tweak script
Browse files- README.md +8 -5
- binding_affinity.py +2 -1
- requirements.txt +2 -0
    	
        README.md
    CHANGED
    
    | @@ -2,13 +2,16 @@ | |
| 2 |  | 
| 3 | 
             
            ### Use the already preprocessed data
         | 
| 4 |  | 
| 5 | 
            -
             | 
| 6 |  | 
| 7 | 
             
            ```
         | 
| 8 | 
             
            from datasets import load_dataset
         | 
| 9 | 
             
            dataset = load_dataset("jglaser/binding_affinity")
         | 
| 10 | 
             
            ```
         | 
| 11 |  | 
|  | |
|  | |
|  | |
| 12 | 
             
            ### Pre-process yourself
         | 
| 13 |  | 
| 14 | 
             
            To manually perform the preprocessing, fownload the data sets from
         | 
| @@ -16,14 +19,14 @@ To manually perform the preprocessing, fownload the data sets from | |
| 16 | 
             
            1. BindingDB
         | 
| 17 |  | 
| 18 | 
             
            In `bindingdb`, download the database as tab separated values
         | 
| 19 | 
            -
             | 
| 20 | 
             
            and extract the zip archive into `bindingdb/data`
         | 
| 21 |  | 
| 22 | 
             
            Run the steps in `bindingdb.ipynb`
         | 
| 23 |  | 
| 24 | 
             
            2. PDBBind-cn
         | 
| 25 |  | 
| 26 | 
            -
            Register for an account at  | 
| 27 | 
             
            email, then login and download 
         | 
| 28 |  | 
| 29 | 
             
            - the Index files (1)
         | 
| @@ -39,7 +42,7 @@ Perform the steps in the notebook `pdbbind.ipynb` | |
| 39 |  | 
| 40 | 
             
            3. BindingMOAD
         | 
| 41 |  | 
| 42 | 
            -
            Go to  | 
| 43 | 
             
            (All of Binding MOAD, Binding Data) and the non-redundant biounits
         | 
| 44 | 
             
            (`nr_bind.zip`). Place and extract those files into `binding_moad`.
         | 
| 45 |  | 
| @@ -50,7 +53,7 @@ Perform the steps in the notebook `moad.ipynb` | |
| 50 |  | 
| 51 | 
             
            4. BioLIP
         | 
| 52 |  | 
| 53 | 
            -
            Download from  | 
| 54 | 
             
            - receptor_nr1.tar.bz2 (Receptor1, Non-redudant set)
         | 
| 55 | 
             
            - ligand_nr.tar.bz2 (Ligands)
         | 
| 56 | 
             
            - BioLiP_nr.tar.bz2 (Annotations)
         | 
|  | |
| 2 |  | 
| 3 | 
             
            ### Use the already preprocessed data
         | 
| 4 |  | 
| 5 | 
            +
            Load the dataset using
         | 
| 6 |  | 
| 7 | 
             
            ```
         | 
| 8 | 
             
            from datasets import load_dataset
         | 
| 9 | 
             
            dataset = load_dataset("jglaser/binding_affinity")
         | 
| 10 | 
             
            ```
         | 
| 11 |  | 
| 12 | 
            +
            The file `data/all.parquet` contains the preprocessed data. To extract it,
         | 
| 13 | 
            +
            you need download and install [git LFS support] https://git-lfs.github.com/].
         | 
| 14 | 
            +
             | 
| 15 | 
             
            ### Pre-process yourself
         | 
| 16 |  | 
| 17 | 
             
            To manually perform the preprocessing, fownload the data sets from
         | 
|  | |
| 19 | 
             
            1. BindingDB
         | 
| 20 |  | 
| 21 | 
             
            In `bindingdb`, download the database as tab separated values
         | 
| 22 | 
            +
            <https://bindingdb.org> > Download > BindingDB_All_2021m4.tsv.zip
         | 
| 23 | 
             
            and extract the zip archive into `bindingdb/data`
         | 
| 24 |  | 
| 25 | 
             
            Run the steps in `bindingdb.ipynb`
         | 
| 26 |  | 
| 27 | 
             
            2. PDBBind-cn
         | 
| 28 |  | 
| 29 | 
            +
            Register for an account at <https://www.pdbbind.org.cn/>, confirm the validation
         | 
| 30 | 
             
            email, then login and download 
         | 
| 31 |  | 
| 32 | 
             
            - the Index files (1)
         | 
|  | |
| 42 |  | 
| 43 | 
             
            3. BindingMOAD
         | 
| 44 |  | 
| 45 | 
            +
            Go to <https://bindingmoad.org> and download the files `every.csv`
         | 
| 46 | 
             
            (All of Binding MOAD, Binding Data) and the non-redundant biounits
         | 
| 47 | 
             
            (`nr_bind.zip`). Place and extract those files into `binding_moad`.
         | 
| 48 |  | 
|  | |
| 53 |  | 
| 54 | 
             
            4. BioLIP
         | 
| 55 |  | 
| 56 | 
            +
            Download from <https://zhanglab.ccmb.med.umich.edu/BioLiP/> the files
         | 
| 57 | 
             
            - receptor_nr1.tar.bz2 (Receptor1, Non-redudant set)
         | 
| 58 | 
             
            - ligand_nr.tar.bz2 (Ligands)
         | 
| 59 | 
             
            - BioLiP_nr.tar.bz2 (Annotations)
         | 
    	
        binding_affinity.py
    CHANGED
    
    | @@ -120,7 +120,8 @@ class BindingAffinity(datasets.ArrowBasedBuilder): | |
| 120 | 
             
                    # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
         | 
| 121 | 
             
                    # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
         | 
| 122 | 
             
                    my_urls = _URLs[self.config.name]
         | 
| 123 | 
            -
                     | 
|  | |
| 124 | 
             
                    return [
         | 
| 125 | 
             
                        datasets.SplitGenerator(
         | 
| 126 | 
             
                            name=datasets.Split.TRAIN,
         | 
|  | |
| 120 | 
             
                    # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
         | 
| 121 | 
             
                    # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
         | 
| 122 | 
             
                    my_urls = _URLs[self.config.name]
         | 
| 123 | 
            +
                    files = dl_manager.download_and_extract(my_urls)
         | 
| 124 | 
            +
                    data_dir = os.path.dirname(files[0])+'/'
         | 
| 125 | 
             
                    return [
         | 
| 126 | 
             
                        datasets.SplitGenerator(
         | 
| 127 | 
             
                            name=datasets.Split.TRAIN,
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -2,3 +2,5 @@ mpi4py | |
| 2 | 
             
            rdkit
         | 
| 3 | 
             
            openbabel
         | 
| 4 | 
             
            pyarrow
         | 
|  | |
|  | 
|  | |
| 2 | 
             
            rdkit
         | 
| 3 | 
             
            openbabel
         | 
| 4 | 
             
            pyarrow
         | 
| 5 | 
            +
            huggingface_hub
         | 
| 6 | 
            +
            datasets
         | 
