Datasets:
Create terramesh.py
Browse files- terramesh.py +317 -0
terramesh.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2025 IBM Corp.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# This file includes code adapted from the original work by EPFL and Apple Inc.,
|
16 |
+
# licensed under the Apache License, Version 2.0.
|
17 |
+
# Source: https://github.com/apple/ml-4m/
|
18 |
+
|
19 |
+
import os
|
20 |
+
import io
|
21 |
+
import re
|
22 |
+
import zarr
|
23 |
+
import fsspec
|
24 |
+
import itertools
|
25 |
+
import braceexpand
|
26 |
+
import numpy as np
|
27 |
+
import webdataset as wds
|
28 |
+
from collections.abc import Callable, Iterable
|
29 |
+
from sympy.printing.pytorch import torch
|
30 |
+
from torch.utils.data._utils.collate import default_collate
|
31 |
+
from webdataset.handlers import warn_and_continue
|
32 |
+
|
33 |
+
|
34 |
+
# Definition of all shard files in TerraMesh
|
35 |
+
split_files = {
|
36 |
+
"ssl4eos12": {
|
37 |
+
"train": ["ssl4eos12_shard_{000794..000889}.tar"],
|
38 |
+
"val": ["ssl4eos12_shard_000009.tar"],
|
39 |
+
},
|
40 |
+
"majortom": {
|
41 |
+
"train": ["majortom_shard_{000001..000793}.tar"],
|
42 |
+
"val": ["majortom_shard_{000001..000008}.tar"],
|
43 |
+
},
|
44 |
+
"combined": {
|
45 |
+
"train": ["majortom_shard_{000001..000793}.tar", "ssl4eos12_shard_{000794..000889}.tar"],
|
46 |
+
"val": ["majortom_shard_{000001..000008}.tar", "ssl4eos12_shard_000009.tar"],
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
def build_terramesh_dataset(
|
52 |
+
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
53 |
+
modalities=None,
|
54 |
+
split: str = "val",
|
55 |
+
urls: str | None = None,
|
56 |
+
batch_size: int = 8,
|
57 |
+
*args, **kwargs,
|
58 |
+
):
|
59 |
+
|
60 |
+
if len(modalities) == 1:
|
61 |
+
# Build standard WebDataset for single modality
|
62 |
+
dataset = build_wds_dataset(
|
63 |
+
path=path,
|
64 |
+
modality=modalities[0],
|
65 |
+
split=split,
|
66 |
+
urls=urls,
|
67 |
+
batch_size=batch_size,
|
68 |
+
*args, **kwargs
|
69 |
+
)
|
70 |
+
return dataset
|
71 |
+
|
72 |
+
else:
|
73 |
+
# Build custom multi-modal dataset
|
74 |
+
dataset = build_multimodal_dataset(
|
75 |
+
path=path,
|
76 |
+
modalities=modalities,
|
77 |
+
split=split,
|
78 |
+
urls=urls,
|
79 |
+
batch_size=batch_size,
|
80 |
+
*args, **kwargs,
|
81 |
+
)
|
82 |
+
return dataset
|
83 |
+
|
84 |
+
|
85 |
+
def zarr_decoder(key, value):
|
86 |
+
if key == "zarr.zip" or key.endswith(".zarr.zip"):
|
87 |
+
mapper = fsspec.filesystem("zip", fo=io.BytesIO(value), block_size=None).get_mapper("")
|
88 |
+
return zarr.open_consolidated(mapper, mode="r")['bands'][...]
|
89 |
+
|
90 |
+
|
91 |
+
def identity(sample):
|
92 |
+
"""Identity function that does nothing."""
|
93 |
+
return sample
|
94 |
+
|
95 |
+
|
96 |
+
def drop_time_dim(value, dim: int = 0):
|
97 |
+
"""
|
98 |
+
Remove time dimension from data tensors.
|
99 |
+
"""
|
100 |
+
if isinstance(value, np.ndarray) or isinstance(value, torch.Tensor):
|
101 |
+
return value.squeeze(dim)
|
102 |
+
|
103 |
+
elif isinstance(value, dict):
|
104 |
+
for k, v in value.items():
|
105 |
+
if isinstance(v, np.ndarray) or isinstance(v, torch.Tensor):
|
106 |
+
value[k] = v.squeeze(dim)
|
107 |
+
return value
|
108 |
+
|
109 |
+
|
110 |
+
def build_wds_dataset(
|
111 |
+
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
112 |
+
modality: str = "S2L2A",
|
113 |
+
split: str = "val",
|
114 |
+
urls: str | None = None,
|
115 |
+
batch_size: int = 8,
|
116 |
+
transform: Callable = None,
|
117 |
+
*args, **kwargs
|
118 |
+
):
|
119 |
+
if urls is None:
|
120 |
+
# Select split files
|
121 |
+
if modality == "S1GRD":
|
122 |
+
files = split_files["ssl4eos12"][split]
|
123 |
+
elif modality == "S1GRD":
|
124 |
+
files = split_files["majortom"][split]
|
125 |
+
else:
|
126 |
+
files = split_files["combined"][split]
|
127 |
+
|
128 |
+
# Joins majortom and ssl4eos12 shard files with "::" (except for S-1 modalities)
|
129 |
+
urls = "::".join(
|
130 |
+
[os.path.join(path, split, modality, f) for f in files]
|
131 |
+
)
|
132 |
+
|
133 |
+
kwargs["shardshuffle"] = kwargs.get("shardshuffle", 100) # Shuffle shard by default
|
134 |
+
|
135 |
+
# Build dataset
|
136 |
+
dataset = (
|
137 |
+
wds.WebDataset(urls, *args, **kwargs)
|
138 |
+
.decode(zarr_decoder) # Decode byte files
|
139 |
+
.rename(image='zarr.zip')
|
140 |
+
.map_dict(image=drop_time_dim) # Remove temporal dimension
|
141 |
+
)
|
142 |
+
|
143 |
+
if transform is not None:
|
144 |
+
dataset = dataset.map(transform)
|
145 |
+
|
146 |
+
# Create batches
|
147 |
+
if batch_size is not None:
|
148 |
+
dataset = dataset.batched(batch_size)
|
149 |
+
|
150 |
+
return dataset
|
151 |
+
|
152 |
+
|
153 |
+
def combine_datasets(*args):
|
154 |
+
return itertools.chain(*args)
|
155 |
+
|
156 |
+
|
157 |
+
def build_multimodal_dataset(
|
158 |
+
path: str = "https://huggingface.co/datasets/ibm-esa-geospatial/TerraMesh/resolve/main/",
|
159 |
+
modalities: str = "S2L2A",
|
160 |
+
split: str = "val",
|
161 |
+
urls: str | None = None,
|
162 |
+
batch_size: int = 8,
|
163 |
+
transform: Callable = None,
|
164 |
+
*args, **kwargs
|
165 |
+
):
|
166 |
+
if urls is None:
|
167 |
+
# Filter modalities based availability (S1GRD and S1RTC not present in all subsets)
|
168 |
+
def filter_list(lst, value):
|
169 |
+
lst = lst.copy()
|
170 |
+
# helper function to filter modalities
|
171 |
+
if value in lst:
|
172 |
+
lst.remove(value)
|
173 |
+
return lst
|
174 |
+
|
175 |
+
|
176 |
+
majortom_mod = f"[{','.join(filter_list(modalities, 'S1GRD'))}]"
|
177 |
+
ssl4eos12_mod = f"[{','.join(filter_list(modalities, 'S1RTC'))}]"
|
178 |
+
|
179 |
+
# Joins majortom and ssl4eos12 shard files with "::"
|
180 |
+
urls = (os.path.join(path, split, majortom_mod, split_files["majortom"][split][0])
|
181 |
+
+ "::" + os.path.join(path, split, ssl4eos12_mod, split_files["ssl4eos12"][split][0]))
|
182 |
+
|
183 |
+
dataset = build_datapipeline(urls, transform, batch_size, *args, **kwargs)
|
184 |
+
return dataset
|
185 |
+
|
186 |
+
|
187 |
+
def build_datapipeline(urls, transform, batch_size, *args, **kwargs):
|
188 |
+
datapipeline = wds.DataPipeline(
|
189 |
+
# Infinitely sample shards from the shard list with replacement. Each worker is seeded independently.
|
190 |
+
wds.ResampledShards(urls),
|
191 |
+
multi_tarfile_samples, # Extract individual samples from multi-modal tar files
|
192 |
+
wds.shuffle(100), # Shuffle with a buffer of given size
|
193 |
+
wds.decode(zarr_decoder), # Decode from bytes to PIL images, numpy arrays, etc.
|
194 |
+
wds.map(drop_time_dim), # Remove time dimension from tensors
|
195 |
+
wds.map(remove_extensions), # Remove "file extensions" from dictionary keys
|
196 |
+
( # Apply transformation
|
197 |
+
wds.map(transform)
|
198 |
+
if transform is not None
|
199 |
+
else wds.map(identity)
|
200 |
+
),
|
201 |
+
( # Batching
|
202 |
+
wds.batched(batch_size, collation_fn=default_collate, partial=False)
|
203 |
+
if batch_size is not None
|
204 |
+
else wds.map(identity)
|
205 |
+
),
|
206 |
+
)
|
207 |
+
return datapipeline
|
208 |
+
|
209 |
+
|
210 |
+
def extract_modality_names(s):
|
211 |
+
"""
|
212 |
+
Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
|
213 |
+
"""
|
214 |
+
# Regular expression pattern to match anything enclosed in '{' and '}', and comma separated
|
215 |
+
pattern = r"\{([^}]*)\}"
|
216 |
+
match = re.search(pattern, s)
|
217 |
+
return match.group(1).split(",") if match else []
|
218 |
+
|
219 |
+
|
220 |
+
def remove_ext_with_gz(s):
|
221 |
+
"""
|
222 |
+
Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
|
223 |
+
"""
|
224 |
+
if s.endswith(".gz"):
|
225 |
+
s = s.replace(".gz", "")
|
226 |
+
if s.endswith(".zip"):
|
227 |
+
s = s.replace(".zip", "")
|
228 |
+
return os.path.splitext(s)[0]
|
229 |
+
|
230 |
+
|
231 |
+
def remove_extensions(sample):
|
232 |
+
"""
|
233 |
+
Function from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
|
234 |
+
|
235 |
+
In webdatasets, we identify the type of a given modality by adding an extension
|
236 |
+
in the form f"{modality_name}.{modality_extension}", e.g. "rgb.jpg" or "caption.json".
|
237 |
+
This function removes them and returns a dictionary of {f"{modality_name}": modality}.
|
238 |
+
"""
|
239 |
+
return {remove_ext_with_gz(k): v for k, v in sample.items()}
|
240 |
+
|
241 |
+
|
242 |
+
def multi_tarfile_samples(
|
243 |
+
src_iter: Iterable[dict],
|
244 |
+
handler: Callable[[Exception], bool] = warn_and_continue,
|
245 |
+
):
|
246 |
+
"""
|
247 |
+
This function is adapted from https://github.com/apple/ml-4m/blob/main/fourm/data/unified_datasets.py.
|
248 |
+
|
249 |
+
Webdataset does not support splitting up shards by modality, so we need to do this manually.
|
250 |
+
Usually, we would need to save all modalities in the same tar file, e.g. shard_root_train/{00000..12345}.tar,
|
251 |
+
where each shard contains 1000 samples and each sample contains all modalities.
|
252 |
+
This is not flexible when adding new modalities, so we instead save each modality in a separate tar file,
|
253 |
+
e.g. shard_root_train_rgb/{00000..12345}.tar, shard_root_train_caption/{00000..12345}.tar, etc., where each shard contains
|
254 |
+
again 1000 samples, but each sample contains only one modality. All samples in all shards have to be aligned.
|
255 |
+
|
256 |
+
This function takes an iterator over shard URLs, where we use brace expansion to specify multiple tar files per modality.
|
257 |
+
E.g. shard_root_train_[rgb,caption]/00123.tar will be expanded to shard_root_train_rgb/00123.tar and shard_root_train_caption/00123.tar,
|
258 |
+
and the samples from these two tar files will be combined into a single sample.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
src_iter: Iterator over shards that *already brace expanded the shard numbers*,
|
262 |
+
e.g. {'url': 'shard_root_train_[rgb,caption]/00000.tar'}, {'url': 'shard_root_train_[rgb,caption]/00001.tar'}, ...
|
263 |
+
This function will also work when no square braces for multiple modalities are used, e.g. {'url': 'shard_root_train/00000.tar'}, ...
|
264 |
+
It can be a drop-in replacement for wds.tarfile_samples.
|
265 |
+
handler: Function that handles exceptions. If it returns True, the shard is skipped. If it returns False, the function exits.
|
266 |
+
|
267 |
+
Yields:
|
268 |
+
Dictionary of aligned samples from all modalities.
|
269 |
+
"""
|
270 |
+
|
271 |
+
for src in src_iter:
|
272 |
+
|
273 |
+
# Multi tar file URLs use brace expansion with square braces
|
274 |
+
multi_tar_urls = src["url"].translate(str.maketrans("[]", "{}"))
|
275 |
+
modality_names = extract_modality_names(multi_tar_urls)
|
276 |
+
multi_tar_urls = list(braceexpand.braceexpand(multi_tar_urls))
|
277 |
+
|
278 |
+
# Create tar iterators for shards of all modalities
|
279 |
+
tar_iters = [
|
280 |
+
wds.tarfile_samples([{"url": tar_url}]) for tar_url in multi_tar_urls
|
281 |
+
]
|
282 |
+
|
283 |
+
try:
|
284 |
+
# Loop over these iterators in parallel and combine the tar files from different modalities
|
285 |
+
for multi_tar_files in zip(*tar_iters):
|
286 |
+
|
287 |
+
merged_dict = {}
|
288 |
+
merged_dict["__key__"] = multi_tar_files[0]["__key__"]
|
289 |
+
merged_dict["__url__"] = src["url"]
|
290 |
+
|
291 |
+
for modality_name, modality_dict in zip(
|
292 |
+
modality_names, multi_tar_files
|
293 |
+
):
|
294 |
+
_key = modality_dict.pop("__key__")
|
295 |
+
_url = modality_dict.pop("__url__")
|
296 |
+
|
297 |
+
if _key != merged_dict["__key__"]:
|
298 |
+
raise ValueError(
|
299 |
+
f"Divergence detected! Trying to merge keys {_key} of {modality_name} and {merged_dict['__key__']} of merged_dict with modalities {merged_dict.keys()}."
|
300 |
+
)
|
301 |
+
|
302 |
+
for k, v in modality_dict.items():
|
303 |
+
if modality_name is None:
|
304 |
+
merged_dict[k] = v
|
305 |
+
else:
|
306 |
+
merged_dict[f"{modality_name}.{k}"] = v
|
307 |
+
|
308 |
+
yield merged_dict
|
309 |
+
|
310 |
+
except Exception as e:
|
311 |
+
print(e)
|
312 |
+
print(f"Exception occurred while processing {src['url']}.")
|
313 |
+
if handler(e):
|
314 |
+
print("Skipping shard...")
|
315 |
+
continue
|
316 |
+
else:
|
317 |
+
break
|