Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
Danish
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
Kenneth Enevoldsen commited on
Commit
91332d7
·
unverified ·
1 Parent(s): 859b4c9

docs: re-update datasheets

Browse files
README.md CHANGED
@@ -235,7 +235,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
235
  <!-- START-DESC-STATS -->
236
  - **Number of samples**: 5.55M
237
  - **Number of tokens (Llama 3)**: 5.83B
238
- - **Average document length (min, max)**: 1.05K [2, 9.81M]
239
  <!-- END-DESC-STATS -->
240
 
241
 
@@ -295,20 +295,20 @@ This dynaword consist of data from various domains (e.g., legal, books, social m
295
 
296
 
297
  <!-- START-DOMAIN TABLE -->
298
- | Domain | Sources | N. Tokens |
299
- | :----------- | :------------------------------------------------------------------------------------------------------- | :-------- |
300
- | Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
301
- | News | [enevaeldens_nyheder], [ncc_newspaper], [tv2r], [nordjyllandnews] | 1.09B |
302
- | Books | [grundtvig], [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 732.52M |
303
- | Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
304
- | Social Media | [hest] | 389.32M |
305
- | Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
306
- | Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
307
- | Encyclopedic | [wikisource], [wiki] | 127.35M |
308
- | Medical | [health_hovedstaden] | 27.07M |
309
- | Readaloud | [nota] | 7.30M |
310
- | Dialect | [botxt] | 847.97K |
311
- | **Total** | | 5.83B |
312
 
313
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
314
  [cellar]: data/cellar/cellar.md
@@ -369,13 +369,13 @@ The following gives an overview of the licensing in the Dynaword. To get the exa
369
  These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
370
 
371
  <!-- START-LICENSE TABLE -->
372
- | License | Sources | N. Tokens |
373
- | :------------------------------ | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------- |
374
- | CC-0 | [enevaeldens_nyheder], [grundtvig], [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 3.04B |
375
- | CC-BY-SA 4.0 | [cellar], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 1.37B |
376
- | Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
377
- | Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
378
- | **Total** | | 5.83B |
379
 
380
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
381
  [cellar]: data/cellar/cellar.md
@@ -430,12 +430,16 @@ Each entry in the dataset consists of a single text with associated metadata
430
  <!-- START-SAMPLE -->
431
  ```py
432
  {
433
- "id": "adl_aakjaer06val",
434
- "text": "SAMLEDE VÆRKER\n\nJEPPE AAKJÆR GYLDENDALSKE BOGHANDEL - NORDISK FORLAG KJØBENHAVN OG\nKRISTIANIA 1919 0[...]",
435
- "source": "adl",
436
- "added": "2020-09-14",
437
- "created": "1700-01-01, 2022-01-01",
438
- "token_count": 439908
 
 
 
 
439
  }
440
  ```
441
 
@@ -478,47 +482,47 @@ Below follows a brief overview of the sources in the corpus along with their ind
478
  You can learn more about each dataset by pressing the link in the first column.
479
 
480
  <!-- START-MAIN TABLE -->
481
- | Source | Description | Domain | N. Tokens | License |
482
- | :-------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------- | :-------- | :--------------------- |
483
- | [cellar] | The official digital repository for European Union legal documents and open data | Legal | 1.15B | [CC-BY-SA 4.0] |
484
- | [enevaeldens_nyheder] | High quality OCR'd texts from Danish and Norwegian newspapers during the period of constitutional absolutism in Denmark (1660–1849) | News | 1.03B | [CC-0] |
485
- | [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | Legal | 818.25M | [Danish Copyright Law] |
486
- | [ncc_books] | Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR | Books | 531.97M | [CC-0] |
487
- | [hest] | Samples from the Danish debate forum www.heste-nettet.dk | Social Media | 389.32M | [CC-0] |
488
- | [ncc_parliament] | Collections from the Norwegian parliament in Danish. Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from ocr | Other | 338.87M | [NLOD 2.0] |
489
- | [opensubtitles] | Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) | Conversation | 271.60M | [CC-0] |
490
- | [ai-aktindsigt] | Multiple web scrapes from municipality websites collected as a part of the [AI-aktindsigt](https://ai-aktindsigt.dk) project | Web | 139.23M | [Apache 2.0] |
491
- | [miljoeportalen] | Data from [Danmarks Miljøportalen](https://www.miljoeportal.dk/om-danmarks-miljoeportal/) (Denmark's Environment Portal) | Web | 127.38M | [CC-0] |
492
- | [skat] | Skat is the Danish tax authority. This dataset contains content from its website skat.dk | Legal | 122.11M | [CC-0] |
493
- | [wiki] | The Danish subsection of [wikipedia](https://en.wikipedia.org/wiki/Main_Page) | Encyclopedic | 122.00M | [CC-0] |
494
- | [ft] | Records from all meetings of The Danish parliament (Folketinget) in the parliament hall | Conversation | 114.09M | [CC-0] |
495
- | [memo] | The MeMo corpus comprising almost all Danish novels from the period 1870-1899, known as the Modern Breakthrough | Books | 113.74M | [CC-BY-SA 4.0] |
496
- | [ep] | The Danish subsection of [Europarl](https://aclanthology.org/2005.mtsummit-papers.11/) | Conversation | 100.84M | [CC-0] |
497
- | [domsdatabasen] | [Domsdatabasen.dk](https://domsdatabasen.dk/) is a public database containing selected judgments from the Danish courts | Legal | 86.35M | [Danish Copyright Law] |
498
- | [adl] | Danish literature from 1700-2023 from the [Archive for Danish Literature](https://tekster.kb.dk/text?editorial=no&f%5Bsubcollection_ssi%5D%5B%5D=adl&match=one&search_field=Alt) (ADL) | Books | 58.49M | [CC-0] |
499
- | [retspraksis] | Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis) | Legal | 56.26M | [CC-0] |
500
- | [fm-udgivelser] | The official publication series of the Danish Ministry of Finance containing economic analyses, budget proposals, and fiscal policy documents | Legal | 50.34M | [CC-BY-SA 4.0] |
501
- | [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
502
- | [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
503
- | [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
504
- | [health_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
505
- | [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
506
- | [grundtvig] | The complete collection of [Grundtvig](https://en.wikipedia.org/wiki/N._F._S._Grundtvig) (1783-1872) one of Denmark’s most influential figures | Books | 10.53M | [CC-0] |
507
- | [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.72M | [CC-0] |
508
- | [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
509
- | [gutenberg] | The Danish subsection from Project [Gutenberg](https://www.gutenberg.org) | Books | 6.76M | [Gutenberg] |
510
- | [wikibooks] | The Danish Subsection of [Wikibooks](https://www.wikibooks.org) | Books | 6.24M | [CC-0] |
511
- | [wikisource] | The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page) | Encyclopedic | 5.34M | [CC-0] |
512
- | [jvj] | The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikipedia.org/wiki/Johannes_V._Jensen) | Books | 3.55M | [CC-BY-SA 4.0] |
513
- | [spont] | Conversational samples collected as a part of research projects at Aarhus University | Conversation | 1.56M | [CC-0] |
514
- | [dannet] | [DanNet](https://cst.ku.dk/projekter/dannet) is a Danish WordNet | Other | 1.48M | [DanNet 1.0] |
515
- | [relig] | Danish religious text from the 1700-2022 | Books | 1.24M | [CC-0] |
516
- | [ncc_newspaper] | OCR'd Newspapers derived from [NCC](https://huggingface.co/datasets/NbAiLab/NCC) | News | 1.05M | [CC-0] |
517
- | [botxt] | The Bornholmsk Ordbog Dictionary Project | Dialect | 847.97K | [CC-0] |
518
- | [naat] | Danish speeches from 1930-2022 | Conversation | 286.68K | [CC-0] |
519
- | [depbank] | The Danish subsection of the [Universal Dependencies Treebank](https://github.com/UniversalDependencies/UD_Danish-DDT) | Other | 185.45K | [CC-BY-SA 4.0] |
520
- | [synne] | Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk), covering the Danish dialect sønderjysk | Other | 52.02K | [CC-0] |
521
- | **Total** | | | 5.83B | |
522
 
523
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
524
  [cellar]: data/cellar/cellar.md
 
235
  <!-- START-DESC-STATS -->
236
  - **Number of samples**: 5.55M
237
  - **Number of tokens (Llama 3)**: 5.83B
238
+ - **Average document length in tokens (min, max)**: 1.05K (2, 9.81M)
239
  <!-- END-DESC-STATS -->
240
 
241
 
 
295
 
296
 
297
  <!-- START-DOMAIN TABLE -->
298
+ | Domain | Sources | N. Tokens |
299
+ |:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
300
+ | Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
301
+ | News | [enevaeldens_nyheder], [ncc_newspaper], [tv2r], [nordjyllandnews] | 1.09B |
302
+ | Books | [grundtvig], [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 732.52M |
303
+ | Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
304
+ | Social Media | [hest] | 389.32M |
305
+ | Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
306
+ | Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
307
+ | Encyclopedic | [wikisource], [wiki] | 127.35M |
308
+ | Medical | [health_hovedstaden] | 27.07M |
309
+ | Readaloud | [nota] | 7.30M |
310
+ | Dialect | [botxt] | 847.97K |
311
+ | **Total** | | 5.83B |
312
 
313
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
314
  [cellar]: data/cellar/cellar.md
 
369
  These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
370
 
371
  <!-- START-LICENSE TABLE -->
372
+ | License | Sources | N. Tokens |
373
+ |:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
374
+ | CC-BY-SA 4.0 | [cellar], [enevaeldens_nyheder], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 2.41B |
375
+ | CC-0 | [grundtvig], [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 2.00B |
376
+ | Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
377
+ | Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
378
+ | **Total** | | 5.83B |
379
 
380
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
381
  [cellar]: data/cellar/cellar.md
 
430
  <!-- START-SAMPLE -->
431
  ```py
432
  {
433
+ "carat": 0.22,
434
+ "depth": 65.1,
435
+ "table": 61.0,
436
+ "price": 337,
437
+ "x": 3.87,
438
+ "y": 3.78,
439
+ "z": 2.49,
440
+ "cut": "Fair",
441
+ "color": "E",
442
+ "clarity": "VS2"
443
  }
444
  ```
445
 
 
482
  You can learn more about each dataset by pressing the link in the first column.
483
 
484
  <!-- START-MAIN TABLE -->
485
+ | Source | Description | Domain | N. Tokens | License |
486
+ |:----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------|:------------|:-----------------------|
487
+ | [cellar] | The official digital repository for European Union legal documents and open data | Legal | 1.15B | [CC-BY-SA 4.0] |
488
+ | [enevaeldens_nyheder] | High quality OCR'd texts from Danish and Norwegian newspapers during the period of constitutional absolutism in Denmark (1660–1849) | News | 1.03B | [CC-BY-SA 4.0] |
489
+ | [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | Legal | 818.25M | [Danish Copyright Law] |
490
+ | [ncc_books] | Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR | Books | 531.97M | [CC-0] |
491
+ | [hest] | Samples from the Danish debate forum www.heste-nettet.dk | Social Media | 389.32M | [CC-0] |
492
+ | [ncc_parliament] | Collections from the Norwegian parliament in Danish. Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from ocr | Other | 338.87M | [NLOD 2.0] |
493
+ | [opensubtitles] | Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) | Conversation | 271.60M | [CC-0] |
494
+ | [ai-aktindsigt] | Multiple web scrapes from municipality websites collected as a part of the [AI-aktindsigt](https://ai-aktindsigt.dk) project | Web | 139.23M | [Apache 2.0] |
495
+ | [miljoeportalen] | Data from [Danmarks Miljøportalen](https://www.miljoeportal.dk/om-danmarks-miljoeportal/) (Denmark's Environment Portal) | Web | 127.38M | [CC-0] |
496
+ | [skat] | Skat is the Danish tax authority. This dataset contains content from its website skat.dk | Legal | 122.11M | [CC-0] |
497
+ | [wiki] | The Danish subsection of [wikipedia](https://en.wikipedia.org/wiki/Main_Page) | Encyclopedic | 122.00M | [CC-0] |
498
+ | [ft] | Records from all meetings of The Danish parliament (Folketinget) in the parliament hall | Conversation | 114.09M | [CC-0] |
499
+ | [memo] | The MeMo corpus comprising almost all Danish novels from the period 1870-1899, known as the Modern Breakthrough | Books | 113.74M | [CC-BY-SA 4.0] |
500
+ | [ep] | The Danish subsection of [Europarl](https://aclanthology.org/2005.mtsummit-papers.11/) | Conversation | 100.84M | [CC-0] |
501
+ | [domsdatabasen] | [Domsdatabasen.dk](https://domsdatabasen.dk/) is a public database containing selected judgments from the Danish courts | Legal | 86.35M | [Danish Copyright Law] |
502
+ | [adl] | Danish literature from 1700-2023 from the [Archive for Danish Literature](https://tekster.kb.dk/text?editorial=no&f%5Bsubcollection_ssi%5D%5B%5D=adl&match=one&search_field=Alt) (ADL) | Books | 58.49M | [CC-0] |
503
+ | [retspraksis] | Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis) | Legal | 56.26M | [CC-0] |
504
+ | [fm-udgivelser] | The official publication series of the Danish Ministry of Finance containing economic analyses, budget proposals, and fiscal policy documents | Legal | 50.34M | [CC-BY-SA 4.0] |
505
+ | [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
506
+ | [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
507
+ | [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
508
+ | [health_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
509
+ | [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
510
+ | [grundtvig] | The complete collection of [Grundtvig](https://en.wikipedia.org/wiki/N._F._S._Grundtvig) (1783-1872) one of Denmark’s most influential figures | Books | 10.53M | [CC-0] |
511
+ | [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.72M | [CC-0] |
512
+ | [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
513
+ | [gutenberg] | The Danish subsection from Project [Gutenberg](https://www.gutenberg.org) | Books | 6.76M | [Gutenberg] |
514
+ | [wikibooks] | The Danish Subsection of [Wikibooks](https://www.wikibooks.org) | Books | 6.24M | [CC-0] |
515
+ | [wikisource] | The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page) | Encyclopedic | 5.34M | [CC-0] |
516
+ | [jvj] | The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikipedia.org/wiki/Johannes_V._Jensen) | Books | 3.55M | [CC-BY-SA 4.0] |
517
+ | [spont] | Conversational samples collected as a part of research projects at Aarhus University | Conversation | 1.56M | [CC-0] |
518
+ | [dannet] | [DanNet](https://cst.ku.dk/projekter/dannet) is a Danish WordNet | Other | 1.48M | [DanNet 1.0] |
519
+ | [relig] | Danish religious text from the 1700-2022 | Books | 1.24M | [CC-0] |
520
+ | [ncc_newspaper] | OCR'd Newspapers derived from [NCC](https://huggingface.co/datasets/NbAiLab/NCC) | News | 1.05M | [CC-0] |
521
+ | [botxt] | The Bornholmsk Ordbog Dictionary Project | Dialect | 847.97K | [CC-0] |
522
+ | [naat] | Danish speeches from 1930-2022 | Conversation | 286.68K | [CC-0] |
523
+ | [depbank] | The Danish subsection of the [Universal Dependencies Treebank](https://github.com/UniversalDependencies/UD_Danish-DDT) | Other | 185.45K | [CC-BY-SA 4.0] |
524
+ | [synne] | Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk), covering the Danish dialect sønderjysk | Other | 52.02K | [CC-0] |
525
+ | **Total** | | | 5.83B | |
526
 
527
  [ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
528
  [cellar]: data/cellar/cellar.md
data/adl/adl.md CHANGED
@@ -35,7 +35,7 @@ See also dataset [entry](https://sprogteknologi.dk/dataset/public-adl-text-sourc
35
  <!-- START-DESC-STATS -->
36
  - **Number of samples**: 498
37
  - **Number of tokens (Llama 3)**: 58.49M
38
- - **Average document length (min, max)**: 117.46K [53, 662.14K]
39
  <!-- END-DESC-STATS -->
40
 
41
 
 
35
  <!-- START-DESC-STATS -->
36
  - **Number of samples**: 498
37
  - **Number of tokens (Llama 3)**: 58.49M
38
+ - **Average document length in tokens (min, max)**: 117.46K (53, 662.14K)
39
  <!-- END-DESC-STATS -->
40
 
41
 
data/ai-aktindsigt/ai-aktindsigt.md CHANGED
@@ -29,7 +29,7 @@ The dataset consists of multiple scrapes of municipal websites compiled in conne
29
  <!-- START-DESC-STATS -->
30
  - **Number of samples**: 200.91K
31
  - **Number of tokens (Llama 3)**: 139.23M
32
- - **Average document length (min, max)**: 693.0064405666105 [9, 152.60K]
33
  <!-- END-DESC-STATS -->
34
 
35
 
 
29
  <!-- START-DESC-STATS -->
30
  - **Number of samples**: 200.91K
31
  - **Number of tokens (Llama 3)**: 139.23M
32
+ - **Average document length in tokens (min, max)**: 693.0064405666105 (9, 152.60K)
33
  <!-- END-DESC-STATS -->
34
 
35
 
data/botxt/botxt.md CHANGED
@@ -32,7 +32,7 @@ Fictional texts of various kinds written in Bornholmsk, the dialect spoken on th
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 106
34
  - **Number of tokens (Llama 3)**: 847.97K
35
- - **Average document length (min, max)**: 8.00K [407, 83.79K]
36
  <!-- END-DESC-STATS -->
37
 
38
 
 
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 106
34
  - **Number of tokens (Llama 3)**: 847.97K
35
+ - **Average document length in tokens (min, max)**: 8.00K (407, 83.79K)
36
  <!-- END-DESC-STATS -->
37
 
38
 
data/cellar/cellar.md CHANGED
@@ -27,7 +27,7 @@ The EU Dataset Cellar serves as the central access point for all official EU pub
27
  <!-- START-DESC-STATS -->
28
  - **Number of samples**: 63.40K
29
  - **Number of tokens (Llama 3)**: 1.15B
30
- - **Average document length (min, max)**: 18.17K [7, 2.60M]
31
  <!-- END-DESC-STATS -->
32
 
33
 
 
27
  <!-- START-DESC-STATS -->
28
  - **Number of samples**: 63.40K
29
  - **Number of tokens (Llama 3)**: 1.15B
30
+ - **Average document length in tokens (min, max)**: 18.17K (7, 2.60M)
31
  <!-- END-DESC-STATS -->
32
 
33
 
data/dannet/dannet.md CHANGED
@@ -33,7 +33,7 @@ A WordNet is a lexico-semantic network which show the meaning and the relation b
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 47.60K
35
  - **Number of tokens (Llama 3)**: 1.48M
36
- - **Average document length (min, max)**: 31.079364745919374 [2, 106]
37
  <!-- END-DESC-STATS -->
38
 
39
 
 
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 47.60K
35
  - **Number of tokens (Llama 3)**: 1.48M
36
+ - **Average document length in tokens (min, max)**: 31.079364745919374 (2, 106)
37
  <!-- END-DESC-STATS -->
38
 
39
 
data/danske-taler/danske-taler.md CHANGED
@@ -39,7 +39,7 @@ Learn more about danske taler by reading their [about us](https://www.dansketale
39
  <!-- START-DESC-STATS -->
40
  - **Number of samples**: 2.91K
41
  - **Number of tokens (Llama 3)**: 8.72M
42
- - **Average document length (min, max)**: 3.00K [129, 53.40K]
43
  <!-- END-DESC-STATS -->
44
 
45
 
 
39
  <!-- START-DESC-STATS -->
40
  - **Number of samples**: 2.91K
41
  - **Number of tokens (Llama 3)**: 8.72M
42
+ - **Average document length in tokens (min, max)**: 3.00K (129, 53.40K)
43
  <!-- END-DESC-STATS -->
44
 
45
 
data/depbank/depbank.md CHANGED
@@ -34,7 +34,7 @@ While the dataset was initially intended as a rich annotation, this corpora only
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 536
36
  - **Number of tokens (Llama 3)**: 185.45K
37
- - **Average document length (min, max)**: 345.99626865671644 [261, 517]
38
  <!-- END-DESC-STATS -->
39
 
40
 
 
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 536
36
  - **Number of tokens (Llama 3)**: 185.45K
37
+ - **Average document length in tokens (min, max)**: 345.99626865671644 (261, 517)
38
  <!-- END-DESC-STATS -->
39
 
40
 
data/domsdatabasen/domsdatabasen.md CHANGED
@@ -58,7 +58,7 @@ Domsdatabasen is continuously being developed. As digitization progresses and te
58
  <!-- START-DESC-STATS -->
59
  - **Number of samples**: 8.47K
60
  - **Number of tokens (Llama 3)**: 86.35M
61
- - **Average document length (min, max)**: 10.20K [15, 1.01M]
62
  <!-- END-DESC-STATS -->
63
 
64
 
 
58
  <!-- START-DESC-STATS -->
59
  - **Number of samples**: 8.47K
60
  - **Number of tokens (Llama 3)**: 86.35M
61
+ - **Average document length in tokens (min, max)**: 10.20K (15, 1.01M)
62
  <!-- END-DESC-STATS -->
63
 
64
 
data/enevaeldens_nyheder/enevaeldens_nyheder.md CHANGED
@@ -33,7 +33,7 @@ The newspaper editions have been segmented into individual texts using a model d
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 4.59M
35
  - **Number of tokens (Llama 3)**: 1.03B
36
- - **Average document length (min, max)**: 225.1811458085686 [3, 37.29K]
37
  <!-- END-DESC-STATS -->
38
 
39
 
 
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 4.59M
35
  - **Number of tokens (Llama 3)**: 1.03B
36
+ - **Average document length in tokens (min, max)**: 225.1811458085686 (3, 37.29K)
37
  <!-- END-DESC-STATS -->
38
 
39
 
data/ep/ep.md CHANGED
@@ -34,7 +34,7 @@ The europarl is a corpus of parallel text in 11 languages from the proceedings o
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 3.93K
36
  - **Number of tokens (Llama 3)**: 100.84M
37
- - **Average document length (min, max)**: 25.66K [8, 222.73K]
38
  <!-- END-DESC-STATS -->
39
 
40
 
 
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 3.93K
36
  - **Number of tokens (Llama 3)**: 100.84M
37
+ - **Average document length in tokens (min, max)**: 25.66K (8, 222.73K)
38
  <!-- END-DESC-STATS -->
39
 
40
 
data/eur-lex-sum-da/eur-lex-sum-da.md CHANGED
@@ -28,7 +28,7 @@ The dataset is designed for training and evaluating automatic text summarization
28
  <!-- START-DESC-STATS -->
29
  - **Number of samples**: 1.00K
30
  - **Number of tokens (Llama 3)**: 31.37M
31
- - **Average document length (min, max)**: 31.31K [2.14K, 1.72M]
32
  <!-- END-DESC-STATS -->
33
 
34
 
 
28
  <!-- START-DESC-STATS -->
29
  - **Number of samples**: 1.00K
30
  - **Number of tokens (Llama 3)**: 31.37M
31
+ - **Average document length in tokens (min, max)**: 31.31K (2.14K, 1.72M)
32
  <!-- END-DESC-STATS -->
33
 
34
 
data/fm-udgivelser/fm-udgivelser.md CHANGED
@@ -31,7 +31,7 @@ The publications are authoritative sources of information on Danish fiscal polic
31
  <!-- START-DESC-STATS -->
32
  - **Number of samples**: 443
33
  - **Number of tokens (Llama 3)**: 50.34M
34
- - **Average document length (min, max)**: 113.62K [209, 595.33K]
35
  <!-- END-DESC-STATS -->
36
 
37
 
 
31
  <!-- START-DESC-STATS -->
32
  - **Number of samples**: 443
33
  - **Number of tokens (Llama 3)**: 50.34M
34
+ - **Average document length in tokens (min, max)**: 113.62K (209, 595.33K)
35
  <!-- END-DESC-STATS -->
36
 
37
 
data/ft/ft.md CHANGED
@@ -35,7 +35,7 @@ In the parliament hall, one speaker at a time addresses members of the parliamen
35
  <!-- START-DESC-STATS -->
36
  - **Number of samples**: 1.31K
37
  - **Number of tokens (Llama 3)**: 114.09M
38
- - **Average document length (min, max)**: 86.76K [49, 342.32K]
39
  <!-- END-DESC-STATS -->
40
 
41
 
 
35
  <!-- START-DESC-STATS -->
36
  - **Number of samples**: 1.31K
37
  - **Number of tokens (Llama 3)**: 114.09M
38
+ - **Average document length in tokens (min, max)**: 86.76K (49, 342.32K)
39
  <!-- END-DESC-STATS -->
40
 
41
 
data/grundtvig/grundtvig.md CHANGED
@@ -33,7 +33,7 @@ The project is scheduled for completion in 2030 and will comprise 1,000 individu
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 632
35
  - **Number of tokens (Llama 3)**: 10.53M
36
- - **Average document length (min, max)**: 16.65K [100, 453.72K]
37
  <!-- END-DESC-STATS -->
38
 
39
 
 
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 632
35
  - **Number of tokens (Llama 3)**: 10.53M
36
+ - **Average document length in tokens (min, max)**: 16.65K (100, 453.72K)
37
  <!-- END-DESC-STATS -->
38
 
39
 
data/gutenberg/gutenberg.md CHANGED
@@ -32,7 +32,7 @@ Project Gutenberg is an online library of free eBooks. Project Gutenberg was the
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 66
34
  - **Number of tokens (Llama 3)**: 6.76M
35
- - **Average document length (min, max)**: 102.47K [7.92K, 250.51K]
36
  <!-- END-DESC-STATS -->
37
 
38
 
 
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 66
34
  - **Number of tokens (Llama 3)**: 6.76M
35
+ - **Average document length in tokens (min, max)**: 102.47K (7.92K, 250.51K)
36
  <!-- END-DESC-STATS -->
37
 
38
 
data/health_hovedstaden/health_hovedstaden.md CHANGED
@@ -36,7 +36,7 @@ Martin Sundahl Laursen and Thiusius R. Savarimuthu from the University of Southe
36
  <!-- START-DESC-STATS -->
37
  - **Number of samples**: 24.00K
38
  - **Number of tokens (Llama 3)**: 27.07M
39
- - **Average document length (min, max)**: 1.13K [4, 51.03K]
40
  <!-- END-DESC-STATS -->
41
 
42
 
 
36
  <!-- START-DESC-STATS -->
37
  - **Number of samples**: 24.00K
38
  - **Number of tokens (Llama 3)**: 27.07M
39
+ - **Average document length in tokens (min, max)**: 1.13K (4, 51.03K)
40
  <!-- END-DESC-STATS -->
41
 
42
 
data/hest/hest.md CHANGED
@@ -34,7 +34,7 @@ Its inclusion as training data for large language models have multiple times rea
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 14.34K
36
  - **Number of tokens (Llama 3)**: 389.32M
37
- - **Average document length (min, max)**: 27.15K [3, 9.81M]
38
  <!-- END-DESC-STATS -->
39
 
40
 
 
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 14.34K
36
  - **Number of tokens (Llama 3)**: 389.32M
37
+ - **Average document length in tokens (min, max)**: 27.15K (3, 9.81M)
38
  <!-- END-DESC-STATS -->
39
 
40
 
data/jvj/jvj.md CHANGED
@@ -34,7 +34,7 @@ The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikiped
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 42
36
  - **Number of tokens (Llama 3)**: 3.55M
37
- - **Average document length (min, max)**: 84.50K [15.47K, 271.79K]
38
  <!-- END-DESC-STATS -->
39
 
40
 
 
34
  <!-- START-DESC-STATS -->
35
  - **Number of samples**: 42
36
  - **Number of tokens (Llama 3)**: 3.55M
37
+ - **Average document length in tokens (min, max)**: 84.50K (15.47K, 271.79K)
38
  <!-- END-DESC-STATS -->
39
 
40
 
data/memo/memo.md CHANGED
@@ -30,7 +30,7 @@ Additional information about this dataset can be found on their [project page](h
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 858
32
  - **Number of tokens (Llama 3)**: 113.74M
33
- - **Average document length (min, max)**: 132.57K [6.67K, 720.17K]
34
  <!-- END-DESC-STATS -->
35
 
36
 
 
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 858
32
  - **Number of tokens (Llama 3)**: 113.74M
33
+ - **Average document length in tokens (min, max)**: 132.57K (6.67K, 720.17K)
34
  <!-- END-DESC-STATS -->
35
 
36
 
data/miljoeportalen/miljoeportalen.md CHANGED
@@ -31,7 +31,7 @@ This can be decisions specifically targeted at the environment such as water pla
31
  <!-- START-DESC-STATS -->
32
  - **Number of samples**: 2.12K
33
  - **Number of tokens (Llama 3)**: 127.38M
34
- - **Average document length (min, max)**: 60.08K [54, 1.44M]
35
  <!-- END-DESC-STATS -->
36
 
37
 
 
31
  <!-- START-DESC-STATS -->
32
  - **Number of samples**: 2.12K
33
  - **Number of tokens (Llama 3)**: 127.38M
34
+ - **Average document length in tokens (min, max)**: 60.08K (54, 1.44M)
35
  <!-- END-DESC-STATS -->
36
 
37
 
data/naat/naat.md CHANGED
@@ -31,7 +31,7 @@ Danish speeches from 1930-2022.
31
  <!-- START-DESC-STATS -->
32
  - **Number of samples**: 129
33
  - **Number of tokens (Llama 3)**: 286.68K
34
- - **Average document length (min, max)**: 2.22K [228, 3.95K]
35
  <!-- END-DESC-STATS -->
36
 
37
 
 
31
  <!-- START-DESC-STATS -->
32
  - **Number of samples**: 129
33
  - **Number of tokens (Llama 3)**: 286.68K
34
+ - **Average document length in tokens (min, max)**: 2.22K (228, 3.95K)
35
  <!-- END-DESC-STATS -->
36
 
37
 
data/ncc_books/ncc_books.md CHANGED
@@ -27,7 +27,7 @@ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corp
27
  <!-- START-DESC-STATS -->
28
  - **Number of samples**: 4.90K
29
  - **Number of tokens (Llama 3)**: 531.97M
30
- - **Average document length (min, max)**: 108.52K [58, 383.51K]
31
  <!-- END-DESC-STATS -->
32
 
33
 
 
27
  <!-- START-DESC-STATS -->
28
  - **Number of samples**: 4.90K
29
  - **Number of tokens (Llama 3)**: 531.97M
30
+ - **Average document length in tokens (min, max)**: 108.52K (58, 383.51K)
31
  <!-- END-DESC-STATS -->
32
 
33
 
data/ncc_maalfrid/ncc_maalfrid.md CHANGED
@@ -26,7 +26,7 @@ Documents are derived from the [Målfrid collection](https://www.nb.no/sprakbank
26
  <!-- START-DESC-STATS -->
27
  - **Number of samples**: 33.34K
28
  - **Number of tokens (Llama 3)**: 29.26M
29
- - **Average document length (min, max)**: 877.7404907607391 [12, 5.11K]
30
  <!-- END-DESC-STATS -->
31
 
32
 
 
26
  <!-- START-DESC-STATS -->
27
  - **Number of samples**: 33.34K
28
  - **Number of tokens (Llama 3)**: 29.26M
29
+ - **Average document length in tokens (min, max)**: 877.7404907607391 (12, 5.11K)
30
  <!-- END-DESC-STATS -->
31
 
32
 
data/ncc_newspaper/ncc_newspaper.md CHANGED
@@ -26,7 +26,7 @@ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corp
26
  <!-- START-DESC-STATS -->
27
  - **Number of samples**: 5.37K
28
  - **Number of tokens (Llama 3)**: 1.05M
29
- - **Average document length (min, max)**: 195.95942676344686 [12, 3.85K]
30
  <!-- END-DESC-STATS -->
31
 
32
 
 
26
  <!-- START-DESC-STATS -->
27
  - **Number of samples**: 5.37K
28
  - **Number of tokens (Llama 3)**: 1.05M
29
+ - **Average document length in tokens (min, max)**: 195.95942676344686 (12, 3.85K)
30
  <!-- END-DESC-STATS -->
31
 
32
 
data/ncc_parliament/ncc_parliament.md CHANGED
@@ -26,7 +26,7 @@ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corp
26
  <!-- START-DESC-STATS -->
27
  - **Number of samples**: 1.08K
28
  - **Number of tokens (Llama 3)**: 338.87M
29
- - **Average document length (min, max)**: 314.64K [129, 373.59K]
30
  <!-- END-DESC-STATS -->
31
 
32
 
 
26
  <!-- START-DESC-STATS -->
27
  - **Number of samples**: 1.08K
28
  - **Number of tokens (Llama 3)**: 338.87M
29
+ - **Average document length in tokens (min, max)**: 314.64K (129, 373.59K)
30
  <!-- END-DESC-STATS -->
31
 
32
 
data/nordjyllandnews/nordjyllandnews.md CHANGED
@@ -32,7 +32,7 @@ The data is derived from the Huggingface dataset [alexandrainst/nordjylland-news
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 75.22K
34
  - **Number of tokens (Llama 3)**: 37.90M
35
- - **Average document length (min, max)**: 503.9497440670079 [29, 12.26K]
36
  <!-- END-DESC-STATS -->
37
 
38
 
 
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 75.22K
34
  - **Number of tokens (Llama 3)**: 37.90M
35
+ - **Average document length in tokens (min, max)**: 503.9497440670079 (29, 12.26K)
36
  <!-- END-DESC-STATS -->
37
 
38
 
data/nota/nota.md CHANGED
@@ -27,7 +27,7 @@ The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dat
27
  <!-- START-DESC-STATS -->
28
  - **Number of samples**: 446
29
  - **Number of tokens (Llama 3)**: 7.30M
30
- - **Average document length (min, max)**: 16.37K [4.48K, 107.26K]
31
  <!-- END-DESC-STATS -->
32
 
33
 
 
27
  <!-- START-DESC-STATS -->
28
  - **Number of samples**: 446
29
  - **Number of tokens (Llama 3)**: 7.30M
30
+ - **Average document length in tokens (min, max)**: 16.37K (4.48K, 107.26K)
31
  <!-- END-DESC-STATS -->
32
 
33
 
data/opensubtitles/opensubtitles.md CHANGED
@@ -29,7 +29,7 @@ Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/v
29
  <!-- START-DESC-STATS -->
30
  - **Number of samples**: 29.82K
31
  - **Number of tokens (Llama 3)**: 271.60M
32
- - **Average document length (min, max)**: 9.11K [45, 70.14K]
33
  <!-- END-DESC-STATS -->
34
 
35
 
 
29
  <!-- START-DESC-STATS -->
30
  - **Number of samples**: 29.82K
31
  - **Number of tokens (Llama 3)**: 271.60M
32
+ - **Average document length in tokens (min, max)**: 9.11K (45, 70.14K)
33
  <!-- END-DESC-STATS -->
34
 
35
 
data/relig/relig.md CHANGED
@@ -33,7 +33,7 @@ without any pre-processing other than file format conversion.
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 66
35
  - **Number of tokens (Llama 3)**: 1.24M
36
- - **Average document length (min, max)**: 18.85K [473, 66.42K]
37
  <!-- END-DESC-STATS -->
38
 
39
 
 
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 66
35
  - **Number of tokens (Llama 3)**: 1.24M
36
+ - **Average document length in tokens (min, max)**: 18.85K (473, 66.42K)
37
  <!-- END-DESC-STATS -->
38
 
39
 
data/retsinformationdk/retsinformationdk.md CHANGED
@@ -39,7 +39,7 @@ It serves as a central repository for Danish legislation, administrative regulat
39
  <!-- START-DESC-STATS -->
40
  - **Number of samples**: 100.52K
41
  - **Number of tokens (Llama 3)**: 818.25M
42
- - **Average document length (min, max)**: 8.14K [34, 9.59M]
43
  <!-- END-DESC-STATS -->
44
 
45
 
 
39
  <!-- START-DESC-STATS -->
40
  - **Number of samples**: 100.52K
41
  - **Number of tokens (Llama 3)**: 818.25M
42
+ - **Average document length in tokens (min, max)**: 8.14K (34, 9.59M)
43
  <!-- END-DESC-STATS -->
44
 
45
 
data/retspraksis/retspraksis.md CHANGED
@@ -33,7 +33,7 @@ It encompasses the body of legal decisions made by Danish courts, which play a s
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 4.36K
35
  - **Number of tokens (Llama 3)**: 56.26M
36
- - **Average document length (min, max)**: 12.90K [298, 979.66K]
37
  <!-- END-DESC-STATS -->
38
 
39
 
 
33
  <!-- START-DESC-STATS -->
34
  - **Number of samples**: 4.36K
35
  - **Number of tokens (Llama 3)**: 56.26M
36
+ - **Average document length in tokens (min, max)**: 12.90K (298, 979.66K)
37
  <!-- END-DESC-STATS -->
38
 
39
 
data/skat/skat.md CHANGED
@@ -30,7 +30,7 @@ Skat is the Danish tax authority. This dataset contains content from its website
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 14.71K
32
  - **Number of tokens (Llama 3)**: 122.11M
33
- - **Average document length (min, max)**: 8.30K [2, 175.22K]
34
  <!-- END-DESC-STATS -->
35
 
36
 
 
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 14.71K
32
  - **Number of tokens (Llama 3)**: 122.11M
33
+ - **Average document length in tokens (min, max)**: 8.30K (2, 175.22K)
34
  <!-- END-DESC-STATS -->
35
 
36
 
data/spont/spont.md CHANGED
@@ -43,7 +43,7 @@ Speech is transcribed post-hoc by native speakers. Studies published relying on
43
  <!-- START-DESC-STATS -->
44
  - **Number of samples**: 411
45
  - **Number of tokens (Llama 3)**: 1.56M
46
- - **Average document length (min, max)**: 3.79K [85, 14.03K]
47
  <!-- END-DESC-STATS -->
48
 
49
 
 
43
  <!-- START-DESC-STATS -->
44
  - **Number of samples**: 411
45
  - **Number of tokens (Llama 3)**: 1.56M
46
+ - **Average document length in tokens (min, max)**: 3.79K (85, 14.03K)
47
  <!-- END-DESC-STATS -->
48
 
49
 
data/synne/synne.md CHANGED
@@ -30,7 +30,7 @@ Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk),
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 177
32
  - **Number of tokens (Llama 3)**: 52.02K
33
- - **Average document length (min, max)**: 293.8813559322034 [128, 891]
34
  <!-- END-DESC-STATS -->
35
 
36
 
 
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 177
32
  - **Number of tokens (Llama 3)**: 52.02K
33
+ - **Average document length in tokens (min, max)**: 293.8813559322034 (128, 891)
34
  <!-- END-DESC-STATS -->
35
 
36
 
data/tv2r/tv2r.md CHANGED
@@ -32,7 +32,7 @@ It contains articles of regional interest, written following editorial standards
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 49.13K
34
  - **Number of tokens (Llama 3)**: 21.67M
35
- - **Average document length (min, max)**: 441.055562339724 [16, 5.27K]
36
  <!-- END-DESC-STATS -->
37
 
38
 
 
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 49.13K
34
  - **Number of tokens (Llama 3)**: 21.67M
35
+ - **Average document length in tokens (min, max)**: 441.055562339724 (16, 5.27K)
36
  <!-- END-DESC-STATS -->
37
 
38
 
data/wiki/wiki.md CHANGED
@@ -32,7 +32,7 @@ You can read more about wikipedia on their [about](https://en.wikipedia.org/wiki
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 264.43K
34
  - **Number of tokens (Llama 3)**: 122.00M
35
- - **Average document length (min, max)**: 461.372631252529 [3, 83.12K]
36
  <!-- END-DESC-STATS -->
37
 
38
 
 
32
  <!-- START-DESC-STATS -->
33
  - **Number of samples**: 264.43K
34
  - **Number of tokens (Llama 3)**: 122.00M
35
+ - **Average document length in tokens (min, max)**: 461.372631252529 (3, 83.12K)
36
  <!-- END-DESC-STATS -->
37
 
38
 
data/wikibooks/wikibooks.md CHANGED
@@ -30,7 +30,7 @@ The Danish Subsection of [Wikibooks](https://www.wikibooks.org).
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 1.27K
32
  - **Number of tokens (Llama 3)**: 6.24M
33
- - **Average document length (min, max)**: 4.92K [4, 365.89K]
34
  <!-- END-DESC-STATS -->
35
 
36
 
 
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 1.27K
32
  - **Number of tokens (Llama 3)**: 6.24M
33
+ - **Average document length in tokens (min, max)**: 4.92K (4, 365.89K)
34
  <!-- END-DESC-STATS -->
35
 
36
 
data/wikisource/wikisource.md CHANGED
@@ -30,7 +30,7 @@ The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page).
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 2.42K
32
  - **Number of tokens (Llama 3)**: 5.34M
33
- - **Average document length (min, max)**: 2.21K [5, 218.36K]
34
  <!-- END-DESC-STATS -->
35
 
36
 
 
30
  <!-- START-DESC-STATS -->
31
  - **Number of samples**: 2.42K
32
  - **Number of tokens (Llama 3)**: 5.34M
33
+ - **Average document length in tokens (min, max)**: 2.21K (5, 218.36K)
34
  <!-- END-DESC-STATS -->
35
 
36
 
images/tokens_over_time.html CHANGED
@@ -2,6 +2,6 @@
2
  <head><meta charset="utf-8" /></head>
3
  <body>
4
  <div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
5
- <script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="31aacf4d-a582-4f26-8457-3067c68b22fc" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("31aacf4d-a582-4f26-8457-3067c68b22fc")) { Plotly.newPlot( "31aacf4d-a582-4f26-8457-3067c68b22fc", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: 30071635\u003cbr\u003eMessage: restructuring-main-table (#75)","Date: 2025-07-22\u003cbr\u003eTokens: 4.80G\u003cbr\u003eChange: +10.53M\u003cbr\u003eSamples: 960,989\u003cbr\u003eCommit: 439e14c0\u003cbr\u003eMessage: Add Grundtvigs works (#79)","Date: 2025-08-06\u003cbr\u003eTokens: 5.83G\u003cbr\u003eChange: +1.03G\u003cbr\u003eSamples: 5,554,217\u003cbr\u003eCommit: 5f324fad\u003cbr\u003eMessage: Add Enev\u00e6ldens Nyheder Online (#83)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000","2025-07-22T00:00:00.000000000","2025-08-06T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570,4795348963,5829657307],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
6
  </body>
7
  </html>
 
2
  <head><meta charset="utf-8" /></head>
3
  <body>
4
  <div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
5
+ <script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="454f45ce-89ca-4d4a-aada-d2d82428926c" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("454f45ce-89ca-4d4a-aada-d2d82428926c")) { Plotly.newPlot( "454f45ce-89ca-4d4a-aada-d2d82428926c", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: 30071635\u003cbr\u003eMessage: restructuring-main-table (#75)","Date: 2025-07-22\u003cbr\u003eTokens: 4.80G\u003cbr\u003eChange: +10.53M\u003cbr\u003eSamples: 960,989\u003cbr\u003eCommit: 439e14c0\u003cbr\u003eMessage: Add Grundtvigs works (#79)","Date: 2025-08-06\u003cbr\u003eTokens: 5.83G\u003cbr\u003eChange: +1.03G\u003cbr\u003eSamples: 5,554,217\u003cbr\u003eCommit: 5f324fad\u003cbr\u003eMessage: Add Enev\u00e6ldens Nyheder Online (#83)","Date: 2025-08-07\u003cbr\u003eTokens: 5.83G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 5,554,217\u003cbr\u003eCommit: d9093e1a\u003cbr\u003eMessage: Update CI (#85)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000","2025-07-22T00:00:00.000000000","2025-08-06T00:00:00.000000000","2025-08-07T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570,4795348963,5829657307,5829657307],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
6
  </body>
7
  </html>
images/tokens_over_time.svg CHANGED
src/dynaword/datasheet.py CHANGED
@@ -120,7 +120,11 @@ class DataSheet(BaseModel):
120
 
121
  def get_dataset(self, **kwargs) -> Dataset:
122
  ds_path = self.path.parent
123
- ds = load_dataset(ds_path.as_posix(), split="train", **kwargs)
 
 
 
 
124
  ds = cast(Dataset, ds)
125
  return ds
126
 
 
120
 
121
  def get_dataset(self, **kwargs) -> Dataset:
122
  ds_path = self.path.parent
123
+ # required to avoid loading .png files for the images/ folder (e.g. for plots) instead of parquet files
124
+ parquet_files = [p.as_posix() for p in ds_path.glob("**/*.parquet")]
125
+ ds = load_dataset(
126
+ ds_path.as_posix(), split="train", data_files=parquet_files, **kwargs
127
+ )
128
  ds = cast(Dataset, ds)
129
  return ds
130