ihainan commited on
Commit
9753d13
·
verified ·
1 Parent(s): fec618d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -6
README.md CHANGED
@@ -22,19 +22,54 @@ dataset_info:
22
  - name: test
23
  ---
24
 
25
- # DRCD for Document Retrieval (Simplified Chinese)
26
 
27
- This dataset is a reformatted version of the [Delta Reading Comprehension Dataset (DRCD)](https://github.com/DRCKnowledgeTeam/DRCD), converted to Simplified Chinese and adapted for **document retrieval** tasks.
28
 
29
  ## Summary
30
 
31
- The dataset transforms the original DRCD QA data into a passage retrieval setup commonly used in open-domain question answering. It is suitable for training and evaluating sparse/dense retrievers such as BM25, DPR, or ColBERT.
 
 
32
 
33
  ## Key Features
34
 
35
- - 🔤 **Language**: Simplified Chinese (converted from Traditional)
36
- - 📚 **Domain**: General Wikipedia
37
- - 🔍 **Use Cases**: Passage retrieval, open-domain QA, reranking, dense/sparse IR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  ## License
40
  The dataset is distributed under the Creative Commons Attribution-ShareAlike 3.0 License (CC BY-SA 3.0). You must give appropriate credit and share any derivative works under the same terms.
 
22
  - name: test
23
  ---
24
 
25
+ DRCD for Document Retrieval (Simplified Chinese)
26
 
27
+ This dataset is a reformatted version of the [Delta Reading Comprehension Dataset (DRCD)](https://github.com/DRCKnowledgeTeam/DRCD), converted to Simplified Chinese and adapted for **document-level retrieval** tasks.
28
 
29
  ## Summary
30
 
31
+ The dataset transforms the original DRCD QA data into a **document retrieval** setting, where queries are used to retrieve **entire Wikipedia articles** rather than individual passages. Each document is the full text of a Wikipedia entry.
32
+
33
+ The format is compatible with the data structure used in the **[LongEmbed benchmark](https://github.com/THU-KEG/LongEmbed)** and can be directly plugged into LongEmbed evaluation or training pipelines.
34
 
35
  ## Key Features
36
 
37
+ - 🔤 **Language**: Simplified Chinese (converted from Traditional Chinese)
38
+ - 📚 **Domain**: General domain, from Wikipedia
39
+ - 📄 **Granularity**: **Full-document retrieval**, not passage-level
40
+ - 🔍 **Use Cases**: Long-document retrieval, reranking, open-domain QA pre-retrieval
41
+
42
+ ## File Structure
43
+
44
+ ### `corpus.jsonl`
45
+
46
+ Each line is a single Wikipedia article in Simplified Chinese.
47
+
48
+ ```json
49
+ {"id": "doc_00001", "title": "心理", "text": "心理学是一门研究人类和动物的心理现象、意识和行为的科学。..."}
50
+ ```
51
+
52
+ ### `queries.jsonl`
53
+
54
+ Each line is a user query (from the DRCD question field).
55
+
56
+ {"qid": "6513-4-1", "text": "威廉·冯特为何被誉为“实验心理学之父”?"}
57
+
58
+ ### `qrels.jsonl`
59
+
60
+ Standard relevance judgments mapping queries to relevant documents.
61
+
62
+ ``` json
63
+ {"qid": "6513-4-1", "doc_id": "6513"}
64
+ ```
65
+
66
+ This structure matches [LongEmbed Benchmark](https://github.com/dwzhu-pku/LongEmbed)'s data format, making it suitable for evaluating long-document retrievers out of the box.
67
+
68
+ ## Example: Document Retrieval Using BM25
69
+
70
+ You can quickly try out document-level retrieval using BM25 with the following code snippet:
71
+
72
+ <Placeholder>
73
 
74
  ## License
75
  The dataset is distributed under the Creative Commons Attribution-ShareAlike 3.0 License (CC BY-SA 3.0). You must give appropriate credit and share any derivative works under the same terms.