Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
|
@@ -387,11 +387,6 @@
|
|
| 387 |
"cell_type": "code",
|
| 388 |
"source": [
|
| 389 |
"# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
| 390 |
-
"\n",
|
| 391 |
-
"#image_index = 0 # @param {type:'number'}\n",
|
| 392 |
-
"# @markdown 📥 Load the data (only required one time)\n",
|
| 393 |
-
"load_the_data = True # @param {type:\"boolean\"}\n",
|
| 394 |
-
"\n",
|
| 395 |
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
| 396 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
| 397 |
"\n",
|
|
@@ -407,9 +402,47 @@
|
|
| 407 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
| 408 |
"\n",
|
| 409 |
"# @markdown Calculate most similiar items using above settings?\n",
|
| 410 |
-
"enable = False # @param {type:\"boolean\"}\n",
|
| 411 |
"\n",
|
| 412 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
| 414 |
" from transformers import AutoTokenizer\n",
|
| 415 |
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
|
@@ -459,27 +492,6 @@
|
|
| 459 |
" # Sort the items\n",
|
| 460 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
| 461 |
"\n",
|
| 462 |
-
" # @title ⚙️📝 Print the results (Advanced)\n",
|
| 463 |
-
" list_size = 1000 # param {type:'number'}\n",
|
| 464 |
-
" start_at_index = 0 # param {type:'number'}\n",
|
| 465 |
-
" print_Similarity = True # param {type:\"boolean\"}\n",
|
| 466 |
-
" print_Prompts = True # param {type:\"boolean\"}\n",
|
| 467 |
-
" print_Prefix = True # param {type:\"boolean\"}\n",
|
| 468 |
-
" print_Descriptions = True # param {type:\"boolean\"}\n",
|
| 469 |
-
" compact_Output = True # param {type:\"boolean\"}\n",
|
| 470 |
-
"\n",
|
| 471 |
-
" # @markdown -----------\n",
|
| 472 |
-
" # @markdown ⚙️📝 Printing options\n",
|
| 473 |
-
" newline_Separator = False # @param {type:\"boolean\"}\n",
|
| 474 |
-
"\n",
|
| 475 |
-
" import random\n",
|
| 476 |
-
" list_size2 = 1000 # param {type:'number'}\n",
|
| 477 |
-
" start_at_index2 = 10000 # param {type:'number'}\n",
|
| 478 |
-
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
| 479 |
-
"\n",
|
| 480 |
-
" # @markdown Repeat output N times\n",
|
| 481 |
-
" N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
| 482 |
-
"\n",
|
| 483 |
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
| 484 |
" RANGE = list_size\n",
|
| 485 |
" separator = '|'\n",
|
|
|
|
| 387 |
"cell_type": "code",
|
| 388 |
"source": [
|
| 389 |
"# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
"# @markdown 🖼️ Choose a pre-encoded reference\n",
|
| 391 |
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
| 392 |
"\n",
|
|
|
|
| 402 |
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
| 403 |
"\n",
|
| 404 |
"# @markdown Calculate most similiar items using above settings?\n",
|
|
|
|
| 405 |
"\n",
|
| 406 |
+
"\n",
|
| 407 |
+
"# @title ⚙️📝 Print the results (Advanced)\n",
|
| 408 |
+
"list_size = 1000 # param {type:'number'}\n",
|
| 409 |
+
"start_at_index = 0 # param {type:'number'}\n",
|
| 410 |
+
"print_Similarity = True # param {type:\"boolean\"}\n",
|
| 411 |
+
"print_Prompts = True # param {type:\"boolean\"}\n",
|
| 412 |
+
"print_Prefix = True # param {type:\"boolean\"}\n",
|
| 413 |
+
"print_Descriptions = True # param {type:\"boolean\"}\n",
|
| 414 |
+
"compact_Output = True # param {type:\"boolean\"}\n",
|
| 415 |
+
"\n",
|
| 416 |
+
"# @markdown -----------\n",
|
| 417 |
+
"# @markdown 📝 Printing options\n",
|
| 418 |
+
"newline_Separator = False # @param {type:\"boolean\"}\n",
|
| 419 |
+
"\n",
|
| 420 |
+
"import random\n",
|
| 421 |
+
"list_size2 = 1000 # param {type:'number'}\n",
|
| 422 |
+
"start_at_index2 = 10000 # param {type:'number'}\n",
|
| 423 |
+
"rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
| 424 |
+
"\n",
|
| 425 |
+
"# @markdown Repeat output N times\n",
|
| 426 |
+
"N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
| 427 |
+
"\n",
|
| 428 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
| 429 |
+
"# @markdown 📥 Reload vocab (required if you change the vocab)\n",
|
| 430 |
+
"reload_vocab = False # @param {type:\"boolean\"}\n",
|
| 431 |
+
"_load_the_data = reload_vocab\n",
|
| 432 |
+
"\n",
|
| 433 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
| 434 |
+
"# @markdown ⚙️ Do dot product calculation (disable if you only want to browse images)\n",
|
| 435 |
+
"run_script = True # @param {type:\"boolean\"}\n",
|
| 436 |
+
"enable = run_script\n",
|
| 437 |
+
"\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"# Load the data if not already loaded\n",
|
| 440 |
+
"try:\n",
|
| 441 |
+
" loaded2\n",
|
| 442 |
+
"except:\n",
|
| 443 |
+
" _load_the_data = True\n",
|
| 444 |
+
"\n",
|
| 445 |
+
"if (_load_the_data):\n",
|
| 446 |
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
| 447 |
" from transformers import AutoTokenizer\n",
|
| 448 |
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
|
|
|
| 492 |
" # Sort the items\n",
|
| 493 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
| 494 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
| 496 |
" RANGE = list_size\n",
|
| 497 |
" separator = '|'\n",
|