| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import json | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CITATION = """\ | 
					
					
						
						| 
							 | 
						@inproceedings{cmu_dog_emnlp18, | 
					
					
						
						| 
							 | 
						    title={A Dataset for Document Grounded Conversations}, | 
					
					
						
						| 
							 | 
						    author={Zhou, Kangyan and Prabhumoye, Shrimai and Black, Alan W}, | 
					
					
						
						| 
							 | 
						    year={2018}, | 
					
					
						
						| 
							 | 
						    booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						@inproceedings{khanuja-etal-2020-gluecos, | 
					
					
						
						| 
							 | 
						    title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}", | 
					
					
						
						| 
							 | 
						    author = "Khanuja, Simran  and | 
					
					
						
						| 
							 | 
						      Dandapat, Sandipan  and | 
					
					
						
						| 
							 | 
						      Srinivasan, Anirudh  and | 
					
					
						
						| 
							 | 
						      Sitaram, Sunayana  and | 
					
					
						
						| 
							 | 
						      Choudhury, Monojit", | 
					
					
						
						| 
							 | 
						    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", | 
					
					
						
						| 
							 | 
						    month = jul, | 
					
					
						
						| 
							 | 
						    year = "2020", | 
					
					
						
						| 
							 | 
						    address = "Online", | 
					
					
						
						| 
							 | 
						    publisher = "Association for Computational Linguistics", | 
					
					
						
						| 
							 | 
						    url = "https://www.aclweb.org/anthology/2020.acl-main.329", | 
					
					
						
						| 
							 | 
						    pages = "3575--3585" | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_DESCRIPTION = """\ | 
					
					
						
						| 
							 | 
						This is a collection of text conversations in Hinglish (code mixing between Hindi-English) and their corresponding English only versions. Can be used for Translating between the two. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_HOMEPAGE = "http://festvox.org/cedar/data/notyet/" | 
					
					
						
						| 
							 | 
						_URL_HINGLISH = "http://festvox.org/cedar/data/notyet/CMUHinglishDoG.zip" | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						_URL_ENGLISH = "data-english.zip" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class CMUHinglishDoG(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    """Load the CMU Hinglish DoG Data for MT""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        features = datasets.Features( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "date": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "docIdx": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						                "translation": datasets.Translation(languages=["en", "hi_en"]), | 
					
					
						
						| 
							 | 
						                "uid": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "utcTimestamp": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "rating": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						                "status": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						                "uid1LogInTime": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "uid1LogOutTime": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "uid1response": { | 
					
					
						
						| 
							 | 
						                    "response": datasets.Sequence(datasets.Value("int64")), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						                "uid2response": { | 
					
					
						
						| 
							 | 
						                    "response": datasets.Sequence(datasets.Value("int64")), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						                "user2_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "whoSawDoc": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                "wikiDocumentIdx": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						            features=features, | 
					
					
						
						| 
							 | 
						            supervised_keys=None, | 
					
					
						
						| 
							 | 
						            homepage=_HOMEPAGE, | 
					
					
						
						| 
							 | 
						            citation=_CITATION, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						        """The linking part between Hinglish data and English data is inspired from the implementation in GLUECoS. | 
					
					
						
						| 
							 | 
						        Refer here for the original script https://github.com/microsoft/GLUECoS/blob/7fdc51653e37a32aee17505c47b7d1da364fa77e/Data/Preprocess_Scripts/preprocess_mt_en_hi.py""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        eng_path = dl_manager.download_and_extract(_URL_ENGLISH) | 
					
					
						
						| 
							 | 
						        data_dir_en = os.path.join(eng_path, "Conversations") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hi_en_path = dl_manager.download_and_extract(_URL_HINGLISH) | 
					
					
						
						| 
							 | 
						        data_dir_hi_en = os.path.join(hi_en_path, "CMUHinglishDoG", "Conversations_Hinglish") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hi_en_dirs = { | 
					
					
						
						| 
							 | 
						            "train": os.path.join(data_dir_hi_en, "train"), | 
					
					
						
						| 
							 | 
						            "valid": os.path.join(data_dir_hi_en, "valid"), | 
					
					
						
						| 
							 | 
						            "test": os.path.join(data_dir_hi_en, "test"), | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return [ | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TRAIN, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "hi_en_dir": hi_en_dirs["train"], | 
					
					
						
						| 
							 | 
						                    "data_dir_en": data_dir_en, | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TEST, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "hi_en_dir": hi_en_dirs["test"], | 
					
					
						
						| 
							 | 
						                    "data_dir_en": data_dir_en, | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.VALIDATION, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "hi_en_dir": hi_en_dirs["valid"], | 
					
					
						
						| 
							 | 
						                    "data_dir_en": data_dir_en, | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, hi_en_dir, data_dir_en): | 
					
					
						
						| 
							 | 
						        """Yields examples.""" | 
					
					
						
						| 
							 | 
						        english_files_train = os.listdir(os.path.join(data_dir_en, "train")) | 
					
					
						
						| 
							 | 
						        english_files_val = os.listdir(os.path.join(data_dir_en, "valid")) | 
					
					
						
						| 
							 | 
						        english_files_test = os.listdir(os.path.join(data_dir_en, "test")) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hinglish_files = os.listdir(hi_en_dir) | 
					
					
						
						| 
							 | 
						        key = 0 | 
					
					
						
						| 
							 | 
						        for f in hinglish_files: | 
					
					
						
						| 
							 | 
						            en_file_path = f.split(".json")[0] + ".json" | 
					
					
						
						| 
							 | 
						            found = True | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if en_file_path in english_files_train: | 
					
					
						
						| 
							 | 
						                en = json.load(open(os.path.join(os.path.join(data_dir_en, "train"), en_file_path))) | 
					
					
						
						| 
							 | 
						            elif en_file_path in english_files_val: | 
					
					
						
						| 
							 | 
						                en = json.load(open(os.path.join(os.path.join(data_dir_en, "valid"), en_file_path))) | 
					
					
						
						| 
							 | 
						            elif en_file_path in english_files_test: | 
					
					
						
						| 
							 | 
						                en = json.load(open(os.path.join(os.path.join(data_dir_en, "test"), en_file_path))) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                found = False | 
					
					
						
						| 
							 | 
						            if found: | 
					
					
						
						| 
							 | 
						                hi_en = json.load(open(os.path.join(hi_en_dir, f))) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                assert len(en["history"]) == len(hi_en["history"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                for x, y in zip(en["history"], hi_en["history"]): | 
					
					
						
						| 
							 | 
						                    assert x["docIdx"] == y["docIdx"] | 
					
					
						
						| 
							 | 
						                    assert x["uid"] == y["uid"] | 
					
					
						
						| 
							 | 
						                    assert x["utcTimestamp"] == y["utcTimestamp"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    x["text"] = re.sub("\t|\n", " ", x["text"]) | 
					
					
						
						| 
							 | 
						                    y["text"] = re.sub("\t|\n", " ", y["text"]) | 
					
					
						
						| 
							 | 
						                    line = { | 
					
					
						
						| 
							 | 
						                        "date": hi_en["date"], | 
					
					
						
						| 
							 | 
						                        "uid": x["uid"], | 
					
					
						
						| 
							 | 
						                        "docIdx": x["docIdx"], | 
					
					
						
						| 
							 | 
						                        "utcTimestamp": x["utcTimestamp"], | 
					
					
						
						| 
							 | 
						                        "translation": {"hi_en": y["text"], "en": x["text"]}, | 
					
					
						
						| 
							 | 
						                        "rating": hi_en["rating"], | 
					
					
						
						| 
							 | 
						                        "status": hi_en["status"], | 
					
					
						
						| 
							 | 
						                        "uid1LogOutTime": hi_en.get("uid1LogOutTime"), | 
					
					
						
						| 
							 | 
						                        "uid1LogInTime": hi_en["uid1LogInTime"], | 
					
					
						
						| 
							 | 
						                        "uid1response": { | 
					
					
						
						| 
							 | 
						                            "response": hi_en["uid1response"]["response"] if "uid1response" in hi_en else [], | 
					
					
						
						| 
							 | 
						                            "type": hi_en["uid1response"]["type"] if "uid1response" in hi_en else None, | 
					
					
						
						| 
							 | 
						                        }, | 
					
					
						
						| 
							 | 
						                        "uid2response": { | 
					
					
						
						| 
							 | 
						                            "response": hi_en["uid2response"]["response"] if "uid2response" in hi_en else [], | 
					
					
						
						| 
							 | 
						                            "type": hi_en["uid2response"]["type"] if "uid2response" in hi_en else None, | 
					
					
						
						| 
							 | 
						                        }, | 
					
					
						
						| 
							 | 
						                        "user2_id": hi_en["user2_id"], | 
					
					
						
						| 
							 | 
						                        "whoSawDoc": hi_en["whoSawDoc"], | 
					
					
						
						| 
							 | 
						                        "wikiDocumentIdx": hi_en["wikiDocumentIdx"], | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    yield key, line | 
					
					
						
						| 
							 | 
						                    key += 1 | 
					
					
						
						| 
							 | 
						
 |