Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,105 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- stockmarket
|
7 |
+
- trading
|
8 |
+
pretty_name: sunny thakur
|
9 |
+
size_categories:
|
10 |
+
- 10K<n<100K
|
11 |
+
---
|
12 |
+
|
13 |
+
📈 LLM Trading Instruction Dataset – V2 (2023–2025)
|
14 |
+
```
|
15 |
+
Dataset Version: 2
|
16 |
+
Filename: llm_trading_dataset_20250629_115817.jsonl
|
17 |
+
Entries: 20,306
|
18 |
+
Period Covered: 2023–2025
|
19 |
+
Format: JSON Lines (.jsonl)
|
20 |
+
Task: Instruction Tuning for Financial Signal Classification
|
21 |
+
Target Models: LLaMA, Mistral, GPT-J, Falcon, Zephyr, DeepSeek, Qwen
|
22 |
+
```
|
23 |
+
|
24 |
+
🧠 Overview
|
25 |
+
|
26 |
+
This second version of the dataset expands the time horizon and depth of training data for instruction-tuned LLMs by covering real-world market indicators from 2023 through 2025. It enables financial models to learn patterns, sentiment, and timing in Buy/Sell signal generation.
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
📁 Dataset Format
|
31 |
+
|
32 |
+
Each entry follows the instruction tuning schema:
|
33 |
+
```
|
34 |
+
{
|
35 |
+
"instruction": "Given technical indicators, predict if it's a Buy or Sell signal.",
|
36 |
+
"input": "AAPL on 2025-03-20 with indicators: EMA20=224.55, EMA50=232.09, BB_upper=254.87, BB_lower=203.31, MACD=-6.81, MACD_signal=-4.88, RSI=33.61, CCI=-85.31, STOCH_K=15.95, STOCH_D=15.7",
|
37 |
+
"output": "Buy"
|
38 |
+
}
|
39 |
+
```
|
40 |
+
📌 Fields:
|
41 |
+
```
|
42 |
+
|
43 |
+
instruction – Prompt for LLM task (uniform for all entries)
|
44 |
+
|
45 |
+
input – Date, stock symbol, and associated technical indicators
|
46 |
+
|
47 |
+
output – Predicted trading signal: "Buy" or "Sell"
|
48 |
+
```
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
🔍 Technical Indicators Used
|
53 |
+
```
|
54 |
+
Indicator Description
|
55 |
+
EMA20 / EMA50 Short and medium-term exponential MA
|
56 |
+
BB_upper/lower Bollinger Bands – price volatility zones
|
57 |
+
MACD, MACD_sig Momentum crossover indicators
|
58 |
+
RSI Overbought/Oversold indicator (0–100)
|
59 |
+
CCI Momentum-based deviation indicator
|
60 |
+
STOCH_K / D Stochastic oscillator %K/%D lines
|
61 |
+
```
|
62 |
+
🔧 Example Usage
|
63 |
+
```
|
64 |
+
import json
|
65 |
+
|
66 |
+
with open("llm_trading_dataset_20250629_115817.jsonl") as f:
|
67 |
+
for line in f:
|
68 |
+
ex = json.loads(line)
|
69 |
+
print("Prompt:", ex["instruction"])
|
70 |
+
print("Indicators:", ex["input"])
|
71 |
+
print("Decision:", ex["output"])
|
72 |
+
```
|
73 |
+
|
74 |
+
|
75 |
+
🧪 Use Cases
|
76 |
+
|
77 |
+
Finetune instruction-tuned LLMs for trading automation
|
78 |
+
|
79 |
+
Evaluate transformer models for financial decision tasks
|
80 |
+
|
81 |
+
Build explainable AI advisors using LLM-based logic
|
82 |
+
|
83 |
+
Backtest models on realistic multi-year indicators
|
84 |
+
|
85 |
+
Create copilot assistants for traders & hedge funds
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
📌 Version Info
|
90 |
+
Version Range Covered Notes
|
91 |
+
v1 2025 only Initial dataset release
|
92 |
+
v2 2023–2025 Extended multi-year training set
|
93 |
+
|
94 |
+
📜 License
|
95 |
+
|
96 |
+
|
97 |
+
MIT License – Open for use, distribution, and modification.
|
98 |
+
|
99 |
+
Attribution recommended for research and commercial tools.
|
100 |
+
|
101 |
+
🤝 Contact
|
102 |
+
|
103 | |
104 |
+
|
105 |
+
🧠 AI/Trading Collab: DM for finetuning support or strategy model help
|