Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
open-domain-qa
Languages:
English
Size:
100K - 1M
ArXiv:
License:
Delete loading script
Browse files
selqa.py
DELETED
|
@@ -1,300 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""SelQA: A New Benchmark for Selection-Based Question Answering"""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import csv
|
| 19 |
-
import json
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# TODO: Add BibTeX citation
|
| 25 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 26 |
-
_CITATION = """\
|
| 27 |
-
@InProceedings{7814688,
|
| 28 |
-
author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},
|
| 29 |
-
booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)},
|
| 30 |
-
title={SelQA: A New Benchmark for Selection-Based Question Answering},
|
| 31 |
-
year={2016},
|
| 32 |
-
volume={},
|
| 33 |
-
number={},
|
| 34 |
-
pages={820-827},
|
| 35 |
-
doi={10.1109/ICTAI.2016.0128}
|
| 36 |
-
}
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
# TODO: Add description of the dataset here
|
| 40 |
-
# You can copy an official description
|
| 41 |
-
_DESCRIPTION = """\
|
| 42 |
-
The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks,
|
| 43 |
-
answer sentence selection and answer triggering.
|
| 44 |
-
"""
|
| 45 |
-
|
| 46 |
-
# TODO: Add a link to an official homepage for the dataset here
|
| 47 |
-
_HOMEPAGE = ""
|
| 48 |
-
|
| 49 |
-
# TODO: Add the licence for the dataset here if you can find it
|
| 50 |
-
_LICENSE = ""
|
| 51 |
-
|
| 52 |
-
# TODO: Add link to the official dataset URLs here
|
| 53 |
-
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 54 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 55 |
-
types = {
|
| 56 |
-
"answer_selection": "ass",
|
| 57 |
-
"answer_triggering": "at",
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
modes = {"analysis": "json", "experiments": "tsv"}
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
class SelqaConfig(datasets.BuilderConfig):
|
| 64 |
-
""" "BuilderConfig for SelQA Dataset"""
|
| 65 |
-
|
| 66 |
-
def __init__(self, mode, type_, **kwargs):
|
| 67 |
-
super(SelqaConfig, self).__init__(**kwargs)
|
| 68 |
-
self.mode = mode
|
| 69 |
-
self.type_ = type_
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 73 |
-
class Selqa(datasets.GeneratorBasedBuilder):
|
| 74 |
-
"""A New Benchmark for Selection-based Question Answering."""
|
| 75 |
-
|
| 76 |
-
VERSION = datasets.Version("1.1.0")
|
| 77 |
-
|
| 78 |
-
# This is an example of a dataset with multiple configurations.
|
| 79 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 80 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 81 |
-
|
| 82 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 83 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 84 |
-
BUILDER_CONFIG_CLASS = SelqaConfig
|
| 85 |
-
|
| 86 |
-
# You will be able to load one or the other configurations in the following list with
|
| 87 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 88 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 89 |
-
BUILDER_CONFIGS = [
|
| 90 |
-
SelqaConfig(
|
| 91 |
-
name="answer_selection_analysis",
|
| 92 |
-
mode="analysis",
|
| 93 |
-
type_="answer_selection",
|
| 94 |
-
version=VERSION,
|
| 95 |
-
description="This part covers answer selection analysis",
|
| 96 |
-
),
|
| 97 |
-
SelqaConfig(
|
| 98 |
-
name="answer_selection_experiments",
|
| 99 |
-
mode="experiments",
|
| 100 |
-
type_="answer_selection",
|
| 101 |
-
version=VERSION,
|
| 102 |
-
description="This part covers answer selection experiments",
|
| 103 |
-
),
|
| 104 |
-
SelqaConfig(
|
| 105 |
-
name="answer_triggering_analysis",
|
| 106 |
-
mode="analysis",
|
| 107 |
-
type_="answer_triggering",
|
| 108 |
-
version=VERSION,
|
| 109 |
-
description="This part covers answer triggering analysis",
|
| 110 |
-
),
|
| 111 |
-
SelqaConfig(
|
| 112 |
-
name="answer_triggering_experiments",
|
| 113 |
-
mode="experiments",
|
| 114 |
-
type_="answer_triggering",
|
| 115 |
-
version=VERSION,
|
| 116 |
-
description="This part covers answer triggering experiments",
|
| 117 |
-
),
|
| 118 |
-
]
|
| 119 |
-
|
| 120 |
-
DEFAULT_CONFIG_NAME = "answer_selection_analysis" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 121 |
-
|
| 122 |
-
def _info(self):
|
| 123 |
-
if (
|
| 124 |
-
self.config.mode == "experiments"
|
| 125 |
-
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
| 126 |
-
features = datasets.Features(
|
| 127 |
-
{
|
| 128 |
-
"question": datasets.Value("string"),
|
| 129 |
-
"candidate": datasets.Value("string"),
|
| 130 |
-
"label": datasets.ClassLabel(names=["0", "1"]),
|
| 131 |
-
}
|
| 132 |
-
)
|
| 133 |
-
else:
|
| 134 |
-
if self.config.type_ == "answer_selection":
|
| 135 |
-
features = datasets.Features(
|
| 136 |
-
{
|
| 137 |
-
"section": datasets.Value("string"),
|
| 138 |
-
"question": datasets.Value("string"),
|
| 139 |
-
"article": datasets.Value("string"),
|
| 140 |
-
"is_paraphrase": datasets.Value("bool"),
|
| 141 |
-
"topic": datasets.ClassLabel(
|
| 142 |
-
names=[
|
| 143 |
-
"MUSIC",
|
| 144 |
-
"TV",
|
| 145 |
-
"TRAVEL",
|
| 146 |
-
"ART",
|
| 147 |
-
"SPORT",
|
| 148 |
-
"COUNTRY",
|
| 149 |
-
"MOVIES",
|
| 150 |
-
"HISTORICAL EVENTS",
|
| 151 |
-
"SCIENCE",
|
| 152 |
-
"FOOD",
|
| 153 |
-
]
|
| 154 |
-
),
|
| 155 |
-
"answers": datasets.Sequence(datasets.Value("int32")),
|
| 156 |
-
"candidates": datasets.Sequence(datasets.Value("string")),
|
| 157 |
-
"q_types": datasets.Sequence(
|
| 158 |
-
datasets.ClassLabel(names=["what", "why", "when", "who", "where", "how", ""])
|
| 159 |
-
),
|
| 160 |
-
}
|
| 161 |
-
)
|
| 162 |
-
else:
|
| 163 |
-
features = datasets.Features(
|
| 164 |
-
{
|
| 165 |
-
"section": datasets.Value("string"),
|
| 166 |
-
"question": datasets.Value("string"),
|
| 167 |
-
"article": datasets.Value("string"),
|
| 168 |
-
"is_paraphrase": datasets.Value("bool"),
|
| 169 |
-
"topic": datasets.ClassLabel(
|
| 170 |
-
names=[
|
| 171 |
-
"MUSIC",
|
| 172 |
-
"TV",
|
| 173 |
-
"TRAVEL",
|
| 174 |
-
"ART",
|
| 175 |
-
"SPORT",
|
| 176 |
-
"COUNTRY",
|
| 177 |
-
"MOVIES",
|
| 178 |
-
"HISTORICAL EVENTS",
|
| 179 |
-
"SCIENCE",
|
| 180 |
-
"FOOD",
|
| 181 |
-
]
|
| 182 |
-
),
|
| 183 |
-
"q_types": datasets.Sequence(
|
| 184 |
-
datasets.ClassLabel(names=["what", "why", "when", "who", "where", "how", ""])
|
| 185 |
-
),
|
| 186 |
-
"candidate_list": datasets.Sequence(
|
| 187 |
-
{
|
| 188 |
-
"article": datasets.Value("string"),
|
| 189 |
-
"section": datasets.Value("string"),
|
| 190 |
-
"candidates": datasets.Sequence(datasets.Value("string")),
|
| 191 |
-
"answers": datasets.Sequence(datasets.Value("int32")),
|
| 192 |
-
}
|
| 193 |
-
),
|
| 194 |
-
}
|
| 195 |
-
)
|
| 196 |
-
return datasets.DatasetInfo(
|
| 197 |
-
# This is the description that will appear on the datasets page.
|
| 198 |
-
description=_DESCRIPTION,
|
| 199 |
-
# This defines the different columns of the dataset and their types
|
| 200 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 201 |
-
# If there's a common (input, target) tuple from the features,
|
| 202 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 203 |
-
# builder.as_dataset.
|
| 204 |
-
supervised_keys=None,
|
| 205 |
-
# Homepage of the dataset for documentation
|
| 206 |
-
homepage=_HOMEPAGE,
|
| 207 |
-
# License for the dataset if available
|
| 208 |
-
license=_LICENSE,
|
| 209 |
-
# Citation for the dataset
|
| 210 |
-
citation=_CITATION,
|
| 211 |
-
)
|
| 212 |
-
|
| 213 |
-
def _split_generators(self, dl_manager):
|
| 214 |
-
"""Returns SplitGenerators."""
|
| 215 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 216 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 217 |
-
|
| 218 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
| 219 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 220 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 221 |
-
urls = {
|
| 222 |
-
"train": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-train.{modes[self.config.mode]}",
|
| 223 |
-
"dev": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-dev.{modes[self.config.mode]}",
|
| 224 |
-
"test": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-test.{modes[self.config.mode]}",
|
| 225 |
-
}
|
| 226 |
-
data_dir = dl_manager.download_and_extract(urls)
|
| 227 |
-
return [
|
| 228 |
-
datasets.SplitGenerator(
|
| 229 |
-
name=datasets.Split.TRAIN,
|
| 230 |
-
# These kwargs will be passed to _generate_examples
|
| 231 |
-
gen_kwargs={
|
| 232 |
-
"filepath": data_dir["train"],
|
| 233 |
-
"split": "train",
|
| 234 |
-
},
|
| 235 |
-
),
|
| 236 |
-
datasets.SplitGenerator(
|
| 237 |
-
name=datasets.Split.TEST,
|
| 238 |
-
# These kwargs will be passed to _generate_examples
|
| 239 |
-
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
|
| 240 |
-
),
|
| 241 |
-
datasets.SplitGenerator(
|
| 242 |
-
name=datasets.Split.VALIDATION,
|
| 243 |
-
# These kwargs will be passed to _generate_examples
|
| 244 |
-
gen_kwargs={
|
| 245 |
-
"filepath": data_dir["dev"],
|
| 246 |
-
"split": "dev",
|
| 247 |
-
},
|
| 248 |
-
),
|
| 249 |
-
]
|
| 250 |
-
|
| 251 |
-
def _generate_examples(self, filepath, split):
|
| 252 |
-
"""Yields examples."""
|
| 253 |
-
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
|
| 254 |
-
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
| 255 |
-
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
| 256 |
-
with open(filepath, encoding="utf-8") as f:
|
| 257 |
-
if self.config.mode == "experiments":
|
| 258 |
-
csv_reader = csv.DictReader(
|
| 259 |
-
f, delimiter="\t", quoting=csv.QUOTE_NONE, fieldnames=["question", "candidate", "label"]
|
| 260 |
-
)
|
| 261 |
-
for id_, row in enumerate(csv_reader):
|
| 262 |
-
yield id_, row
|
| 263 |
-
else:
|
| 264 |
-
if self.config.type_ == "answer_selection":
|
| 265 |
-
for row in f:
|
| 266 |
-
data = json.loads(row)
|
| 267 |
-
for id_, item in enumerate(data):
|
| 268 |
-
yield id_, {
|
| 269 |
-
"section": item["section"],
|
| 270 |
-
"question": item["question"],
|
| 271 |
-
"article": item["article"],
|
| 272 |
-
"is_paraphrase": item["is_paraphrase"],
|
| 273 |
-
"topic": item["topic"],
|
| 274 |
-
"answers": item["answers"],
|
| 275 |
-
"candidates": item["candidates"],
|
| 276 |
-
"q_types": item["q_types"],
|
| 277 |
-
}
|
| 278 |
-
else:
|
| 279 |
-
for row in f:
|
| 280 |
-
data = json.loads(row)
|
| 281 |
-
for id_, item in enumerate(data):
|
| 282 |
-
candidate_list = []
|
| 283 |
-
for entity in item["candidate_list"]:
|
| 284 |
-
candidate_list.append(
|
| 285 |
-
{
|
| 286 |
-
"article": entity["article"],
|
| 287 |
-
"section": entity["section"],
|
| 288 |
-
"answers": entity["answers"],
|
| 289 |
-
"candidates": entity["candidates"],
|
| 290 |
-
}
|
| 291 |
-
)
|
| 292 |
-
yield id_, {
|
| 293 |
-
"section": item["section"],
|
| 294 |
-
"question": item["question"],
|
| 295 |
-
"article": item["article"],
|
| 296 |
-
"is_paraphrase": item["is_paraphrase"],
|
| 297 |
-
"topic": item["topic"],
|
| 298 |
-
"q_types": item["q_types"],
|
| 299 |
-
"candidate_list": candidate_list,
|
| 300 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|