Datasets:
Update terramesh.py
Browse files- terramesh.py +63 -5
terramesh.py
CHANGED
|
@@ -25,6 +25,7 @@ import fsspec
|
|
| 25 |
import braceexpand
|
| 26 |
import numpy as np
|
| 27 |
import albumentations
|
|
|
|
| 28 |
import webdataset as wds
|
| 29 |
from collections.abc import Callable, Iterable
|
| 30 |
from torch.utils.data._utils.collate import default_collate
|
|
@@ -46,6 +47,31 @@ split_files = {
|
|
| 46 |
}
|
| 47 |
}
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def build_terramesh_dataset(
|
| 51 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
|
@@ -54,6 +80,7 @@ def build_terramesh_dataset(
|
|
| 54 |
urls: str | None = None,
|
| 55 |
batch_size: int = 8,
|
| 56 |
return_metadata: bool = False,
|
|
|
|
| 57 |
*args, **kwargs,
|
| 58 |
):
|
| 59 |
if len(modalities) == 1:
|
|
@@ -65,6 +92,7 @@ def build_terramesh_dataset(
|
|
| 65 |
urls=urls,
|
| 66 |
batch_size=batch_size,
|
| 67 |
return_metadata=return_metadata,
|
|
|
|
| 68 |
*args, **kwargs
|
| 69 |
)
|
| 70 |
return dataset
|
|
@@ -78,6 +106,7 @@ def build_terramesh_dataset(
|
|
| 78 |
urls=urls,
|
| 79 |
batch_size=batch_size,
|
| 80 |
return_metadata=return_metadata,
|
|
|
|
| 81 |
*args, **kwargs,
|
| 82 |
)
|
| 83 |
return dataset
|
|
@@ -136,6 +165,7 @@ def build_wds_dataset(
|
|
| 136 |
urls: str | None = None,
|
| 137 |
batch_size: int = 8,
|
| 138 |
transform: Callable = None,
|
|
|
|
| 139 |
return_metadata: bool = False,
|
| 140 |
*args, **kwargs
|
| 141 |
):
|
|
@@ -153,7 +183,7 @@ def build_wds_dataset(
|
|
| 153 |
[os.path.join(path, split, modality, f) for f in files]
|
| 154 |
)
|
| 155 |
|
| 156 |
-
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard
|
| 157 |
|
| 158 |
# Build dataset
|
| 159 |
dataset = wds.WebDataset(urls, *args, **kwargs)
|
|
@@ -184,6 +214,7 @@ def build_multimodal_dataset(
|
|
| 184 |
urls: str | None = None,
|
| 185 |
batch_size: int = 8,
|
| 186 |
transform: Callable = None,
|
|
|
|
| 187 |
return_metadata: bool = False,
|
| 188 |
*args, **kwargs
|
| 189 |
):
|
|
@@ -205,16 +236,23 @@ def build_multimodal_dataset(
|
|
| 205 |
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
| 206 |
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
| 207 |
|
| 208 |
-
dataset = build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs)
|
| 209 |
return dataset
|
| 210 |
|
| 211 |
|
| 212 |
-
def build_datapipeline(urls, transform, batch_size, return_metadata, *args, **kwargs):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
datapipeline = wds.DataPipeline(
|
| 214 |
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
| 217 |
-
wds.shuffle(
|
| 218 |
(
|
| 219 |
wds.map(zarr_metadata_decoder)
|
| 220 |
if return_metadata
|
|
@@ -420,3 +458,23 @@ class MultimodalTransforms:
|
|
| 420 |
data[modality] = self.non_image_transforms(data[modality])
|
| 421 |
|
| 422 |
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
import braceexpand
|
| 26 |
import numpy as np
|
| 27 |
import albumentations
|
| 28 |
+
import warnings
|
| 29 |
import webdataset as wds
|
| 30 |
from collections.abc import Callable, Iterable
|
| 31 |
from torch.utils.data._utils.collate import default_collate
|
|
|
|
| 47 |
}
|
| 48 |
}
|
| 49 |
|
| 50 |
+
statistics = {
|
| 51 |
+
"mean": {
|
| 52 |
+
"S2L1C": [2357.090, 2137.398, 2018.799, 2082.998, 2295.663, 2854.548, 3122.860, 3040.571, 3306.491, 1473.849,
|
| 53 |
+
506.072, 2472.840, 1838.943],
|
| 54 |
+
"S2L2A": [1390.461, 1503.332, 1718.211, 1853.926, 2199.116, 2779.989, 2987.025, 3083.248, 3132.235, 3162.989,
|
| 55 |
+
2424.902, 1857.665],
|
| 56 |
+
"S2RGB": [110.349, 99.507, 75.843],
|
| 57 |
+
"S1GRD": [-12.577, -20.265],
|
| 58 |
+
"S1RTC": [-10.93, -17.329],
|
| 59 |
+
"NDVI": [0.327],
|
| 60 |
+
"DEM": [651.663],
|
| 61 |
+
},
|
| 62 |
+
"std": {
|
| 63 |
+
"S2L1C": [1673.639, 1722.641, 1602.205, 1873.138, 1866.055, 1779.839, 1776.496, 1724.114, 1771.041, 1079.786,
|
| 64 |
+
512.404, 1340.879, 1172.435],
|
| 65 |
+
"S2L2A": [2131.157, 2163.666, 2059.311, 2152.477, 2105.179, 1912.773, 1842.326, 1893.568, 1775.656, 1814.907,
|
| 66 |
+
1436.282, 1336.155],
|
| 67 |
+
"S2RGB": [69.905, 53.708, 53.378],
|
| 68 |
+
"S1GRD": [5.179, 5.872],
|
| 69 |
+
"S1RTC": [4.391, 4.459],
|
| 70 |
+
"NDVI": [0.322],
|
| 71 |
+
"DEM": [928.168]
|
| 72 |
+
}
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
|
| 76 |
def build_terramesh_dataset(
|
| 77 |
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
|
|
|
| 80 |
urls: str | None = None,
|
| 81 |
batch_size: int = 8,
|
| 82 |
return_metadata: bool = False,
|
| 83 |
+
shuffle: bool = True,
|
| 84 |
*args, **kwargs,
|
| 85 |
):
|
| 86 |
if len(modalities) == 1:
|
|
|
|
| 92 |
urls=urls,
|
| 93 |
batch_size=batch_size,
|
| 94 |
return_metadata=return_metadata,
|
| 95 |
+
shuffle=shuffle,
|
| 96 |
*args, **kwargs
|
| 97 |
)
|
| 98 |
return dataset
|
|
|
|
| 106 |
urls=urls,
|
| 107 |
batch_size=batch_size,
|
| 108 |
return_metadata=return_metadata,
|
| 109 |
+
shuffle=shuffle,
|
| 110 |
*args, **kwargs,
|
| 111 |
)
|
| 112 |
return dataset
|
|
|
|
| 165 |
urls: str | None = None,
|
| 166 |
batch_size: int = 8,
|
| 167 |
transform: Callable = None,
|
| 168 |
+
shuffle: bool = True,
|
| 169 |
return_metadata: bool = False,
|
| 170 |
*args, **kwargs
|
| 171 |
):
|
|
|
|
| 183 |
[os.path.join(path, split, modality, f) for f in files]
|
| 184 |
)
|
| 185 |
|
| 186 |
+
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) * shuffle # Shuffle shard
|
| 187 |
|
| 188 |
# Build dataset
|
| 189 |
dataset = wds.WebDataset(urls, *args, **kwargs)
|
|
|
|
| 214 |
urls: str | None = None,
|
| 215 |
batch_size: int = 8,
|
| 216 |
transform: Callable = None,
|
| 217 |
+
shuffle: bool = True,
|
| 218 |
return_metadata: bool = False,
|
| 219 |
*args, **kwargs
|
| 220 |
):
|
|
|
|
| 236 |
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
| 237 |
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
| 238 |
|
| 239 |
+
dataset = build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *args, **kwargs)
|
| 240 |
return dataset
|
| 241 |
|
| 242 |
|
| 243 |
+
def build_datapipeline(urls, transform, batch_size, shuffle, return_metadata, *args, **kwargs):
|
| 244 |
+
shardshuffle = kwargs.get("shardshuffle", 100) * shuffle # Shuffle shard
|
| 245 |
+
deterministic = kwargs.get("deterministic", False)
|
| 246 |
+
seed = kwargs.get("seed", 0)
|
| 247 |
+
|
| 248 |
datapipeline = wds.DataPipeline(
|
| 249 |
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
| 250 |
+
(
|
| 251 |
+
wds.ResampledShards(urls, deterministic=deterministic, seed=seed)
|
| 252 |
+
if shuffle else wds.SimpleShardList(urls)
|
| 253 |
+
),
|
| 254 |
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
| 255 |
+
wds.shuffle(shardshuffle, seed=seed), # Shuffle with a buffer of given size
|
| 256 |
(
|
| 257 |
wds.map(zarr_metadata_decoder)
|
| 258 |
if return_metadata
|
|
|
|
| 458 |
data[modality] = self.non_image_transforms(data[modality])
|
| 459 |
|
| 460 |
return data
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
class MultimodalNormalize(Callable):
|
| 464 |
+
def __init__(self, mean: dict[str, list[float]], std: dict[str, list[float]]):
|
| 465 |
+
super().__init__()
|
| 466 |
+
self.mean = mean
|
| 467 |
+
self.std = std
|
| 468 |
+
|
| 469 |
+
def __call__(self, **batch):
|
| 470 |
+
for m in self.mean.keys():
|
| 471 |
+
if m not in batch.keys():
|
| 472 |
+
continue
|
| 473 |
+
batch[m] = (batch[m] - self.mean[m]) / self.std[m]
|
| 474 |
+
return batch
|
| 475 |
+
|
| 476 |
+
def add_targets(self, targets):
|
| 477 |
+
"""
|
| 478 |
+
Required by albumentations
|
| 479 |
+
"""
|
| 480 |
+
pass
|