--- license: cdla-permissive-2.0 task_categories: - image-text-to-text tags: - ocr - chart pretty_name: SynthChartNet size_categories: - 1M Chart Example **SynthChartNet** is a multimodal dataset designed for training the **SmolDocling** model on chart-based document understanding tasks. It consists of **1,981,157** synthetically generated samples, where each image depicts a chart (e.g., line chart, bar chart, pie chart, stacked bar chart), and the associated ground truth is given in **OTSL** format. Charts were rendered at 120 DPI using a diverse set of visualization libraries: **Matplotlib**, **Seaborn**, and **Pyecharts**, enabling visual variability in layout, style, and color schemes. --- ## Dataset Statistics * **Total samples**: 1,981,157 * **Training set**: 1,981,157 * **Modalities**: Image, Text (OTSL format) * **Chart Types**: Line, Bar, Pie, Stacked Bar * **Rendering Engines**: Matplotlib, Seaborn, Pyecharts --- ## Data Format Each dataset entry is structured as follows: ```json { "images": [PIL Image], "texts": [ { "assistant": "<_Chart_>OTSL_REPRESENTATION", "source": "SynthChartNet", "user": "" } ] } ``` --- ## Intended Use * Training multimodal models for **chart understanding**, specifically: * Chart parsing and transcription to structured formats (OTSL) --- ## Citation If you use SynthChartNet, please cite: ```bibtex @article{nassar2025smoldocling, title={SmolDocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion}, author={Nassar, Ahmed and Marafioti, Andres and Omenetti, Matteo and Lysak, Maksym and Livathinos, Nikolaos and Auer, Christoph and Morin, Lucas and de Lima, Rafael Teixeira and Kim, Yusik and Gurbuz, A Said and others}, journal={arXiv preprint arXiv:2503.11576}, year={2025} } @inproceedings{lysak2023optimized, title={Optimized table tokenization for table structure recognition}, author={Lysak, Maksym and Nassar, Ahmed and Livathinos, Nikolaos and Auer, Christoph and Staar, Peter}, booktitle={International Conference on Document Analysis and Recognition}, pages={37--50}, year={2023}, organization={Springer} } ```