guynich commited on
Commit
33233a6
·
verified ·
1 Parent(s): c77a842

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +33 -32
README.md CHANGED
@@ -11,7 +11,7 @@ task_categories:
11
 
12
  # librispeech_asr_test_vad
13
 
14
- A dataset for testing voice activity detection.
15
 
16
  This dataset uses test splits [`test.clean`, `test.other`] extracted
17
  from the
@@ -23,16 +23,28 @@ There are two additional features.
23
 
24
  2. Binary classification of confidence, called `confidence`. These binary values [0, 1] are computed as follows. The default confidence is 1. After a `speech` transition from 1 to 0 the confidence is set to 0 up to a maximum of three 0s in `speech` (approximately 0.1 second). This can be used to correct for temporary blips in the `speech` feature and unknown decay in the method under test.
25
 
26
- The effective chunk size is 512 audio samples for each `speech` feature.
 
27
 
28
- # License Information
29
 
30
- This dataset retains the same license as the source dataset.
31
 
32
- [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
 
 
 
 
 
 
 
 
33
 
34
  # Example usage of dataset
35
 
 
 
 
36
  ```console
37
  import datasets
38
  import numpy as np
@@ -43,24 +55,17 @@ dataset = datasets.load_dataset("guynich/librispeech_asr_test_vad")
43
  audio = dataset["test.clean"][0]["audio"]["array"]
44
  speech = dataset["test.clean"][0]["speech"]
45
 
46
- # Compute probabilities from method under test (block size 512).
47
- speech_probs = method_under_test(audio)
48
 
49
  # Add test code here such as AUC metrics.
50
  # In practice you would run this across the entire test split.
51
  roc_auc = roc_auc_score(speech, speech_probs)
52
-
53
- # Data for plotting
54
- time_step = 512 / 16000
55
- audio_x_ticks = np.linspace(0.0, len(audio) / 16000, len(audio))
56
- speech_x_ticks = np.linspace(0.0, len(speech) * time_step, len(speech))
57
-
58
- # Data for inspecting masked audio with plotting or playback.
59
- speech_mask = np.repeat(speech, 512)
60
- masked_audio = audio[:len(speech_mask)] * speech_mask
61
  ```
62
 
63
- The confidence values can be used prior to computing metric
 
 
64
  ```console
65
  confidence = dataset["test.clean"][0]["confidence"]
66
 
@@ -68,31 +73,27 @@ speech_array = np.array(speech)
68
  speech_probs_array = np.array(speech_probs)
69
 
70
  roc_auc_confidence = roc_auc_score(
71
- speech_array[confidence],
72
- speech_probs_array[confidence],
73
  )
74
  ```
75
 
76
- Example plots.
77
 
78
- <img src="assets/test_other_item_02.png" alt="Example from test.other"/>
79
 
80
- The following example demonstrates short zero blips in the `speech` feature for
81
- valid short pauses in the talker's speech. However a VAD method under test may
82
- have slower reaction time. The `confidence` feature provides an optional means
83
- for reducing the impact of these short zero blips when computing metrics for a
84
- method under test.
85
 
86
- <img src="assets/test_clean_item_02.png" alt="Example from test.other"/>
 
 
87
 
88
- # VAD testing
89
 
90
- The VAD method shall supply a voice activity prediction for audio chunks of
91
- 512 samples at rate 16000 Hz.
92
 
93
- Example AUC plots computed for `test.clean` split and Silero-VAD model.
94
 
95
- <img src="assets/roc_test_clean.png" alt="Example from test.clean with Silero-VAD"/>
96
 
97
  # Citation Information
98
 
 
11
 
12
  # librispeech_asr_test_vad
13
 
14
+ A dataset for testing voice activity detection (VAD).
15
 
16
  This dataset uses test splits [`test.clean`, `test.other`] extracted
17
  from the
 
23
 
24
  2. Binary classification of confidence, called `confidence`. These binary values [0, 1] are computed as follows. The default confidence is 1. After a `speech` transition from 1 to 0 the confidence is set to 0 up to a maximum of three 0s in `speech` (approximately 0.1 second). This can be used to correct for temporary blips in the `speech` feature and unknown decay in the method under test.
25
 
26
+ This test dataset has little background noise thus enables mixing with noise
27
+ samples to assess voice activity detection robustness.
28
 
29
+ ## Example data
30
 
31
+ A plot for an example showing audio samples and the `speech` feature.
32
 
33
+ <img src="assets/test_other_item_02.png" alt="Example from test.other"/>
34
+
35
+ The following example demonstrates short zero blips in the `speech` feature for
36
+ valid short pauses in the talker's speech. However a VAD model under test may
37
+ have slower reaction time. The `confidence` feature provides an optional means
38
+ for reducing the impact of these short zero blips when computing metrics for a
39
+ method under test.
40
+
41
+ <img src="assets/test_clean_item_02.png" alt="Example from test.other"/>
42
 
43
  # Example usage of dataset
44
 
45
+ The model under test must support processing a chunk size of 512 audio samples
46
+ at 16000 Hz generating a prediction for each `speech` feature.
47
+
48
  ```console
49
  import datasets
50
  import numpy as np
 
55
  audio = dataset["test.clean"][0]["audio"]["array"]
56
  speech = dataset["test.clean"][0]["speech"]
57
 
58
+ # Compute probabilities from model under test (block size 512).
59
+ speech_probs = model_under_test(audio)
60
 
61
  # Add test code here such as AUC metrics.
62
  # In practice you would run this across the entire test split.
63
  roc_auc = roc_auc_score(speech, speech_probs)
 
 
 
 
 
 
 
 
 
64
  ```
65
 
66
+ The confidence values can be used to slice the data. This removes 6.8% of the
67
+ entire dataset `speech` features and removing these low confidence values
68
+ increases precision.
69
  ```console
70
  confidence = dataset["test.clean"][0]["confidence"]
71
 
 
73
  speech_probs_array = np.array(speech_probs)
74
 
75
  roc_auc_confidence = roc_auc_score(
76
+ speech_array[np.array(confidence) == 1],
77
+ speech_probs_array[np.array(confidence) == 1],
78
  )
79
  ```
80
 
81
+ # Silero-VAD model testing
82
 
83
+ Example AUC plots computed for Silero-VAD model model with `test.clean` split.
84
 
85
+ <img src="assets/roc_test_clean.png" alt="Example from test.clean with Silero-VAD"/>
 
 
 
 
86
 
87
+ Precision values are increased when data is sliced by confidence values.
88
+
89
+ <img src="assets/roc_test_clean_exclude_low_confidence.png" alt="Example from test.clean with Silero-VAD"/>
90
 
91
+ # License Information
92
 
93
+ This dataset retains the same license as the source dataset.
 
94
 
95
+ [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)
96
 
 
97
 
98
  # Citation Information
99