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ABSTRACT
With the increasing commoditization of computer vision, speech
recognition and machine translation systems and the widespread
deployment of learning-based back-end technologies such as dig-
ital advertising and intelligent infrastructures, AI (Arti�cial In-
telligence) has moved from research labs to production. �ese
changes have been made possible by unprecedented levels of data
and computation, by methodological advances in machine learning,
by innovations in systems so�ware and architectures, and by the
broad accessibility of these technologies.

�e next generation of AI systems promises to accelerate these
developments and increasingly impact our lives via frequent inter-
actions and making (o�en mission-critical) decisions on our behalf,
o�en in highly personalized contexts. Realizing this promise, how-
ever, raises daunting challenges. In particular, we need AI systems
that make timely and safe decisions in unpredictable environments,
that are robust against sophisticated adversaries, and that can pro-
cess ever increasing amounts of data across organizations and in-
dividuals without compromising con�dentiality. �ese challenges
will be exacerbated by the end of the Moore’s Law, which will con-
strain the amount of data these technologies can store and process.
In this paper, we propose several open research directions in sys-
tems, architectures, and security that can address these challenges
and help unlock AI’s potential to improve lives and society.
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1 INTRODUCTION
Conceived in the early 1960’s with the vision of emulating human
intelligence, AI has evolved towards a broadly applicable engineer-
ing discipline in which algorithms and data are brought together
to solve a variety of pa�ern recognition, learning, and decision-
making problems. Increasingly, AI intersects with other engineer-
ing and scienti�c �elds and cuts across many disciplines in com-
puting.

In particular, computer systems have already proved essential in
catalyzing recent progress in AI. Advances in parallel hardware [31,
58, 90] and scalable so�ware systems [32, 46, 114] have sparked the
development of new machine learning frameworks [14, 31, 98] and
algorithms [18, 56, 62, 91] to allow AI to address large-scale, real-
world problems. Rapidly decreasing storage costs [1, 80], crowd-
sourcing, mobile applications, internet of things (IoT), and the com-
petitive advantage of data [40] have driven further investment in
data-processing systems and AI technologies [87]. �e overall e�ect
is that AI-based solutions are beginning to approach or even surpass
human-level capabilities in a range of real-world tasks. Maturing AI
technologies are not only powering existing industries—including
web search, high-speed trading and commerce—but are helping to

foster new industries around IoT, augmented reality, biotechnology
and autonomous vehicles.

�ese applications will require AI systems to interact with the
real world by making automatic decisions. Examples include au-
tonomous drones, robotic surgery, medical diagnosis and treatment,
virtual assistants, and many more. As the real world is continu-
ally changing, sometimes unexpectedly, these applications need to
support continual or life-long learning [96, 109] and never-ending
learning [76]. Life-long learning systems aim at solving multiple
tasks sequentially by e�ciently transferring and utilizing knowl-
edge from already learned tasks to new tasks while minimizing
the e�ect of catastrophic forge�ing [71]. Never-ending learning is
concerned with mastering a set of tasks in each iteration, where
the set keeps growing and the performance on all the tasks in the
set keeps improving from iteration to iteration.

Meeting these requirements raises daunting challenges, such
as active exploration in dynamic environments, secure and robust
decision-making in the presence of adversaries or noisy and un-
foreseen inputs, the ability to explain decisions, and new modular
architectures that simplify building such applications. Furthermore,
as Moore’s Law is ending, one can no longer count on the rapid
increase of computation and storage to solve the problems of next-
generation AI systems.

Solving these challenges will require synergistic innovations
in architecture, so�ware, and algorithms. Rather than addressing
speci�c AI algorithms and techniques, this paper examines the
essential role that systems will play in addressing challenges in AI
and proposes several promising research directions on that frontier.

2 WHAT IS BEHIND AI’S RECENT SUCCESS
�e remarkable progress in AI has been made possible by a “perfect
storm” emerging over the past two decades, bringing together:
(1) massive amounts of data, (2) scalable computer and so�ware
systems, and (3) the broad accessibility of these technologies. �ese
trends have allowed core AI algorithms and architectures, such as
deep learning, reinforcement learning, and Bayesian inference to
be explored in problem domains of unprecedented scale and scope.

2.1 Big data
With the widespread adoption of online global services, mobile
smartphones, and GPS by the end of 1990s, internet companies
such as Google, Amazon, Microso�, and Yahoo! began to amass
huge amounts of data in the form of audio, video, text, and user
logs. When combined with machine learning algorithms, these
massive data sets led to qualitatively be�er results in a wide range of
core services, including classical problems in information retrieval,
information extraction, and advertising [49].
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2.2 Big systems
Processing this deluge of data spurred rapid innovations in com-
puter and so�ware systems. To store massive amounts of data, in-
ternet service companies began to build massive-scale datacenters,
some of which host nearly 100, 000 servers, and provide EB [65] of
storage. To process this data, companies built new large-scale so�-
ware systems able to run on clusters of cheap commodity servers.
Google developed MapReduce [32] and Google File System [43], fol-
lowed shortly by the open-source counterpart, Apache Hadoop [7].
�en came a plethora of systems [46, 55, 60, 67, 114], that aimed to
improve speed, scale, and ease of use. �ese hardware and so�ware
innovations led to the datacenter becoming the new computer [11].

With the growing demand for machine learning (ML), re-
searchers and practitioners built libraries on top of these systems
to satisfy this demand [8, 52, 75].

�e recent successes of deep learning (DL) have spurred a new
wave of specialized so�ware systems have emerged to scale out
these workloads on CPU clusters and take advantage of special-
ized hardware, such as GPUs and TPUs. Examples include Tensor-
Flow [2], Ca�e [57], Chainer [20], PyTorch [89], and MXNet [22].

2.3 Accessibility to state-of-the-art technology
�e vast majority of systems that process data and support AI work-
loads are built as open-source so�ware, including Spark [114], Ten-
sorFlow [2], MXNet [22], Ca�e [57], PyTorch [89], and BigDL [15].
Open source allows organizations and individuals alike to leverage
state-of-the-art so�ware technology without incurring the prohibi-
tive costs of development from scratch or licensing fees.

�e wide availability of public cloud services (e.g., AWS, Google
Cloud, and MS Azure) allows everyone to access virtually unlim-
ited amounts of processing and storage without needing to build
large datacenters. Now, researchers can test their algorithms at a
moment’s notice on numerous GPUs or FPGAs by spending just a
few thousands of dollars, which was unthinkable a decade ago.

3 TRENDS AND CHALLENGES
While AI has already begun to transform many application domains,
looking forward, we expect that AI will power a much wider range
of services, from health care to transportation, manufacturing to
defense, entertainment to energy, and agriculture to retail. More-
over, while large-scale systems and ML frameworks have already
played a pivotal role in the recent success of AI, looking forward,
we expect that, together with security and hardware architectures,
systems will play an even more important role in enabling the broad
adoption of AI. To realize this promise, however, we need to address
signi�cant challenges that are driven by the following trends.

3.1 Mission-critical AI
With ongoing advances in AI in applications, from banking to
autonomous driving to robot-assisted surgery and to home au-
tomation, AI is poised to drive more and more mission-critical
applications where human well-being and lives are at stake.

As AI will increasingly be deployed in dynamic environments,
AI systems will need to continually adapt and learn new “skills”
as the environment changes. For example, a self-driving car could
quickly adapt to unexpected and dangerous road conditions (e.g.,

an accident or oil on the road), by learning in real time from other
cars that have successfully dealt with these conditions. Similarly,
an AI-powered intrusion-detection system must quickly identify
and learn new a�ack pa�erns as they happen. In addition, such
mission-critical applications must handle noisy inputs and defend
against malicious actors.

Challenges: Design AI systems that learn continually by inter-
acting with a dynamic environment, while making decisions that are
timely, robust, and secure.

3.2 Personalized AI
From virtual assistants to self-driving cars and political campaigns,
user-speci�c decisions that take into account user behavior (e.g., a
virtual assistant learning a user’s accent) and preferences (e.g., a
self-driving system learning the level of “aggressiveness” a user is
comfortable with) are increasingly the focus. While such personal-
ized systems and services provide new functionality and signi�cant
economic bene�ts, they require collecting vast quantities of sen-
sitive personal information and their misuse could a�ect users’
economic and psychological wellbeing.

Challenges: Design AI systems that enable personalized applica-
tions and services yet do not compromise users’ privacy and security.

3.3 AI across organizations
Companies are increasingly leveraging third-party data to augment
their AI-powered services [27]. Examples include hospitals shar-
ing data to prevent epidemic outbreaks and �nancial institutions
sharing data to improve their fraud-detection capabilities. �e pro-
liferation of such applications will lead to a transition from data
silos—where one company collects data, processes it, and provides
the service—to data ecosystems, where applications learns and
make decisions using data owned by di�erent organizations.

Challenges: Design AI systems that can train on datasets owned
by di�erent organizations without compromising their con�dentiality,
and in the process provide AI capabilities that span the boundaries of
potentially competing organization.

3.4 AI demands outpacing the Moore’s Law
�e ability to process and store huge amounts of data has been one
of the key enablers of the AI’s recent successes (see Section 2.1).
However, keeping up with the data being generated will become
increasingly di�cult due to the following two trends.

First, data continues to grow exponentially. A 2015 Cisco white
paper [25] claims that the amount of data generated by Internet of
Everything (IoE) devices by 2018 to be 400ZB, which is almost 50x
the estimated tra�c in 2015. According to a recent study [100], by
2025, we will need a three-to-four orders of magnitude improve-
ment in compute throughput to process the aggregate output of all
genome sequencers in the world. �is would require computation
resources to at least double every year.

Second, this explosion of data is coming at a time when our
historically rapidly improving hardware technology is coming to a
grinding halt [53]. �e capacity of DRAMs and disks are expected
to double just once in the next decade, and it will take two decades
before the performance of CPUs doubles. �is slowdown means that
storing and processing all generated data will become impracticable.
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Challenges: Develop domain-speci�c architectures and so�ware
systems to address the performance needs of future AI applications
in the post-Moore’s Law era, including custom chips for AI work-
loads, edge-cloud systems to e�ciently process data at the edge, and
techniques for abstracting and sampling data.

4 RESEARCH OPPORTUNITIES
�is section discusses the previous challenges from the systems
perspective. In particular, we discuss how innovations in systems,
security, and architectures can help address these challenges. We
present nine research opportunities (from R1 to R9), organized
into three topics: acting in dynamic environments, secure AI, and
AI-speci�c architectures. Figure 1 shows the most common rela-
tionships between trends, on one hand, and challenges and research
topics, on the other hand.

Trends 

Mission-critical AI 

Personalized AI 

AI across 
organizations 

AI demands outpacing 
Moore’s Law  

Acting in dynamic 
environments: 
R1: Continual learning 
R2: Robust decisions 
R3: Explainable decisions 

Secure AI: 
R4: Secure enclaves 
R5: Adversarial learning 
R6: Shared learning on 
       confidential data 

AI-specific architectures: 
R7: Domain specific hardware 
R8: Composable AI systems 
R9: Cloud-edge systems 

Challenges & Research 

R1, R2, R3 

R7, R8, R9 

R8, R9 

R4, R5, R6 

R6 

R7, R9 
R7, R8 

R4, R5 
Figure 1: Amapping from trends to challenges and research topics.

4.1 Acting in dynamic environments
Many future AI applications will operate in dynamic environments,
i.e., environments that may change, o�en rapidly and unexpectedly,
and o�en in non-reproducible ways. For example, consider a group
of robots providing security for an o�ce building. When one robot
breaks or a new one is added, the other robots must update their
strategies for navigation, planning, and control in a coordinated
manner. Similarly, when the environment changes, either due to the
robots’ own actions or to external conditions (e.g., an elevator going
out of service, or a malicious intruder), all robots must re-calibrate
their actions in light of the change. Handling such environments
will require AI systems that can react quickly and safely even to
scenarios that have not been encountered before.

R1: Continual learning. Most of today’s AI systems, including
movie recommendation, image recognition, and language trans-
lation, perform training o�ine and then make predictions online.
�at is, the learning performed by the system does not happen
continually with the generation of the data, but instead it happens
sporadicallly, on very di�erent and much slower time scales. Typ-
ically, models are updated daily, or in the best case hourly, while
predictions/decisions happen at second or sub-second granularity.
�is makes them a poor �t for environments that change continu-
ally and unexpectedly, especially in mission-critical applications.

�ese more challenging environments require agents that continu-
ally learn and adapt to asynchronous changes.

Some aspects of learning in dynamic environments are addressed
by online learning [17], in which data arrive temporally and updates
to the model can occur as new data arrive. However, traditional
online learning does not aim to handle control problems, in which
an agent’s actions change the environment (e.g., as arise naturally
in robotics), nor does it aim to handle cases in which the outcomes
of decisions are delayed (e.g., a move in a game of chess whose
outcome is only evaluated at the end, when the game is lost or won).

�ese more general situations can be addressed in the frame-
work of Reinforcement Learning (RL). �e central task of RL is
to learn a function—a “policy”—that maps observations (e.g., car’s
camera inputs or user’s requested content) to actions (e.g., slowing
down the car or presenting an ad) in a sequence that maximizes
long-term reward (e.g., avoiding collisions or increasing sales). RL
algorithms update the policy by taking into account the impact of
agent’s actions on the environment, even when delayed. If envi-
ronmental changes lead to reward changes, RL updates the policy
accordingly. RL has a long-standing tradition, with classical success
stories including learning to play backgammon at level of the best
human players [108], learning to walk [105], and learning basic
motor skills [86]. However, these early e�orts require signi�cant
tuning for each application. Recent e�orts are combining deep
neural networks with RL (Deep RL) to develop more robust train-
ing algorithms that can work for a variety of environments (e.g.,
many Atari games [77]), or even across di�erent application do-
mains, as in the control of (simulated) robots [92] and the learning
of robotic manipulation skills [66]. Noteworthy recent results also
include Google’s AlphaGo beating the Go world champion [95],
and new applications in medical diagnosis [104] and resource man-
agement [33].

However, despite these successes, RL has yet to see widescale
real-world application. �ere are many reasons for this, one of
which is that large-scale systems have not been built with these use
cases in mind. We believe that the combination of ongoing advances
in RL algorithms, when coupled with innovations in systems design,
will catalyze rapid progress in RL and drive new RL applications.

Systems for RL. Many existing RL applications, such as game-
playing, rely heavily on simulations, o�en requiring millions or
even billions of simulations to explore the solution space and “solve”
complex tasks. Examples include playing di�erent variants of a
game or experimenting with di�erent control strategies in a robot
simulator. �ese simulations can take as li�le as a few milliseconds,
and their durations can be highly variable (e.g., it might take a
few moves to lose a game vs. hundreds of moves to win one). Fi-
nally, real-world deployments of RL systems need to process inputs
from a variety of sensors that observe the environment’s state, and
this must be accomplished under stringent time constraints. �us,
we need systems that can handle arbitrary dynamic task graphs,
where tasks are heterogeneous in time, computation, and resource
demands. Given the short duration of the simulations, to fully uti-
lize a large cluster, we need to execute millions of simulations per
second. None of the existing systems satis�es these requirements.
Data parallel systems [55, 79, 114] handle orders of magnitude fewer
tasks per sec, while HPC and distributed DL systems [2, 23, 82]
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have limited support for heterogeneous and dynamic task graphs.
Hence, we need new systems to support e�ectively RL applications.

Simulated reality (SR). �e ability to interact with the environ-
ment is fundamental to RL’s success. Unfortunately, in real-world
applications, direct interaction can be slow (e.g., on the order of sec-
onds) and/or hazardous (e.g., risking irreversible physical damage),
both of which con�ict with the need for having millions of inter-
actions before a reasonable policy is learned. While algorithmic
approaches have been proposed to reduce the number of real-world
interactions needed to learn policies [99, 111, 112], more generally
there is a need for Simulated Reality (SR) architectures, in which an
agent can continually simulate and predict the outcome of the next
action before actually taking it [101].

SR enables an agent to learn not only much faster but also much
more safely. Consider a robot cleaning an environment that encoun-
ters an object it has not seen before, e.g., a new cellphone. �e robot
could physically experiment with the cellphone to determine how
to grasp it, but this may require a long time and might damage the
phone. In contrast, the robot could scan the 3D shape of the phone
into a simulator, perform a few physical experiments to determine
rigidity, texture, and weight distribution, and then use SR to learn
how to successfully grasp it without damage.

Importantly, SR is quite di�erent from virtual reality (VR);
while VR focuses on simulating a hypothetical environment (e.g.,
Minecra�), sometimes incorporating past snapshots of the real
world (e.g., Flight Simulator), SR focuses on continually simulating
the physical world with which the agent is interacting. SR is
also di�erent from augmented reality (AR), which is primarily
concerned with overlaying virtual objects onto real world images.

Arguably the biggest systems challenges associated with SR are
to infer continually the simulator parameters in a changing real-
world environment and at the same time to run many simulations
before taking a single real-time action. As the learning algorithm
interacts with the world, it gains more knowledge which can be
used to improve the simulation. Meanwhile, many potential sim-
ulations would need to be run between the agent’s actions, using
both di�erent potential plans and making di�erent “what-if” as-
sumptions about the world. �us, the simulation is required to run
much faster than real time.

Research: (1) Build systems for RL that fully exploit parallelism,
while allowing dynamic task graphs, providing millisecond-level la-
tencies, and running on heterogeneous hardware under stringent dead-
lines. (2) Build systems that can faithfully simulate the real-world
environment, as the environment changes continually and unexpect-
edly, and run faster than real time.

R2: Robust decisions. As AI applications are increasingly
making decisions on behalf of humans, notably in mission-critical
applications, an important criterion is that they need to be robust to
uncertainty and errors in inputs and feedback. While noise-resilient
and robust learning is a core topic in statistics and machine learning,
adding system support can signi�cantly improve classical methods.
In particular, by building systems that track data provenance, we
can diminish uncertainty regarding the mapping of data sources to
observations, as well as their impact on states and rewards. We can
also track and leverage contextual information that informs the de-
sign of source-speci�c noise models (e.g., occluded cameras). �ese
capabilities require support for provenance and noise modeling in

data storage systems. While some of these challenges apply more
generally, two notions of robustness that are particularly important
in the context of AI systems and that present particular systems
challenges are: (1) robust learning in the presence of noisy and ad-
versarial feedback, and (2) robust decision-making in the presence
of unforeseen and adversarial inputs.

Increasingly, learning systems leverage data collected from un-
reliable sources, possibly with inaccurate labels, and in some cases
with deliberately inaccurate labels. For example, the Microso� Tay
chatbot relied heavily on human interaction to develop rich natural
dialogue capabilities. However, when exposed to Twi�er messages,
Tay quickly took on a dark personality [16].

In addition to dealing with noisy feedback, another research
challenge is handling inputs for which the system was never trained.
In particular, one o�en wishes to detect whether a query input is
drawn from a substantially di�erent distribution than the training
data, and then take safe actions in those cases. An example of a safe
action in a self-driving car may be to slow down and stop. More
generally, if there is a human in the loop, a decision system could
relinquish control to a human operator. Explicitly training models
to decline to make predictions for which they are not con�dent,
or to adopt a default safe course of actions, and building systems
that chain such models together can both reduce computational
overhead and deliver more accurate and reliable predictions.

Research: (1) Build �ne grained provenance support into AI sys-
tems to connect outcome changes (e.g., reward or state) to the data
sources that caused these changes, and automatically learn causal,
source-speci�c noise models. (2) Design API and language support for
developing systems that maintain con�dence intervals for decision-
making, and in particular can �ag unforeseen inputs.

R3: Explainable decisions. In addition to making black-box
predictions and decisions, AI systems will o�en need to provide
explanations for their decisions that are meaningful to humans.
�is is especially important for applications in which there are
substantial regulatory requirements as well as in applications such
as security and healthcare where legal issues arise [24]. Here, ex-
plainable should be distinguished from interpretable, which is o�en
also of interest. Typically, the la�er means that the output of the
AI algorithm is understandable to a subject ma�er expert in terms
of concepts from the domain from which the data are drawn [69],
while the former means that one can identify the properties of the
input to the AI algorithm that are responsible for the particular
output, and can answer counterfactual or “what-if” questions. For
example, one may wish to know what features of a particular or-
gan in an X-ray (e.g., size, color, position, form) led to a particular
diagnosis and how the diagnosis would change under minor pertur-
bations of those features. Relatedly, one may wish to explore what
other mechanisms could have led to the same outcomes, and the
relative plausibility of those outcomes. O�en this will require not
merely providing an explanation for a decision, but also considering
other data that could be brought to bear. Here we are in the domain
of causal inference, a �eld which will be essential in many future AI
applications, and one which has natural connections to diagnostics
and provenance ideas in databases.

Indeed, one ingredient for supporting explainable decisions is the
ability to record and faithfully replay the computations that led to a
particular decision. Such systems hold the potential to help improve
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decision explainability by replaying a prediction task against past
inputs—or randomly or adversarially perturbed versions of past
inputs, or more general counterfactual scenarios—to identify what
features of the input have caused a particular decision. For example,
to identify the cause of a false alarm in a video-based security
system, one might introduce perturbations in the input video that
a�enuate the alarm signal (e.g., by masking regions of the image) or
search for closely related historical data (e.g., by identifying related
inputs) that led to similar decisions. Such systems could also lead
to improved statistical diagnostics and improved training/testing
for new models; e.g., by designing models that are (or are not)
amenable to explainability.

Research: Build AI systems that can support interactive diagnostic
analysis, that faithfully replay past executions, and that can help to
determine the features of the input that are responsible for a particular
decision, possibly by replaying the decision task against past perturbed
inputs. More generally, provide systems support for causal inference.

4.2 Secure AI
Security is a large topic, many aspects of which will be central to
AI applications going forward. For example, mission-critical AI
applications, personalized learning, and learning across multiple
organizations all require systems with strong security properties.
While there is a wide range of security issues, here we focus on two
broad categories. �e �rst category is an a�acker compromising
the integrity of the decision process. �e a�acker can do so either
by compromising and taking the control of the AI system itself, or
by altering the inputs so that the system will unknowingly render
decisions that the a�acker wants. �e second category is an a�acker
learning the con�dential data on which an AI system was trained
on, or learning the secret model. Next, we discuss three promising
research topics to defend against such a�acks.

R4: Secure enclaves. �e rapid rise of public cloud and the
increased complexity of the so�ware stack considerably widen the
exposure of AI applications to a�acks. Two decades ago most ap-
plications ran on top of a commercial OS, such as Windows or
SunOS, on a single server deployed behind organization’s �rewalls.
Today, organizations run AI applications in the public cloud on
a distributed set of servers they do not control, possibly shared
with competitors, on a considerably more complex so�ware stack,
where the OS itself runs on top of a hypervisor or within a con-
tainer. Furthermore, the applications leverage directly or indirectly
a plethora of other systems, such as log ingestion, storage, and data
processing frameworks. If any of these so�ware components is
compromised, the AI applications itself might be compromised.

A general approach to deal with these a�acks is providing a “se-
cure enclave” abstraction—a secure execution environment—which
protects the application running within the enclave from malicious
code running outside the enclave. One recent example is Intel’s
So�ware Guard Extensions (SGX) [5], which provides a hardware-
enforced isolated execution environment. Code inside SGX can
compute on data, while even a compromised operating system or
hypervisor (running outside the enclave) cannot see this code or
data. SGX also provides remote a�estation [6], a protocol enabling a
remote client to verify that the enclave is running the expected code.
ARM’s TrustZone is another example of a hardware enclave. At

the other end of the spectrum, cloud providers are starting to o�er
special bare-bone instances that are physically protected, e.g., they
are deployed in secure “vaults” to which only authorized personnel,
authenticated via �ngerprint or iris scanning, has access.

In general, with any enclave technology, the application devel-
oper must trust all the so�ware running within the enclave. Indeed,
even in the case of hardware enclaves, if the code running inside the
enclave is compromised, it can leak decrypted data or compromise
decisions. Since a small code base is typically easier to secure, one
research challenge is to split the AI system’s code into code running
inside the enclave, hopefully as li�le as possible, and code running
outside of the enclave, in untrusted mode, by leveraging crypto-
graphic techniques. Another approach to ensure that code inside
the enclave does not leak sensitive information is to develop static
and dynamic veri�cation tools as well as sandboxing [9, 12, 93].

Note that beside minimizing the trusted computing base, there
are two additional reasons for spli�ing the application code: in-
creased functionality and reduced cost. First, some of the function-
ality might not be available within the enclave, e.g., GPU processing
for running Deep Learning (DL) algorithms, or services and appli-
cations which are not ve�ed/ported yet to run within the secure
enclave. Second, the secure instances o�ered by a cloud provider
can be signi�cantly more expensive than regular instances.

Research: Build AI systems that leverage secure enclaves to ensure
data con�dentiality, user privacy and decision integrity, possibly by
spli�ing the AI system’s code between a minimal code base running
within the enclave, and code running outside the enclave. Ensure
the code inside the enclave does not leak information, or compromise
decision integrity.

R5: Adversarial learning. �e adaptive nature of ML algo-
rithms opens the learning systems to new categories of a�acks that
aim to compromise the integrity of their decisions by maliciously
altering training data or decision input. �ere are two broad types
of a�acks: evasion a�acks and data poisoning a�acks.

Evasion a�acks happen at the inference stage, where an ad-
versary a�empts to cra� data that is incorrectly classi�ed by the
learning system [47, 103]. An example is altering the image of a
stop sign slightly such that it still appears to a human to be a stop
sign but is seen by an autonomous vehicle as a yield sign.

Data poisoning a�acks happen at the training stage, where an
adversary injects poisoned data (e.g., data with wrong labels) into
the training data set that cause the learning system to learn the
wrong model, such that the adversary thereby has input data in-
correctly classi�ed by the learner [73, 74, 113]. Learning systems
that are periodically retrained to handle non-stationary input data
are particularly vulnerable to this a�ack, if the weakly labeled data
being used for retraining is collected from unreliable or untrust-
worthy sources. With new AI systems continually learning by
interacting with dynamic environments, handling data poisoning
a�acks becomes increasingly important.

Today, there are no e�ective solutions to protect against evasion
a�acks. As such, there are a number of open research challenges:
provide be�er understanding of why adversarial examples are o�en
easy to �nd, investigate what method or combination of di�erent
methods may be e�ective at defending against adversarial examples,
and design and develop systematic methods to evaluate potential
defenses. For data poisoning a�acks, open challenges include how
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to detect poisoned input data and how to build learning systems
that are resilient to di�erent types of data poisoning a�acks. In
addition, as data sources are identi�ed to be fraudulent or explicitly
retracted for regulatory reasons, we can leverage replay (see R3:
Explainable decisions) and incremental computation to e�ciently
eliminate the impact of those sources on learned models. As pointed
out previously, this ability is enabled by combining modeling with
provenance and e�cient computation in data storage systems.

Research: Build AI systems that are robust against adversarial
inputs both during training and prediction (e.g., decision making),
possibly by designing new machine learning models and network
architectures, leveraging provenance to track down fraudulent data
sources, and replaying to redo decisions a�er eliminating the fraudu-
lent sources.

R6: Shared learning on con�dential data. Today, each com-
pany typically collects data individually, analyzes it, and uses this
data to implement new features and products. However, not all
organizations possess the same wealth of data as found in the few
large AI-focused corporations, such as Google, Facebook, Microso�,
and Amazon. Going forward, we expect more and more organiza-
tions to collect valuable data, more third-party data services to be
available, and more bene�t to be gained from learning over data
from multiple organizations (see Section 3).

Indeed, from our own interaction with industry, we are learning
about an increasing number of such scenarios. A large bank pro-
vided us with a scenario in which they and other banks would like
to pool together their data and use shared learning to improve their
collective fraud detection algorithms. While these banks are natural
competitors in providing �nancial services, such ”cooperation” is
critical to minimize their losses due to fraudulent activities. A very
large health provider described a similar scenario in which com-
peting hospitals would like to share data to train a shared model
predicting �u outbreaks without sharing the data for other purposes.
�is would allow them to improve the response to epidemics and
contain the outbreaks, e.g., by rapidly deploying mobile vaccination
vans at critical locations. At the same time, every hospital must
protect the con�dentiality of their own patients.

�e key challenge of shared learning is how to learn a model
on data belonging to di�erent (possible competitive) organizations
without leaking relevant information about this data during the
training process. One possible solution would be to pool all the
data in a hardware enclave and then learn the model. However,
this solution is not always feasible as hardware enclaves are not
yet deployed widely, and, in some cases, the data cannot be moved
due to regulatory constraints or its large volume.

Another promising approach is using secure multi-party com-
putation (MPC) [13, 45, 70]. MPC enables n parties, each having a
private input, to compute a joint function over the input without
any party learning the inputs of the other parties. Unfortunately,
while MPC is e�ective for simple computations, it has a nontrivial
overhead for complex computations, such as model training. An
interesting research direction is how to partition model training
into (1) local computation and (2) computation using MPC, so that
we minimize the complexity of the MPC computation.

While training a model without compromising data con�dential-
ity is a big step towards enabling shared learning, unfortunately,
it is not always enough. Model serving—the inferences (decisions)

rendered based on the model—can still leak information about the
data [42, 94]. One approach to address this challenge is di�erential
privacy [36, 37, 39], a popular technique proposed in the context of
statistical databases. Di�erential privacy adds noise to each query
to protect the data privacy, hence e�ectively trading accuracy for
privacy [35]. A central concept of di�erential privacy is the privacy
budget which caps the number of queries given a privacy guarantee.

�ere are three interesting research directions when applying
di�erential privacy to model serving. First, a promising approach
is to leverage di�erential privacy for complex models and infer-
ences, by taking advantage of the inherent statistical nature of
the models and predictions. Second, despite the large volume of
theoretical research, there are few practical di�erential privacy
systems in use today. An important research direction is to build
tools and systems to make it easy to enable di�erential privacy for
real-world applications, including intelligently selecting which pri-
vacy mechanisms to use for a given application and automatically
converting non-di�erentially-private computations to di�erentially-
private computations. Finally, one particular aspect in the context
of continual learning is that data privacy can be time dependent,
that is, the privacy of fresh data is far more important than the
privacy of historical data. Examples are stock market and online
bidding, where the privacy of the fresh data is paramount, while
the historical data is sometimes publicly released. �is aspect could
enable the development of new di�erential privacy systems with
adaptive privacy budgets that apply only to decisions on the most
recent data. Another research direction is to further develop the
notion of di�erential privacy under continuous observation and
data release [21, 38].

Even if we are able to protect data con�dentiality during training
and decision making, this might still not be enough. Indeed, even
if con�dentiality is guaranteed, an organization might refuse to
share its data for improving a model from which its competitors
might bene�t. �us, we need to go beyond guaranteeing con�-
dentiality and provide incentives to organizations to share their
data or byproducts of their data. Speci�cally, we need to develop
approaches that ensure that by sharing data, an organization gets
strictly be�er service (i.e., be�er decisions) than not sharing data.
�is requires ascertaining the quality of the data providing by a
given organization—a problem which can be tackled via a “leave-
one-out” approach in which performance is compared both with
and without that organization’s data included in the training set.
We then provide decisions that are corrupted by noise at a level
that is inversely proportional to the quality of the data provided
by an organization. �is incentivizes an organization to provide
higher-quality data. Overall, such incentives will need to be placed
within a framework of mechanism design to allow organizations to
forge their individual data-sharing strategies.

Research: Build AI systems that (1) can learn across multiple
data sources without leaking information from a data source during
training or serving, and (2) provide incentives to potentially competing
organizations to share their data or models.

4.3 AI-speci�c architectures
AI demands will drive innovations both in systems and hardware
architectures. �ese new architectures will aim not only to improve
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the performance, but to simplify the development of the next gen-
eration of AI applications by providing rich libraries of modules
that are easily composable.

R7: Domain speci�c hardware. �e ability to process and
store huge amounts of data has been one of the key enablers of the
AI’s recent successes (see Section 2.1). However, continuing to keep
up with the data being generated will be increasingly challenging.
As discussed in Section 3, while data continues to grow exponen-
tially, the corresponding performance-cost-energy improvements
that have fueled the computer industry for more than 40 years are
reaching the end-of-line:

• Transistors are not ge�ing much smaller due to the ending
of Moore’s Law,

• Power is limiting what can be put on a chip due to the end
of Dennard scaling,

• We’ve already switched from one ine�cient processor/chip
to about a dozen e�cient processors per chip, but there
are limits to parallelism due to Amdahl’s Law.

�e one path le� to continue the improvements in performance-
energy-cost of processors is developing domain-speci�c processors.
�ese processors do only a few tasks, but they do them extremely
well. �us, the rapid improvements in processing that we have
expected in the Moore’s law era must now come through innova-
tions in computer architecture instead of semiconductor process
improvements. Future servers will have much more heterogeneous
processors than in the past. One trailblazing example that spot-
lights domain speci�c processors is Google’s Tensor Processing
Unit, which has been deployed in its datacenters since 2015 and
is regularly used by billions of people. It performs the inference
phase of deep neural networks 15× to 30× faster than its contem-
porary CPUs and GPUs and its performance per wa� is 30× to
80× be�er. In addition, Microso� has announced the availability
of FPGA-powered instances on its Azure cloud [88], and a host of
companies, ranging from Intel to IBM, and to startups like Cere-
bras and Graphcore are developing specialized hardware for AI
that promise orders of magnitude performance improvements over
today’s state-of-the-art processors [19, 48, 54, 78].

With DRAM subject to the same limitations, there are several
novel technologies being developed that hope to be its successor.
3D XPoint from Intel and Micron aims to provide 10× storage ca-
pacity with DRAM-like performance. STT MRAM aims to succeed
Flash, which may hit similar scaling limits as DRAM. Hence, the
memory and storage of the cloud will likely have more levels in the
hierarchy and contain a wider variety of technologies. Given the
increasing diversity of processors, memories, and storage devices,
mapping services to hardware resources will become an even more
challenging problem. �ese dramatic changes suggest building
cloud computing from a much more �exible building block than the
classic standard rack containing a top-of-rack switch and tens of
servers, each with 2 CPU chips, 1 TB of DRAM, and 4 TBs of �ash.

For example, the UC Berkeley Firebox project [41] proposes a
multi-rack supercomputer that connects thousands of processor
chips with thousands of DRAM chips and nonvolatile storage chips
using �ber optics to provide low-latency, high-bandwidth, and long
physical distance. Such a hardware system would allow system
so�ware to provision computation services with the right ratio

and type of domain-speci�c processors, DRAM, and NVRAM. Such
resource disaggregation at scale would signi�cantly improve the
allocation of increasingly diverse tasks to correspondingly hetero-
geneous resources. It is particularly valuable for AI workloads,
which are known to gain signi�cant performance bene�ts from
large memory and have diverse resource requirements that don’t
all conform to a common pa�ern.

Besides performance improvements, new hardware architectures
will also provide additional functionality, such as security support.
While Intel’s SGX and ARM’s TrustZone are paving the way to-
wards hardware enclaves, much more needs to be done before they
can be fully embraced by AI applications. In particular, existing en-
claves exhibit various resource limitations such as addressable mem-
ory, and they are only available for a few general purpose CPUs.
Removing these limitations, and providing a uniform hardware
enclave abstraction across a diverse set of specialized processors,
including GPUs and TPUs, are promising directions of research. In
addition, open instruction set processors, such as RISC-V represent
an exciting “playground” to develop new security features.

Research: (1) Design domain-speci�c hardware architectures to
improve the performance and reduce power consumption of AI ap-
plications by orders of magnitude, or enhance the security of these
applications. (2) Design AI so�ware systems to take advantage of these
domain-speci�c architectures, resource disaggregation architectures,
and future non-volatile storage technologies.

R8: Composable AI systems. Modularity and composition
have played a fundamental role in the rapid progress of so�ware
systems, as they allowed developers to rapidly build and evolve new
systems from existing components. Examples range from microker-
nel OSes [3, 68], LAMP stack [64], microservice architectures [85],
and the internet [26]. In contrast, today’s AI systems are monolithic
which makes them hard to develop, test, and evolve.

Similarly, modularity and composition will be key to increasing
development speed and adoption of AI, by making it easier to
integrate AI in complex systems. Next, we discuss several research
problems in the context of model and action composition.

Model composition is critical to the development of more �exible
and powerful AI systems. Composing multiple models and querying
them in di�erent pa�erns enables a tradeo� between decision accu-
racy, latency, and throughput in a model serving system [29, 106]
In one example, we can query models serially, where each model
either renders the decision with su�ciently high accuracy or says
“I’m not sure”. In the la�er case, the decision is passed to the next
model in the series. By ordering the models from the highest to the
lowest “I’m not sure” rate, and from lowest to the highest latency,
we can optimize both latency and accuracy.

To fully enable model composition, many challenges remain to
be addressed. Examples are (1) designing a declarative language
to capture the topology of these components and specifying per-
formance targets of the applications, (2) providing accurate perfor-
mance models for each component, including resource demands,
latency and throughput, and (3) scheduling and optimization al-
gorithms to compute the execution plan across components, and
map components to the available resources to satisfy latency and
throughput requirements while minimizing costs.

Action composition consists of aggregating sequences of basic
decisions/actions into coarse-grained primitives, also called options.
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In the case of a self-driving car, an example of an option is changing
the lane while driving on a highway, while the actions are speeding
up, slowing down, turning le� or right, signaling the change of
direction, etc. In the case of a robot, an example of a primitive could
be grasping an object, while actions include actuating the robot’s
joints. Options have been extensively studied in the context of hier-
archical learning [30, 34, 84, 97, 102, 110]. Options can dramatically
speed up learning or adaptation to a new scenario by allowing the
agent to select from a list of existing options to accomplish a given
task, rather than from a much longer list of low-level actions.

A rich library of options would enable the development of new
AI applications by simply composing the appropriate options the
same way web programmers develop applications today in just
a few lines of code by invoking powerful web APIs. In addition,
options can improve responsiveness as selecting the next action
within an option is a much simpler task than selecting an action in
the original action space.

Research: Design AI systems and APIs that allow the composition
of models and actions in a modular and �exible manner, and develop
rich libraries of models and options using these APIs to dramatically
simplify the development of AI applications.

R9: Cloud-edge systems. Today, many AI applications such
as speech recognition and language translation are deployed in the
cloud. Going forward we expect a rapid increase in AI systems that
span edge devices and the cloud. On one hand, AI systems which
are currently cloud only, such as user recommendation systems [72],
are moving some of their functionality to edge devices to improve
security, privacy, latency and safety (including the ability to cope
with being disconnected from the internet). On the other hand,
AI systems currently deployed at the edge, such as self-driving
cars, drones, and home robots, are increasingly sharing data and
leveraging the computational resources available in the cloud to
update models and policies [61].

However, developing cloud and the cloud-edge systems is chal-
lenging for several reasons. First, there is a large discrepancy be-
tween the capabilities of edge devices and datacenter servers. We
expect this discrepancy to increase in the future, as edge devices,
such as cellphones and tablets, have much more stringent power and
size constraints than servers in datacenters. Second, edge devices
are extremely heterogeneous both in terms of resource capabilities,
ranging from very low power ARM or RISC-V CPUs that power IoT
devices to powerful GPUs in self-driving cars, and so�ware plat-
forms. �is heterogeneity makes application development much
harder. �ird, the hardware and so�ware update cycles of edge
devices are signi�cantly slower than in a datacenter. Fourth, as the
increase in the storage capacity slows down, while the growth in
the data being generated continues unabated, it may no longer be
feasible or cost e�ective to store this deluge of data.

�ere are two general approaches to addressing the mix of cloud
and edge devices. �e �rst is to repurpose code to multiple hetero-
geneous platforms via retargetable so�ware design and compiler
technology. To address the wide heterogeneity of edge devices
and the relative di�culty of upgrading the applications running on
these devices, we need new so�ware stacks that abstract away the
heterogeneity of devices by exposing the hardware capabilities to
the application through common APIs. Another promising direc-
tion is developing compilers and just-in-time (JIT) technologies to

e�ciently compile on-the-�y complex algorithms and run them on
edge devices. �is approach can leverage recent code generation
tools, such as TensorFlow’s XLA [107], Halide [50], and Weld [83].

�e second general approach is to design AI systems that are
well suited to partitioned execution across the cloud and the edge.
As one example, model composition (see Section 4.3) could allow
one to run the lighter but less accurate models at the edge, and the
computation-intensive but higher-accuracy models in the cloud.
�is architecture would improve decision latency, without compro-
mising accuracy, and it has been already employed in recent video
recognition systems [59, 115]. In another example, action composi-
tion would allow building systems where learning of hierarchical
options [63] takes place on powerful clusters in the cloud, and then
execution of these options happens at the edge.

Robotics is one application domain that can take advantage of a
modular cloud-edge architecture. Today, there is a scarcity of open
source platforms to develop robotic applications. ROS, arguably
the most popular such platform in use today, is con�ned to run-
ning locally and lacks many performance optimizations required
by real-time applications. To take advantage of the new develop-
ments in AI research such as shared and continual learning, we
need systems that can span both edge devices (e.g., robots) and
the cloud. Such systems would allow developers to seamlessly mi-
grate the functionality between a robot and the cloud to optimize
decision latency and learning convergence. While the cloud can
run sophisticated algorithms to continually update the models by
leveraging the information gathered by distributed robots in real
time, the robots can continue to execute the actions locally based
on previously downloaded policies.

To address the challenge of the data deluge collected by the edge
devices, learning-friendly compression methods can be used to
reduce processing overhead. Examples of such methods include
sampling and sketching, which have already been successfully em-
ployed for analytics workloads [4, 10, 28, 51, 81]. One research
direction is to aggressively leverage sampling and sketching in a
systematic way to support a variety of learning algorithms and pre-
diction scenarios. An arguably more di�cult challenge is to reduce
the storage overhead, which might require to delete data. �e key
challenge here is that we do not always know how the data will be
used in the future. �is is essentially a compression problem, but
compression for the purposes of ML algorithms. Again, distributed
approaches based in materialized samples and sketches can help
provide solutions to this problem, as can ML-based approaches in
the form of feature selection or model selection protocols.

Research: Design cloud-edge AI systems that (1) leverage the edge
to reduce latency, improve safety and security, and implement intel-
ligent data retention techniques, and (2) leverage the cloud to share
data and models across edge devices, train sophisticated computation-
intensive models, and take high quality decisions.

5 CONCLUSION
�e striking progress of AI during just the last decade is leading
to the successful transition from the research lab into commercial
services that have previously required human input and oversight.
Rather than replacing human workers, AI systems and robots have
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potential to enhance human performance and facilitate new forms
of collaboration [44].

To realize the full promise of AI as a positive force in our lives,
there are daunting challenges to overcome, and many of these chal-
lenges are related to systems and infrastructure. �ese challenges
are driven by the realization that AI systems will need to make
decisions that are faster, safer, and more explainable, securing these
decisions as well as the learning processes against ever more sophis-
ticated types of a�acks, continuously increasing the computation
capabilities in the face of the end of Moore’s Law, and building com-
posable systems that are easy to integrate in existing applications
and can span the cloud and the edge.

�is paper proposes several open research directions in systems,
architectures, and security that have potential to address these
challenges. We hope these questions will inspire new research that
can advance AI and make it more capable, understandable, secure
and reliable.
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