Machine Learning allo stato dell’arte per PyTorch, TensorFlow e JAX.
🤗 Transformers fornisce delle API per scaricare in modo semplice e allenare modelli pre-allenati allo stato dell’arte. L’utilizzo di modelli pre-allenati può ridurre i tuoi costi computazionali, l’impatto ambientale, e farti risparmiare il tempo che utilizzeresti per allenare un modello da zero. I modelli possono essere utilizzati in diverse modalità come ad esempio:
📝 Testo: classificazione del testo, estrazione delle informazioni, rispondere a domande, riassumere, traduzione e generazione del testo in più di 100 lingue.
🖼️ Immagini: classificazione di immagini, rilevazione di oggetti e segmentazione.
🗣️ Audio: riconoscimento vocale e classificazione dell’audio.
🐙 Multimodale: rispondere a domande inerenti dati tabulari, riconoscimento ottico dei caratteri, estrazione di informazioni a partire da documenti scannerizzati, classificazione di video e risposta visuale a domande.
La nostra libreria supporta un’integrazione perfetta tra tre delle librerie per il deep learning più popolari: PyTorch, TensorFlow e JAX. Allena il tuo modello in tre righe di codice in un framework, e caricalo per l’inferenza in un altro.
Ogni architettura di 🤗 Transformers è definita in un modulo Python indipendente così da poter essere personalizzata in modo semplice per la ricerca e gli esperimenti.
Se stai cercando supporto personalizzato dal team di Hugging Face
Contenuti
La documentazione è organizzata in cinque parti:
INIZIARE contiene un tour rapido e le istruzioni di installazione per cominciare ad utilizzare 🤗 Transformers.
TUTORIALS è un buon posto da cui iniziare se per te la nostra libreria è nuova. Questa sezione ti aiuterà ad acquisire le competenze basilari di cui hai bisogno per iniziare ad utilizzare 🤗 Transformers.
GUIDE PRATICHE ti mostrerà come raggiungere obiettivi specifici come fare fine-tuning di un modello pre-allenato per la modellizzazione del linguaggio o come creare una testa per un modello personalizzato.
GUIDE CONCETTUALI fornisce discussioni e spiegazioni dei concetti sottostanti alle idee dietro ai modelli, compiti, e la filosofia di progettazione di 🤗 Transformers.
API descrive ogni classe e funzione, raggruppate in:
CLASSI PRINCIPALI per le classi principali che espongono le API importanti della libreria.
MODELLI per le classi e le funzioni relative ad ogni modello implementato all’interno della libreria.
HELPERS INTERNI per le classi e le funzioni che utilizziamo internamente.
La libreria attualmente contiene implementazioni in JAX, PyTorch e TensorFlow, pesi di modelli pre-allenati, script di utilizzo e strumenti di conversione per i seguenti modelli.
BigBird-RoBERTa (da Google Research) rilasciato con il paper Big Bird: Transformers for Longer Sequences da Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
BigBird-Pegasus (v Google Research) rilasciato con il paper Big Bird: Transformers for Longer Sequences da Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
Blenderbot (da Facebook) rilasciato con il paper Recipes for building an open-domain chatbot da Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
BlenderbotSmall (da Facebook) rilasciato con il paper Recipes for building an open-domain chatbot da Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
CamemBERT (da Inria/Facebook/Sorbonne) rilasciato con il paper CamemBERT: a Tasty French Language Model da Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah e Benoît Sagot.
ConvNeXT (da Facebook AI) rilasciato con il paper A ConvNet for the 2020s da Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
CLIP (da OpenAI) rilasciato con il paper Learning Transferable Visual Models From Natural Language Supervision da Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
DETR (da Facebook) rilasciato con il paper End-to-End Object Detection with Transformers da Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
GPT Neo (da EleutherAI) rilasciato nel repository EleutherAI/gpt-neo da Sid Black, Stella Biderman, Leo Gao, Phil Wang e Connor Leahy.
GPT NeoX (da EleutherAI) rilasciato con il paper GPT-NeoX-20B: An Open-Source Autoregressive Language Model da Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
ImageGPT (da OpenAI) rilasciato con il paper Generative Pretraining from Pixels da Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
M2M100 (da Facebook) rilasciato con il paper Beyond English-Centric Multilingual Machine Translation da Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
MarianMT Modello di machine learning per le traduzioni allenato utilizzando i dati OPUS di Jörg Tiedemann. Il Framework Marian è stato sviluppato dal Microsoft Translator Team.
Perceiver IO (da Deepmind) rilasciato con il paper Perceiver IO: A General Architecture for Structured Inputs & Outputs da Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
RegNet (da META Platforms) rilasciato con il paper Designing Network Design Space da Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
T5v1.1 (da Google AI) rilasciato nel repository google-research/text-to-text-transfer-transformer da Colin Raffel e Noam Shazeer e Adam Roberts e Katherine Lee e Sharan Narang e Michael Matena e Yanqi Zhou e Wei Li e Peter J. Liu.
VAN (dalle Università di Tsinghua e Nankai) rilasciato con il paper Visual Attention Network da Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
XGLM (da Facebook AI) rilasciato con il paper Few-shot Learning with Multilingual Language Models da Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
XLM-RoBERTa (da Facebook AI), rilasciato assieme al paper Unsupervised Cross-lingual Representation Learning at Scale da Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer e Veselin Stoyanov.
La tabella seguente rappresenta il supporto attuale nella libreria per ognuno di questi modelli, si può identificare se questi hanno un Python
tokenizer (chiamato “slow”). Un tokenizer “fast” supportato dalla libreria 🤗 Tokenizers, e se hanno supporto in Jax (via Flax), PyTorch, e/o TensorFlow.