates the

contributions of the reference network NR and the up-

date network NU to the accuracy of Accel (see Table 3).

Disabling NU corresponds to using only the optical flow-

warped representations from the previous keyframe. Since

all versions of Accel share the same NR, this results in the

same accuracy for all models (row 1). Disabling the refer-

ence network NR corresponds to running only the single-

frame update networks, DeepLab-18, -34, -50, or -101, on

all frames (row 2). Disabling neither yields our original

models (row 3). Notice the effect of the network fusion:

each unmodified Accel model is more accurate than either

of its component subnetworks. Moreover, Accel-18 ob-

serves a 6.8 point accuracy boost over NR via the use of

an update network NU that is cheaper and much less accu-

rate than NR. This confirms the powerful synergistic effect

of combining two contrasting sets of representations: one

that is high-detail but dated, and one that is lower resolution

but temporally current.

Table 3. Ablation study. A breakdown of the accuracy contribu-

tions of NR (reference branch) and N
U (update branch) to Accel.

Results for keyframe interval i = 5, at the max offset (4) from the

keyframe. Cityscapes dataset.

Model

Setting A-18 A-34 A-50 A-101

NR only 62.4 62.4 62.4 62.4

NU only 57.7 62.8 70.1 75.2

Accel 69.2 69.7 73.0 75.5

4.2.5 Fusion location

In this section, we evaluate the impact of fusion location

on final network accuracy and performance. Accel, as de-

scribed so far, uses a 1 × 1 convolutional layer to fuse pre-

softmax class scores, but it was also possible to perform this

fusion at an earlier stage. In Table 4, we compare accuracy

values and inference times for two fusion variants: (1) fea-

ture fusion (fusion between Nfeat and Ntask) and (2) score

fusion (fusion between the score upsampling block and the

softmax layer).

As Table 4 indicates, score (late) fusion results in slightly

lower accuracy, but faster inference times. Recall that a 1×1
convolutional fusion layer is a mapping R1×2C×h×w →
R1×C×h×w, where C is the channel dimensionality of the

input. Feature (early) fusion results in higher accuracy os-

tensibly because it is executed on higher-dimensionality in-

puts, allowing for the discovery of richer channel corre-

spondences (C is 2048 for ResNet feature maps, versus 19

Table 4. Fusion location. An evaluation of the impact of network

fusion location on final accuracy values. Model: Accel-18. Re-

sults for keyframe interval i = 5, at the max offset (4) from the

keyframe. Cityscapes dataset.

Metric

Location Acc. (mIoU) Time (s/frame)

Feature 69.5 0.46

Score 69.2 0.44

for scores). Inference times, on the other hand, benefit from

lower channel dimensionality: the fusion operator itself is

cheaper to execute on scores as opposed to features. We use

score fusion in all except the most accurate model (Accel-

101), as in our view, the 5% difference in inference cost

outweighs the more marginal gap in accuracy. Neverthe-

less, the choice between the two schemes is a close one.

Finally, we also experimented with the intermediate

channel dimensionality, C. ResNets-50 and -101 tradition-

ally have channel dimension 2048 after the fifth conv block,

which is why C = 2048 was our default choice. In our ex-

periments, we found that using smaller values of C, such

as 512 or 1024, resulted in poorer segmentation accuracy,

without noticeably reducing inference times.

4.2.6 Qualitative evaluation

In Figure 6, we compare the qualitative performance of DFF

(Accel NR), DeepLab (Accel NU ), and Accel (NR +NU )

on two sequences of 10 frames (top and bottom).

5. Conclusion

Accel is a fast, high-accuracy video segmentation system

that utilizes the combined predictive power of two network

pathways: (1) a reference branch NR that extracts high-

quality features on a reference keyframe, and warps these

features forward using incremental optical flow estimates,

and (2) an update branch NU that processes the current

frame to correct accumulated temporal error in the reference

representation. Comprehensive experiments demonstrate a

full range of accuracy-inference speed modalities, from a

high-throughput version of Accel that is both faster and

more accurate than comparable single-frame models to a

high-accuracy version that exceeds state-of-the-art. The full

ensemble of Accel models consistently outperforms previ-

ous work on the problem at all keyframe intervals, while

an ablation study demonstrates that Accel makes signifi-

cant accuracy gains over its individual components. Finally,

the Accel architecture is modular and end-to-end trainable,

serving as a general example on how to perform dense pre-

diction tasks efficiently on video.
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Figure 6. Qualitative outputs. Two frame sequences at keyframe interval 10. Column k + i corresponds to the i
th frame past keyframe

k. First row: input frames. Second row: Accel NR branch / DFF [45]. Third row: Accel NU branch / DeepLab-18. Fourth row:

Accel-18. Note how Accel both corrects DFF’s warping-related distortions in row 2, including the obscured pedestrians (top example) and

the distorted vehicles (bottom example), and avoids DeepLab’s misclassifications in row 3 on the van (top) and vegetation patch (bottom).

Column (c) in the bottom example also qualifies as an error case for Accel, as unlike DeepLab, Accel misses the street sign on the right.
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