Upload blog/multi-lora-serving/multi-lora-serving-pattern.ipynb with huggingface_hub
Browse files
blog/multi-lora-serving/multi-lora-serving-pattern.ipynb
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "3b26d339-8e2d-4f7e-8dbf-24c649932de4",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"tags": []
|
| 9 |
+
},
|
| 10 |
+
"outputs": [
|
| 11 |
+
{
|
| 12 |
+
"name": "stdout",
|
| 13 |
+
"output_type": "stream",
|
| 14 |
+
"text": [
|
| 15 |
+
"Note: you may need to restart the kernel to use updated packages.\n"
|
| 16 |
+
]
|
| 17 |
+
}
|
| 18 |
+
],
|
| 19 |
+
"source": [
|
| 20 |
+
"%pip install -q huggingface-hub plotly numpy"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": null,
|
| 26 |
+
"id": "b7aebf99-b8fb-4892-90e2-2261202ac576",
|
| 27 |
+
"metadata": {
|
| 28 |
+
"tags": []
|
| 29 |
+
},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": [
|
| 32 |
+
"import plotly.graph_objects as go\n",
|
| 33 |
+
"import numpy as np\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"# Setting the time scale\n",
|
| 36 |
+
"time = np.arange(0, 24, 0.1) # 24 hours, in increments of 0.1 hour\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"# Generating usage patterns\n",
|
| 39 |
+
"np.random.seed(42)\n",
|
| 40 |
+
"low_usage = (np.random.poisson(70, len(time)) * (np.random.rand(len(time)) < 0.15).astype(int))//2 \n",
|
| 41 |
+
"bursty_usage = np.random.poisson(70, len(time)) * (np.random.rand(len(time)) < 0.15).astype(int)\n",
|
| 42 |
+
"bursty_usage = np.random.poisson(100, len(time)) * (np.random.rand(len(time)) < 0.2).astype(int)//1.4\n",
|
| 43 |
+
"\n",
|
| 44 |
+
"high_volume = np.random.normal(loc=15, scale=2, size=len(time))*1.75\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"# Applying smoothing\n",
|
| 47 |
+
"smooth_low_usage = np.convolve(low_usage, np.ones(50)/50, mode='same')\n",
|
| 48 |
+
"smooth_bursty_usage = np.convolve(bursty_usage, np.ones(50)/50, mode='same')\n",
|
| 49 |
+
"smooth_high_volume = np.convolve(high_volume, np.ones(50)/50, mode='same')\n",
|
| 50 |
+
"total_usage = smooth_low_usage + smooth_bursty_usage + smooth_high_volume\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# Plotting using Plotly\n",
|
| 53 |
+
"fig = go.Figure()\n",
|
| 54 |
+
"fig.add_trace(go.Scatter(x=time, y=smooth_low_usage, mode='lines', name='Low Usage', line=dict(color='#B0C4DE'))) # Light Steel Blue\n",
|
| 55 |
+
"fig.add_trace(go.Scatter(x=time, y=smooth_bursty_usage, mode='lines', name='Bursty Usage', line=dict(color='#FFB6C1'))) # Light Pink\n",
|
| 56 |
+
"fig.add_trace(go.Scatter(x=time, y=smooth_high_volume, mode='lines', name='High Volume', line=dict(color='#98FB98'))) # Pale Green\n",
|
| 57 |
+
"fig.add_trace(go.Scatter(x=time, y=total_usage, mode='lines', name='Total Usage', line=dict(color='#2F4F4F', width=3))) # Dark Slate Gray\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"fig.update_layout(\n",
|
| 60 |
+
" title={\n",
|
| 61 |
+
" 'text': 'Comparison of Usage Models and Total Impact',\n",
|
| 62 |
+
" 'y': 0.9,\n",
|
| 63 |
+
" 'x': 0.5,\n",
|
| 64 |
+
" 'xanchor': 'center',\n",
|
| 65 |
+
" 'yanchor': 'top',\n",
|
| 66 |
+
" 'font': {\n",
|
| 67 |
+
" 'size': 24 # Adjust the font size as needed\n",
|
| 68 |
+
" }\n",
|
| 69 |
+
" },\n",
|
| 70 |
+
" xaxis_title='Time (hours)',\n",
|
| 71 |
+
" yaxis_title='Requests',\n",
|
| 72 |
+
" legend_title='Usage Pattern',\n",
|
| 73 |
+
" xaxis=dict(\n",
|
| 74 |
+
" title_font_size=28, # Larger axis title font size\n",
|
| 75 |
+
" tickfont_size=16 # Larger tick label font size\n",
|
| 76 |
+
" ),\n",
|
| 77 |
+
" yaxis=dict(\n",
|
| 78 |
+
" title_font_size=28, # Larger axis title font size\n",
|
| 79 |
+
" tickfont_size=16 # Larger tick label font size\n",
|
| 80 |
+
" ),\n",
|
| 81 |
+
" legend=dict(\n",
|
| 82 |
+
" x=0.5, # Horizontal position, 0 is left\n",
|
| 83 |
+
" y=-0.1, # Vertical position, negative values to move it down\n",
|
| 84 |
+
" orientation=\"h\", # Horizontal layout\n",
|
| 85 |
+
" xanchor='center', # Anchor the legend at the center\n",
|
| 86 |
+
" yanchor='top' # Anchor the legend at the top\n",
|
| 87 |
+
" ),\n",
|
| 88 |
+
" template='plotly_white'\n",
|
| 89 |
+
")\n",
|
| 90 |
+
"\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"fig.show()\n"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "markdown",
|
| 97 |
+
"id": "fc54b448-2eb3-44cc-8304-983e27138296",
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"source": [
|
| 100 |
+
"# Push Image"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": null,
|
| 106 |
+
"id": "4ef615e2-ab36-43f1-b310-cac8b17d29b7",
|
| 107 |
+
"metadata": {
|
| 108 |
+
"tags": []
|
| 109 |
+
},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"image_out = \"multi-lora-serving-pattern.png\"\n",
|
| 113 |
+
"fig.write_image(image_out, width=1920, height=1080, scale=2)"
|
| 114 |
+
]
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"execution_count": null,
|
| 119 |
+
"id": "13d8ee16-65ec-4a32-84e9-e6b99aab92af",
|
| 120 |
+
"metadata": {
|
| 121 |
+
"tags": []
|
| 122 |
+
},
|
| 123 |
+
"outputs": [],
|
| 124 |
+
"source": [
|
| 125 |
+
"from huggingface_hub import HfApi\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"api = HfApi()\n",
|
| 128 |
+
"api.upload_file(\n",
|
| 129 |
+
" path_or_fileobj=image_out,\n",
|
| 130 |
+
" path_in_repo=f\"blog/multi-lora-serving/{image_out}\",\n",
|
| 131 |
+
" repo_id=\"huggingface/documentation-images\",\n",
|
| 132 |
+
" repo_type=\"dataset\",\n",
|
| 133 |
+
" commit_message=\"Updating title\",\n",
|
| 134 |
+
")"
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"cell_type": "markdown",
|
| 139 |
+
"id": "81e6b86b-c439-4acd-a072-2ef3ab782f90",
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"source": [
|
| 142 |
+
"# Push Notebook"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": null,
|
| 148 |
+
"id": "adca7ec0-25c3-42e3-84b7-f7f9342e4e4f",
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"from huggingface_hub import HfApi\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"api = HfApi()\n",
|
| 155 |
+
"api.upload_file(\n",
|
| 156 |
+
" path_or_fileobj=\"multi-lora-serving-pattern.ipynb\",\n",
|
| 157 |
+
" path_in_repo=\"blog/multi-lora-serving/multi-lora-serving-pattern.ipynb\",\n",
|
| 158 |
+
" repo_id=\"huggingface/documentation-images\",\n",
|
| 159 |
+
" repo_type=\"dataset\",\n",
|
| 160 |
+
")"
|
| 161 |
+
]
|
| 162 |
+
}
|
| 163 |
+
],
|
| 164 |
+
"metadata": {
|
| 165 |
+
"kernelspec": {
|
| 166 |
+
"display_name": "Python 3 (ipykernel)",
|
| 167 |
+
"language": "python",
|
| 168 |
+
"name": "python3"
|
| 169 |
+
},
|
| 170 |
+
"language_info": {
|
| 171 |
+
"codemirror_mode": {
|
| 172 |
+
"name": "ipython",
|
| 173 |
+
"version": 3
|
| 174 |
+
},
|
| 175 |
+
"file_extension": ".py",
|
| 176 |
+
"mimetype": "text/x-python",
|
| 177 |
+
"name": "python",
|
| 178 |
+
"nbconvert_exporter": "python",
|
| 179 |
+
"pygments_lexer": "ipython3",
|
| 180 |
+
"version": "3.10.14"
|
| 181 |
+
}
|
| 182 |
+
},
|
| 183 |
+
"nbformat": 4,
|
| 184 |
+
"nbformat_minor": 5
|
| 185 |
+
}
|