Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
Delete loading script
Browse files- aes_enem_dataset.py +0 -1234
aes_enem_dataset.py
DELETED
|
@@ -1,1234 +0,0 @@
|
|
| 1 |
-
# Copyright 2023 Andre Barbosa, Igor Cataneo Silveira & The HuggingFace Datasets Authors
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import csv
|
| 16 |
-
import math
|
| 17 |
-
import os
|
| 18 |
-
import re
|
| 19 |
-
from pathlib import Path
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
import numpy as np
|
| 23 |
-
import pandas as pd
|
| 24 |
-
from multiprocessing import Pool, cpu_count
|
| 25 |
-
from bs4 import BeautifulSoup
|
| 26 |
-
from tqdm.auto import tqdm
|
| 27 |
-
|
| 28 |
-
RANDOM_STATE = 42
|
| 29 |
-
np.random.seed(RANDOM_STATE) # Set the seed
|
| 30 |
-
|
| 31 |
-
_CITATION = """
|
| 32 |
-
@inproceedings{silveira-etal-2024-new,
|
| 33 |
-
title = "A New Benchmark for Automatic Essay Scoring in {P}ortuguese",
|
| 34 |
-
author = "Silveira, Igor Cataneo and
|
| 35 |
-
Barbosa, Andr{\'e} and
|
| 36 |
-
Mau{\'a}, Denis Deratani",
|
| 37 |
-
editor = "Gamallo, Pablo and
|
| 38 |
-
Claro, Daniela and
|
| 39 |
-
Teixeira, Ant{\'o}nio and
|
| 40 |
-
Real, Livy and
|
| 41 |
-
Garcia, Marcos and
|
| 42 |
-
Oliveira, Hugo Goncalo and
|
| 43 |
-
Amaro, Raquel",
|
| 44 |
-
booktitle = "Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1",
|
| 45 |
-
month = mar,
|
| 46 |
-
year = "2024",
|
| 47 |
-
address = "Santiago de Compostela, Galicia/Spain",
|
| 48 |
-
publisher = "Association for Computational Lingustics",
|
| 49 |
-
url = "https://aclanthology.org/2024.propor-1.23/",
|
| 50 |
-
pages = "228--237"
|
| 51 |
-
}
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
_DESCRIPTION = """\
|
| 55 |
-
This dataset was created as part of our work on advancing Automatic Essay Scoring for
|
| 56 |
-
Brazilian Portuguese. It comprises a large collection of publicly available essays
|
| 57 |
-
collected from websites simulating University Entrance Exams, with a subset expertly
|
| 58 |
-
annotated to provide reliable assessment indicators. The dataset includes both the raw
|
| 59 |
-
text and processed forms of the essays, along with supporting prompts and supplemental
|
| 60 |
-
texts.
|
| 61 |
-
|
| 62 |
-
Key Features:
|
| 63 |
-
- A diverse corpus of essays with detailed annotations.
|
| 64 |
-
- A subset graded by expert annotators to evaluate essay quality and task difficulty.
|
| 65 |
-
- Comprehensive metadata providing provenance and context for each essay.
|
| 66 |
-
- An empirical analysis framework to support state-of-the-art predictive modeling.
|
| 67 |
-
|
| 68 |
-
For further details, please refer to the paper “A New Benchmark for Automatic Essay
|
| 69 |
-
Scoring in Portuguese” available at https://aclanthology.org/2024.propor-1.23/.
|
| 70 |
-
"""
|
| 71 |
-
|
| 72 |
-
# TODO: Add a link to an official homepage for the dataset here
|
| 73 |
-
_HOMEPAGE = ""
|
| 74 |
-
|
| 75 |
-
# TODO: Add the licence for the dataset here if you can find it
|
| 76 |
-
_LICENSE = ""
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
_URLS = {
|
| 80 |
-
"sourceAOnly": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
|
| 81 |
-
"sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz",
|
| 82 |
-
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz",
|
| 83 |
-
"PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz",
|
| 84 |
-
"gradesThousand": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/scrapedGradesThousand.tar.gz",
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
PROMPTS_TO_IGNORE = [
|
| 89 |
-
"brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista",
|
| 90 |
-
"carta-convite-discutir-discriminacao-na-escola",
|
| 91 |
-
"informacao-no-rotulo-de-produtos-transgenicos",
|
| 92 |
-
]
|
| 93 |
-
|
| 94 |
-
# Essays to Ignore
|
| 95 |
-
ESSAY_TO_IGNORE = [
|
| 96 |
-
"direitos-em-conflito-liberdade-de-expressao-e-intimidade/2.html",
|
| 97 |
-
"terceirizacao-avanco-ou-retrocesso/2.html",
|
| 98 |
-
"artes-e-educacao-fisica-opcionais-ou-obrigatorias/2.html",
|
| 99 |
-
"violencia-e-drogas-o-papel-do-usuario/0.html",
|
| 100 |
-
"internacao-compulsoria-de-dependentes-de-crack/0.html",
|
| 101 |
-
]
|
| 102 |
-
|
| 103 |
-
CSV_HEADER = [
|
| 104 |
-
"id",
|
| 105 |
-
"id_prompt",
|
| 106 |
-
"prompt",
|
| 107 |
-
"supporting_text",
|
| 108 |
-
"title",
|
| 109 |
-
"essay",
|
| 110 |
-
"grades",
|
| 111 |
-
"general",
|
| 112 |
-
"specific",
|
| 113 |
-
"essay_year",
|
| 114 |
-
"reference",
|
| 115 |
-
]
|
| 116 |
-
|
| 117 |
-
CSV_HEADERPROPOR = [
|
| 118 |
-
"id",
|
| 119 |
-
"id_prompt",
|
| 120 |
-
"title",
|
| 121 |
-
"essay",
|
| 122 |
-
"grades",
|
| 123 |
-
"essay_year",
|
| 124 |
-
"reference",
|
| 125 |
-
]
|
| 126 |
-
|
| 127 |
-
CSV_HEADERTHOUSAND = [
|
| 128 |
-
"id",
|
| 129 |
-
"author",
|
| 130 |
-
"id_prompt",
|
| 131 |
-
"essay_year",
|
| 132 |
-
"grades",
|
| 133 |
-
"essay",
|
| 134 |
-
"source",
|
| 135 |
-
"supporting_text",
|
| 136 |
-
"prompt",
|
| 137 |
-
]
|
| 138 |
-
|
| 139 |
-
CSV_HEADER_JBCS25 = [
|
| 140 |
-
"id",
|
| 141 |
-
"id_prompt",
|
| 142 |
-
"essay_text",
|
| 143 |
-
"grades",
|
| 144 |
-
"essay_year",
|
| 145 |
-
"supporting_text",
|
| 146 |
-
"prompt",
|
| 147 |
-
"reference",
|
| 148 |
-
]
|
| 149 |
-
|
| 150 |
-
SOURCE_A_DESC = """
|
| 151 |
-
SourceA have 860 essays available from August 2015 to March 2020.
|
| 152 |
-
For each month of that period, a new prompt together with supporting texts were given,
|
| 153 |
-
and the graded essays from the previous month were made available.
|
| 154 |
-
Of the 56 prompts, 12 had no associated essays available (at the time of download).
|
| 155 |
-
Additionally, there were 3 prompts that asked for a text in the format of a letter.
|
| 156 |
-
We removed those 15 prompts and associated texts from the corpus.
|
| 157 |
-
For an unknown reason, 414 of the essays were graded using a five-point scale of either
|
| 158 |
-
{0, 50, 100, 150, 200} or its scaled-down version going from 0 to 2.
|
| 159 |
-
To avoid introducing bias, we also discarded such instances, resulting in a dataset of
|
| 160 |
-
386 annotated essays with prompts and supporting texts (with each component being clearly identified).
|
| 161 |
-
Some of the essays used a six-point scale with 20 points instead of 40 points as the second class.
|
| 162 |
-
As we believe this introduces minimal bias, we kept such essays and relabeled class 20 as class 40.
|
| 163 |
-
The original data contains comments from the annotators explaining their per-competence scores.
|
| 164 |
-
They are included in our dataset.
|
| 165 |
-
"""
|
| 166 |
-
|
| 167 |
-
SOURCE_A_WITH_GRADERS = """
|
| 168 |
-
sourceAWithGraders includes the original dataset augmented with grades from additional reviewers.
|
| 169 |
-
Each essay is replicated three times:
|
| 170 |
-
1. The original essay with its grades from the website.
|
| 171 |
-
2. The same essay with grades from the first human grader.
|
| 172 |
-
3. The same essay with grades from the second human grader.
|
| 173 |
-
"""
|
| 174 |
-
|
| 175 |
-
SOURCE_B_DESC = """
|
| 176 |
-
SourceB is very similar to Source A: a new prompt and supporting texts are made
|
| 177 |
-
available every month along with the graded essays submitted in the previous month.
|
| 178 |
-
We downloaded HTML sources from 7,700 essays from May 2009 to May 2023. Essays released
|
| 179 |
-
prior to June 2016 were graded on a five-point scale and consequently discarded.
|
| 180 |
-
This resulted in a corpus of approx. 3,200 graded essays on 83 different prompts.
|
| 181 |
-
|
| 182 |
-
Although in principle, Source B also provides supporting texts for students, none were
|
| 183 |
-
available at the time the data was downloaded.
|
| 184 |
-
To mitigate this, we extracted supporting texts from the Essay-Br corpus, whenever
|
| 185 |
-
possible, by manually matching prompts between the two corpora.
|
| 186 |
-
We ended up with approx. 1,000 essays containing both prompt and supporting texts, and
|
| 187 |
-
approx. 2,200 essays containing only the respective prompt.
|
| 188 |
-
"""
|
| 189 |
-
|
| 190 |
-
PROPOR2024 = """
|
| 191 |
-
This split corresponds to the results reported in the PROPOR 2024 paper. While reproducibility was
|
| 192 |
-
fixed in the sourceAWithGraders configuration, this split preserves the original
|
| 193 |
-
distribution of prompts and scores as used in the paper.
|
| 194 |
-
"""
|
| 195 |
-
|
| 196 |
-
GRADES_THOUSAND = """
|
| 197 |
-
TODO
|
| 198 |
-
"""
|
| 199 |
-
|
| 200 |
-
JBCS2025 = """
|
| 201 |
-
TODO
|
| 202 |
-
"""
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
class AesEnemDataset(datasets.GeneratorBasedBuilder):
|
| 206 |
-
"""
|
| 207 |
-
AES Enem Dataset. For full explanation about generation process, please refer to: https://aclanthology.org/2024.propor-1.23/
|
| 208 |
-
|
| 209 |
-
We realized in our experiments that there was an issue in the determistic process regarding how the dataset is generated.
|
| 210 |
-
To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now.
|
| 211 |
-
"""
|
| 212 |
-
|
| 213 |
-
VERSION = datasets.Version("1.0.0")
|
| 214 |
-
|
| 215 |
-
# You will be able to load one or the other configurations in the following list with
|
| 216 |
-
BUILDER_CONFIGS = [
|
| 217 |
-
datasets.BuilderConfig(
|
| 218 |
-
name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC
|
| 219 |
-
),
|
| 220 |
-
datasets.BuilderConfig(
|
| 221 |
-
name="sourceAWithGraders",
|
| 222 |
-
version=VERSION,
|
| 223 |
-
description=SOURCE_A_WITH_GRADERS,
|
| 224 |
-
),
|
| 225 |
-
datasets.BuilderConfig(
|
| 226 |
-
name="sourceB",
|
| 227 |
-
version=VERSION,
|
| 228 |
-
description=SOURCE_B_DESC,
|
| 229 |
-
),
|
| 230 |
-
datasets.BuilderConfig(
|
| 231 |
-
name="PROPOR2024", version=VERSION, description=PROPOR2024
|
| 232 |
-
),
|
| 233 |
-
datasets.BuilderConfig(
|
| 234 |
-
name="gradesThousand", version=VERSION, description=GRADES_THOUSAND
|
| 235 |
-
),
|
| 236 |
-
datasets.BuilderConfig(name="JBCS2025", version=VERSION, description=JBCS2025),
|
| 237 |
-
]
|
| 238 |
-
|
| 239 |
-
def _info(self):
|
| 240 |
-
if self.config.name == "PROPOR2024":
|
| 241 |
-
features = datasets.Features(
|
| 242 |
-
{
|
| 243 |
-
"id": datasets.Value("string"),
|
| 244 |
-
"id_prompt": datasets.Value("string"),
|
| 245 |
-
"essay_title": datasets.Value("string"),
|
| 246 |
-
"essay_text": datasets.Value("string"),
|
| 247 |
-
"grades": datasets.Sequence(datasets.Value("int16")),
|
| 248 |
-
"essay_year": datasets.Value("int16"),
|
| 249 |
-
"reference": datasets.Value("string"),
|
| 250 |
-
}
|
| 251 |
-
)
|
| 252 |
-
elif self.config.name == "gradesThousand":
|
| 253 |
-
features = datasets.Features(
|
| 254 |
-
{
|
| 255 |
-
"id": datasets.Value("string"),
|
| 256 |
-
"id_prompt": datasets.Value("string"),
|
| 257 |
-
"supporting_text": datasets.Value("string"),
|
| 258 |
-
"prompt": datasets.Value("string"),
|
| 259 |
-
"essay_text": datasets.Value("string"),
|
| 260 |
-
"grades": datasets.Sequence(datasets.Value("int16")),
|
| 261 |
-
"essay_year": datasets.Value("int16"),
|
| 262 |
-
"source": datasets.Value("string"),
|
| 263 |
-
}
|
| 264 |
-
)
|
| 265 |
-
elif self.config.name == "JBCS2025":
|
| 266 |
-
features = datasets.Features(
|
| 267 |
-
{
|
| 268 |
-
"id": datasets.Value("string"),
|
| 269 |
-
"id_prompt": datasets.Value("string"),
|
| 270 |
-
"essay_text": datasets.Value("string"),
|
| 271 |
-
"grades": datasets.Sequence(datasets.Value("int16")),
|
| 272 |
-
"essay_year": datasets.Value("int16"),
|
| 273 |
-
"supporting_text": datasets.Value("string"),
|
| 274 |
-
"prompt": datasets.Value("string"),
|
| 275 |
-
"reference": datasets.Value("string"),
|
| 276 |
-
}
|
| 277 |
-
)
|
| 278 |
-
else:
|
| 279 |
-
features = datasets.Features(
|
| 280 |
-
{
|
| 281 |
-
"id": datasets.Value("string"),
|
| 282 |
-
"id_prompt": datasets.Value("string"),
|
| 283 |
-
"prompt": datasets.Value("string"),
|
| 284 |
-
"supporting_text": datasets.Value("string"),
|
| 285 |
-
"essay_title": datasets.Value("string"),
|
| 286 |
-
"essay_text": datasets.Value("string"),
|
| 287 |
-
"grades": datasets.Sequence(datasets.Value("int16")),
|
| 288 |
-
"essay_year": datasets.Value("int16"),
|
| 289 |
-
"general_comment": datasets.Value("string"),
|
| 290 |
-
"specific_comment": datasets.Value("string"),
|
| 291 |
-
"reference": datasets.Value("string"),
|
| 292 |
-
}
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
return datasets.DatasetInfo(
|
| 296 |
-
# This is the description that will appear on the datasets page.
|
| 297 |
-
description=_DESCRIPTION,
|
| 298 |
-
# This defines the different columns of the dataset and their types
|
| 299 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 300 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 301 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 302 |
-
# supervised_keys=("sentence", "label"),
|
| 303 |
-
# Homepage of the dataset for documentation
|
| 304 |
-
homepage=_HOMEPAGE,
|
| 305 |
-
# License for the dataset if available
|
| 306 |
-
license=_LICENSE,
|
| 307 |
-
# Citation for the dataset
|
| 308 |
-
citation=_CITATION,
|
| 309 |
-
)
|
| 310 |
-
|
| 311 |
-
def _post_process_dataframe(self, filepath):
|
| 312 |
-
def map_year(year):
|
| 313 |
-
if year <= 2017:
|
| 314 |
-
return "<=2017"
|
| 315 |
-
return str(year)
|
| 316 |
-
|
| 317 |
-
def normalize_grades(grades):
|
| 318 |
-
grades = grades.strip("[]").split(", ")
|
| 319 |
-
grade_mapping = {"0.0": 0, "20": 40, "2.0": 2}
|
| 320 |
-
|
| 321 |
-
# We will remove the rows that match the criteria below
|
| 322 |
-
if any(
|
| 323 |
-
single_grade
|
| 324 |
-
in grades[:-1] # we ignore the sum, and only check the concetps
|
| 325 |
-
for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"]
|
| 326 |
-
):
|
| 327 |
-
return None
|
| 328 |
-
# Use the mapping to transform grades, ignoring the last grade
|
| 329 |
-
mapped_grades = [
|
| 330 |
-
int(grade_mapping.get(grade_concept, grade_concept))
|
| 331 |
-
for grade_concept in grades[:-1]
|
| 332 |
-
]
|
| 333 |
-
# Calculate and append the sum of the mapped grades as the last element
|
| 334 |
-
mapped_grades.append(sum(mapped_grades))
|
| 335 |
-
return mapped_grades
|
| 336 |
-
|
| 337 |
-
df = pd.read_csv(filepath)
|
| 338 |
-
df["general"] = df["general"].fillna("")
|
| 339 |
-
df["essay_year"] = df["essay_year"].astype("int")
|
| 340 |
-
df["mapped_year"] = df["essay_year"].apply(map_year)
|
| 341 |
-
df["grades"] = df["grades"].apply(normalize_grades)
|
| 342 |
-
df = df.dropna(subset=["grades"])
|
| 343 |
-
df = df[
|
| 344 |
-
~(df["id_prompt"] + "/" + df["id"]).isin(ESSAY_TO_IGNORE)
|
| 345 |
-
] # arbitrary removal of zero graded essays
|
| 346 |
-
df.to_csv(filepath, index=False)
|
| 347 |
-
|
| 348 |
-
def _preprocess_propor2024(self, base_path: str):
|
| 349 |
-
for split_case in ["train.csv", "validation.csv", "test.csv"]:
|
| 350 |
-
filepath = f"{base_path}/propor2024/{split_case}"
|
| 351 |
-
df = pd.read_csv(filepath)
|
| 352 |
-
|
| 353 |
-
# Dictionary to track how many times we've seen each (id, id_prompt) pair
|
| 354 |
-
counts = {}
|
| 355 |
-
# List to store the reference for each row
|
| 356 |
-
references = []
|
| 357 |
-
|
| 358 |
-
# Define the mapping for each occurrence
|
| 359 |
-
occurrence_to_reference = {
|
| 360 |
-
0: "crawled_from_web",
|
| 361 |
-
1: "grader_a",
|
| 362 |
-
2: "grader_b",
|
| 363 |
-
}
|
| 364 |
-
|
| 365 |
-
# Iterate through rows in the original order
|
| 366 |
-
for _, row in df.iterrows():
|
| 367 |
-
key = (row["id"], row["id_prompt"])
|
| 368 |
-
count = counts.get(key, 0)
|
| 369 |
-
# Assign the reference based on the count
|
| 370 |
-
ref = occurrence_to_reference.get(count, "unknown")
|
| 371 |
-
references.append(ref)
|
| 372 |
-
counts[key] = count + 1
|
| 373 |
-
|
| 374 |
-
# Add the reference column without changing the order of rows
|
| 375 |
-
df["reference"] = references
|
| 376 |
-
df.to_csv(filepath, index=False)
|
| 377 |
-
|
| 378 |
-
def _split_generators(self, dl_manager):
|
| 379 |
-
if self.config.name != "JBCS2025":
|
| 380 |
-
urls = _URLS[self.config.name]
|
| 381 |
-
extracted_files = dl_manager.download_and_extract({self.config.name: urls})
|
| 382 |
-
if "PROPOR2024" == self.config.name:
|
| 383 |
-
base_path = extracted_files["PROPOR2024"]
|
| 384 |
-
self._preprocess_propor2024(base_path)
|
| 385 |
-
return [
|
| 386 |
-
datasets.SplitGenerator(
|
| 387 |
-
name=datasets.Split.TRAIN,
|
| 388 |
-
# These kwargs will be passed to _generate_examples
|
| 389 |
-
gen_kwargs={
|
| 390 |
-
"filepath": os.path.join(base_path, "propor2024/train.csv"),
|
| 391 |
-
"split": "train",
|
| 392 |
-
},
|
| 393 |
-
),
|
| 394 |
-
datasets.SplitGenerator(
|
| 395 |
-
name=datasets.Split.VALIDATION,
|
| 396 |
-
# These kwargs will be passed to _generate_examples
|
| 397 |
-
gen_kwargs={
|
| 398 |
-
"filepath": os.path.join(
|
| 399 |
-
base_path, "propor2024/validation.csv"
|
| 400 |
-
),
|
| 401 |
-
"split": "validation",
|
| 402 |
-
},
|
| 403 |
-
),
|
| 404 |
-
datasets.SplitGenerator(
|
| 405 |
-
name=datasets.Split.TEST,
|
| 406 |
-
gen_kwargs={
|
| 407 |
-
"filepath": os.path.join(base_path, "propor2024/test.csv"),
|
| 408 |
-
"split": "test",
|
| 409 |
-
},
|
| 410 |
-
),
|
| 411 |
-
]
|
| 412 |
-
if "gradesThousand" == self.config.name:
|
| 413 |
-
urls = _URLS[self.config.name]
|
| 414 |
-
extracted_files = dl_manager.download_and_extract({self.config.name: urls})
|
| 415 |
-
base_path = f"{extracted_files['gradesThousand']}/scrapedGradesThousand"
|
| 416 |
-
for split in ["train", "validation", "test"]:
|
| 417 |
-
split_filepath = os.path.join(base_path, f"{split}.csv")
|
| 418 |
-
grades_thousand = pd.read_csv(split_filepath)
|
| 419 |
-
grades_thousand[["supporting_text", "prompt"]] = grades_thousand[
|
| 420 |
-
"supporting_text"
|
| 421 |
-
].apply(
|
| 422 |
-
lambda original_text: pd.Series(
|
| 423 |
-
self._extract_prompt_and_clean(original_text)
|
| 424 |
-
)
|
| 425 |
-
)
|
| 426 |
-
grades_thousand.to_csv(split_filepath, index=False)
|
| 427 |
-
return [
|
| 428 |
-
datasets.SplitGenerator(
|
| 429 |
-
name=datasets.Split.TRAIN,
|
| 430 |
-
# These kwargs will be passed to _generate_examples
|
| 431 |
-
gen_kwargs={
|
| 432 |
-
"filepath": os.path.join(base_path, "train.csv"),
|
| 433 |
-
"split": "train",
|
| 434 |
-
},
|
| 435 |
-
),
|
| 436 |
-
datasets.SplitGenerator(
|
| 437 |
-
name=datasets.Split.VALIDATION,
|
| 438 |
-
# These kwargs will be passed to _generate_examples
|
| 439 |
-
gen_kwargs={
|
| 440 |
-
"filepath": os.path.join(base_path, "validation.csv"),
|
| 441 |
-
"split": "validation",
|
| 442 |
-
},
|
| 443 |
-
),
|
| 444 |
-
datasets.SplitGenerator(
|
| 445 |
-
name=datasets.Split.TEST,
|
| 446 |
-
gen_kwargs={
|
| 447 |
-
"filepath": os.path.join(base_path, "test.csv"),
|
| 448 |
-
"split": "test",
|
| 449 |
-
},
|
| 450 |
-
),
|
| 451 |
-
]
|
| 452 |
-
if "sourceA" in self.config.name:
|
| 453 |
-
html_parser = self._process_html_files(extracted_files)
|
| 454 |
-
self._post_process_dataframe(html_parser.sourceA)
|
| 455 |
-
self._generate_splits(html_parser.sourceA)
|
| 456 |
-
folder_sourceA = Path(html_parser.sourceA).parent
|
| 457 |
-
return [
|
| 458 |
-
datasets.SplitGenerator(
|
| 459 |
-
name=datasets.Split.TRAIN,
|
| 460 |
-
# These kwargs will be passed to _generate_examples
|
| 461 |
-
gen_kwargs={
|
| 462 |
-
"filepath": folder_sourceA / "train.csv",
|
| 463 |
-
"split": "train",
|
| 464 |
-
},
|
| 465 |
-
),
|
| 466 |
-
datasets.SplitGenerator(
|
| 467 |
-
name=datasets.Split.VALIDATION,
|
| 468 |
-
# These kwargs will be passed to _generate_examples
|
| 469 |
-
gen_kwargs={
|
| 470 |
-
"filepath": folder_sourceA / "validation.csv",
|
| 471 |
-
"split": "validation",
|
| 472 |
-
},
|
| 473 |
-
),
|
| 474 |
-
datasets.SplitGenerator(
|
| 475 |
-
name=datasets.Split.TEST,
|
| 476 |
-
gen_kwargs={
|
| 477 |
-
"filepath": folder_sourceA / "test.csv",
|
| 478 |
-
"split": "test",
|
| 479 |
-
},
|
| 480 |
-
),
|
| 481 |
-
]
|
| 482 |
-
elif self.config.name == "sourceB":
|
| 483 |
-
html_parser = self._process_html_files(extracted_files)
|
| 484 |
-
self._post_process_dataframe(html_parser.sourceB)
|
| 485 |
-
return [
|
| 486 |
-
datasets.SplitGenerator(
|
| 487 |
-
name="full",
|
| 488 |
-
gen_kwargs={
|
| 489 |
-
"filepath": html_parser.sourceB,
|
| 490 |
-
"split": "full",
|
| 491 |
-
},
|
| 492 |
-
),
|
| 493 |
-
]
|
| 494 |
-
elif "JBCS2025" == self.config.name:
|
| 495 |
-
extracted_files = dl_manager.download_and_extract(
|
| 496 |
-
{
|
| 497 |
-
"sourceA": _URLS["sourceAWithGraders"],
|
| 498 |
-
"grades_thousand": _URLS["gradesThousand"],
|
| 499 |
-
}
|
| 500 |
-
)
|
| 501 |
-
config_name_source_a = "sourceAWithGraders"
|
| 502 |
-
|
| 503 |
-
html_parser = self._process_html_files(
|
| 504 |
-
paths_dict={config_name_source_a: extracted_files["sourceA"]},
|
| 505 |
-
config_name=config_name_source_a,
|
| 506 |
-
)
|
| 507 |
-
self._post_process_dataframe(html_parser.sourceA)
|
| 508 |
-
self._generate_splits(html_parser.sourceA, config_name=config_name_source_a)
|
| 509 |
-
folder_sourceA = Path(html_parser.sourceA).parent
|
| 510 |
-
for split in ["train", "validation", "test"]:
|
| 511 |
-
sourceA = pd.read_csv(folder_sourceA / f"{split}.csv")
|
| 512 |
-
common_columns = [
|
| 513 |
-
"id",
|
| 514 |
-
"id_prompt",
|
| 515 |
-
"essay_text",
|
| 516 |
-
"grades",
|
| 517 |
-
"essay_year",
|
| 518 |
-
"supporting_text",
|
| 519 |
-
"prompt",
|
| 520 |
-
"reference",
|
| 521 |
-
]
|
| 522 |
-
combined_split = sourceA[
|
| 523 |
-
sourceA.reference.isin(["grader_a", "grader_b"])
|
| 524 |
-
]
|
| 525 |
-
combined_split = combined_split.rename(columns={"essay": "essay_text"})
|
| 526 |
-
combined_split["grades"] = combined_split["grades"].str.replace(",", "")
|
| 527 |
-
final_split = combined_split[common_columns].sample(
|
| 528 |
-
frac=1, random_state=RANDOM_STATE
|
| 529 |
-
).reset_index(drop=True)
|
| 530 |
-
# overwrites the sourceA data
|
| 531 |
-
final_split.to_csv(folder_sourceA / f"{split}.csv", index=False)
|
| 532 |
-
return [
|
| 533 |
-
datasets.SplitGenerator(
|
| 534 |
-
name=datasets.Split.TRAIN,
|
| 535 |
-
# These kwargs will be passed to _generate_examples
|
| 536 |
-
gen_kwargs={
|
| 537 |
-
"filepath": folder_sourceA / "train.csv",
|
| 538 |
-
"split": "train",
|
| 539 |
-
},
|
| 540 |
-
),
|
| 541 |
-
datasets.SplitGenerator(
|
| 542 |
-
name=datasets.Split.VALIDATION,
|
| 543 |
-
# These kwargs will be passed to _generate_examples
|
| 544 |
-
gen_kwargs={
|
| 545 |
-
"filepath": folder_sourceA / "validation.csv",
|
| 546 |
-
"split": "validation",
|
| 547 |
-
},
|
| 548 |
-
),
|
| 549 |
-
datasets.SplitGenerator(
|
| 550 |
-
name=datasets.Split.TEST,
|
| 551 |
-
gen_kwargs={
|
| 552 |
-
"filepath": folder_sourceA / "test.csv",
|
| 553 |
-
"split": "test",
|
| 554 |
-
},
|
| 555 |
-
),
|
| 556 |
-
]
|
| 557 |
-
|
| 558 |
-
def _extract_prompt_and_clean(self, text: str):
|
| 559 |
-
"""
|
| 560 |
-
1) Find an uppercase block matching "PROPOSTA DE REDACAO/REDAÇÃO"
|
| 561 |
-
(with flexible spacing and accents) anywhere in 'text'.
|
| 562 |
-
2) Capture everything from there until the next heading that
|
| 563 |
-
starts a line (TEXTO..., TEXTOS..., INSTRUÇÕES...) or end-of-text.
|
| 564 |
-
3) Remove that captured block from the original, returning:
|
| 565 |
-
(supporting_text, prompt)
|
| 566 |
-
"""
|
| 567 |
-
|
| 568 |
-
# Regex explanation:
|
| 569 |
-
# (?m) => MULTILINE, so ^ can match start of lines
|
| 570 |
-
# 1) PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)
|
| 571 |
-
# - "PROPOSTA", then one-or-more spaces/newlines,
|
| 572 |
-
# then "DE", then spaces, then "REDA(C|Ç)",
|
| 573 |
-
# and either "AO" or "ÃO" (uppercase).
|
| 574 |
-
# - This part may skip diacritic or accent variations in "REDAÇÃO" vs. "REDACAO".
|
| 575 |
-
#
|
| 576 |
-
# 2) (?:.*?\n?)*? => a non-greedy capture of subsequent lines
|
| 577 |
-
# (including possible newlines). We use [\s\S]*? as an alternative.
|
| 578 |
-
#
|
| 579 |
-
# 3) Lookahead (?=^(?:TEXTO|TEXTOS|INSTRUÇÕES|\Z))
|
| 580 |
-
# means: stop right before a line that starts with "TEXTO", "TEXTOS",
|
| 581 |
-
# or "INSTRUÇÕES", OR the very end of the text (\Z).
|
| 582 |
-
#
|
| 583 |
-
# If found, that entire portion is group(1).
|
| 584 |
-
def force_newline_after_proposta(text: str) -> str:
|
| 585 |
-
"""
|
| 586 |
-
If we see "PROPOSTA DE REDAÇÃO" immediately followed by some
|
| 587 |
-
non-whitespace character (like "A"), insert two newlines.
|
| 588 |
-
E.g., "PROPOSTA DE REDAÇÃOA partir..." becomes
|
| 589 |
-
"PROPOSTA DE REDAÇÃO\n\nA partir..."
|
| 590 |
-
"""
|
| 591 |
-
# This pattern looks for:
|
| 592 |
-
# (PROPOSTA DE REDAÇÃO)
|
| 593 |
-
# (?=\S) meaning "immediately followed by a NON-whitespace character"
|
| 594 |
-
# then we replace that with "PROPOSTA DE REDAÇÃO\n\n"
|
| 595 |
-
pattern = re.compile(r"(?=\S)(PROPOSTA DE REDAÇÃO)(?=\S)")
|
| 596 |
-
return pattern.sub(r"\n\1\n\n", text)
|
| 597 |
-
|
| 598 |
-
text = force_newline_after_proposta(text)
|
| 599 |
-
pattern = re.compile(
|
| 600 |
-
r"(?m)" # MULTILINE
|
| 601 |
-
r"("
|
| 602 |
-
r"PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)" # e.g. PROPOSTA DE REDACAO / REDAÇÃO
|
| 603 |
-
r"(?:[\s\S]*?)" # lazily grab the subsequent text
|
| 604 |
-
r")"
|
| 605 |
-
r"(?=(?:TEXTO|TEXTOS|INSTRUÇÕES|TExTO|\Z))"
|
| 606 |
-
)
|
| 607 |
-
|
| 608 |
-
match = pattern.search(text)
|
| 609 |
-
if match:
|
| 610 |
-
prompt = match.group(1).strip()
|
| 611 |
-
# Remove that block from the original:
|
| 612 |
-
start, end = match.span(1)
|
| 613 |
-
main_text = text[:start] + text[end:]
|
| 614 |
-
else:
|
| 615 |
-
# No match => keep entire text in supporting_text, prompt empty
|
| 616 |
-
prompt = ""
|
| 617 |
-
main_text = text
|
| 618 |
-
|
| 619 |
-
return main_text.strip(), prompt.strip()
|
| 620 |
-
|
| 621 |
-
def _process_html_files(self, paths_dict, config_name=None):
|
| 622 |
-
html_parser = HTMLParser(paths_dict)
|
| 623 |
-
if config_name is None:
|
| 624 |
-
config_name = self.config.name
|
| 625 |
-
html_parser.parse(config_name)
|
| 626 |
-
return html_parser
|
| 627 |
-
|
| 628 |
-
def _parse_graders_data(self, dirname):
|
| 629 |
-
map_grades = {"0": 0, "1": 40, "2": 80, "3": 120, "4": 160, "5": 200}
|
| 630 |
-
|
| 631 |
-
def map_list(grades_list):
|
| 632 |
-
result = [map_grades.get(item, None) for item in grades_list]
|
| 633 |
-
sum_grades = sum(result)
|
| 634 |
-
result.append(sum_grades)
|
| 635 |
-
return result
|
| 636 |
-
|
| 637 |
-
grader_a = pd.read_csv(f"{dirname}/GraderA.csv")
|
| 638 |
-
grader_b = pd.read_csv(f"{dirname}/GraderB.csv")
|
| 639 |
-
for grader in [grader_a, grader_b]:
|
| 640 |
-
grader.grades = grader.grades.apply(lambda x: x.strip("[]").split(", "))
|
| 641 |
-
grader.grades = grader.grades.apply(map_list)
|
| 642 |
-
grader_a["reference"] = "grader_a"
|
| 643 |
-
grader_b["reference"] = "grader_b"
|
| 644 |
-
return grader_a, grader_b
|
| 645 |
-
|
| 646 |
-
def _generate_splits(self, filepath: str, train_size=0.7, config_name=None):
|
| 647 |
-
np.random.seed(RANDOM_STATE)
|
| 648 |
-
df = pd.read_csv(filepath)
|
| 649 |
-
train_set = []
|
| 650 |
-
val_set = []
|
| 651 |
-
test_set = []
|
| 652 |
-
df = df.sort_values(by=["essay_year", "id_prompt"]).reset_index(drop=True)
|
| 653 |
-
buckets = {}
|
| 654 |
-
for key, group in df.groupby("mapped_year"):
|
| 655 |
-
buckets[key] = sorted(group["id_prompt"].unique())
|
| 656 |
-
df.drop("mapped_year", axis=1, inplace=True)
|
| 657 |
-
for year in sorted(buckets.keys()):
|
| 658 |
-
prompts = buckets[year]
|
| 659 |
-
np.random.shuffle(prompts)
|
| 660 |
-
num_prompts = len(prompts)
|
| 661 |
-
|
| 662 |
-
# All prompts go to the test if less than 3
|
| 663 |
-
if num_prompts <= 3:
|
| 664 |
-
train_set.append(df[df["id_prompt"].isin([prompts[0]])])
|
| 665 |
-
val_set.append(df[df["id_prompt"].isin([prompts[1]])])
|
| 666 |
-
test_set.append(df[df["id_prompt"].isin([prompts[2]])])
|
| 667 |
-
continue
|
| 668 |
-
|
| 669 |
-
# Determine the number of prompts for each set based on train_size and remaining prompts
|
| 670 |
-
num_train = math.floor(num_prompts * train_size)
|
| 671 |
-
num_val_test = num_prompts - num_train
|
| 672 |
-
num_val = num_val_test // 2
|
| 673 |
-
num_test = num_val_test - num_val
|
| 674 |
-
|
| 675 |
-
# Assign prompts to each set
|
| 676 |
-
train_set.append(df[df["id_prompt"].isin(prompts[:num_train])])
|
| 677 |
-
val_set.append(
|
| 678 |
-
df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])]
|
| 679 |
-
)
|
| 680 |
-
test_set.append(
|
| 681 |
-
df[
|
| 682 |
-
df["id_prompt"].isin(
|
| 683 |
-
prompts[
|
| 684 |
-
(num_train + num_val) : (num_train + num_val + num_test)
|
| 685 |
-
]
|
| 686 |
-
)
|
| 687 |
-
]
|
| 688 |
-
)
|
| 689 |
-
|
| 690 |
-
# Convert lists of groups to DataFrames
|
| 691 |
-
train_df = pd.concat(train_set)
|
| 692 |
-
val_df = pd.concat(val_set)
|
| 693 |
-
test_df = pd.concat(test_set)
|
| 694 |
-
dirname = os.path.dirname(filepath)
|
| 695 |
-
if config_name is None:
|
| 696 |
-
config_name = self.config.name
|
| 697 |
-
if config_name == "sourceAWithGraders":
|
| 698 |
-
grader_a, grader_b = self._parse_graders_data(dirname)
|
| 699 |
-
grader_a_data = pd.merge(
|
| 700 |
-
train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
| 701 |
-
grader_a.drop(columns=["essay"]),
|
| 702 |
-
on=["id", "id_prompt"],
|
| 703 |
-
how="inner",
|
| 704 |
-
)
|
| 705 |
-
grader_b_data = pd.merge(
|
| 706 |
-
train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
| 707 |
-
grader_b.drop(columns=["essay"]),
|
| 708 |
-
on=["id", "id_prompt"],
|
| 709 |
-
how="inner",
|
| 710 |
-
)
|
| 711 |
-
train_df = pd.concat([train_df, grader_a_data, grader_b_data])
|
| 712 |
-
train_df = train_df.sort_values(by=["id", "id_prompt"]).reset_index(
|
| 713 |
-
drop=True
|
| 714 |
-
)
|
| 715 |
-
|
| 716 |
-
grader_a_data = pd.merge(
|
| 717 |
-
val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
| 718 |
-
grader_a.drop(columns=["essay"]),
|
| 719 |
-
on=["id", "id_prompt"],
|
| 720 |
-
how="inner",
|
| 721 |
-
)
|
| 722 |
-
grader_b_data = pd.merge(
|
| 723 |
-
val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
| 724 |
-
grader_b.drop(columns=["essay"]),
|
| 725 |
-
on=["id", "id_prompt"],
|
| 726 |
-
how="inner",
|
| 727 |
-
)
|
| 728 |
-
val_df = pd.concat([val_df, grader_a_data, grader_b_data])
|
| 729 |
-
val_df = val_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True)
|
| 730 |
-
|
| 731 |
-
grader_a_data = pd.merge(
|
| 732 |
-
test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
| 733 |
-
grader_a.drop(columns=["essay"]),
|
| 734 |
-
on=["id", "id_prompt"],
|
| 735 |
-
how="inner",
|
| 736 |
-
)
|
| 737 |
-
grader_b_data = pd.merge(
|
| 738 |
-
test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]],
|
| 739 |
-
grader_b.drop(columns=["essay"]),
|
| 740 |
-
on=["id", "id_prompt"],
|
| 741 |
-
how="inner",
|
| 742 |
-
)
|
| 743 |
-
test_df = pd.concat([test_df, grader_a_data, grader_b_data])
|
| 744 |
-
test_df = test_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True)
|
| 745 |
-
|
| 746 |
-
train_df = train_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
|
| 747 |
-
drop=True
|
| 748 |
-
)
|
| 749 |
-
val_df = val_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
|
| 750 |
-
drop=True
|
| 751 |
-
)
|
| 752 |
-
test_df = test_df.sample(frac=1, random_state=RANDOM_STATE).reset_index(
|
| 753 |
-
drop=True
|
| 754 |
-
)
|
| 755 |
-
|
| 756 |
-
# Data Validation Assertions
|
| 757 |
-
assert (
|
| 758 |
-
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0
|
| 759 |
-
), "Overlap between train and val id_prompt"
|
| 760 |
-
assert (
|
| 761 |
-
len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
|
| 762 |
-
), "Overlap between train and test id_prompt"
|
| 763 |
-
assert (
|
| 764 |
-
len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0
|
| 765 |
-
), "Overlap between val and test id_prompt"
|
| 766 |
-
train_df.to_csv(f"{dirname}/train.csv", index=False)
|
| 767 |
-
val_df.to_csv(f"{dirname}/validation.csv", index=False)
|
| 768 |
-
test_df.to_csv(f"{dirname}/test.csv", index=False)
|
| 769 |
-
|
| 770 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 771 |
-
def _generate_examples(self, filepath, split):
|
| 772 |
-
if self.config.name == "PROPOR2024":
|
| 773 |
-
with open(filepath, encoding="utf-8") as csvfile:
|
| 774 |
-
next(csvfile)
|
| 775 |
-
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERPROPOR)
|
| 776 |
-
for i, row in enumerate(csv_reader):
|
| 777 |
-
grades = row["grades"].strip("[]")
|
| 778 |
-
grades = grades.split()
|
| 779 |
-
yield (
|
| 780 |
-
i,
|
| 781 |
-
{
|
| 782 |
-
"id": row["id"],
|
| 783 |
-
"id_prompt": row["id_prompt"],
|
| 784 |
-
"essay_title": row["title"],
|
| 785 |
-
"essay_text": row["essay"],
|
| 786 |
-
"grades": grades,
|
| 787 |
-
"essay_year": row["essay_year"],
|
| 788 |
-
"reference": row["reference"],
|
| 789 |
-
},
|
| 790 |
-
)
|
| 791 |
-
elif self.config.name == "gradesThousand":
|
| 792 |
-
with open(filepath, encoding="utf-8") as csvfile:
|
| 793 |
-
next(csvfile)
|
| 794 |
-
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERTHOUSAND)
|
| 795 |
-
for i, row in enumerate(csv_reader):
|
| 796 |
-
grades = row["grades"].strip("[]")
|
| 797 |
-
grades = grades.split(", ")
|
| 798 |
-
yield (
|
| 799 |
-
i,
|
| 800 |
-
{
|
| 801 |
-
"id": row["id"],
|
| 802 |
-
"id_prompt": row["id_prompt"],
|
| 803 |
-
"supporting_text": row["supporting_text"],
|
| 804 |
-
"prompt": row["prompt"],
|
| 805 |
-
"essay_text": row["essay"],
|
| 806 |
-
"grades": grades,
|
| 807 |
-
"essay_year": row["essay_year"],
|
| 808 |
-
"author": row["author"],
|
| 809 |
-
"source": row["source"],
|
| 810 |
-
},
|
| 811 |
-
)
|
| 812 |
-
elif self.config.name == "JBCS2025":
|
| 813 |
-
with open(filepath, encoding="utf-8") as csvfile:
|
| 814 |
-
next(csvfile)
|
| 815 |
-
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER_JBCS25)
|
| 816 |
-
for i, row in enumerate(csv_reader):
|
| 817 |
-
grades = row["grades"].strip("[]")
|
| 818 |
-
grades = grades.split()
|
| 819 |
-
yield (
|
| 820 |
-
i,
|
| 821 |
-
{
|
| 822 |
-
"id": row["id"],
|
| 823 |
-
"id_prompt": row["id_prompt"],
|
| 824 |
-
"essay_text": row["essay_text"],
|
| 825 |
-
"grades": grades,
|
| 826 |
-
"essay_year": row["essay_year"],
|
| 827 |
-
"supporting_text": row["supporting_text"],
|
| 828 |
-
"prompt": row["prompt"],
|
| 829 |
-
"reference": row["reference"],
|
| 830 |
-
},
|
| 831 |
-
)
|
| 832 |
-
else:
|
| 833 |
-
with open(filepath, encoding="utf-8") as csvfile:
|
| 834 |
-
next(csvfile)
|
| 835 |
-
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER)
|
| 836 |
-
for i, row in enumerate(csv_reader):
|
| 837 |
-
grades = row["grades"].strip("[]")
|
| 838 |
-
grades = grades.split(", ")
|
| 839 |
-
yield (
|
| 840 |
-
i,
|
| 841 |
-
{
|
| 842 |
-
"id": row["id"],
|
| 843 |
-
"id_prompt": row["id_prompt"],
|
| 844 |
-
"prompt": row["prompt"],
|
| 845 |
-
"supporting_text": row["supporting_text"],
|
| 846 |
-
"essay_title": row["title"],
|
| 847 |
-
"essay_text": row["essay"],
|
| 848 |
-
"grades": grades,
|
| 849 |
-
"essay_year": row["essay_year"],
|
| 850 |
-
"general_comment": row["general"],
|
| 851 |
-
"specific_comment": row["specific"],
|
| 852 |
-
"reference": row["reference"],
|
| 853 |
-
},
|
| 854 |
-
)
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
class HTMLParser:
|
| 858 |
-
def __init__(self, paths_dict):
|
| 859 |
-
self.paths_dict = paths_dict
|
| 860 |
-
self.sourceA = None
|
| 861 |
-
self.sourceB = None
|
| 862 |
-
|
| 863 |
-
def apply_soup(self, filepath, num):
|
| 864 |
-
# recebe uma URL, salva o HTML dessa página e retorna o soup dela
|
| 865 |
-
file = open(os.path.join(filepath, num), "r", encoding="utf8")
|
| 866 |
-
conteudo = file.read()
|
| 867 |
-
soup = BeautifulSoup(conteudo, "html.parser")
|
| 868 |
-
return soup
|
| 869 |
-
|
| 870 |
-
def _get_title(self, soup):
|
| 871 |
-
if self.sourceA:
|
| 872 |
-
title = soup.find("div", class_="container-composition")
|
| 873 |
-
if title is None:
|
| 874 |
-
title = soup.find("h1", class_="pg-color10").get_text()
|
| 875 |
-
else:
|
| 876 |
-
title = title.h2.get_text()
|
| 877 |
-
title = title.replace("\xa0", "")
|
| 878 |
-
return title.replace(";", ",")
|
| 879 |
-
elif self.sourceB:
|
| 880 |
-
title = soup.find("h1", class_="titulo-conteudo").get_text()
|
| 881 |
-
return title.strip("- Banco de redações").strip()
|
| 882 |
-
|
| 883 |
-
def _get_grades(self, soup):
|
| 884 |
-
if self.sourceA:
|
| 885 |
-
grades = soup.find("section", class_="results-table")
|
| 886 |
-
final_grades = []
|
| 887 |
-
if grades is not None:
|
| 888 |
-
grades = grades.find_all("span", class_="points")
|
| 889 |
-
assert len(grades) == 6, f"Missing grades: {len(grades)}"
|
| 890 |
-
for single_grade in grades:
|
| 891 |
-
grade = int(single_grade.get_text())
|
| 892 |
-
final_grades.append(grade)
|
| 893 |
-
assert final_grades[-1] == sum(final_grades[:-1]), (
|
| 894 |
-
"Grading sum is not making sense"
|
| 895 |
-
)
|
| 896 |
-
else:
|
| 897 |
-
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7")
|
| 898 |
-
grades_sum = float(
|
| 899 |
-
soup.find("th", class_="noBorder-left").get_text().replace(",", ".")
|
| 900 |
-
)
|
| 901 |
-
grades = grades.find_all("td")[:10]
|
| 902 |
-
for idx in range(1, 10, 2):
|
| 903 |
-
grade = float(grades[idx].get_text().replace(",", "."))
|
| 904 |
-
final_grades.append(grade)
|
| 905 |
-
assert grades_sum == sum(final_grades), (
|
| 906 |
-
"Grading sum is not making sense"
|
| 907 |
-
)
|
| 908 |
-
final_grades.append(grades_sum)
|
| 909 |
-
return final_grades
|
| 910 |
-
elif self.sourceB:
|
| 911 |
-
table = soup.find("table", {"id": "redacoes_corrigidas"})
|
| 912 |
-
grades = table.find_all("td", class_="simple-td")
|
| 913 |
-
grades = grades[3:]
|
| 914 |
-
result = []
|
| 915 |
-
for single_grade in grades:
|
| 916 |
-
result.append(int(single_grade.get_text()))
|
| 917 |
-
assert len(result) == 5, "We should have 5 Grades (one per concept) only"
|
| 918 |
-
result.append(
|
| 919 |
-
sum(result)
|
| 920 |
-
) # Add sum as a sixt element to keep the same pattern
|
| 921 |
-
return result
|
| 922 |
-
|
| 923 |
-
def _get_general_comment(self, soup):
|
| 924 |
-
if self.sourceA:
|
| 925 |
-
|
| 926 |
-
def get_general_comment_aux(soup):
|
| 927 |
-
result = soup.find("article", class_="list-item c")
|
| 928 |
-
if result is not None:
|
| 929 |
-
result = result.find("div", class_="description")
|
| 930 |
-
return result.get_text()
|
| 931 |
-
else:
|
| 932 |
-
result = soup.find("p", style="margin: 0px 0px 11px;")
|
| 933 |
-
if result is not None:
|
| 934 |
-
return result.get_text()
|
| 935 |
-
else:
|
| 936 |
-
result = soup.find("p", style="margin: 0px;")
|
| 937 |
-
if result is not None:
|
| 938 |
-
return result.get_text()
|
| 939 |
-
else:
|
| 940 |
-
result = soup.find(
|
| 941 |
-
"p", style="margin: 0px; text-align: justify;"
|
| 942 |
-
)
|
| 943 |
-
if result is not None:
|
| 944 |
-
return result.get_text()
|
| 945 |
-
else:
|
| 946 |
-
return ""
|
| 947 |
-
|
| 948 |
-
text = soup.find("div", class_="text")
|
| 949 |
-
if text is not None:
|
| 950 |
-
text = text.find("p")
|
| 951 |
-
if (text is None) or (len(text.get_text()) < 2):
|
| 952 |
-
return get_general_comment_aux(soup)
|
| 953 |
-
return text.get_text()
|
| 954 |
-
else:
|
| 955 |
-
return get_general_comment_aux(soup)
|
| 956 |
-
elif self.sourceB:
|
| 957 |
-
return ""
|
| 958 |
-
|
| 959 |
-
def _get_specific_comment(self, soup, general_comment):
|
| 960 |
-
if self.sourceA:
|
| 961 |
-
result = soup.find("div", class_="text")
|
| 962 |
-
cms = []
|
| 963 |
-
if result is not None:
|
| 964 |
-
result = result.find_all("li")
|
| 965 |
-
if result != []:
|
| 966 |
-
for item in result:
|
| 967 |
-
text = item.get_text()
|
| 968 |
-
if text != "\xa0":
|
| 969 |
-
cms.append(text)
|
| 970 |
-
else:
|
| 971 |
-
result = soup.find("div", class_="text").find_all("p")
|
| 972 |
-
for item in result:
|
| 973 |
-
text = item.get_text()
|
| 974 |
-
if text != "\xa0":
|
| 975 |
-
cms.append(text)
|
| 976 |
-
else:
|
| 977 |
-
result = soup.find_all("article", class_="list-item c")
|
| 978 |
-
if len(result) < 2:
|
| 979 |
-
return ["First if"]
|
| 980 |
-
result = result[1].find_all("p")
|
| 981 |
-
for item in result:
|
| 982 |
-
text = item.get_text()
|
| 983 |
-
if text != "\xa0":
|
| 984 |
-
cms.append(text)
|
| 985 |
-
specific_comment = cms.copy()
|
| 986 |
-
if general_comment in specific_comment:
|
| 987 |
-
specific_comment.remove(general_comment)
|
| 988 |
-
if (len(specific_comment) > 1) and (len(specific_comment[0]) < 2):
|
| 989 |
-
specific_comment = specific_comment[1:]
|
| 990 |
-
return self._clean_list(specific_comment)
|
| 991 |
-
elif self.sourceB:
|
| 992 |
-
return ""
|
| 993 |
-
|
| 994 |
-
def _get_essay(self, soup):
|
| 995 |
-
if self.sourceA:
|
| 996 |
-
essay = soup.find("div", class_="text-composition")
|
| 997 |
-
result = []
|
| 998 |
-
if essay is not None:
|
| 999 |
-
essay = essay.find_all("p")
|
| 1000 |
-
for f in essay:
|
| 1001 |
-
while f.find("span", style="color:#00b050") is not None:
|
| 1002 |
-
f.find("span", style="color:#00b050").decompose()
|
| 1003 |
-
while f.find("span", class_="certo") is not None:
|
| 1004 |
-
f.find("span", class_="certo").decompose()
|
| 1005 |
-
for paragraph in essay:
|
| 1006 |
-
result.append(paragraph.get_text())
|
| 1007 |
-
else:
|
| 1008 |
-
essay = soup.find("div", {"id": "texto"})
|
| 1009 |
-
essay.find("section", class_="list-items").decompose()
|
| 1010 |
-
essay = essay.find_all("p")
|
| 1011 |
-
for f in essay:
|
| 1012 |
-
while f.find("span", class_="certo") is not None:
|
| 1013 |
-
f.find("span", class_="certo").decompose()
|
| 1014 |
-
for paragraph in essay:
|
| 1015 |
-
result.append(paragraph.get_text())
|
| 1016 |
-
return "\n".join(self._clean_list(result))
|
| 1017 |
-
elif self.sourceB:
|
| 1018 |
-
table = soup.find("article", class_="texto-conteudo entire")
|
| 1019 |
-
table = soup.find("div", class_="area-redacao-corrigida")
|
| 1020 |
-
if table is None:
|
| 1021 |
-
result = None
|
| 1022 |
-
else:
|
| 1023 |
-
for span in soup.find_all("span"):
|
| 1024 |
-
span.decompose()
|
| 1025 |
-
result = table.find_all("p")
|
| 1026 |
-
result = " ".join(
|
| 1027 |
-
[
|
| 1028 |
-
paragraph.get_text().replace("\xa0", "").strip()
|
| 1029 |
-
for paragraph in result
|
| 1030 |
-
]
|
| 1031 |
-
)
|
| 1032 |
-
return result
|
| 1033 |
-
|
| 1034 |
-
def _get_essay_year(self, soup):
|
| 1035 |
-
if self.sourceA:
|
| 1036 |
-
pattern = r"redações corrigidas - \w+/\d+"
|
| 1037 |
-
first_occurrence = re.search(pattern, soup.get_text().lower())
|
| 1038 |
-
matched_url = first_occurrence.group(0) if first_occurrence else None
|
| 1039 |
-
year_pattern = r"\d{4}"
|
| 1040 |
-
return re.search(year_pattern, matched_url).group(0)
|
| 1041 |
-
elif self.sourceB:
|
| 1042 |
-
pattern = r"Enviou seu texto em.*?(\d{4})"
|
| 1043 |
-
match = re.search(pattern, soup.get_text())
|
| 1044 |
-
return match.group(1) if match else -1
|
| 1045 |
-
|
| 1046 |
-
def _clean_title(self, title):
|
| 1047 |
-
if self.sourceA:
|
| 1048 |
-
smaller_index = title.find("[")
|
| 1049 |
-
if smaller_index == -1:
|
| 1050 |
-
return title
|
| 1051 |
-
else:
|
| 1052 |
-
bigger_index = title.find("]")
|
| 1053 |
-
new_title = title[:smaller_index] + title[bigger_index + 1 :]
|
| 1054 |
-
return self._clean_title(new_title.replace(" ", " "))
|
| 1055 |
-
elif self.sourceB:
|
| 1056 |
-
return title
|
| 1057 |
-
|
| 1058 |
-
def _clean_list(self, list):
|
| 1059 |
-
if list == []:
|
| 1060 |
-
return []
|
| 1061 |
-
else:
|
| 1062 |
-
new_list = []
|
| 1063 |
-
for phrase in list:
|
| 1064 |
-
phrase = (
|
| 1065 |
-
phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".")
|
| 1066 |
-
)
|
| 1067 |
-
while phrase.find(" ") != -1:
|
| 1068 |
-
phrase = phrase.replace(" ", " ")
|
| 1069 |
-
if len(phrase) > 1:
|
| 1070 |
-
new_list.append(phrase)
|
| 1071 |
-
return new_list
|
| 1072 |
-
|
| 1073 |
-
def _clean_string(self, sentence):
|
| 1074 |
-
sentence = sentence.replace("\xa0", "").replace("\u200b", "")
|
| 1075 |
-
sentence = (
|
| 1076 |
-
sentence.replace(".", ". ")
|
| 1077 |
-
.replace("?", "? ")
|
| 1078 |
-
.replace("!", "! ")
|
| 1079 |
-
.replace(")", ") ")
|
| 1080 |
-
.replace(":", ": ")
|
| 1081 |
-
.replace("”", "” ")
|
| 1082 |
-
)
|
| 1083 |
-
sentence = sentence.replace(" ", " ").replace(". . . ", "...")
|
| 1084 |
-
sentence = sentence.replace("(editado)", "").replace("(Editado)", "")
|
| 1085 |
-
sentence = sentence.replace("(editado e adaptado)", "").replace(
|
| 1086 |
-
"(Editado e adaptado)", ""
|
| 1087 |
-
)
|
| 1088 |
-
sentence = sentence.replace(". com. br", ".com.br")
|
| 1089 |
-
sentence = sentence.replace("[Veja o texto completo aqui]", "")
|
| 1090 |
-
return sentence
|
| 1091 |
-
|
| 1092 |
-
def _get_supporting_text(self, soup):
|
| 1093 |
-
if self.sourceA:
|
| 1094 |
-
textos = soup.find_all("ul", class_="article-wording-item")
|
| 1095 |
-
resposta = []
|
| 1096 |
-
for t in textos[:-1]:
|
| 1097 |
-
resposta.append(
|
| 1098 |
-
t.find("h3", class_="item-titulo").get_text().replace("\xa0", "")
|
| 1099 |
-
)
|
| 1100 |
-
resposta.append(
|
| 1101 |
-
self._clean_string(
|
| 1102 |
-
t.find("div", class_="item-descricao").get_text()
|
| 1103 |
-
)
|
| 1104 |
-
)
|
| 1105 |
-
return resposta
|
| 1106 |
-
else:
|
| 1107 |
-
return ""
|
| 1108 |
-
|
| 1109 |
-
def _get_prompt(self, soup):
|
| 1110 |
-
if self.sourceA:
|
| 1111 |
-
prompt = soup.find("div", class_="text").find_all("p")
|
| 1112 |
-
if len(prompt[0].get_text()) < 2:
|
| 1113 |
-
return [prompt[1].get_text().replace("\xa0", "")]
|
| 1114 |
-
else:
|
| 1115 |
-
return [prompt[0].get_text().replace("\xa0", "")]
|
| 1116 |
-
else:
|
| 1117 |
-
return ""
|
| 1118 |
-
|
| 1119 |
-
def _process_all_prompts(self, sub_folders, file_dir, reference, prompts_to_ignore):
|
| 1120 |
-
"""
|
| 1121 |
-
Process all prompt folders in parallel and return all rows to write.
|
| 1122 |
-
|
| 1123 |
-
Args:
|
| 1124 |
-
sub_folders (list): List of prompt folder names (or Paths).
|
| 1125 |
-
file_dir (str): Base directory where prompts are located.
|
| 1126 |
-
reference: Reference info to include in each row.
|
| 1127 |
-
prompts_to_ignore (collection): Prompts to be ignored.
|
| 1128 |
-
|
| 1129 |
-
Returns:
|
| 1130 |
-
list: A list of all rows to write to the CSV.
|
| 1131 |
-
"""
|
| 1132 |
-
|
| 1133 |
-
args_list = [
|
| 1134 |
-
(prompt_folder, file_dir, reference, prompts_to_ignore, self)
|
| 1135 |
-
for prompt_folder in sub_folders
|
| 1136 |
-
]
|
| 1137 |
-
|
| 1138 |
-
all_rows = []
|
| 1139 |
-
# Use a Pool to parallelize processing.
|
| 1140 |
-
with Pool(processes=cpu_count()) as pool:
|
| 1141 |
-
# Using imap allows us to update the progress bar.
|
| 1142 |
-
for rows in tqdm(
|
| 1143 |
-
pool.imap(HTMLParser._process_prompt_folder, args_list),
|
| 1144 |
-
total=len(args_list),
|
| 1145 |
-
desc="Processing prompts",
|
| 1146 |
-
):
|
| 1147 |
-
all_rows.extend(rows)
|
| 1148 |
-
return all_rows
|
| 1149 |
-
|
| 1150 |
-
def parse(self, config_name: str):
|
| 1151 |
-
for key, filepath in self.paths_dict.items():
|
| 1152 |
-
if key != config_name:
|
| 1153 |
-
continue # TODO improve later, we will only support a single config at a time
|
| 1154 |
-
if "sourceA" in config_name:
|
| 1155 |
-
self.sourceA = f"{filepath}/sourceA/sourceA.csv"
|
| 1156 |
-
elif config_name == "sourceB":
|
| 1157 |
-
self.sourceB = f"{filepath}/sourceB/sourceB.csv"
|
| 1158 |
-
file = self.sourceA if self.sourceA else self.sourceB
|
| 1159 |
-
file_path = Path(file)
|
| 1160 |
-
file_dir = file_path.parent
|
| 1161 |
-
sorted_files = sorted(file_dir.iterdir(), key=lambda p: p.name)
|
| 1162 |
-
sub_folders = [name for name in sorted_files if name.suffix != ".csv"]
|
| 1163 |
-
reference = "crawled_from_web"
|
| 1164 |
-
all_rows = self._process_all_prompts(
|
| 1165 |
-
sub_folders, file_dir, reference, PROMPTS_TO_IGNORE
|
| 1166 |
-
)
|
| 1167 |
-
with open(file_path, "w", newline="", encoding="utf8") as final_file:
|
| 1168 |
-
writer = csv.writer(final_file)
|
| 1169 |
-
writer.writerow(CSV_HEADER)
|
| 1170 |
-
for row in all_rows:
|
| 1171 |
-
writer.writerow(row)
|
| 1172 |
-
|
| 1173 |
-
@staticmethod
|
| 1174 |
-
def _process_prompt_folder(args):
|
| 1175 |
-
"""
|
| 1176 |
-
Process one prompt folder and return a list of rows to write to CSV.
|
| 1177 |
-
Args:
|
| 1178 |
-
args (tuple): Contains:
|
| 1179 |
-
- prompt_folder: The folder name (or Path object) for the prompt.
|
| 1180 |
-
- file_dir: The base directory.
|
| 1181 |
-
- reference: Reference info to include in each row.
|
| 1182 |
-
- prompts_to_ignore: A collection of prompts to skip.
|
| 1183 |
-
- instance: An instance of the class that contains the parsing methods.
|
| 1184 |
-
Returns:
|
| 1185 |
-
list: A list of rows (each row is a list) to write to CSV.
|
| 1186 |
-
"""
|
| 1187 |
-
prompt_folder, file_dir, reference, prompts_to_ignore, instance = args
|
| 1188 |
-
rows = []
|
| 1189 |
-
# Skip folders that should be ignored.
|
| 1190 |
-
if prompt_folder in prompts_to_ignore:
|
| 1191 |
-
return rows
|
| 1192 |
-
# Build the full path for the prompt folder.
|
| 1193 |
-
prompt = os.path.join(file_dir, prompt_folder)
|
| 1194 |
-
# List and sort the HTML files.
|
| 1195 |
-
try:
|
| 1196 |
-
sorted_prompts = sorted(os.listdir(prompt))
|
| 1197 |
-
except Exception as e:
|
| 1198 |
-
print(f"Error listing directory {prompt}: {e}")
|
| 1199 |
-
return rows
|
| 1200 |
-
# Process the common "Prompt.html" once.
|
| 1201 |
-
soup_prompt = instance.apply_soup(prompt, "Prompt.html")
|
| 1202 |
-
essay_year = instance._get_essay_year(soup_prompt)
|
| 1203 |
-
essay_supporting_text = "\n".join(instance._get_supporting_text(soup_prompt))
|
| 1204 |
-
essay_prompt = "\n".join(instance._get_prompt(soup_prompt))
|
| 1205 |
-
# Process each essay file except the prompt itself.
|
| 1206 |
-
for essay_filename in sorted_prompts:
|
| 1207 |
-
if essay_filename == "Prompt.html":
|
| 1208 |
-
continue
|
| 1209 |
-
soup_text = instance.apply_soup(prompt, essay_filename)
|
| 1210 |
-
essay_title = instance._clean_title(instance._get_title(soup_text))
|
| 1211 |
-
essay_grades = instance._get_grades(soup_text)
|
| 1212 |
-
essay_text = instance._get_essay(soup_text)
|
| 1213 |
-
general_comment = instance._get_general_comment(soup_text).strip()
|
| 1214 |
-
specific_comment = instance._get_specific_comment(
|
| 1215 |
-
soup_text, general_comment
|
| 1216 |
-
)
|
| 1217 |
-
# Create a row with all the information.
|
| 1218 |
-
row = [
|
| 1219 |
-
essay_filename,
|
| 1220 |
-
prompt_folder
|
| 1221 |
-
if not hasattr(prompt_folder, "name")
|
| 1222 |
-
else prompt_folder.name,
|
| 1223 |
-
essay_prompt,
|
| 1224 |
-
essay_supporting_text,
|
| 1225 |
-
essay_title,
|
| 1226 |
-
essay_text,
|
| 1227 |
-
essay_grades,
|
| 1228 |
-
general_comment,
|
| 1229 |
-
specific_comment,
|
| 1230 |
-
essay_year,
|
| 1231 |
-
reference,
|
| 1232 |
-
]
|
| 1233 |
-
rows.append(row)
|
| 1234 |
-
return rows
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|