Datasets:
Tasks:
Text Retrieval
Formats:
parquet
Sub-tasks:
document-retrieval
Size:
100K - 1M
ArXiv:
License:
Delete loading script
Browse files
code_x_glue_tc_nl_code_search_adv.py
DELETED
|
@@ -1,206 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
import os.path
|
| 4 |
-
from typing import List
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
|
| 8 |
-
from .common import TrainValidTestChild
|
| 9 |
-
from .generated_definitions import DEFINITIONS
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
_DESCRIPTION = """The dataset we use comes from CodeSearchNet and we filter the dataset as the following:
|
| 13 |
-
- Remove examples that codes cannot be parsed into an abstract syntax tree.
|
| 14 |
-
- Remove examples that #tokens of documents is < 3 or >256
|
| 15 |
-
- Remove examples that documents contain special tokens (e.g. <img ...> or https:...)
|
| 16 |
-
- Remove examples that documents are not English.
|
| 17 |
-
"""
|
| 18 |
-
_CITATION = """@article{husain2019codesearchnet,
|
| 19 |
-
title={Codesearchnet challenge: Evaluating the state of semantic code search},
|
| 20 |
-
author={Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
|
| 21 |
-
journal={arXiv preprint arXiv:1909.09436},
|
| 22 |
-
year={2019}
|
| 23 |
-
}"""
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class CodeXGlueCtCodeToTextBaseImpl(TrainValidTestChild):
|
| 27 |
-
_DESCRIPTION = _DESCRIPTION
|
| 28 |
-
_CITATION = _CITATION
|
| 29 |
-
|
| 30 |
-
# For each file, each line in the uncompressed file represents one function.
|
| 31 |
-
_FEATURES = {
|
| 32 |
-
"id": datasets.Value("int32"), # Index of the sample
|
| 33 |
-
"repo": datasets.Value("string"), # repo: the owner/repo
|
| 34 |
-
"path": datasets.Value("string"), # path: the full path to the original file
|
| 35 |
-
"func_name": datasets.Value("string"), # func_name: the function or method name
|
| 36 |
-
"original_string": datasets.Value("string"), # original_string: the raw string before tokenization or parsing
|
| 37 |
-
"language": datasets.Value("string"), # language: the programming language name
|
| 38 |
-
"code": datasets.Value("string"), # code/function: the part of the original_string that is code
|
| 39 |
-
"code_tokens": datasets.features.Sequence(
|
| 40 |
-
datasets.Value("string")
|
| 41 |
-
), # code_tokens/function_tokens: tokenized version of code
|
| 42 |
-
"docstring": datasets.Value(
|
| 43 |
-
"string"
|
| 44 |
-
), # docstring: the top-level comment or docstring, if it exists in the original string
|
| 45 |
-
"docstring_tokens": datasets.features.Sequence(
|
| 46 |
-
datasets.Value("string")
|
| 47 |
-
), # docstring_tokens: tokenized version of docstring
|
| 48 |
-
"sha": datasets.Value("string"), # sha of the file
|
| 49 |
-
"url": datasets.Value("string"), # url of the file
|
| 50 |
-
}
|
| 51 |
-
|
| 52 |
-
_SUPERVISED_KEYS = ["docstring", "docstring_tokens"]
|
| 53 |
-
|
| 54 |
-
def generate_urls(self, split_name, language):
|
| 55 |
-
yield "language", f"https://huggingface.co/datasets/code_search_net/resolve/main/data/{language}.zip"
|
| 56 |
-
yield "dataset", "dataset.zip"
|
| 57 |
-
|
| 58 |
-
def get_data_files(self, split_name, file_paths, language):
|
| 59 |
-
language_specific_path = file_paths["language"]
|
| 60 |
-
final_path = os.path.join(language_specific_path, language, "final")
|
| 61 |
-
# Make some cleanup to save space
|
| 62 |
-
for path in os.listdir(final_path):
|
| 63 |
-
if path.endswith(".pkl"):
|
| 64 |
-
os.unlink(path)
|
| 65 |
-
|
| 66 |
-
data_files = []
|
| 67 |
-
for root, dirs, files in os.walk(final_path):
|
| 68 |
-
for file in files:
|
| 69 |
-
temp = os.path.join(root, file)
|
| 70 |
-
if ".jsonl" in temp:
|
| 71 |
-
if split_name in temp:
|
| 72 |
-
data_files.append(temp)
|
| 73 |
-
return data_files
|
| 74 |
-
|
| 75 |
-
def post_process(self, split_name, language, js):
|
| 76 |
-
return js
|
| 77 |
-
|
| 78 |
-
def _generate_examples(self, split_name, file_paths, language):
|
| 79 |
-
import gzip
|
| 80 |
-
|
| 81 |
-
data_set_path = file_paths["dataset"]
|
| 82 |
-
|
| 83 |
-
data_files = self.get_data_files(split_name, file_paths, language)
|
| 84 |
-
|
| 85 |
-
urls = {}
|
| 86 |
-
f1_path_parts = [data_set_path, "dataset", language, f"{split_name}.txt"]
|
| 87 |
-
if self.SINGLE_LANGUAGE:
|
| 88 |
-
del f1_path_parts[2]
|
| 89 |
-
|
| 90 |
-
f1_path = os.path.join(*f1_path_parts)
|
| 91 |
-
with open(f1_path, encoding="utf-8") as f1:
|
| 92 |
-
for line in f1:
|
| 93 |
-
line = line.strip()
|
| 94 |
-
urls[line] = True
|
| 95 |
-
|
| 96 |
-
idx = 0
|
| 97 |
-
for file in data_files:
|
| 98 |
-
if ".gz" in file:
|
| 99 |
-
f = gzip.open(file)
|
| 100 |
-
else:
|
| 101 |
-
f = open(file, encoding="utf-8")
|
| 102 |
-
|
| 103 |
-
for line in f:
|
| 104 |
-
line = line.strip()
|
| 105 |
-
js = json.loads(line)
|
| 106 |
-
if js["url"] in urls:
|
| 107 |
-
js["id"] = idx
|
| 108 |
-
js = self.post_process(split_name, language, js)
|
| 109 |
-
if "partition" in js:
|
| 110 |
-
del js["partition"]
|
| 111 |
-
yield idx, js
|
| 112 |
-
idx += 1
|
| 113 |
-
f.close()
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
class CodeXGlueTcNLCodeSearchAdvImpl(CodeXGlueCtCodeToTextBaseImpl):
|
| 117 |
-
LANGUAGE = "python"
|
| 118 |
-
SINGLE_LANGUAGE = True
|
| 119 |
-
|
| 120 |
-
_FEATURES = {
|
| 121 |
-
"id": datasets.Value("int32"), # Index of the sample
|
| 122 |
-
"repo": datasets.Value("string"), # repo: the owner/repo
|
| 123 |
-
"path": datasets.Value("string"), # path: the full path to the original file
|
| 124 |
-
"func_name": datasets.Value("string"), # func_name: the function or method name
|
| 125 |
-
"original_string": datasets.Value("string"), # original_string: the raw string before tokenization or parsing
|
| 126 |
-
"language": datasets.Value("string"), # language: the programming language
|
| 127 |
-
"code": datasets.Value("string"), # code/function: the part of the original_string that is code
|
| 128 |
-
"code_tokens": datasets.features.Sequence(
|
| 129 |
-
datasets.Value("string")
|
| 130 |
-
), # code_tokens/function_tokens: tokenized version of code
|
| 131 |
-
"docstring": datasets.Value(
|
| 132 |
-
"string"
|
| 133 |
-
), # docstring: the top-level comment or docstring, if it exists in the original string
|
| 134 |
-
"docstring_tokens": datasets.features.Sequence(
|
| 135 |
-
datasets.Value("string")
|
| 136 |
-
), # docstring_tokens: tokenized version of docstring
|
| 137 |
-
"sha": datasets.Value("string"), # sha of the file
|
| 138 |
-
"url": datasets.Value("string"), # url of the file
|
| 139 |
-
"docstring_summary": datasets.Value("string"), # Summary of the docstring
|
| 140 |
-
"parameters": datasets.Value("string"), # parameters of the function
|
| 141 |
-
"return_statement": datasets.Value("string"), # return statement
|
| 142 |
-
"argument_list": datasets.Value("string"), # list of arguments of the function
|
| 143 |
-
"identifier": datasets.Value("string"), # identifier
|
| 144 |
-
"nwo": datasets.Value("string"), # nwo
|
| 145 |
-
"score": datasets.Value("float"), # score for this search
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
def post_process(self, split_name, language, js):
|
| 149 |
-
for suffix in "_tokens", "":
|
| 150 |
-
key = "function" + suffix
|
| 151 |
-
if key in js:
|
| 152 |
-
js["code" + suffix] = js[key]
|
| 153 |
-
del js[key]
|
| 154 |
-
|
| 155 |
-
for key in self._FEATURES:
|
| 156 |
-
if key not in js:
|
| 157 |
-
if key == "score":
|
| 158 |
-
js[key] = -1
|
| 159 |
-
else:
|
| 160 |
-
js[key] = ""
|
| 161 |
-
|
| 162 |
-
return js
|
| 163 |
-
|
| 164 |
-
def generate_urls(self, split_name):
|
| 165 |
-
for e in super().generate_urls(split_name, self.LANGUAGE):
|
| 166 |
-
yield e
|
| 167 |
-
|
| 168 |
-
def get_data_files(self, split_name, file_paths, language):
|
| 169 |
-
if split_name == "train":
|
| 170 |
-
return super().get_data_files(split_name, file_paths, language)
|
| 171 |
-
else:
|
| 172 |
-
data_set_path = file_paths["dataset"]
|
| 173 |
-
data_file = os.path.join(data_set_path, "dataset", "test_code.jsonl")
|
| 174 |
-
return [data_file]
|
| 175 |
-
|
| 176 |
-
def _generate_examples(self, split_name, file_paths):
|
| 177 |
-
for e in super()._generate_examples(split_name, file_paths, self.LANGUAGE):
|
| 178 |
-
yield e
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
CLASS_MAPPING = {
|
| 182 |
-
"CodeXGlueTcNLCodeSearchAdv": CodeXGlueTcNLCodeSearchAdvImpl,
|
| 183 |
-
}
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
class CodeXGlueTcNlCodeSearchAdv(datasets.GeneratorBasedBuilder):
|
| 187 |
-
BUILDER_CONFIG_CLASS = datasets.BuilderConfig
|
| 188 |
-
BUILDER_CONFIGS = [
|
| 189 |
-
datasets.BuilderConfig(name=name, description=info["description"]) for name, info in DEFINITIONS.items()
|
| 190 |
-
]
|
| 191 |
-
|
| 192 |
-
def _info(self):
|
| 193 |
-
name = self.config.name
|
| 194 |
-
info = DEFINITIONS[name]
|
| 195 |
-
if info["class_name"] in CLASS_MAPPING:
|
| 196 |
-
self.child = CLASS_MAPPING[info["class_name"]](info)
|
| 197 |
-
else:
|
| 198 |
-
raise RuntimeError(f"Unknown python class for dataset configuration {name}")
|
| 199 |
-
ret = self.child._info()
|
| 200 |
-
return ret
|
| 201 |
-
|
| 202 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 203 |
-
return self.child._split_generators(dl_manager=dl_manager)
|
| 204 |
-
|
| 205 |
-
def _generate_examples(self, split_name, file_paths):
|
| 206 |
-
return self.child._generate_examples(split_name, file_paths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|