--- language: - en pretty_name: test hf dataset tags: - speech license: mit task_categories: - text-classification --- # test_hf_dataset This dataset was created to document how to create an audio dataset and upload it to HuggingFace [see GitHub repo](https://github.com/guynich/test_hf_dataset). Next step: add more documentation. e.g.: * contents of the dataset * context for how the dataset should be used, e.g.: `datasets` package * existing dataset cards, such as the ELI5 dataset card, show common conventions # Example usage of dataset Example of transcription. First install extra dependencies, typically within virtual environment. ``` python3 -m pip install datasets torch transformers ``` Then save and run this Python script. It runs transcription using the Moonshine model by Useful Sensors [link](https://github.com/usefulsensors/moonshine). ``` """Adapted from https://github.com/usefulsensors/moonshine#huggingface-transformers""" from datasets import load_dataset from transformers import AutoProcessor, MoonshineForConditionalGeneration dataset = load_dataset("guynich/test_hf_dataset", split="test") model = MoonshineForConditionalGeneration.from_pretrained( "UsefulSensors/moonshine-tiny" ) processor = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny") for index in range(len(dataset)): audio_array = dataset[index]["audio"]["array"] sampling_rate = dataset[index]["audio"]["sampling_rate"] inputs = processor(audio_array, return_tensors="pt", sampling_rate=sampling_rate) generated_ids = model.generate(**inputs) transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(transcription) ``` Example output. ```console $ python3 main.py The birch canoe slid on the smooth planks, glue the sheets to a dark blue background. $ ```