| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						A model worker executes the model. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						import argparse | 
					
					
						
						| 
							 | 
						import asyncio | 
					
					
						
						| 
							 | 
						import json | 
					
					
						
						| 
							 | 
						import time | 
					
					
						
						| 
							 | 
						import threading | 
					
					
						
						| 
							 | 
						import uuid | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from fastapi import FastAPI, Request, BackgroundTasks | 
					
					
						
						| 
							 | 
						from fastapi.responses import StreamingResponse | 
					
					
						
						| 
							 | 
						import requests | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import uvicorn | 
					
					
						
						| 
							 | 
						from functools import partial | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from llava.constants import WORKER_HEART_BEAT_INTERVAL | 
					
					
						
						| 
							 | 
						from llava.utils import (build_logger, server_error_msg, | 
					
					
						
						| 
							 | 
						    pretty_print_semaphore) | 
					
					
						
						| 
							 | 
						from llava.model.builder import load_pretrained_model | 
					
					
						
						| 
							 | 
						from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token | 
					
					
						
						| 
							 | 
						from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | 
					
					
						
						| 
							 | 
						from transformers import TextIteratorStreamer | 
					
					
						
						| 
							 | 
						from threading import Thread | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						GB = 1 << 30 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						worker_id = str(uuid.uuid4())[:6] | 
					
					
						
						| 
							 | 
						logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | 
					
					
						
						| 
							 | 
						global_counter = 0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						model_semaphore = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def heart_beat_worker(controller): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    while True: | 
					
					
						
						| 
							 | 
						        time.sleep(WORKER_HEART_BEAT_INTERVAL) | 
					
					
						
						| 
							 | 
						        controller.send_heart_beat() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ModelWorker: | 
					
					
						
						| 
							 | 
						    def __init__(self, controller_addr, worker_addr, | 
					
					
						
						| 
							 | 
						                 worker_id, no_register, | 
					
					
						
						| 
							 | 
						                 model_path, model_base, model_name, | 
					
					
						
						| 
							 | 
						                 load_8bit, load_4bit, device, use_flash_attn=False): | 
					
					
						
						| 
							 | 
						        self.controller_addr = controller_addr | 
					
					
						
						| 
							 | 
						        self.worker_addr = worker_addr | 
					
					
						
						| 
							 | 
						        self.worker_id = worker_id | 
					
					
						
						| 
							 | 
						        if model_path.endswith("/"): | 
					
					
						
						| 
							 | 
						            model_path = model_path[:-1] | 
					
					
						
						| 
							 | 
						        if model_name is None: | 
					
					
						
						| 
							 | 
						            model_paths = model_path.split("/") | 
					
					
						
						| 
							 | 
						            if model_paths[-1].startswith('checkpoint-'): | 
					
					
						
						| 
							 | 
						                self.model_name = model_paths[-2] + "_" + model_paths[-1] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                self.model_name = model_paths[-1] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.model_name = model_name | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.device = device | 
					
					
						
						| 
							 | 
						        logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | 
					
					
						
						| 
							 | 
						        self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( | 
					
					
						
						| 
							 | 
						            model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device, use_flash_attn=use_flash_attn) | 
					
					
						
						| 
							 | 
						        self.is_multimodal = 'llava' in self.model_name.lower() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not no_register: | 
					
					
						
						| 
							 | 
						            self.register_to_controller() | 
					
					
						
						| 
							 | 
						            self.heart_beat_thread = threading.Thread( | 
					
					
						
						| 
							 | 
						                target=heart_beat_worker, args=(self,), daemon=True) | 
					
					
						
						| 
							 | 
						            self.heart_beat_thread.start() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def register_to_controller(self): | 
					
					
						
						| 
							 | 
						        logger.info("Register to controller") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        url = self.controller_addr + "/register_worker" | 
					
					
						
						| 
							 | 
						        data = { | 
					
					
						
						| 
							 | 
						            "worker_name": self.worker_addr, | 
					
					
						
						| 
							 | 
						            "check_heart_beat": True, | 
					
					
						
						| 
							 | 
						            "worker_status": self.get_status() | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        r = requests.post(url, json=data) | 
					
					
						
						| 
							 | 
						        assert r.status_code == 200 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def send_heart_beat(self): | 
					
					
						
						| 
							 | 
						        logger.info(f"Send heart beat. Models: {[self.model_name]}. " | 
					
					
						
						| 
							 | 
						                    f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | 
					
					
						
						| 
							 | 
						                    f"global_counter: {global_counter}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        url = self.controller_addr + "/receive_heart_beat" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        while True: | 
					
					
						
						| 
							 | 
						            try: | 
					
					
						
						| 
							 | 
						                ret = requests.post(url, json={ | 
					
					
						
						| 
							 | 
						                    "worker_name": self.worker_addr, | 
					
					
						
						| 
							 | 
						                    "queue_length": self.get_queue_length()}, timeout=5) | 
					
					
						
						| 
							 | 
						                exist = ret.json()["exist"] | 
					
					
						
						| 
							 | 
						                break | 
					
					
						
						| 
							 | 
						            except requests.exceptions.RequestException as e: | 
					
					
						
						| 
							 | 
						                logger.error(f"heart beat error: {e}") | 
					
					
						
						| 
							 | 
						            time.sleep(5) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not exist: | 
					
					
						
						| 
							 | 
						            self.register_to_controller() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_queue_length(self): | 
					
					
						
						| 
							 | 
						        if model_semaphore is None: | 
					
					
						
						| 
							 | 
						            return 0 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return args.limit_model_concurrency - model_semaphore._value + (len( | 
					
					
						
						| 
							 | 
						                model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_status(self): | 
					
					
						
						| 
							 | 
						        return { | 
					
					
						
						| 
							 | 
						            "model_names": [self.model_name], | 
					
					
						
						| 
							 | 
						            "speed": 1, | 
					
					
						
						| 
							 | 
						            "queue_length": self.get_queue_length(), | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.inference_mode() | 
					
					
						
						| 
							 | 
						    def generate_stream(self, params): | 
					
					
						
						| 
							 | 
						        tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prompt = params["prompt"] | 
					
					
						
						| 
							 | 
						        ori_prompt = prompt | 
					
					
						
						| 
							 | 
						        images = params.get("images", None) | 
					
					
						
						| 
							 | 
						        num_image_tokens = 0 | 
					
					
						
						| 
							 | 
						        if images is not None and len(images) > 0 and self.is_multimodal: | 
					
					
						
						| 
							 | 
						            if len(images) > 0: | 
					
					
						
						| 
							 | 
						                if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): | 
					
					
						
						| 
							 | 
						                    raise ValueError("Number of images does not match number of <image> tokens in prompt") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                images = [load_image_from_base64(image) for image in images] | 
					
					
						
						| 
							 | 
						                image_sizes = [image.size for image in images] | 
					
					
						
						| 
							 | 
						                images = process_images(images, image_processor, model.config) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if type(images) is list: | 
					
					
						
						| 
							 | 
						                    images = [image.to(self.model.device, dtype=torch.float16) for image in images] | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    images = images.to(self.model.device, dtype=torch.float16) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                replace_token = DEFAULT_IMAGE_TOKEN | 
					
					
						
						| 
							 | 
						                if getattr(self.model.config, 'mm_use_im_start_end', False): | 
					
					
						
						| 
							 | 
						                    replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN | 
					
					
						
						| 
							 | 
						                prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                images = None | 
					
					
						
						| 
							 | 
						                image_sizes = None | 
					
					
						
						| 
							 | 
						            image_args = {"images": images, "image_sizes": image_sizes} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            images = None | 
					
					
						
						| 
							 | 
						            image_args = {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        temperature = float(params.get("temperature", 1.0)) | 
					
					
						
						| 
							 | 
						        top_p = float(params.get("top_p", 1.0)) | 
					
					
						
						| 
							 | 
						        max_context_length = getattr(model.config, 'max_position_embeddings', 2048) | 
					
					
						
						| 
							 | 
						        max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | 
					
					
						
						| 
							 | 
						        stop_str = params.get("stop", None) | 
					
					
						
						| 
							 | 
						        do_sample = True if temperature > 0.001 else False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) | 
					
					
						
						| 
							 | 
						        keywords = [stop_str] | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if max_new_tokens < 1: | 
					
					
						
						| 
							 | 
						            yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" | 
					
					
						
						| 
							 | 
						            return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        thread = Thread(target=model.generate, kwargs=dict( | 
					
					
						
						| 
							 | 
						            inputs=input_ids, | 
					
					
						
						| 
							 | 
						            do_sample=do_sample, | 
					
					
						
						| 
							 | 
						            temperature=temperature, | 
					
					
						
						| 
							 | 
						            top_p=top_p, | 
					
					
						
						| 
							 | 
						            max_new_tokens=max_new_tokens, | 
					
					
						
						| 
							 | 
						            streamer=streamer, | 
					
					
						
						| 
							 | 
						            use_cache=True, | 
					
					
						
						| 
							 | 
						            **image_args | 
					
					
						
						| 
							 | 
						        )) | 
					
					
						
						| 
							 | 
						        thread.start() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        generated_text = ori_prompt | 
					
					
						
						| 
							 | 
						        for new_text in streamer: | 
					
					
						
						| 
							 | 
						            generated_text += new_text | 
					
					
						
						| 
							 | 
						            if generated_text.endswith(stop_str): | 
					
					
						
						| 
							 | 
						                generated_text = generated_text[:-len(stop_str)] | 
					
					
						
						| 
							 | 
						            yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def generate_stream_gate(self, params): | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            for x in self.generate_stream(params): | 
					
					
						
						| 
							 | 
						                yield x | 
					
					
						
						| 
							 | 
						        except ValueError as e: | 
					
					
						
						| 
							 | 
						            print("Caught ValueError:", e) | 
					
					
						
						| 
							 | 
						            ret = { | 
					
					
						
						| 
							 | 
						                "text": server_error_msg, | 
					
					
						
						| 
							 | 
						                "error_code": 1, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            yield json.dumps(ret).encode() + b"\0" | 
					
					
						
						| 
							 | 
						        except torch.cuda.CudaError as e: | 
					
					
						
						| 
							 | 
						            print("Caught torch.cuda.CudaError:", e) | 
					
					
						
						| 
							 | 
						            ret = { | 
					
					
						
						| 
							 | 
						                "text": server_error_msg, | 
					
					
						
						| 
							 | 
						                "error_code": 1, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            yield json.dumps(ret).encode() + b"\0" | 
					
					
						
						| 
							 | 
						        except Exception as e: | 
					
					
						
						| 
							 | 
						            print("Caught Unknown Error", e) | 
					
					
						
						| 
							 | 
						            ret = { | 
					
					
						
						| 
							 | 
						                "text": server_error_msg, | 
					
					
						
						| 
							 | 
						                "error_code": 1, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            yield json.dumps(ret).encode() + b"\0" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						app = FastAPI() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def release_model_semaphore(fn=None): | 
					
					
						
						| 
							 | 
						    model_semaphore.release() | 
					
					
						
						| 
							 | 
						    if fn is not None: | 
					
					
						
						| 
							 | 
						        fn() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@app.post("/worker_generate_stream") | 
					
					
						
						| 
							 | 
						async def generate_stream(request: Request): | 
					
					
						
						| 
							 | 
						    global model_semaphore, global_counter | 
					
					
						
						| 
							 | 
						    global_counter += 1 | 
					
					
						
						| 
							 | 
						    params = await request.json() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if model_semaphore is None: | 
					
					
						
						| 
							 | 
						        model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | 
					
					
						
						| 
							 | 
						    await model_semaphore.acquire() | 
					
					
						
						| 
							 | 
						    worker.send_heart_beat() | 
					
					
						
						| 
							 | 
						    generator = worker.generate_stream_gate(params) | 
					
					
						
						| 
							 | 
						    background_tasks = BackgroundTasks() | 
					
					
						
						| 
							 | 
						    background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | 
					
					
						
						| 
							 | 
						    return StreamingResponse(generator, background=background_tasks) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@app.post("/worker_get_status") | 
					
					
						
						| 
							 | 
						async def get_status(request: Request): | 
					
					
						
						| 
							 | 
						    return worker.get_status() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    parser = argparse.ArgumentParser() | 
					
					
						
						| 
							 | 
						    parser.add_argument("--host", type=str, default="localhost") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--port", type=int, default=21002) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--worker-address", type=str, | 
					
					
						
						| 
							 | 
						        default="http://localhost:21002") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--controller-address", type=str, | 
					
					
						
						| 
							 | 
						        default="http://localhost:21001") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--model-path", type=str, default="facebook/opt-350m") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--model-base", type=str, default=None) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--model-name", type=str) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--device", type=str, default="cuda") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--limit-model-concurrency", type=int, default=5) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--stream-interval", type=int, default=1) | 
					
					
						
						| 
							 | 
						    parser.add_argument("--no-register", action="store_true") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--load-8bit", action="store_true") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--load-4bit", action="store_true") | 
					
					
						
						| 
							 | 
						    parser.add_argument("--use-flash-attn", action="store_true") | 
					
					
						
						| 
							 | 
						    args = parser.parse_args() | 
					
					
						
						| 
							 | 
						    logger.info(f"args: {args}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if args.multi_modal: | 
					
					
						
						| 
							 | 
						        logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    worker = ModelWorker(args.controller_address, | 
					
					
						
						| 
							 | 
						                         args.worker_address, | 
					
					
						
						| 
							 | 
						                         worker_id, | 
					
					
						
						| 
							 | 
						                         args.no_register, | 
					
					
						
						| 
							 | 
						                         args.model_path, | 
					
					
						
						| 
							 | 
						                         args.model_base, | 
					
					
						
						| 
							 | 
						                         args.model_name, | 
					
					
						
						| 
							 | 
						                         args.load_8bit, | 
					
					
						
						| 
							 | 
						                         args.load_4bit, | 
					
					
						
						| 
							 | 
						                         args.device, | 
					
					
						
						| 
							 | 
						                         use_flash_attn=args.use_flash_attn) | 
					
					
						
						| 
							 | 
						    uvicorn.run(app, host=args.host, port=args.port, log_level="info") | 
					
					
						
						| 
							 | 
						
 |