Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
10M - 100M
ArXiv:
DOI:
License:
Kenneth Enevoldsen
commited on
docs: re-update datasheets
Browse files- README.md +73 -69
- data/adl/adl.md +1 -1
- data/ai-aktindsigt/ai-aktindsigt.md +1 -1
- data/botxt/botxt.md +1 -1
- data/cellar/cellar.md +1 -1
- data/dannet/dannet.md +1 -1
- data/danske-taler/danske-taler.md +1 -1
- data/depbank/depbank.md +1 -1
- data/domsdatabasen/domsdatabasen.md +1 -1
- data/enevaeldens_nyheder/enevaeldens_nyheder.md +1 -1
- data/ep/ep.md +1 -1
- data/eur-lex-sum-da/eur-lex-sum-da.md +1 -1
- data/fm-udgivelser/fm-udgivelser.md +1 -1
- data/ft/ft.md +1 -1
- data/grundtvig/grundtvig.md +1 -1
- data/gutenberg/gutenberg.md +1 -1
- data/health_hovedstaden/health_hovedstaden.md +1 -1
- data/hest/hest.md +1 -1
- data/jvj/jvj.md +1 -1
- data/memo/memo.md +1 -1
- data/miljoeportalen/miljoeportalen.md +1 -1
- data/naat/naat.md +1 -1
- data/ncc_books/ncc_books.md +1 -1
- data/ncc_maalfrid/ncc_maalfrid.md +1 -1
- data/ncc_newspaper/ncc_newspaper.md +1 -1
- data/ncc_parliament/ncc_parliament.md +1 -1
- data/nordjyllandnews/nordjyllandnews.md +1 -1
- data/nota/nota.md +1 -1
- data/opensubtitles/opensubtitles.md +1 -1
- data/relig/relig.md +1 -1
- data/retsinformationdk/retsinformationdk.md +1 -1
- data/retspraksis/retspraksis.md +1 -1
- data/skat/skat.md +1 -1
- data/spont/spont.md +1 -1
- data/synne/synne.md +1 -1
- data/tv2r/tv2r.md +1 -1
- data/wiki/wiki.md +1 -1
- data/wikibooks/wikibooks.md +1 -1
- data/wikisource/wikisource.md +1 -1
- images/tokens_over_time.html +1 -1
- images/tokens_over_time.svg +1 -1
- src/dynaword/datasheet.py +5 -1
README.md
CHANGED
@@ -235,7 +235,7 @@ https://github.com/huggingface/datasets/blob/main/templates/README_guide.md
|
|
235 |
<!-- START-DESC-STATS -->
|
236 |
- **Number of samples**: 5.55M
|
237 |
- **Number of tokens (Llama 3)**: 5.83B
|
238 |
-
- **Average document length (min, max)**: 1.05K
|
239 |
<!-- END-DESC-STATS -->
|
240 |
|
241 |
|
@@ -295,20 +295,20 @@ This dynaword consist of data from various domains (e.g., legal, books, social m
|
|
295 |
|
296 |
|
297 |
<!-- START-DOMAIN TABLE -->
|
298 |
-
| Domain | Sources | N. Tokens
|
299 |
-
|
300 |
-
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B
|
301 |
-
| News | [enevaeldens_nyheder], [ncc_newspaper], [tv2r], [nordjyllandnews] | 1.09B
|
302 |
-
| Books | [grundtvig], [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 732.52M
|
303 |
-
| Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M
|
304 |
-
| Social Media | [hest] | 389.32M
|
305 |
-
| Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M
|
306 |
-
| Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M
|
307 |
-
| Encyclopedic | [wikisource], [wiki] | 127.35M
|
308 |
-
| Medical | [health_hovedstaden] | 27.07M
|
309 |
-
| Readaloud | [nota] | 7.30M
|
310 |
-
| Dialect | [botxt] | 847.97K
|
311 |
-
| **Total** | | 5.83B
|
312 |
|
313 |
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
314 |
[cellar]: data/cellar/cellar.md
|
@@ -369,13 +369,13 @@ The following gives an overview of the licensing in the Dynaword. To get the exa
|
|
369 |
These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
|
370 |
|
371 |
<!-- START-LICENSE TABLE -->
|
372 |
-
| License | Sources
|
373 |
-
|
374 |
-
| CC-0
|
375 |
-
| CC-
|
376 |
-
| Other (No attribution required) | [retsinformationdk], [domsdatabasen]
|
377 |
-
| Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg]
|
378 |
-
| **Total** |
|
379 |
|
380 |
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
381 |
[cellar]: data/cellar/cellar.md
|
@@ -430,12 +430,16 @@ Each entry in the dataset consists of a single text with associated metadata
|
|
430 |
<!-- START-SAMPLE -->
|
431 |
```py
|
432 |
{
|
433 |
-
"
|
434 |
-
"
|
435 |
-
"
|
436 |
-
"
|
437 |
-
"
|
438 |
-
"
|
|
|
|
|
|
|
|
|
439 |
}
|
440 |
```
|
441 |
|
@@ -478,47 +482,47 @@ Below follows a brief overview of the sources in the corpus along with their ind
|
|
478 |
You can learn more about each dataset by pressing the link in the first column.
|
479 |
|
480 |
<!-- START-MAIN TABLE -->
|
481 |
-
| Source | Description | Domain | N. Tokens
|
482 |
-
|
483 |
-
| [cellar] | The official digital repository for European Union legal documents and open data | Legal | 1.15B
|
484 |
-
| [enevaeldens_nyheder] | High quality OCR'd texts from Danish and Norwegian newspapers during the period of constitutional absolutism in Denmark (1660–1849) | News | 1.03B
|
485 |
-
| [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | Legal | 818.25M
|
486 |
-
| [ncc_books] | Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR | Books | 531.97M
|
487 |
-
| [hest] | Samples from the Danish debate forum www.heste-nettet.dk | Social Media | 389.32M
|
488 |
-
| [ncc_parliament] | Collections from the Norwegian parliament in Danish. Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from ocr | Other | 338.87M
|
489 |
-
| [opensubtitles] | Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) | Conversation | 271.60M
|
490 |
-
| [ai-aktindsigt] | Multiple web scrapes from municipality websites collected as a part of the [AI-aktindsigt](https://ai-aktindsigt.dk) project | Web | 139.23M
|
491 |
-
| [miljoeportalen] | Data from [Danmarks Miljøportalen](https://www.miljoeportal.dk/om-danmarks-miljoeportal/) (Denmark's Environment Portal) | Web | 127.38M
|
492 |
-
| [skat] | Skat is the Danish tax authority. This dataset contains content from its website skat.dk | Legal | 122.11M
|
493 |
-
| [wiki] | The Danish subsection of [wikipedia](https://en.wikipedia.org/wiki/Main_Page) | Encyclopedic | 122.00M
|
494 |
-
| [ft] | Records from all meetings of The Danish parliament (Folketinget) in the parliament hall | Conversation | 114.09M
|
495 |
-
| [memo] | The MeMo corpus comprising almost all Danish novels from the period 1870-1899, known as the Modern Breakthrough | Books | 113.74M
|
496 |
-
| [ep] | The Danish subsection of [Europarl](https://aclanthology.org/2005.mtsummit-papers.11/) | Conversation | 100.84M
|
497 |
-
| [domsdatabasen] | [Domsdatabasen.dk](https://domsdatabasen.dk/) is a public database containing selected judgments from the Danish courts | Legal | 86.35M
|
498 |
-
| [adl] | Danish literature from 1700-2023 from the [Archive for Danish Literature](https://tekster.kb.dk/text?editorial=no&f%5Bsubcollection_ssi%5D%5B%5D=adl&match=one&search_field=Alt) (ADL) | Books | 58.49M
|
499 |
-
| [retspraksis] | Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis) | Legal | 56.26M
|
500 |
-
| [fm-udgivelser] | The official publication series of the Danish Ministry of Finance containing economic analyses, budget proposals, and fiscal policy documents | Legal | 50.34M
|
501 |
-
| [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M
|
502 |
-
| [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M
|
503 |
-
| [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M
|
504 |
-
| [health_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M
|
505 |
-
| [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M
|
506 |
-
| [grundtvig] | The complete collection of [Grundtvig](https://en.wikipedia.org/wiki/N._F._S._Grundtvig) (1783-1872) one of Denmark’s most influential figures | Books | 10.53M
|
507 |
-
| [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.72M
|
508 |
-
| [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M
|
509 |
-
| [gutenberg] | The Danish subsection from Project [Gutenberg](https://www.gutenberg.org) | Books | 6.76M
|
510 |
-
| [wikibooks] | The Danish Subsection of [Wikibooks](https://www.wikibooks.org) | Books | 6.24M
|
511 |
-
| [wikisource] | The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page) | Encyclopedic | 5.34M
|
512 |
-
| [jvj] | The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikipedia.org/wiki/Johannes_V._Jensen) | Books | 3.55M
|
513 |
-
| [spont] | Conversational samples collected as a part of research projects at Aarhus University | Conversation | 1.56M
|
514 |
-
| [dannet] | [DanNet](https://cst.ku.dk/projekter/dannet) is a Danish WordNet | Other | 1.48M
|
515 |
-
| [relig] | Danish religious text from the 1700-2022 | Books | 1.24M
|
516 |
-
| [ncc_newspaper] | OCR'd Newspapers derived from [NCC](https://huggingface.co/datasets/NbAiLab/NCC) | News | 1.05M
|
517 |
-
| [botxt] | The Bornholmsk Ordbog Dictionary Project | Dialect | 847.97K
|
518 |
-
| [naat] | Danish speeches from 1930-2022 | Conversation | 286.68K
|
519 |
-
| [depbank] | The Danish subsection of the [Universal Dependencies Treebank](https://github.com/UniversalDependencies/UD_Danish-DDT) | Other | 185.45K
|
520 |
-
| [synne] | Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk), covering the Danish dialect sønderjysk | Other | 52.02K
|
521 |
-
| **Total** | | | 5.83B
|
522 |
|
523 |
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
524 |
[cellar]: data/cellar/cellar.md
|
|
|
235 |
<!-- START-DESC-STATS -->
|
236 |
- **Number of samples**: 5.55M
|
237 |
- **Number of tokens (Llama 3)**: 5.83B
|
238 |
+
- **Average document length in tokens (min, max)**: 1.05K (2, 9.81M)
|
239 |
<!-- END-DESC-STATS -->
|
240 |
|
241 |
|
|
|
295 |
|
296 |
|
297 |
<!-- START-DOMAIN TABLE -->
|
298 |
+
| Domain | Sources | N. Tokens |
|
299 |
+
|:-------------|:---------------------------------------------------------------------------------------------------------|:------------|
|
300 |
+
| Legal | [cellar], [eur-lex-sum-da], [fm-udgivelser], [retsinformationdk], [skat], [retspraksis], [domsdatabasen] | 2.32B |
|
301 |
+
| News | [enevaeldens_nyheder], [ncc_newspaper], [tv2r], [nordjyllandnews] | 1.09B |
|
302 |
+
| Books | [grundtvig], [ncc_books], [memo], [adl], [wikibooks], [jvj], [gutenberg], [relig] | 732.52M |
|
303 |
+
| Conversation | [danske-taler], [opensubtitles], [ep], [ft], [spont], [naat] | 497.09M |
|
304 |
+
| Social Media | [hest] | 389.32M |
|
305 |
+
| Other | [ncc_parliament], [dannet], [depbank], [synne] | 340.59M |
|
306 |
+
| Web | [ai-aktindsigt], [ncc_maalfrid], [miljoeportalen] | 295.87M |
|
307 |
+
| Encyclopedic | [wikisource], [wiki] | 127.35M |
|
308 |
+
| Medical | [health_hovedstaden] | 27.07M |
|
309 |
+
| Readaloud | [nota] | 7.30M |
|
310 |
+
| Dialect | [botxt] | 847.97K |
|
311 |
+
| **Total** | | 5.83B |
|
312 |
|
313 |
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
314 |
[cellar]: data/cellar/cellar.md
|
|
|
369 |
These license is applied to the constituent data, i.e., the text. The collection of datasets (metadata, quality control, etc.) is licensed under [CC-0](https://creativecommons.org/publicdomain/zero/1.0/legalcode.en).
|
370 |
|
371 |
<!-- START-LICENSE TABLE -->
|
372 |
+
| License | Sources | N. Tokens |
|
373 |
+
|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------|
|
374 |
+
| CC-BY-SA 4.0 | [cellar], [enevaeldens_nyheder], [eur-lex-sum-da], [fm-udgivelser], [memo], [tv2r], [jvj], [depbank] | 2.41B |
|
375 |
+
| CC-0 | [grundtvig], [danske-taler], [ncc_books], [ncc_newspaper], [miljoeportalen], [opensubtitles], [ep], [ft], [wikisource], [spont], [adl], [hest], [skat], [retspraksis], [wikibooks], [botxt], [naat], [synne], [wiki], [nordjyllandnews], [relig], [nota], [health_hovedstaden] | 2.00B |
|
376 |
+
| Other (No attribution required) | [retsinformationdk], [domsdatabasen] | 904.61M |
|
377 |
+
| Other (Attribution required) | [ai-aktindsigt], [ncc_maalfrid], [ncc_parliament], [dannet], [gutenberg] | 515.61M |
|
378 |
+
| **Total** | | 5.83B |
|
379 |
|
380 |
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
381 |
[cellar]: data/cellar/cellar.md
|
|
|
430 |
<!-- START-SAMPLE -->
|
431 |
```py
|
432 |
{
|
433 |
+
"carat": 0.22,
|
434 |
+
"depth": 65.1,
|
435 |
+
"table": 61.0,
|
436 |
+
"price": 337,
|
437 |
+
"x": 3.87,
|
438 |
+
"y": 3.78,
|
439 |
+
"z": 2.49,
|
440 |
+
"cut": "Fair",
|
441 |
+
"color": "E",
|
442 |
+
"clarity": "VS2"
|
443 |
}
|
444 |
```
|
445 |
|
|
|
482 |
You can learn more about each dataset by pressing the link in the first column.
|
483 |
|
484 |
<!-- START-MAIN TABLE -->
|
485 |
+
| Source | Description | Domain | N. Tokens | License |
|
486 |
+
|:----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------|:------------|:-----------------------|
|
487 |
+
| [cellar] | The official digital repository for European Union legal documents and open data | Legal | 1.15B | [CC-BY-SA 4.0] |
|
488 |
+
| [enevaeldens_nyheder] | High quality OCR'd texts from Danish and Norwegian newspapers during the period of constitutional absolutism in Denmark (1660–1849) | News | 1.03B | [CC-BY-SA 4.0] |
|
489 |
+
| [retsinformationdk] | [retsinformation.dk](https://www.retsinformation.dk) (legal-information.dk) the official legal information system of Denmark | Legal | 818.25M | [Danish Copyright Law] |
|
490 |
+
| [ncc_books] | Danish books extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from OCR | Books | 531.97M | [CC-0] |
|
491 |
+
| [hest] | Samples from the Danish debate forum www.heste-nettet.dk | Social Media | 389.32M | [CC-0] |
|
492 |
+
| [ncc_parliament] | Collections from the Norwegian parliament in Danish. Extracted from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC) derived from ocr | Other | 338.87M | [NLOD 2.0] |
|
493 |
+
| [opensubtitles] | Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) | Conversation | 271.60M | [CC-0] |
|
494 |
+
| [ai-aktindsigt] | Multiple web scrapes from municipality websites collected as a part of the [AI-aktindsigt](https://ai-aktindsigt.dk) project | Web | 139.23M | [Apache 2.0] |
|
495 |
+
| [miljoeportalen] | Data from [Danmarks Miljøportalen](https://www.miljoeportal.dk/om-danmarks-miljoeportal/) (Denmark's Environment Portal) | Web | 127.38M | [CC-0] |
|
496 |
+
| [skat] | Skat is the Danish tax authority. This dataset contains content from its website skat.dk | Legal | 122.11M | [CC-0] |
|
497 |
+
| [wiki] | The Danish subsection of [wikipedia](https://en.wikipedia.org/wiki/Main_Page) | Encyclopedic | 122.00M | [CC-0] |
|
498 |
+
| [ft] | Records from all meetings of The Danish parliament (Folketinget) in the parliament hall | Conversation | 114.09M | [CC-0] |
|
499 |
+
| [memo] | The MeMo corpus comprising almost all Danish novels from the period 1870-1899, known as the Modern Breakthrough | Books | 113.74M | [CC-BY-SA 4.0] |
|
500 |
+
| [ep] | The Danish subsection of [Europarl](https://aclanthology.org/2005.mtsummit-papers.11/) | Conversation | 100.84M | [CC-0] |
|
501 |
+
| [domsdatabasen] | [Domsdatabasen.dk](https://domsdatabasen.dk/) is a public database containing selected judgments from the Danish courts | Legal | 86.35M | [Danish Copyright Law] |
|
502 |
+
| [adl] | Danish literature from 1700-2023 from the [Archive for Danish Literature](https://tekster.kb.dk/text?editorial=no&f%5Bsubcollection_ssi%5D%5B%5D=adl&match=one&search_field=Alt) (ADL) | Books | 58.49M | [CC-0] |
|
503 |
+
| [retspraksis] | Case law or judical practice in Denmark derived from [Retspraksis](https://da.wikipedia.org/wiki/Retspraksis) | Legal | 56.26M | [CC-0] |
|
504 |
+
| [fm-udgivelser] | The official publication series of the Danish Ministry of Finance containing economic analyses, budget proposals, and fiscal policy documents | Legal | 50.34M | [CC-BY-SA 4.0] |
|
505 |
+
| [nordjyllandnews] | Articles from the Danish Newspaper [TV2 Nord](https://www.tv2nord.dk) | News | 37.90M | [CC-0] |
|
506 |
+
| [eur-lex-sum-da] | The Danish subsection of EUR-lex SUM consisting of EU legislation paired with professionally written summaries | Legal | 31.37M | [CC-BY-SA 4.0] |
|
507 |
+
| [ncc_maalfrid] | Danish content from Norwegian institutions websites | Web | 29.26M | [NLOD 2.0] |
|
508 |
+
| [health_hovedstaden] | Guidelines and informational documents for healthcare professionals from the Capital Region | Medical | 27.07M | [CC-0] |
|
509 |
+
| [tv2r] | Contemporary Danish newswire articles published between 2010 and 2019 | News | 21.67M | [CC-BY-SA 4.0] |
|
510 |
+
| [grundtvig] | The complete collection of [Grundtvig](https://en.wikipedia.org/wiki/N._F._S._Grundtvig) (1783-1872) one of Denmark’s most influential figures | Books | 10.53M | [CC-0] |
|
511 |
+
| [danske-taler] | Danish Speeches from [dansketaler.dk](https://www.dansketaler.dk) | Conversation | 8.72M | [CC-0] |
|
512 |
+
| [nota] | The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dataset/nota-lyd-og-tekstdata) dataset | Readaloud | 7.30M | [CC-0] |
|
513 |
+
| [gutenberg] | The Danish subsection from Project [Gutenberg](https://www.gutenberg.org) | Books | 6.76M | [Gutenberg] |
|
514 |
+
| [wikibooks] | The Danish Subsection of [Wikibooks](https://www.wikibooks.org) | Books | 6.24M | [CC-0] |
|
515 |
+
| [wikisource] | The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page) | Encyclopedic | 5.34M | [CC-0] |
|
516 |
+
| [jvj] | The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikipedia.org/wiki/Johannes_V._Jensen) | Books | 3.55M | [CC-BY-SA 4.0] |
|
517 |
+
| [spont] | Conversational samples collected as a part of research projects at Aarhus University | Conversation | 1.56M | [CC-0] |
|
518 |
+
| [dannet] | [DanNet](https://cst.ku.dk/projekter/dannet) is a Danish WordNet | Other | 1.48M | [DanNet 1.0] |
|
519 |
+
| [relig] | Danish religious text from the 1700-2022 | Books | 1.24M | [CC-0] |
|
520 |
+
| [ncc_newspaper] | OCR'd Newspapers derived from [NCC](https://huggingface.co/datasets/NbAiLab/NCC) | News | 1.05M | [CC-0] |
|
521 |
+
| [botxt] | The Bornholmsk Ordbog Dictionary Project | Dialect | 847.97K | [CC-0] |
|
522 |
+
| [naat] | Danish speeches from 1930-2022 | Conversation | 286.68K | [CC-0] |
|
523 |
+
| [depbank] | The Danish subsection of the [Universal Dependencies Treebank](https://github.com/UniversalDependencies/UD_Danish-DDT) | Other | 185.45K | [CC-BY-SA 4.0] |
|
524 |
+
| [synne] | Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk), covering the Danish dialect sønderjysk | Other | 52.02K | [CC-0] |
|
525 |
+
| **Total** | | | 5.83B | |
|
526 |
|
527 |
[ai-aktindsigt]: data/ai-aktindsigt/ai-aktindsigt.md
|
528 |
[cellar]: data/cellar/cellar.md
|
data/adl/adl.md
CHANGED
@@ -35,7 +35,7 @@ See also dataset [entry](https://sprogteknologi.dk/dataset/public-adl-text-sourc
|
|
35 |
<!-- START-DESC-STATS -->
|
36 |
- **Number of samples**: 498
|
37 |
- **Number of tokens (Llama 3)**: 58.49M
|
38 |
-
- **Average document length (min, max)**: 117.46K
|
39 |
<!-- END-DESC-STATS -->
|
40 |
|
41 |
|
|
|
35 |
<!-- START-DESC-STATS -->
|
36 |
- **Number of samples**: 498
|
37 |
- **Number of tokens (Llama 3)**: 58.49M
|
38 |
+
- **Average document length in tokens (min, max)**: 117.46K (53, 662.14K)
|
39 |
<!-- END-DESC-STATS -->
|
40 |
|
41 |
|
data/ai-aktindsigt/ai-aktindsigt.md
CHANGED
@@ -29,7 +29,7 @@ The dataset consists of multiple scrapes of municipal websites compiled in conne
|
|
29 |
<!-- START-DESC-STATS -->
|
30 |
- **Number of samples**: 200.91K
|
31 |
- **Number of tokens (Llama 3)**: 139.23M
|
32 |
-
- **Average document length (min, max)**: 693.0064405666105
|
33 |
<!-- END-DESC-STATS -->
|
34 |
|
35 |
|
|
|
29 |
<!-- START-DESC-STATS -->
|
30 |
- **Number of samples**: 200.91K
|
31 |
- **Number of tokens (Llama 3)**: 139.23M
|
32 |
+
- **Average document length in tokens (min, max)**: 693.0064405666105 (9, 152.60K)
|
33 |
<!-- END-DESC-STATS -->
|
34 |
|
35 |
|
data/botxt/botxt.md
CHANGED
@@ -32,7 +32,7 @@ Fictional texts of various kinds written in Bornholmsk, the dialect spoken on th
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 106
|
34 |
- **Number of tokens (Llama 3)**: 847.97K
|
35 |
-
- **Average document length (min, max)**: 8.00K
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 106
|
34 |
- **Number of tokens (Llama 3)**: 847.97K
|
35 |
+
- **Average document length in tokens (min, max)**: 8.00K (407, 83.79K)
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
data/cellar/cellar.md
CHANGED
@@ -27,7 +27,7 @@ The EU Dataset Cellar serves as the central access point for all official EU pub
|
|
27 |
<!-- START-DESC-STATS -->
|
28 |
- **Number of samples**: 63.40K
|
29 |
- **Number of tokens (Llama 3)**: 1.15B
|
30 |
-
- **Average document length (min, max)**: 18.17K
|
31 |
<!-- END-DESC-STATS -->
|
32 |
|
33 |
|
|
|
27 |
<!-- START-DESC-STATS -->
|
28 |
- **Number of samples**: 63.40K
|
29 |
- **Number of tokens (Llama 3)**: 1.15B
|
30 |
+
- **Average document length in tokens (min, max)**: 18.17K (7, 2.60M)
|
31 |
<!-- END-DESC-STATS -->
|
32 |
|
33 |
|
data/dannet/dannet.md
CHANGED
@@ -33,7 +33,7 @@ A WordNet is a lexico-semantic network which show the meaning and the relation b
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 47.60K
|
35 |
- **Number of tokens (Llama 3)**: 1.48M
|
36 |
-
- **Average document length (min, max)**: 31.079364745919374
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 47.60K
|
35 |
- **Number of tokens (Llama 3)**: 1.48M
|
36 |
+
- **Average document length in tokens (min, max)**: 31.079364745919374 (2, 106)
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
data/danske-taler/danske-taler.md
CHANGED
@@ -39,7 +39,7 @@ Learn more about danske taler by reading their [about us](https://www.dansketale
|
|
39 |
<!-- START-DESC-STATS -->
|
40 |
- **Number of samples**: 2.91K
|
41 |
- **Number of tokens (Llama 3)**: 8.72M
|
42 |
-
- **Average document length (min, max)**: 3.00K
|
43 |
<!-- END-DESC-STATS -->
|
44 |
|
45 |
|
|
|
39 |
<!-- START-DESC-STATS -->
|
40 |
- **Number of samples**: 2.91K
|
41 |
- **Number of tokens (Llama 3)**: 8.72M
|
42 |
+
- **Average document length in tokens (min, max)**: 3.00K (129, 53.40K)
|
43 |
<!-- END-DESC-STATS -->
|
44 |
|
45 |
|
data/depbank/depbank.md
CHANGED
@@ -34,7 +34,7 @@ While the dataset was initially intended as a rich annotation, this corpora only
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 536
|
36 |
- **Number of tokens (Llama 3)**: 185.45K
|
37 |
-
- **Average document length (min, max)**: 345.99626865671644
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 536
|
36 |
- **Number of tokens (Llama 3)**: 185.45K
|
37 |
+
- **Average document length in tokens (min, max)**: 345.99626865671644 (261, 517)
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
data/domsdatabasen/domsdatabasen.md
CHANGED
@@ -58,7 +58,7 @@ Domsdatabasen is continuously being developed. As digitization progresses and te
|
|
58 |
<!-- START-DESC-STATS -->
|
59 |
- **Number of samples**: 8.47K
|
60 |
- **Number of tokens (Llama 3)**: 86.35M
|
61 |
-
- **Average document length (min, max)**: 10.20K
|
62 |
<!-- END-DESC-STATS -->
|
63 |
|
64 |
|
|
|
58 |
<!-- START-DESC-STATS -->
|
59 |
- **Number of samples**: 8.47K
|
60 |
- **Number of tokens (Llama 3)**: 86.35M
|
61 |
+
- **Average document length in tokens (min, max)**: 10.20K (15, 1.01M)
|
62 |
<!-- END-DESC-STATS -->
|
63 |
|
64 |
|
data/enevaeldens_nyheder/enevaeldens_nyheder.md
CHANGED
@@ -33,7 +33,7 @@ The newspaper editions have been segmented into individual texts using a model d
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 4.59M
|
35 |
- **Number of tokens (Llama 3)**: 1.03B
|
36 |
-
- **Average document length (min, max)**: 225.1811458085686
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 4.59M
|
35 |
- **Number of tokens (Llama 3)**: 1.03B
|
36 |
+
- **Average document length in tokens (min, max)**: 225.1811458085686 (3, 37.29K)
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
data/ep/ep.md
CHANGED
@@ -34,7 +34,7 @@ The europarl is a corpus of parallel text in 11 languages from the proceedings o
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 3.93K
|
36 |
- **Number of tokens (Llama 3)**: 100.84M
|
37 |
-
- **Average document length (min, max)**: 25.66K
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 3.93K
|
36 |
- **Number of tokens (Llama 3)**: 100.84M
|
37 |
+
- **Average document length in tokens (min, max)**: 25.66K (8, 222.73K)
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
data/eur-lex-sum-da/eur-lex-sum-da.md
CHANGED
@@ -28,7 +28,7 @@ The dataset is designed for training and evaluating automatic text summarization
|
|
28 |
<!-- START-DESC-STATS -->
|
29 |
- **Number of samples**: 1.00K
|
30 |
- **Number of tokens (Llama 3)**: 31.37M
|
31 |
-
- **Average document length (min, max)**: 31.31K
|
32 |
<!-- END-DESC-STATS -->
|
33 |
|
34 |
|
|
|
28 |
<!-- START-DESC-STATS -->
|
29 |
- **Number of samples**: 1.00K
|
30 |
- **Number of tokens (Llama 3)**: 31.37M
|
31 |
+
- **Average document length in tokens (min, max)**: 31.31K (2.14K, 1.72M)
|
32 |
<!-- END-DESC-STATS -->
|
33 |
|
34 |
|
data/fm-udgivelser/fm-udgivelser.md
CHANGED
@@ -31,7 +31,7 @@ The publications are authoritative sources of information on Danish fiscal polic
|
|
31 |
<!-- START-DESC-STATS -->
|
32 |
- **Number of samples**: 443
|
33 |
- **Number of tokens (Llama 3)**: 50.34M
|
34 |
-
- **Average document length (min, max)**: 113.62K
|
35 |
<!-- END-DESC-STATS -->
|
36 |
|
37 |
|
|
|
31 |
<!-- START-DESC-STATS -->
|
32 |
- **Number of samples**: 443
|
33 |
- **Number of tokens (Llama 3)**: 50.34M
|
34 |
+
- **Average document length in tokens (min, max)**: 113.62K (209, 595.33K)
|
35 |
<!-- END-DESC-STATS -->
|
36 |
|
37 |
|
data/ft/ft.md
CHANGED
@@ -35,7 +35,7 @@ In the parliament hall, one speaker at a time addresses members of the parliamen
|
|
35 |
<!-- START-DESC-STATS -->
|
36 |
- **Number of samples**: 1.31K
|
37 |
- **Number of tokens (Llama 3)**: 114.09M
|
38 |
-
- **Average document length (min, max)**: 86.76K
|
39 |
<!-- END-DESC-STATS -->
|
40 |
|
41 |
|
|
|
35 |
<!-- START-DESC-STATS -->
|
36 |
- **Number of samples**: 1.31K
|
37 |
- **Number of tokens (Llama 3)**: 114.09M
|
38 |
+
- **Average document length in tokens (min, max)**: 86.76K (49, 342.32K)
|
39 |
<!-- END-DESC-STATS -->
|
40 |
|
41 |
|
data/grundtvig/grundtvig.md
CHANGED
@@ -33,7 +33,7 @@ The project is scheduled for completion in 2030 and will comprise 1,000 individu
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 632
|
35 |
- **Number of tokens (Llama 3)**: 10.53M
|
36 |
-
- **Average document length (min, max)**: 16.65K
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 632
|
35 |
- **Number of tokens (Llama 3)**: 10.53M
|
36 |
+
- **Average document length in tokens (min, max)**: 16.65K (100, 453.72K)
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
data/gutenberg/gutenberg.md
CHANGED
@@ -32,7 +32,7 @@ Project Gutenberg is an online library of free eBooks. Project Gutenberg was the
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 66
|
34 |
- **Number of tokens (Llama 3)**: 6.76M
|
35 |
-
- **Average document length (min, max)**: 102.47K
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 66
|
34 |
- **Number of tokens (Llama 3)**: 6.76M
|
35 |
+
- **Average document length in tokens (min, max)**: 102.47K (7.92K, 250.51K)
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
data/health_hovedstaden/health_hovedstaden.md
CHANGED
@@ -36,7 +36,7 @@ Martin Sundahl Laursen and Thiusius R. Savarimuthu from the University of Southe
|
|
36 |
<!-- START-DESC-STATS -->
|
37 |
- **Number of samples**: 24.00K
|
38 |
- **Number of tokens (Llama 3)**: 27.07M
|
39 |
-
- **Average document length (min, max)**: 1.13K
|
40 |
<!-- END-DESC-STATS -->
|
41 |
|
42 |
|
|
|
36 |
<!-- START-DESC-STATS -->
|
37 |
- **Number of samples**: 24.00K
|
38 |
- **Number of tokens (Llama 3)**: 27.07M
|
39 |
+
- **Average document length in tokens (min, max)**: 1.13K (4, 51.03K)
|
40 |
<!-- END-DESC-STATS -->
|
41 |
|
42 |
|
data/hest/hest.md
CHANGED
@@ -34,7 +34,7 @@ Its inclusion as training data for large language models have multiple times rea
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 14.34K
|
36 |
- **Number of tokens (Llama 3)**: 389.32M
|
37 |
-
- **Average document length (min, max)**: 27.15K
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 14.34K
|
36 |
- **Number of tokens (Llama 3)**: 389.32M
|
37 |
+
- **Average document length in tokens (min, max)**: 27.15K (3, 9.81M)
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
data/jvj/jvj.md
CHANGED
@@ -34,7 +34,7 @@ The works of the Danish author and poet, [Johannes V. Jensen](https://da.wikiped
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 42
|
36 |
- **Number of tokens (Llama 3)**: 3.55M
|
37 |
-
- **Average document length (min, max)**: 84.50K
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
|
|
34 |
<!-- START-DESC-STATS -->
|
35 |
- **Number of samples**: 42
|
36 |
- **Number of tokens (Llama 3)**: 3.55M
|
37 |
+
- **Average document length in tokens (min, max)**: 84.50K (15.47K, 271.79K)
|
38 |
<!-- END-DESC-STATS -->
|
39 |
|
40 |
|
data/memo/memo.md
CHANGED
@@ -30,7 +30,7 @@ Additional information about this dataset can be found on their [project page](h
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 858
|
32 |
- **Number of tokens (Llama 3)**: 113.74M
|
33 |
-
- **Average document length (min, max)**: 132.57K
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 858
|
32 |
- **Number of tokens (Llama 3)**: 113.74M
|
33 |
+
- **Average document length in tokens (min, max)**: 132.57K (6.67K, 720.17K)
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
data/miljoeportalen/miljoeportalen.md
CHANGED
@@ -31,7 +31,7 @@ This can be decisions specifically targeted at the environment such as water pla
|
|
31 |
<!-- START-DESC-STATS -->
|
32 |
- **Number of samples**: 2.12K
|
33 |
- **Number of tokens (Llama 3)**: 127.38M
|
34 |
-
- **Average document length (min, max)**: 60.08K
|
35 |
<!-- END-DESC-STATS -->
|
36 |
|
37 |
|
|
|
31 |
<!-- START-DESC-STATS -->
|
32 |
- **Number of samples**: 2.12K
|
33 |
- **Number of tokens (Llama 3)**: 127.38M
|
34 |
+
- **Average document length in tokens (min, max)**: 60.08K (54, 1.44M)
|
35 |
<!-- END-DESC-STATS -->
|
36 |
|
37 |
|
data/naat/naat.md
CHANGED
@@ -31,7 +31,7 @@ Danish speeches from 1930-2022.
|
|
31 |
<!-- START-DESC-STATS -->
|
32 |
- **Number of samples**: 129
|
33 |
- **Number of tokens (Llama 3)**: 286.68K
|
34 |
-
- **Average document length (min, max)**: 2.22K
|
35 |
<!-- END-DESC-STATS -->
|
36 |
|
37 |
|
|
|
31 |
<!-- START-DESC-STATS -->
|
32 |
- **Number of samples**: 129
|
33 |
- **Number of tokens (Llama 3)**: 286.68K
|
34 |
+
- **Average document length in tokens (min, max)**: 2.22K (228, 3.95K)
|
35 |
<!-- END-DESC-STATS -->
|
36 |
|
37 |
|
data/ncc_books/ncc_books.md
CHANGED
@@ -27,7 +27,7 @@ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corp
|
|
27 |
<!-- START-DESC-STATS -->
|
28 |
- **Number of samples**: 4.90K
|
29 |
- **Number of tokens (Llama 3)**: 531.97M
|
30 |
-
- **Average document length (min, max)**: 108.52K
|
31 |
<!-- END-DESC-STATS -->
|
32 |
|
33 |
|
|
|
27 |
<!-- START-DESC-STATS -->
|
28 |
- **Number of samples**: 4.90K
|
29 |
- **Number of tokens (Llama 3)**: 531.97M
|
30 |
+
- **Average document length in tokens (min, max)**: 108.52K (58, 383.51K)
|
31 |
<!-- END-DESC-STATS -->
|
32 |
|
33 |
|
data/ncc_maalfrid/ncc_maalfrid.md
CHANGED
@@ -26,7 +26,7 @@ Documents are derived from the [Målfrid collection](https://www.nb.no/sprakbank
|
|
26 |
<!-- START-DESC-STATS -->
|
27 |
- **Number of samples**: 33.34K
|
28 |
- **Number of tokens (Llama 3)**: 29.26M
|
29 |
-
- **Average document length (min, max)**: 877.7404907607391
|
30 |
<!-- END-DESC-STATS -->
|
31 |
|
32 |
|
|
|
26 |
<!-- START-DESC-STATS -->
|
27 |
- **Number of samples**: 33.34K
|
28 |
- **Number of tokens (Llama 3)**: 29.26M
|
29 |
+
- **Average document length in tokens (min, max)**: 877.7404907607391 (12, 5.11K)
|
30 |
<!-- END-DESC-STATS -->
|
31 |
|
32 |
|
data/ncc_newspaper/ncc_newspaper.md
CHANGED
@@ -26,7 +26,7 @@ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corp
|
|
26 |
<!-- START-DESC-STATS -->
|
27 |
- **Number of samples**: 5.37K
|
28 |
- **Number of tokens (Llama 3)**: 1.05M
|
29 |
-
- **Average document length (min, max)**: 195.95942676344686
|
30 |
<!-- END-DESC-STATS -->
|
31 |
|
32 |
|
|
|
26 |
<!-- START-DESC-STATS -->
|
27 |
- **Number of samples**: 5.37K
|
28 |
- **Number of tokens (Llama 3)**: 1.05M
|
29 |
+
- **Average document length in tokens (min, max)**: 195.95942676344686 (12, 3.85K)
|
30 |
<!-- END-DESC-STATS -->
|
31 |
|
32 |
|
data/ncc_parliament/ncc_parliament.md
CHANGED
@@ -26,7 +26,7 @@ The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corp
|
|
26 |
<!-- START-DESC-STATS -->
|
27 |
- **Number of samples**: 1.08K
|
28 |
- **Number of tokens (Llama 3)**: 338.87M
|
29 |
-
- **Average document length (min, max)**: 314.64K
|
30 |
<!-- END-DESC-STATS -->
|
31 |
|
32 |
|
|
|
26 |
<!-- START-DESC-STATS -->
|
27 |
- **Number of samples**: 1.08K
|
28 |
- **Number of tokens (Llama 3)**: 338.87M
|
29 |
+
- **Average document length in tokens (min, max)**: 314.64K (129, 373.59K)
|
30 |
<!-- END-DESC-STATS -->
|
31 |
|
32 |
|
data/nordjyllandnews/nordjyllandnews.md
CHANGED
@@ -32,7 +32,7 @@ The data is derived from the Huggingface dataset [alexandrainst/nordjylland-news
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 75.22K
|
34 |
- **Number of tokens (Llama 3)**: 37.90M
|
35 |
-
- **Average document length (min, max)**: 503.9497440670079
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 75.22K
|
34 |
- **Number of tokens (Llama 3)**: 37.90M
|
35 |
+
- **Average document length in tokens (min, max)**: 503.9497440670079 (29, 12.26K)
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
data/nota/nota.md
CHANGED
@@ -27,7 +27,7 @@ The text only part of the [Nota lyd- og tekstdata](https://sprogteknologi.dk/dat
|
|
27 |
<!-- START-DESC-STATS -->
|
28 |
- **Number of samples**: 446
|
29 |
- **Number of tokens (Llama 3)**: 7.30M
|
30 |
-
- **Average document length (min, max)**: 16.37K
|
31 |
<!-- END-DESC-STATS -->
|
32 |
|
33 |
|
|
|
27 |
<!-- START-DESC-STATS -->
|
28 |
- **Number of samples**: 446
|
29 |
- **Number of tokens (Llama 3)**: 7.30M
|
30 |
+
- **Average document length in tokens (min, max)**: 16.37K (4.48K, 107.26K)
|
31 |
<!-- END-DESC-STATS -->
|
32 |
|
33 |
|
data/opensubtitles/opensubtitles.md
CHANGED
@@ -29,7 +29,7 @@ Danish subsection of [OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/v
|
|
29 |
<!-- START-DESC-STATS -->
|
30 |
- **Number of samples**: 29.82K
|
31 |
- **Number of tokens (Llama 3)**: 271.60M
|
32 |
-
- **Average document length (min, max)**: 9.11K
|
33 |
<!-- END-DESC-STATS -->
|
34 |
|
35 |
|
|
|
29 |
<!-- START-DESC-STATS -->
|
30 |
- **Number of samples**: 29.82K
|
31 |
- **Number of tokens (Llama 3)**: 271.60M
|
32 |
+
- **Average document length in tokens (min, max)**: 9.11K (45, 70.14K)
|
33 |
<!-- END-DESC-STATS -->
|
34 |
|
35 |
|
data/relig/relig.md
CHANGED
@@ -33,7 +33,7 @@ without any pre-processing other than file format conversion.
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 66
|
35 |
- **Number of tokens (Llama 3)**: 1.24M
|
36 |
-
- **Average document length (min, max)**: 18.85K
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 66
|
35 |
- **Number of tokens (Llama 3)**: 1.24M
|
36 |
+
- **Average document length in tokens (min, max)**: 18.85K (473, 66.42K)
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
data/retsinformationdk/retsinformationdk.md
CHANGED
@@ -39,7 +39,7 @@ It serves as a central repository for Danish legislation, administrative regulat
|
|
39 |
<!-- START-DESC-STATS -->
|
40 |
- **Number of samples**: 100.52K
|
41 |
- **Number of tokens (Llama 3)**: 818.25M
|
42 |
-
- **Average document length (min, max)**: 8.14K
|
43 |
<!-- END-DESC-STATS -->
|
44 |
|
45 |
|
|
|
39 |
<!-- START-DESC-STATS -->
|
40 |
- **Number of samples**: 100.52K
|
41 |
- **Number of tokens (Llama 3)**: 818.25M
|
42 |
+
- **Average document length in tokens (min, max)**: 8.14K (34, 9.59M)
|
43 |
<!-- END-DESC-STATS -->
|
44 |
|
45 |
|
data/retspraksis/retspraksis.md
CHANGED
@@ -33,7 +33,7 @@ It encompasses the body of legal decisions made by Danish courts, which play a s
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 4.36K
|
35 |
- **Number of tokens (Llama 3)**: 56.26M
|
36 |
-
- **Average document length (min, max)**: 12.90K
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
|
|
33 |
<!-- START-DESC-STATS -->
|
34 |
- **Number of samples**: 4.36K
|
35 |
- **Number of tokens (Llama 3)**: 56.26M
|
36 |
+
- **Average document length in tokens (min, max)**: 12.90K (298, 979.66K)
|
37 |
<!-- END-DESC-STATS -->
|
38 |
|
39 |
|
data/skat/skat.md
CHANGED
@@ -30,7 +30,7 @@ Skat is the Danish tax authority. This dataset contains content from its website
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 14.71K
|
32 |
- **Number of tokens (Llama 3)**: 122.11M
|
33 |
-
- **Average document length (min, max)**: 8.30K
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 14.71K
|
32 |
- **Number of tokens (Llama 3)**: 122.11M
|
33 |
+
- **Average document length in tokens (min, max)**: 8.30K (2, 175.22K)
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
data/spont/spont.md
CHANGED
@@ -43,7 +43,7 @@ Speech is transcribed post-hoc by native speakers. Studies published relying on
|
|
43 |
<!-- START-DESC-STATS -->
|
44 |
- **Number of samples**: 411
|
45 |
- **Number of tokens (Llama 3)**: 1.56M
|
46 |
-
- **Average document length (min, max)**: 3.79K
|
47 |
<!-- END-DESC-STATS -->
|
48 |
|
49 |
|
|
|
43 |
<!-- START-DESC-STATS -->
|
44 |
- **Number of samples**: 411
|
45 |
- **Number of tokens (Llama 3)**: 1.56M
|
46 |
+
- **Average document length in tokens (min, max)**: 3.79K (85, 14.03K)
|
47 |
<!-- END-DESC-STATS -->
|
48 |
|
49 |
|
data/synne/synne.md
CHANGED
@@ -30,7 +30,7 @@ Dataset collected from [synnejysk forening's website](https://www.synnejysk.dk),
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 177
|
32 |
- **Number of tokens (Llama 3)**: 52.02K
|
33 |
-
- **Average document length (min, max)**: 293.8813559322034
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 177
|
32 |
- **Number of tokens (Llama 3)**: 52.02K
|
33 |
+
- **Average document length in tokens (min, max)**: 293.8813559322034 (128, 891)
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
data/tv2r/tv2r.md
CHANGED
@@ -32,7 +32,7 @@ It contains articles of regional interest, written following editorial standards
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 49.13K
|
34 |
- **Number of tokens (Llama 3)**: 21.67M
|
35 |
-
- **Average document length (min, max)**: 441.055562339724
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 49.13K
|
34 |
- **Number of tokens (Llama 3)**: 21.67M
|
35 |
+
- **Average document length in tokens (min, max)**: 441.055562339724 (16, 5.27K)
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
data/wiki/wiki.md
CHANGED
@@ -32,7 +32,7 @@ You can read more about wikipedia on their [about](https://en.wikipedia.org/wiki
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 264.43K
|
34 |
- **Number of tokens (Llama 3)**: 122.00M
|
35 |
-
- **Average document length (min, max)**: 461.372631252529
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
|
|
32 |
<!-- START-DESC-STATS -->
|
33 |
- **Number of samples**: 264.43K
|
34 |
- **Number of tokens (Llama 3)**: 122.00M
|
35 |
+
- **Average document length in tokens (min, max)**: 461.372631252529 (3, 83.12K)
|
36 |
<!-- END-DESC-STATS -->
|
37 |
|
38 |
|
data/wikibooks/wikibooks.md
CHANGED
@@ -30,7 +30,7 @@ The Danish Subsection of [Wikibooks](https://www.wikibooks.org).
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 1.27K
|
32 |
- **Number of tokens (Llama 3)**: 6.24M
|
33 |
-
- **Average document length (min, max)**: 4.92K
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 1.27K
|
32 |
- **Number of tokens (Llama 3)**: 6.24M
|
33 |
+
- **Average document length in tokens (min, max)**: 4.92K (4, 365.89K)
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
data/wikisource/wikisource.md
CHANGED
@@ -30,7 +30,7 @@ The Danish subsection of [Wikisource](https://en.wikisource.org/wiki/Main_Page).
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 2.42K
|
32 |
- **Number of tokens (Llama 3)**: 5.34M
|
33 |
-
- **Average document length (min, max)**: 2.21K
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
|
|
30 |
<!-- START-DESC-STATS -->
|
31 |
- **Number of samples**: 2.42K
|
32 |
- **Number of tokens (Llama 3)**: 5.34M
|
33 |
+
- **Average document length in tokens (min, max)**: 2.21K (5, 218.36K)
|
34 |
<!-- END-DESC-STATS -->
|
35 |
|
36 |
|
images/tokens_over_time.html
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
<head><meta charset="utf-8" /></head>
|
3 |
<body>
|
4 |
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
|
5 |
-
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="31aacf4d-a582-4f26-8457-3067c68b22fc" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("31aacf4d-a582-4f26-8457-3067c68b22fc")) { Plotly.newPlot( "31aacf4d-a582-4f26-8457-3067c68b22fc", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: 30071635\u003cbr\u003eMessage: restructuring-main-table (#75)","Date: 2025-07-22\u003cbr\u003eTokens: 4.80G\u003cbr\u003eChange: +10.53M\u003cbr\u003eSamples: 960,989\u003cbr\u003eCommit: 439e14c0\u003cbr\u003eMessage: Add Grundtvigs works (#79)","Date: 2025-08-06\u003cbr\u003eTokens: 5.83G\u003cbr\u003eChange: +1.03G\u003cbr\u003eSamples: 5,554,217\u003cbr\u003eCommit: 5f324fad\u003cbr\u003eMessage: Add Enev\u00e6ldens Nyheder Online (#83)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000","2025-07-22T00:00:00.000000000","2025-08-06T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570,4795348963,5829657307],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
|
6 |
</body>
|
7 |
</html>
|
|
|
2 |
<head><meta charset="utf-8" /></head>
|
3 |
<body>
|
4 |
<div> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
|
5 |
+
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="454f45ce-89ca-4d4a-aada-d2d82428926c" class="plotly-graph-div" style="height:400px; width:600px;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("454f45ce-89ca-4d4a-aada-d2d82428926c")) { Plotly.newPlot( "454f45ce-89ca-4d4a-aada-d2d82428926c", [{"hovertemplate":"%{text}\u003cextra\u003e\u003c\u002fextra\u003e","line":{"color":"#DC2626","width":3},"marker":{"color":"#DC2626","size":5},"mode":"lines+markers","name":"Tokens","text":["Date: 2025-01-02\u003cbr\u003eTokens: 1.57G\u003cbr\u003eSamples: 546,769\u003cbr\u003eCommit: 9c15515d\u003cbr\u003eMessage: Added number of llama3 tokens to desc stats","Date: 2025-01-03\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +271.89M\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 38b692a5\u003cbr\u003eMessage: Added automatically updated samples to update_descriptive_stats.py","Date: 2025-01-04\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 576,589\u003cbr\u003eCommit: 546c3b35\u003cbr\u003eMessage: update opensubtitles","Date: 2025-01-05\u003cbr\u003eTokens: 1.84G\u003cbr\u003eChange: +5.40M\u003cbr\u003eSamples: 588,476\u003cbr\u003eCommit: 0cef3177\u003cbr\u003eMessage: Added distribution plot for number of tokens","Date: 2025-02-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +7.30M\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 97b3aa5d\u003cbr\u003eMessage: Add Nota-tekster (#41)","Date: 2025-03-10\u003cbr\u003eTokens: 1.85G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 588,922\u003cbr\u003eCommit: 5affec72\u003cbr\u003eMessage: add_memo (#42)","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +1.51G\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 65faa6e2\u003cbr\u003eMessage: a lot of improvements","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 43d839aa\u003cbr\u003eMessage: updates sheets","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: 060c4430\u003cbr\u003eMessage: Updated changelog","Date: 2025-04-29\u003cbr\u003eTokens: 3.36G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 846,387\u003cbr\u003eCommit: c9397c44\u003cbr\u003eMessage: reformatted the readme","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +901.15M\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: d36009a4\u003cbr\u003eMessage: update desc stats","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 2453a15a\u003cbr\u003eMessage: updated datasheet","Date: 2025-05-12\u003cbr\u003eTokens: 4.26G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 891,075\u003cbr\u003eCommit: 91cd694a\u003cbr\u003eMessage: docs: minor fixes to datasheets","Date: 2025-06-23\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +104.46M\u003cbr\u003eSamples: 891,094\u003cbr\u003eCommit: 16931a4c\u003cbr\u003eMessage: Fix memo (#68)","Date: 2025-06-25\u003cbr\u003eTokens: 4.37G\u003cbr\u003eChange: +581.06k\u003cbr\u003eSamples: 891,348\u003cbr\u003eCommit: 2c91001b\u003cbr\u003eMessage: Fix Danske Taler (#69)","Date: 2025-06-30\u003cbr\u003eTokens: 4.40G\u003cbr\u003eChange: +26.49M\u003cbr\u003eSamples: 915,090\u003cbr\u003eCommit: 7df022e7\u003cbr\u003eMessage: Adding Scrape Hovedstaden (#70)","Date: 2025-07-01\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +302.40M\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 6a2c8fbf\u003cbr\u003eMessage: update-retsinformationdk (#72)","Date: 2025-07-08\u003cbr\u003eTokens: 4.70G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 951,889\u003cbr\u003eCommit: 0cdc88c0\u003cbr\u003eMessage: Add tokens over time (+ rename scrape_hovedstaten) (#73)","Date: 2025-07-11\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +86.35M\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: dd36adfe\u003cbr\u003eMessage: Add domsdatabasen (#74)","Date: 2025-07-21\u003cbr\u003eTokens: 4.78G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 960,357\u003cbr\u003eCommit: 30071635\u003cbr\u003eMessage: restructuring-main-table (#75)","Date: 2025-07-22\u003cbr\u003eTokens: 4.80G\u003cbr\u003eChange: +10.53M\u003cbr\u003eSamples: 960,989\u003cbr\u003eCommit: 439e14c0\u003cbr\u003eMessage: Add Grundtvigs works (#79)","Date: 2025-08-06\u003cbr\u003eTokens: 5.83G\u003cbr\u003eChange: +1.03G\u003cbr\u003eSamples: 5,554,217\u003cbr\u003eCommit: 5f324fad\u003cbr\u003eMessage: Add Enev\u00e6ldens Nyheder Online (#83)","Date: 2025-08-07\u003cbr\u003eTokens: 5.83G\u003cbr\u003eChange: +0\u003cbr\u003eSamples: 5,554,217\u003cbr\u003eCommit: d9093e1a\u003cbr\u003eMessage: Update CI (#85)"],"x":["2025-01-02T00:00:00.000000000","2025-01-03T00:00:00.000000000","2025-01-04T00:00:00.000000000","2025-01-05T00:00:00.000000000","2025-02-10T00:00:00.000000000","2025-03-10T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-04-29T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-05-12T00:00:00.000000000","2025-06-23T00:00:00.000000000","2025-06-25T00:00:00.000000000","2025-06-30T00:00:00.000000000","2025-07-01T00:00:00.000000000","2025-07-08T00:00:00.000000000","2025-07-11T00:00:00.000000000","2025-07-21T00:00:00.000000000","2025-07-22T00:00:00.000000000","2025-08-06T00:00:00.000000000","2025-08-07T00:00:00.000000000"],"y":[1567706760,1839599769,1839599769,1844994816,1852293828,1852293828,3363395483,3363395483,3363395483,3363395483,4264549097,4264549097,4264549097,4369008328,4369589385,4396075044,4698470546,4698470546,4784823570,4784823570,4795348963,5829657307,5829657307],"type":"scatter"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"shapes":[{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":300000000,"y1":300000000,"yref":"y"},{"line":{"color":"gray","dash":"dash","width":1},"type":"line","x0":0,"x1":1,"xref":"x domain","y0":1000000000,"y1":1000000000,"yref":"y"}],"annotations":[{"font":{"color":"gray","size":12},"showarrow":false,"text":"Common Corpus (dan) (Langlais et al., 2025)","x":0,"xanchor":"left","xref":"x domain","y":300000000,"yanchor":"bottom","yref":"y"},{"font":{"color":"gray","size":12},"showarrow":false,"text":"Danish Gigaword (Derczynski et al., 2021)","x":0,"xanchor":"left","xref":"x domain","y":1000000000,"yanchor":"bottom","yref":"y"}],"title":{"text":"Number of Tokens Over Time in Danish Dynaword"},"xaxis":{"title":{"text":"Date"}},"yaxis":{"title":{"text":"Number of Tokens (Llama 3)"},"tickformat":".2s","ticksuffix":""},"hovermode":"closest","width":600,"height":400,"showlegend":false,"plot_bgcolor":"rgba(0,0,0,0)","paper_bgcolor":"rgba(0,0,0,0)"}, {"responsive": true} ) }; </script> </div>
|
6 |
</body>
|
7 |
</html>
|
images/tokens_over_time.svg
CHANGED
|
|
src/dynaword/datasheet.py
CHANGED
@@ -120,7 +120,11 @@ class DataSheet(BaseModel):
|
|
120 |
|
121 |
def get_dataset(self, **kwargs) -> Dataset:
|
122 |
ds_path = self.path.parent
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
ds = cast(Dataset, ds)
|
125 |
return ds
|
126 |
|
|
|
120 |
|
121 |
def get_dataset(self, **kwargs) -> Dataset:
|
122 |
ds_path = self.path.parent
|
123 |
+
# required to avoid loading .png files for the images/ folder (e.g. for plots) instead of parquet files
|
124 |
+
parquet_files = [p.as_posix() for p in ds_path.glob("**/*.parquet")]
|
125 |
+
ds = load_dataset(
|
126 |
+
ds_path.as_posix(), split="train", data_files=parquet_files, **kwargs
|
127 |
+
)
|
128 |
ds = cast(Dataset, ds)
|
129 |
return ds
|
130 |
|