darkknight25 commited on
Commit
0075ba5
·
verified ·
1 Parent(s): 11d7b1f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -3
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - stockmarket
7
+ - trading
8
+ pretty_name: sunny thakur
9
+ size_categories:
10
+ - 10K<n<100K
11
+ ---
12
+
13
+ 📈 LLM Trading Instruction Dataset – V2 (2023–2025)
14
+ ```
15
+ Dataset Version: 2
16
+ Filename: llm_trading_dataset_20250629_115817.jsonl
17
+ Entries: 20,306
18
+ Period Covered: 2023–2025
19
+ Format: JSON Lines (.jsonl)
20
+ Task: Instruction Tuning for Financial Signal Classification
21
+ Target Models: LLaMA, Mistral, GPT-J, Falcon, Zephyr, DeepSeek, Qwen
22
+ ```
23
+
24
+ 🧠 Overview
25
+
26
+ This second version of the dataset expands the time horizon and depth of training data for instruction-tuned LLMs by covering real-world market indicators from 2023 through 2025. It enables financial models to learn patterns, sentiment, and timing in Buy/Sell signal generation.
27
+
28
+
29
+
30
+ 📁 Dataset Format
31
+
32
+ Each entry follows the instruction tuning schema:
33
+ ```
34
+ {
35
+ "instruction": "Given technical indicators, predict if it's a Buy or Sell signal.",
36
+ "input": "AAPL on 2025-03-20 with indicators: EMA20=224.55, EMA50=232.09, BB_upper=254.87, BB_lower=203.31, MACD=-6.81, MACD_signal=-4.88, RSI=33.61, CCI=-85.31, STOCH_K=15.95, STOCH_D=15.7",
37
+ "output": "Buy"
38
+ }
39
+ ```
40
+ 📌 Fields:
41
+ ```
42
+
43
+ instruction – Prompt for LLM task (uniform for all entries)
44
+
45
+ input – Date, stock symbol, and associated technical indicators
46
+
47
+ output – Predicted trading signal: "Buy" or "Sell"
48
+ ```
49
+
50
+
51
+
52
+ 🔍 Technical Indicators Used
53
+ ```
54
+ Indicator Description
55
+ EMA20 / EMA50 Short and medium-term exponential MA
56
+ BB_upper/lower Bollinger Bands – price volatility zones
57
+ MACD, MACD_sig Momentum crossover indicators
58
+ RSI Overbought/Oversold indicator (0–100)
59
+ CCI Momentum-based deviation indicator
60
+ STOCH_K / D Stochastic oscillator %K/%D lines
61
+ ```
62
+ 🔧 Example Usage
63
+ ```
64
+ import json
65
+
66
+ with open("llm_trading_dataset_20250629_115817.jsonl") as f:
67
+ for line in f:
68
+ ex = json.loads(line)
69
+ print("Prompt:", ex["instruction"])
70
+ print("Indicators:", ex["input"])
71
+ print("Decision:", ex["output"])
72
+ ```
73
+
74
+
75
+ 🧪 Use Cases
76
+
77
+ Finetune instruction-tuned LLMs for trading automation
78
+
79
+ Evaluate transformer models for financial decision tasks
80
+
81
+ Build explainable AI advisors using LLM-based logic
82
+
83
+ Backtest models on realistic multi-year indicators
84
+
85
+ Create copilot assistants for traders & hedge funds
86
+
87
+
88
+
89
+ 📌 Version Info
90
+ Version Range Covered Notes
91
+ v1 2025 only Initial dataset release
92
+ v2 2023–2025 Extended multi-year training set
93
+
94
+ 📜 License
95
+
96
+
97
+ MIT License – Open for use, distribution, and modification.
98
+
99
+ Attribution recommended for research and commercial tools.
100
+
101
+ 🤝 Contact
102
+
103
104
+
105
+ 🧠 AI/Trading Collab: DM for finetuning support or strategy model help