Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
Commit
·
78fc817
1
Parent(s):
dd75f49
Remove download_custom
Browse files- README.md +5 -5
- data/test_files.txt +100 -0
- data/train_files.txt +0 -0
- data/validation_files.txt +50 -0
- pg19.py +31 -71
README.md
CHANGED
|
@@ -31,16 +31,16 @@ dataset_info:
|
|
| 31 |
dtype: string
|
| 32 |
splits:
|
| 33 |
- name: train
|
| 34 |
-
num_bytes:
|
| 35 |
num_examples: 28602
|
| 36 |
- name: validation
|
| 37 |
-
num_bytes:
|
| 38 |
num_examples: 50
|
| 39 |
- name: test
|
| 40 |
-
num_bytes:
|
| 41 |
num_examples: 100
|
| 42 |
-
download_size:
|
| 43 |
-
dataset_size:
|
| 44 |
---
|
| 45 |
|
| 46 |
# Dataset Card for "pg19"
|
|
|
|
| 31 |
dtype: string
|
| 32 |
splits:
|
| 33 |
- name: train
|
| 34 |
+
num_bytes: 11453688452
|
| 35 |
num_examples: 28602
|
| 36 |
- name: validation
|
| 37 |
+
num_bytes: 17402295
|
| 38 |
num_examples: 50
|
| 39 |
- name: test
|
| 40 |
+
num_bytes: 40482852
|
| 41 |
num_examples: 100
|
| 42 |
+
download_size: 11740397875
|
| 43 |
+
dataset_size: 11511573599
|
| 44 |
---
|
| 45 |
|
| 46 |
# Dataset Card for "pg19"
|
data/test_files.txt
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
test/10146.txt
|
| 2 |
+
test/10321.txt
|
| 3 |
+
test/10356.txt
|
| 4 |
+
test/10762.txt
|
| 5 |
+
test/12204.txt
|
| 6 |
+
test/15562.txt
|
| 7 |
+
test/22424.txt
|
| 8 |
+
test/24553.txt
|
| 9 |
+
test/2544.txt
|
| 10 |
+
test/25646.txt
|
| 11 |
+
test/25773.txt
|
| 12 |
+
test/25830.txt
|
| 13 |
+
test/26183.txt
|
| 14 |
+
test/26239.txt
|
| 15 |
+
test/26493.txt
|
| 16 |
+
test/26618.txt
|
| 17 |
+
test/27454.txt
|
| 18 |
+
test/28444.txt
|
| 19 |
+
test/28988.txt
|
| 20 |
+
test/29594.txt
|
| 21 |
+
test/29973.txt
|
| 22 |
+
test/30312.txt
|
| 23 |
+
test/30752.txt
|
| 24 |
+
test/30754.txt
|
| 25 |
+
test/30909.txt
|
| 26 |
+
test/30981.txt
|
| 27 |
+
test/31065.txt
|
| 28 |
+
test/3129.txt
|
| 29 |
+
test/31974.txt
|
| 30 |
+
test/3247.txt
|
| 31 |
+
test/32761.txt
|
| 32 |
+
test/3340.txt
|
| 33 |
+
test/33426.txt
|
| 34 |
+
test/33756.txt
|
| 35 |
+
test/34467.txt
|
| 36 |
+
test/35205.txt
|
| 37 |
+
test/35246.txt
|
| 38 |
+
test/3608.txt
|
| 39 |
+
test/36256.txt
|
| 40 |
+
test/37006.txt
|
| 41 |
+
test/37328.txt
|
| 42 |
+
test/37403.txt
|
| 43 |
+
test/37443.txt
|
| 44 |
+
test/3754.txt
|
| 45 |
+
test/37702.txt
|
| 46 |
+
test/38106.txt
|
| 47 |
+
test/3890.txt
|
| 48 |
+
test/38929.txt
|
| 49 |
+
test/38955.txt
|
| 50 |
+
test/4047.txt
|
| 51 |
+
test/40579.txt
|
| 52 |
+
test/40700.txt
|
| 53 |
+
test/4128.txt
|
| 54 |
+
test/41603.txt
|
| 55 |
+
test/41607.txt
|
| 56 |
+
test/42081.txt
|
| 57 |
+
test/42655.txt
|
| 58 |
+
test/43536.txt
|
| 59 |
+
test/43845.txt
|
| 60 |
+
test/44099.txt
|
| 61 |
+
test/44557.txt
|
| 62 |
+
test/45313.txt
|
| 63 |
+
test/45881.txt
|
| 64 |
+
test/45888.txt
|
| 65 |
+
test/46915.txt
|
| 66 |
+
test/47068.txt
|
| 67 |
+
test/47558.txt
|
| 68 |
+
test/47581.txt
|
| 69 |
+
test/47676.txt
|
| 70 |
+
test/48693.txt
|
| 71 |
+
test/49078.txt
|
| 72 |
+
test/49529.txt
|
| 73 |
+
test/49596.txt
|
| 74 |
+
test/50287.txt
|
| 75 |
+
test/51410.txt
|
| 76 |
+
test/53345.txt
|
| 77 |
+
test/5396.txt
|
| 78 |
+
test/54537.txt
|
| 79 |
+
test/54624.txt
|
| 80 |
+
test/55339.txt
|
| 81 |
+
test/55871.txt
|
| 82 |
+
test/56410.txt
|
| 83 |
+
test/5734.txt
|
| 84 |
+
test/5770.txt
|
| 85 |
+
test/57791.txt
|
| 86 |
+
test/58473.txt
|
| 87 |
+
test/58553.txt
|
| 88 |
+
test/58598.txt
|
| 89 |
+
test/5956.txt
|
| 90 |
+
test/5962.txt
|
| 91 |
+
test/6412.txt
|
| 92 |
+
test/6941.txt
|
| 93 |
+
test/7412.txt
|
| 94 |
+
test/7987.txt
|
| 95 |
+
test/8197.txt
|
| 96 |
+
test/8559.txt
|
| 97 |
+
test/860.txt
|
| 98 |
+
test/8788.txt
|
| 99 |
+
test/9315.txt
|
| 100 |
+
test/9931.txt
|
data/train_files.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
data/validation_files.txt
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
validation/1022.txt
|
| 2 |
+
validation/11155.txt
|
| 3 |
+
validation/13089.txt
|
| 4 |
+
validation/16959.txt
|
| 5 |
+
validation/1925.txt
|
| 6 |
+
validation/2383.txt
|
| 7 |
+
validation/23956.txt
|
| 8 |
+
validation/24360.txt
|
| 9 |
+
validation/25066.txt
|
| 10 |
+
validation/27688.txt
|
| 11 |
+
validation/28213.txt
|
| 12 |
+
validation/28776.txt
|
| 13 |
+
validation/29981.txt
|
| 14 |
+
validation/32629.txt
|
| 15 |
+
validation/34016.txt
|
| 16 |
+
validation/34056.txt
|
| 17 |
+
validation/34100.txt
|
| 18 |
+
validation/356.txt
|
| 19 |
+
validation/35816.txt
|
| 20 |
+
validation/36402.txt
|
| 21 |
+
validation/37833.txt
|
| 22 |
+
validation/38214.txt
|
| 23 |
+
validation/38403.txt
|
| 24 |
+
validation/4024.txt
|
| 25 |
+
validation/41074.txt
|
| 26 |
+
validation/42067.txt
|
| 27 |
+
validation/42142.txt
|
| 28 |
+
validation/42306.txt
|
| 29 |
+
validation/43423.txt
|
| 30 |
+
validation/44896.txt
|
| 31 |
+
validation/44912.txt
|
| 32 |
+
validation/4533.txt
|
| 33 |
+
validation/48089.txt
|
| 34 |
+
validation/48461.txt
|
| 35 |
+
validation/48677.txt
|
| 36 |
+
validation/49091.txt
|
| 37 |
+
validation/50355.txt
|
| 38 |
+
validation/51859.txt
|
| 39 |
+
validation/5195.txt
|
| 40 |
+
validation/5321.txt
|
| 41 |
+
validation/53682.txt
|
| 42 |
+
validation/54098.txt
|
| 43 |
+
validation/555.txt
|
| 44 |
+
validation/55658.txt
|
| 45 |
+
validation/56719.txt
|
| 46 |
+
validation/57843.txt
|
| 47 |
+
validation/58093.txt
|
| 48 |
+
validation/6404.txt
|
| 49 |
+
validation/7510.txt
|
| 50 |
+
validation/8545.txt
|
pg19.py
CHANGED
|
@@ -2,11 +2,7 @@
|
|
| 2 |
|
| 3 |
|
| 4 |
import csv
|
| 5 |
-
import json
|
| 6 |
import os
|
| 7 |
-
from operator import itemgetter
|
| 8 |
-
|
| 9 |
-
import requests
|
| 10 |
|
| 11 |
import datasets
|
| 12 |
|
|
@@ -38,9 +34,9 @@ To compare models we propose to continue measuring the word-level perplexity, by
|
|
| 38 |
One could use this dataset for benchmarking long-range language models, or use it to pre-train for other natural language processing tasks which require long-range reasoning, such as LAMBADA or NarrativeQA. We would not recommend using this dataset to train a general-purpose language model, e.g. for applications to a production-system dialogue agent, due to the dated linguistic style of old texts and the inherent biases present in historical writing.
|
| 39 |
"""
|
| 40 |
|
| 41 |
-
_ASSET_ROOT_URL = "https://storage.googleapis.com/deepmind-gutenberg/"
|
| 42 |
-
_STORAGE_API_ROOT_URL = "https://storage.googleapis.com/storage/v1/b/deepmind-gutenberg/o/"
|
| 43 |
|
|
|
|
|
|
|
| 44 |
_METADATA_URL = _ASSET_ROOT_URL + "metadata.csv"
|
| 45 |
|
| 46 |
|
|
@@ -80,97 +76,61 @@ class Pg19(datasets.GeneratorBasedBuilder):
|
|
| 80 |
|
| 81 |
def _split_generators(self, dl_manager):
|
| 82 |
"""Returns SplitGenerators."""
|
| 83 |
-
# TODO(pg19): Downloads the data and defines the splits
|
| 84 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 85 |
-
# download and extract URLs
|
| 86 |
-
|
| 87 |
-
def fetch_all_pages(url, prefix):
|
| 88 |
-
pageToken = None
|
| 89 |
-
payload = {"prefix": prefix}
|
| 90 |
-
|
| 91 |
-
while True:
|
| 92 |
-
resp = requests.get(url, params={"pageToken": pageToken, **payload})
|
| 93 |
-
json = resp.json()
|
| 94 |
-
yield json
|
| 95 |
-
|
| 96 |
-
pageToken = json.pop("nextPageToken", None)
|
| 97 |
-
if pageToken is None:
|
| 98 |
-
break
|
| 99 |
-
|
| 100 |
-
def get_filename(path):
|
| 101 |
-
return os.path.splitext(os.path.basename(path))[0]
|
| 102 |
-
|
| 103 |
-
def download_listdir(url, local_filepath):
|
| 104 |
-
root_url, prefix = url.rsplit("/", 1)
|
| 105 |
-
pages = fetch_all_pages(root_url, prefix + "/")
|
| 106 |
-
items = flat_map(itemgetter("items"), pages)
|
| 107 |
-
names = sorted(map(itemgetter("name"), items))
|
| 108 |
-
|
| 109 |
-
with open(local_filepath, "w") as f:
|
| 110 |
-
f.write(json.dumps(names))
|
| 111 |
-
return local_filepath
|
| 112 |
-
|
| 113 |
-
def filepath_to_json(path):
|
| 114 |
-
with open(path, "r", encoding="utf-8") as f:
|
| 115 |
-
return json.load(f)
|
| 116 |
-
|
| 117 |
splits = ["train", "validation", "test"]
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
downloaded_files = dl_manager.download(urls_to_download)
|
| 130 |
-
|
| 131 |
-
ids_in_split = list(map(lambda urls: list(map(get_filename, urls)), file_urls))
|
| 132 |
-
split_ids_index = dict(zip(split_paths, ids_in_split))
|
| 133 |
|
|
|
|
|
|
|
| 134 |
return [
|
| 135 |
datasets.SplitGenerator(
|
| 136 |
name=datasets.Split.TRAIN,
|
| 137 |
gen_kwargs={
|
| 138 |
-
"ids":
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
},
|
| 142 |
),
|
| 143 |
datasets.SplitGenerator(
|
| 144 |
name=datasets.Split.VALIDATION,
|
| 145 |
gen_kwargs={
|
| 146 |
-
"ids":
|
| 147 |
-
"
|
| 148 |
-
"
|
| 149 |
},
|
| 150 |
),
|
| 151 |
datasets.SplitGenerator(
|
| 152 |
name=datasets.Split.TEST,
|
| 153 |
gen_kwargs={
|
| 154 |
-
"ids":
|
| 155 |
-
"
|
| 156 |
-
"
|
| 157 |
},
|
| 158 |
),
|
| 159 |
]
|
| 160 |
|
| 161 |
-
def _generate_examples(self, ids,
|
| 162 |
"""Yields examples."""
|
| 163 |
# TODO(pg19): Yields (key, example) tuples from the dataset
|
| 164 |
|
| 165 |
-
with open(
|
| 166 |
-
|
| 167 |
-
|
| 168 |
|
| 169 |
for _id in ids:
|
| 170 |
-
data =
|
| 171 |
-
|
| 172 |
|
| 173 |
-
with open(
|
| 174 |
text = f.read()
|
| 175 |
|
| 176 |
_id = data["_id"]
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
import csv
|
|
|
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import datasets
|
| 8 |
|
|
|
|
| 34 |
One could use this dataset for benchmarking long-range language models, or use it to pre-train for other natural language processing tasks which require long-range reasoning, such as LAMBADA or NarrativeQA. We would not recommend using this dataset to train a general-purpose language model, e.g. for applications to a production-system dialogue agent, due to the dated linguistic style of old texts and the inherent biases present in historical writing.
|
| 35 |
"""
|
| 36 |
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
_SPLIT_FILES_PATH = "data/{split}_files.txt"
|
| 39 |
+
_ASSET_ROOT_URL = "https://storage.googleapis.com/deepmind-gutenberg/"
|
| 40 |
_METADATA_URL = _ASSET_ROOT_URL + "metadata.csv"
|
| 41 |
|
| 42 |
|
|
|
|
| 76 |
|
| 77 |
def _split_generators(self, dl_manager):
|
| 78 |
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
splits = ["train", "validation", "test"]
|
| 80 |
+
files = dl_manager.download({split: _SPLIT_FILES_PATH.format(split=split) for split in splits})
|
| 81 |
+
|
| 82 |
+
for split, names_file in list(files.items()):
|
| 83 |
+
with open(names_file, encoding="utf-8") as f:
|
| 84 |
+
split_files = f.read().splitlines()
|
| 85 |
+
split_files = sorted(split_files)
|
| 86 |
+
split_files = {
|
| 87 |
+
os.path.splitext(os.path.basename(file))[0]: _ASSET_ROOT_URL + file
|
| 88 |
+
for file in split_files
|
| 89 |
+
}
|
| 90 |
+
files[split] = split_files
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
metadata = dl_manager.download(_METADATA_URL)
|
| 93 |
+
downloaded_files = dl_manager.download(files)
|
| 94 |
return [
|
| 95 |
datasets.SplitGenerator(
|
| 96 |
name=datasets.Split.TRAIN,
|
| 97 |
gen_kwargs={
|
| 98 |
+
"ids": list(downloaded_files["train"]),
|
| 99 |
+
"metadata": metadata,
|
| 100 |
+
"files": downloaded_files["train"],
|
| 101 |
},
|
| 102 |
),
|
| 103 |
datasets.SplitGenerator(
|
| 104 |
name=datasets.Split.VALIDATION,
|
| 105 |
gen_kwargs={
|
| 106 |
+
"ids": list(downloaded_files["validation"]),
|
| 107 |
+
"metadata": metadata,
|
| 108 |
+
"files": downloaded_files["validation"],
|
| 109 |
},
|
| 110 |
),
|
| 111 |
datasets.SplitGenerator(
|
| 112 |
name=datasets.Split.TEST,
|
| 113 |
gen_kwargs={
|
| 114 |
+
"ids": list(downloaded_files["test"]),
|
| 115 |
+
"metadata": metadata,
|
| 116 |
+
"files": downloaded_files["test"],
|
| 117 |
},
|
| 118 |
),
|
| 119 |
]
|
| 120 |
|
| 121 |
+
def _generate_examples(self, ids, metadata, files):
|
| 122 |
"""Yields examples."""
|
| 123 |
# TODO(pg19): Yields (key, example) tuples from the dataset
|
| 124 |
|
| 125 |
+
with open(metadata, encoding="utf-8") as f:
|
| 126 |
+
reader = csv.DictReader(f, fieldnames=["_id", "short_book_title", "publication_date", "url"])
|
| 127 |
+
id2metadata = {row["_id"]: row for row in reader}
|
| 128 |
|
| 129 |
for _id in ids:
|
| 130 |
+
data = id2metadata[_id]
|
| 131 |
+
file = files[_id]
|
| 132 |
|
| 133 |
+
with open(file, encoding="utf-8") as f:
|
| 134 |
text = f.read()
|
| 135 |
|
| 136 |
_id = data["_id"]
|