Share your pipeline or models and schedulers on the Hub with the PushToHubMixin class. This class:
This guide will show you how to upload your files to the Hub with the PushToHubMixin class.
Log in to your Hugging Face account with your access token.
from huggingface_hub import notebook_login
notebook_login()To push a model to the Hub, call push_to_hub() and specify the repository id of the model.
from diffusers import ControlNetModel
controlnet = ControlNetModel(
block_out_channels=(32, 64),
layers_per_block=2,
in_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
cross_attention_dim=32,
conditioning_embedding_out_channels=(16, 32),
)
controlnet.push_to_hub("my-controlnet-model")The push_to_hub() method saves the model’s config.json file and the weights are automatically saved as safetensors files.
Load the model again with from_pretrained().
model = ControlNetModel.from_pretrained("your-namespace/my-controlnet-model")To push a scheduler to the Hub, call push_to_hub() and specify the repository id of the scheduler.
from diffusers import DDIMScheduler
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
scheduler.push_to_hub("my-controlnet-scheduler")The push_to_hub() function saves the scheduler’s scheduler_config.json file to the specified repository.
Load the scheduler again with from_pretrained().
scheduler = DDIMScheduler.from_pretrained("your-namepsace/my-controlnet-scheduler")To push a pipeline to the Hub, initialize the pipeline components with your desired parameters.
from diffusers import (
UNet2DConditionModel,
AutoencoderKL,
DDIMScheduler,
StableDiffusionPipeline,
)
from transformers import CLIPTextModel, CLIPTextConfig, CLIPTokenizer
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")Pass all components to the pipeline and call push_to_hub().
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub("my-pipeline")The push_to_hub() method saves each component to a subfolder in the repository. Load the pipeline again with from_pretrained().
pipeline = StableDiffusionPipeline.from_pretrained("your-namespace/my-pipeline")Set private=True in push_to_hub() to keep a model, scheduler, or pipeline files private.
controlnet.push_to_hub("my-controlnet-model-private", private=True)Private repositories are only visible to you. Other users won’t be able to clone the repository and it won’t appear in search results. Even if a user has the URL to your private repository, they’ll receive a 404 - Sorry, we can't find the page you are looking for. You must be logged in to load a model from a private repository.