Datasets:
Upload README.md
Browse files
README.md
CHANGED
@@ -1,59 +1,75 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- image-to-text
|
5 |
+
- optical-character-recognition
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
tags:
|
9 |
+
- handwritten-digits
|
10 |
+
- math-education
|
11 |
+
- ocr
|
12 |
+
size_categories:
|
13 |
+
- n<1K
|
14 |
+
---
|
15 |
+
|
16 |
+
# CalcTrainer Dataset 🧮
|
17 |
+
|
18 |
+
Handwritten mathematical answers collected from the [CalcTrainer](https://huggingface.co/spaces/hoololi/CalcTrainer) interactive math training application.
|
19 |
+
|
20 |
+
## Dataset Fields
|
21 |
+
|
22 |
+
### Core Data
|
23 |
+
| Field | Type | Description |
|
24 |
+
|-------|------|-------------|
|
25 |
+
| `handwriting_image` | Image | Handwritten answer image (~100x100px) |
|
26 |
+
| `ocr_prediction` | string | Raw OCR output text |
|
27 |
+
| `ocr_parsed_number` | int32 | Cleaned numeric value from OCR |
|
28 |
+
| `is_correct` | bool | Whether OCR matches correct answer |
|
29 |
+
|
30 |
+
### Mathematical Context
|
31 |
+
| Field | Type | Description |
|
32 |
+
|-------|------|-------------|
|
33 |
+
| `operand_a` | int32 | First number (e.g., 7 in "7 × 3") |
|
34 |
+
| `operand_b` | int32 | Second number (e.g., 3 in "7 × 3") |
|
35 |
+
| `operation` | string | Operation: `+`, `-`, `×`, `÷` |
|
36 |
+
| `correct_answer` | int32 | Expected correct answer |
|
37 |
+
| `difficulty` | string | `Facile` (Easy) or `Difficile` (Hard) |
|
38 |
+
|
39 |
+
### OCR Metrics
|
40 |
+
| Field | Type | Description |
|
41 |
+
|-------|------|-------------|
|
42 |
+
| `ocr_model_name` | string | OCR model used (e.g., "microsoft/trocr-base-handwritten") |
|
43 |
+
| `ocr_processing_time` | float32 | Processing time in seconds |
|
44 |
+
| `hardware` | string | Hardware used for OCR |
|
45 |
+
|
46 |
+
### Session Info
|
47 |
+
| Field | Type | Description |
|
48 |
+
|-------|------|-------------|
|
49 |
+
| `session_id` | string | Unique session identifier |
|
50 |
+
| `question_id` | string | Unique question identifier |
|
51 |
+
| `timestamp` | string | When the session was completed |
|
52 |
+
| `session_duration` | int32 | Session length (30 or 60 seconds) |
|
53 |
+
| `session_accuracy` | float32 | Overall session accuracy percentage |
|
54 |
+
| `session_avg_ocr_time` | float32 | Average OCR time per image in session |
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
```python
|
59 |
+
from datasets import load_dataset
|
60 |
+
|
61 |
+
dataset = load_dataset("hoololi/CalcTrainer_dataset")
|
62 |
+
train_data = dataset["train"]
|
63 |
+
|
64 |
+
# Example: Access first item
|
65 |
+
item = train_data[0]
|
66 |
+
print(f"Math problem: {item['operand_a']} {item['operation']} {item['operand_b']} = {item['correct_answer']}")
|
67 |
+
print(f"OCR predicted: '{item['ocr_prediction']}' → {item['ocr_parsed_number']}")
|
68 |
+
print(f"Correct: {item['is_correct']}")
|
69 |
+
```
|
70 |
+
|
71 |
+
## Data Source
|
72 |
+
|
73 |
+
Real handwriting samples from users solving math problems in the CalcTrainer application. Users write answers on a digital canvas during timed math sessions.
|
74 |
+
|
75 |
+
**Generated from**: [CalcTrainer Interactive Math Training](https://huggingface.co/spaces/hoololi/CalcTrainer) 🧮
|