guynich commited on
Commit
55dc265
·
verified ·
1 Parent(s): ef642af

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +107 -36
README.md CHANGED
@@ -1,38 +1,109 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: file
5
- dtype: string
6
- - name: audio
7
- dtype:
8
- audio:
9
- sampling_rate: 16000
10
- - name: text
11
- dtype: string
12
- - name: speaker_id
13
- dtype: int64
14
- - name: chapter_id
15
- dtype: int64
16
- - name: id
17
- dtype: string
18
- - name: speech
19
- sequence: int64
20
- - name: confidence
21
- sequence: int64
22
- splits:
23
- - name: test.clean
24
- num_bytes: 633124402.5
25
- num_examples: 2620
26
- - name: test.other
27
- num_bytes: 625951259.625
28
- num_examples: 2939
29
- download_size: 1212479246
30
- dataset_size: 1259075662.125
31
- configs:
32
- - config_name: default
33
- data_files:
34
- - split: test.clean
35
- path: data/test.clean-*
36
- - split: test.other
37
- path: data/test.other-*
38
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ pretty_name: librispeech_asr_test_vad
5
+ tags:
6
+ - speech
7
+ license: cc-by-4.0
8
+ task_categories:
9
+ - text-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
+
12
+ # librispeech_asr_test_vad
13
+
14
+ A dataset for testing voice activity detection.
15
+
16
+ This dataset uses test splits [`test.clean`, `test.other`] extracted
17
+ from the
18
+ [`librispeech_asr` dataset](https://huggingface.co/datasets/openslr/librispeech_asr).
19
+
20
+ There are two additional features.
21
+
22
+ 1. Binary classification of speech activity, called `speech`. These binary values [0, 1] were computed from speech audio samples using a dynamic threshold method with background noise estimation and smoothing.
23
+
24
+ 2. Binary classification of confidence, called `confidence`. These binary values [0, 1] are computed as follows. The default confidence is 1. After a `speech` transition from 1 to 0 the confidence is set to 0 up to a maximum of three 0s in `speech` (approximately 0.1 second). This can be used to correct for temporary blips in the `speech` feature and unknown decay in the method under test.
25
+
26
+ The effective chunk size is 512 audio samples for each `speech` feature.
27
+
28
+ # License Information
29
+
30
+ This dataset retains the same license as the source dataset.
31
+
32
+ [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
33
+
34
+ # Example usage of dataset
35
+
36
+ ```console
37
+ import datasets
38
+ import numpy as np
39
+ from sklearn.metrics import roc_auc_score
40
+
41
+ dataset = datasets.load_dataset("guynich/librispeech_asr_test_vad")
42
+
43
+ audio = dataset["test.clean"][0]["audio"]["array"]
44
+ speech = dataset["test.clean"][0]["speech"]
45
+
46
+ # Compute probabilities from method under test (block size 512).
47
+ speech_probs = method_under_test(audio)
48
+
49
+ # Add test code here such as AUC metrics.
50
+ # In practice you would run this across the entire test split.
51
+ roc_auc = roc_auc_score(speech, speech_probs)
52
+
53
+ # Data for plotting
54
+ time_step = 512 / 16000
55
+ audio_x_ticks = np.linspace(0.0, len(audio) / 16000, len(audio))
56
+ speech_x_ticks = np.linspace(0.0, len(speech) * time_step, len(speech))
57
+
58
+ # Data for inspecting masked audio with plotting or playback.
59
+ speech_mask = np.repeat(speech, 512)
60
+ masked_audio = audio[:len(speech_mask)] * speech_mask
61
+ ```
62
+
63
+ The confidence values can be used prior to computing metric
64
+ ```console
65
+ confidence = dataset["test.clean"][0]["confidence"]
66
+
67
+ speech_array = np.array(speech)
68
+ speech_probs_array = np.array(speech_probs)
69
+
70
+ roc_auc_confidence = roc_auc_score(
71
+ speech_array[confidence],
72
+ speech_probs_array[confidence],
73
+ )
74
+ ```
75
+
76
+ Example plots.
77
+
78
+ <img src="assets/test_other_item_02.png" alt="Example from test.other"/>
79
+
80
+ The following example demonstrates short zero blips in the `speech` feature for
81
+ valid short pauses in the talker's speech. However a VAD method under test may
82
+ have slower reaction time. The `confidence` feature provides an optional means
83
+ for reducing the impact of these short zero blips when computing metrics for a
84
+ method under test.
85
+
86
+ <img src="assets/test_clean_item_02.png" alt="Example from test.other"/>
87
+
88
+ # VAD testing
89
+
90
+ The VAD method shall supply a voice activity prediction for audio chunks of
91
+ 512 samples at rate 16000 Hz.
92
+
93
+ Example AUC plots computed for `test.clean` split and Silero-VAD model.
94
+
95
+ <img src="assets/roc_test_clean.png" alt="Example from test.clean with Silero-VAD"/>
96
+
97
+ # Citation Information
98
+
99
+ Derived from this dataset.
100
+ ```
101
+ @inproceedings{panayotov2015librispeech,
102
+ title={Librispeech: an ASR corpus based on public domain audio books},
103
+ author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
104
+ booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
105
+ pages={5206--5210},
106
+ year={2015},
107
+ organization={IEEE}
108
+ }
109
+ ```