|
"""TODO(wiki_split): Add a description here.""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{BothaEtAl2018, |
|
title = {{Learning To Split and Rephrase From Wikipedia Edit History}}, |
|
author = {Botha, Jan A and Faruqui, Manaal and Alex, John and Baldridge, Jason and Das, Dipanjan}, |
|
booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}, |
|
pages = {to appear}, |
|
note = {arXiv preprint arXiv:1808.09468}, |
|
year = {2018} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
One million English sentences, each split into two sentences that together preserve the original meaning, extracted from Wikipedia |
|
Google's WikiSplit dataset was constructed automatically from the publicly available Wikipedia revision history. Although |
|
the dataset contains some inherent noise, it can serve as valuable training data for models that split or merge sentences. |
|
""" |
|
|
|
_URL = "https://github.com/google-research-datasets/wiki-split/raw/master/" |
|
_URLS = { |
|
"train": _URL + "train.tsv.zip", |
|
"test": _URL + "test.tsv", |
|
"dev": _URL + "validation.tsv", |
|
} |
|
|
|
|
|
class WikiSplit(datasets.GeneratorBasedBuilder): |
|
"""TODO(wiki_split): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"complex_sentence": datasets.Value("string"), |
|
"simple_sentence_1": datasets.Value("string"), |
|
"simple_sentence_2": datasets.Value("string"), |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://dataset-homepage/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
urls_to_download = _URLS |
|
dl_dir = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(dl_dir["train"], "train.tsv")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": dl_dir["test"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": dl_dir["dev"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
data = csv.reader(f, delimiter="\t") |
|
|
|
|
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"complex_sentence": row[0], |
|
"simple_sentence_1": row[1].split("<::::>")[0], |
|
"simple_sentence_2": row[1].split("<::::>")[1], |
|
} |
|
|